


Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

For other titles published in this series, go to
http://www.springer.com/series/6991



Giovanni Petris . Sonia Petrone . Patrizia Campagnoli 

Dynamic Linear Models with R



All rights reserved.

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written
  

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media, LLC 2009

Giovanni Petris

University of Arkansas
Fayetteville, AR 72701

Sonia Petrone

Italy
sonia.petrone@unibocconi.it

Patrizia Campagnoli

Italy

ISBN 978-0-387-77237-0 e-ISBN 978-0-387-77238-7
DOI 10.1007/

USA

patrizia.campagnoli@unibocconi.it

Library of Congress Control Number: 2009926480

gpetris@uark.edu

Springer is part of Springer Science+Business Media (www.springer.com) 

Bocconi University
Department of Decision Sciences

20136 Milano
Via Roentgen, 1

Bocconi University
Department of Decision Sciences

20136 Milano
Via Roentgen, 1

Department of Mathematical Sciences

b135794



A Mary e Giulio

G.P.

A Francesca, ai miei nipoti

S.P.

A Andrea e Michele

P.C.



Preface

This book aims at introducing the reader to statistical time series analysis by
dynamic linear models. We have tried to be precise and rigorous in discussing
the main concepts and tools, yet keeping a simple and friendly style of presen-
tation. The main methods and models are widely illustrated with examples
based on real data, implemented in R. Together with the book, we developed
an R package for inference and forecasting with dynamic linear models; the
dlm package is available as a contributed package in the Comprehensive R
Archive Network at http://www.r-project.org/.

In the recent years, there has been an enormous growth of interest for sta-
tistical applications of dynamic linear models and, more generally, state-space
models, in a wide range of applied fields, such as biology, economics, finance,
marketing, quality control, engineering, demography, climatology, to mention
only a few. State space models provide a very flexible yet fairly simple tool for
analyzing dynamic phenomena and evolving systems, and have significantly
contributed to extend the classical domains of application of statistical time
series analysis to non-stationary, irregular processes, to systems evolving in
continuous-time, to multivariate, continuous and discrete data. An extremely
wide range of applied problems can be treated inside the framework of dy-
namic linear models or, more generally, state-space models.

The book covers the basic notions of dynamic linear models and state
space models, the celebrated Kalman filter for estimation and forecasting in
a dynamic linear model with known parameters, and maximum likelihood
estimation. It also presents a wide array of specific dynamic linear models
particularly suited for time series analysis, both for univariate and multivari-
ate data. But these topics are of course also covered in other very good books
in the rich literature on dynamic linear models, and several statistical soft-
wares include packages for time series analysis through maximum likelihood
and Kalman filtering. What we felt was somehow missing was an up to date,
rigorous yet friendly reference—and software—for applied Bayesian time se-
ries analysis through dynamic linear models and state space models. This
seemed to be missing despite the fact that the Bayesian approach has become
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more and more popular in applications, due to the availability of modern
and efficient computational tools. So, while also covering maximum likelihood
methods, our focus in the book is on Bayesian time series analysis based on
dynamic linear models.

We do not expect the reader to be an expert in Bayesian inference, so we
begin with a short introduction to the Bayesian approach in Chapter 1. Also
for a Bayesian reader, this is useful to set the notation and to underline some
basic concepts that are used in the following chapters: for example, in present-
ing the simplest notions, such as Bayesian conjugate inference for a Gaussian
model, we underline the recursive structure of the estimates, that will be one
of the basic aspects of inference for dynamic linear models. Chapter 2 intro-
duces the general setting of state space models and dynamic linear models,
including the fundamental algorithms to sequentially update estimates and
forecasts and the Kalman filter. Chapters 3 and 4 are in a sense the core
of the book. In Chapter 3 the reader will find a discussion of a broad spec-
trum of specific models suited for the analysis of many kinds of data showing
different features. Thus, Chapter 3 should be considered as a toolbox, illus-
trating a set of models from which the user can select the most appropriate for
the application at hand. Chapter 4 covers maximum likelihood and Bayesian
inference for dynamic linear models containing unknown parameters—which
is always the case in practice. Many of the models introduced in Chapter 3
are discussed again there in this perspective. For most of the covered mod-
els we provide detailed examples of their use, corredated with the relevant
R code. When possible, Bayesian estimates are evaluated using closed form
algorithms. But in more elaborate models, analytical computations become
intractable and simulation techniques are used to approximate the Bayesian
solutions. We describe Markov chain Monte Carlo methods for Bayesian in-
ference in dynamic linear models. The R package dlm provides functions for
one of the basic steps in Bayesian computations in dynamic linear models,
the so-called forward filtering-backward sampling algorithm, and other com-
putational tools, with many examples, are provided. In Chapter 5, we present
modern sequential Monte Carlo and particle filter algorithms for on-line esti-
mation and forecasting.

Of course we cannot cover all of the extremely rich variety of models, appli-
cations, and problems in Bayesian inference with dynamic linear models, and
many things will be missing. However, we hope to give a solid background
on the main concepts and notions, leading the reader to acquire the skills
for specific, personal elaborations, for which the flexibility of R and the dlm

package will provide convenient, helpful tools. On the web site of the book,
definetti.uark.edu/~gpetris/dlm, the reader will find data sets not in-
cluded in the package and the code to run all the examples in the book. In
addition, we plan to post there an updated list of errata.
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The motivation for this book came from the authors’ teaching expe-
rience in courses on time series analysis. We wanted to teach a course
including—besides the classical ARMA models, descriptive techniques, ex-
ponential smoothing, and so on—more modern approaches, in particular
Bayesian inference for time series through dynamic linear models. Again, we
felt that a textbook, and a friendly but flexible software, were missing. So we
started working on this project. We hope students, researchers, and practi-
tioners will find the book and the software that resulted from our effort of
some help.

We would like to thank Springer-Verlag’s referees for their encouragement
and valuable suggestions. Our thanks go also to our editor, John Kimmel, for
his patience and support.

The dlm package would not exist without R, for which we thank R-core.
Several people on r-help, the general R mailing list, have contributed their
suggestions and feedback during the development of the package: we thank all
of them. In particular, we thank Spencer Graves and Michael Lavine for their
comments and suggestions on earlier versions of the package. Michael Lavine
taught a course at the University of Massachusets using R and dlm from an
early draft of the book, and we thank him for the valuable feedback he gave
us. One of the authors (GP) taught some short courses based on preliminary
versions of the book at Bocconi University and the University of Roma 3
and would like to thank Pietro Muliere, Carlo Favero, Julia Mortera, and his
coauthor, Sonia Petrone, for the kind invitations and the hospitality. SP used
draft versions of the book in her graduate courses on time series analysis at
Bocconi University: students’ feedback has been precious. We thank all our
students at the University of Arkansas, Bocconi University, and the University
of Roma 3 who, with their comments, questions, suggestions, interest and
enthusiasm, have contributed to the development of this book. Among them,
a special thanks goes to Paolo Bonomolo and Guido Morandini.

Needless to say, the responsibility for any remaining mistakes, obscurities,
or omissions—in the book and in the package—lies solely with us.

Fayetteville, Arkansas Giovanni Petris
and Sonia Petrone
Milano, Italy Patrizia Campagnoli
December 15, 2008
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1

Introduction: basic notions about Bayesian

inference

Dynamic linear models were developed in engineering in the early 1960’s, to
monitor and control dynamic systems, although pioneer results can be found
in the statistical literature and go back to Thiele (1880). Early famous ap-
plications have been in the Apollo and Polaris aerospace programs (see, e.g.,
Hutchinson; 1984), but in the last decades dynamic linear models, and more
generally state space models, have received an enormous impulse, with appli-
cations in an extremely vast range of fields, from biology to economics, from
engineering and quality control to environmental studies, from geophysical
science to genetics. This impressive growth of applications is largely due to
the possibility of solving computational difficulties using modern Monte Carlo
methods in a Bayesian framework. This book is an introduction to Bayesian
modeling and forecasting of time series using dynamic linear models, present-
ing the basic concepts and techniques, and illustrating an R package for their
practical implementation.

Statistical time series analysis using dynamic linear models was largely
developed in the 1970-80’s, and state space models are nowadays a focus
of interest. In fact, the reader used to descriptive time series analysis or to
ARMA models and Box–Jenkins model specification, may find the state space
approach a bit difficult at first. But the powerful framework offered by dy-
namic linear models and state space models reveals to be a winning asset.
ARMA models can be usefully regarded in terms of dynamic linear mod-
els. But dynamic linear models offer much more flexibility in treating non-
stationary time series or modeling structural changes, and are often more
easily interpretable; and the more general class of state space models extends
the analysis to non-Gaussian and non-linear dynamic systems. There are, of
course, different approaches to estimate dynamic linear models, via general-
ized least squares or maximum likelihood for example, but we believe that a
Bayesian approach has several advantages, both methodological and compu-
tational. Kalman (1960) already underlines some basic concepts of dynamic
linear models that we would say are proper to the Bayesian approach. A first
step is moving from a deterministic to a stochastic system; the uncertainty,

©  Springer Science + Business Media, LLC 2009
G. Petris et al., Dynamic Linear Models with R, Use R, DOI: 10.1007/b135794_1, 1



2 1 Introduction: basic notions about Bayesian inference

which is always present due to forgotten variables, measurement errors, or
imperfections, is described through probability. Consequently, the estimation
of the quantities of interest (in particular, the state of the system at time
t) is solved by computing their conditional distribution, given the available
information. This is a general, basic concept in Bayesian inference. Dynamic
linear models are based on the idea of describing the output of a dynamic sys-

(which has a simple, Markovian dynamics) affected by random errors. This
way of modeling the temporal dependence in the data, by conditioning on la-
tent variables, is simple and extremely powerful, and again it is quite natural
in a Bayesian approach. Another crucial advantage of dynamic linear models
is that computations can be done recursively: the conditional distributions of
interest can be updated, incorporating the new data, without requiring the
storage of all the past history. This is extremely advantageous when data ar-
rive sequentially in time and on-line inference is required, and the reduction
of the storage capacity needed becomes even more crucial for large data sets.
The recursive nature of computations is a consequence of the Bayes formula
in the framework of dynamic linear models.

However, analytical computations are often not manageable, but Markov
chain Monte Carlo algorithms can be applied to state space models to over-
come computational difficulties, and modern, sequential Monte Carlo meth-
ods, which have been enormously improved in the last years, are successfully
used for on-line analysis.

We do not expect that the reader is already an expert in Bayesian statis-
tics; therefore, before getting started, this chapter briefly reviews some basic
notions, with a look to the concepts that are important in the study of dynamic
linear models. Reference books on Bayesian statistics are Bernardo and Smith
(1994), DeGroot (1970), Berger (1985), O’Hagan (1994), Robert (2001), Ci-
farelli and Muliere (1989), or Zellner (1971), Poirier (1995) and Geweke (2005)
for a more econometric viewpoint.

1.1 Basic notions

In the analysis of real data, in economics, sociology, biology, engineering and
in any field, we rarely have perfect information on the phenomenon of inter-
est. Even when an accurate deterministic model describing the system under
study is available, there is always something that is not under our control,
such as effects of forgotten variables, measurement errors, or imperfections.
We always have to deal with some uncertainty. A basic point in Bayesian
statistics is that all the uncertainty that we might have on a phenomenon
should be described by means of probability. In this perspective, probability
has a subjective interpretation, being a way of formalizing the incomplete in-
formation that the researcher has about the events of interest. Probability

tem, for example a time series, as a function of a nonobservable state process
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theory prescribes how to assign probabilities coherently, avoiding contradic-
tions and undesirable consequences.

The Bayesian approach to the problem of “learning from experience” about
a phenomenon moves from this crucial role played by probability. The learn-
ing process consists of the application of probability rules: one simply has to
compute the conditional probability of the event of interest, given the experi-
mental information. Bayes’ theorem is the basic rule to be applied to this aim.
Given two events A and B, probability rules say that the joint probability of A
and B occurring is given by P(A ∩B) = P(A|B)P(B) = P(B|A)P(A), where
P(A|B) is the conditional probability of A given B and P(B) is the (marginal)
probability of B. Bayes’ theorem, or the theorem of inverse probability, is a
simple consequence of the above equalities and says that

P(A|B) =
P(B|A)P(A)

P(B)
.

This is an elementary result that goes back to Thomas Bayes (who died in
1761). The importance of this theorem in Bayesian statistics is in the inter-
pretation and scope of the inputs of the two sides of the equation, and in the
role that, consequently, Bayes’ theorem assumes for formalizing the inductive
learning process. In Bayesian statistics, A represents the event of interest for
the researcher and B an experimental result which she believes can provide
information about A. Given P(A) and consequently P(Ā) = 1 − P(A), and
having assigned the conditional probabilities P(B|A) and P(B|Ā) of the ex-
perimental fact B conditionally on A or Ā, the problem of learning about A
from the “experimental evidence” B is solved by computing the conditional
probability P(A|B).

The event of interest and the experimental result depend on the problem.
In statistical inference, the experimental fact is usually the result of a sam-
pling procedure, and it is described by a random vector Y ; it is common to
use a parametric model to assign the probability law of Y , and the quantity
of interest is the vector θ of the parameters of the model. Bayesian inference
on θ consists of computing its conditional distribution given the sampling
results. More specifically, suppose that, based on her knowledge of the prob-
lem, the researcher can assign a conditional distribution π(y|θ) for Y given θ,
the likelihood, and a prior distribution π(θ) expressing her uncertainty on the
parameter θ. Upon observing Y = y, we can use a generalization of the ele-
mentary Bayes’ theorem, known as Bayes’ formula, to compute the conditional
density of θ given y:

π(θ|y) =
π(y|θ)π(θ)

π(y)
,

where π(y) is the marginal distribution of Y ,

π(y) =

∫
π(y|θ)π(θ) dθ.
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Thus, Bayesian statistics answers an inference problem by computing the
relevant conditional distributions, and the Bayes formula is a basic tool to
achieve this aim. It has an elegant, appealing coherence and simplicity. Dif-
ferently from Bayesian procedures, frequentist statistical inference does not
use a probability distribution for the unknown parameters, and inference on θ
is based on the determination of estimators with good properties, confidence
intervals, and hypothesis testing. The reason is that, since the value of the
parameter θ does not “vary,” θ is not interpretable as a random “variable”
in a frequentist sense, neither can the probability that θ takes values in a
certain interval have a frequentist interpretation. Adopting subjective prob-
ability instead, θ is a random quantity simply because its value is uncertain
to the researcher, who should formalize the information she has about it by
means of probability. This seems, indeed, quite natural. We refer the reader to
the fundamental works by de Finetti (1970a,b) and Savage (1954) for a much
deeper discussion.

In many applications, the main objective of a statistical analysis is forecast-
ing; thus, the event of interest is the value of a future observation Y ∗. Again,
prediction of a future value Y ∗ given the data y is solved in the Bayesian ap-
proach simply by computing the conditional distribution of Y ∗ given Y = y,
which is called predictive distribution. In parametric models it can be com-
puted as

π(y∗|y) =

∫
π(y∗, θ|y) dθ =

∫
π(y∗|y, θ)π(θ|y) dθ.

The last expression involves again the posterior distribution of θ. As a matter
of fact, apart from controversies about frequentist or subjective probability, a
difficulty with (prior or posterior) probability distributions on model parame-
ters is that, in some problems, they do not have a clear physical interpretation,
so that assigning to them a probability law is debatable, even from a subjec-
tive viewpoint. According to de Finetti, one can assign a probability only to
“observable facts”; indeed, the ultimate goal of a statistical analysis is of-
ten forecasting the future observations rather than learning on unobservable
parameters. Taking a predictive approach, the parametric model is to be re-
garded just as a tool to facilitate the task of specifying the probability law of
the observable quantities and, eventually, of the predictive distribution. The
choice of the prior should be suggested, in this approach, by predictive con-
siderations, that is, by taking into account its implications on the probability
law of Y . We discuss this point further in the next section.

Before moving on to the next, more technical, sections, let us introduce
some notation and conventions that will be used throughout. Observable ran-
dom variables or random vectors will be denoted by capital letters – most
of the times by Y , possibly with a subscript. A possible value of the ran-
dom variable or vector will be denoted by the corresponding lower-case letter.
Note that we are not making any notational distinction between vectors and
scalars, or between random variables and random vectors. This is true also
when writing integrals. For example,

∫
f(x) dx denotes a univariate integral if
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f is a function of one variable, but a multivariate integral if f is a function of a
vector argument. The correct interpretation should be clear from the context.
A univariate or multivariate time series is a sequence of random variables
or vectors and will be denoted by (Yt : t = 1, 2, . . . ), (Yt)t≥1, or just (Yt)
for short. When considering a finite sequence of consecutive observations, we
will use the notation Yr:s for the observations between the rth and sth, both
inclusive. Similarly, yr:s will denote a sequence of possible values for those
observations. Probabiity densities will be generically denoted by π(·). We will
adopt the sloppy but widespread convention of using the same symbol π for
the distribution of different random variables: the argument will make clear
what distribution we are referring to. For example, π(θ) may denote a prior
distribution for the unknown parameter θ and π(y) the marginal density of
the data point Y . Appendix A contains the definitions of some common fam-
ilies of distributions. We are going to use the same symbol for a distribution
and its density, in this case adding an extra argument. For example, G(a, b)
denotes the gamma distribution with shape parameter a and rate parameter
b, but G(y; a, b) denotes the density of that distribution at the point y. The
k-dimensional normal distribution is Nk(m,C), but we will omit the subscript
k whenever the dimension is clear from the context.

1.2 Simple dependence structures

Forecasting is one of the main tasks in time series analysis. A univariate or
multivariate time series is described probabilistically by a sequence of random
variables or vectors (Yt : t = 1, 2, . . .), where the index t denotes time. For
simplicity, we will think of equally spaced time points (daily data, monthly
data, and so on); for example, (Yt) might describe the daily prices of m bonds,
or monthly observations on the sales of a good. One basic problem is to make
forecasts about the value of the next observation, Yn+1 say, having observed
data up to time n, Y1 = y1, . . . , Yn = yn or Y1:n = y1:n for short. Clearly,
the first step to this aim is to formulate reasonable assumptions about the
dependence structure of the time series. If we are able to specify the probability
law of the time series (Yt), we know the joint densities π(y1, . . . , yn) for any
n ≥ 1, and Bayesian forecasting would be solved by computing the predictive
density

π(yn+1|y1:n) =
π(y1:n+1)

π(y1:n)
.

In practice, specifying the densities π(y1, . . . , yn) directly is not easy, and one
finds it convenient to make use of parametric models; that is, one often finds
it simpler to express the probability law of (Y1, . . . , Yn) conditionally on some
characteristic θ of the data generating process. The relevant characteristic θ
can be finite- or infinite-dimensional, that is, θ can be a random vector or, as
is the case for state space models, a stochastic process itself. The researcher
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often finds it simpler to specify the conditional density π(y1:n|θ) of Y1:n given
θ, and a density π(θ) on θ, then obtain π(y1:n) as π(y1:n) =

∫
π(y1:n|θ)π(θ) dθ.

We will proceed in this fashion when introducing dynamic linear models for
time series analysis. But let’s first study simpler dependence structures.

Conditional independence

The simplest dependence structure is conditional independence. In particu-
lar, in many applications it is reasonable to assume that Y1, . . . , Yn are con-
ditionally independent and identically distributed (i.i.d.) given θ: π(y1:n|θ) =∏n
i=1 π(yi|θ). For example, if the Yi’s are repeated measurements affected by

a random error, we are used to think of a model of the kind Yi = θ+ ǫi, where
the ǫi’s are independent Gaussian random errors, with mean zero and variance
σ2 depending on the precision of the measurement device. This means that,
conditionally on θ, the Yi’s are i.i.d., with Yi|θ ∼ N (θ, σ2).

Note that Y1, Y2, . . . are only conditionally independent: the observations
y1, . . . , yn provide us information about the unknown value of θ and, through
θ, on the value of the next observation Yn+1. Thus, Yn+1 depends, in a prob-
abilistic sense, on the past observations Y1, . . . , Yn. The predictive density in
this case can be computed as

π(yn+1|y1:n) =

∫
π(yn+1, θ|y1:n) dθ

=

∫
π(yn+1|θ, y1:n)π(θ|y1:n) dθ

=

∫
π(yn+1|θ)π(θ|y1:n) dθ,

the last equality following from the assumption of conditional independence,
where π(θ|y1:n) is the posterior density of θ, conditionally on the data
(y1, . . . , yn). As we have seen, the posterior density can be computed by the
Bayes formula:

π(θ|y1:n) =
π(y1:n|θ)π(θ)

π(y1:n)
∝

n∏

t=1

π(yt|θ) π(θ) . (1.1)

Note that the marginal density π(y1:n) does not depend on θ, having the role
of normalizing constant, so that the posterior is proportional to the product
of the likelihood and the prior1.

It is interesting to note that, with the assumption of conditional indepen-
dence, the posterior distribution can be computed recursively. This means
that one does not need all the previous data to be kept in storage and repro-
cessed every time a new measurement is taken. In fact, at time (n − 1), the
information available about θ is described by the conditional density

1 The symbol ∝ means “proportional to”.
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π(θ|y1:n−1) ∝
n−1∏

t=1

π(yt|θ)π(θ),

so that this density plays the role of prior at time n. Once the new observa-
tion yn becomes available, we have just to compute the likelihood, which is
π(yn|θ, y1:n−1) = π(yn|θ) by the assumption of conditional independence, and
update the “prior” π(θ|y1:n−1) by the Bayes rule, obtaining

π(θ|y1:n−1, yn) ∝ π(θ|y1:n−1)π(yn|θ) ∝
n−1∏

t=1

π(yt|θ)π(θ)π(yn|θ),

which is (1.1). The recursive structure of the posterior will play a crucial
role when we study dynamic linear models and the Kalman filter in the next
chapters.

To illustrate the idea, let us use a simple example. Suppose that, after
a wreck in the ocean, you landed on a small island, and let θ denote your
position, the distance from the coast, say. When studying dynamic linear
models, we will consider the case when θ is subject to change over time (you
are on a life boat in the ocean and not on an island, so that you slowly move
with the stream and the waves, being at distance θt from the coast at time
t). However, for the moment let’s consider θ as fixed. Luckily, you can see
the coast at times; you have some initial idea of your position θ, but you are
clearly interested in learning more about θ based on the measurements yt that
you can take. Let us formalize the learning process in the Bayesian approach.

The measurements Yt can be modeled as

Yt = θ + ǫt, ǫt
iid∼ N (0, σ2),

where the ǫt’s and θ are independent and, for simplicity, σ2 is a known con-
stant. In other words:

Y1, Y2, . . . |θ iid∼ N (θ, σ2).

Suppose you agree to express your prior idea about θ as

θ ∼ N (m0, C0),

where the prior variance C0 might be quite large if you are very uncertain
about your guess m0. Given the measurements y1:n, you update your opinion
about θ computing its posterior density, using the Bayes formula. We have
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π(θ|y1:n) ∝ likelihood × prior

=

n∏

t=1

1√
2πσ

exp

{
− 1

2σ2
(yt − θ)2

}
1√

2πC0

exp

{
− 1

2C0
(θ −m0)

2

}

∝ exp

{
− 1

2σ2

(
n∑

t=1

y2
t − 2θ

n∑

t=1

yt + nθ2

)
− 1

2C0
(θ2 − 2θm0 +m2

0)

}

∝ exp

{
− 1

2σ2C0

(
(nC0 + σ2)θ2 − 2(nC0ȳ + σ2m0)θ

)}
.

The above expression might appear complicated, but in fact it is the kernel of
a Normal density. Note that, if θ ∼ N (m,C), then π(θ) ∝ exp{−(1/2C)(θ2 −
2mθ)}; so, writing the above expression as

exp

{
− 1

2σ2C0/(nC0 + σ2)

(
θ2 − 2

nC0ȳ + σ2m0

(nC0 + σ2)
θ

)}
,

we recognize that
θ|y1:n ∼ N (mn, Cn),

where

mn = E(θ|y1:n) =
C0

C0 + σ2/n
ȳ +

σ2/n

C0 + σ2/n
m0 (1.2a)

and

Cn = Var(θ|y1:n) =

(
n

σ2
+

1

C0

)−1

=
σ2C0

σ2 + nC0
. (1.2b)

The posterior precision is 1/Cn = n/σ2 + 1/C0, and it is the sum of the pre-
cision n/σ2 of the sample mean and the initial precision 1/C0. The posterior
precision is always larger than the initial precision: even data of poor qual-
ity provide some information. The posterior expectation mn = E(θ|y1:n) is
a weighted average between the sample mean ȳ =

∑n
i=1 yi/n and the prior

guess m0 = E(θ), with weights depending on C0 and σ2. If the prior uncer-
tainty, represented by C0, is small compared to σ2, the prior guess receives
more weight. If C0 is very large, then mn ≃ ȳ and Cn ≃ σ2/n.

As we have seen, the posterior distribution can be computed recursively.
At time n, the conditional density N (mn−1, Cn−1) of θ given the previous data
y1:n−1 plays the role of prior, and the likelihood for the current observation is

π(yn|θ, y1:n−1) = π(yn|θ) = N (yn; θ, σ
2).

We can update the prior N (mn−1, Cn−1) on the basis of the observation yn
using (1.2), with mn−1 and Cn−1 in place of m0 and C0. We see that the
resulting posterior density is Gaussian, with parameters

mn =
Cn−1

Cn−1 + σ2
yn +

(
1 − Cn−1

Cn−1 + σ2

)
mn−1

= mn−1 +
Cn−1

Cn−1 + σ2
(yn −mn−1)

(1.3a)
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and variance

Cn =

(
1

σ2
+

1

Cn−1

)−1

=
σ2Cn−1

σ2 + Cn−1
. (1.3b)

Since Yn+1 = θ + ǫn+1, the predictive distribution of Yn+1|y1:n is Normal,
with mean mn and variance Cn+σ2; thus, mn is the posterior expected value
of θ and also the one-step-ahead “point prediction” E(Yn+1|y1:n). Expression
(1.3a) shows that mn is obtained by correcting the previous estimate mn−1

by a term that takes into account the forecast error en = yn−mn−1, weighted
by

Cn−1

Cn−1 + σ2
=

C0

σ2 + nC0
. (1.4)

As we shall see in Chapter 2, this “prediction-error correction” structure is
typical, more generally, of the formulae of the Kalman filter for dynamic linear
models.

Exchangeability

Exchangeability is the basic dependence structure in Bayesian analysis. Con-
sider again an infinite sequence (Yt : t = 1, 2, . . .) of random vectors. Sup-
pose that the order in the sequence is not relevant, in the sense that, for
any n ≥ 1, the vector (Y1, . . . , Yn) and any permutation of its components,
(Yi1 , . . . , Yin), have the same distribution. In this case, we say that the se-
quence (Yt : t = 1, 2, . . .) is exchangeable. This is a reasonable assumption
when the Yt’s represent the results of experiments repeated under similar
conditions. In the example of the previous paragraph, it is quite natural to
consider that the order in which the measurements Yt of the distance from
the coast are taken is not relevant. There is an important result, known as de
Finetti’s representation theorem, that shows that the assumption of exchange-
ability is equivalent to the assumption of conditional independence and iden-
tical distribution that we have discussed in the previous paragraph. There is,
however, an important difference. As you can see, here we move from a quite
natural assumption on the dependence structure of the observables, that is,
exchangeability; we have not introduced, up to now, parametric models or
prior distributions on parameters. In fact, the hypothetical model, that is the
pair likelihood and prior, arises from the assumption of exchangeability, as
shown by the representation theorem.

Theorem 1.1. (de Finetti representation theorem). Let (Yt : t =
1, 2, . . .) be an infinite sequence of exchangeable random vectors. Then

1. With probability one, the sequence of empirical distribution functions

Fn(y) = Fn(y;Y1, . . . , Yn) =
1

n

n∑

i=1

I(−∞,y](Yi)

converges weakly to a random distribution function F , as n→ ∞;
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2. for any n ≥ 1, the distribution function of (Y1, . . . , Yn) can be represented
as

P(Y1 ≤ y1, . . . , Yn ≤ yn) =

∫ n∏

i=1

π(yi) dπ(F )

where π is the probability law of the weak limit F of the sequence of the
empirical distribution functions.

The fascinating aspect of the representation theorem is that the hypothet-
ical model results from the assumptions on the dependence structure of the
observable variables (Yt). If we assume that the sequence (Yt) is exchange-
able, then we can think of them as i.i.d. conditionally on the distribution
function (d.f.) F , with common d.f. F . The random d.f. F is the weak limit
of the empirical d.f.’s. The prior distribution π (also called, in this context,
de Finetti measure) is a probability law on the space F of all the d.f.s on the
sample space Y and expresses our beliefs on the limit of the empirical d.f.s.
In many problems we can restrict the support of the prior to a parametric
class PΘ = {π(·|θ) , θ ∈ Θ} ⊂ F , where Θ ⊆ R

p; in this case the prior is said
parametric. We see that, in the case of a parametric prior, the representation
theorem implies that Y1, Y2, . . . are conditionally i.i.d., given θ, with common
d.f. π(·|θ), and θ has a prior distribution π(θ). This is the conditional i.i.d.
dependence structure that we have discussed in the previous subsection.

Heterogeneous data

Exchangeability is the simplest dependence structure, which allows us to en-
lighten the basic aspects of Bayesian inference. It is appropriate when we
believe that the data are homogeneous. However, in many problems the de-
pendence structure is more complex. Often, it is appropriate to allow some
heterogeneity among the data, assuming that

Y1, . . . , Yn|θ1, . . . , θn ∼
n∏

t=1

ft(yt|θt),

that is, Y1, . . . , Yn are conditionally independent given a vector θ = (θ1, . . . , θn),
with Yt depending only on the corresponding θt. For example, Yt could be the
expense of customer t for some service, and we might assume that each cus-
tomer has a different average expense θt, introducing heterogeneity, or “ran-
dom effects,” among customers. In other applications, t might denote time;
for example, each Yt could represent the average sales in a sample of stores,
at time t; and we might assume that Yt|θt ∼ N (θt, σ

2), with θt representing
the expected sales at time t.

In these cases, the model specification is completed by assigning the prob-
ability law of the vector (θ1, . . . , θn). For modeling random effects, a common
assumption is that θ1, . . . , θn are i.i.d. according to a distribution G. If there
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is uncertainty about G, we can model θ1, . . . , θn as conditionally i.i.d. given
G, with common distribution function G, and assign a prior on G.

If (Yt : t = 1, 2, . . .) is a sequence of observations over time, then the
assumption that the θt’s are i.i.d., or conditionally i.i.d., is generally not ap-
propriate, since we want to introduce a temporal dependence among them.
As we shall see in Chapter 2, in state space models we assume a Markovian
dependence structure among the θt’s.

We will return to this problem in the next section.

1.3 Synthesis of conditional distributions

We have seen that Bayesian inference is simply solved, in principle, by comput-
ing the conditional probability distributions of the quantities of interest: the
posterior distribution of the parameters of the model, or the predictive distri-
bution. However, especially when the quantity of interest is multivariate, one
might want to present a summary of the posterior or predictive distribution.
Consider the case of inference on a multivariate parameter θ = (θ1, . . . , θp).
After computing the joint posterior distribution of θ, if some elements of θ
are regarded as nuisance parameters, one can integrate them out to obtain
the (marginal) posterior of the parameters of interest. For example, if p = 2,
we can marginalize the joint posterior π(θ1, θ2|y) and compute the marginal
posterior density of θ1:

π(θ1|y) =

∫
π(θ1, θ2|y) dθ2.

We can provide a graphical representation of the marginal posterior distribu-
tions, or some summary values, such as the posterior expectations E(θi|y) or
the posterior variances Var(θi|y), and so on. We can also naturally show in-
tervals (usually centered on E(θi|y)) or bands with high posterior probability.

The choice of a summary of the posterior distribution (or of the predic-
tive distribution) can be more formally regarded as a decision problem. In a
statistical decision problem we want to choose an action in a set A, called
the action space, on the basis of the sample y. The consequences of action a
are expressed through a loss function L(θ, a). Given the data y, a Bayesian
decision rule selects an action in A that minimizes the conditional expected
loss, E(L(θ, a)|y) =

∫
L(θ, a)π(θ|y) dθ. Bayesian point estimation can be seen

as a decision problem in which the action space coincides with the parameter
space. The choice of the loss function depends on the problem at hand, and,
of course, different loss functions give rise to different Bayes estimates of θ.
Some commonly used loss functions are briefly discussed below.

Quadratic loss. Let θ be a scalar. A common choice is a quadratic loss func-
tion L(θ, a) = (θ − a)2. Then the posterior expected loss is E((θ − a)2|y),
which is minimized at a = E(θ|y). So, the Bayes estimate of θ with
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quadratic loss is the posterior expected value of θ. If θ is p-dimensional,
a quadratic loss function is expressed as L(θ, a) = (θ − a)′H(θ − a), for
a symmetric positive definite matrix H. Then the Bayes estimate of θ is
the vector of posterior expectations E(θ|y).

Linear loss. If θ is scalar and

L(θ, a) =

{
c1 | a− θ | if a ≤ θ,
c2 | a− θ | if a > θ,

where c1 and c2 are positive constants, then the Bayes estimate is the
c1/(c1 + c2) quantile of the posterior distribution. As a special case, if
c1 = c2, the Bayes estimate is a posterior median.

Zero-one loss. If θ is a discrete random variable and

L(θ, a) =

{
c if a 6= θ,
0 if a = θ,

then the Bayes estimate is a mode of the posterior distribution.

For example, if Y1, . . . , Yn|θ are i.i.d. with Yt|θ ∼ N (θ, σ2) and θ ∼
N (m0, C0), the posterior density is N (mn, Cn), wheremn and Cn are given by
(1.2). The Bayes estimate of θ, adopting a quadratic loss, is E(θ|y1:n) = mn,
a weighted average between the prior guess m0 and the sample mean ȳ. Note
that, if the sample size is large, then the weight of the prior guess decreases to
zero, and the posterior density concentrates around ȳ, which is the maximum
likelihood estimate (MLE) of θ.

This asymptotic behavior of the posterior density holds more generally. Let
(Yt : t = 1, 2, . . .) be a sequence of conditionally i.i.d. random vectors, given θ,
with Yt|θ ∼ π(y|θ) and θ ∈ R

p having prior distribution π(θ). Under general
assumptions, it can be proved that the posterior distribution π(θ|y1, . . . , yn),
for n large, can be approximated by a Normal density centered at the MLE
θ̂n. This implies that, in these cases, Bayesian and frequentist estimates tend
to agree for a sufficiently large sample size. For a more rigorous discussion of
asymptotic normality of the posterior distribution, see Bernardo and Smith
(1994, Section 5.3), or Schervish (1995, Section 7.4).

As a second example, linking Bayes estimators and classical decision the-
ory, consider the problem of estimating the mean of a multivariate Normal
distribution. In its simplest formulation, the problem is as follows. Suppose
that Y1, . . . , Yn are independent r.v.s, with Yt ∼ N (θt, σ

2), t = 1, . . . , n, where
σ2 is a known constant. This is the case of heterogeneous data, discussed in
Section 1.2. For instance, the Yt’s could be sample means, in n independent
experiments; however, note that here θ = (θ1, . . . , θn) is regarded as a vector
of unknown constants. Thus we have

Y = (Y1, . . . , Yn) ∼ Nn(θ, σ
2In),

where In denotes the n-dimensional identity matrix, and the problem is es-
timating the mean vector θ. The MLE of θ, which is also the uniform min-
imum variance unbiased estimator, is given by the vector of sample means:
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θ̂ = θ̂(Y ) = Y . However, an important result, which had a great impact when
Stein proved it in 1956, shows that the MLE is not optimal with respect to
the quadratic loss function L(θ, a) = (θ − a)′(θ − a) if n ≥ 3. The overall

expected loss, or mean square error, of θ̂ is

E
(
(θ − θ̂(Y ))′(θ − θ̂(Y ))

)
= E

(
n∑

t=1

(θt − θ̂t(Y ))2

)

where the expectation is with respect to the density πθ(y), i.e., the Nn(θ, σ
2In)

distribution of the data. Stein (1956) proved that, if n ≥ 3, there exists another

estimator θ∗ = θ∗(Y ), which is more efficient than the MLE θ̂ in the sense
that

E
(
(θ − θ∗(Y ))′(θ − θ∗(Y ))

)
< E

(
(θ − θ̂(Y ))′(θ − θ̂(Y ))

)

for every θ. For σ2 = 1, the Stein estimator is given by θ∗(Y ) = (1 − (n −
2)/Y ′Y )Y ; it shrinks the sample means Y = (Y1, . . . , Yn) towards zero. More
generally, shrinkage estimators shrink the sample means towards the overall
mean ȳ, or towards different values. Note that the MLE of θt, that is θ̂t = Yt,
does not make use of the data Yj , for j 6= t, which come from the other
independent experiments. Thus, Stein’s result seems quite surprising, showing
that a more efficient estimator of θt can be obtained using the information from
“independent” experiments. Borrowing strength from different experiments
is in fact quite natural in a Bayesian approach. The vector θ is regarded
as a random vector, and the Yt’s are conditionally independent given θ =
(θ1, . . . , θn), with Yt|θt ∼ N (θt, σ

2), that is

Y |θ ∼ Nn(θ, σ
2In).

Assuming a Nn(m0, C0) prior density for θ, the posterior density is Nn(mn, Cn)
where

mn = (C−1
0 + σ−2In)

−1(C−1
0 m0 + σ−2Iny)

and Cn = (C−1
0 + σ−2In)

−1. Thus the posterior expectation mn provides a
shrinkage estimate, shrinking the sample means towards the valuem0. Clearly,
the shrinkage depends on the choice of the prior; see Lindley and Smith (1972).

Similarly to a Bayes point estimate, a Bayes point forecast of Yn+1 given
y1:n is a synthesis of the predictive density with respect to a loss function,
which expresses consequences of the forecast error of predicting Yn+1 with a
value ŷ, say. With the quadratic loss function, L(yn+1, ŷ) = (yn+1 − ŷ)2, the
Bayes forecast is the expected value E(Yn+1|y1:n).

Again, point estimation or forecasting is coherently treated in the Bayesian
approach on the basis of statistical decision theory. However, in practice the
computation of Bayes estimates or forecasts can be difficult. If θ is multivariate
and the model structure complex, posterior expectations or, more generally,
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integrals of the kind
∫
g(θ)π(θ|y)dθ, can be analytically untractable. In fact,

despite its attractive theoretical and conceptual coherence, the diffusion of
Bayesian statistics in applied fields has been hindered, in the past, by compu-
tational difficulties, which had restricted the availability of Bayesian solutions
to rather simple problems. As we shall see in Section 1.6, these difficulties can
be overcome by the use of modern simulation techniques.

1.4 Choice of the prior distribution

The explicit use of prior information, besides the information from the data,
is a basic aspect of Bayesian inference. Indeed, some prior knowledge of the
phenomenon under study is always needed: data never speak entirely by them-
selves. The Bayesian approach allows us to explicitly introduce all the informa-
tion we have (from experts’ opinions, from previous studies, from the theory,
and from the data) in the inferential process. However, the choice of the prior
can be a delicate point in practical applications. Here we briefly summarize
some basic notions, but first let us underline a fundamental point, which is
clearly enlightened in the case of exchangeable data: the choice of a prior is in
fact the choice of the pair π(y|θ) and π(θ). Often, the choice of π(y|θ) is called
model specification, but in fact it is part, with the specification of π(θ), of the
subjective choices that we have to do in order to study a phenomenon, based
of our prior knowledge. At any rate, given π(y|θ), the prior π(θ) should be an
honest expression of our beliefs about θ, with no mathematical restrictions on
its form.

That said, there are some practical aspects that deserve some considera-
tion. For computational convenience, it is common practice to use conjugate
priors. A family of densities on θ is said to be conjugate to the model π(y|θ) if,
whenever the prior belongs to that family, so does the posterior. In the exam-
ple in Section 1.2, we used a Gaussian prior density N (m0, C0) on θ, and the
posterior resulted still Gaussian, with updated parameters, N (mn, Cn); thus,
the Gaussian family is conjugate to the model π(y|θ) = N (y; θ, σ2) (with σ2

known). In general, a prior will be conjugate when it has the same analytic
form of the likelihood, regarded as a function of θ. Clearly this definition does
not determine uniquely the conjugate prior for a model π(y|θ). For the expo-
nential family, we have a more precise notion of natural conjugate prior, which
is defined from the density of the sufficient statistics; see for example Bernardo
and Smith (1994, Section 5.2). Natural conjugate priors for the exponential
family can be quite rigid in the multivariate case, and enriched conjugate pri-
ors have been proposed (Brown et al.; 1994; Consonni and Veronese; 2001).
Furthermore, it can be proved that any prior for an exponential family pa-
rameter can be approximated by a mixture of conjugate priors (Dalal and
Hall; 1983; Diaconis and Ylvisaker; 1985). We provide some examples below
and in the next section. Anyway, computational ease has become less strin-
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gent in recent years, due to the availability of simulation-based approximation
techniques.

In practice, people quite often use default priors or non-informative pri-
ors, for expressing a situation of “prior ignorance” or vague prior information.
The problem of appropriately defining the idea of “prior ignorance,” or of a
prior with “minimal effect” relative to the data on the inferential results, has
a long history and is quite delicate; see Bernardo and Smith (1994, Section
5.6.2) for a detailed treatment; or also O’Hagan (1994) or Robert (2001). If
the parameter θ takes values in a finite set, {θ∗1 , . . . , θ∗k} say, then the classi-
cal notion of a non-informative prior, since Bayes (1763) and Laplace (1814),
is that of a uniform distribution, π(θ∗j ) = 1/k. However, even in this simple
case it can be shown that care is needed in defining the quantity of interest
(see Bernardo and Smith; 1994). Anyway, extending the notion of a uniform
prior when the parameter space is infinite clearly leads to improper distribu-
tions, which cannot be regarded as probability distributions. For example, if
θ ∈ (−∞,+∞), a uniform prior would be a constant, and its integral on the
real line would be infinite. Furthermore, a uniform distribution for θ implies
a nonuniform distribution for any nonlinear monotone transformation of θ,
and thus the Bayes–Laplace postulate is inconsistent in the sense that, intu-
itively, “ignorance about θ” should also imply “ignorance” about one-to-one
transformations of it. Priors based on invariance considerations are Jeffreys
priors (Jeffreys; 1998). Widely used are also reference priors, suggested by
Bernardo (1979a,b) on an information-decisional theoretical base (see for ex-
ample Bernardo and Smith; 1994, Section 5.4). The use of improper priors is
debatable, but often the posterior density from an improper prior turns out to
be proper, and improper priors are anyway widely used, also for reconstruct-
ing frequentist results in a Bayesian framework. For example, if Yt|θ are i.i.d.
N (θ, σ2), using an improper uniform prior π(θ) = c and formally applying
Bayes’ formula gives

π(θ|y1:n) ∝ exp

{
− 1

2σ2

n∑

t=1

(yt − θ)2

}
∝ exp

{
− n

2σ2
(θ2 − 2θȳ)2

}
,

that is, the posterior is N (ȳ, σ2/n). In this case, the Bayes point estimate
under quadratic loss is ȳ, which is also the MLE of θ. As we noted before,
starting with a proper Gaussian prior would give a posterior density centered
around the sample mean only if the prior variance C0 is very large compared
to σ2, or if the sample size n is large.

Another common practice is to have a hierarchical specification of the prior
density. This means assuming that θ has density π(θ|λ) conditionally on some
hyperparameter λ, and then a prior π(λ) is assigned to λ. This is often a way
for expressing a kind of uncertainty in the choice of the prior density. Clearly,
this is equivalent to the prior π(θ) =

∫
π(θ|λ)π(λ) dλ.

In order to avoid theoretical and computational difficulties related to the
use of improper priors, in this book we will use only proper priors. It is im-
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portant, however, to be aware of the effect of the prior on the analysis. This
can be assessed using sensitivity analysis, which, in one of its basic forms,
may simply consist in comparing the inferences resulting from different prior
hyperparameters.

We conlude this section with an important example of conjugate prior.
In Section 1.2 we considered conjugate Bayesian analysis for the mean of a
Gaussian population, with known variance. Let now Y1, . . . , Yn|θ, σ2 be i.i.d.
N (θ, σ2), where both θ and σ2 are unknown. It is convenient to work with
the precision φ = 1/σ2 rather than with the variance σ2. A conjugate prior
for (θ, φ) can be obtained noting that the likelihood can be written as

π(y1:n|θ, φ) ∝ φ(n−1)/2 exp

{
−1

2
φns2

}
φ1/2 exp

{
−n

2
φ(µ− ȳ)2

}

where ȳ is the sample mean and s2 =
∑n
t=1(yi− ȳ)2/n is the sample variance

(add and subtract ȳ in the squared term and note that the cross product is
zero). We see that, as a function of (θ, φ), the likelihood is proportional to
the kernel of a Gamma density in φ, with parameters (n/2 + 1, ns2/2) times
the kernel of a Normal density in θ, with parameters (ȳ, (nφ)−1). Therefore,
a conjugate prior for (θ, σ2) is such that φ has a Gamma density with param-
eters (a, b) and, conditionally on φ, θ has a Normal density with parameters
(m0, (n0φ)−1). The joint prior density is

π(θ, φ) = π(φ) π(θ|φ) = G(φ; a, b) N (θ;m0, (n0φ)−1)

∝ φa−1 exp {−bφ} φ1/2 exp
{
−n0

2
φ(θ −m0)

2
}
,

which is a Normal-Gamma, with parameters (m0, (n0)
−1, a, b) (see Appendix

A). In particular, E(θ|φ) = m0 and Var(θ|φ) = (n0φ)−1 = σ2/n0, that is, the
variance of θ, given σ2, is expressed as a proportion 1/n0 of σ2. Marginally,
the variance σ2 = φ−1 has an Inverse Gamma density, with E(σ2) = b/(a−1),
and it can be shown that

θ ∼ T (m0, (n0 a/b)
−1, 2a),

a Student-t with parameters m0, (n0 a/b)
−1 and 2a degrees of freedom, with

E(θ) = E(E(θ|φ)) = m0 and Var(θ) = E(σ2)/n0 = (b/(a− 1))/n0.
With a conjugate Normal-Gamma prior, the posterior of (θ, φ) is still

Normal-Gamma, with updated parameters. In order to show this, we have
to do some calculations. Start with

π(θ, φ|y1:n) ∝

φ
n
2 +a−1 exp

{
−1

2
φ(ns2 + 2b)

}
φ

1
2 exp

{
−1

2
φn
(
(θ − ȳ)2 + n0(θ0)

2
)}

.

After some algebra and completing the square that appears in it, the last
exponential term can be written as
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exp

{
−1

2
φ

(
nn0

(m0 − ȳ)2

n0 + n
+ (n0 + n)

(
θ − nȳ + n0m0

n0 + n

)2
)}

,

so that

π(θ, φ|y1:n) ∝

φ
n
2 +a−1 exp

{
−1

2
φ

(
ns2 + 2b+ nn0

(m0 − ȳ)2

n0 + n

)}

· φ 1
2 exp

{
−1

2
φ(n0 + n)(θ −mn)

2

}
.

From the previous expression, we see that the parameters of the posterior
Normal-Gamma distribution are

mn =
nȳ + n0m0

n0 + n

nn = n0 + n

an = a+
n

2

bn = b+
1

2
ns2 +

1

2

nn0

n0 + n
(ȳ −m0)

2.

(1.5)

This means that

φ|y1:n ∼ G(an, bn);

θ|φ, y1:n ∼ N (mn, (nnφ)−1).

Clearly, conditionally on φ, we are back to the case of inference on the mean
of a N (θ, σ2) with known variance; you can check that the expressions of
E(θ|φ, y1, . . . , yn) = mn and V (θ|φ, y1, . . . , yn) = ((n0 + n)φ)−1 = σ2/(n0 +
n) given above correspond to (1.2), when C0 = σ2/n0. Here, n0 has a role
of “prior sample size.” The marginal density of θ|y1, . . . , yn is obtained by
marginalizing the joint posterior of (θ, φ) and results to be Student-t, with
parameters mn, (nn an/bn)

−1 and 2an degrees of freedom.
The predictive density is also Student-t:

Yn+1|y1, . . . , yn ∼ T
(
mn,

bn
annn

(1 + nn), 2an

)
.

The recursive formulae to update the distribution of (θ, φ) when a new
observation yn becomes available are

mn = mn−1 +
1

nn−1 + 1
(yn −mn−1),

nn = nn−1 + 1,

an = an−1 +
1

2
,

bn = bn−1 +
1

2

nn−1

nn−1 + 1
(yn −mn−1)

2.
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1.5 Bayesian inference in the linear regression model

Dynamic linear models can be regarded as a generalization of the standard
linear regression model, when the regression coefficients are allowed to change
over time. Therefore, for the reader’s convenience we remind briefly here the
basic elements of Bayesian analysis for the linear regression model.

The linear regression model is the most popular tool for relating the vari-
able Y to explanatory variables x. It is defined as

Yt = x′tβ + ǫt, t = 1, . . . , n, ǫt
iid∼ N (0, σ2) (1.6)

where Yt is a random variable and xt and β are p-dimensional vectors. In its
basic formulation, the variables x are considered as deterministic or exogenous;
while in stochastic regression x are random variables. In the latter case we
have in fact, for each t, a random (p+ 1)-dimensional vector (Yt, Xt), and we
have to specify its joint distribution and derive the linear regression model
from it. A way for doing this (but more general approaches are possible) is to
assume that the joint distribution is Gaussian

[
Yt
Xt

]∣∣∣∣µ,Σ ∼ N (µ,Σ) , µ =

[
µy
µx

]
, Σ =

[
Σyy Σyx
Σxy Σxx

]
.

From the properties of the multivariate Gaussian distribution (see Appendix A),
we can decompose the joint distribution into a marginal model for Xt and a
conditional model for Yt given Xt = xt as follows:

Xt|µ,Σ ∼ N (µx, Σxx),

Yt|xt, µ,Σ ∼ N (β1 + x′tβ2, σ
2),

where

β2 = Σ−1
xxΣxy,

β1 = µy − µ′
xβ2,

σ2 = Σyy −ΣyxΣ
−1
xxΣxy.

If the prior distribution on (µ,Σ) is such that the parameters of the marginal
model and those of the conditional model are independent, then we have a cut
in the distribution of (Yt, Xt, β,Σ); in other words, if our interest is mainly on
the variable Y , we can restrict our attention to the conditional model. In this
case the regression model describes the conditional distribution of Yt given
(β,Σ) and xt.

Model (1.6) can be rewritten as

Y |X,β, V ∼ Nn(Xβ, V ), (1.7)

where Y = (Y1, . . . , Yn) and X is the n × p matrix with tth row x′t. Equa-
tion (1.6) implies a diagonal covariance matrix, V = σ2In; i.e., the Yt’s are
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conditionally independent, with the same variance σ2. More generally, V can
be a symmetric positive-definite matrix.

We describe Bayesian inference with conjugate priors for the regression
model, for three cases: inference on the regression coefficients β, assuming
that V is known; inference on the covariance matrix V when β is known; and
inference on β and V .

Inference on the regression coefficients

Here we suppose that V is known and we are interested in inference about the
regression coefficients β given the data y. As briefly discussed in the previous
section, a conjugate prior for β can be obtained by looking at the likelihood
as a function of β. The likelihood for the regression model (1.7) is

π(y|β, V,X) = (2π)−n/2|V |−1/2 exp

{
−1

2
(y −Xβ)′V −1(y −Xβ)

}

∝ |V |−1/2 exp

{
−1

2
(y′V −1y − 2β′X ′V −1y + β′X ′V −1Xβ)

} (1.8)

where |V | denotes the determinant of V . Now, note that, if β ∼ Np(m,C)
then

π(β) ∝ exp

{
−1

2
(β −m)′C−1(β −m)

}
∝ exp

{
−1

2
(β′C−1β − 2β′C−1m)

}
.

Therefore, we see that the likelihood, as a function of β, is proportional to
a multivariate Gaussian density, with mean (X ′V −1X)−1X ′V −1y and vari-
ance (X ′V −1X)−1. Thus, a conjugate prior for β is the Gaussian density,
Np(m0, C0), say. As usual, m0 represents a prior guess about β; the elements
on the diagonal of C0 express prior uncertainty on the prior guess m0, and the
off-diagonal elements of C0 express the prior opinion about the dependence
among the regression coefficients, βt’s.

With a conjugate Gaussian prior, the posterior will be Gaussian as well,
with updated parameters. In order to derive the expression of the posterior
parameters, we can compute the posterior density using Bayes’ formula:

π(β|Y,X, V ) ∝ exp

{
−1

2
(β′X ′V −1Xβ − 2β′X ′V −1y

}

· exp

{
−1

2
(β −m0)

′C−1
0 (β −m0)

}

∝ exp

{
−1

2

(
β′(X ′V −1X + C−1

0 )β − 2β′(X ′V −1y + C−1
0 m0)

)}
.

We recognize the kernel of a p-variate Gaussian density with parameters

mn = Cn(X
′V −1y + C−1

0 µ0)

Cn = (C−1
0 +X ′V −1X)−1.
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The Bayes point estimate of β, with respect to a quadratic loss function,
is the posterior expected value E(β|X, y) = mn. Note that we do not re-
quire the assumption that (X ′V −1X)−1 exists, which is instead necessary
for computing the classical generalized least square estimate of β, that is
β̂ = (X ′V −1X)−1X ′V −1y. However, when (X ′V −1X) is non-singular, the
Bayes estimate mn can be written as

mn = (C−1
0 +X ′V −1X)−1(X ′V −1Xβ̂ + C−1

0 m0),

that is, as a matrix-weighted linear combination of the prior guess m0, with
weight proportional to the prior precision matrix C−1

0 , and of the general-

ized least square estimate β̂, whose weight is proportional to the precision
matrix X ′V −1X of β̂. Clearly, mn is a shrinkage estimator of the regression
coefficients; see Lindley and Smith (1972).

The posterior precision matrix is the sum of the prior precision C−1
0 and

the precision of β̂, X ′V −1X. Of course, one can integrate the joint posterior
density of β to obtain the marginal posterior density of one or more coefficients
βj .

For the analysis that we will do in the next chapter, when studying dy-
namic linear models, it is useful to provide an alternative “recursive” expres-
sion of the posterior parameters. It can be proved that the posterior variance
can be rewritten as

Cn = (X ′V −1X + C−1
0 )−1 = C0 − C0X

′(XC0X
′ + V )−1XC0 (1.9)

(see Problem 1.1). Using the above identity, it can be shown that the posterior
expectation mn can be expressed as

mn = m0 + C0X
′(XC0X

′ + V )−1(y −Xm0) (1.10)

(see Problem 1.2). Note that Xm0 = E(Y |β,X) is the prior point forecast of
Y . So, the above expression writes the Bayes estimate of β as the prior guess
m0 corrected by a term that takes into account the forecast error (y−Xm0).
The (matrix) weight C0X

′(XC0X
′ + V )−1 of the term y−Xm0 specifies the

extent to which unexpectedly small or large observations translate into an
adjustment of the point estimate m0. Loosely speaking, it is the weight given
to experimental evidence. In the context of dynamic linear models this weight
is called gain matrix.

Inference on the covariance matrix

Suppose now that β is known and we are interested in inference on the co-
variance matrix V . Analogously to the case of inference on the parameters
of the Gaussian univariate model, it is convenient to work with the precision
matrix Φ = V −1. In order to determine a conjugate prior for Φ, note that we
can write the likelihood (1.8) as
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π(y|β, Φ,X) ∝ |Φ|1/2 exp

{
−1

2
(y −Xβ)′Φ(y −Xβ)

}

= |Φ|1/2 exp

{
−1

2
tr
(
(y −Xβ)(y −Xβ)′Φ

)}
,

where tr(A) denotes the trace of a matrix A, since (y − Xβ)′Φ(y − Xβ) =
tr((y − Xβ)′Φ(y − Xβ)) (the argument being a scalar) and recalling that
tr(AB) = tr(BA). We see that, as a function of Φ, the likelihood is propor-
tional to a Wishart density with parameters (n/2 + 1, 1/2(y−Xβ)(y−Xβ)′)
(see Appendix A). So, a conjugate prior for the precision Φ is Wishart

Φ ∼ W(ν0, S0).

The posterior is Wishart with updated parameters,

Φ|Y,X, β ∼ W(νn, Sn),

and it can be easily checked that

νn = ν0 +
1

2

Sn =
1

2
(y −Xβ)(y −Xβ)′ + S0.

It is often convenient to express the prior hyperparameters as

ν0 =
δ + n− 1

2
; S0 =

1

2
V0,

(Lindley; 1978), so that E(V ) = V0/(δ − 2) for δ > 2 and the posterior
expectation can be written as a weighted average between the prior guess and
the sample covariance,

E(V |y) =
δ − 2

δ + n− 2
· E(V ) +

n

δ + n− 2
· (y −Xβ)(y −Xβ)′

n
,

with weights depending on δ.

Inference on (β, V )

If both β and V are random, analytical computations may become compli-
cated; a simple case is when V has the form V = σ2D, where σ2 is a random
variable and the n× n matrix D is known; e.g., D = In. Let φ = σ−2. A con-
jugate prior for (β, φ) is a Normal-Gamma, with parameters (β0, N

−1
0 , a, b)

π(β, φ) ∝ φa−1 exp(−bφ)φ
p

2 exp

{
−φ

2
(β − β0)

′N0(β − β0)

}

that is
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β|φ ∼ N (β0, (φN0)
−1)

φ ∼ G(a, b).

Note that, conditionally on φ, β has covariance matrix (φN0)
−1 = σ2C̃0 where

we let C̃0 = N−1
0 , a symmetric (p× p) positive-definite matrix that “rescales”

the observation variance σ2.
It can be shown (see Problem 1.3) that the posterior is a Normal-Gamma

with parameters

βn = β0 + C̃0X
′(XC̃0X

′ +D)−1(y −Xβ0),

C̃n = C̃0 − C̃0X
′(XC̃0X

′ +D)−1XC̃0

an = a+
n

2

bn = b+
1

2
(β′

0C̃
−1
0 β0 + y′D−1y − β′

nC̃nβn).

(1.11)

Furthermore, we can simplify the expression of bn; in particular, it can be
shown that

bn = b+
1

2
(y −Xβ0)

′(D +XC̃0X
′)−1(y −Xβ0). (1.12)

These formulae have again the estimation-error correction structure that we
have underlined in the simple Gaussian model, see (1.3a), and in the regression
model with known covariance, compare with (1.10).

1.6 Markov chain Monte Carlo methods

In Bayesian inference, it is very often the case that the posterior distribution
of the parameters, denoted here by ψ, is analytically intractable. By this we
mean that it is impossible to derive in closed form summaries of the posterior,
such as its mean and variance, or the marginal distribution of a particular
parameter. In fact, most of the times the posterior density is only known up
to a normalizing factor. To overcome this limitation, the standard practice is
to resort to simulation methods. For example, if one could draw ψ1, . . . , ψN
i.i.d. from the posterior distribution π, then, using the standard Monte Carlo
method, the mean of any function g(ψ) having finite posterior expectation
can be approximated by a sample average:

Eπ(g(ψ)) ≈ N−1
N∑

j=1

g(ψj). (1.13)

Unfortunately, independent samples from the posterior are not always easy
to obtain. However, (1.13) holds more generally for some types of dependent
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samples. In particular, it holds for certain Markov chains. Monte Carlo meth-
ods based on simulating random variables from a Markov chain, called Markov
chain Monte Carlo (MCMC) methods, are nowadays the standard way of per-
forming the numerical analysis required by Bayesian data analysis. In the next
subsections we review the main general methods that are commonly employed
to simulate a Markov chain such that (1.13) holds for a specific π. For details
we refer the reader to Gelman et al. (2004) and also, at a higher level, to
Robert and Casella (2004) or the excellent article by Tierney (1994).

For an irreducible, aperiodic and recurrent Markov chain (ψt)t≥1, having
invariant distribution π, it can be shown that for every2 initial value ψ1, the
distribution of ψt tends to π as t increases to infinity. Therefore, for M suffi-
ciently large, ψM+1, . . . , ψM+N are all approximately distributed according to
π and, jointly, they have statistical properties similar to those enjoyed by an
independent sample from π. In particular, the law of large numbers, expressed
by (1.13), holds, so that one has the approximation:

Eπ(g(ψ)) ≈ N−1
N∑

j=1

g(ψM+j). (1.14)

We note, in passing, that if the Markov chain is only irreducible and recurrent,
but has period d > 1, (1.14) still holds, even if in this case the distribution of
ψt depends on where the chain started, no matter how large t is. In practice
it is important to determine how large M should be, i.e., how many iterations
of a simulated Markov chain are to be considered burn-in and discarded in
the calculation of ergodic averages like (1.14).

Another issue is the assessment of the accuracy of an ergodic average as an
estimator of the corresponding expected value. When the ψj ’s are simulated
from a Markov chain, the usual formula for estimating the variance of a sample
mean in the i.i.d. case no longer holds. For simplicity, suppose that the burn-
in part of the chain has already been discarded, so that we can safely assume
that ψ1 is distributed according to π and (ψt)t≥1 is a stationary Markov chain.
Let ḡN denote the right-hand side of (1.14). It can be shown that, for N large,

Var(ḡN ) ≈ N−1Var(g(ψ1))τ(g),

where τ(g) =
∑+∞
t=−∞ ρt and ρt = corr(g(ψs), g(ψs+t)). An estimate of the

term Var(g(ψ1)) is provided by the sample variance of g(ψ1), . . . , g(ψN ). In
order to estimate τ(g), Sokal (1989) suggests to truncate the summation and
plug in empirical correlations for theoretical correlations:

τ̂n =
∑

|t|≤n

ρ̂t,

with n = min{k : k ≥ 3τ̂k}.
2 We omit here some measure-theoretic details, trying to convey only the main

ideas. For rigorous results the reader should consult the suggested references.
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In the remainder of the section, we briefly present the most popular MCMC
algorithms for simulating from a given distribution π.

1.6.1 Gibbs sampler

Suppose that the unknown parameter is multidimensional, so the posterior
distribution is multivariate. In this case we can write ψ = (ψ(1), ψ(2), . . . , ψ(k)).
Let π(ψ) = π(ψ(1), . . . , ψ(k)) be the target density. The Gibbs sampler starts

from an arbitrary point ψ0 = (ψ
(1)
0 , . . . , ψ

(k)
0 ) in the parameter space and

“updates” one component at a time by drawing ψ(i), i = 1, . . . , k, from the
relevant conditional distribution, according to the scheme in Algorithm 1.1.
An important point, one that is often used in practical applications of the

0. Initialize the starting point ψ0 = (ψ
(1)
0 , . . . , ψ

(k)
0 );

1. for j = 1, . . . , N:

1.1) generate ψ
(1)
j from π(ψ(1)|ψ(2) = ψ

(2)
j−1, . . . , ψ

(k) = ψ
(k)
j−1);

1.2) generate ψ
(2)
j from π(ψ(2)|ψ(1) = ψ

(1)
j , ψ(3) = ψ

(3)
j−1 . . . , ψ

(k) = ψ
(k)
j−1);

...

1.k) generate ψ
(k)
j from π(ψ(k)|ψ(1) = ψ

(1)
j , . . . , ψ(k−1) = ψ

(k−1)
j ).

Algorithm 1.1: The Gibbs sampler

Gibbs sampler, is that the basic algorithm just described still works when one
or more of the components ψ(i) is itself multidimensional. In this case the
Gibbs sampler updates in turn “blocks” of components of ψ, drawing from
their conditional distribution, given all the remaining components.

1.6.2 Metropolis–Hastings algorithm

A very flexible method to generate a Markov chain having a prescribed in-
variant distribution is provided by Metropolis–Hastings algorithm (Metropolis
et al.; 1953; Hastings; 1970). The method is very general, since it allows us to
generate the next state of the chain from an essentially arbitrary distribution:
the invariance of the target distribution is then enforced by an accept/reject
step. This is how the algorithm works. Suppose that the chain is currently at
ψ. Then a proposal ψ̃ is generated from a density q(ψ, ·). Here q is a density in
its second argument (the “·”), but it is parametrized by the first argument. In
practice this means that the proposal density may depend on the current state
ψ. The proposal ψ̃ is accepted as the new state of the chain with probability

α(ψ, ψ̃) = min

{
1,
π(ψ̃)q(ψ̃, ψ)

π(ψ)q(ψ, ψ̃)

}
. (1.15)
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If the proposal is rejected, the chain stays in the current state ψ. Algorithm 1.2
details the steps involved, assuming the chain starts at an arbitrary value ψ0.
The choice of the proposal density is an important practical issue. A proposal

0. Initialize the starting point ψ0;

1. for j = 1, . . . , N:

1.1) generate ψ̃j from q(ψj−1, ·);
1.2) compute α = α(ψj−1, ψ̃j) according to (1.15);
1.3) generate an independent random variable Uj ∼ Be(α);
1.4) if Uj = 1 set ψj = ψ̃j, otherwise set ψj = ψj−1.

Algorithm 1.2: Metropolis–Hastings algorithm

leading to a high rejection rate will result in a “sticky” Markov chain, in which
the state will tend to stay constant for many iterations. Ergodic averages like
(1.14) provide in such a situation poor approximations, unless N is extremely
large. On the other hand, a high acceptance rate is not a guarantee, per se, of
good behavior of the chain. Consider, for example, a uniform proposal on (ψ−
a, ψ+a), where a is a very small positive number, and ψ is the current state. In
this case q(ψ, ψ̃) is symmetric in its arguments, and hence it cancels out in α.
Moreover, since the proposal ψ̃ will be close to ψ, in most cases one will have
π(ψ̃) ≈ π(ψ) and α ≈ 1. However, the resulting simulated chain will move very
slowly through its state space, exhibiting a strong positive autocorrelation,
which in turn implies that in order to obtain good approximations via (1.14),
one has to take N very large. Generally speaking, one shoud try to devise a
proposal that is a good approximation—possibly local, in a neighborhood of
the current state—of the target distribution. In the next section we illustrate
a general method to construct such a proposal.

The Gibbs sampler and Metropolis–Hastings algorithm are by no means
competing approaches to Markov chain simulation: in fact, they can be com-
bined and used together. When taking a Gibbs sampling approach, it may be
unfeasible, or simply not practical, to sample from one or more conditional
distributions. Suppose for example that π(ψ(1)|ψ(2)) does not have a standard
form and is therefore difficult to simulate from. In this case one can, instead
of generating ψ(1) from π(ψ(1)|ψ(2)), update ψ(1) using a Metropolis–Hastings
step. It can be shown that this does not alter the invariant distribution of the
Markov chain.

1.6.3 Adaptive rejection Metropolis sampling

Rejection sampling is a simple algorithm that allows one to generate a ran-
dom variable from a target distribution π by drawing from a different pro-
posal distribution f and then accepting with a specific probability. Suppose
that there is a constant C such that π(ψ) ≤ Cf(ψ) for every ψ and define
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r(ψ) = π(ψ)/Cf(ψ), so that 0 ≤ r(ψ) ≤ 1. Generate two independent ran-
dom variables U and V , with U uniformly distributed on (0, 1) and V ∼ f .
If U ≤ r(V ) set ψ = V , otherwise repeat the process. In other words, draw
V from f(ψ) and accept V as a draw from π(ψ) with probability r(V ). In
case of rejection, restart the process. It can be shown that if the support of
π is included in the support of f , the algorithm terminates in a finite time,
i.e., one eventually generates a V that is accepted. To see that the resulting
draw has the correct distribution, consider that the proposed V is accepted
only if U ≤ r(V ), so that the distribution of an accepted V is not just f ,
but f conditional on the event {U ≤ r(V )}. Denoting by Π the cumulative
distribution function of the target distribution π, one has:

P(V ≤ v, U ≤ r(V )) =

∫ v

−∞

P(U ≤ r(V )|V = ζ)f(ζ) dζ

=

∫ v

−∞

P(U ≤ r(ζ))f(ζ) dζ =

∫ v

−∞

r(ζ)f(ζ) dζ

=

∫ v

−∞

π(ζ)

Cf(ζ)
f(ζ) dζ =

1

C
Π(v).

Letting v go to +∞, one obtains P(U ≤ r(V )) = C−1. Therefore,

P(V ≤ v|U ≤ r(V )) =
P(V ≤ v, U ≤ r(V ))

P(U ≤ r(V ))
= Π(v).

The most favorable situations, in terms of acceptance probability, are obtained
when the proposal distribution is close to the target: in this case C can be
taken close to one and the acceptance probability r(·) will also be close to one.
It is worth noting the analogy with Metropolis–Hastings algorithm. In both
methods one generates a proposal from an instrumental density, and then
accepts the proposal with a specific probability. However, while in rejection
sampling one keeps on generating proposals until a candidate is accepted, so
that, repeating the process, one can generate a sequence of independent draws
exactly from the target distribution, in the Metropolis–Hastings algorithm
the simulated random variables are in general dependent and are distributed
according to the target only in the limit.

If π is univariate, log-concave3, and it has bounded support, it is possible
to construct a continuous piecewise linear envelope for log π, see Figure 1.1,
which corresponds to a piecewise exponential envelope for π. Appropriately
normalized, this results in a piecewise exponential proposal density, which is
easy to sample from using standard random number generators. Moreover,
due to the interplay between C and the normalizing constant of the piecewise

3 A function g is concave if it is defined in an interval (a, b) and g(αx+(1−α)y) ≥
αg(x) + (1 − α)g(y) for every α ∈ (0, 1) and x, y ∈ (a, b). π is log-concave if
log π(ψ) is a concave function.
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Fig. 1.1. Target log density with a piecewise linear envelope

exponential density, the target density π needs only to be known up to a nor-
malizing factor. Clearly, the more points one uses in constructing the envelope
to the target log density, the closer the proposal density will be to the target,
and the sooner a proposal V will be accepted. This suggests an adaptive ver-
sion of the method, according to which every time a proposal V is rejected,
one refines the piecewise linear envelope using the point (V, log π(V )), so that
the next proposal will be drawn from a density that is closer to π. This algo-
rithm is called adaptive rejection sampling in Gilks and Wild (1992). If the
univariate target π is not log-concave, one can combine adaptive rejection
sampling with the Metropolis–Hastings algorithm to obtain a Markov chain
having π as invariant distribution. The details can be found in Gilks et al.
(1995), where the algorithm is termed adaptive rejection Metropolis sampling
(ARMS).

Within an MCMC setting, the univariate ARMS algorithm described
above can be adapted to work also for a multivariate target distribution using
the following simple device. Suppose that the chain is currently at ψ ∈ R

k.
Generate a uniformly distributed unit vector u ∈ R

k. Then apply ARMS to
the univariate density proportional to

t 7−→ π(ψ + tu).

Up to a normalizing factor, this is the conditional target density, given that
the new draw belongs to the straight line through the current ψ and having
direction u. In R the function arms, originally written as part of the package
HI (see Petris and Tardella; 2003) and now included in package dlm, performs
this kind of multivariate version of ARMS. The function needs the arguments
y.start, myldens, indFunc, and n.sample for the starting point, a function
that evaluates the target logdensity, a function that evaluates the support of
the density, and the number of draws to be simulated, respectively. It has also
the additional argument ... that is passed on to myldens and indFunc. This is
useful when the logdensity and the support depend on additional parameters.
Figure 1.2 shows the plot of 500 simulated points from a mixture of two
bivariate normal densities with unit variances and independent components
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Fig. 1.2. Sample from a mixture of two bivariate normal distributions

and means (−3,−3), (3, 3), respectively. The code below was used to generate
the sample.

R code

> bimodal <- function(x) log(prod(dnorm(x, mean = 3)) +

2 + prod(dnorm(x, mean = -3)))

> supp <- function(x) all(x > (-10)) * all(x < 10)

4 > y <- arms( c(-2, 2), bimodal, supp, 500 )

Note that for this target an ordinary Gibbs sampler would very likely get stuck
in one of the two modes. This suggests that when one suspects a multivariate
posterior distribution to be multimodal, it may be wise to include ARMS in
a MCMC, and not to rely solely on a simple Gibbs sampler.

In addition to Markov chain Monte Carlo methods, which are in widespread
use in every field of application of Bayesian statistics, there are other stochas-
tic numerical methods that can be applied to some classes of models in order to
compute posterior summaries. In particular, for state space models an alterna-
tive to MCMC that has become fairly popular in recent years—especially for
nonlinear and non-Gaussian models—is provided by sequential Monte Carlo
methods. Since this is a rather advanced topic, we postpone its treatment to
Chapter 5.



1.6 Markov chain Monte Carlo methods 29

Problems

1.1. Verify the identity (1.9).

1.2. Verify the identity (1.10).

1.3. Consider the linear regression model discussed in Section 1.5, with
V = σ2D for a known matrix D. Verify that the posterior density for the
parameters (β, φ = σ−1), with a Normal-Gamma prior, in Normal-Gamma,
with parameters given by (1.11). Then, verify the identity (1.12).

1.4. (Shrinkage estimation). Consider random variables Y1, . . . , Yn such that

Y1, . . . , Yn|θ1, . . . , θn ∼
n∏

t=1

N (yt|θt, σ2),

where σ2 is known.

(a) Verify that, if θ1, . . . , θn are i.i.d. ∼ N (m, τ2), then the Yt are independent.
Compute the posterior density p(θ1, . . . , θn|y1, . . . , yn). With quadratic
loss, the Bayesian estimate of θt is E(θt|y1, . . . , yn). Comment the expres-
sion of E(θt|y1, . . . , yn) that you found. What is the posterior variance,
V (θt|y1, . . . , yn)?

(b) Now suppose that θ1, . . . , θn are conditionally i.i.d. given λ, with common
distribution N (λ, σ2

w), and λ ∼ N(m, τ2), where m,σ2
w, τ

2 are known.
Compute the posterior density p(θ1, . . . , θn|y1, . . . , yn). Comment the ex-
pressions of E(θt|y1, . . . , yn) and of V (θt|y1, . . . , yn) that you found.

1.5. Let Y1, . . . , Yn be i.i.d. random variables conditionally on θ, with Yi|θ ∼
N (θ, σ2) with σ2 known. Suppose that

θ ∼
k∑

j=1

pjN (µj , τ
2
j ).

Given Y1 = y1, . . . , Yn = yn, compute the posterior distribution of θ, and the
predictive distribution of Yn+1.

1.6. Consider the linear model y = Xβ + ǫ, ǫ ∼ N (0, V ), where β and V
are unknown. Suppose that they have independent priors, β ∼ N (m0, C0)
and Φ = V −1 ∼ W(ν0, S0). Write a Gibbs sampler to approximate the joint
posterior distribution of (β, Φ).
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Dynamic linear models

In this chapter we discuss the basic notions about state space models and their
use in time series analysis. The dynamic linear model is presented as a special
case of a general state space model, being linear and Gaussian. For dynamic
linear models, estimation and forecasting can be obtained recursively by the
well-known Kalman filter.

2.1 Introduction

In recent years there has been an increasing interest in the application of state
space models in time series analysis; see, for example, Harvey (1989), West
and Harrison (1997), Durbin and Koopman (2001), the recent overviews by
Künsch (2001) and Migon et al. (2005), and the references therein. State space
models consider a time series as the output of a dynamic system perturbed by
random disturbances. They allow a natural interpretation of a time series as
the combination of several components, such as trend, seasonal or regressive
components. At the same time, they have an elegant and powerful probabilistic
structure, offering a flexible framework for a very wide range of applications.
Computations can be implemented by recursive algorithms. The problems of
estimation and forecasting are solved by recursively computing the conditional
distribution of the quantities of interest, given the available information. In
this sense, they are quite naturally treated within a Bayesian framework.

State space models can be used to model univariate or multivariate time
series, also in the presence of non-stationarity, structural changes, and irregu-
lar patterns. In order to develop a feeling for the possible applications of state
space models in time series analysis, consider for example the data plotted in
Figure 2.1. This time series appears fairly predictable, since it repeats quite
regularly its behavior over time: we see a trend and a rather regular seasonal
component, with a slightly increasing variability. For data of this kind, we
would probably be happy with a fairly simple time series model, with a trend

©  Springer Science + Business Media, LLC 2009
31G. Petris et al., Dynamic Linear Models with R, Use R, DOI: 10.1007b135794_2,
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Fig. 2.1. Family food expenditure, quarterly data (1996Q1 to 2005Q4). Data avail-
able from http://con.istat.it

and a seasonal component. In fact, basic time series analysis relies on the pos-
sibility of finding a reasonable regularity in the behavior of the phenomenon
under study: forecasting future behavior is clearly easier if the series tends to
repeat a regular pattern over time. Things get more complex for time series
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Fig. 2.2. Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of
therms

such as the ones plotted in Figures 2.2-2.4. Figure 2.2 shows the quarterly UK
gas consumption from 1960 to 1986 (the data are available in R as UKgas). We
clearly see a change in the seasonal component. Figure 2.3 shows a well-studied
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Fig. 2.3. Measurements of the annual flow of the river Nile at Ashwan, 1871-1970
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Fig. 2.4. Daily prices for Google Inc. (GOOG)

data set: the measurements of the annual flow of the river Nile at Ashwan from
1871 to 1970. The series shows level shifts. We know that the construction of
the first dam of Ashwan started in 1898; the second big dam was completed
in 1971: if you have ever seen these huge dams, you can easily understand the
enormous changes that they caused on the Nile flow and in the vast surround-
ing area. Thus, we begin to feel the need for more flexible time series models,
which do not assume a regular pattern and stability of the underlying system,
but can include change points or structural breaks. Possibly more irregular is
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the series plotted in Figure 2.4, showing daily prices of Google1(close prices,
2004-08-19 to 2006-03-31). This series looks clearly nonstationary and in fact
quite irregular: indeed, we know how unstable the market for the new econ-
omy has been in those years. The analysis of nonstationary time series with
ARMA models requires at least a preliminary transformation of the data to
get stationarity; but we might feel more natural to have models that allow us
to analyze more directly data that show instability in the mean level and in
the variance, structural breaks, and sudden jumps. State space models include
ARMA models as a special case, but can be applied to nonstationary time
series without requiring a preliminary transformation of the data. But there
is a further basic issue. When dealing with economic or financial data, for
example, a univariate time series model is often quite limited. An economist
might want to gain a deeper understanding of the economic system, looking
for example at relevant macroeconomic variables that influence the variable
of specific interest. For the financial example of Figure 2.4, a univariate series
model might be satisfying for high frequency data (the data in Figure 2.4 are
daily prices), quickly adapting to irregularities, structural breaks or jumps;
however, it will be hardly capable of predicting sudden changes without a fur-
ther effort in a deeper and broader study of the economic and socio-political
variables that influence the markets. Even then, forecasting sudden changes
is clearly not at all an easy task! But we do feel that it is desirable to include
regression terms in our model or use multivariate time series models. Includ-
ing regression terms is quite natural in state space time series models. And
state space models can in general be formulated for multivariate time series.

State space models originated in engineering in the early sixties, although
the problem of forecasting has always been a fundamental and fascinating
issue in the theory of stochastic processes and time series. Kolmogorov (1941)
studied this problem for discrete time stationary stochastic processes, using
a representation proposed by Wold (1938). Wiener (1949) studied continuous
time stochastic processes, reducing the problem of forecasting to the solution
of the so-called Wiener–Hopf integral equation. However, the methods for
solving the Wiener problem were subject to several theoretical and practical
limitations. A new look at the problem was given by Kalman (1960), using the
Bode–Shannon representation of random processes and the “state transition”
method of analsyis of dynamical systems. Kalman’s solution, known as the
Kalman filter (Kalman; 1960; Kalman and Bucy; 1963), applies to stationary
and nonstationary random processes. These methods quickly gained popular-
ity in other fields and were applied to a wide array of problems, from the
determination of the orbits of the Voyager spacecraft to oceanographic prob-
lems, from agriculture to economics and speech recognition (see for instance
the special issue of the IEEE Transactions on Automatic Control (1983) dedi-
cated to applications of the Kalman filter). The importance of these methods

1 Financial data can be easily downloaded in R using the function get.hist.quote

in package tseries, or the function priceIts in package its.
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was recognized by statisticians only later, although the idea of latent variables
and recursive estimation can be found in the statistical literature at least as
early as Thiele (1880) and Plackett (1950); see Lauritzen (1981). One reason
for this delay is that the work on the Kalman filter was mostly published in the
engineering literature. This means not only that the language of these works
was not familiar to statisticians, but also that some issues that are crucial in
applications in statistics and time series analysis were not sufficiently under-
stood yet. Kalman himself, in his 1960 paper, underlines that the problem of
obtaining the transition model, which is crucial in practical applications, was
treated as a separate question and not solved. In the engineering literature,
it was common practice to assume the structure of the dynamic system as
known, except for the effects of random disturbances, the main problem be-
ing to find an optimal estimate of the state of the system, given the model.
In time series analysis, the emphasis is somehow different. The physical inter-
pretation of the underlying states of the dynamic system is often less evident
than in engineering applications. What we have is the observable process, and
even if it may be convenient to think of it as the output of a dynamic system,
the problem of forecasting is often the most relevant. In this context, model
building can be more difficult, and even when a state space representation
is obtained, there are usually quantities or parameters in the model that are
unknown and need to be estimated.

State space models appeared in the time series literature in the seventies
(Akaike; 1974a; Harrison and Stevens; 1976) and became established during
the eighties (Harvey; 1989; West and Harrison; 1997; Aoki; 1987). In the last
decades they have become a focus of interest. This is due on one hand to the
development of models well suited to time series analysis, but also to a wider
range of applications, including, for instance, molecular biology or genetics,
and on the other hand to the development of computational tools, such as
modern Monte Carlo methods, for dealing with more complex nonlinear and
non-Gaussian situations.

In the next sections we discuss the basic formulation of state space models
and the structure of the recursive computations for estimation. Then, as a
special case, we present the Kalman filter for Gaussian linear dynamic models.

2.2 A simple example

Before presenting the general formulation of state space models, it is useful to
give an intuition of the basic ideas and of the recursive computations through
a simple, introductory example. Let’s think of the problem of determining
the position θ of an object, based on some measurements (Yt : t = 1, 2, . . .)
affected by random errors. This problem is fairly intuitive, and dynamics can
be incorporated into it quite naturally: in the static problem, the object does
not move over time, but it is natural to extend the discussion to the case of a
moving target. If you prefer, you may think of some economic problem, such as
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forecasting the sales of a good; in short-term forecasting, the observed sales
are often modeled as measurements of the unobservable average sales level
plus a random error; in turn, the average sales are supposed to be constant
or randomly evolving over time (this is the so-called random walk plus noise
model, see page 42).

We have already discussed Bayesian inference in the static problem in
Chapter 1 (page 7). There, you were lost at sea, on a small island, and θ
was your unknown position (univariate: distance from the coast, say). The
observations were modeled as

Yt = θ + ǫt, ǫt
iid∼ N (0, σ2);

that is, given θ, the Yt’s are conditionally independent and identically dis-
tributed with a N (θ, σ2) distribution; in turn, θ has a Normal prior N (m0, C0).
As we have seen in Chapter 1, the posterior for θ is still Gaussian, with up-
dated parameters given by (1.2), or by (1.3) if we compute them sequentially,
as new data become available.

To be concrete, let us suppose that your prior guess about the position θ
is m0 = 1, with variance C0 = 2; the prior density is plotted in the first panel
of Figure 2.5. Note that m0 is also your point forecast for the observation:
E(Y1) = E(θ + ǫ1) = E(θ) = m0 = 1.
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Fig. 2.5. Recursive updating of the density of θt

At time t = 1, we take a measurement, Y1 = 1.3, say; from (1.3), the
parameters of the posterior Normal density of θ are

m1 = m0 +
C0

C0 + σ2
(Y1 −m0) = 1.24,
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with precision C−1
1 = σ−2 +C−1

0 = 0.4−1. We see that m1 is obtained as our
best guess at time zero, m0, corrected by the forecast error (Y1−m0), weighted
by a factor K1 = C0/(C0 + σ2). The more precise the observation is, or the
more vague our initial information was, the more we “trust the data”: in the
above formula, the smaller σ2 is with respect to C0, the bigger is the weight
K1 of the data-correction term in m1. When a new observation, Y2 = 1.2 say,
becomes available at time t = 2, we can compute the density of θ|Y1:2, which
is N (m2, C2), with m2 = 1.222 and C2 = 0.222, using again (1.3). The second
panel in Figure 2.5 shows the updating from the prior density to the posterior
density of θ, given y1:2. We can proceed recursively in this manner as new
data become available.

Let us introduce now a dynamic component to the problem. Suppose we
know that at time t = 2 the object starts to move, so that its position changes
between two consecutive measurements. Let us assume a motion of a simple
form, say2

θt = θt−1 + ν + wt, wt ∼ N (0, σ2
w). (2.1)

where ν is a known nominal speed and wt is a Gaussian random error with
mean zero and known variance σ2

w. Let, for example, ν = 4.5 and σ2
w = 0.9.

Thus, we have a process (θt : t = 1, 2, . . .), which describes the unknown
position of the target at successive time points. The observation equation is
now

Yt = θt + ǫt, ǫt
iid∼ N (0, σ2), (2.2)

and we assume that the sequences (θt) and (ǫt) are independent. To make
inference about the unknown position θt, we proceed along the following steps.

Initial step. By the previous results, at time t = 2 we have

θ2|y1:2 ∼ N (m2 = 1.222, C2 = 0.222).

Prediction step. At time t = 2, we can predict where the object will be at
time t = 3, based on the dynamics (2.1). We easily find that

2 Equation (2.1) can be thought of as a discretization of a motion law in continuous
time, such as

dθt = νdt+ dWt

where ν is the nominal speed and dWt is an error term. For simplicity, we consider
a discretization in small intervals of time (ti−1, ti), as follows:

θti − θti−1

ti − ti−1
= ν + wti ,

that is
θti = θti−1 + ν(ti − ti−1) + wti(ti − ti−1),

where we assume that the random error wti has density N (0, σ2
w). With a further

simplification, we take unitary time intervals, (ti − ti−1) = 1, so that the above
expression is rewritten as (2.1).
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θ3|y1:2 ∼ N (a3, R3),

with
a3 = E(θ2 + ν + w3|y1:2) = m2 + ν = 5.722

and variance

R3 = Var(θ2 + ν + w3|y1:2) = C2 + σ2
w = 1.122.

The third plot in Figure 2.5 illustrates the prediction step, from the condi-
tional distribution of θ2|y1:2 to the “predictive” distribution of θ3|y1:2. Note
that even if we were fairly confident about the position of the target at time
t = 2, we become more uncertain about its position at time t = 3. This is the
effect of the random error wt in the dynamics of θt: the larger σ2

w is, the more
uncertain we are about the position at the time of the next measurement. We
can also predict the next observation Y3, given y1:2. Based on the observation
equation (2.2), we easily find that

Y3|y1:2 ∼ N (f3, Q3),

where
f3 = E(θ3 + ǫ3|y1:2) = a3 = 5.722

and
Q3 = Var(θ3 + ǫ3|y1:2) = R3 + σ2 = 1.622.

The uncertainty about Y3 depends on the measurement error (the term σ2 in
Q3) as well as the uncertainty about the position at time t = 3 (expressed by
R3).

Estimation step (filtering). At time t = 3, the new observation Y3 = 5
becomes available. Our point forecast of Y3 was f3 = a3 = 5.722, so we have a
forecast error et = yt−ft = −0.722. Intuitively, we have overestimated θ3 and
consequently Y3; thus, our new estimate E(θ3|y1:3) of θ3 will be smaller than
a3 = E(θ3|y1:2). For computing the posterior density of θ3|y1:3, we use the
Bayes formula, where the role of the prior is played by the density N (a3, R3)
of θ3 given y1:2, and the likelihood is the density of Y3 given (θ3, y1, y2). Note
that (2.2) implies that Y3 is independent from the past observations given θ3
(assuming independence among the error sequences), with

Y3|θ3 ∼ N (θ3, σ
2).

Thus, by the Bayes formula (see (1.3)), we obtain

θ3|y1, y2, y3 ∼ N (m3, C3),

where

m3 = a3 +
R3

R3 + σ2
(y3 − f3) = 5.568

and
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C3 =
σ2R3

σ2 +R3
= R3 −

R3

R3 + σ2
R3 = 0.346.

We see again the estimation-correction structure of the updating mechanism in
action. Our best estimate of θ3 given the data y1:3 is computed as our previous
best estimate a3, corrected by a fraction of the forecast error e3 = y3 − f3,
having weight K3 = R3/(R3 + σ2). This weight is bigger the more uncertain
we are about our forecast a3 of θ3 (that is, the larger R3 is, which in turn
depends on C2 and σ2

w) and the more precise the observation Y3 is (i.e., the
smaller σ2 is). From these results we see that a crucial role in determining the
effect of the data on estimation and forecasting is played by the magnitude of
the system variance σ2

w relative to the observation variance σ2, the so-called
signal-to-noise ratio. The last plot in Figure 2.5 illustrates this estimation
step. We can proceed repeating recursively the previous steps for updating
our estimates and forecasts as new observations become available.

The previous simple example illustrates the basic aspects of dynamic linear
models, which can be summarized as follows.

• The observable process (Yt : t = 1, 2, . . .) is thought of as determined by a
latent process (θt : t = 1, 2, . . .), up to Gaussian random errors. If we knew
the position of the object at successive time points, the Yt’s would be
independent: what remains are only unpredictable measurement errors.
Furthermore, the observation Yt depends only on the position θt of the
target at time t.

• The latent process (θt) has a fairly simple dynamics: θt does not depend on
the entire past trajectory but only on the previous position θt−1, through
a linear relationship, up to Gaussian random errors.

• Estimation and forecasting can be obtained sequentially, as new data be-
come available.

The assumption of linearity and Gaussianity is specific to dynamic linear
models, but the dependence structure of the processes (Yt) and (θt) is part of
the definition of a general state space model.

2.3 State space models

Consider a time series (Yt)t≥1. Specifying the joint finite-dimensional distri-
butions of (Y1, . . . , Yt), for any t ≥ 1, is not an easy task. In particular, in
time series applications the assumptions of independence or exchangeability
are seldom justified, since they would essentially make time irrelevant. Marko-
vian dependence is arguably the simplest form of dependence among the Yt’s
in which time has a definite role. We say that (Yt)t≥1 is a Markov chain if,
for any t > 1,

π(yt|y1:t−1) = π(yt|yt−1).
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This means that the information about Yt carried by all the observations up
to time t − 1 is exactly the same as the information carried by yt−1 alone.
Another way of saying the same thing is that Yt and Y1:t−2 are condition-
ally independent given yt−1. For a Markov chain the finite-dimensional joint
distributions can be written in the fairly simple form

π(y1:t) = π(y1) ·
t∏

j=2

π(yj |yj−1).

Assuming a Markovian structure for the observations is, however, not appro-
priate in many applications. State space models build on the relatively simple
dependence structure of a Markov chain to define more complex models for
the observations. In a state space model we assume that there is an unobserv-
able Markov chain (θt), called the state process, and that Yt is an imprecise
measurement of θt. In engineering applications θt usually describes the state
of a physically observable system that produced the output Yt. On the other
hand, in econometric applications θt is often a latent construct, which may,
however, have a useful interpretation. In any case, one can think of (θt) as
an auxiliary time series that facilitates the task of specifying the probability
distribution of the observable time series (Yt).

Formally, a state space model consists of an R
p-valued time series (θt :

t = 0, 1 . . . ) and an R
m-valued time series (Yt : t = 1, 2 . . . ), satisfying the

following assumptions.

(A.1) (θt) is a Markov chain.
(A.2) Conditionally on (θt), the Yt’s are independent and Yt depends on θt

only.

The consequence of (A.1)-(A.2) is that a state space model is com-
pletely specified by the initial distribution π(θ0) and the conditional densities
π(θt|θt−1) and π(yt|θt), t ≥ 1. In fact, for any t > 0,

π(θ0:t, y1:t) = π(θ0) ·
t∏

j=1

π(θj |θj−1)π(yj |θj). (2.3)

From (2.3) one can derive, by conditioning or marginalization, any other dis-
tribution of interest. For example, the joint density of the observations Y1:t

can be obtained by integrating out the θj ’s in (2.3); note however that in this
way the simple product form of (2.3) is lost.

The information flow assumed by a state space model is represented in
Figure 2.6. The graph in the figure is a special case of a directed acyclic graph
(see Cowell et al.; 1999). The graphical representation of the model can be
used to deduce conditional independence properties of the random variables
occurring in a state space model. In fact, two sets of random variables, A
and B, can be shown to be conditionally independent given a third set of
variables, C, if and only if C separates A and B, i.e., if any path connecting
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θ0 −→ θ1 −→ θ2 −→ · · · −→ θt−1 −→ θt −→ θt+1 −→ · · ·
↓ ↓ ↓ ↓ ↓
Y1 Y2 Yt−1 Yt Yt+1

Fig. 2.6. Dependence structure for a state space model

one variable in A to one in B passes through C. Note that in the previous
statement the arrows in Figure 2.6 have to be considered as undirected edges
of the graph that can be transversed in both directions. For a proof, see Cowell
et al. (1999, Section 5.3). As an example, we will use Figure 2.6 to show that Yt
and (θ0:t−1, Y1:t−1) are conditionally independent given θt. The proof simply
consists in observing that any path connecting Yt with one of the previous Ys
(s < t) or with one of the states θs, s < t, has to go through θt; hence, {θt}
separates {θ0:t−1, Y1:t−1} and {Yt}. It follows that

π(yt|θ0:t−1, y1:t−1) = π(yt|θt).

In a similar way, one can show that θt and (θ0:t−2, Y1:t−1) are conditionally
independent given θt−1, which can be expressed in terms of conditional dis-
tributions as

π(θt|θ0:t−1, y1:t−1) = π(θt|θt−1).

State space models in which the states are discrete-valued random vari-
ables are often called hidden Markov models.

2.4 Dynamic linear models.

The first, important class of state space models is given by Gaussian linear
state space models, also called dynamic linear models. A dynamic linear model
(DLM) is specified by a Normal prior distribution for the p-dimensional state
vector at time t = 0,

θ0 ∼ Np(m0, C0), (2.4a)

together with a pair of equations for each time t ≥ 1,

Yt = Ftθt + vt, vt ∼ Nm(0, Vt), (2.4b)

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt), (2.4c)

whereGt and Ft are known matrices (of order p×p andm×p respectively) and
(vt)t≥1 and (wt)t≥1 are two independent sequences of independent Gaussian
random vectors with mean zero and known variance matrices (Vt)t≥1 and
(Wt)t≥1, respectively. Equation (2.4b) is called the observation equation, while
(2.4c) is the state equation or system equation. Furthermore, it is assumed that
θ0 is independent of (vt) and (wt). One can show that a DLM satisfies the
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assumptions (A.1) and (A.2) of the previous section, with Yt|θt ∼ N (Ftθt, Vt)
and θt|θt−1 ∼ N (Gtθt−1,Wt) (see Problems 2.1 and 2.2).

In contrast to (2.4), a general state space model can be specified by a prior
distribution for θ0, together with the observation and evolution equations

Yt = ht(θt, vt),

θt = gt(θt−1, wt)

for arbitrary functions gt and ht. Linear state space models specify gt and ht as
linear functions, and Gaussian linear models add the assumptions of Gaussian
distributions. The assumption of Normality is sensible in many applications,
and it can be justified by central limit theorem arguments. However, there are
many important extensions, such as heavy tailed errors for modeling outliers,
or the dynamic generalized linear model for treating discrete time series. The
price to be paid when removing the assumption of Normality is additional
computational difficulties.

We introduce here some examples of DLMs for time series analysis, which
will be treated more extensively in Chapter 3. The simplest model for a uni-
variate time series (Yt : t = 1, 2, . . .) is the so-called random walk plus noise
model, defined by

Yt = µt + vt, vt ∼ N (0, V )

µt = µt−1 + wt, wt ∼ N (0,W ),
(2.5)

where the error sequences (vt) and (wt) are independent, both within them
and between them. This is a DLM with m = p = 1, θt = µt and Ft = Gt = 1.
It is the model used in the introductory example in Section 2.2, when there
is no speed in the dynamics (ν = 0 in the state equation (2.1)). Intuitively,
it is appropriate for time series showing no clear trend or seasonal variation:
the observations (Yt) are modeled as noisy observations of a level µt which,
in turn, is subject to random changes over time, described by a random walk.
This is why the model is also called local level model. If W = 0, we are back to
the constant mean model. Note that the random walk (µt) is nonstationary.
Indeed, DLMs can be used for modeling nonstationary time series. On the
contrary, the usual ARMA models require a preliminary transformation of
the data to achieve stationarity.

A slightly more elaborated model is the linear growth model, or local linear
trend, which has the same observation equation as the local level model, but
includes a time-varying slope in the dynamics for µt:

Yt = µt + vt, vt ∼ N (0, V ),

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N (0, σ2
µ),

βt = βt−1 + wt,2, wt,2 ∼ N (0, σ2
β),

(2.6)

with uncorrelated errors vt, wt,1 and wt,2. This is a DLM with
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θt =

[
µt
βt

]
, G =

[
1 1
0 1

]
, W =

[
σ2
µ 0
0 σ2

β

]
, F =

[
1 0
]
.

The system variances σ2
µ and σ2

β are allowed to be zero. We have used this
model in the introductory example of Section 2.2; there, we had a constant
nominal speed in the dynamics, that is σ2

β = 0.
Note that in these examples the matrices Gt and Ft and the covariance

matrices Vt and Wt are constant; in this case the model is said to be time
invariant. We will see other examples in Chapter 3. In particular, the popular
Gaussian ARMA models can be obtained as special cases of DLM; in fact, it
can be shown that Gaussian ARMA and DLM models are equivalent in the
time-invariant case (see Hannan and Deistler; 1988).

DLMs can be regarded as a generalization of the linear regression model,
allowing for time varying regression coefficients. The simple, static linear re-
gression model describes the relationship between a variable Y and a nonran-
dom explanatory variable x as

Yt = θ1 + θ2xt + ǫt, ǫt
iid∼ N (0, σ2).

Here we think of (Yt, xt), t = 1, 2, . . . as observed over time. Allowing for time
varying regression parameters, one can model nonlinearity of the functional
relationship between x and y, structural changes in the process under study,
omission of some variables. A simple dynamic linear regression model assumes

Yt = θt,1 + θt,2xt + ǫt, ǫt ∼ N (0, σ2
t ),

with a further equation for describing the system evolution

θt = Gtθt−1 + wt, wt ∼ N2(0,Wt).

This is a DLM with Ft = [1, xt] and states θt = (θt,1, θt,2)
′. As a particuar

case, if Gt = I, the identity matrix, σ2
t = σ2 and wt = 0 for every t, we are

back to the simple static linear regression model.

2.5 Dynamic linear models in package dlm

DLMs are represented in package dlm as named lists with a class attribute,
which makes them into objects of class “dlm”. Objects of class dlm can repre-
sent constant or time-varying DLMs. A constant DLM is completely specified
once the matrices F , V , G, W , C0, and the vector m0 are given. In R, these
components are stored in a dlm object as elements FF, V, GG, W, C0, and m0,
respectively. Extractor and replacement functions are available to access and
modify specific parts of the model in a user-friendly way. The package also
provides several functions that create particular classes of DLMs from minimal
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input; we will illustrate those functions in Chapter 3, where we discuss model
specification. A general univariate or multivariate DLM can be specified us-
ing the function dlm. This function creates a dlm object from its components,
performing some sanity checks on the input, such as testing the dimensions
of the matrices for consistency. The input may be given as a list with named
arguments or as individual arguments. Here is how to use dlm to create a dlm

object corresponding to the random walk plus noise model and to the linear
growth model introduced on page 42. We assume that V = 1.4 and σ2 = 0.2.
Note that 1×1 matrices can safely be passed to dlm as scalars, i.e., numerical
vectors of length one.

R code

> rw <- dlm(m0 = 0, C0 = 10, FF = 1, V = 1.4, GG = 1, W = 0.2)

2 > unlist(rw)

m0 C0 FF V GG W

4 0.0 10.0 1.0 1.4 1.0 0.2

> lg <- dlm(FF = matrix(c(1, 0), nr = 1),

6 + V = 1.4,

+ GG = matrix(c(1, 0, 1, 1), nr = 2),

8 + W = diag(c(0, 0.2)),

+ m0 = rep(0, 2),

10 + C0 = 10 * diag(2))

> lg

12 $FF

[,1] [,2]

14 [1,] 1 0

16 $V

[,1]

18 [1,] 1.4

20 $GG

[,1] [,2]

22 [1,] 1 1

[2,] 0 1

24

$W

26 [,1] [,2]

[1,] 0 0.0

28 [2,] 0 0.2

30 $m0

[1] 0 0

32

$C0
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34 [,1] [,2]

[1,] 10 0

36 [2,] 0 10

38 > is.dlm(lg)

[1] TRUE

Suppose now that one wants to change the observation variance in the linear
growth model lg to V = 0.8 and the system varianceW so as to have σ2 = 0.5.
This can be easily achieved as illustrated in the following code.

R code

> V(lg) <- 0.8

2 > W(lg)[2,2] <- 0.5

> V(lg)

4 [1] 0.8

> W(lg)

6 [,1] [,2]

[1,] 0 0.0

8 [2,] 0 0.5

In a similar way we can modify or view the other components of the model,
including the mean and variance of the state at time zero, m0 and C0.

Let us turn now on time-varying DLMs and how they are represented in
R. Most often, in a time-invariant DLM, only a few entries (possibly none) of
each matrix change over time, while the remaining are constant. Therefore,
instead of storing the entire matrices Ft, Vt, Gt, Wt for all values of t that one
wishes to consider, we opted to store a template of each of them, and save
the time-varying entries in a separate matrix. This matrix is the component
X of a dlm object. Taking this approach, one also needs to know to which
entry of which matrix each column of X corresponds. To this aim one has to
specify one or more of the components JFF, JV, JGG, and JW. Let us focus
on the first one, JFF. This should be a matrix of the same dimension of FF,
with integer entries: if JFF[i,j] is k, a positive integer, that means that the
value of FF[i,j] at time s is X[s,k]. If, on the other hand, JFF[i,j] is zero
then FF[i,j] is taken to be constant in time. JV, JGG, and JW are used in the
same way, for V, GG, and W, respectively. Consider, for example, the dynamic
regression model introduced on page 43. The only time-varying element is
the (1, 2)-entry of Ft; therefore, X will be a one-column matrix (although X

is allowed to have extra, unused, columns). The following code shows how a
dynamic regression model can be defined in R.
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R code

> x <- rnorm(100) # covariates
2 > dlr <- dlm(FF = matrix(c(1, 0), nr = 1),

+ V = 1.3,
4 + GG = diag(2),

+ W = diag(c(0.4, 0.2)),
6 + m0 = rep(0, 2), C0 = 10 * diag(2),

+ JFF = matrix(c(0, 1), nr = 1),
8 + X = x)

> dlr
10 $FF

[,1] [,2]
12 [1,] 1 0

14 $V
[,1]

16 [1,] 1.3

18 $GG
[,1] [,2]

20 [1,] 1 0
[2,] 0 1

22

$W
24 [,1] [,2]

[1,] 0.4 0.0
26 [2,] 0.0 0.2

28 $JFF
[,1] [,2]

30 [1,] 0 1

32 $X
[,1]

34 [1,] 0.4779
[2,] 0.5414

36 [3,] ...

38 $m0
[1] 0 0

40

$C0
42 [,1] [,2]

[1,] 10 0
44 [2,] 0 10
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Note that the dots on line 36 of the display above were produced by the print
method function for objects of class dlm. If you want the entire X component
to be printed, you need to extract it as X(dlr), or use print.default. When
modifying individual components of a dlm object, the user must ensure that
the new components are compatible with the rest of the dlm object, as the
replacement functions do not perform any check. This is a precise design
choice, reflecting the fact that one may want to modify a dlm object one
component at a time in such a way that, while the intermediate steps result
in an invalid specification, the final result is a well-defined dlm object. For
example, suppose one wants to use rw with a time series of length 30, and one
wants to specify a time-varying observation variance as

Vt =

{
0.75 if t = 1, . . . , 10,

1.25 if t = 11, . . . , 30.

Assuming the researcher is satisfied with the constant system variance previ-
ously specified, she has to add to rw the two components JV and X. Adding
JV first temporarily produces an invalid dlm object, which is then made into
a valid one by the further addition of the X component. To stay on the safe
side, one can make sure that a model obtained from another one by changing,
adding, or removing components “by hand” is a valid dlm object by calling
the function dlm on the modified model. In this case is.dlm is not useful, as
it only looks at the class attribute of the object. The original value of V is
still present in the new model but will never be used. For this reason V(rw)

gives back the old value of V, at the same time warning the user that in rw

the component V is now time-varying. The code below illustrates the previous
discussion.

R code

> JV(rw) <- 1

2 > is.dlm(rw)

[1] TRUE

4 > dlm(rw)

Error in dlm(rw) : Component X must be provided for time-varying

6 models

> X(rw) <- rep(c(0.75, 1.25), c(10, 20))

8 > rw <- dlm(rw)

> V(rw)

10 [,1]

[1,] 1.4

12 Warning message:

In V.dlm(rw) : Time varying V
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2.6 Examples of nonlinear and non-Gaussian state space

models

Specification and estimation of DLMs for time series analysis will be treated in
Chapters 3 and 4. Here we briefly present some important classes of nonlinear
and non-Gaussian state space models. Although in this book we will limit
ourself to the linear Gaussian case, this section should give the reader an idea
of the extensions that are possible in state space modeling when dropping
those assumptions.

Exponential family state space models

Dynamic linear models can be generalized by removing the assumption of
Gaussian distributions. This generalization is required for modeling discrete
time series; for example, if Yt represents the presence/absence of a character-
istic in the problem under study over time, we would use a Bernoulli distribu-
tion; if Yt are counts, we might use a Poisson model, etc. Dynamic Generalized
Linear Models (West et al.; 1985) assume that the conditional distribution
π(yt|θt) of Yt given θt is a member of the exponential family, with natural
parameter ηt = Ftθt. The state equation is as for Gaussian linear models,
θt = Gtθt−1 + wt. Inference for generalized DLMs presents computational
difficulties, which can, however, be solved by MCMC techniques.

Hidden Markov models

State space models in which the state θt is discrete are usually referred to as
hidden Markov models. Hidden Markov models are used extensively in speech
recognition (see for example Rabiner and Juang; 1993). In economics and
finance, they are often used to model a time series with structural breaks.
The dynamics of the series and the change points are thought as determined
by a latent Markov chain (θt), with state space {θ∗1 , . . . , θ∗k} and transition
probabilities

π(i|j) = P (θt = θ∗i |θt−1 = θ∗j ).

Consequently, Yt can come from a different distribution depending on the
state of the chain at time t, in the sense that

Yt|{θt = θ∗j } ∼ π(yt|θ∗j ), j = 1, . . . , k.

Although state space models and hidden Markov models have evolved as sep-
arate subjects, their basic assumptions and recursive computations are closely
related. MCMC methods for hidden Markov models have been developed, see
for example Rydén and Titterington (1998), Kim and Nelson (1999), Cappé
et al. (2005), and the references therein.



2.7 State estimation and forecasting 49

Stochastic volatility models

Stochastic volatility models are widely used in financial applications. Let Yt be
the log-return of an asset at time t (i.e., Yt = logPt/Pt−1, where Pt is the as-
set price at time t). Under the assumption of efficient markets, the log-returns
have null conditional mean: E(Yt+1|y1:t) = 0. However, the conditional vari-
ance, called volatility, varies over time. There are two main classes of models
for analyzing volatility of returns. The popular ARCH and GARCH mod-
els (Engle; 1982; Bollerslev; 1986) describe the volatility as a function of the
past values of the returns. Stochastic volatility models, instead, consider the
volatility as an exogenous random process. This leads to a state space model
where the volatility is (part of) the state vector, see for example Shephard
(1996). The simplest stochastic volatility model has the following form:

Yt = exp

{
1

2
θt

}
wt, wt ∼ N (0, 1),

θt = η + φθt−1 + vt, vt ∼ N (0, σ2),

that is, θt follows an autoregressive model of order one. These models are
nonlinear and non-Gaussian, and computations are usually more demanding
than for ARCH and GARCH models; however, MCMC approximations are
available (Jacquier et al.; 1994). On the other hand, stochastic volatility mod-
els seem easier to generalize to the case of returns of a collection of assets,
while for multivariate ARCH and GARCH models the number of parameters
quickly becomes too large. Let Yt = (Yt,1, . . . , Yt,m) be the log-returns for m
assets. A simple multivariate stochastic volatility model might assume that

Yt,i = exp (zt + xt,i) vt,i, i = 1, . . . ,m,

where zt describes a common market volatility factor and the xt,i’s are indi-
vidual volatilities. The state vector is θt = (zt, xt,1, . . . , xt,m)′, and a simple
state equation might assume that the components of θt are independent AR(1)
processes.

2.7 State estimation and forecasting

The great flexibility of state space models is one reason for their extensive
application in an enormous range of applied problems. Of course, as in any
statistical application, a crucial and often difficult step is a careful model
specification. In many problems, the statistician and the experts together can
build a state space model where the states have an intuitive meaning, and ex-
pert knowledge can be used to specify the transition probabilities in the state
equation, determine the dimension of the state space, etc. However, often the
model building can be a major difficulty: there might be no clear identifica-
tion of physically interpretable states, or the state space representation could
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be non unique, or the state space is too big and poorly identifiable, or the
model is too complicated. We will discuss some issues about model building
for time series analysis with DLMs in Chapter 3. Here, to get started, we
consider the model as given; that is, we assume that the densities π(yt|θt)
and π(θt|θt−1) have been specified, and we present the basic recursions for
estimation and forecasting. In Chapter 4, we will let these densities depend
on unknown parameters ψ and discuss their estimation.

For a given state space model, the main tasks are to make inference on
the unobserved states or predict future observations based on a part of the
observation sequence. Estimation and forecasting are solved by computing
the conditional distributions of the quantities of interest, given the available
information.

To estimate the state vector we compute the conditional densities π(θs|y1:t).
We distinguish between problems of filtering (when s = t), state prediction
(s > t) and smoothing (s < t). It is worth underlining the difference between
filtering and smoothing. In the filtering problem, the data are supposed to
arrive sequentially in time. This is the case in many applied problems: think
for example of the problem of tracking a moving object, or of financial appli-
cations where one has to estimate, day by day, the term structure of interest
rates, updating the current estimates as new data are observed on the markets
the following day. In these cases, we want a procedure to estimate the current
value of the state vector, based on the observations up to time t (“now”),
and to update our estimates and forecasts as new data become available at
time t+1. To solve the filtering problem, we compute the conditional density
π(θt|y1:t). In a DLM, the Kalman filter provides the formulae for updating
our current inference on the state vector as new data become available, that
is for passing from the filtering density π(θt|y1:t) to π(θt+1|y1:t+1).

The problem of smoothing, or retrospective analysis, consists instead in
estimating the state sequence at times 1, . . . , t, given the data y1, . . . , yt. In
many applications, one has observations on a time series for a certain period,
and wants to retrospectively study the behavior of the system underlying the
observations. For example, in economic studies, the researcher might have the
time series of consumption, or of the gross domestic product of a country, for a
certain number of years, and she might be interested in retrospectively under-
standing the socio-economic behavior of the system. The smoothing problem
is solved by computing the conditional distribution of θ1:t given y1:t. As for
filtering, smoothing can be implemented as a recursive algorithm.

As a matter of fact, in time series analysis forecasting is often the main
task; the state estimation is then just a step for predicting the value of future
observations. For one-step-ahead forecasting, that is, predicting the next ob-
servation Yt+1 based on the data y1:t, one first estimates the next value θt+1 of
the state vector, and then, based on this estimate, one computes the forecast
for Yt+1. The one-step-ahead state predictive density is π(θt+1|y1:t) and it is
based on the filtering density of θt. From this, one obtains the one-step-ahead
predictive density π(yt+1|y1:t).
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One might be interested in looking a bit further ahead, estimating the
evolution of the system, represented by the state vector θt+k for some k ≥ 1,
and making k-steps-ahead forecasts for Yt+k. The state prediction is solved by
computing the k-steps-ahead state predictive density π(θt+k|y1:t). Based on
this density, one can compute the k-steps-ahead predictive density π(yt+k|y1:t)
for the future observation at time t+k. Of course, forecasts become more and
more uncertain as the time horizon t+ k gets farther away in the future, but
note that we can anyway quantify the uncertainty through a probability den-
sity, namely the predictive density of Yt+1 given y1:t. We will show how to
compute the predictive densities in a recursive fashion. In particular, the con-
ditional mean E(Yt+1|y1:t) provides an optimal one-step-ahead point forecast
of the value of Yt+1, minimizing the conditional expected square prediction
error. As a function of k, E(Yt+k|y1:t) is usually called the forecast function.

2.7.1 Filtering

We first describe the recursive steps needed to compute the filtering densities
π(θt|y1:t) in general state space models. Even if we will not make extensive
use of these formulae, it is useful to look now at the general recursions to
better understand the role of the conditional independence assumptions that
have been introduced. Then we move to the DLM case, for which the filtering
problem is solved by the well-known Kalman filter.

One of the advantages of state space models is that, due to the Markovian
structure of the state dynamics (A.1) and the assumptions on the conditional
independence for the observables (A.2), the filtered and predictive densities
can be computed using a recursive algorithm. As we have seen in the intro-
ductory example of Section 2.2, starting from θ0 ∼ π(θ0) one can recursively
compute, for t = 1, 2, . . .:

(i) the one-step-ahead predictive distribution for θt given y1:t−1, based on
the filtering density π(θt−1|y1:t−1) and the conditional distribution of θt given
θt−1 specified by the model;

(ii) the one-step-ahead predictive distribution for the next observation;
(iii) the filtering distribution π(θt|y1:t t 1:t−1)

as the prior distribution and likelihood π(yt|θt).
The following proposition contains a formal presentation of the filtering

recursions for a general state space model.

Proposition 2.1 (Filtering recursions). For a general state space model
defined by (A.1)-(A.2) (p.40), the following statements hold.

(i) The one-step-ahead predictive density for the states can be computed from
the filtered density π(θt−1|y1:t−1) according to

π(θt|y1:t−1) =

∫
π(θt|θt−1)π(θt−1|y1:t−1) dθt−1. (2.7a)

), using the Bayes rule with π(θ |y
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(ii) The one-step-ahead predictive density for the observations can be computed
from the predictive density for the states as

π(yt|y1:t−1) =

∫
π(yt|θt)π(θt|y1:t−1) dθt. (2.7b)

(iii) The filtering density can be computed from the above densities as

π(θt|y1:t) =
π(yt|θt)π(θt|y1:t−1)

π(yt|y1:t−1)
. (2.7c)

Proof. The proof relies heavily on the conditional independence properties of
the model, which can be deduced from the graph in Figure 2.6.

To prove (i), note that θt is conditionally independent of Y1:t−1, given θt−1.
Therefore,

π(θt|y1:t−1) =

∫
π(θt−1, θt|y1:t−1) dθt−1

=

∫
π(θt|θt−1, y1:t−1)π(θt−1|y1:t−1) dθt−1

=

∫
π(θt|θt−1)π(θt−1|y1:t−1) dθt−1.

To prove (ii), note that Yt is conditionally independent of Y1:t−1 given θt.
Therefore,

π(yt|y1:t−1) =

∫
π(yt, θt|y1:t−1) dθt

=

∫
π(yt|θt, y1:t−1)π(θt|y1:t−1) dθt

=

∫
π(yt|θt)π(θt|y1:t−1) dθt.

Part (iii) follows from Bayes’ rule and the conditional independence of Yt
and Y1:t−1 given θt:

π(θt|y1:t) =
π(θt|y1:t−1)π(yt|θt, y1:t−1)

π(yt|y1:t−1)
=
π(θt|y1:t−1)π(yt|θt)

π(yt|y1:t−1)
.

⊓⊔

From the one-step-ahead predictive distribution provided by the previous
proposition, k-steps ahead predictive distributions for the state and for the
observation can be computed recursively according to the formulae

π(θt+k|y1:t) =

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t) dθt+k−1
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and

π(yt+k|y1:t) =

∫
π(yt+k|θt+k)π(θt+k|y1:t) dθt+k.

Incidentally, these recursions also show that π(θt|y1:t) summarizes the infor-
mation contained in the past observations y1:t, which is sufficient for predicting
Yt+k, for any k > 0.

2.7.2 Kalman filter for dynamic linear models

The previous results solve in principle the filtering and the forecasting prob-
lems; however, in general the actual computation of the relevant conditional
distributions is not at all an easy task. DLMs are one important case where
the general recursions simplify considerably. In this case, using standard re-
sults about the multivariate Gaussian distribution, it is easily proved that
the random vector (θ0, θ1, . . . , θt, Y1, . . . , Yt) has a Gaussian distribution for
any t ≥ 1. It follows that the marginal and conditional distributions are also
Gaussian. Since all the relevant distributions are Gaussian, they are com-
pletely determined by their means and variances. The solution of the filtering
problem for DLMs is given by the celebrated Kalman filter.

Proposition 2.2 (Kalman filter). Consider the DLM specified by (2.4)
(p.41). Let

θt−1|y1:t−1 ∼ N (mt−1, Ct−1).

Then the following statements hold.

(i) The one-step-ahead predictive distribution of θt given y1:t−1 is Gaussian,
with parameters

at = E(θt|y1:t−1) = Gtmt−1,

Rt = Var(θt|y1:t−1) = GtCt−1G
′
t +Wt.

(2.8a)

(ii) The one-step-ahead predictive distribution of Yt given y1:t−1 is Gaussian,
with parameters

ft = E(Yt|y1:t−1) = Ftat,

Qt = Var(Yt|y1:t−1) = FtRtF
′
t + Vt.

(2.8b)

(iii) The filtering distribution of θt given y1:t is Gaussian, with parameters

mt = E(θt|y1:t) = at +RtF
′
tQ

−1
t et,

Ct = Var(θt|y1:t) = Rt −RtF
′
tQ

−1
t FtRt,

(2.8c)

where et = Yt − ft is the forecast error.
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Proof. The random vector (θ0, θ1, . . . , θt, Y1, . . . , Yt) has joint distribution
given by (2.3), where the marginal and conditional distributions involved are
Gaussian. From standard results on the multivariate Normal distribution (see
Appendix A), it follows that the joint distribution of (θ0, θ1, . . . , θt, Y1, . . . , Yt)
is Gaussian, for any t ≥ 1. Consequently, the distribution of any subvector
is also Gaussian, as is the conditional distribution of some components given
some other components. Therefore the predictive distributions and the filter-
ing distributions are Gaussian, and it suffices to compute their means and
variances.

To prove (i), let θt|y1:t−1 ∼ N (at, Rt). Using (2.4c), at and Rt can be
obtained as follows:

at = E(θt|y1:t−1) = E(E(θt|θt−1, y1:t−1)|y1:t−1)

= E(Gtθt−1|y1:t) = Gtmt−1

and

Rt = Var(θt|y1:t−1)

= E(Var(θt|θt−1, y1:t−1)|y1:t−1) + Var(E(θt|θt−1, y1:t−1)|y1:t−1)

= Wt +GtCt−1G
′
t.

To prove (ii), let Yt|y1:t−1 ∼ N (ft, Qt). Using (2.4b), ft and Qt can be
obtained as follows:

ft = E(Yt|y1:t−1) = E(E(Yt|θt, y1:t−1)|y1:t−1) = E(Ftθt|y1:t−1) = Ftat

and

Qt = Var(Yt|y1:t−1)

= E(Var(Yt|θt, y1:t−1)|y1:t−1) + Var(E(Yt|θt, y1:t−1)|y1:t−1)

= Vt + FtRtF
′
t .

Let us prove (iii) next. We can adapt Proposition 2.1(iii) to the present
special case. There, we showed that, in order to compute the filtering distri-
bution at time t, we have to apply the Bayes formula to combine the prior
π(θt|y1:t−1) and the likelihood π(yt|θt). In the DLM case all the distributions
are Gaussian and the problem is the same as the Bayesian inference problem
for the linear model

Yt = Ftθt + vt, vt ∼ N (0, Vt),

with a regression parameter θt following a conjugate Gaussian prior N (at, Rt).
(Here Vt is known.) From the results in Section 1.5 we have that

θt|y1:t ∼ N (mt, Ct),
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where, by (1.10),

mt = at +RtF
′
tQ

−1
t (Yt − Ftat)

and, by (1.9),

Ct = Rt −RtF
′
tQ

−1
t FtRt.

⊓⊔

The Kalman filter allows us to compute the predictive and filtering distri-
butions recursively, starting from θ0 ∼ N (m0, C0), then computing π(θ1|y1),
and proceeding recursively as new data become available.

The conditional distribution of θt|y1:t solves the filtering problem. How-
ever, in many cases one is interested in a point estimate. As we have discussed
in Section 1.3, the Bayesian point estimate of θt given the information y1:t,
with respect to the quadratic loss function L(θt, a) = (θt − a)′H(θt − a), is
the conditional expected value mt = E(θt|y1:t). This is the optimal estimate
since it minimizes the conditional expected loss E((θt − a)′H(θt − a)|y1:t−1)
with respect to a. If H = Ip, the minimum expected loss is the conditional
variance matrix Var(θt|y1:t).

As we noted in the introductory example in Section 2.2, the expression of
mt has the intuitive estimation-correction form “filter mean equals the predic-
tion mean at plus a correction depending on how much the new observation
differs from its prediction”. The weight of the correction term is given by the
gain matrix

Kt = RtF
′
tQ

−1
t .

Thus, the weight of current data point Yt depends on the observation vari-
ance Vt (through Qt) and on Rt = Var(θt|y1:t−1) = GtCt−1G

′
t +Wt.

As an example, consider the local level model (2.5). The Kalman filter
gives

µt|y1:t−1 ∼ N (mt−1, Rt = Ct−1 +W ),

Yt|y1:t−1 ∼ N (ft = mt−1, Qt = Rt + V ),

µt|y1:t ∼ N (mt = mt−1 +Ktet, Ct = KtV ),

where Kt = Rt/Qt and et = Yt− ft. It is worth underlining that the behavior
of the process (Yt) is greatly influenced by the ratio between the two error
variances, r = W/V , which is usually called the signal-to-noise ratio (a good
exercise for seeing this is to simulate some trajectories of (Yt), for different
values of V and W ). This is reflected in the structure of the estimation and
forecasting mechanism. Note that mt = Ktyt + (1 − Kt)mt−1, a weighted
average of yt andmt−1. The weightKt = Rt/Qt = (Ct−1+W )/(Ct−1+W+V )
of the current observation yt is also called adaptive coefficient, and it satisfies
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0 < Kt < 1. For any given C0, if the signal-to-noise r is small, Kt is small and
yt receives little weight. If, at the opposite extreme, V = 0, we have Kt = 1
and mt = yt, that is, the one-step-ahead forecast is given by the most recent
data point. A practical illustration of how different relative magnitudes of
W and V affect the mean of the filtered distribution and the one-step-ahead
forecasts is given on pages 57 and 67.

The evaluation of the posterior variances Ct (and consequently also of Rt
and Qt) using the iterative updating formulae contained in Proposition 2.2,
as simple as it may appear, suffers from numerical instability that may lead to
nonsymmetric and even negative definite calculated variance matrices. Alter-
native, stabler, algorithms have been developed to overcome this issue. Appar-
ently, the most widely used, at least in the Statistics literature, is the square
root filter, which provides formulae for the sequential update of a square root3

of Ct. References for the square root filter are Morf and Kailath (1975) and
Anderson and Moore (1979, Ch. 6)

In our work we have found that occasionally, in particular when the obser-
vational noise has a small variance, even the square root filter incurs numerical
stability problems, leading to negative definite calculated variances. A more
robust algorithm is the one based on sequentially updating the singular value
decomposition4 (SVD) of Ct. The details of the algorithm can be found in
Oshman and Bar-Itzhack (1986) and Wang et al. (1992). Strictly speaking,
the SVD-based filter can be seen as a square root filter: in fact if A = UD2U ′

is the SVD of a variance matrix, then DU ′ is a square root of A. However,
compared to the standard square root filtering algorithms, the SVD-based one
is typically more stable (see the references for further discussion).

The Kalman filter is performed in package dlm by the function dlmFilter.
The arguments are the data, y, in the form of a numerical vector, matrix, or
time series, and the model, mod, an object of class dlm or a list that can
be coerced to a dlm object. For the reasons of numerical stability mentioned
above, the calculations are performed on the SVD of the variance matrices Ct
and Rt. Accordingly, the output provides, for each t, an orthogonal matrix
UC,t and a vector DC,t such that Ct = UC,t diag(D2

C,t)U
′
C,t, and similarly for

Rt.
The output produced by dlmFilter, a list with class attribute

“dlmFiltered,” includes, in addition to the original data and the model (com-
ponents y and mod), the means of the predictive and filtered distributions
(components a and m) and the SVD of the variances of the predictive and
filtered distributions (components U.R, D.R, U.C, and D.C). For convenience,
the component f of the output list provides the user with one-step-ahead
forecasts. The component U.C is a list of matrices, the UC,t above, while D.C

3 We define a square root of variance matrix A to be any square matrix N such
that A = N ′N .

4 See Appendix B for a definition.
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is a matrix containing, stored by row, the vectors DC,t of the SVD of the
Ct’s. Similarly for U.R and D.R. The utility function dlmSvd2var can be used
to reconstruct the variances from their SVD. In the display below we use a
random walk plus noise model with the Nile data (Figure 2.3). The variances
V = 15100 and W = 1468 are maximum likelihood estimates. To set up the
model we use, instead of dlm, the more convenient dlmModPoly, which will be
discussed in Chapter 3.

R code

> NilePoly <- dlmModPoly(order = 1, dV = 15100, dW = 1468)

2 > unlist(NilePoly)

m0 C0 FF V GG W

4 0 10000000 1 15100 1 1468

> NileFilt <- dlmFilter(Nile, NilePoly)

6 > str(NileFilt, 1)

List of 9

8 $ y : Time-Series [1:100] from 1871 to 1970: 1120 1160 ...

$ mod:List of 10

10 ..- attr(*, "class")= chr "dlm"

$ m : Time-Series [1:101] from 1870 to 1970: 0 1118 ...

12 $ U.C:List of 101

$ D.C: num [1:101, 1] 3162 123 ...

14 $ a : Time-Series [1:100] from 1871 to 1970: 0 1118 ...

$ U.R:List of 100

16 $ D.R: num [1:100, 1] 3163 129 ...

$ f : Time-Series [1:100] from 1871 to 1970: 0 1118 ...

18 - attr(*, "class")= chr "dlmFiltered"

> n <- length(Nile)

20 > attach(NileFilt)

> dlmSvd2var(U.C[[n + 1]], D.C[n + 1, ])

22 [,1]

[1,] 4031.035

The last number in the display is the variance of the filtering distribution
of the 100-th state vector. Note that m0 and C0 are included in the output,
which is the reason why U.C has one element more than U.R, and m and U.D

one row more than a and D.R.
As we already noted on page 55, the relative magnitude of W and V is an

important factor that enters the gain matrix, which, in turn, determines how
sensitive the state prior-to-posterior updating is to unexpected observations.
To illustrate the role of the signal-to-noise ratio W/V in the local level model,
we use two models, with a significantly different signal-to-noise ratio, to esti-
mate the true level of the Nile River. The filtered values for the two models
can then be compared.
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Fig. 2.7. Filtered values of the Nile River level for two different signal-to-noise
ratios

R code

> plot(Nile, type=’o’, col = c("darkgrey"),

2 + xlab = "", ylab = "Level")

> mod1 <- dlmModPoly(order = 1, dV = 15100, dW = 755)

4 > NileFilt1 <- dlmFilter(Nile, mod1)

> lines(dropFirst(NileFilt1$m), lty = "longdash")

6 > mod2 <- dlmModPoly(order = 1, dV = 15100, dW = 7550)

> NileFilt2 <- dlmFilter(Nile, mod2)

8 > lines(dropFirst(NileFilt2$m), lty = "dotdash")

> leg <- c("data", paste("filtered, W/V =",

10 + format(c(W(mod1) / V(mod1),

+ W(mod2) / V(mod2)))))

12 > legend("bottomright", legend = leg,

+ col=c("darkgrey", "black", "black"),

14 + lty = c("solid", "longdash", "dotdash"),

+ pch = c(1, NA, NA), bty = "n")

Figure 2.7 displays the filtered levels resulting from the two models. It is
appearent that for model 2, which has a signal-to-noise ratio ten times larger
than model 1, the filtered values tend to follow more closely the data.
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2.7.3 Filtering with missing observations

In applied data analysis it is not infrequent to have to deal with a time series
containing one or more missing observations. In multivariate time series, miss-
ing observations can be of two different types: totally missing and partially
missing observations. The first type is the one that occurs when the observa-
tion vector at some time t is not available. In the second case only some of
the components of the observation vector are not available. This may happen
for example when considering a daily time series of closing prices of a set of
stock indices in several countries: if day t is a holiday in country A but not
country B, then for that day the closing price for the index of country A is not
even defined, i.e., it is missing, while the closing price of the index of country
B is normally recorded. Clearly, for a univariate time series an observation
is either missing or not missing. Luckily, the structure of state space models
is such that missing observations can be easily accomodated in the filtering
recursion. We will first consider the case of totally missing observations. Fol-
lowing R convention, we will consider a missing observation as one having the
special value NA. If the observation at time t is missing, then yt = NA and yt
does not carry any information, so that

π(θt|y1:t) = π(θt|y1:t−1). (2.9)

This means that in this case the filtering distribution at time t is just the one-
step-ahead predictive distribution at time t−1. Operationally, in the filtering
recursion (Proposition 2.1) one has to replace (2.7c) with (2.9). In particular,
for a DLM, since θt|y1:t−1 ∼ N (at, Rt), all one needs to do is to set mt = at
and Ct = Rt. From time t+1 the standard filtering recursion resumes as usual,
provided yt+1 is nonmissing. Note that formally, in a DLM, having yt = NA

is the same as setting Ft = 0 or Vt = ∞. In the first case yt is not linked
to θt in any way, in the second the observation is so noisy as to be totally
unreliable in providing meaningful information about θt. Either way leads to
a gain matrix Kt = 0 and consequently mt = at and Ct = Rt.

Consider now a state space model with m-dimensional observation vec-
tors, m > 1. Suppose that some, but not all, of the components of yt are
missing. The vector yt in this case provides some information about θt, but
all this information is contained in the nonmissing components. Let ỹt be the
vector comprising only the nonmissing components of yt. Then in the filtering
recursion (2.7), π(yt|θt) should be replaced by π(ỹt|θt) and π(yt|y1:t−1) by
π(ỹt|y1:t−1). Let us take a closer look at the DLM case. Denote by m̃t the
dimension of ỹt and consider the m̃t by m matrix Mt obtained by removing
from an m by m identity matrix the rows corresponding to the missing com-
ponents of yt, so that ỹt = Mtyt. The fact that we observed ỹt instead of yt
implies that in updating the prior N (at, Rt) to the posterior N (mt, Ct), the
correct observation equation to consider is

ỹt = F̃tθt + ṽt ṽt ∼ N (0, Ṽt),
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with F̃t = MtFt and Ṽt = MtVtM
′
t . In practice, this implies that when com-

puting the Kalman filter (Proposition 2.2), one has simply to replace Ft and
Vt with F̃t and Ṽt in (2.8b) and (2.8c).

The function dlmFilter accepts data containing NA’s, computing the mo-
ments of the correct filtering distributions.

2.7.4 Smoothing

One of the attractive features of state space models is that estimation and
forecasting can be applied sequentially, as new data become available. How-
ever, in time series analysis one often has observations on Yt for a certain
period, t = 1, . . . , T , and wants to retrospectively reconstruct the behavior of
the system, to study the socio-economic construct or physical phenomenon
underlying the observations. In this case, one can use a backward-recursive
algorithm to compute the conditional distributions of θt given y1:T , for any
t < T , starting from the filtering distribution π(θT |y1:T ) and estimating back-
ward all the states’ history. The result for general state space models is con-
tained in the following proposition.

Proposition 2.3 (Smoothing recursion). For a general state space model
defined by (A.1)-(A.2) (p. 40), the following statements hold.

(i) Conditional on y1:T , the state sequence (θ0, . . . , θT ) has backward transi-
tion probabilities given by

π(θt|θt+1, y1:T ) =
π(θt+1|θt)π(θt|y1:t)

π(θt+1|y1:t)
.

(ii) The smoothing distributions of θt given y1:T can be computed according to
the following backward recursion in t, starting from π(θT |y1:T ):

π(θt|y1:T ) = π(θt|y1:t)
∫

π(θt+1|θt)
π(θt+1|y1:t)

π(θt+1|y1:T ) dθt+1.

Proof. To prove (i), note that θt and Yt+1:T are conditionally independent
given θt+1; moreover, θt+1 and Y1:T are conditionally independent given θt.
(Use the DAG in Figure 2.6 to show this.) Using the Bayes formula, one has

π(θt|θt+1, y1:T ) = π(θt|θt+1, y1:t)

=
π(θt|y1:t)π(θt+1|θt, y1:t)

π(θt+1|y1:t)

=
π(θt|y1:t)π(θt+1|θt)

π(θt+1|y1:t)
.

To prove (ii), marginalize π(θt, θt+1|y1:T ) with respect to θt+1:
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π(θt|y1:T ) =

∫
π(θt, θt+1|y1:T ) dθt+1

=

∫
π(θt+1|y1:T )π(θt|θt+1, y1:T ) dθt+1

=

∫
π(θt+1|y1:T )

π(θt+1|θt)π(θt|y1:t)
π(θt+1|y1:t)

dθt+1

= π(θt|y1:t)
∫
π(θt+1|θt)

π(θt+1|y1:T )

π(θt+1|y1:t)
dθt+1.

⊓⊔

For a DLM, the smoothing recursion can be stated more explicitely in terms
of means and variances of the smoothing distributions.

Proposition 2.4 (Kalman smoother). For a DLM defined by (2.4), if
θt+1|y1:T ∼ N (st+1, St+1), then θt|y1:T ∼ N (st, St), where

st = mt + CtG
′
t+1R

−1
t+1(st+1 − at+1)

St = Ct − CtG
′
t+1R

−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct.

Proof. It follows from the properties of the multivariate Gaussian distribution
that the conditional distribution of θt given y1:T is Gaussian; thus, it suffices
to compute its mean and variance. We have

st = E(θt|y1:T ) = E(E(θt|θt+1, y1:T )|y1:T )

and

St = Var(θt|y1:T ) = Var(E(θt|θt+1, y1:T )|y1:T ) + E(Var(θt|θt+1, y1:T )|y1:T ).

As shown in the proof of Proposition 2.3, θt and Yt+1:T are conditionally
independent given θt+1, so that π(θt|θt+1, y1:T ) = π(θt|θt+1, y1:t). We can
use the Bayes formula to compute this distribution. Note that the likelihood
π(θt+1|θt, y1:t) = π(θt+1|θt) is expressed by the state equation (2.4c), that is,

θt+1|θt ∼ N (Gt+1θt,Wt+1).

The prior is π(θt|y1:t), which is N (mt, Ct). Using (1.10) and (1.9), we find
that

E(θt|θt+1, y1:t) = mt + CtG
′
t+1(Gt+1CtG

′
t+1 +Wt+1)

−1(θt+1 −Gt+1mt)

= mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1)

Var(θt|θt+1, y1:t) = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct,

from which it follows that
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st = E(E(θt|θt+1, y1:t)|y1:T ) = mt + CtG
′
t+1R

−1
t+1(st+1 − at+1)

St = Var(E(θt|θt+1, y1:t)|y1:T ) + E(Var(θt|θt+1, y1:t)|y1:T )

= Ct − CtG
′
t+1R

−1
t+1Gt+1Ct + CtG

′
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct

= Ct − CtG
′
t+1R

−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct,

being E(θt+1|y1:T ) = st+1 and Var(θt+1|y1:T ) = St+1 by assumption. ⊓⊔

The Kalman smoother allows us to compute the distributions of θt|y1:T , start-
ing from t = T − 1, in which case θT |y1:T ∼ N (sT = mT , ST = CT ), and then
proceeding backward to compute the distributions of θt|y1:T for t = T − 2,
t = T − 3, etc. Note that the smoothing recursion depends on the data only
through the filtering and one-step-ahead predictive moments obtained using
the Kalman filter. Therefore, if a time series contains missing observations,
this should be accounted for when performing the filtering recursion, but no
additional adjustment is required in the smoothing recursion.

About the numerical stability of the smoothing algorithm, the same caveat
holds as for the filtering recursions. The formulae of Proposition 2.4 are sub-
ject to numerical instability, and more robust square root and SVD-based
smoothers are available (see Zhang and Li; 1996). The function dlmSmooth

performs the calculations in R, starting from an object of class dlmFiltered,
typically the output produced by dlmFilter. Alternatively, the user can pro-
vide the data and the model, in which case dlmFilter is called internally.
dlmSmooth returns a list with components s, the means of the smoothing dis-
tributions, and U.S, D.S, their variances, given in terms of their SVD. The
following display illustrates the use of dlmSmooth on the Nile data.

R code

> NileSmooth <- dlmSmooth(NileFilt)

2 > str(NileSmooth, 1)

List of 3

4 $ s : Time-Series [1:101] from 1870 to 1970: 1111 1111 ...

$ U.S:List of 101

6 $ D.S: num [1:101, 1] 74.1 63.5 ...

> attach(NileSmooth)

8 > drop(dlmSvd2var(U.S[[n + 1]], D.S[n + 1,]))

[1] 4031.035

10 > drop(dlmSvd2var(U.C[[n + 1]], D.C[n + 1,]))

[1] 4031.035

12 > drop(dlmSvd2var(U.S[[n / 2 + 1]], D.S[n / 2 + 1,]))

[1] 2325.985

14 > drop(dlmSvd2var(U.C[[n / 2 + 1]], D.C[n / 2 + 1,]))

[1] 4031.035
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In the display above, n is 100, the number of observations, so, accounting
for time t = 0, n/2 + 1 corresponds to time 50. Observe that the smoothing
and filtering variances are equal at the end of the observation period – time
T (lines 9 and 11); but the smoothing variance at time 50 (line 13) is much
smaller than the filtering variance at the same time (line 15). This is due
to the fact that in the filtering distribution at time 50 we are conditioning
on the first fifty observations only, while in the smoothing distribution the
conditioning is with respect to all the one hundred observations available.
Note also, incidentally, that the filtering variance at time 50 is the same as the
filtering variance at time 100. It is the case for many constant models that the
filtering variance, Ct, tends to a limiting value as t increases. In very informal
terms, the explanation of this behavior is the following. In DLMs the learning
process about the state of the system occurs in a dynamic environment, that
is, one in which the state changes as one gains information about it. Therefore,
in the updating of the filtering variance from time t − 1 to time t, there are
two conflicting processes going on: on one hand, the observation yt brings
new information about θt−1, but in the meanwhile the state of the system has
changed to θt, with the additional uncertainty carried by wt. This additional
uncertainty is represented by the variance Wt = W , say. If C0 is large –
typically one does not have much confidence in his prior guess about the state
– then the first observations are very informative and their impact on Ct is
much more important than that of the dynamics of the state, resulting in an
overall decrease of the filtering variance. However, as more data are collected,
the impact of one additional observation on the information about the state
of the system decreases and, at some point, it will be exactly balanced by the
loss of information represented by the additional variance W . From that time
on, Ct will essentially stay constant.

The display below illustrates how the variance of the smoothing distri-
bution can be used to construct pointwise probability intervals for the state
components – only one in this example. The plot produced by the code below
is shown in Figure 2.8

R code

> hwid <- qnorm(0.025, lower = FALSE) *

2 + sqrt(unlist(dlmSvd2var(U.S, D.S)))

> smooth <- cbind(s, as.vector(s) + hwid %o% c(-1, 1))

4 > plot(dropFirst(smooth), plot.type = "s", type = "l",

+ lty = c(1, 5, 5), ylab = "Level", xlab = "",

6 + ylim = range(Nile))

> lines(Nile, type = "o", col = "darkgrey")

8 > legend("bottomleft", col = c("darkgrey", rep("black", 2)),

+ lty = c(1, 1, 5), pch = c(1, NA, NA), bty = "n",

10 + legend = c("data", "smoothed level",

+ "95% probability limits"))
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Fig. 2.8. Smoothed values of the Nile River level, with 95% probability limits

As an additional example, we consider a quarterly time series of consumer
expenditure on durable goods in the UK, in 1958£, from the first quarter
of 1957 to the last quarter of 19675. A DLM including a local level plus
a quarterly seasonal component was fitted to the data. This kind of model
will be discussed in Chapter 3; here we focus on filtering and smoothing.
In the model the state vector is 4-dimensional. Two of its components have a
particularly relevant interpretation: the first one can be thought of as the true,
deseasonalized, level of the series; the second is a dynamic seasonal component.
According to the model, the observations are obtained by adding observational
noise to the sum of the first and second component of the state vector, as can
be deduced from the matrix FF. Figure 2.9 shows the data, together with
the deseasonalized filtered and smoothed level. These values are just the first
components of the series of filtered and smoothed state vectors. In addition to
the level of the series, one can also estimate the seasonal component, which is
just the second component of the smoothed or filtered state vector. Figure 2.10
shows the smoothed seasonal component. It is worth stressing that the model
is dynamic, hence the seasonal component is allowed to vary as time goes by.
This is clearly the case in the present example: from an alternating of positive
and negative values at the beginning of the observation period, the series
moves to a two-positive two-negative pattern in the second half. The display
below shows how filtered and smoothed values have been obtained in R, as

5 Source: Hyndman (n.d.).
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Fig. 2.9. Quarterly expenditure on durable goods, with filtered and smoothed level
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well as how the plots were created. The function bdiag is a utility function in
package dlm that creates a block diagonal matrix from the individual blocks,
or from a list containing the blocks.

R code

> expd <- ts(read.table("Datasets/qconsum.dat", skip = 4,

2 + colClasses = "numeric")[, 1],

+ start = c(1957, 1), frequency = 4)

4 > expd.dlm <- dlm(m0 = rep(0,4), C0 = 1e8 * diag(4),

+ FF = matrix(c(1, 1, 0, 0), nr = 1),

6 + V = 1e-3,

+ GG = bdiag(matrix(1),

8 + matrix(c(-1, -1, -1, 1, 0, 0, 0, 1, 0),

+ nr = 3, byrow = TRUE)),

10 + W = diag(c(771.35, 86.48, 0, 0), nr = 4))

> plot(expd, xlab = "", ylab = "Expenditures", type = ’o’,

12 + col = "darkgrey")

> ### Filter

14 > expdFilt <- dlmFilter(expd, expd.dlm)

> lines(dropFirst(expdFilt$m[, 1]), lty = "dotdash")

16 > ### Smooth

> expdSmooth <- dlmSmooth(expdFilt)

18 > lines(dropFirst(expdSmooth$s[,1]), lty = "longdash")

> legend("bottomright", col = c("darkgrey", rep("black", 2)),

20 + lty = c("solid", "dotdash", "longdash"),

+ pch = c(1, NA, NA), bty = "n",

22 + legend = c("data", "filtered level", "smoothed level"))

> ### Seasonal component

24 > plot(dropFirst(expdSmooth$s[, 3]), type = ’o’, xlab = "",

+ ylab = "Expenditure - Seasonal component")

26 > abline(h = 0)

2.8 Forecasting

With y1:t at hand, one can be interested in forecasting future values of the
observations, Yt+k, or of the state vectors, θt+k. For state space models, the
recursive form of the computations makes it natural to compute the one-step-
ahead forecasts and to update them sequentially as new data become available.
This is clearly of interest in applied problems where the data do arrive sequen-
tially, such as in day-by-day forecasting stock prices, or in tracking a moving
target; but one-step-ahead forecasts are often also computed “in-sample”, as
a tool for checking the performance of the model.
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For a DLM, the one-step-ahead predictive distributions, for states and
observations, are obtained as a byproduct of the Kalman filter, as presented
in Proposition 2.2.

In R, the one-step-ahead forecasts ft = E(Yt|y1:t−1) are provided in the
output of the function dlmFilter. Since for each t the one-step-ahead forecast
of the observation, ft, is a linear function of the filtering mean mt−1, the
magnitude of the gain matrix plays the same role in determining how sensitive
ft is to an unexpected observation yt−1 as it did for mt−1. In the case of the
random walk plus noise model this is particularly evident, since in this case
ft = mt−1. Figure 2.11, produced with the code below, contains the one-
step-ahead forecasts obtained from the local level models with the different
signal-to-noise ratios defined in the display on page 57.
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Fig. 2.11. One-step-ahead forecasts for the Nile level using different signal-to-noise
ratios

R code

> a <- window(cbind(Nile, NileFilt1$f, NileFilt2$f),

2 + start = 1880, end = 1920)

> plot(a[, 1], type = ’o’, col = "darkgrey",

4 + xlab = "", ylab = "Level")

> lines(a[, 2], lty = "longdash")

6 > lines(a[, 3], lty = "dotdash")

> leg <- c("data", paste("one-step-ahead forecast, W/V =",
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8 + format(c(W(mod1) / V(mod1),

+ W(mod2) / V(mod2)))))

10 > legend("bottomleft", legend = leg,

+ col = c("darkgrey", "black", "black"),

12 + lty = c("solid", "longdash", "dotdash"),

+ pch = c(1, NA, NA), bty = "n")

To further elaborate on the same example, we note that the signal-to-noise
ratio need not be constant in time. The construction of the Ashwan dam in
1898, for instance, can be expected to produce a major change in the level of
the Nile River. A simple way to incorporate this expected level shift in the
model is to assume a system evolution variance Wt larger than usual (12 times
larger in the display below) for that year and the following one. In this way
the estimated true level of the river will quickly recognize the new regime,
leading in turn to more accurate one-step-ahead forecasts. The code below
illustrates this idea.

R code

> mod0 <- dlmModPoly(order = 1, dV = 15100, dW = 1468)

2 > X <- ts(matrix(mod0$W, nc = 1, nr = length(Nile)),

+ start = start(Nile))

4 > window(X, 1898, 1899) <- 12 * mod0$W

> modDam <- mod0

6 > modDam$X <- X

> modDam$JW <- matrix(1, 1, 1)

8 > damFilt <- dlmFilter(Nile, modDam)

> mod0Filt <- dlmFilter(Nile, mod0)

10 > a <- window(cbind(Nile, mod0Filt$f, damFilt$f),

+ start = 1880, end = 1920)

12 > plot(a[, 1], type = ’o’, col = "darkgrey",

+ xlab="", ylab="Level")

14 > lines(a[, 2], lty = "longdash")

> lines(a[, 3], lty = "dotdash")

16 > abline(v=1898, lty=2)

> leg <- c("data", paste("one-step-ahead forecast -",

18 + c("mod0", "modDam")))

> legend("bottomleft", legend = leg,

20 + col = c("darkgrey", "black", "black"),

+ lty = c("solid", "longdash", "dotdash"),

22 + pch = c(1, NA, NA), bty = "n")

Note (see Figure 2.12) how, using the modified model modDam, the forecast
for the level of the river in 1900 is already around what the new river level
actually is, while for the other model this happens only around 1907. On a



2.8 Forecasting 69

L
e
v
e
l

1880 1890 1900 1910 1920

6
0
0

8
0
0

1
0
0
0

1
2
0
0

data

one−step−ahead forecast − mod0

one−step−ahead forecast − modDam

Fig. 2.12. One-step-ahead forecasts of Nile River level with and without change
point

more technical note, it is instructive to note how we define the time varying
model modDam by adding the components X and JW (lines 6 and 7) to the
constant model mod0.

In many applications one is interested in looking a bit further in the future,
and provide possible scenarios of the behavior of the series for k steps ahead.
We present here the recursive formulae for the means and variances of the
conditional distributions of states and observations at a future time t + k,
given the data up to time t. In view of the Markovian nature of the model,
the filtering distribution at time t acts like an initial distribution for the
future evolution of the model. To be more precise, the joint distribution of
present and future states (θt+k)k≥0, and future observations (Yt+k)k≥1 is that
of a state space model having conditional distributions π(θt+k|θt+k−1) and
π(yt+k|θt+k), and initial distribution π(θt|y1:t). The information about the
future provided by the data is all contained in this distribution. For a DLM, in
particular, since the data are only used to obtain mt, the mean of π(θt|y1:t), it
follows that mt provides a summary of the data that is sufficient for predictive
purposes. You can have a further intuition about that by looking at the DAG
representing the dependence structure among the variables (Figure 2.6). We
see that the path from Y1:t to Yt+k is as in Figure 2.13, showing that the data
Y1:t provide information about θt, which in turn gives information about the
future state evolution up to θt+k and consequently on Yt+k. Of course, as k
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θt −→ θt+1 −→ · · · −→ θt+k
| |
Y1:t Yt+k

Fig. 2.13. Flow of information from Y1:t to Yt+k

gets larger, more uncertainty enters in the system, and the forecasts will be
less and less precise.

Proposition 2.5 provides recursive formulae to compute the forecast dis-
tributions for states and observations for a general state space model.

Proposition 2.5 (Forecasting recursion). For a general state space model
defined by (A.1)-(A.2) (p.40), the following statements hold for any k > 0.

(i) The k-steps-ahead forecast distribution of the state is

π(θt+k|y1:t) =

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t) dθt+k−1.

(ii) The k-steps-ahead forecast distribution of the observation is

π(yt+k|y1:t) =

∫
π(yt+k|θt+k)π(θt+k|y1:t) dθt+k.

Proof. Using the conditional independence properties of the model, we have:

π(θt+k|y1:t) =

∫
π(θt+k, θt+k−1|y1:t) dθt+k−1

=

∫
π(θt+k|θt+k−1, y1:t)π(θt+k−1|y1:t) dθt+k−1

=

∫
π(θt+k|θt+k−1)π(θt+k−1|y1:t) dθt+k−1,

which is (i). The proof of (ii) is again based on the conditional independence
properties of the models. We have that

π(yt+k|y1:t) =

∫
π(yt+k, θt+k|y1:t) dθt+k

=

∫
π(yt+k|θt+k, y1:t)π(θt+k|y1:t) dθt+k

=

∫
π(yt+k|θt+k)π(θt+k|y1:t) dθt+k,

which is (ii). ⊓⊔

For DLMs, Proposition 2.5 takes a more specific form, since all the integrals
can be computed explicitly. However, as is the case for filtering and smoothing,
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since all the forecast distributions are Gaussian, it is enough to compute their
means and variances. Proposition 2.6 provides recursive formulae to compute
them. We need to introduce some notation first. For k ≥ 1, define

at(k) = E(θt+k|y1:t), (2.10a)

Rt(k) = Var(θt+k|y1:t), (2.10b)

ft(k) = E(Yt+k|y1:t), (2.10c)

Qt(k) = Var(Yt+k|y1:t). (2.10d)

Proposition 2.6. For a DLM defined by (2.4), let at(0) = mt and Rt(0) =
Ct. Then, for k ≥ 1, the following statements hold.

(i) The distribution of θt+k given y1:t is Gaussian, with

at(k) = Gt+kat,k−1,

Rt(k) = Gt+kRt,k−1G
′
t+k +Wt+k;

(ii) The distribution of Yt+k given y1:t is Gaussian, with

ft(k) = Ft+kat(k),

Qt(k) = Ft+kRt(k)F
′
t+k + Vt.

Proof. As we have already noted, all conditional distributions are Gaussian.
Therefore, we only need to prove the formulae giving the means and variances.
We proceed by induction. The result holds for k = 1 in view of Proposition 2.2.
For k > 1,

at(k) = E(θt+k|y1:t) = E(E(θt+k|y1:t, θt+k−1)|y1:t)
= E(Gt+kθt+k−1|y1:t) = Gt+kat,k−1,

Rt(k) = Var(θt+k|y1:t) = Var(E(θt+k|y1:t, θt+k−1)|y1:t)
+ E(Var(θt+k|y1:t, θt+k−1)|y1:t)

= Gt+kRt,k−1G
′
t+k +Wt+k,

ft(k) = E(Yt+k|y1:t) = E(E(Yt+k|y1:t, θt+k)|y1:t)
= E(Ft+kθt+k|y1:t) = Ft+kat(k),

Qt(k) = Var(Yt+k|y1:t) = Var(E(Yt+k|y1:t, θt+k)|y1:t)
+ E(Var(Yt+k|y1:t, θt+k)|y1:t)

= Ft+kRt(k)F
′
t+k + Vt+k,

⊓⊔
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Note that the data only enter the predictive distributions through the
mean of the filtering distribution at the time the last observation was taken.
The function dlmForecast computes the means and variances of the predic-
tive distributions of the observations and the states. Optionally, it can be used
to draw a sample of future states and observations. The principal argument
of dlmForecast is an object of class dlmFiltered. Alternatively, it can be a
object of class dlm (or a list with the appropriate named components), where
the components m0 and C0 are interpreted as being the mean and variance of
the state vector at the end of the observation period, given the data, i.e., they
are the mean and variance of the last (most recent) filtering distribution. The
code below shows how to obtain predicted values of the expenditure series
(Figure 2.9, p.65) for the three years following the last observation, together
with a sample from their distribution. Figure 2.14 shows the forecasted and
simulated future values of the series.
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Fig. 2.14. Quarterly expenditure on durable goods: forecasts

R code

> set.seed(1)

2 > expdFore <- dlmForecast(expdFilt, nAhead = 12, sampleNew = 10)

> plot(window(expd, start = c(1964,1)), type = ’o’,

4 + xlim = c(1964,1971), ylim = c(350, 850),

+ xlab = "", ylab = "Expenditures")

6 > names(expdFore)
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[1] "a" "R" "f" "Q"

8 [5] "newStates" "newObs"

> attach(expdFore)

10 > invisible(lapply(newObs, function(x)

+ lines(x, col = "darkgrey",

12 + type = ’o’, pch = 4)))

> lines(f, type = ’o’, lwd = 2, pch = 16)

14 > abline(v = mean(c(time(f)[1], time(expd)[length(expd)])),

+ lty = "dashed")

16 > detach()

2.9 The innovation process and model checking

As we have seen, for DLMs we can compute the one-step-ahead forecasts
ft = E(Yy|y1:t−1), and we defined the forecast error as

et = Yt − E(Yt|y1:t−1) = Yt − ft.

The forecast errors can alternatively be written in terms of the one-step-ahead
estimation errors as follows:

et = Yt − Ftat = Ftθt + vt − Ftat

= Ft(θt − at) + vt.

The sequence (et)t≥1 of forecast errors enjoys some interesting properties, the
most important of which are collected in the following proposition.

Proposition 2.7. Let (et)t≥1 be the sequence of forecast errors of a DLM.
Then the following properties hold.

(i) The expected value of et is zero.
(ii) The random vector et is uncorrelated with any function of Y1, . . . , Yt−1.
(iii) For any s < t, et and Ys are uncorrelated.
(iv) For any s < t, et and es are uncorrelated.
(v) et is a linear function of Y1, . . . , Yt.
(vi) (et)t≥1 is a Gaussian process.

Proof. (i) By taking iterated expected values,

E(et) = E(E(Yt − ft|Y1:t−1)) = 0.

(ii) Let Z = g(Y1, . . . , Yt−1). Then

Cov(et, Z) = E(etZ) = E(E(etZ|Y1:t−1))

= E(E(et|Y1:t−1)Z) = 0.
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(iii) If the observations are univariate, this follows from (ii), taking Z = Ys.
Otherwise, apply (ii) to each component of Ys.

(iv) This follows again from (ii), taking Z = es if the observations are uni-
variate. Otherwise, apply (ii) componentwise.

(v) Since Y1, . . . , Yt have a joint Gaussian distribution, ft = E(Yt|Y1:t−1) is a
linear function of Y1, . . . , Yt−1. Hence, et is a linear function of Y1, . . . , Yt.

(vi) For any t, in view of (v), (e1, . . . , et) is a linear transformation of
(Y1, . . . , Yt), which has a joint Normal distribution. It follows that also
(e1, . . . , et) has a joint Normal distribution. Hence, since all finite-
dimensional distributions are Gaussian, the process (et)t≥1 is Gaussian.

⊓⊔

The forecast errors et are also called innovations. The representation Yt =
ft + et justifies this terminology, since one can think of Yt as the sum of
a component, ft, which is predictable from past observations, and another
component, et, which is independent of the past and therefore contains the
really new information provided by the observation Yt.

Sometimes it may be convenient to work with the so-called innovation
form of a DLM. This is obtained by choosing as new state variables the vectors
at = E(θt|y1:t−1). Then the observation equation is derived from et = Yt−ft =
Yt − Ftat:

Yt = Ftat + et (2.11a)

and, being at = Gtmt−1, where mt−1 is given by the Kalman filter:

at = Gtmt−1 = Gtat−1 +GtRt−1F
′
t−1Q

−1
t−1et;

so, the new state equation is

at = Gtat−1 + w∗
t , (2.11b)

with w∗
t = GtRt−1F

′
t−1Q

−1
t−1et. The system (2.11) is the innovation form of

the DLM. Note that, in this form, the observation errors and the system
errors are no longer independent, that is, the dynamics of the states is no
longer independent of the observations. The main advantage is that in the
innovation form all components of the state vector on which we cannot obtain
any information from the observations are automatically removed. It is thus
in some sense a minimal model.

When the observations are univariate, the sequence of standardized inno-
vations, defined by ẽt = et/

√
Qt, is a Gaussian white noise, i.e., a sequence

of independent identically distributed zero-mean normal random variables.
This property can be exploited to check model assumptions: if the model is
correct, the sequence ẽ1, . . . , ẽt computed from the data should look like a
sample of size t from a standard normal distribution. Many statistical tests,
several of them readily available in R, can be carried out on the standardized
innovations. Such tests fall into two broad categories: those aimed at checking
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Fig. 2.15. Nile River: QQ-plot of standardized innovations

if the distribution of the ẽt’s is standard normal, and those aimed at check-
ing whether the ẽt’s are uncorrelated. We will illustrate the use of some of
these tests in Chapter 3. However, most of the time we take a more informal
approach to model checking, based on the subjective assessment of selected
diagnostic plots. The most useful are, in the opinion of the authors, a QQ-
plot and a plot of the empirical autocorrelation function of the standardized
innovations. The former can be used to assess normality, while the latter re-
veals departures from uncorrelatedness. A time series plot of the standardized
innovations may prove useful in detecting outliers, change points, and other
unexpected patterns.

In R, the standardized innovations can be extracted from an object of
class dlmFiltered using the function residuals. Package dlm also provides
a method function for tsdiag for objects of class dlmFiltered. This function,
modeled after tsdiag.Arima, exctracts the standardized innovations and plots
them, together with their empirical autocorrelation function and the p-values
for Ljung-Box test statistics up to a specific lag (the default is 10). For the
DLM modDam (p.68) used to model Nile River level data, Figure 2.9 shows a
QQ-plot of the standardized innovations, while Figure 2.9 displays the plots
produced by a call to tsdiag. The two figures were obtained with the code
below.
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R code

> qqnorm(residuals(damFilt, sd = FALSE))

2 > qqline(residuals(damFilt, sd = FALSE))

> tsdiag(damFilt)
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Fig. 2.16. Nile River: diagnostic plots produced by tsdiag

For multivariate observations we usually apply the same univariate graph-
ical diagnostic tools component-wise to the innovation sequence. A further
step would be to adopt the vector standardization ẽt = Btet, where Bt is a
p×p matrix such that BtQtB

′
t = I. This makes the components of ẽt indepen-

dent and identically distributed according to a standard normal distribution.
Using this standardization, the sequence ẽ1,1, ẽ1,2 . . . , ẽ1,p, . . . , ẽt,p should look
like a sample of size tp from a univariate standard normal distribution. This
approach, however, is not very popular in applied work and we will not employ
it in this book.
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2.10 Controllability and observability of time-invariant

DLMs

In the engineering literature, DLMs are widely used in control problems; in-
deed, optimal control was one main objective in Kalman’s contributions. See,
for example, Kalman (1961), Kalman et al. (1963), and Kalman (1968). Here,
the interest is in the state of the system, θt, which one wants to regulate by
means of so-called control variables ut. Problems of this nature are clearly
of great relevance in many applied fields, besides engineering; for example, in
economics, the monetary authority might want to regulate the state of macroe-
conomic variables, for example the inflation and the unemployment rates, by
means of monetary instruments ut under its control. A DLM including control
variables will be referred to as a controlled DLM and will be written in the
form

yt = Ftθt + vt,

θt = Gtθt−1 +Htut + wt

where ut is an r-dimensional vector of control variables, i.e., variables whose
value can be regulated by the researcher, in order to obtain a desired level
of the state θt, and Ht is a known p × r matrix; the usual assumptions are
made for the stochastic errors vt and wt. Control problems have been first
studied for deterministic systems (i.e., systems with no stochastic terms vt
and wt); in most applications, however, a further difficulty is the presence
of stochastic errors in the relationship between θt and yt and in the state
evolution. A comprehensive treatment of control problems is beyond the scope
of this book; in this section we will only briefly recall some basic notions,
limiting our attention to the case of a time-invariant controlled DLM, i.e., a
controlled DLM where the matrices Ft, Gt, Vt,Wt, and Ht, are constant over
time:

yt = Fθt + vt,

θt = Gθt−1 +Hut + wt.

Good references are Anderson and Moore (1979), Harvey (1989), Maybeck
(1979), and Jazwinski (1970).

At a basic level, the goal of a control problem is to drive the state of a
DLM from the initial value θ0 to a target value θ∗ in a finite time T , setting
appropriately the control variables u1, . . . , uT . Two issues immediately arise:
the first is that the states of a DLM are not observed directly, so, in particular,
θ0 is not known exactly in general; the second is that, even if θ0 were known,
there is no guarantee that one can drive the system to the desired state θ∗.
Let us take a closer look at the second problem first, considering the ideal
case of a deterministic system equation, i.e., one in which wt = 0 for every t.
The system equation reduces in this case to
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θt = Gθt−1 +Hut (2.12)

Starting at θ0 at time zero and applying (2.12) repeatedly, we have

θ1 = Gθ0 +Hu1,

θ2 = Gθ1 +Hu2 = G2θ0 +GHu1 +Hu2,

...

θT = GT θ0 +

T−1∑

j=0

GjHuT−j .

Therefore, if we want the system to be in state θ∗ at time T , we need to solve
the equation θT = θ∗ with respect to the control variables u1, . . . , uT . More
explicitely, let CT be the p× rT matrix defined by

CT =
[
GT−1H | · · · | GH | H

]
.

Stacking the vectors u1, . . . , uT , we obtain the following system of linear equa-
tions:

CT




u1

...
uT



 = θ∗ −GT θ0. (2.13)

If (2.13) has to have a solution for any arbitrary θ∗ and θ0, then CT must be
of rank p, and vice versa. In other words, a DLM with system equation (2.12)
can be driven from an arbitrary initial state θ0 to another arbitrary state
θ∗ in a finite time T through an appropriate choice of the control variables
u1, . . . , uT if and only if CT has full rank p. Moreover, using elementary linear
algebra arguments, it can be shown that if CT has rank p for some T , then Cp
has rank p. For this reason the matrix Cp is called the controllability matrix
of the DLM, and we will denote it C, without subscript. A DLM is said to be
controllable if its controllability matrix C has full rank p.

The definition of controllability given above can be transported to a stan-
dard time-invariant DLM with system equation

θt = Gθt−1 + wt, wt ∼ N (0,W ). (2.14)

After all, the only difference between (2.12) and (2.14) is that the control
term Hut in the former is replaced by the system noise wt in the latter. To
carry the analogy one step further, we can write the noise as wt = Bηt, where
ηt is an r-dimensional random vector having independent standard normal
components, and B is a full-rank p × r matrix. Note that W = BB′. When
r < p, the rank of W is r and the possible values of wt lie on an r-dimensional
linear subspace of R

p – in this sense we can think of wt as being essentially
r-dimensional, and we can represent it via ηt. We define the controllability
matrix of a DLM with system equation (2.14) to be



2.10 Controllability and observability of time-invariant DLMs 79

C =
[
Gp−1B | · · · | GB | B

]
,

and the DLM to be controllable if its controllability matrix has full rank p.
Note that the decomposition W = BB′ does not identify B uniquely,

since for any orthogonal matrix O of order r, the matrix B̃ = BO provides
the representation W = B̃B̃′. However, the particular choice of B does not
matter. In fact, one can also avoid computing the decomposition W = BB′

altogether. Note that the linear subspace of R
p spanned by the columns of B

is the same as the one spanned by the columns of W . Hence, C and the matrix

CW =
[
Gp−1W | · · · | GW |W

]

have the same rank, although CW has p2 columns instead of rp.
As an example, consider an integrated random walk of order 2 (cf. p. 100),

which is a DLM whose system equation is defined by the two matrices

G =

[
1 1
0 1

]
,

W =

[
0 0
0 σ2

β

]
,

(2.15)

with σ2
β > 0. Here p = 2 and

CW = [GW |W ] =

[
0 σ2

β 0 0

0 σ2
β 0 σ2

β

]
.

Since CW has rank 2, the DLM is controllable.
Clearly for a standard DLM, since the noise (wt) cannot be set by the

observer, the notion of controllability has a different interpretation than in
the case of a controlled DLM. A controllable DLM with system equation
(2.14) is one for which, by effect of the noise sequence (wt), the state vector θt
can reach any point in R

p, no matter what the initial value of the state vector
is. In other words, there are no inaccessible regions for the state of the system.
In the general theory of Markov chains, this property is called irreducibility
of the Markov chain (θt).

Let us turn now to the first issue raised at the beginning of the discussion,
related to the observability of the states. Clearly, if the system or observation
noises are nonzero, there is little hope of determining exactly the value of θt
based solely on the observation yt, or even on a finite number T of observations
yt:t+T−1. Therefore we will focus on the idealized situation of a time-invariant
DLM in which we can set V = 0 and W = 0. The observation and system
equation reduce to

yt = Fθt,

θt = Gθt−1.
(2.16)
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Applying repeatedly (2.16) we obtain

yt = Fθt,

yt+1 = Fθt+1 = FGθt,

...

yt+T−1 = FGT−1θt.

Defining the matrix

OT =





F
FG
...

FGT−1





and stacking the observation vectors, the system above can be written as




yt
...

yt+T−1



 = OT θt.

Therefore, the state θt can be determined from the data yt:t+T−1 if and only
if the previous system of linear equations has a unique solution (in θt). This
is the case if and only if the mT × p matrix OT has rank p. Also in this
case, it can be shown that, if OT has rank p for some T , then Op has rank
p. The matrix Op is called the observability matrix of the given DLM and it
will be denoted by O, without subscript. A time-invariant DLM is said to be
observable if its observability matrix O has full rank p.

Consider again, for example, the 2nd-order integrated random walk whose
system equation is defined by (2.15). The observation matrix for this DLM is

F =
[
1 0
]
.

Therefore the observability matrix is

O =

[
F
FG

]
=

[
1 0
1 1

]
.

This matrix has rank 2, hence the DLM is observable.
In the next section we will link controllability and observability to the

asymptotic behavior of the Kalman filter.

2.11 Filter stability

Consider a time-invariant DLM. As shown in Section 2.7, for any t we have
that
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θt|y1:t−1 ∼ Np(at, Rt),

where at and Rt are given by Proposition 2.2. Note that, if the matrices
F,G, V and W are known, then the covariance matrix Rt = Var(θt|y1:t−1)
does not depend on the data, but only on the initial conditions m0, C0, on
the system matrices F and G, and on the covariance matrices V and W . In
this sense, the asymptotic behavior of Rt is intrinsic to the model, and it can
be studied on the basis of the properties of the matrices F,G, V and W . In
particular, one can study whether the conditional variance of θt given y1:t−1

or y1:t, tends to become stable for t increasing to infinity, forgetting the initial
conditions m0 and C0.

Note that, by substituting the expressions of mt−1, Ct−1, ft−1 in the for-
mulae given by (i) of Proposition 2.2 for at and Rt, the latter can be written
in the form

at = (G−At−1F )at−1 +At−1yt−1,

where we denoted by At−1 = GKt−1 = GRt−1F
′[V + FRt−1F

′]−1 the gain
matrix for the state forecast, and

Rt = GRt−1G
′ −At−1FRt−1G

′ +W. (2.17)

The previous expression, when seen as an equation in the unknown matrix
Rt, is called Riccati equation. Note that in (2.17), At = At(Rt−1). If there
exists a constant positive semi-definite matrix R that satisfies

R = GRG′ −GRF ′[V + FRF ′]−1FRG′ +W (2.18)

(which is called the steady-state (or algebric) Riccati equation), we say that
the DLM has a steady state solution.

In the steady state,
θt|y1:t−1 ∼ Np(at, R),

where
at = (G−AF )at−1 +Ayt, (2.19)

while R = Var(θt|y1:t−1) is time-invariant. In this sense, R represents a bound,
intrinsic to the system, to the information one can get in the state forecast. A
sufficient condition for Rt to approach R as t increases can be given in terms
of the eigenvalues of the matrix G−AF : the Kalman filter is asymptotically
stable if all the eigenvalues of G−AF are in modulus less than one.

Similarly, the filtering distribution is

θt|y1:t ∼ Np(mt, C),

where mt = at + K(yt − Fat−1) is recursively updated, while C = R −
KFR, where K = RF ′[V +FRF ′]−1, is time-invariant, giving a bound to the
information one can get in filtering.

Note that a solution of (2.18) – i.e., a steady state – does not always exist;
and even when a solution is known to exist, it is not simple to show that it
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is unique nor that it is a positive semi-definite matrix. However, it can be
proved (see Anderson and Moore; 1979) that, if the DLM is observable and
controllable, then:

1. For any initial conditions m0, C0, we have Rt → R for t → ∞, and R
satisfies the algebraic Riccati equation (2.18);

2. All the eigenvalues of G − AF are smaller than one in modulus, so the
Kalman filter is asymptotically stable.
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Problems

2.1. Show that

(i) wt and (Y1, . . . , Yt−1) are independent;
(ii) wt and (θ1, . . . , θt−1) are independent;
(iii) vt and (Y1, . . . , Yt−1) are independent;
(iv) vt and (θ1, . . . , θt) are independent.

2.2. Show that a DLM satisfies the conditional independence assumptions A.1
and A.2 of state space models.

2.3. Give an alternative proof of Proposition 2.2, exploiting the independence
properties of the error sequences (see Problem 2.1) and using the state equa-
tion directly:

E(θt|y1:t−1) = E(Gtθt−1 + wt|y1:t−1) = Gtmt−1

Var(θt|y1:t−1) = Var(Gtθt−1 + wt|y1:t−1) = GtCt−1G
′
t +Wt.

Analogously for (ii).

2.4. Give an alternative proof of Proposition 2.6 exploiting the independence
properties of the error sequences (see Problem 2.1) and using the state equa-
tion directly:

at(k) = E(θt+k|y1:t) = E(Gt+kθt+k−1 + wt+k|y1:t) = Gt+kat,k−1,

Rt(k) = Var(θt+k|y1:t) = Var(Gt+kθt+k−1 + wt+k|y1:t)
= Gt+kRt,k−1G

′
t+k +Wt+k

and analogously, from the observation equation:

ft(k) = E(Yt+k|y1:t) = E(Ft+kθt+k + vt+k|y1:t) = Ft+kat(k),

Qt(k) = Var(Yt+k|y1:t) = Var(Ft+kθt+k + vt+k|y1:t)
= Ft+kRt(k)F

′
t+k + Vt+k.

2.5. Plot the following data:

(Yt, t = 1, . . . , 10) = (17, 16.6, 16.3, 16.1, 17.1, 16.9, 16.8, 17.4, 17.1, 17).

Consider the random walk plus noise model

Yt = µt + vt, vt ∼ N(0, 0.25),

µt = µt−1 + wt, wt ∼ N(0, 25),

with V = 0.25, W = 25, and µ0 ∼ N(17, 1).
(a) Compute the filtering states estimates.
(b) Compute the one-step ahead forecasts ft, t = 1, . . . , 10 and plot them,
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together with the observations. Comment briefly.
(c) What is the effect of the observation variance V and of the system variance
W on the forecasts? Repeat the exercise with different choices of V and W .
(d) Discuss the choice of the initial distribution.
(e) Compute the smoothing state estimates and plot them.

2.6. This requires maximum likelihood estimates (see Chapter 4). For the data
and model of Problem 2.5, compute the maximum likelihood estimates of the
variances V and W (since these must be positive, write them as V = exp(u1),
W = exp(u2) and compute the MLE of the parameters (u1, u2)). Then repeat
Problem 2.5, using the MLE of V and W .

2.7. Let Rt,h,k = Cov(θt+h, θt+k|y1:t) and Qt,h,k = Cov(Yt+h, Yt+k|y1:t) for
h, k > 0, so that Rt,k,k = Rt(k) and Qt,k,k = Qt(k), according to definition
(2.10b) and (2.10d).

(i) Show that Rt,h,k can be computed recursively via the formula:

Rt,h,k = Gt+hRt,h−1,k, h > k.

(ii) Show that Qt,h,k is equal to Ft+hRt,h,kF
′
t+k.

(iii) Find explicit formulae for Rt,h,k and Qt,h,k for the random walk plus noise
model.

2.8. Derive the filter formulae for the DLM with intercepts:

vt ∼ N (δt, Vt), wt ∼ N (λt,Wt).
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Model specification

This chapter is devoted to the description of specific classes of DLMs that,
alone or in combinations, are most often used to model univariate or multi-
variate time series. The additive structure of DLMs makes it easy to think
of the observed series as originating from the sum of different components,
a long term trend and a seasonal component, for example, possibly subject
to an observational error. The basic models introduced in this chapter are in
this view elementary building blocks in the hands of the modeler, who has
to combine them in an appropriate way to analyze any specific data set. The
focus of the chapter is the description of the basic models together with their
properties; estimation of unknown parameters will be treated in the following
chapter. For completeness we include in Section 3.1 a brief review of some tra-
ditional methods used for time series analysis. As we will see, those methods
can be cast in a natural way in the DLM framework.

3.1 Classical tools for time series analysis

3.1.1 Empirical methods

There are several forecasting methods that, although originally proposed as
empirical tools with no probabilistic interpretation, are quite popular and
effective. Exponentially weighted moving average (EWMA) is a traditional
method used to forecast a time series. It used to be very popular for forecast-
ing sales and inventory level. Suppose one has observations y1, . . . , yt and one
is interested in predicting yt+1. If the series is non-seasonal and shows no sys-
tematic trend, a reasonable predictor can be obtained as a linear combination
of the past observations in the following form:

ŷt+1|t = λ

t−1∑

j=0

(1 − λ)jyt−j (0 ≤ λ < 1). (3.1)

©  Springer Science + Business Media, LLC 2009
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For t large, the weights (1 − λ)jλ sum approximately to one. From an oper-
ational point of view, (3.1) implies the following updating of the forecast at
time t− 1 when the new data point yt becomes available:

ŷt+1|t = λyt + (1 − λ)ŷt|t−1,

starting from ŷ2|1 = y1. This is also known as exponential smoothing or Holt
point predictor. It can be rewritten as

ŷt+1|t = ŷt|t−1 + λ(yt − ŷt|t−1), (3.2)

enlightening its “forecast-error correction” structure: the point forecast for
yt+1 is equal to the previous forecast ŷt|t−1, corrected by the forecast error
et = (yt − ŷt|t−1) once we observe yt. Notice the similarity between (3.2) and
the state estimate updating recursion given by the Kalman filter for the local
level model (see page 38). At time t, forecasts of future observations are taken
to be equal to the forecast of yt+1; in other words, ŷt+k|t = ŷt+1|t, k = 1, 2, . . . ,
and the forecast function is constant.

Extensions of EWMA exist that allow for a linear forecast function. For
example, the popular Holt linear predictor extends the simple exponential
smoothing to nonseasonal time series that show a local linear trend, decompos-
ing yt as the sum of a local level and a local growth rate—or slope: yt = Lt+Bt.
Point forecasts are obtained by combining exponential smoothing forecasts of
the level and the growth rate:

ŷt+k|t = L̂t+1|t + B̂t+1|t k,

where

L̂t+1|t = λyt + (1 − λ)ŷt|t−1 = λyt + (1 − λ)(L̂t|t−1 + B̂t|t−1)

B̂t+1|t = γ(L̂t+1|t − L̂t|t−1) + (1 − γ)B̂t|t−1.

The above recursive formulae can be rewritten as

L̂t+1|t = ŷt|t−1 + λet, (3.3a)

B̂t+1|t = B̂t|t−1 + λγet, (3.3b)

where et = yt − ŷt|t−1 is the forecast error. Further extensions to include
a seasonal component are possible, such as the popular Holt and Winters
forecasting methods; see, e.g., Hyndman et al. (2008).

Although of some practical utility, the empirical methods described in this
subsection are not based on a probabilistic or statistical model for the observed
series, which makes it impossible to assess uncertainty (about the forecasts,
for example) using standard measures like confidence or probability intervals.
As they stand, these methods can be used as exploratory tools. In fact, they
can also be derived from an underlying DLM, which can in this case be used
to provide a theoretical justification for the method and to derive probability
intervals. For an in-depth treatment along these lines, the reader can consult
Hyndman et al. (2008). Package forecast (Hyndman; 2008) contains functions
that implement the methods described in the book.
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3.1.2 ARIMA models

Among the most widely used models for time series analysis is the class of
autoregressive moving average (ARMA) models, popularized by Box and

Jenkins (see Box et al.; 2008). For nonnegative integers p and q, a univariate
stationary ARMA(p,q) model is defined by the relation

Yt = µ+

p∑

j=1

φj(Yt−j − µ) +

q∑

j=1

ψjǫt−j + ǫt, (3.4)

where (ǫt) is Gaussian white noise with variance σ2
ǫ and the parameters

φ1, . . . , φp satisfy a stationarity condition. To simplify the notation, we as-
sume in what follows that µ = 0. When the data appear to be nonstationary,
one usually takes differences until stationarity is achieved, and then proceeds
fitting an ARMA model to the differenced data. A model for a process whose
dth difference follows an ARMA(p,q) model is called an autoregressive inte-
grated moving average process of order (p, d, q), or ARIMA(p,d,q). The orders
p, q can be chosen informally by looking at empirical autocorrelations and
partial autocorrelations, or using a more formal model selection criterion like
AIC or BIC. Univariate ARIMA models can be fit in R using the function
arima (see Venables and Ripley (2002) for details on ARMA analysis in R).

ARMA models for m-dimensional vector observations are formally defined
by the same formula (3.4), taking (ǫt) to be m-dimensional Gaussian white
noise with variance Σǫ and the parameters φ1, . . . , φp and ψ1, . . . , ψq to be
m ×m matrices satisfying appropriate stationarity restrictions. Although in
principle as simple to define as in the univariate case, multivariate ARMA
models are much harder to deal with than their univariate counterpart, in
particular for what concerns identifiability issues and fitting procedures. The
interested reader can find a thorough treatment of multivariate ARMA models
in Reinsel (1997). Functions for the analysis of multivariate ARMA models in
R can be found in the contributed package dse1 (Gilbert; 2008).

It is possible to represent an ARIMA model, univariate or multivariate, as
a DLM, as we will show in Sections 3.2.5 and 3.3.7. This may be useful for
the evaluation of the likelihood function. However, in spite of the fact that
formally an ARIMA model can be considered a DLM, the philosophy under-
lying the two classes of models is quite different: on the one hand, ARIMA
models provide a black-box approach to data analysis, offering the possibility
of forecasting future observations, but with a limited interpretability of the
fitted model; on the other hand, the DLM framework encourages the analyst
to think in terms of easily interpretable, albeit unobservable, processes—such
as trend and seasonal components—that drive the observed time series. Fore-
casting the individual underlying components of the process, in addition to
the observations, is also possible—and useful in many applications—within
the DLM framework.
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3.2 Univariate DLMs for time series analysis

As we have discussed in Chapter 2, the Kalman filter provides the formu-
lae for estimation and prediction for a completely specified DLM, that is, a
DLM where the matrices Ft, Gt and the covariance matrices Vt and Wt are
known. In practice, however, specifying a model can be a difficult task. A
general approach that works well in practice is to imagine a time series as
obtained by combining simple elementary components, each one capturing a
different feature of the series, such as trend, seasonality, and dependence on
covariates (regression). Each component is represented by an individual DLM,
and the different components are then combined in a unique DLM, producing
a model for the given time series. To be precise, the components are com-
bined in an additive fashion; series for which a multiplicative decomposition
is more appropriate can be modeled using an additive decomposition after a
log transformation. We detail below the additive decomposition technique in
the univariate case, although the same approach carries over to multivariate
time series with obvious modifications.

Consider a univariate series (Yt). One may assume that the series can be
written as the sum of independent components

Yt = Y1,t + · · · + Yh,t, (3.5)

where Yi,t might represent a trend component, Y2,t a seasonal component, and
so on. The ith component Yi,t, i = 1, . . . , h, might be described by a DLM as
follows:

Yi,t = Fi,tθi,t + vi,t, vi,t ∼ N (0, Vi,t),

θi,t = Gi,tθi,t−1 + wi,t, wi,t ∼ N (0,Wi,t),

where the pi-dimensional state vectors θi,t are distinct and the series (Yi,t, θi,t)
and (Yj,t, θj,t) are mutually independent for all i 6= j. The component DLMs
are then combined in order to obtain the DLM for (Yt). By the assumption

of independence of the components, it is easy to show that Yt =
∑h
i=1 Yi,t is

described by the DLM

Yt = Ftθt + vt, vt ∼ N (0, Vt),

θt = Gtθt−1 + wt, wt ∼ N (0,Wt),

where

θt =




θ1,t
...
θh,t



 , Ft = [F1,t| · · · |Fh,t] ,

Gt and Wt are the block diagonal matrices
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Gt =




G1,t

. . .

Gh,t



 , Wt =




W1,t

. . .

Wh,t



 ,

and Vt =
∑j
i=1 Vi,t. In this chapter, with the exception of Section 3.2.6, we

will assume that all the matrices defining a DLM are known; the analysis will
be extended to DLMs with unknown parameters in Chapters 4 and 5.

In R, dlm objects are created by the functions of the family dlmMod*, or
by the general function dlm. DLMs having a common dimension of the obser-
vation vectors can be added together to produce another DLM. For example,
dlmModPoly(2) + dlmModSeas(4) adds together a linear trend and a quar-
terly seasonal component. We start by introducing the families of DLMs that
are commonly used as basic building blocks in the representation (3.5). In
particular, Sections 3.2.1 and 3.2.2 cover trend and seasonal models, respec-
tively. These two component models can be used to carry over to the DLM
setting the classical decomposition “trend + seasonal component + noise” of
a time series.

3.2.1 Trend models

Polynomial DLMs are the models most commonly used for describing the
trend of a time series, where the trend is viewed as a smooth development of
the series over time. At time t, the expected trend of the time series can be
thought of as the expected behavior of Yt+k for k ≥ 1, given the information
up to time t; in other words, the expected trend is the forecast function ft(k) =
E(Yt+k|y1:t). A polynomial model of order n is a DLM with constant matrices
Ft = F and Gt = G, and a forecast function of the form

ft(k) = E(Yt+k|y1:t) = at,0 + at,1k + · · · + at,n−1k
n−1, k ≥ 0 , (3.6)

where at,0, . . . , at,n−1 are linear functions of mt = E(θt|y1:t) and are inde-
pendent of k. Thus, the forecast function is a polynomial of order n − 1 in
k (note that, as we will see, n is the dimension of the state vector and not
the degree of the polynomial). Roughly speaking, any reasonable shape of the
forecast function can be described or closely approximated by a polynomial,
by choosing n sufficiently large. However, one usually thinks of the trend as a
fairly smooth function of time, so that in practice small values of n are used.
The most popular polynomial models are the random walk plus noise model,
which is a polynomial model of order n = 1, and the linear growth model,
that is a polynomial model of order n = 2.

The local level model

The random walk plus noise, or local level model, is defined by the two equa-
tions (2.5) of the previous chapter. As noted there, the behavior of the process
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(Yt) is greatly influenced by the signal-to-noise ratio r = W/V , the ratio be-
tween the two error variances. Figure 3.1 shows some simulated trajectories
of (Yt) and (µt) for different values of the ratio r (see Problem 3.1).
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Fig. 3.1. Trajectories of the random walk plus noise, for different values of the
signal-to-noise ratio. The trajectory of the state µt is shown in gray and is the same
in the four plots

The k-steps-ahead predictive distribution for this simple model is

Yt+k|y1:t ∼ N(mt, Qt(k)) , k ≥ 1 , (3.7)

where Qt(k) = Ct+
∑k
j=1Wt+j+Vt+k = Ct+kW+V . We see that the forecast

function ft(k) = E(Yt,k|y1:t) = mt is constant (as a function of k). For this
reason this model is also referred to as the steady model. The uncertainty on
the future observations is summarized by the variance Qt(k) = Ct + kW +V ,
and we clearly see that it increases as the time horizon t+k gets further away.

The controllability and observability matrices of the model are

C =
[
W 1/2

]
,

O = F = [1],

which are trivially of full rank, as long as W > 0. It follows from the results
of Section 2.11 that the Kalman filter for this model is asymptotically stable,
with Rt, Ct, and the gain matrix Kt converging to limiting values R,C, and
K, respectively. It can be shown (see West and Harrison; 1997, Theorem 2.3)
that
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K =
r

2

(√
1 +

4

r
− 1

)
. (3.8)

It follows that C = KV . This gives an upper bound to the precision attainable
in estimating the current value of µt. Furthermore, we obtain a limit form of
the one-step-ahead forecasts. From (3.7),

ft+1 = E(Yt+1|y1:t) = mt = mt−1 +Kt(Yt −mt−1) = mt−1 +Ktet .

For large t, Kt ≈ K so that, asymptotically, the one-step-ahead forecast is
given by

ft+1 = mt−1 +Ket. (3.9)

A forecast function of the kind (3.9) is used in many popular models for time
series. It corresponds to Holt point predictor, see equation (3.2).

In can be shown that Holt point predictor is optimal if (Yt) is an
ARIMA(0, 1, 1) process. In fact, the steady model has connections with the
popular ARIMA(0,1,1) model. It can be shown (Problem 3.3) that, if Yt is a
random walk plus noise, then the first differences Zt = Yt−Yt−1 are stationary,
and have the same autocorrelation function as an MA(1) model. Furthermore,
being et = Yt −mt−1 and mt = mt−1 +Ktet, we have

Yt − Yt−1 = et +mt−1 − et−1 −mt−2

= et +mt−1 − et−1 −mt−1 +Kt−1et−1

= et − (1 +Kt−1)et−1 .

If t is large, so that Kt−1 ≈ K,

Yt − Yt−1 ≈ et − (1 −K)et−1.

Since the forecast errors are a white noise sequence (see Chapter 2, page 73),
(Yt) is asymptotically an ARIMA(0,1,1) process.

Example — Annual precipitation at Lake Superior

Figure 3.2 shows annual precipitation in inches at Lake Superior, from 1900
to 19861. The series shows random fluctuations about a changing level over
time, with no remarkable trend behavior; thus, a random walk plus noise
model could be tentatively entertained. We suppose here that the evolution
variance W and the observational variance V are known, and we assume that
W is much smaller (0.121) than V (9.465) (so r = 0.0128). In R a local
level model can be set up using the function dlmModPoly with first argument
order=1.

Figure 3.3(a) shows the filtering estimates mt of the underlying level of the
series and Figure 3.3(b) shows the square root of the variances Ct. Recall that

1 Source: Hyndman (n.d.).
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Fig. 3.2. Annual precipitation at Lake Superior

for the local level model Ct has a limiting value as t approaches infinity. The
smoothed states st and square root of the variances St are plotted in Figures
3.3(c) and 3.3(d). The U -shaped behavior of the sequence of variances St
reflects the intuitive fact that the states around the middle of the time interval
spanned by the data are those that can be estimated more accurately.
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Fig. 3.3. (a): Filtered state estimates mt with 90% confidence intervals; (b): Square
root of filtering variances Ct; (c): Smoothed state estimates st with 90% confidence
intervals; (d): Square root of smoothing variances St
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The one-step-ahead forecasts, for the local level model, are ft = mt−1.
The standardized one-step-ahead forecast errors, or standardized innovations,
can be computed in R with a call to the residuals function, which has a
method for dlmFiltered objects. The residuals can be inspected graphically
(Figure 3.4(a)) to check for unusually large values or unexpected patterns—
recall that the standardized innovation process has the distribution of a Gaus-
sian white noise. Two additional very useful graphical tools to detect depar-
tures from the model assumptions are the plot of the empirical autocorrela-
tion function (ACF) of the standardized innovations (Figure 3.4(b)) and their
normal QQ-plot (Figure 3.4(c)). These can be drawn using the standard R
functions acf and qqnorm. By looking at the plots, there does not seem to be
any meaningful departure from the model assumptions.
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Fig. 3.4. (a): Standardized one-step-ahead forecast errors; (b): ACF of one-step-
ahead forecast errors (c): Normal probability plot of standardized one-step-ahead
forecast errors

Formal statistical tests may also be employed to assess model assumptions
via the implied properties of the innovations. For example, the Shapiro–Wilk
test can be used to test the standardized innovations for normality. It is avail-
able in R as shapiro.test. For the standardized innovations from the Lake
Superior precipitation data, the p-value is 0.403, so the null hypothesis of nor-
mally distributed standardized innovations cannot be rejected. The Shapiro–
Wilk normality test is commonly preferred to the Kolmogorov–Smirnov test,
which is also available in R as ks.test, as being more powerful against a
broad range of alternatives. R functions that perform other normality tests are
available in contributed packages fBasics (Wuertz; 2008) and nortest (Gross;
n.d.). For a thorough treatment of normality tests the reader is referred to
D’Agostino and Stephens (1986). To test for lack of serial correlation one can
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use the Ljung and Box test (Ljung and Box; 1978), which is based on the first
k sample autocorrelations, for a prespecified value of k. The test statistic is

Q(k) = n(n+ 2)

k∑

j=1

ρ̂2(j)/(n− j),

where n is the sample size and ρ̂(j) is the sample autocorrelation at lag j,
defined by

ρ̂(j) =

n−j∑

t=1

(ẽt − ¯̃e)(ẽt+j − ¯̃e)
/ n∑

t=1

(ẽt − ¯̃e)2, j = 1, 2, . . . .

What the Ljung–Box test effectively does is test for the absence of serial
correlation up to lag k. Using k = 20, the p-value of the Ljung–Box test
for the standardized innovations of the example is 0.813, confirming that the
standardized innovations are uncorrelated. It is also common to compute the
p-value of the Ljung–Box test for all the values of k up to a maximum, say
10 or 20. The function tsdiag, among other things, does this calculation
and plots the resulting p-values versus k for the residuals of a fitted ARMA
model. Of course, in this case the calculated p-values should only be taken
as an indication since, in addition to the asymptotic approximation of the
distribution of the test statistic for any fixed k, the issue of multiple testing
would have to be addressed if one wanted to draw a conclusion in a formal way.
The display below illlustrates how to obtain in R the standardized innovations
and perform the Shapiro–Wilk and Ljung–Box tests.

R code

> loc <- "http://www.robjhyndman.com/TSDL/roberts/plsuper.dat"

2 > lakeSup <- ts(read.table(loc, skip = 3,

+ colClasses = "numeric"),

4 + start = 1900)

> modLSup <- dlmModPoly(1, dV = 9.465, dW = 0.121)

6 > lSupFilt <- dlmFilter(lakeSup, modLSup)

> res <- residuals(lSupFilt, sd = FALSE)

8 > shapiro.test(res)

10 Shapiro-Wilk normality test

12 data: res

W = 0.9848, p-value = 0.4033

14

> Box.test(res, lag = 20, type = "Ljung")

16

Box-Ljung test

18
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data: res

20 X-squared = 14.3379, df = 20, p-value = 0.813

22 > sapply(1 : 20, function(i)

+ Box.test(res, lag = i, type = "Ljung-Box")$p.value)

24 [1] 0.1552078 0.3565713 0.2980295 0.4508888 0.5829209 0.6718375

[7] 0.7590090 0.8148123 0.8682010 0.8838797 0.9215812 0.9367660

26 [13] 0.9143456 0.9185912 0.8924318 0.7983241 0.7855680 0.7971489

[19] 0.8010898 0.8129607

Exponential smoothing one-step-ahead forecasts can be obtained using the
function HoltWinters. The results for the annual precipitations in Lake Su-
perior are plotted in Figure 3.2.1 (here the smoothing parameter is estimated
as λ = 0.09721). We see that the steady model has, for large t, essentially the
same forecast function as the simple exponential smoothing.
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Fig. 3.5. One-step ahead forecasts

R code

> HWout <- HoltWinters(lakeSup, gamma = 0, beta = 0)

2 > plot(dropFirst(lSupFilt$f), lty = "dashed",

+ xlab = "", ylab = "")

4 > lines(HWout$fitted[, "level"])

> leg <- c("Holt-Winters", "Local level DLM")

6 > legend("topleft", legend = leg, bty = "n",

+ lty = c("solid", "dashed"))
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Linear growth model

The linear growth, or local linear trend model, is defined by (2.6). The state
vector is θt = (µt, βt)

′, where µt is usually interpreted as the local level and βt
as the local growth rate. The model assumes that the current level µt changes
linearly through time and that the growth rate may also evolve. It is thus
more flexible than a global linear trend model. A good exercise, also for this
model, is to simulate trajectories of (Yt, t = 1, . . . , T ), for different values of
V and W (see Problem 3.1).

Denoting mt−1 = (µ̂t−1, β̂t−1)
′, the one-step-ahead point forecasts and the

filtering state estimates are given by

at = Gmt−1 =

[
µ̂t−1 + β̂t−1

β̂t−1

]
(3.10a)

ft = Ft at = µ̂t−1 + β̂t−1, (3.10b)

mt =

[
µ̂t
β̂t

]
= at +Ktet =

[
µ̂t−1 + β̂t−1 + kt1et

β̂t−1 + kt2et

]
. (3.10c)

The forecast function is
ft(k) = µ̂t + kβ̂t,

(see Problem 3.6) which is a linear function of k, so the linear growth model
is a polynomial DLM of order 2.

The controllability matrix of the linear growth model is

C =

[
σµ σβ σµ 0
0 σβ 0 σβ

]
.

The rank of C is two if and only if σβ > 0, in which case the model is control-
lable. The model is always observable, since the observability matrix is always
full-rank:

O =

[
1 0
1 1

]
.

Therefore, assuming that σβ > 0, there are limiting values for Rt, Ct, and
Kt. In particular, the Kalman gain Kt converges to a constant matrix K =
[k1 k2] (see West and Harrison; 1997, Theorem 7.2). Therefore, the asymptotic
updating formulae for the estimated state vector are given by

µ̂t = µ̂t−1 + β̂t−1 + k1 et (3.11)

β̂t = β̂t−1 + k2 et.

Several popular point predictors’ methods use expressions of the form (3.11),
such as the Holt linear predictor (compare with (3.3)) and the Box and Jenk-
ins’ ARIMA(0,2,2) predictor (see West and Harrison; 1997, p. 221 for a dis-
cussion). In fact, the linear growth model is related to the ARIMA(0,2,2)
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process. It can be shown (Problem 3.5) that the second differences of (Yt) are
stationary and have the same autocorrelation function as an MA(2) model.
Furthermore, we can write the second differences zt = Yt − 2Yt−1 + Yt−2 as

zt = et + (−2 + k1,t−1 + k2,t−1)et−1 + (1 − k1,t−2)et−2 (3.12)

(see Problem 3.7). For large t, k1,t ≈ k1 and k2,t ≈ k2, so that the above
expression reduces to

Yt − 2Yt−1 + Yt−2 ≈ et + ψ1et−1 + ψ2et−2

where ψ1 = −2 + k1 + k2 and ψ2 = 1 − k1, which is a MA(2) model. Thus,
asymptotically, the series (Yt) is an ARIMA(0,2,2) process.

Example — Spain annual investment

Consider Spain annual investments from 1960 to 20002, plotted in Figure 3.6.
The time series shows a roughly linear increase, or decrease, in the level,
with a slope changing every few years. In the near future it would not be
unreasonable to predict the level of the series by linear extrapolation, i.e.,
using a linear forecast function. A linear growth model could be therefore
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Fig. 3.6. Spain investments

appropriate for these data. We assume that the variances are known (they
were actually estimated) and are as follows:

2 Source: http://www.fgn.unisg.ch/eumacro/macrodata.



98 3 Model specification

W = diag(102236, 321803), V = 10.

The function dlmModPoly with argument order=2 (which is the default) can
be used to set up the model in R, see display below. Visual inspection of a QQ-
plot and ACF of the standardized innovations (not shown) do not raise any
specific concern about the appropriateness of the model. An alternative model
(an integrated random walk model, in fact, see page 100) that describes the
data almost equally well, with one less parameter, is the linear growth model
with the same V and

W = diag(0, 515939).

R code

> mod1 <- dlmModPoly(dV = 10, dW = c(102236, 321803))

2 > mod1Filt <- dlmFilter(invSpain, mod1)

> fut1 <- dlmForecast(mod1Filt, n = 5)

4 > mod2 <- dlmModPoly(dV = 10, dW = c(0, 515939))

> mod2Filt <- dlmFilter(invSpain, mod2)

6 > fut2 <- dlmForecast(mod2Filt, n = 5)

Figure 3.6 shows, together with the data, one-step-ahead forecasts and five
years forecasts for the two models under consideration. It is clear that the
forecasts, both in sample and out of sample, produced by the two models
are very close. The standard deviations of the one-step-ahead forecasts, which
can be obtained as residuals(mod1Filt)$sd, are also fairly close, 711 for the
first model versus 718 for the second at time t = 41 (year 2000). The reader
can verify that the difference in the forecast variances (fut1$Q and fut2$Q)
grows with the number of steps ahead to be predicted. Several measures of
forecasting accuracy can be used to compare the two models more formally.
Commonly used criteria are the mean absolute deviation (MAD), the mean
square error (MSE), and the mean absolute percentage error (MAPE), defined
respectively by the following formulae:

MAD =
1

n

n∑

t=1

|et|,

MSE =
1

n

n∑

t=1

e2t ,

MAPE =
1

n

n∑

t=1

|et|
yt
.

For the two models under consideration and the Spain investment data, none
of the two stands out as a clear winner, as the following display shows.

R code

> mean(abs(mod1Filt$f - invSpain))

2 [1] 623.5682
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> mean(abs(mod2Filt$f - invSpain))

4 [1] 610.2621

> mean((mod1Filt$f - invSpain)^2)

6 [1] 655480.6

> mean((mod2Filt$f - invSpain)^2)

8 [1] 665296.7

> mean(abs(mod1Filt$f - invSpain) / invSpain)

10 [1] 0.08894788

> mean(abs(mod2Filt$f - invSpain) / invSpain)

12 [1] 0.08810524

An additional statistic that can be used to assess the forecasting performance
of a specific model is Theil’s U (Theil; 1966). This compares the MSE of the
model with the MSE of the trivial “no-change” model that predicts the next
observation to be the same as the current one. Formally, the definition is the
following:

U =

√ ∑n
t=2(yt − ft)2∑n
t=2(yt − yt−1)2

.

A value of U less than one means that the entertained model produces better
forecasts, on average, than the no-change model. For the Spain investment
data the results are reported below.

R code

> sqrt(sum((mod1Filt$f - invSpain)[-(1:5)]^2) /

2 + sum(diff(invSpain[-(1:4)])^2))

[1] 0.9245

4 > sqrt(sum((mod2Filt$f - invSpain)[-(1:5)]^2) /

+ sum(diff(invSpain[-(1:4)])^2))

6 [1] 0.9346

We left out the first five observations to give the Kalman filter the time to
adapt to the data—remember that the prior variance C0 is very large. In this
example, both models perform better than the no-change model, with about
a 7% reduction in the square root of the MSE.

nth order polynomial model

The local level and the linear growth models are special cases of the nth
order polynomial model. The general nth order polynomial model has an n-
dimensional state space and is described by the matrices
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F = (1, 0, . . . , 0) (3.13a)

G =





1 1 0 . . . 0
0 1 1 0 . . . 0
...

. . .
...

0 . . . 0 1 1
0 . . . 0 1




(3.13b)

W = diag(W1, . . . ,Wn). (3.13c)

In terms of its components, the model can be written in the form






Yt = θt,1 + vt

θt,j = θt−1,j + θt−1,j+1 + wt,j j = 1, . . . , n− 1

θt,n = θt−1,n + wt,n.

(3.14)

So, for j = 2, . . . , n, the jth component of the state vector at any time t
represents, up to a random error, the increment of the (j − 1)st component
during the next time interval, while the first component represents the mean
response, or the level of the series. The forecast function, ft(k), is a polynomial
of degree n− 1 in k (Problem 3.6).

The special case that is obtained by setting W1 = · · · = Wn−1 = 0 is
called integrated random walk model. The mean response function satisfies
for this model the relation ∆nµt = ǫt for some white noise sequence (ǫt).
The form of the forecast function is again polynomial. With respect to the
nth order polynomial model, the integrated random walk model has n − 1
fewer parameters, which may improve the precision attainable in estimating
unknown parameters. On the other hand, having only one degree of freedom
in the system noise, it may be slower in adapting to random shocks to the
state vector, which may reflect in a lower accuracy in the forecasts.

3.2.2 Seasonal factor models

In this section and the next we present two ways of modeling a time series
that shows a cyclical behavior, or “seasonality”: the seasonal factor model,
covered below, and the Fourier-form seasonal model, treated in the following
section.

Suppose that we have quarterly data (Yt, t = 1, 2, . . .), for examples on the
sales of a store, which show an annual cyclic behavior. Assume for simplicity
that the series has zero mean: a non-zero mean, or a trend component, can
be modeled separately, so for the moment we consider the series as purely
seasonal. We might describe the series by introducing seasonal deviations from
the mean, expressed by different coefficients αi for the different quarters,
i = 1, . . . , 4. So, if Yt−1 refers to the first quarter of the year and Yt to the
second quarter, we assume
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Yt−1 = α1 + vt−1 (3.15)

Yt = α2 + vt

and so on. This model can be written as a DLM as follows. Let θt−1 =
(α1, α4, α3, α2)

′ and Ft = F = (1, 0, 0, 0). Then the observation equation
of the DLM is given by

Yt−1 = Fθt−1 + vt−1,

which corresponds to (3.15). The state equation must “rotate” the components
of θt−1 into the vector θt = (α2, α1, α4, α3)

′, so that Yt = Fθt + vt = α2 + vt.
The required permutation of the state vector can be obtained by a permuta-
tion matrix G so defined:

G =





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



 .

Then the state equation can be written as

θt = Gθt−1 + wt = (α2, α1, α4, α3)
′ + wt.

In the static seasonal model, wt is degenerate on a vector of zeros (i.e.,Wt = 0)
More generally, the seasonal effects might change in time, so thatWt is nonzero
and has to be carefully specified.

In general, a seasonal time series with period s can be modeled through
an s-dimensional state vector θt of seasonal deviations, by specifying a DLM
with F = (1, 0, . . . , 0) and G given by a s by s permutation matrix. Iden-
tifiability constraints have to be imposed on the seasonal factors α1, . . . , αs.
A common choice is to impose that they sum to zero,

∑s
j=1 αj = 0. The

linear constraint on the s seasonal factors implies that there are effectively
only s− 1 free seasonal factors, and this suggests an alternative, more parsi-
monious representation that uses an (s − 1)-dimensional state vector. In the
previous example of quarterly data, one can consider θt−1 = (α1, α4, α3)

′ and
θt = (α2, α1, α4)

′, with F = (1, 0, 0). To go from θt−1 to θt, assuming for the
moment a static model without system evolution errors and using the con-
straint

∑4
i=1 αi = 0, one has to apply the linear transformation given by the

matrix

G =




−1 −1 −1
1 0 0
0 1 0



 .

In general, for a seasonal model with period s, one can consider an (s−1)-
dimensional state space, with F = (1, 0, . . . , 0) and
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G =





−1 −1 . . . −1 −1
1 0 0 0
0 1 0 0

. . .

0 0 1 0




.

A dynamic variation in the seasonal components may be introduced via a
system evolution error with variance W = diag(σ2

w, 0, . . . , 0).
A seasonal factor DLM can be specified in R using the function dlmModSeas.

For example, a seasonal factor model for quarterly data, with σ2
w = 4.2 and

observation variance V = 3.5 can be specified as follows.

R code

mod <- dlmModSeas(frequency = 4, dV = 3.5, dW = c(4.2, 0, 0))

3.2.3 Fourier form seasonal models

Any discrete-time periodic function having period s is characterized by the
values it takes at time t = 1, 2, . . . , s: if gt is such a function, with gt = αt,
t = 1, . . . , s, then after time s the values of gt simply repeat themselves, and
we have gs+1 = α1, gs+2 = α2 and so forth. Therefore, we can associate the
periodic function gt to the s-dimensional vector α = (α1, . . . , αs)

′. We can
think of α as a linear combination of basis vectors:

α =

s∑

j=1

αjuj ,

where uj is the s-dimensional vector having jth component equal one and
all the remaining components equal zero. The set {u1, . . . , us} is customarily
referred to as the canonical basis of R

s; clearly, any vector in R
s has a unique

representation as a linear combination of basis vectors. For our purposes,
however, this representation is not very useful, since it does not allow us
to distinguish between smooth, less smooth, and not-so-smooth functions.
Fortunately, there is an alternative basis of R

s that allows this finer distinction
to be made. To begin with, suppose that s is even. In practice, this is the most
commonly encountered case—think of quarterly or montly data. Define the
Fourier frequencies

ωj =
2πj

s
, j = 0, 1, . . . ,

s

2

and consider the following s dimensional vectors:
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e0 = (1, 1, . . . , 1)′

c1 = (cosω1, cos 2ω1, . . . , cos sω1)
′

s1 = (sinω1, sin 2ω1, . . . , sin sω1)
′

...

cj = (cosωj , cos 2ωj , . . . , cos sωj)
′

sj = (sinωj , sin 2ωj , . . . , sin sωj)
′

...

cs/2 = (cosωs/2, cos 2ωs/2, . . . , cos sωs/2)
′.

(3.16)

Note that cs/2 = (−1, 1,−1, . . . ,−1, 1)′ and we do not consider ss/2 since
this would be a vector of zeros. The number of vectors defined in (3.16) is
1 + 2( s2 − 1) + 1 = s and, by using standard trigonometric identities, one can
show that these vectors are orthogonal. In turn, this implies that every vector
in R

s has a unique representation as a linear combination of e0, . . . , cs/2, which
we will write as

α = a0e0 +

s/2−1∑

j=1

(
ajcj + bjsj

)
+ as/2cs/2. (3.17)

There are two distinct advantages in using this basis of R
s over the canonical

one. The first is that the extension of the basis vectors to periodic functions
can be obtained naturally in terms of the trigonometric functions involved in
their definition. Consider for example sj : for any 1 ≤ t ≤ s, its tth component
is sj(t) = sin(2πtj/s). To extend sj to a periodic function we must define
sj(t+ ks) = sj(t). But, since

sin
2π(t+ ks)j

s
= sin

(
2πtj

s
+ 2πkj

)
= sin

2πtj

s
,

the extension of sj(t) to any integer t is achieved simply by plugging the ar-
gument t into the trigonometric expression defining sj . The second and more
substantial advantage of using this new basis composed by trigonometric func-
tions is that the basis vectors now go from smoothest to roughest: at the two
extremes we have the constant vector e0, which corresponds to a constant
periodic function, and the maximally oscillating cs/2, which corresponds to a
periodic function bouncing back and forth between -1 and 1. To understand
what happens in between these two extremes, let us focus on the cj ’s; similar
considerations can be made regarding the sj ’s. For a fixed j, as t goes from
1 to s, 2πtj/s increases monotonically from 2πj/s to 2πj. Furthermore, the
trigonometric functions sine and cosine are periodic, with period 2π. So, con-
sidering j = 1, the values 2πt/s, t = 1, . . . , s, consist of s equally spaced points
in the interval (0, 2π]. For j = 2, 2πtj/s runs up to 4π, spanning two times the
basic period 2π of the cosine function and therefore being twice as wiggling.
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In general, for any j, the argument 2πtj/s spans the interval (0, 2πj] and the
corresponding cosine function cj goes through a complete period exactly j
times as t goes from 1 to s. Therefore, a higher value of j corresponds to a
rougher cj , in the sense that the function displays more frequent oscillations.
To illustrate this feature for s = 12, Figure 3.7 shows, from top to bottom,
the graphs of c1, s1, . . . , c5, s5, c6.

It is convenient to group together in the representation (3.17) the terms
involving cj and sj , which are functions oscillating with the same frequency.
For j = 1, . . . , s/2, define the jth harmonic of gt by

Sj(t) = aj cos(tωj) + bj sin(tωj), (3.18)

where we take bs/2 = 0. Moreover, we will assume that a0 = 0, since in the
DLM framework—as in the classical time series decomposition—the mean
is typically modelled separately from the seasonal component. Note that, in
view of the orthogonality of the basis vectors, the sum of any harmonic over
an entire period is zero. With these assumptions, we can write

gt =

s/2∑

j=1

Sj(t). (3.19)

The last step, in order to use in the context of DLMs the representation
of seasonality in terms of harmonics discussed above, is to study, for a fixed
j, the temporal dynamics of Sj(t). The evolution of Sj from time t to time
t+ 1 is given by

Sj(t) 7−→ Sj(t+ 1) = aj cos
(
(t+ 1)ωj

)
+ bj sin

(
(t+ 1)ωj

)
.

If j < s/2, it is easy to realize that, from the knowledge of Sj(t) alone, i.e.,
without knowing aj and bj individually, it is impossible to determine the value
of Sj(t + 1). However, if in addition to Sj(t) one also knows the conjugate
harmonic

S∗
j (t) = −aj sin(tωj) + bj cos(tωj),

then one can explicitely compute Sj(t+ 1) and also S∗
j (t+ 1). In fact,

Sj(t+ 1) = aj cos
(
(t+ 1)ωj

)
+ bj sin

(
(t+ 1)ωj

)

= aj cos(tωj + ωj) + bj sin(tωj + ωj)

= aj
(
cos(tωj) cosωj − sin(tωj) sinωj

)

+ bj
(
sin(tωj) cosωj + cos(tωj) sinωj

)

=
(
aj cos(tωj) + bj sin(tωj)

)
cosωj

+
(
− aj sin(tωj) + bj cos(tωj)

)
sinωj

= Sj(t) cosωj + S∗
j (t) sinωj

(3.20a)

and



106 3 Model specification

S∗
j (t+ 1) = −aj sin

(
(t+ 1)ωj

)
+ bj cos

(
(t+ 1)ωj

)

= −aj
(
sin(tωj) cosωj + cos(tωj) sinωj

)

+ bj
(
cos(tωj) cosωj − sin(tωj) sinωj

)

=
(
− aj sin(tωj) + bj cos(tωj)

)
cosωj

−
(
aj cos(tωj) + bj sin(tωj)

)
sinωj

= −Sj(t) sinωj + S∗
j (t) cosωj .

(3.20b)

The two equations (3.20) can be combined in the matrix equation

[
Sj(t+ 1)
S∗
j (t+ 1)

]
=

[
cosωj sinωj
− sinωj cosωj

] [
Sj(t)
S∗
j (t)

]
.

In this form, the jth harmonic fits naturally in the DLM framework by
considering the bivariate state vector

(
Sj(t), S

∗
j (t)

)′
with evolution matrix

Hj =

[
cosωj sinωj
− sinωj cosωj

]

and observation matrix F = [1 0]. The case j = s/2 is even simpler, since

Ss/2(t+ 1) = cos
(
(t+ 1)π

)
= − cos(tπ) = −Ss/2(t).

That is, Ss/2 simply changes sign at every unit time increment. As a DLM,
we can consider this to correspond to a univariate state vector with evolution
matrix Hs/2 = [−1] and observation matrix F = [1].

The DLM representations of the different harmonics can be combined to
obtain back (3.19). To this aim, we can consider the state vector

θt =
(
S1(t), S

∗
1 (t), . . . , S s

2−1(t), S
∗
s
2−1(t), S s

2
(t)
)′
, t = 0, 1, . . . ,

together with the evolution matrix

G = blockdiag(H1, . . . ,H s
2
)

and observation matrix
F = [1 0 1 0 . . . 0 1].

Setting to zero all the evolution and observation variances, the above defini-
tions give a DLM representation of a periodic seasonal component. Non-zero
evolution variances may be included to account for a stochastically evolving
seasonal component. In this case, strictly speaking, the seasonal component
will no longer be periodic. However, the forecast function will, see Problem 3.9.
In any case,

θ0 =
(
a1, b1, . . . , a s

2−1, b s
2−1, a s

2

)′
.

By appropriately selecting θ0, the representation above can give just any zero-
mean periodic function of period s. In most applications, however, we want to
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Fig. 3.8. Harmonics of average monthly temperature at Nottingham

model a fairly smooth seasonal component. This can be achieved by discarding
a number of high-frequency harmonics and retaining only a few of the first
harmonics, which are those that oscillate more slowly (cf. Figure 3.7). In
this way we have a parsimonious representation of a periodic component, not
available when using the seasonal factors of Section 3.2.2.

To create in R the representation of a Fourier-form seasonal DLM, we can
use the function dlmModTrig, specifying the period via the argument s. In
addition, we may specify the number of harmonics to retain in the DLM via
the argument q. To illustrate how the Fourier form of a seasonal component
can be used to obtain a more parsimonius model, consider the data set of
average monthly temperatures at Nottingham, nottem. As a first model, we
use a full 12-month static seasonal component added to a local level. The non-
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zero variances were estimated by maximum likelihood. Figure 3.8 shows the
six harmonics of the seasonal component over a complete 12-month period.

R code

> mod1 <- dlmModTrig(s = 12, dV = 5.1118, dW = 0) +

2 + dlmModPoly(1, dV = 0, dW = 81307e-3)

> smoothTem1 <- dlmSmooth(nottem, mod1)

4 > plot(ts(smoothTem1$s[2 : 13, c(1, 3, 5, 7, 9, 11)],

+ names = paste("S", 1 : 6, sep = "_")),

6 + oma.multi = c(2, 0, 1, 0), pch = 16, nc = 1,

+ yax.flip = TRUE, type = ’o’, xlab = "", main = "")

From the plot we can see that the harmonics after the second have a relatively
small amplitude. In view of this, we can try a model containing only the first
two harmonics, in addition to the local level representing the process mean.
As the code below shows, the MAPE of this reduced model is slightly lower
than that of the full model: dropping seven components from the state vector
did not affect much the prediction capability of the model—in fact it helped
improving it.

R code

> mod2 <- dlmModTrig(s = 12, q = 2, dV = 5.1420, dW = 0) +

2 + dlmModPoly(1, dV = 0, dW = 81942e-3)

> mean(abs(residuals(dlmFilter(nottem, mod1),

4 + type = "raw", sd = FALSE)) / nottem)

[1] 0.08586188

6 > mean(abs(residuals(dlmFilter(nottem, mod2),

+ type = "raw", sd = FALSE)) / nottem)

8 [1] 0.05789139

An explanation for the lower MAPE of the reduced model is that the higher-
order harmonics are basically used to fit the noise in the data, and this fitted
noise does not generalize well when it comes to making out-of-sample predic-
tions, in particular one-step-ahead predictions.

So far in our discussion of periodic functions we have considered an even
period. The case of an odd period can be treated in essentially the same way.
The only difference is in the last harmonic which, instead of being a cosine
function only, also has a sine component and has therefore the same form as
the previous ones. More specifically, a zero-mean periodic function having odd
period s has the representation

α(t) =

(s−1)/2∑

j=1

Sj(t),
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where the Sj are defined by (3.18). Each harmonic, including the last, has
two degrees of freedom, expressed by the coefficients aj and bj . The DLM
representation parallels the one outlined above in the even-period case, with
the difference that the last diagonal block of the evolution matrix G is the
2 × 2 matrix

H s−1
2

=

[
cosω s−1

2
sinω s−1

2

− sinω s−1
2

cosω s−1
2

]

and the observation matrix is

F = [1 0 1 0 . . . 0 1 0].

3.2.4 General periodic components

The treatment of seasonal components given in the previous section is per-
fectly appropriate when the period of the process underlying the observations
is a multiple of the time between consecutive observations. However, for many
natural phenomena this is not the case. Consider, for example, the data set
of monthly sunspots available in R as sunspots. A plot of the data reveals
very clearly some kind of periodicity of about eleven years, but it would be
naif to think that the period consists of an integer number of months. After
all, a month is a totally arbitrary time scale to measure something happening
on the Sun. In cases like this, it is useful to think of an underlying periodic
countinuous-time process, g(t), observed at discrete time intervals. A periodic
function defined on the real line can be expressed as a sum of harmonics simi-
lar to (3.17) or (3.19). In fact, it can be proved that for a continuous periodic
function g(t) one has the representation

g(t) = a0 +

∞∑

j=1

(
aj cos(tωj) + bj sin(tωj)

)
, (3.21)

where ωj = jω and ω is the so-called fundamental frequency. The fundamental
frequency is related to τ , the period of g(t), by the relationship τω = 2π. In
fact, it is easy to see that, if t2 = t1 + kτ for some integer k, then

t2ωj = t2jω = (t1 + kτ)jω = t1jω + kjτω = t1ωj + kj · 2π

and, therefore, g(t2) = g(t1). Assuming, as we did in Section 3.2.3, that a0 = 0,
that is, that g(t) has mean zero, and defining the jth harmonic of g(t) to be

Sj(t) = aj cos(tωj) + bj sin(tωj),

we can rewrite (3.21) as

g(t) =

∞∑

j=1

Sj(t). (3.22)
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The discrete-time evolution of the jth harmonic from time t to time t + 1
can be cast as a DLM in the same way as we did in Section 3.2.3. We just
have to consider the bivariate state vector

(
Sj(t), S

∗
j (t)

)′
, where S∗

j (t) is the
conjugate harmonic defined by

S∗
j (t) = −aj sin(tωj) + bj cos(tωj),

and the evolution matrix

Hj =

[
cosωj sinωj
− sinωj cosωj

]
.

Then we have [
Sj(t+ 1)
S∗
j (t+ 1)

]
= Hj

[
Sj(t)
S∗
j (t)

]
.

A nonzero evolution error may be added to this evolution equation to account
for a stochastically varying harmonic.

Clearly, in a DLM we cannot keep track of the infinitely many harmonics
in the representation (3.22): we have to truncate the infinite series on the RHS
to a finite sum of, say, q terms. As already seen in the previous section, the
higher-order harmonics are those oscillating more rapidly. Thus, the decision
of truncating the infinite sum in (3.22) can be interpreted as a subjective
judgement about the degree of smoothness of the function g(t). In practice it
is not uncommon to model the periodic function g(t) using only one or two
harmonics.

introduced in Section 3.2.3 may be used. The user needs to specify the period
via the argument tau and the number of harmonics, q. Alternatively, the fun-
damental frequency ω can be specified, via the argument om, instead of the
period τ . The display below shows how to specify a two-harmonic stochas-
tic periodic component added to a local level for the sunspots data, on the
square root scale. The period τ = 130.51 as well as the nonzero variances were
estimated by maximum likelihood.

R code

> mod <- dlmModTrig(q = 2, tau = 130.51, dV = 0,

2 + dW = rep(c(1765e-2, 3102e-4), each = 2)) +

+ dlmModPoly(1, dV = 0.7452, dW = 0.1606)

The model can be used, for example, to smooth the data, extracting the
level (the “signal”) from the data. Figure 3.9, obtained with the code below,
shows the data, the level, and the general stochastic periodic component.
The level is the last (fifth) component of the state vector, while the periodic
component is obtained by adding the two harmonics of the model (first and
third components).

To set up in R a general periodic DLM component, the function dlmModTrig
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Fig. 3.9. Monthly sunspot numbers

R code

> sspots <- sqrt(sunspots)

2 > sspots.smooth <- dlmSmooth(sspots, mod)

> y <- cbind(sspots,

4 + tcrossprod(dropFirst(sspots.smooth$s[, c(1, 3, 5)]),

+ matrix(c(0, 0, 1, 1, 1, 0), nr = 2,

6 + byrow = TRUE)))

> colnames(y) <- c("Sunspots", "Level", "Periodic")

8 > plot(y, yax.flip = TRUE, oma.multi = c(2, 0, 1, 0))
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3.2.5 DLM representation of ARIMA models

Any ARIMA model can be expressed as a DLM. More precisely, for any
ARIMA process, it is possible to find a DLM whose measurement process
(Yt) has the same distribution as the given ARIMA. The state space with its
dynamics is not uniquely determined: several representations have been pro-
posed in the literature and are in use. Here we will present only one of them,
which is probably the most widely used. For alternative representations the
reader can consult Gourieroux and Monfort (1997).

Let us start with the stationary case. Consider the ARMA(p,q) process
defined by (3.4), assuming for simplicity that µ is zero. The defining relation
can be written as

Yt =

r∑

j=1

φjYt−j +

r−1∑

j=1

ψjǫt−j + ǫt,

with r = max{p, q + 1}, φj = 0 for j > p and ψj = 0 for j > q. Define the
matrices

F =
[
1 0 . . . 0

]
,

G =





φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
. . .

φr−1 0 . . . 0 1
φr 0 . . . 0 0




,

R =
[
1 ψ1 . . . ψr−2 ψr−1

]′
.

(3.23)

If one introduces an r-dimensional state vector θt = (θ1,t, . . . , θr,t)
′, then the

given ARMA model has the following DLM representation:
{

Yt = Fθt,

θt+1 = Gθt +Rǫt.
(3.24)

This is a DLM with V = 0 and W = RR′σ2, where σ2 is the variance of
the error sequence (ǫt). To verify this equivalence, note that the observation
equation gives yt = θ1,t and the state equation is

θ1,t = φ1 θ1,t−1 + θ2,t−1 + ǫt

θ2,t = φ2 θ1,t−1 + θ3,t−1 + ψ1ǫt

...

θr−1,t = φr−1 θ1,t−1 + θr,t−1 + ψr−2 ǫt

θr,t = φr θ1,t−1 + ψr−1 ǫt.

(3.25)

Substituting the expression of θ2,t−1, obtained from the second equation, in
the first equation, we have
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θ1,t = φ1θ1,t−1 + φ2θ1,t−2 + θ3,t−2 + ψ1ǫt−1 + ǫt

and proceeding by successive substitutions we eventually get

θ1,t = φ1θ1,t−1 + · · · + φrθ1,t−r + ψ1ǫt−1 + · · · + ψr−1ǫt−r−1 + ǫt .

Recalling that r = max{p, q + 1} and yt = θ1,t we see that this is the ARMA
model (3.4).

The DLM representation (3.24) might appear quite artificial. To develop
a better understanding, let us look at the simpler case of pure autoregressive
models, for example the AR(2) model

Yt = φ1Yt−1 + φ2Yt−2 + ǫt, ǫt
iid∼ N (0, σ2). (3.26)

One might think of a simpler representation of the AR(2) as a DLM with
observation equation having Ft = [Yt−1, Yt−2] and θt = [φ1,t, φ2,t]

′ (thus, pos-
sibly including a temporal evolution of the AR parameters, otherwise letting
W = 0). However, the matrix Ft of a DLM cannot depend on past values of
the observations: in our case, the above choice of Ft would imply

Yt|yt−1, yt−2, θt ∼ N(φ1yt−1 + φ2yt−2, σ
2),

that is, Yt would not be independent on the past values yt−1, yt−2 given θt,
thus violating assumption (A.2) in the definition of state space model (p.40).
In order to consider such a model we would have to extend the definition
to include conditionally Gaussian state space models (Lipster and Shiryayev;
1972). In order to stay within the boundaries of the standard definition used
in this book, the first trick that we have used in the DLM representation (3.4)
is thus to “shift” the AR(2) dependence from Yt to the state vector: Yt = θ1,t.
However, the second basic assumption of state space models is that the state
process is Markovian, thus we need a second trick for representing the second
order dependence. We augmented the state vector by a second component
θ2,t, and we chose G and W such that

[
θ1,t
θ2,t

]
=

[
φ1 1
φ2 0

] [
θ1,t−1

θ2,t−1

]
+

[
ǫt
0

]
,

giving
θ1,t = φ1θ1,t−1 + φ2θ1,t−2 + ǫt.

In this way, we obtain a DLM representation of AR(p) models in the frame-
work of state-space models as defined by assumptions (A.1) and (A.2) in
Section 2.3. A further step is needed for expressing the MA(q) component.
For example, for the ARMA(1,1) model

Yt = φ1Yt−1 + ǫt + ψ1ǫt−1, ǫt ∼ N (0, σ2), (3.27)

r = q + 1 = 2 and the matrices of the corresponding DLM are
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F =
[
1 0
]
, V = 0,

G =

[
φ1 1
0 0

]
, W =

[
1 ψ1

ψ1 ψ
2
1

]
σ2.

(3.28)

Representing an ARMA model as a DLM is useful mainly for two reasons.
The first is that an ARMA component in a DLM can explain residual auto-
correlation not accounted for by other structural components such as trend
and seasonal. The second reason is technical, and consists in the fact that the
evaluation of the likelihood function of an ARMA model can be performed
efficiently by applying the general recursion used to compute the likelihood of
a DLM.

The DLM representation of an ARIMA(p, d, q) model, with d > 0, can
be derived as an extension of the stationary case. In fact, if one considers
Y ∗
t = ∆dYt, then Y ∗

t follows a stationary ARMA model, for which the DLM
representation given above applies. In order to model the original series (Yt)
we need to be able to recover it from the Y ∗

t and possibly other components
of the state vector. For example, if d = 1, Y ∗

t = Yt − Yt−1 and therefore
Yt = Y ∗

t + Yt−1. Suppose that Y ∗
t satisfies the AR(2) model (3.26). Then a

DLM representation for Yt is given by the system






Yt =
[
1 1 0

]
θt−1,

θt =




1 1 0
0 φ1 0
0 φ2 1



 θt−1 + wt, wt ∼ N (0,W ),
(3.29)

with

θt =




Yt−1

Y ∗
t

φ2Y
∗
t−1



 (3.30)

and W = diag(0, σ2, 0). For a general d, set Y ∗
t = ∆dYt. It can be shown that

the following relation holds:

∆d−jYt = Y ∗
t +

j∑

i=1

∆d−iYt−1, j = 1, . . . , d. (3.31)

Define the state vector as follows:



3.2 Univariate DLMs for time series analysis 115

θt =





Yt−1

∆Yt−1

...
∆d−1Yt−1

Y ∗
t

φ2Y
∗
t−1 + · · · + φrY

∗
t−r+1 + ψ1ǫt = · · · + ψr−1ǫt−r+2

φ3Y
∗
t−1 + · · · + φrY

∗
t−r+2 + ψ2ǫt = · · · + ψr−1ǫt−r+3

...
φrY

∗
t−1 + ψr−1ǫt





. (3.32)

Note that the definition of the last components of θt follows from equa-
tions (3.25). The system and observation matrices, together with the system
variance, are defined by

F =
[
1 1 . . . 1 0 . . . 0

]
,

G =





1 1 . . . 1 0 . . . . . . 0
0 1 . . . 1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
. . . . 1 1 0 . . . . . . 0
0 . . . 0 φ1 1 0 . . . 0
. . . . . . . . φ2 0 1 . . . 0

...
...

...
. . .

. . . . . . . . φr−1 0 . . . 0 1
0 . . . 0 φr 0 . . . 0 0





,

R =
[
0 . . . 0 1 ψ1 . . . ψr−2 ψr−1

]′
,

W = RR′σ2.

(3.33)

With the above definition the ARIMA model for (Yt) has the DLM represen-
tation {

Yt = Fθt,

θt = Gθt−1 + wt, wt ∼ N (0,W ).
(3.34)

Since in DLM modeling a nonstationary behavior of the observations is usu-
ally accounted for directly, through the use of a polynomial trend or a seasonal
component for example, the inclusion of nonstationary ARIMA components is
less common than that of stationary ARMA components that, as we already
mentioned, are typically used to capture correlated noise in the data.

3.2.6 Example: estimating the output gap

Measuring the so-called output gap is an important issue in monetary politics.
The output gap is the difference between the observed Gross Domestic Prod-
uct of a country (GDP, or output) and the potential output of the economy.
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It is this discrepancy that is considered relevant in determining inflationary
tendencies. Thus, it is crucial to be able to separate the two components and,
since they are unobservable, treating them as latent states in a DLM results
particularly attractive.

Variants of the following model for the deseasonalized output have been
considered in the econometric literature; see, e.g., Kuttner (1994):

Yt = Y
(p)
t + Y

(g)
t ,

Y
(p)
t = Y

(p)
t−1 + δt + ǫt, ǫt ∼ N (0, σ2

ǫ ),

δt = δt−1 + zt, zt ∼ N (0, σ2
z),

Y
(g)
t = φ1Y

(g)
t−1 + φ2Y

(g)
t−2 + ut, ut ∼ N (0, σ2

u),

(3.35)

where Yt is the logarithm of the output, Y
(p)
t represents the log-potential

output and Y
(g)
t is the log of the output gap. The above model can be seen as

a DLM, obtained by adding, in the sense discussed in Section 3.2, a stochastic
trend component for the potential output and a stationary AR(2) residual
component. More specifically,

• Y
(p)
t follows a linear growth model, observed without error. The state

vector is θ
(p)
t = (Y

(p)
t , δt)

′, with innovation vector w
(p)
t = (ǫt, zt)

′. The
observation matrix and observation variance are

F(p) =
[
1 0
]
, V (p) = [ 0 ],

while the system evolution matrix and innovation variance are

G(p) =

[
1 1
0 1

]
, W (p) = diag(σ2

ǫ , σ
2
z).

The error terms ǫt and zt are interpreted as shocks to the output level and
to the output growth rate, respectively. Note that the case σ2

ǫ = σ2
z = 0

corresponds to the global trend model y
(p)
t = µ0 + tδ0, while σ2

ǫ = 0 gives
an integrated random walk model.

• The output gap Y
(g)
t is described by an AR(2) model, which can be written

as a DLM with θ
(g)
t = (Y

(g)
t , θ

(g)
t,2 )′ and

F (g) =
[
1 0
]
, V (g) = [ 0 ],

G(g) =

[
φ1 1
φ2 0

]
, W (g) = diag(σ2

u, 0).

The order of the AR process allows the residuals, i.e., the departures from
the trend, to have a dumped cyclic autocorrelation function, which is often
observed in economic time series. The DLM representation of model (3.35)
for Yt is obtained by adding the two components, as described in Section 3.2.
The matrices of the resulting DLM are:
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F =
[
1 0 1 0

]
,

G =





1 1 0 0
0 1 0 0
0 0 φ1 1
0 0 φ2 0



 ,

V = [ 0 ]

W = diag
(
σ2
ǫ , σ

2
z , σ

2
u, 0
)
.

(3.36)

The resulting DLM has five unknown parameters: σ2
ǫ and σ2

z for the trend
component, and φ1, φ2 and σ2

u for the AR(2) component. Here, we estimate
the unknown parameters by maximum likelihood (see Chapter 4) and then
apply the Kalman filter and smoother using their MLE. In Section 4.6.1 we
will illustrate a Bayesian approach to make inference both on the unknown
parameters of the model and on the unobservable states at the same time.

For a practical application, we consider quarterly deseasonalized GDP of
the US economy (source: Bureau of Economic Analysis), measured in billions
of chained 2000 US dollars, from 1950.Q1 to 2004.Q4. A logarithmic transform
is applied, and the resulting log GDP is plotted in Figure 3.10.
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Fig. 3.10. Time plot of log US Gross Domestic Product

R code

> gdp <- read.table("Datasets/gdp5004.dat")

2 > gdp <- ts(gdp, frequency = 4, start = 1950)
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> Lgdp <- log(gdp)

4 > plot(Lgdp, xlab = "", ylab = "log US GDP")

We first compute the MLE of the unknown parameters ψ1 = log(σ2
ǫ ), ψ2 =

log(σ2
z), ψ3 = log(σ2

u), ψ4 = φ1, ψ5 = φ5. For the moment, we do not impose
stationarity restrictions on the AR(2) parameters φ1, φ2; we will return to this

later. We choose convenient values for the initial mean m
(p)
0 of the states of

the trend component, with a fairly large variance C
(p)
0 , and use the default

initial values in the R function dlmModArma for the AR(2) component. The
MLE fitting function, as well as dlmFilter, do not allow singular observation
variances, so we take a very small value for V , which can be considered zero
for all practical purposes.

R code

> level0 <- Lgdp[1]

2 > slope0 <- mean(diff(Lgdp))

> buildGap <- function(u) {
4 + trend <- dlmModPoly(dV = 1e-7, dW = exp(u[1 : 2]),

+ m0 = c(level0, slope0),

6 + C0 = 2 * diag(2))

+ gap <- dlmModARMA(ar = u[4 : 5], sigma2 = exp(u[3]))

8 + return(trend + gap)}
> init <- c(-3, -1, -3, .4, .4)

10 > outMLE <- dlmMLE(Lgdp, init, buildGap)

> dlmGap <- buildGap(outMLE$par)

12 > sqrt(diag(W(dlmGap))[1 : 3])

[1] 5.781792e-03 7.637864e-05 6.145361e-03

14 > GG(dlmGap)[3 : 4, 3]

[1] 1.4806246 -0.5468102

Thus the MLE estimates are σ̂ǫ = 0.00578, σ̂z = 0.00008, σ̂u = 0.00615, φ̂1 =
1.481, φ2 = −0.547. The estimated AR(2) parameters satisfy the stationarity
constraints.

R code

> Mod(polyroot(c(1, -GG(dlmGap)[3 : 4, 3])))

2 [1] 1.289162 1.418587

> plot(ARMAacf(ar = GG(dlmGap)[3 : 4, 3], lag.max = 20),

4 + ylim = c(0, 1), ylab = "acf", type = "h")

A note of caution is in order. There are clearly identifiability issues in separat-
ing the stochastic trend and the AR(2) residuals, and MLE is not stable; as a
minimal check, one should repeat the fitting procedure starting from different
sets of initial values.
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Fig. 3.11. Observed log GDP (grey) and smoothing estimate of the potential output

Plugging in the MLE, smoothing estimates of the model are finally com-
puted. The observed output and the smoothing estimate of the potential out-
put are plotted in Figure 3.11. Figure 3.12 shows the smoothing estimates of
the potential output, together with the output gap (note the different scale).

R code

> gdpSmooth <- dlmSmooth(Lgdp, dlmGap)

2 > plot(cbind(Lgdp, dropFirst(gdpSmooth$s[, 1])),

+ xlab = "", ylab = "Log GDP", lty = c("longdash", "solid"),

4 + col = c("darkgrey", "black"), plot.type = "single")

> plot(dropFirst(gdpSmooth$s[, 1:3]), ann = F, yax.flip = TRUE)

Finally, let us see how we could introduce stationarity constraints in the
MLE, using the R function ARtransPars.

R code

> buildgapr <- function(u)

2 + {
+ trend <- dlmModPoly(dV = 0.000001,

4 + dW = c(exp(u[1]), exp(u[2])),

+ m0 = c(Lgdp[1], mean(diff(Lgdp))),

6 + C0 = 2 * diag(2))

+ gap <- dlmModARMA(ar = ARtransPars(u[4 : 5]),

8 + sigma2 = exp(u[3]))

+ return(trend + gap)
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Fig. 3.12. Smoothing estimates of the potential output (top) and output-gap (bot-
tom)

10 + }
> init <- c(-3, -1, -3, .4, .4)

12 > outMLEr <- dlmMLE(Lgdp,init,buildgapr)

> outMLEr$value

14 [1] -896.5234

> parMLEr <- c(exp(outMLEr$par[1 : 3])^.5,

16 + ARtransPars(outMLEr$par[4 : 5]))

> round(parMLEr, 4)

18 [1] 0.0051 0.0000 0.0069 1.4972 -0.4972

We obtained a slightly better value of the likelihood. Yet, the estimates
of the AR(2) parameters are now too close to the nonstationary region. It
is anyway a useful exercise to look at the smoothing estimates of the poten-
tial output and of the output gap in this case: nonstationarity of the AR(2)
residuals gives a nonrealistic estimated pattern for the output gap (figures not
shown).

R code

> Mod(polyroot(c(1, -ARtransPars(outMLEr$par[4 : 5]))))

2 [1] 1.000001 2.011090

> plot(ARMAacf(ar = ARtransPars(outMLEr$par[4 : 5]),

4 + lag.max = 10),

+ ylim = c(0, 1), ylab = "acf")

6 > modr <- buildgapr(outMLEr$par)
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> outFr <- dlmFilter(Lgdp, modr)

8 > outSr <- dlmSmooth(outFr)

> ts.plot(cbind(Lgdp, outSr$s[-1, 1]), col = 1 : 2)

10 > plot.ts(outSr$s[-1, c(1, 3)])

We will return to this example in Chapter 4, showing how we can impose
stationarity constraints through a prior distribution on the AR parameters,
in a Bayesian approach.

3.2.7 Regression models

Regression components can be quite easily incorporated in a DLM. It is of
interest in many applications to include the effect of explanatory variables
on a time series (Yt). For example, in a clinical trial, one may be interested
in studying a response Yt to different drug doses xt over time. Note that
the explanatory variable xt is nonstochastic; the case of stochastic regression
requires a joint model for the bivariate time series (Xt, Yt), t ≥ 1 and will be
discussed later.

The standard linear regression model for Y on x is defined as

Yt = β1 + β2xt + ǫt, ǫt
iid∼ N (0, σ2).

However, the assumption of i.i.d. errors is often not realistic if the observations
are taken over time. A possible solution is to introduce a temporal dependence
for the residuals, e.g., describing (ǫt : t ≥ 1) as an autoregressive process.
Another choice, which is in fact quite interesting in many problems, is to
think that the relationship between y and x evolves over time. That is, to
consider a dynamic linear regression model of the form

Yt = β1,t + β2,txt + ǫt, ǫt
iid∼ N (0, σ2),

and model the temporal evolution of (β1,t, β2,t), e.g., βj,t = βj,t−1 + wj,t,
j = 1, 2, w1,t and w2,t independent. This gives a DLM with Ft =

[
1 xt

]
,

θt =
[
β1,t β2,t

]′
, V = σ2, completed by a state equation for θt.

More generally, a dynamic linear regression model is described by

Yt = x′tθt + vt, vt ∼ N (0, σ2
t )

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt)

where x′t =
[
x1,t · · · xp,t

]
are the values of the p explanatory variables at time

t. Again, note that xt is not stochastic; in other terms, this is a conditional
model for Yt|xt. A popular default choice for the state equation is to take the
evolution matrix Gt as the identity matrix andW diagonal, which corresponds
to modeling the regression coefficients as independent random walks.
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A regression DLM, with the above assumptions for G and W , can be cre-
ated in R through the function dlmModReg. The static linear regression model
corresponds to the case where Wt = 0 for any t, so that θt is constant over
time, θt = θ, with prior density θ ∼ N (m0, C0). Thus, the function dlmModReg

can also be used for Bayesian inference in linear regression; the filtering den-
sity gives the posterior density of θ|y1:t, and mt = E(θ|y1:t) is the Bayesian
estimate under a quadratic loss function of the regression coefficients. This
also suggests that DLM techniques may be used to sequentially update the
estimates of the parameters of a (static) regression model as new observations
become available.

Example — Capital asset pricing model

The capital asset pricing model (CAPM) is a popular asset pricing tool in
financial econometrics; see for example Campbell et al. (1996). In its simplest,
univariate version, the CAPM model assumes that the returns on an asset
depend linearly on the overall market returns, thus allowing us to study the
behavior, in terms of risk and expected returns, of individual assets compared
to the market as a whole. Here we consider a dynamic version of the standard,
static CAPM model; in Section 3.3.3, it will be extended to a multivariate
CAPM for a small portfolio of m assets.

Let rt, r
(M)
t and r

(f)
t be the returns at time t of the asset under study, of

the market and of a risk-free asset, respectively. Define the excess returns of

the asset as yt = rt− r(f)
t and the market’s excess returns as xt = r

(M)
t − r(f)

t .
A univariate CAPM assumes that

yt = α+ β xt + vt, vt
iid∼ N(0, σ2). (3.37)

The parameter β measures the sensitivity of the asset excess returns to changes
in the market. A value of β greater than one suggests that the asset tends
to amplify changes in the market returns, and it is therefore considered an
aggressive investment; while assets having β smaller than one are thought of
as conservative investments.

The data for this example consists of monthly returns3 from January 1978
to December 1987 of four stocks (Mobil, IBM, Weyer, and Citicorp), of the 30-
day Treasury Bill as a proxy for the risk-free asset, and of the value-weighted
average returns for all the stocks listed at the New York and American Stock
Exchanges, representing the overall market returns. The data are plotted in
Figure 3.13. Let us consider the data for the IBM stock here; a multivariate
CAPM will be illustrated later.

Least squares estimates for the static CAPM are obtained in R by the
function lm. We can also compute Bayesian estimates of the regression coef-

3 The data, originally from Berndt (1991), are available at the time of writing from
http://shazam.econ.ubc.ca/intro/P.txt.



3.2 Univariate DLMs for time series analysis 123

ficients by the function dlmModReg, letting diag(W ) = (0, 0) (while assuming,
for simplicity, a known measurement variance).

R code

> capm <- read.table("http://shazam.econ.ubc.ca/intro/P.txt",

2 + header = TRUE)

> capm.ts <- ts(capm, start = c(1978, 1), frequency = 12)

4 > colnames(capm)

[1] "MOBIL" "IBM" "WEYER" "CITCRP" "MARKET" "RKFREE"

6 > plot(capm.ts)

> IBM <- capm.ts[, "IBM"] - capm.ts[, "RKFREE"]

8 > x <- capm.ts[, "MARKET"] - capm.ts[, "RKFREE"]

> outLM <- lm(IBM ~ x)

10 > outLM$coef

(Intercept) x

12 -0.0004895937 0.4568207721

> acf(outLM$res)

14 > qqnorm(outLM$res)

Despite the data being taken over time, the residuals do not show relevant
temporal dependence (plots not shown). Bayesian estimates of the regression
coefficients are obtained below. For simplicity, we let V = σ̂2 = 0.00254. Prior
information on the values of α and β can be introduced through the prior,
N (m0, C0); below, we assume vague prior information on α, while the prior
guess on β is 1.5 (aggressive investment), with a fairly small variance.

R code

> mod <- dlmModReg(x, dV = 0.00254, m0 = c(0, 1.5),

2 + C0 = diag(c(1e+07, 1)))

> outF <- dlmFilter(IBM, mod)

4 > outF$m[1 + length(IBM), ]

[1] -0.0005232801 0.4615301204

The filtering estimates at the end of the observation period are the Bayes
estimates, under quadratic loss, of the regression coefficients; here, the results
are very close to the OLS estimates. As a matter of fact, it seems more natural
to allow the CAPM coefficients α and β to vary over time; for example, a stock
might evolve from “conservative” to “aggressive.” A dynamic version of the
classical CAPM is obtained as

yt = αt + βtxt + vt, vt
iid∼ N(0, σ2),

with a state equation modeling the dynamics of αt and βt. As mentioned
above, the function dlmModReg assumes that the regression coefficients fol-
low independent random walks. Below, the observation and state evolution
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Fig. 3.13. Montly returns for Mobil, IBM, Weyer and Citicorp stocks; market index;
30-days Treasury bill (January 1978-December 1987)

variances are estimated by maximum likelihood. The smoothing estimates are
shown in Figure 3.14. The results can be compared with those obtained in
Section 3.3.3, where the model is estimated jointly for the four stocks.

R code

> buildCapm <- function(u) {
2 + dlmModReg(x, dV = exp(u[1]), dW = exp(u[2 : 3]))

+ }
4 > outMLE <- dlmMLE(IBM, parm = rep(0, 3), buildCapm)

> exp(outMLE$par)

6 [1] 2.328397e-03 1.100181e-05 6.496259e-04
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> outMLE$value

8 [1] -276.7014

> mod <- buildCapm(outMLE$par)

10 > outS <- dlmSmooth(IBM, mod)

> plot(dropFirst(outS$s))
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Fig. 3.14. Smoothing estimates of the coefficients of a dynamic CAPM model for
the IBM stock returns

Further examples of dynamic regression with DLMs will be presented in
the following sections, for more general, multivariate settings, such as longitu-
dinal data, of the kind (xi,t, Yi,t), t ≥ 1, i = 1, . . . ,m, or more simply (xt, Yi,t)
(e.g., dose xi,t of a drug and response Yi,t at time t for patient i, i = 1, . . . ,m;
or market returns xt and excess returns Yi,t for asset i; see Section 3.3.3); or
time series of cross-sectional data, where x and Y are observed form statistical
units, as above, but usually m is large; see Section 3.3.5.

3.3 Models for multivariate time series

Modeling multivariate time series is of course more interesting—and more
challenging—than studying univariate models, and also in this case DLMs
offer a very flexible framework for the analysis. In this section we just present
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a few examples of the extremely large variety of applications of DLMs to
multivariate data, hoping that the reader can find tools and ideas for the
analysis of her specific problems and models.

One can envision two basic types of data and problems in the analy-
sis of multivariate time series. In many applications, one has data Yt =
(Y1,t, . . . , Ym,t)

′ on one or more variables observed for different units; for ex-
ample, Yt could be the gross domestic product observed for m countries over
time, or the income and the expenses for a group of m families, or Yi,t could
be the historical returns of stock i, i = 1, . . . ,m, etc. In these cases, the fo-
cus of interest is typically in understanding the correlation structure among
the time series, perhaps investigating the presence of clusters. These aspects
might be of interest in themselves, or for improving the predictive performance
of the model. In other contexts, the data are observations on one or more
variables of interest Y and on some explanatory variables X1, . . . , Xk. For
example, Y could be the inflation rate and X1, . . . , Xk be relevant macroe-
conomic variables for a country. We have again a multivariate time series
(Yt, X1,t, . . . , Xk,t), but now the emphasis is on explaining or predicting the
variable of interest Yt by means of the explanatory variables Xj,t, so we are
more in a regression framework. Note that in the regression DLM discussed
in Section 3.2.7, the covariates were deterministic, while here X1,t, . . . , Xk,t

are random variables. Of course by a joint model for (Yt, X1,t, . . . , Xk,t) one
can also study feedback effects and causality relations among all variables.

3.3.1 DLMs for longitudinal data

Suppose that the value of a quantity y is observed for m statistical units over
time, so we have a multivariate time series (Yt)t≥1, with Yt = (Y1,t, . . . , Ym,t)

′.
In fact, the simplest approach would be to study the m series independently,
specifying a univariate model for each of them. This approach might give
fairly good forecasts, but it doesn’t do what is sometimes called “borrowing
strength;” that is, in predicting Y for individual i, say, we do not exploit
the information provided by the similar time series (Yj,t) for j 6= i. In or-
der to use all the available information, we want to introduce dependence
across the time series, that is, we want a joint model for the m-variate process
((Y1,t, . . . , Ym,t) : t = 1, 2, . . .).

One way of introducing dependence across the time series (Y1,t), . . . , (Ym,t)
is the following. Suppose that we can reasonably model each of the m time
series using the same type of DLM, possibly with different variances but with
the same time-invariant matrices G and F ; that is

Yi,t = Fθ
(i)
t + vi,t, vi,t ∼ N (0, Vi)

θ
(i)
t = Gθ

(i)
t−1 + w

(i)
t , wi,t ∼ Np(0,Wi),

(3.38)

i = 1, . . . ,m. This corresponds to the qualitative assumption that all series
follow the same type of dynamics. It also implies that the components of
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the state vectors have similar interpretations across the different DLM, but
they can assume different values for each time series (Yi,t). Furthermore, as
we shall discuss more extensively in Chapter 4, the variance matrices of the
individual DLMs (3.38) might not be completely known, but be dependent on
some unknown parameters, ψi say. For example, in a regression DLM of the
kind discussed in Section 3.2.7, we would have

Yi,t = αi,t + βi,txt + vi,t, vi,t
iid∼ N(0, σ2

i )

αi,t = αi,t−1 + w1t,i, w1t,i
iid∼ N(0, σ2

w1,i)

βi,t = βi,t−1 + w2t,i, w2t,i
iid∼ N(0, σ2

w2,i)

so that the model for Yi,t is characterized by its own state vector θ
(i)
t =

(αi,t, βi,t) and by its parameters ψi = (σ2
i , σ

2
w1,i

, σ2
w2,i

). In this framework
we can assume that the time series (Y1,t), . . . , (Ym,t) are conditionally in-

dependent given the state processes (θ
(1)
t ), . . . , (θ

(m)
t ) and the parameters

(ψ1, . . . , ψm), with (Yi,t) depending only on its state (θ
(i)
t ) and parameters

ψi; in particular

(Y1,t, . . . , Ym,t)|θ(1)t , . . . , θ
(m)
t , ψ1, . . . , ψm ∼

m∏

i=1

N (yi,t;Fθ
(i)
t , Vi(ψi)).

Note that this framework is similar to the one studied in Section 1.3. A de-
pendence among Y1,t, . . . , Ym,t can be introduced through the joint probabil-

ity law of (θ
(1)
t , . . . , θ

(m)
t ) and/or of the parameters (ψ1, . . . , ψm). If the states

and the parameters are independent across individuals, then the time series
(Y1,t), . . . , (Ym,t) are independent, and there is no borrowing strength; on the
other hand, a dependence across the individual states and parameters implies
dependence across the m time series. In the next sections we will provide some
examples, where, for simplicity, the parameters, i.e., the matrices F,G, Vi,Wi,
are known; their estimate (MLE and Bayesian) will be discussed in Chapter
4. A recent reference for mixtures of DLMs is Frühwirth-Schnatter and Kauf-
mann (2008). Also related are the articles by Caron et al. (2008) and Lau and
So (2008).

3.3.2 Seemingly unrelated time series equations

Seemingly unrelated time series equations (SUTSE) are a class of models

which specify the dependence structure among the state vectors θ
(1)
t , . . . , θ

(m)
t

as follows. As we said, the model (3.38) corresponds to the qualitative assump-
tion that all series follow the same type of dynamics, and that the components
of the state vectors have similar interpretations across the different DLMs. For
example, each series might be modeled using a linear growth model, so that for
each of them the state vector has a level and a slope component and, although
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not strictly required, it is commonly assumed for simplicity that the variance
matrix of the system errors is diagonal. This means that the evolution of level
and slope is governed by independent random inputs. Clearly, the individual
DLMs can be combined to give a DLM for the multivariate observations. A
simple way of doing so is to assume that the evolution of the levels of the series
is driven by correlated inputs, and the same for the slopes. In other words,
at any fixed time, the components of the system error corresponding to the
levels of the different series may be correlated, and the components of the
system error corresponding to the different slopes may be correlated as well.
To keep the model simple, we retain the assumption that levels and slopes
evolve in an uncorrelated way. This suggests describing the joint evolution of
the state vectors by grouping together all the levels and then all the slopes in
an overall state vector θt = (µ1,t, . . . , µm,t, β1,t, . . . , βm,t)

′. The system error
of the dynamics of this common state vector will then be characterized by
a block-diagonal variance matrix having a first m ×m block accounting for
the correlation among levels and a second m × m block accounting for the
correlation among slopes. To be specific, suppose one has m = 2 series. Then
θt = (µ1,t, µ2,t, β1,t, β2,t)

′ and the system equation is




µ1,t

µ2,t

β1,t

β2,t



 =





1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









µ1,t−1

µ2,t−1

β1,t−1

β2,t−1



+





w1,t

w2,t

w3,t

w4,t



 , (3.39a)

where (w1,t, w2,t, w3,t, w4,t)
′ ∼ N (0,W ) and

W =




Wµ

0 0
0 0

0 0
0 0

Wβ



 . (3.39b)

The observation equation for the bivariate time series
(
(Y1,t, Y2,t)

′ : t =
1, 2, . . .) is [

Y1,t

Y2,t

]
=

[
1 0 0 0
0 1 0 0

]
θt +

[
v1,t
v2,t

]
, (3.39c)

with (v1,t, v2,t)
′ ∼ N (0, V ). In order to introduce a further correlation between

the series, the observation error variance V can be taken nondiagonal.
The previous example can be extended to the general case of m univariate

time series. Let Yt denote the multivariate observation at time t, and suppose
that the ith component of Yt follows a time invariant DLM as in (3.38), where

θ
(i)
t = (θ

(i)
1,t, . . . , θ

(i)
p,t)

′ for i = 1, . . . ,m. Then a SUTSE model for (Yt) has the

form4

4 Given two matrices A and B, of dimensions m × n and p × q respectively, the
Kronecker product A⊗B is the mp× nq matrix defined as

2

6

4

a1,1B · · · a1,nB
...

...
...

am,1B · · · am,nB

3

7

5
.



3.3 Models for multivariate time series 129

{
Yt = (F ⊗ Im) θt + vt, vt ∼ N (0, V ),

θt = (G⊗ Im) θt−1 + wt, wt ∼ N (0,W ),
(3.40)

with θt = (θ
(1)
1,t , θ

(2)
1,t , . . . , θ

(m−1)
p,t , θ

(m)
p,t )′. When the w

(i)
t have diagonal vari-

ances, it is common to assume for W a block-diagonal structure with p blocks
of size m. An immediate implication of the structure of the model is that

forecasts made at time t of θ
(i)
t+k or Yi,t+k are based on the distribution of θ

(i)
t

given all the observations y1:t.

Example — Annual Denmark and Spain investments
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Fig. 3.15. Annual Denmark and Spain investments

Figure 3.15 shows the annual investment in Denmark and Spain from 1960
to 20005. From visual inspection it appears that the two series display the same

5 Source: http://www.fgn.unisg.ch/eumacro/macrodata.
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type of qualitative behavior, that can be modeled by a linear growth DLM.
This is the model we used on page 97 for the investments in Spain series
alone. To set up a multivariate model for the two series one can combine the
two linear growth models in a comprehensive SUTSE model. This turns out
to be exactly of the form described by (3.39). There are six variances and
three covariances in the model, for a total of nine parameters that need to
be specified—or estimated from the data, as we will see in the next chapter.
It is convenient to simplify slightly the model in order to reduce the overall
number of parameters. So, for this example, we are going to assume that
the two individual linear growth models are in fact integrated random walks.
This means that, in (3.39b), Wµ = 0. The MLE estimates of the remaining
parameters are

Wβ =

[
49 155
155 437266

]
, V =

[
72 1018

1018 14353

]
.

The display below shows how to set up the model in R. In doing this we start
by constructing a (univariate) linear growth model and then redefine the F
and G matrices according to (3.40), using Kronecker products (lines 2 and 3).
This approach is less subject to typing mistakes than manually entering the
individual entries of F and G. The part of the code defining the variances V
and W is straightforward.
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One−step−ahead forecast

50% prediction interval

Fig. 3.16. Denmark investments and one step-ahead forecasts
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Fig. 3.17. Spain investments and one step-ahead forecasts

R code

> mod <- dlmModPoly(2)

2 > mod$FF <- mod$FF %x% diag(2)

> mod$GG <- mod$GG %x% diag(2)

4 > W1 <- matrix(0, 2, 2)

> W2 <- diag(c(49, 437266))

6 > W2[1, 2] <- W2[2, 1] <- 155

> mod$W <- bdiag(W1, W2)

8 > V <- diag(c(72, 14353))

> V[1, 2] <- V[2, 1] <- 1018

10 > mod$V <- V

> mod$m0 <- rep(0, 4)

12 > mod$C0 <- diag(4) * 1e7

> investFilt <- dlmFilter(invest, mod)

14 > sdev <- residuals(investFilt)$sd

> lwr <- investFilt$f + qnorm(0.25) * sdev

16 > upr <- investFilt$f - qnorm(0.25) * sdev

The code also illustrates how to compute probability intervals for the one-
step-ahead forecasts, shown in Figures 3.16 and 3.17. Note that conditionally
on y1:t−1, Yt and et have the same variance, see Section 2.8. This justifies
the use of the innovation variances in lieu of the one-step-ahead observation
forecast variances on line 14.
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3.3.3 Seemingly unrelated regression models

As an example of how the idea expressed by SUTSE can be applied to more
general DLMs than the basic structural model, we present below a multivariate
dynamic regression model.

Let us consider a multivariate version of the dynamic CAPM illustrated

on pages 122-125. Again, let xt = r
(M)
t − r

(f)
t be the excess market returns,

but we have now a vector of excess returns for m assets, yi,t = ri,t − r
(f)
t ,

i = 1, . . . ,m. For each asset, we can define a regression DLM

yi,t = αi,t + βi,txt + vi,t

αi,t = αi,t−1 + w1i,t

βi,t = βi,t−1 + w2i,t,

and it is sensible to assume that the intercepts and the slopes are correlated
across the m stocks. A seemingly unrelated regression model (SUR) is defined
as

yt = (Ft ⊗ Im)θt + vt, vt
iid∼ N (0, V ),

θt = (G⊗ Im)θt−1 + wt, wt
iid∼ N (0,W ),

with

yt =




y1,t
...

ym,t



 , θt =





α1,t

...
αm,t
β1,t

...
βm,t





, vt =




v1,t
...

vm,t



 , wt =




w1,t

...
w2m,t



 ,

Ft =
[
1 xt

]
, G = I2, and W = blockdiag(Wα,Wβ).

The data we analyze are the monthly returns for the Mobil, IBM, Weyer,
and Citicorp stocks, 1978.1-1987.12, described on page 122. We assume for
simplicity that the αi,t are time-invariant, which amounts to assuming that
Wα = 0. The correlation between the different excess returns is explained in
terms of the nondiagonal variance matrices V and Wβ , estimated from the
data:

V =





41.06 0.01571 −0.9504 −2.328
0.01571 24.23 5.783 3.376
−0.9504 5.783 39.2 8.145
−2.328 3.376 8.145 39.29



 ,

Wβ =





8.153 · 10−7 −3.172 · 10−5 −4.267 · 10−5 −6.649 · 10−5

−3.172 · 10−5 0.001377 0.001852 0.002884
−4.267 · 10−5 0.001852 0.002498 0.003884
−6.649 · 10−5 0.002884 0.003884 0.006057



 .
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Smoothing estimates of the βi,t’s, shown in Figure 3.18, can be obtained using
the code below.

R code

> tmp <- ts(read.table("http://shazam.econ.ubc.ca/intro/P.txt",

2 + header = TRUE),

+ start = c(1978, 1), frequency = 12) * 100

4 > y <- tmp[, 1 : 4] - tmp[, "RKFREE"]

> colnames(y) <- colnames(tmp)[1 : 4]

6 > market <- tmp[, "MARKET"] - tmp[, "RKFREE"]

> rm("tmp")

8 > m <- NCOL(y)

> ### Set up the model

10 > CAPM <- dlmModReg(market)

> CAPM$FF <- CAPM$FF %x% diag(m)

12 > CAPM$GG <- CAPM$GG %x% diag(m)

> CAPM$JFF <- CAPM$JFF %x% diag(m)

14 > CAPM$W <- CAPM$W %x% matrix(0, m, m)

> CAPM$W[-(1 : m), -(1 : m)] <-

16 + c(8.153e-07, -3.172e-05, -4.267e-05, -6.649e-05,

+ -3.172e-05, 0.001377, 0.001852, 0.002884,

18 + -4.267e-05, 0.001852, 0.002498, 0.003884,

+ -6.649e-05, 0.002884, 0.003884, 0.006057)

20 > CAPM$V <- CAPM$V %x% matrix(0, m, m)

> CAPM$V[] <- c(41.06, 0.01571, -0.9504, -2.328,

22 + 0.01571, 24.23, 5.783, 3.376,

+ -0.9504, 5.783, 39.2, 8.145,

24 + -2.328, 3.376, 8.145, 39.29)

> CAPM$m0 <- rep(0, 2 * m)

26 > CAPM$C0 <- diag(1e7, nr = 2 * m)

> ### Smooth

28 > CAPMsmooth <- dlmSmooth(y, CAPM)

> ### Plot

30 > plot(dropFirst(CAPMsmooth$s[, m + 1 : m]),

+ lty = c("13", "6413", "431313", "B4"),

32 + plot.type = "s", xlab = "", ylab = "Beta")

> abline(h = 1, col = "darkgrey")

34 > legend("bottomright", legend = colnames(y), bty = "n",

+ lty = c("13", "6413", "431313", "B4"), inset = 0.05)

Apparently, while Mobil’s beta remained essentially constant during the
period under consideration, starting around 1980 the remaining three stocks
became less and less conservative, with Weyer and Citicorp reaching the status
of aggressive investments around 1984. Note in Figure 3.18 how the estimated
betas for the different stocks move in a clearly correlated fashion (with the
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Fig. 3.18. Estimated betas for four stocks

exception of Mobil, that does not move at all)—a consequence of the positive
covariances specified in the matrix Wβ .

3.3.4 Hierarchical DLMs

Another general class of models for panel data and longitudinal studies is given
by dynamic hierarchical models (Gamerman and Migon (1993) and references
therein), which extend to dynamic systems the hierarchical linear models in-
troduced by Lindley and Smith (1972).

A two-stage hierarchical DLM is specified as follows

Yt = Fy,tθt + vt, vt ∼ Nm(0, Vy,t),

θt = Fθ,tλt + ǫt, ǫt ∼ NP (0, Vθ,t),

λt = Gtλt−1 + wt, wt ∼ Nk(0,Wt),

(3.41)

where the disturbance sequences (vt), (ǫt), (wt) are independent, and the ma-
trices Fy,t and Fθ,t are of full rank. Thus, in a two-stage DLM the state vector
θt is itself modeled by a DLM. A key aspect is the progressive reduction in the
dimension of the state parameters as the level becomes higher, that is P > k.

One application of hierarchical DLM is in modeling random effects in
multivariate time series. Suppose that Yt = (Y1,t, . . . , Ym,t)

′ are observations
of a variable Y for m units at time t, and Yi,t is modeled as

Yi,t = F1,tθi,t + vi,t, vi,t ∼ N (0, σ2
i,t) (3.42a)
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i = 1, . . . ,m, with v1,t, . . . , vm,t independent, for any given t. In the previous
section, we illustrated SUTSE models for introducing a dependence across
the individual time series (Yi,t); however, these models require us to specify
or estimate blocks of m×m matrices in the covariance matrix W , which might
become complicated if m is large. In many applications it is in fact sufficient to
model a simpler dependence, in particular to allow individual random effects.
In its simpler form, this means assuming that

θi,t = λt + ǫi,t, ǫi,t ∼ Np(0, Σt), (3.42b)

λt = Gλt−1 + wt, wt ∼ Np(0,Wt), (3.42c)

with ǫ1,t, . . . , ǫm,t independent. In other words, for any t the cross-sectional
state vectors θ1,t, . . . , θm,t are a random sample from a Np(λt, Σt) (i.e., they
are conditionally i.i.d. given λt, with common distribution Np(λt, Σt)). Thus,
we assume the same observation equation for the individual time series Yi,t,
modeling however heterogeneity across individuals by allowing random effects
in the state processes.

Equations (3.42) can be expressed as a hierarchical DLM of the form
(3.41), letting θt = (θ′1,t, . . . , θ

′
m,t)

′, vt = (v1,t, . . . , vm,t)
′, ǫt = (ǫ′1,t, . . . , ǫ

′
m,t)

′,
Vy,t = diag(σ2

1,t, . . . , σ
2
m,t), Vθ,t = diag(Σt, . . . , Σt), Fy,t block-diagonal with

m blocks given by F1,t, and

Fθ,t =
[
Ip | · · · | Ip

]′
.

A dimensionality reduction is obtained by passing from the mp-dimensional
vectors θt to their p-dimensional common mean λt.

An example are dynamic regression models with random effects. Consider

Yi,t = x′i,tθi,t + vi,t.

Here, Yi,t are individual response variables, explained by the same regressors
X1, . . . , Xp with known value xi,t = (x1,it, . . . , xp,it)

′ for unit i at time t.
Again, random effects in the regression coefficients can be modeled by assum-
ing that, for fixed t, the coefficients for the same regressor are exchangeable,
more precisely

θ1,t, . . . , θm,t|λt iid∼ Np(λt, Σt).

A dynamics is then specified for (λt), e.g., λt = λt−1 + wt, with wt ∼
Np(0,Wt).

One way of obtaining filtering and smoothing estimates for hierarchical
DLMs is to substitute the expression for θt in the observation equation (3.41),
obtaining

Yt = Fy,tFθ,t λt + v∗t , v∗t ∼ Nm(0, Fy,tVθ,tF
′
y,t + Vy,t)

λt = Gtλt−1 + wt, wt ∼ N (0,Wt).
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This has the form of a DLM and can be estimated by the usual procedures.
In particular, for model (3.42), the observation equation reduces to

Yt = Fy,t Fθ,t λt + v∗t ,

v∗t ∼ N (0,diag(F1,tΣtF
′
1,t + σ2

y, . . . , F1,tVǫ,tF
′
1,t + σ2

y)).

Recursive formulae for filtering and prediction for hierarchical DLM are fur-
ther discussed in Gamerman and Migon (1993). Landim and Gamerman
(2000) present extensions to multivariate time series.

3.3.5 Dynamic regression

In many applications one wants to study the dependence of a variable Y on
one or more explanatory variables x, over time. Suppose that, for each time
t, we observe Y for different values of x, so that we have a time series of cross
sectional data of the kind ((Yi,t, xi), i = 1, . . . ,m, t ≥ 1) (the values x1, . . . , xm
are deterministic, and, for simplicity, we suppose that they are constant over
time). For example, in financial applications, Yi,t might be the yield at time
t of a zero coupon bond that gives one euro at time-to-maturity xi. Data of
this kind are plotted in Figure 3.19. Here the data are monthly yields from
January 1985 to December 2000, with times-to-maturity of 3, 6, 9, 12, 15, 18,
21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months 6.

Several issues arise for data of this nature. From the cross-sectional obser-
vations available at time t, we can estimate the regression function of Yt on x,
that is mt(x) = E(Yt|x), for example with the aim of interpolating y at a new
value x0. On the other hand, it is clearly of interest to study the temporal
evolution of the m time series (Yi,t : t ≥ 1). One might want to predict Yi,t+1

based on the data (Yi,1, . . . , Yi,t), by a univariate time series model; or specify
a multivariate model for the m-variate time series (Y1,t, . . . , Ym,t), t ≥ 1. How-
ever, this approach does not fully exploit all the available information, since it
ignores the dependence of the Yi’s on the covariate x. In fact, estimating the
dynamics of the regression curve is often the main objective of the analysis.

To consider both aspects of the problem, that is the cross-sectional and
the temporal nature of the data, the proposal we illustrate in this section is a
(semiparametric) dynamic regression model, written in the form of a DLM.

Suppose for simplicity that x is univariate. A flexible cross-sectional re-
gression model is obtained by considering a basis functions expansion of the
regression function at time t, of the form

mt(x) = E(Yt|x) =

k∑

j=1

βj,t hj(x) (3.43)

where hj(x) are known basis functions (e.g., powers of x:mt(x) =
∑∞
j=1 βj,tx

j ,
or trigonometric functions, or splines) and βt = (β1,t, . . . , βk,t)

′ is the vector

6 Source: http://www.ssc.upenn.edu/~fdiebold/papers/paper49/FBFITTED.txt
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Fig. 3.19. Monthly yields, 1985.01-2000.12, for times-to-maturity 3, 6, 9, 12, 15,
18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months

of the expansion coefficients. The idea is that, for k large enough (in princi-
ple, k → ∞), (3.43) can approximate any interesting shape of the regression
function mt(x); for example, any continuous function on a closed interval can
be approximated by polynomials. Models of the kind (3.43) are nevertheless
simple since they are linear in the parameters βj,t; at a given time t, we have
a regression model

Yi,t =

k∑

j=1

βj,t hj(xi) + ǫi,t, i = 1, . . . ,m,

with ǫi,t
iid∼ N (0, σ2); in matrix notation,

Yt = Fβt + ǫt, ǫt ∼ N (0, σ2Im), (3.44)

where

Yt =




Y1,t

...
Ym,t



 , F =




h1(x1) . . . hk(x1)

...
...

h1(xm) . . . hk(xm)



 βt =




β1,t

...
βk,t



 ǫt =




ǫ1,t
...
ǫk,t



 .

Thus, βt can be easily estimated, e.g., by least squares.
However, the regression curve evolves over time. Clearly, day-by-day cross-

sectional estimates do not give a complete picture of the problem. We might
have information on the dynamics of the curve that should be included in
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the analysis. Modeling the dynamics of the curve mt(x) is not simple at first,
since the curve is infinite-dimensional. However, having expressed mt(x) as in
(3.43), its temporal evolution can be described by the dynamics of the finite-
dimensional vector of coefficients (β1,t, . . . , βk,t). Suppose that the series (βt)
is Markovian, with

βt = Gβt−1 + wt, wt ∼ Nk(0,Wt).

Then, we obtain a DLM with observation equation (3.44) and state equation
as above. The state equation models the temporal evolution of the regression
function. A simple specification is to assume that the (βj,t)t≥1 are independent
random walks or AR(1) processes; or a joint model might be used for the vector
βt. A word of caution is, however, of worth; the state equation introduces
additional information, but it also constrains the dynamics of the curve. So, it
is delicate: a poor specification of the dynamics may result in an unsatisfactory
fit of the data.

3.3.6 Common factors

Sometimes it is conceptually useful to think of a number of observed series as
driven by a small number of common factors. This is a common approach for
example in economics, where one assumes that many observable series reflect
the current state of the economy, which in turn can be expressed as a lower
dimensional unobservable time series. For example, suppose that m observed
series depend linearly on p (p < m) correlated random walks. The model can
be written as

Yt = Aµt + vt, vt ∼ N (0, V ),

µt = µt−1 + wt, wt ∼ N (0,W ),
(3.45)

where A is a fixed m × p matrix of factor loadings. The model can be seen
as a dynamic generalization of factor analysis, where the common factors µt
evolve with time. Note that (3.45) is nothing else than a DLM, with θt = µt
and Ft = A. One important difference with other DLMs that we have seen in
this chapter is that here p < m, i.e., the state has a lower dimension than the
observation. In addition, the system matrix A does not have any particular
structure. As in standard factor analysis, in order to achieve identifiability of
the unknown parameters, some constraints have to be imposed. In fact, if H is
a p× p invertible matrix, defining µ̃t = Hµt and Ã = AH−1 and multiplying
the second equation in (3.45) on the left by H, we obtain the equivalent model

Yt = Ãµ̃t + vt vt ∼ N (0, V ),

µ̃t = µ̃t−1 + w̃t w̃t ∼ N (0,HWH ′).

Since A and W contain mp and 1
2p(p+ 1) parameters, respectively, but each

combination of parameters belongs to a manifold of dimension p2 (the number
of elements ofH) of equivalent models, the effective number of free parameters
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(not including those in V ) is mp − 1
2p(p − 1). One way to parametrize the

model and achieve identifiability is to set W equal to the identity matrix, and
to impose that Ai,j , the (i, j) element of A, be zero for j > i. The fact that A
is m× p, with p < m, implies that A can be written in a partitioned form as

A =

[
T
B

]
,

with T being a p×p lower triangular matrix, and B an (m−p)×p rectangular
matrix. This clearly shows that with this parametrization there are only 1

2p(p+
1) + p(m− p) = mp− 1

2p(p− 1) parameters, which is exactly the number of
free parameters of the unrestricted model. An alternative parametrization that
achieves identifiability is obtained by assuming that W is a diagonal matrix,
that Ai,i = 1 and Ai,j = 0 for j > i.

The model expressed by (3.45) is related to the notion of cointegrated
series, introduced by Granger (1981) (see also Engle and Granger; 1987). The
components of a vector time series xt are said to be cointegrated of order d, b,
written xt ∼ CI(d, b), if (i) all the components of xt are integrated of order d

(i.e., ∆dx
(i)
t is stationary for any i), and (ii) there exists a nonzero vector α

such that α′xt is integrated of order d−b < d. The components of Yt in (3.45),
as linear combinations of independent random walks (assuming for simplicity
that the components of µ0 are independent), are integrated of order 1. The
columns of A are p vectors in R

m, hence there are at least m−p other linearly
independent vectors in R

m that are orthogonal to the columns of A. For any
such α we have α′A = 0 and, therefore, α′Yt = α′vt, i.e., α′Yt is stationary—in
fact, white noise. This shows that Yt ∼ CI(1, 1). In a model where the common
factors are stochastic linear trends instead of random walks, one can see that
the observable series are CI(2, 2).

Other DLM components that are commonly used as common factors in-
clude seasonal components and cycles, especially in economic applications.
Further details on dynamic factor models can be found in Harvey (1989). For
more recent developments, see also Forni et al. (2000).

3.3.7 Multivariate ARMA models

ARMA models for multivariate, m-dimensional, observations are formally de-
fined as in the univariate case, through the recursive relation

Yt =

p∑

j=1

ΦjYt−j + ǫt +

q∑

j=1

Ψjǫt−j , (3.46)

where (ǫt) is an m-variate Gaussian white noise sequence with variance Σ
and the Φj and Ψj are m ×m matrices. Here, without loss of generality, we
have taken the mean of the process to be zero. In order for (3.46) to define a
stationary process, all the roots of the complex polynomial
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det(I − Φ1z − · · · − Φpz
p) (3.47)

must lie outside the unit disk. A DLM representation of a multivariate ARMA
process can be formally obtained by a simple generalization of the representa-
tion given earlier (Section 3.2.5) for univariate ARMA processes. Namely, in
the G matrix each φj needs to be replaced by a block containing the matrix
Φj ; similarly for the ψj in the matrix R, that have to be replaced by Ψj blocks.
Finally, all the occurrences of a “one” in F , G, and R must be replaced by the
identity matrix of order m, and all the occurrences of a “zero” with a block of
zeroes of order m×m. For example, let us consider the bivariate ARMA(2,1)
process

Yt = Φ1Yt−1 + Φ2Yt−2 + ǫt + Ψ1ǫt−1, ǫt ∼ N (0, Σ), (3.48)

with

Ψ1 =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
, Φi =

[
Φ11,i Φ12,i

Φ21,i Φ22,i

]
, i = 1, 2. (3.49)

Then the system and observation matrices needed to define the DLM repre-
sentation of (3.48) are the following:

F =

[
1 0 0 0
0 1 0 0

]
,

G =





Φ11,1 Φ12,1 1 0
Φ21,1 Φ22,1 0 1
Φ11,2 Φ12,2 0 0
Φ21,2 Φ22,2 0 0



 ,

R =





1 0
0 1
Ψ11 Ψ12

Ψ21 Ψ22



 , W = RΣR′.

(3.50)

In R, the function dlmModARMA can be used to create a DLM representation of
an ARMA model also in the multivariate case. The contributed package dse1

also provides tools for the analysis of multivariate ARMA models.
For a detailed treatment of multivariate ARMA models the reader can

consult Reinsel (1997) and Lütkepohl (2005).

In many applications, in particular in econometrics, ARMA models with
no moving average part are often considered, as they are more easily inter-
pretable. Multivariate AR models are commonly called vector autoregressive
(VAR) models. In econometrics, VAR models are widely used both for fore-
casting and for detecting relationships between macroeconomic variables or
groups of variables. Suppose we partition Yt into a group of k variables and a
group of m− k variables, Xt and Zt say, so that Y ′

t = (X ′
t, Z

′
t). It is often of
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interest to study causal relationships between (Xt) and (Zt). There are several
ways of rigorously defining this problem. One possibility is to appeal to the
notion of Granger causality, which is based on assessing the improvement in
the forecasting of one variable produced by the inclusion of the other in the
information set upon which the forecast is based. More precisely, we say that
(Xt) is Granger-causal for (Zt) if for all t

Var
(
E(Zt+h|z1:t)

)
> Var

(
E(Zt+h|z1:t, x1:t)

)

for some h ≥ 1.
Instantaneous causality is another notion of causal relationship between

two groups of variables that is often used in macroeconometric analysis. We
say that there is instantaneous causality between (Xt) and (Zt) if for all t

Var
(
E(Zt+1|y1:t)

)
> Var

(
E(Zt+1|y1:t, xt+1)

)
.

Yet another way of studying relationships among variables is the approach
based on impulse response analysis. Loosely speaking, and without entering
in the details, in this type of analysis one tries to understand how one vari-
able responds to a shock in another variable in a system that includes other
variables as well.

It turns out that also the class of VAR models is too large and the interpre-
tation of a particular model may not be easy. In particular, impulse responses
are generally not unique. To overcome this issue, structural restrictions can
be imposed on VAR models, leading to the so-called structural VARs; see,
e.g., Amisano and Giannini (1997). VARs and structural VARs provide also
an appropriate setting to apply the notion of cointegration (see p. 139), which
has received a lot of attention from econometricians in the last twenty years.

We will not treat VAR models or cointegration in this book; the interested
reader can consult Lütkepohl (2005), Canova (2007), or Pfaff (2008a), the
latter showing also implementations in R. The contributed package vars (Pfaff;
2008b) can be used for the analysis in R of VAR models.

To conclude this section, let us point out that macroeconomic analysis is
an area where expert opinion, in the form of informative prior distributions
for unknown model parameters, is often available and can be fruitfully incor-
porated into a model to improve forecasts and inference in general. However,
specifying in a meaningful way a prior for the many parameters of a VAR
model may not be an easy task, and several simplified ways of doing so have
been suggested, starting with the so-called “Minnesota prior” (Litterman;
1986; Doan et al.; 1984). There is now a vast literature on Bayesian VAR’s
and we refer the reader to Canova (2007) and references therein. In R, the
contributed package MSBVAR (Brandt; 2008) can be used for the analysis of
Bayesian VAR models.
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Problems

3.1. Simulate patterns of the random walk-plus-noise model for different val-
ues of V and W .

3.2. Show that, for the local level model, limt→∞ Ct = KV , whereK is defined
by (3.8).

3.3. Let (Yt, t = 1, 2, . . .) be described by a random walk plus noise model.
Show that the first differences Zt = Yt − Yt−1 are stationary and have the
same autocorrelation function of a MA(1) model.

3.4. Simulate patterns of the linear growth model for different values of V
and W1,W2.

3.5. Let (Yt, t = 1, 2, . . .) be described by a linear growth model. Show that
the second differences Zt = Yt − 2Yt−1 + Yt−2 are stationary and have the
same autocorrelation function of a MA(2) model.

3.6. Show that the forecast function for the polynomial model of order n is
polynomial of order n− 1.

3.7. Verify that the second differences of (Yt) for a linear growth model can
be written in terms of the innovations as in (3.12).

3.8. Consider the data studied in Section 3.2.6. Estimate a global trend model,
yt = µ0 + δt + ǫt. Look at the one-step-ahead forecast residuals, and make
your comments. Then, compare with the integrated random walk and the
linear growth model for these data.

3.9. Show that a Fourier form seasonal DLM has a periodic forecast function,
even when W is a general variance matrix.

3.10. Prove that (3.31) holds.

3.11. Simulate paths of a stationary bivariate VAR(1) process. Compare with
paths of a nonstationary VAR(1) process.
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Models with unknown parameters

In the previous chapters we presented some basic DLMs for time series anal-
ysis, assuming that the system matrices Ft, Gt, Vt, and Wt were known. This
was done to more easily study their behavior and general properties. In fact,
in time series applications the matrices in the DLM are very rarely completely
known. In this chapter we let the model matrices depend on a vector of un-
known parameters, ψ say. The unknown parameters are usually constant over
time, but we also give some examples where they may have a temporal evo-
lution. Anyway, the dynamics of ψt will be such as to maintain the linear,
Gaussian structure of DLMs.

In a classical framework one typically starts by estimating ψ, usually by
maximum likelihood. If the researcher is only interested in the unknown pa-
rameters, the analysis terminates here; if, on the other hand, he is interested
in smoothing or forecasting the values of the observed series or those of the
state vectors, the customary way to proceed is to use the estimated value of ψ
as if it were a known constant, and apply the relevant techniques of Chapter 2
for forecasting or smoothing.

From a Bayesian standpoint, unknown parameters are instead random
quantities, as we discussed in Chapter 1: therefore, in the context of DLMs,
the posterior distribution of interest is the joint conditional distribution of
the state vectors—or of future measurements—and the unknown parameter
ψ, given the observations. As we shall see, Bayesian inference, even if simple
in principle, involves computations that are usually not analytically manage-
able; however, Markov chain Monte Carlo and modern sequential Monte Carlo
methods can be quite efficient in providing an approximation of the posterior
distributions of interest.

In Section 4.1 we discuss maximum likelihood estimation of an unknown
parameter occurring in the specification of a DLM, while the rest of the chap-
ter is devoted to Bayesian inference.

©  Springer Science + Business Media, LLC 2009
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4.1 Maximum likelihood estimation

Suppose that we have n random vectors, Y1, . . . , Yn, whose distribution de-
pends on an unknown parameter ψ. We will denote the joint density of the
observations for a particular value of the parameter, by p(y1, . . . , yn;ψ). The
likelihood function is defined to be, up to a constant factor, the probability
density of the observed data read as a function of ψ, i.e., denoting the like-
lihood by L, we can write L(ψ) = const. · p(y1, . . . , yn;ψ). For a DLM it is
convenient to write the joint density of the observations in the form

p(y1, . . . , yn;ψ) =
n∏

t=1

p(yt|y1:t−1;ψ), (4.1)

where p(yt|y1:t−1;ψ) is the conditional density of yt given the data up to time
t− 1, assuming that ψ is the value of the unknown parameter. We know from
Chapter 2 that the terms occurring in the RHS of (4.1) are Gaussian densities
with mean ft and variance Qt. Therefore we can write the loglikelihood as

ℓ(ψ) = −1

2

n∑

t=1

log |Qt| −
1

2

n∑

t=1

(yt − ft)
′Q−1

t (yt − ft), (4.2)

where the ft and the Qt depend implicitly on ψ. The expression (4.2) can be
numerically maximized to obtain the MLE of ψ:

ψ̂ = argmax
ψ

ℓ(ψ). (4.3)

Denote by H the Hessian matrix of −ℓ(ψ), evaluated at ψ = ψ̂. The matrix

H−1 provides an estimate of the variance of the MLE, Var(ψ̂). Conditions
for consistency as well as asymptotic normality of the MLE can be found in
Caines (1988) and Hannan and Deistler (1988). See also Shumway and Stoffer
(2000) for an introduction. For most of the commonly used DLM, however,
the usual consistency and asymptotic normality properties of MLE hold.

A word of caution about numerical optimization is in order. The likeli-
hood function for a DLM may present many local maxima. This implies that
starting the optimization routine from different starting points may lead to
different maxima. It is therefore a good idea to start the optimizer several
times from different starting values and compare the corresponding maxima.
A rather flat likelihood is another problem that one may face when looking
for a MLE. In this case the optimizer, starting from different initial values,
may end up at very different points corresponding to almost the same value
of the likelihood. The estimated variance of the MLE will typically be very
large. This is a signal that the model is not well identifiable. The solution is
usually to simplify the model, eliminating some of the parameters, especially
when one is interested in making inference and interpreting the parameters
themselves. On the other hand, if smoothing or forecasting is the focus, then
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sometimes even a model that is poorly identified in terms of its parameters
may produce good results.

R provides an extremely powerful optimizer with the function optim, which
is used inside the function dlmMLE in package dlm. In the optimization world
it is customary to minimize functions, and optim is no exception: by default it
seeks a minimum. Statisticians too, when looking for an MLE, tend to think
in terms of minimizing the negative loglikelihood. In line with this point of
view, the function dlmLL returns the negative loglikelihood of a specified DLM
for a given data set. In terms of the parameter ψ occurring in the definition
of the DLM of interest, one can think of minimizing the compound function
obtained in two steps by building a DLM first, and then evaluating its negative
loglikelihood, as a function of the matrices defining it. A suggestive graphical
representation is the following:

ψ
build
=⇒ DLM

loglik.
=⇒ −ℓ(ψ).

That is exactly what dlmMLE does: it takes a user-defined function build that
creates a DLM, defines a new function by composing it with dlmLL, and passes
the result to optim for the actual minimization. Consider, for example, the
annual precipitation data for Lake Superior (see page 91). By plotting the
data, it seems that a polynomial model of order one can provide an adequate
description of the phenomenon. The code below shows how to find the MLE
of V and W .

R code

> y <- ts(read.table("Datasets/lakeSuperior.dat",

2 + skip = 3))[, 2], start = c(1900, 1)

> build <- function(parm) {
4 + dlmModPoly(order = 1, dV = exp(parm[1]), dW = exp(parm[2]))

+ }
6 > fit <- dlmMLE(y, rep(0, 2), build)

> fit$convergence

8 [1] 0

> unlist(build(fit$par)[c("V", "W")])

10 V W

9.4654447 0.1211534

We have parametrized the two unknown variances in terms of their log, so
as to avoid problems in case the optimizer went on to examine negative val-
ues of the parameters. The value returned by dlmMLE is the list returned by
the call to optim. In particular, the component convergenge needs always
to be checked: a nonzero value signals that convergence to a minimum has
not been achieved. dlmMLE has a ... argument that can be used to provide
additional named arguments to optim. For example, a call to optim including
the argument hessian=TRUE forces optim to return a numerically evaluated
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Hessian at the minimum. This can be used to estimate standard errors of the
components of the MLE, or more generally its estimated variance matrix, as
detailed above. In the previous example we parametrized the model in terms
of ψ = (log(V ), log(W )), so that standard errors estimated from the Hessian
refer to the MLE of these parameters. In order to get standard errors for the
MLE of V and W , one can apply the delta method. Let us recall the gen-
eral multivariate form of the delta method. Suppose that ψ is h-dimensional,
and g : R

h → R
k is a function that has continuous first derivatives. Write

g(ψ) = (g1(ψ), . . . , gk(ψ)) for any ψ = (ψ1, . . . , ψh) ∈ R
h, and define the

derivative of g to be the k by h matrix

Dg =





∂g1
∂ψ1

. . .
∂g1
∂ψh

. . . . . . . . . . . .
∂gk
∂ψ1

. . .
∂gk
∂ψh




, (4.4)

that is, the ith row of Dg is the gradient of gi. If Σ̂ is the estimated variance
matrix of the MLE ψ̂, then the MLE of g(ψ) is g(ψ̂), and its estimated variance

is Dg(ψ̂)Σ̂Dg(ψ̂)′. In the example, g(ψ) = (exp(ψ1), exp(ψ2)), so that

Dg(ψ) =

[
exp(ψ1) 0

0 exp(ψ2)

]
. (4.5)

We can use the Hessian of the negative loglikelihood at the minimum and the
delta method to compute in R standard errors of the estimated variances, as
the code below shows.

R code

> fit <- dlmMLE(y, rep(0, 2), build, hessian = TRUE)

2 > avarLog <- solve(fit$hessian)

> avar <- diag(exp(fit$par)) %*% avarLog %*%

4 + diag(exp(fit$par)) # Delta method

> sqrt(diag(avar)) # estimated standard errors

6 [1] 1.5059107 0.1032439

As an alternative to using the delta method, one can numerically compute the
Hessian of the loglikelihood, expressed as a function of the new parameters
g(ψ), at g(ψ̂). The recommended package nlme provides the function fdHess,
which we put to use in the following piece of code.

R code

> avar1 <- solve(fdHess(exp(fit$par), function(x)

2 + dlmLL(y, build(log(x))))$Hessian)

> sqrt(diag(avar1))

4 [1] 1.5059616 0.1032148 # estimated standard errors
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In this example one could parametrize the model in terms of V and W , and
then use the Hessian returned by dlmMLE to compute the estimated standard
errors directly. In this case, however, one needs to be careful about the natural
restriction of the parameter space, and provide a lower bound for the two
variances. Note that the default optimization method, L-BFGS-B, is the only
method that accepts restrictions on the parameter space, expressed as bounds
on the components of the parameter. In the following code, the lower bound
10−6 for V reflects the fact that the functions in dlm require the matrix V
to be nonsingular. On the scale of the data, however, 10−6 can be considered
zero for all practical purposes.

R code

> build <- function(parm) {
2 + dlmModPoly(order = 1, dV = parm[1], dW = parm[2])

+ }
4 > fit <- dlmMLE(y, rep(0.23, 2), build, lower = c(1e-6, 0),

+ hessian = T)

6 > fit$convergence

[1] 0

8 > unlist(build(fit$par)[c("V", "W")])

V W

10 9.4654065 0.1211562

> avar <- solve(fit$hessian)

12 > sqrt(diag(avar))

[1] 1.5059015 0.1032355

To conclude, let us mention the function StructTS, in base R. This func-
tion can be used to find MLE for the variances occurring in some particular
univariate DLM. The argument type selects the model to use. The available
models are the first order polynomial model (type="level"), the second or-
der polynomial model (type="trend"), and a second order polynomial model
plus a seasonal component (type="BSM"). Standard errors are not returned
by StructTS, nor are they easy to compute from its output.

R code

> StructTS(y, "level")

2

Call:

4 StructTS(x = y, type = "level")

6 Variances:

level epsilon

8 0.1212 9.4654
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4.2 Bayesian inference

The common practice of plugging the MLE ψ̂ in the filtering and smooth-
ing recursions suffers from the difficulties in taking properly into account the
uncertainty about ψ. The Bayesian approach offers a more consistent formu-
lation of the problem. The unknown parameters ψ are regarded as a random
vector. The general hypotheses of state space models for the processes (Yt)
and (θt) (assumptions (A.1) and (A.2) on page 40) are assumed to hold con-
ditionally on the parameters ψ. Prior knowledge about ψ is expressed through
a probability law π(ψ). Thus, for any n ≥ 1, we assume that

(θ0, θ1, . . . , θn, Y1, . . . , Yn, ψ) ∼ π(θ0|ψ)π(ψ)
n∏

t=1

π(yt|θt, ψ)π(θt|θt−1, ψ)

(4.6)
(compare with (2.3)).

Given the data y1:t, inference on the unknown state θs at time s and on
the parameters is solved by computing their joint posterior distribution

π(θs, ψ|y1:t) = π(θs|ψ, y1:t)π(ψ|y1:t), (4.7)

where, as usual, one might be interested in s = t, in filtering problems; s > t,
for state prediction; or s < t, for smoothing. The marginal conditional density
of θs is obtained from (4.7); for example, the filtering density is given by

π(θt|y1:t) =

∫
π(θt|ψ, y1:t)π(ψ|y1:t)dψ.

Here, the recursion formulae for filtering, given in Chapter 2, can be used to
compute the conditional density π(θt|ψ, y1:t); however, this is now averaged
with respect to the posterior distribution of ψ, given the data.

Often, one is interested in reconstructing all the unknown state history up
to time t; inference on θ0:t and ψ, given the data y1:t, is expressed through
their joint posterior density

π(θ0:t, ψ|y1:t) = π(θ0:t|ψ, y1:t)π(ψ|y1:t). (4.8)

In principle, the posterior density (4.8) is obtained from the Bayes rule. In
some simple models and using conjugate priors, it can be computed in closed
form; examples are given in the following section. More often, computations
are analytically intractable. However, MCMC methods and sequential Monte
Carlo algorithms provide quite efficient tools for approximating the posterior
distributions of interest, and this is one reason for the enormous impulse en-
joyed by Bayesian inference for state space models in recent years.

Posterior distribution. MCMC and, in particular, Gibbs sampling algo-
rithms are widely used to approximate the joint posterior π(θ0:t, ψ|y1:t). Gibbs
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sampling from π requires us to iteratively simulate from the full conditional
distributions π(θ0:t|ψ, y1:t) and π(ψ|θ0:t, y1:t). Efficient algorithms for sam-
pling from the full conditional π(θ0:t|ψ, y1:t) have been developed, and will
be presented in Section 4.4.1. Furthermore, exploiting the conditional inde-
pendence assumptions of DLMs, the full conditional density π(ψ|θ0:t, y1:t)
is usually easier to compute than π(ψ|y1:t). Clearly, this full conditional is
problem-specific, but we will provide several examples in the next sections.

We can thus implement Gibbs sampling algorithms to approximate π.
Samples from π(θ0:t, ψ|y1:t) can also be used for approximating the filtering
density π(θt|y1:t) and the marginal smoothing densities π(θs|y1:t), s < t. As
we shall see, they also allow us to simulate samples from the predictive dis-
tribution of the states and observables, π(θt+1, yt+1|y1:t). Thus, this approach
solves at the same time the filtering, smoothing, and forecasting problems for
a DLM with unknown parameters.

Filtering and on-line forecasting. The shortcoming of the MCMC proce-
dures described above is that they are not designed for recursive or on-line
inference. When a new observation yt+1 is available, the distribution of inter-
est becomes π(θ0:t+1, ψ|y1:t+1) and one has to run a new MCMC all over again
to sample from it. This is computationally inefficient, especially in applica-
tions that require an on-line type of analysis, in which new data arrive rather
frequently. As discussed in Chapter 2, one of the attractive properties of DLM
is the recursive nature of the filter formulae, which allows us to update the
inference efficiently as new data become available. In the case of no unknown
parameters in the DLM, one could compute π(θt+1|y1:t+1) from π(θt|y1:t) by
the estimation-error correction formulae given by the Kalman filter, without
doing all the computations again. Analogously, when there are unknown pa-
rameters ψ, one would like to exploit the samples generated from π(θ0:t, ψ|y1:t)
in simulating from π(θ0:t+1, ψ|y1:t+1), without running the MCMC all over
again. Modern sequential Monte Carlo techniques, in particular the family of
algorithms that go under the name of particle filters, can be used to this aim
and allow efficient on-line analysis and simulation-based sequential updating
of the posterior distribution of states and unknown parameters. A description
of these techniques is postponed until Chapter 5.

4.3 Conjugate Bayesian inference

In some simple cases, Bayesian inference can be carried out in closed form
using conjugate priors. We illustrate an example here.

Even in simple structural models such as those presented in Chapter 3,
where the system matrices Ft and Gt are known, very rarely are the covariance
matrices Vt and Wt completely known. Thus, a basic problem is estimating
Vt and Wt. Here we consider a simple case where Vt and Wt are known up to
a common scale factor; that is, Vt = σ2Ṽt and Wt = σ2W̃t, with σ2 unknown.
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This specification of the covariance matrices has been discussed in Section
1.5 of Chapter 1 for the static linear regression model. A classical example
is Vt = σ2Im; an interesting way of specifying W̃t is discussed later, using
discount factors.

4.3.1 Unknown covariance matrices: conjugate inference

Let ((Yt, θt) : t = 1, 2, . . .) be described by a DLM with

Vt = σ2Ṽt, Wt = σ2W̃t, C0 = σ2C̃0. (4.9)

Here all the matrices Ṽt, W̃t, as well as C̃0 and all the Ft and Gt, are assumed
to be known. The scale parameter σ2, on the other hand, is unknown. As usual
in Bayesian inference, it is convenient to work with its inverse φ = 1/σ2. The
uncertainty, therefore, is all in the state vectors and in the parameter φ. The
DLM provides the conditional probability law of (Yt, θt) given φ; in particular
the model assumes, for any t ≥ 1,

Yt|θt, φ ∼ Nm(Ftθt, φ
−1Ṽt)

θt|θt−1, φ ∼ Np(Gtθt−1, φ
−1W̃t).

As the prior for (φ, θ0), a convenient choice is a conjugate Normal-Gamma
prior (see Appendix A), that is

φ ∼ G(α0, β0), θ0|φ ∼ N (m0, φ
−1C̃0),

denoted as (θ0, φ) ∼ NG(m0, C̃0, α0, β0). Then we have the following recursive
formulae for filtering. Note the analogy with the recursive formulae valid for
a DLM with no unknown parameters.

Proposition 4.1. For the DLM described above, if

(θt−1, φ)|y1:t−1 ∼ NG(mt−1, C̃t−1, αt−1, βt−1)

where t ≥ 1, then:

(i) The one-step-ahead predictive density of (θt, φ)|y1:t−1 is Normal-Gamma
with parameters (at, R̃t, αt−1, βt−1), where

at = Gtmt−1, R̃t = GtC̃t−1G
′
t + W̃t; (4.10)

(ii)The one-step-ahead predictive density of Yt|y1:t−1 is Student-t, with pa-
rameters (ft, Q̃tβt−1/αt−1, 2αt−1), where

ft = Ftat, Q̃t = FtR̃tF
′
t + Ṽt; (4.11)
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(iii) The filtering density of (θt, φ|y1:t) is Normal-Gamma, with parameters

mt = at + R̃tFtQ̃
−1(yt − ft)

C̃t = R̃t − R̃tF
′
tQ̃

−1
t R̃′

t,

αt = αt−1 +
m

2
,

βt = βt−1 +
1

2
(yt − ft)

′Q̃−1
t (yt − ft).

(4.12)

Proof. (i) Suppose that θt−1, φ|y1:t−1 ∼ NG(mt−1, C̃t−1, αt−1, βt−1) (this is
true for t = 1). In particular, this implies that φ|y1:t−1 ∼ G(αt−1, βt−1).
By (i) of Proposition 2.2, we have that

θt|φ, y1:t−1 ∼ Np(at, φ
−1R̃t)

with at and R̃t given by (4.10). Therefore (θt, φ)|y1:t−1 ∼ NG(at, R̃t, αt, βt).
(ii) It also follows, from part (ii) of Proposition 2.2, that

Yt|φ, y1:t−1 ∼ Nm(ft, φ
−1Q̃t)

where ft and Q̃t are given by (4.11). Thus we obtain that (Yt, φ)|y1:t−1 ∼
NG(ft, Q̃t, αt−1, βt−1); the corresponding marginal density of Yt|y1:t−1 is
Student-t, as given in (ii).
(iii) For a new observation Yt, the likelihood is

Yt|θt, φ ∼ Nm(Ftθt, φ
−1Ṽt).

The theory of linear regression with a Normal-Gamma prior discussed in
Chapter 1 (page 21; use (1.11) and (1.12)) applies, and leads to the con-
clusion that (θt, φ) given y1:t has again a NG(mt, C̃t, αt, βt) distribution, with
parameters defined by (4.12). ⊓⊔

By the properties of the Student-t distribution we have that the one-step-
ahead forecast of Yt given y1:t−1 is E(Yt|y1:t−1) = ft, with covariance matrix
Var(Yt|y1:t−1) = Q̃t βt−1/(αt−1 − 1).

From (iii), the marginal filtering density of σ2 = φ−1 given y1:t is Inverse-
Gamma, with parameters (αt, βt), so that, for αt > 2,

E(σ2|y1:t) =
βt

αt − 1
, Var(σ2|y1:t) =

β2
t

(αt − 1)2(αt − 2)
.

The marginal filtering density of the states is Student-t:

θt|y1:t ∼ T (mt, C̃t βt/αt, 2αt),

with
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E(θt|y1:t) = mt, Var(θt|y1:t) =
βt

αt − 1
C̃t. (4.13)

Were σ2 known, the Kalman filter would give the same point estimate,
E(θt|y1:t) = mt, with covariance matrix Var(θt|y1:t) = σ2C̃t. Instead, the
unknown value of σ2 is replaced in (4.13) by its conditional expectation
βt/(αt − 1). The larger uncertainty is reflected in a filtering density with
thicker tails than the Gaussian density (see Exercise 4.2).

As far as smoothing is concerned, note that

(θT , φ|y1:T ) ∼ NG(sT , S̃T , αT , βT ), (4.14)

with sT = mT and S̃T = C̃T , and write

π(θt, φ|y1:T ) = π(θt|φ, y1:T )π(φ|y1:T ), t = 0, . . . , T. (4.15)

Conditional on φ, the Normal theory of Chapter 1 applies, showing that (θt, φ),
conditional on y1:T has a Normal-Gamma distribution. The parameters can
be computed using recursive formulae that are the analog of those developed
for the Normal case. Namely, for t = T − 1, . . . , 0, let

st = mt + C̃tG
′
t+1R̃

−1
t+1(st+1 − at+1),

S̃t = C̃t − C̃tG
′
t+1R̃

−1
t+1(R̃t+1 − S̃t+1)R̃

−1
t+1Gt+1C̃t.

Then
θt, φ|y1:T ∼ NG(st, S̃t, αT , βT ). (4.16)

4.3.2 Specification of Wt by discount factors

The Bayesian conjugate analysis discussed in the previous section applies if the
matrices Ṽt, W̃t and C̃0 are known, which is a restrictive assumption. However,
an interesting case is when Ṽt = Im and W̃t is specified by a technique that is
known as discount factor. We give here an informal explanation of discount-
factors; for an in-depth discussion, see West and Harrison (1997, Section 6.3).

As often underlined (see, e.g., Chapter 2, pages 57-58), the structure and
magnitude of the state covariance matricesWt has a crucial role in determining
the role of past observations in state estimation and forecasting. Think of
Wt as diagonal, for simplicity. Large values in the diagonal of Wt imply high
uncertainty in the state evolution, so that a lot of sample information is lost in
passing from θt−1 to θt: the past observations y1:t−1 give information about
θt−1, which, however, becomes of little relevance in forecasting θt; in fact,
the current observation yt is what mainly determines the estimate of θt|y1:t.
In the Kalman filter recursions, the uncertainty about θt−1 given y1:t−1 is
summarized in the conditional covariance matrix Var(θt−1|y1:t−1) = Ct−1.
Moving from θt−1 to θt via the state equation θt = Gtθt−1+wt, the uncertainty
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increases and we have Var(θt|y1:t−1) = Rt = G′
tCt−1Gt+Wt. Thus, if Wt = 0,

i.e., there is no error in the state equation, we have Rt = Var(Gtθt−1|y1:t−1) =
Pt, say. Otherwise, Pt is increased in Rt = Pt+Wt. In this sense, Wt expresses
the loss of information in passing from θt−1 to θt due to the stochastic error
component in the state evolution, the loss depending on the magnitude of Wt

with respect to Pt. Therefore, one can think of expressing Wt as a proportion
of Pt:

Wt =
1 − δ

δ
Pt

where δ ∈ (0, 1]. It follows that Rt = 1/δ Pt, with 1/δ > 1. The pa-
rameter δ is called discount factor since it “discounts” the matrix Pt that
one would have with a deterministic state evolution into the matrix Rt.
If δ = 1, Wt = 0 and we have no loss of information from θt−1 to θt:
Var(θt|y1:t) = Var(Gtθt−1|y1:t−1) = Pt. For δ < 1, for example δ = 0.8,
we have Var(θt|y1:t) = (1/0.8) Var(Gtθt−1|y1:t−1) = 1.25Pt, showing bigger
uncertainty. In practice, the value of the discount factor is usually fixed be-
tween 0.9 and 0.99, or it is chosen by model selection diagnostics, e.g., looking
at the predictive performance of the model for different values of δ.

The discount factor specification may be used with conjugate priors, that
is one can let

W̃t =
1 − δ

δ
G′
tC̃t−1Gt (4.17)

in (4.9). Given C̃0 and Ṽt (e.g., Ṽt = Im), the value of W̃t can be recursively
computed for every t. The evolution covariance matrix is not time-invariant;
however, its dynamics is completely determined once C̃0, Ṽt and the system
matrices Ft and Gt are given. Further refinements consider different discount
factors δi for the different components of the state vector.

Example. As a simple illustration, let us consider again the data on the
annual precipitations at Lake Superior, which we modeled as a random walk
plus noise (see page 145). In Section 4.1, the unknown variances Vt = σ2 and
Wt = W were estimated by maximum likelihood. Here, we consider Bayesian
conjugate inference with W̃t specified by the discount factor.

Note that the quantities at, ft,mt, as well as C̃t and R̃t, can be computed
by the Kalman filter for a DLM with known covariance matrices C̃0 and Ṽ (as
in (4.9), with σ2 = 1) and W̃t. In fact, the evolution variance W̃t is known for
t = 1, while it is assigned sequentially according to (4.17) for t > 1. That is,
for each t = 2, 3, . . ., one has to compute W̃t from the results obtained at t−1,
and then use the Kalman filter recursions (4.10)-(4.12). These steps can be
easily implemented in R, with a slight modification of the function dlmFilter.
For the user’s convenience, we provide them in the function dlmFilterDF,
available from the book website. The arguments of dlmFilterDF are the data
y, the model mod (where Ft, Gt and Vt are assumed to be time-invariant) and
the discount factor DF; the function returns, as for dlmFilter, the values mt,
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at, ft and the SVDs of C̃t and R̃t for any t. In addition, it returns the SVDs
of the matrices Wt obtained using the discount factor.

The parameters of the filtering distribution for the unknown precision φ
can be computed from (4.12), which gives

αt = α0 + t
2

βt = β0 + 1
2

∑t
i=1(yi − fi)

2Q̃−1
i = β0 + 1

2

∑t
i=1 ẽ

2
i ,

where the standardized innovations ẽt and the standard deviation Q̃
1/2
t can

be obtained with a call to the residuals function. Finally, one can compute

Qt = Var(Yt|y1:t−1) = Q̃t
βt−1

αt−1 − 1

Ct = Var(θt|y1:t) = C̃t
βt

αt − 1
.

As for smoothing, we can compute st and S̃t with a call to the dlmSmooth

function. Note that we need, as inputs, the matrices Wt obtained as output
of dlmFilterDF. Finally, we obtain

St = Var(θt|y1:T ) = S̃t
βT

αT − 1
.

For illustration with the Lake Superior data, we choose the prior hyperparam-
eters m0 = 0, C̃0 = 107, α0 = 2, β0 = 20, so that E(σ2) = β0/(α0 − 1) = 20,
and a discount factor δ = 0.9. Figure 4.1 shows the filtering and smoothing
estimates of the level, mt and st, respectively, with 90% probability intervals
(see Problem 4.2), as well as the one-step-ahead point forecasts ft, with 90%
probability intervals.

R code

> y <- ts(read.table("Datasets/lakeSuperior.dat",

2 + skip = 3)[, 2], start = c(1900, 1))

> mod <- dlmModPoly(1, dV = 1)

4 > modFilt <- dlmFilterDF(y, mod, DF = 0.9)

> beta0 <- 20; alpha0 <- 2

6 > ## Filtering estimates

> out <- residuals(modFilt)

8 > beta <- beta0 + cumsum(out$res^2) / 2

> alpha <- alpha0 + (1 : length(y)) / 2

10 > Ctilde <- unlist(dlmSvd2var(modFilt$U.C, modFilt$D.C))[-1]

> prob <- 0.95

12 > tt <- qt(prob, df = 2 * alpha)

> lower <- dropFirst(modFilt$m) - tt * sqrt(Ctilde * beta /

14 + alpha)

> upper <- dropFirst(modFilt$m) + tt * sqrt(Ctilde * beta /
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Fig. 4.1. Annual precipitation at Lake Superior (gray), filtering and smoothing
level estimates, and one-step-ahead forecasts

16 + alpha)

> plot(y, ylab = "Filtering level estimates", type = "o",

18 + ylim = c(18, 40), col = "darkgray")

> lines(dropFirst(modFilt$m), type = "o")

20 > lines(lower, lty = 2, lwd = 2)

> lines(upper, lty = 2, lwd = 2)

22 > ## One-step-ahead forecasts
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> sigma2 <- c(beta0 / (alpha0-1), beta / (alpha-1))

24 > Qt <- out$sd^2 * sigma2[-length(sigma2)]

> alpha0T = c(alpha0,alpha)

26 > tt <- qt(prob, df = 2 * alpha0T[-length(alpha0T)])

> parf <- c(beta0 / alpha0, beta / alpha)

28 > parf <- parf[-length(parf)] * out$sd^2

> lower <- dropFirst(modFilt$f) - tt * sqrt(parf)

30 > upper <- dropFirst(modFilt$f) + tt * sqrt(parf)

> plot(y, ylab = "One-step-ahead forecasts", type = "o",

32 + ylim = c(20, 40), col = "darkgray")

> lines(window(modFilt$f, start = 1902), type = "o")

34 > lines(lower, lty = 2, lwd = 2)

> lines(upper, lty = 2, lwd = 2)

36 > ## Smoothing estimates

> modFilt$mod$JW <- matrix(1)

38 > X <- unlist(dlmSvd2var(modFilt$U.W, modFilt$D.W))[-1]

> modFilt$mod$X <- matrix(X)

40 > modSmooth <- dlmSmooth(modFilt)

> Stildelist <- dlmSvd2var(modSmooth$U.S, modSmooth$D.S)

42 > TT <- length(y)

> pars <- unlist(Stildelist) * (beta[TT] / alpha[TT])

44 > tt <- qt(prob, df = 2 * alpha[TT])

> plot(y, ylab = "Smoothing level estimates",

46 + type = "o", ylim = c(20, 40), col = "darkgray")

> lines(dropFirst(modSmooth$s), type = "o")

48 > lines(dropFirst(modSmooth$s - tt * sqrt(pars)),

+ lty = 3, lwd = 2)

50 > lines(dropFirst(modSmooth$s + tt * sqrt(pars)),

+ lty = 3, lwd = 2)

An important point is choosing the value of the discount factor δ, which
determines the signal-to-noise ratio. In practice, one usually tries several val-
ues of δ, comparing the predictive performance of the corresponding models.
Figure 4.2 shows the one-step-ahead point forecasts for the time window 1960-
85, for different choices of δ (δ = 1, which corresponds to the static model
with Wt = 0 and θt = θ0; δ = 0.9; δ = 0.8 and δ = 0.3, a quite small
value). The degree of adaptation to new data increases as δ becomes smaller.
For δ = 0.3 the forecasts ft+1 = E(Yt+1|y1:t) are mainly determined by the
current observation yt. For δ closer to one, smoother forecasts are obtained.

Finally, Figure 4.3 shows the sequence of point estimates E(σ2|y1:t) =
βt/(αt−1) of the observation variance, for t = 1, 2, . . . , 87; the final estimates
at t = 87 are reported in the table below.

discount factor 1.0 0.9 0.8 0.7
E(σ2|y1:87) 12.0010 9.6397 8.9396 8.3601
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Fig. 4.2. Annual precipitation at Lake Superior (gray) and one-step-ahead forecasts,
for different values of the discount factor (DF)
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Fig. 4.3. Posterior expectation E(σ2|y1:t), for different values of the discount factor
(DF)

Smaller values of δ imply larger evolution variance; correspondingly, a smaller
observation variance is expected. Note that, for δ = 0.9, the Bayesian estimate
E(σ2|y1:87) = 9.6397 is close to the MLE σ̂2 = 9.4654, obtained on page 145.

The table below shows some measures of forecast accuracy for the four
different choices of the discount factor, which suggest a better predictive per-
formance for δ = 0.9.
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discount factor MAPE MAD MSE
1.0 0.0977 3.0168 21.5395
0.9 0.0946 2.8568 19.9237
0.8 0.0954 2.8706 20.2896
0.3 0.1136 3.4229 25.1182

4.3.3 A discount factor model for time-varying Vt

In the DLM (4.9), the unknown precision factor φ is assumed to be constant
over time. Since, for simplicity, the components Ṽt are often taken as time-
invariant too, this implies a constant observation covariance matrix, which is
a restrictive assumption in many applications. Models for time varying Vt will
be discussed in later sections. Here, we apply the technique of discount factors
for introducing a fairly simple temporal evolution for the precision φ in (4.9)
(see West and Harrison; 1997, Section 10.8).

Consider the DLM described in Section 4.3.1, and suppose again that at
time t− 1

φt−1|y1:t−1 ∼ G(αt−1, βt−1).

However, let now φ evolve from time t− 1 to time t. Consequently, the uncer-
tainty about φt, given the data y1:t−1, will be bigger, that is Var(φt|y1:t−1) >
Var(φt−1|y1:t−1). Let us suppose for the moment that φt|y1:t−1 has still a
Gamma density, and in particular suppose that

φt|y1:t−1 ∼ G(δ∗αt−1, δ
∗βt−1) , (4.18)

where 0 < δ∗ < 1. Notice that the expected value is not changed: E(φt|y1:t−1) =
E(φt−1|y1:t−1) = αt−1/βt−1, while the variance is bigger: Var(φt|y1:t−1) =
1/δ∗ Var(φt−1|y1:t−1), with 1/δ∗ > 1. With this assumption, once a new ob-
servation yt becomes available, one can use the updating formulae of Propo-
sition 4.1, but starting from (4.18) in place of the G(αt−1, βt−1). Letting
α∗
t = δ∗αt−1, β

∗
t = δ∗βt−1, we obtain

Yt|y1:t−1 ∼ T (ft, Q̃t
β∗
t

α∗
t

, 2α∗
t )

and

θt|y1:t ∼ T (mt, C̃t
βt
αt
, 2αt)

where

αt = α∗
t +

m

2
, βt = β∗

t +
1

2
(yt − ft)

′

Q̃−1
t (yt − ft). (4.19)

For m = 1, the above expressions give

αt = (δ∗)tα0 + 1
2

∑t
i=1(δ

∗)i−1

βt = (δ∗)tβ0 + 1
2

∑t
i=1(δ

∗)t−iẽ2i
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where ẽ2t = (yt − ft)
2/Q̃t.

It remains to motivate the assumption (4.18), and in fact we have not
specified yet the dynamics that leads from φt−1 to φt. It can be proved that
assumption (4.18) is equivalent to the following multiplicative model for the
dynamics of φt

φt =
γt
δ∗
φt−1 ,

where γt is a random variable independent on φt−1, having a beta distribution
with parameters (δ∗αt−1, (1 − δ∗)αt−1), so that E(γt) = δ∗. Therefore, φt is
equivalent to φt−1 multiplied by a random impulse with expected value 1
(E(γt/δ

∗) = 1).
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Fig. 4.4. Lake Superior data (gray) and one-step-ahead forecasts, with 90% prob-
ability intervals. Both Vt and Wt are specified through discount factors

For illustration with the Lake Superior data, let again m0 = E(θ0|φ0) = 0,
C̃0 = 107, α0 = 2, β0 = 20 and use discount factors δ = 0.9, for W̃t, and
δ∗ = 0.9, so that Var(φt|y1:t−1) = (1/0.9)Var(φt−1|y1:t−1). Figure 4.4 shows
the one-step-ahead point forecasts ft, with 90% probability intervals.

R code

> y <- ts(read.table("Datasets/lakeSuperior.dat",

2 + skip = 3)[, 2], start = c(1900, 1))

> beta0 <- 20; alpha0 <- 2 ; TT <- length(y)

4 > mod <- dlmModPoly(1, dV = 1)

> modFilt <- dlmFilterDF(y, mod, DF = 0.9)

6 > out <- residuals(modFilt)

> DFstar <- 0.9

8 > delta <- DFstar^0 : TT

> alpha <- delta[-1] * alpha0 + cumsum(delta[-TT]) / 2

10 > res <- as.vector(out$res)
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> beta <- delta[-1] * beta0

12 > for (i in 1 : TT)

+ beta[i] <- beta[i] + 0.5 * sum(delta[i:1] * res[1:i]^2)

14 > alphaStar <- DFstar * c(alpha0, alpha)

> betaStar <- DFstar * c(beta0, beta)

16 > tt <- qt(0.95, df = 2 * alphaStar[1 : TT])

> param <- sqrt(out$sd) * (betaStar / alphaStar)[1 : TT]

18 > plot(y, ylab = "Observed/One step ahead forecasts",

+ type = "o", col = "darkgray", ylim =c(20, 45))

20 > lines(window(modFilt$f, start = 1902), type = "o")

> lines(window(modFilt$f, start = 1902) - tt * sqrt(param),

22 + lty = 2, lwd = 2)

> lines(window(modFilt$f, start = 1902) + tt * sqrt(param),

24 + lty = 2, lwd = 2)

4.4 Simulation-based Bayesian inference

For a DLM including a possibly multidimensional unknown parameter ψ in
its specification, and observations y1:T , the posterior distribution of the pa-
rameter and unobservable states is

π(ψ, θ0:T |y1:T ). (4.20)

As mentioned in Section 4.2, in general it is impossible to compute this dis-
tribution in closed form. Therefore, in order to come up with posterior sum-
maries one has to resort to numerical methods, almost invariably stochastic,
Monte Carlo methods. The customary MCMC approach to analyze the pos-
terior distribution (4.20) is to generate a (dependent) sample from it and
evaluate posterior summaries from the simulated sample. The inclusion of the
states in the posterior distribution usually simplifies the design of an efficient
sampler, even when one is only interested in the posterior distribution of the
unknown parameter, π(ψ|y1:T ). In fact, drawing a random variable/vector
from π(ψ|θ0:T , y1:T ) is almost invariably much easier than drawing it from
π(ψ|y1:T ); in addition, efficient algorithms to generate the states conditionally
on the data and the unknown parameter are available, see Section 4.4.1. This
suggests that a sample from (4.20) can be obtained from a Gibbs sampler alter-
nating draws from π(ψ|θ0:T , y1:T ) and π(θ0:T |ψ, y1:T ). The simulated sample
from the posterior can in turn be used as input to generate a sample from the
predictive distribution of states and observables, π(θT+1:T+k, yT+1:T+k|y1;T ).
In fact,

π(θT+1:T+k, yT+1:T+k, ψ, θT |y1;T ) =

π(θT+1:T+k, yT+1:T+k|ψ, θT ) · π(ψ, θT |y1;T ).
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Therefore, for every pair (ψ, θT ) drawn from π(ψ, θT |y1:T ), one can generate
the “future” θT+1:T+k, yT+1:T+k from π(θT+1:T+k, yT+1:T+k|ψ, θT ) (see Sec-
tion 2.8) to obtain a sample from the predictive distribution.

The approach sketched above completely solves the filtering, smoothing,
and forecasting problems for a DLM with unknown parameters. However, if
one needs to update the posterior distribution after one or more new observa-
tions become available, then one has to run the Gibbs sampler all over again,
and this can be extremely inefficient. As already mentioned, on-line anal-
ysis and simulation-based sequential updating of the posterior distribution
of states and unknown parameters are best dealt with employing sequential
Monte Carlo techniques.

4.4.1 Drawing the states given y1:T : forward filtering backward
sampling

In a Gibbs sampling from π(θ0:T , ψ|y1:T ), one needs to simulate from the
full conditional densities π(ψ|θ0:T , y1:T ) and π(θ0:T |ψ, y1:T ). While the first
density is problem specific, the general expression of the latter density and
efficient algorithms for sampling from it are available.

The smoothing recursions provide an algorithm for computing the mean
and variance of the distribution of θt conditional on y1:T and ψ (t =
0, 1, . . . , T ). Since all the involved distributions are Normal, this completely
determines the marginal posterior distribution of θt given y0:T and ψ. If one is
interested in the joint posterior distribution of θ0:T given (y1:T , ψ), then also
the posterior covariances between θt and θs have to be computed. General
formulae to recursively evaluate these covariances are available, see Durbin
and Koopman (2001). However, when π(θ0:T |ψ, y1:T ) has the role of full con-
ditional in a Gibbs sampling from π(θ0:T , ψ|y1:T ), the main question becomes:
how can one generate a draw from the distribution of θ0:T given (y1:T , ψ)?
We will use a method due to Carter and Kohn (1994), Früwirth-Schnatter
(1994), and Shephard (1994), which is now widely known as the forward fil-
tering backward sampling (FFBS) algorithm. By reading the description that
follows, the reader will realize that FFBS is essentially a simulation version
of the smoothing recursions.

We can write the joint distribution of θ0:T given y1:T as

π(θ0:T |y1:T ) =

T∏

t=0

π(θt|θt+1:T , y1:T ), (4.21)

where the last factor in the product is simply π(θT |y1:T ), i.e., the filtering
distribution of θT , which is N (mT , CT ). Formula (4.21) suggests that in order
to obtain a draw from the distribution on the left-hand side, one can start by
drawing θT from a N (mT , CT ) and then, for t = T−1, T−2, . . . , 0, recursively
draw θt from π(θt|θt+1:T , y1:T ). We have seen in the proof of Proposition 2.4
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that π(θt|θt+1:T , y1:T ) = π(θt|θt+1, y1:t), and we showed that this distribution
is N (ht,Ht), with

ht = mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1),

Ht = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct.

Therefore, having already (θt+1, . . . , θT ), the next step consists in drawing θt
from a N (ht,Ht). Note that ht explicitly depends on the value of θt+1 already
generated. The FFBS algorithm is summarized in Algorithm 4.1

1. Run Kalman filter.

2. Draw θT ∼ N (mT , CT ).
3. For t = T − 1, . . . , 0, draw θt ∼ N (ht, Ht).

Algorithm 4.1: Forward filtering backward sampling

FFBS is commonly used as a building block of a Gibbs sampler, as we
will illustrate in many examples in the remaining of the chapter, in particular
in Section 4.5. However, it can be of interest also in DLMs containing no
unknown parameters. In this case, the marginal smoothing distribution of each
θt is usually enough to evaluate posterior probabilities of interest. However,
the posterior distribution of a nonlinear function of the states may be difficult
or impossible to derive, even when all the parameters of the model are known.
In this case FFBS provides an easy way to generate an independent sample
from the posterior of the nonlinear function of interest. Note that in this type
of application the “forward filtering” part of the algorithm only needs to be
performed once.

4.4.2 General strategies for MCMC

For a completely specified DLM, i.e., one not containing unknown parame-
ters, draws from the posterior distribution of the states, and possibly from
the forecast distribution of states and observations, can be obtained using
the FFBS algorithm described in the previous subsection. In the more real-
istic situation of a DLM containing an unknown parameter vector ψ, with
prior distribution π(ψ), in the observation, system, or variance matrices, one
typically uses MCMC to obtain posterior summaries of the distributions of
interest. Almost all Markov chain samplers for posterior analysis of a DLM
fall in one of the following categories: Gibbs samplers, which include the states
as latent variables; marginal samplers; and hybrid samplers, which combine
aspects of both. Note that, depending on the context, the analyst may be
interested in making inference about the unobservable states, the unknown
parameter, or both. Of the three types of samplers, two (Gibbs and hybrid
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samplers) generate draws from the joint posterior of the states and the pa-
rameter, while the other (marginal samplers) only generates draws from the
posterior of the parameter. Keep in mind, however, that once a sample from
the posterior distribution of the parameter is available, a sample from the
joint posterior of states and parameter can be easily obtained in view of the
decomposition

π(θ0:T , ψ|y1:T ) = π(θ0:T |ψ, y1:T ) · π(ψ|y1:T ).

More specifically, for each ψ(i) in the sample (i = 1, . . . , N), it is enough to

draw θ
(i)
0:T from π(θ0:T |ψ = ψ(i), y1:T ) using FFBS, and {(θ(i)0:T , ψ

(i)) : i =
1, . . . , N} will be the required sample from the joint posterior distribution.

The Gibbs sampling approach, consisting in drawing in turn the states
from their conditional distribution given the parameter and observations, and
the parameter from its conditional distribution given the states and obser-
vations, is summarized in Algorithm 4.2. Package dlm provides the function

0. Initialize: set ψ = ψ(0).

1. For i = 1, . . . , N:

a) Draw θ
(i)
0:T from π(θ0:T |y1:T , ψ = ψ(i−1)) using FFBS.

b) Draw ψ(i) from π(ψ|y1:T , θ0:T = θ
(i)
0:T ).

Algorithm 4.2: Forward Filtering Backward Sampling in a Gibbs sampler

dlmBSample which, in conjunction with dlmFilter, can be used to perform
step (a). Step (b), on the other hand, depends heavily on the model under
consideration, including the prior distribution on ψ. In fact, when ψ is an
r-dimensional vector, it is often simpler to perform a Gibbs step for each
component of ψ instead of drawing ψ at once. The intermediate approach of
drawing blocks of components of ψ together is another option. In any case,
when a full conditional distribution is difficult to sample from, a Metropolis–
Hastings step can replace the corresponding Gibbs step. A generic sampler for
nonstandard distributions is ARMS (Section 1.6), available in package dlm in
the function arms.

The second approach, marginal sampling, is conceptually straightforward,
consisting of drawing a sample from π(ψ|y0:T ). The actual implementation
of the sampler depends on the model under consideration. Typically, if ψ
is multivariate, one can use a Gibbs sampler, drawing each component, or
block of components, from its full conditional distributions, possibly using a
Metropolis–Hastings step when the relevant full conditional is not a standard
distribution. Again, ARMS can be used in the latter case.

A hybrid sampler can be used when the parameter can be decomposed
in two components, that is, when ψ can be written as (ψ1, ψ2), where each
component may be univariate or multivariate. Algorithm 4.3 gives an algo-
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0. Initialize: set ψ2 = ψ
(0)
2 .

1. For i = 1, . . . , N:

a) Draw ψ
(i)
1 from π(ψ1|y0:T , ψ2 = ψ

(i−1)
2 ).

b) Draw θ
(i)
0:T from π(θ0:T |y1:T , ψ1 = ψ

(i)
1 , ψ2 = ψ

(i−1)
2 ) using FFBS.

c) Draw ψ
(i)
2 from π(ψ2|y1:T , θ0:T = θ

(i)
0:T , ψ1 = ψ

(i)
1 ).

Algorithm 4.3: Forward Filtering Backward Sampling in a hybrid sampler

rithmic description of a generic hybrid sampler. As for the previous schemes,
Metropolis–Hastings steps, and ARMS in particular, can be substituted for
direct sampling in steps (a) and (c). Step (b) can always be performed using
dlmFilter followed by dlmBSample. For the theoretically inclined reader, let
us point out a subtle difference between this sampler and a Gibbs sampler.
In a Gibbs sampler, each step consists of applying a Markov transition kernel
whose invariant distribution is the target distribution, so that the latter is
also invariant for the composition of all the kernels. In a hybrid sampler, on
the other hand, the target distribution is not invariant for the Markov kernel
corresponding to step (a), so the previous argument does not apply directly.
However, it is not difficult to show that the composition of step (a) and (b)
does preserve the target distribution and so, when combined with step (c),
which is a standard Gibbs step, it produces a Markov kernel having the correct
invariant distribution. An example of Bayesian inference with hybrid sampling
will be given in Section 4.6.1.

The output produced by a Markov chain sampler must always be checked
to assess convergence to the stationary distribution and mixing of the chain.
Given that the chain has practically reached the stationary distribution, mix-
ing can be assessed by looking at autocorrelation functions of parameters or
functions of interest. Ideally, one would like to have as low a correlation as
possible between draws. Correlation may be reduced by thinning the simu-
lated chain, i.e., discarding a fixed number of iterations between every saved
value. Although this method is very easy to implement, the improvements are
usually only marginal, unless the number of discarded simulations is substan-
tial, which significantly increases the time required to run the entire sampler.
As far as assessing convergence, a fairly extensive body of literature exists
on diagnostic tools for MCMC. In R the package BOA provides a suite of
functions implementing many of these diagnostics. In most cases, a visual in-
spection of the output, after discarding a first part of the simulated chain
as burn in, can reveal obvious departures from stationarity. For an organic
treatment of MCMC diagnostics, we refer to Robert and Casella (2004) and
references therein.
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4.4.3 Illustration: Gibbs sampling for a local level model

Before moving on to more general models, we give in the present section a sim-
ple illustration of how a Gibbs sampler can be implemented in practice. The
example that we are going to examine is the local level model with unknown
observation and evolution variances. A convenient, yet flexible, family of priors
for each variance is the inverse-gamma family. More specifically, let ψ1 = V −1

and ψ2 = W−1, and assume that ψ1 and ψ2 are a priori independent, with

ψi ∼ G(ai, bi), i = 1, 2.

The parameters of the prior, ai, bi (i = 1, 2) can be specified so as to match
the prior opinion of the analyst about the unknown precisions, expressed in
terms of their means and variances. Most people find it easier to specify prior
moments (mean and variance) of an unknown variance than it is to specify
those of a precision. In this case, just recall that a G(a, b) prior for ψi is the
same as an Inverse Gamma prior with the same parameters for ψ−1

i .
A Gibbs sampler for this model will iterate the following three steps: draw

θ0:T , draw ψ1, and draw ψ2. The random quantities generated in each of the
three steps should be drawn from their full conditional distribution, i.e., the
distribution of that quantity given all the other random variables in the model,
including the observations. Note that the states θ0:T must be included among
the conditioning variables when drawing ψ1 and ψ2. To generate θ0:T we can
use the FFBS algorithm, setting ψ1 and ψ2 to their most recently simulated
value. This is something that can be done in a straightforward way using the
function dlmBSample. On the other hand, a simple calculation is needed to
determine the full conditional distribution of ψ1. The standard approach is
based on the fact that the full conditional distribution is proportional to the
joint distribution of all the random variables considered. For ψ1, this is

π(ψ1|ψ2, θ0:T , y1:T ) ∝ π(ψ1, ψ2, θ0:T , y1:T )

∝ π(y1:T |θ0:T , ψ1, ψ2)π(θ0:T |ψ1, ψ2)π(ψ1, ψ2)

∝
T∏

t=1

π(yt|θt, ψ1)
T∏

t=1

π(θt|θt−1, ψ2)π(ψ1)π(ψ2)

∝ π(ψ1)ψ
T/2
1 exp

(
−ψ1

2

T∑

t=1

(yt − θt)
2

)

∝ ψ
a1+T/2−1
1 exp

(
−ψ1 ·

[
b1 +

1

2

T∑

t=1

(yt − θt)
2

])
.

From the previous equations we deduce that ψ1 and ψ2 are conditionally
independent, given θ0:T and y1:T , and
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ψ1|θ0:T , y1:T ∼ G
(
a1 +

T

2
, b1 +

1

2

T∑

t=1

(yt − θt)
2

)
.

A similar argument shows that

ψ2|θ0:T , y1:T ∼ G
(
a2 +

T

2
, b2 +

1

2

T∑

t=1

(θt − θt−1)
2

)
.

The following code implements the Gibbs sampler discussed above for the Nile
River data. The actual sampler consists of the loop starting on line 18; what
comes before is just book keeping, space allocation for the output, and the
definition of starting values and variables that do not change within the main
loop.

R code

> a1 <- 2

2 > b1 <- 0.0001

> a2 <- 2

4 > b2 <- 0.0001

> ## starting values

6 > psi1 <- 1

> psi2 <- 1

8 > mod_level <- dlmModPoly(1, dV = 1 / psi1, dW = 1 / psi2)

>

10 > mc <- 1500

> psi1_save <- numeric(mc)

12 > psi2_save <- numeric(mc)

> n <- length(Nile)

14 > sh1 <- a1 + n / 2

> sh2 <- a2 + n / 2

16 > set.seed(10)

>

18 > for (it in 1 : mc)

+ {
20 + ## draw the states: FFBS

+ filt <- dlmFilter(Nile, mod_level)

22 + level <- dlmBSample(filt)

+ ## draw observation precision psi1

24 + rate <- b1 + crossprod(Nile - level[-1]) / 2

+ psi1 <- rgamma(1, shape = sh1, rate = rate)

26 + ## draw system precision psi2

+ rate <- b2 + crossprod(level[-1] - level[-n]) / 2

28 + psi2 <- rgamma(1, shape = sh2, rate = rate)

+ ## update and save

30 + V(mod_level) <- 1 / psi1
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+ W(mod_level) <- 1 / psi2

32 + psi1_save[it] <- psi1

+ psi2_save[it] <- psi2

34 + }

A visual analysis of trace plots (not shown) shows that the chain reached
convergence after the first two or three hundred iterations. In the code we
did not save the simulated states, assuming the focus of the analysis was
on the unknown variances. Note, however, that a sample from the posterior
distribution of the states does not require us to run the Gibbs sampler all over
again, as one can just run the FFBS algorithm once for each simulated value
of (ψ1, ψ2), thanks to the equality

π(θ0:T , ψ1, ψ2|y1:T ) = π(θ0:T |ψ1, ψ2y1:T )π(ψ1, ψ2|y1:T ).

4.5 Unknown variances

In many of the models analyzed in Chapter 3, the system and observation
matrices Gt and Ft are set to specific values as part of the model specification.
This is the case for polynomial and seasonal factor models, for example. The
only possibly unknown parameters are therefore part of the variance matrices
Wt and Vt. In Section 4.3.1, we discussed Bayesian conjugate inference for the
simple case of Vt and Wt known up to a scale factor; in more general cases,
analytical computations become more complex and MCMC approximations
are used, as we illustrate in this section.

4.5.1 Constant unknown variances: d Inverse Gamma prior

This is the simplest and most commonly used model for unknown variances.
Let us assume that the observations are univariate (m = 1). If the observation
variance and the evolution covariance matrices are unknown, the simplest
assumption is to consider them as time-invariant, with W diagonal. More
specifically, and working as usual with the precisions, a d-inverse-gamma prior
assumes that

Vt = φ−1
y , Wt = diag(φ−1

θ,1, . . . , φ
−1
θ,p)

and φy, φθ,1, . . . , φθ,p have independent Gamma distributions. This implies
that the prior on the vector of the variances (φ−1

y , φ−1
θ,1, . . . , φ

−1
θ,p) is the product

of d = (p + 1) Inverse-Gamma densities. To fix the prior hyperparamters, it
is usually convenient to express a prior guess on the unknown precisions,
E(φy) = ay, and E(φθ,i) = aθ,i, with prior uncertainty summarized by the
prior variances Var(φy) = by, Var(φθ,i) = bθ,i, i = 1 . . . , p, so that the Gamma
priors can be parametrized as
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φy ∼ G(αy, βy), φθ,i ∼ G(αθ,i, βθ,i) i = 1, . . . , p,

with

αy =
a2
y

by
, βy =

ay
by
, αθ,i =

a2
θ,i

bθ,i
, βθ,i =

aθ,i
bθ,i

, i = 1, . . . , p.

As particular cases, this framework includes a Bayesian treatment of nth order
polynomial models as well as the structural time series models of Harvey and
coauthors, discussed in Chapter 3.

Given the observations y1:T , the joint posterior of the states θ0:T and
the unknown parameters ψ = (φy, φθ,1, . . . , φθ,p) is proportional to the joint
density

π(y1:T , θ0:T , ψ) = π(y1:T |θ0:T , ψ) · π(θ0:T |ψ) · π(ψ)

=
T∏

t=1

π(yt|θt, φy) ·
T∏

t=1

π(θt|θt−1, φθ,1, . . . , φθ,p) · π(θ0) · π(φy) ·
p∏

i=1

π(φθ,i).

Note that the second product in the factorization can also be written as a
product over i = 1, . . . , p, due to the diagonal form of W . This alternative
factorization is useful when deriving the full conditional distribution of the
φθ,i’s. A Gibbs sampler for the d-Inverse-Gamma model draws from the full
conditional distribution of the states and from the full conditional distribu-
tions of φy, φθ,1, . . . , φθ,p in turn. Sampling the states can be done using the
FFBS algorithm of Section 4.4.1. Let us derive the full conditional distribu-
tion1 of φy:

π(φy| . . .) ∝
T∏

t=1

π(yt|θt, φy) · π(φy)

∝ φ
T
2 +αy−1
y exp

{
−φy ·

[
1

2

T∑

t=1

(yt − Ftθt)
2 + βy

]}
.

The full conditional of φy is therefore again a Gamma distribution,

φy| . . . ∼ G
(
αy +

T

2
, βy +

1

2
SSy

)
,

with SSy =
∑T
t=1(yt − Ftθt)

2. Similarly, it is easy to show that the full
conditionals of the φθ,i’s are as follows:

φθ,i| . . . ∼ G
(
αθ,i +

T

2
, βθ,i +

1

2
SSθ,i

)
, i = 1, . . . , p,

1 The dots on the right-hand side of the conditioning vertical bar in π(φy| . . .) stay
for every other random variable in the model except φy, including the states θ0:T .
This standard convention will be used throughout.
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with SSθ,i =
∑T
t=1(θt,i − (Gtθt−1)i)

2.

Example. Let us consider again the data on Spain investment (Sec-
tion 3.2.1). We are going to fit a 2nd-order polynomial model—local linear
growth—to the data. The priors for the precisions of the observation and evo-
lution errors are (independent) gamma distributions with means ay, aµ, aβ
and variances by, bµ, bβ . We decide for the values ay = 1, aµ = aβ = 10,
with a common variance equal to 1000, to express a large uncertainty in
the prior estimate of the precisions. The function dlmGibbsDIG can be called
to generate a sample from the posterior distribution of the parameters and
the states. The means and variances of the gamma priors are passed to the
function via the arguments a.y, b.y (prior mean and variance of observation
precision), a.theta, b.theta (prior mean(s) and variance(s) of evolution pre-
cision(s)). Alternatively, the prior distribution can be specified in terms of the
usual shape and rate parameters of the gamma distribution. The arguments
to pass in this case are shape.y, rate.y, shape.theta, and rate.theta.
The number of samples from the posterior to generate is determined by the
argument n.sample, while the logical argument save.states is used to de-
termine whether to include the generated unobservable states in the output.
In addition, a thinning parameter can be specified via the integer argument
thin. This gives the number of Gibbs iterations to discard for every saved
one. Finally, the data and the model are passed via the arguments y and mod,
respectively. The following display show how dlmGibbsDIG works in practice.

R code

> invSpain <- ts(read.table("Datasets/invest2.dat",

2 + colClasses = "numeric")[,2]/1000,

+ start = 1960)

4 > set.seed(5672)

> MCMC <- 12000

6 > gibbsOut <- dlmGibbsDIG(invSpain, mod = dlmModPoly(2),

+ a.y = 1, b.y = 1000,

8 + a.theta = 10, b.theta = 1000,

+ n.sample = MCMC,

10 + thin = 1, save.states = FALSE)

Setting thin = 1 means that the function actually generates a sample
of size 24,000 but only keeps in the output every other value. In addition,
the states are not returned (save.states = FALSE). Considering the first
2000 saved iterations as burn in, one can proceed to graphically assess the
convergence and mixing properties of the sampler. Figure 4.5 displays a few
diagnostic plots obtained from the MCMC output for the variances V , W11,
and W22. The first row shows the traces of the sampler, i.e., the simulated
values, the second the running ergodic means of the parameters (starting
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Fig. 4.5. Diagnostic plots for d-inverse-Gamma model applied to Spain investments

at iteration 500), and the last the estimated autocovariance functions. We
obtained the running ergodic means using the function ergMean. For example,
the plot in the first column and second row was created using the following
commands.

R code

> use <- MCMC - burn

2 > from <- 0.05 * use

> plot(ergMean(gibbsOut$dV[-(1 : burn)], from), type = "l",

4 + xaxt = "n", xlab = "", ylab = "")

> at <- pretty(c(0, use), n = 3)

6 > at <- at[at >= from]

> axis(1, at = at - from, labels = format(at))

From a visual assessment of the MCMC output it seems fair to deduce that
convergence has been achieved and, while the acf’s of the simulated variances
do not decay very fast, the ergodic means are nonetheless pretty stable in
the last part of the plots. One can therefore go ahead and use the MCMC
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output to estimate the posterior means of the unknown variances. The func-
tion mcmcMean computes the (column) means of a matrix of simulated values,
together with an estimate of the Monte Carlo standard deviation, obtained
using Sokal’s method (Section 1.6).

R code

> mcmcMean(cbind(gibbsOut$dV[-(1 : burn), ],

2 + gibbsOut$dW[-(1 : burn), ]))

V.1 V.2 V.3

4 0.012197 0.117391 0.329588

(0.000743) (0.007682) (0.007833)

Bivariate plots of the simulated parameters may provide additional insight.
Consider the plots in Figure 4.6. The joint realizations seem to suggest that
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Fig. 4.6. Bivariate plots for d-inverse-Gamma model applied to Spain investments

one, or maybe two, of the model variances may be zero. From the third plot
we can see that when W11 is close to zero then W22 is clearly positive, and vice
versa: W11 and W22 cannot both be zero. The second plot suggests that this
is also true for V and W22. From the first plot it seems that V and W11 may
be zero, possibly at the same time. In summary, by looking at the bivariate
plots, three reduced models come up as alternative to the full model worth
exploring: the submodel obtained by setting V = 0, the submodel W11 = 0,
the submodel V = W11 = 0, and the submodel W22 = 0. We do not pursue
the issue of Bayesian model selection here; a recent reference is Früwirth-
Schnatter and Wagner (2008), who suggest a different prior on the unknown
variances, more suitable for model comparison.

4.5.2 Multivariate extensions

Multivariate extensions of the d Inverse-Gamma model can be devised, using
independent inverse-Wishart priors. Suppose that Yt is m-variate, m ≥ 1, and
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W is block-diagonal with elements (W1, . . . ,Wh), Wi having dimension pi×pi.
Examples of DLMs with a block-diagonal state covariance matrix W include
additive compositions of structural models or SUTSE models, presented in
Chapter 3. At least in principle, the case of a general matrix W is obtained
by letting h = 1.

Let us parametrize the model in the precision matrices Φ0 = V −1

and Φ = W−1, the latter being block-diagonal with elements Φi = W−1
i ,

i = 1, . . . , h. We assume that Φ0, Φ1, . . . , Φh have independent Wishart pri-
ors, Φi ∼ W(νi, Si), i = 0, . . . , h, where Si is a symmetric positive defi-
nite matrix of dimensions pi × pi, with p0 = m. Then the posterior density
π(θ0:T , Φ0, . . . , Φh|y1:T ) is proportional to

T∏

t=1

N (yt;Ftθt, Φ
−1
0 ) N (θt;Gθt−1, Φ

−1)N (θ0;m0, C0)

·W(Φ0; ν0, S0)
h∏

i=1

W(Φi; νi, Si).

(4.22)

A Gibbs sampler for π is obtained by iteratively sampling the states θ0:T (via
the FFBS algorithm) and the precisions Φ0, . . . , Φh from their full conditionals.
From (4.22) we see that the full conditional density of Φi, for i = 1, . . . , h, is
proportional to

T∏

t=1

h∏

j=1

|Φj |1/2 exp{−1

2
(θt −Gtθt−1)

′Φ(θt −Gtθt−1)}·

|Φi|νi−(pi+1)/2 exp{−tr(SiΦi)}

∝ |Φi|T/2+νi−(pi+1)/2 exp{−tr(
1

2

T∑

t=1

(θt −Gtθt−1)(θt −Gtθt−1)
′Φ) − tr(SiΦi)}

(see Section 1.5). Let

SSt = (θt −Gtθt−1)(θt −Gtθt−1)
′

and partition it in accordance with Φ:

SSt =




SS11,t · · · SS1h,t

...
. . .

...
SSh1,t · · · SShh,t



 . (4.23)

Then tr(SStΦ) =
∑h
j=1 tr(SSjj,tΦj), so that the full conditional of Φi results

to be proportional to

|Φi|T/2+νi−(pi+1)/2 exp

{
−tr

((
1

2
SSi· + Si

)
Φi

)}
,
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with SSi· =
∑T
t=1 SSii,t. That is, for i = 1, . . . , h, the full conditional of Φi is

Wishart, with parameters (νi + T/2, 1/2SSi· + Si). In particular, for a DLM
obtained by combining component models as in Section 3.2, we have

θt =




θ1,t
...
θh,t



 Gt =




G1,t · · · 0

0
. . . 0

0 · · · Gh,t



 ,

with θi,t and Gi,t referring to the ith component model. Then, the full condi-
tional of Φi is W(νi + T/2, Si + 1/2SSi·), and Sii,t = (θi,t −Gi,tθi,t−1)(θi,t −
Gi,tθi,t−1)

′.
Similarly, one finds that the full conditional of Φ0 is

W(ν0 + T/2, S0 + 1/2SSy),

with SSy =
∑T
t=1(yt − Ftθt)(yt − Ftθt)

′.

Example: SUTSE models.
As an illustration, let us consider again the data on Spain and Denmark
investments. In Section 3.3.2, we used a SUTSE system where each series
was described through a linear growth model; there, we just plugged in the
MLE estimates of the unknown variances, while here we illustrate Bayesian
inference. The prior distributions for the precisions Φ0 = V −1, Φ1 = W−1

µ and

φ2 = W−1
β are independent Wishart, namely Φj ∼ W(νj , Sj), j = 0, 1, 2.

It is convenient to express the Wishart hyperparameters as ν0 = (δ0 +
m − 1)/2 = (δ0 + 1)/2, νj = (δj + pj − 1)/2 = (δj + 1)/2, j = 1, 2 and
S0 = V0/2, S1 = Wµ,0/2, S2 = Wβ,0/2, so that, if δj > 2, j = 0, 1, 2,

E(V ) =
1

δ0 − 2
V0, E(Wµ) =

1

δ1 − 2
Wµ,0 E(Wβ) =

1

δ2 − 2
Wβ,0

(see Appendix A). Thus, the matrix V0 can be fixed as V0 = (δ0 − 2)E(V ),
and similarly for Wµ,0 and Wβ,0. The parameters δi give an idea of the prior
uncertainty: note that, from the full conditional distributions, we have

E(V |y1:T ,Wµ,Wβ , θ0:t) =

=
δ0 − 2

(δ0 + T ) − 2
E(V ) +

T

(δ0 + T ) − 2

∑T
t=1(yt − Ftθt)(yt − Ftθt)

′

T
,

and analogous expressions hold for the conditional expectations of Wµ and
Wβ . So, values of δi close to 2 imply a smaller weight of the prior in the
updating. Expressing honest prior information on a covariance matrix is diffi-
cult, and data-dependent priors are sometimes used; but for this exercise let’s
suppose that
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V0 = (δ0 − 2)

[
102 0
0 5002

]
,

Wµ,0 = (δ1 − 2)

[
0.012 0

0 0.012

]
, Wβ,0 = (δ2 − 2)

[
52 0
0 1002

]
,

with δ0 = δ2 = 3 and δ1 = 100. The choice of Wµ,0 and δ1 expresses the
prior assumption that the two individual linear growth models are in fact
(independent) integrated random walks; the other choices give a prior idea of
the signal-to-noise ratio.

The Gibbs sampling from the joint posterior π(θ0:T , Φ0, Φ1, Φ2|y1:T ) gen-
erates in turn the state vectors θ0:T and the precision Φ0, Φ1, Φ2. The full
conditional of Φ0 is

W
(
δ0 + 1 + T

2
,

1

2
(V0 + SSy)

)

and the full conditionals of Φ1 = W−1
µ and Φ2 = W−1

β are, respectively,
W((δ1 + 1 + T )/2, (Wµ,0 + SS1·)/2) and W((δ2 + 1 + T )/2, (Wβ,0 + SS2·)/2).
Note that the function rwishart in the package dlm takes as inputs the degrees
of freedom and the scale matrix (if Φ ∼ W(δ/2, V0/2), the degrees of freedom
are δ and the scale matrix is V −1

0 ).

R code

> inv <- read.table("Datasets/invest2.dat",

2 + col.names = c("Denmark", "Spain"))

> y <- ts(inv, frequency = 1, start = 1960)

4 > # prior hyperparameters

> delta0 <- delta2 <- 3 ; delta1 <- 100

6 > V0 <- (delta0 - 2) *diag(c(10^2, 500^2))

> Wmu0 <- (delta1 - 2) * diag(0.01^2, 2)

8 > Wbeta0 <- (delta2 - 2) * diag(c(5^2, 100^2))

> ## Gibbs sampling

10 > MC <- 30000

> TT <- nrow(y)

12 > gibbsTheta <- array(0, dim = c(TT + 1, 4, MC - 1))

> gibbsV <- array(0, dim = c(2, 2, MC))

14 > gibbsWmu <- array(0, dim = c(2, 2, MC))

> gibbsWbeta <- array(0, dim = c(2, 2, MC))

16 > mod <- dlm(FF = matrix(c(1, 0), nrow = 1) %x% diag(2),

+ V = diag(2),

18 + GG = matrix(c(1, 0, 1, 1), 2, 2) %x% diag(2),

+ W = bdiag(diag(2), diag(2)),

20 + m0 = c(inv[1, 1], inv[1, 2], 0, 0),

+ C0 = diag(x = 1e7, nrow = 4))

22 > # starting values

> mod$V <- gibbsV[,, 1] <- V0 / (delta0 - 2)
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24 > gibbsWmu[,, 1] <- Wmu0 / (delta1 - 2)

> gibbsWbeta[,, 1] <- Wbeta0 / (delta2 - 2)

26 > mod$W <- bdiag(gibbsWmu[,, 1], gibbsWbeta[,, 1])

> # MCMC loop

28 > set.seed(3420)

> for(it in 1 : (MC - 1))

30 + {
+ # generate states - FFBS

32 + modFilt <- dlmFilter(y, mod, simplify = TRUE)

+ gibbsTheta[,, it] <- theta <- dlmBSample(modFilt)

34 + # update V

+ S <- crossprod(y - theta[-1, ] %*% t(mod$FF)) + V0

36 + gibbsV[,, it+1] <- solve(rwishart(df = delta0 + 1 + TT,

+ p = 2, Sigma = solve(S)))

38 + mod$V <- gibbsV[,, it+1]

+ # update Wmu and Wbeta

40 + theta.center <- theta[-1, ] - (theta[-(TT + 1), ] %*%

+ t(mod$GG))

42 + SS1 <- crossprod(theta.center)[1 : 2, 1 : 2] + Wmu0

+ SS2 <- crossprod(theta.center)[3 : 4, 3 : 4] + Wbeta0

44 + gibbsWmu[,, it+1] <- solve(rwishart(df =delta1 + 1 + TT,

+ Sigma = solve(SS1)))

46 + gibbsWbeta[,, it+1] <- solve(rwishart(df = delta2 + 1 + TT,

+ Sigma = solve(SS2)))

48 + mod$W <- bdiag(gibbsWmu[,, it+1], gibbsWbeta[,, it+1])

+ }

We set the number of MCMC samples to 30,000 and remove the first
20,000 iterations as burn-in. Some convergence diagnostic plots are shown in
Figures 4.7 and 4.8. In general, mixing in the Gibbs sampling is poorer if the
parameters are strongly correlated; here, the prior restrictions onWµ facilitate
identifiability and MCMC mixing.

R code

> burn<- 1 : 20000

2 > par(mar = c(2, 4, 1, 1) + 0.1, cex = 0.8)

> par(mfrow=c(3,2))

4 > plot(ergMean(sqrt(gibbsV[1,1, -burn])), type="l",

+ main="", cex.lab=1.5, ylab=expression(sigma[1]),

6 + xlab="MCMC iteration")

> acf(sqrt(gibbsV[1,1,-burn]), main="")
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Fig. 4.7. MCMC ergodic means and autocorrelation for the observation covariance
matrix V (σ2

1 = V11, σ
2
2 = V22, σ12 = V12)
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The display below shows the MCMC estimates of the posterior means for
the parameters in V and Wβ , together with their estimated standard errors
(in parenthesis), obtained from the function mcmcMean.

R code

> cbind(mcmcMean(gibbsV[1,1,-burn]),

2 + mcmcMean(gibbsV[2,2,-burn]),

+ mcmcMean(gibbsV[2,1,-burn]))

E(V |y1:T ) =





88.358
(1.1562)

1018.469
(22.4865)

1018.469
(22.4865)

60066.43
(856.219)



 ,

E(Wβ |y1:T ) =





37.399
(0.9666)

396.591
(42.661)

396.591
(42.661)

308729.71
(2135.008)



 .

Figure 4.9 shows the MCMC approximation of the Bayesian smoothing
estimates of the level of the investments for Denmark and Spain, with marginal
5% and 95% quantiles.

The choice of an Inverse-Wishart prior on the unknown blocks of the co-
variance matrices has several advantages; in this exercise, computation of the
full conditionals is made simple by the conjugacy properties of the Inverse-
Wishart for the Gaussian model. In fact, inference on a covariance matrix is
quite delicate, implying assumptions on the dependence structure of the data.
We just note that the Inverse-Wishart prior may be too restrictive in modeling
the prior uncertainty on the elements of the covariance matrix, as discussed
earlier by Lindley (1978), and several generalizations have been proposed;
some references are Dawid (1981), Brown et al. (1994), Dawid and Lauritzen
(1993) in the context of graphical models, Consonni and Veronese (2003),
Rajaratnam et al. (2008) and references therein.

4.5.3 A model for outliers and structural breaks

In this section we consider a generalization of the d-Inverse-Gamma model
that is appropriate to account for outliers and structural breaks. As in Sec-
tion 4.5.1, we assume that observations are univariate, that Wt is diagonal,
and that the specification of Ft and Gt does not include any unknown pa-
rameter. To introduce the model, let us focus on observational outliers first.
Structural breaks—or outliers in the state series—will be dealt with in a sim-
ilar way later on. From the observation equation Yt = Ftθt+ vt, we see that a
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Fig. 4.9. MCMC smoothing estimates of the investments’ level for Denmark and
Spain, with posterior 90% probability intervals. The data are plotted in gray.

simple way to account for observations that are unusually far from their one-
step-ahead predicted value is to replace the Normal distribution of vt with
a heavy-tailed distribution. The Student-t distribution family is particularly
appealing in this respect for two reasons. On one hand, it can accommodate,
through its degrees-of-freedom parameter, different degrees of heaviness in the
tails. On the other hand, the Student-t distribution admits a simple represen-
tation as a scale mixture of Normal distributions, which allows one to treat a
DLM with t-distributed observation errors as a Gaussian DLM, conditionally
on the scale parameters. The obvious advantage is that all the standard algo-
rithms for DLMs—from the Kalman filter to FFBS—can still be used, albeit
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conditionally. In particular, within a Gibbs sampler, one can still draw the
states from their full conditional distribution using the FFBS algorithm. We
assume that the vt have Student-t distributions with νy,t degrees of freedom
and common scale parameter λ−1

y :

vt|λy, νy,t indep∼ T (0, λ−1
y , νy,t).

Introducing latent variables ωy,t, distributed as G
(νy,t

2
,
νy,t
2

)
, we can equiva-

lently write:

vt|λy, ωy,t indep∼ N
(
0, (λyωy,t)

−1
)
,

ωy,t|νy,t indep∼ G
(νy,t

2
,
νy,t
2

)
.

In other words, we are assuming that, given λy, the precisions φy,t = λyωy,t
of the observations in the DLM vary in a random fashion over time.

The latent variable ωy,t in the previous representation can be informally
interpreted as the degree of nonnormality of vt. In fact, taking the N (0, λ−1

y )
as baseline—corresponding to ωy,t = E(ωy,t) = 1—values of ωy,t lower than 1
make larger absolute values of vt more likely. Figure 4.10 shows a plot of the
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Fig. 4.10. 90th percentile of the conditional distribution of vt as a function of ωy,t

90th percentile of the N (0, (λyωy,t)
−1) as a function of ωy,t (λy is selected so

that the percentile is one when ωy,t is one). From the previous discussion, it
follows that the posterior mean of the ωy,t can be used to flag possible outliers.
As a prior for the precision parameter λy we choose a Gamma distribution
with mean ay and variance by,

λy|ay, by ∼ G
(
a2
y

by
,
ay
by

)
,
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taking in turn ay and by uniformly distributed on a large, but bounded, in-
terval,

ay ∼ Unif (0, Ay), by ∼ Unif (0, By).

Although the degrees-of-freedom parameter of a Student-t distribution can
take any positive real value, we restrict for simplicity the set of possible values
to a finite set of integers and set

νy,t|py iid∼ Mult(1, py),

where py = (py,1, . . . , py,K) is a vector of probabilities, the levels of the multi-
nomial distribution are the integers n1, . . . , nK , and the νy,t’s are indepen-
dent across t. As a convenient, yet flexible choice for n1, . . . , nK we use the
set {1, 2, . . . , 10, 20, . . . , 100}. Note that for νy,t = 100, vt is approximately
normally distributed, given λy. As a prior for py we adopt a Dirichlet distri-
bution with parameter αy = (αy,1, . . . , αy,K), py ∼ Dir(αy). This completes
the hierarchical specification of the prior distribution of the observation vari-
ances Vt. To account for possible outliers in the state components, a similar
hierarchical structure is assumed for each diagonal element of Wt, i.e., for the
precision parameters of the state innovations.

Note that in this model the precisions, or, equivalently, the variances, are
allowed to be different at different times, although in a way that does not
account for a possible correlation in time. In other words, the sequences of
precisions at different times are expected to look more like independent, or
exchangeable, sequences, rather than time series. For this reason the model
is appropriate to account for occasional abrupt changes—corresponding to
innovations having a large variance—in the state vector. For example, for
polynomial and seasonal factor models, an outlier in a component of wt corre-
sponds to an abrupt change in the corresponding component of the state, such
as a jump in the level of the series. However, the modeler does not anticipate
these changes to present a clear pattern in time.

Writing Wt,i for the ith diagonal element of Wt, i = 1, . . . , p, the hierar-
chical prior can be summarized in the following display.

V −1
t = λyωy,t, W−1

t,i = λθ,iωθ,ti,

λy|ay, by ∼ G
(
a2
y

by
,
ay
by

)
, λθ,i|aθ,i, bθ,i indep∼ G

(
a2
θ,i

bθ,i
,
aθ,i
bθ,i

)
,

ωy,t|νy,t indep∼ G
(νy,t

2
,
νy,t
2

)
, ωθ,ti|νθ,ti indep∼ G

(νθ,ti
2
,
νθ,ti
2

)
,

ay ∼ Unif (0, Ay), aθ,i
indep∼ Unif (0, Aθ,i),

by ∼ Unif (0, By), bθ,i
indep∼ Unif (0, Bθ,i),

νy,t
indep∼ Mult(1; py) νθ,ti

indep∼ Mult(1; pθ,i)

py ∼ Dir(αy) pθ,i
indep∼ Dir(αθ,i),



4.5 Unknown variances 181

with αθ,i = (αθ,i,1, . . . , αθ,i,K), i = 1, . . . ,K. Again, the levels of all the multi-
nomial distributions are the integers n1, . . . , nK .

A Gibbs sampler can be implemented to draw from the posterior distri-
bution of parameters and states of the model specified above. Given all the
unknown parameters, the states are generated at once from their joint full
conditional distribution using the standard FFBS algorithm. The full condi-
tional distributions of the parameters are easy to derive. We provide here a
detailed derivation of the full conditional distribution of λy, as an example:

π(λy| . . .) ∝ π(y1:T |θ1:T , ωy,1:T , λy) · π(λy|ay, by)

∝
T∏

t=1

λ
1
2
y exp

{
−ωy,tλy

2
(yt − Ftθt)

2

}
· λ

a2
y

by
−1

y exp

{
−λy

ay
by

}

∝ λ
T
2 +

a2
y

by
−1

y exp

{
−λy

[
1

2

T∑

t=1

ωy,t(yt − Ftθt)
2 +

ay
by

]}
.

Therefore,

λy| . . . ∼ G
(
a2
y

by
+
T

2
,
ay
by

+
1

2
SS∗

y

)
,

with SS∗
y =

∑T
t=1 ωy,t(yt − Ftθt)

2. A summary of all the full conditional
distributions of the unknown parameters is shown in Table 4.1. All the full
conditional distributions, except for those of ay, by, aθ,i, bθ,i, are standard. The
latter can be drawn from using ARMS. More specifically, we suggest using
ARMS separately on each pair (a, b).

As an example of the use of the model discussed above, consider the time
series of quarterly gas consumption in the UK from 1960 to 1986. The data
are available in R as UKgas. A plot of the data, on the log scale, suggests a
possible change in the seasonal factor around the third quarter of 1970. After
taking logs, we employ a model built on a local linear trend plus seasonal
component DLM to analyze the data. In this model the five-by-five variance
matrix Wt has only three nonzero diagonal elements: the first refers to the
level of the series, the second to the slope of the stochastic linear trend, and
the third to the seasonal factor. We packaged the entire Gibbs sampler in
the function dlmGibbsDIGt, available from the book website. The parameters
ay, by, aθ,1, bθ,1, . . . , aθ,3, bθ,3 are taken to be uniform on (0, 105), and the pa-
rameters of the four Dirichlet distributions of py, pθ,1, pθ,2, pθ,3 are all equal
to 1/19. The posterior analysis is based on 10000 iterations, after a burn-in
of 500 iterations. To reduce the autocorrelation, two extra sweeps were run
between every two consecutive saved iterations, implying that the iterations
of the sampler after burn-in were actually 30000.

R code

> y <- log(UKgas)

2 > set.seed(4521)
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λy| . . . ∼ G

„

a2
y

by
+
T

2
,
ay

by
+

1

2
SS

∗
y

«

,

with SS∗
y =

PT

t=1 ωy,t(yt − Ftθt)
2;

λθ,i| . . . ∼ G

 

a2
θ,i

bθ,i
+
T

2
,
aθ,i

bθ,i
+

1

2
SS

∗
θ,i

!

,

with SS∗
θ,i =

PT

t=1 ωθ,ti(θti − (Gtθt−1)i)
2, for i = 1, . . . , p;

ωy,t| . . . ∼ G

„

νy,t + 1

2
,
νy,t + λy(yt − Ftθt)

2

2

«

,

for t = 1, . . . , T ;

ωθ,ti| . . . ∼ G

„

νθ,ti + 1

2
,
νθ,ti + λθ,i(θti − (Gtθt−1)i)

2

2

«

,

for i = 1, . . . , p and t = 1, . . . , T ;

π(ay, by| . . .) ∝ G(λy; ay, by),

on the set 0 < ay < Ay, 0 < by < By;

π(aθ,i, bθ,i| . . .) ∝ G(λθ,i; aθ,i, bθ,i),

on 0 < aθ,i < Aθ,i, 0 < bθ,i < Bθ,i, for i = 1, . . . , p;

π(νy,t = k) ∝ G

„

ωy,t;
k

2
,
k

2

«

· py,k,

on the set {n1, . . . , nK}, for t = 1, . . . , T ;

π(νθ,ti = k) ∝ G

„

ωθ,ti;
k

2
,
k

2

«

· pθ,i,k,

on the set {n1, . . . , nK}, for i = 1, . . . , p and t = 1, . . . , T ;

py| . . . ∼ Dir(αy +Ny),

where Ny = (Ny,1, . . . , Ny,K) with, for each k, Ny,k =
PT

t=1(νy,t = k);

pθ,i| . . . ∼ Dir(αθ,i +Nθ,i),

whereNθ,i = (Nθ,i,1, . . . , Nθ,i,K) with, for each k,Nθ,i,k =
PT

t=1(νθ,ti =
k), for i = 1, . . . , p;

Table 4.1. Full conditional distributions for the model of Section 4.5.3
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> MCMC <- 10500

4 > gibbsOut <- dlmGibbsDIGt(y, mod = dlmModPoly(2) + dlmModSeas(4),

+ A_y = 10000, B_y = 10000, p = 3,

6 + n.sample = MCMC, thin = 2)

Figure 4.11, obtained with the code below, graphically summarizes the pos-
terior means of the ωy,t and ωθ,ti, t = 1, ..108, i = 1, 2, 3.

R code

> burn <- 1 : 500

2 > nuRange <- c(1 : 10, seq(20, 100, by = 10))

> omega_y <- ts(colMeans(gibbsOut$omega_y[-burn, ]),

4 + start = start(y), freq=4)

> omega_theta <- ts(apply(gibbsOut$omega_theta[,, -burn], 1 : 2,

6 + mean), start = start(y), freq = 4)

> layout(matrix(c(1, 2, 3, 4), 4, 1, TRUE))

8 > par(mar = c(5.1, 4.1, 2.1, 2.1))

> plot(omega_y, type = "p", ylim = c(0, 1.2), pch = 16,

10 + xlab = "", ylab = expression(omega[list(y, t)]))

> abline(h = 1, lty = "dashed")

12 > for (i in 1 : 3)

+ {
14 + plot(omega_theta[,i], ylim=c(0,1.2), pch = 16,

+ type = "p", xlab = "",

16 + ylab = bquote(omega[list(theta, t * .(i))]))

+ abline(h = 1, lty = "dashed")

18 + }

It is clear that there are no observational outliers, except perhaps for a
mild outlier in the third quarter of 1983, with E(ωθ,t3|y1:T ) = 0.88. The trend
is fairly stable, in particular its slope parameter. The seasonal component,
on the other hand, presents several structural breaks, particularly in the first
couple of years of the seventies. The most extreme change in the seasonal
component happened in the third quarter of 1971, when the corresponding ωt
had an estimated value of 0.012. It can also be seen that after that period of
frequent shocks, the overall variability of the seasonal component remained
higher than in the first period of observation.

From the output of the Gibbs sampler one can also estimate the unob-
served components—trend and seasonal variation—of the series. Figure 4.12
provides a plot of estimated trend and seasonal component, together with
95% probability intervals. An interesting feature of a model with time-specific
variances, like the one considered here, is that confidence intervals need not be
of constant width—even after accounting for boundary effects. This is clearly
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seen in the example, where the 95% probability interval for the seasonal com-
ponent is wider in the period of high instability of the early seventies. The
following code was used to obtain the plot.

R code

> thetaMean <- ts(apply(gibbsTheta, 1 : 2, mean),

2 + start = start(y),

+ freq = frequency(y))

4 > LprobLim <- ts(apply(gibbsTheta, 1 : 2, quantile,

+ probs = 0.025),

6 + start = start(y), freq = frequency(y))
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> UprobLim <- ts(apply(gibbsTheta, 1 : 2, quantile,

8 + probs = 0.975),

+ start = start(y), freq = frequency(y))

10 > par(mfrow = c(2, 1), mar = c(5.1, 4.1, 2.1, 2.1))

> plot(thetaMean[, 1], xlab = "", ylab = "Trend")

12 > lines(LprobLim[, 1], lty = 2); lines(UprobLim[, 1], lty = 2)

> plot(thetaMean[, 3], xlab = "", ylab = "Seasonal", type = "o")

14 > lines(LprobLim[, 3], lty = 2); lines(UprobLim[, 3], lty = 2)

4.6 Further examples

We give further examples of Bayesian analysis via MCMC for DLMs. The first
is useful to compare MLE and Bayesian estimates.

4.6.1 Estimating the output gap: Bayesian inference

Let us consider again the problem of estimating the output gap, which we
treated in Subsection 3.2.6 using maximum likelihood estimates of the un-
known parameters of the model. Here we illustrate, instead, Bayesian infer-
ence. More specifically, we show how to implement in R a hybrid sampler
using dlmBSample and arms. The data consist of the quarterly time series
of deseasonalized real gross domestic product (GDP) of the US from 1950
to 2004, on a logarithmic scale. Following standard econometric practice, we
had assumed that the GDP can be decomposed into two unobservable com-
ponents: a stochastic trend and a stationary component. Here we compute
Bayesian estimates of the two components as well as the parameters of the
model.

The stochastic trend was described by a local linear trend, while the sta-
tionary component was an AR(2) process. As a DLM, the model is the sum,
in the sense discussed in Section 3.2, of a polynomial model of order two and
a DLM representation of a stationary AR(2) process, observed with no error.
The matrices of the resulting DLM were given by (3.36) in Section 3.2.6. The
first component of the state vector represents the trend, while the third is the
AR(2) stationary component. The AR parameters φ1 and φ2 must lie in the
stationarity region S defined by

φ1 + φ2 < 1,

φ1 − φ2 > −1,

|φ2| < 1.

The prior we select for (φ1, φ2) is a product of a N (0, (2/3)2) and a N (0, (1/3)2),
restricted to S. In this way, the prior penalizes those values of the AR parame-
ters close to the boundary of the stationarity region. For the three precisions,



4.6 Further examples 187
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(4.24)

The AR parameters, given the precisions (but not the states), have a non-
standard distribution and we can use ARMS to draw from their joint full
conditional distribution. One can write a function to implement the sampler
in R. One such function, on which the analysis that follows is based, is avail-
able from the book web site. We reproduce below the relevant part of the
main loop. In the code, theta is a (T + 1) matrix of states and gibbsPhi

and gibbsVars are matrices in which the results of the simulation are stored.
The states, generated in the loop, can optionally be saved, but they can also
be easily generated again, given the simulated values of the AR and variance
parameters.

R code

for (it in 1 : mcmc)

2 {
## generate AR parameters

4 mod$GG[3 : 4, 3] <- arms(mod$GG[3 : 4, 3],

ARfullCond, AR2support, 1)

6 ## generate states - FFBS

modFilt <- dlmFilter(y, mod, simplify = TRUE)

8 theta[] <- dlmBSample(modFilt)

## generate W

10 theta.center <- theta[-1, -4, drop = FALSE] -

(theta[-(nobs + 1), , drop = FALSE] %*% t(mod$GG))[, -4]
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12 SStheta <- drop(sapply( 1 : 3, function(i)

crossprod(theta.center[, i])))

14 diag(mod$W)[1 : 3] <-

1 / rgamma(3, shape = shape.theta,

16 rate = rate.theta + 0.5 * SStheta)

## save current iteration, if appropriate

18 if ( !(it %% every) )

{
20 it.save <- it.save + 1

gibbsTheta[, , it.save] <- theta

22 gibbsPhi[it.save, ] <- mod$GG[3 : 4,3]

gibbsVars[it.save, ] <- diag(mod$W)[1 : 3]

24 }
}

The ‘if’ statement on line 18 takes care of the thinning, saving the draw
only when the iteration counter it is divisible by every. The object SStheta
(line 12) is a vector of length 3 containing the sum of squares appearing in
the full conditional distributions of the precisions (equations (4.24)). The two
functions ARfullCond and AR2support, which are the main arguments of arms
(line 5) are defined, inside the main function, as follows.

R code

AR2support <- function(u)

2 {
## stationarity region for AR(2) parameters

4 (sum(u) < 1) && (diff(u) < 1) && (abs(u[2]) < 1)

}
6 ARfullCond <- function(u)

{
8 ## log full conditional density for AR(2) parameters

mod$GG[3 : 4, 3] <- u

10 -dlmLL(y, mod) + sum(dnorm(u, sd = c(2, 1) * 0.33,

log = TRUE))

12 }

The sampler was run using the following call, where gdp is a time series
object containing the data.

R code

outGibbs <- gdpGibbs(gdp, a.theta = 1, b.theta = 1000, n.sample =

2 2050, thin = 1, save.states = TRUE)
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Discarding the first 50 draws as burn in, we look at some simple diagnos-
tic plots. The traces of the simulated variances (Figure 4.13) do not show
any particular sign of a nonstationary behavior. We have also plotted the
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Fig. 4.13. GDP: traces of simulated variances

running ergodic means of the simulated standard deviations σµ σδ, and σu

(Figure 4.14). The first plot shows n−1
∑n
i=1 σ

(i)
µ versus i, and similarly for

the second and third. In other words, this is the MC estimate of σµ versus the
number of iterations of the sampler. The estimates look reasonably stable in
the last part of the plot. (This impression was also confirmed by the results
from a longer run, not shown here). The empirical autocorrelation functions of
the three variances (Figure 4.15) give an idea of the degree of autocorrelation
in the sampler. In the present case, the decay of the ACF is not very fast;
this will reflect in a relatively large Monte Carlo standard error of the Monte
Carlo esimates. Clearly, a smaller standard error can always be achieved by
running the sampler longer. Similar diagnostic plots can be done for the AR
parameters. The reader can find in the display below, for the three standard
deviations in the model and the two AR parameters, the estimates of the
posterior means and their estimated standard errors, obtained using Sokal’s
method (see Section 1.6). In addition, equal-tail 90% probability intervals are
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Fig. 4.14. GDP: ergodic means

derived for the five parameters. These probability intervals give an idea of the
region where most of the posterior probability is contained.

R code

> mcmcMeans(outGibbs$phi[-burn,], names = paste("phi", 1:2))

2 phi 1 phi 2

1.3422 -0.4027

4 ( 0.0112) ( 0.0120)

> apply(outGibbs$phi[-burn,], 2, quantile, probs = c(.05,.95))

6 [,1] [,2]

5% 1.174934 -0.5794382

8 95% 1.518323 -0.2495367

> mcmcMeans(sqrt(outGibbs$vars[-burn,]),

10 names = paste("Sigma", 1:3))

Sigma 1 Sigma 2 Sigma 3

12 0.34052 0.05698 0.78059

(0.03653) (0.00491) (0.01766)

14 > apply(sqrt(outGibbs$vars[-burn,]), 2, quantile,

probs = c(.05,.95))

16 [,1] [,2] [,3]
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Fig. 4.15. GDP: Autocorrelation functions

5% 0.06792123 0.02057263 0.5596150

18 95% 0.65583319 0.12661949 0.9294306

One can also plot histograms based on the output of the sampler, to gain some
insight about the shape of posterior distributions of parameters or functions
thereof—at least for univariate marginal posteriors. Figure 4.16 displays the
histograms of the posterior distributions of the three variances.

Scatterplots are sometimes useful to explore the shape of bivariate distri-
butions, especially for pairs of parameters that are highly dependent on each
other. Figure 4.17 displays a bivariate scatterplot of (φ1, φ2), together with
their marginal histograms. From the picture, it is clear that there is a strong
dependence between φ1 and φ2, which, incidentally, confirms that drawing the
two at the same time was the right thing to do in order to improve the mixing
of the chain.

Finally, since the sampler also included the unobservable states as latent
variables, one can obtain posterior distributions and summaries of the states.
In particular, in this example it is of interest to separate the trend of the GDP
from the (autocorrelated) noise. The posterior mean of the trend at time t

is estimated by the mean of the simulated values θ
(i)
t,1. Figure 4.18 displays
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Fig. 4.16. GDP: posterior distributions of the model variances

graphically the posterior mean of the trend, together with the data, and the
posterior mean of the AR(2) noise process, represented by θt,3.

4.6.2 Dynamic regression

Suppose we have a time series of cross sectional data, (Yi,t, xi,t), i = 1, . . . ,m,
where Yi,t is the value of a response variable Y corresponding to the value xi,t
of one or more covariates X, observed over time. Typically, the interest is in
estimating the regression function mt(x) = E(Yt|x) from the cross-sectional
data, at time t; moreover, one usually wants to make inference on the evolution
of the regression curve over time. In Section 3.3.5 we introduced a dynamic
regression model in the form of DLM for data of this nature. The model is ap-
plied here to a problem of interest in financial applications, namely, estimating
the term structure of interest rates.

The problem is briefly described as follows. Let Pt(x) be the price at time
t of a zero-coupon bond that gives 1 euro at time to maturity x. The curve
Pt(x), x ∈ (0, T ), is called discount function. Other curves of interest are
obtained as one-by-one transformations of the discount function; the yield
curve is γt(x) = − logPt(x)/x, and the instantaneous (nominal) forward rate
curve is ft(x) = d(− logPt(x)/dx) = (dPt(x)/dx)/Pt(x). The yield curve, or
one of its transformations, allows us to price any coupon bond as the sum
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of the present values of future coupon and principal payments. Of course,
the whole curve cannot be observed, but it has to be estimated from the
bond prices observed for a finite number of times-to-maturity, x1, . . . , xm say.
More precisely, at time t we have data (yi,t, xi), i = 1, . . . ,m, where yi,t
is the observed yield corresponding to time-to-maturity xi. Due to market
frictions, yields are subject to measurement error, so that the observed yields
are described by

Yi,t = γt(xi) + vi,t, vi,t
iid∼ N (0, σ2), i = 1, . . . ,m.

Several cross sectional models for the yield curve have been proposed in the
literature; one of the most popular is the Nelson and Siegel (1987) model. In
fact, Nelson and Siegel modeled the forward rate curve, as

ft(x) = β1,t + β2,te
−λx + β3,tλx e

−λx,
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from which the yield curve can be obtained

γt(x) = β1,t + β2,t
1 − e−λx

λx
+ β3,t

(
1 − e−λx

λx
− e−λx

)
.

This model is not linear in the parameters (β1,t, β2,t, β3,t, λ); however, the
decay parameter λ is usually approximated with a fixed value, so that the
model is more simply treated as a linear model in the unknown parameters
β1,t, β2,t, β3,t. Thus, for a fixed value of λ, the model is of the form (3.43),
with k = 3 and

h1(x) = 1, h2(x) =
1 − e−λx

λx
, h3(x) =

(
1 − e−λx

λx
− e−λx

)
.

Consider the data plotted in Figure 3.19, which are monthly yields of US
bonds for m = 17 times-to-maturity from 3 to 120 months, from January
1985 to December 2000; for a detailed description, see Diebold and Li (2006).
These authors used the Nelson and Siegel cross sectional model to fit the yield
curve at time t. In fact, they regard such a model as a latent factor model (see
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Section 3.3.6), with β1,t, β2,t, β3,t playing the role of latent dynamic factors
(long-term, short-term and medium-term factors), also interpreted in terms
of level, slope and curvature of the yield curve. In these terms, λ determines
the maturity at which the loading on the medium-term factor, or curvature,
achieves its maximum; taking 30-months maturity, they fix λ = 0.0609, which
is the value we take here. Given λ, cross-sectional estimates of βt at time t
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Fig. 4.19. MCMC smoothing estimates of the regression coefficients β1,t, β2,t, β3,t

(solid lines: black, darkgray, gray respectively). The dashed lines are the month-by-
month OLS estimates

are obtained by ordinary least squares (OLS), from the cross-sectional data
(y1,t, . . . , ym,t).

R code

> yields <- read.table("Datasets/yields.dat")

2 > y <- yields[1 : 192, 3 : 19]; y <- as.matrix(y)

> x <- c(3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108,120)

4 > p <- 3; m <- ncol(y); TT <- nrow(y)

> persp(x = x, z = t(y), theta = 40, phi = 30, expand = 0.5,

6 + col = "lightblue", ylab = "time", zlab = "yield",

+ ltheta = 100, shade = 0.75, xlab = "maturity (months)")

8 > ### Cross-sectional model

> lambda <- 0.0609

10 > h2 <- function(x) {(1 - exp(-lambda * x)) / (lambda * x)}
> h3 <- function(x) {((1 - exp(-lambda * x)) / (lambda*x)) -
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Fig. 4.20. Observed and OLS fitted yields curve, at selected dates

12 + exp(-lambda * x)}
> X <- cbind(rep(1, m), h2(x), h3(x))

14 > ## OLS estimates

> betahat <- solve(crossprod(X), crossprod(X, t(y)))

16 > nelsonSiegel <- function(x, beta) {
+ beta[1] + beta[2] * h2(x)+ beta[3] * h3(x)}

18 > month <- 51

> plot(x, y[month, ], xlab = "maturity(months)",

20 + ylab = "yield (percent)", ylim = c(8.9,9.8),

+ main = "yield curve on 3/31/89")

22 > lines(x, nelsonSiegel(x, betahat[, month]))

Month-by-month OLS estimates over time are plotted in Figure 4.19 (dashed

lines). A look at the autocorrelation function of the OLS estimates β̂t and
at the estimated residual variance gives a feeling of their evolution over time
(plots not shown).

R code

> acf(t(betahat))

2 > yfit <- t(X %*% betahat)

> res <- (y - yfit)^2

4 > s2 <- rowSums(res) / (m - p)

> ts.plot(sqrt(s2))
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The fit of the data is quite good, and the model adapts to the different shapes
of the yield curve over time; see, e.g., Figure 4.20.

However, a dynamic estimate of the yield curve would give a more com-
plete understanding of the problem. To this aim, as discussed in Section 3.3.5,
a DLM can be used, introducing a state equation to describe the evolution
of the regression coefficients. For example, Diebold et al. (2006) consider a
VAR(1) states dynamics, also including the effects of macroeconomic vari-
ables. Petrone and Corielli (2005) propose a DLM where the state equation is
derived from no-arbitrage constraints imposed on the yield curve evolution. In
these papers, estimation of constant unknown parameters in the DLM matri-
ces is obtained by MLE. Instead, here we illustrate Bayesian inference on the
unknown parameters and the states of the model. For simplicity, we model
β1,t, β2,t, β3,t as independent AR(1) processes. More specifically, the DLM we
estimate is

Yt = Fθt + vt, vt ∼ N (0, V ),

θt = Gθt−1 + wt, wt ∼ N (0,W ),
(4.25)

where Yt = (Y1,t, · · · , Ym,t)
′

, θt = (β1,t, β2,t, β3,t)
′

,

F =





1 h2(x1) h3(x1)
1 h2(x2) h3(x2)
...

...
...

1 h2(xm) h3(xm)




,

G = diag(ψ1, ψ2, ψ3)

V = diag(φ−1
y,1, · · · , φ−1

y,m),

W = diag(φ−1
θ,1, φ

−1
θ,2, φ

−1
θ,3).

Note that, while we assumed homoscedastic residuals in the cross sectional
model for at each t, in the DLM above we allow different variances φ−1

y,i , i =
1, . . . ,m for the yields at different times-to-maturity, although they are taken
as time-invariant for simplicity.

As the prior, we assume that the AR parameters in the matrix G are i.i.d.
Gaussian

ψj
indep∼ N (ψ0, τ0), j = 1, 2, 3,

with ψ0 = 0 and τ0 = 1. We do not restrict the ψj to lie in the stationarity
region. For the unknown variances, we use a d-Inverse-Gamma prior as in
Section 4.5.1, so that the precisions have independent Gamma densities

φy,i ∼ G(αy,i, by,i), i = 1, 2, · · · ,m
φθ,j ∼ G(αθ,j , bθ,j), j = 1, . . . , p.

In the implementation below, we use αy,i = 3, by,i = 0.01, i = 1, . . . ,m and
αθ,j = 3, bθ,j = 1, j = 1, . . . , p. These choices correspond to prior guesses
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E(φ−1
y,i ) = 0.005, Var(φ−1

y,i ) = 0.0052, and E(φ−1
θ,j) = 0.5, Var(φ−1

θ,j) = 0.52 on
the observation and state evolution variances.

The joint posterior of the states and model parameters is approximated by
Gibbs sampling. Sampling the states can be done using the FFBS algorithm.
The full conditionals for the parameters are as follows.

• The full conditional of φθ,j is

φθ,j | . . . ∼ G
(
αθ,j +

T

2
, bθ,j +

1

2
SSθ,j

)
, j = 1, 2, 3

with SSθ,j =
∑T
t=1(θj,t − (Gθt−1)j)

2;
• the full conditional of the precision φyi

is

φy,i| . . . ∼ G
(
αy,i +

T

2
, by,i +

1

2
SSy,i

)
, i = 1, · · · ,m

with SSy,i =
∑T
t=1(yi,t − (Fθt)i)

2;
• the full conditional of the AR parameters ψj is, by the theory of linear

regression with a Normal prior,

ψj | . . . ∼ N (ψj,T , τj,T ), j = 1, 2, 3

where

ψj,T = τj,T

[
φθ,j

T∑

t=1

θj,t−1θj,t +
1

τj,0
ψ0

]

τj,T =

[
1

τ0
+ φθ,j

T∑

t=1

θ2j,t−1

]−1

.

R code

> mod <- dlm(m0 = rep(0, p), C0 = 100 * diag(p),

2 + FF = X, V = diag(m), GG = diag(p), W = diag(p))

> ## Prior hyperparameters

4 > psi0 <- 0; tau0 <- 1

> shapeY <- 3; rateY <- .01

6 > shapeTheta <- 3; rateTheta <- 1

> ## MCMC

8 > MC <- 10000

> gibbsTheta <- array(NA, dim = c(MC, TT + 1, p))

10 > gibbsPsi <- matrix(NA, nrow = MC, ncol = p)

> gibbsV <- matrix(NA, nrow = MC, ncol = m)

12 > gibbsW <- matrix(NA, nrow = MC, ncol = p)

> ## Starting values: as specified by mod

14 > set.seed(3420)

> phi.init <- rnorm(3, psi0, tau0)
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16 > V.init <- 1 / rgamma(1, shapeY, rateY)

> W.init <- 1 / rgamma(1, shapeTheta, rateTheta)

18 > mod$GG <- diag(phi. init)

> mod$V <- diag(rep(V.init, m))

20 > mod$W <- diag(rep(W.init, p))

> ## Gibbs sampler

22 > for (i in 1 : MC)

+ {
24 + ## generate the states by FFBS

+ modFilt <- dlmFilter(y, mod, simplify = TRUE)

26 + theta <- dlmBSample(modFilt)

+ gibbsTheta[i, , ] <- theta

28 + ## generate the W_j

+ theta.center <- theta[-1, ] -

30 + t(mod$GG %*% t(theta[-(TT + 1), ]))

+ SStheta <- apply((theta.center)^2, 2, sum)

32 + phiTheta <- rgamma(p, shape =shapeTheta + TT / 2,

+ rate = rateTheta + SStheta / 2)

34 + gibbsW[i, ] <- 1 / phiTheta

+ mod$W <- diag(gibbsW[i, ])

36 + ## generate the V_i

+ y.center <- y - t(mod$FF %*% t(theta[-1, ]))

38 + SSy <- apply((y.center)^2, 2, sum)

+ gibbsV[i, ] <- 1 / rgamma(m, shape = shapeY + TT / 2,

40 + rate = rateY + SSy / 2)

+ mod$V <- diag(gibbsV[i, ])

42 + ## generate the AR parameters psi_1, psi_2, psi_3

+ psi.AR <- rep(NA, 3)

44 + for (j in 1 : p)

+ {
46 + tau <- 1 / ((1 / tau0) + phiTheta[j] *

+ crossprod(theta[-(TT + 1), j]))

48 + psi <- tau * (phiTheta[j] * t(theta[-(TT + 1), j]) %*%

+ theta[-1, j] + psi0 / tau0)

50 + psi.AR[j] <- rnorm(1, psi, sd = sqrt(tau))

+ }
52 + gibbsPsi[i, ] <- psi.AR

+ mod$GG <- diag(psi.AR)

54 + }

We generate a sample of size 10000 and discard the first 1000 draws as burn
in. Diagnostic plots (not shown) indicate convergence of the MCMC chain.
Below are the MCMC approximations of the posterior expectations of the AR
parameters and unknown variances, with their Monte Carlo standard errors.
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R code

> burn <- 1000

2 > round(mcmcMean(gibbsPsi[-(1 : burn), ]), 4)

V.1 V.2 V.3

4 0.9949 0.9883 0.9135

(0.0000) (0.0001) (0.0003)

6 > round(mcmcMean(sqrt(gibbsW[-(1 : burn), ])), 4)

V.1 V.2 V.3

8 0.3137 0.3220 0.6493

(0.0112) (0.0115) (0.0258)

10 > round(mcmcMean(sqrt(gibbsV[-(1 : burn), ])), 4)

V.1 V.2 V.3 V.4 V.5 V.6

12 0.1450 0.0631 0.0600 0.0851 0.0932 0.0755

(0.0094) (0.0055) (0.0030) (0.0041) (0.0040) (0.0032)

14 V.7 V.8 V.9 V.10 V.11 V.12

0.0565 0.0520 0.0284 0.0469 0.0626 0.0807

16 (0.0027) (0.0021) (0.0017) (0.0023) (0.0026) (0.0031)

V.13 V.14 V.15 V.16 V.17

18 0.0873 0.0665 0.0490 0.0503 0.0837

(0.0032) (0.0027) (0.0026) (0.0030) (0.0034)

The MCMC smoothing estimates of θt = (β1,t, β2,t, β3,t) are plotted in Fig-
ure 4.19. The results are quite close to the OLS month-by-month estimates,
also shown in the plot. However, this is not always the case. Roughly speak-
ing, while the cross-sectional OLS estimates minimize the residual sum of
squares at each t, in the DLM the minimization is subject to the constraints
implied by the state equation. In fact, a poor specification of the state equa-
tion might result in an unsatisfactory fit of the cross-sectional data. Further
developments of this example include a more thoughtful specification of the
state equation, time varying observation and/or evolution variances, and the
inclusion of macroeconomic variables.

4.6.3 Factor models

In this example, we use a factor model (Section 3.3.6) to extract a common
stochastic trend from multiple integrated time series. The basic idea is to
explain fluctuations of various markets or common latent factors that affect a
set of economic or financial variables simultaneously. The data are the federal
funds rate (short rate) and 30-year conventional fixed mortgage rate (long
rate), obtained from Federal Reserve Bank of St. Louis2 (see Chang et al.
(2005)). The series are sampled at weekly intervals over the period April 7,
1971 through September 8, 2004. We will work with the natural logarithm of
one plus the interest rate; the transformed data are plotted in Figure 4.21.

2 Source: http://research.stlouisfed.org/fred2/
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Fig. 4.21. Log of one plus the federal funds rate (FF) and the 30-year mortgage
rate (WMORTG). Weekly data, 1971-2004

R code

> interestRate <- read.table("interestRates.dat",

2 + col.names = c("Long", "Short"))

> y <- log(1 + interestRate / 100)

4 > y <- ts(y, frequency = 52, start = 1971)

> ts.plot(y, lty = c(1, 2), col = c(1, "darkgray"))

6 > legend("topright", legend = c("mortgage rate (long rate)",

+ "federal funds rate (short rate)"),

8 + col = c(1, "darkgray"), lty = c(1,2), bty = "n")

To extract a common stochastic trend in the bivariate time series (Yt =
(Y1,t, Y2,t) : t ≥ 1), we assume the following factor model:

{
Yt = Aµt + µ0 + vt, vt ∼ N (0, V ),

µt = µt−1 + wt, wt ∼ N (0, σ2
µ),

(4.26)

where the 2× 1 matrix A is set to be A =
[
1 α
]′

to ensure identifiability and

µ0 =
[
0 µ̄
]′
. The latent variable µt is interpreted as the common stochastic

trend, here simply modeled as a random walk. In the usual DLM notation the
model can be written in the form
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Yt = Fθt + vt,

θt =

[
1 0
0 1

]
θt−1 +

[
wt
0

]
,

(4.27)

with

θt =
[
µt, µ̄

]
, F =

[
1 0
α 1

]
, V =

[
σ2

1 σ12

σ12 σ2
2

]
, W = diag(σ2

µ, 0).

We use a N (α0, τ
2) prior for α and, as in Sections 4.5.1 and 4.5.2, independent

Gamma and Wishart priors for the precision 1/σ2
µ and V −1,

σ−2
µ ∼ G(a, b), V −1 ∼ W(ν0, S0).

In the specific case illustrated below, we take α0 = 0, τ2 = 16; a and b such
that E(σ−2

µ ) = 0.01 with Var(σ−2
µ ) = 1; ν0 = (δ + 1)/2 = 2 and S0 = V0/2,

where

V0 =

[
1 0.5

0.5 4

]
,

so that E(V ) = V0. The posterior distribution of the states and the parame-
ters, given y0:T , is proportional to

T∏

t=1

N2((y1,t, y2,t); (µt, αµt + µ̄)′, V )N (µ̄;m0,2C0,22)

N (µt;µt−1, σ
2
µ)N (α;α0, τ

2)G(σ−2
µ ; a, b)W(V −1; ν0, S0),

where m0,2 and C0,22 are the prior mean and variance for µ̄. The posterior is
approximated via Gibbs sampling;

• the full conditional of α is N (αT , τ
2
T ), where

τ2
T =

(1 − ρ2)τ2σ2
2

τ2
∑T
t=1 µ

2
t + (1 − ρ2)σ2

2

αT = τ2
T

τ2/σ2

∑T
t=1(

y2,t−µ̄
σ2

− ρ
y1,t−µt

σ1
)µt + α0(1 − ρ2)

τ2 (1 − ρ2)
,

with ρ = σ12/(σ1σ2);
• the full conditional of the precision σ−2

µ is

G
(
a+

T

2
, b+

SSµ
2

)
,

where SSµ =
∑T
t=1(µt − µt−1)

2;
• the full conditional of V −1 is

W
(
δ + 1 + T

2
,
1

2
(V0 +

T∑

t=1

(yt − Fθt)(yt − Fθt)
′

)

)
.
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R code

> # Prior hyperparameters

2 > alpha0 <- 0; tau2 <- 16

> expSigmaMu<- 0.01; varSigmaMu<- 1

4 > a <- (expSigmaMu^2/varSigmaMu)+2; b <- expSigmaMu*(a-1)

> delta <- 3;

6 > V0=matrix(c(1, 0.5, 0.5, 4), byrow=T, nrow=2)

> # Gibbs sampling

8 > MC <- 10000

> n <- nrow(y)

10 > gibbsTheta <- array(0, dim=c(n+1,2,MC-1))

> gibbsV <-array(0, dim=c(2,2,MC))

12 > gibbsAlpha <- rep(0,MC)

> gibbsW <- rep(0,MC)

14 > # model and starting values for the MCMC

> mod <- dlmModPoly(2, dW=c(1,0), C0=100*diag(2))

16 > gibbsAlpha[1] <- 0

> mod$FF <- rbind(c(1,0), c(gibbsAlpha[1],1))

18 > mod$W[1,1] <- gibbsW[1] <- 1/rgamma(1, a, rate=b)

> mod$V <- gibbsV[,,1] <- V0 /(delta-2)

20 > mod$GG <- diag(2)

> # MCMC loop

22 > for(it in 1:(MC-1))

+ {
24 + # generate state- FFBS

+ modFilt <- dlmFilter(y, mod, simplify=TRUE)

26 + gibbsTheta[,,it] <- theta <- dlmBSample(modFilt)

+ # update alpha

28 + <-

+ tauT <- (gibbsV[,,it][2,2]*(1-rho^2)*tau2) /

30 + (tau2 * sum(theta[-1,1]^2)+(1-rho^2)*gibbsV[,,it][2,2])

+ alphaT <- tauT * ((tau2/(gibbsV[,,it][2,2])^.5) *

32 + sum(((y[,2]-theta[-1,2])/gibbsV[,,it][2,2]^.5 -

+ rho* (y[,1]-theta[-1,1])/gibbsV[,,it][1,1]^.5) *

34 + theta[-1,1])+ alpha0*(1-rho^2))/(tau2*(1-rho^2))

+ mod$FF[2,1] <- gibbsAlpha[it+1] <- rnorm(1, alphaT, tauT^.5)

36 + # update sigma_mu

+ SSmu <- sum( diff(theta[,1])^2)

38 + mod$W[1,1] <- gibbsW[it+1] <- 1/rgamma(1, a+n/2, rate=b+SSmu/2)

+ # update V

40 + S <- V0 + crossprod(y- theta[-1,] %*% t(mod$FF))

+ mod$V <- gibbsV[,,it+1] <- solve(rwishart(df=delta+1+ n,

42 + Sigma=solve(S)))

+ }

rho gibbsV[,,it][1,2]/(gibbsV[,,it][1,1]*gibbsV[,,it][2,2]) .̂5
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Fig. 4.22. MCMC estimate of the posterior distribution of α; running ergodic
means; MCMC autocorrelation

We show the results for 10000 MCMC iterations, with a burn in of 5000
draws. Some diagnostic plots are summarized in Figures 4.22-4.23; the first
panel in each figure shows the MCMC approximation of the posterior distri-
bution of α and σµ.

The MCMC estimates of the parameters’ posterior means are given in the
display below, together with the estimated standard errors, obtained by the
dlm function mcmcMeans, and the 5% and 95% quantiles of their marginal
posterior distributions.

parameter α σµ σ1 σ2 σ1,2

posterior mean 1.1027 0.0084 0.0261 0.0512 0.00037
(st dev) (0.0036) (0.00001) (0.00001) (0.00001) (0.0000)

5% quantile 1.0262 0.0079 0.0254 0.0498 0.0003
95% quantile 1.1806 0.0089 0.0269 0.0526 0.00043

Figure 4.24 shows the data and the posterior mean of the common stochas-
tic trend, which results very close to the long rate.
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Fig. 4.23. MCMC estimate of the posterior distribution of σµ; running ergodic
means; MCMC autocorrelation
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Fig. 4.24. Posterior mean of the common stochastic trend



206 4 Models with unknown parameters

Problems

4.1. In Chapter 2, we considered a random walk-plus-noise model for the Nile
river data. There, we used the maximum likelihood estimates for the state
and observation variances. Consider now Bayesian inference on the states and
the unknown parameters of the model. Express conjugate priors for V and W
and evaluate the posterior distribution of (θ0:T , V,W |y1:T ). Then, estimate
the model using discount factors as in Sections 4.3.2 and 4.3.3, and compare
the results.

4.2. Consider the DLM described in Section 4.3.1, with conjugate priors. Sup-
pose for simplicity that θt is univariate. Compute the expression of (1 − α)
probability intervals for θt|y1:t. Discuss the results, comparing with the case
where σ2 is known.

4.3. Consider again the Nile data, which we modeled as a random walk plus
noise (see Problem 4.1). In fact, assuming time-invariant variances is too re-
strictive for these data: we expect big changes caused by the dam’s construc-
tion. The model described in Section 4.5.3 allows for outliers and structural
breaks. Provide Bayesian estimates of this model for the Nile data (compute
an MCMC approximation of the joint posterior of the states and unknown
parameters, given y1:T ).

4.4. Show that the posterior distribution (4.20) is invariant for the hybrid
sampler described in Algorithm 4.3.

4.5. A honest elicitation of a prior distribution is often difficult. At least,
one should be aware of the role of prior hyperparameters, and the consequent
sensitivity of inference to the prior assumptions (given the model, which in fact
is also part of the prior assumptions). In Section 4.5.2, we consider an Inverse-
Wishart prior on the random covariance matrix. Suppose that V is a (2 × 2)
random matrix having an Inverse-Wishart distribution with parameters (α =
n/2, B = Σ/2). Study the distribution for varying values of the parameters n
and Σ, and plot the resulting marginal densities.

4.6. Study sensitivity to prior assumptions for the SUTSE model illustrated
in Section 4.5.2.
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Sequential Monte Carlo methods

In Chapter 2 we introduced the filtering recursion for general state space
models (Proposition 2.1). The recursive nature of the algorithm that, from the
filtering distribution at time t−1 and the observation yt computes the filtering
distribution at time t, makes it ideally suited for a large class of applications
in which inference must be made online, before the data collection ends. For
those types of applications one must have, at any time, an up-to-date estimate
of the current state of the system. Standard examples of such online types of
applications include the following: tracking the position and speed of a moving
aircraft observed through a radar; monitoring the location and characteristics
of a storm based on satellite data; estimating the volatility of the prices of a
group of stocks from tick-to-tick data. Unfortunately, for a general state space
model the integrations in (2.7) cannot be carried out analytically. DLMs are
a special case for which the Kalman filter gives a closed form solution to
the filtering problem. However, even in this case, as soon as a DLM contains
unknown parameters in its specification, the Kalman filter alone is not enough
to compute the filtering distribution and, except in a few simple cases (see
Section 4.3.1) one has to resort to numerical techniques.

For off-line, or batch, inference MCMC methods can be successfully em-
ployed for DLMs with unknown parameters, as explained in Chapter 4, and
can be extended to nonlinear non-Gaussian models. However, they are of lim-
ited use for online inference because any time a new observation becomes
available, a totally new Markov chain has to be simulated. In other words, in
an MCMC approach, the output based on t−1 observations cannot be used to
evaluate posterior distributions based on t observations. In this sense, unlike
the Kalman filter, MCMC does not lend itself easily to a sequential usage.

Early attempts to sequentially update filtering distributions for nonlinear
and non-Gaussian state space models were based on some form of linearization
of the state and system equations and on Gaussian approximations (for details
and references, see Cappé et al.; 2007). While useful for mildly nonlinear
models, an approach of this type typically performs poorly for highly nonlinear

©  Springer Science + Business Media, LLC 2009
G. Petris et al., Dynamic Linear Models with R, Use R, DOI: 10.1007/b135794_5, 207
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models. Furthermore, it does not solve the problem of sequentially estimating
unknown parameters, even in the simple DLM case.

In this chapter we give an account of a relatively recent simulation ap-
proach, called Sequential Monte Carlo, that has proved very successful in on-
line filtering applications of both DLMs with unknown parameters and general
nonlinear non-Gaussian state space models. Sequential Monte Carlo provides
an alternative set of simulation-based algorithms to approximate complicated
posterior distributions. Although not limited to time series models, it has
proved extremely successful when applied to DLMs and more general state
space models—especially in those applications that require frequent updates
of the posterior as new data are observed. Research in sequential Monte Carlo
methods is currently very active and we will not try to give here an exhaustive
review of the field. Instead, we limit ourselves to a general introduction and a
more specific description of a few algorithms that can be easily implemented in
the context of DLMs. For more information the interested reader can consult
the books by Liu (2001), Doucet et al. (2001), Del Moral (2004), and Cappé
et al. (2005). The article by Cappé et al. (2007) provides a current overview
of the field.

5.1 The basic particle filter

Particle filtering, which is how sequential Monte Carlo is usually referred to in
applications to state space models, is easier to understand when viewed as an
extension of importance sampling. For this reason we open this section with
a brief recall of importance sampling.

Suppose one is interested in evaluating the expected value

Eπ(f(X)) =

∫
f(x)π(x) dx. (5.1)

If g is an importance density having the property that g(x) = 0 implies π(x) =
0, then one can write

Eπ(f(X)) =

∫
f(x)

π(x)

g(x)
g(x) dx = Eg(f(X)w⋆(X)),

where w⋆(x) = π(x)/g(x) is the so-called importance function. This suggests
approximating the expected value of interest by generating a random sample
of size N from g and computing

1

N

N∑

i=1

f(x(i))w⋆(x(i)) ≈ Eπ(f(X)). (5.2)

In Bayesian applications one can typically evaluate the target density only up
to a normalizing factor, i.e., only C · π(x) can be computed, for an unknown
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constant C. Unfortunately, this implies that also the importance function can
only be evaluated up to the same factor C and (5.2) cannot be used directly.
However, letting w̃(i) = Cw⋆(x(i)), if one takes f(x) ≡ C, then (5.2) yields

1

N

N∑

i=1

Cw⋆(x(i)) =
1

N

N∑

i=1

w̃(i) ≈ Eπ(C) = C. (5.3)

Since the w̃(i)’s are available, (5.3) provides a way of evaluating C. Moreover,
for the purpose of evaluating (5.1) one does not need an explicit estimate of
the constant C: in fact,

Eπ(f(X)) ≈ 1

N

N∑

i=1

f(x(i))w⋆(x(i))

=
1
N

∑N
i=1 f(x(i))w̃(i)

C
≈
∑N
i=1 f(x(i))w̃(i)

∑N
i=1 w̃

(i)

=

N∑

i=1

f(x(i))w(i),

with w(i) = w̃(i)/
∑N
j=1 w̃

(j). Note that: (1) the weights w(i) sum to one,

and (2) the approximation Eπ(f(X)) ≈ ∑N
i=1 f(x(i))w(i) holds for every

well-behaved function f . Therefore, the sample x(1), . . . , x(N) with the as-
sociated weights w(1), . . . , w(N) can be viewed as a discrete approximation of
the target π. In other words, writing δx for the unit mass at x, and setting
π̂ =

∑N
i=1 w

(i)δx(i) , one has π ≈ π̂.
In filtering applications, the target distribution changes every time a new

observation is made, moving from π(θ0:t−1|y1:t−1) to π(θ0:t|y1:t). Note that
the former is not a marginal distribution of the latter, even though θ0:t−1 are
the first components of θ0:t. The problem then is how to efficiently update
a discrete approximation of π(θ0:t−1|y1:t−1) when the observation yt becomes
available, in order to obtain a discrete approximation of π(θ0:t|y1:t). For ev-
ery s, let us denote1 by π̂s(θ0:s|y1:s) the approximation of π(θ0:s|y1:s). The

updating process consists of two steps: for each point θ
(i)
0:t−1 in the support

of π̂t−1, (1) draw an additional component θ
(i)
t to obtain θ

(i)
0:t and, (2) up-

date its weight w
(i)
t−1 to an appropriate w

(i)
t . The weighted points (θ

(i)
t , w

(i)
t ),

i = 1, . . . , N , provide the new discrete approximation π̂t. For every t, let gt be
the importance density used to generate θ0:t. Since at time t the observations
y1:t are available, gt may depend on them and we will write gt(θ0:t|y1:t) to
make the dependence explicit. We assume that gt can be expressed in the
following form:

1 We keep the index s in the notation π̂s because approximations at different times
can be in principle unrelated to one another, while the targets are all derived
from the unique distribution of the process {θi, yj : i ≥ 0, j ≥ 1}.
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gt(θ0:t|y1:t) = gt|t−1(θt|θ0:t−1, y1:t) · gt−1(θ0:t−1|y1:t−1).

This allows us to “grow” sequentially θ0:t by combining θ0:t−1, drawn from
gt−1 and available at time t − 1, and θt, generated at time t from
gt|t−1(θt|θ0:t−1, y1:t). We will call the functions gt|t−1 importance transition
densities. Note that only the importance transition densities are needed to
generate θ0:t. Suggestions about the selection of the importance density are
provided at the end of the section. Let us consider next how to update the
weights. One has, dropping the superscripts for notational simplicity:

wt ∝
π(θ0:t|y1:t)
gt(θ0:t|y1:t)

∝ π(θ0:t, yt|y1:t−1)

gt(θ0:t|y1:t)

∝ π(θt, yt|θ0:t−1, y1:t−1) · π(θ0:t−1|y1:t−1)

gt|t−1(θt|θ0:t−1, y1:t) · gt−1(θ0:t−1|y1:t−1)

∝ π(yt|θt) · π(θt|θt−1)

gt|t−1(θt|θ0:t−1, y1:t)
· wt−1.

Hence, for every i, after drawing θ
(i)
t from gt|t−1(θt|θ(i)0:t−1, y1:t), one can com-

pute the unnormalized weight w̃
(i)
t as

w̃
(i)
t = w

(i)
t−1 ·

π(yt|θ(i)t ) · π(θ
(i)
t |θ(i)t−1)

gt|t−1(θ
(i)
t |θ(i)0:t−1, y1:t)

. (5.4)

The fraction on the left-hand side of equation (5.4), or any quantity propor-
tional2 to it, is called the incremental weight. The final step in the updating
process consists in scaling the unnormalized weights:

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

.

In practice it is often the case that, after a number of updates have been
performed, a few points in the support of π̂t have relatively large weights, while
all the remaining have negligible weights. This clearly leads to a deterioration
in the Monte Carlo approximation. To keep this phenomenon in control, a
useful criterion to monitor over time is the effective sample size, defined as

Neff =

(
N∑

i=1

(
w

(i)
t

)2
)−1

,

which ranges between N (when all the weights are equal) and one (when one
weight is equal to one). When Neff falls below a threshold N0, it is advisable

2 The proportionality constant may depend on y1:t, but should not depend on θ
(i)
t

or θ
(i)
0:t−1 for any i.
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0. Initialize: draw θ
(1)
0 , . . . , θ

(N)
0 independently from π(θ0) and set

w
(i)
0 = N

−1
, i = 1, . . . , N.

1. For t = 1, . . . , T:
1.1) For i = 1, . . . , N:

• Draw θ
(i)
t from gt|t−1(θt|θ

(i)
0:t−1, y1:t) and set

θ
(i)
0:t = (θ

(i)
0:t−1, θ

(i)
t )

.

• Set

w̃
(i)
t = w

(i)
t−1 ·

π(θ
(i)
t , yt|θ

(i)
t−1)

gt|t−1(θ
(i)
t |θ(i)0:t−1, y1:t)

.

1.2) Normalize the weights:

w
(i)
t =

w̃
(i)
t

PN

j=1 w̃
(j)
t

.

1.3) Compute

Neff =

 

N
X

i=1

`

w
(i)
t

´2

!−1

.

1.4) If Neff < N0, resample:

• Draw a sample of size N from the discrete distribution

P
`

θ0:t = θ
(i)
0:t

´

= w
(i)
t , i = 1, . . . , N,

and relabel this sample

θ
(1)
0:t , . . . , θ

(N)
0:t .

• Reset the weights: w
(i)
t = N−1, i = 1, . . . , N.

1.5) Set π̂t =
PN

i=1 w
(i)
t δ

θ
(i)
0:t

.

Algorithm 5.1: Summary of the particle filter algorithm

to perform a resampling step. This can be done in several different ways.
The simplest, called multinomial resampling, consists of drawing a random
sample of size N from π̂t and using the sampled points, with equal weights,
as the new discrete approximation of the target. The resampling step does
not change the expected value of the approximating distribution π̂t, but it
increases its Monte Carlo variance. In trying to keep the variance increase
as small as possible, researchers have developed other resampling algorithms,
more efficient than multinomial resampling in this respect. Of these, one of
the most commonly used is residual resampling. It consists of creating, for
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i = 1, . . . , N , ⌊Nw(i)
t ⌋ copies of θ

(i)
0:t deterministically first, and then adding

Ri copies of θ
(i)
0:t, where (R1, . . . , RN ) is a random vector having a multinomial

distribution. The size and probability parameters are given by N −M and
(w̄(1), . . . , w̄(N)) respectively, where

M =

N∑

i=1

⌊Nw(i)
t ⌋,

w̄(i) =
Nw

(i)
t − ⌊Nw(i)

t ⌋
N −M

, i = 1, . . . , N.

Algorithm 5.1 contains a summary of the basic particle filter. Let us stress
once again the sequential character of the algorithm. Each pass of the out-
ermost “for” loop represents the updating from π̂t−1 to π̂t following the ob-
servation of the new data point yt. Therefore, at any time t ≤ T one has a
working approximation π̂t of the current filtering distribution.

At time t, a discrete approximation of the filtering distribution π(θt|y0:t)
is immediately obtained as a marginal distribution of π̂t. More specifically, if
π̂t =

∑N
i=1 w

(i)δ
θ
(i)
0:t

, we only need to discard the first t components of each

path θ
(i)
0:t, leaving only θ

(i)
t , to obtain

π(θt|y1:t) ≈
N∑

i=1

w(i)δ
θ
(i)
t

.

As a matter of fact, particle filter is most frequently viewed, as the name itself
suggests, as an algorithm to update sequentially the filtering distribution. Note
that, as long as the transition densities gt|t−1 are Markovian, the incremental

weights in (5.4) only depend on θ
(i)
t and θ

(i)
t−1, so that, if the user is only

interested in the filtering distribution, the previous components of the path

θ
(i)
0:t can be safely discarded. This clearly translates into substantial savings

in terms of storage space. Another, more fundamental, reason to focus on
the filtering distribution is that the discrete approximation provided by π̂t is
likely to be more accurate for the most recent components of θ0:t than for the
initial ones. To see why this is the case, consider, for a fixed s < t, that the

θ
(i)
s ’s are generated at a time when only y0:s is available, so that they may

well be far from the center of their smoothing distribution π(θs|y0:t), which is
conditional on t− s additional observations.

We conclude this section with practical guidelines to follow in the selec-
tion of the importance transition densities. In the context of DLMs, as well
as for more general state space models, two are the most used importance
transition densities. The first is gt|t−1(θt|θ0:t−1, y1:t) = π(θt|θt−1), i.e., the ac-
tual transition density of the Markov chain of the states. It is clear that in
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this way all the particles are drawn from the prior distribution of the states,
without accounting for any information provided by the observations. The
simulation of the particles and the calculation of the incremental weights are
straightforward. However, most of the times the generated particles will fall
in regions of low posterior density. The consequence will be an inaccurate dis-
crete representation of the posterior density and a high Monte Carlo variance
for the estimated posterior expected values. For these reasons we discourage
the use of the prior as importance density. A more efficient approach, which
accounts for the observations in the importance transition densities, consists
of generating θt from its conditional distribution given θt−1 and yt. This dis-
tribution is sometimes referred to as the optimal importance kernel. In view
of the conditional independence structure of the model, this is the same as
the conditional distribution of θt given θ0:t−1 and y1:t. Therefore, in this way
one is generating θt from the target (conditional) distribution. However, since

θt−1 was not drawn from the current target, the particles θ
(i)
0:t are not draws

from the target distribution3 and the incremental importance weights need
to be evaluated. Applying standard results about Normal models, it is easily
seen that for a DLM the optimal importance kernel gt|t−1 is a Normal density
with mean and variance given by

E(θt|θt−1, yt) = Gtθt−1 +WtF
′
tΣ

−1
t (yt − FtGgθt−1),

Var(θt|θt−1, yt) = Wt −WtF
′
tΣ

−1
t FtWt,

where Σt = FtWtF
′
t + Vt. Note that for time-invariant DLMs the conditional

variance above does not depend on t and can therefore be computed once and
for all at the beginning of the process. The incremental weights, using this
importance transition density, are proportional to the conditional density of

yt given θt−1 = θ
(i)
t−1, i.e., to the N (FtGtθ

(i)
t−1, Σt) density, evaluated at yt.

5.1.1 A simple example

To illustrate the practical usage of the basic particle filter described in the
previous section and to assess its accuracy, we present here a very simple ex-
ample based on 100 observations simulated from a known DLM. The data are
generated from a local level model with system variance W = 1, observation
variance V = 2, and initial state distribution N (10, 9). We save the obser-
vations in y. Note the use of dlmForecast to simulate from a given model.

R code

> ### Generate data

2 > mod <- dlmModPoly(1, dV = 2, dW = 1, m0 = 10, C0 = 9)

3 The reason for this apparent paradox is that the target distribution changes from
time t− 1 to time t. When one generates θt−1, the observation yt is not used.
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> n <- 100

4 > set.seed(23)

> simData <- dlmForecast(mod = mod, nAhead = n, sampleNew = 1)

6 > y <- simData$newObs[[1]]

In our implementation of the particle filter we set the number of particles
to 1000, and we use the optimal importance kernel as importance transition
density. As discussed in the previous section, for a DLM this density is easy to
use both in terms of generating from it and for updating the particle weights.
To keep things simple, instead of the more efficient residual resampling, we
use plain multinomial resampling, setting the threshold for a resampling step
to 500—that is, whenever the effective sample size drops below one half of the
number of particles, we resample.

R code

> ### Basic Particle Filter - optimal importance density

2 > N <- 1000

> N_0 <- N / 2

4 > pfOut <- matrix(NA_real_, n + 1, N)

> wt <- matrix(NA_real_, n + 1, N)

6 > importanceSd <- sqrt(drop(W(mod) - W(mod)^2 /

+ (W(mod) + V(mod))))

8 > predSd <- sqrt(drop(W(mod) + V(mod)))

> ## Initialize sampling from the prior

10 > pfOut[1, ] <- rnorm(N, mean = m0(mod), sd = sqrt(C0(mod)))

> wt[1, ] <- rep(1/N, N)

12 > for (it in 2 : (n + 1))

+ {
14 + ## generate particles

+ means <- pfOut[it - 1, ] + W(mod) *

16 + (y[it - 1] - pfOut[it - 1, ]) / (W(mod) + V(mod))

+ pfOut[it, ] <- rnorm(N, mean = means, sd = importanceSd)

18 + ## update the weights

+ wt[it, ] <- dnorm(y[it - 1], mean = pfOut[it - 1, ],

20 + sd = predSd) * wt[it - 1, ]

+ wt[it, ] <- wt[it, ] / sum(wt[it, ])

22 + ## resample, if needed

+ N.eff <- 1 / crossprod(wt[it, ])

24 + if ( N.eff < N_0 )

+ {
26 + ## multinomial resampling

+ index <- sample(N, N, replace = TRUE, prob = wt[it, ])

28 + pfOut[it, ] <- pfOut[it, index]

+ wt[it, ] <- 1 / N
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30 + }
+ }

For a completely specified DLM the Kalman filter can be used to derive
exact filtering means and variances. In Figure 5.1 we compare the exact fil-
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Fig. 5.1. Top: comparison of filtering state estimates computed with the Kalman fil-
ter and particle filter. Bottom: comparison of filtering standard deviations computed
with the Kalman filter and particle filter

tering means and standard deviations, obtained using the Kalman filter, with
the Monte Carlo approximations of the same quantities obtained using the
particle filter algorithm. In terms of the filtering mean, the particle filter gives
a very accurate approximation at any time (the two lines are barely distin-
guishable). The approximations to the filtering standard deviations are less
precise, although reasonably close to the true values. The precision can be
increased by increasing the number of particles in the simulation. The plots
were obtained with the following code.

R code

> ## Compare exact filtering distribution with PF approximation

2 > modFilt <- dlmFilter(y, mod)

> thetaHatKF <- modFilt$m[-1]

4 > sdKF <- with(modFilt, sqrt(unlist(dlmSvd2var(U.C, D.C))))[-1]

> pfOut <- pfOut[-1, ]

6 > wt <- wt[-1, ]

> thetaHatPF <- sapply(1 : n, function(i)

8 + weighted.mean(pfOut[i, ], wt[i, ]))

> sdPF <- sapply(1 : n, function(i)
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10 + sqrt(weighted.mean((pfOut[i, ] -

+ thetaHatPF[i])^2, wt[i, ])))

12 > plot.ts(cbind(thetaHatKF, thetaHatPF),

+ plot.type = "s", lty = c("dotted", "longdash"),

14 + xlab = "", ylab = expression(m[t]))

> legend("topleft", c("Kalman", "Particle"),

16 + lty = c("dotted", "longdash"), bty = "n")

> plot.ts(cbind(sdKF, sdPF), plot.type = "s",

18 + lty = c("dotted", "longdash"), xlab = "",

+ ylab = expression(sqrt(C[t])))

20 > legend("topright", c("Kalman", "Particle"),

+ lty = c("dotted", "longdash"), bty = "n")

5.2 Auxiliary particle filter

The particle filter described in the previous section applies to general state
space models. However, its performance depends heavily on the specification of
the importance transition densities. While for a DLM the optimal importance
kernel can be obtained explicitely and its use typically provides fairly good
approximations to the filtering distributions, for a general state space model
this is not the case, and devising effective importance transition densities is
a much harder problem. The auxiliary particle filter algorithm was proposed
by Pitt and Shephard (1999) to overcome this difficulty. While not really
needed for fully specified DLMs, an extension of the algorithm, due to Liu
and West (2001), turns out to be very useful even in the DLM case when
the model contains unknown parameters. For this reason we present Pitt and
Shephard’s auxiliary particle filter here, followed in the next section by Liu
and West’s extension to deal with unknown model parameters.

Suppose that at time t−1 a discrete approximation π̂t−1 =
∑N
i=1 w

(i)
t−1δθ(i)

0:t−1

to the joint smoothing distribution π(θ0:t−1|y1:t−1) is available. The goal is
to update the approximate smoothing distribution when a new data point is
observed or, in other words, to obtain a discrete approximation π̂t to the joint
smoothing distribution at time t, π(θ0:t|y1:t). We have:

π(θ0:t|y1:t) ∝ π(θ0:t, yt|y1:t−1)

= π(yt|θ0:t, y1:t−1) · π(θt|θ0:t−1, y1:t−1) · π(θ0:t−1|y1:t−1)

= π(yt|θt) · π(θt|θt−1) · π(θ0:t−1|y1:t−1)

≈ π(yt|θt) · π(θt|θt−1) · π̂t−1(θ0:t−1)

=

N∑

i=1

w
(i)
t−1π(yt|θt)π(θt|θ(i)t−1)δθ(i)

0:t−1

.
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Note that the last expression is an unnormalized distribution for θ0:t, which
is discrete in the first t components and continuous in the last, θt. This distri-
bution, which approximates π(θ0:t|y1:t), can be taken to be our target for an
importance sampling step. The target being a mixture distribution, a stan-
dard approach to get rid of the summation is to introduce a latent variable I,
taking values in {1, . . . , N}, such that:

P(I = i) = w
(i)
t−1,

θ0:t|I = i ∼ Cπ(yt|θt)π(θt|θ(i)t−1)δθ(i)
0:t−1

.

Thus extended, the target becomes

πaux(θ0:t, i|y1:t) ∝ w
(i)
t−1π(yt|θt)π(θt|θ(i)t−1)δθ(i)

0:t−1

.

The importance density suggested by Pitt and Shephard for this target is

gt(θ0:t, i|y1:t) ∝ w
(i)
t−1π(yt|θ̂(i)t )π(θt|θ(i)t−1)δθ(i)

0:t−1

,

where θ̂
(i)
t is a central value, such as the mean or the mode, of π(θt|θt−1 =

θ
(i)
t−1). A sample from gt is easily obtained by iterating, for k = 1, . . . , N , the

following two steps.

1. Draw a classification variable Ik, with

P(Ik = i) ∝ w
(i)
t−1π(yt|θ̂(i)t ), i = 1, . . . , N.

2. Given Ik = i, draw

θ
(k)
t ∼ π(θt|θ(i)t−1)

and set θ
(k)
0:t = (θ

(i)
0:t−1, θ

(k)
t ).

The importance weight of the kth draw from gt is proportional to

w̃
(k)
t =

w
(Ik)
t−1π(yt|θ(k)t )π(θ

(k)
t |θ(k)t−1)

w
(Ik)
t−1π(yt|θ̂(k)t )π(θ

(k)
t |θ(k)t−1)

=
π(yt|θ(k)t )

π(yt|θ̂(k)t )
.

After normalizing the w̃
(k)
t ’s and discarding the classification variables Ik’s, we

finally obtain the discrete approximation to the joint smoothing distribution
at time t:

π̂t(θ0:t) =

N∑

i=1

w
(i)
t δ

θ
(i)
0:t

≈ π(θ0:t|y1:t).

As with the standard algorithm of Section 5.1, a resampling step is commonly
applied in case the effective sample size drops below a specified threshold. A
summary of the auxiliary particle filter is provided in Algorithm 5.2
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0. Initialize: draw θ
(1)
0 , . . . , θ

(N)
0 independently from π(θ0) and set

w
(i)
0 = N

−1
, i = 1, . . . , N.

1. For t = 1, . . . , T:
1.1) For k = 1, . . . , N:

• Draw Ik, with P(Ik = i) ∝ w
(i)
t−1π(yt|θ̂

(i)
t ).

• Draw θ
(k)
t from π(θt|θt−1 = θ

(Ik)
t−1 ) and set

θ
(k)
0:t =

`

θ
(Ik)
0:t−1, θ

(k)
t

´

.

• Set

w̃
(k)
t =

π(yt|θ
(k)
t )

π(yt|θ̂
(k)
t )

.

1.2) Normalize the weights:

w
(i)
t =

w̃
(i)
t

PN

j=1 w̃
(j)
t

.

1.3) Compute

Neff =

 

N
X

i=1

`

w
(i)
t

´2

!−1

.

1.4) If Neff < N0, resample:

• Draw a sample of size N from the discrete distribution

P
`

θ0:t = θ
(i)
0:t

´

= w
(i)
t , i = 1, . . . , N,

and relabel this sample

θ
(1)
0:t , . . . , θ

(N)
0:t .

• Reset the weights: w
(i)
t = N−1, i = 1, . . . , N.

1.5) Set π̂t =
PN

i=1 w
(i)
t δ

θ
(i)
0:t

.

Algorithm 5.2: Summary of the auxiliary particle filter algorithm

The main advantage of the auxiliary particle filter over the simple direct
algorithm described in the previous section consists in the fact that it allows to
use the one-step prior distribution π(θt|θt−1) to draw θt without losing much
efficiency. Loosely speaking, when drawing from gt, the role of the first step is
to preselect a conditioning θt−1 that is likely to evolve into a highly plausible θt
in light of the new observation yt. In this way possible conflicts between prior—
π(θt|θt−1)—and likelihood—π(yt|θt)—are minimized. It should be emphasized
that for a general state space model deriving and drawing from the optimal
instrumental kernel is often unfeasible, unlike in the DLM case, while the
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prior distribution is almost always available. Therefore, the ingenious use of
the latter done by the auxiliary particle filter algorithm combines efficiency
and simplicity.

5.3 Sequential Monte Carlo with unknown parameters

In real applications the model almost invariably contains unknown parameters
that need to be estimated from the data. Denoting again by ψ the vector
of unknown parameters, the target distribution at time t for a sequential
Monte Carlo algorithm is therefore in this case π(θ0:t, ψ|y1:t). As detailed
in Section 4.4, a (weighted) sample from the forecast distributions can be
easily obtained once a (weighted) sample from the joint posterior distribution
is available. On the other hand, the filtering distribution and the posterior
distribution of the parameter can be trivially obtained by marginalization.
A simple-minded approach to sequential Monte Carlo for a model with an
unknown parameter is to extend the state vector to include ψ as part of
it, defining the trivial dynamics ψt = ψt−1 (= ψ). In this way a relatively
simple DLM typically becomes a nonlinear and nonnormal state space model.
However, the most serious drawback is that, applying the general algorithm

of Section 5.1 (or the auxiliary particle filter of Section 5.2), the values ψ
(i)
t ,

i = 1, . . . , N , are those drawn at time t = 0, since there is no evolution for

this fictitious state. In other words, ψ
(i)
t = ψ

(i)
0 for every i and t, so that the

ψ
(i)
t ’s, drawn from the prior distribution, are typically not representative of

the posterior distribution at a later time t > 0. It is true that, as the particle
filter algorithm is sequentially applied, the weights are adjusted to reflect the
changes of the target distributions. However, this can only account for the

relative weights: if the ψ
(i)
t ’s happen to be all in the tails of the marginal

target π(ψ|y1:t), the discrete approximation provided by the algorithm will
always be a poor one. There is, in view of the previous considerations, a need
to “refresh” the sampled values of ψ in order to follow the evolution of the
posterior distribution. This can be achieved by discarding the current values of
ψ each time the target changes and generating new ones. Among the different
available methods, probably the most commonly used is the one proposed by
Liu and West (2001) and described below, which extends the auxiliary particle
filter. Fearnhead (2002), Gilks and Berzuini (2001) and Storvik (2002) propose
interesting alternative algorithms.

The idea of Liu and West essentially consists of constructing an approxi-
mate target distribution at time t that is continuous not only in θt, but also
in ψ, so that using importance sampling one draws values of ψ from a contin-
uous importance density, effectively forgetting about the values of ψ used in
the discrete approximation at time t−1. Consider the discrete approximation
available at time t− 1:
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π̂t−1(θ0:t−1, ψ) =

N∑

i=1

w
(i)
t−1δ(θ(i)

0:t−1,ψ
(i))

≈ π(θ0:t−1, ψ|y0:t−1).

Marginally,

π̂t−1(ψ) =

N∑

i=1

w
(i)
t−1δψ(i) ≈ π(ψ|y0:t−1). (5.5)

Liu and West suggest replacing each point mass δψ(i) with a Normal distri-
bution, so that the resulting mixture becomes a continuous distribution. A
naive way of doing so would be to replace δψ(i) with a Normal centered at

ψ(i). However, while preserving the mean, this would increase the variance of
the approximating distribution. To see that this is the case, let ψ̄ and Σ be
the mean vector and variance matrix of ψ under π̂t−1, and let

π̃t−1(ψ) =

N∑

i=1

w
(i)
t−1N (ψ;ψ(i), Λ).

Introducing a latent classification variable I for the component of the mixture
an observation comes from, we have

E(ψ) = E(E(ψ|I)) = E(ψ(I))

=

N∑

i=1

w
(i)
t−1ψ

(i) = ψ̄;

Var(ψ) = E(Var(ψ|I)) + Var(E(ψ|I))
= E(Λ) + Var(ψ(I))

= Λ+Σ > Σ,

where expected values and variances are with respect to π̃t−1. However, by
changing the definition of π̃t−1 to

π̃t−1(ψ) =
N∑

i=1

w
(i)
t−1N (ψ;m(i), h2Σ),

with m(i) = aψ(i) + (1 − a)ψ̄ for some a in (0, 1) and a2 + h2 = 1, we have

E(ψ) = E(E(ψ|I)) = E(aψ(I) + (1 − a)ψ̄)

= aψ̄ + (1 − a)ψ̄ = ψ̄;

Var(ψ) = E(Var(ψ|I)) + Var(E(ψ|I))
= E(h2Σ) + Var(aψ(I) + (1 − a)ψ̄)

= h2Σ + a2Var(ψ(I)) = h2Σ + a2Σ = Σ.

Thus, ψ has the same first and second moment under π̃t−1 and π̂t−1. Albeit
this is true for any a in (0, 1), in practice Liu and West recommend to set
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a = (3δ − 1)/(2δ) for a “discount factor” δ in (0.95, 0.99), which corresponds
to an a in (0.974, 0.995). The very same idea can be applied even in the
presence of θ0:t−1 to the discrete distribution π̂t−1(θ0:t−1, ψ), leading to the
extension of π̃t−1 to a joint distribution for θ0:t−1 and ψ:

π̃t−1(θ0:t−1, ψ) =

N∑

i=1

w
(i)
t−1N (ψ;m(i), h2Σ)δ

θ
(i)
0:t−1

.

Note that π̃t−1 is discrete in θ0:t−1, but continuous in ψ. From this point
onward, the method parallels the development of the auxiliary particle filter.
After the new data point yt is observed, the distribution of interest becomes

π(θ0:t, ψ|y1:t) ∝ π(θ0:t, ψ, yt|y1:t−1)

= π(yt|θ0:t, ψ, y1:t−1) · π(θt|θ0:t−1, ψ, y1:t−1) · π(θ0:t−1, ψ|y1:t−1)

= π(yt|θt, ψ) · π(θt|θt−1, ψ) · π(θ0:t−1, ψ|y1:t−1)

≈ π(yt|θt, ψ) · π(θt|θt−1, ψ) · π̃t−1(θ0:t−1, ψ)

=

N∑

i=1

w
(i)
t−1π(yt|θt, ψ)π(θt|θ(i)t−1, ψ)N (ψ;m(i), h2Σ)δ

θ
(i)
0:t−1

.

Similarly to what we did in Section 5.2, we can introduce an auxiliary classi-
fication variable I such that:

P(I = i) = w
(i)
t−1,

θ0:t, ψ|I = i ∼ Cπ(yt|θt, ψ)π(θt|θ(i)t−1, ψ)N (ψ;m(i), h2Σ)δ
θ
(i)
0:t−1

.

Note that the conditional distribution in the second line is continuous in θt and
ψ, and discrete in θ0:t−1—in fact, degenerate on θ

(i)
0:t−1. With the introduction

of the random variable I, the auxiliary target distribution for the importance
sampling update becomes

πaux(θ0:t, ψ, i|y1:t) ∝ w
(i)
t−1π(yt|θt, ψ)π(θt|θ(i)t−1, ψ)N (ψ;m(i), h2Σ)δ

θ
(i)
0:t−1

.

As an importance density, a convenient choice is

gt(θ0:t, ψ, i|y1:t) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = m(i))π(θt|θ(i)t−1, ψ)

N (ψ;m(i), h2Σ)δ
θ
(i)
0:t−1

,

where θ̂
(i)
t is a central value, such as the mean or the mode, of π(θt|θt−1 =

θ
(i)
t−1, ψ = m(i)). A sample from gt can be obtained by iterating, for k =

1, . . . , N , the following three steps.

1. Draw a classification variable Ik, with

P(Ik = i) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = m(i)), i = 1, . . . , N.
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2. Given Ik = i, draw ψ ∼ N (m(i), h2Σ) and set ψ(k) = ψ.
3. Given Ik = i and ψ = ψ(k), draw

θ
(k)
t ∼ π(θt|θt−1 = θ

(i)
t−1, ψ = ψ(k))

and set θ
(k)
0:t = (θ

(i)
0:t−1, θ

(k)
t ).

The importance weight of the kth draw from gt is proportional to

w̃
(k)
t =

w
(Ik)
t−1π(yt|θt = θ

(k)
t , ψ = ψ(k))π(θ

(k)
t |θ(k)t−1, ψ

(k))N (ψ(k);m(Ik), h2Σ)

w
(Ik)
t−1π(yt|θt = θ̂

(Ik)
t , ψ = m(Ik))π(θ

(k)
t |θ(k)t−1, ψ

(k))N (ψ(k);m(Ik), h2Σ)

=
π(yt|θt = θ

(k)
t , ψ = ψ(k))

π(yt|θt = θ̂
(Ik)
t , ψ = m(Ik))

.

Renormalizing the weights, we obtain the approximate joint posterior distri-
bution at time t

π̂t(θ0:t, ψ) =

N∑

i=1

w
(i)
t δ

(θ
(i)
0:t,ψ

(i))
≈ π(θ0:t, ψ|y1:t).

As was the case with the particle filter algorithms described in the previous
sections, also in this case a resampling step can be applied whenever the
effective sample size drops below a specified threshold. Algorithm 5.3 provides
a convenient summary of the procedure.

Let us point out that, in order for the mixture of normals approximation
of the posterior distribution at time t − 1 to make sense, the parameter ψ
has to be expressed in a form that is consistent with such a distribution—in
particular, the support of a one-dimensional parameter must be the entire
real line. For example, variances can be parametrized in terms of their log,
probabilities in terms of their logit, and so on. In other words, and according
to the suggestion by Liu and West, each parameter must be transformed so
that the support of the distribution of the transformed parameter is the entire
real line. A simpler alternative is to use a mixture of nonnormal distributions,
appropriately selected so that their support is the same as that of the dis-
tribution of the parameter. For example, if a model parameter represents an
unknown probability, and therefore its support is the interval (0, 1), then one
can consider approximating the discrete distribution obtained by the particle
filter at time t−1 with a mixture of beta distributions instead of a mixture of
normals, proceeding in all other respects as described above. Let us elaborate
more on this simple example. Suppose ψ is an unknown parameter in (0, 1).
Denote by µ(α, β) and σ2(α, β) respectively the mean and variance of a beta
distribution with parameters α and β. One can set, for each i = 1, . . . , N ,

µ(i) = µ(α(i), β(i)) = aψ(i) + (1 − a)ψ̄,

σ2(i)
= σ2(α(i), β(i)) = h2Σ,

(5.6)
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0. Initialize: draw (θ
(1)
0 , ψ(1)), . . . , (θ

(N)
0 , ψ(N)) independently from

π(θ0)π(ψ). Set w
(i)
0 = N−1, i = 1, . . . , N, and

π̂0 =
N
X

i=1

w
(i)
0 δ

(θ
(i)
0 ,ψ(i))

.

1. For t = 1, . . . , T:
1.1) Compute ψ̄ = Eπ̂t−1(ψ) and Σ = Varπ̂t−1(ψ). For i = 1, . . . , N, set

m
(i) = aψ

(i) + (1 − a)ψ̄,

θ̂
(i)
t = E(θt|θt−1 = θ

(i)
t−1, ψ = m

(i)).

1.2) For k = 1, . . . , N:

• Draw Ik, with P(Ik = i) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = m(i)).

• Draw ψ(k) from N (m(Ik), h2Σ).

• Draw θ
(k)
t from π(θt|θt−1 = θ

(Ik)
t−1 , ψ = ψ(k)) and set

θ
(k)
0:t =

`

θ
(Ik)
0:t−1, θ

(k)
t

´

.

• Set

w̃
(k)
t =

π(yt|θt = θ
(k)
t , ψ = ψ(k))

π(yt|θt = θ̂
(Ik)
t , ψ = m(Ik))

.

1.3) Normalize the weights:

w
(i)
t =

w̃
(i)
t

PN

j=1 w̃
(j)
t

.

1.4) Compute

Neff =

 

N
X

i=1

`

w
(i)
t

´2

!−1

.

1.5) If Neff < N0, resample:

• Draw a sample of size N from the discrete distribution

P
`

(θ0:t, ψ) = (θ
(i)
0:t, ψ

(i))
´

= w
(i)
t , i = 1, . . . , N,

and relabel this sample

(θ
(1)
0:t , ψ

(1)), . . . , (θ
(N)
0:t , ψ

(N)).

• Reset the weights: w
(i)
t = N−1, i = 1, . . . , N.

1.6) Set π̂t =
PN

i=1 w
(i)
t δ

(θ
(i)
0:t,ψ

(i))
.

Algorithm 5.3: Summary of Liu and West’s algorithm
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and solve for the pair (α(i), β(i)). The equations above can be explicitely solved
for the parameters α(i) and β(i), giving

α(i) =
(µ(i))2(1 − µ(i))

σ2(i)
− µ(i),

β(i) =
µ(i)(1 − µ(i))2

σ2(i)
− (1 − µ(i)).

It is straightforward to show that the mixture

N∑

i=1

wit−1B(ψ;α(i), β(i)), (5.7)

has the same mean and variance as (5.5), that is ψ̄ and Σ.
On the same theme, consider the case of a positive unknown parameter ψ,

such as a variance. Then we can consider a mixture of gamma distributions
instead of a mixture on Normals. We can solve, for i = 1, . . . , N the system of
equations (5.6) where α(i) and β(i) are this time the parameters of a gamma
distribution. The explicit solution is in this case

α(i) =
(µ(i))2

σ2(i)
,

β(i) =
µ(i)

σ2(i)
,

And the mixture
N∑

i=1

wit−1G(ψ;α(i), β(i))

has mean ψ̄ and variance Σ.
When the unknown parameter ψ is a vector it may not be easy to find

a parametric family of multivariate distributions f(ψ; γ) and proceed as we
did in the examples above with the beta and gamma distributions, using a
moment matching condition to come up with a continuous mixture that has
the first mean and variance as the discrete particle approximation (5.5). When
this is the case one can usually adopt the same moment matching approach
marginally and consider a mixture of product densities. More specifically,
consider a parameter ψ = (ψ1, ψ2) and let

f(ψ; γ) = f1(ψ1; γ1)f2(ψ2; γ2), γ = (γ1, γ2),

where the parameter γj can be set in such a way that fj(·|γj) has a specific
mean and variance (j = 1, 2). Let, with an obvious notation,

ψ̄ =

[
ψ̄1

ψ̄2

]
, Σ =

[
Σ1 Σ12

Σ21 Σ2

]
.
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1.1) For j = 1, 2 and i = 1, . . . , N:

• Compute ψ̄j = Eπ̂t−1(ψj) and Σj = Varπ̂t−1(ψj). Set

µ
(i)
j = aψ

(i)
j + (1 − a)ψ̄j ,

σ
(i)
j = h

2
Σj ,

µ
(i) = (µ

(i)
1 , µ

(i)
2 ),

θ̂
(i)
t = E(θt|θt−1 = θ

(i)
t−1, ψ = µ

(i)).

• Solve for γ
(i)
j the system of equations

E
fj(·;γ

(i)
j

)
(ψj) = µ

(i)
j ,

Var
fj(·;γ

(i)
j

)
(ψj) = σ

(i)
j .

1.2) For k = 1, . . . , N:

• Draw Ik, with P(Ik = i) ∝ w
(i)
t−1π(yt|θt = θ̂

(i)
t , ψ = µ(i)).

• For j = 1, 2, draw ψ
(k)
j from fj(·; γ

(Ik)
j )

• Draw θ
(k)
t from π(θt|θt−1 = θ

(Ik)
t−1 , ψ = ψ(k)) and set

θ
(k)
0:t =

`

θ
(Ik)
0:t−1, θ

(k)
t

´

.

• Set

w̃
(k)
t =

π(yt|θt = θ
(k)
t , ψ = ψ(k))

π(yt|θt = θ̂
(Ik)
t , ψ = m(Ik))

.

Algorithm 5.4: Changes to Liu and West’s algorithm when using product
kernels

Then we can set, for i = 1, . . . , N ,

µ
(i)
j =

∫
ψjfj(ψj ; γ

(i)
j ) dψj = aψ

(i)
j + (1 − a)ψ̄j ,

σ2
j
(i)

=

∫
(ψj − µ

(i)
j )2fj(ψj ; γ

(i)
j ) dψj = h2Σ,

(5.8)

and solve for γ
(i)
j (j = 1, 2). These are the same equations as (5.6) for the

marginal distributions of ψ1 and ψ2. Finally, we can consider the mixture

N∑

i=1

w
(i)
t−1f1(ψ1; γ

(i)
1 )f2(ψ2; γ

(i)
2 ). (5.9)

This will have the same mean as (5.5), ψ̄, and the same marginal variances,
Σ1 and Σ2. As far as the covariance is concerned, a simple calculation shows
that under the mixture distribution (5.9) ψ1 and ψ2 have covariance a2Σ12.
Since in the practical applications of Liu and West’s method a is close to one,
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it follows that a2Σ12 ≈ Σ12. In summary, for a bivariate parameter ψ, the
mixture (5.9) provides a countinuous approximation to (5.5) that matches first
moments, marginal second moments, and covariances up to a factor a2 ≈ 1.
Using this product kernel approximation instead of the mixture of normals
originally proposed by Liu and West, parts 1.1 and 1.2 of Algorithm 5.3 have
to be changed accordingly, as shown in Algorithm 5.4.

To conclude the discussion of mixtures of product kernels within Liu and
West’s approach, let us note that the two components ψ1 and ψ2 may also be
multivariate. Furthermore, the technique described can be generalized in an
obvious way to product kernels containing more than two factors.

5.3.1 A simple example with unknown parameters

As a simple application of particle filtering for models containing unknown
parameters, we go back to the example discussed in Section 5.1.1, this time
assuming that both the system and observation variances are unknown. Since
we have two unknown positive parameters, we are going to use at any time
t products of Gamma kernels in the mixture approximation to the posterior
distribution of the parameters. In the notation of the previous section, we
have ψ1 = V , ψ2 = W , and fj(ψj ; γj) is a gamma density for j = 1, 2, where
γj = (αj , βj) is the standard vector parameter of the gamma distribution (see
Appendix A). We use the same data that we simulated in Section 5.1.1. We
choose independent uniform priors on (0, 10) for both V and W . By looking at
a plot of the data, the upper limit 10 for the variances seems more than enough
for the interval to contain the true value of the parameter. Within these
boundaries, a uniform prior does not carry any particularly strong information
about the unknown variances. The reason for not choosing a more spread out
prior distribution is that the particle filter algorithm initially generates the
particles from the prior and, if the prior puts little probability in regions having
high likelihood, most of the particles will be discarded after just one or two
steps. Note that we are not arguing for selecting a prior based on the particular
numerical method that one uses to evaluate the posterior distribution. On
the contrary, we think that in this case a uniform prior on a finite interval
better represents our belief about the variances than, say, a prior with infinite
variance. After all, after plotting the data, who will seriously consider the
possibility of V being larger than 100? Or 1000?

R code

> ### PF with unknown parameters: Liu and West

2 > N <- 10000

> a <- 0.975

4 > set.seed(4521)

> pfOutTheta <- matrix(NA_real_, n + 1, N)

6 > pfOutV <- matrix(NA_real_, n + 1, N)
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Fig. 5.2. Sequential estimation obtained via particle filter of V (top) and W (bot-
tom)

> pfOutW <- matrix(NA_real_, n + 1, N)

8 > wt <- matrix(NA_real_, n + 1, N)

> ## Initialize sampling from the prior

10 > pfOutTheta[1, ] <- rnorm(N, mean = m0(mod),

+ sd = sqrt(C0(mod)))

12 > pfOutV[1, ] <- runif(N, 0, 10)

> pfOutW[1, ] <- runif(N, 0, 10)

14 > wt[1, ] <- rep(1/N, N)

> for (it in 2 : (n + 1))

16 + {
+ ## compute means and variances of the particle

18 + ## cloud for V and W

+ meanV <- weighted.mean(pfOutV[it - 1, ], wt[it - 1, ])

20 + meanW <- weighted.mean(pfOutW[it - 1, ], wt[it - 1, ])

+ varV <- weighted.mean((pfOutV[it - 1, ] - meanV)^2,

22 + wt[it - 1, ])

+ varW <- weighted.mean((pfOutW[it - 1, ] - meanW)^2,

24 + wt[it - 1, ])

+ ## compute the parameters of Gamma kernels

26 + muV <- a * pfOutV[it - 1, ] + (1 - a) * meanV

+ sigma2V <- (1 - a^2) * varV

28 + alphaV <- muV^2 / sigma2V

+ betaV <- muV / sigma2V

30 + muW <- a * pfOutW[it - 1, ] + (1 - a) * meanW

+ sigma2W <- (1 - a^2) * varW

32 + alphaW <- muW^2 / sigma2W
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+ betaW <- muW / sigma2W

34 + ## draw the auxiliary indicator variables

+ probs <- wt[it - 1,] * dnorm(y[it - 1], sd = sqrt(muV),

36 + mean = pfOutTheta[it - 1, ])

+ auxInd <- sample(N, N, replace = TRUE, prob = probs)

38 + ## draw the variances V and W

+ pfOutV[it, ] <- rgamma(N, shape = alphaV[auxInd],

40 + rate = betaV[auxInd])

+ pfOutW[it, ] <- rgamma(N, shape = alphaW[auxInd],

42 + rate = betaW[auxInd])

+ ## draw the state theta

44 + pfOutTheta[it, ] <- rnorm(N, mean =

+ pfOutTheta[it - 1, auxInd],

46 + sd = sqrt(pfOutW[it, ]))

+ ## compute the weights

48 + wt[it, ] <- exp(dnorm(y[it - 1],

+ mean = pfOutTheta[it, ],

50 + sd = sqrt(pfOutV[it, ]),

+ log = TRUE) -

52 + dnorm(y[it - 1],

+ mean = pfOutTheta[it - 1, auxInd],

54 + sd = sqrt(muV[auxInd]),

+ log = TRUE))

56 + wt[it, ] <- wt[it, ] / sum(wt[it, ])

+ }

5.4 Concluding remarks

We stressed in this chapter that the particle filter is very useful in online
inference, where it can be used to recursively update a posterior distribution
when the Kalman filter is not available because the model contains unknown
parameters or otherwise—for example, the model is nonlinear. While this is
certainly true, we would like to add a word of caution about the practical
usage of particle filtering techniques in genuine sequential applications.

With very few exceptions that do not cover the samplers presented above,
all the available asymptotic results hold when the time horizon T is fixed and
the number of particles N is let to go to infinity. Furthermore, in order to ob-
tain Monte Carlo approximations of similar quality for different time horizons
T1 and T2, we need to use a number of particles proportional to Ti. The impli-
cation of these results is that if we start a particle filter with N particles, and
we keep running it as new observations become available, the quality of the
approximation will eventually deteriorate, making the particle approximation
useless in the long run. The reason is that, even if we only use the particle
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approximation of the marginal posterior at time t, π̂t(θt), we are effectively
targeting the joint posterior distribution π(θ0:t|y1:t), so we are trying to track
a distribution in an increasingly large number of dimensions. Another intuitive
way to explain the deterioration of the particle filter approximation over time
is to consider that the approximation at time t is based on the approximation
at time t− 1, so that the errors accumulate.

A possible practical solution, for applications that require a sequential
updating of a posterior destribution over an unbounded time horizon, is to
run an MCMC sampler every T sampling intervals to draw a sample from
the posterior distribution at that time—possibly based on the most recent kT
data points only, with k ≫ 1—and use this sample to start the particle filter
updating scheme for the next T sampling intervals. In this way one can run the
MCMC off-line, while at the same time keeping updating the posterior using
a particle filter. For example, in tracking the domestic stock market, one can
run an MCMC over the weekend, when the data flow stops, and use a particle
filter with hourly data, say, to update the posterior during the working week.

A similar idea can be used to initialize the particle filter when the prior
distribution is diffuse. In this case, as we previously noticed, starting the
particle filter with a sample from the prior will produce particles that are
going to be off-target after just one or two updating steps. Instead, one can
run an MCMC based on a small initial stretch of data in order to start the
particle filter from a fairly stable particle cloud.
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Useful distributions

Bernoulli distribution

A Bernoulli random variable is the indicator function of an event or, in other
words, a discrete random variable whose only possible values are zero and one.
If X ∼ Be(p),

P (X = 1) = 1 − P (X = 0) = p.

The probability mass function is

Be(x; p) =

{
1 − p if x = 0,

p if x = 1.

Normal distribution

Arguably the most used (and abused) probability distribution. Its density is

N (x;µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
,

with expected value µ and variance σ2.

Beta distribution

The support of a Beta distribution is the interval (0,1). For this reason it is
often used as prior distribution for an unknown probability. The distribution
is parametrized in terms of two positive parameters, a and b, and is denoted
by B(a, b). Its density is

B(x; a, b) =
Γ (a+ b)

Γ (a)Γ (b)
xa−1(1 − x)b−1, 0 < x < 1,

For a random variable X ∼ B(a, b) we have

E(X) =
a

a+ b
, Var(X) =

ab

(a+ b)2(a+ b+ 1)
.

A multivariate generalization is provided by the Dirichlet distribution.
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Gamma distribution

A random variable X has a Gamma distribution, with parameters (a, b), if it
has density

G(x; a, b) =
ba

Γ (a)
xa−1 exp(−bx), x > 0

where a and b are positive parameters. We find that

E(X) =
a

b
, Var(X) =

a

b2
.

If a > 1, there is a unique mode at (a−1)/b. For a = 1, the density reduces to
the (negative) exponential distribution with parameter b. For (a = k/2, b =
1/2) it is a Chi-square distribution with k degrees of freedom, χ2(k).

If X ∼ G(a, b), the density of Y = 1/X is called Inverse-Gamma, with
parameters (a, b), and we have E(Y ) = b/(a − 1) if a > 1 and Var(Y ) =
b2/((a− 1)2(a− 2)) if a > 2.

Student-t distribution

If Z ∼ N (0, 1), U ∼ χ2(k), k > 0 and Z and U are independent, then the
random variable T = Z/

√
U/k has a (central) Student-t distribution with k

degrees of freedom, with density

f(t; k) = c

(
1 +

t2

k

)− k+1
2

,

where c = Γ ((k + 1)/2)/(Γ (k/2)
√
kπ). We write T ∼ T (0, 1, k) or simply

T ∼ Tk.
It is clear from the definition that the density is positive on the whole real

line and symmetric around the origin. It can be shown that, as k increases to
infinity, the density converges to a standard Normal density at any point. We
have

E(X) = 0 if k > 1,

Var(X) =
k

k − 2
if k > 2.

If T ∼ T (0, 1, k), then X = µ + σT has a Student-t distribution, with
parameters (µ, σ2) and k degrees of freedom; we writeX ∼ T (µ, σ2, k). Clearly
E(X) = µ if k > 1 and Var(X) = σ2 k

k−2 if k > 2.

Normal-Gamma distribution

Let (X,Y ) be a bivariate random vector. If X|Y = y ∼ N (µ, (n0y)
−1), and

Y ∼ G(a, b), then we say that (X,Y ) has a Normal-Gamma density with
parameters (µ, n−1

0 , a, b) (where of course µ ∈ R, n0, a, b ∈ R
+). We write

(X,Y ) ∼ NG(µ, n−1
0 , a, b) The marginal density of X is a Student-t, X ∼

T (µ, (n0
a
b )

−1, 2a).
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Multivariate Normal distribution

A continuous random vector Y = (Y1, . . . , Yk)
′ has a k-variate Normal distri-

bution with parameters µ = (µ1, . . . , µk)
′ and Σ, where µ ∈ R

k and Σ is a
symmetric positive-definite matrix, if it has density

Nk(y;µ,Σ) = |Σ|−1/2(2π)−k/2 exp

{
−1

2
(y − µ)′Σ−1(y − µ)

}
, y ∈ R

k

where |Σ| denotes the determinant of the matrix Σ. We write

Y ∼ Nk(µ,Σ).

Clearly, if k = 1, so that Σ is a scalar, the Nk(µ,Σ) reduces to the univariate
Normal density.

We have E(Yi) = µi and, denoting by σi,j the elements of Σ, Var(Yi) = σi,i
and Cov(Yi, Yj) = σi,j . The inverse of the covariance matrix Σ, Φ = Σ−1 is
the precision matrix of Y .

Several results are of interest; their proof can be found in any multivariate
analysis textbook (see, e.g. Barra and Herbach; 1981, pp.92,96).

1. If Y ∼ Nk(µ,Σ) and X is a linear transformation of Y , that is X = AY
where A is a n× k matrix, then X ∼ Nk(Aµ,AΣA

′).
2. Let X and Y be two random vectors, with covariance matrices ΣX and
ΣY , respectively. Let ΣY X be the covariance between Y and X, i.e.
ΣY X = E((Y − E(Y ))(X − E(X))′). The covariance between X and Y
is then ΣXY = Σ′

Y X . Suppose that ΣX is nonsingular. Then it can be
proved that the joint distribution of (X,Y ) is Gaussian if and only if the
following conditions are satisfied:
(i) X has a Gaussian distribution;
(ii) the conditional distribution of Y given X = x is a Gaussian distribu-

tion whose mean is

E(Y |X = x) = E(Y ) +ΣY XΣ
−1
X (x− E(X))

and whose covariance matrix is

ΣY |X = ΣY −ΣY XΣ
−1
X ΣXY .

Multinomial distribution

Consider a set of n independent and identically distributed observations taking
values in a finite label set {L1, L2, . . . , Lk}. Denote by pi the probability of
an observation being equal to Li, i = 1, . . . , k. The vector of label counts
X = (X1, . . . , Xk), where Xi is the number of observations equal to Li (i =
1, . . . , k) has a Multinomial distribution, whose probability mass function is

Mult(x1, . . . , xk;n, p) =
n!

x1! . . . xk!
px1
1 . . . pxk

k ,

where p = (p1, . . . , pk) and the counts x1, . . . , xk satisfy the constraint
∑
xi =

n.
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Dirichlet distribution

The Dirichlet distribution is a multivariate generalization of the Beta distribu-
tion. Consider a parameter vector a = (a1, . . . , ak). The Dirichlet distribution
Dir(a) has k − 1-dimensional density

Dir(x1, . . . , xk−1; a) =
Γ (a1 + · · · + ak)

Γ (a1) . . . Γ (ak)
xa1−1

1 . . . x
ak−1−1
k−1

(
1 −

k−1∑

i=1

xi

)ak−1

,

for
k−1∑

i=1

xi < 1, xi > 0, i = 1 . . . , k − 1.

Wishart distribution

Let W be a symmetric positive-definite matrix of random variables wi,j , i, j =
1, . . . , k. The distribution of W is the joint distribution of its entries (in fact,
the distribution of the k(k + 1)/2-dimensional vector of the distinct entries).
We say that W has a Wishart distribution with parameters α and B (α >
(k − 1)/2 and B a symmetric, positive-definite matrix), if it has density

Wk(W ;α,B) = c|W |α−(k+1)/2 exp
(
− tr(BW )

)
,

where c = |B|α/Γk(α), Γk(α) = πk(k−1)/4
∏k
i=1 Γ ((2α + 1 − i)/2) is the

generalized gamma function and tr(·) denotes the trace of a matrix argument.
We write W ∼ Wk(α,B) or just W ∼ W(α,B). We have

E(W ) = αB−1.

The Wishart distribution arises in sampling from a multivariate Gaussian
distribution. If (Y1, . . . , Yn), n > 1, is a random sample from a multivariate
normal distribution Nk(µ,Σ) and Ȳ =

∑n
i=1 Yi/n, then Ȳ ∼ Nk(µ,Σ/n) and

S =

n∑

i=1

(Yi − Ȳ )(Yi − Ȳ )′

is independent of Ȳ and has a Wishart distribution Wk((n− 1)/2, Σ−1/2). In
particular, if µ = 0, then

W =

n∑

i=1

YiY
′
i ∼ Wk

(
n

2
,
1

2
Σ−1

)
,

whose density (for n > k − 1) is

f(w;n,Σ) ∝ |W |n−k−1
2 exp

{
−1

2
tr(Σ−1W )

}
.
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In fact, the Wishart distribution is usually parametrized in n and Σ, as in the
expression above; then the parameter n is called degrees of freedom. Note that
E(W ) = nΣ. We used the parametrization in α and B for analogy with the
Gamma distribution; indeed, if k = 1, so that B is a scalar, then W1(α,B)
reduces to the Gamma density G(·;α,B).

The following properties of the Wishart distribution can be proved. Let
W ∼ Wk(α = n/2, B = Σ−1/2) and Y = AWA′, where A is an (m×k) matrix
of real numbers (m ≤ k). Then Y has a Wishart distribution of dimension
m with parameters α and 1

2 (AΣA)−1, if the latter exists. In particular, if W
and Σ conformably partition into

W =

[
W1,1 W1,2

W2,1 W2,2

]
, Σ =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
,

where W1,1 and Σ1,1 are h× h matrices (1 ≤ h < k), then

W1,1 ∼ Wh

(
α =

n

2
,
1

2
Σ−1

1,1

)
.

This property allows to compute the marginal distribution of the elements on
the diagonal of W ; for example, if k = 2 and A = (1, 0), then Y = w1,1 ∼
G(α = n/2, σ−1

1,1/2), where σ1,1 is the first element of the diagonal of Σ. It

follows that w1,1/σ1,1 ∼ χ2(n). Then,

E(w1,1) = nσ1,1, Var(w1,1) = 2nσ2
1,1.

More generally, it can be proved that

Var(wi,j) = n(σ2
i,j + σi,iσj,j), Cov(wi,j , wl,m) = n(σi,lσj,m + σi,mσj,l).

If W ∼ Wk(α = n/2, B = Σ−1/2), then V = W−1 has an Inverse-Wishart
distribution and

E(V ) = E(W−1) =

(
α− k + 1

2

)−1

B =
1

n− k − 1
Σ−1.

Multivariate Student-t distribution

If Y is a p-variate random vector with Y ∼ Np(0, Σ) and U ∼ χ2(k), with Y
and U independent, thenX = Y√

U/k
+µ has a p-variate Student-t distribution,

with parameters (µ,Σ) and k > 0 degrees of freedom, with density

f(x) = c [1 − 1

k
(x− µ)′Σ−1(x− µ)]−(k+p)/2 , x ∈ R

p ,

where c = Γ ((k + p)/2)/(Γ (k/2)πp/2kp/2|Σ|1/2. We write X ∼ T (µ,Σ, k).
For p = 1 it reduces to the univariate Student-t distribution. We have
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E(X) = µ if k > 1

Var(X) = Σ
k

k − 2
if k > 2.

Multivariate Normal-Gamma distribution

Let (X,Y ) be a random vector, with X|Y = y ∼ Nm(µ, (N0y)
−1), and

Y ∼ Ga(a, b). Then we say that (X,Y ) has a Normal-Gamma density with
parameters (µ,N−1

0 , a, b), denoted as (X,Y ) ∼ NG(µ,N−1
0 , a, b).

The marginal density ofX is a multivariate Student-t, X ∼ T (µ, (N0
a
b )

−1

so that E(X) = µ and Var(X) = N−1
0 b/(a− 1).

,

2a),
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Matrix algebra: Singular Value Decomposition

Let M be a p× q matrix and let r = min{p, q}. The singular value decompo-

properties:

(i) U is a p× p orthogonal matrix;
(ii) V is a q × q orthogonal matrix;
(iii) D is a p× q matrix with entries Dij = 0 for i 6= j;
(iv) UDV ′ = M .

If M is a square matrix, D is a diagonal matrix. If, in addition, M is non-
negative definite, then Dii ≥ 0 for every i. In this case one can define a
diagonal matrix S by setting Sii =

√
Dii, so that M = US2V ′. It can be

shown that if M is also symmetric, such as, for example, a variance matrix,
then M = US2U ′. M is invertible if and only if Sii > 0 for every i. The SVD
has many applications in numerical linear algebra. For example, it can be
used to compute a square root1of a variance matrix M , i.e., a square matrix
N such that M = N ′N . In fact, if M = US2U ′, it is enough to set N = SU ′.
The inverse of M can also be easily computed from its SVD, provided M is
invertible. In fact, it is immediate to verify that M−1 = US−2U ′. Note also
that S−1U ′ is a square root of M−1. More generally, for a noninvertible M ,
a generalized inverse M− is a matrix with the property that MM−M = M .
The generalized inverse of a variance matrix can be found by defining the
diagonal matrix S−,

S−
ii =

{
S−1
ii if Sii > 0,

0 if Sii = 0,

and setting M− = U(S−)2V ′.

In package dlm the SVD is used extensively to compute filtering and
smoothing variances in a numerically stable way, see Wang et al. (1992) and

1 Note that our definition of matrix square root differs slightly from the most

common one based on the relation M = M
1
2M

1
2 .

sition (SVD) of M consists in a triple of matrices (U,D, V ) with the following
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Zhang and Li (1996) for a complete discussion of the algorithms used. For
example, consider the filtering recursion used to compute Ct. The calculation
can be broken down in three steps:

(i) compute Rt = GtCt−1G
′
t +Wt;

(ii) compute2 C−1
t = F ′

tV
−1
t Ft +R−1

t ;
(iii) invert C−1

t .

Suppose (UC,t−1, SC,t−1) are the components of the SVD of Ct−1, so that
Ct−1 = UC,t−1S

2
C,t−1U

′
C,t−1 and NW,t is a square root of Wt. Define the 2p×p

partitioned matrix

M =

[
SC,t−1U

′
C,t−1G

′
t

NW,t

]

and let (U,D, V ) be its SVD. The crossproduct of M is

M ′M = V DU ′UDV ′ = V D2V ′

= GtUC,t−1S
2
C,t−1U

′
C,t−1G

′
t +N ′

W,tNW,t

= GtCt−1G
′
t +Wt = Rt.

Since V is orthogonal and D2 is diagonal, (V,D2, V ) is the SVD of Rt and
we can set UR,t = V and SR,t = D. Now consider a square root NV,t of V −1

t ,
define the (m+ p) × p partitioned matrix

M =

[
NV,tFtUR,t

S−1
R,t

]

and let (U,D, V ) be its SVD. The crossproduct of M is

M ′M = V DU ′UDV ′ = V D2V ′

= U ′
R,tF

′
tN

′
V,tNV,tFtUR,t + S−2

R,t.

Premultiplying by UR,t and postmultiplying by U ′
R,t we obtain

UR,tM
′MU ′

R,t = UR,tV D
2V ′U ′

R,t

= UR,tU
′
R,tF

′
tN

′
V,tNV,tFtUR,tU

′
R,t + UR,tS

−2
R,tU

′
R,t

= F ′
tV

−1
t Ft +R−1

t = C−1
t .

2 The expression for C−1
t follows from the formulas in Proposition 2.2 by applying

the general matrix equality

(A+BEB
′)−1 = A

−1 −A
−1
B(B′

A
−1
B + E

−1)−1
B

′
A

−1
,

in which A and E are nonsingular matrices of orders m and n and B is a m× n

matrix.
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Since UR,tV is the product of two orthogonal matrices of order p, it is itself
an orthogonal matrix. Therefore UR,tV D

2V ′U ′
R,t gives the SVD of C−1

t : the

“U” matrix of the SVD of C−1
t is UR,tV and the “S” matrix is D. It follows

that for the SVD of Ct we have UC,t = UR,tV and SC,t = D−1.
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Adaptive rejection Metropolis sampling,
25

ARMA, see autoregressive moving
average

ARMA model
DLM representation, 112, 140

ARMS, see Adaptive rejection
Metropolis sampling

arms, 28
ARtransPars, 119
autoregressive moving average, 87
auxiliary particle filter, 216

cointegration, 139
controllability matrix, 78

discount factor, 152
DLM, see dynamic linear model
dlm, 44
DLM components, 88
dlmFilter, 56
dlmForecast, 72
dlmForecast (to simulate from a DLM),

213
dlmMLE, 145
dlmModArma, 118, 140
dlmModPoly, 91, 98
dlmModReg, 122
dlmModSeas, 102
dlmModTrig, 107, 110
dlmSmooth, 62
dlmSvd2var, 57
dynamic factor model, 138
dynamic generalized liner models, 48

dynamic hierarchical models, 134
dynamic linear model, 41

time invariant, 43
dynamic linear regression, 43

effective sample size, 210
ergodic average, 23

variance of, 23
exponential smoothing, 86
exponentially weighted moving average,

85

factor loadings, 138
filtering, 50

for dynamic linear models, 53
for general state space models, 51

forecast
k-steps-ahead, 69
one-step-ahead, 66

forecast error, 73
forecast function, 51
forecasting, 66

for dynamic linear models, 71
for general state space models, 70

Fourier frequency, 102
Fourier form seasonal model, 102
fundamental frequency, 109

gain matrix, 55
Gibbs sampling, 24
Granger causality, 141

harmonic function, 105
conjugate, 110
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harmonic function, 109
conjugate, 105

hidden Markov model, 48
hierarchical DLM, see dynamic

hierarchical models

importance density, 208
importance function, 208
importance sampling, 208
importance transition densities, 210
incremental weights, 210
innovations, 74

standardized, 74
instantaneous causality, 141
integrated random walk, 100
is.dlm, 47

JFF, 45
JGG, 45
JV, 45, 47
JW, 45

Kalman filter, 53
Kolmogorov–Smirnov test, 93
Kronecker product, 128

linear growth, 42, 96
and ARIMA(0,2,2), 97
controllabiity of, 96
observability of, 96

linear regression
DLM representation of, 121

linear regression model, 18
Ljung–Box test, 94
local level, 42, 55, 89

and ARIMA(0,1,1), 91
controllabiity of, 90
observability of, 90

local linear trend, 42
log-concave density, 26
loglikelihood, 144

MAD, see mean absolute deviation
MAPE, see mean absolute percentage

error
Markov chain Monte Carlo, 22
maximum likelihood estimator

standard error of, 146
maximum likelihood estimator, 144

MCMC, see Markov chain Monte Carlo
mean absolute deviation, 98
mean absolute percentage error, 98
mean square error, 98
Metropolis-Hastings algorithm, 24
missing values, 59
MSE, see mean square error

observability matrix, 80
observation equation, 41
optimal importance kernel, 213

package forecast, 86
package dse1, 87
package fBasics, 93
package nortest, 93
particle filter, 208

with unknown parameters, 219
polynomial DLM, 89
polynomial model, 99
prediction, 50

random walk plus noise, 42, 89
resampling

multinomial, 211
residual, 211

residuals, 75
Riccati equation, 81

seasonal factors, 100
seemingly unrelated regression model,

132
seemingly unrelated time series

equations, 127
sequential Monte Carlo, 208
Shapiro–Wilk test, 93
smoothing, 50

for dynamic linear models, 61
for general state space models, 60

state equation, 41
state space model, 40
steady model, 90
stochastic volatility, 49
SUR, see seemingly unrelated regression

model
SUTSE, see seemingly unrelated time

series equations
system equation, 41

Theil’s U, 99
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tsdiag, 75

V, 45
VAR, see vector autoregressive model
vector autoregressive model, 140

W, 45

X, 47
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