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   Preface   

 Understanding the mechanisms that control human health and disease, in particular 
the role of genetic predispositions and their interaction with environmental factors 
is a prerequisite for the development of safe and ef fi cient therapies for complex 
disorders, such as type 2 diabetes and cardiovascular disease. Over 100 years ago, 
Archibald Garrod already realized that inborn errors of metabolism are “ merely 
extreme examples of variations of chemical behavior which are probably every-
where present in minor degrees’ and that this ‘chemical individuality [confers] pre-
disposition to and immunities from the various mishaps which are spoken of as 
diseases ” [1]. Recent advances in analytical technologies, in particular mass spec-
trometry, nuclear magnetic resonance spectroscopy, and liquid chromatography, 
have paved the way for the extensive characterization of a wide range of small mol-
ecules in many different types of biological samples. Aiming at the comprehensive 
and quantitative determination of ideally all key metabolites in a biological system, 
the emerging  fi eld of metabolomics has now joined ranks with other  – omics  tech-
nologies that bene fi tted from the development of high throughput measuring capa-
bilities, such as genomics (next generation DNA sequencing) and transcriptomics 
(micro-arrays for mRNA expression analysis). 

 A limited number of books on metabolomics have been published in recent years. 
However, most focus on experimental questions and technical challenges of the 
 fi eld and are dedicated to a readership experienced in the  fi eld of bio-analytics. This 
book is complimentary to these specialist volumes as is centers on the application 
of metabolomics, with a special emphasis on the underlying genetics. Therefore the 
authors of this book took a more interdisciplinary approach. Their chapters address 
a wider readership of graduate students, postdoctoral researchers and experienced 
scientists from multiple domains. We hope that endocrinologists and biochemists 
with an interest in the genetics underlying metabolic phenotypes shall  fi nd new 
insights in the topics covered here, as shall geneticists who appreciate the fact that 
metabolic traits are more than just another set of quantitative variables to test for 
association. Most chapters shall also be accessible to clinical researchers who are 
neither specialists in genetics nor in biochemistry, but who wish to understand how 
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genetics and metabolomics come together in a systems-wide understanding of complex 
metabolic disorders. As promised in the title, all chapters of this book address exciting 
questions of where genetics meets metabolomics, all taking different viewpoints, 
ranging from experiment to systems biology. As this book is intended for an inter-
disciplinary readership, it contains aids for readers who are not deeply familiar with 
a particular domain, which are presented in the form of education boxes. These 
boxes describe central concepts that are known to researchers from one  fi eld, but 
that may be unfamiliar to others. We hope that this book shall inspire the new gen-
eration of researchers who address biological questions from a holistic point of 
view, combing genetics and metabolomics at all levels, from experiment to systems 
biology.    

Doha, State of Qatar Karsten Suhre

   Reference   

 1. Mootha VK, Hirschhorn JN (2010) Inborn variation in metabolism. Nat Genet 42:97–98   



ix

 Contents

 1 Introduction .............................................................................................  1
Karsten Suhre

 2 Pre-conditions for High Quality Biobanking in Large 
Human Epidemiological Cohorts for Metabolomics 
and Other – Omics Studies .....................................................................  5
Thomas Illig

 3 Assay Tools for Metabolomics ................................................................  13
Anna Artati, Cornelia Prehn, Gabriele Möller, 
and Jerzy Adamski

 4 Statistical Methods in Genetic and Molecular Epidemiology 
and Their Application in Studies with Metabolic Phenotypes ............  39
Christian Gieger

 5 Ultrahigh Resolution Mass Spectrometry Based 
Non-targeted Microbial Metabolomics .................................................  57
Michael Witting, Marianna Lucio, Dimitrios Tziotis, 
and Philippe Schmitt-Kopplin

 6 Metabolomic Systems Biology of Protozoan Parasites ........................  73
Rainer Breitling, Barbara M. Bakker, Michael P. Barrett, 
Saskia Decuypere, and Jean-Claude Dujardin

 7 Mouse Genetics and Metabolic Mouse Phenotyping ...........................  85
Helmut Fuchs, Susanne Neschen, Jan Rozman, Birgit Rathkolb, 
Sibylle Wagner, Thure Adler, Luciana Afonso, 
Juan Antonio Aguilar-Pimentel, Lore Becker, Alexander Bohla, 
Julia Calzada-Wack, Christian Cohrs, András Frankó, Lillian Garrett, 
Lisa Glasl, Alexander Götz, Michael Hagn, Wolfgang Hans, 
Sabine M. Hölter, Marion Horsch, Melanie Kahle, Martin Kistler, 
Tanja Klein-Rodewald, Christoph Lengger, Tonia Ludwig, 
Holger Maier, Susan Marschall, Kateryna Micklich, Gabriele Möller, 



x Contents

Beatrix Naton, Frauke Neff, Cornelia Prehn, Oliver Puk, Ildikó Rácz, 
Michael Räß, Markus Scheerer, Evelyn Schiller, Felix Schöfer, 
Anja Schrewe, Ralph Steinkamp, Claudia Stöger, Irina Treise, 
Monja Willershäuser, Annemarie Wolff-Muscate, Ramona Zeh, 
Jerzy Adamski, Johannes Beckers, Raffi Bekeredjian, Dirk H. Busch, 
Jack Favor, Jochen Graw, Hugo Katus, Thomas Klopstock, 
Markus Ollert, Holger Schulz, Tobias Stöger, Wolfgang Wurst, 
Ali Önder Yildirim, Andreas Zimmer, Eckhard Wolf, 
Martin Klingenspor, Valérie Gailus-Durner, and Martin Hrabě de Angelis

 8 Metabolomics in Animal Breeding ........................................................  107
Christa Kühn 

 9 Metabolomics Applications in Human Nutrition .................................  125
Hannelore Daniel and Manuela Sailer 

10 Metabolomics for the Individualized Therapy of Androgen 
Deficiency Syndrome in Male Adults ....................................................  139
Robin Haring, Kathrin Budde, and Henri Wallaschofski 

11 Systems Biology Resources Arising from the Human 
Metabolome Project ................................................................................  157
David Wishart 

12 Understanding Cancer Metabolism Through 
Global Metabolomics ..............................................................................  177
Michael V. Milburn, Kay A. Lawton, Jonathan E. McDunn, 
John A. Ryals, and Lining Guo

13 Genetic and Metabolic Determinants of Fatty Acid 
Chain Length and Desaturation, Their Incorporation 
into Lipid Classes and Their Effects on Risk of Vascular 
and Metabolic Disease ............................................................................  191
Thomas Kopf, Markus Peer, and Gerd Schmitz

14 Mapping Metabolomic Quantitative Trait Loci (mQTL): 
A Link Between Metabolome-Wide Association Studies 
and Systems Biology ...............................................................................  233
Marc-Emmanuel Dumas and Dominique Gauguier

15 Metabolic Traits as Intermediate Phenotypes ......................................  255
Florian Kronenberg

16 Genome-Wide Association Studies with Metabolomics .......................  265
Karsten Suhre 

17 Systems Biology Meets Metabolism ......................................................  281
Jan Krumsiek, Ferdinand Stückler, Gabi Kastenmüller, 
and Fabian J. Theis

Index .................................................................................................................  315



xi

   Contributors 

     Prof.   Jerzy   Adamski                 Helmholtz Zentrum München, Institute of Experimental 
Genetics, Genome Analysis Center   ,   Neuherberg ,  Bavaria ,  Germany      

     Dr.   Thure   Adler                 German Mouse Clinic, Institute of Experimental Genetics, 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,  Neuherberg , Germany

Institute for Medical Microbiology, Immunology, and Hygiene ,  Technische 
Universität München ,   Munich ,  Germany              

     Dr.   Luciana   Afonso                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Juan   Antonio   Aguilar-Pimentel                 Department of Dermatology and Allergy, 
Biederstein, Clinical Research Division of Molecular and Clinical Allergotoxicology , 
 TUM ,   Munich ,  Germany     

Division of Environmental Dermatology and Allergy ,  Technische Universität 
München/Helmholtz Zentrum München ,   Neuherberg ,  Germany      

     Prof. Dr.   Martin   Hrabě   de   Angelis                 German Mouse Clinic, Institute of Experimental 
Genetics ,  Helmholtz Zentrum München, German Research Center for Environmental 
Health (GmbH) ,   Neuherberg ,  Germany     

Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan , 
 Technische Universität München ,   Freising ,  Germany      

     Anna   Artati                   Helmholtz Zentrum München ,  Institute of Experimental Genetics, 
Genome Analysis Center ,   Neuherberg ,  Bavaria ,  Germany      

     Barbara   M.   Bakker           Department of Pediatrics ,  Center for Liver, Digestive and 
Metabolic Diseases, University Medical Center Groningen, University of Groningen , 
  Groningen ,  The Netherlands      



xii Contributors

     Michael   P.   Barrett           Wellcome Trust Centre for Molecular Parasitology, Institute of 
Infection, Immunity and In fl ammation, College of Medical, Veterinary and Life 
Sciences ,  University of Glasgow ,   Glasgow ,  United Kingdom      

     Dr.   Lore   Becker               Friedrich-Baur-Institut, Department of Neurology ,  Ludwig-
Maximilians-Universität München ,   Munich ,  Germany

     German Mouse Clinic, Institute of Experimental Genetics ,  Helmholtz Zentrum 
München, German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Bavaria ,  Germany      

     PD. Dr.   Johannes   Beckers                 German Mouse Clinic, Institute of Experimental 
Genetics ,  Helmholtz Zentrum München, German Research Center for Environmental 
Health (GmbH) ,   Neuherberg ,  Bavaria ,  Germany     

Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan , 
 Technische Universität München ,   Freising ,  Germany      

     Prof. Dr.   Raf fi    Bekeredjian               Otto-Meyerhof-Zentrum, Department of Medicine 
III, Division of Cardiology ,  University of Heidelberg ,   Heidelberg ,  Germany      

     Dr.   Alexander   Bohla                 Comprehensive Pneumology Center, Institute of Lung 
Biology and Disease ,  Helmholtz Zentrum München, German Research Center for 
Environmental Health (GmbH) ,   Neuherberg ,    Germany      

     Rainer   Breitling           Institute of Molecular, Cell and Systems Biology, College of 
Medical, Veterinary and Life Sciences ,  University of Glasgow ,   Glasgow ,  United 
Kingdom     

Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and 
Biotechnology Institute ,  University of Groningen ,   Groningen ,  The Netherlands      

     Dr. rer. med   Kathrin   Budde               Institute for Clinical Chemistry and Laboratory 
Medicine ,  University Medicine Greifswald ,   Greifswald ,  Mecklenburg-Vorpommern , 
 Germany      

     Prof. Dr.   Dirk   H.   Busch             Institute for Medical Microbiology, Immunology, and 
Hygiene ,  Technische Universität München ,   Munich ,  Germany      

     Dr.   Julia   Calzada-Wack                 Institute of Pathology ,  Helmholtz Zentrum München, 
German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Christian   Cohrs               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Prof. Dr.   Hannelore   Daniel               Molecular Nutrition Unit ,  TUM ,   Freising ,  Germany      

     Saskia   Decuypere           Department of Parasitology, Unit of Molecular Parasitology , 
 Institute of Tropical Medicine ,   Antwerp ,  Belgium      



xiiiContributors

     Jean-Claude   Dujardin           Department of Parasitology, Unit of Molecular 
Parasitology ,  Institute of Tropical Medicine ,   Antwerp ,  Belgium      

     Dr.   Marc-Emmanuel   Dumas                 Surgery and Cancer ,  Imperial College London , 
  London ,  United Kingdom      

     Dr.   Jack   Favor                 Institute of Human Genetics ,  Helmholtz Zentrum München, 
German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Dr.   András   Frankó                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Centerfor Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Helmut   Fuchs               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Valérie   Gailus-Durner                 German Mouse Clinic, Institute of Experimental 
Genetics ,  Helmholtz Zentrum München, German Research Center for Environmental 
Health (GmbH) ,   Neuherberg ,  Germany      

     Dr.   Lillian   Garrett                 Institute of Developmental Genetics ,  Helmholtz Zentrum 
München, German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Prof.   Dominique   Gauguier               INSERM U872 ,  Cordeliers Research Centre ,   Paris , 
 France      

     Dr.   Christian   Gieger               Helmholtz Center Munich – German Research Center for 
Environmental Health ,  Institute of Genetic Epidemiology ,   Neuherberg ,  Germany      

     Lisa   Glasl               Institute of Developmental Genetics ,  Helmholtz Zentrum München, 
German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Dr.   Alexander   Götz                 Comprehensive Pneumology Center, Institute of Lung 
Biology and Disease ,  Helmholtz Zentrum München, German Research Center for 
Environmental Health (GmbH) ,   Neuherberg ,  Germany      

     Prof. Dr.   Jochen   Graw                 Institute of Developmental Genetics ,  Helmholtz Zentrum 
München, German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Lining   Guo      Senior Director/Head of Project Management,              Research and 
Development ,  Metabolon, Inc ,   Durham ,  NC ,  USA      

     Dr.   Michael   Hagn                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      



xiv Contributors

     Dr.   Wolfgang   Hans                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr. rer. med   Robin   Haring               Institute for Clinical Chemistry and Laboratory 
Medicine ,  University Medicine Greifswald ,   Greifswald ,  Mecklenburg-Vorpommern , 
 Germany      

     Dr.   Sabine   M.   Hölter                 Institute of Developmental Genetics ,  Helmholtz Zentrum 
München, German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Dr.   Marion   Horsch                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr. Prof.   Thomas   Illig                 Research Unit of Molecular Epidemiology ,   Neuherberg , 
 Bavaria ,  Germany   

  Hannover Uni fi ed Biobank ,  Hannover Medical School ,   Hannover      

     Melanie   Kahle               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Gabi   Kastenmüller                 Helmholtz Zentrum München, Institute of Bioinformatics 
and Systems Biology ,   Neuherberg ,  Germany      

     Prof. Dr.   Hugo   Katus                 Otto-Meyerhof-Zentrum, Department of Medicine III, 
Division of Cardiology ,  University of Heidelberg ,   Heidelberg ,  Germany      

     Martin   Kistler               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Tanja   Klein-Rodewald                 Institute of Pathology ,  Helmholtz Zentrum München, 
German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Prof. Dr.   Martin   Klingenspor               Molecular Nutritional Medicine, Else Kröner-
Fresenius Center and ZIEL Research Center for Nutrition and Food Sciences , 
 Technische Universität München ,   Freising ,  Weihenstephan ,  Germany      

     Prof. Dr.   Thomas   Klopstock                 Friedrich-Baur-Institut, Department of Neurology , 
 Ludwig-Maximilians-Universität München ,   Munich ,  Germany      

     Dr.   Thomas   Kopf               Department of Clinical Chemistry and Laboratory Medicine , 
 University Hospital Regensburg ,   Regensburg ,  Bavaria ,  Germany      

     Florian   Kronenberg                 Division of Genetic Epidemiology ,  Innsbruck Medical 
University ,   Innsbruck ,  Austria      



xvContributors

     Jan   Krumsiek                 Helmholtz Zentrum München, Institute of Bioinformatics and 
Systems Biology ,   Neuherberg ,  Germany      

     Dr.   Christa   Kühn               Department of Molecular Biology ,  Leibniz Institutefor Farm 
Animal Biology (FBN) ,   Dummerstorf ,  Germany      

     Dr.   Kay   A.   Lawton                 Research and Development ,  Metabolon, Inc ,   Durham ,  NC , 
 USA      

     Dr.   Christoph   Lengger         German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr. rer. nat.   Marianna   Lucio               Helmholtz Zentrum München ,  Research Unit 
Analytical BioGeoChemistry ,   Neuherberg ,  Bavaria ,  Germany      

     Tonia   Ludwig               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Holger   Maier                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Susan   Marschall                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Jonathan   E.   McDunn                   Oncology Research and Development ,  Metabolon, Inc , 
  Durham ,  NC ,  USA      

     Kateryna   Micklich               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Michael   V.   Milburn           Research and Development ,  Metabolon, Inc ,   Durham ,  NC , 
 USA      

     Gabriele   Möller                 Helmholtz Zentrum München, Institute of Experimental Genetics, 
Genome Analysis Center   ,   Neuherberg ,  Bavaria ,  Germany      

     Dr.   Beatrix   Naton                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Frauke   Neff                 Institute of Pathology ,  Helmholtz Zentrum München, German 
Research Center for Environmental Health (GmbH) ,   Neuherberg ,  Germany      

     Dr.   Susanne   Neschen                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      



xvi Contributors

     Prof. Dr.   Markus   Ollert                 Department of Dermatology and Allergy, Biederstein, 
Clinical Research Division of Molecular and Clinical Allergotoxicology ,  TUM , 
  Munich ,  Germany      

     Dr.   Markus   Peer               Department of Clinical Chemistry and Laboratory Medicine , 
 University Hospital Regensburg ,   Regensburg ,  Bavaria ,  Germany      

     Cornelia   Prehn                 Helmholtz Zentrum München, Institute of Experimental Genetics, 
Genome Analysis Center ,     Neuherberg ,  Bavaria ,  Germany      

     Dr.   Oliver   Puk                 Institute of Developmental Biology ,  Helmholtz Zentrum München, 
German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     PD. Dr.   Ildikó   Rácz                 Institute of Molecular Psychiatry ,  University of Bonn ,   Bonn , 
 Germany      

     Dr.   Michael   Räß                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Birgit   Rathkolb                 German Mouse Clinic, Institute of Experimental Genetics, 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany  

Chair for Molecular Animal Breeding and Biotechnology, Gene Center ,  Ludwig-
Maximilians-Universität München ,   Munich ,  Germany     

          Dr.   Jan   Rozman                 German Mouse Clinic, Institute of Experimental Genetics, 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany  

Molecular Nutritional Medicine, Else Kröner-Fresenius Center and ZIEL Research 
Center for Nutrition and Food Sciences, Technische Universität München   ,   Freising , 
 Weihenstephan ,  Germany     

          CEO John   A.   Ryals                   Metabolon, Inc ,   Durham ,  NC ,  USA      

     Manuela   Sailer                Molecular Nutrition Unit ,  TUM ,   Freising ,  Germany      

     Markus   Scheerer       German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Evelyn   Schiller               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     PD. Dr.   Philippe   Schmitt-Kopplin             Helmholtz Zentrum München ,  Research Unit 
Analytical BioGeoChemistry ,   Neuherberg ,  Bavaria ,  Germany      



xviiContributors

     Dr. Prof.   Gerd   Schmitz               Department of Clinical Chemistry and Laboratory 
Medicine ,  University Hospital Regensburg ,   Regensburg ,  Bavaria ,  Germany      

     Dr.   Felix   Schöfer                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Anja   Schrewe               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Prof. Dr.   Holger   Schulz                 Institute of Epidemiology I ,  Helmholtz Zentrum München, 
German Research Center for Environmental Health (GmbH) ,   Neuherberg , 
 Germany      

     Dr.   Ralph   Steinkamp                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Claudia   Stöger                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr.   Tobias   Stöger                 Comprehensive Pneumology Center, Institute of Lung Biology 
and Disease ,  Helmholtz Zentrum München, German Research Center for 
Environmental Health (GmbH) ,   Neuherberg ,  Germany      

     Ferdinand   Stückler                 Helmholtz Zentrum München, Institute of Bioinformatics 
and Systems Biology ,   Neuherberg ,  Germany      

     Karsten   Suhre               Department of Physiology and Biophysics ,  Weill Cornell Medical 
College in Qatar, Education City – Qatar Foundation ,   Doha ,  State of Qatar      

     Dr. Prof.   Fabian   J.   Theis                 Helmholtz Zentrum München, Institute of Bioinformatics 
and Systems Biology ,   Neuherberg ,  Germany      

     Irina   Treise               German Mouse Clinic, Institute of Experimental Genetics ,  Helmholtz 
Zentrum München, German Research Center for Environmental Health (GmbH) , 
  Neuherberg ,  Germany      

     Dimitrios   Tziotis               Helmholtz Zentrum München ,  Research Unit Analytical 
BioGeoChemistry ,   Neuherberg ,  Bavaria ,  Germany      

     Dr.   Sibylle   Wagner                 German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

     Dr. med. Prof.   Henri   Wallaschofski                 Institute for Clinical Chemistry and 
Laboratory Medicine ,  University Medicine Greifswald ,   Greifswald ,  Mecklenburg-
Vorpommern ,  Germany      



xviii Contributors

     Monja   Willershäuser               German Mouse Clinic, Institute of Experimental Genetics , 
 Helmholtz Zentrum München, German Research Center for Environmental Health 
(GmbH) ,   Neuherberg ,  Germany      

Prof.      David     Wishart               Department of Computing Science and Biological Sciences , 
 University of Alberta ,   Edmonton ,  AB ,  Canada      

     Michael   Witting             Helmholtz Zentrum München ,  Research Unit Analytical 
BioGeoChemistry ,   Neuherberg ,  Bavaria ,  Germany      

     Prof. Dr.   Eckhard   Wolf               Chair for Molecular Animal Breeding and Biotechnology, 
Gene Center ,  Ludwig-Maximilians-Universität München ,   Munich ,  Germany      

     Annemarie   Wolff-Muscate               Institute of Developmental Genetics ,  Helmholtz 
Zentrum München, German Research Center for Environmental Health (GmbH) , 
  Neuherberg ,  Germany      

     Prof. Dr.   Wolfgang   Wurst                 Institute of Developmental Biology ,  Helmholtz 
Zentrum München, German Research Center for Environmental Health (GmbH) , 
  Neuherberg ,  Germany     

Chair of Developmental Genetics, Center of Life and Food Sciences Weihenstephan , 
 Technische Universität München ,   Freising ,  Germany      

     Dr.   Ali   Önder   Yildirim                 Comprehensive Pneumology Center, Institute of Lung 
Biology and Disease ,  Helmholtz Zentrum München, German Research Center for 
Environmental Health (GmbH) ,   Neuherberg ,  Germany      

     Ramona   Zeh             German Mouse Clinic, Institute of Experimental Genetics ,  Helmholtz 
Zentrum München, German Research Center for Environmental Health (GmbH) , 
  Neuherberg ,  Germany      

     Prof. Dr.   Andreas   Zimmer                 Institute of Molecular Psychiatry ,  University of Bonn , 
  Bonn ,  Germany            



1K. Suhre (ed.), Genetics Meets Metabolomics: from Experiment to Systems Biology,
DOI 10.1007/978-1-4614-1689-0_1, © Springer Science+Business Media, LLC 2012

     1   Chapters on Experiment Related Questions 

 A key element of any metabolomics study is the availability of high quality samples, 
ideally from a large number of biosamples. In  “Pre-conditions for high quality 
biobanking in large human epidemiological cohorts for metabolomics and 
other -omics studies” , Thomas Illig highlights methods for high quality preserva-
tion of samples for later application of systematic molecular analyses like genom-
ics, epigenomics or metabolomics (® technology: biobanking). 

 The practical aspects of experimental metabolomics methods and questions that 
may determine a particular study design are provided by Jerzy Adamski and co-
workers in their chapter  “Assay Tools for Metabolomics”.  They describe the differ-
ent steps that are required for the successful collection of large quantitative 
metabolomics data sets (® technology: high throughput mass spectrometry). 

 The selection of proper statistical tools for the analysis metabolomics data in 
combination with genetic variance is of utmost importance for the meaningful 
identi fi cation of associations between genotype and metabolic phenotype, as 
explained by Christian Gieger in his chapter on  “Statistical methods in genetic 
and molecular epidemiology and their application in studies with metabolic 
phenotypes”  (® concept: genetic association).  
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    2   Chapters on Unicellular Organisms and Animal Models 

 The majority of cells in a human body are of microbial rather than human origin. 
Metabolic conversions performed by these bacterial communities closely interact 
with human metabolism. It is therefore not surprising that the human microbiome, 
such as of the intestines and on the skin, is in fl uencing human health. The 
investigation of these processes in microbial communities is what Schmitt-Kopplin 
and co-workers term the  “meta-metabolome”  in their chapter on  “Ultrahigh resolu-
tion mass spectrometry based non-targeted microbial metabolomics”  (® technol-
ogy: ultrahigh resolution mass spectrometry; application: microbial metabolomics). 

 Using exact-mass mass spectrometry, Rainer Breitling and colleagues present in 
 “Metabolomic systems biology of protozoan parasites”  two case studies of metabo-
lomic systems biology on two major protozoan pathogens, the African trypanosome 
Trypanosoma brucei, causative agent of sleeping sickness, and the Leishmania don-
ovani parasites, responsible for visceral leishmaniasis (® application: protozoan 
metabolomics). 

 Genetically modi fi ed mice are widely used as a model organism to study human 
diseases: mice are easy to handle and breed, there exist inbred strains, and the mouse 
genome sequence is available. However, not all genetically modi fi ed mice exhibit a 
clear disease phenotype when simply kept and fed in a cage. Therefore, de fi ning 
appropriate challenges to induce disease phenotypes has become a major focus in 
current mouse studies. In  “Mouse genetics and metabolic mouse phenotyping” , 
Helmut Fuchs, Martin Hrabě de Angelis and co-authors from the German Mouse 
Clinic argue the case of metabolomics to be used as a comprehensive phenotyping 
tool in such challenge experiments with genetically modi fi ed mice (® concept: 
challenge experiments in mouse models). 

 Although at most times unknowingly, favourable genetic traits in livestock have 
been selected for since prehistoric times. Due to partial inbreeding, farm animals are 
also a great resource for genetic studies and complementary to fully in-bred animal 
models. Christa Kühn presents examples of application of  “Metabolomics in animal 
breeding”  and how metabolomics provides a new tool for optimisation of selection 
(® concept: metabolomics assisted breeding).  

    3   Chapters on Human Health Related Topics 

 After highlighting the potential of metabolomics in bacterial and protozoan organ-
isms, genetically inbred mice, and partially inbred livestock, the remaining chapters 
focus on human biology and its disorders. Differences in lifestyle are, to a large 
part, re fl ected in nutritional habits, and metabolomics appears to be a tool of choice 
in this area. However, Hannelore Daniel and Manuela Sailer argue that metabolom-
ics in human nutrition research is still in its infancy. In their chapter  “Metabolomics 
applications in human nutrition”  they describe that two research tracks are presently 
emerging: assessment of food intake by identifying and quantifying marker 
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metabolites that originate from the intake of individual food components to provide 
better tools for assessing human food consumption, and characterizing the meta-
bolic responses to dietary challenges to better de fi ne the health–disease relationship 
(® concept: nutritional challenge experiments; application: human nutrition). 

 Syndromic diseases are characterized by their resistance to present a clear and 
unifying medical picture. A wider and mostly non-targeted phenotypic characteriza-
tion of a large number of cases may eventually allow the identi fi cation of markers 
that help to obtain a better understanding of the underlying pathophysiology. 
Metabolomics provides access to measuring the “true” endpoints of biological 
processes and thereby promises to be a valuable tool in the study of syndromic 
diseases. Robin Haring, Kathrin Budde and Henri Wallaschofski present a concrete 
example of how metabolomics can help solving such problems in their chapter 
 “Metabolomics for the individualized therapy of androgen de fi ciency syndrome in 
male adults”  (® concept: individualized therapy; application: syndromic diseases). 

 The full extent and complexity of the human metabolome is far from being 
understood, as explains David Wishart in  “Systems biology resources arising from 
the human metabolome project” . This chapter provides a series of dedicated data-
bases on endogenous and exogenous (foods, drugs) small molecules that provide 
valuable and often hand-curated information on most known metabolites, including 
their link to genetic variance in enzyme coding genes. He presents a hands-on 
example of how to use these online resources at the text-book example of the genetic 
disorder phenylketonuria (® technology: databases; application: in-born errors of 
metabolism). 

 The identi fi cation of metabolic biomarkers for human disease is one of the cen-
tral goals of clinical metabolic research. In  “Understanding cancer metabolism 
through global metabolomics” , Mike Milburn and co-workers describe examples of 
how changes in metabolic pro fi les are used to identify cancer-related mutations in 
isocitrate dehydrogenase (IDH) genes. In their chapter the authors also describe a 
speci fi c implementation of a multi-platform non-targeted metabolomics platform 
(® technology: non-targeted multiplatform mass spectrometry; concept: metabolic 
biomarker; application: cancer). 

 Lipidomics is a major sub- fi eld of metabolomics. Lipids are particularly intrigu-
ing due to the roles that play different levels of fatty acid chain length and desatura-
tion in the aetiology of complex disorders. In  “Genetic and metabolic determinants 
of fatty acid chain length and desaturation, their incorporation into lipid classes 
and their effects on risk of vascular and metabolic disease” , Thomas Kopf, Markus 
Peer and Gerd Schmitz provide an extensive and comprehensive overview of this 
exciting  fi eld (® concept: lipidomics; application vascular and metabolic disease).  

    4   Chapters That Take a Systems Approach 

 Systems biology strategies to enhance the biological interpretation of haplotype – 
metabotype association networks derived from mQTL studies can provide a better 
understanding of pathophysiological mechanisms. Marc Dumas and Dominique 
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Gauguier introduce this concept in their chapter  “Mapping metabolic quantitative 
trait loci (mQTL) – a link between metabolome-wide association studies and sys-
tems biology”  (® technology: nuclear magnetic resonance spectrometry; concept: 
metabolic quantitative trait loci). 

 Complex diseases such as coronary heart disease and type 2 diabetes mellitus are 
in fl uenced by a large number of genes and environmental factors. In most cases the 
contribution of a single gene is small. Intermediate phenotypes, which are closer to 
the genetic cause of the disease deliver stronger biological read-outs and thereby 
allow drawing new conclusions on the functional background of the genetic variant. 
In his chapter  “Metabolic traits of intermediate phenotypes” , Florian Kronenberg 
argues for the potential of metabolomics to provide a wide range of biologically 
relevant intermediate phenotypes (® concept: intermediate phenotypes). 

 As shown in the previous chapters, disturbances in metabolism are at the root of 
a variety of human af fl ictions and complex diseases. In his chapter  “Genome-wide 
association studies with metabolomics”  Karsten Suhre shows how combining two 
highly sophisticated biochemical measurement methods – genetics and metabolom-
ics – in genome-wide association studies can reveal deep insights into the genetic 
makeup of the human body’s metabolic capacities (® technology: genome-wide 
association studies; concept: the genetically determined metabotype). 

 In the preceding chapters many aspects of studies with metabolomics in relation 
to genetic and disease phenotypes have been described. Eventually,  “Systems 
biology meets metabolism”  in the  fi nal chapter with the same title by Jan Krumsiek 
and colleagues. The authors describe this new paradigm that is becoming increas-
ingly popular, namely that of integrating data from multiple analyses into larger 
models. This paradigm is nowadays known as systems biology, and is expected to 
penetrate many classical molecular analyses. 

 The area of research where genetics and metabolomics meet is likely to represent 
a  fi eld where systems biology shall prosper highly in the years to come. We hope 
that the following chapters shall provide a thorough basis for the understanding of 
the underlying experimental techniques, concepts and potential biomedical applica-
tions of this exciting  fi eld.       
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         1   New Generation, Large-Scale Cohort Studies 
Around the World 

 A  fi rst generation of large-scale prospective cohorts aiming to study cancer and 
other chronic diseases, that included biobanks with blood and/or urine samples, 
were initiated in the late 1980s and early 1990s, in the USA and Europe. In Europe, 
the largest study to date is the European Prospective Investigation into Cancer and 
Nutrition (EPIC) – a multi-centre cohort that includes a total of over 420,000 men 
and women in ten Western European countries, who all provided questionnaire data, 
anthropometric measurements and a blood sample at baseline. The recruitment of 
subjects into the EPIC study was completed mostly between 1992 and 1998, and 
this project is currently in a high-phase of scienti fi c production, on a wide variety of 
issues and diseases (see website   http://www.iarc.fr/epic    ). Currently, prospective 
biobank studies of a similar size, including 300,000–500,000 subjects, have started 
in the UK  [  1,   2  ] , Sweden, Japan, Western Australia, the USA and Germany  [  3  ] .  
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    2   The German National Cohort (GNC): An Example 
for High Quality Sample Collection in a Large 
Epidemiological Setting 

 The German National Cohort will start in 2012 and will include a total of 200,000 
women and men in the age range of 20–69 years (40,000 individuals under age 40 and 
160,000 individuals over age 40 years), who will be recruited through a network of 18 
local study centers spread all over North, East, South, West, and central Germany.  

    3   Collection and Storage of Biological Materials 
in the GNC to Reach High Sample Quality 

 A key element of the study protocol in the GNC is the collection of high quality 
samples from all study participants. 

 For blood, preservation of quality relies on minimizing pre-analytical artefacts 
that may be incurred during specimen collection, primary processing, transport and/
or storage of the samples, including:

   Artefacts due to cell lysis leading to release of intracellular components that have  –
concentrations several magnitudes higher in the intracellular as compared to the 
extracellular compartment, exempli fi ed by release of potassium, LDH or cate-
cholamines from red blood cells in haemolysis, or of proteolytic enzymes from 
leukocytes, which not only alters their serum or plasma concentration but may 
also degrade target analytes such as insulin;  
  Artefacts due to cell metabolism, exempli fi ed by the decrease in glucose concen- –
tration upon prolonged storage of blood or the continuing in-vitro production by 
cells of the amino acid homocysteine that has received attention as a marker of 
cardiovascular risk;  
  Artefacts due to the enzymatic degradation of molecular species upon prolonged  –
exposure to 4°C or higher;  
  Molecular artefacts due to repeated freezing and thawing of stored biomaterials.     –

 Given the huge number of potential analytes and taking into account that both 
analytes of interest and techniques may change over the long run of this study to an 
extent that cannot be foreseen today, avoidance of any artefacts is mandatory. This 
requires:

   The prompt and complete separation, ideally within 1 h of collection, of all par- –
ticulate components of full blood to obviate the above detailed cell-derived 
artefacts.  
  No delay in the aliquotation and freezing to obviate enzymatic degradation dur- –
ing prolonged transportation at 4°C or higher;  
  Volumes small enough (190   – m l) to guarantee single use only as opposed to repeat 
thaw-freeze cycles necessarily implicated in the storage of larger volumes.    
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 To reach the goal of high quality and wealth samples the following quality issues 
are applied in the GNC.

   Local processing of blood, urine, and other biomaterials, as opposed to a central-• 
ized one, complete enough to reach the level of ready-prepared small aliquots 
that can be transported to the central store on dry ice in the deep-frozen state 
(except for viable blood cells), which obviates the enzymatic disintegration 
incurred upon prolonged exposure to 4°C or higher (Fig.  2.1 ).   
  Adherence to stringent standard operation procedures (SOPs) in all study centres • 
(e.g. fast separation of cells from plasma/serum).  
  Automation of all steps in preparation, storage, and retrieval of stored materials, • 
promoting strict adherence to standard operation procedures (SOPs), maximiz-
ing reproducibility, and obviating artefacts that in manual processing inevitably 
occur on the long run due to individual failure. Thus, each of the 18 study centres 
will be equipped with a liquid handling platform.  
  Storage of biomaterials from all participants throughout Germany in one central • 
automated bio-repository and decentralized back-up storage (Fig.  2.2 ).   
  Storage of many but rather small volume aliquots to avoid freeze thaw cycles and • 
thereby to increase sample quality (Table  2.1 ).   

  Fig. 2.1    Local processing and central storage of biomaterials including back-up storage in the 
German National Cohort (GNC) (SC = local study center; RegBioRep = Regional back-up storage 
facility; Central biorepository = Central automated −80°C biorepository; Manual working 
archive = Central manual storage facility in gas phase of liquid nitrogen tanks)       
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  Fig. 2.2    Large automated −80°C biorepository       

   Table 2.1    Biomaterials generated from blood in the German national cohort and stored volume 
sizes   

 Primary material  Volume  Processed material 
 Aliquots and storage at −180°C 
(unless stated otherwise) 

 Blood + clot 
activator 

 2 × 10 ml  Serum  30 × 0.19 ml 

 Blood + EDTA  2.0 ml  EDTA 
blood ® hematology 

 Local lab., within < 6 h 

 3 × 10 ml  EDTA plasma  48 × 0.19 ml 
 EDTA-packed 

erythrocytes 
 6 × 0.19 ml 

 Buffy coat + 90% of red 
cell layer for DNA 
extraction 

 1 × 9.0 ml (in manual −80°C 
freezers) 

 Blood + RNAse 
inhibitors 

 2.5 ml  RNA (Tempus/PAXgene)  1 × 2.5 ml (in manual −80°C 
freezers) 

 Blood in BD CPT  10 ml  Ficoll-isolated 
PBMC + DMSO 

 4 × 2 Mio PBMC (in liquid 
nitrogen vapor phase) 

  Total blood    65 ml    92 aliquots stored  
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  Equipment with a professional laboratory information system (LIMS) for both • 
the local and centralized pre-analytics and storage facilities to monitor the whole 
process from blood collection to sample storage and later sample retrieval.  
  Storage of most blood and urine samples in gas phase of liquid nitrogen (Fig.  • 2.3 ).   
  Diverse range of sample types (Table  • 2.2 ).      

    4   Sample Types Collected in the German National Cohort 

 It is planned to collect a broad range of high quality materials for future molecular 
research like metabolomics. It is planned to collect and store the following materials 
(a rationale for each sample material is given in Table  2.2 ):

   Blood and blood derivates (serum, EDTA plasma, erythrocytes, DNA, RNA, liv-• 
ing cells from blood)  
  Spot urine  • 
  Faeces  • 
  Nasal swabs  • 
  Saliva    • 

 Current plans foresee storage facilities based on a combination of liquid nitrogen 
freezers for long-term storage and −80°C electric freezers for storage of samples 

  Fig. 2.3    Sample storage in 
liquid nitrogen tanks       
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   Table 2.2    Biological samples: rationale for inclusion   

  Sample type   Rationale  Collection 

 Blood  Different fractions available 
(plasma, serum, white, cells, red 
cells, and peripheral blood 
mononuclear cells) 

 Easy, low risk, well established, 
standardized procedures available 

 Different types of components 
present (cells, proteins, DNA, 
RNA, hormones, nutrients, etc.) 

 Low costs of collection, except for 
RNA collection tubes and BD 
‘CPT’ tubes for PBMC separation 

 Suitable for a wide range of analytic 
procedures, including –omics 
technologies 

 Urine  Different types of components 
present (cells, proteins, renal 
excretion products, etc.) 

 Easy, well-established, standardized 
procedures available 

 Suitable for several analytic 
procedures, including –omics 
technologies 

 Low costs 

 Provides additional (supplemental or 
new) information to blood 
samples 

 Saliva  Provides speci fi c information about 
oral microbiota 

 Issue of standardization of sample 
collection 

 Different types of components 
present (cells, proteins, DNA, 
hormones, etc.) 

 Speci fi c logistics for sample collection 
necessary 

 Suitable for several analytic 
procedures, including –omics 
technologies 

 Stool  Provides speci fi c information about 
gut microbiota 

 Issue of standardization of sample 
collection 

 Suitable for several analytic 
procedures, including –omics 
technologies 

 Speci fi c logistics for sample collection 
necessary 

 Swabs  Provides speci fi c information about 
nasopharyngeal microbiota 

 Standardized collection according to 
SOPs 

that are foreseen to more imminently and frequently used for research projects. The bio-
banks will be equipped with a professional laboratory information system (LIMS) 
with combined database for both the local and centralized storage facilities. The use of 
freezer systems with sample automated retrieval mechanisms is under study.  

    5   Conclusion 

 The optimal collection of biomaterials for future molecular analysis like metabolo-
mics represents a basic precondition for every large study population. Such molecu-
lar phenotyping indispensably requires a comprehensive array of biomaterials in 
optimal quality.      
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   Abbreviations 

  AMU    Atomic mass unit   
  APCI    Atmospheric pressure chemical ionization   
  APPI    Atmospheric pressure photoionization   
  BMI    Body mass index   
  CE    Capillary electrophoresis   
  CE-MS    Capillary electrophoresis mass spectrometry   
  CI    Chemical ionization   
  CID    Collision-induced dissociation   
  EI    Electron impact ionization   
  ESI    Electrospray ionization   
  FIA    Flow injection analysis   
  FIA-MS    Flow injection analysis mass spectrometry   
  FT-ICR-MS    Fourier transform ion cyclotron resonance mass spectrometry   
  FT-IR    Fourier transform infrared spectrometry   
  GC    Gas chromatography   
  GC-MS    Gas chromatography mass spectrometry   
  GWAS    Genome-wide association studies   
  HMDB    Human metabolome database   
  HPLC    High performance liquid chromatography   
  IUPAC    International union of pure and applied chemistry   
  KEGG    Kyoto encyclopedia of genes and genomes   
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  LC    Liquid chromatography   
  LC-MS    Liquid chromatography mass spectrometry   
  LC-MS/MS    Liquid chromatography tandem mass spectrometry   
  LIMS    Laboratory information and management system   
  LLOQ    Lower limit of quanti fi cation   
  LOD    Limit of detection   
  LOQ    Limit of quanti fi cation   
  m/z    Mass to charge ratio   
  MRI    Magnetic resonance imaging   
  MRM    Multiple reaction monitoring   
  MS    Mass spectrometry   
  MS/MS    Tandem mass spectrometry   
  NMR    Nuclear magnetic resonance   
  PBS    Phosphate buffered saline   
  PCA    Principal component analysis   
  PCI/NCI    Positive chemical ionization/negative chemical ionization   
  RF    Random forest   
  RP18    Reversed phase C18 alkyl chain modi fi ed silica   
  SIM    Single ion monitoring   
  SOP    Standard operating procedure   
  SPE    Solid phase extraction   
  SRM    Selected reaction monitoring   
  UHPLC    Ultra high performance liquid chromatography   
  UHPLC-MS    Ultra high performance liquid chromatography mass spectrometry   
  ULOQ    Upper limit of quanti fi cation         

    1   Metabolomics Is a Multidisciplinary Approach 

    1.1   Why Do Metabolomics? 

 Diversity of life takes place at different molecular levels, among others at the level 
of nucleic acids, proteins and metabolites. These molecules can be taken as readout 
of the status of a biological system. 

 Whereas the DNA-world (studied by  genomics ) can provide a lot of information 
on the potential function of genes and thereby supports the prediction of their func-
tions, it is not very easy to derive real functional or dynamic data from it. The RNA-
world ( transcriptomics ) and the protein-world ( proteomics ) both re fl ect much more 
the dynamics of a living organism. However, present technologies restrict the num-
ber of target molecules that are simultaneously discernible, so that a whole picture 
is not complete. Furthermore, many transcripts are translated into more than one 
protein, and many proteins are only functional in complexes with other proteins. As 
a result, genomics, transcriptomics, and proteomics merely indicate the cause of a 
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phenotypic response, but they are very limited in predicting what will actually 
happen in the whole organism. Their predictions are only clear in case of mutations 
inactivating genes. 

 The metabolite-world ( metabolomics ) re fl ects all functional activities, transient 
effects, as well as endpoints of biological processes determined by the sum of its 
genetic features, regulation of gene expression, protein abundance, and environ-
mental in fl uences. The original concept of metabolomics, i.e. measuring small 
metabolites in a body  fl uid, was pioneered by Linus Pauling in 1971  [  1  ] . Although 
DNA-processing events like splicing, which result in different RNA products, can 
predict the number of consequently synthesized proteins  [  2,   3  ] , the metabolome 
cannot be computed from the genome. In addition, changes in the metabolome hap-
pen even faster than those in the RNA  [  4  ] . 

 The analytical methods of metabolomics reached a high level of sensitivity, 
dependable reproducibility, wide metabolite coverage, and high sample throughput. 
Hence, this research area is of interest to those studying the mechanisms of health 
and disease, nutrition effects, monitoring of biotechnological processes, or perform-
ing crop and food quality analyses. In this respect, metabolomics provides quali fi ed 
large data sets required for systems biology approaches. As systems biology can 
generate hypotheses but not prove them, metabolomics is an excellent choice for the 
experimental veri fi cation.  

    1.2   De fi nitions 

 Metabolomics investigates metabolite homeostasis in health or analyzes dynamic 
metabolic responses of biological systems (cell, tissue, organism) to environmental 
challenges, toxic stimuli, genetic modi fi cations or diseases  [  5,   6  ] . Beside the term 
 metabolomics  for the study of the metabolome (meaning all metabolites of a bio-
logical system)  [  7  ] , the expression  metabonomics   [  8  ]  is used for the analysis of 
metabolites in challenged living systems, e.g. in an organism treated with a drug. 
Actually, both terms are used almost equivalently and employ similar analytical 
methods and data processing procedures. A more selective terminology is applied 
for metabolomics of speci fi c chemical classes, i.e.  lipidomics  for the studies of lip-
ids  [  5,   9  ]  or  steromics  when steroids are analyzed  [  10  ] . Metabolites are often called 
 analytes  (for metabolites being analyzed) or  compounds  (especially if dealing with 
structures, formulas, and properties) Box  3.1 .   

    1.3   Challenges of Metabolomics 

 Metabolomic research is performed to reach multiple aims such as to:

   Detect as many metabolites as possible  • 
  Identify and annotate metabolites  • 
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  Quantify metabolites  • 
  Distinguish native metabolites from impurities or artifacts  • 
  Determine indicative metabolites (biomarkers) for a given process  • 
  Catalog metabolites (signatures) of organisms, tissues and organelles  • 
  Resolve spatial or temporal metabolomes  • 
  Provide metabolic phenotypes to genome-wide association studies (GWAS)  • 

   Box 3.1 Metabolomics Terms 

  Metabolomics  is the identi fi cation and quanti fi cation of ideally all metabo-
lites in a biological system (cell or organism) to depict health homeostasis or 
a dynamic metabolic response to environmental challenges, toxic stimuli, 
genetic modi fi cations, or diseases. 
  Metabonomics  performs analyses of metabolites in biological systems chal-
lenged by a drug. 
  Pro fi ling metabolomics  looks for the catalogue of measurable metabolites. 
  Non-targeted metabolomics  identi fi es differences between samples. 
  Targeted metabolomics  quanti fi es selected sets of metabolites. 
  Analyte  is a compound or metabolite being analyzed. 
 A  biomarker  is a molecule or a feature used to monitor a biologic process. 
It should be easily and reliably measurable so that a speci fi c and robust 
quanti fi cation is provided. An example for a biomarker is the concentration of 
cholesterol used to monitor the effect of a lipid-lowering drug. 
 A biological  matrix  is a speci fi c type of biological specimen, like a body 
 fl uid, tissue, breath air, or even a cell pellet, which contains the metabolites 
that shall be analyzed. 
 A  phenotype  is a speci fi c characteristic feature. Examples are human weight, 
metabolite concentration or cell division rate in cell culture, quanti fi ed in 
measurable units like kg, mM or frequency, respectively. 
  Comorbidity  describes the presence of a feature or condition existing simul-
taneously but independently to the observed phenotype. Comorbidity in med-
icine is either the presence or effect of one or more diseases in addition to a 
primary disease or disorder. 
 The limit of detection  (  LOD  )  describes the lowest analyte concentration that 
can be detected. 
 The lower limit of quanti fi cation ( LLOQ ) is de fi ned as 10 times the standard 
deviation of the matrix (blank) and the upper limit of quanti fi cation ( ULOQ ) 
is experimentally de fi ned by accuracy and linearity tests using spiked matrix 
samples. 
 The standard operating procedure  (SOP ) is a written document depicting all 
requirements, details, steps and activities of a process to achieve uniformity 
of performance.  
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  Predict and/or analyze metabolic pathways  • 
  Identify cross-talks between pathways  • 
  Analyze mechanisms of disease or drug action  • 
  Facilitate diagnostics.    • 

 Very often these aims cannot be realized simultaneously because of technologi-
cal restrictions. The sizes of different metabolomes have been estimated to be from 
around 200,000 distinct metabolites in plants to a several fold smaller number in 
humans  [  11  ] . The process of annotation (cataloging) is still ongoing. The Human 
Metabolome Data Base (HMDB) reached around 8,000 different compounds  [  12  ]  
and the initiative LIPID MAPS refers to more than 9,000 different molecules for 
molecular lipids only  [  13  ] . However, not all metabolites are unequivocally anno-
tated as yet. Identi fi cation of the molecular characters of compounds one by one is 
a tedious process and has to be parallelized in many laboratories worldwide. The 
needed approaches require extreme accuracy like that provided by ultra high perfor-
mance liquid chromatography coupled with Fourier transform ion cyclotron reso-
nance mass spectrometry (UHPLC-FT-ICR-MS) rather than fast analyses  [  14  ] . On 
the other hand, signature or biomarker search requires wide-scope pro fi ling analtics 
as done by nuclear magnetic resonance (NMR)  [  15  ]  or liquid chromatography mass 
spectrometry (LC-MS)  [  16  ] . 

 Metabolomic analyses in biological samples detect endogenous metabolites, 
peptides, xenobiotics, dietary constituents and agents of environmental exposure 
 [  17  ] . The technical approaches for metabolomics are universally applicable in dis-
tinct species and have been successful in studies of yeasts  [  18  ] , plants  [  19  ] , mouse 
 [  20  ] , human nutritional challenges  [  21  ] , microbe-host interactions  [  22  ] , natural 
products research  [  23  ] , or even extraterrestrial organic matter  [  24  ] . Not only can 
metabolomic signature characteristics for a given biological process, like e.g. apop-
tosis  [  25  ]  be depicted but the kinetics of biochemical pathways and metabolite con-
versions (called   fl ux ) can be monitored also  [  26  ] . Metabolomics has even been 
combined with genome-wide association studies (GWAS) in which new  genetically 
determined metabotypes  were discovered in humans  [  27  ] . Drug development and 
clinical trials pro fi ted from the contribution of metabolomics to the discovery of 
biomarkers of speci fi c processes  [  28  ] . Metabolomics is a versatile tool in diagnostics 
 [  29–  32  ] .  

    1.4   Critical Elements of Metabolomics 

 Metabolomics is an integrative science. In order to deliver sound results it demands 
implementation of a set of non-separable and strict rules such as:

   Proper experimental design  • 
  Standardized sample processing  • 
  Versatile analytical methods  • 
  Large scale bioinformatics    • 
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    1.4.1   Experimental Design 

 Building up the experimental design one should consider which aim depicted in 1.3 
is of major importance. This aim pre-de fi nes requirements for the sample logistics 
and analytics. For animal models kept under controlled conditions (night/day cycle, 
diet, genetic background), reproducible experimental conditions (treatment, genetic 
modi fi cations) are relatively easy to achieve. By the use of isogenic or inbred strains, 
the genetic variation can be reduced. Thereby, the experimenter can focus on treat-
ment parameters, e.g. only one drug treatment over a time, or ageing over time. The 
experiment could even be repeated if required. On the contrary, in human popula-
tion studies, it is more complicated to control the experimental setup. The major 
challenge is that human samples could be unique and no more recoverable, i.e. only 
a few experiments are possible. Ideally, several parameters like age, gender, race (or 
geographic origin), body mass index (BMI), circadian rhythm, nutrition and life 
style (e.g. nicotine or alcohol consumption, physical activity), medication and hor-
monal status (pregnancy, birth control) should be matched. In most cases, including 
clinical trials for drug ef fi cacies, matching of these parameters is a challenge and 
often only a few hundred cases can be adequately matched from an initially large 
population of several thousands of participants. Without careful matching, addi-
tional variability is present as  comorbidity  disturbing the scienti fi c outcome of 
experiments, i.e. it is not clear if the unmatched parameter(s) or the challenge cause 
the changes in the metabolome. Moreover, the experimental design should involve 
application of standard operating procedures (SOPs, as explained in Sect.  3.3 ) and 
well established analytical methods (referred to as  golden standard ) to ensure repro-
ducibility and general applicability of the results.  

    1.4.2   Sample Preparation 

 An optimal metabolomics procedure would be to study the whole metabolism in an 
intact living organism using a non-invasive approach. Although such methods exists, 
e.g. magnetic resonance imaging (MRI), they can monitor only a small subset of 
metabolites  [  33  ] . Therefore, prior to analytics, the living system must be sampled. 

      Collection 

 The preparation includes sample collection and storage as well as metabolite extrac-
tion and preparation for analytics. In case of sample collection it has to be ensured 
that metabolites in the sample remain exactly the same as at the time of sampling. 
This is usually achieved by a “collect and freeze” procedure, e.g. by blood 
withdrawal, plasma preparation and subsequent storage at −80°C or by tissue frac-
tionation for organelle isolation followed by immediate sample freezing. Under 
these conditions some metabolites are quite stable (e.g. amino acids) but some may 
decompose more quickly (e.g. diacylglycerols and phosphatidylethanolamines) 
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 [  34,   35  ] . For some short-living or reactive metabolites it might even be essential to 
add stabilizers prior to freezing (e.g. 2,6-di-tert-butyl-4-methylphenol (BHT) for 
plasma eicosanoids to prevent auto-oxidation  [  36  ] ). Repetitive freeze-thaw cycles 
may in fl uence metabolite concentrations and should be avoided by aliquoting the 
samples before freezing.  

      Extraction 

 Most samples (except for NMR-studies) undergo preparations to facilitate metabo-
lite analytics. If proteins impair subsequent separation or analytics, they are removed 
by precipitation in a  fi rst step. The next step, the metabolite extraction (e.g. liquid-
liquid or solid phase extraction) will greatly in fl uence the variety of metabolites seen 
by the analytical methods. The use of isotonic phosphate buffered saline (PBS) will 
result in an extraction of hydrophilic metabolites, whereas the use of 90% methanol 
in water will foster the extraction of more hydrophobic compounds  [  37  ] . Consequently, 
in the  fi rst case more amino acids and in the latter case more lipids will be extracted. 
Very hydrophobic metabolites may even demand the addition of organic solvents, 
like chloroform, acetonitrile, methyl- tert -butylether, or as a more high-throughput 
alternative the use of RP18-solid phase extraction (SPE) cartridges. Please note that 
the choice of extraction procedure must be in accordance with the aims of the study, 
as there is no universal approach covering all metabolites. Sample collection and 
extraction might also be done in a single step. For example metabolites can be 
extracted from cultured cells by collecting and homogenizing the cells directly in 
cold methanol. This sampling procedure stops the metabolism for the sake of an 
optimal preservation of the metabolite. To be compatible with subsequent analytical 
procedures, extracts might be evaporated (or lyophilized) and reconstituted in differ-
ent solvents suitable for respective analytics. In some cases it is not suf fi cient to only 
extract metabolites, but further processing like derivatization is needed. Derivatization 
of certain compounds is necessary to either make analysis possible at all to improve 
sensitivity of the analysis (see Sect.  2.1.1  for application example).  

      Matrix Effects 

 Because biological samples from different origin reveal high diversity in their 
chemical composition, sample processing must be adapted for different types of 
tissues, body  fl uids or cell cultures. The part of the biological sample, that only 
represents the medium (e.g. blood plasma) in which the metabolites of interest (e.g. 
amino acids) are dissolved in, is called a biological  matrix . The change from one 
matrix to another may request an adaptation of protocols to ensure good quality and 
reproducibility of analytics. To this day, metabolomics has already been validated 
and applied in humans to a wide range of matrices including body  fl uids (plasma, 
serum, urine, cerebrospinal  fl uid, saliva)  [  32,   38  ] , dried blood spots,  [  34  ] , as well as 
tissues (and biopsies)  [  39  ] , stool  [  40  ] , lung lavage  [  41  ] , and exhaled air  [  42  ] .   
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    1.4.3   Analytical Approaches 

 Presently, different analytical approaches include  pro fi ling- ,  non-targeted-, and 
targeted- metabolomics   [  43  ] . These approaches were developed to meet the distinct 
requirements for reaching study aims. 

      Different Types of Metabolomics 

  Pro fi ling metabolomics  performs survey or discovery analyses with a very high 
mass resolution but low sample throughput, and is interested in the identi fi cation 
rather than the quanti fi cation of metabolites.  Non-targeted metabolomics  provides 
information on the simultaneous presence of many chemical classes of metabolites 
(global view). It reaches a high sample throughput (e.g. 100 samples a week) with a 
large number of metabolites quanti fi ed and the possibility to identify differences in 
the abundance of metabolites. Non-targeted analytics is supported by in silico 
searches to annotate the signals. This approach not only allows the relative 
quanti fi cation of metabolites with mass spectra stored in databases, but furthermore 
it also detects unidenti fi ed metabolites not yet registered. These unidenti fi ed metab-
olites can be important in the context of a phenotype investigation and can be further 
identi fi ed with the help of a set of characteristic parameters (i.e. retention times and 
mass spectra).  Targeted metabolomics  allows the quanti fi cation of a pre-selected set 
of known metabolites and can reach a very high throughput (e.g. 1,000 samples per 
week). Targeted and non-targeted approaches have been shown to have some over-
lap in metabolites, and revealed a very good correlation of quanti fi cation  [  44  ] . 

 Pro fi ling and non-targeted metabolomics can be run  chemocentric   [  45  ]  or  ion-
centric   [  17  ] . The  fi rst approach is a method for global molecule detection with 
chemical identi fi cation, the second one uses ion detection without identi fi cation. 
The latter is faster and detects much more signals but has much greater chance of 
false positives. At present, metabolite coverage reached by the different metabolom-
ics technologies ranges from 200 to about 1,000 compounds in a single run.  

      Major Features of Technologies for Metabolomics 

 The different approaches of metabolomics have been developed along the progress 
of technologies and scienti fi c aims. Formerly, direct analyses (i.e. measurements 
without sample fractionation or metabolite pre-separation) were performed. They 
were based on NMR, FT-IR spectroscopy, Raman spectroscopy, and MS  [  29,   46  ] . 
These types of analyses performed well, but resolution was largely enhanced when 
separation steps were introduced prior to metabolite identi fi cation. The separation 
steps may include gas chromatography (GC), multidimensional gas chromatogra-
phy (GC × GC), capillary electrophoresis (CE), liquid chromatography (LC), high 
performance liquid chromatography (HPLC) or ultra high performance liquid chro-
matography (UHPLC), which all can be coupled to an analytical instrument like 
NMR or MS  [  47  ] . 
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  Targeted metabolomics  is based on GC-MS, LC-MS, UHPLC-MS or  fl ow 
injection assay mass spectrometry (FIA-MS)  [  27,   29,   48,   49  ] .  Pro fi ling  and  non-
targeted metabolomics  are mostly performed by NMR, CE-MS, GC-MS, NMR, 
LC-FT-ICR-MS or UHPLC-MS  [  50,   51  ] .  Non-targeted metabolomics  often requires 
a high degree of parallel analyses (i.e. standardized simultaneous analyses on LC- 
and GC-MS) to cover as many metabolites as possible and to avoid a bias on speci fi c 
chemical classes. It also needs special algorithms for metabolite identi fi cation with 
speci fi c databases  [  17,   52,   53  ] . Table  3.1  shows an overview of signi fi cant features 
of the most common techniques. More information about the techniques will be 
given in Sect.  2 .    

    1.4.4   Large Scale Bioinformatics 

 Metabolomics requires a substantial support from bioinformatics to handle large 
data sets generated by the analytics  [  54  ] . Such data sets have to follow speci fi c 
requirements to be compatible worldwide  [  55  ]  and standards for these requirements 
have been formulated  [  56  ] . Data generated by metabolomic approaches have been 
ef fi ciently evaluated by bioinformatic methods such as principal component analysis 
(PCA), random forest (RF) or self-organizing maps  [  57–  59  ] . Metabolomics, biosta-
tistics, and bioinformatics converge in an approach called  chemometrics , which is 
applied to identify metabolites and analyze their dependencies on phenotypes  [  60, 
  61  ] . Metabolomics perfectly integrates with other “omics” analyses and other phe-
notyping methods to verify hypotheses in systems biology approaches  [  62  ] . 

 In order to achieve reliable and meaningful results, a good level of coordination 
between the four aspects design, sample processing, analytics, and bioinformatics is 
required, as they are usually performed in different laboratories and by distinct 
research teams.    

    2   Principles of Mass Spectrometry Assay Technologies 

 In mass spectrometric analyses the samples are ionized, and the resulting ions are 
accelerated in a de fi ned electromagnetic  fi eld, successively selected according to 
their mass to charge ratio (m/z) and  fi nally detected. A mass spectrum displays the 
plot of the m/z against its ion abundance. Please note that mass spectrometers do not 
determine atomic mass units (amu). In most cases separation techniques are applied 
in front of MS to achieve higher resolution. 

    2.1   Separation Technologies 

 To increase the number of molecules to be identi fi ed, samples may undergo one or 
more separation steps prior to mass spectrometric analyses of the compounds. 
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The most common separation procedures are shortly explained in the following 
chapter. However under speci fi c conditions, the samples might be analyzed directly 
in MS without any preceding separations. This technique is called  fl ow injection 
assay (FIA). More details and an example of that will be given in Sect.  2.2.3 . 

    2.1.1   Gas Chromatography (GC) 

 GC is well suited to separate volatile compounds  [  63  ] . A broad variety of samples 
can be analyzed as long as the compounds are readily vaporized and thermally sta-
ble. To increase the volatility, some compounds have to be derivatized prior to GC 
analysis, as for example fatty acids that have to be transformed into their methyl 
esters. Like in other chromatographic techniques, a mobile and a stationary phase 
are required. The mobile phase is an inert carrier gas, e.g. helium, argon, or nitrogen. 
The most common stationary phase is a capillary column, typically 15–30 m long, 
coated on the inside with a thin (0.2  m m)  fi lm of a high boiling liquid (e.g. dimethyl 
polysiloxane). The carrier gas  fl ows continuously through the injection port, column 
and detector. The sample is injected into the heated injection port, where it is vapor-
ized and carried into the capillary column. In the capillary column, the sample ana-
lytes are separated according to their respective retention times on the stationary 
phase. Thereby, the retention time is dependent on the relative solubility of com-
pounds in the liquid phase (and dependent on the relative vapor pressure). 

 The limitation of GC is that the substances must be volatile and thermally stable. 
For organic substances volatility is hardly achievable if the molecular weight of the 
compound exceeds 500 Da. High temperatures up to 300°C enhance volatility, but 
decomposition of the analyzed compounds can be the result. When derivatization is 
required, sample preparation is not trivial and can lead to a reduction of analyte 
concentrations or to an increase of background signal.  

    2.1.2   Liquid Chromatography (LC) 

 LC separates dissolved compounds in a liquid mobile phase along a solid stationary 
phase  [  64  ] . For separation of analytes with different chemical properties (e.g. a 
mixture of hydrophilic and hydrophobic compounds) different settings can be used. 
The most classical separation system for hydrophilic metabolites is called normal-
phase HPLC. This system separates analytes based on their adsorption properties to 
the surface of a polar stationary phase (silica), as well as their polarity in a non-polar 
mobile phase (e.g. hexane). For more hydrophobic metabolites, a non-polar station-
ary phase together with a moderately polar mobile phase (e.g. water) is used, which 
is called  reversed phase  (RP) HPLC. The most common stationary phase in 
RP-HPLC is silica modi fi ed with C18 alkyl chains (RP18). Usually, the stationary 
phase is packed in metal tubes called  columns  (e.g. 4.6 mm internal diameter of 
100 mm length). Typically, a HPLC is running with  fl ow rates of about 0.5–2 mL/min 
and a back pressure of up to 200–400 bar. The performance of separation is 
strongly increased by using smaller particle sizes for the stationary phase material 
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(unfortunately associated with an increase in back pressure)  [  65  ] , as applied in 
UHPLC. The usual time needed for one HPLC-run is about 5–60 min with a 
throughput of about 20–200 samples per day. Using UHPLC, analysis time can be 
reduced considerably with simultaneously improved resolution.   

    2.2   Mass Spectrometry 

    2.2.1   Ionization 

 Ionization of molecules is required for mass spectrometric analyses (Box  3.2 ). Only 
charged molecules (ions) enter the MS analyzer to be separated according to their 
m/z ratio by electromagnetic  fi elds  [  66  ] . Depending on the separation technique and 
polarity of the analytes, different ionization techniques might be used (Fig.  3.1 ).  

   Box 3.2 Mass Spectrometry 

 The mass to charge ratio  (m/z)  is a dimensionless value used in mass spectro-
metric experiments, formed by dividing the mass number of an ion by its 
charge number. 
  Positive  and  negative ion modes  are used to take advantage of ionization 
properties of the compounds if they are exposed to low or high pH of the sol-
vent. Basic compounds are analyzed in positive and acidic compounds in 
negative ion mode. 
 The  ion source  is the part of a mass spectrometer that ionizes the compounds 
before they enter a mass analyzer. 
 A  quadrupole  is a setup of four poles, originating from four metal rods and 
creating a strong electromagnetic  fi eld oriented in parallel along the ion  fl ight 
path. It serves as ion selector in mass spectrometer. 
  Ion-trap  is a mass analyzer with high trapping capacity and ef fi ciency, and 
with an ability to be emptied fast. 
  Ion suppression  is observed when molecules of the matrix disturb the ioniza-
tion ef fi ciency of the molecules of interest and lead to a decrease of intensity 
of analyte signal. 
  Detector  is a part of mass spectrometer recording the charge induced when an 
ion hits its surface. 
  SRM  (selected reaction monitoring) is a data acquisition mode in tandem 
mass spectrometry where speci fi c precursor (mother) and product (daughter) 
ions are selected in the  fi rst and second mass analyzer, respectively, in between 
undergoing a fragmentation in the collision cell. SRM is a tool to select a 
speci fi c metabolite. SRMs are often used in targeted metabolomics. 
  Isobaric  compounds have the same weight but different structures, e.g. leu-
cine and iso-leucine. They might be dif fi cult to differentiate in mass spec-
trometry if not separated previously by their chemical properties.  
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 For GC-MS there is a choice between electron impact ionization (EI) and 
chemical ionization (CI), both working in vacuum  [  67  ] . EI is a rather “hard ion-
ization” where free high-energy electrons (70 eV) emitted from a  fi lament (elec-
trode) are used to bombard the analytes yielding many fragments of lower m/z. 
For CI, a reagent gas, mostly methane or ammonia, is let into the mass spectrom-
eter. During this “soft ionization” the reagent gas interacts with emitted electrons 
forming reagent gas plasma. The reagent gas plasma transfers the charge to the 
analyte yielding a low amount of high m/z fragment ions often close to m/z of the 
original analyte ion (mother ion). CI can be performed in positive (PCI) or nega-
tive (NCI) mode. 

 For LC-MS there are three main ionization techniques, ESI (electrospray ioniza-
tion), APCI (atmospheric pressure chemical ionization), and APPI (atmospheric 
pressure photoionization), which all are used at atmospheric pressure  [  68  ] . For ESI, 
the eluent (containing the analytes) is dispersed by help of a steel capillary. The 
capillary’s wall is energized by high voltages and the charge is transferred to the 
solution as it passes the capillary’s wall. In the next step, the solution is dispersed 
producing an aerosol. Using a continuous gas  fl ow (nitrogen) and heating, the 

  Fig. 3.1     Comparison of metabolite coverage by GC-MS and LC-MS ionization techniques.  
Small and non-polar molecules are best detected by the GC-MS ionization methods EI and CI. 
Larger and polar compounds are rather covered by the LC-MS method ESI, and medium-sized 
molecules can be best ionized by the LC-MS techniques APPI and APCI. Actual coverage may 
vary between different MS devices       
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solvent evaporates from the aerosol droplets resulting in a Coulomb explosion and 
the extant ions (sometimes multiple charged) enter the mass spectrometer. In APCI, 
the analytes are ionized after nebulization and heating of the solution by a so-called 
corona needle, which is extended into the spray cone. For APPI, photons emitted by 
UV-light and a volatile solvent, called  dopant  (e.g. toluol), are used to ionize the 
analytes. The latter technique works well with non-polar or low-polar compounds, 
which are not ef fi ciently ionized by other ionization sources. 

 ESI is suitable for the analysis of molecules of very different size but not for very 
non-polar compounds. The ionization ef fi ciency of APCI lies between the ESI and 
APPI techniques (Fig.  3.1 ). ESI and APCI can be used in  positive  and  negative 
mode . Basic compounds in low pH solvents are readily protonated to produce posi-
tive molecular ions. These compounds are better analyzed in a positive ion mode. 
For ef fi cient positive ionization a donor proton such as formic acid should be added 
to the mobile phase. The negative ion mode analysis is applied to acidic compounds. 
The addition of a proton acceptor, such as ammonium hydroxide, to the mobile 
phase facilitates negative ion formation (i.e. proton loss). The positive mode is more 
frequently used, because protons are often loosely associated with a molecule even 
when there are no obvious basic functional groups. 

 A typical obstacle in mass spectrometric analysis is the so-called  ion suppres-
sion , where molecules of the matrix disturb the ionization ef fi ciency of the mole-
cules of interest and lead to a decrease of intensity for the respective analyte signal. 
The optimum conditions to keep the suppression as low as possible have to be found 
empirically (Box     3.2 ).   

    2.2.2   Principles of Mass Analyzers 

 After ionization, the ions enter the  mass analyzer  region of a mass spectrometer. 
This region consists of one or more single mass analyzers, separating ions accord-
ing to their m/z ratio. Most common mass spectrometers use quadrupole, ion-trap, 
time-of- fl ight (TOF), or FT-ICR analyzers  [  46,   69,   70  ] . In the following we will 
describe quadrupole and ion-trap in more detail. 

      Quadrupole 

 For  targeted metabolomics , quadrupoles are most suitable as they belong to the 
simplest and least expensive mass analyzers and give the most reproducible quanti-
tative results. A quadrupole consists of four elongated and parallel ordered elec-
trodes (rods), to which an alternating electromagnetic  fi eld is applied. Analyte ions 
move through the rods and reach the detector as long as they are in resonance with 
the frequency of the electromagnetic  fi eld. Otherwise they will be removed by being 
discharged at the electrodes. A quadrupole can operate either in scan or single ion 
monitoring (SIM) mode. In scan mode, the mass analyzer monitors a range of 
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mass-to-charge (m/z) ratios. In SIM mode, the mass analyzer monitors only one 
m/z ratio. 

 In some experiments, the separation of a distinct m/z by a single quadrupole is 
suf fi cient, but often the biological matrix is too complex in terms of having too 
many different compounds and thus requires another approach. Therefore, most 
metabolomic experiments are performed in  tandem mass spectrometer  (MS/MS) 
also named triple quadrupole mass spectrometer. In this setting, two sequentially 
assembled mass analyzers are separated by a collision cell (as shown schematically 
in Fig.  3.2 ). The  fi rst mass analyzer consists of a quadrupole mass  fi lter (quadrupole 
1 or Q1, also called mass analyzer 1 or MS 

1
 ), which allows to select ions according 

to their speci fi c m/z. In MS 
1
  the originally ionized molecules, the so-called mother 

ions, are selected. In a next step, the ions can be fragmented in Q2, the collision cell, 
 fi lled with an inert collision gas, e.g. nitrogen or helium. This process is called 
collision-induced dissociation (CID) and leads to the production of daughter ions. 
The third quadrupole (Q3, mass analyzer 2 or MS 

2
 ) acts in the same way as Q1 

scanning the fragment ions emerging from Q2 according to their m/z. The resulting 

  Fig. 3.2     Principle of SRM using tandem mass spectrometry.  Application of single reaction 
monitoring (SRM) in tandem MS is exemplarily explained on two glycerol esters of identical 
molecular weight and m/z (316.44 amu, molecular formula C 

17
 H 

32
 O 

5
 ). The “mother ions” of the 

analytes are selected by quadrupole 1 (Q1). Subsequently they are broken into distinct fragments 
in Q2 due to their different chemical structure, although they show the same m/z. The resulting 
“daughter ions” can be separated in the second mass analyzer (Q3). Here, the daughter ions consist 
of different carboxylic acid residues ( a :  blue ,  b :  red ,  d :  green ) and the glycerol moiety ( c :  yellow ). 
The observation of a combination of a speci fi c mother and daughter ion pair (e.g. ion 1 and ion A, 
or “1-A”) is named SRM and can be used for the distinction of different molecules in a sample 
mixture. In this example, the SRMs 1-A and 1-B identify only molecule 1, while SRM 2-D is 
characteristic for molecule 2. On the other hand, the SRMs 1-C and 2-C would not discriminate 
between the molecules 1 and 2       
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detector output is described as MS/MS spectrum (or MS 2 ). Please note that the 
numbering of mass analyzers (e.g. MS 

1
 ) and mass spectra (e.g. MS 2 ) is different. 

By this approach, compounds of identical molecular masses but different molecular 
structures (e.g. different side chain length of the compounds) can be distinguished 
and individually analyzed. This would not be possible with a single quadrupole 
mass spectrometer. A higher resolution can be achieved when the Q3 is used as an 
ion-trap. In this case additional electrical lenses are mounted to Q3 in order to trap 
and fragment ions. With this setup further fragmentation of daughter ions is possible 
and MS 3  spectra are generated. These analyses are employed when, e.g. the position 
of double bonds in isomeric fatty acid side chains of phospholipids shall be 
determined.  

 Tandem MS additionally offers the possibility of selected reaction monitoring 
(SRM). In this approach, the instrument monitors only a selected molecule by its 
speci fi c ion pair (mother and daughter ions). The electromagnetic  fi eld applied to 
MS 

1
  (Q1) is set to permit only a selected ion with a speci fi c m/z (precursor ion or 

mother ion) to pass. After fragmentation in the collision cell, again only a speci fi c 
product ion (daughter ion) will be selected by its speci fi c m/z in MS 

2
  (Q3). Present 

instruments allow for nearly parallel observation of several SRMs. In that case the 
speci fi c m/z ion pairs are monitored one after another in a very short time. The 
number of SRMs collected and the resolution are limited by the speed of the scan-
ning mode (typically 2,000 m/z units per second). Multiple reaction monitoring 
(MRM) is widely used to describe the parallel acquisition of SRMs, but the IUPAC 
recommends not using this term anymore  [  71  ] .  

      Ion-trap 

 For  non-targeted metabolomics , an ion-trap mass analyzer is often preferred to a 
quadrupole as it exhibits higher sensitivity and is able to record more comprehen-
sive mass spectra in low concentration ranges (0.01–0.1 mg/L). A 3-dimensional 
(3-D) ion-trap mass analyzer consists of a circular ring electrode and two end caps 
which together form a chamber. Ions entering the chamber are “trapped” there by 
electromagnetic  fi elds. For detection, another  fi eld is applied to selectively eject 
ions from the trap (according to their mass). In 2003, 2-dimensional linear ion-traps 
have been introduced  [  72  ] . Their operation is very similar to that of conventional 
3-D traps, but the linear design results in faster scan rates and enhanced sensitivity. 
This is due to better trapping ef fi ciency, higher trap capacity, and the ability to be 
emptied faster. The MS n  capabilities of the ion trap mass spectrometer make it a 
powerful tool for the structural analysis of complex mixtures.   

    2.2.3   Example of Flow Injection Analysis (FIA) 

 A simpli fi ed approach in  targeted metabolomics  is the quanti fi cation of compounds 
using the  fl ow injection analysis (FIA) approach (Fig.  3.3 ). FIA is a reasonable 
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method when speci fi c and distinct SRM spectra are known for different compounds 
to be analyzed. The compounds can be identi fi ed and quanti fi ed within a mixture 
based on their SRMs. For FIA a sample mixed with a suitable mobile phase is 
directly infused into an MS without prior fractionation or separation by GC or LC. 
Because this approach requires less analysis time in comparison to, e.g. LC-MS 
techniques, it is often considered for high throughput analysis. However, isomers 
differing in branch locations, like leucine and iso-leucine, cannot be discriminated 
by this method since they reveal the same SRMs.   

    2.2.4   Example of Targeted LC-MS/MS Analysis 

 In many cases molecules of interest reveal very similar chemical properties so that 
even LC cannot separate them easily. Nevertheless, by using the advance of tandem 

  Fig. 3.3     Example of chromatogram and spectra resulting from FIA-MS.  The sample mixed 
with mobile phase is directly infused into the MS without prior fractionation or separation by GC 
or LC. Identi fi cation and quanti fi cation of compounds is based on consecutive acquisition of sev-
eral SRMs.  Upper panel : chromatographic pro fi les of 175 individual compounds coded by differ-
ent colors.  Lower panel : spectrum of collected 175 SRMs at the 1.208 min       
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mass spectrometry it is eventually possible to distinguish and quantify the com-
pounds. This is exemplarily demonstrated for the isomeric amino acids leucine 
(Leu), isoleucine (Ile) and hydroxyproline (OH-Pro) (Fig.  3.4 ).  

 It is common to increase the sensitivity of amino acid detection by derivatization, 
for example with Edman’s reagent (phenylisothiocyanate, PITC) or butyl ester. 
Unfortunately, some isobaric amino acids, like Leu, Ile or OH-Pro cannot even 
under this condition be distinguished due to poor chromatographic resolution, i.e. 
missing separation. However, by coupling the chromatography to mass spectrome-
try, e.g. LC-MS/MS, these amino acids can be differentiated  [  73  ]  as follows: Pre-
setting a speci fi c collision energy, butylated acidic groups of Leu and Ile allow an 
initial loss of butyl formate creating m/z 86 +  product ions. A subsequent fragmenta-
tion creates even smaller ions (69 + , 43 +  and 68 +  for Ile, Leu and OH-Pro, respec-
tively), which can  fi nally be used to distinguish these amino acids. Although Leu 
and Ile both fragment to the characteristic carbonium ion structures at 43 +  and 69 + , 
Leu shows only a minor 69 +  product ion and Ile has no 43 +  but a relatively strong 
57 +  instead (Fig.  3.4 ).  

  Fig. 3.4     Example of targeted MS analysis.  Some substances might be not well separated by LC 
and furthermore, different compounds may produce ions of the same m/z. Shown are MS/MS 
spectra of three isobaric amino acids isoleucine (Ile), leucine (Leu) and hydroxy-proline (OH-Pro) 
which have been butylated. The amino acids reveal identical m/z 188 +  ions in Q1, which can be 
fragmented in Q2 at a collision energy of 45 eV, to create lower mass fragment ion species ana-
lyzed in Q3. The SRMs 188–69 +  (or 188–57 + ), 188–43 + , and 188–68 + , can distinguish between 
Leu, Ile and OH-Pro.  Asterisks  label the mass of differentiating ions (Modi fi ed after  [  73  ] )       
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    2.2.5   Challenges of Non-Targeted LC-MS Analyses 

 A drawback of  targeted metabolomics  is that only those metabolites can be detected 
and quanti fi ed, for which the apparatus has been tuned, although much more com-
pounds of interest might be present in a biological sample. Additionally, the tar-
geted metabolomics approach based on SRMs has its limitations because the number 
of SRM transitions that can be monitored in a single analysis is  fi nite. It often 
requires multiple analyses of the same sample to cover all SRM transitions which 
prolongs analysis time  [  74  ] . 

 For these reasons,  non-targeted metabolomics  is another valuable approach to be 
implemented along with targeted metabolomics. A common approach in non- targeted 
metabolomics is to analyze samples using a standardized (U)HPLC/GC separation 
and a particularly accurate and fast MS (featuring a good ion trap). Typically the 
same material is separated at different conditions (e.g. positive/negative mode, paral-
lel LC and GC separation) to increase metabolome coverage and to minimize the 
bias. Resulting chromatograms reveal multiple peaks and for each peak mass spectra 
are collected. The latter are processed to prepare lists of potential molecular formu-
las (Fig.  3.5 ). Their identities are determined by searches in public databases (like 
KEGG, HMDB, MassBank, ChemACX, and ChemSpider) or in-house equipment-
speci fi c mass spectrum libraries  [  17  ] . An equipment-speci fi c library has the advan-
tage of higher resolution and a lower false-positive detection rate.    

    2.3   Detectors 

 After selection in mass analyzers the ions are quantitatively recorded by a detector. 
Common detectors used in MS-assay technology are electron multipliers and pho-
ton multipliers  [  75  ] . In an electron multiplier, positive or negative ions that hit an 
impact plate coated with copper or barium oxide (conversion dynode) cause the 
release of primary electrons. These electrons are accelerated by an electric potential 
towards a farther dynode and release further electrons. The electron cascade gener-
ated by dynodes is converted to an electrical potential by an ampli fi er to a measur-
able signal. In the case of a photon multiplier the electrons pass a plate containing 
phosphorus that emits photons and direct them to a photocathode.   

    3   Requirements for Quanti fi cation 

    3.1   Method Validation 

 Every analytical method has to be evaluated for reliability and quanti fi cation ranges 
 [  76  ] . This process is called validation and some of the tests required will be explained 
below. 
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 The  selectivity test  checks the ability of the method to speci fi cally identify an 
analyte, e.g. the separation of an analyte peak from other matrix peaks in chroma-
tography or the reliable identi fi cation of an analyte by mass spectrometry. 

 The  linearity test  is used to check the relation between concentrations and mea-
sured values (e.g. peak intensities) of an analyte. Ideally a linear correlation is 
intended, but this is not always reached. The  fi nal quanti fi cation is also limited by 
other features like LOD or LOQ (explained later in Sect.  3.2 ). Please note that 
quanti fi cation must not be performed outside the linear dynamic range of the cali-
bration curve, as then the concentration is not proportional to its measured value 
(Fig.  3.6 ).  

 The  precision  describes the ability of a measurement to be consistently repro-
duced. It means that individual measured values for a compound should be the same 
when the analytical procedure is applied repeatedly to the same biological matrix. 
Precision is checked by (1) testing multiple aliquots of one homogeneous sample, 
(2) measurement of several sample preparations from the same biological matrix 

  Fig. 3.5     Example of non-targeted LC-MS analysis.  Total ion chromatogram ( upper panel ) of 
human plasma shows abundance and retention times of compounds. Ions at different time points 
are collected and recorded as mass spectra ( panel lower left ; a mass spectrum at 0.74 min) and 
compared with reference spectra ( panel lower right ) from databases to identify the compound       
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and (3) repetition of measurements on different days. Please note that the parameter 
 precision  demonstrates the ability of the method to hit always the same value, but 
not the accuracy of it (see Fig.  3.7 ).  

 The  accuracy  describes the difference of the measured concentration of an ana-
lyte to the analyte’s true concentration. Accuracy is tested by spiking real samples 
(preferably a biological matrix lacking the analyte of interest) with de fi ned amounts 
of the analyte and comparing measured and spiked concentration. A metabolite-free 
matrix is rare, as biological samples are never free of metabolites, and therefore a 
surrogate matrix, e.g. PBS, has to be used instead. 

 The  robustness  of the method should be checked to get information about the 
in fl uence of disturbances and variations that can happen in a laboratory deteriorat-
ing selectivity, linearity, precision, and accuracy. Examples of the parameters 
in fl uencing the robustness are: shelf life of chemicals and solutions, changes in 
pressure or  fl ow in HPLC, analyses on different apparatus with the same construc-
tion parameters, changes of brands or lots for chemicals, rotation of staff, sensitivity 
to impurities in the sample or changes of sample composition.  

    3.2   Sensitivity of Method 

 The  limit of detection (LOD)  is the lowest analyte concentration that can be detected 
(identi fi ed but not quanti fi ed) by the analytical method. Most frequently, the LOD 

  Fig. 3.6     Parameters describing quality of signal quanti fi cation.  LOD (limit of detection) 
marks the concentration limit for detecting a metabolite. LLOQ and ULOQ ( lower  and  upper  limit 
of quanti fi cation, respectively) de fi ne the quanti fi cation range of the analytical method       
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is de fi ned as 3 times the mean matrix (blank) value (Fig.  3.6 )  [  77  ] . All values below 
LOD must not be used for data analysis because they cannot be reliably differenti-
ated from background noise. 

 For the  limit of quanti fi cation (LOQ) , two outer limits are determined: the  lower 
limit of quanti fi cation (LLOQ)  and the  upper limit of quanti fi cation (ULOQ) . 
Typically, the LLOQ is de fi ned as 10 times the standard deviation of the blank 
(Fig.  3.6 ). ULOQ is experimentally de fi ned by accuracy and linearity tests using 
spiked matrix samples. Values below LLOQ and above ULOQ should also not be 
used for data analysis because the accuracy of these values is not reliable.  

    3.3   Standard Operating Procedures (SOPs) 

 A lot of the technical variability can be minimized when sample processing (collec-
tion, storage, extraction, derivatization, application to analytical units, measure-
ments, data collection, and documentation) follows standard operating procedures 
(SOPs) throughout the whole study  [  78  ] . Automation of as many steps as possible 
helps to keep variability even lower. For each biological matrix (e.g. tissue, cell 
culture or body  fl uids), the different steps of sample collection (e.g. heparin- or 

  Fig. 3.7     In fl uence of accuracy and precision on the experimental readout.  ( a ) High accuracy 
and low precision (workable). ( b ) High accuracy and high precision (optimum). ( c ) Low accuracy 
and low precision (method should be improved). ( d ) Low accuracy and high precision (method 
cannot be used for absolute quanti fi cation but for relative comparison of groups)       
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EDTA-plasma), handling (e.g. homogenization or centrifugation), storage (tube 
type, temperature of storage) and extraction (e.g. solvent type) have to be standard-
ized and validated with the subsequent analytical method. This is because the change 
from one matrix to another may request an adaptation of protocols to ensure good 
quality and reproducibility of the analytics. In case that a robot-mediated handling 
is used it must undergo process optimization as well, as the individual steps done by 
humans and a machine may have a different logistics. The performance of robots 
has to be monitored to avoid cross-contaminations (or carry-overs), which might be 
prevented by wash steps or use of disposables (e.g. liquid handling tips). Besides 
supporting higher data precision and reliability, automated steps can be easily incor-
porated into a laboratory information and management system (LIMS). LIMS is 
used to track and monitor all processes: sample storage, as well as extraction and 
processing prior to application on an analytical unit, and  fi nally data collection and 
documentation. The procedures for operating the separation equipment, e.g. GC or 
LC, and analytical instruments like MS should involve periodic quality checks with 
standard samples. These could be synthetic (e.g. a mixture of several compounds in 
a de fi ned matrix) or natural products (sample of human plasma pooled from many 
healthy individuals like “Standard Reference Material 1950 (SRM1950)” provided 
by NIST  [  79  ] ). It is important to periodically check the performance of the instru-
ments and the whole analytical pipeline not only with quality parameters as described 
by manufacturers but with samples similar to those in real experiments as well. The 
latter are more complex and more challenging. Every device and solution of the 
analytical process has its own life-time, e.g. columns for the HPLC will deteriorate 
with time and number of samples analyzed and also the vacuum pumps in 
MS-instruments will show lower ef fi ciency with time. Therefore, performance of 
every sub-step should be monitored in order to perform appropriate replacements 
well in advance. A thorough documentation of maintenance and quality manage-
ment is an important part of SOPs supporting dependable quanti fi cation.       
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         1   Basic Genetics 

 The basic assumption in genetic epidemiology is that the human  genome  is the 
entity of a human’s hereditary information and individual variations of this informa-
tion are the major reasons for heritable disorders. The genome is made up of  DNA  
(deoxyribonucleic acid) which consists of a long sequence of nucleotide base pairs 
of four types: adenine (A), cytosine (C), guanine (G), and thymine (T). Under native 
conditions, in the nucleus of a human cell, DNA is double stranded with comple-
mentary base pairing with nucleotide A binding only to nucleotide T, and nucleotide 
C binding only to nucleotide G. Double-stranded DNA is replicated by breakage of 
the two strands and construction of a new complementary strand for each, resulting 
two identical copies of the original. A single strand of DNA acts as a template for a 
complementary strand of RNA. In transcription, i.e. in the process of copying DNA 
into messenger RNA in gene expression, thymine (T) is replaced by uracil (U). 

 The human genome is distributed on 46  chromosomes  consisting of 22 homolo-
gous pairs of autosomes and 1 pair of sex chromosomes. The complete set is the 
diploid complement. One chromosome in each of the 22 homologous pairs is derived 
from the mother and the other from the father. Gametes (sperm and ova) are haploid, 
i.e. they contain only one member of each homologous chromosomal pair (e.g. only 
one version of chromosome 14). All ova have chromosomal complement X and 
sperm are either X or Y. When sperm and ova fuse to form a zygote, the full set of 
chromosomes is formed. Thus the sperm determines the gender of the offspring 
with chromosomal complements (X, X) for females and (X, Y) for males. 

 In certain regions of the DNA, which we call  genes , transcribed mRNA encodes 
instructions that tell the cell how to assemble amino acids to form proteins. 
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We assume that mainly altered protein function caused by changes in the DNA 
sequence affects health and disease but also other molecular mechanisms as changes 
of methylation patterns may play an important role in disease manifestation. The 
two homologues will have the same sequence of genes in the same positions, but 
they will usually exhibit sequence variations at several loci and can therefore be 
distinguished. The haploid genome is about three billion base pairs long. 99.9% of 
the genome of any two unrelated individuals is identical. About 3% of the genome 
consists of coding sequences, and there are 20,000–25,000 protein-coding genes. 

 If the DNA sequence at a given genetic locus (often a gene) varies between dif-
ferent chromosomes in the population, each different version is an  allele . If there are 
two alleles at a given locus, the allele that is less common in the population is called 
the minor allele. A cell is  homozygous  for a particular locus or gene when identical 
alleles of the locus or gene are present on both homologous chromosomes. A cell is 
 heterozygous  for a particular locus or gene when two different alleles occupy the 
gene’s/locus’s position on the homologous chromosomes. We de fi ne the terms  dom-
inant  and  recessive  with respect to the way how alleles interact to form a phenotype. 
In cases with two different phenotypes, the phenotype which is developed for a 
heterozygote is called the dominant whereas the complementary is called recessive. 
In the case of dominance the heterozygote is phenotypically identical to the 
corresponding homozygote. In more complex dominance schemes the results of 
heterozygosity can be more complex. The  genotype  is the genetic constitution of a 
cell or an individual, i.e. the speci fi c allelic makeup of the individual.  Genotyping  is 
the process of elucidating the genotype of an individual with a biological assay. 
Commonly used techniques include PCR, DNA sequencing, and nucleic acid 
hybridization to DNA microarrays. 

 The DNA sequence may vary between two versions of the same chromosome in 
several ways. Today, in particular in genome-wide association studies (GWAS) the 
most important structural class consists of single nucleotide polymorphisms. 
A  s ingle nucleotide polymorphism ( SNP)  represents a variation in a single nucle-
otide and different possible variants are the alleles of the SNP. SNPs may occur 
within protein coding sequences of genes, non-coding regions of genes, or in the 
intergenic regions. Usually the SNP is not causal for a disease but due to linkage 
disequilibrium (see below) in an association study the location of the causal disease 
variant can be inferred to an interval of highly correlated variants. Although indi-
vidual SNPs might carry limited information, their ease of typing and large number 
mean that they are widely used in genetic association studies. However it is impor-
tant to note that there are several more complex structural variations affecting more 
than a single position in the genome. For instance, copy number variations (CNV) 
are modi fi cations of the DNA sequence resulting in alternated numbers of copies of 
the DNA sequences in the genome. CNVs can be either deletions of DNA sequences 
compared to the common state or duplicates having more than one copy of the com-
monly observed sequence. Recent large scale genome wide studies have shown that 
rare CNVs play a role in the development of complex diseases, in particular 
neurodevelopmental disorders  [  1–  3  ]  and in the variation of quantitative risk traits, 
like e.g. BMI  [  4  ] , but the Wellcome Trust Case Control Consortium (WTCCC) 
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concluded from their study on common CNVs that these are unlikely to contribute 
greatly to the genetic basis of common human diseases  [  5  ] . 

 A genotype represents the locus speci fi c information for a homolog pair of chro-
mosomes, e.g. for a SNP. A genotype has no natural order; in particular it does not 
contain information on assignment to mother or father. A  haplotype  is a composition 
of haploid genotypes and represents the allelic con fi guration at different loci along 
a single chromosome of a chromosome pair. Haplotypes are transmitted together 
and can be broken up by recombination events. In genetic associations studies a 
haplotype is a series of SNPs on a single chromosome. Array genotyping technolo-
gies allow for the determination of genotypes, but haplotypes can be only recon-
structed by using statistical inference methods. Commonly used methods are EM 
algorithms and algorithms based Bayesian methods as implemented in the software 
Haploview  [  6  ] , PHASE  [  7  ] , or fastPHASE  [  8  ] .  

    2   Basic Statistical Concepts 

 Statistical methods and models used in genetic association studies are basically 
identical to methods used in classical epidemiology. They rely on methods devel-
oped in descriptive and inferential statistics. There is only the need for some addi-
tional assumptions and de fi nitions. We describe some basic concepts that are 
necessary for conducting a genetic study and assume for ease of description in the 
following that genetic variants are bi-allelic SNPs. 

    2.1   Allele Frequency 

 The  allele frequency  is the proportion of one allele relative to all alleles at a locus. 
It is calculated in a given study population and is often used to estimate the corre-
sponding frequency of the allele in related populations. For instance data from the 
HapMap project (  http://www.hapmap.org    ) and 1,000 Genomes project (  http://
www.1000genomes.org    ) is used as reference to predict allele frequencies in differ-
ent ethnic groups as Europeans, Africans and Asians and can be used to depict the 
amount of genetic diversity. For a SNP, its  minor allele frequency  ( MAF ) is the fre-
quency of the SNP’s less frequent allele.  

    2.2   Linkage Disequilibrium 

  Linkage disequilibrium (LD)  is the association or correlation of alleles of two or 
more SNPs that cannot be attributed to random inheritance, in other words LD is the 
presence of combinations of genotypes more often than expected in a pure random 

http://www.hapmap.org
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process. Linkage equilibrium occurs when the genotype present for one SNP is 
independent of the presence of another genotype for a second SNP. LD can be 
quanti fi ed as the difference between observed and expected allele frequencies under 
the hypothesis of linkage equilibrium. Sets of SNPs can be merged together in  LD 
blocks  with high pairwise LD which are separated from each other by spots of high 
recombination breaking up LD structures. In association studies this block structure 
is used for testing whole regions for associations by selecting few ‘tagging’ SNPs 
from the LD block. These  tagging SNP  represent the whole region which includes 
often more than one gene but are usually in an association study not the causal vari-
ants. Subsequent functional analyses are necessary to further investigate these 
regions. These analyses include  fi ne mapping of the region by sequencing to  fi nd 
potentially causal variants, genomic analysis of gene expression patterns, 
investigation of rare risk variants as causes of monogenic traits, epigenetic analyses 
and investigation of intermediate traits like metabolic pro fi les derived from 
metabolomics. The amount of LD between two markers can be measured as D’ 
( d -prime, 0  £  D’  £  1). D’ is calculated as the difference between the observed num-
ber of co-occurrence of two alleles and their expected number under the assumption 
of linkage equilibrium divided by a normalising term that is the theoretical maxi-
mum for the observed allele frequencies. A value of 0 indicates that the two markers 
are in complete equilibrium, whereas a value of 1 represents the highest amount of 
disequilibrium  [  9  ] . D’ is related to a second commonly used measure of LD the 
square of the allelic correlation coef fi cient R 2  (0  £  R 2   £  1).  

    2.3   Hardy-Weinberg-Equilibrium 

 The  Hardy-Weinberg model  introduces a mathematical model that predicts under 
certain assumptions the frequency of offspring genotypes based on parental allele 
frequencies. It is formalized in a way that it describes equilibrium and not an evolu-
tionary model. The Hardy-Weinberg model predicts that all allele frequencies will 
not change from one to the next generation. The  Hardy-Weinberg-Equilibrium 
(HWE)  is based on and requires the ful fi llment of formal assumptions. These 
requirements are (1) random mating, i.e. individuals are pairing by chance, not pref-
erably according to any of their genotypes or phenotypes, (2) no mutation, i.e. no 
new alleles occur at a locus, (3) no migration or emigration, (4) no genetic drift, i.e. 
the population is large enough that changes in allele frequencies due to random 
processes do not play an observable role, and (5) no selection, i.e. there exists no 
selective pressure for or against any trait. These assumptions are idealistic and can 
be used for genetic modeling but are rarely exactly met in practice, so that allele 
frequencies of a population slightly change from one generation to the next. But in 
large population based studies these conditions are often reasonably ful fi lled so that 
HWE holds at least approximately for the vast majority of genetic loci. 

 Formally, for a SNP with two alleles, say A with allele frequency P(A) = p and C 
with allele frequency P(C) = q = (1-p), assuming HWE results in offspring with a 
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genotype frequency of P(AA) = p 2  for the homozygote AA, P(AC) = 2pq for the 
heterozygote AC and P(CC) = q 2  for the homozygote CC. This sums up to the same 
allele frequencies P(A) = p for A and P(C) = q for C also in the next generation so 
that the proportion is constant for the whole population. Statistically HWE means 
that in a population at a speci fi c locus the alleles are independent and therefore in a 
sample the HWE can be checked by applying statistical tests for independence of 
distributions to the data, which in principal measure the amount of departure of the 
observed allele frequencies from the expected allele frequencies under the assump-
tion of HWE. Violations of HWE can occur on a population level due to deviations 
from the basic assumptions (e.g. non-random mating and population strati fi cation) 
but also on an experimental level due to any kind of non-random genotyping error. 
This is observed mainly due to insuf fi cient genotyping quality resulting in missing 
genotype data (no calls) or calling errors (e.g. too many heterozygote genotypes by 
wrongly merging two genotype-call clusters). Genotyping errors can lead to spuri-
ous associations or false positives in cases where different patterns of genotyping 
errors occur for different levels of the phenotype, e.g. diseased and healthy  [  10  ] . 
Consequently, testing for HWE is also an additional instrument for data quality 
control.  

    2.4   Testing for Violation of Hardy-Weinberg-Equilibrium 

 In a sample a SNP can be tested for HWE or more precisely for whether there is a 
violation of the HWE by comparing the observed genotype count with the expected 
count under the assumption of true HWE. There are several statistical tests available 
to test the null hypothesis of HWE. In particular the   c   2 -test for independence and 
Fisher’s exact test are commonly in use. A detailed formal description and discus-
sion of these tests is given e.g. by  [  11  ] . Brie fl y the   c   2 -test statistic is a weighted sum 
of the squared distance between the observed and expected genotypes counts. The 
test statistic can be calculated from the genotype and allele frequencies and is com-
pared to an appropriate quantile of the   c   2 -distribution with one degree of freedom. 
If the observed genotype counts are unlikely, given the null hypothesis of HWE can 
be rejected. Alternatively Fisher’s exact test can be used. A description of Fisher’s 
exact test can be found in  [  12  ]  and an example is given in  [  11  ] . Brie fl y the test cal-
culates the probabilities of a particular number of heterozygotes given the allele 
frequencies, under the null hypothesis of HWE. The cumulative probability of 
obtaining at least the observed number of heterozygotes is calculated, and this is 
regarded as the  p -value of the test. 

 Here, we want to give some general remarks on the practical use of these tests. 
The   c   2 -test is easy to calculate and often used in practice but it should be noted that 
this test is not appropriate if any of the expected values are small because in this 
case the approximation by a   c   2 -distribution becomes poor. This is in particular true 
for SNPs with a small MAF so that  fi elds of the contingency table have small counts 
(<5 as a rule of thumb). For this reason Fisher’s exact test became more frequently 
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used as this test allows for the exact calculation of the probability of a false rejection 
under the assumption of a true HWE. In a sample that is not ascertained based on a 
speci fi c phenotype, the HWE test should be calculated for the full sample but in 
selected populations, in particular for case–control studies, HWE testing should be 
done with consideration. In most situations it is wise to perform the HWE test only 
in the subset of the controls because it is possible that a violation of HWE for asso-
ciated SNP in the cases occurs due to a shift in allele frequency.  

    2.5   Design of Genetic Association Studies 

 In  genetic association studies  similar concepts for study design are used as in other 
well designed epidemiological studies. Commonly used designs include case– 
control studies comparing the frequency of SNP alleles in two different sets of indi-
viduals: The case group including individuals who suffer from the disease under 
investigation and the control group including individuals who are either disease free 
or are taken as a random sample of the general population assumed that the disease 
prevalence is not very high. An increased frequency of a speci fi c allele or genotype 
in the case group compared with the control group indicates that the SNP allele may 
increase the disease risk. The decision whether a difference is signi fi cant is based on 
statistical inference such as   c   2 -tests and logistic regressions. Often the aim of an 
association study is a detailed understanding of the disease pathogenesis. This can 
be investigated with a second type of study by appropriately selecting intermediate 
traits that are known to be risk factors for complex diseases. Such traits are most 
often measured on a quantitative scale allowing estimation of the amount of devia-
tion from the normal state. Quantitative traits are best investigated in samples of a 
general, mostly healthy population and require other statistical methods such as 
t-tests and linear regression models. It should be kept in mind that in association 
studies signi fi cant associations are statistical correlations and do not necessarily 
indicate a causal relationship. Moreover, association can be mediated be other traits, 
as in the case of the  FTO  gene being associated with type 2 diabetes through its 
effect on obesity, or even confounding can occur, as in the case of apparent associa-
tions due to population admixture. A detailed overview of the variety of study 
designs and analysis methods is beyond the scope of this chapter but comprehensive 
descriptions are available in standard genetic epidemiological text books, e.g.  [  13  ] .  

    2.6   Genetic Models and Single Locus Testing 

 For statistical testing of an association between a trait and genetic variants, in our 
case SNPs, a genetic model has to be speci fi ed to de fi ne the assumed underlying 
genetic mechanism. In general there are two model choices possible, namely allelic 
testing and genotypic testing. For disease traits, the  fi rst classi fi es cases and controls 
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according to their alleles; the second classi fi es cases and controls according to 
their genotypes. For genotypic testing the most general model allows for all 
possible genotypes an unrestricted effect. This leads for bi-allelic SNPs with 
three possible genotypes to a two-degrees of freedom test for the overall effect of 
the SNP. This model makes no structural assumption about differences in effect size 
between the genotypes but has an additional degree of freedom resulting in a test 
which is less powerful than models assuming the (true) genetic model, which is 
however in general unknown. In an  additive genetic model  each copy of the observed 
allele proportionally increases or decreases the effect on the outcome. A  dominate 
genetic model  for one of the alleles assumes that the heterozygote and the homozy-
gote genotype of the allele are combined into a joint category. The same model is a 
 recessive genetic model  for the other allele. In genetic association studies the aim is 
to investigate whether a speci fi c SNP is associated with the outcome under investi-
gation. This is in general done by single locus testing without taking other SNPs 
into account, e.g. by conditioning on these potentially related loci in the regression 
model. But it might be nevertheless useful to include other important covariates into 
the model if they affect the phenotype independently of the genetic variant as they 
may increase the precision of the model. Moreover, adjustment for traits that are 
mediators between the SNP and outcome will remove seemingly direct associations 
with the outcome.  

    2.7   Multiple Testing 

 The type I error of a statistical test is de fi ned as the probability to reject the null 
hypothesis “no effect of SNP on the phenotype” when there is no real association 
between the SNP and the phenotype; this means in other words we get a false posi-
tive result. The signi fi cance level of a test is the assumed type I error  a  for a single 
test. Genetic association studies, in particular genome-wide studies, require testing 
of large numbers of hypotheses for multiple SNPs and/or phenotypes. Very often 
these sets of SNPs and phenotypes, like in association studies with panels of metab-
olites, are considerably correlated. Analysis plans should appropriately consider 
adjustment for multiple testing. Reporting of signi fi cance in genetic association 
studies and genome-wide studies should be strictly based on study-wide or genome-
wide signi fi cance. 

 The most straightforward but also most conservative correction for multiple test-
ing is a Bonferroni correction. This correction method controls the family-wise 
error rate that is the probability of one or more type I errors among all tests. For 
instance, if we perform two tests each with a individual type I error  a  of 0.05 then 
the probability for at least one false positive decision is already 1 − (1 − 0.05) 2  = 0.0975. 
This in fl ation of the error probability means vice versa that controlling the family-
wise error on a level of  a  = 0.05 requires to choose a test-wise type I error x 
accordingly. We have to assure that 1 − (1 − x) N  < 0.05 for N tests. Bonferroni 
correction uses an approximation (1 − x) N   »  1 – N⋅x, so that we can choose x =  a /N, 



46 C. Gieger

i.e. we divide the test-wise type I error rate by the number of performed independent 
tests to get a corrected threshold for the aimed family wise error. The procedure 
assumes that all tests are independent and is therefore conservative in situations 
with correlated SNPs or phenotypes. Benjamini and Hochberg  [  14  ]  proposed the 
false discovery rate (FDR) which is a less conservative adjustment. In contrast to 
controlling the family-wise error rate, the FDR controls the expected proportion of 
false discoveries among all rejected hypotheses. The q-value is de fi ned to be the 
FDR analogue of the p-value  [  15,   16  ] .   

    3   Genome-Wide Association Studies (GWAS) 

 The human genome contains several millions of SNPs. Some of these SNPs directly 
increase the susceptibility for a disease manifestation or cause individual 
modi fi cations in phenotypes; others tag nearby causal variants making them useful 
as indirect markers of disease associations.  Genome-wide association studies 
(GWAS),  which are able to cover large amounts of the whole genomic variation, 
have become the standard analysis tool for risk loci discovery of complex diseases 
and related risk factors. This is possible due to the recent development of emerging 
chip technologies for DNA genotyping allowing for measuring of hundreds of thou-
sands up to several millions of common SNPs. These chips are based on a dense 
coverage of common genetic variation provided by recent whole genome sequenc-
ing projects, like the HapMap project (  http://www.hapmap.org    ) and the 1,000 
Genomes project (  http://www.1000genomes.org    ). 

 Genetic variants on genotyping arrays do not result necessarily in different pro-
tein sequences for both alleles but should cover such variants in high LD with the 
typed SNPs. In this sense GWAS based on genome-wide chips are an ef fi cient and 
unbiased approach to  fi nd risk loci for common disorders. GWAS require suf fi ciently 
large sample sizes that allow for uncovering of risk loci with suf fi cient statistical 
power. It is, however, noteworthy that there are only few and far less than initially 
expected examples where single loci have a major impact with high explained varia-
tion on a phenotype. These so called ‘low hanging fruits’ have been detected in 
early GWAS with sample sizes of several thousands of individuals. In many of such 
cases these newly discovered high impact loci include a gene that is highly plausible 
as modulator of the phenotypes, e.g. a gene encoding C-reactive protein (CRP)  [  17  ]  
or the  SAA  gene family for acute-phase serum amyloid A  [  18  ] . In other cases the 
connection with a phenotype beyond the strong statistical association was less clear 
but has revealed a new pathway involved in the modulation of a phenotype and 
could be subsequently validated in functional studies, e.g. the  SLC2A9  gene as 
newly described high capacity urate transporter  [  19,   20  ] . 

 It became obvious from early GWAS with several tens of thousands of individu-
als that most associated common variants taken for themselves have only moderate 
effects, often with odds ratios between 1.1 and 1.3 for disease traits, or with explained 
variances of <1% for quantitative traits. Consequently, for some traits there should 

http://www.hapmap.org
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be hundreds of variants with such moderate and even smaller effect sizes. Recently, 
highly powered GWAS have used more than 100,000 individuals. This is realized in 
large multi-national consortia by putting together all available data from different 
studies in a single large meta-analysis. The studies have suf fi cient power to detect 
also association with small effect sizes. There is an ongoing discussion on the 
importance of such small effects. From an epidemiological point of view these loci 
may have a negligible relevance as they contribute only marginally to the overall 
risk of developing a disease. However it is important to note that the major aim of 
GWAS is not prediction of individual risk but rather the discovery of novel biologi-
cal pathways involved in disease development  [  21  ] . This can in the future even 
provide information for an effective treatment. The ability to expose biology has 
already been shown in several large GWAS. For instance a large GWAS on serum 
lipid levels found many loci including genes encoding apolipoproteins, lipases and 
other key proteins known to be involved in lipid metabolism  [  22  ] . Moreover, the 
same study showed that 18 genes at the 95 lipid loci were previously linked to 
known Mendelian lipid disorders. This and other examples show that overall GWAS 
were very successful in discovery of relevant genes and can provide new hypotheses 
for the investigation of the genetics of complex diseases. A comprehensive database 
containing thousands of risk variants for several hundreds of traits and diseases is 
provided as Catalog of Published Genome-Wide Association Studies  [  23  ]  by the 
National Human Genome Research Institute (NHGRI) (  http://www.genome.gov/
gwastudies/    ). However many newly identi fi ed loci do not implicate genes with 
already known functions, so that the underlying genetic etiology of complex disor-
ders has to be explored with methods beyond statistical association analysis  [  24  ] .  

    4   Candidate-Gene Association Studies Versus 
Genome-Wide Association Studies 

 Classical  candidate-gene association studies  investigate the effect of candidate 
markers in one or more genetic region on a phenotype of interest. Typically the 
genetic loci are characterized by sets of tagging SNPs. The SNPs tag the genetic 
region as they are selected to represent each distinct LD-block. Candidate gene 
studies limit the number of tests to small subsets of the genomic regions and focus 
on hypotheses for sets of genes which have prior evidence to be associated with the 
phenotype of interest. GWAS are in contrast to candidate-gene studies hypotheses-
free and unbiased as they require no prior selection of candidates. Genetic associa-
tion studies with sets of candidate genes have suffered from poor replicability of 
reported results. This has been among others impressively illustrated in a systematic 
review of replication studies by Hirschhorn and colleagues  [  25  ]  who reviewed 600 
association signals between common gene variants and disease previously reported 
in literature. They found that only six of 166 associations studied three or more 
times were consistently replicated, while for more than half of the loci replication 
attempts yielded inconsistent replication outcome. Successful replication of an 
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initial  fi nding is the  sine qua non  in candidate gene association studies but one 
should also be aware that non-replication can re fl ect not only false positives calls in 
the original study but also problems in replication designs, like insuf fi cient power 
or methodological inconsistency between study designs, which can lead to false- 
negative results in replications. The advent of GWAS is a notable change in para-
digm of genetic association studies. Due to their unbiased approach in suf fi ciently 
powered studies the discovery of reliably validated association signals underwent a 
major improvement compared to previous candidate-gene association studies. 
However, it should not be ignored that a completely unbiased approach in GWAS 
has also a price, namely the relatively low power to detect signals with moderate 
and small effect sizes. This low power is mainly caused by the need to extensively 
correct for multiple testing. In GWAS several millions of SNPs are tested for asso-
ciation. Due to linkage disequilibrium many of these SNPs are highly correlated 
leading to an over-conservative correction when using the total number of SNPs in 
a Bonferroni correction. Pe’er et al  [  26  ]  estimated based on data from HapMap 
Consortium a testing burden of one million independent tests in a dense genome-
wide analysis in Europeans. Based on this estimate most GWAS have so far used 
5*10 −8  as threshold for genome-wide signi fi cance.  

    5   Meta-analysis of Genome-Wide Association Studies 

 Motivated by initial successes of GWAS in single studies, researchers started to 
extensively exchange and combine genetic data to uncover new genetic risk factors 
in large populations. The primary statistical tool for such a joint effort is a meta-
analysis for pooling statistical evidence of genotype-phenotype associations. 
Prerequisite is the imputation of data collected with different genotyping platforms 
based on the same haplotype reference set to enable the exchange of data in a uni fi ed 
format. Imputation is a statistical method to predict known SNPs which are not 
genotyped with the used chip technology based on nearby genotyped SNPs and 
observed reference haplotypes from HapMap or another large scale sequencing 
effort. Software tools have been developed to solve this missing value problem 
ef fi ciently  [  27,   28  ] . Not surprisingly, imputation methods are not perfect. Quality 
depends on the LD structure between genotyped and untyped SNPs. All imputation 
algorithms calculate for each imputed SNP for a given individual a posterior prob-
ability for the possible genotypes which can be transformed into the expected num-
ber of copies of an allele (allelic dosage). In subsequent association analysis this 
uncertainty of the imputations has to be taken into account. Standard linear and 
logistic regression allows incorporating imputation uncertainty by using allelic dos-
ages instead of coded genotypes. 

 A meta-analysis of GWAS provides the possibility to combine study-speci fi c 
statistics in single weighted statistics. In contrast to a full joint analysis of all avail-
able data, a meta-analysis does not need access to individual data but needs instead 
summary statistics from all included studies. This makes such large analyses 
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organizationally and computationally feasible and is the analytical basis of efforts 
in large consortia. Meta-analyses of GWAS use the same statistical methods that are 
commonly used for combining summary statistics in meta-analyses of published 
results, in particular it calculates joint effect estimates and p-values  [  29,   30  ] . 
By increasing the effective sample size and power, meta-analyses have shown to be  
extremely useful for the discovery of new genetic risk factors and gene functions. 
Divergent huge consortia like DIAGRAM for type 2 diabetes  [  31  ] , CARDIoGRAM 
for coronary artery disease  [  32  ] , GIANT for height  [  33  ] , GLGC for serum lipids 
 [  22  ] , or the International Consortium for Blood Pressure Genome-Wide Association 
Studies  [  34  ]  have identi fi ed novel associations and have impressively illustrated the 
value of meta-analysis across GWAS. 

 Before starting a meta-analysis it should be carefully evaluated which studies to 
include. They should be comparable with respect to their study population and study 
design. Today most large meta-analyses are based on populations of European 
ancestry but often a validation in other ethnicities follows the main analysis. For 
example it may make sense to further explore loci discovered in Europeans also in 
populations of African ancestry as they tend to have shorter LD blocks allowing in 
some cases to further narrow down causal variants. In meta-analyses for quantitative 
traits an analysis in healthy samples from the general population is seen as gold 
standard for an unbiased analysis but inclusion of a minor fraction of individuals 
with disorders which might be physiologically related to the phenotype is accepted 
as exclusion of all such individuals is not always practically feasible. Sometimes 
even populations selected according to a phenotype are included as it is believed 
that the gain of power outperforms a possible dilution of effects. These consider-
ations show that a perfect degree of homogeneity is mostly not possible, but a good 
study design can be approached by carefully selecting studies and de fi ning a uni fi ed 
analysis plan. 

 An important requirement for any meta-analysis is the comparability of the phe-
notype as well as the genotype across all participating studies. In many studies 
phenotype comparability is relatively easy to assure, as for instance for human 
height or weight uni fi ed measurement devices are available. However, for other 
phenotypes such standards are not available and measurements depend on the device 
that is used in a particular study, e.g. for metabolite measures using different 
pro fi ling platforms. Similar problems can occur for the de fi nition of disease status 
as there might be heterogeneity due to different disease classi fi cations or ascertain-
ments, like self-reported or clinically validated status. It is essential that for all stud-
ies the phenotypes are transformed and coded in terms of the same scale or unit for 
quantitative traits and categories for categorical traits. For genotype data, it is of 
particular importance to de fi ne a uni fi ed way of data cleaning and quality control. 
Prior to analysis, typically several  fi ltering steps are applied including call rates, 
imputation quality and HWE outliers. To ensure consistent comparability between 
studies, a uni fi ed annotation of the variant names and strand orientation is essential. 
Furthermore an explicit unique declaration of the version of the human genome 
assembly (e.g., NCBI build 35 or 36), the rs-identi fi er with version of NCBI dbSNP 
(  http://www.ncbi.nlm.nih.gov/projects/SNP/    ), the chromosomal position relative to 
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the used genome assembly, the alleles and their strand orientation is required for an 
accurate analysis. Overall an elaborated concept for quality assurance is essential 
for a sound analysis step. Furthermore, the genotype coding has to be done with 
respect to the same reference allele. This assures that effect estimates or odds ratios 
are consistent across studies and can be combined to an overall estimate in the meta-
analysis. Meta-analysis itself is usual performed using  fi xed effects methods 
(weighted z-scores or inverse variance method) or random effects methods  [  29  ] . 
Once the meta-analyses for all SNPs has been calculated it is useful to check 
the results for heterogeneity by computing Cochran’s Q statistic as well as the 
 I   2   statistic  [  35  ] .  

    6   Population Strati fi cation 

 Population strati fi cation refers to any systematic difference in allele frequencies 
between different subpopulations of a larger population. A proper consideration is 
critical for GWAS analysis and meta-analysis of GWAS  [  36,   37  ] . Population 
strati fi cation can be caused by different ancestries due to non-random mating, 
genetic drift or population admixture. A major concern in large scale association 
studies is that such studies tend in the presence of population strati fi cation to gener-
ate more false positives than expected by chance. It plays an important role in 
genetic case–control association studies as they basically assume the differences in 
allele frequencies between cases and controls are due to the disease status and not 
due to differences based on mixtures of ancestrally distinct populations with differ-
ent values of disease prevalence. However, population strati fi cation can also occur 
in the analysis of quantitative traits whenever the membership to a genetically dif-
ferent subpopulation is correlated with the outcome. Several methods have been 
proposed to test and correct for population strati fi cation in genetic association 
studies, in particular genome-wide studies. These approaches use either set of mark-
ers which are assumed to be uncorrelated to outcome loci or the complete set of 
available set of markers. 

 Population strati fi cation has been discussed extensively in the literature and a 
number of methods have been proposed to address it. A commonly used method for 
correcting population strati fi cation is genomic control (GC)  [  38–  40  ] . An alternative 
approach is the usage of principle components in regressions to adjust in the model 
itself for population structure. The idea is to use the  fi rst few principal components 
of the correlation matrix of SNPs as covariates to capture underling structures not 
attributable to single SNPs but to structures  [  37  ] . After a genome-wide association 
analysis, it is essential to test the resulting test statistic for signatures of population 
strati fi cation. It is standard to compare the genome-wide distribution of the test 
statistics with expected null distribution by calculation of the GC in fl ation factor  l  
and by inspecting Q–Q (quantile–quantile) plots of observed p-values. The GC 
in fl ation factor  l  is de fi ned as the ratio of the median of the empirically observed 
test statistics to the expected median and should be close to 1 for homogeneous 
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populations  [  40  ] . Q-Q-plots are useful to detect visually deviations of the observed 
test statistics or p-values from the expected null distribution. As the null distribution 
is calculated under null hypothesis of no association, an exclusion of known asso-
ciations makes often sense. In fl ated  l  values or deviations in the Q–Q plots may 
indicate to uncorrected population strati fi cation.  

    7   Case Study: Genetic Determinates of Uric Acid Levels 
and Their Associations with Gout 

 Uric acid is a metabolite that is created when the organism breaks down purine 
nucleotides (Fig.  4.1 ). Uric acid levels in blood serum are of clinical relevance as 
elevated concentrations can lead to gout and are associated with medical complica-
tions like kidney stones and hypertension. Physiological reasons for elevated uric 
acid levels are twofold: an increased production in liver and/or an insuf fi cient excre-
tion in kidneys. Although it is known that a strong genetic control in fl uences the 
regulation of uric acid concentrations, until the  fi rst GWAS have been conducted 
there was no major gene regulating uric acid levels was known. This  fi rst wave of 
GWAS uncovered in up to 28,000 individuals a total of 9 loci with reproducible 
in fl uence on uric acid  [  20,   41–  43  ]  (Fig.  4.1 ). The strongest effect on uric acid con-
centrations was detected for the gene  SLC2A9 , coding for the protein GLUT9, 
which has been later shown to serve as a high-capacity urate transporter in humans 
 [  19,   20  ] . The association is additive, with a large effect size of −0.35 to −0.40 mg/dL 
per copy of the minor allele (MAF = 23%). There is a pronounced gender difference 

  Fig. 4.1    Manhattan plot showing signi fi cance of association of all SNPs in the meta-analysis of 
uric acid from 14 studies totalling 28,141 participants of European descent. SNPs are plotted on 
the x-axis according to their position on each chromosome against association with uric acid con-
centrations on the y-axis (shown as − log10 p-value). Figure reproduced from  [  41  ]        
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with an explained variance of 1.2% in men and 6% in women. In addition there is a 
signi fi cant association with gout with an odds ratio of 1.68 per copy of the common 
risk allele. The second strongest association can be observed at  ABCG2  that is a 
member of the ATP-binding cassette (ABC) superfamily of membrane transporters. 
Woodward et al.  [  44  ]  were the  fi rst to show that  ABCG2  is in fact a uric acid ef fl ux 
transporter. Variants result in 53% reduced uric acid transport rates compared to 
wild-type  ABCG2  and show highly signi fi cant associations with gout (OR = 1.68 
per risk allele). Remarkably the study shows that at least 10% (MAF = 11%) of all 
gout cases are attributable to a causal variant in the gene. These examples empha-
size the power of GWAS on metabolite traits in expanding our understanding at the 
molecular level of disease mechanisms. In both cases the function of these genes 
were not known before the studies have been conducted. This shows the power of 
the analysis of intermediate traits as this can lead to valuable insights into the 
pathophysiology of complex diseases.   

    8   Missing Heritability 

 Genome-wide association studies have identi fi ed hundreds of genetic loci associ-
ated with complex diseases and related intermediate traits (Fig.  4.2 ). These studies 
have provided important insights into the genetic architecture of diseases and con-
tributed to the understanding of underling disease mechanisms. However, only in 
few cases mostly for quantitative traits these studies could detect loci with large 
effect sizes which could explain a high fraction of the trait variation. The majority 
of variants identi fi ed so far are associated with small increases of disease risk or 
small to moderate differences in the level of a quantitative trait per copy of an allele. 
These loci explain mostly less than 1% of the variation of a quantitative trait and 
hence also only a small fraction of the heritability. This leads directly to the question 
where the missing heritability can be found and which approaches to generalize the 
commonly used procedures is most promising.  

 A major aim of GWAS is the generation of unbiased hypotheses by reporting a 
list of validated and novel loci which are associated with a trait solely based on large 
sample sizes and statistical modelling. In subsequent studies these loci can be fur-
ther validated either based on biological knowledge databases, functional experi-
ments and analyses in model organisms. To avoid wasting too much work and 
money for investigations of false positive calls, GWAS typically set rather stringent 
statistical thresholds for signi fi cance to strictly control false positive rates. Usually 
they use a Bonferroni correction threshold, e.g. P < 5×10 −8 , assuming testing in a 
total of one million independent genomic regions  [  26  ] . The consequence of such a 
conservative approach is a high false negative rate, i.e. the inability to detect loci 
that are truly associated with the trait having effect sizes that are too small to pass 
the ‘magic threshold’ of genome-wide signi fi cance. This leads even for GWAS with 
more the 100,000 individuals to estimates that up to several hundreds of truly asso-
ciated SNPs with moderate effect sizes are still uncovered  [  33,   47,   48  ] . Another 
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reason for missing true positive loci is owed to the fact that large GWAS use pre-
dominantly one genetic model, namely additive models assuming a proportional 
increase in effect size per copy of the risk allele. While clear dominance should be 
covered well by an additive model assumption, a recessive model is not very likely 
to be detected by such a model. Even with very large sample sizes, we have still 
limited ability to detect rare to moderate frequent variants. This has several reasons: 
Firstly the majority of commonly used DNA chips are not designed to cover SNPs 
with a MAF < 1%. Even custom-designed chips have the problem to appropriately 
and reliably call the genotypes of rare variants as the commonly used calling algo-
rithms work not very well for rare variants based on limited sample sizes. Moreover, 
due to very limited statistical power most genome-wide association studies do not 
even try to discover such low frequency variants and exclude them from the analysis 
plan from the beginning. There might be some progress due to upcoming sequenc-
ing projects but insuf fi cient power is still an issue. It can be expected that only genes 
with highly penetrant rare variants show up. Rare variants with small to moderate 
effect size are extremely hard to detect by such studies (Fig.  4.2 ). Apart from 
these limitations due to study designs, chip designs and statistical power, there are 
some more fundamental considerations leading to reasons for missing heritability. 
Mangolio and colleagues  [  45  ]  included in their seminal paper several more struc-
tural sources. They expect contributions to the elucidation of this puzzle by 

  Fig. 4.2    Feasibility to identify genetic variants by risk allele frequency and effect size. GWAS are 
powered to identify common variants contributing to the inherited component of common diseases 
(Adapted from  [  45,   46  ] )       
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performing systematical investigations of copy number variations (CNVs), epistasis, 
i.e. situations where several genes work together, and perhaps most promising epi-
genetics, i.e. changes in gene expression that are inherited but not caused by changes 
in the genetic sequence.      
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    1   Microorganisms and Their Role in the Environment 
and Human Health 

 Microorganisms place the biggest part of the biomass in the world covering all 
branches of life and were the  fi rst form of life on earth  [  1,   2  ] . They were discovered 
1675 by Anton van Leeuwenhoek using an self-designed light microscope  [  3–  5  ] . 
Figure  5.1a  shows a  fi rst drawing of microorganisms, at this time referred as  ani-
malcules , compared to a today used phylogenetic tree (Fig.  5.1b ) .   

 His contribution together with the works of Lazzaro Spallanzani, Louis Pasteur 
and Robert Koch, are regarded as the fundament of modern microbiology. It is esti-
mated that the total amount of prokaryotic cells by itself on earth is 4–6 × 10 30 , with 
350–550 × 10 15  g carbon bound in their biomass  [  6  ] . Bacteria, as other microorgan-
isms, are ubiquitous and can be found in various habitats and ecological niches, 
ranging from soil, acidic hot springs to radioactive waste  [  7  ] . Bacteria do not always 
occur as single individual cells but also as big communities, which are not only 
consisting of one isolated species but appear as multispecies and often associated 
with other higher organisms. Many bacteria ful fi ll an important role in the environ-
ment, such as nitrogen  fi xation from the atmosphere, whereas other are important to 
human health, e.g. the gut microbiome (= all microorganisms living in human gut). 
In the human  fl ora, meaning the skin and gut  fl ora, there are about ten times more 
bacterial cells than there are human cells in the body, with thousands of different 
species alone being in the gut  [  8,   9  ] . Nevertheless, several bacteria can serve as 
pathogens for plants, animals and humans. Diseases like tetanus, typhoid fever, 
diphtheria, syphilis, cholera or tuberculosis are pathogen born. Again, bacteria are 
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used to our bene fi t in food industry, e.g. in the production of cheese or yoghurt, or 
in biotechnology to produce  fi ne chemicals. An example is Insulin, which is today 
produced exclusively in genetically modi fi ed  Escherichia coli  strains or yeast. 
Strain optimization is a key issue in biotechnology today. Beside their technical 
relevance and their role in health, microbes are an extensive part of fundamental 
research. 

 Each year more new species of microbes are described than in other phyla  [  10  ] . 
With these new species, novel pathways are going to be discovered. The best exam-
ple is the reverse TCA cycle being long postulated, using the TCA cycle in reductive 
way for CO 

2
   fi xation  [  11  ] . Different types of production of energy for survival are 

known from bacteria. It can be distinguished between phototrophs, lithotrophs, and 
organotrophs, using sunlight, inorganic compounds or organic compounds as energy 
source, respectively. This broad range of metabolic capabilities, mostly re fl ecting 
the ecological niche a bacterial species lives within, makes them an interesting  fi eld 
for metabolomics. In addition they feature a broad variety of secondary metabolic 
pathways, producing toxins or metabolites, speci fi c for the environment they live in, 
e.g. chelators for sequestering iron or other essential metals. Moreover bacteria 
ful fi ll metabolic reactions not known from higher organisms. Research is going to 
identify more and more novel bacterial metabolites in future and will show us that 
the chemical diversity of microbial metabolomes is much bigger than what we can 
presently imagine.  

    2   Review of Current Advances in Microbial Metabolomics 

 Metabolomics, as the omics-technique being the closest to the observed phenotype 
and the real endpoint of the traditional view of biological information,  fl owing from 
DNA, over RNA and proteins to metabolites, is also one of the most challenging. 

  Fig. 5.1    ( a ) First drawings of bacteria, at this time called  animalcules , obtained by Anton van 
Leeuwenhoek using a self-designed light microscope. ( b ) Modern phylogenetic tree of life today 
in use, presenting all branches of life.   http://en.wikipedia.org/wiki/File:Collapsed_tree_labels_
simpli fi ed.png           
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DNA, RNA and proteins are built out of de fi ned chemical building blocks, whereas 
metabolites are ranging from very polar to non-polar compounds. Moreover they 
are present in a high dynamic range of concentrations ranging in orders of magnitude, 
making it (today) impossible to measure all of them in a single analysis. Despite this 
fact, metabolomics is currently growing fast in biotechnology, microbiology, sys-
tems biology and many other  fi elds. Until today a lot of research in microbial 
metabolomics has been investigated on optimization of extraction protocols and 
evaluation of different analytical platforms. Quenching of metabolism, meaning the 
stopping of all biochemical reactions and inactivation of enzymes, is achieved by 
different techniques, whereas cold methanol or liquid nitrogen are the most com-
monly used. In the case of stability of extracted metabolites, the adenylate charge is 
preserved quite well and protects labile species from oxidation or degradation, 
making it well suited for microorganisms. A nice comparison of different quenching 
techniques and extraction methods from different sources can be found in Villas-
Boas  [  12  ] . For the measurement of the metabolome, different analytical platforms 
are applied, whereas one of the oldest analytical platform is gas chromatography–
mass spectrometry (GC-MS), which is still in use. GC-MS enables high-resolution 
separations, but it is only applicable to volatile compounds or such compounds that 
are volatile after a certain derivatization, restricting this method to metabolites 
smaller 500 Da. A recent study from E. Frimmersdorf et al. used GC-MS to eluci-
date how  Pseudomonas aeruginosa  adapts to different environments. Two different 
 P. aeruginosa  strains, PA01 and TBCF10839, were grown on either minimal medium 
with different carbon sources or a complex medium containing tryptone. During the 
exponential phase, metabolites directly available as carbon sources and metabolites 
belonging to the central carbon metabolism were found in higher concentrations, 
whereas in the stationary phase metabolites connected to production of exopolysac-
charides, development of bio fi lms and rhamnolipids were found  [  13  ] . Such  fi ndings 
can be interesting and helpful for further investigations studying host-pathogen 
interactions of  P. aeruginosa , which is a major threat to human health. 

 Beside GC-MS, liquid chromatography mass spectrometry (LC-MS) is widely 
used. It is applicable to even non-volatile compounds, while the use of ultrahigh-
resolution liquid chromatography (UHPLC) or capillary liquid chromatography 
(capLC) provides separation ef fi ciencies comparable to that of GC-MS, yielding 
several hundreds of thousands theoretical plates. The character of the used LC sepa-
ration methods adds additional information about metabolite polarity for more precise 
metabolite identifi cation. In metabolomics research mostly reversed phase (RP) and/
or hydrophilic liquid interaction chromatography (HILIC) is performed to separate 
non-polar and polar compounds, respectively. Ballistic, meaning short time, gradi-
ents are often employed for a rough separation of metabolites, to overcome effects 
of ion-suppression, known from direct infusion experiments. This gradient times 
range from 1 or 2 to about 15 min, making high-throughput measurements possible. 
The amount of detected metabolites varies from several hundreds to thousands. After 
a  fi rst screening approach, longer gradients allowing more precise separation of metab-
olites are used for identity con fi rmation or puri fi cation of unknown substances. A recent 
study used RP-capLC-MS to investigate the effect of the gut micro fl ora on the mouse 
blood system. Additionally different ionization techniques, electrospray ionization 
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(ESI) in positive and negative mode and atmospheric pressure chemical ionization 
(APCI) in positive mode, were used. Hertkorn et al. already showed on the basis of 
natural organic matter that using complementary approaches in ESI(+/−), APPI(+/−) 
and APCI(+/−) increases the available chemical space signi fi cantly  [  14  ] . Although 
the microbiome was not directly analyzed, the work of Wikoff et al. shows how big 
the in fl uence of it on mammalian metabolism is. Analyzing the plasma of conven-
tional and germ-free mice by RP-capLC-MS, they found several bacterial metabo-
lites, being signi fi cantly different between the two groups. One example pointed out 
in this work is the degradation of food tryptophan by bacteria. Germ-free mice 
lacked bacterial degradation products like indole-3-propionic acid or indoxyl sul-
fate, build from indole by the bacteria, followed by an oxidation by cytrochrome 
P-450 and a phase II conjugation to sulfate in the liver  [  15  ] . 

 A third way of metabolite analysis is capillary electrophoresis-MS (CE-MS), which 
separates charged species in an electrolyte  fi lled fused silica capillary using a high 
electric  fi eld. It is applicable to charged compounds, like nucleotides or small organic 
acids from the TCA cycle. Exemplarily the work of T. Soga et al., who developed three 
different CE-MS methods for cationic metabolites, anionic metabolites and nucle-
otides and coenzyme A compounds, respectively, for metabolome analysis, should be 
mentioned here. Using this method setup, 352 metabolites, which are commercially 
available as standards, from different known metabolic pathways, could be determined 
and the whole platform was applied to 1,692 compounds from  Bacillus subtilis . 
Different runs in 30 m/z steps were used to enhance sensitivity, leading to totally 33 
repetitions per sample to cover the mass range from 70 to 1027 m/z. Unknown metab-
olites were searched against the LIGAND database and prediction of the compound 
identity using its charge, electrophoretic mobility and isotopic contributions was per-
formed. Finally this approach was applied to metabolome changes in  B. subtilis  spo-
rulation. The results, indicating accumulation of TCA cycle metabolites, are in good 
agreement with previous studies, demonstrating the power of this setup  [  16  ] . 

 A major goal in metabolomics is to achieve whole metabolome coverage, which 
is so far only possible by combining different analytical methods. One of the most 
extensive works on microbial metabolomics was carried out by van der Werf et al. 
The group employed several methods to achieve comprehensive metabolome cover-
age. The methods included GC-MS with prior oximation and silylation to derivatize 
non-volatile compounds (OS-GC-MS), ion-pair liquid chromatography-mass spec-
trometry (IP-LC-MS), hydrophilic liquid interaction chromatography-MS 
(HILIC-MS), a LC-MS method for lipids, a non-polar GC-MS method and  fi nally a 
GC-MS method for volatile compounds. As basis for their investigation, they used 
in silico predicted metabolomes for  Escherichia coli ,  Bacillus subtilis , and 
 Sacharomyces cerevesiae . The OS-GC-MS and IP-LC-MS methods showed the 
most detected metabolites  [  17  ] . 

 The noted examples show nicely how the today used analytical setups are able to 
analyze the metabolome in a targeted way. Different analytical technologies needed 
to be combined to achieve good metabolome coverage. Also important, such work 
focusing on previous database knowledge is in most cases not able to  fi nd new 
metabolites or pathways. A promising approach, to  fi ll this gap is non-targeted 
metabolomics using ultrahigh resolution analytics, which can help to gain further 
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results, that are beyond the scope of the previous presented. Beside this, techniques 
like GC-MS, LC-MS or CE-MS can be also used in a non-targeted manner, which 
is often used, but limited resolution avoids putative metabolite identi fi cation. For a 
further overview, read the reviews published elsewhere  [  18–  20  ] .  

    3   Non-targeted Metabolomics Using Ultrahigh-Resolution 
Analytical Platforms 

 As paradigm is changing from basic metabolomics setups to more holistic approaches 
and the goal to discover novel pathways and metabolites for more scientist ultrahigh 
resolution analytical platforms come to the fore. Systems biology is a key word 
metabolomics wants to deal with, assigning function to orphan genes. With ultra-
high resolution non-targeted metabolomics this is in the scope of today possible 
analytics. Non-targeted metabolomics, as an extension to metabolic  fi ngerprinting 
or pro fi ling, is using analytical tools like mass spectrometry (MS) or nuclear mag-
netic resonance (NMR) for hypothesis free elucidation of the metabolism. The goal 
remains still the same, differentiating metabolic alteration in different states, but the 
way to reach this goal is different. Most scientists are trained to focus on a particular 
target and not to think in a holistic manner. Still non-targeted metabolomics is in its 
infancy, not readily accepted, it gains more and more attention by the scienti fi c 
community. For such a non-targeted approach, dealing with both known and 
unknown chemical entities, ultrahigh resolution analytics are the method of choice, 
discriminating between often thousands of different chemical entities. In addition, 
not only quality of measurements, but also quantity plays a role in metabolomic 
studies, such a ultrahigh resolution technique should be also high-throughput 
capable. Ion cyclotron resonance-Fourier transform mass spectrometry (ICR-FT/
MS), can handle these needs as shown before  [  21,   22  ] . 

 ICR-FT/MS, having a resolution up to 1,000,000 and more and a mass accuracy 
<100 ppb, is used as pro fi ling technique in metabolomics. It allows annotation of 
potential metabolites and calculation of possible elemental formulas using exact mass 
information. ICR-FT/MS is mostly utilized in direct infusion mode, without prior 
chromatographic or electrophoretic separation of the metabolites, to take advantage 
of its high resolving power (Box  5.1 ). The only major drawback of this technique is 
that it cannot distinguish between isobaric substances, like hexoses or isomeric sub-
stances, for example. In spite of this, it is a very sensitive technique, which uses 
diluted samples, so that sample consumption is minimal, making it ideal for studies 
where resources are limited. The fi rst example in which ICR-FT/MS was described 
for non- targeted metabolomics was published by Asaph Aharoni in 2002. His group 
investigated the changes in ripening strawberries. The high resolution made it possible 
to see different metabolites between green and red strawberries even in a window of 
0.1 Da  [  23  ] . Since this time a whole bunch of paper describes the use of ICR-FT/MS 
for metabolomics studies, which are reviewed elsewhere  [  24,   25  ] . Automation of data 
acquisition is easily accessible using autosamplers for  fl ow injection or automated 
robotic devices, like the Advion TriVersa Nanomate, for sample infusion  [  26–  28  ] . 
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   Box 5.1 Theory of ICR-FT/MS, Mass Resolution, Mass Accuracy and 
Calculation of Possible Formulas Out of Exact Masses 

 Ion Cyclotron Resonance Fourier Transform Mass Spectrometer (ICR-FT/
MS) is a mass analyzer based on cyclotron motion of ions in homogenous 
high magnetic  fi elds. After ionization of the analytes by ESI, APCI, APPI or 
MALDI as either positively or negatively charged ions; they are focused by 
ion lenses transferred into the magnetic  fi eld of a superconducting magnet, 
where an oscillating electric  fi eld excites the ions to higher trajectories. The 
masses are then resolved by their different cyclotron (rotational) frequency of 
the ion rotation in the magnetic  fi eld If a moving molecule with a mass  m  and 
an electric charge  q (q = n·e)  is transferred into a magnetic  fi eld  B  which is 
orthogonal to the ion’s velocity  v , the Lorentz force  F  

 L 
  acts on the ion.

    = × ×LF q v B    

 In the homogenous magnetic  fi eld, the moving charge has a constant velocity 
and moves on a stable circular trajectory with the radius  r . Their by the cen-
trifugal force equilibrates the magnetic force.
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 , also called as cyclotron frequency is only a function 

of m/z-ratio and the magnetic  fi eld strength B. Because of the right-hand rule 
positive and negative ions have contrary courses.
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 An additional alternating electric  fi eld orthogonal to the magnetic  fi eld causes 
the cyclotron resonance of a certain m/z-ratio. This  fi eld is applied between a 
pair of plates, called excitation plates. If the electromagnetic wave has the 
same frequency as a certain ion in the cyclotron cell, the resonance (absorp-
tion of energy) as consequence increases the ion’s kinetic energy hence 
increase the radius of its trajectory. The excited oscillating ions are detected 
with a second pair of plates, rotated 90° to the excitation plates. The passing 
ions induce an alternating current between the detection plates (Fig.  5.3a ). 
This so-called image current is a superimposition of several frequencies 
caused by several ions of different masses. Fast Fourier transformation is used 
to convert it to a mass spectrum.  

 ICR-FT/MS can reach high mass resolutions R, sometimes also referred as 
resolving power.

(continued)
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 Data obtained from direct infusion ICR-FT/MS compared to LC-MS is small in 
case of  fi le size (several MB) but rich in information. Further reduction is achieved 
by using mass lists from recalibrated mass spectra, picked by an appropriate peak 
detection algorithm. Such mass lists can be aligned to sample matrices for further 
statistical interpretation of the obtained data. For conversion of mass spectra from 
ICR-FT/MS to biological interpretable data we developed the MassTRIX server 
(Mass Translator into Pathways,   www.masstrix.org    ). It is public accessible and cor-
rects an uploaded mass list corresponding to ionization mode and possible adducts and 
compares the corrected masses against possible metabolites from KEGG, HMDB and 
LipidMaps within a certain erro range. These are mapped in second step to the respec-
tive pathway maps of a chosen organism, by calling the KEGG API. Additionally 
genes of interest can be highlighted  [  29  ] . Using this database annotation approach, only 
up to 15% of the experimental signals can be annotated; the remaining 85% may be given 

    
=

Δ
M

R
M    

 M is the mass of an ion and ΔM is typically the peak width at 50% of the peak 
height, also called full width at half maximum (FWHM). The in fl uence of 
different resolutions is illustrated in Fig.  5.3b , showing that a lower resolution 
cannot separate between different molecular species with the same nominal, 
but different exact masses. But not only resolving power is important, mass 
accuracy plays a crucial role for identi fi cation of metabolites. The mass error 
is often reported in ppm, meaning error in part per million.

    
6/ 10

−
Δ = ⋅

measured mass true mass
m z ppm

true mass    

 Working with high-resolution instruments it is needed to take also the mass of 
electron (5.485799 � 10 −4  u) into account. At 200, 400 and 800 Da, the mass 
of an electron would yield errors of 2.74, 1.37 and 0.69 ppm, respectively. 

 The determined exact masses can be used to calculate possible elemental 
formulas. Chemical formulas can be understood as linear combination of ele-
ments with distinct monoisotopic masses, following several chemical rules 
 [  32  ] . Using these rules, it is possible to calculate formulas out of exact masses 
obtained from ICR-FT/MS. Due to the high resolving power only a few dif-
ferent formulas  fi t the exact mass, which narrows down the list of potential 
candidates. Additionally isotopic information can be used to con fi rm the pre-
dicted formulas.  

Box 5.1 (continued)

http://www.masstrix.org
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some elementary composition, but no possible chemical structure. Thus new data 
evaluation approaches are being developed to consider the whole experimental 
dataset and unravel the yet unknown metabolites and their possible biological 
function. 

 One of these new approaches we use is the discipline of graph theory, which is 
widely used in bioinformatics and chemometrics due to its ability to provide ef fi cient 
means of analysing as well as visualising real-world scenarios. Graph theory allows 
many pragmatic situations to be modelled in the form of a diagram consisting of a set 
of points (nodes) and a set of lines (edges) connecting parts of these points; a math-
ematical abstraction which yields the concept of a graph  [  30  ] . As its name implies, a 
graph can be represented graphically, and through this graphical representation we 
are able to study some of its properties and gain knowledge on the data it represents. 
A graph (also called a network) is in addition associated with a specialised matrix, 
which allows us to store it in silico and apply mathematical methods in order to anal-
yse our data more thoroughly; a procedure known as ‘network analysis’. 

 Network analysis can be applied on almost every scenario of ICR-FT/MS spectra 
in a number of ways. A  fi rst approach would be the mass-mass difference networks, 
in which each node represents an exact experimental mass and each edge represents 
a selected mass difference either taken from a prede fi ned list of potential transfor-
mations, or detected on the  fl y through mass-difference clustering and correlation 
analysis  [  31  ] . In a purely biochemical context such a network model can be divided 
into  structural  and  functional  networks. In the case of structural networks, a list of 
selected theoretical mass differences is used in order to determine the adjacency 
relation between the nodes, i.e. detect transformations between the experimental 
masses. The resulting network can be described as a simulation of the real bio-
chemical system which may extract the structural information expressed in an 
ICR-FT/MS dataset. An extension of such a model combined with a special visuali-
sation technique gives rise to the concept of  functional networks . A speci fi c list of 
selected CHONS mass differences is used in a similar way in order to detect 
functional groups via the Kendrick mass defect approach. 

 In the context of metabolomics we have the possibility of modelling ICR-FT/MS 
datasets in the form of  correlation networks . Such a task can be achieved by treating 
mass spectra either as row or column vectors out of which a correlation matrix is 
extracted (usually using Pearson correlation). By setting a threshold value on the 
correlation coef fi cient, the correlation matrix can be converted into a binary adja-
cency matrix which represents a network. In the case of row vector correlation the 
resulting network is a  metabolic correlation network  which through several meth-
ods of node quanti fi cation, hierarchisation, and clustering has the potential of con-
tributing in biomarker identi fi cation. Combined with the structural network 
approach, this method has a great potential of non-targeted data reduction and com-
parison of the clusters to known KEGG pathways adds biological information. In 
the case of column vector correlation the mass spectra of the various samples can be 
modelled into a  sample-correlation network , which may be used for clustering sam-
ples into biologically signi fi cant group. Such a network analysis approach is  fl exible 
enough to be used in both supervised and unsupervised ways. A typical hierarchy of 
these networks, their shape and the obtained information is illustrated in Fig.  5.2 .   



655 Ultrahigh Resolution Mass Spectrometry Based Non-targeted Microbial Metabolomics

    3.1   Metabologeography: Differentiating Genetically Close but 
Metabolomically Different Microorganisms 

 The comparison of the metabolome from the halophilic bacterium  Salinibacter 
ruber  using ICR-FT/MS was investigated by Rossello-Mora et al. to determine a 
geographical discrimination between different isolates.  S. ruber  can be found in 
different parts of the world. Totally 28 isolates, 10 Mediterranean, 13 Atlantic and 
5 Peruvian, were cultivated under same conditions and both supernatant and cell 
pellet were analyzed on a Bruker APEX Qe ICR-FT/MS with 12 T superconducting 

  Fig. 5.2    Hierarchy of networks used for data analysis of ICR-FT/MS data. Structural networks 
calculate chemical formulas of experimental masses by using mass-mass difference information 
and applying chemical rules  [  32  ] . Functional networks are using the Kendrick mass defect approach 
in order to discover functional groups  [  33  ] . Metabolic correlation networks are reconstructed out 
of the correlation of mass spectra and mass-mass difference information which can be related to 
metabolic pathways of databases such as KEGG. They allow metabolite identi fi cation and cluster-
ing of potential biological signi fi cance. Sample correlation networks can be used to cluster the 
sampled patients into groups of biological importance, such as risk and non-risk. Combined with 
metabolic correlation networks they offer data reduction and can be used to detect metabolites that 
are discriminant in a speci fi c experimental setup. UPLC/MS n  and NMR are used for con fi rmation 
of unknown metabolites       
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magnet and Apollo II ESI source. Spectra were acquired in positive and negative 
ionization mode. Possible elemental formulas were calculated on the resulting peak 
lists. Resolution of the measurement was high enough to distinguish between 
 34  S- and  13  C 

2
 -isotopes, as shown in Fig.  5.4a . Out of this data a matrix for further 

statistical analysis was created. Multivariate statistical analysis revealed a good 
separation of three different isolation regions (Fig.  5.4b ). Furthermore, PLS-DA 
was able to separate the Mediterranean strains into their different origin locations. 

  Fig. 5.3    ( a ) Detailed spectra on mass 674.4663 from a negative ionization ICR-FT/MS spectra 
and detailed isotopic information. The mass was identi fi ed as a sulfonolipid ( b ) Scatter loading 
plot of PLS model for differentiating the three origins of isolates       
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Several sulfonolipid species were shown to be differentially present, according to 
the region of isolation  [  34  ] .  

 A closer look at two Mediterranean strains, M8 and M31, showed that 10% of 
the genes encoded in M8 are absent in M31. Moreover metabolomic analysis, 
phage susceptibility and competition experiments revealed that these differences 
are not neutral  [  35  ] . The most recent work focused on the response of these two 
strains to environmental changes. ICR-FT/MS, together with multivariate sta-
tistics, separated different growth states and assigned signi fi cantly different 
metabolites. For the stationary phase, for example, metabolites belonging to the 
aminosugar, glycerolipid and glycerophospholipid metabolism showed decrease 
or increase  [  36  ] .  

    3.2   Metabolic Biomarkers of Crohn’s Disease 

 Crohn’s disease (CD) is an in fl ammatory bowel disease, with unknown cause. One 
potential reason for the break-out can be a “dysbiosis” in the gut microbiome. 
Jansson et al. used ICR-FT/MS to pro fi le the metabolome of 17 twin pairs, healthy 
and with CD. High resolution spectra from fecal water extracts were obtained 

  Fig. 5.4    ( a ) OPLS model to separate healthy individuals from Crohn’s disease patients 
( b ) similarity plot of microbial composition based on T-RFLP from fecal samples ( c ) Similarity 
plot of ICR-FT/MS data from fecal water extracts       
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using a Bruker APEX Qe ICR/FT-MS with 12 T superconducting magnet and 
Apollo II ESI source. Spectra were acquired in positive and negative ionization 
mode, internally recalibrated and exported to mass list  fi les with a signal to noise 
threshold of 3 and aligned with in-house written software. Again multivariate statis-
tics, including unsupervised and supervised techniques as principal component 
analysis (PCA), hierarchical cluster analysis (HCA) and partial least square dis-
criminant analysis (PLS-DA) were used for data analysis. An OPLS model yielded 
good separation of healthy and ill individuals, illustrated in Fig.  5.5a . MassTRIX 
was used for annotation of possible metabolites to the masses. Several fecal metabo-
lites where identi fi ed to contribute to the discrimination of the disease phenotype. 
This study shows how non-targeted metabolomics using ICR-FT/MS can be used 
for biomarker discovery out of non-invasive biosamples. In addition, good correla-
tion could be found between the bacterial community pro fi les of fecal samples as 
analyzed based on polymerase chain reaction (PCR) ampli fi cation and terminal 
restriction fragment length polymorphism (T-RFLP)  fi ngerprinting and the metabo-
lite pro fi les (Fig.  5.5b, c )  [  37  ] . Currently ongoing work is focusing on the effect of 
the gut microbiome on type II diabetes, especially combining the deep metabotyp-
ing possibilities of ICR-FT/MS with the new deep sequencing technologies for 
DNA or RNA.    

  Fig. 5.5    ( a ) Principle of ICR-FT/MS as explained in Box  5.1 . E = excitation plates, D = detection 
plate, B = magnetic  fi eld ( b ) In fl uence of resolution on measurement accuracy. In  grey , a snapshot 
of a mass spectrum of a bacterial extract from  Pseudomonas aeruginosa  PA14 measured in posi-
tive ionization mode with a resolution of >100,000 is shown. In  black , the same spectrum down 
scaled to a resolution of 10,000       
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    4   Outlook and Conclusion 

 ICR-FT/MS is able to supply potential candidates for novel metabolites and 
biomarkers. Its ultrahigh resolution and mass accuracy helps to narrow down the list 
of possible chemical formulas. Nevertheless ICR-FT/MS alone can provide a struc-
ture only in particular cases. Here “traditional” metabolomics techniques are needed, 
LC-MS allows separation from a complex mixture, the differentiation of possible 
isomers, the puri fi cation and structure elucidation by MS n  approaches and NMR. As 
example, a combination of UPLC, nano-LC-MS, ICR-FT/MS and bioassays is used 
in the research unit together with several cooperation partners to identify new quo-
rum sensing bacterial signaling compounds ( N -Acylated homoserine lactones, qui-
nolones). Results from all analytical methods combined are combined and compared 
to attempt structural characterization without chemical synthesis of analytical stan-
dards and for example identi fi ed  N -(3-hydroxydecanoyl homoserine lactone) as 
major AHL compound in the rhizosphere bacterium  Acidovorax sp.  N35  [  38  ] . Finally, 
going more from isolated studies to systems biology should be the goal in microbial 
metabolomics, to produce a bigger and better understanding of the role of microor-
ganisms in our environment and their interactions. As more and more high- throughput 
techniques in both targeted and non-targeted metabolomics are evolving, it is scaling 
up to the other members of the “omics”-family. This allows going from single gene 
deletions to whole genome libraries, to assign possible function to orphan genes. 
Bringing all “omics”-family members together will draw a picture that is even bigger 
and more de fi ned than everyone separately can draw. More than this, living organ-
isms and systems are more than the sum of genes, transcripts, proteins and metabo-
lites and biology doesn’t separate between them. The KEGG database contains today 
about 1,200 complete bacterial genomes compared to the biodiversity; this is a rela-
tively small number. No one can expect today what else is out there to be discovered. 
At the moment we are about to scratch the tip of the metabolomics iceberg.      
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    1   The Special Role of Metabolomics in Systems Biology 

 Metabolomics has a special position in the hierarchy of systems biological research: 
although the technological developments that enable the comprehensive pro fi ling of 
metabolite levels are very recent, a large number of the classical success stories in 
systems biology have involved metabolic networks. The detailed, quantitative data 
collected in enzymological studies were the foundation for the development of met-
abolic control analysis (MCA), a mathematical analysis of metabolic systems that 
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clearly showed that many popular intuitive concepts, such as the idea of rate- limiting 
reactions, need to be replaced by re fi ned notions, such as distributed control  [  1,   2  ] . 
This had important implications for drug development, as only enzymes with a 
substantial control coef fi cient for important metabolic pathways will be promising 
drug targets – and these enzymes were not always the same that were predicted by 
the study of enzymes in isolation or qualitative analysis of pathway behavior  [  3  ] . By 
showing that a quantitative and integrative approach can yield biologically relevant 
and testable insights, especially for large complex systems, MCA had a major stim-
ulating effect on the emergence of systems biology. 

 In the post-genomic era, another metabolome-centered approach has been par-
ticularly popular and powerful: constraint-based modeling, as exempli fi ed by  fl ux 
balance analysis (FBA), can be used to predict the metabolic potential of entire 
organisms using homology-based genome annotations  [  4,   5  ] . Such predictions can 
be used to identify essential enzymatic reactions, including synthetic lethal muta-
tions, and predict the capacity to grow in various environmental conditions, as well 
as the metabolic rearrangements expected as a result of gene knockouts or enzyme 
inhibition. Despite our incomplete knowledge of metabolic enzymes and the neglect 
of any quantitative kinetic information in FBA, the general predictions arrived at by 
this method can be quite accurate. Recent improvements allow for the incorporation 
of additional thermodynamic and regulatory constraints  [  6–  12  ] , and some methods 
even aim at generating dynamic models from constraint-based descriptions using a 
variety of parameter prediction methods  [  13–  15  ] . 

 Metabolomics is not only a very successful application area of systems biology, 
but it has a privileged position also in a more fundamental sense: it is positioned at 
the extreme end of the “dogma” of molecular biology, with information  fl owing 
from the genome, via the transcriptome and the proteome, to the metabolome  [  16  ] . 
This places the metabolome closest to the actual phenotype. Recent experimental 
work indicates that this closeness of the metabolome to the phenotype is not just 
conceptual, but has a biological basis as well. Genetic analysis of the phenotypic, 
metabolomics, proteomic and transcriptomic variation in a large population of 
recombinant inbred individuals showed that genetic polymorphisms that cause phe-
notypic variation are most clearly re fl ected at the metabolite level, while transcrip-
tome variation, for instance, seems to be largely buffered by the cellular network 
and does not regularly result in phenotypic diversity  [  17  ] . The importance of check-
ing metabolic endpoints as indicators of phenotypic status has long been recognized 
for biomarker development: many of the most common disease biomarkers are 
indeed metabolites. In the  fi eld of parasitic diseases, only few studies have attempted 
so far to develop biomarkers of protozoan infections. However, the results of the 
 fi rst studies monitoring metabolic changes in blood and urine in animals infected 
with African trypanosome yielded promising results  [  18  ] . Several unique metabo-
lite markers of trypanosome infection could be identi fi ed in the course of an infec-
tion. Identi fi cation of blood or urine biomarkers to characterize the type or stage of 
a parasitic disease could mark a major advance beyond the current diagnostic stan-
dards of microscopic inspection of cerebral spinal  fl uid (trypanosomiasis) or bone 
marrow and spleen aspirates (leishmaniasis).  
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    2   Trypanosome Metabolism in Systems Biology 

 Protozoan parasites, and in particular  Trypanosoma brucei , have been important 
model organisms for metabolomic systems biology from an early stage  [  19  ] . These 
single-celled organisms live as extracellular parasites in the human blood stream, 
later invading other organs, including the brain, where they cause African sleeping 
sickness, a debilitating and widespread illness that is dif fi cult to treat effectively. 
Trypanosomes are transmitted by insect vectors (tsetse  fl ies of the genus  Glossina ) 
and undergo a complex life cycle with various morphological forms both in the 
transmitting insect and in the infected human. Due to the molecular similarities 
between protozoan parasites and their human hosts, existing drugs tend to have 
severe side effects, similar to cancer chemotherapeutics. The resulting poor compli-
ance aggravates the already serious problem of emerging drug resistance. 

 Quantitative mathematical models of metabolism were developed to assist with 
the identi fi cation of new treatment strategies  [  20  ] . They made use of the greatly 
reduced metabolic complexity of the parasites, which rely on host supply for a large 
fraction of their metabolites and exploit the constant supply of blood glucose in the 
human body for ATP generation almost exclusively based on glycolysis. 
Comprehensive kinetic data measured under controlled conditions were available 
for most of the enzymes of the glycolytic pathway, and these were crucial for the 
generation of the  fi rst computational model of trypanosome glycolysis. This was 
used for a detailed metabolic control analysis, revealing how inhibition of each of 
the enzymes in the system would affect cellular viability  [  21  ] . 

 The  fi rst computational model has gone through several rounds of revision, 
updating parameters based on new enzymatic assay conditions, and is now one of 
the key resources for metabolomics systems biology of protozoan parasites  [  22  ] . 
In addition, sequencing of the complete  T. brucei  genome has lead to the initiation 
of a well-curated metabolic pathway database (TrypanoCyc,  [  23  ] ).  

    3   Metabolomic Pro fi ling of Trypanosomes 

 The initial metabolic model building effort in trypanosomes was based on highly 
speci fi c quantitative measurements of enzyme kinetics and metabolite levels. 
Recently, this approach has been complemented by post-genomic untargeted studies 
of the cellular metabolome. Breitling et al. have shown that it is possible to recon-
struct hypothetical metabolic maps for trypanosomes  ab initio , using high-accuracy 
mass spectrometry analysis of cell extracts  [  24  ] . In their proof-of-principle study, 
they analyzed metabolite extracts from bloodstream form trypanosomes collected 
from rat blood using Fourier transform mass spectrometry. Exploiting the high mass 
accuracy of the instrument (better than 1 ppm), they were not only able to assign 
putative chemical formulas to many observed metabolites, but could also 
infer putative chemical relationship between those compounds. Each of the com-
monly occurring biochemical transformations (except isomerizations) corresponds 
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to a characteristic mass difference. If the masses, and consequently the mass differ-
ences, are observed at suf fi cient accuracy, this information can be used to infer the 
possible biochemical connectivity between the observed metabolites, assuming that 
many of them are connected in a global metabolic network  [  25  ] . 

 The major advantage of  ab initio  metabolomics studies is their global scope, 
limited only by the technological biases of the analytical machinery (although these 
can sometimes be substantial). This allows an extension of our metabolic under-
standing beyond the well-characterized pathways of central metabolism  [  26  ] . While 
protozoan parasites are not characterized by an extraordinary diversity of secondary 
metabolites, they do show some unusual features, such as the use of trypanothione 
(a bis-glutathione-polyamine conjugate) instead of glutathione as the main redox 
active metabolite. The metabolism of polyamines is the only proven point of action 
for a currently used trypanocidal drug, the ornithine analogue di fl uoromethylornithine 
(DFMO or e fl ornithine), acting as an irreversible inhibitor of the enzyme ornithine 
decarboxylase and thus blocking polyamine biosynthesis  [  27  ] . Other aspects of try-
panothione metabolism are also considered as promising targets for therapeutic 
intervention  [  28  ] . Other uncommon metabolic pathways may still await discovery 
and would be valuable targets for parasite-speci fi c drugs. 

 The  ab initio  network reconstruction based on high-accuracy metabolomics 
pro fi les can be performed using the MetaNetter plugin for the Cytoscape network 
visualization tool  [  29  ] . On the basis of a list of observed exact masses and list of 
expected metabolic transformations, a putative metabolic network is reconstructed. 
The plugin also enables a number of basic topological analyses and the combination 
of mass difference analysis and correlation-based network reconstruction, which 
can provide additional orthogonal evidence for or against certain connections in the 
network. 

 Even in those cases where the inferred connection between two metabolites does 
not correspond to an enzymatically catalyzed reaction, the network context provides 
important information about the chemical identity of observed metabolites  [  30  ] . For 
instance, if a metabolite cannot be assigned a single molecular formula because of 
limited mass accuracy, the presence of con fi dently assigned connected molecules 
can be used for disambiguation. This concept has been implemented in a Bayesian 
statistical framework and can be employed globally, to  fi nd the best overall assign-
ment of molecular identities that is maximally consistent with the predicted meta-
bolic relationships  [  30  ] .  

    4   Metabolomics of  Leishmania  and the Genetic Challenge 

 Metabolomic systems biology for some of the other protozoan parasite species 
beyond trypanosomes has been more dif fi cult, mostly due to a lack of baseline 
knowledge of the metabolic capacities of these organisms. An example is provided 
by parasites of the genus  Leishmania , which have successfully colonized a 
large variety of vertebrate and invertebrate hosts and cause a wide range of 
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manifestations, ranging from asymptomatic infections to mild skin lesions and 
lethal visceral forms of leishmaniasis  [  31  ] . Detailed kinetic models of metabolism 
are currently out of reach for these understudied pathogens, given that the necessary 
systematic measurement of enzyme parameters has not been performed. 

 Nonetheless, metabolomics can play an important role for understanding 
phenotypic diversity  [  31  ] . Indeed, microsatellite analyses revealed that the genetic 
variability in  L. donovani  strains on the Indian subcontinent is extremely limited at 
the sequence level, most probably due to a recent population bottleneck of the para-
sites. An ongoing full-genome sequencing project identi fi ed only about 3,500 SNPs 
segregating in the 17 strains sequenced so far, in a genome of about 32.4 Mb 
(GeMInI consortium, manuscript in preparation); this is less than 10 times the diver-
sity of the human host population, which is itself genetically quite homogeneous. 
Of these SNPs, only about 400 are predicted to cause non-synonymous changes at 
the protein level. Nonetheless, the infection caused by these genetically homoge-
neous parasites is clinically heterogeneous, as is the responsiveness to drugs. The 
genetic diversity of the host underlying differential susceptibility for infection obvi-
ously plays a role in this clinical heterogeneity. 

 However, the parasite genome itself, which seems so homogeneous on the 
sequence level, also holds some surprises when looking at the structural aspects of 
the genome  [  32  ] . Firstly, the karyotype of clinical strains was shown to be extremely 
plastic, which results in an unusually high degree of aneuploidy, with no two strains 
having identical karyotypes. Experimental induction of drug resistance clearly 
showed how  Leishmania  parasites use this mechanism to up-regulate a series of 
genes present in individual chromosomes  [  33  ] . Secondly, a number of genes are 
present in large tandem repeats and are prone to expansion/contraction. The 
 L. donovani  sequencing project showed how genes encoding for major effectors of 
splicing and translation (rDNA transcription units and mini-exon genes) were 
signi fi cantly rearranged among drug-resistant strains  [  34  ] . Last but not least, in 
some chromosomal regions, sets of single-copy genes are  fl anked by direct repeats 
making these loci prone to the generation of extra-chromosomal circular DNA (by 
homologous recombination). Such extrachromosomal elements are frequently 
encountered under experimental drug pressure  [  33  ] . Standard genetic approaches to 
characterize parasite physiology are hampered by this volatility, but it can be hypoth-
esized that the ultimate effect of the large variety of structural genetic variants will 
be a small number of discrete “metabotypes”. Metabolomic pro fi les could therefore 
become important biomarkers for discriminating clinical subtypes and monitoring 
drug resistance  [  31  ] . 

 In a pilot study, t’Kindt et al. have recently shown that untargeted metabolic 
pro fi les obtained by high-accuracy mass spectrometry can be useful to distinguish 
drug-sensitive and -resistant strains  [  35  ] . The samples used in that study were 
derived from parasite isolates from visceral leishmaniasis patients in Nepal that 
responded differently to standard drug treatment. The small sample number (2 drug-
sensitive and 3 drug-responsive strains) precluded any  fi rm conclusions about the 
metabolomic mechanism of drug resistance, but highlighted the potential of metab-
olomics to differentiate drug-sensitive and -resistant phenotypes. Approximately 
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one third of the 340 detected metabolites showed distinct abundance patterns in the 
two groups of samples; validation studies with a larger number of well- characterized 
clinical isolates are currently underway. These metabolomic studies of parasite 
diversity are complemented with whole-genome analysis of the same set of parasite 
strains. The latter will allow determining how the genomic structural variation 
described earlier is translated into changes at the metabolic and phenotypic level. 

 Another important aspect of metabolomics applied to  Leishmania  infection is the 
more intimate relationship between host and parasite  [  36  ] : similar to the malaria 
parasite,  Leishmania  is an intracellular pathogen. It hides from the host immune 
response by proliferating in the macrophages of the host. To do so ef fi ciently, the 
parasite must be able to exploit, and probably also manipulate, the metabolic pro-
ductivity of the host cell to its own advantage. Metabolomics promises to be an 
essential tool to study this interaction between intracellular parasites and their host 
cells at the metabolic level. A  fi rst generation of parasitological studies comparing 
infected vs. non-infected host cells have already been performed for the malaria 
parasite  [  36  ]  and have demonstrated the usefulness of metabolomics to highlight the 
host metabolomic pathways subject to modulation by the malaria parasite. Ideally, 
host and pathogen metabolomes from infected cells should be fractionated to study 
the metabolite cross-talk between both systems, but additional technical advances 
are required to achieve a reliable separation and sampling.  

    5   Establishing Metabolomics Platforms 
for Protozoan Parasites 

 The successful application of high-accuracy mass spectrometry-based metabolom-
ics has required a substantial amount of novel method development. The  fi rst step, 
and probably the most challenging, is the development of a suitable sampling 
protocol. For metabolomic studies of protozoan parasites, the production of repro-
ducible in vitro parasite cultures and reliable, quantitative metabolite extraction is 
critical and needs to be optimized speci fi cally for each type of parasite. The close 
causal relationship between the metabolome and the phenotype makes the metabo-
lome susceptible to any changes in in vitro growth conditions (e.g., medium, tem-
perature, and growth rate). When aiming to compare different parasite strains on the 
metabolomic level, it is absolutely essential to harvest the parasite cultures at the 
same stage of growth or development; ideally, time-course based comparisons 
should be done. As the parasites are typically grown in very complex media, con-
taining a large variety of metabolites at sometimes very high concentrations, wash-
ing of the cell pellets is critical. For  Leishmania  samples t’Kindt et al. could show 
that removal of phospholipids from the medium is most dif fi cult, and at least three 
successive washing steps are recommended  [  37  ] . They also explored the ef fi ciency 
of a large number of different cell disruption protocols to achieve reliable and com-
prehensive metabolite extraction. The tested methods included heating on a heating 
block, mixing in a Thermomixer, Ultra Turrax or Dispomix, mechanical shearing in 
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a vortexer, and milling in a Retsch mill. The latter approach showed the lowest total 
metabolite yield, and all cold approaches were superior to the hot extraction in their 
ability to reproducibly detect a number of target compounds (such as NAD and 
reduced trypanothione). The authors recommended the cold thermomixer approach 
for its reproducibility, good yield, and ease and rapidity of handling. They also 
showed that chloroform:methanol:water extraction (20:60:20 v/v/v) was superior to 
all other extraction solvents tested (aqueous methanol, aqueous ethanol, aqueous 
isopropanol, aqueous acetonitrile, and methanol:chloroform). In particular, none of 
the chloroform-free solvents resulted in visible cell disruption. With the optimized 
protocol and a single analytical condition, 118 metabolites from the LeishCyc data-
base were putatively identi fi ed in the sample, corresponding to a coverage of about 
20% of the predicted metabolome  [  37  ] . 

 Another area of essential method development focused on the computational 
processing of the resulting mass spectra. Metabolomics poses unique challenges in 
this respect. For example, due to the high sensitivity of the instrument, each com-
pound (real metabolite) in a sample generates on the order of 10 (and often many 
more) signals in the spectrum at various masses, in addition to the one peak of inter-
est at the correct mass  [  38  ] . These additional peaks are due to natural isotopes, 
fragmentation in the electrospray ion source, and a wide range of poorly understood 
chemical modi fi cations, such as the formation of multiple adducts. Consequently, 
only a very small fraction of the signals are of interest for the biologist. This is not 
a problem for targeted analyses, which immediately zoom in on expected metabo-
lites; but for untargeted studies, which are the unique strength of metabolomics, the 
resulting data complexity can be a serious nuisance. We have developed a compre-
hensive set of computational tools, mzMatch, to clean up the data using correlation 
patterns across samples and within the chromatogram, which is combined with a 
large collection of other useful processing and visualization tools (available for 
download at   http://mzmatch.sourcefourge.net/    ). This software is also integrated 
with the statistical software R, which can be employed for downstream processing 
and data interpretation. 

 A particularly critical component of the computational toolbox is a method for 
mass calibration of the spectra using ubiquitous contaminant ions  [  39  ] . Initial 
metabolomics mass spectra were burdened by very intense signals from 
extraneous molecules, which appeared throughout the chromatogram. Standard 
peak picking methods tended to report these background ions as the most relevant 
masses in the spectra, leading to almost uninterpretable results. However, as the 
contaminants are not overlapping real metabolite signals, due to the high mass reso-
lution of the instruments, they can be identi fi ed based on their characteristic chro-
matograms. On the other hand, as they are ubiquitous, i.e. shared between all or 
most spectra in a dataset, they can be used to align spectra after the unavoidable 
mass drift during long-term studies. Finally, a considerable fraction of the contami-
nants has been described in earlier mass spectrometric studies of chemical com-
pounds. Once they can be matched to their molecular formula, their exact mass is 
known and can be used for internal mass calibration. In one case study on trypano-
some metabolite pro fi les acquired on an Orbitrap mass spectrometer, this internal 

http://mzmatch.sourcefourge.net/
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calibration using background ions resulted in an improvement of mass accuracy by 
a factor of almost 10, to a median accuracy of 0.21 ppm  [  39  ] . Given the critical 
importance of mass accuracy for metabolite identi fi cation and  ab initio  network 
reconstruction (Box  6.1 ), this processing step greatly improved the usability of the 
data for downstream systems biology applications.   

   Box 6.1 The Advantages of High Mass Accuracy in Liquid-
Chromatography Mass Spectrometry for Metabolomics 

 Comprehensive pro fi ling of cellular metabolomes requires a combination of 
analytical technologies  [  40  ] . Nuclear magnetic resonance is the preferred 
method for quantitation of abundant metabolites, while mass spectrometry 
coupled to various separation techniques (gas chromatography, liquid chro-
matography or capillary electrophoresis) is most sensitive for broad coverage 
of the metabolome  [  31  ] . The studies described here use liquid chromatogra-
phy coupled to mass spectrometry instruments with a particular high mass 
accuracy  [  24,   35,   37,   39  ] . 

 Two general types of mass analyzer were used. The  fi rst one uses ion 
cyclotron resonance (ICR) to trap the analyte ions in a strong magnetic  fi eld 
and analyses their mass-dependent resonance frequency spectra by Fourier 
transformation to separate the signals of different metabolites in the sample 
(ICR-FTMS;  [  41  ] ). The second one traps the analytes in the electrical  fi eld 
between two specially shaped electrodes, around which the ions orbit 
(Orbitrap;  [  42  ] ). The mass-dependent signal is contained in the frequency of 
oscillation along the main axis of the electrode and is again extracted by 
Fourier transformation. This type of instrument has the advantage that no 
strong magnetic  fi elds and associated supercooled magnets are needed; this 
has brought high-accuracy mass spectrometry within the reach of many 
metabolomics laboratories. 

 With these instruments, the mass accuracy can be better than 1 ppm  [  39  ] , 
which means that the mass uncertainty corresponds approximately to the mass 
of an electron relative to the mass of three glucose molecules. This extreme 
accuracy has several major advantages for the interpretation of the complex 
mass spectra:

   1.    As metabolites are made up of a small number of elements, each with a 
characteristic non-integer mass, their accurate mass can serve as a unique 
molecular identi fi er. Only a limited number of potential chemical formulas 
can explain a particular accurate mass: once the accuracy is well below 
1 ppm, there is typically only a single potential match in the biochemical 
databases  [  43  ] . Additional information, e.g. from chromatographic reten-
tion times and tandem mass spectrometry fragmentation patterns, is required 
to distinguish isomers with the same formula but different structure  [  44  ] .  

(continued) 
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    6   Future Perspectives 

 To ful fi ll its potential as a major systems biology tool in parasite studies, metabo-
lome analysis has to be combined in novel ways with a wide range of other 
technologies and concepts. The SilicoTryp project (for trypanosomes) and the 
GeMInI initiative (for  Leishmania ) are currently exploring some of these integrative 
approaches  [  22,   31  ] . 

 The combination of metabolome pro fi ling, which provides a static snapshot of 
cellular physiology, with more dynamic approaches will be essential for the way 
forward. Dynamic information can be obtained by  fl uxomic studies, using stable iso-
tope labels to trace the fate of metabolic precursors in the metabolic network  [  46–  48  ] . 
Metabolic  fl uxes in this type of experiment can either be quanti fi ed by steady-state 
labeling patterns in proteinogenic amino acids or followed at high temporal resolu-
tion after a pulse of labeling. Various experimental perturbations can be considered to 
generate informative dynamic behavior: changing carbon sources to mimic the avail-
able substrates in human host and insect vector; applying drugs at sublethal doses; 
inducing parasite differentiation to follow the development process. 

 To interpret the dynamic data, and metabolome data in general, integration with 
dynamic computational models will be crucial. The dynamic model of trypanosome 
central metabolism is an excellent starting point for this kind of effort, but it needs 
to be expanded towards the larger metabolic network, using targeted enzymatic 
studies, genome-scale modeling and the incorporation of new hypothetical path-
ways predicted by  ab initio  network inference  [  22,   26  ] . Another dynamic extension 
will involve the kinetic description of transcription, translation, and protein and 

   2.    Accurate masses imply accurate mass differences. Mass differences can be 
used to infer the chemical relationships between the observed molecules. 
This can be employed to predict  ab initio  metabolic networks  [  25  ] , but also 
to identify chemical derivatives of the true metabolites, which cause 
arti fi cial signals in the spectra  [  38  ].   

   3.    Even in targeted experiments, where standard compounds with known 
chromatographic properties and tandem mass spectrometry are used to 
identify molecules, accurate mass can help to distinguish molecule classes 
of very similar behavior. For example, in a lipidomic analysis of  Leishmania 
donovani  lipids were separated into well-resolved classes on a silica gel 
column run in hydrophilic interaction chromatography mode, and their 
fatty acid composition was characterized by tandem mass spectrometry, 
but high accuracy mass spectrometry was necessary to discriminate acyl- 
and acyl-alkyl-lipids  [  45  ] .      

Box 6.1 (continued)
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mRNA turnover  [  22  ] . This has already been attempted for a single enzyme in the 
glycolysis model  [  49  ] , and deep-sequencing approaches are now able to generate 
the necessary data on a genome-wide scale. The diversity of con fi dence in 
the kinetic parameters for each of these model extensions will need to be 
addressed using newly developed statistical tools that allow dynamic modeling 
under uncertainty  [  50,   51  ] . 

 The metabolome of a parasite will not only adapt dynamically to different life 
stages or drug regimes, but it will also differ between genetically divergent patho-
gens  [  35  ] . As discussed above, the genomic architecture of parasites can be highly 
volatile even within a relatively homogeneous population. Large-scale whole-
genome sequencing of natural (clinical) isolates will provide a unique background 
against which to place the interpretation of metabolome pro fi les obtained for the 
same isolates.      
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    1   Mouse Genetics 

 Historically, the coexistence of humans and mice can be traced back many centuries, 
with both species following similar paths in their movement to different parts of 
the world. Often maligned for their pathogenic contamination of food stores, mice 
gained some appreciation during the Roman era when so-called “fancy mice” were 
bred for their unusual coat colours. It was not until more recent times that in 
the twentieth century a retired American teacher, Abby Lathrop, began breeding 
these “fancy mice” in a more systematic fashion. This work, combined with the 
development of the  fi rst inbred mouse strains by Ernest Castle and Clarence Little, 
laid the foundations for the mouse becoming one of the most important organisms 
to model human diseases  [  1  ] . 

 Among the many reasons why the mouse is an essential animal model for medi-
cal research is the availability of several different inbred mouse strains. All mice 
within the same inbred strain are as genetically homogenous as a pair of monozy-
gotic twins. Thus, when these mice are used to determine the effect of speci fi c muta-
tions or treatments, the inter-individual differences attributed to genetic 
polymorphisms can be over-looked. From a practical standpoint, employing mice 
also has the advantage that, as small animals, they require minimal space and energy 
and can be generated relatively fast for experimentation. Furthermore, as a mam-
mal, mice have anatomical and physiological similarities to humans including cer-
tain stages of their development and physiological pathways. 

 The mouse genome is – depending on the level to be considered – 90% to 99% 
identical with the human genome as well as the next to have been sequenced  [  2–  6  ] . 
As a result, the accessibility of the mouse genomic sequence made this small animal 

      H.   Schulz ,  M.D.  
     Institute of Epidemiology I ,  Helmholtz Zentrum München, German Research Center 
for Environmental Health (GmbH) ,   Ingolstädter Landstraße 1 ,  Neuherberg   85764 ,  Germany   
     e-mail:  schulz@helmholtz-muenchen.de   

      W.   Wurst ,  Ph.D.  
     Institute of Developmental Biology ,  Helmholtz Zentrum München, German Research Center 
for Environmental Health (GmbH) ,   Ingolstädter Landstraße 1 ,  Neuherberg   85764 ,  Germany  

   Chair of Developmental Genetics, Center of Life and Food Sciences Weihenstephan , 
 Technische Universität München ,   Freising ,  Germany   
     e-mail:  wurst@helmholtz-muenchen.de   

      E.   Wolf ,  VMD  
     Chair for Molecular Animal Breeding and Biotechnology, Gene Center , 
 Ludwig-Maximilians-Universität München ,   Feodor Lynen-Straße 25 ,  Munich   81377 ,  Germany   
     e-mail:  ewolf@lmb.uni-muenchen.de   

      M.   Klingenspor ,  Ph.D.  
     Molecular Nutritional Medicine, Else Kröner-Fresenius Center and ZIEL Research Center 
for Nutrition and Food Sciences ,  Technische Universität München ,   Gregor-Mendel-Straße 2 , 
 Freising ,  Weihenstephan   85764 ,  Germany   
     e-mail:  mk@tum.de   



897 Mouse Genetics and Metabolic Mouse Phenotyping

an even more important tool for the modeling of human diseases. Biotechnology 
enabled us to generate mutant mouse lines with different technologies and for vari-
ous purposes to answer a series of scienti fi c questions. Initially, spontaneous mutants 
were identi fi ed, bred and analyzed followed in the 1960s with the use of irradiation 
to generate mouse mutants that carried, in most cases, chromosomal aberrations  [  7  ] . 
Later on, chemical mutagenesis became a very powerful tool to produce mouse 
mutants. In its initial phase, these experiments were important to study the toxico-
logical impact of substances on human health, and to develop rules for maximum 
permissible concentrations for hazardous substances and radiation. The mouse 
mutants were used to calculate the mutation frequency by comparing the obtained 
mutant mice with a so-called “speci fi c locus test”  [  8  ] . But very soon it turned out 
that mutants from mutagenesis experiments harbored the potential as an excellent 
tool to study mammalian genetics and to research gene functions. In particular one 
substance, the synthetic alkylating compound  N -ethyl- N -nitroso-urea (ENU) came 
into special focus of geneticists, since the mutations caused by this mutagen are in 
most cases point mutations  [  9  ] . This re fl ects many situations in human diseases. 
Thus ENU was used as the prime substance to generate mouse mutants in large 
scale mutagenesis screens world-wide (e.g.  [  9–  12  ] ) (Box  7.1 ) 

   Box 7.1 ENU Mutagenesis 

 In ENU mutagenesis projects, male mice are injected with a dose of the 
mutagen  N -ethyl- N -nitroso-urea (ENU). After injection, the ENU starts to 
distribute in the whole body and in particular targets early stem cell sper-
matogonia. ENU alkylates genomic DNA during cell division, by transferring 
its ethyl group to nucleophilic sites of nucleic acids, ultimately leading mainly 
to point mutations  [  23,   24  ] . As ENU acts as a poison, the ENU-treated males 
get sterile for a certain period, but recover dose- and strain-dependent after an 
individual sterility period. The inbred strain C3HeB/FeJ turned out to both 
tolerate high doses of injected ENU and to regain fertility to about 50% of 
injected mice following an administered ENU dosage from 80 to 90 mg/kg 
body weight in 3 weekly intervals. After a recovery period of 3 weeks, injected 
mice are mated with untreated wild-type female mice. To assure that offspring 
is produced from the mutagenized sperm, only litters born after a timeframe 
accordant to two spermatogenesis cycles of 49 days each  [  25  ]  are weaned for 
phenotyping. The resulting offspring will be heterozygous for the mutations 
that occurred in the spermatogonia of the sperm cells that succeeded in fertil-
ization. It was calculated that every F1 mouse is carrying an average of 20 
independent mutations  [  26  ] . 

 There are variations in ENU-mutagenesis projects: in a dominant screen, 
the F1 offspring of an ENU-treated male is screened for the occurrence of 
interesting and medically relevant phenotypes. The detected individuals with 

(continued)
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phenotypic variations have to be proven as inherited mutations by a 
con fi rmation cross, where the F1 animal is mated with a wild-type animal. In 
the resulting N2 generation a fraction of the offspring should carry the char-
acteristic phenotype. According to Mendelian rules it should be 50%, but in 
many cases incomplete penetrance or other effects reduce the outcome to a 
lower number. In the case that some offspring with the characteristic pheno-
type are detected the mutant is con fi rmed. As a next step, the mutant line has 
to be maintained and phenotypically characterized. Until recently a major 
challenge in ENU mutagenesis projects was that the causative mutation is a 
priori unknown, and has to be identi fi ed via further breeding and analytical 
efforts. With today’s sequencing capabilities the detection of causative muta-
tions in ENU mutagenized mice has become very ef fi cient and no longer rep-
resents a major bottleneck. 

 A variation of ENU mutagenesis is to screen for recessive phenotypes. In 
this case, the F1 offspring is further bred to produce offspring that are homozy-
gous for the mutated allele. The G2 generation is then subjected to phenotypic 
analysis. A further variation of ENU-technology involves breeding ENU-
treated males to females with large chromosomal aberrations in order to detect 
recessive ENU mutations in a genomic region of interest  [  9  ] . Here, the effect 
of the ENU-mutations can be analyzed in a hemizygous status that has to be 
speci fi cally located within the de fi ned region of the chromosomal aberration. 
In addition, in so-called sensitized screens, ENU-technology is used to screen 
for modi fi er genes that interact with a speci fi c allele. The rationale is to cross 
ENU-treated males with females that carry already a mutation in a known 
gene. The F1 animals can be screened for new phenotypes that are caused by 
the interaction of the known locus and the new ENU-based mutation on a dif-
ferent locus. This approach may be used to identify mutations in genes that 
directly or indirectly interact with the known mutation and that modify 
(enhance or reduce) a mutant phenotype  [  27  ] . 

 Some research institutes that carried out ENU-screening projects for lon-
ger periods have frozen DNA and sperm samples from F1 animals of treated 
ENU males. There is the possibility to screen the DNA-archives of F1 ani-
mals for mutations in a speci fi c gene, and to generate live animals from their 
frozen sperm.  

Box 7.1 (continued)

 Whereas mutagenesis projects are phenotype-driven “reverse genetic” approaches, 
gene-driven “forward genetic” technologies directly focus on the desired gene for 
the creation of mutations within a speci fi ed locus. The most widely used technology 
is the classical knock-out. In a knock-out mouse, essential parts of the gene of inter-
est are eliminated or exchanged in the genome by homologous recombination in 



917 Mouse Genetics and Metabolic Mouse Phenotyping

embryonic stem cells, which are then integrated in early mouse embryos and have 
to undergo germ line transmission to produce mutant animals. The result is a mouse 
where the speci fi c gene product is manipulated in a way that it cannot ful fi ll its func-
tion any more. The most important purpose of knock-out mice is to study the func-
tion of a gene in combination with a resulting phenotype. 

 The application of knock-out technology is not successful in every species of 
interest. For example, the development of knock-out applications in rats – which is 
one of the most important “competitors” of the mouse as a small mammalian spe-
cies to model human diseases – is still in an early phase. Even if for behavioral 
studies and some aspects of metabolic phenotyping the rat might be preferred, the 
possibility to generate de fi ned mutants with a standard technology made the mouse 
a valuable tool. Furthermore, in the meantime the generation of knock-out mice is 
commercially available. 

 With the availability of conditional mutagenesis approaches the knock-out tech-
nology has become increasingly re fi ned: it is now possible to design tissue speci fi c 
knock outs by breeding mice that carry a de fi ned construct that can be activated by 
crossing with lines expressing a Cre-recombinase under any tailored promoter. 
Another special tool is the possibility of inducible expression of knock-out constructs 
at a certain time point, e.g. by application of substances like tamoxifen. These 
re fi nements enable researchers to study the effects of a gene only in a speci fi c organ 
or at a speci fi c age, which is of special interest for genes that have different func-
tions in different organs, or have indispensible functions during embryogenesis. 

 The availability of a large array of versatile technologies made the scientists to 
consider the establishment of central resources for mouse mutants and their data. 
There are three levels of challenges:

    • Production  of mutant mouse lines,  
   • Phenotyping  of the mutant mouse lines, and  fi nally  
   • Archiving and distribution  of mice and data.    

 The generation of mutant mouse lines has been targeted by systematic projects 
for the production of mutants for every single gene. Starting with some national 
projects like the German Gene Trap Consortium (GGTC), the European, U.S. and 
North American efforts were combined within EUCOMM  [  13  ] , KOMP, and 
Norkomm  [  14  ]  initiatives. The international knock out mouse consortium  [  15  ]  now 
uni fi es these projects to a worldwide network of research institutes that systemati-
cally produce mutant mouse lines that are accessible for the scienti fi c community. 

 Phenotyping of mutant mouse lines until recently was exclusively done by spe-
cialized laboratories that have a focus on a certain disease, organ or molecular path-
way. In the last decade, a growing need developed to perform systematic and 
comprehensive phenotyping of each mutant mouse line. It became evident that it is 
of importance to broadly characterize mutant mouse lines, as most genes have pleio-
tropic functions. For this purpose, mouse clinics were founded to address this chal-
lenge, where mutant lines are analyzed not only for the occurrence of a speci fi c 
phenotype, but to obtain a complete check up  [  16  ]  for a large number of medically 
relevant areas, like behavior, neurology, nociception, dysmorphology, bone and 
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cartilage, cardio-vascular function, metabolism, clinical chemistry, immunology, 
allergy, steroids, eye and vision, lung function, gene expression and pathology. 

 The  fi rst mouse clinic with open access for the scienti fi c community was the 
German Mouse Clinic at the Helmholtz Zentrum in Munich  [  17–  18  ]  (  www.mouse
clinc.de    ). In 2002 the European program EUMORPHIA  [  19  ]  (  www.eumorphia.org    ) 
was started to harmonize phenotyping protocols across the continent. The 
EUMORPHIA program was the basis for the foundation of the European mouse 
disease clinic (EUMODIC,   www.eumodic.org    ). Within the EUMODIC program 
four mouse clinics, the Institut Clinique de la Souris, the Wellcome Trust Sanger 
Institute, the MRC in Harwell and the German Mouse Clinic work together to reach 
the goal of analyzing 500 mutant mouse lines that originate from the EUCOMM 
resource. The data are freely accessible for the scienti fi c community and the public 
and can be accessed via the Europhenome database (  www.europhenome.org    ). In 
addition, this program combines the efforts of, on the one hand, these four mouse 
clinics in Europe and, on the other hand, specialized laboratories for each disease 
area that will focus their phenotyping efforts on interesting mutant lines for a 
detailed characterization in their  fi eld of research. 

 The EUMODIC program is a proof of principle approach that scientists are able 
to organize and coordinate a large scale phenotyping effort across countries and 
institutions. The next step will be to establish an international consortium, the 
International Mouse Phenotyping Consortium (IMPC,   www.mousephenotype.org    ) 
where scientists from Europe, the U.S. and Canada, Asia and Australia network 
together to reach the highly ambitious goal to phenotype a mutant mouse line for 
each single gene within a time period of 10 years  [  20  ] . 

 Mutant mouse lines are a valuable resource and that therefore need to be con-
served and distributed to interested researchers upon request. After generation and 
phenotyping of a mutant mouse line, further analysis might not be possible with 
existing tools, but the line should be kept available for future work. It is not possible 
to maintain all mutant lines as live animal stocks even if all resources worldwide 
would be used. Thus preservation of frozen embryos or frozen sperm is currently 
the method of choice. The Jackson Laboratory (  www.jax.org    ) provides one of the 
world-wide leading resources where many mutant lines as well as the most demanded 
mouse strains are archived and can be retrieved. The European Mouse Mutant 
Archive  [  21,   22  ]  (EMMA,   www.emma-net.org    ) is the leading European repository 
for archiving and distribution of mouse lines. It collaborates closely with The 
Jackson Laboratory and other international mouse repositories in the Federation of 
International Mouse Resources (FIMRe). 

 In order to speed up the distribution of the mouse lines to interested scientist, the 
know-how to re-derive a mouse line (e.g. via in-vitro fertilization, IVF) is made 
available to animal facilities and veterinarians by offering courses for cryo-
preservation techniques. The possibility to send sperm or embryos instead of live 
mice is also of advantage regarding the sanitary status of research animals. Most 
pathogens can be cleared via washing steps that are included in the cryo-preservation 
protocols. 

http://www.mouseclinc.de
http://www.mouseclinc.de
http://www.eumorphia.org
http://www.eumodic.org
http://www.europhenome.org
http://www.mousephenotype.org
http://www.jax.org
http://www.emma-net.org
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 In addition to the preservation and distribution of the mouse lines themselves, 
it becomes increasingly important to disseminate the available large-scale datasets 
from mouse mutants. Computer scientists are involved in the development of data-
bases that store data collected from each mouse line and information about the 
availability and accessibility of a certain mutant. The leading resource to collect this 
information is the mouse genome informatics database that is offered via the web-
site of The Jackson Laboratory (  www.informatics.jax.org    ). 

 The capacities for phenotyping, archiving and distribution of mouse models are 
currently not matching the demand by the biomedical research community. 
Moreover, sustainable funding of the underlying infrastructure is usually lacking. In 
Europe, these problems are being addressed by the Infrafrontier Project (  www.
infrafrontier.eu    ), an initiative of research institutions, research organizations and 
funding institutions that aims at establishing the pan-European Infrafrontier 
Research Infrastructure for open-access to scienti fi c platforms and services for phe-
notyping, archiving and distribution of mouse disease models. This will provide 
also the basis for large-scale international efforts such as the International Mouse 
Phenotyping Consortium (IMPC).   

    2   Phenotyping 

    2.1   Standardized Large-Scale Phenotyping Approaches 

 The phenotyping of mutant mouse lines is still the bottleneck in the pipeline from 
mutant mouse generation via phenotyping and archiving. However, this step is cru-
cial for the decision, which gene is associated with a certain disease, and which 
mutant mouse can serve as a model for the disease. Thus, efforts concentrated on 
increasing the power and ef fi ciency of standardized comprehensive phenotyping of 
mouse models need to be performed. Within this section, we describe the systemic 
phenotyping approaches by using the German Mouse Clinic (for more details 
and protocols see  [  17,   28–  29  ] ) as an example, with a major focus on metabolic 
techniques. 

 The phenotyping of mouse lines in the German Mouse Clinic (GMC) is divided 
into a primary screen, for an almost complete comprehensive characterization in the 
 fi elds allergy, behavior, clinical chemistry, diabetes, dysmorphology, bone and 
cartilage, energy metabolism, steroids, eye and vision, immunology, lung function, 
molecular phenotyping, neurology, nociception, and pathology, as well as second-
ary, more deep-drilling and hypothesis-driven screens. Secondary and tertiary 
screens are designed to obtain a detailed phenotypic analysis in selected areas where 
alterations within the primary screen were detected. In order to be able to cover all 
these important research areas, the GMC is a consortium in which experts from 
various  fi elds of mouse physiology and pathology in close cooperation with clini-
cians contribute to the phenotyping of a mutant mouse line. 

http://www.informatics.jax.org
http://www.infrafrontier.eu
http://www.infrafrontier.eu
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 In the primary screen, a cohort of 80 animals (20 male mutants, 20 female 
mutants, 20 male controls and 20 female controls) is analyzed in two pipelines 
(each of them with 10 animals per sex and genotype). In total, more than 500 param-
eters are determined from each individual mouse. The complete cohorts for pheno-
typing are shipped to the GMC-facility at the age of 7 weeks. The age range of 
animals within the same cohort should not exceed 1 week. After import into the 
German Mouse Clinic, the mice have 2 weeks to adapt to the new environment, and 
then the phenotyping starts by analyzing them for 1 week in each speci fi c test. 

 As shown in Fig.  7.1 , in the  fi rst pipeline phenotyping starts with an anatomical 
observation. At the age of 11 weeks, blood pressure is analyzed, followed by indi-
rect calorimetry and intraperitoneal glucose tolerance test in the two subsequent 
weeks. Then, an X-ray image is taken and analyzed for bone structural abnormali-
ties, and bone density is measured. One week later, a blood sample is collected 
from overnight fasted mice to determine blood lipid and glucose values. Laser 

  Fig. 7.1    The pipeline structure for the systematic and standardized primary phenotyping of mutant 
mouse lines in the German Mouse Clinic       
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interference biometry is used to measure the eye size. From a sub-cohort of the mice 
the heart weight is determined, while in the remaining animals lung function is 
analysed. From the latter animals organs are collected that can be used for expres-
sion pro fi ling experiments.  

 The second pipeline starts with behavior and neurological investigations by open 
 fi eld test, SHIRPA-test (this is a battery of behavioral and neurological observations 
to assess basic functions like general appearance, movement, re fl exes  [  30,   31  ] ), 
rotarod and grip strength analysis as well as acoustic startle and pre-pulse inhibition 
test. Nociception is assessed using the hot-plate test. Further information about eye 
function is obtained using funduscopy and slit-lamp analysis. Afterwards a blood 
sample is collected, which is prepared and distributed for analysis of clinical chem-
istry, haematology, immunology, allergy and steroid level parameters. Detected 
alterations in blood parameters can be con fi rmed in a second sample that is taken 
3 weeks later. In-between the blood sampling procedures, there is the option to 
investigate cardio-vascular parameters via echo- or electrocardiography. The mice 
of the second pipeline end up in the pathology screen for macroscopic and micro-
scopic analysis. 

 After  fi nalizing both primary screening pipelines the complete dataset of the 
mutant mouse line is analyzed and discussed with all scientists of the different mod-
ules: In many cases, the synopsis presented by the scientists from specialized areas 
uncovers new information that might have been considered as irrelevant, if the data 
had been raised without any connection between the different partners. By taking 
into account parameters from other screens that are biologically interconnected with 
each other, even borderline signi fi cant  fi ndings take on a new light. Thus, the pri-
mary phenotypic analysis helps to create new ideas and phenotyping hypotheses for 
more detailed characterization in secondary analysis. Secondary experiments are 
offered by every screen of the GMC. There, a con fi rmation of the  fi ndings from the 
primary screen can be performed with an independent cohort, and the phenotype will 
be characterized in more detail with more sophisticated technologies that are too 
laborious, time consuming, expensive and of a too high resolution of detail to be 
implemented in the primary phenotyping. As a few examples computer tomography 
for metabolic and bone characterization, electro-myopathy or -encephalopathy for 
neurological analysis, analysis of olfactory function and recognition memory for 
behaviour phenotyping can be mentioned. Some further analysis can be done in 
specialized labs like, for example, the neuropathic pain model for secondary noci-
ceptive analysis. 

 Imaging technologies are becoming more and more important in mouse pheno-
typing. Still, for primary phenotyping the range of applications is currently limited 
to X-ray or echo analysis due to the need for high investment and the labor- and 
time-intensive way to run the experiments. But in the near future, imaging tech-
niques will even replace traditional well-established methods. There are computer 
tomography based measures like micro-CT or pQCT (peripheral quantitative com-
puted tomography) available as well as magnetic resonance tomography (MRT) 
machines for small animals. The next step is to integrate PET (positron emission 
tomography) devices into mouse CT or MRT machines. The progress in the improve-
ment of existing, and further development of new imaging technologies is immense. 
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In the last decade technical progress made digital X-ray imaging faster and cheaper, 
while at the same time the obtainable resolution was improved to reach an even bet-
ter quality than X-ray  fi lms. These perspectives can really make us con fi dent for the 
future. 

 Another aim in implementing imaging procedures is the improvement of animal 
protection: Reduction, re fi nement and replacement are the three goals focused on 
minimizing the load on experimental animals. Imaging technologies will make 
major contributions with respect to re fi nement of experiments as does the genera-
tion of as many data from single animals for reduction.  

    2.2   Metabolic Phenotyping 

 Phenotyping of mouse mutants for metabolic parameters has become more and 
more important since due to the increasing incidence human diseases like diabetes, 
obesity or the metabolic syndrome are in focus of scienti fi c research. In this respect, 
there are many possibilities to collect data from mice. The easiest obtainable 
parameter is the body weight at different age levels of the mouse. More information 
will be gained, if the body composition is analyzed. This can be achieved either by 
DEXA (dual energy X-ray absorptiometry) technology, which is able to discrimi-
nate between fat mass, lean mass and bone tissue by the application of two X-ray 
beams of different energy levels. The technology is limited in applications, as only 
mice of a weight over 18 g can be assessed with a reliable accuracy. Nuclear mag-
netic resonance (NMR) based methods provide a more modern way for the determi-
nation of fat mass and lean mass. In addition, body  fl uids can be analyzed by this 
method, which is much quicker than DEXA. If body composition needs to be deter-
mined in the most accurate way, Soxhlet extraction will be the method of choice. 
Using computer tomography, the fractions of subcutaneous and visceral fat in the 
body can be quanti fi ed and compared. 

 From a small amount of blood, clinical chemical parameters can be determined 
like glucose, cholesterol and triglyceride levels. Further parameters of interest might 
be high and low density lipoprotein (HDL/LDL)-cholesterol, non-esteri fi ed fatty 
acids (NEFA) and glycerol that can be measured via automated analyzers. 

 The standard version might be to determine these parameters under non-fasted 
conditions, but fasting will result in additional information. Thus, both a fasted and 
a non-fasted version of the sample will yield separate information of high value. 

 Indirect calorimetry is an important part of the puzzle to put together a complete 
picture of the metabolic situation in a mouse line. This is a method of estimating 
energy expenditure by measuring respiratory gases – oxygen consumption and car-
bon dioxide release. The analysis of mice in special cage systems for indirect calo-
rimetry will, depending in the system used, yield information about:

   Oxygen consumption  • 
  Carbon dioxide production  • 
  Respiratory exchange ratio  • 
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  Heat production  • 
  Food and water consumption  • 
  Locomotor activity    • 

 In addition, body weight and body temperature should be assessed. Thus, a com-
plete picture about energy input and energy utilization can be obtained. 

 The glucose tolerance test (GTT) collects information about how the body han-
dles glucose. The same test is also applied in human diagnostics for a  fi rst indication 
of diabetes. In mice, the glucose can be administered into the body either by intra-
peritoneal (i.p.) injection (which is the easier and most frequently used mode of 
application) or by the oral route using a gavage. After a fasting period the basal 
glucose level is determined, and the glucose is administered. Dependent on the pro-
tocol used the blood glucose level is measured at several time points, e.g. 15, 30, 60 
and 120 min after administration. The normal reaction is a maximum blood glucose 
value between 15 and 30 min and then the body regulates the level back to the basal 
level at the last measurement at 120 min (see Fig.  7.2 ). A higher peak value as well 

  Fig. 7.2    Only 1 week of high-fat diet feeding induces glucose intolerance in mice. Data are shown 
from the intraperitoneal glucose tolerance tests (i.p.GTT) performed in age-matched males of a 
lean “general purpose” mouse strain fed with either a standard laboratory diet ( open circles ) or a 
27 gm% high-fat diet for 1 week ( closed circles ). ( a ) Depicts time-dependent changes in plasma 
glucose and insulin concentration excursions at baseline (time 0 min) and following an intraperi-
toneal glucose injection. ( b ) Illustrates relative plasma glucose and insulin excursions from the 
respective baseline of each group. Data represent means ± SEM of 7–9 mice/group       
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as a missing or delayed back regulation to the basal glucose level, both represented 
by the area under the curve, indicates problems in blood glucose regulation.  

 Impaired glucose tolerance and elevated fasting plasma glucose concentrations 
might result from an impaired capacity of pancreatic  b -cells to adequately secrete 
insulin in response to increases in blood glucose concentrations. Alternatively (or in 
addition) insulin resistance, de fi ned as the decreased sensitivity or responsiveness 
of tissues (e.g. liver, skeletal muscle, adipose tissue, brain, heart) to insulin action, 
could account for a reduced glucose clearance from plasma during GTTs. Both 
pathophysiological conditions have been linked to type 2 diabetes, the metabolic 
syndrome, atherosclerosis, and cardiovascular disease. In order to quantify and 
localize defects in insulin action or  b -cell function the glucose-clamp technique 
serves as a valuable diagnostic tool. In a euglycemic-hyperinsulinemic clamp, insu-
lin action on the whole body as well as at the organ level is assessed. In a hypergly-
cemic clamp, primarily pancreatic  b -cell sensitivity in response to elevations in 
plasma glucose ( b -cell function) is determined  [  32  ] . 

 Steroid screen provides information on the overall concentrations of signal mol-
ecules quanti fi ed by LC-MS  [  33  ]  at the Genome Analysis Center (  www.gac-munich.
de    ). This screen allows quanti fi cation of different steroids in mouse plasma and in 
tissue including stress- and glucose-balance-relevant glucocorticoids. There is the 
possibility of a secondary screen of targeted metabolomics assay quantifying hexo-
ses, amino acids, biogenic amines and lipids  [  34  ] .  

    2.3   Challenge Experiments 

 For the analysis of complex human diseases, the genetic predisposition has to be 
taken into consideration but also environmental factors like life style and aging. In 
this respect one might talk about a triangle of genotype, envirotype and phenotype, 
where all three factors interact with each other  [  35  ] . For modeling human diseases 
with the mouse, challenge experiments are used to mimic in fl uences of environmen-
tal factors. The challenge experiments might provoke phenotypic reactions in mutant 
animals that would remain hidden without the challenge. 

 The term “challenge experiment” covers a wide area that spans from short-term, 
acute reactions (like a glucose tolerance test) to long-term experiments that might 
last several months where the in fl uences re fl ect a mild but chronic situation. For the 
analysis of conditions that correspond to the situations of modern human life, 
challenges that mimic the environmental impact on human health are of special 
interest. In Fig.  7.3  an example for an environmental challenge platform is shown. 
The challenge platform comprises  fi ve areas that target the surfaces where the 
human body gets into interaction with its environment: diet, lung, stress, infection 
and activity. For each of the  fi ve parts of the platform, challenge tests ranging from 
acute to chronic impact were developed: Applying different diets is a powerful tool 
to in fl uence physiologic parameters in mice. To stimulate reactions of the lung, 

http://www.gac-munich.de
http://www.gac-munich.de
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instillation (acute reaction) or inhalation (chronic reaction) of diesel particles is 
used. For immune reactions, ovalbumin (OVA) challenge and infection with Listeria 
monocytogenes are standard experiments. Stress conditions can be simulated in 
mice by restraint, by the application of chemical substances that produce oxidative 
stress, or by light exposure. In an activity platform, mice can run either on a tread-
mill system or are allowed to run voluntarily on running wheels that are placed into 
the home cages. Another possibility for activity is to put mice on a vibration plat-
form to provoke muscle contraction. The challenge tests can be even combined with 
each other, and a specialized read-out from the primary phenotyping pipelines can 
be applied.  

    2.3.1   High Fat Diet Challenge 

 Design and application of “customized” environmental challenges, which take the 
type of genetic modi fi cation and its putative disease consequences into account, is 
an important tool for studying gene-environment-phenotype interactions. Hepatic 
insulin resistance appears to be a major – although not well understood – core defect 

  Fig. 7.3    Example of an environmental challenges platform that is applied in the German Mouse 
Clinic at the Helmholtz Zentrum München in Munich to analyze genotype-environmental inter-
actions. Five areas with different challenge experiments are available that are designed to mimic 
environmental in fl uences on human health       
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in type 2 diabetes pathogenesis and is often associated with non-alcoholic fatty liver 
disease. A short (1–3 weeks) high-fat diet challenge, with saf fl ower oil being the 
major fat source, is associated with increases in hepatic lipid deposits and decreases 
in hepatic insulin sensitivity. Thus, applying such a diet challenge is a powerful 
approach to dissect pathomechanism implicated in lipid-mediated hepatic insulin 
resistance. Nevertheless, one has to keep in mind that physiological effects caused 
by such a high-fat diet challenge differ markedly with regards to magnitude 
and temporal patterns depending on the genetic background of a mouse model 
(Fig.  7.4 ).  

 Another animal model, where a diet challenge is applied to trigger a particular 
pathophenotype is the New Zealand Obese (NZO) mouse. Exclusively males 
develop polygenic obesity-associated type 2 diabetes (diabesity) with a phenotype 
penetrance of at maximum 50%. Dietary carbohydrate restriction markedly aggra-
vates obesity but completely prevents hyperglycemia and  b -cell destruction in NZO 
males. Exposing carbohydrate-restricted male NZO mice after an age of 18 weeks 
to dietary carbohydrates very rapidly induces overt diabetes in all individuals. 
Therefore, such a diet challenge allows for precise investigation of time-dependent 
mechanisms underlying progressive  b -cell degeneration.  

  Fig. 7.4    Mice bred on four different genetic backgrounds show marked differences in their 
response to gain body fat when exposed to the same high fat diet challenge for 1, 2, or 3 weeks 
( colored bars ). The  open bars  represent litter- and age-matched controls treated similar to the 
respective high-fat diet challenged groups but fed with a low fat (standard laboratory mouse diet) 
diet. Data represent means ± SEM of 9–14 mice/group       
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    2.3.2   Drug Challenge 

 Mouse models are of great value for investigating mechanisms of drug action on 
both the whole body as well as at the organ level. In contrast to humans, where 
multiple tissue biopsies are limited, mouse plasma, urine, bile, tissue, etc. samples 
are not subject to these limitations. Thus, changes in phenotypic parameters in com-
bination with metabolic (e.g. via targeted or non-targeted metabolomics) and tran-
scriptomic signatures, histological features, etc. indirectly or directly related to drug 
action can be evaluated in detail. The generation of comprehensive datasets (“drug-
types”) therefore enables a more precise modeling of highly dynamic, multidimen-
sional processes and promises a substantial gain of knowledge by integrating a 
systems biology approach. Insights from drug challenge experiments in mouse 
models thus contribute to a better understanding of drug target organs, their side 
effects, underlying mechanisms separating drug responders from non-responders, 
and novel options in the therapy of human diseases.   

    2.4   Data Analysis 

 In order to handle the huge amount of data that is generated during the phenotyping 
process, the help of database systems is needed. Laboratory information manage-
ment systems (LIMS) based on relational databases can store demographic data for 
each single mouse (e.g. date of birth, genetic background, genotype, pedigree infor-
mation) as well as the complete phenotyping data and accompanying meta-data 
records (information on protocols how the data was taken) collected from each 
individual. 

 As databases may be designed for the speci fi c needs of a facility, most phenotyping 
centers have programmed their own customized LIMS systems. MausDB  [  36  ] , the 
mouse and phenotyping data management system of the German Mouse Clinic covers 
a broad spectrum of functionalities, and has been provided to the scienti fi c community 
under an open source license. It can be downloaded via:   http://www.helmholtzm
uenchen.de/ieg    , and has been in use by at least a dozen facilities worldwide. For pub-
lic access, data from individual mouse clinics and phenotyping institutions is uploaded 
to public databases such as the Mouse Phenome Database (  http://phenome.jax.org/    ), 
or the Europhenome database  [  37  ]  (  www.europhenome.org    ). 

 The analysis of the enormous data set that is collected within the phenotyping 
pipelines is a major challenge. The primary screen aims to generate working hypoth-
eses for follow-up studies. Based on the observed data, researchers have to come to a 
 fi nal decision whether and in which areas to invest further efforts. An essential task 
is the development of appropriate data analysis techniques to support scientists in the 
decision as to whether the mutant group differs from the control group. Inferential 
statistics may serve as a helpful tool. Parametric tests such as the Student’s  t -test or, 
in the case of variables that do not conform to the normal distribution, non-parametric 

http://www.helmholtz-muenchen.de/ieg
http://www.helmholtz-muenchen.de/ieg
http://phenome.jax.org/
http://www.europhenome.org
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tests, can be a  fi rst approach. For some variables, sex has to be treated as a  confounder 
and, therefore, data from male and female mice has to be considered separately or 
two-way analysis of variance (ANOVA) is applied. However, for some variables, 
more complex analysis techniques have to be applied, especially in cases where addi-
tional factors confound the data. 

 Collecting data from control mice of the same genetic background over a long 
time period provides the possibility of comparing a current mutant line with this 
pooled control sample. In this case, reference ranges can be calculated for each vari-
able and may be used for the decision as to whether the observation of a mutant line 
is altered compared to the pooled set of data from control animals. This way of 
analysis takes into account periodical in fl uences and reduces the number of false 
positive decisions. 

 Generally speaking, statistics serves as a tool for  fi nding evidence in support of 
the hypothesis of differing groups based on the observed data. However, it will not 
be able to substitute an experienced scientist in interpreting the  fi ndings. 

 The standardized generation of data sets from large-scale phenotyping projects 
offers the possibility to run meta-analysis approaches and data mining exercises on 
the tremendous amount of data. The analysis of the complete phenotyping database 
as a resource (e.g. the Europhenome database) bears the potential to uncover novel 
correlations between parameters and patterns associated with some disease areas 
that might not be detectable through the analysis of single mutant lines alone. While 
activities in this  fi eld are still in the starting phase, and the development of software 
tools for this purpose is in progress,  fi rst results are already available. For example, 
syn-expression groups of genes in different organs were discovered by the analysis 
of data sets from molecular phenotyping activities, where transcript pro fi les using a 
microarray containing 21,000 cDNA probes in a series of disease models were 
assessed. Using microarray experiments, expression patterns of in total 90 organs 
from 46 mutant mouse lines were analyzed, and identi fi ed up to 232 differentially 
expressed genes in 45 organs  [  38  ] . The approach helped in identifying the recurring 
regulation of particular genes and groups of co-expressed genes.  

    2.5   Application of Large Scale Mouse Phenotyping 

 There is a variety of publications available that used a comprehensive standardized 
mouse phenotyping approach to address a speci fi c scienti fi c question. The papers 
might be grouped into four main areas:

   Discovery of unknown gene functions and pleiotropic effects  • 
  Models for human diseases (e.g. models for diabetes or metabolic diseases)  • 
  Gene-environment interactions  • 
  Systemic phenotyping for target validation    • 

 In the following section a few examples will be mentioned for each of these 
applications. 
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    2.5.1   Discovery of Unknown Gene Functions and Pleiotropic Effects 

 Loss-of-function mutations in the ubiquitously expressed transcription factor FoxP2 
impairs the ability to speak in humans. A comprehensive phenotyping approach in 
mice carrying a human Foxp2 version revealed that while the physiological functions 
of the lung and all other organs are normal, this gene speci fi cally affects the morphol-
ogy and function of brain circuits involved in speech and language abilities  [  39  ] . 

 CIN85 is involved in receptor traf fi cking and cytoskeletal dynamics, and plays a 
vital role speci fi cally in D2 dopamine receptor endocytosis  [  40  ] . Interestingly, loss-
of-function mutations in this gene do not only lead to hyperactivity, but also to 
deviations in several metabolic parameters, and D2 receptor function has been 
shown to be involved in the regulation of appetite, energy intake and obesity. 

 Missing-in-metastasis (MIM/MTSS1) is a tissue-speci fi c regulator of actin and 
plasma membrane dynamics, whose altered expression levels have been linked to 
metastatic behavior of various cancers using in vitro assays. The in vivo analysis of 
MIM null mice displayed a severe urinary concentration defect. These functional 
alterations correlated with the compromised integrity of kidney epithelia intercel-
lular junctions. These data demonstrated a new function of MIM that modulates the 
actin cytoskeleton/plasma membrane interactions to promote the maintenance of 
cell-cell contacts in kidney epithelia  [  41  ] .  

    2.5.2   Models for Human Diseases 

 Pitx3 has recently been shown in a GWAS study to be associated with sporadic 
forms of Parkinson’s disease (PD), which account for approximately 90% of PD 
cases. Analyzing the mutant mouse line Eyeless which carries a mutation in the 
 Pitx3  gene  [  42  ]  revealed that the Eyeless mutants do not only recapitulate the motor 
impairments and the dopaminergic dysfunctions typical for PD, but that they also 
show alterations in nociception, which opened up new avenues for further investiga-
tions of the underlying mechanisms. 

 Two ENU induced mouse models of human renal diseases have been character-
ized: The  Umod  (A227T )  mouse line as model of uromodulin storage disease, as 
well as mouse line  Slc12a1 (I299F) as a model of type I Bartter syndrome  [  43,   44  ] . 
Uromodulin storage disease is a dominantly inherited condition associated with 
progressive renal failure and hyperuricemia in humans, ultimately resulting in end 
stage renal disease. The mouse models characterized share most of the clinical 
symptoms concerning kidney function with affected human patients. The systemic 
phenotypic characterization of the mutant mouse revealed additional effects on 
energy and bone metabolism. 

 The mouse model of human type I Bartter syndrome  Slc12a1  (I299F) is the  fi rst 
viable and fertile mouse model described, displaying most symptoms seen in human 
patients suffering from antenatal Bartter syndrome. In contrast to most published 
human cases, which are homozygous carriers of  SLC12A1  mutations suffering from 
polyuria already during gestation leading to prenatal polyhydramnios, the mouse 
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model did not show pathological changes during gestation or suckling period. 
Nevertheless, this mouse line shares the typical pathophysiology and might be a 
valuable model to test new therapeutic strategies for salt loss tubulopathies.  

    2.5.3   Gene-Environment Interactions 

 Mice de fi cient for the  Eps8  gene display reduced body weight, partial resistance to 
age- or diet-induced obesity, overall improved metabolic status and live longer than 
wild-type mice. It was possible to identify the mechanisms behind this phenotype as 
lower body weight was not caused by reduced food intake but it was correlated with 
decreased intestinal nutrient absorption due to reduced intestinal microvilli length. 
An analysis of the subcellular localization of Eps8 in intestinal cells suggested that 
Eps8 is localized in intestinal microvilli. Since microvilli serve to augment the absorp-
tive surface of the intestine, their reduction in  Eps8 -KO mice explained the absorption 
defect and the calorie restriction phenotype observed in these animals  [  45  ] .  

    2.5.4   Systemic Phenotyping Used for Target Validation and Modeling 
Therapeutic Intervention 

 Oxidative stress is a candidate mechanism in ischemic stroke and NADPH oxidase 
type 4 (NOX4) was identi fi ed as a major source of oxidative stress and as a putative 
therapeutic target.  Nox4  knockout mice were analyzed in a comprehensive pheno-
type screen under standard conditions without detecting abnormalities that would 
suggest potential side effects of a drug decreasing NOX4 function. However, after 
both transient and permanent cerebral ischemia these mice were largely protected 
from oxidative stress, blood–brain-barrier leakage, and neuronal apoptosis  [  46  ] .        
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    1   Application of Metabolomics in Livestock Species 

 Metabolomics in its close de fi nition is a rather young  fi eld in farm animal production. 
Initially, metabolomic analyses in farm animals had been initiated for many non-genetic 
applications e.g., control of drug abuse, control of embryo and oocyte quality in 
reproductive processes or for detection of product origin of food, whereas genetic 
variability essentially has been ignored in these  fi elds. Only recently, the  fi elds 
“Physiological Genomics/Genetics” and “Re fi ned phenotypic description of animal 
models” have emerged, that  fi t into the current concept entitled “Genetics meets 
Metabolomics: from Experiment to Systems Biology”. Up to now, the non-genetic 
application  fi elds however, still comprise the majority of attempts applying metabo-
lomic technologies in animal breeding comprising:

   Detection of drug abuse/toxicology:  • 
  Product control/product processing  • 
  Reproduction physiology – assessment of oocyte, sperm or embryo quality  • 
  Nutritional physiology:  • 
  Biomarker for early/easy disease detection  • 
  Physiological genomics/Genetics  • 
  Re fi ned phenotypic description of animal models     • 
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    2   Non-genetic Applications of Metabolomics 
in Animal Production 

    2.1   Detection of Drug Abuse/Toxicology 

 Major areas of drug abuse in animals frequently addressed by metabolomic analytical 
methods are sports competitions (e.g., horse racing, show jumping, dressage) and 
meat production in livestock. The purpose of these attempts is focused on two 
aspects. On the one hand, any procedure to blur the true physical ability of a potential 
selection candidate by drug abuse will impede progress in animal breeding, because 
truly superior individuals with the best genetic potential cannot be identi fi ed. On the 
other hand, residuals of many banned drugs pose a severe threat to the consumers’ 
health when contained in animal products. Thus, detection of drug abuse has always 
been an important issue in livestock production. Untargeted metabolomic approaches 
have been performed  [  1  ]  in order to identify metabolic pattern associated with abuse 
of recombinant growth hormone. These untargeted metabolic pro fi les serve as sur-
rogate biomarkers replacing speci fi c metabolic responses that may be animal depen-
dent regarding threshold or immunological response. The investigation of anabolic 
steroid administration in cattle by means of metabolomic  fi ngerprints had been one 
of the pioneering  fi elds of metabolomics in livestock  [  2  ] . Since then, many other 
studies on the detection of steroid intake followed extending even to  fi sh  [  3  ] . The 
problem that metabolites of natural steroids are sometimes unknown is insigni fi cant 
for the untargeted metabolomics approaches. Instead, detailed, accurate analyses of 
untargeted metabolomic  fi ngerprints even provided indication on the chemical 
nature of the respective metabolites  [  4  ] .  

    2.2   Product Control 

 The origin of livestock products (e.g., milk, meat) is becoming increasingly impor-
tant for animal production. Especially for products of protected origin (e.g. Roquefort 
cheese or Parma ham) and products from organic farming, the origin of the product 
is a major determinant how the product is valued by the consumer. Additionally, for 
reasons of consumer’s food safety and for livestock protection against epidemic dis-
eases, importation of livestock products from foreign countries is often strictly regu-
lated even under the premise of the global Free Trade Agreement (FTA). The 
implementation of these regulations and the control of the origin of livestock prod-
ucts is a severe challenge. For meat, metabolomic studies using NMR spectroscopy 
or GC/MS and LC/MS/MS techniques with multivariate analyses proved ef fi cient 
for discriminating the origin of the product  [  5,   6  ] . The advantage of an untargeted 
NMR metabolomics approach is that it does not require prior input of hypotheses on 
the nature of the molecules discriminating the origin of the products. Frequently, this 
information is not available in advance and instead, is part of the output of respective 
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untargeted metabolomic analyses extended by a targeted metabolite pro fi ling  [  5  ] . 
Other attempts have been made to discriminate between milk samples from organic 
and conventional farming by means of GC/MS and LC/MS/MS techniques with con-
secutive, secondary metabolite identi fi cation using established reference libraries 
 [  6  ] . In addition to their geographical or production chain origin, livestock products 
have to be tested for their identity to avoid illegal replacement of high-value raw 
material by non-approved by-products of similar origin and chemical composition. 
Surowiec et al.  [  7  ]  exemplarily demonstrated that mechanically recovered meat, 
which is no consumable meat according to EC regulations, can be discriminated 
from true meat of the respective species by GC-MS and multivariate data analysis. 

 The safety of products from animals fed genetically modi fi ed plants or being 
genetically modi fi ed themselves is heavily discussed in Europe. Assessment of 
potential hazards to consumers’ health requires an unbiased, comprehensive analy-
sis of all product components. Alterations in the composition of respective products 
can be monitored by non-targeted metabolomic approaches, which do not require a 
priori knowledge about the metabolites affected, e.g. respective studies investigated 
whether consumption of milk from transgenic goats exerted bene fi cial or deleteri-
ous effects on serum metabolites in piglets  [  8  ] . 

 Another aspect of animal product control is the monitoring of production pro-
cesses, e.g. the cheese maturation or the post-slaughter processes encompassing meat 
recovery from the carcass or postmortem ageing. Post-mortem aging is pivotal for 
beef  fl avor and tenderness and related enzymatic activities like proteolysis or glycog-
enolysis. These processes manifest themselves in substantial changes of the 
intramuscular metabolites, which can be used for monitoring meat maturation  [  9  ] . 
A prolonged post-mortem aging of beef is known to result superior taste and tender-
ness compared to a shortened, however less costly meat maturation. Differences in 
the metabolomic pro fi les of muscle samples depending on the time of post-mortem 
aging have been revealed by NMR spectroscopy with consecutive metabolite 
identi fi cation  [  9  ]  offering perspectives for an ef fi cient, impartial product control. 
While single molecules relevant for this purpose had been determined previously, the 
respective analyses had required a substantial number of different methods for 
quanti fi cation, which can now be replaced by comprehensive metabolomic methods. 

 Critical points for use of metabolomic data in product control will be the detec-
tion of metabolic  fi ngerprints or distinct metabolites that truly and exclusively result 
from the origin under consideration and do not re fl ect ambiguous effects of other 
environmental or genetic factors modulating the metabolome  [  10  ] .  

    2.3   Reproduction Physiology: Assessment of Oocyte, 
Sperm or Embryo Quality 

 The reduced complexity of ovarian follicular  fl uids and of the culture medium for 
oocytes and embryos has enabled already early successful studies on the metabolome 
of the ovarian follicle and the metabolic capacity of the developing oocyte/embryo by 
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metabolomics means. These studies can be discriminated  regarding two different 
objectives. In vivo approaches on follicular  fl uids focused on the identi fi cation of 
biomarkers for fertility, which is a key trait in any farm animal production scheme 
 [  11  ] . The other objective was to replace the mostly subjective morphological crite-
ria of assessing oocyte and embryo quality in arti fi cial reproduction techniques. In 
addition to serving as biomarkers for quality assessment, metabolomic data could 
also provide valuable information about the background of potentially impaired 
physiological processes in the in-vitro culture protocols  [  12  ] . Most metabolomic 
studies in reproduction physiology took a targeted approach  by investigating speci fi c 
metabolite subpopulations, e.g. fatty acids.  

    2.4   Nutritional Physiology 

 Discussion about greenhouse gas production has initiated a revival of research on 
microbial processes during ruminant digestion. The power of metabolomic 
approaches enabled the description of the multi-facetted rumen metabolism with an 
unprecedented comprehensiveness  [  13  ] . Consequently, differences between differ-
ent ruminant diets regarding production of greenhouse gas precursors could be 
described applying NMR and GC-MS metabolome technology. Exemplarily, meth-
ylamine, a long-recognized precursor of methane, had been described elevated in 
high grain diets. Together with next-generation sequencing metagenomics technol-
ogy, metabolomics in nutritional physiology will offer new prospects to elucidate 
structure and function of the rumen metabolism, which is discussed as a major con-
tributor to greenhouse gas production 

 Nutritional physiology in farm animals also applies metabolomic approaches for 
comprehensively investigating the effects of nutritional programming, i.e. for monitor-
ing epigenetic effects of the diet during early ontogenesis of the individual  [  14,   15  ] .  

    2.5   Biomarker for Early/Easy Disease Detection 

 There are a substantial number of infectious and non-infectious diseases in farm 
animals, for which a sensitive and speci fi c detection is dif fi cult to obtain. Especially 
in cases of an unknown causal agent, a non-targeted metabolomics approach is 
attractive to establish pro fi les discriminating the healthy from the pathological con-
dition. Respective approaches were taken for the detection of osteochondrosis in 
companion animals and horses  [  16  ]  in agreement with similar attempts in humans 
and for the diagnosis of Bovine Spongiform Encephalopathy (BSE, mad cow disease) 
in cattle.  [  17  ]  BSE was a prime example, because at the time of the outbreak of the 
disease, there was no conclusive evidence regarding the nature of the disease, but a 
very strong demand to reliably identify cattle affected by the disease prior to a clinical 
outbreak.   
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    3   General Concepts of Selection in Animal Breeding: 
Rationale for Requirement of Reliable Genotype/Phenotype 
Predictors 

 Historically, animal breeders thrive to obtain reliable, cheap predictors of the genetic 
make-up of an individual already early in ontogenetic life to maximize selection 
response regarding target traits like performance, disease resistance or product quality. 
Especially, this is inevitable for phenotypes that are not expressed or measurable in 
the selection candidates themselves (e.g. milk production in bulls, egg production in 
roosters, all carcass traits). For those traits, alternative routes of assessing the genetic 
potential of a selection candidate have to be taken: either by looking at the phenotype 
of close relatives or by making use of biomarkers that serve as predictors for pheno-
typic traits. These markers may be causal DNA mutations or DNA variants closely 
associated in linkage disequilibrium with the causal mutation. Alternatively, also 
enzyme activities or metabolite concentrations can serve as biomarkers. 

    3.1   Major Determinants of Selection Response 

 The selection gain, i.e. the superiority of the offspring generation compared to the 
parental generation, per time interval is the key determinator of success in animal 
breeding. According to Rendel and Robertson  [  18  ] , the selection gain in a popula-
tion per year is determined by the selection differential, the accuracy of selection, 
the genetic variability in the test population and the generation interval. 

 A high selection intensity (i.e. a large selection differential: the relative superiority 
of individuals selected for producing the next generation compared to the entire 
generation in which selection is performed) requires a large number of potential 
parents to be tested for their genetic merit for the target trait and the subsequent 
frequent reproduction of these selected parents. If either only a minor proportion of 
the population can be screened for the respective phenotype (e.g. due to sex- limited 
trait expression like milk or egg production or due to high costs like for feed 
ef fi ciency) or if the selected individuals show a poor reproduction, selection gain is 
severely shortened. A high accuracy of selection implies that the selection process 
is able to precisely identify the best individuals of a population regarding the genetic 
potential for the target trait. Most economically important traits in animal breeding 
are complex traits substantially in fl uenced by environmental effects. Thus, detection 
of the most superior individuals for a speci fi c trait is more or less impaired by non-
genetic factors. The generation interval (the age of the parents when producing the 
next generation) is a major issue for selection gain per time interval especially in 
species with late maturity and for those traits that require a long period of observation 
(e.g. longevity). 

 According to these key determinators of selection gain, the precise knowledge of 
the genetic potential of a large number of potential parental individuals unbiased by 
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non-genetic effects already early in life is optimal for successful breeding programs. 
Starting in the 1950s, many concepts were developed and implemented for breeding 
schemes that included testing of relatives and progeny and application of quantita-
tive genetic methods to merge information on phenotypes and genetic relationships 
within a population to calculate breeding values for members of the respective pop-
ulation. These breeding values that ideally should be unbiased by environmental 
effects can be calculated for each individual within a population. However, only for 
those members of the population with a large number of relatives/progeny, the reli-
ability of those breeding values enables an authentic picture of the genetic potential 
of an individual. In spite of these limitations, at the population level, the calculation 
of breeding values based on performance records of the target individual (if available) 
and its relatives proved to be very successful resulting in the impressive increase of 
production in farm animal species. However, the idea still  fl ourished to have addi-
tional, speci fi c, reliable genetic predictors of the genetic potential of an individual. 
In addition to an increase in the reliability of the prediction of the genetic merit of 
an individual, such genetic predictors/markers would also enable to substantially 
reduce the time and cost consuming performance tests of progeny or other relatives 
of the target individuals.  

    3.2   Concepts for Detection of Genetic Predictors 
in Livestock Populations 

 Already in the early days of domestication, farmers unknowingly used genetic 
markers for improvement of their breeding stock: they selected for coat color and 
body shape pattern (e.g., coat color spotting, ear forms, head combs) of their lines, 
because they assumed that individuals with a speci fi c shape would be more likely to 
share the superior properties of the respective line than individuals with an entirely 
different shape. 

 These coat color and body shape pattern were, however, of limited usefulness, 
especially for selection within breeds or lines with all individuals sharing the identi-
cal phenotype. Nevertheless, the idea to use some kind of marker as a predictor was 
very attractive, because it might be able to address all major determinants of selec-
tion gain: it should be cheap enabling screening of large numbers of the population 
and it should be expressed reliably and independent of sex, age or environment. In 
1983, Beckman and Soller  [  19  ]  published a pioneering paper about marker assisted 
selection implementing Restriction Fragment Length Polymorphisms (RFLPs), the 
 fi rst class of DNA markers available. Since then, the number of DNA markers avail-
able has increased substantially moving on from Variable Number of Tandem Repeat 
(VNTR), microsatellites, single nucleotide polymorphisms (SNPs) to copy number 
variation (CNVs). Currently, several million genetic polymorphisms are available 
for major farm animal species like horse, pig, cattle or chicken and even extending 
to aquaculture species like salmon  [  20,   21  ] . With these tools at hand resulting from 
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the major attempts of farm animal genome sequencing, entirely new concepts to 
identify useful genetic markers and to reveal their physiological background have 
become feasible. 

 In this respect, farm animal species offer substantial advantages compared to 
human or laboratory animal populations: long-term outcross selection lines with 
large phenotypic differences, multi-generation pedigrees, routine population-wide 
phenotyping, opportunities to standardize environmental conditions, targeted mating 
and a genome organization more similar to human than most laboratory animals. 

 Taking advantage of these conditions, a number of speci fi c resource populations 
had been set up in order to identify markers closely linked to quantitative trait loci 
(QTL). QTL are those loci in the genome, which exhibit an effect on the genetic 
variability of a quantitative (complex) trait  [  22  ] . QTL are of particular interest in 
farm animal production, because the vast majority of economically important traits 
are quantitative and complex by nature.   

    4   Application of Metabolomics in Animal Breeding 

    4.1   History 

 Already decades ago, animal breeders endeavored to use available biochemistry kits 
to obtain early predictors of animal performance that might serve as biomarkers. 
The idea behind this was that the activity of key metabolic enzymes and the result-
ing metabolites being the direct readout of biochemical pathways should be more 
closely correlated to the underlying genetic make-up of an individual than its com-
plex conventional phenotype, e.g., milk performance or growth  [  23,   24  ] . At that 
time, in animals only very few DNA markers were available. Thus, the main aim of 
these studies had been to obtain biomarkers for early recognition of the genetic 
potential of farm animals for the respective production performance. Many of these 
studies focused on enzymes, hormones and metabolites, which were known to be 
major contributors, regulators and/or end products of the energy metabolism. These 
attempts can be looked upon as the ancestors of a targeted metabolomic approach in 
animal breeding and currently, the respective detection methods still serve as a kind 
of gold standard for validating results from modern metabolomic analyses. However, 
the success of these  fi rst attempts was and is limited due to the restricted number of 
metabolites under investigation. Nowadays, there are an increasing number of 
appropriate polymorphic genetic loci within the target species that become available 
for genetic linkage or association analyses. As a result the focus of metabolomic 
studies in animal breeding shifted into two major directions: (1) Metabolomic 
pro fi les as re fi ned metabotypes for a better phenotypic description of the animals 
and (2) merging metabolomics and genomics to reveal major genetic determinants 
of key physiological processes providing tools for improved animal selection and 
husbandry/nutrition.  
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    4.2   Metabolomic Pro fi les as Re fi ned Metabotypes 
for a Better Phenotypic Description 

 In animal breeding, metabolomic pro fi les might either serve as criterion useful for 
current selection or represent a re fi ned indicator of historical selection. The meta-
bolic pro fi les can objectively reveal a desired or undesired phenotype within a group 
of individuals homogeneous by cursory inspection. This concept includes targeted 
approaches to reveal speci fi c genetically determined pattern of distinct, known 
metabolites as well as non-targeted approaches for identi fi cation of new biomarkers 
for speci fi c phenotypes, e.g. disease resistance or metabolic status. This approach is 
an extension of the initial attempts for a re fi ned phenotyping of farm animals beyond 
simple measurement of basic performance traits. Examples for metabolomics stud-
ies screening for better phenotypic predictors of complex physiological phenotypes 
were recently published for dairy cattle targeting at an improved description of the 
metabolic status post-partum  [  25,   26  ] . By nature, metabolic pro fi ling for this pur-
pose has a substantial focus on methodological aspects. Metabolomic approaches, 
which initially did not take genetically determined variation into consideration, also 
might be recruited for selection purposes extending the idea of re fi ned performance 
testing of farm animals. An example of this idea is the monitoring of meat matura-
tion (see above, Sect.  2.2 ), which initially was intended to reveal suboptimal meat 
aging conditions. However, keeping the environment constant the same technology 
might now as well be applied to select for a genetically determined, superior capacity 
of muscle processing and, consequently, an increased meat quality in the target 
population.  

    4.3   Merging Metabolomics and Genomics to Reveal Major 
Genetic Determinants of Key Physiological Processes 

 As indicated above, farm animal populations provide a very appropriate setting for 
the understanding the molecular background of genetically determined variation in 
complex polygenic traits. Long-term selection in outbred populations resulted in 
lines of individuals with remarkable phenotypic differences regarding many com-
plex traits of general biological and medical interest like growth, lipid deposition 
or nutrient conversion. However, the physiological background of these differ-
ences, the shifts in the dynamics of the biological systems is only poorly under-
stood. A better understanding of the metabolic pathways affected by differences in 
the genetic architecture of individuals could provide distinct biomarkers for delete-
rious alterations already in ontogenesis. Additionally, it improves the identi fi cation 
of causal genetic variants underlying the phenotypic variation representing the opti-
mal markers for selection. Finally, a profound knowledge of the physiological back-
ground of genetically determined phenotypic variability provides a starting point for 
the future development of speci fi c diets or treatments for an improved, sustainable 
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animal production and animal welfare (see Sect.  4.6 ). Although still at its infancy in 
livestock, examples for respective metabolomic approaches on selected farm animal 
populations exist, e.g. in chicken and cattle. 

    4.3.1   Chicken 

 Selection in chicken resulted in layer and broiler lines with remarkable performance 
of the metabolic systems: broiler chicken achieve a remarkable feed conversion rate 
(food: body mass gain) of less than 2:1  [  27  ] . However, the underlying changes of 
the metabolic system driven by the genetic variation are only partly understood, 
which is also true for the accompanied deleterious collateral effects. Correspondingly, 
targeted metabolomics pro fi ling as a means to provide a system-level understanding 
of the physiological background of the metabolic shifts was a straightforward 
approach in this situation  [  28  ] . Four broiler lines starting from two different base 
populations were selected for high or low growth rate, or for high and low body fat 
content, respectively. Selection resulted in extreme differences in growth rate and 
body composition, speci fi cally fat deposition. The four different selection lines 
were compared in a targeted metabolomics approach distinctly focusing on lipi-
domics. At a key time point, at 5 weeks of age, which had been determined by previ-
ous transcriptomic analyses, plasma samples were analyzed by GC-MS after 
separating lipid classes by preparative HPLC. In addition to reporting the molar 
concentrations of the target molecules, subsequent attempts were undertaken to cal-
culate the activity of key enzymes of lipid metabolism from the molar concentra-
tions of precursor and product metabolite. Metabolomic data showed that the 
differences in adiposity between the selection lines had developed by different met-
abolic shifts during selection in the two different base populations. Whereas in one 
base population, the enhanced hepatic conversion of feed to very low density lipo-
proteins (VLDL) triglycerides and its peripheral uptake and storage seems to be 
increasing adiposity in the selection line for high body fat content, in the other base 
population the decreased adiposity of one selection line seemed to be result of the 
inability to utilize and store VLDL triglycerides. Thus, in spite of a concordant 
divergent adiposity generated by both selection experiments, metabolomic analysis 
suggested that different biological pathways are affected and that different genetic 
mechanisms should be causal to the differences.  

    4.3.2   Cattle 

 Another example merging animal metabolomics and genomics at a more fundamental 
stage is the analysis of a major locus modulating pre- and postnatal growth in cattle. 
Linkage and association studies in two divergent cattle populations had mapped 
this locus to cattle chromosome 6, which had been con fi rmed by several other 
powerful studies in this species. Comparative data from human and mice indicated 
that this locus presumably might be a genetic modulator of growth of mammalian 
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growth in many species. However, the nature of this locus and potential physiological 
pathways affected remained unknown. Genetic analyses in an outcross F 

2
  cattle 

design (SEGFAM, Fig.  8.1 ) from two major European breeds identi fi ed a mutation 
in the non-structural maintenance of chromosome (SMC) condensing complex 
subunit G (NCAPG) gene to be the most likely background for the QTL  [  29  ] . 
A respective con fi rmation could be obtained in a historically and geographically 
distant Japanese cattle population  [  30–  33  ] . The mutation affecting amino acid posi-
tion 442 of the NCAPG protein encoded either the mutated allele methionine 
(442 M) or the ancient allele isoleucine (442I). The NCAPG protein belongs to the 
family of condensins. Some fundamental functions of the protein had been described 
in Drosophila and HeLa cell models: during mitosis, NCAPG is important for chro-
mosome condensation and interacts with DNA methyltransferase DNMT3B. 
However, the distinct role of the NCAPG gene in mammalian physiology and 
speci fi cally in regulation of body growth was largely unknown.  

 At this point, a metabolomic analysis of the F 
2
  resource population proved to be 

invaluable for the functional annotation of the NCAPG gene and for an initial under-
standing of the physiological pathways behind divergent growth. In addition to the 
very standardized environmental conditions regarding housing and feeding and 

  Fig. 8.1     Mating scheme SEGFAM  Design of the SEGFAM resource population. The SEGFAM 
population was created in a F2 design by mating each of  fi ve sires from a major European beef 
breed, the Charolais, to dams from the most important dairy cattle breed worldwide, the Holsteins. 
Thus, the population comprises distinctly divergent metabolic types prone to nutrient accretion 
(beef) or nutrient secretion (dairy). Subsequently, the generated female F1 offspring of one 
Charolais sire were mated to a single F1 son from another Charolais sire in order to generate a F2 
generation of half and fullsibs. All individuals in the F1 as well as in the F2 generation were born 
from multiple ovulation and embryo transfer to virgin Holstein heifers       
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sample collection, the F 
2
  resource population also provided large half- and full-sib 

families generated by multiple ovulation and embryonic transfer. Use of embryonic 
transfer excluded any systematic maternal genetic effects on prenatal development 
of the F 

2
  individuals due to divergent intrauterine milieu. A close network of pheno-

typic recording from birth to a detailed carcass dissection after slaughter enabled 
additional links between metabolomics data and phenotype. In addition to the gen-
eral advantages of a farm animal resource population compared to studies in human 
population, the SEGFAM population had a further valuable characteristic for the 
investigation of the physiological background of the NCAPG I442M mutation: the 
population segregated for a mutation (Q204X) in a second gene very well estab-
lished as a major modulator of mammalian growth: the GDF8 gene encoding myo-
statin. Thus, the effects of both mutations, NCAPG I442M and GDF8 Q204X, could 
be comparatively investigated on an identical genetic background. 

 Close monitoring the body weight gain during ontogenesis had indicated that 
congruently both loci primarily acted during the onset of puberty, at about 8 months 
of age, which is known to be a key period of mammalian growth. Consequently, this 
represented the most interesting interval for a metabolome analysis using plasma 
samples that were obtained after a 12 h fasting period. Other previous data had sug-
gested that the GDF8 Q204X and the NCAPG I442M mutation both affected body 
weight gain as well as lipid deposition. Thus, the focus of the subsequent targeted 
metabolomic analysis using electrospray ionization tandem mass spectrometry 
(ESI/MS/MS) with the Biocrates AbsoluteIDQ targeted metabolomics technology 
analogously to a method previously applied to human serum lipidomics  [  34  ]  was 
directed to indicators of lipid metabolism (acylcarnitines, glycerophosphatidylcho-
lines, and sphingomyelins). These groups comprised 63% of all identi fi ed metabo-
lites. Other metabolites measured were amino acids, sugars and biogenic amines. 

 Although phenotypically, the effects of the NCAGP I442M and the GDF8 Q204X 
mutation on dimension and key time points of divergent body weight gain were very 
similar at a sketchy view, close inspection revealed substantial differences in detailed 
phenotype. Whereas the mutated 442 M NCAPG allele exerted effects directed on 
a proportional increase in growth of all body compartments, the effects of the 
mutated 204X GDF8 allele resulted in a disproportional growth, primarily of the 
muscle tissue. These phenotypic differences were re fl ected by completely different 
pattern of effects on metabolic pro fi les for both mutations (Figs.  8.2  and  8.3 ). For 
the NCAPG I442M mutation, speci fi c associations with metabolites from the argi-
nine metabolism were detected, whereas not even a respective tendency was 
observed for the GDF8 Q204X mutation. This proves the locus speci fi city of the 
association between NCAPG I442M mutation and metabolites. Upon supplementa-
tion, arginine has well-known effects on alleviation of the intrauterine growth 
restriction in mammals. Arginine is also precursor of NO, which plays a multifac-
eted, extremely important role in energy metabolism and vascularization. 
Interestingly, arginine is also frequently proposed as a food additive to increase 
muscle growth and to decrease lipid deposition, e.g. in human athletes. These effects 
exactly match the effects of the NCAPG I442M mutation in cattle. Subsequent met-
abolic analyses at time points earlier and later than 8 months of age did not show 
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any correlation of the respective metabolites at 3, 8, and 14 months of age in the 
SEGFAM population. This is another indication on the relevance sampling time for 
the interpretation of metabolomic pro fi les.   

 The association of the NCAPG I442M mutation with pre- and post-natal growth 
and the comprehensive metabolomics characterization of the allelic effects provide 
an example of a suitable genetic predictor of performance serving as marker for 
improved of cattle breeding. 

 For the GDF8 Q204X mutation, the most prominent association was observed 
with the free plasma carnitine. Similarly to the situation for NCAPG/arginine, this 
association pattern was strictly locus-speci fi c to GDF8 Q204X and not due a gen-
eral growth-related phenomenon as is demonstrated by a complete lack of the 
respective association for the NCAPG I442M mutation. Carnitine is important for 
transportation of fatty acids into the mitochondrion for beta-oxidation and is contro-
versially discussed as a feed additive for growth promotion and decrease of lipid 
deposition. The fact that genetic variability substantially affects plasma carnitine lev-
els might explain the controversy in the literature regarding to outcome of carnitine 

  Fig. 8.2    Association arginine metabolism. Comparison of the associations of the bovine NCAPG 
I442M and the GDF8 Q204X mutations with plasma metabolites from the arginine metabolism. 
Plasma samples were obtained from male individuals of a F 

2
  resource population originating from 

Charolais and the Holstein breed. All metabolites in  grey boxes  were quanti fi ed. Signals to the  left  
of the quanti fi ed metabolites indicate the effect of the mutated GDF8 204X allele compared to the 
wild type 204Q allele, signals to the  right  of the quanti fi ed metabolites indicate the effect of the 
mutated NCAPG 442 M allele compared to the wild type 442I allele.  Solid arrows  indicate meta-
bolic pathways;  dashed arrows  indicate a regulatory function of the metabolite on the indicated 
enzyme.  ADMA  asymmetrically methylated dimethyl arginine,  SDMA  symmetrically methylated 
dimethyl arginine,  NO  nitrogen oxide,  NOS  NO synthase,  PRMT I  protein arginine methyltrans-
ferase type I,  PRMT II  protein arginine methyltransferase type II,  DDAH  dimethylarginine 
dimethylaminohydrolase       
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supplementation into diets. Respective studies investigating the potential dietary 
effects of feed additives usually ignore a genetic variability among probands (see 
also Sect.  4.6 ). 

 These results in cattle merging a targeted metabolomic pro fi ling and genetic 
polymorphisms provided the  fi rst link ever regarding the role of NCAPG in mam-
malian physiology and demonstrate the huge potential of the respective approach 
not only for farm animal breeding but also for using farm animal data for elucidat-
ing general phenomena in mammals.   

    4.4   Metabolomics for Improved Phenotypic Description 
of Animal Models for Human Diseases 

 Increasingly, companion and farm animals serve as important animal models for 
human diseases. In this context, a re fi ned analysis of the phenotype is required to 
accurately compare human disease and animal models and also to better character-
ize the pathobiology of the disease. Metabolomic analyses represent one tool to 

  Fig. 8.3    Association carnitine metabolism. Comparison of the associations of the bovine NCAPG 
I442M and the GDF8 Q204X mutations with plasma metabolites from the carnitine metabolism. 
Plasma samples were obtained from male individuals of a F 

2
  resource population originating from 

Charolais and the Holstein breed. All metabolites in  grey boxes  were quanti fi ed. Signals to the  left  of 
the quanti fi ed metabolites indicate the effect of the mutated GDF8 204X allele compared to the wild 
type 204Q allele, signals to the  right  of the quanti fi ed metabolites indicate the effect of the mutated 
NCAPG 442 M allele compared to the wild type 442I allele.  Solid arrows  indicate metabolic 
pathways,  dashed arrows  indicate a  fl ow of metabolites from or to speci fi c physiological functions. 
 C3  Propionylcarnitine,  C18  Stearoylcarnitine,  C18:1  Oleoylcarnitine,  C18:2  Linoleylcarnitine       
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achieve this re fi ned phenotyping. An example for the use of metabolomics for 
improved phenotypic description of animal genetic models for human diseases is 
the neuronal ceroid lipofuscinosis (Batten disease), a group of inherited neurode-
generative diseases in human and animals comprising several genetically distinct 
members. The speci fi c inherited defect in the South Hampshire sheep breed is 
caused by a mutation in the ovine CLN6 gene and shows a very similar progression 
of the pathological symptoms to the effects of a respective mutation in the human 
CLN6 gene. NMR and GC-MS analyses and subsequent multivariate pattern recog-
nition tools were applied on cerebrospinal  fl uid and brain tissue samples of CLN6 
mutant sheep at different ages to identify biochemical abnormalities during the time 
course of disease development in sheep  [  35  ] . These strategies are directed towards 
developing biomarkers for early diagnostics and towards a better understanding of 
the pathophysiological consequences of the speci fi c disease. The consideration of 
different time points highlights an important feature of metabolomics pro fi les: its 
temporal dependency. Besides sheep, especially pig and dog are frequently moni-
tored with metabolomics tools to gain insight into the pathobiology of human 
 diseases either by inducing pathological situations (pigs frequently used in cardio-
vascular studies  [  36  ] ) or by taking advantage of existing genetic models (e.g. meta-
bolic defects in dogs  [  37  ] ).  

    4.5   Genomic Predictions Based to Metabolic Pro fi les 
(Representing a Direct Read-Out of Biological Processes) 

 Currently, the calculation of genomic breeding values and its application in genomic 
selection schemes revolutionizes animal breeding. Genomic breeding values are 
calculated from genotype information of a large number of SNP (>> 10,000) and a 
previously established estimation algorithm  [  38  ] . These algorithms had been derived 
and tested in large training and validation populations  [  39  ] . In this context, metabo-
lomic data established in a well-characterized part of the population can represent a 
very re fi ned phenotype with a close link to tits physiological background. The com-
bination of speci fi c phenotyping with genome-wide marker data could then enable 
an improved picture of the genetic architecture of complex traits. Increasingly, there 
is a growing interest in the livestock-derived concept of genomic evaluation also for 
improved prediction of genetic predisposition for complex traits like obesity/diabe-
tes in humans  [  40  ] .  

    4.6   Metabotype-Guided Animal Nutrition and Husbandry 

 The revelation of substantial endogenous differences in important dietary metabo-
lites due to genetic variation (see Sect.  4.3.2 ) indicated that the previous concepts 
evaluating the effects of different food additives will bene fi t from accounting for 
individual animal effects. It had been recently demonstrated that individuals with 
speci fi c genotypes of a mutation of the leptin gene in cattle responded differently to 
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a Zilpaterol hydrochloride supplementation in the diet regarding intramuscular fat 
deposition and carcass weight  [  41  ] . Cattle with an endogenously elevated carnitine 
or arginine levels (Sect.  4.3.2 ) might respond substantially different to a carnitine or 
arginine supplementation in the diet compared to animals with low endogenous 
levels. Knowing about the key time points and the respective metabolic pattern 
associated with increased growth enables a dosed, but appropriate supply of dietary 
resources in order to optimally navigate farm animals through the respective pro-
duction scheme to the bene fi t of both, feed ef fi ciency and animal welfare. 

 Pioneering experimental studies directed on nutrigenomics have been performed 
in dogs. The canine species is outstanding regarding the intra-species variability of 
phenotypes across all mammalian species. However, apart from inherited metabolic 
defects the more subtle variation of the canine metabolome is just now being con-
sidered. Breed speci fi c predisposition to chronic ailments like kidney/bladder stones 
or sensitive bowl problems are well-known. But the questions what physiological 
mechanisms are behind these predispositions or if/how a genotype x diet interaction 
contributes to the ailments are still unanswered. One of the driving forces for respec-
tive metabolomic studies with a classical nutrigenomic objective was to obtain an 
increased knowledge of the dietary demands of the divergent dog breeds. The 
respective data are a prerequisite for the tailored design of appropriate diets for the 
different canine metabolic phenotypes. 

 Targeted and non-targeted metabolomics studies using NMR and FIE-MS plus 
GC-MS techniques on urine samples were undertaken in order to screen for sub-
clinical, potentially breed-speci fi c re fi ned metabolic phenotypes  [  33,   42  ] . The studies 
monitored groups of dogs from two distinct breeds on a standardized diet as well as 
dogs from a number of different breeds fed unspeci fi ed diets in divergent private 
housing conditions. Although there is a well-known large variation of many metab-
olites regarding their urine concentration, the study uncovered a number of breed-
speci fi c metabolic  fi ngerprint characteristics. An example was the strong discriminating 
signals from a large number of phenolic molecules potentially originating from 
metabolism of cinnamates and  fl avonoids and their gut  fl ora derivate in the diet. 
Dietary phenols as  fl avonoids are frequently discussed as food additives with poten-
tial bene fi cial effects in human diets. A differential utilization of these molecules or 
their gut  fl ora derivate might modulate the effect of respective feed additives. 
Interestingly, Beagle dogs, which are a very popular animal model in many clinical 
studies, displayed a metabolomics pattern distinctively different from other dog 
breeds in these analyses.       
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 Human metabolism is a continuum. It shifts constantly between anabolic conditions 
after food intake and catabolic states between meals or during extended starvation 
periods. At all times there is need of a constant supply of nutrients and metabolites 
for ATP production and of building blocks for the continuous remodeling of cellular 
structures. However, the sources of fuels used to maintain metabolic functions are 
variable (carbohydrates versus lipids versus proteins) depending on frequency of 
eating and fasting and the quantity and quality of food intake. The pro fi le of the 
metabolites in any biological sample obtained, taken at any time is a snapshot of an 
ever-changing “integrated metabolome”. Human plasma, urine or breath metabo-
lomes contain not only endogenously produced metabolites but also the nutrients 
and metabolites provided by the diet and, in addition, metabolites derived from the 
microbiota hosted in the human large intestine which are partly absorbed and appear 
later in blood and urine (Fig.  9.1 ).  

    1   Metabolomics for Food Intake Assessment 
and Microbiome Effects 

 All food items consumed contain literally millions of metabolites with a huge con-
centration range. Whereas foods of animal origin match crossly in chemical compo-
sition the human metabolome, foods of plant origin contain in addition to the 
nutrients a large spectrum of compounds of the plant secondary metabolism. These 
compounds are produced by plants mainly for attraction or defense of other creatures. 
Substances to give color to leaves,  fl owers and fruits or to provide  fl avor and taste are 
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made for attracting animals that help to disseminate pollen or seeds. Other chemicals 
are produced for defense against attacking invaders such as bacteria, fungi, insects 
or higher animals or even to cope with UV-stress. 

 The quantitatively most important components in the “plant food metabolome” 
are represented by complex carbohydrates, proteins and lipids as plant energy stores 
and in addition by vitamins, minerals and trace elements. Most of the constituents of 
the secondary plant metabolism are in the core structure polyphenols with multiple 
substituents and oxidation states and may comprise >10,000 different entities. The 
concentration and the pattern of these chemicals depend on plant genetics but also on 
environmental conditions and are considered to provide a typical  fi ngerprint of the 
plant species that is served as a food. Most of these phenolic structures, however, can-
not be degraded or cleaved in mammalian metabolism. They might be considered in 
the  fi rst place as xenobiotics, although a huge body of literature suggests that they 
may contribute to human health with a multitude of proposed functions. Like all other 
xenobiotics, almost all plant compounds undergo substantial modi fi cation in phase I 
and phase II metabolism. Already in the intestinal epithelial cell after absorption and 
during passage through liver, conjugation with glucuronic acid, sulfate or other 
groups takes place and numerous metabolites are formed that are secreted via bile 
back into the intestinal lumen and are found in circulation for excretion into urine. 

  Fig. 9.1    Origin of metabolites in human bio fl uids. Schema to illustrate that human plasma or 
urine samples contain a surrogate metabolome of food derived nutrients and metabolites as well as 
metabolites produced in endogenous metabolism or by the microbiota in human intestine       

 



1279 Metabolomics Applications in Human Nutrition

 For some of the plant secondary compounds only their metabolic conversion by 
bacteria in the large intestine enables absorption into the host’s circulation. 
Depending on the composition of the microbiota, the so-called “microbiome”, huge 
differences in the production of a given plant compound and in its appearance in 
blood can be found. Humans can easily be quali fi ed as responders or non-responders 
to certain compounds by the ability of their individual microbiota for production of 
these metabolites that are later found in plasma and urine  [  1  ] . For example, the 
microbiota converts daidzein found in soy into equol or matairesinol and secoisola-
riciresinol found in linseed and other plants into enterolactone. When metabolomics 
applications in human samples cover these metabolites, a huge variability in the 
study group may arise since the capability of the individual microbiomes for pro-
duction of these metabolites is different and the magnitude by which they are formed 
varies considerably amongst individuals. 

 Food metabolomics has approached the question of whether metabolite pro fi ling 
in human plasma and urine can help to solve a key problem in human nutrition 
research and this is the assessment and quanti fi cation of food intake. So far, studies 
mostly rely on a food frequency questionnaire with reporting of food items eaten in 
quantity over a given time. These data are then used to calculate from food composi-
tion databases the mean dietary intake of distinct nutrients. Although these 
approaches are valuable in identifying food patterns that characterize a human based 
on its dietary habits, the approaches fail to deliver concise information on food con-
sumption and the resulting nutrient intake. One reason for the lack of precision is 
the underreporting of food intake as a commonly observed problem when using 
food questionnaires in human cohorts. The second more important problem is the 
huge compositional variability of foods based on the large variety of natural and 
processed products with second line variability in composition depending on season 
and conditions during harvesting and processing. Metabolomics applied to plant 
and animal tissues for assessing composition and variability based on genetics or 
environmental cues is important to  fi ll this gap as for edible parts, food composition 
data bases can be extended on basis of comprehensive metabolomic analysis. 

 Recent studies have demonstrated that self-reported dietary habits or patterns can 
indeed be linked to plasma or urinary metabolome data as derived via targeted 
LC-MS/MS or NMR-based analysis  [  2,   3  ] . Moreover, a variety of studies have suc-
ceeded in identifying individual compounds in plasma or urine that are derived from 
ingestion of individual food items such as onions, cacao or green tea in well con-
trolled human supplementation studies  [  4–  6  ] . A recent study for example identi fi ed 
urinary proline betaine as a marker of citrus fruit consumption in studies with volun-
teers. The  fi ndings were also validated in a larger cohort with around 2,000 partici-
pants that could be classi fi ed as citrus-consumers or noncitrus-consumers based on 
this novel compound  [  7  ] . Although proline betaine is not metabolized in humans 
and therefore has per se a food marker quality, its concentrations in fruits as well as 
processed fruit-juices is highly variable and therefore quanti fi cation in human urine 
will not necessarily allow a quantitative assessment of intake of the corresponding 
fruits or drinks, yet, it could allow to de fi ne consumers dietary patterns and habits. 
Other markers of dietary intake relate to meat consumption with creatine, carnitine 
and trimethylamine-N-oxide excretion in urine associated with a high voluntary 
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meat and  fi sh intake  [  8  ] . Although it can be expected that food metabolomics will 
provide more such surrogate markers of food intake, it remains to be seen whether 
those will allow a quantitative intake assessment of individual food items.  

    2   Compartmentation of the Human Metabolome 

 Metabolomics, when applied in human studies faces the problem to sort out imme-
diate effects of the diet and the contribution of the microbiota on the metabolite 
pro fi les to resolve the “endogenous host metabolome”. Metabolism is determined 
by the dynamics of biosynthesis and degradation of proteins (turn-over) that function 
either as enzymes, receptors, transporters, channels, hormones and other signaling 
molecules or that provide structural elements for cells, organs or the skeleton. 
Between the proteins, there is a variable  fl ow of metabolic intermediates, which 
serve as building blocks in synthesis of homo- or heteromeric macromolecules or 
which act as precursors in the synthesis of other low molecular intermediates and as 
substrates for ATP production. However, the metabolome in composition and con-
centrations is variable in space and time. Every organ, different cells within an organ 
and different intracellular compartments display different metabolite compositions 
and those are different from the metabolite pro fi les in human blood or other body 
 fl uids. Cell membranes with integral transporter proteins and a membrane potential 
difference separate and compartmentalize the intracellular and extracellular 
(i.e. plasma) metabolomes and concentration differences for the same metabolite in 
the cell and in the extracellular space can be as large as 2–3 orders of magnitude. 

 There are only a few studies that have simultaneously determined metabolite 
concentrations in tissues and blood in experimental animals and even less studies 
are available for the human condition. One of the few examples from studies in 
humans is based on the analysis of intracellular free amino acid levels from muscle 
biopsies in comparison to plasma levels  [  9  ] . These studies revealed that for example 
glutamine and taurine concentrations in tissues reach almost 20 mM (based on 
intracellular water) while plasma concentrations were 570  m M in case of glutamine 
and around 70  m M in case of taurine. For taurine, therefore a concentration ratio of 
around 220-fold was obtained followed by a 70-fold higher intracellular than extra-
cellular concentration for glutamic acid and a 33-fold difference for glutamine while 
those of the essential amino acids differed only by factors of 2- to 6-fold. When 
urinary levels of the same amino acids are analyzed and standardized to creatinine 
excretion plasma to urine ratios can vary by up to 100-fold. These data collected 
from different studies are presented in Fig.  9.2 . Numerous transporters in the plasma 
cell membrane are responsible for those apparently huge concentration ratios – with 
some of the transporters acting as exchangers others working as uniporters. In addition, 
these transporters can undergo rapid changes in activity state in response to changes 
in plasma hormone levels and thereby alter the plasma metabolome. When plasma 
metabolites are taken to reconstruct metabolic perturbations or disease states by using 
pathway or network analysis tools, it should be considered that plasma — is not an 
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open system. Cell membranes separate the compartments and transport phenomena 
(absorption and secretion) could play a pivotal role. However, pathway maps and 
analysis tools frequently used contain no relevant information on cellular transport 
processes which – with a few exceptions – are also largely uncharacterized in 
speci fi city and regulation within physiological settings.  

 Obtaining human tissue samples for metabolite pro fi ling is a more dif fi cult task 
than just collecting blood or urine. For tissue metabolomes, (minimal) invasive tech-
niques such as biopsies or microdialysis may be applied. Because of these dif fi culties 
almost all reported metabolomics studies in humans so far have used plasma, serum 
or urine. Those samples however represent just  fl ow-through compartments in which 
thousands of nutrients and metabolites provided by the diet after digestion, absorp-
tion and clearance by the liver are mixed with those released by the various organs 
and cell types, including those derived from microbial metabolism. Figure  9.3  sum-
marizes schematically the multidirectional metabolite  fl uxes and metabolite origins 
that constitute the human blood and urine metabolomes with volatile compounds 
exhaled in breath and excretion of water soluble products by the kidneys.   

    3   The Human Fasting Metabolome 

 In addition to food- and microbiota-derived components of the metabolome, there 
are many factors effecting the metabolite patterns and concentrations with intrinsic 
factors such as genotype, gender, hormonal status or age, and extrinsic factors such 

  Fig. 9.2    Compartmentation of metabolite pools. Demonstration of quite impressive concentration 
differences ( m mol/L) between extracellular (plasma) and intracellular compartments as well as urine 
based on selected free amino acids. Data are compiled from different studies in human volunteers       
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as medication, smoking, stress, pathologies, physical activity, socio-economic status 
or cultural habits. It is generally considered that a representative metabolome in a 
human volunteer or patient is obtained when samples are collected in fasting state. 

 Food intake followed by digestion, absorption and appearance of dietary con-
stituents in plasma as well as the concomitant hormone responses can be followed 
in the plasma metabolome in a time-dependent fashion  [  10,   11  ] . Meal composition 
will de fi ne the metabolome patterns as well as their time-dependent changes. Yet, 
after a minimum of around 3 h and a maximum of 6–8 h of post-prandial state, food-
derived changes in the plasma metabolome are essentially cleared. For practical but 
not necessarily scienti fi c reasons sample collection in most human studies is done 
after overnight fasting. Occasionally on the day before sampling, or at least for the 
last meal served food intake is standardized to minimize carry-over effects of the 
diet/meal and to reduce “biological noise”. However, this human fasting metabo-
lome (8–14 h after the last meal) is also only one time-point in a continuum of meta-
bolic adaptations. 

 The overnight fasting state is a catabolic state and is characterized by a progres-
sive decline of liver glycogen stores with a growing demand of substrates for hepatic 
gluconeogenesis for meeting the needs of cells that cannot utilize other fuels except 
glucose. Simultaneously, lipolysis rate is increased with a rise in levels of free fatty 
acids in plasma that now serve as energy substrates mainly for muscle and liver 
metabolism. Glycerol released from adipose tissue as well as glucogenic amino 

  Fig. 9.3    The plasma metabolome as an interface. As a central compartment, plasma changes in 
composition continuously based on the multidirectional exchange of metabolites. Those are 
derived either from digested and absorbed food constituents, are produced in the organs and 
released from there into blood or are synthesized by the gut microbiota and absorbed from the large 
intestine. Blood delivers also the volatiles to lung followed by exhalation in breath and provides 
metabolites to kidney with selective, yet not complete re-absorption into circulation and excretion 
into urine. Secondary metabolite  fl uxes occur via secretion for example of saliva and bile into the 
intestine with complete or incomplete re-absorption into circulation       
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acids derived from increased protein breakdown serve as precursors for glucose 
production in liver. Beta-oxidation of fatty acids in muscle and liver can be moni-
tored by time-dependent increases in short and medium-chain acylcarnitines in 
plasma. A measure of protein breakdown (or diminished protein synthesis rate) is 
provided by substantial increases in plasma concentrations for example of the 
branched chain amino acids and their ketoacid-homologues as well as increased 
levels of some aromatic amino acids  [  12  ] . As fasting proceeds, these changes are 
ampli fi ed and the over fl ow of acetyl-CoA from fatty acid ß-oxidation is in liver 
translated into an enhanced production of ketone bodies such as acetoacetate and 
ß-hydroxybutyrate appearing in plasma and urine whereas acetone as a volatile 
decarboxylation product of acetoacetate is easily now detected in exhaled breath. 

 The hormone pro fi le of the fasting state is characterized by low plasma insulin 
but high glucagon and catecholamine levels that determine the catabolic changes in 
fuel selection and metabolite  fl uxes. After eating within 30 min, this situation is 
usually quickly reversed to an anabolic situation, associated with an increase in 
insulin levels. Figure  9.4  shows both situations for a few marker metabolites (free 
fatty acids and branched chain amino acids) and insulin levels. It demonstrates the 
major changes in uptake and release of nutrients/metabolites in a catabolic state 
(extended fasting) and an anabolic condition such as during food intake or after an 
oral glucose tolerance test with intake of 75 g of glucose.   

    4   Diet-Induced Metabolome Changes 

 Several studies, using different methods for plasma metabolite pro fi ling have recently 
demonstrated that solely the intake of glucose via an oral glucose tolerance test causes 
major changes in the plasma pro fi les of numerous metabolites  [  13–  15  ] . Glucose and 
insulin levels rise as expected but the most pronounced changes in the metabolome 
are observed for bile acids, followed by a large spectrum of amino acids and some 
keto-acids. Bile acid concentrations rise as fast as the blood glucose levels and 
increase several-fold but the origin of this phenomenon remains to be understood. 
Plasma levels of about 10 amino acids (mainly the branched chain and aromatic 
amino acids but also ornithine and citrulline) decline substantially and remain below 
fasting levels for up to 3 h after glucose intake. This is best explained by the activa-
tion of amino acid transporters in the plasma membrane of insulin-sensitive cells that 
now increase the uptake of these amino acids from plasma  [  16,   17  ] . ß-hydroxybu-
tyrate and other ketoacids decrease in concentration as a measure of the anabolic 
action of insulin with suppression of lipolysis and fatty acid oxidation. It needs to be 
stressed, that these changes observed after glucose intake are all underlying also any 
meal-induced changes in the plasma metabolome with nutrients and metabolites from 
the food appearing in plasma while simultaneously the increased insulin levels cause 
most of the described changes in the pool of endogenous metabolites. 

 Insulin action in muscle, adipose tissue and liver reverses all fasting induced 
changes to a catabolic situation with an increase in hepatic and muscle glycogen 
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synthesis, increased glucose oxidation and increased protein synthesis when 
suf fi cient amino acids are provided (Fig.  9.4 ). Insulin resistance (IR) is frequently 
associated with severe obesity in humans and is centrally involved in the metabolic 
syndrome as a condition in the development of type 2 diabetes (NIDDM: non- 
insulin dependent diabetes mellitus). Despite elevated plasma insulin and glucose 
levels, tissues such as muscle and liver show reduced or blunted insulin actions 
leading to an imbalance in the metabolic control with a more pronounced activity of 
anti-anabolic hormones such as glucagon and catecholamines. This suggests that IR 

  Fig. 9.4    Dynamics of plasma metabolite changes. Anabolic (after food intake) and catabolic states 
(between meals and fasting) cause major changes in plasma metabolite levels. The catabolic state 
is characterized by low insulin levels but increased levels of glucagon and catecholamines. The 
need for ATP production under these conditions is mainly met by enhanced rates of lipolysis, pro-
teolysis and gluconeogenesis. Fatty acids are released from the adipose tissue as main energy 
substrates for ß-oxidation and acetyl-CoA production whereas increasing branched chain amino 
acid levels (BCAA) are indicators for a high rate of protein breakdown with gluconeogenic amino 
acids serving as building blocks (next to glycerol from triglyceride break-down) for hepatic pro-
duction of glucose to supply obligatory glucose-utilizing cells such as brain or red blood cells. 
After food intake insulin secretion promotes energy storage by increasing uptake of fatty acids and 
lipid storage in adipose tissue whereas increased uptake of amino acids into muscle and liver 
increases protein synthesis. Utilization of glucose as prime energy substrate by muscle, adipose 
tissue and liver is also enhanced by insulin and hepatic synthesis of glycogen is increased while 
gluconeogenesis and glycogenolysis simultaneously are inhibited by insulin       

 



1339 Metabolomics Applications in Human Nutrition

may cause similar metabolite pro fi les as in healthy volunteers found during pro-
longed fasting. Recent metabolite pro fi ling approaches in humans with impaired 
glucose tolerance or with established NIDDM have indeed identi fi ed a subset of 
metabolites with changes that mimic crossly a prolonged fasting state in healthy 
volunteers. Amongst the most discriminating plasma metabolites that currently best 
de fi ne an IR state or NIDDM are some metabolites derived from carbohydrate 
metabolism but also branched chain amino acids, aromatic (Phe, Tyr) amino acids 
and ketoacids derived from fatty acid and amino acid degradation  [  18  ] . Free fatty 
acids and some glycerophospho- and sphingolipids also show characteristic changes 
in plasma associated with IR  [  19,   20  ] . Urinary analysis of samples obtained from 
humans with IR or NIDDM also identi fi ed predominantly amino acids and their 
derivatives as the most discriminating metabolites  [  20  ] .  

    5   Genetic Determinants of Nutrition-Related Metabolites 

 Although human genotyping and genome-wide association studies (GWAS) including 
those related to nutrition are conducted on large scale, comprehensive metabolite 
pro fi ling approaches are rarely embedded into GWAS. There are however numerous 
studies that have used targeted approaches with determination of only a few metabo-
lites in plasma or urine in combination with genotyping and those cover almost every 
part of human metabolism and every metabolite group. Genotype-nutrition associa-
tions with analysis of changes in individual plasma metabolites have been described 
for a large number of vitamins including ascorbic acid  [  21  ] , vitamin E  [  22  ] , vitamin 
A  [  23  ]  or plasma lipids with a strong focus on polymorphisms in genes encoding 
apolipoproteins  [  24,   25  ] . In relation to lipid metabolism, LDL- or HDL-receptors 
 [  26–  28  ]  various lipases as well as nuclear receptors, mainly the PPAR-peroxisome 
proliferator-activated receptor family  [  29,   30  ]  as well as fatty acid desaturases  [  31  ]  
have been studied for genetic effects on plasma pro fi les of metabolites. Amongst 
those gene/protein, classes fatty acid desaturases FADS1 and FADS2 revealed strong 
associations with altered plasma ratios in selected glycerophospholipids and both 
contribute to the conversion of n3 or n6 fatty acids into higher polyunsaturated fatty 
acids (PUFA) such as arachidonic acid and eicosapentanoic acids from which series 
2 or series 3 eicosanoids are derived. Various genetic studies have identi fi ed SNP´s 
in these enzymes and those seem to associate in general with altered PUFA-patterns 
in plasma cell membrane and plasma phospholipids and appear to associate with a 
variety of diseases or at least disease dispositions  [  32–  34  ] . 

 Amongst the vitamins, a well-studied example is related to a prominent SNP 
(C677T Ala-Val) in the methylentetrahydrofolate-reductase (MTHFR) that shows 
strong associations with the folate status but also with the incidence of various cancer 
entities. This SNP has also been proposed to associate with cardiovascular diseases 
(CVD), depression or neural tube birth defects. MTHFR encodes a key enzyme of 
the remethylation of homocysteine to methionine and requires 5 ¢ -methyl- 
tetrahydrofolate as a cofactor. The C677T variant of the enzyme shows increased 
thermolability, reduced activity and altered regulation by cofactors. In particular 
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when diets low in folate and methyl groups are supplied, this SNP shows particular 
strong associations with altered metabolite levels and disease endpoints. Folate levels 
in serum are reduced in the TT versus CC variants whereas homocysteine levels 
increase inversely  [  35  ] . In patients with cardiovascular diseases including stroke 
patients plasma homocysteine levels in TT genotypes are even more increased and 
this has led to the conclusion that plasma-homocysteine levels are an independent 
risk factor in the development and progression of cardiovascular diseases. Yet, inter-
ventions have not provided decisive evidence that folate supplementation can reduce 
the incidence of CVD. For public health promotion, the US, Canada and Chile intro-
duced some 15 years ago a mandatory folate supplementation of  fl our. Follow up 
studies assessing plasma homocysteine levels in the population failed to provide the 
expected effects on the incidence of CVD despite decreased plasma homocysteine 
levels in the population  [  36,   37  ] . This may serve as an example on the dif fi culties to 
proof that putative metabolite biomarkers indeed have a causal link to a disease state 
and possess predictive quality. However, with the extension of metabolomics 
approaches to GWAS and other cohort studies hopefully more robust markers can be 
identi fi ed that withstand veri fi cation in proper designed intervention studies. 

 Finally, folate metabolism including the gene variants of MTHFR provides cur-
rently the only example of an available mathematical model or systems biology 
approach related to human nutrition  [  38  ] . Based on kinetic constants of 11 enzymes 
in the cytosolic folate cycle, concentrations of 14 relevant metabolites and known 
regulatory mechanisms a systems model was established that reproduced quite well 
most experimental  fi ndings on folate metabolism. Since a key enzyme in the cycle 
is the dihydrofolate-reductase which is also a target in tumor therapy with “antifo-
lates” such as methotrexate, the model appears also useful for applications in phar-
macology. In addition, taking the genetic variants of MTHFR into the model, it 
predicted decreased enzymatic activity for the risk allele, with increased concentra-
tions of homocysteine as seen in vivo  [  39  ] . This seminal work should guide the 
development of other systems biology approaches to describe nutritional processes 
by predictive models.  

    6   Summary 

 Metabolomics in human nutrition research is in its infancy. Two tracks however are 
emerging. One relates to the assessment of food intake by identifying and quantifying 
marker metabolites that originate from the intake of individual food components 
which hopefully provides in future better tools in assessing human food consump-
tion. The second track is dedicated to better characterizing metabolic responses to 
dietary components and dietary habits with the goal to better de fi ne the health-disease 
relationship. This will also include more combinations of comprehensive genotyping 
and phenotyping of volunteers or patients. Metabolite pro fi ling for deriving markers 
or metabolite patterns that characterize a disease or pre-disease state need also 
de fi ned challenge studies in humans to overcome the intrinsic enormous plasticity 
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in human metabolic adaptation. Such challenges (see Box  9.1 ) with a time dependent 
analysis of changes in the metabolome require an international effort in standardiza-
tion to obtain data that can be compared across studies and cohorts.       
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         1   Serum Testosterone Concentrations as a Biomarker 
of Men’s General Health Status 

    1.1   Biology, Physiological Mechanisms, and Epidemiological 
Evidence 

 Testosterone is the major circulating androgen in men and essential for the development 
and maintenance of speci fi c reproductive tissues as the testis and other characteris-
tic male properties including increased muscle strength, bone mass, and hair growth 
 [  1  ] . In serum, most of the circulating testosterone (50–60%) is bound to sex hor-
mone-binding globulin (SHBG), while a smaller fraction (40–50%) is loosely bound 
to albumin, leaving only 1–3% to circulate as “free” testosterone not bound to pro-
tein  [  2  ] . In order to maintain testosterone concentrations at appropriate levels, a 
dynamic network of different interacting factors involved in the excretion and meta-
bolic clearance must be in balance. Brie fl y, the testosterone action in target cells 
depends on the amount of steroid which can penetrate into the cells, the extent of 
metabolic conversions within the cells, the interactions with the receptor proteins, 
and  fi nally upon the action of the androgen receptors at the genomic level  [  3  ] . Given 
the overall halftime of testosterone in men of about 11 min  [  4  ] , the  fl ux through 
this network must be great in order to balance the breakdown of testosterone by a 
continuous supply. 
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 Based on  fi ndings from various prospective epidemiological studies  [  5–  9  ] , it is 
now well established that total testosterone (TT) concentrations show an age-related 
decline with mean serum TT concentrations at age of 75 years being about two 
thirds of those at age of 25 years  [  10  ] . But over and above this proven age-related 
decline on a population-level, a considerably larger inter-individual variability of 
TT concentrations could be observed at any age. Dependent on the genetic back-
ground, accompanying comorbidity, medications, or adverse lifestyle behaviors, 
individual TT concentrations could be either well preserved against this physiologi-
cal decline or decrease even more progressively  [  6  ] . Although the physiological 
basis and the extent of the suggested co-factors underlying the large inter-individual 
variability in TT concentrations are not yet fully elucidated, disturbances in the 
biosynthesis and actions of testosterone caused by acute illness or chronic diseases 
are well known  [  2  ] . 

 Conversely,  fi ndings from prospective epidemiological cohort studies accumu-
lated evidence suggesting low serum TT concentrations as an independent predictor 
of various cardiovascular risk factors including obesity  [  11  ] , dyslipidemia  [  12  ] , 
hypertension  [  13  ] , metabolic syndrome  [  14–  16  ] , and type 2 diabetes  [  17,   18  ] . It has 
also been repeatedly observed in different prospective population studies, that low 
TT concentrations are independently associated with an increased mortality risk 
 [  19–  22  ] . But although a multitude of prospective studies showed that low TT con-
centration precede the onset of various cardiovascular risk factors, others found 
reduced TT concentrations in men with type 2 diabetes  [  23  ] , history of myocardial 
infarction  [  24  ] , metabolic syndrome  [  25  ] , obesity  [  26  ] , and comorbidity  [  26  ] . 
Additionally, a prospective population-based study among 1,490 men aged 
20–79 years clearly demonstrated that aging men with obesity, metabolic syndrome, 
type 2 diabetes, or dyslipidemia had a signi fi cantly higher risk to develop low TT 
concentrations over the  fi ve-year follow-up period compared to metabolically 
healthy aging men  [  6  ] . 

 Given the bidirectional nature of the revealed low TT – cardiovascular risk factor 
associations, reverse causality remains a possibility, since it is still unclear whether 
low TT concentrations contribute to or are a very early consequence of mechanisms 
 fi nally leading to a higher cardiovascular risk factor burden (Fig.  10.1 ). Therefore, 
low TT concentrations should be considered rather as risk marker instead of risk 
factor. A risk factor is de fi ned by an aetiologic or causal role in a certain disease 
process, whereas a risk marker is mainly useful to improve predictive ability  [  27  ] . 
In addition, neither case–control studies, nor prospective cohort studies, observed 
an independent association between low TT concentrations and incident fatal or 
nonfatal cardiovascular disease (CVD) events  [  28  ] , further limiting TT to a risk 
marker of subclinical, intermediate CVD. In conclusion, if recent epidemiological 
data tells us anything, it is to perceive serum TT concentrations as a biomarker of 
good health and overall well-being in men  [  29  ] . Circulating TT concentrations show 
a physiologic decline in conjunction with aging, cardiovascular comorbidity, obesity, 
medications, and depression. Therefore, testosterone assessment may play a role as 
personalized risk marker, rather than as an independent causal cardiovascular risk 
factor  [  30  ] .    
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    2   Current Practice for the Therapy of Androgen De fi ciency 
Syndrome in Male Adults 

 The primary clinical use of testosterone replacement therapy is the diagnosis of pri-
mary or secondary hypogonadism caused by “classical” disorders such as Klinefelter 
syndrome, Kallmann syndrome, or pituitary insuf fi ciency  [  31  ] . There is no uncer-
tainty that these patients should receive testosterone replacement therapy  [  32  ] . 
However, in the majority of patients, the diagnosis of low TT concentrations parallels 
with advanced age, accompanying acute or chronic diseases, medication use, and 
adverse health-related lifestyle behaviors  [  33,   34  ] . Thus, androgen de fi ciency is a 
frequent diagnosis in aging men with a prevalence of about 10–20%, depending on 
the applied cut-off and studied population  [  6,   35  ] . Androgen De fi ciency Syndrome 
(ADS) is a “syndromic” diagnosis including both, clinical symptoms together with 
persistent low TT concentrations (Fig.  10.2 ). Thus, the TT measurement is a crucial 
diagnostic criterion requiring proper evaluation and interpretation.  

    2.1   Laboratory Diagnosis of Androgen De fi ciency 

 Current guidelines unequivocally highlight the measurement of morning serum TT 
concentrations by a reliable assay as the initial diagnostic test to assess the male 
androgen status  [  29,   36,   37  ] . The presently used, extensively automated procedures 

  Fig. 10.1    Low total testosterone concentrations in the context of cardiovascular comorbidity, 
normal aging, health-related lifestyle, and symptoms suggestive of androgen de fi ciency in men       
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for the analyses of TT concentrations in routine diagnostics are commercial 
platform-based immunoassays. But even the modern immunologic methods for TT 
measurement show a signi fi cant lack of speci fi city  [  38  ] . Furthermore, the substantial 
inter-assay and inter-laboratory differences in measured absolute TT concentrations 
 [  38–  40  ]  proved immunologic procedures insuf fi cient for the diagnostically interest-
ing low concentration range in elderly and comorbid men  [  41  ] . Hence, the more 
precise mass spectroscopic procedures, demonstrating considerably lower intra- 
and inter-laboratory variability  [  42  ] , are increasingly considered to be the gold stan-
dard for clinical serum TT measurement  [  36–  38,   43,   44  ] . Beyond these analytical 
factors, several pre-analytical and physiological co-factors also need to be consid-
ered to properly interpret measured TT concentrations. Beside the above mentioned 
physiological decline and the substantial inter-individual variability of male TT 
concentrations, a distinct circadian rhythm, the individual’s fasting status, and 
comorbidities (especially severe illness) must also be taken into account. 
Furthermore, the blood collection technique, sample management and storage, as 
well as the used reagents have been shown to in fl uence measured TT concentrations 
 [  45,   46  ] . Taken together, measured TT concentrations must be evaluated cautiously 
not only for reasons of insuf fi cient diagnostic and analytic quality of immunologic 
measurements in the low concentration range, but also for reasons of pre-analytical 
and physiological in fl uence factors.  

  Fig. 10.2    The diagnostic concept of Androgen De fi ciency Syndrome (ADS) and its inherent 
uncertainties and limitations.  FSH  follicle stimulating hormone,  LH  luteinizing hormone       
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    2.2   Clinical Diagnosis 

 Even more uncertainty exists with regard to the clinical symptoms and signs 
presumably related to low serum TT concentrations. Conditions like erectile dys-
function, low libido, decreased muscle mass and strength, increased body fat, 
decreased bone density, decreased vitality, and depressed mood were suggested to be 
testosterone-associated (Fig.  10.1 )  [  37  ] . But none of these symptoms are speci fi c to 
low TT concentrations in men. Therefore, one or more of these symptoms must be 
corroborated with repeatedly measured low morning TT concentrations, to consti-
tute the diagnosis of ADS and consider the initiation of testosterone replacement 
therapy (Fig.  10.2 ). Similarly, an observational study among 3,369 men aged 
40–79 years reported that only sexual symptoms had a syndromic association with 
low TT concentrations  [  47  ] . In contrast, a meta-analysis of 17 randomized placebo-
controlled trials showed that testosterone replacement therapy only moderately 
improved the number of sexual symptoms and had no effect on erectile function  [  48  ] . 
This  fi nding is in line with the notion that TT concentrations required for maintaining 
normal sexual activity are low (which explains the reason why some contracted men 
still have an erection due to the androgens produced by the adrenal gland) and the 
factors commonly involved in sexual dysfunction in elderly men are not hormonal 
 [  49  ] . In published reports, the lack of discrimination between androgenic effects on 
the different domains of sexual function – erectile function, sexual desire, orgasmic 
function, intercourse satisfaction, and overall satisfaction – along with inadequate 
sample sizes and statistical power further contribute to misconceptions and misuse of 
testosterone replacement therapy  [  48  ] . In conclusion, the clinical conditions related 
to low TT concentrations are of non-speci fi c nature and only suggestive, but not 
diagnostic, of ADS (Box  10.1 ). This absence of de fi nite clinical correlates of ADS is 
re fl ected by the dif fi culties of the guideline expert panelists to issue  fi rm recommen-
dations and criteria for the initiation of testosterone replacement therapy  [  36  ] .   

   Box 10.1   Testosterone and the Androgen De fi ciency Syndrome 

 Testosterone is the major circulating androgen in men, showing an age-related 
physiological decline starting at 55 years. Furthermore, a considerable inter-
individual variability of total testosterone (TT) concentrations could be 
observed at any age, hampering the de fi nition of a “normal” TT concentration. 
Late-onset hypogonadism or Androgen De fi ciency Syndrome (ADS) is a “syn-
dromic” diagnosis including both, persistent low TT concentrations together 
with clinical symptoms including erectile dysfunction, low libido, decreased 
muscle mass and strength, increased body fat, decreased vitality, and depressed 
mood. But due to its unspeci fi c symptoms, treatment goals, and monitoring 
parameters, there are many uncertainties concerning the diagnosis, therapy, 
and monitoring of ADS to date.  
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    2.3   Current Practice of Testosterone Therapy 

 Once a treatment decision has been made, improvements in signs and symptoms of 
ADS together with serum TT concentrations in the mid to lower range of young 
adult males should be sought  [  36,   37  ] . To achieve these therapeutic goals, inject-
able, oral, and transdermal preparations of natural testosterone are currently avail-
able. Due to inadequate data, much discussion exists about the critical threshold to 
determine a de fi nite cut-off for the optimal serum TT concentration in terms of 
ef fi cacy and safety, as well as a risk-bene fi t equation for intervention. A review and 
meta-analysis of 51 treatment studies concluded that the safety of testosterone 
replacement therapy and its adverse cardiovascular effects are still unknown  [  50  ] . 
The  fi nding of an increase in hemoglobin and hematocrit and a small decrease in 
high-density lipoprotein cholesterol were of unknown clinical signi fi cance. Results 
from a randomized, double-blinded, placebo-controlled trial in 274 frail elderly 
men aged 65–90 years, showed that the effects of 6-month testosterone replacement 
therapy on muscle strength, lean mass, and quality of life were not maintained at 
six months post treatment  [  51  ] . This  fi nding suggests a limited long-term bene fi t of 
testosterone replacement therapy in elderly men. The potential risks of oversupple-
mentation during testosterone replacement therapy were exempli fi ed by a discon-
tinued trial among elderly men (mean age 74 years) with mobility limitations, after 
testosterone replacement was associated with an increased risk of adverse cardio-
vascular events in the intervention group  [  52  ] . The starting doses applied in this trial 
were higher than those recommended by the manufacturer, and the treatment goal 
in these patients (34.7 nmol/L) was considerably higher than that recommended by 
the Endocrine Society (13.9–17.4 nmol/L)  [  36  ] . 

 Taken together, the current evidence about the safety of testosterone replacement 
therapy in men with regard to patient-important outcomes is of low quality and 
limited by short follow-up periods  [  50  ] . Thus, testosterone replacement therapy 
should only be initiated in the presence of TT concentrations clearly below the 
lower normal limit for younger men, together with unequivocal signs and symp-
toms of TT de fi ciency, in the absence of other reversible causes of decreased TT 
concentrations, and after screening for contraindications  [  31  ] . Once initiated, tes-
tosterone replacement therapy should induce and maintain secondary sex character-
istics and improve sexual function, sense of well-being, muscle mass and strength, 
and bone mineral density  [  36  ] . Accordingly, the response to testosterone replace-
ment therapy should be assessed and monitored by patients’ well-being, sexual 
activity, occasional measurement of serum TT concentrations, hemoglobin and 
hematocrit, bone density, and prostate parameters  [  31,   37  ] . 

 But as stated above, the presumed syndromic nature of androgen de fi ciency is 
often dif fi cult to disentangle, since symptoms and signs suggestive of ADS are read-
ily accounted for by comorbidities and borderline TT de fi ciency is a frequent bio-
chemical accompaniment of systemic disease – the reason why “pure” ADS is quite 
uncommon. Furthermore, we do not yet have an operational de fi nition for “normal” 
TT concentrations at different ages, nor have we identi fi ed speci fi c signs and symptoms 
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to accurately discriminate between those who need treatment and those who do not 
 [  32  ] . Thus, the conjunction between low TT concentrations and several non-speci fi c 
symptoms, constituting the diagnosis of ADS or late-onset hypogonadism, remains a 
controversial concept. What is needed most to clarify the outlined uncertainties 
(Fig.  10.2 ) and to formally investigate the ef fi cacy of testosterone replacement ther-
apy are improved laboratory methods including standardized and harmonized sex 
hormone measurements independent of method, time, and place  [  53  ] , as well as 
large-scale, long-term, randomized controlled trials of symptomatic middle-aged and 
elderly men with well-documented low TT concentrations  [  29  ] . 

 In conclusion, the key problems surrounding the diagnosis, therapy, and moni-
toring of ADS include the unanswered question of (1) Which symptoms are speci fi c 
to low serum TT concentrations? (2) Which treatment goal meets an individual’s 
metabolic needs or what is a “normal” testosterone concentration at different ages? 
and (3) Which parameters should be monitored during testosterone treatment? 
Against the background of these limitations and uncertainties, the application of 
metabolomics offers a variety of scienti fi c opportunities to improve the diagnosis, 
therapy, and monitoring of ADS in male adults.   

    3   Metabolomics for the Improved Diagnosis, 
Therapy, and Monitoring of ADS 

    3.1   The Principle Techniques of Metabolomics 

 Small molecules are the end result of all regulatory and metabolic processes at the 
cellular level within tissues in all organisms. Metabolomics is the global analysis of 
all, or nearly all of these cellular metabolites  [  54  ] . There are two major, complemen-
tary approaches in metabolomics:  Targeted analysis  is the most developed analytical 
approach in metabolomics and is used to measure the concentration of a limited 
number of precisely known metabolites  [  54  ] . With the advantage of a truly quantita-
tive high-throughput approach, targeted analyses are limited by the number of 
detectable metabolites and the necessary  a priori  knowledge of the targeted metabo-
lites. Therefore, this method is only limited applicable to discover novel metabolic 
biomarkers or to survey global metabolome-wide changes. The complementary 
approach of  metabolic pro fi ling  allows measurement of a large set of metabolites in 
a global (non-targeted), semi-quantitative manner. Since this approach uniquely 
identi fi es and simultaneously quanti fi es a wide range of metabolites and their pro fi le, 
it is most commonly used for biomarker discovery and the monitoring of global 
metabolic changes in response to toxic insults, disease processes, or drug therapy. 

 Although a wide range of techniques can be applied for metabolomics, the two 
principal methods used to analyze metabolites in body  fl uids such as urine and 
plasma are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry 
(MS)  [  55  ] . A routine single NMR measurement, generated under full automation in 
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an acquisition time of 5–10 min, provides semi-quantitative and structural information 
on a plethora of metabolites in an untargeted multi-marker approach. NMR has also 
the advantages of being non-destructive to biosamples and requiring minimal sample 
preparation and disturbance to spare time-consuming and labor-intensive extraction 
or derivatization steps  [  55  ] . MS is currently the most developed technique to quan-
titatively analyze speci fi c metabolites or a de fi ned set of metabolites with a high 
sensitivity and throughput. In addition, the rapid technical progress increasingly 
enables an analytical  fl exibility that makes MS-based metabolomics amenable to 
targeted as well as untargeted metabolomics approaches. But in order to apply 
metabolomics as a novel tool for clinical routine diagnostics (targeted metabolomics) 
and for biomarker discovery (metabolic pro fi ling) a combination of both techniques 
is currently needed.  

    3.2   The Application of Metabolomics to Biomarker Discovery 

 Through the characterization of metabolic phenotypes and the individual readout of 
metabolic states, metabolomics promises to discover biomarkers and elucidate 
biological pathways of human disease  [  56  ] . Thus, metabolomics has the potential to 
contribute signi fi cantly to the advent of personalized medicine  [  57–  59  ] . Indeed, 
recent metabolomics studies in human urine and plasma samples identi fi ed numer-
ous metabolites associated with cardiovascular risk factors  [  60  ]  including blood 
pressure  [  61  ] , type 2 diabetes  [  62  ] , and atrial  fi brillation  [  63  ] . Furthermore, metabo-
lomics studies demonstrated the phenotypic heterogeneity of CVD and the limita-
tions of single diagnostic biomarkers  [  64  ] . The discovery of new metabolic 
biomarkers, using untargeted metabolic pro fi ling as well as targeted metabolite 
quanti fi cation, holds the promise to be translated into clinical tools for the application 
to personalized medicine  [  65  ] . The following passage aims to evaluate the potential 
application of metabolomics to improve the diagnosis, therapy, and monitoring of 
ADS in the aging male.  

    3.3   Are There Any Speci fi c Symptoms Related 
to Low Testosterone Concentrations? 

 Although a plethora of clinical symptoms and signs have been suggested to be 
related to low TT concentrations (Fig.  10.1 ), their non-speci fi city contributes to the 
existing doubts about the postulated syndromic nature of low TT concentrations 
 [  66–  69  ] . Thus, the discovery of symptoms speci fi c to low TT concentrations would 
considerably advance the diagnostic reliability of ADS. Metabolic pro fi ling has 
been shown to help and advance the diagnosis of diseases such as type 2 diabetes 
 [  62  ] , Alzheimer, osteoarthritis, or kidney disease  [  56  ] . Among 2,422 normoglycemic 
individuals followed for 12 years, targeted metabolite quanti fi cation by liquid 
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chromatography-tandem mass spectrometry (LC-MS) revealed several amino acids 
highly predictive of incident type 2 diabetes  [  62  ] . These  fi ndings were replicated in 
an independent, prospective cohort and help to understand the role of amino acid 
metabolism in the pathogenesis of type 2 diabetes. It has also been shown that meta-
bolic pro fi les of human serum can correctly diagnose not only the presence, but also 
the severity of coronary heart disease  [  70  ] . Classifying patients into three groups 
according to stenosis of one, two, or three of the coronary arteries, the employed 
metabolic pro fi les correctly distinguished all of the groups, whereas none of the 
traditional clinical risk factors differentiated correctly  [  70  ] . Another promising use 
of metabolomics is indicated by a number of publications on the diagnosis of infant 
inborn errors of metabolism  [  71  ] . Metabolomics also discovered the existence of 
substantial phenotypic differences with regard to gut micro fl ora from presumably 
identically bred laboratory rats  [  72  ] . 

 These surprising insights suggest that metabolomics may also play an important 
role in the advanced understanding of the phenotypic heterogeneity of ADS in aging 
males. The diagnostic information obtained from hypothesis-free metabolic pro fi ling 
complemented with a targeted quantitative approach is likely to yield a biomarker 
set of multiple metabolites that could provide comprehensive insights into 
pathophysiological metabolic processes speci fi c to the onset and progression of 
ADS that were previously not assessable with traditional single biomarkers such as 
TT, cholesterol, or fasting glucose  [  73  ] . Thus, metabolic pro fi ling may help to over-
come the single biomarker conservatism by involving several biomarkers or bio-
marker combinations to account for the suggested multifactorial causation of ADS. 
Considering metabolomics as the most proximal reporters of biochemical altera-
tions in response to disease processes or drug therapy  [  58  ] , metabolic signatures 
have the unique potential to disclose linkages between physiological, behavioral, 
and environmental characteristics and thereby to account for the multifactorial 
causation of ADS.  

    3.4   Which Treatment Goal Meets an Individual’s Metabolic 
Needs or What is a “Normal” Testosterone Concentration? 

 In order to pin down the therapeutic effects of an intervention or to elucidate the 
biochemical alterations caused by a disease, the de fi nition of normality is crucial. 
As stated above, there are still considerable uncertainties with regard to the de fi nition 
of normal TT concentrations at different ages. Facing current guidelines  [  36,   37  ]  
which provide only little orientation and arbitrarily de fi ned,  fi xed TT cut-offs, new 
approaches are strongly needed. Some investigators suggested the use of age-speci fi c 
percentile cut-offs (e.g. <10th percentile in each 10-year age group) to account for 
the age-related physiological decline in TT concentrations  [  6,   74,   75  ] . But still, our 
understanding of individual set points for circulating TT concentrations (below 
which one, but not another, individual may develop metabolic changes indicative of 
TT de fi ciency) or the concept of reserve capacity (the possibility that men with TT 
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concentrations below the  fi xed cut-off still may have adequate concentrations to 
meet their metabolic needs) is very limited. Thus, there is currently no consensus 
about the de fi nition of normal TT concentrations at different ages, further diluting 
any efforts to transparently de fi ne treatment goals for individuals under testosterone 
replacement therapy. 

 Here, metabolomics offers the potential to measure testosterone metabolites and 
relatives in serum, plasma, and urine to provide a broader metabolic picture for the 
evaluation of the single absolute serum TT measurement. In particular the urinary 
steroid pro fi le, which is mainly based on testosterone, re fl ect the metabolic path-
ways of androgenic compounds and is essential for the diagnosis of diseases related 
to steroid secretion  [  76  ] . Very recently, LC-MS-based metabolomics was applied for 
the direct analysis and quanti fi cation of major urinary metabolites as markers of 
exogenous steroid administration in routine doping controls  [  77  ] . This method was 
subsequently validated and applied to a clinical testosterone replacement study com-
paring a group of healthy male volunteers with a placebo group  [  77  ] . Similar studies 
replicated this method, providing a fast and sensitive analytical procedure for the 
simultaneous separation, determination, and quanti fi cation of testosterone deriva-
tives in human urine  [  78,   79  ] . Thus, monitoring steroid conjugates in human urine 
via metabolomics-based urinary testosterone measurements could yield alternative 
markers of endogenous testosterone production and testosterone administration. 

 Furthermore, incorporating detailed information on an individual’s metabolic 
status is likely to advance our understanding of a normal TT concentration in accor-
dance to an individual’s metabolic needs. Although the de fi nition of “normal” is in 
general a tricky endeavor, metabolomics readily generates a multivariate data set 
that allows the statistical description of biochemical normality, as evidenced by the 
statistically de fi ned normal model derived from data collected by the COMET con-
sortium  [  80  ] . But metabolomics could not only provide a broader picture of the 
metabolic state of the ADS patient, but also a pre-intervention metabolic signature 
to evaluate the adequacy, performance, and varying individual bene fi cial or adverse 
responses to testosterone replacement therapy.  

    3.5   Which Parameters Should be Monitored During 
Testosterone Treatment? 

 Metabolomics also offers the potential to obtain a multi-metabolite characterization 
of the metabolic state of the patient under testosterone replacement and to monitor 
simultaneously the changes in concentrations of a wide range of molecules. Hence, 
pharmaco-metabonomics has been developed to better understand the inter- 
individual variability in drug response, predict the individual treatment response, 
and to ultimately personalize drug treatment  [  81  ] . Pharmaco-metabonomics is sen-
sitive to both, the genetic and the modifying environmental in fl uences to determine 
the individual baseline metabolic pro fi le and to assess the outcome of a drug inter-
vention. Since perturbations of the metabolic state of an individual generally 
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manifests as particular patterns of metabolites, these metabolic signatures could be 
used to monitor individuals under testosterone replacement therapy. To control for 
the large inter-individual variability in drug response and potential confounders, 
serial sampling can be performed so that each patient serves as his own control. As a 
proof of principle, studies in patients undergoing controlled interventions such as 
exercise stress test  [  82  ]  or oral glucose challenge  [  73,   83  ]  showed that most metabo-
lites displayed concordant changes in cases and controls, while the metabolites with 
signi fi cant discordant changes in cases remained unchanged in controls. In prospec-
tive biomarker studies, the metabolomics approach was proven to identify, catego-
rize, and pro fi le kinetic patterns of early metabolic biomarkers of planned and 
spontaneous myocardial infarction  [  84,   85  ] . Based on plasma samples from 36 
patients undergoing a planned myocardial infarction, LC-MS-based metabolite 
pro fi ling identi fi ed different metabolic pro fi les in the early phase of myocardial injury 
 [  85  ] . More recently, a case–control study of 140 coronary artery disease patients 
applied targeted LC-MS-based metabolomics to identify two metabolites that were 
associated with coronary artery disease and subsequent cardiovascular events  [  86  ] . 
Taken together, metabolomics not only successfully differentiated between indi-
viduals with and without impaired metabolic regulation, but also revealed novel 
insights into the investigated disease mechanisms and pathways. 

 Given the fact that human metabolomics studies are subject to a large inter-
individual variability and potential confounders such as age, gender, diet, and comor-
bidities, the importance of a standardized protocol for the application of metabolomics 
in a clinical setting with regard to socio-demographic, environmental, nutritional, 
and behavioral factors could not be underestimated. Also the impact of diurnal and 
seasonal variations on human metabolic pro fi les warrants further systematic evalu-
ation. However, metabolomics has been used in a number of studies to de fi ne a 
normal biochemical pro fi le and proved to signi fi cantly differentiate effects related 
to sex, age, diet, various diseases, and drugs. Thus, pharmaco-metabonomics is 
envisioned to provide real-time metabolic pro fi les as dynamic markers of a biologi-
cal status re fl ecting the individual treatment response and to reveal indicators of 
treatment ef fi ciency in patients under testosterone replacement therapy. 

 Metabolic pro fi ling may help to identify a set of metabolites that predict differ-
ences in the response to testosterone treatment and to provide biomarker candidates 
for testosterone replacement therapy monitoring. It has been shown that the applica-
tion of metabolic pro fi ling of the response to an oral glucose tolerance test detected 
subtle metabolic changes  [  73  ] . Also in animal studies, the urine metabolic pro fi le 
was used to predict how an individual metabolized a certain drug and their suscep-
tibility to the side effects of that drug  [  59  ] . Applying these principles to the treat-
ment and monitoring of ADS would have enormous implications for personalized 
medicine and optimized risk-bene fi t ratio for individuals under testosterone replace-
ment therapy. In a possible two-step procedure, single or combined biomarkers of 
treatment response initially identi fi ed by a hypothesis-free metabolic pro fi ling 
approach, could then be quanti fi ed by high-throughput targeted metabolite analyses 
 [  80  ] . The identi fi ed particular metabolite pattern or ratio could be subsequently 
applied to metabolomics-based prediction models to assess the ef fi cacy and safety of 
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individualized ADS therapies. Given the time-dependent  fl uctuations of metabolites 
that occur in response to testosterone treatment, the fairly easy collection of biosam-
ples such as urine or blood is another advantage of metabolomics-based pro fi ling. 
Furthermore, metabolomics provide an excellent analytical and biological repro-
ducibility and the cost per sample and analyte is low. Taken together, metabolomics 
offer a huge potential to individually initiate and monitor drug therapies, as to 
achieve maximal ef fi cacy and avoid adverse drug reactions, to ultimately help to 
make the vision of personalized medicine become reality.   

    4   Metabolic Phenotyping in the Field of Andrology 

 Advanced analytical platforms featured the growth of a wide range of “omics” sci-
ences including genomics, transcriptomics, proteomics, and metabolomics, enabling 
the measurement of various levels of biomolecular organization in complex mam-
malian systems. But compared to other molecular pro fi ling techniques, metabolom-
ics provides a more direct and dynamic snapshot of the current physiological status 
of an individual, representing the omics-level closest to the phenotype and therefore 
most capable of re fl ecting the non-linear impact of environmental and lifestyle fac-
tors on disease risk. Studies published to date have illustrated the potential for 
applying metabolomics to the  fi eld of andrology. Despite their limited number and 
pilot-scale study populations, it becomes increasingly clear that metabolomics could 
improve our capability to diagnose ADS and to be of great value for the clinical 
management of ADS. Facing the outlined uncertainties in the current diagnosis and 
therapy of ADS, and the advantageous non-invasive low-cost character of metabo-
lomics, according exploratory and hypothesis generating studies may likely prove 
bene fi cial. 

 In summary, metabolomics is starting to have an impact not only on disease 
diagnosis and prognosis, but also on drug treatment ef fi cacy and safety monitoring. 
Through the rapid advances of high-throughput molecular pro fi ling techniques, the 
future growth of metabolomics research is anticipated to accelerate the implementa-
tion and adoption of the metabolomics technology on a much broader basis. 
In parallel, there is a huge body of knowledge supporting the belief that age changes 
are characterized by increasing entropy, which results in the random loss of molecu-
lar  fi delity, and accumulates to slowly overwhelm maintenance systems  [  87  ] . When 
the escalating loss of molecular  fi delity ultimately exceeds repair and turnover 
capacity, vulnerability to pathology or age-associated diseases increases  [  88  ] . Thus, 
the aging process and its associated diseases are more intrinsically malleable than 
had been previously thought  [  88  ] . This holds also true for ADS as a companion of 
age-associated comorbidity and decreasing physical function and performance. 
Therefore, the introduction of metabolomics into the  fi eld of endocrinology in gen-
eral, and andrology in particular, provides a novel tool to advance our understanding 
of the underlying pathophysiological mechanisms of ADS and to further enhance 
the quality of its diagnosis, therapy, and monitoring.      
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     1   Introduction 

 Small molecules are intimately connected to every part of the genome and the 
proteome. In fact, it might be argued that metabolites (or small molecules) actually 
sit atop the “omic” pyramid of life (Fig.  11.1 ). Effectively they serve as the “canar-
ies of the genome”. Indeed, just a single base change in a gene, can lead to a 10,000 
fold change in the concentration of a metabolite or drug  [  1,   2  ] . The importance of 
small molecules for understanding basic biology cannot be overemphasized. Indeed, 
for more than 80 years the entire  fi eld of biochemistry has been dedicated to under-
standing how certain small molecules control, or are controlled by, larger biological 
molecules or systems  [  3,   4  ] . More recently,  fi elds such as metabolomics  [  5  ] , sys-
tems biology (see Box  11.1 ) and chemical genomics (see Box  11.2 ) have emerged 
with a more holistic mandate for understanding and exploring chemical-biological 
interactions. All three disciplines are concerned with either measuring small mole-
cules or using small molecules to assess their effects on the genome, the transcrip-
tome or the proteome of a given cell, tissue or organism.  

 Understanding the interaction between small molecules and larger biological 
systems is also vitally important to the  fi eld of medicine. Consider the following 
facts: >95% of all diagnostic clinical assays test for small molecules  [  6  ] , 89% of 
known drugs are small molecules  [  7  ] , 50% of all drugs are derived from pre-exist-
ing metabolites  [  8  ]  and 30% of identi fi ed genetic disorders involve diseases of small 
molecule metabolism [  9  ] . Furthermore, almost all of the leading causes of chronic 
disease arise from adverse interactions of small molecules with our genome or pro-
teome  [  10–  12  ] . These include obesity (dietary sugars, fats), diabetes (dietary sug-
ars), heart disease (dietary fats, cholesterol), cancer (pollutants and mutagens), and 
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  Fig. 11.1    A schematic illustration showing how metabolomics is positioned relative to proteomics 
and genomics. The genome codes for the proteome which, in turn, acts on the metabolome. 
In humans there are approximately 25,000 genes (the genome), 7,500 enzymes and transporters 
(the “active” proteome) and ~8,000 endogenous metabolites (the metabolome)       

   Box 11.1 What is Systems Biology? 

 Systems biology is an integrated discipline that combines high throughput 
experimental techniques such as genomics, proteomics and metabolomics 
with computational techniques such as bioinformatics and computer simula-
tion in an attempt to fully understand or mechanistically model a biological 
system, such as a cell, organ or organism. One of the  fi rst applications of sys-
tem biology involved the construction of a mathematical model, in 1952, that 
explained the action potential propagating along a neuronal cell axon  [  18  ] . 
The formal study of systems biology was launched by systems theorist Mihajlo 
Mesarovic in 1966 with an international symposium at the Case Institute of 
Technology in Cleveland, Ohio entitled “Systems Theory and Biology.” Leroy 
Hood, who founded the Systems Biology Institute in Seattle in 2000, is widely 
credited for linking systems biology to modern “omics” technologies.  

   Box 11.2 What is Chemical Genomics? 

 Chemical genomics is primarily concerned with the characterization of 
genomic (and other “omic”) responses to chemical compounds. Chemical 
genomics uses techniques such as microarrays or high throughput DNA 
sequencing in conjunction with natural or synthetic chemical library screens. 
The goal of chemical genomics is to help with the rapid identi fi cation of novel 
drugs and drug targets or to improve the understanding of biochemical signal-
ing mechanisms.  
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adverse drug reactions (drugs or drug metabolites). It is easy to forget that maternal 
dietary imbalances and de fi cits still affect tens of thousands of children in the indus-
trialized world (neural tube defects), childhood cancer –  [  13,   14  ]  but also account 
for millions of cases of fetal alcohol syndrome, blindness and mental retardation in 
the developing world  [  15  ] . Clearly metabolites are important, not only for diagnos-
tic purposes, but also for treating and understanding diseases. Yet despite the clear 
importance that small molecules have in medicine and biology, their place at the 
scienti fi c table has largely been usurped by the “big” molecules (i.e. DNA, RNA 
and proteins). Indeed, for nearly two decades most of our biomedical resources have 
been targeted towards sequencing the human genome  [  16  ]  or unraveling the human 
proteome  [  17  ] . Consequently, relatively little has been directed towards character-
izing the human metabolome.    

    2   The Human Metabolome Project 

 In an effort to better characterize the human metabolome, a group of Canadian 
researchers launched the Human Metabolome Project (HMP) in 2005  [  19  ] . The 
primary goal of the HMP is to use advanced experimental techniques and literature/
text mining to compile as much information about the “detectable” human 
metabolome – or more appropriately, the human metabolome s  as possible. Over the 
past 7 years this information has been periodically released and updated through a 
variety of public, web-accessible databases. These databases include the Human 
Metabolome Database or HMDB  [  20  ] , which covers endogenous human metabo-
lites (including some very common food, drug and microbial metabolites), DrugBank 
 [  21  ]  which contains data on exogenous drugs and drug metabolites, the Toxin and 
Toxin-Target Database or T3DB  [  22  ]  which covers pollutants, poisons and environ-
mental toxins and FooDB  [  23  ]  which contains data on foods (i.e. phytochemicals) 
and food additives. The approximate size of these databases (in terms of compound 
numbers) is shown in Fig.  11.2 . This  fi gure also illustrates the concentration ranges 
typically reported for these compounds.  

 For the most part, the data in these databases has been compiled through exten-
sive literature reviews and careful manual curation by the HMP’s team of biocura-
tors, bioinformaticians and chemists. However, in addition to these literature-derived 
data sets, the HMP has also been performing comprehensive, quantitative metabolic 
pro fi ling of three medically important bio fl uids: (1) blood (or serum); (2) urine and 
(3) cerebrospinal  fl uid (CSF). Experimental data collected by the HMP on the 
human cerebrospinal  fl uid metabolome has been described in two separate papers 
 [  24,   25  ]  and the results are maintained in a database at:   http://www.csfmetabolome.
ca    . Currently this database contains nearly 1,000 CSF-speci fi c metabolites along 
with their corresponding concentrations and disease associations. More recently the 
HMP completed a comprehensive characterization of human serum metabolome. 
This effort yielded more than 4,200 serum/blood-speci fi c metabolites and 
employed at least  fi ve different metabolomics platforms  [  26  ] . The results are 

http://www.csfmetabolome.ca
http://www.csfmetabolome.ca
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housed in on online human serum metabolome database located at: http:///  www.
serummetabolome.ca    . It is expected that the human urine metabolome will be 
 fi nished by mid 2012, although the HMP has already published one paper describ-
ing the partial characterization of this very important bio fl uid  [  27  ] .  

    3   De fi ning Different Human Metabolomes 

 While all humans share essentially the same endogenous metabolome, each human 
has a different exogenous metabolome. The endogenous metabolome refers to the 
collection of “natural” compounds that our cells need to live and which they rou-
tinely synthesize or catabolize. The exogenous metabolome refers to the “un-natural” 
synthetic, exotic or plant-derived chemicals that we deliberately or accidentally con-
sume and which are not needed for basic metabolism. Obviously no single human 
(unless they regularly consume all known drugs, eat all known foods and live in a 
toxic chemical dump) will have the full complement of known or detectable exoge-
nous compounds in their body. On the other hand, if a large population of humans is 
studied, certainly many of these exogenous metabolites will be observed – albeit at 
relatively low levels. A further source of variation in the human metabolome comes 
from the metabolites generated by the nearly 400 different microbial species that live 
in the human gut  [  28  ] . In humans, the gut micro fl ora weigh between 1 and 2 kg and 
constitute a metabolically essential multicellular organ  [  28  ] . Each human has their 
own unique gut micro fl ora and these microbe (along with our diet) contribute 
signi fi cantly to our own, unique metabolic phenotype or “metabotype”  [  29  ] . 

  Fig. 11.2    An illustration showing the approximate size (# of compounds) and concentration range 
(molar, millimolar, micromolar, nanomolar, picomolar) of the compounds found in different human 
metabolomes. HMDB covers the endogenous metabolites, DrugBank covers approved drugs and 
nutraceuticals, FooDB covers food components and food additives, T3DB covers toxins, pollutants 
and poisons       

 

http://www.serummetabolome.ca
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 The issue of exogenous versus endogenous metabolites is not the only 
complication associated with describing the human metabolome. Humans have 
more than 200 different cell types, several dozen different organs and many highly 
compartmentalized bio fl uid systems. Each of these cell types, tissues or organs is 
metabolically specialized in some fashion or another, often producing a handful of 
unique metabolites that are not found in other cells or organs. The same metabolic 
specialization is true for many human bio fl uids as well. These bio fl uids include 
blood, milk, cerebrospinal  fl uid (CSF), bile, saliva, mucus, lung exudates, lachry-
mal secretions, semen, lymph and more. As a result, speci fi c cell, tissue, bio fl uid 
and organ variations also make the human metabolome hard to de fi ne. So too does 
the wide range of metabolite concentrations found in humans. The concentration of 
human metabolites can range from the low picomolar level (i.e. exogenous chemi-
cals, certain hormones and many signaling molecules) to as high as near-molar lev-
els (urea). These values may vary with diet, gender, time of day, age, health and 
genetic background  [  30  ] . Therefore the human metabolome is actually de fi ned by 
when, where and how it’s measured. 

 A further complication with regard to describing the human metabolome is the 
fact that it consists of both a “known” component and an “unknown” or theoretical 
component. Figure  11.2  describes the size of the known human metabolomes. It 
does not indicate the size of the “theoretical” human metabolome. Certainly if all 
possible combinations of lipids, di- and tripeptides and di- or trisaccharides were 
considered, the number of endogenous human metabolites could easily exceed 
200,000 molecules  [  31,   32  ] . However, the vast majority of these theoretical metabo-
lites have not been detected. Either they exist too transiently or are at such low 
abundance that they cannot be seen with today’s technologies. We also know from 
numerous metabolomic experiments that only 1/3–1/2 of the metabolite signals 
detected by UPLC-MS experiments correspond to known metabolites. Consequently 
there are perhaps tens of thousands of hitherto unknown human metabolites for 
which the chemical structure is not known or has yet to be described. 

 So unlike the human genome, which is well de fi ned and largely invariant, the 
human metabolome is an ill-de fi ned, highly individualized, ever-growing entity that 
is profoundly affected by the genome, the environment and the available technolo-
gies used to measure it. These features make the study of the human metabolome 
both compelling and challenging.  

    4   The Human Metabolome Database 

 The Human Metabolome Database (HMDB) is the largest and most comprehensive, 
organism-speci fi c metabolomic database assembled to date  [  33  ] . It contains spec-
troscopic, quantitative, analytic and molecular-scale information about (mostly) 
endogenous human metabolites, their associated enzymes or transporters, their 
abundance and their disease-related properties. The HMDB currently contains more 
than 8,500 human metabolite entries that are linked to more than 45,000 different 
synonyms. These metabolites are further connected to 3,360 distinct enzymes, 
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which in turn, are linked to nearly 100 metabolic pathways and more than 150 
disease pathways. More than 1,000 metabolites have disease-associated informa-
tion, including both normal and abnormal metabolite concentration values. These 
diagnostic metabolites or metabolite signatures are linked to more than 500 differ-
ent diseases (genetic and acquired). The HMDB also contains experimentally 
acquired metabolite concentration data (normal and abnormal) for nearly 5,000 
compounds from most bio fl uids. The entire database, including text, sequence, 
structure and image data occupies nearly 30 Gigabytes of data – most of which can 
be freely downloaded. 

 The HMDB is fully searchable database with many built-in tools for viewing, 
sorting and extracting metabolites, bio fl uid concentrations, enzymes, genes, NMR 
or MS spectra and disease information. Users may through the HMDB compound 
by compound through a series of hyperlinked, synoptic summary tables. These 
metabolite tables can be rapidly browsed, sorted or reformatted in a manner similar 
to the way PubMed abstracts may be viewed. Clicking on the MetaboCard button 
found in the leftmost column of any given HMDB summary table opens a webpage 
describing the compound of interest in much greater detail. Each MetaboCard entry 
contains more than 100 data  fi elds with half of the information being devoted to 
chemical or physico-chemical data and the other half devoted to biological or bio-
medical data. These data  fi elds include a comprehensive compound description, 
names and synonyms, structural information, physico–chemical data, reference 
NMR and MS spectra, bio fl uid concentrations (normal and abnormal), disease asso-
ciations, pathway information, enzyme data, gene sequence data, protein sequence 
data, SNP and mutation data as well as extensive links to images, references and 
other public databases such as KEGG  [  34  ] , BioCyc  [  35  ] , PubChem  [  36  ] , ChEBI 
 [  37  ] , PubMed, PDB  [  38  ] , SwissProt/UniPort  [  39  ] , GenBank  [  40  ] , and OMIM  [  9  ] . 

 Unlike most other “omics” databases, the HMDB has been designed to facilitate 
exploring the linkage between genes, diseases and metabolites. This has been done 
in several ways, including the careful compilation of information about most of 
the known inborn errors of metabolism (IEMs), detailed data on the chemical bio-
markers that can be used to diagnose these diseases and links to OMIM (and other 
databases) that describe their known or probable genetic causes. An example of how 
the HMDB may be used to go from raw experimental data, to metabolite lists, to 
disease identi fi cation, to pathway analysis and genetic characterization will be given 
in Sect.  6  of this chapter.  

    5   The Exogenous Human Metabolome: 
DrugBank, T3DB and FooDB 

 As noted in Sect.  2 , the human metabolome consists of both an endogenous compo-
nent and an exogenous component. The HMDB primarily covers the endogenous 
human metabolome. The exogenous human metabolomes are handled by three sep-
arate databases: DrugBank (for drugs), T3DB (for toxins, pollutants and poisons) 
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and FooDB (for food additives and food components). The separation of the 
exogenous human metabolome into three components was done to support the 
speci fi c needs of each user community. For instance, DrugBank was designed to 
address the needs of pharmacologists and pharmacists, as well as metabolomics 
researchers. Consequently DrugBank has a number of data  fi elds that would not be 
found in HMDB, such as mechanism of action, absorption and pharmacokinetic 
data. Likewise, T3DB was designed to address the needs of toxicologists and 
emergency room physicians, as well as metabolomics specialists. As a result T3DB 
contains data  fi elds such as LD 

50
 , treatment option and poisoning symptoms. FooDB, 

which is still under construction, is being designed to address the needs of food 
chemists, nutritionists and metabolomics scientists. Consequently FooDB contains 
data on food types and food composition. Unlike the HMDB (which consists of 
both literature derived and in-house experimental data), the data in DrugBank, 
T3DB and FooDB has been compiled entirely through literature review and text 
mining. To better understand the content and utility of these exogenous metabolome 
resources, it is perhaps useful to provide a brief description of each database and an 
explanation of how they can be used to connect the metabolome to the genome. 

    5.1   DrugBank 

 DrugBank  [  21,   41  ]  is a drug database that links structure and mechanistic data about 
drug molecules with sequence, structure and mechanistic data about their drug tar-
gets. Like HMDB, DrugBank presents its data on drugs and drug targets using syn-
optic DrugCards (in anology to MetaboCards). Currently DrugBank contains 
detailed information on 1,480 FDA-approved drugs corresponding to ~28,00 brand 
names and synonyms. This collection includes almost 1,300 synthetic small mole-
cule drugs, more than 125 biotech (mostly peptide or protein) drugs and 70 nutra-
ceutical drugs or supplements. DrugBank also contains information on nearly 1,700 
different targets (protein, lipid or DNA molecules) and metabolizing enzymes with 
which these drugs interact. Additionally the database maintains data on almost 200 
illicit drugs (i.e. those legally banned or selectively banned in most developed 
nations) and more than 60 withdrawn drugs (those removed from the market due to 
safety concerns). Like HMDB, DrugBank also supports a wide variety of text, 
chemical formula, mass, chemical structure and sequence searches. In addition to 
these search features, DrugBank also provides a number of general browsing tools 
for exploring the database as well as several specialized browsing tools such as 
PharmaBrowse and GenoBrowse for more speci fi c tasks. GenoBrowse is speci fi cally 
designed to address the needs of those specialists interested in speci fi c drug-gene 
relationships. This browsing tool provides navigation hyperlinks to more than 60 
different drugs, which in turn list the target genes, SNPs and the physiological 
effects associated with these drugs. 

 DrugBank also provides detailed sequence and SNP data on known drug metab-
olizing enzymes and known drug targets. In particular DrugBank contains detailed 
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summary tables about each of the SNPs for each of the drug targets or drug 
metabolizing enzymes that have been characterized by various SNP typing efforts. 
Currently DrugBank contains information on 26,000 coding (exon) SNPs and nearly 
74,000 non-coding (intron) SNPs derived from known drug targets. It also has data 
on 1,188 coding SNPs and 8,931 non-coding SNPs from known drug metabolizing 
enzymes. By clicking on the “Show SNPs” hyperlink listed beside either the metab-
olizing enzymes or the drug target SNP  fi eld, the SNP summary table can be viewed. 
The purpose of these SNP tables is to allow one to go directly from a drug of interest 
to a list of potential SNPs that may contribute to the reaction or response seen in a 
given patient or in a given population. In particular, these SNP lists may serve as 
hypothesis generators that allow SNP or gene characterization studies to be some-
what more focused or targeted. By comparing the experimentally obtained SNP 
results to those listed in DrugBank for that drug (and its drug targets) it may be pos-
sible to ascertain which polymorphism for which drug target or drug metabolizing 
enzyme may be contributing to an unusual drug or metabolite pro fi le. 

 DrugBank also includes two tables that provide much more explicit information 
on the relationship between drug responses/reactions and gene variant or SNP data. 
The two tables, which are accessible from the GenoBrowse submenu located on 
DrugBank’s Browse menu bar, are called SNP-FX (short for SNP-associated effects) 
and SNP-ADR (short for SNP-associated adverse drug reactions). SNP-FX contains 
data on the drug, the interacting protein(s), the “causal” SNPs or genetic variants for 
that gene/protein, the therapeutic response or effects caused by the SNP-drug inter-
action (improved or diminished response, changed dosing requirements, etc.) and 
the associated references describing these effects in more detail. SNP-ADR follows 
a similar format to SNP-FX but the clinical responses are restricted only to adverse 
drug reactions (ADR). SNP-FX contains literature-derived data on the therapeutic 
effects or therapeutic responses for more than 70 drug-polymorphism combinations, 
while SNP-ADR contains data on adverse reactions compiled from more than 50 
drug-polymorphsim pairings. All of the data in these tables is hyperlinked to drug 
entries from DrugBank, protein data from SwissProt, SNP data from dbSNP and 
bibliographic data from PubMed.  

    5.2   The Toxin/Toxin-Target Database: T3DB 

 T3DB  [  22  ]  is currently the only chemical-bioinformatic database that provides in-
depth, molecular-scale information about toxins/poisons, their associated targets 
(genes/proteins), their toxicology, their toxic effects and their potential treatments. 
T3DB currently contains over 3,000 toxic substance entries corresponding to more 
than 34,000 different synonyms. These toxins are further connected to some 1,450 
protein targets through almost 35,500 toxin and toxin-target associations. These 
associations are supported by more than 5,400 references. The entire database, 
including text, sequence, structure and image data, occupies nearly 16 Gigabytes of 
data – most of which can be freely downloaded. 
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 As with HMDB and DrugBank, the T3DB is designed to be a fully searchable 
web resource with many built-in tools and features for viewing, sorting and extract-
ing toxin and toxin-target annotation, including structures and gene and protein 
sequences. As with HMDB and DrugBank, the T3DB supports standard text queries 
through the text search box located on the home page. It also offers general database 
browsing using the “Browse” button located in the T3DB navigation bar. To facili-
tate browsing, the T3DB is divided into synoptic summary tables which, in turn, are 
linked to more detailed “ToxCards” – in analogy to the DrugCard concept found in 
DrugBank  [  33  ]  or the MetaboCard in HMDB  [  33  ] . All of the T3DB’s summary 
tables can be rapidly browsed, sorted or reformatted in a manner similar to the way 
PubMed abstracts may be viewed. Clicking on the ToxCard button, found in the 
leftmost column of any given T3DB summary table, opens a webpage describing 
the toxin of interest in much greater detail. Each ToxCard entry contains over 80 
data  fi elds, with ~50 data  fi elds devoted to chemical and toxicological/medical data 
and ~30 data  fi elds (each) devoted to describing the toxin target(s). 

 The data included in a ToxCard includes various identi fi ers and descriptors of the 
toxin (names, synonyms, compound description, structure image, related database 
links and ID numbers), followed by additional structure and physico-chemical prop-
erty information. The remainder of data on the toxin is devoted to providing detailed 
toxicity and toxicological data, including route of delivery, mechanism of action, 
medical information, and toxicity measurements. All of a toxin’s targets are also 
listed within the ToxCard. Each of these targets are described by some 30 data  fi elds 
that include both chemical and biological (sequence, molecular weight, gene ontol-
ogy terms, etc.) information, as well as details on their role in the mechanism of 
action of the toxin. In addition to providing comprehensive numeric, sequence and 
textual data, each ToxCard also contains hyperlinks to other databases, abstracts, 
digital images and interactive applets for viewing the molecular structures of each 
toxic substance. 

 T3DB’s sequence searching utility (SeqSearch) allows users to search through 
T3DB’s collection of 1,450 known (human) toxin targets. This service potentially 
allows users to identify both orthologous and paralogous targets for known toxins 
or toxin targets. It also facilitates the identi fi cation of potential toxin targets from 
other animal species. With SeqSearch, gene or protein sequences may be searched 
against the T3DB’s sequence database of identi fi ed toxin-target sequences by past-
ing the FASTA formatted sequence (or sequences) into the SeqSearch query box 
and pressing the “submit” button. 

 T3DB’s structure similarity search tool (ChemQuery) can be used in a similar 
manner as its SeqSearch tool. Users may sketch a chemical structure or paste a 
SMILES string of a query compound into the ChemQuery window. Submitting the 
query launches a structure similarity search that looks for common substructures 
from the query compound that matches the T3DB’s database of known toxic com-
pounds. Users can also select the type of search (exact or Tanimoto score) to be 
performed. High scoring hits are presented in a tabular format with hyperlinks to the 
corresponding ToxCards (which, in turn, links to the targets). The ChemQuery tool 
allows users to quickly determine whether their compound of interest is a known 
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toxin or chemically related to a known toxin and which target(s) it may act upon. In 
addition to these structure similarity searches, the ChemQuery utility also supports 
compound searches on the basis of chemical formula and molecular weight ranges.  

    5.3   FooDB: The Food Metabolome Database 

 FooDB, which is still under construction, is a database intended to capture key 
information on food-related chemicals. When completed in late 2012, FooDB will 
be the world’s largest and most comprehensive resource on food constituents and 
their health effects. Food chemicals and secondary food metabolites actually consti-
tute a signi fi cant part of the human metabolome. Indeed, it is widely believed that 
most unknown or unidenti fi ed peaks in metabolomic studies of human urine, saliva 
and plasma are derived from food-derived compounds  [  33  ] . Knowledge of the food 
metabolome important not only for advancing the  fi eld of metabolomics, but also 
for understanding the adverse or bene fi cial effects of food chemicals, for discover-
ing novel drugs or drug leads and for guiding studies in nutrition and nutrigenomics 
 [  24,   42  ] . To date more than 28,000 food constituents, food additives and food 
metabolites have been identi fi ed and catalogued. Many (>80%) of these are phy-
tochemicals or chemicals of plant origin such as polyphenols, phytosterols, alka-
loids, quinones, terpenes, phenylpropanoids, etc. Another 2,500 compounds are 
approved food additives such as synthetic coloring, aroma and  fl avoring agents. The 
challenge in building FooDB has been to annotate these food compounds to the 
same level as found in the HMDB, DrugBank and T3DB. When completed, FooDB 
will provide information on both macronutrients and micronutrients, including their 
role in foods ( fl avor, color, taste, texture and aroma) and their role in human physi-
ology. Each chemical entry in the FooDB will contain data on the compound’s 
nomenclature, a description, information on its structure, chemical class, physico-
chemical data, food source(s), physiological effect(s), presumptive health effects or 
health claims, protein targets, biosynthesis or synthesis pathways, breakdown prod-
ucts, known metabolites, biochemistry, concentrations in various foods, metabolic 
breakdown products and concentrations in human bio fl uids. Users will be able to 
browse or search the FooDB by food source, name, descriptors, function or concen-
trations. Depending on individual preferences users will be able to view the content 
of FooDB from the “FoodView” (listing foods by their chemical composition) or 
the “ChemView” (listing chemicals by their food sources). An example FooDB 
entry can be viewed at   http://foodbs.org/example    .   

    6   SMPDB: The Small Molecule Pathway Database 

 Unlike HMDB, DrugBank, T3DB or FooDB, which are metabolite databases, 
SMPDB is primarily a picture resource. More speci fi cally, SMPDB is a pathway 
database speci fi cally designed to facilitate clinical “omics” studies, with a speci fi c 

http://foodbs.org/example
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emphasis on clinical biochemistry and clinical pharmacology. Currently SMPD 
consists of more than 450 highly detailed, hand-drawn pathways describing small 
molecule metabolism or small molecule processes that are speci fi c to humans. 
These highly hyperlinked pathways can be placed into four different categories: 
(1) metabolic pathways; (2) small molecule disease pathways; (3) small molecule 
drug pathways and (4) small molecule signaling pathways. All SMPDB pathways 
explicitly include the chemical structure of the major chemicals in each pathway. In 
addition, the cellular locations (extracellular, intracellular, membrane, cytoplasm, 
mitochondrion, nucleus, peroxisome, etc.) of all metabolites and the enzymes 
involved in their processing are explicitly illustrated. Likewise the quaternary struc-
tures (if known) and cofactors associated with each of the pathway enzymes or 
transporters are also shown. If some of the metabolic processes occur primarily in 
one organ or in the intestinal micro fl ora, this information is also illustrated. The 
inclusion of explicit chemical, cellular and physiological information is one of the 
more unique and useful features of SMPDB. SMPDB is also unique in its inclusion 
of signi fi cant numbers of metabolic disease pathways (>100) and drug pathways 
(>200) not found in any other pathway database. Likewise, unlike other pathway 
databases, SMPDB supports a number of unique database querying and viewing 
features. These include simpli fi ed database browsing, the generation of protein/
metabolite lists for each pathway, text querying, chemical structure querying and 
sequence querying, as well as large-scale pathway mapping via protein, gene or 
chemical compound lists. 

 The SMPDB interface is largely modeled after the interface used for DrugBank 
 [  7,   24  ] , T3DB  [  22  ]  and the HMDB  [  33  ] , with a navigation panel for Browsing, 
Searching and Downloading the database. Below the navigation panel is a simple 
text query box that supports general text queries of the entire textual content of the 
database. Mousing over the Browse button allows users to choose between two 
browsing options, SMP-BROWSE and SMP-TOC. SMP-TOC is a scrollable hyper-
linked table of contents that lists all pathways by name and category. SMP-BROWSE 
is a more comprehensive browsing tool that provides a tabular synopsis of SMPDB’s 
content with thumbnail images of the pathway diagrams, textual descriptions of the 
pathways, as well as lists of the corresponding chemical components and enzyme/
protein components. This browse view allows users to scroll through the database, 
select different pathway categories or re-sort its contents. Clicking on a given 
thumbnail image or the SMPDB pathway button brings up a full-screen image for 
the corresponding pathway. Once “opened” the pathway image may be expanded by 
clicking on the Zoom button located at the top and bottom of the image. An image 
legend link is also available beside the Zoom button. 

 At the top of each pathway image is a pathway synopsis contained in a yellow 
box while at the bottom of each image is a list of references. On the right of each 
pathway image is a grey-green Highlight/Analyzer tool with a list of the key metab-
olites/drugs and enzymes/proteins found in the pathway. Checking on selected items 
when in the SMP-Highlight mode will cause the corresponding metabolite or pro-
tein in the pathway image to be highlighted with a red box. Entering concentration 
or relative expression values (arbitrary units) beside compound or protein names, 
when in the SMP-Analyzer mode, will cause the corresponding metabolites or 
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proteins to be highlighted with differing shades of green or red to illustrate increased 
or decreased concentrations. As with most pathway databases, all of the chemical 
structures and proteins/enzymes illustrated in SMPDB’s diagrams are hyperlinked 
to other on-line databases or tables. Speci fi cally, all metabolites, drugs or proteins 
shown in the SMP-BROWSE tables or in a pathway diagram are linked to HMDB, 
DrugBank or UniProt  [  39  ]  respectively. Therefore, clicking on chemical or protein 
image will open a new browser window with the corresponding DrugCard, 
MetaboCard or UniProt table being displayed.  

    7   From Experiment to Systems Biology: An Example 

 In order to understand how the resources generated by the HMP might be useful to 
researchers studying the human metabolome or to those looking for a broader, sys-
tems biology understanding of human metabolism it is perhaps useful to given an 
example. This particular scenario is intended to illustrate how the HMDB and 
SMPDB, together, can be used to take relatively raw, untargeted MS data from 
human serum and facilitate the understanding of the chemistry, biology, genetics 
and systems biology of a particular disease. The data used here is “synthetic” and 
the example is somewhat simpli fi ed to make the explanations and interpretation 
easier for the reader. 

 Here we will assume that two blood or serum samples have been provided. One 
is from a normal, healthy individual and the other is from a newborn having recur-
ring seizures and exhibiting unusually fair skin and hair. The serum samples have 
been run through an UPLC-MS system using a higher resolution mass spectrometer 
(an Orbitrap or an FT-MS instrument) in the positive ion mode. Comparison of the 
signal intensities of the sick infant’s sample with those of an age-matched, healthy 
control show a number of signals having signi fi cantly higher values (Table  11.1 ). 

 Using the mass list in Table  11.1  we can go to the HMDB (  www.hmdb.ca    ) and 
use the menu bar at the top of the home page to select “Search”. Under the “Search” 
menu we should select the “MS Search” submenu item. A web page will appear that 
should look like the image shown in Fig.  11.3 . Once this page appears, select the 

 Peak number  Mass (m/z) Daltons 

 1  137.0595 
 2  159.0420 
 3  165.0541 
 4  166.0863 
 5  167.0705 
 6  187.0368 
 7  188.0682 
 8  189.0525 

   Table 11.1    Mass (m/z) 
values for peaks exhibiting 
signi fi cantly enhanced 
intensities as collected on 
blood plasma from a sick 
infant. The data for this 
UPLC-MS study was 
collected in the positive ion 
mode   

http://www.hmdb.ca
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“Positive Mode” radio button under the Molecular Species  fi eld and then type in the 
eight masses listed in Table 11.1 in the text box (include all digits). In the MW 
Tolerance  fi eld, enter a mass tolerance of 0.0005 Da. Once these data have been 
entered, click the “Find Metabolites” button. Within a few seconds the result in 
Fig.  11.4  should be generated. This table lists the metabolites (HMDB ID, names, 
chemical formula, adduct molecular weight, mass difference and adduct type) 
matching to the query mass list we have just entered. Approximately 50 compounds 
or adducts should be listed (of 8,500 possible compounds in the HMDB). The list is 
sorted by the mass error difference. Inspecting this list, one might notice a wide 
range of possible adducts, with potassium, sodium, acetonitrile and various paired 
ion variants. Not all of these would likely be encountered in an experiment of this 
nature and certainly many MS platforms now provide software that can help iden-
tify the parent ions and their adducts. Nevertheless, this example is intended to show 
how one could use the HMDB from the very beginning to the very end of a metabo-
lomics experiment.   

 If one clicks on the “Common Name” data  fi eld in the table shown in Fig.  11.4 , 
the list will be re-sorted alphabetically. Re-sorting the data in this way allows one to 
identify compounds that show up frequently in the list (i.e. those compounds that 

  Fig. 11.3    A screenshot of the HMDB “MS Search” web page. Masses can be entered into the text 
box shown in the middle of this page       
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have several different adducts). Having two or more adducts matching to a given 
parent compound can provide a greater degree of certainty about what the 
compound may be. Looking through this re-sorted list, it is quite apparent 
that there are multiple hits for 3-Hydroxyphenylpropanoic acid (HMDB00375), 
3-Butyn-1-al (HMDB06853), 3-Phenoxyprorionic acid (HMDB02229), 
4-Hydroxyphenylacetaldehyde (HMDB03767), 4-Methoxyphenylacetic acid 
(HMDB02072), Desaminotyrosine (HMDB02199), 5 C-aglycone (HMDB04810), 
Homovanillin (HMDB05175), Phenyllactic acid (HMDB00748/HMDB00779), 
Phenylalanine (HMDB00159) and Phenylacetic acid (HMDB00209). Further 
inspection also reveals several occurrences of Phenylpuryvate-like analogs 
(HMDB00205). The hits to 3-Butyn-1-al and 5 C-aglycone are rather exotic (rare) 
adducts and so these can probably be ruled out as spurious matches. They are also 
not reported to occur in blood. Interestingly, the remaining compounds are all 
tyrosine or phenylalanine intermediates or analogues. A further  fi ltering step can be 
done to see if these compounds are found (or have ever been reported) to appear in 
human blood. Clicking on the HMDB identi fi ers for our hits in the MS hit table 
shown in Fig.  11.4  and reading about the descriptions of each of these 12 “likely” 
compounds we will quickly learn that only Desaminotyrosine (HMDB02199), 

  Fig. 11.4    A screenshot of the output generated by an MS Search query using the masses listed in 
Table   11.1        
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Homovanillin (HMDB05175), Phenyllactic acid (HMDB00748/HMDB00779), 
Phenylalanine (HMDB00159), Phenylacetic acid (HMDB00209) and Phenyl-
pyruvate (HMDB00205) could be found, or have been previously reported to be, in 
human blood  [  26  ] . 

 While mass matching is not the most reliable approach to compound identi fi cation 
in mass spectrometry  [  43  ]  the appearance of multiple adducts along with further 
validation/checking via the HMDB as to whether they have been detected in human 
blood (via the “Bio fl uid Browse” option under the “Browse” menu) does add a 
considerable degree of con fi dence to their identi fi cations. From this shortened list 
of candidate metabolites we can start to make use of the HMDB’s other utilities, 
namely “Disease Browse” and “Pathway Browse”. If we go to HMDB’s top menu 
bar and click on the Menu item “Browse” and select the submenu “Disease Browse” 
we will see the following web page (Fig.  11.5 ). The box “Search by metabolite” 
allows one to enter the name or HMDB identi fi ers of a set of metabolites separated 
by a semi-colon. Enter the list as: HMDB02199; HMDB05175; HMDB00748; 
HMDB00779; HMDB00159; HMDB00209; HMDB00205 and press the “Search” 
button. The resulting table will display a number of diseases which exhibit altered 
levels of these metabolites in blood, urine, CSF and other bio fl uids/tissues.  

  Fig. 11.5    A screenshot of the HMDB’s “Disease Browse” web page. The “Search by Metabolite” 
box allows users to enter the names of metabolites or HMDB ID’s to  fi nd metabolite matches to 
diseases       
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 Several diseases such as Alzheimer’s, Dengue fever, Epilepsy, Bacterial 
Infections, Kidney disease, Hypothyroidism, Leukemia etc. are listed but almost all 
just match to one metabolite. The one exception is Phenylketonuria, which has  fi ve 
metabolite matches including Phenylalanine, Phenylacetic acid, Phenyllatic acid, 
3-Phenyllactic acid and Phenylpyruvic acid. Clicking on the hyperlink (OMIM: 
261600) or on the associated references listed on the right of the table will allow one 
to learn much more about the chemistry, biochemistry and genetics of phenylketo-
nuria. From the OMIM link we can learn that “ Phenylketonuria (PKU) is an auto-
somal recessive inborn error of metabolism resulting from a de fi ciency of 
phenylalanine hydroxylase, an enzyme that catalyzes the hydroxylation of phenyla-
lanine to tyrosine, the rate-limiting step in phenylalanine catabolism. If undiag-
nosed and untreated, phenylketonuria can result in impaired postnatal cognitive 
development resulting from a neurotoxic effect of hyperphenylalaninemia ”. 
Likewise, clicking on the HMDB ID hyperlinks for each of these compounds and 
reading the compound descriptions will give a clearer idea about how and why these 
metabolites are generated in the body. 

 If we now go to HMDB’s “Browse” menu and select “Pathway Browse” and 
enter the same set of metabolites in the “Search by Metabolite” text box we will get 
matches to three pathways: Phenylalanine and Tyrosine Metabolism, Transcription/
Translation and Tyrosine Metabolism. An image of the Phenylalanine and Tyrosine 
Metabolism pathway is shown in Fig.  11.6 . This pathway diagram shows the organs 

  Fig. 11.6    A screenshot of the Phenylalanine and Tyrosine Metabolism pathway from HMDB/
SMPDB. This pathway shows the organs (liver), cellular compartments (peroxisome, membrane, 
extracellular compartments), proteins (including quaternary structure and cofactors) and the chem-
ical structure of each of the compounds in the pathway       
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(liver), cellular compartments (peroxisome, membrane, extracellular compartments), 
proteins (including quaternary structure and cofactors) and the chemical structures 
of each compound in the pathway. Each image/structure is hyperlinked to either the 
HMDB (if it is a chemical) or to UniProt (if it is a protein). Clicking the protein icon 
corresponding to phenylalanine hydroxylase (PAH or P00439) will generate the 
UniProt page for this particular protein. Scrolling down through the UniProt page 
will show the nearly 100 known PAH mutants or variants (see Natural variations) 
that have been catalogued and which are associated with PKU. The pathway images 
in HMDB include many of the same images found in SMPDB. By navigating to the 
SMPDB (  www.smpdb.ca    ) and entering “phenylketonuria” into the search menu, the 
pathway for this disease (SMP00206) can be selected (by clicking the “Pathway” 
button) and viewed (Fig.  11.7 ). The PKU pathway includes all of the compounds 
identi fi ed by our “hypothetical” UPLC-MS experiment and it highlights the affected 
enzymes, the key transporters and the effects that these metabolites have in the brain 
(the main site of toxicity due to excess plasma phenylalanine). Once again, all of the 
images are hyperlinked to more detailed data pages in the HMDB, DrugBank and 
UniProt.   

 As simple as this example may be, it is primarily intended to show how the 
resources developed for the Human Metabolome Project (HMP) can be used to take 
relatively raw experimental data (MS peak intensities and masses) and generate 
biologically meaningful or medically useful results. In particular, the HMDB has 

  Fig. 11.7    A screenshot of the Phenylketonuria pathway from SMPDB. This pathway identi fi es the 
key metabolites in PKU and illustrates how these metabolites target the brain       
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been designed speci fi cally to facilitate metabolomic studies “from bench to 
bedside”. This capacity is further enhanced through the HMP’s af fi liate databases 
– DrugBank, T3DB, FooDB and SMPDB. Through the use of extensive hyperlink-
ing, cross-referencing to external databases, carefully compiled textual references, 
hand-illustrated pathway diagrams, detailed image mapping and comprehensive 
annotations – the HMP’s wide-ranging resources allow a remarkable breadth of 
“omics” queries to be asked and answered. This breadth of “omics” coverage is 
absolutely crucial since the essence of systems biology is to link all three levels of 
the “omics” pyramid (Fig.  11.1 ) and to merge them into a seamless continuum. 
While this grand vision of integrated biology has yet to be fully realized, it is per-
haps fair to say that the products of the HMP are helping to bring this vision a little 
closer to reality.      
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    1   Introduction 

 Otto Warburg, is recognized as one of the key scienti fi c generalists who was able 
to apply physical chemical data to better understand cancer cell metabolism  [  1  ] . 
In the 1910s he uncovered alterations in the intermediary metabolism of cancer 
cells that enabled cancer cell growth.  [  2  ]  His early discoveries led to the idea that 
cancer cells exhibited a reverse Pasteur effect of glycolysis in which glucose was 
rapidly metabolized to lactate  [  3  ] . Thus, Warburg showed that the metabolism of 
cancer cells is fundamentally altered relative to normal cells. However, it has only 
been in the last 10 years that a number of investigators rediscovered that many 
oncogenes function through alterations in metabolism and that through this new 
metabolic understanding new cancer diagnostics and cancer treatments might be 
possible  [  4,   5  ]  (Box   12.1 ).   
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    2   Global Metabolomics 

 This remarkable new interest in alterations of metabolism and how cancer cells 
metabolically transform from normal cells is also coinciding with our ability to 
instantaneously pro fi le 1000s of biochemicals in cells, an approach called metabo-
lomics. The word “metabolomics” (or “metabonomics”)  fi rst appeared in journal 
articles in 2000. Only a few metabolomic scienti fi c papers were published that year 
but by 2009 that number rose to over 1,300 published scienti fi c papers reporting 
metabolomic results. The major challenge for metabolomics has been to develop a 
technology that can extract, identify, and quantitate the entire spectrum of small 
molecules (MW < 1,500 Da) in any biological sample. There are between 2,500 and 
3,000 biochemicals synthesized in humans when one disregards complex lipids or 
peptides. Importantly, in any one sample matrix (i.e. blood, urine, tissue, etc.) there 
will always be fewer metabolites than the total number synthesized in the entire 
organism. Unfortunately, many uses of the word metabolomics cover rather limited 
attempts to study certain classes of molecules such as amino acids rather than the 
entire repertoire of available species. In this chapter we will refer to metabolomics 
as a technology to obtain as large a snapshot of biochemicals as possible. 

 “Global” or “unbiased” metabolomics has been plagued by dif fi culties stemming 
from the diverse physical properties of small molecules. These properties can vary 
greatly, with signi fi cant differences in solubilities and molecular weights affecting 
a small molecules ability to be measured and solublilized. A single chromatography 
method to separate all of the compounds is very dif fi cult and even more dif fi cult 
to analyze individual compounds without chromatographic separation. Further 
complications arise if studies are expected to be completed with a reasonable 

   Box 12.1 Pasteur Effect 

 Louis Pasteur  fi rst showed that aerating yeasted broth causes yeast cell growth 
to increase while fermentation decreases the rate of yeast growth. This effect 
can be explained through two different biochemical pathways. Under low 
oxygen conditions, pyruvate produced by glycolysis is metabolized into lac-
tate, ethanol and carbon dioxide (fermentation) producing only 2 moles of 
ATP per glucose molecule, while under suf fi cient oxygen conditions, fermen-
tation is inhibited and pyruvate produces acetyl CoA which is metabolized by 
the Krebs Cycle producing 38 moles of ATP per mole of glucose. During 
fermentation increased glycolysis occurs to compensate for low ATP produc-
tion. The inhibitory effect of oxygen on glucose  fl ux (glycolysis) and fermen-
tation is termed the “Pasteur effect”. The “reverse (or negative) Pasteur effect” 
refers to the stimulatory effect of oxygen on fermentation. The “Warburg 
effect” refers to aerobic glycolysis whereby glucose is converted to lactic acid 
and ethanol in the presence of oxygen.  
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turn-around time. Methods that can only analyze a few samples per day will simply 
be impractical from a discovery technology and statistical standpoint. These issues 
are currently being addressed through advanced multi-system approaches where 
the best separation and detection instrument technologies are being developed to 
run in tandem. This approach allows for a comprehensive solution achieved by 
combining principles offered by various best-in-breed technologies. As this new 
technology develops and its use in biomarker detection studies increases, it is rap-
idly becoming clear that metabolomics will represent a high impact technology in 
various healthcare-related  fi elds such as the diagnosis of disease, identi fi cation of 
drug targets, evaluation of the effects of drugs, and selection of patients most likely 
to respond to drug therapy (i.e. personalized medicine)  [  6–  8  ] . 

 One method developed for global metabolomics operates in essentially four 
steps, as shown in Fig.  12.1 .  [  9  ]  Step one is extraction of the small molecules from 
the biological sample. Step two is the chromatography coupled with mass spectrom-
etry and data collection. Step three is the automated and manual QC analysis of the 
data using visual interfaced software  [  10  ] . Step four, the  fi nal step, is the statistical 
and biological interpretation of the data itself. In this method a wide range of very 

  Fig. 12.1    The  top  half of the  fi gure depicts the three steps of a global metabolomics method being 
applied to a biological sample. These three steps, biochemical extraction, multiple chromatogra-
phy and mass spectrometry analysis, and then a unbiased global informatics methods to reduce the 
raw machine data to the biochemicals in the sample and the relative concentration of each 
biochemical in each sample. The  bottom  half of the analysis involves the data interpretation and 
statistical analysis that leads to the metabolic understanding available with this method       
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polar to non-polar compounds can be measured from as little as 50 ul of blood 
plasma  [  9  ] . Extracted samples are split into four aliquots for different chromatogra-
phy and mass spectrometry platforms, two UHPLC methods and one GC method, 
with one aliquot held in reserve. These three chromatography and MS systems com-
plement each other in the range of biochemicals measured and provide an enhanced 
biochemical coverage of each sample. Approximately 70–80% of the biochemicals 
are measured on more than one platform with 30–40% measured on all three plat-
forms. For compounds observed on multiple platforms, the platform with the best 
analytical characteristics (e.g. fewest interfering peaks or highest signal to noise) is 
generally used for the analysis of that compound. In general, the GC method pro-
vides better separation of molecules that tend to be more dif fi cult to separate using 
a typical reverse phase LC method (e.g. carbohydrates).  

 After the raw data has been acquired from the instruments, this method utilizes a 
suite of software packages that automatically integrates each ion across retention 
time and then uses that ionic information, which may include additional MS/MS 
fragmentation information and retention time, to identify the compound  [  10  ] . After 
a compound is identi fi ed in a sample, one of the characteristic and stronger ions is 
used to determine a relative concentration of that compound in each sample. This 
approach assures that the compound will be represented only once in the subsequent 
statistical analysis. When the software has  fi nished analyzing the samples, all of the 
data is loaded into a visual user interface that allows a scientist to curate the data for 
QC purposes and visually inspect how well each compound was identi fi ed and 
verify only those compounds with the highest degree of con fi dence for inclusion in 
the  fi nal data set. A variety of statistical approaches can be applied to the  fi nal data 
set at that point, including ANOVA, t-tests, random forest, PCA, etc. The goal of 
these types of statistical treatments is to identify the biochemicals that best repre-
sent the most signi fi cant changes in concentration between the groups in the study. 
One advantage of biochemistry is that multiple compounds in a particular 
biochemical pathway may often be signi fi cantly altered, giving an even higher 
degree of con fi dence to the importance of that biochemical change. In this respect, 
it is important to point out that most statistical treatments assume independent vari-
ables when, in fact, we know that certain biochemicals are related to the same or 
similar pathways. Metabolon is developing a large database of these types of bio-
chemical changes as well as those that result from toxicity, drug mechanism, dis-
ease, etc. This knowledge enhances Metabolon’s ability to provide a biological 
interpretation for each study it performs.  

    3   Understanding Cancer Metabolism 

 In cancer cells, metabolism is dramatically reprogrammed to support accelerated 
cell proliferation and adaption to the tumor microenvironment. Untargeted metabo-
lomics is an excellent tool to probe the cancer-altered biochemical pathways to gain 
insights into pathogenesis and identify biomarkers and/or therapeutic targets. It has 
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been suggested that cancer cells alter metabolism to serve the following needs: 
accelerated energy production, biosynthesis of macromolecules, and maintenance 
of redox status  [  3  ] . Here we summarize the core metabolic pathways altered in can-
cer cells, and which are common to various cancer types. 

    3.1   Glucose Metabolism, Glutaminolysis, and IDH Mutation 

 Glucose plays a central role in energy generation. Elevated uptake of glucose and 
glycolysis is a hallmark of cancer, even under normal oxygen conditions. This phe-
nomenon is referred to as the “Warburg effect”  [  11  ] . As shown in Fig.  12.2 , glucose 
utilization in cancer cells has several major branch points: (1) lactate production, 
(2) citrate production, (3) TCA cycle, and (4) pentose phosphate pathway. Collectively 
these metabolic pathways contribute to energy production,  de novo  fatty acid and 
cholesterol biosynthesis, nucleotide biosynthesis, and NADPH generation.  

 In cancer cells, a majority of glucose (as much as 90% in the case of glioblas-
toma)  [  12  ]  from the elevated glycolysis is converted to lactate, which is excreted 
from the cell. Although the precise mechanism of lactate production in conjugation 
with the Warburg effect has not been fully elucidated, several hypotheses have been 
recently proposed in the literature. First, the high rate of glycolysis and lactate may 
allow faster conversion of glucose metabolites for amino acid biosynthesis and the 
pentose phosphate pathway to support cell growth  [  13  ] . Second, the increased pro-
duction of glucose-derived acid (mainly lactate) leads to microenvironmental acido-
sis. Since tumor cells are adapted to be resistant to acidic environments this provides 
the cancer cells a powerful growth advantage, allowing proliferation and invasion 
into the extracellular matrix of the surrounding host tissue  [  14  ] . Third, many solid 
tumors contain hypoxic regions, which have limited access to nutrients  [  15  ] . It has 
been demonstrated that glucose is preferentially used by hypoxic tumor cells to 
produce lactate, which is excreted as the energy source for oxygenated tumor cells. 
The existence of such “metabolic symbiosis” between hypoxic and aerobic cancer 
cells allows for more ef fi cient glucose utilization  [  16  ] . 

 The high rate of glycolysis is critical to provide the key metabolic intermediate, 
citrate, for  de novo  lipogenesis. It has been well established that lipogenesis is 
essential for the growth and proliferation of tumor cells  [  17  ] . In fact, due to their 
importance to tumor growth, glycolysis and lipogenesis have been proposed as can-
cer therapeutic targets  [  18  ] . Pyruvate produced by glycolysis enters the mitochon-
dria where it is converted into citrate. Citrate is then exported out of mitochondria 
to the cytosol. In the cytosol, citrate acts as a precursor for fatty acid and cholesterol 
synthesis. 

 A portion of glucose can be further metabolized through the TCA cycle. However, 
due to the export of citrate for lipogenesis, TCA cycle intermediates need to be 
replenished to maintain the full function of oxidative phosphorylation. Cancer cells 
accomplish this by utilization of glutamine (glutaminolysis). Glutaminolysis also 
contributes to the production of lactate and NADPH  [  12  ] . 
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 The glycolytic intermediate fructose-6-phosphate can be shunted into the pen-
tose phosphate pathway (PPP). The PPP supplies the majority of cellular NADPH, 
which is essential for reductive biosynthesis, such as fatty acid biosynthesis. NADPH 
is also critical to maintain the level of reduced glutathione and mediate oxidative 
stress. The nonoxidative phase of the PPP produces ribose-5-phosphate for nucleotide 

  Fig. 12.2    Glycolysis, TCA cycle, glutaminolysis, pentose phosphate pathways, and 
2-hydroxyglutarate production in cancer cells       
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biosynthesis  [  19  ] . It was recently found that p53, a tumor suppressor, inhibits the 
PPP by direct binding to glucose-6-phosphate dehydrogenase, thereby suppressing 
glucose consumption and NADPH production  [  20  ] . 

 In the last couple of years, much excitement has been generated with regard to 
the presence of elevated levels of 2 hydroxyglutarate (2-HG) in association with 
human brain cancers. Genetic studies have identi fi ed that two (IDH1 and IDH2) of 
the three isoforms of isocitrate dehydrogenase (IDH) are mutated in a high 
proportion of gliomas of intermediate malignant grade  [  21  ]  and acute myeloid leu-
kemia’s  [  22,   23  ] . An IDH mutation has also been reported in prostate cancer,  [  24  ]  
colorectal cancer,  [  25  ]  and melanoma  [  26  ] . Eukaryotic cells contain two classes of 
IDH enzymes (NAD + - and NADP + -dependent) which convert isocitrate to  a - 
ketoglutarate. The two NADP + -dependent forms, IDH1 and IDH2 are located in 
cytosol and mitochondria, respectively. The NAD + -dependent IDH3 is located in the 
mitochondria and is part of the TCA cycle. It has been demonstrated that mutations 
to IDH1 altered the enzyme function to produce 2-HG instead of  a -ketoglutarate 
 [  27  ] . The signi fi cance of IDH mutation and the function of 2-HG have not been fully 
elucidated. The IDH mutation has been reported to be associated with decreased cell 
proliferation  [  28  ]  and longer survival rate in low-grade gliomas  [  21,   29  ] .  

    3.2   Lipid Metabolism 

 Another metabolic signature of cancer is accelerated phospholipid biosynthesis, as 
proliferating cells have a signi fi cant need for membrane production. Elevation of 
fatty acids, as well as precursors for phospholipid head groups, such as choline, 
phosphocholine, CDP-choline, ethanolamine, and phosphoethanolamine, are often 
observed in tumor tissues. The increases of fatty acids are accompanied by the 
triacylglycerol catabolites, monoacylglycerol and glycerol, suggesting that in addi-
tion to  de novo  biosynthesis, lipolysis also contributes to elevated free fatty acids. 
Consistent with the metabolomics observations, monoacylglycerol lipase, an 
enzyme that hydrolyses, triacylglycerols during lipolysis, has been found to pro-
mote cancer pathogenesis  [  30  ] . Furthermore, choline kinase, which catalyzes the 
phosphorylation of choline to phosphorylcholine for phospholipid biosynthesis, has 
been identi fi ed as a target for cancer therapeutics  [  31,   32  ] .  

    3.3   Antioxidant and Tryptophan Catabolism 

 The glutathione pathway is important in tumor development, as it is involved in 
protection from oxidative stress, a typical characteristic of rapidly growing cells. 
Glutathione provides a substrate for neutralization of reactive oxygen species, 
particularly hydrogen peroxide. The glutathione (GSH) content of cancer cells is par-
ticularly relevant in regulating mutagenic mechanisms, DNA synthesis, growth, and 
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multidrug and radiation resistance. In malignant tumors, it has been shown that meta-
static cells with high GSH levels survive the combined nitrosative and oxidative 
stresses elicited by the host tissues  [  33  ] . NADPH is required for recycling glutathione, 
and this is mostly provided by the pentose phosphate pathway and glutaminolysis. 

 Tryptophan catabolism is another pathway that mediates cancer cells’ adaptation 
to their microenvironment. Tryptophan can be converted to kynurenine by 
indolamine-2,3-dioxygenase (IDO), which further leads to the production of NAD. 
In cancer cells, the increases of kynurenine, quinolinate, and NAD are frequently 
observed, suggesting that the kynurenine pathway is up regulated. The induction of 
IDO has been found to serve anti-in fl ammatory functions  [  34,   35  ] . IDO has recently 
gained considerable attention since it has been shown to be expressed in a variety of 
human cancers  [  36–  39  ] . It has been suggested that IDO may be exploited by tumors 
as a mechanism of immune evasion  [  25,   37,   40,   41  ] . Numerous studies have 
identi fi ed increased IDO expression as an independent prognostic variable for 
reduced overall survival in cancer patients  [  42  ] . It has been further proposed 
that selective inhibition of IDO1 may represent an attractive cancer therapeutic 
strategy  [  43  ] .   

    4   Applications of Metabolomics in Cancer Research 

 Cancer cells are a particularly attractive target for metabolomics since many cellular 
pathways are up regulated or altered to meet the special needs of cancer cells (e.g. 
enhanced glycolysis, utilization of energy producing pathways for production of 
biochemical building blocks, DNA repair, genome stability, telomere maintenance), 
leading to large changes in endogenous biochemicals that can then be readily 
quanti fi ed. Additionally, since many pathways are altered in cancer cells a global 
metabolomics approach quantifying both polar and non-polar biochemicals occur-
ring in many pathways, would seem to be particularly well suited. The utility of 
metabolomics in cancer research has been demonstrated in drug discovery/
development and cancer biomarker discovery. Recent examples include the cancer 
drug GMX1778 where the target and mechanism of action were unraveled using 
metabolomics and prostate cancer where biomarkers of cancer aggressiveness were 
identi fi ed. 

    4.1   Mechanism of Cancer Drug Action: GMX1778 

 One of the more fascinating and important contributions of global metabolomics to 
understanding cancer metabolism has been the elucidation of a cancer drug target 
and mechanism of action. GMX1777 is a soluble pro-drug that is rapidly converted 
in vivo to GMX1778 (CHS828), the active cyanoguanidinopyridine. Although there 
are many published studies of GMX1778 since its discovery, the actual molecular 
target of the drug has been elusive. Potent broad spectrum anti-tumor activity has 
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been demonstrated in several tumor types evaluated in vitro in a large cell panel and 
in vivo in multiple human xenograft models. The mechanism of action of this small 
molecule was believed to involve NF-KB inhibition  [  44  ] . However, substantial 
NF-KB inhibition did not occur until 24 h after treatment with GMX1778 suggest-
ing that NF-KB inhibition might be secondary to some other primary drug action. 
In an attempt to identify the primary mechanism of action and protein target of the 
drug, a variety of unbiased proteomic techniques and molecular biology were 
employed to no avail. Therefore, to attempt to discover the anticancer mechanism a 
global metabolomics analysis was performed to identify intracellular physiological 
changes over time. 

 One of the most important steps in a mechanism of action study is to appropri-
ately design the sample collection for the study. For most mechanism of action 
studies it is critically important to evaluate a time course in order to separate the 
primary effects of the drug from downstream secondary or tertiary effects. Since 
GMX1778 has maximum activity on a multiple myeloma cell line in 24 h samples 
were collected at several timepoints before the maximum activity. IM-9, a sensitive 
multiple myeloma cell line, was treated with 30 nM GMX1778 or with DMSO 
(control) for 6-, 13-, 20-, or 27-h in RPMI-1640 media (10% FBS and 0.3 mg/
mL L-glutamine), n = 6. Frozen cell pellets (2 × 10 6  cells) were analyzed using a 
previously published extraction schema followed by GC-MS and LC-MS metabo-
lomics analysis. The relative standard deviation (RSD) value for a technical repli-
cate of pooled aliquots from the cell samples was 10%. This 10% relative standard 
deviation represents the total process variation of extraction, chromatography, and 
quantitation for the biochemicals measured. Using a p-value cutoff of 0.1 and q-value 
cutoff of 0.2, there were 27, 46, 65, and 65 biochemicals altered relative to the 
DMSO controls at 6, 13, 20, and 27 h, respectively  [  45  ] . Although more biochemi-
cals changed at the later time points a number of signi fi cant biochemical pathway 
alterations occurred as early as the 6 h timepoint. All biochemical changes were 
interpreted physiologically and in a biochemical pathway context using in-house 
pathways and a biochemical knowledge data base to expedite this process. 

 The most signi fi cant alteration at the earliest timepoint was in the level of NAD. 
A 60% decrease in intracellular nicotinamide adenine dinucleotide (oxidized) 
(NAD+) levels was observed after just 6 h treatment with GMX1778  [  45  ] . At 13 h 
the levels declined by 91% relative to the control and the later time points were 
below detection limits. Since this was the most signi fi cant early effect of the drug 
we asked whether other biochemical changes that occurred later could be a result of 
this primary effect on the levels of NAD. 

 NAD + is a cofactor in oxidation-reduction reactions, including ATP generation 
from glycolysis and oxidative phosphorylation. NAD + is a substrate for reactions 
catalyzed by poly (ADP-ribose) polymerase, sirtuins and ADP-ribosyl cyclase. 
Since NAD is required by three enzymes in the Krebs Cycle we asked whether any 
of the Krebs Cycle intermediates increased as a result of this NAD inhibition. 
Indeed, fumarate increased 36%, 79%, 335%, and 244% and malate increased 48%, 
87%, 413%, and 268% at the four timepoints measured supporting the idea that the 
drug inhibited NAD. Additionally pathways involved in glycolysis and alternative 
glucose metabolism were also supportive of the idea of NAD inhibition. 
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 The next question proposed was how one could validate in an independent 
experiment that GMX1778 is indeed an inhibitor of NAD biosynthesis. As shown 
in Fig.  12.3 , in mammals there are two independent pathways for synthesizing NAD 
using either Niacin or Nicotinamide as substrates. At least three enzymes in these 
NAD + biosynthetic pathways are potential targets of GMX1778: NAD + synthetase, 
nicotinamide mononucleotide adenylyl transferase (NMNAT), or nicotinamide 
phosphoribosyl transferase (NAMPRT). Inhibition of any of these enzymes could 
account for the observed decreased NAD + levels. Speci fi c experiments were per-
formed to identify whether GMX1778 inhibited the Niacin or Nicotinamide path-
way and to determine which of these three targets was most important for drug 
action. GMX1778-treated cells were rescued by nicotinic acid as seen in Fig.  12.4 . 
 [  46  ]  Additional experiments demonstrated that GMX1778 inhibits NAMPRT, the 
rate-limiting enzyme that converts nicotinamide (NAM) to nicotinamide mononu-
cleotide (NMN) in vitro and in vivo  [  46  ] . The apparent K 

i
  of GMX1778 for 

NAMPRT was 1–3 nM. This correlates well with the low nanomolar IC 
50

  of this 
compound in multiple human cell lines. Since the crystal structure of NAMPRT is 
known, it was also discovered that cell lines resistant to the drug were the result of 
a single amino acid mutation in the active site of the enzyme and presumably inter-
fered with drug binding.   

 This study illustrates how a global metabolomic approach found the biochemical 
needle (NAD+) in the hay stack (metabolome containing hundreds of endogenous 
biochemicals). The study also demonstrated not only how this technology can 
uncover the mechanism of a drug but also the importance of potential metabolic 
targets for new cancer therapies. Tumor cells have elevated NAMPRT and a high 
rate of NAD + turnover due to high ADP-ribosylation activity required for DNA 
repair, genome stability, and telomere maintenance, making them more susceptible 
to NAMPRT inhibition than normal cells  [  47  ] . This novel mechanism supports the 
clinical use of GMX1777 as an anti-cancer agent and further supports these types of 
anticancer targets.  

  Fig. 12.3    Two independent pathways for synthesizing NAD used in mammals. Either Niacin or 
Nicotinamide is used as starting biochemicals to synthesize NAD. In the validation experiment the 
study took advantage of these two independent pathways to validate that the drug inhibited only 
the Nicotinamide pathway and not the Niacin pathway       
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    4.2   Metabolism in Aggressive Cancer 

 A global metabolomic study to understand alterations that characterize neoplastic pro-
gression was investigated by pro fi ling over 1,100 metabolites across 262 clinical sam-
ples related to prostate cancer from tissue, urine, and plasma  [  48  ] . The metabolic 
differences between benign prostate tissue, prostate cancer, and metastatic prostate 
cancer were quite striking. However, the differences in the metabolomic pro fi les of 
cancer versus non-cancer obtained from plasma and urine were less robust, presum-
ably because of the distal location and dilution effects from the prostate. Between 
benign tissue and prostate cancer tissue we identi fi ed 87 out of 518 metabolites that 
had p-values of less than 0.05 and corresponded to a 23% false discovery rate. Of these 
metabolites, 50 were increased in prostate cancer and 37 were decreased in prostate 
cancer. In the metastatic tumor samples 124 metabolites were signi fi cantly altered as 
compared to localized prostate tumors, with the majority being decreased in concen-
tration. Interestingly, several metabolites that are speci fi cally produced by the prostate 
tissue, spermine, spermindine, and citrate, are dramactically decreased in prostate can-
cer suggesting speci fi c metabolism changes from the normal tissue function. 

 Of primary interested were metabolites that signi fi cantly increased with the pro-
gression from benign to prostate cancer and then further progressed as the tissue 

  Fig. 12.4    GMX1778-treated cells were rescued only by nicotinic acid       
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became metastatic. Six metabolites had this pro fi le including, sarcosine, uracil, 
kynurenine, glycerol-3-phosphate, leucine, and proline. Of these, sarcosine was the 
most signi fi cantly increased as the disease progressed. Sarcosine is a fairly 
uncommonly studied amino acid derivative that is simply N-methyl-glycine to 
which a methyl group has been added to the primary amine of glycine. Sarcosine is 
fundamentally involved in two pathways, one involves metabolism of choline and 
the other is the direct synthesis of sarcosine via the methylation of glycine. 

 To con fi rm the importance of sarcosine, a highly sensitive and quantitative gas 
chromatography–mass spectrometry (GC-MS) assay was developed for sarcosine 
using an isotope dilution method. A completely independent cohort of 89 tissue 
samples were analyzed to validate the global metabolomics discovery analysis. Not 
only were the quantitative differences between benign, prostate cancer, and meta-
static cancer signi fi cant, but, as expected for this more sensitive sarcosine assay the 
differences between each tissue were more dramatic. Given that the sarcosine data 
in this independent cohort validated the discovery study using global metabolomics, 
the paper goes on to investigate the potential mechanistic role of sarcosine in pros-
tate cancer. 

 To understand the potential mechanistic role of sarcosine various prostate cancer 
cell lines were tested for their level of sarcosine and cell invasiveness. It was found 
that not only was sarcosine elevated in these cell lines as compared to benign cells 
but that it also correlated to the level of cell invasiveness. Furthermore, RNAi exper-
iments that knocked down or increased the levels of sarcosine were shown to 
manipulate the level of cell invasiveness which tracked with the level of sarcosine. 
Finally, this paper showed that sarcosine directly added to these cell lines lead to an 
increase in invasiveness. 

 Overall this was an excellent example of employing global metabolomics to 
understand the metabolic differences in prostate cancer progression. From this 
work, sarcosine was identi fi ed as not only a validated tissue marker of increased 
prostate cancer progression but also mechanistically linked to increasing cell aggres-
sitivity. Further work will be required to understand how this increase in sarcosine 
leads to increased cell aggressitivity but it clearly demonstrates that changing the 
metabolism of cells can dramatically alter their cancer state.       

    References 

    1.    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 
8:519–530  

    2.    Stubbs M, Grif fi ths JR (2010) The altered metabolism of tumors: HIF-1 and its role in the 
Warburg effect. Adv Enzyme Regul 50:44–55  

    3.    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 
11:85–95  

    4.    Riefke B, Mumberg D, Kroemer G et al (2007) Preface. In: Keun K, Steger-Hartmann T, 
Petersen K et al (eds) Oncogenes meet metabolism. From deregulated genes to a broader 
understanding of tumour physiology. Springer, Berlin  



18912 Understanding Cancer Metabolism Through Global Metabolomics

    5.    Dang CV, Lewis BC, Dolde C, Dang G, Shim H (1997) Oncogenes in tumor metabolism, 
tumorigenesis, and apoptosis. J Bioenerg Biomembr 29:345–354  

    6.    Zhang Y, Dai Y, Wen J et al (2011) Detrimental effects of adenosine signaling in sickle cell 
disease. Nat Med 17:79–86  

    7.    Takei M, Ando Y, Saitoh W et al (2010) Ethylene glycol monomethyl ether-induced toxicity is 
mediated through the inhibition of  fl avoprotein dehydrogenase enzyme family. Toxicol Sci 
118:643–652  

    8.    Barnes VM, Teles R, Trivedi HM et al (2010) Assessment of the effects of dentifrice on 
periodontal disease biomarkers in gingival crevicular  fl uid. J Periodontol 81:1273–1279  

    9.    Evans AM, Dehaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted 
ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrom-
etry platform for the identi fi cation and relative quanti fi cation of the small-molecule comple-
ment of biological systems. Anal Chem 81:6656–6667  

    10.    Dehaven CD, Evans AM, Dai H, Lawton KA (2010) Organization of GC/MS and LC/MS 
metabolomics data into chemical libraries. J Cheminf 2:9  

    11.    Scatena R, Bottoni P, Pontoglio A, Giardina B (2010) Revisiting the Warburg effect in cancer 
cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. 
Proteomics Clin Appl 4:143–158  

    12.    Deberardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed 
cells can engage in glutamine metabolism that exceeds the requirement for protein and nucle-
otide synthesis. Proc Natl Acad Sci USA 104:19345–19350  

    13.    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the 
metabolic requirements of cell proliferation. Science 324:1029–1033  

    14.    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 
4:891–899  

    15.    Hockel M, Vaupel P (2001) Tumor hypoxia: de fi nitions and current clinical, biologic, and 
molecular aspects. J Natl Cancer Inst 93:266–276  

    16.    Sonveaux P, Vegran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively 
kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942  

    17.    Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer 
pathogenesis. Nat Rev Cancer 7:763–777  

    18.    Hagland H, Nikolaisen J, Hodneland LI et al (2007) Targeting mitochondria in the treatment 
of human cancer: a coordinated attack against cancer cell energy metabolism and signalling. 
Expert Opin Ther Targets 11:1055–1069  

    19.    Tong X, Zhao F, Thompson CD (2009) The molecular determinants of de novo nucleotide 
biosynthesis in cancer cells. Curr Opin Genet Dev 19:32–37  

    20.    Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of 
glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316  

    21.    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 
360:765–773  

    22.    Ducray F, Marie Y, Sanson M (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 
360:2248–2249  

    23.    De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 
360:2248–2249  

    24.    Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblasto-
mas and other common cancers. Int J Cancer 125:353–355  

    25.    Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast 
and colorectal cancers. Science 314:268–274  

    26.    Lopez GY, Reitman ZJ, Solomon D et al (2010) IDH1(R132) mutation identi fi ed in one human 
melanoma metastasis, but not correlated with metastases to the brain. Biochem Biophys Res 
Commun 398:585–587  

    27.    Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydrox-
yglutarate. Nature 462:739–744  



190 M.V. Milburn et al.

    28.    Bralten LB, Kloosterhof NK, Balvers R et al (2011) IDH1 R132H decreases proliferation of 
glioma cell lines in vitro and in vivo. Ann Neurol 69:455–463  

    29.    Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 mutations predict longer survival 
and response to temozolomide in low-grade gliomas. Neurology 75:1560–1566  

    30.    Nomura DK, Long JZ, Niessen S et al (2010) Monoacylglycerol lipase regulates a fatty acid 
network that promotes cancer pathogenesis. Cell 140:49–61  

    31.    Janardhan S, Srivani P, Sastry GN (2006) Choline kinase: an important target for cancer. Curr 
Med Chem 13:1169–1186  

    32.    Glunde K, Serkova NJ (2006) Therapeutic targets and biomarkers identi fi ed in cancer choline 
phospholipid metabolism. Pharmacogenomics 7:1109–1123  

    33.    Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev 
Clin Lab Sci 43:143–181  

    34.    Sorensen RB, Hadrup SR, Svane IM et al (2011) Indoleamine 2,3-dioxygenase speci fi c, cyto-
toxic T cells as immune regulators. Blood 117:2200–2210  

    35.    Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative 
stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 
257:221–239  

    36.    Kallberg E, Wikstrom P, Bergh A, Ivars F, Leanderson T (2010) Indoleamine 2,3-dioxygenase 
(IDO) activity in fl uence tumor growth in the TRAMP prostate cancer model. Prostate 
70:1461–1470  

    37.    Leung BS, Stout LE, Shaskan EG, Thompson RM (1992) Differential induction of indoleam-
ine-2,3-dioxygenase (IDO) by interferon-gamma in human gynecologic cancer cells. Cancer 
Lett 66:77–81  

    38.    Karanikas V, Zamanakou M, Kerenidi T et al (2007) Indoleamine 2,3-dioxygenase (IDO) 
expression in lung cancer. Cancer Biol Ther 6:1258–1262  

    39.    Prendergast GC, Metz R, Muller AJ (2010) Towards a genetic de fi nition of cancer-associated 
in fl ammation: role of the IDO pathway. Am J Pathol 176:2082–2087  

    40.    Macchiarulo A, Camaioni E, Nuti R, Pellicciari R (2009) Highlights at the gate of tryptophan 
catabolism: a review on the mechanisms of activation and regulation of indoleamine 
2,3- dioxygenase (IDO), a novel target in cancer disease. Amino Acids 37:219–229  

    41.    Lee SY, Choi HK, Lee KJ et al (2009) The immune tolerance of cancer is mediated by IDO that 
is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32:22–28  

    42.    Inaba T, Ino K, Kajiyama H et al (2010) Indoleamine 2,3-dioxygenase expression predicts 
impaired survival of invasive cervical cancer patients treated with radical hysterectomy. 
Gynecol Oncol 117:423–428  

    43.    Liu X, Newton RC, Friedman SM, Scherle PA (2009) Indoleamine 2,3-dioxygenase, an emerg-
ing target for anti-cancer therapy. Curr Cancer Drug Targets 9:938–952  

    44.    Olsen LS, Hjarnaa PJ, Latini S et al (2004) Anticancer agent CHS 828 suppresses nuclear 
factor-kappa B activity in cancer cells through downregulation of IKK activity. Int J Cancer 
111:198–205  

    45.    Watson M, Roulston A, Belec L et al (2009) The small molecule GMX1778 is a potent inhibi-
tor of NAD + biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyl-
transferase 1-de fi cient tumors. Mol Cell Biol 29:5872–5888  

    46.   Roulston A, Watson M, Bernier C et al (2007) GMX1777: a novel inhibitor of 
NAD +  biosynthesis via inhibition of nicotinamide phosphoribosyl transferase. American 
Association of Cancer Research-NCI-EORTC international conference on molecular targets 
and cancer therapeutics [Online]  

    47.    Beauparlant P, Bedard D, Bernier C et al (2009) Preclinical development of the nicotinamide 
phosphoribosyl transferase inhibitor prodrug GMX1777. Anticancer Drugs 20:346–354  

    48.    Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic pro fi les delineate poten-
tial role for sarcosine in prostate cancer progression. Nature 457:910–914     



191K. Suhre (ed.), Genetics Meets Metabolomics: from Experiment to Systems Biology,
DOI 10.1007/978-1-4614-1689-0_13, © Springer Science+Business Media, LLC 2012

    1   Fatty Acid Metabolism 

 Fatty acids (FA) play an essential role in many cellular processes such as energy 
production and storage, membrane homeostasis, signalling and metabolic regula-
tion. FA species in fl uence membrane viscosity, anchoring of proteins to membranes, 
and synthesis of bioactive lipid mediators. FAs are either synthesised de novo or 
taken up as nutrients and essential FAs. Intestine, liver, adipose tissue and muscle 
are central organs regulating FA homeostasis, being directly connected to glucose 
homeostasis and insulin resistance  [  1,   2  ] . They depend on the delivery of carbon 
from the diet, and store excess FAs as acylglycerols or cholesteryl esters in lipid 
droplets or release them into the circulation. 

    1.1   Synthesis and Metabolism of FAs 

 FAs are synthesized de novo through fatty acid synthase (FAS, Fig.  13.1 ). FAS con-
sists of two identical monomers resembling, complex multifunctional polypeptides 
encoded by a single gene, with each monomer containing the six catalytic activities 
necessary for FA synthesis  [  3  ] . Only the dimeric form is functionally active  [  4  ] . 
During biosynthesis intermediate products do not diffuse from the complex, ulti-
mately forming palmitate (C16:0) from eight acetyl-CoA building blocks. De novo 
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  Fig. 13.1    ( a ) Fatty acid synthesis in the cytoplasm. The biosynthesis of fatty acids consists of four 
reactions per cycle (condensation-reduction-dehydration-reduction) that take place at the multi-
functional enzyme fatty acid synthase (FAS), starting with malonyl-CoA. The endpoint of the 
synthesis is palmitate (C16:0). Fatty acids with longer chains and unsaturated fatty acids are syn-
thesized through subsequent pathways by elongases and desaturases. Malonyl-CoA also regulates 
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synthesis is especially high during embryogenesis, in fetal lungs, in adult lactating 
breasts and in the endometrium  [  5  ] . Unsaturated and long-chain FAs are taken up 
through the diet (n-3 and n-6 series) and further processed through elongases and 
desaturases summarized in Table  13.1 .   

 Increased FA synthesis also has been observed in tumor cells as a result of ele-
vated activity of ATP citrate lyase and fatty acid synthase  [  6,   7  ] . 

    1.1.1   Synthesis of Fatty Acids 

 Under physiological conditions, about 90% of FAs in mammalian cells originate 
from de novo synthesis. The biochemically important FAs have a chain length 
between 14 and 20 carbon atoms. De novo synthesis occurs mainly in the liver, 
where glucose is converted to pyruvate and then to citrate, which is converted to 
acetyl-CoA by ATP citrate lyase (Fig.  13.1a ). 

 Acetyl-CoA carboxylase (ACC) is a multienzyme-complex that catalyzes the 
carboxylation to malonyl-CoA. Malonyl-CoA functions as intermediate in FA 
synthesis and as a regulatory effector controlling FA oxidation in liver and muscle 
by regulation of the entry of FAs into mitochondria  [  8  ] . There are two isoforms, 
ACC1 expressed primarily in lipogenic tissues, and ACC2 predominating in heart 
and skeletal muscle. Both ACCs catalyze formation of malonyl-CoA which serves 
as substrate for FAS, carrying out the  fi rst and key regulatory step in FA biosyn-
thesis  [  9,   10  ] . There are four steps involved in an elongation cycle of FAs: conden-
sation is the  fi rst step, which in case of the primary step of FA synthesis couples 
acetyl-CoA and malonyl-CoA, while tethered to the enzyme through the pan-
totheine arm. The second step is the reduction of the b-carbonyl-group through the 
b-ketoacyl- synthase-condensing enzyme to form the corresponding alcohol, fol-
lowed by dehydration at this position as the third step to yield the α,b-unsaturated 
product. The last step is the reduction of the double bond forming the saturated 
FA. This cycle is repeated seven times, which ultimately releases palmitate (C16:0) 
from FAS by an intrinsic thioesterase activity (Fig.  13.1a ). 

 Certain tissues, like skeletal and cardiac muscle, lack FAS. Instead, these tissues 
express ACC2 and malonyl-CoA decarboxylase (MCD), which removes malonyl-
CoA by decarboxylation to yield CO 

2
  and acetyl-CoA. The ACC-catalyzed reaction 

is regulated by allosteric effectors and phosphorylation by 5 ¢ -AMP-dependent pro-
tein kinase. 

Fig. 13.1 (continued) the fatty acid  b -oxidation by inhibition of carnitine transport into mitochon-
dria.  ACP  acyl carrier-protein. ( b ) Branched chain fatty acid biosynthesis with leucine, isoleucine 
and valine as precursors. Presented on the  left side  are structures of substrates and products, on the 
 right side  the mechanism of biosynthesis is depicted.  BCAT  branched-chain aminotransferase, 
 BCKAD  branched-chain keto-acid dehydrogenase,  ELOVL  elongation of very long chain fatty 
acids. Monomethyl branched chain fatty acids can be elongated with the elongation enzymes 
ELOVL5 and ELOVL6       
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   Table 13.1    Desaturases and elongases involved in fatty acid and lipid metabolism including 
synonyms, chromosome location and ENSEMBL-No   

 ENSEMBL No.  Symbol  Name (ChrLoc)  Synonyms 

 ENSG00000149485  FADS1 
(11q12.2-q13.1) 

 Fatty acid desaturase 1  D5D, Delta(5) fatty acid 
desaturase, FADS6, 
FADSD5 

 ENSG00000134824  FADS2 (11q12.2)  Fatty acid desaturase 2  D6D, Delta(6) fatty acid 
desaturase, FADSD6 

 ENSG00000221968  FADS3 (11q12.2)  Fatty acid desaturase 3  CYB5RP, Cytochrome 
b5-related protein 

 ENSG00000172782  FADS6 (17q25.1)  Fatty acid desaturase 6  – 
 ENSG00000099194  SCD (10q24.31)  Stearoyl-CoA 

desaturase 
 Delta(9)-desaturase, 

FADS5, SCD1, 
stearoyl CoA 
desaturase 

 ENSG00000145284  SCD5 (4q21.22)  Stearoyl-CoA 
desaturase 5 

 FADS4, SCD2, SCD4, 
stearoyl CoA 
9-desaturase 

 ENSG00000066322  ELOVL1 (1p34.2)  Elongation of very 
long chain fatty 
acids yeast-like 1 

 3-keto acyl-CoA synthase, 
CGI-88 

 ENSG00000197977  ELOVL2 (6q14.1)  Elongation of very 
long chain fatty 
acids yeast-like 2 

 3-keto acyl-CoA synthase 

 ENSG00000119915  ELOVL3 (6p24.2)  Elongation of very 
long chain fatty 
acids yeast-like 3 

 3-keto acyl-CoA synthase, 
CGI30, cold-inducible 
glycoprotein of 30 kDa 

 ENSG00000118402  ELOVL4 
(10q24.32) 

 Elongation of very 
long chain fatty 
acids yeast-like 4 

 3-keto acyl-CoA synthase 

 ENSG00000012660  ELOVL5 (6p12.1)  Elongation of long 
chain fatty acids 
like 5 

 3-keto acyl-CoA synthase 

 ENSG00000170522  ELOVL6 (4q25)  Elongation of long 
chain fatty acids 
like 6 

 3-keto acyl-CoA synthase, 
fatty acid elongase 2 

 ENSG00000164181  ELOVL7 (5q12.1)  Elongation of long 
chain fatty acids 
like 7 

 3-keto acyl-CoA synthase 
ELOVL7 

 Branched-chain FAs, including phytanic and pristanic acid, are involved in 
membrane stability and  fl uidity as well as anchoring of membrane lea fl ets and 
in fl uence gene expression in many cell types  [  11  ] . The methyl-substituted amino 
acids leucine, isoleucine and valine are the substrates for the synthesis of monom-
ethyl branched-chain FAs (Fig.  13.1b ). The importance of monomethyl branched-
chain FAs has been recently studied in  Caenorhabditis elegans  de fi cient of LET-767 
(Lethal protein 767) which belongs to a family of short chain dehydrogenases/
reductases, showing multiple developmental and growth defects  [  12  ] . LET-767 
de fi cient worms were rescued with the feeding of triacylglycerides extracted from 
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other worms. Mass spectrometric analysis showed that odd-numbered monomethyl 
branched-chain FAs were essential in this rescue. LET-767 is mainly expressed in 
the intestine of the worms, indicative for the importance of branched-chain FAs in 
development and maintenance of the epithelial layers and the formation of crypts 
and villi in the intestinal mucosa.  

    1.1.2   Fatty Acid Oxidation 

      Fatty Acid b-oxidation in Mitochondria 

 The main energy reserve in the body consists of FAs, supplying energy-generating 
substrates through b-oxidation in mitochondria. Fatty acid b-oxidation (FAO) in 
mitochondria generates acetyl-CoA and reducing equivalents (NADH and FADH 

2
 ), 

which are linked to the Krebs cycle and the mitochondrial respiratory chain, leading 
to ATP production by oxidative phosphorylation in aerobic tissues. During starva-
tion, FAO provides 80–90% of cellular energy requirements  [  13  ] . Almost all tissues 
rely essentially on FAO for their energy supply during prolonged fasting, but in 
contrast, cardiac and skeletal muscles derive most of their required energy from 
long-chain FA oxidation  [  14  ] . 

 The transport of long-chain fatty acyl-CoA esters across the mitochondrial mem-
brane is mediated by the carnitine cycle. The enzymes carnitine palmitoyltrans-
ferase I (CPT1), carnitine palmitoyltransferase II (CPT2), and carnitine-acylcarnitine 
translocase (CACT), each with different sub-mitochondrial localisations, are respon-
sible for this transport  [  15,   16  ] . The CPT1 protein is located on the outer mitochon-
drial membrane and exists in two isoforms, a liver type (CPT1A) and a muscle type 
(CPT1B). They catalyse the formation of long-chain acylcarnitine from free 
L-carnitine and acyl-CoA esters. The CACT in the inner mitochondrial membrane 
translocates acylcarnitine into the mitochondrial matrix in exchange for free 
L-carnitine. CPT2 located in the inner mitochondrial membrane reesteri fi es fatty-
acylcarnitines to fatty acyl-CoA esters, the substrates for ß-oxidation (Fig.  13.2a ).  

 Carnitine acyltransferases (CRATs) catalyze the reversible transfer of acyl groups 
from acyl-CoA thioesters to carnitine, forming acylcarnitine. They differ in their 
substrate speci fi city: carnitine palmitoyltransferase, carnitine octanoyltransferase, 
and carnitine acetyltransferase. Since CRATs are responsible for the acyl-CoA/CoA 
ratio in mitochondria, peroxisomes, and ER, they are key enzymes of b-oxidation. 

 A vital role in mitochondrial b-oxidation of short chain FAs is played by three 
members of the acyl-CoA dehydrogenase (ACD) family: Short-chain L-3-
hydroxyacyl-CoA dehydrogenase (SCAD) catalyzes the reversible dehydrogena-
tion of 3-hydroxyacyl-CoAs to their corresponding 3-ketoacyl-CoAs with eduction 
of NAD to NADH and has the highest activity towards 3-hydroxybutyryl-CoA. 
Similar to this, medium-chain acyl-CoA dehydrogenase (MCAD) is involved in the 
metabolism of FAs with C4-C12-chains, while long-chain L3-hydroxy acyl-CoA 
dehydrogenase (LCAD) has an important function in mitochondrial b-oxidation of 
unsaturated FAs  [  17  ] . 



  Fig. 13.2    ( a ) Mitochondrial metabolism of fatty acids (Modi fi ed with permission from Bruno C 
et al. 2008).  ABHD5  abhydrolase domain containing 5,  ADP  adenosine diphosphate,  ATGL  adi-
pose triglyceride lipase,  ATP  adenosine-5 ¢ -triphosphate,  CACT  carnitine/acylcarnitine translocase, 
 CDP-DAG  cytidine diphosphate-diacylglycerol,  CDS1  CDP-diacylglycerol synthase 1, 
 CGI-58  comparative gene identi fi cation-58,  CL  cardiolipin,  CoA/CoASH  coenzyme A,  CoQ  coen-
zyme Q,  CPT I  carnitine palmitoyltransferase I,  CPT II  carnitine palmitoyltransferase II, 
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 Hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase 
encode the α- and b-subunits of the mitochondrial trifunctional protein (MTP). The 
heterocomplex contains 4 α-and 4 b-subunits and catalyzes 3 steps in the b-oxidation 
of FAs, including the long-chain 3-hydroxyl-CoA dehydrogenase step  [  18  ] . 

 Mitochondrial FA b-oxidation consists of four sequential reactions, just like their 
synthesis, catalysed by enzymes with overlapping chain length speci fi cities 
(Fig.  13.3 ). This starts with  fl avoprotein-linked (FAD) dehydrogenation assisted by 
the acyl-CoA dehydrogenases (ACD), followed by hydration through 2-enoyl-CoA 
hydratases (ECH), NAD(+)-linked dehydrogenation through L-3-hydroxyacyl-CoA 
dehydrogenases (HAD), and thiolytic cleavage through 3-ketoacyl-CoA thiolases 
(KAT), generating acetyl-CoA and an acyl-CoA ester two carbon atoms shorter at 
the end of each cycle  [  19  ] . The electrons generated during FAD-linked oxidation are 
transferred via electron transfer  fl avoprotein (ETF) and ETF dehydrogenase 
(ETFDH) to ubiquinone (Coenzyme Q10), and those from NADH-linked dehydro-
genation are passed to complex I in the respiratory chain leading to production of 
ATP. Mitochondrial b-oxidation also degrades unsaturated FAs with  cis -double 
bonds, with pre-existing double bonds being isomerised by auxiliary enzymes such 
as enoyl-CoA isomerase and dienoyl-CoA reductase  [  20  ] .  

 Fig. 13.2 (continued) Cyt c  cytochrom C,  CRD1  cardiolipin synthase 1,  ETF  electron-transfer 
 fl avoprotein,  ETF-QO  ETF:coenzyme Q oxidoreductase,  GEP4  Mitochondrial phosphatidylglyc-
erophosphatase,  HAD  L-3-hydroxyacyl-CoA dehydrogenase,  HSL  hormone-sensitive lipase,  KT  
keto-acyl tholase,  LCAD  long-chain acyl-CoA dehydrogenase,  MCAD  medium-chain acyl-CoA 
dehydrogenase,  MGL  monoglyceride lipase,  MTP  mitochondrial trifunctional protein,  OCTN2  
sodium-dependent carnitine transporter,  PA  phosphatidic acid,  PG  Phosphatidylglycerol,  PGP  
phosphatidylglycerophosphate,  PGS1  phosphatidylglycerophosphate synthase 1,  SCAD  short-
chain acyl-CoA dehydrogenase,  TG  triacylglycerols,  VLCAD  very long-chain acyl-CoA dehydro-
genase,  VLDL  very-low-density lipoprotein, I, II, III, IV, V: respiratory chain complex I, II, III, IV, 
and V, respectively. ( b ) Fatty acid oxidation pathways in peroxisomes. Oxidation of unsaturated 
fatty acids is depicted on the  left , oxidation of branched-chain fatty acids in the  center  and b-oxi-
dation of fatty acids is depicted on the  right .  AADHAPS  dihydroxyacetone phosphate reductase, 
 ABCD  ATP-binding cassette, sub-family D,  ACAA1  acetyl-Coenzyme A acyltransferase 1,  ACOX  
peroxisomal acyl-coenzyme A oxidase,  ADP  adenosine 5 ¢ -diphosphate,  AGPS  alkylglycerone 
phosphate synthase,  AMACR  alpha-methylacyl-CoA racemase,  CoA  coenzyme A,  CRAT  carnitine 
acetyltransferase,  CROT  carnitine O-octanoyltransferase,  DHA  docosahexaenoic acid,  DHAP  
dihydroxyacetone phosphate,  DPA  docosapentaenoic acid,  ECH1  enoyl Coenzyme A hydratase 1, 
peroxisomal,  EHHADH  enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydroge-
nase,  FACL  acyl-CoA synthetase long-chain,  G3P  glycerol-3-phosphate,  GNPAT  glyceronephos-
phate O-acyltransferase,  HPCL2  2-hydroxyacyl-CoA lyase 1,  HSD17B4  hydroxysteroid (17-beta) 
dehydrogenase 4,  IDH1  isocitrate dehydrogenase 1 (NADP+), soluble,  LACS  acyl-CoA synthetase 
long-chain,  LC  long chain,  MLSTD  fatty acyl CoA reductase.  NADPH  nicotinamide adenine dinu-
cleotide phosphate reduced,  NUDT19  nudix (nucleoside diphosphate linked moiety X)-type motif 
19,  NUDT7  nudix (nucleoside diphosphate linked moiety X)-type motif 7,  OCTN3  organic cation 
transporter 3,  PDCR  2,4-dienoyl CoA reductase 2, peroxisomal,  PDH  protein phosphatase 2 C, 
 PECI  peroxisomal D3,D2-enoyl-CoA isomerase,  PECR  peroxisomal D3,D2-enoyl-CoA reductase, 
 PHYH  phytanoyl-CoA 2-hydroxylase,  PPi  pyrophosphate,  PTE  acyl-CoA thioesterase 8,  SCPX  
sterol carrier protein 2,  VCLFA  very long chain fatty acid       
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 Unsaturated FAs are degraded by b-oxidation as well. With the shortening of the 
FA chain, the double bonds (usually  cis -con fi gured) move closer to the CoA-
headgroup. Additional enzymes are necessary for further FAO. The  fi rst is the 
dienoyl-CoA isomerase (DCI), catalyzing the isomerisation of the a-g- to the required 
α-b-double bond, the second one is the 2,4-dienoyl reductase (DECR) that reduces 
the α-b-double bond to the saturated acyl-CoA. 

 The multisubunit NADH:ubiquinone oxidoreductase (complex I) is the  fi rst 
enzyme complex in the electron transport chain of mitochondria where adenosine 
triphosphate (ATP) is generated via the Krebs Cycle in almost all cells. The protein 
components include 4 respiratory chain complexes (I-IV) and an ATP synthase. 
Complex I is the largest with 900 kDa and appears to be the most commonly affected 
in adult human mitochondrial diseases. Cardiolipins (CL) are synthesized either 
from phosphatidylglycerol (PG), which is formed from phosphatidic acid (PA), 
CDP-DAG or alternatively from PC (Fig.  13.2a ). CLs are important for mitochon-
drial electron transfer complex assembly and integrity  [  21,   22  ] . 

 An isoenzyme of the long-chain fatty-acid-coenzyme A ligase family is the FA 
transporter solute carrier family 27, member 2 (SLC27A2). All isoenzymes of this 

  Fig. 13.3    Elongation and desaturation of fatty acids. The n-9-series is endogenously derived from 
stearate. Starting point for the n-6- and the n-3-series are linoleic acid and a-linolenic acid, respec-
tively, which are not synthesized endogenously and must be taken up as essential fatty acids 
through the diet. The precursors of eicosanoids are synthesized in these series.  D5D  delta-5- 
desaturase,  D6D  delta-6-desaturase,  ELOVL  elongation of long chain fatty acids,  FAS  fatty acid 
synthase,  LTA  Leukotriene A,  LTB  Leukotriene B,  LTC  Leukotriene C,  LTD  Leukotriene D,  PGE  
Prostaglandin E,  PGF  Prostaglandin F,  PGI  Prostaglandin I,  SCD  stearoyl-CoA desaturase,  TXA  
Thromboxane A       

 



19913 Genetic and Metabolic Determinants of Fatty Acid Chain Length…

family convert free long-chain FAs into fatty acyl-CoA esters, differing in tissue 
distribution, subcellular localization and substrate speci fi city. They play a vital role 
in lipid biosynthesis and FA degradation. This isoenzyme activates long-chain, 
branched-chain and very-long-chain FAs containing 22 or more carbons as CoA 
derivatives. It is expressed primarily in liver and kidney, and is not present in mito-
chondria but present in both ER and peroxisomes (Fig.  13.2a )  [  23  ] .  

      Peroxisomal Fatty Acid Oxidation 

 Branched-chain FAs such as phytanic acid cannot be metabolized by usual 
b- oxidation in mitochondria (Fig.  13.2a ,  b ). Instead, phytanic acid is CoA-activated 
to phytanoyl CoA at the cytosolic surface of the peroxisome, transported via peroxi-
somal biogenesis factor 7 (PEX7) into the lumen of the peroxisome, subjected to 
α-oxidation to pristanic acid, co-activated by very long chain synthase (VLCS) and 
further degraded via b-oxidation in peroxisomes. Pristanic acid is also CoA-
activated at the cytosolic surface of the peroxisome by long chain synthase (LCS), 
transported into the lumen of peroxisomes and subjected to b-oxidation  [  24  ]  
(Fig.  13.2b ). 

 Very long chain and unsaturated FAs are also substrates of peroxisomal FAO. 
Acyl-Coenzyme A oxidase 1 (ACOX1) is the  fi rst enzyme of the peroxisomal FA 
b-oxidation pathway, which catalyzes the desaturation of acyl-CoAs to 2-trans-
enoyl-CoAs. ACOX1 donates electrons directly to molecular oxygen, thereby pro-
ducing hydrogen peroxide. Since the peroxisome is unable to generate ATP, the 
energy that the FAs contain is released as heat. The peroxisomal b-oxidation of FAs 
follows basically the same mechanism of mitochondrial FAO but uses different, 
peroxisome-speci fi c enzymes. In mammals, peroxisomal FAO is continued until an 
acyl-CoA of medium chain-length is reached, which is then shuttled to mitochon-
dria for further degradation and ATP-production via the Krebs cycle.   

    1.1.3   Elongation and Desaturation of Fatty Acids 

 The synthesis of FAs longer than 16 carbons occurs at the cytosolic side of the ER, 
in mitochondria and peroxisomes. The main location of FA elongation is the ER 
utilizing malonyl-CoA as the carbon source (Fig.  13.3 ). In contrast, mitochondrial 
elongation makes use of acetyl-CoA and is basically a reversal of FAO. Peroxisomal 
FA elongation is closely connected to peroxisomal FAO and produces long chain 
alcohols serving as precursors for the synthesis of plasmalogens (ether-linked 
phospholipids). 

 After formation of palmitate through FAS, a series of chain elongations and 
desaturations is performed involving ELOVLs (elongation of very long chain FAs) 
and SCD (stearoyl-Coenzyme A desaturase) generating unsaturated FAs of the n-9- 
and the n-7-series. Starting from palmitate the elongation by 2 carbons leads to 
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stearate (18:0), arachidate (20:0), behenate (22:0) and lignocerate (24:0) 
through ELOVL1/ELOVL3/ELOVL6 (Fig.  13.2 ). The n-9-FAs are synthesized via 
desaturation of stearate by SCD1/SCD2/SCD4/SCD5 which yields oleate (18:1 
n-9). This desaturation is chemically a reduction, accompanied by an oxidation of 
water. Consecutive elongation of oleate (ELOVL1/ELOVL3) leads to gondoate 
(20:1 n-9), erucate (22:1 n-9) and nervonate (24:1 n-9). A second desaturation of 
oleate by D6D/FADS2 (delta-6-desaturase/fatty acid desaturase) gives rise to the 
polyunsaturated fatty acid (PUFA) octadecadienate (18:2 n-9) which is elongated to 
eicosadienate (20:2 n-9) and desaturated once more to form meadate (20:3 n-9) 
(Fig.  13.3 ). 

 Nutritional availability of essential n-3 and n-6 polyunsaturated FAs (n-3 PUFAs, 
n-6 PUFAs) is critical for many physiological processes  [  25–  28  ] . PUFAs can serve 
as intermediates in signal transduction  [  29,   30  ] , as a source of eicosanoids or doco-
sanoids  [  31–  33  ] , as proin fl ammatory factors  [  34  ]  and as neuroprotective agents  [  35, 
  36  ] . They also modulate immune responses  [  37,   38  ] , and in fl uence human cardio-
vascular  [  39  ]  and brain diseases  [  40  ] . Western diets are mostly rich in n-6 PUFAs 
(plant oils). Increased consumption of n-3 PUFAs may therefore counteract some of 
the proin fl ammatory, proaggregatory, proliferative and proexcitatory effects pro-
moted by n-6 PUFAs (Fig.  13.3 ). 

 Arachidonic acid (AA, 20:4 n–6), eicosapentanoic acid (EPA, 20:5 n-3) and 
docosahexaenoic acid (DHA, 22:6 n–3) are formed from linoleic acid (LA, 18:2 
n–6) and α-linolenic acid, (ALA, 18:3 n–3), respectively, in the liver by a series 
of alternating desaturation (addition of a double bond) and elongation (addition of 
a 2-carbon unit) reactions  [  41,   42  ]  (Fig.  13.3 ). The essential FAs LA and ALA are 
formed in plants but not in mammalian cells. This is due to the lack of the D12- 
and D15-enzymes necessary to insert a double bond at the n (or w) 6- or 3-posi-
tion of the FA carbon chain. Once obtained from the diet, LA and ALA are 
metabolized by D6-desaturation, elongation, and D5-desaturation to form AA and 
eicosapentaenoic acid (EPA, 20:5 n–3), respectively. The D5-desaturase and sub-
sequent steps in the pathway are found in animal but not in plant cells. AA and 
DHA, which are also essential FAs, are present in the diet in meat,  fi sh, and eggs 
but not in fruits, vegetables, nuts, grains, or their products. For some time it was 
assumed that FA desaturation occurs in the ER and that the  fi nal steps in the syn-
thesis of DHA and n–6 DPA (22:5 n–6) involve a D4-desaturation of 22:5 n–3 to 
22:6 n–3 and 22:4 n–6 to 22:5 n–6. Now it is known that the pathway forms 24:5 
n–3 and 24:4 n–6 through elongation of the 22 carbon chain products of the 
D5-desaturase.41, 42 The FAs 24:5 n–3 and 24:4 n–6 are desaturated at position 
6 to yield 24:6 n–3 and 24:5 n–6, which are translocated to peroxisomes where 
partial oxidation generates DHA (22:6 n–3) and DPA (22:5 n–6)  [  41  ] . Endogenous 
synthesis of DHA and AA is believed to use the same D6-and D5-desaturase 
enzymes. The result of this is a competition between LA and LNA as well as inhi-
bition of the enzyme pathway by products of the same and the opposing series of 
FAs. For example, high dietary intakes of EPA or DHA result in decreased tissue 
AA and decreased formation of AA derived eicosanoids in favour of n–3 FA 
derived eicosanoids  [  43,   44  ] .  
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    1.1.4   Storage of Fatty Acids 

 The main storage forms of FAs are triacylglycerides (TAG), composed of a glycerol 
molecule and three FA residues bound via an ester bond. TAGs are core constituents 
of chylomicrons and VLDL. Their released FAs are reesteri fi ed and stored in lipid 
droplets, incorporated in phospholipids or undergo b-oxidation in muscle cells, 
hepatocytes and adipocytes. The main organ in FA metabolism is the liver, assem-
bling various apoB-containing lipoproteins, mainly VLDL, which are secreted into 
the blood, metabolized by lipases and taken up by peripheral cells for energy gen-
eration or storage. In contrast, HDL-particles collect cholesterol and phospholipid 
bound FAs for reverse-cholesterol transport back to the liver. 

 The precursors of TAGs are FA acyl-CoAs and glycerol-3-phosphate (G3P), syn-
thesized either in liver and intestine from glycerol through glycerolkinase, or from 
dihydroxyacetone-phosphate (DHAP) through glycerol-3-phosphate dehydrogenase 
(Fig.  13.4 ). TAGs can be synthesized in the ER of all cells of peripheral organs through 
glycerol-6-phosphate acyltransferase (GPAT), which connects two acyl-CoAs to G3P 
to generate phosphatidic acid. Diacylglycerides (DAGs) are formed in the next step 
by cleavage of phosphate from the 3-position by PA-phosphatase (LPIN 1-3) and the 
subsequent addition of another acyl-CoA through diacylglycerol acyltransferase 
(DPAT) to generate TAGs. In the case of FA overload, monoacylglycerol acyltrans-
ferase (MPAT) localized in the intestine and adipose tissue catalyzes the formation of 
DAGs by adding an acyl-CoA to monoacylglycerides (MAGs, Fig.  13.4 ).  

 Energy generation from TAGs occurs through lipolysis. Responsible for the lib-
eration of FAs from TAGs in lipid droplets are three enzymes. Adipose triglyceride 
lipase (ATGL), coded by ABHD5 and activated by CGI-58, hydrolyses one ester-
bond and generates DAG. This is in turn degraded to MAG by hormone sensitive 
lipase (HSL), liberating a second FA residue. The third hydrolysis step is performed 
by monoglyceride lipase (MGL), which breaks down MAGs into glycerol and a 
third FA residue. Glycerol is transported back to the liver by HDL and recycled into 
TAG-metabolism  [  45,   46  ] . 

 Another storage form for FAs are cholesteryl esters (CE), which are a major 
building block of lipid droplets. CEs in lipid droplets are synthesized through sterol 
O-acyltransferase (SOAT) which transfers oleyl-CoA onto cholesterol. CEs in the 
plasma compartment are synthesized from cholesterol and phosphatidylcholine 
through lecithin: cholesterol acyltransferase (LCAT) which preferentially transfers 
linoleate to form cholesterylesters and lyso-PC. The PAT protein family (perilipin, 
adipophilin, TIP47, S3-12, PAT1 or perilipin 1-5) is also important for the metabo-
lism of lipid droplets  [  47  ] . They are located on the surface of lipid droplets and regu-
late the storage and release of lipids through cycles of hydrolysis and esteri fi cation 
driven by phosphorylation and dephosphorylation of the contributing proteins  [  48  ] . 
In this context PA and DAG represent important metabolic hubs that are challenged 
by chronic metabolic overload ultimately leading to enhanced lipid storage and 
diabesity (Fig.  13.4 ). Dysfunction of endolysosomal processing of BMP and mito-
chondrial cardiolipin dysfunction increase the amount of lipids stored in either 
endolysosomes or lipid droplets as the basis of vascular and metabolic disease.    
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    2   Phospholipid Metabolism 

 Sphingolipids and glycerophospholipids are principal structural components of cel-
lular membranes, with phosphatidylcholine (PC) and sphingomyelin (SPM) being 
the most abundant. Quantitatively, minor membrane phospholipids include the 
aminoglycerophospholipids phosphatidylserine (PS) and phosphatidylethanolamine 
(PE) and the inositol-glycerophospholipid phosphatidylinositol (PI). The above 
mentioned phospholipids also serve as essential regulators of multiple cellular pro-
cesses, either directly or by their enzymatic degradation resulting in the formation 
of speci fi c membrane constituents or bioactive lipid signaling molecules. 

    2.1   The Kennedy Pathway as the Major Route 
of PC and PE Synthesis 

 Mammalian cells derive the majority of their PC from the Kennedy pathway that is 
located at the cytosolic side of the endoplasmatic reticulum and regulated through 
protein phosphorylation and translocation of inactive enzymes from the cytosol to 
active enzyme complexes at the cytosolic side of the ER-membrane (Fig.  13.4 ). 

 The  fi rst step is the phosphorylation of choline through choline kinase, which is 
activated by a phosphate cytidylyltransferase that generates CDP-choline. Choline 
phosphotransferase transfers the choline group of CDP-choline to diacylglycerol 
(DAG) yielding PC. Similarly, PE is generated via the Kennedy pathway. Newly 
formed PE can be methylated on its primary amine using S-adenosylmethionine as 
the methyl donor through PE-N-methyl-transferase (PEMT) to form PC after 
sequential transfer of three methyl groups. These reactions resemble the PEMT 
pathway which is most active in hepatocytes (Fig.  13.4 ).  

    2.2   PLA2-Remodeling 

 Fatty acids are stored in the human body as acylglycerols or cholesteryl esters which 
are incorporated into lipid droplets and constitute the core of lipoproteins. Cell 
membrane phospholipids can be regarded as another FA storage compartment. This 
view is supported by the PLA 

2
 -remodeling mechanism. Phospholipase A2 enzymes 

are members of the PLA-family which catalyzes the hydrolysis of the sn-2-position 
of membrane glycerophospholipids to generate free FAs and lysophospholipids. 
The PLA-family consists of at least 19 different enzymes that exhibit PLA-activity 
 [  49  ] . PLAs are classi fi ed into three subgroups, the calcium-dependent secretory and 
cytosolic PLAs (sPLA and CPLA respectively) and the calcium-independent iPLAs. 
The iPLA2s show a substrate speci fi city towards the hydrolysis of plasmalogen 
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species of phospholipids. The FA products of the hydrolysis, like arachidonic acid 
(AA), are precursors for bioactive components. AA is metabolized to speci fi c pros-
tanoids and leukotrienes that are lipid mediators with a known proin fl ammatory 
activity. iPLA is also involved in apoptotic membrane changes such as transbilayer 
movement of PS  [  50  ] . 

 PLA-remodeling ful fi lls a housekeeping function through generation of lyso-
phospholipids during FA release which can in turn act as acceptors for the integra-
tion of AA into phospholipids.  

    2.3   Synthesis of PS by PC and PE Remodeling and Formation 
of PE in the Mitochondrial PS-Decarboxylation Pathway 

 PS is formed through condensation of serine with a phosphatidic acid (PA) moiety. 
The phosphatidyl donors in mammalian cells are PC or PE, the reaction itself is 
catalyzed by PS-synthases (PSS I/II) at the cytosolic side of the ER and mitochon-
dria. Newly formed PS is an organelle membrane constituent or is translocated 
across the mitochondrial membrane and decarboxylated in the lumen of the inner 
mitochondria to form PE. This reaction is catalyzed by PS-decarboxylase (PSD) 
(Fig.  13.5b ) If this reaction is impaired, PS translocates to the outer plasma mem-
brane, where it binds the apoptotic marker annexin V as a “ fi nd me, eat me”-signal 
of apoptotic cells  [  51,   52  ] . Both the PS and “Kennedy pathway” are found in mam-
malian cells but there are tight restrictions on speci fi c elements of the pathways.  

 The cytosolic side of the ER and the mitochondrial associated membrane (MAM) 
compartment have been identi fi ed as the principal intracellular localization sites of 
PC-speci fi c (PSS1) and PE-speci fi c (PSS2) PS-Synthase. The MAM-compartment 
is an area of transient contact between the ER, mitochondria and peroxisomes where 
a direct transfer of membrane bound lipids is possible and which can be isolated as 
a distinct cellular fraction or visualized using electron microscopy  [  53  ] . These 
membrane contact sites (MCS) constitute transient interorganelle assemblies. The 
MAM-compartment shows signi fi cant enrichment in PS-Synthase activity when 
compared with the total ER-membrane population. 

 PS-decarboxylase, which reconverts PS to PE, was found as a constituent of the 
inner mitochondrial membrane and MCS preferentially for the movement of newly 
synthesized PS to the lumen of mitochondria. The PE generated in mitochondria 
does not only serve as a structural lipid within mitochondria but is preferentially 
utilized as a substrate for the methyltransferase reaction to form PC or exported 
from mitochondria to equilibrate with the cytosolic membrane lea fl ets to balance 
the PC-PS-PE species ratio and to function in the biogenesis of other organelles. 
The molecular mechanism of mitochondrial PE-transport to the plasma membrane 
is not known, but the process is ATP dependent and insensitive to the Golgi disrupt-
ing toxin Brefeldin A. The results with Brefeldin A indicate that the route followed 
by PE is likely to bypass the Golgi apparatus  [  54  ] .  



206 T. Kopf et al.

    2.4   Uptake of Glycerophospholipid Precursors and the 
Interconversion of Glycerophospholipid Species 

 Recently phosphatidic acid (PA) metabolism attracted signi fi cant attention as a met-
abolic hub upstream of polyglycerophospholipids, phosphatidylinisitols (PI) and 
acylglycerol storage induced upon metabolic overload (Fig.  13.4 ). 

 Hydrolysis of PC by phospholipase D (PLD) and the acylation of lyso-PA by 
lyso-PA acyltransferases can generate PA. DAG-kinase (DAGK) phosphorylates 
excess diacylglycerol (DAG) to also yield phosphatidic acid (PA). DAGK isozymes 

  Fig. 13.5    ( a ) PLA 
2
 -remodeling of phospholipids from membranes. Free fatty acids are modi fi ed 

through elongation and desaturation. Cyclooxygenases use released free fatty acids as precursors 
for the eicosanoids, bioactive lipid messengers that have in fl ammatory activity.  AA  arachidonic 
acid,  ATP  adenosin-5 ¢ -triphosphate,  CoA  coenzyme A,  EPA  eicosapentanoic acid,  PLA  

 2 
  phospho-

lipase A 
2
 . ( b ) Synthesis of phosphatidylserine from phosphatidylcholine and phosphatidyletha-

nolamine and conversion to phosphatidylethanolamine. The interconversion of PS, PC and PE is 
regulated by several genes. PS is associated with apoptosis while PE and PC are associated with 
non-apoptotic signals.  ATP  adenosinetriphosphate,  PC  phosphatidylcholine,  PE  phosphatidyletha-
nolamine,  PLA  

 2 
  phospholipase A 

2
 ,  PS  phosphatidylserine       
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have different functions and each DAGK isozyme is a critical downstream compo-
nent of DAG-dependent signaling. The antagonistic enzyme for DAGK action is PA 
phosphohydrolase (PAP) (Fig.  13.4 ). 

 PA is an important metabolite in phospholipid biosynthesis and membrane 
remodeling. A direct link between the generation of PA and the regulation of endo-
cytosis has been established. PA and other acidic phospholipids affect binding of 
dynamin to membranes  [  55  ] . The role of PA in vesicle traf fi cking is more general 
than the modulation of endocytosis. PA has also been shown to affect binding of 
adaptor protein 2 (AP-2) and clathrin coats to lysosomal membranes  [  56  ] . Endophilin 
A1 plays an important role in the recycling of synaptic vesicles and has a lyso-PA 
acyltransferase activity  [  57  ] . PA also plays a role in Golgi traf fi c, where it is pro-
duced by PLD  [  58,   59  ]  or by acylation of lyso-PA  [  60  ] . In general, PA appears to 
facilitate  fi ssion of vesicles. This function of PA seems to be a consequence of the 
selective interaction of the lipid with speci fi c target proteins, but given the peculiar 
structure of PA molecules (a lipid with a small head group and two bulky FA chains 
attached to the glycerol backbone), it has been proposed that PA may facilitate the 
formation of local regions of negative curvature on cell membranes  [  61,   62  ] . 

 A crucial role in the regulation of several important biological events is played 
by PA. For instance, PA has been implicated in the regulation of protein phosphory-
lation  [  63–  65  ] , in the activation of oxidative processes  [  66,   67  ] , and in the modula-
tion of membrane traf fi c  [  68,   69  ] . 

 Lysophosphatidic acid (LPA) is also a key intermediate in neutral lipid and phos-
pholipid synthesis, implicated in several pathophysiological effects. Glycerophosphate 
acyltransferase (GPAT) catalyses the formation of LPA by acylation of glycerol 
3-phosphate in the ER and mitochondria. LPA may also be synthesized by deacyla-
tion of PA. LPA acts through a family of G-protein coupled receptors to modulate 
cell migration, proliferation and apoptosis. Six GPCRs have been identi fi ed, but 
additional ones may exist: LPA1/Edg2, LPA2/Edg4, LPA3/Edg7, LPA4/GPR23/
P2Y9, LPA5/GPR92 and LPA6/P2Y5  [  70,   71  ] .   

    3   Role of Fatty Acid Species, Desaturation and Elongation 
in Mammalian Sphingolipid Biosynthesis and Metabolism 

 Sphingolipids (SPs) are a ubiquitous and highly diverse class of lipids. All SPs are 
characterized by a hydrophobic lipid backbone that consists of a sphingobase (SPH). 
Amide-linkage to a FA moiety leads to ceramide (Cer), the key intermediate in the 
SP pathway. Complex SPs are formed by the addition of a headgroup like phos-
phate, sugar or alcohol and other modi fi cations. Hydrolytic pathways facilitate 
again the release of individual building blocks. 

 Not only are SPs essential structural determinants of diverse biological mem-
branes, they also mediate cell interactions, modulate protein functions, are major 
constituents of lipid microdomains and are also important intra- and extracellular 
signalling molecules  [  72–  74  ] . They are widely accepted to be key players in cellular 
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homeostasis, regulating apoptosis and proliferation processes known as the 
SP-rheostat, and modulate activities of protein kinases, phosphatases, and phospho-
lipases  [  75,   76  ] . As FAs are building blocks of SPs, they share several important 
biosynthetic and metabolic enzymes connected to elongation and desaturation. 

    3.1   De Novo Sphingolipid Synthesis 

 De novo SP biosynthesis is initiated by the condensation of L-serine with palmitoyl-
CoA to generate 3-ketosphinganine (3-KS) (Fig.  13.6 ). This reaction is catalyzed by 
serine palmitoyltransferase (SPT), the  fi rst and rate-limiting enzyme in the de novo 
pathway, located at the endoplasmatic reticulum (ER).  

 SPT belongs to the pyridoxal-5 ¢ -phosphate (PLP)-dependent α-oxoamine syn-
thase family (POAS). In contrast to the other members of this family, which include 
5-aminolevulinate synthase (ALAS), 2-amino-3-ketobutyrate ligase (KBL) and 
8-amino-7-oxononanoate synthase (AONS), SPT is not a homodimer but forms a 
higher organized complex composed of three distinct subunits SPTLC1-3 with a 
molecular mass of 460 kDa  [  77  ] . The two subunits SPTLC1 and SPTLC2 show 
only about 20% amino acid similarity but a high conservation among species  [  78  ] . 
Knock-out of SPT subunits is lethal and mutations in SPTLC1 cause hereditary 
sensory and autonomic neuropathy type 1 (HSAN1)  [  79  ] . Only recently, Penno 
et al. could show that HSAN1 is due to altered SPTLC1 amino acid substrate 
speci fi city, a gain of function mutation leading to incorporation of alanine or 
glycine instead of serine and accumulation of two uncommon neurotoxic 
deoxy-sphingoid bases (DSBs), 1-deoxy-sphinganine (m18:0) and 1-deoxymethyl-
sphinganine (m17:0)  [  80  ] . Due to the lack of the C1 hydroxyl group, m18:0 and 
m17:0 cannot be modi fi ed by headgroup attachment, but are also not degraded by 
the classical pathway. Nevertheless, DSBs are subject to Cer and GSL formation 
and desaturation. Desaturation leads to m18:1 and m17:1 that may resemble bioac-
tive lipids  [  80  ] . Together, the bioactive DSBs and their metabolites might also con-
tribute to the well known fumonisin B1 (FB1) associated pathologies  [  81  ] . 
Furthermore associations of DSBs with metabolic syndrome and polyneuropathy in 
type 2 diabetes (T2D) patients have been reported to correlate with plasma HbA1c-
levels joint meeting  [  77,   78  ] . 

 SPTLC3 and SPTLC2, exhibiting 68% sequence similarity and both containing 
a PLP binding motif, are responsible for FA speci fi city. Instead of the dominating 
and palmitoyl favouring SPTLC2 subunit, SPTLC3 increases lauryl- and myristoyl-
CoA incorporation into SPs, leading to SPH-C16 species. This diverging substrate 
speci fi city and also differential gene expression levels observed might contribute to 
regulatory pathways  [  78  ] . Also other FA species can be incorporated eventually into 
SPs and increasing compatible long chain free FA availability would therefore sug-
gest increasing sphingolipid levels due to the high K 

m
  of this enzyme complex, 

indeed observed in vitro and in vivo  [  82,   83  ] . 
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 FA condensation is subsequently followed by a reduction of 3-KS by the ER 
bound NADPH dependent 3-ketosphinganine reductase (3-KSR) to sphinganine 
(SPHd18:0), the  fi rst SPH. Besides palmitoyl-CoA, a second FA is incorporated into 
SPs by N-acetylation forming dihydroceramide (dhCer). This reaction is catalyzed 
by the ceramide synthase/LAG1 longevity assurance homolog family (CerS1-6/
LASS1-6), also located at the ER. Desaturation to Cer occurs also at the cytosolic 
side of the ER through lipid desaturases DEGS1 and DEGS2 (degenerative sperma-
tocyte homolog 1 & 2), converting the saturated d18:0 backbone to the trans- D  4 -
monodesaturated sphingosine (SPHd18:1). In mammals formation of the minor 
SPH species phytosphingosine (t18:0), resembling the predominant SPH species in 
plants, requires C4-hydroxylation activity of DEGS2  [  84  ] . 

 Cer synthesis is of importance, as it is a key intermediate in SP metabolism and 
plays an essential role in cellular stress responses. CerS/LASS enzymes utilize sev-
eral SPHs and show a distinct substrate speci fi city regarding FA chain length (usu-
ally C14-C32), saturation, and hydroxylation as summarized in Fig.  13.6   [  85–  87  ] . 
Tissue speci fi c localization and regulation of CerS/LASS gene expression therefore 
could be an effective method to regulate biosynthesis of SPs and may also contrib-
ute to speci fi c SP patterns on a cellular level, as does FA availability and metabo-
lism. In contrast to cellular triglycerides and cholesterol esters, where predominantly 
long-chain FAs (LCFAs; C16-C18) are found, SPs show a high rate of very long-
chain FAs (VLCFAs; c  ³  20)  [  88,   89  ] . Saturated, monounsaturated and polyunsatu-
rated FAs (SFAs, MUFAs and PUFAs, respectively) often exhibit completely 
different physiological and pathological properties, thus SP function is altered by 
the VLCFA moiety  [  86,   90  ] . VLCFA biosynthesis may also determine the cellular 
or subcellular SP pattern, as C24 FAs are found in the GLSs GM3 and GD3, but not 
in other gangliosides  [  88  ] . There is also a close link between tissue speci fi c FA 
elongation by ELOVL1-7 and SP synthesis. Elongase disruption in yeast leads to 
signi fi cant alteration in SP composition  [  91  ] , and the regulation of ELOVL1 by 
CerS2 has been shown  [  88  ] . Especially skin lipids are dependent on VLCFAs, with 
C28-C36 FAs being of critical requirement for ELOV4 dependent epidermal C28-
C36 Cers in animals  [  92  ] . 

 All CerSs can also utilize 2-hydroxyl FAs (hFA), modi fi ed by the fatty acid 
2-hydroxylase (FA2H), which are then incorporated in complex hFA-SPs  [  93,   94  ] . 
Interestingly the UGT8 encoded galactosyltransferase, highly upregulated together 
with FA2H in neuronal cells, shows a strong preference for hFA-Cer over Cer 
 [  93,   95  ] . Cer formation also occurs via hydrolysis of complex SPs or by reacylation 
of SPHd18:1 in the salvage or recycling pathway, (see later). 

 Through the modular architecture of SPs, thousands of possible species can be 
present in an organism, often distributed tissue speci fi c with only minor concentra-
tions and unusual modi fi cations. For example, major lipid classes in human stratum 
corneum include cholesterol, FAs and Cers with speci fi c modi fi cations, and a 
de fi cient composition is associated with impaired skin barrier function  [  96  ] . As the 
analytical methodologies are getting more sophisticated with higher sensitivity, 
speci fi city and accuracy, also new lipid classes and subclasses are discovered, e.g. 
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the newly described dhCers, amide-linked with an esteri fi ed  w -hydroxy FA 
(EO-Sphinganine)  [  97  ] . 

 SPHd18:1 is the quantitatively predominant SPH species in most mammalian 
tissues. As already mentioned only dhCer is a substrate for DEGS1 and DEGS2, but 
not free SPH18:0. DEGS1 activity itself is in fl uenced by the alkyl chain length of 
SPH and the FA, the stereochemistry of the SPH ( d -erythro vs. L-threo-
dihydroceramides), the nature of the head group and the ability to utilize alternative 
reductants. This resembles the complexity of the lipid regulatory network. Hu et al. 
 [  98  ]  also provided evidence for direct FA-mediated enzymatic regulations, as oleate 
reverses the af fi rmative palmitate effect on DEGS1 gene expression,  fi nally giving 
insight into the mechanisms of metabolic diseases like insulin resistance and diabe-
sity (Box  13.1 ). 

   Box 13.1 Educational Box: Lipidomics for Geneticists 

 Lipidomics describes the extensive analysis of lipid classes and species in 
biological systems, their pathways and networks. The lipidome therefore not 
only consists of the complete lipid pro fi le, but also accounts for correspond-
ing genes and the associated transcriptome, epigenome and proteome of any 
cell, tissue or body  fl uid sample. In this, the lipidome is one of the four subsets 
of the metabolome, together with sugars, nucleic acids and proteins/amino 
acids. Networking of these “omic” approaches constitutes systems health. The 
recognition of the major structural and regulatory role of lipids in many dis-
eases like diabesity, hypertension, atherosclerosis and stroke has led to rapid 
expansion of the lipidomics  fi eld in preclinical and clinical research. A rapidly 
evolving, improving and expanding arsenal of analytical techniques, includ-
ing MALDI and ESI mass spectrometry,  fl uorometry and NMR spectroscopy 
have vastly improved our knowledge of the lipidome. 

 Lipids comprise molecules with wide structural and physicochemical dif-
ferences, ranging from fatty acid to steroids, leading to an estimated number 
of about 9,000 lipid species in the human system. Lipidomics is the research 
of those species and their structures, functions, dynamics and interactions of 
the lipidome with the transcriptome, proteome and metabolome, including 
disturbances of these systems through disease, lifestyle and nutrition. 

 Currently, management of the tremendous amount of data produced by 
sophisticated high throughput pro fi ling of lipids, transcripts and proteins by 
mass spectrometry, multiplex af fi nity binding or arrays is a major challenge in 
lipidomics. It requires a thorough experimental design, detailed statistical 
analysis and evaluation of variations detected in the lipidome between differ-
ent conditions towards systems health to generate novel biomarkers and 
acquire health information for the bene fi t of medical care.  
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 DEGS1 and DEGS2 are inhibited by dithiothreitol (DTT) and other thiol reagents, 
indicative that elevation of cellular thiols could suppress ceramide formation. These 
characteristics are similar to other desaturases, and inhibitors and redox effectors 
known to affect  D  9 -stearoyl-CoA desaturase (SCD) and plasmanylethanolamine 
desaturase severely inhibited dhCer desaturation  [  99  ] . 

 To sustain a complex SP pattern, correct traf fi cking of lipid intermediates to their 
sites of further modi fi cation or recycling is of crucial importance. As principles by 
which Cers are transported to the Golgi, an ATP- and cytosol-dependent major path-
way and an ATP- or cytosol-independent minor pathway have been proposed 
 [  100,   101  ] . At the state of cellular homeostasis, once formed, Cers do not accumu-
late in the cytosol. Aqueous solubility of Cer is very low, thus a vesicular or protein 
mediated transfer is necessary to translocate membrane bound Cer to the 
luminal side of the Golgi apparatus or to the plasma membrane. In the  cis -Golgi 
compartment, the sphingomyelin synthase family (SGMS1&2) uses Cer and 
phosphatidylcholine (PC) as substrates to produce sphingomyelin (SM), one of the 
major plasma membrane lipids, thereby releasing DAG  [  102  ] . In the  trans -Golgi 
network (TGN), Cer serves as metabolic precursor for complex SPs such as gly-
cosphingolipids (GSLs) or sulfatides. Recent discoveries of two speci fi c SP transfer 
proteins, ceramide-transfer protein (CERT) and family A phosphoinositide binding 
speci fi c member 8 (FAPP2), provided new insights into SP metabolism  [  103  ] . CERT 
transfers Cer from the endoplasmic reticulum (ER) to the Golgi apparatus. On the 
other hand, FAPP2 and ABCA12 transport complex SPs like GlcCer. Also less 
speci fi c transport proteins are described, e.g. the glycolipid transfer protein (GLTP) 
catalyzing the intermembrane lipid transfer of  b -glycosylated diacylglycerol (DAG) 
or of ceramide backbones  [  104  ] . Once delivered to the Golgi membrane, Cer needs 
to translocate to the Golgi lumen through “ fl ip- fl op” mechanisms for spontaneous 
transbilayer movement  [  105  ] . SPs additionally serve directly as signalling mole-
cules and therefore have to be distributed intra- and intercellularly. For example, 
spinster homolog 2 (SPNS2), a sphingosine 1-phosphate transporter plays an impor-
tant role in developmental processes  [  106  ] . 

 SM in mammalian cells has been found to interact and colocalize with choles-
terol and GlcCer, mainly in the plasma membrane, in raft microdomains, in lyso-
somal and Golgi membranes, as well as in the polar surface of circulating lipoproteins. 
In plasma lipoproteins SM is the second most abundant polar lipid after phosphati-
dylcholine. Due to their unique physicochemical properties, SMs are enriched in 
specialized lipid microdomains such as rafts and caveolae and regulate their assem-
bly and dynamics  [  107  ] . 

 The importance of proper SM homeostasis has been demonstrated in several 
experimental designs. SM-de fi ciency in CHO-cells enhanced ABCA1 dependent 
cholesterol ef fl ux, and exposure to exogenous SM inhibited this process  [  108  ] . 
In mammalian cells SGMS activation correlates with the activation and nuclear 
translocation of NF k B, regulated by DAG dependent protein kinase C (PKC) acti-
vation. In line with this, exposure of cells to an SGMS inhibitor (D609) or siRNA 
for SGMS1 and SGMS2 reduces cellular DAG levels, thereby reducing cell prolif-
eration  [  109,   110  ] . SGMSs therefore not only regulate SM formation, but also -in a 
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reciprocal manner- the levels of Cer and DAG, resembling two critical bioactive 
lipids  [  111  ] . Degradation of SM also in fl uences the maintenance of membrane 
integrity. 

 Also the chain length and substitution of the GlcCer FA moiety in fl uences mem-
brane properties, function and microdomain-mediated signal transduction  [  112–  115  ] . 

 The  fi rst step in GSL synthesis is the addition of a sugar to the C1 hydroxyl 
group. In case of glucosylceramides (GlcCer), this is mediated by GlcCer synthase 
(UGCG), located on the cytosolic lea fl et of the Golgi. SPs related to galactosylcer-
amides (GalCer) are formed through galactosylceramide synthase (UGT8), located 
at the luminal lea fl et of the Golgi. More complex sugar attachment is followed by a 
series of modi fi cations  fi nally leading to the vast class of GSLs, as discussed in 
detail elsewhere  [  116–  118  ] . Also, SphinGOMAP ©  provides a useful overview of 
GlcCer complexity (  www.sphingomap.org    ).   

    3.2   Salvage Pathway and Sphingolipid Recycling 

 SP turnover during salvage and recycling pathways as well as terminal SP degradation 
are critical processes, as several SPs, metabolic intermediates and degradation prod-
ucts show bioactive properties  [  72,   119  ] . Nutritional SPs also have to be metabo-
lized, providing uncommon lipid species  [  120  ] . As mammalian SPHd18:1 is only 
generated through desaturation of dhCer, not by desaturation of SPHd18:0 during 
the de novo pathway, and SPHd18:1 plays important roles in signalling pathways, 
e.g. phosphorylation pathways, SP turnover has to be tightly regulated. 

 SM breakdown is mediated by three classes of sphingomyelinases, named after 
their individual pH-optimum. Acid sphingomyelinase (SMPD1), intestinal alkaline 
sphingomyelinases (ENPP7) and neutral sphingomyelinases (SMPD2-4) show dis-
tinct SP speci fi city and are responsible for membrane homeostasis. 

 GSL degradation occurs in acidic endosomes and lysosomes, mediated by several 
enzymes, including galacto- and glucosidases (GBA, GLA, GALC, GLB1), 
sialidases (NEU1-4) and other enzymes (ARSA, ARSB, ARSG, ARSI, ARSJ, GNS, 
SGSH). Carbohydrates are sequentially released there by glycosidases,  fi nally 
providing Cer. 

 Cer catabolism starts with ceramidase activity catalyzing the cleavage of Cer at 
the amide bond resulting in free SPH and free FA. Ceramidases show an organelle 
speci fi c distribution. Three types of ceramidases have been described to date and 
classi fi ed according to their pH optima as acid (ASAH1), neutral (ASAH2), or alka-
line (ACER1, ACER2 and ACER3). 

 Many SP-associated diseases are known in humans. In most cases like skin bar-
rier diseases, Alzheimer, dementia, multiple sclerosis and atherosclerosis, speci fi c 
causes and responsible SP-genes are still not known  [  121  ] . But several monogenetic 
diseases have been identi fi ed, and disturbed SP degradation is a wide source of lipid 
associated diseases, including lysosomal storage disorders like inherited sphingo-
lipidoses, reviewed elsewhere  [  115,   122,   123  ] . 

http://www.sphingomap.org
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 Sphingosine-1-phosphate (S1P) is a bioactive SP generated by sphingosine 
kinases (SPHK1&2) and considered as a unique lipid mediator acting both inter-
nally and externally. As a second messenger S1P is implicated in the regulation of 
Ca 2+  mobilization and in exerting mitogenic and anti-apoptotic effects like cellular 
growth, proliferation and survival induced by platelet-derived growth factor, nerve 
growth factor and serum  [  76,   124,   125  ] . Through its high af fi nity G protein-coupled 
receptors (S1P1-5), S1P acts as an extracellular physiological mediator regulating 
heart rate, coronary artery blood  fl ow, blood pressure, endothelial integrity and most 
recently it has been shown to regulate the recirculation of lymphocytes  [  126  ] . 

 SGPP1 expression increased the incorporation of sphingosine into several SPs, 
enhancing C16:0, C18:0 and C20:0Cers and downstream GlcCers and SMs  [  127  ]  
(Fig.  13.6 ). 

 Degradation of S1P is either mediated by a pyridoxal-dependent S1P-Lyase 
(SGPL1) with irreversible cleavage to ethanolamine-phosphate and hexadecanal, 
the only way to terminally degrade any SP. The other possibility is dephosphorylation 
by speci fi c S1P-phosphohydrolases (SGPP1&2), thus increasing the level of free 
SPHd18:1 in the cytosol and cell membranes. SGPP1 and SGPP2 show SPH chain 
length speci fi city and localize at the cytosolic side of the ER where they degrade 
S1P to terminate its actions.   

    4   Genetic Diseases Related to FA Species and FA Related Lipid 
Class Metabolism and Processing 

 There are several genetic defects that in fl uence FA metabolism especially related to 
FA processing, transport, incorporation into other lipid classes (e. g. acylglycerols, 
glycerol-PL, Sphingolipids or cholesterylesters) or FA oxidation diseases 
(Table  13.2 ), with either impaired energy production or altered FA accumulation. 
Another consequence of disorders of FA metabolism is the in fl uence on cell and 
organelle membranes. The  fl uidity or rigidity of membranes as well as their forma-
tion and function are strongly dependent on the degree of saturation and chain length 
of the FA residues as constituents of membrane lipid species. The higher the degree 
of desaturation, the more  fl uid a membrane becomes as a consequence. This is the 
basis for the importance of desaturases and elongases in metabolic and vascular 
diseases.  

 FA transport disorders affect the carnitine shuttle responsible for the transport of 
FAs into mitochondria for further degradation. They include primary carnitine 
de fi ciency (PCD), carnitine-acylcarnitine translocase de fi ciency (CACTD), carni-
tine palmitoyltransferase I de fi ciency (CPT1D) and carnitine palmitoyltransferase II 
de fi ciency (CPT2D). The symptoms include hypoketotic hypoglycemia, hyperam-
monemia, hepatomegaly and cardiomyopathy, as well as sudden infant death  [  128  ] . 

 De fi ciency or impaired function of elongases leads to an accumulation of AA and 
DHA and subsequently increased channelling of these precursors to the sites of 
prostaglandin and thromboxane synthesis, being responsible for proin fl ammatory 
and procoagulent responses  [  129  ] . 
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   Table 13.2    Genetic disorders connected to fatty acid metabolism   

 Disease  Affected gene  Effect 

  Mitochondrial FA disorders  
 Very long-chain acyl-coenzyme A 

dehydrogenase de fi ciency 
(VLCADD) 

 VLCAD  Very long-chain fatty acids cannot 
be metabolized, especially 
during fasting 

 Long-chain 3-hydroxyacyl-
 coenzyme A dehydrogenase 
de fi ciency (LCHADD) 

 LCAD  Very long-chain fatty acids cannot 
be metabolized, especially 
during fasting 

 Medium-chain acyl-coenzyme A 
dehydrogenase de fi ciency 
(MCADD) 

 MCAD  Impaired FAO, reduced energy 
production, especially during 
fasting 

 Short-chain acyl-coenzyme A 
dehydrogenase de fi ciency 
(SCADD) 

 SCAD  Impaired FAO, reduced energy 
production, especially during 
fasting 

 3-hydroxyacyl-coenzyme A 
dehydrogenase de fi ciency 
(HADHD) 

 HADH  Impaired FAO, reduced energy 
production, especially during 
fasting 

 2,4 Dienoyl-CoA reductase 
de fi ciency (DECR1D) 

 DECR1  Impaired FAO of unsaturated fatty 
acids 

 Malonyl-CoA decarboxylase 
de fi ciency (MCDD) 

 MCD  Malonic acid is produced by SCAD, 
Krebs cycle is inhibited, 
Glycolysis is increased 

 Mitochondrial trifunctional 
protein de fi ciency (MTPD) 

 HADHA, HADHB  Impaired FAO, reduced energy 
production, especially during 
fasting 

 Barth syndrome  Tafazzin  Abnormal cardiolipin pro fi le due to 
impaired CL-remodeling 

 Peroxisomal defects 
 Refsum disease  AMACR  Phytanic acid is not degraded and 

accumulates in plasma 
 Zellweger Syndrome  PEX  Impaired peroxisomal function, 

VCLFA and BCFA accumulate 
 X-linked adrenoleukodystrophy  ABCD1  Accumulation of VCLFA due to 

impaired transport into 
peroxisomes 

  d -bifunctional protein de fi ciency  HSD17B4  Accumulation of LCFA due to 
impaired peroxisomal FAO 

  FA processing and transport disorders  
 Primary carnitine de fi ciency  SLC22A5  Impaired FAO due to loss of 

carnitine 
 Carnitine-acylcarnitine translo-

case de fi ciency 
 CACT  Impaired FAO due to lack of 

transport of acyl-carnitines into 
mitochondria 

 Carnitine palmitoyltransferase I 
de fi ciency (CPT) 

 CPT I  Impaired FAO due to lack of 
transport of acyl-carnitines into 
mitochondria 

 Carnitine palmitoyltransferase II 
de fi ciency (CPT) 

 CPT II  Impaired FAO due to lack of 
transport of acyl-carnitines into 
mitochondria 

(continued)
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 Chanarin-Dorfman syndrome is a neutral lipid storage disease, caused by a defect 
in abhydrolase domain containing 5 (ABHD5) which activates adipose triglyceride 
lipase (ATGL). Symptoms include abnormal storage and accumulation of TAGs in 
liver, skin, muscles, intestine, eyes, and ears. As a consequence patients suffer from 
hepatomegaly, ichthyosis, cataracts, ataxia, hearing loss, short stature, myopathy, 
nystagmus and mild intellectual disability  [  130  ] . 

 Another genetic disease connected to lipid storage is cholesteryl ester storage 
disease (CESD) and its more severe form, Wolman’s disease (WD), which is caused 
by partial and complete lysosomal acid lipase (LAL) de fi ciency. Symptoms include 
hepatomegaly, associated with hepatic steatosis and elevated transaminases, leading 
to chronic liver disease, periportal  fi brosis and cirrhosis. WD-patients die within the 
 fi rst years of life from adrenal calci fi cation and consecutive insuf fi ciency. There are 
also CESD cases reported, where the symptoms were reduced and even unsymp-
tomatic patients have been diagnosed with CESD. On the other hand, chronic 
alcohol consumption or viral infections of the liver severely in fl uence the progres-
sion of chronic liver disease  [  131  ] . 

 Lipoprotein lipase (LPL) de fi ciency leads to excessive hypertriglyceridemia 
caused by failure of TAG-hydrolysis in chylomicrons and VLDL and the patients 
may die from pancreatitis, but there are no signs for vascular disease  [  132  ] . 
Overexpression of LPL has been implicated in diabetes mellitus, obesity and tissue 
speci fi c insulin resistance  [  133  ] . Hepatic lipase (LIPC) de fi ciency is a rare condi-
tion resulting in high levels of atherogenic remnants from TAG-rich lipoproteins 
and elevated HDL 

2
 -levels. Animal models of LIPC reveal a strong connection to 

atherosclerosis  [  134  ] . 

Table 13.2 (continued)

 Disease  Affected gene  Effect 

 Hepatic lipase de fi ciency  LIPC  Elevated HDL levels 
 lipoprotein lipase de fi ciency  LPL  Hypertriglyceridemia 
 Tangier disease  ABCA1  Impaired HDL production 
 Chanarin-Dorfman syndrome  ABHD5  Accumulation of triglycerides due to 

lack of lipase ATGL 
 Cholesteryl ester storage disease  LAL  Accumulation of cholesterol and 

triglycerides due to lysosomal 
acid lipase (LAL) de fi ciency, 

 Majeed syndrome  LPIN 2  In fl ammatory disorder characterized 
by recurrent bouts of osteomy-
elitis, dyserythropoietic anemia, 
and cutaneous in fl ammation 

  Amino acid disorders related to FA-metabolism  
 Maple syrup urine disease  BCKDHA 

BCKDHB, DBT, 
DLD 

 Accumulation of leucine, valine and 
isoleucine due to branched-chain 
alpha-keto acid dehydrogenase 
complex (BCKDC) de fi ciency 

 Propionic acidemia  PCCA, PCCB  Accumulation of propionic acid due 
to propionyl CoA carboxylase 
(PCC)-de fi ciency 
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 Several studies have examined the metabolism of TAG and lipid droplets in mice. 
It has been shown that MPL-de fi cient mice have impaired lipolysis and attenuated 
insulin-resistance  [  135  ] . DGAT-de fi cient mice are protected from obesity and have 
increased insulin sensitivity  [  136  ] . The same has been found for HSL-ko mice, which 
were not obese with reduced white adipose tissue. In contrast to that, ATGL-ko mice 
show reduced hydrolysis of TAGs from lipid droplets in white adipose tissue and a 
massive accumulation of TAGs in all tissues, but most prominent in cardiac and skel-
etal muscle, testis, pancreas and kidney, eventually leading to cardiac arrest  [  137  ] . 

 Genetic diseases of FA dependent energy metabolism in mitochondria affect FA 
dehydrogenases, including very long-chain acyl-coenzyme A dehydrogenase 
de fi ciency (VLCADD), long-chain 3-hydroxyacyl-coenzyme A dehydrogenase 
de fi ciency (LCHADD), medium-chain acyl-coenzyme A dehydrogenase de fi ciency 
(MCADD), short-chain acyl-coenzyme A dehydrogenase de fi ciency (SCADD) and 
3-hydroxyacyl-coenzyme A dehydrogenase de fi ciency (HADHD). These disorders 
of FA oxidation have several phenotypes including hypoglycemia, lethargy, muscle 
weakness, and, in infants or small children failure to gain weight and poor feeding. 
Patients also suffer from nausea, vomiting and diarrhea. MCADD has been linked 
to infant sudden death syndrome  [  138  ] . These disorders manifest especially during 
periods of fasting, because the production of energy from triglycerides is severely 
impaired (Table  13.2 ). 2.4 Dienoyl-CoA reductase is responsible for the metabolism 
of FAs with even-numbered double bonds  [  139,   140  ]  and de fi ciency has been diag-
nosed only in a few newborn patients with a small body habitus, microcephaly, 
symptoms of sepsis, hypotonia, decreased feeding and intermittent vomiting. 
Patients ultimately die within 6 months. 

 Another mitochondrial FA metabolism disorder is Barth syndrome, caused by 
defects in the tafazzin gene, which leads to impaired cardiolipin (CL) synthesis and 
remodelling, resulting in an unnormal mitochondrial CL-pro fi le. Barth syndrome is 
clinically characterized by myopathy, neutropenia, growth delay, exercise intoler-
ance, cardiolipin abnormalities and 3-methylglutaconic aciduria  [  141  ] . 

 Majeed syndrome is caused by defects of LPIN2, the gene encoding a member 
of the phosphatidate phosphatase family (PAP, lipin 1–3). Majeed syndrome is a 
rare condition characterized by recurrent episodes of fever and in fl ammation in the 
bones and skin, known as chronic recurrent multifocal osteomyelitis (CRMO). 
A blood disorder called congenital dyserythropoietic anemia can also occur in 
Majeed syndrome  [  142  ] . 

 There are also four disorders in FA metabolism attributed to peroxisomes. Defects 
in the ACOX1 gene, which is the  fi rst enzyme in the peroxisomal FAO of unsatu-
rated and saturated FAs, result in pseudoneonatal adrenoleukodystrophy, a disease 
that is characterized by accumulation of very long chain FAs  [  143  ] . 

 Zellweger syndrome is a peroxisome biogenesis disorder characterized by 
impaired neuronal migration, neuronal positioning, and brain development, due to 
the accumulation of VCLFA and BCFA that cannot undergo b-oxidation in the 
defective peroxisomes and whose aberrant incorporation into myelin destabilizes 
that myelin and in turn the neuronal sheath architecture  [  144  ] . Another peroxisome 
biogenesis disorder is X-linked adrenoleukodystrophy (X-ALD). A mutation in the 
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ABCD-transporter localized in the peroxisome membrane. ABCD defects lead to 
an accumulation of VCLFA in the brain and adrenal gland due to impaired transport 
of VCLFA into peroxisomes. Symptoms include loss of previously acquired neuro-
logic abilities, seizures, ataxia, Addison’s disease, and degeneration of visual and 
auditory function. The onset is usually at age 4–10 and X-ALD is present almost 
exclusively in males  [  145,   146  ] . 

 Refsum’s disease is an inherited disorder of branched chain lipid metabolism 
caused by a defect in phytanic acid catabolism. Causal are mutations in the two 
genes PHYH (Phytanoyl-CoA 2-Hydroxylase) and PEX7, responsible for the 
metabolism and transport of phytanic acid  [  147,   148  ] . Due to these defects, accu-
mulation of phytanic acid reaches toxic levels in plasma and in several tissues, 
mostly in adipose tissue, liver, kidney, muscle and neuronal tissues. The disease 
usually begins in late childhood with increasing night blindness due to degeneration 
of the retina (retinitis pigmentosa) and loss of the sense of smell (anosmia). Other 
symptoms include deafness, problems with balance and coordination (ataxia), 
weakness or peripheral neuropathy, numbness dry and scaly skin (ichthyosis) and 
cardiac arrhythmias  [  147,   148  ] . 

 Connected to branched-chain FA metabolism is the maple syrup urine disease 
(MSUD) or branched-chain ketoaciduria. It is caused by a de fi ciency of the 
branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to 
accumulation of the branched-chain amino acids and their toxic side-products in 
blood and urine. Symptoms of the condition include poor feeding, vomiting, dehy-
dration, lethargy, hypotonia, seizures, hypoglycaemia, ketoacidosis, opisthotonus, 
pancreatitis, coma and neurological decline, it manifests in early infancy and is 
treated through a diet without branched-chain amino acids  [  149  ] . 

 Propionic acidemia is caused by propionyl CoA carboxylase (PCC)-de fi ciency, 
an enzyme that converts propionyl-CoA (from branched-chain amino acids and 
odd-numbered FAs) into methylmalonyl-CoA, it is instead converted to propionic 
acid, which accumulates. Symptoms of the condition include poor feeding, vomit-
ing, dehydration, lethargy, hypotonia and seizures. The disease manifests almost 
directly after birth and is rapidly life-threatening.  [  150  ]   

    5   GWAS and Lipid Species 

 Genome-wide association studies (GWAS) examine interindividual variations of 
the genome. GWAS led to the discovery of single gene polymorphisms in coding, 
intergenetic or intronic regions associated with diseases such as diabetes, obesity 
and vascular diseases  [  151  ] . Within a GWAS, individuals are tested for single nucle-
otide polymorphisms (SNPs) in the genome and different traits are correlated with 
variations of metabolic abnormalities, enhanced or reduced disease risk (morbidity) 
and outcome (mortality). 

 Several GWAS identi fi ed correlations between SNPs and lipoproteins, summa-
rized in Fig.  13.7 , where SNPs are grouped according to gene functions. Clearly 
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  Fig. 13.8    ( a ) Correlation between lipid species and single nucleotide polymorphisms involved in 
fatty acid desaturation as determined by genome-wide association studies (GWAS).  Red lines  
depict positive correlation,  blue lines  negative correlation.  C11orf10  chromosome 11 open reading 
frame 10,  FA  fatty acid,  FADS1-3  fatty acid desaturase1-3,  PC-O  plasmalogen,  PC  phosphatidyl-
choline,  PE  phosphatidylethanolamine,  PI  phosphatidylinositol,  SNP  single-nucleotide polymor-
phism,  SM  sphingomyelin. ( b ) Correlation between lipid species and single nucleotide 
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visible is the positive correlation of apolipoprotein genes to both LDL and HDL, 
while lipases correlate to either LDL or HDL and desaturases correlate to HDL, 
LDL and TG. Interestingly, three polymorphisms in the FADS1-3 region (rs174546, 
rs174547 and 174601) were found to positively correlate with total cholesterol 
(TC), LDL, HDL and TG (Fig.  13.7 ) and only one of those (Fig.  13.8a ; FADS1 – 
rs174547) also shows a correlation to lipid species (negative correlation to PC36:3 
and to PC36:4 and to protective PC38:5).   

 The SNPs in the LIPC region also have a positive correlation to TG, HDL and 
TC, but only one (rs261342) has a positive correlation to LDL. There are no correla-
tions of LIPC-SNPs to both, lipid species (Fig.  13.8b ) as well as lipoproteins 
(Fig.  13.7 ). Genes in the region of cholesterol metabolism have positive (PCSK9, 
NPC1L1, HMGCR, CYP7A) and negative (LDLR, LDLRAP1, SORT1) correla-
tions to TC and LDL. The angiogenesis region shows mainly negative correlations, 
which is also true for the transporter region, where only ABCG5/8 displays a 
positive correlation to LDL and TC. In the receptor region there is a negative cor-
relation between LRP1 and TG and HDL and positive correlations of LRP4 and 
SCARB1 to HDL and LRP2 to TG. The insulin receptor substrate 1 region shows 
two SNPs with a positive correlation to HDL and TG, while the immune modula-
tion/cell recognition region has positive correlations to the lipoproteins except for 
one SNP of HLA that negatively correlates to TG  [  152,   153  ] . 

 More detailed analysis of FA-species correlations are shown in Fig.  13.8a , b as a 
summary of all published SNP-lipid species correlations with impact for vascular 
and metabolic disease  [  154–  157  ] . This analysis maps the metabolic pathways of 
lipid species and the in fl uence of different SNPs, exempli fi ed in the up- and down-
regulation of FA species incorporated into glycerophospholipids, sphingolipids and 
acylglycerols. It can be deduced from these correlations that a positive effect 
between lipid species and SNP corresponds to an increased precursor level of that 
lipid species and a negative correlation corresponds to decreased product levels of 
the lipid species concerned. 

 It is interesting to note that, in the FA cluster shown in Fig.  13.8a  there are asso-
ciations between the FADS-SNPs and the FAs, with each SNP having only a positive 
or a negative correlation. There is only one SNP (rs174547) that appears in both 
studies with correlations to both, lipid species as well as lipoproteins (Fig.  13.7 ). 
The FAs with a lower degree of desaturation (dienoate and trienoate) revealed a 
positive association with SNPs in the FADS1-2 region, while FAs with a higher 
degree of desaturation show a negative correlation to SNPs in this region. Therefore, 
any genetic variation of a single SNP involved leads to a decrease of desaturation of 

Fig. 13.8 (continued) polymorphisms involved in fatty acid metabolism. Note the separation of 
correlations between sphingolipid/ceramide metabolism-related genes and fatty acid metabolism-
related genes.  ATP10D  ATPase, class V, type 10D,  Cer  ceramide,  FA  fatty acid,  GluCer  glucosyl-
ceramide,  LASS4  ceramide synthase 4,  LIPC  hepatic lipase,  MCAD  medium-chain acyl-CoA 
dehydrogenase,  PC-O  plasmalogen,  PC  phosphatidylcholine,  PE  phosphatidylethanolamine,  PI  
phosphatidylinositol,  SCAD  short-chain acyl-CoA dehydrogenase,  SGPP1  sphingosine-1- 
phosphate phosphatase,  SNP  single-nucleotide polymorphism,  SM  sphingomyelin,  SPTLC3  serine 
palmitoyltransferase3       
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the FAs, including precursors for either pro-in fl ammatory (n-6) or anti-in fl ammatory 
(n-3) prostanoids. The fact that there is a clear distinction between precursors with a 
positive correlation and a negative correlation indicates a speci fi c precursor product 
relationship between pairs of FAs through certain sequence variations of the gene 
region. This can be exempli fi ed in the following: rs174553, rs174556 and rs174561 
are three sequential SNPs in the FADS1-region that have a positive correlation to the 
FA 20:3(n-6) and a negative correlation to arachidonic acid 20:4(n-6). This is an 
indication that variations in this gene region raise the level of 20:3(n-6) (precursor) 
and decreases the level of 20:4(n-6) (product). This can be seen as evidence that this 
gene region is involved in the desaturation of 20:3(n-6) to AA 20:4(n-6). A SNP in 
this gene region therefore may lead to a decrease or increase of 20:4(n-6) levels, 
potentially altering its proin fl ammatory effects on eicosanoids biosynthesis. 

 It is also interesting to note that there are negative correlations between SNPs of 
the FADS-region and phospholipid species with a higher degree of desaturation and 
a higher number of carbons, indicating a longer chain length of the incorporated 
FAs. Thus, genetic variations of the corresponding SNPs are connected to a reduc-
tion of desaturation. 

 SNPs in FADS1 (rs174549, rs174548, 174547) and FADS2 (rs174577, rs174583) 
are associated with PC 38:5, which is made up either of a combination of the FAs 
20:4 and 18:1 or of 18:0 and 20:5. Different SNPs in the FADS cluster associate to 
different glycerophospholipid species, indicating site speci fi c functional alteration 
within the FADS cluster. Moreover, it is obvious that none of the published SNPs is 
found in coding sequences, all are intergenic or intronic, indicative for in fl uencing 
transcription or epigenetic regulation. Generally, any variation in the FADS gene 
region that has been published in these GWAS is favouring a lesser degree of desat-
uration in the FAs and has a negative correlation to FAs with a higher degree of 
desaturation. 

 Impaired FA desaturation also disturbs the homoeostasis of associated lipid spe-
cies. Sphingomyelins show only negative correlations to speci fi c FADS-SNPs, indi-
cating the importance of FAs also for SP biosynthesis. In the case of FADS1, 
rs174556 negatively correlates with medium chain SM16:1, SM18:1 and SM20:1, 
as also does rs1535 of FADS2. On the other hand, rs174548 negatively correlates 
with long and very-long chain sphingomyelins SM22:2, SM24:2, SM18:3 and 
SM28:4. Accordingly, SM synthesis is dependent on speci fi c FA precursors de fi ned 
by proper FA desaturation. Indeed, FA speci fi city of the seven individual CerS are 
known, and Cers are the precursors for sphingomyelin synthases. In a recently pub-
lished GWAS  [  158  ] , also clinical relevance for the FA dependent sphingolipid 
homoeostasis was found, as hypertension and blood pressure regulation was linked 
to SNPs responsible for de novo ceramide biosynthesis and the sphingolipid rheo-
stat. Fenger et al. thereby emphasised the major importance of externally derived 
FAs for Cer synthesis, comparing the gene expression of ELOVL3 and free fatty 
acid receptor 1 (FFAR1), and pointing out the FA speci fi city of different CerS 
enzymes  [  158  ] . 

 Another interesting correlation is the one for the SNP rs174548. There is a posi-
tive correlation to PC-O 34:2 and 36:2 and a negative correlation to PC-Os with a 
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higher degree of desaturation. This implies a connection between this SNP and the 
remodelling of PC-Os, thus it should be investigated, whether there is a correlation 
to the biosynthesis of different PC-Os or rather to the remodelling of preformed 
PC-Os. 

 There is a clear distinction between genes involved in phospholipid and sphingo-
lipid/ceramide remodelling, e.g. in FADS1 (rs174546), FADS2 (rs1535) and FADS3 
(re1000778). Figure  13.8b  shows all published correlations between SNPs in gene 
regions of lipases and dehydrogenases and lipid species. The SNP (rs4775041) in 
the LIPC region positively correlates with several phospholipid species. SNPs in 
these regions also affect phospholipid hydrolysis thus leading to precursor accumu-
lation of certain phospholipid species including PC 30:4, 38:6 and 40:6. The MCAD 
and SCAD regions show mostly negative and positive correlations to individual 
phospholipid species, but there is no clear discrimination of the two according to FA 
chain length, which would actually be expected. The situation in these gene regions 
is not as clear as it is with the FADS region, because there is not as much data pub-
lished. SP associated genes, SGPP1, LASS4 and SPTLC3 show species speci fi c 
correlations, but the overlap with LIPC, MCAD and ATP10 also resembles the 
interconnectivity of the metabolic pathways. 

 Analysis of GWAS with this type of graphical illustration provides the possibil-
ity to  fi nd precursor-product relationships and their connection to SNPs and gene 
regions. Also, this analysis can give insight into therapeutic and diagnostic target 
areas for further investigations. Since lipid species, their functions and the effects of 
metabolic diseases on those lipid levels are well known, effects through the increased 
or decreased levels of lipid species can be connected to gene regions found through 
this type of data analysis.  

    6   Conclusion 

 The metabolism of FA species and their assembly as acylglycerols, cholesteryl 
esters, glycerophospholipids and sphingolipids in the human body is regulated by a 
large number of different genes that are polymorphic in the population and may be 
involved in vascular and metabolic disease. Fluidity, rigidity and function of mem-
branes are a result of FA chain length and the degree of desaturation of the FA 
residues that are part of the phospholipids and sphingolipids that make up the mem-
branes. This explains the importance of genetic defects or SNPs in desaturases and 
elongases for the understanding of vascular and metabolic disease. 

 Many genetic defects of FA metabolism are either connected to disturbed FA 
transport, processing or b-oxidation and mostly lead to impaired energy management 
in the human body that is further challenged by nutrition. Only relatively few genes 
are affected in these disorders, but their variations have major impact on FA metabo-
lism in humans. One possibility of data assessment from GWAS is the lipid species 
speci fi c illustration of positive and negative correlations between SNPs and lipid 
species, which directly depict the “SNP hot spots” that warrant further research. 
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 There are a number of metabolic nodes that constitute the crossroads on this map 
of pathways. One of those hubs is related to phosphatidic acid, the precursor for 
several phospholipids, polyglycerophospholipids and diacylglycerides and thus 
genetical alterations or metabolic overload ultimately lead to storage of FAs as tria-
cylglycerols and diabesity. It can be predicted that these hubs are major targets for 
lipidomic strategies in diagnostics and treatment, because their increase or decrease 
is an important clue for any pathology of lipid metabolism pathway no matter 
whether the underlying cause is genetic, due to metabolic overload or both.      
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     1   Introduction 

 Large-scale molecular epidemiology studies have assessed the potential of metabolic 
pro fi ling and metabolic phenotyping for biomarker discovery  [  1  ] , which eventually 
resulted in the introduction of concept of Metabolome-Wide Association Studies  [  2  ] . 
This metabolic phenotyping approach successfully identi fi ed metabolic biomarkers 
related to hypertension. However, these studies point towards the crucial need to 
estimate genetic variance and heritability for these metabolic phenotypes associated 
to disease states and to identify genes in fl uencing metabolism in general. 

 Genome-wide association studies (GWAS) are performed in increasingly large 
cohorts. Among future steps are the mapping of biomarkers for mechanisms that 
would predict disease onset and progression. Quantitative genetic analysis of gene 
expression can generate the required information for genetic analysis of molecular 
phenotypes  [  3  ] . Mapping genome-wide transcriptomic quantitative traits was origi-
nally developed in models and applied in humans  [  4,   5  ] . It remains mostly based on 
the analysis of the transcriptome in cell lines, which do not necessarily accurately 
re fl ect in situ gene expression and access to biopsies of organs that are central to a 
pathology (e.g. pancreas in diabetes) is often impossible. 

 In a genetical genomics context  [  3  ] , the metabolic complement presents a series 
of advantages over gene expression products i.e. gene transcripts  [  5  ]  or proteins  [  6  ] . 
One of these advantages is the fact that metabolic pro fi les represent hypothesis-free 
metabolic endpoints at the systems level. Experimental models of human diseases 
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provide several advantages including short generation time, inbred genetic 
backgrounds, well-conserved metabolic pathways (e.g. glycolysis, gluconeogene-
sis, etc.…), access to tissues that are usually dif fi cult to collect in humans and 
simultaneous analysis of multiple tissues that collectively regulate metabolic path-
ways that, when altered, are the cause of diseases. 

 Mapping metabolic traits onto the genome and the subsequent identi fi cation of 
quantitative traits loci associated with these phenotypes (mQTL) represents are very 
active areas of modern genetic research. The  fi rst implementation of mQTL map-
ping was made in plants  [  7,   8  ] , then in mammalian models  [  9  ]  and was quickly 
followed by the development of metabolomic GWAS in humans cohorts  [  10–  12  ] . 

 This chapter synthesises the individual components required for genetic analysis 
of quantitative variables of the metabolome, through quantitative trait locus (QTL) 
mapping in rodent models, and emphasises the importance of complementary 
expertise and multidisciplinary approaches in this emerging  fi eld of research. These 
include details of:

   Experimental cohorts of hybrids   –
  A protocol/experimental design and SOPs   –
  Biological samples (biopsies, bio fl uids)   –
  Quantitative phenotypes   –
  Genetic markers and genetic maps   –
  Statistical tools such as R/QTL  [   – 13  ] , PLINK  [  14  ]   
  Network biology of complex traits      –

    2   Genetic Crosses and Mapping Panels 

 Analysis of the genetic basis of complex phenotypes in mammalian species is in 
theory simpli fi ed in inbred models developed in rats and mice, which are geneti-
cally homogeneous within a strain and can be intercrossed to produce cohorts of 
hybrid animals, each carrying alleles that can be traced back to one of the founder 
strains (Fig   .  14.1 ). This strategy has been particularly successful to map the genetic 
control of quantitative traits, including primarily phenotypes related to complex 
diseases such as blood pressure  [  15  ] and blood glucose and insulin secretion  [  16  ] . 
Genetic studies of complex traits require the production of hybrid individuals, gen-
erally F2 or backcross (BC) cohorts or recombinant inbred (RI) strains, which are 
used to generate genetic and phenotypic heterogeneity in order to test the co-segre-
gation of alleles and quantitative phenotypic patterns. More elaborated systems 
(e.g. Heterogeneous stocks -HS) increase the genetic complexity of the hybrid pop-
ulation which is a mosaic of alleles originating for 8 inbred strains randomly bred 
over many generations  [  17,   18  ] . Accurate localisation of the genetic effects relies on 
recombination rates, which increase in HS when compared to classical F2 of BC, 
even when large populations are used. As a consequence, large phenotypic effects 
can be mapped at low genetic resolution in relatively small F2 or BC cohorts 
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(n < 200), whereas high resolution mapping of biological traits can be achieved in 
HS, which requires much larger populations (n > 500).  

 Whatever experimental system is used for genetic mapping, the signi fi cance and 
genetic position of variants controlling a phenotype are statistically determined and 
other experimental systems are required to validate and  fi ne map the genetic effects 
in genomic intervals, and characterize the biological function of the underlying 
genetic variants. Congenic strains where segments of chromosomes harboring a 
genetic locus of interest of one strain are introgressed into a permissive genetic 
background of another strain currently provide the most reliable way of progressing 
from genetic mapping of quantitative phenotypic traits to identi fi cation of the under-
lying causative genes (Fig.  14.1 )  [  19  ] . Multiple sub-strains derived for overlapping 
introgressed segments are often developed and, by comparing the phenotype in each 
sub-strain with that of the parental strain, the smallest genomic interval containing 
the causative gene can be de fi ned.  

  Fig. 14.1    Illustration of genetic crosses generally used to generate QTL mapping panels and to 
derive congenic strains designed to validate QTLs,  fi ne map the causative gene and characterise its 
function       
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    3   SOP for the Standardisation of Procedures Used 
in Metabolomic Trait Analysis 

 As genetic studies of metabolomic phenotypes are carried out with samples from 
large cohorts of genetically heterogeneous individuals, fully standardised protocols 
are required for sample collection and preparation. To minimise the effect of con-
founding variations in experimental conditions on metabolome pro fi les, bio fl uid 
and organ biopsies must be collected at the same time of the day from sex- and age-
matched individuals in very speci fi c nutritional conditions (i.e. fasted, free fed). The 
following sections provide speci fi c technical guidance for the collection of samples 
that will be used for metabolomic studies. 

    3.1   Sample Collection Procedures and Nutritional Status 

 Sample collection protocols have been established and recommendations issued. 
 Metabolic pro fi les, unlike genetic material (with the notable exclusion of 

mRNAs),  fl uctuate depending on time and physiological status of individuals. 
Fasting has a strong effect on circulating metabolic levels and has a profound impact 
on the variation of the metabolome of tissues and on urinary excretion. The “versa-
tility of metabolic pro fi les” can be advantageously used with a minimum of stan-
dardisation of experimental designs, cohort designs and collection protocols for 
bio fl uid and tissues. 

    3.1.1   Bio fl uids 

 Urines are usually collected in vessels containing 100  m L of 0.02% NaN3 (w/v) as 
preservative (for a total volume of about 1 ml). Urinary samples can also be pre-
 fi ltered using 0.2  m m  fi lters and syringe to remove cellular material during collection. 
Blood is collected into collection tubes coated with heparin (for blood plasma). Blood 
samples are then centrifuged for a de fi ned time and clot contact time logged (ideally 
<30 min). Samples should be stored at −80°C or below and transport on dry ice.

    • Sample requirements:  200  m L needed for NMR, 50  m L for MS, total 
300–350  m L minimum     

    3.1.2   Tissues 

 Tissue samples should be snap frozen using liquid nitrogen. The time to freezing 
should be controlled to minimise the effects of ischemia. Samples are then stored at 
−80°C or below and transport on dry ice. 
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 About 20 mg minimum of frozen tissue is weighted into an Eppendorf or glass 
vial. For a 20–30 mg sample 300  m L of cold CHCl 

3
 /MeOH (2:1) solution is added 

before homogenising the tissue using a bead beater. An equivalent volume (300  m L) 
of HPLC-grade water is added and mixed before centrifuging the homogenate for 
10 min at >10,000 g. The lower organic (CHCl 

3
 ) and upper aqueous (methanol/

water) phases are pipetted into separate clean glass vials. Another extraction cycle 
and pooling with previous fractions will increase extraction recovery. The organic 
solvents are removed from the samples using a speed vacuum concentrator. The 
aqueous phase is freeze-dried to remove residual water. All samples to be kept at 
−80°C until reconstitution with 100  m l water: methanol (1:1) for the organic, and 
water for the aqueous samples and transferred to glass vials, or 96-well 350  m l 
plates. For GC-ToFMS analysis, specimens (50  m l) are processed by solid-phase 
extraction and derivatised using chemistries appropriate to the analyte class.

    • Sample requirements:  20 – 30 mg needed for NMR and 20–30 mg for MS, total 
50–60 mg minimum.     

    3.1.3   Cell Cultures and Media 

 Typically >10 6  mammalian cells are required and best results are obtained with 
5 × 10 6  cells in terms of concentrations of metabolites. Cells can be cultured in 
75-cm 2   fl asks with 12 mL of media, with each  fl ask yielding a single biological 
replicate. Cultures are removed from incubator and the media are aspirated. The 
media can be collected in a sterilised tube, centrifuged (4°C, 4 min, 150 × g) to pellet 
dead cells and the supernatant frozen at −80°C for later analyses. Cells are washed 
using 1 mL of cold (4°C) PBS to remove media. This step is repeated a couple of 
times. Cells are then lysed and metabolism quenched by adding 1 mL cold methanol 
(4°C) to the culture vessel. Cellular material is detached using a cell scraper after 
2 min and the resulting suspension is transferred into an Eppendorf or glass tube to 
dry the sample. 

 The resulting cell pellet can be extracted using the same procedure as for whole 
tissue without the need for grinding or sonication. The residual pellet after extrac-
tion can be used for sample normalisation. Cell media are analysed using the same 
procedure are for urine.

    • Sample requirements:  5 × 10 6  cells for NMR and MS, 300–350  m L for cell 
media.       

    4   Platforms and Tools for High-Throughput Metabolomic 
Spectral Data Acquisition 

 A certain number of references have been published for NMR  [  20,   21  ]  and 
MS  [  22  ] . 
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    4.1   Quality Control 

 To minimise the effects of variation due to instrumental variation, all samples should 
be run in randomised order. Quality control samples should be inserted for metro-
logical control purpose. High-resolution  1 H NMR, GC-MS and UPLC-MS meta-
bolic pro fi ling can be equally performed on tissue samples, plasma and urine.  

    4.2   NMR 

  1 H NMR spectroscopy is a robust, non-invasive analytical method particularly 
suited for the qualitative and quantitative analysis of low-molecular weight small 
molecules and metabolites (see Box  14.1 ). Untargeted liquid  1 H NMR metabolic 
pro fi ling can be easily performed on bio fl uids and tissue extracts using 600 MHz 
NMR spectrometers, which are routinely used for biomedical applications. Standard 
 1 H NMR, spin-echo and diffusion-ordered pulse-sequence experiments are subse-
quently used to characterise independently the overall metabolic pro fi le, small 
molecular weight metabolites and lipids components from urine, plasma, serum and 
tissue samples  [  21  ] . For semi-solid samples, such as biopsies or small-organism 
cultures ( Caenorhabditis elegans ,  Drosophila ), an alternative to sample extraction 
consists in using  1 H High Resolution Magic Angle Spinning (HR-MAS) NMR spec-
troscopy  [  20,   23,   24  ] .   

    4.3   MS 

 Untargeted UPLC-MS metabolic pro fi ling is ideal for urine and tissue extracts using 
a time-of- fl ight (ToF) instrument to provide a broad spectrum, high sensitivity 
pro fi le. Polar (C 

18
  and HILIC columns) and non-polar (C 

18
  column) fractions are 

analysed using positive and negative electrospray modes. Within this global pro fi ling 
analysis, bile acids, small organic acids and phospholipids can also be assayed 
through a more targeted approach. Selected discriminatory metabolites may be 
quanti fi ed through the use of  13 C-labelled or deuterated standards. This untargeted 
pro fi ling approach is completed by GC-ToFMS analysis covering short chain fatty 
acids and free fatty acids.   

    5   From Spectra to Estimating Metabolite Concentrations 

 In this section, we describe speci fi c methods applied to spectrum quanti fi cation, 
peak alignment and recoupling, spectral deconvolution and decomposition and 
eventual dimension reduction of phenotypic measures that can reduce the impact of 
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multiple testing on the summary statistics. Absolute NMR-based quanti fi cations can 
be derived using an internal standard or an internal radiofrequency standard. For 
Mass Spectrometry, absolute quanti fi cation can be obtained through multiple reac-
tions monitoring (MRM) of several stable isotopes, or by isotopic mass dilution. 

 Metabolomic spectral data obtained from tissues and bio fl uids from rodents and 
human cohorts are usually processed to generate quantitative metabolic phenotypes 
(>20 K datapoints per sample) for each sample, which are computationally intensive. 
A few methodological advances in chemometrics have recently been developed in 
the  fi eld of NMR-based and MS-based metabolomics that are particularly pertinent 
to mQTL mapping. 

   Box 14.1 Nuclear Magnetic Resonance Spectroscopy 

 High Resolution NMR spectroscopy is a robust, quantitative, non-invasive 
analytical method used to simultaneously measure a wide range of low-
molecular weight molecules in complex biological matrices such as tissues or 
bio fl uids to provide a metabolic “snapshot” of the sample. High- fi eld NMR 
spectrometers allow detection of metabolites present at few micromoles per 
litre. 

 NMR spectroscopy uses basic properties of the atomic nucleus, made of 
protons and neutrons. These particles have an intrinsic kinetic moment, or 
spin. All nuclei having non-zero spin can be observed by NMR - the most 
important nuclear isotopes used in biological applications are those with a 
spin =1/2 i.e., 1 H,  13 C,  15 N,  31 P. 

 When a vertical magnetic  fi eld (B 
0
 ) is applied, spins orient themselves 

parallel or anti-parallel to this  fi eld, resulting in the net magnetization of the 
sample, and move at a frequency dependant on the nucleus and the magnetic 
 fi eld strength. When a pulse of radiofrequency radiation is applied at the reso-
nant frequency, spins adopt a higher energy level, leading to a new orientation 
of the magnetization of the sample. When the pulse stops, spins relax to equi-
librium. During this relaxation process, the horizontal component of magne-
tization releases an oscillating voltage, producing the NMR signal, also called 
Free Induced Decay (FID). A Fourier Transform is then applied to convert the 
time domain signal of FID in the frequency domain and obtain NMR spec-
trum. The intensity of the NMR signal is directly related to the number of 
spins detected over seven orders of magnitude, and therefore metabolite 
concentrations. 

 Due to their chemical environment of the  nuclei , different atoms in a mol-
ecule will resonate at different frequencies (known as chemical shift) and 
spin-spin interactions between different neighboring spins will lead to split-
ting the NMR signal, a phenomenon known as nuclear coupling. Chemical 
shift and nuclear coupling information are used to unequivocally assign NMR 
signals to chemical structures, allowing structural identi fi cation of unknown 
signals (Fig.  14.2 ).   



240 M.-E. Dumas and D. Gauguier

    5.1   Data Preprocessing and Dataset Resolution 

 MS data are usually pre-processed using instrument manufacturer software such as 
MarkerLynx TM  and XCMS  [  25  ]  for peak detection, integration and reporting of peak 
identity as retention time (RT) and m/z pairs. NMR data are pre-processed at a resolu-
tion of 10 −3  ppm, thereby promoting the capacity for biomarker identi fi cation  [  26  ] .  

    5.2   Normalisation, Alignment and Statistical Recoupling 

 Mapping mQTLs is intrinsically computer-intensive. With tens of thousands of 
variables in both the genotyping and the metabolic phenotyping dimensions, the 
multiple testing correction issue is one of the parameters that needs controlling in 
order to enhance and maximise mQTL//metabolite association identi fi cation. 

  Fig. 14.2    Aliphatic region from a typical 600 MHz  1 H NMR spectrum of mouse urine (Adapted 
from  [  55  ] . The horizontal axis represents the NMR frequencies, expressed in chemical shift inde-
pendent from the spectrometer  fi eld (noted  ppm ) rather than in Hz, and the vertical axis corre-
sponds to the intensity of the signal, which is linear over seven orders of magnitudes. Legend: ( 1 ) 
TMA ( 2 ) TMAO ( 3 ) DMA ( 4 ) choline ( 5 ) creatine ( 6 ) creatinine ( 7 ) taurine ( 8 ) allantoin ( 9 ) hip-
purate ( 10 ) citrate ( 11 ) succinate ( 12 ) acetate ( 13 ) formate ( 14 ) isovalerate ( 15 ) fucose ( 16 ) lactate 
( 17 )  N -acetyl-glycoprotein( 18 ) alpha-hydroxyisobutyrate ( 19 ) alanine, ( 20 ) acetoacetate, ( 21 ) 
pyruvate ( 22 ) oxaloacetate ( 23 ) methylamine ( 24 ) dimethylglycine ( 25 ) glycerophosphocholine 
( 26 ) glycine ( 27 ) glycerate       
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 In order to yield a robust modelling of the relationship between the genomic 
markers and the metabolic phenotypes, NMR and MS data can be normalised using 
probabilistic normalisation and recursive segment-wise peak alignment  [  27  ]  to align 
peaks from calibrated NMR spectra. The RSPA algorithm can be advantageously 
applied prior to dimension reduction by statistical recoupling  [  28  ]  on NMR and MS 
data, to reliably identify metabolic signals in the spectra. Finally, variance-stabiliz-
ing variable transforms has been proven to drastically enhance subsequent model-
ling  [  29  ] . One of the key properties of untargeted signal identi fi cation is the reduction 
of the number of tests to be performed by a factor of 100, whilst recovering >99% 
of metabolic signals  [  28  ] .  

    5.3   Modeling by Partial Least Square (PLS) Methods 

 PLS methods present a series of advantages for a reliable and  fl exible analysis of 
NMR-based and MS-based metabolomic data  [  30  ] . Typically, NMR and MS spectra 
consist of multiple overlapping signals, causing rank de fi ciency (n variables > p 
individuals) in classical linear regression methods. PLS methods perform well in 
such multicollinear context. The recent development of Orthogonal Partial Least 
Square regression (OPLS) allows the computation of PLS regression with orthogo-
nal signal correction (OSC), leading to orthogonal scores. Further details on stan-
dard OPLS implementation in metabonomic studies have been given previously 
 [  26  ] . Owing to the mathematical relationships between O-PLS model coef fi cients 
and correlation coef fi cients (see Fonville et al. for a detailed discussion), O-PLS-
based mQTL mapping is identical to correlation-based mQTL mapping. This prop-
erty is particularly interesting for QTL mapping in congenic and recombinant inbred 
lines, (where the haplotypes are easily identi fi ed), which can advantageously be 
implemented within a canonical O2-PLS framework. This approach offers the pos-
sibility to build a single multivariate statistical model of the metabolic effects related 
to a series of  loci .  

    5.4   Safe Structural Assignment and Biomarker Identi fi cation 

 For structural assignment of untargeted discriminatory metabolites, various analyti-
cal and statistical structural identi fi cation strategies can be applied. 

    5.4.1   Statistical Spectroscopy 

  1 H, NMR and MS metabolomic datasets on cell extracts, organ and bio fl uid pro fi les 
are analysed using Statistical TOtal Correlation SpectroscopY (STOCSY)  [  31  ] , 
focussing on the spectral signals correlated to the biological variation of interest. 
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Other statistical structural assignment approaches include combining NMR and MS 
on the same sample-set to aid structural assignment  [  32  ] , like in Statistical 
HeterospectroscopY (SHY)  [  33  ] . Targeted pro fi ling can also be achieved by  fi tting 
pure compound spectra  [  34  ]  or by using self-modelling curve resolution (SMCR).  

    5.4.2   Multidimensional Spectroscopy 

 Safe structural assignment and quanti fi cation are always is achieved using a range 
of homonuclear and heteronuclear 2D NMR experiments, including  1 H- 1 H COSY, 
 1 H- 1 H TOCSY, J-resolved,  1 H- 13 C HSQC and  1 H- 13 C HMQC  [  35  ]  experiments. 
NMR resonances from putative markers are compared to existing internal and exter-
nal databases and con fi rmed by spiking samples with authentic standards. Tandem 
mass spectrometry (MS/MS) experiments are performed using UPLC-QToF-MS, 
for high accuracy (<2 ppm) mass measurements on both parent and fragment ions, 
thus facilitating identi fi cation of empirical formulae.  

    5.4.3   Databases 

 Structural assignment is usually coordinated with spectral compound libraries, i.e. 
Chemspider, the Human Metabolome Database (HMDB), Lipidmap, Lipidbank, 
the Madison Consortium Database, METLIN, Golm, PRIMe, and NIST, in addition 
to in-house databases. Finally, further mechanistic studies using  13 C and  2 H isotopes 
con fi rm putative signals and their associated metabolic pathways.    

    6   Genetic Map Construction 

 Genetic markers that show evidence of allele variation between the parental strains 
are required to de fi ne genotypes at genetic loci regularly spaced across the genome 
of each individual hybrid animal in an experimental cohort (Fig.  14.1 ). Until 
recently, microsatellites, which differ in length of short repeated sequences (2–10 
nucleotides), were the main source of markers for genetic studies. Single nucleotide 
polymorphisms (SNP) are now the preferred genetic markers as they are much more 
frequent across the genome and automated high throughput genotyping platforms 
have been developed to speed up genotype data acquisition in increasingly large 
cohorts. These platforms have the advantage of improving the reliability of geno-
type reads and making possible genetic studies in hybrids derived from closely 
related strains characterised by low polymorphism rates. 

 The purpose of genetic mapping quantitative traits is to localise the causative 
genes using a genetic scale (cM) established on the basis of largely random recom-
bination events that have occurred in each hybrid of the population speci fi cally 
used for phenotype and genotype analyses. Even though genetic markers are 
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precisely localised (Mb) in sequenced genome, construction of genetic maps in the 
hybrid population is highly recommended to verify the quality of genotype data and 
the correct position of the markers, and to take into account possible chromosomal 
rearrangements that may have occurred in the parental inbred strains. In practice, 
markers that have different genomic locations may be mapped to the same genetic 
location when lack of recombinant events in the genomic interval between them 
prevents their actual genetic separation (Fig.  14.3 ). In this condition their respective 
contribution to the linkage to the phenotypes cannot be distinguished.  

 User-friendly softwares have been developed for genetic map construction (e.g. 
JoinMap, MapMaker)  [  36  ] , which allow the calculation of genetic distances between 
markers and the identi fi cation of problematic genotypes (e.g. indicating unlikely 
double recombination or mapping markers beyond chromosome ends) that must be 
veri fi ed prior to linkage mapping. Genetic maps can also be constructed with tools 
developed in R 13 . This software can be applied for marker imputation obtained 
through the calculation of conditional genotype probabilities for observed and miss-
ing genotypes using hidden Markov models  [  37  ] .  

  Fig. 14.3    Illustration of genetic mapping applied to map the genetic control of a quantitative 
phenotype ( a ) using markers showing evidence of allele variability in the population and applied 
to construct a genetic map using resolved recombination events ( b ) and to test for evidence of link-
age to the phenotype ( c ). In this example, the size of the cohort does not allow suf fi cient recombi-
nation events to occur in order to separate markers 3 and 4, which give identical statistics for the 
all phenotypes quanti fi ed in the cohort       
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    7   Techniques for Genetic Mapping High-Density Phenotypic 
Datasets in Large Cohorts 

 Owing to the continuous distribution of phenotypes characterizing complex genetic 
disorders in humans (e.g. plasma glucose in type 2 diabetes mellitus, blood pressure 
in essential hypertension) genetic linkage analysis of quantitative traits in experi-
mental crosses has received much attention by statistical geneticists  [  38  ] . The utili-
zation of quantitative values of biological variables represents a key strategy for 
statistical analysis of data derived from genetic studies of complex traits in order to 
overcome arbitrary classi fi cation of groups of individuals based on a normally dis-
tributed phenotype in an experimental cohort. The concept of quantitative trait locus 
(QTL) mapping (Box  14.2 ), which uses the continuous values of phenotypic vari-
ables in each individual of a population, has been developed and remains an impor-
tant methodological development in genetic research  [  39,   40  ] . Historically only few 
disease-related phenotypes were considered for QTL analysis  [  15  ] . Dissection of a 
phenotype in discrete physiological variables was later carried out to investigate a 
possible common etiology between phenotypes contributing to a disease (e.g. glu-
cose intolerance and impaired insulin secretion in type 2 diabetes)  [  16,   18  ] . 

 The development of statistical methods designed to use quantitative phenotype 
variables in genetic linkage studies has had a profound impact in genetic investiga-
tions of complex traits. Prior to genetic mapping, all phenotypes in the population 
must be normalized and tested for correlations. The property of the normal distribu-
tion is that 68% of all its observations fall within a range of ±1 standard deviation 
from the mean, and a range of ±2 standard deviations includes 95% of the values. 
Obviously, the shape of the sampling distribution becomes normal as the sample 
size increases and normal distribution is usually obtained for most physiological 
phenotypes. Validation of normality and evidence of correlation between traits can 
be easily tested with standard statistical softwares. Several different techniques have 
been developed for QTL mapping that are based on the utilisation of maximum 
likelihood techniques to calculate LOD scores at many selected positions in an 
interval between markers and plotted versus genetic map location. They test by 
analysis of variance the linkage between genotypes at a succession of marker loci 
and quantitative variation of a given phenotype. The most popular programs for 
QTL analysis in the past were Map Manager QT, MAP-MAKER/QTL, JoinMap/
QTL and MultiQTL, which still remain valid options for genetic analyses. However, 
the preferred suite of programs is now R/QTL  [  13  ] . Thresholds of statistical 
signi fi cance are determined for each phenotype by permutation testing  [  41  ] . 

 Progress in genotyping technology allowing increasingly large panels of genetic 
markers to be typed and the application of functional genomic platforms as high 
density molecular phenotype generation tools have provided major advances in 
genetic and biomedical research for phenotype dissection and disease biomarker 
discovery  [  5  ] . These platforms generate quantitative information on the abundance 
of transcripts corresponding to over 30,000 genes (Affymetrix or Illumina 
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transcriptomes) and the concentration of over 15,000 molecular compounds charac-
terised by speci fi c NMR or MS spectral peaks. Even though this represents an enor-
mous input of biological information for genetic analyses, linkage analysis of 
increasingly dense genotype and molecular phenotype datasets also has a profound 
impact on statistical issues, including probabilistic estimates of false positive link-
ages. Multiple testing, which takes into account the entire phenotype and genotype 
datasets, is the preferred option to determine thresholds of statistical signi fi cance. 
Considering metabolomic datasets, highly correlated variables in the experimental 
cohort, such as multiple NMR or MS spectral peaks characterising a single metabo-
lite, arti fi cially increase the number of phenotypes to be tested for linkage and can 
lead to an overestimation of the threshold of statistical signi fi cance.   

   Box 14.2 Quantitative Trait Locus (QTL) Mapping in an Experimental 
Cohort 

 A QTL is a genetic region containing one or several DNA variants that control 
the variability of biological traits measured quantitatively. Genetic mapping 
of QTLs is based on statistical analysis of linkage between the distribution of 
a phenotype in a cohort of genetically heterogeneous individuals and geno-
types at marker loci determined across the genome of the same individuals. 
QTLs are classically analysed in hybrid individuals characterised by a pheno-
typic continuum ranging from healthy to disease status. A speci fi c type of 
QTLs (modi fi ers) can be detected when linkage analysis is carried out with 
data from a selected subgroup of affected hybrids in order to investigate the 
existence of loci controlling disease severity. In the case of polygenic inheri-
tance several independent QTLs are linked to the same biological trait. 
Pleiotropy is evidenced when a QTL affects different phenotypes, thus pro-
viding information on the multiple biological consequences of DNA variants 
at a single locus. Epistasis is a phenomenon caused by alleles at independent 
QTLs that interact to affect a phenotypic outcome. 

 Primarily focused on discrete physiological variables (body weight, blood 
pressure, glycemia) documenting a disease, QTL analysis has also more 
recently been applied to investigate the genetic control of individual molecular 
phenotypes derived from high-density functional genomic datasets, which 
provide quantitative information on genome expression at the metabolic 
(metabolome), protein (proteome) and gene transcription (transcriptome) lev-
els. The enormous amount of quantitative traits that can be generated and 
mapped to the genome raises important issues in statistical genetics, but pro-
vides an opportunity to investigate the genetic control of multiple levels of 
gene expression towards a systems biology approach deciphering causal rela-
tionships between gene variants and physiological and molecular phenotypes.  
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    8   Integrative Systems Biology of mQTL: 
Metabolite Associations 

 Associations between metabolites and genetic loci are often very complex 
(Fig.  14.4 ). Transforming this complexity into knowledge can be achieved by using 
integrative systems biology strategies, which describe and help de fi ning functional 
modules. Metabolic networks share common properties with other biological net-
works, such as a scale-free topology with embedded modularity  [  42  ] . Metabolic 
networks can be approximated as small worlds (i.e. with few connections between 
random metabolites  [  43  ] . Although our current knowledge of the metabolic net-
works may not be complete, several network biology strategies can be applied to 
understand the relationship between mQTL – metabolome associations, from the 
genome to the metabolome via interaction networks  [  44  ] .  

  Fig. 14.4    An example of blood plasma mQTL mapping in a F2 cross between Goto-Kakizaki 
spontaneously diabetic and Brown Norway normoglycemic rats. The highest LOD score is associ-
ated with a  cis -acting mQTL in the sequence of UGT2b7, which encodes a UDP-glucuronosyl 
transferase directly involved in glucuronidation of benzoate, which generated the signal (Adapted 
from  [  9  ] )       
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    8.1   Haplotype-Metabotype Networks 

 Mapping mQTLs identi fi es numerous signi fi cant associations between  loci  (or hap-
lotype) and metabolic phenotypes. These associations in both genomic and metabo-
lomic dimensions of biological organisation can be analysed using a systems biology 
framework. Properties of the “association network” are analysed using graph analy-
sis. The network of genotype-metabotype associations can be mathematically for-
malized as an undirected bipartite graph G = (Vm,E) composed of two node types 
Vm – where m = (locus, metabolite) and functional E – where a signi fi cant associa-
tion between a  locus  and a metabolite. The double entry list of signi fi cant genotype 
and metabotype associations corresponds to the adjacency matrix of the bipartite 
graph (Fig.  14.5 ).Using graph analysis tools, it is possible to analyse the topology 
of the network, such as the distribution of connectivities describing which  loci  are 
poorly, or highly connected to metabolic endpoints.   

  Fig. 14.5    Principle of haplotype – metabotype association networks. The bipartite graph shows 
how gene variants are connected to their metabolic signature.  Orange bars  indicate the genomic 
regions a genetically de fi ned QTL transferred from an inbred strain onto the genetic background 
of another strain in different congenics lines (Cs1–4). Each congenic line has a unique genomic 
pro fi le and a unique metabolomic pro fi le. Through the use the congenic lines, unique intervals are 
de fi ned on the genome and each genomic interval will generate a unique metabolic signature       
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    8.2   Pathway-Based Network Biology Methods for mQTL 
Association Post-Processing 

 If a  locus  or a gene variant is signi fi cantly associated to the concentration of a 
metabolite, it is also possible that it may also be associated with the concentrations 
of several neighbouring metabolites in one or more surrounding metabolic path-
ways, as metabolism does not operate in isolation, but rather in cooperation. 

    8.2.1   mQTL-Based Metabolite-Set Enrichment Analysis 
of Metabolic Signatures 

 A single  locus , typically in the case of collections of congenic or recombinant inbred 
lines, can determine the concentration of several metabolites. This multivariate pat-
tern re fl ects information about biological molecules (i.e. individual metabolites), 
but also about biological processes when taken altogether as a signature (i.e. meta-
bolic pathways). To test whether a given pathway is affected by a locus, the meta-
bolic signature is compared to the metabolic pathway entries in databases such as 
the Kyoto Encyclopedia of Genes and Genomes (KEGG)  [  45  ]  and an enrichment 
test is performed to identify which pathways are affected  [  46–  48  ] . This approach 
was coined metabolite-set enrichment analysis (MSEA), as it shares the same meth-
odological framework as gene-set enrichment analysis (GSEA)  [  49  ] , but instead of 
testing enrichment of gene lists, MSEA tests enrichment of metabolite lists. 

 A direct consequence of performing a MSEA on a metabolic signature related to 
a particular mQTL locus is the possibility to identify mQTLs affecting entire meta-
bolic pathways, rather than a single metabolite.  

    8.2.2   Matching mQTLs and eQTLs at the Metabolic Pathway Level 

 A complementary experiment to mQTL mapping then consists in comparing match-
ing gene expression (or protein) pro fi les to validate that genetic variants in fl uencing 
metabolite levels also in fl uence the expression of genes and proteins in the very 
same pathway. 

 Such availability of gene-expression and metabolic pro fi les allows comparing 
the outputs of MSEA and GSEA that aims at testing the consistency of the biologi-
cal perturbation throughout the network, based on two (or several) observation 
modalities, and provides a powerful pathway-level QTL co-localisation approach.  

    8.2.3   Topological Analysis of Joint Gene-eQTL 
and Metabolite-mQTL Networks 

 The above described methods are usually suf fi cient in the case of  cis -acting 
QTL associations in fl uencing both metabolite and gene pro fi les.  Cis -acting QTL 
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associations provide a simple chain of causality: a genetic variant directly in fl uences 
the expression of an enzyme and the product or substrates are directly affected by 
this variant, as well as other metabolites or genes in the same pathway. However, 
when the genetic variant is located near an enzyme or a transporter, the chain of 
causality between genetic variation and effect at the metabolic level becomes less 
obvious, and other network biology methods are required to reveal the deeper bio-
logical meaning of such associations. 

 Distances separating pairs of metabolites and enzymes were computed using 
shortest path lengths within the whole metabolic network. This visualization proce-
dure requires the modeling of the whole metabolic network, which then allows the 
extraction of the perturbed metabolic network in an unbiased, automated, statistical 
manner. The complexity of cellular metabolism can be depicted using a network 
approach. The whole metabolic network is modelled as an undirected multi-labelled 
graph G = (Nodes, Edges). The set of multi-labelled nodes is de fi ned in [M;E], with 
M and E corresponding to metabolites and enzymes respectively. The set of edges 
corresponds to reactions connecting the enzymes with their substrates or products. 
Due to the partial annotation available for animal models, it is possible to use the 
more comprehensive Human metabolic network available in the KEGG  [  45  ] . Once 
unspeci fi c hub molecules (H 

2
 O, CO 

2
 , H + , H 

2
 O 

2
 , NH 

3
 , etc.…) are removed to focus 

primarily on the exchange of hydrocarbon structures  [  50  ] , the resulting metabolic 
network is made of 1,793 metabolites, 942 enzymes and 4,174 reactions  [  51  ] . The 
distance between observed pairs of signi fi cant metabolites and enzymes is derived 
by computing the shortest path length ( spl ) separating them across the reconstructed 
network.   

    8.3   Integrated Metabolome and Interactome Mapping 

 Network biology strategies based on protein-protein interactions can bring a mecha-
nistic understanding in genotype-metabotype associations (typically for  trans -act-
ing mQTLs) by functionally connecting causal variants to their downstream 
associated metabolic phenotypes. Databases and literature datasets are used to 
reconstruct a molecular interaction network encapsulating protein-protein interac-
tion networks  [  52  ] , including kinases, as well as metabolic and signaling pathways 
– such as the KEGG database  [  45  ] . 

 This framework complements the mapping and enrichment testing developed in 
MSEA and its topological analysis, as it connects metabolic phenotypes to their 
causal genes by the signalling and regulation network. The implementation of inte-
grated metabolome and interactome mapping (iMIM) allows identifying key regu-
latory proteins in the interaction network(Fig.  14.6 ): the current iMIM network 
includes 11,500 human proteins and 2,733 metabolites involved in 71,072 protein-
protein interactions (PPI), and 34,716 metabolite-enzyme interactions (MEI)  [  53  ] .  

 The topology of the resulting iMIM network is then analyzed to visualize func-
tional paths between causal trans-acting variants and their associated metabotypes 
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and to model how genetic variation impacts and propagates through the cellular 
network until it reaches its metabolic endpoints (Fig.  14.6 ). Considering a given 
metabolite M associated with a genetic variant G, the shortest path between G and M 
through the interactome network is likely to provide a mechanistic link between 
variants in G and their consequence on metabolite M. In  cis -acting mQTL cases, the 
gene-product of G is usually an enzyme, a receptor or a transporter, and the shortest 
path is 1 (typically, an enzyme catalyzing or producing the metabolite M). When G 
is not an enzyme or a receptor (i.e. a  trans -acting mQTL), the shortest path between 
Gand M becomes:  G  → (interacting protein →) enzyme → metabolite M (Fig.  14.6 ).  

    8.4   Topological Analysis of Association Networks: 
Network Metrics 

 The topological analysis of KEGG  [  51  ] , iMIM  [  53  ]  and haplotype/metabotype net-
works is the  fi nal step of this integration. To perform this topological analysis, sev-
eral network metrics can be used, by following order of complexity:

   Basic network statistics such as the degree of the network (i.e., the number of  –
edges connected to the most connected node) can be easily derived. This type 

  Fig. 14.6     Integrated metabolome-wide intractome-wide mapping.  iMIM connects a given 
causative gene variant to a downstream metabolic phenotype through protein-protein interactions 
(PPI) and metabolite-enzyme interactions (MEI) networks. In this theoretical example, the mini-
mum number of interactions between a causative gene variant and a metabolite is 1       
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of network metrics allows identifying the most connected metabolites or genes 
(i.e. hubs), as well as the least connected metabolites/genes.  
  The scale-free topology of biological networks allows connecting two compo- –
nents of the network in few hops. Deriving the distance between two entries is 
usually made by computing the length of the shortest path across the network, to 
derive the shortest path length (spl). Minimizing the  spl  identi fi es in an unbiased 
manner the direct connection between an enzyme (or transporter) and its sub-
strates/products. This strategy is often employed to demonstrate the consistency 
of eQTL and mQTL datasets. Furthermore, this strategy also directly validates 
the functional relationship between genes and metabolites generating co-located 
eQTL and mQTL signals.  
  Finally, to identify the most likely paths between two sets of entries, deriving  –
measures of centrality of nodes, such as the Betweenness (B), provides a mean-
ingful compilation of all the shortest paths. B re fl ects the proportion of shortest 
paths going through a given node, and therefore its centrality to the network  [  54  ] . 
The use of Betweenness-derived metrics such as the pivotal Betweenness (start-
ing from a single node such as a gene variant and connecting it to its metabolic 
phenotype through the interaction network) identi fi es key regulatory proteins 
across the signalling network, which then become ideal candidates for functional 
validation  [  53  ] . This approach is powerful when the functional relevance between 
a locus and its metabolic response is not direct. This is precisely the case when 
the locus codes for a signalling protein, which regulates a downstream metabolic 
pathway.      

    9   Conclusion 

 The genetic mapping of quantitative biological variables of the metabolome, which 
has been optimised in QTL mapping experiments in animal models and plants, is 
becoming a realistic perspective in human genetics to identify disease predictive 
biomarkers and in pharmacogenomics. The possibility to carry out genetic studies 
with time series of bio fl uid metabolome pro fi ling datasets is particularly promising 
to also identify speci fi c metabolic signatures underlying the progression of a pheno-
type. As genotype data in large human cohorts are already available, and with ongo-
ing genome resequencing projects, it is anticipated that GWAS, which have 
originally analysed the genetic basis of relatively simple phenotypic traits, will soon 
turn to the mapping of genetic determinants of the human metabolome. This pros-
pect requires the development of improved statistical and analytical tools to deal 
with the enormous amount of quantitative biological information that a single NMR 
or MS metabolomic spectrum can generate. Demonstration of causal relationships 
between co-segregrating QTLs for metabolome and transcriptome variables in 
experimental cohorts also provides important perspectives in the genetics of sys-
tems biology.      
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                1   Introduction 

 The identi fi cation of genes for complex disease has made major progress during the 
last 5–7 years which was mainly caused by the introduction of hypothesis-free 
methods such as genome-wide association studies (GWAS) or other systematic 
screens such as metabolites and the combination of these screens. To be exact, 
hypothesis-free is not completely accurate since there is indeed a “master-hypothe-
sis” in place meaning that there are genes which are associated with a particular 
disease or with a particular phenotype or there are gene products and metabolites of 
these products that are related to the involved pathways related to the phenotype of 
interest. The hypothesis-free approach has broken new ground which opened the 
researchers’ eyes for pathways one would not necessarily have connected with a 
certain phenotype if a conservative hypothesis-driven approach would have been 
followed. 

 An important misbelief we got rid of over the last decade is that a single genetic 
effect on a complex phenotype such as cardiovascular disease (CVD), obesity or 
type 2 diabetes mellitus is strong. In earlier times we expected that certain genetic 
variants double or triple the risk. Due to the  fi ndings in GWAS we have learned that 
most genetic variants increase the risk for these multifactorial diseases by 5–40%. 
Relative risks above that range can be considered as exceptionally “low hanging 
fruits” and are quite rare. The low relative risks associated with certain alleles 
require very large sample sizes of 10,000 and more study subjects if a GWAS 
approach is used. 

 To study the intermediate phenotypes which are associated with the hard 
 endpoints is an interesting complementary approach which might help to elucidate 
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the genotype-phenotype associations in a promising way. This chapter explains how 
this is performed, discusses the advantages and disadvantages and shows also two 
examples related to lipid metabolism and bilirubin.  

    2   Characteristics of Intermediate Phenotypes 

 Intermediate phenotypes are parameters which are considered to be involved in the 
development of an endpoint of interest such as cardiovascular disease. They repre-
sent an important aspect in the pathogenesis of the disease. For the present geneti-
cally driven considerations they should be inherited. As Fig.  15.1  illustrates, several 
of the various intermediate phenotypes contribute to the endpoint of interest. 
Examples concerning the cardiovascular outcome might be genes in fl uencing cho-
lesterol levels and their pre-products, bilirubin levels or in fl ammatory processes to 
mention only a few. By focusing the search for genes to one of these intermediate 
phenotypes we might increase the chance to  fi nd as a  fi rst step one or more genes 
which in fl uence this particular intermediate phenotype. In this phase we are not yet 
focused on the hard clinical endpoint (e.g. CVD) but on this intermediate (end-point-
related) phenotype. By focusing the search on this intermediate phenotype we might 
considerably decrease the heterogeneity of the phenotype which dramatically 
increases the power to detect a gene in fl uencing the intermediate phenotype. The 
closer the gene is related to the investigated intermediate phenotype the clearer the 
estimation of the in fl uence the investigated genetic variant has on this phenotype. In 
a second step, after we know the genetic effect size on the intermediate phenotype we 
are far better able to plan a suf fi ciently powered study to investigate an association 
with the clinical endpoint of interest. That means, if by the  fi rst step we already detect 
that a particular genetic variant has only a very small effect on the intermediate phe-
notype and this intermediate phenotype is not one of the stronger risk factor for the 
clinical endpoint, we are warned to consider the association study between this 
genetic variant and the clinical endpoint in a very large number of study subjects.   

    3   De fi nition of Intermediate Phenotypes 

 As we discussed recently  [  1  ] , intermediate phenotypes have to ful fi ll the criteria 
according to Prentice and colleagues  [  2  ] , Baron and Kenny  [  3  ]  as well as Gottesman 
and Gould  [  4  ]  which is adjusted here for  fi nal phenotypes such as cardiovascular 
disease (see also Fig.  15.2 ): 

    1.    The intermediate phenotype is associated with the “ fi nal” endpoint which could 
be a disease or a clinical endpoint. In a best case scenario this information should 
come from a prospective population-based study which supports the prognostic 
value of the intermediate phenotype of interest.  
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    2.    The intermediate phenotype has to have a heritable component which is sup-
ported by twin studies or segregation analysis.  

    3.    The intermediate phenotype lies within the pathway between genetics and dis-
ease and is focused on one aspect of the pathogenesis.  

    4.    The intermediate phenotype should be largely unaffected from the disease status. 
That means this intermediate phenotype should already be present long before 
the disease develops and should not be changed by the disease. This point is 

  Fig. 15.1    Schematic illustration of the role of intermediate phenotypes (IPs), such as metabolic 
traits, demonstrated at the examples of two genes that code for major enzymes of the long-chain 
fatty acid metabolism ( FADS1  and  LIPC ). This demonstrates that new information on the func-
tional basis of the observed associations can be inferred from the biochemical properties of the 
affected metabolites. Moreover, both genes were previously reported to be associated with com-
mon clinical phenotypes,  FADS1  in an extent, which would not attract immediate attention for 
follow-up in a genome-wide context. Since several genes and pathways are involved in the devel-
opment of a clinical endpoint, the IP focuses on one pathway (e.g., cholesterol or a given metabo-
type) which is already known to be involved in the clinical endpoint (e.g. coronary artery disease 
(CAD)). It is much easier to identify the genes which are associated with the intermediate pheno-
type since the associations of genetic variation with the intermediate phenotype is much stronger 
than with the clinical endpoint. Environmental factors interact at different levels with the interme-
diate phenotypes and thereby add to the variability in the system. The closer the intermediate 
phenotype is related to the genetic polymorphism, the stronger the association is expected to be. 
In our case the association re fl ects enzymatic activity of  FADS1  and  LIPC  which results in very 
strong effect sizes of the genetically determined metabotype (Reprinted from  [  10  ] )       
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strongly supported if the association was proven in a long-term prospective study 
with a measurement of the intermediate phenotype long before any disease signs 
are present.  

    5.    The intermediate phenotype and the disease co-segregate within a given family, 
which supports point #3 on this list. Some researches request that the intermedi-
ate phenotype be observed more often in the unaffected family members 
 compared to the general population.  

    6.    Intermediate phenotypes are related to a certain part of the pathway from the 
gene or a network of genes to the  fi nal phenotype. They should be closer to the 
gene product and not close to the  fi nal phenotype. This is in contrast to the sur-
rogate phenotype which should be as close as possible to the  fi nal phenotype. 
The surrogate phenotype might be easier or earlier to measure than the  fi nal phe-
notype. To give some examples, a surrogate phenotype for CVD could be the 
measurement of carotid atherosclerosis  [  5,   6  ]  or the ankle-brachial index  [  7  ] . 
Both are easy to measure, but are limited since they do not fully re fl ect clinical 
endpoints of CVD.  

    7.    The number of genetic and non-genetic factors (e.g. lifestyle factors) that 
in fl uence the intermediate phenotype are easier to identify than those which 
in fl uence the  fi nal pathogenetically heterogeneous phenotype.  

    8.    Under optimal conditions intermediate phenotypes are to be measured exactly, 
easily, objectively and reproducible. This is usually the case for laboratory 
parameters. They can be measured in affected patients as well as in healthy con-
trols. Preferably, this is done in long-term prospective population-based studies 
long before the  fi nal phenotype of interest develops. If the intermediate pheno-
type is measured in diseased populations one has to keep in mind that the inter-
mediate phenotype could be in fl uenced by counter-regulatory mechanisms 
caused by the disease or its treatment. Blood pressure is a very obvious example 
and is strongly in fl uenced by antihypertensive medication that is in place in 
many or most of the affected hypertensive patients. If not considered this creates 
an underestimated intermediate phenotype.  

  Fig. 15.2    De fi nition of intermediate phenotypes. For explanation see text       
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    9.    A quantitative intermediate phenotype such as blood glucose or cholesterol 
 concentrations has a further advantage since it is measured on a continuous scale. 
In contrast, a qualitative parameter (e.g. type 2 diabetes mellitus) does not con-
sider whether a person has blood glucose just above the normal value or whether 
a highly abnormal value is present. There is no doubt that there is a major differ-
ence between a fasting blood glucose of 128 or 320 mg/dl. In a qualitative analy-
sis both values will be treated in the same way (diabetes mellitus present = yes). 
Therefore, an intermediate phenotype on a continuous scale uses the entire range 
of a phenotype from completely normal to highly abnormal with all color gradi-
ents from black to white. This kind of quantitative data analysis is usually statis-
tically more powerful than a qualitative analysis.      

    4   Examples for Intermediate Phenotypes 

    4.1   Metabolites as the Most “Neighboring” 
Intermediate Phenotype 

 As mentioned above, ideally the intermediate phenotype should be as close as pos-
sible to the gene product. How this can be improved was recently shown by using 
ratios of metabolites instead of each metabolite itself to  fi nd the genes which have 
an in fl uence on the metabolites (Fig.  15.3 ). If we consider that in a ratio of two 
metabolites, one metabolite is the substrate and the other is the product, we expect 
that a GWAS performed with all three phenotypes (substrate, product and substrate/
product ratio) would result in a pronounced gain in information of the GWAS when 
performed with the substrate/product ratio. This was indeed observed for many of 
these ratios  [  8–  10  ] .  FADS1  is one example, as shown in Fig.  15.1 ;  FADS1  codes 
for the enzyme fatty acid delta-5 desaturase and is considered a key enzyme in the 

  Fig. 15.3    Advantage of using a substrate/product ratio compared the substrate and product alone 
to identify the gene coding for e.g. the enzyme which is responsible for the particular metabolic 
step       
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metabolism of long-chain polyunsaturated omega-3 and omega-6 fatty acids. 
A  certain frequently occurring variant in this gene has a strong effect on the activity 
of this enzyme. If this variant is analyzed with single species of phosphatidylcho-
lines one can observe that this variant explains at most only a few percent of these 
phosphatidylcholines. If the various ratios of these phosphatidylcholines are ana-
lyzed one can observe a pronounced strengthening of the association as soon as the 
enzyme is analyzed with the substrate/enzyme ratio, which is the most obvious one 
the enzyme is catalyzing. This step dramatically increased the variance explained 
by this variant to more than 28% and improved the p-value several thousand-fold 
and provides thereby a close insights in the metabolic pathway  [  9,   10  ] . Figure  15.1  
schematically illustrates the pronounced increase in information by using the most 
closely related intermediate phenotype. For  FADS1  it was quite impressive that the 
association with the single metabolite was already observed in only 284 study par-
ticipants of a GWAS with a p-value of 4.5 × 10 −8  which dramatically improved to 
2.4 × 10 −22  when the ratio of two metabolites was used for analysis. In contrast, it 
required almost 9,000 individuals in a GWAS on lipids to  fi nd a p-value of 1.5 × 
10 −4  of the  FADS  gene complex with total cholesterol which is still far away from 
genome-wide signi fi cance  [  11  ] . Moreover, it required more than 20,000 study par-
ticipants to get this gene genome-wide signi fi cant for total cholesterol concentra-
tions  [  12,   13  ] . This can be explained by the fact that despite total cholesterol as an 
intermediate phenotype and in the same pathway as phosphatidylcholines and their 
ratios, total cholesterol is far away from the action of  FADS1 . This becomes even 
more pronounced when it comes to coronary artery disease (CAD) which showed in 
the WTCCC Study with more than 2,000 CAD cases and 3,000 controls with only 
a p-value of 0.021  [  14  ] .   

    4.2   Bilirubin an Intermediate Phenotype 
for the Development of CVD 

 The antioxidative and cytoprotective properties of bilirubin made this product of the 
heme metabolism an interesting candidate for investigation of CVD outcomes. 
Many studies showed an association between low bilirubin levels and CVD  [  15  ] . 
Early segregation analyses suggested a major gene controlling bilirubin levels  [  16  ] . 
Linkage analysis in two independent studies identi fi ed the gene  UGT1A1  on chro-
mosome 2q37 as the most probable gene with a strong in fl uence on bilirubin levels 
 [  17–  19  ] . It encodes UDP-glucuronosyltransferase, the major enzyme of bilirubin 
glucuronidation, which mainly determines bilirubin elimination in humans. The 
activity of  UGT1A1  is signi fi cantly in fl uenced by a TA-repeat polymorphism in the 
promoter region of this gene. Individuals homozygous for 7 TA repeats (7/7) were 
found to have a lower promoter activity and subsequently higher levels of bilirubin 
than heterozygous (6/7) or wild type homozygous (6/6)  [  20  ] . On the population 
level this polymorphism explains between 10% and 30% of the bilirubin levels 
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  [  21–  23  ]  which is exceptionally high compared to other associations between genetic 
variants and quantitative traits. 

 Data from the Framingham Heart Study demonstrated that carriers of 6 TA 
repeats, with their markedly lower bilirubin concentrations, developed signi fi cantly 
more often a cardiovascular event over 24 years of observation than homozygote 
carriers of 7 TA repeats  [  21  ] . However, this was not observed in each study up to now 
as recently reviewed  [  15  ] . It demonstrates also a limitation of the intermediate phe-
notype approach: as long as no causal relation between the intermediate phenotype 
and the clinical endpoint of interest is demonstrated, the intermediate phenotype 
does not receive full attention. It will therefore need much larger studies with a long 
observation period to prove whether bilirubin is indeed associated with endpoints 
such as CVD. Therefore many question marks are included in this research  fi eld.   

    5   Mendelian Randomization to Prove Causality 

 The intermediate phenotype concept is an important corner stone for the idea of 
Mendelian randomization  [  24,   25  ] . During recent years Mendelian randomization 
projects became quite popular to prove or exclude causality between certain inter-
mediate phenotypes (biomarkers), cardiovascular and other outcomes. A prerequi-
site for this concept is that the various alleles of a certain genetic polymorphism have 
an in fl uence on the intermediate phenotype and that the intermediate phenotype 
shows an association with the outcome of interest (e.g. CVD). Most importantly, it 
is randomly determined at the time of conception which of the two alleles from the 
father as well as from the mother will be transmitted to the child. Since the transmit-
ted alleles are of lifelong persistence, these alleles determine to a certain amount also 
whether a person is exposed to an atherogenic level of the intermediate phenotype 
and therefore to the CVD risk associated with these levels (Fig.  15.4 ). Therefore, the 
association between the polymorphism and CVD is less likely to be in fl uenced by 
reverse causation or confounding and alleles associated with atherogenic level of the 
intermediate phenotype should be observed with a higher frequency in patients with 
CVD in case the intermediate phenotype is indeed causally related to CVD. This 
concept was used for the  fi rst time and quite successfully applied to strongly support 
causality between lipoprotein(a) [Lp(a)] concentrations and CVD outcomes which is 
illustrated in Fig.  15.4   [  26–  28  ] . Lp(a) is an LDL-like lipoprotein and high concentra-
tions have been shown to be strongly associated with CVD events  [  29,   30  ] . 
Concentrations in the upper tertile of Lp(a) are associated with a doubling of the risk 
for myocardial infarction  [  30  ] . The most obvious difference to LDL is that Lp(a) 
contains an additional apoprotein called apolipoprotein(a) [apo(a)] that is covalently 
bound to an LDL particle. Apo(a) shows a high homology with plasminogen and 
competes with this protein for binding to plasminogen receptors,  fi brinogen, and 
 fi brin (for review see reference  [  31  ] ). A common copy number variation in apo(a) 
explains a substantial amount of about 50% of the Lp(a) concentrations  [  32  ] . 
Therefore it was much easier to detect an association of this polymorphism with 
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CVD outcomes  [  26–  28,   33  ] . A recent meta-analysis including the results from 36 
studies yielded a doubling in the relative risk for CVD outcomes for individuals with 
smaller versus larger apo(a) isoforms which corresponds to approximately 22 or 
fewer kringle IV repeats vs. more than 22 repeats  [  28  ] . This is quite a strong effect 
compared to other associations of genes with CVD events  [  34  ] .  

 The lower the variance of the intermediate phenotype explained by a certain 
polymorphism is, the higher the required sample size is to show an association 
between this polymorphism and the CVD outcome. If the intermediate phenotype is 
not a strong determinant of the clinical endpoint of interest, the required sample size 
increases further to prove causality. It therefore requires often very large sample 
sizes to prove causality.  

    6   Concluding Remarks 

 The intermediate phenotype concept is indeed an intriguing concept to identify 
genes associated with clinical outcomes of interest. Intermediate phenotypes are 
parameters which are considered to be involved in the development of an endpoint 
of interest. However, identifying the genes associated with the intermediate pheno-
type is only a  fi rst step which can provide an improved insight into metabolic path-
ways. A further crucial step, however, is to demonstrate an association between the 
intermediate phenotype and the clinical endpoint. If such an association is present, 
it does not necessarily mean that the association is of a causal nature since it is also 
possible that the intermediate phenoytpe changes as a consequence of the clinical 
endpoint (reverse causation). The causality of this association is strongly supported 
if also an association between these genetic variants and the clinical endpoint can be 

  Fig. 15.4    Concept of Mendelian Randomization. For explanation, see text       
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demonstrated. The concept for proving causality between the intermediate phenotype 
and the clinical endpoint is called Mendelian Randomization and has to show three 
associations: (1) association between the intermediate phenotype and the clinical 
endpoint of interest; (2) association between the genetic variant and the intermedi-
ate phenotype and (3) and most importantly, an association between the genetic 
variant and the clinical endpoint. Usually, very well de fi ned study populations with 
a very large sample size are required to ensure reliability of these results.      
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     1   Introduction 

 The understanding of mechanisms controlling human health and disease, in 
 particular the role of genetic predispositions and their interaction with environmen-
tal factors, is a prerequisite for the development of safe and ef fi cient therapies for 
complex disorders, such as Type 2 Diabetes and cardiovascular disease. Over 
100 years ago, Archibald Garrod introduced the concept of “inborn errors of metab-
olism”, which are Mendelian disorders where the loss of function of an individual 
enzyme or transporter protein typically results in strongly perturbed levels of its 
reaction substrates and/or products. A textbook example of an “inborn error of 
metabolism” is phenylketonuria (PKU). PKU is an inherited recessive de fi ciency of 
the enzyme phenylalanine hydroxylase and causes an excessive accumulation of 
phenylalanine in the body. If untreated, PKU results in abnormal and irreversible 
brain development. 

 A large number of “inborn errors of metabolism” have been described to date 
and are today routinely detected by newborn screening tests. However, Garrod also 
already realized that inborn errors in human metabolism were  “merely extreme 
examples of variations of chemical behavior which are probably everywhere present 
in minor degrees”  and that this  “chemical individuality [confers] predisposition to 
and immunities from the various mishaps which are spoken of as diseases”   [  1  ] . 
Today, genome-wide association studies with broad panels of metabolite concentra-
tions are identifying common genetic variants in genes coding for enzymes and 
transporter proteins that induce major differentiations in the metabolic make-up of 
the human population. In combination with the increasing knowledge about disease 
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associated genetic loci, these so-called  “genetically determined metabotypes”  
(see Box  16.1  and Fig.  16.1 ) are now used to uncover new complex risk factors of 
common diseases and reveal new insights into the pathophysiology of related 
 disorders, thereby con fi rming Garrod’s 100 year-old prediction.    

    2   Genome-Wide Association Studies with Metabolomics 
in Human Blood 

 When the human genome was published in 2003, expectations were high that this 
achievement would provide a comprehensive understanding of human biology and 
disease. With the introduction of microarray based genotyping arrays by Affymetrix 
and Ilumina, genome-wide association studies (GWAS) with complex diseases 
became possible. They initiated a new era of genetic research, allowing for the  fi rst 
time the ability to screen a large portion of the natural variation human genome for 

   Box 16.1 De fi nition of “the Genetically Determined Metabotype” (GDM) 

 The term “Metabotype” is short for “metabolic phenotype”. A metabolic 
 phenotype can be a metabolic parameter that is typically obtained from a 
blood or urine sample using some biochemical measurement methods, such 
as mass spectrometry and nuclear magnetic resonance spectroscopy. The 
metabotype of an individual is the result of a complex interplay of environ-
mental factors, life style and genetic predisposition. The ensemble of all 
metabotypes de fi nes the metabolic individuality of that person; historically 
also referred to as “chemical individuality” by A. Garrod. As genome-wide 
association studies with metabolomics are starting to identify the genetic part 
of human metabolic individuality, the term “genetically determined metabo-
type” (GDM) was introduced to refer to metabotypes with a genetic contribu-
tion. Typically, a GDM would correspond to a genetic association with one or 
more metabolite concentrations in blood or urine and exhibit a large effect 
size. Changes in metabolite levels per copy of the minor allele of up to 60% 
have been observed. GDMs can thus also be viewed as moderate forms of 
inborn errors of metabolism, which in contrast are rare genetic disorders in 
which the function of an enzyme or transporter gene is totally lost. GDMs are 
frequent genetic variants (SNPs), often exhibiting minor allele frequencies of 
20% and more. In many cases the leading SNPs of these associations are 
located in or near enzyme or transporter coding genes that match the metabo-
type of the metabolic phenotype, such as SNP rs6558295 in the 5-oxoprolinase 
gene ( OPLAH ), which associates with 5-oxoproline concentrations in serum 
(see Fig.  16.1  and Table  16.1  for more examples).   
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association with major diseases, such as bipolar disorder, coronary artery disease, 
Crohn’s disease, hypertension, rheumatoid arthritis, type 1 and type 2 diabetes mel-
litus  [  2  ] . By 2011, over 1,300 GWAS for over 220 traits have been published and 
catalogued in the NHGRI GWAS catalog   http://www.genome.gov/gwastudies/      [  3  ] . 
However, from these studies it became clear that often the effects of the discovered 
genetics variants are modest and that they account for only a small part of the 
 heritable part of a complex trait. For instance, one of the largest GWAS to date, 
enrolling tens of thousands of participants, has identi fi ed about 50 variants that are 
associated with height. Twin studies have estimated body height heritability to 
within 68–84% in women and 87–93% in men  [  4  ] , but taken together the discovered 
genetic variants explain only 5% of the phenotypic variance. This raises the ques-
tion of what is referred to as the “missing heritability”  [  5  ] . One possible explanation  
is that complex traits are determined by a larger number of SNPs, where each indi-
vidual SNP contributes only a small portion to the overall effect. These SNPs shall 
be hard to detect using classical GWAS with clinical endpoints due to limitations in 
statistical power  [  6  ] . 

 One way to overcome this problem is to investigate associations with intermedi-
ate traits, such as impaired levels of blood cholesterol, triglyceride, glucose, biliru-
bin, and vitamin B12, which are known risk factors of disease. It turned out that 
associations with such intermediate phenotypes often exhibit much larger effect 

  Fig. 16.1    Example of a “genetically determined metabotype.” The product of the Fatty Acid 
Desaturase 1 ( FADS1 ) gene catalyses the delta-5 desaturation of polyunsatured fatty acids, such as 
the omega-6 fatty acid C20:3, to form (in this case) arachidonic acid C20:4. The rate of the enzy-
matic reaction that is catalyzed by FADS1, approximated by the ratio between C20:3 and C20:4, 
displays a strong genotype-dependence ( box-plot ). The high minor allele frequency of this genetic 
variant results in highly variant metabolic capabilities in the human population (See Box  16.1 )       
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sizes, which may be attributed to the fact that these traits are determined by a smaller 
number of genetic variants and also that they are functionally more directly related 
to the genetic variants (see also Chap.   15     in this book). Moreover, associations with 
quantitative traits rather than with binary clinical endpoints tend to be more robust 
and readily detectable. Recent advances in NMR and mass spectrometry permit to 
quantitatively map out large parts of the metabolome in human blood and urine. 
Increased instrument sensitivity and sensibility, together with reduced measurement 
times, allow for high-throughput metabolomics experiments to be conducted in 
large numbers of blood and urine samples (see also Chap.   3    ). These technological 
advances open the possibility to conduct GWAS with comprehensive metabolomics 
panels, and thereby to identify the heritable part of human metabolic individuality. 
In the following we shall present an overview of the GWAS with metabolomics that 
were conducted to date. Table  16.1  presents a selection of genetically determined 
metabotypes that were identi fi ed by these studies. 

 Gieger et al.  [  7  ]  conducted the  fi rst GWAS with metabolomics using quantitative 
measures of 363 metabolites in serum of 284 male participants of the KORA study. 
They identi fi ed associations of frequent single nucleotide polymorphisms (SNPs) 
with large differences in homeostasis metabolic in or near genes coding for the 
enzymes FADS1, LIPC, ACADS, and ACADM. Using ratios of metabolite concen-
trations as a proxy for enzymatic activity, they could explain up to 28% of the over-
all observed variance at p-values ranging between 10 −16  and 10 −21  for these SNPs. 
What is more, the corresponding metabotype clearly matches the biochemical path-
ways in which these enzymes are active. This  fi rst GWAS with metabolic traits still 
had relatively low power and did not include any replication. Actually none of the 
associations with metabolite concentrations attained genome-wide signi fi cance per 
se. However, the hypothesis-free testing of all possible pairs of metabolite concen-
tration ratios lead to associations that were highly signi fi cant, even after correction 
for the large number of additional tests induced by using metabolite ratios. The 
results from this  fi rst study already indicated what was later con fi rmed by more 
highly powered studies, that is, common genetic polymorphisms induce major dif-
ferentiations in the metabolic make-up of the human population. 

 Three GWAS with lipidomics-centered panels were published next (see Chap.   13     
for details on lipidomics). Tanaka et al.  [  8  ]  conducted a genome-wide association 
study of plasma levels of six omega-3 and omega-6 fatty acids in 1,075 participants 
in the InCHIANTI study on aging. They con fi rmed the association of  FADS1  with 
arachidonic acid (AA). Minor allele homozygotes had lower AA compared to the 
major allele homozygotes and rs174537 accounted for 18.6% of the additive vari-
ance in AA concentrations. They also identi fi ed a new association of eicosapen-
tanoic acid (C20:5) with a genetic variant in  ELOVL2  (elongase of very long fatty 
acids 2). Hicks and co-workers  [  9  ]  performed a GWAS with 33 sphingolipid spe-
cies, based on 4,400 participants from  fi ve diverse European populations. They 
identi fi ed associations at  fi ve genomic regions in or near genes functionally involved 
in ceramide biosynthesis and traf fi cking:  SPTLC3 ,  LASS4 ,  SGPP1 ,  ATP10D , and 
 FADS1–3 . They conclude that concentrations of several key components in sphin-
golipid metabolism are under strong genetic control, and that variants in these loci 

http://dx.doi.org/10.1007/978-1-4614-1689-0_15
http://dx.doi.org/10.1007/978-1-4614-1689-0_3
http://dx.doi.org/10.1007/978-1-4614-1689-0_13
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can be tested for a role in the development of common cardiovascular, metabolic, 
neurological, and psychiatric diseases. Illig et al.  [  10  ]  presented a genome-wide 
association study with a kit-based panel of 163 metabolic traits, including amino 
acids, acyl-carnitines and many phospholipid species (BIOCRATES Life Sciences, 
Innsbruck, Austria). Using samples from over 1,800 participants of the KORA pop-
ulation and samples from 420 participants of the TwinsUK cohort, they identi fi ed 
14 associations at genome-wide signi fi cance in the KORA study (Fig.  16.2 ). Eight 
out of nine associations that were replicated in the TwinsUK cohort are linked to 
one of the enzyme or solute carrier coding genes  FADS1 ,  ELOVL2 ,  ACADS , 
 ACADM ,  ACADL ,  SPTLC3 ,  ETFDH , and  SLC16A9.  Five loci that attained genome-
wide signi fi cance in the discovery study, but were not fully replicated in the 
TwinsUK cohort ( SCD ,  SLC22A4 ,  PHGDH ,  CPS1 , and  SYNE2 ) were later repli-
cated by Nicholson et al.  [  11  ]  Note here that the  SYNE2  locus of Illig et al.  [  10  ]  is 
most likely identical to the  SGPP1  locus reported by Hicks et al.  [  9  ]  The metabolic 
traits of most of these associations also match the related genes’ function (Fig.  16.3 ). 
Many of the implicated proteins actually control rate limiting steps of important 
enzymatic reactions. Due to the higher statistical power and the use of metabolite 
 concentration ratios, Illig et al.  [  10  ]  obtained p-values of association as low as 
6.5 × 10 −179  and explained observed variances up to 36.3%.   

  Fig. 16.2    Genome-wide association plot (Manhattan plot). This plot shows the locations of the 
genetic polymorphisms and their strength of association (expressed as -log 

10
  (p-value)). The  upper 

plot  is for associations with metabolite concentrations, the  lower plot  is with concentration ratios. 
The strengthening of the association signal when using ratios can be discerned (Figure reproduced 
from  [  10  ] )       
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 The studies described so far all deployed targeted metabolomics assays, thereby 
limiting the scope of these studies to a limited set of metabolic pathways. Suhre 
et al.  [  12  ]  then conducted the  fi rst comprehensive analysis of genotype-dependent 
metabolic phenotypes with an extensive, non-targeted and metabolome-wide panel 
of small molecules, analyzing over 250 metabolites from 60 biochemical pathways 
(Metabolon Inc., Durham, USA) in serum samples from 2,820 individuals from two 
large population-based European cohorts. They identi fi ed 37 genetic loci associated 
with blood metabolite concentrations (Fig.  16.4 ), of which 25 show effect sizes that 
are unusually high for GWAS and account for 10–60% differences in metabolite 
levels per allele copy in 25 loci. In the majority of cases, a protein that is biochemi-
cally related to the associated metabolic traits is encoded at these loci. 23 of these 
loci describe new genetic associations with metabolic traits, and 14 replicate and 
extend the present knowledge about known GDMs. This study also replicates a 
series of  fi ndings from previous GWAS with quantitative traits, including serum 
levels of fasting glucose, bilirubin, urate and dehydroisoandrosterone sulphate. 
By reporting only associations that are supported by two independent studies at 

  Fig. 16.3    A genome wide perspective of genetic variation in human metabolism. Twelve out of 
fourteen genetic polymorphisms are located in or near genes encoding enzymes or transporter 
genes that are central to the different processes in human lipid metabolism:  b -oxidation ( ACADS , 
 ACADM  and  ACADL ), polyunsaturated fatty acid biosynthesis ( FADS1  and  ELOVL2 ), fatty acid 
synthesis ( SCD ), breakdown of fats and proteins to energy ( ETFDH ), biosynthesis of phospholip-
ids ( SPTLC3 ), metabolite carrier proteins ( SLC22A4  and  SLC16A9 ), amino acid metabolism 
( PHGDH  and  CPS1 ). The  SYNE2  locus is most likely identical to the  SGPP1  locus reported by  [  9  ] . 
Only for the genetic variant in  PLEKHH1  does the attribution of a metabolic function remain elu-
sive. For each locus, the most strongly associating single metabolite is indicated in  red  (Figure 
reproduced from  [  10  ] )       
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  Fig. 16.4    Genetic basis of human metabolic individuality and its overlap with loci of biomedical 
and pharmaceutical interest. 37 genetically determined metabotypes (GDMs) that explain a highly 
relevant amount of the total variation in the studied population. These genetic loci contribute sub-
stantially to the genetic part of human metabolic individuality. ( a ) GDMs are color by general 
metabolic pathways. ( b ) GDMs colored by their overlap with associations in previous GWAS with 
disease ( red ), intermediate risk factors for disease ( yellow ) and other traits ( green ) (Figure adapted 
from  [  12  ] )       
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genome-wide signi fi cance, the authors have taken a very conservative approach. 
They estimate that more than 500 loci with signals of association below that conser-
vative threshold may be con fi rmed as GDMs in more highly powered studies in the 
future. Association data for loci that did not reach genome-wide signi fi cance level 
is available via a web-server at   http://www.gwas.eu    .   

    3   Genome-Wide Association Studies with Metabolomics 
in Human Urine 

 While GWAS with metabolic traits in blood are likely to detect genetic variance in 
homeostatic processes in human metabolism, analysis of urine may allow for the 
investigation of genetic variants associated with the detoxi fi cation capacity of the 
human body. Suhre et al.  [  13  ]  report the  fi rst genome-wide association study of 
metabolic traits in human urine. Using NMR spectroscopy followed by manual 
peak annotation and quanti fi cation (CHENOMX Inc., Edmonton, Canada), they 
tested 59 metabolites in urine from 862 male participants of the population-based 
SHIP study for association. For replication and veri fi cation of robustness 1,039 
additional samples of the same study, including a 5-year follow-up, and 992 sam-
ples from the independent KORA study were used. They identify  fi ve loci with joint 
p-values of association ranging from 3.2 × 10 −19  to 2.1 × 10 −182 , three of which are 
known to associate with important clinical outcomes:  SLC7A9  is a risk locus for 
chronic kidney disease,  NAT2  for coronary artery disease and genotype-dependant 
response to drug toxicity, and  SLC6A20  a contributing factor of iminoglycinuria. 
Moreover, they identify a coding SNP in  AGXT2  as the potential genetic basis of 
hyper-beta-aminoisobutyric aciduria. Nicholson et al.  [  11  ]  also performed a GWAS 
with  1 H NMR in human urine, analyzing samples from 142 female twins’ samples 
of the MolTWIN cohort and 69 participants of the MolOBB cohort. In contrast to 
the manual automation procedure used by Suhre et al., here the NMR data sets were 
passed through a semiautomated preprocessing pipeline: phasing, alignment, 
denoising, baseline correction, manual bin selection, normalization, quality control, 
peak extraction, and logarithmic transformation. They con fi rm the  AGXT2  associa-
tion and report associations at two other loci,  NAT8  and  PYROXD2 , which the 
authors deem as good candidates for mediating the corresponding associations. 

 As new GWAS with metabolomics are published, they not only replicate previ-
ously reported loci, but also often provide additional and new information on the 
functional background of the underlying genetic association. For instance, using  1 H 
NMR in urine, Nicholson et al.  [  11  ]  found that the NAT8 locus associates with a 
compound termed N-ACu. Although they were unable to attribute N-ACu to a single 
metabolite, it is clear that N-ACu corresponds to one or more N-acetylated com-
pounds (X.NH.CO.CH3, with X unknown). Using LC-MS/MS, Suhre et al.  [  12  ]  
showed that NAT8 associates with N-acetylornithine in blood serum. It is noteworthy 
that both studies differed in experimental methods ( 1 H NMR versus LC-MS/MS), as 
well as in analyzed biomaterials (urine versus blood serum) and study populations. 

http://www.gwas.eu
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The NAT8 locus also associates with glomerular  fi ltration rate  [  14  ]  and chronic 
kidney disease  [  15  ] . Although causality cannot be inferred from these kinds of asso-
ciation studies, the role of ornithine acetylation in the aetiology of CKD warrants 
further exploration. Moreover, the identity of the N-acetylated compound N-ACu in 
urine and its relationship to N-acetylornithine in blood should be investigated as it 
may be developed into a potential CKD biomarker. This case exempli fi es how 
results of different studies may be combined in order to generate new hypotheses of 
biomedical interest.  

    4   Genetically Determined Metabotypes and Disease 

 As outlined above, SNPs identi fi ed by GWAS with metabolic traits allow identify-
ing new associations in GWAS with clinically relevant parameters. As an example, in 
their initial study Gieger et al.  [  7  ]  suggested  FADS1  to be a risk locus for perturbed 
blood lipid parameters. This hypothesis was supported by the observed associations 
with different phospholipids, key components of serum lipids, and the fact that two 
published GWAS investigating lipid levels reported associations for the  FADS1  
locus with low-density lipoprotein (LDL), high-density lipoprotein (HDL) and total 
cholesterol. However, these associations had not been included in the list of poten-
tial candidates for replication in those studies, as their signal of association was not 
strong given the need to correct for multiple testing in classical genome-wide asso-
ciation studies, where several million SNPs are tested in parallel. More recent 
GWAS on lipid parameters with signi fi cantly increased sample sizes have now 
con fi rmed the prediction of FADS1 being a lipid risk locus, thereby proving that a 
combination of a GWAS using metabolomic pro fi les with data from large GWAS 
with clinical parameters can identify new candidate SNPs associated with known 
phenotypes of relevance to human health. 

 Associations with metabolic traits can also contribute to the in-depth character-
ization of already identi fi ed disease-related loci and reveal new functional informa-
tion about previously reported associations to related traits. For instance, a 
polymorphism in the apolipoprotein cluster  APOA1 - APOC3 - APOA4 - APOA5  was 
already known to strongly associate with blood triglyceride levels. Illig et al.  [  10  ]  
found that the same SNP associates with ratios between different phosphatidylcho-
lines. These lipid compounds are biochemically connected to triglycerides by the 
intermediary of only a few enzymatic reaction steps. The speci fi c identities and 
properties of these lipid species may now be used in order to better understand the 
pathways that are impacted by this genetic variant and their role in lipid-related 
disorders. A second example from that study is a SNP in the glucokinase regulator 
 GCKR  gene. Genetic variance in  GCKR  modulates fasting glucose and triglyceride 
levels and has an impact on type 2 diabetes risk. This locus associated in the Illig 
et al.  [  10  ]  study with different ratios between plasmalogens and phosphatidylcho-
lines concentrations, suggesting new avenues for investigations into the functional 
background of the GCKR association with diabetes. Thirdly, a genetic variant of the 
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gene encoding melatonin receptor ( MTNR1B ) was found to associate with fasting 
glucose and type 2 diabetes risks. The same SNP associated in the Illig et al.  [  10  ]  
study with tryptophan to phenylalanine ratios. As phenylalanine is a precursor of 
melatonin, this association indicates a functional relationship between the mela-
tonin pathway and the regulation of glucose homeostasis. 

 Interestingly, GWAS with metabolomics even allow for the identi fi cation of the 
genetic basis of inborn error of metabolism. Given the extreme effect size of the 
 AGXT2  association with 3-aminoisobutyrate (BAIB) described by Suhre et al.  [  13  ]  
and Nicholson et al.  [  11  ]  this variant represents in all likelihood the genetic basis of 
hyper-beta-aminoisobutyric aciduria.  AGXT2  is a mitochondrial aminotransferase 
expressed primarily in the kidney, and BAIB is a substrate of AGXT2. Recently, it 
has been shown that AGXT2 also metabolizes asymmetric dimethylarginine 
(ADMA), and that this pathway could represent an alternative route of ADMA reg-
ulation. Elevated plasma concentrations of ADMA are found in association with 
hypertension, congestive heart failure, progression of chronic kidney disease and 
atherosclerosis. Hyper-beta-aminoisobutyric aciduria may hence represent a risk (or 
protective) factor for these diseases.  

    5   GWAS with Metabolomics in Functional Genomics, Systems 
Biology and Pharmacogenomics 

 GWAS uncover statistically signi fi cant associations, but causality generally cannot 
be inferred from such studies. Therefore these studies are mostly hypotheses- 
generating by nature. Associations of speci fi c metabotypes with genetic variants in 
only coarsely-characterized enzymes and transporters indicate possible substrates 
or products of the proteins and create openings for further experimental and func-
tional characterization. For instance, experiments using isotope-labeled derivatives 
of the associated metabolites as putative target substrates may lead to new insights 
into the speci fi city of an enzyme or transporter. As a proof-of-principle, Suhre et al. 
 [  12  ]  experimentally validated the predicted function of SLC16A9 as a carnitine 
transporter using labeled carnitine and transgenic SLC16A9-expressing  Xenopus  
oocytes. They show that this hitherto uncharacterized monocarboxylic acid trans-
porter is indeed a carnitine pump, possibly responsible for carnitine ef fl ux from 
absorptive epithelia into the blood. Another example is SLC2A9. Following its 
association with blood urate levels in a GWAS  [  16  ] , SLC2A9 was shown to be a 
urate transporter, and not a glucose transport, as initially predicted by homology 
 [  17  ] . These examples show how GWAS with metabolic traits may inform functional 
genomics studies and advance our general understanding of the human genome. 

 Using a systems biology approach, by integrating DNA-variation and gene-
expression data with other complex trait data in segregating mouse populations, 
Schadt et al.  [  18  ]  identi fi ed three new genes in susceptibility to obesity, including 
 LACTB . Chen et al.  [  19  ]  validated  LACTB  as a previously unknown obesity gene 
and Yang et al.  [  20  ]  demonstrated that transgenic  LACTB  mice showed increased fat 
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and muscle growth. Using liver expression signatures of these animals, the authors 
predicted that  LACTB  is involved in butanoate metabolism. In addition, the 
identi fi cation of  LACTB  as an HDL cholesterol risk locus  [  21  ]  suggests a functional 
link between succinate-related pathways and HDL metabolism. In their GWAS with 
metabolic traits, Suhre et al.  [  12  ]  report a genetic variant in  LACTB  in the human 
population that results in an 8.5% increase per minor allele copy in succinylcarni-
tine concentrations (p = 7.2 × 10 −27 ). Succinylcarnitine, which is a transport form of 
the free fatty acid succinate, is located on the butanoate pathway. What is more, a 
positive association in of succinylcarnitine concentrations with body mass index 
(BMI) was also observed (p = 1.0 × 10 −12  in KORA and p = 5.3 × 10 −5  in TwinsUK, 
with covariates age and gender). Together these  fi ndings support Schadt et al’s 
hypothesis that  LACTB  may represent a new potential therapeutic anti-obesity 
 target. This example shows how results from GWAS with metabolomics may be 
used to con fi rm and extend hypotheses generated by systems biology studies. 

 Pharmacogenomics, the  fi eld that studies how genetic variants affect the body’s 
response to medication, holds the promise of better, safer, and more ef fi cient drugs. 
Cross-referencing new loci from GWAS with metabolomics with databases of dis-
ease-related and pharmaceutically relevant genetic associations may uncover hith-
erto unknown links and provide new hypotheses for the functions of these loci. For 
instance, the family of cytochrome p450 enzymes (CYP) controls the metabolism of 
a large part of current drugs. Several genetic variants in CYP genes have been asso-
ciated with slow, intermediate and fast metabolizers of certain drugs. Similarly, the 
organic anion–transporter SLCO1B1 has been shown to regulate the hepatic uptake 
of statins. A SNP in SLCO1B1 is strongly associated with an increased risk of 
statin-induced myopathy  [  22  ] . The Pharmacogenomics Knowledge Base  [  23  ]  pro-
vides an extensive and regularly updated list with genes of pharmacogenetic interest. 
In their GWAS with metabolic traits, Suhre et al.  [  12  ]  identi fi ed three associations 
at CYP-related loci genes where the associating metabolic traits are closely related 
to the respective p450 enzymes’ substrates, that is, a CYP3A locus with androster-
one sulphate, a CYP4A locus with molecules biochemically related to omega-
hydroxylated C10 fatty acids, and AHR, which is a transcription factor for CYP1A1, 
with caffeine. Of further notable interest is the association of SLCO1B1 with a 
series of fatty acids, including tetradecanedioate and hexadecanedioate. These asso-
ciations all provide new insights into the metabolic pathways that are impacted by 
the genetic variants. This information can for instance be used to support the rede-
sign of the respective drug molecules in order to avoid adverse reactions or in the 
identi fi cation of genotype dependant drug side-effects.  

    6   Conclusion 

 The GWAS studies with metabolomics that are published so far have already 
demonstrated the exciting potential of metabolomics to unravel the genetics of 
human metabolism. In this approach, the concept of the “ genetically determined 
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metabotype ” as a complex intermediate phenotype is central. The investigation of 
the genetically determined metabotypes in their biochemical context may help to 
better understand the pathogenesis of common diseases and gene–environment 
interactions. Such  fi ndings can result in a step towards personalized prevention, 
health care and nutrition based on a combination of genotyping and metabolic char-
acterization. The SNPs identi fi ed in these studies can now be used in clinical studies 
for association with response to drug treatment, or the development of particular 
complications during the course of a disease or treatment. 

 With new GWAS to be published in the future, the number of genetic loci that 
display parallel associations of clinically relevant parameters with metabolic traits 
shall increase steadily. Future GWAS that combine multiple ‘omics’ technologies in 
a single study, including transcriptomics, proteomics, metabolomics and recent 
technologies for determining epigenetic modi fi cations and microRNAs on a 
genome-wide scale, are likely to present the next big step towards a full understand-
ing of the interaction between genetic predispositions and environmental factors in 
the development of complex chronic diseases, their diagnosis, prevention and safe 
and ef fi cient therapy. To close this chapter we refer to Motha and Hirschhorn  [  1  ] , 
who expect that  “In the future, more comprehensive versions of the pro fi ling tech-
nologies could be coupled to perturbations (for example, dietary challenges, drug 
treatments, aging) or used in combination with isotopic tracers to more directly 
infer the in fl uence of genetic variation on in vivo reaction biochemistry and homeo-
stasis. Just as Garrod’s study of inborn errors of metabolism helped write a genera-
tion of textbooks on human biochemistry, so, potentially, could comprehensive 
studies of inborn variation of metabolism inform the next generation.”       
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 In the preceding chapters many aspects of metabolite quanti fi cation and relation to 
trait and disease phenotypes have been described, in particular the linkage of inter-
mediate metabolic traits to genetic heterogeneities. Although many analyses start 
on the genome-wide level, they end up picking out single polymorphisms or other 
variations and study these in detail. This reductionist approach is very common in 
molecular biology and has proven hugely successful over the past decades. In recent 
years however, a second paradigm has become increasingly popular, namely that of 
integrating multiple such analyses into larger ones commonly called ‘models’. This 
paradigm, nowadays, is known as systems biology and is expected to penetrate 
many classical molecular analyses. 

 The aim is to gain a systems-level understanding of the studied processes, and it 
requires a shift in notion of what to look for in biology  [  1  ] . The identi fi cation and 
quanti fi cation of genes, proteins and metabolites in an organism is equivalent to 
generating lists of all parts of the system, which by itself is not suf fi cient to under-
stand the complexity of the underlying organism. Knowledge about the assembly of 
these parts is necessary to understand the formation and regulation of the observed 
objects; this knowledge is often compiled into a biological network. According to 
Kitano, a resulting systems-level understanding can then be derived from insight 
into system structures, system dynamics, system control and system design. System 
structure refers to  fi rst assembling known or estimated interactions between the sys-
tem’s parts in order to build an interaction network. Dynamics then implies studying 
the system’s behavior over time. Control is de fi ned by the study of mechanisms that 
control the system’s state and its modulation. Finally, design describes the notion of 
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building novel or modifying existing biological systems with desired properties, e.g. 
bacteria, for fuel production from biological waste; nowadays this has spawned the 
separate discipline of synthetic biology. The central paradigm in systems biology is 
the integration of the above approaches with experiments in an iterative research 
cycle. Based on current experimental data and additional literature information, an 
initial model is compiled; the model is then used to derive novel possibly competing 
predictions, which can then be tested or invalidated by a second round of experi-
ments. This process of model inference and experimental design can then be iterated 
to gain more detailed system’s knowledge. 

 In this chapter, we want to brie fl y review some systems approaches in the  fi eld of 
metabolic modeling. We will see that many ideas are based on the structural and, in 
parts, the dynamic principle as de fi ned above. We start with the structure approach, 
namely the compilation of metabolic networks, their reconstruction and representa-
tion in the computer. Using a very common computer representation, namely the 
stoichiometry matrix, we then ask what we can learn about the system even without 
access to transition rates; for this we review approaches such as metabolic pathway 
analysis and extreme pathways. From the  fl ux analysis, we proceed to show how to 
include metabolite concentrations into the model in order to determine system rates. 
This results in a dynamical system of metabolites, which we can compare across 
multiple samples, conditions or patients. By describing this heterogeneity as sto-
chastic effect, we can study correlation patterns and even remove indirect correla-
tions, arriving at graphical models describing statistical metabolite associations. We 
show that these contain pathway signatures of known metabolic interactions. 
Moreover, we can use this modeling approach to include genetic variations in a 
concise and systematic fashion. 

    1   From Genomes to Metabolic Networks 

 In its most general meaning, metabolic network reconstruction refers to the compi-
lation of a network comprising ideally all metabolites and biochemical reactions 
(including transport processes) relevant for a biological system (e.g. compartment, 
cell, organism). In order to reconstruct a metabolic network, we have to ask two 
major questions: “Which reactions can be accomplished by the system?” and “How 
are these reactions interconnected to support basic functions such as growth?” The 
most reliable information on the presence or absence of biochemical reactions 
derive from laborious experiments that individually test whether the respective bio-
chemical conversions are observable in the system. For extensively studied model 
systems or organisms such as the human hepatocyte or the bacterium  Escherichia 
coli , biochemists have been collecting this type of experimental data for decades. 
The biochemical data augmented by genetic data and phenotypic observations 
formed the basis for the manually curated, high-quality metabolic models that are 
available for these well-studied systems to date  [  2,   3  ] . 

 For less studied organisms, typically very few metabolic reactions are 
experimentally veri fi ed. The presence of metabolic reactions is therefore mostly 
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inferred from genome sequences, which are available for a rapidly growing number 
of species. During the past 10 years, various protocols and software frameworks 
have been developed and implemented in order to improve and automate genome-
based metabolic reconstruction  [  4–  7  ] . Though less detailed and less reliable than 
reconstructions of extensively studied model systems, such draft reconstructions 
can provide new metabolic insights and facilitate the prediction of phenotypes as 
well as the interpretation of high-throughput experiments in the context of meta-
bolic pathways  [  8,   9  ] . For most sequenced species, reconstructed genome-scale 
metabolic models are available through metabolic databases such as KEGG  [  10  ] , 
BioCyc  [  11  ] , and The SEED  [  12  ] . Most reconstructions therein have been mainly 
derived from genome sequences by processing them through automated reconstruc-
tion pipelines (KAAS  [  5  ] , Pathway Tools  [  6  ] , RAST  [  7  ] ). 

 Despite major advances in automating the complete process of metabolic recon-
struction, the quality of metabolic models still largely depends on manual interven-
tion during each step taken for the metabolic reconstruction from genome sequences. 
Intensive manual validation using primary literature, consistency checks, and new 
experiments transforms automatically derived metabolic networks into high-quality 
networks suitable for metabolic modeling by mathematical means. However, the 
high manual effort limits the number of high-quality metabolic models available to 
date to a small fraction of all sequenced species. The BiGG database, which pro-
vides systematic representations of such high-quality networks, currently comprises 
30 metabolic reconstructions  [  13  ] . 

 In this section, we brie fl y review the major steps required to reconstruct meta-
bolic networks based on genome sequences. More detailed descriptions are pro-
vided in  [  8,   14–  19  ] . Figure  17.1  gives an overview of the reconstruction process and 
the mathematical representations frequently used for metabolic models. Table  17.1  
lists selected databases and tools relevant for metabolic reconstruction.   

    1.1   Step 1: From Genome Sequences to Gene Functions 

 Starting from the assembled genome sequence,  genome annotation  is the  fi rst mark 
on the trail towards genome-scale metabolic networks. Genome annotation divides 
into two major steps, namely gene prediction and functional gene annotation. 

 First, we identify protein coding regions in the genome sequence using dedicated 
gene prediction tools (e.g. GLIMMER  [  20  ] , GeneMark  [  21  ] ) or gene prediction as 
implemented in reconstruction pipelines. Typically, such tools determine a list of 
open reading frames (ORFs). Subsequently, the list is  fi ltered for protein-coding 
sequences by estimating the coding potential of the ORFs based on intrinsic proper-
ties of the sequence (e.g. length, promoter signals, CpG islands). 

 As a next step, we annotate the coding genes with the biological functions of the 
encoded proteins such as speci fi c enzymatic, transport, or structural functions. 
Thereby, annotation mainly relies on transferring functional annotations from 
reference proteins with known functions to the new proteins based on their sequence 
similarity. Genome annotation therefore typically involves BLAST  [  22  ]  or FASTA 
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  Fig. 17.1    Overview of the reconstruction and mathematical representation of metabolic models.
( a ) Starting from a genome sequence, metabolic reconstruction of a genome-scale metabolic model 
can be divided into four major steps: (1) Genome annotation provides a list of the identi fi ed protein 
coding genes along with their enzymatic or transport functions. These functions are often described 
in a structured way using ontologies such as the enzyme classi fi cation. (2) For translating genes 
into reactions, Gene-protein-reaction (GPR) relationships are derived and used to generate a list of 
the reactions present in the organism along with the (experimental or predicted) reaction direction-
alities and localizations. This process is based on the gene annotations and on information pro-
vided by reaction databases. (3) The reactions are assembled to pathways or complete metabolic 
networks via shared metabolites. The resulting preliminary metabolic model is translated into a 
mathematical representation. We can distinguish pathway-based, graph-based, and constraint-
based approaches for the assembly and the corresponding mathematical representation. (4) The 
preliminary model must be corrected, extended, and validated by applying consistency checks and 
by testing it against experimental and physiological data from literature and high-throughput 
experiments. ( b ) A metabolic model can be mathematically represented by a (1) vector (pathway 
pro fi le) describing the completeness or presence/absence of prede fi ned reference pathways 
( < - pathway-based models), (2) graph describing the connectivity of the reactions ( < - graph-based 
models), and (3) stoichiometry matrix describing the connectivity of reactions along with the reac-
tion stoichiometries ( < - constraint-based models)       
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 [  23  ]  searches of the new protein sequence against manually curated reference 
protein datasets such as UniProtKB/Swiss-Prot  [  24  ]  in order to identify orthologs 
 [  25  ] . Besides sequence similarity, annotation tools additionally analyze genomic 
structure conservation and predict functional protein domains to increase the number 
and reliability of functional assignments  [  26,   27  ] . 

 Though functionally characterizing a large fraction of a new genome’s proteins, 
genome annotation by annotation transfer is always restricted to already known 
sequences and functions. Moreover, contradicting the assumption of annotation 
transfer, sequence similarity does not necessarily imply functional similarity and 
vice versa  [  28,   29  ] . As a consequence, automatically generated genome annotations 
usually contain gaps and errors. 

 Today, sequence databases (e.g. GeneBank  [  30  ] , IMG  [  31  ] ) provide automati-
cally derived functional annotations for most sequenced genomes. Tools for genome-
scale metabolic reconstruction either build on the annotations therein (e.g. 
Pathway Tools) or include proprietary genome annotation processing (e.g. RAST, 
metaSHARK  [  32  ] , IdentiCS  [  33  ] ).  

    1.2   Step 2: From Gene Functions to Chemical Reaction 
Equations 

 In the next step, we must translate the annotated gene functions into biochemical 
reactions and transport processes. In the simplest case, a gene encodes a single 
protein which catalyzes a distinct reaction. The  gene-protein-reaction (GPR) rela-
tionship  becomes more complex if different genes encode the subunits of a protein, 
which, as such, is needed to catalyze a reaction. Vice versa, a single gene can code 
for various distinct proteins due to alternative splicing and multiple distinct genes 
can code for the same protein. Similarly, we can distinguish different cases for map-
ping proteins onto speci fi c reactions. Again, multiple proteins can form a protein 
complex needed for the catalysis of a single reaction. In contrast, a protein can cata-
lyze various reactions and a single reaction can be catalyzed by multiple distinct 
proteins (isozymes). Formally, these relationships are often described using Boolean 
logic  [  13  ] . The evaluation of the GPR logic expression belonging to the reaction  R  
results in either ‘reaction  R  is present’ or ‘reaction  R  is absent’. As a side note, the 
accurate formulation of GPR relationships not only facilitates revealing the set of 
reactions for the initial reconstruction but also facilitates simulating the metabolic 
effects of gene knockouts based on the  fi nal metabolic model. 

 Yet, how can we actually infer gene-protein and protein-reaction links from an 
annotated genome in order to obtain the organism-speci fi c reactions with their 
chemical equations? While the link between genes and proteins can mostly be 
extracted directly from genome annotation, protein-reaction links and the chemical 
equations of the reactions are derived from reaction databases. For metabolic 
reconstruction, the databases ENZYME  [  34  ] , BRENDA  [  35  ] , and TransportDB 
 [  36  ] , as well as reaction databases that are part of metabolic databases (e.g. LIGAND 
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from KEGG, MetaCyc reactions from BioCyc) play an important role. These datasets 
are collections of chemically well described reactions that have been observed in at 
least one organism. In order to infer GPR relationships for new genomes, reaction 
databases often provide links to reference proteins known to catalyze the reaction. 
Furthermore, formalized descriptions of catalytic functions such as Enzyme 
Commission (EC) numbers  [  37  ]  and KEGG orthology numbers (KO)  [  38  ]  are 
widely used to link annotated genes and proteins to the chemical equations stored in 
reaction databases. 

 Due to the availability of comprehensive reaction databases, the translation of an 
enzymatic protein into a chemical equation is uncomplicated if the catalytic func-
tion has been transferred from the protein of a related species and if the enzyme is 
very speci fi c for the conversion of a distinct metabolite. However, many enzymes 
and transporters act on a broad spectrum of substrates. Moreover, the substrate 
speci fi city of enzymes often differs between species and isoforms and is dif fi cult to 
predict from the protein sequence. As an example, the enzyme alcohol dehydroge-
nase (ADH) catalyzes the oxidation of a variety of primary and secondary alcohols 
into the respective aldehyde or ketone. In reaction databases, these cases are cov-
ered by abstract reactions, in which generic molecules (e.g. alcohol) describe a 
whole class of substrates. For their correct incorporation into metabolic networks, 
these abstract reactions must be instantiated. For instance, in order to correctly link 
a reaction producing ethanol to a reaction consuming acetaldehyde in the presence 
of ADH, the reconstruction process must  fi rst derive the speci fi c chemical equation 
for the oxidation of ethanol to acetaldehyde based on the abstract reaction 
for ADH. 

 Besides their chemical equations, metabolic reconstruction needs information on 
the reversibility and the localization of reactions. Biochemical reactions can be irre-
versible under physiological conditions which restrict the way a network can be 
traversed following a linear pathway. If not described in reaction databases, the 
reversibility of reactions can be estimated from the reaction Gibbs energy, if known, 
or based on energy equivalents (e.g. ATP, NADH) in the reactions  [  39,   40  ] . In addi-
tion to reversibility, restrictions of catalytic activities to speci fi c compartments 
(e.g. mitochondria, endoplasmatic reticulum, periplasm) play an important role for 
linking reactions correctly. A metabolite produced in one compartment can only be 
consumed in a different compartment if the system is able to transport the metabo-
lite accordingly. The localization of an enzyme can be inferred from protein sequence 
features using tools such as PSORT  [  41  ]  or TargetP/SignalP  [  42,   43  ] .  

    1.3   Step 3: From Chemical Equations to Metabolic Networks 
and Their Mathematical Representation 

 After determining the list of organism-speci fi c reactions in the previous step, we can 
now assemble the entire metabolism of the organism based on this parts list. To this 
end, we  fi rst have to complete the list by a set of spontaneous reactions (i.e. reactions 
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that do not depend on enzymatic catalysis) that have been frequently observed in 
biological systems. Most reaction databases provide such reactions. 

 Having the complete parts list at hand, we must choose among three funda-
mentally different types of techniques for the assembly of the metabolic network, 
namely pathway-based, graph-based, and constraint-based approaches. The meth-
ods for compiling the network and the network’s mathematical representation are 
intrinsically tied to the technique and objectives of the network analysis itself. In 
other words, the best choice largely depends on the type of biological questions 
that we would like to answer by analyzing the reconstructed metabolic model. 
While pathway-based approaches are well-suited for large-scale comparative 
analyses across genomes, graph-based and constraint-based approaches allow for 
more detailed metabolic analyses and predictions for only a few or a single 
organism. 

    1.3.1   Pathway-Based Approaches 

 Historically, metabolism as a whole has been partitioned into functional modules 
that re-occur in various organisms such as the glycolysis and the citrate cycle. Such 
a module is referred to as a  metabolic pathway  and comprises all reactions that are 
necessary to ful fi ll the respective metabolic function. Most metabolic databases 
provide a huge set of prede fi ned reference pathways collected from multiple 
species (e.g. KEGG PATHWAYS and modules, MetaCyc pathways, SEED 
subsystems). 

 Given a comprehensive set of known reference pathways, reconstructing the 
metabolism of an organism corresponds to predicting the presence or absence of each 
pathway based on the presence of the related reactions in the organism. It is to be 
noted that pathway-based approaches provide lists of pathways present in an organ-
ism rather than metabolic  networks  as such. Mathematically, the pathway-based 
reconstruction of an organism can be represented as a single high-dimensional vector. 
Each entry of the vector corresponds to a known pathway and contains a complete-
ness score describing the (predicted) availability of the pathway in the organism 
 [  44–  46  ] . 

 Low computational costs make pathway-based approaches well-suited for the 
reconstruction and comparison of metabolic capabilities across hundreds of species 
 [  6,   12,   46–  49  ] . As a consequence, tools designed for the rapid metabolic reconstruc-
tion of numerous genomes such as KAAS, Pathway Tools, and RAST mainly rely 
on pathway-based methods. For far more than 1,000 sequenced genomes, the result-
ing reconstructions are stored in the metabolic databases that are tied to these tools, 
namely KEGG, BioCyc, and SEED. 

 However, on the downside, pathway-based metabolic reconstructions are 
restricted to known metabolic processes with prede fi ned boundaries. The discovery 
of previously unknown pathways or pathway alternatives therefore requires more 
sophisticated metabolic reconstruction techniques.  
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    1.3.2   Graph-Based Approaches 

 In graph-based approaches, we simply link the reactions that are present in a system 
via their shared metabolites. Thereby, we directly generate a graph that represents 
the system’s complete metabolic network without any restrictions to reference 
pathways. Mathematically, the resulting metabolic network can be described as a 
directed graph, which is de fi ned as an ordered pair ( V ,  E ), where  V  represents a set 
of vertices (here: metabolites) in the graph and  E  is a set of ordered pairs ( a ,  b ) with 
 a ,  b  Є  V , called edges (here: reactions connecting the metabolites a and b). Through 
representing a metabolic network as a mathematically well-de fi ned graph, a huge 
number of established graph algorithms can be applied for visualizing and travers-
ing the network as well as for analyzing its local and global topological properties. 
As an example, we can apply such algorithms for calculating the pathway distance 
(i.e. number of reactions on a linear path) between two metabolites or for revealing 
alternative biochemical pathways between them. 

 However, if metabolic graphs are built naively as described above, traversing the 
graph will yield a plethora of biochemically unrealistic pathways  [  39  ] . The main 
reason is the connection of reactions via abundant cofactors such as ATP or water, 
which occur in many biochemically otherwise unrelated reactions. For instance, 
allowing connections via ATP, the shortest path from glucose to pyruvate would 
involve two reactions instead of the nine reactions that are actually needed for this 
conversion in the glycolysis pathway. The strategies for avoiding this problem span 
from deleting or penalizing edges with the most abundant, so-called  side metabo-
lites   [  39,   50–  52  ] , to the tracing of chemical structure similarities of the source 
metabolite when traversing the metabolic graph for path  fi nding  [  53–  56  ] . Besides 
side metabolites, we must consider two further aspects for the construction of the 
graph: First, reversible reactions must be split into forward and backward reactions. 
Second, the localization of reactions must be taken into account, e.g. by represent-
ing the same metabolites in different compartments as distinct nodes.  

    1.3.3   Constraint-Based Approaches 

 In contrast to pathway-based and graph-based approaches, constraint-based methods 
make use of reaction  stoichiometries . The stoichiometries describe the relative quan-
tities of molecules in a reaction following the law of conservation of matter. Constraint-
based models rely on the assumption that all metabolites that are neither imported 
from an external pool nor excreted or accumulated must be  stoichiometrically bal-
anced  (i.e. must be produced and consumed to the same extent) over all (valid)  fl uxes 
through the network (= mass balance constraint). Section  2  provides a detailed intro-
duction to the basic principles and applications of constraint-based metabolic models. 
Here, we only focus on reconstruction issues of constraint-based approaches. 

 Constraint-based metabolic models generally rely on the so-called  stoichiometry 
matrix . This matrix comprises the stoichiometries of all reactions present in a 
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system and mathematically de fi nes the metabolic network. The columns of this 
matrix correspond to reactions while rows correspond to metabolites (Fig.  17.1b ). 
The cell (i,j) of the matrix contains the stoichiometric coef fi cient for the metabolite 
i in the reaction j. A negative value describes the consumption of the respective 
metabolite in the reaction while a positive value indicates the production of the 
metabolite. Reversible reactions are split into a forward and a backward reaction as 
for the graph-based model. Similar as in graph-based models, we can handle the 
localization of reactions by de fi ning distinct formal metabolites (e.g. Amitoch, 
Acytopl) for the same metabolite in different compartments. In contrast to the 
graph-based reconstruction approach, abundant metabolites such as cofactors do 
not require any special treatment but are balanced as other metabolites. Instead, we 
must identify metabolites that are supplied to or excreted from the system and add 
external copies and transports for them in order to ensure the mass balance con-
straint inside the system.   

    1.4   Step 4: From Draft to High-Quality Metabolic Networks 

 After compiling a network and translating it into a mathematical representation, we 
are in principle ready to use the model for analysis. However, each of the steps 
described above is error-prone, especially in a fully automated reconstruction setup. 
The model thus still contains gaps and errors, most of which originate from incom-
plete or erroneous annotations and incomplete or erroneous translation of annotated 
genes into chemical equations. 

 However, based on the draft model and its mathematical representation, we can, 
to some extent, systematically identify such gaps and errors by searching for dead 
ends or inactive reactions (e.g. reactions that cannot carry  fl ux). Various algorithms 
were proposed and implemented for gap  fi nding and gap  fi lling in metabolic recon-
structions (e.g. GapFind/GapFill)  [  57,   58  ] . In addition to these consistency checks, 
the reconstructed metabolic model can be validated by comparing model-based 
predictions and experimental observations for phenotypes such as growth under 
various conditions. To this end, metabolic models are often extended by biomass as 
an arti fi cial metabolite, which is “synthesized” from the combination of biomass 
precursors such as cofactors, amino acids, lipids, and nucleotides  [  59–  61  ] . For fur-
ther validation, we can map high-throughput experimental data (e.g. metabolite 
concentrations and gene expressions) onto the model in order to identify inconsis-
tencies  [  62  ] . 

 Though tools such as Model SEED  [  60  ]  already support automated reconstruc-
tion, correction, and validation of metabolic models, high-quality metabolic models 
as stored in the BiGG database are still created by an iterative re fi nement process 
involving time-intensive manual intervention.   
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    2   From Networks to Metabolic Fluxes: Intrinsic 
Properties of the System 

 The assembly of all compounds, enzymes and reactions of the system under inves-
tigation described in the previous section is a  fi rst, mandatory step in the analysis of 
its metabolism. Having the stoichiometry matrix as a convenient, computer-readable 
representation of the system at hand, we can now ask questions of intrinsic proper-
ties of the metabolic system; even without experimental data of metabolite concen-
trations or reaction rates. Pioneering work in this  fi eld has been conducted in the 
1990s and early 2000s by Palsson and colleagues at UCSD  [  63  ] . In this section we 
will brie fl y explain the concepts of metabolic pathway analysis, mass balance, 
extreme pathways and  fl ux balance analysis. 

    2.1   Basic Concepts 

 As an example, consider the three-metabolite toy network display in Fig.  17.2a . 
It consists of a single incoming boundary reaction v 

1
  which brings A into the system, 

a splitting reaction v 
2
  producing both B and C from A, a conversion v 

3
  from C to B 

and two outgoing boundary reactions v 
4
  and v 

5
 . Note that in this framework we only 

use irreversible reactions, i.e. a reversible reaction must be replaced by two irrevers-
ible ones. Interestingly, the mere wiring of the network structure alone already con-
strains the possible mass- fl ow through the system. For instance, if each reaction 
  fi res  exactly once (i.e. transports a single molecule), we will end up with an 
unchanged number of A molecules, an increase of B by 1 and, subsequently, a 
decrease of C also by 1 (Fig.  17.2b ). Formally, if we multiply the stoichiometry 

  Fig. 17.2    ( a ) Metabolic toy network consisting of three nodes A–C and  fi ve reactions v 
1
 –v 

5
 . ( b ) 

Total metabolite concentration changes after each reaction  fi red exactly once. Note that the actual 
reaction order is not relevant for the net change; this  fi gure merely represents a visualization 
scheme       
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matrix with the number of times each reaction  fi res as a column vector, we obtain 
the net concentration change of each metabolite: 

     = ×x S v     

 Where     x    is the concentration change vector of metabolites,  S  again represents 
the stoichiometry matrix of the metabolic network,  v  stands for the number of times 
each reaction  fi res in the given time step, and represents the matrix multiplication 
operator. For our example, this results in

     

1 1 0 0 0 0

0 1 1 1 0 (1 1 1 1 1) 1

0 1 1 0 1 1

T

-æ ö æ ö
ç ÷ ç ÷- × =
ç ÷ ç ÷

- - -è ø è ø
   

which is the same result as obtained by manual calculation in Figure  17.2b . The 
mass passing through the system in a given time step is commonly referred to as   fl ux  
 [  64  ] , and  v  thus represents the so-called   fl ux vector . 

 With the matrix multiplication operation above we now have a tool to transform a 
network with given reaction rates into concentration changes over time. The question 
of biological relevance now is: What is the actual  fl ux vector in a living cell? In the 
following we discuss how we can drastically reduce and subsequently interpret the 
number of possible  fl ux vectors using a simple, biologically motivated constraint.  

    2.2   Mass Balance and Extreme Pathways 

 Enzymatic reactions in the metabolic system are considered to be fast in comparison 
to the physiological or chemical changes that drive the system from the outside. 
Consequently, we assume the system to be in steady state: despite constant mass 
 fl ow through the system, the actual metabolite concentrations remain unchanged. 
Metabolites  fl owing into the system are processed into output metabolites of the 
system without changing its internal state (Fig.  17.3 ). The steady state condition can 
be formally expressed using the matrix multiplication introduced above: 

     
!

  0S v× =     

 We only allow those  fl ux vectors  v  which are able to maintain mass balance in the 
system. Intuitively, if the  fl ux acting upon the system does not ful fi ll this steady state 
condition for all internal metabolites, the affected compounds will either deplete or 
grow in fi nitely over time. Note that the  fl ux vector illustrated in Figure  17.2  above 
did  not  ful fi ll the steady state condition, since it yielded non-zero changes for both 
B and C. 

 We now need to obtain a solution of the equation above in order to  fi nd those 
 fl uxes that are biologically feasible with respect to the steady state condition. Simply 
solving this system of equations by standard linear algebra techniques is mathemati-
cally possible, but might result in negative  fl ux values. Since obviously  fl ux values 
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cannot be negative (recall that we always model the system by irreversible reac-
tions), two independent research groups designed algorithms that generate positive 
solution descriptions for the steady state equation: (a) Elementary  fl ux modes 
(EFMs) by Schuster and colleagues  [  65  ]  and (b) Extreme pathways by Schilling and 
Palsson  [  66  ] . Both methods yield identical results if the system only comprises of 
irreversible reactions  [  67  ] . For simplicity, we will here only refer to the extreme 
pathways approach. 

 Our toy model from the previous examples gives rise to two extreme pathways 
(Fig.  17.4 ): 

     = =1 2(1 1 0 1 1) and (1 1 1 2 0)T Te e     

 It can be easily veri fi ed, mathematically but also visually, that both  fl ux vectors 
will not change the concentrations of A, B and C. Despite the simplicity of this 

  Fig. 17.3    Mass balance. The metabolic network takes input metabolites A–E as a substrate and 
processes them to the target metabolites X–Z (which could for instance represent compounds 
required for biomass production). The internal metabolites of the system are required to be con-
stant over time (Adapted from  [  64  ] )       

  Fig. 17.4    The two extreme pathways for our toy network ( black arrows ). By de fi nition, both  fl ux 
vectors will maintain steady state, i.e. metabolite concentrations are not changed after the reac-
tions  fi red       
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example case, we actually learned something about the intrinsic properties of the 
system using the extreme pathways. Reactions v 

1
  and v 

2
  are absolutely required to 

keep mass  fl ow through the system, while v 
3
 , v 

4
 , and v 

5
  have to be in a subtle bal-

ance to ensure steady state. Note that any linear combination of these extreme path-
ways also lies in the solution space of steady states, e.g.

     1 2: 2 (3 3 1 4 2) still yields 0v e e S v= × + = × =     

 Generally, the set of extreme pathways can be interpreted as basis vectors which 
span a convex positive cone (Fig.  17.5 ), whose inner volume represents the set of all 
feasible  fl uxes that ful fi ll the steady state condition. In other words, constraining the 
system to ful fi ll this condition drastically reduces the number of possible  fl uxes 
from the entire space down to this positive cone.   

    2.3   Applications of Extreme Pathways 

 In the following, we will present several studies which employed the extreme 
pathway methodology to address questions regarding correctness of the metabolic 
reconstruction, minimal growth medium prediction, pathway redundancy and  fl ux 
balance analysis. 

 First, extreme pathways can be used to consolidate and re fi ne the metabolic net-
work reconstruction. For example, each reaction contained in the metabolic model 
should actually be  used , i.e. be part of at least one extreme pathway and thus con-
tributing to the overall  fl ux  [  64  ] . An unused reaction could be an indicator for both 
reconstruction problems but also biologically relevant mechanisms. In particular, an 
unused reaction in the model could indicate: (a) There could be incomplete path-
ways due to evolutionary intermediates, i.e. not all enzymes of the respective 
pathway are present in the genome. (b) The  in silico  model could be incomplete at 
this point. The organism indeed contains all enzymes required for the pathway, but 
the computer model still misses some of them. (c) The functional annotation of the 
respective enzyme might be wrongly transferred; the protein is expressed but does 
not ful fi ll the function it was assigned in the model. 

  Fig. 17.5    From the stoichiometry matrix over the mass balance constraint to a positive convex 
cone spanned by the extreme pathways of the system (Figure inspired by  [  64  ] )       
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 The second example of extreme pathway applications is the prediction of 
minimal medium predictions required for the growth of  Haemophilus in fl uenzae  
 [  59  ] . The idea is to select a minimal subset of possible nutrient metabolites such that 
the microbe is still able to produce all metabolites required for growth. Again, this 
question was tackled by the use of extreme pathways, checking which routes through 
the network are active if a given set of input substrates is present, and whether all 
required output  fl uxes (taking biomass compounds from the system) are active. The 
authors identi fi ed a total of 11 metabolites as minimal substrate requirements, which 
were in accordance with previously published experimental results. 

 Another biological property which was examined using the extreme pathway 
approach involves pathway redundancy in  Helicobacterpylori  and  Haemophilus 
in fl uenzae   [  68  ] . The rationale behind this analysis is the direct relationship between 
redundancy and robustness. If the system has more possibilities to transform input 
metabolites into required output metabolites, it will be more robust to disturbances 
and variations of external conditions. Redundancy of the metabolic system can be 
assessed using extreme pathways by counting how many pathways connect each 
input state (possible input metabolite  fl uxes) with each output state (in this case the 
production of essential amino acids and other metabolites required to produce bio-
mass). The main  fi nding of this study was the drastically lower robustness of the  H. 
pylori  metabolic network in comparison to the  H. in fl uenzae  network. Interestingly, 
this prediction indeed makes sense from a biological point-of-view.  H. pylori  natu-
rally resides in a well-de fi ned metabolic niche, the human stomach, in a wealth of 
nutrients required for its growth, and thus inherently does not require to cope with 
strong variations of external states. 

 Our  fi nal case of extreme pathway applications for real-world biological prob-
lems is  fl ux balance analysis (FBA). In addition to the extreme pathway framework, 
FBA adds concrete upper boundaries for each reaction speed (Fig.  17.6 ) and then 

  Fig. 17.6    Constraining the convex solution space by  upper   fl ux boundaries       
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computationally optimizes a given biological function. The goal here is to go beyond 
a whole set of solutions and pick a speci fi c point from the solution space. For 
instance, Segrè and colleagues  [  69  ]  used a genome-scale metabolic reconstruction 
of E. coli in which they maximized the speed of a bio-mass generating reaction in 
the model. The biological assumption here is that the bacterium is seeking to arrange 
its metabolic  fl ux patterns such that it can grow at a maximal rate. Comparing the 
resulting (computationally) optimal  fl uxes with experimental data demonstrated 
good agreement between predicted and measured  fl ux rates.  

 In summary, in this section we reviewed several analysis techniques which are 
solely based on the reconstruction of metabolic networks. Interpreting the basis vec-
tors of the steady state solution space, i.e. the extreme pathways, as possible operat-
ing modes in the metabolic networks, one obtains an intrinsic de fi nition of a 
“pathway” as opposed to the rather arbitrarily de fi ned “pathways” in public data-
bases like KEGG or HumanCyc. We discussed several applications of this tech-
nique to biological questions like pathway redundancy and reaction  fl ux rate 
prediction.   

    3   From Metabolic Fluxes to Reaction Rates: 
Incorporation of Concentration Data 

 In the previous part we have seen how to obtain  fl ux properties of networks with 
given stoichiometric matrices by applying reconstruction techniques resulting in 
insights into the characteristics of metabolic systems. However, kinetic models of 
biochemical reactions are essential to understand the dynamic behavior of metabo-
lism under speci fi c conditions. In the following section, we will discuss how to 
obtain kinetic parameters by incorporating metabolite concentration data into the 
extreme pathway framework introduced before. 

 Biochemical in vitro experiments provide a large set of measured kinetic con-
stants, which are collected in freely available databases such as BRENDA  [  35  ]  and 
Sabio-RK  [  70  ] . However, these collections are mostly incomplete and do not re fl ect 
the broad variability and range of the entire metabolism. Moreover, quantitative 
models incorporating in vitro derived parameters failed to predict in vivo pheno-
types in experimental studies  [  71,   72  ] . Hence, methods are needed for the con-
struction of metabolic models based on in vivo data in order to describe the dynamics 
of in vivo reactions on different levels of complexity, including central metabolic 
pathways, but also the metabolism of a cell or the whole organism. 

 The recent development of high-throughput metabolomics techniques, mostly 
based on mass spectrometry and nuclear magnetic resonance spectroscopy, now 
provide large-scale measurements of chemical compounds in biological samples 
 [  73  ] . This allows for the quanti fi cation of in vivo external and internal metabolite 
concentrations. Several methods have been proposed to integrate metabolite con-
centrations into quantitative metabolic models. Their common goal is to estimate 
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kinetic parameters speci fi cally for given cellular conditions such as healthy and 
disease states. 

 One such example is  k-cone analysis   [  74  ] , which again constructs a convex space 
(cone) based on metabolite concentrations. This cone then includes all candidate 
values for kinetic parameters under steady state conditions (see Fig.  17.7 ). Further 
extensions of this approach also consider enzymes and their various functional 
states as compounds and therefore addressing regulatory effects  [  75,   76  ] .  

 As an example model, we now investigate a linear reaction cascade with irrevers-
ible in fl ux, out fl ux and enzymatic reactions (Fig.  17.8 ). Examples for such linear 
pathways are fatty acid beta-oxidation or glycolysis. The system can be described 
using mass action rate laws by a system of ordinary differential equations: 

     

i A

A B

B c

A k k A

B k A k B

C k B k C

= - ×

= × - ×

= × - ×     

 Where  A ,  B  and  C  represent compound concentrations, and     ,A B    and     C    the 
respective time differentials. As seen in Sect.  2.1 , we can describe the reaction 
cascade using a stoichiometry matrix  S . Each row of the matrix belongs to a 

  Fig. 17.8    Linear cascade of metabolic reactions. This topology can be found in metabolic path-
ways like fatty acid beta-oxidation or glycolysis       

  Fig. 17.7    Integrative analysis of metabolomics data – both stoichiometric and concentration data 
are used to characterize the dynamical behavior of metabolic networks under speci fi c conditions       
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compound and each column represents an elementary reaction (denoted as an arrow 
in the reaction scheme).
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 A negative entry s 
ij
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i
  is an educt for reaction v 

j
 . For a 

product of reaction v 
j
 , the stoichiometric coef fi cient s 

ij
  is positive. If compound c 

i
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not involved in the reaction v 
j
 , then s 

ij
  is zero. Furthermore, we de fi ne a vector X 

containing products of substrate concentrations according to the law of mass 
action:
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 In addition, we require a vector k containing elementary rate constants for all 
reactions v 

1
 -v 

r
 . Using  S , X and k, we can express the system of differential equa-

tions in matrix notation:
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or by substituting  M  :=  S  · diag(X)
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 Compared to the stoichiometric matrix  S , matrix  M  combines both information 
about stoichiometry as well as reaction kinetics. 

 Under steady-state conditions, the concentrations of all compounds remain con-
stant, i.e. the change in concentration over time is zero. Measured metabolite con-
centrations often re fl ect these conditions, as biochemical reactions are assumed to 
reach equilibrium in the order of milliseconds to seconds. If we know the topology 
of a biochemical pathway we can describe all reactions using matrix  M . For a given 
set of metabolite concentrations we can estimate rate constants by setting the equa-
tion above to zero. 

 Matrix representations of metabolic systems are commonly underdetermined, 
meaning that we have more unknown kinetic parameters than independent linear 
equations when only considering non-negative kinetic rates results in a convex cone 
spanned up by basis vectors in the solution space (see Fig.  17.7 ). All linear combi-
nations of these basis vectors reside inside the cone and are therefore also solutions 
satisfying the physiochemical and condition-dependent constraints of the system of 



29917 Systems Biology Meets Metabolism

differential equations. Adding additional constraints and information about equi-
librium constants can reduce the dimensionality of the solution space. Sampling 
methods  [  77,   78  ]  allow for the ef fi cient comparison of feasible solutions between 
different conditions. 

  k-cone  analysis has been applied to metabolic networks of different biological 
complexity, such as glycolysis, central biochemical pathways in yeast and human 
red blood cell metabolism  [  74–  76,   79  ] . The advantage of such methods is the minimal 
amount of biological data required. On the downside, such approaches often rely on 
simplifying assumptions which have to be carefully considered especially when 
dealing with complex dynamic reactions and interactions in living systems. 
Therefore, additional methods have been proposed to overcome this issue. 

 In this section we have discussed methods for the estimation of kinetic parame-
ters. This analysis can be seen as an extension to the methods reviewed in Sect.  2 . 
By incorporating additional concentration data one can deduce kinetic properties of 
metabolic systems. Since more and more metabolomics data will be available, 
information can be gathered about distinct dynamic responses of metabolic systems 
to perturbations such as stress or disease states.  

    4   From Metabolite Concentrations to Dynamical Systems: 
Stochasticity 

 In this part we now further explore the connection between metabolomics measure-
ments and the underlying dynamical systems. In particular, we investigate stochas-
tic  fl uctuations in both metabolite and enzyme concentrations, which leave detectable 
footprints of the metabolic pathways in our experimentally measured concentration 
levels. When generally referring to “variation” in the data, it is important to under-
stand that this term might refer to completely different concepts, each of which 
requires special attention and treatment. We here distinguish between three types of 
variation: (a) Technical noise due to inaccuracies in the measurement procedure. 
(b) Intrinsic noise due to natural  fl uctuations of molecule quantities inside a living 
cell. (c) We further distinguish “extrinsic noise” as a third type of noise. This can 
refer to general differences in reaction speeds and metabolic processes, e.g. between 
different organisms due to genetic variation, nutritional states, life-style and other 
external in fl uences. 

 While technical noise obviously impairs the evaluation and interpretation of 
measured data, we will see that intrinsic and extrinsic variations contain valuable 
signals which are directly connected to the underlying metabolic network. The 
general idea is that metabolite concentrations do not represent independent signals 
in the data, but display strong correlations which are a direct consequence of the 
wiring of the underlying metabolic network. Recently, researchers in the  fi eld 
attempted to elucidate the origins of such metabolite-metabolite correlations in 
metabolomics data. We will brie fl y outline the  fi ndings of two studies in the follow-
ing. Note that we here speci fi cally focus on cross-sectional steady state data. 
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Other studies focused on the reconstruction of reaction network topologies from 
time-course perturbation data  [  80,   81  ] . While this approach is certainly of great 
interest as well, it requires a completely different analysis framework which is 
beyond the scope of this text. 

 An early study on how to systematically investigate variations in metabolic 
systems has been published by Steuer and colleagues in 2003  [  82  ] . The authors 
assumed stochastic  fl uctuations of metabolite inside and outside the cells which are 
in identical states otherwise (biological replicates). This corresponds to the “intrin-
sic variation” scheme we introduced above. Mathematically, such variation can be 
expressed via stochastic differential equations (SDEs). An SDE is a stochastic 
extension of a regular ordinary differential equation (ODE), but in addition to the 
directed  drift  term it contains a  diffusion  term representing white noise-driven 
 fl uctuations on the molecule numbers over time  [  83  ] . Two cells with an identical 
internal state will fall into qualitatively the same steady state after a given amount 
of time, but the actually measured steady state concentrations of biochemical mol-
ecules might differ slightly. The main contribution of the study was the derivation 
of a mathematical relationship between covariance between the measured metabo-
lites and the Jacobian matrix of the dynamical system (Fig.  17.9a ). The Jacobian 
matrix can be understood as a combination of the network topology with speci fi c 
rates for each reaction. In this framework, given a metabolic network with specifi ed 
reaction rates, one can immediately derive the covariances between all pairs of 
metabolites. Moreover, given measured covariance values between metabolites, 
one can obtain information about the dynamics of the metabolic network acting 
underneath the metabolite pools. In summary, the paper provided a  fi rst link between 
variation in measured metabolite concentrations and properties of the underlying 
biochemical system.  

 A later study by Camacho et al. from 2005  [  84  ]  then shifted the focus from 
intrinsic  fl uctuations of the metabolite levels to actual differences in enzyme levels, 

  Fig. 17.9    Connecting metabolite level variations and the underlying metabolic system ( a ) Steuer 
et al.  [  82  ]  devised a mathematical framework based on stochastic differential equations, which 
establishes a direct connection between dynamical systems (represented as the corresponding 
Jacobian matrix) and the observed pairwise covariances. ( b ) In a later study, Camacho and colleagues 
explained covariance between metabolites using co-response pro fi les. Each enzyme introduces a 
speci fi c direction of covariance between metabolites, the overlaying of which results in the  fi nally 
observed correlation (Figures inspired by  [  82  ]  and  [  84  ] )       
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thus directly affecting reaction rates in the system. This scenario corresponds to 
what we called “extrinsic” variation above; the states between different cells 
actually differ and variations are not only due to stochastic  fl uctuations. The main 
methodological concept of this study was the investigation of so-called  co-response 
pro fi les . For  fi xed enzyme concentrations, the system will fall into a single, unique 
steady state that can be represented as one dot in a 2D phase plane. Varying the 
concentration of one enzyme at a given time will create a co-response pro fi le for this 
enzyme in a certain direction in metabolic space (solid lines in Fig.  17.9b ). The 
mixture of co-response pro fi les of all enzymes in the system then produces the 
co-variation we see between metabolites (scatter plot in Fig.  17.9b ). The study thus 
provides a systematic de fi nition of the actual origins of pair wise correlations in 
metabolomics data. Importantly, the paper also describes limitations of correlation-
based approaches. For example, if co-response pro fi les of similar strength are 
orthogonal, the mutual covariance is canceled out and no correlation will be 
observed. Such issues have to be kept in mind when attempting to reconstruct meta-
bolic reactions from steady state data in the following section.  

    5   Unbiased Reconstruction of Metabolic Networks 
from Metabolomics Data 

 In this  fi nal part we now further focus on the effects of  extrinsic  variation in the 
systems parameters, i.e. inter-individual variation of the biochemical reaction rates 
and external conditions. The goal is to reconstruct directly related metabolites from 
metabolite concentration data  without prior knowledge  of the underlying metabolic 
pathways. The results presented in the following closely follow a previously pub-
lished study in BMC Systems Biology  [  85  ] . 

 As described above, pairwise correlations between measured variables are usu-
ally estimated using Pearson product-moment correlation coef fi cients. A major 
drawback of these correlation coef fi cients, however, is their inability to distinguish 
between direct and indirect associations. Pearson correlations are generally high in 
large-scale  omics  data sets, suggesting a plethora of indirect and systemic associa-
tions. For example, transcriptional co-regulation amongst many genes will give rise 
to indirect interaction effects in mRNA expression data  [  86  ] . Similar effects can be 
observed in metabolic systems which, in contrast to genetic networks, contain fast 
biochemical reactions in an open mass- fl ow system. Metabolite levels are supposed 
to be in quasi-steady state compared to the time scales of upstream regulatory pro-
cesses  [  87  ] . That is, metabolites will follow changes in gene expression and physi-
ological processes on the order of minutes and hours, but will appear unchanged on 
the order of seconds. These properties, even though substantially different from 
mRNA expression mechanisms, also give rise to indirect, system-wide correlations 
between distantly connected metabolites. 

  Gaussian graphical models  (GGMs) circumvent indirect association effects by 
evaluating  conditional  dependencies in multivariate Gaussian distributions  [  86  ] . 
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A GGM is an undirected graph in which each edge represents the pair wise correla-
tion between two variables conditioned against the correlations with all other vari-
ables (also denoted as  partial  correlation coef fi cients). GGMs have a simple 
interpretation in terms of linear regression techniques. When regressing two random 
variables  X  and  Y  on the remaining variables in the data set, the partial correlation 
coef fi cient between  X  and  Y  is given by the Pearson correlation of the residuals from 
both regressions. Intuitively speaking, we remove the (linear) effects of all other 
variables on  X  and  Y  and compare the remaining signals. If the variables are still 
correlated, the correlation is directly determined by the association of  X  and  Y  and 
not mediated by the other variables. 

 Partial correlation coef fi cients have previously been applied to biological data sets 
for the inference of association networks from mRNA expression data  [  86,   88–  90  ] , 
for the elucidation of relationships between genomic features in the human genome 
 [  91  ] , and to investigate genetically determined relations between metabolites  [  92  ] . 

    5.1   Computer-Simulated Metabolic Networks 

 In order to get a general idea of whether GGMs are indeed suitable for the recovery 
of metabolic reactions from metabolomics data, we  fi rst set up a series of computer-
simulated reaction systems (Fig.  17.10 ). Inter-individual variation is modeled by 
applying a log-normal noise model on the parameters of the system. Such variation 
might be genetically determined or, more likely, might be the result of distinct regu-
latory effects and metabolic states between individuals. All reaction systems were 
implemented as ordinary differential equations with simple mass-action kinetics rate 
laws. In order to account for the above-mentioned enzymatic variability, a log-normal 
noise model was applied, which has been previously been described to be a reason-
able approximation of cellular rate parameter distributions  [  93  ] . For each parameter 
sample, the steady state concentrations on log scale were derived, and subsequently 
the GGM was estimated by calculating partial correlation coef fi cients.  

 The  fi rst network we investigated consists of a linear chain of three metabolites 
with different variants of reaction reversibility (Fig.  17.10a–c ). We observe high 
pair wise correlations for metabolites in mutual equilibrium due to reversible reac-
tions (Fig.  17.10a ). If only irreversible reactions are employed in the chain, neither 
regular correlation networks nor GGMs can distinguish between direct and indirect 
effects (Fig.  17.10a ). Species A is the only input metabolite into the system, and 
thus completely determines the levels of both B and C. This leads to generally high 
and non-distinguishable correlations between the three metabolites. However, if we 
introduce exchange reactions for all species, the GGM again correctly describes the 
network connectivity (Fig.  17.10c ). Such exchange mechanisms are likely to be 
present for most intracellular metabolites, which usually participate in multiple 
metabolic pathways. In addition to linear chains, pathway modules consisting of 
branched topologies with  fi rst-order, reversible reactions are also correctly recon-
structed by the method (Fig.  17.10d, e ). 
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 Next, we studied the in fl uence of cofactor-driven reactions on the reconstruction. 
Cofactors are ubiquitous substances usually involved in the transfer of certain 
molecular moieties or redox potentials  [  94  ] . We set up a network resembling the 
 fi rst three reactions from the glycolysis pathway. Again the GGM correctly describes 
metabolite connectivity in the system, whereas a regular correlation graph leads to 
false interpretations of the network topology (Fig.  17.10f ). Finally, we investigated 
the effects of rate laws with non-linear substrate dependencies in the absence of 
cofactors. We modeled a reversible, bimolecular split reaction with isomerization of 
the two substrates (Fig.  17.10g ). An example of such a reaction network can be 
found in the glycolysis pathway between  fructose-1, 6-bisphosphate, glyceralde-
hyde-3-phosphate and dihydroxyacetone phosphate . In this scenario, the GGM only 
detects a weak association between B and C. As mentioned earlier in Sect.  4 , such 
problematic cases have to be kept in mind when interpreting partial correlations on 
real data in the next step.  

    5.2   A GGM on Metabolomics Data 

 In the following we estimated a Gaussian graphical model using targeted metabolom-
ics data from the German population study KORA  [  95  ]  (“Kooperative 
Gesundheitsforschung in der Region Augsburg”). We used a subset of the data set 

  Fig. 17.10    Computer simulated reaction systems. ( a – c ): Linear reaction chains are properly 
reconstructed by the GGM if either reversible reactions or external reactions are present (subnet-
works A & C). Regular correlation networks (CN) show high correlations between all metabolites. 
( d – f ) Branched topologies and co-factor driven systems are also readily recovered by the GGM. 
( g ) For this non-linear system with a bi-molecular reaction, the GGM only predicts a weak interac-
tion between B and C. This is due to counter-antagonistic processes of isomerization and substrate 
participation in the same reaction (Adapted from  [  85  ] )       
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previously evaluated in a genome-wide association study  [  96  ] , containing 1,020 tar-
geted metabolomics fasting blood serum measurements with 151 quanti fi ed metabo-
lites. The metabolite panel includes acyl-carnitines, four classes of phospholipid 
species, amino acids and hexoses. Both regular Pearson correlation coef fi cients and 
partial correlation coef fi cients (inducing the GGM) were calculated on the logarith-
mized metabolite concentrations. All edges corresponding to correlation values 
signi fi cantly different from zero now induce the networks displayed in Fig.  17.11a, b .  

 Pearson correlation coef fi cients show a strong bias towards positive values in our 
data set (Fig.  17.11c ); a typical feature of high-throughput data sets, also observed, 
e.g. in microarray expression data, which can be attributed to unspeci fi c or indirect 
interactions  [  86  ] . We obtain 5,479 correlation values signi fi cantly different from 
zero with     78.83 0ˆ 1α -= .    (    0.00α =    after Bonferroni correction), yielding an absolute 
signi fi cance correlation cutoff value of 0.1619. In contrast, the GGM shows a much 
sparser structure with 417 signi fi cant partial correlations after Bonferroni correction 
(Fig.  17.11d ). Most values center around a partial correlation coef fi cient of zero, 
whereas we observe a clear shift towards positive signi fi cant values. 

 The GGM displays a modular structure with respect to the seven metabolite 
classes in our panel, while the class separation in the correlation network appears 
rather blurry (Fig.  17.11e, f ). We observe a clear separation of the amino acids 
and acyl-carnitines from all other classes. The four groups of phospholipids 
 (diacyl-PCs, lyso-PCs, acyl-alkyl-PCs, and sphingomyelins) still showed locally 
clustered structures, but are strongly interwoven in the network. This is probably 
an effect of the dependence of all phospholipids on a similar fatty acid pool and, 
subsequently, the biosynthesis pathway acting on this substrate pool. In order to get 
an objective quanti fi cation of this observation, we calculated the group-based 
 modularity  Q  on all signi fi cantly positive GGM edges according to  [  97  ] . The same 
measure was calculated for 10 5  randomized GGM networks (random edge rewiring). 
For the original GGM we obtain a modularity of  Q  = 0.488, and the random networks 
yield  Q  = 0.118 ± 0.016, resulting in a highly signi fi cant  z -score of  z  = 23.49. 

 Taken together, partial correlation remove a plethora of correlations from the 
original dataset, and the resulting network displays a strongly modular structure.  

    5.3   Investigation of High-Scoring Subnetworks 

 The next step in our analysis is the manual investigation of metabolite pairs display-
ing strong partial correlation coef fi cients. Clear-cut signatures of the desaturation 
and elongation of long chain fatty acids can be seen for various sphingomyelins and 
lyso-PCs (Fig.  17.12a ). For example, SM C18:0 and SM C18:1 strongly associate 
with a partial correlation of  z  = 0.767, most probably representing the initial  D 9 
desaturation step of the polyunsaturated fatty acid biosynthesis pathway from C18:0 
to C18:1- D 9 by SCD ( Steaoryl-CoA desaturase ). The similarly high partial correlation 
between SM C16:1 and SM C18:1 ( z  = 0.765) as well as lysoPC a C16:1 and lysoPC 
a C18:1 ( z  = 0.315) can be attributed to the ELOVL6-dependent elongation from 
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C16:1- D  9 to C18:1- D  11. Interestingly, this reaction was not contained in the public 
reaction databases but has been previously described by Matsuzaka  et al.  [  98  ] .  

 We identify a variety of strong GGM edges between diacyl-PC (lecithins, PC aa) 
metabolite pairs (Fig.  17.12b ). For instance, PC aa C34:2 and PC aa C36:2 associate 

  Fig. 17.11    Regular correlation network (CN) and partial correlation network (GGM) recon-
structed from metabolomics data. ( a ,  b ) Each  circle  corresponds to a metabolite; edges represent 
correlations signi fi cantly different from zero. ( c ,  d ) Histograms of 11,325 pair wise correlation 
coef fi cients (i.e. edge weights) for both networks.  Green lines  indicate the median values;  red lines  
denote a signi fi cance level of 0.01 after Bonferroni correction. ( e ,  f ) Modularity between metabo-
lite classes measured as the relative out-degree from each class ( rows ) to all other classes ( col-
umns ). The GGM ( right ) shows a clear separation of metabolite classes, with some overlaps for the 
different phospholipid species diacyl-PCs, lyso-PCs, acyl-alkyl-PCs and sphingomyelins. Values 
range from  white  (0.0 out-degree towards this class) to  black  (1.0). PCs = phosphatidylcholines 
(From  [  85  ] )       
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strongly with  z  = 0.735, and PC aa C36:4 and PC aa C38:4 show a partial correlation 
of  z  = 0.672. While the  fi rst pair can be precisely explained by an elongation from 
C16:0 to C18:0 by ELOVL6, different combinatorial variants come into play for the 
PC aa C36:4/PC aa C38:4 pair. The mass-spectrometry technique used in this study 
only measures the bulk side chain carbon content and total degree of desaturation. 
Depending on the exact composition of both fatty acid residues in the respective 
lipids, this association could be caused by long-chain elongations (C14 to C16 and 
C16 to C18 through fatty acid synthase and ELOVL6, respectively), by very-long-
chain elongations (C22:4 to C24:4 through ELOVL2 or ELOVL5) and even by 
peroxisomal  b -oxidation of fatty acids (through ACOX1 or ACOX3). 

 For the acyl-carnitine group we observe a remarkably high partial correlation of 
 z  = 0.735 for C8-carn and C10-carn and further acyl-carnitine pairs with a carbon 
atom difference of two (Fig.  17.12c ). These associations can be attributed to the 
mitochondrial  b -oxidation pathway, i.e. the catabolic breakdown of fatty acids  [  94  ] . 
During this degradation process, C 

2
  units are continuously split off from the shrinking 

fatty acid chain. Four  acyl-CoA dehydrogenases , ACADS, ACADM and ACADL, 
ACADVL, catalyze the rate limiting reactions of  b -oxidation for different fatty acid 
chain lengths  [  99,   100  ] . Our interpretation of acyl-carnitine correlations as signa-
tures of mitochondrial  b -oxidation is in accordance with  [  96  ] , who identi fi ed asso-
ciations between C8 + C10, C12 and C4 with genetic variation in the ACADM, 
ACADL and ACADS loci, respectively.  

  Fig. 17.12    Biochemical subnetworks identi fi ed by high-scoring GGM regions. ( a ) Elongation and 
desaturation signatures for C16 and C18 fatty acids incorporated in lyso-PCs and sphingomyelins, 
which can be attributed to ELOVL6 and SCD. ( b ) Diacyl-phosphatidylcholine (PC aa) species 
with elongation and peroxisomal  b -oxidation associations. Several combinatorial variants of side 
chain compositions are possible for C36:4 and C38:4, and thus different enzymes could mediate 
this connection. ( c ) Recovered  b -oxidation pathway from fatty acid chains C18 down to C4. Four 
enzymes with overlapping substrate speci fi cities catalyze the rate-limiting reactions of this path-
way (Adapted from  [  85  ] )       
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    5.4   Systematic Evaluation 

 In addition to the manual analysis of high-scoring GGM regions in the previous 
part, we now analyze whether this  fi nding represents a systematic signal throughout 
the entire dataset. In order to assess how GGM edges and pathway proximity 
between our lipid metabolites are related, we generated a literature-based model of 
fatty acid biosynthesis and  b -oxidation. This model includes reactions from the 
public databases BiGG (H. sapiens Recon 1)  [  101  ] , the Edinburgh Human Metabolic 
Network  [  102  ]  and KEGG PATHWAY  [  100  ] . We then mapped the partial correla-
tion coef fi cients from the KORA data set onto the minimal number of reaction steps 
between each pair of metabolites ( pathway distance ). 

 For all  fi ve metabolite classes we observe a strong tendency towards signi fi cantly 
positive partial correlations for a pathway distance of one, i.e. directly connected 
metabolite pairs (Fig.  17.13a ). For instance, for the lyso-PC class (Fig.  17.13a ) 
nearly all partial correlation coef fi cients for a pathway distance of one are above 
signi fi cance level, whereas most values for a distance of two or larger remain 
insigni fi cant. Some outliers from this observation, however, require closer inspec-
tion: We  fi nd 91 of 932 (~9.8%) unconnected metabolite pairs (pathway distance = ∞) 
with a partial correlation above signi fi cance level. These pairs represent potentially 
novel pathway predictions, missing interactions in the model or effects upstream of 
the metabolic network like enzyme co-regulation.  

  Fig. 17.13    Systematic comparison of correlation coef fi cients and pathway distances. ( a ) Pathway 
distances from our pathway model against partial correlation coef fi cients (PCC) for the  fi ve lipid-
based metabolite classes in our data set. We observe an enrichment of signi fi cant partial correla-
tions for a pathway distance of exactly one. ( b ) Comparison of partial correlation coef fi cients and 
Pearson correlation coef fi cients. Pearson correlation coef fi cients are generally high, independent 
of the actual pathway distance. ( c ) Wilcoxon rank sum test p-values between the partial correlation 
distributions of directly and indirectly connected pairs, and sensitivity/speci fi city/ F  

 1 
  values mea-

suring the discriminatory power to distinguish direct from indirect pairs (From  [  85  ] )       

 



308 J. Krumsiek et al.

 A direct comparison of both partial and Pearson correlation coef fi cients for the 
diacyl-phosphatidylcholine class is shown in Fig.  17.13b . As described earlier in 
this chapter, we observe a general over-abundance of signi fi cant Pearson correla-
tions independent of the actual pathway distance. Even for the metabolites without 
a known pathway connection, 1,394 of a total of 1,569 Pearson correlations are 
signi fi cant (88.85%, over all classes), in contrast to 131 out of 1,569 for the partial 
correlations (8.35%). 

 The signi fi cantly different correlation value distributions between directly and 
indirectly linked metabolites (Fig.  17.13a, b ) barely provide a good quanti fi cation 
of the actual discrimination accuracy of this feature. Therefore, we assessed the 
discriminative power of partial correlations to tell apart direct from indirect interac-
tions by means of  sensitivity  and  speci fi city . The sensitivity evaluates which fraction 
of directly connected metabolites in the pathway are recovered by signi fi cant GGM 
edges, whereas the speci fi city states how many of the signi fi cant edges actually 
represent a direct connection. A commonly used trade-off measure between sensi-
tivity and speci fi city is the  F  

1
  score, which is de fi ned as the harmonic mean of both 

quantities  [  103  ] . Figure  17.13c  lists sensitivity, speci fi city and F 
1
  for all  fi ve metab-

olite classes along with an evaluation of partial correlation distribution differences 
between directly and indirectly linked metabolites (determined by Wilcoxon’s rank-
sum test).  F  

1
  values over 0.75 and signi fi cant p-values for the rank-sum test indicate 

a strong discrimination effect of partial correlation coef fi cients concerning direct 
vs. indirect pathway interactions.   

    6   Outro 

 In summary, we have shown how to proceed from purely structural studies of the 
stoichiometric matrix of a system to its quantitative description and estimation from 
metabolomics data. In particular, we have demonstrated the usefulness of Gaussian 
graphical models, which are based on partial correlation coef fi cients, for the unbi-
ased reconstruction of metabolic pathway reactions from cross-sectional blood 
metabolomics data. Previous studies on blood plasma samples detected similar rela-
tionships with cellular processes based on genetic associations  [  104  ]  or case/control 
drug trials  [  105  ] . The GGM result now demonstrates that metabolite pro fi les alone 
are suf fi cient to capture the dynamics of metabolic pathways. We suggest using 
GGMs as a standard tool of investigation in future metabolomics studies, utilizing 
the upcoming wealth of metabolic pro fi ling data to form a more comprehensive 
picture of cellular metabolism. 

 We want to  fi nish by noting that Gaussian graphical models closely follow the 
general concept of systems biology of investigating a biological system as a whole 
rather than investigating its single parts. Only by utilizing all measured metabolite 
concentrations at once we are able to speci fi cally recover directly related metabo-
lites in the underlying biochemical pathways.      
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