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Preface

This volume, which is completely dedicated to continuous bivariate distri-
butions, describes in detail their forms, properties, dependence structures,
computation, and applications. It is a comprehensive and thorough revision
of an earlier edition of “Continuous Bivariate Distributions, Emphasizing Ap-
plications” by T.P. Hutchinson and C.D. Lai, published in 1990 by Rumsby
Scientific Publishing, Adelaide, Australia.

It has been nearly two decades since the publication of that book, and
much has changed in this area of research during this period. Generaliza-
tions have been considered for many known standard bivariate distributions.
Skewed versions of different bivariate distributions have been proposed and
applied to model data with skewness departures. By specifying the two condi-
tional distributions, rather than the simple specification of one marginal and
one conditional distribution, several general families of conditionally speci-
fied bivariate distributions have been derived and studied at great length.
Finally, bivariate distributions generated by a variety of copulas and their
flexibility (in terms of accommodating association/correlation) and struc-
tural properties have received considerable attention. All these developments
and advances necessitated the present volume and have thus resulted in a sub-
stantially different version than the last edition, both in terms of coverage
and topics of discussion.

In a volume of this size and wide coverage, there will inevitably be some
mistakes and omissions of some important published results. We have made a
sincere effort to minimize these, and what are left and left out are accidental
and are certainly not due to nonscientific antipathy. We welcome the readers
to write to us about the contents of this volume and inform us of any errors,
misrepresentations, and omissions that you find. If ever there is a next edition,
we will take your comments into account and make the necessary changes
(keep in mind that our expected residual lives are probably not large enough
to guarantee the next edition!).

We express first and foremost our sincere thanks and gratitude to Paul
Hutchinson for his generosity in permitting us to use good portions from
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the last edition that he was part of, and for his support and encourage-
ment through out the course of this project. We also thank Ingram Olkin for
proposing and initiating this revision through Springer-Verlag. Thanks are
also due to John Kimmell (Editor, Springer-Verlag) for his interest in this
book, and his support and immense patience during the long preparation pe-
riod, and to Debbie Iscoe (McMaster University, Canada) for converting the
not-so-presentable initial manuscript that we prepared into this fine-looking
book that you hold in your hands. Our final special thanks go to our families
who have endured all the countless hours we were away from them (it is quite
possible, of course, that they enjoyed these times in our absence) just to make
a bit of progress everytime.

We both enjoyed very much putting this book together and we sincerely
hope that you, as reader, would enjoy it as much while using it!

N. Balakrishnan
Chin-Diew Lai

Hamilton, Canada
Palmerston North, New Zealand

November 2008
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and Olkin’s Family) . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.6 Gumbel–Hougaard Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.7 Plackett’s Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.8 Bivariate Lomax Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.8.1 The Special Case of c = 1 . . . . . . . . . . . . . . . . . . . . . 87
2.8.2 Bivariate Pareto Distribution . . . . . . . . . . . . . . . . . . 88

2.9 Lomax Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.9.1 Pareto Copula (Clayton Copula) . . . . . . . . . . . . . . . 90
2.9.2 Summary of the Relationship Between

Various Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.10 Gumbel’s Type I Bivariate Exponential Distribution . . . . . . 92
2.11 Gumbel–Barnett Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.12 Kimeldorf and Sampson’s Distribution . . . . . . . . . . . . . . . . . . 95
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Chapter 0

Univariate Distributions

0.1 Introduction

A study of bivariate distributions cannot be complete without a sound back-
ground knowledge of the univariate distributions, which would naturally form
the marginal or conditional distributions. The two encyclopedic volumes by
Johnson et al. (1994, 1995) are the most comprehensive texts to date on con-
tinuous univariate distributions. Monographs by Ord (1972) and Hastings
and Peacock (1975) are worth mentioning, with the latter being a convenient
handbook presenting graphs of densities and various relationships between
distributions. Another useful compendium is by Patel et al. (1976); Chapters
3 and 4 of Manoukian (1986) present many distributions and relations be-
tween them. Extensive collections of illustrations of probability density func-
tions (denoted by p.d.f. hereafter) may be found in Hirano et al. (1983) (105
graphs, each with typically about five curves shown, grouped in 25 families
of distributions) and in Patil et al. (1984). Useful bibliographies of univari-
ate distributions, though dated now, have been given by Haight (1961) and
Patel et al. (1976). A compact text on univariate distributions with a brief
discussion of multivariate distributions at the end has been presented by Bal-
akrishnan and Nevzorov (2003). Finally, it is of interest to mention here that
most of the univariate distributions and related concepts discussed in this
chapter are also present in the form of concise entries in the 16-volume set
Encyclopedia of Statistical Sciences prepared by Kotz et al. (2006), which
would serve as a valuable and useful general reference for readers of this
volume.

In this chapter, we provide an elementary introduction and basic details
on properties of various univariate distributions, and an understanding of
these will be key to following the developments in subsequent chapters, as
they will rely time and again on these univariate properties. In Section 0.2,
we first introduce the pertinent notation and properties. In Section 0.3, we
describe some of the useful measures that capture specific shape character-
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2 0 Univariate Distributions

istics of univariate distributions. In Section 0.4, we present details on the
normal distribution and its transformations. Section 0.5 discusses the beta
distribution, while Section 0.6 handles the exponential, gamma, and Weibull
and Stacy’s generalized gamma distributions. A few important aging dis-
tributions are presented in Section 0.7. Some symmetric distributions, such
as logistic, Laplace, and Cauchy distributions, are presented in Section 0.8.
Next, in Sections 0.9 and 0.10, we describe the extreme-value and the Pareto
distributions, respectively. The general broad families of Pearson and Burr
distributions are presented in Sections 0.11 and 0.12. Section 0.13 discusses
t- and F -distributions, while Section 0.14 presents the wrapped t-family of
circular distributions. Some noncentral distributions are briefly mentioned in
Section 0.15. Skew-families of distributions, which have seen a lot of activ-
ity recently in the literature, are described in Section 0.16. Jones’ family of
distributions is introduced in Section 0.17, and some lesser-known but useful
distributions are described finally in Section 0.18.

0.2 Notation and Definitions

0.2.1 Notation

In the univariate case, the cumulative distribution function and the proba-
bility density function will be denoted by F (x) and f(x), respectively. The
following is a list of terms and symbols that will be used in this chapter as
well as all subsequent chapters.

Term Symbols Brief explanation

Moment generating function M(t) E(etX)
Characteristic function ϕ(t) E(eitX)
Cumulant generating function K(t) logϕ(t)
rth moment (about the origin) μ′

r E(Xr)
rth central moment μr E[(X − μ)r], μ = μ′

1

rth cumulant κr The coefficient of (it)r/r!
in the expression of K(t)

Variance σ2 μ2

Coefficient of skewness α3 =
√
β1 μ3/σ

3

Coefficient of kurtosis α4 = β2 μ4/σ
4

Coefficient of variation σ/μ
Survival function F̄ (x) 1 − F (x)
Hazard (failure rate) function r(x) f(x)/{1 − F (x)}
Sample mean X̄

∑n
i=1 Xi/n

Sample variance s2
∑n

i=1(Xi − X̄)2/(n− 1)
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In the bivariate context, μ1 and μ2 will often be used for the means of the
two variables. There is unlikely to be any confusion over this notation. Also,
log simply means loge.

0.2.2 Explanations

Moment Generating Function

Let X be a random variable (denoted by r.v. hereafter) with cumulative
distribution function (denoted by c.d.f. hereafter) F (x) and p.d.f. f(x). Then,

M(t) = E(etX) =
∫ ∞

−∞
etxf(x)dx (0.1)

is the moment generating function (denoted by m.g.f. hereafter) of X if the
integral is convergent for all values of t belonging to an interval that contains
the origin. The existence of the m.g.f. is not assured for all distributions;
however, if it does exist, it will uniquely determine the distribution. When it
exists, it may be written as

M(t) =
∞∑

j=0

μ′
j

tj

j!
. (0.2)

This readily implies that μ′
j is M (j)(0), i.e., the jth derivative of M , evaluated

at 0. Note that it is possible to have μ′
j exist for all j and yet M(t) not exist.

Let X1 and X2 be two independent r.v.’s with m.g.f.’s M1(t) and M2(t),
respectively. It is easy to see that the m.g.f. of X1+X2 is M1(t)M2(t). Hence,
the m.g.f. is a convenient tool to study distributions of sums of independent
r.v.’s.

For univariate distributions, the existence (finiteness) of a moment of some
particular order implies the existence of all moments of lower order.1

0.2.3 Characteristic Function

The cumulative function (denoted by c.f. hereafter) ϕ of X is a complex-
valued function defined as
1 Is the same true for bivariate distributions? No. What we can say is that if moments of orders
(κ, l), (k, λ), and (k, l) exist, then so do all the moments of order (m, n), where κ ≤ m ≤ k and
λ ≤ n ≤ l; see van der Vaart (1973).
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ϕ(t) = E(eitX) (0.3)

=
∫ ∞

−∞
eitxf(x)dx (0.4)

=
∫ ∞

−∞
cos tx f(x)dx + i

∫ ∞

−∞
sin tx f(x)dx, (0.5)

where i =
√
−1, for all real t.

The c.f. uniquely determines the distribution. It has the following
properties:

(i) ϕ(0) = 1,
(ii) |ϕ(t)| ≤ 1 for all real t, and
(iii) ϕ(−t) = ϕ(t), where the bar denotes the complex conjugate.

Unlike the m.g.f., ϕ(t) exists for all distributions.
Suppose that X has finite moments μ′

j up to order n. Then ϕ(j)(0) = ijμ′
j

(for 1 ≤ j ≤ n), where ϕ(j) is the jth derivative of ϕ.
The c.f. can be inverted to give the p.d.f. using the formula

f(x) =
1
2π

∫ ∞

−∞
e−itxϕ(t)dt. (0.6)

If X1 and X2 are independent r.v.’s with c.f.’s ϕ1 and ϕ2, respectively, the
c.f. of the sum X1 + X2 is simply the product of the c.f.’s ϕ1(t)ϕ2(t).

An overview of the characteristic function and its various properties and
applications is due to Laha (1982). The books by Lukacs (1970, 1983) are
key references on this topic.

0.2.4 Cumulant Generating Function

Cumulant Generating Function

Let K(t) = logϕ(t). Then, K(t) is known as the cumulant generating func-
tion. Assuming again that the first n moments of X exist, we have

K(t) =
n∑

j=1

κj

j!
(it)j + o(|t|n)

as t → 0. The coefficients κj in this expression are called the cumulants (or
semi-invariants) of X. Clearly,
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κj =
1
ij

K(j)(0),

where K(j)(0) is the jth derivative of K(t), evaluated at 0.
It is of interest to note here that the normal distribution has the unique

characterizing property that all its cumulants of order 3 and higher are zero.

Interrelationships of Moments and Cumulants

Relationships between the lower moments about the origin μ′
j , central mo-

ments μj , and cumulants κj are as follows:

κ1 = μ′
1 = μ = (the mean),

κ2 = μ′
2 − μ2

1 = σ2(the variance),
κ3 = μ′

3 − 3μ′
1μ

′
2 + 2μ′3

1 = μ3,

κ4 = μ′
4 − 3μ′2

2 − 4μ′
1μ

′
3 + 12μ′2

1 μ2 − 6μ′4
1 ,

μ′
1 = κ1,

μ′
2 = κ2 + κ2

1,

μ′
3 = κ3 + 3κ2κ1 + κ3

1,

μ′
4 = κ4 + 3κ2

2 + 4κ1κ2 + 6κ2
1κ2 + κ4

1.

0.3 Some Measures of Shape Characteristics

0.3.1 Location and Scale

If F (x) is the cumulative distribution of a variable X, we may introduce
a location parameter a and a scale parameter b into it by writing F

(
x−a

b

)
.

These parameters a and b are often the mean and the standard deviation,
respectively, but they need not be—(i) the mean and standard deviation may
not be finite (in such a case, we might set a = median and b = semiquartile
range), and (ii) it may be more convenient for distributions whose p.d.f. is
zero for X < x0 to set a as x0 instead of as the mean (in which case a is
often referred to as a threshold parameter).

0.3.2 Skewness and Kurtosis

The most common measure of skewness is the normalized third central mo-
ment,
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α3 =
√
β1 =

μ3

μ
3/2
2

. (0.7)

For symmetric p.d.f.’s such as the normal, logistic, and Laplace, this is zero.
The normalized fourth moment,

α4 = β2 =
μ4

μ2
2

, (0.8)

is the usual measure of kurtosis. The normal distribution has β2 = 3, and
so sometimes γ2 = β2 − 3 is referred to as the “excess of kurtosis.” There
is some controversy as to what kurtosis actually means, but a distribution
with β2 < 3 (“platykurtic”) usually is less sharply peaked in the center and
has thinner tails than the normal distribution having the same standard de-
viation, whereas a distribution with β2 > 3 (“leptokurtic”) usually is more
sharply peaked in the center and has heavier tails than the normal distribu-
tion having the same standard deviation. For all distributions, they satisfy
the inequality β2 ≥ β1 + 1.

The shape of a distribution is not completely determined by the values of
β1 and β2. Nevertheless, these two quantities are helpful while evaluating the
shape when we have decided on a particular family of distributions (such as
Pearson or Johnson families) because we can plot them on a chart marked
with what regions of (β1, β2) correspond to which member of the family and
hence make the choice of a member suitable for modeling.

0.3.3 Tail Behavior

While considering this aspect, we are not concerned with tail behavior as
affected by the standard deviation or any other measure of scale—we assume
such effects have been taken care of by some process of standardization. Even
when this has been done, it is still possible to classify distributions as short-,
median-, or long-tailed; see, for example, Parzen (1979) and Schuster (1984).

0.3.4 Some Multiparameter Systems of
Univariate Distributions

Among systems of univariate distributions having several parameters
—typically, four, so that skewness and tail-heaviness can be captured properly
while fitting to empirical data—are Pearson’s, the transformed normal sys-
tem of Johnson, the transformed logistic system of Tadikamalla and Johnson,
the generalized lambda, and Tukey’s g and h families. Mendoza and Iglewicz
(1983) used these 5 to fit 12 of the symmetric distributions commonly used in
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simulation studies and compared them in terms of ease of fitting and goodness
of fit at selected percentiles. Pearson et al. (1979) compared the percentage
points of distributions chosen from the Pearson, Johnson, and Burr systems.

0.3.5 Reliability Classes

Patel (1973) classified 15 continuous distributions as to whether they have
the increasing (or decreasing) failure rate on average property.

A table of formulas including the reliability function (F̄ ), the hazard (fail-
ure rate) function, and the mean residual life function has been given by
Sheikh et al. (1987); the distributions included are the normal, gamma, and
Weibull, and also their reciprocals.

Lai and Xie (2006, Chapter 2) have discussed various concepts of aging
for lifetime random variables.

0.4 Normal Distribution and Its Transformations

0.4.1 Normal Distribution

The normal (Gaussian) distribution is symmetric about μ and has a density
function

f(x) =
1√
2πσ

exp
{

− (x− μ)2

2σ2

}

, −∞ < x < ∞. (0.9)

For the unit normal (the standard form), the density is conventionally de-
noted by φ with the argument as z rather than x; i.e.,

φ(z) =
1√
2π

exp
{

−z2

2

}

, −∞ < x < ∞. (0.10)

The corresponding c.d.f. is conventionally denoted by Φ, and there is no
explicit expression for it. It can be shown from (0.57) that

E(X) = μ, (0.11)
var(X) = σ2, (0.12)

κr = 0 for r > 2.

The mode and median are the same as the mean, μ.
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0.4.2 Lognormal Distribution

The p.d.f. is given by

f(x) =
1

x
√

2πσ
exp
{

− (log x− ξ)2

2σ2

}

, x > 0. (0.13)

With Φ denoting the standard normal distribution function, we have

F (x) = Φ
(

log x− ξ

σ

)

. (0.14)

It can be shown from (0.13) that

μ = eξ+ 1
2 σ2

, (0.15)

var(X) = e2ξeσ2
(eσ2 − 1). (0.16)

It should be noted that if logX has a normal distribution, then X is said
to have a lognormal distribution.

0.4.3 Truncated Normal

A normal distribution can be singly or doubly truncated. Johnson et al. (1994,
pp. 156–162) have provided a detailed description of these truncated forms.
Barr and Sherrill (1999) have given simpler expressions for the mean and
variance and their estimates. Castillo and Puig (1999) showed that the likeli-
hood ratio test of exponentiality against singly truncated normal alternatives
is the uniformly most powerful unbiased test and that it can be expressed in
terms of the sampling coefficient of variation.

0.4.4 Johnson’s System

Johnson’s (1949) system of distributions is obtained by starting with a stan-
dard normal variate Z [with p.d.f. as in (0.10)] and applying one of several
simple transformations to it,

Z = γ + δT (Y ), (0.17)

where

• T (Y ) = log Y gives the lognormal family, denoted by SL;
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• T (Y ) = sinh−1 Y gives the SU system with unbounded range, −∞ < Y <
∞;

• T (Y ) = log
(

Y
1−Y

)
gives the SB family with bounded range, 0 < Y < 1;

• the normal distribution may be considered within this family (by taking
T (Y ) = Y ) and be denoted by SN .

Making one of the choices above determines the shape of the distribution.
Location and scale parameters may naturally be introduced by setting Y =
(X − a)/b.

Detailed discussions may be found in Johnson et al. (1994, Section 4.3,
Chapter 12) and Bowman and Shenton (1983). DeBrota et al. (1988) have
provided software to help in the choice of an appropriate member of this
system for fitting to practical data.

0.4.5 Box–Cox Power Transformations to Normality

If X is not normally distributed, a power function transformation may often
bring it close to normality. One such transformation is the Box–Cox trans-
formation given by

(Xλ − 1)/λ for λ �= 0,
logX for λ = 0. (0.18)

0.4.6 g and h Families of Distributions

These families of distributions are obtained by starting with a standard nor-
mal variable Z and then applying the transformation of the form

Tg,h(Z) =
egZ − 1

g
exp(hZ2/2), (0.19)

where g and h are constants, with the former controlling asymmetry or skew-
ness and the latter controlling elongation, or the extent to which the tails are
stretched relative to the normal.

When g = 0, a symmetric distribution is obtained from Z exp(hZ2/2).
When h = 0, the lognormal distribution is obtained.
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0.4.7 Efron’s Transformation

Efron (1982) considered the question of whether there is a single transfor-
mation Y = a(X) such that Y has nearly a normal distribution when the
distribution of X comes from some one-parameter family of distributions.
Efron developed a general theory to answer this question without consider-
ing a specific form of a and, in those cases where the answer is positive, he
gave formulas for calculating a.

0.4.8 Distribution of a Ratio

Rogers and Tukey (1972) discussed distributions obtained from the ratio form
X/V , where X has a normal distribution and V is a positive r.v. independent
of X. Among the special cases of this form are:

• The normal distribution itself (the denominator being a constant).
• t-distribution (the denominator being the square root of a chi-squared

variate divided by its degrees of freedom), including the special case of the
Cauchy distribution (the denominator being half-normal).

• The so-called contaminated distributions (the denominator taking only two
values).

• The slash distribution (the denominator being uniformly distributed).
• If V is another independent normal denoted by Y , then X/Y has a Cauchy

distribution.
• Suppose Y has a punctured normal distribution with a small interval con-

taining zero being removed [Lai et al. (2004)]. Then E(X/Y ) is well de-
fined.

0.4.9 Compound Normal Distributions

Starting from a normal distribution for X, denoted as usual by N(μ, σ2), we
may now suppose that μ or σ2 are themselves random variables.

• If μ has a normal distribution, N(ξ, σ2
μ), then the distribution of X will

also be normal and is given by N(ξ, σ2 + σ2
μ).

• If X ∼ N(μ + βU, σ2U), with U being a random variable, the resulting
distribution of X is called a normal variance mean mixture; see Barndorff-
Nielsen et al. (1982). If β = 0, it is a normal variance mixture.
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0.5 Beta Distribution

0.5.1 The First Kind

The density function is

f(x) =
1

B(p, q)
xp−1(1 − x)q−1, 0 ≤ x ≤ 1, (0.20)

where p and q are shape parameters and B(p, q) is the complete beta func-
tion.2

The distribution function (denoted by d.f. hereafter) cannot be expressed
in a closed form other than as an incomplete beta function.

We shall use beta(α, β) to denote the beta distribution with shape param-
eters α and β.

From the p.d.f. in (0.20), it can be readily shown that

μ′
r =

B(p + r, q)
B(p, q)

, (0.21)

μ =
p

p + q
, (0.22)

σ2 =
pq

(p + q)2(p + q + 1)
. (0.23)

For p > 1, q > 1, the mode can be shown to be at (p− 1)/(p + q + 2).

2 The beta function with arguments α and β is defined as

B(α, β) =

∫ 1

0
t
α−1

(1 − t)
β−1

dt

(α > 0, β > 0). The incomplete beta function is defined as

Bx(α, β) =

∫ x

0
t
α−1

(1 − t)
β−1

dt.

We shall see that the beta function is related to the gamma function. With argument α, the
gamma function is defined as

Γ(α) =

∫ ∞

0
t
α−1

e
−t

dt.

It satisfies the recurrence relation
Γ(α + 1) = αΓ(α).

Also, Γ( 1
2 ) =

√
π, Γ(1) = 1, and if α is an integer, Γ(α + 1) = α!. The incomplete gamma

function is defined as

Γx(α) =

∫ x

0
t
α−1

e
−t

dt.

For methods for computing Γx, see DiDonato and Morris (1986) and Shea (1988).
The beta and gamma functions are connected by the relationship

B(α, β) = Γ(α)Γ(β)/Γ(α + β).
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0.5.2 Uniform Distribution

A special case of the beta distribution is the uniform distribution over the
range 0 < x < 1. The following expressions hold for the more general case of
a < x < b:

f(x) =
1

b− a
, (0.24)

F (x) =
x− a

b− a
. (0.25)

(Outside this range, f and F are either 0 or 1.)
From the p.d.f. in (0.24), it can be readily shown that

μr =
{

0 for r odd(
b−a
2

)r
/(r + 1) for r even

, (0.26)

μ = (b− a)/2, (0.27)
σ2 = (b− a)2/12. (0.28)

One reason why this distribution is so important is its role in generating
random variates. Specifically, if U is uniformly distributed over [0, 1], then
F−1(U) has a distribution F , and thus random variates from any required
distribution F can be generated through uniform variates.

0.5.3 Symmetric Beta Distribution

Let p = q in (0.20), and further let Y = 2X − 1. Then, the density function
of Y is given by

f(y) =
1

22q−1B(q, q)
(1 − y2)q−1, −1 < y < 1, (0.29)

which is symmetric in y. This is the reason for the name symmetric beta. It
is in fact the Pearson type II distribution.

0.5.4 Inverted Beta Distribution

This is commonly known as the beta distribution of the second kind and is in
fact the Pearson type VI distribution. Its p.d.f. is given by

f(x) =
1

B(α, β)
xα−1

(1 + x)α+β
, x > 0, (0.30)
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where α and β are shape parameters. The c.d.f. F can be expressed once
again in terms of an incomplete beta function.

From the p.d.f. in (0.30), it can be readily shown that

μ′
r = B(α + r, β + 2 − r). (0.31)

This is a transformation of the beta distribution in (0.20). Suppose X has
a beta distribution. Then, X/(1 −X) is distributed as (0.30). A convenient
summary of the interrelationships between the beta, inverted beta, gamma,
t-, F -, and Cauchy distributions has been given by Devroye (1986, p. 430).

When we take the logarithmic transformation of an inverted beta variate,
the resulting distribution is sometimes termed the Z-distribution. For −∞ <
x < ∞, λ1 > 0, λ2 > 0, we obtain the density

f(x) =
1

B(λ1, λ2)
e−λ2x

(1 + e−x)λ1+λ2
. (0.32)

Its properties include

M(t) =
Γ(λ1 + t)Γ(λ2 − t)

Γ(λ1)Γ(λ2)

and
κr = ψr−1(λ1) + (−1)rψ(r−1)(λ2),

where ψ(r)(t) = dr[Γ′(t)/Γ(t)]
dtr . When λ1 + λ2 = 1, this becomes an example of

the Meixner hypergeometric distribution discussed briefly in Section 0.18.2.

0.6 Exponential, Gamma, Weibull, and
Stacy Distributions

0.6.1 Exponential Distribution

For scale parameter λ > 0, the p.d.f. and c.d.f. are given by

f(x) = λe−λx, x ≥ 0, (0.33)
F (x) = 1 − e−λx, x ≥ 0. (0.34)

From the p.d.f. in (0.33), it can be readily shown that
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μ′
r = r!/λr, (0.35)
μ = 1/λ, (0.36)

median = log 2/λ, (0.37)
mode = 0, (0.38)

σ2 = 1/λ2. (0.39)

This distribution is characterized by the “lack of memory” property,

Pr(X ≤ x + y|X > y) = Pr(X ≤ x). (0.40)

0.6.2 Gamma Distribution

For α > 0, β > 0, the p.d.f. is given by

f(x) =
xα−1 exp(x/β)

βαΓ(α)
, x > 0, (0.41)

where Γ(α) is the gamma function, defined earlier. An expression for F , with
the use of the incomplete gamma function, is given by

F (x) = Γx/β(α)/Γ(α), x > 0. (0.42)

From the p.d.f. in (0.41), it can be readily shown that

μ′
r = βr

r−1∏

i=0

(α + i), (0.43)

μ = αβ, (0.44)
σ2 = αβ2. (0.45)

We use gamma(α, β) to denote the gamma distribution with shape pa-
rameter α and scale parameter β. The Erlang distribution is simply a gamma
distribution with α being a positive integer. When α ≥ 1, the mode of the
distribution can be shown to be at β(α− 1).

0.6.3 Chi-Squared and Chi Distributions

The chi-squared distribution is the gamma distribution written in a slightly
different form (and often thought of in different contexts). ν, effectively a
shape parameter, is referred to in this case as the degrees of freedom of the
distribution. For ν > 0, the p.d.f. is
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f(x) =
1

2ν/2Γ(ν/2)
e−x/2x

ν
2−1, x > 0. (0.46)

The chi-squared variate may be obtained as the sum of ν squared inde-
pendent standard normal variates.

As to the chi distribution, χν =
√
χ2

ν has as its density function

f(x) =
1

2
ν−2
2 Γ(ν

2 )
e−x2/2xν−1, x > 0, (0.47)

and its moments are given by

μ′
r = 2r/2Γ[(ν + r)/2]/Γ(ν/2). (0.48)

The case ν = 2 is commonly known as the Rayleigh distribution.

0.6.4 Weibull Distribution

For positive α (a shape parameter) and λ (a scale parameter), the p.d.f. and
c.d.f. are given by

f(x) = αλ(λx)α−1e−(λx)α

, x > 0, (0.49)
F (x) = 1 − e−(λx)α

, x > 0. (0.50)

From the p.d.f. in (0.49), it can be shown that

μ′
r = λ−rΓ[(α + r)/α], (0.51)
μ = λ−1Γ[(α + 1)/α], (0.52)

σ2 = λ−2

{

Γ
(
α + 2
α

)

−
[

Γ
(
α + 1
α

)]2
}

. (0.53)

0.6.5 Stacy Distribution

Seeing the p.d.f.’s in (0.41) and (0.49), a general density can be easily thought
of in the form

f(x) =
1

βcαΓ(α)
cxcα−1e−(x/β)c

, x > 0, (0.54)

where α, β, c > 0. This is generally called the Stacy distribution, after Stacy
(1962), but it dates back at least as far as Knibbs (1911). In the study
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of hydrology, in the former U.S.S.R., it was known as the Kritsky–Menkel
distribution; see Sokolov et al. (1976, Section 2.3.3.1).

From the p.d.f. in (0.54), it can be easily shown that

μ′
r = βrΓ(α + r/c)/Γ(α). (0.55)

When β = 1, the cumulant generating function becomes

K(t) = log Γ(α + t/i) − log Γ(α). (0.56)

It is also easy to verify that if X ∼ gamma(α, βc), then Y = X1/c has a
Stacy distribution in (0.54).

0.6.6 Comments on Skew Distributions

Basically, the shapes of the gamma, Weibull, and lognormal distributions are
somewhat similar. If the starting point is a free parameter (so that the p.d.f.
is nonzero for X > a, instead of X > 0), they all have three parameters.
In such a three-parameter form, methods of estimating the parameters have
been compared by Kappenman (1985).

0.6.7 Compound Exponential Distributions

Because of its lack-of-memory property, the exponential distribution is often
considered to be the embodiment of true randomness. However, in the life-
testing context, it can easily be imagined that the specimens tested differ in
their quality, and hence their lifetimes do not have an exponential distribu-
tion. This is the compounding model; i.e., the parameter λ of the exponential
distribution is itself a random variable with some distribution.

If λ has a gamma distribution, the resulting compound distribution is a
Pareto distribution.

Bhattacharya and Kumar (1986) considered the case of 1/λ having an in-
verse Gaussian distribution. They then obtained a p.d.f. that involves a mod-
ified Bessel function of the third kind, and this distribution has a decreasing
failure rate. Earlier, Bhattacharya and Holla (1965) and Bhattacharya (1966)
had considered 1/λ having various elementary distributions.



0.7 Aging Distributions 17

0.7 Aging Distributions

Section 2.3 of Lai and Xie (2006) discusses ten commonly used aging distribu-
tions, which are exponential, gamma, truncated normal, Weibull, lognormal,
Birnbaum–Saunders, inverse Gaussian, Gompertz, Makeham, linear failure
rate, Lomax, log-logistic, Burr XII, and the exponential-geometric (EG) dis-
tributions. Details of these distributions can also be found in the two volumes
by Johnson et al. (1994, 1995). The exponential-geometric is a special case
of Marshall and Olkin’s family described below.

0.7.1 Marshall and Olkin’s Family of Distributions

Let Ḡ be the survival function of a lifetime variable X. Marshall and Olkin’s
(1997) family of life distributions is obtained by adding a parameter β to the
original survival function Ḡ resulting in the form

F̄ (x) =
βḠ(x)

1 − (1 − β)Ḡ(x)
, 0 < x < ∞, β > 0. (0.57)

Note that, in their original paper, x ∈ (−∞,∞) is taken to be the support
of the random variable X.

The special case where Ḡ(x) = exp(−λx) was discussed in detail, and it
was shown in this case that

E(X) =
β log β
λ(1 − β)

and

mode(X) =
{

0, β ≤ 2
λ−1 log(β − 1), β ≥ 2 .

The failure (hazard) rate function is given by

h(x) =
λeλx

eλx − (1 − β)
,

which is decreasing in t for 0 < β < 1 and increasing for β > 1.
For β = 1 − p < 1, the model reduces to the EG (exponential-geometric)

distribution mentioned above. If β = 1, it becomes the exponential
distribution.
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0.7.2 Families of Generalized Weibull Distributions

The Weibull distribution is by far the most popular lifetime model in the
area of reliability. There are several reasons for this, and the two most im-
portant ones are: (i) it has a simple survival function, and (ii) the model is
flexible, and its parameters are easy to estimate. Despite its popularity, many
researchers still find the original Weibull model to be inadequate while mod-
eling for one reason or another. During the last decade, many modifications
and generalizations of the Weibull distribution have been proposed. A key
motivation behind this development is the desire to produce a generalized
Weibull distribution that yields a more meaningful failure rate shape than
merely decreasing or increasing as in the case of the original Weibull.

From (0.50), we have

F̄ (x) = exp
{
− (λx)α

}
, α, λ > 0, x > 0. (0.58)

For any lifetime distribution, the survival function can be expressed as

F̄ (x) = exp{−H(x)}, (0.59)

where H is the cumulative hazard function defined as H(x) =
∫ x

0
h(t)dt.

Loosely speaking, any H(x) that generalizes (λx)α would thus constitute a
generalized Weibull. We now select four such families as listed below:

• Additive Weibull [Xie and Lai (1995)],

F̄ (x) = exp
{
− (x/β1)α1 − (x/β2)α2

}
, α1, α2, β1, β2 > 0, x > 0;

• Modified Weibull [Lai et al. (2003)],

F̄ (t) = exp
{
− axαeλx

}
, a, α, λ > 0, x > 0;

• Flexible Weibull [Bebbington et al. (2007)],

F̄ (x) = exp
{
− (eαx−β/x)

}
, α, β, x > 0;

• Weibull family of Marshall and Olkin (1997),

F̄ (x) =
βe−(λx)α

1 − (1 − β)e−(λx)α , α, β > 0, 0 < x < ∞.

For other Weibull related distributions and details, we refer the reader to
Murthy et al. (2003) and Lai and Xie (2006, Chapter 5).
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0.8 Logistic, Laplace, and Cauchy Distributions

These three distributions are grouped together since they are symmetric and
have their support as −∞ < x < ∞ and so may be seen as competitors for
the normal distribution.

0.8.1 Logistic Distribution

For the scale parameter β > 0 and location parameter α,

f(x) =
1
β

e−(x−α)/β

(1 + e−(x−α)/β)2
, (0.60)

F (x) =
1

1 + e−(x−α)/β
(0.61)

=
1
2

[

1 + tanh
(
x− α

2β

)]

. (0.62)

The mean, median, and mode are all equal to α, and the variance is β2π2/3.
Johnson’s system of transformations can be applied to a logistic variate in-

stead of starting with a normal variate; see Tadikamalla and Johnson (1982).
Tukey’s lambda distribution may be regarded as a generalization of the

logistic. In this case, instead of a friendly form for F in terms of x, there is
a simple expression for x in terms of F ,

x = [Fλ − (1 − F )λ]/λ. (0.63)

On letting λ → 0, we find F = (1 + e−x)−1. An extended Tukey family may
be written as

x = λ1 + [Fλ3 − (1 − F )λ4 ]/λ2. (0.64)

0.8.2 Laplace Distribution

This is also known as the double exponential distribution, and its p.d.f. and
c.d.f. are

f(x) =
1
2φ

exp(−|x− θ|/φ), −∞ < x < ∞, φ > 0, (0.65)

F (x) =
{

1
2 exp[−(θ − x)/φ] for x ≤ θ
1 − 1

2 exp[−(x− θ)/φ] for x ≥ θ
. (0.66)

The mean, median and mode all equal θ, and the variance is 2φ2.
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Johnson’s system of transformations can once again be applied to a Laplace
variate instead of starting with a normal variate; see Johnson (1954).

0.8.3 The Generalized Error Distribution

To subsume the normal and Laplace distributions within one family, we can
consider the generalized error distribution with p.d.f.

f(x) =
[

2(δ+2)/2Γ
(
δ

2
+ 1
)]−1

exp
(

−1
2

∣
∣
∣
x− θ

φ

∣
∣
∣
2/δ
)

, −∞ < x < ∞.

(0.67)

0.8.4 Cauchy Distribution

For scale parameter λ > 0 and location parameter θ, the p.d.f. and c.d.f. are
given by

f(x) =
1
πλ

1
1 + (x−θ

λ )2
, −∞ < x < ∞, (0.68)

F (x) =
1
2

+
1
π

tan−1

(
x− θ)
λ

)

. (0.69)

The moments do not exist. However, θ and λ are location and scale pa-
rameters, respectively. Both the median and mode are at θ.

The distribution, like the normal, is stable, meaning that the distribution
of the sample mean is of the same form as the parent distribution. In contrast
to the normal distribution, the distribution of the sample mean has the same
scale parameter as the parent distribution.

0.9 Extreme-Value Distributions

0.9.1 Type 1

This is also known as the Gumbel distribution, and its c.d.f. and p.d.f. are
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F (x) = exp(−e−x), −∞ < x < ∞, (0.70)
f(x) = e−x exp(−e−x), −∞ < x < ∞, (0.71)

respectively.

0.9.2 Type 2

This is also known as the Fréchet distribution. For α > 0, the c.d.f. is given
by

F (x) = exp(−x−α), x ≥ 0. (0.72)

Note that if X has the Fréchet distribution in (0.72), then Y = X−α has an
exponential distribution.

0.9.3 Type 3

This is related to the Weibull distribution, and its c.d.f. is given by

F (x) = exp {−(−x)α} , α > 0, x < 0. (0.73)

It is then evident that −X has a Weibull distribution.
Distributions (0.72) and (0.73) can be transformed readily to type 1 by

the simple transformations

Y = logX, Y = − log(−X).

A book-length account on extreme-value distributions is Kotz and Nadara-
jah (2000).

0.10 Pareto Distribution

For x ≥ k > 0 and a > 0, we have as the p.d.f. and c.d.f.

f(x) =
aka

xa+1
, (0.74)

F (x) = 1 −
(
k

x

)

, (0.75)

respectively. From the p.d.f. in (0.74), it can be readily shown that
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μ′
r =

akr

a− r
, if a > r, (0.76)

μ =
ak

a− 1
, if a > 1, (0.77)

σ2 =
ak2

(a− 1)2(a− 2)
, if a > 2. (0.78)

This is sometimes referred to as the Pareto distribution of the first kind.
Another form of this distribution, known as the Pareto distribution of the

second kind (sometimes also called the Lomax distribution), is given by

F (x) = 1 − ca/(x + c)a, c > 0, x ≥ 0, (0.79)
f(x) = aca/(x + c)(a+1); (0.80)

see Chapter 20 of Johnson et al. (1994) for details.
A monograph devoted to Pareto distributions is Arnold (1983). The so-

called Pareto IV distribution in that monograph has been termed the gener-
alized Pareto distribution in Arnold et al. (1999) and has a survival function
of the form

F̄ (x) =
[

1 +
(x

σ

)δ
]−α

, x > 0, (0.81)

where σ, δ, and α are all positive parameters.

0.11 Pearson System

All members of Karl Pearson’s system of continuous densities satisfy the
differential equation

df

dx
=

(x− a)f(x)
b0 + b1x + b2x2

. (0.82)

For b1 = b2 = 0, the density f is normal. There are 12 other types, many
of which are better known under other names, as presented in the following
table.
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Common name Type Density Support

Beta (shifted) I (1 + x)m1(1 − x)m2 −1 to 1
Symmetric beta II (1 − x2)m −1 to 1
Gamma III xme−x 0 to ∞

IV (1 + x2)−m exp(−v tan−1 x) −∞ to ∞
Reciprocal of gamma V x−m exp(−x−1) 0 to ∞
Inverted beta (F ) VI xm2(1 + x)−m1 0 to ∞
t VII (1 + x2)−m −∞ to ∞

VIII (1 + x)−m 0 to 1
IX (1 + x)m 0 to 1

Exponential X e−x 1 ∞
Pareto XI x−m 1 to ∞

XII [(1 + x)/(1 − x)]m −1 to 1

0.12 Burr System

There are 12 types of Burr distributions. The two most important ones are
presented below. In both cases, the parameters c and k are positive and, as
usual, location and scale parameters can be introduced if required.

Type XII:
F (x) = 1 − (1 + xc)−k, x > 0; (0.83)

Type III:
F (x) = (1 + x−c)−k, x > 0. (0.84)

If X has a Burr type XII distribution, then Y = Xc has a Lomax distribution.
Equation (0.83) is a special case of (0.81).

0.13 t- and F -Distributions

These distributions are not models that describe the variability of some di-
rectly observed quantity such as length or time but are usually obtained as
the theoretical distribution of some statistics of interest.

0.13.1 t-Distribution

With ν being the degrees of freedom (effectively a shape parameter), the
p.d.f. is given by
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f(x) =
1√

νB(1
2 ,

ν
2 )

(

1 +
x2

ν

)−(ν+1)/2

, −∞ < x < ∞. (0.85)

Simple expressions for F can be given for the cases when ν = 1, 2, 3. The
mean is zero for ν > 1, while the variance is ν/(ν−2) for ν > 2. When ν = 1,
X has a Cauchy distribution.

The ratio Z/
√
X/ν has a t-distribution in (0.85) when Z has a standard

normal distribution, X has a chi-squared distribution with ν degrees of free-
dom, and Z and X are independent random variables.

0.13.2 F -Distribution

This distribution is effectively the inverted beta introduced earlier written in
a slightly different way. The pair ν1 and ν2, effectively two shape parameters,
is referred to as the degrees of freedom of the distribution. The p.d.f. is given
by

f(x) =
Γ[(ν1 + ν2)/2]
Γ(ν1/2)Γ(ν2/2)

(
ν1

ν2

)ν1/2

x(ν1+ν2)/2

(

1 +
ν1

ν2
x

)−(ν1+ν2)/2

, x > 0.

(0.86)
The c.d.f. F (x) cannot be expressed in an elementary form.

For ν2 > 2, the mean is ν2/(ν2 − 2). For ν2 > 4, the variance is 2ν2
2(ν1 +

ν2 − 2)/[ν1(ν2 − 2)2(ν2 − 4)]. For ν1 > 1, the mode is ν2(ν1 − 2)/[ν1(ν2 + 2)].
The ratio (X1/ν1)/(X2/ν2) has a F -distribution if X1 and X2 are inde-

pendent chi-squared variates with ν1 and ν2 degrees of freedom, respectively.
The chi-squared—i.e., the gamma—is not the only distribution for which this
is true; see Section 9.14 of Springer (1979).

0.14 The Wrapped t Family of Circular Distributions

Pewsey et al. (2007) considered the three-parameter family of symmetric
unimodal distributions obtained by wrapping the location-scale extension of
Student’s t distribution onto the unit circle. The family contains the wrapped
normal and wrapped Cauchy distributions as special cases, and can closely
approximate the von Mises distributions as special cases.

Let X have a t-distribution with ν degrees of freedom, and let Y = μ+λX,
where μ is a real number and λ > 0. Wrapping Y onto the unit circle θ =
Y (mod 2π), we obtain a circular random variable having probability density
function
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f(θ;μ0, λ, ν) =
c

λ

∞∑

p=−∞

(
1 +

(θ + 2πp− μ0)2

λ2ν

)− ν+1
2
, 0 ≤ θ < 2π,

with μ0 = μ(mod2π).

0.15 Noncentral Distributions

The noncentral chi-squared variate, with ν degrees of freedom and noncen-
trality parameter λ, arises as the distribution of

∑ν
i=1(Zi + ai)2, where the

Zi’s are independent standard normal variates and λ =
∑ν

i=1 a
2
i .

The noncentral F -variate is obtained from the ratio of a noncentral chi-
squared variate to an independent chi-squared variate of the form

ν2

∑ν1
i=1(Zi + ai)2

ν1

∑ν1+ν2
i=ν1+1 Z

2
i

.

The doubly noncentral F -variate is similarly obtained from the ratio of two
independent noncentral chi-squared variates.

The noncentral t-variate with ν degrees of freedom and noncentrality pa-
rameter δ arises as the distribution of (Z + δ)/

√
X/ν, where Z is a standard

normal variate and X is an independent chi-squared variate with ν degrees
of freedom. The doubly noncentral t-variate is similarly obtained if X has a
noncentral chi-squared distribution.

The noncentral beta variate is obtained as X/(X+Y ), where Y and X are
independent chi-squared and noncentral chi-squared variates, respectively. If
they are both noncentral chi-squared variates, X/(X + Y ) has the doubly
noncentral beta distribution.

These distributions do not have elementary expressions for either their
densities or their distribution functions.

0.16 Skew Distributions

There are various ways to skew a distribution, and some important develop-
ments in this direction are described in this section.

0.16.1 Skew-Normal Distribution

A random variable X is said to be skew-normal with parameter λ if its density
function can be written as
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f(x;λ) = 2φ(x)Φ(λx), −∞ < x < ∞, (0.87)

where φ(x) and Φ(x) denote the density and distribution function, respec-
tively, of the standard normal. The parameter λ, which regulates the skew-
ness, varies in (−∞,∞), and λ = 0 corresponds to the standard normal
density. For detailed properties, see Azzalini (1985, 1986) and Henze (1986).
The distribution has been used by Arnold et al. (1993) in the analysis of
screening procedures.

An alternative skew extension of normal is considered in Mudholkar and
Hutson (2000) by splitting two half-normal distributions and introducing an
explicit skewness parameter so that the new p.d.f. can be expressed as

f(x, ε) = φ
( ε

1 + ε

)
I(x<0) + φ

( ε

1 − ε

)
I(x≥0).

The distribution above is called the epsilon-skew-normal distribution.

Log-Skew-Normal Distribution

Following the same connection as between the normal and the lognormal dis-
tributions, Azzalini et al. (2003) obtained the log-skew-normal distribution.

0.16.2 Skew t-Distributions

There are several types of skew t-distributions, and we present here a brief
review of these forms.

General Type

A general method of skewing a symmetric density function g(x) with distri-
bution function G(x) is to define

f(x;λ) = 2g(x)G(λx). (0.88)

This family of skew distributions obviously includes the skew-normal in
(0.87). An equivalent definition of X is to regard it as a scale mixture of
skew-normal variates.

If g(x) is the t-density with ν degrees of freedom, (0.88) becomes a skew
t-distribution. The resulting distribution function is relatively intractable; see
some comments by Jones and Faddy (2003).
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Skew t-distribution of Azzalini and Capitanio

Suppose Y is skew-normal with density as given in (0.87). Azzalini and Cap-
itanio (2003) defined a skew t-distribution through the transformation

X = ξ + V −1/2Y, (0.89)

where V ∼ χ2
ν/ν, independent of Y . The density function of X has the form

tν(x)T (w(x)). Here, w(x) is not a linear function of x, and thus it differs from
the previous skew t-distribution.

Log-Skew t-Distributions

The log-skew t-distribution was obtained by Azzalini et al. (2003) in the same
manner as for the log-skew-normal. They found it to fit the American family
income data satisfactorily.

Skew t-Distribution of Jones and Faddy

Jones and Faddy (2003) derived a skew t-distribution having density

f(x) = f(x; a, b)

= C−1
a,b

{

1 +
t

(a + b + t2)1/2

}a+1/2{

1 − t

(a + b + t2)1/2

}b+1/2

,

(0.90)

where Ca,b = 2a+b−1B(a, b)(a + b)1/2, a > 0, b > 0. When a = b, f(x) in
(0.90) reduces to the t-distribution with 2a degrees of freedom. When a < b
or a > b, f is negatively or positively skewed, respectively. Furthermore, it
should be noted that f(x; b, a) = f(−x; a, b).

0.16.3 Skew-Cauchy Distribution

Arnold and Beaver (2000) introduced a skew-Cauchy distribution with den-
sity function

f(x) = ψ(x)Ψ(λ0 + λ1x)/Ψ
(

λ0

1 + λ1

)

, −∞ < x < ∞, (0.91)

where
ψ(x) =

1
π(1 + x2)

, −∞ < x < ∞,
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and
Ψ(x) =

1
2

+
1
π

tan−1 x

are, respectively, the density and distribution function of the standard Cauchy
distribution.

If λ0 = 0, (0.91) reduces to

f(x) = 2ψ(x)Ψ(λ1x) (0.92)

which has the same form as (0.88).

0.17 Jones’ Family of Distributions

Jones (2004) constructed a family of distributions arising from distributions
of order statistics, and it has a p.d.f. to be of the form

f(x) =
Γ(a + b)
Γ(a)Γ(b)

g(x){G(x)}a−1{1 −G(x)}b−1, a > 0, b > 0, (0.93)

where G is a symmetric distribution with density g, i.e., G′ = g.
Starting from a symmetric f with a = b = 1, a large family of distributions

can be generated with the parameters a and b controlling skewness and tail
weight. In particular, if a = b, the corresponding distributions remain sym-
metric; if a and b become large, tail weights are decreased, with normality
being the limiting case as a, b → ∞; if a and b are small, tail weights are
increased; if a and b differ, skewness is introduced, with the sign of skewness
depending on the sign of a − b; and if only one of a or b tends to infinity, a
standard extreme-value type distribution arises.

0.18 Some Lesser-Known Distributions

0.18.1 Inverse Gaussian Distribution

This is also sometimes called the Wald distribution. For φ > 0, the p.d.f. and
c.d.f. are given by

f(x) =

√
φ

2π
eφx−3/2 exp

[

−1
2
φ(x + x−1)

]

, x > 0, (0.94)

F (x) = Φ
[
(x− 1)

√
φ/x
]

+ e2φΦ
[
−(x + 1)

√
φ/x
]
, x > 0, (0.95)
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where Φ denotes the distribution function of a standard normal. It can be
shown that μ = 1 and σ2 = φ−1. When the mean μ is other than 1, the Wald
distribution is generally known as the inverse Gaussian distribution (because
of the inverse relationship between the cumulant generating function of this
distribution and that of the normal (Gaussian) distribution). In this case, the
density becomes

f(x) =

√
φ

2π
x−3/2 exp

[

−φ(x− μ)2

2μ2x

]

, (0.96)

and the variance is now φ−1μ3.

0.18.2 Meixner Hypergeometric Distribution

The p.d.f. is given by

f(x) = [πΓ(a)]−12a−2
∣
∣
∣Γ
(
a

2
+

ix

2

) ∣
∣
∣
2

eγx(cos γ)a (0.97)

(in which |γ| < π
2 and a > 0). This is called the generalized hyperbolic secant

distribution if γ = 0 [Harkness and Harkness (1968)]. If, in addition, a = 1,
it is known as the hyperbolic secant distribution. The distribution function
F (x) can be expressed through an incomplete beta function.

From the density in (0.97), it can be shown that

μ = a tan γ, (0.98)
σ2 = a[1 + (tan γ)2]. (0.99)

0.18.3 Hyperbolic Distributions

The logarithm of the p.d.f. is a hyperbola, and omitting the location and
scale parameters, we have the p.d.f.

f(x) ∝ exp
[
−ς
(√

(1 + η2)(1 + x2) − ηx
)]

. (0.100)

0.18.4 Stable Distributions

If X’s are i.i.d. r.v.’s and there exist constants an > 0 and bn such that
a−1

n

∑n
i=1 Xi − bn has the same distribution as the X’s, then this distribu-
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tion is said to be stable. an = n1/α, where α is known as the characteristic
exponent (0 < α ≤ 2); α = 2 for the normal distribution and α = 1 for the
Cauchy distribution. In addition to α and scaling and centering constants, a
skew parameter β is involved. The expression for the characteristic function
is reasonably simple, but not so for the p.d.f. (except for some special cases).
The main area of application of stable distributions is in modeling certain
economic phenomena that seem to possess very heavy-tailed distributions.
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Chapter 1

Bivariate Copulas

1.1 Introduction

The study of copulas is a growing field. The construction and properties of
copulas have been studied rather extensively during the last 15 years or so.
Hutchinson and Lai (1990) were among the early authors who popularized
the study of copulas. Nelsen (1999) presented a comprehensive treatment of
bivariate copulas, while Joe (1997) devoted a chapter of his book to multi-
variate copulas. Further authoritative updates on copulas are given in Nelsen
(2006). Copula methods have many important applications in insurance and
finance [Cherubini et al. (2004) and Embrechts et al. (2003)].

What are copulas? Briefly speaking, copulas are functions that join or
“couple” multivariate distributions to their one-dimensional marginal distri-
bution functions. Equivalently, copulas are multivariate distributions whose
marginals are uniform on the interval (0, 1). In this chapter, we restrict our
attention to bivariate copulas.

Fisher (1997) gave two major reasons as to why copulas are of interest
to statisticians: “Firstly, as a way of studying scale-free measures of depen-
dence; and secondly, as a starting point for constructing families of bivariate
distributions.” Specifically, copulas are an important part of the study of
dependence between two variables since they allow us to separate the effect
of dependence from the effects of the marginal distributions. This feature
is analogous to the bivariate normal distribution where the mean vectors
are unlinked to the covariance matrix and jointly determine the distribution.
Many authors have studied constructions of bivariate distributions with given
marginals: This may be viewed as constructing a copula.

In this chapter, we present an overview of the properties of a copula as well
as a brief sketch on constructions and simulation of copulas. Following this
introduction, we describe the basic properties of bivariate copulas in Section
1.2. Some further properties of copulas are presented in Section 1.3. Next,
in Sections 1.4–1.6, the survival, Archimedean, extreme-value, and Archimax
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copulas are discussed, respectively. In Sections 1.8 and 1.9, the Gaussian, t,
and copulas of the elliptical distribution in general and the order statistics
copulas are described. In Section 1.10, the polynomial copulas and their use
in approximating a copula are discussed. In Section 1.11, we describe some
measures of dependence between two variables with a given copula such as
Kendall’s tau, Spearman’s rho, and the geometry of correlation under a cop-
ula. We also present in this section some measures based on Gini’s coefficient,
tail dependence, and local dependence measures. The distribution of the vari-
able Z = C(U, V ) is discussed in Section 1.12. The simulation of copulas and
different methods of constructing copulas are presented in Sections 1.13 and
1.14, respectively. Section 1.15 details some important applications of copu-
las in different fields of study. Finally, the chapter closes with some criticisms
levied against copulas in Section 1.16 and brief concluding remarks in Section
1.17.

1.2 Basic Properties

Let C(u, v) denote a bivariate copula. Then:

• For everyu, v ∈ (0, 1),

C(u, 0) = 0 = C(0, v), C(u, 1) = u, C(1, v) = v.

• C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.
• A copula is continuous in u and v; actually, it satisfies the stronger

Lipschitz condition [see Schweizer and Sklar (1983)]

|C(u2, v2) − C(u1, v1)| ≤ |u2 − u1| + |v2 − v1|;

• For 0 ≤ u1 < u2 ≤ 1 and 0 ≤ v1 < v2 ≤ 1.

Pr(u1 ≤ U ≤ u2, v1 ≤ V ≤ v2)
= C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) > 0.

It is easy to verify that the following are valid copulas:

C+(u, v) = min(u, v), C−(u, v) = max(u + v − 1, 0), and C0(u, v) = uv.

Sklar’s theorem below elucidates the role that copulas play in the relation-
ship between bivariate distribution functions and their univariate marginals
[see Sklar (1959)].

Theorem 1.1. Let H be a joint distribution function with marginals F and
G. Then, there exists a copula C such that, for all x, y ∈ [−∞,∞],

H(x, y) = C(F (x), G(y)). (1.1)
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If F and G are continuous, then the copula C is unique; otherwise, C is
uniquely determined on (Range of F× Range of G). Conversely, if C is a
copula and F and G are univariate distribution functions, then H is a joint
distribution function with marginals F and G.

It follows from the representation in (1.1) that if F and G are uniform, then
H(x, y) = C(x, y), which indicates that the copula is in the form of a bivariate
distribution with its marginals transformed to be uniform over the range (0,
1). In other words, a bivariate copula is simply the uniform representation of
the bivariate distribution in question. The dictionary definition of copula is
“something that connects,” and the word is used here to indicate that it is
what interconnects the marginal distributions to produce a joint distribution.

Let h, f, g, and c be the density functions of H,F,G, and C, respectively.
Then, the relation (1.1) yields

h(x, y) = c(F (x), G(y))f(x)g(y). (1.2)

1.3 Further Properties of Copulas

• For every copula C and every (u, v) ∈ [0, 1] × [0, 1],

C−(u, v) ≤ C(u, v) ≤ C+(u, v),

where C+(u, v) = min(u, v) and C−(u, v) = max(u + v − 1, 0) are the
Fréchet upper and lower bounds, respectively.

• For every v ∈ [0, 1], the partial derivative ∂C/∂u exists for almost all u
and 0 ≤ ∂

∂uC(u, v) ≤ 1. Similarly, 0 ≤ ∂
∂vC(u, v) ≤ 1.

• C(u, v) = uv is the copula associated with a pair (U, V ) of independent
random variables.

• A convex combination of two copulas C1 and C2 is a copula as well. For
example,

C(u, v) = αC+(u, v) + (1 − α)C−(u, v), 0 ≤ α ≤ 1,

is also a copula. Generalizing this, we can conclude that any convex linear
combination of copulas is a copula, i.e.,

∑n
i=1 αiCi is a copula for αi > 0

and
∑

αi = 1. A family of copulas that includes C+, C0, and C− is said to
be comprehensive. The two-parameter comprehensive copula given below
is due to Fréchet (1958):

Cα,β = αC+(u, v) + βC−(u, v) + (1 − α− β)C0(u, v),

commonly known as the Fréchet copula.
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A one-parameter comprehensive family due to Mardia (1970) is

Cθ(u, v) =
θ2(1 + θ)

2
C+(u, v) + (1 − θ2)C0 +

θ2(1 − θ)
2

C−(u, v);

• Strictly increasing transformations of the underlying random variables re-
sult in the transformed variables having the same copula. See Nelsen (2006,
Theorem 2.4.3), for example, for a proof.

• The copula associated with the standard bivariate normal density (i.e., the
marginals are standard normal with zero mean and standard deviation 1)
has a density

c(u, v) =
1

√
(1 − ρ2)

exp
[
− ρ2

2(1 − ρ2)
{(Φ−1(u))2 + (Φ−1(v))2}

+
ρ

1 − ρ2
Φ−1(u)Φ−1(v)

]
. (1.3)

Note. The copula that corresponds to (1.3) is an important one. It is known
as the Gaussian copula in finance and extreme-value study. We will discuss
this further in Section 1.8.

1.4 Survival Copula

If one replaces C by Ĉ, u by 1−u, and v by 1− v in the copula formula, one
is effectively moving the origin of the coordinate system from (0,0) to (1,1)
and results in measuring the variates in the reverse direction. Although this
is such a trivial procedure, the two distributions are perhaps best regarded
as distinct, as the results of fitting them to data are different (unless there is
symmetry).

The copula Ĉ obtained in this way is called the survival copula [Nelsen
(2006, p. 33)] or complementary copula [Drouet-Mari and Kotz (2001, p. 85)],
satisfying

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) (1.4)

and
H̄(x, y) = Ĉ(F̄ (x), Ḡ(y)). (1.5)

It is clear that Ĉ is a copula that “couples” the joint survival function H̄ to
the univariate marginal survival functions in a manner completely analogous
to the way in which a copula connects the joint distribution to its margins.
The term survival copula is a bit misleading, in our opinion, as Ĉ is not a
survival function.

Let C̄ be the joint survival function of two uniform variables whose joint
distribution is the copula C. Then we have the relationship
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C̄(u, v) = 1 − u− v + C(u, v) = Ĉ(1 − u, 1 − v). (1.6)

Example 1.2. Consider the bivariate Pareto distribution considered in
Hutchinson and Lai (1990). Let X and Y be a pair of random variables
whose joint survival function is given by

H̄θ(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + x + y)−θ, x ≥ 0, y ≥ 0
(1 + x)−θ, x ≥ 0, y < 0
(1 + y)−θ, x < 0, y ≥ 0
1, x < 0, y < 0

,

where θ > 0. The marginal survival functions are F̄ (x) = (1 + x)−θ and
Ḡ(y) = (1 + y)−θ. It can be shown that the survival copula is

Ĉθ(u, v) =
(
u−1/θ + v−1/θ − 1

)−θ

.

1.5 Archimedean Copula

In some situations, there exists a function ϕ such that

ϕ(C(u, v)) = ϕ(u) + ϕ(v). (1.7)

Copulas of the form above are called Archimedean copulas [Genest and
MacKay (1986a)]. Equivalently, we have

ϕ(H(x, y)) = ϕ(F (x)) + ϕ(G(y)); (1.8)

i.e., we can write H(x, y) as a sum of functions of marginals F and G. Since we
are interested in expressions that we can use for the construction of copulas,
we want to solve the relation ϕ(C(u, v)) = ϕ(u)+ϕ(v). We thus need to find
an appropriately defined “inverse” ϕ[−1] so that

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (1.9)

Definition 1.3. [Nelsen (2006, p. 110)] Let ϕ be a continuous, strictly de-
creasing function from [0, 1] to [0, ∞] such that ϕ(1) = 0. The pseudoinverse
of ϕ is the function ϕ[−1], with domain [0, ∞] and range [0, 1], given by

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞
.

Note that if ϕ(0) = ∞, then ϕ[−1](t) = ϕ−1(t) and
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C(u, v) = ϕ−1(ϕ(u) + ϕ(v)). (1.10)

C is a copula if and only if the pseudoinverse (or inverse if ϕ(0) = ∞) is a
convex decreasing function; see Nelsen (2006, p. 111) for a proof.

The function ϕ is called a generator of the copula. If ϕ(0) = ∞, we then
say that ϕ is a strict generator and C(u, v) = ϕ−1(ϕ(u)+ϕ(v)) is said to be a
strict Archimedean copula. Nelsen (2006) and Drouet-Mari and Kotz (2001)
have given several examples of Archimedean copulas.

Example 1.4 (Bivariate Pareto copula). In this case, ϕ(t) = t−1/α − 1 and

Ĉ(u, v) = (u−1/α + v−1/α − 1)−α. (1.11)

Example 1.5 (Gumbel–Hougaard copula). In this case, ϕ(t) = (− log t)α and

Cα(u, v) = exp
(
−[(− log u)α + (− log v)α]1/α

)
. (1.12)

Example 1.6 (Frank’s copula). In this case, ϕ(t) = log( 1−α
1−αt ), 0 < α < 1, and

C(u, v) = logα

(

1 +
(αu − 1)(αv − 1)

(α− 1)

)

. (1.13)

The survival copula of Frank’s distribution is also Archimedean. In fact, this
is the only family that satisfies C(u, v) = Ĉ(u, v).

It is shown by Drouet-Mari and Kotz (2001, pp. 78–79) that the frailty
models are also Archimedean.

These authors have further considered the following aspects of Archimedean
copulas:

• characterization of Archimedean copulas;
• limit of a sequence of Archimedean copulas;
• archimedean copulas with two parameters; and
• fitting an observed distribution with an Archimedean copula.

1.6 Extreme-Value Copulas

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent and identically dis-
tributed pairs of random variables with a common copula C, and also let
C(n) denote the copula of componentwise maxima X(n) = maxXi and
Y(n) = maxYi. From Theorem 3.3.1 of Nelsen (2006), we know that



1.7 Archimax Copulas 39

C(n)(u, v) = Cn(u1/n, v1/n), 0 ≤ u, v ≤ 1.

The limit of the sequence
{
C(n)

}
leads to the following notion of an extreme-

value copula.

Definition 1.7. A copula C∗ is an extreme value copula if there exists a
copula C such that

C∗(u, v) = lim
n→∞

Cn(u1/n, v1/n), 0 ≤ u, v ≤ 1. (1.14)

Furthermore, C is said to belong to the domain of attraction of C∗. It is easy
to verify that C∗ satisfies the relationship

C∗(uk, vk) = Ck
∗ (u, v), k > 0.

Example 1.8 (Gumbel–Hougaard copula).

C(u, v) = exp
(
−
[
(− log u)α + (− log v)α

]1/α)
,

see Section 2.6 for a discussion.

The Gumbel–Hougaard copula is also an Archimedean copula; in fact,
there is no other Archimedean copula that is also an extreme-value copula
[Genest and Rivest (1989)].

Example 1.9 (Marshall and Olkin copula).

C(u, v) = uvmin(u−α, v−β) = min(uv1−β , u1−αv),

see Section 2.5.1 for details.

1.7 Archimax Copulas

Capéraà et al. (2000) have defined a new family of copulas for which
Archimedean copulas and extreme-value copulas are particular cases.

Recall that the extreme-value copula associated with the extreme-value
distribution of a copula C is

Cmax(u, v) = lim
n→∞

Cn
(
u

1
n , v

1
n

)
.

Following the work of Pickands (1981), Capéraà et al. (2000) obtained as a
general form of a bivariate extreme-value copula
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CA(u, v) ≡ exp
[

log(uv) A
{

log(u)
log(uv)

}]

, (1.15)

where A is a convex function [0, 1] → [1/2, 1] such that max(t, 1−t) ≤ A(t) ≤
1 for all 0 ≤ t ≤ 1.

Let ϕ be the generator of a copula and A be defined as before. A bivariate
distribution is said to be an Archimax copula [Capéraà et al. (2000)] if it can
be expressed in the form

Cϕ,A(u, v) = ϕ−1

[

{ϕ(u) + ϕ(v)} A

{
ϕ(u)

ϕ(u) + ϕ(v)

}]

. (1.16)

If A ≡ 1, we retrieve the Archimedean copula, and if ϕ(t) = log(t), we retrieve
the extreme-value copula.

Note. This procedure to generate a bivariate copula is a particular case
of Marshall and Olkin’s generalization (Section 1.10.2), where the function
K is the bivariate extreme-value copula CA(u, v) given in (1.15), and the
mixture distribution has the Laplace transform φ = ϕ−1 and the generator
ϕ(t) = log t.

1.8 Gaussian, t-, and Other Copulas of the
Elliptical Distributions

Gaussian Copula

The Gaussian copula is perhaps the most popular distribution in applications.
Let Φ denote the standard univariate normal distribution function and Ψ de-
note the standard bivariate normal distribution function. Then the bivariate
Gaussian (normal) copula is given by

Cρ(u, v) = Ψ(Φ−1(u),Φ−1(v))

=
1

2π
√

1 − ρ2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp
[−(s2 − 2ρst + t2)

2(1 − ρ2)

]
ds dt,

(1.17)

where ρ ∈ (0, 1) is the correlation coefficient such that ρ �= 0. The density of
the Gaussian copula is simpler, as given in (1.3).

The bivariate Gaussian copula can be used to generate bivariate dispersion
models [Song (2000)]. There are numerous applications of Gaussian copulas,
particularly in hydrology and finance.
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t-Copula

The t-copula is simply the copula that represents the dependence structure of
the bivariate t-distribution discussed in Section 7.2. Its properties are stud-
ied in Embrechts et al. (2002), Fang et al. (2002), and Demarta and McNeil
(2005). The model has received much attention recently, particularly in the
context of modeling multivariate financial data (e.g., daily relative or log-
arithmic price changes on a number of stocks). Marshall et al. (2003) and
Breymann et al. (2003) have shown that the empirical fit of the t-copula is
often good and is almost always superior to that of the Gaussian copula. One
reason for the success of the t-copula is its ability to capture the phenomenon
of dependent extreme values, which is often observed in the financial return
data.

The Gaussian and t- copulas are copulas of elliptical distributions (see
Chapter 15); they are not elliptical distributions themselves.

The dependence in elliptical distributions is essentially determined by co-
variances. Covariances are considered by some as being poor tools for describ-
ing dependence for non-normal distributions, in particular for their extremal
dependence; see Embrechts et al. (2002) for a critique in risk modeling and
Glasserman (2004) for advocating t-distributions for risk management.

1.9 Order Statistics Copula

Let Xr:n be the rth order statistic (1 ≤ r ≤ n) from a sequence of independent
and identically distributed variables {X1, X2, . . . , Xn}. Nelsen (2003) showed
that the copula C1,n of X1:n and Xn:n is given by

C1,n = v −
[
max{(1 − u)

1
n + v

1
n − 1, 0}

]n
; (1.18)

see also Schmitz (2004).

1.10 Polynomial Copulas

Drouet-Mari and Kotz (2001) utilized the Rüschendorf method to construct
a polynomial copula. To begin with, let f = ukvq and obtain

f1(u, v) = f −
∫ 1

0

f(u, v)dv −
∫ 1

0

f(u, v)du +
∫ 1

0

∫ 1

0

f(u, v)du dv

=
(

uk − 1
k + 1

)(

vq − 1
q + 1

)

, k ≥ 1, q ≥ 1.
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Therefore, the function

c(u, v) = 1 + θ

(

uk − 1
k + 1

)(

vq − 1
q + 1

)

(1.19)

with the constraint

0 < θ ≤ min
(

(k + 1)(q + 1)
q

,
(k + 1)(q + 1)

k

)

is the density of a polynomial copula. Repeating the process above for all k
and q (k ≥ 1, q ≥ 1), we obtain a general formula

∂2C

∂u∂v
= 1 +

∑

k≥1,q≥1

θkq

(

uk − 1
k + 1

)(

vk − 1
q + 1

)

with the same constraints

0 ≤ min

⎛

⎝
∑

k≥1,q≥1

θkq
q

(k + 1)(q + 1)
,
∑

k≥1,q≥1

θkq
k

(q + 1)(k + 1)

⎞

⎠ ≤ 1.

A polynomial copula of power m can now be obtained as

C(u, v) = uv

⎡

⎣1 +
k+q≤m−2∑

k≥1,q≥1

θkq

(k + 1)(q + 1)
(uk − 1)(vq − 1)

⎤

⎦ . (1.20)

Example 1.10 (Polynomial copula of order 5). The polynomial copula of the
fifth power from (1.20) then becomes

C(u, v) = uv

[

1 +
θ11
4

(u− 1)(v − 1) +
θ12
6

(u− 1)(v2 − 1)

+
θ21
6

(u2 − 1)(v − 1)
]

, (1.21)

which coincides with the expression given by Wei et al. (1998).

Example 1.11 (Iterated F-G-M family). Johnson and Kotz (1977) presented
the iterated Farlie–Gumbel–Morgenstern (F-G-M) family with the copula

C(u, v) = uv {1 + α(1 − u)(1 − v) + βuv(1 − u)(1 − v)} .

Example 1.12 (Woodworth’s polynomial copula). The uniform representation
of the Woodworth (1966) family of distributions is given by
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c(u, v) = 1 + θ[1 − (m + 1)um][1 − (m + 1)vm], 0 ≤ θ ≤ 1/m2,m ≥ 1.

For m = 1, the equation above clearly coincides with the F-G-M distribution.

Example 1.13 (Nelsen’s polynomial copula). In this case, the copula is given
by

C(u, v) = uv + 2θuv(1 − u)(1 − v)(1 + u + v − 2uv), 0 ≤ θ ≤ 1/4

[Nelsen (1999, pp. 168–169)].

1.10.1 Approximation of a Copula by a
Polynomial Copula

Suppose a copula Cθ(u, v), indexed by a parameter θ, has a continuous nth
derivative. We can then express it by means of the Taylor expansion in the
neighborhood of θ0 as

Cθ(u, v) ≈ Cθ0(u, v) +
n∑

i=1

C
(i)
θ0

(u, v)(θ − θ0)i

i!
.

Choosing θ0 corresponding to independence [i.e., with Cθ0(u, v) = uv], and if
the derivatives of Cθ with respect to θ are powers in uv, we then obtain an
approximation of Cθ by means of a polynomial copula.

Example 1.14 (The F-G-M family). The F-G-M family corresponds to its
first-order expansion in Taylor’s series around θ = 0.

Example 1.15 (The Ali–Mikhail–Haq family). In this case,

C(u, v) =
uv

1 − θ(1 − u)(1 − v)
= uv

⎡

⎣1 +
∑

i≥1

(θ(1 − u)(1 − v))i

⎤

⎦ , (1.22)

where |θ| ≤ 1. If we consider only the first order in (1.22), we obtain the
F-G-M family, and with the second-order approximation, we arrive at the
iterated F-G-M of Lin (1987). For an approximation of any order, we have a
polynomial copula.

Example 1.16 (The Plackett family). Nelsen (1999) proved that the F-G-M
family is a first-order approximation to the Plackett family by expanding it
in Taylor’s series around θ = 1.
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1.11 Measures of Dependence Between Two Variables
with a Given Copula

Many measures of dependence are “scale-invariant”; i.e., they remain un-
changed under strictly increasing transformations of random variables. Since
the copula C of a pair of random variables X and Y is invariant under strictly
increasing transformations of X and Y , several scale-invariant measures of de-
pendence are expressible in terms of the copulas. Two such “scale-invariant”
measures are Kendall’s tau and Spearman’s rho.

1.11.1 Kendall’s Tau

Let (xi, yi) and (xj , yj) be two observations from (X,Y ) of continuous random
variables. The two pairs (xi, yi) and (xj , yj) are said to be concordant if
(xi − xj)(yi − yj) > 0 and discordant if (xi − xj)(yi − yj) < 0.

Kendall’s tau is defined as the probability of concordance minus the prob-
ability of discordance,

τ = P [(X −X ′)(Y − Y ′) ≥ 0] − P [(X −X ′)(Y − Y ′) ≤ 0], (1.23)

where (X ′, Y ′) is independent of (X,Y ) and is distributed as (X,Y ).
The sample version of Kendall’s τ is defined as

t =
c− d

c + d
= (c− d)/n, (1.24)

where c denotes the number of concordant pairs and d the number of discor-
dant pairs from a sample of n observations from (X,Y ). Just as H can be
expressed as a function of copula C, Kendall’s τ can be expressed in terms
of the copula [see, for example, Nelsen (2006, p. 101)] as

τ = 4
∫ 1

0

∫ 1

0

C(u, v)c(u, v)dudv − 1 = 4E(C(U, V )) − 1. (1.25)

Let C be an Archimedean copula generated by ϕ. Then, Genest and
MacKay (1986a,b) have shown that

τ = 4E(C(U, V )) − 1 = 4
∫ 1

0

ϕ(t)
ϕ′(t)

dt. (1.26)

Example 1.17 (Bivariate Pareto copula). In this case, ϕ(t) = t−1/α − 1 and
so

ϕ(t)
ϕ′(t)

= α(t1+
1
α − t)
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and, consequently, τ = 1
2α+1 − 1.

1.11.2 Spearman’s Rho

Like Kendall’s tau, the population version of the measure of association
known as Spearman’s rho (denoted by ρS) is based on concordance and dis-
cordance. Let (X1, Y1), (X2, Y2), and (X3, Y3) be three independent pairs of
random variables with a common distribution function H. Then, ρS is defined
to be proportional to the probability of concordance minus the probability of
discordance for the two pairs (X1, Y1) and (X2, Y3); i.e.,

ρS = 3
(
P [(X1 −X2)(Y1 − Y3) > 0] − P [(X1 −X2)(Y1 − Y3) < 0]

)
. (1.27)

Equation (1.27) is really the grade correlation and can be expressed in terms
of the copula as

ρS = 12
∫ 1

0

∫ 1

0

C(u, v)dudv − 3 = 12E(UV ) − 3. (1.28)

Rewriting the equation above as

ρS =
E(UV ) − 1

4
1
12

, (1.29)

we simply observe that Spearman’s rho between X and Y is simply Pearson’s
product-moment correlation coefficient between the uniform variates U and
V .

1.11.3 Geometry of Correlation Under a Copula

Long and Krzysztofowicz (1996) provided a novel way of deriving and inter-
preting the correlation coefficient ρ under a copula.

The sample space of U and V can be partitioned into four polygons (equi-
lateral triangles) by drawing two diagonal lines, l1 : v = u and l2 : v = 1− u.
From a fixed point (u, v), the distance to l1 is d1 = |u − v|/

√
2 and the

distance to l2 is d2 = |u + v − 1|/
√

2. Let

λ = d2
2 − d2

1 = [4uv − 2(u + v) + 1]/2, (1.30)

which measures the relative closeness of the point (u, v) to the diagonals.
Then, the function λ has the following behavior:
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• λ > 0 when a point is closer to l1 than to l2;
• λ = 0 when either u = 1

2 or v = 1
2 .

• Its minimum, λ = − 1
2 , is attained at (0,1) or (1,0).

• λ = 1
2 is attained at (0,0) or (1,1).

Long and Krzysztofowicz (1996) showed that, as a continuous function of
a random vector (U, V ), the random distance Λ has an expectation that is
determined by the density c of the copula as

E(Λ) =
∫ 1

0

∫ 1

0

λ(u, v)c(u, v)dudv

= E[d2
2(U, V ) − d2

1(U, V )]

= 2E(U V ) − 1
2
. (1.31)

Upon comparing (1.31) with (1.29), we readily find that ρS = 6E(Λ). In other
words, Spearman’s ρS under the copula is proportional to the expected dif-
ference of the quadratic distance from a random point (U, V ) to the diagonal
lines l1 and l2 of the unit square.

1.11.4 Measure Based on Gini’s Coefficient

The measure of concordance between X and Y known as Gini’s γ can be
expressed as

γC = 2
∫ 1

0

∫ 1

0

(|u + v − 1| − |u− v|) dC(u, v).

This is equivalent to

γC = 2E (|U + V − 1| − |U − V |) , (1.32)

which can be interpreted as the expected distance between (U, V ) and the
diagonal of [0, 1] × [0, 1]. For further discussion, see Nelsen (2006, p. 212).

1.11.5 Tail Dependence Coefficients

The dependence concepts introduced so far are designed to show how large
(or small) values of one random variable appear with large (or small) values
of the other. The following tail dependence concepts measure the dependence
between the variables in the upper-right quadrant and the lower quadrant of



1.11 Measures of Dependence Between Two Variables with a Given Copula 47

[0, 1]×[0, 1]. In practice, the concept of tail dependence represents the current
standard to describe the amount of extremal dependence.

Definition 1.18. The upper tail dependence coefficient (parameter) λU is
the limit (if it exists) of the conditional probability that Y is greater than
the 100αth percentile of G given that X is greater then the 100αth percentile
F as α approaches 1,

λU = lim
α↑1

Pr
[
Y > G−1(α)|X > F−1(α)

]
. (1.33)

If λU > 0, then X and Y are upper tail dependent and asymptotically
independent otherwise.

Similarly, the lower tail dependence coefficient is defined as

λL = lim
α↓0

Pr
[
Y ≤ G−1(α)|X ≤ F−1(α)

]
. (1.34)

Let C be the copula of X and Y . It can be shown that

λU = lim
u↑1

C̄(u, u)
1 − u

, λL = lim
u↓0

C(u, u)
u

,

where C̄(u, v) = Pr(U > u, V > v).
Expressions for the coefficients of tail dependence for a wide range of

bivariate distributions, as presented in Table 1.1, may be found in Heffernan
(2001).

Table 1.1 Tail dependence of some of the families of copulas

Family λU λL

Fréchet α α
Cuadras and Augé 0 θ
Marshall and Olkin 0 min(α, β)
Placket 0 0

For explicit expressions for both the Cuadras and Augé
copula and the Marshall and Olkin copula, see Section 4.5.

The tail dependence coefficient has become very popular for those inter-
ested in extreme-value techniques [Kolev et al. (2006, Section 4)]. However,
Mikosch (2006a) did not think it very informative with regard to the joint
extreme behavior of the vector (X,Y ). For nonparametric estimation of tail
dependence, see Schmidt and Stadmuller (2006).
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1.11.6 A Local Dependence Measure

A local dependence measure defined as a correlation between X and Y given
X = x, Y = y was proposed by Kotz and Nadarajah (2002):

γ(x, y) =
E ([X − E(X|Y = y)][Y − E(Y |X = x)])
√
E[−E(X|Y = y)]2E[Y − E(Y |X = x)]2

, −∞ < x, y < ∞.

(1.35)
A copula analogue of (1.35) has been defined by Kolev et al. (2006) as

γS(u, v) =
E ([U − E(U |V = v)][V − E(V |U = u)])
√
E[−E(U |V = v)]2E[V − E(V |U = u)]2

, 0 ≤ u, v ≤ 1.

(1.36)
The measure γS may be interpreted as a “conditional” Spearman ρ.

1.11.7 Tests of Dependence and Inferences

Genest and Favre (2007) presented an introduction to inference for copula
models based on rank methods. In particular, they considered empirical esti-
mates for measures of dependence and dependence parameters. Simple graph-
ical tools and numerical techniques were presented for selecting an appropri-
ate model, parameter estimation, and checking the model’s goodness of fit.

Shih and Louis (1995) presented both parametric and nonparametric es-
timation procedures for the association (dependence) parameter in copula
models.

1.11.8 “Concepts of Dependence” of Copulas

For “concepts of dependence” that are expressed in terms of various notions of
positive dependence for copulas, see Section 5.7 of Nelsen (2006) and Chapter
3 of this volume.

1.12 Distribution Function of Z = C(U, V )

In Section 1.7.1, we presented the expression

τ = 4E(C(U, V )) − 1 = 4E(Z) − 1, (1.37)
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where Z = C(U, V ) and E(Z) =
∫ 1

0
{1 − K(z)}dz, with K being the dis-

tribution function of Z. It is well known that for any random variable X
with continuous distribution function F , F (X) is uniformly distributed on
[0, 1]. However, it is not generally true that the distribution K of Z is uni-
form on [0, 1]. The fact that K is related to Kendall’s tau via (1.37) has
encouraged several authors [see, e.g., Genest and Rivest (1993) and Wang
and Wells (2000)] to develop estimation and goodness-of-fit procedures for
different classes of copulas using the empirical version of K, whose asymptotic
behavior as a process was first studied by Barbe et al. (1996).

For Archimedean copulas, Genest and Rivest (1993) showed that

K(z) = z − ϕ(z)
ϕ′(z)

, (1.38)

where ϕ is the generator of the copula C. The key results on K when C is an
Archimedean copula given by Genest and MacKay (1986a) and Genest and
Rivest (1993) are as follows:

(1) The function K(z) = z− ϕ(z)
ϕ′(z) is the cumulative distribution function of

the variable Z = C(U, V ). Hence, with a knowledge of K(z), we can in
principle retrieve the function ϕ(z) and hence the Archimedean copula.

(2) The function K(z) can be estimated by means of empirical distribution
functions Kn(zi), where zi is the proportion of pairs (Xj , Yj) in the
sample that are less than or equal to the pair (Xi, Yi) componentwise.

(3) The empirical function Kn(z) can be fitted by the distribution function
Kθ̃ of any family of Archimedean copulas, where the parameter θ is
estimated in such a manner that the fitted distribution has a coefficient
of concordance (τ) equal to the corresponding empirical coefficient (τn).

(4) Z and W are independent, with the latter given by the expression W =
ϕ(U)

ϕ(U)+ϕ(V ) , which is uniformly distributed on [0, 1].

For copulas not necessarily Archimedean, Chakak and Ezzerg (2000) have
shown that K can be expressed in terms of the quantile function associated
with the bivariate copula C. Genest and Rivest (2001) have also given a
general formula for computing K.

1.13 Simulation of Copulas

The following method of simulation is described in Drouet-Mari and Kotz
(2001).
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1.13.1 The General Case

To generate a sample (Ui, Vi), i = 1, 2, . . . , n, from a copula C(u, v), we use
the fact that the conditional copula Cu(v) = C(V |U = v) is a distribution
function and that Z = Cu(V ) follows a uniform distribution on [0, 1]. Since
U has a uniform distribution, its density is 1 over [0, 1] and thus Cu(v) =
∂C(u,v)

∂v . Hence, the simulation procedure is as follows:

Step 1: Generate two variables U and Z independent and uniform over
[0, 1].
Step 2: Calculate V = C−1

u (Z). Then, the pair (U, V ) has the desired
copula.

This procedure works well but requires an analytical expression for V =
C−1

u (Z).

1.13.2 Archimedean Copulas

For Archimedean copulas, we can modify the procedure above. The method
described below is due to Genest and MacKay (1986a). Since ϕ(C) = ϕ(U)+
ϕ(V ), it follows that ϕ′ (C ∂C

∂u

)
= ϕ′(u). An auxiliary variable W = C(U, V )

is calculated as

W = (ϕ′)−1

(
ϕ′(u)

∂C
∂u

)

,

where (ϕ′)−1 is the inverse of the derivative of ϕ. The simulation procedure
is then as follows:

Step 1. Generate two uniform and independent random variables U
and Z on [0, 1].
Step 2: Calculate W using the formula above.
Step 3: Calculate V = ϕ−1[ϕ(W ) − ϕ(V )].

This procedure works well for Clayton and Frank’s families (see Section 2.4).
However, for the Gumbel–Hougaard family, there is no analytical expression
for (ϕ′)−1.

1.14 Construction of a Copula

1.14.1 Rüschendorf’s Method

We shall now describe a general method of constructing a copula developed
by Rüschendorf (1985).
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Suppose f1(u, v) has integral zero on the unit square and its two marginals
integrate to zero; i.e.,

∫ 1

0

∫ 1

0

f1(u, v)du dv = 0 (1.39)

and ∫ 1

0

f1(u, v)du = 0 and
∫ 1

0

f1(u, v)dv = 0. (1.40)

Equation (1.39) implies (1.40). In that case, 1+f1(u, v) is a density of a cop-
ula. However, there is the constraint that 1 + f1(u, v) must be non-negative.
If it is not the case, but f1 is bounded, we can then find a constant α such
that 1 + αf1 is positive.

A function of the type described above can be constructed quite easily.
One needs to start with an arbitrary real integrable function f on the unit
square and compute

V =
∫ 1

0

∫ 1

0

f(u, v)du dv, f1(u) =
∫ 1

0

f(u, v)dv, f2(v) =
∫ 1

0

f(u, v)du.

Then set f1 = f − f1 − f2 + V .
If we have two functions f1 and g1 possessing the properties stipulated

above, then 1 + f1 + g1 is the density of a copula, and more generally, 1 +∑n
i=1 f

1
i is a density with f1

i satisfying the conditions in (1.39) and (1.40).

Example 1.19. Long and Krzysztofowicz (1995) utilized a particular case of
the Rüschendorf method of construction. Let f1(u, v) = c1(u, v) + c2(u, v) −
2K(1), where

c1(u, v) = κ(u− v) if v ≤ u

= κ(v − u) if v ≥ u (1.41)

and

c2(u, v) =
{
κ(u + v) if u ≤ u− v
κ(v − u) if u ≥ 1 − v,

and K(1) =
∫ 1

0
κ(t) dt, where κ(t) is a continuous and monotonic function on

[0,1].

Example 1.20. [Lai and Xie’s extension of F-G-M] Lai and Xie (2000) ex-
tended the Farlie–Gumbel–Morgenstern family by considering

C(u, v) = uv + w(u, v) = uv + αubvb(1 − u)a(1 − v)a,

a, b, 0 ≤ α ≤ 1. (1.42)
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1.14.2 Generation of Copulas by Mixture

Marshall and Olkin (1988) and Joe (1993) considered a general method in
generating bivariate distributions by mixture. Set

H(u, v) =
∫ ∫

K(F θ1 , Gθ2) dΛ(θ1, θ2), (1.43)

where K is a copula and Λ is a mixing distribution, φi being the Laplace
transform of the marginal Λi of Λ. Thus, different selections of G and K lead
to a variety of distributions with marginals as parameters. Note that F and
G here are not necessarily the marginals of H.

If K is an independent bivariate distribution and the two marginals ofΛ are
equal such that it is the Fréchet bound [i.e., Λ(θ1, θ2) = min(Λ1(θ1), Λ2(θ2))],
then H(u, v) =

∫∞
0

F θ(u)Gθ(v)dΛ1(θ) with θ1 = θ. Now, let F (u) =
exp[−φ−1(u)] and G(u) = exp[−φ−1(u)], where φ(t) is the Laplace trans-
form of Λ1, i.e., φ(−t) is the moment generating function of Λ1. It follows
that

H(u, v) =
∫ ∞

0

exp
[
−θ
(
φ−1(u) + φ−1(v)

)]
dΛ1(θ). (1.44)

From (1.44), it is clear that the marginals of H are uniform and so H is a
copula. In other words, when φ is the Laplace transform of a distribution,
then the function defined on the unit square by

C(u, v) = φ
(
φ−1(u) + φ−1(v)

)
(1.45)

is indeed a copula. However, the right-hand side of (1.45) is a copula for a
broader class of functions than the Laplace transforms, and these copulas are
called Archimedean copulas, mentioned earlier in Section 1.5.

Example 1.21. If the mixing distribution Λ1(θ) has a negative binomial dis-

tribution with the Laplace transform φ(t) =
(

pe−t

1−qe−t

)α

, α > 0, 0 < p < 1,

q = 1 − p, and the inverse function ϕ(t) = log
(

t1/α

p+qt1/α

)
, then

C(u, v) =
uv

[
1 − q(1 − u1/α)(1 − v1α)

]α , (1.46)

which is the survival copula of the bivariate Lomax distribution (see Section
2.8).
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1.14.3 Convex Sums

In Section 1.3, it was shown that if {Cθ} is a finite collection of copulas, then
any convex combination of the copulas in {Cθ} is also a copula. Convex sums
are an extension of this idea to an infinite collection of copulas indexed by a
continuous parameter θ.

Suppose now that θ is an observation of a random variable with distribu-
tion function Λ. If we set

C(u, v) =
∫ ∞

−∞
Cθ dΛ(θ), (1.47)

then it is easy to verify that C is a copula, which was termed by Nelsen
(1999) as the convex sum of {Cθ} with respect to Λ. In fact, Λ is simply a
mixing distribution of the family {Cθ}.

Consider a special case of Marshall and Olkin’s method discussed earlier,
in which K is an independent copula (i.e., K(u, v) = uv) and Λ is a univariate
distribution so that

C(u, v) =
∫ ∞

0

Fu(θ)Gv(θ) dΛ. (1.48)

The expression in (1.48) can clearly be considered as a convex sum of the
family of copulas {(FG)θ}.

1.14.4 Univariate Function Method

Durante (2007) constructed a family of symmetric copulas from a univariate
function f : [0, 1] → [0, 1] that is continuous, differentiable except at finitely
many points. Define

Cf (x, y) = min(x, y)f
(
max(x, y)

)
.

Then Cf is a copula if and only if

(i) f(1) = 1;
(ii) f is increasing; and
(iii) the function t → f(t)/t is decreasing on (0, 1].

Example 1.22. f(t) = αt + (1 − α), α ∈ [0, 1]. Then Cα(u, v) = αuv + (1 −
α)min(u, v) is a member of the Fréchet family of copulas (see Section 3.2).

Example 1.23. Let fα(t) = tα. Then

Cα(u, v) =
{
uvα, if u ≤ v
uαv, if u ≥ v

,
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which is the Cuadras-Augé copula given in (2.25).

1.14.5 Some Other Methods

Nelsen (2006) presented several other methods for constructing of copulas,
including the following.

The Inversion Method

This is simply the so-called marginal transformation method through inverse
probability integral transforms of the marginals F−1(u) = x and G−1(v) = y.
If either one of the two inverses does not exist, we simply modify our definition
so that F−(u) = inf{x : F (x) ≥ u}, for example. Then, given a bivariate
distribution function H with continuous marginals F and G, we obtain a
copula

C(u, v) = H
(
F−1(u), G−1(v)

)
. (1.49)

Nelsen (2006) illustrated this procedure with two examples:

(1) The procedure above is used to find Marshall and Olkin’s family of
copulas (also known as the generalized Cuadras and Augé family) from
Marshall and Olkin’s system of bivariate exponential distributions.

(2) A copula is obtained from the circular uniform distribution with X and
Y being the coordinates of a point chosen at random on the unit circle.

Geometric Methods

Several schemes are given by Nelsen (2006), including:

• singular copulas with prescribed support;
• ordinal sums;
• shuffles of Min [Mikusiński et al. (1992)];
• copulas with prescribed horizontal or vertical sections; and
• copulas with prescribed diagonal sections.

A particular copula of interest generated by geometry is the symmetric copula
constructed by Ferguson (1995). In this copula, C(u, v) = Ĉ(u, v).

Algebraic Methods

Two well-known families of copulas, the Plackett and Ali–Mikhail–Haq fam-
ilies, were constructed using an algebraic relationship between the joint dis-
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tribution function and its univariate marginals. In both cases, the algebraic
relationship concerns an “odds ratio.” In the first case, we generalize 2×2
contingency tables, and in the second case we work with a survival odds
ratio.

1.15 Applications of Copulas

There is a fast-growing industry for copulas. They have useful applications
in econometrics, risk management, finance, insurance, etc. The commercial
statistics software SPLUS provides a module in FinMetrics that include cop-
ula fitting written by Carmona (2004). One can also get copula modules in
other major software packages such as R, Mathematica, Matlab, etc. The
International Actuarial Association (2004) in a paper on Solvency II,1 rec-
ommends using copulas for modeling dependence in insurance portfolios.
Moody’s uses a Gaussian copula for modeling credit risk and provides soft-
ware for it that is used by many financial institutions. Basle II2 copulas are
now standard tools in credit risk management.

There are many other applications of copulas, especially the Gaussian
copula, the extreme-value copulas, and the Archimedean copula. We now
classify these applications into several categories.

1.15.1 Insurance, Finance, Economics, and
Risk Management

One of the driving forces for the popularity of copulas is their application in
the context of financial risk management. Mikosch (2006a, Section 3) explains
the reasons why the finance researchers are attracted to copulas.

• Risk modeling—van der Hoek and Sherris (2006)
• Daily equity return in Spanish stock market—Roch and Alegre (2006)
• Jump-driven financial asset model—Luciano and Schoutens (2006)
• Default correlation and pricing of collateralized obligation—P. Li et al.

(2006)
• Credit derivatives—Charpentier and Juri (2006)
• Modeling asymmetric exchange rate dependence—Patton (2006)
• Credibility for aggregate loss—Frees and Wang (2006)
• Decomposition of bivariate inequality by attributes – Naga and Geoffard

(2006)

1 Solvency II is a treaty for insurances.
2 Basle I and II are treaties for banks.



56 1 Bivariate Copulas

• Group aspects of regulatory reform in insurance sector—Darlap and Mayr
(2006)

• Financial risk calculation with applications to Chinese stock markets—Li
et al. (2005)

• Measurement of aggregate risk—Junker and May (2005)
• Interdependence in emerging markets—Mendes (2005)
• Application to financial data—Dobric and Schmid (2005)
• Tail dependence in Asian markets—Caillault and Guegan (2005)
• Modeling heterogeneity in dependent data—Laeven (2005)
• Bivariate option pricing—van den Goorbergh et al. (2005)
• Worst VaR scenarios—Embrechts et al. (2005)
• Correlated default with incomplete information—Giesecke (2004)
• Value-at-risk-efficient portfolios—Malevergne and Sornette (2004)
• Fitting bivariate cumulative returns—Hürlimann (2004)
• General cash flows—Goovaerts et al. (2003)
• Modeling in actuarial science—Purcaru (2003)
• Financial asset dependence—Malevergne and Sornette (2003)
• High-frequency data in finance—Breymann et al. (2003)
• Dependence between the risks of an insurance portfolio in the individual

risk model—Cossette et al. (2002)
• Portfolio allocations—Hennessy and Lapan (2002)
• Relationship between survivorship and persistency of insurance policy

holders—Valdez (2001)
• Loss and allocated loss adjustment expenses on a single claim—Klugman

and Parsa (1999)
• Sum of dependent risks—Denuit et al. (1999)

1.15.2 Hydrology and Environment

• On the use of copulas in hydrology: Theory and practice—Salvadori and
De Michele (2007).

• Case studies in hydrology—Renard and Lang (2007)
• Bivariate rainfall frequency—Zhang and Singh (2007)
• Bivariate frequency analysis of floods—Shiau (2006)
• Groundwater quality—Bardossy (2006)
• Flood frequency analysis—Grimaldi and Serinaldi (2006)
• Drought duration and severity—Shiau (2006)
• Temporal structure of storms—Salvadori and De Michele (2006)
• Successive wave heights and successive wave periods—Wist et al. (2004)
• Ozone concentration—Dupuis (2005)
• Phosphorus discharge to a lake—Reichert and Borsuk (2005)
• Frequency analysis of hydrological events—Salvadori and De Michele

(2004)
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• Adequacy of dam spillway—De Michele et al. (2005)
• Hydrological frequency analysis—Favre et al. (2004)
• Storm rainfall—De Michele and Salvadori (2003)

1.15.3 Management Science and Operations Research

• Decision and risk analysis—Clemen and Reilly (1999)
• Entropy methods for joint distributions in decision analysis—Abbas (2006)
• Field development decision process—Acciolya and Chiyoshi (2004)
• Uncertainty analysis—van Dorp (2004)
• Schedulability analysis—Burns et al. (2003)
• Database management—Sarathy et al. (2002)
• Decision and risk analysis—Clemen et al. (2000)
• Beneficial changes insurance—Tibiletti (1995)

1.15.4 Reliability and Survival Analysis

• Bivariate failure time data—Chen and Fan (2007)
• Competing risk survival analysis—Bond and Shaw (2006)
• Interdependence in networked systems—Singpurwalla and Kong (2004)
• Competing risk—Bandeen-Roche and Liang (2002)
• Time to wound excision and time to wound infection in a population of

burn victims—van der Laan et al. (2002)
• Survival times on blindness for each eye of diabetic patients with adult

onset diabetes—Viswanathan and Manatunga (2001)
• Bivariate current status data—Wang and Ding (2000)

1.15.5 Engineering and Medical Sciences

• Poliomyelitis incidence—Escarela et al. (2006)
• Modeling of vehicle axle weights—Srinivas et al. (2006)
• Plant-specific dynamic failure assessment—Meel and Seider (2006)
• Trait linkage analysis—M.Y. Li et al. (2006)
• Unsupervised signal restoration—Brunel and Pieczynski (2005)
• Real option valuation of oil projects—Armstrong et al. (2004)
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• Probabilistic dependence among binary events—Keefer (2004)
• QTL mapping—Basrak et al. (2004)
• Modeling the dependence between the times to international adoption of

two related technologies—Meade and Islam (2003)
• Signal processing—Davy and Doucet (2003)
• Interaction between toxic compounds—Haas et al. (1997)
• Removing cancer when it is correlated with other causes of death—Carriere

(1995)

1.15.6 Miscellaneous

• Expert opinions—Jouini and Clemen (1996)
• Accident precursor analysis—Yi and Bier (1998)
• Generations of dispersion models—Song (2000)
• Health care demand—Zimmer and Trivedi (2005)
• Biometric data studies—Rukhin and Osmoukhina (2005)
• Uncertainty measures in expert systems—Goodman et al. (1991)

1.16 Criticisms about Copulas

Despite their immense popularity, copulas have their critics. In a critical
article entitled “Copulas: Tales or Facts” published in Extremes, Mikosch
(2006a,b) gave several far-reaching criticisms to caution readers about the
problems associated with copulas. Below are his verbatim remarks that sum-
marize his opinion about copulas.

• There are no particular advantages of using copulas when dealing with
multivariate distributions. Instead one can and should use any multivariate
distribution which is suited to the problem at hand and which can be
treated by statistical techniques.

• The marginal distributions and the copula of a multivariate distribution
are inextricably linked. The main selling point of the copula technology—
separation of the copula (dependence function) from the marginal
distributions—leads to a biased view of stochastic dependence, in par-
ticular when one fits a model to the data.

• Various copula models (Archimedean, t-, Gaussian, elliptical, extreme
value) are mostly chosen because they are mathematically convenient; the
rationale for their applications is murky.

• Copulas are considered as an alternative to Gaussian models in a non-
Gaussian world. Since copulas generate any distribution, the class is too
big to be understood and to be useful.
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• There is little statistical theoretical theory for copulas. Sensitivity studies
of estimation procedures and goodness-of-fit tests for copulas are unknown.
It is unclear whether a good fit of the copula of the data yields a good fit
to the distribution of the data.

• Copulas do not contribute to a better understanding of multivariate
extremes.

• Copulas do not fit into the existing framework of stochastic processes and
time series; they are essentially static models and are not useful for mod-
eling dependence through time.

There were several discussants [de Haan (2006), de Vries (2006), Genest
and Rémillard (2006), Joe (2006), Linder (2006), Embrechts (2006), Peng
(2006), and Segers (2006)] of the paper, and some did agree on certain aspects,
but others did not agree at all with the issues raised. A rejoinder is given by
Mikosch (2006b).

1.17 Conclusions

Over the last decade, there has been significant and rapid development of the
theory of copulas. Much of the work has been motivated by their applications
to stochastic processes, economics, risk management, finance, insurance, the
environment (hydrology, climate, etc.), survival analysis, and medical sci-
ences.

In many statistical models, the assumption of independence between two
or more variables is often due to convenience rather than to the problem
at hand. In some situations, neglecting dependence effects may lead to an
erroneous conclusion. However, fitting a bivariate or multivariate distribution
to a dataset has often proved to be difficult. The copula approach is a way
to solve the difficult problem of finding the whole bivariate or multivariate
distribution by a two-stage statistical procedure; i.e., estimating the marginal
distributions and the copula function separately from each other. A weakness
of the copula approach is that it is difficult to select or find an appropriate
copula for the problem at hand. Often, the only alternative is to commence
with some educated guess by selecting a parametric family of copulas and
then try to fit the parameters. As a result, the model obtained may suffer
a certain degree of arbitrariness. Indeed, there are some authors who have
strong misgivings about the copula approach. Nevertheless, judging from the
amount of interest generated, the copulas certainly have secured themselves
an important place in the world.
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94. Mikusiński, P., Sherwood, H., Taylor, M.D.: Shuffles of Min. Stochastica 13, 61–74
(1992)

95. Naga, R.H.A., Geoffard, P.Y.: Decomposition of bivariate inequality indices by at-
tributes. Economics Letters 90, 362–367 (2006)

96. Nelsen, R.B.: An Introduction to Copulas, 2nd edition. Springer-Verlag, New York
(2006)

97. Nelsen, R.B.: An Introduction to Copulas. Springer-Verlag, New York (1999)
98. Patton, A.J.: Modelling asymmetric exchange rate dependence. International Eco-

nomic Review 47, 527–556 (2006)
99. Peng, L.: “Copulas: Tales and facts,” by Thomas Mikosch. Extremes 9, 49–56 (2006)



64 1 Bivariate Copulas

100. Pickands, J.: Multivariate extreme value distributions. In: Proceedings of the 43rd
Session of the International Statistical Institute, Buenos Aires, pp. 859–878. Amster-
dam: International Statistical Institute (1981)

101. Purcaru, O.: Semi-parametric Archimedean copula modelling in actuarial science.
Insurance Mathematics and Economics 33, 419–420 (2003)

102. Reichert, P., Borsuk, M.E.: Does high forecast uncertainty preclude effective decision
support? Environmental Modelling and Software 20, 991–1001 (2005)

103. Renard, B., Lang, M.: Use of a Gaussian copula for multivariate extreme value analy-
sis: Some case studies in hydrology. Advances in Water Resources 30, 897–912 (2007)

104. Roch, O., Alegre, A.: Testing the bivariate distribution of daily equity returns using
copulas: An application to the Spanish stock market. Computaional Statistics and
Data Analysis 51, 1312–1329 (2006)

105. Rukhin, A.L., Osmoukhina, A.: Nonparametric measures of dependence for biometric
data studies. Journal of Statistical Planning and Inference 131, 1–18 (2005)
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Chapter 2

Distributions Expressed as Copulas

2.1 Introduction

A feature common to all the distributions in this chapter is that H(x, y) is
a simple function of the uniform marginals F (x) and G(y). These types of
joint distributions are known as copulas, as mentioned in the last chapter,
and will be denoted by C(u, v); the corresponding random variables will be
denoted by U and V , respectively.

When the marginals are uniform, independence of U and V implies a flat
p.d.f., and any deviation from this will indicate some form of dependence.

Most of the copulas presented in this chapter are of simple forms although
in some cases [e.g., the distribution of Kimeldorf and Sampson (1975a) dis-
cussed in Section 2.12] they have a rather complicated expression. Some are
obtained through marginal transformations, while several others already have
uniform marginals and need no transformations to bring them to that form.

The great majority of the copulas described in this chapter have a single
parameter that reflects the strength of mutual dependence between U and
V . To emphasize its role, we could have chosen to use the same symbol in all
these cases. We have not done this, however, since for some distributions it
is customary to find α used, others θ, and yet others c.

Throughout this chapter, we assume that U and V are uniform with
C(u, v) as their joint distribution function and c(u, v) as the corresponding
density function. Thus, the supports of the bivariate distributions are unit
squares. For each case, we state some simple properties such as the correlation
coefficient and conditional properties. Also, we should note that for bivariate
copulas, Pearson’s product moment correlation coefficient is the same as the
grade coefficient (Spearman’s coefficient), as mentioned in Section 1.7.

Unless otherwise specified, the supports of all the distributions are over
the unit square. Also, the distribution functions are in fact the cumulative
distribution functions. Following this introduction, we discuss the Farlie–
Gumbel–Morgenstern (F-G-M) copula and its generalization in Section 2.2.
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Next, in Sections 2.3 and 2.4, we discuss the Ali–Mikhail–Haq and Frank
distributions. The distribution of Cuadras and Augé and its generalization
are presented in Section 2.5. In Section 2.6, the Gumbel–Hougaard copula
and its properties are detailed. Next, the Plackett and bivariate Lomax dis-
tributions are described in Sections 2.7 and 2.8, respectively. The Lomax
copula is presented in Section 2.9. In Sections 2.10 and 2.12, the Gumbel
type I bivariate exponential and Kimeldorf and Sampson’s distributions are
discussed, respectively. The Gumbel–Barnett copula and some other copulas
of interest are described in Sections 2.11 and 2.14, respectively. In Section
2.13, the Rodŕıguez-Lallena and Úbeda-Flores families of bivariate copulas
are discussed. Finally, in Section 2.15, some references to illustrations are
presented for the benefit of readers.

2.2 Farlie–Gumbel–Morgenstern (F-G-M) Copula and
Its Generalization

Formula for Distribution Function

C(u, v) = uv[1 + α(1 − u)(1 − v)], −1 ≤ α ≤ 1. (2.1)

Formula for Density Function

c(u, v) = 1 + α(1 − 2u)(1 − 2v). (2.2)

Correlation Coefficient

The correlation coefficient is ρ = α
3 , which clearly ranges from − 1

3 to 1
3 . After

the marginals have been transformed to distributions other than uniform,
Gumbel (1960a) and Schucany et al. (1978) showed that (i) ρ cannot exceed
1
3 and (ii) determined it for some well-known distributions—for example, α

π
for normal marginals and α

4 for exponential ones.

Conditional Properties

The regression E(V |U = u) is linear in u.



2.2 Farlie–Gumbel–Morgenstern (F-G-M) Copula and Its Generalization 69

Dependence Properties

• Lai (1978) has shown that, for 0 ≤ α ≤ 1, U and V are positively quadrant
dependent (PQD) and positively regression dependent (PRD).

• For 0 ≤ α ≤ 1, U and V are likelihood ratio dependent (LRD) (TP2)
[Drouet-Mari and Kotz (2001)].

• For −1 ≤ α ≤ 0, its density is RR2; see Drouet-Mari and Kotz (2001).

Remarks

• This copula is not Archimedean [Genest and MacKay (1986)].
• The p.d.f. is symmetric about the point (1

2 ,
1
2 ), i.e., it is the same as at

(1−u, 1− v) as it is at (u, v), and so the survival (complementary) copula
is the same as the original copula.

• Among the results established by Mikhail, Chasnov, and Wooldridge
(1987) are the regression curves when the marginals are exponential.
Drouet-Mari and Kotz (2001, pp. 115–116) have also provided expressions
for the conditional mean and conditional variance when the marginal dis-
tributions are F and G.

• Mukherjee and Sasmal (1977) have worked out some properties of a two-
component system whose components’ lifetimes have the F-G-M distribu-
tion, with standard exponential marginals, such as the densities, m.g.f.’s,
and tail probabilities of min(X,Y ), max(X,Y ), and X +Y , these being of
relevance to series, parallel, and standby systems, respectively. Mukherjee
and Sasmal (1977) have compared the densities and means of min(X,Y )
and max(X,Y ) with those of Downton (1970) and Marshall and Olkin
(1967) distributions.

• Tolley and Norman (1979) obtained some results relevant to epidemiolog-
ical applications with the marginals being exponential.

• Lingappaiah (1984) was also concerned with properties of the F-G-M dis-
tribution with gamma marginals in the context of reliability.

• Building a paper by Phillips (1981), Kotz and Johnson (1984) considered
a model in which components 1 and 2 were subjected to “revealed” and
“unrevealed” faults, respectively, with (Y,Z) having an F-G-M distribu-
tion, where Y is the time between unrevealed faults and Z is the time from
an unrevealed fault to a revealed fault.

• In the context of sample selection, Ray et al. (1980) have presented results
for the distributions having logistic marginals, with the copula being the
F-G-M or the Pareto.



70 2 Distributions Expressed as Copulas

2.2.1 Applications

• Cook and Johnson (1986) used this distribution (with lognormal marginals)
for fitting data on the joint occurrence of certain trace elements in water.

• Halperin et al. (1979) used this distribution, with exponential marginals, as
a starting point when considering how a population p.d.f. h(x, y) is altered
in the surviving and nonsurviving groups by a risk function a(x, y). (X and
Y were blood pressure and cigarette smoking, respectively, in this study.).

• Durling (1974) utilized this distribution with logistic marginals for y, re-
analyzing seven previously published datasets on the effects of mixtures of
poisons.

• Chinchilli and Breen (1985) used a six-variate version of this distribution
with logistic marginals to analyze multivariate binary response data arising
in toxicological experiments—specifically, tumor incidence at six different
organ sites of mice exposed to one of five dosages of a possible carcinogen
[data from Brown and Fears (1981)].

• Thinking now of “lifetimes” in the context of component reliability, Teich-
mann (1986) used this distribution for (U1, U2), with Ui being a measure
of association between an external factor and the failure of the ith unit—
specifically, it was the ratio of how much the external factor increases
the probability of failure compared with how much an always fatal factor
would increase the probability of failure.

• With exponential marginals, Lai (1978) used the F-G-M distribution
to model the joint distribution of two adjacent intervals in a Markov-
dependent point process.

• In the context of hydrology, Long and Krzysztofowicz (1992) also noted
that the F-G-M model is limited to describing weak dependence since
|ρ| ≤ 1/3.

2.2.2 Univariate Transformations

The following cases have been considered in the literature: the case of ex-
ponential marginals by Gumbel (1960a,b); of normal marginals by Gumbel
(1958, 1960b); of logistic marginals by Gumbel (1961, Section 6); of Weibull
marginals by Johnson and Kotz (1977) and Lee (1979); of Burr type III
marginals by Rodriguez (1980); of gamma marginals by D’Este (1981); of
Pareto marginals by Arnold (1983, Section 6.2.5), who cites Conway (1979);
of “inverse Rayleigh” marginals (i.e., F = exp(−θ/x2)) by Mukherjee and
Saran (1984); and of Burr type XII marginals by Bagchi and Samanta (1985).

Drouet-Mari and Kotz (2001, pp. 122–124) have presented a detailed dis-
cussion on the bivariate F-G-M distribution with Weibull marginals. Kotz
and Van Dorp (2002) have studied the F-G-M family with marginals as a
two-sided power distribution.
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2.2.3 A Switch-Source Model

For general marginals, the density is f(x)g(y){1 + α[1− 2F (x)][1− 2G(y)]}.
The density

a(x)a(y)[1 + αb(x)b(y)] (2.3)

arises from a mixture model governed by a Markov process. Imagine a source
producing observations from a density f1, another source producing observa-
tions from a density f2, a switch connecting one or the other of these sources
to the output, a Markov process governing the operation of the switch, and
X and Y being observations at two points in time; see Willett and Thomas
(1985, 1987).

2.2.4 Ordinal Contingency Tables

The nonidentical marginal case of (2.3) is a(x)b(y)[1+αb(x)d(y)]. This looks
very much like the “rank-2 canonical correlation model” used to describe
structure in ordinary contingency tables; see Gilula (1984), Gilula et al.
(1988), and Goodman (1986).

Now, instead of generalizing (2.1) and comparing it with contingency
table models, we shall explicitly write (2.1) in the contingency form and
see what sort of restrictions are effectively being imposed on the param-
eters of a contingency table model. The probability within a rectangle
{x0 < X < x1, y0 < Y < y1} is H11 − H01 − H10 + H00 (in an obvious no-
tation), which equals

(x1 − x0)(y1 − y0) + α[x1(1 − x1) − x0(1 − x0)][y1(1 − y1) − y0(1 − y0)]

= (x1 − x0)(y1 − y0)[1 + α(1 − x1 − x0)(1 − y1 − y0)].

Comparing this with equation (2.2) of Goodman (1986), we see that (1 −
x1 − x0) and (1− y1 − y0) play the role of row scores and column scores—in
effect, Goodman’s model U .

2.2.5 Iterated F-G-M Distributions

For the singly iterated case, the distribution function C and p.d.f. c are,
respectively, given by

C(u, v) = uv[1 + α(1 − u)(1 − v) + βuv(1 − u)(1 − v)], (2.4)

c(u, v) = [1 + α(1 − 2u)(1 − 2v) + βuv(2 − 3u)(2 − 3v)], (2.5)
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where the valid combinations of α and β are −1 ≤ α ≤ 1 and −1 − α ≤ β ≤(
3−α+

√
9 − 6α− 3α2

)
/2. This distribution is obtained [Johnson and Kotz

(1977) and Kotz and Johnson (1977)] by realizing that (2.1) may alternatively
be written in terms of the survival function C̄ as

C̄ = (1 − u)(1 − v)(1 + αuv). (2.6)

Now replacing the independent survival function (1 − u)(1 − v) in (2.1) by
this survival function of an F-G-M distribution, having a possibly differ-
ent associated parameter, β/α (say) instead of α, we obtain the result in
(2.4). This process can be repeated, of course. The correlation coefficient is
corr(U, V ) = α

3 + β
12 .

Note

For normal marginals, corr(X,Y ) = α
π + β

4π . The first iteration increases the
maximum attainable correlation to over 0.4. However, very little increase of
the maximum correlation is achievable with further iterations, as noted by
Kotz and Johnson (1977).

Lin (1987) suggested another way of iterating the F-G-M distribution:
Start with (2.6), and replace uv by (2.1). After substituting for C̄ in terms
of C, we obtain

C(u, v) = uv[1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

at the first step.
Zheng and Klein (1994) studied an iterated F-G-M distribution of the form

C(u, v) = uv +
∑

j

αj(uv)1/2[(1 − u)(1 − v)](j+1)/2, −1 ≤ αj ≤ 1.

2.2.6 Extensions of the F-G-M Distribution

We shall discuss here a number of extensions of F-G-M copulas developed
primarily to increase the maximal value of the correlation coefficient. Most
of these are polynomial-type copulas (copulas that are expressed in terms of
polynomials in u and v).

Huang and Kotz Extension

Huang and Kotz (1999) considered
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C(u, v) = uv[1 + α(1 − up)(1 − vp)]. (2.7)

The corresponding p.d.f. is

c(u, v) = 1 + α
(
1 − (1 + p)up

)(
1 − (1 + p)vp

)
. (2.8)

The admissible range for α is given by

−(max
{
1, p2

}
)−2 ≤ α ≤ p−1.

The range for ρ = corr(U, V ) = 3α( p
p+2 )2 is

−3(p + 2)−2 min
{
1, p2

}
≤ ρ ≤ 3p

(p + 2)2
.

Thus, for p = 2, ρmax = 3
8 , and for p = 1, ρmin = −3

16 .
It is clear that the introduction of the parameter p has enabled us to

increase the maximal correlation for the F-G-M copula.
Another extension of the bivariate F-G-M copula is given by

C(u, v) = uv[1 + α(1 − u)p(1 − v)p], p > 0, (2.9)

with p.d.f.

c(u, v) = 1 + α(1 − u)p−1(1 − v)p−1
(
1 − (1 + p)u

)(
1 − (1 + p)v

)
. (2.10)

The admissible range of α is (for p > 1)

−1 ≤ α ≤
(p + 1
p− 1

)p−1

.

The range is empty for p < 1. The correlation

ρ = corr(U, V ) = 12α
( 1

(p + 1)(p + 2)

)2

in this case has the range

−12
( 1

(p + 1)(p + 2)

)2

≤ ρ ≤ 12
(p− 1)1−p(p + 1)p−3

(p + 2)2
.

Thus, for p = 1.877, ρmax = 0.3912 and ρmin = −1
3 , showing that the maximal

correlation is even higher than the one attained by the first extension in (2.7).
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Sarmanov’s Extension

Sarmanov (1974) considered the following copula:

C(u, v) = uv
{
1 + 3α(1 − u)(1 − v) + 5α2(1 − u)(1 − 2u)(1 − v)(1 − 2v)

}
.

(2.11)
The corresponding density function is

c(u, v) = 1 + 3α(2u− 1)(2v − 1) +
5
4
α2[3(2u− 1)2 − 1][3(2v − 1)2 − 1].

Equation (2.11) is a probability distribution when |α| ≤
√

7
5 � 0.55.

Bairamov–Kotz Extension

Bairamov and Kotz (2000a) considered a two-parameter extension of the
F-G-M copula given by

C(u, v) = uv[1 + α(1 − ua)b(1 − va)b], a > 0, b > 0, (2.12)

with the corresponding p.d.f.

c(u, v) = 1 +α(1− xa)b−1(1− va)b−1[1− ua(1 + ab)][1− va(1 + ab)]. (2.13)

The admissible range of α is as follows: For b > 1,

−min

⎧
⎨

⎩
1,

[
1
ab

(
ab + 1
b− 1

)b−1
]2
⎫
⎬

⎭
≤ α ≤

[
1
ab

(
ab + 1
b− 1

)b−1
]

,

and for b = 1, the quantity inside the square bracket is taken to be 1. It can be

shown in this case that corr(U, V ) = 12α
[

b
ab+2

Γ (b)Γ (α/2)

Γ (b+ 2
a )

]2
. For a = 2.8968

and b = 1.4908, we have ρmax = 0.5015. For a = 2 and b = 1.5, ρmin = −0.48.
Another extension that does not give rise to a copula is

C(u, v) = upvp[1 + α(1 − uq)n(1 − vq)n], p, q ≥ 0, n > 1, (2.14)

with marginals up and vp, respectively.

Lai and Xie Extension

Lai and Xie (2000) considered the copula

C(u, v) = uv + αubvb(1 − u)a(1 − v)a, a, b ≥ 1, (2.15)
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and showed that it is PQD for 0 ≤ α ≤ 1. The corresponding p.d.f. is

c(u, v) = 1 + α(uv)b−1[(1 − u)(1 − v)]a−1[b− (a + b)u][b− (a + b)v]. (2.16)

The correlation coefficient is given by corr(U, V ) = 12α[B(b + 1, a + 1)]2.
Bairamov and Kotz (2000b) observed that (2.15) is a bivariate copula for α
over a wider range satisfying

min
{

1
[B+(a, b)]2

,
1

[B−(a, b)]2

}

≤ α ≤ 1
B+(a, b)B−(a, b)

,

where B+ and B− are functions of a and b.

Bairamov–Kotz–Bekci Generalization

Bairamov et al. (2001) presented a four-parameter extension of the F-G-M
copula as

C(u, v) = uv
{

1+α(1−up1)q1(1−vp2)q2

}
, p1, p2 ≥ 1, q1, q2 ≥ 1. (2.17)

2.2.7 Other Related Distributions

• Farlie (1960) introduced the more general expression

H(x, y) = F (x)G(y){1 + αA[F (x)]B[G(y)]}.

• Rodriguez (1980, p. 48), in the context of Burr type III marginals, made
passing references to H = FG[1 + α(1 − F a)(1 −Gb)].

• Cook and Johnson (1986) discussed a compound F-G-M distribution.
• Regarding a distribution obtained by a Khintchine mixture using the

F-G-M distribution as the bivariate F-G-M copula, see Johnson (1987,
pp. 157–159).

• Cambanis (1977) has mentioned C(u, v) = uv[1+β(1−u)+β(1−v)+α(1−
u)(1 − v)], which arises as the conditional distribution in a multivariate
F-G-M distribution.

• The following distribution was denoted u8 in Kimeldorf and Sampson
(1975b):

C(u, v) = uv[1 + α(1 − u)(1 − v) + β(1 − u2)(1 − v2)], (2.18)

c(u, v) = 1 + α(1 − 2u)(1 − 2v) + β(1 − 3u2)(1 − 3v2), (2.19)
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with correlations τ = 2α
9 + β

2 + αβ
450 and ρS = α

3 + 3β
4 .

2.3 Ali–Mikhail–Haq Distribution

C(u, v) =
uv

1 − α(1 − u)(1 − v)
(2.20)

and

c(u, v) =
1 − α + 2α uv

1−α(1−u)(1−v)

[1 − α(1 − u)(1 − v)]2
. (2.21)

Correlation Coefficients

The range of product-moment correlation is (−0.271, 0.478) for uniform
marginals, (−0.227, 0.290) for exponential marginals, and approximately
(−0.300, 0.600) for normal marginals; see Johnson (1987, pp. 202–203), cred-
iting these results to Conway (1979).

Derivation

This distribution was introduced by Ali et al. (1978). They proposed searching
for copulas for which the survival odds ratio satisfies

1 − Cα(u, v)
Cα(u, v)

=
1 − u

u
+

1 − v

v
+ (1 − α)

1 − u

u
× 1 − v

v
.

Solving Cα(u, v) yields the Ali–Mikhail–Haq family given in (2.20).

Remarks

• This distribution is an example of an Archimedean copula:

log
[
1 + α(C − 1)

C

]

= log
[
1 + α(u− 1)

u

]

+ log
[
1 + α(v − 1)

v

]

;

i.e., the generator is ϕ = log 1+α(u−1)
u .

• The distribution may be written as

C(u, v) = uv[1 + α(1 − u)(1 − v)] +
∞∑

i=2

αi(1 − u)i(1 − v)i,
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with the first term being the F-G-M copula.
• Ali et al. (1978) showed that the copula is PQD, LTD, and PRD.
• Mikhail et al. (1987a) presented some further results, including the (mean)

regression curves when the marginals are logistic. They also corrected er-
rors in the calculations of the median regression by Ali et al. (1978).

Genest and MacKay (1986) showed that

τ =
3α− 2

3α
− 2(1 − α)2

3α2
log(1 − α).

To obtain ρS , the second integration requires finding
∫ 1

0
(1−u)−1 log(1−α+

αu)du. By substituting x = α(1− u), it becomes
∫ α

0
x−1 log(1− x)dx, which

is diln(1 − α), diln being the dilogarithm function.
The final expression for ρS is then

ρS = −12(1 + α)
α2

diln(1 − α) − 3(12 + α)
α

− 24(1 − α)
α2

log(1 − α).

2.3.1 Bivariate Logistic Distributions

A bivariate distribution that corresponds to (2.20),

C(u, v) =
uv

1 − α(1 − u)(1 − v)

is

H(x, y) =
[
1 + e−x + e−y + (1 − α)e−x−y

]−1
, −1 ≤ α ≤ 1, (2.22)

[Ali et al. (1978)].

Properties

• The marginals are standard logistic distributions.
• When α = 0, X and Y are independent.
• When α = 1, we have Gumbel’s bivariate logistic distribution discussed in

Section 11.17:
H(x, y) =

(
1 + e−x + e−y

)−1
.

• Gumbel’s logistic lacks a parameter which limits its usefulness in applica-
tions. The generalized bivariate logistic (2.22) makes up for this lack.
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2.3.2 Bivariate Exponential Distribution

The copula in (2.20) with α = 1 also corresponds to the survival copula of a
bivariate exponential distribution whose survival function is given by

H̄(x, y) =
(
ex + ey − 1

)−1
.

Clearly, X and Y are standard exponential random variables.

2.4 Frank’s Distribution

C(u, v) = logα

[

1 +
(αu − 1)(αv − 1)

α− 1

]

(2.23)

and

c(u, v) =
(α− 1) logα αu+v

[α− 1 + (αu − 1)(αv − 1)]2
. (2.24)

Correlation and Dependence

(i) For 0 < α < 1, we have (positive) association.
(ii) As α → 1, we have independence.
(iii) For α > 1, we have negative association.

Nelsen (1986) has given an expression for Blomqvist’s medial correlation
coefficient. Nelsen (1986) and Genest (1987) have shown that

τ = 1 + 4[D1(α∗) − 1]/α,

ρS = 1 + 12[D2(α∗) −D1(α∗)]/α∗,

where α∗ = − log(α) and D1 and D2 are Debye functions defined by

Dk(β) =
k

βk

∫ β

0

tk

et − 1
dt.

Derivation

This is the distribution such that both C and Ĉ = u+ v−C are associative,
meaning C[C(u, v), w] = C[u,C(v, w)] and similarly for Ĉ [Frank (1979)].
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There does not seem to be a probabilistic interpretation of this associative
property.

Remarks

• This distribution is an example of an Archimedean copula [Genest and
MacKay (1986)],

log
(

1 − αC

1 − α

)

= log
(

1 − αu

1 − α

)

+ log
(

1 − αv

1 − α

)

,

so that ϕ(t) = log(1−αt

1−α ).
• The p.d.f. is symmetric about (1

2 ,
1
2 ), and consequently the copula and the

survival (complementary) copula are the same. In fact, this family is the
only copula that satisfies the functional equation Ĉ(u, v) = C(u, v).

• When 0 < α < 1, this distribution is positive likelihood ratio dependent
[Genest (1987)].

• This distribution has the “monotone regression dependence” property
[Bilodeau (1989)].

2.5 Distribution of Cuadras and Augé and
Its Generalization

This distribution, put forward by Cuadras and Augé (1981), is given by

C(u, v) = uv[max(u, v)]−c = uv[min(u−c, v−c)], (2.25)

with c being between 0 and 1. It is usually met with identical exponential
marginals in the form of Marshall and Olkin given by

H̄(x, y) = exp(−λx− λy − λ12 max(x, y)).

2.5.1 Generalized Cuadras and Augé Family
(Marshall and Olkin’s Family)

The Marshall and Olkin bivariate exponential distribution in the original
form is

H̄(x, y) = exp
(
− λ1x− λ2y − λ12 max(x, y)

)
.
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Nelsen (2006, p. 53) considered the uniform representation of the survival
function above. In order to obtain it, we rewrite the preceding equation in
the form

H̄(x, y) = exp(−(λ1 + λ12)x− (λ2 + λ12)y + λ12 min(x, y))
= F̄ (x)Ḡ(y)min{exp(λ12x), exp(λ12y)}. (2.26)

Set u = F̄ (x) and v = Ḡ(y), and let α = λ12
(λ1+λ12)

, and β = λ12
(λ2+λ12)

.

Then, exp(λ12x) = u−α and exp(λ12y) = v−β , with the survival copula
(complementary copula) Ĉ given by

Ĉ(u, v) = uvmin(u−α, v−β) = min(uv1−β , u1−αv). (2.27)

Since the λ’s are all positive, it follows that α and β satisfy 0 < α, β < 1.
Hence, the survival copula for the Marshall and Olkin bivariate exponential
distribution yields a two-parameter family of copulas given by

Cα,β(u, v) = min(u1−α, v1−β) =
{
u1−αv, uα ≥ vβ

uv1−β , uα ≤ vβ . (2.28)

This family is known as the Marshall and Olkin family and the generalized
Cuadras and Augé family. When α = β = c, (2.28) reduces to the Cuadras
and Augé family in (2.25). Hanagal (1996) studied the distribution above
with Pareto distributions of the first kind as marginals.

A slight complicating factor with this is that the p.d.f. has a singularity
along y = x. For α = β = c, Cuadras and Augé determined Pearson’s
correlation to be 3c/(4− c). Since the marginals are uniform, ρS is the same
value. It may also be shown that τ = c/(2 − c), and so ρS = 3τ/(2 + τ).

Nelsen (2006, Chapter 5) showed that ρS = 3τ/(2 + τ) also holds for the
asymmetric case H = min(xy1−β , x1−αy), but τ = αβ

α−αβ+β .

2.6 Gumbel–Hougaard Copula

The copula satisfies the equation

[− logC(u, v)]α = (− log u)α + (− log v)α. (2.29)

Rewriting it in a different form gives

C(u, v) = exp
(

−
[
(− log u)α + (− log v)α

]1/α
)

. (2.30)

Letting − log u = e−x,− log v = e−y in (2.30), we can verify that the joint
distribution of X and Y is
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H(x, y) = exp
[
−
(
e−αx + e−αy

)1/α]
, (2.31)

which is the type B bivariate extreme-value distribution with type 1 extreme-
value marginals, see Kotz et al. (2000, p. 628) and Nelsen (2006, p. 28).

Correlation Coefficient

Kendall’s τ is (α−1)/α [Genest and MacKay (1986)]. The correlation between
logU and log V is 1 − α2.

Derivation

Perhaps surprisingly, the survival copula corresponding to (2.30) can be de-
rived by compounding [Hougaard (1986)].

Suppose there are two independent components having failure rate func-
tions given by θλ(x) and θλ(y). Then the joint survival probability is
e−θ[Λ(x)+Λ(y)]. Now assuming θ has a stable distribution with the Laplace
transform E(e−θs) = e−sγ

, then E(e−θ[Λ(x)+Λ(y)]) = e−[Λ(x)+Λ(y)]γ . Finally,
we might suppose that λ(u) is of the Weibull form εαuα−1, in which case
Λ(t) = εtα, so that

H̄(x, y) = exp[−(εxα + εyα)γ ], x, y > 0. (2.32)

Set γ = 1/α, and it follows that

H̄(x, y) = exp[−(εxα + εyα)1/α], x, y > 0.

Clearly, H̄(x, y) = C(F̄ (x), Ḡ(y)) where C is the Gumbel–Hougaard cop-
ula and F̄ (x) = e−ε1/αx and Ḡ(y) = e−ε1/αy.

It now follows from (1.4) that the Gumbel–Hougaard copula is the survival
copula of the bivariate exponential distribution given by (2.31).

The Pareto distribution is obtained in a similar manner, but with θ having
a gamma distribution. Hougaard (1986, p. 676) has mentioned the possibility
of using a distribution that subsumes both gamma and positive stable distri-
butions in order to arrive at a bivariate distribution that subsumes both the
Gumbel–Hougaard and Pareto copulas.

Independently, Crowder (1989) had the same idea but added a new wrinkle
to it. His distribution, in the bivariate form, is

H̄(x, y) = exp[κα − (κ + εxγ + εyγ)α], (2.33)

where we see an extra parameter κ; also, note that ε’s and γ’s are allowed
to be different for X and Y . An interpretation of κ is in terms of selection
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based on Z > z0 from a population having trivariate survival distribution
exp[−(εxγ +εyγ +εzγ)α]. Crowder has discussed further the dependence and
association properties, hazard functions and failure rates, the marginal dis-
tributions, the density functions, the distribution of minima, and the fitting
of the model to data.

Remarks

• We have called this a Gumbel–Hougaard copula since it appeared in the
works of Gumbel (1960a, 1961) and a derivation of it has been given by
Hougaard (1986).

• Clearly, from the form of (2.29), it is an Archimedean copula [Genest and
MacKay (1986)].

Fields of Applications

• Gumbel and Mustafi (1967) fitted this distribution, in the extreme value
form, to data on the sizes of annual floods (1918–1950) of the Fox River
(Wisconsin) at two points.

• Hougaard (1986) used a trivariate version of this distribution to analyze
data on tumor appearance in rats with 50 liters of a drug treated and two
control animals.

• Hougaard (1986) analyzed insulation failure data using a trivariate form
of the Weibull version of this distribution.

• Crowder (1989) fitted (2.33) to data on the sensitivity of rats to tactile
stimulation of rats that did or did not receive an analgesic drug.

2.7 Plackett’s Distribution

The distribution function is derived from the functional equation

C(1 − u− v + C)
(u− C)(v − C)

= ψ. (2.34)

The equation above can be interpreted as (having the support divided into
four regions by dichotomizing U and V )

Probability in lower-left region × Probability in upper-right region
Probability in upper-left region × Probability in lower-right region

= a constant

independent of where the variates are dichotomized. Expressed alternatively,
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C =
[1 + (ψ − 1)(u + v)] −

√
[1 + (ψ − 1)(u + v)]2 − 4ψ(ψ − 1)uv
2(ψ − 1)

. (2.35)

It needs to be noted that the other root is not a proper distribution function,
not falling within the Fréchet bounds.

The probability density function is

c =
ψ[(ψ − 1)(u + −2uv) + 1]

{[1 + (ψ1)(u + v)]2 − 4ψ(ψ − 1)uv}3/2
.

Correlation Coefficient

Spearman’s correlation is ρS = ψ+1
ψ−1 −

2ψ
(ψ−1)2 logψ. Kendall’s τ does not seem

to be known as a function of ψ. For the product-moment correlation when
the marginals are normal, see Mardia (1967).

Conditional Properties

The regression of V on U is linear. After the marginals have been transformed
to be normal, the conditional densities are skew and the regression of Y on
X is nonlinear [Pearson (1913)].

Remarks

• Interest in this distribution was stimulated by the papers of Plackett (1965)
and Mardia (1967), but in fact it can be traced in the contingency table
literature back to the days of Yule and Karl Pearson [see Goodman (1981)].

• As compared with the bivariate normal distribution, the outer contours
of the p.d.f. of this distribution with normal marginals are more nearly
circular—their ellipticity is less than that of the inner ones [Pearson (1913)
and Anscombe (1981, pp. 306–310)].

• For low correlation, this distribution is equivalent to the F-G-M in the
sense that, if we set ψ = 1 − α in (2.33), expand in terms of α, and then
let α be small so that we can neglect α2 and higher terms, we arrive at
(2.1).

• Arnold (1983, Section 6.2.5) has made brief mention of the Pareto-
marginals version of this distribution, citing Conway (1979).

• Another account of this distribution is by Conway (1986).
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Fields of Application

• This distribution has received considerable attention in the contingency
table literature, where it is known as the constant global cross ratio model.
Suppose one has a square table of frequencies, the categories of the di-
mensions being ordinals. Then, if the model of independence fails and a
degree of positive (or negative) association is evident, one model that has
a single degree of freedom to describe the association is the bivariate nor-
mal. But this is inconvenient to handle computationally with most of the
present-day packages for modeling tables of frequencies. Another model
consisting of a single association model is Plackett’s distribution, which is
much easier computationally. Work in this direction has been carried out
by Mardia (1970a, Example 8.1), Wahrendorf (1980), Anscombe (1981,
Chapter 12), Goodman (1981), and Dale (1983, 1984, 1985, 1986).

• In the context of bivariate probit models, Amemiya (1985, p. 319) has
mentioned that Lee (1982) applied Plackett’s distribution with logistic
marginals to the data of Ashford and Sowden (1970) and Morimune (1979).

• Mardia (1970b) fitted the SU -marginals version of this distribution to
Johansen’s bean data.

2.8 Bivariate Lomax Distribution

The joint survival function of the bivariate Lomax distribution (Durling–
Pareto distribution) is given by

H̄(x, y) = (1 + ax + by + θxy)−c, 0 ≤ θ ≤ (c + 1)ab, a, b, c > 0, (2.36)

with probability density function

h(x, y) =
c[c(b + θx)(a + θy) + ab− θ]

(1 + ax + by + θxy)c+2
. (2.37)

Marginal Properties

It has Lomax (Pareto of the second kind) marginals with

E[X] =
1

a(c− 1)
, E[Y ] =

1
b(c− 1)

, c > 1

(the mean exists only if c > 1) and
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var(X) =
c

(c− 1)2(c− 2)a2
, var(Y ) =

c

(c− 1)2(c− 2)b2
, c > 2

(the variance exists only if c > 2).

Derivations

• Begin with two exponential random variables X and Y with parameters θ1
and θ2, respectively. Conditional on (θ1, θ2), X and Y are independent. We
now assume that θ1, θ2) has Kibble’s bivariate gamma distribution with
density h(θ1, θ2) (see Section 8.2). Then

Pr(X > x, Y > y) =
∫ ∞

0

∫ ∞

0

exp(−θ1x, θ2y)h(θ1, θ2)dθ1θ2

will have the same form as (2.36).
• Begin with Gumbel’s bivariate distribution of the type

F̄ (x, y) = exp
(
− η(αx + βy + λxy)

)
.

Assuming that η has a gamma distribution with scale parameter m and
shape parameter c, then (2.36) will be obtained by letting a = α/m, b =
β/m, and θ = λ/m; see Sankaran and Nair (1993).

Properties of Bivariate Dependence

Lai et al. (2001) established the following properties:

• For the bivariate Lomax survival function, X and Y are positively (nega-
tively) quadrant dependent if 0 ≤ θ ≤ ab (ab < θ ≤ (c + 1)ab).

• The Lomax distribution is RTI if θ ≤ ab and RTD if θ ≥ ab.
• X and Y are associated if θ ≤ ab.

Correlation Coefficients

• Lai et al. (2001) have shown that

ρ =
(1 − θ)(c− 2)

c2
F [1, 2; c + 1; (1 − θ)] , 0 ≤ θ ≤ (c + 1), a = b = 1,

where F (a, b; c; z) is Gauss’ hypergeometric function; see, for example,
Chapter 15 of Abramowitz and Stegun (1964).

• For a �= 1, b �= 1, the correlation is
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ρ =
(ab− θ)(c− 2)

abc2
F [1, 2; c + 1; (1 − θ/ab)] , 0 ≤ θ ≤ (c + 1)ab.

• For c = n an integer and ab = 1,

corr(X,Y )

=
θn−2

(n−1)(θ−1)n−1 log θ −
∑n−1

i=2
θn−1−i

n(i−1)(θ−1)n−i − 1
(n−1)2

n
(n−1)2(n−2)

=
θn−2

(θ−1)n−1 log θ −
∑n−1

i=2
θn−1−i

(i−1)(θ−1)n−i − 1
n−1

n
(n−1)(n−2)

, n ≥ 3.

(i) For c = n = 2, and ab = 1, in particular,

cov(X,Y ) =
log θ
θ − 1

− 1.

Thus, the covariance exists for c = 2 even though the correlation does not
exist since the marginal variance does not exist for c = 2.
(ii) For c = n = 3, and ab = 1, in particular,

ρ = corr(X,Y ) =
[

2
3(θ − 1)2

θ log θ − 2
3(θ − 1)

− 1
3

]

.

• For a given c and ab = 1, the correlation ρ decreases as θ increases. How-
ever, it does not decrease uniformly over c.

• For a given c and ab = 1, the value of ρ lies in the interval

− (c− 2)
c

F (1, 2; c + 1;−c) ≤ ρ ≤ 1/c.

Thus, the admissible range for ρ is (−0.403, 0.5).
• This reasonably wide admissible range compares well with the well-known

Farlie–Gumbel–Morgenstern bivariate distribution having the ranges of
correlation (i) −1

3 to 1
3 for uniform marginals, (ii) − 1

4 to 1
4 for exponential

marginals, and (iii) − 1
π to 1

π for normal marginals, as mentioned earlier.

Remarks

• In order to have a well-defined bivariate Lomax distribution, we need to
restrict ourselves to the case c > 2 so that the second moments exist.

• The bivariate Lomax distribution is also known as the Durling-Pareto
distribution.

• Durling (1975) actually proposed an extra term in the Takahasi–Burr dis-
tribution rather than in the simpler Pareto form. Some properties of Durl-
ing’s distribution were established by Bagchi and Samanta (1985).



2.8 Bivariate Lomax Distribution 87

• Durling has given the (product-moment) correlation coefficient for the
general case in which x and y are each raised to some power.

• An application of this distribution in the special case where c = 1, con-
sidered in the literature, is in modeling the severity of injuries to vehicle
drivers in head-on collisions between two vehicles of equal mass.

• Several reliability properties have been discussed by Sankaran and Nair
(1993). Lai et al. (2001) have discussed some additional properties per-
taining to reliability analysis.

• Rodriguez (1980) introduced a similar term into the bivariate Burr type
III distribution, resulting in H = (1+x−a+y−b+kx−ay−b)−c. He included
a number of plots of probability density surfaces of this distribution in the
report. This distribution (with location and scale parameters present) was
used by Rodriguez and Taniguchi (1980) to describe the joint distribution
of customers’ and expert raters’ assessments of octane requirements of
cars.

• The special case

H̄(x, y) =
1

(1 + ax + by)c
, c > 0, (2.38)

is also known as the bivariate Pareto and has been studied in detail by
several authors, including Lindley and Singpurwalla (1986).

• Sums, products, and ratios for the special case given in (2.38) are derived
in Nadarajah (2005).

• Shoukri et al. (2005) studied inference procedures for γ = Pr(Y < X)
of the special case above; in particular, the properties of the maximum
likelihood estimate γ̂ are derived.

2.8.1 The Special Case of c = 1

Suppose now that we have a number of 2×2 contingency tables, each of which
corresponds to some particular x and some particular y, and we want to fit the
distribution H̄ = (1+ax+by+kabxy)−1 to them. Notice that the parameter
θ depends on a and b. This special case with c = 1 is very convenient in these
circumstances because we have p11 = (1 + ax + by + kabxy)−1, p10 + p11 =
(1 + ax)−1, and p01 + p11 = (1 + by)−1. We can then estimate a and b from
the marginals by

1 − (p10 + p11)
p10 + p11

= ax and
1 − (p01 + p11)

p01 + p11
= by,

and k can be estimated by
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1−p11
p11

− 1−(p10+p11)
p10+p11

− 1−(p01+p11)
p01+p11[

1−(p19+p11)
p10+p11

]
+
[

1−(p01+p11)
p01+p11

] .

Applications of this distribution in transformed form have been discussed by
Morimune (1979) and Amemiya (1975).

2.8.2 Bivariate Pareto Distribution

In this case, we have
H̄(x, y) = (1 + x + y)−c. (2.39)

The marginal is known as the Pareto distribution of the second kind (some-
times the Lomax distribution). The p.d.f. is

h(x, y) = c(c + 1)(1 + x + y)−(c+2). (2.40)

Correlation Coefficients and Conditional Properties

Pearson’s product-moment correlation is 1/c for c > 2. The regression of Y
on X is linear, E(Y |X = x) = (x + 1)/c, and the conditional variance is
quadratic, var(Y |X = x) = c+1

(c−1)c2 (x+1)2 for c > 1. In fact, Y |X = x is also
Pareto.

Derivation

Starting with X and Y having independent exponential distributions with the
same scale parameter and then taking the scale parameter to have a gamma
distribution, this distribution is obtained by compounding. More generally,
starting with Pr(X > x) = [1 − A(x)]θ and Pr(Y > y) = [1 − B(y)]θ, where
A and B are distribution functions, and then taking θ to have a gamma
distribution, the distribution (2.39) is obtained by compounding, with the
only difference being that monotone transformations have been applied to X
and Y .

If compounding of the scale parameter is applied to an F-G-M distribu-
tion that has exponential marginals instead of an independent distribution
with exponential marginals, a distribution proposed and used by Cook and
Johnson (1986) results.
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Remarks

• Barnett (1979, 1983b) has considered testing for the presence of an outlier
in a dataset assumed to come from this distribution; see also Barnett
and Lewis (1984, Section 9.3.3). An alternative proposal given by Barnett
(1983a) involves transformations to independent normal variates.

• The bivariate failure rate is decreasing [Nayak (1987)].
• The product moment is E(XrY s) = Γ(c − r − s)Γ(r + 1)Γ(s + 1)/Γ(c) if

r + s < c and ∞ otherwise.
• Mardia (1962) wrote this distribution in the form h ∝ (bx+ay−ab)−(c+2),

with x > a > 0, y > b > 0. In this case, Malik and Trudel (1985) have
derived the distributions of XY and X/Y .

Univariate Transformation

In the bivariate Burr type XII (Takahasi–Burr) distribution, x and y in
the distribution function are replaced by their powers; see Takahasi (1965).
Further results, oriented toward the repeated measurements experimental
paradigm, for this case have been given by Crowder (1985). For generation of
random variates following the method of the distribution’s derivation (scale
mixture), see Devroye (1986, pp. 557–558). Arnold (1983, p. 249) has referred
to this as a type IV Pareto distribution.

Rodriguez (1980) has discussed the bivariate Burr distribution, H(x, y) =
(1 + x−a + y−b)−c. In that report, there is a derivation (by compounding an
extreme-value distribution with a gamma), algebraic expressions for the con-
ditional density, conditional distributions, conditional moments, and correla-
tion, and a number of illustrations of probability density surfaces. Satterth-
waite and Hutchinson (1978) replaced x and y in the distribution function
by e−x and e−y. Gumbel (1961) had previously done this in the special case
c = 1, thus getting a distribution whose marginals are logistic; however, it
lacks an association parameter.

Cook and Johnson (1981) and Johnson (1987, Chapter 9) have treated
this copula [whether in Takahasi (1965) form, or Satterthwaite–Hutchinson
(1978) form] systematically and have also provided several plots of densities.
Cook and Johnson (1986) and Johnson (1987, Section 9.2) have generalized
the distribution further.

2.9 Lomax Copula

Consider the bivariate Lomax distribution with the survival function given by
(2.36). As H̄(x, y) = Ĉ(F̄ (x), Ḡ(x)), we observe that (2.36) can be obtained
from the survival copula
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Ĉ(u, v) = uv
{

1 − α(1 − u
1
c )(1 − v

1
c )
}−c

, −c ≤ α ≤ 1, (2.41)

by taking α = 1− θ
ab . Recall that the survival function of C is related to the

survival copula through C̄(u, v) = 1− u− v +C(u, v) = Ĉ(1− u, 1− v), and
so the copula that corresponds to (2.41) is

C(u, v) =
(1 − u)(1 − v)

{
1 − α[1 − (1 − u)

1
c ][1 − (1 − v)

1
c ]
} 1

c

+ u + v − 1. (2.42)

• Case θ = 0 (α = 1), so Ĉ(u, v) = (u−1/c+v−1/c−1)c is known as Clayton’s
copula.

• The case α = 0 (i.e., θ = ab) corresponds to the case of independence.
Fang et al. (2000) have also shown that U and V are also independent as
c → ∞.

• When c = 1, the survival copula (2.41) becomes

Ĉ(u, v) =
uv

1 − α(1 − u)(1 − v)
, −1 < α < 1,

which is nothing but the Ali–Mikhail–Haq family of an Archimedean cop-
ula with generator log 1−α(1−t)

t . Thus, the survival copula in (2.41) can be
considered to be a generalization of the Ali–Mikhail–Haq family.

• Fang et al. (2000) have shown that the correlation coefficient of the copula
is

ρ = 3{3F2(1, 1, c : 1 + 2c, 1 + 2c;α) − 1}, 0 ≤ α ≤ 1, c > 0,

where

3F2(a, b, c; d, e;x) =
∞∑

k=0

(a)k(b)k(c)k

(d)k(e)k

xk

k!
.

• It is noted in Fang et al. (2000) that the copula is LRD if α > 0.
• For α = 1, the survival copula is also known as the Pareto copula, which

is discussed next.

2.9.1 Pareto Copula (Clayton Copula)

Ĉ(u, v) = (u−1/c + v−1/c − 1)−c, c > 0. (2.43)

This is the survival copula that corresponds to the bivariate Pareto dis-
tribution in (2.39). This is not symmetric about (1

2 ,
1
2 ). Equation (2.43) is
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also called the Clayton copula by Genest and Rivest (1993). Clearly, this is
a special case of the Lomax copula in (2.41).

The survival function of the copula that corresponds to the bivariate
Pareto distribution in (2.43) is given by

C̄(u, v) = [(1 − u)−1/c + (1 − v)−1/c − 1]−c, c > 0,

which has been discussed by many authors, including Oakes (1982, 1986) and
Cox and Oakes (1984, Section 10.3). Note that the copula that corresponds
to the bivariate Pareto distribution is given by

C(u, v) = [(1 − u)−1/c + (1 − v)−1/c − 1]−c + u + v − 1.

Remarks

• Johnson (1987, Section 9.1) has given a detailed account of this distribu-
tion and has paid more attention to the marginals than we have done here.
Johnson has referred to this as the Burr–Pareto–logistic family.

• This distribution is an example of an Archimedean copula [Genest and
MacKay (1986)] with generator ϕ(t) = t−1/c − 1.

• Ray et al. (1980) have presented results relevant in the context of sample
selection.

• This distribution has the “monotone regression dependence” property
[Bilodeau (1989)].

• It is possible [see Drouet-Mari and Kotz (2001, p. 86)] to extend the Pareto
copula in (2.43) to have negative dependence by allowing c < 0. In that
case, Ĉ(u, v) = max(u−1/c + v−1/c − 1, 0)−c, c < 0. As c → −1, this
distribution then tends to the lower Fréchet bound.

Fields of Applications

• Cook and Johnson (1981, 1986) fitted this distribution, among others,
with lognormal marginals to data on the joint distribution of certain trace
elements (e.g., cesium and scandium) in water.

• Concerning association in bivariate life tables, Clayton (1978) deduced
that a bivariate survival function must be of the form H̄(x, y) = [1 +
a(x) + b(y)]−c if

hH̄(x, y) = c

∫ ∞

x

h(u, y)du
∫ ∞

y

h(x, v)dv.

Clayton’s context is in terms of deaths of fathers and sons from some
chronic disease, with association stemming from common environmental
or genetic influences. The equation above arises as follows:
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– Consider the ratio of the age-specific death rate for sons given that the
father died at age y to the age-specific death rate for sons given that the
father survived beyond age y. This ratio is assumed to be independent
of the son’s age.

– As a symmetric form of association is being considered, an analogous
assumption holds for the ratio of fathers’ age-specific death rates.

– The proportionality property h
H̄

=c ∂
∂x (− log H̄) ∂

∂y (− log H̄) then holds.
(The left-hand side of this equation is the bivariate failure rate, and
the right-hand side is c times the product of the hazard function for
sons of fathers who survive until y and the hazard function for sons of
fathers who survive until x.) See also Oakes (1982, 1986) and Clayton
and Cuzick (1985a,b).

• Klein and Moeschberger (1988) have used this form of association in the
“competing risks” context.

• The bivariate Burr distribution, both with and without the extra associ-
ation term introduced by Durling (1975), was used by Durling (1974) in
reanalyzing seven previously published datasets on the effects of mixtures
of poisons.

• The Takahasi–Burr distribution, in its quadrivariate form, was applied
by Crowder (1985) in a repeated measurements context—specifically, in
analyzing response times of rats to pain stimuli at four intervals after
receiving a dose of an analgesic drug.

2.9.2 Summary of the Relationship Between
Various Copulas

For ease of reference, we summarize the relationship between the Lomax
copula and its special cases.

The Lomax copula (α, c) is given in (2.41):

(i) α = 1 ⇒ Pareto copula (Clayton copula) as given in (2.43).
(ii) c = 1 ⇒ Ali–Mikhail–Haq copula as given in (2.20).

2.10 Gumbel’s Type I Bivariate
Exponential Distribution

Again, we depart from our usual pattern by describing this distribution, with
exponential marginals, before the copula.
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Formula for Cumulative Distribution Function

H(x, y) = 1 − e−x − e−y + e−(x+y+θxy), 0 ≤ θ ≤ 1. (2.44)

Formula for Density Function

h(x, y) = e−(x+y+θxy)[(1 + θx)(1 + θy) − θ]. (2.45)

Univariate Properties

Both marginals are exponential.

Correlation Coefficients and Conditional Properties

ρ = −1 +
∫ ∞

0

e−y

1 + θy
dy.

Gumbel (1960a) has plotted ρ as a function of θ. A compact expression may
be obtained in terms of the exponential integral (but care is always necessary
with this function, as the nomenclature and notation are not standardized).
For θ = 0, X and Y are independent and ρ = 0. As θ increases, ρ increases,
reaching −0.404 at θ = 1. Thus, this distribution is unusual in being oriented
towards negative correlation. (Of course, positive correlation can be obtained
by changing X to −X or Y to −Y .)

Barnett (1983a) has discussed the maximum likelihood method for esti-
mating θ as well as a method based on the product-moment correlation.

Gumbel (1960a) has further given the following expressions:

g(y|x) = e−y(1+θx)[(1 + θx)(1 + θy) − θ],
E(Y |X = x) = (1 + θ + θx)(1 + θx)−2,

var(Y |X = x) =
(1 + θ + θx)2 − 2θ2

(1 + θx)4
.

Remarks

• This distribution is characterized by
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E(X − x|X > x and Y > y) = E(X|Y > y),
E(Y − y|X > x and Y > y) = E(Y |X > x), (2.46)

which is a form of the lack-of-memory property; see K.R.M. Nair and N.U.
Nair (1988) and N.U. Nair and V.K.R. Nair (1988).

• Barnett (1979, 1983b) and Barnett and Lewis (1984, Section 9.3.2) have
discussed testing for the presence of an outlier in a dataset assumed to
come from this distribution. An alternative proposal by Barnett (1983a)
involves transformation to independent normal variates.

• In the context of structural reliability, Der Kiureghian and Liu (1986) uti-
lized this distribution (with θ = 1) in the course of demonstrating a proce-
dure to approximate multivariate integrals by transforming the marginals
to normality and assuming multivariate normality; see also Grigoriu (1983,
Example 2).

An Application

In describing this, let us quote the opening words of the paper by Moore
and Clarke (1981):“The rainfall runoff models referred to in the title of this
paper are (1) those that attempt to describe explicitly both the storage of
precipitated water within a river basin and the translation or routing of water
that is in temporary storage to the basin outfall, and (2) those in which
the parameters of the model are estimated from existing records of mean
areal rainfall, Penman potential evaporation ET , or some similar measure of
evaporation demand, and stream flow.” On pp. 1373–1374 of the paper is a
section entitled “A Bivariate Exponential Storage-Translation Model.” This
introduces distribution (2.44), the justification being that it has exponential
marginals and that the correlation is negative (“a basin with thin soils in the
higher altitude areas that are furthest from the basin outfall is likely to have
s and t negatively correlated”). The variables s and t are, respectively, the
depth of a (hypothesized) storage element and the time taken for runoff to
reach the catchment outfall.

Moore and Clarke did not present in detail the results using (2.44), saying,
“Application of storage-translation models using more complex distribution
functions . . . did not lead to any appreciable improvement in model perfor-
mance . . . One exception . . . gives a correlation of −0.37 between s and t.”

2.11 Gumbel–Barnett Copula

Gumbel (1960a,b) suggested the exponential-marginals form of this copula;
many authors refer to this copula as another Gumbel family. We call it the
Gumbel–Barnett copula since Barnett (1980) first discussed it in terms of
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the uniform marginals among the distributions he considered. The survival
function of the copula C(u, v) that corresponds to Gumbel’s type 1 bivariate
exponential distribution (2.44) is given by

C̄(u, v) = (1 − u)(1 − v)e−θ log(1−u) log(1−v),

so that

C(u, v) = u + v − 1 + (1 − u)(1 − v)e−θ log(1−u) log(1−v) (2.47)

because of the relationship C(u, v) = C̄(u, v) + u+ v − 1. The density of the
copula is

c(u, v) = {−θ + [1 − θ log(1 − u)][1 − θ log(1 − v)]} e−θ log(1−u) log(1−v).
(2.48)

The survival copula that corresponds to (2.47) is

Ĉ(u, v) = C̄(1 − u, 1 − v) = uve−θ log u log v. (2.49)

2.12 Kimeldorf and Sampson’s Distribution

Kimeldorf and Sampson (1975a) studied a bivariate distribution on the unit
square, with uniform marginals and p.d.f. as follows:

• β on each of [β] squares of side 1/β arranged corner to corner up to the di-
agonal from (0, 0) towards (1, 1), [β] being the largest integer not exceeding
β;

• β
β−[β] on one smaller square side of 1− [β]/β in the top-right corner of the
unit square (unless β is an integer);

• and 0 elsewhere.

For this distribution, Johnson and Tenenbein (1979) showed that

ρS =
[β]
β

3β2 − 3β[β] + [β2] − 1
β2

,

and Nelsen (in a private communication) showed that

τ =
[β]
β

2β − [β] − 1
β

.

Hence, if 1 ≤ β < 2, ρS = 3τ/2; and if β is an integer, ρS = 2τ − τ2.
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Remarks

• Clearly (2.49) is an Archimedean copula.
• If Cα and Cβ are both Gumbel–Barnett copulas given by (2.49), then their

geometric mean is again a Gumbel–Barnett copula given by C(α+β)/2; see
Nelsen (2006, p. 133).

2.13 Rodŕıguez-Lallena and Úbeda-Flores’ Family of
Bivariate Copulas

Rodŕıguez-Lallena and Úbeda-Flores (2004) defined a new class of copulas of
the form

C(u, v) = uv + f(u)g(v), (2.50)

where f and g are two real functions defined on [0, 1] such that

(i) f(0) = f(1) = g(0) = g(1);
(ii) f and g are absolutely continuous;
(iii) min{αδ, βγ} ≥ −1, where α = inf{f ′(u), u ∈ A} < 0, β = sup{f ′(u), u ∈

A} > 0 γ = inf{g′(v), v ∈ B} < 0, and δ = sup{g′(v), v ∈ B} > 0, with
A = {u ∈ [0, 1] : f ′(u) exists} and B = {v ∈ [0, 1] : g′(v) exists}.

Example 2.1. The family studied by Lai and Xie (2000), C(u, v) = uv +
λuavb(1 − u)c(1 − v)d, u, v ∈ [0, 1], 0 ≤ λ ≤ 1, a, b, c, d ≥ 1, is a special case
of Rodŕıguez-Lallena and Úbeda-Flores’ family.

Properties

• τ = 8
∫ 1

0
f(t) dt

∫ 1

0
g(r) dt, ρS = 3τ/2.

• Let (X,Y ) be a continuous random pair whose associated copula is a
member of Rodŕıguez-Lallena and Úbeda-Flores’ family. Then X and Y
are positively quadrant dependent if and only if either f ≥ 0 and g ≥ 0 or
f ≤ 0 and g ≤ 0.

2.14 Other Copulas

Table 4.1 of Nelsen (2006) presents some important one-parameter families of
Archimedean copulas, along with their generators, the range of the parameter,
and some special cases and limiting cases. We have discussed some of these
here, and for the rest we refer the reader to this reference. Many other copulas
are discussed throughout the book of Nelsen (2006), wherein we can find a
comprehensive treatment of copulas.
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2.15 References to Illustrations

We will now outline five important references that contain illustrations of
distributions discussed in this chapter as well as some others to follow.

Conway (1981). Conway’s graphs are contours of bivariate distributions;
that is, for uniform marginals F (x) = x and G(y) = y, y as a function of x has
been plotted such that a contour of the (cumulative) distribution is the result
(i.e., H(x, y) = c) a constant. The paper (i) presents such contours for various
c for three reference distributions (upper and lower Fréchet bounds, and the
independence), (ii) gives the c = 0.2 contour for distributions having various
strengths of correlations drawn from the Farlie–Gumbel–Morgenstern, Ali–
Mikhail–Haq, Plackett, Marshall–Olkin, and Gumbel–Hougaard families, and
(iii) presents some geometric interpretations of properties of bivariate distri-
butions.

Barnett (1980). The contours in this paper are of probability density func-
tions. The distributions are again transformed to have uniform marginals;
the bivariate normal, Farlie–Gumbel–Morgenstern, Plackett, Cauchy, and
Gumbel–Barnett are the ones included.

Johnson et al. (1981). This contains both contours and three-dimensional
plots of the p.d.f.’s of a number of distributions after their marginals have
been transformed to be either normal or exponential. The well-known distri-
butions included are the Farlie–Gumbel–Morgenstern, Plackett, Cauchy, and
Gumbel’s type I exponentials, plus a bivariate normal transformed to expo-
nential marginals. However, the main purpose of this work is to give similar
plots for distributions obtained by a trivariate reduction technique and by
the Khintchin mixture.

Johnson et al. (1984). In this, there are 18 small contour plots of the
p.d.f.’s of distributions after their marginals have been transformed to be nor-
mal. The well-known distributions included are the bivariate normal, Farlie–
Gumbel–Morgenstern, Ali–Mikhail–Haq, Plackett, Gumbel’s type I exponen-
tial, and the bivariate Pareto.

Johnson (1987). Chapters 9 and 10 of this book presents contour and three-
dimensional plots of the p.d.f.’s of the following distributions: Farlie–Gumbel–
Morgenstern (uniform, normal, and exponential marginals), Ali–Mikhail–Haq
(normal marginals), Plackett (contour plots only; uniform, normal, and expo-
nential marginals), Gumbel’s type I exponential (uniform, normal, and expo-
nential marginals), bivariate Pareto (uniform and normal marginals; contour
plots only for exponential marginals), and Cook and Johnson’s generalized
Pareto (contour plots only; uniform, normal, and exponential marginals; and
one three-dimensional plot of normal marginals).

When thinking of contours of p.d.f.’s, the subject of unimodality (or oth-
erwise) of multivariate distributions comes to mind. An excellent reference
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for this topic is the book by Dharmadhikari and Joag-Dev (1985), and we
refer readers to this book for all pertinent details.
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Chapter 3

Concepts of Stochastic Dependence

3.1 Introduction

Dependence relations between two variables are studied extensively in prob-
ability and statistics. No meaningful statistical models can be constructed
without some assumptions regarding dependence although in many cases
one may simply assume the variables are not dependent, i.e., they are
independent.

Karl Pearson is often credited as the first to introduce the concept of
dependence by defining the product-moment correlation, which measures the
strength of the linear relationship between two variables under consideration.

Basically, positive dependence means that large values of Y tend to ac-
company large values of X, and similarly small values of Y tend to accom-
pany small values of X. By the same principle, negative dependence between
two variables means large values of Y tend to accompany small values of X
and vice versa. The focus of this chapter is on different concepts of positive
dependence.

Various notions of dependence are motivated by applications in statistical
reliability; see, for example, Barlow and Proschan (1975, 1981). Although the
starting point of reliability models is independent of the lifetimes of compo-
nents, it is often more realistic to assume some form of positive dependence
among the components.

In the 1960s, several different notions of positive dependence between two
random variables and their interrelationships were discussed by a number of
authors including Harris (1960, 1970), Lehmann (1966), Esary et al. (1967),
Esary and Proschan (1972), and Kimeldorf and Sampson (1987). Yanagi-
moto (1972) unified some of these notions by introducing a family of positive
dependence. Some further notions of positive dependence were introduced
by Shaked (1977, 1979, 1982). Joe (1993) characterized the distributions for
which dependence is concentrated at the lower and upper tails. These con-
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cepts, which were initially defined for two variables, have been extended to a
multivariate random vector (X1, X2, . . . , Xn) with n ≥ 2.

In the case of n = 2, the negative dependence is easily constructed by re-
versing the concepts of positive dependence, as was done by Lehmann (1966).
However, for n > 2, negative dependence is no longer a simple mirror reflec-
tion of positive dependence; see, for example, Joag-Dev and Proschan (1983).

In Section 3.2, the concept of positive dependence is introduced and then
some conditions for a family to be positively dependent are presented. In
Section 3.3, some dependence concepts that are stronger and weaker than
positive dependence are outlined. Next, in Sections 3.4 and 3.5, concepts
of positive dependence stronger and weaker than the positive quadrant de-
pendence (PQD) are discussed, respectively. In Section 3.6, some positively
quadrant dependent bivariate distributions are presented. Some additional
concepts of dependence are introduced in Section 3.7. In Section 3.8, the
concept of negative dependence is discussed in detail, while results on posi-
tive dependence orderings are described in Section 3.9.

For reviews of implications among different dependence concepts, we refer
the reader to Joe (1997), Müller and Stoyan (2002), or Lai and Xie (2006).

3.2 Concept of Positive Dependence and Its Conditions

A basic motivation of Lehmann (1966) for introducing the basic concept of
positive dependence was to provide tests of independence between two vari-
ables that are not biased. As a matter of fact, in order to construct an unbi-
ased test, we need to specify the alternative hypothesis. Lehmann identified
subfamilies of bivariate distributions for which this property of unbiased-
ness is valid. Kimeldorf and Sampson (1987) presented seven conditions in
all that a subfamily of distributions F+ with given marginals should sat-
isfy to be positively dependent. Recall that H+(x, y) = min (F (x), G(y))
and H−(x, y) = max (0, F (x) + G(y) − 1) are the upper and lower Fréchet
bounds, where F (x) and G(y) are the marginal distributions of X and Y ,
respectively. Then, the conditions of Kimeldorf and Sampson (1987) are as
follows:

1. H ∈ F+ ⇒ H(x, y) ≥ F (x)G(y) for all x and y.
2. If H(x, y) ∈ F+, so does H+(x, y).
3. If H(x, y) ∈ F+, so does H0(x, y) = F (x)G(y).
4. If (X,Y ) ∈ F+, so does (φ(X), Y ) ∈ F+, where φ is any increasing

function.
5. If (X,Y ) ∈ F+, so does (Y,X).
6. If (X,Y ) ∈ F+, so does (−X,−Y ).
7. If Hn converges to H in distribution, then H ∈ F+.
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We note that condition 1 is equivalent to the positive quadrant dependence
(PQD) concept, which is discussed in the next section.

3.3 Positive Dependence Concepts at a Glance

We list several concepts of positive dependence that exist in the literature in
the form of two tables where the PQD is used as a benchmark, and so Table
3.1 lists the dependence concepts that are stronger than PQD, while Table
3.2 lists the dependence concepts that are weaker than PQD.

Table 3.1 Dependence concepts that are stronger than PQD

PQD Positive quadrant dependence

ASSOC Associated

LTD
RTI

Left-tail decreasing
Right-tail increasing

SI
(alias PRD)

Stochastically increasing
(Positively regression dependent)

RCSI
LCSD

Right corner set increasing
Left corner set decreasing

TP2

(alias LRD)

Total positivity of order 2
(Likelihood ratio dependence)

Table 3.2 Dependence concepts that are weaker than PQD

PQD Positive quadrant dependence

PQDE Positive quadrant dependence in expectation

cov(X, Y ) ≥ 0 Positively correlated

According to Jogdeo (1982), positive correlation, positive quadrant de-
pendence, association, and positive regression dependence are the four basic
conditions that describe positive dependence, and these are in increasing or-
der of stringency. For multivariate dependence concepts, one may refer to Joe
(1997).
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3.4 Concepts of Positive Dependence
Stronger than PQD

We now formally define the concepts of positive dependence that are stronger
than positive quadrant dependence listed in Table 3.1. Throughout this chap-
ter, we assume that X and Y are continuous random variables with joint
distribution function H.

3.4.1 Positive Quadrant Dependence

We say that (X,Y ) is positive quadrant dependent (PQD) if

Pr(X ≥ x, Y ≥ y) ≥ Pr(X ≥ x) Pr(Y ≥ y) (3.1)

or, equivalently, if

Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x) Pr(Y ≤ y). (3.2)

Later, in Section 3.6, we will present many families of positive quadrant
dependent distributions.

Lehmann (1966) showed the conditions above to be

cov[a(X), b(Y )] ≥ 0 (3.3)

for every pair of increasing functions a and b defined on the real line R.
The proof is based on Hoeffding’s (1940) well-known lemma [also see Shea

(1983)], which states that

cov(X,Y ) =
∫ ∞

−∞

∫ ∞

−∞
{H(x, y) − F (x)G(y)}dxdy. (3.4)

We observe from (3.4) that (X,Y ) being PQD implies cov(X,Y ) ≥ 0, with
equality holding only if X and Y are independent. Further, if a and b are
two increasing real functions, then (X,Y ) being PQD implies (a(X), b(Y ))
is also PQD, and so cov[a(X), b(Y )] ≥ 0. Suppose now cov[a(X), b(Y )] ≥ 0
for all increasing functions a and b. Set a(X) = I{X≥x} and b(Y ) = I{Y ≥y}.
Now, cov[a(X), b(Y )] = Pr(X ≥ x, Y ≥ y) − Pr(X ≥ x) Pr(Y ≥ y) ≥ 0,
which means (X,Y ) is PQD. Therefore, cov[a(X), b(Y )] ≥ 0 for all increasing
functions a and b and the PQD conditions in (3.1) are indeed equivalent.
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PUOD and PLOD

Unlike other bivariate dependence concepts, which can be readily extended
to the corresponding multivariate dependence of n variables, this is not the
case with PDQ. This is because (3.1) and (3.2) are equivalent only for n = 2.
For n > 2, we say that X1, X2, . . . , Xn are positively upper orthant dependent
(PUOD) if

Pr(X1 > x1, X2 > x2, . . . , Xn > xn) ≥
n∏

i=i

Pr(Xi > xi)

and are positively lower orthant dependent (PLOD) if

Pr(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≥
n∏

i=i

Pr(Xi ≤ xi).

3.4.2 Association of Random Variables

Esary et al. (1967) introduced the following condition, termed association.
X and Y are said to be “associated” if for every pair of functions a and b,
defined on R2, that are increasing in each of their arguments (separately),
we have

cov[a(X,Y ), b(X,Y )] ≥ 0. (3.5)

A direct verification of this dependence concept is difficult in general, but
it is often easier to verify one of the alternative positive dependence notions
that do imply association. For example, it is easy to see that the condition
in (3.5) implies (3.3); that is, “association” ⇒ PQD.

The concept of “association” is very useful in reliability, particularly in the
context of multivariate (as distinct from just bivariate) dependence. Jogdeo
(1982) defined an n-variate random vector X = (X1, . . . , Xn) or its distribu-
tion to be associated if for every pair of increasing real functions a and b,
defined on Rn, cov[a(X), b(Y)] ≥ 0.

The property of association has a number of consequences as listed by
Jogdeo (1982). Some of them are trivial, at least in the bivariate case. We
note here that (i) increasing (or decreasing) functions of associated random
variables are also associated, and (ii) if (Y1, . . . , Yn) is also associated, and
the X’s and Y ’s are positive, then (X1Y1, . . . , XnYn) is associated. Clearly,
the condition in (3.5) can be expressed alternatively as

E[a(X,Y )b(X,Y )] ≥ E[a(X,Y )]E[b(X,Y )]. (3.6)
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Barlow and Proschan (1981, p. 29) considered the following practical relia-
bility situations in which the lifetimes of the components are not independent
but are associated:

a. Minimal path structures of a coherent system having components in
common.

b. Components subject to the same set of stresses.
c. Structures in which components share the same load, so that the failure

of one component results in an increased load on each of the remaining
components.

Observe that, in all the situations listed above, the random variables of in-
terest act in a similar manner. In fact, all the positive dependence concepts
share this characteristic.

An important application of the concept of association is to obtain prob-
ability bounds for system reliability. Many such bounds are presented by
Barlow and Proschan (1981).

For a relation between association and multivariate total positivity, see
Kim and Proschan (1988). Similarly, with regard to the association of chi-
squared, t-, and F -distributions, one may refer to Abdel-Hameed and Samp-
son (1978).

Example 3.1 (Marshall and Olkin’s bivariate exponential distribution). X and
Y are associated in this case since they have a variable in common in their
construction.

Remarks

• It is easy to prove [see, e.g., Theorem 3.2, Chapter 2 of Barlow and
Proschan (1981)] that “association” implies both PUOD and PLOD.

• X1, X2, . . . , Xn are weakly associated [Christofides and Vaggelatou (2004)
and Hu et al. (2004)] if for every pair of disjoint subsets A1 and A2 of
1, 2, . . . , n

cov = [a(Xi, i ∈ A1), b(Xj , j ∈ A2)] ≥ 0

whenever a and b are increasing. If the inequality sign is reversed, then
the random variables X1, X2, . . . , Xn are said to be negatively associated,
see Definition 3.22.

3.4.3 Left-Tail Decreasing (LTD) and Right-Tail
Increasing (RTI)

Y is right-tail increasing in X, denoted by RTI(Y |X), if
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Pr(Y > y|X > x) is increasing in x, for all y; (3.7)

and X is right-tail increasing in Y , denoted by RTI(X|Y ), if

Pr(X > x|Y > y) is increasing in y, for all x. (3.8)

Similarly, Y is left-tail decreasing in X, denoted by LTD(Y |X), if

Pr(Y ≤ y|X ≤ x) is increasing in x, for all y; (3.9)

and X is left-tail decreasing in Y , denoted by LTD(X|Y ), if

Pr(X ≤ x|Y ≤ y) is decreasing in y, for all x. (3.10)

When there is no ambiguity, we will simply use RTI or LTD, for example.

Remarks

• Both RTI and LTD imply PQD. For example, suppose Y is right tail
increasing in X so Pr(Y > y|X > x) is increasing in x for all y. Thus
Pr(Y > y|X > x1) ≤ Pr(Y > y|X > x), x1 < x. By choosing x1 = −∞,
we have Pr(Y > y) ≤ Pr(Y > y|X > x), giving Pr(X > y, Y > y) ≥
Pr(Y > y) Pr(X > x). Hence RTI(Y |X) ⇒ PQD. Similarly, RTI(X|Y ) ⇒
PQD and both LTD(Y |X) and LTD(X|Y ) imply PQD.

• The positive quadrant dependence does not imply any of the four tail
dependence concepts above. Nelsen (2006, p. 204) gives a counterexample.

• Nelsen (2006, p. 192) showed that LTD(Y |X) and LTD(X|Y ) if and only
if, for all u, u′, v, v′ such that 0 < u ≤ u′ ≤ 1 and 0 < v ≤ v′ ≤ 1,

C(u, v)
uv

≥ C(u′, v′)
u′v′

.

Similarly, the joint distribution is RTI(Y |X) if and only if [v−C(u, v)]/(1−
u) decreasing in u; RTI(X|Y ) if and only if [u−C(u, v)]/(1−v) decreasing
in v.

• Verifying that a given copula satisfies one or more of the dependence con-
ditions above can be tedious. Nelsen (2006, pp. 192–193) gave the following
criteria for tail monotonicity in terms of partial derivatives of C:

(1) LTD(Y |X) ⇔ for any v ∈ [0, 1], ∂C(u, v)/∂u ≤ C(u, v)/u for almost all
u.

(2) LTD(X|Y ) ⇔ for any u ∈ [0, 1], ∂C(u, v)/∂v ≤ C(u, v)/v for almost all
v.

(3) RTI(Y |X) ⇔ for any v ∈ [0, 1], ∂C(u, v)/∂u ≥ [v−C(u, v)]/(1− u) for
almost all u.
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(4) RTI(X|Y ) ⇔ for any u ∈ [0, 1], ∂C(u, v)/∂v ≥ [u−C(u, v)]/(1− v) for
almost all v.

Example 3.2 (LTD copula). Nelsen (2006, p. 205) showed that the distribu-
tion with the copula

C(u, v) =
{

min
(

u
2 , v
)
, 0 ≤ v ≤ 1

2 ,
min

(
u, u

2 + v − 1
2

)
, 1

2 ≤ v ≤ 1

is LTD(Y |X) and RTI(Y |X).

Example 3.3 (Durling–Pareto distribution). Lai et al. (2001) showed that X
and Y are right-tail increasing if k ≤ 1 and right-tail decreasing if k ≥ 1. From
the relationships listed in Section 3.5.4, it is known that right-tail increasing
implies association. Hence, X and Y are associated if k ≤ 1.

3.4.4 Positive Regression Dependent
(Stochastically Increasing)

Y is said to be stochastically increasing in X, denoted by SI(Y |X), if

Pr(Y > y|X = x) is increasing in x, for all y; (3.11)

and X is stochastically increasing in Y , denoted by SI(X|Y ), if

Pr(X > x|Y = y) is increasing in y, for all x. (3.12)

If there is no cause for confusion, SI(Y |X) may simply be denoted by
SI. Some authors refer to this relationship as Y being positively regression
dependent on X (denoted by PRD) and similarly X being positively regression
dependent on Y .

Shaked (1977) showed that SI(Y |X) is equivalent to

R(y|X = x) is decreasing in x, for all y ≥ 0, (3.13)

where R is the conditional hazard function defined by

R(y|X ∈ A) = − log Pr(Y > y|X ∈ A). (3.14)

(The hazard function here is the cumulative hazard rate.) It is now clear
that RTI(Y |X) is equivalent to R(y|X > x) is decreasing in x for all y, and
therefore SI(Y |X) ⇒ RTI(Y |X). Similarly, we can show that SI(Y |X) ⇒
LTD(Y |X).
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Further, it can be shown that RTI(Y |X) ⇒“association,” but the proof is
quite involved; see Esary and Proschan (1972). However, it is not difficult to
show that SI(Y |X) ⇒ X and Y are “associated.” It can be shown that

E(Y |X = x) = −
∫ 0

−∞
Pr(Y ≤ y|X = x)dx +

∫ ∞

0

Pr(Y > y|X = x)dy,

(3.15)
which implies that E(Y |X = x) is increasing if the condition in (3.11) holds.

Consider now the identity

cov(X,Y ) = cov[E(X|Z), E(Y |Z)] + E{cov[(X,Y )|Z]},

in which we have taken expectation over an arbitrary random vector Z. Now,
with a and b again being increasing functions, we have

cov[a(X,Y ), b(X,Y )]
= cov{E(a(X,Y )|X], E(b(X,Y )|X]} + E{cov[a(X,Y ), b(X,Y )|X]}.

If (3.11) holds, the expected values in the first term on the right-hand side
of the equation above are increasing1 in X; this, taken with the result that
cov[a(X), b(X)] ≥ 0, which we established earlier, means that the first term
is non-negative. Also, a and b being monotone functions means that the
conditional covariance in the second term is non-negative, so its expected
value must be non-negative as well. As a result, X and Y are “associated.”

Example 3.4 (Marshall and Olkin’s bivariate exponential distribution). In this
case, we have

Pr[Y > y|X = x] =
{

λ1
λ1+λ2

exp (−λ12(y − x) − λ2y) , x ≤ y,

exp(−λ2y) x ≥ y;

see, for example, Barlow and Proschan (1981, p. 132). Clearly, this conditional
survival function is nondecreasing in x, and so X and Y are SI(Y |X). This
in turn implies that X and Y are associated.

Example 3.5 (F-G-M bivariate exponential distribution). Rödel (1987) showed
that, for an F-G-M distribution, X and Y are SI (i.e., positively regression
dependent) if α > 0. For the case with exponential marginals with α > 0, a
direct and easy proof for this result is

1 Pr(Y > y|X = x) in x implies that Pr[a(X, Y ) > a(x, y)|X = x] increases in x for every
increasing function a defined on R2. By using (3.15), we now have

E[a(X, Y )|X = x] = −
∫ 0

−∞
Pr[a(X, Y ) ≤ a(x, y)|X = x]dy

+

∫ ∞

0
Pr[a(X, Y ) > a(x, y)|X = x]dy,

which is therefore increasing in x.
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Pr (Y ≤ y|X = x) = {1 − α(2e−x − 1)}(1 − e−y) + α(2e−x − 1)(1 − e−2y)
= (1 − e−y) + α(2e−x − 1)(e−y − e−2y),

and so
Pr (Y > y|X = x) = e−y − α(2e−x − 1)(e−y − e−2y)

which is clearly increasing in x, from which we readily conclude that X and
Y are positively regression dependent if α > 0.

Example 3.6 (Kibble’s bivariate gamma distribution). Rödel (1987) showed
that Kibble’s bivariate gamma distribution (see, e.g., Section 3.6.1) is also SI
(i.e., PRD).

Example 3.7 (Sarmanov’s bivariate exponential distribution). The conditional
distribution is [Lee (1996)]

Pr (Y ≤ y|X = x) = G(y) + ωφ1(x)
∫ y

−∞
φ2(z)g(z)dz,

where φi(x) = e−x − λi

1+λi
, i = 1, 2. It then follows that

Pr (Y > y|X = x) = e−λ2y − ω

(

e−x − λ1

1 + λ1

)∫ y

−∞
φ2(z)g(z)dz

is increasing in x since
∫ y

−∞ φ2(z)g(z)dz ≥ 0, and so Y is SI increasing in x if

0 ≤ ω ≤ (1+λ1)(1+λ2)
max(λ1,λ2)

. Further, it follows from Lee (1996) that (X,Y ) is TP2

since ωφ′(x)φ′(y) ≥ 0 for ω ≥ 0.

Example 3.8 (Bivariate exponential distribution). We have

H(x, y) = 1 − e−x − e−y + (ex + ey − 1)−1
.

In this case, it can be shown easily that Pr (Y ≤ y|X = x) = 1 + 1
(ex+ey−1)2

and hence Pr (Y > y|X = x) = −1
(ex+ey−1)2

, which is increasing in x; hence,
Y is SI in X.

3.4.5 Left Corner Set Decreasing and Right Corner
Set Increasing

X and Y are said to be left corner set decreasing (denoted by LCSD) if, for
all x1 and y1,

Pr(X ≤ x1, Y ≤ y1|X ≤ x2, Y ≤ y2) is decreasing in x2 and y2. (3.16)
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Similarly, we say that X and Y are right corner set decreasing (denoted by
RCSI) if, for all x1 and y1,

Pr(X > x1, Y > y1|X > x2, Y > y2) is decreasing in x2 and y2. (3.17)

By choosing x1 = −∞ and y2 = −∞ in (3.17), we see that RCSI(Y |X) ⇒
RTI(Y |X). We note that RCSI (LCSD) is on the same hierarchical order of
stringency of dependence as SI(X|Y) (SI(Y|X)) are, and yet they do not seem
to be directly related to each other.

3.4.6 Total Positivity of Order 2

The notation of a “totally positive” function of order was defined by Karlin
(1968).

Definition 3.9. A function f(x, y) is totally positive of order 2 (TP2) if
f(x, y) ≥ 0 such that ∣

∣
∣
∣
∣

f(x, y) f(x, y′

f(x′, y) f(x′, y′)

∣
∣
∣
∣
∣
≥ 0

whenever x ≤ x′ and y ≤ y′.

Let X and Y have a joint distribution function H, joint survival function
H̄, and joint density function h(x, y). Then, we can define three types of total
positive dependence, depending on whether we are basing it on H, H̄, or h.
We assume that x1 < x2, and y1 < y2 in the following definitions.

(i) We say that H is totally positive of order 2 (H-TP2) if

H(x1, y1)H(x2, y2) ≥ H(x1, y2)H(x2, y1). (3.18)

(ii) Similarly, H̄ is said to be totally positive of order 2 (H̄-TP2) if

H̄(x1, y1)H̄(x2, y2) ≥ H̄(x1, y2)H̄(x2, y1). (3.19)

(iii) Finally, we say that h is totally positive of order 2 (h-TP2) if

h(x1, y1)h(x2, y2) ≥ h(x1, y2)h(x2, y1). (3.20)

Abdel-Hameed and Sampson (1978) have presented a sufficient condition
for h(x, y) to be totally positive of order 2. Some authors refer to this prop-
erty as X and Y being (positive) likelihood ratio dependent (denoted by LRD)
since the inequality in (3.20) is equivalent to the requirement that the con-
ditional density of Y given x have a monotone likelihood ratio.
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Example 3.10 (Bivariate normal distribution). The bivariate normal density
is TP2 if and only if the correlation coefficient 0 ≤ ρ < 1; see, for example,
Barlow and Proschan (1981, p. 149).

Example 3.11 (Bivariate absolute normal distribution). Abdel-Hameed and
Sampson (1978) have shown that the bivariate density of the absolute normal
distribution is TP2.

It is easy to see that h-TP2 implies that both H and H̄ are TP2. It can
also be shown [see, e.g., Nelsen (2006, pp. 199–201)] that LCSD is equivalent
to H being TP2, while RCSI is equivalent to H̄ being TP2.

Example 3.12 (Marshall and Olkin’s bivariate exponential distribution). X
and Y have Marshall and Olkin’s bivariate exponential distribution with
joint survival function

H̄(x, y) = exp [−λ1x− λ2y − λ12 max(x, y)] ,

and so

H̄(x, y)H̄(x′, y′)
= exp [−λ1(x + x′) − λ2(y + y′) − λ12{max(x, y) + max(x′, y′)}]

and

H̄(x, y′)H̄(x′, y)
= exp [−λ1(x + x′) − λ2(y + y′) − λ12{max(x′, y) + max(x, y′)}] .

Now, if 0 ≤ x ≤ x′ and 0 ≤ y ≤ y′, then

max(x, y) + max(x′, y′) ≤ max(x′, y) + max(x, y′).

It then follows that H̄(x, y)H̄(x′, y′) ≤ H̄(x, y′)H̄(x′, y), and so H̄ is TP2,
which is equivalent to X and Y being RCSI.

Note that if h is TP2, then X and Y are LCSD ⇔ H is TP2. If h is TP2,
then X and Y are RSCI ⇔ H̄ is TP2, i.e., h is TP2 implies that both H and
H̄ are TP2. Thus, as pointed out by Shaked (1977), the notion of h being TP2

(positively likelihood dependent) is stronger than any notion of dependence
we have discussed so far. We thus have the following implications:

LRD(TP2) ⇒ SI(Y |X) ⇒ RTI(Y |X) ⇐ RCSI ⇔ H̄ − TP2

⇓ ⇓ ⇓
⇓ LTD(Y |X) ⇒ PQD ⇐ RTI(X|Y ) ⇑

⇑ ⇑ ⇑
H − TP2 ⇔ LCSD ⇒ LTD(X|Y ) ⇐ SI(X|Y ) ⇐ LRD(TP2)
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3.4.7 DTP2(m, n) and Positive Dependence by Mixture

Shaked (1977) used the classical theory of total positivity to construct a fam-
ily of concepts of dependence called dependent by total positivity of order 2
with degree (m,n), denoted by DTP(m,n). He then showed that DTP(0,0) is
equivalent to positive likelihood ratio dependence (LRD) and that DTP(1,1)
is equivalent to RCSI. In different applied situations, especially in reliability
theory and genetic studies, positive dependence by mixture is often assumed.

If (X,Y ) are any two random variables, independent conditionally with
respect to a (latent) variable W with distribution function K, then their
joint distribution function is

H(x, y) =
∫

Fw(x)Gw(y)dK(w), (3.21)

where Fw(x) and Gw(y) are the distribution functions of X and Y , given
W . Using the properties of TP2 functions, it is easy to associate a concept of
dependence with the pair (X,Y ). More precisely, if the joint distributions of
the pair (X,W ) and (Y,W ) are DTP(m, 0) and DTP(n, 0), respectively, then
the pair (X,Y ) is DTP(m,n); see, for example, Shaked (1977). In particular,
(X,Y ) is DTP(0,0) (i.e., X and Y are LRD) if (X,W ) and (Y,W ) have LRD.

3.5 Concepts of Positive Dependence Weaker than PQD

3.5.1 Positive Quadrant Dependence in Expectation

We now present a slightly less stringent dependence notion than PQD. For
any real number x, let Yx be the random variable with distribution function
Pr(Y ≤ y|X > x). It is easy to verify that the inequality in the conditional
distribution Pr(Y ≤ y|X > x) ≤ Pr(Y ≤ y) implies an inequality in expec-
tation E(Yx) ≥ E(Y ) if Y is a non-negative random variable. We then say
that Y is positive quadrant dependent in expectation on X (PQDE) if this
last inequality involving expectations holds. Similarly, we say that there is
negative quadrant dependence in expectation if E(Yx) ≤ E(Y ).

It is easy to show that the PQD⇒PQDE by observing that PQD is equiva-
lent to Pr (Y > y|X > x) ≥ Pr(Y > y), which in turn implies E(Yx) ≥ E(Y ),
assuming Y ≥ 0. This establishes the fact that PQDE is a weaker concept
than PQD.
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3.5.2 Positively Correlated Distributions

We say that X and Y are positively correlated if

cov(X,Y ) ≥ 0. (3.22)

Now,

cov(X,Y ) =
∫ ∫

[
H̄(x, y) − F̄ (x)Ḡ(y)

]
dx dy

=
∫

F̄ (x)
(∫

[
Pr(Y > y|X > x) − Ḡ(y)

]
dy

)

dx

=
∫

F̄ (x) {E(Yx) −E(Y )} dx,

which is ≥ 0 if X and Y are PQDE. Thus, PQDE implies that cov(X,Y ) ≥ 0.
This means that PQDE lies between PQD and positive correlation. Many
bivariate random variables are PQDE since all the PQD distributions with
Y ≥ 0 are also PQDE.

Positive correlation is the weakest notion of dependence between two ran-
dom variables X and Y . It is indeed easy to construct a positively correlated
bivariate distribution. For example, such a distribution may be obtained by
simply adopting a well-known trivariate reduction technique as follows: Set
X = X1+X3, Y = X2+X3, with Xi (i = 1, 2, 3) being mutually independent
random variables, so that the correlation coefficient between X and Y is

ρ =
var(X3)√

var(X1 + X3)var(X2 + X3)
> 0.

3.5.3 Monotonic Quadrant Dependence Function

As described above, PQDE is based on a comparison of E(Yx) with E(Y ).
Kowalczyk and Pleszczyńska (1977) introduced the monotonic quadrant de-
pendence function to quantify the difference between these two expectations.

Let B be the set of all bivariate random variables with finite marginal
means, and let xp and yp denote the pth quantiles of X and Y , respectively
(0 < p < 1). For each (X,Y ) ∈ B, we define a difference function

LY,X(p) = E(Y |X > xp) − E(Y ). (3.23)

We may then define a function that can be used as a measure of the strength
of the monotonic quadrant dependence between X and Y as follows. With
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μ+
Y,X(p) =

LY,X(p)
E(Y |Y > yp) − E(Y )

(3.24)

and

μ−
Y,X(p) =

LY,X(p)
E(Y ) − E(Y |Y < y1−p)

, (3.25)

we define

μY,X(p) =
{
μ+

Y,X if LY,X(p) ≥ 0
μ−

Y,X if LY,X(p) ≤ 0
. (3.26)

The function μY,X is called the monotonic quadrant dependence function.
Described in words, it is a function that compares the improvement in pre-
diction of Y from knowing that X is big to the improvement in prediction of
Y from knowing that X is small.

Interpretation of μY,X

From the definition above, we see that μY,X is a suitably normalized ex-
pected value of Y under the condition that X exceeds its pth quantile. It is
a measure of the strength of the monotonic quadrant dependence between
X and Y in the following sense. Let (X,Y ) and (X ′, Y ′) be two pairs of
random variables from B having identical marginal distributions; then, the
positive quadrant dependence between X and Y is said to be stronger than
X ′ and Y ′ if μY,X(p) ≥ μY ′,X′(p) for all p between 0 and 1. This is because
E(Y |X > xp) > E(Y ′|X ′ > xp) is equivalent to μY,X(p) ≥ μY ′,X′(p). The
PQD is strongest when μY,X(p) = 1 and weakest when μY,X(p) = −1. In-
stead of B, if we consider only distributions for which E(Yx) ≥ E(Y ), then
PQD is weakest when μY,X(p) = 0.

Properties of μY,X

The monotonic quadrant dependence function μY,X(p) introduced above has
the following properties:

• −1 ≤ μY,X(p) ≤ 1.
• μY,X(p) = 1 ⇔ Pr(X < xp and Y > yp) = Pr(X > xp and Y < yp) = 0.
• μY,X(p) = −1 ⇔ Pr(X < xp, Y < y1−p) = Pr(X > xp, Y > y1−p) = 0.
• Let k and l be functions such that F (a) < F (b) ⇒ k(a) < k(b) and l(a) >

l(b). Then, for any real a and b (a �= 0),

μaY +b,k(X)(p) = (sgn a)μY,X(p),
μaY +b,k(X)(p) = (−sgn a)μY,X(1 − p).
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• μY,X(p) = 0 if and only if E(Y |X) = E(X) almost everywhere (i.e., the
probability that they are unequal is 0).

• μY,X(p) is μ+
Y,X(p) if X and Y are PQDE and is μ−

Y,X(p) if X and Y are
NQDE.

• If X and Y are PQD, then μX,Y ≥ 0 and μY,X ≥ 0.
• If X and Y are either PQD or NQD, then μX,Y (p) = 0 if and only if X

and Y are independent.
• If the distributions of (X,Y ) and (X ′, Y ′) are both in B they have the

same marginals, then μY,X = μY ′,X′ if and only if E(Y |X) and E(Y ′|X ′)
have the same distribution.

Remarks

The following observations about the monotonic quadrant dependence func-
tion are worth making:

• μY,X is a function of p and thus takes on different values for different
choices of p.

• μY,X is not symmetric in X and Y ; thus, it is more similar to a prediction-
improvement index than to a conventional measure of correlation.

• μY,X is invariant under increasing transformation of X and linear increas-
ing transformation of Y . Note that the product-moment correlation, in
contrast, is invariant under linear increasing transformations of both X
and Y .

• For sample counterparts of μY,X , see Kowalczyk (1977). Kowalczyk and
Ledwina (1982) discussed the grade monotone dependence function μG(Y ),F (X),
while Kowalczyk (1982) provided some interpretations.

3.5.4 Summary of Interrelationships

The most common dependence property is actually a “lack of dependence”
property; viz., independence. If X and Y are two continuous random vari-
ables with joint distribution function H(x, y), independence of X and Y is a
property of the joint distribution function; i.e., H(x, y) = F (x)G(y).

Given that X and Y are not independent, TP2 is the strongest positive
dependence concept we have introduced so far. On the other end, positive
correlation is the weakest positive dependence. The positive quadrant de-
pendence (PQD) is a common one among the positive dependence concepts,
and we have therefore used it as a benchmark for comparing the strength of
dependence between X and Y . Thus, we have conveniently divided various
concepts of dependence into two categories: one consisting of bivariate dis-
tributions with dependence stronger than PQD and the other consisting of
bivariate distributions with dependence weaker than PQD.
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We have summarized below interrelationships between different depen-
dence concepts after removing equivalent concepts (in which Y is conditional
on X whenever a conditioning is involved in the definition):

RSCI ⇒ RTI ⇒ ASSOC ⇒ PQD ⇒ PQDE
⇑ ⇑ ⇑ ⇓

LRD(TP2) ⇒ SI (PRD) ⇒ LTD cov ≥ 0

Another account of some of these interrelationships is due to Ohi and Nishida
(1978).

3.6 Families of Bivariate PQD Distributions

Consider a system of two components that are arranged in series. By assum-
ing that the two components are independent when they are in fact positively
quadrant dependent, we will underestimate the system reliability. For systems
in parallel, on the other hand, assuming independence when components are
in fact positively quadrant dependent will lead to overestimation of the sys-
tem reliability. This is because the other component will fail earlier knowing
that the first has failed. This, from a practical point of view, reduces the
effectiveness of adding parallel redundancy. Thus, a proper knowledge of the
extent of dependence among the components in a system will enable us to
obtain a more accurate estimate of the reliability characteristic of the system
under study.

Since the PQD concept is important in reliability applications, it is im-
perative for a reliability practitioner to know what kinds of bivariate PQD
distributions are available for reliability modeling. In this section, we list sev-
eral well-known bivariate PQD distributions, some of which were originally
derived from a reliability perspective. Most of these bivariate PQD distribu-
tions can be found, for example, in Hutchinson and Lai (1990).

As mentioned earlier, the concept of PQD is quite useful in reliability
applications; see Barlow and Proschan (1981) and Lai (1986). Before pre-
senting further applications of PQD, we need to state the following result
due to Lehmann (1966). Let r and s be a pair of real functions on Rn that
are monotone in each of their n arguments. The functions r and s are said to
be concordant in the ith argument if the directions of the monotonicity for
the ith argument are the same (i.e., both functions are either simultaneously
increasing or simultaneously decreasing in the ith argument while all others
are kept fixed) and discordant if the directions are opposite. Let (Xi, Yi),
i = 1, 2, . . . , n, be n independent pairs each satisfying PQD. Suppose r and
s are concordant in each of these arguments. Then

cov[r(X1, . . . , Xn), s(Y1, . . . , Yn)] ≥ 0. (3.27)
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The result has the following implications [see also Jogdeo (1982)]:

1. Let r(X1, X2) = sgn(X2 − X1) and s(Y1, Y2) = sgn(Y2 − Y1). Then,
τ = cov[sgn(X2 − X1), sgn(Y2 − Y1)], where τ is Kendall’s tau. From
(3.27), the condition PQD implies τ ≥ 0.

2. Spearman’s ρS = cov[sgn(X2 −X1), sgn(Y3 − Y1)]. On letting

r(X1, X2, X3) = X2 −X1 and s(Y1, Y2, Y3) = Y3 − Y1,

we see ρS ≥ 0 under PQD.
3. Blomqvist (1950) proposed (2pn − 1) as a measure of dependence, with

pn being the proportion of pairs (Xi, Yi) that fall in either the positive
or the negative quadrants formed by the lines X = x̃, Y = ỹ, where x̃
and ỹ are the medians of X and Y , respectively. The expectation of this
measure is given by

E(2pn − 1) = 2[cov(I{Xi≥x̃}, I{Yi≥ỹ}) + cov(I{Xi≤x̃}, I{Yi≤ỹ})], (3.28)

which is ≥ 0 under PQD.

The class of all PQD distributions with fixed marginals has been shown
by Bhaskara Rao et al. (1987) to be convex; that is, if H1 and H2 are both
PQD, then so is λH1 + (1 − λ)H2, for 0 ≤ λ ≤ 1.

3.6.1 Bivariate PQD Distributions with
Simple Structures

Some of the bivariate distributions whose PQD property can be established
easily are now presented.

Example 3.13 (Farlie–Gumbel–Morgenstern bivariate distribution). We have

Hα(x, y) = F (x)G(y) [1 + α (1 − F (x)) (1 −G(y))] , x, y ≥ 0. (3.29)

The family above, denoted by F-G-M, is a general system of bivariate distri-
butions widely studied in the literature. It is easy to verify that X and Y are
positively quadrant dependent if α > 0.

Consider the special case of the F-G-M system where both marginals are
exponential. The joint distribution function in (3.29) is then of the form [see,
e.g., Kotz et al. (2000)]

H(x, y) = (1 − e−λ1x)(1 − e−λ2y)
(
1 + αe−λ1x−λ2y

)
, x, y ≥ 0.

Evidently,
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w(x, y) = H(x, y) − F (x)G(y)
= αe−λ1x−λ2y(1 − e−λ1x)(1 − e−λ2y), 0 < α ≤ 1
≥ 0,

and X and Y are therefore PQD.
Mukerjee and Sasmal (1977) discussed several properties of a system of two

exponential components having the F-G-M distribution, and these included
the densities, means, moment generating functions, and tail probabilities of
min(X,Y ), max(X,Y ), and X+Y , which are relevant to series, parallel, and
standby systems, respectively. Lingappaiah (1983) was also concerned with
properties of the F-G-M distribution with gamma marginals.

Based on an earlier work of Philips (1981), Kotz and Johnson (1984) con-
sidered a model in which components 1 and 2 were subject to “revealed” and
“unrevealed” faults, respectively, with (X,Y ) having an F-G-M distribution,
where X is the time between unrevealed faults and Y is the time from an
unrevealed fault to a revealed fault.

Example 3.14 (Bivariate exponential distribution). We have as the joint dis-
tribution function

H(x, y) = 1 − e−x − e−y + (ex + ey − 1)−1
, x, y ≥ 0.

This distribution has both its marginals exponential. The joint distribution
function above can be rewritten as

H(x, y) = 1 − e−x − e−y + e−(x+y) + (ex + ey − 1)−1 − e−(x+y)

= F (x)G(y) + (ex + ey − 1)−1 − e−(x+y).

Now, (ex + ey − 1)−1 − e−(x+y) = (ex−1)(ey−1)
(ex+ey−1)e(x+y) = (1−e−x)(1−e−y)

(ex+ey−1) ≥ 0, and
H is therefore PQD.

Example 3.15 (Bivariate Pareto distribution). We have as the joint survival
function

H̄(x, y) = 1 − F (x) −G(y) + H(x, y)
= (1 + x + y)−a

, a > 0;

see, for example, Mardia (1970) and Kotz et al. (2000). Consider a system
of two independent exponential components that share a common environ-
ment factor η that can be described by a gamma distribution. Then, Lindley
and Singpurwalla (1986) showed that the resulting joint distribution has the
bivariate Pareto distribution above. It is very easy to verify that this joint
distribution is PQD since (1 + x+ y)−a ≥ (1 + x)−a(1 + y)−a. For a general-
ization to the multivariate case, see Nayak (1987).

Example 3.16 (Durling–Pareto distribution). We have as the joint survival
function
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H̄(x, y) = (1 + x + y + kxy)−a
, 0 ≤ k ≤ a + 1, x, y ≥ 0. (3.30)

Clearly, this is a generalization of the bivariate Pareto example above. Con-
sider a system of two dependent exponential components having Gumbel’s
bivariate exponential distribution H(x, y) = 1 − e−x − e−y + e−x−y−θxy,
x, y ≥ 0, 0 ≤ θ ≤ 1, and sharing a common environment that has a gamma
distribution. Sankaran and Nair (1993) then showed that the resulting bivari-
ate distribution is given by (3.30). It follows from (3.30) that

H̄(x, y) − F̄ (x)Ḡ(y)

=
1

(1 + x + y + kxy)a
− 1

{(1 + x)(1 + y)}a , 0 ≤ k ≤ (a + 1)

=
1

(1 + x + y + kxy)a
− 1

{1 + x + y + xy)}a ≥ 0, 0 ≤ k ≤ 1.

H is therefore PQD if 0 ≤ k ≤ 1.

Example 3.17 (Marshall and Olkin’s bivariate exponential distribution). We
have as the joint survival function

P (X > x, Y > y) = exp {−λ1x− λ2y − λ12 max(x, y)} , λ1, λ2, λ12 ≥ 0.
(3.31)

This has become a widely used bivariate exponential distribution over the last
four decades after being derived by Marshall and Olkin (1967) in the reliabil-
ity context as follows. Suppose we have a two-component system subjected
to shocks that are always fatal. These shocks are assumed to be governed
by three independent Poisson processes with parameters λ1, λ2, and λ12,
according to whether the shock applies to component 1 only, component 2
only, or to both components, respectively. Then, the joint survival function
for the two components is given by (3.13). Barlow and Proschan (1981, p.
129) showed that X and Y are PQD.

Example 3.18 (Block and Basu’s bivariate exponential distribution). For θ,
x, y ≥ 0, the joint survival function is

H̄(x, y) =
2 + θ

2
exp [−x− y − θmax(x, y)] − θ

2
exp [−(2 + θ)max(x, y)] .

This was constructed by Block and Basu (1976) to modify Marshall and
Olkin’s bivariate exponential distribution, which has a singular part. It is,
in fact, a reparametrization of a special case of Freund’s (1961) bivariate
exponential distribution. The marginal survival function of X is F̄ (x) =
1+θ
2 exp [−(1 + θ)x]− θ

2 exp [(1 + θ)x], and a similar expression exists for Ḡ(y).
It is then easy to show that this distribution is PQD.

Example 3.19 (Kibble’s bivariate gamma distribution). The joint density
function is, for 0 ≤ ρ < 1 and x, y, α ≥ 0,
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hρ(x, y;α)

= fα(x)gα(y) exp
[

−ρ(x + y)
1 − ρ

]

× Γ (α)
1 − ρ

(xyρ)−(α−1)/2Iα−1

(
2
√
xyρ

1 − ρ

)

,

where Iα(·) is the modified Bessel function of the first kind of the αth order.
Lai and Moore (1984) showed that the distribution function is given by

H(x, y; ρ) = F (x)G(y) + α

∫ ρ

0

ft(x, y;α + 1)dt ≥ F (x)G(y)

since α
∫ ρ

0
ft(x, y;α + 1)dt is clearly positive.

For the special case where α = 1, Kibble’s bivariate gamma distribution
presented above becomes the well-known Moran–Downton bivariate exponen-
tial distribution; see Downton (1970). Thus, the Moran–Downton bivariate
exponential distribution in particular and Kibble’s bivariate gamma distri-
bution in general are PQD.

Example 3.20 (Bivariate normal distribution). The bivariate normal distri-
bution has as its density function

h(x, y) =
(
2π
√

1 − ρ2
)−1

exp
[
−{1/2(1 − ρ2)}(x2 − 2ρxy + y2)

]

for −∞ < x, y < ∞ and −1 < ρ < 1. In this case, X and Y are PQD for
0 ≤ ρ < 1, and NQD for −1 < ρ ≤ 0. This result follows easily from the
following lemma.

Lemma 3.21. Let (X1, Y1) and (X2, Y2) follow standard bivariate normal
distributions with correlation coefficients ρ1 and ρ2, respectively. If ρ1 ≥ ρ2,
then Pr(X1 > x, Y1 > y) ≥ Pr(X2 > x, Y2 > y).

This is known as Slepian’s inequality [see Gupta (1963, p. 805)]. By letting
ρ2 = 0 (thus, ρ1 ≥ 0), we establish that X and Y are PQD. On the other
hand, letting ρ1 = 0 (thus ρ2 ≤ 0), X and Y are then NQD.

3.6.2 Construction of Bivariate PQD Distributions

Let H(x, y) denote the joint distribution function of (X, Y ) having continuous
marginal c.d.f.’s F (x) and G(y) and with marginal p.d.f.’s f = F ′ and g = G′,
respectively. For a bivariate PQD distribution, the joint distribution function
may be written as

H(x, y) = F (x)F (y) + w(x, y),

with w(x, y) satisfying the following conditions:
(i) w(x, y) ≥ 0.
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(ii) w(x,∞) → 0, w(∞, y) → 0, w(x,−∞) = 0, w(−∞, y) = 0.
(iii) ∂2w(x,y)

∂x∂y + f(x)f(y) ≥ 0.
Note that if both X ≥ 0 and Y ≥ 0, then condition (ii) may be replaced

by
w(x,∞) → 0, w(∞, y) → 0, w(x, 0) = 0, w(0, y) = 0.

Lai and Xie (2000) used these conditions to construct a family of bivariate
PQD distributions with uniform marginals.

Example 3.22 (Ali–Mikhail–Haq family). Consider the bivariate family of dis-
tributions associated with the copula

C(u, v) =
uv

1 − θ(1 − u)(1 − v)
, θ ∈ [0, 1].

It is clear that the copula is PQD. In fact, it was shown in Section 2.9 that this
is a special case of the Lomax copula (the survival copula that corresponds to
the bivariate Lomax; viz., the Durling–Pareto distribution) given in Section
2.8.

Nelsen (2006, p. 188) has pointed out that if X and Y are PQD, then their
copula C is also PQD. Nelsen (1999) has provided a comprehensive treatment
on copulas and several examples of PQD copulas can be found therein.

3.6.3 Tests of Independence Against
Positive Dependence

Let us consider the problem of testing the null hypothesis of independence,

H0 : H(x, y) = F (x)G(y), for all x, y,

against the alternative of positive quadrant dependence,

HA : H(x, y) ≥ F (x)G(y), for all x, y,

with strict inequality holding on a set of nonzero probability. This problem
was first considered by Lehmann (1966), who proposed the Kendall’s tau
and Spearman’s correlation tests. Since then, a large number of tests have
been proposed in the literature for this hypothesis testing problem; see, for
example, Joag-Dev (1984) and Schriever (1987b).

On the basis of a random sample (X1, Y1), . . . , (Xn, Yn) from the distribu-
tion H, we wish to test H0 against HA. Let k ≥ 2 be a fixed positive integer,
and consider the following kernels:
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φ1k ((x1, y1), . . . , (xk, yk))

=
{

1 if (max1≤i≤k xi,max1≤i≤k yi) belongs to the same pair
0 otherwise

and

φ2k ((x1, y1), . . . , (xk, yk))

=
{

1 if (min1≤i≤k xi,min1≤i≤k yi) belongs to the same pair
0 otherwise.

For skewed distributions, which arise particularly when the random variables
are non-negative, as in the case of reliability applications, Kochar and Gupta
(1987) proposed a class of distribution-free statistics based on U -statistics
defined by

Uk =
1
(
n
k

)
∑

φ1k((xi1 , yi1), . . . , (xik
, yik

)),

where the summation is over all combinations of k integers (i1, i2, . . . , ik)
chosen out of (1, 2, . . . , n). Large values of Uk are significant for testing H0

against HA. Evidently, U2 is the well-known Kendall’s tau statistic. Kochar
and Gupta (1987) observed that these tests are quite efficient for skewed
distributions.

Let φk = φ1k + φ2k. Kochar and Gupta (1990) then proposed another
class of distribution-free tests based on the U -statistics corresponding to the
kernel φk, defined by

Vk =
1
(
n
k

)
∑

φk((xi1 , yi1), . . . , (xik
, yik

)),

where the summation is over all combinations of k integers (i1, i2, · · · , ik)
chosen out of (1, 2, . . . , n). Yet again, V2 is the well-known Kendall’s tau
statistic. Large values of Vk are significant for testing H0 against H1. In this
case, Kochar and Gupta (1990) found these tests to be quite efficient for
symmetric distributions.

Ledwina (1986) also considered two rank tests for testing independence
against positive quadrant dependence. These test statistics are closely related
to the monotonic quadrant dependence function described in Section 3.5.3.

3.6.4 Geometric Interpretations of PQD and Other
Positive Dependence Concepts

Geometric interpretations of positive dependence may be provided via copu-
las. Graphs and contour diagrams of Fréchet upper and lower bounds C+ and
C− and the independence copula C0(u, v) = uv, are given in Nelsen (1999,
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p. 10). Nelsen (1999, p. 152) has also shown that X and Y are PQD if and
only if C(u, v) ≥ uv from which it is concluded that if X and Y are PQD,
then the graph of the copula of X and Y lies on or above the graph of the
independence copula.

There are similar geometric interpretations of the graph of the copula when
the random variables satisfy one or more of the tail monotonicity properties
(LTD and RTI). These interpretations involve the shape of regions deter-
mined by the horizontal and vertical sections of the copula [Nelsen (1999, pp.
156–157)].

3.7 Additional Concepts of Dependence

Shaked (1979) introduced further ideas of positive dependence, applica-
ble to exchangeable bivariate random vectors (i.e., random vectors with
permutation-invariant distributions). These include the following concepts:

• Diagonal square dependent (denoted by DSD).
• Generalized diagonal square dependent (denoted by GDSD).
• Positive dependent by mixture (denoted by PDM). A bivariate distribution

is PDM if it can be expressed as a mixture of the form given in (3.21).
• Positive dependent by expansion (denoted by PDE).
• Positive definite dependent (denoted by PDD).

Definitions of DSD and PDD are as follows:

• DSD means that Pr(X ∈ I and Y ∈ I) ≥ Pr(X ∈ I) Pr(Y ∈ I).
• PDD means that cov(a(X), a(Y )) ≥ 0 for every real function a for which

the covariance exists.
• For definitions and explanations of the others, one may refer to Shaked

(1979).

These dependence concepts have interrelationships that can be summa-
rized as follows:

PDE
⇓

PDM ⇒ PDD ⇒ GDSD ⇒ DSD
⇓

cov(X,Y ) ≥ 0
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3.8 Negative Dependence

Having defined several concepts of dependence for the bivariate case, we can
easily obtain analogous concepts of negative dependence as follows. If (X,Y )
has a positive dependence, then (X,−Y ) on R2, or if we have a constraint of
positivity (X, 1− Y ) on the unit square, it has a negative dependence. How-
ever, if we have more than two variables, reversing the definition of positive
dependence does not allow us to retain the same appealing properties.

The negative dependence was first introduced by Lehmann (1966), and
this concept was further developed by others. All of them can be obtained
by negative analogues of positive dependence; viz., when the inequality signs
in (3.1), (3.7), and (3.20) are reversed, we obtain negative dependence. For
example, the negative analogue of PQD is negative quadrant dependent (de-
noted by NQD), and there are concepts of NRD (negatively regression depen-
dent), RCSD (right corner set decreasing), and RTD (right-tail decreasing) .
However, “association” has no negative analogue since the definition refers
to every pair of functions a and b, and the choice a = b will necessarily lead
to cov[a(X,Y ), a(X,Y )] ≥ 0.

Negative association of X1, X2, . . . , Xk is defined in a different way than
the positive association given in Section 3.4.2.

Definition 3.23 (Joag-Dev and Proschan (1983)). X1, X2, . . . , Xn are
said to be negatively associated (denoted by NA) if, for every pair of disjoint
subsets A1 and A2 of {1, 2, . . . , n},

cov[a(Xi, i ∈ A1), b(Xj , j ∈ A2)] ≤ 0 (3.32)

whenever a and b are increasing.

Joag-Dev and Proschan (1983) pointed out that for a pair of random
variables X and Y , NA is equivalent to NQD. This definition of the concept
also leads to several properties; most of them are in the multivariate setting.
Among these are the following:

(1) A subset of two or more NA random variables is NA.
(2) A set of independent random variables is NA.
(3) Increasing functions of a set of NA random variables are NA.
(4) The union of independent sets of NA random variables is NA.

For a further generalization of this concept, see Kim and Seo (1995).
Block et al. (1982a,b, 1988), Ebrahimi and Ghosh (1981, 1982), Karlin and

Rinott (1980), Lee (1985), and Kim and Seo (1995) have all introduced and
studied some other concepts of multivariate negative dependence; see also
the pertinent references in Block et al. (1985).

Lehmann (1966) defined the concept of negative likelihood ratio depen-
dence. This was called reverse regular of order 2 (denoted by RR2) by Karlin
and Rinott (1980) and Block et al. (1982a). The latter authors showed that
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under a condition that essentially requires the sum of three independent r.v.’s
to be fixed, two of them satisfy the RR2 condition. They also showed further
that RR2 ⇒ NQD.

These concepts of negative dependence have interrelationships that can be
summarized as follows:

NA
�

RCSD ⇒ RTD ⇒ NQD ⇒ cov ≤ 0
⇑

RR2

3.8.1 Neutrality

It is important to mention one more context where negative dependence
is more natural than positive dependence: when concerned with three pro-
portion probabilities, X1, X2, and X3, that add to one, and we focus our
attention on only two of them. Then, (X1, X2) is distributed over a trian-
gle. The percentage composition of different minerals in rocks is an example,
and the percentage of household expenditures spent on different groups of
commodities is another.

The two variables are often taken to have a bivariate beta distribution. The
idea of neutrality was introduced by Connor and Mosimann (1969) as follows.
X1 and X2 are said to be neutral if Xi and Xj/(1 − Xi) are independent
(i �= j). It is well known that if X1 and X2 have a bivariate beta distribution,
then they are neutral, and the converse is also true [Fabius (1973)]. It was
pointed out by Lehmann (1966) that the bivariate beta is RR2; hence, it is
also NQD. Negative covariance can also be observed quite easily in this case.

A thorough account of the concept of neutrality is by Mosimann (1988);
see also Mosimann (1975) and Mosimann and Malley (1981). We also note
here that quite often variables that sum to 1 are obtained by dividing more
basic variables by their total, as in X = X1/(X1 +X2 +X3), Y = X2/(X1 +
X2 +X3), and the spurious correlation may arise through the division by the
same quantity; see Pendleton (1986) and Prather (1988).

3.8.2 Examples of NQD

Several bivariate distributions discussed in Section 3.6, such as the bivariate
normal, F-G-M family, Durling–Pareto distribution, and bivariate exponen-
tial of Sarmanov are all NQD when the range of the dependence parameter
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is suitably restrained. The two variables in the following example can only
be negatively dependent.

Example 3.24 (Gumbel’s bivariate exponential distribution). The joint sur-
vival function is

H(x, y) = 1 − e−x − e−y + e−(x+y+θxy), 0 ≤ θ ≤ 1,

so that

H(x, y) − F (x)G(y) = e−(x+y+θxy) − e−x − e−y ≤ 0, 0 ≤ θ ≤ 1,

showing that F is NQD. In this case, it is known that −0.40365 ≤ corr(X,Y )
≤ 0; see Kotz et al. (2000, p. 351).

Example 3.25. Lehmann (1966) presented the following situation in which
negative quadrant dependence occurs naturally. Consider the rankings of n
objects by m persons. Let X and Y denote the rank sum for the ith and jth
objects, respectively. Then, X and Y are NQD.

3.9 Positive Dependence Orderings

Consider two bivariate distributions having the same pair of marginals F and
G, and assume that both are positively dependent. Naturally, we would like
to know which of the two bivariate distributions is more positively dependent.
In other words, we wish to order the two given bivariate distributions by the
extent of their positive dependence between the two marginal variables, with
higher in ordering meaning more positively dependent. In this section, the
concept of positive dependence ordering is introduced.

For a comprehensive treatment of dependence orderings, see Joe (1997).
Section 3.6 of Drouet-Mari and Kotz (2001) also contains a good summary
on this subject.

Throughout this section, we let H and H ′ denote the bivariate distribu-
tion functions of (X,Y ) and (X ′, Y ′), respectively, having common marginal
distributions F and G. We shall now introduce some (partial) orderings that
compare the strength of positive dependence of (X,Y ) with that of (X ′, Y ′).
The following definition is the one given by Kimeldorf and Sampson (1987).

Definition 3.26. A relation � on a family of all bivariate distributions is a
positive dependence ordering (denoted by PDO) if it satisfies the following
ten conditions:

(P0) H � H ′ ⇒ H(x,∞) = H ′(x,∞) and H(∞, y) = H ′(∞, y);
(P1) H � H ′ ⇒ H(x, y) ≤ H ′(x, y) for all x, y;
(P2) H � H ′ and H ′ � H∗ ⇒ H � H∗;
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(P3) H � H;
(P4) H � H ′ and H ′ � H ⇒ H = H ′;
(P5) H− � H � H+, where H+(x, y) = min[H(x,∞),H(∞, y)] and

H−(x, y) = max[H(x,∞) + H(∞, y) − 1, 0];
(P6) (X,Y ) � (U, V ) ⇒ (a(X), Y ) � (a(U), V ), where (X,Y ) � (U, V )

means the relation � holds between the corresponding bivariate distri-
butions;

(P7) (X,Y ) � (U, V ) ⇒ (−U, V ) � (−X,Y );
(P8) (X,Y ) � (U, V ) ⇒ (Y,X) � (V,U);
(P9) Hn � H ′

n,Hn → H in distribution,H ′
n → H ′ in distribution ⇒ H �

H ′, where Hn,H,H ′
n,H

′ all have the same pair of marginals.

We now present several positive dependence orderings, and it is assumed
that (x, y) ∈ R2:

• H is said to be more PQDE than H ′, denoted by H ′ e
� H, if E(Y |X >

x) ≥ E(Y ′|X ′ > x) [Kowalczyk and Pleszczyńka (1977)].
• H is said to be more quadrant dependent [Yanagimoto and Okamoto

(1969)] or more concordant dependent [Cambanis et al. (1976) and Tchen
(1980)] than H ′, denoted by H ′ c

� H, if H(x, y) ≥ H ′(x, y).
• H is said to be more (positively) regression dependent than H ′, denoted

by H ′ r
� H, if Pr(Y ≤ y|X = x) ≥ Pr(Y ′ ≤ y′|X ′ = x) implies Pr(Y ≤

y|X = x) ≥ Pr(Y ′|X ′ = x′) for any x′ > x [Yanagimoto and Okamoto
(1969)]. More (positively) regression dependent is also known as “more SI.”
The ordering can also be expressed in terms of quantiles of the conditional
distributions. A slight modification of the definition above was given by
Capéraà and Genest (1990).

• H is said to be more associated than H ′, denoted by H ′ a
� H, if there exist

functions u and v that map R(f)×R(g) onto R(f) and R(g), respectively,
such that

x1 ≤ x2

y1 ≤ y2

}

⇒
{
u(x1, y1) ≤ u(x2, y2)
v(x1, y1) ≤ v(x2, y2)

u(x1, y1) < u(x2, y2)
v(x1, y1) > v(x2, y2)

}

⇒
{
x1 < x2

y1 > y2

(X,Y ) ∼ (u(X ′, X ′), v(X ′, Y ′));

see Schriever (1987a,b). In the special case where u(x, y) = x,H is more
regression dependent than H ′, as defined above. We note also that if X ′

and Y ′ are independent, then H is “more associated” than H ′ is equivalent
to X and Y are associated.

• Kimeldorf and Sampson (1987) defined a TP2 ordering as follows. Let I×J
be a rectangle and H(I, J) and H ′(I, J) be the associated probabilities.
We write I1 < I2 if, for all x ∈ I1 and all y ∈ I2, x < y. We say that
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H ′ T
� H if, for all I1 < I2 and for all J1 < J2, we have

H ′(I1, J1)H ′(I2, J2)H(I1, J2)H(I2, J1)
≤ H ′(I1, J2)H ′(I2, I1)H(I1, J1)H(I2, J2). (3.33)

Capéraà and Genest (1990) also defined an ordering H “more LRD” than
H ′; see (3.34) for the definition. Although the dependence concepts LRD and
TP2 are the same when the joint density function exists, “more LRD” is not
equivalent to “more TP2.”

Genest and Verret (2002) pointed out that all one-parameter systems of
Archimedean copulas listed by Nelsen (2006) in Chapter 4 of his book fail
to be ordered by TP2, with the possible exception of Ali–Mikhail–Haq and
Gumbel–Barnett copulas. Some counterexamples outside the Archimedean
class are provided by the bivariate Cauchy, Cuadras–Augé, and Plackett dis-
tributions. It seems that this positive ordering may be of limited use.

Among these different positive dependence orderings, the following impli-
cations hold:

r
� ⇒

a
� ⇒

c
� ⇒

e
�;

see Yanagimoto and Okamoto (1969) and Schriever (1978b). Kimeldorf and

Sampson (1987) also showed that
T
� ⇒

c
� . However, Capéraà and Genest

(1990) showed that
T
� �⇒

r
� . It is not known, however, whether

T
� ⇒

a
� .

In the special case when H ′ = FG (i.e., X ′ and Y ′ are independent), the
following implications hold:

FG
a
� H ⇒ X and Y are associated;

FG
r
� H ⇒ X and Y are PRD;

FG
c
� H ⇒ X and Y are PQD;

FG
e
� H ⇒ X and Y are PQDE;

FG
T
� H ⇒ H is TP2. If H has a density, then

FG
T
� H if and only if h is TP2 (X and Y are LRD).

Fang and Joe (1992) linked the concepts of the “more associated” and
“more regression dependent” orderings with families of continuous bivariate
distributions. They presented several equivalent forms of these two orderings
so that the orderings are more easily verifiable for some bivariate distribu-
tions. For several parametric bivariate families, the dependence orderings are
shown to be equivalent to the orderings of the underlying parameters.

Example 3.27 (Bivariate normal distribution with positive ρ). The Slepian
inequality mentioned in Section 3.4.2 states that

Pr(X1 > x, Y1 > y) ≥ Pr(X2 > x, Y2 > y) if ρ1 ≥ ρ2.
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Hence, a more PQD ordering can be defined in this case in terms of the
positive correlation coefficient ρ.

Genest and Verret (2002) have shown that the bivariate normal with given
means and variances can be ordered by their correlation coefficient in TP2

ordering.

Example 3.28 (Ali–Mikhail–Haq family of distributions). In this case, the gov-
erning copula is

Cθ(u, v) =
uv

1 − θ(1 − u)(1 − v)
, θ ∈ [0, 1].

It is easy to see in this case that Cθ � Cθ′ if θ > θ′, i.e., Cθ is more PQD
than Cθ′ .

Example 3.29. A special case of Marshall and Olkin’s BVE is given by

Pr (X > x, Y > y) = exp {−(1−λ)(x + y)−λmax(x, y)} ,
x, y ≥ 0, 0 ≤ λ ≤ 1. (3.34)

Fang and Joe (1992) showed that the distribution is increasing with respect
to “more associated” ordering as λ increases but not with respect to “more
SI.”

Example 3.30. Kimeldorf and Sampson (1987) showed that the F-G-M copula

Cα(u, v) = uv + αuv(1 − u)(1 − v), 0 ≤ u, v ≤ 1, −1 ≤ α ≤ 1

can be ordered by the relation (3.33). Note, however, that this ordering holds
for −1 ≤ α ≤ 0 even though X and Y are RR2 for α < 0.

3.9.1 Some Other Positive Dependence Orderings

H is said to be more positive definite dependent (PDD) than H ′, denoted by

H ′ d
� H [Rinott and Pollack (1980)] if,

cov(a(X), a(Y )) ≥ cov(a(X ′), a(Y ′)).

Capéraà and Genest’s Orderings

Capéraà and Genest (1990) presented the following definitions for some or-
derings.
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Definition 3.31. If the conditional distribution HY |x(y) = H(x, y)/F (x) is
continuous and strictly increasing, then it has an inverse H−1

Y |x(u), and we can
then define, without ambiguity, a cumulative distribution function Hx′,x(u)
that maps [0, 1] to [0, 1] such that Hx′,x(u) = HY |x ◦H−1

Y |x(u).

The PRD (SI) property is then equivalent to

Hx′,x(u) ≤ u for all x < x′, for all 0 ≤ u ≤ 1.

They also defined H is more LRD than H ′, denoted by H ′ L
� H, if, for all

x < x′ and for all 0 ≤ u < v < t < 1,

Hx′,x(t) −Hx′,x(u)
Hx′,x(v) −Hx′,x(u)

≤
H ′

x′,x(t) −H ′
x′,x(u)

H ′
x′,x(v) −H ′

x′,x(u)
. (3.35)

This ordering is different from the TP2 ordering discussed earlier. Unlike the

more TP2 property, H ′ L
� H ⇒ H ′ r

� H if H and H ′ are two distribution
functions with the same marginals and such that the conditional distributions
HY |x and H ′

Y |x have supports independent of x.

3.9.2 Positive Dependent Ordering with
Different Marginals

When the relation � was defined earlier on the entire family of bivariate dis-
tributions, property (P0) of the positive dependence ordering expressed the
condition that only bivariate distributions having the same pair of marginals
are comparable. Kimeldorf and Sampson (1987) showed that this definition
can be extended to allow for the comparison of bivariate distributions not
having the same pair of marginals. This is done through the uniform rep-
resentation, i.e., the ordering of two bivariate distributions is carried out
through the ordering of their copulas. Thus, we can extend the definition �
to �∗, where the latter relation is defined by

H ′ � H ⇔ C ′
H �∗ CH .

It is clear that the relation �∗ satisfies (P2)-P(3), (P5)-(P9), and

(P4)∗ H ′ � H ⇒ C ′
H = CH .

There are several other types of positive dependence ordering in the lit-
erature, and we refer the interested reader to the book by Shaked and
Shantikumar (2005), which gives a comprehensive treatment on stochastic
orderings.
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In concluding this section, we note that Joe (1997, p. 19) has mentioned
that the concepts of PQD discussed in Section 3.6 and the concordance or-
dering (more PQD) defined above are basic for the parametric families of
copulas in determining whether a multivariate parameter is a dependence
parameter.

3.9.3 Bayesian Concepts of Dependence

Brady and Singurwalla (1996) introduced several concepts of dependence in
the Bayesian framework. They argue that the notion of dependence between
two or more variables is conditional on a known parameter (θ) or (latent)
variable. For example, if X and Y have a bivariate normal distribution, then
they are independent or dependent conditionally on their correlation coeffi-
cient ρ. Thus, if we can define a prior distribution P̃ on the parameter ρ, we
shall be able to associate a certain probability for independence or positive
dependence of the pair (X,Y ).

More specifically, let ρ denote the correlation coefficient between two vari-
ables X and Y , and if a prior distribution on ρ can be defined, we can compute
the probability

Π(α) = Pr(|ρ(X,Y )| ≥ α),

which is termed by Brady and Singpurwalla as a correlation survival function.

Definition 3.32. The pair (X,Y ) is stochastically more correlated than the
pair (X ′, Y ′) if

Pr(|ρ(X,Y )| ≥ α) ≥ Pr(|ρ(X ′, Y ′)| ≥ α).

Definition 3.33. The pair (X,Y ) is stochastically more correlated in expec-
tation than the pair (X ′, Y ′) if

∫

ΠX,Y (α)dα ≥
∫

ΠX′,Y ′(α)dα,

where
∫
ΠX,Y (α)dα = Π(α) = Pr(|ρ(X,Y )| ≥ α).

We conclude this chapter by mentioning that orderings of bivariate random
variables seem to be a fruitful and inexhaustible topic of research that attracts
the attention of theoretical as well as applied researchers.
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Chapter 4

Measures of Dependence

4.1 Introduction

A measure of dependence indicates in some particular manner how closely
the variables X and Y are related; one extreme will include a case of com-
plete linear dependence, and the other extreme will be complete mutual in-
dependence. Although it is customary in bivariate data analysis to compute
a correlation measure of some sort, one number (or index) alone can never
fully reveal the nature of dependence; hence a variety of measures are needed.

In Section 4.2, we describe the idea of total dependence, and then we
present some global measures of dependence in Section 4.3. Next, Pearson’s
product-moment correlation coefficient, the most commonly used measure of
dependence, is detailed in Section 4.4. In Section 4.5, the concept of maximal
correlation, which is based on Pearson’s product-moment correlation, is pre-
sented. The monotone correlation and its properties are described in Section
4.6. The rank correlation measures and their properties and relationships are
presented in Section 4.7. Next, in Section 4.8, three measures of dependence
proposed by Schweizer and Wolff (1976, 1981), which are based on Spear-
man’s rank correlation, are presented, and some related measures are also
outlined. The matrix of correlation is explained in Section 4.9, and tetra-
choric and polychoric correlations are introduced in Section 4.10. In Section
4.11, the idea of compatibility with perfect rank ordering is explained in the
context of contingency tables. Some brief concluding remarks on measures
of dependence are then made in Section 4.12. Some local measures of de-
pendence that have been proposed in the literature are presented in Section
4.13. Finally, the concept of regional dependence and some related issues are
described in Section 4.14.

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 141
DOI 10.1007/b101765 5, c© Springer Science+Business Media, LLC 2009



142 4 Measures of Dependence

4.2 Total Dependence

Let us now examine the concept of total dependence.

4.2.1 Functions

Before presenting different definitions of total dependence, it is helpful to
remind ourselves what a function is.

• By a function b from a set A to another set B, we mean a mapping (rule)
that assigns to each x in A a unique element b(x) in B. (Because of the
uniqueness requirement, ±√

x, for instance, is not a function.)
• b is said to be one-to-one if b(x) = b(y) only when x = y.
• b is called onto if b(A) = B; that is, for each y in B, there exists at least

one x in A such that b(x) = y.
• A function b that is one-to-one and onto is said to be a one-to-one corre-

spondence. Such a function has an inverse, which is denoted by b−1.
• b is said to be Borel measurable if, for each α, the set {x : b(x) > α} is a

Borel set, which is typically a countable union of open or closed sets or
complements of these. (The reader need not get bogged down with this,
as most functions we come across are indeed Borel measurable.)

In this chapter, we assume all the functions are Borel measurable and onto.

4.2.2 Mutual Complete Dependence

If each of two random variables X and Y can be predicted from the other,
then, intuitively, X is a function of Y and Y is a function of X, and so X
and Y are dependent on each other. In order to define this more formally, we
first need the following definition.

Definition 4.1. A random variable Y is completely dependent on X if there
exists a function b such that

Pr[Y = b(X)] = 1. (4.1)

This equation essentially means that Y = b(X), except on events of zero
probability.

Definition 4.2. X and Y are mutually completely dependent if the equation
above holds for some one-to-one function b; see Lancaster (1963).
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The concept of mutual complete dependence is an antithesis of stochas-
tic independence in that mutual complete dependence entails complete pre-
dictability of either random variable from the other (i.e., X and Y are mu-
tually determined), while stochastic independence entails X and Y being
completely useless in predicting one another.

4.2.3 Monotone Dependence

Clearly, if a sequence {(Xn, Yn)} of pairs of independent random variables
converges in distribution to (X,Y ), then X and Y must be mutually inde-
pendent. However, Kimeldorf and Sampson (1978) constructed a sequence of
pairs of mutually completely dependent random variables, all having a uni-
form distribution on [0, 1], that converges to a pair of independent random
variables each having a uniform distribution on [0, 1]. From this point of
view, mutual complete dependence is not a perfect opposite of independence.
This defect of mutual complete dependence motivated Kimeldorf and Samp-
son (1978) to present a new concept of total statistical dependence, called
monotone dependence.

Definition 4.3. Let X and Y be continuous random variables. Then Y is
monotonically dependent on X if there exists a strictly monotone function b
for which Pr[Y = b(X)] = 1.

It is clear that Y is monotonically dependent on X if and only if X is
monotonically dependent on Y . We can then present the following additional
definitions.

Definition 4.4. If the function b in the preceding definition is increasing, X
and Y are said to be increasing dependent ; if b is decreasing, X and Y are
said to be decreasing dependent.

Note that a function b may be one-to-one and yet not monotone; for ex-
ample,

b(x) =

⎧
⎨

⎩

x, 0 ≤ x < 1,
3 − x, 1 ≤ x ≤ 2,
x, 2 < x ≤ 3.

Hence, monotone dependence is stronger than mutual dependence.
Kimeldorf and Sampson (1978) showed that a necessary and sufficient

condition that X and Y be increasing (decreasing) monotonically dependent
is that the joint distribution function of (X,Y ) be H+ (H−), which are the
Fréchet bounds.
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4.2.4 Functional and Implicit Dependence

These are some weaker definitions of total dependence.

Definition 4.5. X and Y are functionally dependent if either X = a(Y ) or
Y = b(X) for some functions a and b; see Rényi (1959) and Jogdeo (1982).
X and Y are functionally dependent if either X is completely dependent on
Y or vice versa. An example is Y = X2.

Definition 4.6. X and Y are implicitly dependent if there exist two func-
tions a and b such that a(X) = b(Y ) with var[a(X)] > 0; see Rényi (1970,
p. 283). In other words, there may exist no function connecting X and Y and
yet they are related. For example, consider the relation X2+Y 2 = 1. If we set
a(X) = X2 and b(Y ) = 1−Y 2, then a(X) = b(Y ). However, Y = ±

√
1 −X2

is not a function, as it assigns one value of X to two values of Y .

4.2.5 Overview

The different notions of total dependence in decreasing order of strength are
as follows:

• linear dependence,
• monotone dependence,
• mutual complete dependence,
• functional dependence,
• Implicit dependence.

4.3 Global Measures of Dependence

If X and Y are not totally dependent, then it may be helpful to find some
quantities that can measure the strength or degree of dependence between
them. If such a measure can be expressed as a scalar, it is often more conve-
nient to refer to it as an index. We may then ask what conditions ought an
index ought to satisfy or what desirable properties it should have in order
to be useful. Such indices are called the global measures in Drouet-Mari and
Kotz (2001).

Rényi (1959) proposed a set of seven conditions for this purpose and
showed that the maximal correlation (discussed in Section 4.5) fulfills all
of them. Lancaster (1982b) modified and enlarged Rényi’s set of axioms to
nine conditions, described below.

Let δ(X,Y ) denote an index of dependence between X and Y . The fol-
lowing conditions, apart from the last one, represent Lancaster’s version of
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Rényi’s conditions. Condition (9) is taken from Schweizer and Wolff (1981)
instead of Lancaster (1982b), as the latter is expressed in highly technical
terms.

(1) δ(X,Y ) is defined for any pair of random variables, neither of them
being constant, with probability 1. This is to avoid trivialities.

(2) δ(X,Y ) = δ(Y,X). But notice that while independence is a symmetric
property, total dependence is not, as one variable may be determined
by the other, but not vice versa.

(3) 0 ≤ δ(X,Y ) ≤ 1. Lancaster says that this is an obvious choice, but not
everyone may agree.

(4) δ(X,Y ) = 0 if and only if X and Y are mutually dependent. Notice
how strong this condition is made by the “only if” part.

(5) If the functions a and b map the spaces of X and Y , respectively,
onto themselves, in a one-to-one manner then δ(a(X), b(Y )) = δ(X,Y ).
The condition means that the index remains invariant under one-to-one
transformation of the marginal random variables.

(6) δ(X,Y ) = 1 if and only if X and Y are mutually completely dependent.
(7) If X and Y are jointly normal, with correlation coefficient ρ, then

δ(X,Y ) = |ρ|.
(8) In any family of distributions defined by a vector parameter θ, δ(X,Y )

must be a function of θ.
(9) If (X,Y ) and (Xn, Yn), n = 1, 2, . . . , are pairs of random variables with

joint distributions H and Hn, respectively, and if {Hn} converges to H,
then limn→∞ δ(Xn, Yn) = δ(X,Y ).

Another version of Rényi’s axioms for a symmetric nonparametric measure
of dependence is given in Schweizer and Wolff (1981). A similar set of criteria
for a good measure of association (dependence) is also given by Gibbons
(1971, pp. 204–207). The nonparametric measures of dependence such as
Kendall’s and Spearman’s rank correlations will be discussed in Section 4.7.

The following comments are worth making about the conditions given
above:

• A curious feature of the list of conditions is its mixture of the trivial and/or
unhelpful with the strong and/or deep. We would say that (1), (3), (7),
and (8) fall into the first category (unless there are subtle consequences to
them that elude us), whereas (2), (4), (5), (6), and (9) fall into the second
category.

• Summarizing, conditions (2), (5), (4), and (6) say that we are looking for
a measure that is symmetric in X and Y , is defined by the ranks of X
and Y , attains 0 only in the case of independence, and attains 1 whenever
there is mutual complete dependence.

• Condition (3) is too restrictive for correlations, as the range of these is
traditionally from −1 to +1.
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• Condition (6) is stronger than the original condition which says δ(X,Y ) =
1 if either X = a(Y ) or Y = b(X) for some functions a and b, i.e.,
δ(X,Y ) = 1 if X and Y are functionally dependent. Rényi intentionally
left out the converse implication, i.e., δ(X,Y ) = 1 only if X and Y are
functionally dependent, as he felt it to be too restrictive. The strengthen-
ing from functional dependence to mutual complete dependence is possibly
due to Lancaster himself.

• Condition (7) is not appropriate to rank correlations; it should be replaced
by δ, being a strictly increasing function of |ρ|, as is done by Schweizer
and Wolff (1981).

• Schweizer and Wolff (1981) claimed that at least for nonparametric mea-
sures, Rényi’s original conditions are too strong.

• The main point about these axioms is not their virtues or demerits, either
individually or as a set, but that they make us think about what we mean
by dependence and what we require from a measure of it. They provide
a yardstick against which the properties of different measures may be
measured.

There are three prominent global measures of dependence: correlation co-
efficient, Kendall’s tau, and Spearman’s correlation coefficient.

4.4 Pearson’s Product-Moment Correlation Coefficient

Pearson’s product-moment correlation coefficient is a measure of the
strength of the linear relationship between two random variables, and is de-
fined by

ρ(X,Y ) =
cov(X,Y )

√
var(X)var(Y )

, (4.2)

where cov(X,Y ) = E{[X −E(X)][Y −E(Y )]} is the covariance of X and Y ,
and var(X) and var(Y ) are the variances of X and Y , respectively. If either
of the two variables is a constant, the correlation is undefined. If either has
an infinite variance, it may be possible to extend this definition, as done for
bivariate stable distributions, for example. From the definition, it is clear that
conditions (1) and (2) of Section 4.3 are satisfied.

From Cauchy-Schwarz inequality, it is also clear that |ρ(X,Y )| ≤ 1; equal-
ity occurs only when X and Y are linearly dependent; ρ takes the same sign
as the slope of the regression line. Suppose the marginals F (x) and G(y) are
given. Then, ρ can take all values in the range −1 to +1 if and only if these
exist constants α and β such that αX + βY has the same distribution as Y ,
and the distributions are symmetrical about their means; see Moran (1967).

If X and Y are independent, then ρ(X,Y ) = 0. But zero correlation does
not imply independence and therefore condition (4) of Section 4.3 is not sat-
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isfied. [Between uncorrelatedness and independence lies semi-independence.
This means that E(Y |X) = E(Y ) and E(X|Y ) = E(X); see Jensen (1988).]
As is well known, adding constants to X and Y does not alter ρ(X,Y ),
and neither does the multiplication of X and Y by constant factors with
the same sign. As ρ(X,Y ) may be negative, condition (3) is clearly vio-
lated. Furthermore, ρ(X,Y ) is not invariant under monotone transforma-
tions of the marginals, and so condition (5) is not satisfied. Further, since
ρ(X,−X) = −1, the “if” part of condition (6) is not satisfied. Conditions (7)
and (8) are obviously satisfied. Condition (9) is satisfied, which can be es-
tablished by using the continuity theorem for two-dimensional characteristic
functions [Cramér (1954, p. 102)] and the expansions of such characteristic
functions in terms of product moments [Bauer (1972, pp. 264–265)].

As to estimating the correlation coefficient ρ from a sample of n bivariate
observations (x1, y1), . . . , (xn, yn), the sample correlation coefficient

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2(yi − ȳ)2
(4.3)

could be used, where x̄ and ȳ are the respective sample means.
If (x1, y1), . . . , (xn, yn) are n independent pairs of observations from a bi-

variate normal distribution, r is indeed the maximum likelihood estimator
and also an approximate unbiased estimator of ρ. A disadvantage of r is that
it is very sensitive to contamination of the sample by outliers. Devlin et al.
(1975) compared r with various other estimators of ρ in terms of robustness;
see Ruppert (1988) for ideas on multivariate “trimming” (i.e., removal of
extreme values in the multivariate setting).

The value ρ(X,Y ) will be simply denoted as ρ whenever there is no am-
biguity; furthermore, the symbols ρ′ and ρ∗ will be used for other types of
correlations.

The distribution of z = 1
2 log

(
1+r
1−r

)
= tanh−1 r, called Fisher’s variance-

stabilizing transformation of r, approaches normality (as n increases) much
faster than that of r, particularly when ρ �= 0. For a detailed discussion,
see Rodriguez (1982). Mudholkar (1983) has made some comments on the
behavior of this transformation when the parent distribution is non-normal.

4.4.1 Robustness of Sample Correlation

The distribution of r has been discussed rather extensively in Chapter 32
of Johnson et al. (1995). While the properties of r for the bivariate normal
are clearly understood, the same cannot be said about bivariate non-normal
populations. Cook (1951), Gayen (1951), and Nakagawa and Niki (1992) ob-
tained expressions for the first four moments of r in terms of the cumulants
and cross-cumulants of the parent population. However, the size of the bias
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and the variance of r are still rather hazy for general bivariate non-normal
populations when ρ �= 0, since the cross-cumulants are difficult to quantify in
general. Although several non-normal populations have been investigated, the
messages regarding the robustness of r are somewhat conflicting; see Johnson
et al. (1995, p. 580).

Hutchinson (1997) noted that the sample correlation is possibly a poor
estimator. Using the bivariate lognormal as a case study on the robustness of
r as an estimate of ρ, Lai et al. (1999) found that for smaller sample sizes, r
has a large bias and large variance when ρ �= 0 with skewed marginals, which
supports the claim that r is not a robust estimator. It is therefore important
to check for the underlying assumptions of the population before reporting
the size of r.

4.4.2 Interpretation of Correlation

Rodriguez (1982) described the historical development of correlation, and in
it he has stated that although Karl Pearson was aware that high correlation
between two variables may be due to a third variable, this was not generally
recognized until Yule’s (1926) paper. One difficulty in interpreting correlation
is that it is still all too easy to confuse it with causation.

Rodriguez has argued that, for interpreting a calculated correlation, an
accompanying probability model for the chance variation in the data is nec-
essary, with the two most common ones being as follows:

• The bivariate normal distribution: In this case, r estimates the parameter
ρ; confidence intervals may be constructed for ρ, and hypothesis tests may
be carried out as well.

• The simple regression model yi = α + βxi+ random error: Here, r2 rep-
resents the proportion of total variability (as measured by the sum of
squares) in the y’s that can be explained by the linear regression,

r2 =
∑n

i=1(ŷi − ȳ)2
∑n

i=1(yi − ȳ)2
, (4.4)

where ŷi is the predicted value of yi calculated from the estimated regres-
sion equation. In the regression context, the x’s are often prefixed and not
random, and so there is no underlying bivariate distribution in which r
can be an estimate of a parameter.

Even so, says Elffers (1980), “It can be difficult (i) to decide when a par-
ticular value of ρ indicates association strong enough for a given purpose,
and (ii) in a given situation, to weigh the losses involved in obtaining more
strongly associated variables against the gains.” Elffers therefore puts for-
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ward functions of the correlation that can be interpreted as the probability
of making a wrong decision in certain situations.

Although they are elementary, the following points are perhaps worth
emphasizing:

• For certain bivariate distributions, ρ may not even exist. For example,
the bivariate Pareto distribution (see Section 2.8) ρ does not exist when
0 < c ≤ 2.

• The equation r = 0 does not mean that there is no relationship between
the x’s and y’s. A scatterplot might reveal a clear (though nonlinear)
relationship.

• And even if the correlation is close to 1, the relationship may be nonlinear,
either to the eye when plotted directly or because a transformation reveals
a relationship that is incompatible with linearity. For example, if X has a
uniform distribution over the range 8 to 10 and Y is proportional to X2,
then the correlation between X and Y is approximately 0.999; see Blake
(1979).

• Lots of different-looking sets of points can all produce the same value of
r; for example, Chambers et al. (1983, Section 4.2) have presented eight
scatterplots all having r = 0.7.

• The value of r calculated from a small sample may be totally misleading
if not viewed in the context of its likely sampling error.

In view of the above, the computation of r should be accompanied by the
use of such devices as scatterplots. When the data are not from a bivariate
normal population, r provides only limited information about the observa-
tions. Barnett (1985), citing two scatterplots in Barnett (1979), has expressed
the view that for highly skewed bivariate distributions, such as those with
exponential marginals, the ordinary correlation coefficient is not a very useful
measure of association.

History of Correlation Coefficients

Drouet-Mari and Kotz (2001) devoted their Chapter 2 to describing the his-
torical development of “independent event” and the correlation coefficient,
and they also conducted a brief tour of its early applications and misin-
terpretations. Readers should find this account of the early development of
statistical dependence useful.

14 Faces of Correlation Coefficients

Thirteen ways to look at the correlation coefficient have been discussed by
Rodgers and Nicewander (1988). A fourteenth way has been added to the list
by Rovine and Von Eye (1997). These are the following:
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1. Correlation as a function of raw scores and means.
2. Correlation as a standardized covariance.
3. Correlation as a standardized slope of the regression line.
4. Correlation as the geometric mean of the regression slopes.
5. Correlation as the square root of the ratio of two variances (proportion

of variability accounted for).
6. Correlation as the mean cross-product of standardized variables.
7. Correlation as a function of the angle between the two standardized

regression lines.
8. Correlation as a function of the angle between two variable vectors.
9. Correlation as a rescaled variance of the difference between two stan-

dardized scores.
10. Correlation estimated from the balloon rule.
11. Correlation in relation to the bivariate ellipses of isoconcentration.
12. Correlation as a function of the test statistic from designed experiments.
13. Correlation as the ratio of two means.
14. Correlation as the proportion of matches.

Cube of Correlation Coefficient

Falk and Well (1997) have also discussed many faces of the correlation co-
efficient. Dodge and Rousson (2000) have added up some new faces of the
correlation coefficient. One of their representations of results, the cube of
the correlation coefficient, is given as the ratio of skewness of the response
variable (γY ) to that of the explanatory variable (γX),

ρ3
XY =

γY

γX
,

if γX �= 0 and the distribution of the error term is symmetric. Muddapur
(2003) gave an alternative proof for the same result. It was pointed out that
the quantity |ρ3

XY | can be interpreted as the proportion of skewness “pre-
served” by the linear model.

Dodge and Rousson (2000) argued that
(
ρ2

XY

)3 = γ2
Y

γ2
X

can be used to de-
termine the direction of the regression line (whether Y is dependent on X
or X is dependent on Y in a regression line) as follows. Since the left-hand
side of the equation is always less than or equal to 1, γ2

Y ≤ γ2
X . Thus, Y is

linearly dependent on X. A similar argument can be provided for the linear
regression dependence of X on Y . To put it simply, for a given ρXY , γ

2
X ≥ γ2

Y

implies Y is the response variable and γ2
X ≤ γ2

Y implies X is the response
variable. It has been pointed out by Sungur (2005) that this approach of
“directional dependence” stems from the marginal behavior of the variables
rather than the joint behavior. We note that in the case where X and Y are
uniform variables, their coefficients of skewness are zero, so this approach to
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define directional dependence is inappropriate for copulas. Thus, it is clear
that Dodge and Rousson’s criterion only works for the skewed X and Y .

4.4.3 Correlation Ratio

The interpretation of r2 given above in Section 4.4.2, which presumes that
var(Y |X) is a constant, suggests writing the theoretical correlation as ρ2 =
1 − var(Y |X)

var(Y ) . More generally (i.e., beyond the context of linear regression),

the quantity η = 1− E[Y −E(Y |X)]2

var(Y ) is termed the correlation ratio of Y on X

and was introduced by Pearson (1905). For further details on this, one may
refer to Chapter 26 of Kendall and Stuart (1979).

4.4.4 Chebyshev’s Inequality

For any univariate distribution with zero mean and unit standard deviation,
Chebyshev’s inequality states that Pr(|X| ≤ a) ≥ 1 − a−2, for all a > 0. In
the general case, when μ is the mean and σ is the standard deviation, the
left hand side of the inequality becomes Pr(|X − μ| ≤ aσ).

For any bivariate distribution with zero mean, unit standard deviation,
and correlation ρ,

Pr(|X| ≤ a, |Y | ≤ a) ≥ 1 − 1 +
√

1 − ρ2

a2
.

More generally,

Pr(|X| ≤ a1, |Y | ≤ a2) ≥ 1 −
a1
2a2

+ a2
2a1

+
√

( a1
2a2

+ a2
2a1

)2 − ρ2

a1a2
;

see Tong (1980, Section 7.2).

4.4.5 ρ and Concepts of Dependence

If X and Y satisfy any concept of positive dependence, for example, they
are PQD. Then ρ will always be positive. Indeed in that case, cov(X,Y ) ≥ 0
(Hoeffding’s lemma). If ρ > 0 and (X,Y ) has a bivariate normal distribution,
then X and Y satisfy a more stringent dependence condition of LRD; see
Section 3.4 for pertinent details.



152 4 Measures of Dependence

4.5 Maximal Correlation (Sup Correlation)

A frequently quoted measure of dependence between two random variables
X and Y is that of maximal correlation, introduced by Gebelein (1941) and
studied by, among others, Rényi (1959) and Sarmanov (1962, 1963), defined
by

ρ′(X,Y ) = sup ρ[a(X), b(Y )],

where the supremum is taken over all Borel-measurable functions a and b
for which var[a(X)] and var[b(Y )] are finite and nonzero and where ρ rep-
resents the ordinary (Pearson product-moment) correlation coefficient. The
maximal correlation is also known as sup correlation. This measure satisfies
the following:

1. 0 ≤ ρ′(X,Y ) ≤ 1.
2. ρ′(X,Y ) = ρ′(Y,X).
3. ρ′(X,Y ) = 0 if and only if X and Y are independent. To see this,

consider indicator functions of X ≤ ξ, Y ≤ η, where ξ, η are varied.
4. If X and Y are mutually dependent, then ρ′(X,Y ) = 1, but the converse

is not true; see Lancaster (1963) for counterexamples and for necessary
and sufficient conditions for the complete mutual dependence of random
variables. Hence, condition (6) of Section 4.3 fails in part.

5. Obviously, |ρ(X,Y )| ≤ ρ′(X,Y ).
6. ρ′(X,Y ) = |ρ(X,Y )| = |ρ| if (X,Y ) is a bivariate normal random

variable. This is because, in this particular case, |ρ[a(X), b(Y )]| ≤
|ρ′(X,Y )|, equality holding only when a and b are identity functions;
see Kendall and Stuart (1979, p. 600). This result was rediscovered by
Klaassen and Wellner (1997).

7. Condition (9) of Section 4.3 is not fulfilled; as mentioned in the be-
ginning of Section 4.2.3, Kimeldorf and Sampson (1978) presented an
example of a sequence of mutually completely dependent random vari-
ables {(Xn, Yn)} converging in distribution to a distribution in which
X and Y are independent. Clearly, in this case, ρ(Xn, Yn) = 1 but
ρ′(X,Y ) = 0.

Rényi (1970, p. 283) proved that even if X and Y are only implicitly depen-
dent, then ρ′(X,Y ) is still equal to 1.

If the bivariate distribution is φ2-bounded [Lancaster (1958)], then the
maximal correlation equals ρ1, the first canonical correlation coefficient.

This measure has many good properties. However, according to Hall
(1970), it has a number of drawbacks, too. For instance, it equals 1 too
often and is also generally not readily computable.
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4.6 Monotone Correlations

4.6.1 Definitions and Properties

In the beginning of Section 4.2.3, we noted that mutual complete dependence
is not compatible with independence, so they can hardly be opposites! For
this reason, Kimeldorf and Sampson (1978) suggested the notion of monoton-
ically dependence. X and Y are monotone dependent if there exists a perfect
monotone relation between them. If the random variables are not perfectly
monotonically related, it may be useful to measure numerically the degree
of monotone dependence between them. One such measure, called monotone
correlation, can be defined as

ρ∗(X,Y ) = sup ρ[a(X), b(Y )], (4.5)

where the supremum is taken over all monotone functions a and b for which
var[a(X)] and var[b(Y )] are finite and nonzero.

The monotone correlation possesses the following properties:

1. 0 ≤ ρ∗(X,Y ) ≤ 1.
2. ρ∗(X,Y ) = ρ∗(Y,X).
3. ρ∗(X,Y ) = 0 if and only if X and Y are independent.1

4. |ρ(X,Y )| ≤ ρ∗(X,Y ) ≤ ρ′(X,Y ), which is obviously true.
5. |ρ(X,Y )| = ρ∗(X,Y ) = ρ′(X,Y ) if (X,Y ) has a bivariate normal

distribution.
6. If X and Y are monotonically dependent, then ρ∗(X,Y ) = 1, but the

converse is not true; see an example given in Kimeldorf and Sampson
(1978, p. 899).

7. If (V,W ) has the same uniform representation as (X,Y ), then ρ∗(X,Y ) =
ρ∗(V,W ).

8. ρ∗(X,Y ) = sup{|ρ(V,W )| : (V,W ) having the same uniform represen-
tation as (X,Y )}.

9. ρS(X,Y ) ≤ ρ∗(X,Y ) ≤ ρ′(X,Y ), where ρS is Spearman’s rank cor-
relation, ρS(X,Y ) = ρ[G(X),H(Y )]. Note that the grade correla-
tion (Spearman’s) is the ordinary correlation coefficient of the uniform
representations.

10. ρ∗ is invariant under all order-preserving or order-reversing transfor-
mations of X and Y , and hence it satisfies a weaker condition (5) of
Section 4.3.

For a more detailed discussion, one may refer to Kimeldorf and Sampson
(1978).

1 Suppose ρ∗(X, Y ) = 0. For any real t define at(x) to be 1 if x < t, and 0 otherwise. We claim
that ρ[as(X), at(Y )] = 0. If not, then either ρ[as(X), at(Y )] > 0 or ρ[as(X),−at(Y )] > 0,
which contradicts the hypothesis. Now, ρ[as(X), at(Y )] = 0 implies that Pr(X ≤ s, Y ≤ t) =
Pr(X ≤ s) Pr(Y ≤ t), which implies independence.
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4.6.2 Concordant and Discordant
Monotone Correlations

The concept of monotone correlation can be refined by measuring separately
the strength of relationship between X and Y in a positive direction and
the strength of the relationship in a negative direction, i.e., the strength of
concordancy and discordancy between X and Y . The following definitions
are due to Kimeldorf et al. (1982).

Definition 4.7. If a and b in (4.5) are both restricted to be increasing (or,
equivalently, both decreasing), the resulting measure sup ρ[a(X), b(Y )] is
called the concordant monotone correlation (denoted by CMC).

Definition 4.8. If a and b in (4.5) are both restricted to be increasing, then
inf ρ[a(X), b(Y )] is called the discordant monotone correlation (denoted by
DMC).

Kimeldorf et al. (1982) have mentioned that CMC and DMC have natural
interpretations as measures of positive and negative association, respectively,
for ordinal random variables.

It is easy to observe that, for any pair of increasing functions a and b, we
have

DMC ≤ ρ[a(X), b(Y )] ≤ CMC.

Suppose it is desired to impose numeric monotone scalings for a pair of
psychological tests. If the CMC and DMC are close, then by the equation
above, it makes little difference which monotone scales are used. If DMC =
CMC = 0, then X and Y are independent; however, it is possible for DMC
< CMC = 0 and yet X and Y not be independent. Note that if X and Y
are increasing dependent (Section 4.2.3), then CMC = 1; and if X and Y are
decreasing dependent, then DMC = 1.

In some situations, X and Y should have the same scaling—for example,
scores on a single test before and after treatment. This leads to two further
definitions.

Definition 4.9. If a = b in (4.5), then the resulting measure is called the
isoconcordant monotone correlation (denoted by ICMC).

Definition 4.10. If a = b in the definition of DMC, then the resulting mea-
sure is called the isodiscordant monotone correlation (denoted by IDMC).

Note that isoscaling (i.e., assuming a = b) is not appropriate when X
and Y have inherently different ranges of values. Kimeldorf et al. (1982)
evaluated these measures of association by means of a nonlinear optimiza-
tion algorithm. Kimeldorf et al. (1981) have also described an interactive
FORTRAN program, called MONCOR, for computing the monotone corre-
lations described above.
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4.7 Rank Correlations

Kendall’s tau (τ) and Spearman’s rho (ρS) are the best-known rank cor-
relation coefficients. Essentially, these are measures of correlation between
rankings, rather than between actual values, of X and Y ; as a result, they
are unaffected by any increasing transformation of X and Y , whereas the
Pearson product-moment correlation coefficient ρ is unaffected only by linear
transformations.

4.7.1 Kendall’s Tau

Let (xi, yi) and (xj , yj) be two observations from (X,Y ) of continuous random
variables. The two pairs (xi, yi) and (xj , yj) are said to be concordant if
(xi − xj)(yi − yj) > 0 and discordant if (xi − xj)(yi − yj) < 0.

Kendall’s tau is defined to be the difference between the probabilities of
concordance and discordance:

τ = P [(X −X ′)(Y − Y ′) ≥ 0] − P [(X −X ′)(Y − Y ′) ≤ 0]. (4.6)

The definition above is equivalent to

τ = cov[sgn(X ′ −X), sgn(Y ′ − Y )].

τ may also be defined as

τ = 4
∫ ∫

H(x, y)h(x, y)dx dy − 1. (4.7)

The sample version of τ is defined as

τ̂ =
c− d

c + d
=

c− d
(
n
2

) , (4.8)

where c denotes the number of concordant pairs and d the number of dis-
cordant pairs from a sample of n observations from (X,Y ). τ̂ is an unbiased
estimator of τ .

Since τ is invariant under any increasing transformations, it may be defined
via the copula C of X and Y

4
∫ 1

0

∫ 1

0

C(u, v)c(u, v)du dv − 1 = 4E(C(U, V )) − 1; (4.9)

see Nelsen (2006, p. 162).
Nelsen (1992) proved that τ

2 represents an average measure of total posi-
tivity for the density h defined by
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T =
∫ ∞

−∞

∫ y2

−∞

∫ ∞

−∞

∫ x2

−∞
[h(x2, y2)h(x1, y1)

−h(x2, y1)h(x1, y2)]dx1 dy1 dx2 dy2.

4.7.2 Spearman’s Rho

As with Kendall’s tau, the population version of the measure of association
known as Spearman’s rho (denoted by ρS) is based on concordance and dis-
cordance. Let (X1, Y1), (X2, Y2), and (X3, Y3) be three independent pairs of
random variables with a common distribution function H. Then, ρS is defined
to be proportional to the probability of concordance minus the probability of
discordance for the two pairs (X1, Y1) and (X2, Y3),

ρS = 3
{
P [(X1 −X2)(Y1 − Y3) > 0] − P [(X1 −X2)(Y1 − Y3) < 0]

}
. (4.10)

Equation (4.10) is really the grade correlation and can be expressed in terms
of the copula as follows:

ρS = 12
∫ 1

0

∫ 1

0

C(u, v) du dv − 3 (4.11)

= 12
∫ 1

0

∫ 1

0

uv dC(u, v) − 3 (4.12)

= 12E(UV ) − 3. (4.13)

Rewriting the equation above as

ρS =
E(UV ) − 1

4
1
12

, (4.14)

we observe that Spearman’s rank correlation between X and Y is simply
Pearson’s product-moment correlation coefficient between the uniform vari-
ates U and V .

Quadrant Dependence and Spearman’s ρS

The pair (X,Y ) is said to be positively quadrant dependent (PQD) if
H(x, y) − F (x)G(y) ≥ 0 for all x and y, and negatively quadrant depen-
dent (NQD) when the inequality is reversed, as defined in Section 3.3. Nelsen
(1992) considers that the expression H(x, y) − F (x)G(y) measures “local”
quadrant dependence at each point of (x, y) ∈ R2. Now, (4.11) gives
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ρS = 12
∫ ∞

−∞

∫ ∞

−∞
[H(x, y) − F (x)G(y)] dF (x) dG(y). (4.15)

It follows from the equation above that 1
12ρS represents an average measure of

quadrant dependence, where the average is taken with respect to the marginal
distributions of X and Y . It is easy to see from (4.15) that when X and Y
are PQD, then ρS ≥ 0.

The sample Spearman correlation for a sample of size n is defined as

R =
12

n(n2 − 1)

∑

i

(

ri −
n + 1

2

)(

si −
n + 1

2

)

, (4.16)

where ri = rank(xi) and si = rank(yi). Yet another common expression for
R is

R = 1 − 6
∑

i d
2
i

n(n2 − 1)
, (4.17)

where di = ri − si. R is not an unbiased estimator of ρS , and the expectation
of R in fact is E(R) = (n−2)ρS+3τ

(n+1) → ρS as n → ∞. If the distribution
of (X,Y ) is bivariate normal with correlation ρ, then it can be shown that
ρS = 6

π sin−1 ρ
2 .

It is important to note the following points:

• Independence of X and Y implies that τ = ρS = 0, but the converse
implication does not hold.

• τ and ρS are both restricted to the range −1 to +1, attaining these limits
for perfect negative and perfect positive relationships, respectively.

• If X and Y are positive quadrant dependent, then τ ≥ 0 and ρS ≥ 0.
• If two distributions H and H ′ have the same marginals and H is more

concordant than H ′ (i.e., H ≥ H ′), then τ and ρS are at least as great for
H as for H ′ [see Tchen (1980)].

• It was mentioned that the sample correlation r is very sensitive to outliers;
the sample counterparts of τ and ρS are less so, but Gideon and Hollister
(1987) proposed a statistic that is even more resistant to the influence of
outliers.

For a review of measures including rank correlations, one may refer to
Nelsen (1999).

4.7.3 The Relationship Between Kendall’s Tau and
Spearman’s Rho

While both Kendall’s tau and Spearman’s rho measure the probability of
concordance between two variables with a given distribution, the values of
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ρS and τ are often quite different. In this section, we will determine just how
different ρ and τ can be.

We begin by giving explicit relationships between the two indices for some
of the distributions we have considered; these are summarized in Table 4.1.

Table 4.1 Relationship between ρS and τ

Distribution Relationship

Bivariate normal ρS = 6
π

sin−1( 1
2

sin πτ
2

)

F-G-M ρS = 3τ/2
Marshall & Olkin ρS = 3τ/(2 + τ)
Raftery family ρS = 3τ(8 − 5τ)/(4 − τ)2

We may now ask what the relation is between τ and ρS for other distri-
butions and whether this relation can be used to determine the shape of an
empirical distribution. (By “bivariate shape,” we mean the shape remaining
once the univariate shape has been discarded by ranking.)

General Bounds Between τ and ρS

Various examples indicate that a precise relation between the two measures
does not exist for every bivariate distribution, but bounds or inequalities
can be established. We shall now summarize some general relationships [see
Kruskal (1958)]:

• −1 ≤ 3τ − 2ρ ≤ 1 (first set of universal inequalities).
• 1+ρ

2 ≥
(

1+τ
2

)2; 1−ρ
2 ≥

(
1−τ
2

)2 (second set of universal inequalities).

Combining the preceding two sets of inequalities yields a slightly improved
set,

3τ − 1
2

≤ ρS ≤ 1 + 2τ − τ2

2
, τ ≥ 0 and

τ2 + 2τ − 1
2

≤ ρS ≤ 1 + 3τ
2

, τ ≤ 0.

(4.18)
Another relationship worth noting [see, e.g., Nelsen (1992)] is

E(W ) =
1
12

(3τ − ρS),

where W = H(X,Y )−F (X)G(Y ), which corresponds to a measure of quad-
rant dependence. So E(W ) is the “expected” measure of quadrant depen-
dence. This equation alludes that the relationship between the two rank cor-
relations may be affected by the strength of the positive dependence discussed
in the preceding chapter.
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Some Empirical Evidence

A figure ρS as a function of τ can be plotted for which the pair (τ, ρS) lies
within a shaded region bounded by four constraints given in the preceding
set of inequalities. Such a figure with bounds for ρS and τ can be found in
Nelsen (1999, p. 104).

These bounds are remarkably wide: For instance, when τ = 0, ρS can
range between −0.5 and +0.5. Daniels (1950) comments that the assumption
that τ and ρS describe more or less the same aspect of a bivariate popu-
lation of ranks may be far from true and suggests circumstances in which
the message conveyed by the two indices is quite different. [“The worse dis-
crepancy...occurs when the individuals fall into two groups of about equal
size, within which corresponding pairs of ranks are nearly all concordant, but
between which they are nearly all discordant”; Daniels (1950, p. 190)]. But
Fieller et al. (1957) do not think this would happen very often, saying that
although, after transforming the margins to normality, the resulting bivari-
ate distribution will not necessarily be the bivariate normal, “We think it
likely that in practical situations it would not differ greatly from this norm,”
adding “This is a field in which further investigation would be of considerable
interest.”

For a given value of τ , how much do distributions differ in their values
of ρS? Table 4.2 shows that although ρS could theoretically take on a very
wide range of values, for the distributions considered, the values are all very
similar. The distributions that are most different from the others are Marshall
and Olkin’s, with its singularity in the p.d.f. at y = x, and Kimeldorf and
Sampson’s, with its oddly shaped support. With these exceptions, at τ = 0.5,
ρS lies in the range .667 to .707, even though it could theoretically take any
value between .250 and .875.

Table 4.2 shows us that the bounds of ρS in terms of τ appear to be much
narrower than implied by (6.18). In fact, Capéraà and Genest (1993) point
out that many of the bivariate distributions have their ρS and τ at the same
sign, with |ρS | ≥ |τ |. Table 4.2 confirms this general finding.

Some Conjectures on the Influence of Dependence Concepts on
the Closeness Between τ and ρS

The discussion above suggests the following question. Is there some class of
bivariate distributions that includes nearly all of those that occur for which
only a narrow range of ρS (for given τ) is possible? For instance, if every
quantile of y for a given x decreases with x, and vice versa [i.e., X and Y are SI
(PRD)], can bounds for ρS in terms of τ be found? Hutchinson and Lai (1991)
posed two conjectures when X and Y are SI:

(i) ρS ≤ 3τ/2.
(ii) −1 +

√
1 + 3τ ≤ ρS ≤ 2τ − τ2.
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Table 4.2 Comparisons of the values of ρS with corresponding values of τ

Distribution τ = 1
5

τ = 1
3

τ = 1
2

τ = 3
4

Lower bound −0.200 0.000 0.250 0.625
Upper bound 0.680 0.778 0.875 0.969
Normal 0.296 0.483 0.690 0.917
F-G-M 0.300c — — —
Ali–Mikhail–Haq 0.297 0.478 — —
Frank 0.297d 0.484d 0.695d 0.922d

Pareto 0.295 0.478 0.682e ?
Marshall and Olkin 0.273 0.429 0.600 0.818
Kimeldorf and Sampson 0.300 0.500 0.750 0.937
Weighted linear combination: exponential 0.289 0.467 0.667 0.900
Weighted linear combination: Laplace 0.293f 0.473g 0.674 0.904f

Weighted linear combination: uniform 0.298f 0.490 0.707 0.927
Part uniforma 0.298 0.486 0.707 0.919
Nelsenb 0.291 0.471 0.673 0.905
New lower bound 0.265 0.414 0.581 0.803
New upper bound 0.300 0.500 0.750 0.937

Notes:
a Part uniform distribution: h(x, y) = (1 + c)/(1 − c), x1/c ≤ y ≤ xc, 0 < c < 1 and is 0
elsewhere.

b Nelsen’s distribution: H(x, y) = min[x, y, (xy)(2−c)/2], x(2−c)/c < y < xc/(2−c).

c For the iterated F-G-M with τ = 0.2, ρS lies between .297 and .301, depending on what α
and β are. The former corresponds to α = 0.446, β = 1.784, the latter to α = 1, β = −0.385.

d We are grateful to Professor R.B. Nelsen of Lewis and Clark College for calculating these
values.

e One way of finding this is to use equation (1) of Lavoie (1986).

f We are grateful to M.E. Johnson of Los Alamos National Laboratory for calculating
these values.

g This result is implicit in Table III of David and Fix (1961).

Combining the two conjectures, we have

−1 +
√

1 + 3τ ≤ ρS ≤ min
{
3τ/2, 2τ − τ2

}
.

Nelsen (1999, pp. 168–169) has constructed a polynomial copula

C(u, v) = uv + 2θuv(1 − u)(1 − v)(1 + u + v − 2uv),

for which ρS > 3τ/2 if θ ∈ (0, 1/4). Hence, the first conjecture is false.
Hürlimann (2003) has proved conjecture (ii) for the class of bivariate extreme-
value copulas.

We note that U and V of the bivariate extreme-value copula are stochas-
tically increasing (SI).
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Positive Dependence Concepts as an Influential Factor on the
Relationship Between τ and ρS

Earlier in this section, we saw that Spearman’s rho (ρS) can be interpreted as
a measure of “average” quadrant dependence and that Kendall’s tau (τ) can
be interpreted as a measure of TP2 (totally positive of order 2) or the like-
lihood dependence ratio. Of the dependence properties (concepts) discussed
in the preceding chapter, positive quadrant dependence is the weakest (cov
(X,Y ) ≥ 0 is even weaker, but we hardly discussed this in that chapter) and
totally positive of order 2 is the strongest. Thus, the two most commonly
used measures of association are related to two rather different stochastic de-
pendence concepts, a fact that may partially explain the difference between
the values of ρS and τ that we observed in several of the examples in this
chapter. (By the way, the Pearson correlation coefficient ρ is clearly related
to the dependence concept cov(X,Y ) ≥ 0.)

We now wish to raise the question of identifying, by means of necessary and
sufficient conditions on the joint distribution H(x, y), the weakest possible
type of stochastic dependence between X and Y that will guarantee either
ρS > τ ≥ 0 or ρS < τ ≤ 0.

Capéraà and Genest (1993) have provided a partial answer to this question
and we now summarize their results.

Let X and Y be two continuous random variables. Then

ρS ≥ τ ≥ 0 (4.19)

if Y is left-tail decreasing and X is right-tail increasing. The same inequality
holds if X is left-tail decreasing and Y is right-tail increasing.

Also, ρS ≤ τ ≤ 0 if Y is left-tail increasing and X is right-tail decreas-
ing. The same inequality holds if X is left-tail increasing and Y is right-tail
decreasing.

Note. Fredricks and Nelsen (2007) also provided an alternative proof to the
results of Capéraà and Genest.

Nelsen (1992) and Nelsen (2006, p. 188) showed that if (X,Y ) is PQD
(positive quadrant dependent), then

3τ ≥ ρS ≥ 0.

Note that PQD implies Cov(X,Y ) ≥ 0, which in turn implies ρS ≥ 0. Now,
it was shown in Section 3.4.3 that both left-tail decreasing and right-tail
increasing imply PQD. It now follows from (6.19) that

3τ ≥ ρS ≥ τ ≥ 0
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if Y is simultaneously LTD and RTI in X or X is simultaneously LTD and
RTI in Y . However, Nelsen (1999, p. 158) gives an example showing that
positive quadrant depndence alone is not sufficient to guarantee ρS ≥ τ .

Relationship Between ρS and τ When the Joint Distribution
Approaches That of Two Independent Variables

It has long been known that, for many joint distributions exhibiting weak
dependence, the sample value of Spearman’s rho is about 50% larger than
the sample value of Kendall’s tau. Fredricks and Nelsen (2007) explained this
behavior by showing that for the population analogues of these statistics,
the ratio of ρ to τ approaches 3/2 as the joint distribution approaches that
of two independent random variables. They also found sufficient conditions
for determining the direction of the inequality between 3τ and 2ρ when the
underlying joint distribution is absolutely continuous.

Relationship Between ρS and τ for Sample Minimum
and Maximum

Consider two extreme order statistics X(1) = min{X1, X2, . . . , Xn} and
X(n) = max{X1, X2, . . . , Xn} of n independent and identically distributed
random variables. Let ρn and τn denote Spearman’s rho and Kendall’s tau
for X(1) and X(n), respectively.

Schmitz (2004) conjectured that limn→∞ ρn/τn = 3/2. The conjecture
has now been proved true by Li and Li (2007). Since τn = 1

2n−1 , Li and Li
noted that ρn is given by 3/(4n− 2) for large n. Chen (2007) has established
inequalities between ρn and τn.

4.7.4 Other Concordance Measures

Gini Index

The Gini measure of association may be defined through the copula C as

γC = 4
{∫ 1

0

C(u, 1 − u)du−
∫ 1

0

[u− C(u, u)]du
}

; (4.20)

see Nelsen (2006, p. 180).
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Blomqvist’s β

This coefficient β, also known as the quadrant test of Blomqvist (1950),
evaluates the dependence at the “center” of a distribution where the “center”
is given by (x̃, ỹ), with x̃ and ỹ being the medians of the two marginals. For
this reason, β is often called the medial correlation coefficient. Note that
F (x̃) = G(ỹ) = 1

2 .
Formally, β is defined as

β = 2Pr[(X − x̃)(Y − ỹ) > 0] − 1 = 4H(x̃, ỹ) − 1, (4.21)

which shows that β = 0 if X and Y are independent. Also, since H(x̃, ỹ) =
C(1

2 ,
1
2 ), we have β = 4C(1

2 ,
1
2 ) − 1.

It was pointed out by Nelsen (2006, pp. 182–183) that although Blomqvist’s
β depends on the copula only through its value at the center of [0, 1]× [0, 1],
it can nevertheless often provide an accurate approximation to Spearman’s
ρS and Kendall’s τ , as the following example illustrates.

Example 4.11. Let C(u, v) = uv
1−θ(1−u)(1−v) , θ ∈ [−1, 1], be the copula for the

Ali–Mikhail–Haq family. We note from Section 2.3 that the expressions for
ρS and τ involve logarithm and dilogarithm functions. However, it is easy
to verify that β = θ

4−β . If we reparametrize the expressions for ρS and τ by
replacing θ by 4β/(1 +β) and expand each of the expressions in a Maclaurin
series, we obtain ρS = 4

3β+ 44
75β

3+ 8
28β

4+· · · and τ = 8
9β+ 8

15β
3+ 16

45β
4+· · · .

Thus, 4β
3 and 8β

9 are reasonable second-order approximations to ρS and τ ,
respectively.

4.8 Measures of Schweizer and Wolff and
Related Measures

Schweizer and Wolff (1976, 1981) proposed three measures of dependence
that are based on Spearman’s rho, which can be defined through the copula
of X and Y as ρS(X,Y ) = 12

∫ 1

0

∫ 1

0
[C(u, v) − uv]du dv. Observing that the

integral in this expression is simply the signed volume between the surfaces
z = C(u, v) and z = uv, and that X and Y are independent if and only if
C(u, v) = uv, these authors suggested that any suitably normalized measure
of distance, such as Lp-distance, should yield a symmetric nonparametric
measure of distance. By considering p = 1, p = 2, and p → ∞, they obtained
the following three measures of dependence:

σ(X,Y ) = 12
∫ 1

0

∫ 1

0

|C(u, v) − uv| du dv, (4.22)
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γ(X,Y ) =

√

90
∫ 1

0

∫ 1

0

[C(u, v) − uv]2 du dv, (4.23)

and
κ(X,Y ) = 4 sup

u,v∈[0,1]

|C(u, v) − uv|. (4.24)

Equation (4.23) is equivalent to the Cramér–von Mises index given by
∫ ∞

−∞

∫ ∞

−∞
[H(x, y) − F (x)G(y)]2 dF (x)dG(y), (4.25)

which is equivalent to Φ2 of Hoeffding (1940); also see Lancaster (1982b).
On the other hand, (4.24) is equivalent to the Kolmogorov–Smirnov measure
given by

sup
x,y

|H(x, y) − F (x)G(y)|.

Schweizer and Wolff (1981) showed that, when evaluating by a suitably
modified version of Rényi’s condition, σ possesses many desirable properties,
including, in particular, condition (9) of Section 4.3. Therefore, a comparison
of σ with ρS may be desirable. Schweizer and Wolff (1981) measure the volume
and the signed volume between the surfaces C(u, v) and uv, respectively. They
also noted the following properties:

• |ρS(X,Y )| ≤ σ(X,Y ).
• Equality holds for the bivariate normal distribution.
• The difference can be large.

4.9 Matrix of Correlation

In this section, we present a summary of relevant aspects of the diagonal
expansion method [Lancaster (1982a,b)]. Specifically, let {ξi} and {ηi} be
complete orthonormal systems on F and G, respectively, with ξ0 = η0; that
is, E(ξiξj) = δij , where δij is either 1 or 0 depending on whether i = j or
i �= j and similarly for η. Let ρij = E(ξiηj) and R = (ρij), for all positive
integers i and j, be an infinite matrix. For given F and G, R completely
determines H [Lancaster (1963)], so that R can be said to be a matrix measure
of dependence. In particular, R = 0 if and only if X and Y are independent.
R is orthogonal if and only if X and Y are mutually completely dependent
[Lancaster (1963)]. Special interest arises when {ξi} and {ηi} possess the
biorthogonal property (i.e., E(ξiηj) = δijρij) in this case, R is diagonal.

The scalar φ2 = tr(RR′) =
∑∞

i=1

∑∞
i=1 ρ

2
ij is an index for measuring

dependence of two random variables. φ2 here is also referred to as the mean
square contingency, and it is zero if and only if X and Y are independent.
In the case of the bivariate normal distribution, φ2 + 1 = (1 − ρ2)−1. As we
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have just mentioned, X and Y being mutually completely dependent implies
R is orthogonal, which in turn implies φ2 = ∞. However, φ2 can be infinite
without having X and Y be mutually completely dependent. Consider a
monotone transformation of φ2 defined by λ(X,Y ) = φ2/(1 + φ2). It is clear
from the present discussion that λ does not satisfy the “necessary” part
of condition (6) of Rényi’s measures of dependence listed in Section 4.3.
However, Rényi (1959) showed that λ satisfies conditions (2)–(5) and (7). If
the distribution is absolutely continuous or discrete, condition (1) will also
be satisfied.

4.10 Tetrachoric and Polychoric Correlations

It is common for data to be recorded on an ordinal scale with only a few steps
to it. A typical case from the social sciences is where subjects (respondents)
are asked to report whether they approve strongly, approve, are neutral to-
ward, disapprove, or disapprove strongly of some proposal. When analyzing
this kind of data, a common approach is to assign an integer value to each
category and proceed with the analysis as if the results were on an interval
scale, with convenient distributional properties. Although this approach may
work satisfactorily in some cases, it may lead to erroneous results in some
others; see Olsson (1980). The polychoric correlation is suggested in the lit-
erature as an appropriate measure of correlation for bivariate tables of such
data; it is termed the tetrachoric correlations when applied to 2×2 tables.
The idea behind these measures is now described.

Formally, we denote the observed ordinal variables by X and Y , having r
and s distinct categories, respectively. We assume that X and Y have been
generated from some unobserved (latent) variables Z1 and Z2 that have a
bivariate normal distribution. The relation between X and Z1 may be written
as

X = 1 if Z1 < s1
X = 2 if s1 ≤ Z1 < s2
...

...
X = r if sr−1 ≤ Z1;

similarly, there is a relation between Y and Z2 in terms of class lim-
its t1, t2, . . . , ts−1 of Z2. The s’s and the t’s are sometimes referred to as
thresholds.

Interest is often primarily in estimating ρ(Z1, Z2), the correlation between
Z1 and Z2. Suppose we want to do this by means of the maximum likelihood
method. Given this general aim, the problem may be solved in at least two
different ways. One way is to estimate ρ and the thresholds simultaneously.
Alternatively, the thresholds are first estimated as the inverse of the normal
distribution function, evaluated at the cumulative marginal proportions of
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the contingency table, and the maximum likelihood estimate of ρ is then
computed with the thresholds fixed at those estimates. This may be referred
to as a two-step procedure. It has the advantage of greater ease of numer-
ical calculationough the former is formally more correct. In most practical
situations, the results are almost identical [Olsson (1979)]. For a generaliza-
tion of these methods to three- and higher-dimensional polytomous ordinal
variables, one may refer to Lee (1985) and Lee and Poon (1987a,b). Divgi
(1979b) describes a FORTRAN program for calculating tetrachoric correla-
tion and offers to provide a listing of it to any interested reader. Martinson
and Hamdan (1975) have presented a computer program for calculating the
polychoric correlation.

Other discussions on these correlations are by Drasgow (1986) and Har-
ris (1988), with the latter presenting a number of references to methods of
approximating the tetrachoric correlations.

4.11 Compatibility with Perfect Rank Ordering

Suppose we have a two-way ordinal contingency table, as described in Section
4.10, which we imagine to have arisen from grouping two continuous variables.
For simplicity, suppose each variate has been reduced to a dichotomy, so that

our table is only a 2×2 table. Suppose the frequencies are 0 1
1 2

. How well are

X and Y correlated?

• One approach is to calculate the tetrachoric correlation, implicitly think-
ing of the bivariate normal distribution, or to estimate the association
parameter of some other bivariate distribution.

• There is an alternative approach, which is especially relevant if X and Y
are two different measures of the same characteristic (e.g., the severity of
disease as assessed by two doctors). The question here is to what extent
the data are compatible with perfect agreement between the X-ordering

and the Y -ordering. The set of frequencies 0 1
1 2

is compatible with perfect

agreement between two orderings, as it may be that if finer discrimination

was insisted upon, the table would become

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

. (The original table

is obtained by combining the last three rows and combining the last three
columns.) In a sense, we are starting with perfect correlation, and not
zero, as our null hypothesis, and then asking to what extent the data
are incompatible. We feel that a formalization of this could be as follows:
Calculate

sup ρr[a(Z), b(Z)]
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(where ρr is a rank correlation coefficient, such as ρS or τ) subject to X
being a nondecreasing function of a, and Y being a nondecreasing function
of b. (The point is that X → a and Y → b are one-to-many relationships
and not functions.)

From the work of Guttman (1986), we observe some common ground between
the second approach above and Guttman’s suggestion that “weak” coefficients
of monotonicity are sometimes more appropriate than “strong” ones.

4.12 Conclusions on Measures of Dependence

There is, we fear, no universal answer to, “What is the best measure of
dependence?” According to Lancaster (1982b), for some defined classes of
distributions, the absolute product-moment correlation |ρ| is the index of
choice—for the bivariate normal distribution, for example, it satisfies all the
conditions presented in Section 4.3 except for condition (5); for the random
elements in common model, it completely determines the joint distribution.
In other classes, there may be other indices useful for some purposes and the
user needs to think about what purposes have priority. There is inevitably
some loss of information in condensing the matrix of correlations to a single
index. The absence of an always best measure should not surprise us if we
reflect on the persistence in the literature of two competing measures of rank
correlation, Kendall’s and Spearman’s.

4.13 Local Measures of Dependence

We saw earlier that ρS is an average measure of the PQD dependence. How-
ever, Kotz et al. (1992) presented an example to show that a distribution
with a high ρS may not be PQD. Drouet-Mari and Kotz (2001, p. 149) have
given the following rationale for defining a local index (measure) of depen-
dence: “These indices (global measures) are defined from the moments of the
distribution on the whole plane and can be zero when X and Y are not in-
dependent. One needs therefore the indices which measure the dependence
locally. In the case when X and Y are survival variables, one needs to iden-
tify the time of maximal correlation: for example, the delay before the first
symptom of a genetic disease by members of the same family will appear.
The pairs (X,Y ) and (X ′, Y ′) can have the same global measure of depen-
dence but may possess two different distributions H and H ′: a local index
will allow us to compare their variation in time. The variations with x and y
of some local indices allow us to characterize certain distributions and con-
versely choosing a shape of variation for an index allows us sometimes to
choose an appropriate model.”
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4.13.1 Definition of Local Dependence

The following definitions of local dependence measures can be found in
Drouet-Mari and Kotz (2001).

Definition 4.12. If V (x0, y0) is an open neighborhood of (x0, y0), then a
distribution H(x, y) is locally PQD in the neighborhood V (x0, y0) if

H̄(x, y) ≥ F̄ (x)Ḡ(y) for all (x, y) ∈ V (x0, y0).

If V (x0, y0) = (x0,∞) × (y0,∞), we then arrive at the remaining PQD.
(We use the term remaining to indicate a part in R2 beyond a certain point
of (x, y).) In a similar way, we can define a local or remaining LRD.

4.13.2 Local Dependence Function of
Holland and Wang

The following concepts were introduced by Holland and Wang (1987a,b), mo-
tivated by the contingency table for two discrete random variables. Consider
an r × s contingency table with cell proportions pij . For any two pairs of
indices (i, j) and (k, l), the cross-product ratio is

αij,kl =
pijpkl

pilpkj
, 1 ≤ i, k ≤ (r − 1), 1 ≤ j, l ≤ (s− 1). (4.26)

Yule and Kendall (1937, Section 5.15) and Goodman (1969) suggested
considering the following set of cross-product ratios:

αij =
pijpi+1,j+1

pi,j+1pi+1,j
, 1 ≤ i ≤ (r − 1), 1 ≤ j ≤ (s− 1). (4.27)

Further, let γij = logαij . Both αij and γij measure the association in the 2×2
subtables formed at the intersection of pairs of adjacent rows and columns.
They are, of course, invariant under multiplications of rows and columns.

Now, let us go back to the continuous case. Let R(h) = {(x, y) : h(x, y) >
0} be the region of the nonzero p.d.f. that has been partitioned by a very
fine rectangular grid. The probability content of a rectangle containing the
point (x, y) with sides dx and dy is then approximately h(x, y)dx dy. This
probability may be viewed as one cell probability of a large two-way table,
and so the cross-product ratio in (4.26) may be expressed as

α(x, y;u, v) =
h(x, y)h(u, v)
h(x, v)h(u, y)

, x < u, y < v, (4.28)
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assuming that all four points are in R(h). The function in (4.28) is called the
cross-product ratio function.

A local LRD may be defined by having α(x, y;u, v) > 0. The logarithm of
α(x, y;u, v), denoted by

θ(x, y;u, v) = logα(x, y;u, v), (4.29)

has been used by Holland and Wang (1987a,b) to derive a local measure of
LRD as well.

4.13.3 Local ρS and τ

We can restrict ρS and τ to an open neighborhood of (x0, y0) and then define
local ρS and τ as [Drouet-Mari and Kotz (2001, p. 172)]

ρS(x0,y0) = 12
∫ ∫

V (x0,y0)

(C(u, v) − uv) du dv (4.30)

and
τ(x0,y0) = 4

∫ ∫

V (x0,y0)

C(u, v)du dv − 1, (4.31)

upon noting that F (x) = u, G(y) = v for all (x, y) ∈ V (x0, y0). We may
now interpret ρS(x0,y0)/12 as the average on the local PQD property, while
τ(x0,y0)/2 is the average on the local LRD (TP2).

When V (x0, y0) = (x0,∞) × (y0,∞), it is easy to estimate τ(x0,y0) by
counting the remaining concordant and discordant pairs and to estimate the
variance of this estimator from n0, the number of observations remaining.

4.13.4 Local Measure of LRD

Holland and Wang (1987a,b) defined a local dependence index that can be
used to measure a local LRD property as

γ(x, y) = lim
dx,dy→0

θ(x, y;x + dx, y + dy)
dxdy

=
∂2

∂x∂y
log h(x, y) (4.32)

assuming the partial derivative of the second order exists. The expression
γ(x, y) is the local index that can be used to measure a local LRD property.

It follows from the preceding equation that

γ(x, y) = lim
dx,dy→0

[

log
(
h(x, y)h(x + dx, y + dy)
h(x + dx, y)h(x, y + dy)

)

/dx dy

]

. (4.33)
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Thus we see that γ(x, y) ≥ 0,∀x,∀y is equivalent to h(x, y) being TP2 or
X and Y are LRD. Hence γ(x, y) is an appropriate index for measuring local
LRD dependence.

4.13.5 Properties of γ(x, y)

We shall assume that R(h) is a rectangle, and R2 may also be regarded as
a rectangle for this purpose. (If R(h) is not a rectangle, then the shape of
R(h) can introduce dependence between X and Y of a different nature that
local dependence—we will take up this issue in the next section.) Note also
that Drouet-Mari and Kotz (2001, p. 189) regard γ(x, y) as a local measure
of LRD even though it was referred to as the local dependence function in
Holland and Wang (1987a,b).

The following properties are satisfied by the measure γ(x, y):

• −∞ < γ(x, y) < ∞.
• γ(x, y) = 0 for all (x, y) ∈ R(h) if and only if X and Y are independent.

γ(x, y) reveals more information about the dependence than other indices.
Recall, for example, that the product-moment correlation ρ may be zero
without being independent.

• γ(x, y) is symmetric.
• γ(x, y) is marginal-free, and so changing the marginals does not change

γ(x, y); in particular, ∂2

∂x∂y log c(u, v) = γ(x, y), F (x) = u,G(y) = v, where
c is the density of the associated copula.

• Holland and Wang (1987b) mentioned that when γ(x, y) is a constant, any
monotone function of that constant will be a “good” measure of associa-
tion. But, when γ(x, y) changes sign in R(h), most measures of association
will be inadequate or even misleading.

• γ(x, y) is a function only of the conditional distribution of Y given X or
the conditional distribution of X given Y .

• If X and Y have a bivariate normal distribution with correlation coefficient
ρ, then γ(x, y) = ρ

1−ρ2 , a constant. Conversely, if γ(x, y) is a constant,
Jones (1998) pointed out that the density function h(x, y) should have the
form a(x; θ)b(y; θ) exp(θxy).

Jones (1996) has shown, using a kernel method, that γ(x0, y0) is indeed a
local version of the linear correlation coefficient.

4.13.6 Local Correlation Coefficient

Suppose the standard deviations of X and Y are σX and σY , respectively.
Let μ(x) = E(Y |X = x), σ2(x) = var(Y |X = x) and β(x) = ∂μ(x)

∂x . Then,
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the local correlation coefficient of Bjerve and Doksum (1993) is defined as

ρ(x) =
σXβ(x)

{σXβ(x)}2 + σ2(x)
. (4.34)

If (X,Y ) has a bivariate normal distribution, then β(x) = β, a constant.
It is important to mention the following properties of the local correlation
coefficient ρ(x):

• −1 ≤ ρ ≤ 1.
• X and Y being independent implies ρ(x) = 0 ∀x.
• ρ = ±1 for almost all x is equivalent to Y being a function of X.
• In general, ρ(x) is not symmetric, but it is possible to construct a sym-

metrized version.
• ρ(x) is scale-free but not marginal-free, i.e., linear transformations of X

and Y (viz., X∗ = aX + b and Y ∗ = cY + d, with c and d having the
same sign) leave ρ(x) unchanged, but the transformation U = F (X) and
V = G(Y ) results in ρ(u), which is different from ρ(x).

Note that if ρ(x) ≥ 0 for all x, then H is PRD. We can therefore define a
local PRD when ρ(x) is positive in a neighborhood of (x0, y0).

4.13.7 Several Local Indices Applicable in
Survival Analysis

In the field of survival analysis, there is a need for time-dependent measures of
dependence; for example, to identify in medical studies the time of maximal
association between the interval from remission to relapse and the next inter-
val from relapse to death or to determine the genetic character of a disease
by comparing the degree of association between the lifetimes of monozygotic
twins [Hougaard (2000)].

The following indices may be found in this connection in Drouet-Mari and
Kotz (2001):

• Covariance function of Prentice and Cai (1992).
• Conditional covariance rate of Dabrowska et al. (1999).

4.14 Regional Dependence

4.14.1 Preliminaries

In this section, we shall discuss the notion of regional dependence introduced
by Holland and Wang (1987a). In addition to the notation of the previous
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section, we will write R(f) = {x : f(x) > 0} and R(g) = {y : g(y) > 0} for
the support of the marginals. We assume that R(h) is an open convex set of
the plane, R(f) and R(g) are open intervals, and f, g, and h are continuous
in their respective regions of support.

Clearly, R(h) is contained in the Cartesian product of R(f) and R(g),
denoted by R(f)×R(g). If R(h) is not equal to R(f)×R(g), then there exists
a point (x0, y0) in R(f) × R(g) that is not in R(h), at which h(x0, y0) = 0.
Yet, f(x0)g(y0) > 0. So, h(x0, y0) �= f(x0)g(y0). Therefore, X and Y cannot
be independent if their region of support is not a rectangle. This situation
is parallel to the effects caused by structural zeros in a two-way contingency
table. We are concerned here with the type of statistical dependence that is
“caused” by the region of support.

4.14.2 Quasi-Independence and Quasi-Independent
Projection

Let us define the x-section, Ry(x), and the y-section, Rx(y), of R(h) by
Ry(x) = {x : h(x, y) > 0} and Rx(y) = {y : h(x, y) > 0}. Clearly, Ry(x) ⊆
R(f) and Rx(y) ⊆ R(g). The following definition of quasi-independence is
analogous to quasi-independence in a two-way contingency table.

Definition 4.13. X and Y , having a joint density function h(x, y), are said
to be quasi-independent if there exist positive functions f1(x) and g1(y) such
that h(x, y) = f1(x)g1(y) for all (x, y) ∈ R(h). If R(h) = R(f) × R(g), then,
as we have seen, X and Y cannot be independent.

Definition 4.14. A positive density function Ph(x, y) on R(h) is the quasi-
projection of h(x, y) on R(h) if there exist positive functions a(x) and b(y)
such that the following three equations hold:

Ph(x, y) = a(x)b(y) for all (x, y) ∈ R(h),

∫

Rx(y)

a(x)b(y)dy = f(x) ∀ x ∈ R(f),
∫

Ry(x)

a(x)b(y)dx = g(y) ∀ y ∈ R(g).

The quasi-independent projection of h is a joint density that has the same
marginals as those of X and Y , and has the functional form of the product of
two independent distributions. The explicit form of Ph(x, y) can be obtained
by solving the two integral equations presented above. Holland and Wang
(1987a) have shown that if R(f) = (a, b) and R(g) = (c, d) are both finite
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intervals, then the quasi-independent projection Ph(x, y) exists uniquely over
R(h).

4.14.3 A Measure of Regional Dependence

The regional dependence measure M(x, y) = M(f, g,R(h)) is defined by

M(X,Y ) = 1 − 1
c
,

where c =
∫

R(f)×R(g)
Ph(x, y) dx dy. For discrete random variables, M(X,Y )

can be computed from incomplete two-way contingency tables. The following
properties of the measure M are reported by Holland and Wang (1987b):

• 0 ≤ M(X,Y ) ≤ 1.
• X and Y being independent implies M(X,Y ) = 0 but the converse is not

true.
• If X and Y are monotonically dependent, then M(X,Y ) = 1.
• If h(x, y) is a constant throughout R(h), then

M(X,Y ) = 1 − Area of R(h)
Area of [R(f) ×R(g)]

.

• For fixed R(f) and R(g), let h1 and h2 be two constant densities defined
inside R(f) × R(g), such that the marginal densities are positive in R(f)
and R(g). Then, R(h1) ⊆ R(h2) implies that M(X1, Y1) ≥ M(X2, Y2),
where (X1, Y1) and (X2, Y2) have joint densities h1 and h2, respectively.

• M(X,Y ) is invariant under smooth monotone transformation of the
marginals. (Of course, it changes sign if the transformation of one marginal
is increasing and the other is decreasing.)

Just as the maximal correlation and monotone correlation are difficult to
calculate, M(X,Y ) may not be easy to calculate as well, and especially so
when R(f) and R(g) are not finite intervals.

References

1. Barnett, V.: Some outlier tests for multivariate samples. South African Statistical
Journal 13, 29–52 (1979)

2. Barnett, V.: The bivariate exponential distribution; a review and some new results.
Statistica Neerlandica 39, 343–357 (1985)

3. Bauer, H.: Probability Theory and Elements of Measure Theory. Holt, Rinehart and
Winston, New York (1972)

4. Bjerve, S., Doksum, K.: Correlation curves: Measures of association as function of
covariates values. Annals of Statistics 21, 890–902 (1993)



174 4 Measures of Dependence

5. Blake, I.F.: An Introduction to Applied Probability. John Wiley and Sons, New York
(1979)

6. Blomqvist, N.: On a measure of dependence between two random variables. Annals
of Mathematical Statistics 21, 593–600 (1950)
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Chapter 5

Construction of Bivariate Distributions

5.1 Introduction

In this chapter, we review methods of constructing bivariate distributions.
There is no satisfactory mathematical scheme for classifying the methods.
Instead, we offer a classification that is based on loosely connected common
structures, with the hope that a new bivariate distribution can be fitted into
one of these schemes. We focus especially on application-oriented methods as
well as those with mathematical nicety.

Sections 5.2–5.11 of this chapter deal with the first major group of meth-
ods which have been repeatedly rediscovered and reinvented by applied sci-
entists seeking models for statistical dependence in numerous applied fields.
Sections 5.12–5.16 deal with approaches that are more specific to particular
applications.

In Section 5.2, we explain the marginal transformation method. In Sec-
tions 5.3 and 5.4, we describe different methods of constructing copulas
and the mixing and compounding methods, respectively. In Section 5.5,
we present the variables in common and trivariate reduction techniques
for constructing bivariate distributions. In Section 5.6, we explain the con-
struction of a joint distribution based on specified conditional distributions.
Next, in Section 5.7 the marginal replacement method is outlined. In Sec-
tion 5.8 bivariate ad multivariate skew distributions are referenced. Sec-
tions 5.9 and 5.10 outline density generators and geometric approaches. In
Sections 5.11 and 5.12, some other simple construction methods and the
weighted linear combination method are detailed. Data-guided methods are
described in Section 5.13, while some special methods used in applied fields
are presented in Section 5.14. Some bivariate distributions that are derived
as limits of discrete distributions are explained in Section 5.15. After de-
scribing some other methods that could potentially be useful in construct-
ing bivariate distributions but are not in vogue in Section 5.16, we com-
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plete the discussion in this chapter by making some concluding remarks in
Section 5.17.

In the remainder of this section, we present some preliminary details and
notation that are used throughout this chapter.

5.1.1 Fréchet Bounds

Let f and g be marginal probability density functions. For given marginal
distribution functions F and G, what limits must a joint distribution function
H satisfy so as to have its p.d.f. be non-negative everywhere? Hoeffding (1940)
and Fréchet (1951) showed in this regard that

H−(x, y) ≤ H(x, y) ≤ H+(x, y), (5.1)

where
H+(x, y) = min[F (x), G(y)] (5.2)

and
H−(x, y) = max[F (x) + G(y) − 1, 0]. (5.3)

It is easy to verify that the Fréchet bounds H+ and H− are themselves
d.f.’s and that they have maximum and minimum correlations for the given
marginals. Also, H+ concentrates all the probability on the increasing curve
F (x) = G(y), and H− concentrates all the probability on the decreasing
curve F (x) +G(y) = 1. For any F and G, [F−1(U)G−1(U)] has d.f. H+ and
[F−1(U), G−1(1−U)] has d.f. H−, where U denotes a standard uniform(0,1)
random variable. For proofs and discussion on H+ and H−, one may refer to
Whitt (1976), who also proved that convolution of identical bivariate distri-
butions results in an increase of the Fréchet upper bound and a decrease of
the Fréchet lower bound.

In order to have notation for the independent case, we further define

H0(x, y) = F (x)G(y). (5.4)

Devroye (1986, p. 581) uses the term comprehensive for any family of distri-
butions that includes H+,H0, and H−.

What if the distribution is restricted to the region X ≤ Y ? Smith (1983)
showed that, in this case, the bounds on H become

G(y)−max{0,min[G(y)−G(x), F (y)−F (x)]} ≤ H(x, y) ≤ min[F (x), G(y)].
(5.5)

In (5.5), the lower bound need not necessarily be a distribution function.
A sufficient condition for it to be one is that there exist an x0 such that
g(x) > f(x) for x > x0 and g(x) < f(x) for x < x0.



5.2 The Marginal Transformation Method 181

Regarding Fréchet bounds for multivariate distributions, one may refer to
Kwerel (1983).

5.1.2 Transformations

Suppose we have a density h(x, y) and we form two new variables A(X,Y )
and B(X,Y ). What is the joint density of A and B? To answer this, we first
need to express X and Y in terms of A and B. Letting, as usual, the values
of variates X,Y,A, and B be x, y, a, and b, the density of (A,B) is then
h[x(a, b), y(a, b)] |J |, where J is the Jacobian, given by

J =

∣
∣
∣
∣
∣

∂x
∂a

∂x
∂b

∂y
∂a

∂y
∂b

∣
∣
∣
∣
∣
=

∂x

∂a

∂y

∂b
−∂y

∂a

∂x

∂b
=

1
∂a
∂x

∂b
∂y−

∂a
∂y

∂b
∂x

. (5.6)

For a more detailed explanation that includes pictures of a rectangle being
transformed into a distorted rectangle, see Blake (1979, Section 7.2). Trans-
formations often encountered include X +Y , X−Y , XY , X/Y , X/(X +Y ),√
X2 + Y 2, and tan−1(Y/X); see, for example, Blake (1979, Section 7.2).
Let us now consider the special case of transforming the marginals. Sup-

pose X and Y are each uniformly distributed between 0 and 1, and we trans-
form the marginals so that they become F and G (with densities f and g,
respectively). In this case, A ≡ F−1 and B ≡ G−1, so that X ≡ F and
Y ≡ G. Hence, the density of (A,B) will be given by h[F (a), G(b)]∂F

∂a
∂G
∂b =

h[F (a), G(b)]f(a)g(b).
Physicists have apparently found it helpful to put the conditions that a

p.d.f. has to satisfy (non-negative and integrates to 1), along with what hap-
pens under transformation of the marginals, into the following form. Bivariate
densities having f(x) and g(y) as their marginal densities and F (x) and G(y)
as their marginal d.f.’s must be of the form h = fg[1+a(F,G)], where a(u, v)
is any function on the unit square that is bounded below by –1 and satisfies∫ 1

0
a(u, v)du =

∫ 1

0
a(u, v)dv = 0; see Finch and Groblicki (1984) and Cohen

and Zaparovanny (1980).

5.2 The Marginal Transformation Method

5.2.1 General Description

The basic idea here, usually attributed to Nataf (1962), is that if we start
with a bivariate distribution H(x, y) (with density h(x, y)) and apply mono-
tone transformations X → X∗ and Y → Y ∗, there is a sense in which the
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new distribution H∗(x∗, y∗) has the same bivariate structure as the origi-
nal H, and all that has changed is the marginals (viz., F becoming F ∗ and
G becoming G∗). In the univariate situation, familiar examples include (i)
transforming the normal distribution so that it becomes lognormal and (ii)
transforming the exponential distribution so that it becomes Weibull.

The emphasis when transforming marginals may take either of two forms,
which is easier to illustrate in the context of the bivariate normal distribution:

• Start with the bivariate normal distribution. Accept its description of how
X and Y are interconnected as satisfactory, but suppose normal marginals
are unsatisfactory for the purpose at hand. Transform the marginals so
that they become normal.

• Start with an empirical or unfamiliar bivariate distribution. In order to
compare its contours or other properties with the bivariate normal distri-
bution, free from the influence of the forms of the marginals, transform its
marginals to be normal.

Other distributions are sometimes used as standard—uniform and expo-
nential are two examples. In Chapter 2, a number of distributions were writ-
ten as their uniform representations, from which it was easy to transform to
any other required marginals.

Sometimes, the purpose of a transformation is to change the region of
support of a distribution. For example, suppose (X,Y ) has a bivariate nor-
mal distribution. Then, (eX , eY ) has a bivariate lognormal distribution (the
support of which is the positive quadrant), and

(
eX

1+eX+eY , ey

1+eX+eY

)
has a

bivariate logistic-normal distribution (the support of which is the simplex).

5.2.2 Johnson’s Translation Method

The best-known set of distributions constructed by marginal transformation
is that due to Johnson (1949), who started with the bivariate normal and
transformed X and/or Y so that the marginals

• remain the same,
• become lognormal,
• become logit-normal, and
• become sinh−1-normal.

This has traditionally been referred to as a translation method, though we
feel that transformation would be a better term. Including no transformation
of the normal marginals as one of the possibilities, subscripts N,L,B, and U
are used for the four models. There being four choices for X and similarly
four choices for Y , a total of 16 possible bivariate distributions result, which
are all listed in Kotz et al. (2000). For example, hNN is the bivariate normal
density, while hLL is the bivariate lognormal density function.
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As already mentioned in Chapter 4, it is well known that Pearson’s
product-moment correlation is not affected by linear transformations of X
and Y . But what happens when applying nonlinear transformations? The
answer is that if we start with the bivariate normal distribution and do this,
the correlation becomes smaller (in absolute magnitude).

5.2.3 Uniform Representation: Copulas

The great innovation in the study of bivariate distributions over the last
30 years has been the desire to separate the bivariate structure from the
marginal distributions. One manifestation of this has been the great inter-
est in the study of copulas (also known as the uniform representation) of
the distribution. This is the form the distribution takes when X and Y are
transformed so that they each have a uniform distribution over the range 0
to 1.

As an example, suppose we start with

H = xy[1 + α(1 − x)(1 − y)] (5.7)

for x and y between 0 and 1, with −1 ≤ α ≤ 1. Setting y = 1, we see that
the distribution of X is uniform, F = x; similarly, setting x = 1, we see
the distribution of Y is uniform, G = y. Now, suppose we require the new
marginals to be exponential, F = 1 − e−x and G = 1 − e−y. Replacing x by
1 − e−x and y by 1 − e−y in (5.7), we obtain

H = (1 − e−x)(1 − e−y)[1 + αe−(x+y)]. (5.8)

Equation (5.8) is a bivariate exponential distribution considered by Gumbel
(1960), and the copula in (5.7) is known as the Farlie–Gumbel–Morgenstern
copula.

Some of the important advantages of considering distributions after their
marginals have been made uniform are as follows:

• Independence does not usually have a clear geometric meaning, in that
the graph of the joint p.d.f. of X and Y provides us no insight as to
whether or not X and Y are independent. However, independence takes
on a geometric meaning for variates U and V with uniform marginals, in
that they are independent if and only if their joint p.d.f. is constant. Any
variation in the value of the p.d.f. is indicative of dependence between U
and V .

• The copula is the natural framework in which to discuss nonparametric
measures of correlation, such as Kendall’s τ and Spearman’s rank correla-
tion ρS .
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• Simulations of X and Y may become easier via simulations of the associ-
ated copulas.

5.2.4 Some Properties Unaffected by Transformation

For any family Hθ (−1 ≤ θ ≤ 1) of d.f.’s having absolutely continuous
marginals F and G, consider the following five conditions:

(1) The upper Fréchet bound corresponds to θ = 1, i.e.,

H1(x, y) = min[F (x), G(y)].

(2) At θ = 0, X and Y are independent, i.e., H0(x, y) = F (x)G(y).
(3) The lower Fréchet bound corresponds to θ = −1, i.e.,

H−1(x, y) = max[F (x) + G(y) − 1, 0].

(4) For fixed x, y, Hθ is continuous in [−1, 1].
(5) For fixed θ in (−1, 1), Hθ is an absolutely continuous d.f.

Then, Kimeldorf and Sampson (1975) have given the following result. Let
H = {Hθ : −1 ≤ θ ≤ 1} be a family of d.f.’s with fixed marginals F1, G1,
and satisfying any subset of conditions (1)–(5). Let F2 and G2 be any two
continuous d.f.’s. Then,

J = {Jθ(x, y) = Hθ[F−1
1 F2(x), G−1

1 G2(y)],−1 ≤ θ ≤ 1} (5.9)

is a family of d.f.’s with fixed marginals F2 and G2, that satisfies the same
subset of conditions (1)–(5) as does Hθ.

Example 5.1. Suppose we pick one of the distributions whose d.f. is simple
in form and whose marginals are uniform—for example, Frank’s copula (see
Section 2.4) given by

Hα = logα

{

1 +
(αx − 1)(αy − 1)

α− 1

}

, 0 < α �= 1.

Then, if we require a joint distribution with marginals F and G, we can write

Jα(x, y) = logα

{

1 +
(αF (x) − 1)(αG(y) − 1)

α− 1

}

.
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5.3 Methods of Constructing Copulas

Copulas can be considered as a starting point for constructing families of bi-
variate distributions because a bivariate distribution H with given marginals
F and G can be generated via Sklar’s theorem that H(x, y) = C(F (x),H(y))
after the copula C is determined. Thus, constructions of copulas play an
important role in producing various families of bivariate distributions.

5.3.1 The Inversion Method

This is simply the marginal transformation method through inverse proba-
bility integral transforms of the marginals F−1(u) = x and G−1(v) = y. If
either one of the two inverses does not exist, we simply modify our definition
so that F−1(u) = inf{x : F (x) ≥ u}, for example. Then, for a given bivariate
distribution function H with continuous marginals F and G, we obtain a
copula

C(u, v) = H(F−1(u), G−1(v)). (5.10)

With this copula, new bivariate distributions with arbitrary marginals, say
F ′ and G′, can be constructed using the formula H ′(x, y) = C(F ′, G′).

Note also that a survival copula (complementary copula) can be obtained
by using the survival functions F̄ , Ḡ, and H̄ (in place of F,G, and H) as

Ĉ(u, v) = H̄(F̄−1(u), Ḡ−1(v)). (5.11)

5.3.2 Geometric Methods

Several geometric schemes have been given in Chapter 3 of Nelsen (2006):

• singular copulas with prescribed support;
• ordinal sums;
• shuffles of Min [Mikusiński et al. (1992)];
• copulas with prescribed horizontal or vertical sections;
• copulas with prescribed diagonal sections.

Wei et al. (1998) constructed copulas with discontinuity constraints. Their
procedures may be considered as geometric methods, and they obtained the
following three families of copulas:

(1) piecewise additive copulas with the unit square being partitioned into
measurable closed sets Ai such that the copula is piecewise additive
[i.e., on each partition set Ai, C(u, v)|Ai

= C1(u) +C2(v), where C1(u)
and C2(v) are some increasing functions];
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(2) piecewise quadratic copulas whose densities are piecewise constant over
the four rectangular regions of the unit square (so that they are locally
independent);

(3) quadratic copulas with holes constructed by shifting the omitted mass
of holes along one axis, next along the other axis, and again along the
first axis, so as to ensure that the marginals are unaffected.

5.3.3 Algebraic Methods

Two well-known families of copulas, the Plackett and Ali–Mikhail–Haq fam-
ilies, were constructed using an algebraic relationship between the joint dis-
tribution function and its univariate marginals. In both cases, the algebraic
relationship concerns an odds ratio. In the first case, we generalize 2×2 con-
tingency tables, and in the second case we work with a survival odds ratio.

5.3.4 Rüschendorf’s Method

Rüschendorf (1985) developed a general method of constructing a copula as
follows:

Step 1. Find a function f1(u, v) such that

∫ 1

0

∫ 1

0

f1(u, v)du dv = 0 (5.12)

and ∫ 1

0

f1(u, v)du = 0 and
∫ 1

0

f1(u, v)dv = 0. (5.13)

Clearly, (5.13) implies (5.12).
Step 2. (Construction of f1) One starts with an arbitrary real integrable

function f on the unit square and then computes

V =
∫ 1

0

∫ 1

0

f(u, v)du dv, f1(v) =
∫ 1

0

f(u, v)du du, f2(v) =
∫ 1

0

f(u, v)du.

Then, f1 = f − f1 − f2 + V .
Step 3. Then, c(u, v) = 1 + f1(u, v) is a density of a copula. However,

there is a constraint that 1 + f1(u, v) must be positive. If this is not the
case but f1 is bounded, we can then find a constant α such that 1 + αf1

is positive.
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In general, 1 +
∑n

i=1 f
1
i is a density with f1

i satisfying the conditions above
in (5.12) and (5.13).

Example 5.2. Lai and Xie (2000) extended the F-G-M copula as

C(u, v) = uv+w(u, v) = uv+αubvb(1−u)a(1− v)a, a, b, 0 ≤ α ≤ 1. (5.14)

This method allows us to generate all polynomial copulas discussed earlier in
Section 1.10.

5.3.5 Models Defined from a Distortion Function

In the field of insurance pricing, one often uses [see, e.g., Frees and Valdez
(1998)] a distortion function φ that maps [0, 1] onto [0, 1], with φ(0) =
0, φ(1) = 1, and φ increasing.

Starting with H(x, y) = C(F (x), G(y)), one defines another distribution
function via such a function φ as

H∗(x, y) = φ[H(x, y)] (5.15)

with marginals F ∗(x) = φ(F (x)) and G∗(y) = φ(G(y)). The associated cop-
ula is then

C∗(u, v) = φ[C(φ−1(u), φ−1(v))]. (5.16)

Example 5.3 (Frank’s copula). Let

φ(t) =
1 − eαt

1 − e−α
, α > 0,

with independent copula C(u, v) = uv, yielding the copula

C∗(u, v) = logα

(

1 +
(αu − 1)(αv − 1)

α− 1

)

,

which is the well-known Frank’s copula; see Section 2.4 for pertinent details.

5.3.6 Marshall and Olkin’s Mixture Method

Marshall and Olkin (1988) considered a general method for generating bi-
variate distributions through mixture. Set

H(u, v) =
∫ ∫

K(F θ1 , Gθ2) dΛ(θ1, θ2), (5.17)
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where K is a copula, Λ is a mixing distribution, and φi is the Laplace trans-
form of the marginal Λi of Λ. Thus, selections of Λ and K lead to a variety
of distributions with marginals as parameters. Note that F and G here are
not the marginals of H.

If K is an independent bivariate distribution and the two marginals of Λ
are equal to the Fréchet bound (i.e., Λ(θ1, θ2) = min(Λ1(θ1), Λ2(θ2))), then
H(u, v) =

∫∞
0

F θ(u)Gθ(v)dΛ1(θ) with θ1 = θ. Now, let F (u) = exp[−φ−1(u)]
and G(u) = exp[−φ−1(u)], where φ(t) is the Laplace transform of Λ1 and so
φ(−t) is the moment generating function of Λ1. It then follows that

H(u, v) =
∫ ∞

0

exp
[
−θ
(
φ−1(u) + φ−1(v)

)]
dΛ1(θ). (5.18)

Because φ−1 = 0, it is clear that the marginals of H are uniform and so H
is a copula. In other words, when φ is the Laplace transform of a distribution,
then the function defined on the unit square by

C(u, v) = φ
(
φ−1(u) + φ−1(v)

)
(5.19)

is indeed a copula. Marshall and Olkin (1988) have presented several
examples.

Joe (1993) studied the properties of a group of eight families of copulas,
three of which were given by Marshall and Olkin (1988). Joe and Hu (1996)
derived a class of bivariate distributions that are mixtures of the positive
powers of a max-infinitely divisible distribution. Their approach is based on
a generalization of Marshall and Olkin’s (1988) mixture method.

5.3.7 Archimedean Copulas

An important family of copulas are Archimedean copulas, which were dis-
cussed in Section 1.5.

Any function ϕ that has two continuous derivatives and that satisfies
ϕ(1) = 0, ϕ′(u) < 0, and ϕ′′(u) > 0 (naturally, u is between 0 and 1) gener-
ates a copula. These conditions are equivalent to saying that 1−ϕ−1(t) is the
distribution of a unimodal r.v. with mode at 0 [Genest and Rivest (1989)].

We can define an inverse (or quasi-inverse if ϕ(0) < ∞) by

ϕ[−1](t) =
{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t ≤ ∞.

An Archimedean copula is then defined as

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (5.20)
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Here, the function ϕ is called a generator of an Archimedean copula. In other
words, one can construct an Archimedean copula C by finding a generator
having the above-mentioned properties. Several examples were presented in
Section 1.5.

5.3.8 Archimax Copulas

An Archimax copula is generated by a bivariate extreme-value copula and a
convex function defined on [0, 1] that maps onto [1/2, 1] as

Cϕ,A(u, v) = ϕ−1

[

{ϕ(u) + ϕ(v)}A
{

ϕ(u)
ϕ(u) + ϕ(v)

}]

, (5.21)

subject to max(t, 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1].

5.4 Mixing and Compounding

In the statistical literature, the terms mixing and compounding are often used
synonymously, with the latter being used rarely these days. Here, we prefer
to reserve the term mixing for a finite mixture of distributions while the rest
of the mixtures involve compounding.

5.4.1 Mixing

One of the easiest ways to generate bivariate distributions is to use the
method of mixing along with two distributions. Specifically, if H1 and H2

are two bivariate distribution functions, then

H(x, y) = θH1(x, y) + (1 − θ)H2(x, y), 0 ≤ θ ≤ 1, (5.22)

is a new bivariate distribution. Examples are readily found in Fréchet bounds:

• Fréchet (1951) himself suggested a one-parameter family of bivariate dis-
tributions that attained the Fréchet bounds at the limits of the parameter
θ as

H(x, y) = θH−1(x, y) + (1 − θ)H+1(x, y), 0 ≤ θ < 1; (5.23)

however, this family does not include H0 as a special case.
• A second example of a one-parameter family with a meaningful θ that

includes H+ and H−1 is the one given by Mardia (1970, p. 33) as
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H(x, y) =
1
2
θ2(1+θ)H+1+(1−θ2)H0(x, y)+

1
2
θ2(1−θ)H−1(x, y) (5.24)

for −1 ≤ θ ≤ 1. This family does include H0 as a special case.

Kimeldorf and Sampson (1975) generalized the idea to propose

Lθ = t(θ)Hθ + [1 − t(θ)]Kθ, −1 ≤ θ ≤ 1, (5.25)

where {Hθ} and {Kθ} are two families of d.f.’s having the same marginals
and satisfying the conditions given in Section 5.2.4 . Here, t is a continuous
mapping of [−1, 1] into [0, 1]. This generalization allows us to generate a
wide range of bivariate distributions, though its usefulness is questionable.
For mixtures of two bivariate normal distributions, one may refer to Johnson
(1987, pp. 55–62).

The concepts of mixture above can be readily extended to three compo-
nents—an example is (5.24) above, though usually two or more of the pro-
portions will be free parameters, not merely one. Mixing infinitely many
components is called compounding, which is described in the following sec-
tion.

For a more detailed account of applications of mixture distributions, see
Everitt (1985), McLachlan and Basford (1988), and Titterington et al. (1985).

5.4.2 Compounding

The idea of generating distributions by compounding has a long history,
especially in the univariate setting. Motivation is often from survival time
applications in biological or engineering sciences, and this does apply to the
bivariate case as much as to the univariate case. Let X and Y be two random
variables with parameters θ1 and θ2, respectively. For a given value of (θ1,
θ2), X and Y are assumed to be independent. The basic idea of compounding
is to say that θ1 and θ2 are themselves random variables, not constants,
and the observed distribution of X and Y results from integrating over the
(unobserved) distribution of θ1 and θ2. It is usual to assume that θ1 and θ2 are
identically equal so that only a single integration is necessary, but sometimes
they are assumed to be merely correlated, thus making an integration with
respect to their bivariate distribution necessary. It should be noted that if θ1
and θ2 are identical and play the role of a scale parameter of F and G, then
compounding is equivalent to a version of the trivariate reduction method,
which is discussed in Section 5.5.
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Bivariate Gamma Distribution as an Example

We now present an example due to Gaver (1970). This illustrates how the joint
moment generating function of the compound distribution can be obtained
by summing or integrating over the distribution of θ (the common value of
θ1 and θ2).

Let X and Y have the same gamma distribution with shape parameter
θ+ k (θ is an integer and k > 0 need not be an integer). For a given value of
θ, X and Y are independent with moment generating functions (1− s)−(θ+k)

and (1− t)−(θ+k), respectively. Assuming now that θ has a negative binomial
distribution with the probability generating function

Gk(z) =
∞∑

n=0

bn(k)zn =
(

α

1 + α− z

)

k, (5.26)

where bn(k) is the probability that θ takes on the value n, and k and α > 0
are the two parameters of the negative binomial distribution, we derive the
joint moment generating function of X and Y as

M(s, t) = E(esX+tY )

=
∞∑

n=0

E(e(sX+tY )|θ = n) Pr(θ = n)

=
∑

n=0

bn(k)[(1 − s)(1 − t)]−n[(1 − s)(1 − t)]−k

= Gk{[(1 − s)(1 − t)]−1} [(1 − s)(1 − t)]−k

=
(

1 − α + 1
α

s− α + 1
α

t +
α + 1
α

st

)−k

.

Integration May Be Over Two Parameters

Suppose that the parameters pertaining to X and Y are not identical but
merely correlated. Specifically, suppose they have Kibble’s bivariate gamma
distribution, i.e., their marginal densities are of gamma form with shape
parameter c and their joint p.d.f. is

h(θ1, θ2)

=
(θ1θ2)(c−1)/2

bc+1(1 − k)(c−1)/2kΓ (c)
exp
{

−θ1 + θ2
bk

}

Ic−1

(
2
√

(1 − k)θ1θ2
bk

)

,(5.27)

where 0 < k < 1 and Iν is the modified Bessel function of the first kind.
Then, upon performing the integration
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Pr(X > x, Y > y) =
∫ ∞

0

exp(−θ1x− θ2y)h(θ1, θ2) dθ1dθ2 (5.28)

by making use of Eq. (18) of Erdélyi (1954, p. 197), we find the bivariate
survival function to be

(1 + bx + by + kb2xy)−c. (5.29)

Marshall and Olkin’s Construction Scheme

Marshall and Olkin’s (1988) method of constructing bivariate distributions is
a generalization of constructing bivariate survival models induced by frailties.
Frailty models have been defined and widely used in the field of survival
analysis; see, for example, Hougaard (2000) and Oakes (1989).

The procedure for constructing a bivariate survival function from the
marginal survival functions by the Laplace transform of a frailty variable
can be easily applied to F and G to obtain another joint distribution H as

H(x, y) = ϕ−1[ϕ(F (x)) + ϕ(G(y))]. (5.30)

Marshall and Olkin (1988) have generalized themethod above to the case
where the mixing distribution is also a bivariate distribution Ω(w1, w2) de-
fined on [0,∞] × [0,∞] with the Laplace transform ϕ and its marginals
Ωi, i = 1, 2, with the Laplace transforms ϕi, and K a bivariate distribu-
tion with uniform marginals over [0, 1]. F and G are defined using F0 and
G0, the two univariate baseline distribution functions, so that F = ϕ1(logF0)
and G = ϕ2(logG0). Then there exists a distribution function H such that

H(x, y) =
∫ ∫

K(Fw1
0 (x), Gw2

0 (y)) dΩ(w1, w2). (5.31)

Marshall and Olkin (1988) and Oakes (1989) have shown that for any
distribution obtained as

∫
exp[−θA(x)] exp[−θB(y)]f(θ)dθ, the copula is

Archimedean. That is, there exists a function ϕ such that ϕ(H) = ϕ(F ) +
ϕ(G). Writing T (t) =

∫∞
0

exp(−θt)f(θ)dθ, we obtain H = T (A(x) + B(y))
with marginals F = T (A(x)) and G = T (B(y)). Hence, T−1(H) = T−1(F )+
T−1(G). What this means is that if we know the function ϕ(.) defining the
Archimedean copula and we want to know the compounding density f(θ),
we invert ϕ to get T and then apply the inverse Laplace transform to get f
from T ; see Table 5.1. But, not all Archimedean copulas give rise to valid
densities f(θ). Three Archimedean copulas are summarized in the following
discussion.
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Table 5.1 Laplace transform and compounding density

Compounding density f(θ) T (t) ϕ(u) = T−1(u)

Gamma (1 + t)−c u−1/c − 1

Positive stable exp(−tα) (− log u)1/α

Inverse Gaussian exp[−η(
√

1 + 2t − 1)] (log u)[log(u) − 2η]/(2η2)

Whitmore and Lee (1991, p. 41) argued for the case of the inverse Gaussian
as the compounding density on the grounds that “the level of imperfection
in the item may be proportional to the length of time the reaction continues
before a critical condition is first satisfied. Based on this reasoning, we shall
consider here a physical model in which the hazard rate equals the stop-
ping time of a stochastic process. Furthermore, because of the prevalence of
Wiener diffusion processes in chemical and molecular reactions and in physi-
cal systems, we select the first hitting time of a fixed barrier in such a process
as a model ... [this] distribution is inverse Gaussian.”

5.5 Variables in Common and Trivariate
Reduction Techniques

5.5.1 Summary of the Method

The idea here is to create a pair of dependent random variables from three
or more random variables. In many cases, these initial random variables are
independent, but occasionally they may be dependent—an example of the
latter is the construction of a bivariate t-distribution from two variates that
have a standardized correlated bivariate normal distribution and one that has
a chi-distribution. An important aspect of this method is that the functions
connecting these random variables to the two dependent random variables are
generally elementary ones; random realizations of the latter can therefore be
generated as easily as these of the former. A broad definition of the variables-
in-common (or trivariate reduction) technique is as follows. Set

X = τ1(X1, X2, X3)
Y = τ2(X1, X2, X3)

}

, (5.32)

where X1, X2, X3 are not necessarily independent or identically distributed.
A narrow definition is

X = X1 + X3

Y = X2 + X3

}

, (5.33)

with X1, X2, X3 being i.i.d. Another possible definition is
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X = τ(X1, X3)
Y = τ(X2, X3)

}

, (5.34)

with (i) the Xi being independently distributed and having d.f. F0(xi;λi)
and (ii) X and Y having distributions F0(x;λ1 + λ2) and F0(y;λ1 + λ3),
respectively.

Three well-known distributions that can be obtained in this way are:

• the bivariate normal, from the additive model in (5.33), with the Xi’s
having normal distributions;

• Cherian’s bivariate gamma distribution, also obtained from (5.33), but
with the Xi’s having gamma distributions; and

• Marshall and Olkin’s bivariate exponential distribution with joint survival
function

H̄(x, y) = exp(−(λ1 + λ12)x− (λ2 + λ12)y + λ12 min(x, y))
= F̄ (x)Ḡ(y) min{exp(λ12x), exp(λ12y)}, (5.35)

with the transformation τ being the minimum and the Xi’s having expo-
nential distributions.

5.5.2 Denominator-in-Common and Compounding

The denominator-in-common version of the trivariate reduction method of
constructing bivariate distributions sets X = X1/X3 and Y = X2/X3. This
may readily be seen to be equivalent to compounding a scale parameter if we
instead write them as X = X1/θ and Y = X2/θ. Then,

H(x, y) = Pr(X ≤ x, Y ≤ y)
= Pr(X1 ≤ θx,X2 ≤ θy)

=
∫

Pr(X1 ≤ θx) Pr(X2 ≤ θy)f(θ) dθ

=
∫

FX1(θx)FX2(θy)f(θ) dθ,

where f(θ) is the p.d.f. of θ, which is the familiar equation for compounding
a scale parameter; see Lai (1987).

5.5.3 Mathai and Moschopoulos’ Methods

Mathai and Moschopoulos (1991) constructed a bivariate gamma distribution
whose components are positively correlated and have three-parameter distri-
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butions. Denote the three-parameter (shape, scale, and location) gamma by
Vi ∼ G(αi, βi, γi), i = 0, 1, 2, and let

X =
β1

β0
V0 + V1, Y =

β2

β0
V0 + V2.

The X and Y so defined have a bivariate distribution with gamma marginals.
Mathai and Moschopoulos (1992) constructed another form of bivariate

gamma distribution. Let Vi, i = 1, 2, be defined as above. Form

X = V1, Y = V1 + V2.

Then X and Y clearly have a bivariate gamma distribution. Theconstruction
above is only part of a multivariate setup motivated by the consideration of
the joint distribution of the total waiting times of a renewal process.

5.5.4 Modified Structure Mixture Model

Lai (1994) proposed a method of constructing bivariate distributions by a
generalized trivariate reduction technique that may be considered as a mod-
ified structure mixture model.

The proposed model has the form

X1 = Y1 + I1Y2,

X2 = Y3 + I2Y2, (5.36)

where Yi are independent random variables and Ii (i = 1, 2) are indicator
random variables that are independent of Yi but where (I1, I2) has a joint
probability function with joint probabilities given by pij , i, j = 0, 1.

Thus, new bivariate distributions can be constructed by specifying p00

and p10.

5.5.5 Khintchine Mixture

The following method of generating bivariate distributions may be found in
Bryson and Johnson (1982) and Johnson (1987, Chapter 8). Let

X = Z1U1

Y = Z2U2

}

, (5.37)

where U ’s are uniform on (0, 1) and both U ’s and Z’s can be either identical
or independent.
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5.6 Conditionally Specified Distributions

5.6.1 A Conditional Distribution with a
Marginal Given

A bivariate p.d.f. can be expressed as the product of a marginal p.d.f. and
a conditional p.d.f., h(x, y) = f(x)g(y|x). This is easily understood and has
been a popular approach in the literature, especially when Y can be thought
of as being caused by, or predictable from, X. We will give one simple and
one complicated example. Conditionally specified distributions have been dis-
cussed rather extensively in the books by Arnold et al. (1992, 1999).

Example 5.4 (The Beta-Stacy Distribution). Mihram and Hultquist (1967)
discussed the idea of a warning-time variable, X, for Y = the failure time
of a component being tested, where 0 < X < Y . A bivariate distribution
was proposed, with Y having Stacy’s generalized gamma distribution and X,
conditional on Y = y, having a beta distribution over the range 0 to y. The
p.d.f. is thus given by

h =
|c|

abcΓ (b)B(p, q)
xp−1(y − x)q−1ybc−p−q exp[−(y/a)c]. (5.38)

5.6.2 Specification of Both Sets of
Conditional Distributions

Methods of Characterizing a Bivariate Distribution

Gelman and Speed (1993) have stated three possible ways to define a joint dis-
tribution of two random variables X and Y by using conditional and marginal
specifications:

(1) The conditional distribution of X given Y and the marginal distribution
of Y specify the joint distribution uniquely.

(2) The conditional distributions of X given Y , along with the single dis-
tribution of Y given X = x0, for some x0, uniquely determine the joint
density as

h(x, y) ∝ f(x|y)g(y|x0)
f(x0|y)

. (5.39)

Normalization determines the constant of proportionality; the discrete
analogue of these results is due to Patil (1965).

(3) The conditional distributions of X given Y and Y given X determine
the joint distribution from the formula above for each x0. The con-
ditional specification thus overdetermines the joint distribution and is
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self-consistent only if the derived joint distributions agree for all values
of x0. The last sentence is effectively equivalent to the compatibility
condition discussed below.

Compatibility

Let f(x|y) and g(y|x) be given conditional density functions. There exists a
body of work that derives a bivariate density from specifying that f(x|y) takes
a certain form, with parameters depending on y, and g(y|x) takes a certain
form (perhaps the same, perhaps different), with parameters depending on
x. This work has been brought together in important books by Arnold et al.
(1992, 1999), and we will therefore repeatedly refer to these, rather than the
original source. A key feature of the systematic development of this topic is
a theorem relating to functional equations. Details of this would be out of
place here, but we will give a summary of results in Section 5.6.5 below. As
a preliminary, we present the following theorem.

Compatibility Theorem. A bivariate density h(x, y) with conditional den-
sities f(x|y) and g(y|x) will exist if and only if [see Section 1.6 of Arnold et
al. (1999)]

1. {(x, y) : f(x|y) > 0} = {(x, y) : g(y|x) > 0}.
2. There exist a(x) and b(y) such that the ratio f(x|y)/g(y|x) = a(x)b(y),

where a(·) and b(·) are non-negative integrable functions.
3.
∫
a(x)dx < ∞.

The condition
∫
a(x)dx < ∞ is equivalent to

∫
[1/b(y)]dy < ∞, and only

one of these needs to be checked in practice. Note that the joint density
obtained may not be unique; see Arnold and Press (1989). The compatibility
conditions given above are essentially those given by Abrahams and Thomas
(1984) except that these authors overlooked the possible lack of uniqueness.

If the necessary and sufficient conditions above are satisfied, we then say
that the two conditional densities are compatible.

5.6.3 Conditionals in Exponential Families

An l1-parameter exponential family of densities {f1(x;θ) : θ ∈ Θ} has the
form

f1(x;θ) = r1(x)β1(θ) exp

{
l1∑

i=1

θiq1i(x)

}

. (5.40)

Another l2-parameter exponential family of densities {f2(y; τ ) : τ ∈ T} has
the form
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f2(y; τ ) = r2(y)β2(τ ) exp

⎧
⎨

⎩

l2∑

j=1

τjq2j(y)

⎫
⎬

⎭
. (5.41)

Suppose the conditional density functions of X|(Y = y) and Y |(X = x)
are specified by

f(x|y) = f(x;θ(y)) (5.42)

and
g(y|x) = f2(y; τ (x)), (5.43)

where f1 and f2 are as defined in (5.40) and (5.41), respectively. Arnold and
Strauss (1991) then showed that [see also Arnold et al. (1999, pp. 75–78)] the
joint density h(x, y) is of the form

h(x, y) = r1(x)r2(y) exp{q(1)(x)Mq(2)(y)}, (5.44)

where
q(1)(x) = (q10(x), q11(x), . . . , q1l1(x)),

q(2)(y) = (q20(y), q21(y), . . . , q2l1(y)),

with q10(x) = q20 ≡ 1, and M is an (l1 + 1) × (l2 + 1) matrix of con-
stant parameters. Of course, the density is subject to the requirement∫ ∫

f(x, y)dx dy = 1. We note that the conditionals in the exponential fami-
lies are compatible.

This is an important result, as one can generate a host of bivariate distri-
butions by selecting appropriate constant parameters in the matrix M.

Normal Conditionals

If both sets of conditional densities are normal, we let l1 = l2 = 2, r1(t) =
r2(t) = 1, and

q(1)(t) = q(2)(t) =

⎛

⎝
1
t
t2

⎞

⎠ .

The choice m22 = m12 = m21 = 0 yields the classical bivariate normal
provided m22 < 0,m02 < 0,m2

11 < 4m02m20. Several nonclassical normal
conditional models can be constructed subject to the parametric constraints

m22 < 0, m02 < 0, 4m22m02 > m2
22, 4m22m20 > m2

21.

If the means of both normal conditionals are zero, then we have a bivariate
centered model. Plots of a density curve and its contour are presented in
Arnold et al. (1999, p. 67).
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5.6.4 Conditions Implying Bivariate Normality

Various sets of conditions on the conditional distributions are sufficient to
imply a bivariate normal distribution. Most of those below are given by Bhat-
tacharyya (1943), and Castillo and Galambos (1987); see also Kendall and
Stuart (1979) and Chapter 3 of Arnold et al. (1992):

• The distribution of Y given X = x is normal and homoscedastic (i.e.,
var(Y |X = x) is a constant), together with one of the following:

– marginal normality of X, together with linearity of the regression of Y
on X or X on Y ;

– conditional normality of X given Y = y;
– conditional normality of X given Y = y0, for some y0, together with

linearity of the regression of Y on X [Fraser and Streit (1980)];
– marginal distributions of X and Y being identical, together with lin-

earity of the regression of Y on X [Ahsanullah (1985)].

• Both conditional distributions, of Y given X = x and X given Y = y, are
normal, together with one of the following:

– marginal normality of X;
– one or both regressions are linear and nonconstant.

• Both regressions, of Y on X and X on Y , are linear and have the identical
errors property (meaning only the mean of the dependent variable changes
when the independent variable does) [Kendall and Stuart (1979, Paragraph
28.8)]. In this case, X and Y can be independent or functionally related
as alternatives to being bivariate normal;

• The contours of probability density are similar concentric ellipses, together
with one of the following:

– normality of Y given X = x;
– homoscedasticity of Y given X = x;
– marginal normality of X.

5.6.5 Summary of Conditionally
Specified Distributions

The rest of the conditionals in the exponential families are presented below
in Table 5.2.

Some other conditionally specified families of bivariate distributions are
summarized in Table 5.3 below. Details of some of these conditionals will be
discussed in Section 6.4.
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Table 5.2 Both conditionals in exponential families

X|Y Y |X
Exponential Exponential
Normal Normal
Gamma Gamma
Weibull† Weibull
Gamma Normal
Power-function Power-function
Beta Beta
Inverse Gaussian Inverse Gaussian

† Weibull distribution is not a member of the ex-
ponential family but can be expressed as a pos-
itive power of an exponential random variable
W = Xc.

Table 5.3 Conditionals not members of the exponential family of distributions

X|Y Y |X
Pareto Pareto
Beta of the second kind Beta of the second kind
Pearson type VI Pearson type VI
Generalized Pareto Generalized Pareto
Cauchy Cauchy
Student t Student t
Uniform Uniform
Possibly translated exponential Possibly translated exponential
Scaled beta Scaled beta
Weibull Logistic

Conditional Distributions in Location-Scale Families with
Specified Moments

Arnold et al. (1999) have considered conditionals in unspecified families with
specified conditional moments, which are as follows:

(1) linear regressions with conditionals in location families;
(2) specified regressions with conditionals in scale families;
(3) conditionals in location-scale families with specified moments;
(4) given one family of conditional distributions and the other a regression

function.

We now present a brief description of item (3) above. Most families of dis-
tributions considered so far have their marginals specified. Narumi (1923a,b)
took a different approach. His attack on the problem of creating bivariate
distributions was by specifying the regression and scedastic (conditional stan-
dard deviation) curves. An account of his work has been detailed in Chapter
6 of Mardia (1970). This approach does fall into the broad scheme formulated
in Arnold et al. (1999). Consider bivariate distributions with conditional den-
sities of the form
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f(x|y) = g1

(
x− a(y)
c(y)

)
1

c(y)
, (5.45)

g(y|x) = g2

(
y − b(x)
d(x)

)
1

d(x)
, (5.46)

where a and b are the regression curves, and c and d are scedastic curves of X
on Y and Y on X. This type of conditionally specified bivariate distribution
has also been discussed by Arnold et al. (1999).

Some bivariate distributions that can be written in this form are summa-
rized below in Table 5.4.

Table 5.4 Some bivariate distributions derived from conditional moments

a(y) c(y) Type of h(x, y)

linear constant normal
linear linear beta, Pareto, F
constant linear McKay
linear parabolic t, Cauchy, Pearson type II
r.h.∗ r.h.∗ gamma conditionals

h ∝ (x + b1)γ1 (y + b2)γ2

× exp[γ(x + c1)(y + c2)]

* r.h. denotes rectangular hyperbola, i.e., of the form 1/(x + a).

5.7 Marginal Replacement

A simple general scheme of constructing a new bivariate distribution is to
replace a marginal of the existing bivariate distribution by a new marginal.
This method of construction is called marginal replacement by Jones (2002).
Consider a bivariate density h(x, y) which can obviously be written as

h(x, y) = f(x)g(y|x). (5.47)

With appropriate considerations for the support, we can obtain a new bivari-
ate density function by replacing f(x) above by f1(x), giving

h1(x, y) = f1(x)g(y|x). (5.48)

The only condition on this approach is that the support of f1 be contained
in, or equal to, the support of f . Indeed, h1 then has support contained in,
or equal to, the support of h.
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5.7.1 Example: Bivariate Non-normal Distribution

Tiku and Kambo (1992) obtained a new symmetric bivariate distribution
by replacing one of the marginals of a bivariate normal distribution by a
univariate t-distribution.

5.7.2 Marginal Replacement of a Spherically
Symmetric Bivariate Distribution

Jones (2002) obtained a bivariate beta/symmetric beta distribution as well
as a bivariate t/skew t distribution using this approach. More details of these
distributions will be presented in Chapter 9.

5.8 Introducing Skewness

Over the last decade or so, many families of bivariate and multivariate skew
distributions have been constructed by introducing one or more skewness
parameters in the multivariate distributions. A Google search at the site
azzalini.stat.unipd.it/SN/list-publ.ps (updated on March 17, 2007) found ap-
proximately 150 references on the skew-normal distribution and related ones.
The major multivariate skew distributions are listed below:

1. skew-normal family—Azzalini (2005, 2006);
2. skew t—Azzalini and Capitanio (2003);
3. skew-Cauchy—Arnold and Beaver (2000);
4. skew-elliptical—Branco and Dey (2001);.
5. log-skew-normal and log-skew-t—Azzalini et al. (2003);
6. general class of multivariate skew distributions—Sahu et al. (2003).

5.9 Density Generators

A bivariate density function may be obtained through composition of a den-
sity generator g that is a function of a univariate density function with one
or more parameters.

Example 5.5 (Bivariate Liouville distributions).

h(x, y) =
xa−1yb−1

Γ(a)Γ(b)
g
(
x + y

)
,
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where g is beta, inverted beta, gamma, or others satisfying the condition
∫∞
0

ta+b−1

Γ (a+b)g(t)dt = 1; see, for example, Gupta and Richards (1987). Ma and
Yue (1995) have extended the above to obtain the bivariate pth-order Liou-
ville distribution

h(x; y) = cθa+b x
a−1yb−1

Γ(a)Γ(b)
g

(
(xp + yp)1/p

θ

)

,

where θ is a parameter and c is the normalizing constant.

Example 5.6 (Elliptical contoured distributions and extreme type elliptical dis-
tributions). (X,Y ) is said to have an elliptically contoured distribution if its
joint density takes the form

h(x; y) =
1

√
1 − ρ2

g

(
(x2 − 2ρxy + y2)1/p

1 − ρ2

)

,

where −1 < ρ < 1 and g(·) is a scale function referred to as the density
generator.

By setting g(x) = h(x)
2π
∫ ∞
0 yh(y2)dy

, where h(x) is the density function of (i)
Weibull, (ii) Fréchet, and (iii) Gumbel, Kotz, and Nadarajah (2001) have
obtained three extremal-type elliptical distributions.

5.10 Geometric Approach

In Stoyanov (1997, p. 77), an interesting nonbivariate normal distribution
is given, of which two marginal distributions are normal. This is a classical
counterexample that involves geometry. The basic idea is to punch four square
holes symmetrically in the domain of a bivariate normal density function and
to move the probability mass over the four holes to the four other symmetrical
positions so as to ensure that the marginals are not affected.

Inspired by this counterexample, Wei et al. (1998) also constructed copulas
with holes that are constrained within an admissible rectangle. They also
provided a construction algorithm called the squeeze algorithm.

Nelsen (2006, pp. 59–88) has described various geometric methods of con-
structing copulas in the following manner:

(1) Singular copulas with prescribed support: Utilize some information of
a geometric nature, such as a description of the support or the shape
of the graphs of horizontal, vertical, or diagonal sections.

(2) Ordinal sum construction: Members of a set of copulas are scaled and
translated in order to construct a new copula.

(3) Shuffles of M : These are constructed from the Fréchet upper bound.
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Johnson and Kotz (1999) constructed what they called square tray distri-
butions by simple, piecewise uniform modifications of a copula on the unit
square. The resulting bivariate distributions may not be copulas, as their
marginals may not be uniform.

5.11 Some Other Simple Methods

The transformation method outlined in Section 5.1.2 is pretty trivial. All
that is done is to take one distribution and stretch or compress it in the X
and/or the Y direction. Other methods that may be thought of as trivial and
inelegant include the following:

• Let the formula for h take one form for some region of the (X,Y ) plane and
another form for the remaining region. (A particular example occurs when
the p.d.f. of a unimodal distribution is reduced to c within the contour
h = c and then h is rescaled so that it becomes a p.d.f. again.) Another
simple example in constructing a copula is given by Wei et al. (1998) as
follows. Divide the rectangle formed by 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 into four
rectangular areas by drawing u = α and v = α. Assign probability mass
λα, (1−λ)α, (1−λ)α, and 1− (2−λ)α uniformly to the four regions with
0 < λ < 1 and 0 ≤ α ≤ 1

2−λ .
• Take an existing distribution and truncate it, singly or doubly, in one

or both the variates; for example, a truncated bivariate normal [Kotz et
al. (2000, pp. 311–320)]. Nadarajah and Kotz (2007) also gave truncated
versions of several well-known bivariate distributions.

• Take a trivariate distribution of (X,Y, Z) and find the conditional distri-
bution of (X,Y ) given Z = z. In the previous situation, find the marginal
distribution of (X,Y ).

• Take an existing distribution and extend its region of support by reflecting
the p.d.f. into the previously empty area.

• Take an existing p.d.f. h(x, y) and multiply it by some function a(x, y).
Provided the volume under the surface remains finite, the result can be
treated as proportional to a probability density. A special case of this
method is where a(x, y) is a risk function, so that the densities in the
surviving and nonsurviving (or, more generally, selected and nonselected)
populations are (1 − a)h and ah. Epidemiological studies often find it
necessary to make an assumption about the joint distribution of two (or
more) variables considered to be possible risk factors for the disease under
consideration. For instance, Halperin et al. (1979) were concerned with the
probability of death (from any cause) being a function of systolic blood
pressure and the number of cigarettes smoked per day. The interest of
Halperin et al. (1979) was primarily methodological: They demonstrated
that if X and Y have a bivariate normal distribution, with the risk of



5.12 Weighted Linear Combination 205

death being a probit function Φ(α + β1x + β2y), then not only do X and
Y have different means in the group that dies and the group that survives,
but also the variances and covariances in the groups differ also.

• Calculate two summary statistics from a univariate sample. The sample
mean and variance are often uncorrelated, and hence their joint distribu-
tion is often uninteresting, but this is not so for the sample minimum and
maximum or for the sample skewness and kurtosis. The sample mean and
sample median from a symmetric distribution are often asymptotically
bivariate normal [Stigler (1992)].

• Calculate a summary statistic for both X and Y , starting from a bivariate
sample. For example:
- The sampling distribution of (X̄, Ȳ ) is often bivariate normal.
- The maxima of X and Y have limiting bivariate extreme-value distribu-
tions.

• A popular method that often lacks any further justification is to write
down a formula and then check whether it satisfies the criteria for being
a bivariate distribution. As an example of this, we may give the Farlie–
Gumbel–Morgenstern distribution. In copula form, this is

H = xy[1 + α(1 − x)(1 − y)] (5.49)

for −1 ≤ α ≤ 1, and the corresponding density is

h = 1 + α(1 − 2x)(1 − 2y). (5.50)

5.12 Weighted Linear Combination

In many simulation applications, it is required to generate dependent pairs
of continuous random variables for which there is limited information on the
joint distribution. The example that Johnson and Tenenbein (1981) presented
is that of a portfolio analysis simulation in which a joint distribution of stock
and bond returns may have to be specified. Because of a lack of data, it may
be difficult to specify completely the joint distribution of stock and bond
returns. However, it may be realistic (so state Johnson and Tenenbein) to
specify the marginal distributions and some measures of dependence between
the random variables.

The weighted linear combination (WLC) technique is as follows. Let

X = U1

Y = cU1 + (1 − c)U2

}

, (5.51)

where U1 and U2 are independent and identically distributed with common
probability density function f and c is a constant (0 ≤ c ≤ 1).
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Johnson and Tenenbein (1981) were then concerned with using WLC in the
case where the specified measure of dependence was Kendall’s τ or Spear-
man’s rank correlation ρS . For some choice of f , they obtained equations
connecting c to τ and ρS . They handled the problem of getting the appropri-
ate marginals by means of the transformation method discussed in Section
5.2. A slightly more general model than WLC, in which Y is an arbitrary
combination of U1 and U2, was considered earlier by Jogdeo (1964). A general
model in which both X and Y are linear combinations of U1 and U2 has been
treated by Mardia (1970, Chapter 5).

5.13 Data-Guided Methods

The study of bivariate distributions usually tends very much toward the
modeling end of the statistical spectrum rather than toward the analysis end.
In this section, however, we emphasize the data analysis side: If we want to
follow passively, without preconceptions about the appropriate model, where
bivariate data was leading us, how best can we do this?

5.13.1 Conditional Distributions

An elementary idea that is often useful when exploring bivariate data is to
examine the conditional distributions. That is, given that X equals (or is
within a narrow range of) x, what properties does the distribution of Y
have? And, similarly, the distribution of X for a given Y may be examined.
The methods that are common for univariate distributions are then applied;
in particular, the conditional mean, the conditional standard deviation, and
(for necessarily possible variates) the conditional coefficient of variation may
each be plotted. Recall that the conditional means are linear and the con-
ditional standard deviations are constant in the case of a bivariate normal
distribution.

Mardia (1970, p. 81) suggested focusing attention on the regression and
scedastic curves after the observations have been transformed to uniform
marginals.

One might also consider conditioning of the form X > x. Further, one
might think in terms of quantiles. Then one might decide that the statistic
of prime interest is the mean. This leads to asking how useful it is to know
that X is big compared with how useful it is to know that Y is big for the
purpose of predicting Y . Hence, one will want to calculate the following

E(Y |X > xp) − E(Y )
E(Y |Y > yp) − E(Y )

(5.52)
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(which is a function of p), where xp and yp are the pth quantiles of X and Y ,
respectively. Kowalczyk and Pleszczynska (1977) referred to this as the mono-
tonic quadrant dependence function; see Section 3.5.3 for details. Clearly,
many variations can be played on this theme.

5.13.2 Radii and Angles

The probability density h of the class of elliptically symmetric bivariate dis-
tributions is a function only of a positive definite quadratic form

(x − μ)′Σ−1(x − μ).

Let R2 = (X2
1 − 2ρX1X2 +X2

2 )/(1− ρ2), where ρ is the off-diagonal entry
in the scaling matrix Σ.

Let L be the lower triangle (Choleski) decomposition of Σ. Then, for this
class of distributions, X may be represented as (X1, X2)′ = RLU(2) + μ,
where U(2) is uniformly distributed on the circumference of a unit circle and
is independent of R. The distribution of R discriminates the members within
the class.

For most practical purposes, the bivariate normal distributions would be
the first to come to mind. The radii and angles method is specifically for
assessing bivariate normality. It was discussed by Gnanadesikan (1977, Chap-
ter 5). Let (X1, X2)′ denote the bivariate normal vector with the variance–
covariance matrix Σ. First, transform the original variates X1 and X2 to
independent standard normal variates X and Y using

(
X
Y

)

= Σ−1/2

(
X1 − μ1

X2 − μ2

)

. (5.53)

Second, transform (X,Y ) to polar coordinates (R, θ). Then, under the hy-
pothesis of bivariate normality, R2 has a χ2

2-distribution (i.e., exponential
with mean 2) and θ has a uniform distribution over the range 0 to 2π. These
consequences may be tested graphically—by plotting sample quantiles of R2

versus quantiles of the exponential distribution with mean 2 and by plotting
sample quantiles of the angle θ versus those of the uniform distribution; for
illustration, see Gnanadesikan (1977). If bivariate normality holds, the two
plots should be approximately linear. However, if μ′ = (μ1, μ2) and Σ are
estimated, the distributional properties of R and θ are only approximate. For
n ≥ 25, the approximation is good. It is important to mention that the radii
and angles approach, though informal, is an informative graphical aid.
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5.13.3 The Dependence Function in the
Extreme-Value Sense

In Section 12.5, we will see that bivariate extreme-value distributions hav-
ing exponential marginals can be expressed as H̄ = exp

[
−(x + y)A

(
y

x+y

)]
.

Pickands (1981) [see also Reiss (1989)] suggested estimating A(w) from a
sample of n observations by

Ân(w) = n

/ n∑

i=1

min
(

xi

1 − w
,

yi

1 − w

)

,

with w being between 0 and 1. This suggestion was made by using the fact
that min

(
X

1−w ,
Y
w

)
has an exponential distribution with mean 1/A(w). This

estimate was applied by Tawn (1988) to data on annual maximum sea levels
at Lowestoft and Sheerness and by Smith (1990) to maximum temperatures
at two places and to best performances in mile races in successive years.

There is currently interest in modifying the estimate of A(·) above in order
to obtain a smoother one; see Smith (1985), Smith et al. (1990), Deheuvels
and Tiago de Oliveira (1989), and Tiago de Oliveira (1989b). Exactly what
method of estimating A(·) will eventually emerge as the preferred one seems
uncertain at present. Due to the availability of these procedures, one may
suggest transforming observations so that the marginals become exponential
and then use them to estimate the function A.

A(w) is interpretable in terms of Pr
(

Y
X+Y < w

)
. This suggests direct

consideration of the angle tan−1(yi/xi) after X and Y have been transformed
to exponential marginals—calculate the values observed in the sample, show
them as a histogram, determine various summary statistics, and so on.

5.14 Special Methods Used in Applied Fields

There will be five specialist fields considered in this section: shock models,
queueing theory, compositional data, extreme-value models, and time series.

5.14.1 Shock Models

Marshall and Olkin’s Model

This is a distribution having exponential distributions as marginals. It is ob-
tained by supposing that there is a two-component system subject to shocks
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that may knock out the first component, the second component, or both of
them. If these shocks result from independent Poisson processes with param-
eters λ1, λ2 and λ12, respectively, Marshall and Olkin’s distribution arises.
Equivalently, X = min(Z1, Z3) and Y = min(Z2, Z3), where the Z’s are
independent exponential variates.

The upper right volume under the probability density surface is [Marshall
and Olkin (1967)]

H̄ = exp[−λ1x− λ2y − λ12 max(x, y)], (5.54)

where the λ’s are positive.
This model is widely used in reliability. Certainly, the idea of simultaneous

failure of two components is far from being merely an academic plaything;
Hagen (1980) has given a review in the context of nuclear power, wherein
it is pointed out that redundancy in a system reduces random component
failure to insignificance, leading to the common-mode/common-cause type
being predominant among system failures.

Raftery’s Model

In its general form, Raftery’s (1984, 1985) scheme for obtaining a bivariate
distribution with exponential marginals is

X = (1 − p10 − p11)U + I1W
Y = (1 − p01 − p11)V + I2W

}

, (5.55)

where U, V,W are independent and exponentially distributed and I1 and I2
are each either 0 or 1, with probabilities as set out below:

I2 = 0 I2 = 1
I1 = 0 p00 p01

I1 = 1 p10 p11

Raftery obtained the correlation as 2p11 − (p01 + p11)(p10 + p11). There
is also an extension of the model to permit negative correlation. The dis-
tribution arises from a shock model. This refers to a system that has two
components, S1 and S2, each of which can be functioning normally, unsat-
isfactorily, or have failed. The system is subject to three kinds of shocks
governed by independent Poisson processes. These kinds of shocks cause nor-
mal components to become unsatisfactory, an unsatisfactory S1 to fail, and
an unsatisfactory S2 to fail, respectively.

A special case of this model sets p01 = p10 = 0 so that

X = (1 − p11)U + IW
Y = (1 − p11)V + IW

}

, (5.56)
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and the distribution in this case is a mixture of independence and trivariate
reduction.

Downton’s Model

This distribution has exponential marginals and has the joint p.d.f.

h(x, y) =
1

1 − ρ
exp
[

−x + y

1 − ρ

]

I0

(
2
√
xyρ

1 − ρ

)

, (5.57)

where I0 is the modified Bessel function of the first kind of order zero. It
has become associated with the name of Downton, though his paper explic-
itly acknowledged that it was not new at that time. The paper of Downton
(1970) was concerned with the context of reliability studies and used the fol-
lowing model to obtain (5.57). Consider a system of two components, each
being subjected to shocks, the intervals between successive ones having ex-
ponential distributions. Suppose the numbers of shocks N1 and N2 required
for the components to fail follow a bivariate geometric distribution with joint
probability generating function

P (z1, z2) =
z1z2

1 + α + β + γ − αz1 − βz2 − γz1z2
. (5.58)

Let

(X,Y ) =

(
N1∑

i=1

Xi,

N2∑

i=1

Yi

)

, (5.59)

where Xi and Yi are the intershock intervals, mutually independent exponen-
tial variates. Then the component lifetimes (X,Y ) have the joint density as in
(5.57). Several different bivariate geometric distributions in (5.58) give rise to
the density in (5.57); all that is required is that ρ = αβ+αγ+βγ+γ+γ2

(1+α+γ)(1+β+γ) . In par-
ticular, the case in which N1 and N2 are identical corresponds to α = β = 0.
Gaver (1972) gave a slightly different motivation for this distribution.

Equation (5.59) may be termed the random sums method of constructing
bivariate distributions. As far as we know, only the case in which the Xi and
Yi have exponential distributions and N1 and N2 have geometric distributions
has received much attention.

5.14.2 Queueing Theory

Consider a single-server queueing system such that the interarrival time X
and the service time Y have exponential distributions, as is a common as-
sumption in this context. If it is desired to introduce positive correlation
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(arising from cooperative service) into the model, Downton’s distribution is
a suitable choice [Conolly and Choo (1979)]. Langaris (1986) applied it to a
queueing system with infinitely many servers. Other relevant works include
Mitchell and Paulson (1979) and Niu (1981). Naturally, one of the important
issues in this context is how waiting time is affected by the presence of such
a correlation.

5.14.3 Compositional Data

The distinctive feature of compositional data is that it consists of proportions,
which must sum to unity (or to less than unity when considering just n of
the n + 1 components). A field where such data are particularly important
is within the earth sciences when dealing with the composition of rocks. A
bivariate distribution with support 0 ≤ x + y ≤ 1 will be required when n
is 2.

The univariate beta distribution has support [0, 1] and is therefore often
used as a distribution of a proportion or probability. Its density is propor-
tional to xθ1−1(1 − x)θ2−1. Correspondingly, the bivariate beta distribution
has the correct region of support for the joint distribution of two proportions.
With support being that part of the unit square such that x + y ≤ 1, the
bivariate beta distribution has density

h(x, y) =
Γ(θ1 + θ2 + θ3)
Γ(θ1)Γ(θ2)Γ(θ3)

xθ1−1yθ2−1(1 − x− y)θ3−1. (5.60)

This distribution may be constructed by a form of trivariate reduction: If
Xi ∼ Gamma(θi, 1), then X1/(X1 +X2 +X3) and X2/(X1 +X2 +X3) jointly
have a bivariate beta distribution; see, for example, Wilks (1963, p. 179).
This distribution chiefly arises in the context of a trivariate distribution of
three quantities that must sum to 1—for example, the probabilities of events
or the proportions of substances in a mixture, which are mutually exclusive
and exhaustive. When considering just two of these quantities, a bivariate
beta distribution may be a natural model to adopt.

5.14.4 Extreme-Value Models

All types of extreme-value distributions can be transformed to the exponen-
tial distribution easily, and in what follows we will take the marginals to have
this form.

With the support being the positive quadrant, the upper right volume
under the probability density surface must take on the form
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H̄ = exp
[

−(x + y)A
(

y

x + y

)]

, (5.61)

where the function A satisfies

A(w) =

1∫

0

max[(1 − w)q, w(1 − q)]
dB

dq
dq, (5.62)

in which B is a positive increasing function on [0, 1].
A is often termed the dependence function of (X,Y ) [Pickands (1981) and

Tawn (1988)]. The following properties of A are worth noting:

(1) A(0) = A(1) = 1.
(2) max(w, 1 − w) ≤ A(w) ≤ 1, where 0 ≤ w ≤ 1. Thus A(w) lies within

the triangle in the (w,A) plane bounded by (0, 1), (1
2 ,

1
2 ), and (1, 1).

(3) A(w) = 1 implies that X and Y are independent. A(w) = max(w, 1−w)
implies that X and Y are equal; i.e., Pr(X = Y ) = 1.

(4) A is convex, i.e., A[λw1 + (1 − λ)w2] ≤ λA(w1) + (1 − λ)A(w2).
(5) If Ai are dependence functions, so is

∑n
i=1 αiAi, where αi ≥ 0 and∑n

i=1 αi = 1.

(6) Pr
(

Y
X+Y < w

)
= w + w(1 − w)A′(w)

A(w) [Tiago de Oliveira (1989a)].

A may or may not be differentiable. In the former case, H has a joint
density everywhere; in the latter, H has a singular component, and is not
differentiable in a certain region of its support. The dependence functionA(w)
is analogous to the generator of an Archimedean copula discussed earlier in
Section 1.5.

Some Special Cases of A(w)

The mixed model: Also known as Gumbel’s type A bivariate extreme-value
distribution, this sets A(w) = θw2 − θw + 1 for 0 ≤ θ ≤ 1. Then,

H̄ = exp
[

−(x + y) +
θxy

x + y

]

. (5.63)

The logistic model: This sets A(w) = [(1 − w)r + wr]1/r for r ≥ 1. Then,

H̄ = exp[−(xr + yr)1/r]. (5.64)

The biextremal model: This sets A(w) = max(w, 1−θw) for 0 ≤ θ ≤ 1. Then,

H̄ = exp{−max[x + (1 − θ)y, y]}. (5.65)
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The Gumbel model: This sets A(w) = max[1 − θw, 1 − θ(1 − w)](0 ≤ θ ≤ 1).
Then,

H̄ = exp[−(1 − θ)(x + y) − θmax(x, y)]. (5.66)

This is essentially the bivariate exponential distribution of Marshall and
Olkin (1967a,b).

5.14.5 Time Series: Autoregressive Models

Joint Distribution of AR Models

Damsleth and El-Shaarawi (1989) considered autoregressive models in which
the “noise” has either (i) a Laplace distribution or (ii) the more commonly
assumed normal distribution. Most of their results are for the AR(1) model
Xt = φXt−1+εt with εt having a Laplace or a normal distribution. Damsleth
and El-Shaarawi obtained an expression (an infinite series) for the p.d.f. of
X in the former case (notice that this is not a Laplace distribution). They
then extended this to the joint distribution of Xt and Xt−k and presented
six contour plots of the resulting p.d.f. (for φ = 0.25 and 0.90 and k = 1, 5,
and 10).

A Logistic Model

Developing the work of Yeh et al. (1988), Arnold and Robertson (1989) con-
structed a stationary Markov model with logistic marginals as follows. Let
εt have a logistic distribution (mean = μ and scale parameter = σ = (

√
3/π)

s.d.), X0 = ε0, and

Xt+1 =
{
Xt − σ log β with probability β
min(Xt) − σ log β with probability 1 − β.

Then, all the Xt’s have logistic distributions, and the joint survival function
of X = (Xt − μ)/σ and Y = (Xt+1 − μ)/σ is given by

H̄ =
1 + βey

(1 + ey)[1 + max(ex, βey)]
. (5.67)

A Pareto Model

Yeh et al. (1988) supposed εt to have the following Pareto distribution:
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Pr(εt > ε) =
[

1 +
( ε

σ

)1/γ
]−1

for ε ≥ 0.

They then set

Xt+1 =

{
Xt with probability β

min(β−γXt, εt+1) with probability 1 − β.

Then, all the Xt’s have the same (Pareto) distribution as the εt’s. The joint
survival function of X = Xt and Y = Xt+1 is

H̄ =

{
[1 + (y/σ)1/γ ]−1 for 0 < x = bγy

1+β(y/σ)1/γ

[1+(x/σ)1/γ ][1+(y/σ)1/γ ]
for 0 < bγy < x.

Exponential Models

Several models giving rise to exponential marginals for the Xt’s were consid-
ered by Lawrance and Lewis (1980). The qualitative features of the bivariate
distributions of (Xt, Xt+1) that are implied are clear from the methods of
construction.

In the model they called EAR(1),

Xt+1 =
{
ρXt with probability ρ,
ρXt + εt+1 with probability 1 − ρ,

with the ε’s being exponentially distributed. For a discussion on this model,
also see Gaver and Lewis (1980).

In the model Lawrance and Lewis called TEAR(1),

Xt+1 =
{

(1 − α)εt+1 + Xt with probability α,
(1 − α)εt+1 with probability 1 − α,

with the ε’s, as before, being exponentially distributed.
In the model they called NEAR(1),

Xt+1 =
{
εt+1 + βXt with probability α,
εt+1 with probability 1 − α,

with the ε’s having a particular mixed exponential distribution that is nec-
essary for getting an exponential distribution for the Xt’s.

There have been further developments in this direction by Dewald et al.
(1989) and Block et al. (1988).
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5.15 Limits of Discrete Distributions

It is well known that many of the univariate distributions have their genesis in
the Bernoulli distributions and are obtained as sums or limits. 1 Marshall and
Olkin (1985a) extended these elementary probability ideas to two dimensions
and obtained a number of bivariate distributions.

A random variable (X,Y ) is said to have a bivariate Bernoulli distribu-
tion if it has only four possible values, (1, 1), (1, 0), (0, 1), and (0, 0), these
occurring with probabilities p11, p10, p01, and p00, respectively. We also set
p1+ = p11 + p10 = 1 − p0+ and p+1 = p11 + p01 = 1 − p+0 in the notation of
Marshall and Olkin.

Many of the bivariate distributions obtained by Marshall and Olkin are
discrete. As this book is concerned only with continuous distributions we only
mention the construction of a bivariate exponential as the limit of a bivariate
geometric distribution, and a bivariate gamma as the limit of a bivariate
negative binomial distribution.

5.15.1 A Bivariate Exponential Distribution

If (X1, Y1), (X2, Y2), . . . is a sequence of i.i.d. bivariate Bernoulli variates and
U and V are the number of 0’s before the first 1 among the X’s and among
the Y ’s, respectively, then U and V each have a geometric distribution in
general but not independent. The bivariate distribution function of U and V
is given by

Pr(U = u, V = v) =

{
pu
00p01p

v−u−1
+0 p+1 if 0 ≤ u < v

pu
00p11 if 0 ≤ u = v

(5.68)

and
Pr(U ≥ u, V ≥ v) = pu

00p
v−u
+0 for 0 ≤ u ≤ v. (5.69)

Now, obtain a bivariate exponential distribution as a limit of this bi-
variate geometric distribution in (5.67): If independent Bernoulli variates
(X1, Y1), (X2, Y2), . . . are observed at times 1

n ,
2
n , . . ., then

Pr(U > t1, V > t2) =

⎧
⎨

⎩

p
[nt1]
00 p

[nt2]−[nt1]
+0 if t1 < t2

p
[nt2]
00 p

[nt1]−[nt2]
0+ if t1 > t2

(5.70)

provided nt1 and nt2 are not integers, where [a] denotes the integer part of
a. Writing λij = npij and passing to the limit, we find

1 Examples are binomial, negative binomial, Poison, and gamma (integer shape parameter).
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lim
n→∞

Pr(U > t1, V > t2) = exp [−λ10t1 − λ01t2 − λ11 max(t1, t2)] (5.71)

for t1, t2 ≥ 0. This indeed is the bivariate exponential distribution of Marshall
and Olkin (1967a).

5.15.2 A Bivariate Gamma Distribution

If (X1, Y1), (X2, Y2), . . . is a sequence of i.i.d. bivariate Bernoulli variates and
(for positive integers r, s) U and V are the number of 0’s before the rth 1
among the X’s and before the sth 1 among the Y ’s, respectively, then U and
V each have a negative binomial distribution in general but one that is not
independent.

The negative binomial distribution obtained in this way has untidy expres-
sions for its probability functions and for its cumulative distribution function,
and we shall not present them here; see Marshall and Olkin (1985b). Proceed-
ing as before, if independent bivariate Bernoulli variates (X1, Y1), (X2, Y2), . . .
are observed at times 1

n ,
2
n , . . ., then, on setting λij = npij , Marshall and

Olkin (1985b) showed that

lim
n→∞

Pr(U > t1, V > t2)

=
∑ ta+l−i

1 λi
11λ

a−i
01

i!(a− i)!(l − i)!
exp
[

−(λ11 + λ01 + λ01)t1
λm

+1

m!

]

exp[−λ+1(t2 − t1)m]

(5.72)

for 0 ≤ t1 ≤ t2 and with nt1 and nt2 not being integers, where the summation
is over those values of a, i, l,m such that r−1 ≥ l ≥ i ≥ 0, s−1 ≥ a ≥ 0, and
s−1−a ≥ m ≥ 0. This distribution has marginals to be gamma distributions
with integer shape parameters r and s, respectively.

5.16 Potentially Useful Methods But Not in Vogue

The methods considered in this section are rather more heavily mathematical-
based differential equation methods, diagonal expansion, and bivariate Edge-
worth expansion, and they are potentially useful but are not in vogue.
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5.16.1 Differential Equation Methods

Karl Pearson derived a family of univariate distributions through the differ-
ential equation

1
f

df

dx
=

x− a

b0 + b1x + b2x2
, (5.73)

where a, b0, b1, and b2 are constants. The univariate Pearson family of distri-
butions has been discussed in detail in Chapter 12 of Johnson et al. (1994).

Early efforts to generalize this method to two dimensions were unsuccessful
until van Uven (1947a,b; 1948a,b) succeeded. Note that the left-hand side of
(5.73) isd(log f)

dx . Van Uven started with the particular derivatives

∂ log h
∂x = L1

Q1
∂ log h

∂y = L2
Q2

}

, (5.74)

where h is the joint pdf of X and Y,L1 and L2 are linear functions of both x
and y, and Q1 and Q2 are quadratic (or, possibly, linear) functions of both x
and y. On fixing either x or y, it is clear that the conditional distributions of
either variable, given the other, satisfying differential equations of the form
(5.73), belong to the univariate Pearson family. A detailed discussion of the
solutions to the differential equations above has been presented by Mardia
(1970, pp. 5–9). We provide a condensed version of it as follows.

From (5.74), we obtain by a simple differentiation that

∂2 log h
∂x∂y

=
∂( L1

Q1
)

∂y
=

∂( L2
Q2

)

∂x
, (5.75)

Q2
∂L1

∂y
−Q1

∂L2

∂x
=

L1Q2

Q1

∂Q1

∂y
− L2Q1

Q2

∂Q2

∂x
. (5.76)

The nature of the solution of (5.75) and (5.76) depends mainly on the
structure of Q1 and Q2, and the usefulness of the solution will depend on
their having common factors. If Q1 and Q2 do not have a common factor,
then X and Y are independent, as shown by Mardia (1970, p. 8). Important
cases are as follows:

Case 1. Q1 and Q2 have a common linear factor.
Case 2. Q1 and Q2 are identical.
Case 3. Q2 is a linear factor of Q1, i.e., Q1 = LQ2.

Case 1

The solution has the form

h(x, y) = k0(ax + b)p1(cy + d)p2(a1x + b1y + c1)p3 . (5.77)
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This family of distributions includes the bivariate beta, Pareto, and
F -distributions and the following two cases:

h(x, y) =
Γ(−p2)xp1yp2(−1 − x + y)p3

Γ(1 + p1)Γ(1 + p2)Γ(−p1 − p2 − p3 − 2)
(5.78)

for p1, p3 > −1, (p1 + p2 + p3) < −3, y − 1 > x > 0, and

h(x, y) =
Γ(−p1)xp1yp2(−1 − x + y)p3

Γ(1 + p2)Γ(1 + p3)Γ(−p1 − p2 − p3 − 2)
(5.79)

for p2, p3 > −1, (p1 + p2 + p3) < −3, x− 1 > y > 0.
The last two cases are effectively equivalent, though they are considered

sometimes as distinct types.

Case 2

When Q1 = Q2, the solution is

h(x, y) = k0(ax2 + 2bxy + cy2 + 2dx + 2ey + c0)p. (5.80)

Examples include bivariate Cauchy, t-, and Pearson type II distributions.
The bivariate normal distribution is a limit of Case 2, in which a = c =
−(1 − ρ2)/2, b = ρ/(1 − ρ2), c0 = 1, d = e = 0, k0 = (2π

√
(1 − ρ2)−1, and

p → ∞.

Case 3

When Q1 = LQ2, we get

h(x, y) = k0(ax + b)p(a1x + b1y + c1)q exp(−cy). (5.81)

This family includes McKay’s bivariate gamma distribution [McKay (1934)].

Remarks

In fact, van Uven considered all possible cases, but other solutions do not
have both marginals of the same form. The system of bivariate distributions
obtained through (5.74) is generally known as the family of bivariate Pearson
distributions. Any member of this family may be called a Pearson type i
distribution, i = I,II,. . .,VII, if the marginals are type i. For example, the
bivariate t-distribution may be called a bivariate type VII distribution.

In general, the conditional distribution of a member of the family of Pear-
son distributions is a univariate Pearson distribution, though it may not have
the same form as the marginals [Mardia (1970, p. 10)].
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The Fokker–Planck Equation

Another family of bivariate distributions that was constructed from a dif-
ferent equation is due to Wong and Thomas (1962) and Wong (1964). The
differential equation concerned is the Fokker–Planck equation in diffusion
theory given by

∂2

∂x2
[B(x)p] − ∂

∂x
[A(x)p] =

∂p

∂t
, (5.82)

where p = p(x|x0, t), 0 < t < ∞, and the variables are x and t rather than x
and y. A(x) and B(x) are called the “infinitesimal” mean and variance of the
underlying Markov transitional probability density functions; see Chapter 5
of Cox and Miller (1965) for further information and details.

The joint densities h(x0, x) obtained from the conditional densities p form
a family that includes some members of the Pearson system such as the
bivariate normal, type I, type II, and Kibble’s bivariate gamma. The equi-
librium density f(x) = limt→∞ p(x|x0, t) satisfies the Pearson differential
equation (5.82) when A(x) and B(x) are linear and quadratic functions,
respectively, and the latter is non-negative.

The Ali–Mikhail–Haq Distribution

Refer to Section 2.3 for this distribution and its derivation from a differential
equation [Ali et al. (1978)].

5.16.2 Diagonal Expansion

The diagonal expansion of a bivariate distribution involves representing it
as

dH(x, y) = dF (x)dG(y)
∞∑

i=0

ρiξi(x)ηi(y). (5.83)

ξi and ηi are known as the canonical variables and ρi as the canonical
correlation. When X and Y have finite moments of all orders, sets of
orthonormal polynomials {Pn} and {Qn} can be constructed with respect
to F and G—for example, the Hermite polynomials for normal marginals
and shifted Legendre polynomials for uniform (0, 1) marginals.

If
E[Xn|Y = y] = a polynomial in y of degree = n
E[Y n|X = x] = a polynomial in x of degree = n

}

, (5.84)

then H has a diagonal expression in terms of F and G and their respective
orthonormal polynomials.
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For given marginals with unbounded supports, it is possible to generate a
new bivariate distribution by selecting a new canonical sequence {ρi} with∑

ρ2
i < ∞ such as a moment sequence defined on [0, 1] or [−1, 1]. See Sections

12.4.4 and 12.4.5 of Hutchinson and Lai (1991) for constructing bivariate dis-
tributions with normal and other marginals, respectively. See also Sarmanov
(1970) and Lee (1996) for constructing a bivariate exponential distribution
using this method.

5.16.3 Bivariate Edgeworth Expansion

Let F be a distribution function with known cumulants κi and Φ be the
standard normal distribution function. The Edgeworth expansion is a repre-
sentation of F in terms of Φ and κi.

The bivariate Edgeworth series expansion is an extension of the univariate
Edgeworth expansion. Briefly, we expand a bivariate density function h in
the series of derivatives of the standardized normal density φ such that

h(x, y) = φ(x, y; ρ) +
∫

m+n≥3

(−1)m+nAmn
Dm

1

m!
Dn

2

n!
φ(x, y; ρ), (5.85)

where the coefficients Amn may be expressed in terms of the cumulants of X
and Y , and D1 = ∂/∂x,D2 = ∂/∂y.

Similarly, the joint distribution function is expanded as

H(x, y) = Φ(x, y; ρ) +
∫

m+n≥3

(−1)m+nAmn
Dm−1

1

m!
Dn−1

2

n!
φ(x, y; ρ). (5.86)

Thus, h is represented as φ proportional to a polynomial in x and y, i.e.,
h(x, y) = φ(x, y)

∫

m,n

amnx
mym. The distribution obtained by considering

terms up to m + n = 4 has been given by Pearson (1925). This “fifteen
constant” bivariate distribution is also known as the type AA distribution.

Chapter 3 of Mardia (1970) presents a historical account of the bivariate
Edgeworth expansion as well as describing how the type AA distribution was
fitted to Johannsen’s bean data; see also Rodriguez (1983, pp. 235–239). The
type AA distribution was also applied by Mitropol’skii (1966, pp. 67–70) to
the diameters and heights of pine trees.
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5.16.4 An Application to Wind Velocity at the
Ocean Surface

For this special application, we feel obliged to follow quite closely the expla-
nations of Frieden (1983, Section 3.15.9) and Cox and Munk (1954).

Cox and Munk photographed from an airplane the sun’s glitter pattern on
the ocean surface and translated the statistics of the glitter into the statistics
of the slope distribution of the ocean surface; that is, of the joint distribution
of wave slope in the direction of the wind (X) and transverse to the wind
direction (Y ). Conceivably, this could be the basis of a method of measuring
the wind velocity at the ocean surface.

“If the sea surface were absolutely calm, a single, mirror-like reflection of
the sun would be seen at the horizontal point. In the usual case there are
thousands of ‘dancing’ highlights. At each highlight there must be a water
facet, possibly quite small, which is so inclined as to reflect an incoming ray
from the sun towards the observer. The farther the highlighted facet is from
the horizontal specular point, the larger must be this inclination. The width
of the glitter patterns is therefore an indication of the maximum slope of
the sea surface” [Cox and Munk (1954)]. In fact, these authors measured
the variation in brightness within the glitter pattern, rather than computing
maximum slopes from the outer boundaries, and thus obtained more detailed
information.

In choosing a functional form for h(x, y) in this case, two factors considered
are the following:

• The p.d.f. of X should be skewed, as waves tend to lean away from the
wind, having gentler slopes on the windward side than on the leeward side.

• There should be no such skew for the p.d.f. of Y because waves transverse
to the wind are not directly formed by the wind but rather by leakage of
energy from the longitudinal wave motion.

Consequently, the following form of the two-dimensional expansion was
fitted to experimental data:

h(x, y) = f(x)f(y)[1 + α12H1(x)H2(y) + α30H3(y) + α04(y)
+α22H2(x)H2(y) + α40H4(x)], (5.87)

where the Hi’s are the Hermite polynomials.

5.16.5 Another Application to Statistical Spectroscopy

As a result of analytical and numerical studies showing that the higher
bivariate cumulants of the relevant variables are quite small, Kota (1984)
concluded that it was meaningful to employ an expansion around a bivariate
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normal density—especially for a bivariate density of importance in statistical
spectroscopy; see also the follow-up work by Kota and Potbhare (1985).

5.17 Concluding Remarks

We have reviewed in this chapter a great many methods of constructing
bivariate distributions and have given examples of contexts in which they
have been used. Most statisticians, hopefully, would have found something
new to them! A particular contribution of this chapter has been the method
of organizing the material. It is not, we admit, an elegant and mathematically
satisfactory scheme, but it is one that we have found somewhat helpful, and
we hope that readers will, too. We first divided methods of construction into
popular methods and a miscellaneous group; the first included conditional
distributions, compounding, and variables in common, and the second was
made up of some inelegant methods, data-guided methods, special methods
used in some applied fields, and some potentially useful methods. Finally,
each of them had their own subdivisions.

By way of a pointer to the possible future development of the subject,
we may remark that, in some areas of statistics, the results that can be
obtained are determined by whether one is clever enough to manipulate
mathematically rather than any real conceptual depth. For instance, suppose
there is a bivariate survival function H̄1(x, y) and a bivariate p.d.f. h2(θ1, θ2).
Then, another bivariate survival function can be obtained by compounding
as
∫∫

H1(θ1x, θ2y)h2(θ1, θ2)dθ1dθ2. The results obtainable depend on one’s
ingenuity in choosing H̄1 and h2 so that the double integration is tractable.
The increasing sophistication and widening availability of packages for com-
puterized algebraic manipulation, such as MACSYMA and REDUCE, gives
hope that this limitation may diminish in the years to come; see, for exam-
ple, Steele (1985), Bryan-Jones (1987), Rayna (1987, pp. 29–31), and Heller
(1991) for more on this. Of course, we can ask why we need to have an ex-
plicit expression for

∫ ∫
H̄h2. One could say that this itself contains all the

modeling information and that one should be looking to fit this directly to
data.

One can imagine the interfacing of computer algebra packages with those
for model fitting, so that for a given H̄1 and h2, the algebra part solves
the double integral and passes the result to the model-fitting part. Because
the number-crunching is becoming as fast as it is, the double integral could
be evaluated numerically whenever required by the model-fitting package.
Although this discussion has been posed in terms of the compounding method
for constructing distributions, it applies equally well to other methods of
construction as well.
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34. Fréchet, M.: Sur les tableaux de corrélation dont les marges sont données. Annales
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Chapter 6

Bivariate Distributions Constructed by
the Conditional Approach

6.1 Introduction

6.1.1 Contents

In Section 5.6, we outlined the construction of a bivariate p.d.f. as the product
of a marginal p.d.f. and a conditional p.d.f., h(x, y) = f(x)g(y|x). This con-
struction is easily understood, and has been a popular choice in the literature,
especially when Y can be thought of as being caused by, or predicted from, X.
Arnold et al. (1999, p. 1) contend that it is often easier to visualize conditional
densities or features of conditional densities than marginal or joint densities.
They cite, for example, that it is not unreasonable to visualize that, in the
human population, the distribution of heights for a given weight will be uni-
modal, with the mode of the conditional distribution varying monotonically
with weight. Similarly, we may visualize a unimodal distribution of weights
for a given height, this time with the mode varying monotonically with the
height. Thus, construction of a bivariate distribution using two conditional
distributions may be practically useful.

We begin this chapter by considering distributions such that both sets of
conditionals are beta, exponential, gamma, Pareto, normal, Student t or some
other distributions in Sections 6.2–6.6. Sections 6.7 and 6.8 deal with situa-
tions wherein the conditional distributions and moments are specified. Section
6.9 describes the parameter estimation for conditionally specified models. Sec-
tions 6.10 and 6.11 give brief accounts of specific distributions constructed by
the conditional method such as McKay’s bivariate gamma distribution and its
variants, Dubey’s distribution, Blumen and Ypelaar’s distribution, exponen-
tial dispersion models, four densities of Barndorff–Nielsen and Blæsield, and
continuous bivariate densities with a discontinuous marginal density func-
tion. Section 6.12 discusses a common approach where the marginal and
conditional distributions are of the same family. In Section 6.13, we con-
sider bivariate distributions when conditional survival functions are speci-
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fied. Finally, several papers dealing with applications of these models are
summarized in Section 6.14, and, in particular, the fields of meteorology and
hydrology provide several examples.

Arnold et al. (1999) have devoted the bulk of their book to a discussion
of the joint distributions obtained from a specification of both conditional
densities. The present chapter provides in this direction an overview of five
chapters of their important book. For an introduction to the subject of con-
ditionally specified distributions, see Arnold et al. (2001).

6.1.2 Pertinent Univariate Distributions

Definition 6.1. X has an exponential distribution if its density function is

f(x) = θe−θx, x > 0, θ > 0,

and we denote it by X ∼ Exp(θ).

Definition 6.2. X has a gamma distribution if its density function is

f(x; θ1, θ2) = xθ1−1e−θ2x θθ1
2

Γ(θ1)
= x−1eθ1 log x−θ2x θθ1

2

Γ(θ1)

for x > 0, and we denote it by X ∼ Γ(θ1, θ2).

Definition 6.3. X has a beta distribution if its density function is

f(x) =
1

B(p, q)
xp−1(1 − x)q−1, 0 < x < 1, p, q > 0.

Definition 6.4. X has a beta distribution of the second kind, denoted by
B2(p, q, σ), if it has a density function of the form

f(x, α) =
σq

B(p, q)
xp−1(σ + x)−(p+q), x > 0, p, q, σ > 0.

Definition 6.5. X has a Cauchy distribution, denoted by C(μ, σ), if its den-
sity function is

f(x) =
1

πσ
(
1 +
(

x−μ
σ

)2) , −∞ < x < ∞, σ > 0, μ real.

Definition 6.6. A random variable Tα is said to follow a Student t-distribution
if its density function is
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f(x) =
Γ[(α + 1)/2]

(απ)1/2Γ(α/2)

(

1 +
x2

α

)−(α+1)/2

, −∞ < x < ∞.

Definition 6.7. We say that X has an inverse Gaussian distribution if its
density function is

f(x) =
√

η2

π
e2

√
η1η2e−η1x−η2x−1

, x ≥ 0,

and we denote it by X ∼ IG(η1, η2).

Definition 6.8. A random variable has a Pareto type II distribution if its
density function is

f(x, α) =
α

σ

(
1 +

x

σ

)−α−1

, x > 0, α, σ > 0.

This distribution is also known as the Lomax distribution, and it will be
denoted by P (σ, α).

Definition 6.9. We say that X has a generalized Pareto distribution (or
Burr type XII), denoted by X ∼ GP(σ, δ, α), if its survival function is of the
form

Pr(X > x) =
{

1 +
(x

σ

)δ
}−α

, x > 0.

6.1.3 Compatibility and Uniqueness

It is well known that if we specify the marginal density of X, f(x), and for
each possible value of x, specify the conditional density of Y given X = x,
i.e., g(y|x), then a unique joint density h(x, y) results.

Suppose now that both the families of conditional distribution of X given
Y and conditional distribution of X given Y are specified. This would result in
over-determining the joint distribution, and so the problem of consistency has
to be resolved. We say that the two conditional distributions are compatible
if there exists at least one joint distribution of (X,Y ) with the given families
as its conditional distributions.

Necessary and Sufficient Conditions

A bivariate density h(x, y), with conditional densities f(x|y) and g(y|x), will
exist if and only if [see Section 1.6 of Arnold et al. (1999)]
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1. {(x, y) : f(x|y) > 0} = {(x, y) : g(y|x) > 0}.
2. There exist a(x) and b(y) such that the ratio f(x|y)

g(y|x) = a(x)b(y), where
a(·) and b(·) are non-negative integrable functions.

3.
∫
a(x)dx < ∞.

The three conditions specified above are necessary and sufficient conditions
for two conditional distributions to be compatible.

Also, the condition
∫
a(x)dx < ∞ is equivalent to

∫
[1/b(y)]dy < ∞, and

only one needs to be checked in practice.
In cases in which compatibility is confirmed, the question of possible

uniqueness of the compatible distribution still needs to be addressed. Arnold
et al. (1999) showed that the joint density h(x, y) is unique if and only if the
Markov chain associated with a(x, y) and b(x, y) is indecomposable. Gelman
and Speed (1993) have addressed the issue of uniqueness in a multivariate
setting.

6.1.4 Early Work on Conditionally
Specified Distributions

One of the earliest contributions to the study of conditionally specified models
was the work of Patil (1965). This was followed by Besag (1974), Abrahams
and Thomas (1984), and then a major breakthrough by Castillo and Galam-
bos (1987a).

6.1.5 Approximating Distribution Functions Using the
Conditional Approach

Parrish and Bargmann (1981) have given a general method for evaluating
bivariate d.f.’s that “utilizes a factorization of the joint density function into
the product of a marginal density function and an associated density, per-
mitting the expressions of the double integral in a form amenable to the use
of specialized Gaussian-type quadrature techniques for numerical evaluation
of cumulative probabilities.” See also Parrish (1981).

As mentioned earlier, conditionally specified distributions are authorita-
tively treated in Arnold et al. (1999). Sections 6.2–6.9 summarize some of
their work. For ease of referring back to this source, much of their notation
has been retained here.
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6.2 Normal Conditionals

Bivariate distributions having conditional densities of the normal form and
yet not the classical normal distribution have been known in the literature
for a long time; see Bhattacharyya (1943), for example.

6.2.1 Conditional Distributions

Suppose

X | (Y = y) ∼ N(μ1(y), σ2
1(y)) and Y | (X = x) ∼ N(μ2

2(x), σ2(x)), (6.1)

where

E(X|Y = y) = μ1(y) = −B/2 + Hy − Ey2/2
C + 2Jy − Fy2

,

E(Y |X = x) = μ2(x) = −G + Hx + Jx2

D + Ex + Fx2
,

and

var(X|Y = y) = σ2
1(y) =

−1
C + 2Jy − Fy2

,

var(Y |X = x) = σ2
2(x) =

1
D + Ex + Fx2

.

6.2.2 Expression of the Joint Density

The joint density corresponding to the specification in (6.1) is

h(x, y) =
1√
2π

exp
{

1
2
[A + Bx + 2Gy + Cx2 −Dy2 + 2Hxy

+2Jx2y − Exy2 − Fx2y2]
}

, (6.2)

where A is the normalizing constant so that h(x, y) is a bivariate density.
Equation (6.2) may be reparametrized as

h(x, y) = exp

⎧
⎨

⎩
(1, x, x2)

⎛

⎝
m00 m01 m02

m10 m11 m12

m20 m21 m22

⎞

⎠

⎛

⎝
1
y
y2

⎞

⎠

⎫
⎬

⎭
, (6.3)

where
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m00 = A/2, m01 = G, m02 = −D/2,
m10 = B/2, m11 = H, m12 = −E/2,
m20 = C/2, m21 = J, m22 = −F/2.

(6.4)

6.2.3 Univariate Properties

The two marginals densities are

f(x) = exp
{

1
2
[
2(m20x

2 + m10x + m00) − μ2
2(x)/σ2

2(x)
]
}

σ2(x) (6.5)

and

g(y) = exp
{

1
2
[
2(m02y

2 + m01y + m00) − μ2
1(y)/σ

2
1(y)

]
}

σ1(y). (6.6)

6.2.4 Further Properties

The normal conditionals distribution has joint density of the form in (6.3),
where the constants, the mij ’s, satisfy one of the two sets of conditions

(i) m22 = m12 = m21 = 0, m20 < 0, m02 < 0, m2
11 < 4m02m20 or

(ii) m22 < 0, 4m22m02 > m2
12, 4m20m22 > m2

21.

Models satisfying (i) are classical bivariate normal with normal marginals,
normal conditionals, linear regressions, and constant conditional variances.
Models that satisfy (ii) have distinctively non-normal marginal densities, con-
stant or nonlinear regressions, and bounded conditional variances.

6.2.5 Centered Normal Conditionals

Conditional Distributions

Suppose

X | (Y = y) ∼ N(0, σ2
1(y)) and Y | (X = x) ∼ N(0, σ2

2(x)), (6.7)

where σ2
1(y) > 0 and σ2

2(x) > 0 are two unknown functions. In fact, these
conditionals are the special case of the normal conditionals in (6.1) with
μ1(y) = 0, μ2(x) = 0. Or equivalently, the densities can be identified as that
obtainable from (6.3) on setting m01 = m10 = m21 = m12 = m11 = 0.



6.2 Normal Conditionals 235

Expression of the Joint Density

The joint density corresponding to the specification in (6.7) is

h(x, y) = k(c)
1

2πσ1σ2
exp

{

−1
2

[(
x

σ1

)2

+
(

y

σ2

)2

+ c

(
x

σ1

)2(
y

σ2

)2
]}

,

(6.8)
where we have denoted σ2

1(y) = σ2
1

1+c
(

y
σ2

)2 and σ2
2(x) = σ2

2

1+c
(

x
σ1

)2 .

Univariate Properties

The two marginal densities are

f(x) = k(c)
1

σ1

√
2π

1
√

1 + c
(

x
σ1

)2
exp

[

−1
2

(
x

σ1

)2
]

(6.9)

and

g(y) = k(c)
1

σ2

√
2π

1
√

1 + c
(

y
σ2

)2
exp

[

−1
2

(
y

σ2

)2
]

, (6.10)

where

k(c) =
√

2c
U(1/2, 1, 1/2c)

,

with U(a, b, c) being Kummer’s hypergeometric function.

Remarks

•
(

X
σ1

)√

1 + c
(

Y
σ2

)2

∼ N(0, 1) and is independent of Y . Similarly,
(

Y
σ2

)√

1 + c
(

X
σ1

)2

∼ N(0, 1) and is independent of X.

• corr(X2, Y 2) = 1−2δ(c)−4cδ(c)+4c2δ2(c)
−1−2δ(c)+4c2δ2(c) , where δ(c) = k′(c)

k(c) .

Applications

Arnold and Strauss (1991) considered 30 bivariate observations of slow-firing
target data and fitted the centered normal conditionals model to them by
using the maximum likelihood method.
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References to Illustrations

Several density surface plots and contour plots of the normal conditionals
and the centered normal conditionals models are given in Sections 3.4 and
3.5 of Arnold et al. (1999). Gelman and Meng (1991) produced graphs of
three bivariate density functions that are not bivariate normal, including a
bimodal joint density.

6.3 Conditionals in Exponential Families

Exponential family. An l1-parameter family of {f1(x;θ) : θ ∈ Θ} of the
form

f1(x;θ) = r1(x)β1(θ) exp

{
l1∑

i=1

θiq1i(x)

}

(6.11)

is called an exponential family of distributions. Here, Θ is the natural param-
eter space and the q1i(x)’s are assumed to be linearly independent.

Let us consider another l2-parameter family of {f2(y; τ ) : τ ∈ Υ} of the
form

f2(y; τ ) = r2(y)β2(τ ) exp

⎧
⎨

⎩

l2∑

j=1

τjq2j(y)

⎫
⎬

⎭
, (6.12)

where Υ is the natural parameter space and the q2j(y)’s are assumed to be
linearly independent.

Suppose we are given two conditional densities f(x|y) and g(y|x) such
that f(x|y) belongs to the family (6.11) for some θ that may depend on y
and g(y|x) belongs to the family (6.12) for some τ that may depend on x.
It has been shown [see Arnold et al. (1999)] that the corresponding bivariate
density is of the form

f(x, y) = r1(x)r2(y) exp{q(1)(x)Mq(2)(y)}, (6.13)

where
q(1)(x) = (q10(x), q11(x), . . . , q1l1(x)),

q(2)(y) = (q20(y), q21(y), . . . , q2l2(y))

with q10(x) = q20(y) ≡ 1, and M is an (l1 + 1) × (l2 + 1) matrix of constant
parameters. Of course, the density is subject to the usual requirement that∫ ∫

f(x, y)dx dy = 1.
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6.3.1 Dependence in Conditional Exponential Families

Let q̃(1) and q̃(2) denote q(1) and q(2) having their respective first element
removed. Delete the first row and first column of M and denote the remaining
matrix by M̃ . Then, f(x, y) is TP2 if

[q̃(1)(x1) − q̃(1)(x2)]′M̃ [q̃(2)(y1) − q̃(2)(y2)] ≥ 0 (6.14)

for every x1 < x2 and y1 < y2. Thus, if the q1i(x)’s and the q2j(y)’s are
all increasing functions, then a sufficient condition for TP2 and hence for
non-negative correlation is that M̃ ≥ 0 (i.e., mij ≥ 0 ∀i = 1, 2, . . . , l1, j =
1, 2, . . . , l2). If M̃ ≤ 0, then negative correlation is assured. If the q1i’s and
q2j ’s are not monotone, then it is unlikely that any choice for M̃ will lead to
a TP2 density, and in such a setting it is quite possible to encounter both
positive and negative correlations.

6.3.2 Exponential Conditionals

In this case, l1 = l2 = 1, r1(t) = r2(t) = 1, t > 0, and q11(t) = q21(t) = −t.

Conditional Distributions

The conditional densities are exponential, i.e.,

X | (Y = y) ∼ exp[(1 + cy/σ2)/σ1], (6.15)

Y | (X = x) ∼ exp[(1 + cx/σ1)/σ2]. (6.16)

Expression of the Joint Density

The joint density corresponding to the specification in (6.15) and (6.16) is

h(x, y) = exp(m00 −m10x−m01y + m11xy), x > 0, y > 0. (6.17)

A more convenient parametrization of this joint density is

h(x, y) = k(c) exp
[

− x

σ1
− y

σ2
− cxy

σ1σ2

]

, x, y > 0, c > 0, (6.18)

where the constant k(c) is
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k(c) =
c exp(−1/c)
−Ei(1/c)

, (6.19)

in which Ei(·) is the exponential integral function, defined by Ei(u) =
−
∫∞

u
v−1e−vdv. [Beware of the lack of standardization of nomenclature and

notation for functions such as this. For computation of this function, see Amos
(1980).] The joint p.d.f. of (6.18) was first studied in Arnold and Strauss
(1988a).

Univariate Properties

The marginal densities are

f(x) =
k(c)

σ1

(
1 + cx

σ1

)e−x/σ1 , x > 0, (6.20)

g(y) =
k(c)

σ2

(
1 + cy

σ2

)e−y/σ2 , y > 0, (6.21)

which are not exponential in form but X(1 + cY/σ2)/σ1 ∼ Exp(1) and
Y (1 + cX/σ1)/σ2 ∼ Exp(1).

For σ1 = 1, (6.20) reduces to

f = k(c)
exp(−x)
1 + cx

, (6.22)

where k is as defined in (6.19) and similarly for g(y).

Formula for Cumulative Distribution Function

Assuming σ1 = σ2, H̄ may be written in a compact, though not elementary,
form as

H̄ =
Ei(c−1 + x + y + cxy)

Ei(c−1)
, (6.23)

and
h(x, y) = k(c)e−(x+y+cxy), x, y > 0, c ≥ 0.

Correlation Coefficients

Pearson’s product-moment correlation coefficient is c+k(c)−k(c)2

k(c)[1+c−k(c)] , where k

is the same function of c as before. This is zero when c = 0, the case of
independence, and it becomes increasingly negative with increasing c until
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it reaches approximately −0.32 at about c = 6 and then gets less negative,
tending slowly to zero as c → ∞.

Relation to Other Distributions

For a more general family, see Arnold and Strauss (1987), and for conditions
on the sign of correlation obtainable with such a generalization, one may refer
to Arnold (1987b).

Remarks

• Exponential conditional densities were first studied by Abrahams and
Thomas (1984) and then (independently) by Arnold and Strauss (1988a).
Consequently, it is easy to write down the regression equation; see Inaba
and Shirahata (1986).

• With k as before, the joint moment generating function is

M(s, t) =
k(c)

(1 − σ1s)(1 − σ2t)k( c
(1−σ1s)(1−σ2t) )

. (6.24)

• The bivariate failure rate is increasing in both x and y, being given by
(with σ1 = σ2 = 1)

(1 + cx)(1 + cy)k
(

c

(1 + cx)(1 + cy)

)

. (6.25)

• Castillo and Galambos (1987b) have considered the case of Weibull condi-
tionals. Their joint distribution can be obtained through the relationship

(W1,W2) = (Xc1 , Y c2).

• The distribution of the product XY was derived by Nadarajah (2006).

Fields of Application

As is often true with the exponential distributions, applications in reliability
studies are envisaged. Inaba and Shirahata (1986) fitted this distribution to
data on white blood cell counts and survival times of patients who died of
acute myelogenous leukemia [Gross and Clark (1975, Table 3.3)], comparing
it with the fit obtained from a bivariate normal distribution.
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6.3.3 Normal Conditionals

This was dealt with in Section 6.2. Essentially, the normal conditionals belong
to two-parameter exponential families with l1 = l2 = 2 and r1(t) = r2(t) = 1.
Also,

q(1) = q(2)(t) =

⎛

⎝
1
t
t2

⎞

⎠ ,

yielding a bivariate density of the form given in (6.3).

6.3.4 Gamma Conditionals

Gamma conditionals belong to exponential families with l1 = l2 = 2, r1(t) =

r2(t) = 1
t , t > 0, and q(1)(t) = q(2)(t) =

⎛

⎝
1
−t

− log t

⎞

⎠ .

Conditional Distributions

Suppose

X | (Y = y) ∼ Γ(m20 + m22 log y −m21y,m10 −m11y + m12 log y)

and

Y | (X = x) ∼ Γ(m02 + m22 log x−m12x,m01 −m11x + m21 log x).

Expression of the Joint Density

The corresponding joint density function is

h(x, y) =
1
xy

exp

⎧
⎨

⎩
( 1 −x log x ) M

⎛

⎝
1
y

log y

⎞

⎠

⎫
⎬

⎭
, x > 0, y > 0. (6.26)

Arnold et al. (1999) have listed six possible bivariate densities with requisite
conditions such that (6.26) is a proper density function. They have been
designated them as Model I, Model II, Model IIIA, Model IIIB, Model IV,
and Model V.
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Univariate Properties

The corresponding marginal density of X is

f(x) =
1
x

Γ(m02 + m22 log x−m12x)em00−m10x+m20 log x

(m01 −m11x + m21 log x)m02+m22 log x−m12x
, x > 0, (6.27)

and an analogous expression holds for g(y).

Other Conditional Properties

The regression curves are generally nonlinear, and they are given by

E(X|Y = y) =
m20 + m22 log y −m21y

m10 + m12 log y −m11y
(6.28)

and
E(Y |X = x) =

m02 + m22 log x−m12x

m01 + m21 log x−m11x
. (6.29)

6.3.5 Model II for Gamma Conditionals

Conditional Distributions

Gamma conditionals Model II can be reparametrized so that

X | (Y = y) ∼ Γ(r, (1 + cy/σ2)/σ1) and Y | (X = x) ∼ Γ(s, (1 + cx/σ1)/σ2).
(6.30)

Expression of the Joint Density

The joint density function corresponding to the specification in (6.30) is

h(x, y) =
kr,s(c)

σr
1σ

s
2Γ(r)Γ(s)

xr−1ys−1 exp
(

− x

σ1
− y

σ2
− c

xy

σ1σ2

)

, x, y > 0,

(6.31)
with r, s > 0, σ1, σ2 > 0, and c ≥ 0, with kr,s(c) being the normalizing
constant. r, s > 0 are shape parameters, σ1 and σ2 are scale parameters,
and c is a dependence parameter such that c = 0 corresponds to the case of
independence.
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Univariate Properties

The corresponding marginal densities are

f(x) =
kr,s(c)
σr

1Γ(r)
(1 + cx/σ1)−sxr−1e−x/σ1 , x > 0, (6.32)

and

g(y) =
kr,s(c)
σs

1Γ(s)
(1 + cy/σ2)−rys−1e−y/σ2 , y > 0, (6.33)

with
kr,s(c) =

cr

U(r, r − s + 1, 1/c)
,

where U(a, b, z) is Kummer’s confluent hypergeometric function defined by
U(a, b, z) = 1

Γ(a)

∫∞
0

e−ztta−1(1 + t)b−a−1dt.

Correlation

It can be shown that the covariance is given by

cov(X,Y ) = σ1σ2[(r + s)cδr,s(c) − rs + δr,s(c) − c2δ2
r,s(c)], (6.34)

where δr,s(c) = ∂
∂c log kr,s(c).

6.3.6 Gamma-Normal Conditionals

Conditional Distributions

Suppose

X | (Y = y) ∼ Γ(m20 + m21y + m22y
2,m10 + m11y + m12y

2), (6.35)

Y | (X = x) ∼ N(μ(x), σ2(x)), (6.36)

where
μ(x) =

m01 −m11x + m21 log x
2(−m02 + m12x−m22 log x)

,

σ2(x) =
1
2
(−m02 + m12x−m22 log x)−1.
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Expression of the Joint Density

The joint density function corresponding to the specification in (6.35) and
(6.36) is

h(x, y) =
1
x

exp

⎧
⎨

⎩
( 1 −x log x ) M

⎛

⎝
1
y
y2

⎞

⎠

⎫
⎬

⎭
, x > 0, −∞ < y < ∞.

(6.37)

Models

Three models are possible, and they are labeled as Model I, Model II, and
Model III by Arnold et al. (1999).

6.3.7 Beta Conditionals

Conditional Distributions

Suppose X | (Y = x) and Y | (X = x) belong to beta exponential families
with

r1(x) =
1

x(1 − x)
, r2(y) =

1
y(1 − y)

, 0 < x, y < 1,

q11(x) = log x, q21(y) = log y, q12(x) = log(1 − x), q22(y) = log(1 − y).

Expression of the Joint Density

The corresponding joint density function is

h(x, y) =
1

x(1 − x)y(1 − y)
exp{m11 log x log y + m12 log x log(1 − y)

+m21 log(1 − x) log y + m22 log(1 − x) log(1 − y) + m10 log x
+m20 log(1 − x) + m01 log y + m02 log(1 − y) + m00},

for 0 < x, y < 1, (6.38)

with parameters subject to several requirements, including mij , i = 1, 2,
j = 1, 2. In order to guarantee integrability of the marginal distributions, we
also require m10 > 0,m20,m01 > 0, m02 > 0.
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Other Conditional Properties

We have

E(X|Y = y) =
m10 + m11 log y + m12 log(1 − y)

(m10 + m22) + (m11 + m21) log y + (m12 + m22) log(1 − y)
(6.39)

and a similar expression for E(Y |X = x).

6.3.8 Inverse Gaussian Conditionals

The inverse Gaussian conditionals model corresponds to the following choices
for r’s and q’s in (6.13):

r1(x) = x−3/2, x > 0, r2(y) = y−3/2, y > 0,

q11(x) = −x, q21 = −y, q12(x) = −x−1, q22(y) = −y−1.

Conditional Distributions

We have

X | (Y = y) ∼ IG(m10 −m11y −m12y
−1,m20 −m21y −m22y

−1), (6.40)

and consequently,

E(X|Y = y) =

√
m20 −m21y −m22y−1

m10 −m11y −m12y−1
. (6.41)

A similar expression for Y | (X = x) can be presented.
In order to have proper inverse Gaussian conditionals and guarantee that

the resulting marginal densities are integrable, we require that mij ≤ 0, i =
1, 2, j = 1, 2. In addition, we require

m10 > −2
√
m11m12, m20 > −2

√
m21m22,

m01 > −2
√
m11m21, m02 > −2

√
m12m12.

Expression of the Joint Density

The corresponding joint density function is
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h(x, y) = (xy)−3/2 exp
{
m11xy + m12xy

−1 + m21x
−1y

+m22x
−1y−1 −m10x−m20x

−1

−m01y −m02y
−1 + m00

}
, x, y > 0. (6.42)

6.4 Other Conditionally Specified Families

6.4.1 Pareto Conditionals

Conditional Distributions

Suppose

X | (Y = y) ∼ P (σ1(y), α) and Y | (X = x) ∼ P (σ1(y), α), (6.43)

where
σ1(y) =

λ00 + λ01y

λ10 + λ11y
, σ2(x) =

λ00 + λ10x

λ01 + λ11xy.
(6.44)

Expression of the Joint Density

The joint density function corresponding to the specification in (6.43) is

h(x, y) = K(λ00 + λ10x + λ01y + λ11xy)−(α+1), x, y ≥ 0, (6.45)

where λij ≥ 0, α > 0, and the constant 1/K is expressible in terms of the
Gauss hypergeometric function 2F1(a, b; c; z).

Univariate Properties

The marginals are not Pareto in form in general. Instead, that are

f(x) = K(λ01 + λ11x)−1(λ00 + λ10x)−α,

g(y) = K(λ10 + λ11y)−1(λ00 + λ01y)−α. (6.46)

Special Case: Mardia’s Bivariate Pareto Distribution

Arnold et al. (1999) have considered three cases involving different constraints
on α and the λ’s. A special case in which α > 1, λ11 = 0, and all other λ’s
are positive gives rise to a bivariate distribution with Pareto marginals and
Pareto conditionals, with the joint density function



246 6 Bivariate Distributions Constructed by the Conditional Approach

h(x, y) =
(α− 1)α
σ1σ2

(

1 +
x

σ1
+

y

σ2

)−(α+1)

. (6.47)

This special case is the bivariate Pareto distribution introduced by Mardia
(1962).

Remarks

• Pareto conditional distributions are fully covered in Arnold (1987a).
• X is stochastically increasing (SI) or decreasing with Y depending on the

sign of (λ10λ01 − λ00λ11).
• sign(ρ) = sign(λ10λ01 − λ00λ11), where ρ is Pearson’s product-moment

correlation coefficient.

6.4.2 Beta of the Second Kind (Pearson Type VI)
Conditionals

Beta of the second kind is also known as the inverted beta or inverted Dirichlet
distribution.

Conditional Distributions

Suppose

X | (Y = y) ∼ B2(p, q, σ1(y)) and Y | (X = x) ∼ B2(p, q, σ2(x)), (6.48)

where σi are as defined in (6.44).

Expression of the Joint Density

The joint density function corresponding to the specification in (6.48) is

h(x, y) = K
xp−1yp−1

(λ01 + λ10x + λ01y + λ11xy)p+q
, (6.49)

where the reciprocal normalizing constant J = K−1 is as presented in Table
6.1. It is required that λ00, λ11 ≥ 0 and λ10, λ01 > 0.



6.4 Other Conditionally Specified Families 247

Table 6.1 Reciprocals of the normalizing constant for beta
of the second kind models

λ00 = 0 J =
B(p, q)B(p − q, q)

λq
10λq

01λp−q
11

λ11 = 0 J =
B(p, q)B(p, q − p)

λq−p
10 λq

01λp
11

λ00, λ11 > 0 J =
B(p, q)2

λq−p
00 λp

10λp
11

2F1

(

p, p; p + q, 1 − 1

θ

)

Note: Here, 2F1(a, b; c; z) is the Gauss hypergeometric series.

Univariate Properties

The marginal densities are given by

f(x) ∝ xp−1

(λ01 + λ11x)p(λ00 + λ10x)q
, g(y) ∝ yp−1

(λ01 + λ11y)p(λ00 + λ10y)q
.

Conditional Moments

The conditional moments can be shown to be

E(Xk|Y = y) =
B(p + k, q − k)

B(p, q)

(
λ00 + λ01y

λ00 + λ11y

)k

,

E(Y k|X = x) =
B(p + k, q − k)

B(p, q)

(
λ00 + λ01x

λ00 + λ11x

)k

,

provided q > k.

Correlation Coefficient

The correlation coefficient is such that

sign(ρ) = sign(λ10λ01 − λ00λ11),

just as in the Pareto case.
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6.4.3 Generalized Pareto Conditionals

The generalized Pareto distribution is also known as a Burr type XII distri-
bution.

Conditional Distributions

Suppose

X | (Y = y) ∼ GP(σ(y), δ(y), α(y)) and Y | (X = x) ∼ GP(τ(x), γ(x), β(x)).
(6.50)

Expression of the Joint Density

Assuming δ(y) = δ, γ(x) = γ, two classes of joint densities are obtained
corresponding to the specification in (6.50).

Model I:

h(x, y) = xδ−1yγ−1[λ1 + λ2x
δ + λ3y

γ + λ4x
δyγ ]λ5 , x, y > 0, (6.51)

and

Model II:

h(x, y) = xδ−1yγ−1 exp
{
θ1 + θ2 log(θ5 + xδ) + θ3 log(θ6 + yγ)

+θ4 log(θ5 + xδ) log(θ6 + yγ)
}
, x, y > 0. (6.52)

For Model I, we require λ5 < −1 and λ1 ≥ 0, λ2 > 0, λ3 > 0, λ4 ≥ 0. For
Model II, we require θ5, θ6 > 0, θ2, θ3 ≤ −1, and θ4 ≤ 0.

Univariate Properties

For Model I, the marginal densities are

f(x) =
1

δ(−1 − λ5)
xδ−1(λ3 + λ4x

δ)−1(λ1 + λ2x
δ)λ5+1, x > 0, (6.53)

g(y) =
1

γ(−1 − λ5)
yγ−1(λ2 + λ4y

γ)−1(λ1 + λ3y
γ)λ5+1, y > 0, (6.54)

where we have let α(y) = β(x) = −1− λ5. The marginal densities for Model
II can be obtained similarly.
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6.4.4 Cauchy Conditionals

Conditional Distributions

Suppose

Y | (X = x) ∼ C(μ2(x), σ2(x)), σ2(x) > 0,
X | (Y = y) ∼ C(μ1(y), σ1(y)), σ1(x) > 0. (6.55)

Expression of the Joint Density

Let M = (mij), i, j = 0, 1, 2, be a matrix of arbitrary constants. Then, two
possible classes are discussed in Arnold et al. (1999).

(i) The class with m22 = 0 leads to an improper distribution

h(x, y) ∝ (m00 + m10x + m01y + m20x
2 + m02y

2 + m11xy)−1.

(ii) The class with m22 > 0, in general, has densities that are quite complex.
However, a special case with m10 = m01 = m11 = m12 = m21 = 0 gives

h(x, y) = K
1

m00 + m20x2 + m02y2 + m22x2y2
, (6.56)

where
K−1 = I =

2π√
m20m02

F
(π

2
/α
)
,

with α satisfying the relation

sin2 α =
m2

20m
2
02 −m2

00m
2
22

m2
20m

2
02

;

here, F (π
2 /α) is the complete elliptical integral of the first kind, which

has been tabulated in Abramowitz and Stegun (1994, pp. 608–611). The
conditional scale parameters are

σ2(x) =

√
m00 + m20x2

m02 + m22x2
and σ1(y) =

√
m00 + m20y2

m02 + m22y2
.

Univariate Properties

The marginals densities are
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f(x) ∝ 1
√

(m00 + m20x2)(m02 + m22x2)
,

g(y) ∝ 1
√

(m00 + m20y2)(m02 + m22y2)
. (6.57)

Transformation

If U = logX and V = log Y , then the joint density of U and V is

hU,V (u, v) ∝ (αe−x−y + βe−x+y + γex−y + δex+y)−1 (6.58)

for α, β, γδ > 0.

6.4.5 Student t-Conditionals

Conditional Distributions

Suppose

X | (Y = y) ∼ μ1(y)+σ1(y)Tα and Y | (X = x) ∼ μ2(x)+σ2(x)Tα, (6.59)

where σi > 0, and Tα denotes a Student t-variable with parameter α.

Expression of the Joint Density

The joint density function corresponding to the specification in (6.59) is

h(x, y) ∝ [(1 x x2)M(1 y y2)′]−(α+1)/2. (6.60)

The location and scale parameters for the conditional densities are given by

μ1(y) = −1
2
× b1(y)

c1(y)
,

μ2(x) = −1
2
× b̃1(y)

c̃1(y)
,

and

σ2
1(y) =

4a1(y)c1(y) − b21(y)
4αc21(y)

,

σ2
2(x) =

4ã1(y)c̃1(y) − b̃21(y)
4αc̃21(y)

.
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Univariate Properties

The corresponding marginal densities are

f(x) ∝ [c̃1(x)](α−1)/2

[4ã1(x)c̃1(x) − b̃21(x)]α/2
, (6.61)

g(x) ∝ [c1(y)](α−1)/2

[4a1(y)c1(x) − b21(y)]α/2
. (6.62)

6.4.6 Uniform Conditionals

Conditional Distributions

Suppose

X | (Y = y) ∼ U(φ1(y), φ2(y)), c < y < d, φ1(y) ≤ φ2(y),
Y | (X = x) ∼ U(ψ1(x), ψ2(x)), a < x < b, ψ1(x) ≤ ψ2(x), (6.63)

where φ and ψ are either both decreasing or both increasing, and that the two
domains Nφ = {(x, y) : φ1(y) < x < φ2(y), c < y < d} and Nψ = {(x, y) :
ψ1(x) < y < ψ2(x), a < x < b} are coincident, so that the compatibility
conditions are satisfied.

Expression of the Joint Density

The joint density function corresponding to the specification in (6.63) is

h(x, y) =
{
k if (x, y) ∈ Nψ

0 otherwise , (6.64)

where k−1 = area of Nψ =
∫ b

a
[ψ2(x)− ψ1(x)]dx =

∫ b

a
[φ2(y)− φ1(y)]dy < ∞.

Univariate Properties

The corresponding marginal densities are

f(x) = k[ψ2(x) − ψ1(x)], a < x < b,

g(y) = k[φ2(y) − φ1(y)], c < y < d. (6.65)
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6.4.7 Translated Exponential Conditionals

A random variable X has a translated exponential distribution if

Pr(X > x) = e−λ(x−α), x > α,

where λ > 0 and α ∈ (−∞,∞), and is denoted by X ∼ exp(α, λ).

Conditional Distributions

Suppose
X | (Y = y) ∼ exp(α(y), λ(y)), y ∈ S(Y ), (6.66)

and
Y | (X = x) ∼ exp(β(x), γ(x)), x ∈ S(X), (6.67)

where S(X) and S(Y ) denote the supports of X and Y , respectively. For
compatibility, we must assume that

D = {(x, y) : α(y) < x} = {(x, y) : β(x) < y} . (6.68)

Expression of the Joint Density

The joint density function corresponding to the specifications in (6.66) and
(6.67) is

h(x, y) = exp(d + cx− by − axy), (x, y) ∈ D, (6.69)

where γ(x) = ax+b, λ(y) = ay−c, β = α−1, and d is part of the normalizing
constant.

Univariate Properties

The corresponding marginal densities are

f(x) =
exp[cx + d− (ax + b)β(x)]

ax + b
, x ∈ S(X), (6.70)

and

g(y) =
exp[−by + d− (ay − c)α(y)]

ay − c
, x ∈ S(X). (6.71)

Other Regression Properties

The regression curves are given by
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E(X|Y = y) = α(y) + (ay − c)−1, y ∈ S(Y ), (6.72)

and
E(Y |X = x) = β(x) + (ax + b)−1, x ∈ S(X). (6.73)

6.4.8 Scaled Beta Conditionals

Conditional Distributions

Suppose

Y | (X = x) ∼ (1 − x)B(α1(x), β1(x)), 0 < x < 1,
X | (Y = y) ∼ (1 − y)B(α2(x), β2(x)), 0 < y < 1. (6.74)

Expression of the Joint Density

The joint density function corresponding to the specification in (6.74) is

h(x, y) ∝ xθ1−1yθ2−1(1−x− y)θ3−1eη log x log y, x, y ≥ 0, x+ y ≤ 1, (6.75)

for θ1, θ2, θ3 > 0, η ≤ 0, except that if η < 0 and θ3 > 1, θ1 and θ2 can be
zero, with the support being that part of the unit square wherein x+ y ≤ 1,
and θ1, θ2, θ3 > 0, η ≤ 0.

Univariate Properties

The marginals are not beta in form (unless η = 0). The expressions of
the marginal densities are rather complicated; see James (1975). The beta
(Dirichlet) distribution is characterized by being that member of this family
with at least one of the marginals as univariate beta.

Remarks

This is the distribution with both sets of conditional densities (of Y given
X = x and of X given Y = y) beta. It is due to James (1975); see also James
(1981, pp. 133–134).
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Another Distribution

The distribution above interprets the requirement for the conditional distri-
butions to be beta as follows: beta distributions over the range 0 to 1−x (for
Y ) or 1 − y (for X), but with the parameters being functions of x or y.

Instead, we might interpret it as a beta distribution with some particular
distributions with some particular constant exponent but the range being a
function of x or y. Abrahams and Thomas (1984) have shown in this case
that the joint density must either be Γ(θ1+θ2θ3)

Γ(θ1)Γ(θ2)Γ(θ3)
xθ1−1yθ2−1(1−x− y)θ3−1

or proportional to (x+ y)θ1−1(1−x− y)θ3 (the support of which is that part
of the unit square wherein x + y ≤ 1 and having uniform marginals).

6.5 Conditionally Specified Bivariate
Skewed Distributions

The development of these models was considered in Arnold et al. (2002).
The basic skewed normal density takes the form

f(x, λ) = 2φ(x)Φ(λx), −∞ < x < ∞,

where φ(x) and Φ(x) denote the standard normal density and the distribution
functions and where λ is a parameter that governs the skewness of the density.
If X has the density above, we then write X ∼ SN(λ).

6.5.1 Bivariate Distributions with Skewed
Normal Conditionals

Assume X|(Y = y) ∼ SN(λ(1)(y)) and Y |(X = x) ∼ SN(λ(2)(x)), for some
functions (λ(1)(y)) and (λ(2)(x)). Then there must exist densities f(x) and
g(y) such that

h(x, y) = 2φ(x)Φ(λ(1)(y)x)g(y) = 2φ(y)Φ(λ(2)(x)y)f(x). (6.76)

Arnold et al. (2002) identified two types of solutions that satisfy the func-
tional equation (6.76):

Type I. (Independence). If λ(1)(y) = λ(1) and λ(2)(x) = λ(2), then

f(x) = 2φ(x)Φ(λ(2)x); g(y) = 2φ(y)Φ(λ(1)y)

and
h(x, y) = 4φ(x)φ(y)Φ(λ(2)x)Φ(λ(1)y). (6.77)
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The joint density (6.77) is a proper (integrable) model.

Type II. (Dependent case). If λ(1)(y) = λy and λ(2)(x) = λx, then

f(x) = φ(x); g(y) = φ(y)

and
h(x, y) = 2φ(x)φ(y)Φ(λxy). (6.78)

The joint density (6.78) is also a proper (integrable) model.

Univariate Properties

Both X and Y are normally distributed.

Conditional Properties

The expression h(x, y) has skewed normal conditionals. The corresponding
regression functions are nonlinear, with the form

E(X|Y = y) =

√
2
π
× λy
√

1 + λ2y2
,

E(Y |X = x) =

√
2
π
× λx√

1 + λ2x2
.

Correlation Coefficient

Pearson’s correlation coefficient is given by

ρ(X,Y ) = sign(λ) × U(3/2, 2, 1/2λ2)
2λ2

√
π

,

where U(a, b, z) represents the confluent hypergeometric function, defined as

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt,

in which b > a > 0 and z > 0. It can be verified that |ρ(X,Y )| ≤ 0.63662.
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6.5.2 Linearly Skewed and Quadratically Skewed
Normal Conditionals

Arnold et al. (2002) also considered bivariate distributions having conditional
densities of the linearly skewed normal conditionals. More generally, bivariate
distributions with quadratically and polynomially skewed normal condition-
als were also investigated.

6.6 Improper Bivariate Distributions from Conditionals

Recall that the necessary and sufficient compatibility conditions for two con-
ditionally specified distributions were as follows:

(i) {(x, y) : f(x|y) > 0} = {(x, y) : g(y|x) > 0}.
(ii) f(x|y)/g(y|x) = a(x)b(y).
(iii) a(x) in (ii) must be integrable.

An improper bivariate distribution may nevertheless be useful. Arnold et al.
(1999, p. 133) have stated that, “In several potential situations, compatibility
fails because Condition (ii) is not satisfied. Such ‘improper’ models may have
utility for predictive purposes and in fact are perfectly legitimate models
if we relax the finiteness condition in our definition of probability. Many
subjective probabilists are willing to make such an adjustment (they can
thus pick an integer at random). Another well-known instance in which the
finiteness condition could be relaxed with little qualm is associated with the
use of improper priors in Bayesian analysis. In that setting, both sets of
conditional densities (the likelihood and the posterior) are integrable non-
negative densities but for one marginal (prior), and therefore both marginals
are non-negative but nonintegrable. For many researchers, these ‘improper’
models are perfectly possible. All that is required is that f(x|y) and f(y|x)
be non-negative and satisfy (i) and (ii). Integrability is not a consideration. A
simple example (mentioned in Chapter 1) will help visualize the situation.”

Chapter 6 of Arnold et al. (1999) presents several improper bivariate distri-
butions arising from conditionally specified models including certain uniform
conditionals as well as exponential-Weibull conditionals. We refer the inter-
ested reader to this source.

6.7 Conditionals in Location-Scale Families with
Specified Moments

Arnold et al. (1999) have considered conditionals in unspecified families
with specified conditional moments. The discussion is based on the work
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by Narumi (1923a,b), who sought joint densities whose conditionals satisfy

f(x|y) = g1

(
x− a(y)
c(y)

)
1

c(y)
, (6.79)

g(y|x) = g2

(
y − b(x)
b(x)

)
1

d(x)
, (6.80)

where a(y) and b(x) are the regression curves and c(y) and d(x) are scedastic
curves of X on Y and Y on X, respectively. Two cases have been presented
by Arnold et al. (1999, p. 154) and are discussed below.

Case (i) Linear Regressions and Conditional Standard Deviations

We assume

a(y) = a0 + a1y, b(x) = b0 + b1x, c(y) = 1 + cy, d(x) = 1 + dx.

Narumi (1923a,b) has shown that the joint density function in this case must
be of the form

h(x, y) = (α + x)p1(β + y)p2(γ + δ1x + δ2y)q, x, y > 0. (6.81)

Case (ii) Linear Regressions and Quadratic Conditional Variances

We assume

a(y) = a0 + a1y, b(x) = b0 + b1x,

c(y) =
√

1 + c1y + c2y2, d(x) =
√

1 + d1x + d2x2.

The joint density function in this case is necessarily of the form

h(x, y) = (α + βxγy + δ1x
2 + δ2xy + δ3y

2)−γ . (6.82)

6.8 Given One Family of Conditional Distributions and
the Regression Function for the Other

6.8.1 Assumptions and Specifications

Suppose we are given a family of conditional densities

f(x|y) = a(x, y), x ∈ S(X), y ∈ S(Y ), (6.83)
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and a regression function

E(Y |X = x) = ψ(x), x ∈ S(X). (6.84)

Obviously, questions on compatibility and uniqueness of the joint density
arise. Several partial answers to those questions have been provided in the
literature. Here, we simply present the following theorem due to Wesolowski
(1995).

6.8.2 Wesolowski’s Theorem

If (X,Y ) is a pair of absolutely continuous random variables with S(X) =
S(Y ) = (0,∞) and if, for every y > 0, X|(Y = y) ∼ P

(
a+by
1+cy , α

)
, where

α ≥ 0, a ≥ 0, b > 0, c ≥ 0, α > 0, then the distribution is uniquely
determined by E(Y |X = x) = ψ(x), x > 0.

Example 6.10 (Pareto conditionals). If E(Y |X = x) = a+x
(α−1)(b+cx) , then

(X,Y ) must have a Pareto conditionals distribution. If c = 0, we then have
Mardia’s bivariate Pareto distribution.

Example 6.11 (Exponential conditionals). We have

f(x|y) = a(x, y) = (y + δ)e−(y+δ)x, x > 0, (6.85)

with
E(Y |X = x) = ψ(x), x > 0,

where exp[−
∫ ψ

0
(u)du] is a Laplace transform; for example, ψ(x) = (γ+x)−1.

6.9 Estimation in Conditionally Specified Models

In this section, we aim to summarize estimation methods used for condi-
tionally specified models. Because of some special difficulties, several of the
techniques are tailor-made for these models. One of the main obstacles is
the presence of the normalizing constant m00, which is chosen to make the
density integrate to 1. Unfortunately, m00 is often an intractable function of
the other parameters. In some cases, an explicit expression is available; for
example, in the exponential conditionals density and the Pareto conditionals
density.

Chapter 9 of Arnold et al. (1999) has outlined the following methods:

• Maximum likelihood estimate. The maximum likelihood estimate θ̂
of θ satisfies
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n∏

i=1

h(Xi, Yi; θ̂) = max
θ∈Θ

n∏

i=1

h(Xi, Yi;θ). (6.86)

Two examples are presented: (i) Centered normal conditionals distribu-
tion and (ii) bivariate Pareto conditionals distribution. The method works
better when the resulting joint distributions are themselves exponential
families of bivariate densities.

• Pseudolikelihood estimate. The method is due to Arnold and Strauss
(1988b). The technique involves a pseudolikelihood function that does not
involve the normalizing constant. The pseudolikelihood estimate of θ is to
maximize the function

n∏

i=1

f(Xi|Yi;θ)g(Yi|Xi;θ) (6.87)

over the parameter space Θ.
Arnold and Strauss (1988b) have shown that the resulting estimate

is consistent and asymptotically normal with a potentially computable
asymptotic variance. In exchange for simplicity in calculation (since the
conditionals and hence the pseudolikelihood do not involve the normalizing
constant), we pay the price in slightly reduced efficiency. The centered
normal conditionals distribution has been used to illustrate this method.

• Marginal likelihood estimate. It is the unique value of θ that maxi-
mizes the function

n∏

i=1

f(Xi;θ)
n∏

i=1

g(Yi;θ) (6.88)

over the parameter space Θ.
Castillo and Galambos (1985) have reported on successful use of this

approach for the eight parameters of the normal conditionals model given
in (6.2).

• Moment estimate. This method is very well known. Assuming θ =
(θ1, . . . , θk), we choose k functions φ1, . . . , φk such that

Eθ(φi(X)) = gi(θ), X = (X,Y ), i = 1, 2, . . . , k. (6.89)

We then set up k equations

gi(θ) =
1
n

n∑

j=1

φi(Xj), with Xj = (Xj , Yj), i = 1, 2, . . . , k, (6.90)

and solve for θ. To avoid repeated recomputations of the normalizing con-
stant, Arnold and Strauss (1988a) treated this constant as an additional
parameter θ0 and set up an additional moment equation. The following
three examples have been given: (i) exponential conditionals distribution,
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(ii) centered normal conditionals distribution, and (iii) gamma condition-
als distribution Model II.

• Bayesian estimate and pseudo-Bayes approach. These two ap-
proaches have been described in Section 9.9 of Arnold et al. (1999).

6.10 McKay’s Bivariate Gamma Distribution and
Its Generalization

We now present two examples of a bivariate distribution where both condi-
tionals and both marginals are specified.

6.10.1 Conditional Properties

Y −x conditional on (X = x) has a gamma distribution with shape parameter
q, and X/y conditional on (Y = y) has a beta distribution with parameters
p and q.

6.10.2 Expression of the Joint Density

The corresponding joint density function is

h(x, y) =
ap+q

Γ(p)Γ(q)
xp−1(y − x)q−1e−ay, y > x > 0 (6.91)

(i.e., the support is a wedge that is half of the positive quadrant), where
a, p, q > 0. More details on this distribution can be found in Section 8.17.

6.10.3 Dussauchoy and Berland’s Bivariate Gamma
Distribution

This reduces to McKay’s bivariate gamma distribution when a1 = a2 = β =
1. The support is the wedge y > βx > 0, and the joint density in this case is
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βat2
2

Γ(l1)Γ(l1 − l2)
(βx)l1−1 exp(−a2x)(y − βx)l2−l1−1 exp

[

−a2

β
(y − βx)

]

× 1F1

[

l1, l2 − l1;
(
a1

β
− a2

)

(y − βx)
]

, β ≥ 0, 0 < a2 ≤ a1

β
, 0 < l1 < l2,

where 1F1 is the confluent hypergeometric function. More details on this
distribution can be found in Section 8.18.

Some Variants of Distribution

We now summarize in Table 8.1 some variations on the theme of Y necessarily
being positive and X necessarily being 0 and y.

Table 6.2 Distributions specified by marginal and conditional

Reference Distribution of Y Distribution of X,

given Y = y

McKay (1934) Gamma Beta over (0, y)
Mihram and Hultquist (1967) Stacy Beta over (0, y)
Block and Rao (1973) generalized inverted beta∗ Beta over (0, y)
Ratnaparkhi (1981)† Stacy, Pareto, or Beta or log-gamma

lognormal over (0, y)

∗ Density ∝ yα−1(1 + yc)−k.
† In Ratnaparkhi’s paper, the roles of X and Y were reversed from those here.

6.11 One Conditional and One Marginal Specified

6.11.1 Dubey’s Distribution

Dubey (1970) gave some properties of the distribution constructed by sup-
posing (i) that Y has a gamma distribution, and (ii) conditional on Y = y,X
has a gamma distribution, with constant shape parameter and mean inversely
proportional to y.
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6.11.2 Blumen and Ypelaar’s Distribution

Expression of the Joint Density

The joint density function is

h(x, y) = xαyxα−1, x, y ≥ 0. (6.92)

Univariate Properties

X is uniformly distributed over the range 0 to 1, but this is not true for Y .

Conditional Properties

Conditional on X = x, the cumulative distribution of Y is yxα

.

Remarks

It seems that the motivation of Blumen and Ypelaar (1980) for constructing
this distribution was to obtain one that is (i) tractable for studying the
properties of Kendall’s tau and (ii) reasonably similar to the bivariate normal
(after appropriate transformations of the marginals).

6.11.3 Exponential Dispersion Models

Jørgensen (1987) studied general properties of the class of exponential disper-
sion models that is the multivariate generalization of the error distribution
of generalized linear models. Although this is outside our scope, we note that
its Section 5 concerns combining a conditional and a marginal distribution,
both being exponential dispersion models, to obtain a higher-dimensional
exponential dispersion model.

We may add that in the Discussion of Jørgensen’s (1987) paper, Seshadri
(1987) has mentioned obtaining a bivariate exponential dispersion model with
gamma marginals.
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6.11.4 Four Densities of Barndorff-Nielsen
and Blæsild

We note that, in the course of studying reproductive exponential models,
Barndorff-Nielsen and Blæsild (1983) wrote out four examples of bivariate
densities constructed by the conditional approach:

Table 6.3 Four densities of Barndorff-Nielsen and Blæsild

Distribution of X Distribution of Y given X = x Example no.

Exponential Inverse Gaussian 1.1
Inverse Gaussian Normal 4.1
Inverse Gaussian Inverse Gaussian 4.2
Inverse Gaussian Gamma 4.3

The inverse Gaussian/inverse Gaussian example is also considered by
Barndorff-Nielsen (1983, pp. 306–361), who remarked that a special case of
it (with two of the four parameters being zero) can be said to be bivariate
stable of index (1

2 ,
1
4 ), as when a sample of size n is taken, the distribution

of (n−2
∑

xi, n
−4
∑

yi) is the same whatever n is.

6.11.5 Continuous Bivariate Densities with a
Discontinuous Marginal Density

The conditional approach was used by Romano and Siegel (1986, Section
2.15) to construct (for the fun of it!) a continuous distribution, and Y (con-
ditional on X = x) has a normal distribution with mean 1/x and constant
variance. The density is 0 for x ≤ 0 and is proportional to exp[−x− 1

2 (y−x−)2]
for x > 0. Romano and Siegel then showed that h(x, y) is continuous every-
where in the plane, but the marginal density f(x), with its jump at x = 0, is
not continuous.

Also, Clarke (1975) considered a joint density being proportional to
|x| exp[−(|x| + x2y2/2)], which is continuous. The marginal density of X
turns out to be e−|x|/2 if x �= 0 but is 0 if x = 0. This example is also in
Székely (1986, pp. 216–217). Clarke also constructed an example in which
h(x, y) is continuous everywhere but f(x) is nowhere continuous.
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6.11.6 Tiku and Kambo’s Bivariate
Non-normal Distribution

Expression of the Joint Density

The joint density function is

h(x, y) = C
1

√
kσ2

1σ
2
2(1 − ρ2)

exp

[

− 1
2σ2

1(1 − ρ2)

{

x− μ1 −
ρσ1

σ2
(y − μ2)

}2
]

×
{

1 +
(y − μ2)2

kσ2
2

}−p

, (6.93)

where C is the normalizing constant.

Conditional Properties

X given Y = y is normally distributed. More explicitly, it is the conditional
distribution that is associated with the bivariate normal density with corre-
lation coefficient ρ and marginal means μ1, μ2 and marginal variances σ2

1 , σ
2
2 .

Univariate Properties

Y has a Student t-distribution with density

g(y) ∝ (kσ2
2)1/2

{

1 +
(y − μ2)2

kσ2
2

}−p

,

where k = 2p− 3 and p ≥ 2.
The marginal distribution of X is unknown, however.

Moments

Let μi,j be the cross-product central moment of order i + j; all odd order
moments are zero, and the first few even order moments are as follows:
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μ2,0 = σ2
1 , μ1,1 = ρσ1σ2, μ0,2 = σ2

2 ,

μ4,0 = 3σ4
1

{

1 +
2ρ4

2p− 5

}

, μ3,1 = 3ρσ3
1σ2

{

1 +
2ρ2

2p− 5

}

,

μ0,4 =
3(2p− 3)
2p− 5

σ4
2 , μ2,2 = σ2

1σ
2
2

{

1 + 2ρ2 +
6ρ2

2p− 5

}

,

μ1,3 = 3ρσ1σ
3
2

{

1 +
2

2p− 5

}

.

Derivation

Tiku and Kambo (1992) derived this distribution by replacing one of the
two marginal distributions in a bivariate normal by a symmetric distribution
(related to the t-distribution), resulting in a symmetric bivariate distribution.

Remarks

For the estimation of parameters of this model, one may refer to Tiku and
Kambo (1992).

6.12 Marginal and Conditional Distributions of the
Same Variate

For bivariate distributions, it is common to combine marginal and/or condi-
tional densities to describe the joint density h(x, y). It is well known that,
given the marginal density f(x) of X and the conditional density g(y|x) of
Y given X = x, there exists a unique joint density h(x, y) = f(x)g(y|x). We
have devoted the major part of this chapter to discussing bivariate distribu-
tions when both conditional densities are specified. This section describes a
different kind of conditional specification.

A paper that is different is that of Seshadri and Patel (1963), which gave
some theoretical results on the extent to which knowledge of the marginal
distribution of one variate together with knowledge of the conditional dis-
tributions of the same variate serves to determine the bivariate distribution.
Can we characterize the joint density if we are given one marginal density, say
f(x), and the “wrong” family of conditional densities; i.e., f(x|y), y ∈ S(Y )?
The answer to this question is “sometimes.” We now explore this problem in
a general setting. Suppose we are given two functions, u(x) and a(x, y), and
we ask ourselves whether there exists a compatible distribution for (X,Y )
such that

f(x) = u(x), ∀x ∈ S(X), (6.94)
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and, for each y ∈ S(Y ),

f(x|y) = a(x, y), ∀x ∈ S(X). (6.95)

We may also ask when there is such a compatible joint distribution that is
unique.

It is evident that u(x) and a(x, y) will be compatible if there exists a
suitable density for Y , say w(y), such that

u(x) =
∫

S(Y )

a(x, y)w(y)dy, ∀x ∈ S(X). (6.96)

Thus, u(x) and a(x, y) are compatible if and only if u(x) can be expressed as
a mixture of the given conditional densities {a(x, y) : y ∈ S(Y )}. Uniqueness
of the compatible distribution h(x, y) = w(y)a(x, y) will be encountered if
and only if the family of conditional densities is identifiable.

6.12.1 Example

Arnold et al. (1999) presented an example with

a(x, y) = ye−xy, x > 0,

and
u(x, y) = (1 + x)−2, x > 0.

It can be verified that these are indeed compatible with the density of Y
given by

w(y) = e−y, y > 0.

Identifiability of the family {ye−xy, x, y > 0} may be verified by using the
uniqueness property of Laplace transforms, and consequently there is a unique
joint density corresponding to the given a(x) and u(x, y), given by

h(x, y) = ye(x+1)y, x, y > 0.

6.12.2 Vardi and Lee’s Iteration Scheme

Suppose now that a(x) and u(x, y) are given. How can we identify in general
the corresponding mixing density w(y)? Vardi and Lee (1993) provided an
iterative scheme for this purpose.

Let w0(y) be an arbitrary strictly positive density defined on S(Y ). For
n = 0, 1, . . ., define
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wn+1(y) = wn(y)
∫

S(X)

a(x, y)u(x)
∫

S(Y )
wn(y′)a(x, y′)dy′

dx. (6.97)

Vardi and Lee (1993) showed that the iterative scheme in (6.97) will always
converge. If a(x) and u(x, y) are compatible, it will converge to an appropriate
mixing scheme w(y).

6.13 Conditional Survival Models

So far, we have discussed only conditionally specified bivariate distributions
in terms of conditional density functions in which one of them belongs to a
particular parametric family, whereas the other belongs to a possibly different
parametric family. In the context of bivariate survival models, it is more
natural to condition on component survivals (i.e., on events such as {X > x}
and {Y > y}) rather than conditioning on a particular value of X and Y . The
question of compatibility will spring to our mind immediately, but this has
been answered in Arnold et al. (1999) as follows, Two families of conditional
survival functions

Pr(X > x|Y > y) = a(x, y), (x, y) ∈ S(X) × S(Y ),
Pr(Y > y|X > x) = b(x, y), (x, y) ∈ S(X) × S(Y ), (6.98)

are compatible if and only if there exist functions u(x) ∈ S(X) and v(y) ∈
S(Y ) such that

a(x, y)
b(x, y)

=
u(x)
v(y)

, (x, y) ∈ S(X) × S(Y ), (6.99)

where u(x) is a one-dimensional survival function. We now present two ex-
amples of distributions characterized by conditional survival.

6.13.1 Exponential Conditional Survival Function

Conditional Properties

Suppose
Pr(X > x|Y > y) = exp[−θ(y)x], x, y > 0,

and
Pr(Y > y|X > x) = exp[−τ(x)y], x, y > 0,

where θ(y) = α + γy and τ(x) = β + γx.
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Expression of the Joint Survival Function

In this case, we have as the joint survival function

H̄(x, y) = exp(δ+αx+βy+γxy), δ > 0, α, β > 0, γ ≤ 0, αβ ≥ −γ. (6.100)

Reparametrizing in terms of marginal scale parameters and an interaction
parameter, we have

H̄(x, y) = exp
[

−
(
x

σ1
+

y

σ2
+ θ

xy

σ1σ2

)]

, x, y > 0, (6.101)

where σ1, σ2 > 0 and 0 ≤ θ ≤ 1. This is indeed Gumbel’s type I bivariate
exponential distribution, discussed in Section 2.10.

6.13.2 Weibull Conditional Survival Function

Conditional Properties

Suppose

Pr(X > x|Y > y) = exp {[−x/σ1(y)]γ1} , x, y > 0,

and
Pr(Y > y|X > x) = exp {[−y/σ2(x)]γ2} , x, y > 0,

where σ1(y)γ1 = (α + γyγ2)−1 and σ2(x)γ1 = (β + γxγ1)−1.

Expression of the Joint Survival Function

In this case, we have as the joint survival function

H̄(x, y) = exp
{

−
[(

x

σ1

)γ1

+
(

y

σ2

)γ2

+ θ

(
x

σ1

)γ1
(
y

θ2

)γ2
]}

, x, y > 0,

(6.102)
where σ1, σ2 > 0 and 0 ≤ θ ≤ 1. If γ1 = γ2, then (6.101) reduces to Gumbel’s
bivariate exponential distribution in (6.100).
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6.13.3 Generalized Pareto Conditional
Survival Function

Conditional Properties

Suppose
Pr(X > x|Y > y) = [1 + (x/σ1)c1 ]−k

, x, y > 0,

and
Pr(Y > y|X > x) = [1 + (y/σ2)c2 ]−k

, x, y > 0.

Expressions of the Joint Survival Function

Two solutions are possible for the joint survival function, and they are as
follows:

H̄(x, y) =
[

1 +
(
x

σ1

)c1

+
(

y

σ2

)c2

+ θ

(
x

σ1

)c1
(

y

σ2

)c2
]−k

, x, y > 0,

(6.103)
for positive constants c1, c2, σ1, σ2, k and θ ∈ [0, 2], and

H̄(x, y) = exp
{
−θ1 log

[
1 +
(

x
σ1

)c1
]
− θ2 log

[
1 +
(

y
σ2

)c2
]

−θ3 log
[
1 +
(

x
σ1

)c1
]
log
[
1 +
(

y
σ2

)c2
]}

, x, y > 0, (6.104)

for θ1 > 0, θ2 > 0, θ3 ≥ 0, σ1 > 0, σ2 > 0, c1 > 0, c2 > 0.
The bivariate generalized Pareto distribution in (6.103) was first discussed

in Durling (1975).

6.14 Conditional Approach in Modeling

6.14.1 Beta-Stacy Distribution

Mihram and Hultquist (1967) discussed the idea of a warning-time variable,
X, for Y = the failure time of a component being tested, where 0 < X < Y .
A bivariate distribution was proposed, with Y having Stacy’s generalized
gamma distribution and X, conditional on Y = y, having a beta distribution
over the range 0 to y. The resulting joint density is given by

h(x, y) =
|c|

abcΓ(b)B(p, q)
xp−1(y − x)q−1ybc−p−q exp[−(y/a)c] (6.105)
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if 0 < x < y and is 0 otherwise.
Pearson’s product-moment correlation coefficient is

√
p2var(Y )

(p + q)2var(X)
, (6.106)

where var(X) is related to the moments of Y by

var(X) =
p(p + 1)E(Y 2)

(p + q)(p + q + 1)
− p2[E(Y )]2

(p + q)2
, (6.107)

and the moments of Y are given by

E(Y r) = arΓ[(bc + r)/p]/Γ(b) for r/c > −b (6.108)

and are undefined otherwise.
The generation of random variates from this distribution is straightfor-

ward.
Setting c = 1 and bc = p + q, we obtain McKay’s bivariate gamma distri-

bution.

6.14.2 Sample Skewness and Kurtosis

Shenton and Bowman (1977) considered the joint distribution of the sample
skewness and kurtosis statistics. It is well known that, in sampling from a
normal population, the distributions of

√
b1 (= m3/m

3/2
2 ) and b2 (= m4/m

2
2)

are individually well approximated by Johnson’s SU distribution, but little
consideration has been given to the joint distribution (mj being the jth
sample central moment). When Shenton and Bowman conducted extensive
simulations of (

√
b1, b2), they found that the distribution of

√
b1 is unimodal

for small b2 but becomes bimodal for large b2—provided n is not too large (as
n → ∞, so

√
b1 becomes unimodal, whatever b2 might be). Their approach

to the bivariate distribution was to use SU for the marginal distribution of√
b1 and a conditional gamma density for b2 given the value of

√
b1. That is,

h(
√
b1, b2) = w(

√
b1)g(b2|

√
b1), (6.109)

where w is the density of SU , and the gamma density g is written in terms
of b2 − 1− b1 since the constraint b2 ≥ 1 + b1 applies to the relative values of
b2 and

√
b1,

g(b2|
√
b1) =

k

Γ(θ)
[k(b2 − 1 − b1)]θ−1 exp[−k(b2 − 1 − b1)], (6.110)
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in which θ is a quadratic in
√
b1. This work has also been described in Section

7.7 of Bowman and Shenton (1986).

6.14.3 Business Risk Analysis

We summarize here the work of Kottas and Lau (1978). The subject is risk
analysis in business, by which is meant determining the stochastic charac-
teristics of secondary variables such as profit Z from (i) the stochastic char-
acteristics of primary variables such as sales volume Q, unit price P , unit
variable cost V , and fixed cost F and (ii) a functional relationship such as
Z = Q(P − V ) − F . The starting point of Kottas and Lau is:

• Emphasis has traditionally been on estimating the individual stochastic
characteristics of the primary variables, with their interdependencies being
neglected.

• Even when some attempt has been made to model the dependencies, this
has often been done in an unsatisfactory way; for example, by merely
specifying a correlation coefficient.

Kottas and Lau reviewed the shortcomings of the product-moment cor-
relation as a measurement of dependence, the specific one is imposing on a
model when making a simple and apparently harmless assumption such as
bivariate normality or lognormality and the impracticality of obtaining sub-
jective estimates of higher moments if a more general bivariate distribution is
permitted.

The alternative that they suggested is what they call a “functional ap-
proach,” and it consists of getting the dependencies of E(Y ) and var(Y ) on x
correctly specified. In principle, this might be extended to higher conditional
moments but in practice the shape of the conditional distribution of Y is
assumed to be independent of x, only the mean and the spread being allowed
to change.

To a statistical audience, the points made by Kottas and Lau may seem
uncontroversial and hardly worth saying, but it is a well-written article and
it brings home the necessity in model construction to always stay closely in
touch with what is practical.

6.14.4 Intercropping

This refers to growing two crops simultaneously on the same area of land and
harvesting and processing them separately. Mead et al. (1986) have stated,
“Amid all the other justifications of the practice of intercropping, the ben-
efit of ‘stability’ is a recurring theme. However, the concept of stability is



272 6 Bivariate Distributions Constructed by the Conditional Approach

variously and poorly defined, and the attempts to express the stability in
the quantitative terms have been statistically unconvincing.” Their paper is
chiefly about refining the notion of stability, which they do in terms of the
relative risks associated with intercropping and monocropping systems.

The data analyzed by Mead et al. (1986) consisted of financial returns
obtained by (i) intercropping sorghum with pigeonpea and (ii) monocrop-
ping sorghum at 51 site-year combinations in India (7 years, 11 areas, many
combinations omitted). A scatterplot of the 51 points reveals:

• a strong correlation between the returns of the two cropping systems;
• a higher average return with intercropping; and
• suggestions in the shape of the scatter that the relationship between the

two returns is curvilinear and heteroscedastic.

Mead et al. (1986) suggested it was appropriate to quantify the relative
risks of the two cropping systems by plotting the risk of “failure” under each
system against each other, as the definition of failure varies. In other words,
plot Pr(Y < t) against Pr(X < t) for various levels of t. For a dataset of 51
points, that can be done satisfactorily directly from the data points.

However, partly to understand their dataset better and partly to provide
an approach that would be more satisfactory for lesser amounts of data (given
that it had been validated on larger datasets), Mead et al. (1986) went on to:

• fit a bivariate distribution to their scatter of points; and
• calculate a smooth risk vs. risk curve from that distribution.

The approach chosen was (i) to fit a normal distribution to the sum of the
returns (S = X+Y ) from the two systems and (ii) to assume the conditional
distribution of the difference in returns between the two systems had a normal
distribution also, with the mean and the logarithm of the variance having a
quadratic dependence on S. Mead et al. (1986) have presented a contour plot
of the resulting distribution.

This method of analysis was repeated on four other datasets that had
resulted from intercropping sorghum with various second crops.

6.14.5 Winds and Waves, Rain and Floods

Height and Period of Waves of the Sea

A good deal of empirical data have been published on the joint distribution
of wave height and period.

Haver (1985) approached some data collected off northern Norway from
the conditional point of view:

• The distribution of wave height X that was chosen was an unusual one,
being lognormal for small X and Weibull for large X.
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• Given X = x, the “spectral peak period” T was assumed to have a log-
normal distribution.

Haver did not assume a functional form for the dependence on X of the
parameters of the distribution of T ; instead, for each of several ranges of
X, the mean and variance of log T were estimated. In Haver’s Figure 10,
expressions are given for how these are related to X. However, because the
expressions are quite messy, in addition to the marginal distribution of X, an
explicit formula for the joint distribution of X and T would be grotesquely
cumbersome.

Another study of this type was Burrows and Salih (1987). These authors
took X to have a Weibull distribution and the conditional distribution of T
to be either Weibull or lognormal; it seems that the Weibull distribution was
used in shifted form (i.e., three-parameter form). They fitted these and other
distributions to data from 18 sites around the British Isles.

For data from the North Sea, Krogstad (1985) took X to have a Weibull
distribution and the conditional distribution of T given X to be normal, with
constant mean and variance inversely proportional to X.

Myrhaug and Kjeldsen (1984) analyzed data from the North Sea with re-
gard to the joint distribution of the wave height and several other variables—
crest from the steepness and period, also assumed to have Weibull distribu-
tions. The conditional distributions of vertical asymmetry factor and total
wave steepness, in contrast, were taken to be lognormal.

Wind Speeds

It is of interest in the wind energy industry, as mentioned by Kaminsky
and Kirchhoff (1988), to estimate the energy available from the wind energy
conversion systems at one height from data collected at a lower height.

It is a common practice to assume the wind energy speed has a Rayleigh
distribution. In modeling the joint distribution of wind speeds at two heights,
Kaminsky and Kirchhoff therefore required the marginal distributions to have
this form, at least roughly. In fact, they considered two alternatives:

• X has a Rayleigh distribution and Y has a Rayleigh distribution with an
origin at Y = x and a constant scale factor. So, Pr(Y < X) = 0 for this
model.

• X has a Rayleigh distribution and Y has a normal distribution with mean
a + bx and a constant variance.

Kaminsky and Kirchhoff (1988) presented an empirical contour plot of the
bivariate distribution of wind speeds—at heights of 32 ft and 447 ft at a site
in Waterford, Connecticut—along with contour plots of the two distributions
that had been fitted to the data. The Rayleigh-normal distribution appeared
to be a better fit than the Rayleigh-shifted Rayleigh distribution (but it does
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have two more parameters). The use of the symbolic algebra software package
MACSYMA to obtain expressions for the marginal distributions of Y in the
two cases was a further feature of interest in this study.

Wind Speed and Wave Height

Liu (1987) was concerned with the joint distribution of wind speed X and
wave height Y on the Great Lakes of North America. Here, Y |X was taken
as a gamma distribution; separately, the use of (i) empirically obtained
equations connecting the parameters of this to wind speed, together with
(ii) a histogram of wind speeds were used for the calculation of the joint
distribution.

Storm Surge and Wave Height

In a study by Vrijling (1987) regarding the Dutch dikes, a part was played by
the joint distribution of the storm surge level of the sea and the significant
wave height, with the assumptions that:

• The storm surge level X has an extreme-value distribution; that is, F (x) =
exp[−e−(x−α)/b].

• Given X, wave height is normally distributed, with mean dependent on X
and constant variance.

Floods

Correia (1987) has considered the duration and peak discharge of floods of a
river. He supposed that:

• Flood duration is exponentially distributed.
• For a given duration, the peak discharge has a normal distribution whose

mean is a linear function of duration and whose variance is a constant.

Streamflow and Rain

Clarke (1979, 1980) used McKay’s distribution (Section 6.9) with X = annual
streamflow and Y = real precipitation. The justification was that

• With McKay’s distribution, X,Y, and Y − X (= evaporation) all have
gamma distributions, this being a popular univariate choice in hydrology.

• Y ≥ X is reasonable on physical grounds (for watertight basins with little
over a year storage).
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The motivation for Clarke’s work was that X is the variable of chief interest,
but there were often only a few years of data available for it, with the records
of Y being more extensive.

Rain

• According to Etoh and Murota (1986), a rainstorm can be adequately de-
scribed by three characteristics: duration X, maximum intensity Y , and
total amount Z. Further, it can be assumed that Z ∝ XY/2. Conse-
quently, two random variables suffice. Etoh and Murota made the following
assumptions:

– X has a gamma distribution.
– Y = ηXα, where η has a gamma distribution and a is a constant (and

0 ≤ a ≤ 1, reflecting a less than proportionate increase of maximum
intensity with duration).

Etoh and Murota had some empirical data from Osaka and some results
published by Córdova and Rodŕiguez-Iturbe (1985) for Denver (Colorado)
and Boconó (Venezuela). They found that the shapes of the univariate
distributions and the values of the correlation coefficients could be ap-
proximately reproduced by judicious selection of the parameters of their
model.

• Sogawa et al. (1987) were concerned with (i) the annual rainfall and (ii) the
annual maximum daily rainfall, each at four places in Nagano prefecture,
Japan. In both cases, they used a quadrivariate conditional maximum-
entropy distribution.

• The method adopted by Snyder and Thomas (1987) was not exactly
that of conditional distributions, but here is a good place to summa-
rize it. The subject was agriculture-related variates, such as monthly
rainfall and monthly average temperature. After univariate transforma-
tions, Snyder and Thomas (1987) used “a form-free bivariate distribution
based on two-dimensional sliding polynomials,” which they found to be
“necessary to model the bi-modal and heavy-tailed distributions frequently
encountered.”
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Chapter 7

Variables-in-Common Method

7.1 Introduction

The terms “trivariate reduction” or “variables in common” are used for
schemes for constructing of pairs of r.v.’s that start with three (or more)
r.v.’s and perform some operations on them to reduce the number to two.

The idea here is to create a pair of dependent random variables from three
or more random variables. In many cases, these initial random variables are
independent, but occasionally they may be dependent—an example of the
latter is the construction of a bivariate t-distribution from two variates that
have a standardized correlated bivariate normal distribution and one that has
a chi-distribution. An important aspect of this method is that the functions
connecting these random variables to the two dependent random variables
are generally elementary ones; random variate generation of the latter can
therefore be done as easily as for the former.

Different authors have used the terms in slightly different ways. A broad
definition of variables in common (or trivariate reduction) is

X = T1(X1, X2, X3)
Y = T2(X1, X2, X3)

}

, (7.1)

where X1, X2, X3 are not necessarily independent or identically distributed.
A narrow definition is

X = X1 + X3

Y = X2 + X3

}

, (7.2)

where X1, X2, X3 are i.i.d. Another possible definition is

X = T (X1, X3)
Y = T (X2, X3)

}

(7.3)
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with (i) the Xi being independently distributed and having d.f. F0(xi;λi)
and (ii) X and Y having distributions F0(x;λ1 + λ2) and F0(y;λ1 + λ3),
respectively.

Three well-known distributions obtainable in this way are (a) the bivari-
ate normal, from the additive model in (7.2), with the Xi’s having normal
distributions; (b) Cherian’s bivariate gamma distribution, also from (7.2) but
with the Xi’s having gamma distributions; and (c) Marshall and Olkin’s bi-
variate exponential distribution from (7.3), with the transformation T being
the minimum and the Xi’s having exponential distributions.

We first present a general description of this method in Section 7.2. In Sec-
tion 7.3, we describe the additive model, while the generalized additive model
is explained in Section 7.4. Models arising from weighted linear combinations
of random variables are discussed in Section 7.5. In Section 7.6, bivariate dis-
tributions of random variables having a common denominator are detailed.
In Sections 7.7 and 7.8, multiplicative trivariate reduction and Khintchine’s
mixture forms are discussed. While transformations involving the minimum
are explained in Section 7.9, some other forms of the variables-in-common
technique are discussed in Section 7.10.

7.2 General Description

Let Xi (i = 1, 2, 3) be three independent random variables with distribution
functions Fi(xi;λi). The Fi’s are often assumed to be the same, but the
parameters λi may be different. Suppose there exists a function T such that

X = T (X1, X3)
Y = T (X2, X3)

}

. (7.4)

Then, X and Y are said to have a bivariate distribution generated by a
trivariate reduction technique. Pearson (1897) generated the bivariate normal
distribution in this way and Cherian (1941) the bivariate gamma.

More generally, let us define

X = T1(X1, . . . , Xn)
Y = T2(X1, . . . , Xn)

}

, (7.5)

where X and Y have one or more Xi’s in common and the Xi (i = 1, 2, . . . , n)
may not be mutually independent. The structure of T is obviously important,
but consider only a simple transformation of the Xi’s. Usually, the Xi’s will be
mutually independent, but occasionally they will be allowed to be dependent.

The following example, taken from Section 6 of Sumita and Kijima (1985),
is from the field of production engineering. Suppose a machine is alternately
producing items or being maintained. Let a period of useful production (of
length X3) followed by a maintenance period (of length X1) be referred to as a
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cycle (of length X1+X3). The cost incurred during a cycle consists of running
costs during the production period (which are proportional to the length of
the production period, X3) and of such things as parts for maintenance (a
random variable, X2). Then, we have the length of cycle X = X1 + X3 and
the total cost Y = X2 + cX3. Sumita and Kijima assumed X1, X2, and X3

have exponential distributions.
An example from the field of geotechnical engineering is that in determin-

ing the probability of failure of a slope, comparison of the total force resisting
sliding with the total force tending to induce sliding is required. These have
variables in common, such as the weight of the block of rock, its angle to the
horizontal, and forces due to water pressure in a tension crack; see Frangopol
and Hong (1987).

An example motivated from plant breeding is the following. Suppose we
are interested in the true values of a particular characteristic, but we can
only observe Y = X + ε, where ε is an error term. What is the distribution
of X within the population selected by the requirement that Y > y? For the
case of ε being normally distributed, see Curnow (1958).

Another form of variable in common may occur in a reliability context
when two components may be subjected to the same set of stresses, which
will invariably affect the lifetimes of both components.

7.3 Additive Models

7.3.1 Background

The first model we consider is

T (X1, X3) = X1 + X3. (7.6)

The Xi’s are usually taken to come from the same family of distributions; it
may happen that the family is closed under convolution (i.e., the sum X1+X3

also belongs to the same family of distributions).
As mentioned in Section 7.2, Pearson (1897) obtained the bivariate normal

using the trivariate reduction technique. In his well-known dice problem,
Weldon first constructed a bivariate binomial distribution using (7.2), with
the Xi’s being independent binomial variables.

Cherian (1941) and David and Fix (1961) obtained a bivariate gamma
distribution in the same manner. Let X = X1 +X3, Y = X2 +X3, where the
Xi’s are independent gamma variables with shape parameters λi. Then, the
joint density of X and Y is a bivariate gamma density.

Eagleson (1964) used a particular additive model in which the sums and
the Xi’s belong to the same family of distributions to obtain a class of bivari-
ate distributions whose marginals are members of Meixner classes, defined
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in Section 7.3.2; see also Lancaster (1975, 1983). Meixner’s collection of dis-
tributions have often appeared in characterization theorems because of their
regression properties. Some of these characterizations and properties have
been discussed by Lai (1982). The Meixner collection of distributions has
also appeared in Morris (1982, 1983). We now give a brief account of the
Meixner classes of bivariate distributions.

7.3.2 Meixner Classes

Suppose that X is a centered (i.e., with zero mean) random variable possess-
ing a moment generating function with distribution function G, on which can
be defined an orthogonal polynomial system {Pn}, where Pn(x) = xn+ terms
of lower order, such that

∫
PmPndG = δmnbm. Here, δmn is the Kronecker

delta and bm is a normalizing constant. Meixner (1934) considered these dis-
tributions, for which the generating function for their orthogonal polynomials
is of the form

K(x, t) =
∞∑

n=0

Pn(x)tn/n! = exp[xu(t)]/M [u(t)], (7.7)

where
u(t) = t + possibly terms of higher powers of t

is a real power series in t and M(·) is necessarily the moment generating
function.

It has been shown by Meixner (1934) [see also Lancaster (1975)] that there
are precisely six statistical distributions for which (7.7) is satisfied, and they
are:

• positive binomial,
• normal,
• Poisson,
• gamma (transformed),
• negative binomial, and
• Meixner hypergeometric.

The first five are in common use, while the last distribution has been dis-
cussed in diverse literature.

Eagleson (1964) showed that if Xi’s belong to the same Meixner class and
if they are mutually independent, then X and Y obtained by (7.2) also belong
to the same Meixner class, and their joint distribution function satisfies the
biorthogonal property

dH(x, y) = dF (x)dG(y)
∞∑

n=0

ρnPn(x)Pn(y). (7.8)
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Correlation

It is easy to see that the correlation coefficient of X and Y in the additive
model is given by

var(X3)√
var(X1 + X2)var(X2 + X3)

, (7.9)

which is always positive. It follows at once that we cannot obtain bivari-
ate distributions with negative correlations with such a scheme; independent
marginals can only be obtained by letting (X3 = a constant) be included in
the family. The values X and Y obtained in this way will have linear regres-
sion on each other. This is a consequence of a theorem of Rao (1947), which
was restated in Lancaster (1975); see also Eagleson and Lancaster (1967).

7.3.3 Cherian’s Bivariate Gamma Distribution

Let X = X1+X3, Y = X2+X3, with Xi’s being independent standard gamma
random variables having shape parameters αi. In his derivation, Cherian
(1941) assumed that α1 = α2 and the joint density of X and Y is expressed
in terms of an integral. Szántai (1986) provided an explicit expression for
the joint density function h(x, y) for arbitrary shape parameters in terms of
Laguerre polynomials.

7.3.4 Symmetric Stable Distribution

A class of bivariate symmetric stable distributions can be obtained via the
additive model. Let Xi’s be three mutually independent symmetric stable
random variables with characteristic functions exp(−λi|t|α), λi ≥ 0, 0 < α ≤
2. Consider the transformations X = X1 + X3 and Y = X2 + X3; then, the
joint characteristic function of (X,Y ) is

ϕ(s, t) = exp(−λ1|s|α − λ3|t + s|α − λ2|t|α). (7.10)

De Silva and Griffiths (1980) constructed a test of independence for this class
of bivariate distributions.

7.3.5 Bivariate Triangular Distribution

Eagleson and Lancaster (1967) constructed a bivariate triangular distribution
by letting the Xi’s have a uniform distribution on [0, 1].
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• The marginal p.d.f.’s are

f(x) =
{

x, 0 ≤ x ≤ 1
2 − x, 1 ≤ x ≤ 2 and g(y) =

{
y, 0 ≤ y ≤ 1

2 − y, 0 ≤ y ≤ 1 .

• The regression is linear, E(Y |X = x) = x+1
2 .

• E(Y 2|X = x) = 1
12 + x

2 + c(x), where

c(x) =
{

x2/2, 0 ≤ x ≤ 1
(x2 − x + 1)/3, 1 ≤ x ≤ 2 ;

see Eagleson and Lancaster (1967). Since this is not a polynomial of the
second degree, the canonical variations associated with the diagonal expan-
sion of the bivariate triangular distribution are not polynomials. This ex-
ample was constructed as a counterexample to the proposition that linear
regression implies the canonical variables are polynomials. Griffiths (1978)
showed that these canonical variables, though not polynomials themselves,
have a relationship with the Legendre polynomials.

7.3.6 Summing Several I.I.D. Variables

What follows generalizes the model we have discussed so far in that more
than two variables are added together, but it is a specialization also, as the
variables considered are now i.i.d.

Let Xi (i = 1, 2, . . .) be a sequence of i.i.d. variables, and let us define

X =
∑

i∈A Xi

Y =
∑

i∈B Xi

}

, (7.11)

where A and B are subsets of positive integers. The joint distribution of X
and Y has a correlation coefficient given by

ρ(X,Y ) =
n(A

⋂
B)

[n(A)n(B)]1/2
, (7.12)

where n(A) denotes the number of elements in the set A. Clearly, X and Y
are independent if A

⋂
B = ∅ (i.e., ρ(X,Y ) = 0), and ρ(X,Y ) = 1 if A ≡ B.

For further details, see Lancaster (1982).
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Example: Moving Averages

Consider a series of simple moving averages (or moving sums) of order k. Let
A = {s+ 1, s+ 2, . . . , s+ k}, B = {s+ 2, s+ 3, . . . , s+ k + 1} for any s ≥ 0.
Then, X and Y are two adjacent moving sums.

7.4 Generalized Additive Models

7.4.1 Trivariate Reduction of Johnson and Tenenbein

Johnson and Tenenbein (1979) considered the trivariate reduction of the form

X = X1 + cX3

Y = X2 + cX3

}

,

where X1, X2 and X3 are i.i.d. random variables.
The values τ and ρS were calculated for the following choices of Xi’s:

Exponential:

τ =
2c2

(1 + c)(1 + 2c)
, ρS =

c2(2c2 + 9c + 6)
(1 + c)2(1 + 2c)(2 + c)

.

Laplace:

τ =
c2(32c5 + 125c4 + 161c3 + 90c2 + 22c + 2)

2(1 + c)3(1 + 2c)4
,

ρS =
c2(16c7 + 152c6 + 588c5 + 1122c4 + 1104c3 + 555c2 + 132c + 12

2(1 + c)4(1 + 2c)3(2 + c)2
.

Uniform:

τ =

{
c2(c2−6c+10)

15 for 0 ≤ c ≤ 1
15c2−14c+4

15c2 for 1 ≤ c
,

ρS =

⎧
⎪⎨

⎪⎩

c2(19c2−126c+210)
210 for 0 ≤ c ≤ 1

c7−14c6+84c5−280c4+770c3−672c2+238c−24
210c3 for 1 ≤ c ≤ 2

105c3−105c+52
105c3 for 2 ≤ c

.

Note that when c = 1, Johnson and Tenenbein’s trivariate reduction model
reduces to the simple additive model considered in Section 7.3.

A generalized additive model also includes the situation in which
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X = X1 + aX3, Y = X2 + bX3.

In this case, X and Y are positively quadrant dependent provided Xi’s are
mutually independent, with a and b having the same sign; see Example 1(ii)
of Lehmann (1966).

7.4.2 Mathai and Moschopoulos’ Bivariate Gamma

Mathai and Moschopoulos (1991) constructed a bivariate gamma distribution
whose components are positively correlated and have three-parameter distri-
butions. Denote the three-parameter (shape, scale, and location) gamma by
Vi ∼ Γ(αi, βi, γi), i = 0, 1, 2, and let

X =
β1

β0
V0 + V1, Y =

β2

β0
V0 + V2.

The X and Y so defined have a bivariate distribution with gamma marginals.
Mathai and Moschopoulos (1992) constructed another form of bivariate

gamma distribution. Let Vi, i = 1, 2, be as defined above. Form

X = V1, Y = V1 + V2.

Then X and Y clearly have a bivariate gamma distribution. The construction
above is only part of a multivariate setup motivated by considering the joint
distribution of the total waiting times of a renewal process.

7.4.3 Lai’s Structure Mixture Model

Lai (1994) proposed a method of constructing bivariate distributions by ex-
tending a model proposed by Zheng and Matis (1993). The generalized model
may be considered as a modified structure mixture model and has the form

X = X1 + I1X3, Y = X2 + I2X3, (7.13)

where Xi’s are independent random variables and Ii (i = 1, 2) are indica-
tor random variables that are independent of Xi, but (I1, I2) has a joint
probability mass function with joint probabilities pij , i, j = 0, 1.

It is easy to verify that

I1 =
{

1 with probability π1 = p10 + p11

0 with probability 1 − π1 = p00 + p01

and
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I2 =
{

1 with probability π2 = p01 + p11

0 with probability 1 − π2 = p00 + p10.

Denote the mean and variance of Xi by μi and σ2
i , respectively. We then

obtain the following properties.

Marginal Properties

We have
E(X) = μ1 + π1μ3 and E(Y ) = μ2 + π2μ3,

and

var(X) = σ2
1 +π1σ

2
3 +π1(1−π1)μ2

3 and var(Y ) = σ2
2 +π2σ

2
3 +π2(1−π1)μ2

3.

Correlation Coefficient

Pearson’s correlation can be shown to be

ρ =
p11(σ2

3 + μ2
3) − π1π2μ

2
3

{[σ2
1 + πσ2

3 + π1(1 − π1)μ2
3][σ

2
2 + πσ2

3 + π2(1 − π2)μ2
3]}

1/2
. (7.14)

The correlation can be negative or positive depending on the values of pij .
Lai (1994) has given lower and upper bounds for ρ.

7.4.4 Latent Variables-in-Common Model

In assessing the health of plants, two raters often show more disagreement
about the relatively healthy plants than about the less healthy ones. It is
reasonable to assume that each rater may commit an error in judgment.

A common idea in fields such as plant science is that there is a true level of
health of any particular plant (H, say), and that the two opinions about this
are respectively, X = H + E1 and Y = H + E2, where E1 and E2 represent
errors, independent of each other and of H. This may be termed a model
with latent variables in common.

Hutchinson (2000) proposed a generalization in which the variability of
the errors is greater for large valued of H than for small values. Then the
new model may be written as

X = H + E1 · exp(a + bH),
Y = H + E2 · exp(a + bH).
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Here, H,E1, E2 can be taken as mutually independent normal distributions.
Clearly, now the E’s are multiplied by something that is bigger when H is
big than when H is small. When b = 0, the bivariate normal model will be
obtained.

7.4.5 Bivariate Skew-Normal Distribution

A random variable Z is said to be skew-normal with parameter λ if its density
function is given by

φ(z;λ) = 2φ(z)Φ(λz), −∞ < z < ∞, (7.15)

where φ(z) and Φ(z) denote the N(0, 1) density and distribution function,
respectively. The parameter λ varying in (−∞,∞) regulates the skewness and
λ = 0 corresponds to the standard normal density. Azzalini and Dalla-Valle
(1996) have shown that the distribution can be derived in two ways:

(1) Let (X,Y ) have a bivariate normal density with standardized marginals
with correlation δ. Then, the conditional distribution of Y given X > 0
has a skew-normal distribution with parameter λ that is a function of
δ.

(2) If Y0 and Y1 are independent unit normals and δ ∈ (−∞,∞), then

Z = δ|Y0| + (1 − δ2)1/2Y1

is skew-normal, with λ depending on δ.

Bivariate Skew-Normal

Define
X = δ1|Y0| + (1 − δ2

1)
1
2Y1

Y = δ2|Y0| + (1 − δ2
2)

1
2Y2

}

, (7.16)

where (Y1, Y2) has a standardized bivariate normal distribution and Y0 has
a standard normal distribution independent of (Y1, Y2). Then, (X,Y ) has a
bivariate skew-normal distribution with density

h(x, y) = 2φ(x, y;ω)Φ(α1x + α2y), (7.17)

where ω is the correlation coefficient between Y1 and Y2 that has the standard
bivariate normal distribution, and αi, i = 1, 2 depends on ω and the δ’s.
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Applications

(1) The bivariate skew-normal model has been fitted to a weight versus
height dataset of athletes from the Australian Institute of Sport and
reported by Cook and Weisberg (1984); see Azzalini and Dalla-Valle
(1996) for details.

(2) Gupta and Brown (2001) have established P (X < Y ) in the context of
a strength–stress model. The bivariate skew-normal model is fitted to a
dataset from Roberts (1988), and then the probability that the IQ score
for white employees is less than the IQ score of nonwhite employees is
estimated.

(3) For further statistical applications of multivariate skew-normal distri-
butions, one may refer to Azzalini and Capitanio (1999).

7.4.6 Ordered Statistics

Jamalizadeh and Balakrishnan (2008) derived the distributions of order
statistics from bivariate skew-normal and bivariate skew-tν distributions in
terms of generalized skew-normal distributions, and used them to obtain ex-
plicit expressions for means, variances and covariance. Here, by generalized
skew-normal distribution, we mean the distribution of X|(U1 < θ1X,U2 <
θ2X) when X � N(0, 1) independently of (U1, U2)T � BVN(0, 0, 1, 1, γ).
This distribution, which is a special case of the unified multivariate skew-
normal distribution introduced by Arellano-Valle and Azzalini (2006), has
also been utilized by Jamalizadeh and Balakrishnan (2009) to obtain a mix-
ture representation for the distributions of order statistics from a trivariate
normal distribution. These authors also carried out a similar work for order
statistics from the trivariate skew-tν distribution by showing that they are
indeed mixtures of a generalized skew-tν distribution.

Remark

• A bivariate (multivariate) skew-Cauchy distribution is discussed in Arnold
and Beaver (2000). The derivation is similar to that for the bivariate skew-
normal distribution.

• Two other alternative approaches to derive the multivariate skew-normal
distribution have been given, one by Jones (2002) and the other by Branco
and Dey (2001), who introduces an extra parameter to regulate skewness
to obtain a class of multivariate skew-elliptical distributions.
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7.5 Weighted Linear Combination

7.5.1 Derivation

Let
X = U1

Y = cU1 + (1 − c)U2

}

(7.18)

(0 ≤ c ≤ 1), where the Ui’s are i.i.d. random variables.

7.5.2 Expression of the Joint Density

If the Ui’s have a negative exponential distribution, then

h(x, y) =
1

1 − c
e−x−y+2cx, (7.19)

the support being part of the positive quadrant.
If the Ui’s have a Laplace distribution, then

h(x, y) =
1

4(1 − c)
e(−|x|−|y−cx|)/(1−c), (7.20)

the support being the whole plane.
If the Ui’s have a uniform distribution, then

h(x, y) =
1

1 − c
, (7.21)

the support being part of the unit square.
For further details, see Johnson and Tenenbein (1979, 1981).

7.5.3 Correlation Coefficients

For Spearman’s rank correlation and Kendall’s τ , Johnson and Tenenbein
(1979, 1981) presented τ and ρS for the following three choices of distributions
of X1 and X2:

Exponential:
τ = c, ρS = c(3 − c)/(2 − c),

and hence
ρS = τ(3 − 2τ)/(2 − τ).
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Laplace:

τ = c(3 + 3c− 2c2)/4, ρS = c(9 − 18c2 + 14c3 − 3c4)/[2(2 − c)2].

Uniform:

τ =

⎧
⎪⎨

⎪⎩

4c− 5c2

6(1 − c)2
, 0 ≤ c ≤ 0.5

11c2 + 16c + 1
6c2

, 0.5 ≤ c ≤ 1
,

ρS =

⎧
⎪⎨

⎪⎩

c(10 − 13c)
10(1 − c)2

, 0 ≤ c ≤ 0.5

3c2 + 16c2 − 11c + 2
10c3

, 0.5 ≤ c ≤ 1
.

7.5.4 Remarks

For a given distribution of the Ui’s, these distributions have the “monotone
regression dependence” property; i.e., the degree to which they are regression
dependent is a monotone function of the parameter indexing the family, c
[Bilodeau (1989)].

7.6 Bivariate Distributions Having a Common
Denominator

7.6.1 Explanation

In this section, we let X3, independent of X1 and X2, be the common de-
nominator of X and Y , which are defined as

X = X1/X3, Y = X2/X3. (7.22)

Many of the well-known bivariate distributions are generated this way, and
we will give several examples.

Remark: Ratio variables are sometimes known as index variables in some
disciplines.
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7.6.2 Applications

Turning away from distribution construction for a moment, a similar pair
of equations is often used the in data analysis context, with X3 being some
general measurement of size. For example, in economics, X1 and X2 may
be measures of the total wealth of a country and X3 its population, and, in
biology, X1 and X2 may be the lengths of parts of an animal’s body and X3 its
overall length. In any particular application, there might be controversy over
whether an empirical positive correlation between the two ratios X1/X3 and
X2/X3 is genuine or results spuriously from dividing by the same factor, X3.
This subject is connected to ideas of “neutrality”; see also Pendleton (1986)
and Prather (1988). More recently, Kim (1999) considered the correlation
between birth rates and death rates of 97 countries from a dataset reported
in the UNESCO 1990 Demographic Year Book. In this case, X1, X2, and X3

denote the number of births, number of deaths, and the size of the population,
respectively.

7.6.3 Correlation Between Ratios with a
Common Divisor

Pearson (1897) investigated the correlation of ratios of bone measurements
and found that although the correlation among the original measures was
low, the correlations among ratios with common measures were about 0.5.
He concluded that “part [of the correlation between ratio variables that] is
solely due to the nature of [the] arithmetic ... is spurious” (p. 491).

The issue of spuriousness of correlations between ratio variables that have
a common element has been raised by numerous authors across many dis-
ciplines, such as psychology, management, etc. Dunlap et al. (1997) have
provided an excellent review on the subject.

Let VX be the coefficient of variation of a random variable X; i.e.,
VX =

√
var(X)/E(X). Assuming the Xi’s are uncorrelated, Pearson’s (1897)

approximate formula for the correlation between X and Y is

ρ(X,Y ) ≈ ρ(X1,X2)VX1VX2−ρ(X1,X3)VX1VX3−ρ(X2,X3)VX2VX3+V 2
X3√

(V 2
X1

+V 2
X3

−2ρ(X1,X3)VX1VX3 )(V 2
X2

+V 2
X3

−2ρ(X2,X3)VX2VX3 )
.

Kim (1999) presented the exact formula for the correlation between X and
Y when the Xi’s are independent as

ρ(X,Y ) =
V 2

1/Z3
sign(E(X1))sign(E(X2))

[V 2
X1

(1 + V 2
1/X3

)V 2
1/X3

] + [V 2
X2

(1 + V 2
1/X3

)V 2
1/X3

]
. (7.23)
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If X1 and X2 take positive values, or more generally, when E(X1) and
E(X2) have the same sign, then the formula above becomes

ρ(X,Y ) =
V 2

1/Z3

[V 2
X1

(1 + V 2
1/X3

)V 2
1/X3

] + [V 2
X2

(1 + V 2
1/X3

)V 2
1/X3

]
. (7.24)

The Case Where All the CV’s Are Equal

Consider the case where the coefficients of variation of all variables are equal.
Dunlap et al. (1997) have shown that Pearson’s approximation formula is
simplified to

ρ(X,Y ) =
1 − ρ(X1, X3) − ρ(X2, X3) + ρ(X1, X2)
2(1 − ρ(X1, X3))1/2(1 − ρ(X2, X3))1/2

.

Even if the three variables X1, X2, X3 are all independent, the correlation
among ratios with a common denominator would not equal 0; instead the
equation above simplified to 0.5.

7.6.4 Compounding

The denominator-in-common version of the trivariate reduction method of
constructing bivariate distribution sets through X = X1/X3 and Y = X2/X3

may readily be seen to be equivalent to compounding of a scale parameter.
Suppose we instead write it as X = X1/θ and Y = X2/θ. Then, we have

H(x, y) = Pr(X ≤ x, Y ≤ y)
= Pr(X1 ≤ θx,X2 ≤ θy)

=
∫

Pr(X1 ≤ θx) Pr(X2 ≤ θy)f(θ)dθ

=
∫

FX1(θx)FX2(θy)f(θ)dθ;

see, for example, Lai (1987).

7.6.5 Examples of Two Ratios with a Common Divisor

Example 7.1 (Bivariate Cauchy Distribution). Let X1 and X2 be two inde-
pendent normal variates and X3 independent of X1 and X2 be distributed



294 7 Variables-in-Common Method

as χ1 (i.e., chi-distribution with 1 degree of freedom). Then, the joint distri-
bution of X = X1/X3 and Y = X2/X3 is a bivariate Cauchy distribution.

Example 7.2 (Bivariate t-Distribution). Let X1 and X2 have a joint standard
bivariate normal density and X3, independent of X1 and X2, be distributed as
χν . Then, the joint distribution of X = X1/(X3/

√
ν) and Y = X2/(X3/

√
ν)

is a bivariate t-distribution with ν degrees of freedom.

Example 7.3 (Bivariate F -Distribution). Let X1, X2, and X3 be independent
chi-squared random variates with ν1, ν2, and ν3 degrees of freedom, respec-
tively. Then, X = X1/ν1

X3/ν3
and Y = X2/ν2

X3/ν3
have a joint bivariate t-density;

see Mardia (1970, pp. 92–93). We may generalize the distribution above to
the case where X1 and X2 have noncentrality parameters λ1 and λ2, respec-
tively. The correlation structure for this generalized bivariate F -distribution
is considered in detail by Feingold and Korsog (1986).

Example 7.4 (Jensen’s Bivariate F -Distribution). Let X1 and X2 have a
correlated chi-squared distribution of Kibble’s type with shape parameter
α = n/2, and X3, independent of X1 and X2, also be chi-squared, with m

degrees of freedom. Then, X = X1/n
X3/m and Y = X2/n

X3/m have a bivariate F -
distribution of Krishnaiah’s (1964, 1965) type. More generally, let Q1 and
Q2 follow Jensen’s (1970) bivariate chi-squared distribution with degrees of
freedom r and s, respectively, and V , independent of Q1 and Q2, be a chi-
squared variate with ν degrees of freedom. Then, X = Q1/r

V/ν and Y = Q2/s
V/ν

follow Jensen’s bivariate F -distribution.

Example 7.5 (Bivariate Pareto Distribution). Suppose X1 and X2 are inde-
pendent unit exponential variates, and X3, independent of X1 and X2, has
a gamma distribution. The joint distribution of X and Y is then bivariate
Pareto. More generally, if X1 and X2 have unit gamma distributions instead,
then a bivariate inverted beta distribution is the resulting distribution.

If we suppose (X1, X2) has a Farlie–Gumbel–Morgenstern distribution
with unit exponential marginals and that X3 has an independent gamma
distribution with shape parameter c, then the pair X = X1/X3, Y = X2/X3

has a bivariate distribution with Pareto marginals; see Johnson (1987, pp.
170–171).

Example 7.6 (Bivariate Inverted Beta Distribution). Suppose X1, X2, and X3

are independent gamma variables with shape parameters αi (i = 1, 2, 3).
Then, the pair X = X1/X3, Y = X2/X3 has the standard inverted beta
distribution; see Tiao and Guttman (1965).
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7.6.6 Bivariate t-Distribution with Marginals Having
Different Degrees of Freedom

The nature of having the same denominator has been generalized by Jones
(2002).

Let X1, X2 and W1,W2 be mutually independent random variables, each
Xi following the standard normal distribution and Wi following the chi-
squared distribution with ni degrees of freedom. For the sake of convenience,
we let ν1 = n1 and ν2 = n1 + n2, so that ν1 ≤ ν2. In the case where ν1 = ν2,
we define W2 ≡ 0.

Define a pair of random variables as follows:

X =
√
ν1X1√
W1

, Y =
√
ν2X2√

W1 + W2

. (7.25)

Details on this distribution will be presented in Section 9.3.

7.6.7 Bivariate Distributions Having a Common
Numerator

It is conceivable that one may be interested in the correlations among ratios
that have a common numerator [i.e., corr (X3/X1, X3/X2)]. Assuming equal
CV’s, Dunlap et al. (1997) again simplified the approximation formula of
Pearson (1897), giving

ρ(X,Y ) =
1 − ρ(X1, X3) − ρ(X2, X3) + ρ(X1, X2)
2(1 − ρ(X1, X3))1/2(1 − ρ(X2, X3))1/2

,

which was identical to the correlations among ratio variables with a com-
mon denominator. It is easy to see that ratios sharing a numerator will be
spuriously correlated as badly as those sharing denominators.

7.7 Multiplicative Trivariate Reduction

In this section, we discuss the case where the transformation is multiplication.
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7.7.1 Bryson and Johnson (1982)

Bryson and Johnson (1982) [and Chapter 8 of Johnson (1987)] draw attention
to Khintchine’s theorem, which states that any random variable X has a
single mode at the origin if and only if it can be expressed as a product

X = ZU, (7.26)

where Z and U are independent continuous variables, U having a uniform
distribution on the unit interval; see, for instance, Feller (1971, Section V.9).
For a given marginal density of X, f , the density fZ has to be −zf ′(z), where
f ′ is the derivative of f . Bryson and Johnson present a multiplicative version
of trivariate reduction,

X = ZU1

Y = ZU2

}

, (7.27)

where (U1, U2) has any bivariate distribution that has uniform marginals.
Z is referred to as a “generator” variable. Bryson and Johnson found the
correlation between X and Y to be

1
4
{
3 − c−2

X + ρ(U)

(
1 + c−2

X

)}
, (7.28)

where cX is the common coefficient of variation between X and Y , and ρ(U)

is the correlation between U1 and U2. A consequence of Khintchine’s theorem
is c2X ≥ 1

3 ; if U1 and U2 have normal or other symmetric distributions, they
are uncorrelated, though they are independent only if the Ui’s are.

Bryson and Johnson (1982) go on to discuss what they call Khintchine
mixtures; see Section 7.8 below.

7.7.2 Gokhale’s Model

Gokhale (1973) gave some attention to the scheme of construction

X = ZV1

Y = ZV2

}

, (7.29)

where V1, V2, and Z are independent beta variates whose parameters are
either

• Respectively (a, θ), (a + m, θ − m), and (a + θ, b + m − θ), so that X
and Y had beta distributions with parameters (a, b + m) and (a + m, b),
respectively.

• Respectively (a+Δ, b−Δ), (a+Δ, b′ −Δ), and (a,Δ), so that X and Y
had beta distributions with parameters (a, b) and (a, b′), respectively.
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7.7.3 Ulrich’s Model

Ulrich (1984) considered
X = Z1V1

Y = Z2V2

}

, (7.30)

where the Zi’s are independent, having gamma distributions (with unit scale
parameter and shape parameter αi +φ), and the Vi’s, independent of the Zi’s
but possibly not mutually independent, have beta distributions with param-
eters αi and φ. The scheme of dependence that Ulrich paid most attention to
is that of his beta mixture. He referred to the resulting distribution of (X,Y )
as the “bivariate product gamma.”

7.8 Khintchine Mixture

This section may not quite fit well with the rest of this chapter, but it does
have a similar flavor.

7.8.1 Derivation

Continuing the discussion of bivariate distributions suggested by Bryson and
Johnson (1982) and Johnson (1987, Chapter 8) that we started in Section
7.7.1, let

X = Z1U1

Y = Z2U2

}

, (7.31)

where the Ui’s are uniformly distributed on (0, 1) and either:

• the Ui’s are independent and the Zi’s are either identical (with probability
p) or independent (with probability 1 − p), or

• the Zi’s are independent and the Ui’s are either identical (with probability
q) or independent (with probability 1 − q).

As before, the Zi’s are referred to as “generator” variables.

7.8.2 Exponential Marginals

If X and Y are to have exponential marginals, Bryson and Johnson gave
these results:

• The case of independent Ui’s and identical Zi’s gave a p.d.f. of −Ei[max(x, y)],
where Ei(·) is the exponential integral.
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• The case of independent Zi’s and identical Ui’s gives a p.d.f. of

xy

(x + y)3
[2 + 2(x + y) + (x + y)2]e−(x+y).

• In the fully independent case, the p.d.f. is e−(x+y).

The correlation is p/2 if the first and the third are mixed in proportions
p : 1 − p, q/3 if the second and the third are mixed in proportions q : 1 − q,
and p

2 + q
3 if all three are mixed in proportions p : q : 1 − p− q.

The following five cases have been illustrated (contour and three-dimen-
sional plots of the p.d.f.’s) by Johnson et al. (1981): independent Ui’s, inde-
pendent Zi’s (i.e., p = q = 0); independent Ui’s, p = 0.6; independent Ui’s,
identical Zi’s; independent Zi’s, q = 0.6; independent Zi’s, identical Ui’s.
The final one has also been shown in Figure 8.2 of Johnson (1987).

7.8.3 Normal Marginals

This case has also been treated by Bryson and Johnson, but the formulas are
more complicated than in the exponential case. The following six cases were
illustrated (contour and three-dimensional plots of the p.d.f.’s) by Johnson
et al. (1981): q = 0, p = 0; q = 0, p = 0.25; q = 0, p = 0.5; q = 0, p = 0.74;
q = 0, p = 1; q = 0.25, p = 0.75. The two cases p = 1 and q = 1 are illustrated
in Figures 8.3 and 8.4 of Johnson (1987).

Three examples in which the Ui’s have the Farlie–Gumbel–Morgenstern
distribution are illustrated by Bryson and Johnson (1982) and Johnson (1987,
Figures 8.5–8.7). The density is given by

h(x, y) =
αxy

2max(|x|, |y|)φ[max(|x|, |y|)] +
1 − αxy

2
{1 − Φ[max(|x|, |y|)]}.

(7.32)
These are illustrated in Johnson et al. (1984, pp. 239–242) and Johnson
(1986).

7.8.4 References to Generation of Random Variates

Devroye (1986, pp. 603–604) and Johnson et al. (1984, pp. 239–240) have
discussed the random generation from these distributions.
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7.9 Transformations Involving the Minimum

Let Xi (i = 1, 2, 3) belong to the same one-parameter family of distribution
functions F (xi;λi). (We assume that the other parameters, if present, are
common to all Xi.) We now wish to find the family that is closed under the
transformation T (X1, X2) = min(X1, X3); i.e., we want to find distribution
functions F (x;λ) such that

F̄ (x;λ1)F̄ (x;λ3) = F̄ (x;λ1 + λ3), (7.33)

where F̄ , as usual, is 1 − F . This in turn implies that

F̄ (x;λ) = [F̄ (x)]λ. (7.34)

There are several continuous distributions satisfying the above [see Arnold
(1967)]—exponential, Pareto, and Weibull. Marshall and Olkin (1967) con-
structed their bivariate exponential distribution by taking F to be the ex-
ponential distribution and defining X = min(X1, X3) and Y = min(X2, X3),
thus giving

H̄(x, y) = exp[−λ1x− λ2y − λ3 max(x, y)]. (7.35)

The case of T being the maximum can be discussed similarly.

7.10 Other Forms of the Variables-in-Common
Technique

7.10.1 Bivariate Chi-Squared Distribution

Let X1, X2, X3 be independent univariate normal variates, and define

X = X2
1 + X2

3

Y = X2
2 + X2

3

}

. (7.36)

Then, X and Y have a joint bivariate chi-squared distribution (with two
degrees of freedom), and the joint moment generating function is

E(esX+tY ) = {[1 − 2(s + t)](1 − 2s)(1 − 2t)}−1/2
. (7.37)

The joint density is not of a simple form. This is an example of Cherian’s
construction of a bivariate gamma distribution discussed earlier.

Note that if X2
1 , X

2
2 , X

2
3 are each supposed to have a χ2

2-distribution (i.e.,
exponential), the joint density function of X and Y takes the simple form
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h(x, y) =
(
e−max(x,y)/2 − e−(x+y)/2

)
/4. (7.38)

Note that the marginals are not exponential but χ4-distributions; see Johnson
and Kotz (1972, pp. 260–261).

7.10.2 Bivariate Beta Distribution

This example illustrates that X and Y may have more than one variable in
common.

Let Xi (i = 1, 2, 3) be independent and have gamma distributions with
shape parameters θi. Consider

X = X1/(X1 + X2 + X3)
Y = X2/(X1 + X2 + X3)

}

. (7.39)

Then, X and Y have a bivariate beta distribution. We will obtain the same
bivariate beta density if the Xi’s in (7.39) are three independent beta variates
with parameters (θi, 1), respectively, conditional on X1 + X2 + X3 ≤ 1.

7.10.3 Bivariate Z-Distribution

Consider three independent gamma variates X1, X2 and X3 with shape pa-
rameters α, β, and ν, respectively. Form two variables X and Y as follows:

X = logX3 − logX1

Y = logX3 − logX2

}

. (7.40)

The joint moment generating function of X and Y can be obtained in a
straightforward manner as

M(s, t) =
Γ(ν + s + t)Γ(α− s)Γ(β − t)

Γ(α)Γ(ν)
. (7.41)

By inverting the moment generating function in (7.41), we obtain as the joint
density function of X and Y

h(x, y) =
Γ(ν + α + β)

Γ(α)Γ(ν)
e−αx−βy

(1 + e−x + e−y)α+β+γ
. (7.42)

By writing X = − log(X1/X3) and Y = − log(X2/X3), we see that the
distribution of (X,Y ) is simply a logarithmic transformation of the bivari-
ate inverted beta distribution discussed earlier; see Hutchinson (1979, 1981)
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and Lee (1981). As the marginals are Z-distributions, we may call (7.42) a
bivariate Z-distribution or a generalized logistic distribution; see Malik and
Abraham (1973), Lindley and Sinpurwalla (1986), and Balakrishnan (1992).

Some methods specifically oriented toward the reliability context with ex-
ponential distribution have also been discussed by Tosch and Holmes (1980),
Lawrance and Lewis (1983), and Raftery (1984, 1985).
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Chapter 8

Bivariate Gamma and Related
Distributions

8.1 Introduction

Many of the bivariate gamma distributions considered in this chapter may
be derived from the bivariate normal in some fashion, such as by marginal
transformation. It is well known that a univariate chi-squared distribution
can be obtained from one or more independent and identically distributed
normal variables and that a chi-squared random variable is a special case of
gamma; hence, it is not surprising that a bivariate gamma model is related
to the bivariate normal one.

In this chapter, we present many different forms of bivariate gamma dis-
tributions that have been introduced in the literature and list their key prop-
erties and interconnections between them. In Section 8.2, we describe the
form and features of Kibble’s bivariate gamma distribution. In Section 8.3,
we present Royen’s bivariate gamma distribution and point out its close con-
nection with Kibble’s form. The bivariate gamma distribution of Izawa and
its properties are described in Section 8.4. Next, the bivariate form of Jensen
is discussed in Section 8.5. In Section 8.6, the bivariate gamma distribution
of Gunst and Webster and its related models are described. The bivariate
gamma model of Smith et al. is detailed next, in Section 8.7. The bivariate
gamma distribution obtained from the general Sarmanov family and its prop-
erties are discussed in Section 8.8. The bivariate gamma model of Loáiciga
and Leipnik is detailed next, in Section 8.9. The forms of bivariate gamma
distributions of Cheriyan et al., Prékopa and Szántai, and Schmeiser and Lal
are described next, in Sections 8.10, 8.11, and 8.12, respectively. The bivariate
gamma distribution obtained from the general Farlie–Gumbel–Morgenstern
family and its properties are discussed in Section 8.13. The bivariate gamma
models of Moran and Crovelli are presented in Sections 8.14 and 8.15, re-
spectively. Some applications of bivariate gamma distributions in the field
of hydrology are mentioned in Section 8.16. Next, the bivariate gamma dis-
tributions proposed by McKay et al., Dussauchoy and Berland, Mathai and

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 305
DOI 10.1007/b101765 9, c© Springer Science+Business Media, LLC 2009
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Moschopoulos, and Becker and Roux and their properties are described in
Sections 8.17, 8.18, 8.19, and 8.20, respectively. Some other forms of bivariate
gamma models obtained from the variables-in-common technique are men-
tioned in Section 8.21. The noncentral version of bivariate chi-squared dis-
tribution is discussed in Section 8.22. The bivariate gamma distribution of
Gaver and its properties are detailed in Section 8.23. The bivariate gamma
distributions of Nadarajah and Gupta and Arnold and Strauss are discussed
in Sections 8.24 and 8.25, respectively. Finally, in Section 8.26, the bivariate
mixture gamma distribution and its characteristics are presented.

8.2 Kibble’s Bivariate Gamma Distribution

8.2.1 Formula of the Joint Density

The joint density function is

h(x, y) = fα(x)fα(y)
Γ(α)
1 − ρ

exp
{
−ρ(x + y)

1 − ρ

}

(xyρ)(α−1)/2Iα−1

(
2
√
xyρ

1 − ρ

)

(8.1)
(x, y ≥ 0, 0 ≤ ρ < 1), where fα(t) = 1

Γ(α) e−ttα−1 and Iα(·) is the modified
Bessel function of the first kind and order ν. The probability density function
may also be expressed in terms of Laguerre polynomials1 L

(α−1)
j as

h(x, y) = fα(x)fα(y)
∞∑

j=0

L
(α−1)
j (x)L(α−1)

j (y)
Γ(α)Γ(j + 1)

Γ(j + α)
. (8.2)

An alternative expression of the joint density function, obtained by Krishna-
iah (1963) [see also Krishnaiah (1983)], is

h(x, y) =
(1 − ρ)−α

Γ(α)

∞∑

j=0

aj(xy)α+j−1 exp
(

−x + y

1 − ρ

)

, (8.3)

where aj = 1
Γ(α+j)j!

ρj

(1−ρ)2j .

1 Lα
j (x) =

∑j
j=0

(
j + α
j − k

)
(−x)k

k!
=
∑j

j=0

(
j + α
k + α

)
(−x)k

k!
. Note that L

(α)
j has not been

normalized with respect to the marginal gamma density function.
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8.2.2 Formula of the Cumulative Distribution Function

Expressed as an infinite series in terms of Laguerre polynomials, the joint
distribution function is

H(x, y) = Fα(x)Fα(y)

+α

∞∑

j=0

ρj+1

(j + 1)
Γ(α + 1)Γ(j + 1)

Γ(j + α + 1)
Lα

j (x)Lα
j (y)fα(x)fα(y),

(8.4)

where Fα(t) =
∫ t

0
fα(u)du; see Lai and Moore (1984) for details.

Alternatively, the joint distribution function can also be expressed as

H(x, y) =
(1 − ρ)α

Γ(α)

∞∑

j=0

cjFα+j−1

(
x

1 − ρ

)

Fα+j−1

(
y

1 − ρ

)

, (8.5)

where cj = Γ(α+j)ρj

j! ; see Johnson and Kotz (1972, p. 221).

8.2.3 Univariate Properties

The marginal distributions are both gamma with the same shape parame-
ter α.

8.2.4 Correlation Coefficient

The parameter ρ in (8.1) is indeed Pearson’s product-moment correlation
coefficient.

8.2.5 Moment Generating Function

The joint moment generating function is

M(s, t) = [(1 − s)(1 − t) − ρst]−α, 0 < ρ < 0. (8.6)

Thus, the moments μ′
r,s can be obtained easily from (8.6).

The joint moment generating function in (8.6) was first given by Wicksell
(1933), but the explicit form of the density in (8.1) is due to Kibble (1941).
For this reason, some authors refer to this distribution as the Kibble–Wicksell
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bivariate gamma distribution. Vere-Jones (1967) showed that this distribution
is infinitely divisible.2

8.2.6 Conditional Properties

The regression is linear and is given by

E(Y |X = x) = ρ(x− α) + α. (8.7)

The conditional variance is also linear and is given by

var(Y |X = x) = (1 − ρ)[2ρx + α(1 − ρ)]; (8.8)

see Mardia (1970, p. 88).

8.2.7 Derivation

In the univariate situation, the derivation of the chi-squared distribution as
the sum of squared normal variables is well known. Now, let (X1, Y1), . . . ,
(Xn, Yn) be a random sample of size n from a bivariate normal distribution
with mean 0 and variance–covariance matrix

Σ =
(

σ2
1 ρ0σ1σ2

ρ0σ1σ2 σ2
2

)

.

Define X = 1
2σ2

1

∑n
i=1 X

2
i and Y = 1

2σ2
2

∑n
i=1 Y

2
i . Then, after replacing n/2 by

α in the density function, the distribution of (X,Y ) turns out to be Kibble’s
bivariate gamma with ρ = ρ2

0. For a generalization to higher dimensions, one
may refer to Krishnamoorthy and Parthasarathy (1951) and Krishnaiah and
Rao (1961).

Clearly, the random variate generation is then easy when 2α is a fairly
small integer.

2 A bivariate distribution with characteristic function ϕ is said to be infinitely divisible
if ϕ1/n is also a characteristic function for every positive integer n. In terms of r.v.’s,
this means that, for each n ≥ 1, the random variable with characteristic function ϕ can
be written as X =

∑n
j=1 Xnj , where Xnj (1 ≤ j ≤ n) are independent and identically

distributed with characteristic function ϕ1/n.
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8.2.8 Relations to Other Distributions

• Downton’s bivariate exponential distribution is a special case of this dis-
tribution; see Chapter 10 for pertinent details.

• According to Khan and Jain (1978), the quantity

u

u + ax + by
f(x, y;u + ax + by) (8.9)

is a p.d.f. of interest in the theory of emptiness of reservoirs, with u being
the initial content of the reservoir and f(x, y; t) being the p.d.f. for the
amounts ax and by for the flows from two sources into the reservoir during
time t. Khan and Jain used (8.9), where f is Kibble’s density function.
These authors then provided an expression for the p.d.f. and obtained the
lower-order moments; see also Jain and Khan (1979, pp. 166–167).

8.2.9 Generalizations

• In Jensen’s bivariate gamma distribution, (i) the shape parameters of the
marginals are different and they are integers or half-integers, and (ii) the
bivariate normal distributions used for derivation have different correla-
tion coefficients. For this and further generalizations, one may refer to
Section 8.5.

• Malik and Trudel (1985) expressed (8.2) as

h(x, y) = (1 − ρ)α
∞∑

j=0

Γ(α + j)ρj(xy)α+j−1

Γ(α)j![Γ(α + j)(1 − ρ)α+j ]2
exp
(

−x + y

1 − ρ

)

.

(8.10)
They then generalized the density above in the following form:

h(x, y) = (1 − ρ)(α1+α2)/2×
∞∑

j=0

Γ(α1+α2
2 + j)ρjxα1+j−1yα2+j−1

Γ(α1+α2
2 )j!Γ(α1 + j)Γ(α2 + j)(1 − ρ)α1+α2+2j

exp
(

−x + y

1 − ρ

)

.

(8.11)
The marginals of this distribution, however, are not gamma unless
α1 = α2.

8.2.10 Illustrations

Surfaces and contours of a probability density function of Kibble’s form have
been provided by Smith et al. (1982). Contours of the probability density
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function for the cases ρ = 0.5, α = 1 and ρ = 0.5, α = 2 have been given by
Izawa (1965).

8.2.11 Remarks

• It can be easily proved that [Jensen (1969)]

Pr(c1 ≤ X ≤ c2, c1 ≤ Y ≤ c2) ≥ Pr(c1 ≤ X ≤ c2) Pr(c1 ≤ Y ≤ c2).
(8.12)

Jensen called this positive dependence, but we use this term in a different
way in Chapter 3. In particular, we have

Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x) Pr(Y ≤ y)

(i.e., X and Y are positively quadrant dependent); see Section 3.4.
• Izawa (1965) presented formulas for the density and moments of the sum,

product, and ratio of X and Y .
• For results on the location of the mode, see Brewer et al. (1987).
• For a brief account of this distribution, in the context of others with gamma

marginals, one may refer to Krishnaiah (1985).

8.2.12 Fields of Applications

• Electric counter system. Lampard (1968) built this distribution in the
conditional manner, h = f(x)g(y|x); his context was a system of two re-
versible counters (i.e., an input can either increase or decrease the cumu-
lative count), with two Poisson inputs (an increase process and a decrease
process). Output events occur when either of the cumulative counts de-
creases to zero. The sequence of time intervals between outputs forms a
Markov chain, and the joint distribution of successive intervals is of Kib-
ble’s form of bivariate gamma. Lampard also gave an interpretation of the
same process in terms of a queueing system.

• Hydrology. Phatarford (1976) used this distribution as a model to de-
scribe the summer and winter streamflows.

• Rainfall. As the gamma distribution is a popular univariate choice for
the description of amount of rainfall, Izawa (1965) used Kibble’s bivariate
gamma distribution to describe the joint distribution of rainfall at two
nearby rain gauges.

• Wind gusts. Smith and Adelfang (1981) reported an analysis of wind
gust data using Kibble’s bivariate gamma distribution. The two variates
considered were magnitude and length of the gust.
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8.2.13 Tables and Algorithms

For α an integer or half-integer, Gunst and Webster (1973) presented a table
of upper 5% critical points, and Krishnaiah (1980) gave an algorithm to
compute the probability integral. For arbitrary α, an algorithm to compute
the probability integral has been given by Lai and Moore (1984).

8.2.14 Transformations of the Marginals

• The joint distribution of
√
X and

√
Y is a bivariate chi-distribution, which

is also known as a bivariate Rayleigh distribution. This has been studied
by Krishnaiah et al. (1963).

• Izawa (1965) has given some attention to a distribution for which certain
transformations of the variates—square root, cube root, or logarithm—
have Kibble’s bivariate gamma distribution.

• By transforming the marginals to be Pareto in form, Mardia (1962) ob-
tained a model that is termed a type 2 bivariate Pareto distribution.

8.3 Royen’s Bivariate Gamma Distribution

Royen (1991) considered this bivariate gamma distribution without realizing
its close relationship to Kibble’s bivariate gamma distribution.

8.3.1 Formula of the Cumulative Distribution Function

The joint cumulative distribution function is

H(x, y) =
(1 − ρ2)α

Γ(α)

×
∞∑

n=0

Γ(α + n)ρ2n

n!
Fα+n

(
x

2(1 − ρ2)

)

Fα+n

(
y

2(1 − ρ2)

)

,

(8.13)

where Fα(·) is the cumulative distribution function of the standard gamma
with shape parameter α.
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8.3.2 Univariate Properties

The marginal distributions are gamma with shape parameter α and scale
parameter 1/2.

8.3.3 Derivation

Let R =
(

1 ρ
ρ 1

)

be a nonsingular correlation matrix, Y1, . . . ,Yd be inde-

pendent standard bivariate normal random variables with correlation matrix
R, and Y be the (2 × d) matrix with columns Yj , j = 1, 2, . . . , d. Then,
according to Royen (1991), the joint cumulative distribution function of the
squared Euclidean norms of the row vectors of Y is the bivariate gamma
distribution in (8.13) with shape parameter α = d/2.

8.3.4 Relation to Kibble’s Bivariate
Gamma Distribution

Comparing (8.13) with (8.5), it is clear that Royen’s bivariate gamma is the
same as Kibble’s distribution except that the marginals of the former have a
scale parameter 1/2. Two derivations are also identical apart from the latter
having a divisor 2 in the derivation.

8.4 Izawa’s Bivariate Gamma Distribution

Izawa (1953) proposed a bivariate gamma model that is constructed from
gamma marginals allowing for different scale and shape parameters. As this
model was published in Japanese, it did not attract much attention in the
literature.

8.4.1 Formula of the Joint Density

Taking both scale parameters to be 1 for the sake of simplicity, the joint
density function is
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h(x, y) =
(xy)(α1−1)/2x(α1−α2) exp

(
−x+y

1−η

)

Γ(α1)Γ(α1 − α2)(1 − η)η(α1−1)/2

×
∫ 1

0

(1 − t)(α1−1)/2t(α1−α2−1)e(
ηxt
1−η )Iα1

(
2
√
ηxy(1 − t)
1 − η

)

dt,

(8.14)

for α1 ≥ α2, η = ρ
√
α1/α2, 0 ≤ ρ < 1, 0 ≤ η < 1, where Iα denotes the

Bessel function of the first kind and order α; see Izawa (1953), Nagao (1975),
and Yue et al. (2001).

8.4.2 Correlation Coefficient

The Pearson product-moment correlation coefficient is ρ, and η is the asso-
ciation parameter.

8.4.3 Relation to Kibble’s Bivariate
Gamma Distribution

When α1 = α2 = α, (8.14) reduces to Kibble’s bivariate gamma density
function in (8.1).

8.4.4 Fields of Application

Yue et al. (2001) have used this distribution in the field of hydrology.

8.5 Jensen’s Bivariate Gamma Distribution

8.5.1 Formula of the Joint Density

In this generalization of Kibble’s distribution due to Jensen (1970), the joint
density function has as a diagonal expansion in terms of Laguerre polynomials

h(x, y) = fa/2(x)fb/2(y)
∞∑

k=0

Gk(δ)(k!)2Γ(a/2)Γ(b/2)
Γ(k + a/2)Γ(k + b/2)

L
( a
2−1)

k (x)L( b
2−1)

k (y),

(8.15)
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where a and b are positive integers such that a ≤ b, fα is the standard gamma
density as before, and

Gk(δ) = Gk(δ1, δ2, . . . , δa) =
∑

j1,j2,...,ja

c1j1c2j2 . . . caja
, (8.16)

in which the sum is taken over all integer partitions3 of k in the second
subscript of c, and

cmjm
=

δjm
m Γ(jm + 1

2 )
Γ(jm + 1)Γ(1

2 )
.

The density function for the equicorrelated case (i.e., all the δ’s are equal)
with a = b was discussed in Section 8.2; for the case where a �= b, see
Krishnamoorthy and Parthasarathy (1951).

8.5.2 Univariate Properties

The marginals are again gamma distributions, but in this case with different
shape parameters, a/2 and b/2.

8.5.3 Correlation Coefficient

Pearson’s product-moment correlation is

ρ =
ρ2
1 + ρ2

2 + · · · + ρ2
a√

ab
, (8.17)

where ρ2
j = δj > 0 and ρj is the correlation coefficient of the bivariate normal

distribution that is involved in this derivation; see Section 8.5.5 below.

8.5.4 Characteristic Function

The joint characteristic function is

ϕ(s, t) = (1 − it)−(b−a)/2
a∏

j=1

[(1 − is)(1 − it) + stρ2
j ]

−1/2. (8.18)

3 An integer partition of k with a group is a vector (j1, j2, . . . , ja) such that
∑a

i=1 ji = k,
0 ≤ ji ≤ k. Each vector is a distinct partition. For example, if a = k = 2, then all possible
partitions are (0, 2), (2, 0), and (1, 1).



8.5 Jensen’s Bivariate Gamma Distribution 315

In the equicorrelated case ρ2
1 = ρ2

2 = · · · = ρ2
a = η, (8.18) reduces to

ϕ(s, t) = (1 − it)−(b−a)/2[(1 − is)(1 − it) + stη]−a/2, (8.19)

and the correlation in this case is η
√
a/b.

8.5.5 Derivation

This distribution may be derived as follows. Let Z be a normal random vec-
tor with a + b components, having zero means and general positive definite

variance–covariance matrix Σ, partitioned as Z
′
= (Z

′

1,Z
′

2),Σ =
(

Σ11 Σ12

Σ21 Σ22

)

,

where Z1 and Z2 are (a× 1) and (b× 1) normal vectors, with a ≤ b, respec-
tively. Here, Σ11 and Σ22 are identity matrices, and Σ12 = Σ

′

21 = (D 0),
where D has the ρ’s down the diagonal and zeros elsewhere. Then, the
quadratic forms Q1 = 1

2Z
′

1Σ
−1
11 Z1 and Q2 = 1

2Z
′

1Σ
−1
22 Z2 jointly follow

Jensen’s bivariate gamma distribution.

8.5.6 Illustrations

For some graphical illustrations of this bivariate gamma distribution, one
may refer to Smith et al. (1982) and Tubbs (1983b).

8.5.7 Remarks

Jensen (1970) showed that this bivariate gamma distribution can be expanded
diagonally in terms of orthogonal polynomials (in fact, orthonormal polyno-
mials) as

h(x, y) = fa/2(x)fb/2(y)
∞∑

j=0

MjL
( a
2−1)

j (x)L( b
2−1)

j (y), (8.20)
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where L( a
2−1)

j (x) and L( b
2−1)

j (y) are the normalized Laguerre4 polynomials,
and the canonical coefficients are

Mj =
j!
√

Γ(a/2)Γ(b/2)
√

Γ(a/2 + j)Γ(b/2 + j)
Gj(δ). (8.21)

8.5.8 Fields of Application

Smith et al. (1982) and Tubbs (1983b) have used this bivariate gamma dis-
tribution to model wind gusts. An advantage of this distribution is that the
shape parameters of the marginal gamma distributions can be unequal.

8.5.9 Tables and Algorithms

Tables of upper 5% critical points have been presented by Gunst and Webster
(1973). An algorithm for calculating the probability integral of this distribu-
tion has been given by Smith et al. (1982).

8.6 Gunst and Webster’s Model and
Related Distributions

Gunst and Webster (1973) considered Jensen’s bivariate gamma distribution
in the case where the ρ2

i ’s are either zero or η. Let m be the number of
nonzero ρ2

i ’s.

4 Any orthogonal function or polynomial with respect to a weight function f can be nor-
malized to give

∫
θi(x)θj(x)f(x)dx = δij , where δij is 1 if i = j and 0 otherwise. The

Laguerre polynomials L
(α−1)
j were defined in footnote 1. The normalized Laguerre poly-

nomials are L(α−1)
j = L

(α−1)
j /

√(
j + α − 1

j

)

=
{√

Γ(α)j!
Γ(j+α)

}
L

(α−1)
j . They can then be

written as L(α−1)
j (x) =

{
Γ(α)Γ(α+j)

j!

}1/2∑j
k=0(−1)k

(
j
k

)
xk

Γ(α+k)
. Kotz et al. (2000, p.

436) used L
(α−1)
j to denote the normalized Laguerre polynomial, and hence their notation

is different from ours.
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8.6.1 Case 3 of Gunst and Webster

Set a = m + n, and b = m + p, with the m nonzero and ρ2
i = η. Then, the

joint density function is given by

h(x, y) =
(1 − η)−m/2

Γ(m/2)Γ(n/2)Γ(p/2)

×
∞∑

j=0

∞∑

k=0

∞∑

l=0

αjkl
ηj+k+l

(1 − η)2j+k+l
xN1+N2+1yN1+N2+1

× exp
(

− x + y

2(1 − η)

)

, (8.22)

where N1 = m
2 + j − 1, N2 = n

2 + k − 1, N3 = p
2 + l − 1, and

αjkl =
2−(2N1+N2+N3−4)

j!k!l!
× Γ(N1 + 1)Γ(N2 + 1)Γ(N3 + 1)

Γ(N1 + N2 + 2)Γ(N1 + N3 + 2)
.

The correlation coefficient in this case is η/m
√
ab. For the case where m,n,

and p are not necessarily integers, Krishnaiah and Rao (1961) and Krishnaiah
(1983) rewrote the m.g.f. in (8.6) as

M(s, t) = (1 − s)−α(1 − t)−α{1 − ρst[(1 − s)(1 − t)]−1}−α.

Then the first two α’s were replaced by α1 and α2, with αi ≥ α > 0, to give

M(s, t) = (1 − s)−α1(1 − t)−α2{1 − ρst[(1 − s)(1 − t)]−1}−α. (8.23)

It is clear from (8.23) that the marginal gamma distributions have shape
parameters α1 and α2. The m.g.f. above was inverted to obtain the density

h(x, y) = fα1(x)fα2(y)
∞∑

j=0

ρjj!
Γ(α + j)

Γ(α)
Γ(α1)

Γ(α1 + j)
Γ(α2)

Γ(α2 + j)

×L(α1−1)
j (x)L(α2−1)

j (y), (8.24)

which is an alternative expression for the joint density function in (8.22).
[Note that the Laguerre polynomial Lj(x, α) defined in Krishnaiah (1983)
is j!Lα−1

j (x).] Sarmanov (1974) also constructed the same bivariate gamma
distribution.
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8.6.2 Case 2 of Gunst and Webster

In this case, we set a = m, and b = m + p. This is the equicorrelated case of
Jensen’s bivariate gamma, i.e., all the δ’s are equal. The joint density function
is given by

h(x, y) =
(1 − η)−m/2

Γ(m/2)Γ(p/2)

×
∞∑

j=0

∞∑

k=0

αjk
ηj+k

(1 − η)2j+k
xN1yN1+N2+1 exp

(

− x + y

2(1 − η)

)

,

(8.25)

where N1 = m
2 + j − 1, N2 = m

2 + k − 1, and ajk = 2−(2N1+N2+3)Γ(N2+1)
j!k!Γ(N1+N2+2) . The

correlation coefficient in this case is η
√
a/b.

8.7 Smith, Aldelfang, and Tubbs’ Bivariate
Gamma Distribution

Smith et al. (1982) extended Case 2 of Gunst and Webster to the case where
m and p are not necessarily integers. Replacing a/2 and b/2 by γ1 and γ2,
respectively, they showed that the joint density function can be written as

h(x, y) =
xγ1−1yγ2−1 exp[(x + y)/(1 − η)]

(1 − η)γ1Γ(γ1)Γ(γ2 − γ1)

∞∑

k=0

akIγ2+k−1

(
2
√

2ηxy
1 − η

)

,

(8.26)
where ak = (νy)kΓ(γ2−γ1+k)(1−η)γ2−1

k!(νxy)(γ2+k−1)/2 , and η is a dependency parameter satis-

fying 0 < η < 1 and η = ρ(γ2/γ1)1/2, in which ρ is the correlation coefficient
between X and Y ; see Brewer et al. (1987) and Smith et al. (1982) for further
details. (The expression for ak given in those papers seems to be incorrect,
however.)

Remarks

• Brewer et al. (1987) gave some results concerning the location of the mode
of distributions (8.26).

• See Tubbs (1983a) for the distribution of the ratio X/Y .
• Smith et al. (1982) considered an application of the distribution to gust

modeling.
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• Yue (2001) studied the applicability of the distribution to flood frequency
analysis.

• Nadarajah (2007) questioned the convergence of the series in the expres-
sion for the joint p.d.f.

8.8 Sarmanov’s Bivariate Gamma Distribution

Sarmanov (1970a,b) introduced asymmetrical bivariate gamma distributions
that extend Kibble’s bivariate gamma distribution in (8.2).

8.8.1 Formula of the Joint Density

The joint density function is

h(x, y) = fα1(x)fα2(y)
∞∑

j=0

ajL(α1−1)
j (x)L(α2−1)

j (y), (8.27)

for x, y ≥ 0, α1 ≥ α2, where

aj = λj

{
Γ(α2)Γ(α1 + j)
Γ(α1 + j)Γ(α2)

}1/2

, 0 ≤ λ < 1.

8.8.2 Univariate Properties

The marginals are gamma distributions with shape parameters α1 and α2.
Note that L(α−1)

j (·) are the orthonormal Laguerre polynomials with respect
to the gamma density fα.

8.8.3 Correlation Coefficient

Pearson’s coefficient of correlation is

corr(X,Y ) = ρ = λ
√
α2/α1 = a1.
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8.8.4 Derivation

This distribution can be derived by generalizing the diagonal expansion of
Kibble’s bivariate gamma density in (8.2) by choosing an appropriate canon-
ical sequence ai, as discussed in Lancaster (1969).

8.8.5 Interrelationships

Interrelationships between the distributions of Kibble (1941), Jensen (1970),
Gunst and Webster (1973), Smith et al. (1982), Krishnaiah (1983), and Malik
and Trudel (1985) are as presented below, in which GW stands for Gunst and
Webster and MT stands for Malik and Trudel.

Sarmanov (d)
↓

Krishnaiah (a)
(b)→ Smith et al.

(c)→ Kibble
(c)← MT (e)

↓ ↓
GW Case 3(a)

(b)→ GW Case 2
(f)← Jensen (g)

Notes: The last two downward arrows indicate that the αi are restricted to
be integers or half-integers.

(a) Parameter α, no greater than α1 or α2, is present.
(b) Parameter α is dropped.
(c) α1 and α2 are set to be equal.
(d) α1 and α2 are not necessarily equal.
(e) The marginals are not gamma distributions.
(f) The correlations are not equal.
(g) α1 ≤ α2, the αi being integers or half-integers. ρ1, ρ2, . . . , ρ2α1 are

nonzero but may be different.

We further note the following:

• Royen’s bivariate gamma is essentially the same as Kibble’s bivariate
gamma distribution, except the marginals are nonstandard gamma with
scale parameter 1/2.

• Kibble’s bivariate gamma is a special case of Izawa’s bivariate gamma
model.

8.9 Bivariate Gamma of Loáiciga and Leipnik

Another unsymmetrical bivariate generalization of Kibble’s bivariate gamma
with different shape and scale parameters was introduced by Loáiciga and
Leipnik (2005).
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8.9.1 Formula of the Joint Density

The joint density function is

h(x, y) =
∞∑

n=0

n∑

k=0

n∑

j=0

Ankjx
λ′

1+k−nyλ′
2+j−n exp

(
− x

b1
− y

b2

)
(8.28)

for x > 0 and y > 0, where λi = αi(n + γ), λ′
i = λi − 1, and Ankj are given

by

Ankj =
(−1)n+k+jβn(n!)2

b
k+λ′

1+1
1 b

j+λ′
2+1

2 Γ(λ1)Γ(λ2)

(
−γ
n

)(
λ′

1

n− k

)(
λ′

2

n− j

)

. (8.29)

Here γα1 and γα2 are the marginal shape parameters of X and Y , respec-
tively, with α1, α2 ≥ 0; γ is a (collective) positive shape parameter of the
joint distribution; and b1, b2 > 0 are shape parameters.

8.9.2 Univariate Properties

Both X and Y have gamma distributions with shape parameters γαj and
scale parameters bj , j = 1, 2, respectively.

8.9.3 Joint Characteristic Function

ϕ(s, t) = [(1 − isb1)α1(1 − itb2)α2 + βst]−γ . (8.30)

8.9.4 Correlation Coefficient

Pearson’s product-moment correlation coefficient is

ρ =
β

b1b2
√
α1α2

.

8.9.5 Moments and Joint Moments
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μi = αibiγ, σi = αib
2
i γ;

μ3,0 = 2b31γα1, μ0,3 = 2b32α2;
μ2,1 = 2βα1b1, μ1,2 = 2βα2b2.

Remarks

• In their original derivation, a location parameter ξi for each marginal is
included so that the characteristic function has the form

ϕ(s, t) = e(iξ1s+iξ2t)[(1 − isb1)α1(1 − ib2t)α2 + βst]−γ .

• Equation (8.30) shows that the distribution is indeed a generalization of
Kibble’s bivariate gamma with α1 = α2 = 1, b1 = b2 = b, and γ = ρ.

• The distribution X/Y and its moments were derived in Loáiciga and Leip-
nik (2005). The p.d.f. of the ratio was fitted to correlated bacteria densities
in stream water.

• Nadarajah and Kotz (2007a) commented that the sums and products are
required in hydrology and then went on to derive the distributions of X+Y
and XY when the joint density is given by (8.28).

8.9.6 Application to Water-Quality Data

Loáiciga and Leipnik (2005) have successfully fitted the probability distri-
bution of X/Y to the water-quality data collected from Las Palmas Creek,
Santa Barbara, California. The aim of their investigation was to study the
ratio of fecal coliforms (FC) to fecal streptococcus (FS). FC and FS are en-
teric bacteria that live in the intestinal tract of warm-blooded animals and
are frequently used as indicators of fecal contamination of water bodies. A
total of 38 pairs of 100-ml water aliquots were collected. In each pair, one
was analyzed for FC and the other for FS. The authors found that both FC
and FS can be adequately modeled by univariate gamma distributions.

8.10 Cheriyan’s Bivariate Gamma Distribution

Kotz et al. (2000) have referred to this distribution as Cheriyan and Ramab-
hadran’s bivariate gamma distribution.
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8.10.1 Formula of the Joint Density

The joint density function is

h(x, y) =
e−(x+y)

Γ(θ1)Γ(θ2)Γ(θ3)

∫ min(x,y)

0

(x− z)θ1(y − z)θ2−1zθ3−1ezdz. (8.31)

8.10.2 Univariate Properties

The marginal distributions are gamma with shape parameters α1 = θ1 + θ3
and α2 = θ2 + θ2.

8.10.3 Correlation Coefficient

Pearson’s product-moment correlation is θ3√
(θ1+θ2)(θ2+θ3)

.

Dabrowska (1982) has discussed the behavior of the monotone quadrant
dependence function (see Section 3.5.3 for definition and details)—whether
the tendency for small values of Y to associate with small values of X is
bigger or smaller than the tendency of big values of Y to associate with big
values of X, for example.

8.10.4 Moment Generating Function

The joint moment generating function is

M(s, t) = (1 − s)−θ1(1 − t)−θ2(1 − s− t)−θ3 . (8.32)

8.10.5 Conditional Properties

The conditional distribution of Y given X is the sum of two independent
random variables, one distributed as X×(standard beta variable, with pa-
rameters θ3 and θ1) and the other as a standard gamma variable with shape
parameter θ2. The regression is linear and is E(Y |X = x) = θ3

θ1+θ1
x + θ2,

and the conditional variance is quadratic and is θ1θ3
(θ1+θ3)2(1+θ1+θ3)

x2 + θ2; see
Johnson and Kotz (1972, p. 218).
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8.10.6 Derivation

This distribution can be derived by the trivariate reduction method. Let Xi ∼
gamma(θi, 1) for i = 1, 2, 3, and let the Xi’s be mutually independent. Then,
X = X1 + X3 and Y = X2 + X3 have this joint distribution.

8.10.7 Generation of Random Variates

The trivariate reduction method is very easy to use to generate bivariate
random variates from this distribution; see Devroye (1986, pp. 587–588).
Consequently, this distribution could be used to generate a bivariate gamma
population when the marginals (gamma) and the correlation coefficient are
specified; see Schmeiser and Lal (1982).

8.10.8 Remarks

• This distribution originated with Cheriyan, who considered the case in
which θ1 = θ2.

• Ramabhadran (1951) also obtained the same distribution and then dis-
cussed the multivariate form.

• Independently, Cheriyan (1941) obtained this distribution and derived a
number of its properties. In particular, they derived explicit expressions
for h(x, y) for five combinations of small values of θ1, θ2, and θ3. For θ1 =
θ2 = 1 and θ3 an integer,

h(x, y)

= e−(x+y)(−1)θ3

[

1 − eω

{

1 − ω

1!
+

ω2

2!
+ · · · + (−1)θ3−1 ωθ3−1

(θ3 − 1)!

}]

,

(8.33)

where ω = min(x, y).
• The joint probability density function has a different expression for x < y

and for x > y; see Moran (1967).
• The joint density can be expanded in terms of Laguerre polynomials as

shown by Eagleson (1964) and Mardia (1970).
• Ghirtis (1967) referred to this distribution as the double-gamma distribu-

tion and studied some properties of estimators of this distribution.
• Jensen (1969) showed that

Pr(a ≤ X ≤ b, a ≤ Y ≤ b) ≥ Pr(a ≤ X ≤ b) Pr(a ≤ Y ≤ b) (8.34)
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for any 0 ≤ a < b. Another way of expressing (8.34) is

Pr(a ≤ Y ≤ b|a ≤ X ≤ b) ≥ Pr(a ≤ Y ≤ b),

which means that if it is known that X is between a and b, then it increases
the probability that Y is between a and b. Letting either a = 0 or b = ∞
in (8.34), we conclude that X and Y are PQD. In fact, this result follows
directly from Lehmann (1966); see Section 7.4.

• Mielke and Flueck (1976) and Lee et al. (1979) discussed the distribution
of X/Y .

• The class of bivariate gamma distributions having diagonal expansions,
considered by Griffiths (1969), includes the forms of Cheriyan.

8.11 Prékopa and Szántai’s Bivariate
Gamma Distribution

Prékopa and Szántai (1978) introduced a multivariate gamma distribution
as the distribution of the multivariate vector Y = AX, where X has inde-
pendent standard gamma components and the matrix A consists of nonzero
vectors having components 0 or 1.

Szántai (1986) considered the bivariate case of this multivariate gamma
family with the structure

X = X1 + X3 and Y = X2 + X3,

where X1, X2, and X3 are independent gamma random variables having
shape parameters α1, α2, and α3, respectively.

8.11.1 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function is

H(x, y) =
∫ min(x,y)

0

Fα1(x− z)Fα2(y − z)fα3(z)dz. (8.35)

8.11.2 Formula of the Joint Density

The joint density function is
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h(x, y) = fα1+α3(x)fα2+α3(y)
∞∑

r=0

r!
Γ(α1 + r)

Γ(α1)
Γ(α1 + α3)

Γ(α1 + α3 + r)
Γ(α2 + α3)

Γ(α2 + α3 + r)

×L(α1+α3−1)
r (x)L(α2+α3−1)

r (y), (8.36)

where L(α−1)
r are the orthonormal Laguerre polynomials defined on the

gamma density with shape parameter α.

8.11.3 Univariate Properties

The marginal distributions are gamma with shape parameters α1 + α3 and
α2 + α3, respectively.

8.11.4 Relation to Other Distributions

Clearly, the bivariate distribution of this model is identical to Cheriyan’s
bivariate gamma distribution. In contrast to Cheriyan’s result, Szántai (1986)
has given an explicit expression for the joint density function.

8.12 Schmeiser and Lal’s Bivariate Gamma Distribution

Schmeiser and Lal (1982) developed an algorithm that enables us to generate
bivariate distributions that have

• given gamma marginals with parameters (βi, αi), i = 1, 2 (βi are scale
parameters and αi are shape parameters),

• any specified correlation coefficient ρ, and
• linear or nonlinear regression curves.

8.12.1 Method of Construction

Let X1, X2, and Z be three independent standard gamma variables with
shape parameters δ1, δ2, and γ, respectively, and let U be an independent
uniform random variable on (0, 1). Also, V = U or V = 1 − U . Define

X =
G−1

λ1
(U) + Z + X1

β1
, Y =

G−1
λ2

(V ) + Z + X2

β2
, (8.37)
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where Gλ(·) is the distribution function of a standard gamma random variable
with shape parameter λ and G−1

λ (·) is the inverse function of Gλ(·).
For λi ≥ 0, δi ≥ 0, γ > 0, the parameters are selected according to

{
γ + λi + δi = αi, i = 1, 2

E
{
G−1

λ1
(U)G−1

λ2
(V ) − λ1λ2 + γ

}
= ρ

√
α1α2.

8.12.2 Correlation Coefficient

Pearson’s product-moment correlation coefficient is given by

ρ =
E
{
G−1

λ1
(U)G−1

λ2
(V ) − λ1λ2 + γ

}

√
α1α2

.

8.12.3 Remarks

• This is another example of constructing a pair of random variables using
the variables-in-common method.

• Schmeiser and Lal (1982) also developed an algorithm called GBIV, which
determines the parameter values as well as generating the random vector
(X,Y ).

8.13 Farlie–Gumbel–Morgenstern Bivariate
Gamma Distribution

The bivariate gamma distribution of F-G-M type was discussed by D’Este
(1981) and Gupta and Wong (1989).

8.13.1 Formula of the Joint Density

The joint density function is

h(x, y) = f(x)g(y)[1 + λ{2F (x) − 1}{2G(y) − 1}], |λ| ≤ 1, (8.38)

where F (x) and G(y) are the marginal cumulative distribution functions and
f(x) and g(y) are the corresponding density functions.
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8.13.2 Univariate Properties

The marginal densities f(x) and g(y) are gamma densities with shape pa-
rameters α1 and α2, respectively.

8.13.3 Moment Generating Function

The joint moment generating function is

M(s, t) = (1−s)−α1(1−t)−α2

[

1 +
2I(α1, 0; (1 − s)−1)

I(α1, 0; 1)
2I(α2, 0; (1 − t)−1)

I(α2, 0; 1)

]

,

(8.39)
where I(a, k;x) =

∫ x

0
za−1

(z+1)2a+k dz; see Gupta and Wong (1989).

8.13.4 Correlation Coefficient

Pearson’s product-moment correlation coefficient is

ρ + λK(α1)K(α2),

where
K(α) = 1/

{
22α−1B(α, α)

√
α
}

and B(α, β) is the complete beta function.

8.13.5 Conditional Properties

The regression is nonlinear and is given by

E(X|Y = y) = α1 +
λα1Γ(α + 1/2)

(α1 + 1)
√
π

{2G(y) − 1}.

A similar expression can be presented for the regression of Y on X.

8.13.6 Remarks

Kotz et al. (2000, p. 441) have presented expressions for the joint moments.
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8.14 Moran’s Bivariate Gamma Distribution

8.14.1 Derivation

Moran (1969) derived a bivariate gamma distribution by using the following
two steps:

(1) Use marginal transformation first to transform the standard bivariate
normal with correlation ρ into a copula C(u, v).

(2) Use inverse transform X = F−1(U), Y = G−1(V ) to find the joint
distribution function of X and Y . In fact, the cumulative distribution
function is given by H(x, y) = C(F (x), G(y)). Here, F is the marginal
gamma distribution function with shape parameter α1 and scale pa-
rameter λ1 and G is the other marginal gamma distribution with shape
parameter α2 and scale parameter λ2.

8.14.2 Formula of the Joint Density

The joint density function is

h(x, y) = 1√
(1−ρ2)

f(x)g(y) exp
{
− (ρx′)2−2ρx′y′+(ρy′)2

2(1−ρ2)

}
, x, y ≥ 0,

(8.40)

where x′ = Φ−1(F (x)) and y′ = Φ−1(G(y)), with Φ being the distribution
function of the standard normal.

8.14.3 Computation of Bivariate Distribution Function

Yue (1999) presented a procedure to compute the bivariate distribution func-
tion. Effectively, this is done through generation of marginal gammas using
Jonk’s gamma generator that is written in MATLAB code.

8.14.4 Remarks

• Moran’s model is a special case of the bivariate meta-Gaussian model
proposed by Kelly and Krzysztofowicz (1997).

• This is an example of obtaining a bivariate distribution using copulas.
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8.14.5 Fields of Application

Yue et al. (2001) presented a review of several bivariate gamma models includ-
ing those of Moran, Izawa, Smith et al., and F-G-M models, and illustrated
their applications in hydrology.

8.15 Crovelli’s Bivariate Gamma Distribution

Crovelli (1973) proposed a bivariate gamma distribution having the joint
density

h(x, y) =
{
β1β2e

−β2y(1 − e−β1x) for 0 ≤ β1x ≤ β2y
β1β2e

−β1x(1 − e−β2y) for 0 ≤ β2y ≤ β1x
.

8.15.1 Fields of Application

Crovelli (1973) used this bivariate distribution to model the joint distribution
of storm depths and durations.

8.16 Suitability of Bivariate Gammas for
Hydrological Applications

A bivariate gamma distribution whose marginals have different scale and
shape parameters may be useful to model multivariate hydrological events
such as floods and storms. Yue et al. (2001) considered four models (Izawa,
Moran, Smith et al., and F-G-M) and discussed their advantages and lim-
itations. Using both real and generated flood data, they found that Izawa,
Moran, and Smith et al. models with five parameters (two shape, two scale,
and one correlation parameter) are suitable to describe two positively cor-
related flood characteristics (such as flood peak and flood volume or flood
volume and flood duration), whereas the Moran and F-G-M models are able
to describe both positively and negatively correlated random variables. How-
ever, the applicability of the latter model is somewhat limited because of the
limited range of correlation it can attain; also see Long and Krzysztofowicz
(1992).
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8.17 McKay’s Bivariate Gamma Distribution

8.17.1 Formula of the Joint Density

The joint density function is

h(x, y) =
ap+q

Γ(p)Γ(q)
xp−1(y − x)q−1e−ay, y > x > 0 (8.41)

(i.e., the support is a wedge that is half of the positive quadrant), where
a, p, q > 0.

8.17.2 Formula of the Cumulative
Distribution Function

The p.d.f. in (8.41) may be expressed in terms of the transcendental function
known as Fox’s H function. Hence, as done by Kellogg and Barnes (1989,
Section 4.6), the joint distribution function can also be expressed in terms of
Fox’s function.

8.17.3 Univariate Properties

The marginal distributions of X and Y are gamma, with shape parameters
p and p + q, respectively, but they have a common scale parameter a.

8.17.4 Conditional Properties

Y −x, conditional on (X = x), has a gamma distribution with shape param-
eter q. X/y, conditional on (Y = y), has a beta distribution with parameters
p and q.

Correlation Coefficient

Pearson’s product-moment correlation coefficient is
√
p/(p + q).
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8.17.5 Methods of Derivation

• McKay (1934) derived this distribution as follows: Let (X1, X2, . . . , XN )
be a random sample from a normal population. Suppose s2N is the sample
variance and s2n is the variance in a subsample of size n. Then, s2N and s2n
jointly have McKay’s bivariate gamma distribution.

• As a member of Pearson’s system of bivariate distributions, it may be
derived by a differential equation; see Section 5.15 for details.

• It was derived by the conditional approach as a special case of beta-Stacy
distribution by Mihram and Hultquist (1967).

Illustrations

Plots of the probability density surface for three cases—a = 2.0, p = q = 0.5;
a = p = q = 0.5; a = 1.0, p = 0.2, q = 0.8—have been provided by Kellogg
and Barnes (1989).

8.17.6 Remarks

• This is also known as the bivariate Pearson type III distribution, although
in van Uven’s designation, it is type IVa.

• One of the examples that Parrish and Bargmann (1981) gave to illustrate
their method of evaluating d.f.’s was this distribution.

• The exact distributions of the sums, products, and ratios for McKay’s
bivariate gamma distributions were obtained by Gupta and Nadarajah
(2006).

8.18 Dussauchoy and Berland’s Bivariate
Gamma Distribution

This is an extension of McKay’s bivariate gamma distribution.

8.18.1 Formula of the Joint Density

The support is the wedge y > βx > 0, and within this wedge, the joint
density is
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h(x, y) =
βat2

2

Γ(l1)Γ(l1 − l2)
(βx)l1−1 exp(−a2x)(y − βx)l2−l1−1

× exp
[

−a2

β
(y − βx)

]

1F1

[

l1, l2 − l1;
(
a1

β
− a2

)

(y − βx)
]

,

β ≥ 0; 0 < a2 ≤ a1

β
; 0 < l1 < l2,

where 1F1 is the confluent hypergeometric function.
This distribution reduces to McKay’s bivariate gamma distribution when

a1 = a2 = β = 1.

Remarks

• The marginal distributions of X and Y are gamma with shape parameters
l1 and l2, respectively.

• Pearson’s product-moment correlation coefficient is βa2
a1

√
l1/l2.

• The plots of the probability density surface (seven cases) were given by
Berland and Dussauchoy (1973).

• The density has been written above in a form that makes clear the inde-
pendence of X and Y − βx.

• For more details, see Dussauchoy and Berland (1972), Berland and Dus-
sauchoy (1973), and Dussauchoy and Berland (1975) for the multivariate
case.

• Berland and Dussauchoy (1973) applied this distribution to the joint dis-
tribution of the charge transported by a microdischarge (of electricity be-
tween two electrodes) and the interval of time between two of them.

Some Variants of this Distribution

We now summarize some variations in Table 8.1 on the theme of Y necessarily
being positive, and X necessarily being between 0 and y.

Table 8.1 Distributions specified by marginal and conditional

Reference Distribution of Y Distribution of X,
given Y = y

McKay (1934) Gamma Beta over (0, y)
Mihram and Hultquist (1967) Stacy Beta over (0, y)
Block and Rao (1973) Generalized inverted beta* Beta over (0, y)
Ratnaparkhi (1981)† Stacy, Pareto, or Beta or log-gamma

lognormal over (0, y)

* Density ∝ yα−1(1 + yc)−k.
† In Ratnaparkhi’s paper, the roles of X and Y were reversed from those here.
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8.19 Mathai and Moschopoulos’ Bivariate
Gamma Distributions

We discuss bivariate versions of two multivariate gamma distributions pro-
posed by Mathai and Moschopoulos (1991, 1992). To simplify our presenta-
tion, we assume that the location parameter of the gamma variable is zero.
Also, our scale parameter beta here is defined differently from that of Mathai
and Moschopoulos.

8.19.1 Model 1

Method of Construction

Mathai and Moschopoulos (1991) constructed a bivariate gamma distribu-
tion, whose components are positively correlated, as follows.

Let Vi be a gamma variable with shape parameter αi and scale parameter
βi, having as its density 1

Γ(αi)
βαi

i e−βivi , i = 0, 1, 2. Define

X =
β0

β1
V0 + V1, Y =

β0

β2
V0 + V2.

Then, X and Y have a bivariate distribution with gamma marginals.

Joint Moment Generating Function

The joint moment generating function is

M(s, t) = (1 − β−1
1 s)−α1(1 − β−1

2 t)−α2(1 − β−1
1 s− β−1

2 t)−α0 . (8.42)

Univariate Properties

X is distributed as gamma with shape parameter α0+α1 and scale parameter
β1, while Y is distributed as gamma with shape parameter α0 +α2 and scale
parameter β2.

Correlation Coefficients

Pearson’s product-moment correlation coefficient is
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corr(X,Y ) = ρ =
α0√

(α0 + α1)(α0 + α2)
.

Conditional Properties

The regression is linear and is given by

E(X|Y = y) = E(X) +
α0β2

β2(α0 + α2)
(y − E(Y )).

A similar expression can be presented for the regression of Y on X.

Relations to Other Distributions

This is a slight extension of Kibble’s bivariate gamma distribution. If βi = 1,
it reduces to Kibble’s case, and if βi = 1/2, it becomes Royen’s bivariate
gamma distribution.

8.19.2 Model 2

Method of Construction

Mathai and Moschopoulos (1992) constructed another form of multivariate
gamma distribution. The special case of the bivariate version is as follows.
Let Vi, i = 1, 2, be defined as above but with the same scale parameter. Form

X = V1, Y = V1 + V2;

then, X and Y clearly have a bivariate gamma distribution. The above con-
struction above is only part of a multivariate setup motivated by the con-
sideration of the joint distribution of the total waiting times of a renewal
process.

Formula of the Joint Density

The joint density function is

h(x, y) =
β(α1+α2)

Γ(α1)Γ(α2)
xα1−1(y − x)α2−1e−βy. (8.43)
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Marginal Properties

The marginal distributions of X and Y are gamma, with shape parameters
α1 and α1 + α2, respectively, and with a common scale parameter β.

Relation to Other Distributions

The bivariate case of this multivariate gamma is simply McKay’s bivariate
gamma distribution.

8.20 Becker and Roux’s Bivariate Gamma Distribution

8.20.1 Formula of the Joint Density

The joint density function is

h(x, y)

=

{
β′αa

Γ(a)Γ(b)x
a−1[β′(y − x) + βx]b−1 exp[−β′y − (α + β − β′)x], 0 < x < y

α′βb

Γ(a)Γ(b)y
b−1[α′(x− y) + αy]a−1 exp[−α′x− (α + β − α′)y], 0 < y < x

.

(8.44)

8.20.2 Derivation

Let us restate Freund’s model as follows. Suppose that shocks that knock out
components A and B, respectively, are governed by Poisson processes. Let us
further assume the following:

• For component A, the Poisson process has rate α when component B is
functioning and rate α′ after component B has failed.

• For component B, the Poisson process has rate β when component A is
functioning and rate β′ after component A has failed. Becker and Roux
(1981) generalized Freund’s distribution by supposing that the components
did not fail after a single shock but that it took a and b shocks, respectively,
to destroy them. (The numbers a and b are deterministic, and not random.)
The resulting joint density is the one given in (8.44).
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8.20.3 Remarks

• The original model proposed by Becker and Roux (1981) was slightly
reparametrized by Steel and le Roux (1987) to a form that is more
amenable for practical applications.

• When a = b = 1, the model abovereduces to Freund’s (1961) bivariate
exponential distribution; see Chapter 10 for pertinent details.

8.21 Bivariate Chi-Squared Distribution

8.21.1 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function is

H(x, y) =
∞∑

j=0

cj Pr[χ2
n−1+2j ≤ (1−ρ)−1x]×Pr[χ2

n−1+2j ≤ (1−ρ)−1y], (8.45)

for x, y ≥ 0, 0 ≤ ρ ≤ 1, where

cj =
Γ
(

1
2 (n− 1) + j

)
(1 − ρ)

1
2 (n−1)ρj

Γ
(

1
2 (n− 1)

)
j!

.

Note that ci, i = 0, 1, . . ., are terms in the expression of the negative binomial

(
1

1 − ρ
,

ρ

1 − ρ

)−(n−1)/2

,

so that
∑∞

j=0 cj = 1. Thus, the joint distribution of X and Y can be regarded
as a mixture of joint distributions, with weights cj , in which X and Y are
independent χ2

n−1+2j distributions.

8.21.2 Univariate Properties

Both marginals have chi-squared distributions with n−1 degrees of freedom.
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8.21.3 Correlation Coefficient

Pearson’s product-moment correlation coefficient is corr(X,Y ) = ρ = ρ2
0.

8.21.4 Conditional Properties

X, conditional on (Y = y), is distributed as (1−ρ)×(noncentral χ2 with (n−
1) degrees of freedom and noncentrality parameter ρy(1 − ρ)−1). Therefore,
the regression is linear and is given by

E(X|Y = y) = (n− 1)(1 − ρ) + ρy. (8.46)

Also, the conditional variance is linear and is given by

var(X|Y = y) = 2(n− 1)(1 − ρ)2 + 4ρ(1 − ρ)y. (8.47)

A similar expression can be presented for Y , conditioned on (X = x).

8.21.5 Derivation

Let (Xi, Yi), i = 1, 2, . . . , n, be n independent random vectors, each having
a standard bivariate normal distribution with correlation coefficient ρ0. Fur-
ther, let X =

∑n
i=1(Xi − X̄)2 and Y =

∑n
i=1(Yi − Ȳ )2, where X̄ and Ȳ are

the sample means of Xi and Yi, respectively. Then, X and Y have a joint cu-
mulative distribution function as given in (8.45); see, for example, Vere-Jones
(1967) and Moran and Vere-Jones (1969).

8.21.6 Remarks

• The bivariate distribution is also called the generalized Rayleigh distribu-
tion; see, for example, Miller (1964).

• The joint distribution
√
X and

√
Y is a bivariate chi-distribution studied

by Krishnaiah et al. (1963).
• A more general bivariate gamma can be obtained by replacing (n− 1) in

(8.48) by ν, which should be positive but need not be an integer.
• X/Y is distributed as a mixture, with the same proportions as cj , of

Fn−1+2j,n−1+2j distributions.
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8.22 Bivariate Noncentral Chi-Squared Distribution

Let (Xi, Yi), i = 1, 2, . . . , n, be n independent random vectors having bi-
variate normal distributions with means (μi, μi), identical variances σ2,
and correlation ρ0. Further, let X =

∑n
i=1 X

2
i /σ

2 and Y =
∑n

i=1 Y
2
i /σ

2.
Krishnan (1976) then showed that their joint distribution has density func-
tion

h(x, y) =
k

4
exp
[

− x + y

2(1 − ρ)

] ∞∑

i=0

diIfi

{√
(ρxy)

1 − ρ

}

×Ifi

{ √
λx

1 +
√
ρ

}

Ifi

{ √
λy

1 +
√
ρ

}

, (8.48)

where λ =
∑n

i=1 μ
2
i is the noncentrality parameter, ρ = ρ2

0, Ifi
is the modified

Bessel function of the first kind and order fi = 1
n + i − 1, and k and di are

given by

k = exp
(

− λ

1 +
√
ρ

)[
2(1 +

√
ρ)2

λ
√
ρ

]n
2 −1

/(1 − ρ),

di =
(
n + i− 3
n− 3

)(n

2
+ i− 1

)
Γ
(n

2
− 1
)
.

Krishnan (1976) also showed that the joint moment generating function is

M(s, t) = [1 − 2(s + t) + 4st(1 − ρ)]−n/2 exp
{

λ[s + t− 4st(1 −√
ρ)]

1 − 2(s + t) + 4st(1 − ρ)

}

.

(8.49)
When λ = 0, we obtain Kibble’s bivariate gamma distribution.

8.23 Gaver’s Bivariate Gamma Distribution

We present here the bivariate version of Gaver’s (1970) multivariate gamma
distribution.

8.23.1 Moment Generating Function

The joint moment generating function is

M(s, t) =
(

1 − α + 1
α

s− α + 1
α

t +
α + 1
α

st

)−k

, k, α > 0. (8.50)
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8.23.2 Derivation

Let X and Y have the same gamma distribution with the shape parameter
θ + k (θ is an integer, and k > 0 need not be an integer). For a given value
of θ, X and Y are independent. Assuming that θ has a negative binomial
distribution with probability generating function ( α

1+α−z )k, the joint moment
generating function of X and Y is obtained as given in (8.50).

8.23.3 Correlation Coefficients

Pearson’s product-moment correlation coefficient is corr(X,Y ) = ρ = 1
1 + α.

8.24 Bivariate Gamma of Nadarajah and Gupta

Nadarajah and Gupta (2006) introduced two new gamma distributions based
on a characterizing property involving products of gamma and beta random
variables. Both joint density functions involve the Whittaker function defined
by

Wλ,μ =
aμ+1/2 exp(−a/2)
Γ(μ− λ + 1/2)

∫ ∞

0

tμ−λ−1/2(1 + t)μ+λ−1/2 exp(−at)dt.

8.24.1 Model 1

Formula of the Joint Density

The joint density function is

h(x, y) = CΓ(b)(xy)c−1

(
x

μ1
+

y

μ2

) a−1
2 −c

exp
{

−1
2

(
x

μ1
+

y

μ2

)}

×Wc−b+ 1−a
2 ,c− a

2

(
x

μ1
+

y

μ2

)

, x > 0, y > 0,

where C is a constant given by C−1 = (μ1μ2)cΓ(c)Γ(a)Γ(b).
When b = 1, then the joint p.d.f. reduces to a simpler form:

h(x, y) = C(xy)c−1

(
x

μ1
+

y

μ2

)

Γ
(

2c− a,
x

μ1
+

y

μ2

)

.
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Method of Derivation

Assume that W is beta distributed with shape parameters a and b. Assume
further that U and V are gamma distributed with common shape parameter
c and scale parameters 1/μ1 and 1/μ2, respectively, with c = a + b. Then
X = UW , Y = VW have the joint density function given above.

Correlation Coefficient

Pearson’s product-moment correlation coefficient is

corr(X,Y) = ρ =

√
ab

a + b + 1
.

Other Properties

Product moments and conditional distributions are also given in Nadarajah
and Gupta (2006).

8.24.2 Model 2

Formula for the Joint Density

The joint density function is

h(x, y) = CΓ(b1)Γ(b2)μ
b1+b2−c+1

2 x
a1+b2−3

2 ya2−1 exp
(

− x

2μ

)

×
∑∞

j=0

(−1)j(μx)−j/2yj

j!Γ(b2 − j)
W b2−b1−c−j−1

2 ,
b1+b2−c−j

2

(
x

μ

)

,

for x ≥ y > 0, where C is a constant given by C−1 = μcΓ(c)B(a1, b1)B(a2, b2).
The corresponding expression for 0 < x ≤ y can be obtained from the

last equation for the joint density by symmetry; i.e., interchange x with y,
a1 with a2, and b1 with b2.

If both b1 = 1 and b2 = 1, then the joint density above reduces to

h(x, y) = Cμ2−cxa1−1ya2−1Γ
(

2 − c,
x

μ

)

,

where Γ(a, x) is the incomplete gamma function.
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Method of Derivation

Assume that U and V are beta distributed with shape parameters (a1, b1)
and (a2, b2), respectively, where a1 + b1 = a2 + b2 = c. Assume further that
W is gamma distributed with shape parameter c and scale parameter 1/μ.
Then X = UW , Y = VW have the joint density function given above.

Correlation Coefficient

Pearson’s product-moment correlation coefficient is

corr(X,Y) = ρ =
√
a1a2

c
.

Other Properties

Product moments and conditional distributions are also given in Nadarajah
and Gupta (2006).

8.25 Arnold and Strauss’ Bivariate Gamma Distribution

This is a slight generalization of Arnold and Strauss’ (1988) bivariate distri-
bution with exponential conditionals.

Formula of the Joint Density

The joint density function is

h(x, y) = Kxα−1yβ−1 exp {−(ax + by + cxy)} (8.51)

for x > 0, y > 0, α > 0, β > 0, a > 0, b > 0, and c > 0, where K is the
normalizing constant such that

1
K

= bα−βc−αΓ(α)Γ(α)Ψ
(

α, α− β + 1,
ab

c

)

.

Here Ψ is the Kummer function defined by

Ψ(a, b, z) =
1
Γ

∫ ∞

0

tα−1(1 + t)b−a−1 exp(−zt)dt.
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8.25.1 Remarks

• The distribution above was considered by Nadarajah (2005, 2006).
• The distributions of XY and X/(X + Y ) were considered by Nadarajah

(2005).
• The Fisher information matrix and tools for numerical computation of the

derivation were also derived by Nadarajah (2006).

8.26 Bivariate Gamma Mixture Distribution

8.26.1 Model Specification

Let X have a gamma density

f(x|ν, γ) =
1

Γ(ν)
γνxν−1e−γx, x > 0,

with shape parameter ν > 0 and random scale parameter γ taking two dis-
tinct values, γ1 and γ2. Similarly, Y has a gamma density

g(y|α, β) =
1

Γ(α)
βαyα−1e−βy, y > 0,

with shape parameter α > 0, and β is a random scale parameter taking two
distinct values β1 and β2.

For given (γ, β), we assume that X and Y are independent but γ and β
are correlated, having a joint probability mass function Pr (γ = γj , β = βj) =
pγiβj

, i, j = 1, 2.

8.26.2 Formula of the Joint Density

The joint density function is [see Jones et al. (2000), where the scale param-
eter is defined differently]

h(x, y) = xν−1yα−1
[
aγν

1β
α
1 e

−(γ1x+β1y) + bγν
1β

α
2 e

−(γx+β2y)

+ cγν
2β

α
1 e

−(γ2x+β1y) + (1 − a− b− c)γν
2β

α
2 e

−(γ2x+β2y)
]
,

(8.52)

where a = pγ1β1 , b = pγ1β2 , c = pγ2β1 , and d = pγ2β2 = 1 − a− b− c.
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8.26.3 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function is

H(x, y) =
1

Γ(ν)Γ(α)
{aΓγ1x(ν)Γβ1y(α) + bΓγ1x(ν)Γβ2y(α)

+ cΓγ2x(ν)Γβ1x(α) + (1 − a− b− c)Γγ2x(ν)Γβ2x(α)} ,
(8.53)

where Γ(ν) =
∫ t

0
xν−1e−xdx is the incomplete gamma function.

8.26.4 Univariate Properties

The marginal densities are

f(x) = π1f1(x) + (1 − π1)f2(x), π1 = a + b,

g(y) = π2g1(y) + (1 − π2)g2(y), π2 = a + c,

where fi(x) = f(x|ν, γi), gi(y) = g(y|α, βi). Consequently, we have

E(X) = ν[π1/γ1 + (1 − π1)/γ2], E(Y ) = ν[π2/β1 + (1 − π2)/β2].

8.26.5 Moments and Moment Generating Function

The joint moment generating function is

M(s, t) = a(1 − s/γ1s)−ν(1 − t/β1)−α + b(1 − s/γ1s)−ν(1 − t/β2)−α

+c(1 − s/γ2s)−ν(1 − t/β1)−α + d(1 − s/γ2s)−ν(1 − t/β2)−α,

(8.54)

where d = (1 − a− b− c). The product moments (about zero) are given by

μij =
Γ(j + ν)Γ(i + α)

Γ(ν)Γ(α)

{
aγ−i

1 β−j
1 + bγ−i

2 β−j
1 + cγ−i

2 /β−j
1 + dγ−i

2 β−j
2

}
,

where d = (1 − a− b− c).
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8.26.6 Correlation Coefficient

Pearson’s product-moment correlation coefficient is

ρ = να · corr(γ, β)

√
var(γ)var(β)
var(X)var(Y )

; (8.55)

ρ is bounded above by

ρmax =
{

1 +
(γ1 + γ2)2

ν(γ1 − γ2)2

}−1/2{

1 +
(β1 + β2)2

ν(β1 − β2)2

}−1/2

, (8.56)

which is attainable if and only if γ1/γ2 = β1/β2 at a = γ1/(γ1+γ2), b = c = 0.
The minimum of ρ occurs at approximately b = c = 0.5 if ν, α, and γ1/γ2,

β1/β2 are similar.

8.26.7 Fields of Application

Tocher (1928) presented a number of large bivariate datasets concerning the
milk yields of dairy cows. The bivariate gamma mixture model of Jones et
al. (2000) has been used to model these data very well.

8.26.8 Mixtures of Bivariate Gammas of
Iwasaki and Tsubaki

Using an integrating method to satisfy the integrability condition of the quasi-
score function, Iwasaki and Tsubaki (2005) derived a bivariate distribution
that can be expressed as a mixture of a discrete distribution whose probability
mass is concentrated at the origin and independent gamma density functions.

8.27 Bivariate Bessel Distributions

There are two kinds of univariate Bessel distributions. Let U1 and U2 be two
independent chi-squared random variables with common degrees of freedom
ν; see for example, Johnson et al. (1994, pp. 50–51)

1. The first kind of Bessel distribution corresponds to a1U1 + a2U2 for
a1 > 0, a2 > 0.
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2. The second kind of Bessel distribution corresponds to a1U1 − a2U2 for
a1 > 0, a2 > 0.

Let U, V,W be three independent chi-squared random variables with com-
mon degrees of freedom ν. Nadarajah and Kotz (2007b) have constructed
four bivariate Bessel functions as follows:

(1) For α1 > β1 > 0 and α2 > β2 > 0, define

X = α1U + β1V, Y = α2U + β2V.

(2) For α1 > β1 > 0 and α2 > β2 > 0, define

X = α1U + β1W, Y = α2V + β2W.

(3) For α1 > 0, β1 > 0, α2 > 0, and β2 > 0, define

X = α1U − β1V, Y = α2U − β2V.

(4) For α1 > 0, β1 > 0, α2 > 0, and β2 > 0, define

X = α1U − β1W, Y = α2V − β2W.

The marginals of (1) and (2) belong to the Bessel distribution of the first
kind, whereas the marginals of (3) and (4) are of the Bessel distribution of
the second kind.

Explicit expressions as well as the contour plots for the four joint distribu-
tions are given in their equations (7), (10), (12), and (13), respectively. The
product moments of these distributions were also derived.
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Chapter 9

Simple Forms of the Bivariate
Density Function

9.1 Introduction

When one considers a bivariate distribution, it is perhaps common to think
of a joint density function rather than a joint distribution function, and it
is also conceivable that such a density may be simple in expression, while
the corresponding distribution function may involve special functions, can be
expressed only as an infinite series, and sometimes may even be more compli-
cated. Such distributions form the subject matter of this chapter. Although
the standard form of these densities is simple, their generalizations are often
not so simple. To include these generalizations would undoubtedly place the
title of this chapter under question, but the alternative of leaving them out
would be remiss. Therefore, for the sake of completeness, generalized forms
of these simple densities will also be included in this discussion.

In Section 9.2, we describe the classical bivariate t-distribution and its
properties. The noncentral version of the bivariate t-distribution is discussed
next, in Section 9.3. In Section 9.4, the bivariate t-distribution having as its
marginals t-distributions having different degrees of freedom is presented and
some of its properties are detailed. The bivariate skew t-distributions of Jones
and Branco and Dey are discussed in Sections 9.5 and 9.6, respectively. Next,
the bivariate t-/skew t-distribution and its properties are discussed in Section
9.7. A family of bivariate heavy-tailed distributions is presented in Section
9.8. In Sections 9.9–9.12, the bivariate Cauchy, F , Pearson type II, and finite
range distributions, respectively, are all described in detail. In Sections 9.13
and 9.14, the classical bivariate beta and Jones’ form of bivariate beta distri-
butions are presented along with their properties. The bivariate inverted beta
distribution and its properties are detailed in Section 9.15. The bivariate Liou-
ville, logistic, and Burr distributions and their characteristics and properties
are presented in Sections 9.16–9.18, respectively. Rhodes’ distribution is the
topic of discussion of Section 9.19. Finally, the bivariate distribution with
support above the diagonal proposed recently by Jones and Larsen (2004)
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is described in Section 9.20, where its properties and applications are also
pointed out.

Many of the distributions in this chapter belong to Pearson’s system and
thus can be derived by the differential equation method described in Section
5.16.1. It is a common practice to refer to Pearson distributions by the form
of their marginals—thus, for example, a bivariate type II has type II marginal
distributions. But van Uven’s designation is also used. The following table
clarifies the nomenclature we have used.

Common name van Uven’s designation Pearson marginals

t IIIaα VII
F (inverted beta) IIaβ VI

IIIaβ II
beta (Dirichlet) IIaα I and I, or I and II
McKay’s bivariate gamma IVa III

IIaγ VI
IIb V and VI

normal VI normal

Elderton and Johnson (1969, p. 138), Johnson and Kotz (1972, Table 1
in Chapter 34), and Rodriguez (1983) have presented versions of the table
above in which expressions for the densities, supports, and restrictions on the
parameters are also included.

9.2 Bivariate t-Distribution

9.2.1 Formula of the Joint Density

The joint density function is

h(x, y) =
1

2π
√

1 − ρ2

[

1 +
1

ν(1 − ρ2)
(x2 − 2ρxy + y2)

]−(ν+2)/2

(9.1)

for ν > 0, −1 < ρ < 1, x, y > 0.

9.2.2 Univariate Properties

Both marginal distributions are t-distributions with the same degrees of free-
dom ν.
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9.2.3 Correlation Coefficients

For ν > 2, Pearson’s product-moment correlation coefficient is ρ. For 0 <
ν ≤ 2, ρ represents the gradient of the major axis of elliptical contours.

This distribution is an example of zero correlation not necessarily implying
independence; see also Sections 9.2.6 and 9.2.9.

9.2.4 Moments

From the basic construction of this distribution described below in Section
9.2.6, the product moments are easily found to be

μ′
r,s = E(XrY s) = ν(r+s)/2E(Xr

1X
s
2)E(S−(r+s)), (9.2)

where E(Xr
1X

s
2) is simply the (r, s)th product moment of the standard bi-

variate normal distribution with correlation coefficient ρ and

E(S(r+s)) = 2−(r+s)/2Γ
(
ν − r − s

2

)

/Γ(ν/2). (9.3)

If X and Y are independent (i.e., ρ = 0), then μ′
r,s is zero unless both r and

s are even, in which case it is given by

ν(r+s)/2 [1 · 3 · 5 · · · (2r − 1)][1 · 3 · 5 · · · (2s− 1)]
(ν − 2)(ν − 4) · · · (ν − r − s)

; (9.4)

see Johnson and Kotz (1972, pp. 135–136) for details.
The characteristic function of this distribution is given by

Sutradhar (1986).

9.2.5 Conditional Properties

When X = x, the linear transformation of Y , viz. U =
[

ν(ν+1)
ν+x2

]1/2
Y −ρx√

1−ρ2
,

has a t-distribution with ν + 1 degrees of freedom. The regression is linear
and is given by E(Y |X = x) = ρx, and the conditional variance is quadratic
and is given by ν

ν−1 (1 − ρ2)(1 + x2/ν); see Mardia (1970, p. 92).
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9.2.6 Derivation

This distribution is derived from the trivariate reduction method as follows.
Let (X1, X2) have the standardized bivariate normal distribution, with cor-
relation coefficient ρ, and S, independent of X1 and X2, be distributed as χν

(i.e., the square root of a χ2
ν-variate). Then X = X1

√
ν/S and Y = X2

√
ν/S

follow the bivariate t-distribution in (9.1).

9.2.7 Illustrations

Devlin et al. (1976) have presented contour plots of the density in (9.1), while
Johnson (1987, pp. 119–122, 124) has presented illustrations of the density
surface.

9.2.8 Generation of Random Variates

The generation of random variates from this bivariate t-distribution has been
discussed by many authors, including Johnson et al. (1984, p. 235), Vǎduva
(1985), and Johnson (1987, pp. 120–121).

9.2.9 Remarks

• This is also known as the Pearson type VII distribution, though the density
of the latter usually appears in the form

h(x, y) =
−m
√

(1 − ρ2)
πkm

(k + x2 − 2xyρ + y2)m−1 (9.5)

for m < 0; −1 < ρ < 1; k > 0.
• For the special case where ρ = 0 and ν = 1, the bivariate Cauchy distri-

bution is obtained; see Section 9.9 for more details.
• For ρ = 0, X2 and Y 2 have a bivariate F -distribution; see Section 9.10 for

more details.
• As ν → ∞, this distribution tends to a bivariate normal distribution.
• The contours of the probability density are ellipses. One may refer to

Chapter 13 for more details on elliptical distributions.
• The variable (X2 − 2ρXY + Y 2)/[2(1 − ρ2)] has an F -distribution with

(2, ν) degrees of freedom; see Johnson et al. (1984).
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• For this distribution, zero correlation does not imply independence of X
and Y . This is so because though X1 and X2 having a bivariate nor-
mal distribution with correlation ρ become independent when ρ = 0, the
denominator variable S is in common. In fact, apart from the bivariate
normal, all the elliptically contoured bivariate distributions discussed in
Chapter 13 have this property.

• The distributions of XY and X/Y have been discussed by Malik and
Trudel (1985) and Wilcox (1985).

• For probability inequalities connected with bivariate and multivariate
t-distributions, one may refer to Tong (1980, Section 3.1).

9.2.10 Fields of Application

• While this distribution is not often used to fit data, tables of its percentage
points are required in the applications of multiple comparison procedures,
ranking and selection procedures, and estimation of rank parameters. For
a more detailed discussion, one may refer to Dunnett and Sobel (1954),
Gupta (1963), Johnson and Kotz (1972, p. 145), and Chen (1979).

• Pearson (1924) fitted the distribution to two sets of data on the number
of cards of a given suit that two players of whist hold in their hands.

• Econometricians make extensive use of systems of linear simultaneous
equations and then commonly assume the stochastic terms, the distur-
bances, to have a multivariate normal distribution. Concerned with the
possibility that the actual distribution has thicker tails than the normal,
and hence that too much weight is given to outliers by conventional meth-
ods of estimation, Prucha and Kelejian (1984) proposed alternative meth-
ods based on multivariate t and other thick-tailed distributions.

9.2.11 Tables and Algorithms

Johnson and Kotz (1972, pp. 137–140) have listed many references to tables.
Some recent tables include those of Chen (1979), Gupta et al. (1985), Wilcox
(1986), and Bechhofer and Dunnett (1987).

For numerical computation of multivariate t probabilities over convex re-
gions, see Somerville (1998). A generalization of Plackett’s formula was de-
rived by Genz (2004) for efficient numerical computations of the bivariate
and trivariate t probabilities.

Genz and Bretz (2002) gave a comparison of methods for the computation
of multivariate t probabilities.
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9.2.12 Spherically Symmetric Bivariate t-Distribution

If ρ = 0, then (9.1) simply becomes

h(x, y) =
1
2π

ν(ν+2)/2
{
ν + (x2 + y2)

}−(ν+2)/2
, (9.6)

which is a spherically symmetric bivariate distribution. By replacing ν inside
the bracket in (9.6) by a2 and adjusting the normalizing constant, we obtain

h(x, y) =
1
2π

aνν
(
a2 + x2 + y2

)−(ν+2)/2
. (9.7)

This is the form of bivariate t-distribution that is considered by Wesolowski
and Ahsanullah (1995). For a review of spherically symmetric distributions,
one may refer to Fang (1997).

9.2.13 Generalizations

• Poly (or multiple) t-distributions are those densities that correspond to
the product of two or more terms like the right-hand side of (9.1); see
Press (1972).

9.3 Bivariate Noncentral t-Distributions

Johnson and Kotz (1972, Chapter 37) considered the derivation of a more
general form of bivariate t-distribution of the form

X = (X1 + δ1)
√
η1/S1

Y = (X2 + δ2)
√
η2/S2

}

, (9.8)

where the δ’s are noncentrality parameters, the X’s have a joint normal
distribution with a common variance σ2, and the Si/σ’s have a joint chi-
distribution. The cumulative distribution has been derived by Krishnan
(1972). Ramig and Nelson (1980) have presented tables of the integral when
S1 = S2.

The correlation coefficient ρ in this case is between −1 and 1.
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9.3.1 Bivariate Noncentral t-Distribution with ρ = 1

Consider
X =

Z + δ1√
Y/ν

, Y =
Z + δ2√
Y/ν

, (9.9)

where Z is a standard normal variable. The correlation coefficient is 1, which
is not surprising since the two numerators Z + δ1 and Z + δ2 are mutually
completely dependent. The joint distribution of X and Y in (9.9) seems to
have been first discussed by Owen (1965). Some applications and properties,
including tables, have been presented by Chou (1992).

9.4 Bivariate t-Distribution Having Marginals with
Different Degrees of Freedom

The nature of using the same denominator to derive the bivariate t-distribu-
tion has been generalized by Jones (2002a). Specifically, let X1, X2 and
W1,W2 be mutually independent random variables, the Xi’s following the
standard normal distribution and Wi’s following the chi-squared distribution
with ni degrees of freedom. For the sake of convenience, let ν1 = n1 and
ν2 = n1 + n2 so that ν1 ≤ ν2. In the case ν1 = ν2, we simply define W2 ≡ 0.

Define a pair of random variables X and Y as

X =
√
ν1X1/

√
W1, Y =

√
ν2X2/

√
W1 + W2. (9.10)

Formula of the Joint Density

The joint density function is

h(x, y) = C12
2F1( 1

2ν2 + 1, 1
2n2; 1

2 (ν2 + 1); (x2/ν1)/{1 + x2/ν1 + y2/ν2})
{1 + x2/ν1 + y2/ν2}ν2/2+1

,

(9.11)
where

C12 =
1
π

Γ 1
2 (ν1 + 1)Γ1

2 (ν2 + 1)
√
ν1ν2Γ 1

2 (ν1)Γ 1
2 (ν2 + 1)

and 2F1(a, b; c; z) is the Gauss hypergeometric distribution.

Univariate Properties

The marginal distributions of X and Y are t-distributions with ν1 and ν2

degrees of freedom, respectively.
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Joint Product Moments

The general (r, s)th product moment is given by

E(XrY s)

=
ν

r/2
1 ν

s/2
2 Γ( 1

2 (r + 1))Γ(1
2 (s + 1))Γ(1

2 (ν1 − r))Γ(1
2 (ν2 − r − s))

πΓ( 1
2ν1)Γ(1

2 (ν2 − r))
(9.12)

if r and s are both even and is zero otherwise.

Correlation Coefficient

Like the spherically symmetric bivariate t-distribution in (9.7) above (with
the correlation coefficient between X1 and X2 being zero), X and Y are
uncorrelated and yet not independent in this case as well.

Conditional Properties

Denote u1 = 1 + x2/ν1. Then, the conditional density of Y , given X = x, is

g(y|x) = C2|1
2F1( 1

2ν2 + 1, 1
2n2; 1

2 (ν2 + 1); (u1 − 1)/(u1 + y2/ν2))
(u1 + y2/ν2)ν2/2+1

, (9.13)

where

C2|1 =
u

(ν1+1)
1 Γ( 1

2ν2 + 1)
√
πν2Γ( 1

2 (ν2 + 1))
.

In a similar way, with u2 = 1 + y2/ν2, the conditional density of X, given
Y = y, is

f(x|y) = C1|2
2F1( 1

2ν2 + 1, 1
2n2; 1

2 (ν2 + 1); 1 − u2/(u2 + x2/ν1))
(u2 + x2/ν1)ν2/2+1

, (9.14)

where

C1|2 =
u

(ν2+1)
2 Γ( 1

2ν1 + 1)Γ(1
2ν2)Γ(1

2ν2 + 1)
√
πν1Γ( 1

2 (ν1))Γ2( 1
2 (ν2 + 1))

.

Illustrations

Jones (2002a) has presented a contour plot of the density when ν1 = 2 and
ν2 = 5.
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9.5 Jones’ Bivariate Skew t-Distribution

The bivariate skew t-distribution constructed by Jones (2001) is described
here. This, incidentally, differs from another bivariate distribution that is
also known as a bivariate skew t-distribution. The derivation of the latter is
in the same spirit as that of the bivariate skew-normal distribution described
in Section 7.4. In order to make a distinction, we shall call the latter the
bivariate skew t-distribution. It has been discussed by Branco and Dey (2001),
Azzalini and Capitanio (2003), and Kim and Mallick (2003), and it will be
the subject of the next section.

9.5.1 Univariate Skew t-Distribution

A skew t-distribution, defined by Jones (2001) and studied further by Jones
and Faddy (2003), has as its density function

f(t) =
1

2c−1B(a, b)c1/2

{

1 +
t

(c + t2)1/2

}a+1/2{

1 − t

(c + t2)1/2

}b+1/2

(9.15)
for a, b > 0 and c = a + b. When a = b, f in (9.15) reduces to a standard
t-density with 2a degrees of freedom.

9.5.2 Formula of the Joint Density

The joint density function is

h(x, y) = Kv

{
2
(
x +

√
w1 + x2

)2ν1

wν1
1

√
w1 + x2

}
⎧
⎪⎨

⎪⎩

2
(
y +
√
w2 + y2

)2ν2

wν2
2

√
w2 + y2

⎫
⎪⎬

⎪⎭

×

⎧
⎪⎨

⎪⎩
1 +

(
x +

√
w1 + x2

)2

w1
+

(
y +
√
w2 + y2

)2

w2

⎫
⎪⎬

⎪⎭

−n

, (9.16)

where wi = ν0 + νi, i = 1, 2 , n = ν0 + ν1 + ν2, and

Kv = Γ(n)/{Γ(ν0)Γ(ν1)Γ(ν2)},

the multinomial coefficient. When ν0 = ν1 = ν2 = ν/2, say, then the density
in (9.16) becomes a bivariate symmetric t-density distribution having the
usual t marginals, given by
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h(x, y) = 4Γ(3ν/2)Γ(ν/2)−3
νν/2

{(
x +

√
ν + x2

)ν

√
ν + x2

}⎧
⎨

⎩

(
y +
√
ν + y2

)ν

√
ν + y2

⎫
⎬

⎭

×
{

ν +
(
x +

√
ν + x2

)2

+
(
y +
√
ν + y2

)2
}−3ν/2

. (9.17)

Remarks

In Jones (2001), (9.16) is called the bivariate t-/skew t-distribution. However,
he called their marginals a “skew t” variable. In order to be consistent with
the acronym for the marginals, we have named (9.16) as Jones’ bivariate skew
t-distribution.

9.5.3 Correlation and Local Dependence for the
Symmetric Case

Pearson’s correlation coefficient is given by

ρ =
(2ν − 3)

8

(
Γ((ν − 1)/2)

Γ(ν/2)

)

, ν > 2. (9.18)

It is conjectured that this correlation is a monotonically increasing function
of ν > 0.

The local dependence function defined by γ(x, y) = ∂2 log h(x, y)/∂x ∂y is
given by

γ(x, y) =
6ν
(
x +

√
ν + x2

)2 (
y +
√
ν + y2

)2

√
(ν + x2)(ν + y2)

{

ν +
(
x +

√
ν + x2

)2
+
(
y +
√
ν + y2

)2
}2 .

(9.19)
Note that γ(x, y) > 0.

9.5.4 Derivation

Let Wi, i = 0, 1, 2, be mutually independent χ2 random variables with 2νi

degrees of freedom as specified above. Define X =
√

ω1

2

(√
W1
W0

−
√

W0
W1

)
;

similarly, X =
√

ω2

2

(√
W2
W0

−
√

W0
W2

)
, where ωi = ν0 + νi, i = 1, 2. Then, X

and Y have a joint density as given in (9.16).
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9.6 Bivariate Skew t-Distribution

The bivariate skew t-distribution presented here differs from Jones’ bivariate
skew t-distribution discussed in the preceding section. The distribution pre-
sented in this section is derived by adding an extra parameter to the bivariate
t-distribution to regulate skewness. As mentioned in the last section, we call
this distribution as the bivariate skew t-distribution.

9.6.1 Formula of the Joint Density

The joint density function is

h(x, y) = hT (x, y; ν)T1

(

α1x + α2y

(
ν + 2
Q + ν

)1/2

; ν + 2

)

, (9.20)

where Q = (x2 − 2ρxy + y2)/(1− ρ2), hT (x, y; ν) is the bivariate t-density in
(9.1), and T1(x; ν + 2) is the cumulative distribution function of the Student
t-distribution with ν + 2 degrees of freedom.

9.6.2 Moment Properties

Azzalini and Capitanio (2003) discussed the likelihood inference and pre-
sented moments of this distribution up to the fourth order as well. Kim and
Mallick (2003) derived the moment properties when the bivariate skew t has
a nonzero mean vector μ �= 0.

9.6.3 Derivation

Let Z denote the standard bivariate skew-normal variable having probability
density function 2φ(z; Ω)Φ(α′z), where φ is the standard bivariate normal
density with correlation matrix Ω, Φ is the distribution function of the stan-
dard normal, and α = (α1, α2)′.

Let X = (X,Y )′ and V ∼ χ2
ν . Then, X = V −1/2Z has its density function

as given in (9.20); see, for example, Kim and Mallick (2003).
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9.6.4 Possible Application due to Flexibility

It has been stated by several authors that, by introducing a skewness param-
eter to a symmetric distribution, the new bivariate distribution would bring
additional flexibility for modeling skewed data. This will be useful for re-
gression and calibration problems when the corresponding error distribution
exhibits skewness.

9.6.5 Ordered Statistics

Jamalizadeh and Balakrishnan (2008b) derived the distributions of order
statistics from bivariate skew tν-distribution in terms of generalized skew-
normal distributions, and used them to obtain explicit expressions for means,
variances and covariance. Here, by generalized skew-normal distribution, we
mean the distribution of X|(U1 < θ1X,U2 < θ2X) when X � N(0, 1) in-
dependently of (U1, U2)T � BVN(0, 0, 1, 1, γ). This distribution, which is a
special case of the unified multivariate skew-normal distribution introduced
by Arellano-Valle and Azzalini (2006), has also been utilized by Jamalizadeh
and Balakrishnan (2009) to obtain a mixture representation for the distribu-
tions of order statistics from the trivariate skew tν-distribution in terms of
generalized skew tν-distributions.

9.7 Bivariate t-/Skew t-Distribution

This model was proposed by Jones (2002b) based on a marginal replacement
scheme. The idea is to replace one of the marginals of the spherically sym-
metric bivariate t-distribution of (9.1) by the univariate skew t-distribution
as specified by (9.15).

9.7.1 Formula of the Joint Density

The joint density function is
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h(x, y)

=
Γ((ν + 2)/2)

Γ((ν + 1)/2)B(a, c)(a + c)1/22a+c−1(πν)1/2

×
(1 + ν−1x2)(ν+1)/2

(
1 + x

(a+c+x2)1/2

)a+1/2 (
1 − x

(a+c+x2)1/2

)c+1/2

(1 + ν−1(x2 + y2))(ν+2)/2
;

(9.21)

here, a, c, and ν are all positive. Equation (9.21) becomes the spherically
symmetric bivariate t-density in (9.6) when a = c = ν/2.

9.7.2 Univariate Properties

The marginal distribution of X is the skew t-distribution presented in (9.15)
with parameters a and c. The marginal distribution of Y is symmetric and
can be well approximated by a t-distribution with the same variance.

9.7.3 Conditional Properties

The conditional distribution of Y , given X = x, matches that of the bivariate
t-distribution and is a univariate t-distribution with ν+1 degrees of freedom
scaled by a factor {(ν + 1)−1(x2 + ν)}1/2.

9.7.4 Other Properties

• X and Y are uncorrelated.
• The local dependence function is the same as that of the bivariate

t-distribution in (9.6).
• corr(|X|, |Y |) > 0.

9.7.5 Derivation

This distribution can be derived by the marginal replacement scheme, i.e.,
multiply (9.6) by (9.15) and divide by the density of the standard univariate
t-distribution.
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9.8 Bivariate Heavy-Tailed Distributions

9.8.1 Formula of the Joint Density

The joint density function is

h(x, y) = (1 + x2)−c1/2(1 + y2)−c2/2(1 + x2 + y2)−c/2 (9.22)

for x, y ≥ 0, c1, c2, c > 0.

9.8.2 Univariate Properties

Let s1 = c + c1, s2 = c + c2, s3 = c + c1 + c2, and further

ψc(x) = (1 + x2)−c/2 and ψ∗
c (x) = (1 + x2)−c/2 log(2 + x2).

1. If s1 < s3 − 1, then f(x) = ψs1(x).
2. If s1 = s3 − 1, then f(x) = ψ∗

s1
(x).

3. If s1 > s3 − 1, then f(x) = ψs3−1(x).

9.8.3 Remarks

• The first two terms on the right-hand side of (9.22) correspond to indepen-
dent univariate t-densities, while the last term corresponds to a bivariate
t-density.

• Le and O’Hagan (1998) have discussed various other properties of this
family of distributions, and, in particular, they have expounded the dif-
ference between this distribution and the class of v-spherical distributions
of Fernandez, Osiewalski, and Steel (1995), which also possesses a heavy
tail.

9.8.4 Fields of Application

This distribution provides resolutions for conflicting information in a Bayesian
setting; see O’Hagan and Le (1994).
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9.9 Bivariate Cauchy Distribution

This distribution, a special case of the bivariate t-distribution when ρ = 0
and ν = 1, is of limited interest, as it has no correlation parameter.

9.9.1 Formula of the Joint Density

The joint density function is

h(x, y) =
1
2π

(1 + x2 + y2)−3/2, x, y ∈ R. (9.23)

Of course, location and scale factors can readily be introduced into (9.23) if
required.

9.9.2 Formula of the Cumulative Distribution Function

The joint cumulative distribution function is

H(x, y) =
1
4

+
1
2π

(

tan−1 x + tan−1 y + tan−1 xy
√

(1 + x2 + y2

)

. (9.24)

9.9.3 Univariate Properties

Both marginals are Cauchy, and therefore their means and standard devia-
tions do not exist; consequently, some other measures of location and spread
need to be used in this case.

9.9.4 Conditional Properties

The conditional density of Y , given X = x, is

g(y|x) =
1
2
(1 + x2)/(1 + x2 + y2)3/2.
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Hence, Y/
√

1
2 (1 + x2), conditional on X = x, has a t-distribution with two

degrees of freedom. The distribution of any linear combination of X and Y
is Cauchy as well; see Ferguson (1962).

9.9.5 Illustrations

Contours of the density have been presented by Devlin et al. (1976). Plots of
the density as well as the contours after transformation to uniform marginals
have been provided by Barnett (1980). Johnson et al. (1984) have presented
the contours after transformation to normal marginals.

9.9.6 Remarks

• For bivariate distributions with Cauchy conditionals, see Section 6.4 and
also Chapter 5 of Arnold et al. (1999).

• Sun and Shi (2000) have considered the tail dependence in the bivariate
Cauchy distribution.

9.9.7 Generation of Random Variates

For generation of random variates from this distribution, one may refer to
Devroye (1986, p. 555) and Johnson et al. (1984).

9.9.8 Generalization

Jamalizadeh and Balakrishnan (2008a) proposed a generalized bivariate Cauchy
distribution as the distribution of (W1,W2)T =

(
U2
|U1| ,

U3
|U1|

)
, where (U1, U2, U3)T

has a standard trivariate normal distribution with correlation matrix R.
They then showed the joint distribution function of (W1,W2)T to be, for
(t1, t2) ∈ R

2,
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F (t1, t2;R) =
1
4π

{

cos−1

(

− ρ23 − ρ12t1 − ρ13t2 + t1t2√
1 − 2ρ12t1 + t21

√
1 − 2ρ13t2 + t22

)

+tan−1

(
t1 − ρ12√
1 − ρ2

12

)

+ tan−1

(
t2 − ρ13√
1 − ρ2

13

)

+cos−1

(

− ρ23 + ρ12t1 + ρ13t2 + t1t2√
1 + 2ρ12t1 + t21

√
1 + 2ρ13t2 + t22

)

+tan−1

(
t1 + ρ12√
1 − ρ2

12

)

+ tan−1

(
t2 + ρ13√
1 − ρ2

13

)}

.

In the special case when ρ12 = ρ13 = 0 and ρ23 = ρ, this distribution re-
duces to the standard bivariate Cauchy distribution discussed, for example,
in Fang, Kotz, and Ng (1990); in this case, the above joint distribution func-
tion simplifies to

1
2π

{

cos−1

(

− ρ + t1t2√
1 + t21

√
1 + t22

)

+ tan−1(t1) + tan−1(t2)

}

, (t1, t2) ∈ R
2.

9.9.9 Bivariate Skew-Cauchy Distribution

Consider three independent standard Cauchy random variables W1,W2, and
U . Let W = (W1,W2). Arnold and Beaver (2000) constructed a basic bivari-
ate skew-Cauchy distribution by considering the conditional distribution of
W given λ0 + λ′

1W > U.
The basic bivariate skew-Cauchy distribution has a joint density of the

form

h(x, y) = ψ(x)ψ(y)Ψ(λ0 + λ11x + λ12y)/Ψ
(

λ0

1 + λ11 + λ12

)

,

where ψ(u) = 1
π(1+u2) , Ψ(u) = 1

2 + 1
π tan−1 u, u real, and λ′

1 = (λ11, λ12).

9.10 Bivariate F -Distribution

The distribution has been widely studied. It is also known as the bivariate in-
verted beta or the bivariate inverted Dirichlet distribution [Kotz et al. (2000,
pp. 492–497)].
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9.10.1 Formula of the Joint Density

The joint density function is

h(x, y) = Kx(ν1−2)y(ν2−2)/2

(

1 +
ν1x + ν2y

ν0

)−(ν0+ν1+ν2)/2

, x, y ≥ 0,

(9.25)

where the ν’s are positive and referred to as the “degrees of freedom,” and
the constant K is given by

Γ
(
ν0 + ν1 + ν2

2

)

ν
−(ν0+ν1+ν2)/2
0

ν
ν0/2
0 ν

nu1/2
1 ν

ν2/2
2

Γ(ν0/2)Γ(ν1/2)Γ(ν2/2)
.

9.10.2 Formula of the Cumulative
Distribution Function

There is no elementary form for H(x, y), but it may be written in terms of
F2, Appell’s hypergeometric functions of two variables; see Amos and Bulgren
(1972) and Hutchinson (1979, 1981).

9.10.3 Univariate Properties

The marginal distributions of X and Y are F -distributions with (ν1, ν0) and
(ν2, ν0) degrees of freedom, respectively.

9.10.4 Correlation Coefficients

Pearson’s product-moment correlation is
√

ν1ν2
(ν0+ν1−2)(ν0+ν2−2) for ν0 > 4.

9.10.5 Product Moments

The (r, s)th product moment is given by

E(XrY s) =
Γ( 1

2ν0 − r − s)(1
2ν1 + r)(1

2ν2 + s)
Γ(ν0/2)Γ(ν1/2)Γ(ν2/2)(ν1/ν0)r(ν2/ν0)s



9.10 Bivariate F -Distribution 369

if r + s < ν0/2 and is undefined otherwise; see Nayak (1987).

9.10.6 Conditional Properties

The expression (ν0 + ν1)Y/(ν0 + ν1x), conditional on X = x, has an F -
distribution with degrees of freedom (ν2, ν0 + ν1). The regression is linear
and is given by E(Y |X = x) = (ν0 +ν1x)/(ν0 +ν1−2) for ν0 > 0; see Mardia
(1970, p. 93) and Nayak (1987).

9.10.7 Methods of Derivation

This distribution may be obtained by transforming the bivariate t-distribu-
tion in (9.6). More precisely, if (X,Y ) is the bivariate t-variate with ν0 degrees
of freedom and ρ = 0, then (X2, Y 2) has a bivariate F -distribution with
degrees of freedom ν0, 1, and 1. However, this method does not lead to a
bivariate F -distribution with other values of ν1 and ν2.

Alternatively, we may consider a trivariate reduction technique with X =
X1/ν1
X0/ν0

and Y = X2/ν2
X0/ν0

, where X0, X1, and X2 are independent chi-squared
variables with degrees of freedom ν0, ν1, and ν2, respectively. Then, X and Y
have a bivariate F -distribution with degrees of freedom ν0, ν1, and ν2. The
distribution may also be obtained by the method of compounding (equivalent
to the method of trivariate reduction in some situations). For further details,
see Adegboye and Gupta (1981).

9.10.8 Relationships to Other Distributions

• It is related to the bivariate t-distribution as indicated earlier.
• The bivariate inverted beta distribution (see Section 9.15) is essentially

the bivariate F -distribution, written in a slightly different form.
• It is a special case of the bivariate Lomax distribution.
• For the distributions of XY and X/Y , one may refer to Malik and Trudel

(1985).
• A noncentral generalization has been given by Feingold and Korsog (1986).

This is obtained by letting X = X1/ν1
X0/ν0

, Y = X2/ν2
X0/ν0

, where X0, X1, and
X2 have noncentral chi-squared distributions.

• Another generalization is Krishnaiah’s (1964, 1965) bivariate F -distribu-
tions, obtained by the trivariate reduction method just mentioned, but
with X1 and X2 now being correlated (central) chi-squared variates; viz.
their joint distribution is Kibble’s bivariate gamma (see Section 8.2).
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• A generalization of Krishnaiah’s bivariate F -distribution is Jensen’s bi-
variate F , which is obtained through two quadratic forms from a multi-
variate distribution and a chi-squared distribution; see Section 8.5 for more
details.

• The distribution of V = min(X,Y ) was studied in detail by Hamdy et al.
(1988).

9.10.9 Fields of Application

The distribution is rarely used to fit data. However, tables of its percentage
points are required in the analysis of variance and experimental design in gen-
eral; see Johnson and Kotz (1972, pp. 240–241). This distribution is closely
related to the bivariate beta distribution, and the application of the latter to
compositional data is sometimes expressed in such a way that bivariate F is
the one that gets applied; see Ratnaparkhi (1983). However, the distribution
of V = min(X,Y ) arises in many statistical problems including analysis of
variance, selecting and ordering populations, and in some two-stage estima-
tion procedures [Hamdy et al. (1988)].

9.10.10 Tables and Algorithms

Amos and Bulgren (1972) recognized that the cumulative distribution can
be expressed in terms of Appell’s F2 function. Tiao and Guttman (1965)
expressed the integral in terms of a finite sum of incomplete beta functions.

Hewitt and Bulgren (1971) have shown that if ν1 and ν2 are equal, then
for any a and b such that 0 ≤ a ≤ b < ∞,

Pr(a < X ≤ b, a < Y ≤ b) ≥ Pr(a < X ≤ b) Pr(a < Y ≤ b), (9.26)

meaning that X and Y are positively quadrant dependent. Numerical stud-
ies carried out they show that the right-hand side of (9.26) is quite a good
approximation to the left-hand side. Accuracy increases as ν0 increases, but
decreases as ν1 and ν2 increase. Hamdy et al. (1988) have presented an algo-
rithm to compute the lower and upper percentage points of min(X,Y ); see
also the references therein.
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9.11 Bivariate Pearson Type II Distribution

9.11.1 Formula of the Joint Density

The joint density function is

h(x, y) =
(ν + 1)

π
√

1 − ρ2

[

1 − x2 − 2ρxy + y2

1 − ρ2

]ν

, (9.27)

where ν > 1, −1 < ρ < 1, and (x, y) is in the ellipse x2 − 2ρxy+ y2 = 1− ρ2,
which itself lies within the unit square.

9.11.2 Univariate Properties

The marginals are of Pearson type II with density f(x) = (1 − x2)ν+ 1
2 /B( 1

2 ,
ν + 3

2 ), −1 < x < 1 and a similar expression for g(y). The distribution is also
known as the symmetric beta distribution. A simple linear transformation
Z = (X + 1)/2 reduces a Pearson type II distribution to a standard beta
distribution.

9.11.3 Correlation Coefficient

The variable ρ in (9.27) is indeed Pearson’s product-moment correlation.

9.11.4 Conditional Properties

The conditional distribution of one variable, given the other, is also of Pearson
type II.

9.11.5 Relationships to Other Distributions

Let U = (aX − bY )2 and V = (aY − bX)2, where a =
√

1+ρ+
√

1−ρ

2
√

1−ρ2
and

b =
√

1+ρ−
√

1−ρ

2
√

1−ρ2
. Then, U and V have a bivariate beta distribution with joint

density
n + 1
π

(1 − u− v)n

√
uv

.
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9.11.6 Illustrations

Johnson (1986; 1987, pp. 111–117, 123) has presented plots of the density.

9.11.7 Generation of Random Variates

Johnson (1987, pp. 115–116, 123) and Johnson et al. (1984, p. 235) have
discussed generation of random variates from this distribution.

9.11.8 Remarks

• This is type IIIaβ in van Uven’s classification.
• Along with the bivariate normal and t-distributions, this distribution is a

well-known member of the class of elliptically contoured distributions.
• The quantity (X2−2ρXY +Y 2)/(1−ρ2) has a beta(1, n+1) distribution;

see, for example, Johnson et al. (1984).
• The cumulative distribution has a diagonal expansion in terms of orthog-

onal (Gegenbauer) polynomials; see McFadden (1966).
• The expression for Rényi and Shannon entropies for a bivariate Pearson

type II distribution was given in Nadarajah and Zografosb (2005).

9.11.9 Tables and Algorithms

An algorithm for computing the bivariate probability integral can be devel-
oped using the results of Parrish and Bargmann (1981). Joshi and Lalitha
(1985) have developed a recurrence formula for the evaluation of H̄.

9.11.10 Jones’ Bivariate Beta/Skew Beta Distribution

Consider a special case of the bivariate Pearson type II distribution for which
ρ = 0. Then, letting b = ν + 3

2 , (9.27) becomes

h(x, y) =
Γ(b + 1/2)
Γ(b− 1/2)π

(
1 − x2 − y2

)b−3/2
, b > 1/2, (9.28)

which is a spherically symmetric distribution.
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Each marginal is a univariate symmetric beta (Pearson type II) with den-
sity function

1
B(b, 1/2)

(1 − x2)b−1, 1 < x < 1. (9.29)

Jones (2002b) obtained an asymmetric beta density by multiplying (9.28) by
(1 + x)a−b(1 − x)c−b and renormalizing suitably to give

1
B(a, c)2a+c−1

(1 + x)a−1(1 − x)c−1, 1 < x < 1. (9.30)

Jones (2001) constructed a new bivariate distribution by the marginal re-
placement scheme, specifically by replacing the marginal density of X in
(9.28) by (9.30), resulting in a bivariate beta/skew beta distribution (X has
a skew beta distribution) with joint density function

h(x, y) =
Γ(b)(1 + x)a−b(1 − x)c−b

B(a, c)Γ(b− 1/2)2a+c−1
√
π

(1 − x2 − y2)b−3/2 (9.31)

for 0 < x2 + y2 < 1, a > 0, b > 1/2, c > 0. By construction, X has a
skew beta density given in (9.29), and the marginal distribution of Y is a
symmetric beta. The conditional distribution of Y , given X = x, is also a
rescaled symmetric beta over the interval (−

√
1 − x2,

√
1 − x2).

9.12 Bivariate Finite Range Distribution

The bivariate finite range distribution has been discussed by Roy (1989, 1990)
and Roy and Gupta (1996).

9.12.1 Formula of the Survival Function

The joint survival function is

H̄(x, y) = (1 − θ1x− θ2y − θ3xy)p, (9.32)

where θ1 > 0, θ2 > 0, p − 1 ≥ θ3/(θ1θ2) ≥ −1, 0 ≤ x ≤ θ−1
1 , 0 ≤ y ≤

(1 − θ1x)/(θ2 + θ3x).
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9.12.2 Characterizations

The joint survival function in (9.32) can be characterized either through a
constant bivariate coefficient of variation Ci(x, y) = {Vi(x, y)}1/2

/Mi(x, y),
where V1(x, y) = var(X −x|X > x, Y > y), V2(x, y) = var(Y − y|X > x, Y >
y), M1(x, y) = E(X−x|X > x, Y > y) and M2(x, y) = E(Y−y|X > x, y > y)
or by a constant product of mean residual lives and hazard rates.

Case 1. 1/
√

3 ≤ C1(x, y) = C2(x, y) = k < 1 if and only if (X,Y ) has a
bivariate finite range distribution in (9.32) with p = 2k2/(1 − k2). Also,
0 < k < 1

√
3 if and only if X and Y are mutually independent with

θ3 = −θ1θ2.
Case 2. Let r1(x, y) = − ∂

∂x log H̄(x, y) and r2(x, y) = − ∂
∂y log H̄(x, y).

Then, 0 < 1 − ri(x, y)Mi(x, y) = k ≤ 1/2 (i = 1, 2) if and only if (X,Y )
has a bivariate finite range distribution in (9.32). Also, 1

2 ≤ k < 1 if and
only if X and Y have independent finite range distributions.

9.12.3 Remarks

• The distribution in (9.32) has been referred to as a bivariate rescaled
Dirichlet distribution by Ma (1996).

• The bivariate finite range distribution, bivariate Lomax, and Gumbel’s
bivariate exponential are three distributions that are characterized either
through a constant bivariate coefficient of variation or by a constant prod-
uct of mean residual lives and hazard rates.

9.13 Bivariate Beta Distribution

9.13.1 Formula of the Joint Density

The joint density function is

h(x, y) =
Γ(θ1 + θ2 + θ3)
Γ(θ1)Γ(θ2)Γ(θ3)

xθ1−1yθ2−1(1 − x− y)θ3−1 (9.33)

for x, y ≥ 0, x + y ≤ 1. This distribution is often known as the bivariate
Dirichlet distribution; see Chapter 49 of Kotz et al. (2000).
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9.13.2 Univariate Properties

The marginal distributions of X ad Y are beta(θ1, θ2 + θ3) and beta(θ2, θ2,
θ1 + θ3), respectively.

9.13.3 Correlation Coefficient

Pearson’s product-moment correlation coefficient is −
√

θ1θ2
(θ1+θ3)(θ2+θ3)

. Thus,
as might be expected from its support and its application to joint distribu-
tions of proportions, this distribution is unusual in being oriented toward
negative correlation—to get positive correlation, we would have to change X
to −X or Y to −Y .

9.13.4 Product Moments

The product moments are given by

μ′
r,s =

Γ(θ1 + r)Γ(θ2 + s)Γ(θ1 + θ2 + θ3)
Γ(θ1 + θ2 + θ3 + r + s)Γ(θ1)Γ(θ2)

; (9.34)

see Wilks (1963, p. 179).

9.13.5 Conditional Properties

The expression Y/(1− x), conditional on X = x, has a beta(θ2, θ3) distribu-
tion.

9.13.6 Methods of Derivation

This distribution may be defined by the trivariate reduction method as fol-
lows. If Xi ∼ Gamma(θi, 1), then X1/(X1+X2+X3) and X2/(X1+X2+X3),
conditional on X1 + X2 + X3 ≤ 1, have a bivariate beta distribution; see
Loukas (1984).
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9.13.7 Relationships to Other Distributions

• This distribution is related to the bivariate Pearson type I distribution; it
is often referred to as a bivariate Dirichlet distribution.

• The relation between this distribution and the bivariate Pearson type II
was mentioned earlier in Section 9.11.4.

• The conditional distributions are beta; see James (1975).

9.13.8 Illustrations

Hoyer and Mayer (1976) and Kellogg and Barnes (1989) have illustrated the
density and contours.

9.13.9 Generation of Random Variates

Because of the method of derivation described above in Section 9.13.5, gen-
eration of variates is straightforward as mentioned by Devroye (1986, pp.
593–596), see also Macomber and Myers (1978) and Vǎduva (1985).

9.13.10 Remarks

• The variates X and Y are “neutral” in the following sense: X and Y/(1−X)
are independent, and the distribution being symmetric in x and y, so are
Y and X/(1 − Y ).

• H(x, y) has a diagonal expansion in terms of orthogonal (shifted Jacobi)
polynomials; see Lee (1971).

• If (i) h(x, y) takes the product form a1(x)a2(y)a3(1 − x− y), (ii) at least
one of the ai is a power function, and (iii) the regressions E(Y |X) and
E(X|Y ) are both linear, then h(x, y) is the bivariate beta distribution; see
Rao and Sinha (1988).

• X+Y has a beta distribution with parameters θ1 +θ2 and θ3. Also, X+Y
is independent of X/Y , which has an inverted beta distribution.

• Kotz et al. (2000) have given a comprehensive treatment of multivariate
Dirichlet distributions in Chapter 49 of their book.

• It is a member of the bivariate Liouville family of distributions to be
discussed in Section 9.16 below.

• Provost and Cheong (2000) considered the distribution of a linear combi-
nation λ1X + λ2Y .
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9.13.11 Fields of Application

• The distribution mainly arises in the context of a trivariate reduction of
three quantities that must sum to 1 (for example, the probabilities of
events or the proportions of substances in a mixture) that are mutually
exclusive and collectively exhaustive. When considering just two of these
quantities, a bivariate beta distribution may be a natural model to adopt.

• Mosimann (1962) and others have studied spurious correlations or corre-
lations among proportions in relation to various types of pollen and grain
and types of vegetation in general. See also the work of Narayana (1992)
for an illuminating numerical example that was mentioned above.

• Sobel and Uppuluri (1974) utilized a Dirichlet distribution for the distri-
bution of sparse and crowded cells closely related to occupancy models.

• Chatfield (1975) presented a particular example for the general context
just mentioned. The subject is the joint distribution of brand shares; that
is, the proportion of brands 1, 2, . . . , n of some consumer product that
are bought by customers. (The bivariate distribution on (9.33) will arise
for n = 3.) Chatfield mentioned that the following two conditions are
approximately correct in most product fields:

– A consumer’s rates of buying different brands are independent.
– A consumer’s brand shares are independent of his/her total rate of

buying.

The joint distribution of brand shares must then follow the multivariate
beta distribution because of the following characterization theorem. Sup-
pose Yi are independent positive r.v.’s and that T =

∑
i Yi and Xi = Yi/T ;

then, each Xi is independent of T , and the joint distribution of X’s is
multivariate beta. See Goodhardt et al. (1984) for a more comprehensive
account of work in this field.

• Wrigley and Dunn (1984) showed that the Dirichlet model provides a good
fit to a consumer-panel survey dataset from a study on urban consumer
purchasing behavior.

• Hoyer and Mayer (1976) used this distribution in modeling the proportions
of the electorate who vote for candidates in a two-candidate election (these
two proportions adding to less than 1 because of abstentions). They say
that this distribution “is sufficiently versatile to model many natural phe-
nomena, yet it demonstrates a degree of simplicity such that a candidate
who is reasonably adept at estimating probabilities could easily use our
model to make a fairly accurate estimate of the actual joint distribution
of proportions of his and his opponent’s vote for a fixed set of political
strategies.”

• A-Grivas and Asaoka (1982) used a bivariate beta distribution to describe
the joint distribution of two soil strength parameters.

• Modeling activity times in a PERT (Program Evaluation and Review Tech-
nique) network. A PERT network involves a collection of activities and
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each activity is often modeled as a random variable following a beta dis-
tribution; see Monhor (1987).

• In Bayesian statistics, the beta distribution is a popular choice for a prior
because it is a conjugate with respect to the binomial distribution; i.e.,
the posterior distribution is also beta. Similarly, the multivariate beta and
multinomial distributions go together in the same manner. An example
of such an analysis is by Apostolakis and Moieni (1987). These authors
considered a system of three identical components subject to shocks that
knock out 0, 1, 2, or 3 of them in a style of Marshall and Olkin’s model.
Apostolakis and Moieni supposed that the state of knowledge regarding the
vector of probabilities (p0, p1, p2, p3) could be described by a multivariate
beta distribution.

• Lange (1995) applied the Dirichlet distribution to forensic match proba-
bilities. The Dirichlet distribution is also relevant to the related problem
of allele frequency estimation.

9.13.12 Tables and Algorithms

For algorithms evaluating the cumulative distribution function, one may refer
to Parrish and Bargmann (1981), who used this distribution as an illustration
of their general technique for evaluation of bivariate cumulative bivariate
probabilities. Yassaee (1979) also evaluated the probability integral of the
bivariate beta distribution by using a program that is used for evaluating the
probability integral of the inverted beta distribution given earlier by Yassaee
(1976).

9.13.13 Generalizations

• Connor and Mosimann (1969) and Lochner (1975) considered the gener-
alized density of the form

h(x, y) = [B(α1, β1)B(α2, β2)]−1xα1−1yα2−1(1−x)α1−(α2+β2)(1−x−y)β2−1

(9.35)
for x, y ≥ 0, x + y ≤ 1. When α2 = β1 − β2, it reduces to the standard
bivariate beta density in (9.33). Since the generalized bivariate beta dis-
tribution has a more general covariance structure than the bivariate beta
distribution, the former turns out to be more practical and useful. Wong
(1998) has studied this distribution further.

• The bivariate Tukey lambda distribution, briefly considered by Johnson
and Kotz (1973), is the joint distribution of the variables
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X = [Uλ − (1 − U)λ]/λ
Y = [V μ − (1 − V )μ]/μ

}

, (9.36)

where (U, V ) has a bivariate beta distribution. The resulting distribution
is a mess [“mathematically not very elegant” according to Johnson and
Kotz, and “almost intractable” according to James (1975)].

• If (U < V ) again has a bivariate beta distribution, a distribution of (X,Y )
is defined implicitly by U =

√
(XY ), V =

√
(1 −X)(1 − Y ); this is briefly

mentioned by Mardia (1970, p. 88).
• Ulrich (1984) proposed a “bivariate beta mixture” distribution, which he

used for a robustness study. Within each rectangle that the unit square is
divided into, the p.d.f. is proportional to the product of a beta distribu-
tion of Y ; the constants of proportionality are different for the different
rectangles.

• Attributing an idea by Salvage, Dickey (1983) gave some attention to the
distribution of the variables obtained by (first) scaling and (second) renor-
malizing to sum to unity,

X = aU/(aU + bV )
Y = bV/(aU + bV )

}

, (9.37)

with (U, V ) having a bivariate beta distribution.
• For another generalization, one may refer to Nagarsenker (1970).
• Lewy (1996) also extended the bivariate beta to what he called a delta-

Dirichlet distribution. The development of delta-Dirichlet distributions
originated in sampling problems relating to the estimation of the species
composition of the biomass within the Danish industrial fishery and with
evaluation of the accuracy of estimates.

9.14 Jones’ Bivariate Beta Distribution

This distribution was first proposed by Jones (2001) and independently by
Olkin and Liu (2003).

9.14.1 Formula of the Joint Density

The joint density function is

h(x, y) =
Γ(a + b + c)
Γ(a)Γ(b)Γ(c)

xa−1yb−1(1 − x)b+c−1(1 − y)a+c−1

(1 − xy)a+b+c
. (9.38)
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9.14.2 Univariate Properties

The marginal distributions are standard beta distributions with parameters
(a, c) and (b, c), respectively.

9.14.3 Product Moments

Olkin and Liu (2003) showed that

E(XkY l) = 3F2(a + k, b + l, s; s + k, s + l; 1), (9.39)

where 3F2 is the generalized hypergeometric distribution function defined by
3F2(a, b, c; d, e; z) =

∑
k

(a)k(b)kck

(d)k(e)k

zk

k! .

9.14.4 Correlation and Local Dependence

Letting k = l = 1 in (9.39), we have

E(XY ) =
ab

s

Γ(a + c)Γ(b + c)
Γ(a + b + c) 3F2(a + 1, b + 1, s; s + 1, s + 1; 1)

and E(X)E(Y ) = ab
(a+c)(b+c) , from which the correlation can be found, al-

though numerical computations are required. Table 1 of Olkin and Liu (2003)
provides correlation coefficient values for various choices of a, b, and c.

Note. E(XY ) was also derived in Jones (2001).

γ(x, y) =
a + b + c

(1 − xy)2
.

9.14.5 Other Dependence Properties

Olkin and Liu (2003) showed that h is TP2 (also known as LRD; see Section
3.4.6 for a definition). Thus, X and Y are PQD.
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9.14.6 Illustrations

Density surfaces have been given by Olkin and Liu (2003) for several choices
of a, b, and c. Two contour plots of the density have been given by Jones
(2001).

9.15 Bivariate Inverted Beta Distribution

9.15.1 Formula of the Joint Density

The joint density function is

h(x, y) =
Γ(α1 + α2 + α3)
Γ(α1)Γ(α2)Γ(α3)

xα1−1yα2−1

(1 + x + y)α1+α2+α3
, x, y ≥ 0. (9.40)

It is also commonly known as the bivariate inverted Dirichlet distribution.

9.15.2 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function is

H(x, y) =
Γ(α1 + α2 + α3)xα1yα2

Γ(α1 + 1)Γ(α2 + 2)Γ(α3)
×F2(α1 + α2 + α3;α1, α2;α1 + 1, α2 + 1;−x,−y) (9.41)

=
Γ(α1 + α2 + α3)

Γ(α1 + 1)Γ(α2 + 2)Γ(α3)
xα1yα2

(1 + x + y)α1+α2+α3

×F2

(

α1 + α2 + α3; 1, 1;α1 + 1, α2 + 1;
x

1 + x + y
,

y

1 + x + y

)

,

(9.42)

where F2 is Appell’s hypergeometric function of two variables.

9.15.3 Derivation

Suppose X1, X2 and X3 are independent gamma variables with shape pa-
rameters αi (i = 1, 2, 3). Then the pair X = X1/X3, Y = X2/X3 has the
standard inverted beta distribution; see Tiao and Guttman (1965). This is
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evidently an example of the construction of a bivariate distribution by the
trivariate reduction method.

9.15.4 Tables and Algorithms

Yassaee (1976) presented a computer program for calculating the probability
integral of the inverted beta distribution.

For computation of H(x, y), see Ong (1995).

9.15.5 Application

The inverted beta distribution is used in the calculation of confidence re-
gions for variance ratios of random models for balanced data; see Sahai and
Anderson (1973).

9.15.6 Generalization

Nagarsenker (1970) discussed the generalized density

h(x, y) ∝ xα1−1yα2−1

(1 + x + y)(α1/β1)+(α2/β2)+α3
.

9.15.7 Remarks

• Comparing (9.25) and (9.40), we see this is effectively the bivariate F -
distribution discussed in Section 8.11. Another account is due to Ratna-
parkhi (1983).

• It is also a special case of a bivariate Lomax distribution.
• It is also a member of the bivariate Liouville family of distributions.

9.16 Bivariate Liouville Distribution

Liouville distributions seem to be one of those classes of distributions that
have attracted much attention in recent years. Marshall and Olkin’s (1979)
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book was perhaps the first place where Liouville distributions were discussed,
briefly. Shortly thereafter, Sivazlian (1981) presented results on marginal dis-
tributions and transformation properties of Liouville distributions. Anderson
and Fang (1982, 1987) discussed Liouville distributions arising from quadratic
forms. The first comprehensive discussion of these distributions was provided
by Fang et al. (1990). A series of papers by Gupta and Richards (1987, 1991,
1992, 1995, 1997, 2001a,b), along with Gupta et al. (1996), provides a rich
source of information on Liouville distributions and their properties, matrix
extensions, some other generalizations, and their applications to statistical
reliability theory.

The family of bivariate Liouville distributions are often regarded as com-
panions of the Dirichlet (beta) family because they were derived by Liouville
through an application of a well-known extension of the Dirichlet integral.
The family includes the well-known bivariate beta and bivariate inverted beta
distributions. Gupta and Richards (2001b) provided a history of the devel-
opment of the Dirichlet and Liouville distributions.

9.16.1 Definitions

Two definitions can be provided as follows. X and Y have a bivariate Liouville
distribution if their joint density is proportional to [Gupta and Richards
(1987)]

ψ(x + y)xa1−1ya2−1, x > 0, y > 0, 0 < x + y < b. (9.43)

Thus

h(x, y) =
CΓ(a)

Γ(a1)Γ(a2)
xa1−1ya2−1ψ(x + y) (9.44)

where a = a1 + a2, C−1 =
∫ b

0
ta−1ψ(t)dt, and ψ is a suitable non-negative

function defined on (0, b).
An alternative definition, as given in Fang et al. (1990), is as follows.

Let X=(X,Y )′ and Y =(Y1, Y2)′. Then, X=(X,Y )′ has a bivariate Liouville
distribution if it has a stochastic representation X

d= RY , where R = X +Y
has a univariate Liouville distribution and Y =(Y1, Y2)′ is independent of R
and has a beta density function

Γ(a1 + a2)
Γ(a1)Γ(a2)

xa1−1(1 − x)a2−1, 0 ≤ x ≤ 1.

Using another expression, we can present

X
d= RY1 = (X + Y )Y1; Y

d= RY2 = (X + Y )Y2, Y1 + Y2 = 1. (9.45)
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The density function of the bivariate Liouville distribution may also be
written as

CΓ(a)
Γ(a1)Γ(a2)

xa1−1ya2−1

(x + y)a−1
φ(x + y), a1 + a2 = a, (9.46)

defined over the simplex {(x, y) : x ≥ 0, y ≥ 0, 0 ≤ x + y ≤ b} if and only if φ
is defined over (0, b).

The density generator ψ is related to the function φ as

ψ(t) =
Γ(a)
ta−1

φ(t), a = a1 + a2. (9.47)

The generator in (9.47) satisfies the condition
∫ ∞

0

ta−1

Γ(a)
ψ(t)dt =

∫ ∞

0

φ(t)dt < ∞. (9.48)

Ratnaparkhi (1985) called this distribution the bivariate Liouville–Dirichlet
and presented the examples summarized below:

ψ(t) b Resulting bivariate distributions

(1 − t)a3−1 1 Beta
(1 + t)−a−a3 ∞ Inverted beta (F )

ta−1e−t ∞ Gamma, h(x, y) ∝ (x + y)α3xα1ya2e−(x+y)

(− log t)a3−1 1 “Unit-gamma-type”
h(x, y) ∝ xα1−1ya2−1[− log(x + y)]a3−1

The joint density in the third example corresponds to the distribution of
correlated gamma variables; see, for example, Marshall and Olkin (1979).

9.16.2 Moments and Correlation Coefficient

The moments and covariance structure of the bivariate Liouville distribution
can be derived easily; see Gupta and Richards (2001a). Because Y1 and Y2

are both beta and Yi and R are independent, we readily find

E(X) = E(RY1) =
a1

a
E(R), E(Y ) = E(RY2) =

a2

a
E(R) (9.49)

and
var(X) =

a1

a2(a + 1)
{
a(a1 + 1)var(R) + a2(E(R))2

}
. (9.50)

A similar expression can be presented for var(Y ). Furthermore,

cov(X,Y ) =
a1a2

a2(a + 1)
{
a var(R) − (E(R))2

}
. (9.51)
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Denote the coefficient of variation of R by cv(R) =
√

var(R)

E(R) . Then, the
covariance is negative if cv(R) < 1/

√
a. Gupta and Richards (2001a) have

presented a sufficient condition for this inequality to hold.

• If (X,Y ) has a bivariate beta distribution (a member of the bivariate
Liouville family), then the above-mentioned sufficient condition holds and
so we have X and Y negatively correlated, which is a well-known result.

• Let ψ(t) = tα(1 − t)β , 0 < t < 1, where α and β are chosen so that
cv(R) = 1√

a
. In this case, X and Y are uncorrelated but not independent.

• If ψ(t) = e−ttα, t > 0 so that X and Y have a correlated bivariate gamma
distribution of Marshall and Olkin (1979), then cv(R) = 1√

a
implies α = 0,

which is equivalent to X and Y being independent.

9.16.3 Remarks

The bivariate Liouville distribution arises in a variety of statistical and prob-
ability contexts, some of which are listed below:

• Bivariate majorization—Marshall and Olkin (1979) and Diaconis and Perl-
man (1990).

• Total positivity and correlation inequalities—Aitchison (1986) and Gupta
and Richards (1987, 1991).

• Statistical reliability theory—Gupta and Richards (1991).
• Stochastic partial orderings—Gupta and Richards (1992).
• For other properties, such as stochastic representations, transformation

properties, complete neutrality, marginal and conditional distributions,
regressions, and characterization, one may refer to Gupta and Richards
(1987).

Fang et al. (1990) showed that if X has a bivariate Liouville distribution,
then the condition that X and Y are independent is equivalent to X and Y
being distributed as gamma with a common scale parameter.

Kotz et al. (2000) have provided an excellent summary on the multivariate
Liouville distributions.

9.16.4 Generation of Random Variates

For generation of random variates, one may refer to Devroye (1986, pp. 596–
599).
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9.16.5 Generalizations

Gupta et al. (1996) introduced a sign-symmetric Liouville distribution, but
the joint density function does not have a simple form.

9.16.6 Bivariate pth-Order Liouville Distribution

Ma and Yue (1995) introduced a bivariate pth-order Liouville distribution
having a joint density function of the form

cθ−axa1−1ya2−1ψ

(
(xp + yp)1/p

θ

)

, x, y, p, θ > 0, (9.52)

where a = a1 +a2, 0 ≤ x+y < b ≤ ∞, and ψ(·) is a non-negative measurable
function on (0,∞) such that 0 <

∫∞
0

ψ(t)ta−1dt < ∞.
For p = 1, it is the usual bivariate Liouville distribution. The bivariate

Lomax distribution of Nayak (1987) with density

c

θa
xa1−1ya2−1

(

1 +
1
θ
(x + y)

)−(a+l)

,

where ψ(t) = (1+ t)(a+l), l > 0, is a special case. Ma and Yue (1995) demon-
strated how the parameter θ can be estimated by using their methods.

In the case where α1 = α2 = p, (9.52) is the bivariate lp-norm symmetric
distribution introduced by Fang and Fang (1988, 1989) and Yue and Ma
(1995). Roy and Mukherjee (1988) discussed the case p = 2 as an extension
of a class of generalized mixtures of exponential distributions.

9.16.7 Remarks

• X and Y can be viewed as a univariate dependent sample of random
lifetimes of a coherent system or proportional hazards model when the
joint density is given by (9.45).

• Ma et al. (1996), in addition to discussing the basic properties and the
dependence structure of a multivariate pth-order Liouville distribution,
also discussed the multivariate order statistics induced by ordering the
lp-norm.

• Ma and Yue (1995) also discussed the estimation of the parameter θ.
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9.17 Bivariate Logistic Distributions

The work that is commonly cited on this subject is that of Gumbel (1961).
He proposed three bivariate logistic distributions:

H(x, y) =
1

1 + e−x + e−y
, x, y ∈ R, (9.53)

H(x, y) = exp
[
−
{

log(1 + e−x)1/α + log(1 + e−y)1/α
}]α

, x, y ∈ R,

(9.54)

and

H(x, y) = (1 + e−x)−1(1 + e−y)−1
{
1 + αe−x−y(1 + e−x)−1(1 + e−y)−1

}

(9.55)
for x, y ∈ R and −1 < α < 1.

9.17.1 Standard Bivariate Logistic Distribution

The distribution in (9.53) is known as the standard bivariate logistic
distribution.

Formula of the Joint Density

The joint density function is

h(x, y) =
2e−xe−y

(1 + e−x + e−y)3
, x, y ∈ R. (9.56)

Conditional Properties

The conditional density of X, given Y = y, can be shown to be

f(x|y) =
2e−x(1 + e−y)2

(1 + e−x + e−y)3
,

and a similar expression can be presented for g(y|x). The regression of X on
Y is

E(X|Y = y) = 1 − log(1 + e−y).
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Correlation Coefficient

Pearson’s product-moment correlation coefficient is

corr(X,Y ) = ρ =
1
2
,

which reveals the restrictive nature of this bivariate logistic distribution.

Moment Generating Function

The joint moment generating function is given by

M(s, t) = Γ(1 + s + t)Γ(1 − s)Γ(1 − t).

Derivation

Let U, V , and W be independent and identically distributed extreme value
random variables with density function e−xee−x

,−∞ < x < ∞. Then, the
joint density function of X = V −U and Y = W−U is the standard bivariate
logistic distribution. This, incidentally, is another example of the construction
of a bivariate distribution by the variable-in-common scheme.

Relationships to Other Distributions

The copula density that corresponds to the standard bivariate logistic distri-
bution is

c(u, v) =
2uv

(u + v − uv)3
; (9.57)

see, for example, Nelsen (1999, p. 24). Now, let us consider Mardia’s bivariate
Pareto distribution with the joint density (after reparametrization)

h(x, y) =
(α− 1)α
σ1σ2

(

1 +
x

σ1
+

y

σ2

)−(α+1)

.

For α = 1, the copula density that corresponds to the distribution above is
given by

c(u, v) =
2(1 − u)(1 − v)

{(1 − u) + (1 − v) − (1 − u)(1 − v)}3 .

Rotating this surface about (1
2 ,

1
2 ) by π radians, we obtain the copula in

(9.57).
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9.17.2 Archimedean Copula

The bivariate logistic distribution that corresponds to (9.54) is an
Archimedean copula (see Section 1.5 for a definition) with generator ϕ(u) =
(− log u)1/α. This copula was termed the Gumbel–Hougaard copula earlier
in Section 2.6.

9.17.3 F-G-M Distribution with Logistic Marginals

The distribution in (9.55) is the well-known Farlie–Gumbel–Morgenstern dis-
tribution with logistic marginals. The bivariate F-G-M distribution was dis-
cussed in detail in Section 2.2.

9.17.4 Generalizations

• Satterthwaite and Hutchinson (1978) extended the standard bivariate lo-
gistic to the form

H(x, y) = (1 + e−x + e−y)−c, x, y ∈ R, c > 0. (9.58)

This is only a marginal transformation of the bivariate Pareto distribution.
• Arnold (1990, 1992) constructed a generalization of a bivariate logistic

model through geometric minimization of the form

H̄(x, y) = (1 + ex + ey + θex+y)−1, 0 ≤ θ ≤ 2. (9.59)

If geometric maximization is considered instead, we obtain

H(x, y) = (1 + e−x + e−y + θe−x−y)−1, 0 ≤ θ ≤ 2. (9.60)

The distribution in (9.60) reduces to (9.54) when θ = 0.

We note that the bivariate model in (9.59) was first derived by Ali et al.
(1978), and its corresponding copula was given in Section 2.3.

9.17.5 Remarks

The multivariate extension of (9.53) was discussed by Malik and Abraham
(1973). Kotz et al. (2000) therefore refers to this distribution as the Gumbel–
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Malik–Abraham distribution. Section 10 of Chapter 51 of Kotz et al. (2000)
also discusses several generalizations of multivariate beta distributions.

9.18 Bivariate Burr Distribution

Bivariate Burr distributions with Burr type III or type XII marginals have
received some attention in the literature. Two main methods have been used
for their construction:

• The Farlie–Gumbel–Morgenstern method.
• Compounding, either as a straightforward generalization of the construc-

tion of the bivariate Pareto distribution (abbreviated as P in the following
table), or the bivariate method which Hutchinson (1979, 1981) showed
underlies the Durling–Burr distribution (abbreviated as D).

The following table lists some sources where more details can be found; see
also Sections 2.8 and 2.9. A brief account of these distributions has been
given by Rodriguez (1983, pp. 241–244).

Marginals Construction References

XII Compounding (P) Takahasi (1965), Crowder (1985)
XII Compounding (D) Durling (1975), Bagchi and Samanta (1985)
XII F-G-M Bagchi and Samanta (1985)
III Compounding (P) Rodriguez (1980),

Rodriguez and Taniguchi (1980)
III Compounding (D) Rodriguez (1980)
III Compounding∗ Rodriguez (1980)
III F-G-M Rodriguez (1980)
III F-G-M, extended Rodriguez (1980)

∗ ∫∞
0 min[1, (x/λ)c]dF (λ), where F (λ = (1 − k)(1 − λ−c)−k + k(1 + λ−c)−k−1.

Rodriguez (1980, p. 39) makes only passing mention of these.

9.19 Rhodes’ Distribution

9.19.1 Support

The region of support of this distribution is all x, y such that 1 − x
a + y

b > 0
and 1 + x

a′ − y
b′ > 0.

9.19.2 Formula of the Joint Density

The joint density function is
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h(x, y) ∝
(
1 − x

a
+

y

b

)p (
1 +

x

a′
− y

b′

)p′

e−tx−my. (9.61)

9.19.3 Derivation

Starting with two independent variables having not necessarily identical
gamma distributions, let X be a linear combination of them and Y be some
other linear combination of them. The result then is that (X,Y ) has Rhodes’
distribution.

9.19.4 Remarks

For the properties of this distribution, see Mardia (1970, pp. 40, 94–95).
Rhodes (1923) fitted this distribution to barometric heights observed at
Southampton and Laudale; see Pearson and Lee (1897).

9.20 Bivariate Distributions with Support Above
the Diagonal

Jones and Larsen (2004) proposed and studied a general family of bivariate
distributions that is based on, but greatly extends, the joint distribution
of order statistics from independent and identically distributed univariate
variables.

9.20.1 Formula of the Joint Density

The joint density function is

h(x, y) =
Γ(a + b + c)
Γ(a)Γ(b)Γ(c)

k(x)k(y)Ka−1(x)(K(y) −K(x))b−1(1 −K(y))c−1

(9.62)
on x < y, where a, b, c > 0. Here, K is the distribution function from which
the random sample is drawn and k = K ′ is the corresponding density func-
tion. Furthermore, it is assumed that K is a symmetric univariate distribu-
tion.
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9.20.2 Formula of the Cumulative
Distribution Function

The joint distribution function H(x, y) can be expressed in terms of an in-
complete two-dimensional beta function.

9.20.3 Univariate Properties

The marginal density functions are

f(x) =
Γ(a + b + c)
Γ(a)Γ(b + c)

k(x)Ka−1(x)(1 −K(x))b+c−1

and

g(y) =
Γ(a + b + c)
Γ(a + b)Γ(c)

k(y)Ka+b−1(y)(1 −K(y))c−1.

9.20.4 Other Properties

• If K has a uniform distribution on [0, 1], then the joint density in (9.62)
has a link to the bivariate beta distribution; see Jones and Larsen (2004).

• The local dependence function is

γ(x, y) =
(b− 1)k(x)k(y)
(K(y) −K(x))2

, x < y.

It follows that γ is positive or negative depending on whether b > 1 or
b < 1.

• E(Y |X = x) is nondecreasing in x for all b > 0 and so cov(X,Y ) ≥ 0 for
all b > 0; Jones and Larsen (2004) have provided a proof.

9.20.5 Rotated Bivariate Distribution

Consider a rotated version of (9.62) obtained through rotating the two axes
anticlockwise by 45 o; i.e., we wish to find the joint distribution of W = X+Y
and Z = Y −X > 0.
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Formula of the Joint Density

Let hW,Z denote the joint density function of W and Z. Jones and Larsen
(2004) have shown that

hW,Z(w, z) =
Γ(a + b + c)

2Γ(a)Γ(b)Γ(c)
k

(
w − z

2

)

k

(
w + z

2

)

Ka−1

(
w − z

2

)

×
(

K

(
w + z

2

)

−K

(
w − z

2

))b−1(

1 −K

(
w + z

2

))c−1

(9.63)

for −∞ < w < ∞, z > 0.
The marginal distributions of the rotated bivariate distribution in (9.63)

appear to be intractable analytically. Note that, however, E(W ) = E(Y ) +
E(X), E(Z) = E(Y ) − E(X), and cov(X,Y ) = var(Y )− var(X).

Special Case where a = c

Since hW,Z(−w, z; a, b, c) = hW,Z(w, z; c, b, a), there is symmetry in the w
direction if a = c. For this special case, var(Y ) = var(X), which implies that
cov(X,Y ) = 0, but X and Y are not independent.

9.20.6 Some Special Cases

We now consider some special cases of the density in (9.62).

(i) Bivariate Skew t-Distribution

Suppose K has Student’s t-distribution with two degrees of freedom,

k(x) =
1

(2 + x2)3/2
, K(x) =

1
2

(

1 +
x√

2 + x2

)

.

Then, (9.62) reduces to the bivariate skew t-distribution discussed in Section
9.5.
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(ii) Bivariate log F Distribution

If k(x) is the density of the logistic distribution, then a bivariate logF distri-
bution is obtained. The univariate logF distribution may be found in Brown
et al. (2002), for example.

9.20.7 Applications

The bivariate log F distribution proves to be a good fit to the temperature
data of Jolliffe and Hope (1996). Jones and Larsen (2004) have also listed
several potential applications of this family of distributions.
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Chapter 10

Bivariate Exponential and Related
Distributions

10.1 Introduction

The vast majority of the bivariate exponential distributions arise in the re-
liability context one way or another. When we talk of reliability, we have in
mind the failure of an item or death of a living organism. We especially think
of time elapsing between the equipment being put into service and its failure.
In the bivariate or multivariate context, we are concerned with dependencies
between two failure times, such as those of two components of an electrical,
mechanical, or biological system.

Just as the univariate exponential distribution is important in describing
the lifetime of a single component [see, e.g., Balakrishnan and Basu (1995)],
bivariate distributions with exponential marginals are also used quite ex-
tensively in describing the lifetimes of two components together. Bivariate
exponential distributions often arise from shocks that knock out or cause
cumulative damage to components that will knock out the components even-
tually. The numbers of shocks N1 and N2 that are required to knock out
components 1 and 2, respectively, usually have a bivariate geometric distribu-
tion. Marshall and Olkin’s and Downton’s bivariate exponential distributions
are prime examples of models that can be derived in this manner. A notable
exception is Freund’s bivariate exponential, which cannot be obtained from
such a bivariate geometric compounding scheme. Bivariate exponential mix-
tures may also arise in a reliability context with two components sharing a
common environment.

Distributions with exponential marginals may, of course, be obtained by
starting with any bivariate distribution of a familiar form and then trans-
forming the X and Y axes appropriately. In particular, this may be done
with any of the copulas presented earlier in Chapter 2—in the expression of
C, we simply need to replace x by 1 − e−x and y by 1 − e−y.

Surveys of bivariate exponential distributions and their applications to
reliability have been given by Basu (1988) and Balakrishnan and Basu (1995).

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 401
DOI 10.1007/b101765 11, c© Springer Science+Business Media, LLC 2009
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Chapter 47 of Kotz et al. (2000) presents an excellent treatment on bivariate
and multivariate exponential distributions.

In Section 10.2, we first present the three forms of bivariate exponential
distributions introduced by Gumbel. Freund’s bivariate exponential distri-
bution and its properties are discussed in Section 10.3. In Section 10.4, the
extension of Freund’s distribution due to Hashino and Sugi is described. The
well-known Marshall and Olkin bivariate exponential distribution and related
issues are discussed in Section 10.5. As Marshall and Olkin’s distribution
contains a singular part, Block and Basu proposed an absolutely continuous
bivariate exponential distribution. This model is presented in Section 10.6. In
Section 10.7, Sarkar’s bivariate exponential distribution is described. Next,
in Section 10.8, a comparison of different properties of the models of Mar-
shall and Olkin, Block and Basu, Sarkar, and Freund is made, and some
basic differences and commonalities are pointed out. In Sections 10.9 and
10.10, the generalized forms (which include both Freund and Marshall-Olkin
distributions) proposed by Friday and Patil and Tosch and Holmes, respec-
tively, are presented. The system of exponential mixture distributions due to
Lawrance and Lewis and its characteristic properties are discussed in Sec-
tion 10.12. The bivariate exponential distributions obtained from Raftery’s
scheme are mentioned in Section 10.13. In Section 10.14, the bivariate expo-
nential distributions derived by Iyer et al. by using auxiliary random vari-
ables forming linear structures are presented, and their differing correlation
structures are highlighted. Another well-known bivariate exponential distri-
bution, known as the Moran–Downton model in the literature, and its related
developments are detailed in Section 10.15. The bivariate exponential distri-
butions of Sarmanov, Cowan, Singpurwalla and Youngren, and Arnold and
Strauss are presented in Sections 10.16–10.19, respectively. Several different
forms of mixtures of bivariate exponential distributions have been consid-
ered in the statistical as well as applied fields, and Section 10.20 presents
these forms. Section 10.21 describes details on bivariate exponential distri-
butions connected with geometric compounding schemes. Different concepts
of the lack of memory property associated with different forms of bivariate
exponential distributions are described next in Section 10.22. Section 10.23
briefly discusses the effect of parallel redundancy in systems with dependent
exponential components. In Section 10.24, the role of bivariate exponential
distributions as a stress-strength model is explained. Finally, the bivariate
Weibull distributions and their properties are presented in Section 10.25.

10.2 Gumbel’s Bivariate Exponential Distributions

Gumbel (1960) introduced three types of bivariate exponential distributions,
and these are described in this section.
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10.2.1 Gumbel’s Type I Bivariate
Exponential Distribution

The joint cumulative distribution function is

H(x, y) = 1 − e−x − e−y + e−(x+y+θxy), x, y ≥ 0, 0 ≤ θ ≤ 1. (10.1)

This distribution was discussed earlier in Section 2.10.

10.2.2 Characterizations

Along with the bivariate Lomax distribution and bivariate finite range dis-
tribution, Gumbel’s type I bivariate exponential distribution can be charac-
terized through

• constant product of bivariate mean remaining (residual) lives and hazard
rates [see Roy (1989), Ma (1996), Roy and Gupta (1996)] and

• constant coefficient of variation of bivariate residual lives; see Roy and
Gupta (1996).

10.2.3 Estimation Method

By introducing scale parameters to the marginal distributions, the survival
function corresponding to (10.1) (after relabeling θ by α) becomes

H̄(x, y) = exp
{

− x

θ1
− y

θ2
− αxy

θ1θ2

}

, x, y > 0, θ1, θ2 > 0, 0 < α < 1. (10.2)

Castillo et al. (1997) have discussed methods for estimating the parameters
in (10.2).

10.2.4 Other Properties

• The correlation coefficient is given in Section 2.10.
• The copula C(u, v) is given by (2.47).
• The product moments were derived by Nadarajah and Mitov (2003).
• The Fisher information matrix was derived by Nadarajah (2006a).
• It is easy to show that X and Y are NQD (negative quadrant dependent);

see Lai and Xie (2006, p. 324).
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• Kotz et al. (2003b) derived the distributions of T1 = min(X,Y ) and T2 =
max(X,Y ). In particular, it was shown that

E(T1) = e1/θ

√
π

θ

[
1 − Φ

(√
2/θ
)]

and that

E(T2) = 2 − e1/θ

√
π

θ

[
1 − Φ

(√
2/θ
)]

.

Further, it was shown that E(T2) is almost linearly increasing in ρ.
• Franco and Vivo (2006) discussed log-concavity of the extremes. (The dis-

tribution that has a log-concave density has an increasing likelihood ratio.)

10.2.5 Gumbel’s Type II Bivariate
Exponential Distribution

The F-G-M bivariate distributions were discussed in detail earlier in Section
2.2. Gumbel’s type II bivariate exponential distribution is simply an F-G-M
model with exponential marginals. The density function is given by

h(x, y) = e−x−y
{
1 + α(2e−x − 1)(2e−y − 1)

}
, |α| < 1. (10.3)

Bilodeau and Kariya (1994) observed that the density functions of both
type I and type II are of the form

h(x, y) = λ1λ2g(λ1x, λ2y; θ)e−λx−λ2 .

Fisher Information

Nagaraja and Abo-Eleneen (2002) derived expressions for the elements of
the Fisher information matrix for the three elements of the Gumbel type II
bivariate exponential distribution. They observed that the improvement in
the efficiency of the maximum likelihood estimate of the mean of X due to
availability of the covariate values as well as the knowledge of the nuisance
parameters is limited for this distribution.

Other Properties

• The copula is given by (2.1).
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• The distributions of the maximum and minimum statistics are well known
and can be easily derived; see, for example, Lai and Xie (2006, p. 310).
Clearly, they can be expressed as mixtures of two or more exponential
distributions.

• Franco and Vivo (2006) discussed log-concavity of the extreme statistics
min(X,Y ) and max(X,Y ).

10.2.6 Gumbel’s Type III Bivariate
Exponential Distribution

The joint cumulative distribution function is

H(x, y) = 1− e−x − e−y + exp
{
−(xm + ym)1/m

}
, x, y ≥ 0, m ≥ 1. (10.4)

The survival function is

H̄(x, y) = exp
{
−(xm + ym)1/m

}
.

The corresponding joint density function is

h(x, y) = (xm + ym)−2+(1/m)xm−1ym−1
{

(xm + ym)1/m + m− 1
}

× exp
{
−(xm + ym)1/m

}
, x, y ≥ 0, m > 1. (10.5)

If m = 1, X and Y are mutually independent. Lu and Bhattacharyya (1991
a,b) have studied this bivariate distribution in detail and in particular pro-
vided several inferential procedures for this model.

Some Other Properties

• Baggs and Nagaraja (1996) have derived the distributions of the maximum
and minimum statistics; in particular, the minimum is exponentially dis-
tributed, but the maximum statistic T2 is a generalized mixture of three
or fewer exponentials.

• Franco and Vivo (2006) discussed the log-concavity property of T2.
• The copula that corresponds to this distribution is known as the Gumbel–

Hougaard copula as given in (2.30).
• The Gumbel–Hougaard copula is max-stable and hence an extreme-value

copula. It is the only Archimedean extreme-value copula [Nelsen (2006,
p. 143)].
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10.3 Freund’s Bivariate Distribution

This distribution is often given the acronym BEE (bivariate exponential ex-
tension) because it is not a bivariate exponential distribution in the tradi-
tional sense, as the marginals are not exponentials. We note that the Friday
and Patil distribution in Section 10.9 is also known as BEE.

10.3.1 Formula of the Joint Density

The joint density function is

h(x, y) =
{
αβ′ exp[−(α + β − β′)x− β′y] for x ≤ y
α′β exp[−(α + β − α′)y − α′x] for x ≥ y

, (10.6)

where x, y ≥ 0 and the parameters are all positive.

10.3.2 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function corresponding to (10.6) is

H(x, y)

=

{
α

α+β−β′ exp[−(α + β − β′)x− β′y] + β−β′

α+β−β′ exp[−(α + β)y] for x ≤ y
β

α+β−α′ exp[−(α + β − α′)y − α′x] + α−α′

α+β−α′ exp[−(α + β)x] for x ≥ y

,

(10.7)
where x, y ≥ 0.

10.3.3 Univariate Properties

The marginal distributions are not exponential, but they are mixtures of
exponentials. Hence, (10.6) is often known as Freund’s bivariate exponential
extension, or a bivariate exponential mixture distribution, as it is called by
Kotz et al. (2000, p. 356). The expression for the marginal density f(x) is

f(x) =
(α− α′)(α + β)

α + β − α′ e−(α+β)y +
α′β

α + β − α′ e
−α′x, (10.8)
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provided α + β �= α′, and naturally a similar expression for g(y) holds with
β and β′ changed to α and α′, respectively. The special case of α + β = α′

gives f(x) = (α′βx + α)e−α′x.
The mean and variance of this distribution are α′+β

α′(α+β) and α′2+2αβ+β2

α′2(α+β)2 ,
respectively.

10.3.4 Correlation Coefficient

Pearson’s correlation coefficient is given by

α′β′ − αβ
√

(α′2 + 2αβ + β2)(β′2 + 2αβ + α2)
, (10.9)

which is restricted to the range − 1
3 to 1.

10.3.5 Conditional Properties

The conditional densities can be derived, but they are quite cumbersome. We
refer our readers to Kotz et al. (2000, p. 357) for more details.

10.3.6 Joint Moment Generating Function

The joint m.g.f. is

M(s, t) = (α + β − s− t)−1

[
α′β

α′ − s
+

αβ′

β′ − t

]

. (10.10)

10.3.7 Derivation

This distribution was originally derived by Freund (1961) from a reliabil-
ity consideration as follows. Suppose a system has two components A and
B whose lifetimes X and Y have exponential densities αe−αx and βe−βy,
respectively. Further, suppose that the only dependence between X and Y
arises from failure of either component changing the parameter of the life
distribution of the other component; more specifically, when A fails, the pa-
rameter for Y becomes β′, and when B fails, the parameter for X becomes
α′. Then, the joint density of X and Y is as presented in (10.6).
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We may restate Freund’s model in terms of a shock model. Suppose that
the shocks that knock out components A and B, respectively, are governed
by two Poisson processes:

• For component A, the Poisson process has a rate α when component B is
functioning and rate α′ after component B fails.

• For component B, the Poisson process has a rate β when component A is
functioning and rate β′ after component A fails.

Freund’s model may realistically represent systems in which the failure of one
component puts an additional burden on the remaining one (e.g., kidneys) or,
alternatively, the failure of one may relieve somewhat the burden on the other
(e.g., competing species). A special case of Freund’s bivariate distribution was
also derived by Block and Basu (1974); see Section 10.6 for pertinent details.

10.3.8 Illustrations

Conditional density plots have been presented by Johnson and Kotz (1972,
p. 265).

10.3.9 Other Properties

• For distributions of the minimum and maximum statistics, see Baggs and
Nagaraja (1996).

• The exact distribution of the product XY is given in Nadarajah (2006b).
• For sums, products, and ratios for Freund’s bivariate exponential distri-

bution, see Gupta and Nadarajah (2006).
• For an expression of the Rényi and Shannon entropy for Freund’s bivariate

exponential distribution, see Nadarajah and Zografos (2005).

10.3.10 Remarks

• For a test of symmetry and independence, one may refer to O’Neill (1985).
• There is some interest in the reliability literature in the probability of sys-

tem failure when two components are in parallel and repair or replacement
of a failed component takes a finite time. In this situation, the probability
that the working component fails before the failed one is repaired is of
importance. Biswas and Nair (1984) have considered this situation when
Freund’s distribution is applicable; see also Adachi and Kodama (1980)
and Goel et al. (1984).
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• For parallel systems, Klein and Moeschberger (1986) made some calcula-
tions of the errors resulting from erroneously assuming component lifetimes
have independent exponential distributions when in fact they jointly have
Freund’s distribution.

• The study of Klein and Basu (1985) referred to in Section 10.5.9 below
also included bias reduction techniques for the estimation of H̄ when (10.7)
holds.

• Besides the variants and generalizations of this distribution that are de-
scribed in Sections 10.3.12–10.3.16 and Section 10.4 below, we note a com-
plicated generalization given by Holla and Bhattacharya (1965) that in-
volves replacement of failed components.

10.3.11 Fields of Application

This distribution is useful as a reliability model. It was applied to analyze
the data of Barlow and Proschan (1977) concerning failures of Caterpillar
tractors; see also O’Neill (1985). For an application in distribution substation
locations, see Khodr et al. (2003).

10.3.12 Transformation of the Marginals

The power-transformed version of Fruend’s distribution has been considered
by Spurrier and Weier (1981), concentrating on the performance of maximum
likelihood estimates (which are not in closed form).

Hashino and Sugi’s (1984) extension of this distribution was used with
power-transformed observations by Hashino (1985); see Section 10.4 for more
details.

10.3.13 Compounding

Roux and Becker (1981) obtained a compound distribution, which they called
a bivariate Bessel distribution, by assuming that α′′ = 1/α′ is exponentially
distributed with density exp(−α′′/γ)/γ, and similarly, β′′ = 1/β′ has density
exp(−β′′/δ)/δ. The resulting density is given by
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h(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

2βγ−1 exp[−(α + β)y]K0

(

2
√

(x−y)

γ

)

for 0 < y < x

2αδ−1 exp[−(α + β)x]K0

(

2
√

(y−x)

γ

)

for 0 < x < y
,

(10.11)

where K0 is the modified Bessel function of the third kind of order zero.

10.3.14 Bhattacharya and Holla’s Generalizations

In Model I of Bhattacharya and Holla (1963), it is supposed that when one
component fails, the distribution of the other’s lifetime becomes Weibull, not
exponential. The density is then proportional to (y−x)q−1 exp[−δ(y−x)q −
(α + β)x] for 0 < x < y, with an analogous expression for 0 < y < x. In
Model II, the distribution of the other component’s lifetime becomes gamma
after the failure of one component. The density is in this case proportional
to (y − x)q−1 exp[δ(y − x) − (α + β)x] for 0 < x < y, with an analogous
expression for 0 < y < x.

10.3.15 Proschan and Sullo’s Extension of
Freund’s Model

Proschan and Sullo (1974) considered an extension in which one assumes
the existence of a common cause of failure (i.e., a shock from a third source
that destroys both components). This additional assumption is similar to
that of Marshall and Olkin’s model to be discussed in Section 10.5 below. It
is easy to see that Proschan and Sullo’s extension (often denoted by PSE)
subsumes both Freund’s bivariate exponential and Marshall and Olkin’s BVE
model.

h(x, y) =

⎧
⎨

⎩

αυ exp[−(θ − υ)x− υy] for x < y,
ηβ exp[−(θ − η)y − ηx] for x > y,
γ exp(−θx), for x = y.

Here, θ = α+β+γ, η = α′+γ, and υ = β′+γ. When γ = 0, it gives Freund’s
model. For α = α′ and β = β′ it gives the BVE model.

The resulting model retains the lack of memory property (10.21) that is
enjoyed by Marshall and Olkin’s model. Some inference results were derived
for this extension by Hanagal (1992).
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10.3.16 Becker and Roux’s Generalization

Becker and Roux (1981) generalized Freund’s model by supposing that the
components did not fail after a single shock but that it took a and b shocks,
respectively, to destroy them. (These numbers a and b are deterministic, not
random.)

The resulting density function is

h(x, y)

=

⎧
⎪⎨

⎪⎩

β′αa

Γ(a)Γ(b)x
a−1[β′(y − x) + βx]b−1 exp[−β′y − (α + β − β′)x], 0 < x < y,

α′βb

Γ(a)Γ(b)y
b−1[α′(x− y) + αy]a−1 exp[−α′x− (α + β − α′)y], 0 < y < x;

see also Steel and Roux (1987).

10.4 Hashino and Sugi’s Distribution

10.4.1 Formula of the Joint Density

For x, y ≥ 0, the joint density is given by

h(x, y)

=

⎧
⎪⎪⎨

⎪⎪⎩

αβ′ exp[−β′y − (α + β − β′)x] for 0 ≤ x ≤ y,with x ≤ γ,
α′β exp[−α′x− (α + β − α′)y] for 0 ≤ y ≤ x,with y ≤ γ,
ab′ exp[−b′(y − δ) − (a + b− b′)(x− δ)] for γ ≤ x ≤ y,
a′b exp[−a′(x− δ) − (a + b− a′)(y − δ)] for γ ≤ y ≤ x,

(10.12)

where all the parameters are positive. In fact, there are just six free param-
eters because of continuity conditions at X = γ and Y = γ.

10.4.2 Remarks

An English account of this extension of Freund’s distribution is given by
Hashino (1985), who has attributed this model to Hashino and Sugi (1984).
Hashino has presented expressions of the marginal density of Y , the marginal
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cumulative distribution of Y , the conditional cumulative distribution function
of X given Y , and the joint cumulative distribution function H.

The distribution was not motivated by a reliability application; rather, it
was intended to provide a tractable bivariate distribution that is somewhat
analogous to the univariate piecewise-exponential distribution.

10.4.3 An Application

The Osaka district in Japan suffers from typhoons. When these occur, the
river, in its tidal reaches, rises for two reasons: the rain that drains into it, and
the storm surge that comes in from the sea. The study by Hashino was of the
peak rainfall intensity and the maximum storm surge for 117 typhoons occur-
ring over an 80-year period. In fitting the density in (10.12), X and Y were
transformed to Xm/σxm and Y m/σym, respectively, with σ’s being standard
deviations of the transformed variables. Hashino found large differences (a
factor of more than 2) between return periods 1/H(x, y) calculated using the
fitted distribution and 1/[F (x)G(y)] calculated by assuming independence.

Two minor points: (i) It appears that the typhoons included in the study
were restricted to those for which the storm surge exceeded a certain level;
Hashino did not discuss whether this truncation of the sample had any effect
on the conclusions. (ii) The correlation coefficient, given by Hashino (viz.,
−0.02 is calculated for the distribution by applying it only to large values of
X and Y [i.e., the last expression in (10.12 and not for the distribution as a
whole].

10.5 Marshall and Olkin’s Bivariate
Exponential Distribution

It is one of the most widely studied bivariate exponential distributions. The
acronym BVE is often used in the literature to designate this distribution. It
is comprehensively studied in Section 2.4 of Chapter 47 in Kotz et al. (2000).

10.5.1 Formula of the Cumulative
Distribution Function

The upper right volume under the probability density surface is given by [see
Marshall and Olkin (1967a)]
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H̄(x, y) = exp[−λ1x− λ2y − λ12 max(x, y)], x, y ≥ 0, (10.13)

where all λ’s are positive.

10.5.2 Formula of the Joint Density Function

This takes slightly different forms depending on whether x or y is bigger:

h(x, y) =

⎧
⎨

⎩

λ2(λ1 + λ12) exp[−(λ1 + λ12)x− λ2y] for x > y,
λ1(λ2 + λ12) exp[−λ1x + (λ2 + λ12)y] for y > x,
Singularity along the diagonal for x = y.

(10.14)

The amount of probability for the singular part is λ12/(λ1 + λ2 + λ12).
The singularity1 in this case is due to the possibility of X exactly equaling

Y . In the reliability context, this corresponds to the simultaneous failure of
the two components.

10.5.3 Univariate Properties

Both marginal distributions are exponential.

10.5.4 Conditional Distribution

The conditional density of Y given X = x is

h(y|x) =

⎧
⎨

⎩

λ1(λ2+λ12)
λ1+λ12

e−λ2y−λ12(y−x) for y > x,

λ2e
−λ2yλ1 for y < x.

10.5.5 Correlation Coefficients

Pearson’s product-moment correlation coefficient is λ12/(λ1 +λ2 +λ12). The
rank correlation coefficients were given in Chapter 2.

1 For a bivariate distribution, a singularity is a point with positive probability or a line such
that every segment has positive probability. (We are not concerned here with more complicated
forms of singularity.)
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10.5.6 Derivations

Fatal Shocks

Suppose there is a two-component system subject to shocks that may knock
out the first component, the second component, or both of them. If these
shocks result from independent Poisson processes with parameters λ1, λ2, and
λ12, respectively, Marshall and Olkin’s distribution results. Equivalently, X =
min(Z1, Z3) and Y = min(Z2, Z3), where the Z’s are independent exponential
variates. Thus, this is an example of the trivariate reduction method.

Nonfatal Shocks

It could be that the shocks sometimes knock out a component and sometimes
not.2 Consider events in the Poisson process with rate θ that cause failure to
the ith component (but not the other) with probability pi (i = 1, 2) and cause
failure to both components with probability p12, where 1−p1−p2−p12 > 0. If
λi = piθ and λ12 = p12θ, then the times to failure X and Y of components 1
and 2 have their joint survival function as in (10.13); see Marshall and Olkin
(1985) for a representation like this.

10.5.7 Fisher Information

Nagaraja and Abo-Eleneen (2002) obtained the Fisher information for the
three parameters of this model. They observed that the improvement in the
efficiency of the maximum likelihood estimator of the mean of X due to the
availability of the covariate as well as the knowledge of the nuisance parameter
is quite substantial.

10.5.8 Estimation of Parameters

• Arnold (1968) proposed consistent estimators of λ1, λ2, and λ12.
• For the maximum likelihood estimation of parameters, one may refer to

Bemis et al. (1972), Proschan and Sullo (1974, 1976), and Bhattacharyya
and Johnson (1971, 1973). Proschan and Sullo (1976) also proposed esti-
mators based on the first iteration of the maximum of the log-likelihood

2 The term nonfatal shock model is perhaps unfortunate, as it may suggest that the shocks
are injurious, whereas in fact it is usually assumed that they are either fatal or do not have
an effect at all.
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function. Awad et al. (1981) proposed “partial maximum likelihood esti-
mators.” Chen et al. (1998) investigated the asymptotic properties of the
maximum likelihood estimators based on mixed censored data.

• Hanagal and Kale (1991a) constructed consistent moment-type estimators.
Hanagal and Kale (1991b) also discussed tests for the hypothesis λ12 = 0.

• For other references on estimation, see pp. 363–367 of Kotz et al. (2000).

10.5.9 Characterizations

Block (1977b) proved that X and Y with exponential marginals have Mar-
shall and Olkin’s bivariate exponential distribution if and only if one of the
following two equivalent conditions holds:

• min(X,Y ) has an exponential distribution,
• X − Y and min(X,Y ) are independent.

Some other characterizations have been established by Samanta (1975),
Obretenov (1985), Azlarov and Volodin (1986, Chapter 9), Roy and Mukher-
jee (1989), and Wu (1997).

10.5.10 Other Properties

• The joint moment generating function is

M(s, t) =
(λ + s + t)(λ1 + λ12)(λ2 + λ12) + λ12st

(λ1 + λ12 − s)(λ2 + λ12 − t)
.

• min(X,Y ) is exponential and max(X,Y ) has a survival function given by

e−(λ1+λ12)x + e−(λ2+λ12)x − e−(λ1+λ2+λ12)x, x > 0;

see Downton (1970) and Nagaraja and Baggs (1996).
• The aging properties of minimum and maximum statistics were discussed

by Franco and Vivo (2002), who showed that max(X,Y ) is a generalized
mixture of three exponential components. The distribution is neither ILR
(increasing likelihood ratio) nor DLR (decreasing likelihood ratio). Because
the minimum statistic is exponentially distributed, it is therefore both ILR
and DLR.

• The exact distribution of the product XY is given in Nadarajah (2006b).
• An expression for Rényi and Shannon entropy for this distribution was

obtained by Nadarajah and Zografos (2005).
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• The distribution is not infinitely divisible except in the degenerate case
when λ1 = 0 (or λ2 = 0) or when λ12 = 0 (in the latter case, X and Y are
independent).

• For dependence concepts for Marshall and Olkin’s bivariate distribution,
see Section 3.4 for details.

• Beg and Balasubramanian (1996) have studied the concomitants of order
statistics arising from this bivariate distribution.

• By letting θi = 1/λi, i = 1, 2, Boland (1998) has shown that c1X + c2Y is
“stochastically arrangement increasing” in c = (c1, c2)′ and θ = (θ1, θ2)′.

• It has the lack of memory property given below in (10.21).

10.5.11 Remarks

• This distribution was first derived by Marshall and Olkin (1967a). It is
sometimes denoted simply by BVE.

• H̄(x, y) can be expressed as

H̄(x, y) =
λ1 + λ2

λ
H̄a(x, y) +

λ12

λ
H̄s(x, y), (10.15)

where λ = λ1 + λ2 + λ12 and Hs and Ha are the singular and absolutely
continuous parts3 of H̄ given by

H̄s(x, y) = exp[−λmax(x, y)], (10.16)

H̄a(x, y) =
λ

λ1 + λ2
exp[−λ1x− λy − λmax(x, y)]

− λ12

λ1 + λ2
exp[−λmax(x, y)]. (10.17)

• For tests of independence, see Kumar and Subramanyam (2005) and the
references therein.

• Lu (1997) proposed a new plan for life-testing two-component parallel
systems under Marshall and Olkin’s bivariate exponential distribution.

• Earlier, Ebrahimi (1987) also discussed accelerated life tests based on Mar-
shall and Olkin’s model.

• In the “competing risks” context [for an explanation of this, see Chapter
9 of Cox and Oakes (1984)], this distribution is fully identified, provided
it is known which observations correspond to failure from both causes
together as well as which correspond to failure from each cause alone.
This is because the distribution arises from three kinds of shocks acting

3 That is, referring respectively to Y = X (with positive probability) and Y �= X (where
the p.d.f. is finite). More formally, a bivariate distribution H is absolutely continuous if
the joint density exists almost everywhere.
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independently, and that leading to failure of Type 1 and Type 2 together
can simply be treated as a failure of Type 3; see David and Moeschberger
(1978, Section 4.4).

• In collecting data where this distribution is to be applied, it may happen
that the nature of the second failure is indeterminate; i.e., it is not known
whether the second shock would or would not have knocked out both
components had both still been functioning. This leads to difficulties in
estimating the λ’s; see Shamseldin and Press (1984).

• Klein and Moecshberger (1988) made some calculations of errors resulting
from wrongly assuming that component lifetimes have independent expo-
nential distributions when in fact they jointly have Marshall and Olkin’s
distribution. They carried out the calculations for both series and parallel
systems.

• According to Klein and Basu (1985), if interest centers on estimating H̄,
the matter is not as simple as merely substituting good estimates of the
model parameters into (10.13), as the resulting estimate may be biased to
an unacceptable degree. So, Klein and Basu discussed some methods of
bias reduction.

• This distribution and the associated shock model quickly received atten-
tion in the reliability literature; see Harris (1968). Some developments
since then include the following. A brief report on a two-component sys-
tem with Marshall and Olkin’s distributions for both life and repair times
is due to Ramanarayanan and Subramanian (1981). Osaki (1980), Sugasaw
and Kaji (1981), and Goel et al. (1985) have presented some results for a
two-component system in which failures follow this model, but other dis-
tributions (such as those of inspection, repair, and interinspection times)
are arbitrary. Ebrahimi (1987) has given some results for the case where
the two-component system is tested at a number of different stress levels,
sj , and failures follow the Marshall–Olkin distribution, with each λ be-
ing proportional to s2j . Osaki et al. (1989) have presented some results for
availability measures of systems in which two units are in series, failure
of unit 1 shuts off unit 2 but not vice versa, with the lifetimes follow-
ing the Marshall–Olkin distribution, the units have arbitrary repair-time
distributions, and two alternative assumptions are made about the repair
discipline.

• Another account of this distribution is given by Marshall and Olkin (1985).
• A parametric family of bivariate distributions for describing the lifelengths

of a system of two dependent components operating under a common en-
vironment when component conditional lifetime distribution follows Mar-
shall and Olkin’s bivariate exponential and the environment follows an
inverse Gaussian distribution was derived by Al-Mutairi (1997).
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10.5.12 Fields of Application

Among many applications of Marshall and Olkin’s distribution, we note es-
pecially the fields of nuclear reactor safety, competing risks, and reliability.

Certainly, the idea of simultaneous failure of two components is far from
being merely of academic interest. Hagen (1980) has presented a review in the
context of nuclear power and has pointed out that introducing redundancy
into a system reduces random component failure to insignificance, leading
to the common-mode/common-cause type being predominant among system
failures.

Rai and Van Ryzin (1984) applied this distribution as a tolerance distri-
bution in a quantal response context to the occurrence of bladder and liver
tumors in mice exposed to one of several alternative dosages of a carcinogen.
Actually, the distribution was (i) used in the form with Weibull marginals
and (ii) mixed with a finite probability of tumors occurring even at zero dose.

Kotz et al. (2000) have provided a list of references for each of the three
primary applications mentioned above.

10.5.13 Transformation to Uniform Marginals

Cuadras and Augé (1981) proposed the following joint distribution, whose
support is the unit square:

H(x, y) =
{
x1−cy for x ≥ y,
xy1−c for x < y.

(10.18)

The corresponding joint density is

h(x, y) =

⎧
⎨

⎩

(1 − c)x−c for x > y,
(1 − c)y−c for x < y,
singularity along the diagonal x = y.

(10.19)

Cuadras and Augé did not refer to Marshall and Olkin, and so it is likely
that they were not aware that their distribution was a transformation of one
that is already known. Conway (1981) gave an illustration of the Marshall
and Olkin distribution after transformation to uniform marginals, and that
becomes an illustration of the Cuadras and Augé distribution.
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10.5.14 Transformation to Weibull Marginals

As with other distributions having exponential marginals, this one is some-
times generalized by changing them to Weibull; see, for example, Marshall
and Olkin (1967a), Moeschberger (1974), and Lee (1979).

10.5.15 Transformation to Extreme-Value Marginals

This distribution is sometimes met in the form with extreme value marginals.

10.5.16 Transformation of Marginals: Approach of
Muliere and Scarsini

First, consider the univariate case. Muliere and Scarsini (1987) presented a
general version of the lack of memory property as follows:

F̄ (s ∗ t) = F̄ (s)F̄ (t), (10.20)

where ∗ is any binary operation that is associative (i.e., such that (x∗y)∗z =
x ∗ (y ∗ z)). Examples include the following:

• The operation ∗ being addition leads to the usual lack of memory char-
acterization of exponential distribution: If F̄ (s + t) = F̄ (s)F̄ (t), then
F̄ (x) = e−λt.

• If x ∗ y = (xα + yα)1/α, then the Weibull distribution F̄ (x) = exp(−λxα)
results.

• If x ∗ y = xy, then the Pareto distribution F̄ (x) = x−λ results.

In the bivariate case, consider first the following version of the bivariate lack
of memory property:

H̄(s1 + t, s2 + t) = H̄(s1, s2)H̄(t, t). (10.21)

For more on this, see Section 10.22, but if we assume the marginals are
exponential, the solution is the Marshall and Olkin distribution. Now consider

H̄(s1 ∗ t, s2 ∗ t) = H̄(s1, s2)H̄(t, t) (10.22)

together with (10.20) for each marginal. The solution is then

H̄(s, t) = exp {−λ1a(s) − λ2a(t) − λ12a[max(s, t)]} , (10.23)
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with a(·) being a (strictly increasing) function corresponding to the operation
∗; i.e., a(x ∗ y) = a(x) + a(y). Examples include the following:

• The operation ∗ being addition leads to the Marshall and Olkin distribu-
tion.

• If x ∗ y = (xα + yα)1/α, the Weibull version of the Marshall and Olkin
distribution results, i.e., H̄(x, y) = exp[−λ1x

α − λ2y
α − λ12 max(xα, yα)].

• If x ∗ y = xy, then the result is H̄(x, y) = x−λ1y−λ2 [max(x, y)]−λ12 , the
Pareto version of Marshall and Olkin’s distribution. For related develop-
ments, one may refer to Sections 6.2.1 and 6.2.3 of Arnold (1983).

10.5.17 Generalization

Johnson and Kotz (1972, p. 267) have credited Saw (1969) for the proposal
of replacing max(x, y) in (10.13) by an increasing function of max(x, y). One
choice leads to

H̄(x, y) = [1 + max(x, y)]λ12 exp[λ1x− λ2y − λ12 max(x, y)]. (10.24)

Marshall and Olkin (1967b) considered some generalizations of (10.13),
including

H̄(x, y) = exp{−λ1x− λ2y − λ12 max[x, y + min(x, δ)]}, δ ≥ 0. (10.25)

Ohi and Nishida (1979), following an idea of Itoi et al. (1976), considered
the case where component i (i = 1, 2) needs ki shocks before it fails. The
bivariate life distribution that results is called a bivariate Erlang distribution
(BVEr). Ohi and Nishida then showed that:

• X and Y are positively regression dependent (see Section 3.4.4 for this
concept).

• BVEr is bivariate NBU but not bivariate IFR. Here bivariate NBU is
defined as a joint distribution that satisfies the inequality H̄(x+ t, y+ t) ≤
H̄(x, y)H̄(t, t) for all x, y, t ≥ 0.

Hyakutake (1990) suggested incorporating location parameters ξ1 and ξ2
in the BVE. The joint survival function is

H̄(x, y) = e−λ1(x−ξ1)−λ2(y−ξ2)−λ12 max(x−ξ1,y−ξ2), x > ξ1, y > ξ2.

Ryu (1993) extended Marshall and Olkin’s model such that the new joint
distribution is absolutely continuous and need not be memoryless. The new
marginal distribution has an increasing failure rate, and the joint distribution
exhibits an aging pattern.
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10.6 ACBVE of Block and Basu

10.6.1 Formula of the Joint Density

The joint density is

h(x, y) =

⎧
⎨

⎩

λ1λ(λ2+λ12)
λ1+λ2

exp[−λ1x− (λ2 + λ12)y] if x < y,

λ2λ(λ1+λ12)
λ1+λ2

exp[−(λ1 + λ12)x− λ2y] if x > y,
(10.26)

where x, y ≥ 0, the λ’s are positive, and λ = λ1 + λ2 + λ12.

10.6.2 Formula of the Cumulative
Distribution Function

The upper right volume under the probability density surface is given by

H̄(x, y) =
λ

λ1 + λ2
exp[−λ1x− λ2y − λ12 max(x, y)]

− λ12

λ1 + λ2
exp[−λmax(x, y)]. (10.27)

10.6.3 Univariate Properties

The marginals are not exponential but rather a negative mixture of two
exponentials given by

F̄ (x) =
λ

λ1 + λ2
exp[−(λ1 + λ12x)] − λ12

λ1 + λ2
exp(−λx), (10.28)

and a similar expression holds for Ḡ(y) as well.

10.6.4 Correlation Coefficient

Pearson’s product-moment correlation coefficient is

(λ1+λ2)
2(λ1+λ12)(λ2+λ12)−λ2λ1λ2√

[(λ1+λ2)2(λ1+λ12)2+λ2(λ2+2λ1)λ2][(λ1+λ2)2(λ2+λ12)2+λ1(λ1+2λ2)λ2]
. (10.29)
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We feel that the expression presented by Block and Basu (1974) may be in
error.

10.6.5 Moment Generating Function

The m.g.f. may be obtained from (10.10) (by using substitutions given in
Section 10.6.6) to be

M(s, t) =
1

λ1 + λ2

λ

λ− (s + t)

[
λ1(λ2 + λ12)
λ2 + λ12 − t

+
(λ1 + λ12)λ2

λ1 + λ12 − s

]

. (10.30)

10.6.6 Derivation

This distribution was derived by Block and Basu (1974) by omitting the
singular part of Marshall and Olkin’s distribution; see also Block (1975).
Alternatively, it can be derived by Freund’s method, with

α = λ1 + λ12[λ1/(λ1 + λ2)]
α′ = λ1 + λ12

β = λ2 + λ12[λ2/(λ1 + λ2)]
β′ = λ2 + λ12

⎫
⎪⎪⎬

⎪⎪⎭

. (10.31)

10.6.7 Remarks

• min(X,Y ) is an exponential variate.
• X − Y and min(X,Y ) are independent variables.
• The lack of memory property holds.
• For inferential methods, see Hanagal and Kale (1991a), Hanagal (1993),

Achcar and Santander (1993), and Achcar and Leandro (1998).
• Achcar (1995) has discussed accelerated life tests based on bivariate expo-

nential distributions.
• The exact distributions of sum R = X + Y , the product P = XY , and

the ratio W = X/(X + Y ), and the corresponding moment properties are
derived by Nadarajah and Kotz (2007) when X and Y follow Block and
Basu’s bivariate exponential distribution.

• From the expression for H̄(x, y), it is easy to show that the distribution is
PQD.
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10.6.8 Applications

Gross and Lam (1981) considered this distribution to be suitable in cases
such as the following:

• lengths of tumor remission when a patient receives different treatments on
two occasions,

• lengths of time required for analgesics to take effect when patients with
headaches receive different ones on two occasions.

Gross and Lam were then concerned primarily with developing hypothesis
tests for equality of marginal means. They also made the following suggestion
for determining whether Block and Basu’s distribution is appropriate or not:

• Test whether min(X,Y ) has an exponential distribution.
• Test whether X − Y and min(X,Y ) are uncorrelated.
• Test whether X − Y has the distribution given by their Eq. (4.1).

These three properties, except with independence replacing zero correlation
in the second of them, together characterize the Block and Basu distribution.

Block and Basu’s bivariate exponential distribution was applied by Nadara-
jah and Kotz (2007) to drought data.

10.7 Sarkar’s Distribution

10.7.1 Formula of the Joint Density

For (x, y) in the positive quadrant, the joint density function h(x, y) is given
by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1λ
(λ1+λ2)2

exp[−λ1x− (λ2 + λ12)y]
×[(λ1 + λ2)(λ2 + λ12) − λ2λ exp(−λ1y)][A(λ1x)]γ [A(λ2y)]−(1+γ) if x ≤ y,

λ2λ
(λ1+λ2)2

exp[−(λ1 + λ12)x− λ2y]
×[(λ1 + λ2)(λ2 + λ12) − λ1λ exp(−λ2y)][A(λ1x)]−(1+γ)[A(λ2y)]γ ifx ≥ y,

(10.32)
where the λ’s are positive, λ = λ1 + λ2 + λ12, γ = λ12/(λ1 + λ2), and
A(z) = 1 − exp(−z).
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10.7.2 Formula of the Cumulative
Distribution Function

The joint survival function is given by

H̄(x, y) =
{

exp[−(λ2 + λ12)y]{1 − [A(λ1x)]1+γ}[A(λ2y)]−γ if x ≤ y,
exp[−(λ1 + λ12)y]{1 − [A(λ1x)]−γ}[A(λ2x)]1+γ if x ≥ y,

(10.33)
H(x, y) is absolutely continuous in this case.

10.7.3 Univariate Properties

Both the marginal distributions are exponential.

10.7.4 Correlation Coefficient

An expression for Pearson’s correlation coefficient has been given by Sarkar
(1987) but is rather complicated.

10.7.5 Derivation

This distribution, sometimes denoted by ACBVE2, was derived by Sarkar
through the following conditions of characterization:

• The bivariate distribution is absolutely continuous.
• X and Y are exponential variates with parameters λ1 + λ12 and λ2 + λ12,

respectively.
• min(X,Y ) is exponential with parameter λ = λ1 + λ2 + λ12.
• min(X,Y ) is independent of g(X,Y ) for some g of the form l(x) − l(y),

where l is an increasing function.

10.7.6 Relation to Marshall and Olkin’s Distribution

This distribution is obtained from Marshall and Olkin’s distribution by re-
quiring absolute continuity of the distribution function and by replacing the
condition of independence of min(X,Y ) and X−Y by the modified condition
above. Also, it does not possess the lack of memory property now.
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10.8 Comparison of Four Distributions

At this point, we compare the properties of the Marshall and Olkin, Block
and Basu, Sarkar, and Freund distributions in the following table.

Marshall Block Sarkar Freund

and Olkin and Basu

Exponential marginals
√ √

Absolutely continuous
√ √ √

Bivariate lack of
√ √ √

memory, (10.21)
min(X, Y ) is exponential

√ √ √ √

min(X, Y ) is independent
√ √

modified
√

of X − Y

10.9 Friday and Patil’s Generalization

Friday and Patil (1977) proposed a distribution that subsumes both Fre-
und’s and Marshall and Olkin’s distributions with joint survival function

H̄(x, y) = γH̄A(x, y) + (1 − γ)H̄B(x, y), (10.34)

where H̄A is the survival function corresponding to Freund’s distribution
(10.7), and H̄B is the singular distribution exp[−(α + β)max(x, y)]. More
explicitly, we have

H̄(x, y)

=
{
θ1 exp[−(α + β − β′)x− β′y] + (1 − θ1) exp[−(α + β)y] for x ≤ y,
θ2 exp[−α′x− (α + β − α′)y] + (1 − θ2) exp[−(α + β)x] for x ≥ y,

(10.35)

where θ1 = γα(α + β − β′)−1, θ2 = γβ(α + β − α′)−1, and 0 ≤ γ ≤ 1. This
distribution is another one that has the lack of memory property in (10.21).
It is sometimes denoted by BEE.

Friday and Patil also showed that only two independent standard exponen-
tial variates are needed to generate a pair (X,Y ) with their distribution as in
(10.35), and thus the same is true for Freund’s and Marshall and Olkin’s dis-
tributions. They then examined the computational efficiency of their scheme.
Some further results have been given by Itoi et al. (1976).

The model of Platz (1984) is another one that includes both Marshall and
Olkin and Freund models and in addition one-out-of-three and two-out-of-
three systems with identical components.



426 10 Bivariate Exponential and Related Distributions

Remarks

• Of course, the Friday and Patil bivariate exponential distribution also
includes Block and Basu’s ACBVE.

• The distributions of the maximum and minimum statistics are given in
Baggs and Nagaraja (1996). The maximum is either a generalized mixture
of three or fewer exponentials or a mixture of gamma and exponentials.
Franco and Vivo (2002) considered their IFR and DFR properties.

• Franco and Vivo (2007) gave a comprehensive study on the aging proper-
ties of the extreme statistics min(X,Y ) and max(X,Y ).

• Sun and Basu (1993) have shown that among the bivariate exponen-
tial distributions with constant total failure rates and constant Pr[X >
Y |min(X,Y ) = t], the Friday and Patil distribution is the largest family.

• The proposed infinitesimal generator representation of Wang (2007) can
be used to characterize the bivariate exponential distributions of Freund,
Marshall and Olkin, Block and Basu, and Friday and Patil.

10.10 Tosch and Holmes’ Distribution

The model of Tosch and Holmes (1980) generalizes both the Marshall and
Olkin and Freund models. It permits simultaneous failure of both compo-
nents, and the residual lifetime of one component is not independent of the
status (working or failed) of the other component. Stated formally,

X min(U1, U2) + U3I{U1>U2}
Y min(U1, U2) + U4I{U1≤U2}

}

, (10.36)

where the U ’s are non-negative mutually independent r.v.’s and I{·} is the
indicator variable, i.e., it is 1 if the condition within the brackets is true and
zero if it is false. In other words, if component 1 is the first to fail, then its
lifetime X is U1 and the second component’s extra lifetime is U4; conversely,
if component 2 is the first to fail, its lifetime is U2 and the first component’s
extra lifetime is U3. The cumulative distribution of (10.36) cannot be easily
obtained in general. However, it can be found when U1 and U2 are exponential
variables with scale parameters α and β, respectively, and U3 and U4 are
exponential variables apart from discontinuity at the origin (i.e., Pr(U3 ≤
t) = 1 − q + q[1 − exp(α′t)] and Pr(U4 ≤ t) = 1 − q + q[1 − exp(−β′t)], with
0 ≤ q ≤ 1).
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10.11 A Bivariate Exponential Model of Wang

Wang (2007) used a counting process approach for characterizing a system
of two dependent component failure rates. The components are subjected to
a series of Poisson shocks. The distribution in question was derived by speci-
fying the entries of the infinitesimal generator of a continuous time generator
(Q matrix).

For a two-component system, state 0 denotes no failure and states 11, 12,
and 2 denote the failure of components 1, 2, and both components, respec-
tively. The corresponding failure rates are λ1, λ2, and λ12, respectively. The
failure rate of the surviving component changes from λi to λ′

i after the other
component fails. The infinitesimal generator of the model is

Q =

0
11

12

2

⎛

⎜
⎜
⎝

−(λ1 + λ2 + λ12) λ1 λ2 λ12

0 −(λ′
2 + λ12) 0 (λ′

2 + λ12)
0 0 −(λ′

1 + λ12) (λ′
1 + λ12)

0 0 0 0

⎞

⎟
⎟
⎠ .

(10.37)

10.11.1 Formula of the Joint Density

Let Q = λ1+λ2
λ Qa + λ12

λ Qs. Then

h(x, y) =

{
λ1λ(λ′

2+λ12)
λ1+λ2

exp[−(λ1 + λ2 − λ′
2)x− (λ′

2 + λ12)y], 0 < x < y,
λ2λ(λ′

1+λ12)
λ1+λ2

exp[−(λ′
1 + λ12)x− (λ1 + λ2 − λ′

1)y], 0 < y < x,

(10.38)
is the joint density function that corresponds to Qa and g(t) = λ exp(−λt)
corresponds to the Qs matrix.

10.11.2 Univariate Properties

Marginals are not exponentially distributed.

10.11.3 Remarks

Wang (2007) has shown:
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• If λ′
1 = λ1 and λ′

2 = λ2, then Qa corresponds to the infinitesimal generator
of the Block and Basu distribution and Q is the infinitesimal generator of
the Marshall and Olkin distribution.

• If λ12 = 0, then Qa corresponds to the infinitesimal generator of the Freund
distribution.

• Let 0 ≤ γ ≤ 1 and set λ12 = 0. Then γQa + (1 − γ)Qs is the infinitesimal
generator for the Friday and Patil distribution.

10.12 Lawrance and Lewis’ System of Exponential
Mixture Distributions

Lawrance and Lewis’ (1983) models are easy to simulate, can represent a
broad range of correlation structures, and are analytically tractable.

10.12.1 General Form

To begin with, we note that if E1 and E2 are i.i.d. standard exponential
variates and (independently of E1 and E2) if I is 0 or 1 with probabilities β
and 1−β, respectively, then βE1+IE2 is also a standard exponential variate.

The general form of this model [see Lawrance and Lewis (1983)] is

X = β1V1E1 + I1E2

Y = I2E1 + β2V2E2

}

, (10.39)

where E1 and E2 are independent and exponentially distributed, V1 and
V2 are each either 0 or 1 (not necessarily independent of each other) with
Pr(Vi = 1) = αi, and I1 and I2 are each either 0 or 1 (not necessarily
independent of each other) with Pr(Ii = 1) = (1 − βi)/[1 − (1 − αi)βi].

Lawrance and Lewis termed the model in (10.39) the EP+ model. They
had focused on three special cases, denoted by EP1, EP3, and EP5.

10.12.2 Model EP1

This takes α1 = α2 = 1, β1 = β2(= β), and I1 = I2(= I). Thus,

X = βE1 + IE2

Y = IE1 + βE2

}

(10.40)

with Pr(I = 1) = 1 − β.
The joint density in this case is
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h(x, y) = I{βy<x<y/β}
1

1 + β
exp
(

−x + y

1 + β

)

+
1
β

exp
(

−x + y

β

)

,

0 < β ≤ 1 (10.41)

where I{·} is the indicator function, as earlier. Lawrance and Lewis illus-
trated this density for β = 0.5. The product-moment correlation is 3β(1−β),
and so it is at β = 0.5 that it reaches its maximum. The grade correlation
(Spearman’s rho) is given by 3β(1 − β)(8 + 7β + β2)/[(1 + β)2(2 + β)2].

10.12.3 Model EP3

This takes α1 = α2 = 1, with (I1, I2) having maximum possible dependency.
The last statement means that the possible combination of values occurs with
the following probabilities:

I2 = 0 I2 = 1

I1 = 0 min(β1, β2) max(β1 − β2, 0)
I1 = 1 max(β2 − β1, 0) min(1 − β1, 1 − β2)

Then,
X = β1E1 + I1E2

Y = I2E1 + β2E2

}

(10.42)

with probabilities of the various combinations of values of I1 and I2 being as
above.

Lawrance and Lewis presented expressions for both the product-moment
correlation and the grade (Spearman’s ρ) correlation.

10.12.4 Model EP5

This takes α1 = α2 (= α), β1 = β2 (= β), V1 = V2 (= V ), and I1 = I2 (= I).
Thus,

X = βV E1 + IE2

Y = IE1 + βV E2

}

(10.43)

with Pr(V = 1) = α and Pr(I = 1) = (1 − β)/[1 − (1 − α)β].
The product-moment correlation in this case is 3αβ(1 − αβ).
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10.12.5 Models with Negative Correlation

Lawrance and Lewis also discussed a number of analogous models that have
negative correlations, still with exponential marginals.

10.12.6 Models with Uniform Marginals

Lawrance and Lewis also discussed thedistributions above after they were
transformed to have uniform marginals. They presented an illustration of the
EP1 model (with β = 0.32) after such a transformation.

10.12.7 The Distribution of Sums, Products,
and Ratios

Nadarajah and Ali (2006) derived the exact distribution of R = X + Y ,
P = XY , and W = X/(X + Y ) when X and Y follow Lawrance and Lewis’
bivariate exponential distribution.

10.12.8 Mixture Models

Models that can exhibit either positive or negative dependence can be ob-
tained easily by mixing one of those having positive correlation with one of
those having negative correlation.

10.12.9 Models with Line Singularities

Models that are like Marshall and Olkin’s distribution in that there is a
nonzero probability that Y = X may be readily constructed.

Let (X1, X2) be a pair of variates with standard exponential marginals,
such as those described above. Let E be an independent standard exponential
variate. Let (I1, I2) be an indicator pair, possibly completely or partially
dependent, with marginal probabilities Pr(Ii = 1) = 1 − βi. Three methods
of obtaining a distribution having a line singularity are as follows:

X = I1X1 + (1 − I1)E
Y = I2X2 + (1 − I2)E

}

, (10.44)
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X = I1X1 + β1E
Y = I2X2 + β2E

}

, (10.45)

X = min(X1, E)
Y = min(X2, E)

}

. (10.46)

10.13 Raftery’s Scheme

In its general form, Raftery’s (1984, 1985) scheme of obtaining a bivariate
distribution with exponential marginals is given by

X = (1 − p10 − p11)U + I1W
Y = (1 − p01 − p11)V + I2W

}

, (10.47)

where U, V,W are independent and exponentially distributed, and in ad-
dition, they are independent of Ii. I1 and I2 are each either 0 or 1, with
probabilities as set out below:

I2 = 0 I2 = 1

I1 = 0 p00 p01

I1 = 1 p10 p11

Raftery showed the correlation to be 2p11− (p01 +p11)(p10 +p11). There is
also an extension of the model to permit negative correlation. Raftery then
paid special attention to the following cases.

10.13.1 First Special Case

This sets p01 = p10 = 0, so that

X = (1 − p11)U + IW
Y = (1 − p11)V + IW

}

. (10.48)

10.13.2 Second Special Case

This sets p01 = 0, p10 = 1 − p11, so that

X = W
Y = (1 − p11)V + I2W

}

, (10.49)
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and the distribution in this case is a mixture of independence and weighted
linear combination.

10.13.3 Formula of the Joint Density

The joint density function can be obtained in explicit form but is quite messy;
see Raftery (1984).

10.13.4 Formula of the Cumulative
Distribution Function

The joint survival function that corresponds to (10.48) with δ = p11 is

H̄(x, y)

=
{
e−x + 1−δ

1+δ e
−x/(1−δ){eyδ/(1−δ) − e−y/(1−δ)} for x ≥ y,

e−y − 1−δ
1+δ e

−y/(1−δ){exδ/(1−δ) − e−x/(1−δ)} for x ≤ y.

(10.50)

10.13.5 Derivation

The distribution aries from a shock model in the following manner. Consider a
system that has two components, S1 and S2, each of which can be functioning
normally, unsatisfactory, or have failed. The system is subject to three kinds
of shock, governed by independent Poisson processes. These kinds of shocks
cause normal components to become unsatisfactory, an unsatisfactory S1 to
fail, and an unsatisfactory S2 to fail, respectively.

10.13.6 Illustrations

Contours of the joint density have been represented by Raftery (1984).
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10.13.7 Remarks

• Generation of random variates is easy by following the method of con-
struction given in (10.47).

• The distribution can attain the Fréchet bounds.
• O’Cinneide and Raftery (1989) have shown that this distribution is an

example of a bivariate phase-type distribution; see Assaf et al. (1984).
• The distributions of the extreme statistics min(X,Y ) and max(X,Y ) were

given in Baggs and Nagaraja (1996), and their aging properties were dis-
cussed in Franco and Vivo (2002). See also Baggs and Nagaraja (1996) for
their elementary aging properties.

• Bhattacharyya (1997) adopted Raftery’s bivariate exponential construc-
tion to propose an absolutely continuous bivariate model for modeling
survival data with random censoring when the censoring pattern and the
failure pattern are dependent and follow exponential distributions with
different means.

10.13.8 Applications

Raftery (1984) applied a Weibull version of this model to fit two datasets:

• Two hundred forty-nine pairs of successive failure times of a computer
[Cox and Lewis (1966, p. 16)]; it was found that p01 = p10 is suitable in
this case.

• Proportions of a population who were without a car and who were foreign-
born for the 88 unincorporated places with a population greater than 25000
found in the 1960 U.S. Census [Tukey (1977, p. 323)]; it was found that
p01 = 0 is suitable in this case.

10.14 Linear Structures of Iyer et al.

Iyer et al. (2002) derived bivariate exponential distributions using auxiliary
random variables that form linear structures. Two types of bivariate expo-
nential models were developed. One gives positive correlations, and the other
yields negative correlations. The bivariate models they developed are based
on the work of Gaver and Lewis (1980).
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10.14.1 Positive Cross Correlation

X and Y are linearly related in the form

Y = aX + Z, a > 0, (10.51)

where a is a constant and X and Z are independent. In fact, Z = IE, where I
is the indicator variable (Bernoulli variable) with Pr(I = 1) = (1−aρ1), ρ1 >
0, and E is exponential with parameter λy; so, I and E are independent,
so Z is a discontinuous exponential at the origin with distribution function
aρ1 + (1 − aρ1)(1 − eλyz).

Univariate Properties

X and Y have exponential distributions with parameters λx and λy,
respectively.

10.14.1.1 Correlation Coefficient

Pearson’s product-moment correlation is simply ρ = aρ1.

10.14.2 Negative Cross Correlation

The aim is to obtain a negative cross correlation between X and Y . The
model considered is then

X = aP + V
Y = bQ + W

}

(10.52)

for a, b ≥ 0. Here, P and Q are independent of each other and so are Q and
W . The following three models were focused on.

Model 1

P and Q are antithetic exponential variables given by

P = − 1
λp

logU, Q = − 1
λq

logU,

where U is uniform on (0, 1). V is the product of a Bernoulli variable with
mean (1 − aλx

λp
) and an exponential with parameter λx. Similarly, W is the

product of a Bernoulli variable with mean (1−a
λy

λq
) and an exponential with



10.14 Linear Structures of Iyer et al. 435

parameter λy. Then, it turns out that

corr(X,Y ) = ρ =
abλxλy

λpλq

(

1 − π2

6

)

, 0 ≤ aλx

λp
,
aλy

λa
≤ 1.

It follows that
(
1 − π2

6

)
≤ ρ ≤ 0. As a special case, instead of assuming

V and W to be independent, we could have W = V so that cov(X,Y ) =
ab cov(P,Q) + σ2

v , where σ2
v is the variance of V .

Model 2

V and W are antithetic such that

V =

{
0 if U ≤ c

− 1
λv

log
(

1−U
1−c

)
if U > c

, W =
{

0 if U ≤ d
− 1

λw
log
(

U
d

)
if U > d

,

for 0 ≤ c, d ≤ 1. X and Y are exponential variables with parameters λx = λv

and λy = λw, and P and Q are independent exponential variables with λp

and λq such that c = aλx

λp
and 1 − d = bλy

λq
. Then, it turns out that

ρ =

{∫ d

c
log 1−u

1−c log u
ddu− (1 − c)d if c < d

−(1 − c)d if d ≤ c
.

The magnitude of negative correlation from Model 2 can exceed (π2/6) − 1.

Model 3

In this model, we can make both P and Q and V and W antithetic, with P
and Q being independent of V and W .

10.14.3 Fields of Application

This bivariate exponential model is useful in introducing dependence between
the interarrival and service times in a queueing model and in a failure process
involving multicomponent systems.
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10.15 Moran–Downton Bivariate
Exponential Distribution

This bivariate exponential distribution was first introduced by Moran (1967)
and then popularized by Downton (1970). In fact, it is a special case of
Kibble’s bivariate gamma distribution discussed in Section 8.2. Many authors
simply call it Downton’s bivariate exponential distribution.

10.15.1 Formula of the Joint Density

The joint density function is

h(x, y) =
1

1 − ρ
exp[−(x + y)/(1 − ρ)]I0

(
2
√
xyρ

1 − ρ

)

, x, y ≥ 0, (10.53)

where I0 is the modified Bessel function of the first kind of order zero.

10.15.2 Formula of the Cumulative
Distribution Function

Expressed as an infinite series, the joint cumulative distribution function is

H(x, y) = (1−e−x)(1−e−y)+
∞∑

j=0

ρj+1

(j + 1)2
L

(1)
j (x)L(1)

j (y)xye−(x+y) (10.54)

for x, y ≥ 0, where the L
(1)
j are Laguerre polynomials defined earlier in Sec-

tion 8.2.1.

10.15.3 Univariate Properties

Both marginal distributions are exponential.

10.15.4 Correlation Coefficients

The value ρ in (10.53) is in fact Pearson’s product-moment correlation. As
to the estimation of ρ, Al-Saadi and Young (1980) obtained the maximum
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likelihood estimator, the method of moments estimator, the sample correla-
tion estimator, and the two bias-reduction estimators; see also Nagao and
Kadoya (1971).

Balakrishnan and Ng (2001a) proposed two modified bias-reduction esti-
mators, ρ̃5 and ρ̃6, and their jackknifed versions, ρ̃5,J and ρ̃6,J , respectively.
They carried out an extensive simulation study and found that both jack-
knife estimators reduce the bias substantially. Although ρ̃6,J seems to be the
best estimator in terms of bias, it has a larger mean squared error. Overall, ρ̃6

seems to be the best estimator, as it possesses a small bias as well as a smaller
mean squared error than that of ρ̃6,J . For the bivariate as well as multivariate
forms of the Moran–Downton exponential distribution, Balakrishnan and Ng
(2001b) studied the properties of estimators proposed by Al-Saadi and Young
(1980) and Balakrishnan and Ng (2001a). They also used these estimators to
propose pooled estimators in the multi-dimentional case and compared their
performance with maximum likelihood estimators by means of Monte Carlo
simulations.

10.15.5 Conditional Properties

The regression E(Y |X = x) and the conditional variance are both linear in
x; see Nagao and Kadoya (1971).

10.15.6 Moment Generating Function

The joint moment generating function is

M(s, t) = [(1 − s)(1 − t) − ρst]−1. (10.55)

10.15.7 Regression

The regression is linear and is given by

E(Y |X = x) = 1 + ρ(x− 1). (10.56)
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10.15.8 Derivation

In the context of reliability studies, Downton (1970) used a successive dam-
age model to derive this distribution as follows. Consider a system of two
components, each being subjected to shocks, the interval between successive
ones having an exponential distribution. Suppose the number of shocks N1

and N2 required to fail follows a bivariate geometric distribution with joint
probability generating function

P (z1, z2) =
z1z2

1 + α + β + γ − αz1 − βz2 − γz1z2
. (10.57)

Write

(X,Y ) =

(
N1∑

i=1

Xi,

N2∑

i=1

Yi

)

, (10.58)

where Xi and Yi are the intershock intervals, mutually independent exponen-
tial variates. Then, the component lifetimes (X,Y ) have a joint density as in
(10.53).

Gaver (1972) gave a slightly different motivation for this distribution. He
supposed that two types of shocks are occurring on an item of equipment,
fatal and nonfatal. Repairs are only made after a fatal shock has occurred;
repairs of all the nonfatal defects are also made then. If it is assumed that
the two types of shocks both follow Poisson processes and the time for repair
is the sum of the random number of exponential variates, then the time to
failure and time to repair have Downton’s bivariate exponential distribution.
Expressed concisely, the positive correlation arises because the longer the
time to fail, the longer the cumulated nonfatal damage.4

10.15.9 Fisher Information

We now introduce marginal parameters μ1 and μ2 to X and Y , respectively.
Let l = log h(x, y) denote the log-likelihood function and

Q = E

[√
ρμ1μ2xy

1 − ρ
I1

{
2
√
ρμ1μ2xy

1 − ρ

}

I−1
0

{
2
√
ρμ1μ2xy

1 − ρ

}]2
.

4 Gaver (1972) described another model that contrasts with this one because it leads to negative
correlation between exponential variates. Instead of failures occurring because of shocks from
outside, they occur due to built-in defects. Let it be supposed that, when a failure occurs, a
detailed inspection of the equipment is made, and all the defects are discovered and repaired. A
short time to failure is likely to have arisen because there were many built-in defects and is thus
likely to be associated with a lengthy time of repair. Conversely, a long time to failure probably
comes because there is only one defect, or very few, in which case the repair time will be short.
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Shi and Lai (1998) have derived explicit formulas for the Fisher information
matrix, and these are as follows:

E
(

∂l
∂μi

)2

= 1
μ2

i

{
2−4ρ

(1−ρ)2 − 1 + Q
}
, i = 1, 2,

E
(

∂l
∂ρ

)2

= 1
(1−ρ)2

{

− 2+6ρ
(1−ρ)2 − 1 +

(
1 + 1

ρ

)2

Q

}

,

E
(

∂l
∂μi

∂l
∂ρ

)
= 1

μi(1−ρ)

{
1−5ρ

(1−ρ)2 − 1 +
(
1 + 1

ρ

)
Q
}
, i = 1, 2,

E
(

∂l
∂μ1

∂l
∂μ2

)
= 1

μ1μ2

{
1−3ρ

(1−ρ)2 − 1 + Q
}
.

10.15.10 Estimation of Parameters

We have discussed statistical inference on the correlation coefficient ρ in Sec-
tion 10.15.4.

Suppose now that the scale parameters of X and Y are λ1 and λ2, respec-
tively. Iliopoulos (2003) then considered the estimation of λ = λ2/λ1, which
is the ratio of the means of the two marginal distributions. For Bayesian
estimation of the ratio, see Iliopoulos and Karlis (2003).

10.15.11 Illustrations

An example of the surface of probability density has been given by Nagao
and Kadoya (1971).

10.15.12 Random Variate Generation

Let
X∗

1 = X(1 − ρ)
X∗

2 = Y (1 − ρ)

}

(10.59)

for 0 ≤ ρ ≤ 1, where X and Y are standard exponential variates. The joint
characteristic function ϕ(s, t) of X∗

1 and X∗
2 satisfies the relation

ϕ(s, t) = ψ(s)ψ(t)[(1 − ρ) + ρψ(s, t)], (10.60)

where ψ(t) is the c.f. of the marginals, given by [1 − it(1 − ρ)]−1. To avoid
the intermediate generation of bivariate normal variates, Paulson (1973) pro-
posed the following method of random variate generation. Suppose ϕn(s, t),
n = 1, 2, . . . , is a sequence of characteristic functions that satisfies the re-
currence relation ϕn(s, t) = ψ(s)ψ(t)[(1 − ρ) + ρϕ(s, t)]. This corresponds
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to the vector-valued r.v. Yn = Un + VnYn−1, where {Un} is a sequence
of independent bivariate r.v.’s whose components are independent standard
exponential variates, {Vn} is a sequence of matrix-valued r.v.’s that take on

the value
(

0 0
0 0

)

and
(

1 0
0 1

)

with probabilities (1−ρ) and ρ, respectively, Vn

and Un being mutually independent and Y0 = 0 a vector of zero.
It is clear that ϕn(s, t) converges to ϕ(s, t), and hence {Yn} converges in

distribution to (X∗
1 , X

∗
2 )′. Hence, (X∗

1 , X
∗
2 ) can be generated as accurately

as desired by choosing an appropriate value of n; the value n = 10 seems
to be quite satisfactory for ρ between 0 and 0.6. Finally, we set (X,Y ) =
((1 − ρ)−1X∗

1 , (1 − ρ)−1X∗
2 ).

10.15.13 Remarks

• This distribution is a special case of the bivariate exponential distribu-
tions of Hawkes (1972), Paulson (1973), and Arnold (1975a) and Kibble’s
bivariate gamma as pointed out at the onset of this section.

• A detailed study was made by Nagao and Kadoya (1971).
• X + Y is expressible as the sum of two independent exponential variates

with parameters (1 +
√
ρ)−1 and (1−√

ρ)−1, respectively; see Lai (1985).
• A formula related to the use of this distribution in the “competing risk”

context can be found in David and Moeschberger (1978, Section 4.2).
• H(x, y)−F (x)G(y) increases as ρ increases; see Lai and Xie (2006, p. 323).
• The exact distribution of the product XY was obtained by Nadarajah

(2006b).
• Sums, products, and ratios for Downton’s bivariate exponential distribu-

tion were derived by Nadarajah (2006c).
• The distributions of the extreme statistics min(X,Y ) and max(X,Y ) were

studied in Downton (1970).
• μ(2) = E(max(X,Y )) of the Moran–Downton distribution were compared

with F-G-M and Marshall and Olkin’s bivariate exponential distributions;
see Kotz et al. (2003b).

• X and Y are SI (stochastically increasing) and thus are PQD; see Example
3.6 in Chapter 3.

• Hunter (2007) examined the effect of dependencies in the arrival process
on the steady-state queue length process in single-server queueing models
with exponential service time distribution. Four different models for the
arrival process, each with marginally distributed exponential interarrivals
to the queueing system, are considered. Two of these models are based
on the upper and lower bounding joint distribution functions given by the
Fréchet bounds for bivariate distributions with specified marginals, the
third is based on Downton’s bivariate exponential distribution, and the
fourth is based on the usual M/M/1 model.



10.15 Moran–Downton Bivariate Exponential Distribution 441

• Brusset and Temme (2007) obtained an analytically closed form of a
quadratic objective function arising from a stochastic decision process un-
der Moran and Downton’s bivariate exponential distribution. The authors
claimed that such objective functions often arise in operations research,
supply chain management, or any other setting involving two random
variables.

• The expression for the cumulative distribution function (10.54) shows that
the joint distribution can be expanded diagonally in terms of Laguerre
orthonormal polynomials.

10.15.14 Fields of Application

• Queueing systems. Consider a single-server queueing system such that
the interarrival time X and the service time Y have exponential distri-
butions, as is a common assumption in this context. If it is desired to
introduce positive correlation (arising from cooperative service) into the
model, Downton’s distribution is a suitable choice; see Conolly and Choo
(1979). Langaris (1986) applied it to a queueing system with infinitely
many servers.

• Markov dependent process. Let Xi denote the time interval between
the ith and (i+ 1)th events. Assuming that {Xi} is a Markov chain, then
N(t) = number of events that occur in (0, t] is a Wold point process. Lai
(1978) used Downton’s bivariate exponential model to describe the joint
distribution of the lengths of successive time intervals.

• Hydrology. Nagao and Kadoya (1971) claimed that this distribution can
be used for such pairs of hydrological quantities as a streamflow at two
points on a river or rainfall at two locations; see also Yue et al. (2001).

• Intensity and duration of a storm of rainfall. Córdova and Rodŕıguez-
Iturbe (1985) claimed that the exponential distributions for these variables
have been shown to be sufficiently realistic. They argued that independence
should not be assumed.

– Firstly, it is empirically not true (correlations of 0.3 and 0.33 being
found in datasets from Boconó, Venezuela, and Boston, Massachusetts).

– Secondly, some important quantities are highly dependent on correla-
tion: quantities such as the mean and variance of storm depth (product
of intensity and duration) and the probability of nonzero storm surface
runoff (if the soil is sufficiently dry and the storm is sufficiently small,
there is no surface runoff).

• Height and period of water waves.
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– The Rayleigh distribution, a special case of the Weibull, has a cumu-
lative distribution function F (x) = 1 − exp(−x2) and p.d.f. f(x) =
2x exp(−x2) for x > 0. It is a common choice to describe both the
periods squared and heights of waves of the sea—especially the latter,
partly because there is theoretical support in the case of a narrow band
spectrum. Consequently, Battjes (1971) suggested that a bivariate dis-
tribution with Rayleigh marginals may be used for the joint distribution
of these variables and put forward the model in (10.53), appropriately
transformed.

– Kimura (1981) suggested the Weibull-marginals version of this distri-
bution for the height and period of water waves. Kimura performed
experiments in which random waves were generated in a wave tank
and their heights and periods measured and cross-tabulated. Although
Kimura claimed that this distribution “shows good applicability for the
principal part of the joint distribution,” he also admitted that it failed
at the edge—the main method of comparing theory with data in this
work was by means of the conditional distribution of height given certain
values of period, and the case presented showed reasonable agreement
at T = 0.8, 1.0, 1.2, but poor agreement at T = 0.6, 1.4 (where T is the
period expressed in units of its root-mean-square).

– Burrows and Salih (1987) included the Weibull-marginals version of this
distribution among those they fitted to data from around the British
Isles.

• Height of water waves. Kimura and Seyama (1985) used the Rayleigh-
marginals version of this distribution to model the joint distribution of
successive wave heights. Their concern was the overtopping of a sea wall
that may occur when a group of high waves attacks it.

10.15.15 Tables or Algorithms

The algorithm for the probability integral of this distribution has been pro-
vided by Lai and Moore (1984). Tables for the conditional distribution func-
tion have been given by Nagao and Kadoya (1971).

10.15.16 Weibull Marginals

Kimura (1981) has given some properties of this distribution when the
marginals are transformed to be a Weibull distribution. An expression for
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the general mixed moment has been given as well, from which the correlation
coefficient can be readily obtained.

10.15.17 A Bivariate Laplace Distribution

The difference of i.i.d. exponential variates has a Laplace distribution with
p.d.f. f(x) = e−|x|/2 (with scale parameter omitted). This property has
been used by Ulrich and Chen (1987) to obtain a distribution with Laplace
marginals by setting

U = X1 −X2

V = Y1 − Y2

}

, (10.61)

where the (Xi, Yi) comes from distribution (10.53).
The joint m.g.f. can easily be shown to be

[(1 − s)(1 − t) − ρst]−1[(1 + s)(1 + t) − ρst]−1,

but the p.d.f. that Ulrich and Chen obtained by inverting this is quite messy,
involving a double infinite series.

Since it is easy to generate Downton variates (as X = W 2
1 + W 2

2 , Y =
X2

1 + Z2
2 , where (Wi, Zi) has a bivariate normal distribution), it is easy to

generate variates from the Ulrich and Chen distribution by using (10.61).

10.16 Sarmanov’s Bivariate Exponential Distribution

A general family of bivariate distributions with arbitrary marginals was in-
troduced by Sarmanov (1966); the special case with exponential marginals
was further studied in Lee (1996).

10.16.1 Formula of the Joint Density

The joint density function is

h(x, y) = f(x)g(y) {1 + ωφ1(x)φ2(y)} , (10.62)

where
∫∞
−∞ φ1(x)f(x)dx = 0,

∫∞
−∞ φ2(y)g(y)dy = 0, and ω satisfies the con-

dition that 1 + ωφ1(x)φ2(y) ≥ 0 for all x and y.
Lee (1996) gives the expression for the joint p.d.f. when the marginals are

exponential,
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f(x, y) = λ1λ2e
−(λ1x+λ2y)

{
1 + ω

(
e−x − λ1

1+λ1

)(
e−y − λ2

1+λ2

)}
, (10.63)

where −(1+λ1)(1+λ2)
max(λ1λ2,1) ≤ ω ≤ (1+λ1)(1+λ2)

max(λ1,λ2)
; φ1(x) = e−x − λ1

1+λ1
and φ2(y) =

e−y − λ2
1+λ2

.

Note: Similar to Moran and Downton’s bivariate exponential, Sarmanov’s
bivariate distribution also has a diagonal expansion in terms of the orthogonal
polynomials associated with their margianls.

10.16.2 Other Properties

Lee (1996) discussed four main properties of the Sarmanov family, two of
which are of particular interest to us.

(a) The conditional distribution of Y given X = x is

Pr(Y ≤ y|X = x) = G(y) + ωφ1(x)
∫ y

−∞
G(t)φ2(t) dt.

(b) The regression of Y on X is

E (Y |X = x) = μY + ωνY φ1(x)

where νX =
∫∞
−∞ tφ1(t)f(t) dt, νY =

∫∞
−∞ tφ2(t)g(t) dt.

(c) Further, it was shown that h is TP2 if ωφ′
1(x)φ′

2(y) ≥ 0 for all x and
y and RR2 if ωφ′

1(x)φ′
2(y) ≤ 0 for all x and y. Here φ′

1 and φ′
2 are

derivatives of φ1 and φ2, respectively.

For exponential marginals, we have

F (x, y) =
(1− e−λ1x)(1− e−λ2y)+ ωλ1λ2

(1+λ1)(1+λ2)

(
e−λ1x−e−(λ1+1)x

) (
e−λ2y−e−(λ2+1)y

)

≥ FX(x)FY (y),

whence X and Y are shown to be PQD if 0 ≤ ω ≤ (1+λ1)(1+λ2)
max(λ1,λ2)

.

10.17 Cowan’s Bivariate Exponential Distribution

10.17.1 Formula of the Cumulative Distribution
Function

The joint survival function is given by
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H̄(x, y) = exp
[

−1
2

(
x + y +

√
(x + y)2 − 4ηxy − 4xy

)]

, x, y ≥ 0,

(10.64)
for 0 ≤ η ≤ 1. Obviously, scale parameters can be introduced into this model
if desired.

10.17.2 Formula of the Joint Density

The joint density function is

h(x, y) =
1 − η

2S3

{
4ηxy + S[S(x + y) + x2 + y2 + 2ηxy]

}
exp[−(x+ y+S)/2],

(10.65)
where S2 = (x + y)2 − 4ηxy.

10.17.3 Univariate Properties

Both the marginal distributions are exponential.

10.17.4 Correlation Coefficients

Pearson’s product-moment correlation coefficient is

−1 +
2
η

[

1 +
1 − η

η
log(1 − η)

]

.

Spearman’s correlation is

3
8 + η

[

4 − η − 8(1 − η)
ξ

log
(η − ξ)(3η + ξ)

(η + ξ)(3 − η − ξ)

]

,

where ξ =
√
η(8 + η).

10.17.5 Conditional Properties

The conditional mean and standard deviation of Y , given X = x, are not
of simple form, but graphs of these functions have been given by Cowan
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(1987). A graph of E(Y |X = x) when the marginals have been transformed
to uniforms has also been presented by Cowan.

10.17.6 Derivation

The following derivation was presented by Cowan (1987). He derived it as the
joint distribution of distances, in two directions separated by an angle α, to
the nearest lines of a Poisson process in the plane. The association parameter
η is (1 + cosα)/2.

10.17.7 Illustrations

Cowan (1987) presented contours of the p.d.f. and the cumulative distribution
function for the case α = π/6.

10.17.8 Remarks

An expression for the joint characteristic function of X and Y has been given
by Cowan (1987). The minimum of X and Y is exponentially distributed.

10.17.9 Transformation of the Marginals

The cumulative distribution, when the marginals are transformed to uniform,
is

H(u, v) =
√
uv exp

(

−1
2

√
(log uv)2 − 4η log u log v

)

. (10.66)

10.18 Singpurwalla and Youngren’s Bivariate
Exponential Distribution

Singpurwalla and Youngren (1993) introduced the following form of bivariate
exponential distribution.



10.18 Singpurwalla and Youngren’s Bivariate Exponential Distribution 447

10.18.1 Formula of the Cumulative
Distribution Function

The joint survival function is given by

H̄(x, y) =

√
1 −mmin(x, y) + mmax(x, y)

1 + m(x + y)
exp {−mmax(x, y)} (10.67)

for x, y ≥ 0, where m is a common parameter.

10.18.2 Formula of the Joint Density

The joint density function is

h(x, y)

= m2e−mx (1 + mx){(1 −mx)2 −m2y2} + {1 + m(x− y)}2 −my(1 + mx)
{1 + m(x− y)}3/2{1 + m(x + y)}5/2

on the sets of points x > y; on the set of points y > x, x is replaced by y
and vice versa in the expression above. The joint density is undefined on the
line x = y, which is similar to Marshall and Olkin’s bivariate exponential
distribution.

10.18.3 Univariate Properties

Both marginal distributions are exponential.

10.18.4 Derivation

It arises naturally in a shot-noise process environment.

10.18.5 Remarks

For further discussion on this bivariate distribution, one may refer to Kotz
and Singpurwalla (1999).
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10.19 Arnold and Strauss’ Bivariate
Exponential Distribution

The joint distribution was derived by Arnold and Strauss (1988). See also
Arnold et al. (1999, p. 80) and Section 6.3.2 for other details.

10.19.1 Formula of the Joint Density

The joint density function is

h(x, y) = C(β3)β1β2e
−β1x−β2y−β1β2xy, x, y > 0, βi > 0 (i = 1, 2), β3 ≥ 0,

where C(β3) =
∫∞
0

e−u

1+β3udu. Alternatively, the density may be expressed as

h(x, y) = K exp {mxy − ax− by} ,

where, for convergence, we must have a, b > 0 and m ≤ 0, and K is a
normalizing constant.

10.19.2 Formula of the Cumulative
Distribution Function

The survival function is

H̄(x, y) =
C(β3)e−β1x−β2y−β1β2xy

(1 + β1β3x)(1 + β2β3y)C
(

β3
(1+β1β3x)(1+β2β3y)

) .

10.19.3 Univariate Properties

Both marginals are not exponentials. See (6.20) and (6.21) for details.

10.19.4 Conditional Distribution

Both conditional distributions are exponentials.
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10.19.5 Correlation Coefficient

In this case, we have ρ ≤ 0; i.e., X and Y are negatively correlated.

10.19.6 Derivation

The derivation was based on the requirement that X|Y = y and Y |X = x
are both exponential. Arnold and Strauss’ model was motivated by the view
that a researcher often has a better insight into the forms of conditional
distributions rather than the joint distribution.

10.19.7 Other Properties

• extreme statistics were derived by Navarro et al. (2004). They were also
given in Lai and Xie (2006, p. 313).

• The distribution of the product XY was derived in Nadarajah (2006b).
• The exact form of the Rényi and Shannon entropy of the distribution was

given by Nadarajah and Zografos (2005).

10.20 Mixtures of Bivariate Exponential Distributions

Some bivariate distributions in this chapter (for example, Freund’s bivari-
ate exponential distribution) do not have exponential marginals. Often, their
marginals are mixtures of exponential distributions. In this section, we con-
sider various bivariate exponential distributions being mixed by another dis-
tribution.

10.20.1 Lindley and Singpurwalla’s Bivariate
Exponential Mixture

Lindley and Singpurwalla (1986) constructed a bivariate exponential mixture
in the reliability context. Consider a system of two components (in series,
or in parallel) that operates in an environment whose characteristics may
affect its reliability. Suppose that, in environment i, the components’ lifetimes
are exponentially distributed with mean lifetime 1/λi. Assume that λ has a
gamma distribution over the population of environments. Then, the joint
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density of the lifetimes X and Y of the two components is of bivariate Pareto
form (see Section 2.8.2),

h(x, y) =
(a + 1)(a + 2)ba+1

(b + x + y)a+3
, (10.68)

where a and b are the parameters of the gamma distribution of λ. [If the
components are in series, we will be especially interested in H̄(t, t), whereas
if they are in parallel, 1 −H(t, t) will be of primary concern.]

This subject is taken further at other points in this book. Of course, Sec-
tion 7.6 put this idea into the variables-in-common form. Generalizations of
(10.68) can be given by taking the compounded (mixed) distributions to be
gamma instead of exponential.

10.20.2 Sankaran and Nair’s Mixture

Sankaran and Nair (1993) derived a bivariate exponential mixture distribu-
tion via two dependent exponential components operated in a random en-
vironment characteristic η. For a fixed η, X and Y have a type I bivariate
Gumbel distribution with joint survival function

H̄(x, y|η) = exp[−η(α1x + α2y + θxy)]. (10.69)

If η has a gamma distribution with scale parameter m and shape parameter
p, then the resulting mixture distribution is given by

H̄(x, y) = (1 + a1x + a2y + bxy)−p, x, y ≥ 0, (10.70)

where ai = αi/m, i = 1, 2 and b = θ/m. Equation (10.70) is simply the
bivariate Lomax distribution discussed in Section 2.8.

10.20.3 Al-Mutairi’s Inverse Gaussian Mixture of
Bivariate Exponential Distribution

Al-Mutairi (1997) derived a parametric family of bivariate distributions for
describing lifelengths of a system of two dependent components operating
in a common environment where the conditional lifetime distribution fol-
lows Marshall and Olkin’s bivariate exponential, and the common environ-
ment follows an inverse Gaussian distribution. Marshall and Olkin’s bivariate
exponential and Whitmore and Lee’s (1991) bivariate distributions are then
shown to be members of this family.
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Al-Mutairi (1997) has given an excellent review and summary of bivariate
exponential mixtures derived from the environment factor being a mixing
distribution.

10.20.4 Hayakawa’s Mixtures

Using a finite population of exchangeable two-component systems based on
the indifference principle, Hayakawa (1994) proposed a class of bivariate expo-
nential distributions that includes the Freund, Marshall and Olkin, and Block
and Basu models as special cases. For an infinite population, Hayakawa’s bi-
variate distributions can be written as

H̄(x, y) =
∫

H̄(x, y|φ)dG(φ),

where H̄(x, y|φ) can be decomposed into an absolutely continuous part Ha

and a singular part Hs, and G is the distribution function of the parameter φ.
This class of distributions includes mixtures of Freund’s, Marshall and

Olkin’s, and Friday and Patil’s distributions.

10.21 Bivariate Exponentials and Geometric
Compounding Schemes

10.21.1 Background

Many bivariate exponential distributions may arise in one of the following
two ways: first as a consequence of a random shock model due to Arnold
(1975b) and second from a characteristic function equation due to Paulson
(1973) and Paulson and Uppuluri (1972a,b). Block (1977a) used a bivari-
ate geometric compounding mechanism to unify the approaches of previous
authors.5 Before describing it, we shall briefly describe probability generating
functions and the bivariate geometric distributions.

10.21.2 Probability Generating Function

Let N be a non-negative integer-valued random variable. Then, the proba-
bility generating function (p.g.f.) of N is defined as P (s) = E(sN ). Similarly,

5 Marshall and Olkin (1967a), Downton (1970), Hawkes (1972), Paulson (1973), and Arnold
(1975a,b). Another relevant work is that of Ohi and Nishida (1978).
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the p.g.f. of (N1, N2) is defined as P (s1, s2) = E(sN1
1 sN2

2 ). It is easy to show
that if ψ(t) is the c.f. of the i.i.d. r.v.’s Xi, then P [ψ(t)] is the c.f. of the
compound r.v.

∑N
i=1 Xi, which is the sum of a random number of Xi’s.

10.21.3 Bivariate Geometric Distribution

A random variable N has a geometric distribution if

Pr(N = n) = pn−1(1 − p)

for all positive integers n and some probability p ∈ (0, 1).
If X’s are i.i.d. r.v.’s with an exponential distribution, then

∑N
i=1 Xi also

has an exponential distribution if N has a geometric distribution.6 Here, we
say that a random variable (N1, N2) has a bivariate geometric distribution
if the marginals are geometric distributions. (We are not concerned with the
specific bivariate structure.)

10.21.4 Bivariate Geometric Distribution
Arising from a Shock Model

Suppose we have two components receiving shocks in discrete cycles. (No
assumption is made at this stage concerning the time interval between suc-
cessive shocks.) In each cycle, there is a shock to both components in such a
way that with probability p11 both components survive, with probability p10

the first survives and the second fails, with probability p01 the first fails and
the second survives, and with probability p00 both fail. By conditioning on
the outcome of the first cycle [Hawkes (1972) and Arnold (1975b)], we find
that the number of shocks (N1, N2) to failure of components 1 and 2 satisfies
the following functional equation in the p.g.f.:

g(s1, s2) = s1s2[p00 + p01g(1, s2) + p10g(s1, 1) + p11g(s1, s2)]. (10.71)

The survival function H̄(n1, n2) = Pr(N1 > n1, N2 > n2) associated with
(10.71) is given by

H̄(n1, n2) =
{
pn1
11 (p01 + p11)n2−n1 if n1 ≤ n2

pn2
11 (p10 + p11)n1−n2 if n2 ≤ n1

, (10.72)

6 The proof of this is simple. The p.g.f. of N is
(1−p)s
1−ps

and the c.f. of X is ψ(t) = (1−iμt)−1,

where μ = E(X). It follows from above that the c.f. of
∑N

i=1 Xi is simply ϕ(t) = P [ϕ(t)] =
(1 − i μt

1−p
)−1, which is the c.f. of the exponential distribution with mean μ/(1 − p).
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where p00 + p01 + p10 + p11 = 1, p10 + p11 < 1, and p01 + p11 < 1. The p.g.f.
of (N1, N2) is given by

g(s1, s2) =
p00s1s2

1 − p11s1s2
+

p01(p00 + p10)s2
1 − (p01 + p11)s2

+
p10(p00 + p01)s1
1 − (p10 + p11)s1

. (10.73)

Equation (10.73) was also derived by Esary and Marshall (1973).
If s1s2 in (10.73) is replaced by the characteristic function of any bivari-

ate distribution with exponential marginals, ψ(t1, t2),7 we obtain the c.f.
ϕ(t1, t2) = E[exp(it1X + it2Y )], which satisfies the functional equation

ϕ(t1, t2) = ψ(t1, t2)[p00 + p01ψ(0, t2)p10ψ(t1, 0) + p11ψ(t1, t2)]. (10.74)

By using the idea that the characteristic function of a random sum is the
composition of ψ and P , we see that (10.74) corresponds to the compounding
of the distribution with c.f. ψ with respect to the bivariate geometric distri-
bution given in (10.72). In other words, (10.74) is the characteristic function
equation of the bivariate random variable

(X,Y ) =

(
N1∑

i=1

Xi1,

N2∑

i=1

Xi2

)

, (10.75)

where (N1, N2) has the bivariate geometric distribution given in (10.72) and is
independent of (Xi1, Xi2) (i = 1, 2 . . .), which are independent and identically
distributed having exponential c.f. ψ(t1, t2). (X,Y ) in (10.75) has a bivariate
exponential distribution since univariate geometric sums of exponential vari-
ables are exponential. X can now be interpreted in the following way (with a
similar interpretation for Y ). Component 1 is subjected to shocks that arrive
according to a Poisson process. The probability that a shock will cause failure
is p01 + p00. Then, X represents the lifetime of the first component. For the
bivariate exponential distribution of Marshall and Olkin, Xi1 = Xi2 for all i.

10.21.5 Bivariate Exponential Distribution
Compounding Scheme

The aim here is to provide a common framework (which we call the com-
pounding scheme) for constructing various well-known bivariate exponential
distributions. Two ingredients are used: (i) an input bivariate exponential
with c.f. ψ and (ii) a set of non-negative parameters pij (i, j = 0, 1) such that
p00 + p01 + p10 + p11 = 1, p01 + p11 < 1, and p10 + p11 < 1. This leads to for-

7 Thus, we can call this c.f. ψ a “generator” or an “input” function. In order to obtain a de-
sired output, ϕ, we need to choose an appropriate ψ together with appropriate p00, p01, p01,
and p11.
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mulation (10.74). Alternatively, in the formulation of (10.75), we may regard
the bivariate exponential distribution we want to construct as the compound
distribution and the bivariate geometric distribution as the compounding dis-
tribution. Table 10.1 [adapted from Block (1977a)] summarizes the ways in
which various bivariate distributions satisfy the equation and hence fit into
the compounding scheme. This gives the name of these distributions as the
“input” bivariate exponential distributions. The distributions are arranged in
order from simplest to most complex. (The first entry indicates a pair of in-
dependent exponential variates that may be obtained from a pair of mutually
completely dependent and identical exponential variates.)

Table 10.1 Bivariate exponential distributions arising from a compounding
scheme. (The pij ’s in the first row, ψ and ϕ, are as we have defined, and the
notation is as in the original publications)

Distribution ψ(t1, t2) p00 p01 p10

Independent marginals [1 − iθ(t1, t2)]−1 0 θ/θ1 θ/θ2

Marshall and [1 − iθ(t1, t2)]−1 θλ12 θλ1 θλ2

Olkin (1967a)

Downton (1970) [1 − it1
μ1(1+γ)

]−1 (1 + γ)−1 0 0

×[1 − it2
μ1(1+γ)

]−1

Hawkes (1972) (1 − iP1t1/μ1)−1 p11 p10 p01

×(1 − iP2t1/μ2)−1

(P1 = p11 + p10,
P2 = p11 + p01)

Paulson (1973) (1 − iθ1t1)−1(1 − iθ2t2)−1 a c b

Arnold (1975b) ψ(t1, t2) ∈ E
(2)
n−1 p11 p10 p01

E
(2)
n =

{
ψ(t1, t2) ∈ E

(2)
n−1

}
with E

(2)
0 =

{
ψ(t1, t2) = [1 + iθ(t1 + t2)]−1

}

Some observations can be made from Table 10.1 about the bivariate expo-
nential distributions. First, it is clear that Downton’s distribution is a special
case of the Hawkes and Paulson distributions. The latter two distributions
can be seen to be the same, but they were derived differently. Arnold’s class
contains all of the exponential distributions given in the table. The first and
second are in E

(2)
1 ; then, since the first is in E

(2)
1 , it follows that the third,

fourth, and fifth are in E
(2)
2 .
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10.21.6 Wu’s Characterization of Marshall and
Olkin’s Distribution via a Bivariate Random
Summation Scheme

Wu (1997) characterized Marshall and Olkin’s bivariate exponential distri-
bution using the same bivariate geometric distribution (10.72), which has a
joint probability function

Pr(N1 = m,N2 = n) =

⎧
⎨

⎩

pn−1
11 (p10 + p11)m−n−1p10(p01 + p00) if m > n
pm−1
11 p00 if m = n
pm−1
11 (p01 + p11)n−m−1p01(p10 + p00) if m < n

.

(10.76)
Let {X1i} and {X2i} be two sequences of random variables such that
E(Xi1) = 1

λ1+λ12
and E(X2i) = 1

λ2+λ12
. Let (N1, N2) have a general bi-

variate geometric distribution in (10.76) with p01 = λ1θ, p10 = λ2θ (θ > 0)
and p00 + p01 + p10 + p11 = 1, p10 + p11 < 1, p01 + p11 < 1. Then, the
distribution of

(

p00 + p01)
N1∑

i=1

X1i, (p00 + p10)
N2∑

i=1

X2i

)

converges weakly, as θ → 0, to Marshall and Olkin’s bivariate exponential
distribution.

10.22 Lack of Memory Properties of Bivariate
Exponential Distributions

The univariate exponential distribution is characterized by the functional
equation

F̄ (s + δ) = F̄ (s)F̄ (y), s, δ > 0. (10.77)

This is referred to as the lack of memory (LOM) property.
Equation (10.77) can be rewritten as

Pr(X > s + δ|X > δ) = Pr(X > s), (10.78)

so that the probability of surviving an additional time s for a component of
age δ is the same as for a new component. A bivariate analogue of (10.78)
can be written as

Pr(X > s1 + δ, Y > s2 + δ|X > δ, Y > δ) = Pr(X > s1, Y > s2) (10.79)
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which asserts that the joint survival probability of a pair of components,
each of age δ, is the same as that of a pair of new components. We may write
(10.79) as

H̄(s1 + δ, s2 + δ) = H̄(s1, s2)H̄(δ, δ), s1, s2, δ > 0. (10.80)

This is also termed the LOM property, which was briefly discussed in Sec-
tion 10.5.16. The bivariate exponential of Marshall and Olkin is the only
distribution with exponential marginals that satisfies (10.80); see, for exam-
ple, Barlow and Proschan (1981, pp. 130–131). This functional equation has
many possible solutions if the requirement of exponential marginals is not
imposed. The class of possible solutions of the equation is characterized by
Ghurye and Marshall (1984). Apart from Marshall and Olkin’s BVE, other
known solutions of (10.80) are the following:

• Freund’s bivariate distribution (described in Section 10.3),
• ACBVE of Block and Basu (see Section 10.6),
• PSE of Proschan and Sullo (described in Section 10.3.15), and
• BEE of Friday and Patil (1977), which includes Freund’s and Marshall

and Olkin’s BVE and ACBVE as special cases; see Section 10.9.

The formula for the BEE is given in (10.35), and the survival function of
the PSE (Proschan–Sullo extension) is given by

H̄(x, y)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(λ1 + λ2 − λ′
2)

−1
{
λ1e

−(λ1+λ2−λ′
2)x−(λ0+λ′

2)y + (λ2 − λ′
2)e

−λy
}

for x ≤ y

(λ1 + λ2 − λ′
1)

−1
{
λ2e

−(λ0+λ′
1)x−(λ1+λ2−λ′

1)y + (λ1 − λ′
1)e

−λx
}

for x ≥ y,

where λ0, λ1, λ2, λ
′
1, λ

′
2 are all positive, λ = λ0 + λ1 + λ2, and x, y ≥ 0. Its

density is given in Section 10.3.15.
The LOM property in (10.80) is characterized by Block and Basu (1974)

and Block (1977b). The characterization theorem can be stated as follows. Let
(X,Y ) be a non-negative bivariate random vector with absolutely continuous
marginal distribution functions F and G, and let U = min(X,Y ) and V =
X − Y . Then, the LOM property holds if and only if there is a θ > 0 such
that

• U and V are independent and
• U is an exponential variate with mean θ−1.

Further, if the LOM property holds, the distribution of V is given by

Pr(V ≤ v) =
{
F (v) + θ−1f(v) if v ≥ 0
1 −G(−v) − θ−1g(−v) if v < 0 , (10.81)
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where f and g are the density functions corresponding to F and G, respec-
tively. Another point is that if H̄(x, y) has the LOM property, so does the
survival function 1

2 [H̄(x, y) + H̄(y, x)].

10.22.1 Extended Bivariate Lack of
Memory Distributions

Ghurye (1987) provided an extended version of the LOM property by impos-
ing

H̄(x, y) = Ā(min(x, y))K̄(x− y), x, y ≥ 0,

where

K̄(ω) =
{
Ḡ(ω) for ω > 0
H̄(|ω|) for ω < 0

and Ā, Ḡ, H̄ are survival functions of min(X,Y ), X, and Y , respectively.
Yet another extension of the LOM property was obtained by Ghurye (1987)

by generalizing (10.80) to

H̄(x + t, y + t) = H̄(x, y)H̄(t, t)B̄(t;x, y),

where B̄ is an age factor.
Another extension of the LOM property is due to Raja Rao et al. (1993),

and they called it the “setting the clock back to zero property.” The type
I bivariate Gumbel exponential distribution possesses this particular prop-
erty. Incidentally, this bivariate exponential distribution is characterized by
another form of bivariate lack of memory as well.

10.23 Effect of Parallel Redundancy with Dependent
Exponential Components

Suppose X and Y are two lifetimes of a parallel system of two components.
Kotz et al. (2003a) considered the effectiveness of redundancy when two com-
ponents are dependent. They have shown that the degree of correlation affects
the increase in the mean time for parallel redundancy when the two compo-
nent lifetimes are positively quadrant dependent. Let T = max(X,Y ) and
E(T ) represent the mean time to failure of the parallel system.

Suppose now that X and Y are both exponentially distributed with unit
mean and have a joint bivariate distribution specified by

(1) F-G-M bivariate exponential distribution,
(2) Marshall and Olkin’s bivariate exponential distribution, and
(3) Downton’s bivariate exponential distribution.
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It has been shown that for 0 ≤ α ≤ 1, X and Y of the F-G-M distributions
are PQD whereas the two-component lifetimes of the two other distributions
are always PQD. Table 10.2 summarizes the comparisons among the three
distributions under consideration.

Table 10.2 Mean lifetime E(T ) and range of correlation
for three bivariate exponential distributions

Bivariate distribution Mean lifetime Range of ρ

F-G-M 1.5 − ρ/3 0 ≤ ρ < 1/4
Marshall and Olkin 1.5 − ρ/2 0 ≤ ρ ≤ 1

Downton 1 +

√
(1−ρ

2
0 ≤ ρ < 1

It can be easily shown that

1.5 − ρ

2
≤ 1 +

1
2
(1 − ρ)1/2, 0 ≤ ρ < 1,

and
1.5 − ρ

3
≤ 1 +

1
2
(1 − ρ)1/2, 0 ≤ ρ < 3/4.

It follows at once that Downton’s model yields a higher mean time to failure
than either Marshall and Olkin’s model or the F-G-M model.

10.23.1 Mean Lifetime under Gumbel’s Type I
Bivariate Exponential Distribution

The joint survival function is

H̄(x, y) = e−x−y−θxy, x, y ≥ 0, 0 ≤ θ ≤ 1.

Clearly, X and Y are NQD (negatively quadrant dependent). Kotz et al.
(2003b) showed that

E(T ) = 2 − e1/θ

√
π

θ

[

1 − Φ

(√
2
θ

)]

, (10.82)

where Φ(·) is the standard normal distribution function. Table 10.3 below
provides some numerical values of E(T ) for some selected values of ρ.
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Table 10.3 Some numerical values of
E(T ) for Gumbel’s type I model

ρ 0 −0.1 −0.25 −0.4
E(T ) 1.5 1.527 1.570 1.615

10.24 Stress–Strength Model and Bivariate
Exponential Distributions

10.24.1 Basic Idea

Let X be the strength of a component subject to a stress Y . The compo-
nent fails if at any moment the applied stress (or load) is greater than its
strength. The stress is a function of the environment to which the component
is subjected, whereas strength depends on material properties, manufactur-
ing procedures, and so on. The reliability R that the strength of a component
exceeds the stress is

R = Pr(X > Y ) (10.83)

This model was considered by Birnbaum (1956) and has since found an in-
creasing number of applications in many different areas, especially in the
structural and aircraft industries. Johnson (1988) has given a review on this
subject. A similar formulation occurs in hydrology. Let X be the input of a
pollutant into a river of flow Y , and assume that the flora and fauna of the
river are sensitive to the concentration of the pollutant. Then, Pr(X > cY )
is the relevant quantity; see, for example, Plate and Duckstein (1987, pp.
56–58).

In many situations, the distribution of Y (or both X and Y ) is completely
known, except possibly for a few unknown parameters, and it is desired to ob-
tain parameter estimates. Church and Harris (1970), Downton (1973), Owen
et al. (1964), Govindarajulu (1968), and Reiser and Guttman (1986, 1987)
have all considered the problem of stress and strength under the assumption
that X and Y have independent normal distributions. Because in many phys-
ical situations, especially in the reliability context, exponential and related
distributions provide more realistic models, it is desirable to obtain estima-
tors of R for these cases. Some results for the exponential case are given by
Tong (1974), Kelley et al. (1976), and Basu (1981).

Most of the authors have assumed that X and Y are independent. However,
it is more realistic to assume some form of dependence between X and Y
since they may be influenced by a common environmental factor. We shall
now evaluate R for two models in which X and Y are correlated.

For theory and applications of the stress–strength model, see the mono-
graph by Kotz et al. (2003b).
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10.24.2 Marshall and Olkin’s Model

Suppose X and Y have the joint bivariate exponential distribution of Mar-
shall and Olkin given by (10.13). In the notation of Section 10.5.6, X > Y if
and only if Z2 < min(Z1, Z3). Hence,

R = Pr {Z2 < min(Z1, Z2)} = λ2/λ,

where λ = λ1 + λ2 + λ12; see Basu (1981). Similarly, Pr(X < Y ) = λ1/λ.
Also, Pr(X ≥ Y ) = R+ Pr(X = Y ) = (λ2 + λ12)/λ. Awad et al. (1981) have
given estimators for Pr(X < Y ), Pr(X > Y ), and Pr(X = Y ).

10.24.3 Downton’s Model

Suppose X and Y have a joint density given by (10.53). Lai (1985) showed
that

R = (1 − ρ2)
∞∑

i=0

Bα(i + 1, i + 1)
B(i + 1, i + 1)

, (10.84)

where α = μ2/(μ1 +μ2), μ1 and μ2 are parameters of X and Y , respectively,
and Bx is the incomplete beta function.

Note that for ρ = 0 (i.e., when X and Y are independent), R = μ2/(μ1 +
μ2), as expected [Tong (1974)].

10.24.4 Two Dependent Components Subjected to a
Common Stress

Consider a parallel system of two components having strengths X and
Y that are subjected to a common stress Z that is independent of the
strength of the components. Then the reliability of the system R is given by
R = Pr(Z < max(X,Y )). Hanagal (1996) estimated R when (X,Y ) have dif-
ferent bivariate exponential models proposed by Marshall and Olkin (1967a),
Block and Basu (1974), Freund (1961), and Proschan and Sullo (1974). The
distribution of Z is assumed to be either exponential or gamma. The asymp-
totic normal (AN) distributions of these estimates were obtained. Hanagal
(1996) also gave a numerical study for obtaining the MLE of R in all four
bivariate models when the common stress (Z) is exponentially distributed.
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10.24.5 A Component Subjected to Two Stresses

Hanagal (1999) considered the reliability of a component subjected to two
different stresses that are independent of the strength of a component. The
distribution of stresses follows a bivariate exponential distribution. If Z is the
strength of a component subjected to two stresses (X,Y ), then the reliability
of the component is given by R = Pr {(X + Y ) < Z}. Hanagal estimated R
when (X,Y ) follows different bivariate exponential models proposed by Mar-
shall and Olkin (1967a), Block and Basu (1974), Freund (1961), and Proschan
and Sullo (1974). The distribution of Z is assumed to be exponential. The
asymptotic normality of these estimates of R was obtained.

10.25 Bivariate Weibull Distributions

Because the univariate Weibull distribution is obtained from the univariate
exponential by a simple transformation of the variable, bivariate distributions
with Weibull marginals can readily be obtained by starting with any of the
bivariate distributions having exponential marginals and then transforming
X and Y appropriately.

There are many types of bivariate Weibull distributions, and they can be
categorized into five classes, as follows. In each case, X and Y are individually
taken to have Weibull distributions.

• Class C1. X and Y are independent.
• Class C2. X = min(X1, X2), Y = min(X2, X3), where the Xi’s are inde-

pendent, but not necessarily identically distributed, Weibull variates.
• Class C3. min(aX, bY ) has a Weibull distribution for every a > 0 and

b > 0.
• Class C4. min(X,Y ) has a Weibull distribution.
• Class C5. The class of all bivariate distributions with Weibull marginals.

Lee (1979) described the classes above and showed that the inclusions C1
⊂ C2 ⊂ C3 ⊂ C4 ⊂ C5 are strict. Another comprehensive treatment can be
found in Block and Savits (1980). For a brief overview, see Jensen (1985).

Applications can easily be imagined in any of the fields where bivariate
distributions with exponential marginals are used, especially those such as
reliability, where the univariate Weibull is a popular generalization of the
univariate exponential. The Weibull distribution, and others derived by the
extreme-value approach, can be plausibly applied to the strength of mate-
rials. Warren (1979) suggested using a bivariate distribution with Weibull
marginals for the joint distribution of modulus of elasticity and modulus of
rupture for lumber.

Hougaard (1986, 1989) presented a bivariate (in a multivariate setting)
distribution with joint survival function
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H̄(x, y) = exp
{
− (θ1xp + θ2y

p)k
}
, p ≥ 0, k ≥ 0, x, y ≥ 0. (10.85)

For the Gumbel form of bivariate Weibull distribution, Begum and Khan
(1977) have discussed the marginal and joint distributions of concomitants
of order statistics and their single moments.

We note that it is easy to generate a bivariate Weibull distribution by
a marginal transformation, a popular method for constructing a bivariate
model with specified marginals [Lai (2004)].

10.25.1 Marshall and Olkin (1967)

This is obtained from the power law transformation of the well-known bivari-
ate exponential distribution (BVE) studied in Marshall and Olkin (1967a).
The joint survivor function with Weibull marginals is given as

H̄(x, y) = exp{−[λ1x
α1 + λ2y

α2 + λ12 max(xα1 , yα2)]}, (10.86)

where λi > 0, αi ≥ 0, λ12 ≥ 0; i = 1, 2. This bivariate Weibull reduces to the
bivariate exponential distribution when α1 = α2 = 1.

Lu (1992) considered Bayes estimation for the model above for censored
data.

10.25.2 Lee (1979)

A related model due to Lee (1979) involves the transformation X = X1/c1,
Y = X2/c2 assuming (X1, X2) has a joint survival function given in (10.86)
and α1 = α2 = α. The new model (X,Y ) has a joint survival function given
by

H̄(x, y) = exp {− [λ1c
α
1 x

α + λ2c
α
2 y

α + λ12 max(cα
1 x

α, cα
2 y

α)]} , (10.87)

where ci > 0, λi > 0, λ12 ≥ 0.
Yet another related model due to Lu (1989) has the survival function

H̄(x, y) = exp {−λ1x
α1 − λ2y

α2 − λ0 max(x, y)α0} , (10.88)

where λ′s > 0, αi ≥ 0; i = 0, 1, 2. This can be seen as a slight modification
(or generalization) of Marshall and Olkin’s bivariate exponential distribution
due to the exponent in the third term having a new parameter.



10.25 Bivariate Weibull Distributions 463

10.25.3 Lu and Bhattacharyya (1990): I

A general model proposed by Lu and Bhattacharyya (1990) has the form

H̄(x, y) = exp {−(x/β1)α1 − (y/β2)α2 − δw(x, y)} , (10.89)

where αi > 0, βi ≥ 0, δ ≥ 0; i = 1, 2.
Different forms for the function of w(t1, t2) yield a family of models. One

form for w(x, y) is the following:

w(x, y) =
[
(x/β1)α1/m + (y/β2)α2/m

]m
, m > 0. (10.90)

This yields the following survival function for the model:

H̄(x, y) = exp
{
−(x/β1)α1 − (y/β2)α2 − δ[(x/β1)α1/m + (y/β2)α2/m]m

}
.

(10.91)

10.25.4 Farlie–Gumbel–Morgenstern System

The Farlie–Gumbel–Morgenstern system of distributions [Hutchinson and Lai
(1990, Section 5.2) and Kotz et al. (2000, Section 44.13)] is given by

H̄(x, y) = F̄ (x)Ḡ(y)
{
1 + γ

[
1 − F̄ (x)

] [
1 − Ḡ(y)

]}
, −1 < γ < 1. (10.92)

With F̄ (x) = exp{−xα1}, Ḡ(y) = exp{−yα2}, αi > 0; this yields a bivari-
ate Weibull model with the marginals being a standard Weibull in the sense
of Johnson et al. (1994).

10.25.5 Lu and Bhattacharyya (1990): II

A different type of bivariate Weibull distribution due to Lu and Bhat-
tacharyya (1990) is given by

H̄(x, y) =
[
1 +
[
{[exp(x/β1)α1 ] − 1}1/γ + {exp[(y/β2)α2 ] − 1}1/γ

]γ]−1

.

(10.93)
This model has a random hazard interpretation, but for no value of γ, the
model yields independence between the two variables.
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10.25.6 Lee (1979): II

Lee (1979) proposed the bivariate Weibull distribution

H̄(x, y) = exp{−(λ1x
α1 + λ2y

α2)γ}, (10.94)

where αi > 0, 0 < γ ≤ 1, λi > 0, x, y ≥ 0.
The model was used by Hougaard (1986) to analyze tumor data.

A slight reparametrization of the model by letting λi =
(

1
θi

)βi/δ

, αi =
βi/δ, i = 1, 2, and γ = δ in (10.94) gives

H̄(x, y) = exp

⎧
⎨

⎩
−
[(

x

θ1

)β1/δ

+
(
y

θ2

)β2/δ
]δ
⎫
⎬

⎭
. (10.95)

The model has been applied to an analysis of field data under a two-
dimensional warranty in which age and usage are used simultaneously to
determine the eligibility of a warranty claim [Jung and Bai (2007)].

The product moments were derived by Nadarajah and Mitov (2003). Sur-
prisingly, their expressions are rather simple.

10.25.7 Comments

• Johnson et al. (1999) proposed to use the bivariate Weibull model (10.95)
as a candidate to model the strength properties of lumber.

• Johnson and Lu (2007) used a “proof load design” to estimate the param-
eters of the preceding model.

• The bivariate Weibull observations (X,Y ) from the distribution (10.95)
can be obtained through

X = Uδ/β1V 1/β1θ1, Y = (1 − U)δ/β2V 1/β2θ2,

where U and V are independent uniform variates.

10.25.8 Applications

Applications can easily be imagined in any of the fields where bivariate distri-
butions with exponential marginals are used, especially those such as reliabil-
ity where the univariate Weibull is a popular generalization of the univariate
exponential. The Weibull distribution, and others derived by the extreme-
value approach, can be plausibly applied to the strength of materials. War-
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ren (1979) suggested using a bivariate distribution with Weibull marginals
for the joint distribution of modulus of elasticity and modulus of rupture for
lumber.

10.25.9 Gamma Frailty Bivariate Weibull Models

Bjarnason and Hougaard (2000) considered two gamma frailty bivariate
Weibull models. A frailty model is a random effects model for survival data.
The key assumption is that the dependence between two individual lifetime
variables X and Y is caused by the frailty Z representing unobserved common
risk factors and that conditional on Z, X, and Y are independent. Because
the frailty is not observed, it is assumed to follow some distribution, typically
a gamma distribution.

In their paper, Bjarnason and Hougaard assumed that Z has a gamma
distribution with both scale and shape parameters given by δ and that, con-
ditional on Z, X and Y are Weibull with scale parameters Zλ1, Zλ2, respec-
tively but with a common shape parameters γ. It is easy to show that the
joint (unconditional) survival function of X and Y is given by

H̄(x, y) = {1 + (λ1x
γ + λ2y

γ) /δ}−δ
. (10.96)

Equation (10.96) is clearly a bivariate Burr distribution. For γ = 1, it
reduces to a bivariate Pareto distribution. The authors then proceeded to
derive the Fisher information for the distribution above.

A second gamma frailty model was derived by Bjarnason and Hougaard
(2000) that gives rise to a bivariate Weibull model that has a Clayton copula:

H̄(x, y) =
(
eλ1xγ/δ + eλ2yγ/δ − 1

)−δ

. (10.97)

The Fisher information was also found for this bivariate Weibull model by
the authors.

Both of these two models were used on the catheter infection data of
McGilchrist and Aisbett (1991).

10.25.10 Bivariate Mixture of Weibull Distributions

Patra and Dey (1999) constructed a class of bivariate (in the multivariate
setting) in which each component has a mixture of Weibull distributions.



466 10 Bivariate Exponential and Related Distributions

10.25.11 Bivariate Generalized Exponential
Distribution

A univariate distribution with survival function S(x) = (1 − e−x)θ, x ≥
0, θ > 0, is called a generalized exponential distribution, and is denoted
by GED(θ); see Gupta and Kundu (1999). Sarhan and Balakrishnan (2007)
then constructed a bivariate generalized exponential distribution with joint
survival function of the form

S(x1, x2) = e−θ0z
{
1 − (1 − e−x1)θ1

}{
1 − (1 − e−x2)θ2

}
,

x1, x2 > 0, θ0, θ1, θ2 > 0,

where z = max(x1, x2), and then discussed many of its properties such as
marginals, conditionals and moments. They also discussed mixtures of these
distributions.
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Chapter 11

Bivariate Normal Distribution

11.1 Introduction

In introductory statistics courses, one has to know why the (univariate) nor-
mal distribution is important—especially that the random variables that oc-
cur in many situations are approximately normally distributed and that it
arises in theoretical work as an approximation to the distribution of many
statistics, such as averages of independent random variables. More or less,
the same reasons apply to the bivariate normal distribution. “But the prime
stimulus has undoubtedly arisen from the strange tractability of the normal
model: a facility of manipulation which is absent when we consider almost
any other multivariate data-generating mechanism.”—Barnett (1979). We
may also note the following views expressed by different authors:

• “In multivariate analysis, the only distribution leading to tractable infer-
ence is the multivariate normal”—Mardia (1985).

• “The only type of bivariate distribution with which most of us feel fa-
miliar (other than the joint distribution of a pair of independent random
variables) is the bivariate normal distribution”—Anscombe (1981, p. 305).

• “But who has ever seen a multivariate normal sample?” asks Barnett
(1979) rhetorically, and then goes on to present, without any conscious
bias in their selection, three bivariate datasets from the published litera-
ture that all turn out to be grossly non-normal.

• “The only sure defense against a successful disproof of the assumption
of multivariate normality is to abstain from collecting, or presenting, too
much data!”—wording adapted from Burnaby (1966, p. 109).

The origins of the bivariate normal are found in the first half of the nine-
teenth century in the work of Laplace, Plana, Gauss, and Bravais. Seal (1967)
and Lancaster (1972) have given accounts of these developments. The latter
pointed out that the early authors derived the bivariate normal as the joint
distribution of the linear forms of independently distributed normal variables
but did not define a coefficient of correlation; the distribution was used as a
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basis for a theory of measurement error. Francis Galton (b.1822, d.1911), in
analyzing the measurements of the heights of parents and their adult children,
studied the structure of a bivariate normal density function. He observed that
the marginal distributions of the data were normal and the contours of equal
frequency were ellipses. He was the first to recognize the need for a measure
of correlation in bivariate data. Since his time, the growth in the use of the
bivariate normal has been enormous, so as to produce the comments already
quoted.

In Section 11.2, we present some basic formulas and properties of the bi-
variate normal distribution. In Section 11.3, different methods of deriving
bivariate normal distributions are mentioned. Some well-known characteriza-
tions of the bivariate normal distributions are listed in Section 11.4. Distribu-
tions, moments, and other properties of order statistics arising from a bivari-
ate normal distribution are discussed in Section 11.5. While some available
illustrations of the bivariate normal are described in Section 11.6, relation-
ships to some other distributions are mentioned in Section 11.7. Next, the
estimation of parameters of the bivariate normal distribution is discussed in
Section 11.8. In Section 11.9, some other interesting properties of the bivariate
normal distribution are briefly mentioned. Some specialized fields in which
the bivariate normal model is applied in interesting ways are listed in Section
11.10, while common applications of the bivariate normal distribution are
mentioned in Section 11.11. In Section 11.12, different computational meth-
ods and algorithms that are available for computating of the bivariate nor-
mal distribution function are discussed. Many different test procedures and
graphical methods are available for assessing the validity of the bivariate nor-
mal distribution, and these are detailed in Section 11.13. Distributions with
normal conditionals and bivariate skew-normal distributions are described in
Sections 11.14 and 11.15, respectively. Some univariate transformations on a
bivariate normal random vector and the resulting distributions are discussed
in Section 11.16. In Section 11.17, the truncated bivariate normal distribution
and its properties are presented. The bivariate normal mixture distributions
and related issues are described in Section 11.18. In Section 11.19, some
bivariate non-normal distributions with normal marginals are presented. Fi-
nally, in Section 11.21, the bivariate inverse Gaussian distribution and its
properties are discussed.

For further information, interested readers may refer to Johnson and Kotz
(1972, Chapter 36), Kotz et al. (2000, Chapter 46), Kendall and Stuart (1977,
Chapter 15; 1979, Chapters 18 and 26), and Patel and Read (1982, Chap-
ter 10).
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11.2 Basic Formulas and Properties

11.2.1 Notation

In this chapter, we use φ and Φ to denote the p.d.f. and cumulative dis-
tribution function of the standardized univariate normal distribution, and
similarly, ψ and Ψ denote the p.d.f. and c.d.f. of the standardized bivariate
normal distribution. The upper right volume under the probability density
surface is denoted by L(x, y; ρ).

We also denote the means and variances by E(X) = μ1, E(Y ) = μ2,
var(X) = σ2

1 , and var(Y ) = σ2
2 .

11.2.2 Support

This is the region of values of X and Y over which the p.d.f. is nonzero. For
brevity, we refer to the three most common regions of support as: the unit
square (meaning 0 ≤ x, y ≤ 1), the positive quadrant (meaning x, y ≥ 0),
and the whole plane (meaning any real values of x and y). For the bivariate
normal, the support is the whole plane.

11.2.3 Formula of the Joint Density

The joint density function is

ψ(x, y; ρ) =
1

2π
√

1 − ρ2
exp
[

− 1
2(1 − ρ2)

(x2 − 2ρxy + y2)
]

. (11.1)

Location and scale parameters can be introduced, as usual, by replacing x
and y by (x−μ1)/σ1 and (y−μ2)/σ2, respectively. The contours of this joint
density are elliptical.

The general (nonstandardized) form of the density thus obtained is given
by

ψ(x, y; ρ) =
1

2πσ1σ2

√
1 − ρ2

exp

[

− 1
2(1 − ρ2)

(
x− μ1

σ1

)2

−2ρ
(
x− μ1

σ2

)(
y − μ2

σ2

)

+
(
y − μ2

σ2

)2
]

. (11.2)

Equation (11.1) may be expressed as



480 11 Bivariate Normal Distribution

ψ(x, y; ρ) = φ(x)φ

(
y − ρx
√

1 − ρ2

)

= φ(y)φ

(
x− ρy
√

1 − ρ2

)

(11.3)

since the conditional distribution of Y , given X = x, is normal with mean
ρx and variance 1 − ρ2 and that of X, given Y = y, is normal with mean ρy
and variance 1 − ρ2.

11.2.4 Formula of the Cumulative
Distribution Function

An expression in terms of elementary functions does not exist for the joint
cumulative distribution function; see Section 11.12 for different methods of
computation.

Mukherjea et al. (1986) wrote the joint cumulative distribution function
corresponding to (11.2) but with zero means in the form

Ψ(x, y; ρ) =
ab
√

1 − ρ2

2π

∫ x

−∞

∫ y

−∞
e−

1
2 (a2u2−2abρuv+b2v2)du dv, (11.4)

where σ1

√
1 − ρ2 = 1/a, and σ2

√
1 − ρ2 = 1/b, and presented the following

properties for the partial derivatives for H(x, y) in (11.4):

∂2Ψ(x, y; ρ)
∂x∂y

=
ab
√

1 − ρ2

2π
e−

1
2 a2x2−2abρxy+b2y2

, (11.5)

∂Ψ(x, y; ρ)
∂x

=
a
√

1 − ρ2

2π
e−

1
2 a2(1−ρ2)x2

Φ(by − aρx)

=
a
√

1 − ρ2

2π
e−

1
2 a2(1−ρ2)x2{1 − Φ(aρx− by)}, (11.6)

and

∂Ψ(x, y; ρ)
∂x

=
b
√

1 − ρ2

2π
e−

1
2 b2(1−ρ2)y2

Φ(ax− bρy)

=
b
√

1 − ρ2

2π
e−

1
2 b2(1−ρ2)x2{1 − Φ(bρy − ax)}. (11.7)

Sungur (1990) has noted the property that

dΨ(x, y; ρ)
dρ

= ψ(x, y; ρ). (11.8)
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11.2.5 Univariate Properties

Both marginal distributions are normal.

11.2.6 Correlation Coefficients

The parameter ρ in (11.1) is Pearson’s product-moment correlation coeffi-
cient. Further, Kendall’s τ and Spearman’s ρS may be expressed in terms of
ρ as

τ =
2
π

sin−1 ρ, ρS =
6
π

sin−1 ρ

2
.

11.2.7 Conditional Properties

Both conditional distributions are normal; the regression is linear and the
conditional variance is constant, and they are given by

E(Y |X = x) = μ2 + ρσ2(x− μ1)/σ1, (11.9)
var(Y |X = x) = σ2

2(1 − ρ2), (11.10)

in which location and scale parameters have been included.

11.2.8 Moments and Absolute Moments

Assuming the distribution is in the standardized form as in (11.1), we have
as the joint moment generating function

M(s, t) = E(esX+tY ) = exp
[
1
2
(s2 + 2stρ + t2)

]

. (11.11)

A recurrence relation for the central product moments is given by

μm,n = (m + n− 1)ρμm−1,n−1 + (m− 1)(n− 1)(1 − ρ2)μm−2,n−2, (11.12)

where μm,n is the central product moment, E[(X − μ1)m(Y − μ2)n]. It is
convenient to write μm,n in different forms according to whether m and n
are both even, both odd, or one is even and the other is odd as follows:
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μ2m,2n =
(2m)!(2n)!

2m+n

min (m,n)∑

j=0

(2ρ)2j

(m− j)!(n− j)!(2j)!
, (11.13)

μ2m+1,2n+1 =
(2m + 1)!(2n + 1)!

2m+n

min (m,n)∑

j=0

(2ρ)2j

(m− j)!(n− j)!(2j + 1)!
,

(11.14)
μ2m,2n+1 = 0. (11.15)

Pearson and Young (1918) tabulated the values of μm,n for m and n up
to 10.

Let νmn denote the joint absolute moment, E(|XmY n|), and set τ =√
1 − ρ2. Then, we have:

ν11 = 2(τ + ρ sin−1 ρ)/π, ν22 = 1 + 2ρ2,

ν12 = (1 + ρ2)
√

2/π, ν23 = 2(1 + 3ρ2)
√

2/π,
ν13 = 2[(τ(2 + ρ2) + 3ρ sin−1 ρ)]/π, ν24 = 3(1 + 4ρ2)

√
2/π,

ν14 = [(3 + 6ρ2) − ρ4]
√

2/π, ν33 = 2[(4 + 11ρ2)τ + 3ρ(3 + 2ρ2)
× sin−1 ρ]/π.

For further formulas up to m + n ≤ 12, see Nabeya (1951). Generally,

νm n = π−12(m+n)/2(1−ρ2)m+n+1
∞∑

k=0

Γ
(
m + 1

2
+ k

)

Γ
(
n + 1

2
+ k

)
(2ρ)2k

(2k)!
,

(11.16)
which can alternatively be expressed in terms of Gauss’ hypergeometric func-
tion 2F1.

More extensive collections of formulas can be found, for example, in John-
son and Kotz (1972, pp. 91–93), Patel and Read (1982, Section 10.4), and
Kendall and Stuart (1977, paragraphs 3.27–3.29).

11.3 Methods of Derivation

The bivariate normal distribution can be derived in many ways, and we
present here five of those.

11.3.1 Differential Equation Method

The bivariate normal density may be obtained by solving a pair of partial
differential equations, ∂ log h

∂x = L1
Q and ∂ log h

∂y = L2
Q , where h is the joint p.d.f.
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of X and Y , L1 and L2 are linear functions of both x and y, and Q is a
quadratic function of x and y.

11.3.2 Compounding Method

If X and Y have independent univariate normal distributions, each with mean
μ and standard deviation 1, then the joint distribution of X and Y is circular
normal centered at (μ, μ). Now, if μ itself has a normal distribution with
mean 0 and standard deviation σ, then (X,Y ) is bivariate normal with mean
at (0, 0), variances of 1 + σ2, and correlation coefficient as σ/

√
1 + σ2.

11.3.3 Trivariate Reduction Method

Let Xi (i = 1, 2, 3) be three independent univariate normal random variables.
Then, X = X1 +X3 and Y = X2 +X3 have a bivariate normal distribution,
and thus the bivariate normal distribution is a classic example of the trivariate
reduction method.

11.3.4 Bivariate Central Limit Theorem

Let (X1, X2), . . . , (Xn, Yn) be i.i.d. random vectors with finite second mo-
ments and correlation coefficient ρ, the same as in the parent distribution.
Then, the bivariate normal distribution results as the joint limiting distribu-
tion of the sample means.

11.3.5 Transformations of Diffuse
Probability Distributions

Puente and Klebanoff (1994) constructed bivariate Gaussian distributions as
transformations of diffuse probability distributions via space-filling fractal
interpolating functions; see also Puente (1997).
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11.4 Characterizations

The bivariate normal distribution has been characterized in a number of
different ways, and we list here some of them:

• All cumulants and cross-cumulants of order higher than 2 are zero.
• For any constants a and b both of which are not zero, aX + bY has a

normal distribution [Johnson and Kotz (1972, p. 59)].
• Suppose X and Y have a bivariate exponential-type distribution.1 Then,

(X,Y ) is bivariate normal if and only if (i) E(X|Y = y) and E(Y |X = x)
are both linear and (ii) X +Y is normal [Johnson and Kotz (1972, p. 86)].

• Brucker (1979) showed that (X,Y ) has a bivariate normal distribution
if and only if the conditional distribution of each component, given the
value of the other component, is normal, with linear regression and con-
stant variance. Fraser and Streit (1980) gave a modification of Brucker’s
conditions.

• If X−aY and Y are independent and Y − bX and X are independent, for
all a, b such that ab �= 0 or 1, then (X,Y ) has a normal distribution [Rao
(1975, pp. 1–13)].

• That the sample mean vector (X̄, Ȳ ) of a random sample from a bivari-
ate population and the elements (S2

1 , S
2
2 , R) that determine the sample

variance–covariance matrix, where

R =
∑

(Xi − X̄)(Yi − Ȳ )
√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
,

are independent characterizes the sampling population as bivariate normal
[Kendall and Stuart (1977, p. 413)].

• Let X,Y, U1, and U2 be random variables and a and b be constants such
that (i) Z1 = X + aY + U1 and (Y,U1, U2) are independent and (ii) Z2 =
bX+Y +U2 and (X,U1, U2) are independent. Then, (Z1, Z2) has a bivariate
normal distribution if a �= 0, b �= 0; further, (Z1, Z2) and (U1, U2) are
independent [Khatri and Rao (1976, pp. 83–84)].

• Holland and Wang (1987) have shown that for a bivariate density function
h(x, y) defined on R2, if

(a) ∂2 log h(x,y)
∂x∂y = λ (constant),

(b)
∫∞
−∞ h(x, y)dy = 1√

2π
e−x2/2, and

(c)
∫∞
−∞ h(x, y)dx = 1√

2π
e−y2/2,

then h(x, y) is the standard bivariate normal density function with corre-
lation coefficient ρ =

√
1+4λ2−1

2λ .

1 For this class of distribution, the density is of the form h = a(x, y) exp[xθ1 + yθ2 − q(θ1, θ2)],
where θ1 and θ2 are two parameters and a(x, y) ≥ 0 is a function of x and y [Bildikar and Patil
(1968)].
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• Hamedani (1992) presented 18 different characterizations of the bivariate
normal, many of which do not possess straightforward generalizations to
the multivariate case.

• Ahsanullah and Wesolowski (1992) discussed a characterization of the bi-
variate normal distribution by normality of one conditional distribution
and some properties of conditional moments of the other variables. If
E(|X|) < ∞, Y |(X = x) ∼ N(αx + β, σ2), and E(X|Y = y) = γy + δ for
some real numbers α, β, γ, and δ with α �= 0, γ �= 0, and σ > 0, then (X,Y )
is distributed as bivariate normal. Ahsanullah and Wesolowski (1992) also
presented a slight extension of this result.

• Ahsanullah et al. (1996) presented a bivariate non-normal vector (X,Y )
with normal marginal distributions, correlation coefficient ρ, and
corr(X2, Y 2) = ρ2. Note that if (X,Y ) is distributed as normal with cor-
relation coefficient ρ, then X2 and Y 2 will have correlation ρ2, but this
fourth-moment relation is too weak to characterize a bivariate normal dis-
tribution with zero mean vector. However, with additional conditions on
X and Y such as finiteness of the second and fourth moments, the condi-
tional distribution of Y given that (X = x) is normal with linear mean,
and E(Y 2|X = x) = b + cx2 for constants b and c, corr(X2, Y 2) = ρ2 is
sufficient to characterize bivariate normality.

• Let X and Y be independent random variables, and let U = αX + βY
and V = γX + δY , where α, β, γ, and δ are some real numbers such that
αδ − βγ �= 0. Then, Kagan and Wesolowski (1996) showed that X and Y
are normal random variables if the conditional distribution of U given V
is normal (with probability 1).

• Castillo and Galambos (1989) [see also Arnold et al. (1999)] established the
following interesting conditional characterization of the bivariate normal
distribution.
X and Y have a bivariate normal distribution if and only if all conditional
distributions, both of X given Y and Y given X, are normal and any one
of the following properties holds:

(i) σ2
2(x) = var(Y |X = x) or σ2

1 = var(X|Y = y) is constant;
(ii) limy→∞ y2σ2

1(y) = ∞ or limx→∞ x2σ2
1(x) = ∞;

(iii) limy→∞ σ1(y) �= 0 or limx→∞ σ2(x) �= 0; or
(iv) E(Y |X = x) or E(X|Y = y) is linear and nonconstant.

• More advanced forms of characterizations can be found in Johnson and
Kotz (1972, pp. 59–62) and Mathai and Pederzoli (1977, Chapter 10).
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11.5 Order Statistics

Suppose X and Y have a bivariate normal distribution specified by (11.2)
with ρ2 �= 1. Let Z(1) = min(X,Y ) and Z(2) = max(X,Y ). Cain (1994)
showed that the distribution function of Z(1) is

FZ(1)(x) = Φ
(
x− μ1

σ1

)

+
∫ ∞

(x−μ1)/σ1

Φ

(
x− μ2 − ρσ2u

σ2

√
1 − ρ2

)

φ(u)du. (11.17)

From (11.17), the probability density function of Z(1) can be expressed as

fZ(1) = f1(x) + f2(x), (11.18)

where

f1(x) =
1
σ1

Φ

⎧
⎨

⎩

−
(

x−μ2
σ2

)
+ ρ
(

x−μ1
σ1

)

√
1 − ρ2

⎫
⎬

⎭
φ

(
x− μ1

σ1

)

and

f2(x) =
1
σ2

Φ

⎧
⎨

⎩

−
(

x−μ1
σ1

)
+ ρ
(

x−μ2
σ2

)

√
1 − ρ2

⎫
⎬

⎭
φ

(
x− μ2

σ2

)

;

note that
∫∞
−∞ f2(x)dx = Pr(X > Y ).

From (11.18), the moment generating function of Z(1) is

MZ(1) = M1(t) + M2(t), (11.19)

where

M1(t) = etμ1+
1
2 t2σ2

1Φ

{
μ2 − μ1 − t(σ2

1 − ρσ1σ2)√
σ2

2 − 2ρσ1σ2 + σ2
1

}

and

M2(t) = etμ2+
1
2 t2σ2

2Φ

{
μ1 − μ2 − t(σ2

2 − ρσ1σ2)√
σ2

2 − 2ρσ1σ2 + σ2
1

}

.

It now follows that

E(Z(1)) = μ1Φ

{
μ2 − μ1√

σ2
2 − 2ρσ1σ2 + σ2

1

}

+ μ2Φ

{
μ1 − μ2√

σ2
2 − 2ρσ1σ2 + σ2

1

}

−
√
σ2

2 − 2ρσ1σ2 + σ2
1φ

{
μ1 − μ2√

σ2
2 − 2ρσ1σ2 + σ2

1

}

; (11.20)

similarly,
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E(Z2
(1)) = (μ2

1 + σ2
1)Φ

{
μ2 − μ1√

σ2
2 − 2ρσ1σ2 + σ2

1

}

+(μ2
2 + σ2

2)Φ

{
μ1 − μ2√

σ2
2 − 2ρσ1σ2 + σ2

1

}

−(μ1 + μ2)
√
σ2

2 − 2ρσ1σ2 + σ2
1φ

{
μ1 − μ2√

σ2
2 − 2ρσ1σ2 + σ2

1

}

.

(11.21)

Cain and Pan (1995) extended Cain’s (1994) results by establishing a
recurrence relation for μ′

r = E(Zr
(1)).

Gupta and Gupta (2001) also derived the distributions of the extreme
statistics min(X,Y ) and max(X,Y ); in particular, they showed that both
extreme statistics have the IFR property.

11.5.1 Linear Combination of the Minimum and
the Maximum

Let W = a1Z(1) + a2Z(2), where a1 and a2 are constants. Define bi = 1/ai

for i = 1, 2. Nagaraja (1982) showed that, for ai �= 0, the density of W can
be expressed as

fW =
{
f1(w) if b1 + b2 > 0
f1(−w) if b1 + b2 < 0 , (11.22)

where
f1(w) = 2√

ζ
φ
(

w√
ζ

)
Φ(ηw)

with

η =
b1b2(b1 − b2)

b1 + b2

√
1 − ρ

(1 + ρ)δ
and ζ = a2

1 + 2ρa1a2 + a2
2.

11.5.2 Concomitants of Order Statistics

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate normal dis-
tribution in (11.2). If the sample is ordered by the X-value, then the Y -value
associated with the ith order statistic X(i) is called the concomitant of the
ith order statistic and is denoted by Y[i]; see David (1981).

It is well known that Xi and Yi are linked by the regression model
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Yi = μ2 + ρ
σ2

σ1
(Xi − μ1) + εi, (11.23)

where |ρ| < 1 and Xi and εi are independent. It follows that E(εi) = 0 and
var(εi) = σ2

2(1 − ρ2).
It follows from (11.23) that

Y[r] = μ2 + ρ
σ2

σ1
(X(r) − μ1) + ε[r], r = 1, 2, . . . , n, (11.24)

where ε[r] denotes the specific εi associated with X(r). It then follows from
Watterson (1959) and Sondhauss (1994) that

E(Y[r]) − μ2 = ρ(E(Y(r)) − μ1),

var(Y[r]) − σ2
2 = ρ2{varY(r) − σ2

2},

and
cov(Y[r], Y[s]) = ρ2cov(Y(r), Y(s)), for r �= s.

For asymptotic results on these concomitant order statistics, see Nagaraja
and David (1994). An extensive review on this topic has been given by David
and Nagaraja (1998).

Linder and Nagaraja (2003) considered the situation where a bivariate
normal random sample of size n is subjected to type II censoring on one of
the variates so that only a set of p order statistics and their concomitants
are observed. They then obtained close approximations to the distributions
of sample variances of the observed order statistics and their concomitants
through gamma distributions.

Rather than ordering a bivariate data through one component and look-
ing at the other component as a concomitant to order statistic, Balakrishnan
(1993) considered the case when the ordering of n pairs of observations are
instead based on ordering through a linear combination of the two compo-
nents. He has discussed various properties of order statistics induced by the
ordering of such a linear combination in the case of a bivariate normal dis-
tribution, and has also generalized these results to the multivariate normal
case.

Lien and Balakrishnan (2003) developed a conditional correlation analysis
for order statistics from a bivariate normal distribution, and applied their
results to evaluate the presence of inventory effects in futures markets.

It is of interest to mention here that by starting with any univariate density
function f(x) and an associated orthogonal function g(x), Balasubramanian
and Balakrishnan (1995) described a method of construction of bivariate
and multivariate distributions that have many desirable properties such as
closure under marginal and conditional, and also interestingly closure under
concomitants of order statistics of any component.
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11.6 Illustrations

Practically every introductory statistics textbook has some sort of illustra-
tion of the bivariate normal distribution. The following are particularly note-
worthy:

• Contours of density: Johnson and Kotz (1972, pp. 88–90), Johnson (1987,
pp. 51–53), and Kotz et al. (2000, p. 256).

• Plot of density surface: Rodriguez (1982), Johnson and Kotz (1972, pp.
89–90), and Kotz et al. (2000, pp. 257–258).

• Contour plot of the uniform representation of the bivariate normal: Barnett
(1980).

• Contours and the three-dimensional plots after the marginals have been
transformed to be exponential: Johnson et al. (1981).

• Zelen and Severo (1960) have plotted graphs of L(h, 0; ρ) for various ranges
and ρ. Equidistributional contours (L(x, y; ρ) = α) for a standard bivariate
normal distribution with α = 0.25 are presented by Kotz et al. (2000,
p. 272).

11.7 Relationships to Other Distributions

• Let H(x, y) be a φ-bounded [see Lancaster (1969) for a definition] bivariate
distribution, with standard marginals. Then the density function can be
written as a mixture (finite or infinite) of bivariate normal densities as

h(x, y) =
∫ 1

−1

ψ(x, y; ρ)dμ(ρ), (11.25)

where ψ(x, y; ρ) is the standardized bivariate normal density and μ(·) is a
distribution function over [−1, 1].

• Kibble’s bivariate gamma distribution may be obtained from the bivariate
normal distribution; see Section 8.2 for pertinent details.

• Suppose (X1, X2) has the standardized bivariate normal distribution and
X0, independent of X1 and X2, has a chi-squared distribution with ν
degrees of freedom. Then, X = X1/

√
X0/ν and Y = X2/

√
X0/ν jointly

have a bivariate t-distribution with ν degrees of freedom; see Section 9.2
for details on this distribution.
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11.8 Parameter Estimation

If all five parameters μ1, μ2, σ1, σ2, and ρ in (11.2) are unknown, then the
maximum likelihood estimators are

μ̂1 = X̄, μ̂2 = Ȳ , σ̂1 = S1, σ̂2 = S2, ρ̂ = R, (11.26)

respectively, where S2
i are the sample variances (with n as the divisor) and

R is the sample correlation coefficient.
If the values of some of the parameters are known, different estimators

of the remaining parameters are obtained, and the cases that are of interest
are:

(i) One mean, say μ1, is known.
(ii) μ1 and μ2 are known.
(iii) μ1 and σ1 are known.
(iv) μ1, σ1, and ρ are known.
(v) μ1, σ1, μ2, σ2 are known.
(vi) σ1 = σ2 (but common value unknown).
(vii) μ1 = μ2, σ1 = σ2 (common values unknown).
(viii) σ2

1σ
2
2(1 − ρ2) = θ2 (known).

(ix) μ1 = μ2 (common value unknown).
(x) Information is missing.

For a detailed account of all these developments, one may refer to Chapter
46 of Kotz et al. (2000).

More recently, the following estimation problems have been discussed in
the literature:

(i) σ = σ2
1/σ

2
2 with unknown marginal means. Iliopoulos (2001) derived a

uniformly minimum variance unbiased estimator of the ratio σ as

δU =
n− 3 + 2T

n− 1
S, (11.27)

where S = A11/A22 = R2 = A2
12/(A11A22) with A11 =

∑n
i=1(Xi− X̄)2,

A22 = (Yi − Ȳ )2, and A12 =
∑n

i=1(Xi − X̄)(Yi − Ȳ ).
(ii) μ1 = μ2 = μ, unknown, and σ1 and σ2 are possibly unequal. Yu et al.

(2002) considered in this setting the problem of estimating the common
mean μ based on paired data as well as on one of the marginals. Two
double sampling schemes with the second-stage sampling being either
a simple random sampling (SRS) or a ranked set sampling (RSS) were
considered. Yu then proposed two common mean estimators and found
that, under normality, the proposed RSS common mean estimator is al-
ways superior to the proposed SRS common mean estimator and other
existing estimators such as the RSS regression estimator proposed ear-
lier by Yu and Lam (1997).



11.8 Parameter Estimation 491

(iii) Al-Saleh and Al-Ananbeh (2007) considered estimation of the means of
the bivariate normal using moving extreme ranked set sampling with a
concomitant variable.

11.8.1 Estimate and Inference of ρ

The maximum likelihood estimate of ρ based on simple random samples from
a bivariate normal population is simply the well-known sample correlation
coefficient r given by (4.3),

ρ̂ = r =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
.

• There are many examples where one or both of X and Y may be difficult to
observe or measure directly. Zheng and Modarres (2006) described several
situations where the traditional sample correlation coefficient cannot be
used practically for estimating ρ. They proposed a robust estimate of the
correlation coefficient for a bivariate normal distribution using ranked set
sampling. They showed that this estimate is at least as efficient as the
corresponding estimate based on the simple random sampling and highly
efficient compared with the maximum likelihood estimate using balanced
ranked set sampling. Moreover, the estimate is robust to common ranking
errors.

• Evandt et al. (2004) proposed to use a little-known robust estimator ρ̂ =
sin((π/2)τ̂) that was shown to be at least as good as Spearman’s rho ρS

when the possibility of outliers must be taken into consideration.
• Sun and Wong (2007) proposed a likelihood-based high-order asymptotic

method to obtain a confidence interval for ρ.
• Tsou (2005) provided a suitable simple adjustment to the bivariate normal

likelihood function inferences for the inference of the correlation coefficient.
The resulting inference procedure is asymptotically valid for practically
all continuous bivariate distributions so long as they have a finite fourth
moment.

• Testing independence of X and Y under a bivariate normal model is equiv-
alent to testing ρ = 0. A popular test statistic under this hypothesis is
r
√
n− 2/

√
1 − r2, which has a t-distribution with n − 2 degrees of free-

dom. Another popular test statistic for a given ρ, derived by way of a
variance stabilizing transformation, is

√
n− 3

{

log
1 + r

1 − r
− log

1 + ρ

1 − ρ

}/

2,

which has approximately a standard normal distribution; see Bickel and
Doksum (1977).
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• Three run-based and two rank-based nonparametric tests were proposed by
Kim and Balakrishnan (2005) for testing independence between lifetimes
and covariates from censored bivariate normal samples.

11.8.2 Estimation Under Censoring

For the bivariate normal distribution, when the available samples are either
type II right censored or progressively type II right censored on one variable
and concomitants being available on the other variable, various inferential
methods such as maximum likelihood estimation of the parameters, EM-
algorithm for the numerical determination of the MLEs, confidence intervals
and tests of hypothesis have been discussed by Balakrishnan and Kim (2004,
2005a,b,c).

11.9 Other Interesting Properties

• X and Y − E(Y |X) are independent.
• ρ = 0 if and only if X and Y are independent. Here ρ describes the strength

of the linear relationship between X and Y .
• Let (X1, Y1) and (X2, Y2) be two standard bivariate normal random vec-

tors, with correlation coefficients ρ1 and ρ2, respectively. If ρ1 ≥ ρ2, then
Pr(X1 > x, Y1 > y) ≥ Pr(X2 > x, Y2 > y), which is known as Slepian’s
inequality; see Gupta (1963a, p. 805). Alternatively, Pr(X1 < x, Y1 < y) ≥
Pr(X2 < x, Y2 < y). In this case, we say (X1, Y1) has larger quadrant de-
pendence than (X2, Y2). In other words, the bivariate normal distribution
with fixed marginals is ordered by quadrant dependence (see Section 3.9)
through the correlation coefficient ρ.

• By letting ρ2 = 0 in the inequality above, we have Pr(X ≤ x, Y ≤ y) ≥
Pr(X ≤ x, Y ≤ y) if ρ ≥ 0 for all x, y; of course, there is a similar inequality
if ρ ≤ 0. Moreover, Pr(|X| ≤ x, |Y | ≤ y) ≥ Pr(|X| ≤ x) Pr(|Y | ≤ y),
where x ≥ 0, y ≥ 0. Tong (1980, pp. 8–15) considered these inequalities
for multivariate, rather than bivariate, distributions, so that the form of
the variance–covariance matrix played an important part in his discussion.

• X + Y has a univariate normal distribution; more generally, so does
aX + bY .

• The magnitude of the vector sum—i.e.,
√
X2 + Y 2—has a Rayleigh dis-

tribution if X and Y are i.i.d. normal variates with zero means. For the
case where X and Y have the general bivariate normal distribution, Chou
and Corotis (1983) have presented some results.

• ψ(x, y; ρ) can be expanded diagonally in terms of ρ and the Hermite poly-
nomials in the form
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ψ(x, y; ρ) = φ(x)φ(y)
∞∑

j=0

ρjHj(x)Hj(y); (11.28)

see Cramér (1946, p. 133). Here, Hj ’s are normalized so that the integral∫
φ(x)Hi(x)Hj(x)dx is 1 if i = j and is 0 if x �= j; also, H0 = 1. Since

− d

dx
[Hj−1(x)φ(x)] =

√
jHj(x)φ(x) (11.29)

[see Kendall and Stuart (1979, p. 326)], it follows that Ψ(x, y) also has a
diagonal expansion in terms of ρ and the Hermite polynomials in the form

Ψ(x, y; ρ) = φ(x)φ(y)
∞∑

j=1

ρj

j
Hj−1(x)Hj−1(y) + Φ(x)Φ(y). (11.30)

• Considering only the Hermite polynomial of order 1, the diagonal expan-
sion in (11.28) may be approximated by

ψ(x, y; ρ) � φ(x)φ(y)(1 + ρxy).

This is the same first-order approximation to the standard bivariate normal
density proposed by Sungur (1990).

• T = (1 − ρ2)−1(X2 − 2ρXY + Y 2) has an exponential distribution with
mean 2. Hence, the integral of (11.1) over the interior of the ellipse x2 −
2ρxy + y2 = k is Pr[T ≤ k(1 − ρ2)] = 1 − exp[− 1

2k(1 − ρ2)] [see Johnson
and Kotz (1972, p. 16)].

• Any bivariate distribution obtained from the bivariate normal by separate
transformations of X and Y has a correlation that in absolute value cannot
exceed |ρ| [Kendall and Stuart (1979, p. 600)]; see Section 11.16.5 for more
details.

• If Ψ1,Ψ2,Ψ3 and Ψ4 are four bivariate normal distribution functions such
that Ψ1Ψ2 ≡ Ψ3Ψ4, then Ψ3,Ψ4 are the same as Ψ1,Ψ2 [see Anderson and
Ghurye (1978)].

• If (X,Y ) has a standardized bivariate normal distribution, then the ratio

X/Y has a Cauchy distribution with p.d.f.
√

1−ρ2

π(1−2ρu+u2) . The bivariate nor-
mal is not the only distribution for which this is true; see Section 9.14 of
Springer (1979). Hinkley (1969) approximated the cumulative distribution
function of X/Y when (X,Y ) is not standardized. For subsequent devel-
opments, one may refer to Springer (1979, Section 4.8.3), Aroian (1986),
and references therein. For the distribution of the product XY , see Craig
(1936), Haldane (1942), Aroian (1947, 1978), and Springer (1979, Section
4.8.3).

• For multidimensional central limit theorems, see Heyde (1985). (The sub-
ject is apparently not so interesting when dealing with ordinary numbers



494 11 Bivariate Normal Distribution

because so much of unidimensional theory carries over without any diffi-
culty.)

11.10 Notes on Some More Specialized Fields

• For formulas relating to the application of this distribution in the “com-
peting risk” context, one may refer to David and Moeschberger (1978,
Chapter 4).

• The quantization of a two-dimensional random variable is of interest to
electrical engineers. In this connection, we quote from Bucklew and Gal-
lagher (1978): “Consider a two-dimensional random variable X whose bi-
variate density is circularly symmetric and we desire to represent this quan-
tity by a finite set of values. One possible representation of X leads to a
Cartesian coordinate system expression wherein we individually quantize
the two rectangular components of the random variable. Another common
representation leads to a polar coordinate representation where we quan-
tize the magnitude and phase angle of X. We obtain a simple criterion
by which to determine whether polar format or rectangular format gives
a smaller mean square quantization error.”

• The following description of planar random movement is adapted from van
Zyl (1987). A particle, starting from the origin, jumps a random length U
on the plane with all directions for the jumps being equally likely. Thus,
in an obvious notation, after n such jumps, the particle is at coordinates
(
∑n

i=1 ui cos θi,
∑n

i=1 ui sin θi), where θ is uniformly distributed over the
range 0 to 2π. Van Zyl then derived the characteristic function of the distri-
bution of the position, discussed the normal approximation, and presented
approximate results for the distance of the particle from the origin.

11.11 Applications

There are numerous applications for the bivariate and multivariate normal
distributions. Chapter 19 of Hutchinson and Lai (1991) gives brief accounts of
over 30 subject areas where the bivariate normal distribution has been used.
See also Chapters 20–23 of the same monograph. A quick Google search will
yield hundreds of applications over many disciplines such as agriculture, biol-
ogy, engineering, economics and finance, the environment, genetics, medicine,
psychology, quality control, reliability and survival analysis, sociology, phys-
ical sciences, and technology.
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11.12 Computation of Bivariate Normal Integrals

11.12.1 The Short Answer

The short answer is as follows:

• Tables of bivariate integral: the National Bureau of Standards (1959) and
Japanese Standard Association (1972) have tables of the function L.

• Computer program: Donnelly’s (1973) program is widely available and is
written in FORTRAN. Perhaps Baughman’s (1988) program supersedes
Donnelly’s and is a more current algorithm. Section 11.12.3 presents a
comparison of various algorithms.

The remainder of this section expands on this and is divided into several
subsections on algorithms, and then tables, computer programs, and refer-
ences to reviews of the subject are also presented. We consider only L and
related quantities and not, for instance, integrals over an offset circle, for
which one may refer to Groenewoud et al. (1967) and Patel and Read (1982,
Section 10.3).

In passing, we note that the computation of the univariate normal d.f. is
not straightforward when one is interested in the tails of the distribution as,
for example, in safety contexts; see Rosenblueth (1985). However, MINITAB
has a built-in procedure to compute the normal probability integrals pretty
accurately.

11.12.2 Algorithms—Rectangles

In the early development of the subject, interest centered on the upper right
volume under a density surface, what would be referred to in the reliability
context as the “survival function.” It is conventional to use the symbol L for
this:

L(h, k; ρ) = Pr(X > h, Y > k) =
∫ ∞

h

∫ ∞

k

ψ(x, y; ρ)dy dx. (11.31)

A special case is L(0, 0; ρ) = 1
4 + 1

2π sin−1 ρ. We also have

L(h, k; ρ) = L(h, 0; ρhk) + L(k, 0; ρhk) − 1
2
(1 − δhk),

where δhk is 0 or 1 depending on whether h and k have the same sign or not,
and ρhk = (ρh−k)ah√

h2−2ρhk+k2
, with ah being 1 or −1 depending on whether h is

positive or negative.
Relationships involving the distribution function Ψ are as follows:
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Ψ(h, k; ρ) = L(−h,−k; ρ) = L(h, k; ρ) + Φ(h) + Φ(k) − 1,
Ψ(−h, k; ρ) = L(h,−k; ρ) = 1 − Φ(h) − L(h, k; ρ).

Pearson (1901) presented a method for evaluating L as a power series in ρ
involving tetrachoric functions. His method provides a good approximation
for small |ρ|. Computation of L can also be through the functions V and T
which will be discussed shortly.

Drezner (1978) presented a simple algorithm for Ψ based on numerical
integration of the density function using the Gauss quadrature method.

Divgi (1979) calculated Ψ by transforming X and Y into two inde-
pendent standard normal variates and then approximating 1 − Φ(x) by
xφ(x)

∑n
k=0 dnkx

k, where dnk are the coefficients given by the author.
Bouver and Bargmann (1979) approximated the bivariate integral by

(b− a)
n∑

i=1

wi

2
e−x2/2

√
2π

Φ

(
k − xρ
√

1 − ρ2

)

, (11.32)

where x = a + h(1 + ci)/2 and a = −10 with step size h = (b− a)/30. Here,
wi and ci are the weights and abscissas of the Gauss–Legendre numerical
integration rule. Bjerager and Skov (1982) have given another approximate
formula for Ψ.

A simple way of obtaining a close approximation is to write Ψ(h, k; ρ) =
Pr(X < h) Pr(Y < k|X < h). Now work out the mean and standard de-
viation of Y |X < h, and to find Pr(Y < k|X < h), assume it has a
normal distribution. The repeated application of this is a familiar strat-
egy to approximate the n-dimensional cumulative normal distribution func-
tion (for n ≥ 3) since there is a paucity of competing methods. Mee and
Owen (1983) investigated its usefulness in the bivariate case. In particu-
lar, they gave guidance as to how the calculation should be performed—as
Ψ(h, k; ρ),Ψ(k, h; ρ),Φ(k) − Ψ(−h, k;−ρ), or Φ(h) − Ψ(−k.h; ρ), depending
on the values of h and k.

Foulley and Gianola (1984) approximated L terms of ten positive roots of
Hermite polynomials of order 20.

Wang (1987) proposed a method for computing the bivariate normal prob-
ability integral over any rectangular region, with reasonable accuracy and
without the need for any numerical integration. By observing that the cross-
product ratio for infinitesimal rectangular regions of the bivariate normal is
constant, the method involves an iterative proportional fitting algorithm for
the row and column marginal totals in a two-way table that is constructed
from discretized normal probabilities. A table of integrals when ρ = 1/2 has
been given by Wang.

Rom and Sarkar (1990) proposed a modification of Wang’s contingency
approach. They developed a new algorithm utilizing quadrature and the as-
sociation model to approximate the diagonal probabilities. The off-diagonal
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probabilities are then approximated using this model. They claim that their
approach has several advantages over Wang’s method.

Drezner and Wesolowski (1990) proposed an algorithm that is efficient
for the whole range of correlation coefficients. The method uses Gaussian
quadrature based on only five points and results in a maximum error of
2×10−7. Albers and Kallenberg (1994) also discussed simple approximations
to L(h, k; ρ) for large values of ρ.

Lin (1995) proposed the simple approximation for L(h, 0; ρ)

L(h, 0; ρ) � 1√
8a

eb2/(4a)

{

1 − Φ
(√

2a
(

h +
b

2a

))}

, (11.33)

where a = 0.5 + 0.416ρ2/(1− ρ2) and b = −0.717ρ/
√

1 − ρ2. Lin (1995) also
suggested an even simpler approximation, given by

L(h, 0; ρ) � 1√
8a

eb2/(4a) 0.5e−a2(h+ b
2a )2

1 + 0.91{
√

2a(h + b
2a )}1.12

. (11.34)

Lin has shown that the accuracy of these approximations is quite sufficient
for many practical situations.

Results in terms of the bivariate (and multivariate) Mills’ ratio—that is,
the ratio of tail volume L to bounding ordinate ψ—have been given by Savage
(1962) and Ruben (1964). Savage derived upper and lower bounds for this
ratio, and Ruben presented an asymptotic expansion.

Derivative Fitting Procedure

Zhang (1994) presented a derivative fitting procedure for computing the
c.d.f. Ψ(h, k, ρ) =

∫ h

−∞
∫ k

−∞ ψ(x, y, ρ)dx dy, which can be written as [Gupta
(1963a)]

Ψ(h, k, ρ) =
∫ ρ

0

ψ(h, k, z)dz + Φ(h)Φ(k). (11.35)

Expand (11.35) approximately as a polynomial of ρ as

Ψ∗(h, k, ρ) = a0 +
m∑

i=1

aiρ
i, (11.36)

where ai are functions of h and k and are independent of ρ.
Set ∂Ψ∗

∂ρ = ∂Ψ
∂ρ . Since ∂2ψ

∂x∂y = ∂ψ
∂ρ [Gupta (1963a)], it follows that

∂Ψ
∂ρ

=
∫ h

−∞

∫ k

−∞

∂2φ

∂x∂y
dx dy = ψ(h, k, ρ).
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It now follows from (11.35) that

m∑

i=1

iaiρ
i−1 = ψ(h, k, ρ). (11.37)

To determine m ai’s, m fitting points ρi are taken from the interval [0, 1).
Substituting those ρ’s into (11.37) yields

⎡

⎢
⎢
⎢
⎣

1 2ρ1 3ρ2
1 · · · mρm−1

1

1 2ρ2 3ρ2
2 · · · mρm−1

2
...

...
...

...
1 2ρm 3ρ2

m · · · mρm−1
m

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a1

a2

...
am

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

b1
b2
...
bm

⎤

⎥
⎥
⎥
⎦
, (11.38)

where bi = ψ(h, k, ρi). Rewrite (11.38) in a common matrix notation as Ca =
b so that a = C−1b. The term a0 is given by Ψ(h, k, 0) = Φ(h)Φ(k).

It is now clear that (11.35) can now be written as

Ψ∗(h, k, ρ) = Φ(h)Φ(k) + R′C−1b. (11.39)

The author reported that the approximation to the cumulative bivariate
normal by Ψ∗(h, k, ρ) is quite accurate (up to six significant digits) for −.75 ≤
ρ ≤ 0.75 and very poor when ρ is close to 1 or −1. He also provided a
technique to improve the numerical accuracy when |ρ| > 0.75.

Bounds on L(h, k; ρ)

Willink (2004) has presented inequalities for the upper bivariate normal tail
probability L(h, k; ρ) for use in bounding the probability integral Ψ(h, k; ρ).
The author considered them relatively simple and more widely applicable
than the existing bounds with similar performance, and they have superior
performance if |ρ| is small or Ψ(h, k; ρ) is very large. The upper bound is
tight when Ψ(h, k; ρ) is large and has a simple form when h = k.

For h > 0, ρ ≥ 0, the two lower bounds are, respectively,

L(h, k; ρ) ≥ Φ(−h) −
√

(1 − ρ2)
ρ

φ(h)

×
[

G

(
k − ρh
√

1 − ρ2

)

−G

(
k − ρh
√

1 − ρ2
− a

)]

(11.40)

for a = ρ√
(1−ρ2)

· Φ(−h)
φ(h) and G(x) =

∫ x

−∞ Φ(y) dy, and
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L(h, k; ρ) ≥ Φ(−h) − φ(h)
h

Φ

(
k − ρh
√

1 − ρ2

)

+
φ(k)
h

exp
[
(k − h/ρ)2

2

]

Φ

(
k − h/ρ
√

1 − ρ2

)

. (11.41)

The upper bound concerned is given by

L(h, k; ρ) ≤ Φ(−h) −
[

Φ

(
ρh− k
√

1 − ρ2

)

+ ρ exp
[
h2 − k2

2

]

Φ

(
ρk − h
√

1 − ρ2

)]

.

(11.42)
Because it is expected that (11.40) will perform better than (11.42), Willink
(2004) proposed to form a hybrid lower bound that is the maximum of the
two individual bounds. Thus, the bounds are now given by

max{RHS(11.40),RHS(11.41)} ≤ L(h, k; ρ) ≤ RHS(11.42), h > 0, ρ ≥ 0.
(11.43)

In particular, the bounds are simple when h = k. By letting θ =
√

1−ρ
1+ρ , we

can show that (11.43) now becomes

Φ(−h)Φ(−θh) ≤ L(h, h; ρ) ≤ Φ(−h)Φ(−θh) ≤ L(h, h; ρ)(1 + ρ),
h > 0, ρ ≥ 0. (11.44)

11.12.3 Algorithms: Owen’s T Function

For computational purposes, it is easier to work with Owen’s T function than
with V (to be discussed in Section 11.12.4), where

T (h, λ) =
π

2

∫ λ

0

(1 + x2)−1 exp[−h2(1 + x2)/2]dx

=
1
2π

tan−1 λ− V (h, λh). (11.45)

Here 1
2π tan−1 λ is the integral of the circular normal density ψ(x, y; 0) over

the sector in the positive quadrant that is bounded by the lines y = 0 and
y = λx.

We note the following relations that show that the computation of T for
h ≥ 0 and 0 ≤ λ ≤ 1 is sufficient to obtain T for any other values of the
arguments:
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T (λh, λ−1) =
1
2
[Φ(h) + Φ(λh)] − Φ(h)Φ(λh) − T (h, λ),

T (h, λ) = T (−h, λ) = −T (h,−λ),
T (h, 0) = 0.

Further, Ψ can be expressed in terms of Φ and T , as follows:

Ψ(h, k; ρ) =
1
2
[Φ(h) + Φ(k)] − T

(

h,
k − ρh

h
√

1 − ρ2

)

− T

(

h,
h− ρk

k
√

1 − ρ2

)

− b,

where b = 0 if hk > 0 or hk = 0 with h + k ≥ 0 and b = 1
2 otherwise.

Owen (1980) presented a collection of integral formulas involving the nor-
mal distribution. Most of these concern the univariate function, but there are
several relating to Ψ and/or T .

Much effort has been devoted to searching for an accurate approximation
for T . Owen (1956) showed that

T (h, λ) =
1
2π

⎛

⎝tan−1 λ−
∞∑

j=0

cjλ
2j+1

⎞

⎠ , (11.46)

with

cj =
(−1)j

2j + 1

[

1 − e−h2/2

j∑

i=0

( 1
2h

2)i

i!

]

.

For small values of h and λ, convergence is rapid, and this formula is useful
for computing T . Amos (1969) has given instructive comparisons of computer
times to calculate Ψ using various formulas; he recommended that (11.46) is
generally preferable.

Borth (1973) agreed with the use of (11.46) as an approximation to T
with a desired accuracy of 10−7 if h ≤ 1.6 or λ ≤ 0.3. For faster convergence
with higher values of h or λ, he gave the following modification. Approxi-
mating (1 + x2)−1 over the range −1 to 1 by a polynomial of degree 2m,∑m

k=0 a2kI2kx
2k. Then, T may be approximated by

1
2π

exp
(
−h2

2

) m∑

k=0

a2kI2k(w)
(

h√
2

)−(2k+1)

, (11.47)

where w = hλ/
√

2 and I is obtained by the iterative relation

I2k(w) =
1
2
[(2k − 1)I2k−2(w) − w2k−1 exp(−w2)]

with I0(w) =
√
π[Φ(w

√
2) − 1

2 ]. Borth recommended this modification if
h > 1.6 and λ > 0.3, noting that if h > 5.2, then T < 10−7, and that the
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required accuracy is attained if m = 6. This use of Owen’s algorithm with
Borth’s modification does combine speed of computation with accuracy.

Sowden and Ashford (1969) suggested a composite method of computing
L, incorporating Owen’s algorithm (11.46).

For small h and λ, Daley (1974) claimed that Simpson’s numerical inte-
gration rule to evaluate (11.45) yields a better result than the power series
expansion in (11.46).

Young and Minder (1974) also gave an algorithm for calculating T over
all values of h and λ. (There have been corrections and improvements to this
by various authors.)

Approximation for T (h, λ) When h Is Small

Young and Minder’s algorithm has been modified and extended by several
authors, including Hill (1978), Thomas (1979), and Chou (1985). Boys (1989)
found that Chou’s modified version of Young and Minder (1974) does not
provide accurate results when h is small and λ is large. He therefore provided
an approximation based on the first few terms in an asymptotic expansion of
T (h, ·) for small h and defining a = hλ to give

T (h, a/h) � 1
4
− 1

2π

[
exp(−a2/2)

a
+
√

2π
{

Φ(a) − 1
2

}]

h

+
1

12π

[
a2 + 2
a3

exp
(
−a2

2

)

+
√

2π
{

Φ(a) − 1
2

}]

h3.

(11.48)

Comparison of Algorithms for Bivariate Normal
Probability Integrals

As there are several numerical algorithms available to compute the bivariate
normal integrals, a practitioner is often faced with a decision to select an op-
timal procedure in terms of speed and accuracy. Unfortunately, high accuracy
comes at the cost of computational time. Terza and Welland (1991) carried
out a comparison of eight approximation algorithms with regard to the accu-
racy and speed trade-off. The eight procedures used in the comparison are:
Owen (1956), Young and Minder (1974), Daley (1974), Drezner (1978), Di-
vgi (1979), Bouver and Bargmann (1979), Parrish and Bargmann (1981), and
Welland and Terza (1987). We have discussed all except the last two. We also
note that Owen’s algorithm is implemented by the IMSL subroutine DBN-
RDF. Terza and Welland (1991) produced 12 tables and drew the following
conclusions from their numerical results:
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The method developed by Divgi (1979) emerges as the clear method of choice,
achieving 14-digit accuracy ten and a half times faster than its nearest competi-
tor. Furthermore, in the time required by Divgi’s approximation to reach this level
of precision, none of the other methods can support more than 3-digit accuracy.

Wang and Kennedy (1990) disagreed somewhat with the findings of Terza
and Welland (1991) and stated in their paper, “Although it appears that
the accuracy comparisons were successfully made in this study, the possi-
bility exists that variation in levels of accuracy of the basis algorithm over
different regions might have caused erroneous conclusions to be made when
comparing the algorithms for achieved accuracy. What is needed in studies of
this type is a base algorithm which provides a computed value along with a
useful bound for the error in the value. In other words, a self-validating com-
putational method and associated algorithm is needed to provide numbers
for use in comparing accuracy of competing algorithms.” Wang and Kennedy
(1990) then carried out a comparison of several algorithms over a rectangle
based on self-validated results from interval analysis. They concluded that
even the most accurate of the algorithms currently in use for the bivariate
normal is substantially less accurate and no more accurate than a Taylor
series approximation for computing probabilities over rectangles.

11.12.4 Algorithms: Triangles

V (h, k) is defined as

V (h, k) =
1
2π

∫ h

0

∫ kx/h

0

exp{−(x2 + y2)/2} dydx, h, k ≥ 0. (11.49)

This is the integral of the standard circular normal density over the triangle
with vertices (0, 0), (h, 0), and (h, k). Clearly, V (0, k) = 0 = V (h, 0). Then,
the following relation holds between L and V :

L(h, k; ρ) = 1 − 1
2
{Φ(h) + Φ(k)} − 1

2π
cos−1 ρ + V

(

h,
k − ρh
√

1 − ρ2

)

+V

(

k,
k − ρk
√

1 − ρ2

)

,

and other relations involving the function V are as follows:
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V (h, k) = −V (−h, k) = V (−h,−k) = −V (h,−k),

V (h, k) + V (k, h) =
[

Φ(h) − 1
2

]

[Φ(h) − 1],

V (h,∞) =
1
2

[

Φ(h) − 1
2

]

,

V (∞, k) = 0.

Nicholson (1943) presented tables of V to six decimal places.

11.12.5 Algorithms: Wedge-Shaped Domain

Grauslund and Lind (1986) considered the integral of the standard circular
normal density over a wedge-shaped domain given by

I(h, k) =
∫ ∫

D

φ(x)φ(y)dx dy, (11.50)

where the integral is taken over the region D defined by y ≥ k, x ≥ hy/k.
The function I in (11.50) can be reduced to a single integral in the form

I(h, k) = kφ(k)
∫ ∞

h

φ(x)
k2 + x2

dx. (11.51)

Then the following identities hold:

I(h, k) = Φ(−k) − I(−h, k) =
1
2
− I(h,−k) = Φ(−h)Φ(−k) − I(k, h).

The integral may be evaluated by numerical methods. Alternatively,
Grauslund and Lind obtained a simple approximation that they claimed to
be suitable for many technical applications. Introduce the function

I1(h, k) =
k

2h

[
Φ
(
−
√

(h2 + k2)/2
)]2

,

which is, when h > k, a first approximation and a lower bound of I. In order
to attain greater accuracy, write I in the form

I(h, k) = c(h, k)I1(h, k),

where c is a correction factor function. Grauslund and Lind presented a table
of c in terms of h and k and in addition two approximations:

• c = 1.053 if 2 ≤ h ≤ 8 and 0 ≤ k ≤ 8.
• c = a1 + a2k + a3h

2 + a4hk + a5h
3 + a6h

2k + a7hk
2, the values of the a’s

having been given by the authors.
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Gideon and Gurland (1978) considered essentially the same function, though
in different notation. They approximated it by d(r, θ)1

2 [1 − Φ(r)], where r =√
h2 + k2, θ = tan−1 k

h , and d(r, θ) is approximated by b0θ + (b1 + b2r)rθ +
(b3 + b4r)rθ3 + (b5 + b6r)rθ5, the values of the b’s having been given by the
authors (being different for different ranges of r).

11.12.6 Algorithms: Arbitrary Polygons

Cadwell (1951) was possibly the first one to consider the bivariate normal
integral over an arbitrary polygon. His procedure was to transform X and
Y into independent standard normal variates, by a rotation of axes followed
by a change of scale, and then make use of the V function discussed earlier.
His work was developed more formally by the National Bureau of Standards
(1959); see also Johnson and Kotz (1972, pp. 99–100). We note that a linear
transformation of the type mentioned above will leave unaltered the property
of the polygon whether it is convex, simple, or self-intersecting.

11.12.7 Tables

We now summarize the major sets of tables relevant to the bivariate normal
integral. For more details, one may refer to National Bureau of Standards
(1959) and Greenwood and Hartley (1962, pp. 119–122).

Pearson (1901) L(h, k; ρ)
Nicholson (1943) V (h, j)
National Bureau of Standards (1959) L(h, k; ρ), V (h, λh), and V (λh, h)
Japanese Standards Association (1972) L(h, k; ρ) and V (h, λh)
Owen(1956, 1962) T (h, λ)
Smirnov and Bol’shev (1962) T (h, λ) and T (h, 1)

11.12.8 Computer Programs

The following list provides various programs that are available in the litera-
ture, with the last column indicating the type of code.
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Donnelly (1973) L(h, k; ρ) FORTRAN
Young and Minder (1974) (corrections T (h, λ) FORTRAN
and remarks by other authors)

Divgi (1979) L(h, k; ρ)
Bouver and Bargmann (1979) Ψ(h, k) FORTRAN
DiDonato and Hageman (1982) Integral over polygon
Baughman (1988) L(h, k; ρ) FORTRAN
Boys (1989) T (h, λ) FORTRAN
Drezner and Wesolowski (1990) L(h, k; ρ) FORTRAN
Goedhart and Jansen (1992) T (h, λ) FORTRAN

It should also be mentioned that the IMSL package includes a routine for
evaluating the bivariate normal integral, and so do NWA, STATPAK, which
is microcomputer-oriented [and for which we rely upon Siegel and O’Brien
(1985) for the information], and STATLIB [Brelsford and Relies (1981, p.
370)]. STATLIB’s method is somewhat unsophisticated, being based on Simp-
son’s rule integration for the univariate cumulative normal function.

Computation of Bivariate Normal Integral Using R

R has been a very popular statistical package in recent years. The bivariate
normal integrals can be computed by the function mvt in the R package mvt-
norm. For implementation details, download the document Using mvtnorm
from

http://cran.r-project.org/web/packages/mvtnorm/index.html.

11.12.9 Literature Reviews

Extensive literature reviews of the subject may be found in National Bureau
of Standards (1959), Gupta (1963a,b), Johnson and Kotz (1972, Chapter 36),
Martynov (1981), Patel and Read (1982, Chapter 10), and Kotz et al. (2000).

11.13 Testing for Bivariate Normality

Some of the discussion in this section is of general issues of discerning shape
in empirical bivariate data but is included here since the bivariate normal is
so often the benchmark in such situations.
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11.13.1 How Might Bivariate Normality Fail?

As was pointed out earlier, the bivariate normal has been used extensively
in empirical research. The question arises as to how we can know if the two
random variables have a joint distribution that is bivariate normal. Among re-
views assessing normality with bivariate (or higher-dimensional) data, we call
attention to Kowalski (1970), Andrews et al. (1971), Gnanadesikan (1977),
Mardia (1980), Small (1985), Csörgö (1986), and Looney (1995). There are
many possible ways of departing from the bivariate normal; as a first step,
we may classify them as:

• failure of marginals to be normal,
• normal marginals but failure to be bivariate normal, or
• failure to be normal after univariate transformations have made the

marginals normal.

Broadly speaking, there are two methods of checking bivariate normality:
graphical procedures, and formal tests of significance. The structure of the
main part of this section is as follows:

• Graphical checks.
• Formal tests—univariate normality.
• Formal tests—bivariate normality.
• Tests of bivariate normality after transformations.
• Some comments and suggestions.

However, we shall first make some remarks about outliers.

11.13.2 Outliers

A failure to be bivariate normal may apparently be due to “outliers”—one
observation or a few that seem to be separated from the others.

• The concept of an outlier in the bivariate or multivariate case is by no
means as straightforward as it is for a univariate sample, and one may
refer to Barnett and Lewis (1984, Chapter 9) for a further discussion on
this. Other accounts are those of Hawkins (1980, Chapter 8) and Barnett
(1983b).

• One important idea is to represent a multivariate observation x by some
distance measure (x − x0)′Ω−1(x − x0), where x0 is a measure of loca-
tion and Ω is a measure of scatter; here, x0 might be the population mean
(if known) or the sample mean, and Ω might be the population or sam-
ple variance–covariance matrix. The bivariate observations can then be
ordered according to this measure.



11.13 Testing for Bivariate Normality 507

• For a transformation approach to handling outliers, see Barnett (1983a)
and Barnett and Lewis (1984, Section 9.3.4). The idea in this case involves
obtaining standard normal variates U1 and U2 by means of the equation
F (x) = Φ(u1), G(y|X = x) = Φ(u2).

• For outlier detection when the “linear structured model” applies—i.e.,
there are unobserved variates Z1 and Z2 connected by Z2 = α+βZ1, with
observed variates X = Z1 + ε1 and Y = Z2 + ε2, the interested reader may
refer to Barnett (1985).

• For the “influence” approach to outlier detection, see Chernick (1983).
The idea is to identify which observations have the biggest effect on some
statistics of interest, such as the mean or the correlation. Chernick has re-
ported an application to monthly consumption/generation data for power
plants.

• Bacon-Shone and Fung (1987) have proposed a graphical method that they
claim is good at detecting multiple outliers.

• For multivariate “trimming” (i.e., removal of extreme values), one may
refer to Ruppert (1988).

• Building on univariate ideas of Green (1976), Mathar (1985) has discussed
the classification of bivariate and multivariate distributions as “outlier-
prone”: A multivariate distribution is absolutely outlier-resistant if, with
increasing sample size, the difference between the largest and the second-
largest distances from the origin converges to zero in probability; it is
relatively outlier resistant if the corresponding ratio converges to one in
probability. However, with these definitions, the outlier behavior of a mul-
tivariate distribution is determined by its marginals, the dependence struc-
ture does not affect it. Consequently, it can hardly be said to be of multi-
dimensional relevance if the marginals contain all the information.

• As an example of an applied work, we draw attention to Clark et al.
(1987), whose variates were diastolic blood pressure; a feature of their
investigation was how the identification of observations as outliers or not
changed as various covariates (such as the nature of activity when blood
pressure was measured) were taken into consideration.

11.13.3 Graphical Checks

Univariate Plotting

To check univariate normality, arrange the observations in order of size, cal-
culate suitable plotting positions, and plot on the special graph paper that
is available for this purpose (or convert the plotting positions to equivalent
normal deviates and use ordinary graph paper). A straight line in such a
plot indicates normality. An excellent account of this kind of technique is by
D’Agostino (1986a); see also Harter (1984), Sievers (1986), and (for censored
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data) Michael and Schucany (1986). The plotting position i/(n + 1) is often
used for the ith observation in an ordered sample size n, but there does not
seem to be any consensus with regard to the best choice in the applied [see
Cunnane (1978)] as well as the statistical literature.

Motivated by the phenomenon that the log returns of many financial prob-
lems are normally distributed, Hazelton (2003) proposed a normal log-density
plot to assess normality. The idea is to plot the kernel density estimate and
compare it with the log of a normal density.

Jones (2004) proposed an alternative by Hazelton (2003) based on his early
work [Jones and Daly (1995)] by plotting

log{φ[Φ−1((i− 1/2)/n)]} against x(i), i = 1, . . . , n.

The last plot is simpler and is known as the normal log density probability
plot.

Scatterplots

A well-known method that can be used to check bivariate normality is to
draw a scatter diagram. If the sample observations do come from a bivariate
normal distribution, the points will lie roughly within an elliptical region with
a heavier concentration near the middle and with a gradually decreasing con-
centration away from the middle. A scatterplot may indicate non-normality
or reveal outliers that, if included in the analysis, may give a spurious indica-
tion of non-normality or reveal outliers, or perhaps conceal a real departure
from normality. For a listing of programs written in APL that create a scat-
terplot and superimpose contours of the bivariate normal p.d.f., see Bouver
and Bargmann (1981). For the “sharpening” of a scatterplot to reveal its
structure more clearly, see Section 11.18.8. For a review of “convex hulls”
and other methods of “peeling” bivariate data (with rectangles or ellipses),
one may refer to Green (1981, 1985).

For many ideas about elaborating scatterplots to bring out their meaning
more clearly, see Chambers et al. (1983, especially Chapter 4).

In many applications, however, a scatterplot will be inconclusive and a
formal test of goodness-of-fit may be required. Note also that a necessary
condition for a bivariate normal is that the conditional means be linear and
the conditional variances constant. Therefore, a plot of these statistics can
be helpful in assessing bivariate normality as well.

F -Probability Plot

Ahn (1992) introduced an F -probability plot for checking multivariate nor-
mality. The plot is based on the squared jackknife distances which have an
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exact finite sampling distribution when a sample is taken from a multivariate
normal distribution, and to provide test statistics, the F -probability plot cor-
relation coefficient and the F -probability plot intercept. The former can be
used to measure the linearity of the F -probability plot and the latter to de-
tect extreme observations, and thus they can be used as numerical measures
to assess multivariate normality.

Radii and Angles

Another approach to assessing bivariate normality, which is based on radii
and angles, has been discussed by Gnanadesikan (1977, Chapter 5). The ra-
tionale for this method is as follows. Let (X1, X2)′ denote the bivariate nor-
mal vector with variance–covariance matrix Σ. First, transform the original
variates X1 and X2 to independent 2 normal variates X and Y using

(
X
Y

)

= Σ−1/2

(
X1 − μ1

X2 − μ2

)

. (11.52)

Second, transform (X,Y ) to polar coordinates (R,Θ). Then, under the hy-
pothesis of bivariate normality, R2 has a χ2

2-distribution (i.e., exponential
with mean 2), and Θ has a uniform distribution over the range 0 to 2π.
These consequences may be tested graphically—by plotting sample quan-
tiles of R2 against quantiles of the exponential distribution and similarly by
plotting sample quantiles of Θ against quantiles of the uniform distribution.
For illustration, see Gnanadesikan (1977, Exhibits 28i,j, 29d,e). If bivariate
normality holds, the two plots should be approximately linear. However, if
μ′ = (μ1, μ2) and Σ are estimated, the distributional properties of R and
Θ are only approximate. For n ≥ 25, the approximation is usually good.
The radii-and-angles approach, though informal, is an informative graphical
aid. However, as in the case of scatterplots, the test may be inconclusive,
particularly with small samples.

Project Pursuit

Alhough it is aimed at the multivariate situation rather than only the bi-
variate case, the method of projection pursuit [Friedman and Tukey (1974),
Friedman and Stuetzle (1982), and Tukey and Tukey (1981)] should be men-
tioned. The strategy is to “pursue the projection”—i.e., find the vector—that
most clearly reveals the non-normality of the data. At each step, an augment-
ing function is estimated as the ratio of the data to the model when projected

2 There are infinitely many ways to transform a bivariate normal vector into two independent

normal variates by decomposing Σ into products of two matrices. In addition, Σ = Σ1/2Σ1/2 as
represented by (11.52), and the Choleski decomposition Σ = LL′, where L is a lower triangular
matrix, are popular.



510 11 Bivariate Normal Distribution

onto a certain vector. The final model is the product of the initial model (such
as the multivariate normal) and a series of augmenting functions.

In somewhat the same style is an idea described by Gnanadesikan (1977,
pp. 142–143), in which univariate Box–Cox transformations—see Section
11.13.6 below—are repeatedly applied in different directions.

The Kernel Method

Silverman (1986, Chapter 4) has argued persuasively that both two-dimensional
histograms and scatterplots are poor aids to grasping the structure of bivari-
ate data and has therefore proposed the “kernel” method as an improvement.
He has described this method of estimating a density as being the sum of
bumps centered at the observations.

• Choose a kernel function K(·) and a window with width w.
• The density at a point x is then estimated to be

ĥ(x) =
1

2w2

n∑

i=1

K

(
x − xi

w

)

, (11.53)

where x1,x2, . . . ,xn are the n data points in the sample.
• K(·) is usually a radially symmetric unimodal p.d.f. such as the bivariate

normal.
• The data should be rescaled to avoid extreme differences of spread in the

various coordinate directions (or else the single smoothing parameter w
should be replaced by a vector).

• Appropriate computer graphs are then used to display ĥ(x) as a surface
or contour plot.

Although one may fear that different K(·) and w may give different results,
Silverman has provided an extensive discussion about these choices. He has
given an example [also in Silverman (1981)] of 100 data points drawn from a
bivariate normal mixture, smoothed using window widths 1.2, 2.2, and 2.8;
the first appears undersmoothed, the last oversmoothed. And let us remember
that the classes from which a histogram is constructed are arbitrary, too,
and that the scales chosen for a scatterplot affect the subjective impression
it gives. Other accounts of this are by Everitt and Hand (1981, Section 5.3)
and Chambers et al. (1983, Section 4.10).

Tanabe et al. (1988) have presented FORTRAN subroutines for computing
bivariate (and univariate) density estimates, using a Bayesian nonparametric
method.
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Haar Distribution

In the article by Wachter (1983), we notice the following paragraph: “On
the whole, Haar measures have gained prominence in statistics with the re-
alization that many consequences of multivariate normal assumptions do not
depend on normality itself but only on rotational symmetry. For graphically
based data analysis, symmetry assumptions are often preferable to parametric
distributional assumptions such as normality. Thus, curiously enough, data
analytic emphasis in multivariate statistics has promoted ties with highly
mathematical theory of Haar distributions.”

11.13.4 Formal Tests: Univariate Normality

Why Test?

As mentioned earlier, graphical checks of bivariate normality may be in-
conclusive, and hence a formal test of significance will perhaps give a more
objective guide to the suitability of the bivariate normal distribution. Once
again, as mentioned earlier, there are many different ways in which an em-
pirical distribution may deviate from bivariate normality. This suggests that
equally many techniques may be needed to spot such deviations.3 According
to Small (1985), “There is no single best method, and choice should be guided
by what departure might be expected a priori or would have the most serious
consequences.”

We deal here with tests on the marginals to see if they are normal (remem-
ber that marginal normality is a necessary, though not sufficient, condition
for bivariate normality). Fuller accounts are due to D’Agostino (1982, 1986b),
Koziol (1986), and (for censored data) Michael and Schucany (1986).

Chi-Squared Test

Group the observations into a number of ranges of the variate. Determine
the expected numbers that would fall into these groups under the normal
distribution, and then calculate the statistic

∑
(O − E)2/E. The advantage

of this is its ease and elementary nature. A minor technical disadvantage is
that one never knows precisely how to carry out the grouping—having too few
groups loses much information, whereas having too many groups means there
are few observations per group, and hence the chi-squared approximation to
the test statistic may be dubious. But the major disadvantage is the loss of
information concerning the ordering of the groups and the consequent loss

3 But there is a danger here—if lots of different tests are conducted, a “significant’ result is
quite likely to come about purely by chance.
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of power. As an example, suppose the pattern of residuals was + +−−− +
++−−−++. If X2 just failed to indicate statistical significance, we would
nevertheless suspect that the empirical distribution differed from the normal
in kurtosis.

For more on this, see Moore (1986).

Moment Tests

The skewness (
√
b1) and kurtosis (b2) statistics are defined by

√
b1 =

m3/m
3/2
2 and b2 = m4/m

2
2, where mi is the ith sample moment about the

mean.
The values

√
b1/
√

6/n and (b2 − 3)/
√

24/n are both asymptotically nor-
mal. Consequently, D’Agostino and Pearson (1973) suggested adding together
the squares of the standardized variates corresponding to these sample statis-
tics and treating the results as χ2

2-variate (i.e., exponential with mean 2), this
test being sensitive to departures from normality in both skewness and kur-
tosis, though naturally not as powerful with regard to either as a specific
test for that feature would be. And, of course, it is not so sensitive to depar-
tures from normality other than those that are reflected by the skewness and
kurtosis statistics.

Tests based on
√
b1 and b2 have been reviewed by Bowman and Shenton

(1986) and D’Agostino (1986b).
For a further discussion on

√
b1 and its interpretation, see Rayner et al.

(1995).

Z-Test of Lin and Mudholkar

The mean and the variance of a random sample are independently distributed
if and only if the parent population is normal. This characterization was used
as a basis for Lin and Mudholkar (1980) to develop a test, termed the Z test,
for the composite hypothesis of normality against asymmetric alternatives.

Tests Based on the Empirical Distribution Function

The best-known among these tests is the Kolmogorov–Smirnov test.
Using the notation Fn for the empirical d.f. based on a sample size of n

and F for the hypothesized distribution, the test involves calculating

Dn = sup
−∞<x<∞

|Fn(x) − F (x)|. (11.54)

The Cramér–von Mises test is based on
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W 2
n =

∫ ∞

∞
|Fn(x) − F (x)|2A[F (x)]dF (x), (11.55)

where A is a non-negative weight function. There are other alternatives as
well.

There are many difficulties with such tests. One is their frequent absence
from elementary textbooks and computer packages. Another is perhaps that
no one understands their properties when the parameters of the distribution
have been estimated from the sample and that the sample size is small to
moderate. Another is the labor involved. However, the chapter by Stephens
(1986a) seems very thorough and helpful. See also Paulson et al. (1987) for
other tests for multivariate normality based on empirical distribution func-
tions.

Probability Plots

Tests have been proposed [for example, by Shapiro and Wilk (1965)] that are
based on how far a probability plot of the type described in the beginning of
this subsection is from a straight line (i.e., on its correlation coefficient). For
a review of this approach, see Stephens (1986b).

CPIT Plots

CPIT stands for conditional probability integral transformation. One may
refer to Quesenberry (1986a,b) for this method.

Jarque and Bera Test

A popular normality test that is based on the sample moments was proposed
by Jarque and Bera (1980, 1987) and Bera and Jarque (1981).

The test statistic is given by

JB = n

(
α2

3

6
+

(α4 − 3)2

24

)

,

where

α3 =
n−1

∑n
i=1(xi − x̄)3

s3

and

α4 =
n−1

∑n
i=1(xi − x̄)4

s4
,

with s2 =
∑n

i=1(xi−x̄)2/2. Using the notation given under the moment tests,
α3 is simply

√
b1 and α2 is simply b2.
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Thadewald and Büning (2007) have investigated the power of several nor-
mality tests, including those of Shapiro and Wilk, Kolmogorov and Smirnov,
and Cramér and von Mises. They concluded that the Jarque and Bera test is
superior in power to its competitors for symmetric distributions with medium
to long tails and for slightly long skewed distributions with long tails. How-
ever, the test is poor for distributions with short tails, especially if the shape
is bimodal.

Zhang’s Omnibus Test

Zhang (1999) proposed a test statistic Q for testing normality based on the
ratio of two unbiased estimators of the standard deviation, q1 and q2. Mingoti
and Neves (2003) discussed some properties of q1 and q2 and showed that the
variance of q1 increases as the true population variance increases. Huang and
Wei (2007) have shown that q1 is normally distributed so that the normality
percentage points for Q are no longer appropriate. Using simulations, Huang
and Wei (2007) recalculated the percentage points for Q.

11.13.5 Formal Tests: Bivariate Normality

Chi-Squared Test

It is easy, in principle, to compare observed and expected numbers in dis-
cretized bivariate distributions by means of Pearson’s X2 or a similar statis-
tic, but the disadvantages mentioned in the subsection relating to the uni-
variate case still remain.

Tests Based on the Empirical Distribution Function

Such tests have been proposed in the literature, but they do not seem to have
received wide acceptance yet. One of them involves a statistic of Cramér–von
Mises type, described by Pettitt (1979), who also discusses (on pp. 707–708)
the kind of departure from normality that the test is and is not sensitive
to. A related approach is via Rosenblatt’s (1952) multivariate probability
integral transformation or conditional probability integral transformation;
see Quesenberry (1986a) and the references therein.
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Tests Based on the Empirical Characteristic Function

Tests of this type have been put forward by Csörgö (1984, 1986) and Baring-
haus and Henze (1988). The former also mentions he has an analogous test
for Marshall and Olkin’s (1967) distributions; see also Csörgö (1989). For a
more recent treatment on this topic, see Naito (1996).

Malkovich and Afifi’s (1973) Tests

These authors generalized the univariate skewness and kurtosis statistics,
and the W statistics proposed by Shapiro and Wilk (1965), to the bivariate
case using Roy’s union–intersection principle [for which see Arnold (1988)].
They made use of the property of the bivariate normal distribution that any
linear combination of X and Y is univariate normal. Formally, they defined
bivariate skewness as maxc[β1(c)], where

β1(c) =
{E[c1(X − μ1) + c2(Y − μ2)]3}2

[var(c1X + c2Y )]2
,

and bivariate kurtosis as maxc{[β2(c) − 3]2}, where

β2(c) =
E[c1(X − μ1) + c2(Y − μ2)]4

[var(c1X + c2Y )]2

for some vector c′ = (c1, c2). Using Roy’s principle, one retains the null
hypothesis of bivariate normality if maxc[b1(c)] ≤ kb1 and maxc{[b2(c) −
k]2} ≤ kb2 , where b1(c) and b2(c) are the sample counterparts of β1(c) and
β2(c) here, with k being constants, such that k → 3 as the sample size
becomes infinitely large.

According to Bera and John (1983), these tests are conceptually simple
but computationally burdensome.

Malkovich and Afifi (1973) introduced a measure of skewness based on an
i.i.d. sample x1, . . . ,xn of points in R

d as follows. For u ∈ Ωd, where Ωd

is the unit d-dimensional sphere {x ∈ R
d : ‖x‖ = 1}, let b1(u) denote the

measure of skewness in the sample in the u-direction given by

b1,n(u) =
n
{∑n

i=1(u
T (xi − x̄))3

}2

{
∑n

i=1(uT (xi − x̄))2}3 ,

where x̄ = 1
n

∑n
i=1 xi is the sample mean. Their measure of skewness is then

b∗1,n = sup
u∈Ωd

b1,n(u)

which is equivalent to
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sup
u∈Ωd

(
1√
n

n∑

i=1

(uT zi)3
)2

= sup
u∈Ωd

(c1,n(u))2 ,

where z1 = S−1/2(xi − x̄), with S denoting the sample covariance matrix.
Motivated by this, Balakrishnan et al. (2007) considered a signed measure of
skewness statistic as

Tn =
∫

Ωd

uc1,n(u)dλ(u),

where λ is a rotationally invariant probability measure on Ωd, and proposed a
chi-square statistic Qn = TT

nD−1Tn, where D is an estimate of the covariance
matrix of Tn, for testing for symmetry of the population distribution. They
also evaluated the power performance of this test empirically.

Cox and Small’s Test

These authors based their method on the extent of nonlinearity of the re-
gression line. Specifically, it involves the coefficients of quadratic terms when
Y is regressed on X and X2 and X is regressed on Y and Y 2. A statistic
that is asymptotically χ2

2 (i.e., exponential with mean 2) can be calculated.
A disadvantage of this procedure is that the bivariate normal is not the only
distribution having normal marginals and linear regressions, there are many
others. (Any mixture of two bivariate normal distributions having the same
means and standard deviations provides an example.)

Hawkins’ (1981) Procedure

In this paper, a procedure was proposed that can be used to test for normality
and homoscedasticity simultaneously. Considerable use of this has been made
in the book by McLachlan and Basford (1988).

Invariant Tests

Loosely speaking, a test procedure that is unaltered under arbitrary affine
transformation of the underlying data is considered to be an invariant test.
Thus, tests for bivariate normality based on departures from the empirical
distribution of the D2

i from their postulated chi-squared cumulative distri-
butions are invariant. Here, D2

i = (Xi − X̄)′S−1(Yi − Ȳ ), where S is the
sample covariance matrix. Koziol (1982) pointed out that in addition to the
test described, a Cramér–von Mises test and normality tests yb Malkovich
and Afifi (1973) and Hawkins (1981) are all members of a family of invariant
tests. For more on invariant and consistent tests for multivariate normality,
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see Henze and Zirkler (1990). Recently, Henze (2002) presented a critical
review of multivariate normality.

Bera and John’s (1983) Tests

These authors considered the bivariate Pearson family of distributions (which
includes the bivariate normal). They then used Rao’s (1948) score principle
to develop four tests for bivariate normality. Each of the test statistics was
shown to have an asymptotic chi-distribution. They also compared the powers
of their tests with those of Mardia’s (1970b) tests (to be discussed shortly).

Bivariate Skewness and Kurtosis

Many test statistics involve sample product moments and are asymptotically
distributed as chi-squared.

Let (x1, y1), (x2, y2), . . . , (xn, yn) be n pairs of independent observations
from a bivariate population. Define

(
z1i

z2i

)

=
(

σ̂2
1 rσ̂1σ̂2

rσ̂1σ̂2 σ̂2
2

)−1/2(
xi − x̄
yi − ȳ

)

(11.56)

for i = 1, 2, . . . , n, where x̄ and ȳ are the sample means, σ̂2’s are the maximum
likelihood estimates of the variances (i.e., they are the sample variances with
n in the divisor), and r is the sample correlation coefficient. Next, let us
denote

mij =
1
n

n∑

k=1

zi
1kz

j
2k. (11.57)

We may then define test statistics in terms of sample product moments.
Mardia’s (1970b) tests are based on sample measures of bivariate skewness
and kurtosis, defined as

b1,2 = m2
30 + m2

03 + 3(m2
21 + m2

12) (11.58)

and

b2,2 =
1
n

n∑

j=1

(z2
1j + z2

2j)
2 = m40 + m04 + 2m22, (11.59)

respectively.
Univariate skewness and kurtosis are functions of the third and fourth

central moments, respectively. Here, b1,2 is a function of product moments
of order 3, and b2,2 is a function of product moments of order 4, thus in-
dicating their appropriateness as bivariate skewness and kurtosis measures,
respectively. But note that, in each case, the first two terms are functions
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of univariate statistics—so the formulas do not give measures free of these.
Tests derived from these measures are large-sample tests [Mardia (1974)];
indeed, Reyment (1971) confirmed that Mardia’s procedures do not stabilize
until a large number of observations have been included in the sample. Mar-
dia (1974) presented tables of critical values of b1,2 and b2,2 in (11.58) and
(11.59) for several choices of n and levels of significance.

Mardia has formulated several other tests; among them are S2
W and C2

W ,
which combines b1,2 and b2,2 [see Mardia and Foster (1983, pp. 212–213) and
Mardia (1985)].

Monte Carlo comparisons of the behavior of measures introduced by Mar-
dia, Malkovich and Afifi, and others, in circumstances where the distribution
is a mixing of two bivariate normals, were made by Isogai (1983a,b), who
then attempted to clarify the meaning of these statistical diagnostic tools
for measuring non-normality. Other comparisons of several proposals include
those by Ulrich (1984) and Booker et al. (1984).

Schwager (1985) discussed notions of multivariate skewness and kurtosis
proposed by Mardia, Malkvoich and Afifi, Isogai, and others.

According to the assessment of Looney (1986), b1,2 and b2,2 are the most
thoroughly developed tests for bivariate normality, including a published al-
gorithm by Mardia and Zemroch (1975). But they appear to be less powerful
than Bera and John’s (1983) tests.

For more recent developments, see Móri et al. (1993), and Henze (1994,
1997a). Henze (1997b) has considered a weighted sum of Mardia’s measure of
multivariate skewness and a sample version of a skewness measure introduced
by Móri et al. (1993).

Use Tests for Univariate Normality to Assess
Multivariate Normality

There are several techniques for assessing multivariate normality based on
well-known tests for univariate normality. For example, Mudholkar et al.
(1992) developed a multivariate adaption of the Lin and Mudholkar (1980)
z-test of univariate normality, The p-variate adaption of the Shapiro–Wilk
test of normality has been considered by Mudholkar et al. (1995). Looney
(1995) has also described several such tests.

Best and Rayner’s Comparisons

Koziol (1986, 1987) discussed certain statistics in the style of Neyman’s
“smoothed” tests. Best and Rayner (1988) presented Koziol’s formulas
adapted for the bivariate case. The first of these is simply nb1,2/6 and is
thus equivalent to Mardia’s test based on b1,2. The second is defined by
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Û2
4 = n

[
(m22 − 1)2

4
+

m2
31 + m2

13

6
+

(m04 − 3)2 + (m40 − 3)2

24

]

. (11.60)

Best and Rayner (1988) compared the (approximate) powers of the test
statistics Û2

3 , Û
2
4 , (U

2
3 +U4

4 ), b2,2, and S2
W with the level of significance set at

5%, under the following alternatives:

• X and Y being independent lognormal variables,
• X and Y being independent uniform variables,
• X and Y being independent t4 variables (i.e., having the t-distribution

with 4 degrees of freedom), and
• (X,Y ) having various bivariate normal mixture distributions.

Their conclusion was that no single statistic dominates, although (Û2
3 +Û2

4 )
usually does better than S2

W , a statistic recommended by Mardia.

Asymptotically χ2
2?

For a number of proposed tests, it happens that the test statistic is asymp-
totically distributed as χ2

2. For the two tests they investigated, Mason and
Young (1985) found that this approximation can be conservative, and lead
to inappropriate rejection of normality, when the population parameters in
the formulas are replaced by their sample estimates.

Comparison of Tests for Bivariate Normality with Unknown
Parameters by Transformation to a Univariate Statistic

Versluis (1996) has compared 15 tests for bivariate normality with unknown
parameters. The bivariate dataset will first be transformed into a univariate
statistic. For their test #1 to test #12, the dataset is transformed into the
set of variables {zi} as

zi =
1

1 −R2

{(
xi − μ̂1

σ̂1

)2

− 2R(xi − μ̂1)(yi − μ2)
σ̂1σ̂2

+
(
yi − μ̂2

σ2

)2
}

,

(11.61)
where μ̂i, σ̂i, and R are as defined in (11.26) (see Section 11.8).

The first 12 statistics are the Kolmogorov–Smirnov test, Cramér–von Mises
test, Kuiper test, Watson test, Anderson–Darling test, Rényi test (L1), Rényi
test (L2), Rényi test (U1), Rényi test (U2), Brain–Shapiro test, and Shapiro–
Wilk–Stephens test with the test statistic given by

TSWS =
4(n− 1)2

n(n + 1) (
∑n

i z
2
i ) − 4n(n− 1)2

. (11.62)
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The last three tests are the bivariate Shapiro–Malkovich test, Shapiro–
Malkovich skewness test (b1), and Shapiro–Malkovich kurtosis test (b2). The
last two are simply those presented above under Malkovich and Afifi (1973).
Based on this comparative study, Versluis (1996) found that the Shapiro–
Wilk–Stephens test in (11.62) performs very well for all the alternative dis-
tributions considered.

Computational Aspect of Normality Tests:
FORTRAN Subroutines and SAS Procedures

As recommended by many authors, a reasonable first step in assessing mul-
tivariate normality is to test each variable for univariate normality. Of the
many procedures available for assessing univariate normality, two of the most
commonly used are (1) an examination of skewness and kurtosis and (2) the
Shapiro–Wilk [Shapiro and Wilk (1965)] W test. Looney (1995) suggested
that a next logical step after testing each of the variables for univariate nor-
mality is to apply some computationally simple tests for the multivariate case
that are based on the two univariate tests just mentioned. Looney went on to
argue that, given the availability of the reliable software for performing these
tests [for example, by Royston (1982) and D’Agostino et al. (1990)], com-
putational algorithms for the multivariate normality tests can be developed
with a minimal effort.

Looney (1995) described the specific FORTRAN subroutines and SAS
procedures and functions that were used for each of the following four nor-
mality tests that are based on tests for univariate normality. (The resulting
SAS macros and FORTRAN programs are available at no charge from this
author):

• Royston’s (1983) H test: A multivariate extension of the Shapiro–Wilk
test;

• Small’s (1980) Q1 and Q2: Multivariate extensions of univariate skewness
(
√
b1) and kurtosis (b2);

• Srivastava’s (1984) measures of multivariate skewness and kurtosis;
• Srivastava and Hui’s (1987) Shapiro–Wilk tests.



11.13 Testing for Bivariate Normality 521

11.13.6 Tests of Bivariate Normality
After Transformation

A popular approach4 to understanding the bivariate distribution with non-
normal marginals is to (i) transform the marginals to normality, (ii) check
that the bivariate distribution is roughly bivariate normal in appearance,
and then (iii) proceed with the analysis under the assumption of bivariate
normality. Separate statements can then be made about the univariate trans-
formations that were necessary and the conclusions drawn from the bivariate
transformed observations. This procedure, we feel, has much to recommend
it; a technical disadvantage is that the properties of tests for bivariate nor-
mality are even less understood when applied to raw observations, we believe.
Occasionally, a more fundamental objection arises when we have an explicit
model for how the distribution is constructed, albeit with some uncertainties,
as when we are assuming a trivariate reduction model but do not know the
forms of component distributions; in such a case, the bivariate distribution
is intimately tied to its marginals, and a procedure that separates the treat-
ment of the individual variables from the treatment of their association may
be thoroughly undesirable.

If we follow this strategy, we have to decide how to transform the marginals
to normality:

• Do we enforce exact normality by calculating Φ−1[F (x)] for each obser-
vation? If so, then a question will arise as to how to interpret this in the
context of a sample, i.e., whether the best estimate of F is i/(n+ 1) when
x is the ith smallest observation in the sample of size n or something else.

• Alternatively, do we insist on some easily comprehended transformation,
such as the logarithm, or a power function? If so, how much effort should
we put into searching for the best transformation? Should we just try
one or two of the best-known ones? Should we consider a whole paramet-
ric family, allowing the data to determine the parameter that gives the
best fit?

As to easily comprehended transformations, we note the following:

• Probably the most popular single choice is the logarithm.
• Johnson’s (1949) system of bivariate distributions consists of the following

transformations applied to the marginals of the bivariate normal: logit,
sinh−1, log, and none. If choosing from this set, we can then work with
the original observations and one of Johnson’s distributions, if we prefer
doing that to working with transformed observations and the bivariate
normal. Further details of this system are presented in Section 11.16.2.

4 See, especially, Kowalski (1970). The main portions of this paper were tests for univariate
normality; tests for bivariate normality; the coordinate transformation to normality and its
estimation; summary of results of tests for bivariate normality; and application to correlation
theory.
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• The most popular parametric family is that of Box and Cox (1964); see Box
and Tiao (1973, Chapter 10) and, for computer programs, Howarth and
Earle (1979), Liem (1980), and the references contained therein. Andrews
et al. (1971) extended this to bivariate distributions. The family is that of
power transformations, with the logarithm as a special case. The following
discussion presents more details.

The Box–Cox transformation of (x, y) to (z1, z2) is as follows:

z1 =
{

(xλ1 − 1)/λ1 for λ1 �= 0
log x for λ1 = 0 , (11.63)

z2 =
{

(xλ2 − 1)/λ2 for λ2 �= 0
log x for λ2 = 0 . (11.64)

One might choose the λ’s in (11.63) and (11.64) so as to make the z’s
as (univariate) normal as possible—the method of Box and Cox would be
applied to each variable separately. But perhaps bivariate normality is not
optimized thereby. A likelihood approach to achieving joint normality is as
follows. First, express the bivariate density function of (X,Y ) in terms of
the bivariate normal density with mean μ and variance–covariance matrix
Σ. Next, find the log-likelihood function of μ, Σ, and λ, where λ′ = (λ1, λ2).
By keeping λ1 and λ2 fixed temporarily, we can find the maximum likelihood
estimates μ̂ and Σ̂, and the maximized log-likelihood function is then

L∗(λ1, λ2) = −n

2
log |Σ̂| + (λ1 − 1)

n∑

i=1

log xi + (λ2 − 1)
n∑

i=1

log yi. (11.65)

Next, the maximum likelihood estimates λ̂1 and λ̂2 may be obtained numeri-
cally by maximizing (11.65) with respect to λ1 and λ2. Andrews et al. (1971)
showed that 2[L∗(λ̂1, λ̂2) − L∗(1, 1)] has asymptotically a χ2

2-distribution
(i.e., exponential distribution with mean 2). Rejection of the null hypoth-
esis λ′ = (1, 1) implies non-normality of the original data.

11.13.7 Some Comments and Suggestions

This subject, in our opinion, is in a rather unsatisfactory state. The vari-
ous pieces of knowledge do not seem to be well integrated and there seem
to be gaps between them. There seems to be rather little experience with
tests that have been put forward. Hence, there is a lack of knowledge about
their properties—behavior with samples of small to moderate size and with
observations that are merely crudely grouped are two areas we have in mind.
Moreover, even if we knew how to measure non-normality, would we also
know how much non-normality is present?
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One thing that helps sometimes is a careful thought. Stimulated by contact
with data and by knowledge of various types of departures from bivariate nor-
mality that have been discussed theoretically, one can sometimes understand
what is revealed by the data.

If data and theory are not sufficient in the abstract, then the context may
serve to focus ideas. In particular:

• Does the mechanism generating the data direct attention to a particular
class of distributions, such as those constructed by compounding or from
a univariate distribution of X and a set of conditional distributions of Y
given X?

• To what use is the result going to be put? For instance, is the correla-
tion coefficient important? Is the survival function Pr(X > x, Y > y)
important?

Many univariate distributions form a hierarchy—for example, the exponential
is a special case of the gamma, which is a special case of Stacy’s generalized
gamma, which in turn can have a shift parameter included, and so on. This
provides a natural environment for testing the goodness-of-fit: fit a three-
or four-parameter distribution, and test whether the parameter values are
consistent with some special case that corresponds to one- or two-parameter
distributions. Such a procedure is much less common with bivariate distri-
butions because such hierarchies are not so well known. Nonetheless, it is a
desirable one, if applicable.

If more specific procedures do not come to mind, we suggest the one men-
tioned above. In summary:

• Consider the marginals. Ask what shape they have. Answer this by various
forms of probability plotting, calculation of moments, and comparison of
the goodness-of-fit of members of a hierarchy of distributions.

• If marginals appear to be non-normal, transform them to normality.
• Does bivariate normality hold? Answer this by using various graphical

procedures and calculations (of moments, for example).

We note that if a scatter diagram prepared after transformation to
marginal normality still fails to be bivariate normal, then a comparison with
Figure 1 of Johnson et al. (1984, p. 242) may provide some insight into the
underlying bivariate distributions.

Other choices of the standard form for the marginals may be equally or
more suitable than the normal. The uniform is the obvious competitor—
in this case, Mardia (1970a, p. 81) has suggested focusing attention on the
regression and scedastic curves.
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11.14 Distributions with Normal Conditionals

Arnold et al. (1999) have devoted a chapter of their book (Chapter 3) on
bivariate distributions having conditional densities of the normal form. In
general, these distributions do not have normal marginals. A special case
that has a simple joint density function is known as the “bivariate normal”
with centered normals. This distribution has been studied by Sarabia (1995),
and its properties were discussed in Section 6.2.5. The bivariate distributions
with normal conditionals were discussed in Section 6.2.

11.15 Bivariate Skew-Normal Distribution

There are at least two versions of bivariate skew-normal distributions.

11.15.1 Bivariate Skew-Normal Distribution of
Azzalini and Dalla Valle

The density function of the bivariate skew-normal distribution, as given by
Azzalini and Dalla Valle (1996), is

h(x, y) = 2ψ(x, y;ω)Ψ(λ1x + λ2y), (11.66)

where

λ1 = δ1−δ2ω√
(1−ω2)(1−ω2−δ2

1−δ2
2+2δ1δ2ω)

and λ2 = δ2−δ1ω√
(1−ω2)(1−ω2−δ2

1−δ2
2+2δ1δ2ω)

and ψ and Ψ are the bivariate normal density and univariate normal distri-
bution, respectively. For a more detailed discussion, see Section 7.4.5.

The joint distribution of LBM (lean body mass) and BMI (body mass
index) of a sample of 202 Australian athletes was fitted in Azzalini and Dalla
Valle (1996) by a bivariate skew-normal distribution.

11.15.2 Bivariate Skew-Normal Distribution of
Sahu et al.

Sahu et al. (2003) developed a new class of bivariate (multivariate) skew-
normal distributions using transformation and conditioning. Azzalini and
Dalla Valle (1996) obtained their skew-normal distribution by conditioning
on one suitable random variable being greater than zero, whereas Sahu et
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al. (2003) condition on as many random variables as the dimension of the
normal variables. In the one-dimensional case, both families are identical.

Formula of the Joint Density

Let z=(x, y).

h(x, y) = 4|Σ + D2|−1/2ψ
{

(Σ + D2)−1/2(z − μ)
}

Pr(V > 0)

where Σ =
(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)

is the covariance matrix for the bivariate normal

and D is the diagonal matrix with elements δ1 and δ2, which can be both
positive or both negative. Here V is distributed as a bivariate normal with
mean matrix D(Σ+D2)−1(z−μ) and covariance matrix I−D(Σ+D2)−1D.

If Σ = diag(σ2
1 , σ

2
1), the X and Y are independent, having density

h(x, y) = 2(σ2
1 + δ2

1)−1/2φ
(

x−μ1√
σ2
1+δ2

1

)
Φ
(

δ1
σ1

x−μ1√
σ2
1+δ2

1

)

×2(σ2
2 + δ2

2)−1/2φ
(

y−μ2√
σ2
2+δ2

2

)
Φ
(

δ2
σ2

y−μ2√
σ2
2+δ2

2

) .

Moment Generating Function

The moment generating function is given by

M(s, t) = 4Ψ(Dt) exp
{
t′μ + t(Σ + D2)t/2

}
,

where t = (s, t),

E(X) = μ1 + (2/π)1/2δ1, E(Y ) = μ2 + (2/π)1/2δ2,

var(X) = σ2
1 + (1 − 2/π)δ1, var(Y ) = σ2

1 + (1 − 2/π)δ2,

corr(X,Y ) =
ρσ1σ2√

σ2
1 + (1 − 2/π)δ1

√
σ2

1 + (1 − 2/π)δ2
.

Remark. Sahu et al. (2003) pointed out that because the matrix D is as-
sumed to be diagonal, the introduction of skewness does not affect the corre-
lation structure. It changes the values of the correlations, but the structure
remains the same.
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Applications

Ghosh et al. (2007) have considered the bivariate random effect model using
this skew-normal distributions with applications to HIV-RNA that are in the
blood as well as seminal plasma for HIV-AIDS patients.

11.15.3 Fundamental Bivariate Skew-Normal
Distributions

A new class of multivariate skew-normal distributions, fundamental skew-
normal distributions, and their canonical version, was developed by Arellano-
Valle and Genton (2005). It contains the product of independent univariate
skew-normal distributions as a special case. The joint distribution does not
have an explicit form.

11.15.4 Review of Bivariate Skew-Normal
Distributions

Azzalini (2005) provides a comprehensive review of the skew-normal distribu-
tion and related skew-elliptical families. The article also provides applications
to many practical problems. An introductory overview of the subject is given
by Azzalini (2006).

11.16 Univariate Transformations

11.16.1 The Bivariate Lognormal Distribution

If logX and log Y have a bivariate normal distribution with means μ1 and
μ2, variances σ2

1 and σ2
2 , and correlation ρ, then

E(Y |X = x) = xρσ2/σ1 exp
[
− 1

2 (1 − ρ2)σ2
2 + μ2 − ρσ2μ1/σ1

]
,

(11.67)
var(Y |X = x) = ω′(ω′ − 1)x2ρσ2/σ1 exp[2(μ2 − ρσ2μ1/σ1)], (11.68)

where ω′ = exp[(1 − ρ2)σ2
2 ]; see Johnson and Kotz (1972, p. 19). The joint

moments are given by

μ′
ij = E(XiY j) = exp[iμ1 + jμ2 + 1

2 (i2σ2
2 + 2ijρσ1σ2 + j2σ2)]. (11.69)
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In particular, we have as the covariance and correlation

cov(X,Y ) = [exp(ρσ1σ2) − 1] exp[μ1 + μ2 + (σ2
1 + σ2

2)/2] (11.70)

and

corr(X,Y ) =
exp(ρσ1σ2) − 1

√
[exp(σ2

1 − 1][exp(σ2
2) − 1]

. (11.71)

For the meaningfulness or otherwise of the correlation coefficient in this case,
see Section 11.16.5. Thomopoulos and Longinow (1984) have listed the basic
properties of the bivariate lognormal distribution. The application they en-
visaged for it is in structural reliability analyses in which load and resistance
are correlated.

Applications of Bivariate Lognormal Distributions

• Sizes and shapes of animals often can be modeled by the bivariate lognor-
mal distribution. For a review, see Section 19.3.1 of Hutchinson and Lai
(1990).

• Basford and McLachlan (1985) used a mixture of bivariate lognormal dis-
tributions in analyzing AHF activity and AHF-like antigen in normal
women and hemophilia A carriers.

• Schneider and Holst (1983) and Holst and Schneider (1985) have used the
bivariate lognormal distribution to describe the diameter D and length L
of airborne man-made mineral fibers; see also Cheng (1986).

• Hiemstra and Creese (1970) wanted to simulate chronological sequences
of precipitation data. In doing this, they assumed bivariate normal dis-
tributions of several pairs of variables, including duration and amount of
precipitation.

• Cloud-seeding experiments commonly use a target and a control area. An
analysis of an experiment in Colorado was reported by Mielke et al. (1977),
who took X to be the precipitation in the target area and Y to be the
precipitation in the control area, and assumed these variates to follow a
bivariate lognormal distribution.

• Kmietowicz (1984) applied the bivariate lognormal distribution to a cross-
tabulation of household size and income in rural Iraq and found it gave a
satisfactory fit.

• Burmaster (1998) used bivariate lognormal distributions for the joint dis-
tribution of water ingestion and body weight for three groups of women
(controls, pregnant, and lactating,all 15–49 years of age) in the United
States.

• Yue (2002) used the bivariate lognormal normal distribution as a model
for the joint distribution of storm peak (maximum rainfall intensity) and
storm amount (volume). The model was found to be appropriate for de-
scribing multiple episodic events at the Motoyama meteorological station
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in Japan. The data consisted of 96-year daily rainfall data from 1896 to
1993 (except the years 1939 and 1940). See also an earlier paper by Yue
(2000) where the bivariate lognormal model was used for fitting correlated
food peaks and volumes and correlated food volumes and durations.

• Lien and Balakrishnan (2006) considered the random vector (X,Y ) to have
a bivariate lognormal distribution with parameters μX , μY , σX , σY , ρ; that
is, the random vector (lnX, lnY ) has a bivariate normal distribution with
means (μx, μY ), variances (σ2

X , σ2
Y ), and correlation coefficient ρ. Then,

under a multiplicative constraint of the form XaY b ≤ K, they derived
explicit expressions for single and product moments and showed that the
coefficients of variation always decrease regardless of the multiplicative
constraint imposed. They also evaluated the effects of such a constraint
on the variances and covariance, and presented conditions under which the
correlation coefficient increases, and finally applied these results to futures
hedging analysis and some other financial applications.

11.16.2 Johnson’s System

Derivation

Bivariate distributions with specified marginals may be obtained from the bi-
variate normal by stretching and compressing the X and Y axes as required.
Johnson (1949) constructed what has become a well-known system of distri-
butions as follows. The bivariate distributions are denoted by SIJ , in which
one variable has an SI -distribution and the other has an SJ -distribution,
where I and J can be B,U,L, or N (standing for bounded, unbounded,
lognormal, and normal). Thus, the variables

Z1 = γ1 + δ1aI

(
X − ξ1
λ1

)

, (11.72)

Z2 = γ2 + δ2aJ

(
Y − ξ2
λ2

)

, (11.73)

where aB(y) = log[y/(1−y)], aU (y) = sinh−1 y, aL(y) = log y, and aN (y) = y,
are standardized (unit) normal variables with correlation coefficient ρ.

Chapter 5 of Johnson’s (1987) book discussed this system in detail, and
so we can be brief here. The great advantage is that the simplicity of deriva-
tion makes variate generation for simulation studies equally simple; see also
Rodriguez (1983, pp. 239–240).

For the case SNL, see Yuan (1933), Crofts (1969), Crofts and Owen (1972),
Suzuki (1983), and Suzuki et al. (1984).
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Formula of the Joint Density

The joint distribution of X and Y , defined through 11.72 and 11.73, has
nine parameters: γ1, γ2, δ1, δ2, ξ1, ξ2, λ1, λ2, and ρ. The standard form of the
distribution is obtained by taking ξ1 = ξ2 = 0, λ1 = λ2 = 1. The joint density
is

h(x, y) = δ1δ2ψ[γ1 + δ1fI(x), γ2 + δ2fJ (y); ρ]. (11.74)

Univariate Properties

X and Y have SI and SJ distributions, respectively.

Conditional Properties

The conditional distribution of Y , given X = x, is of the same system (SJ)
as Y but with γ2, δ2 replaced by 1√

1−ρ2
{γ2 − ρ[γ1 + δ1fI(x)]}, 1√

1−ρ2
δ2, re-

spectively; see Johnson and Kotz (1972, pp. 15–17).
The regressions and conditional variances are given by Mardia (1970a, pp.

25–26), and a table of median regressions has been given by Johnson and
Kotz (1972, p. 17) and Rodriguez (1983).

References to Illustrations

Johnson (1987, p. 63) has remarked that, “The only difficulty in employing
the system in simulation work is to specify appropriate parameter combina-
tions to meet the needs of particular applications.” To assist with this, he has
given numerous contour plots for the SLL, SUU , and SBB cases. (In number,
24, 40, and 84 contour plots, plus five density surface plots of SBB distribu-
tions). These may be equally useful as an aid to distribution selection when
wondering whether any are suitable to fit an empirical dataset or not.

DeBrota et al. (1988) have described software for fitting the univariate
Johnson system to data and to assist in making a subjective visual choice of
an appropriate member of the system in the absence of data. They mention
at the end that they are developing corresponding multivariate software.

Applications of Johnson’s System

• The dimension of trees such as height, diameter, and volume; see Warren
(1979), Schreuder and Hafley (1977), and Hafley and Buford (1985).

• Policy analysis; see Wilson (1983).
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11.16.3 The Uniform Representation

An explicit expression for this is, for example, in Barnett (1980) and Johnson
et al. (1981). Barnett has illustrated contours of the p.d.f. for the case ρ = 0.8.

11.16.4 The g and h Transformations

We mentioned earlier Tukey’s g and h family of univariate distributions.
Johnson (1987, pp. 205–206) has suggested applying this transformation to
the marginals of a bivariate normal distribution.

11.16.5 Effect of Transformations on Correlation

It is well known that if we start with a bivariate normal distribution and
apply any nonlinear transformation to the marginals, Pearson’s product-
moment correlation coefficient is smaller (in absolute magnitude) in the re-
sulting distribution than in the original normal distribution. Rank correla-
tion coefficients are, of course, unaltered, provided the transformations are
monotone.

An extensive quantitative study of the effect of the marginal transforma-
tions on the correlation coefficient was reported by Der Kiureghian and Liu
(1986). Their dependent variable was the ratio ρ/ρt, where ρ is the correla-
tion coefficient in the normal distribution and ρt is the correlation coefficient
in the distribution after transformation of the marginals. They gave a se-
ries of empirically derived formulas for calculating this ratio based on ρt and
δt, where δt is the coefficient of variation in the transformed distribution.
(Note that they were envisaging ρt being known and ρ being wanted and
not vice versa.) The marginal distributions they considered were the follow-
ing: uniform, shifted exponential, shifted Rayleigh, type I largest value, type I
smallest value, lognormal, gamma, type II largest value, and type III smallest
values.

• The simplest formulas were ρ
ρt

= constant for the one with the marginal
being normal and the other being one of the first five in the list above.

• At the other extreme, the most complicated formula was ρ
ρt

, as a 19-term
polynomial in ρ, δt1 , and δt2 , for the one with both marginals being type
II largest value.

Bhatt and Dave (1964) gave an expression for the correlation between the
variates that result when two standard normal variates with correlation ρ
are subjected to arbitrary polynomial transformations. The expression is in
terms of ρ and the coefficients when the transformations are written in terms
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of Hermite polynomials. In the special case where both transformations are
quadratic (i.e., a0 + a1x+ a2x

2 and b0 + b1y+ b2y
2), the correlation becomes

a1b1ρ + 2a2b2ρ
2

√
(a2

1 + 2a2
2)(b

2
1 + 2b22)

. (11.75)

For the case where both transformations were cubic, see Vale and Maurelli
(1983).

As to the lognormal distribution, on setting ρ = −1 and ρ = 1 in (11.71),
we find

exp(−σ1σ2) − 1
√

[exp(σ2
1 − 1][exp(σ2

2) − 1]
≤ corr(X,Y ) ≤ exp(σ1σ2) − 1

√
[exp(σ2

1 − 1][exp(σ2
2) − 1]

.

(11.76)
Adapting from Romano and Siegel (1986, Section 4.22), “This has some strik-
ing implications. If, for example, we restrict ourselves to the family of dis-
tributions with σ1 = 1 and σ2 = 4 but we allow any values for the means
and the correlation between logX and log Y , then the correlation between
X and Y is constrained to lie in the interval from −0.000251 to 0.01372!
Such a result raises a serious question in practice about how to interpret the
correlation between lognormal random variables. Clearly, small correlations
may be very misleading because a correlation of 0.01372 indicates, in fact, X
and Y are perfectly functionally (but nonlinearly) related.”

The general shape of the univariate gamma distribution makes it a com-
petitor of the lognormal for fitting to data. Moran (1967) has discussed
the range of correlations possible in a bivariate distribution with gamma
marginals having specified shape parameters.

Lai et al. (1999) have carried out a robustness study of the sample correla-
tion of the bivariate lognormal case. Their simulation (confirmed by numeri-
cal analysis) indicates that the bias in estimating the population correlation
coefficient of the lognormal can be very large, particularly if ρ �= 0.

We have already seen in (11.71) what the correlation in a normal distri-
bution becomes when the variates are exponentiated. Bhatt and Dave (1965)
have given some results for the correlation between

∑n
i=0 ai exp(αiX) and∑n

i=0 bi exp(βiY ), with α0 = β0 = 0, and (X,Y ) having a standard bivariate
normal distribution with correlation ρ. Special cases mentioned include:

• a0 + a coshαx + b coshβy, for which the correlation is

sinh2(ραβ/2)[sinh(β2/2)],

and
• a0 + a sinhαx, b0 + b sinhβy, which is Johnson’s SU distribution; in this

case, the correlation is found to be sinh(ραβ)/
√

sinh(α2) sinh(β2). For
the general case, the distribution of (X,Y ) not being standardized, see
Eq. (5.2) of Johnson (1987).
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Lindqvist (1976) argued that the correlation coefficients—in particular, when
they are used as inputs to a factor analysis—should not be based on variates
that are skewed. He has given a computer program that chooses and applies
a transformation of the form log(X+ constant) if the skewness in the raw
data is unacceptably large. Factor analyses of 13 constituents of 566 rock
specimens were performed on such transformed data and on data for which
all variates had simply been log-transformed, and results of the former were
found preferable.

On the other hand, McDonald (1960) argued that the change in r when
making transformations even to bivariate data that are grossly non-normal,
such as ones encountered in hydrology, is usually of little practical impor-
tance. McDonald’s evidence was from precipitation data from Arizona. (How-
ever, of the 14 correlations investigated, in half of them taking log transfor-
mation changed r by at least 0.05. As one usually wants to be confident
about the first decimal place, perhaps it would be wise to go to the trouble
of choosing the right transformation, despite what McDonald says.5)

11.17 Truncated Bivariate Normal Distributions

11.17.1 Properties

The most common form of truncation of a standardized bivariate normal
distribution is single truncation, from above or below, with respect to one of
the variables. We shall consider the case where X > h. Thus, the support is
h < X < ∞, −∞ < Y < ∞, and the p.d.f. is evidently ψ(x, y; ρ)/Φ(−h).

The marginal density of the truncated variable is obviously φ(x)/Φ(−h).

The marginal density of Y is φ(y)
Φ(−h)Φ

(
−h+ρy√

1−ρ2

)

; see Chou and Owen (1984,

p. 2538).
Let ET and varT denote the mean and variance after truncation. Also, let

q(h) be the hazard rate (failure rate) φ(h)/Φ(−h), i.e., the inverse of Mills’
ratio. Then, we have

ET = q(h), (11.77)
ET (Y ) = ρq(h), (11.78)
var(X) = 1 − q(h)[q(h) − h], (11.79)
var(Y ) = 1 − ρ2q(h)[q(h) − h]; (11.80)

see Rao et al. (1968, pp. 434–435). Pearson’s product-moment correlation is

5 If one is solely interested in a measure of correlation, not in the marginal distributions, one
might calculate a rank correlation from the data and then convert it to an equivalent ρ by
τ = 2

π sin−1 ρ or ρS = 6
π sin−1 ρ

2 .
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ρT = ρ
√

varT (X)/varT (Y ) = ρ

(

ρ2 +
1 − ρ2

varT (X)

)−1/2

. (11.81)

Since varT (X) ≤ varT (Y ), it follows that |ρT | ≤ |ρ|.
The conditional distribution of Y , given X = x, is normal with mean ρx

and standard deviation 1/
√

1 − ρ2, i.e., a single truncation does not affect
the regression. However, the regression of X on Y is given by

ET (X|Y = y) = ρy +
√

1 − ρ2q

(
h− ρy
√

1 − ρ2

)

(11.82)

[Johnson and Kotz (1972, p. 113)].
The moment generating function is

M(s, t) =
Φ(s + ρt− h)

Φ(−h)
exp[(s2 + 2ρst + t2)/2]. (11.83)

For further results, including truncations on both variables, see Johnson
and Kotz (1972, Section 36.7) and the references cited therein. Regier and
Hamdan (1971) and Gajjar and Subrahmaniam (1978) have given a number
of results, both algebraic and numerical in nature, for the case of single
truncation in both variables. Kovner and Patil (1973) obtained expressions
for the moments up to order 4 when both variables are doubly truncated. For
some formulas relating to the truncated bivariate lognormal distribution, see
Lien (1985) and Shah and Parikh (1964).

Nath (1972) derived the moments of a linearly truncated bivariate normal
distribution such that the support is of the form w1X + w2Y ≥ a.

Brunden (1978) discussed the probability contours and a goodness-of-fit
test for the singly truncated bivariate normal distribution.

11.17.2 Application to Selection Procedures

The context envisaged here is that of the quality of performance of a manufac-
tured item or perhaps of an employee. The items that are put into service, or
the employees who are hired, are those that score above some threshold level
on a screening test. Some measure of performance in service becomes avail-
able at some later date; there is substantial, but less than perfect, correlation
between scores of two tests. (Academics will immediately think of students’
performance at high school and performance at college, for example.)

If it is assumed that the joint distribution of performances in the unselected
population is bivariate normal, then the relevant distribution for items in
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service is that for which properties are given above. Equation (11.81), for
example, tells us what the correlation will be.6

This area is extensively discussed in National Bureau of Standards (1959,
Section 2.6). More recent work includes the following:

• Problem: Knowing the marginal properties and correlation, determine k
from known values of h and p, where Pr(Y > k|X > h) = p. Chou and
Owen (1984) obtained an approximation using the method of Cornish-
Fisher expansion. As this involves the bivariate cumulants κij , Chou and
Owen gave a method for calculating these: κij = ρjκk+j 0, where κl0 is
given in their table for l = 1 to 8 and h = −3.0(0.2)3.0; see also Odeh and
Owen (1980).

• Problem: Knowing the marginal properties and correlation, determine h
from known values of k, ζ, l, and m such that we are assured (with degree of
confidence ζ) that the number of units satisfying Y ≤ k is at least l in the
group of m units satisfying X ≤ h (there being as many units available for
screening as are necessary). This may be thought of as the problem facing
a supplier who wants to reject as few of his items as possible, subject
to being reasonably confident that the proportion of substandard items
is low. Owen et al. (1981) obtained the required results; see also Madsen
(1982).

• Problem: What if there is an upper limit of acceptability for Y as well as
a lower one? See Li and Owen (1979).

• Problem: What if the mean and standard deviation of X are not known in
advance, but have to be estimated from a preliminary sample? See Owen
and Haas (1978) and Odeh and Owen (1980) for relevant discussions.

• Davis and Jalkanen (1988) gave a practical example of reduced correla-
tion in a truncated sample. The subject was amounts of gold and silver
in samples from drill holes from a gold field. For the whole sample, the
correlation between these quantities was 0.61, but for the 28% of samples
that contained the most gold—and thus of most interest—the correlation
was only 0.26.

Another account, which details further developments in these directions, is
due to Owen (1988).

6 But if the distribution is not bivariate normal, then it is possible for the correlation to be
increased rather than decreased. Suppose Y = a + bX + ε. Then, the correlation between X and
Y is b2/(b2 + σε/σX). Consequently, if truncation of X increases the variance of X rather than
decreasing it, the correlation is increased. This happens for distributions of non-negative r.v.’s
that have nonzero density at the origin and a coefficient of variation greater than 1; this class
includes decreasing hazard rate distributions. These points were made by Mullooly (1988).
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11.17.3 Truncation Scheme of Arnold et al. (1993)

Arnold et al. (1993) considered a truncated bivariate normal model in which
both tails of Y are truncated so that the joint density of (X,Y ) is now given
by

h(x, y) =

⎧
⎪⎨

⎪⎩

ψ(x, y; ρ)

Φ
(

b−μ2
σ2

)
− Φ
(

a−μ2
σ2

) , −∞ < x < ∞, a < y < b

0 , otherwise.

(11.84)

Denoting β = b−μ2
σ2

and α = a−μ2
σ2

, they obtained the marginal distribution
of X as

f(x) =
1
σ1

k

(
x− μ1

σ1

)

, (11.85)

where

k(z) =
φ(y)

{

Φ
(

β−ρy√
1−ρ2

)
− Φ
(

β−ρy√
1−ρ2

)}

Φ(β) − Φ(α)
. (11.86)

Clearly, k(z) is the density function of Z = (X − μ1)/σ1. Note that the
expression in (11.86) coincides with that of Chou and Owen (1984) for the
case where β = ∞.

For the case where α = 0 and β = ∞, the density in (11.86) becomes

k(z) = 2φ(z)Φ

(
ρy

√
1 − ρ2

)

= 2φ(y)Φ(λy), (11.87)

which is Azzalini’s (1985) skew-normal distribution.

11.17.4 A Random Right-Truncation Model of Gürler

Gürler (1996) considered a random truncation of a bivariate normal model
in the context of survival analysis.

In a random right-truncation model, one observes the i.i.d. samples of
(Y, T ) only if (Y ≤ T ), where Y is the variable of interest and T is an
independent variable that prevents the complete observation of Y . Gürler
(1996) proposed an estimator for the bivariate survival function of (X,Y ) and
a nonparametric estimator for the so-called bivariate reverse-hazard vector.
An application of the suggested estimators is presented for transfusion-related
AIDS (TR-AIDS) data on the incubation time.
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11.18 Bivariate Normal Mixtures

11.18.1 Construction

Suppose we mix together two bivariate normal distributions. The density is
then

h(x, y) = pψ1(x, y; ρ1) + (1 − p)ψ2(x, y; ρ2), 0 ≤ p ≤ 1, (11.88)

and we shall denote the means μXi
and μYi

, the standard deviations σXi

and σYi
, and the correlation coefficients ρi, i = 1, 2. Johnson (1987, pp. 56–

61) has provided 60 contour plots, with different mixing proportions, means,
standard deviations, and correlations, to indicate the range of appearance of
bivariate mixtures. The covariance is

pρ1σX1σY1 + (1 − p)ρ2σX2σY2 + p(1 − p)(μX1 − μX2)(μY1 − μY2) (11.89)

[Johnson (1987, p. 57)].
When p is close to 0 or 1, a bivariate normal mixture can be considered as

a single bivariate normal that has been “contaminated” by a mixture with a
small proportion of another one.

The subject of cluster analysis may be viewed as an attempt to fit a
mixture of normal distributions to a dataset. Usually, there are many more
variables than two, so we shall not discuss this other than to mention the
paper by Wolfe (1970), which explicitly treats the subject in this manner.

Tarter and Silvers (1975) described an interactive computer graphical
method for decomposing mixtures consisting of two or more bivariate normal
components; see also Titterington et al. (1985, pp. 142–145). Though largely
on the univariate case, the book by Everitt and Hand (1981) deals with the
multivariate case to some extent. It is especially useful in regard to methods
of parameter estimation. Much of the same remarks could be made about the
book by Titterington et al. (1985). The Appendix to McLachlan and Bas-
ford (1988) contains FORTRAN programs for fitting mixtures of multivariate
normal distributions; there is much more material of interest in this book,
especially on testing for multivariate normality and identification of outliers.

11.18.2 References to Illustrations

Johnson (1987, pp. 56–61) has given 60 contour plots: in all of them, μX1 =
μY1 = 0, σX1 = σY1 = σX1 = σY1 = 1; all combinations (2 × 5 × 6) are
shown of (i) p = 0.5 or 0.9, (ii) ρ1 = −0.9,−0.5, 0.0, 0.5, or 0.9, and (iii)
(ρ2, μX2 , μY2) = (0, 0.5, 0.5), (0, 1.0, 1.0),(0, 1.5, 1.5),(0, 2.0, 2.0),(0.5, 1.0, 1.0)
or (0.9, 1.0, 1.0).
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There is also an illustration of a three-component density in Everitt (1985).

11.18.3 Generalization and Compounding

One may generalize the form in (11.88) to a finite mixture of the form
h(x, y) =

∑n
i=1 piψi(x, y), in which

∑
i pi = 1. A mixture of infinitely many

bivariate normal, with the same mean leads to a class of elliptical compound
bivariate normal distributions.

11.18.4 Properties of a Special Case

We shall now assume that the two component distributions are equal in their
vectors of means and standard deviations. Without loss of any generality, we
shall take the means to be 0 and the standard deviations to be 1.

• The correlation is pρ1 + (1 − p)ρ2.
• The conditional distribution of Y , given X = x, is a mixture of N(ρ1x, 1−

ρ2
1) and N(ρ2x, 1 − ρ2

2) in the proportions p : 1 − p.
• The regression of Y on X is linear, i.e., E(Y |X = x) = [pρ1 + (1− p)ρ2]x.
• The conditional variance is a quadratic function of x given by

var(Y |X = x) = 1 − [pρ2
1 + (1 − p)ρ2

2] + {pρ2
1 + (1 − p)ρ2

2}x2.

• For a more detailed discussion on these conditional properties, see Kowal-
ski (1973).

• The special case where p = 0.5 and ρ1 = −ρ2 has been considered by
several authors, including Lancaster (1959) and Sarmanov (1966). It is an
example of a bivariate distribution with normal marginals whose variates
are uncorrelated yet dependent; its canonical correlation coefficient has
the property cn = ρn when n is even and 0 when n is odd (here ρ = ρ1 =
−ρ2). Another example of a bivariate distribution with dependent normal
marginals having zero correlation has been given by Ruymgaart (1973).

11.18.5 Estimation of Parameters

Let r be the sample correlation coefficient. There are a number of papers on
the distribution of r in random samples from mixtures of two bivariate normal
distributions. Johnson et al. (1995, p. 561–567) contains a good discussion
as well as several references on the subject. Simulations showed that r is
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biased toward zero as an estimator of ρ. In general, the expression for the
distribution of r is complicated.

Linday and Basak (1993) demonstrated that one can quickly (in computer
time) and efficiently estimate the parameters of this distribution using the
method of moments.

11.18.6 Estimation of Correlation Coefficient for
Bivariate Normal Mixtures

Let r be the sample correlation coefficient. There are a number of papers
on the distribution of r in random samples from mixtures of two bivariate
normal distributions. Johnson et al. (1995, pp. 561–567) contains a good
discussion as well as several references on the subject. Simulations showed
that r is biased toward zero as an estimator of ρ. In general, the expression
for the distribution of r is complicated.

Consider the bivariate mixture model in (11.88) with μXi
= μYi

= 0,
i = 1, 2, σX1 = σY1 = 1 and σX2 = σY2 = k. This model is known as the
‘gross error model’ in the robustness studies. Let ρ1 = ρ and ρ2 = ρ′. It is
well known [see Devlin et al. (1975)] that the sample correlation coefficient
is strongly biased for ρ, being very sensitive to the presence of outliers in the
data, and hence it is necessary to use a robust estimator in this case.

Shevlyakov and Vilchevski (2002) proposed a minimax variance estimator
of ρ given by

rtr =

(
n−n2∑

i=n1+1

u2
(i) −

n−n2∑

i=n1+1

v2
(i)

)/(
n−n2∑

i=n1+1

u2
(i) +

n−n2∑

i=n1+1

v2
(i)

)

, (11.90)

where u(i) and v(i) are the ith order statistics of the robust principal variables
u = (x + y)/

√
2 and v = (x − y)/

√
2, respectively. The authors call the

estimator above the “trimmed correlation coefficient.”
Equation (11.90) yields the following limiting cases: (i) the sample corre-

lation r with n1 = 0, n2 = 0, and with the classical estimators (the sample
means for location and standard deviation for scale) in its inner structure;
and (ii) the median correlation coefficient rmed with n1 = n2 = (n− 1)/2.

Li et al. (2006) considered robust estimation of the correlation coefficient
for ε-contaminated bivariate normal distributions.

Recently, Nagar and Castañeda (2002) derived the non-null distribution
of r by first considering the jth moment of 1− r2. Then, by using the inverse
Mellin transformation, the density of 1− r2 will be obtained, from which the
density of r will be derived.
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Estimation of Correlation Coefficient Based on Selected Data

In psychometrics, one often encounters data that may not be considered
random but selected according to some explanatory variable. Hägglund and
Larsson (2006) considered maximum likelihood estimates when data arise
from a bivariate normal distributions that is truncated in an extreme way.
Two methods were tried on both simulated and real data.

11.18.7 Tests of Homogeneity in Normal
Mixture Models

Consider a mixture of two bivariate normal populations with identical variance–
covariance matrices Σ but possibly having different mean vectors μ1=(μX1 , μY1)

′

and μ2=(μX2 , μY2)
′. Assuming the mixing proportion p to be known, Goffinet

et al. (1992) studied the behavior of the likelihood ratio test statistic for test-
ing the null hypothesis μ1 = μ2. This is equivalent to testing whether one is
sampling from a mixture of two distributions or from a single distribution.

There is much interest in testing homogeneity versus mixture. Some of the
key references are Lindsay (1995), Chen and Chen (2001), Chen et al. (2001),
and Qin and Smith (2006).

Like Goffinet et al. (1992), Qin and Smith (2006) also considered the likeli-
hood ratio test assuming that the variance–covariance matrix is known, with
the mixing proportion p being bounded away from 0 or 1 (i.e., 0 < p < 1).

Chuang and Mendell (1997) also studied the likelihood ratio test statistic
when μ1 �= μ2 under the alternative hypothesis but μX1 = μY1 and μX2 =
μY2 .

11.18.8 Sharpening a Scatterplot

“Sharpening” a scatterplot aims to reveal its structure more clearly by in-
creasing the impact of points that are typical at the expense of atypical
points. Green (1988) has presented an example of 150 points generated from
a mixture of two normal distributions in which the two clusters show up
more clearly when the points in regions of low estimated probability density
are plotted with smaller symbols. A similar example is shown by Tukey and
Tukey (1981); see also Chambers et al. (1983, especially Section 4.10).
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11.18.9 Digression Analysis

Digression analysis places emphasis on the data rather than the distribution,
and it regresses Y on X rather than treating them symmetrically. Instead of
fitting one regression line to empirical points (xi, yi), it fits two lines, with
each point being supposed to be associated with the line that is nearest to it.
This is a natural, though not entirely appropriate, thing to do if it is assumed
that the points are from two populations mixed together. Thus, what is done
(when the regressions are straight lines) is to minimize

∑
min{[y − (α1 + α2x)]2, [y − (α3 + α4x)]2} (11.91)

with respect to the parameters α’s. For more on this, one may refer to
Mustonen (1982).

“Switching regression” is another phrase used for much the same thing
[see, for example, Quandt and Ramsey (1978)]. Regression methods do not
necessarily rely on any bivariate distribution H(x, y), of course, and rather
on the conditional distribution of T given X.

11.18.10 Applications

• An important application of bivariate normal mixtures to problems in
genetics is described in Qin and Smith (2006). He et al. (2006) showed
that bivariate mixtures can be useful alternatives to univariate methods
to detect differential gene expression in exploratory data analysis. See also
McLachlan et al. (2005) for similar applications.

• Zerehdaran et al. (2006) used bivariate mixture models to study the rela-
tionships between body weight (BW) and ascites indicator traits in broil-
ers.

• Alexander and Scourse (2004) used the bivariate normal mixture to model
the log prices of two assets.

• For other applications, see Lindsay (1995).
• Bivariate normal mixtures were used by McLaren et al. (2008) to analyze

joint population distributions of transferrin saturation (TS) and serum fer-
ritin concentration (SF) measured in hemochromatosis and iron overload
screening (HEIRS).
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11.18.11 Bivariate Normal Mixing with
Bivariate Lognormal

Schweizer et al. (2007) used a simple mixture of the bivariate normal and the
bivariate lognormal to model the depth and velocity of a stream reach. The
resulting joint distribution provided a good fit to the survey data from 92
stream reaches in New Zealand. The study has an important application for
instream habitat assessment.

11.19 Nonbivariate Normal Distributions with
Normal Marginals

Various distributions have been constructed to show that normal marginals
are necessary but not sufficient for the joint distribution to be the bivariate
normal (in the sense of (11.1)). Actually, what we need to do is no more
than starting with any bivariate distribution with continuous marginals and
then transforming the marginals to be normal. Other distributions illustrate
that linearity of the regression is not a sufficient condition, either. In this sec-
tion, we collect some classroom examples that are intended to dispel possible
misconceptions.

11.19.1 Simple Examples with Normal Marginals

A list of such examples was presented by Kowalski (1973). Here, we shall
illustrate how some such examples can be obtained by manipulating (mixing
and shifting probability masses) the bivariate normal distribution.

Example 1 [Lancaster (1959)]: The joint density is

h(x, y) = [ψ(x, y; ρ) + ψ(x, y;−ρ)]/2. (11.92)

A special case of this is given by Van Yzeren (1972) when ρ = 1
2 . The following

corresponds to ρ = 1. Let X be a normal variate, and let Y be X or −X
with equal probability [Broffitt (1986)]. More generally, αψ(x, y; ρ1) + (1 −
α)ψ(x, y; ρ2) also has normal marginal distributions.

Example 2 [Anderson (1958, p. 37)]: Let (X,Y ) have a standardized un-
correlated bivariate normal distribution. Draw identical circles in each of the
four quadrants of the plane, each having the same position with respect to the
origin. With the circles being numbered clockwise around the origin, trans-
fer the probability mass in circle 1 to circle 2, and transfer the probability
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mass in circle 3 to circle 4. The resulting distribution still possesses normal
marginals.

Example 3 [Flury (1986)]: Let X and Y be independent normal variates.
Divide the plane into octants bordered by x = 0, y = 0, x + y = 0, and
x− y = 0. Shade alternate octants. Transfer all the probability masses in the
blank areas to the next shaded area. The resulting distribution has normal
marginals. This can be easily extended to X and Y being correlated—the
probability masses in the blank areas are now transferred by reflecting them
about their boundary line x = 0 or y = 0; see also Romano and Siegel (1986,
Section 2.10).

11.19.2 Normal Marginals with Linear Regressions

Linearity of regressions, even in association with marginal normality, is not a
sufficient condition for bivariate normality. It is easy to show that αψ + (1−
α)ψ2 (from Example 1) has linear regression [Kowalski (1973)], for example.

Example 4 [Ruymgaart (1973)]: Consider the joint density

h(x, y) = ψ(x, y; 0) + λu(x)u(y), (11.93)

where u(t) = sin |t| for −2π ≤ t ≤ 2π and is 0 otherwise, and λ is chosen to
prevent h from assuming negative values. In this example, the regressions are
linear (especially flat). Furthermore, X and Y are uncorrelated. Nevertheless,
h(x, y) in (11.93) is still not the bivariate normal density in (11.1).

11.19.3 Linear Combinations of Normal Marginals

It is well known (see Section 11.4.4) that (X,Y ) has a bivariate normal distri-
bution if and only if all linear combinations of X and Y are univariate normal.
Melnick and Tenenbein (1982) gave an example in which n linear combina-
tions of two normal marginals are normal, for a large n, yet the distribution
is not bivariate normal.

11.19.4 Uncorrelated Nonbivariate Normal
Distributions with Normal Marginals

The variates of Examples 1 and 4 are uncorrelated. Another example is as
follows.
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Example 5 [Melnick and Tenenbein (1982)]: Let X have a standard normal
distribution and Y be defined as

Y =
{
X if|X| ≤ 1.54
−X if|X| > 1.54 . (11.94)

Then, X and Y are uncorrelated. Here, 1.54 (correct to three significant
digits) is the solution to the integral equation Φ(c) = 0.75 + cφ(c).

11.20 Bivariate Edgeworth Series Distribution

General bivariate non-normal distributions, allowing varying degrees of skew-
ness and kurtosis on the two components, can be produced through bivariate
Edgeworth series distribution; see Gayen (1951). The joint density of this
bivariate Edgeworth series distribution is

fES(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩
1 +

3∑

j=0

3∑

k=0
j+k=3,4,6

(−1)j+kAj,k

j!k!
Dj

xD
k
y

⎫
⎪⎪⎬

⎪⎪⎭
f(x, y), −∞ < x, y < ∞,

where f(x, y) is the standard bivariate normal density function with correla-
tion ρ, Dx and Dy are partial derivative operators, and Aj,k’s are parameters
which are functions of the population cumulants. A method of simulating
data from this bivariate distribution, with prescribed marginals, has been
discussed by Kocherlakota, Kocherlakota, and Balakrishnan (1986). This bi-
variate non-normal distribution has been used, for example, in examining
the robustness properties of the SPRT (Sequential Probability Ratio Test)
for correlation coefficient by Kocherlakota, Kocherlakota, and Balakrishnan
(1985).

11.21 Bivariate Inverse Gaussian Distribution

This is related to the bivariate normal distribution through some form of
inverse transformation; see the derivation in Section 11.21.5 below.

11.21.1 Formula of the Joint Density

The joint density is
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h = 1
4π

√
λ1λ2

x3y3(1−ν2)

{
exp
[

−1
2(1−ρ2)

(
λ1
μ2

1

(x−μ1)
2

x − 2ν
μ1μ2

√
λ1λ2
xy (x− μ1)(y − μ2)

+ λ2
μ2

2

(y−μ2)
2

y

)]
+ exp

[
−1

2(1−ρ2)

(
λ1
μ2

1

(x−μ1)
2

x + 2ν
μ1μ2

√
λ1λ2
xy (x− μ1)(y − μ2)

+ λ2
μ2

2

(y−μ2)
2

y

)]}
, x, y ≥ 0, −1 < ν < 1,

(11.95)

where the μ’s and λ’s are positive parameters.

11.21.2 Univariate Properties

The marginals are inverse Gaussian (Wald) with means μi and variances
μ3

i /λi.

11.21.3 Correlation Coefficients

This distribution is unusual in that Pearson’s product-moment correlation is
always zero. But, X and Y are independent if and only if the parameter ν
is zero. ν is the correlation coefficient of the underlying standard bivariate
normal distribution.

11.21.4 Conditional Properties

The regression is constant; i.e., E(Y |X = x) = μ2. The conditional variance
is not constant, and takes large values at extreme values of x, and it is given
by

var(Y |X = x) =
μ3

2

λ2

{

(1 − ν2) +
ν2λ1(x− μ1)2

μ2
1x

}

. (11.96)

11.21.5 Derivations

Let (Z1, Z2) have a standard bivariate normal distribution with correlation
ν. Define U = Z2

1 and V = Z2
2 . (Clearly, U and V both have chi-squared

distributions with 1 degree of freedom.) Then, (U, V ) has Kibble’s bivariate
gamma distribution (see Section 8.2) with α = 1

2 . Consider the two-to-one
transformations U = (X−μ1)2/(μ2

1X) and V = (Y −μ2)2/(μ2
2Y ); then, upon

solving for X and Y , their joint density turns out to be the one in (11.95).
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11.21.6 References to Illustrations

Surfaces and contour plots of the density have been presented by Kocher-
lakota (1986).

11.21.7 Remarks

• For further results, including joint moments and infinite series representa-
tions of the distribution function, see Kocherlakota (1986).

• Wasan and Buckholtz (1973) derived a partial differential equation that,
when solved under suitable boundary conditions, leads to a density of
a bivariate inverse Gaussian process; they gave two examples, one with
independent variables and one with dependent variables. For the latter,
the joint density is

h(x, y) =
s(t− s)

2π
√

(x− y)2y3
exp
{

− [x− y − (t− s)]2

2(x− y)
− (y − s)2

2y

}

(11.97)

for x > y > 0, with t > s > 0; see also Wasan (1968). The density in
(11.97) is the joint density of (X,Y ), where X = Z + Y and Z and Y are
independent inverse Gaussian variates.

• Another bivariate inverse Gaussian distribution has been described by Al-
Hussaini and Abd-el-Hakim (1981). For this, the support is naturally the
positive quadrant again, and the p.d.f. is

h(x, y) = f(x)g(y)[1 + ρΛ(x, y)], (11.98)

where the parameter ρ equals the product-moment correlation coefficient,
f and g are univariate inverse Gaussian densities with parameters (λ1, μ1)
and (λ2, μ2), respectively, and

Λ(x, y) = 8

√
λ1λ2

μ3
1μ

3
2

(x−μ1)(y−μ2) exp
{

−
[
λ1(x− μ1)2

2μ2
1x

+
λ2(y − μ2)2

2μ2
2y

]}

.

(11.99)
Kocherlakota (1986) has argued that (11.95) is a more natural extension
of the univariate distribution than the form in (11.98).

• Banerjee (1977) has mentioned a bivariate inverse Gaussian distribution
for which the regression takes the form E(Y |X = x) = α− β/x.

• Iyengar and Patwardhan (1988) have reviewed the inverse Gaussian distri-
bution, and one section of their paper is the bivariate case; they regarded
the proposal of Al-Hussaini and Abd-el-Hakim as rather artificial and do
not mention that of Kocherlakota; see Iyengar (1985).
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• Barndorff-Nielsen et al. (1991) constructed several types of multivariate
inverse Gaussian distributions. Univariate marginals are of the same type.

• The multivariate inverse Gaussian distribution proposed by Minami (2003)
was derived through a multivariate inverse relationship with multivariate
Gaussian distributions and characterized as the distribution of the location
at a certain stopping time of a multivariate Brownian motion. In Minami
(2003), it was shown that the multivariate inverse Gaussian distribution is
also a limiting distribution of multivariate Lagrange distributions, which
are a family of waiting-time distributions under certain conditions.
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208. Mardia, K.V.: Tests of univariate and multivariate normality. In: Handbook of Statis-

tics, Volume 1, Analysis of Variance, P.R. Krishnaiah (ed.), pp. 279–320. North-
Holland, Amsterdam (1980)

209. Mardia, K.V.: Mardia’s test of multinormality. In: Encyclopedia of Statistical Sci-
ences, Volume 5, S. Kotz and N.L. Johnson (eds.), pp. 217–221. John Wiley and
Sons, New York (1985)

210. Mardia, K.V., Foster, K.: Omnibus tests for multinormality based on skewness and
kurtosis. Communications in Statistics: Theory and Methods 12, 207–221 (1983)

211. Mardia, K.V., Zemroch, P.J.: Algorithm AS 84: Measures, of multivariate skewness
and kurtosis. Applied Statistics 24, 262–265 (1975)

212. Marshall, A.W., Olkin, I.: A multivariate exponential distribution. Journal of the
American Statistical Association 62, 30–44 (1967)

213. Martynov, G.V.: Evaluation of the normal distribution function. Journal of Soviet
Mathematics 17, 1857–1875 (1981)

214. Mason, R.L., Young, J.C.: Re-examining two tests for bivariate normality. Commu-
nications in Statistics: Theory and Methods 14, 1531–1546 (1985)

215. Mathai, A.M., Pederzoli, G.: Characterizations of the Normal Probability Law. John
Wiley & Sons, New York (1977)

216. Mathar, R.: Outlier-prone and outlier-resistant multidimensional distributions.
Statistics 16, 451–456 (1985)

217. McDonald, J.E.: Remarks on correlation methods in geophysics. Tellus 12, 176–183
(1960)

218. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clus-
tering. Marcel Dekker, New York (1988)

219. McLachlan, G.J., Bean, R.W., Ben-Tovim Jones, L., Zhu, X.: Using mixture models to
detect differentially expressed genes. Australian Journal of Experimental Agriculture
45, 859–866 (2005)

220. McLaren C.E., Gordeuk, V.R., Chen, W.P., Barton, J.C., Action, R.T., Speechley,
M., Castro, O., Adams, P.C., Sniveley, B.M., Harris, E.L., Reboussin, D.M., McLach-
lan, G.J., Bean, R.: Bivariate mixture modeling of transferrin saturation and serum
ferritin concentration in Asians, African Americans, Hispanics, and whites in the
hemochromatosis and iron overload screening (HEIRS). Translational Research 151,
97–109 (2008)

221. Mee, R.W., Owen, D.B.: A simple approximation for bivariate normal probabilities.
Journal of Quality Technology 15, 72–75 (1983)

222. Mielke, P.W., Williams, J.S., Wu, S-C.: Covariance analysis technique based on bi-
variate log-normal distribution with weather modification applications. Journal of
Applied Meteorology 16, 183–187 (1977)

223. Melnick, E.L. Tenenbein, A.: Misspecifications of the normal distribution. The Amer-
ican Statistician 36, 372–373 (1982)

224. Michael, J.R., Schucany, W.R.: Analysis of data from censored samples. In:
Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens (eds.), pp. 461–
496, Marcel Dekker, New York (1986)



556 11 Bivariate Normal Distribution

225. Minami, M.: A multivariate extension of inverse Gaussian distribution derived from
inverse relationship. Communications in Statistics: Theory and Methods 32, 2285–
2304 (2003)

226. Mingoti, S.A., Neves, Q.F.: A note on the Zhang omnibus test for normality based
on the Q statistic. Journal of Applied Statistics 30, 335–341 (2003)

227. Moore, D.S.: Tests of chi-squared type. In: Goodness-of-Fit Techniques, R.B.
D’Agostino and M.A. Stephens (eds.), pp. 63–95. Marcel Dekker, New York (1986)

228. Moran, P.A.P.: Testing for correlation between non-negative variates. Biometrika 54,
385–394 (1967)
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236. Nagar, D.K., Castañeda, M.E.: Distribution of correlation coefficient under mixture
normal model. Metrika 55, 183–190 (2002)

237. Nagaraja, H.N.: A note on linear function of ordered correlated normal random vari-
ables. Biometrika 69, 284–285 (1982)

238. Nagaraja, H.N., David, H.A.: Distribution of the maximum of concomitants of se-
lected order statistics. Annals of Statistics 22, 478–494 (1994)

239. Naito, K.: On weighting the studentized empirical characteristic function for testing
normality. Communications in Statistics: Simulation and Computation 25, 201–213
(1996)

240. Nath, G.B.: Moments of a linearly truncated bivariate normal distribution. Australian
Journal of Statistics 14, 97–102 (1972)

241. National Bureau of Standards Tables of the Bivariate Normal Distribution Func-
tion and Related Functions, Applied Mathematics Series, No. 50. U.S. Government
Printing Office, Washington, D.C. (1959)

242. Nicholson, C.: The probability integral for two variables. Biometrika 33, 59–72 (1943)
243. Odeh, R.E., Owen, D.B.: Tables for Normal Tolerance Limits, Sampling Plans, and

Screening. Marcel Dekker, New York (1980)
244. Owen, D.B.: Tables for computing bivariate normal probabilities. Annals of Mathe-

matical Statistics 27, 1075–1090 (1956)
245. Owen, D.B.: Handbook of Statistical Tables. Addison-Wesley, Reading, Mas-

sachusetts (1962)
246. Owen, D.B.: A table of normal integrals. Communications in Statistics: Simulation

and Computation 9, 389–419 (Additions and Corrections 10, 537–541) (1980)
247. Owen, D.B.: Screening by correlated variates. In: Encyclopedia of Statistical Sciences,

Volume 8, S. Kotz and N.L. Johnson (eds.), pp. 309–312. John Wiley and Sons, New
York (1988)

248. Owen, D.B., Haas, R.W.: Tables of the normal conditioned on t-distribution. In:
Contributions to Survey Sampling and Applied Statistics. Papers in Honor of H.O.
Hartley, H.A. David (ed.), pp. 295–318. Academic Press, New York (1978)



References 557

249. Owen, D.B., Li, L., Chou, Y.M.: Prediction intervals for screening using a measured
correlated variable. Technometrics 23, 165–170 (1981)

250. Parrish, R.S., Bargmann, R.E.: A method for the evaluation of cumulative probabil-
ities of bivariate distributions using the Pearson family. In: Statistical Distributions
in Scientific Work, Volume 5: Inferential Problems and Properties, C. Taillie, G.P.
Patil, and B.A. Baldessari (eds.), pp. 241–257. Reidel, Dordrecht (1981)

251. Patel, J.K., Read, C.B.: Handbook of the Normal Distribution. Marcel Dekker, New
York (1982)

252. Paulson, A.S., Roohan, P., Sullo, P.: Some empirical distribution function tests for
multivariate normality. Journal of Statistical Computation and Simulation 28, 15–30
(1987)

253. Pearson, K.: Mathematical contributions to the theory of evolution-VII: On the cor-
relation of characters not quantitatively measurable. Philosophical Transactions of
the Royal Society of London, Series A 195, 1–47 (1901)

254. Pearson, K., Young, A.W.: On the product moments of various orders of the normal
correlation surface of two variates. Biometrika 12, 86–92 (1918)

255. Pettitt, A.N.: Testing for bivariate normality using the empirical distribution func-
tion. Communications in Statistics: Theory and Methods 8, 699–712 (1979)

256. Puente, C.E.: The remarkable kaleidoscopic decompositions of the bivariate Gaussian
distribution. Fractals 5, 47–61 (1997)

257. Puente, C.E., Klebanoff, A.D.: Gaussians everywhere. Fractals 2, 65–79 (1994)
258. Qin, Y.S., Smith, B.: The likelihood ratio test for homogeneity in bivariate normal

mixtures. Journal of Multivariate Analysis 97, 474–491 (2006)
259. Quandt, R.E., Ramsey, J.B.: Estimating mixtures of normal distributions and switch-

ing regressions. Journal of the American Statistical Association 73, 730–738 (Discus-
sion, 738–752) (1978)

260. Quesenberry, C.P.: Probability integral transformations. In: Encyclopedia of Statis-
tical Sciences, Volume 7, S. Kotz and N.L. Johnson (eds.), pp. 225–231. John Wiley
and Sons, New York (1986a)

261. Quesenberry, C.P.: Some transformation methods in goodness-of-fit. In: Goodness-
of-Fit Techniques, R.B. D’Agostino, and M.A. Stephens (eds.), pp. 235–277. Marcel
Dekker, New York (1986b)

262. Rao, B.R., Garg, M.L., Li, C.C.: Correlation between the sample variances in a singly
truncated bivariate normal distribution. Biometrika 55, 433–436 (1968)

263. Rao, C.R.: Large sample tests of statistical hypotheses concerning several param-
eters with applications to problems of estimation, Proceedings of the Cambridge
Philosophical Society 44, 50–57 (1948)

264. Rao, C.R.: Some problems in the characterization of the multivariate normal distri-
bution. In: A Modern Course on Distributions in Scientific Work, Volume 3: Char-
acterizations and Applications, G.P. Patil, S. Kotz, and J.K. Ord (eds.), pp. 1–13.
Reidel, Dordrecht (1975)

265. Rayner, J.C.W., Best, D.J., Mathews, K.L.: Interpreting the skewness coefficient.
Communications in Statistics: Theory and Methods 24, 593–600 (1995)

266. Regier, M.H., Hamdan, M.A.: Correlation in a bivariate normal distribution with
truncation in both variables. Australian Journal of Statistics 13, 77–82 (1971)

267. Reyment, R.A.: Multivariate normality in morphometric analysis. Mathematical Ge-
ology 3, 357–368 (1971)

268. Rodriguez, R.N.: Correlation. In: Encyclopedia of Statistical Sciences, Volume 2, S.
Kotz and N.L. Johnson (eds.), pp. 193–204. John Wiley and Sons, New York (1982)

269. Rodriguez, R.N.: Frequency surfaces, systems of. In: Encyclopedia of Statistical Sci-
ences, Volume 3, S. Kotz and N.L. Johnson (eds.), pp. 232–247. John Wiley and Sons,
New York (1983)

270. Rom, D., Sarkar, S.K.: Approximating probability integrals of multivariate normal
using association models. Journal of Statistical Computation and Simulation 35,
109–119 (1990)



558 11 Bivariate Normal Distribution

271. Romano, J.P., Siegel, A.F.: Counterexamples in Probability and Statistics.
Wadsworth and Brooks/Cole, Monterey, California (1986)

272. Rosenblatt, M.: Remarks on a multivariate transformation. Annals of Mathematical
Statistics 23, 470–472 (1952)

273. Rosenblueth, E.: On computing normal reliabilities. Structural Safety 2, 165–167
(Corrections 3, 67) (1985)

274. Royston, J.P.: Algorithm AS 181. The W test for normality. Applied Statistics 35,
232–234 (1982)

275. Royston, J.P.: Some techniques for assessing multivariate normality based on the
Shapiro-Wilk W . Applied Statistics 32, 121–133 (1983)

276. Ruben, H.: An asymptotic expansion for the multivariate normal distribution and
Mill’s ratio. Journal of Research, National Bureau of Standards 68, 3–11 (1964)

277. Ruppert, D.: Trimming and Winsorization. In: Encyclopedia of Statistical Sciences,
Volume 9, S. Kotz and N.L. Johnson (eds.), pp. 348–353. John Wiley and Sons, New
York (1988)

278. Ruymgaart, F.H.: Non-normal bivariate densities with normal marginals and linear
regression functions. Statistica Neerlandica 27, 11–17 (1973)

279. Sahu, S.K., Dey, D.K., Branco, M.D.: A new class of multivariate skew distributions
with applications to Bayesian regression models. Canadian Journal of Statistics 31,
129–150 (2003)

280. Sarabia, J-M.: The centered normal conditional distributions. Communications in
Statistics: Theory and Methods 24, 2889–2900 (1995)

281. Sarmanov, O.V.: Generalized normal correlation and two dimensional Fréchet classes.
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Chapter 12

Bivariate Extreme-Value Distributions

12.1 Preliminaries

The univariate extreme-value distributions consist of types 1 (Gumbel), 2
(Fréchet), and 3. The three types can be transformed to each other. The
type 3 distribution of (−X) is the usual Weibull distribution.

In the bivariate context, marginals are of secondary interest compared with
the dependence structure. Tiago de Oliveira (1962/63, 1975a,b, 1980, 1984),
Gumbel and Goldstein (1964), Gumbel (1965), Gumbel and Mustafi (1967),
and Galambos (1987, Chapter 5, especially Section 5.4) assumed Gumbel
marginals, whereas de Haan and Resnick (1977) and Kotz and Nadarajah
(2000, Chapter 3) chose Fréchet marginals F (x) = exp(−x−1). All three
types can be easily transformed to exponential variates, and in most cases
we will follow Pickands (1981), Deheuvels (1983, 1985), Smith (1994), and
Tawn (1988a) in choosing exponential marginals.

There are several excellent treatises on bivariate and multivariate extreme
value distributions; see, for example, Galambos (1987), Smith (1990, 1994),
Kotz and Nadarajah (2000), Coles (2001), and Beirlant et al. (2004).

In Section 12.2, we first introduce the bivariate extreme-value distribu-
tion. Next, in Section 12.4, we discuss the classical bivariate extreme-value
distribution with Gumbel marginals and its properties. Then, in Sections
12.5–12.7, we discuss the bivariate extreme-value distributions with expo-
nential, Fréchet, and Weibull marginal distributions, respectively. In Section
12.8, we describe the methods of derivation, estimation methods are detailed
in Section 12.9, and some references to illustrations are presented in Sec-
tion 12.10. Section 12.11 describes algorithms for the simulation of random
variates from the bivariate extreme-value distribution. Some applications are
indicated in Section 12.12 and finally conditionally specified bivariate Gumbel
distributions are mentioned in Section 12.13.

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 563
DOI 10.1007/b101765 13, c© Springer Science+Business Media, LLC 2009
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12.2 Introduction to Bivariate Extreme-Value
Distribution

12.2.1 Definition

Let (Xi, Yi), i = 1, 2, . . . , n, be n pairs of independent bivariate random
variables with Xmax = max(X1, . . . , Xn) and Ymax = max(Y1, . . . , Yn). It is
possible to find linear transformations X(n) = anXmax + bn (an > 0) and
Y(n) = cnYmax + dn (cn > 0) such that X(n) (and Y(n)) is one of the three
types of extreme-value distributions as n → ∞. Then, the limiting joint
distribution of X(n) and Y(n) is a bivariate extreme-value distribution.

A general definition of a bivariate extreme-value distribution can be pre-
sented through a copula [Pickands (1981)]. Let (X,Y ) have a joint bivariate
extreme-value distribution with marginals F (x) and G(y); then, the associ-
ated copula is given by

C(u, v) = Pr{F (X) ≤ u,G(Y ) ≤ v}
= exp[log(uv)A{log(u)/ log(uv)}] (12.1)

for all 0 ≤ u, v ≤ 1 in terms of a convex function A defined on [0, 1] in such
a way that max(t, 1 − t) ≤ A(t) ≤ 1 for all 0 ≤ t ≤ 1. A is known as the
dependence function, and we will discuss its properties in Section 12.5.2.

12.2.2 General Properties

• Let (Xi, Yi), i = 1, 2, . . . , n be a random sample from a bivariate popula-
tion with a joint distribution whose copula is C. Let X(n) = max{Xi} and
Y(n) = max{Yi}. Then the copula that corresponds to X(n) and Y(n) is

C(n)(u, v) = Cn(u
1
n , v

1
n ).

A copula C∗ is an extreme-value copula if there exists a copula C such
that

C∗(u, v) = lim
n→∞

Cn(u
1
n v

1
n );

see Nelsen (2006, p. 97).
• Shi (2003) has considered a transformation of variables from the copula

above with S = − log(UV )A
(

log U
log(UV )

)
, T = log U

log(UV ) . It has been shown
that S and T are “essentially” independent; this leads to some stochastic
representation for the bivariate extreme-value distribution.
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• In many bivariate distributions (such as the bivariate normal), Xmax and
Ymax may be asymptotically independent (as the sample size tends to infin-
ity) even if X and Y are correlated. This is so if H̄(xy)/ {1 −H(x, y)} → 0
as x, y → ∞. This result is due to Geffroy (1958/59).

• Let (X,Y ) have a bivariate extreme-value distribution. Then, X and Y
are PQD.

• Let H1(x, y) and H2(x, y) be two bivariate extreme-value distributions, so
their weighted geometric mean is

[H1(x, y)]β [H2(x, y)]1−β , 0 ≤ β ≤ 1,

see Gumbel and Goldstein (1964).

12.3 Bivariate Extreme-Value Distributions in
General Forms

Gumbel (1958, 1965) has described two general forms for bivariate extreme-
value distributions in terms of the marginals (univariate extreme-value dis-
tributions):

1. Type A

H(x, y) = F (x)G(y) exp

{

−θ
[

1
logF (x)

+
1

logG(y)

]−1
}

, 1 ≤ θ < 1.

The corresponding copula is

C(u, v) = uv exp
(

−θ
log uv

(log u log v)
)

.

2. Type B

H(x, y) = exp
{
− [(− logF (x))m + (− logG(y))m]1/m

}
, m ≥ 1.

The copula that corresponds to the type B extreme-value distribution
is

C(u, v) = exp
(
− [(− log u)m + (− log v)m]1/m

)
.

It is an extreme-value copula since C(uk, vk) = Ck(u, v); in fact, it is the
only Archimedean copula that is also an extreme-value copula, as remarked
in Example 1.8. It is called the Gumbel–Hougaard copula in Section 2.6.

The type A bivariate extreme-value distribution is known by some as the
(Gumbel) mixed model [see, for example, Yue et al. (2000)], whereas the type
B bivariate extreme-value distribution is known as the logistic model.



566 12 Bivariate Extreme-Value Distributions

Restricting to the case where both marginals are Gumbel, Yue and Wang
(2004) compared these two models by Monte Carlo experiments. Their results
indicate that within the range of 0 ≤ ρ ≤ 2/3, both models provide the
same joint probabilities and joint return periods, and both may be useful
for representing statistical properties of X and Y . When ρ > 2/3, only the
logistic (type B) model can be applied to the joint distribution of X and Y .

12.4 Classical Bivariate Extreme-Value Distributions
with Gumbel Marginals

Three special types are considered in this section—type A, type B, and
type C—all having Gumbel marginals. The distributions with exponential
marginals will be discussed in Section 12.5.

A bivariate extreme-value distribution with Gumbel marginals has the
general form

H(x, y) = exp
{

−
∫ 1

0

min[f1(s)e−x, f2(s)e−y]ds
}

, (12.2)

where f1(t) and f2(t) are non-negative Lebesgue integrable functions such
that

∫ 1

0
fi(t)dt = 1, i = 1, 2; see, for example, Resnick (1987, p. 272).

12.4.1 Type A Distributions

These distributions are also known as the mixed model.

Formula of the Cumulative Distribution Function

The joint distribution function is

H(x, y) = exp[−e−x − e−y + θ(ex + ey)−1], θ ≤ 1, (12.3)

which is an increasing function of θ.

Formula of the Joint Density

The joint density function is

h(x, y) = e−(x+y)[1 − θ(e2x + e2y)(ex + ey)−2 + 2θe2(x+y)(ex + ey)−3

+θ2e2(x+y)(ex + ey)−4] exp[−e−x − e−y + θ(ex + ey)−1]. (12.4)
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Univariate Properties

The marginal distribution function of X is F (x) = exp[−e−x], −∞ < x < ∞,
and a similar expression for G(y). That is, the marginals are both type I
extreme-value distributions. Note that the type I extreme-value distribution
is also known as the Gumbel distribution. In fact, it is the distribution most
commonly referred to in discussions of univariate extreme-value distributions.

Medians and Modes

The median of the common distribution of X and Y is

μ = − log(log 2) = 0.36651, (12.5)

so that F (μ)G(μ) = 1
4 and

H(μ, μ) = exp
(

−2e−μ +
1
2
θe−μ

)

=
(

1
4

)1−θ/4

. (12.6)

Also,
H(0, 0) = (e−2)1−θ/4. (12.7)

The value μ̃, such that H(μ̃, μ̃) = 1
4 , satisfies the equation

(

2 − 1
2
θ

)

e−μ̃ = 2 log 2, (12.8)

and so

μ̃ = log
(

1 − 1
4
θ

)

− log(log 2) = log
(

1 − 1
4
θ

)

+ 0.3665. (12.9)

Since 0 ≤ θ ≤ 1, 0.3665 − log(4
3 ) = 0.0787 ≤ μ̃ ≤ 0.3665.

The mode of the common distribution of X and Y is at zero. The mode
of the joint distribution is at

x = y = log

[
(2 − θ)(4 − θ)

2θ

{√
1
2

+
2

(2 − θ)2
− 1

}]

. (12.10)

The numerical values are tabulated, for example, in Table 53.1 of Kotz et al.
(2000, p. 627).
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Correlation Coefficients

The expression for the product-moment correlation is quite complex. How-
ever, Spearman’s rho (the grade correlation) is simpler, and is given by

ρS = 3
(

2 − 1
4
θ

)−1

×
[

1 + 2
(

2θ − 1
4
θ2

)−1

tan−1

{(

2θ − 1
4
θ2

)1/2(

2 − 1
2
θ

)−1
}]

− 3.

(12.11)

There appears to be a misprint in the formula given by Gumbel and Mustafi
(1967, p. 583). However, their Table 3 appears to be correct. Some values of
Spearman’s rho for a few values of θ can also be found in the same table.

12.4.2 Type B Distributions

Type B bivariate extreme-value distributions are also known as logistic
models.

Formula of the Cumulative Distribution Function

The joint cumulative distribution function is

H(x, y) = exp
[
−(e−mx + e−my)1/m

]
, m ≥ 1. (12.12)

Since limm→∞(e−mx + e−my)1/m = max(e−x, e−y), we obtain

lim
m→∞

H(x, y) = min
[
exp(−e−x), exp(−e−y)

]

= min
(
F (x), G(y)

)
. (12.13)

It is clear that, for m = 1, X and Y are independent.

Formula of the Joint Density

The joint density function is
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h(x, y) = e−m(x+y)(e−mx + e−my)−2+1/m]
×{m− 1 + (e−mx + e−my)1/m}
× exp[−(e−mx + e−my)1/m], (12.14)

for m ≥ 1.

Univariate Properties

The marginal distributions are both type I extreme-value distributions.

Medians and Modes

With the univariate median μ defined as F (μ) = G(μ) = 1
2 , we find, for type

B distributions,

H(μ, μ) =
(

1
4

)1/m

(12.15)

and
H(0, 0) = (e−2)1/m (12.16)

[compare these with (12.6) and (12.7)].
The values of μ̃ such that H(μ̃, μ̃) = 1

4 satisfies the equation

exp[−21/me−μ̃] =
1
4
,

and so
μ̃ = − log(log 2) − m− 1

m
log 2. (12.17)

Since m ≥ 1, 0.3665 − log 2 = −0.3266 ≤ μ̃ ≤ 0.3665.
The mode of the joint distribution is at

x = y = (1 + m−1) log 2 − log
[√

(m− 1)2 + 4 −m + 3
]
. (12.18)

Some numerical values have been presented in Table 53.1 of Kotz et al. (2000).

Correlation Coefficients

The Pearson product-moment correlation coefficient is ρ = 1 −m−2.
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Other Properties

The expression X − Y has a logistic distribution with

Pr(X − Y ≤ t) = (1 + e−mt)−1. (12.19)

Fisher Information Matrix

Shi (1995b) has derived the Fisher information matrix for the multivariate
version of the logistic model.

Type B Bivariate Extreme-Value Distribution with Mixed
Gumbel Marginals

Escalante-Sandoval (1998) considered a type B bivariate extreme value dis-
tribution (12.12) but with the marginals being the mixtures of Gumbel dis-
tributions. The joint distribution was found to be useful for performing flood
frequency analysis.

12.4.3 Type C Distributions

For these distributions (also known as the biextremal model), the joint dis-
tribution function is

H(x, y) = exp
[
−max{e−x + (1 − φ)e−y, e−y}

]
, 0 < φ < 1. (12.20)

The distribution in (12.20) can be generated as the joint distribution of X
and

Y = max(X + log φ,Z + log(1 − φ)),

where X and Z are mutually independent variables with each having a Gum-
bel distribution.

The distribution has a singular component along the line y = x + log φ
since

Pr[Y = X + log φ] = Pr[Z −X ≤ log{φ/(1 − φ)}] = φ. (12.21)

Correlation Coefficients

The correlation coefficient is given by
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corr(X,Y ) = ρ = −6π2

∫ φ

0

(1 − t)−1 log t dt,

and the Spearman correlation is ρS = 3φ/(2 + φ).

Medians and Modes

H(μ, μ) =
1
4
(2φ) (12.22)

and
H(0, 0) = (e−2)1−φ/2. (12.23)

The value μ̃, such that H(μ̃, μ̃) = 1
4 , is given by

μ̃ = − log
(

log 2
1 − 1

2φ

)

. (12.24)

12.4.4 Representations of Bivariate Extreme-Value
Distributions with Gumbel Marginals

Tiago de Oliveira (1961) showed that a bivariate distribution with standard
type I extreme-value marginals can be defined by a cumulative distribution
function of the form

H(x, y) = exp
{
−(e−x + e−y)k(y − x)

}
, (12.25)

where k(·) satisfies the conditions

lim
t→±∞

k(t) = 1,

d

dt
{(1 + e−t)k(t)} ≤ 0,

d

dt
{(1 + et)k(t)} ≥ 0,

(1 + e−t)k′′(t) + (1 − e−t)k′(t) ≥ 0.

Type A is obtained by taking

k(t) = 1 − 1
4
θ sech2 1

2
t. (12.26)

Type B is obtained by taking
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k(t) = (emt + 1)1/m(et + 1)−1. (12.27)

Type C is obtained by taking

k(t) = (et + 1)−1{1 − φ + max(et, φ)}, 0 < φ < 1. (12.28)

12.5 Bivariate Extreme-Value Distributions with
Exponential Marginals

Pickands (1981) [see also Tawn (1988a)] showed a bivariate extreme-value dis-
tribution with unit exponential marginals can be expressed via a dependence
function.

12.5.1 Pickands’ Dependence Function

Here,

H̄(x, y) = exp
[

−(x + y)A
(

y

x + y

)]

, x, y > 0, (12.29)

where

A(w) =
∫ 1

0

max[(1 − w)q, w(1 − q)]
dB

dq
dq, (12.30)

in which B is a positive function on [0, 1]. In order to have unit exponential
marginals, we need

1 =
∫ 1

0

q
dB

dq
dq =

∫ 1

0

(1 − q)
dB

dq
. (12.31)

[To deduce this, we successively set x = 0 and y = 0 in (12.29). We then
find that A(0) and A(1) must both be 1 and put these values into (12.31).] It
follows from (12.31) that 1

2B is the distribution function of a random variable
with mean 1

2 . We call A the dependence function of (X,Y ), in accordance
with the usage of Pickands (1981) and Tawn (1988a). [Do not confuse the with
any other meaning of the term; for example, that of Oakes and Manatunga
(1992).]

For accounts of the connections between various dependence functions, see
Deheuvels (1984) and Weissman (1985).



12.5 Bivariate Extreme-Value Distributions with Exponential Marginals 573

12.5.2 Properties of Dependence Function A

1. A(0) = A(1) = 1.
2. max(w, 1 − w) ≤ A(w) ≤ 1, 0 ≤ w ≤ 1.
3. A(w) = 1 implies that X and Y are independent. A(w) = max(w, 1−w)

implies that X and Y are equal, i.e., Pr(X = Y ) = 1.
4. A is convex; i.e., A[λx + (1 − λ)y] ≤ λA(x) + (1 − λ)A(y).
5. If Ai are dependence functions, so is

∑n
i=1 αiAi, where αi ≥ 0 and∑n

i=1 = 1.

A may or may not be differentiable. In the former case, H has a joint density
everywhere; in the latter, H has a singular component and is not differen-
tiable in a certain region of its support. We shall consider examples of this
family of distributions classified as differentiable, nondifferentiable, or Tawn’s
extension of differentiable. Examples 1–4, 6, and 7 below were discussed by
Tawn (1988a).

Nadarajah et al. (2003) studied the local dependance functions for the
extreme-value distribution with dependence function A given in (12.29) and
(12.30) above.

12.5.3 Differentiable Models

Example 1

The mixed model, also known as Gumbel’s type A bivariate extreme-value
distribution, sets A(w) = θw2 − θw + 1 for 0 ≤ θ ≤ 1. Hence

H̄(x, y) = exp
[

−(x + y) +
θxy

x + y

]

; (12.32)

see Gumbel and Mustafi (1967) for further properties.
In the case of marginals with different parameters, Elandt-Johnson (1978)

showed that the two crude hazard rates h1(x) = ∂H̄
∂x |y=x and h2(y) = ∂H̄

∂y |x=y

are proportional if and only if the marginal hazard rates f/F̄ and g/Ḡ are
proportional.

Example 2

The logistic model, also known as the type B extreme value-distribution, sets
A(w) = [(1 − w)r + wr]1/r for r ≥ 1. Hence,

H̄(x, y) = exp[−(xr + yr)1/r]. (12.33)
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This is the third type of exponential distribution mentioned, albeit only
briefly, by Gumbel (1960); see Gumbel and Mustafi (1967) for further
details.

12.5.4 Nondifferentiable Models

Example 3

The biextremal model, also known as the type C bivariate extreme-value
distribution, sets A(w) = max(w, 1 − θw) for 0 ≤ θ ≤ 1. Hence,

H̄(x, y) = exp {−max[x + (1 − θ)y, y]} . (12.34)

Example 4

Gumbel’s model sets A(w) = max[1− θw, 1− θ(1−w)] for 0 ≤ θ ≤ 1. Hence,

H̄(x, y) = [−(1 − θ)(x + y) − θmax(x, y)] . (12.35)

This is effectively the bivariate exponential distribution of Marshall and Olkin
(1967) discussed in Section 10.5.

Example 5

The natural model sets A(w) = β−1
β−α max(1 − w,αw) + 1−α

β−α max(1 − w, βw)
for 0 ≤ α ≤ 1 ≤ β < ∞. Hence,

H̄(x, y) = exp{−[(β−1)max(x, αy)+(1−α)max(x, βy)]/(β−α)}. (12.36)

12.5.5 Tawn’s Extension of Differentiable Models

Background

In the dependence functions for the differential models, Tawn (1988a) added
an extra parameter φ to give further flexibility. This gives us two new models,
as follows.
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Example 6

The asymmetric mixed model sets A(w) = φw3 + θw2 − (θ + φ)w + 1 for
θ ≥ 0, θ + φ ≤ 1, θ + 2φ ≤ 1, θ + 3φ ≥ 0. Hence,

H̄(x, y) = exp
[

−(x + y) + xy
(θ + φ)x + (θ + 2φ)y

(x + y)3

]

. (12.37)

When φ = 0, we get the mixed model presented in Example 1.

Example 7

The asymmetric logistic model sets A(w) = [θr(1 − w)r + φrwr]1/r + (θ −
φ)w + 1 − θ for 0 ≤ θ ≤ 1, 0 ≤ φ ≤ 1, r ≥ 1. Hence,

H̄(x, y) = exp[−(1 − θ)x− (1 − φ)y − (θrxr + φryr)1/r]. (12.38)

When θ = φ = 1, we get the logistic model presented in Example 2. When
θ = 1, we have the biextremal model presented in Example 3, and when
θ = φ we have Gumbel’s model presented in Example 4.

If r → ∞, we get

A(w) = max[1 − φw, 1 − θ(1 − w)], (12.39)

a nondifferentiable model with Pr(Y = θ
φX) = θφ

θ+φ−θφ . If θ = φ = 1, (12.39)
reduces to the complete dependence model.

12.5.6 Negative Logistic Model of Joe

Joe (1990) generalized the asymmetric logistic model in Example 7 by allow-
ing r to be negative.

Example 8

H̄(x, y) = exp[−(1 − θ)x− (1 − φ)y − (θrxr + φryr)1/r], r < 0. (12.40)

X and Y are independent if r → 0 and are completely dependent if r → ∞
and θ = φ. A(w) has the same expression as in Example 7.
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12.5.7 Normal-Like Bivariate Extreme-Value
Distributions

Example 10

Smith (1991) and Hüsler and Reiss (1989) considered a normal-like bivariate
extreme-value distribution with exponential marginals

exp
[

−xΦ
(

λ +
1
2λ

log
x

y

)

− yΦ
(

λ +
1
2λ

log
x

y

)]

, λ ≥ 0, (12.41)

where Φ(x) is the standard normal distribution function.

12.5.8 Correlations

X and Y are positively correlated. In fact, as was pointed out by Tawn
(1988a), they also have the right-tail increasing (RTI) property; see also Sec-
tion 3.4.3 for this concept of positive dependence.

Pearson’s product-moment correlation may be written as

ρ =
∫ 1

0

dw

A(w)2
− 1 (12.42)

[Tawn (1988a)].
For Example 1 [Tawn (1988a)], we have

ρ =
sin−1( 1

2

√
θ) − 1

2

√
θ(1 − 1

4θ)(1 − 1
2θ)

√
θ(1 − 1

4θ)
3

. (12.43)

For Example 2 [Tawn (1988a)], we have

ρ =
[Γ(1/r)]2

rΓ(2/r)
− 1. (12.44)

For Example 3, corr(− logX,− log Y ) (i.e., the correlation when the
marginals are Gumbel’s extreme-value distribution) is

−6π−2

∫ θ

0

(1 − t)−1 log t dt, (12.45)

which may also be written as 6π−2diln(θ) + 1.1

1 This is the nomenclature and notation of Spanier and Oldham (1987, p. 231). Both are different
from the usage in the key book on the subject by Lewin (1981). A FORTRAN algorithm for
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For Example 4, we have

ρ = θ/(2 − θ). (12.46)

See Tiago de Oliveira (1980, 1984) for the correlation coefficients when the
marginals are Gumbel’s extreme-value distributions in the cases of Examples
1–5; Tiago de Oliveira (1975b) gives the results for the first four, while Section
12.4 gives the first three.

As to Spearman’s rho, for Example 1, it is given in (12.11). For Example
4, it is

ρS = 3θ/(2 + θ). (12.47)

Tiago de Oliveira (1984) gives expressions for Kendall’s tau in the case of
Examples 2 and 5.

Tawn (1988a) suggests 2[1−A(1
2 )] as another measure of dependence that

is unaffected by the choice of marginals.

12.6 Bivariate Extreme-Value Distributions with
Fréchet Marginals

The marginal we considered is the Fréchet distribution with F (x) = exp{−x−1},
x > 0. A simple transformation Z = X−1 yields a unit exponential distribu-
tion.

Kotz and Nadarajah (2000) considered a bivariate extreme value distri-
bution with the distribution function written as in (12.29) with Fréchet
marginals instead of the exponentials as given by

H(x, y) = exp
[

−
(

1
x

+
1
y

)

A

(
x

x + y

)]

, x, y > 0, (12.48)

where A(w) =
∫ 1

0
max[(1−w)q, w(1−q)]dB

dq dq, as expressed in (12.30). Instead
of using the dependence function A, the bivariate extreme-value distribution
is now characterized by dB

dq = b(q).

12.6.1 Bilogistic Distribution

Example 10

Joe et al. (1992) considered

calculating the dilogarithm in Lewin’s sense has been published by Ginsberg and Zaborowski
(1975).
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H(x, y) = exp
[

−
∫ 1

0

max
{

(q1 − 1)s−1/q1

q1x
,
(q2 − 1)s−1/q2

q2y

}

ds

]

(12.49)

for q1 > 0 and q2 > 0. Here, we have

b(w) =
(1 − 1/q1)(1 − z)z1−1/q1

(1 − w)w2{(1 − z)/q1 + z/q2}
,

where z is the root of the equation

(1 − 1/q1)(1 − w)(1 − z)1/q2 − (1 − 1/q2)wz1/q1 = 0.

12.6.2 Negative Bilogistic Distributions

Example 11

Coles and Tawn (1994) considered a family of distributions having the same
distribution function as in Example 8 except that q1 < 0 and q2 < 0 and

b(w) = − (1 − 1/q1)(1 − z)z1−1/q1

(1 − w)w2{(1 − z)/q1 + z/q2}
, q1 < 0, q2 < 0.

12.6.3 Beta-Like Extreme-Value Distribution

Example 12

Coles and Tawn (1991) considered a beta-like bivariate extreme-value distri-
bution with cumulative distribution function

H(x, y) = exp
[

− 1
x
{1 −Bu(q1 + 1, q2)} −

1
y
Bv(q1, q2 + 1)

]

,

q1 > 0, q2 > 0, (12.50)

where u = q1x
q1x+q2y , v = q1y

q1x+q2y , and

Bx(a, b) =
Γ(a + b)
Γ(a)Γ(b)

∫ x

0

wa−1(1 − w)b−1dw.

In this case,

b(w) =
qq1
1 qq2

2 Γ(q1 + q2 + 1)
Γ(q1)Γ(q2)

wq1−1(1 − w)q2−1

{q1w + q2(1 − w)}1+q1+q2
, w ∈ (0, 1).
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12.7 Bivariate Extreme-Value Distributions with
Weibull Marginals

This distribution was studied by Oakes and Manatunga (1992).

12.7.1 Formula of the Cumulative
Distribution Function

The joint distribution function is

H̄(x, y) = exp[−{(ηκ1
1 xκ1)φ + (ηκ2

2 yκ2)φ}α. (12.51)

Here, the parameter α = 1/φ represents the degree of dependence between
X and Y , and α = 1− τ is Kendall’s coefficient of concordance. Cases α = 0
and α = 1 correspond to maximal positive dependence and independence,
respectively.

12.7.2 Univariate Properties

The marginal survival functions are

F̄ (x) = exp(−ηκ1
1 xκ1), Ḡ(y) = exp(−ηκ2

2 yκ2), x, y ≥ 0,

with scale parameters η1 and η2 and shape parameters κ1 and κ2, respectively.

12.7.3 Formula of the Joint Density

The joint density function is

h(x, y) = φκ1κ2η
κ1φ
1 ηκ2φ

2 xκ1φ−1yκ2φ−1sα−2(1 − α + αz)e−z, (12.52)

where
s = (ηκ1

1 xκ1)φ + (ηκ2
2 yκ2)φ, z = sα.
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12.7.4 Fisher Information Matrix

Using Lee’s (1979) transformation, Oakes and Manatunga (1992) have de-
rived an explicit formula for the elements of the Fisher information matrix
for this distribution.

12.7.5 Remarks

• Oakes and Manatunga (1992) numerically calculated the asymptotic vari-
ance of the maximum likelihood estimator α̂ of α. Calculations reveal that
estimators of the scale parameters η1 and η2 are almost orthogonal to that
of the dependence parameter α.

• By marginal transformation to Gumbel marginals and reparametrizing
such that τ1 = κ−1

1 and τ2 = κ−1
2 , Shi et al. (2003) have shown that the

bivariate Weibull model in (12.51) reduces to type B (the logistic model)
with scale parameters τ1 and τ2. Thus, testing for κ1 = κ2 of the bivariate
Weibull becomes testing for the equality of the scale parameters τ1 and τ2
of the type B distribution.

12.8 Methods of Derivation

• Bivariate extreme-value distributions arise as the limiting distributions
of normalized componentwise maxima. More formally, let (Xi, Yi), i =
1, 2, . . . , n, be i.i.d. random vectors. Then, (max(Xi),max(Yi)), after being
suitably normalized, has a bivariate extreme-value distribution.

• (X,Y ) has a bivariate extreme-value distribution with unit exponential
marginals if and only if the marginals are unit exponentials and, for every
n ≥ 1, [H̄(x, y)]n = H̄(nx, ny). Pickands (1981) showed that this equa-
tion is satisfied if and only if H̄(x, y) can be written as (12.29). For this
reason, the dependence function determines the type of bivariate extreme-
value distribution; it also expresses the asymptotic connection between
two maxima.

• Alternatively, (X,Y ) has a bivariate extreme-value distribution with unit
exponential marginals if and only if min(aX, bY ) is exponential for all
a, b > 0.
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12.9 Estimation of Parameters

Kotz et al. (2000, Chapter 53) discusses estimation of the parameters of type
A, B, and C distributions. Kotz and Nadarajah (2000) have devoted their
Section 3.6 to estimation problems for multivariate extreme distributions.
Shi (1995a) discussed moment estimation for the logistic model whereas Shi
and Feng (1997) considered the maximum likelihood and stepwise method
for the parameters of the logistic model.

12.10 References to Illustrations

Plots of the bivariate density along y = x of the mixed and logistic models
in Examples 1 and 2, with their marginals being of extreme value of type
I form, are given by Gumbel and Mustafi (1967) and Kotz et al. (2000, p.
631). Density and density contour plots of type A and type B (with Gumbel
marginals) are given by Arnold et al. (1999, pp. 283–284).

12.11 Generation of Random Variates

Section 3.7 of Kotz and Nadarajah (2000) has given three known methodolo-
gies for simulating bivariate extreme-value observations.

12.11.1 Shi et al.’s (1993) Method

Shi et al. (1993) described a scheme for simulating (X,Y ) from the bivariate
symmetric logistic distribution (type B) as given in (12.12); i.e., H(x, y) =
exp
[
−(e−qx + e−qy)1/q

]
. Letting X = Z cos2/q V and V = Z sin2/q V , they

observed that the joint density of (U, V ) can be factorized as

(q−1z + 1 − q−1)e−z sin 2v, 0 < v < π/2, 0 < z < ∞,

which shows that Z and V are independent. It is then shown that V may
be represented as arcsinU1/2, where U is uniform on (0, 1), whereas Z is a
mixture of two independent exponentials with a ratio 1 − q−1 : q−1. We can
now see that (12.12) can be simulated easily.
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12.11.2 Ghoudi et al.’s (1998) Method

Ghoudi et al. (1998) described a simulation scheme that is applicable for all
bivariate extreme-value distributions. Starting with the expression for the
cumulative distribution of the copula associated with the bivariate extreme-
value distribution given by (12.1), Ghoudi et al. (1998) first find the joint
distribution of Z = X/(X + Y ) and V = A(−X,−Y ) and then the marginal
distribution of Z and the conditional distribution of V given Z = z. From
these, one can simulate (X,Y ), of course!

12.11.3 Nadarajah’s (1999) Method

Nadarajah (1999) used the limiting point process result as an approximation
to simulate bivariate extreme values.

12.12 Applications

Extreme-value distributions have wide applications in environmental stud-
ies (earthquake magnitudes, floods, river flows, storm rainfalls, wind speeds,
etc.), insurance and finance, structural design, and telecommunications.
There are several books that are devoted to applications of extreme-value
distributions; see, for example, Tawn (1994), Embrechts et al. (1997), Kotz
and Nadarajah (2000), and Coles (2001). For a more recent survey article,
one may refer to Smith (2003).

12.12.1 Applications to Natural Environments

• In the form with extreme-value marginals, the mixed model in Example
1 and the logistic model in Example 2 were both used by Gumbel and
Mustafi (1967) to describe the flood of the Fox River at upstream and
a downstream gauging stationd. They found the latter fitted better; see
Gumbel and Goldstein (1964) for floods of the Ocmulgee River. Tiago
de Oliveira (1975b, 1980) mentions that an unpublished paper of Amaral
and Gomes in 1975 entitled “The fitting of bivariate extreme models” has
reanalyzed these and other datasets.

• The models of Examples 1, 2, 6, and 7 were used by Tawn (1988a) to
describe the annual maximum sea levels at Lowestoft and Sheerness.

• Smith (1986) and Tawn (1988b) considered the joint distribution of the
r largest observations—they had time series data of sea level, and were
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concerned with issues such as the improvement in prediction resulting from
making use of the five or ten largest values per year rather than only the
largest. Smith’s data were from Venice, and Tawn’s were from Lowestoft
and Great Yarmouth.

• The “station-year” method for the analysis of rainfall or flood maxima
is motivated as follows. One may be interested in events with very long
return periods (i.e., well out in the tail of the distribution), much larger
events than the lengths of the individual rainfall datasets. To make de-
ductions about such rare events, one might wish to combine all datasets
from measuring stations in a region to form a single series. The extent
to which this is justified depends on the tail of the joint distribution
of the rainfall amounts; see Buishand (1984), who considered the ratio
q = logH(x, x)/ logF (x). In the case of independence, this ratio is 2. For
annual maximum daily rainfall data from the Netherlands, Buishand plot-
ted q against F for pairs of stations different distances apart. The ratio
q increases with both F and distance and seems to be tending to 2. For
data restricted to the winter season, the results were more complex.

• Lewis (1975) has briefly mentioned work by himself and Daldry on annual
maxima of wind and gust.

• Smith (1991) applied the normal-like bivariate extreme-value distribution
to model spatial variations of extreme storms at two locations.

• Coles and Tawn (1994) found the negative bilogistic distribution most
suitable for estimating the dependence between the extremes of surge and
wave height.

• Yue (2000) used the type A model with Gumbel marginals to model a mul-
tivariate storm event, 104-yr daily rainfall data at the Niigata observation
station in Japan during 1897–1990.

• Yue (2001) used a type 1 bivariate extreme-value distribution (the logistic
model) with Gumbel marginals as a joint distribution of annual maximum
storm peaks (maximum rainfall intensities) and the corresponding storm
amounts. The model was found to fit well to the rainfall data collected from
the Tokushima Meteorological Station of Tokushima Prefecture, Japan.

• In analyzing flood frequency of a region in Northwestern Mexico, Escalante-
Sandoval (2007) used a (i) type B bivariate extreme-value two-parameter
Weibull distributionas marginals and (ii) type B distribution with mixtures
of two Weibull distributions as its marginals. See also Escalante-Sandoval
(1998).

A salutary quotation [Klemeš (1987)] is as follows: “The natural frequen-
cies of flood peaks in the historic series are, in fact, almost never analyzed.
We do not learn whether there seems to be any pattern such as clustering
of high or low peaks, trend, or some other feature, nor any indication of
some hydrological, geographical or other context that could shed light on
the historic flood record. What happens is that the actual time sequencing
is completely ignored and the flood record is declared purely random. The
ostensible reason for this is to ‘simplify the mathematical treatment.’ This,
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however, is rather amusing when one sees how the laudable resolve to keep
things simple is then hastily abandoned and the use of the most advanced
theories is advocated for the treatment of this artificially random sample on
the pretext that ‘greatest amount of information’ must be extracted.”

12.12.2 Financial Applications

One of the driving forces for the popularity of copulas, especially the extreme-
value copulas, is their application in the context of financial risk management.
Mikosch (2006, Section 3) explains the reasons why the finance researchers
are attracted to copulas. Section 1.15.1 provides a list of applications in this
area.

12.12.3 Other Applications

There are many other applications of extreme-value copulas as given in Sec-
tion 1.15. In addition to what have already been described in Chapter 1, we
give the following examples.

• In the form with extreme-value marginals, the mixed model in Example 1
was used by Posner et al. (1969) in their analysis of a spacecraft command
receiver.

• The logistic model was also used by Hougaard (1986) to analyze data on
tumors in rats.

• For applications to structural design, see Coles and Tawn (1994). Kotz and
Nadarajah (2000, p. 145) reanalyzed the Swedish data of ages at death
classified according to gender up to year 1997. The result confirms the
original finding of independence studied by Gumbel and Goldstein (1964).

12.13 Conditionally Specified Gumbel Distributions

Introducing location and scale parameters, the univariate Gumbel extreme-
value distribution (for maxima) has a density of the form

f(x) =
1
σ
e−(x−μ)/σ exp

(
−e−(x−μ)/σ

)
, −∞ < x < ∞, (12.53)

where μ and σ are, respectively, the location and scale parameters. Chapter
12 of Arnold et al. (1999) considered conditional distributions rather than
marginals that are of the Gumbel form.
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12.13.1 Bivariate Model Without Having
Gumbel Marginals

Section 12.3 of Arnold et al. (1999) considered two conditionally specified
Gumbel distributions, neither of them valid bivariate extreme-value distribu-
tions. After repametrizations and standardization, we have the
following.

Formula of the Joint Density

The joint density function is

h(x, y) = k(θ) exp[−x− y − e−x − e−y − θe−x−y], (12.54)

where the normalizing constant is given by

k(θ) =
−

θe−1/θ
−Ei(1/θ), (12.55)

in which θ is a dependency parameter and –Ei(t) =
∫∞

t
e−u

u du.

Univariate Properties

The marginal density of X is

f(x) = k(θ)
exp[−x− e−x]

1 + θe−x
, (12.56)

and a similar expression holds for g(y).

Conditional Properties

The conditional density of X, given Y = y, is

f(x|y) = (1 + θe−y) exp[−x− e−x(1 + θe−y)] (12.57)

and
g(y|x) = (1 + θe−x) exp[−y − e−y(1 + θe−x)]. (12.58)
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Correlations and Dependence

Arnold et al. (1999) have shown that (12.54) is always totally negative of order
2 (also known as RR2 in Section 3.8), and consequently the correlations are
negative.

References to Illustrations

Arnold et al. (1999, p. 285) have presented a density plot and a density
contour plot.

12.13.2 Nonbivariate Extreme-Value Distributions
with Gumbel Marginals

Arnold et al. (1999) derived another nonvalid bivariate extreme-value distri-
bution by conditional specification as given below (in its standardized form).
The specification is through conditional distribution functions rather than
conditional densities.

Formula for Cumulative Distribution Function

The joint distribution function is

H(x, y) = exp[−e−x − e−y − θe−x−y], 0 < θ < 1. (12.59)

Formula for the Joint Density

The joint density function is

h(x, y) = exp(−e−x − e−y − θe−x−y − x− y)
×[(1 + θe−x)(1 + θe−y) − θ]. (12.60)

Univariate Properties

Both marginal distributions are Gumbel distributions.
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Conditional Properties

We have
Pr(X ≤ x|Y ≤ y) = exp[−e−x(1 + θe−y)], (12.61)

which is also Gumbel.

Correlations and Dependence

Arnold et al. (1999) have shown that X and Y are NQD and hence have a
negative correlation.

References to Illustrations

A density plot and density contour plot of (12.60) are given in Arnold et al.
(1999, p. 285).

12.13.3 Positive or Negative Correlation

Tiago de Oliveira (1962) showed that every bivariate extreme model exhibits
a non-negative correlation. This result also follows from the fact that X and
Y are PQD (see Section 12.2.2), and so they must be positively correlated.

Arnold et al. (1999, p. 282) made the following remark:

“However, many bivariate data sets are not associated with maxima of sequences of
i.i.d. random vectors even though marginally and /or conditionally a Gumbel model
may fit quite well.

“Quite often empirical extreme data are associated with dependent bivariate se-
quences. Unless the dependence is relatively weak, there is no reason to expect the
classical bivariate extreme theory will apply in such settings and consequently no a
priori argument in favor of non-negative or nonpositive correlation.

“The conditionally specified Gumbel models introduced in this chapter exhibit non-
positive correlations. Thus, the Gumbel–Mustafi models and the conditionally spec-
ified models do not compete but, in fact, complement each other. Together they
provide us with the ability to fit data sets exhibiting a broad spectrum of correla-
tion structure, both negative and positive.”

12.13.4 Fields of Applications

Simiu and Filliben (1975) presented data on annual maximal wind speeds
at 21 locations in the United States. About 40% of the 210 pairs of stations
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in this dataset exhibit negative correlation, so the phenomenon is not an
isolated one. Thus, a bivariate extreme-value distribution is not appropriate.
Arnold et al. (1999) found that (12.55) and (12.61) provide a good fit to data
from two stations, Eastport and North Head.
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19. Gumbel, E.J.: Distributions à plusieurs variables dont les marges sont données.
Comptes Rendus de l’Académie des Sciences, Paris 246, 2717–2719 (1958)

20. Gumbel, E.J.: Bivariate exponential distributions. Journal of the American Statistical
Association 55, 698–707 (1960)

21. Gumbel, E.J.: Two systems of bivariate extremal distributions. Bulletin of the Inter-
national Statistical Institute 41, 749–763 (Discussion, 763) (1965)



References 589

22. Gumbel, E.J., Goldstein, N.: Analysis of empirical bivariate extremal distributions.
Journal of the American Statistical Association 59, 794–816 (1964)

23. Gumbel, E.J., Mustafi, C.K.: Some analytical properties of bivariate extremal distri-
butions. Journal of the American Statistical Association 62, 569–588 (1967)

24. Hougaard, P.: A class of multivariate failure time distributions. Biometrika 73, 671–
678 (Correction 75, 395) (1986)
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Chapter 13

Elliptically Symmetric Bivariate
Distributions and Other
Symmetric Distributions

13.1 Introduction

This chapter is devoted to describing a class of bivariate distributions whose
contours of probability densities are ellipses; in particular, those ellipses with
constant eccentricity. These distributions are generally known as elliptically
contoured or elliptically symmetric distributions. A subclass of distributions
with contours that are circles are known as spherically symmetric (or simply
spherical) distributions. The chapter also includes other symmetric bivariate
distributions.

The last 20 years have seen vigorous development of multivariate elliptical
distributions as direct generalizations of the multivariate normal distribution
that dominated statistical theory and applications for nearly a century. El-
liptically contoured distributions retain most of the attractive properties of
the multivariate normal distribution. For example, let (X,Y ) be an uncor-
related pair from this class. Then, X2/Y 2 has the usual F -distribution, and
X2/(X2 + Y 2) has the beta distribution, beta(1

2 ,
1
2 ); see Kelker (1970).

On the application side, members of this class were used to describe the
second-order moments of the transformation of a random signal by an in-
stantaneous linear device [McGraw and Wagner (1968)]. Further, van Praag
and Wesselman (1989) have shown that many procedures for multivariate
analysis in the normal case can be adapted to the elliptical case with the
aid of the estimated kurtosis. Bentler and Berkane (1985) went as far as to
say, “It is becoming apparent that [elliptical] theory has a potential to dis-
place multivariate normal theory in a variety of applications such as linear
structural modelling” (which includes factor analysis and simultaneous equa-
tion models). For an early review and bibliography of these distributions, see
Chmielewski (1981).

Fang et al. (1990) provided a rather detailed study of these distributions,
and their text has now become a standard reference for symmetric multivari-
ate distributions. A more recent review is Fang (1997).

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 591
DOI 10.1007/b101765 14, c© Springer Science+Business Media, LLC 2009
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Notation

First, recall some conventions used earlier: Boldface symbols will be used
for vectors and matrices; N(μ,Σ) denotes the bivariate normal distribution
having mean μ and covariance matrix Σ; and the transpose of matrix A is
denoted by A′.

There are several ways to describe spherically and elliptically symmetric
distributions. In a nutshell, a spherical distribution is an extension of N(0, I)
and an elliptical distribution is an extension of N(μ,Σ). Since every circle is
also an ellipse, a spherical distribution is an elliptical distribution.

In Section 13.2, we describe the formulation of elliptically contoured bi-
variate distributions, and then we discuss its properties in Section 13.3. The
elliptical compound bivariate normal distribution is discussed in Section 13.4.
Next, in Section 13.5, some examples of elliptically and spherically symmetric
bivariate distributions are presented. Extremal-type elliptical distributions
are discussed in Section 13.6. Tests of spherical and elliptical symmetry and
extreme behavior of bivariate elliptical distributions are discussed in Sections
13.7 and 13.8, respectively. Some fields of applications for these distributions
are highlighted in Section 13.9. In Sections 13.10 and 13.11, bivariate symmet-
ric stable and generalized bivariate symmetric stable distributions and their
properties are discussed. Next, in Sections 13.12 and 13.13, α-symmetric and
other symmetric distributions, respectively, are described. Bivariate hyper-
bolic distributions are outlined in Section 13.14, and finally skew-elliptical
distributions are discussed in Section 13.15.

13.2 Elliptically Contoured Bivariate Distributions:
Formulations

13.2.1 Formula of the Joint Density

If the probability density h(x, y) is a function only of a positive definite1

quadratic form
(x − μ)′Σ−1(x − μ), (13.1)

then its contours are ellipses; here, x′ = (x, y), μ=(μ1, μ2), and Σ is a non-
singular scaling matrix that is determined only up to a multiplicative con-
stant. Its role is like that of the covariance matrix and indeed, when the latter
exists, μ must be proportional to it; see Devlin et al. (1976) for details. More
explicitly, the joint density can be expressed as

h(x, y) = |Σ|−1/2gc

(
(x − μ)′Σ−1(x − μ)

)
, (13.2)

1 An n×n symmetric matrix A is positive definite if x′Ax > 0 for every nonzero x in Rn.
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where gc(·) is a scalar function referred to as the density generator.
In the special case where μ = 0 and Σ = I (the identity matrix), the dis-

tribution is called a spherically symmetric (or simply spherical) distribution.
If it is assumed that

Σ =
(

1 ρ
ρ 1

)

, −1 < ρ < 1, (13.3)

and μ = 0, (13.2) becomes

h(x, y) =
1

√
1 − ρ2

gc

(
x2 − 2ρxy + y2

1 − ρ2

)

, −1 < ρ < 1. (13.4)

13.2.2 Alternative Definition

If X has an elliptically contoured bivariate distribution defined in (13.2), it
can be written as

X = RLU(2) + μ, (13.5)

where R2 has the same distribution as (X − μ)′Σ−1(X − μ), X′ = (X,Y ),
Σ = LL′ (i.e., L is the lower triangular matrix of the Choleski decomposition
of Σ), and U(2) is uniformly distributed on the circumference of a unit circle;
see, for example, Cambanis et al. (1981) and Johnson et al. (1984). Further,
R is independent of U(2). The stochastic representation in (13.5) may serve
as an alternative definition of an elliptically contoured distribution.

Suppose Y has a spherical distribution. Then the stochastic representation
in (13.5) becomes

X = LY + μ, (13.6)

where L is the lower triangular matrix defined above.

13.2.3 Another Stochastic Representation

Abdous et al. (2005) suggested another stochastic representation for a bi-
variate elliptical vector. Let X and Y be a pair of random variables with
means μ2, μ2 and variances σ1, σ2, respectively. Then (X,Y ) has a bivariate
elliptical distribution if

(X,Y ) = (μ1, μ2) +
(
σ1RDU1, σ2ρRDU1 + σ2

√
1 − ρ2 R

√
1 −D2 U2

)
,

(13.7)
where U1, U2, R, and D are mutually independent random variables, ρ is
Pearson’s correlation coefficient, and Pr(Ui = −1) = Pr(Ui = −1) = 1/2,
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i = 1, 2. Both D and R are positive random variables and D has probability
density function

fD(d) =
2

π
√

1 − d2
, 0 < d < 1. (13.8)

The random variable R is called the generator of the elliptical random vector.
Abdous et al. (2005) explained the relationship between this representation
with the more classical representation given in (13.5).

Assuming now that X and Y are identically distributed with μ1 = μ2 = 0
and σ1 = σ2 = 1, the probability density functions of the generators of
some well-known bivariate elliptical distributions (see Section 13.5) are given
below.

Example 1. Bivariate Pearson Type VII Distribution

fR(x) =
2(N − 1)

m
x

(

1 +
x2

m

)−N

, x > 0, N > 1, m > 0.

When m = 1 and N = 3/2, we have the bivariate Cauchy distribution, and
when N = (m + 2)/2, we have the bivariate Student t-distribution.

Example 2. Bivariate Logistic Distribution

fR(x) = 4x
exp{−x2}

(1 + exp{−x2})2 , x > 0.

Example 3. Kotz-Type Distribution

fR(x) =
2s

r−N/sΓ(N/s)
x2N−1 exp{−rx2s}, x > 0, N, r, s > 0.

See Section 13.6.1 below for further information about this distribution.
When N = 1, s = 1, and r = 1/2, we have the bivariate normal

distribution.

13.2.4 Formula of the Cumulative Distribution

Naturally, because the only commonality among members of this class is the
ellipticity of their contours, there is no single closed form for the distribution
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function. Except for the bivariate normal, the distribution function H(x, y)
is difficult to evaluate in general.

13.2.5 Characteristic Function

The characteristic function ϕ depends only on a quadratic form t′Σt (assum-
ing μ = 0); see Kelker (1970) and Johnson (1987, p. 107). Here, t′ = (s, t).
In general, the characteristic function of an elliptical distribution is given by

ϕ(s, t) = eitμφ(t′Σt) (13.9)

for some scalar function φ, which is called the characteristic generator [Fang
et al. (1990, p. 32)]. Also,

ϕ(s, t) = eitμφ(s2 + 2ρst + t2) (13.10)

if Σ is as given in (13.3).
For spherical distributions, we have

ϕ(s, t) = φ(t′t) = φ(s2 + t2). (13.11)

For any elliptical distribution, the marginal characteristic function is given
by

ϕ(t) = φ(t2). (13.12)

13.2.6 Moments

We assume here, without loss of generality, that μ = 0. It follows from The-
orems 2.7 and 2.8 of Fang et al. (1990) that the moments associated with
(13.4) are

E(X) = E(Y ) = 0, var(X) = var(Y ) =
D1

2
, (13.13)

and

E(X2iY 2j) =
1
π
Di+jB

(
1
2

+ i,
1
2

+ j

)

, (13.14)

where i, j ≥ 1 are integers,

cov(X,Y ) =
D1ρ

2
,

and
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Di = π

∫ ∞

0

xigc(x)dx; (13.15)

see also Kotz and Nadarajah (2003).

13.2.7 Conditional Properties

The regression of Y on X is linear. The conditional variance, var(Y |X =
x), is independent of s if and only if X and Y have the bivariate normal
distribution; more generally,

var(Y |X = x) = a(x)σ2
2(1 − ρ2) (13.16)

for some function a(x), where σ2
2 is the variance of Y and ρ is the correlation

coefficient between X and Y .

13.2.8 Copulas of Bivariate Elliptical Distributions

Fang et al. (2002) have given a general expression for the copula of an el-
liptically symmetric bivariate distribution. Explicit expressions are obtained
for the Kotz type, bivariate Pearson type VII, bivariate Pearson type II, and
symmetric logistic distributions.

13.2.9 Correlation Coefficients

The Pearson product-moment correlation coefficient is ρ if the covariance
matrix exists. Fang et al. (2002) pointed out that Spearman’s correlation ρS

is somewhat complicated for elliptically contoured distributions. However,
they displayed that Kendall’s tau is quite simple and is given by

τ =
2
π

arcsin(ρ).

13.2.10 Fisher Information

The Fisher information matrices for elliptically symmetric Pearson type II
and type VII (bivariate Student t, bivariate Cauchy, etc.) distributions were
derived by Nadarajah (2006b). Extensive numerical tabulations of the Fisher
information matrices were also given for practical purposes.
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13.2.11 Local Dependence Functions

Bairamov et al. (2003) introduced a measure of local dependence that is a
localized version of the Galton correlation coefficient. Kotz and Nadarajah
(2003) provided a motivation for this new measure and derived the exact
form of the measure for the class of elliptically symmetric distributions.

13.3 Other Properties

• Any non-negative function κ(·) such that
∫∞
0

κ(x)dx < ∞ can define a
density generator gc for a bivariate elliptical distribution through

gc(x) =
κ(x)

π
∫∞
0

κ(y)dy
; (13.17)

see Fang et al. (1990, p. 47) and Kotz and Nadarajah (2001).
• All αX + βY with the same variance (if it exists) have the same

distribution.
• X and Y are independent if and only if Σ is diagonal and X and Y have

a bivariate normal distribution.
• Writing Σ as (cij), the correlation matrix (assuming it is defined) is given

by Σ/
√
c11c22.

• If X1 and X2 are members of this class having the same Σ and are inde-
pendent, then X1 + X2 is also a member of this class and has the same
Σ.

• On the plane R2, let Ai (i = 1, 2, 3, 4), be the ith quadrant and Lj (j =
1, . . . , 6) be the ray originating from the origin at an angle of (j − 1)π/3
from the positive directions of the x-axis. Let Bj (j = 1, . . . , 6) be the
region between Lj and Lj+1, where we use the convention L7 = L1. Then,
Nomakuchi and Sakata (1988) showed that, for μ = 0, the following two
statements are true:

(i) Pr(X ∈ Ai) = 1/4, i = 1, 2, 3, 4, if and only if Σ = diag{a, b}, where
a, b > 0.

(ii) Pr(X ∈ Bi) = 1/6, i = 1, . . . , 6, if and only if Σ = σ2I = σ2diag{1, 1}.
• h(x, y) can be represented as

∫ ∞

0

ψ(x; v)
dW

dv
dv, (13.18)

where dW
dv is a weight function (

∫
dw
dv dv = 1) that may assume negative

values and ψ is the density function corresponding to the bivariate dis-
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tribution N(μ, v−2Σ). For an interpretation of (13.18), see Section 13.4
below.

• Slepian’s inequality for the bivariate normal distribution (see Section 11.9)
also holds for this wider class; see, for example, Gordon (1987). Further
probability inequalities applicable to this class have been given by Tong
(1980, Section 4.3).

• When the variances of X and Y are equal, consider the probability over
the region x2

a2 + a2y2 ≤ 1 (which is an ellipse of area π). Shaked and
Tong (1988, pp. 338–339) showed that the maximum probability content
is contained when the rectangle becomes a square.

• For properties concerning the moments, see Berkane and Bentler (1986a,b,
1987).

• Suppose a distribution has a p.d.f. that is constant within the ellipse

1
1 − ρ2

[
(x− μ1)2

σ2
1

− 2ρ(x− μ1)(y − μ2)
σ1σ2

+
(y − μ2)2

σ2
2

]

= 4 (13.19)

and is zero outside. Then, this distribution has means μ1 and μ2, standard
deviations σ1 and σ2, and correlation ρ. This ellipse can, of course, be
constructed for any distribution with these moments, in which case it is
known as the ellipse of concentration. For generation of random variates
from such a distribution, see Devroye (1986, p. 567).

13.4 Elliptical Compound Bivariate
Normal Distributions

If W in (13.18) is the cumulative distribution function of a positive variable V ,
then we may say h is an elliptical compound bivariate normal distribution.2

Fang et al. (1990, p. 48) simply call it a mixture of normal distributions.
Obviously, the bivariate normal is itself a member of this class (take V to
be a positive constant); other members are longer-tailed [Devlin et al. (1976,
p. 369)].

It follows from (13.18) that a special property is that X = V −1Z+μ, where
Z ∼ N(0,Σ) and V and Z are independent. The question arises as to whether
every compound bivariate normal distribution is elliptically contoured. The
answer is no, as will be seen from the following:

• If Z ∼ N(0,Σ) and V is independent of Z, then it is clear that the density
of V −1Z is a function of a positive definite quadratic form, and hence it
is elliptically symmetric. For example, let V = S/

√
ν, where S has a chi-

distribution with ν degrees of freedom; then, (S/
√
ν)−1Z has a bivariate

t-distribution with ν degrees of freedom.

2 Some authors refer to it as a normal variance mixture.
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• Now, if N(μ,Σ), with μ �= 0, then

(S/
√
ν)−1Z = (S/

√
ν)−1(Z − μ) + μ(S/

√
ν)−1

which does not have a bivariate t-distribution, and it is not elliptically
symmetric since the second term destroys the symmetry.

13.5 Examples of Elliptically and Spherically Symmetric
Bivariate Distributions

Table 3.1 of Fang et al. (1990) lists several multivariate spherical distributions
together with their densities or characteristic functions. We now select some
of them for a brief discussion.

13.5.1 Bivariate Normal Distribution

The bivariate normal distribution plays the central part in the class of el-
liptically symmetric distributions. Many theoretical results for the bivariate
normal distribution also hold in this broader class.

13.5.2 Bivariate t-Distribution

This has already been discussed in Section 9.2. It is also a special case of the
bivariate Pearson type VII distribution.

13.5.3 Kotz-Type Distribution

We will discuss this bivariate distribution in Section 13.6 below with details.

13.5.4 Bivariate Cauchy Distribution

This is a special case of the bivariate Pearson type VII distribution; see
Section 9.9 for relevant details.
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13.5.5 Bivariate Pearson Type II Distribution

This has been discussed in Section 9.11. The special case ρ = 0 gives rise
to a spherically symmetric distribution whose marginals are symmetric beta
(Pearson type II) distributions.

13.5.6 Symmetric Logistic Distribution

The joint density function is

h(x, y) = c
exp−

{
x2 − 2ρxy + y2

}

√
1 − ρ2[1 + exp−{x2 − 2ρxy + y2}]2

. (13.20)

This is listed in Table 3.1 of Fang et al. (1990) and studied in Fang et al.
(2002). Clearly, it is elliptically symmetric. The density generator gc is pro-
portional to the density function of a univariate logistic.

13.5.7 Bivariate Laplace Distribution

h(x, y) =
1

16σ
|Σ|−1/2 exp

{

−1
2

[
(x − μ)

′
Σ−1(x − μ)

] 1
2
}

, (13.21)

where Σ is the correlation matrix [Ernst (1998) and Lindsey (1999)].

13.5.8 Bivariate Power Exponential Distributions

This family of elliptically contoured distributions was considered by Ernst
(1998), Gómez et al. (1998), and Lindsey (1999). This was also called the
bivariate generalized Laplace distribution by Ernst (1998).

Multivariate p.d.f.

h(x; μ, Σ, β) =
nΓ
(

n
2

)

σ
n
2
√

|Σ|Γ
(
1 + n

2β

)
21+ n

2β

× exp
{

−1
2

[
(x − μ)

′
Σ−1(x − μ)

]β
}

, (13.22)
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where Σ is the correlation matrix and β > 0. For n = 2, we have a bivariate
probability density function:

h(x, y) =
β

σΓ( 1
β )2

β+1
β

|Σ|−1/2 exp
{

−1
2

[
(x − μ)

′
Σ−1(x − μ)

]β
}

.

Marginal d.f.

f(x;μ, σ, β) =
1

σΓ
(
1 + 1

2β

)
21+ 1

2β

exp
[

−1
2

∣
∣
∣
x− μ

σ

∣
∣
∣
2β
]

,

−∞ < μ < ∞, 0 < σ, 0 < β ≤ ∞.

Special Cases

When β = 1, we have a bivariate normal distribution; when β = 1/2, a
bivariate Laplace distribution; and when β → ∞, a bivariate uniform distri-
bution. For β < 1, the distribution has heavier tails than the bivariate normal
distribution and can be useful in providing robustness against “outliers.”

Moments

Let X′ = (X,Y ). Then E(X) = μ and var(X) =
2

1
β Γ( 2

β )

2Γ( 1
β )

Σ.

13.6 Extremal Type Elliptical Distributions

The joint density function is

h(x, y) =
1

√
1 − ρ2

gc

(
x2 − 2ρxy + y2

1 − ρ2

)

, (13.23)

where gc is a density generator. Recall from (13.17) that

gc(x) =
κ(x)

2π
∫∞
0

κ(y)dy
,
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where κ(x) is one of the three types of univariate extreme-value distributions.
Kotz and Nadarajah (2001) obtained the following three extremal type ellip-
tical distributions.

13.6.1 Kotz-Type Elliptical Distribution

This is also called the Weibull-type elliptical distribution in Kotz and Nadara-
jah (2001). Since 1990, there has been a surge of interest related to this dis-
tribution. Nadarajah (2003) provided a comprehensive review of properties
and applications of this distribution. Let

κ(x) = xN−1 exp(−rxs), r > 0, s > 0, N > 0, (13.24)

which has the form of the type III (Weibull) extreme-value density function.
Now, it can be shown that

∫ ∞

0

κ(y)dy =
∫ ∞

0

yN−1 exp(rys)dy =
Γ(N/s)
srN/s

.

It follows from (13.17) that

gc(x) =
srN/sκ(x)
πΓ(N/s)

,

which results in the joint density as presented below.

Formula of the Joint Density

The joint density function is

h(x, y) =
srN/s(x2 − 2ρxy + y2)N−1

πΓ(N/s)(1 − ρ2)N−1/2
exp
{

−r
(x2 − 2ρxy + y2

1 − ρ2

)s
}

.

(13.25)
When N = 1, s = 1, and r = 1

2 , this reduces to a bivariate normal. When
s = 1, this is the original Kotz distribution introduced by Kotz (1975). The
joint density in (13.25) has been studied by Fang et al. (1990), Iyengar and
Tong (1989), Kotz and Ostrovskii (1994), and Streit (1991), among others.

Univariate Properties

Both the marginal p.d.f. and c.d.f. are infinite sums of hypergeometric
distributions.
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(i) N integer, s = 1:

f(x) =
rN−1/2x2(N−1) exp(−rx2)√

π

N−1∑

k=0

(2k)!
4k(N − k − 1)!(k!)2

r−kx−2k.

(ii) N integer, s = 1
2 :

f(x) =
(N − 1)!r2Nx2(N−1)

(2N − 1)!π

N−1∑

k=0

(2k)!
2k(N − k − 1)!(k!)2

r−kx−k+1Kk+1(r|x|),

where

Kν(z) =
zνΓ( 1

2 )
2νΓ(ν + 1

2 )

∫ ∞

1

exp(−zy)(y2 − 1)ν−1/2dy

is the Bessel function.
(iii) N = s = 1

2 :

f(x) =
r

π
K0(r|x|).

Moments

With

Di = ri/sΓ
(N

s
+

i

s

)/
Γ
(
N

s

)

, i a positive integer,

it follows from (13.13) that the moments of (13.24) are

E(X) = E(Y ) = 0, var(X) = var(Y ) =
r−1/s

2
Γ
(N

s
+

1
s

)/
Γ
(
N

s

)

,

cov(X,Y ) =
ρr−1/s

2
Γ
(N

s
+

1
s

)/
Γ
(
N

s

)

,

and, for i, j ≥ 1,

E(X2iY 2j) =
r−(i+j)/s

π
Γ
(N

s
+

i

s
+

j

s

)
B

(
1
2

+ i,
1
2

+ j

)/
Γ
(
N

s

)

.

The Product XY and the Ratio X/Y

The distribution of the product XY was derived by Nadaraja (2005). Nadara-
jah and Kotz (2005) derived the distribution of the product for the elliptically
symmetric Kotz-type distribution. The distributions of the ratio X/Y were
derived by Nadarajah (2006a).
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Marginal Characteristic Function

The marginal characteristic function turns out to be rather complicated; see
Kotz and Nadarajah (2001) for derivations and formulas.

13.6.2 Fréchet-Type Elliptical Distribution

In this case,

κ(x) = xN−1 exp(−rxs), r > 0, s < 0, N < 0,

and ∫ ∞

0

κ(y)dy =
∫ ∞

0

yN−1 exp(rys)dy = −Γ(N/s)
srN/s

,

so

gc(x) = − srN/s

πΓ(N/s)
κ(x).

This results in the joint density as presented below.

Formula of the Joint Density

The joint density function is

h(x, y) = −srN/s(x2 − 2ρxy + y2)N−1

πΓ(N/s)(1 − ρ2)N−1/2
exp
{

−r
(x2 − 2ρxy + y2

1 − ρ2

)s
}

.

(13.26)

Univariate Properties

Both the marginal p.d.f. and c.d.f. are quite complicated, which may be
expressed in terms of hypergeometric functions. The expression is simpler if
N is an integer.

(i) N an integer, s = −1:

f(x) =
r−2N |x|2N−1

2πΓ(−N)
B

(
1
2
,
1
2
−N

)

1F1

(
1
2
−N ; 1 −N ;−rx−2

)

.

(ii) N an integer, s = − 1
2 :
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f(x) =
r−2Nx2N−2

2πΓ(−2N)

{
B
(

1
2 −N, 1

2

)
|x|1F2

(
1
2 −N ; 1

2 , 1 −N ; r2x−2

4

)

−rB
(
1 −N, 1

2

)
1F2

(
1 −N ; 3

2 ,
3
2 −N ; r2x−2

4

)}
.

Moments

It can be shown that

Di = ri/sΓ
(
N

s
+

i

s

)/
Γ
(
N

s

)

,

provided i < −N . Thus, the moments associated with (13.26) are identical
to those in Section 13.6.1 except that we must have N < −1 in order for the
variance and covariance to exit, and we must have i + j < −N in order for
the product moment to exit.

Characteristic Function

The marginal characteristic function is quite complex, which can be expressed
through a special function called Meijer’s G function.

13.6.3 Gumbel-Type Elliptical Distribution

The Gumbel or type I extreme-value distribution has the form

κ(x) = exp(−ax) exp{−b exp(−ax)}, a > 0, b > 0.

Since ∫ ∞

0

κ(x) =
1 − exp(−b)

ab
,

the density generator

gc(x) =
abκ(x)

π
(
1 − exp(−b)

) ,

resulting in the following joint density function.

13.6.3.1 Formula of the Joint Density

The joint density function is
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h(x, y) =
ab(1 − ρ2)−1/2

π{1 − exp(−b)} exp
{

−a(x2 − 2ρxy + y2)
1 − ρ2

}

× exp
[

−b exp
{

−a(x2 − 2ρxy + y2)
1 − ρ2

}]

. (13.27)

When b = 0, this distribution reduces to a bivariate normal distribution.

Univariate Properties

The marginal density is

f(x) =
√
ab√

π{1 − exp(−b)}

∞∑

k=0

(−1)kbk exp{−(k + 1)ax2}
k!
√
k + 1

,

where Φ is the cumulative distribution function of the standard normal dis-
tribution, and

f(x) =
b

1 − exp(−b)

∞∑

k=0

(−1)kbk

(k + 1)!
Φ(
√

2(k + 1)x).

Moments

With

Di =
aibΓ(i + 1)
1 − exp(−b)

∞∑

k=0

(−1)kbk

k!(k + 1)i+1
,

it follows that

E(X) = E(Y ) = 0,

var(X) =
b

2a{1 − exp(−b)}

∞∑

k=0

(−1)kbk

k!(k + 1)i+1
,

cov(X,Y ) =
bρ

2a{1 − exp(−b)}

∞∑

k=0

(−1)kbk

k!(k + 1)i+1
,

and, for i, j ≥ 1,

E(X2iY 2j) =
bΓ(i + j + 1)

πai+j{1 − exp(−b)}B
(1

2
+ i,

1
2

+ j
) ∞∑

k=0

(−1)kbk

k!(k + 1)i+j+1
.
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The Characteristic Function

The characteristic function of the marginals is

ϕ(u) = φ(u2) =
b

1 − exp(−b)

∞∑

i=0

(−)kbk

(k + 1)!
exp
{

− u2

4(k + 1)a

}

.

13.7 Tests of Spherical and Elliptical Symmetry

Elliptical distributions are easily implemented and simulated [Johnson (1987)].
The problem of testing the hypothesis of symmetry of a multivariate dis-

tribution has been approached from various points of view. Serfling (2006)
gives a review of some of these approaches. Li et al. (1997) introduced some
graphical methods by proposing QQ-plots associated with various statistics
invariant under orthogonal rotations.

For statistical tests of elliptical symmetry, see, for example, Mardia (1970),
Beran (1979), Li et al. (1997), Manzotti et al. (2002), Schott (2002), and
Serfling (2006).

Fang and Liang (1999) gave a comprehensive review on tests of spherical
and elliptical symmetry.

13.8 Extreme Behavior of Bivariate
Elliptical Distributions

The extreme behavior of elliptically distributed random vectors is closely
related to the asymptotic behavior of its generator; see, for example, Hashorva
(2005). Starting with Sibuya (1960), many authors have studied the subject;
see, for example, Hult and Lindskog (2002), Schmidt (2002), Abdous et al.
(2005), Demarta and McNeil (2005), Hashorva (2005), and Asimit and Jones
(2007).

We note, in particular, that the limiting distribution of the componentwise
maxima of i.i.d. elliptical random vectors was discussed in detail by Hashorva
(2005) and Asimit and Jones (2007). The latter authors also presented, un-
der certain specified assumptions, the limiting upper copula and a bivariate
version of the classical peaks over a high threshold. The research in this area
has a potential importance for financial applications.
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13.9 Fields of Application

Other members of the class are used as alternatives to the normal when study-
ing the robustness of statistical tests. For instance, Devlin et al. (1976) used
them to obtain samples containing outliers and then compared the robustness
of two estimators of the correlation; viz., the product-moment correlation r
and the quadrant correlation rq. The latter is defined as rq = sin(πq/2),
where q = (n1 +n3 −n2 −n4)/n, ni being the number of observations in the
ith quadrant using the coordinatewise medians as the origin, and n =

∑
ni.

Devlin et al. found that r is not robust, while rq is quite robust.

13.10 Bivariate Symmetric Stable Distributions

13.10.1 Explanations

A univariate d.f. F is “stable” if, for every c1, c2, and positive b1, b2, there
exists c and (positive) b such that

F

(
x− c1
b1

)

∗ F
(
x− c2
b2

)

= F

(
x− c

b

)

, (13.28)

where ∗ denotes convolution.3 By analogy with the univariate case, a bivariate
distribution H is said to be stable if, for every b1 > 0, b2 > 0, and real c1, c2,
there exist b > 0 and c such that

H

(
x − c1

b1

)

∗H
(

x − c2

b2

)

= H

(
x − c
b

)

. (13.29)

X is said to be symmetric about a if X − a and −(X − a) have the same
distribution.

13.10.2 Characteristic Function

It has been shown by Press (1972a; 1972b, Chapter 6) that a bivariate stable
distribution, symmetric about a, and of order m has s characteristic function
ϕ such that

logϕ(t) = ia′t − 1
2

m∑

j=1

(t′Ωjt)α/2, (13.30)

3 F1∗F2 means
∫∞
−∞ F1(x−t)f2(t)dt (and is the same as F2∗F1, i.e.,

∫∞
−∞ F2(x−t)f1(t)dt).
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or equivalently

ϕ(t) = exp

⎧
⎨

⎩
ia′t − 1

2

m∑

j=1

(t′Ωjt)α/2

⎫
⎬

⎭
, 0 < α ≤ 2, (13.31)

where Ωj is a positive semidefinite matrix.4 It is assumed that no two of the
Ωj ’s are proportional and that Ω =

∑m
j=1 Ωj is positive definite. α is called

the characteristic exponent.
If m = 1, the distribution above is an elliptically symmetric bivariate

distribution. When α = 1, this gives the log characteristic function of the
bivariate Cauchy distribution. When α = 2, it becomes that of the bivariate
normal even if m �= 1.

13.10.3 Probability Densities

According to Galambos (1985), the only multivariate stable densities known
in a closed form, apart from the multivariate normal, are certain Cauchy
distributions.

13.10.4 Association Parameter

In bivariate stable distributions with α < 2, all second-order moments are
infinite, and hence the usual Pearson product-moment correlation coefficient
is undefined. We will see that the usual correlation coefficient can be extended
below.

13.10.5 Correlation Coefficients

Press (1972a) defined the association parameter ρ for (13.30) as follows. De-
note element ij of Ωk by ωij(k) (where i, j = 1, 2 and k = 1, 2, . . . ,m).
Then

ρ =
∑m

k=1 ω12(k)
[
∑m

k=1 ω11(k)
∑m

k=1 ω22(k)]1/2
. (13.32)

When α = 2, then Σ =
∑m

j=1 Ωj is the covariance matrix of the bivariate
normal distribution, and the defined parameter ρ becomes the ordinary cor-

4 An n × n symmetric matrix A is positive semidefinite if x′Ax ≥ 0 for every nonzero x
in Rn.
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relation coefficient. Press showed that ρ defined above satisfies −1 ≤ ρ ≤ 1
and that if X and Y are independent, then ρ = 0.

13.10.6 Remarks

• The marginals are symmetric stable distributions with characteristic ex-
ponent α. But a case of a stable distribution with a vector index—namely,
( 1
2 ,

1
4 )—arises as a special case of the inverse Gaussian/conditional inverse

Gaussian; see Barndorff-Nielsen (1983).
• Every linear combination of X and Y (i.e., aX + bY ) is symmetric stable

[Press (1972a)].
• The distribution is infinitely divisible.

A characterization has been given by Moothathu (1985). For another account
of this class of distributions, see Galambos (1985).

13.10.7 Application

Investment economists are concerned with optimal selection of a portfolio of
securities. A tradition has been formed in the statistical side of this work of
using symmetric stable (univariate) distributions, partly because of empirical
evidence and partly because of the theoretical properties of these distribu-
tions. Press (1972a; 1972b, Chapter 12) considered an investment portfolio
containing two assets whose price changes, X and Y , follow the bivariate
symmetric stable distribution in (13.30). Suppose the vector of proportions
of resources allocated to the variables-price assets is c′ = (c1, c2), so that the
return on this allocation of resources is Q = c1X + c2Y . It is clear from the
comments made in Section 13.10.6 above that Q is also symmetric stable.
Taking E(Q) = c′a, the log characteristic function for the return is given by

logϕQ(t) = it(c′a) − 1
2
|t|α

n∑

j=1

(c′Ωjc)α/2. (13.33)

The “risk” associated with the allocation is taken to be 1
2

∑m
j=1(c

′Ωjc). De-
fine the set of “efficient” portfolios as those for which it is not possible to
achieve a greater expected return without increasing risk. Press showed that
this set can be obtained as the solution to a programming problem with
objective function

λ(c′a) − 1
2

m∑

j=1

(c′Ωjc)α, 0 < λ < ∞. (13.34)
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That is, for some fixed, preassigned λ, maximize (13.34) with respect to c,
subject to ci ≥ 0 and c1 + c2 = 1. The attitude toward avoiding risk-taking
is what determines λ; see also Rao (1983).

13.11 Generalized Bivariate Symmetric
Stable Distributions

We consider a generalization of (13.30) by de Silva (1978, 1979).

13.11.1 Characteristic Functions

De Silva (1978, 1979) generalized (13.30) to a class of symmetric bivariate
stable distributions such that

logϕ(t) = ia′t − γ(t), (13.35)

or equivalently
ϕ(t) = exp {ia′t − γ(t)} , (13.36)

where

γ(t) =
m∑

j=1

(
r∑

k=1

|ckjs + dkjt|β
)α/β

, (13.37)

ckj and dkj being real constants, t′ = (s, t), and 0 < α < β ≤ 2. He showed
that, when β = 2 and r = 1, (13.35) is equivalent to (13.30). We consider
two special cases here.

13.11.2 de Silva and Griffith’s Class

Let us now consider a special case when β = 1, m = 1, r = 3. Suppose
c11 = λ1 > 0, d11 = 0; c21 = d21 = λ2 > 0, and c31 = λ3 > 0. Then, the
characteristic function ϕ (assuming a = 0) is

ϕ(s, t) = exp(−λα
1 |s|α − λα

2 |s + t|α − λα
3 |t|α. (13.38)

This particular class of bivariate symmetric stable distributions has been
considered by de Silva and Griffiths (1980). They showed that these can be
obtained by the trivariate reduction method (see Section 7.3.4).
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13.11.3 A Subclass of de Silva’s Stable Distribution

Consider a subclass of de Silva’s stable distribution (13.35) such that

logϕ(x, t) = −
m∑

j=1

(aj |s|β + bj |t|β + cj |s + δt|β)α/β , (13.39)

where aj , bj , and cj are non-negative constants, δ = ±1, and 0 < α < β ≤ 2.
De Silva (1978) defined an association parameter ρ∗ in the following manner.

Let U = eisX−ϕX(s)
[1+|ϕ(s)|2]1/2 and V = eisY −ϕX(t)

[1+|ϕ(t)|2]1/2 , where ϕX and ϕY are the
characteristic functions of X and Y . Define

ρ∗ = lim sup
s,t→0

E(ŪV )|, (13.40)

where Ū denotes the complex conjugate of U , and

E(ŪV ) =
ϕ(−s, t) − ϕX(s)ϕY (t)

[1 − |ϕX(s)|2]1/2[1 − |ϕX(t)|2]1/2
. (13.41)

De Silva (1978) has shown that ρ∗ =
∑m

j=1 Bj/2D, where D2 = [
∑m

j=1(aj +
cj)α/β

∑m
j=1(bj + cj)α/β ] and Bj = (aj + cj)α/β +(bj + cj)α/β − (aj + bj)α/β .

ρ∗ reduces to the ordinary correlation coefficient when this class of distri-
butions reduces to the bivariate normal.

Griffiths (1972) [see also de Silva (1978)] has proved that X and Y are
independent if and only if ρ∗ = 0.

A test of independence for the distribution (13.39), based on the empirical
characteristic function, has been discussed by de Silva and Griffiths (1980).

13.12 α-Symmetric Distribution

We say that (X,Y ) possesses an α-symmetric bivariate distribution if its
characteristic function can be expressed in the form

ϕ(s, t) = φ(|s|α + |t|α), (13.42)

where φ is a scalar function (known as a “primitive”).
For α = 2, the 2-symmetric bivariate distribution reduces to a bivariate

spherical distribution.
If φ(x) = e−λx, then (13.42) becomes a bivariate stable distribution with

independent marginals. Chapter 7 of the book by Fang et al. (1990) provide
a detailed discussion on this family of bivariate distributions.
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13.13 Other Symmetric Distributions

13.13.1 lp-Norm Symmetric Distributions

Fang and Fang (1988, 1989) introduced several families of multivariate l1-
norm symmetric distributions, which includes the i.i.d. sample from the expo-
nential as a particular case. A comprehensive treatment of these distributions
has been provided in Chapter 5 of Fang et al. (1990).

Yue and Ma (1995) introduced a family of multivariate lp-norm symmetric
distributions that is an extension of the families of l1-norm distributions. For
a bivariate lp-norm symmetric distribution, its probability density function
is given by

h(x, y) =
c

θ2p
xp−1yp−1gc

(
(xp + yp)1/p

θ

)

, (13.43)

where gc is a density generator and c is the normalizing constant.

Example

Hougaard (1987, 1989) introduced a bivariate Weibull distribution with sur-
vival function

H̄(x, y) = exp {−(ε1xp + ε2y
p)α} . (13.44)

Let α = 1/p and εi = θ−p, i = 1, 2; then, the distribution above becomes a
bivariate lp-norm symmetric distribution.

13.13.2 Bivariate Liouville Family

This family of bivariate distributions was discussed in Section 9.16. Chapter
6 of Fang et al. (1990) provides a thorough discussion on this subject.

13.13.3 Bivariate Linnik Distribution

Anderson (1992) defined a bivariate Linnik distribution through the joint
characteristic function

ϕ(s, t) =
1

1 + (
∑m

i=1 t′Ωit)
α
, 0 < α ≤ 2. (13.45)
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where Ωi’s are positive semidefinite matrices with no two Ωi’s proportional.
This distribution is also closed under geometric compounding. When m = 1,
it reduces to an elliptically contoured distribution.

13.14 Bivariate Hyperbolic Distribution

This is a bivariate distribution such that the contours of its probability
density are ellipses, and yet this is not a member of the family of ellipti-
cally symmetric bivariate distributions. This is because the ellipses are not
concentric like those of an elliptical distribution as defined earlier in Section
13.2.

13.14.1 Formula of the Joint Density

It is convenient to write the joint density function in multidimensional form
as

h(x, y) =
κ3eδκ

2πα(1 + δκ)
exp{−α[δ2 + (x − μ)′Δ−1(x − μ)]1/2 + β′(x − μ)}

(13.46)
for −∞ < x, y < ∞, where δ is a scalar parameter, μ and β are vector
parameters, Δ is a symmetric positive definite matrix parameter such that
|Δ| = 1, and κ = α− β′Δβ. In the bivariate case, it simplifies to

h(x, y) =
κ3eδκ

2πα(1 + δκ)
exp{−α[δ2 + (x− μ1)2δ22 − 2(x− μ1)(y − μ2)δ12

−(y − μ2)2δ11]1/2 + β1(x− μ1) + β2(y − μ2)}, (13.47)

where Δ =
(
δ11 δ12
δ21 δ22

)

and β=(β1, β2).

The graph of the log-density is a hyperboloid, which is the reason for the
name of this distribution.

13.14.2 Univariate Properties

The marginals are hyperbolic distributions; the p.d.f.’s take the same form
as (13.46), except the vectors and matrix become scalars.
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The mean and variance of the distribution are μ = bκδΔβ and cκδ =
Δβ′(Δβ) + bκδΔ, respectively, where bκδ = (δ2κ2 + 3δκ + 3)κ−2(1 + δκ)−1

and cκδ = (δ3κ3 + 6δ2κ2 + 12δκ + 6)κ−4(1 + δκ)−2.

13.14.3 Derivation

Suppose we have a bivariate normal distribution N(ξ, Σ) such that the mean
ξ and the covariance matrix Σ = σ2Δ are related by ξ = μ+σ2β. Here, Δ
is a symmetric positive definite matrix parameter such that the determinant
|Δ| = 1. Suppose σ2 has the generalized inverse Gaussian distribution with
p.d.f. given by

(κ/δ)λ

2Kλ(δκ)
x1/2 exp[−(δ2x−1 + κ2x)/2] (13.48)

for x > 0, with λ = 3/2 and Kλ being the modified Bessel function of the third
kind with index λ.5 The bivariate hyperbolic distribution is then obtained
by compounding (mixing) the bivariate normal with the generalized inverse
Gaussian. In other words, the bivariate hyperbolic distribution is a compound
distribution, with the bivariate normal being the compounded distribution
and the generalized inverse Gaussian being the compounding distribution.

13.14.4 References to Illustrations

Contours of probability density have been given by Blæsild and Jensen (1981)
and Blæsild (1981).

13.14.5 Remarks

• The key references for this distribution are Barndorff-Nielsen (1977, 1978)
and Blæsild (1981). Another account has also been given by Barndorff-
Nielsen and Blæsild (1983).

• Barndorff-Nielsen proposed using this distribution to represent a two-
dimensional Brownian motion with drift β, starting at μ, and observing
at a random time σ2.

• X and Y cannot be independent [Blæsild (1981, p. 254)]. But if δ12 and
one of the β’s are zero, then X and Y are uncorrelated.

• The bivariate hyperbolic distribution, a normal variance mean mixture,
has longer tails than the bivariate normal. (Recall from Section 13.4 that

5 It is related to the Iλ of Section 8.2 by Kλ(z) = π
2

I−λ(z)−Iλ(z) .

sin λπ
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a compound bivariate normal, which is a normal variance mixture with
β = 0, also has long tails.)

13.14.6 Fields of Application

Blæsild (1981) fitted this distribution (with one axis log-transformed) to
Johannsen’s data on the length and width of beans. There are some further
remarks in Blæsild and Jensen (1981).

The distribution in three dimensions arises theoretically in statistical
physics; see Blæsild and Jensen (1981).

13.15 Skew-Elliptical Distributions

Bivariate and multivariate skew-normal distributions were discussed in Chap-
ter 11. The distribution theory literature on this subject has grown rapidly in
recent years, and a number of extensions and alternative formulations have
been added. Obviously, there are many similar but not identical proposal
coexisting and with unclear connections between them. Recently, Arellano-
Valle and Azzalini (2006) have unified these families under a new general
formulation, at the same time clarifying their relationships.

Just like the case of skew-normal distributions, we can apply the skewness
mechanism to the bivariate t and other elliptical symmetric distributions.
There are two approaches to introducing skewness to elliptically symmetric
distributions:

(1) the approach introduced by Azzalini and Capitanio (1999) and
(2) the approach by Branco and Dey (2001).

A natural question arises as to how the two approaches are related. The
problem has been considered by Azzalini and Capitanio (2003), who found
that although a general coincidence could not be established, it is valid for
various important cases, notably the multivariate Pearson type II and type
VII families; the latter family is of special importance because it includes the
t-distribution.

Several other families of skew-elliptical distributions have been defined and
studied

• The family studied by Fang (2003, 2004, 2006) includes those of Azzalini
and Capitanio (1999) and Branco and Dey (2001).

• The family of Sahu et al. (2003), obtained by using transformation and
conditioning, coincides with those of Azzalini and Capitanio (1999) and
Branco and Dey (2001) only in the univariate case.
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• The generalized skew-elliptical distribution of Genton and Loperfido (2005)
includes the multivariate skew-normal, skew t, skew-Cauchy, and skew-
elliptical distributions as special cases.

• Arellano-Valle and Genton (2005) also introduced a general class of fun-
damental skew distributions.

• Ferreira and Steel (2007) considered a class of skewed multivariate dis-
tributions. The method is based on a general linear transformation of
a multidimensional random variable with independent components, each
with a skewed distribution.

Genton (2004) contains 20 chapters, contributed by many authors. This
book reviews the state-of-the-art advances in skew-elliptical distributions and
provides many new developments, bringing together theoretical results and
applications previously scattered throughout the literature. In the editor’s
words: “The main goal of this research area is to develop flexible parametric
classes of distributions beyond the classical normal distribution. The book
is divided into two parts. The first part discusses theory and inference for
skew-elliptical distribution, the second part presents applications and case
studies.”

13.15.1 Bivariate Skew-Normal Distributions

This was first studied by Azzalini and Dalla Valle (1996) and Azzalini and
Capitanio (1999) by adding an additional parameter that regulates skewness.
Consequently, the covariance matrix depends on the mean vector. The distri-
bution was subsequently studied by different authors with various extensions
and variants. For the unification of families of skew-normal distributions, see
Arellano-Valle and Azzalini (2006).

13.15.2 Bivariate Skew t-Distributions

There are various ways to skew a bivariate t-distribution. Branco and Dey
(2001) [see also Azzalini and Capitanio (2003)] constructed a bivariate skew t-
distribution in a similar fashion as for the bivariate skew-normal distribution,

h(x, y) = hT (x, y; ν)T1

(

α1x + α2y

(
ν + 2
Q + ν

)1/2

; ν + 2

)

, (13.49)

where Q = (x2−2ρxy+y2)/(1−ρ2), hT (x, y; ν) is the bivariate t-distribution,
and T1(x; ν+2) is the cumulative distribution function of the Student t with
ν + 2 degrees of freedom.
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For other bivariate skew t-distributions, see Jones and Faddy (2003), Sahu
et al. (2003), and Gupta (2003).

13.15.3 Bivariate Skew-Cauchy Distribution

Consider three independent standard Cauchy random variables W1,W2, and
U . Let W = (W1,W2). Arnold and Beaver (2000) constructed a basic bivari-
ate skew-Cauchy distribution by considering the conditional distribution of
W given λ0 + λ′

1W > U.

13.15.4 Asymmetric Bivariate Laplace Distribution

This is an asymmetric elliptical distribution introduced in Kotz et al. (2001,
Chapter 8). The distribution is given by the characteristic function

ϕ(s, t) =
[

1 − it′θ +
1
2
t′Σt

]−1

, (13.50)

where t = (s, t) and Σ is the covariance matrix for the symmetrical bivariate
Laplace distribution.

When θ = 0, it belongs to the elliptical family of distributions. The mean
vector and the covariance matrix are given, respectively, by θ and Σ+θθ′. The
covariance matrix depends on the mean vector, as was the case for the skew
normal distribution of the type considered in Azzalini and Dalla Valle (1996)
and Azzalini and Capitanio (1999). For estimation and testing of parameters
of (13.50), see Kollo and Srivastava (2004).

13.15.5 Applications

The second part of Genton (2004) presents applications and case studies
in areas such as biostatistics, finance, oceanography, environmental science,
and engineering. For an application to reliability, see Vilca-Labra and Leiva-
Sánchez (2006). The skew t-distribution is found to be a sensible parametric
distribution applicable for general-purpose robustness study [Azzalini and
Genton (2007)]. See also the applications reviewed by Kotz et al. (2001) and
Azzalini (2005).
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Chapter 14

Simulation of Bivariate Observations

14.1 Introduction

Devroye (1986) has provided an exhaustive treatment on the generation of
random variates. Gentle (2003) has also recently provided a state-of-the-art
treatise on random number generation and Monte Carlo methods. For this
reason, we provide here a brief review of this subject and refer readers to
these two references for a comprehensive treatment. In view of the impor-
tance of simulation as a tool while analyzing practical data using different
parametric statistical models as well as while examining the properties and
performance of estimators and hypothesis tests, we feel that it is very impor-
tant for a reader of this book to know at least some essential details about
the simulation of observations from a specified bivariate probability function.

We referred to published algorithms (some coded in a language such as
FORTRAN, while some are not coded) at several points in all the preceding
chapters, and here we present a concise review.

In Section 14.2, we detail some of the common approaches for simulation in
the univariate case, while in Section 14.3 simulation methods for some specific
univariate distributions are described. In Section 14.4, some available soft-
ware for simulation in the univariate case is listed. Some general approaches
for simulation in the bivariate case are presented in Section 14.5. In Sections
14.6 and 14.7, simulations from bivariate normal distributions and copulas
are detailed. Some methods of simulating observations from some specific
variate distributions with simple forms are described in Section 14.8. Sim-
ulations from bivariate exponential and bivariate gamma distributions are
explained in Sections 14.9 and 14.10, respectively. In Section 14.11, simula-
tion methods for conditionally specified bivariate distributions are detailed.
In Sections 14.12 and 14.13, simulation methods for elliptically contoured bi-
variate distributions and bivariate extreme-value distributions are presented.
In Sections 14.14 and 14.15, generation of bivariate and multivariate skewed
distributions and generation methods for bivariate distributions with given
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marginals are described. Finally, in Section 14.16, simulaton of bivariate dis-
tributions with specified correlations is presented.

14.2 Common Approaches in the Univariate Case

14.2.1 Introduction

Our starting point is that we assume we can easily and efficiently generate
independent uniform random numbers on a computer; see, for example, Co-
hen (1986). We then wish to use these in some way to obtain random variates
with specific distributional properties of interest.

Valuable references include Bratley et al. (1983, Chapter 5), Devroye
(1981, 1986, especially Chapters VII–IX), Fishman (1978, Chapters 8 and
9), Hoaglin (1983), Kennedy and Gentle (1980, Chapter 6), Knuth (1981, es-
pecially Section 3.4.1), Law and Kelton (1982), Leemis and Schmeiser (1985),
Morgan (1984, Chapters 4 and 5), Ripley (1983, 1987, Section 3.4), and
Rubinstein (1981, Chapter 3).

We will describe here the following common approaches for generating
univariate random variates:

• Inverse probability integral transform.
• Composition.
• Acceptance/rejection.
• Ratio of uniform variates.
• Transformation.
• Markov Chain Monte Carlo—MCMC.

We note that the best method of random variate generation for a given
distribution may depend on the value of some parameter of that distribution,
such as its shape parameter. In fact, there are many other things that may
affect which method is the “best” one, including the number of variates to be
generated, the availability of its generator or otherwise of fast generators for
some related distribution; whether the algorithm is to be coded in a high or
low language, the criteria that we use to make the assessment, such as speed,
portability, or simplicity; and so on.

The notation U(a, b) is used to denote the uniform variate over [a, b]. Some-
times U(a, b) will be written simply as U if it does not cause any confusion,
and sometimes a subscript will be affixed to denote the first, second, etc.; as
usual, u will be used for a particular value of U .
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14.2.2 Inverse Probability Integral Transform

The use of the inverse of the cumulative distribution function is of wide
applicability in simulation algorithms; in principle, it can be used whenever
the distribution function is known.1 It is based on the following well-known
result. If X has a continuous distribution function F , then U = F (X) is
distributed with uniform density over [0, 1]; conversely,2 X = F−1(U) has
distribution function F (x). We can then express the method simply as follows:

1. Generate u from U .
2. Set x = F−1(u), or the modified expression2 if F−1 does not exist uniquely.

For discrete distributions, this method is easy to apply, but straightforward
application to continuous distributions is limited to variates having F−1 in a
simple closed-form. For example, we can obtain exponential distribution from
the transformation X = − log(1 − U) or X = − logU . For other members
of the gamma family, i.e., for arbitrary shape parameter, this approach is
inefficient since the evaluation of F−1 must be done iteratively.3

We note that, according to Hoaglin (1983), this method is generally
slower than other, seemingly more complicated, methods. However, Schmeiser
(1980) has given three reasons for its use: easy generation of order statis-
tics, easy generation from truncated distribution, and easy implementation
of “variance reduction” technique in simulation models.

If only the density f is known explicitly, and not the distribution func-
tion. F , then the additional step of numerical integration becomes an added
burden. The work of Ulrich and Watson (1987) is directed towards this issue.

14.2.3 Composition

The mixture method or composition technique is based on representing the
density f from which variates are to be generated as f(x) =

∑n
i=1 pifi(x),

where
∑n

i=1 pi = 1. The mixture algorithm then simply generates variates
from each fi with probability pi; see Peterson and Kronmal (1982, 1985) for
a detailed discussion on this method.
1 There are times when the distribution is defined through the characteristic function ϕ and
it is difficult or impossible to get F directly. In this situation, with some conditions about the
integrability and continuity of ϕ and its first two derivatives, one may generate uniform variates
by means of the acceptance/rejection method of Section 14.2.4 [Devroye (1986, pp. 695–716)].
Similarly, sometimes only a sequence of moments or Fourier coefficients may be known; see
Devroye (1989).
2 If F is not continuous or not strictly increasing (or both), then the inverse does not exist. In
this case, the definition X = inf{x : F (x) ≥ U} becomes useful, which simply means that x
assumes the infimum (or smallest value) for which F (x) is at least u.
3 There are popular algorithms for numerical inversion if this should be needed to obtain F−1(u),
such as the bisection method, the secant method, and the Newton–Raphson method; see Devroye
(1986, pp. 32–33).
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Composition must not be confused with convolution. The linear combina-
tion of random variables such as X =

∑n
i=1 aiXi is a convolution and one

can easily produce such an r.v. X directly from the Xi’s; but, this is quite
different from the composition construction.

14.2.4 Acceptance/Rejection

The acceptance/rejection method4 has been a useful approach for develop-
ing new algorithms for generating univariate observations; see Tadikamalla
(1978a). The basic idea of this method is to generate a variate from a den-
sity function that somewhat resembles the desired density function f . First,
select a function t such that t(x) ≥ f(x) for all values of x, and t is called a
dominating or majorizing function. Let g(x) = t(x)/c, where c =

∫∞
−∞ t(x)dx,

so that g becomes a probability density function.
The algorithm works as follows:

1. Generate x from the density function g(x).
2. Generate u from U .
3. If u ≤ f(x)/t(x), accept x; otherwise go to Step 1.

The number c is then the number of “trials” (or iterations) until an ac-
ceptance. The value 1/c is generally referred to as the “efficiency” of the
procedure. The factors to be considered in selecting the density g are:

• Step 1 of the algorithm should be executed quickly.
• c should be close to 1.
• The acceptance/rejection test should be simple; i.e., f(x)/t(x) should be

easy to evaluate.

Kronmal et al. (1978) and Kronmal and Peterson (1979) proposed what they
called the alias-rejection-mixture method. It is based on two methods: (i)
Walker’s (1974a,b) alias method and (ii) the rejection-mixture method, which
is a combination of the mixture and acceptance/rejection methods. Kronmal
and Peterson (1984) have also proposed an acceptance-complement method.

14.2.5 Ratio of Uniform Variates

For a density f , if (U, V ) is uniformly distributed over the region 0 ≤ u ≤√
f(v/u), then X = V/U has the desired density f ; see Kinderman and

Monahan (1977), Hoaglin (1983), and Devroye (1986, Section IV.7).

4 Referred to in the literature sometimes as simply the rejection method.
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14.2.6 Transformations

Many methods for simulating observations are based on first generating some
intermediate nonuniform random variates Y1, Y2, . . . , Yn, and then setting
X = T (Y1, Y2, . . . , Yn).

Among the transformations of a single variate (i.e., n = 1), familiar ex-
amples include nonstandard normal variates by X = μ+ σZ, where Z is the
standard normal variate; U(a, b) by X = a+(b−a)U ; and lognormal variates
by X = exp(Y ), where Y is the appropriate normal variate.

As for generating one random variate from two or more nonuniform vari-
ates, some well-known examples include gamma variates (having an integer
shape parameter k) as the sum of k exponential variates, beta variates as
a ratio of gammas, t from the standard normal and chi-squared variates, F
from chi-squared variates, chi-squared variates from the normal, and so on.

14.2.7 Markov Chain Monte Carlo—MCMC

There are various ways of using a Markov chain to generate random variates
from some distribution related to the chain. Such methods are called Markov
Chain Monte Carlo or simply MCMC.

The Markov chain Monte Carlo method has become one of the most impor-
tant tools in recent years, particularly in Bayesian analysis and simulation.
An algorithm based on a stationary distribution of a Markov chain is an
iterative method because a sequence of operations must be performed until
they converge. The stationary distribution is chosen to correspond to the
distribution of interest (called the target distribution).

The techniques for generating random numbers based on Markov chains
are generally known as “samplers.”

Two prominent samplers are (i) the Metropolis–Hastings and (ii) the Gibbs
samplers. These algorithms are obtained in Sections 4.10 and 4.11 of Gentle
(2003). There are several variations of the basic Metropolis–Hastings algo-
rithm as well; see Gentle (2003, pp. 143–146) for pertinent details. Gentle
(2003, pp. 157–158) has also described another method, called the hit-and-
run sampler.

The Markov chain samplers generally require a “burn-in” period (that is, a
number of iterations before a stationary distribution is achieved). In practice,
the variates generated during the burn-in periods are therefore discarded.
The number of iterations needed varies with the distribution and can be
quite large sometimes, even in the thousands. We also note that a sequence
of observations generated by a sampler is autocorrelated, and thus variance
estimation must be performed with care since the estimated variance may
be biased. The method of batch means [see Section 7.4 of Gentle (2003)] or
some other method that accounts for autocorrelation should be used.
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A computer program known as BUGS (Bayesian Inference Using Gibbs
Sampling) designed for MCMC methods is widely used in this regard. Infor-
mation on BUGS can be obtained at the site

http://www.mrc-bsu.cam.ac.uk/bugs/

14.3 Simulation from Some Specific
Univariate Distributions

14.3.1 Normal Distribution

A well-known exact method for generating normal variates is that of Box and
Muller (1958). It gives two independent standard normal variates X1 and X2,
X1 = R sinα and X2 = R cosα, where R =

√
−2 log(U1) and α = 2πU2. A

change of variables argument demonstrates the validity of this algorithm.
Alternatively, observe that (R,α) are the polar coordinates of (X1, X2). Let
X1 and X2 be two independent standard normal variates. Then, their density
is symmetric about the origin. So, α is uniform over (0, 2π), and R2 = X2

1+X2
2

has a chi-squared distribution with two degrees of freedom, which is the
exponential distribution with mean 2.

A modified polar method, due to Marsaglia and Bray (1964), avoids the
use of trigonometric functions. From variates V1 and V2 that are uniformly
distributed over [−1, 1], W = V 2

1 + V 2
2 is calculated. If W > 1, the pair

(V1, V2) is rejected. With an acceptable pair, we then calculate the normal
variates as

X =
(
−2 logW

W

)1/2

V1, Y =
(
−2 logW

W

)1/2

V2. (14.1)

Subsequent algorithms have been primarily based on the composition
and acceptance/rejection techniques. One example is the rectangle-wedge-
tail method of Marsaglia et al. (1964); for example, the normal distribution
is seen as made up from rectangles, wedges between rectangles and the true
density, and tails.

Schmeiser (1980) has provided a detailed list of references; see also Devroye
(1986, especially Section IX.1), Rubinstein (1981, Section 3.6.4), and Ripley
(1987, especially pp. 82–87). FORTRAN codes for the Box and Muller (1958)
and Ahrens and Dieter (1972) methods are given in Bratley et al. (1983, p.
297 and p. 318). There are two FORTRAN programs in Best (1978b). A
comparison of the algorithms made by Kinderman and Ramage (1976) is
noteworthy in this regard for paying attention to user-oriented features such
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as machine independence, brevity, and implementation in high-level language
rather than being confined to speed and accuracy.5

14.3.2 Gamma Distribution

It is sufficient to generate random variates from the standard gamma distri-
bution with density

f(x) = xα−1 exp(−x)/Γ(α), x ≥ 0; (14.2)

if the scale parameter is other than 1 and/or the lower end of the distribution
is other than 0, a linear transformation can be applied easily.

For the case α = 1 (exponential variates), as mentioned earlier, the usual
method is the inverse transformation x = − log(u). For other methods, see
Schmeiser (1980, pp. 84–85).

For the case α = K an integer (Erlang variates), the variates may be
generated as x = − log(

∏k
i=1 ui); however, the execution time grows linearly

with k.
According to Schmeiser (1980), the easiest exact method for generating a

gamma variate for any α > 0 is due to Jöhnk (1964). However, this is based on
the method for Erlang variates and so has the same disadvantage. Since the
mid-1970s, many algorithms have been developed. Among them are those
of Ahrens and Dieter (1974), Atkinson and Pearce (1976), Cheng (1977),
Best (1978a,b), Tadikamalla (1978a,b), Tadikamalla and Johnson (1978), and
Schmeiser and Lal (1980). Most of these algorithms are listed in Fishman
(1978, pp. 422–429). For extensive surveys on generating gamma variates,
see Schmeiser (1980) and Ripley (1987, pp. 88–90). FORTRAN listings of
some leading algorithms are given in the second of these,6 and there are
several in Văduva (1977) and two more in Bratley et al. (1983, pp. 312–313).
Other works in this direction include those of Barbu (1987), Monahan (1987),
and Minh (1988).

5 In passing, we note that Kinderman and Ramage stated, “The algorithms discussed in this
paper were coded in as comparable manner as the authors could manage... We have experimented
with several versions of the coding.” This throws light on something that concerned us from time
to time: How can we know that a purported comparison of algorithms really is that, rather than
a comparison of their coding? The tone of the quotation above suggests there is not—or was not
in the mid-1970s—any great science in the step from algorithm to FORTRAN code.
6 Minh (1988) notes a couple of misprints in the algorithm G4PE.



630 14 Simulation of Bivariate Observations

14.3.3 Beta Distribution

We may obtain beta variates as X = W/(W+Y ), where W and Y are gamma
variates with shape parameters a and b, respectively.

A method due to Jöhnk (1964) uses the relationship between beta and
uniform variates. Set Y = U

1/a
1 , Z = U

1/b
2 . If Y + Z ≤ 1, calculate X =

Y/(Y +Z). Then, X has a beta distribution with parameters a and b. Several
other methods are discussed in the references cited in Section 14.2.1.

Unfortunately, the execution time for Jöhnk’s algorithm grows indefinitely
with increasing a and/or b because U

1/a
1 + U

1/b
2 will end up being greater

than 1. Cheng (1978) described an algorithm, denoted by BB, whose execu-
tion time becomes constant as a or b increases. It involves using the accep-
tance/rejection method to generate an observation from the beta distribution
of the second kind. According to Schmeiser (1980), algorithm B4PE devel-
oped in Schmeiser and Babu (1980) executes in about half the time of BB, but
the setup time is longer and it requires more lines of code. Cheng’s method
is coded in FORTRAN in Bratley et al. (1983, p. 295). Algorithms devised
by Sakasegawa (1983) have been shown by that author to be very fast in
execution, albeit with considerable setup time (as with B4PE).

A s stated by Devroye (1986, p. 433), “The bottom line is that the choice
of a method depends upon the user: if he is not willing to invest a lot of time,
he should use the ratio of gamma variates. If he does not mind coding short
programs, and a and/or b vary frequently, one of the rejection methods based
upon analysis of beta density or upon universal inequalities can be used. The
method of Cheng is very robust. For special cases, such as symmetric beta
densities, rejection from the normal density is very competitive. If the user
does not foresee frequent changes in a and b, a strip table method or the
algorithm of Schmeiser and Babu (1980) are recommended. Finally, when
both parameters are smaller than one, it is possible to use rejection from
polynomial densities or to apply Jöhnk method.”

14.3.4 t-Distribution

Random variates from the t-distribution with ν degrees of freedom may be
generated by the transformation method as the ratio of a normal variate and
the square root of an independent gamma variate having shape parameter
α = ν/2 divided by α. For other methods, see Devroye (1986, pp. 445–454).

Best (1978b) showed that the tν-variate can be generated by the accep-
tance/rejection method. The density function of tν for ν ≥ 3 is dominated by
a multiple of density t3. Hence, the algorithm involves the following steps: (i)
generating a t3 variate by a ratio-of-uniform method, for which one may refer
to Section 14.2.5 and Devroye (1986, pp. 194–203), and (ii) generating t3 (for
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ν > 3) by the acceptance/rejection method based on t3. Best (1978b) has
provided a FORTRAN program, and this algorithm has been summarized
and slightly modified by Devroye (1986, pp. 449–451). Several other diverse
methods have been listed by Hoaglin (1983).

14.3.5 Weibull Distribution

The Weibull distribution with parameters α > 0 and β > 0 has probability
density function

f(x) =
α

β
xα−1e−xα/β , 0 ≤ x < ∞. (14.3)

The simple inverse probability integral transform method applied to the stan-
dard Weibull distribution (i.e., β = 1) is quite efficient. The formula is sim-
ply x = (− log u)

1
α . Of course, an acceptance/rejection method could also

be used to avoid the evaluation of the logarithmic function. The standard
Weibull variate is finally scaled by β1/α to obtain variates from (14.3).

14.3.6 Some Other Distributions

Tadikamalla (1984) has discussed the simulation from normal, gamma, beta,
and t-distributions, as well as the inverse Gaussian and exponential power
distributions, and has given references for the stable distribution and some
others. Section IX.2 of Devroye (1986) is on the exponential distribution,
Section IX.3 on the gamma distributions, Section IX.6 on stable densities,
and Section IX.7.5 on the generalized inverse Gaussian distributions. There
is a FORTRAN routine in Bratley et al. (1983, pp. 314–315) for generating
a stable variate. For “phase-type” distributions, one may refer to Neuts and
Pagano (1981).

14.4 Software for Random Number Generation

Chapter 4 of Gentle (2003) has listed software for random number generation.
Monte Carlo simulation often involves many hours of computer time, and so
computational efficiency is very important in software for random number
generation.

Implementing one of the simple methods to convert a uniform variate
to that of another distribution may not be as efficient as a special method
specifically oriented toward the target distribution. The IMSL Libraries and
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S-Plus have a number of modules that use efficient methods to generate
variates from several common distributions.

14.4.1 Random Number Generation in IMSL Libraries

The well-known IMSL Libraries contain a large number of routines to gen-
erate random variates from many continuous univariate distributions7 and
multivariate normal distribution. All the IMSL routines for random number
generation are available in both the FORTRAN and C programming lan-
guages. Morgan (1984, Appendix 1) has described the programs more fully.
Lewis (1980) and Gentle (1986) have discussed the use of IMSL in simula-
tion and statistical analysis. A package by Lewis et al. (1986) [reviewed by
Burn (1987)] includes routines for generating random variates from normal,
Laplace, Cauchy, gamma, Pareto, and beta distributions.

14.4.2 Random Number Generation in S-Plus and R

The software system S was developed at Bell Laboratories in the mid-1970s
and has evolved considerably since the early versions. S is both a data analysis
system and an object-oriented programming language.

S-Plus is an enhancement of S developed by StatSci, Inc. (now a part of In-
sightful Corporation). The enhancements made include graphical interfaces,
more statistical analysis functionality, and support.

There is a freely available package, called R, that provides generally the
same functionality in the same language as S; see Gentleman and Ihaka
(1997). The R programming system is available at the site

http:/www.r-project.org/

Like the IMSL Libraries, S-Plus and R have a number of modules that use
efficient methods to generate variates from several common distributions as
listed in Table 8.2 of Gentle (2003). It is also pointed out there that S-Plus
and R do not use the same random number generators.

14.5 General Approaches in the Bivariate Case

7 Beta, Cauchy, chi-squared, exponential mixture, F , gamma, inverted beta, logistic, lognormal,
normal, stable, t, triangular, and Weibull variates can be obtained from IMSL or NAG or both
of these libraries.
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14.5.1 Setting

We shall now turn our attention to the random number generation of variates
from bivariate continuous distributions. Much of our discussion applies to the
multivariate case as well.

To establish a framework for specific generation algorithms detailed be-
low in Sections 14.6–14.15, we will first describe two general methods—the
conditional distribution and transformation techniques. The usual context
for application of the former is where the conditional distribution function
is explicitly known, while the latter does not need this and is usually met in
the trivariate reduction context.

The acceptance/rejection method, which is used extensively in the univari-
ate situation, is not discussed in detail in this section. Although, in principle,
the method applies to multivariate situations, practical difficulties have stifled
its use. According to Johnson et al. (1984), these difficulties include

• a lack of suitable dominating functions,
• complications in optimizing the choice of parameters in the dominating

function, and
• low efficiencies.

For a discussion of these difficulties and an idea about how to overcome them,
see Johnson (1987, pp. 46–48).

As in the univariate situation, the composition (or probability mixing)
method is also used to generate bivariate random vectors. Schmeiser and Lal
(1982) have used this method to generate bivariate gamma random variables.

In what follows, we shall use (X1, X2), rather than (X,Y ), to denote the
pair of variates that we wish to generate.

14.5.2 Conditional Distribution Method

This idea, usually attributed to Rosenblatt (1952), is as follows:

1. Generate x1 from the marginal distribution of X1.
2. Generate x2 from the conditional distribution of X2, given X1 = x1.

The suitability of this method for a given bivariate distribution depends on
there being an efficient method for generating from the required univariate
distributions.

One might ask which variate ought to be X1 and which one should be X2.
Rubinstein (1981, p. 61) has stated bluntly, “Unfortunately, there is no way
to find a priori the optimal order of representing the variates in the vector to
minimize the CPU time.”
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14.5.3 Transformation Method

This method is best presented in the multivariate context. The idea is that
we let X = (X1, X2, . . . , Xp)′ be the p-dimensional random vector that we
want, whose distribution may be difficult to generate directly, and we let
Y = (Y1, Y2, . . . , Yq)′ be a q-dimensional (q ≥ p) random vector having a
distribution that is easier to generate from. Then, if there exists a function
a(Y) =(a1(Y), . . . , ap(Y)) such that a(Y) has the same distribution as X, we
can get a random realization of X by first generating Y and then evaluating
a(Y).

This method is most appealing when the specific transformation is already
available. For some distributions, this is indeed the case.8 However, for some
arbitrary multivariate density h(x), it is seldom obvious what transformation
of what vectors (that are themselves easy to generate) will give rise to X.
The following advice [Johnson et al. (1984) and Johnson (1987, p. 46)] may
help:

• Carry out a thorough search of the literature for an appropriate con-
struction scheme. Rarely does a distribution emerge from a vacuum; usu-
ally there is some derivation, possibly by compounding, convolution, or
transformation.

• Attempt (invertible) transformation of X. Is there a recognizable result?
Start with a component transformation (and compare the resulting ex-
pression with known bivariate uniform distributions) or a transformation
to exponential marginals (and compare the result with known bivariate
exponential distributions).

• Perhaps h can be recognized as a mixture (viz., ph1 + (1 − p)h2, with h1

and h2 being well known).
• Check if the p.d.f. can be written as a function of the quadratic form

ax2
1 + bx1x2 + cx2. Then, generation of random variates is easy, as the

distribution would then belong to the elliptical class discussed in Chapter
13.

14.5.4 Gibbs’ Method

The Gibbs sampler is one of the MCMC methods. It also uses the condi-
tional distribution approach. Suppose X and Y have a joint density h(x, y)
and conditional densities f(x|y) and g(y|x). Let Xi (Yi) be a sequence of
observations from X (Y ). Then, observations on X and Y can be generated
as a Markov chain with elements having densities

8 For example, we need to look no further than bivariate t, which can be obtained as Xi =

Zi/
√

W/ν for (i = 1, 2), where (Z1, Z2) has a standardized bivariate normal distribution, and
W , independent of the Z’s, has a chi-squared distribution with ν degrees of freedom.
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g(yi|xi−1), f(xi|yi), g(yi+1|xi), f(xi+1|yi+1), . . . .

For multivariate distributions, Gibbs’ algorithm may be given by the fol-
lowing steps [see Algorithm 4.20 of Gentle (2003)].

Algorithm

0. Set k = 0.
1. Choose x(k) ∈ S ⊆ Rp.
2. Generate x

(k+1)
1 conditionally on x

(k)
2 , x

(k)
3 , . . . , x

(k)
p .

Generate x
(k+1)
2 conditionally on x

(k+1)
1 , x

(k)
3 , . . . , x

(k)
p .

...
Generate x

(k+1)
p−1 conditionally on x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k)
p .

Generate x
(k+1)
p conditionally on x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
p−1 .

3. If convergence has occurred, then deliver x = x(k+1); otherwise, set k =
k + 1 and go to Step 2.

Casella and George (1992) have presented a simple proof that this iterative
algorithm converges, but to determine whether the convergence has occurred
or not is not a simple matter.

Another type of Metropolis method is the “hit-and-run” sampler. In this
method, all components of the vector are updated at once. The method has
been presented in Algorithm 4.21 of Gentle (2003) in its general version as
described by Chen and Schmeiser (1996).

14.5.5 Methods Reflecting the
Distribution’s Construction

Some bivariate distributions are more easily thought of in terms of how they
are constructed rather than in terms of a formula for a c.d.f. or p.d.f. It may
happen in such cases that the method of construction can be directly adapted
to random variate generations, as in the case of a trivariate reduction or other
form of transformation.

14.6 Bivariate Normal Distribution

The conditional distribution and transformation methods for generating bi-
variate and multivariate normal random variates have been available for some
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time now; see, for example, Scheuer and Stoller (1962) and Hurst and Knop
(1972).

Let (X1, X2)′ denote the bivariate normal vector with covariance matrix
Σ. Define

Y1 = (X1 − μ1)/σ1,

Y2 =
(X2 − μ2) − σ2

σ1
(X1 − μ1)ρ

σ2(1 − ρ2)1/2
. (14.4)

Then, Y1 and Y2 are two independent standard normal variables, and we can
now express

X1 = σ1Y1 + μ1,

X2 = σ2ρY1 + σ2(1 − ρ2)1/2Y1 + μ2. (14.5)

Univariate standard generators are widely available for this purpose; see Sec-
tion 14.3.1.

More generally, let X∼ N(μ,Σ), i.e., X is a p-dimensional multivariate
normal random vector with mean vector μ and covariance matrix Σ. Let
L be the lower triangular matrix of the Choleski decomposition of Σ, i.e.,
a matrix such that Σ = LL′. (Routines for computing L are available in
many computer software packages.) Given p independent univariate standard
variates, Y′=(Y1, . . . , Yp), transform them via

X = LY + μ (14.6)

to achieve Np(μ,Σ) distribution.
In two or three dimensions, L can be expressed easily. For example, if

Σ =

⎛

⎝
σ2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

⎞

⎠ ,

we have

L

=

⎛

⎜
⎝

σ1 0 0
σ2ρ12 σ2(1 − ρ2

12)
1/2 0

σ3ρ13
σ3(ρ23−ρ12ρ13)

(1−ρ2
12)

1/2 σ3[(1 − ρ2
12)(1 − ρ2

13) − (ρ23 − ρ12ρ13)2]1/2

⎞

⎟
⎠ .

(14.7)

For the bivariate case, simply delete the third row and column of L in (14.7).
The conditional distribution method is almost the same. In the first term

in (14.4), we would write (X1 − μ1)/σ1 and then the distribution of X2

conditional upon the known value of X1.
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The trivariate reduction method is also simple, albeit at the expense of
using three independent normal variates for the pair (X1, X2) generated.

A FORTRAN program that includes the Choleski decomposition proce-
dure has been published by Bedall and Zimmermann (1976). Routines for
generating vectors from multivariate normal distribution are in both the
IMSL and NAG collections (see Section 14.4.1 above). A routine for the
bivariate normal is present in STATLIB [Brelsford and Relies (1981, p. 375)].
Ghosh and Kulatilake (1987) have published a FORTRAN program listing
to generate random variates from the multivariate normal distribution. An
APL listing for the bivariate case has been given by Bouver and Bargmann
(1981).

For more details, interested readers may refer to Devroye (1986, Section
XI.2), Gentle (2003, pp. 197–198), Johnson (1987, pp. 52–54), Kennedy and
Gentle (1980, Section 6.5.9), Ripley (1987, pp. 98–99), Rubinstein (1981,
Section 3.5.3), and Vǎduva (1985).

14.7 Simulation of Copulas

Section 4.10 of Drouet-Mari and Kotz (2001) presents simulation procedures
for copulas. This section has been subdivided into the following cases:

• The general cases.
• The Archimedean copulas.
• Archimax distributions.
• Marshall and Olkin’s mixture of distributions.
• Three-dimensional copulas with truncation invariance.

The first two items were described in Section 1.13.
Using a copula, a data analyst can construct a bivariate (multivariate)

distribution by specifying marginal univariate distributions and choosing a
particular copula to provide a correlation structure between variables.

Yan (2007) presented the design, features, and some implementation
details of the R package copula, which contains codes to generate com-
monly used copulas, including the elliptical, Archimedean, extreme value,
and Farlie–Gumbel–Morgenstern families.
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14.8 Simulating Bivariate Distributions with
Simple Forms

14.8.1 Bivariate Beta Distribution

Recall that the bivariate beta distribution has a density given by

h(x1, x2) =
Γ(θ1 + θ2 + θ3)
Γ(θ1)Γ(θ2)Γ(θ3)

xθ1−1
1 xθ2−1

2 (1 − x1 − x2)θ3−1

x1, x2 > 0, x1 + x2 < 1.

Arnason and Baniuk (1978) have described several ways to generate variates
from the Dirichlet distribution (the bivariate beta above is a Dirichlet), in-
cluding a sequence of conditional betas and the use of the relationship of
order statistics from a uniform distribution to a Dirichlet. The most effi-
cient method seems to be the one using the relationship between indepen-
dent gamma variates and a Dirichlet. If Y1, Y2, Y3 are independently dis-
tributed gamma random variables with shape parameters θ1, θ2, θ3, respec-
tively, (X1, X2) with

Xj =
Yj

Y1 + Y2 + Y3
, i = 1, 2,

has a bivariate beta distribution with parameters θ1, θ2, and θ3. This relation-
ship yields a straightforward method of generating bivariate betas through
generating independent gammas.

Loukas (1984) presented five methods for generating bivariate beta obser-
vations (X1, X2):

• the bivariate version of Jöhnk’s rejection method based on Jöhnk’s (1964)
rejection method for simulating univariate beta variates;

• the bivariate version of Jöhnk’s transformation method;
• the bivariate rejection method, which is a an extension of the simple re-

jection technique;
• the conditional method that is based on the property that X2|(1−X1)/X1

also has a beta distribution; and
• The gamma method discussed in the preceding paragraph.
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14.9 Bivariate Exponential Distributions

14.9.1 Marshall and Olkin’s Bivariate
Exponential Distribution

This bivariate distribution may be generated either through the trivariate
reduction of three independent exponential variates or by the generation of
univariate Poisson variates because the distribution may be derived in terms
of Poisson shocks; see Dagpunar (1988).

14.9.2 Gumbel’s Type I Bivariate
Exponential Distribution

The marginals in this case are exponential, and the conditional distribution
of X2, given X1 = x1, has density

g(x2|x1) = [(1 + θx1)(1 + θx2) − θ] exp[−x2(1 + θx1)],

which can be rewritten as

g(x2|x1) = pβ exp(−βx2) + (1 − p)β2x2 exp(−βx2), (14.8)

where β = 1+θx1 and p = (β−θ)/β. The form in (14.8) is a mixture density
arising by a mechanism that with probability p generates an exponential
variate with mean β−1 and with probability 1 − p generates the sum of two
independent exponential variates each having mean β−1. Generation in this
mixture form is therefore straightforward, which is evidently an example of
composition (see Section 14.2.3).

14.10 Bivariate Gamma Distributions and
Their Extensions

14.10.1 Cherian’s Bivariate Gamma Distribution

Cherian’s bivariate gamma distribution is discussed in Section 8.10. Let Yi ∼
gamma(θi) (for i = 1, 2, 3) be three independent gamma variates. Define
X1 = Y1 +Y3, X2 = Y2 +Y3. Then (X1, X2) have Cherian’s bivariate gamma
distribution. One can see that generation of this joint distribution is easy.
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14.10.2 Kibble’s Bivariate Gamma Distribution

Kibble’s bivariate gamma is discussed in Section 8.2. The marginal distribu-
tions have a gamma distribution with shape parameter α. For an arbitrary
value of α > 0, the simulation does not appear to be easy. However, when 2α
is a positive integer, then the pair (X1, X2) can be easily generated through
the bivariate normal distributions. See Section 8.2.7 for details.

14.10.3 Becker and Roux’s Bivariate Gamma

Becker and Roux (1981) defined a bivariate extension gamma distribution
that serves as a useful model for failure times of two dependent components
in a system. The joint density is given in Section 8.20. Gentle (2003, pp. 122–
125) has used this example to illustrate how the acceptance/rejection method
can be applied to multivariate distributions. A simulation procedure is listed
with a majorizing density that is composed of two densities, a bivariate ex-
ponential and a bivariate uniform. The example also serves to illustrate the
difficulty in using the acceptance/rejection method in higher dimensions.

14.10.4 Bivariate Gamma Mixture of Jones et al.

Jones et al. (2000) considered a bivariate gamma mixture distribution by
assuming two independent gammas with the scale parameters having a gen-
eralized Bernoulli distribution. The joint density was presented in Chapter
8. Simulation from this distribution consists of the following two steps:

(i) Simulate a pair of scale parameters (γ, β) from the probability matrix
of pγiβj

, i, j = 1, 2.
(ii) Simulate two independent gammas, each with the scale parameter ob-

tained from the first step.

14.11 Simulation from Conditionally
Specified Distributions

Appendix A in Arnold et al. (1999, pp. 371–380) presents an overview on
generating observations from conditionally specified bivariate distributions.
Arnold et al. (1999) have commented, “Despite the fact that we often lack
analytical expressions for the densities, it turns out to be quite easy to de-
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vise relatively efficient simulation schemes.” Two methods, including their
simulation algorithms, have been described there:

(i) The acceptance/rejection method will often accomplish the goal.
(ii) Alternatively, the importance sampling simulation scheme also allows

us to forget about the normalizing constant problem.

The second scheme involves a score function that is the ratio of the population
density function and the simulation density function. This scheme has been
described in Section A.3 of Arnold et al. (1999). More details and examples
of the importance method can be found in Castillo et al. (1997), Salmerón
(1998), and Hernández et al. (1998).

14.12 Simulation from Elliptically Contoured
Bivariate Distributions

We are concerned here with the class of elliptically symmetric distributions
and not with all distributions whose contours are ellipses. The class, as men-
tioned in Chapter 13, includes the bivariate normal, Cauchy, and t distribu-
tions. Define R2 = (X2

1 −2ρX1X2 +X2
2 )/(1−ρ2), where ρ is the off-diagonal

entry in the scaling matrix Σ =
(

1 ρ
ρ 1

)

. Let L be the lower triangle (Choleski)

decomposition of Σ. Then, from (13.5), X may be represented as

(X1, X2)′ = RLU(2) + μ, (14.9)

where U (2) is uniformly distributed on the circumference of a unit circle and
is independent of R.

Generation of U (2) is naturally easy. The expression of L in the bivariate
case is simple. The choice of a particular member of this class of distributions
determines the distribution of R. Generation of the vector X is therefore just
as easy or just as difficult as generation of the single variate R.

For the p-dimensional case, an explicit expression for L would be compli-
cated, and we would need a random vector with a uniform distribution on the
surface of the p-dimensional unit hypersphere instead of on the circumference
of the unit circle, but except for this, the method would be the same.

Ernst (1998) has described a multivariate generalized Laplace distribution
that includes the multivariate normal and Laplace distributions. The joint
density for (X1, X2) is given by

h(x1, x2) =
λ

2π
Γ(2/λ)|Σ|1/2 exp

{
−[(x − μ)′Σ1/2(x − μ)]λ/2

}
. (14.10)

Ernst (1998) has shown further that the density of R is simply the Stacy dis-
tribution. Recall that if X has a gamma distribution, then X1/λ has a Stacy



642 14 Simulation of Bivariate Observations

distribution. Thus, random variate generation from this bivariate distribution
becomes quite easy.

14.13 Simulation of Bivariate
Extreme-Value Distributions

Section 3.7 of Kotz and Nadarajah (2000) describes three known methods for
simulating bivariate extreme-value observations.

14.13.1 Method of Shi et al.

See Section 12.11.1 for details.

14.13.2 Method of Ghoudi et al.

Ghoudi et al. (1998) described a simulation scheme for (X1, X2) that is ap-
plicable for all bivariate extreme-value distributions. They first obtained the
joint distribution of Z = X1/(X1 + X2) and V = C(exp(−X1), exp(−X2)),
where C is the cumulative distribution function of the copula that is associ-
ated with the bivariate extreme-value distribution:

C(u, v) = exp[log(uv)A{log(u)/ log(uv)}].

Then, from the joint distribution of Z and V , they obtain as the marginal
distribution function of Z

GZ(z) = z + z(1 − z)
A′(z)
A(z)

(14.11)

and as the conditional distribution function of V , given Z = z,

vp(z) + (v log v){1 − p(z)},

where

p(z) =
z(1 − z)A′′(z)
A(z)gZ(z)

and gZ(z) is the p.d.f. of Z.
Thus, given Z = z, the distribution of V is uniform over [0, 1] with proba-

bility p(z) and is the distribution of the product of two independent uniform
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variables over [0, 1] with probability 1−p(z). Thus, to simulate (X1, X2) from
a bivariate extreme-value distribution, we can use the following procedure:

• Simulate Z according to the distribution in (14.11).
• Having generated Z, take V = U1 with probability p(Z) and V = U1U2

with probability 1− p(Z), where U1 and U2 are independent uniform vari-
ables over [0, 1].

• Finally, set X1 = V Z/A(Z) and X2 = V (1−Z)/A(Z).

14.13.3 Method of Nadarajah

Nadarajah’s (1999) scheme differs from the two methods above in that it does
not simply simulate from a bivariate extreme-value distribution directly. In-
stead, it uses the limiting point process result as an approximation to simulate
bivariate extreme values. The procedure is described in detail in Kotz and
Nadarajah (2000, pp. 143–144).

14.14 Generation of Bivariate and Multivariate
Skewed Distributions

R has many functions for simulating univariate and multivariate observations
with specified distributions.

For generating multivariate skew-normal and multivariate skew t-distributions
using R, see the documentation at the library

http://pbil.univ-lyon1.fr/library/sn/html/

written by Professor Adelchi Azzalini, Dipart. Scienze Statistiche, Universitá
di Padova, Italy.

14.15 Generation of Bivariate Distributions with
Given Marginals

14.15.1 Background

Many simulation methods require the specification of joint bivariate distri-
butions as input. If there is adequate theory or sufficient data on which to
choose a specific bivariate distribution, the problem is well defined and can
usually be solved by one of the methods discussed above.
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In many situations, there is really no adequate theory or sufficient data
to be able to specify a unique bivariate distribution. However, it may be
realistic to specify the marginal distribution of the random variables and a
measure of dependence between them. For example, Johnson and Tenenbein
(1978, 1981) stated that in the context of an investment portfolio simulation,
a joint distribution of stock and bond returns may have to be specified.
Because of a lack of data, it may be difficult to specify the joint distribution
of stock and bond returns completely, but it would be possible to specify
the marginal distributions and some measures of dependence between the
variables concerned.

We shall denote the marginal d.f.’s of X1 and X2 by F1 and F2,
respectively.

14.15.2 Weighted Linear Combination and
Trivariate Reduction

Johnson and Tenenbein (1978, 1979, 1981) considered two procedures to gen-
erate bivariate random variables when the marginals are specified and their
measures of dependence, Kendall’s τ or Spearman’s ρS , can be specified.

Let W1 and W2 be i.i.d. r.v.’s with common density function g (uniform,
Laplace, or exponential). Set

Y1 = W1,

Y2 = cW1 + (1 − c)W2 (14.12)

(0 < c < 1), and then find the marginals of Y1 and Y2. Suppose F1 and F2

are the marginals that we require Then obtain X1 and X2 by appropriate
univariate transformations, X1 = F−1[G1(Y1)] and X2 = F−1

2 [G2(Y2)], where
G1 and G2 are the distribution functions of Y1 and Y2, respectively; these are
determined by c, which in turn is determined by the chosen value of τ or ρS .
(Notice that this method is not applicable if the product-moment correlation
is specified, as it would get changed by the univariate transformations of Yi

to get Xi.)
Trivariate reduction is similar to the weighted linear combination method,

except that Y1 and Y2 are now defined as

Y1 = W1 + βW3,

Y2 = W2 + βW3, (14.13)

(0 < β < ∞), where W3, independent of W1 and W2, also has density g.
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14.15.3 Schmeiser and Lal’s Methods

Schmeiser and Lal (1982) pointed out that many random phenomena may be
modeled by dependent gamma variates with correlation coefficient ρ and then
went on to show how (i) the trivariate reduction algorithm (i.e., Cherian’s
method) and (ii) the composition algorithm made up from the independence
case and the upper Fréchet bound can be used to generate a pair of gamma
variates. Moreover, they developed a family of algorithms that can produce
bivariate gamma vectors having any parameters α1, α2 (shape parameters),
β1, β2 (scale parameters), and ρ (Pearson’s product-moment correlation co-
efficient).

Let Z ∼ gamma(γ, 1) and Wi ∼ gamma(δi, 1) be mutually independent.
Then, because of the reproducibility of the gamma distribution,

X1 = (Ga−1
1 (U) + Z + W1)β1 (14.14)

and
X2 = (Ga−1

2 (V ) + Z + W2)β2 (14.15)

are both gamma variates, with shape parameters α1 = λ1 + γ + δ1 and
α2 = λ2 + γ + δ2 and scale parameters β1 and β2, respectively, and either
V = U or V = 1 − U . In the above, Gai denotes the distribution function of
gamma(λi, 1), i = 1, 2. Pearson’s product-moment correlation is then given
by

ρ =
E[Ga−1

1 (U)Ga−1
2 (V )] − λ1λ2 + γ√
α1α2

. (14.16)

Given the values of α1, α2, β1, β2, and ρ, we now wish to select values of
λ1, λ2, γ, δ1, δ2, β1, and β2 such that

λ1 + γ + δ1 = α1

λ2 + γ + δ2 = α2

E[Ga−1
1 (U)Ga−1

2 (V )] − λ1λ2 + γ = ρ
√
α1α2

λ1, λ2, γ, δ1, δ2 ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭

. (14.17)

(β1 and β2 do not appear here; they can be set directly.) As we are using
five variables to satisfy three equations, finding a set of parameter values
corresponds to finding a feasible solution, rather than an optimal solution, to
a linear programming problem. Schmeiser and Lal (1982) have given guide-
lines for an efficient solution and developed an algorithm called GBIV, which
determines the parameter values as well as generating the random vector
(X1, X2). It takes γ = δ2 = 0. For some scatterplots of data generated by
this algorithm, see Schmeiser and Lal (1982) and Hsu and Nelson (1987).
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14.15.4 Cubic Transformation of Normals

Fleishman (1978) proposed generating a random variable with given mean,
standard deviation, skewness, and kurtosis by taking a standard random
variate Z and forming a new r.v. X from a cubic expression,

∑3
i=0 aiZ

i.
(The ai’s can be obtained by solving a system of equations involving the
desired values of the first four moments.) Although the method was criticized
by Tadikamalla (1980), its simplicity makes it attractive, and it has been
extended to the multivariate situation by Vale and Maurelli (1983). Their
method is to set X1 =

∑3
i=0 Z

i
1 and X2 =

∑3
i=0 biZ

i
2, where (i) the ai’s and

bi’s are determined by the desired univariate moments and (ii) the correlation
between Z1 and Z2 is determined by the desired correlation between X1 and
X2—solution of the cubic equation ρX1X2 =

∑3
i=0 ciρ

i
Z1Z2

is required, where
the ci’s are given in terms of the ai’s and bi’s.

14.15.5 Parrish’s Method

Parrish (1990) has presented a method for generating variates from a multi-
variate Pearson family of distributions. A member of the Pearson family is
specified by the first four moments, which of course includes the covariances.

14.16 Simulating Bivariate Distributions with
Specified Correlations

14.16.1 Li and Hammond’s Method for Distributions
with Specified Correlations

Li and Hammond (1975) propose a method for a p-variate distribution with
specified marginals and covariance matrix. This method uses the inverse prob-
ability integral transform method to transform a p-variate normal into a mul-
tivariate distribution with specified marginals. The covariance matrix of the
multivariate normal is chosen to yield the specified covariance matrix of the
target distribution. The determination of the covariance matrix for the mul-
tivariate normal to yield the desired target distribution is difficult, however,
and does not always yield a positive definite covariance matrix.

Lurie and Goldberg (1998) modified the Li–Hammond approach by iter-
atively refining the correlation matrix of the underlying normal using the
sample correlation matrix of the transformed variates.
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14.16.2 Generating Bivariate Uniform Distributions
with Prescribed Correlation Coefficients

The simple method described below was due to Falk (1999). The approach
here is in the same spirit as that of Li and Hammond (1975) given above.

Suppose we wish to generate a pair of uniform variates with correlation
coefficient ρ, which is also Spearman’s rho. Let (X1, X2) have a standard
bivariate normal distribution with correlation coefficient ρ′ = 2 sin(ρπ/6).
Such bivariate normal distributions can be easily generated.

Consider now the marginal transformation (U, V ) = (Φ(X1),Φ(X2)). Then
(U, V ) will have a bivariate uniform distribution with a grade correlation
(Spearman’s rho) ρS . It is well known (see Section 4.7.2, for example) that

ρS =
6
π

sin−1 ρ
′

2
.

Since we set ρ′ = 2 sin(ρπ/6), it is clear that ρS = ρ. We note that for any
bivariate uniform distributions, Spearman’s rho is simply Pearson’s product-
moment correlation coefficient.

14.16.3 The Mixture Approach for Simulating
Bivariate Distributions with Specified
Correlations

This method, proposed by Michael and Schucany (2002), was inspired by
concepts found in Bayesian inference. The theory of the mixture approach is
as follows. Let the random variable X1 have a prior represented by the p.d.f.

f(x1, θ), (14.18)

where the parameter θ may be multidimensional. Next, conditioning on X1 =
x1, let the random variable Z for the data have a likelihood with probability
function or probability density function

g(z|x1; η), (14.19)

where the parameter η may also be multidimensional. Multiplying (14.18)
and (14.19) yields the joint distribution of X1 and Z:

j(x1, z; θ, η) = f(x1; θ)g(z|x1; η). (14.20)

Integrating out x1 yields the marginal of Z,
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m(z; θ, η) =
∫

j(u, z; θ, η)du. (14.21)

Dividing (14.20) by (14.21) yields the posterior of X1 given Z = z, from
which we define the p.d.f. of a new random variable X2:

p(x2|z; θ, η) = j(x2, z; θ, η)/m(z; θ, η). (14.22)

Finally, multiplying (14.22) and (14.20), one obtains the trivariate distribu-
tion of X1, X2, and Z with the density

h(x1, x2, z; θ, η) = j(x1, z; θ, η)j(x2, z; θ, η)/m(z; θ, η) (14.23)

It was pointed out that the bivariate distribution of (X1, X2) does not depend
on Z. The parameter η in the likelihood (14.19) plays a critical role such that
the choice of its value precisely controls the correlation between X1 and X2

because the outcome of Z defines the mixture of posteriors that will be used
to simulate X2.

Steps in Mixture Simulation

The proposed mixture method involves three successive steps to generate the
desired pair (x1, x2):

1. Simulate x1 from a specified prior.
2. Simulate z from a specified likelihood given x1.
3. Simulate x2 from the derived posterior given z.

Examples

Three examples were given to illustrate the mixture method:

• a new bivariate beta family;
• a new bivariate gamma family; and
• a bivariate unform family.
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Rényi, A. 144, 452, 165
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computer programs for integrals, 504

concomitants of order statistics, 487

conditional characterization, 485

conditional properties, 481

contour plots, 489

cumulants and cross-cumulants, 484

derivations

central limit theorem method, 483

characterizations, 484

compounding method, 483

differential equation method, 482

transformations of diffuse probability
equation method, 483

trivariate reduction method, 483

diagonal expansion of ψ, 492

diagonal expansion of Ψ, 493

distribution of
√

X2 + Y 2

Rayleigh distribution, 492

estimate and inference of ρ, 491

estimates of parameters, 490

graphical checks for normality, 507

how might normality fail, 506

illustrations, 489

joint density ψ(x, y; ρ), 479

joint density (nonstandardized), 479

joint moments and absolute moments,
481

linear combination of min and max, 487

literature reviews on computations, 505

marginal transformations

bivariate lognormal, 526

mixing with bivariate lognormal, 541

mixtures, 536

moment generating function, 481

notations, 479

order statistics, 486

other properties, 492

outliers, 506

parameter estimates

mle, 490

positive quadrant dependence ordering,
492

properties of c.d.f., 480

relations to other distributions, 489

Slepian’s inequality, 492

tables of integrals, 504
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tables of standard normal integrals, 495

transformations of marginals

effect on correlation, 530

univariate properties, 481

bivariate normal

truncated, 532

Bivariate normal mixtures

construction, 536

estimation of correlation, 538

estimation of correlation based on
selected data, 539

estimation of parameters, 537

generalization and compounding, 537

illustration, 536

properties of a special case, 537

tests of homogeneity, 539

Bivariate Pareto distribution, 88

correlation and conditional properties,
88

derivation, 88

further properties, 89

marginal, 88

Bivariate Pearson type II

conditional properties, 371

correlation coefficient, 371

illustrations, 372

joint density, 371

relations to other distributions, 371

tables and algorithms, 372

univariate properties, 371

variate generation, 372

Bivariate skew t

derivation, 361

joint density, 361

moment properties, 361

possible application, 362

Bivariate skew-normal

applications, 289

Azzalini and Dalla Valle, 524

joint density, 524

derivation, 288

fundamental, 526

joint density, 288

review, 526

Sahu et al.

applications, 526

joint density, 525

moment generating function, 525

Bivariate symmetric stable

an application, 610

association parameter, 609

characteristic function, 608

correlation coefficients, 609

explanations, 608

generalized, 611

characteristic function, 611

de Silva and Griffith’s class, 611

joint density, 609

Bivariate triangular

regression properties, 283

Bivariate Weibull

applications, 464

classes, 461

F-G-M system, 463

gamma frailty, 465

Lee, 462

Lee II, 464

Lu and Bhattacharyya I, 463

Lu and Bhattacharyya II, 463

Marshall and Olkin’s, 462

mixtures, 465

via marginal transformations, 461

Blomqvist’s β, 163

Blumen and Ypelaar’s bivariate

conditional properties, 262

joint density, 262

Chain of implications

among positive dependence concepts,
116

Characteristic function, 3

Chebyshev’s inequality

expressed in terms of ρ, 151

Cheriyan’s bivariate gamma

also known as Cheriyan and Ram-
abhadran’s bivariate gamma,
322

conditional properties, 323

correlation coefficient, 323

derivation, 324

distribution of ratio, 325

joint density, 323

moment generating function, 323

PQD property, 325

univariate properties, 323

variate generation, 324

Clayton copula

(Pareto copula), 90

Coefficient of kurtosis, 2

Coefficient of skewness, 2

Coefficient of variation, 2

Comparison of four bivariate exponentials,
425

Concepts of dependence

Bayesian, 136

Concepts of dependence for copulas, 48

Concordant (discordant) function, 122

Conditionally specified bivariate
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(Student) t- conditionals

conditional properties, 250

joint density, 250

(Student) t-conditionals

univariate properties, 251

centered normal conditionals

conditional properties, 234

beta (second kind) conditionals

conditional moments, 247

conditional properties, 246

correlation coefficient, 247

joint density, 246

univariate properties, 247

beta conditionals

conditional properties, 243

joint density, 243

other conditional properties, 244

Cauchy conditionals

joint density, 249

transformation, 250

univariate properties, 249

centered normal conditionals

applications, 235

illustrations, 236

joint density, 235

univariate properties, 235

conditional survival models, 267

conditionals in exponential families

dependence concepts, 237

general expression, 236

conditionals in location-scale families

with specified moments, 256

exponential conditionals

applications, 239

bivariate failure rate properties, 239

c.d.f., 238

conditional properties, 237

correlation coefficients, 238

joint density, 237

moment generating function, 239

related to other distributions, 239

univariate properties, 238

gamma conditionals

conditional properties, 240

joint density, 240

other conditional properties, 241

univariate properties, 241

gamma conditionals-model II

conditional properties, 241

correlation, 242

joint density, 241

univariate properties, 242

gamma-normal conditionals

conditional properties, 242

joint density, 243

three models, 243

generalized Pareto conditionals

conditional properties, 248

joint density, 248

univariate properties, 248

improper bivariate distributions, 256

inverse Gaussian conditionals

conditional properties, 244

joint density, 244

linearly skewed

and quadratically skewed normal
conditionals, 256

marginals and conditionals of the same,
265

normal conditionals

conditional properties, 233

further properties, 234

joint density: general expression, 233

univariate properties, 234

one conditional one marginal specied

Blumen and Ypelaar’s distribution,
262

one conditional, one marginal specified

Dubey’s distribution, 261

one conditional, one regression function,
257

Pareto conditionals

conditional properties, 245

joint density, 245

marginal properties, 245

special case, 245

scaled beta conditionals

joint density, 253

univariate properties, 253

skewed normal conditionals

conditional properties, 255

correlation coefficient, 255

joint density, 254

univariate properties, 255

translated exponential conditionals

conditional properties, 252

joint density, 252

other regression properties, 252

univariate properties, 252

uniform conditionals

conditional properties, 251

joint density, 251

univariate properties, 251

Conditionally specified bivariate model

estimation

Bayesian estimate, 260

mle, 259

Conditionally specified bivariate models
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estimation

marginal likelihood estimate, 259

pseudolikelihood estimate, 259

Construction of copula

algebraic methods, 54

by mixture, 52

convex sums, 53

geometric methods, 54

inversion method, 54

Rüschendorf’s method, 50

univariate function method, 53

Constructions of bivariate

by compounding, 190

example, 191

by mixing, 189

compositional data, 211

conclusions, 222

conditionally specified

both sets given: compatibility, 197

both sets given: characterizations, 196

both sets given: compatibility theorem,
197

one conditional and one marginal
given, 196

conditionals in exponential families, 197

normal conditionals, 198

conditionals in location-scale families
with specified moments, 200

copulas

algebraic method, 186

Archimax, 189

Arichimedean, 188

defined from a distortion function, 187

geometric methods, 185

inversion method, 185

Marshall and Olkin’s mixture method,
187

Rüschendorf’s method, 186

data-guided methods, 206

radii and angles, 207

via conditional distributions, 206

denominator-in-common, 194

density generators, 202

examples, 203

dependence function in extreme value,
208

diagonal expansion, 219

differential equation methods, 217

Downton’s model, 210

Edgeworth series expansion, 220

extreme-value models, 211

geometric approach, 203

examples, 203

integrating over two parameters, 191

introducing skewness, 202

examples, 202

limits of discrete distributions, 215

examples, 215

marginal replacement

introduction, 201

Jones’, 202

Tiku and Kambo, 202

Marshall and Olkin’s

fraity model, 192

potentially useful but not in vogue, 216

bivariate Edgeworth expansion, 220

diagonal expansion, 219

differential equation methods, 217

queueing theory, 210

Raftery’s model, 209

shock models, 208

Marshall and Olkin, 208

some simple methods, 204

examples, 204

special methods in applied fields, 208

time series

AR models, 213

variables-in-common, 193

Khintchine mixture, 195

Lai’s modified structure mixture, 195

Mathai and Moschopoulos, 194

weighted linear combination, 205

description, 205

Constructions of bivariate normal

specification on conditionals, 199

Copula

Ali–Mikhail–Haq family, 43

Bivariate Pareto, 38

F-G-M family, 43

Fréchet, 35

Frank’s, 38

Gaussian, 40

generator, 38

geometry of correlation, 45

Gumbel–Barnett, 94

Gumbel–Hougaard, 38

iterated F -G-M , 42

Kimeldorf and Sampson’s, 95

Lai and Xie’s extension of F-G-M, 51

Lomax, 89

Marshall and Olkin, 39

Nelsen’s polynomial copula, 43

order statistics copula, 41

Pareto, 90

Plackett family, 43

polynomial copula of order 5, 42

Rodŕıguez-Lallena and Úbeda-Flores, 96

survival, 36
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t-, 41

Woodworth’s polynomial, 43

Correlation

grade, 45

Cowan’s bivariate exponential

c.d.f., 444

conditional properties, 445

correlation coefficients, 445

derivation, 446

joint density, 445

transformation of marginals, 446

univariate properties, 445

Criticisms about copulas, 58

Crovelli’s bivariate gamma

application, 330

density function, 330

Cuadras and Augé distribution, 79

Cumulant generating function, 4

Digression analysis, 540

Distribution of Z = C(U, V ), 49

Downton’s bivariate exponential

see Moran–Downton, 436

Dussauchoy and Berland’s bivariate
gamma

correlation coefficient, 333

extension of McKay’s, 332

joint density, 260, 332

other properties, 333

some variants, 333

Effect of parallel redundancy

dependent exponential components, 457

Elliptical compound bivariate normal, 598

Elliptically and spherically symmetric

bivariate distributions

examples, 599

Elliptically contoured

bivariate distributions

alternative definition, 593

applications, 608

characteristic function, 595

conditional properties, 596

copulas, 596

correlations, 596

definition, 592

density generator, 594

Fisher information, 596

generalized Laplace, 600

joint density, 592

Laplace, 600

local dependence functions, 597

moments, 595

other properties, 597

power exponential, 600

stochastic representation, 593

symmetric logistic, 600

examples

bivariate logistic, 594

Kotz-type, 594

Pearson type VII, 594

Elliptically symmetric

bivariate distributions

background, 591

extreme behavior, 607

notation, 592

Exponential families

definition, 236

Extremal type elliptical

Fréchet-type

characteristic function, 605

joint density, 604

moments, 605

univariate properties, 604

Gumbel-type

joint density, 605

marginal characteristic function, 607

moments, 606

univariate properties, 606

Kotz-type

joint density, 602

marginal characteristic function, 604

moments, 603

product and ratio, 603

univariate properties, 602

Extremal type elliptical distributions, 601

Extreme value copula

definition, 564

Extreme value copulas, 38

Extreme-value copula

examples, 39

F-G-M copula

a switch-source model, 71

applications, 70

c.d.f., 68

conditional properties, 68

correlation, 68

dependence properties, 69

extension, 72

Bairamov-Kotz, 74

Bairamov-Kotz-Bekci, 75

Huang and Kotz, 72

Lai and Xie, 74

Sarmanov’s, 74

iterated, 71

ordinal contingency tables, 71

p.d.f., 68
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univariate transformation, 70

F-G-M distribution

generalizations, 389

logistic marginals, 389

Families of aging distributions, 17

Families of univariate distributions

g and h, 9

Family of copulas

Archimax, 39

Archimedean, 37

extreme value, 38

Mardia, 36

polynomial, 42

Family of univariate distributions

Burr system, 23

Pearson system, 22

generalized Weibull, 18

Johnson’s system

SB , 8, 9

SL, 8

SN , 9

SU , 9

Jones’, 28

Marshall and Olkin, 17

stable, 29

wrapped t, 24

Farlie–Gumbel–Morgenstern bivariate
gamma

conditional properties, 328

correlation coefficient, 328

joint density, 327

moment generating function, 328

univariate properties, 328

Formal tests of normality

bivariate

after marginal transformation, 521

asymptotically χ2
2?, 519

based on empirical characteristic
function, 515

Bera and John’s tests, 517

Best and Rayner’s comparisons, 518

bivariate skewness and kurtosis, 517

chi-squared test, 514

comparisons after marginals trans-
formed, 519

computational aspects, 520

Cox and Small tests, 516

Hawkin’s procedure, 516

invariant tests, 516

Malkovich and Afifi’s tests, 515

tests based on empirical c.d.f., 514

use of univariate normality tests, 518

univariate

chi-squared test, 511

CPIT plots, 513

Jarque and Bera test, 513

Kolmogorov–Smirnov, 512

moment tests, 512

probability plots, 513

tests based on empirical c.d.f., 512

Z-test of Lin and Mudholkar, 512

Zhang’s omnibus test, 514

Fréchet bound

lower, 106, 180

upper, 106, 180

Frank’s distribution, 78

correlation and dependence, 78

derivation, 78

Freund’s bivariate exponential

applications, 409

Becker and Roux’s generalization, 411

joint density, 411

Bhattacharya and Holla’s generaliza-
tions, 410

c.d.f., 406

compounding, 409

conditional properties, 407

correlation coefficient, 407

density, 406

derivations, 407

distribution of product, 408

extreme statistics, 408

illustrations, 408

moment generating function, 407

Proschan and Sullo’s extension, 410

joint density, 410

Rényi and Shannon entropy, 408

transformation of marginals, 409

univariate properties, 406

Friday and Patil’s bivariate exponential

a mixture distribution, 425

BEE, 425

c.d.f., 425

extreme statistics, 426

relation to ACBVE, 426

relation to Freund’s, 425

relation to Marshall and Olkin’s, 425

Function

Borel measurable, 142

one-to-one, 142

one-to-one correspondence, 142

onto, 142

Gaver’s bivariate gamma

correlation coefficient, 340

derivation, 340

moment generating function, 339

Generalized Cuadras and Augé
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(Marshall and Olkin family), 79

Geometric compounding schemes

bivariate exponential, 451

background, 451

bivariate compounding scheme, 453

shock model, 452

Gini index, 162

Global measures of dependence

concordant and discordant monotone
correlations

definitions, 154

matrix of correlation, 164

maximal correlation

(sup correlation), 152

monotone correlation, 153

Pearson’s product-moment correlation,
146

rank correlations

Kendall’s tau, 155

Spearman’s rho, 155

tetrachoric and polychoric correlations,
165

Grade correlation, 45

Graphical checks for bivariate normality

F -probability plot, 508

Haar distribution, 511

project pursuit, 509

radii and angles, 509

scatterplots, 508

the kernel method, 510

univariate plotting, 507

Gumbel’s bivariate exponential

type I, 403

c.d.f., 403

characterizations, 403

extreme statistics, 404

other properties, 403

survival function, 403

type II

density, 404

extreme statistics, 405

Fisher’s information, 404

other properties, 404

type III

c.d.f., 405

Gumbel–Hougaard copula, 405

other properties, 405

Gumbel’s type I bivariate exponential

applications, 94

c.d.f., 93

correlation and conditional properties,
93

p.d.f., 93

univariate properties, 93

Gumbel–Barnett copula, 94

Gumbel–Hougaard copula, 80

correlation, 81

derivation, 81

fields of application, 82

Gunst and Webster’s bivariate gamma, 316

case 2

joint density, 318

case 3

joint density, 317

moment generating function, 317

Hashino and Sugi’s bivariate exponential

application, 412

joint density, 411

Hazard (failure) rate function, 2

Index of dependence, 145

Interrelationships between various bivariate
gammas, 320

Iyer–Manjunath–Manivasakan’s bivariate
exponential

application, 435

correlation coefficient, 434

linear structures, 433

negative cross correlation, 434

positive cross correlation, 434

univariate property, 434

Izawa’s bivariate gamma

application, 313

correlation coefficient, 313

joint density, 312

relation to Kibble’s bivariate gamma,
313

Jensen’s bivariate gamma

application, 316

characteristic function, 314

correlation coefficient, 314

derivation, 315

illustration, 315

joint density, 313

tables and algorithms, 316

univariate properties, 314

Johnson’s system

applications, 529

conditional properties, 529

derivation, 528

illustrations, 529

joint density, 529

members, 528

uniform representation, 530

univariate properties, 529

Jones’ bivariate beta
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correlation and local dependence, 380

dependence properties, 380

illustrations, 381

joint density, 379

product moments, 380

univariate properties, 380

Jones’ bivariate beta/skew beta

construction, 373

joint density, 373

marginal replacement scheme, 373

Jones’ bivariate skew t, 359

correlation, 360

derivation, 360

joint density, 359

local dependence function, 360

univariate properties, 359

Kendall’s tau

and measure of total positivity, 155

definition, 44, 155

sample estimate of, 155

Kibble’s bivariate gamma

applications, 310

c.d.f., 307

conditional properties, 308

correlation coefficient, 307

derivations, 308

generalizations

Jensen’s bivariate gamma, 309

Malik and Trudel, 309

illustrations, 309

joint density, 306

moment generating function, 307

relations to others, 309

tables and algorithms, 311

transformation of marginals

bivariate chi distribution, 311

univariate properties, 307

Kimeldorf and Sampson’s distribution, 95

lp-norm symmetric distributions, 613

Laguerre polynomials, 306

Lawrance and Lewis’ bivariate exponential
mixture

general form, 428

model EP1

joint density, 428

model EP3, 429

model EP5, 429

models with line singularity, 430

models with negative correlation, 430

sum, product and ratio, 430

uniform marginals, 430

Loáiciga and Leipnik’s bivariate gamma

applications, 322

characteristic function, 321

correlation coefficient, 321

joint density, 321

moments and joint moments, 321

univariate properties, 321

Local dependence

definition, 168

Local dependence function

Holland and Wang, 168

Local measures of dependence, 167

local ρS and τ , 169

local correlation coefficient, 170

local measure of LRD, 169

Location and scale, 5

Lomax copula, 89

further properties, 90

special case

Ali–Mikhail–Haq, 90

LTD copula, 112

Mardia’s bivariate Pareto distribution, 246

Marshall and Olkin’s bivariate exponential

decomposition of survival function, 416

Marshall and Olkin’s bivariate exponential

absolutely continuous part, 416

applications, 416, 418

BVE, 412

c.d.f., 412

characterizations, 415

concomitants of order statistics, 416

conditional distribution, 413

copulas, 418

correlation coefficients, 413

derivations

fatal shocks, 414

nonfatal shocks, 414

distribution of the product, 415

estimations of parameters, 414

extreme-value statistics, 415

Fisher’s information, 414

generalization

bivariate Erlang (BVEr), 420

generalizations, 420

joint density, 413

lack of memory property, 416

moment generating function, 415

Rényi and Shannon entropy, 415

singular part, 413

transformation to extreme-value
marginals, 419

transformation to uniform marginals,
418
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transformation to Weibull marginals,
419

univariate properties, 413

Wu’s characterization

compounding schemes, 455

Mathai and Moschopoulos’ bivariate
gamma

Model 1

conditional properties, 335

correlation coefficients, 334

method of construction, 334

moment generating function, 334

relation to Kibble’s, 335

univariate properties, 334

Model 2

joint density, 335

marginal properties, 336

method of construction, 335

relation to McKay’s, 336

Maximal correlation

definition, 152

properties, 152

McKay’s bivariate gamma

also known as bivariate Pearson type
III, 332

c.d.f., 331

conditional properties, 260, 331

correlation coefficient, 331

derivation, 332

distributions of sums, products, and
ratios, 332

joint density, 260, 331

univariate properties, 331

Measure of dependence for copulas, 44

Gini’s coefficient, 46

Kendall’s tau, 44

local dependence, 48

Spearman’s tau, 45

tail dependence coefficient, 47

test of dependence, 48

Measures of dependence

global, 144

index, 145

Lancaster’s modifications, 144

Pearson’s product-moment correlation
coefficient, 146

Rényi’s axioms, 145

Measures of Schweizer and Wolff

for copulas, 163

Mixtures of bivariate exponentials

Al-Mutairi’s, 450

definition, 449

Hayakawa, 451

Lindley and Singpurwalla’s, 449

Sankaran and Nair’s, 450

Modified Bessel function, 306

Moment generating function, 3

Monotone correlation

definition, 153

properties, 153

Moran and Downton’s bivariate exponen-
tial

commonly known as Downton bivariate
exponential, 436

applications, 441

c.d.f., 436

conditional properties, 437

correlation coefficient, 436

dependence properties, 440

derivations, 438

estimation of ρ, 437

estimations of parameters, 439

Fisher’s information, 438

illustrations, 439

joint density, 436

moment generating function, 437

regression, 437

relation to a bivariate Laplace, 443

special case of Kibble’s bivariate gamma,
436

univariate properties, 436

variate generation, 439

Weibull marginals, 442

Moran’s bivariate gamma

applications, 330

computation of c.d.f., 329

derivations, 329

joint density, 329

Multivariate positive dependence

PLOD, 109

PUOD, 109

Nadarajah and Gupta’s bivariate gamma

Model 1

correlation coefficient, 341

joint density, 340

method of derivation, 341

Model 2

correlation coefficient, 342

derivation, 342

joint density, 341

Negative dependence concepts, 129

natively associated

definition, 129

negative likelihood ratio dependent

(RR2), 130

neutrality, 130
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NQD (negative quadrant dependent),
129

examples, 130

NRD (negative regression dependent),
129

RCSD, 129

RTD (right-tail decreasing), 129

Neutrality

definition, 130

Nonbivariate extreme value

with Gumbel marginals, 586

applications, 587

c.d.f., 586

conditional properties, 587

correlations and dependence properties,
587

joint density, 586

univariate properties, 586

Nonbivariate normal

normal marginals

examples, 541

uncorrelated, 542

Orthogonal polynomial generating function

Meixner, 282

Pareto copula

(Clayton copula), 90

fields of application, 91

further properties, 91

survival copula of bivariate Pareto, 91

Pearson type VI distribution

inverted beta, 12

Pearson’s product-moment correlation

14 faces of correlation coefficient, 149

correlation ratio, 151

cube of correlation coefficient ρ, 150

definition, 146

Fisher’s variance-stabilizing transforma-
tion of r, 147

history, 149

interpretaion of ρ, 148

properties of ρ, 147

ρ and Chebyshev’s inequality, 151

ρ and concepts of dependence, 151

r, maximum likelihood estimator of ρ,
147

robustness of sample correlation, 147

sample correlation coefficient r

definition, 147

Plackett’s distribution, 82

conditional properties, 83

correlation, 83

fields of application, 84

Polynomial copulas, 42

construction

Rüschendorf method, 41

Positive dependence

basic idea, 105

Positive dependence by mixture, 117

Positive dependence concepts

additional, 128

association, 109

definition, 109

weakly associated, 110

chain of implications, 116

conditions, 106

LCSD, 114

left corner set decreasing, 114

left-tail decreasing, 110

LRD

(positive likelihood ratio dependent),
115

LTD, 110

PLOD, 109

positive quadrant dependent, 108

positive regression dependent

(stochastically increasing), 112

positively correlated

cov≥ 0, 107

PQD, 108

definition, 108

PRD (SI), 112

PUOD, 109

RCSI, 115

right corner set increasing, 115

right-tail increasing, 111

RTI, 111

SI (PRD), 112

tables of summary, 107

TP2 (total positivity of order 2)

also known as LRD, 115

Positive dependence orderings, 131

definition, 132

more associated, 132

more LRD, 133

more positively regression dependent,
132

more PQD, 132

more PQDE, 132

others, 134

with different marginals, 135

Positive dependence weaker than PQD

monotone quadrant dependence
function, 118

positively correlated, 118

PQDE, 117

PQD
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families of bivariate distributions, 121

geometric interpretation, 128

PQD distributions

constructions, 125

Prékopa and Szántai’s bivariate gamma

c.d.f., 325

joint density, 325

relation to Cheriyan’s bivariate gamma,
326

univariate properties, 326

Rüschendorf method, 41

Rafter’s bivariate exponential

applications, 433

c.d.f., 432

derivation, 432

illustration, 432

joint density, 432

second special case, 431

Raftery’s bivariate exponential

first special case, 431

scheme, 431

Random number generation

IMSL Libraries, 632

S-Plus and R, 632

softwares, 631

References to illustrations of copulas, 97

Regional dependence

a measure, 173

definition, 171

Relationships between Kendall’s τ and
Spearman’s ρS

general bounds between τ and ρS , 157

some empirical evidence, 159

influence of dependence concepts on
closeness between τ and ρS , 159

sample minimum and maximum, 162

Reliability classes, 7

Rhodes’ distribution

derivation, 391

joint density, 390

support, 390

Rotated bivariate

special case

bivariate logF , 394

bivariate skew t, 393

Rotated bivariate

joint density, 393

Royen’s bivariate gamma

c.d.f., 311

derivation, 312

relation to Kibble’s gamma, 312

univariate properties, 312

Sample mean, 2

Sample variance, 2

Sarkar’s bivariate exponential

c.d.f., 424

correlation coefficient, 424

derivation, 424

joint density, 423

min(X, Y ), 424

relation to Marshall and Olkin’s BVE,
424

univariate properties, 424

Sarmanov’s bivariate exponential

diagonal expansion

orthogonal polynomials, 444

introduction, 443

joint density, 443

other properties, 444

Sarmanov’s bivariate gamma

correlation coefficient, 319

derivation, 320

joint density, 319

univariate properties, 319

Schmeiser and Lal’s bivariate gamma

correlation coefficient, 327

method of construction, 326

Sharpening a scatterplot, 539

Simulation methods

bivariate, 632

conditional distribution, 633

general setting, 633

Gibbs’ algorithm, 635

Gibbs’ method, 634

methods reflecting the construction,
635

transformation, 634

univariate

acceptance/rejection, 626

common approaches, 624

composition, 625

introduction, 624

inverse probability integral transform,
625

Markov chain Monte Carlo—MCMC,
627

ratio of uniform variates, 626

transformations, 627

Simulation of copulas

Archimedean copulas, 50

general case, 50

Simulations of bivariate

Becker and Roux’s bivariate gamma, 640

bivariate beta, 638

bivariate gamma mixture of Jones et al.,
640
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bivariate normal, 635

bivariate skewed distributions, 643

bivariate uniform with prescribed
correlations, 647

Cherian’s bivariate gamma, 639

conditionally specified distributions, 640

copulas, 637

distributions with specified correlations

Li and Hammond’s method, 646

elliptically contoured distributions, 641

extreme-value distributions, 642

Gumbel’s type I bivariate exponential,
639

Kibble’s bivariate gamma, 640

Marshall and Olkin’s bivariate
exponential, 639

trivariate reduction, 644

weighted linear combination, 644

with given marginals, 643

with specified correlations

mixture approach, 647

Simulations of univariate

beta, 630

gamma, 629

normal, 628

other distributions, 631

t, 630

Weibull, 631

Singpurwalla and Youngren’s bivariate
exponential

c.d.f., 447

derivation, 447

joint density, 447

univariate properties, 447

Skew distributions, 16

Skew-elliptical

skew-t, 617

skew-Cauchy, 618

skew-normal, 617

Skew-elliptical distributions, 616

Skewness and kurtosis, 5

Sklar’s theorem, 34

Slepian’s inequality, 125

Smith, Aldelfang, and Tubbs’ bivariate
gamma

distribution of ratio, 318

extension of Gunst and Webster, 318

joint density, 318

Spearman’s ρS

and measure of quadrant dependence,
156

definition, 156

grade correlation, 156

Spearman’s tau

definition, 45

Stress and strength model

basic idea, 459

bivariate exponential

a component subjected to two stresses,
461

Downton, 460

Marshall and Olkin, 459, 460

two dependent components with a
common stress, 460

Summary of interrelationships

among negative dependence concepts,
130

among positive dependence concepts,
120

Survival copulas

(complementary copula), 36

Survival function, 2

Test of independence

against positive dependence, 126

Tests of spherical and elliptical symmetry,
607

QQ-plot, 607

Tiku and Kimbo’s bivariate non-normal

conditional properties, 264

derivation, 265

joint density, 264

moments, 264

univariate properties, 264

Tosch and Holmes’ distribution

a generalization of Freund’s and BVE,
426

Total dependence

X and Y are functionally dependent

definition, 144

X and Y are implicitly dependent

definition, 144

X and Y are mutually completely
dependent

definition, 142

Y completely dependent on X

definition, 142

Y monotonically dependent on X

definition, 143

Totally positive function of order 2, 115

Transformations

bivariate to bivariate, 181

marginal to marginal

Johnson’s translation method, 182

marginals to uniform

copulas, 183

Truncated bivariate normal

applications to selection procedures, 533
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mean and variance, 532

moment generating function, 533

properties, 532

right random truncation of Gürler, 535

scheme of Arnold et al.

joint density, 535

special case, 535

Tukey’s g and h, 6

Univariate distribution

beta

inverted, 12

of the first kind, 11

symmetric, 12

Cauchy, 20

chi, 15

chi-squared, 14

noncentral, 25

compond exponential, 16

compound normal, 10

Erlang, 14

exponential, 13

extreme value

type 1 (Gumbel), 20

type 2 (Fréchet), 21

type 3 (Weibull), 21

F , 24

noncentral, 25

gamma, 14

generalized error, 20

hyperbolic, 29

inverse Gaussian, 28

Laplace, 19

logistic, 19

lognormal, 8

Meixner, 29

normal, 7

Pareto

first kind, 22

Pareto IV (generalized), 22

second kind (Lomax), 22

skew family

log-Skew t-, 27

log-skew-normal, 26

skew t of Azzalini and Capitanio, 27

skew t of Jones and Faddy, 27

skew-Cauchy, 27

skew-normal, 25

Stacy, 15

symmetric beta

(Pearson type II), 12

t-, 23

noncentral, 25

transformation

Box and Cox power, 9

Efron’s, 10

truncated normal, 8

uniform, 12

Weibull, 15

Univariate distributions

beta the second kind

(inverted beta, inverted Dirichlet), 230

Burr type VII

also known as generalized Pareto, 231

inverse Gaussian, 231

Pareto type II

also known as Pareto of the second
kind, 231

translated exponential, 252

triangular, 284

Variables in common

see also trivariate reduction, 280

additive models

background, 281

bivariate triangle, 283

Cherian’s bivariate gamma, 283

correlation, 283

Meixner classes, 282

symmetric stable, 283

common denominator

applications, 292

examples, 293

marginals expressed as ratios, 291

common numerator

correlation coefficient, 295

marginals expressed as ratios, 295

general description, 280

generalized additive models, 285

Johnson and Tenebein: derivation, 285

Johnson and Tenebein: rank
correlations, 285

Lai’s structure mixture model:
correlation, 287

Lai’s structure mixture model:
derivation, 286

Lai’s structure mixture model:
marginal properties, 287

latent variables-in-common model, 287

Mathai and Moschopoulos’ bivariate
gamma, 286

Khintchine mixture

derivation, 297

exponential marginals, 297

normal marginals, 298

multiplicative trivariate reduction, 295

Bryson and Johnson, 296

Gokhale’s model, 296
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Ulrich’s model, 297
variates generation, 298

transformation involving minimum, 299

Wang’s bivariate exponential
infinitesimal generator, 427
joint density, 427
modeling procedure, 427

relations to other bivariate exponentials,
427

univariate properties, 427
Weighted linear combination bivariate

correlation coefficients, 290
derivation, 290
joint density, 290

Wesolowski’s Theorem, 258
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