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Preface to the Student Edition

The student edition of Modern Optical Spectroscopy includes a new set of exercises
for each chapter. The exercises and problems generally emphasize basic points,
and often include simplified absorption or emission spectra or molecular orbitals
that can be evaluated easily with the aid of a calculator or spreadsheet. Students
who are adept at computer programming will find it instructive to try to write
algorithms that also could be applied to larger, more complicated sets of data.
Spectra introduced in some of the problems for Chaps. 4 and 5 are used again
in later chapters to illustrate how quantities calculated from the spectra can be
applied to topics such as resonance energy transfer and exciton interactions.

Seattle, November, 2008 William W. Parson



Preface

This book began as lecture notes for a course on optical spectroscopy that I
taught for graduate students in biochemistry, chemistry, and our interdisciplinary
programs in molecular biophysics and biomolecular structure and design. I started
expanding the notes partly to try to illuminate the stream of new experimental
information on photosynthetic antennas and reaction centers, but mostly just for
fun. I hope that readers will find the results not only useful, but also as stimulating
as I have.

One of my goals has been to write in a way that will be accessible to readers
with little prior training in quantum mechanics. But any contemporary discus-
sion of how light interacts with molecules must begin with quantum mechanics,
just as experimental observations on blackbody radiation, interference, and the
photoelectric effect form the springboard for almost any introduction to quan-
tum mechanics. To make the reasoning as transparent as possible, I have tried to
adopt a consistent theoretical approach, minimize jargon, and explain any terms or
mathematical methods that might be unfamiliar. I have provided numerous figures
to relate spectroscopic properties to molecular structure, dynamics, and electronic
and vibrational wavefunctions. I also describe classical pictures in many cases and
indicate where these either have continued to be useful or have been supplanted by
quantum mechanical treatments. Readers with experience in quantum mechanics
should be able to skip quickly through many of the explanations, but will find that
the discussion of topics such as density matrices and wavepackets often progresses
well beyond the level of a typical 1-year course in quantum mechanics. I have tried
to take each topic far enough to provide a solid steppingstone to current theoretical
and experimental work in the area.

Although much of the book focuses on physical theory, I have emphasized
aspects of optical spectroscopy that are especially pertinent to molecular bio-
physics, and I have drawn most of the examples from this area. The book therefore
covers topics that receive little attention in most general books on molecular
spectroscopy, including exciton interactions, resonance energy transfer, single-
molecule spectroscopy, high-resolution fluorescence microscopy, femtosecond
pump–probe spectroscopy, and photon echoes. It says less than is customary
about atomic spectroscopy and about rotational and vibrational spectroscopy
of small molecules. These choices reflect my personal interests and the realiza-
tion that I had to stop somewhere, and I can only apologize to readers whose
selections would have been different. I apologize also for using work from my
own laboratory in many of the illustrations when other excellent illustrations of
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the same points are available in the literature. This was just a matter of conve-
nience.

I could not have written this book without the patient encouragement of my
wife Polly. I also have enjoyed many thought-provoking discussions with Arieh
Warshel, Nagarajan, Martin Gouterman, and numerous other colleagues and
students, particularly including Rhett Alden, Edouard Alphandéry, Hiro Arata,
Donner Babcock, Mike Becker, Bob Blankenship, Steve Boxer, Jacques Breton,
Jim Callis, Patrik Callis, Rod Clayton, Richard Cogdell, Tom Ebrey, Tom Engel,
Graham Fleming, Eric Heller, Dewey Holten, Ethan Johnson, Amanda Jonsson,
Chris Kirmaier, David Klug, Bob Knox, Rich Mathies, Eric Merkley, Don Midden-
dorf, Tom Moore, Jim Norris, Oleg Prezhdo, Phil Reid, Bruce Robinson, Karen
Rutherford, Ken Sauer, Dustin Schaefer, Craig Schenck, Peter Schellenberg, Avig-
dor Scherz, Mickey Schurr, Gerry Small, Rienk van Grondelle, Maurice Windsor,
and Neal Woodbury. Patrik Callis kindly provided the atomic coefficients used in
Chaps. 4 and 5 for the molecular orbitals of 3-methylindole. Any errors, however,
are entirely mine. I will appreciate receiving any corrections or suggestions for
improvements.

Seattle, October 2006 William W. Parson



Contents

1 Introduction 1
1.1 Overview................................................................................ 1
1.2 The Beer–Lambert Law ............................................................ 3
1.3 Regions of the Electromagnetic Spectrum ................................... 4
1.4 Absorption Spectra of Proteins and Nucleic Acids ........................ 6
1.5 Absorption Spectra of Mixtures ................................................. 8
1.6 The Photoelectric Effect ........................................................... 9
1.7 Techniques for Measuring Absorbance........................................ 10
1.8 Pump–Probe and Photon-Echo Experiments ............................... 13
1.9 Linear and Circular Dichroism .................................................. 15
1.10 Distortions of Absorption Spectra by Light Scattering

or Nonuniform Distributions of the Absorbing Molecules ............. 17
1.11 Fluorescence ........................................................................... 19
1.12 IR and Raman Spectroscopy...................................................... 24
1.13 Lasers .................................................................................... 25
1.14 Nomenclature ......................................................................... 26

2 Basic Concepts of Quantum Mechanics 29
2.1 Wavefunctions, Operators, and Expectation Values....................... 29

2.1.1 Wavefunctions ............................................................. 29
2.1.2 Operators and Expectation Values.................................... 30

2.2 The Time-Dependent
and Time-Independent Schrödinger Equations ............................ 36
2.2.1 Superposition States ...................................................... 41

2.3 Spatial Wavefunctions .............................................................. 42
2.3.1 A Free Particle .............................................................. 42
2.3.2 A Particle in a Box ......................................................... 43
2.3.3 The Harmonic Oscillator ............................................... 46
2.3.4 Atomic Orbitals ............................................................ 48
2.3.5 Molecular Orbitals......................................................... 51
2.3.6 Approximate Wavefunctions for Large Systems .................. 57

2.4 Spin Wavefunctions and Singlet and Triplet States ........................ 57
2.5 Transitions Between States: Time-Dependent Perturbation Theory . 65
2.6 Lifetimes of States and the Uncertainty Principle.......................... 68



X Contents

3 Light 73
3.1 Electromagnetic Fields ............................................................. 73

3.1.1 Electrostatic Forces and Fields......................................... 73
3.1.2 Electrostatic Potentials ................................................... 74
3.1.3 Electromagnetic Radiation ............................................. 76
3.1.4 Energy Density and Irradiance ........................................ 83
3.1.5 The Complex Electric Susceptibility and Refractive Index ... 90
3.1.6 Local-Field Correction Factors ........................................ 94

3.2 The Black-Body Radiation Law .................................................. 96
3.3 Linear and Circular Polarization ................................................ 98
3.4 Quantum Theory of Electromagnetic Radiation ........................... 100
3.5 Superposition States and Interference Effects in Quantum Optics ... 104
3.6 Distribution of Frequencies in Short Pulses of Light...................... 106

4 Electronic Absorption 109
4.1 Interactions of Electrons with Oscillating Electric Fields ............... 109
4.2 The Rates of Absorption and Stimulated Emission........................ 113
4.3 Transition Dipoles and Dipole Strengths ..................................... 118
4.4 Calculating Transition Dipoles for π Molecular Orbitals ................ 126
4.5 Molecular Symmetry and Forbidden and Allowed Transitions ....... 128
4.6 Linear Dichroism..................................................................... 142
4.7 Configuration Interactions........................................................ 148
4.8 Calculating Electric Transition Dipoles with the Gradient Operator 152
4.9 Transition Dipoles for Excitations to Singlet and Triplet States ....... 161
4.10 The Born–Oppenheimer Approximation, Franck–Condon Factors,

and the Shapes of Electronic Absorption Bands ........................... 163
4.11 Spectroscopic Hole-Burning...................................................... 171
4.12 Effects of the Surroundings on Molecular Transition Energies........ 174
4.13 The Electronic Stark Effect........................................................ 182

5 Fluorescence 189
5.1 The Einstein Coefficients .......................................................... 189
5.2 The Stokes Shift....................................................................... 192
5.3 The Mirror-Image Law ............................................................. 195
5.4 The Strickler–Berg Equation and Other Relationships

Between Absorption and Fluorescence........................................ 197
5.5 Quantum Theory of Absorption and Emission............................. 203
5.6 Fluorescence Yields and Lifetimes .............................................. 208
5.7 Fluorescent Probes and Tags...................................................... 214
5.8 Photobleaching ....................................................................... 218
5.9 Fluorescence Anisotropy........................................................... 219
5.10 Single-Molecule Fluorescence and High-Resolution Fluorescence

Microscopy............................................................................. 225
5.11 Fluorescence Correlation Spectroscopy ....................................... 231
5.12 Intersystem Crossing, Phosphorescence, and Delayed Fluorescence 238



Contents XI

6 Vibrational Absorption 241
6.1 Vibrational Normal Modes and Wavefunctions ............................ 241
6.2 Vibrational Excitation .............................................................. 247
6.3 IR Spectroscopy of Proteins....................................................... 253
6.4 Vibrational Stark Effects ........................................................... 256

7 Resonance Energy Transfer 259
7.1 Introduction ........................................................................... 259
7.2 The Förster Theory .................................................................. 261
7.3 Exchange Coupling .................................................................. 275
7.4 Energy Transfer to and from Carotenoids in Photosynthesis .......... 277

8 Exciton Interactions 281
8.1 Stationary States of Systems with Interacting Molecules ................ 281
8.2 Effects of Exciton Interactions on the Absorption Spectra

of Oligomers ........................................................................... 290
8.3 Transition-Monopole Treatments of Interaction Matrix Elements

and Mixing with Charge-Transfer Transitions .............................. 295
8.4 Exciton Absorption Band Shapes and Dynamic Localization

of Excitations .......................................................................... 298
8.5 Exciton States in Photosynthetic Antenna Complexes ................... 301
8.6 Excimers and Exciplexes........................................................... 304

9 Circular Dichroism 307
9.1 Magnetic Transition Dipoles and n–π∗ Transitions ....................... 307
9.2 The Origin of Circular Dichroism .............................................. 317
9.3 Circular Dichroism of Dimers and Higher Oligomers.................... 322
9.4 Circular Dichroism of Proteins and Nucleic Acids ........................ 328
9.5 Magnetic Circular Dichroism .................................................... 332

10 Coherence and Dephasing 335
10.1 Oscillations Between Quantum States of an Isolated System ........... 335
10.2 The Density Matrix .................................................................. 339
10.3 The Stochastic Liouville Equation .............................................. 344
10.4 Effects of Stochastic Relaxations on the Dynamics

of Quantum Transitions............................................................ 346
10.5 A Density-Matrix Treatment of Steady-State Absorption ............... 352
10.6 The Relaxation Matrix .............................................................. 355
10.7 More General Relaxation Functions and Spectral Lineshapes ......... 364
10.8 Anomalous Fluorescence Anisotropy.......................................... 370

11 Pump–Probe Spectroscopy, Photon Echoes,
and Vibrational Wavepackets 377
11.1 First-Order Optical Polarization ................................................ 377



XII Contents

11.2 Third-Order Optical Polarization
and Nonlinear Response Functions ............................................ 386

11.3 Pump–Probe Spectroscopy........................................................ 391
11.4 Photon Echoes ........................................................................ 395
11.5 Transient Gratings ................................................................... 401
11.6 Vibrational Wavepackets........................................................... 404
11.7 Wavepacket Pictures of Spectroscopic Transitions ........................ 413

12 Raman Scattering and Other Multiphoton Processes 417
12.1 Types of Light Scattering........................................................... 417
12.2 The Kramers–Heisenberg–Dirac Theory ..................................... 422
12.3 The Wavepacket Picture of Resonance Raman Scattering ............... 430
12.4 Selection Rules for Raman Scattering ......................................... 432
12.5 Surface-Enhanced Raman Scattering .......................................... 435
12.6 Biophysical Applications of Raman Spectroscopy ......................... 436
12.7 Coherent Raman Scattering....................................................... 437
12.8 Multiphoton Absorption........................................................... 439
12.9 Quasielastic (Dynamic) Light Scattering

(Photon Correlation Spectroscopy) ............................................ 442

Appendix 1 – Vectors 447

Appendix 2 – Matrices 451

Appendix 3 – Fourier Transforms 455

Appendix 4 – Fluorescence Phase Shift and Modulation 459

Appendix 5 – CGS and SI Units and Abbreviations 463

References 465

Exercises 505

Subject Index 523



1 Introduction

1.1
Overview

Because of their extraordinary sensitivity and speed, optical spectroscopic tech-
niques are well suited for addressing a broad range of questions in molecular and
cellular biophysics. Photomultipliers sensitive enough to detect a single photon
make it possible to measure the fluorescence from individual molecules, and lasers
providing light pulses with widths of less than 10−14 s can be used to probe molec-
ular behavior on the time scale of nuclear motions. Spectroscopic properties such
as absorbance, fluorescence, and linear and circular dichroism can report on the
identities, concentrations, energies, conformations, or dynamics of molecules and
can be sensitive to small changes in molecular structure or surroundings. Reso-
nance energy transfer provides a way to probe intermolecular distances. Because
they usually are not destructive, spectrophotometric techniques can be used with
samples that must be recovered after an experiment. They also can provide analyt-
ical methods that avoid the need for radioisotopes or hazardous reagents. When
combined with genetic engineering and microscopy, they provide windows to the
locations, dynamics, and turnover of particular molecules in living cells.

In addition to describing applications of optical spectroscopy in biophysics and
biochemistry, this book is about light and how light interacts with matter. These
are topics that have puzzled and astonished people for thousands of years, and
continue to do so today. To understand how molecules respond to light we first
must inquire into why molecules exist in well-defined states and how they change
from one state to another. Thinking about these questions underwent a series
of revolutions with the development of quantum mechanics, and today quantum
mechanics forms the scaffold for almost any investigation of molecular properties.
Although most of the molecules that interest biophysicists are far too large and
complex to be treated exactly by quantum mechanical techniques, their properties
often can be rationalized by quantum mechanical principles that have been refined
on simpler systems. We will discuss these principles in Chap. 2. For now, the most
salient points are just that a molecule can exist in a variety of states depending
on how its electrons are distributed among a set of molecular orbitals, and that
each of these states is associated with a definite energy. For a molecule with
2n electrons, the electronic state with the lowest total energy usually is obtained
when there are two electrons with antiparallel spins in each of the n lowest orbitals
and all the higher orbitals are empty. This is the ground state. In the absence of

William W. Parson, Modern Optical Spectroscopy,
DOI: 10.1007/978-3-540-37542-5, © Springer-Verlag 2009



2 1 Introduction

external perturbations, a molecule placed in the ground state will remain there
indefinitely.

Chapter 3 will discuss the nature of light, beginning with a classical description
of an oscillating electromagnetic field. Exposing a molecule to such a field causes
the potential energies of the electrons to fluctuate with time, so that the original
molecular orbitals no longer limit the possibilities. The result of this can be that
an electron moves from one of the occupied molecular orbitals to an unoccupied
orbital with a higher energy. Two main requirements must be met in order for
such a transition to occur. First, the electromagnetic field must oscillate at the
right frequency. The required frequency (ν) is

ν = ΔE/h , (1.1)

where ΔE is the difference between the energies of the ground and excited states
and h is Planck’s constant (6.63 × 10−34 J s, 4.12 × 10−15 eV s, or 3.34 × 10−11 cm−1 s).
This expression is in accord with our experience that a given type of molecule, or
a molecule in a particular environment, absorbs light of some colors and not of
others. In Chap. 4 we will see that the frequency rule emerges straightforwardly
from the classical electromagnetic theory of light, as long as we treat the absorbing
molecule quantum mechanically. It is not necessary at this point to use a quantum
mechanical picture of light.

The second requirement is perhaps less familiar than the first, and has to do with
the shapes of the two molecular orbitals and the disposition of the orbitals in space
relative to the polarization of the oscillating electrical field. The two orbitals must
have different geometrical symmetries and must be oriented in an appropriate
way with respect to the field. This requirement rationalizes the observation that
absorption bands of various molecules vary widely in strength. It also explains
why the absorbance of an anisotropic sample depends on the polarization of the
light beam.

The molecular property that determines both the strength of an absorption
band and the optimal polarization of the light is a vector called the transition
dipole, which can be calculated from the molecular orbitals of the ground and
the excited state. The square of the magnitude of the transition dipole is termed
the dipole strength, and is proportional to the strength of absorption. Chapter 4
develops these notions more fully and examines how they arise from the principles
of quantum mechanics. This provides the theoretical groundwork for discussing
how measurements of the wavelength, strength, or polarization of electronic ab-
sorption bands can provide information on molecular structure and dynamics. In
Chaps. 10 and 11 we extend the quantum mechanical treatment of absorption to
large ensembles of molecules that interact with their surroundings in a variety of
ways. Various types of vibrational spectroscopy are discussed in Chaps. 6 and 12.

A molecule that has been excited by light can decay back to the ground state by
several possible paths. One possibility is to reemit energy as fluorescence. Although
spontaneous fluorescence is not simply the reverse of absorption, it shares the same
requirements for energy matching and appropriate orbital symmetry. Again, the
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frequency of the emitted radiation is proportional to the energy difference between
the excited and ground states and the polarization of the radiation depends the
orientation of the excited molecule, although both the orientation and the energy
of the excited molecule usually change in the interval between absorption and
emission. As we will see in Chap. 7, the same requirements underlie another
mechanism by which an excited molecule can decay, the transfer of energy to
a neighboring molecule. The relationship between fluorescence and absorption is
developed in Chap. 5, where the need for a quantum theory of light finally comes
to the front.

1.2
The Beer–Lambert Law

A beam of light passing through a solution of absorbing molecules transfers energy
to the molecules as it proceeds, and thus decreases progressively in intensity. The
decrease in the intensity, or irradiance (I), over the course of a small volume element
is proportional to the irradiance of the light entering the element, the concentration
of absorbers (C), and the length of the path through the element (dx):

dI
dx

= −ε′I C . (1.2)

The proportionality constant (ε′) depends on the wavelength of the light and on
the absorber’s structure, orientation and environment. Integrating Eq. (1.2) shows
that if light with irradiance I0 is incident on a cell of thickness l, the irradiance of
the transmitted light will be

I = I0 exp(−ε′C l) = I0 10−εC l ≡ I0 10−A . (1.3)

Here A is the absorbance or optical density of the sample (A = εCl) and ε is called
the molar extinction coefficient or molar absorption coefficient (ε = ε′/ ln 10 =
ε′/2.303). The absorbance is a dimensionless quantity, so if C is given in units of
molarity (1 M = 1 mol l−1) and c in cm, ε must have dimensions of M−1 cm−1.

Equations (1.1) and (1.2) are statements of Beer’s law, or more accurately, the
Beer–Lambert law. Johann Lambert, a physicist, mathematician, and astronomer
born in 1728, observed that the fraction of the light that is transmitted (I/I0) is
independent of I0. Wilhelm Beer, a banker and astronomer who lived from 1797 to
1850, noted the exponential dependence on C.

In the classical electromagnetic theory of light, the oscillation frequency (ν) is
related to the wavelength (λ), the velocity of light in a vacuum (c), and the refractive
index of the medium (n) by the expression

ν = c/nλ . (1.4)

Light with a single wavelength, or more realistically, with a narrow band of wave-
lengths, is called monochromatic.
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The light intensity, or irradiance (I), in Eqs. (1.2) and (1.3) represents the flux
of radiant energy per unit cross-sectional area of the beam (joules per second
per square centimeter or watts per square centimeter). We usually are concerned
with the radiation in a particular frequency interval (Δν), so I has units of joules
per frequency interval per second per square centimeter. For a light beam with
a cross-sectional area of 1 cm2, the amplitude of the signal that might be recorded
by a photomultiplier or other detector is proportional to I(ν)Δν. In the quantum
theory of light that we will discuss briefly in Sect. 1.6 and at greater depth in
Chap. 3, intensities often are expressed in terms of the flux of photons rather
than energy (photons per frequency interval per second per square centimeter).
A beam with an irradiance of 1 W cm−2 has a photon flux of 5.05 × (λ/nm) × 1015

photons cm−2.
The dependence of the absorbance on the frequency of light can be displayed

by plotting A or ε as a function of the frequency (ν), the wavelength (λ), or the
wavenumber (ν). The wavenumber is simply the reciprocal of the wavelength in
a vacuum: ν = 1/λ = ν/c, and has units of cm−1. Sometimes the percentage of the
incident light that is absorbed or transmitted is plotted. The percentage absorbed
is 100 × (I0 − I)/I0 = 100 × (1 − 10−A), which is proportional to A if A � 1.

1.3
Regions of the Electromagnetic Spectrum

The regions of the electromagnetic spectrum that will be most pertinent to our
discussion involve wavelengths between 10−9 and 10−2 cm. Visible light fills only
the small part of this range between 3 × 10−5 and 8 × 10−5 cm (Fig. 1.1). Transitions
of bonding electrons occur mainly in this region and the neighboring UV region;
vibrational transitions occur in the IR. Rotational transitions are measurable in the
far-IR region in small molecules, but in macromolecules these transitions are too
congested to resolve. Radiation in the X-ray region can cause transitions in which
1s or other core electrons are excited to atomic 3d or 4f shells or are dislodged
completely from a molecule. These transitions can report on the oxidation and
coordination states of metal atoms in metalloproteins.

The inherent sensitivity of absorption measurements in different regions of the
electromagnetic spectrum decreases with increasing wavelength because, in the
idealized case of a molecule that absorbs and emits radiation at a single frequency,
it depends on the difference between the populations of molecules in the ground
and excited states. If the two populations are the same, radiation at the resonance
frequency will cause upward and downward transitions at the same rate, giving
a net absorbance of zero. At thermal equilibrium, the fractional difference in the
populations is given by

(Ng − Ne)

(Ng + Ne)
=

[
1 − (Se/Sg) exp(−ΔE/kBT)

]

[
1 + (Se/Sg) exp(−ΔE/kBT)

] ≈ [1 − exp(−hν/kBT)]
[1 + exp(−hν/kBT)]

, (1.5)
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Fig. 1.1. Regions of the electromagnetic spectrum. The upper spectrum shows the visible,
UV, and near-IR regions on a linear wavelength scale. More extended spectra are shown on
logarithmic wavelength, wavenumber, frequency, and energy scales

where Se/Sg is an entropic (degeneracy) factor (1 for a system with only two states),
kB is the Boltzmann constant (0.69502 cm−1 K−1), and T is the temperature. At
room temperature (kBT ≈ 200 cm−1), (Ng − Ne)/(Ng + Ne) is essentially 1 for an
electronic transition with λ = 500 nm [hν = ν = 2 × 104 cm−1, exp(−hν/kBT) ≈
exp(−100) ≈ 10−43], compared with only 1 part in 104 for a proton magnetic
transition in a 600-MHz spectrometer [λ = 50 cm, ν = 0.02 cm−1, exp(−hν/kBT) ≈
e−0.00010 ≈ 0.99990]. The greater specificity of NMR of course often compensates
for the lower sensitivity.
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1.4
Absorption Spectra of Proteins and Nucleic Acids

Most of the absorbance of proteins in the near-UV region between 250 and 300 nm
is due to the aromatic amino acids, particularly tyrosine (Wetlaufer 1962; Pace
et al. 1995). Figure 1.2 shows the absorption spectra of tyrosine, phenylalanine,
and tryptophan in solution, and Table 1.1 gives the absorption maxima (λmax) and
the peak molar extinction coefficients (εmax). Although tryptophan has a larger
extinction coefficient than phenylalanine or tyrosine, it makes only a minor contri-
bution to the absorbance of most proteins because of its lower abundance. Cystine
disulfide groups have a weak absorption band in the region of 260 nm, which shifts
to longer wavelengths as the C–S–S–C dihedral angle is twisted away from 90◦
(Boyd 1972). At shorter wavelengths, most of the absorbance of proteins comes
from the peptide backbone. The −C(O) − N(H)− group has absorption bands near
190 and 215 nm with peak extinction coefficients of about 7,000 and 100 M−1 cm−1,
respectively. The stronger band represents a π–π∗ transition, in which an electron
is excited from a π (bonding) molecular orbital to a π∗ (antibonding) orbital; the
weaker band comes from an n–π∗ transition, in which a nonbonding electron of
the oxygen atom is promoted to a π∗ orbital.

In addition to containing phenylalanine, tyrosine, and tryptophan, many pro-
teins bind small molecules that absorb in the UV or visible regions of the spectrum.
NADH, for example, absorbs at 340 nm; flavins, in the region of 400 nm. Hemes
have strong absorption bands between 410 and 450 nm and weaker bands between
550 and 600 nm.

The common purine and pyrimidine bases all absorb in the region of 260 nm,
and the absorption spectra of the nucleosides and nucleotides are similar to those

Fig. 1.2. Absorption spectra of phenylalanine (F), tyrosine (Y), and tryptophan (W) in 0.1 M
phosphate buffer, pH 7. The spectrum of phenylalanine is shown on an expanded scale on
the right. (The data are from a library of spectra measured by Lindsey and coworkers (Du
et al. 1998; Dixon et al. 2005))
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Table 1.1. Absorption maxima and peak molar extinction coefficients of amino acids,
purines, and pyrimidines in aqueous solution

Absorber λmax (nm)a εpeak (M−1 cm−1)a ε280 (M−1 cm−1)b

Tryptophan 278 5,580 5,500
Tyrosine 274 1,405 1,490
Cystine – – 125
Phenylalanine 258 195

Adenine 261 13,400
Guanine 273 13,150
Uracil 258 8,200
Thymine 264 7,900
Cytosine 265 4,480
a0.1 M phosphate buffer, pH 7.0. From Fasman (1976)
bBest fit of values for 80 folded proteins in water. From Pace et al. (1995)

of the free bases (Fig. 1.3a, Table 1.1). However, the absorbance of double-stranded
DNA in the region of 260 nm is 30–40% smaller than the sum of the absorbances
of the individual bases (Fig. 1.3b). Single-stranded DNA gives an intermediate
absorbance. As we will discuss in Chap. 8, this hypochromism results from elec-
tronic coupling of the individual nucleotides in the nucleic acid. The excited states
of the oligomer include contributions from multiple nucleotides, with the result
that some of the absorption strength moves from the near-UV region to shorter
wavelengths. Polypeptides show similar effects: the absorbance of an α-helix near
200 nm is lower than that of a random coil or β-sheet.

Fig. 1.3. a Absorption spectra of 2′-deoxyadenosine (dA), 2′-deoxyguanosine (dG), 2′-
deoxyuridine (dU) and 2′-deoxycytidine (dC) at pH 7.1 b Absorption spectra of Escherichia
coli DNA at 25 ◦C (double-stranded DNA, ds-DNA) and 82 ◦C (single-stranded DNA, ss-
DNA), and at 25 ◦C after enzymatic digestion (nucleotides). E. coli DNA is double-stranded
at 25 ◦C and single-stranded at 82 ◦C; enzymatic digestion yields the component nucleotides.
(The data in b are from Voet et al. 1963.)
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1.5
Absorption Spectra of Mixtures

An important corollary of the Beer–Lambert law (Eq. (1.1)) is that the absorbance
of a mixture of noninteracting molecules is just the sum of the absorbances of
the individual components. This means that the absorbance change resulting from
a change in the concentration of one of the components is independent of the
absorbance due to the other components. In principle, we can determine the
concentrations of all the components by measuring the absorbance of the solution
at a set of wavelengths where the molar extinction coefficients of the components
differ. The concentrations (Ci) are obtained by solving the simultaneous equations

ε1(λ1)C1 + ε2(λ1)C2 + ε3(λ1)C3 + · · · = Aλ1/l
ε1(λ2)C1 + ε2(λ2)C2 + ε3(λ2)C3 + · · · = Aλ2/l (1.6)

ε1(λ3)C1 + ε2(λ3)C2 + ε3(λ3)C3 + · · · = Aλ3/l
· · · ,

where εi(λa) and Aλa are the molar extinction coefficient of component i and the
absorbance of the solution at wavelength λa, and l again is the optical path length.
(A method for solving such a set of equations is given in Box 8.1.) The concentra-
tions are completely determined when the number of measurement wavelengths is
the same as the number of components, as long as the extinction coefficients of the
components differ significantly at each wavelength. Measurements at additional
wavelengths can be used to increase the reliability of the results. The best way to
calculate the concentrations then probably is to use singular-value decomposition
(Press et al. 1989).

Although two chemically distinct molecules usually have characteristically dif-
ferent absorption spectra, their extinction coefficients may be identical at one or
more wavelengths. In the notation used above, εi(λa) and εj(λa) (the extinction co-
efficients of components i and j at wavelength a) may be the same (Fig. 1.4a). Such
a wavelength is termed an isosbestic point. If we change the ratio of the concentra-
tions Ci and Cj in a solution, the absorbance at the isosbestic points will remain
constant (Fig. 1.4b). If the solution contains a third component (k) we might have
εi(λb) = εk(λb) and εj(λc) = εk(λc) at two other wavelengths (b and c), but it would
be unlikely for all three components to have identical extinction coefficients at
any wavelength. Thus, if we have a solution containing an unknown number of
components and the absorption spectrum of the solution changes as a function
of a parameter such as pH, temperature, or time, the observation of an isosbestic
point indicates that the absorbance changes probably reflect changes in the ratio
of only two components. The reliability of this conclusion increases if there are
two isosbestic points.

Protein concentrations often are estimated from the absorbance at 280 nm,
where the only amino acids that absorb significantly are tryptophan, tyrosine, and
cystine (Table 1.1). The molar extinction coefficient of a protein at this wavelength
is given by ε280 ≈ 5,500 × W + 1,490 × Y + 125 × CC M−1 cm−1, where W, Y, and CC
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Fig. 1.4. Absorption spectra of two species that have the same extinction coefficient at 333 nm
(a) and of mixtures of the same two components in molar ratios of 1:3, 1:1, and 3:1 (b). Note
that the total absorbance at the isosbestic point (333 nm) is constant

are the numbers of tryptophan, tyrosine, and cystine residues in the protein (Pace
et al. 1995).

1.6
The Photoelectric Effect

Ejection of electrons from a solid surface exposed to radiation is called the photo-
electric effect. The electrons that are released are called photoelectrons. In a land-
mark paper, Einstein (1905) pointed out three key features of the effect: (1) photo-
electrons are released only if the frequency of the radiation (ν) exceeds a certain
minimum (ν0) that is characteristic of the solid material (Fig. 1.5); (2) the kinetic
energy of the departing photoelectrons is proportional to (ν − ν0); and (3) the
process appears to occur instantaneously, even at low light intensities. These ob-
servations suggested that electromagnetic radiation has a particulate nature, and
that each particle bears a definite amount of energy that is proportional to ν

(Eq. (1.1)). G.N. Lewis (1926) coined the term photon for such a particle from the
Greek word phos for “light.” The first two observations mentioned above can be
explained by noting that dislodging an electron from a solid requires a certain
minimum amount of energy that depends on the composition of the solid and
is analogous to the ionization energy of a molecule. If the photon’s energy ex-
ceeds this threshold, the photon is absorbed and all its energy is transferred to
the solid and the departing electron. The instantaneous nature of photoejection
(observation 3) indicates that the process involves an all-or-nothing absorption of
an individual photon, rather than a gradual accumulation of energy over a period
of time. The all-or-nothing nature of the effect is difficult to explain by the classical
electromagnetic theory of light, in which the energy depends on the square of
the electromagnetic field and varies continuously as a function of the distance
from the light source. In the quantum picture of light suggested by Einstein, the
square of the electromagnetic field strength is a measure of number of photons
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Fig. 1.5. Some materials release electrons when
they are struck by electromagnetic radiation
with a frequency (ν) greater than a threshold
value that depends on the material, as shown
here schematically for two different materials
(curves 1 and 2). Above the threshold, the kinetic
energy of the photoelectrons increases linearly
with ν. Inhomogeneity in the material can cause
a slight curvature of the plots near the threshold

per unit volume. The photon density looks like a continuous variable at high light
intensities, but varies discontinuously at very low intensities.

Einstein, who was 25 at the time, introduced the theories of special relativity and
Brownian motion the same year. He received the Nobel prize for his explanation
of the photoelectric effect, but later expressed serious doubts about the existence
of photons.

1.7
Techniques for Measuring Absorbance

Light intensities can be measured with a photomultiplier, which is a vacuum tube
with a negatively charged plate or surface (the cathode or photocathode) that re-
leases photoelectrons when it absorbs photons (Fig. 1.6). The cathode is coated
with a material that responds to light over a broad range of frequencies, and as
explained in the previous section, the departing photoelectron acquires a kinetic
energy equal to the difference between the photon energy at a particular fre-
quency (hν) and the minimum energy needed to dislodge the electron (hν0). The
photoelectron is accelerated by an electric field in the tube and is drawn to a second
coated plate (a dynode). Here the kinetic energy released upon impact dislodges
several new electrons. These electrons are accelerated toward a second dynode,
where they dislodge additional electrons. Repeated amplification steps over a series
of six to 14 stages can give an overall current amplification of 106 –108, depending

Fig. 1.6. A photomultiplier tube. Pins at the base of the tube provide a negative electrical
potential at the cathode relative to the anode, and intermediate potentials along the chain
of dynodes
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on the design of the tube and the voltage applied to the chain of dynodes. At the
final dynode (the anode) the current is passed to an amplifier and recorded either
as a continuous signal or as a pulse that is registered digitally.

Photomultipliers are remarkably linear over many orders of magnitude of light
intensity; however, they are best suited for very low light intensities. They typically
have quantum efficiencies on the order of 0.25, which means that about 25% of the
photons striking the cathode give rise to current pulses at the anodes. The response
saturates at high light intensities because depletion of electrons raises the electric
potential on the cathode. Cathodes coated with GaAs and related materials have
higher quantum efficiencies and cover exceptionally broad spectral ranges, but are
less robust than most other commonly used materials.

The time resolution of a photomultiplier is limited mainly by the variations
in the paths that electrons take in reaching the anode. Because of the spread in
transit times, the anode pulse resulting from the absorption of a single photon
typically has a width on the order of 10−9 –10−8 s. The spread of transit times is
smaller in microchannel plate photomultipliers, which work on the same principles
as ordinary photomultipliers except that the electronic amplification steps occur
along the walls of small capillaries. The anode pulse width in a microchannel plate
detector can be as short as 2 × 10−11 s. Light intensities also can be measured with
photodiodes made from silicon, germanium, or other semiconductors. These de-
vices have junctions between regions (N and P) that are doped with other elements
to give an excess of either electrons or holes, respectively. In the dark, electrons
diffuse from the N to the P region and holes diffuse in the opposite direction, cre-
ating an electric field across the junction. Absorption of light separates additional
electron–hole pairs, which diffuse in the directions dictated by the electric field
and create a flow of current across the device. Silicon photodiodes have quantum
efficiencies of about 80% and function well at comparatively high light intensities.
Their time resolution usually is on the order of 10−9 –10−8 s, but can be about
10−11 s in diodes with very small active areas.

A spectrophotometer for measuring absorption spectra typically includes a con-
tinuous light source, a monochromator for dispersing the white light and selecting
a narrow band of wavelengths, and a chopper for separating the light into two beams
(Fig. 1.7). One beam passes through the specimen of interest; the other through
a reference (blank) cuvette. The intensities of the two beams are measured with
a photomultiplier or other detector, and are used to calculate the absorbance of the
sample as a function of wavelength [ΔA = log10(I0/Is) − log10(I0/Ir) = log10(Ir/Is),
where I0, Is, and Ir are the incident light intensity and the intensities of the light
transmitted through the specimen and reference, respectively]. The measurement
of the reference signal allows the instrument to discount the absorbance due to
the solvent and the walls of the cuvette. Judicious choice of the reference also can
minimize errors resulting from the loss of light by scattering from turbid samples.

The conventional spectrophotometer sketched in Fig. 1.7 has several limitations.
First, the light reaching the detector at any given time covers only a narrow band
of wavelengths. Because a grating, prism, or mirror in the monochromator must
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Fig. 1.7. Elements of a spectrophotometer. The light chopper typically is a spinning mir-
ror with sectors that alternately transmit and reflect the beam, so that the photodetector
alternately registers the intensities of light beams passing through the sample or the refer-
ence cuvette. The monochromator sketched here consists of a rotatable diffraction grating
(shaded), two curved mirrors, two planar mirrors, and entrance and exit slits for adjusting
the spectral resolution. PD photodetector (photomultiplier or photodiode)

be rotated to move this window across the spectral region of interest, acquisition
of an absorption spectrum typically takes several minutes, during which time
the sample may change. In addition, narrowing the entrance and exit slits of the
monochromator to improve the spectral resolution decreases the amount of light
reaching the photomultiplier, which makes the signal noisier. Although the signal-
to-noise ratio can be improved by averaging the signal over longer periods of time,
this further slows acquisition of the spectrum. These limitations are surmounted
to some extent in instruments that use photodiode arrays to detect light at many
different wavelengths simultaneously.

The difficulties mentioned above also can be overcome by a Fourier transform
technique that is especially useful for IR spectroscopy. In a Fourier transform IR
(FTIR) spectrometer, radiation from an IR source is split into two beams that ulti-
mately are recombined and focused on the detector (Fig. 1.8). The detector senses
light covering a broad band of wavelengths. If the two beams traverse different
optical path lengths, their contributions to the radiation field at the detector will
interfere constructively or destructively depending on the wavelength and the path
difference, ΔL. The length of one of the paths in the spectrometer is modulated
by moving a mirror forward and backward over a distance of several centime-
ters, causing the signal registered by the detector to oscillate. If the radiation were
monochromatic, a plot of the signal intensity versusΔL (an interferogram) would be
a sinusoidal function with a period determined by the wavelength of the light; with
broadband radiation, the interferogram includes superimposed oscillations with
many different periods. The spectrum of the radiation can be calculated by taking
a Fourier transform of the interferogram. (See Appendix 3 for an introduction to
Fourier transforms.) When a specimen that absorbs radiation at a particular wave-
length is placed in the beam, the corresponding oscillations in the interferogram
are attenuated. The absorption spectrum is calculated as A(ν) = log10[Sr(ν)/Ss(ν)],
where Ss(ν) and Sr(ν) are the Fourier transforms of interferograms obtained with
and without the sample in the beam.
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Fig. 1.8. Elements of a Fourier transform IR spectrometer. Radiation from the IR source is
collimated by a spherical mirror and then split into two beams by a partially silvered mirror
(center). The beams are reflected by planar mirrors and are recombined after they pass
through the sample. Moving one of the planar mirrors back and forth as indicated by the
double arrow changes the length of one of the optical paths

FTIR spectrometers have another advantage in addition to faster data acquisi-
tion and an improved signal-to-noise ratio: the wavelength scale can be calibrated
very accurately by replacing the IR source by a laser with a sharp emission line.
A He–Ne laser, which emits at 632.8 nm, is often used for this purpose. The accu-
rate calibration makes it possible to measure small shifts in spectra measured with
different samples, such as materials enriched in 13C, 15N, or 18O. In addition, any
stray light that reaches the detector without passing through the interferometer
causes relatively little error in an FTIR spectrometer because the signal resulting
from this light is not correlated with ΔL. This feature makes FTIR spectrometers
well suited for measuring absorption spectra of samples that transmit only a small
fraction of the incident light.

Sections 1.8, 1.10, and 11.5 describe several other ways of measuring absorption
spectra when more conventional approaches are inadequate. Absorption spectra
also can be obtained indirectly by measuring fluorescence (Sect. 1.11, Chap. 5)
or other processes that result from the excitation. In a classic example of this
approach, Otto Warburg discovered that cytochrome c oxidase was a hemoprotein
by inhibiting respiration with carbon monoxide and measuring photochemical
reversal of the inhibition by light of various wavelengths. The resulting “action
spectrum” gave the absorption spectrum of the heme bound to the protein.

1.8
Pump–Probe and Photon-Echo Experiments

Optical delay techniques can be used to probe absorbance changes with very high
time resolution in systems that react chemically or relax structurally when they are
excited with light. Biophysical examples include the structural changes that occur
in myoglobin or cytochrome c oxidase following photodissociation of bound CO,
the isomerization and subsequent structural excursions induced by illumination
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of rhodopsin, bacteriorhodopsin, or phytochrome, and the light-driven electron-
transfer reactions of photosynthesis. A short “pump” pulse excites the reactive
system, and the absorbance is examined as a function of time by measuring the
transmitted intensity of a second (“probe”) pulse. To control the timing of the
two pulses, one of the pulses is sent over a path whose length is adjusted by
moving a mirror on a translation stage (Fig. 1.9). Because light moves through
air at 3 × 1010 cm s−1, changing the path length by 1 cm changes the delay time by
0.33 × 10−10 s. The time resolution in this technique is determined mainly by the
widths of the excitation and probe pulses, which can be less than 10−14 s. If the
probe pulse includes light over a broad range of frequencies and a monochromator
is used to disperse the transmitted probe pulse onto an array of photodiodes,
a full spectrum of the absorbance changes can be captured after each excitation.
However, such measurements usually are averaged over many pairs of pump and
probe pulses to increase the signal-to-noise ratio.

Similar experimental techniques make it possible to study the coherence of
members of an ensemble of molecules. If many of the molecules interact with
a pulse of light during the same short interval of time, the ensemble initially will
have some “memory” of this event, but the memory will fade with time as a result
of random thermal interactions of the molecules with their surroundings. The
molecules might, for example, undergo particular vibrational motions in unison
at short times after the pulse, but vibrate with random phases at later times. The
rate at which the ensemble loses such coherence provides information on the
dynamics and strength of the interactions with the surroundings. In Chap. 11, we
will discuss photon-echo experiments, in which a series of short pulses are used to
create coherence and then partially regenerate it at later times.

Fig. 1.9. Absorbance changes can be measured with high time resolution by exciting a sample
with a short “pump” pulse from a laser and measuring the transmission of a “probe”
pulse that passes through the sample after an adjustable delay. The pump beam usually is
interrupted periodically by a chopper, and the difference between the amplitudes of the
transmitted probe beam with and without the pump light is averaged over a large number
of pulses. The apparatus often includes additional lasers or optical devices for generating
probe beams with various wavelengths or polarizations
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1.9
Linear and Circular Dichroism

We mentioned earlier that absorption of light by a molecule requires that the
oscillating electromagnetic field be oriented in a particular way relative to the
molecular axes. The absorbance is proportional to cos2 θ, where θ is the angle
between the electric field and the molecule’s transition dipole. Linear dichroism is
the dependence of absorption strength on the linear polarization of the light beam
relative to a macroscopic “laboratory” axis. Molecules in solution usually do not
exhibit linear dichroism because the individual molecules are oriented randomly
relative to the laboratory axes. However, proteins and other macromolecules often
can be oriented by flow through a fine tube, or by compression or stretching of
samples embedded in gels such as polyacrylamide or polyvinyl alcohol. Membranes
can be oriented by magnetic fields or by drying in multiple layers on a glass
slide. The linear dichroism of such samples can be measured with a conventional
spectrophotometer equipped with a polarizing filter that is oriented alternately
parallel and perpendicular to the orientation axis of the sample.

Isotropic (disordered) samples often can be made to exhibit a transient linear
dichroism (induced dichroism) by excitation with a polarized flash of light, because
the flash selectively excites those molecules that happen to be oriented in a par-
ticular way at the time of the flash. The decay kinetics of the induced dichroism
provides information on the rotational dynamics of the molecule. Such measure-
ments are useful for exploring the disposition and rotational mobility of small
chromophores (light-absorbing molecules or groups) bound to macromolecules
or embedded in membranes, and for dissecting absorption spectra of complex sys-
tems containing multiple interacting pigments. We will discuss linear dichroism
further in Chap. 4.

A beam of light also can be circularly polarized, which means that the orien-
tation of the electric field at a given position along the beam rotates with time.
The rotation frequency is the same as the classical oscillation frequency of the
field (ν), but the direction of the rotation can be either clockwise or counterclock-
wise from the perspective of an observer looking into the oncoming beam. These
directions correspond to left- and right-handed screws, and are called “left” and
“right” circular polarization, respectively. Many natural materials exhibit differ-
ences between their absorbance of left and right circularly polarized light. This
is circular dichroism. The effect typically is small (about 1 part in 104), but can
be measured by using an electro-optic modulator to switch the measuring beam
rapidly back and forth between right and left circular polarization. A phase- and
frequency-sensitive amplifier is used to extract the small oscillatory component of
the light beam transmitted through the sample.

Because it represents the difference between two absorption strengths, circu-
lar dichroism can be either positive or negative. It differs in this respect from
the ordinary absorbance of a sample, which is always positive. Its magnitude is
expressed most directly by the difference between the molar extinction coeffi-
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cients for left and right circularly polarized light (Δε = εleft − εright in units of
M−1 cm−1); however, for historical reasons circular dichroism often is expressed
in angular units (ellipticity or molar ellipticity), which relate to the elliptical po-
larization that is generated when a beam of linearly polarized light is partially
absorbed.

In order to exhibit circular dichroism, the absorbing molecule must be distin-
guishable from its mirror image. Proteins and nucleic acids generally meet this
criterion. As mentioned earlier in connection with hypochromism, their UV ab-
sorption bands represent coupled transitions of multiple chromophores (peptide
bonds or purine and pyrimidine bases), which are arranged stereospecifically with
respect to each other. The arrangement of the peptide bonds in a right-handed
α-helix, for example, is distinguishable from that in a left-handed α-helix. Such
oligomers can have relatively strong circular dichroism even if the individual units
have little or none (Tinoco 1961). Circular dichroism thus provides a convenient
and sensitive way to probe secondary structure in proteins, nucleic acids, and
multimolecular complexes (Greenfield and Fasman 1969; Johnson and Tinoco
1972; Brahms et al. 1977). Figure 1.10 shows typical circular dichroism spectra of
polypeptides in α-helical and β conformations. The α-helix has a positive band
near 195 nm and a characteristic pair of negative bands near 210 and 220 nm;
the β-sheet has a weaker positive band near 200 nm and a solitary negative band
around 215 nm. In Chap. 9, we will see that circular dichroism arises from interac-
tions of the absorber with both the magnetic and the electric fields of the incident
radiation and we will discuss how its magnitude depends on the geometry of the
system.

Fig. 1.10. Typical circular dichroism spectra of a polypeptide in α-helical and antiparallel
β-sheet conformations
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1.10
Distortions of Absorption Spectra by Light Scattering
or Nonuniform Distributions of the Absorbing Molecules

Absorption spectra of suspensions of cells, organelles, or large molecular com-
plexes can be distorted severely by light scattering. Scattering results from inter-
ference between optical rays that pass through or by the suspended particles, and
it becomes increasingly important when the physical dimensions of the particles
approach the wavelength of the light. Its hallmark is a baseline that departs from
zero outside the true absorption bands of the material and that rises with decreas-
ing wavelength. Light that is scattered by more than a certain angle with respect
to the incident beam misses the detector and registers as an apparent absorbance.
The effect is greatest if the spectrophotometer has a long distance between the
sample and the detector. There are several ways to minimize this distortion. One is
to use an integrating sphere, a device designed to make the probability of reaching
the detector relatively independent of the angle at which light leaves the sample.
This can be achieved by placing the specimen in a chamber with white walls and
positioning the detector behind a baffle so that light reaches the detector only after
bouncing off the walls many times (Fig. 1.11).

An integrating sphere also can be made by lining the walls with a large number
of photodiodes. In some cases light scattering can be decreased by fragmenting the
offending particles or by increasing the refractive index of the solvent by the addi-
tion of a substance such as albumen. Mathematical corrections for scattering can
be made if the absorption spectrum is measured with the sample placed at several
different distances from the detector (Latimer and Eubanks 1962; Naqvi et al. 1997).

Absorption spectra of turbid materials and even of specimens as dense as
intact leaves or lobster shells also can be measured by photoacoustic spectroscopy.
A photoacoustic spectrometer measures the heat that is dissipated when a sample
is excited by light and then decays nonradiatively back to the ground state. In

Fig. 1.11. An integrating sphere. The square in the middle represents a cuvette containing
a turbid sample (S). Transmitted and scattered light reach the detector after many bounces
off the white walls of the chamber. A baffle blocks the direct path to the detector. In one
design (Kramer and Sacksteder 1998), the light passes through separate integrating spheres
before and after the sample
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a typical design, release of heat causes a gas or liquid surrounding the sample to
expand and the expansion is detected by a microphone. Such measurements can
be used to study intermolecular energy transfer and volume changes that follow
the absorption of light, in addition to the absorption itself (Ort and Parson 1978;
Arata and Parson 1981; Braslavsky and Heibel 1992; Feitelson and Mauzerall 1996;
Sun and Mauzerall 1998).

A different type of distortion occurs if the absorbing molecules are not dispersed
uniformly in the solution, but rather are sequestered in microscopic domains such
as cells or organelles (Duysens 1956; Latimer and Eubanks 1962; Pulles et al. 1976;
Naqvi et al. 1997). Figure 1.12 illustrates the problem. Because the light intensity
decreases as a beam of light traverses a domain that contains absorbers, molecules
at the rear of the domain are screened by molecules toward the front and have
less opportunity to contribute to the total absorbance. If light beams passing
through different regions of the sample encounter significantly different numbers
of absorbers, the measured absorption band will be flattened compared with the
band that would be observed for a uniform solution. Mathematical corrections
for this effect can be applied if the size and shape of the microscopic domains is
known (Duysens 1956; Latimer and Eubanks 1962; Pulles et al. 1976; Naqvi et al.,
1997). Alternatively, a comparison of the spectra before and after the absorbing
molecules are dispersed with detergents can be used to estimate the size of the
domains. However, the latter procedure assumes that dispersing the molecules
does not affect their intrinsic absorbance. In Chap. 8 we will show that molecular
interactions can make the spectroscopic properties of an oligomer intrinsically
very different from the properties of the individual subunits.

It is interesting to note in passing that frogs, octopi, and some other animals
use the spectral flattening effect to change their appearance. They appear dark
when pigmented cells in their skin spread out to cover the surface more or less
uniformly, and pale when the cells clump together.

Fig. 1.12. The absorbance of a macroscopic sample depends on how the absorbing materials
are distributed. The boxes represent small volume elements; the shaded objects are absorbing
molecules. The overall concentration of absorbers is 0.5 per unit volume in both A and B.
If the light intensity incident on a volume element is I0, the intensity transmitted by the
element can be written I1 = κI0, where 0 < κ < 1 if the element contains an absorber
and κ = 1 if it does not. In the arrangement shown in A, light beams that pass through the
specimen in different places encounter the same number of absorbers. The light transmitted
per unit area is I1 = κI0. In B, the two beams encounter different numbers of absorbers.
Here the light transmitted per unit area is (I2 + I0)/2 = (κ2I0 + I0)/2. The difference (B − A)
is (κ2I0 + I0 − 2κI0)/2 = I0(κ − 1)2/2, which is greater than zero
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Deviations from Beer’s law also can arise from a concentration-dependent equi-
librium between different chemical species, or from changes in the refractive index
of the solution with concentration. Instrumental nonlinearities or noise may be
significant if the concentration of the absorber is too high or too low.

1.11
Fluorescence

When they are excited in the near UV, the tryptophan residues of many proteins flu-
oresce in the region of 340 nm. The emission peak varies from about 308 to 355 nm
depending on the environment in the protein. The fluorescence emission spectra
of tryptophan, tyrosine, and phenylalanine in solution are shown in Fig. 1.13.
Although tyrosine fluoresces strongly in solution, the fluorescence from tyrosine
and phenylalanine in proteins usually is very weak, in part because the excita-
tion energy can transfer to tryptophans. Most purines and pyrimidines also do
not fluoresce strongly, but the unusual nucleotide pyrimidine base found in yeast
phenylalanine transfer RNA is highly fluorescent. Flavins and pyridine nucleotides
have characteristic fluorescence that provides sensitive assays of their oxidation
states: the reduced pyridine nucleotides (NADH and NADPH) fluoresce around
450 nm, while the oxidized forms are nonfluorescent; the oxidized flavin coen-
zymes (flavin mononucleotide and flavin adenine dinucleotide) fluoresce, while
their reduced forms do not. A large variety of fluorescent dyes have been used to
label proteins or nucleic acids. These include fluorescein, rhodamine, dansyl chlo-
ride, naphthylamine, and ethenoATP. Proteins also can be labeled by fusing them
genetically with green fluorescent protein, a protein with a remarkable, built-in
chromophore formed by spontaneous cyclization and oxidation of a Ser-Tyr-Gly
sequence.

Fluorescence excitation and emission spectra like those shown in Fig. 1.13 usu-
ally are measured by using two monochromators, one between the excitation light
source and the sample and the other between the sample and the photodetector

Fig. 1.13. Fluorescence emission spectra
of tryptophan (W), tyrosine (Y), and
phenylalanine (F) in aqueous solution.
Tryptophan was excited at 270 nm,
tyrosine at 260 nm, and phenylalanine at
240 nm. The spectra are scaled so that the
areas under the curves are proportional
to the fluorescence quantum yields. The
measured quantum yields are 0.12 for
tryptophan, 0.13 for tyrosine, and 0.022
for phenylalanine (Chen 1972) (The
spectra are from Du et al. 1998 and
Dixon et al. 2005)
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Fig. 1.14. Components of a fluorometer. The emission usually is collected at 90◦ with respect
to the excitation to minimize spurious signals from transmitted or scattered excitation light.
A portion of the excitation beam is split off and measured by a reference photodetector so
that the excitation intensity can be held constant as the wavelength is varied. S sample, PD
photodetector

(Fig. 1.14). For a molecule with a single chromophore, the excitation spectrum usu-
ally is similar to a spectrum of (1 − T), where T is the fraction of the incident light
that is transmitted (T = I/I0 = 10−A). The emission spectrum is shifted to longer
wavelengths because the excited molecule transfers a portion of its energy to the
surroundings as heat before it fluoresces. We will discuss this relaxation in Chaps. 5
and 10. Accurate measurements of a fluorescence excitation or emission spectrum
require the sample to be sufficiently dilute so that only a negligible fraction of the
incident or emitted light is absorbed. An emission spectrum also requires correc-
tions for the wavelength dependence of the sensitivity of the photomultiplier and
other components of the fluorometer; these corrections can be made by measuring
the apparent emission spectrum of a lamp with a known temperature (Chap. 3).

The fluorescence yield is the fraction of the excited molecules that decay by
emitting fluorescence. This is measured most easily by comparing the integrated
intensity of the emission spectrum with that obtained from a sample whose fluo-
rescence yield is known. Standards with yields close to 100% are available for such
measurements (Chen 1972). Fluorescence yields also can be determined by com-
paring the fluorescence with the intensity of the light that is scattered by a turbid
sample (Weber and Teale 1957; Wang and Clayton 1971).

Fluorescence yields often are much less than unity because collisions with
O2 or other quenchers return the excited molecule rapidly to the ground state
by nonradiative pathways. Measurements of fluorescence yields thus can provide
information on whether a chromophore attached to a macromolecule is accessible
to quenchers dissolved in the surrounding solution or attached to a different site
on the molecule. Fluorescence also can be quenched by intersystem crossing of
the excited molecule from a singlet to a triplet state. This involves a change in the
relationship between the spins of the electrons in the partly occupied molecular
orbitals.

If a sample is excited with a short pulse of light, the time course of the fluores-
cence intensity often can be described by an exponential function:

F(t) = kr [M∗(t)] = kr [M∗(0)] exp(−t/τ) = F(0) exp(−t/τ) . (1.7)
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Here F(t) is the relative probability that the sample emits a photon during the
short interval of time between t and t + dt after the excitation; [M∗(t)] is the
concentration of molecules that remain in the excited state at time t; and kr is
a first-order rate constant for emission of light. The time constant τ is called the
fluorescence lifetime, and is the average length of time that the molecule remains
in the excited state. Tryptophan, for example, typically has a fluorescence lifetime
of about 5 × 10−9 s. The reciprocal of the fluorescence lifetime (1/τ) is the overall
rate constant for decay of the excited molecule back to the ground state by any
mechanism, including the quenching processes mentioned above in addition to
fluorescence. Figure 1.15 illustrates the time course of fluorescence from a sample
with a fluorescence lifetime of 20 ns.

In general, the excited molecules in an inhomogeneous sample interact with
their surroundings in different ways and the measured fluorescence is given more
accurately by a sum of exponential terms:

F(t) =
∑

i

Fi(0) exp(−t/τi) , (1.8)

where Fi(0) and τi are the initial amplitude and decay time constant of component i.
Several procedures can be used to fit such expressions to experimental data, taking
into account the width of the excitation flash and the finite response time of the
detection instrumentation (Beechem 1992; Brochon 1994; Lakowicz 2006).

In a homogeneous sample, the fluorescence lifetime is proportional to the flu-
orescence yield: quenching processes that cause the excited molecule to decay
rapidly to the ground state decrease the lifetime and the yield in parallel. Measure-
ments of fluorescence lifetimes thus can give information similar to that provided

a b

Fig. 1.15. The time course of fluorescence (solid curve) from a sample with a fluorescence
lifetime of 20 ns, plotted on arbitrary linear (a) and logarithmic (b) scales. The dotted
curve is the excitation pulse. The fluorescence signal is a convolution of the excitation pulse
with the exponential decay function. (The signal at any given time includes fluorescence
from molecules that were excited at a variety of earlier times.) The noise in the signal is
proportional to the square root of the amplitude
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by fluorescence yields, but also can be used to probe the dynamics of more complex,
heterogeneous systems.

Several techniques are used to measure fluorescence lifetimes. One approach
is to excite a sample repeatedly with short pulses of light and measure the times
at which individual emitted photons are detected after the excitation flashes. This
is called single photon counting or time-correlated photon counting. The emitted
light is attenuated so that, on average, there is a relatively small probability that
a photon will be detected after any given flash, and the chance of detecting two
photons is negligible. The results of 105 or more excitations are used to construct
a histogram of the numbers of photons detected at various times after the exci-
tation. This plot reflects the time dependence of the probability of emission from
the excited molecules. The signal-to-noise ratio in a given bin of the histogram
is proportional to the total number of photons counted in the bin (Fig. 1.15). If
a sufficiently large number of photons are counted, the time resolution is limited
by the photomultiplier and the associated electronics and can be on the order of
5 × 10−11 s.

Fluorescence decay kinetics also can be measured by exciting the sample with
continuous light whose intensity is modulated sinusoidally at a frequency (ω)
on the order of 1/τ, where τ again is the fluorescence lifetime. The fluorescence
oscillates sinusoidally at the same frequency, but the amplitude and phase of its
oscillations relative to the oscillations of the excitation light depend on the product

Fig. 1.16. a Fluorescence (solid curve) from a molecule that is excited with sinusoidally
modulated light (dotted curve). If the fluorescence decays exponentially with single time
constant τ, the phase shift (φ) and the relative modulation of the fluorescence amplitude (m)
are related to τ and the angular frequency of the modulation (ω) by φ = arctan(ωτ) and
m = (1 + ω2τ2)−1/2 (Appendix 4). The curves shown here are calculated for τ = 8 ns, ω =
1.257 × 108 rad s−1 (20 MHz) and 100% modulation of the excitation light (φ = 0.788 rad,
m = 0.705). b Phase shift (φ, solid curve) and relative modulation (m, dashed curve) of
the fluorescence of a molecule that decays with a single exponential time constant, plotted
as a function of the product ωτ. The relationships among φ, m, τ, and ω become more
complicated if the fluorescence decays with multiexponential kinetics (Appendix 4)



1.11 Fluorescence 23

of ω and τ (Fig. 1.16 and Appendix 4). If ωτ is much less than 1, the fluorescence
amplitude tracks the excitation intensity closely; if ωτ is larger, the oscillations are
delayed in phase and damped (demodulated) relative to the excitation (Gratton et
al. 1984; Lakowicz 2006). Fluorescence with multiexponential decay kinetics can
be analyzed by measuring the fluorescence modulation amplitude or phase shift
with several different frequencies of modulated excitation.

A third technique, fluorescence upconversion, is to focus the emitted light into
a material with nonlinear optical properties, such as a crystal of KH2PO4. If a sep-
arate short pulse of light is focused into the same crystal so that the two light
beams overlap temporally and spatially, the crystal emits light at a new frequency
that is the sum of the frequencies of the fluorescence and the probe pulse. The
time dependence of the fluorescence intensity is obtained by varying the tim-
ing of the probe pulse relative to the pulse that excites the fluorescence, in the
manner described earlier for pump–probe absorbance measurements. As with
absorbance measurements, the time resolution of fluorescence upconversion can
be on the order of 10−14 s. This technique is well suited for studying relaxations
that cause the emission spectrum of an excited molecule to evolve rapidly with
time.

To measure fluorescence polarization, or anisotropy, a sample is excited with
polarized light and the emission is measured through a polarizer aligned either
parallel or perpendicular to the excitation polarization (Fig. 1.17). If emission
occurs from the same state that is generated by excitation, and the excited molecule
does not rotate between these two events, then the fluorescence polarized parallel

Fig. 1.17. Apparatus for measuring fluorescence anisotropy. In the main drawing (a top
view), a polarizing filter or prism (P1) polarizes the excitation light with its electric vector
normal to the plane of the paper. The intensity of the fluorescence is measured through
a second polarizer (P2), which is oriented either parallel or perpendicular to P1. The drawing
at the lower right shows a perspective view of the sample and the polarizers. To check for
bias of the detection monochromator in favor of a particular polarization, measurements
also are made with P1 rotated by 90◦. The fluorescence signal then should be same with
either orientation of P2 because both orientations are perpendicular to P1. L lamp, S sample,
PD photodetector
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to the excitation will be about 3 times stronger than that with perpendicular
polarization. This difference will disappear as the molecule rotates.

Fluorescence anisotropy can provide information on the dynamics and extent of
molecular motions that occur on the time scale of 10−9 –10−7 s. Slower motions can
be studied by measuring the anisotropy of phosphorescence, the much longer-lived
emission of light from molecules in excited triplet states. In some cases, near-field
or confocal fluorescence microscopy can be used to track the locations of individual
fluorescent molecules with time. These laser techniques also can be combined with
measurements of resonance energy transfer to examine the distance between the
energy donor and the acceptor in an individual donor–acceptor complex.

1.12
IR and Raman Spectroscopy

In a semiclassical picture, the bond in a heteronuclear diatomic molecule such as
CO vibrates at a characteristic frequency that increases with the order of the bond
and decreases with the reduced mass of the two atoms. Quantum mechanically, the
molecule has a series of allowed nuclear wavefunctions with a ladder of approx-
imately equally spaced energies. Electromagnetic radiation with an appropriate
frequency in the IR region can excite the molecule from one of these states to the
next. The situation is more complicated in a polyatomic molecule. As we discuss
in Chap. 6, the molecule still has a set of discrete vibrational modes, but these
generally involve more than just two atoms and so cannot be assigned uniquely to
individual bonds. The IR absorption spectrum now includes multiple bands that
provide a complex fingerprint of the molecular structure. However, the effects of
specific chemical modifications or isotopic substitutions often allow one to assign
the individual absorption bands predominantly to a particular group of atoms. IR
absorption spectra now usually are measured with an FTIR instrument (Fig. 1.8).

The IR spectra of proteins include three characteristic absorption bands of the
peptide groups. The “N–H stretch” band in the region from 3,280 to 3,300 cm−1

stems mainly from stretching of the peptide N–H bond; the “amide I” band (1,620–
1,660 cm−1), from stretching of the C=O bond; and the “amide II” band (1,520–
1,550 cm−1), from in-plane bending of the C–N–H angle. The frequencies and
linear dichroism of these bands are different for α-helices and β-sheets, and thus
provide useful measures of protein conformation. In addition, amino acid side
chains have IR bands that can be used to probe events such as proton uptake or
release at specific sites. The IR absorption bands of bound ligands such as CO
can provide information on the location and orientation of the ligand, and can be
measured with high time resolution by pump–probe techniques.

Like IR spectroscopy, Raman spectroscopy reflects transitions between different
nuclear states of a molecule; however, rather than a simple upward transition driven
by the absorption of a photon, Raman scattering is a coupled two-photon process
in which one photon is absorbed and a photon with a different energy is emitted
almost simultaneously, leaving the molecule in a different nuclear state. It resembles
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Raleigh light scattering, which involves absorption and emission of photons with
identical energies. Raman spectrometers resemble fluorometers (Fig. 1.14), but
usually employ a laser to generate a sharply defined excitation frequency. Two
monochromators often are used in series in the emission arm of the instrument.
A Raman emission spectrum differs from a fluorescence spectrum in having sharp
lines at frequencies that differ from the excitation frequency (νex) by ±υi, where
the υi are the molecule’s vibrational frequencies. The lines at νex − υi represent
net retention of a quantum of vibrational energy (hυi) by the molecule (Stokes
scattering), while those at νex +υi represent net release of vibrational energy (anti-
Stokes scattering). Anti-Stokes scattering usually is much weaker because it occurs
only from molecules that are in excited vibrational states before the excitation.

Probably the most useful form of Raman spectroscopy in molecular biophysics
has been resonance Raman spectroscopy, in which the frequency of the excitation
light is tuned to fall within an electronic absorption band. The electronic resonance
has two benefits: it greatly increases the strength of the Raman scattering, and it
can make the measurement specific for a chromophore with a particular electronic
absorption spectrum. Resonance Raman scattering thus lends itself to probing the
states of a ligand such as retinal or heme bound to a protein with little interference
from the protein atoms. We consider Raman scattering and other two-photon
processes in Chap. 12.

1.13
Lasers

Modern spectroscopic techniques depend heavily on lasers as light sources. Lasers
can provide either short pulses of light covering broad bands of frequencies, or
continuous beams with extremely narrow bandwidths, and they can be focused to
extremely small spots. Figure 1.18 shows the main components of a laser designed
to provide ultrashort pulses. In this system, a continuous beam of green light
from another source such as an Ar+ gas laser is focused on a thin crystal of
sapphire (Al2O3) doped with Ti3+. The pump light raises Ti atoms in the crystal
to an excited state, from which they relax rapidly to a metastable state at lower
energy. (In some lasers, the metastable state is simply a vibrationally relaxed
level of the excited electronic state generated by the pump light; in others it is
a different electronic state. The main requirements are that atoms or molecules in
the metastable state do not absorb light strongly at the pump frequency, that they
fluoresce at a longer wavelength, and that their decay by radiationless processes is
comparatively slow.) With continued pumping, the population of the metastable
state grows until it exceeds the population of the ground state; however, transitions
from the metastable state to the ground state can be stimulated by light with
frequency ν = ΔE/h, where ΔE is the energy difference between these two states.
This stimulated emission is just the reverse of absorption. The excited atom or
molecule emits light with the same frequency, direction, polarization, and phase
as the stimulating radiation. In the laser, photons emitted along a particular axis are
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Fig. 1.18. The main components of a pulsed Ti:sapphire laser. Light from a continuous
“pump” laser (typically 532 nm) is focused on a Ti:sapphire crystal. The crystal fluoresces
in the region of 800 nm. Light emitted along a particular axis (dotted line) is collimated by
curved mirrors M2 and M3 and reflected back to the crystal by mirrors M1 and M4. Prisms
Pr1 and Pr2 compensate for the wavelength dependence of the refractive index of the crystal.
The pump beam usually enters the laser through M2; it is displaced here for clarity

reflected by a series of mirrors and returned to the crystal, where they stimulate
other atoms to decay in the same manner. Emission that begins spontaneously
thus can lead to an explosive collapse of the population in the metastable state and
release of a pulse of light. The pulse emerges through the mirror at one end of the
optical cavity (M1 in Fig. 1.18), which is coated to transmit about 10% of the light
and reflect the remainder.

The width of the pulses emitted by such a laser depends on the spectral band-
width: to provide ultrashort pulses, the lasing medium must be capable of emitting
light over a broad band of frequencies. Ti:sapphire and organic dyes of the rho-
damine family are ideal in this regard because their fluorescence emission spectra
cover several hundred nanometers. (Ti:sapphire emits in the region of 800 nm and
rhodamines in the region from 500 to 700 nm, depending on the molecular struc-
ture.) However, photons with different wavelengths suffer different optical delays
as they pass through the lasing medium because the refractive index depends on
the wavelength. In the Ti:sapphire laser diagrammed in Fig. 1.18, a pair of prisms
correct for this dispersion by extending the optical cavity length for light with
longer wavelengths. Pulses with widths of less than 10 fs can be obtained by choos-
ing the prism material judiciously and adjusting the spacing of the prisms and the
amount of the prism material in the path (Christov et al. 1996; Rundquist et al.
1997). To obtain a continuous laser beam, the pair of prisms can be replaced by
a single, rotatable prism or other optical element that selects light of a particular
wavelength.

1.14
Nomenclature

In the following chapters, our aim often will be to develop mathematical expres-
sions that show how a spectroscopic property depends on molecular structure
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or environmental variables. Such expressions often can be stated most concisely
in terms of vectors and matrices. Explanations of these mathematical tools are
given in Appendices 1 and 2. We will indicate a vector by an italicized letter in
boldface (R), or sometimes (for vectors in three-dimensional physical space) as
(Rx, Ry, Rz), where Rx, Ry, and Rz are the components parallel to the x-, y- and
z-axes of a Cartesian coordinate system. A vector with unit length parallel to one
of the axes of the coordinate system will be designated by a letter with a caret (̂ )
on top. In particular, x̂, ŷ, and ẑ denote unit vectors parallel to the x-, y- and z-axes
of a Cartesian coordinate system. Matrices will be represented by non-italicized
letters in boldface.

We also will make frequent use of operators. An operator is just a recipe for
a mathematical procedure that uses a given variable as input. We will designate an
operator by a letter with a tilde (∼) on top, and indicate the input by a letter or
other symbol immediately after the operator. For example, if operator Ã is “add 3,
take the square and divide by 2,” then Ãx = (x + 3)2/2. The input and output can
be a scalar, a vector, or a matrix depending on the nature of the operator. Some of
the operators that work on matrices are defined in Appendix 2.



2 Basic Concepts of Quantum Mechanics

2.1
Wavefunctions, Operators, and Expectation Values

2.1.1
Wavefunctions

In this chapter we discuss the basic principles of quantum mechanics that underlie
optical spectroscopy. More comprehensive treatments are available in the classic
text by Pauling and Wilson (1935), a collection of historical papers edited by van
der Waerden (1968), and numerous more recent texts such as those by Szabo and
Ostlund (1982), Atkins (1983), Simons and Nichols (1997), Jensen (1999), Levine
(2000), and Engel (2006). Atkins (1991) is a useful source of leading references and
concise discussions of the main ideas.

The most basic notion of quantum mechanics is that all the properties of a system
that depend on position and time hinge on a mathematical function called the
system’s wavefunction. The wavefunction of a free electron, for example, contains
all the information needed to specify the probability that the electron is located in
a given region of space at a particular time. If we designate a position by vector r,
the probability P that a system with wavefunction Ψ(r, t) is located in a small
volume element dσ around r at time t is

P(r, t)dσ = Ψ∗(r, t)Ψ(r, t)dσ = |Ψ(r, t)|2 dσ . (2.1)

Here Ψ∗(r, t) is the complex conjugate of Ψ(r, t), which means that if the wave-
function contains any imaginary numbers (as it generally does), i is replaced
everywhere by −i. The product Ψ∗Ψ is always a real number, as we would ex-
pect for a measurable property such as the probability of finding an electron at
a particular place.

The interpretation of Ψ∗Ψ as a probability per unit volume, or probability
density, was developed by Max Born (1926). Although universally accepted today,
Born’s interpretation was controversial at the time. Some of the major contributors
to the field held that the wavefunction of a system is the system in a more direct
sense, while others disputed the idea that probabilities had to replace the causal
laws of classical physics. Reichenbach (1944), Pais (1982), and Jammer (1974) give
interesting accounts of how these views evolved as the profound implications of
quantum mechanics came into focus.

William W. Parson, Modern Optical Spectroscopy,
DOI: 10.1007/978-3-540-37542-5, © Springer-Verlag 2009
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If we accept Born’s interpretation, the total probability that the system exists
somewhere is obtained by integrating Eq. (2.1) over all space. In the widely used
bra-ket notation introduced by Paul Dirac, this integral is denoted by 〈Ψ|Ψ〉:

〈Ψ|Ψ〉 ≡
∫

Ψ∗Ψdσ =
∫

P(r, t)dσ . (2.2)

If the system exists, 〈Ψ|Ψ〉 must be 1; if it does not exist, 〈Ψ|Ψ〉 = 0. Note that the
asterisk denoting the complex conjugate of the wavefunction on the left is omitted
in the symbol 〈Ψ| to simplify the nomenclature, but is implied.

In a Cartesian coordinate system, the volume elements in Eqs. (2.1) and (2.2)
can be written dσ = dxdydz. For a one-dimensional system, the position vector r
reduces to a single coordinate (x) and Eq. (2.2) becomes simply

∫
P(x, t)dσ = 〈Ψ(x, t)|Ψ(x, t)〉 =

∞∫

−∞
Ψ∗(x, t)Ψ(x, t) dx . (2.3)

If the system contains more than one particle, we have to integrate over the coor-
dinates of all the particles.

Born’s interpretation of the wavefunction puts restrictions on the mathemat-
ical functions that can be physically meaningful wavefunctions. First, Ψ must
be a single-valued function of position. There should be only one value for the
probability of finding a system at any given point. Second, the integral of Ψ∗Ψdσ
over any region of space must be finite; the probability of finding the system in
any particular volume element should not go to infinity. Third, the integral 〈Ψ|Ψ〉
must exist and must be finite. In addition, it seems reasonable to assume that Ψ is
a continuous function of the spatial coordinates, and that the first derivatives of Ψ
with respect to these coordinates also are continuous except possibly at boundaries
of the system. These last restrictions guarantee that second derivatives with respect
to the spatial coordinates exist.

2.1.2
Operators and Expectation Values

The second fundamental idea of quantum mechanics is that for any measurable
physical property A of a system there is a particular mathematical operator, Ã,
that can be used with the wavefunction to obtain an expression for A as a function
of time, or at least for the average result of measuring this property. An operator
is simply an instruction to do something, such as to multiply the amplitude of Ψ
by a constant. The expression for A is obtained in the following way: (1) perform
operation Ã on wavefunction Ψ at a particular position and time, (2) multiply
by the value of Ψ∗ at the same position and time, and (3) integrate the result of
these first two steps over all possible positions. In bra-ket notation, this three-step
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procedure is denoted by 〈Ψ|Ã|Ψ〉:

A = 〈Ψ| Ã |Ψ〉 ≡
∫

Ψ∗ÃΨdσ . (2.4)

The calculated value of the property (A) is called the expectation value. If the
wavefunction depends on the positions of several particles, the spatial integral
denoted by 〈Ψ|Ã|Ψ〉 represents a multiple integral over all the possible positions
of all the particles.

Equation (2.4) is a remarkably general assertion, considering that it claims
to apply to any measurable property of an arbitrary system. Note, however, that
we are discussing the average of measurements on an individual system or many
identical systems. If we measure property A in an ensemble of systems with different
wavefunctions, the result is not necessarily a simple average of the expectation
values for all the individual systems. We will return to this point in Chap. 10.

In addition to the question of how to deal with ensembles of many systems,
there are two obvious problems in trying to use Eq. (2.4). We have to know the
wavefunction Ψ, and we have to know what operator corresponds to the property
of interest. Let us first consider how to select the operator.

In the description we will use, the operator for position ( r̃ ) is simply multipli-
cation by the position vector, r. So to find the expected x, y, and z coordinates of
an electron with wavefunction Ψ we just evaluate the integrals 〈Ψ|x|Ψ〉, 〈Ψ|y|Ψ〉,
and 〈Ψ|z|Ψ〉. This essentially amounts to integrating over all the positions where
the electron could be found, weighting the contribution of each position by the
probability function Ψ∗Ψ.

The operator for momentum is more complicated. In classical mechanics, the
linear momentum of a particle traveling along the x-axis has a magnitude of p =
mw, where m and w are the particle’s mass and velocity. The quantum mechanical
operator for momentum in the x direction is p̃x = (�/i)∂/∂x, where � (“h-bar”)
is Planck’s constant (h) divided by 2π. The recipe for finding the momentum
according to Eq. (2.4), therefore, is to differentiate Ψ with respect to x, multiply
by �/i, multiply by Ψ∗, and integrate the result over all space: px = 〈Ψ|̃px|Ψ〉 =
〈Ψ|(�/i)∂Ψ/∂x〉. Because �/i, though an imaginary number, is just a constant, this
is the same as px = (�/i)〈Ψ|∂Ψ/∂x〉.

In three dimensions, momentum is a vector (p) with x, y, and z components
px, py, and pz. We can indicate this by writing p̃ as (�/i)∇̃, where ∇̃ is the gradient
operator. The gradient operator acts on a scalar function such as Ψ to generate
a vector whose x, y, and z components are the derivatives of Ψ with respect to x, y,
and z, respectively:

p̃Ψ = (�/i)∇̃Ψ = (�/i)
(
∂Ψ/∂x, ∂Ψ/∂y, ∂Ψ/∂z

)
(2.5)

(Appendix 2). The momentum operator (�/i)∇̃ also can be written as −i�∇̃ because
i−1 = −i. To see this equality, multiply i−1 by unity in the form of i/i.
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It may seem disconcerting that p̃ involves imaginary numbers, because the mo-
mentum of a free particle is a real, measurable quantity. The quantum mechanical
momentum given by 〈Ψ|̃p|Ψ〉, however, also proves to be a real number (Box 2.1).
The formula for p̃ emerged from the realization by Max Born, Werner Heisenberg,
Paul Dirac, and others in the period 1925–1927 that the momentum of a bound
particle such as an electron in an atom cannot be specified precisely as a function
of the particle’s position.

Box 2.1 Operators for observable properties must be Hermitian

An operator Ã for a measurable physical quantity must have the property
that

〈
Ψb

∣∣Ã
∣∣Ψa

〉
=
〈
Ψa

∣∣Ã
∣∣Ψb

〉∗
(B2.1.1)

for any pair of wavefunctions Ψa and Ψb that are eigenfunctions of the
operator. Operators with this property are called Hermitian after the French
mathematician Charles Hermite. If Ã is Hermitian, then

〈
Ψa

∣∣Ã
∣∣Ψa

〉
=
〈
Ψa

∣∣Ã
∣∣Ψa

〉∗
(B2.1.2)

for any eigenfunction Ψa of Ã. This implies that 〈Ψa|Ã|Ψa〉 is real, because
the complex conjugate of a number can be equal to the number itself only if
the number has no imaginary part. The operators for position, momentum,
and energy all are Hermitian. For a proof, see Atkins (1983). However, if
Ψa = Ψb, the integral 〈Ψb|Ã|Ψa〉 may or may not be real, depending on the
nature of the operator. We will encounter imaginary integrals of this type in
Chap. 9 when we consider circular dichroism.

Classical physics put no theoretical restrictions on the precision to which we can
specify the position and momentum of a particle. For a particle moving with a given
velocity along a known path, it seemed possible to express the momentum precisely
as a function of position and time. However, on the very small scales of distance
and energy that apply to individual electrons, momentum and position turn out
to be interdependent, so that specifying the value of one of them automatically
introduces uncertainty in the value of the other. This comes about because the
result of combining the position and momentum operators depends on the order
in which the two operations are performed: ( r̃ p̃ψ− p̃ r̃ψ) is not zero, as (rp − pr) is
in classical mechanics, but iψ. The fact that the position and momentum operators
do not obey the law of commutation that holds for multiplication of pure numbers
is expressed by saying that the two operators do not commute (Box 2.2). It was
the recognition of this fundamental breakdown of classical mechanics that led
Heisenberg to suggest that position and momentum should not be treated simply
as numbers, but rather as operators or matrices.
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In an alternative formulation called the “momentum representation,” the mo-
mentum operator is taken to be simply multiplication by the classical momentum
and the position operator is i� times the derivative with respect to momentum.
The “position representation” described above is more widely used, but all the
predictions concerning observable quantities are the same.

Given the operators for position and momentum, it is relatively straightforward
to find the appropriate operator for any other dynamical property of a system, that
is, for any property that depends on position and time. The operator is obtained
by starting with the classical equation for the property and replacing the classical
variables for position and momentum by the corresponding quantum mechanical
operators.

The operator for the total energy of a system is called the Hamiltonian opera-
tor (H̃) after the nineteenth century mathematician W.R. Hamilton, who developed
a general scheme for writing the equations of motion of a dynamical system in
terms of coordinates and momenta. Hamilton wrote the classical energy of a sys-
tem as the sum of the kinetic energy (T) and the potential energy (V), and H̃ is
written as the analogous sum operators for kinetic (̃T) and potential energy (Ṽ):

H̃ = T̃ + Ṽ . (2.6a)

The expectation value of H̃ for a system thus is the total energy (E):

E = 〈Ψ| H̃ |Ψ〉 . (2.6b)

In accordance with the prescription given above, the kinetic energy operator
is obtained from the classical expression for kinetic energy (T = |p|2/2m) by
substituting p̃ for p. The quantum mechanical operator that corresponds to |p|2

requires performing the operation designated by p̃ a second time, rather than
simply squaring the result of a single operation. In one dimension, performing p̃
twice generates (�/i)2 times the second derivative with respect to position. In three
dimensions, the result can be written (�/i)2∇̃2, or −�2∇̃2, where

∇̃2Ψ =
(
∂2Ψ/∂x2 + ∂2Ψ/∂y2 + ∂2Ψ/∂z2) . (2.7)

The kinetic energy operator is, therefore,

T̃ = p̃2/2m = −
(
�

2/2m
) ∇̃2 (2.8a)

= −
(
�

2/2m
) (

∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2) . (2.8b)

The operator ∇̃2 is called the Laplacian operator and often is read “del-squared.”
The potential energy operator Ṽ is obtained similarly from the classical expres-

sion for the potential energy of the system by substituting the quantum mechanical
operators for position and momentum wherever necessary. The starting classical
expression depends on the system. In an atom or molecule, the potential energy of
an electron depends primarily on interactions with the nuclei and other electrons.
If a molecule is placed in an electric or magnetic field, the potential energy also
depends on the interactions of the electrons and nuclei with the field.
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Box 2.2 Commutators and formulations of the position, momentum,
and Hamiltonian operators

Heisenberg’s commutation relationship for the position and momentum op-
erators,

r̃ p̃ − p̃ r̃ = i� , (B2.2.1)

can be written succinctly by defining the commutator of two operators Ã and
B̃ as

[
Ã, B̃

]
= Ã B̃ − B̃ Ã . (B2.2.2)

With this notation, Heisenberg’s expression reads

[̃r, p̃] = i� . (B2.2.3)

Equation (B2.2.3) is often said to be the most fundamental equation of
quantum mechanics. The prescription for the momentum operator, Eq. (2.5),
is a solution to this equation if we take the x component of the position
operator to be multiplication by x. To see this, just substitute r̃x = x and
p̃x = (�/i)∂/∂x in Eq. (B2.2.3) and evaluate the results when the commutator
operates on an arbitrary function ψ:

[x, p̃x]ψ = x̃pxψ − p̃x

(
xψ

)
= x
�

i
∂ψ
∂x

−
�

i
∂(xψ)
∂x

= x
�

i
∂ψ
∂x

−
�

i

(
x∂ψ
∂x

+ ψ
)

= −
�

i
ψ = i�ψ . (B2.2.4)

In order for the observables corresponding to operators Ã and B̃ to have
precisely defined values simultaneously, it is necessary and sufficient that
the two operators commute, i.e., that [Ã, B̃] = 0. The operators for the x, y,
and z components of position, for example, commute with each other, so the
three components of a position vector can all be specified simultaneously to
arbitrary precision. The x component of the position also can be specified
simultaneously with the y or z component of the momentum (py or pz), but
not with px.

One other basic point to note concerning commutators is that
[

B̃, Ã
]

= −
[

Ã, B̃
]

. (B2.2.5)

Although we cannot specify both the energy and the exact position of a par-
ticle simultaneously, we can determine the expectation values of both proper-
ties with arbitrary precision. This is because the expectation value of the com-
mutator of the Hamiltonian and position operators is zero, even though the
commutator itself is not zero. If a system is in a state with wavefunctionψn , the
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expectation value of the commutator [H̃, r̃ ] is
〈
ψn

∣∣[H̃, r̃
]∣∣ψn

〉
=
〈
ψn

∣∣H̃ r̃
∣∣ψn

〉
−
〈
ψn

∣∣̃rH̃
∣∣ψn

〉
. (B2.2.6)

To evaluate the integrals on the right side of this expression, first expand ψn

formally in terms of a set of normalized, orthogonal eigenfunctions of H̃ for
the system:

ψn =
∑

i

Ciψi , (B2.2.7)

with Ci = 1 for i = n and zero otherwise. Here we are anticipating some of
the results from Sect. 2.2. By saying thatψi is an eigenfunction of H̃, we mean
that H̃ψi = Eiψi, where Ei is the energy of wavefunction ψi and is a constant,
independent of both position and time. Specifying that the eigenfunctions
are normalized and orthogonal means that 〈ψi|ψi〉 = 1 and 〈ψi|ψj〉 = 0 if
j = i.

Now use the matrix representation,
〈
ψi

∣∣Ã
∣∣ψj

〉
= Aij , (B2.2.8)

and the procedure for matrix multiplication,

〈
ψi

∣∣ÃB̃
∣∣ψj

〉
=
∑

k

AikBki (B2.2.9)

(Appendix 2). The result is that the integrals on the right side of Eq. (B2.2.6)
are just products of the expectation values of the energy and the position:

〈
ψn

∣∣̃ r H̃
∣∣ψn

〉
=
∑

k

〈
ψn |̃ r |ψk

〉 〈
ψk

∣∣H̃
∣∣ψn

〉

=
∑

k

[(
rk
〈
ψn|ψk

〉) (
En

〈
ψk|ψn

〉)]
= rnEn (B2.2.10a)

and
〈
ψn

∣∣H̃ r̃
∣∣ψn

〉
=
∑

k

〈
ψn

∣∣H̃
∣∣ψk

〉 〈
ψk |̃r|ψn

〉

=
∑

k

[(
En

〈
ψk|ψn

〉) (
rk
〈
ψn|ψk

〉)]
= Enrn . (B2.2.10b)

All the terms with k = n drop out because the eigenfunctions are orthogonal.
Because rnEn = Enrn, 〈ψn|[H̃, r̃ ]|ψn〉 must be zero.
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2.2
The Time-Dependent and Time-Independent Schrödinger Equations

Our next problem is to find the wavefunction Ψ(r, t). In 1926, Erwin Schrödinger
proposed that the wavefunction obeys the differential equation

H̃Ψ = i�∂Ψ/∂t . (2.9)

This is the time-dependent Schrödinger equation. Schrödinger, who lived from
1887 to 1961 and was trained as a mathematician, developed this elegantly simple
expression by considering the transition from geometrical optics to wave optics
and seeking a parallel transition in mechanics. He was stimulated by de Broglie’s
proposal that a particle such as an electron has an associated wavelength that
is inversely proportional to the particle’s momentum (Box 2.3). However, the
insight that led to the Schrödinger equation does not constitute a proof from
first principles, and most theorists today take Eq. (2.9) as a basic postulate in the
spirit of Eqs. (2.1) and (2.3). Its ultimate justification rests on the fact that the
Schrödinger equation accounts for an extraordinarily broad range of experimental
observations and leads to predictions that, so far, have unfailingly proved to be
correct.

Box 2.3 The origin of the time-dependent Schrödinger equation

In his ground-breaking paper on the photoelectric effect (Sect. 1.6), Einstein
(1905) noted that if light consists of discrete particles (“photons” in today’s
vernacular), then each such particle should have a momentum that is in-
versely proportional to the wavelength (λ). This relationship follows from
the theory of relativity, which requires that a particle with energy E and
velocity w have momentum Ew/c2. A photon with energy hν and velocity c
should, therefore, have momentum

p = hνc/c2 = hν/c = h/λ = hν , (B2.3.1)

where ν is the wavenumber (1/λ). Convincing experimental support for this
reasoning came in 1923, when Arthur Compton measured the scattering of
X-ray photons by crystalline materials.

It occurred to Louis de Broglie (1923) that the same reasoning might
hold in reverse. If light with wavelength λ has momentum p, then perhaps
a particle with momentum p has an associated wave with wavelength

λ = p/h . (B2.3.2)

The wavelike properties of electrons were confirmed four years later by
Davison and Germer’s measurements of electron diffraction by crystals and
P.G. Thompson’s measurements of diffraction by gold foil.
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Consider a one-dimensional, nonrelativistic particle with mass m moving
in a potential field V. Suppose further, and this is critical to the argument,
that V is independent of position. The relation between the energy and the
momentum of the particle then is

E =
1

2m
p2 + V . (B2.3.3)

Inserting the relationships E = hν and p = hν into this expression gives

hν =
h2

2m
ν2 + V . (B2.3.4)

A relationship between the energy and momentum of a particle (Eq. (B2.3.3))
thus can be transformed into a relationship between the frequency and
wavenumber of a wave (Eq. (B2.3.4)).

Now suppose we write the wave as

Ψ = A exp [2π i (νx − νt)] , (B2.3.5)

where A is a constant. This is a general expression for a monochromatic plane
wave moving in the x direction with velocity ν/ν. The derivatives of Ψ with
respect to position and time then are

1
2πi

∂Ψ
∂x

= νΨ,
1

(2πi)2

∂2Ψ
∂x2

= ν2Ψ, and −
1

2πi
∂Ψ
∂t

= νΨ . (B2.3.6)

These expressions can be used to change Eq. (B2.3.4) into a differential
equation. Multiplying each term of Eq. (B2.3.4) by Ψ and substituting in the
derivatives gives

−
h

2πi
∂Ψ
∂t

=
h2

2m(2πi)2

∂2Ψ
∂x2

+ VΨ, or

i�
∂Ψ
∂t

= −
�

2

2m
∂2Ψ
∂x2

+ VΨ . (B2.3.7)

This is the time-dependent Schrödinger equation for a one-dimensional
system in a constant potential.

Extending these arguments to three dimensions is straightforward. But
there is no a priori justification for extending Eq. (B2.3.7) to the more general
situation in which the potential varies with position, because in that case the
simple wave expression (Eq. (B2.3.5)) no longer holds. Schrödinger, however,
saw that the general equation

i�
∂Ψ
∂t

= −
�

2

2m
∂2Ψ
∂x2

+ V(x, y, z)Ψ (B2.3.8)
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has solutions of the form

Ψ = ψ(x, y, z) exp(−2πiEt/�) , (B2.3.9)

and that these solutions have exactly the properties needed to account for
the quantized energy levels of the hydrogen atom (Schrödinger 1926, 1928).

Further discussion of the origin of the Schrödinger equation and philo-
sophic interpretations of quantum mechanics can be found in Reichenbach
(1944) and Jammer (1966, 1974).

To see how the Schrödinger equation can be used to find Ψ, let us first suppose
that H̃ depends on the position of a particle but is independent of time: H̃ = H̃0(r).
The wavefunction then can be written as a product of two functions, one (ψ) that
depends only on position and one (φ) that depends only on time:

Ψ(r, t) = ψ(r)φ(t) . (2.10)

To prove this assertion, we need only show that all the wavefunctions given by
Eq. (2.10) satisfy the Schrödinger equation as long as H̃ remains independent of
time. Replacing H̃ by H̃0 and Ψ by ψ(r)φ(t) on the left-hand side of Eq. (2.9) gives

H̃Ψ → H̃0 [ψ(r)φ(t)] = φ(t)H̃0ψ(r) . (2.11)

Multiplication by φ(t) can be done after H̃0 operates on ψ(r) because φ(t) is just
a constant as far as the time-independent operator H̃0 is concerned. Making the
same substitution for Ψ on the right side gives

i�∂Ψ/∂t → i�ψ(r)∂φ(t)/∂t . (2.12)

The wavefunction given by Eq. (2.10) thus will satisfy the Schrödinger equation if

φ(t)H̃0ψ(r) = i�ψ(r)∂φ(t)/∂t , (2.13a)

or

1
ψ(r)

H̃0ψ(r) = i�
1

φ(t)
∂φ(t)/∂t . (2.13b)

Note that whereas the left-hand side of Eq. (2.13b) is a function only of position,
the right-hand side is a function only of time. The two sides can be equivalent
only if both sides are equal to a constant that does not depend on either time or
position. This allows us to solve the two sides of the equation independently. First,
consider the left side. If we call the constant E, then we have [1/ψ(r)]H̃0ψ(r) = E.
Multiplying by ψ(r) gives the time-independent Schrödinger equation:

H̃0ψ(r) = Eψ(r) . (2.14)

This expression says that when operator H̃0 works on function ψ, the result is
simply a constant (E) times the original function. An equation of this type is
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called an eigenfunction equation or eigenvalue equation, and in general, it has
a set of solutions, called eigenfunctions, ψk(r). If these solutions meet Born’s
restrictions on physically meaningful wavefunctions, we can interpret them as
representing various possible states of the system, each of which corresponds
to a particular distribution of the system in space. For an electron in an atom
or a molecule, the acceptable eigenfunctions are the set of atomic or molecular
orbitals. Each eigenfunction represents an eigenstate of the system and is associated
with a particular value of the constant E (Ek), which is called an eigenvalue.

Now consider the right-hand side of Eq. (2.13), which also must equal E:
i�[1/φ(t)]∂φ(t)/∂t = E. This expression has one solution (φk) for each allowable
value of E (Ek):

φk(t) = exp
[
−i
(
Ekt/� + ζ

)]
, (2.15)

where ζ is an arbitrary constant. Because exp(iα) = cosα + i sinα, Eq. (2.15)
represents a function with real and imaginary parts, both of which oscillate in
time at a frequency of Ek/2π�, or Ek/h. The constant term ζ in the exponential is
a phase shift that depends on our choice of zero time. As long as we are considering
only a single particle, ζ will not affect any measurable properties of the system and
we can simply set it to zero. (We will return to this point for systems containing
many particles in Chap. 10.)

Combining Eqs. (2.10) and (2.15) and setting ζ = 0 gives a complete wavefunc-
tion for state k:

Ψk(r, t) = ψk(r) exp(−iEkt/�) . (2.16)

The complex conjugate of Ψk is ψ∗
k exp(iEkt/�), so the probability function P

(Eqs. (2.1), (2.2)) is ψ∗
k exp(iEkt/�)ψk exp(−iEkt/�) = ψ∗

kψk = |ψk|2. The time
dependence of Ψ thus does not appear in the probability density. The time de-
pendence can, however, be critical when wavefunctions of systems with different
energies are combined and when we consider transitions of a system from one
state to another.

The meaning of the eigenvalues of the Schrödinger equation emerges if we use
Eq. (2.4) to find the expectation value of the energy for a particular state, Ψk:

〈
Ψk

∣∣H̃
∣∣Ψk

〉
=
〈
ψk
∣∣Ekψk

〉
[exp(iEkt/�) exp(−iEkt/�)] = Ek

〈
ψk
∣∣ψk

〉
= Ek . (2.17)

Eigenvalue Ek of the Hamiltonian operator thus is the energy of the system in state k.
Note that the energy is independent of time; it has to be, because we assumed that
H̃ is independent of time.

Equation (2.17) sheds some light on our basic postulate concerning the expec-
tation value of an observable property (Eq. (2.4)). If we know that a system has
wavefunctionΨk and that this wavefunction is an eigenfunction of operator Ã with
eigenvalue Ak (i.e., that 〈Ψk|Ψk〉 = 1 and ÃΨk = AkΨk), then barring experimental
errors, each measurement of the property must give the value Ak. This is just what
Eq. (2.4) states for such a situation:

〈
Ψk

∣∣Ã
∣∣Ψk

〉
= 〈Ψk|AkΨk〉 = Ak 〈Ψk|Ψk〉 = Ak . (2.18)
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On the other hand, if Ψk is not an eigenfunction of operator Ã (i.e., ÃΨk =
AkΨk for any value of Ak), then we cannot predict the result of an individual
measurement of the property. We can, however, still predict the average result of
many measurements, and Eq. (2.4) asserts that this statistical average is given by
〈Ψk|Ã|Ψk〉.

The time-independent Schrödinger equation will have at least one solution
for any finite value of E. However, if the potential energy function V(r) confines
a particle to a definite region of space, only certain values of E are consistent with
Born’s restrictions on physically meaningful wavefunctions. All other values of E
either makeψ go to infinity somewhere or have some other unacceptable property
such as a discontinuous first derivative with respect to position. This means that
the possible energies for a bound particle are quantized, as illustrated in Fig. 2.1.
The solutions to the Schrödinger equation for a free particle are not quantized in
this way; such a particle can have any energy above the threshold needed to set it
free (Fig. 2.1).

Fig. 2.1. The energy of a bound particle is quantized. The horizontal lines indicate the
eigenvalues of the total energy of a system whose potential energy depends on position (r)
as indicated by the dashed curve. The potential function shown is the Morse potential,
V = Ediss{1.0 − exp[−a(r − r0)]}2, where r0 is the equilibrium value of the coordinate and
a is a factor that determines the asymmetry of the potential well (here a = 0.035/r0). For
energies less than or equal to Ediss, the eigenvalues are, to a very good approximation,
En = hυ0[(n + 1/2) − a(n + 1/2)2], where n is an integer and υ0 depends on a, Ediss, and the
reduced mass of the system (Morse 1929; ter Haar 1946). If the total energy exceeds Ediss,
the energy is not quantized. The particle then can escape from the well on the right-hand
side, with its surplus energy taking the form of kinetic energy. Some of the eigenfunctions
are shown in Fig. 6.4
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2.2.1
Superposition States

The eigenfunctions of the Hamiltonian operator can be shown to form a complete
set of orthogonal functions. By “orthogonal” we mean that the product of any two
different members of such a set (Ψi and Ψk), when integrated over all space, is
zero:

〈Ψi|Ψk〉 = 0 . (2.19)

The functions sin x and sin(2x), for example, are orthogonal.
A general property of eigenvalue equations such as the time-independent

Schrödinger equation is that if ψi is a solution, then so is the product of ψi

with any constant. This means that we can multiply any nonzero eigenfunction by
a suitable factor so that

〈Ψi|Ψi〉 = 1 . (2.20)

Such an eigenfunction is said to be normalized, and eigenfunctions that satisfy
both Eq. (2.19) and Eq. (2.20) are called orthonormal.

A complete set of functions of a given variable has the property that a linear
combination of its members can be used to construct any well-behaved function of
that variable, even if the target function is not a member of the set. “Well behaved”
in this context means a function that is finite everywhere in a defined interval and
has finite first and second derivatives everywhere in this region. Fourier analysis
uses this property of the set of sine and cosine functions (Appendix 3). In quantum
mechanics, wavefunctions of complex systems often are approximated by combi-
nations of the wavefunctions of simpler or idealized systems. Wavefunctions of
time-dependent systems, for example, can be described by combining wavefunc-
tions of stationary systems in proportions that vary with time. We will return to
this point in Sect. 2.5.

If Ψi and Ψj are eigenfunctions of an operator, then any linear combination
CiΨi + CjΨj also is an eigenfunction of that operator. A state represented by such
a combined wavefunction is called a superposition state. One of the basic tenets
of quantum mechanics is that we must use a linear combination of this nature to
describe a system whenever we do not know which of its eigenstates the system is in.

The idea of a superposition state gets to the heart of the difference between
classical and quantum mechanics. Suppose that a particular experiment always
gives result x1 when it is performed on systems known to be in state 1 and a different
result, x2, for systems in state 2. We then have 〈Ψ1 |̃x|Ψ1〉 = x1 and 〈Ψ2 |̃x|Ψ2〉 = x2,
where Ψ1 and Ψ2 are the wavefunctions of the two states and x̃ is the operator
for the property examined in the experiment. Now suppose further that a given
system has probability |C1|2 of being in state 1 and probability |C2|2 of being
in state 2. Then, according to classical mechanics, the average result of a large
number of measurements on the system would be the weighted sum |C1|2x1 +
|C2|2x2. However, the individual probabilities do not add in this way for a system
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in a quantum mechanical superposition state. Instead, the expectation value is
〈C1Ψ1 + C2Ψ2 |̃x|C1Ψ1 + C2Ψ2〉. The classical and quantum mechanical predictions
can be very different, because in addition to |C1|2x1 + |C2|2x2, the latter contains
an “interference” term, C∗

1 C2〈Ψ1 |̃x|Ψ2〉 + C∗
2 C1〈Ψ2 |̃x|Ψ1〉.

One well-known illustration of quantum interference is the pattern of bright
and dark bands cast on a screen by light that is diffracted at a pair of slits. When
Thomas Young first described these interference “fringes” in 1804, they seemed
to comport well with the wave theory of light, and to be incompatible with the
notion that light consists of particles. They are, however, compatible with the
particle picture if we accept the idea that a photon passing through the slits
exists in a superposition state involving both slits until it strikes the screen where
it is detected. Because the same pattern of fringes is seen even when the light
intensity is reduced so that no more than one photon is in transit through the
apparatus at any given time, the interference evidently reflects a property of the
wavefunction of an individual photon rather than interactions between photons.
Similar manifestations of interference have been described for electrons, neutrons,
He atoms, and even 9Be+ ions (Marton et al. 1953; Carnal and Mlynek 1991; Monroe
et al. 1996). Additional observations of this type on photons are discussed in
Sect. 3.5.

In most experiments, we do not deal with single photons or other particles,
but rather with an ensemble containing a very large number of particles. Such
an ensemble generally cannot be described by a single wavefunction, because the
wavefunctions of the individual systems in the ensemble typically have random
phases with respect to each other. An ensemble of systems whose individual wave-
functions have random, uncorrelated phases is said to be in a mixed state. Thomas
Young himself observed that diffraction fringes were not seen if the light passing
through the two slits came from separate sources. We now can generalize this
observation to mean that the interference term in the expectation value for an ob-
servable disappears if it is averaged over a large number of uncorrelated systems.
We will discuss the quantum mechanics of mixed states in more detail in Chap. 10.

2.3
Spatial Wavefunctions

The Schrödinger equation can be solved exactly for the electron wavefunctions of
the hydrogen atom and some other relatively simple systems. We will now discuss
some of the main results. More detailed derivations are available in the texts on
quantum mechanics cited in Sect. 2.1.

2.3.1
A Free Particle

For a free particle, the potential energy is constant and we can choose it to be
zero. The time-independent Schrödinger equation in one dimension then becomes
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simply

−
(
�

2/2m
)
∂2ψ/∂x2 = Eψ , (2.21)

where m and E are the mass and total energy of the particle and x is the dimensional
coordinate (see Eqs. (2.8), (2.14)). Equation (2.21) has a solution for any positive
value of E:

ψ(x) = A exp(i
√

2mE x/�) , (2.22)

where A is an arbitrary amplitude with dimensions of cm−1/2. The energy of a free
particle thus is not quantized.

2.3.2
A Particle in a Box

Now consider a particle confined in a one-dimensional rectangular box with in-
finitely high walls. Let the box extend from x = 0 to x = l, and suppose again that
the potential energy, V(x), inside the box is zero. The Hamiltonian operator is

H̃ = −
(
�

2/2m
)
∂2/∂x2 + V(x) , (2.23)

where V(x) = 0 for x between 0 and l, V(x) = ∞ outside this region, and m
is the mass of the particle. The time-independent Schrödinger equation for this
Hamiltonian has a set of solutions:

ψn(x) = (2/l)1/2 sin(nπx/l) , (2.24)

for 0 ≤ x ≤ l, andψn(x) = 0 for x < 0 or x > l, where n is any integer. The energies
associated with these wavefunctions are

En = n2h2/8ml2 . (2.25)

Each eigenfunction (ψn) thus is determined by a particular value of an integer
quantum number (n), and the energies (En) increase quadratically with this num-
ber. Figure 2.2 shows the first five eigenfunctions, their energies, and the corre-
sponding probability density functions (|ψn|2). Outside the box, the wavefunctions
must be zero because there is no chance of finding the particle in a region where
its potential energy would be infinite. To avoid discontinuities, the wavefunctions
must go to zero at both ends of the box, and it is this boundary condition that
forces n to be an integer.

There are several important points to note here. First, the energies are quantized.
Second, excluding the trivial solution n = 0, which corresponds to an empty box,
the lowest possible energy is not zero as it would be for a classical particle at rest
in a box, but rather h2/8ml2. The smaller the box, the higher the energy. Finally,
the number of nodes (surfaces where the wavefunction crosses zero, or in a one-
dimensional system, points where this occurs) increases linearly with n, so the
probability distribution becomes more uniform with increasing n (Fig. 2.2). The
momentum of the particle is discussed in Box 2.4.
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Box 2.4 Linear momentum

Because we took the potential energy inside the box in Fig. 2.2 to be zero,
the energies given by Eq. (2.22) are entirely kinetic energy. From classical
physics, a particle with kinetic energy En and mass m should have a linear
momentum p with magnitude

p =
∣∣p
∣∣ =

√
2mEn = nh/2l . (B2.4.1)

Referring to Fig. 2.2a, we see that wavefunction ψn is equivalent to a stand-
ing wave with a wavelength λn of 2l/n. We therefore also could write the
momentum (nh/2l) as h/λn or hν, where ν is the wavenumber (1/λ). This
is consistent with de Broglie’s expression linking the momentum of a free
particle to the wavenumber of an associated wave (Eq. (B2.3.1) in Box 2.3).
But the expectation value of the momentum of the particle in a box with
infinitely high walls is not hν; it is zero. We can see this by using Eqs. (2.4)
and (2.5):

〈
ψn

∣∣̃p
∣∣ψn

〉
=
〈
ψn

∣∣(�/i)∂ψn ∂x
〉

= (�/i)
〈
(2/l)1/2 sin(nπx/l)

∣∣(2/l)1/2∂ sin(nπx/l)/∂x
〉

= (�/i)(2/l)(nπ/l)

l∫

0

sin(nπx/l) cos(nπx/l) dx = 0 (B2.4.2)

This result makes sense if we view each of the standing waves described by
Eq. (2.22) as a superposition of two waves moving in opposite directions.
Individual measurements of the momentum then might give either positive
or negative values but would average to zero.

From a more formal perspective, we cannot predict the outcome of an
individual measurement of the momentum because the wavefunctions given
by Eq. (2.22) are not eigenfunctions of the momentum operator. This is
apparent because the action of the momentum operator on wavefunction ψn

gives

p̃ψn = (�/i)∂ψn/∂x = (�/i)(21/2nπ/l3/2) cos(nπx/l) , (B2.4.3)

which is not equal to a constant times ψn. However, the expectation value
obtained by Eq. (B2.4.2) still gives the correct result for the momentum of
a standing wave (zero).

The Schrödinger equation does have solutions that are eigenfunctions
of the momentum operator for an electron moving through an unbounded
region of constant potential. These can be written

ψ± = A exp [2π i (νx ∓ νt)] , (B2.4.4)
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where A is a constant and the plus and minus signs are for particles moving in
the two directions. Applying the momentum operator to these wavefunctions
gives

p̃ψ± = (�/i)∂ψ±/∂x = (�/i)A(2π iν) exp [2π i(νx ∓ νt)] = hνψ± ,
(B2.4.5)

which leads to the correct expectation value of the momentum of a free
particle (hν).

Fig. 2.2. Eigenfunctions (a) and probability densities (b) of a particle in a one-dimensional
rectangular box of length l and infinitely high walls. The dotted lines indicate the energies
of the first five eigenstates (n = 1, 2, ... 5), and the eigenfunctions and probability densities
(solid curves) are displaced vertically to align them with the corresponding energies
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Although the probability of finding the particle at a given position varies with
the position, the eigenfunctions given by Eq. (2.24) extend over the full length
of the box. Wavefunctions for a particle that is more localized in space can be
constructed from linear combinations of these eigenfunctions. A superposition
state formed in this way from vibrational wavefunctions is called a wavepacket.
The combination ψ1 − ψ3 + ψ5 − ψ7, for example, gives a wavepacket whose
amplitude peaks strongly at the center of the box (x = l/2), where the individual
spatial wavefunctions interfere constructively. At positions far from the center, the
wavefunctions interfere destructively and the summed amplitude is small. Because
the time-dependent factors in the complete wavefunctions [exp(−iEnt/�)] oscillate
at different frequencies, the wavepacket will not remain fixed in position, but will
move and change shape with time. Wavepackets provide a way of representing
an atom or macroscopic particle whose energy eigenvalues are uncertain relative
to the separation between the eigenvalues. The spacing between the energies for
a particle in a one-dimensional box is inversely proportional to both the mass of
the particle and l2 (Eq. (2.25)), and will be very small for any macroscopic particle
with a substantial mass or size.

If the potential energy outside the square box described earlier is not infinite,
there is some probability of finding the particle here even if the potential energy
is greater than the total energy of the system. For a one-dimensional square box
with infinitely thick walls of height V, the wavefunctions in the region x > l are
given by

ψn = An exp [−(x − l)ζ] , (2.26)

where ζ = [2m(V − En)]1/2
�

−1 and An is a constant set by the boundary conditions.
Inside the box,ψn has a sinusoidal form similar to that of a wavefunction for a box
with infinitely high walls (Eq. (2.24)), but its amplitude goes to An rather than zero
at the boundary (x = l). Both the amplitudes and the slopes of the wavefunctions
are continuous across the boundary.

A quantum mechanical particle thus can tunnel into a potential energy wall,
although the probability of finding it here decreases exponentially with the distance
into the wall. A classical particle could not penetrate the wall because the condition
V > En requires the kinetic energy to be negative, which is not possible in classical
physics.

2.3.3
The Harmonic Oscillator

The potential well that restrains a chemical bond near its mean length is described
reasonably well by the quadratic expression

V(x) =
1
2

kx2 , (2.27)
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where x is the difference between the length of the bond and the mean length, and
k is a force constant. If the bond is stretched or compressed, a restoring force pro-
portional to the distortion (F = −kx) acts to return the bond to its mean length,
provided that the distortion is not too large. Such a parabolic potential well is
described as harmonic. At larger departures from the equilibrium length, the po-
tential well becomes increasingly anharmonic, rising more steeply for compression
than for stretching, as illustrated in Fig. 2.1.

A classical particle of mass m in a harmonic potential well oscillates about its
equilibrium position with a frequency given by

υ =
1

2π

(
k
m

)1/2

. (2.28)

Such a system is called a harmonic oscillator. Equation (2.28) also applies to the
frequency of the classical vibrations of a pair of bonded atoms if we replace m by
the reduced mass of the pair mr = m1m2/(m1 + m2), where m1 and m2 are the
masses of the individual atoms. The angular frequency ω is 2πυ = (k/m)1/2.

The sum of the kinetic and potential energies of a classical harmonic oscillator
is

Eclassical =
1

2mr

∣∣p
∣∣2 +

1
2

kx2 , (2.29)

which can have any nonnegative value, including zero. The quantum mechanical
picture again is significantly different. The eigenvalues of the Hamiltonian operator
for a one-dimensional harmonic oscillator are an evenly spaced ladder of energies,
starting not at zero but at (1/2)hυ:

En =
(
n + 1

2

)
hυ , (2.30)

with n = 0, 1, 2, .... The corresponding wavefunctions are

χn(x) = NnHn(u) exp
(
−u2/2

)
. (2.31)

Here Nn is a normalization factor, Hn(u) is a Hermite polynomial, and u is a dimen-
sionless positional coordinate obtained by dividing the Cartesian coordinate x by
(�/2πmrυ)1/2:

u = x/(�/2πmrυ)1/2 . (2.32)

The Hermite polynomials and the normalization factor Nn are given in Box 2.5
and the first six wavefunctions are shown in Fig. 2.3.

Box 2.5 Hermite polynomials

The Hermite polynomials are defined by the expression

Hn(u) = (−1)n exp(u2)
dn

dun
exp(−u2) . (B2.5.1)
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They can be generated by starting with Eq. (B2.5.1) to find H0 = 1 and
H1 = 2u, and then using the recursion formula

Hn+1(u) = 2uHn(u) − 2nHn−1(u) . (B2.5.2)

The first six Hermite polynomials are

H0 = 1 , H3 = 8u3 − 12u ,

H1 = 2u , H4 = 16u4 − 48u2 + 12 , (B2.5.3)

H2 = 4u2 − 2 , H5 = 32u5 − 160u3 + 120u .

The normalization factor Nn in Eq. (2.31) is

Nn =
[
(2πυ/�)1/2/(2nn!)

]1/2
. (B2.5.4)

The eigenvalues of the harmonic oscillator Hamiltonian usually are described
in terms of the wavenumber (ω = υ/c) in units of cm−1. The minimum energy,
(1/2)hυ or (1/2)�ω, is called the zero-point energy.

Although the eigenvalues of a harmonic oscillator increase linearly instead of
quadratically with n, and the shapes of the wavefunctions are more complex than
those of a particle in a square well, the solutions of the Schrödinger equation for
these two potentials have several points in common. Each eigenvalue corresponds
to a particular integer value of the quantum number n, which determines the
number of nodes in the wavefunction, and the spatial distribution of the wave-
function becomes more uniform as n increases. As in the case of a box with finite
walls, a quantum mechanical harmonic oscillator has a definite probability of be-
ing outside the region bounded by the potential energy curve (Fig. 2.3b). Finally,
as mentioned before and discussed in more detail in Chap. 11, a wavepacket for
a particle at a particular position can be constructed from a linear combination of
harmonic-oscillator wavefunctions. The position of such a wavepacket oscillates
in the potential well at the classical oscillation frequency υ.

2.3.4
Atomic Orbitals

Spatial wavefunctions for the electron in a hydrogen atom, or more generally, for
a single electron with charge −e bound to a nucleus of charge +Ze, can be written
as products of two functions, Rn,l(r) and Yl,m(θ,φ), where the variables r, θ, and
φ specify positions in polar coordinates relative to the nucleus and an arbitrary
z-axis:

ψnlm = Rn,l(r)Yl,m(θ,φ) . (2.33)
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Fig. 2.3. Wavefunctions (a) and probability densities (b) of a harmonic oscillator. The di-
mensionless quantity plotted on the abscissa (u) is the distance of the particle from its
equilibrium position divided by (�/2πmrυ)1/2, where mr is the reduced mass and υ is the
classical oscillation frequency. The dashed curves represent the potential energy, and the
dotted lines indicate the first six eigenvalues of the total energy, En, in units of hυ. The
wavefunctions are shifted vertically to align them with the energies

(See Fig. 4.4 for an explanation of polar coordinates.) The subscripts n, l, and m
in these functions denote integer quantum numbers with the following possible
values:

Principal quantum number: n = 1, 2, 3, ...,
Angular momentum (azimuthal) quantum number: l = 0, 1, 2, ..., n − 1 ,
Magnetic quantum number: m = −l, ..., 0, ..., l .

The energy of the orbital depends mainly on the principal quantum number (n)
and is given by

En = −16π2Z2mre4/n2h2 , (2.34)

where mr is the reduced mass of the electron and the nucleus. (This expression uses
the CGS system of units, which is discussed in Sect. 3.1.1.) The angular momentum
or azimuthal quantum number (l) determines the electron’s angular momentum,
and the magnetic quantum number (m) determines the component of the angular
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Table 2.1. Hydrogen-atom wavefunctions

Orbital n l m Rn,l(r)a Yl,m(θ, φ)b

1s 1 0 0 (
Z/a0

)3/2 2 exp(−ρ)
(
2
√
π
)−1

2s 2 0 0
(
Z/a0

)3/2

2
√

2
(2 − ρ) exp(−ρ/2)

(
2
√
π
)−1

2pz 2 1 0 (Za0)3/2

2
√

6
ρ exp(−ρ/2) (3/4π)1/2 cos θ

2p− 2 1 −1 (Za0)3/2

2
√

6
ρ exp(−ρ/2) (3/8π)1/2 sin θ(cos φ − i sin φ)

= (3/8π)1/2 sin θ exp(−iφ)

2p+ 2 1 1 (Za0)3/2

2
√

6
ρ exp(−ρ/2) (3/8π)1/2 sin θ(cos φ + i sin φ)

= (3/8π)1/2 sin θ exp(iφ)
aρ = Zr/a0, where Z is the nuclear charge, r is the distance from the nucleus, and a0 is the
Bohr radius (0.529 Å).

bθ and φ are the angles with respect to the z- and x-axes in polar coordinates (Fig. 4.4).

momentum along a specified axis and relates to a splitting of the energy levels in
a magnetic field (Sect. 9.5).

The wavefunctions for the first few hydrogen-atom orbitals are given in Table 2.1,
and Figs. 2.4–2.6 show their shapes. Atomic orbitals with l = 0, 1, 2, and 3 are
conventionally labeled s, p, d, and f . The s wavefunctions peak at the nucleus and
are spherically symmetrical (Figs. 2.4, 2.5). The 1s wavefunction has the same sign
everywhere, whereas 2s changes sign at r = 2�2/mre2Z, or 2a0/Z, where a0 (the Bohr
radius) is �2/mre2 (0.5292 Å). Because the volume element (dσ) between spherical
shells with radii r and r + dr is (for small values of dr)4πr2 dr, the probability of
finding an s electron at distance r from the nucleus (the radial distribution function)
depends on 4πr2ψ(r)2 dr. The radial distribution function for the 1s wavefunction
peaks at r = a0 (Fig. 2.4, panels E, F).

The p orbitals have nodal planes that pass through the nucleus (Figs. 2.5, 2.6).
The choice of a coordinate system for describing the orientations of the orbitals is
arbitrary unless the atom is in a magnetic field, in which case the z-axis is taken to
be the direction of the field. The 2p orbital with m = 0 is oriented along this axis and
is called 2pz. The 2p orbitals with m = ±1(2p+ and 2p−) are complex functions that
are maximal in the plane normal to the z-axis and rotate in opposite directions
around the z-axis with time. However, they can be combined to give two real
functions that are oriented along definite x- and y-axes and have no net rotational
motion (2px and 2py). The 2px and 2py wavefunctions then are identical to 2pz
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except for their orientations in space. This is essentially the same as constructing
standing waves from wavefunctions for electrons moving in opposite directions, as
described in Box 2.4. If we use the scaled coordinates z = ρ cos θ, x = ρ sin θ cos φ,
and y = ρ sin θ sin φ, with ρ = Zr/a0, the three 2p wavefunctions can be written

2pz =
(
Z/a0

)5/2
(32π)−1/2 z exp(−ρ/2) , (2.35a)

2px =
1√
2

(2p− + 2p+) = (Z/a0)5/2(32π)−1/2 x exp(−ρ/2) , (2.35b)

and

2py =
i√
2

(2p− + 2p+) = (Z/a0)5/2(32π)−1/2 y exp(−ρ/2) . (2.35c)

The 3d orbitals with m = ±1 or ±2 also are complex functions that can be combined
to give a set of real wavefunctions. The boundary surfaces of the real wavefunctions
are shown in Fig. 2.5.

2.3.5
Molecular Orbitals

The Schrödinger equation has not been solved exactly for electrons in molecules
larger than the H+

2 ion; the interactions of multiple electrons become too complex
to handle. However, the wavefunctions of the hydrogen atom provide a complete set
of functions, and as mentioned in Sect. 2.2.1, a linear combination of such functions
can be used to construct any well-behaved function of the same coordinates. This
suggests the possibility of representing a molecular electronic wavefunction by
a linear combination of hydrogen atomic orbitals centered at the nuclear positions.
In principle, we should include the entire set of atomic orbitals for each nucleus,
but smaller sets often provide useful approximations. For example, the π orbitals
of a molecule with N conjugated atoms can be written as

ψk ≈
N∑

n=1

Ck
nψ2z(n) , (2.36)

where ψ2z(n) is an atomic 2pz orbital centered on atom n, and coefficient Ck
n in-

dicates the contribution that ψ2z(n) makes to molecular orbital k. If the atomic
wavefunctions are orthogonal and normalized (

〈
ψ2z(n)

∣∣ψ2z(n)
〉

= 1 for all n, and〈
ψ2z(n)

∣∣ψ2z(m)
〉

= 0 for m = n), the molecular wavefunctions can be normalized by
scaling the coefficients so that

N∑

n=1

∣∣Ck
n

∣∣ 2 = 1 . (2.37)

The highest occupied molecular orbital (HOMO) of ethylene, a bonding π orbital,
can be approximated reasonably well by a symmetric combination of carbon 2pz
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Fig. 2.4. The hydrogen-atom 1s and 2s orbitals. A, B Contour plots (lines of constant ampli-
tude) of the wavefunctions in the plane of the nucleus, with solid lines for positive amplitudes
and dotted lines for negative amplitudes. The Cartesian coordinates x and y are expressed
as dimensionless multiples of the Bohr radius (a0 = 0.529 Å). The contour intervals for the
amplitude are 0.2a2/3

0 in A and 0.05a2/3
0 in B. C, D The amplitudes of the wavefunctions as

functions of the x coordinate. E, F The radial distribution functions
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Fig. 2.5. Perspective drawings of the “boundary surfaces” that enclose 90% of the probability
functions for the 1s, 2p, and 3d wavefunctions of the hydrogen atom. The wavefunctions
have a constant sign in the regions with dark shading, and the opposite sign in the regions
with light shading. These drawings are only approximately to scale

Fig. 2.6. a A contour plot of the amplitude of the hydrogen-atom 2py wavefunction in the
xy plane, with solid lines for positive amplitudes and dotted lines for negative amplitudes.
Distances are given as dimensionless multiples of the Bohr radius. The contour intervals
for the amplitude are 0.01a2/3

0 . b The amplitude of the 2py wavefunction in the xy plane as
a function of position along the y-axis
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orbitals centered on carbon atoms 1 and 2 and oriented so that their z-axes are
parallel:

ψπ(r) ≈ 2−1/2ψ2pz(1) + 2−1/2ψ2pz(2) = 2−1/2ψ2pz (r − r1) + 2−1/2ψ2pz (r − r2) ,
(2.38)

where r1 and r2 denote the positions of the two carbon atoms (Fig. 2.7). The con-
tributions from ψ2z(1) and ψ2z(2) combine constructively in the region between the
two atoms, leading to a build-up of electron density in this region. The molecular
orbital resembles the 2pz atomic orbitals in having a node in the xy plane.

The lowest unoccupied molecular orbital (LUMO) of ethylene, an antibonding
(π∗) orbital, can be represented as a similar linear combination but with opposite
sign:

ψπ(r) ≈ 2−1/2ψ2pz(1) − 2−1/2ψ2pz(2) = 2−1/2ψ2pz (r − r1) − 2−1/2ψ2pz (r − r2) .
(2.39)

In this case, ψ2z(1) and ψ2z(2) interfere destructively in the region between the two
carbons, and the molecular wavefunction has a node in the xz plane as well as the
xy plane (Fig. 2.7, panel C). The combinations described by Eqs. (2.38) and (2.39)
are called symmetric and antisymmetric, respectively.

Techniques for finding the best coefficients Ck
i for more complex molecules

have been refined by comparing calculated molecular energies, dipole moments,
and other properties with experimental measurements, and a variety of software
packages for such calculations are available (see, e.g., Pople and Beveridge 1970,
Szabo and Ostlund 1982, Parr 1989, Ayscough 1990, Pople 1999, Kong et al. 2000,
and Angeli 2005). The basis wavefunctions employed in these descriptions usually
are not the atomic orbitals obtained by solving the Schrödinger equation for the
hydrogen atom, but rather idealized wavefunctions with mathematical forms that

�
Fig. 2.7. Combining atomic 2p wavefunctions to formπ andπ∗ molecular orbitals. A Contour
plot of a 2pz wavefunction of an individual carbon atom. Coordinates are given as multiples
of the Bohr radius (a0), and the carbon 2pz wavefunction is represented as a Slater-type 2pz
orbital (Eq. (2.40)) with ζ = 3.071 Å−1 (1.625/a0). The plot shows lines of constant amplitude
in the yz plane, with solid lines for positive amplitudes, dotted lines for negative amplitudes,
and a dot-dashed line for zero. B Contour plot of the amplitude in the yz plane for the
bonding (π) molecular orbital formed by symmetric combination of 2pz wavefunctions
of two carbon atoms separated by 2.51a0 (1.33 Å) in the y direction. C Same as B, but
for the antibonding (π∗) molecular orbital created by antisymmetric combination of the
atomic wavefunctions. D, E Same as B and C, respectively, but showing the amplitudes of
the wavefunctions in the plane parallel to the xy plane and a0 above xy (see the horizontal
dashed lines at z = a0 in B, C). A map of the amplitudes ao below the plane of the ring would
be the same except for an interchange of positive and negative signs. The contour intervals
for the amplitude are 0.1a2/3

0 in A–E
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are easier to manipulate. They include parameters that are adjusted semiempiri-
cally to model a particular type of atom and to adjust for overlap with neighboring
atoms. A standard form is the Slater-type orbital,

ψnlm = Nrn∗−1 exp
(
−ζr

)
Yl,m , (2.40)

where N is a normalization factor, n∗ and ζ are parameters related to the principal
quantum number (n) and the effective nuclear charge, and Yl,m is a spherical har-
monic function of the polar coordinates θ and φ. The Slater 2pz orbitals of carbon,
nitrogen, and oxygen, for example, take the form (ζ5/π)1/2r · cos θ exp(−ζr), with
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ζ = 3.071, 3.685, and 4.299 Å−1, respectively. Gaussian functions also are commonly
used because, although they differ substantially in shape from the hydrogen-atom
wavefunctions, they have particularly convenient mathematical properties. For
example, the product of two Gaussians centered at positions r1 and r2 is another
Gaussian centered midway between these points. Current programs use linear
combinations of three or more Gaussians to replace each Slater-type orbital. See
McGlynn et al. (1972) for further information on these and other semiempirical
orbitals.

Figure 2.8 shows contour plots of calculated amplitudes of the wavefunctions
for the HOMO and LUMO of 3-methylindole, which is a good model of the side
chain of tryptophan. Note that the HOMO has two nodal curves in the plane of the
drawing, while the LUMO has three; the LUMO thus has less bonding character.

The wavefunction for a system with several independent degrees of freedom
often can be approximated as a product of the wavefunctions of the components.
Thus, a wavefunction for a molecule can be written, to a first approximation, as
a product of electronic and nuclear wavefunctions:

Ψ(r, R) ≈ ψ(r)χ(R) , (2.41)

where r and R are, respectively, the electronic and nuclear coordinates. In this
approximation, the total energy of the system is simply the sum of the energies of

Fig. 2.8. Contour plots of the wavefunction amplitudes for the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of 3-methylindole. Pos-
itive amplitudes are indicated by solid lines, negative amplitudes by dotted lines, and zero
by dot-dashed lines. The plane of the map is parallel to the plane of the indole ring and is
above the ring by a0 as in Fig. 2.7, panels D and E. The contour intervals for the amplitude
are 0.05a3/2

0 . Small contributions from the carbon and hydrogen atoms of the methyl group
are neglected. The straight black lines indicate the carbon and nitrogen skeleton of the
molecule. The atomic coefficients for the molecular orbitals were obtained as described
by Callis (1991, 1997) and Slater and Callis (1995). Slater-type atomic orbitals (Eq. (2.40))
with ζ = 3.071 Å−1 (1.625/a0) and 3.685 Å−1 (1.949/a0) were used to represent C and N,
respectively
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the electronic and nuclear wavefunctions. Similarly, wavefunctions for a system of
two molecules can be approximated as products of the individual wavefunctions.

2.3.6
Approximate Wavefunctions for Large Systems

Extending the ideas described in the previous section, we can use linear combi-
nations of molecular wavefunctions to generate approximate wavefunctions for
systems containing more than one molecule. For example, a wavefunction repre-
senting an excited state of an oligonucleotide can be described as a linear combi-
nation of wavefunctions for the excited states of the individual nucleotides.

The basis wavefunctions used in such constructions are said to be diabatic,
which means that they are not eigenfunctions of the complete Hamiltonian; they
do not consider all the intermolecular interactions that contribute to the energy of
the actual system. A measurement of the energy must give one of the eigenvalues
associated with the adiabatic wavefunctions of the full Hamiltonian, which usually
will not be an eigenvalue of the Hamiltonian for any one of the basis functions.
The energy is, however, given approximately by

Ek ≈
N∑

n=1

∣∣Ck
n

∣∣2 En , (2.42)

where En is the energy of basis functionψn and Ck
n is the corresponding coefficient

(Eq. (2.36)). The accuracy of this approximation depends on the choice of the basis
functions, the number of terms that are included in the sum, and the reliability of
the coefficients.

Although the individual basis wavefunctions are not eigenfunctions of the com-
plete Hamiltonian, it is possible in principle to find linear combinations of these
wavefunctions that do give such eigenfunctions, at least to the extent that the basis
functions are a complete set. Equation (2.42) then becomes exact. Assuming that
the basis wavefunctions are orthogonal, the general procedure for finding the sets
of coefficients (Ck

n) for these eigenfunctions is to form the N × N Hamiltonian
matrix (H) with elements Hij = 〈ψi|H̃|ψj〉. This matrix then is diagonalized by
constructing another matrix C and its inverse (C−1) such that the product C−1· H ·
C is diagonal (Appendix 2). The diagonal elements of C−1· H · C are the eigenvalues
of the adiabatic states, and column k of C is the set of coefficients corresponding
to eigenvalue Ek. We will use this procedure in Chap. 8 to find the excited states of
oligomers (Box 8.2).

2.4
Spin Wavefunctions and Singlet and Triplet States

Electrons, protons, and other nuclei have an intrinsic angular momentum or “spin”
that is characterized by two spin quantum numbers, s and ms. The magnitude of
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the angular momentum is [s(s + 1)]1/2
�. For an individual electron, s = 1/2,

so the angular momentum has a magnitude of (31/2/2)�. The component of the
angular momentum parallel to a single prescribed axis (z) also is quantized and
is given by ms�, where ms = s, s − 1, ..., −s. For s = 1/2, ms is limited to ±1/2,
making the momentum along the z-axis ±�/2. The magnitude of the spin and the
component of the spin in this direction do not commute with the components of
the momentum in orthogonal directions, so these components are indeterminate.
The angular momentum vector for an electron therefore can lie anywhere on a cone
whose half-angle (θ) with respect to the z-axis is given by cos θ = ms/[s(s + 1)]1/2

(θ ≈ 54.7◦; Fig. 2.9).
The two possible values of ms for an electron can be described formally by two

spin wavefunctions,α and β, which we can view as “spin up” (ms = +1/2) and “spin
down” (ms = −1/2), respectively. These functions are orthogonal and normalized
so that 〈α|α〉 = 〈β|β〉 = 1 and 〈α|β〉 = 〈β|α〉 = 0. The variable of integration here is
not a spatial coordinate, but rather a spin variable that represents the orientation
of the electron.

The notion of electronic spin was first proposed by Uhlenbeck and Goudsmit
in 1925 to account for the splitting of some of the lines seen in atomic spectra.
They and others showed that the electronic spin also accounted for the anomalous
effects of magnetic fields (Zeeman effects) on the spectra of many atoms. However,
it was necessary to postulate that the magnetic moment associated with electronic
spin is not simply the product of the angular momentum and e/2mc, as is true
of orbital magnetic moments, but rather twice this value. The extra factor of 2 is
called the Landé g factor. When Dirac (1928) reformulated quantum mechanics to
be consistent with special relativity, both the intrinsic angular momentum and the
anomalous factor of 2 emerged automatically without any ad hoc postulates. Dirac
shared the physics Nobel prize with Schrödinger in 1933.

In a system of two interacting electrons, the total spin (S) is quantized and can be
either 1 or 0 depending on whether the individual spins are the same (e.g., both β)
or different (oneα, the other β). The component of the total spin along a prescribed
axis is Ms�, with Ms = S, S − 1, ..., −S, i.e., 0 if S = 0 and 1, 0, or −1 if S = 1. For most
organic molecules in their ground state, the HOMO contains two electrons with
different antiparallel spins, making both S and Ms zero. But because we cannot tell
which electron has spin α and which has spin β, the electronic wavefunction for
the ground state must be written as a combination of expressions representing the
two possible assignments:

Ψa = [ψh(1)ψh(2)]
[
2−1/2α(1)β(2) − 2−1/2α(2)β(1)

]
. (2.43)

Here ψh denotes a spatial wavefunction that is independent of spin, and the
numbers in parentheses are labels for the two electrons; α( j)β(k) means that
electron j has spin wavefunction α and electron k has spin wavefunction β.

Note that the complete wavefunction Ψa as written in Eq. (2.43) changes sign
if the labels of the electrons (1 and 2) are interchanged. W. Pauli pointed out that
the wavefunctions of all multielectronic systems have this property. The overall
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Fig. 2.9. A vectorial representation of the electronic spins in the four possible spin states of
a system with two coupled electrons. Each arrow represents a spin with magnitude 31/2

�/2
constrained to the surface of a cone with half-angle θ = cos−1(±3−1/2) relative to the z-
axis (54.7◦ for spin α and 125.3◦ for spin β). In the singlet state (left), the two vectors are
antiparallel, giving a total spin quantum number (S) of zero. In the triplet states (right)
S = 1 and Ms = 1, 0, or −1. This requires the two individual spin vectors to be arranged so
that their resultant (not shown) has magnitude 21/2

� and lies on a cone with half-angle 45◦,
90◦, or 135◦ from z for Ms = 1, 0, or −1, respectively

wavefunction invariably is antisymmetric for an interchange of the coordinates
(both positional and spin) of any two electrons. This assertion rests on exper-
imental measurements of atomic and molecular absorption spectra: absorption
bands predicted on the basis of antisymmetric electronic wavefunctions are seen
experimentally, whereas bands predicted on the basis of symmetric electronic
wavefunctions are not observed. Its most important implication is the Pauli ex-
clusion principle, which says that a given spatial wavefunction can hold no more
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than two electrons. This follows if an electron can be described completely by
specifying its spatial and spin wavefunction and electrons have only two possible
spin wavefunctions (α and β).

Now consider an excited state in which either electron 1 or electron 2 is promoted
from the HOMO to the LUMO (ψl). The complete wavefunction for the excited state
must incorporate the various possible assignments of spin α or β to the electrons
in addition to the two possible ways of assigning the electrons to the two orbitals,
and again the wavefunction must change sign if we interchange the coordinates
of the electrons. If there is no change in the net spin of the system during the
excitation, as is usually the case, the spin part of the wavefunction remains the
same as for the ground state so that both S and Ms remain zero. The spatial part is
more complicated:

1Ψb =
[
2−1/2ψh(1)ψl(2) + 2−1/2ψh(2)ψl(1)

] [
2−1/2α(1)β(2) − 2−1/2α(2)β(1)

]
.

(2.44)

The choice of a + sign for the combination of the spatial wavefunctions in the first
brackets satisfies the requirement that the overall wavefunction be antisymmetric
for an exchange of the two electrons. If antisymmetric combinations were used in
both brackets, the overall product of the spatial and spin wavefunctions would be
symmetric, in conflict with experiment. The state described by such a wavefunction
is referred to as a singlet state because when the spatial wavefunction is symmetric
there is only one possible combination of spin wavefunctions (the one written in
Eq. (2.44)). The ground state (Eq. (2.43)) also is a singlet state. Singlet states often
are indicated by a superscript “1” as in Eq. (2.44).

If, instead, we choose the antisymmetric combination for the spatial part of the
wavefunction in the excited state, there are three possible symmetric combinations
of spin wavefunctions that make the overall wavefunction antisymmetric:

3Ψ+1
b =

[
2−1/2ψh(1)ψl(2) − 2−1/2ψh(2)ψl(1)

]
[α(1)α(2)] , (2.45a)

3Ψ0
b =

[
2−1/2ψh(1)ψl(2) − 2−1/2ψh(2)ψl(1)

] [
2−1/2α(1)β(2) + 2−1/2α(2)β(1)

]
,

(2.45b)

and

3Ψ−1
b =

[
2−1/2ψh(1)ψ1(2) − 2−1/2ψh(2)ψl(1)

]
[β(1)β(2)] . (2.45c)

These are the three excited triplet states corresponding to S = 1 and Ms = 1, 0, and
−1, respectively.

Figure 2.9 shows a vectorial representation of the angular momenta of the two
electrons in the singlet and triplet states when the vertical (z) axis is defined by
a magnetic field. The vectors are drawn to satisfy the quantization of the spin and
the z component of the spin simultaneously for both the individual electrons and
the combined system. Although the x and y components of the individual spins
are still indeterminate, the angle between the two spins is fixed. In the triplet state
with Ms = 0, the resultant vector representing the total spin is in the xy plane;
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in the states with Ms = ±1, it lies on a cone with a half-angle of 45◦ or 135◦ with
respect to the z-axis.

The triplet state 3Ψ0
b invariably has a lower energy than the corresponding singlet

state, 1Ψb. This statement, which is often called Hund’s rule, is a consequence of
the different spatial wavefunctions, not the spin wavefunctions. The motions of the
two electrons are correlated in a way that tends to keep the electrons farther apart
in the triplet wavefunction, decreasing their repulsive interactions. The difference
between the two energies, called the singlet–triplet splitting, is given by 2Khl, where
Khl is the exchange integral:

Khl =
〈
ψl(1)ψh(2)

∣∣∣∣
e2

r12

∣∣∣∣ψh(1)ψl(2)
〉

(2.46)

and r12 is the distance between the electrons. Khl is always positive (Roothaan
1951).

A special situation arises when the two orbitals are equivalent in the sense that
they have the same energy and can be transformed into each other by a symmetry
operation such as rotation. The triplet state then can be lower in energy than
a singlet state in which both electrons reside in one of the orbitals. This is the case
for O2, for which the ground state is a triplet and the lowest excited state is a singlet.

The z-axis that defines the orientation of an electronic spin often is determined
uniquely by an external magnetic field. Because of their different magnetic mo-
ments, the three triplet states split apart in energy in the presence of a magnetic
field, with 3Ψ+1

b moving up in energy and 3Ψ−1
b moving down; 3Ψ0

b is not affected.
Although the triplet states are degenerate (isoenergetic) in the absence of a mag-
netic field, orbital motions of the electrons can create local magnetic fields that lift
this degeneracy. This zero-field splitting can be measured by imposing an oscillat-
ing microwave field to induce transitions between the triplet states. The magnetic
dipoles of the three zero-field triplet states generally can be associated with x, y,
and z structural axes of the molecule.

Wavefunctions for more than two electrons can be approximated as linear
combinations of all the allowable products of electronic and spin wavefunctions
for the individual electrons. Combinations that satisfy the Pauli exclusion principle
can be written conveniently as determinants:

Ψ = (1/N!)1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψa(1)α(1) ψa(2)α(2) ψa(3)α(3) · · · ψa(N)α(N)
ψa(1)β(1) ψa(2)β(2) ψa(3)β(3) · · · ψa(N)β(N)
ψb(1)α(1) ψb(2)α(2) ψb(3)α(3) · · · ψb(N)α(N)
ψb(1)β(1) ψb(2)β(2) ψb(3)β(3) · · · ψb(N)β(N)

...
...

...
...

ψN(1)β(1) ψN(2)β(2) ψN(3)β(3) · · · ψN(N)β(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(2.47)

where the ψi are the individual one-electron spatial wavefunctions and N is the
total number of electrons. Equation (2.43), for two electrons and a single spatial
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wavefunction, consists of the 2 × 2 block at the top left corner of Eq. (2.47). This
formulation guarantees that the overall wavefunction will be antisymmetric for
interchange of any two electrons, because the value of a determinant always changes
sign if any two columns or rows are interchanged. Such determinants are called
Slater determinants after J.C. Slater, who developed the procedure. They often are
denoted compactly by omitting the normalization factor (1/N!)1/2, listing only
the diagonal terms of the determinant, representing the combinations ψj(k)α(k)
and ψj(k)β(k) by ψj(k) and ψj(k), respectively, and omitting the indices for the
electrons:

Ψ =
∣∣ψaψaψbψb · · ·ψN

∣∣ . (2.48)

In the nomenclature of Eq. (2.48), the Slater determinants for the HOMO and
LUMO “spin–orbital” wavefunctions of the ground, excited singlet, and excited
triplet states (Eqs. (2.43)–(2.45)) would be written

Ψa =
∣∣ψhψh

∣∣ , (2.49a)
1Ψb = 2−1/2 (∣∣ψhψl

∣∣ +
∣∣ψlψh

∣∣) , (2.49b)
3Ψ+1

b = 2−1/2 (∣∣ψhψl
∣∣ −

∣∣ψlψh
∣∣) , (2.49c)

3Ψ0
b = 2−1/2 (∣∣ψhψl

∣∣ −
∣∣ψlψh

∣∣) , (2.49d)

and

3Ψ−1
b = 2−1/2 (∣∣ψhψl

∣∣ −
∣∣ψl ψh

∣∣) . (2.49e)

Transitions between singlet and triplet states will be discussed in Sect. 4.9.
Protons resemble electrons in having spin quantum numbers s = 1/2 and

ms = ±1/2. Wavefunctions of systems containing multiple protons, or any other
particles with half-integer spin (fermions), also resemble electronic wavefunctions
in being antisymmetric for interchange of any two identical particles. Wavefunc-
tions for systems containing multiple particles with integer or zero spin (bosons), by
contrast, must be symmetric for interchange of two identical particles. Deuterons,
which have spin quantum numbers s = 1 and ms = −1, 0, or 1, fall in this sec-
ond group. Because interchanging bosons leaves their combined wavefunction
unchanged, any number of bosons can occupy the same wavefunction. Fermions
and bosons obey different statistics that are distinguishable at low temperatures
(Box 2.6).

Box 2.6 Boltzmann, Fermi-Dirac, and Bose-Einstein statistics

As Eqs. (2.43)–(2.48) illustrate, wavefunctions of a system comprised of mul-
tiple noninteracting components can be written as linear combinations of
products of the form

Ψ = Ψa(1)Ψb(2)Ψc(3) · · · . (B2.6.1)



2.4 Spin Wavefunctions and Singlet and Triplet States 63

The Boltzmann distribution law says that, if the number of components is very
large, and if all the product wavefunctions of the form written in Eq. (B2.6.1)
are accessible, the probability of finding a given component in the state with
wavefunction Ψm at temperature T is

Pm = Z−1 gm exp
(
−Em/kBT

)
. (B2.6.2)

Here Em is the energy of state m, gm is the multiplicity of the state (the
number of substates with the same energy), kB is the Boltzmann con-
stant (1.3709 × 10−16 erg per degree K), and Z (the partition function) is
a temperature-dependent factor that normalizes the sum of the probabilities
over all the states:

Z =
∑

m

gm exp
(
−Em/kBT

)
. (B2.6.3)

A multiplicity factor (gm) of 2 can be used to combine electronic states with
the same spatial wavefunction but different spins (α or β) when the energy
difference between the two spin sublevels is negligible. Alternatively, spin
states can be enumerated separately, each with gm = 1.

The restriction that all the product wavefunctions of the form of Eq. (B2.6.1)
must be accessible becomes problematic if the individual components of the
system are indistinguishable. As we have discussed, wavefunctions that are
symmetric for interchange of two identical particles are not available to
fermions, while wavefunctions that are antisymmetric for such interchanges
are not available to bosons. Systems of fermions or bosons therefore follow
different distribution laws. Fermions obey the Fermi–Dirac distribution,

Pm =
[
AFgm exp

(
Em/kBT

)
+ N

]−1
, (B2.6.4)

where N is the number of particles and AF is defined to make the total
probability 1. Bosons follow the Bose–Einstein distribution,

Pm =
[
ABgm exp

(
Em/kBT

)
− N

]−1
, (B2.6.5)

with AB again defined to give a total probability of 1.
Figure 2.10 illustrates Boltzmann, Fermi–Dirac, and Bose–Einstein distri-

butions of four particles among five states with equally spaced energies. Each
state is assumed to have a multiplicity of 2. The populations of the five states
are plotted as functions of kBT/E, where E is the energy difference between
adjacent states. The populations all converge on 0.2 at high temperature,
where a given particle has nearly equal probabilities of being in any of the
five states. However, the three distributions differ notably at low temperature.
Here the Fermi–Dirac distribution puts two particles in each of the states with
the two lowest energies, making the probability of finding a given particle in
a given one of these states 0.5 (Fig. 2.10, panel B). This corresponds to the Pauli
exclusion principle that a spatial wavefunction can hold no more than two
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electrons, which must have different spins. The Boltzmann and Bose–Einstein
distributions, in contrast, both put all four particles in the state with the lowest
energy (Fig. 2.10, panels A, C). The Bose–Einstein distribution differs from
the Boltzmann distribution in changing more gradually with temperature.

The Bose–Einstein distribution law was derived by S.N. Bose in 1924
to describe a photon gas. Einstein extended it to material gasses. Fermi
developed the Fermi–Dirac distribution law in 1926 by exploring the Pauli
exclusion principle, and Dirac obtained it independently in the same year by
considering antisymmetric wavefunctions.

Fig. 2.10. The Boltzmann (A), Fermi–Dirac (B), and Bose–Einstein (C) distributions of four
particles among five states with energies of 0, E, 2E, 3E, and 4E in arbitrary energy units.
Each state is assumed to have a multiplicity of 2. The populations of the five states are plotted
as functions of kBT/E. In each case, the uppermost curve is the population in the state with
the lowest energy, and the bottom curve is for the state with the highest energy
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2.5
Transitions Between States: Time-Dependent Perturbation Theory

The wavefunctions obtained by solving the time-independent Schrödinger equa-
tion (Eq. (2.14)) describe stationary states. A system that is placed in one of these
states evidently will stay there forever as long as H̃ = H̃0, because the energy of
the system is independent of time. But suppose H̃ changes with time. We could,
for example, switch on an electric field or bring two molecules together so that
they interact. This will perturb the system so that the original solutions to the
Schrödinger equation are no longer entirely valid.

If the change in H̃ is relatively small, we can write the total Hamiltonian of
the perturbed system as a sum of the time-independent H̃0 and a smaller, time-
dependent term, H̃

′
(t):

H̃ = H̃0 + H̃′(t) . (2.50)

To find the wavefunction of the perturbed system, let us express it as a linear
combination of the eigenfunctions of the unperturbed system:

Ψ = CaΨa + CbΨb + · · · , (2.51)

where the coefficients Ck are functions of time. The value of |Ck|2 at a given time
represents the extent to which Ψ resembles the wavefunction of basis state k(Ψk).
This approach makes use of the fact that the original eigenfunctions form a com-
plete set of functions, as discussed in Sect. 2.2.1.

Suppose we know that the molecule is in state Ψa before we introduce the
perturbation H̃

′
. How rapidly does the wavefunction begin to resemble that of

some other basis state, say Ψb? The answer should lie in the time-dependent
Schrödinger equation (Eq. (2.9)). Using Eqs. (2.50) and (2.51), we can expand the
left-hand side of the Schrödinger equation to

[
H̃0 + H̃

′
(t)
]
[Ca(t)Ψa + Cb(t)Ψb + · · · ]

= H̃0
(
CaΨa + CbΨb + · · · ) + H̃′ (CaΨa + CbΨb + · · · )

= CaH̃0Ψa + CbH̃0Ψb + · · · + CaH̃
′Ψa + CbH̃

′Ψb + · · · . (2.52)

The right-hand side of the Schrödinger equation can be expanded similarly to

i�
(
Ψa∂Ca/∂t + Ψb∂Cb/∂t + · · · + Ca∂Ψa/∂t + Cb∂Ψb/∂t + · · · ) . (2.53)

We have assumed that H̃CkΨ = CkH̃Ψ, which means that the operator H̃ and
multiplication by Ck commute; the result of performing the two operations is
independent of the order in which they are performed. As discussed in Box 2.2,
this assumption must be valid if the energy of the system and the values of the
coefficients can be known simultaneously.
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For the unperturbed system, we know that H̃0Ψa = i�∂Ψa/∂t and H̃0Ψb =
i�∂Ψb/∂t, because each eigenfunction satisfied the Schrödinger equation be-
fore we changed H̃. Canceling the corresponding terms on opposite sides of the
Schrödinger equation (e.g., subtracting CaH̃0Ψa from Eq. (2.52) and Cai�∂Ψa/∂t
from Eq. (2.53)) leaves

CaH̃
′Ψa + CbH′Ψb + · · · = i�

(
Ψa∂Ca/∂t + Ψb∂Cb/∂t + · · · ) . (2.54)

We can simplify this equation by multiplying each term byΨ∗
b and integrating over

all space, because this allows us to use the orthogonality relationships (Eqs. (2.19),
(2.20)) to set many of the integrals to 0 or 1:

Ca

〈
Ψb|H̃′|Ψa

〉
+ Cb

〈
Ψb|H̃′|Ψb

〉
+ · · ·

= i�
(〈Ψb|Ψa〉 ∂Ca/∂t + 〈Ψb|Ψb〉 ∂Cb/∂t + · · · )

= i�∂Cb/∂t . (2.55)

If we know that the system is in state a at a particular time, then Ca must be 1, and
Cb and all the other coefficients must be zero. So all but one of the terms on the
left-hand side of Eq. (2.55) drop out. This leaves us with 〈Ψb|H̃′|Ψa〉 = i�∂Cb/∂t,
or

∂Cb/∂t = (1/i�)
〈
Ψb|H̃′|Ψa

〉
= (−i/�)

〈
Ψb|H̃′|Ψa

〉
. (2.56)

Equation (2.56) tells us how coefficient Cb increases with time at early times
when there is still a high probability that the system is still in state a. But the
wavefunctions Ψa and Ψ∗

b in the equation are themselves functions of time. From
the general solution to the time-dependent Schrödinger equation (Eq. (2.16))
we can separate the spatial and time-dependent parts of these wavefunctions as
follows:

Ψa = ψa(r) exp
(
−iEat/�

)
(2.57a)

and

Ψ∗
b = ψ∗

b(r) exp
(
iEbt/�

)
. (2.57b)

Inserting these relationships into Eq. (2.56) yields the following result for the
growth of Cb with time:

∂Cb/∂t = −
(
i/�

)
exp

(
iEbt/�

)
exp

(
−iEat/�

) 〈
ψb

∣∣∣H̃
′∣∣∣ψa

〉

= −
(
i/�

)
exp [i(Eb − Ea)t/�]

〈
ψb

∣∣∣H̃
′∣∣∣ψa

〉
. (2.58)

Equation (2.58) factors ∂Cb/∂t into an oscillatory component that depends on
the difference between the energies of states a and b (exp[i(Eb − Ea)t/�]) and an
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integral that depends on the time-dependent perturbation (H̃′) and the spatial
wavefunctionsψa andψb. The integral 〈ψb|H̃′|ψa〉 is called a matrix element of H̃

′
.

A similar matrix element, 〈ψk|H̃′|ψa〉, could be written to describe the rate of
build-up of the coefficient Ck for any other state of the system. To obtain the value
of Cb after a short interval of time, τ, we need only integrate Eq. (2.58) from 0 to τ:

Cb(τ) =

τ∫

0

(
∂Cb/∂t

)
dt . (2.59)

During the time that the perturbation is applied, the system cannot be said to be
in either state a or state b because these are no longer eigenstates of the Hamiltonian.
So what physical interpretation should we place on the coefficients Ca and Cb for
these states in Eq. (2.52)? Suppose that at time τ we perform a measurement that
has different expectation values for states a and b in the unperturbed system. If
the operator corresponding to the measurement is Ã, the expectation value for
observations on the perturbed system will be

A =
〈
Ψ
∣∣Ã
∣∣Ψ

〉
=

〈
∑

j

CjΨj
∣∣Ã
∣∣
∑

k

CkΨk

〉

=
∑

j

∑

k

CjCk
〈
Ψj

∣∣Ã
∣∣Ψk

〉

=
∑

j

∑

k

CjCk
〈
Ψj
∣∣AkΨk

〉
=
∑

j

∑

k

CjCkAk
〈
Ψj
∣∣Ψk

〉
=
∑

k

|Ck|2 Ak , (2.60)

where Ak is the expectation value for observations on an unperturbed system in
state k. Equation (2.60) is a generalization of Eq. (2.42), which gives the expectation
value of the energy. The magnitude of |Cb(τ)|2 thus tells us the extent to which an
arbitrary measurement on the perturbed system at time τ will resemble Ab, the
result of the same measurement on a system known to be in state b.

Now suppose we turn off the perturbation abruptly after we make a measure-
ment on the perturbed system. With the perturbation removed, the basis states
again become eigenstates of the system, and evolution of the coefficients Ca and Cb

comes to a halt. It thus seems reasonable to view |Cb(τ)|2 as the statistical proba-
bility that the system has evolved into state b at time τ. If this probability increases
linearly with time for small values of τ so that |Cb(τ)|2 = κτ, where κ is a constant,
we can identify κ as the rate constant for the transition.

To evaluate ∂Cb/∂t for any particular case, we need to specify the time depen-
dence of H̃

′
more explicitly. We will do this in Chap. 4 for an oscillating electro-

magnetic field. In Chaps. 7 and 8 we will consider perturbations introduced by
bringing two molecules together so that they interact, and in Chaps. 10 and 11
we will consider the effects of randomly fluctuating interactions between a system
and its surroundings.

The general conclusion that transitions from state a to state b depend on the
Hamiltonian matrix element 〈ψb|H̃′|ψa〉 merits a few additional comments at this
point. Note that 〈ψb|H̃′|ψa〉 is an off-diagonal matrix element of the complete
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Hamiltonian that includes the time-dependent perturbation. In Sect. 2.3.6, we
discussed how linear combinations of basis wavefunctions can be used to construct
wavefunctions for more complex systems. Finding the sets of coefficients that give
eigenfunctions of the complete Hamiltonian, and so give stationary states of the
system, requires diagonalizing the Hamiltonian. The time-dependent perturbation
thus can drive transitions between states a and b, which are nonstationary in the
presence of the perturbation, but it cannot drive transitions between the linear
combinations of these states that make the Hamiltonian diagonal.

2.6
Lifetimes of States and the Uncertainty Principle

As discussed in Sect. 2.1.2, the position and momentum operators do not commute;
the combined action of the two operators gives different results, depending on
which operator is used first:

[̃ r, p̃]ψ = r̃ p̃ψ − p̃ r̃ψ = i�ψ . (2.61)

With some algebra, it follows from Eq. (2.61) that the product of the uncertainties
(root-mean-square deviations) in the expectation values for position and momen-
tum must be greater than or equal to �/2 (see, e.g., Atkins 1983). This is a statement
of Heisenberg’s uncertainty principle.

The potential energy of a particle can be specified precisely as a function of
position. However, the Hamiltonian operator H̃ also includes a term for kinetic
energy. Because kinetic energy depends on momentum, H̃ does not commute
with r̃. We therefore cannot specify both the energy and the position of a particle
simultaneously with arbitrary precision. Similarly, because the dipole moment of
a molecule depends on the positions of all the electrons and nuclei, we cannot
specify the dipole moment together with the energy to arbitrary precision. If we
know that a system is in a state with a particular energy, a measurement of the
dipole moment will give a real result, but we cannot be sure exactly what result
will be obtained on any given measurement. However, the average result of many
such measurements is given by the expectation value, which is an integral over
all possible positions. The expectation values of both the energy and the dipole
moment can, therefore, be stated precisely, at least in principle (Box 2.2).

There is no uncertainty principle comparable to the one for momentum and
position that links the energy of a state with the state’s lifetime. Indeed, there is
no quantum mechanical operator for the lifetime of a state. There is, nevertheless,
a relationship between the lifetime and our ability to assign the state a definite
energy. One way to view this relationship is to recall that the full wavefunction for
a system with energy Ea is an oscillating function of time, and that the oscillation
frequency is proportional to the energy (Eq. (2.16)):

Ψ(r, t) = ψ(r) exp
(
−iEat/�

)
. (2.62)
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According to this expression, if Ea is constant, the probability of finding the system
in the state is independent of time (P = Ψ∗Ψ = ψ∗ψ). Conversely, if a system
remains in one state indefinitely, we can specify its oscillation frequency (Ea/h),
and thus its energy, with arbitrarily high precision. But if the particle can make
a transition to another state, the probability density for the initial state clearly
must decrease with time.

Suppose the probability of finding the system in the initial state decays to zero
by first-order kinetics with a time constant T:

P(t) = 〈Ψ(r, t)|Ψ(r, t)〉 = 〈Ψ(r, 0)|Ψ(r, 0)〉 exp
(
−t/T

)
, (2.63)

where Ψ(r, 0) is the amplitude of the wavefunction at zero time. Equations (2.62)
and (2.63) then require the wavefunction to be an oscillatory function that de-
creases in amplitude with a time constant of 2T:

Ψ(r, t) = ψ(r) exp
(
−iEat/�

)
exp

(
−t/2T

)
= ψ(r) exp

{
−
[(

iEa/�
)

+
(
1/2T

)]
t
}

.
(2.64)

The time dependence of such a function is illustrated in Fig. 2.11.
We can equate the time-dependent function in Eq. (2.64) mathematically to

a superposition of many oscillating functions, all of the form exp(−Et/�) but with
a range of energies:

exp
{

−
[(

iEa/�
)

+
(
1/2T

)]
t
}

=

∞∫

−∞
G(E) exp

(
−iEt/�

)
dE . (2.65)

Inspection of Eq. (2.65) shows that the distribution function, G(E), is the Fourier
transform of the time-dependent part of Ψ (Appendix 3). In general, for such
an equality to hold, G(E) must be a complex quantity. The real part of G(E) dE,
Re[G(E)] dE, can be interpreted as the probability that the energy of the system is
in the interval between E − dE/2 and E + dE/2, which can be normalized so that

∞∫

−∞
Re[G(E)] dE = 1 . (2.66)

The imaginary part of the Fourier transform, Im[G(E)], relates to the phases of
the different oscillation frequencies. The phases must be such that the oscillations
interfere constructively at t = 0, where |Ψ| is maximal. As time increases, the
interference must become predominantly destructive so that |Ψ| decays to zero.

The solution to Eq. (2.65) is that Re[G(E)] is a Lorentzian function:

Re[G(E)] =
(

1
π

)
�/2T

(E − Ea)2 + (�/2T)2
. (2.67)
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Fig. 2.11. Wavefunctions for particles
with different lifetimes. The dotted
curve is the real part of an undamped
wavefunction ψ0 exp(−iEat/�) with
ψ0 = 1; this represents a particle
with an infinite lifetime. The energy
(Ea) is defined precisely. The solid
curve is the real part of the wavefunc-
tion ψ0 exp(−iEat/�) exp(−t/2T) with
a damping time constant 2T that here
is set equal to 2h/Ea; this represents
a particle with an energy of Ea but
a finite lifetime of T = h/Ea

Fig. 2.12. a Distribution of energies around the mean energy (Ea) of a system that decays
exponentially with a time constant (T) of 100, 50, or 20 fs. The Lorentzian distribution
function (Eq. (2.67)) is normalized to keep the area under the curve constant. b Comparison
of Lorentzian (solid line) and Gaussian (dotted line) functions with the same integrated
area and the same full width at half-maximum amplitude (FWHM). The Gaussian
a−1(2π)−1/2 exp(−x2/2a2) has a peak height of a−1(2π)−1/2 and a FWHM of (8 · ln 2)1/2a.
The Lorentzian π−1a/(x2 + a2) has a peak height of a−1π−1 and a FWHM of a

This function peaks at E = Ea, but has broad wings stretching out on either side
(Fig. 2.12). It falls to half its maximum amplitude when E = Ea ± �/2T, and its full
width at the half-maximal points (FWHM) is �/T. (� is 5.308 × 10−12 cm−1 s, where
1 cm−1 = 1.240 × 10−4 eV = 2.844 cal mol−1). A Lorentzian has wider wings than
a Gaussian with the same integrated area and FWHM (Fig. 2.12b).

If we interpret the FWHM of the Lorentzian as representing an uncertainty δE
in the energy caused by the finite lifetime of the state, we see that

δE ≈ �/T . (2.68)
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This uncertainty, or lifetime broadening, puts a lower limit on the width of an
absorption line associated with exciting a molecule into a transient state.

Equation (2.67) is widely used to describe the shapes of magnetic resonance
absorption lines in terms of the “transverse” relaxation time constant (T2). We
will use it similarly in Chaps. 4 and 10 to describe the shapes of optical absorption
bands.



3 Light

3.1
Electromagnetic Fields

In this chapter we consider classical and quantum mechanical descriptions of
electromagnetic radiation. We develop expressions for the energy density and
irradiance of light passing through a homogeneous medium, and we discuss the
Planck black-body radiation law and linear and circular polarization. Readers
anxious to get on to the interactions of light with matter may skip ahead to Chap. 4
and return to the present chapter as the need arises.

3.1.1
Electrostatic Forces and Fields

The classical picture of light as an oscillating electromagnetic field provides a rea-
sonably satisfactory basis for discussing the spectroscopic properties of molecules,
provided that we take the quantum mechanical nature of matter into account. To
develop this picture, let us start by reviewing some of the principles of classical
electrostatics.

Charged particles exert forces that conventionally are described in terms of
electric and magnetic fields. Consider two particles with charges q1 and q2 located
at positions r1 and r2 in a vacuum. According to Coulomb’s law, the electrostatic
force acting on particle 1 is

F =
q1q2

|r12|2
r̂12 , (3.1)

where r12 = r1 − r2 and r̂12 is a unit vector parallel to r12. F is directed along r12 if
the two charges have the same sign, and in the opposite direction if the signs are
different. The electric field E at any given position is defined as the electrostatic
force on an infinitesimally small, positive “test” charge at this position. For two
particles in a vacuum, the field at r1 is simply the derivative of F with respect to q1:

E = lim
q1→0

∂F(r1)
∂q1

=
q2

|r12|2
r̂12 . (3.2)

Fields are additive: if the system contains additional charged particles, the field
at r1 is the sum of the fields from all the other particles.

William W. Parson, Modern Optical Spectroscopy,
DOI: 10.1007/978-3-540-37542-5, © Springer-Verlag 2009
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The magnetic field (B) at position r1 can be defined similarly as the mag-
netic force on a hypothetical magnetic monopole, although whether magnetic
monopoles exist is not known. Magnetic fields are generated by moving electric
charges, and a changing magnetic field generates an electric field.

Equations (3.1) and (3.2) are written in the electrostatic or CGS system of units,
in which charge is given in electrostatic units (esu), distance in centimeters, and
force in dynes. The electron charge e is − 4.803 × 10−10 esu. The electrostatic unit
of charge is also called the statcoulomb or franklin. In the MKS units adopted
by the System International, distance is expressed in meters, charge in coulombs
(1 C = 3 × 109 esu; e = 1.602 × 10−19 C), and force in newtons (1 N = 105 dyn). In
MKS units, the force between two charged particles is

F =
1

4πε0

q1q2

|r12|2
r̂12 , (3.3)

where ε0 is a constant called the permitivity of free space (8.854 × 10−12 C2 N−1 m−2).
In the CGS system ε0 is equal to 1/4π, so the proportionality constants in Eqs. (3.1)
and (3.2) are unity. Because this simplifies the equations of electromagnetism, the
CGS system continues to be widely used. Appendix 5 gives a table of equivalent
units in the two systems.

3.1.2
Electrostatic Potentials

What is the energy of electrostatic interaction of two charges in a vacuum? Suppose
we put particle 2 at the origin of the coordinate system and hold it there while
we bring particle 1 in from infinity. To move particle 1 at a constant velocity (i.e.,
without using any extra force to accelerate it), we must apply a force Fapp that is
always equal and opposite to the electrostatic force on the particle. The electrostatic
energy (Eelec) is obtained by integrating the dot product Fapp(r) · dr, where r
represents the variable position of particle 1 and dr is an incremental change in
position during the approach. Because the final energy must be independent of the
path, we can assume for simplicity that particle 1 moves in a straight line directly
toward 2, so that dr and Fapp are always parallel to r. We then have (using CGS
units again)

Eelec =

r12∫

∞
Fapp · dr = −

r12∫

∞
F(r) · dr = −

r12∫

∞

q1q2

|r|2
r̂ · dr =

q1q2

|r12| . (3.4)

The scalar electrostatic potential Velec at r1 is defined as the electrostatic energy
of a positive test charge at this position. This is just the derivative of Eelec with
respect to the charge at r1. In a vacuum, the potential at r1 created by a charge at r2

is

Velec(r1) =
∂Eelec

∂q1
=

q2

|r12| . (3.5)
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The electrostatic energy of a pair of charges in a vacuum is simply the product of
charge q1 and the potential at r1:

Eelec = q1Velec(r1) . (3.6)

In a system with more than two charges, the total electrostatic energy is given
similarly by

Eelec =
1
2

∑

i

qiVelec(ri) =
1
2

∑

i

qi

∑

j=i

qj

|rij| , (3.7)

where Velec(ri) is the electrostatic potential at ri resulting from the fields from all
the other charges; the factor of 1/2 prevents counting the pairwise interactions
twice. Figure 3.1 shows a contour plot of the electrostatic potential resulting from
a pair of positive and negative charges.

Note that Eq. (3.7) still refers to a set of stationary charges. Introducing a charge
at ri will change the potential at this point if the field from the new charge causes
other charged particles to move.

In the CGS system, potentials have units of statvolts (ergs per electrostatic unit
of charge). In the MKS system, the potential difference between two points is 1 V
if 1 J of work is required to move 1 C of charge between the points. 1 V = 1 J C−1 =
(107 ergs)/(3 × 109 esu) = 3 × 10−2 erg esu−1 = 3 × 10−2 (dyn cm) esu−1.

Fig. 3.1. Contour plots of the electric potential (Velec) generated by an electric dipole oriented
along the z-axis, as functions of position in the yz plane. The dipole consists of a unit positive
charge at (y, z) = (0, r12/2) and a unit negative charge at (0, −r12/2). Solid lines represent
positive potentials; dotted lines represent negative potentials. The contour intervals are
0.2e/r12 in A and 0.001e/d12 in B; lines for |Velec| > 4e/r12 are omitted for clarity. The electric
field vectors (not shown) are oriented normal to the contour lines of the potential, pointing
in the direction of more positive potential. Their magnitudes are inversely proportional to
the distances between the contour lines
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The electric field at a given point, which we defined above in terms of forces
(Eq. (3.2)), also can be defined as

E(r) = −∇̃Velec(r) , (3.8)

where ∇̃Velec is the gradient of the electrostatic potential at that point. The gradient
of a scalar function V is a vector whose components are the derivatives of V with
respect to the coordinates:

∇̃V =
(
∂V/∂x, ∂V/∂y, ∂V/∂z

)
= x̂∂V/∂x + ŷ∂V/∂y + ẑ∂V/∂z (3.9)

(see Eq. (2.5)). Thus, the electric field at r1 generated by a charged particle at r2, is

E(r1) = −∇̃Velec(r1) = −∇̃
(

q2

|r12|
)

= −q2

(
∂
(|r12|−1

)

∂x1
,
∂
(|r12|−1

)

∂y1
,
∂
(|r12|−1

)

∂z1

)

= q2
(x1 − x2, y1 − y2, z1 − z2)

[(x1 − x2)2 + (y1 − y2)2(z1 − z2)2]3/2
=

q2

|r12|2
r̂12 , (3.10)

where |r12| = [(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2 and r̂12 = (x1 − x2, y1 − y2, z1 −
z2)/|r12|. This is the same as Eq. (3.2).

Equation (3.8) implies that the line integral of the field over any path between
two points r1 and r2 is just the difference between the potentials at the two points:

r2∫

r1

E · dr = − [V(r2) − V(r1)] = V(r1) − V(r2) . (3.11)

This expression is similar to Eq. (3.4), in which we integrated the electrostatic force
acting on a charged particle as another particle came in from a large distance. Here
we integrate the component of the field that is parallel to the path element dr at
each point along the path. Again, the result is independent of the path. Taking
Eq. (3.11) one step further, we see that the line integral of the field over any closed
path must be zero:

∮
E · dr = 0 . (3.12)

We will use this result later in this chapter to see what happens to the electric field
when light enters a refracting medium.

3.1.3
Electromagnetic Radiation

The electric and magnetic fields (E and B) generated by a pair of positive and
negative charges (an electric dipole) are simply the sum of the fields from the
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individual charges. If the orientation of the dipole oscillates with time, the fields in
the vicinity will oscillate at the same frequency. It is found experimentally, however,
that the fields at various positions do not all change in phase: the oscillations at
larger distances from the dipole lag behind those at shorter distances, with the
result that the oscillating fields spread out in waves. The oscillating components of
E and B at a given position are perpendicular to each other, and at large distances
from the dipole, they also are perpendicular to the position vector (r) relative to
the center of the dipole (Fig. 3.1). They fall off in magnitude with 1/r, and with the
sine of the angle (θ) between r and the dipole axis. Such a coupled set of oscillating
electric and magnetic fields together constitute an electromagnetic radiation field.

The strength of electromagnetic radiation often is expressed as the irradiance,
which is a measure of the amount of energy flowing across a specified plane per
unit area and time. The irradiance at a given position is proportional to the square
of the magnitude of the electric field strength, |E|2 (Sect. 3.1.4). At large distances,
the irradiance from an oscillating dipole therefore decreases with the square of the
distance from the source and is proportional to sin2 θ, as shown in Fig. 3.2. The
irradiance is symmetrical around the axis of the oscillations.

Fig. 3.2. Irradiance of electromagnetic radiation from an electric charge that oscillates in
position along a vertical axis. In this polar plot, the angular coordinate is the radiation
angle (θ) in degrees relative to the oscillation axis. The radial distance of the curve from the
origin gives the relative irradiance of the wave propagating in the corresponding direction,
which is proportional to sin2 θ. For example, the irradiance of the wave propagating at 60◦
(arrow) is 75% that of the wave propagating at 90◦
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A spreading radiation field like that illustrated in Figs. 3.1 and 3.2 can be
collimated by a lens or mirror to generate a plane wave that propagates in a single
direction with constant irradiance. The electric and magnetic fields in such a wave
oscillate sinusoidally along the propagation axis as illustrated in Fig. 3.3, but are
independent of position normal to this axis. Polarizing devices can be used to
restrict the orientation of the electric and magnetic fields to a particular axis in the
plane. The plane wave illustrated in Fig. 3.3 is said to be linearly polarized because
the electric field vector is always parallel to a fixed axis. Because E is confined to
the plane normal to the axis of propagation, the wave also can be described as
plane-polarized. An unpolarized light beam propagating in the y direction consists
of electric and magnetic fields oscillating in the xz plane at all angles with respect
to the z-axis.

Fig. 3.3. Electric and magnetic fields at a given time in a linearly polarized plane wave
propagating in the y direction, as a function of position along the propagation axis. The
solid curve is the component of the electric field parallel to the polarization axis, relative to
the maximum amplitude (2|E0|); λ is the wavelength. The dotted curve is a perspective view
of the magnetic field, which is perpendicular to the electric field

The properties of electromagnetic fields are described empirically by four cou-
pled equations that were set forth by J.C. Maxwell in 1865 (Box 3.1). These very
general equations apply to both static and oscillating fields, and they encapsulate
the salient features of electromagnetic radiation. In words, they state that:

1. Both E and B are always perpendicular to the direction of propagation of the
radiation (i.e., the waves are transverse).

2. E and B are perpendicular to each other.
3. E and B oscillate in phase.
4. If we look in the direction of propagation, a rotation from the direction of E to

the direction of B is clockwise.
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Box 3.1 Maxwell’s equations and the vector potential

Maxwell’s equations describe experimentally observed relationships between
the electric and magnetic fields (E and B) and the densities of charge and
current in the medium. The charge density (ρq) at a given point is defined
so that the total charge in a small volume elementdσ including the point is
q = ρq dσ. If the charge moves with a velocity v, the current density (J) at the
point is J = qv. In CGS units, Maxwell’s equations read

div E =
4πρq

ε
, (B3.1.1)

div B = 0 , (B3.1.2)

curl E = −
1
c
∂B
∂t

, (B3.1.3)

and

curl B =
4π
c

J +
ε
c
∂E
∂t

, (B3.1.4)

where c and ε are constants, and the vector operators div and curl are defined
as follows:

div A = ∇̃ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
(B3.1.5)

and

curl A = ∇̃ × A =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
Ax Ay Az

∣∣∣∣∣∣

= x̂
(
∂Az

∂y
−
∂Ay

∂z

)
+ ŷ

(
∂Ax

∂z
−
∂Az

∂x

)
+ ẑ

(
∂Ay

∂x
−
∂Ax

∂y

)
(B3.1.6)

(Appendix 1).
The constant ε in Eqs. (B3.1.1) and (B3.1.4) is the dielectric constant of

the medium, which is defined as the ratio of the energy density (energy per
unit volume) associated with an electric field in a medium to that for the
same field in a vacuum. As we will discuss later in this chapter, the difference
between the energy densities in a condensed medium and a vacuum reflects
polarization of the medium by the field.

In free space, or more generally, in a uniform, isotropic, nonconducting
medium with no free charges, ρq and J are zero and ε is independent of
position and orientation, and Eqs. (B3.1.1) and (B3.1.4) simplify to div E = 0
and curl B = (ε/c)∂E/∂t. E and B then can be eliminated from two of Maxwell’s
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equations to give

∇̃2E =
ε
c2

∂2E

∂t2
(B3.1.7)

and

∇̃2B =
ε
c2

∂2B
∂t2

, (B3.1.8)

where the action of the Laplacian operator ∇̃2 on a vector A is defined as

∇̃2A ≡
(
∂2Ax

∂x2
+
∂2Ax

∂y2
+
∂2Ax

∂z2

)
x̂ +

(
∂2Ay

∂x2
+
∂2Ay

∂y2
+
∂2Ay

∂z2

)
ŷ

+
(
∂2Az

∂x2
+
∂2Az

∂y2
+
∂2Az

∂z2

)
ẑ . (B3.1.9)

Equations (B3.1.7) and (B3.1.8) are classical, three-dimensional wave
equations for waves that move through space with velocity

u = c/
√
ε . (B3.1.10)

Since ε = 1 in a vacuum, the constant c that appears in Eqs. (B3.1.7) and
(B3.1.8) must be the speed at which electromagnetic waves travel in a vac-
uum. This was an unanticipated result when Maxwell discovered it. He had
obtained the value of the constant from experimental data on the magnetic
field generated by a steady current, and there had been no reason to think
that it had anything to do with light. The realization that c was, to within
a very small experimental error, the same as the measured speed of light led
Maxwell (1865) to suggest that light consists of electromagnetic waves.

For a plane wave propagating in the y direction with E polarized parallel
to the z-axis, Eq. (B3.1.7) reduces to

∂2Ez

∂y2
=

ε
c2

∂2Ez

∂t2
. (B3.1.11)

Solutions to Maxwell’s equations also can be obtained in terms of a vec-
tor potential V and a scalar potential φ that are related to the electric and
magnetic fields by the expressions

E = −
1
c
∂V

∂t
− ∇̃φ (B3.1.12)

and

B = curl V . (B3.1.13)
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This description has the advantage that only four parameters are needed to
specify the electromagnetic fields (the magnitude of φ and the three compo-
nents of V), instead of the six components of E and B. The description is not
unique because adding any arbitrary function of time to φ does not affect
the values of the physical observables E and B, and this makes it possible to
simplify the description further. If φ is chosen so that

divV +
1
c
∂φ
∂t

= 0 , (B3.1.14)

the scalar potential drops out and an electromagnetic radiation field can
be represented in terms of the vector potential alone (Hameka 1965). This
choice of φ is called the Lorentz gauge. An alternative choice called the
Coulomb gauge is often used for static systems.

Using the Lorentz gauge, V for a uniform, isotropic, nonconducting
medium with no free charges is determined by the equations

∇̃2V =
ε
c2

∂2V

∂t2
(B3.1.15)

and

divV = 0 , (B3.1.16)

while E is parallel to V and is given by

E = −
1
c
∂V

∂t
. (B3.1.17)

Equation (B3.1.13) still holds for B.
See Maxwell (1865, 1873) for his own description of electromagnetism, and

Hameka (1965), Ditchburn (1976), Schatz and Ratner (1993), and Griffiths
(1999) for additional discussion.

For our purposes, we will not need to use Maxwell’s equations themselves; we
can focus on a solution to these equations for a particular situation such as the
plane wave of monochromatic, polarized light illustrated in Fig. 3.3. In a uniform,
homogeneous, nonconducting medium with no free charges, Maxwell’s equations
for E in a plane wave reduce to

∂2E
∂y2

=
ε
c2

∂2E
∂t2

, (3.13)

where c is the velocity of light in a vacuum and ε is the dielectric constant of the
medium (Box 3.1). An identical expression holds for the magnetic field. Equa-
tion (3.13) is a classical wave equation for a wave that moves with velocity

u = c/
√
ε . (3.14)
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Solutions to Eq. (3.13) can be written in exponential notation as

E = E0
{

exp [2πi(νt − y/λ + δ)] + exp [−2πi(νt − y/λ + δ)]
}

, (3.15a)

or, by using the identity exp(iθ) = cos θ + i sin θ and the relationships cos(−θ) =
cos θ and sin(−θ) = − sin θ, as

E = 2E0 cos [2π(νt − y/λ + δ)] . (3.15b)

In Eq. (3.15), E0 is a constant vector that expresses the magnitude and polarization
of the field (parallel to the z-axis for the wave shown in Fig. 3.3), ν is the frequency
of the oscillations, λ is the wavelength, and δ is the phase shift that depends on
an arbitrary choice of zero time. The frequency and wavelength are linked by the
expression

λ = u/ν . (3.16)

More generally, we can describe the electric field at point r in a plane wave of
monochromatic, linearly polarized light propagating in an arbitrary direction (̂k)
by

E(r, t) = E0
{

exp
[
2πi

(
νt − k · r + δ

)]
+ exp

[
−2πi

(
νt − k · r + δ

)]}
, (3.17)

where k, the wavevector, is a vector with magnitude 1/λ pointing in direction k̂.
Note that each of the exponential terms in Eq. (3.17) could be written as a product
of a factor that depends only on time, another factor that depends only on position,
and if we need to include it, a third factor that depends only on the phase shift. We
will return to this point in Sect. 3.4.

As discussed in Box 3.1, convenient solutions to Maxwell’s equations also can
be obtained in terms of a vector potential V instead of electric and magnetic fields.
Using the same formalism as Eq. (3.17) but omitting the phase shift (δ), we can
write the vector potential for a plane wave of monochromatic, linearly polarized
light as

V(r, t) = V0
{

exp
[
2πi

(
νt − k · r

)]
+ exp

[
−2πi

(
νt − k · r

)]}
. (3.18)

We will use this expression in Sect. 3.4 when we consider the quantum mechanical
theory of electromagnetic radiation.

The velocity of light in a vacuum, 2.9979 × 1010 cm s−1, has been denoted almost
universally by c since the early 1900s, probably for celeritas, the Latin word for
speed. The first accurate measurements of the velocity of light in air were made by
A. Fizeau in 1849 and L. Foucault in 1850. Fizeau passed a beam of light through
a gap between teeth at the edge of a spinning disk, reflected the light back to the
disk with a distant mirror, and increased the speed of the disk until the returning
light passed through the next gap. Foucault used a system of rotating mirrors.
Today, c is taken to be an exactly defined number rather than a measured quantity
and is used to define the length of the meter.
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If monochromatic light moves from a vacuum into a nonabsorbing medium
with a refractive index (index of refraction) n, the frequency ν remains the same
but the velocity and wavelength decrease to c/n and λ/n. Equation (3.14) indicates
that the refractive index, defined as c/u, can be equated with ε1/2:

n ≡ c/u =
√
ε . (3.19)

Most solvents have values of n between 1.2 and 1.6 for visible light. The refractive
index of most materials increases with ν, and such media are said to have positive
dispersion. As we will discuss in Sects. 3.1.4 and 3.5, Eqs. (3.14) and (3.19) do not
necessarily hold in regions of the spectrum where n varies significantly with the
wavelength. At frequencies where the medium absorbs light, the refractive index
can vary strongly with ν and the velocity at which energy moves through the
medium is not necessarily given simply by c/n, particularly if the light includes
a broad band of frequencies.

We will be interested mainly in the time-dependent oscillations of the electrical
and magnetic fields in small, fixed regions of space. Because molecular dimensions
typically are much smaller than the wavelength of visible light, the amplitude of
the electrical field at a particular time will be nearly the same everywhere in
the molecule. We also will restrict ourselves initially to phenomena that relate to
averages of the field over many cycles of the oscillation and do not depend on
coherent superposition of light beams with fixed phase relationships. With these
restrictions, we can neglect the dependence of E on position and the phase shift,
and write

E(t) = 2E0 cos(2πνt) = E0 [exp(2π iνt) + exp(−2π iνt)] . (3.20)

We will have to use a more complete expression that includes changes of the fields
with position in a molecule when we discuss circular dichroism. We will need to
include phase shifts when we consider the light emitted by ensembles of many
molecules.

3.1.4
Energy Density and Irradiance

Because electromagnetic radiation fields cause charged particles to move, they
clearly can transmit energy. To evaluate the rate at which absorbing molecules
take up energy from a beam of light, we will need to know how much energy
the radiation field contains and how rapidly this energy flows from one place to
another. We usually will be interested in the energy of the fields in a specified
spectral region with frequencies between ν and ν + dν. The amount of energy per
unit volume in such a spectral interval can be expressed as ρ(ν)dν, where ρ(ν) is
the energy density of the field. The irradiance, I(ν)dν, is the amount of energy in
a specified spectral interval that crosses a given plane per unit area and time. In
a homogeneous, nonabsorbing medium, the irradiance is

I(ν)dν = u(ν)ρ(ν)dν , (3.21)

where u, as before, is the velocity of light in the medium.
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Several different measures are used to describe the strengths of light sources. The
radiant intensity is the energy per unit time that a source radiates into a unit solid
angle in a given direction. It usually is expressed in units of watts per steradian.
Luminance, a measure of the amount of visible light leaving or passing through
a surface of unit area, requires correcting the irradiance for the spectrum of
sensitivity of the human eye, which peaks near 555 nm. Luminance is given in
units of candela per square meter, or nits. For arcane historical reasons having to
do with the apparent brightness of a hot bar of platinum, 1 cd is defined as the
luminous intensity of a source that emits 540 nm light with a radiant intensity of
1/683 (0.001464) W sr−1. The total luminous flux from a source into a given solid
angle, the product of the luminance and the solid angle, is expressed in lumens.
One lux is 1 lm m−2. Bright sunlight has an illuminance (luminous flux per unit
area) of 5 × 104 −1 × 105 lux, and a luminance of 3 × 103 –6 × 103 cd m−2.

From Maxwell’s equations one can show that the energy density of electromag-
netic radiation depends on the square of the electric and magnetic field strengths
(see, e.g., Ditchburn 1976; Schatz and Ratner 1993; Griffiths 1999). For radiation
in a vacuum, the relationship is

ρ(ν) =
(|E(ν)|2 + |B(ν)|2)ρν(ν)/8π , (3.22)

where the bar above the quantity in parentheses means an average over the spatial
region of interest, and ρν(ν)dν is the number of modes (frequencies) of oscillation
in the small interval between ν and ν+ dν. An oscillation mode for electromagnetic
radiation is analogous to a standing wave for an electron in a box (Eq. (2.24)). But
the drawing in Fig. 3.3, which represents the electric field for such an individual
mode (monochromatic light), is an idealization. In practice, electromagnetic ra-
diation is never strictly monochromatic: it always includes fields oscillating over
a range of frequencies. We will discuss the nature of this distribution in Sect. 3.6.

Equation (3.22) is written in CGS units, which are particularly convenient here
because the electric and magnetic fields in a vacuum have the same magnitude:

|B| = |E| . (3.23)

(In MKS units, |B| = |E|/c.) The energy density of a radiation field in a vacuum is,
therefore,

ρ(ν) = |E(ν)|2ρν(ν)/4π . (3.24)

If we now use Eq. (3.15b) to express the dependence of E on time and position, we
have

|E|2 =
[
2E0 cos

(
2πνt − 2πy/λ + δ

)]2
= 4 |E0|2 cos2

(
2πνt − 2πy/λ + δ

)
. (3.25)

Since the fields in a plane wave are by definition independent of position perpen-
dicular to the propagation axis (y), the average denoted by the bar in Eq. (3.25)
requires only averaging over a distance in the y direction. If this distance is much
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longer than λ (or is an integer multiple of λ), the average of cos2(2πνt − 2πy/λ+ δ)
is 1/2, and Eq. (3.25) simplifies to

|E|2 = 2 |E0|2 . (3.26)

So, for a plane wave of light in a vacuum

ρ(ν) = |E0|2 ρν(ν)/2π (3.27)

and

I(ν) = c |E0|2 ρν(ν)/2π . (3.28)

If a beam of light in a vacuum strikes the surface of a refractive medium, part of
the beam is reflected, while another part enters the medium. We can use Eq. (3.28)
to relate the irradiances of the incident and reflected light to the amplitudes of the
corresponding fields, because the fields on this side of the interface are in a vacuum.
But we need a comparable expression that relates the transmitted irradiance to the
amplitude of the field in the medium, and for this we must consider the effect of
the field on the medium.

As light passes through the medium, the electric field causes electrons in the
material to move, setting up electric dipoles that generate an oscillating polar-
ization field (P). In an isotropic, nonabsorbing and nonconducting medium, P is
proportional to E and can be written

P = χe E . (3.29)

The proportionality constant χe is called the electric susceptibility of the medium,
and materials in which P and E are related linearly in this way are called linear
optical materials. The field in the medium at any given time and position (E) can be
viewed as the resultant of the polarization field and the electric displacement (D),
which is the field that hypothetically would be present in the absence of the
polarization. In a vacuum, P is zero and E = D. In CGS units, the field in a linear
medium is given by

E = D − 4πP = D − 4πχeE

= D/
(
1 + 4πχe

)
= D/ε , (3.30)

where, as in Maxwell’s equations (Box 3.1), ε is the dielectric constant of the
medium. Rearranging these relationships gives ε = 1 + 4πχe.

We will be interested mainly in electromagnetic fields that oscillate with fre-
quencies on the order of 1015 Hz, which is too rapid for nuclear motions to follow.
The polarization described by P therefore reflects only the rapidly oscillating in-
duced dipoles created by electronic motions, and the corresponding dielectric
constant in Eq. (3.30) is called the high-frequency or optical dielectric constant. For
a nonabsorbing medium, the electric susceptibility is independent of the oscillation
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frequency and the high-frequency dielectric constant is equal to the square of the
refractive index. The magnetic field of light passing through a refractive medium is
affected analogously by induced magnetic dipoles, but in nonconducting materials
this is a much smaller effect and usually is negligible.

In a linear, nonabsorbing medium, the relationship between the amplitudes of
the magnetic and electric fields in CGS units becomes (Ditchburn 1976; Schatz and
Ratner 1993; Griffiths 1999)

|B| =
√
ε |E| , (3.31)

and the energy density of electromagnetic radiation is

ρ(ν) =
(
E(ν) · D(ν) + |B(ν)|2)ρν(ν)/8π =

(
E(ν) · εE(ν) +

∣∣√εE(ν)
∣∣2
)
ρν(ν)/8π

= ε |E(ν)|2ρν(ν)/4π = ε |E0|2 ρν(ν)/2π . (3.32)

We have assumed again that we are interested in the average energy over a region
that is large relative to the wavelength of the radiation.

Equation (3.32) indicates that, for equal field strengths, the energy density in
a refracting medium is ε times that in a vacuum. The additional energy resides in
the polarization of the medium. But we are not quite through. To find the irradiance
in the medium, we also need to know the velocity at which energy moves through
the medium. This energy velocity, or group velocity (u) is not necessarily simply
c/n because waves with different frequencies will travel at different rates if n varies
with ν. The group velocity describes the speed at which a packet of waves with
similar frequencies travels as a whole (Sect. 3.5). It is related generally to c, n, and
ε by (Brillouin 1960; Knox 2002)

u = c n/ε , (3.33)

which reduces to u = c/n (Eq. (3.19)) if ε = n2, as it does if n is independent of ν.
Combining Eq. (3.33) with Eqs. (3.21) and (3.32) gives the irradiance in the

medium:

I(ν) =
c
n
ρ(ν) = c n |E0|2 ρν(ν)/2π . (3.34)

This is an important result for our purposes because it relates the irradiance of
a light beam in a condensed medium to the refractive index and the amplitude of
the electric field. We will need this relationship in Chap. 4 in order to connect the
strength of an electronic absorption band to the electronic structure of a molecule.
As discussed in Box 3.2, Eq. (3.34) also can be used to find the fractions of a light
beam that are reflected and transmitted at a surface.
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Fig. 3.4. a When a light beam propagating in a vacuum enters a refractive medium, the
incident irradiance (Iinc) must equal the sum of the transmitted and reflected irradiances
(Itrans and Irefl). In addition, the electric field of the transmitted (refracted) beam in the plane
of the interface (Etrans) must equal the sum of the electric fields of the incident and reflected
beams (Einc + Erefl) because the path integral of the field over any closed loop must be zero
(Eq. (3.12)). Here, the angle of incidence is normal to the surface and the light is linearly
polarized so that the electric field is parallel to edges ab and cd of rectangle abcd (vectors b−a
and d − c), and perpendicular to edges bc and ad. The path integral of the field over the loop
a → b → c → d → a is (Einc + Erefl) · (b − a) + Etrans · (d − c) = (Einc + Erefl − Etrans) · (b − a).
b–d If a beam propagating in a medium with refractive index n1 encounters an interface
with a medium with refractive index n2, the angle of the refracted beam relative to the
normal (θ2) is related to the angle of incidence (θ1) by n2 sin θ2 = n1 sin θ1. The refracted
beam is bent toward the normal if n2 > n1 (b) and away from the normal if n2 < n1 (c).
Total internal reflection occurs if n2 < n1 and θ2 ≥ θc, where θc = arcsin(n2/n1) (d). In this
situation, an evanescent wave (dotted arrow) propagates along the interface and penetrates
a short distance into the second medium. e If the surface of the medium with the higher
refractive index is coated with a semitransparent layer of silver (gray line) and the angle of
incidence at the interface matches a resonance angle θr of about 60◦, total internal reflection
creates surface plasmons in the metal coating, greatly enhancing the evanescent field
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Box 3.2 Reflection, transmission, evanescent radiation, and surface
plasmons

What happens to the electric field and irradiance when a beam of light
moves from a vacuum into a refractive, but nonabsorbing medium? Let
the irradiance of the incident beam be Iinc. At the interface, some of the
radiation is transmitted, giving an irradiance Itrans that continues forward in
the medium, while a portion with irradiance Irefl is reflected. Itrans must equal
Iinc − Irefl to balance the flux of energy across the interface (Fig. 3.4a):

Itrans = Iinc − Irefl . (B3.2.1)

The fraction of the incident irradiance that is transmitted depends on the
angle of incidence and the refractive index of the medium (n). Suppose the
incident beam is normal to the surface so that the electric and magnetic fields
are in the plane of the surface. For fields in the plane of the interface, the
instantaneous electric field on the medium side of the interface (Etrans) must
be equal to the field on the vacuum side, which is the sum of the fields of the
incident and reflected beams (Einc and Erefl):

Etrans = Einc + Erefl . (B3.2.2)

This follows from the fact that the path integral of the field around any closed
path is zero (Eq. (3.12), Fig. 3.4a).

Using Eq. (3.32), we can replace Eq. (B3.2.1) by a second relationship
between the fields:

n |Etrans|2 = |Einc|2 − |Erefl|2 . (B3.2.3)

Eliminating Erefl from Eqs. (B3.2.2) and (B3.2.3) then gives

Etrans =
2

n + 1
Einc . (B3.2.4)

And finally, using Eq. (3.32) again,

Itrans = c n |Etrans|2 ρν(ν)/2π =
4n

(n + 1)2
Iinc . (B3.2.5)

For a typical refractive index of 1.5, Eqs. (B3.2.4) and (B3.2.5) give |Etrans| =
0.8|Evac| and Itrans = 0.96Ivac.

The same approach can be used for other angles of incidence to generate
Snell’s law, which relates the angle of the refracted beam to the refractive
index (Griffiths 1999). In general, when light passes from a nonabsorbing
medium with refractive index n1 to a second nonabsorbing medium with
refractive index n2,

n2 sin θ2 = n1 sin θ1 , (B3.2.6)
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where θ1 and θ2 are the angles of the incident and refracted beams relative to
an axis normal to the surface. If n2 > n1, the refracted beam is bent toward
the normal (Fig. 3.4b); if n2 < n1, it is bent away (Fig. 3.4c). For n2 < n1,
the refracted beam becomes parallel to the interface (θ2 = 90◦) when the
angle of incidence reaches the “critical angle” θc defined by sin θc = n2/n1.
Values of θ1 > θc give total internal reflection: all the incident radiation is
reflected at the interface and no beam continues forward through the second
medium (Fig. 3.4d). The critical angle is about 61.1◦ at a glass–water interface
(n1 = 1.52 and n2 = 1.33) and 41.1◦ at a glass–air interface.

Because the electric and magnetic fields must be continuous across the in-
terface, the radiation must penetrate a finite distance into the second medium
even in the case of total internal reflection. Constructive interference of
the incident and reflected fields in this situation creates a wave of evanes-
cent (“vanishing”) radiation that propagates parallel to the interface but
drops off quickly in amplitude beyond the interface. The fall-off of the field
with distance (z) in the second medium is given by E = E0 exp(−z/d), with
d = (n2

1 sin2 θ1 − n2
2)−1/2λ1/4π, which typically gives a penetration depth on

the order of 500–1,000 nm (Bekefi and Barrett 1987; de Fornel 2001). For
angles of incidence slightly greater than θc, E0 ≈ Einc + Erefl ≈ 2Einc. The
intensity of the evanescent radiation at z = 0 is therefore about 4 times that
of the incident radiation. The intensity decreases gradually as the angle of
incidence is raised above θc.

The existence of evanescent radiation can be demonstrated from the effects
of objects in the second medium close to the interface. For example, if a third
medium with a higher refractive index is placed near the interface between
the first and second materials, radiation can tunnel through the barrier
imposed by the second medium. This process, called attenuated total internal
reflection, is essentially the same as the tunneling of an electron between
two potential wells separated by a region of higher potential (Sect. 2.3.2).
(Isaac Newton is said to have discovered this phenomenon when he placed
a convex lens against the internally reflecting face of a prism: the spot of
light entering the lens was larger than the point where the two glass surfaces
actually touched.) As we will discuss in Chap. 5, evanescent radiation also can
excite fluorescence from molecules situated close to the interface. However,
an absorbing medium does not obey Snell’s law because, for plane waves
entering the medium at other than normal incidence, the amplitude of the
surviving light is not constant across a wavefront of constant phase.

A striking phenomenon called surface plasmon resonance can occur at
a glass–water interface if the glass is coated with a partially transmitting layer
of gold or silver (Fig. 3.4e). As the angle of incidence is increased aboveθc , total
internal reflection of the incident light first occurs just as at an uncoated sur-
face. But at an angle of about 56◦ (the exact value depends on the wavelength,
the metal coating, and the refractive indices of the two media), the intensity of
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the reflected beam drops almost to zero and evanescent radiation with an
intensity as high as 50 times the intensity of the incident radiation can be
detected on the aqueous side of the interface (Moscovits 1985; Knoll 1998;
Liebermann and Knoll 2000; Aslan et al. 2005). The strong evanescent radi-
ation reflects movements of electron clouds (“plasmon surface polaritons”
or “surface plasmons” for short) in the conduction band of the metal, and
the loss of the reflected beam at the resonance angle results from destructive
interference of the reflected and surface waves. Interactions of the evanes-
cent field with molecules in the aqueous solution close to the interface can
be detected by their fluorescence or strongly enhanced Raman scattering, or
by their effects on the resonance angle. Intense fields from surface plasmons
also can be generated in colloidal gold or silver, metal-coated particles that
are small relative to the wavelength of the radiation, and in microscopically
patterned surfaces made by lithography (Haynes and Van Duyne 2003; Wang
et al. 2003).

3.1.5
The Complex Electric Susceptibility and Refractive Index

In an absorbing medium, the electric susceptibilityχe has an imaginary component
that can give the refractive index a strong dependence on the frequency. The
classical theory of this dependence on frequency (dispersion) is described in
Box 3.3. In this theory, the ordinary index of refraction (n) is related to the real part
of the complex index of refraction (n), and absorption is related to the imaginary
part. Figure 3.5 shows the predicted real and imaginary parts of n in the region of
a weak absorption band that is well removed from any other bands. In qualitative
agreement with experiment, the theory predicts that n will increase with frequency
except in the region surrounding the absorption maximum. The inversion of the

Fig. 3.5. The absorption (ca/ω, solid
curve) and refractive index (n − n0,
dashed curve) as functions of angular
frequency (ω) in the region of an ab-
sorption band centered at frequency Ωs,
as predicted by the classical theory of
dielectric dispersion (Eqs. (B3.3.16),
(B3.3.17)). Frequencies are plotted rel-
ative to the damping constant γs; ca/ω,
relative to the factor F = 2πNe2fs/meΩs;
and (n − n0), relative to the factor F/n0
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slope near the absorption peak is known as anomalous dispersion. The classical
theory also reproduces the Lorentzian shape of a homogenous absorption line.

Box 3.3 The classical theory of dielectric dispersion

In classical physics, dielectric media were modeled by considering an electron
bound to a mean position by a force (k) that increased linearly with the
displacement (x) from this position. The classical equation of motion for
such an electron is

me
d2x
dt2

+ g
dx
dt

+ kx = 0 , (B3.3.1)

where me is the electron mass and g is a damping constant. The damping
factor is included to account for loss of energy as heat, which in the classi-
cal theory is assumed to depend on the electron’s velocity. The solution to
Eq. (B3.3.1) is x = exp(iω0t −γt/2), with γ = g/me andω0 = (k/me −γ2/4)1/2,
or ω0 ≈ (k/me)1/2 if γ is small. The displacement thus executes damped os-
cillations at frequency ω0, decaying to zero at long times.

An external electromagnetic field E(t) oscillating at angular frequency ω
perturbs the positions of the electron, setting up an oscillating polarization
P(t) that contributes to the total field. The equation of motion for the electron
under these conditions becomes

me
d2x
dt2

+ g
dx
dt

+ kx = eE(t) +
4π
3

eP(t) , (B3.3.2)

where e is the electron charge. The polarization at any given time is propor-
tional to the electron displacement and charge, and also to the number of
electrons per unit volume (N):

P(t) = x(t)eN . (B3.3.3)

Combining Eqs. (B3.3.2) and (B3.2.3) gives a differential equation for P(t)
with the following solution when γ is small (Ditchburn 1976):

P(t) =
(

Ne2

3me

)
E(t)

ω2
0 − ω2 − (4πNe2/3me) + iγω

. (B3.3.4)

According to this expression, P oscillates at the same frequency as E, but
with an amplitude that is a complex function of the frequency. The complex
susceptibility (χe) is defined as the ratio of the polarization to the field:

χe(ω) = P(t)/E(t)

=
(

Ne2

3me

)
1

ω2
0 − ω2 − (4πNe2/3me) + iγω

. (B3.3.5)
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The oscillating electron considered above is said to have an oscillator
strength of unity. The classical theory assumes that each molecule in a di-
electric medium could have a set of S electrons with various oscillation
frequencies (ωs), damping factors (γs), and oscillator strengths (fs), with fs

between 0 and 1 (Ditchburn 1976). If we define

Ω2
s = (ωs)2 −

(
4πNme2

3me

)
fs , (B3.3.6)

where Nm is the number of molecules per unit volume, the complex suscep-
tibility becomes

χe =
(

Nme2

me

) S∑

s=1

fs

Ω2
s − ω2 + iγsω

. (B3.3.7)

Equation (B3.3.7) is the fundamental equation of classical dispersion the-
ory (Ditchburn 1976). Because χe is related to the high-frequency dielectric
constant by Eq. (3.30), and the high-frequency dielectric constant is the
square of the refractive index (Eq. (3.30)), it appears that the dielectric con-
stant and the refractive index also should be treated as complex numbers.
To indicate this, we will rewrite Eqs. (3.19) and (3.30) using boldface ε and
n to distinguish the complex dielectric constant and refractive index from ε
and n, the more familiar, real quantities that apply to nonabsorbing media:

n2 = ε = 1 + 4πχe . (B3.3.8)

The meaning of the complex refractive index will become clearer if we
consider what happens when a plane wave of monochromatic light passes
from a vacuum into an absorbing, but nonscattering dielectric medium. If
the propagation axis (y) is normal to the surface, the electric field at the
interface can be written

E = E0 exp [i(ωt − κy)] + E0 exp [−i(ωt − κy)] , (B3.3.9)

where ω is the angular frequency, κ = nω/c, and n is the ordinary refractive
index. According to Lambert’s law (Eq. (1.3)), the intensity of the light will
decrease exponentially with position as the ray moves through the medium.
If the absorbance is A, the amplitude of the electric field falls off as exp(−ay),
where a = A ln 10/2. The field in the medium thus is

E = E0 exp [i(ωt − κy) − ay] + E0 exp [−i(ωt − κy) − ay]

= E0 exp
{

iω
[

t −
n
c

(
1 − i

a
κ

)
y
]}

+ E0 exp
{

−iω
[

t −
n
c

(
1 + i

a
κ

)
y
]}

= E0 exp
[

iω
(

t −
n

c
y
)]

+ E0 exp
[

−iω
(

t −
n∗

c
y
)]

, (B3.3.10)
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where

n = n − i(n/κ)a = n − i(c/ω)a . (B3.3.11)

Equation (B3.3.11) shows that the imaginary part of n is proportional to a,
and thus to the absorbance, whereas the real part of n pertains to refraction.
The real part of n cannot, however, be substituted for the ordinary refractive
index (n) in Snell’s law to calculate the angle of refraction for light entering
an absorbing medium, because Snell’s law does not hold in the presence of
absorption (Box 3.2).

Let us examine the behavior of the complex refractive index in the region
of an absorption band associated with an individual oscillator with natural
frequency ωs and damping constant γs. If ωs is well removed from the fre-
quencies of the other oscillators in the medium, we can rewrite Eqs. (B3.3.7)
and (B3.3.8) as

n2 = n2
0 + 4π

(
Ne2

me

)
fs

Ω2
s − ω2 + iγsω

. (B3.3.12)

Here n0 is the contribution of all the other oscillators to the real part of n,
and absorption due to the other oscillators is assumed to be negligible over
the frequency range of interest. Making the approximations ω ≈ Ωs and
Ω2

s − ω2 = (Ωs + ω)(Ωs − ω) ≈ 2Ωs(Ωs − ω), we obtain

n2 ≈ n2
0 +

(
4πNe2fs

meΩs

)
1

2(Ωs − ω) + iγs

= n2
0 +

(
4πNe2fs

meΩs

)(
2(Ωs − ω)s

4(Ωs − ω)2 + γ2
s

− i
γs

4(Ωs − ω)2 + γ2
s

)
.

(B3.3.13)

From Eq. (B3.3.11), we also have

n2 = n2 − (ca/ω)2 − 2i(ca/ω) . (B3.3.14)

Equating the real and imaginary parts of Eqs. (B3.3.13) and (B3.3.14) gives

n2 − (ca/ω)2 − n2
0 =

(
8πNe2fs

meΩs

)(
(Ωs − ω)s

4(Ωs − ω)2 + γ2
s

)
(B3.3.15)

and

ca/ω =
(

2πNe2fs

meΩs

)(
γs

4(Ωs − ω)2 + γ2
s

)
. (B3.3.16)
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If (n − n0) and ca/ω are small relative to n0, the left-hand side of Eq. (B3.3.15)
is approximately equal to 2n0(n − n0), and

n ≈ n0 +
(

4πNe2fs

n0meΩs

)(
(Ωs − ω)s

4(Ωs − ω)2 + γ2
s

)
. (B3.3.17)

Figure 3.5 shows plots of ca/ω and n − n0 as given by Eqs. (B3.3.16)
and (B3.3.17). The contribution of the oscillator to the refractive index
changes sign at ω = Ωs, where the absorption peaks.

In spectral regions that are far from any absorption bands, the term iγsωs

in Eq. (B3.3.12) drops out and the refractive index becomes purely real. The
predicted frequency dependence of the refractive index then becomes

n2 − 1 =
(

4πNme2

me

) S∑

s=1

fs

Ω2
s − ω2

. (B3.3.18)

The quantum theory of electric susceptibility is discussed in Box 12.1.

The theory outlined in Box 3.3 considers a linear dielectric, in which the po-
larization of the medium (P) is directly proportional to the radiation field (E).
This linearity breaks down at high field strengths, revealing components of P that
depend on the square or higher powers of E. Since cos2 ω = [1 + cos(2ω)]/2 and
cos3 ω = [3 cosω + cos(3ω)]/4, these components can give rise to absorption or
emission of light at various multiples of the fundamental frequency. Studies of
spectroscopic phenomena that reflect second-, third-, and even fifth-order polar-
izations have blossomed with the development of pulsed lasers, which can provide
extremely strong electromagnetic fields. We will discuss some of these experi-
ments from a quantum mechanical approach in Chap. 11. A quantum mechanical
description of polarizability is given in Box 12.1.

3.1.6
Local-Field Correction Factors

Now consider an absorbing molecule dissolved in the linear medium we have been
discussing. If the molecular polarizability is different from the polarizability of the
medium, the local electric field “inside” the molecule (Eloc) will differ from the
field in the medium (Emed). The ratio of the two fields (|Eloc|/|Emed|), or local-field
correction factor ( f ), depends on the shape and polarizability of the molecule and
the refractive index of the medium. One model for this effect is an empty spherical
cavity embedded in a homogeneous medium with dielectric constant ε. For high-
frequency fields (ε = n2), the electric field in such a cavity is given by (Böttcher
1973)

Ec =
(

3n2

2n2 + 1

)
Emed = fc Emed . (3.35)
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Fig. 3.6. The effective electric field acting
on a molecule in a polarizable medium
(stippled boxes) is Eloc = f Emed, where
Emed is the field in the medium and f is
the local-field correction factor. In the
cavity-field model (a) Eloc is the field that
would be present if the molecule were
replaced by an empty cavity (Ec); in the
Lorentz model (b) Eloc is the sum of Ec

and the reaction field (Ereact) resulting
from polarization of the medium by
induced dipoles within the molecule (P)

Although a spherical cavity is clearly a very simplistic model for a molecule, mod-
els of this type are useful in quantum mechanical theories that include explicit
treatments of a molecule’s electronic structure. The macroscopic dielectric con-
stant ε or n2 can be used to describe the electronic polarization of the surrounding
medium, while the intramolecular electrons are treated microscopically.

Equation (3.35) neglects the reaction field due to polarization of the medium by
the molecule itself. The reaction field results partly from interactions of the medium
with oscillating dipoles that are induced in the molecule by the electromagnetic
radiation (Fig. 3.6). (Again, we are concerned only with electronic induced dipoles
that can follow the high-frequency oscillation of electromagnetic radiation. If
the medium contains molecules that can rotate or bend so as to realign their
permanent dipole moments, the reaction field also includes a static component.)
The high-frequency field acting on a spherical molecule can be taken to be the sum
of the reaction field and the cavity field described by Eq. (3.35). An approximate
expression for this total field, due to H.A. Lorentz (1952), is

EL =
(

n2 + 2
3

)
Emed = fL Emed . (3.36)

The factor (n2 +2)/3 is called the Lorentz correction. Liptay (1965) gives expressions
that include the molecular radius, dipole moment, and polarizability explicitly.
More elaborate expressions for f also have been derived for cylindrical or ellipsoidal
cavities that are closer to actual molecular shapes (Chen et al. 1975; Myers and
Birge 1980).

Figure 3.7 shows the local-field correction factors given by Eqs. (3.35) and (3.36).
The Lorentz correction is somewhat larger and may tend to overestimate the
contribution of the reaction field, because the cavity-field expression agrees better
with experiment in some cases (see Fig. 4.5 for an example).

With the local-field correction factor, the relationships between the energy
density and irradiance in the medium [ρ(ν) and I(ν)] and the amplitude of the
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Fig. 3.7. The cavity-field ( fc, solid curve)
and Lorentz (f L, dotted curve) correc-
tion factors for the local electric field
acting on a spherical molecule in a ho-
mogeneous medium, as a function of
the refractive index of the medium

local field (Eloc) become

ρ(ν) = n2 |Eloc|2 ρν(ν)/2πf 2 (3.37)

and

I(ν) = cn |Eloc|2 ρν(ν)/2πf 2 . (3.38)

Local-field corrections should be used with caution, bearing in mind that they
depend on simplified theoretical models and cannot be measured directly.

3.2
The Black-Body Radiation Law

It has long been known that the radiation emitted by a heated object shifts to
higher frequencies as the temperature is increased. When we discuss fluorescence
in Chap. 5, we will need to consider the electromagnetic radiation fields inside
a closed box whose walls are at a given temperature. Lord Rayleigh derived an
expression for the energy distribution of this black-body radiation in 1900 by
considering the number of possible modes of oscillation (standing waves) with
frequencies between ν and ν + dν in a cube of volume V. Considering the two
possible polarizations of the radiation (Sect. 3.3), taking the refractive index (n) of
the medium inside the cube into account, and including a correction pointed out
by Jeans, the number of oscillation modes in the frequency interval dν is

ρν(ν)V dν =
(
8πn3ν2V/c3) dν . (3.39)

(See Atkins 1983 for a derivation.) Following classical statistical mechanics, Ray-
leigh assumed that each mode would have an average energy of kBT, independent
of the frequency. Since ρν increases quadratically with ν (Eq. (3.39)), this analysis
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led to the alarming conclusion that the energy density (the product of ρν and the
average energy per mode) goes to infinity at high frequencies. Experimentally, the
energy density was found to increase with frequency in accord with Rayleigh’s
prediction at low frequencies, but then to pass through a maximum and decrease
to zero.

Max Planck saw that the observed dependence of the energy density on fre-
quency could be reproduced by introducing the ad hoc hypothesis that the material
in the walls of the box emits or absorbs energy only in integral multiples of hν,
where h is a constant. He assumed further that, if the material is at thermal equi-
librium at temperature T, the probability of emitting an amount of energy, Ej, is
proportional to exp(−Ej/kBT) where kB is the Boltzmann constant (Box 2.6). With
these assumptions, the average energy of an oscillation mode with frequency ν

becomes

E =

⎛

⎝
∑

j

Ej exp(−Ej/kBT)

⎞

⎠
/
⎛

⎝
∑

j

exp(−Ej/kBT)

⎞

⎠ (3.40a)

=

⎛

⎝
∑

j

jhν exp(−jhν/kBT)

⎞

⎠
/
⎛

⎝
∑

j

exp(−jhν/kBT)

⎞

⎠ . (3.40b)

The sums can be evaluated by letting x = exp(−hν/kBT), using the expansion
(1 − x)−1 = 1 + x + x2 + ... =

∑
j xj, and noting that

∑
j jxj = xd(

∑
j xj)/dx. This

yields

E =
hν

exp(hν/kBT) − 1
. (3.40c)

Multiplying Planck’s expression for E (Eq. (3.40c)) by ρν (Eq. (3.39)) gives

ρ(ν) = E(ν)ρν(ν) =
(
8πhn3ν3/c3)/ [exp(hν/kBT) − 1] , (3.41a)

or in terms of irradiance,

I(ν) = ρ(ν)c/n =
(
8πhn2ν3/c2)/ [exp(hν/kBT) − 1] . (3.41b)

Figure 3.8 shows plots of ρ(ν) as functions of the wavelength and wavenumber
of the radiation. The predictions are in accord with the measured energy density
of black-body radiation at all accessible frequencies and temperatures. In partic-
ular, Eq. (3.41) accounts for the observations that the energy density of blackbody
radiation increases with the fourth power of T (the Stefan-Boltzmann law) and
that the wavelength of peak energy density is inversely proportional to T (the
Wien displacement law). Although the derivation outlined above invokes a Boltz-
mann distribution, the same result can be obtained by using the Bose-Einstein
distribution for a photon gas at thermal equilibrium (Landau and Lifshitz, 1958).

Planck’s theory did not require the radiation field itself to be quantized, and
Planck did not conclude that it is (Planck, 1959). Because the radiation inside
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Fig. 3.8. The intensity of the black-body radiation emitted by an object at a temperature of
3,000, 4,000, 5,000, or 6,000 K as a function of wavelength (A) and wavenumber (B). The
surface temperature of the sun is about 6,600 K, and a tungsten–halogen lamp filament
typically has an effective temperature of about 3,000 K

a black-body box is emitted and absorbed by the walls of the box, only the en-
ergy levels of the material comprising the walls must be quantized. The theory is
consistent with quantization of the radiation field as well, but does not demand
it.

In addition to its pivotal contribution in the development of quantum theory, the
black-body radiation law has practical applications in spectroscopy. Because it de-
scribes the spectrum of the light emitted by an incandescent lamp with a filament at
a known temperature, Eq. (3.41) can be used to calibrate the frequency dependence
of a photodetector or monochromator. However, the actual emission spectrum of
a lamp can depart somewhat from Eq. (3.41) depending on the material used to
make the filament (Toubukian and DeWitt 1970).

3.3
Linear and Circular Polarization

In the quantum theory described in the following section, the eigenfunctions of
the Schrödinger equation for a radiation field have angular momentum quantum
numbers s = 1 and ms = ±1. The two possible values of ms correspond to left
(ms = +1) and right (ms = −1) circularly polarized light. Figure 3.9 illustrates this
property. In this depiction, the electric field vector E has a constant magnitude
but its orientation rotates with time at frequency ν. The component of E parallel
to any given axis normal to the propagation axis oscillates at the same frequency,
and oscillates along the propagation axis with wavelength λ.
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Fig. 3.9. Electric and magnetic fields in right (top) and left (bottom) circularly polarized
light. Both beams propagate diagonally upward from left to right. The solid arrows in the
disks indicate the orientations of the electric field (E) at a given time as a function of position
along the propagation axis; the dotted arrows show the orientations of the magnetic field (B).
The field vectors both rotate so that their tips describe right- or left-handed corkscrews,
making one full turn in a distance corresponding to the wavelength of the light (λ)

For radiation propagating in the y direction, the time dependence of the rotating
field can be written (neglecting an arbitrary phase shift)

E± = 2E0 [cos(2πνt) ẑ ± sin(2πνt) x̂] [cos(2πy/λ) ẑ ± sin(2πy/λ) x̂ ] , (3.42a)

B± = 2E0 [cos(2πνt) x̂ ∓ sin(2πνt) ẑ] [cos(2πy/λ)̂x ∓ sin(2πy/λ) ẑ ] , (3.42b)

where E0 is a scalar amplitude and the + and − signs refer to left and right circular
polarization, respectively. These expressions are solutions to the general wave
equation that satisfies Maxwell’s equations for a nonconducting medium with no
free charges (Eq. (B3.1.7) in Box 3.1). The different algebraic combinations of the
z and x components in Eq. (3.42) keep the magnetic field perpendicular to the
electric field for both polarizations.

A linearly polarized beam of light can be treated as a coherent superposition
of left and right circularly polarized light, as shown in Fig. 3.10. Changing the
phase of one of the circularly polarized components relative to that of the other
rotates the plane of the linear polarization. Unpolarized light consists of a mixture
of photons with left and right circular polarization and with electric fields rotating
at all possible phase angles, or equivalently, a mixture of linearly polarized light
with all possible orientation angles.

If linearly polarized light passes through a sample that preferentially absorbs
one of the circularly polarized components, the transmitted beam will emerge
with elliptical polarization. The ellipticity is defined as the arctangent of the ratio
Iminor/Imajor, where Iminor and Imajor are the light intensities measured through
polarizers parallel to the minor and major axes of the ellipse. Ellipticity can be
measured by using a quarter-wave plate to convert the elliptically polarized light
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Fig. 3.10. Linearly polarized light as a superposition of right and left circularly polarized
light. The dotted arrows indicate the electric field vectors of right and left circularly polarized
beams propagating to the right. Approximately half an oscillation period is shown. The
vector sum of the two circularly polarized fields (solid arrows) oscillates in amplitude
parallel to a fixed axis

back to a linearly polarized beam that is rotated in alignment relative to the original
beam, and determining the angle of rotation. This is one way to measure circular
dichroism; however, circular dichroism usually is measured by the polarization-
modulation technique described in Sect. 1.8, which is less subject to artifacts.

3.4
Quantum Theory of Electromagnetic Radiation

The Schrödinger equation was first applied to electromagnetic radiation in 1927 by
Paul Dirac. The notion of a quantized radiation field that emerged from this work
reconciled some of the apparent contradictions between earlier wave and particle
theories of light, and as we will see in Chap. 5 led to a consistent explanation of the
“spontaneous” fluorescence of excited molecules.

To develop the quantum theory of electromagnetic radiation, it is convenient
to describe a radiation field in terms of the vector potential V that is introduced
in Box 3.1. Consider the vector potential associated with a plane wave of light
propagating in the y direction and polarized in the z direction, and suppose the
radiation is confined within a cube with edge L. As discussed in Sect. 3.2, the
radiation with frequencies in a specified interval is restricted to a finite number
of oscillation modes, each with a discrete wavelength λj = L/2πnj, where nj is
a positive integer. The total energy of the radiation is the sum of the energies of
these individual modes, and the total vector potential evidently is a similar sum of
the individual vector potentials:

V =
∑

j

V j . (3.43)

According to Eq. (3.18), the contribution to V from mode j can be written

V j =
(

4πc2

L3

)1/2

ẑ
[
exp

(
−iωjt

)
exp

(
iy/λj

)
+ exp

(
iωjt

)
exp

(
−iy/λj

)]
(3.44a)

= qj(t)Aj
(
y
)

+ q∗
j (t)A∗

j

(
y
)

, (3.44b)
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where

qj = exp
(
−iωjt

)
(3.45a)

and

Aj =
(

4πc2

L3

)1/2

ẑ exp
(
iy/λj

)
, (3.45b)

and ωj = 2πνj = c/λj. The vector fields V j, which are real quantities, are written
here in terms of products of two complex functions and their complex conjugates.
The first function (qj) is a scalar that depends only on time; the second (Aj)
is a vector function of position. The position-dependent factors are normalized
so that 〈Aj|Aj〉 = 4πc2, while the factors for different modes are orthogonal:
〈Ai|Aj〉 = for i = j. Equations (3.43)–(3.45) hold for progressive waves as well as
for standing waves, although the restriction on the number of possible modes
applies only to standing waves.

To put the energy of the radiation field in Hamiltonian form, we now define two
real variables,

Qj(t) = qj(t) + q∗
j (t) (3.46)

and

Pj(t) =
∂Qj

∂t
= −iωj

[
qj(t) − q∗

j (t)
]

. (3.47)

From Eqs. (B3.1.17), (3.24), (3.44), and (3.45), the contribution of mode j to the
energy of the field, integrated over the volume of the cube, then takes the form
(Hameka 1965; Ditchburn 1976)

Ej =
1
2

(
P2

j + ω2
j Q2

j

)
. (3.48)

A little algebra will show that Qj obeys a classical wave equation homologous to
Eqs. (3.13) and (B3.1.7), and that Qj and Pj have the formal properties of a time-
dependent position (Qj) and its conjugate momentum (Pj) in Hamilton’s classical
equations of motion:

∂Ej

∂Pj
=
∂Qj

∂t
(3.49a)

and

∂Ej

∂Qj
= −

∂Pj

∂t
. (3.49b)

In addition, Dirac noted that Eq. (3.48) is identical to the classical expression for
the energy of a harmonic oscillator with unit mass (Eq. (2.29)). The first term in
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the parentheses corresponds formally to the kinetic energy of the oscillator; the
second, to the potential energy. It follows that if we replace Pj and Qj by momentum
and position operators P̃j and Q̃j, respectively, the eigenstates of the Schrödinger
equation for electromagnetic radiation will be the same as those for harmonic
oscillators. In particular, each oscillation mode will have a ladder of states with
wavefunctions χj(nj) and energies

Ej(nj) = (nj + 1/2)hνj , (3.50)

where nj = 0, 1, 2 ....
The transformation of the time-dependent function Pj into a momentum oper-

ator is consistent with Einstein’s description of light in terms of particles (photons)
each of which has momentum hν (Sect. 1.6, Box 2.3). We can interpret the quantum
number nj in Eq. (3.50) either as the particular excited state occupied by oscilla-
tor j, or as the number of photons with frequency νj. The oscillating electric and
magnetic fields associated with a photon can still be described by Eqs. (3.44) and
(3.45) if the amplitude factor E0 is scaled appropriately. However, we will be less
concerned with the spatial properties of photon wavefunctions themselves than
with the matrix elements of the position operator Q̃. These matrix elements play
a central role in the quantum theory of absorption and emission, as we will discuss
in Chap. 5.

The total energy of a radiation field is the sum of the energies of its individual
modes, and according to Eq. (3.50), the energy of each mode increases with the
number of photons in the mode. But, like the harmonic oscillator, an electromag-
netic radiation field has a zero-point or vacuum energy when every oscillator is
in its lowest level (nj = 0). Because a radiation wave in free space could have an
infinite number of different oscillation frequencies, the total zero-point energy
of the universe appears to be infinite, which may seem a nonsensical result. One
way to escape this dilemma would be to argue that the universe is bounded, so
that there is no such thing as completely free space. In this picture, the zero-point
energy of the universe becomes an unknown, but finite constant. However, we can
arbitrarily set the zero-point energy of each oscillation mode to zero by simply
subtracting a constant (hνj/2) from the Hamiltonian of Eq. (3.49), making the
energy associated with each mode

Ej(nj) = njhνj . (3.51)

This is common practice for other types of energy, which can be expressed with
respect to any convenient reference. The relativistic rest energy mc2, for example,
usually is omitted in discussions of the nonrelativistic energy of a particle. See
Heitler (1954), Hameka (1965), and Ditchburn (1976) for further discussion of this
point.

The zero-point eigenstate is a critical feature of the quantum theory because it
suggests that a radiation field might interact with a molecule even if the number of
photons in the field is zero! In Chap. 5, we will discuss how this interaction gives
rise to fluorescence. We also will see there that most transitions between different
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states of a radiation field change the energy of the field by ±hνj, and result in
creation or disappearance of a single photon. The identification of the quantum
states of a radiation field with those of harmonic oscillators makes it possible to
evaluate the matrix elements for such transitions.

Experimental evidence for the existence of the vacuum radiation field has come
from observations of the Casimir effect. First predicted by the physicist H. Casimir
in 1948, this is an attractive force between reflective objects in a vacuum. Consider
two polished square plates with parallel faces separated by distance L. Standing
waves in the gap between the plates must have wavelengths of L/2n, where n
is a positive integer. Because the number of such possible radiation modes is
proportional to L, the total energy of the vacuum field decreases when the plates
move closer together. The attractive force has been measured for objects of a variety
of shapes and found to agree well with predictions (Lamoreaux 1997; Bordag et al.
2001; Bressi et al. 2002).

Because photons have integer spin (s = 1), they obey Bose–Einstein statistics
(Box 2.6). This means that any number of photons can have the same energy (hν)
and spatial properties, and conversely, that an individual radiation mode can have
any number of photons. Accumulation of many photons in a single radiation mode
makes possible the coherent radiation emitted by lasers.

In addition to accounting for the quantization of radiation, Dirac introduced
a relativistic theory of electrons. But even with these advances, the quantum theory
at this stage left fundamental questions unresolved, including the mechanism by
which charged particles interact at a distance in a vacuum. What does it mean
to say that an electron gives rise to an electromagnetic field? An answer to this
question came from work by R. Feynman, J. Schwinger, and S.I. Tomonaga in the
1950s. In the theory of quantum electrodynamics that emerged from these studies,
charged particles interact by exchanging photons, and the charge of a particle is
a measure of its tendency to absorb or emit photons. However, photons that move
from one particle to another are termed “virtual” photons because they cannot be
intercepted and measured directly.

Contrary to the principles of classical optics, the theory of quantum electrody-
namics asserts that photons do not necessarily travel in straight lines. To find the
probability that a photon will move from point A to point B, we must consider
all possible paths between the two points, including even roundabout routes via
distant galaxies and paths in which the photon splits transiently into an electron–
positron pair. Although there are an infinite number of paths between any two
points, destructive interferences cancel most of the contributions from all the in-
direct paths, leaving only small (but sometimes significant) corrections to the laws
of classical optics and electrostatics. This is because small differences between the
indirect routes have large effects on the overall lengths of the paths, causing phase
shifts of the oscillations that photons traveling by these routes contribute at the
destination. Feynman (1985) has provided a readable introduction to the theory of
quantum electrodynamics. For more complete treatments see Feynman and Hibbs
(1965), Craig and Thirunamachandran (1984), and Peskin and Schroeder (1995).
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3.5
Superposition States and Interference Effects in Quantum Optics

Sections 2.2.1 and 2.3.2 introduced the idea of a superpostion state whose wave-
function is a linear combination of two or more wavefunctions with fixed phases.
We asserted there that a system must be described by such a linear combination if
it cannot be assigned uniquely to an individual eigenstate. The interference terms
in expectation values for superposition states lead to some of the most intrigu-
ing aspects of quantum optics, including the fringes in Young’s classic double-slit
experiments. Figure 3.11a shows an experiment that illustrates the point well

Fig. 3.11. a Single-photon interference in a Mach–Zender interferometer with equal arms.
B1 and B2 are beam splitters with coefficients CT and CR for transmission and reflection,
respectively (|CT|2 = |CR|2 = 1/2); M1 and M2 are mirrors (100% reflecting); and D1 and D2
are photon-counting detectors. The dependence of photon wavefunctionΨ on time and the
distance along the optical path is not indicated explicitly. If B2 is removed, or if either path is
blocked, photons are detected at D1 and D2 with equal probability. When B2 is present and
both paths are open, photons are detected only at D1. b, c After an unpolarized light beam
passes through a vertical polarizer (V), it will not pass through a horizontal polarizer (H).
But if a polarizer with an intermediate orientation (φ) is placed between V and H, some of
the light passes through both this polarizer and H
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(Marton et al. 1953; Zeilinger 1981; Carnal and Mlynek 1991; Glauber 1995; Mon-
roe et al. 1996; Scarani and Suarez 1998; Rioux, 2005). The apparatus is called
a Mach–Zender interferometer. Photons enter the interferometer at the upper left
and are detected by a pair of photon counters, D1 and D2. The light intensity is
low enough so that no more than one photon is in the apparatus at any given
time. B1 is a beam splitter that, on average, transmits 50% of the photons and
reflects the other 50%. Mirrors M1 and M2 reflect all the photons reaching them to
a second beam splitter (B2), which again transmits 50% and reflects 50%. If beam
splitter B2 is removed, a photon is detected by detector D1 half the time and by D2
the other half, just as we would expect. If either of the two paths between B1 and
B2 is blocked, half the photons get through, and again half of these are detected
at D1 and half at D2. That also seems expected. But if both paths are open, all the
photons are detected at D1, and none at D2!

To account for this surprising result, note that when there are two possible paths
of equal length between B1 and B2, we have no way of knowing which path a given
photon follows. We therefore must write the wavefunction for a photon reaching
D1 or D2 as a linear combination of the two possibilities. Suppose that each of
the beam splitters transmits photons with coefficient CT and reflects photons with
coefficient CR. The wavefunction for photons reaching D1 then is the sum of the
wavefunctions for the two paths:

ΨD1 = CRCTΨ + CTCRΨ =
(
CRCT + CTCR

)
Ψ , (3.52a)

where Ψ(r, t) is the wavefunction for a photon as it reaches B1, r is the distance
along the optical path from this point, and t is time (Fig. 3.11a). The wavefunction
for photons reaching D2 is, similarly,

ΨD2 = CTCTΨ + CRCRΨ =
(
CTCT + CRCR

)
Ψ . (3.52b)

We have omitted the coefficient for reflection at mirror M1 or M2 since this has
a magnitude of 1.0 and there is one mirror in each pathway. From Eq. (3.52), the
probability that a given photon will be detected at D1 is

PD1 =
〈(

CRCT + CTCR
)
Ψ| (CRCT + CTCR

)
Ψ
〉

= 4 |CR|2 |CT|2 , (3.53a)

whereas the probability that the photon is detected at D2 is

PD2 =
〈(

CTCT + CRCR
)
Ψ| (CTCT + CRCR

)
Ψ
〉

= |CT|2 |CT|2 + |CR|2 |CR|2 +
(
C∗

TCR
)2

+
(
C∗

RCT
)2

. (3.53b)

Now consider the coefficients CT and CR. Because the probabilities of reflection
and transmission are the same, we know that |CT|2 = |CR|2 = 1/2. This, however,
leaves open the possibility that one of the coefficients is imaginary, which in
fact proves to be necessary. If both coefficients were real, we would have CT =
±CR = ±2−1/2, which on substitution in Eq. (3.53) gives PD1 = PD2 = 1. That
cannot be correct because it means that a single photon would be detected with
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100% certainty at both D1 and D2, violating the conservation of energy. Trying
CT = ±CR = ±i2−1/2 (i.e., making both coefficients imaginary) gives the same
unacceptable result. Either CT or CR, but not both, therefore must be imaginary.
If we choose CR to be imaginary, as is customary, we have CT = ±2−1/2 and
CR = ±i2−1/2. Inserting these values in Eq. (3.53) gives PD1 = 1 and PD2 = 0 in
agreement with experiment.

Linearly polarized light provides another instructive illustration of superpo-
sition states in quantum optics. As discussed in Sect. 3.3, unpolarized light can
be viewed as a mixture of photons with all possible linear polarizations. Light
that is polarized at an angle θ with respect to an arbitrary “vertical” axis can be
viewed as a coherent superposition of vertically and horizontally polarized light
with coefficients CV = cos θ and CH = sin θ:

Ψθ = CVΨV + CHΨH = cos θΨV + sin θΨH . (3.54)

The probability that a photon with this polarization will pass through a vertical
polarizer is cos2 θ. After passage through such a polarizer, the light is completely
polarized in the vertical direction, and the probability that it will pass through
a horizontal polarizer is zero (Fig. 3.11b). But if a polarizer with a different ori-
entation, φ, is placed between the vertical and horizontal polarizers, photons
will go through this second polarizer with probability cos2 φ, and (assuming that
0 < cos2 φ < 1) some of those photons now will pass through the horizontal po-
larizer (Fig. 3.11c). The interpretation is that the vertically polarized light consists
of a coherent superposition of light polarized parallel and perpendicular to the
second polarizer, both of which have a nonzero projection on the horizontal axis.
The intensity of the light passing the horizontal polarizer peaks at φ = 45◦, where
it is one eighth of that relative to the intensity reaching the second polarizer.

3.6
Distribution of Frequencies in Short Pulses of Light

The idealized wave described by Eq. (3.15) continues indefinitely for all time and
all values of y. Any real beam of light must start and stop at some point, and so
cannot be described completely by this expression. It can, however, be described
by a linear combination of idealized waves with a distribution of frequencies.
Such a combination of waves is called a wave group or wavepacket. The details
of the distribution function depend on the width and shape of the pulse. This
description is essentially the same as using a linear combination of wavefunctions
for a localized particle in a box (Sect. 2.3.2) or a harmonic potential well (Sect. 2.3.3,
11.6).

The short pulses produced by mode-locked Ti:sapphire or dye lasers typically
have Gaussian or sech2(t) shapes. If all the oscillations are in phase at t = 0, when
the electric field of the light peaks, the dependence of the field strength on time in
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a Gaussian pulse can be written

|E(t)| = (2πτ2)−1/2 exp
(
−t2/2τ2) cos(ω0t) , (3.55)

where τ is a time constant and ω0 is the center angular frequency of the light
(radians per second, or 2π times the center frequency in hertz). The Gaussian
function exp(−t2/2τ2) has a full width at half-maximal amplitude (FWHM) of
(8·ln 2)1/2τ, or 2.355τ. The factor (2πτ2)−1/2 normalizes the area under the curve to 1.
The measured intensity of the pulse, being proportional to |E(t)|2 or exp(−t2/τ2),
would be narrower by a factor of 21/2. Its FWHM thus is 2(ln 2)1/2τ, or 1.665τ.

We can equate the time-dependent function on the right side of Eq. (3.54) to
a frequency-dependent function

|E(t)| =
1√
2π

∞∫

−∞
G(ω) exp(iω t) dω , (3.56)

where G(ω) is the distribution of angular frequencies in the pulse. This means
that the temporal shape of the field pulse, |E(t)|, is the Fourier transform of the
frequency distribution G(ω), and conversely, that G(ω) is the Fourier transform
of |E(t)| (Appendix 3). For the Gaussian shape function exp(−t2/2τ2), the solution
to G(ω) is

G(ω) =
(

τ√
2π

)
exp

[
−
(
ω − ω0

)2 τ2/2
]

. (3.57)

The field thus includes a Gaussian distribution of angular frequencies around ω0,
with a FWHM of (8 · ln 2)1/2/τ, or 2.35/τ rad s−1. In frequency units, the FWHM is
(8 · ln 2)1/2/2πτ, or 0.375/τHz. The sharper the pulse, the broader the spread of
frequencies. The measured spectrum of the intensity again is narrower by a factor
of 21/2, and has a FWHM of 0.265/τHz.

A Gaussian pulse with τ = 6 fs (a measured FWHM of 10 fs, the order of mag-
nitude of the shortest pulses that can be generated by current Ti:sapphire lasers)
includes a span of about 6.25 × 1013 Hz, which corresponds to an energy (hν) band
of 2.0 × 103 cm−1. If the spectrum is centered at 800 nm (12,500 cm−1), its FWHM
is 274 nm. Figure 3.12 shows the energy distribution function for such a pulse and
for pulses with FWHMs of 20 and 50 fs.

For a Gaussian pulse, the product of the measured temporal width (1.665τ) and
the frequency width (0.265/τ) is fixed at 0.441. Fleming (1986) gives corresponding
expressions for pulses with other shapes. For a square pulse, the product of the
measured temporal and frequency widths is 0.886; for a pulse in which the intensity
is proportional to sech2(t), the product is 0.315. These expressions assume that the
frequency distribution arises solely from the finite length of the pulse. Such a pulse
is said to be transform-limited. Light from an incoherent source such as a xenon
flash lamp contains a distribution of frequencies that are unrelated to the length
of the pulse because atoms or ions with many different energies contribute to the
emission.
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Fig. 3.12. Spectra of the electric fields in
transform-limited Gaussian pulses with
full widths at half-maximum amplitude
(FWHM) of 10, 20, and 50 fs (τ = 6, 12,
and 30 fs)

Figure 3.13 shows the electric field at a fixed time as a function of position in
wave groups with three different distributions of wavelengths. If the distribution
is very narrow relative to the mean wavelength (λ0), the wave group resembles
a pure sine wave over many periods of the oscillation. With broader distributions,
the envelope of the oscillations is more bunched, and the envelope moves through
space with a group velocity u that can be written (Ditchburn 1976)

u =
c
n

(
1 +

λ
n

dn
dλ

)
. (3.58)

For visible light, this is within 5% of c/n in most liquids. The envelope smears out
with time as the individual oscillations get increasingly out of phase.

Fig. 3.13. Amplitude of the electric field
as a function of position along the
propagation axis (y) in wave groups
with Gaussian distributions of wave-
lengths. The FWHM of the distributions
are 0.1% (dotted curve), 2% (dashed
curve), or 5% (solid curve) of the mean
wavelength (λ0). The amplitudes are
normalized at y = 0



4 Electronic Absorption

4.1
Interactions of Electrons with Oscillating Electric Fields

This chapter begins with a discussion of how the oscillating electric field of light
can raise a molecule to an excited electronic state. We then explore the factors that
determine the wavelength, strength, linear dichroism, and shapes of molecular
absorption bands. Our approach is to treat the molecule quantum mechanically
with time-dependent perturbation theory (Chap. 2) but to consider light, the
perturbation, as a purely classical oscillating electric field. Because many of the
phenomena associated with absorption of light can be explained well by this
semiclassical approach, we defer considering the quantum nature of light until
Chap. 5. Interactions with the magnetic field of light will be discussed in Chap. 9.

Let us start by considering the interaction of an electron with the oscillating
electrical field (E) of linearly polarized light written as in Eq. (3.15a):

E(t) = E0 [exp(2π iν t) + exp(−2π iν t)] . (4.1)

The oscillating field adds a time-dependent term to the Hamiltonian operator for
the electron. To an approximation that often proves acceptable, we can write the
perturbation as the dot product of E with the dipole operator, μ̃:

H̃
′
(t) = −E(t) · μ̃ . (4.2)

The dipole operator for an electron is simply

μ̃ = e r̃ = er , (4.3)

where e is the electron charge ( − 4.803 × 10−10 esu in the CGS system or − 1.602
×10−19 C in MKS units), r̃ is the position operator, and r is the position of the
electron. Thus Eq. (4.2) also can be written

H̃
′
(t) = −eE(t) · r = −e |E0| [exp(2π iν t) + exp(−2π iν t)] |r| cos θ , (4.4)

where θ is the angle between E0 and r.
Moving a classical particle with charge e by a small distance dr in an electric

field changes the potential energy of the particle by dV = −eE(r) · dr (Box 4.1). So
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if the field is independent of position, moving the particle from the origin of the
coordinate system to position changes the classical energy by −eE · r. Quantum
mechanically, if an electron is described by wavefunction Ψ, interaction with
a uniform field changes the potential energy of the electron by −e〈Ψ|E · r|Ψ〉,
assuming that the field does not alter the wavefunction itself.

Box 4.1 Energy of a dipole in an external electric field

In Sect. 3.1 we discussed the energy of a charged particle in the electric
field from another charge. The same considerations apply to a set of charged
particles in an external electric field, such as the field between the plates of
a capacitor. Consider a pair of parallel, oppositely charged plates separated
by a small gap. The field in the region between the plates (E) is normal to the
plates, points from the positive plate to the negative, and (if we are sufficiently
far from the edges of the plates) is independent of position. The electrostatic
potential (Velec) therefore increases linearly from the negative plate to the
positive plate. Let us put the origin of our coordinate system at the center of
the negative plate and express Velec(r) relative to the potential here. The field
from the plates then changes the electrostatic energy of particle i by

Eq,field = qiVelec(ri) = −qi

ri∫

0

E · dr = −qiE · ri , (B4.1.1)

where qi and ri are the charge and position of the particle.
Summing over all the charged particles between the plates gives the total

energy of interaction of the particles with the external field:

EQ,field = −
∑

i

E · riqi = −E ·
(

RQ +
∑

i

r0
i qi

)

= −E · (RQ + μ
)

.

(B4.1.2)

Here Q is the net charge of the system (Σqi); R is the center of charge defined
as

R =
1
Q

∑

i

Riqi ; (B4.1.3)

r0
i is the position of charge i with respect to the center of charge (r0

i = ri − R);
and μ is the electric dipole, or electric dipole moment of the system of charges:

μ =
∑

i

qir0
i . (B4.1.4)

In the convention used here, the dipole of a pair of charges with opposite
signs points from the negative to the positive charge.
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We will show later in this chapter that the term RQ in Eq. (B4.1.2) drops
out of the interactions of a molecule with the oscillating field of light, so the
choice of the coordinate system is immaterial for these interactions. RQ also
drops out for static fields if we use the center of charge as the origin of the
coordinate system, or if the net charge (Q) is zero. In these situations, we can
write μ simply as

μ =
∑

i

qiri . (B4.1.5)

Equation (4.4) makes several approximations. In addition to treating light clas-
sically, we have neglected the magnetic component of the radiation field. This is
often an acceptable approximation because the effects of the electric field usually
are much greater than the effects of the magnetic field. We will return to this point
in Chap. 5 when we discuss the quantum theory of absorption and emission, and
again in Chap. 9 when we take up circular dichroism. We also have assumed that
E0 is independent of the position of the electron within the molecular orbital. This
also is a reasonable approximation for most molecular chromophores, which typ-
ically are small relative to the wavelength of visible light (approximately 5,000 Å).
We could, however, consider the variation in the field with position by expanding
the field strength in a Taylor series about the origin of the coordinate system. For
light polarized in the z direction, this gives

H̃(x, y, z, t) = −e z

{

|E(t)|x,y=0 +

[

x
(
∂|E(t)|
∂x

)

x,y=0
+ y

(
∂|E(t)|
∂y

)

x,y=0

]

+ · · ·
}

.

(4.5)

The leading term in the expansion represents the dipole interaction; the subsequent
terms represent quadrupolar, octupolar, and higher-order interactions that usually
are much smaller in magnitude (Box 4.2, Fig. 4.1).

Box 4.2 Multipole expansion of the energy of a set of charges
in a variable external field

Figure 4.1 shows two sets of charges in a field (E) that points in the y direction
and increases in strength with position in the x direction. For simplicity,
suppose that all the charges are in the xy plane and the field strength is
independent of the y coordinate. The energy of the interactions of the particles
with the field then can be written

EQ,field = −
∑

i

qi

yi∫

0

E(xi) · dy , (B4.2.1)
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where qi and (xi, yi) are the charge and position of particle i. One way
to evaluate this sum is to choose the center of charge as the origin of the
coordinate system and expand E as a Taylor series around this point. For the
systems shown in Fig. 4.1, this gives

EQ,field = −
(
Ê · ŷ

)
[

|E|
∑

i

yiqi +
(
∂ |E| /∂x

)∑

i

xiyiqi + · · ·
]

, (B4.2.2)

where Ê and ŷ are unit vectors parallel to the field and the y-axis, and E and
its derivatives are evaluated at the center of charge. The factor Ê · ŷ is just +1
in this illustration. The first term in the brackets in Eq. (B4.2.2) is nonzero
for the set of charges shown in Fig. 4.1a, which have an electric dipole with
a component in the y direction. This term vanishes for the set of four charges
shown in Fig. 4.1b, where the contribution from one pair of positive and
negative charges cancels the contribution from the other. The second term
in the brackets vanishes if the field is constant, but not if the field strength
changes with x.

Equation (B4.2.2) can be written in a more general way by using matrices
and matrix operators:

EQ,field = −
∑

i

qiE(ri) · ri = −E · RQ − E · μ − Tr
(
[∇E] · [Θ]

)
+ · · ·

= Velec(R)Q − E · μ − Tr
(
[∇E] · [Θ]

)
+ · · · . (B4.2.3)

Here R again is the center of charge, and E and its derivatives are evaluated
at this point; Q is the total charge of the system; Velec(R) is the electrostatic
potential at R; μ is the electric dipole calculated with respect to R as in
Eq. (B4.1.4) (or with respect to any coordinate system if Q is zero); [Θ] is
a matrix called the electric quadrupole moment of the system of charges (see
below); [∇̃E] is the gradient of E; and Tr([∇̃E] · [Θ]) means the trace of the
matrix product [∇̃E] · [Θ]. (See Appendix 2 for definitions of the gradient of
a vector, the product of two matrices, and the trace of a matrix.)

Equation (B4.2.3) represents a multipole expansion of the interaction of
a set of charges with an external field. The first term on the right side of the
equation [Velec(R)Q] is the interaction of the net charge of the system with
the potential at the center of charge. The second term −E · μ describes the
interaction of the dipole moment with the external field, and the third term
−Tr([∇̃E]·[Θ]) describes the interaction of the quadrupole moment with the
gradient of the field. The ellipsis represents terms for the electric octupole
and higher-order moments interacting with progressively higher derivatives
of E. In most of the situations that arise in optical spectroscopy, these higher-
order terms are very small relative to the terms given in Eq. (B4.2.3), and even
the quadrupole term usually is negligible compared with the dipole term.
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The matrix elements of the quadrupole moment of a system of charges are
defined as

Θα,β =
∑

i

qirα(i)rβ(i) , (B4.2.4)

where rα(i) and rβ(i) denote the x, y, or z coordinate of charge i with respect
to the center of charge. For example, letting α and β be 1, 2, or 3 for x, y, or z,
respectively, Θ1,2 =

∑
qixiyi and Θ3,1 =

∑
qizixi. Note that Θα,β = Θβ,α, so

Θ is symmetric.
With the recipes for matrix operations given Appendix 2, the quadrupole

term in Eq. (B4.2.3) becomes

Tr
(
[∇̃E] · [Θ]

)

=
∑

i

∑

α

∑

β

rα(i)rβ(i)∂Eα/∂rβ

=
∑

i

(
xixi∂Ex/∂x + yixi∂Ey/∂x + zixi∂Ez/∂x + xiyi∂Ex/∂y + yiyi∂Ey/∂y

+zixi∂Ez/∂y +xizi∂Ex/∂z + yizi∂Ey/∂z + zizi∂Ez/∂z
)

. (B4.2.5)

If the field is oriented along the y-axis and its magnitude depends only on x,
as in Fig. 4.1, this expression reduces to

Tr
(
[∇̃E] · [Θ]

)
=
∑

i

qiyixi∂ |E| /∂x , (B4.2.6)

which is the same as the second term in the brackets on the right side of
Eq. (B4.2.2).

4.2
The Rates of Absorption and Stimulated Emission

Suppose that before we turn on the light our electron is in a state described by wave-
function Ψa. In the presence of the oscillating radiation field, this and the other
solutions to the Schrödinger equation for the unperturbed system become unsat-
isfactory; they no longer represent stationary states. However, we can represent
the wavefunction of the electron in the presence of the field by a linear combina-
tion of the original wavefunctions, CaΨa + CbΨb+..., where the coefficients Ck are
functions of time (Eq. (2.51)). As long as the system is still in Ψa, Ca = 1 and all
the other coefficients are zero; but if the perturbation is sufficiently strong Ca will
decrease with time, while Cb or one or more of the other coefficients increases. We
can find the expected rate of growth of Cb by incorporating Eqs. (4.1) and (4.2)
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Fig. 4.1. Systems of charges with no
net charge but with either a dipole
moment (a), or a quadrupole moment
but no dipole moment (b). The origin
of the coordinate system is the center
of charge in each case. The energy of
interaction of the system with a constant
external electric field depends on the
dipole moment, and so is zero in b.
The quadrupole moment becomes
important if the magnitude of the
external electric field (|E|) varies with
position. The shaded backgrounds
here represent a field that increases in
strength with position in the x direction

into Eq. (2.58):

∂Cb/∂t =
(
i/�

)
exp

[
i
(
Eb − Ea

)
t/�

]
[exp(2πiνt) + exp(−2πiνt)]E0 · 〈ψb

∣∣̃μ
∣∣ψa

〉

(4.6a)

=
(
i/�

)
exp

[
i
(
Eb − Ea + hν

)
t/�

]

+
{

exp
[
i
(
Eb − Ea − hν

)
t/�

]}
E0 · 〈ψb

∣∣̃μ
∣∣ψa

〉
, (4.6b)

where Ea and Eb are the energies of states a and b.
The probability that the electron has made a transition from Ψa to Ψb by

time τ is obtained by integrating Eq. (4.6b) from time t = 0 to τ (Eq. (2.59)) and
then evaluating |Cb(τ)|2. Integrating Eq. (4.6b) is straightforward, and gives the
following result:

Cb(τ) =

(
exp

[
i
(
Eb − Ea + hν

)
τ/�

]
− 1

Eb − Ea + hν
+

exp
[
i
(
Eb − Ea − hν

)
τ/�

]
− 1

Eb − Ea − hν

)

× E0 · 〈ψb
∣∣̃μ
∣∣ψa

〉
. (4.7)

Note that the two fractions in the large parentheses in Eq. (4.7) differ only in the
sign of the term hν. Suppose that Eb > Ea, which means that Ψb lies above Ψa in
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energy. The denominator in the second term in the large parentheses then becomes
zero when Eb − Ea = hν. The numerator of this term is a complex number, but its
magnitude also goes to zero when Eb − Ea = hν, and the ratio of the numerator
to the denominator becomes iτ/� (Box 4.3). On the other hand if Eb < Ea (i.e., if
Ψb lies below Ψa), then the ratio of the numerator to the denominator in the first
term in the large parentheses becomes iτ/� when Ea − Eb = hν. If |Eb − Ea| is very
different from hν, both terms will be very small. (The amplitudes of the numerators
cannot exceed 2 for any values of Ea, Eb, or hν, whereas the denominators usually
are large.) So something special evidently happens if hν is close to the energy
difference between the two states. We will see shortly that the second term in the
large parentheses in Eq. (4.7) accounts for absorption of light when Eb − Ea = hν,
and that the first term accounts for induced or stimulated emission of light when
Ea −Eb = hν. Stimulated emission, a downward electronic transition in which light
is given off, is just the reverse of absorption.

Box 4.3 The behavior of the function [exp(iy) – 1]/y as y goes to 0

To examine the behavior of Eq. (4.7) when hν ≈ |Eb − Ea|, let y = (Eb − Ea −
hν)τ/�. The term for absorption then is

exp
[
i
(
Eb − Ea − hν

)
τ/�

]
− 1

Eb − Ea − hν
=
(

exp(iy) − 1
y

)
τ
�

=
(

1 + iy − y2/2! + ... − 1
y

)
τ
�

, (B4.3.1)

which goes to iτ/� as y approaches zero. Alternatively, we could write
(

exp(iy) − 1
y

)
τ
�

=
(

cos y + i sin y − 1
y

)
τ
�

, (B4.3.2)

which also goes to iτ/� as y goes to zero. The fact that iτ/� is imaginary has
no particular significance here, because we are interested in |Cb(τ)|2.

Equation (4.7) describes the effects of light with a single frequency (ν). As
we discussed in Chap. 3, light always includes multiple oscillation modes spaning
a range of frequencies. The rates of excitation caused by these individual modes are
additive. To obtain the total rate of excitation, we therefore must integrate |Cb(τ)|2

over all the frequencies included in the radiation. The integral will be very small
unless the region of integration includes a frequency for which hν = |Eb − Ea|. This
means that we can safely take the integral from ν = 0 to ∞, which is convenient
because the result then appears in standard tables (Box 4.4). Also, as explained
above, we only need to consider either the term for absorption or that for stimulated
emission, depending on whether Eb is greater than or less than Ea. Integrating the
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term for absorption gives:

∞∫

0

C∗
b(τ, ν) Cb(τ, ν)ρν dν

=

∞∫

0

[ (
E0 · 〈ψb

∣∣̃μ
∣∣ψa

〉)2
(4.8a)

({
exp

[
−i
(
Eb − Ea − hν

)
t/�

]
− 1

}{
exp

[
i
(
Eb − Ea − hν

)
t/�

]
− 1

}

(
Eb − Ea − hν

)2

)

ρν(ν)
]

dν

=
(
E0 · 〈ψb

∣∣ μ̃
∣∣ψa

〉)2 ρν(ν0)τ/�2 (4.8b)

=
(
E0 · μba

)2 ρν(ν0)τ/�2 , (4.8c)

where ρν(ν)dν is the number of modes of oscillation in the frequency interval
between ν and ν + dν, ν0 = (Eb − Ea)/h, and μba ≡ 〈ψb |̃μ|ψa〉. We have factored
(E0 · μba)2ρν(ν) out of the integral in Eq. (4.8a) on the assumption that the field
is essentially independent of ν over the small frequency interval where hν is close
to Eb − Ea. The factor ρν(ν0) in the final expression therefore pertains to this
interval. Additional details of the derivation are given in Box 4.4. Equation (4.8c) is
a special case of a general expression that is often called the golden rule of quantum
mechanics, or Fermi’s golden rule, which we will encounter again in a variety of
contexts.

Box 4.4 The function sin2x/x2 and its integral

To evaluate Eq. (4.8a), first pull the term (E0 ·μba)2ρν(ν) out of the integral and
let s = (Eb − Ea − hν)τ/� as in Box 4.3. With this substitution, ds = −2πτdν

and the limits of integration are from s = ∞ to s = −∞. The integral then
can be evaluated as follows:

−∞∫

∞

{
[exp (−is) − 1] [exp(is) − 1]

s2(�/τ)2(−2πτ)

}
ds

=
( −τ
π�2

) −∞∫

∞

{
1 − cos s

s2

}
ds

=
( τ
π�2

) ∞∫

−∞

2 sin2(s/2)
s2

ds =
( τ
π�2

) ∞∫

−∞

(
sin(s/2)

(s/2)

)2

d(s/2) (B4.4.1)

=
(
τ/π�2) π = τ/�2 . (B4.4.2)



4.2 The Rates of Absorption and Stimulated Emission 117

Figure 4.2 shows the function sin2x/x2 that forms the integrand in Eq. (B4.4.1).
The function, sometimes called sinc2x, has a value of 1 at x = 0, and drops
off rapidly on either side of zero. Could the spectrum of the light be so sharp
that it would cover only a small fraction of the region where sin2(s/2)/(s/2)2 is
significantly different from zero? Note that s includes a product of an energy
difference (Eb − Ea − hν) and time (τ), and remember from Chaps. 2 and 3
that such products must cover a minimum range of approximately h. The
spread of s/2 therefore must be at least on the order of h/2�, or π, which
would include a substantial part of the integral.

This analysis has led us to the resonance condition for absorption of light:
hν = Eb − Ea. We also have obtained a very general expression for the rate at which
a molecule will be excited from state a to state b when the resonance condition is met
(Eq. (4.8c)). Integrating the term for stimulated emission in Eq. (4.7) gives exactly
the same result except that ρν(ν0) refers to the frequency where hν = Ea − Eb.
You may be surprised to see that we did not have to introduce the notion of
photons with quantized energy (hν) in order to obtain the resonance condition.
Our description of light was completely classical. Although the requirement for hν

to match |Eb − Ea| is a quantum mechanical result, it emerges in this treatment
as a consequence of the quantization of the states of the absorbing molecule, not
the quantization of light. However, we will see in Chap. 5 that the same result
is obtained by a fully quantum mechanical treatment that includes a quantized
radiation field.

Equation (4.7) has the curious feature that, when |Eb − Ea| ≈ hν, Cb(τ) is
proportional to −iτ/� (Box 4.3). This means that the probability density |Cb(τ)|2 is
proportional to τ2, at least for short times when the system still is most likely to be
in stateΨa. In other words, the probability that the system has made a transition to
stateΨb increases quadratically with time! By contrast, the expressions in Eq. (4.8b)
and (4.8c) say that the probability that the system has made the transition grows

Fig. 4.2. The function sin2x/x2. In
Eq. (B4.4.1), x = s/2 = (Eb −Ea −hν)τ/2�
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linearly with time, which seems more in keeping with everyday observations. The
quadratic time dependence predicted by Eq. (4.7) results from considering light
with a single frequency, or equivalently, from considering a system with single,
sharply defined value of Eb −Ea. Integrating over a distribution of frequencies gives
Eq. (4.8). We could have obtained the same linear dependence on τ by considering
a very large number of molecules with a distribution of energy gaps clustered
around hν, or by considering a single molecule for which Eb − Ea fluctuates rapidly
with time. In Chap. 11 we will see that the dynamics of absorption in fact actually
are expected to be nonlinear on very short time scales, although the extent of
this nonlinearity depends on the fluctuating interactions of the system with the
surroundings.

4.3
Transition Dipoles and Dipole Strengths

The matrix element 〈ψb |̃μ|ψa〉 that we denote as μba in Eq. (4.8c) is called a transi-
tion dipole. Transition dipoles are vectors whose magnitudes have units of charge
times distance. Note that μba differs from 〈ψa |̃μ|ψa〉, or μaa, which is the contribu-
tion that an electron in orbital ψa makes to the permanent dipole of the molecule.
The total electric dipole of the molecule is given by a sum of terms correspond-
ing to μaa for all the wavefunctions of all the charged particles in the molecule,
including both electrons and nuclei. As we will discuss in Sect. 4.10, the change in
the permanent dipole when the system is excited from ψa to ψb(μbb − μaa) bears
on how interactions with the surroundings affect the energy difference between
the excited state and the ground state. The transition dipole, on the other hand,
determines the strength of the absorption band associated with the excitation.
The transition dipole can be related to the oscillatory component of the dipole in
a superposition of the ground and excited states (Box 4.5).

Box 4.5 The oscillating electric dipole of a superposition state

Classically, energy can be transferred between a molecule and an oscillating
electromagnetic field only if the molecule has an electric or magnetic dipole
that oscillates in time at a frequency close to the oscillation frequency of the
field; otherwise, the interactions of the molecule with the field will average
to zero. A molecule in a state described by a superposition of its ground and
excited states (Ψa and Ψb) can have such an oscillating dipole even though
the individual states do not. Figure 4.3 illustrates this point for the first two
eigenfunctions of an electron in a one-dimensional box. The dotted and
dashed curves in panel A show the amplitudes of Ψa and Ψb at time t = 0
(Eq. (2.24), Fig. 2.2). The solid curve shows the sum (Ψa + Ψb) multiplied by
the normalization factor 2−1/2. Because the time-dependent parts of Ψa and
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Ψb [exp(−iEat/�) and exp(iEbt/�), where Ea and Eb are the energies of the
pure states] are both unity at zero time, the superpostion state at this time
is simply the sum of the spatial parts of the wavefunctions (ψa + ψb). The
corresponding probability functions are shown in Fig. 4.3, panel C. The pure
states have no dipole moment because the electron density (e|ψ(x)|2) at any
point where x > 0 is balanced by the electron density at a corresponding
point with x < 0, making the integrals ∫ e|ψ(x)|2x dx zero. This symmetry
is broken in the superposition state, which has a higher electron density for
negative values of x (Fig. 4.3, panel C, solid curve).

To see that the dipole moment of the superposition state oscillates with
time, consider the same states at time t = (1/2)h/(Eb − Ea). For the particle in
a box, the energy of the second eigenstate is 4 times that of the first, Eb = 4Ea

(Eq. (2.25)), so (1/2)h/(Eb − Ea) = (1/6)h/Ea. The individual wavefunctions
at this time have both real and imaginary parts. For the lower-energy state,
we find by using the relationship exp(−iθ) = cos θ − i sin θ that

Ψa(x, t) = ψa(x) exp(−iEat/�)

= ψa(x) exp(−iEah/6Ea�) = ψa(x) exp(−iπ/3)

= ψa(x) [cos(π/3) − i sin(π/3)] . (B4.5.1)

For the higher-energy state, which oscillates 4 times more rapidly,

Ψb(x, t) = ψb(x) exp(−iEbt/�) = ψb(x) exp(−i4π/3)

= ψb(x) [cos(4π/3) − i sin(4π/3)]

= −ψb(x) [cos(π/3) − i sin(π/3)] . (B4.5.2)

Because cos(4π/3) = − cos(π/3) and sin(4π/3) = − sin(π/3),Ψb has changed
sign relative to Ψa. The wavefunction of the superposition state at t =
(1/2)h/(Eb − Ea) is, therefore,

2−1/2 [Ψa(x, t) + Ψb(x, t)] = 2−1/2 [ψa(x) − ψb(x)] [cos(π/3) − i sin(π/3)] .
(B4.5.3)

This differs from the superposition state at zero time in that it depends on
the difference betweenψa(x) andψb(x) instead of the sum (Fig. 4.3, panel B).
Inspection of the electron density function in Fig. 4.3, panel D shows that
the electric dipole of the superposition state has reversed direction relative
to the orientation at t = 0.

The wavefunction of the superposition state returns to its initial shape at
t = h/(Eb −Ea), when the phases of the time-dependent parts ofΨa andΨb are
2π/3 and 8π/3, respectively. The spatial part ofΨa+Ψb thus oscillates between
symmetric and antisymmetric combinations ofψa andψb (ψa +ψb andψa −
ψb) with a period of h/(Eb −Ea), and the electric dipole oscillates in concert.
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We can relate the amplitude of the oscillating dipole of the superposition
state to the transition dipole (μba) as follows. For a superposition state CaΨa +
CbΨb with Ψk = ψk exp(−iEkt/�), the expectation value of the dipole is
〈
CaΨa + CbΨb

∣∣̃μ
∣∣CaΨa + CbΨb

〉

= |Ca|2 〈Ψa
∣∣̃μ
∣∣Ψa

〉
+ |Cb|2 〈Ψb

∣∣̃μ
∣∣Ψb

〉
+ C∗

a Cb
〈
Ψa

∣∣̃μ
∣∣Ψb

〉

+C∗
bCa

〈
Ψb

∣∣̃μ
∣∣Ψa

〉

= |Ca|2 μaa + |Cb|2 μbb + C∗
a Cbμab exp

[
i
(
Ea − Eb

)
t/�

]

+C∗
bCaμba exp

[
i
(
Eb − Ea

)
t/�

]
(B4.5.4a)

= |Ca|2 μaa + |Cb|2 μbb + 2 Re
{

CbCaμba exp
[
i
(
Eb − Ea

)
t/�

]}
(B4.5.4b)

= |Ca|2 μaa + |Cb|2 μbb + 2 Re
(
CbCaμba

)
cos

[
i
(
Eb − Ea

)
t/�

]
. (B4.5.4c)

We have used the equality θ + θ∗ = 2 Re(θ) where Re(θ) is the real part of
the complex number θ. Equation (B4.5.4c) shows that the dipole moment
of the superposition state includes a component that oscillates sinusoidally
with a period of h/|Eb − Ea|, and that the amplitude of this component is
proportional to μba.

Now suppose that a molecule in the superposition state is exposed to
the oscillating electric field of light (E). If the frequency of the light is very
different from that of the oscillating molecular dipole (|Eb − Ea|/h), the
interactions of the molecule with the radiation field will average to zero. On
the other hand, if the two frequencies match and are in phase, the interaction
energy will be proportional to μba · E, and in general will be nonzero. The
oscillating dipole of the superposition state thus appears to rationalize the
dependence of the absorption of light on both the resonance condition and
μba. However, this argument has the problem that, in addition to being
proportional to μba, the oscillating dipole of the superposition state depends
on the product of the coefficients Ca and Cb (Eq. (B4.5.4c)). If we know the
system is in the ground state, then Cb = 0, and the amplitude of the oscillating
dipole is zero. The perturbation treatment presented in Sect. 4.2 does not
encounter this dilemma, and indeed predicts that the rate of absorption
will be maximal when Ca = 1 and Cb = 0. We will resolve this apparent
contradiction in Chap. 10, when we discuss the electric polarization of a
macroscopic medium by an electromagnetic radiation field.

The magnitudes of both permanent and transition dipole moments commonly
are expressed in units of debyes (D) after Peter Debye, who received the chem-
istry Nobel prize in 1936 for showing how dipole moments can be measured
and related to molecular structure. One debye is 10−18 esu cm in the CGS sys-
tem and 3.336 × 10−30 C m in MKS units). Because the charge of an electron is
−4.803 × 1010 esu, and 1 Å = 10−8 cm, the dipole moment associated with a pair of
positive and negative elementary charges separated by 1 Å is 4.803 D.
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Fig. 4.3. Wavefunction amplitudes (A, B) and probability densities (C, D) for two pure states
and a superposition state. The dotted curves and the dashed curves are for the first two
eigenstates of an electron in a one-dimensional box of unit length, as given by Eq. (2.24)
with n = 1 or 2 (Ψa and Ψb, respectively). The solid curves are for the superposition
2−1/2Ψa + (Ψb). A, C The signed amplitudes of the wavefunctions and the probability
densities at time t = 0, when all the wavefunctions are real. B, D The corresponding
functions at time t = (1/2)h/(Eb − Ea), where Ea and Eb are the energies of the pure states

According to Eq. (4.8c), the absorption strength is proportional to the square of
the magnitude of μba, which is called the dipole strength (Dba):

Dba =
∣∣μba

∣∣2 =
∣∣〈ψb |̃μ|ψa〉

∣∣2 . (4.9)

Dipole strength is a scalar with units of debyes squared.
Suppose that a sample is illuminated with a light beam of irradiance I, with I

defined as in Chap. 3 so that IΔν is the flux of energy (e.g., in joules per second)
in the frequency interval Δν crossing a plane with an area of 1 cm2. According to
Eqs. (1.1) and (1.2), the light will decrease in intensity by ICεl ln 10, where C is
the concentration of the absorbing molecules (molar), l is the sample’s thickness
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(centimeters), and ε is the molar extinction coefficient in the frequency interval
represented by Δν (per molar per centimeter). The rate at which a sample with
a 1-cm2 area absorbs energy in frequency interval Δν is, therefore,

dE/dt = IΔν Cε l ln 10 . (4.10)
Assume for now that ε has a constant value across the frequency interval Δν and
is zero everywhere else. Then Eq. (4.10) must account for all the absorption of
light by the sample. Equation (4.8c), on the other hand, indicates that the rate at
which molecules are excited is (E0 · μba)2Ngρν(ν)/�2 molecules per second, where
Ng is the number of molecules in the ground state in the illuminated region. By
combining these two expressions we can relate the molar extinction coefficient, an
experimentally measurable quantity, to the transition dipole (μba) and the dipole
strength (|μba|2).

If the light beam has a cross-sectional area of 1 cm2, the volume of the illuminated
region of interest is l cm3 and the total number of molecules in this volume is
N = 10−3 lCNA where NA is Avogadro’s number. We can use N in place of the
number of molecules in the ground state (Ng) because, in most measurements
with continuous light sources, the light intensity is low enough and the decay
of the excited state fast enough that depletion of the ground-state population is
negligible. Equation (4.10) thus can be rewritten as dE/dt = IΔν 103 ln(10)εN/NA.

The dot product E0 ·μba in Eq. (4.8c) depends on the cosine of the angle between
the electric field vector of the light (E0) and the molecular transition dipole vector
(μba), and this angle usually varies from molecule to molecule in the sample. To find
the average value of (E0 ·μba)2, imagine a Cartesian coordinate system in which the
z-axis is parallel to E0. The x- and y-axes can be chosen arbitrarily as long as they
are perpendicular to z and to each other. In this coordinate system, the vector μba

for an individual molecule can be written as (μx,μy,μz), where μz = E0 · μba/|E0|
and μ2

x +μ2
y +μ2

z = |μba|2. If the sample is isotropic (i.e., if the absorbing molecules
have no preferred orientation), then the average values of μ2

x, μ2
y, and μ2

z must all be
the same, and so must be |μba|2/3. The average value of (E0 · μba)2 for an isotropic
sample is, therefore,

(
E0 · μba

)2
= (1/3) |E0|2 |μba|2 . (4.11)

This result also can be obtained by a more general approach that is described in
Box 4.6.

Box 4.6 The mean-squared energy of interaction of an external field
with dipoles in an isotropic system

The average value of (E0 · μba)2 is |E0|2|μba|2cos2 θ, where θ is the an-
gle between F0 and μba for an individual absorbing molecule and cos2 θ
means the average of cos2θ over all the molecules in the system. The av-
erage value of cos2θ in an isotropic system can be obtained by represent-
ing θ as the angle of a vector r with respect to the z-axis in polar coor-
dinates and integrating cos2θ over the surface of a sphere (Fig. 4.4).
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If we let r be the length of r, evaluating the integral gives

cos2θ =

⎛

⎝r2

2π∫

0

dφ

π∫

0

cos2θ sin θdθ

⎞

⎠
/
⎛

⎝r2

2π∫

0

dφ

π∫

0

sin θdθ

⎞

⎠

= (4π/3)/4π = 1/3 . (B4.6.1)

The denominator in this expression is just the integral over the same surface
without the weighting of the integrand by cos2θ. Though more cumbersome
than the justification of Eq. (4.11) given in the text, this analysis illustrates
a more general way of dealing with related problems that arise in connection
with fluorescence polarization (Chaps. 5, 10).

If we now use Eq. (3.34) to relate |E0|2 to the irradiance (I), still considering an
isotropic sample, Eq. (4.11) becomes

(
E0 · μba

)2ρν(ν) =
(
2π f 2/3cn

) ∣∣μba
∣∣2 I =

(
2π f 2/3cn

)
DbaI , (4.12)

where c is the speed of light in a vacuum, n is the refractive index of the solution,
and f is the local-field correction factor. Thus, the excitation rate is

−dNg/dt = 10−3lCNA
(
2π f 2/3c n�2)DbaI molecules s−1 cm−2 . (4.13)

Because each excitation increases the energy of a molecule by Eb − Ea, or hν, the
rate at which energy is transferred from the radiation field to the sample must be

dE/dt = 10−3hν lCNA
(
2π f 2/3c n�2)DbaI . (4.14)

Finally, by equating the two expressions for dE/dt (Eqs. (4.10), (4.14)) we obtain

Dba =
(

3000 ln(10) nhc
8π3f 2NA

)
ε
ν
Δν . (4.15)

Fig. 4.4. The average value of cos2θ
can be obtained by integrating over
the surface of a sphere. The arrow
represents a vector with length r parallel
to the transition dipole of a particular
molecule; the z-axis is the polarization
axis of the light. The area of a small
element on the surface of the sphere
is r2 sin θdφdθ. The polar coordinates
used here can be converted to Cartesian
coordinates by the transformation z =
r cos θ, x = r sin θ cos φ, y = r sin θ sin φ
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In deriving Eq. (4.15) we have assumed that all the transitions expected on the
basis of dipole strength Dba occur within a small frequency interval Δν over which
ε is constant. This is fine for atomic transitions, but not for molecules. As we will
discuss in Sect. 4.10, molecular absorption bands are broadened because a variety
of nuclear transitions can accompany the electronic excitation. To include all of
these transitions, we must relate Dba to an integral over the absorption band:

Dba =
(

3000 ln(10) hc
8π3NA

)∫
n ε
f 2ν

dν (4.16a)

≈ 9.186 × 10−3
(

n
f 2

)∫
ε
ν

dν
D2

M−1 cm−1 ,

or

∫
ε
ν

dν ≈
(

f 2

n

) (
4π3NA

3000 ln(10)�c

) ∣∣μba
∣∣2 (4.16b)

= 108.86
M−1 cm−1

D2

(
f 2

n

) ∣∣μba
∣∣2 .

The values of the physical constants and conversion factors in Eq. (4.16) are given
in Box 4.7. The integral ∫(ε/ν)dν is the same as ∫(ε/λ)dλ, or ∫ εd ln λ, where λ is
the wavelength; the units of ν or λ are immaterial because they cancel out in the
integral.

We have assumed that the refractive index (n) and the local-field correction
factor (f ) are essentially constant over the spectral region of the absorption band,
so the ratio n/f 2 can be extracted from the integral in Eq. (4.16a). As discussed in
Chap. 3, f depends on the shape and polarizability of the molecule, and usually
cannot be measured independently. If the Lorentz expression (Eq. (3.36)) is used
for f , as some authors recommend (Bakshiev et al. 1963; Shipman 1977), Eq. (4.16a)
becomes

Dba = 9.186 × 10−3 9n
(n2 + 2)2

∫
ε
ν

dνD2 . (4.17a)

Using the cavity-field expression (Eq. (3.35)) gives

Dba = 9.186 × 10−3 (2n2 + 1)2

9n3

∫
ε
ν

dνD2 . (4.17b)

Myers and Birge (1980) give additional expressions for n/f 2 that depend on the
shape of the chromophore.
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Box 4.7 Physical constants and conversion factors for absorption
of light

The values of the physical constants in Eqs. (4.16) are:
NA = 6.0222 × 1023 molecules mol−1

� = 1.0546 × 10−27 erg s
c = 2.9979 × 1010 cm s−1

ln 10 = 2.30259
1 D = 10−18 esu cm
1 dyn = 1 esu2 cm−2

4π2 = 39.4784
1 erg = 1 dyn cm = 1 esu2 cm−1

If μba is given in debyes, then

(
4π3NA

3000 ln(10)�c

) ∣∣μba
∣∣2

=
39.4784 × (6.0222 × 1023 molecules

mol ) × (|μba|2 D2

molecule )

3 × (103 cm3

l ) × 2.30259 × (1.0546 × 10−27 erg s) × (2.9979 × 1010 cm
s )

×
(10−36 esu2cm2

D2 )

(1 esu2

cm erg )

= 108.86 mol−1 · cm−1 · l = 108.86 M−1 · cm−1 .

If we use the cavity-field expression for f (Eq. (3.35)) and n = 1.33 (the
refractive index of water), then the factor (f 2/n) is 9n3/(2n2 + 1)2 = 1.028.

Figure 4.5 illustrates how the treatment of the local-field correction factor in
Eq. (4.16a) affects the dipole strength calculated for bacteriochlorophyll a from

Fig. 4.5. Dipole strength of the long-
wavelength absorption band of bacteri-
ochlorophyll a, calculated by Eq. (4.16a)
from absorption spectra measured in
solvents with various refractive indices.
Three treatments of the local-field cor-
rection factor ( f ) were used: down
triangles, f = 1.0 (no correction); filled
circles, f is the cavity-field factor; empty
circles, f is the Lorentz factor. The
dashed lines are least-squares fits to the
data. Spectra measured by Connolly
et al. (1982) were converted to dipole
strengths as described by Alden et al.
(1997) and Knox and Spring (2003)
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the measured absorption spectrum (Alden et al. 1997). For this molecule, using
the Lorentz correction or just setting f = 1 leads to values for Dba that change
systematically with n, whereas the cavity-field expression gives values that are
nearly independent of n. Excluding specific solvent–solute interactions such as
hydrogen bonding, which could affect the molecular orbitals, Dba should be an
intrinsic molecular property that is relatively insensitive to the solvent. The cavity-
field expression thus works reasonably well for bacteriochlorophyll, although the
actual shape of the molecule is hardly spherical.

The strength of an absorption band sometimes is expressed in terms of the
oscillator strength, a dimensionless quantity defined as

fba =
8π2meν

3e2h
Dba =

2.303 × 103mec
π e2NA

∫
n
f 2
εdν ≈ 1.44 × 10−19

(
n
f 2

)∫
εdν ,

(4.18)

where me is the electron mass (Box 3.3). Here the units of ν do matter; the numerical
factor given in Eq. (4.18) is for ν in units of per second. The oscillator strength
relates the rate of absorption of energy to the rate predicted for a classical electric
dipole oscillating at the same frequency (ν). It is on the order of 1 for the strongest
possible electronic absorption band of a single chromophore. According to the
Kuhn–Thomas sum rule, the sum of the oscillator strengths for all the absorption
bands of a molecule is equal to the total number of electrons in the molecule;
however, this rule usually is of little practical value because many of the absorption
bands at high energies are not measurable.

The strength of an absorption band also can be expressed as the absorption
cross section (σ), which (for ε in units of per molar per centimeter) is given by
10−3 ln(10)ε/NA, or 3.82 × 10−21ε in units of square centimeters. If the incident
light intensity is I photons per square centimeter per second and the excited
molecules return to the ground state rapidly relative to the rate of excitation,
a molecule with absorption cross sectionσwill be excited Iσ times per second. This
result is independent of the concentration of absorbing molecules in the sample,
although I drops off more rapidly with depth in the sample if the concentration is
increased.

4.4
Calculating Transition Dipoles forπMolecular Orbitals

Theoretical dipole strengths for molecular transitions can be calculated by using
linear combinations of atomic orbitals to represent the molecular wavefunctions of
the excited and unexcited system. Discussing an example of such a calculation will
help to bring out the vectorial nature of transition dipoles. Consider a molecule in
which the highest normally occupied molecular orbital (HOMO) and the lowest
normally unoccupied orbital (LUMO) are both π orbitals. We can describe these
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orbitals by writing, as in Eq. (2.36),

ψh ≈
∑

t

Ch
t pt and ψl ≈

∑

t

Cl
tpt , (4.19)

where superscripts h and l stand for HOMO and LUMO, the sums run over the
conjugated atoms of theπ system, and pt represents an atomic 2pz orbital on atom t.
In the ground state, ψh usually contains two electrons. If we use the notation ψk(j)
to indicate that electron j is in orbital ψk, we can express the wavefunction for the
ground state as a product:

Ψa = ψh(1)ψh(2) . (4.20)

We have factored out all the filled orbitals below the HOMO and have omitted
them in Eq. (4.20) on the simplifying assumption that the electrons in these
orbitals are not affected by the movement of one of the outer electrons from the
HOMO to the LUMO. This clearly represents only a first approximation to the
actual rearrangement of the electrons that accompanies the excitation.

In the excited state, either electron 1 or electron 2 could be promoted from the
HOMO to the LUMO. Since we cannot distinguish the individual electrons, the
wavefunction for the excited state must combine the various possible ways that the
electrons could be assigned to the two orbitals:

Ψb = 2−1/2ψh(1)ψl(2) + 2−1/2ψh(2)ψl(1) . (4.21)

Again, we have factored out all the orbitals below the HOMO. For now we also
neglect the spins of the two electrons and assume that no change of spin occurs
during the excitation. The wavefunctions written for both the ground and the
excited state pertain to singlet states, in which the spins of electrons 1 and 2 are
antiparallel (Sect. 2.4). We will return to this point in Sect. 4.9.

By using Eqs. (4.20) and (4.21) for Ψa and Ψb, the transition dipole can be
reduced to a sum of terms involving the atomic coordinates and the molecular
orbital coefficients Ch

t and Cl
t for the HOMO and the LUMO:

μba ≡ 〈
Ψb

∣∣ μ̃
∣∣Ψa

〉
=
〈
Ψb

∣∣ μ̃(1) + μ̃(2)
∣∣Ψa

〉
(4.22a)

=
〈
2−1/2 (ψh(1)ψl(2) + ψh(2)ψl(1)

) ∣∣ μ̃(1) + μ̃(2)
∣∣ ψh(1)ψh(2)

〉
(4.22b)

= 2−1/2 〈ψl(1)
∣∣ μ̃(1)

∣∣ ψh(1)
〉 〈
ψh(2)

∣∣ψh(2)
〉

+ 2−1/2 〈ψl(2)
∣∣ μ̃(2)

∣∣ ψh(2)
〉 〈
ψh(1)

∣∣ψh(1)
〉

(4.22c)

=
√

2
〈
ψl(k)

∣∣ μ̃(k)
∣∣ ψh(k)

〉 ≈ √
2

〈
∑

s

Cl
sps

∣∣ μ̃
∣∣
∑

t

Ch
t pt

〉

(4.22d)

=
√

2 e
∑

s

∑

t

Cl
sC

h
t

〈
ps |̃r| pt

〉 ≈ √
2 e

∑

t

Cl
tC

h
t rt , (4.22e)

where ri is the position of atom i. In this derivation we have separated the dipole
operator μ̃ into two parts that make identical contributions to the overall transition



128 4 Electronic Absorption

dipole. One part, μ̃(1), acts only on electron 1, while μ̃(2) acts only on electron 2;
〈ψl(2)|̃μ(1)|ψh(2)〉 and 〈ψl(1)|̃μ(2)|ψh(1)〉 are zero. The final step of the deriva-
tion uses the fact that 〈pt |̃r|pt〉 = rt and the approximation |〈ps |̃r|pt〉| � |rt| for
s = t.

As an example consider ethylene, for which the HOMO and the LUMO can
be described approximately as symmetric and antisymmetric combinations of
carbon 2p orbitals: Ψa = 2−1/2(p1 + p2) and Ψb = 2−1/2(p1 − p2), respectively
(Fig. 2.7). The corresponding absorption band occurs at 175 nm. Equation (4.22e)
gives a transition dipole of (21/2/2)e(r1 − r2) = (21/2/2)er12, where r12 is the vector
from carbon 2 to carbon 1. The transition dipole vector thus is aligned along
the C=C bond. The calculated dipole strength is Dba = |μba|2 = (e2/2)|r12|2, or
11.53|r12|2 debyes squared if r12 is given in angstroms. From this result, it might
appear that the dipole strength would increase indefinitely with the square of the
C=C bond length. But if the bond is stretched much beyond the length of a typical
C=C double bond, the description of the HOMO and the LUMO as symmetric and
antisymmetric combinations of the two atomic pz orbitals begins to break down. In
the limit of a large interatomic distance, the orbitals are no longer shared by the two
carbons, but instead are localized entirely at one site or the other. Equation (4.22e)
then gives a dipole strength of zero because either Ch

i or Cl
i is zero in each of the

products that enters into the sum.
Note that although the transition dipole calculated by Eq. (4.22e) has a definite

direction, flipping it over by 180◦ would have no effect on the absorption spectrum
because the extinction coefficient depends on the dipole strength (|μba|2) rather
than on μba itself. This makes sense, considering that the electric field of light
oscillates rapidly in sign. However, we later will consider transitions that are
best described by linear combinations of excitations in which an electron moves
between any of several different pairs of molecular orbitals, rather than simply
from the HOMO to the LUMO (Sect. 4.7, Chap. 8). Because the overall transition
dipole in this situation is a vector combination of the weighted transition dipoles
for the individual excitations, the relative signs of the individual contributions are
important.

4.5
Molecular Symmetry and Forbidden and Allowed Transitions

We have seen that the transition dipole of ethylene is aligned along the bond
between the two carbon atoms. Because the strength of absorption depends on the
dot product of μba and the electrical field of the light (Eq. (4.8c)), absorption of light
polarized parallel to the C=C bond is said to be allowed, whereas absorption of
light polarized perpendicular to the bond is forbidden. It often is easy to determine
whether or not an absorption band is allowed, and if so for what polarization
of light, by examining the symmetries of the molecular orbitals involved in the
transition.
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Note first that the transition dipole depends on the integral over all space of
a product of the position vector and the amplitudes of the two wavefunctions:

μba =
〈
Ψb

∣∣̃μ
∣∣Ψa

〉
= e 〈Ψb |r|Ψa〉 ≡ e

∫
Ψ∗

brΨa dσ . (4.23)

At a given point r, each of these three quantities could have either a positive or
a negative sign depending on our choice of the origin for the coordinate system.
However, the magnitude of a molecular transition dipole does not depend on any
particular choice of coordinate system. This should be clear in the case of ethylene,
where Eq. (4.22) shows that |μba| depends only on the length of the carbon–carbon
bond (|r12|) and is oriented along this bond. More generally, if we shift the origin
by adding any constant vector R to r, Eq. (4.23) becomes

μba = e 〈Ψb |r + R|Ψa〉 = e 〈Ψb |r|Ψa〉 + e 〈Ψb |R|Ψa〉 (4.24a)

= e 〈Ψb |r|Ψa〉 + eR 〈Ψb |Ψa 〉 = e 〈Ψb |r|Ψa〉 , (4.24b)

which is the same as before. The term eR〈Ψb|Ψa〉 is zero as long as Ψa and Ψb

are orthogonal. Rotating the coordinate system or the molecule modifies the x, y,
and z components of μba but does not change the magnitude or orientation of the
vector.

Returning to ethylene, let us put the origin of the coordinate system midway
between the two carbons and align the C=C bond on the y-axis, making the z-
axes of the individual atoms perpendicular to the bond as shown in Fig. 4.6 (see
also Fig. 2.7). Like the atomic pz orbitals (Fig. 2.6b), the HOMO (Ψa) then has
equal magnitudes but opposite signs on the two sides of the xy plane; it is said
to be an odd or antisymmetric function of the z coordinate (Fig. 4.6, panel A).
In other words, Ψa(x, y, z) = −Ψa(x, y, −z) for any fixed values of x and y. The
same is true of the LUMO: Ψb(x, y, z) = −Ψb(x, y, −z) (Fig. 4.6, panel B). The
product of the HOMO and the LUMO, on the other hand, has the same sign on
the two sides of the xy plane, and thus is an even or symmetric function of z:
Ψb(x, y, z)Ψa(x, y, z) = Ψb(x, y, −z)Ψa(x, y, −z) (Fig. 4.6, panel C). The product
ΨbΨa also is an even function of x, but is an odd function of y (Fig. 4.6, panel D).

To evaluate the x, y, or z component of the transition dipole, we have to multiply
ΨbΨa by, respectively, x, y, or z and integrate the result over all space. Since z has
opposite signs on the two sides of the xy plane, whereas ΨbΨa has the same sign,
the quantity zΨbΨa is an odd function of z and will vanish if we integrate it along
any line parallel to the z-axis:

∞∫

−∞
zΨb(x, y, z)Ψa(x, y, z) dz = 0 . (4.25)

The z component of μba therefore is zero. The same is true for the x component. By
contrast, the quantity yΨbΨa is an even function of y and will give either a positive
result or zero if it is integrated along any line parallel to y (Fig. 4.6, panels C, D).
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Fig. 4.6. Orbital symmetry in the firstπ → π∗ electronic transition of ethylene. A, B Contour
plots of the amplitudes of the highest occupied molecular orbital (HOMO) (π, A) and lowest
unoccupied molecular orbital (LUMO) (π∗, B) wavefunctions. C, D Contour plots of the
product of the two wavefunctions. The C=C bond is aligned with the y-axis, and the atomic
z-axes are parallel to the molecular z-axis. In A–C, the plane of the drawing coincides with
the yz plane; in D, the plane of the drawing is parallel to the molecular xy plane and is
above this plane by the Bohr radius (a0 = 0.529 Å). The wavefunctions are constructed
as in Fig. 2.7. Solid curves represent positive amplitudes; dotted curves represent negative
amplitudes. Distances are plotted as dimensionless multiples of a0, and the contour intervals
are 0.05a3/2

0 in A and B and 0.02a3/2
0 in C and D. The arrows in C and D show the transition

dipole in units of eÅ/a0 as calculated by Eq. (4.22e)

yΨbΨa also is an even function of x and an even function of z, so its integral over
all space must be nonzero. The transition dipole 〈Ψb |̃μ|Ψa〉 thus has a nonzero y
component.

A particle in a one-dimensional box provides another simple illustration of
these principles. Inspection of Fig. 2.2a shows that the wavefunctions for n = 1,
3, 5 ... are all symmetric functions of the distance from the center of the box
(Δx), whereas those for n = 2, 4, ... are all antisymmetric. The product of the
wavefunctions for n = 1(ψ1) and n = 2(ψ2) thus has the same symmetry as Δx.
The quantity Δxψ1ψ2 therefore will give a nonzero result if we integrate it over all
values of Δx, which means that excitation from ψ1 to ψ2 has a nonzero transition
dipole oriented along x. The same is true for excitation fromψ1 to any of the higher
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states with even values of n, but not for transitions to states with odd values of n.
In this system, the selection rule for absorption is simply that n must change from
odd to even or vice versa.

To generalize the foregoing results, we can say that the j component (j = x, y,
or z) of a transition dipole 〈Ψb |̃μ|Ψa〉 will be zero if the product jΨbΨa has odd
reflection symmetry with respect to any plane (xy, xz, or yz). Excitation from Ψa

toΨb by light polarized in the j direction then is said to be forbidden by symmetry.
Simple considerations of molecular symmetry thus often can determine whether
such a transition is forbidden or allowed.

The selection rules imposed by the symmetry of the initial and final molecular
orbitals can be expressed in still more general terms in the language of group theory.
In order for 〈Ψb |̃μ|Ψa〉 to be nonzero, the product ΨbrΨa must have a component
that is totally symmetric with respect to all the symmetry operations that apply
to the molecule. The applicable symmetry operations depend on the molecular
geometry, but can include reflection in a plane, rotation around an axis, inversion
through a point, and a combination of rotation and reflection called an “improper
rotation” (Box 4.8). By saying that a quantity is totally symmetric with respect to
a symmetry operation such as rotation by 180◦ about a given axis, we mean that the
quantity does not change when the molecule is rotated in this way. If the operation
causes the quantity to change sign but leaves the absolute magnitude the same,
then the integral of the quantity over all space will be zero. For theπ−π∗ transition
of ethylene, for example, the productΨbzΨa changes sign upon reflection in the xy
plane, which is one of the symmetry operations that apply to the molecule when
the x-, y-, and z-axes are defined as in Fig. 2.7. The z component of the transition
dipole therefore is zero.ΨbxΨa does the same upon reflection in the yz plane, so the
x component of the transition dipole is also zero. ΨbyΨa, however, is unchanged
by such a reflection or any of the other applicable symmetry operations (reflection
in the xz or yz plane, rotation by 180◦ around the x-, y-, or z-axis, or inversion of
the structure through the origin), so the y component of the transition dipole is
nonzero. But that is all we can say based simply on the symmetry of the molecule. To
find the actual magnitude of the y component of μba, we have to evaluate the integral.

Box 4.8 Using group theory to determine whether a transition
is forbidden by symmetry

Molecular structures and orbitals can be classified into various point groups
according to the symmetry elements they contain. Symmetry elements are
lines, planes or points with respect to which various symmetry operations
such as rotation can be performed without changing the structure. The
symmetry operations that concern us here are as follows:

– Rotation (̃Cn). If rotation by 2π/n radians (1/n of a full rotation) about
a particular axis generates a structure that (barring isotopic labeling) is
indistinguishable from the original structure, the molecule is said to have
a Cn axis of rotational symmetry.
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– Reflection (̃σ). The xy plane is said to be a plane of reflection symmetry or
a mirror plane (σ) if moving each atom from its original position (x, y, z)
to (x, y, −z) gives an identical structure. A mirror plane often is designated
as σh if it is normal to a principle rotation axis, or σv if it contains this axis.

– Inversion (̃i). A molecule has a point of inversion symmetry (i) if moving
each atom in a straight line through the point to the opposite side of
the molecule gives the same structure. If we use the point of inversion
symmetry as the origin of the coordinate system, the inversion operation
moves each atom from its original position (x,y,z) to (−x,−y,−z).

– Improper rotation (̃Sn). Improper rotation is a rotation by 2π/n followed
by reflection through a plane perpendicular to the rotation axis. An axis
of improper rotation (Sn) is an axis about which this operation leaves the
structure of a molecule unchanged.

– Identity (̃E). The identity operator leaves all the particles in a molecule
where it finds them, which is to say that it does nothing. It is, neverthe-
less, essential to group theory. All molecules have the identity symmetry
element (E).

Translation, though an important symmetry operation in crystallography,
is not included here because we are concerned with the symmetry of an
individual molecule. A molecule whose center of mass has been shifted is, in
principle, distinguishable from the original molecule.

Point groups are sets of symmetry elements corresponding to symmetry
operators that obey four general rules of group theory:

(1) Each group must include the identity operator Ẽ.
(2) For each operator Ã in the group, the group must include an inverse

operator Ã−1 with the properties that Ã−1 · Ã = Ã · Ã−1 = Ẽ.
(3) If operators Ã and B̃ are members of a group, then the products Ã · B̃

and B̃ ·Ã also must be in the group. (As in Chap. 2, the operator written on the
right in such a product acts first, followed by the one on the left. The order
may or may not matter, depending on the opperators and the point group.
A symmetry operator necessarily commutes with its inverse and with Ẽ, but
not necessarily with the other operators.)

(4) Multiplication of the symmetry operators must be associative. This
means that Ã · (̃B · C̃) = (Ã · B̃) · C̃ for any three operators in the group.

Let us look at a few examples. Ethylene has three perpendicular axes of
twofold rotational symmetry [C2(x), C2(y), and C2(z)], three planes of reflec-
tion symmetry [σ(xz), σ(yz), and σ(xy)], and a center of inversion symmetry
(i) (Fig. 4.7a). When combined with the identity element E, these symmetry
elements obey the general rules for a group. They are called the D2h point
group.
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The conjugated atoms of porphin have a C4-axis (z), four C2-axes in the xy
plane, four planes of reflection symmetry containing the z-axis (σv), a center
of inversion symmetry, and identity (Fig. 4.7b). These elements form the D4h

point group.
Water has a C2-axis that passes through the oxygen atom and bisects

the H–O–H angle, and two perpendicular reflection planes that contain the
C2-axis, and again, identity (Fig. 4.7c). It is in point group C2v.

The backbone of a peptide has only one symmetry element other than
identity, a mirror plane that includes the central N, C, O, and Cα atoms
(Fig. 4.7d). This puts it in point group Cs.

For a general procedure for finding the point group for a molecule see
Cotton (1990) or Harris and Bertolucci (1978).

As shown in Table 4.1 for the D2h point group, the products of the opera-
tions in a point group can be collected in a multiplication table. The entries
in such a table are the results of performing the symmetry operation for the
symmetry element given in the top row, followed by the operation for the
element given in the first column. In the D2h point group, the operators all
commute with each other and each of the operators is its own inverse. For
example, rotating around a C2 axis by 2π/2 and then rotating by an additional
2π/2 around the same axis returns all the atoms to their original positions,
so C̃2 · C̃2 = Ẽ. More generally, the inverse of C̃n in any point group is (̃Cn)n−1.
To work out the other products, it is helpful to make projection drawings
of the type shown in Fig. 4.8, where the small filled circles represent points
above the xy plane, and the empty circles represent points below this plane.

Symmetry operators and their products can be represented conveniently
by matrices. Suppose an atom in the D2h point group has coordinates r =
(x, y, z) relative to the molecule’s center of mass. If we represent the coor-
dinates by a column vector and use the expression for multiplication of a
vector by a matrix (Eq. (A.20) in Appendix 2), the actions of the symmetry
operators on the atom’s location can be written

Ẽ · r =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
x
y
z

⎞

⎠

ĩ · r =

⎡

⎣
−1 0 0
0 −1 0
0 0 −1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
−x
−y
−z

⎞

⎠ , (B4.8.1a)

C̃2(z) · r =

⎡

⎣
cos(2π/2) sin(2π/2) 0

− sin(2π/2) cos(2π/2) 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠
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=

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
−x
−y
z

⎞

⎠ , (B4.8.1b)

C̃2(x) · r =

⎡

⎣
1 0 0

cos(2π/2) 0 sin(2π/2)
− sin(2π/2) 0 cos(2π/2)

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠

=

⎡

⎣
1 0 0

−1 0 0
0 0 −1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
x

−y
−z

⎞

⎠ , (B4.8.1c)

C̃2(y) · r =

⎡

⎣
cos(2π/2) 0 sin(2π/2)

0 1 0
− sin(2π/2) 0 cos(2π/2)

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠

=

⎡

⎣
−1 0 0
0 1 0
0 0 −1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
−x
y

−z

⎞

⎠ , (B4.8.1d)

σ̃h(xy) · r =

⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
x
y

−z

⎞

⎠ , (B4.8.1e)

σ̃h(xz) · r =

⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
x

−y
z

⎞

⎠ , (B4.8.1f)

and

σ̃h(yz) · r =

⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
−x
y
z

⎞

⎠ . (B4.8.1g)

By using the expression for the product of two matrices (Eq. (A.16)) and
the fact that matrix multiplication is associative, we can easily show that these
matrices have the same multiplication table as the operators. The products
C̃2(z) · C̃2(z), and ĩ · C̃2(z), for example, are

C̃2(z) · C̃2(z) · r =

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠

=

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
x
y
z

⎞

⎠ (B4.8.2a)
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and

ĩ · C̃2(z) r =

⎡

⎣
−1 0 0
0 −1 0
0 0 −1

⎤

⎦

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠

=

⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
x
y

−z

⎞

⎠ . (B4.8.2b)

You can verify these results by referring to Fig. 4.8. Multiplying any of the
matrices by the matrix representing Ẽ (the identity matrix) leaves the first
matrix unchanged, as it should:

Ẽ · C̃2(z) r =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠

=

⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
−x
−y
z

⎞

⎠ . (B4.8.3)

Since (1) the products of the matrices have the same multiplication table as
the operators in the point group, (2) matrix multiplications are associative,
(3) each of the products is the same as one of the original matrices, and
(4) every matrix with a nonzero determinant has an inverse (Appendix 2),
the set of matrices representing the symmetry operators in a point group
(Eq. (B4.8.1)) meet the criteria stated above for a group. The matrix group
thus provides a representation of the point group, just as the individual
matrices provide representations of the individual symmetry operators.

The vector (x, y, z) that we used in this example is said to form a basis
for a representation of the D2h point group. There are an infinite num-
ber of possible choices for such a basis, and the matrices representing the
symmetry operators depend on our choice. We could, for example, use the
coordinates of the six atoms of ethylene, in which case we would need an
18×18 matrix to represent each of the operators. Other possibilities would
be a set of bond lengths and angles, the molecular orbitals of ethylene, or
other functions of the coordinates. But the choices can be reduced system-
atically to a small set of representations that are mathematically orthogonal
to each other. The number of these irreducible representations depends on
how many different classes of symmetry operations make up the point group.
We will not go into this in detail here other than to say that two operators
X̃ and Ỹ are in the same class, and are said to be conjugate operators, if
and only if Ỹ = Z̃−1X̃Z̃, where Z̃ is some other operator. The procedure of
transforming X̃ to Ỹ by forming the product Z̃−1X̃Z̃ is called a similarity trans-
formation. In the D2h point group, each of the eight symmetry operators is of
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a different class, so there are eight different irreducible representations. Also,
each of the irreducible representations for the operators in this point group
is a single quantity (i.e., a one-dimensional representation, or a 1 × 1 matrix).
Any more complicated (reducible) representation can be written as a linear
combination of these eight irreducible representations, just as a vector can
be constructed from Cartesian x, y, and z components.

Information on the irreducible representations of the various point groups
is presented customarily in tables that are called character tables because
they give the character of the irreducible representation of each symmetry
operation in a point group. The character of a representation is the trace (the
sum of the diagonal elements) of the matrix that represents that operation.
Character tables for the D2h, C2v, and C4v point groups are presented in
Table 4.2. The symmetry elements of the point group are displayed in the top
row of each table, and the conventional names, called Mulliken symbols, of
the irreducible representations are given in the first column. Letters A and B
are used as the Mulliken symbols for one-dimensional representations like
those of the D2h and C2v point groups. E denotes a two-dimensional matrix
(regretably inviting confusion with the symbol for the identity symmetry
element), and T denotes a three-dimensional matrix. Representations of
types A and B differ in being, respectively, symmetric and antisymmetric
with respect to a Cn axis. Subscripts g and u stand for the German terms
gerade and ungerade, and indicate whether the representation is even (g) or
odd (u) with respect to a center of inversion. The numbers 1, 2, and 3 in
the subscripts distinguish different representations of the same general type.
The three columns on the right side of the character table give some one-,
two-, and three-dimensional functions that have the same symmetry as the
various irreducible representations. These are referred to as basis functions
for the irreducible representations.

Looking at the character table for the D2h point group (Table 4.2), we
see that, because all the irreducible representations of this group are one-
dimensional, their characters are either +1 or −1. Each symmetry operation
therefore either leaves the representation unchanged, in which case the char-
acter is +1, or changes the sign of the representation, making the character
−1. Ag is the totally symmetric representation. Like the quadratic functions
x2, y2, and z2, it is unaffected by any of the symmetry operations of the D2h

point group. Au also is unaffected by rotation about the x-, y-, or z-axis but
changes sign on inversion or reflection across the xy, xz, or yz plane. It thus
has the same symmetry properties as the product xyz in this point group.
B1u, B2u, and B3u have the same symmetry as the coordinates z, y, and x, each
of which changes sign on rotation around two of the three C2-axes, inversion,
or reflection across one plane.

The behaviors of the basis functions on the right side of the character table
for the D2h point group are described by saying that x2, y2, and z2 transform
as Ag in this point group, xy transforms as B1g, z transforms as B1u, and so
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forth. Turning to the C2v and C4v point groups, note that here z transforms
as the totally symmetric irreducible representation, A1. Rotation around the
C2-axis does not change the z coordinate in this point group, because the
single C2-axis coincides with the z-axis (Fig. 4.7c). Reflection across the xz
or yz plane also leaves the z coordinate unchanged. There is no center of
inversion in the C2v or C4v point group, so none of the Mulliken symbols has
a g or u subscript.

The entries 2C4, 2σv, and 2σd in the top row of the character table for the
C4v point group mean that this point group has two independent symmetry
operations in each of the C4, σv, and σd classes. The C4 class includes both the
C4 operation itself, and the inverse of this operation, C−1

4 , which is the same as
C3

4. The basis functions for the two-dimensional irreducible representation
(E) in the last row are pairs of coordinate values (x, y) or pairs of products of
these values. The character 2 here means that the identity symmetry preserves
both values, as it should, and the character −2 indicates that the C2 operation
changes the sign of both values.

Character tables for virtually all the point groups that might be encoun-
tered in chemistry are available (Harris and Bertolucci 1978; Cotton 1990).
The full tables also include information on how the symmetry operations
affect the direction of molecular rotation around the x-, y-, or z-axis, which
is pertinent to the rotational spectroscopy of small molecules.

Because molecular orbitals must recognize the symmetry of a molecule,
a symmetry operation must either preserve the value of the wavefunction
or simply change the sign of the wavefunction. The wavefunction therefore
provides a basis for a representation of the molecule’s point group. Inspection
of Table 4.2 and the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) of ethylene (Fig. 4.6) shows
that the HOMO transforms as the irreducible representation B1u and z in the
D2h point group (Table 4.2), whereas the LUMO transforms as B3g and yz.

Perhaps the most important feature of character tables for our purposes
is that we can determine the symmetry of a product of two irreducible
representations simply by looking at the products of the characters of these
representations in the same point group. For example, the product of the
HOMO and the LUMO of ethylene transforms as B2u in D2h, as you can
see by comparing the products of the characters of B3g and B1u with the
corresponding characters of B2u. Alternatively, we can just note that the
product of B3g and B1u transforms as the product of z and yz, or yz2, which
is equivalent to y. Further, the product of these two wavefunctions and y
transforms as the square of B2u, or y2, which is the same as the totally
symmetric representation, Ag. The electronic transition from the HOMO to
the LUMO is, therefore, allowed upon excitation with radiation polarized
along the y-axis.
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Table 4.1. Products of symmetry operations for the D2h point group

E C2(z) C2(y) C2(x) i σh(xy) σv(xz) σv(yz)

E E C2(z) C2(y) C2(x) i σh(xy) σv(xz) σv(yz)
C2(z) C2(z) E C2(x) C2(y) σh(xy) i σv(yz) σv(xz)
C2(y) C2(y) C2(x) E C2(z) σv(xz) σv(xz) i σh(xy)
C2(x) C2(x) C2(y) C2(z) E σv(yz) σv(yz) σh(xy) i
i i σh(xy) σv(xz) σv(yz) E C2(z) C2(y) C2(x)
σh(xy) σh(xy) i σv(yz) σv(xz) C2(z) E C2(x) C2(y)
σv(xz) σv(xz) σv(yz) i σh(xy) C2(y) C2(x) E C2(z)
σv(yz) σv(yz) σv(xz) σh(xy) i C2(x) C2(y) C2(z) E

Table 4.2. Character tables for the D2h, C2v, and C4v point groups

D2h E C2(z) C2(y) C2(x) i σh(xy) σv(xz) σv(yz) Functions

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 xy
B2g 1 −1 1 −1 1 −1 1 −1 xz
B3g 1 −1 −1 1 1 −1 −1 1 yz
Au 1 1 1 1 −1 −1 −1 −1 xyz
B1u 1 1 −1 −1 −1 −1 1 1 z z3, z(x2 − y2)
B2u 1 −1 1 −1 −1 1 −1 1 y yz2, y(3x2 − y2)
B3u 1 −1 −1 1 −1 1 1 −1 x xz2, x(x2 − 3y2)

C2v E C2 σv(xz) σ′
v(yz) Functions

A1 1 1 1 1 z x2, y2, z2 z3, z(x2 − y2)
A2 1 1 −1 −1 xy xyz
B1 1 −1 1 −1 x xz xz2, x(x2 − 3y2)
B2 1 −1 −1 1 y yz yz2, y(3x2 − y2)

C4v E 2C4 C2 2σv 2σd Functions

A1 1 1 1 1 1 z x2 + y2, z2 z3

A2 1 1 1 −1 −1
B1 1 −1 1 1 −1 x2 − y2 z(x2 − y2)
B2 1 −1 1 −1 1 xy xyz
E 2 0 −2 0 0 (x, y) (xz, yz) (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]

To illustrate the vectorial nature of transition dipoles for a larger molecule,
Fig. 4.9 shows the two HOMOs and the two LUMOs of bacteriochlorophyll a. These
four wavefunctions are labeled ψ1 − ψ4 in order of increasing energy. The prod-
ucts of the wavefunctions for the four possible excitations (ψ1 → ψ3, ψ1 → ψ4,
ψ2 → ψ3, and ψ2 → ψ4) are shown in Fig. 4.10. The conjugated atoms of bacteri-
ochlorophyll a form an approximately planarπ system, and the wavefunctions and
their products all have a plane of reflection symmetry that coincides with the plane
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Fig. 4.7. Symmetry elements in ethylene (a), porphin (b), water (c), and a peptide (d). In a,
ethylene is drawn in the xy plane, the x-, y-, and z-axes are all axes of twofold rotational
symmetry (C2), and the xy-, xz-, and yz-axes are planes of mirror symmetry. If we take z
to be the “principal” axis of rotational symmetry, the mirror planes that contain this axis
(xz and yz) are called “vertical” mirror planes (σh) and the mirror plane normal to z (xy)
is called a “horizontal” plane of mirror symmetry (σh). In b, porphyrin is viewed along an
axis (z, filled circle) normal to the plane of the macrocycle. The z-axis is an axis of fourfold
rotational symmetry (C4) and is the principal symmetry axis. There are four C2-axes in the
xy plane (dotted lines), four vertical planes of mirror symmetry (σv), one horizontal plane
of mirror symmetry (xy), and a point of inversion symmetry at the center. Water, drawn
in the yz plane in c, has one C2-axis (z) and two vertical planes of mirror symmetry (xz
and yz). The peptide bond (d) has a plane of mirror symmetry (the plane of the drawing),
but no other symmetry elements

of the macrocyclic ring. Because the wavefunctions have opposite signs on the two
sides of this plane (z), their products are even functions of z. The z component
of the transition dipole for excitation from ψ1 or ψ2 to ψ3 or ψ4 therefore will
be zero: all the transition dipoles lie in the plane of the π system. Inspection of
Fig. 4.10 shows further that the products ψ1ψ4 and ψ2ψ3 both are approximately
odd functions of the y (vertical) coordinate, and approximately even functions of
the x (horizontal) coordinate. The transition dipoles for ψ1 → ψ4 and ψ2 → ψ3

are, therefore, oriented approximately parallel to the y-axis. The other two prod-
ucts, ψ1ψ3 and ψ2ψ4, are approximately odd functions of x and approximately
even functions of y, so the transition dipoles for ψ1 → ψ3 and ψ2 → ψ4 must
be approximately parallel to the x-axis. The calculated transition dipoles confirm



140 4 Electronic Absorption

Fig. 4.8. Projection drawings of the effects of symmetry operations in point group D2h. The
large circles represent regions of space containing the atoms in the group; horizontal lines
and vertical lines indicate the x- and y-axes; the z-axis is normal to the plane of the paper.
The small filled circles represent points above the xy plane; the small empty circles represent
points below the plane. The symmetry operations in point group D2h move an atom from
its initial position, (x, y, z), to the indicated positions

these qualitative predictions (Fig. 4.10). The fact that the transition dipoles for the
ψ1 → ψ3 and ψ2 → ψ4 excitations point in opposite directions reflects arbitrary
choices of the signs of the wavefunctions and has no particular significance.

Figure 4.11 shows similar calculations of the transition dipoles for the two
HOMOs and the two LUMOs of 3-methylindole, a model of the side chain of
tryptophan. Again, the transition dipoles for excitation from one of these orbitals
to another must lie in the plane of the π system. The transition dipoles calculated
for the ψ2 → ψ3 and ψ1 → ψ4 excitations are oriented approximately 30◦ from
the x-axis (Fig. 4.11, panels E, F). That calculated for the ψ1 → ψ3 and ψ2 → ψ4

excitations is approximately 120◦ from the x-axis (Fig. 4.11, panels G, H).
Transitions that are formally forbidden by symmetry with the dipole operator

sometimes are weakly allowed by the quadrupole or octupole terms in Eq. (4.5).
Forbidden transitions also can be promoted by vibrational motions that perturb
the symmetry or change the mixture of electronic configurations contributing to
the excited state. This is called vibronic coupling. Finally, some transitions with
small electric transition dipoles can be driven by the magnetic field of light. We will
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Fig. 4.9. Contour plots of the two HOMOs (ψ1 and ψ2) and the two LUMOs (ψ3 and ψ4) of
bacteriochlorophyll a. The plane of each drawing is parallel to the plane of the macrocyclic
ring and is above the ring by the Bohr radius, a0 (Fig. 2.7, panels D, E). Solid curves
represent positive amplitudes; dotted curves represent negative amplitudes. The contours
for zero amplitude are omitted for clarity. Distances are given as multiples of a0, and the
contour intervals are 0.02a3/2

0 . The skeleton of the π system is shown with heavy lines. The
coefficients for the atomic pz orbitals were obtained with the program QCFF/PI (Warshel
and Karplus 1972; Warshel and Lappicirella 1981)

return to this point in Chap. 9. Figure 9.4 also illustrates how the electric transition
dipoles for the first four excitations of trans-butadiene depend on the symmetries
of the molecular orbitals.

The spin of the photon imposes an additional orbital selection rule on absorp-
tion. To conserve angular momentum when a photon is absorbed, a change in
electronic orbital angular momentum must balance the angular momentum pro-
vided by the photon. In atomic absorption, this means that the azimuthal quantum
number l must change by either −1 or +1, depending on whether the photon has
left (ms = +1) or right (ms = −1) circular polarization (Sect. 3.3). This forbids
excitation from an s orbital to an f orbital, but allows excitation from an s or-
bital to a p orbital. Absorption of linearly polarized light does not impart angular
momentum to the absorbing electron, because a linearly polarized photon is in
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Fig. 4.10. Contour plots of products of the four molecular wavefunctions of bacteriochloro-
phyll a shown in Fig. 4.9. The planes of the drawings and the line types for positive and
negative amplitudes are as in Fig. 4.9. The contour intervals are 0.002a3

0. The arrows show
the transition dipoles calculated by Eq. (4.22e), with the length in units of eÅ/5a0

a superposition of states with left- and right-circular polarization. Selection rules
that depend on the electronic spins of the ground- and excited-state orbitals will
be discussed in Sect. 4.9.

4.6
Linear Dichroism

As discussed before, the quantity (E0·μba)2 in Eq. (4.8c) is equal to |E0|2|μba|2 cos2 θ,
where θ is the angle between the molecular transition dipole (μba) and the polar-
ization axis of the light (E0). Because the absorption strength depends on cos2θ,
rotating a molecule by 180◦ has no effect on the absorption. However, if the
molecules in a sample have a fixed orientation, the strength of the absorption can
depend strongly on the angle between the orientation axis and the axis of polariza-
tion of the incident light. Such a dependence of the absorbance on the polarization
axis is called linear dichroism. Linear dichroism is not seen if a sample is isotropic,
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Fig. 4.11. Contour plots of the two LUMOs (ψ3 and ψ4, A, B) and the two HOMOs (ψ1 and
ψ2, C, D) of 3-methylindole, and products of these wavefunctions (ψ2ψ3, ψ1ψ4, ψ1ψ3 and
ψ2ψ4, E–H). Positive amplitudes are indicated with solid lines, negative amplitudes with
dotted lines. Small contributions from the methyl group are neglected. The contour intervals
are 0.02a3/2

0 in A–D and 0.005a3
0 in E–H. The arrows in E–H show the transition dipoles

calculated by Eq. (4.22e), with the length in units of eÅ/2.5a0. The atomic coefficients for
the orbitals were obtained as described by Callis (1991, 1997) and Slater and Callis (1995)
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Fig. 4.12. Absorption (A) and linear dichroism (B) spectra of photosynthetic reaction centers
of Blastochloris (formerly called Rhodopseudomonas) viridis at 10 K (Breton 1985, 1988).
Aggregates of the pigment–protein complex were embedded in a polyacrylamide gel and
oriented by uniaxial squeezing. The spectra are normalized relative to the positive peak near
830 nm. Linear dichroism is expressed as A⊥ − A||, where A⊥ and A|| are the absorbance
measured with light polarized perpendicular and parallel to the compression axis. Transition
dipoles that lie within about 35◦ of the plane of the aggregate’s largest cross section give
positive linear dichroism, whereas transition dipoles that are closer to normal to this plane
give negative linear dichroism. The absorption bands in the spectra shown here represent
mixed Qy transitions of the reaction center’s four molecules of bacteriochlorophyll b and
two molecules of bacteriopheophytin b (Sect. 4.7, Chap. 8). See Breton (1985, 1988) for
spectra extending to shorter wavelengths

i.e., made up of randomly oriented molecules so that θ takes on all possible values.
In this case the absorbance is simply proportional to (1/3)|E0|2|μba|2 (Box 4.6). But
anisotropic materials are common in biology, and purified macromolecules often
can be oriented experimentally by taking advantage of their molecular asymmetry.
Nucleic acids can be oriented by flowing them through a narrow capillary. Proteins
frequently can be oriented by embedding them in a polymer such as poly(vinyl
alcohol) or polyacrylamide and then stretching or squeezing the specimen to
align the highly asymmetric polymer molecules. Phospholipid membranes can be
aligned by magnetic fields or by layering on flat surfaces.
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One application of measurements of linear dichroism is to explore the struc-
tures of complexes containing multiple chromophores. An example is the “reac-
tion center” of purple photosynthetic bacteria, which contains four molecules of
bacteriochlorophyll, two molecules of bacteriopheophytin, and several additional
pigments bound to a protein. (Bacteriopheophytin is the same as bacteriochloro-
phyll except that it has two hydrogen atoms instead of magnesium at the center of
the macrocyclic ring system.) If reaction centers are oriented in a stretched film
or a squeezed polyacrylamide gel, the absorption bands of the various pigments
exhibit linear dichroism relative to the orientation axis (Verméglio and Clayton
1976; Abdourakhmanov et al. 1979; Paillotin et al. 1979; Rafferty and Clayton 1979;
Breton 1985, 1988). Figure 4.12, panel B shows the linear dichroism spectrum
of such a sample, expressed as A⊥ − A‖, where A⊥ and A‖ are the absorbance
measured with light polarized, respectively, perpendicular and parallel to the ori-
entation axis. The absorption spectrum measured with unpolarized light is shown
in Fig. 4.12, panel A. The bands between 830 and 1,000 nm represent transitions
of the bacteriochlorophylls, while the bands at 790 and 805 nm are assigned to
the bacteriopheophytins. Note that the linear dichroism of the bacteriopheophytin
bands is negative, whereas that of the bacteriochlorophyll bands is positive, indi-
cating that the two types of pigments are oriented so that their transition dipoles
are approximately perpendicular. We will return to the absorption spectrum of
reaction centers in Sect. 4.7 and again in Chap. 8.

A classic application of linear dichroism to study molecular orientations and
motions in a complex biological system was the study by Cone (1972) of induced
dichroism in retinal rod outer segements. Rhodopsin, the light-sensitive pigment–
protein complex of the retina, contains 11-cis-retinal attached covalently to a protin
(opsin) by a Schiff base linkage (Fig. 4.13a, b). Its transition dipole is oriented
approximately along the long axis of the retinylidine chromophore. Rhodopsin is
an integral membrane protein and resides in flattened membrane vesicles (“disks”)
that are stacked in the outer segments of rod cells. Previous investigators had
shown that when rod cells were illuminated from the side, light polarized parallel
to the planes of the disk membranes was absorbed much more strongly than
light polarized normal to the membranes. However, if the cells were illuminated
end-on, there was no preference for any particular polarization in the plane of
the membrane. These measurements indicated that the rhodopsin molecules are
aligned so that the transition dipole of the chromophore in each molecule is
approximately parallel to the plane of the membrane, but that the transition dipoles
point in random directions within this plane (Fig. 4.13c).

When rhodopsin is excited with light, the 11-cis-retinyl chromophore is isomer-
ized to all-trans, initiating conformational changes in the protein that ultimately
result in vision (Fig. 4.13b). If rod cells are illuminated end-on with a weak flash
of polarized light, the light is absorbed selectively by rhodopsin molecules that
happen to be oriented with their transition dipoles parallel to the polarization
axis (Fig. 4.13c, d). Molecules whose transition dipoles are oriented at an an-
gle θ with respect to the polarization axis are excited with a probability that falls
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Fig. 4.13. a Crystal structure of bovine rhodopsin viewed from a perspective approximately
normal to the membrane. The polypeptide backbone is represented by a ribbon model
(gray) and the retinylidine chromophore by a licorice model (black). The coordinates are
from Protein Data Bank file 1f88.pdb (Palczewski et al. 2000). Some parts of the protein
that protrude from the phosopholipid bilayer of the membrane are omitted for clarity.
b The 11-cis-retinylidine chromophore is attached to a lysine residue by a protonated Schiff
base linkage. Excitation results in isomerization around the 11–12 bond to give an all-trans
structure. c, d A field of rhodopsin molecules in a rod cell disk membrane, viewed normal
to the membrane. The short arrows in the shaded ovals represent the transition dipoles of
individual rhodopsin molecules. (Each disk in a human retina contains approximately 1,000
rhodopsins.) The transition dipoles lie approximately in the plane of the membrane, but
have no preferred orientation in this plane. A polarized excitation flash (horizontal double-
headed arrow in c) selectively excites molecules that are oriented with their transition
dipoles parallel to the polarization axis, causing some of them to isomerize and changing
their absorption spectrum (empty ovals in d). e Smothed records of the absorbance changes
at 580 nm as a function of time, measured with “probe” light polarized either parallel
or perpendicular to the excitation (Cone 1972). The vertical arrow indicates the time of
the flash. The absorbance change initially depends on the polarization, but the difference
disappears as rhodopsin molecules rotate in the membrane

�

off with cos2θ. On the order of two thirds of the molecules that are excited un-
dergo isomerization to an all-trans structure, and then evolve through a series of
metastable states that can be distinguished by changes in their optical absorption
spectrum. Cone (1972) measured the absorbance changes associated with these
transformations, again using polarized light that passed through the rod cells
end-on. In the absence of the excitation flash, the absorbance measured with the
probe beam was, as stated above, independent of the polarization of the probe.
However, the absorbance changes resulting from the excitation flash were very
different, depending on whether the measuring light was polarized parallel or
perpendicular to the excitation light (Fig. 4.13e). The polarized excitation flash, by
preferentially exciting molecules with a certain orientation, thus created a linear
dichroism that could be probed at a later time. The difference between the sig-
nals measured with parallel and perpendicular polarizations of the probe beam
decayed with a time constant of about 20 μs. Cone interpreted the decay of the in-
duced dichroism as reflecting rotation of rhodopsin in the plane of the membrane.
These experiments provided the first quantitative measurements of the fluidity
of a biological membrane. The rotation dynamics are still of current interest,
because measurements by atomic force microscopy indicate that rhodopsin may
exist as dimers and paracrystalline arrays under some conditions (Fotiadis et al.
2004).

In another recent application, Junge et al. (1997) and Sabbert et al. (1997)
measured the rate of rotation of the γ subunit of the chloroplast ATPsynthase
when the enzyme hydrolyzes ATP. Rotation of the γ subunit relative to the α and β
subunits appears to couple transmembrane movement of protons to the synthesis
or breakdown of ATP.
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Another example is the use of linear dichroism to examine the orientation
of CO bound to myoglobin. Compared with free heme, myoglobin discriminates
strongly against the binding of CO relative to O2. This discrimination initially was
ascribed to steric factors that prevent the diatomic molecules from sitting along
an axis normal to the heme; it was suggested that the molecular orbitals of O2

were more suitable for an orientation off the normal than those of CO. Lim et al.
(1995) examined the orientation of bound CO by exciting carboxymyoglobin with
polarized laser pulses at a wavelength absorbed by the heme. Excitation of the
heme causes photodissociation of the bound CO, which remains associated with
the protein in a pocket close to the heme. This results in an absorption decrease
in an IR band that reflects CO attached to the Fe, and in the appearance of a new
band reflecting CO in the looser pocket. Polarized IR probe pulses following the
excitation pulse thus can be used to determine the orientations of CO molecules
in the two sites relative to the transition dipole of the heme. Lim et al. found that
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the C–O bond of CO attached to the Fe is approximately normal to the heme plane,
indicating that other factors must be responsible for the preference of myoglobin
for O2.

4.7
Configuration Interactions

Although many molecular absorption bands can be ascribed predominantly to
transitions between the HOMO and the LUMO, it often is necessary to take other
transitions into account. One reason for this is that the HOMO and the LUMO
wavefunctions pertain to an unexcited molecule that has two electrons in each
of the lower-lying orbitals, including the HOMO itself. The interactions among
the electrons are somewhat different if there are unpaired electrons in the HOMO
and the LUMO. In addition, the wavefunctions themselves are approximations of
varying reliability. Better descriptions of the excited state often can be obtained by
considering the excitation as a linear combination of transitions from several of
the occupied orbitals to several unoccupied orbitals. Each such orbital transition is
termed a configuration, and the mixing of several configurations in an excitation is
called configuration interaction. In general, two transitions will mix most strongly
if they have similar energies and involve similar changes in the symmetry of the
molecular orbitals.

Equation (4.22e) can be expanded straightforwardly to include a sum over the
various configurations that make significant contributions to an excitation:

μba ≈ √
2 e

∑

j,k

Aa,b
j,k

∑

t

Cj
tC

k
t rt , (4.26)

where Aa,b
j,k is the coefficient for the configurationψj → ψk in the overall excitation

from state a to state b. A procedure for finding these coefficients is described in
Box 4.9.

Box 4.9 Evaluating configuration-interaction coefficients

The procedure for finding the configuration-interaction coefficients Aa,b
j,k in-

volves constructing a matrix in which the diagonal elements are the energies
of the individual transitions (Platt 1950; Pariser and Parr 1953; Pariser 1956;
Ito and l’Haya 1964; Mataga and Kubota 1970). For excited singlet states of
π molecular orbitals, the off-diagonal matrix elements that couple two con-
figurations, ψj1 → ψk1 and ψj2 → ψk2 with j1 = j2 and k1 = k2, take the
form

〈
ψj1→k1

∣∣H̃
∣∣ψj2→k2

〉
=

〈

ψj1→k1

∣∣∣∣∣

∑

s

∑

t

e2/rs,t

∣∣∣∣∣
ψj2→k2

〉

(B4.9.1)
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t Ck2
t

)
γs,t .
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Here Cj
t represents the contribution of atom t to wavefunction ψj, as in

Eqs. (4.19)–(4.22) and (2.42), rs,t is the distance between atoms s and t, and
γs,t is a semiempirical function of this distance. A typical expression for γs,t,
obtained by maximizing the agreement between the calculated and observed
spectroscopic properties of a large number of molecules, is

γs,t = A exp(−Brs,t) + C/(D + rs,t) , (B4.9.2)

with A = 3.77 × 104, B = 0.232 Å−1, C = 1.17 × 105 Å, and D = 2.82 (Warshel
and Karplus 1972). The configuration-interaction coefficients are obtained
by diagonalizing the matrix as we discuss for related problems in Chap. 8.

The restrictions that orbital symmetry imposes on configuration inter-
actions can be analyzed in the same manner as the selection rules for the
individual transition dipoles. As Eq. (B4.9.1) indicates, coupling of two tran-
sitions, ψj1 → ψk1 and ψj2 → ψk2, depends on the product of the four
wavefunctions (ψj1, ψk1, ψj2, and ψk2). In the language of group theory
(Box 4.8) we can say that, if the product ofψj1 andψk1 and the product ofψj2

andψk2 both transform as x, the product of all four wavefunctions will trans-
form as x2 and will be totally symmetric. Mixing of the two transitions then
will be allowed by symmetry. On the other hand, if the product of ψj1 and
ψk1 transforms as x, say, while that ofψj2 andψk2 transforms as y, the overall
product will transform as xy and will integrate to zero. Inspection of Figs. 4.10
and 4.11 shows that if we denote the top two filled molecular orbitals and the
first two empty orbitals of bacteriochlorophyll or 3-methylindole as ψ1 − ψ4

in order of increasing energy, the product ψ1ψ3 has the same symmetry as
ψ2ψ4, whereas ψ2ψ3 has the same symmetry as ψ1ψ4. The ψ1 → ψ3 transi-
tion thus should mix with ψ2 → ψ4 and the ψ2 → ψ3 transition should mix
with ψ1 → ψ4.

Porphyrins and their chlorin and bacteriochlorin derivatives provide numerous
illustrations of the importance of configuration interactions (Gouterman 1978).
In porphin (Fig. 4.14, left), the highly symmetrical parent compound, the two
HOMOs (ψ1 and ψ2 in order of increasing energy) are nearly isoenergetic, as are
the two LUMOs (ψ3 and ψ4). The ψ1 → ψ4 and ψ2 → ψ3 transitions have the
same symmetry and energy and thus mix strongly, as explained in Box 4.9; the
ψ1 → ψ3 transition mixes similarly withψ2 → ψ4. Because of the near degeneracy
of the transition energies the two configuration-interaction coefficients (Aa,b

j,k ) are

simply ±2−1/2 in each case, but the signs of the coefficients can be either the
same or opposite. The four orbitals thus give rise to four different excited states,
which are commonly referred to as the By, Bx, Qx, and Qy states. By and Qy

consist of the configurations 2−1/2(ψ1 → ψ4) ± 2−1/2(ψ2 → ψ3); Bx and Qx, of
2−1/2(ψ1 → ψ3) ± 2−1/2(ψ2 → ψ4). However, the transition dipoles cancel each
other almost exactly in two of the combinations and reinforce each other in the
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other two. The result is that the two lowest-energy absorption bands (Qx and Qy)
occur at essentially the same energy and are very weak relative to the two higher-
energy bands (Bx and By).

In chlorin (Fig. 4.14, center), one of the four pyrrole rings is partially reduced,
removing two carbons from the π system. This perturbs the symmetry of the
molecule and moves ψ2 and ψ4 up in energy relative to ψ1 and ψ3. As a result,
the lowest-energy absorption band moves to a lower energy and gains dipole
strength, whereas the highest-energy band moves to higher energy and loses
dipole strength. The trend continues in the bacteriochlorins, in which two of the
pyrrole rings are reduced (Fig. 4.14, right). Hemes, which are symmetrical iron
porphyrins, thus absorb blue light strongly and absorb yellow or red light only

Fig. 4.14. Structures, energy diagrams, and excitations of porphin, chlorin, and bacteri-
ochlorin. The horizontal bars are schematic representations of the energies of the two
HOMOs (ψ1 and ψ2) and the first two LUMOs (ψ3 and ψ4), relative to the energy of ψ1

in each molecule. Arrows indicate excitations from one of the ocupied orbitals to an empty
orbital. x and y correspond to the molecular axes shown with dotted lines with the porphin
structure, and convey the symmetry of the product of the initial and final wavefunctions for
each configuration, for example, ψ1ψ4. Configurations with the same symmetry mix in the
excited states, and the transition dipole for the mixed excitation is oriented approximately
along the x or y molecular axis. Reduction of one or both of the tetrapyrrole rings moves the
lowest-energy excited state to progressively lower energy and increases its dipole strength
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Fig. 4.15. Absorption spectra of cytochrome c with the bound heme in its reduced (solid
curve) and oxidized (dotted curve) forms (A), and of bacteriochlorophyll a in methanol (B)

weakly (Fig. 4.15, panel A), while bacteriochlorophylls absorb intensely in the red
or near IR (Fig. 4.15, panel B). This four-orbital model rationalizes a large body of
experimental observations on the spectroscopic properties of metalloporphyrins,
chlorophylls, bacteriochlorophylls, and related molecules (Gouterman 1961, 1978;
McHugh et al. 1972; Gouterman), and has been used to analyze the spectroscopic
properties of photosynthetic bacterial reaction centers and antenna complexes
(Parson and Warshel 1987; Warshel and Parson 1987; Alden et al. 1997). In the
spectrum of Bastochloris viridis reaction centers shown in Fig. 4.12, panel A, the
absorption bands between 750 and 1,050 nm reflect Qy transitions of the bacterio-
pheophytins and bacteriochlorophylls, which are mixed by exciton interactions as
discussed in Chap. 8. The corresponding Qx bands (not shown in the figure) are in
the regions of 530–545 and 600 nm.

The indole side chain of tryptophan provides another example. Its absorption
spectrum again involves significant contributions from the orbitals lying just below
the HOMO and just above the LUMO (ψ1 andψ4), in addition to the HOMO and the
LUMO themselves (ψ2 andψ3). Transitions among the four orbitals give rise to two
overlapping absorption bands in the region of 280 nm that are commonly called
the 1La and 1Lb bands, and two higher-energy bands (1Ba and 1Bb) near 195 and
221 nm (Platt 1959; Weber 1960; Song and Kurtin 1969; Auer 1973; Lami and Glasser
1986; Callis 1991). The 1La excitation has a somewhat higher energy and greater
dipole strength than 1Lb, and, as we will see in Sect. 4.12, results in a larger change
in the permanent dipole moment. Neglecting small contributions from higher-
energy configurations, we can describe the excited singlet states associated with
the 1La and 1Lb excitations reasonably well by the combinations 1La ≈ 0.917(ψ2 →
ψ3) − 0.340(ψ1 → ψ4) and 1Lb ≈ 0.732(ψ1 → ψ3) + 0.634(ψ2 → ψ4). Figure 4.16
shows the two transition dipoles calculated by Eq. (4.26).

If an improved description of an excited electronic state is wanted for other
purposes such as calculations of exciton interactions (Chap. 8), the configuration-
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Fig. 4.16. Transition dipoles for the 1La (A) and 1Lb (B) excitations of 3-methylindole cal-
culated from linear combinations of products of the molecular orbitals shown in Fig. 4.11.
Contour plots of the functions 0.917ψ2ψ3 − 0.340ψ1ψ4 (A) and 0.732ψ1ψ3 + 0.634ψ2ψ4 (B)
are shown with solid lines for positive amplitudes, dotted lines for negative amplitudes, and
contour intervals of 0.002a3

0. The arrows show the transition dipoles calculated by Eq. (4.26),
with the lengths in units of eÅ/5a0

interaction coefficients can be adjusted empirically to maximize the agreement
between the calculated and observed transition energy or dipole strength. In one
application of this idea (Warshel and Parson 1987), the configuration-interaction
coefficients for the Qx and Qy absorption bands of bacteriochloropyll and bac-
teriopheophytin were adjusted so that the dipole strengths calculated using the
transition gradient operator (Sect. 4.8) matched the measured dipole strengths.
The discrepancy between these dipole strengths and the values calculated with
the dipole operator then was used to correct calculated energies of dipole–dipole
interactions among the bacteriochlorophylls and bacteriopheophytins in photo-
synthetic bacterial reaction centers.

4.8
Calculating Electric Transition Dipoles with the Gradient Operator

When contributions from transitions involving the top two or three filled orbitals
and the first few unoccupied orbitals are considered, dipole strengths calculated by
using Eq. (4.26) typically agree with experimentally measured dipole strengths to
within a factor of 2 or 3, which means that the magnitude of the transition dipole
is correct to within about ±50%. Better agreement sometimes can be obtained by
using the gradient operator, ∇̃ = (∂/∂x, ∂/∂y, ∂/∂z), instead of μ̃. Matrix elements
of the gradient and dipole operators are related by the expression

〈
Ψb

∣∣∇̃∣∣Ψa
〉

=
−(Eb − Ea)me

�2e

〈
Ψb

∣∣̃μ
∣∣Ψa

〉
, (4.27)

where me is the electron mass (Box 4.10). Thus, if the energy difference Eb − Ea is
known, we can obtain 〈Ψb |̃μ|Ψa〉 from 〈Ψb|∇̃|Ψa〉and vice versa. Transition dipoles
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calculated with μ̃ and ∇̃ should be identical if the molecular orbitals are exact, but
with approximate orbitals the two methods usually give somewhat different results.
The dipole strengths calculated with the dipole operator often are too large, while
those obtained with the gradient operator agree better with experiment (McHugh
and Gouterman 1969; McHugh et al. 1972; Warshel and Parson 1987).

Box 4.10 The relationship between matrix elements of the electric
dipole and gradient operators

Equation (4.27) can be derived by relating the gradient operator ∇̃ to the
commutator of the Hamiltonian and dipole operators ([H̃, μ̃]). (See Box 2.2
for an introduction to commutators.) The Hamiltonian operator H̃ includes
terms for both potential energy (Ṽ) and kinetic energy (̃T); however, we
only need to consider T̃ because Ṽ commutes with the position operator
([Ṽ, r̃] = 0) and μ̃ is simply ẽr. For a one-dimensional system, in which ∇̃ is
just ∂/∂x, the commutator of H̃ and μ̃ is

[
H̃, μ̃

]
=
[̃
T, ẽx

]
= −(�2e/2m)

[
∂2/∂x2, x

]
(B4.10.1a)

= −(�2e/2m)
[(

d2/dx2) x − x
(
d2/dx2)] (B4.10.1b)

= −(�2e/2m)
[
2(d/dx) + x

(
d2/dx2) − x

(
d2/dx2)] (B4.10.1c)

= −(�2e/m)d/dx = −(�2e/m)∇̃ . (B4.10.1d)

Generalizing to three dimensions, and treating the commutator as an operator
gives

〈
Ψb

∣∣[H̃, μ̃
]∣∣Ψa

〉
= −(�2e/m)

〈
Ψb

∣∣∇̃∣∣Ψa
〉

. (B4.10.2)

We can relate the matrix element on the left side of Eq. (B4.10.2) to the
transition dipole (μba) by expandingΨb andΨa formally in the basis of all the
eigenfunctions of H̃ (Ψk) and using the procedure for matrix multiplication
(Appendix 2). This gives

〈
Ψb

∣∣[H̃,̃μ
]∣∣Ψa

〉 ≡ 〈
Ψb

∣∣H̃ μ̃
∣∣Ψa

〉
−
〈
Ψb

∣∣̃μ H̃
∣∣Ψa

〉
(B4.10.3a)

=
∑

k

〈
Ψb

∣∣H̃
∣∣Ψk

〉 〈
Ψk

∣∣̃μ
∣∣Ψa

〉
−
∑

k

〈
Ψb

∣∣̃μ
∣∣Ψk

〉 〈
Ψk

∣∣H̃
∣∣Ψa

〉
(B4.10.3b)

= Eb
〈
Ψb

∣∣̃μ
∣∣Ψa

〉
−
〈
Ψb

∣∣̃μ
∣∣Ψa

〉
Ea = (Eb − Ea)μba , (B4.10.3c)

where Eb and Ea are the energies of states a and b. Equation (B4.10.3b) reduces
to Eq. (B4.10.3c) because, in the absence of additional perturbations, the only
nonzero Hamiltonian matrix elements involvingΨb orΨa are 〈Ψb|H̃|Ψb〉 and
〈Ψa|H̃|Ψa〉. Equating the right-hand sides of Eqs. (B4.10.2) and (B4.10.3c)
gives Eq. (4.27).
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In the quantum theory of absorption that we discuss in Chap. 5, the transition
gradient matrix element (〈Ψb|∇̃|Ψa〉) arises directly, rather than just as an alter-
native way of calculating 〈Ψb |̃μ|Ψa〉. Matrix elements of ∇̃ also play a fundamental
role in the theory of circular dichroism (Chap. 9).

Fig. 4.17. Components of the transition matrix element of the gradient operator for excitation
of ethylene. A, B Contour plots of the amplitudes of the HOMO (ψa) and the LUMO (ψb)
in the yz plane. The C=C double bond lies on the y-axis. C, E The derivatives of ψa with
respect to y and z, respectively; D, F the products of these derivatives with ψb. The y
and z components of 〈ψb|∇̃|ψa〉 are obtained by integrating ψb∂ψa/∂y and ψb∂ψa/∂z,
respectively, over all space. The symmetry of the wavefunctions is such that this integral is
zero for ψb∂ψa/∂z and (not shown) ψb∂ψa/∂x, but nonzero for ψb∂ψa/∂y
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Figure 4.17 illustrates the functions that enter into the transition gradient ma-
trix element for the HOMO → LUMO excitation of ethylene. Contour plots of
the HOMO and LUMO (ψa and ψb) are reproduced from Fig. 4.6 in Fig. 4.17,
panels A and B for reference. As before, the C=C bond is aligned along the y-axis
and ψa and ψb are constructed from atomic 2pz orbitals. Fig. 4.17, panel C shows
a contour plot of the derivative ∂ψa/∂y, and Fig. 4.17, panel D shows the result of
multiplying this derivative by ψb. Integrating the product ψb∂ψa/∂y over all space
gives the y component of 〈ψb|∇̃|ψa〉. By inspecting Fig. 4.17, panel D, you can see
that ψb∂ψa/∂y is an even function of y, so except for points in the xy plane, where
ψa and ψb both go through zero, integration along any line parallel to the y-axis
will give a nonzero result. (Although the contour plots in the figure show only the
amplitudes in the yz plane, the corresponding plots for any other plane parallel to
yz would be similar because ψa and ψb are both even, monotonic functions of x.)
By contrast, the functionψb∂ψa/∂z (Fig. 4.17, panel F) is an odd function of both y
and z, which means that integrating this product over all space will give zero. This
is true also of ψb∂ψa/∂x (not shown). The vector 〈ψb|∇̃|ψa〉 evidently is oriented
along the C=C bond, which is just what we found above for 〈ψb |̃μ|ψa〉.

Fig. 4.18. Canonical orientations of 2pz orbitals of two carbon atoms. The shaded regions
represent boundary surfaces of the wavefunctions as in Fig. 2.5. The x′y′z′ Cartesian coor-
dinate system is centered on atom 1 with the y′-axis aligned along the interatomic vector.
The transition gradient matrix elements ∇σ , ∇π, and ∇zy are for the orientations shown in
a, b, and c, respectively. Matrix elements for an arbitrary orientation can be expressed as
linear combinations of these canonical matrix elements
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Calculating the matrix element 〈ψb|∇̃|ψa〉 for a transition between twoπmolec-
ular orbitals is somewhat more cumbersome than calculating 〈ψb |̃μ|ψa〉, but is still
relatively straightforward if the molecular orbitals are constructed of linear combi-
nations of Slater-type atomic orbitals. The transition matrix element for excitation
to an excited singlet state then takes the same form as Eq. (4.22e):

〈
Ψb

∣∣∇̃∣∣Ψa
〉

=
√

2
∑

s

∑

t

Cb
s Ca

t

〈
ps
∣∣∇̃∣∣ pt

〉
, (4.28)

where Cb
s and Ca

t are the expansion coefficients for atomic 2pz orbitals centered
on atoms s and t (ps and pt) in molecular orbitals Ψb and Ψa, respectively, and
〈ps|∇̃|pt〉 is the matrix element of ∇̃ for the two atomic orbitals. Box 4.11 outlines
a general procedure for evaluating 〈ps|∇̃|pt〉 that allows the atomic orbitals to
have any orientation with respect to each other. Equation (4.28) can be simplified
slightly by noting that 〈pt|∇̃|pt〉 is zero and 〈pt|∇̃|ps〉 = −〈ps|∇̃|pt〉, as you can
verify by studying Fig. 4.17. With these substitutions, the sum over atoms s and t
becomes

〈
Ψb

∣∣∇̃∣∣Ψa
〉

=
√

2
∑

s>t

∑

t

2
(

Ca
s Cb

t − Cb
s Ca

t

) 〈
ps
∣∣∇̃∣∣ pt

〉
, (4.29)

which sometimes is approximated by a sum over just the pairs of bonded atoms
(Chong 1968; McHugh and Gouterman 1969; McHugh et al. 1972; Schlessinger and
Warshel 1974; Warshel and Parson 1987).

Figure 4.19 illustrates the use of this approach to calculate transition matrix
elements for trans-butadiene, which provides a useful model for carotenoids and
retinals. Panels A–D in Fig. 4.19 show the two HOMOs and the two LUMOs (ψ1

to ψ4 in order of increasing energy). The vector diagram in Fig. 4.19, panel E
shows the direction and relative magnitude of the matrix element of ∇̃ for each
pair of bonded atoms (〈ps|∇̃|pt〉), weighted by the coefficients for that pair of

�
Fig. 4.19. A–D Contour plots of the two HOMOs and the two LUMOs in the ground state
of trans-butadiene (ψ1 − ψ4 in order of increasing energy). The heavy solid lines indicate
the carbon skeleton. The contour lines give the amplitudes of the wavefunctions in a plane
parallel to the plane of the π system, and above that plane by the Bohr radius (a0). Solid
lines indicate positive amplitudes; dotted lines indicate negative amplitudes. The wavefunc-
tions were calculated with QCFF-PI (Warshel and Karplus 1972; Warshel and Lappicirella
1981). E–H Vector diagrams of the directions and relative magnitudes of the products
Cb

s Ca
t 〈ps|∇̃|pt〉 for pairs of bonded atoms in the first four excitations of trans-butadiene. The

initial and final molecular orbitals are indicated in each panel. Cb
s and Ca

t are the coefficients
for atomic 2pz orbitals of atoms s and t in the final and initial wavefunction, respectively;
〈ps|∇̃|pt〉 is the matrix element of the gradient operator for the two atomic orbitals. The
empty circles indicate the positions of the atoms. The transition gradient matrix element for
each excitation is given approximately by the vector sum of the arrows. The contributions
from the pairs of nonbonded atoms do not change the overall matrix element significantly
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atoms in wavefunctions ψ2 and ψ3 (Cb
s Ca

t ). Combining the vectors for each pair of
atoms gives an overall transition gradient matrix element (

∑
s

∑
t Cb

s Ca
t 〈ps|∇̃|pt〉)

oriented on the long axis of the molecule. (Contributions from pairs of nonbonded
atoms do not affect the overall matrix element significantly.) Excitation of an
electron from ψ2 and ψ3, which is the lowest-energy configuration in the excited
singlet state, therefore has a nonzero transition dipole with this orientation.
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Box 4.11 Matrix elements of the gradient operator for atomic 2p orbitals

The integral 〈ps|∇̃|pt〉 in Eqs. (4.28) and (4.29) is the matrix element of the
gradient operator (∇̃) for atomic 2p orbitals on atoms s and t. To allow the
local z-axis of atom s to have any orientation relative to that of atom t, the
atomic matrix elements can be written

〈
ps
∣∣∇̃∣∣ pt

〉 ≈ (
ηx′ ,sηy′,t + ηy′ ,sηx′ ,t

)∇xŷ i

+
[
ηy′,sηy′,t∇σ +

(
ηx′ ,sηx′ ,t + ηz′,sηz′ ,t

)∇π
]

ĵ

+
(
ηz′,sηy′,t + ηy′,sηz′ ,t

)∇zy k̂ . (B4.11.1)

Here ηx′ ,t, ηy′,t, and ηz′ ,t are direction cosines of the atomic z-axis of orbital t
with respect to a Cartesian coordinate system (x′, y′, z′) defined so that atom t
is at the origin and the y′-axis points along the line from atom t to atom s
(e.g., ηy′,t is the cosine of the angle between y′ and the local z-axis of orbital t);
î, ĵ and k̂ are unit vectors parallel to the x′-, y′-, and z′-axes; and ∇σ, ∇π, and
∇zy are the matrix elements of for pairs of Slater 2p orbitals in three canonical
orientations. ∇σ is for the end-on orientation shown in Fig. 4.18a; ∇σ , is for
side-by-side orientation with parallel z-axes along z′ or x′ (Fig. 4.18b); and
∇zy, is for one orbital displaced along y′ and rotated by 90◦ around an axis
parallel to x′ (Fig. 4.18c). ∇xz is 0, and ∇xy is the same as ∇zy. Inspection
of Eq. (B4.11.1) and Fig. 4.18 shows that if the z-axes of atoms t and s are
parallel to each other and perpendicular to y′, as is approximately the case for
π-electron systems, 〈ps|∇̃|pt〉 points from atom t to atom s and has magnitude
∇π.

The Slater 2pz orbital, in polar coordinates centered on atom s (rs, θs, φs),
is

ps =
(
ζ5

s /π
)1/2

rs cos θs exp
(
−ζs rs/2

)
, (B4.11.2)

where θs is the angle with respect to the z-axis and ζs = 3.071, 3.685, and
4.299 Å−1 for C, N, and O, respectively. The dependences of ∇σ, ∇π, and ∇zy

on the interatomic distance (R) and the Slater orbital parameters for the two
atoms (ζs and ζt) can be evaluated as follows, using expressions described
originally by Mulliken et al. (1949) and Král (1970) (see also Harada and
Nakanishi (1983) and Alden et al. (1997)):

First define the two functions

Ak =

∞∫

1

wk exp(−Pw)dw and Bk =

1∫

−1

wk exp(−Qw)dw , (B4.11.3)

where P = (ζs + ζt)R/2 and Q = (ζs − ζt)R/2. Then,

∇σ =
(
ζsζt

)5/2 (
R4/8

) {
A0B2 − A2B0 + A1B3 − A3B1
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+
(
ζtR/2

)
[A1(B0 − B2) + B1(A0 − A2) + A3(B4 − B2) + B3(A4 − A2)]

}
,

(B4.11.4)

∇π =
(
ζsζt

)5/2 (ζtR5/32
)

×
[(

B1 − B3
) (

A0 − 2A2 + A4
)

+
(
A1 − A3

) (
B0 − 2B2 + B4

)]
,

(B4.11.5)

and

∇zy =
(
ζsζt

)5/2 (
R4/8

) {A0B2 − A2B0 + A1B3 − A3B1

+
(
ζtR/4

)
[(A3 − A1)(B0 − B4) + (B3 − B1)(A0 − A4)]

}
. (B4.11.6)

Ak and Bk can be calculated with the formulas (Miller et al. 1959)

Ak = [exp(−s) + kAk−1]/P , (B4.11.7)

Bk = 2
3∑

i=0

[
Q2i/(2i)!(k + 2i + 1)

]
for k even , (B4.11.8)

and

Bk = −2
3∑

i=0

[
Q2i+1/(2i + 1)!(k + 2i + 2)

]
for k odd . (B4.11.9)

See Chong (1968), McHugh et al. (1972), Schlessinger and Warshel (1974), and
Warshel and Parson (1987) for other semiempirical expressions for 〈ps|∇̃|pt〉.

Figure 4.19, panel H is a similar vector diagram for the highest-energy con-
figuration in an excited singlet state of the four wavefunctions (ψ1 → ψ4). The
transition-gradient dipole for this excitation has a smaller magnitude and a dif-
ferent orientation from that for ψ2 → ψ3 because the Cb

s Ca
t 〈ps|∇̃|pt〉 vector for

the central two atoms effectively cancels the contributions from the outer pairs of
atoms.

The electric transition dipoles for excitations ψ2 → ψ4 and ψ1 → ψ3 of trans-
butadiene are zero (Fig. 4.19, panels F, G). In both cases, Cb

s Ca
t 〈ps|∇̃|pt〉 for the

central pair of atoms is zero because the initial and final wavefunctions have the
same symmetry with respect to a center of inversion (gerade for ψ1 → ψ3 and
ungerade for ψ2 → ψ4). The contributions from the other pairs of atoms are
not zero individually, but give antiparallel vectors that cancel in the sum. These
two excitations are, therefore, forbidden if we consider only interactions with the
electric field of light. As we will see in Chap. 9, they are weakly allowed through
interactions with the magnetic field, but the associated dipole strength is much
lower than that for ψ2 → ψ3 and ψ1 → ψ4. Box 4.12 restates the selection rules
for excitation trans-butadiene and related compounds in the language of group
theory and describes the nomenclature that is used for these excitations.
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Box 4.12 Selection rules for electric-dipole excitations of linear polyenes

The basic selection rules for electric-dipole excitations of trans-butadiene
and other centrosymmetric polyenes can be described simply in terms of
the symmetry of the molecular orbitals. In order of increasing energy, the
four wavefunctions shown in Fig. 4.19, panels A–D have Ag, Bu, Ag, and Bu

symmetry. As explained in Box 4.8, the Mulliken symbols A and B refer to
functions that are, respectively, symmetric and antisymmetric with respect
to rotation about the C2 axis, which passes through the center of trans-
butadiene and is normal to the plane of the π system; subscripts g and
u denote even and odd symmetry with respect to inversion through the
molecular center. The excitations ψ2 → ψ3, ψ2 → ψ4, ψ1 → ψ3, and
ψ1 → ψ4 are characterized by the symmetries of the direct products of the
initial and final wavefunctions: Bu × Ag = Bu for ψ2 → ψ3, Bu × Bu = Ag for
ψ2 → ψ4, Ag × Ag = Ag for ψ1 → ψ3, and Ag × Bu = Bu for ψ1 → ψ4. Since
the position vector (r) has Bu symmetry, the products rψ2ψ3, rψ2ψ4, rψ1ψ3,
and rψ1ψ4 transform as Ag, Bu, Bu, and Ag, respectively. The electric dipole
transition matrix elements are, therefore, nonzero for the first and fourth
excitations (the two excitations with Bu symmetry), and zero for the second
and third (the two with Ag symmetry). Similar considerations apply to longer
polyenes, including carotenoids, although twisting and bending distortions
leave these molecules only approximately centrosymmetric.

Note that the vectors in Fig. 4.19, panels E–H pertain to the pure configura-
tions ψ2 → ψ3, ψ2 → ψ4, ψ1 → ψ3, and ψ1 → ψ4. An accurate description
of the actual excited states of trans-butadiene and other such polyenes re-
quires extensive configuration interactions (Tavan and Schulten 1986). The
ψ2 → ψ4 excitation mixes strongly with ψ1 → ψ3 and other higher-energy
configurations, with the result that an excited state with this symmetry moves
below the first Bu state in energy (Chadwick et al. 1985; Tavan and Schulten
1986; Koyama et al. 2004). The lowest-energy absorption band therefore re-
flects excitation to the second excited state rather than the first, which has
significant consequences for the functions of carotenoids as energy donors
and acceptors in photosynthesis (Sect. 7.4). The “forbidden” first excited state
of several polyenes has been detected by Raman spectroscopy (Chadwick et
al. 1985), two-photon spectroscopy (Chap. 12; Birge 1986), and time-resolved
measurements of absorption and fluorescence (Koyama et al. 1996; Macpher-
son and Gilbro 1998; Polivka et al. 1999; Koyama et al. 2004).

In the nomenclature that is commonly used, the ground state of a cen-
trosymmetric polyene is labeled 11A−

g ; the first excited singlet state with Ag

symmetry is 21A−
g , and the first with Bu symmetry (the second excited singlet

state in order of energy) is 11B+
u . The first number indicates the position of

the state in order of increasing energy among states with the same symmetry.
The first superscript identifes the spin multiplicity (singlet or triplet), and the
superscript “+” or “−” indicates whether the state is predominantly covalent
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(−) or ionic (+). Because the same selection rules also hold as a first ap-
proximation in larger polyenes that are not strictly centrosymmetric, this
nomenclature also is used for retinals and complex carotenoids.

4.9
Transition Dipoles for Excitations to Singlet and Triplet States

As we discussed in Chap. 2 (Sect. 2.4), electrons have an intrinsic angular mo-
mentum or “spin” that is characterized by spin quantum numbers s = 1/2 and
ms = ±1/2. The different values of ms can be described by two spin wavefunctions,
α (“spin up”) for ms = +1/2 and β (“spin down”) for ms = −1/2. For systems with
more than one electron, wavefunctions that include the electronic spins must be
written in a way so that the complete wavefunction changes sign if we interchange
any two electrons. We skipped over this point quickly when we derived expres-
sions for the transition dipole for forming an excited singlet state (Eq. (4.22)), so let
us check whether we get the same expressions if we write the spin wavefunctions
explicitly. We will also examine the transition dipoles for excitation to triplet states.

Using the notation of Eqs. (2.43) and (2.44), the transition dipole for excitation
from a singlet ground state to an excited singlet state of a system with two electrons
takes the form

μba =
〈1Ψb

∣∣̃μ(1) + μ̃(2)
∣∣Ψa

〉

=
〈{

2−1/2 [ψh(1)ψl(2) + ψh(2)ψl(1)] 2−1/2 [α(1)β(2) − α(2)β(1)]
}

×
∣∣̃μ(1) + μ̃(2)

∣∣ {ψh(1)ψh(2) 2−1/2 [α(1)β(2) − α(2)β(1)]
}〉

. (4.30)

Because the electric dipole operator does not act on the spin wavefunctions, inte-
grals such as 〈α(1)|α(1)〉 and 〈α(1)|β(1)〉 can be factored out of the overall integral.
By doing this and making the same approximations we made above in Eq. (4.22a–c),
we obtain

μba = 2−3/2
[ 〈
ψl(1)

∣∣̃μ(1)
∣∣ψh(1)

〉 〈
ψh(2)

∣∣ψh(2)
〉

+
〈
ψl(2)

∣∣̃μ(2)
∣∣ψh(2)

〉 〈
ψh(1)

∣∣ψh(1)
〉 ]

×
[
〈α(1) |α(1) 〉 〈β(2)

∣∣β(2)
〉

−
〈
α(1)

∣∣β(1)
〉 〈
β(2) |α(2)

〉

−
〈
α(2)

∣∣β(2)
〉 〈
β(1) |α(1)

〉
+ 〈α(2) |α(2) 〉 〈β(1)

∣∣β(1)
〉 ]

. (4.31)

The factors 〈ψh(1)|ψh(1)〉 and 〈ψh(2)|ψh(2)〉 in Eq. (4.31) are both unity. The
spin integrals also can be evaluated immediately because the spin wavefunctions
are orthogonal and normalized: 〈α(1)|α(1)〉 = 〈β(1)|β(1)〉 = 1, and 〈α(1)|β(1)〉 =
〈β(1)|α(1)〉 = 0. The terms in the second square brackets thus are 1 × 1 − 0 × 0 −
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0 × 0 + 1 × 1 = 2, and

μba = 21/2 〈ψl(k)
∣∣̃μ(k)

∣∣ψh(k)
〉 ≈ 21/2 e

∑

i

Cl
iC

h
i ri . (4.32)

This is the same result as Eq. (4.22e).
The transition dipoles for transitions from the singlet ground state to the excited

triplet states are very different from the transition dipole for forming the excited
singlet state. The transition dipoles for forming the triplet states all evaluate to
zero because terms with opposite signs cancel or because each term includes an
integral of the form 〈α(1)|β(1)〉. For 3Ψ0

b, we have
〈3Ψ0

b

∣∣̃μ(1) + μ̃(2)
∣∣Ψa

〉

=
〈{

2−1 [ψh(1)ψl(2) − ψh(2)ψl(1)] [α(1)β(2) + α(2)β(1)]
}

×
∣∣̃μ(1) + μ̃(2)

∣∣ {
ψh(1)ψh(2) 2−1/2 [α(1)β(2) − α(2)β(1)]

}〉
(4.33a)

= 2−3/2
[ 〈
ψl(2)

∣∣̃μ(2)
∣∣ψh(2)

〉 〈
ψh(1)

∣∣ψh(1)
〉

−
〈
ψl(1)

∣∣̃μ(1)
∣∣ψh(1)

〉 〈
ψh(2)

∣∣ψh(2)
〉 ]

×
[
〈α(1)|α(1)〉 〈β(2)

∣∣β(2)
〉

− 〈α(1)|α(2)〉 〈β(2)
∣∣β(1)

〉

+ 〈α(2) |α(1) 〉 〈β(1)
∣∣β(2)

〉
− 〈α(2) |α(2) 〉 〈β(1)

∣∣β(1)
〉 ]

. (4.33b)

The products in the first two lines of Eq. (4.33b) reduce to [〈ψl(2)|̃μ(2)|ψh(2)〉 −
〈ψl(1)|̃μ(1)|ψh(1)〉] , which is zero because the transition dipole does not depend
on how we label the electron. The sum of products of spin integrals evaluates to
1 × 1 − 0 × 0 + 0 × 0 − 1 × 1, which also is 0.

Similarly, for 3Ψ+1
b

〈3Ψ+1
b

∣∣̃μ(1) + μ̃(2)
∣∣Ψa

〉

=
〈{

2−1/2 [ψh(1)ψl(2) − ψh(2)ψl(1)] [α(1)α(2)]
}

×
∣∣̃μ(1) + μ̃(2)

∣∣ {ψh(1)ψh(2) 2−1/2 [α(1)β(2) − α(2)β(1)]
}〉

(4.34a)

= 2−1
[ 〈
ψl(2)

∣∣̃μ(2)
∣∣ψh(2)

〉 〈
ψh(1)

∣∣ψh(1)
〉

−
〈
ψl(1)

∣∣̃μ(1)
∣∣ψh(1)

〉 〈
ψh(2)

∣∣ψh(2)
〉 ]

×
[〈α(1) |α(1) 〉 〈α(2)

∣∣β(2)
〉

−
〈
α(1)

∣∣β(1)
〉 〈α(2) |α(2) 〉] . (4.34b)

Here again, the terms in each of the square brackets sum to zero. Evaluating the
transition dipole for 3Ψ−1

b gives the same result.
Excitations from the ground state to an excited triplet state are, therefore, for-

mally forbidden. In practice, weak optical transitions between singlet and triplet
states can be observed in some cases. Triplet states also can be created by intersys-
tem crossing from excited singlet states, as we will discuss in Chap. 5. This process
results mainly from coupling of the magnetic dipoles associated with electronic
spin and orbital electronic motion.
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4.10
The Born–Oppenheimer Approximation, Franck–Condon Factors,
and the Shapes of Electronic Absorption Bands

So far, we have focused on the effects of light on electrons. The complete wavefunc-
tion for a molecule must describe the nuclei also. But because nuclei have very large
masses compared with electrons, it is reasonable for some purposes to view them
as being more or less fixed in position. The Hamiltonian operator for the electrons
then will include slowly changing fields from the nuclei, while the Hamiltonian
for the nuclei includes the nuclear kinetic energies and averaged fields from the
surrounding clouds of rapidly moving electrons. Using the electronic Hamiltonian
in the Schrödinger equation leads to a set of electronic wavefunctions ψi(r, R)
that depend on both the electron coordinates (r) and the coordinates of the nuclei
(R). Using the nuclear wavefunction in the Schrödinger equation provides a set of
vibrational–rotational nuclear wavefunctions χn(i)(R) for each electronic state. The
solutions to the Schrödinger equation for the full Hamiltonian, which includes the
motions of both the nuclei and the electrons, can be written as a linear combination
of products of these partial wavefunctions:

Ψ(r, R) =
∑

i

∑

n

ψi(r, R)χn(i)(R) . (4.35)

This description is most useful when the double sum on the right-hand side of
Eq. (4.35) is dominated by a single term, because we then can express the complete
wavefunction as a simple product of an electronic wavefunction and a nuclear
wavefunction:

Ψ(r, R) ≈ ψi(r, R)χn(i)(R) . (4.36)

This is called the Born–Oppenheimer approximation.
The Born–Oppenheimer approximation proves to be reasonably satisfactory

for most molecules under a wide range of conditions. This is of fundamental
importance in molecular spectroscopy because it allows us to assign transitions as
primarily electronic, vibrational, or rotational in nature. In addition, it leads to tidy
explanations of how electronic transitions depend on nuclear wavefunctions and
temperature. A more complete discussion of the basis of the Born–Oppenheimer
approximation and of the situations in which it breaks down can be found in Born
and Oppenheimer (1927) and Struve (1989).

For a diatomic molecule, the potential energy term in the nuclear Hamiltonian
is approximately a quadratic function of the distance between the two nuclei, with
a minimum at the mean bond length. Such a Hamiltonian gives a set of vibrational
wavefunctions with equally spaced energies (Eq. (2.30), Fig. 2.3). The energy levels
are En = (n + 1/2)hυ, where n = 0, 1, 2, 3 ..., and υ is the classical bond vibration
frequency. A particular combination of vibrational and electronic wavefunctions
χn and ψi is referred to as a vibronic state or level.
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Consider a transition from a particular vibronic level of the ground elec-
tronic state, Ψa,n = ψa(r, R)χn(R), to a vibronic level of an excited state, Ψb,m =
ψb(r, R)χm(R). The transition could involve a change in vibrational wavefunction
from χn to χm in addition to the change in electronic wavefunction from ψa to ψb.
We can analyze the matrix element for this process by writing the dipole operator
as a sum of separate operators for the electrons and the nuclei:

μ̃ = μ̃el + μ̃nuc =
∑

i

eri +
∑

j

zjRj , (4.37)

where ri is the position of electron i, and Rj and zj are the position and charge of
nucleus j. For one electron and one nucleus, the transition dipole then is

μba,mn =
〈
ψb(r, R)χm(R)

∣∣̃μel
∣∣ψa(r, R)χn(R)

〉

+
〈
ψb(r, R)χm(R)

∣∣̃μnuc
∣∣ψa(r, R)χn(R)

〉

= e
∫

χ∗
m(R)χn(R) dR

∫
ψ∗

b(r, R)ψa(r, R) r dr

+ z
∫

χ∗
m(R)χn(R) R dR

∫
ψ∗

b(r, R)ψa(r, R) dr . (4.38)

The integral ∫ψ∗
b(r, R)ψa(r, R)dr on the right side of Eq. (4.38) is just 〈ψb|ψa〉 for

a particular value of R, which is zero if the electronic wavefunctions are orthogonal
for all R. Thus,

μba,mn =
〈
ψb(r, R)χm(R)

∣∣̃μel
∣∣ψa(r, R)χn(R)

〉

= e
∫

χ∗
m(R)χn(R) dR

∫
ψ∗

b(r, R)ψa(r, R) r dr . (4.39)

The double integral in Eq. (4.39) cannot be factored rigorously into a product
of the form e〈χm(R)|χn(R)〉〈ψb(r)|r|ψa(r)〉 because the electronic wavefunctions
depend on the nuclear coordinates in addition to the electronic coordinates. We
can, however, write

〈
ψb(r, R)χm(R)

∣∣̃μel
∣∣ψa(r, R)χn(R)

〉

=
〈
χm(R)

∣∣χn(R)
〈
ψb(r, R)

∣∣̃μel
∣∣ψa(r, R)

〉〉

=
〈
χm(R)

∣∣χn(R) Uba(R)
〉

, (4.40)

where Uba(R) is an electronic transition dipole that is a function of R. If Uba(R)
does not vary greatly over the range of R where both χm and χn have substantial
amplitudes, which often is the case, then

μba,mn =
〈
χm(R)

∣∣χn(R)
〉

Uba , (4.41)

where Uba denotes an average of the electronic transition dipole over the nuclear
coordinates of the initial and final vibrational states. To a good approximation, the
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Fig. 4.20. If the vibrational potential energy surfaces are the same in the ground and excited
electronic states (A), only the Franck–Condon factors for vibronic transitions between
corresponding vibrational levels are nonzero, and these transitions all have the same energy;
the absorption spectrum consists of a single line at this energy. If the minimum of the
potential energy surface is displaced along the nuclear coordinate in the excited state, as
in B, Franck–Condon factors for multiple vibronic transitions are nonzero and the spectrum
includes lines at many energies

overall transition dipole μba,mn thus depends on the product of a nuclear overlap
integral, 〈χm|χn〉, and an electronic transition dipole that is averaged over the
nuclear coordinates. This is called the Condon approximation.

The contribution that a particular vibronic transition makes to the dipole
strength depends on |μba,mn|2, and thus on the square of the nuclear overlap inte-
gral, |〈χm|χn〉|2. The square of such a nuclear overlap integral is called a Franck–
Condon factor. Franck–Condon factors represent the quantum-mechanical expres-
sion of the classical notion that the nuclei must be in the same place before and after
the transition. For a particular vibronic transition to occur, the Franck-Condon
factor must be nonzero (Condon, 1947).

The different vibrational wavefunctions for a given electronic state are orthog-
onal to each other. So if the same set of vibrational wavefunctions apply to the
ground and excited electronic states, the nuclear overlap integral 〈χm|χn〉 is 1 for
m = n and 0 for m = n. If the vibrational potential is harmonic, the energies
of the allowed vibronic transitions (Ψa,n → Ψb,n) will be the same for all n and
the absorption spectrum will consist of a single line at the frequency set by the
electronic energy difference, Ea − Eb, as shown in Fig. 4.20, panel A.

In most cases, the vibrational wavefunctions differ somewhat in the ground
and excited electronic states because the electron distributions in the molecule
are different. This makes 〈χm|χn〉 nonzero for m = n, and less than 1 for m = n,
allowing transitions between different vibrational levels to occur in concert with the
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electronic transition. The absorption spectrum therefore includes lines at multiple
frequencies corresponding to various vibronic transitions (Fig. 4.20, panel B). At
low temperatures, most of the molecules will be at the lowest vibrational level of
the ground state (the zero-point level) and the absorption line with the lowest
energy will be the (0–0) transition. At elevated temperatures, higher vibrational
levels will be populated, giving rise to absorption lines at energies below the 0–0
transition energy.

Approximate Franck–Condon factors for vibronic transitions can be obtained by
using the wavefunctions of the harmonic oscillator (Eq. (2.31), Fig. 2.3). Consider
the vibronic transitions of ethylene. Because the HOMO is a bonding orbital and
the LUMO is antibonding, the equilibrium length of the C=C bond is slightly longer
when the molecule is in the excited state than when it is in the ground state, but
the change in the bond vibration frequency (υ) is relatively small. The vibrational
potential energy wells for the two states have approximately the same shape but are
displaced along the horizontal coordinate (bond length) as represented in Fig. 4.20,
panel B. It is convenient to express the change in bond length (be − bg) in terms of
the dimensionless quantity Δ defined by the expression

Δ = 2π
√

mrυ/h
(
be − bg

)
, (4.42)

where mr is the reduced mass of the vibrating atoms. If we define the coupling
strength

S =
1
2
Δ2 , (4.43)

then the Franck–Condon factor for a transition from the lowest vibrational level
of the ground state (χ0) to level m of the excited state (χm) can be written as

∣∣〈χm
∣∣χ0

〉∣∣2 =
Sm exp(−S)

m!
. (4.44)

Corresponding expressions can be derived for the Franck–Condon factors for
transitions that start in higher vibrational levels of the ground state (Box 4.13).
The coupling strength S is sometimes called the Huang–Rhys factor.

Box 4.13 Recursion formulas for vibrational overlap integrals

Overlap integrals for harmonic-oscillator wavefunctions can be calculated
using recursion formulas derived by Manneback (1951). Manneback treated
the general case that the two vibrational states have different vibrational
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frequencies in addition to a displacement. Here we give only the results
when the frequencies are the same. Let the dimensionless displacement of
wavefunction χm with respect to χn be Δ, and define the Huang–Rhys factor,
S, as Δ2/2. The overlap integral for the two zero-point wavefunctions then is:

〈
χ0
∣∣χ0

〉
= exp(−S/2) . (B4.13.1)

Note that the vibrational wavefunctions in the bra and ket portions of this
expression implicitly pertain to different electronic states. We have dropped
the indices a and b for the electronic states to simplify the notation.

Overlap integrals for other combinations of vibrational levels can be built
from 〈χ0|χ0〉 by the recursion formulas

〈
χm+1

∣∣χn
〉

= (m + 1)−1/2 (n1/2 〈χm
∣∣χn−1

〉
− S1/2 〈χm

∣∣χn
〉)

(B4.13.2a)

and
〈
χm

∣∣χn+1
〉

= (n + 1)−1/2 (m1/2 〈χm−1
∣∣χn

〉
+ S1/2 〈χm

∣∣χn
〉)

, (B4.13.2b)

with 〈χm|χ−1〉 = 〈χ−1|χm〉 = 0. For the overlap of the lowest vibrational level
of the ground state with level m of the excited state, these formulas give

〈
χm

∣∣χ0
〉

= exp(−S/2)(−1)mSm/2/(m!)1/2 . (B4.13.3)

The Franck–Condon factors are the squares of the overlap integrals:

∣∣〈χm
∣∣χ0

〉∣∣2 = exp(−S)Sm/m! (B4.13.4)

Figure 4.21 shows how the Franck–Condon factors for transitions from the
lowest vibrational level of the ground state (χ0) to various levels of the excited
state change as a function of Δ according to Eq. (4.44). If Δ = 0, only |〈χ0|χ0〉|2 is
nonzero. As |Δ| increases, |〈χ0|χ0〉|2 shrinks and the Franck–Condon factors for
higher-energy vibronic transitions grow, with the sum of all the Franck–Condon
factors remaining constant at 1.0. If |Δ| > 1, the absorption spectrum peaks at an
energy approximately Shυ above the 0–0 energy.

As we will discuss in Chap. 6, a nonlinear molecule with N atoms has 3N − 6
vibrational modes, each involving movements of at least two, and sometimes
many atoms. The overall vibrational wavefunction can be written as a product of
wavefunctions for these individual modes, and the overall Franck–Condon factor
for a given vibronic transition is the product of the Franck–Condon factors for all
the modes. When the molecule is raised to an excited electronic state some of its
vibrational modes will be affected but others may not be. The coupling factor (S)
provides a measure of these effects. Vibrational modes for which S is large are
strongly coupled to the excitation, and ladders of lines corresponding to vibronic
transitions of each of these modes will feature most prominently in the absorption
spectrum.
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Fig. 4.21. Franck–Condon factors for vibronic transitions from the lowest vibrational level
(n = 0) of a ground electronic state to various vibrational levels of an excited electronic state,
as functions of the dimensionless displacement (Δ), for a system with a single, harmonic
vibrational mode. The abscissa in each panel is the vibrational quantum number (m) of the
excited state

In the ground state, molecules are distributed among the different vibrational
states depending on the energies of these states. At thermal equilibrium, the relative
population of level nk of vibrational mode k is given by the Boltzmann expression
(Eq. (B2.6.3)):

Bk =
1

Zk
exp

(
−nkhυk/kBT

)
, (4.45)

where kB is the Boltzmann constant, T the temperature, and Zk the vibrational
partition function for the mode:

Zk =
∞∑

n=0

exp
(
−nkhυk/kBT

)
=
[
1 − exp

(
−hυk/kBT

)]−1
. (4.46)

The absorption strength at a given frequency depends on the sum of the Boltzmann-
weighted Franck–Condon factors for all the vibronic transitions in which the
change in the total energy (electronic plus vibrational) matches the photon energy
hν (Box 4.14).

Box 4.14 Thermally weighted Franck–Condon factors

Vibronic spatial wavefunctions for the ground state of a molecule with N
harmonic vibrational modes can be written as products of wavefunctions of
the individual modes:

Ψa = ψa

N∏

k=1

χa
k,nk

and Ψb = ψb

N∏

k=1

χb
k,nk

, (B4.14.1)
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where ψa and ψb are electronic wavefunctions and χa
k,nk

denotes the nkth
vibrational wavefunction of mode k in electronic state a. If the vibrational
frequencies (υk) do not change significantly when the molecule is excited, the
strength of absorption at frequency ν and temperature T can be expressed
as a sum of weighted Franck–Condon factors:

W(v, T) =
∣∣μba

∣∣2
∑

n

exp(−Evib
a,n/kBT)

Z

×

(
∑

m

δ(hv − Emn)
N∏

k=1

∣∣∣
〈
χb

k,mk

∣∣∣χa
k,nk

〉∣∣∣
2
)

. (B4.14.2)

Here μba is the electronic transition dipole and the boldface subscripts m and
n are vectorial representations of the vibrational levels of all the modes in
the two electronic states [m = (m1, m2, ..., mN) and n = (n1, n2, ..., nN)]. The
other terms are defined as follows:

Evib
a,n =

N∑

k=1

(nk + 1/2)hυk , (B4.14.3a)

Evib
b,m =

N∑

k=1

(mk + 1/2)hυk , (B4.14.3b)

Emn =
(
Eelec

b + Evib
b,m

)
−
(
Eelec

a + Evib
a,n

)
(B4.14.3c)

Z =
∑

n

exp
(

− Evib
a,n/kBT

)
, (B4.14.4a)

=
∏

k

Zk =
∏

k

[1 − exp(−hυk/kBT)]−1 , (B4.14.4b)

and Eelec
a and Eelec

b are the electronic energies of the two states. The Kroneker
delta function δ(hv − Emn) is 1 if the excitation energy hv is equal to the total
energy difference given by Eq. (B4.14.3c), and zero otherwise.

The sum over n in Eq. (B4.14.2) runs over all possible vibrational levels of
the ground state. A given level represents a particular distribution of energy
among the N vibrational modes, and its vibrational energy (Evib

a,n) is the sum
of the vibrational energies of all the modes (Eq. (B4.14.3a)). Each level is
weighted by the Boltzmann factor exp(Evib

a,n/kBT)/Z, where Z is the complete
vibrational partition function for the ground state. The vibrational partition
function for a system with multiple vibrational modes is the product of the
partition functions of all the individual modes (Eq. (B4.14.4b)), as you can
see by writing out the sum in Eq. (B4.14.4a) for a system with two or three
modes. The sum over m in Eq. (B4.14.2) considers all possible vibrational
levels of the excited state, but the delta function preserves only the levels
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for which Emn = hv. If a level meets this resonance criterion, the Franck–
Condon factor for the corresponding vibronic transition is the product of the
Franck–Condon factors for all the individual vibrational modes. The function
W(v) defined by Eq. (B4.14.2) gives a set of lines at frequencies (vmn) where
hv = Emn. As we discuss below and in Chaps. 10 and 11, each of these
absorption lines typically has a Lorentzian or Gaussian shape with a width
that depends on the lifetime of the excited vibronic state. To incorporate
this effect, the delta function in Eq. (B4.14.2) can be replaced by a lineshape
function wmn(v − vmn) for each combination of m and n vectors that meets
the resonance condition.

At low temperatures, molecules in the ground state are confined largely to
the zero-point levels of their vibrational modes. The spectrum described by
Eq. (B4.14.2) then simplifies to

W(v, T = 0) =
N∑

k=1

∞∑

m=0

δ(ΔEm,0 − hv)
N∏

k=1

∣∣∣
〈
χb

k,mk

∣∣∣χa
k,0

〉∣∣∣
2

. (B4.14.5)

By writing out the Franck–Condon factors and introducing the lineshape
functions wm,0(v − vm0), we can put this expression in the form

W(v, T = 0) = exp(−St)
N∑

k=1

∞∑

m=0

[(Sk)m/m!]wm,0 , (B4.14.6)

where Sk is the Huang–Rhys factor (coupling strength) for mode k and St

is the sum of the Huang–Rhys factors for all the modes that are coupled
to the electronic transition. The foregoing expressions consider only the
homogeneous spectrum of a system in which all the molecules have identical
values of Eelec

a and Eelec
b . In an inhomogeneous system, the molecules will

have a distribution of electronic energy differences, and the spectrum will be
a convolution of this site-distribution function with Eq. (B4.14.2) or (B4.14.6).

For further discussion of the Franck–Condon factors, lineshape functions,
and site-distribution functions for bacteriochlorophyll a and related mol-
ecules see Lyle et al. (1993) and Zazubovich et al. (2001).

Because the eigenfunctions of the harmonic oscillator form a complete set,
the Franck–Condon factors for excitation from any given vibrational level of the
ground electronic state to all the vibrational levels of an excited electronic state
must sum to 1. |〈χ0|χ0〉|2 therefore gives the ratio of the strength of the 0–0
transition to the total dipole strength. This ratio is called the Debye–Waller factor.
From Eq. (4.44), the Debye–Waller factor is exp(−S/2).

The analysis of Franck–Condon factors described in Boxes 4.13 and 4.14 assumes
that the chromophore’s vibrational modes are essentially the same in the excited
and ground electronic states, differing only in the location of the energy minimum
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along the vibrational coordinate and possibly a shift in the vibrational frequency.
Breakdowns of this assumption are referred to as Duschinsky effects. They can be
treated in some cases by representing the vibrational modes for one state as linear
combinations of those for the other (Sharp and Rosenstock 1964; Sando and Spears
2001; Sando et al. 2001).

The width of an absorption band for an individual vibronic transition depends
on how long the excited molecule remains in the state created by the excitation.
According to Eq. (2.67), the spectrum for excitation to a state that decays expo-
nentially with time should be a Lorentzian function of frequency. The shorter the
lifetime of the excited state, the broader the Lorentzian (Fig. 2.12). A variety of
processes can cause an excited molecule to evolve with time, and thus can broaden
the absorption line. The molecule might, for example, decay to another vibrational
state by redistributing energy among its internal vibrational modes or by releasing
energy to the surroundings. Molecules in higher vibrational levels have a larger
number of possible relaxation pathways that are thermodynamically favorable, and
thus relax more rapidly than molecules in lower levels. In addition, the energies of
the individual molecules in a sample will fluctuate as a result of randomly changing
interactions with the surroundings. These fluctuations cause the time-dependent
parts of the wavefunctions of the molecules to get out of phase, a process termed
pure dephasing. In Chap. 10 we will see that the composite time constant (T2) that
determines the width of a Lorentzian vibronic absorption band depends on both
the equilibration time constant for true decay processes (T1) and the time constant
for pure dephasing (T∗

2 ). The width of the Lorentzian at half-maximal amplitude
is �/T2.

If T2 is long, as it can be for molecules in the gas phase and for some molecules
chilled to low temperatures in inert matrices, the absorption line can be very
sharp. The width of such of an absorption line for an individual molecule in a fixed
environment, or for an ensemble of identical molecules with the same solvational
energies, is termed the homogeneous line width. An absorption band representing
molecules that interact with their surroundings in a variety of ways is said to be
inhomogeneously broadened and its width is termed the inhomogeneous line width.
The spectrum generated by a family of Lorentzians with a Gaussian distribution
of center energies is called a Voigt spectrum.

4.11
Spectroscopic Hole-Burning

The homogeneous absorption lines that underlie an inhomogeneous spectrum
can be probed experimentally by hole-burning spectroscopy at low temperatures
(Jankowiak and Small 1987; Volker 1989; Friedrich 1995). In photochemical hole-
burning, the excited molecule evolves into a triplet state or is converted photo-
chemically to another long-lived product, leaving a hole in the absorption spectrum
at the frequency of the original excitation. In nonphotochemical hole-burning, the
excited molecule decays back to the original ground state with conversion of the ex-
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citation energy to heat. The thermal energy that is released causes rearrangements
of the molecule’s immediate surroundings, shifting the absorption spectrum and
again leaving a hole at the excitation frequency.

At room temperature, nonphotochemical spectral holes usually are filled in
quickly by fluctuations of the surroundings on the picosecond time scale. This
process, termed spectral diffusion, can be studied by picosecond pump–probe tech-
niques. At temperatures below 4 K, nonphotochemical spectral holes can persist
almost indefinitely and can be measured with a conventional spectrophotometer.
The shape of the hole depends on the lifetime of the excited state and the coupling of
the electronic excitation to vibrational modes of the solvent, both of which depend
in turn on the excitation wavelength. Excitation on the far-red edge of the absorp-
tion band populates mainly the lowest vibrational level of the excited state, which
has a relatively long lifetime, and the resulting zero-phonon hole is correspondingly
sharp (Fig. 4.22, panel A). The zero-phonon hole typically is accompanied by one
or more phonon side bands that reflect vibrational excitation of the chromophore
or solvent in concert with electronic excitation of the chromophore. The side bands
are broader than the zero-phonon hole because the excited solvent molecules relax
rapidly by transferring the excess vibrational energy to the surroundings. In addi-

Fig. 4.22. Nonphotochemical hole-burning. An inhomogenous absorption spectrum (dotted
curves) usually is an envelope of spectra for chromophores in many different local envi-
ronments. If an inhomogeneous sample is irradiated with light covering a narrow band of
frequencies (vertical arrows), the spectra of molecules that absorb here can be shifted to
higher or lower frequencies, leaving a hole in the inhomogeneous spectrum (solid curves).
If the sample is excited on the red (low-energy) edge of the absorption band, the hole
often consists of a sharp zero-phonon hole with one or more broad phonon side bands at
somewhat higer energies (A). The width of the zero-phonon hole provides information on
the lifetime of the excited electronic state, while the phonon side bands report on solvent
vibrations that are coupled to the electronic excitation. Excitation on the blue side of the
absorption band usually gives a broader, unstructured hole (B)
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tion, the phonon side bands sometimes represent a variety of vibrational modes,
or a quasi-continuum of closely lying vibrational states. Excitation on the blue
side of the absorption band populates higher-energy vibrational levels of both
the chromophore and the solvent, which usually decay rapidly and give a broad,
unstructured hole (Fig. 4.22, panel B).

Studies of antenna complexes from photosynthetic bacteria by Small and co-
workers (Reddy et al. 1992a, b; Wu et al. 1997a, b) provide a good illustration
of nonphotochemical hole-burning. These complexes have extensive manifolds
of excited electronic states that lie close together in energy. Excitation on the
long-wavelength edge of the main absorption band populates mainly the lowest
vibrational level of the lowest excited electronic state, which decays with a time
constant on the order of 10 ps. Holes burned in this region of the spectrum have
correspondingly narrow widths of about 3 cm−1. Excitation at shorter wavelengths
populates higher excited electronic states, which evidently decay to the lowest state
in 0.01–0.1 ps. Holes burned near the center of the absorption band therefore have
widths on the order of 200 cm−1.

In similar studies of photosynthetic reaction centers, the width of the zero-
phonon hole for the reactive bacteriochlorophyll dimer was related to the time
constant for electron transfer to a neighboring molecule (Lyle et al. 1993; Small
1995; Johnson et al. 2003). Figure 4.23 shows a typical hole spectrum (the differ-
ence between absorption spectra measured with the excitation laser on and off) for
a sample of reaction centers that was excited at 10,912 cm−1 at 5 K. The holes in this
experiment resulted from the photochemical electron-transfer reaction followed
by conversion of the bacteriochlorophyll dimer to an excited triplet state. They are
broadened by strong vibronic coupling to motions of the protein surrounding the
bacteriochlorophylls. The holes generated by burning in the red edge of the spec-

Fig. 4.23. The spectrum of a photochem-
ical hole burned in the long-wavelength
absorption band of a sample of photo-
synthetic bacterial reaction centers at
5 K (Johnson et al. 2003). The gray curve
is the difference between absorption
spectra measured with the excitation
laser on and off. The excitation fre-
quency was 10,912 cm−1. Note the sharp
zero-phonon hole (ZPH, upward arrow)
at 10,980 cm−1. The downward arrows
indicate the centers of two discrete
vibrational (phonon) bands that are
linked to the zero-phonon transition.
The solid curve is a theoretical hole
spectrum calculated as described in the
text
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trum reveal a zero-phonon line with a width of about 6 cm−1, which corresponds
to an electron-transfer time constant of about 1 ps. They also have several discrete
phonon side bands that can be assigned to two characteristic vibrational modes.
In the spectrum shown in Fig. 4.23 the zero-phonon hole is at 10,980 cm−1, and the
prominent vibrational modes have frequencies of approximately 30 and 130 cm−1.
Both the hole spectrum and the original absorption spectrum can be fit well by
using Eq. (B4.14.6) with these two vibrational modes, a Gaussian distribution of
zero-phonon transition energies, and relatively simple Lorentzian and Gaussian
functions for the shapes of the zero-, one-, and two-phonon absorption lines (Lyle
et al. 1993; Zazubovich et al. 2001; Johnson et al. 2003).

Each of the homogeneous lines in a vibronic absorption spectrum actually
consists of a family of transitions between various rotational states of the molecule.
The rotational fine structure in the spectrum can be seen for small molecules in
the gas phase, but for large molecules the rotational lines are too close together to
be resolved.

4.12
Effects of the Surroundings on Molecular Transition Energies

Interactions with the surroundings can shift the energy of an absorption band
to either higher or lower energies, depending on the nature of the chromophore
and the solvent. Consider, for example, an n–π∗ transition, in which an electron is
excited from a nonbonding orbital of an oxygen atom to an antibonding molecular
orbital distributed between oxygen and carbon atoms (Sect. 9.1). In the ground
state, electrons in the nonbonding orbital can be stabilized by hydrogen-bonding or
dielectric effects of the solvent. In the excited state, these favorable interactions are
disrupted. Although solvent molecules will tend to reorient themselves in response
to the new distribution of electrons in the chromophore, this reorientation is too
slow to occur during the excitation itself. An n–π∗ transition therefore shifts to
higher energy in more polar or hydrogen-bonding solvents relative to less polar
solvents. A shift of an absorption band in this direction is called a “blueshift.” The
energies of π–π∗ transitions are less sensitive to the polarity of the solvent but still
depend on the solvent’s high-frequency polarizability, which as we noted in Chap. 3,
increases quadratically with the refractive index. Increasing the refractive index
usually decreases the transition energy of a π–π∗ transition, causing a “redshift”
of the absorption band. The terms “blue” and “red” often are used in this context
without regard to the position of the absorption band relative to the spectrum
of visible light. For example, a shift of an IR band to lower energies is generally
called a redshift even though the band moves away from the region of the visible
spectrum that we perceive as red.

The visual pigments provide dramatic illustrations of how minor changes in
protein structure can shift the absorption spectrum of a bound chromophore. As
in many other vertebrates, the human retina contains three types of cone cells
whose pigments (cone-opsins) absorb in different regions of the visible spectrum.
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Fig. 4.24. Normalized absorption spectra
of rhodopsin from human retinal rod
cells (curve 2), and cone-opsins from
human “blue,” “green,” and “red” cone
cells (curves 1, 3, and 4, respectively).
The shapes of the spectra are drawn as
described by Stavenga et al. (1993)

Cone-opsin from human “blue” cones absorbs maximally near 414 nm, while those
from “green” and “red” cones have absorption maxima near 530 and 560 nm,
respectively (Fig. 4.24). The visual pigments from other organisms have absorption
maxima ranging from 355 to 575 nm. Yet all these pigments resemble rhodopsin,
the pigment from retinal rod cells, in containing a protonated Schiff base of 11-cis-
retinal. (The chromophores in some other organisms are based on retinal A2, which
has one more conjugated double bond than retinal A1 and can push the absorption
maximum as far to the red as 620 nm.) The proteins from vertebrate rods and cones
have homologous amino acid sequences and, although a crystal structure currently
is available only for bovine rhodopsin (Palczewski et al., 2000), probably have very
similar three-dimensional structures (Stenkamp et al., 2002). If the proteins are
denatured by acid, the absorption bands all move to the region of 440 nm and
resemble the spectrum of the protonated Schiff base of 11-cis-retinal in methanol.
Resonance Raman measurements have shown that the vibrational structure of
the chromophore does not vary greatly among the different proteins, indicating
that the spectral shifts probably result mainly from electrostatic interactions with
the surrounding protein rather than from changes in the conformation of the
chromophore (Kochendoerfer et al. 1997, 1999). Studies of proteins containing
conformationally constrained analogs of 11-cis-retinal also have lent support to
this view (Ottolenghi and Sheves 1989; Sheves and Ottolenghi 1989; Aharoni et al.
2001).

Correlations of the absorption spectra with the amino acid sequences of the
proteins from a variety of organisms, together with studies of the effects of site-
directed mutations, indicate that the shifts of the spectra of the visual pigments
reflect changes in a small number of polar or polarizable amino acid residues
near the chromophore (Nathans 1990; Asenjo et al. 1994; Kochendoerfer et al.
1999; Ebrey and Takahashi 2001; Kamauchi and Ebrey 2005) (Fig. 4.25). The 30-
nm shift of the human red cone pigment relative to the green pigment can be
attributed entirely to changes of seven residues, including the replacement of
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Fig. 4.25. Models of the region surrounding the retinyl chromophore in the visual pigments
from human “red” (a) and “blue” (b) cone cells. The main absorption band is shifted to
longer wavelengths by almost 150 nm in the red pigment. The chromophore (RET), the lysine
residue that forms the protonated Schiff base (K296 in the rhodopsin numbering scheme),
the glutamic acid residue that acts as a counterion (E113), another nearby glutamic acid
(E181), and other residues that contribute to regulation of the color of the human cone
pigments (residues 83, 90, 118, 122, 164, 184, 265, 269, 292, and 299) are shown as licorice
models in black. The protein backbone is shown in gray. The models were constructed by
homology with bovine rhodopsin (Stenkamp et al. 2002), followed by addition of water and,
for the red pigment, Cl− ion, and minimization of the energy by short molecular-dynamics
trajectories

several alanine residues by serine and threonine. The polarizable side chains of
serine and threonine probably facilitate delocalization of the positive charge from
the nitrogen atom of the retinyl Schiff base (Fig. 4.13a) toward the β-ionone ring
in the excited state. The red and the green cone pigments also have a bound Cl−

ion that contributes to the redshift of the spectrum relative to rhodopsin and the
blue cone pigment. Variations in the position of a glutamic acid carboxylate group
that serves as a counterion for the protonated Schiff base also may contribute to
the spectral shifts, although the changes in the distance from the counterion to
the proton probably are relatively small (Deng and Callender 1987; Sheves and
Ottolenghi 1989; Kochendoerfer et al. 1997, 1999).

DNA photolyases, which use the energy of blue light to split pyrimidine dimers
formed by UV irradiation of DNA, provide other examples of large and variable
shifts in the absorption spectrum of a bound chromophore. These enzymes contain
a bound pterin (methylenetetrahydrofolate, MTHF) or deazaflavin, which serves to
absorb light and transfer energy to a flavin radical in the active site (Sancar 2003).
The absorption maximum of MTHF occurs at 360 nm in solution, but ranges from
377 to 415 nm in the enzymes from different organisms (Malhotra et al. 1994).

Effects of the solvent on the transition energies of molecules in solution often
can be related phenomenologically to the solvent’s dielectric constant and refrac-
tive index. The analysis is similar to that used for local-field correction factors
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(Sect. 3.1.5). Polar solvent molecules around the chromophore will be ordered
in response to the chromophore’s ground-state dipole moment (μaa), and the ori-
ented solvent molecules provide a reaction field that acts back on the chromophore.
A simple model of the system is a dipole at the center of a sphere of radius R em-
bedded in a homogeneous medium with dielectric constant εs. The reaction field
felt by such a dipole is given approximately by (Mataga and Kubota 1970):

E =
2μaa

R3

(
εs − 1
εs + 2

)
. (4.47)

Now suppose that excitation of the chromophore changes its dipole moment to μbb.
Although the solvent molecules cannot reorient themselves instantaneously in
response, the dielectric constant εs includes electronic polarization of the solvent
in addition to orientational polarization, and changes in electronic polarization
can occur essentially instantaneously in response to changing electric fields. The
high-frequency component of the dielectric constant is the square of the refractive
index (n) (Sects. 3.1.4, 3.1.5). If we subtract the part of the reaction field that is
attributable to electronic polarization, the part due to orientation of the solvent
(Eor) can be written

Eor =
2μaa

R3

[(
εs − 1
εs + 2

)
−
(

n2 − 1
n2 + 2

)]
. (4.48)

The solvation energies associated with interactions of the chromophore’s dipoles
with the oriented solvent molecules are −(1/2)μaa · Eor in the ground state and
–(1/2)μbb · Eor in the excited state. The factor of 1/2 here reflects the fact that,
in order to orient the solvent, approximately half of the favorable interaction
energy between the chromophore and Eor must be used to overcome unfavorable
interactions of the solvent dipoles with each other. The change in excitation energy
resulting from orientation of the solvent in the ground state is, therefore,

ΔEor = (1/2)
(
μaa − μbb

) · Eor =

(
μaa − μbb

) · μaa

R3

[(
εs − 1
εs + 2

)
−
(

n2 − 1
n2 + 2

)]
.

(4.49)

This expression shows that interactions with a polar solvent can either increase or
decrease the transition energy depending on the sign of (μaa −μbb)·μaa. The change
in energy (ΔEor) is expected to be small if the excitation involves little change in
dipole moment (μaa ≈ μbb), if the chromophore is nonpolar in the ground state
(μaa ≈ 0), or if the solvent is nonpolar (εs ≈ n2).

Equations (4.48) and (4.49) do not include the effects of electronic polarizabil-
ity. The solvent can be polarized electronically by both the permanent and the
transition dipoles of the chromophore. Quantum mechanically, this inductive po-
larization can be viewed as mixing of the excited and ground electronic states of the
solvent under the perturbation caused by electric fields from the solute (Box 12.1).
The chromophore experiences a similar inductive polarization by fields from the
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Fig. 4.26. Dependence of the transition
energy of the long-wavelength (Qy) ab-
sorption band of bacteriochlorophyll a
on the refractive index (n) in nonpolar
solvents. Experimental data from Li-
mantara et al. (1997) are replotted as
a function of (n2 − 1)/(2n2 + 1). Extrap-
olating the abscissa to zero (n = 1) gives
13,810 cm−1 for the transition energy in
a vacuum. A similar plot of the data vs
(n2 − 1)/(n2 + 2) gives a vacuum energy
of 13,600 cm−1

solvent. In nonpolar solvents, π − π∗ absorption bands of nonpolar molecules
typically decrease in energy with increasing refractive index, and the decrease is
approximately linear in the function (n2 − 1)/(n2 + 2). Some authors use the func-
tion (n2 − 1)/(2n2 + 1), which gives very similar results (see Mataga and Kubota
1970 for a detailed review of early work and Limantara et al. 1997 for a more recent
study). Figure 4.26 illustrates such a shift for the long-wavelength absorption band
of bacteriochlorophyll a. Extrapolation to n = 1 gives a “vacuum” transition en-
ergy on the order of 1,000 cm−1 above the energy measured for bacteriochlorophyll
in solution.

The energy of interactions of a molecule with its surroundings can be treated
in a more microscopic way by using Eqs. (4.19)–(4.22) to describe the ground and
excited-state wavefunctions, ψa and ψb. The solvation energy of the molecule in
the ground state is

Esolv
a ≈ −2e

N∑

i=1

(
Ca

i

)2
Vi + Esolv

core , (4.50)

where e is the electronic charge, Vi is the electric potential from the solvent at the
position of atom i, Ca

i is the atomic expansion coefficient for atom i in ψa, N is
the total number of atoms in the wavefunction, and Esolv

core represents the effects of
the surroundings on the nuclei and electrons in the orbitals other than ψa. The
contribution of ψa to the electronic charge on atom i is proportional to (Ca

i )2, and
the factor of 2 before the sum reflects the assumption that there are two electrons
in ψa in the ground state. Similarly, the solvation energy in the excited state is

Esolv
b ≈ −e

N∑

i=1

[(
Ca

i

)2
+
(

Cb
i

)2
]

Vi + Esolv
core , (4.51)

where Cb
i is the coefficient for atom i in ψb. The change in solvation energy upon
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excitation is the difference between the two solvation energies:

Esolv
b − Esolv

a ≈ −e
N∑

i=1

[(
Cb

i

)2
−
(
Ca

i

)2
]

Vi . (4.52)

Note that these expressions consider only a single configuration, excitation from
ψa to ψb. If several configurations contribute to the absorption band, the relative
contribution of a given configuration to the changes in electronic charge is propor-
tional to the square of the coefficient for this configuration in the overall excitation
(Eq. (4.26)).

If the structure of the surroundings is well defined, as it may be for a chro-
mophore in a protein (see, e.g., the visual pigments shown in Fig. 4.25), the electric
potential at each point in the chromophore can be estimated by summing the
contributions from the charges and dipoles of the surrounding atoms:

Vi =
∑

k

Qk

|rik| +
∑

k

μk · rik

|rik|3 . (4.53)

Here Qk is the charge on atom k of the surroundings, rik is the vector from atom k to
atom i, and μk is the electric dipole induced on atom k by the electric fields from all
the charges and other induced dipoles in the system. The sums in this expression
must exclude, in addition to atom i itself, other atoms that are part of the chro-
mophore or are connected to atom i by three or fewer bonds, because interactions
with these atoms must be treated quantum mechanically. The electric fields and
induced dipoles can be calculated from the atomic charges and polarizabilities by
an iterative procedure (Lee et al. 1993). Shifts in the absorption spectrum thus can
be used to measure the binding of prosthetic groups to proteins or to probe protein
conformational changes in the region of a bound chromophore. Equations (4.52)
and (4.53) involve significant approximations, however, because interactions with
the surroundings ideally should be taken into account when the molecular orbitals
and eigenvalues are obtained in the first place.

Figure 4.27 illustrates the calculated redistributions of charge that accompany
excitation of the indole side chain of tryptophan. As discussed before, the 1La

absorption band consists mainly of the configuration ψ2 → ψ3 and a smaller
contribution from ψ1 → ψ4, where ψ1 and ψ2 are the second-highest occupied
molecular orbital and the HOMO and ψ3 and ψ4 are the LUMO and the second-
lowest unoccupied orbital. Both these configurations result in transfer of electron
density from the pyrrole ring to the benzyl portion of the indole side chain.
The energy of the 1La transition thus should be redshifted by positively charged
species near the benzene ring, and blueshifted by negatively charged species in this
region. The 1Lb absorption band consists largely of the configurations ψ2 → ψ4

and ψ1 → ψ3, the first of which results in a large shift of electron density to
the benzyl ring. However, the ψ1 → ψ3 transition moves electron density in
the opposite direction, making the net change of dipole moment associated with
the 1Lb band smaller than that associated with 1La (Fig. 4.27, panels E, F). For
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Fig. 4.27. Redistribution of charge upon excitation of 3-methylindole. A–C Contour plots
showing the changes in electron density (increases in negative charge) when an electron
is excited from one of the two HOMOs (ψ1 or ψ2) to one of the first two LUMOs (ψ3 or
ψ4). The contour intervals are 0.01ea3

0. The planes of the drawings and the line types for
positive and negative amplitudes are as in Fig. 4.11. E, F Similar plots for the combinations
0.841(ψ2 → ψ3) + 0.116(ψ1 → ψ4) and 0.536(ψ1 → ψ3) + 0.402(ψ2 → ψ4), which
are approximately the contributions of these four orbitals in the 1La and 1Lb excitations,
respectively. (Note that the coefficient for a given configuration here is the square of the
corresponding coefficient for the transition dipole.) The contour intervals are 0.005ea3

0. The
arrows indicate the changes in the permanent dipole (μbb −μaa, Eq. (4.55)) in units of eÅ/5a0
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a more quantitative analysis of these effects, contributions from higher-energy
configurations also need to be considered (Callis 1991, 1997; Vivian and Callis
2001). The gradient operator may also be preferable to the dipole operator here,
but this has not been studied extensively.

The situation takes on an additional dimension if the positions of the charged
or polar groups near the chromophore fluctuate rapidly with time. One way to
describe the effects of such fluctuations is to write the energies of the ground and
excited electronic states (Ea and Eb) as harmonic functions of a generalized solvent
coordinate (X):

Ea = E0
a + (K/2)X2 (4.54a)

and

Eb = E0
b + (K/2)(X − Δ)2 , (4.54b)

where E0
a and E0

b are the minimum energies of the two electronic states, Δ is
the displacement of the energy minima along the solvent coordinate, and K is
a force constant. We use the term “solvent” here in a general sense to refer to
a chromophore’s surroundings in either a protein or free solution. Because of
the displacement Δ, a vertical transition starting from X = 0 in the ground state
creates an excited state with excess solvation energy that must be dissipated as
the system relaxes in the excited state (Fig. 4.28). The extra energy is termed the

Fig. 4.28. Classical harmonic energy
curves for a system with a chromophore
in its ground and excited electronic
states, as functions of a generalized,
dimensionless solvent coordinate. If the
chromophore is raised from the ground
state to the excited electronic state with
no change in nuclear coordinates, it is
left with excess solvation energy relative
to the energy minimum for the excited
state. This is the reorganization energy
(Λ)
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solvent reorganization energy, and is given by Λ = KΔ2/2. The energy difference
between the excited and ground states at any given value of the solvent coordinate
thus is

Eb − Ea = E0
b + (K/2)(X − Δ)2 − E0

a − (K/2)X2 = E0 − KXΔ + Λ , (4.55)

where E0 = E0
b − E0

a.
If we equate potential energies approximately with free energies, we also can say

that the relative probability of finding a particular value of X when the chromophore
is in the ground state is P(X) = exp(−KX2/2kBT). Combining this expression with
Eq. (4.55) and using the relationships Λ = KΔ2/2 and hν = Eb − Ea gives an
expression for the relative strength of absorption at energy hν:

P(hν) = exp
[

−K
(
E0 + Λ − hν

)2/2
(
KΔ/

2
kBT

]

= exp
[

−
(
E0 + Λ − hν

)2/4ΛkBT
]

. (4.56)

This is a Gaussian function of hν. It peaks at an energy Λ above E0 and has a full
width at half-maximum amplitude of 2(ΛkBT · ln 2)1/2/π, or (2KkBT · ln 2)1/2Δ/π.
Fluctuating interactions with the solvent thus broaden the vibronic absorption
lines of the chromophore and shift them to higher energies relative to E0. As
discussed above, however, the mean energy of interaction can shift E0 either
upward or downward depending on the chromophore and the solvent. We will
discuss generalized solvent coordinates further in Chaps. 5 and 10.

Fluctuating electrostatic interactions can be treated microscopically by incor-
porating Eqs. (4.50)–(4.53) into molecular dynamics simulations (Box 6.1). The
results can be used to construct potential energy surfaces similar to those of
Eq. (4.54), or can used in quantum calculations of the eigenvalues of the chro-
mophore in the electric field from the solvent. Mercer et al. (1999) were able to
reproduce the width of the long-wavelength absorption band of bacteriochloro-
phyll in methanol well by this approach.

4.13
The Electronic Stark Effect

If an external electric field is applied across an absorbing sample, the absorption
bands can be shifted to either higher or lower energies depending on the orientation
of the chromophores with respect to the field. This is the Stark or electrochromic
effect. The effect was discovered in 1913 by the physicist Johannes Stark, who found
that electric fields on the order of 105 V cm−1 cause a splitting of the spectral lines
of hydrogen into symmetrically placed components with different polarizations.
The basic theoretical tools for extracting information on the dipole moment and
polarizability of a molecule by Stark spectroscopy were worked out by Liptay
(1965, 1969, 1974). They have been extended and applied to a variety of systems
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by the groups of Boxer (Middendorf et al. 1993; Lao et al. 1995; Bublitz and Boxer
1997), Nagae (1997), and others. In a recent application, Premvardhan et al. (2003,
2004, 2005) found that excitation of photoactive yellow protein or its chromophore
(a thioester of p-coumaric acid) in solution causes remarkably large changes in the
dipole moment and the polarizability of the chromophore. The change in dipole
moment (|Δμ| = 26 D) corresponds to moving an electric charge by 5.4 Å, and
seems likely to contribute importantly to the structural changes that follow the
excitation.

In the simplest situation for a molecular chromophore, the magnitude and
direction of the shift depends on the dot product of the local electric field vector
(Eext = f Eapp, where Eapp is the applied field and f is the local-field correction
factor) with the vector difference between the chromophore’s permanent dipole
moments in the excited and ground states (Δμ):

ΔE = −Eext · Δμ = −f Eapp · Δμ . (4.57)

The difference between the dipole moments in the two states can be related to the
chromophore’s molecular orbitals by the expression

Δμ = μbb − μaa ≈ e
N∑

i

[(
Cb

i

)2
−
(
Ca

i

)2
]

ri , (4.58)

where ri is the position of atom i and Ca
i and Cb

i are the coefficients for this atom in
the ground- and excited-state wavefunctions (Eqs. (4.22d, e), (4.50)–(4.52)). If the
sample is isotropic, some molecules will be oriented so that the external field shifts
their transition energies to higher values, while others will experience shifts to
lower energies. The result will be a broadening of the overall absorption spectrum.
If the system is anisotropic, on the other hand, the external field can shift the
spectrum systematically to higher or lower frequencies.

Equation (4.58) assumes that the electric field does not cause reorientation of
molecules, but simply shifts the energy difference between the ground and excited
states without changing μaa or μbb. The validity of this assumption depends on
the molecule and the experimental apparatus. Although small polar molecules
in solution can be oriented by external electric fields, this is less likely to occur
for proteins, particularly if the direction of the field is modulated rapidly. It can
be prevented by imobilizing the protein in a poly(vinyl alcohol) film. But to the
extent that the chromophore is polarizable, the field will create an additional
induced electric dipole that depends on the strength of the field, and this dipole can
change when the molecule is excited if the polarizability in the excited state differs
from that in the ground state. In general, the molecular polarizability should be
treated as a matrix, or more formally a second-rank tensor, because it depends
on the orientation of the molecule relative to field and the induced dipole can
have components that are not parallel to the field (Boxes 4.15, 12.1); however, we
will assume here that the polarizability can be described adequately by a scalar
quantity with dimensions of per cubic centimer. The induced dipole (μind

aa or μind
bb

for the ground or excited state, respectively) then will be simply the product of
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the polarizability (αaa or αbb) and the total field, including both the external field
(Eext) introduced by the applied field and the “internal” field from the molecule’s
surroundings (Eint). Interactions of Eext with the induced dipoles will change the
transition energy by

ΔEind = −Eext ·
(

μind
bb − μind

aa

)
= −Eext · (αbb − αaa

) (
Eext + Eint

)
(4.59a)

= −Δα
(|Eext|2 + Eext · Eint

)
, (4.59b)

where Δα = αbb − αaa.
The internal field Eint can have any orientation relative to the external field, and

it usually has a considerably larger magnitude (typically on the order of 106 V cm−1

or more). But if the chromophore is bound to a highly structured system such as
a protein, Eint will have approximately the same magnitude for all the molecules
in a sample and its orientation will be relatively well fixed with respect to the
individual molecular axes. We then can consider the factor ΔαEint to be part of the
dipole change Δμ in Eq. (4.58), rather than including it separately in Eq. (4.59).
The additional contribution to the transition energy from dipoles induced by the
external field Eext then is just

ΔEind = −Δα |Eext|2 . (4.60)

According to Eq. (4.60), interactions of the external field with induced dipoles
will shift the transition energies for all the molecules of a sample in the same
direction, depending on whether Δα is positive or negative. The change in the
transition energy increases quadratically with the strength of the external field. The
contribution to ΔE from induced dipoles is often termed a “quadratic” Stark effect
to distinguish it from the “linear” contribution from Δμ, which depends linearly
on |Eext| as described by Eq. (4.57). As we will see shortly, however, the changes in
the absorption spectrum attributable to Δα and Δμ both depend quadratically on
|Eext|.

Let us assume that the internal field Eint has a fixed magnitude and orientation
with respect to the molecular axes, so that Eq. (4.60) is valid. If Δα and Δμ both are
nonzero, the total change in the transition frequency for an individual molecule
then will be

Δν = −
(
Eext · Δμ + |Eext|2 Δα

)
/h . (4.61)

The effect on the overall absorption spectrum of an isotropic sample can be
evaluated by expanding the absorption spectrum as a Taylor series in powers of
Δν:

ε(ν, E) = ε(ν, 0) +
∂ε(ν, 0)
∂ν

Δν +
1
2
∂2ε(ν, 0)
∂ν2

|Δν|2 + · · · (4.62)

= ε(ν, 0) −
∂ε(ν, 0)
∂ν

(
Eext · Δμ + |Eext|2 Δα

)
h−1

+
1
2
∂2ε(ν, 0)
∂ν2

(
Eext · Δμ + |Eext|2 Δα

)2
h−2 + · · · ,
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where ε(ν, 0) represents the absorption spectrum in the absence of the external
field. We next need to average this expression over all orientations of the molecules
with respect to the field. If the solution is isotropic, terms that depend on the
first, third, or any odd power of |Eext| average to zero, while terms that depend
on even powers of |Eext| remain, and the average value of (Eext · Δμ)2 becomes
(1/3)|Eext|2|Δμ|2 (Box 4.6). The total effect of the external field on the molar ex-
tinction coefficient at frequency ν then will be

ε(ν, E) − ε(ν, 0) = −
(
∂ε(ν, 0)
∂ν

)
Δα |Eext|2

h
+

1
2

(
∂2ε(ν, 0)
∂ν2

) ∣∣Δμ
∣∣2 |Eext|2

3h2
+ · · · .

(4.63)

Fig. 4.29. Idealized absorption spectra of an isotropic system in the absence (dotted curve)
and presence (solid curve) of an external electric field (A, B), and the changes in the spectra
caused by the field (C, D). In A and C, the chromophore is assumed to have the same
dipole moment but a higher polarizability in the excited state than in the ground state;
the field shifts the spectrum to lower energies. In B and D, the chromophore has the same
polarizability but a higher dipole moment in the excited state than in the ground state; the
field broadens the spectrum and decreases the peak absorbance. Stark spectra often show
a combination of these two effects
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This expression shows that the major contributions from Δα to the changes in the
absorption spectrum depend on the first derivative of the spectrum with respect
to ν, whereas the major contributions from Δμ depend on the second derivative.
As stated above, both depend on the square of |Eext|. Stark spectra often include
contributions from both induced and permanent dipoles, which can be separated
experimentally by fitting the measured difference spectrum to a sum of first-
and second-derivative terms (Fig. 4.29). If the measuring light is polarized, the
spectrum also depends on the angle between the polarization axis and the applied
field, and this dependence can be used to determine the orientation of Δμ relative
to the transition dipole (Box 4.15).

Box 4.15 Electronic Stark spectroscopy of immobilized molecules

In Liptay’s treatment (Liptay 1965, 1969, 1974) as implemented by Boxer and
coworkers (Bublitz and Boxer 1997), applying an external field E to a nonori-
ented but immobilized system changes the absorbance (A) at wavenumber ν

by

ΔA
(
ν
)

= |E|2

[

AχA
(
ν
)

+
Bχ

15hc
ν

(
∂
(
A
(
ν
)
/ν
)

∂ν

)

+
Cχ

30h2c2
ν

(
∂2
(
A
(
ν
)
/ν
)

∂ν2

)]

, (B4.15.1)

with

Aχ =
1

30
∣∣μba

∣∣2
∑

ij

[
10(aij)2 +

(
3 cos2χ − 1

) (
3aiiajj + (aij)2)]

+
1

15
∣∣μba

∣∣2
∑

ij

[
10μba(i)bijj +

(
3 cos2χ − 1

) (
4μba(i)bijj

)]
,

Bχ =
5
2

Tr
(
Δα/ +

(
3 cos2χ − 1

) (3
2
Δαμ −

1
2

Tr(Δα)
)

+
1

∣∣μba
∣∣2
∑

ij

[
10μba(i)aijΔμj (B4.15.2)

+
(
3 cos2χ − 1

) (
3μba(i)ajjΔμi + μba(i)aijΔμj

)]
, (B4.15.3)

and

Cχ =
∣∣Δμ

∣∣2 [5 +
(
3 cos2χ − 1

) (
3 cos2ζ − 1

)]
. (B4.15.4)

These expressions include averaging over all orientations of the chro-
mophore with respect to the field and the polarization of the measuring
light. The factors aij and bijj in Eqs. (B4.15.2) and (B4.15.3) are elements of the



4.13 The Electronic Stark Effect 187

transition polarizability tensor (a) and the transition hyperpolarizability (b),
which describe the effects of the external field on the dipole strength of the
absorption band. These effects probably are relatively minor in most cases,
and are neglected in Eq. (4.63). The transition polarizability tensor a is a 3×3
matrix, whose nine elements are defined as aij = (∂μba(i)/∂Ej), where μba(i)

is the i component of the transition dipole (μba) and Ej is the j component
of the field. The transition hyperpolarizability b is a 3 × 3 × 3 cubic array, or
third-rank tensor. Including both polarizability and hyperpolarizability, the
change in the transition dipole (μba) caused by the field is a · E + E · b · E.
The change in the x component of μba, for example, is axxEx + axyEy +
axzEz + bxxx|Ex|2 + byxy|Ey|2 + bzxz|Ez|2. The hyperpolarizability terms are
included in Eq. (B4.15.2) because, though small relative to μba, they can
dominate over the polarizability terms for strongly allowed transitions. This
is because, as we discussed in Sect. 4.5, an electronic transition can be strongly
allowed only if the initial and final states have different symmetries. The
transition polarizability, by contrast, tends to be small for states with different
symmetries because it depends on mixing of these states with other states
(Bublitz and Boxer 1997; Box 12.1). If the initial and final states have different
symmetries, they generally cannot both mix well with a third state.

In Eqs. (B4.15.3) and (B4.15.4),Δμ is the difference between the permanent
dipole moments of the excited and ground states (μbb − μaa), and Δμx, Δμy,
and Δμz are its components. Δα is the difference between the polarizabilities
of the excited and ground state, with the polarizabilities again described as
second-rank tensors. To first order, the field changes Δμ by Δα · Eext. Tr(Δα)
is the sum of the three diagonal elements of Δα, and Δαμ is the component
of Δα along the direction of μba (μba · Δα · μba/|μba|2). χ is the angle between
Eext and the polarization of the measuring light and ζ is the angle between
μba and Δμ.

Stark effects usually are measured by modulating the external field at a fre-
quency on the order of 1 kHz and using lock-in detection electronics to extract
oscillations of a transmitted light beam at twice the modulation frequency.
The three terms in the brackets on the right-hand side of Eq. (B4.15.1) can be
separated experimentally by their dependence on, respectively, the zeroth,
first, and second derivatives of A/ν with respect to ν. |Δμba|2 and |ζ| then are
obtained by measuring the dependence of Cχ on the experimental angle χ.
The experiment thus gives the magnitude of Δμ uniquely, but restricts the
orientation of Δμ only to a cone with half angle ±ζ relative to Δμba.

The factor Bχ depends on both Δα and cross terms involving Δμ and the
transition polarizability (Eq. (B4.15.3)). Although the transition polarizabil-
ity (a) is expected to be small for strongly allowed transitions, its products
withΔμ are not necessarily negligible relative toΔα. Conventional Stark mea-
surements therefore do not yield unambiguous values for Δα. In some cases,
it may be possible to obtain additional information by measuring the oscil-
lations of the transmitted light beam at higher harmonics of the frequency
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at which the field is modulated and relating the signals to higher derivatives
of the absorption spectrum (Lao et al. 1995; Bublitz and Boxer 1997; Bublitz
et al. 1998; Moore et al. 1999). This technique is called higher-order Stark
spectroscopy.

Equation (4.63) assumes that the absorption band responds homogeneously to
the external field. This assumption can break down if the band represents several
different transitions, particularly if these have nonparallel transition dipoles, but
information about the individual components sometimes can be obtained by com-
bining Stark spectroscopy with hole-burning (Kador et al. 1987). An illustration
is a study by Gafert et al. (1995) on mesoporphyrin IX in horseradish peroxidase.
The authors were able to evaluate the contribution of the internal field to Δμ and
to relate varying local fields to different conformational states of the protein.

Pierce and Boxer (1995) have described Stark effects on N-acetyl-L-tryptophan-
amide and the single tryptophan residue in the protein melittin. They separated
effects on the 1La and 1Lb bands by taking advantage of the different fluorescence
anisotropy of the two bands (Sect. 5.6). In agreement with Fig. 4.27, the 1La band
exhibited a relatively large Δμ of approximately 6/f D, where f is the unknown
local-field correction factor. The Δμ for the 1Lb band was much smaller.

Other interesting complexities can arise if the excited chromophore enters into
a rapid photochemical reaction that is affected by the external field. This is the
situation in photosynthetic bacterial reaction centers, where the excited bacteri-
ochlorophyll dimer (P∗) transfers an electron to a neighboring molecule (B) with
a time constant on the order of 1–3 ps. The electron-transfer process generates
an ion-pair state (P+B−) whose dipole moment is much larger than that of either
P∗ or the ground state. An external electric field thus can shift the ion-pair state
to substantially higher or lower energy depending on the orientation of the field
relative to P and B, and this shift can alter the rate of electron transfer. The resulting
changes in the absorption spectrum are not described well by a simple sum of first-
and second-derivative terms (Eq. 4.64), but can be analyzed fruitfully by including
higher-order terms (Zhou and Boxer 1998a, b; Treynor et al. 2003; Treynor and
Boxer 2004).

Vibrational Stark spectroscopy is discussed in Sect. 6.4.
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5.1
The Einstein Coefficients

We have seen that light can excite molecules from their ground states to states with
higher energies and can stimulate downward transitions from excited states to the
ground state. But excited molecules also decay to the ground state even when the
light intensity is zero. The extra energy of the excited molecule can be radiated as
fluorescence, transferred to another molecule, or dissipated to the surroundings
as heat. In this chapter we consider fluorescence.

The rate constant for fluorescence can be related to the dipole strength for
absorption by a line of reasoning that Einstein (1917) developed in the period 1914–
1917. Consider a set of atoms with ground-state wavefunction Ψa and excited state
wavefunction Ψb. Suppose that the atoms are enclosed in a box and are exposed
only to the black-body radiation from the walls of the box. According to Eq. (4.8c),
the rate at which the radiation causes upward transitions from Ψa to Ψb is

rate↑ =
(
E0 · μba

)2ρν(νba)Na/�2 atoms cm−3 s−1 , (5.1)

where μba is the transition dipole for absorption, E0 is the amplitude of the os-
cillating electric field, ρν(νba)dν is the number of modes of oscillation of the field
in a small interval of frequency dν around the frequency of the optical transition
(νba), Na is the number of molecules per cubic centimeter in state Ψa, and the bar
over (E0 · μba)2 denotes averaging over all orientations of the molecules. Einstein
cast this expression in terms of the energy density of the radiation, ρ, instead of E0

andρν. If the sample or the radiation field are isotropic (as the black-body radiation
inside the box would be), so that the atoms are randomly oriented with respect
to the field, the quantity (E0 · μba)2ρν(νba) in Eq. (5.1) is (2πf 2/3n2)|μba|2ρ(νba),
where ρ(νba) is the energy density at νba and f is the local-field correction factor
(Eqs. (3.32), (3.37), (4.12)). The rate of upward transitions is, therefore,

rate↑ =
(
2πf 2/3n2

�
2) ∣∣μba

∣∣2 ρ(νba)Na =
(
2πf 2/3n2

�
2)Dbaρ(νba)Na (5.2a)

= Bρ(νba)Na . (5.2b)

Equation (5.2b) simply defines a parameter B that is proportional to the dipole
strength:

B ≡ (
2πf 2/3n2

�
2) Dba . (5.3)

William W. Parson, Modern Optical Spectroscopy,
DOI: 10.1007/978-3-540-37542-5, © Springer-Verlag 2009
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B is called the Einstein coefficient for absorption. Because each transition from
Ψa to Ψb removes an amount of energy hνba from the radiation, the sample must
absorb energy at the rate Bρ(νba)Nahνba. Equation (5.3) often is presented without
the factors f 2 and n so that it refers to a sample in a vacuum.

Light also stimulates downward transitions from Ψb to Ψa, and from the sym-
metry of Eq. (4.7) the coefficient for this must be identical to the Einstein coefficient
for upward transitions (B). If the excited atoms had no other way to decay, the rate
of downward transitions would be

rate↓ = Bρ(νab)Nb , (5.4)

where Nb is the number of atoms per cubic centimeter in the excited state. Let us
restrict ourselves for now to an idealized atom that absorbs or emits at a single
frequency (νab = νba = ν). The same value of ρ then will apply to upward and
downward transitions: ρ(νba) = ρ(νab) = ρ(ν).

At equilibrium the rates of upward and downward transitions must be equal.
But from Eqs. (5.2) and (5.4), this would require that

Nb/Na = 1 , (5.5)

no matter what the light intensity is. This cannot be correct. At equilibrium, the
number of atoms in the excited state is surely much smaller than the number in the
ground state. There must be some other way for downward transitions to occur
in addition to stimulated emission. Evidently, an excited atom also can emit light
spontaneously (Fig. 5.1).

Fig. 5.1. The rate of absorption is proportional to ρ(ν)Na; the rate of stimulated emission
is proportional to ρ(ν)Nb. For the rates of upward and downward transitions to balance,
downward transitions must occur by an additional mechanism that is independent of the
light intensity. This is fluorescence



5.1 The Einstein Coefficients 191

If spontaneous fluorescence occurs with a rate constant A (the Einstein coefficient
for fluorescence), then the total rate of downward transitions will be

rate↓ = [Bρ(ν) + A]Nb . (5.6)

The additional decay mechanism will decrease the ratio of Nb to Na. At equilibrium,
when the rates of upward and downward transitions are equal, we now find

Nb/Na = Bρ(ν)/ [Bρ(ν) + A] . (5.7)

But we also know that, at thermal equilibrium,

Nb/Na = exp
[
−
(
Eb − Ea

)
/kBT

]
= exp

(
−hν/kBT

)
, (5.8)

where kB is the Boltzmann constant and T the temperature. Combining Eqs. (5.7)
and (5.8) reveals a relationship between A and B:

A/B = ρ(ν)
[
1 − exp

(
−hν/kBT

)]
/ exp

(
−hν/kBT

)
. (5.9)

Now let us use Planck’s expression for the energy density of black-body radiation
(Eq. (3.41a)):

ρ(ν) =
(
8πhn3ν3/c3) exp

(
−hν/kBT

)
/
[
1 − exp

(
−hν/kBT

)]
. (5.10)

Substituting this expression for ρ(ν) in Eq. (5.9) gives

A =
(
8πhn3ν3/c3)B (5.11)

=
(
8πhn3ν3/c3) (2πf 2/3n2

�
2)Dba =

(
32π3n f 2/3�λ3)Dba . (5.12)

Equation (5.12) says that the rate constant for spontaneous fluorescence is
proportional to the dipole strength for absorption. Strong absorbers are inherently
strong emitters. But A also is inversely proportional to the cube of the fluorescence
wavelength, so other things being equal, the fluorescence strength will increase
as the absorption and emission move to shorter wavelengths. Although we have
derived Eq. (5.12) for a system exposed to black-body radiation, the result should
not depend on how the system actually is excited.

In his papers of 1914–1917, Einstein’s actual line of reasoning was the reverse of
the argument presented here. Einstein began with the assumption that an excited
system can decay spontaneously as well as by stimulated emission. He also assumed
that the relative populations of the ground and excited states follow the Boltzmann
distribution (Eq. (5.8)). With these assumptions, he obtained a simple derivation
of the Planck black-body radiation law (Eqs. (3.41), (5.10)) and went on to show
that absorption of light transfers momentum to the absorber.

The Einstein relationship between absorption and fluorescence is strictly valid
only for a system that absorbs and fluoresces at a single frequency. This condition
clearly does not hold for molecules in solution, which have broad absorption
and emission spectra. Expressions corresponding to Eq. (5.12) can be derived for
such systems, but before we do this let us look at some of the general features of
molecular fluorescence spectra.
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5.2
The Stokes Shift

The fluorescence emission spectrum of a molecule in solution usually peaks at
a longer wavelength than the absorption spectrum because nuclear relaxations of
the excited molecule and the solvent transfer some of the excitation energy to the
surroundings before the molecule fluoresces. The redshift of the fluorescence is
called the Stokes shift after George Stokes, a British mathematician and physicist
who, in 1852, discovered that the mineral fluorspar emits visible fluorescence
when it is illuminated with UV light. Stokes also described the redshift of the
fluorescence of quinine, coined the term “fluorescence,” and was the first to observe
that a solution of hemoglobin changes from blue to red when the protein binds
O2. The Stokes shift reflects both intramolecular vibrational relaxations of the
excited molecule and relaxations of the surrounding solvent. The contributions
from intramolecular vibrations can be related to displacements of the vibrational
potential energy curves between the ground and excited states. Figure 5.2 illustrates
this relationship. Suppose that a particular bond has length bg at the potential
minimum in the ground state, and length be in the excited state. The vibrational
reorganization energy (Λ) is the energy required to stretch or compress the bond
by be − bg. Classically, this energy is (K/2)(be − bg)2, where K is the vibrational
force constant.

The quantum-mechanical coupling strength (S) for a vibrational mode is defined
as Δ2/2, where Δ is the dimensionless displacement of the potential surface in the
excited state, 2π(mυ/h)1/2(be − bg), and υ is the vibrational frequency (Eq. (4.42)).
We noted in Chap. 4 that when |Δ| > 1, the Franck–Condon factors for absorption
peak at an energy approximately Shυ above the 0–0 transition energy (Fig. 4.21).
The quantum-mechanical reorganization energy for a strongly coupled vibrational
mode thus is approximately Shυ, or Δ2hυ/2. If this is the only vibrational mode
with a significant coupling strength, fluorescence emission will peak approximately
Shυ below the 0–0 transition energy, so the Stokes shift (hνabs − hνfl in Fig. 5.2)
will be roughly 2Shυ, or Δ2hυ. If multiple vibrational modes are coupled to the
transition, the vibrational Stokes shift is the sum of the individual contributions:
hνabs − hνfl ≈ ∑

i |Δi|2hυi where Δi and υi are the displacement and frequency of
mode i.

As we saw in Sect. 4.12, plots analogous to those in Fig. 5.2 also can be used
to describe the dependence of the energies of the ground and excited states on
a generalized solvent coordinate (Eqs. (4.54)–(4.56), Fig. 4.28). Neglecting rota-
tional energies, the overall reorganization energy is the sum of the vibrational
and solvent reorganization energies, and the total Stokes shift is the sum of the
vibrational and solvent Stokes shifts.

The magnitude of the solvent Stokes shift usually increases with the polarity of
the solvent, and decreases if the solvent is frozen. For example, the fluorescence
emission spectra of indole in hexane, butanol, and water peak near 300, 315, and
340 nm, respectively. The emission of tryptophan in proteins behaves similarly,
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Fig. 5.2. Potential energies and energy eigenvalues for a harmonic oscillator in ground
and excited electronic states. The abscissa is the dimensionless vibrational coordinate
2π(mυ/h)1/2x, where x is the Cartesian coordinate, m is the reduced mass of the vibrat-
ing atoms, and υ is the classical vibration frequency. In this illustration, the vibrational
frequencies are the same in the two states but the minimum is displaced by Δ = 2.5 in the
excited state. The vibrational reorganization energy (Λ) is indicated. (The reorganization
energies of the ground and the excited state are the same if the vibrational frequency is
the same in the two states.) The vibrational Stokes shift (hνabs − hνfl) is 2Λ. The vibronic
transitions labeled hνabs and hνfl have identical Franck–Condon factors and are displaced in
energy above (hνabs) and below (hνfl) the 0–0 transition energy (hν00) by the same amount
(3hυ)

usually peaking at longer wavelengths if the tryptophan is exposed to water and
at shorter wavelengths if the tryptophan is located in a relatively nonpolar region
of the protein. Shifts of tryptophan fluorescence to shorter or longer wavelengths
thus can report on protein folding or unfolding. As discussed in Chap. 4, the
280-nm absorption band of the indole side chain of tryptophan represents two
excited states with similar energies. The 1La state has the larger dipole strength
and probably accounts for most of the fluorescence (Callis 1997; Vivian and Callis
2001). Because electron density moves from the pyrrole ring to the benzyl ring of
the indole macrocycle when the 1La state is created (Sects. 4.12, 4.13, Fig. 4.27),
movements of nearby positively charged species in this direction or movements of
negatively charged species in the opposite direction will stabilize the excited state
and shift the emission to the red.
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Solvent Stokes shifts for small molecules in solution typically occur with mul-
tiphasic kinetics that stretch over time scales from 10−13 to 10−10 s. Similar mul-
tiphasic relaxations extending to 10−8 s or longer are seen in the fluorescence of
proteins with a single tryptophan or with an exogenous fluorescent label that is
sensitive to local electric fields (Gafni et al. 1977; Badea and Brand 1979; Pierce
and Boxer 1992; Lakowicz 2000). Depending on the time range, changes in the
emission spectrum on nanosecond or longer time scales often can be resolved
by single-photon counting or frequency-domain measurements (Sect. 1.11), and
faster components can be seen by fluorescence upconversion (Sect. 1.11), pump–
probe measurements of stimulated emission (Fig. 11.7, panel A), or photon-echo
experiments (Sect. 11.4). Another approach is to use a fluorescence-depletion tech-
nique in which one measures the total fluorescence when a sample is exposed
to two short flashes of light separated by an adjustable delay (Cote et al. 1989;
Kauffman et al. 1989; Kusba et al. 1994; Lakowicz et al. 1994; Zhong et al. 1996;
Nagarajan and Parson 2000). The first flash prepares the excited state; the second
can deplete this state by inducing stimulated emission or excitation to a higher
state, and thus decrease the measured fluorescence. The effect of the second flash
depends on the time-dependent absorption and emission spectra of the excited
state, the frequencies and polarizations of the flashes, and the time between the
two flashes. If the first flash excites the chromophore on the blue side of its ab-
sorption band, the fluorescence depletion caused by a flash at longer wavelengths
will increase with time as relaxations move the excited chromophore’s stimulated
emission to the red. Applications of this technique in fluorescence microscopy are
described in Sect. 5.10.

The bioluminescence of the Japanese firefly provides a striking illustration of
a Stokes shift (Nakatsu et al. 2006). Bioluminescence occurs in a structurally di-
verse group of proteins called luciferases. Firefly luciferases bind a small molecule
(luciferin), which reacts with O2, ATP, and Mg2+ to form the oxidized chromophore
(oxyluciferin) in an excited electronic state. Emission occurs as the oxyluciferin
decays to the ground state. The emission from the Japanese firefly normally is
greenish yellow, peaking at 560 nm, but it shifts markedly to the red (605 nm) if
a particular serine residue (S286) of luciferase is replaced by asparagine. The crystal
structure of the S286N mutant protein bearing oxyluciferin is very similar to that
of the wild-type protein. Crystal structures of the complexes with a model com-
pound for an intermediate in the reaction, however, show significant differences.
In the wild-type protein, an isoleucine side chain moves close to the chromophore,
apparently providing a relatively rigid, hydrophobic environment that limits the
size of the Stokes shift. In the mutant, the isoleucine side chain remains farther
from the chromophore, leaving room for a larger relaxation before the excited
chromophore emits.
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5.3
The Mirror-Image Law

The fluorescence emission spectrum of a molecule usually is approximately a mir-
ror image of the absorption spectrum, as illustrated in Fig. 5.3. Several factors
contribute to this symmetry. First, if the Born–Oppenheimer approximation holds,
and if the vibrational modes are harmonic and have the same frequencies in the
ground and excited electronic states (all significant approximations), then the en-
ergies of the allowed vibronic transitions in the absorption and emission spectra
will be symmetrically located on opposite sides of the 0–0 transition energy, hν00.
The solid vertical arrows in Fig. 5.2 illustrate such a pair of upward and downward
transitions whose energies are, respectively, hν00 + 3hυ and hν0 − 3hυ, where υ is
the vibrational frequency. In general, for fluorescence at frequency ν = ν00 − δ,
the corresponding absorption frequency is ν′ = ν00 + δ = 2ν00 − ν. Conversely,
absorption at frequency ν′ gives rise to fluorescence at 2ν00 − ν′.

Mirror-image symmetry also requires that the Franck–Condon factors be sim-
ilar for corresponding transitions in the two directions, and this often is the case.
Assuming again that the Born–Oppenheimer approximation holds and that the vi-
brational modes are harmonic and have fixed frequencies, the vibrational overlap
integral for a downward transition from vibrational level m of the excited state to
level n of the ground state is identical in magnitude to the overlap integral for an
upward transition from level m of the ground state to level n of the excited state
(Birks and Dyson 1963; Birks 1970):

〈
χa(n)

∣∣χb(m)
〉

= ±
〈
χb(n)

∣∣χa(m)
〉

. (5.13)

You can see this by examining the products of the harmonic-oscillator wavefunc-
tions plotted in Fig. 5.4. Since χb(2)χa(0) becomes superimposable on χa(2)χb(0) if it
is inverted with respect to the vibrational axis, the results of integrating the two

Fig. 5.3. When plotted against frequency
(ν) and weighted by ν−3, the normalized
fluorescence emission spectrum usually
is approximately a mirror image of
the absorption spectrum weighted by
ν−1. The normalized spectra cross near
the frequency of the 0–0 transition.
The solid curves show fluorescence
(Fν−3) and absorption (εν−1) spectra
weighted in this way; the dotted curves
are the unweighted fluorescence (F) and
absorption (ε) spectra
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Fig. 5.4. A Vibrational wavefunctions for the ground and excited electronic states of
a molecule. The solid curves are the first three wavefunctions for a harmonic oscillator
with the same frequency in the two electronic states and a dimensionless displacement
Δ = 2 along the vibrational coordinate in the excited state (χa(0), χa(1), χa(2), χb(0), χb(1), and
χb(2)). The dotted horizontal lines are the vibrational potential energies. The baseline for
each wavefunction is shifted vertically by the vibrational energy; the energy of the excited
electronic state relative to that of the ground state is arbitrary. B Products of the vibrational
wavefunctions χb(1)χa(0), χa(1)χb(0), χb(2)χa(0), and χa(2)χb(0)

products from −∞ to ∞ over this axis must be identical. The product χb(1)χa(0)

becomes superimposable on χa(1)χb(0) if it is inverted with respect to both the am-
plitude and vibrational axes, so their integrals over the vibrational coordinate must
differ only in sign. The difference in sign disappears when the overlap integral is
squared to form the Franck–Condon factor.

Corresponding upward and downward transitions with identical Franck–
Condon factors thus occur at frequencies displaced equally on either side of ν00.
But the emission strength at frequency ν also depends on ν3Dba, where Dba is the
electronic dipole strength (Eq. (5.12)), whereas the molar absorption coefficient
at frequency ν′ depends on ν′Dba (Eq. (4.15)). Taking the factors of ν3 and ν into
account, the expected mirror-image relationship is

F(ν00 − δ)
(
ν00 − δ

)3 =
F(ν00)
ε(ν00)

ε(ν00 + δ)
(
ν00 + δ

) (5.14)

for all δ. The factor F(ν00)/ε(ν00) scales the emission and absorption spectra to the
same amplitude at ν00 and, if the mirror-image relationship holds, at their maxima.
The spectra shown with solid lines in Fig. 5.3 are weighted by ν00 + δ or (ν00 + δ)3

as Eq. (5.14) prescribes.
In addition to requiring matching of the energies and Franck–Condon factors

for corresponding upward and downward transitions, mirror-image symmetry
requires the populations of the various vibrational sublevels from which downward
transitions embark in the excited state to be similar to the populations of the
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sublevels where corresponding upward transitions originate in the ground state.
This matching will flow from the similarity of the vibrational energies in the
ground and excited states, provided that the vibrational sublevels of the excited
state reach thermal equilibrium rapidly relative to the lifetime of the state. If the
excited molecule decays before it equilibrates, the emission spectrum will depend
on the excitation energy and typically will be shifted to higher energies than the
mirror-image law predicts.

We have assumed implicitly that any coherence in the temporal parts of the
individual vibrational wavefunctions is lost very rapidly relative to the lifetime
of the excited state, so that we can treat the fluorescence from each vibrational
level independently. This condition is assured if the vibrational levels have reached
thermal equilibrium. We return to vibrational coherence in Chap. 11.

To examine how closely a molecule obeys the mirror-image relationship, the
weighted absorption and emission spectra should be plotted on a an energy scale
(frequency or wavenumber) as in Fig. 5.3, rather than on a wavelength scale.
Fluorometers usually record signals that are proportional to F(λ)Δλ, which is the
number of photons emitted per second in the wavelength intervalΔλ around wave-
lengthλ. Because dν/dλ = −cλ−2, switching an emission spectrum to the frequency
scale requires the transformation |F(ν)Δν| = |cF(λ)λ−2Δλ|. Note that λ here is the
wavelength of the emitted light passing through the detection monochromator
(c/ν), not the wavelength in the solution (c/nν).

The mirror-image relationship can break down for a variety of reasons, in-
cluding heterogeneity in the absorbing or emitting molecules, differences between
the vibrational frequencies in the ground and excited states, and failure of the
vibrational levels of the excited molecule to reach thermal equilibrium.

5.4
The Strickler–Berg Equation and Other Relationships
Between Absorption and Fluorescence

As we noted in Sect. 5.1, the Einstein relationship between absorption and flu-
orescence (Eq. (5.12)) assumes that absorption and emission occur at a single
frequency, which is not the case for molecules in solution. However, the overall
rate of fluorescence by a molecule with broad absorption and emission bands
can be related to the integrated absorption strength by corresponding expressions
that were developed by Lewis and Kasha (1945), Förster (1951), Strickler and Berg
(1962), Birks and Dyson (1963), and Ross (1975).

Consider a set of molecules with ground and excited electronic states, a and b,
in equilibrium with black-body radiation. Because the rates of absorption and
emission at each frequency must balance, we can relate the rate constant for fluo-
rescence at frequency ν [kfl(ν)] to the rate constant for excitation at this frequency
[kex(ν)] and the ratio of the populations of the two states (Na and Nb):

kfl(ν) = kex(ν)Na/Nb . (5.15)
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Black-body radiation at moderate temperatures is so weak that stimulated emission
is negligible compared with fluorescence. At thermal equilibrium, the population
ratio is given by

Na

Nb
=

Za

Zb
exp

(
hν00/kBT

)
, (5.16)

where Za and Zb are the vibrational partition functions of electronic states a and b,
and hν00 is the energy difference between the lowest levels of the two state. The
ratio Za/Zb can differ from 1 if the energy of one or more vibrational modes is
different in the two electronic states (Eqs. (4.48), (B4.14.4)). A difference in the
spin multiplicities (e.g., triplet versus singlet) also would cause Za/Zb to differ
from 1. We omitted the partition functions in deriving the Einstein relationship
because we were considering a system with no vibrational or rotational sublevels,
but a difference in spin multiplicity would have to be taken into account there as
well.

In Chap. 4, we found an expression for the rate at which a material with a specified
concentration (C) and molar absorption coefficient ε(ν) absorbs energy from
a radiation field (Eq. (4.10)). To obtain the rate constant for excitation at frequency ν

in units of molecules per cubic centimeter per second [kex(ν)], we need only divide
that expression by the amount of energy absorbed on each upward transition
(hν) and by the concentration of the absorber in molecules per cubic centimeter
(10−3NAC, where NA is Avogadro’s number). This gives

kex(ν) =
103 ln 10

NA

ε(ν) I(ν)dν

hν
, (5.17)

where I(ν) is the irradiance in the interval dν around frequency ν. Inserting the
irradiance of black-body radiation (Eq. (3.41b)), we have

kex(ν)dν =
8π103 ln(10) [n(ν)]2ν2

NA c2

(
exp

(
−hν/kBT

)

1 − exp
(
−hν/kBT

)

)

ε(ν)dν (5.18a)

≈ 8000π ln(10) [n(ν)]2ν2 exp
(
−hν/kBT

)

NA c2
ε(ν)dν . (5.18b)

In Eq. (5.18b) we have assumed that exp(−hν/kBT) � 1, which is the case for
absorption bands in the UV, visible or near-IR region at room temperature. [A 0–0
transition at 600 nm, e.g., has hν/kBT = 24.4 and exp(−hν/kBT) = 2.6 × 10−11 at
295 K.]

Combining Eqs. (5.15), (5.16), and (5.18b) gives the rate constant for fluo-
rescence at frequency ν as a function of the absorption coefficient at the same
frequency:

kfl(ν)dν =
8000π ln 10

NA

Za

Zb
exp

[
h
(
ν00 − ν

)
/kBT

] (n(ν)ν

c

)2

ε(ν)dν . (5.19)
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To find the total rate constant for fluorescence (kr) one could integrate Eq. (5.19)
over the all the frequencies at which the molecule fluoresces. This is not very
satisfactory, however, because most of the fluorescence occurs at frequencies below
ν00, where ε(ν) is too small to measure accurately. A more practical procedure is
to scale the measured fluorescence amplitude at each frequency relative to the
fluorescence and ε at the 0–0 transition frequency, and then integrate over the
fluorescence emission spectrum. The exponential factor then becomes 1, giving

kfl(ν) =
8000π ln 10

NA

Za

Zb

(
n(ν00)ν00

c

)2 ε(ν00)
F(ν00)

F(ν)dν (5.20)

and

kr =
∫

kfl(ν)dν =
8000π ln 10

NA

Za

Zb

(
n(ν00)ν00

c

)2 ε(ν00)
F(ν00)

∫
F(ν)dν . (5.21)

The rate constant kr in Eq. (5.21) is a molecular analog of the Einstein A co-
efficient for spontaneous emission. As we reasoned in Sect. 5.1, this rate constant
should not depend on how the excited electronic state is prepared, as long as the
vibrational and rotational sublevels within the state reach thermal equilibrium
among themselves.

Equation (5.21) provides a way to calculate the overall rate constant for fluo-
rescence if we know the emission spectrum, the ratio of the vibrational partition
functions, and the molar absorption coefficient at a reference wavelength. Apart
from the problem of knowing Za/Zb, its main shortcoming is the need to locate the
0–0 transition frequency accurately and to measure the fluorescence and ε here,
where one or both of them can be weak. The fluorescence amplitude F(ν) and F(ν00)
can have arbitrary magnitudes but should have dimensions of photons per second
per square centimeter per unit frequency increment, not the dimensions of energy
per second per square centimeter per unit wavelength increment (fluorescence
irradiance) that most fluorometers provide. The fact that F(ν) is scaled relative
to F(ν00) is significant because measuring the absolute intensity of fluorescence is
technically difficult.

If the mirror-image law (Eq. (5.13)) holds, an alternative approach is to recast
Eq. (5.19) to give the rate constant for fluorescence at frequency ν00 −δ as a function
of the absorption coefficient at frequency ν00 + δ, and then to integrate over the
absorption spectrum instead of the emission spectrum. Letting the fluorescence
frequency be ν′ = 2ν00 − ν, we obtain

kfl(ν′)dν =
8000π ln 10

NA

Za

Zb

(
n
c

)2 ∫
ν′3ε(ν)

ν
dν (5.22)

and

kr =
∫

kfl(ν′)dν =
8000π ln(10)n2

NA c2

Za

Zb

(
ν−3

f

)−1
∫

ε(ν)
ν

dν , (5.23)
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where the factor
(
ν−3

f

)−1
is the reciprocal of the average of ν−3 over the fluorescence

emission spectrum,

(
ν−3

f

)−1
=
∫

F(ν) dν/

∫
ν−3F(ν) dν . (5.24)

As in Eq. (5.21), F(ν) in Eq. (5.24) has dimensions of photons per second per square
centimeter per unit frequency increment, but can be scaled arbitrarily. Note that
the reciprocal of 〈ν−3

f 〉 is not the same as the average of ν3 (〈ν3
f 〉), although the two

quantities will converge if the emission spectrum is sufficiently sharp.
Except for the factor Za/Zb, which Ross (1975) added later, Eq. (5.23) is the ex-

pression given by Strickler and Berg (1962). Strickler and Berg offered a somewhat
different derivation that did not require mirror symmetry, but did assume that the
ground and excited states have similar vibrational structure. The factor 〈ν−3

f 〉−1 has
clearer physical significance in their derivation (see Box 5.1).

Box 5.1 The ν3 factor in the Strickler–Berg equation

In the derivation of Eq. (5.23) given in the text, the factor
(
ν−3

f

)−1
is sim-

ply a mathematical consequence of the assumed mirror symmetry between
the absorption and emission spectra (Seybold et al. 1969). The physical sig-
nificance of this factor emerges more distinctly in the derivation given by
Strickler and Berg (1962), which does not require mirror symmetry.

Strickler and Berg expressed the total rate constant for fluorescence as
a sum of rate constants for individual vibronic transitions. The contributions
from the transitions from level n of the excited state to all levels of the ground
state can be written as

kb,n→a =
∑

m

kb,n→a,m ∝
∑

m

(
νb,n→a,m

)3 ∣∣〈χa,m
∣∣χb,n

〉∣∣2 ∣∣μba
∣∣2 , (B5.1.1)

where 〈χa,m|χb,n〉 and νb,n→a,m are the vibrational overlap integral and fre-
quency for a transition from level n of the excited state to level m of the
ground state and |μba|2 is the electronic dipole strength. Since the vibrational
wavefunctions make up a complete set, Eq. (B5.1.1) can be divided by 1 in
the form of

∑
a |〈χa,m|χb,n〉|2 to obtain

kb,n→a ∝
∑

m

(
νb,n→a,m

)3 ∣∣〈χa,m
∣∣χb,n

〉∣∣2

∑

m

∣∣〈χa,m
∣∣χb,n

〉∣∣2
∣∣μba

∣∣2 . (B5.1.2)

Each of the terms in the numerator is proportional to the strength of one
vibronic band in the fluorescence emission spectrum, whereas each of the
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terms in the denominator is proportional to ν−3 times the strength of one
vibronic band. Replacing the sums by integrals gives

kb,n→a ∝
∫

F(ν)dν
∫

ν−3F(ν)dν

∣∣μba
∣∣2 ≡

(
ν−3

f

)−1 ∣∣μba
∣∣2 . (B5.1.3)

Inserting the numerical constants and summing over all the vibrational levels
of the excited state gives Eq. (5.23).

The Strickler–Berg equation usually is written in terms of the wavenumber
(ν = 1/λ = ν/c) instead of the frequency:

kr =
8000π ln(10) c n2

NA

Za

Zb

(
ν −3

f

)−1
∫

ε(ν)
ν

dν (5.25a)

= 2.880 × 10−9n2 Za

Zb

〈
ν−3

f

〉−1
∫

ε(ν)
ν

dν , (5.25b)

with
(
ν −3

f

)−1
= c3

(
ν−3

f

)−1
=
∫

F(ν) dν/
∫

ν −3F(ν) dν . (5.26)

The numerical factor in Eq. (5.25b) is for ν in units of per centimeter and ε in units
of per molar per centimeter.

Equations (5.21) and (5.23)–(5.25) give similar results for kr when their under-
lying assumptions are valid. The Strickler–Berg equation generally appears to be
somewhat more accurate than Eq. (5.21), having an error on the order of ±20%
(Strickler and Berg 1962; Seybold et al. 1969; Birks 1970; Ross 1975). The ratio of
the partition functions that appears in both expressions (Za/Zb) is rarely known
independently, and is usually assumed to be unity. There are, however, cases in
which the fluorescence rate constants obtained by the two methods agree rea-
sonably well with each other, but are both significantly higher or lower than the
experimental value. (We will discuss experimental measurements of the fluores-
cence rate constant in Sect. 5.6.) Ross (1975) suggested that these can be explained
by departures of Za/Zb from 1.

Figure 5.5 illustrates how an increase or decrease in vibrational frequency af-
fects the Za/Zb ratio. Note that changes in low-frequency modes will be the most
important in this context, because the vibrational partition function goes rapidly
to 1 when the vibrational energy exceeds kBT. At 295 K, kBT is 205.2 cm−1. Because
the complete partition function is the product of the partition functions for all the
different modes (Eq. (B4.14.4)), changes in the frequencies of two or more modes
can either have a multiplicative effect or cancel, depending on whether they are in
the same or opposite directions.

The mirror-image law and the fluorescence and absorption methods for ob-
taining kr all assume that thermal equilibration of the excited molecule with the
surroundings occurs rapidly relative to the lifetime of the excited state. If this
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Fig. 5.5. Ratio of the vibrational partition
functions (Za and Zb) for the ground and
excited states of a system with a single
vibrational mode when the vibrational
frequency in the excited state (υb) is
3/2 (curve 1) or 2/3 (curve 2) times the
frequency in the ground state (υa). The
abscissa is the vibrational energy in the
ground state (hυa) relative to kBT. The
dotted curve shows the ground-state
partition function (Za)

assumption is valid, the ratio of fluorescence to absorbance at a given frequency
should have a predictable dependence on temperature. Returning to Eq. (5.19) and
collecting the terms that depend on ν, we see that

F(ν)dν ∝ exp
[
h
(
ν00 − ν

)
/kBT

] (n(ν)ν

c

)2

ε(ν)dν (5.27)

and

ln
[
F(ν)/ν2ε(ν)

] ∝ −hν/kBT . (5.28)

A plot of ln[F(ν)/ν2ε(ν)] versus the frequency (ν) thus should be a straight line
with slope −h/kBT, where T is the temperature. This relationship was obtained
independently by E.H. Kennard in 1918 and B.I. Stepanov in 1957, and is often
called the Kennard–Stepanov expression. In many cases the slope of the plot turns
out to be less than predicted, suggesting that the excited molecules emit before
they reach thermal equilibrium with their surroundings. However, the “apparent
temperature” derived from the slope is not very meaningful in this event because
the relative populations of the vibrational levels of the excited state may not fit
a Boltzmann distribution. The Kennard–Stepanov expression also can break down
if the sample is inhomogeneous (van Metter and Knox 1976; Becker et al. 1991;
Knox et al. 1997). Plots of ln(F/ν2ε) versus ν sometimes show nonlinearities that
may provide information on the dynamics of the excited state (Knox et al. 1997),
but these features must be interpreted cautiously because they usually occur at
frequencies where both F and ε are small.

We will return to the shapes of absorption and emission spectra in Chaps. 10
and 11.
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5.5
Quantum Theory of Absorption and Emission

Although Einstein’s theory accounts well for the relative amplitudes of absorption,
fluorescence, and stimulated emission, the notion that fluorescence occurs spon-
taneously is fundamentally inconsistent with the assertion we made in Chap. 2 that
an isolated system is stable indefinitely in any one of its eigenstates. If we stick with
the latter principle, fluorescence must be caused by some perturbation we have
neglected. The quantum theory of radiation provides a way out of this conundrum.
As we discussed in Chap. 3, a radiation field has an eigenstate in which the number
of photons is zero. Spontaneous fluorescence can be ascribed to perturbation of
the excited molecule by the zero-point, or vacuum radiation field (Hameka 1965;
Sargent et al. 1974). Let us examine this rather unsettling idea.

We saw in Chap. 3 that electromagnetic radiation can be described by a vector
potential V that is a periodic function of time and position, along with a scalar
potential that can be made equal to zero by a judicious choice of the “guage” of the
potentials. For linearly polarized radiation in a vacuum, the vector potential can
be written

V =
∑

j

2π1/2c êj
{

exp
[
2πi

(
νjt − kj · r

)]
+ exp

[
−2πi

(
νjt − kj · r

)]}
(5.29a)

=
∑

j

2π1/2c êj

[
qj(t) exp

(
2πikj · r

)
+ q∗

j (t) exp
(
−2πikj · r

)]
, (5.29b)

where the unit vector êj defines the polarization axis of oscillation mode j, and
wavevector kj has a magnitude of νj/c (1/λj) and points in the direction of prop-
agation of the oscillation of the mode (Eqs. (3.18), (3.44)). In Eq. (5.29b) we have
replaced the time-dependent factor exp(2πiνjt) and its complex conjugate by qj(t)
and q∗

j (t), respectively.
Now consider the interactions of a radiation field with an electron. In the absence

of the radiation field, the Hamiltonian operator for the electron would be

H̃ =
1

2me
p̃2 + Ṽ = −

�
2

2me
∇̃2 + Ṽ , (5.30)

where p̃, ∇̃, and Ṽ are the usual momentum, gradient, and potential energy op-
erators and me is the electron mass. In the presence of the radiation field, the
Hamiltonian becomes

H̃ =
1

2me

(
p̃ −

e
c

V
)2

+ Ṽ (5.31a)

= −
�

2

2me
∇̃2 −

�e
i2mec

(∇̃ · V + V · ∇̃)
+

e2

2mec2
|V|2 + Ṽ (5.31b)

= −
�

2

2me
∇̃2 −

�e
imec

V · ∇̃ +
e2

2mec2
|V|2 + Ṽ . (5.31c)
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Note that the vector potential combines vectorially with the momentum in
Eq. (5.31a), rather than simply adding to the ordinary potential. The derivation
of this formulation of the Hamiltonian is not straightforward, but the result can
be justified by showing that it leads to the correct forces on a charged particle
(Hameka 1965; Ditchburn 1976; Schatz and Ratner 1993). Combining ∇̃ · V and
V · ∇̃ into a single term in Eq. (5.31c) is justified by the fact that ∇̃ and V commute,
which follows from Eq. (B3.1.16) (Hameka 1965).

By comparing Eq. (5.31c) with Eq. (5.30), expanding V as in Eq. (5.29), and
converting the functions qj(t) and q∗

j (t) to operators, we see that the part of the
Hamiltonian operator representing interactions of the electron with the field is

H̃′ = −
�e

ime c
V · ∇̃ +

e2

2mec2
|V|2 (5.32a)

= −
e�π1/2

ime

∑

j

(
êj · ∇̃) [

q̃j exp
(
2πikj · r

)
+ q̃∗

j exp
(
−2πikj · r

)]

+
(

2πe2

mec

)∑

j1

∑

j2

(
êj1 · êj2

) {
q̃j̃qk exp

[
2πi(kj1 + kj2) · r

]

+ q̃j1̃q∗
j2 exp

[
2πi(kj1 − kj2) · r

]

+ q̃j1̃q∗
j2 exp

[
2πi(kj1 − kj2) · r

]
+ q̃∗

j1̃q∗
j2 exp

[
−2πi(kj1 + kj2) · r

]}
. (5.32b)

If the wavelengths of all the pertinent modes are long relative to the size of the
chromophore holding the electron, so that |2πikj · r| � 1, then exp(±2πikj · r) ≈ 1
and Eq. (5.32b) simplifies to

H̃′ ≈ −
e�π1/2

ime

∑

j

(
êj · ∇̃) (

q̃j + q̃∗
j

)

+
(

2πe2

mec

)∑

j1

∑

j2

(
êj1 · êj2

) (
q̃j1̃qj2 + q̃j1̃q∗

j2 + q̃∗
j1̃qj2 + q̃∗

j1̃q∗
j2

)
. (5.33)

This description of the interaction energy is more general than the treatment
we have used heretofore. The first line of Eq. (5.33) pertains to absorption or
emission of a single photon, and the second line is for processes in which two
photons are absorbed or emitted simultaneously. In the remainder of this chapter,
we consider only one-photon processes. By setting the factor exp(±2πikj · r) in
Eq. (5.32b) equal to 1, we also continue to neglect interactions with the magnetic
field of the radiation, as well as effects involving quadrupole and higher-order
terms in the distribution of the charge. We return to the position-dependent factor
exp(±2πikj · r) in Chap. 9, and we consider two-photon processes in Chap. 12.

If the electron initially has wavefunctionψa and the radiation field wavefunction
isϑn, we can approximate the wavefunction for the system as a whole as the product

Θa,n = ψaϑn . (5.34)
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We are interested in the rate of a transition to a new combined state Θb,m, in
which the molecule and the field have wavefunctions ψb and ϑm. Let us assume
that the new radiation wavefunction ϑm differs from ϑn only in that oscillator j
changes from χj(n) (level nj) to χj(m) (level mj), all the other oscillators being
unchanged. The contribution of the field to the total energy then will change by
(mj − nj)hνj. We expect the transition to occur at a significant rate only if the total
energy is approximately constant, so the change in the energy of the molecule
must be approximately equal and opposite to the change in the energy of the field:
Eb,m − Ea,n ≈ −(mj − nj)hνj.

Using the first line of Eq. (5.33), the interaction matrix element 〈ψbχj(m)|H̃′|
ψaχj(n)〉 is

〈
ψbχj(m)

∣∣∣H̃
′∣∣∣ψaχj(n)

〉
= −

e�π1/2

ime

〈
ψbχj(m)

∣∣∣
(

êj · ∇̃) (
q̃j + q̃∗

j

)∣∣∣ψaχj(n)

〉
. (5.35)

The integral on the right side of this expression can be factored into the dot product
of êj with an integral involving ∇̃ and the electron wavefunctions, and a separate
integral involving the radiation wavefunctions and Q̃j, where Q̃j = q̃j + q̃∗

j as in
Eq. (3.46):

〈
ψbχj(m)

∣∣∣H̃
′∣∣∣ψaχj(n)

〉
= −

e�π1/2

ime

〈
ψb

∣∣ êj · ∇̃∣∣ψa
〉 〈
χj(m)

∣∣∣
(

q̃j + q̃∗
j

)∣∣∣ χj(n)

〉

(5.36a)

= −
e�π1/2

ime
êj · 〈ψb

∣∣∇̃∣∣ψa
〉 〈
χj(m)

∣∣Q̃j

∣∣ χj(n)
〉

. (5.36b)

In Chap. 4 we showed that, for exact wavefunctions, matrix elements of ∇̃ are
proportional to the matrix elements of the dipole operator μ̃ (Sect. 4.8, Box 4.10):

〈
ψb

∣∣∇̃∣∣ψa
〉

= −
2πmeνba

e�
μba . (5.37)

In agreement with the semiclassical theory of absorption and emission, Eq. (5.36b)
indicates that 〈ψb|∇̃|ψa〉 allows transitions between ψa and ψb only to the extent
that it is parallel to the polarization of the radiation ( ê ).

What remains is to evaluate the factor 〈χj(m)|Q̃j|χj(n)〉 in Eq. (5.36b). To do this,
we need to write out eigenfunctions χj(n) and χj(m) of the radiation field explicitly.
In Sect. 3.4 we showed that these are identical to the eigenfunctions of a harmonic
oscillator with unit mass. For an oscillation mode with frequency ν,

χj(n)(uj) = Nj(n)Hn(uj) exp
(

−u2
j /2

)
, (5.38)

where n = 0, 1, ..., the dimensionless positional coordinate uj is

uj = Qj
(
� /2πνj

)−1/2
, (5.39)

the Hn(uj) are the Hermite polynomials, and the normalization factor is

Nj(n) =
[(

2πνj/�
)1/2 /

(
2nn!

)]1/2
(5.40)

(Eq. (2.31), Box 2.5).
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Simplifying the notation by dropping the subscript j and letting κ = 2πν/� so
that u = κ1/2Q, the matrix element we need is

〈
χm

∣∣Q̃
∣∣ χn

〉
=
〈
χm

∣∣Qχn
〉

. (5.41)

This integral can be evaluated by using the recursion formula for the Hermite
polynomials (Box 2.5):

uHn(u) = (1/2)Hn+1(u) + nHn−1(u) . (5.42)

According to this formula,

Qχn = κ−1/2u Nn exp(−u2/2)Hn (5.43a)

= κ−1/2Nn exp(−u2/2) [(1/2)Hn+1 + nHn−1] (5.43b)

= κ−1/2Nn

(
χn+1

2Nn+1
+ n

χn−1

Nn−1

)
= [(n + 1)/2κ]1/2 χn+1 + (n/2κ)1/2χn−1 .

(5.43c)

Incorporating this result in Eq. (5.41) gives
∣∣〈χm

∣∣Q̃
∣∣ χn

〉∣∣ = [(n + 1)/2κ]1/2
〈
χm

∣∣χn+1
〉

+ (n/2κ)1/2 〈χm
∣∣χn−1

〉
. (5.44)

Because the harmonic-oscillator eigenfunctions are orthogonal and normalized,
the integral 〈χm|χn+1〉 in Eq. (5.44) will be unity if m = n + 1, and zero otherwise.
〈χm|χn−1〉, on the other hand, will be unity if m = n − 1, and zero otherwise.
Equation (5.44) therefore can be rewritten as

∣∣〈χm
∣∣Q̃
∣∣ χn

〉∣∣ = [(n + 1)/2κ]1/2 δm,n+1 + (n/2κ)1/2δm,n−1 , (5.45)

where δi,j is the Kronecker delta function (δi,j = 1 if and only if i = j).
The matrix element 〈χm|Q̃j|χn〉 thus consists of the sum of two terms, but only

one of these can be nonzero for a given pair of wavefunctions. The first term
on the right side of Eq. (5.45) applies if the number of photons increases from
n to n + 1. This term represents emission of light by the chromophore and is
proportional to [(n + 1)/2κ]1/2. The second term, which applies if the number of
photons decreases from n to n−1, represents absorption of light and is proportional
to (n/2κ)1/2. The absorption or emission strength depends on the square of the
overall transition dipole, which according to Eq. (5.45) is proportional to n/2κ
for absorption or to (n + 1)/2κ for emission. The intensity of the radiation is
proportional to n. Emission, therefore, includes both a component that depends
on the light intensity (stimulated emission) and a component that is independent
of the intensity (fluorescence).

An immediate corollary of Eq. (5.45) is that 〈χn|Q̃j|χn〉 = 0. Because the overall
matrix element for a transition between two quantum states of a molecule (ψa

and ψb) depends on the product 〈ψb|∇̃|ψa〉〈χm|Q̃j|χn〉, light cannot cause such
a transition unless one or more photons are absorbed or emitted (m ± n).
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The relationship described by Eq. (5.45) often is expressed in terms of photon
creation and annihilation operators that convert wavefunction χn into χn+1 or χn−1,
respectively. The action of these operators on an oscillation mode is to increase or
decrease the number of photons in the mode by one (Box 5.2).

Box 5.2 Creation and annihilation operators

We found in Eq. (5.43c) that the effect of the position operator Q̃ on χn is to
generate a combination of χn+1 and χn−1:

Q̃χn = [(n + 1)/2κ]1/2 χn+1 + (n/2κ)1/2χn−1 , (B5.2.1)

with κ = 2πν/�. This transformation is the sum of the effects of q̃∗ and q̃,
the two complex operators that together make up Q̃ (Eqs. (3.46), (5.43b)).

To examine the action of q̃∗ or q̃ individually, we have to consider the
effect of the radiation momentum operator P̃ defined through Eq. (3.47), in
addition to the effect of Q̃. By following an approach similar to that presented
for Q̃ (Eqs. (5.41)–(5.44)) and using the additional expression P = (∂/∂Q),
we find the action of P̃ on χn to be

P̃χn = i� [κ(n + 1)/2]1/2 χn+1 − i�(κn/2)1/2χn−1 (B5.2.2)

(Hameka, 1965). The actions of q̃∗ and q̃ then can be obtained from Eqs.
(3.46) and (3.47):

q̃∗ = Q̃ −
i

2πν
P̃ = Q̃ −

i
κ�

P̃ , (B5.2.3)

q̃∗χn = [(n + 1)/2κ]1/2 χn+1 , (B5.2.4)

q̃ = Q̃ +
i

2πν
P̃ = Q̃ +

i
κ�

P̃ , (B5.2.5)

and

q̃χn = (n/2κ)1/2χn−1 . (B5.2.6)

The operator q̃∗, which changes χn into [(n + 1)/2κ]1/2χn+1, is called the
creation or raising operator because it increases the number of photons in
the radiation field by 1. The operator q̃ changes χn into (n/2κ)1/2χn−1 and is
called the annihilation or lowering operator. Because the number of photons
cannot be negative, q̃ acting on the zero-point wavefunction χ0 is taken to
give zero.

The creation and annihilation operators provide alternative forms for
many quantum-mechanical expressions, and they are used widely for phonons
(vibrational quanta) as well as photons. For example, the Hamiltonian oper-
ator for a harmonic oscillator can be written
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H̃ = (2πν)2 (q̃ q̃∗ + q̃∗̃q
)

, (B5.2.7)

which gives 〈χn|H̃|χn〉 = (n + 1/2)hν as you can see by evaluating the effects
of performing the two operations in different orders:

q̃∗̃qχn = (n/2κ)χn =
�

4πν
nχn (B5.2.8)

and

q̃ q̃∗χn = [(n + 1)/2κ]χn =
�

4πν
(n + 1)χn . (B5.2.9)

Equations (B5.2.8) and (B5.2.9) also show that q̃∗ and q̃ do not commute with
each other:

(
q̃ , q̃∗) = q̃ q̃∗ − q̃∗̃q = 1/2κ . (B5.2.10)

5.6
Fluorescence Yields and Lifetimes

In Sect. 5.4, we derived expressions for the total rate constant for spontaneous
fluorescence (kr). The reciprocal of this rate constant is called the radiative lifetime
(τr):

τr = 1/A ≡ 1/kr . (5.46)

If the excited state decayed solely by fluorescence, its population would decrease
exponentially with time and the time constant of the decay would be τr. However,
other decay mechanisms compete with fluorescence, decreasing the lifetime of
the excited state. The alternatives include formation of triplet states (intersystem
crossing) with rate constant kisc, nonradiative decay (internal conversion) to the
ground state (kic), transfer of energy to other molecules (resonance energy trans-
fer, krt), and electron transfer (ket). These competing processes often are shown
schematically in a diagram called a Jablonski diagram (Fig. 5.6).

Because rate constants for parallel processes add, the total rate constant for
decay is

ktotal = kr + kisc + kic + krt + ket + · · · . (5.47)

The actual lifetime of the excited state (the fluorescence lifetime, τ) thus is shorter
than τr:

τ = 1/ktotal < 1/kr . (5.48)
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Fig. 5.6. Alternative pathways for formation and decay of excited states. Singlet states are
labeled S and triplet states T; superscripts 0, 1, 2, ..., n, ... denote the ground state and excited
states of increasing energy. Radiative processes (absorption, fluorescence, phosphorescence)
are indicated with solid arrows; nonradiative processes (intersystem crossing, internal con-
version, etc.) are indicated with wavy arrows. Internal conversion and intersystem crossing
usually proceed via excited vibrational levels of the product state. Diagrams of this type
were introduced by A. Jablonski (1935) in a paper on the mechanism of phosphorescence.
The horizontal axis has no physical significance

In general, a sample will contain molecules that interact with their surroundings
in a variety ways, for example, because some of the fluorescing molecules are
buried in the interior of a protein, while others are exposed to the solvent. The
fluorescence then decays with multiphasic kinetics that can be fit by a sum of
exponential terms (Eq. (1.4)). Fluorescence lifetimes can be measured by time-
correlated photon counting, by fluorescence upconversion, or by modulating the
amplitude of the excitation beam and measuring the modulation and phase shift
of the fluorescence (Chap. 1). Pump–probe measurements of stimulated emission
become the method of choice for subpicosecond lifetimes (Chap. 11). For further
information on these techniques and ways of analyzing the data see Lakowicz et
al. (1984), Holzwarth (1995), Royer (1995), Lakowicz (2006), and Valeur (2002).

In most organic molecules, internal conversion from higher excited states to
the lowest or “first” excited singlet state occurs much more rapidly than the decay
from the lowest excited state to the ground state. The measured fluorescence thus
occurs mainly from the lowest excited state even if the molecule is excited initially to
a higher state (Fig. 5.6). This generalization is often called Kasha’s rule after Michael
Kasha, who first formalized it (Kasha 1950). Kasha also pointed out that the rapid
decay of higher excited states results in uncertainty broadening of their energies.

The fluorescence yield (φ) is the fraction of the excited molecules that decay by
fluorescence (Sect. 1.11). For a homogeneous sample that emits exclusively from
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the first excited singlet state, this is simply the ratio of kr to ktotal:

φ =
photons emitted

photons absorbed
=

kr

ktotal
=

τ
τr

. (5.49)

The fluorescence yield from a homogeneous sample is, therefore, proportional to
the fluorescence lifetime and can provide the same information. The fluorescence
from a heterogeneous sample, however, can be dominated by the components with
the longest lifetimes. Suppose, for example, that the fluorescing molecules in a sam-
ple all have the same radiative lifetime (τr), but are found in various environments,
with the fluorescence lifetime varying from site to site. The expression φ = τ/τr

(Eq. (5.49)) still holds in this situation, provided that the mean fluorescence lifetime
is defined as

τ =

∞∫

0

tF(t)dt/

∞∫

0

F(t)dt , (5.50)

where F(t) is the total fluorescence at time t. If the fluorescence decay kinetics
in such a sample are described by a sum of exponentials, F(t) =

∑
Ai exp(−t/τi),

where Ai is the amplitude of component i, then the integrated fluorescence from
component i is Fi = ∫ Ai exp(−t/τi)dt, and the mean fluorescence lifetime is

τ =

⎛

⎝
∑

i

∞∫

0

tAi exp(−t/τi)dt

⎞

⎠
/⎛

⎝
∑

i

∞∫

0

Ai exp(−t/τi)dt

⎞

⎠

=

(
∑

i

τ2
i Ai

)/(
∑

i

τiAi

)

. (5.51)

Fluorescence can be quenched by a variety of agents, including O2, I−, and acry-
lamide. Such quenching often involves electron transfer from the excited molecule
to the quencher or vice versa, forming a charge-transfer complex that decays
quickly by the return of an electron to the donor. The process depends on col-
lisional contacts between the excited molecule and the quencher, and therefore
usually is kinetically first order in the concentration of the quencher ([Q]). The
ratio of the fluorescence yields in the absence and presence of a quencher (φ0/φq

or F0/Fq) is given by the Stern–Volmer equation:

φ0/φq = F0/Fq = (kr/ktotal)/
{

kr/
(
ktotal + kq[Q]

)}
= (ktotal + kq[Q])/ktotal

= 1 + kq[Q]/ktotal = 1 + kqτ [Q] , (5.52)

or φq = φ0/(1 + kqτ[Q]). As in Eqs. (5.47)–(5.50), ktotal here is the sum of the rate
constants with which the excited state decays in the absence of the quencher and
τ is the fluorescence lifetime in the absence of the quencher. The product kqτ in
Eq. (5.52) is called the Stern–Volmer quenching constant (KQ):

KQ ≡ kqτ . (5.53)
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According to Eq. (5.52), a plot of F0/Fq versus [Q] should give a straight line with
a slope of KQ and an intercept of 1, as shown by the solid line in Fig. 5.7, panel B.

Measurements of KQ can provide information on whether a fluorescent group in
a protein is accessible to water-soluble quenchers in the solution or is sequestered in
the interior of the protein. For example, tryptophan residues in different regions
of a protein often exhibit very different quenching constants, particularly with
ionic quenchers such as I−. Reported values range from less than 5 × 107 M−1 s−1

for a deeply buried site in azurin to 4 × 109 M−1 s−1 for an exposed residue in
a randomly coiled peptide (Eftink and Ghiron 1976). Quenching of tryptophan

Fig. 5.7. Fluorescence measured in the presence (Fq) and absence (F0) of a quencher, plotted
as various functions of the concentration of the quencher ([Q]). The solid curves are for
a homogeneous system in which all the fluorophores are accessible to the quencher, and
the quenching is either purely dynamic or purely static. The Stern–Volmer quenching
constant KQ is taken to be 1 mM−1. The dashed curves are for an inhomogeneous system
in which half the fluorophores are accessible to the quencher and half are not (ζa = 0.5);
the quenching again is either purely dynamic or purely static, KQ is 1 mM−1, and the rate
constants for decay of the excited state in the absence of the quencher (ktotal(a) and ktotal(i))
are assumed to be the same in the two pools. Dotted curves are for a homogeneous system
with an equal mixture of dynamic and static quenching; the KQ for dynamic quenching and
the association constant for static quenching (ζa) are both 1 mM−1. In A, Fq/F0 is plotted
against [Q]; in B (a Stern–Volmer plot) F0/Fq is plotted against [Q]; and in C (the modified
Stern–Volmer plot) F0/(F0 − Fq) is plotted against 1/[Q]
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fluorescence by phospholipids with attached nitroxide groups has been used to
study the depth of insertion of proteins in membranes (Ren et al. 1997; Malenbaum
et al. 1998).

In some cases, quenching reflects formation of an actual complex between the
fluorescent molecule and the quencher. If the formation and dissociation of the
complex occur slowly relative to τr, the fluorescence decay kinetics may show
two distinct components: a very short-lived fluorescence from molecules that
are in complexes at the time of the excitation flash and a longer-lived fluores-
cence from free molecules. The decreased fluorescence of the complexes is termed
static quenching to distinguish it from the dynamic quenching process assumed in
Eq. (5.49). If the fluorescence yield from a complex is much lower than the yield
from a free molecule, a plot of F0/Fq versus [Q] will still be linear, but the slope of
the plot will be the association constant for the complex, rather than kqτ. A linear
Stern–Volmer plot does not, therefore, imply that the quenching is dynamic. Static
and dynamic quenching often can be distinguished by varying the viscosity of the
solvent: dynamic quenching usually declines with increasing viscosity because it
is limited by the rate of diffusion.

A mixture of static and dynamic quenching can result in a Stern–Volmer plot
that curves upward as the concentration of the quencher is increased, as shown by
the dotted curve in Fig. 5.7, panel B. If we write CT/C = 1 + Ka[Q] where C and
CT are the concentrations of free and total chromophore and Ka is the association
constant, and then let F/Fq = (1 + kqτ[Q])CT/C as in Eq. (5.52), we get a quadratic
expression for the ratio of the fluorescence yields in the absence and presence of
the quencher:

F0/Fq = 1 +
(
Kq + Ka

)
[Q] + Kq Ka[Q]2 . (5.54)

In principle, both Ka and Kq can be obtained by fitting a plot of F0/Fq versus [Q]
to this expression.

Inhomogeneous systems can give Stern–Volmer plots that curve downward with
increasing [Q], as shown by the dashed curve in Fig. 5.7, panel B. In this situation,
a modified Stern–Volmer expression is useful (Lehrer 1971). Consider a protein in
which a fraction θa of the tryptophan residues is accessible to quenchers in the
solvent and a fraction θi is inaccessible. In the absence of external quenchers, the
overall fluorescence yield will be

φ0 = θiφ0(i) + θaφ0(a) , (5.55)

where θ0(i) and θ0(a) are the fluorescence yields in the two populations. In the
presence of a quencher that interacts only with the exposed tryptophans, the
fluorescence yield becomes

φq = θiφ0(i) + θa
φ0(a)

1 + Kq[Q]
. (5.56)
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The difference between the fluorescence in the absence and presence of the
quencher is

φ0 − φq = θaφ0(a)

(
Kq[Q]

1 + Kq[Q]

)
, (5.57)

and dividing φ0 by this quantity gives

F0

ΔF
=

φ0

φ0 − φq
=
(
θiφ0(i) + θaφ0(a)

θaφ0(a)

)(
1 +

1
Kq[Q]

)
=

1
ζa

+
1

ζaKq[Q]
, (5.58)

whereζa is the fraction of the original fluorescence that is accessible to the quencher.
A plot of F0/ΔF versus 1/[Q] thus should give a straight line with an ordinate
intercept of 1/ζa and a slope of 1/ζaKq, as shown by the dashed line in Fig. 5.7,
panel C.

The modified Stern–Volmer expression (Eq. (5.58)) also gives a straight line
in the conventional case of a homogeneous system with either purely dynamic
or purely static quenching (Fig. 5.7, panel C, solid line). A mixture of static and
dynamic quenching gives a nonlinear plot, but the curvature may be apparent
only at high quencher concentrations (Fig. 5.7, panel C, dotted line). The slope
and abscissa intercept of such a plot must, therefore, be interpreted cautiously and
with reference to the curvature of the original Stern–Volmer plot.

The sensitivity of fluoresence yields to interactions of chromophores with their
surroundings makes fluorescence a versatile probe of macromolecular structure
and dynamics. The fluorescence of tryptophan residues, which usually dominates
the intrinsic fluorescence when proteins are excited in the region of 285 nm, is
particularly well-suited for this and is widely used to monitor protein folding
(Beechem and Brand 1985; Eftink 1991; Millar 1996; Plaxco and Dobson 1996;
Royer 2006). Fluorescence from tryptophan 59 of cytochrome-c, for example, is
quenched severely when the protein folds to a compact conformation that brings
the indole side chain close to the heme (Shastry and Roder 1998). In proteins with-
out an extrinsic quencher such äs a heme, the fluorescence yield can vary from
below 0.01 to about 0.35 depending on the local environment (Cowgill 1963; Eftink
1991; Callis and Liu 2004). In addition, tryptophan often exhibits multiphasic fluo-
rescence decay kinetics even in proteins that have only a single tryptophan residue.
By contrast, the fluorescence yield of 3-methylindole in solution is relatively in-
sensitive to the solvent (Meech et al. 1983). The variable quenching of tryptophan
fluorescence in proteins probably reflects transfer of an electron from the excited
indole ring to a nearby peptide carbonyl group, forming a charge-transfer (CT)
state that decays quickly to the ground state (Petrich et al., 1983; Colucci et al.,
1990; Arnold et al., 1994; Chen et al., 1996; Smirnov et al., 1997; Chen and Barkley,
1998; Sillen et al., 1999; Adams et al., 2002; Callis and Vivian, 2003; Callis and
Liu, 2004). The rate of electron transfer depends on the proximity of the indole
ring to potential electron acceptors, and on electrostatic interactions with nearby
residues that modulate the energy of the CT state relative to the excited state (Callis
and Vivian, 2003; Callis and Liu, 2004). A negatively charged aspartyl residue, for
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example, would favor electron transfer and thus decrease the fluorescence if it is
located close to the indole ring, but would have the opposite effect if it is near the
electron acceptor.

The electron-transfer reaction that quenches tryptophan fluorescence can be
prevented by modifying the chromophore so as to lower the energy of the excited
singlet state relative to the charge-transfer state. 7-Azatryptophan, in which the
excited singlet state is too low in energy to form the charge-transfer state, typically
has a fluorescence lifetime of several hundred nanoseconds compared with 1–6 ns
for tryptophan (Petrich et al. 1983; Smirnov et al. 1997). Escherichia coli incorpo-
rates 7-azatryptophan into proteins with acceptable yields, and the substitution
has relatively little effect on the activities of the enzymes that have been studied
(Schlessinger 1968). In proteins with a single 7-azatryptophan, fluorescence from
the derivative is redshifted by about 45 nm compared with that of the native pro-
tein. The fluorescence usually decays with a single time constant, although the
emission spectrum remains highly sensitive to the polarity of the surroundings
(Ross et al. 1997; Smirnov et al. 1997). Moving 7-azatryptophan from acetonitrile
to water shifts the emission about 23 nm to the red, compared with the shift of
14 nm exhibited by tryptophan. 5-Fluorotryptophan, which has a higher oxidation
potential than tryptophan, also gives monoexponential fluorescence decay kinetics
(Broos et al. 2004; Liu et al. 2005).

To suppress its fluorescence in proteins, tryptophan can be replaced with 4-
fluorotryptophan, which is essentially nonfluorescent (Bronskill and Wong 1988).
This can be useful if one is interested in the fluorescence of another component.

Fluorescence from tyrosine usually is strongly quenched both in proteins and
in solution, although changes in this quenching have been used to monitor protein
unfolding. Quenching of tyrosine fluorescence can reflect transfer of energy to
tryptophan residues, proton transfer from the phenolic OH group of the excited
tyrosine to other groups in the protein, or electron-transfer processes similar to
those that occur with tryptophan (Feitelson 1964; Cowgill 1967; Tournon et al.
1972; Laws et al. 1986; Willis and Szabo 1991; Ross et al. 1992; Dietze et al. 1996;
Mrozek et al. 2004). The emission spectrum of tyrosine typically peaks near 300 nm
and is less sensitive to solvent polarity than that of tryptophan, but shifts to the
region of 335 nm in the tyrosinate anion (Dietze et al. 1996).

Rapid quenching of fluorescence from the bound flavin in glutathione reductase
has been ascribed to electron transfer from a neighboring tyrosine residue (van
den Berg et al. 1998, 2004).

5.7
Fluorescent Probes and Tags

Fluorescent dyes have almost limitless applications as reporters for structural
changes in proteins and other molecules, measuring intracellular components,
and tagging living cells for analysis or sorting. Figure 5.8 shows the structures
of some commonly used dyes. 1-Anilino-8-naphthalenesulfonate has been used
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Fig. 5.8. Some common fluorescent dyes

extensively to probe protein folding because it binds nonspecifically to hydropho-
bic regions of proteins. Its fluorescence is strongly quenched in aqueous solution
and usually increases markedly and shifts from green to blue when the dye binds
to a protein (Weber and Daniel 1966; Brand and Gohlke 1972). Similar shifts of
emission with changes in the local environment occur with prodan [6-propionyl-2-
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(dimethylamino)naphthalene] and related dyes (Pierce and Boxer 1992; Hiratsuka
1998; Lakowicz 2000). Di-4-ANEPPS [3-(4-(2-(6-dibutylamino)-2-napthyl)-trans-
ethenyl)pyridinium)propanesulfonate] is one of a group of “voltage-sensitive” dyes
that can be used to sense changes in membrane potentials in neurons and other
electrically active cells. Changes in the membrane potential can alter the emission
spectra or the fluorescence yields of these dyes by several mechanisms, including
translation, reorientation, or aggregation of the dye, or electrochromic (Stark)
effects (Waggoner and Grinvald 1977; Loew et al. 1985; Fromherz et al. 1991; Baker
et al. 2005). Calcium green 1 and related dyes are used to measure Ca2+ in tissues,
cells, and organelles. The fluorescence yield of Calcium green 1 increases approx-
imately tenfold when it binds Ca2+. A great variety of other fluorescent molecules
and substrate analogs have been synthesized with reactive functional groups that
facilitate specific covalent attachment to macromolecules or incorporation into
particular organelles (Haugland 1996; Lakowicz 1999). For flow cytometry and
cell sorting, cells often are labeled with phycoerythrin, an antenna protein from
algae and cyanobacteria that fluoresces strongly at 580 nm and can be conjugated to
antibodies specific for various components on cell surfaces (Oi et al. 1982; Kronick
and Grossman 1983).

Novel fluorescent tags have been constructed from quantum dots, which are
“nanocrystals” or “clusters” of a semiconducting material such as CdS, CdSe,
or CdTe, typically 20–100 Å in diameter, embedded in a transparent, insulat-
ing medium (Alivisatos et al. 2005; Michalet et al. 2005). The assembly can be
coated with a polymer that is derivatized with a ligand for a particular protein
or other macromolecule. Confining the semiconductor’s electronic wavefunctions
in nanocrystals has remarkable effects on the fluorescence properties (Brus 1984,
1986; Nozik et al. 1985; Bawendi et al. 1990; Bruchez et al. 1998). Most importantly,
the emission maximum depends strongly on the size of the particle, shifting to
longer wavelengths as the size increases. The emission peak for CdSe, for example,
can be varied between about 525 and 655 nm by controlling the particle size, while
the emission spectrum retains an approximately Gaussian shape with a full width
at half maximum amplitude of 30–50 nm. The absorption spectrum, by contrast,
is very broad, allowing excitation of the fluorescence at virtually any wavelength
to the blue of the emission band. Quantum dots also have high fluorescence yields
and are robust to photodamage.

The green fluorescent protein (GFP) obtained from the jellyfish Aequorea victoria
contains a built-in chromophore that forms by cyclization and oxidation of a Ser-
Tyr-Gly sequence (Fig. 5.9; Shimomura and Johnson 1974; Cody et al. 1979; Ormö
et al. 1996; Tsien 1998; Wachter 2006). The chromophore has several different
protonation forms, but the neutral A form shown in Fig. 5.9a predominates in the
resting protein and accounts for the main absorption band near 400 nm (Chattoraj
et al. 1996). An anionic B form absorbs near 475 nm. When the A form of GFP
is excited in the 400-nm absorption band, the chromophore transfers a proton to
an unidentified group on the protein (Fig. 5.9b). The deprotonated chromophore
fluoresces strongly near 510 nm and then recovers a proton in the ground state.
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Fig. 5.9. a The chromophore of green fluorescent protein (GFP). This drawing shows one of
several possible protonation states of the OH groups and the heterocyclic ring. Dotted lines
indicate continuations of the protein main chain. b The potential energy surfaces of the
main forms of the GFP chromophore. The neutral form (A) absorbs at 400 nm; the relaxed,
anionic form (B) absorbs at 475 nm. Most of the green (510-nm) fluorescence comes from
a deprotonated, but incompletely relaxed excited state (I∗). c 4-Hydroxybenzylidene-2,3-
dimethyl-imidazolinone, a model for the GFP chromophore

Fluorescence evidently occurs from an incompletely relaxed intermediate (I∗),
because the emission spectrum is shifted to the blue relative to the spectrum
generated by exciting the anionic B form of GFP. Relaxations of the protein in
the excited state occasionally trap the system in the B form, which equilibrates
relatively slowly with the A form in the ground state.

4-Hydroxybenzylidene-2,3-dimethyl-imidazolinone (HBDI, Fig. 5.9c) is a useful
model of the GFP chromophore and shares many of its spectroscopic properties
(Fig. 12.2); however, HBDI is essentially nonfluorescent at room temperature,
apparently because twisting motions take the excited molecule rapidly to a con-
figuration that favors internal conversion to the ground state (Weber et al. 1999,
2001; Mandal et al. 2004; Martin et al. 2004). The fluorescence yield increases
about 1,000-fold at low temperatures, where the torsional distortions probably are
blocked. The protein surrounding the chromophore must be relatively rigid to
prevent similar distortions from occurring in GFP.

GFP enjoys wide use as a fluorescent marker because the gene encoding the pro-
tein can be fused with the gene for almost any other protein to provide a reporter
for expression of the second gene (Chalfie et al. 1994; Miyawaki et al. 1997; Zhang
et al. 2002). Because the chromophore forms spontaneously after the fused protein
has been synthesized, the green fluorescence can be seen by microscopy without
further additions. Variants of GFP that absorb and emit at shorter or longer wave-
lengths have been constructed (Heim and Tsien 1996; Ormö et al. 1996; Wachter et
al. 1997; Miyawaki et al. 1999; Griesbeck et al. 2001; Zhang et al. 2002; Rizzo et al.
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2004; Shaner et al. 2005), and can be used in various combinations to determine the
distance between the proteins to which they are fused (Chap. 7). Yellow variants
(YFPs), for example, are obtained by combining the mutation S65G with T203F or
T203Y along with substitutions at one to three other sites. Blue and cyan variants
are obtained by substituting histidine, phenylanaline, or tryptophan for Y66, which
forms the phenol group in GFP, in combination with additional mutations that in-
crease the brightness and the stability of the protein. Red fluorescent proteins that
are structurally homologous to GFP have been obtained from nonbioluminescent
corals (Matz et al. 1999; Baird et al. 2000), and have been optimized for brightness
and stability by mutations (Shaner et al. 2004, 2005). Sensors for cytosolic Ca2+

have been constructed by grafting calmodulin into a loop in GFP or a YFP (Baird et
al. 1999; Griesbeck et al. 2001; Nagai et al. 2001). There is also a remarkable variant
of GFP (FP595) that becomes fluorescent in the red when it is illuminated with
green light, and returns to a nonfluorescent state upon illumination with blue light
(Lukyanov et al. 2000; Lippincott-Schwartz et al. 2003; Patterson and Lippincott-
Schwartz 2004). An application of FP595 in ultra-high-resolution microscopy is
discussed in Sect. 5.10.

5.8
Photobleaching

A limiting factor in many applications of GFP and other fluorescent probes is
photobleaching, a photochemical process that converts the molecule irreversibly
to a nonfluorescent product. Photobleaching often involves oxidation by O2 in an
electronically excited singlet state (Christ et al. 2001; Hoogenboom et al. 2005). As
we mentioned in Sect.2.4, O2 has a triplet ground state and its first excited state
(1Δg) is a singlet state. Singlet O2 can be formed by transfer of energy and spin
from aromatic organic molecules in excited triplet states, and can be detected by
its phosphorescence in the region of 1,270 nm (Bilski and Chignell 1996). It reacts
promiscuously at C=C double bonds to generate endoperoxides that rearrange into
a variety of secondary photoproducts (Turro 1978).

The rate of photobleaching depends on the fluorescent molecule and the light
intensity. Photobleaching of rhodamine dyes, for example, occurs with a quantum
yield of only 10−7–10−6 at low light intensities, but with a much greater yield at
high intensities, suggesting that the process is activated largely by higher excited
singlet or triplet states (Eggeling et al. 1998a, 2005).

Although photobleaching is a drawback in many uses of fluorescence, it can
be turned to advantage for studying movements of biomolecules. In a technique
termed fluorescence recovery after photobleaching (FRAP), fluorescent molecules
in a small region of a sample are bleached by focusing a laser beam on the region for
a short period of time (Fig. 5.10). The laser beam then is blocked, and fluorescence
from the same region is measured as a function of time. Fluorescence reappears as
unbleached molecules move into the focal region. A variation called fluorescence
loss in photobleaching (FLIP) or inverse FRAP (iFRAP) is used to monitor the
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Fig. 5.10. Fluorescence recovery after photobleaching and fluorescence loss in photobleach-
ing. The shading represents fluorescence from a cell viewed under a microscope A before,
B immediately after, and C at a longer time after a focused laser pulse is used to destroy
the fluorophores in the region indicated by the circle on the left. The fluorescence from
the bleached region drops rapidly at the time of the bleaching and recovers with time as
molecules migrate into this region from other parts of the cell. The dashed circle indicates
a region that fluorescent molecules can leave to move to the bleached region; fluorescence
here decreases gradually with time after the bleaching. The top circle indicates a region where
the fluorescent molecules are confined or bound; the fluorescence here does not change

fluorescence in a region that is not exposed to the bleaching beam. The fluorescence
here will decrease with time if tagged molecules can move from this region to the
bleached region, but will remain constant if the tagged molecules cannot leave
(Fig. 5.10).

FRAP was used initially to study the dynamics of lateral diffusion of lipids and
proteins on cell surfaces (Axelrod et al. 1976; Jacobson et al. 1976; Schlessinger et
al. 1976; Wu et al. 1978; Schindler et al. 1980). It was combined with total internal
reflection (Box 3.2, Sect. 5.10) to study interactions of immunoglobulin fragments
with planar bilayer membranes supported on glass surfaces (Lagerholm et al.
1999) and binding of ligands to immobilized receptors (Thompson et al. 1999). Its
applications have expanded rapidly with the development of confocal microscopy
(Sect. 5.10) and GFP tags (Reits and Neefjes 2001; Klonis et al. 2002; Lippincott-
Schwartz et al. 2003; Houtsmuller 2005), and now include components of the
nucleus (Houtsmuller and Vermeulen 2001; Calapez et al. 2002), mitochonrial
matrix (Haggie and Verkman 2002), endoplasmic reticulum (Dayel et al. 1999),
and Golgi apparatus (Cole et al. 1996).

5.9
Fluorescence Anisotropy

We now discuss the use of fluorescence to study rotational motions of molecules
on a finer scale. Suppose we have a sample of randomly oriented molecules that
we illuminate with linearly polarized light. Let the polarization be parallel to
the laboratory’s z-axis. The light will selectively excite molecules that have their
transition dipole (μba) oriented parallel to this same axis. However, molecules with
off-axis orientations also will be excited with a probability that depends on cos2θ,
where θ is the angle from the z-axis (Eq. (4.8)).
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The fraction of the molecules that have μba oriented with angle θ between θ and
θ+ dθ, and with φ between φ and φ+ dφ, where φ is the angle of rotation in the xy
plane, is proportional to the area element sinθdθdφ on the surface of a sphere of
unit radius (Box 4.6). The fraction of the excited molecules with this orientation,
W(θ,φ)dθdφ, is given by

W(θ,φ) dθdφ =
cos2 θ sin θdθdφ

2π∫

0
dφ

π∫

0
cos2 θ sin θdθ

. (5.59)

The integral in the denominator, which simply counts all of the molecules that are
excited, evaluates to 4π/3, so

W(θ,φ) dθdφ = (3/4π) cos2 θ sin θdθdφ . (5.60)

Now suppose that the excited molecule fluoresces. If absorption and emission
involve the same electronic transition (Ψa ↔ Ψb) and the excited molecule does
not change its orientation before it emits, the transition dipole for emission (μab)
will be parallel to the transition dipole for absorption (μba). For each molecule
in the sample, the probability that the emission is polarized along the z-axis (i.e.,
parallel to the excitation polarization) again depends on cos2θ. Integrating over all
possible orientations of the molecule gives

F|| ∝
2π∫

0

dφ

π∫

0

W(θ,φ) cos2 θdθ

= (3/4π)

2π∫

0

dφ

π∫

0

cos4 θ sin θdθ = (3/4π)(4π/5) = 3/5 . (5.61)

Similarly, the probability that a given molecule emits with polarization along the
x-axis (i.e., perpendicular to the excitation) is proportional to |μab · x̂|2, which
depends on sin2θ cos2 φ. Integrating over all orientations again gives

F⊥ ∝
2π∫

0

cos2 φdφ

π∫

0

W(θ,φ) sin2 θdθ

= (3/4π)

2π∫

0

cos2 φdφ

π∫

0

cos2 θ sin3 θdθ = 1/5 . (5.62)

Comparing Eqs. (5.61) and (5.62), we see that the fluorescence polarized parallel
to the excitation (F||) should be 3 times as strong as the fluorescence polarized
perpendicular to the excitation (F⊥). Two measures of this relative intensity have
been used, the fluorescence polarization (P) and the fluorescence anisotropy (r):

P = (F|| − F⊥)/(F|| + F⊥) (5.63)
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and

r = (F|| − F⊥)/(F|| + 2F⊥) . (5.64)

In most cases, r is a more meaningful parameter than P. If a sample contains
a mixture of components with different anisotropies, the observed anisotropy is
simply the sum

r =
∑

i

Φiri , (5.65)

where ri is the anisotropy of component i and Φi is the fraction of the total
fluorescence emitted by this component. Polarizations do not sum in this way. In
addition, if the excited molecule can rotate, the time dependence of fluorescence
anisotropy is simpler than the time dependence of the polarization. Although
polarization was used in much of the early literature on fluorescence, most workers
now use anisotropy.

The denominator in the definition of anisotropy (F|| + 2F⊥) is proportional to
the total fluorescence, FT, which includes components polarized along all three
Cartesian axes: FT = Fx + Fy + Fz. In our derivation of Eqs. (5.61) and (5.62), we
excited with z polarization and measured the fluorescence with polarizers parallel
to the z- and x-axes, so F|| = Fz and F⊥ = Fx. Because the emission must be
symmetrical in the xy plane, Fy = Fx. Thus, FT = Fz + 2Fx = F|| + 2F⊥. The
total fluorescence also can be obtained by measuring the fluorescence through
a polarizer set at the “magic angle” 54.7◦ from the z-axis, as shown in Fig. 5.11.
This is equivalent to combining z- and x-polarized measurements with weighting

Fig. 5.11. If a sample is excited with light polarized parallel to the z-axis, the total fluorescence
is proportional to the fluorescence measured at right angles to the excitation through
a polarizer at the “magic angle” of 54.7◦ with respect to z. This measurement weights z and
x polarizations in the ratio 1:2
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factors of cos2(54.7◦) and sin2(54.7◦), which have the appropriate ratio of 1:2.
Fluorescence measured through a polarizer at the magic angle with respect to the
excitation polarization is not affected by rotation of the emitting chromophore.

Inserting the values for F|| and F⊥ from Eqs. (5.61) and (5.62) gives r = 2/5 for
an immobile system. This is the maximum value of the anisotropy for a system
with a single excited state. (In systems that have multiple excited states, the initial
anisotropy could be as high as 1.0 at very early times, when an ensemble of excited
molecules can include molecules that are in different eigenstates but have definite
phase relationships between the time-dependent parts of their wavefunctions. We
will discuss such anomalously high anisotropies in Chap. 10. Interactions with the
surroundings usually cause the wavefunctions to get out of phase within a few
picoseconds, so r decays rapidly to 0.4 or lower.)

The observed anisotropy will be decreased if the emission and absorption
transition dipoles are not parallel, or if the molecule rotates before it fluoresces. If
the transition dipole for emission makes an angle ξ with respect to the transition
dipole for absorption, F||, F⊥, and r for an immobile molecule become (Box 10.5;
van Amerongen and Struve 1995)

F|| =
(
1 + 2 cos2 ξ

)
/15 , (5.66)

F⊥ =
(
2 − cos2 ξ

)
/15 , (5.67)

and

r′ =
(
3 cos2 ξ − 1

)
/5 . (5.68)

These expressions come into play if the molecule relaxes to a different excited
electronic state before it fluoresces. In bacteriochlorophyll, for example, the tran-
sition dipole for excitation to the second excited state (Qx) is perpendicular to the
transition dipole for the lowest state (Qy). If a solution of bacteriochlorophyll in
a viscous solvent such as glycerol is excited in the Qx band at 575 nm, the emission
from the Qy band near 800 nm has an anisotropy of −0.2, which is the result given
by Eq. (5.68) for ξ = 90◦.

For an angle ξ of 45◦, Eq. (5.68) gives r′ = 0.1. An angle of 45◦ implies that the
emission transition dipole, on average, has equal projections on the absorption
transition dipole and on another axis that is orthogonal to the absorption dipole.
An equivalent situation can arise if the excited molecule rapidly transfers its energy
to an array of other molecules whose transition dipoles lie in a plane but take on
all orientations within that plane. Some photosynthetic bacterial antenna systems
contain such arrays of bacteriochlorophyll molecules. Following equilibration of
the excitation over the array, fluorescence occurs with an anisotropy of 0.1 (Jimenez
et al. 1996; Pullerits et al. 1996; Nagarajan et al. 1999). We will return to the
fluorescence anisotropy of such multimolecular systems in Chap. 10.

Now let us allow the excited molecule to rotate randomly so that the transition
dipole explores all possible orientations. If the sample is excited with a single short
flash at time t = 0, the initial fluorescence anisotropy immediately after the flash
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Fig. 5.12. Typical time courses of fluorescence
signals measured with polarizations parallel
(F||) and perpendicular (F⊥) to the excita-
tion polarization. In this illustration the total
fluorescence (FT = F|| + 2F⊥) decays with
a time constant of 20 ns, and the fluorescence
anisotropy (r) with a time constant of 5 ns. The
ordinate scale for FT, F||, and F⊥ is arbitrary

(r0) will be 2/5 (or the value given by Eq. (5.68) if internal conversion to a different
electronic state occurs very rapidly), but the anisotropy will decay to zero as the
excited molecules rotate into new orientations (Fig. 5.12). By examining the decay
kinetics of the anisotropy, we can learn how rapidly the molecule rotates and
whether the rotational motions are isotropic or anisotropic.

If the fluorescing molecule is approximately spherical, it will rotate more or
less isotropically. The fluorescence anisotropy then will decay exponentially with
a single time constant called the rotational correlation time (τc): r = r0 exp(−t/τc).
The rotational correlation time for a spherical molecule is given by the Debye–
Stokes–Einstein relationship:

τc = Vη/kBT , (5.69)

where V is the hydrated volume, η the viscosity, and kB the Boltzmann constant.
Another “Stokes–Einstein expression” equates τc to 1/(6D), where D is the ro-
tational diffusion coefficient. Thus, assuming that the emission and absorption
transition dipoles are parallel, the time dependence of the fluorescence anisotropy
for a spherical molecule is

r = [F||(t) − F⊥(t)]/ [F||(t) + 2F⊥(t)]

= r0 exp(−t/τc) = (2/5) exp(−t kBT/Vη) . (5.70)

(We will discuss correlation functions more generally in Sect. 5.10 and in Chap. 10.)
If the molecule is more asymmetric, its motions will be anisotropic and the

fluorescence anisotropy usually will decay with time as a sum of exponential terms.
The amplitudes and correlation times for these terms can provide information on
the shape and flexibility of the molecule. Studying how the decay of the anisotropy
depends on temperature and viscosity also can help to distinguish local motions
of a fluorescent group from the slower tumbling of a macromolecule to which it
is bound. For example, because of the greater restrictions on fluctuations of the
structure, the anisotropy of fluorescence from tryptophan residues usually decays
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much more slowly in a folded protein than in an unfolded state. The anisotropy
decay should speed up if a protein either unfolds or undergoes a conformational
change that makes the overall structure more compact. Another example is the
use of intercalated fluorescent dyes to explore bending motions of nucleic acids
(Delrow et al. 1998).

If a sample is excited with continuous light, so that the time dependence of the
anisotropy is not resolved, an average value of the anisotropy will be measured.
This is given by

ravg =

⎛

⎝
∞∫

0

r(t)F(t)dt

⎞

⎠
/⎛

⎝
∞∫

0

F(t)dt

⎞

⎠ , (5.71)

where F(t) describes the time dependence of the total fluorescence probability for
an excited molecule. For example, if F(t) = F0 exp(−t/τ), and the molecule tumbles
with a single rotational correlation time τc, then

ravg =

∞∫

0
r0 exp(−t/τc)F0 exp(−t/τ) dt

∞∫

0
F0 exp(−t/τ) dt

=
F0r0/(1/τ + 1/τc)

F0/(1/τ)
=

r0

1 + τ/τc
. (5.72)

A plot of 1/ravg versus the fluorescence lifetime (τ) should be a straight line with
a slope of 1/r0τc and an intercept of 1/r0:

1/ravg = 1/r0 +
(
τ/r0τc

)
. (5.73)

The initial anisotropy (r0) and the rotational correlation time (τc) thus can be
obtained by using a quencher such as O2 to vary τ (Lakowicz and Knutson 1980;
Lakowicz and Maliwal 1983; Lakowicz et al. 1983). Note that, in general, a change
in ravg could reflect a change in r0, τc, or τ. For example, if the fluorescence lifetime
is decreased by addition of a quencher, a measurement of ravg will sample the
anisotropy at earlier times after the molecules are excited, with the result that ravg

is closer to r0.
In studies of small chromophores bound to macromolecules, plots of 1/ravg

versus T/η sometimes are biphasic as shown in the right-hand panel of Fig. 5.13.
The anisotropy measured at high viscosity or low temperature (low T/η) is larger
(i.e., 1/ravg is smaller) than the value obtained by extrapolating measurements
made at high T/η. This is because the two regions of the plot reflect different
types of motions. At low T/η the macromolecule as a whole is essentially immobile
but the bound chromophore may still have some freedom to move. The lower
anisotropy seen at high T/η reflects the tumbling of the macromolecule as a whole.
Time-resolved measurements would show that the anisotropy decay is multiphasic,
with the faster component reflecting local motions of the chromophore and the
slower component reflecting tumbling of the macromolecule.
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Fig. 5.13. Measurements of the average anisotropy (ravg) of a chromophore bound to a macro-
molecule sometimes can distinguish local motions of the chromophore from tumbling of
the entire macromolecule. Tumbling of the macromolecule freezes out at low tempera-
ture (T) or high viscosity (η). In this illustration, the overall anisotropy is the sum of two
terms (r1 and r2) that make equal contributions to the initial anisotropy but have rotational
correlation times differing by a factor of 100

If the chromophore can rotate such that the orientation of the emission dipole
varies over an angle of ξ degrees, the fluorescence anisotropy will decay asymptot-
ically from its initial value (r0) to

r′ = r0
3 cos2 ξ − 1

2
, (5.74)

where cos2 ξ is the average value of cos2ξ. The factor (3cos2 ξ − 1)/2, called the
order parameter, is 1 for ξ = 0, and goes to zero for completely random motion
when cos2 ξ = 1/3 (Box 4.6). Equation (5.74) is the same as Eq. (5.68) except that
an average over all the accessible angles replaces a unique value of ξ. Its origin is
discussed in more detail in Box 10.5.

In typical recent applications, fluorescence anisotropy has been used to study
the effect of the amyloidogenic protein transthyretin on the fluidity of the plasma
membrane of neuroblastoma cells (Hou et al. 2005) and changes in the mobility
of various domains of a neurotoxin when the protein binds to the acetylcholine
receptor (Johnson 2005).

5.10
Single-Molecule Fluorescence and High-Resolution Fluorescence
Microscopy

Measurements of the fluorescence from a macroscopic sample provide information
on average properties that can differ significantly from the properties of individual
molecules. Biphasic fluorescence decay kinetics, for example, may reflect a hetero-
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geneous population of molecules distributed between two different conformations
or microenvironments. If the distribution is static on the nanosecond time scale,
a measurement made on the macroscopic sample might allow us to deduce the
relative populations of molecules in the two states, but generally would not say
anything about how rapidly molecules change from one state to the other.

One way to dissect fluorescence from a heterogeneous sample is fluorescence
line narrowing, in which the temperature is lowered to freeze out fluctuations
of the solvent. The underlying idea is the same as in hole-burning absorption
spectroscopy (Sect. 4.11). A tunable dye laser with a narrow spectral bandwidth
is used to excite the sample selectively and thus to pick out a subpopulation of
molecules that absorb at a particular wavelength. The emission spectrum for
the subpopulation can be much narrower than the spectrum for the ensemble
as a whole, and it often shifts as the excitation wavelength is tuned over the
inhomogeneous absorption band (Fidy et al. 1998).

Techniques for detecting fluorescence have become sufficiently sensitive to
measure the emission spectrum and fluorescence decay kinetics of individual
molecules. There are a variety of ways that this can be done (Nie and Zare 1997; Xie
and Trautman 1998; Moerner and Orrit 1999; Weiss 1999). Small organic molecules
can be frozen as dilute “guests” in a “host” solvent that forms a solid matrix at low
temperatures, such as p-terphenyl. Molecules trapped in different environments
can have sufficiently sharp absorption spectra so that individual molecules can be
excited selectively (Moerner and Kador 1989; Moerner and Basche 1993; Kulzer
et al. 1997). A technique that can be applied to macromolecules is to flow a dilute
solution through a capillary (Goodwin et al. 1996). Molecules are excited as they
flow past the focus of a pulsed laser. Fluorescence from individual molecules of the
photosynthetic antenna protein phycoerythrin was studied in this way (Nguyen et
al. 1987; Peck et al. 1989). However, this approach does not allow one to follow the
fluorescence of the same molecule for an extended period of time.

�
Fig. 5.14. Four ways of measuring fluorescence from small numbers of molecules. a Near-
field fluorescence spectroscopy of individual molecules on a solid surface. The excitation
light illuminates a small region close to the tip of a glass fiber. b Total internal reflection.
Fluorescence is excited by the evanescent wave that penetrates only a short distance into the
sample. c Confocal fluorescence spectroscopy and microscopy. An objective lens focuses the
excitation light on the sample. Fluorescence is collected through the same lens, separated
from the excitation light by a dichroic mirror (m1), refocused through a pinhole in the
image plane, and transferred to a detector. The pinhole rejects florescence emitted by
molecules above and below the focal plane in the sample (dotted line). d Fluorescence
depletion microscopy. Excitation pulses from two synchronized lasers are focused through
the same objective lens. One pulse (excitation) raises fluorophores in the focal region to an
excited state; the other (depletion) either returns the excited molecules to the ground state
by stimulated emission, or converts the fluorophores to a form that does not absorb the
excitation pulse. The two pulses are combined by dichroic mirrors (m1 and m2) and the
depletion pulse is focused to a donut shape surrounding the excitation pulse
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In near-field fluorescence spectroscopy and microscopy (Pohl et al. 1984; Ha-
rootunian et al. 1986; Betzig and Trautman 1992; Betzig et al. 1993; Kopelman et al.
1994; Ha et al. 1996; Meixner and Kneppe 1998), the excitation light is focused into
a tapered optical fiber (Fig. 5.14a). The diameter of the spot of light at the tip of
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the fiber is determined by the size of the tip and can be as small as 15 nm, which is
much less than the classical diffraction limit of about λ/2. If the fiber is translated
laterally along a glass surface with a sparse coating of fluorescent molecules, the
radiation at the tip will excite only the molecules within a small area at a given
time. The fluorescence collected either through the same fiber or by a lens on the
opposite side of the support can be analyzed until the molecule is destroyed by
photobleaching (Xie and Dunn 1994).

Evanescent radiation created by total internal reflection (Box 3.2) also can be
used to restrict excitation to a small region (Iwane et al. 1997). The excitation beam
passes through a glass prism or lens to an interface with an aqueous medium as
shown in Fig. 5.14b. The angle of incidence on the interface is made slightly greater
than the critical angle set by the arcsine of the ratio of the refractive indices of the
two media. If the aqueous phase is transparent, essentially all the radiation incident
radiation is reflected back into the glass. However, the wave of evanescent radiation
propagating along the interface penetrates into the water for a distance on the order
of 500 nm and can excite fluorescence from molecules in this thin layer. In some
applications, an objective lens with a large numerical aperture acts as the medium
with the higher refractive index, and also serves to collect fluorescence emitted by
the sample. Excitation schemes utilizing total internal reflection have been used
to measure binding of fluorescent ligands to protein adsorbed on a glass surface
(Kalb et al. 1990; Poglitsch et al. 1991; Lieto et al. 2003; Lieto and Thompson 2004),
and to probe the orientation and motions of molecules in planar lipid bilayers
deposited on such a surface (Lagerholm et al. 1999; Sund et al. 1999; Thompson et
al. 1999).

An extension of the last technique is to coat the glass surface with gold or silver
and tune the angle of incidence to the resonance angle for generating surface
plasmons in the coating (Fig. 3.4e). As discussed in Box 3.2, the evanescent field
associated with surface plasmons resembles that created by ordinary total internal
reflection, but can be more than an order of magnitude stronger. Colloidal metal
particles and lithographed surfaces patterned on a distance scale less than the
wavelength of the light also can be used (Geddes et al. 2003; Aslan et al. 2004; Stefani
et al. 2005; Wenger et al. 2005). Although the fluorescence of the molecules close to
the interface can be quenched by energy transfer and other interactions with the
metal, some of these systems afford large increases in sensitivity (Lakowicz 2002).

In confocal fluorescence microscopy (Eigen and Rigler 1994; Nie et al. 1994,
1995; Edman et al. 1996; Macklin et al. 1996), an objective lens is used to form
a magnified image of the light emitted from a small region (Fig. 5.14c). The image
of light emitted from a circular aperture consists of concentric bright and dark
rings around a central bright spot that is called the “Airy disk” after G.B. Airy
(1801–1892). If the fluorescence is refocused through a pinhole in the image plane,
diffuse fluorescence from regions of the specimen that are out of focus is rejected
in favor of the fluorescence from the focal plain. This technique is referred to as
optical sectioning. A pinhole with a diameter of 50–100 μm restricts the volume
of the sampled region to a few attoliters (10−15 L), and if the sample is sufficiently
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dilute, this volume will contain only one or two molecules. In confocal fluorescence
microscopy, the excitation spot is moved over the sample in a raster pattern while
an image of the fluorescence is collected with a video camera. The resolution
can be improved further by two-photon excitation, which gives the fluorescence
a stronger dependence on the light intensity. See Conn (1999), Yuste and Konnerth
(2000), Yuste (2005), Lichtman and Conchello (2005), Conchello and Lichtman
(2005), Helmchen and Denk (2005), and Chap. 12 for further discussion of these
and related techniques of microscopy.

The ability of a conventional microscope to resolve two incoherent point sources
of light separated by a distance d is limited by diffraction and generally is taken to be
d = λ/2n sinα, where n is the refractive index of the medium between the objective
lens and the objects andα is the half-angle of the cone of light accepted by the lens.
Although confocal optics improve the spatial resolution of fluorescence microscopy
by blocking light from objects that are out of the focal plane, they do not escape this
fundamental limit. Near-field optics can overcome the diffraction limit, but with
the drawback that the fluorescent object must be very close to the tip of the fiber.
However, Hell and his coworkers (Hell and Wichmann 1994; Hell 2003; Hell et al.
2003; Hofmann et al. 2005; Westphal and Hell 2005) have demonstrated that it also
is possible to break the diffraction limit by using a second beam of light to deplete
the population of emitting species in the region around the center of the excitation.
Consider an ensemble of fluorophores, each of which can be in either a form that
fluoresces with quantum yield φF (A), or a form that is nonfluorescent (B). Assume
that a focused excitation beam creates a population AE(r) of the fluorescent species
peaking at r = 0, so that the fluorescence from point r = 0 is φFAE(0). Now suppose
that a depletion beam with intensity ID(r) converts fluorophores from A to B with
rate constant ID(r)σ, where σ is the effective absorption cross section of A. Let B
return to A spontaneously with rate constant kBA. In a steady state, the population
of the fluorescent form at r will be A(r) = AE(r)kBA/[kBA + ID(r)σ]. If the depletion
pulse is focused to a donut shape centered on the excitation pulse, as indicated
in Fig. 5.14d, then ID(0) = 0, and the fluorescence from r = 0 is still φFAE(0).
But if ID(r) increases as r moves away from 0, so that ID(r)σD rapidly becomes
much larger than kBA, the fluorescence from regions away from r = 0 is strongly
attenuated.

As an illustration of the depletion technique, the solid curve in Fig. 5.15,
panel A shows an excitation function with a Gaussian dependence on position,
IE(r)= I0

E exp[−(|r|/r0)2]. The dotted curve shows the intensity of a depletion pulse
with the shape ID(r) = I0

D sin2(π|r|/4re). Panel B of Fig. 5.15 shows the functions
kBA/[kBA + ID(r)σ] (dashed curve) and IE(r)kBA/[kBA + ID(r)σ] (solid curve) for
I0

Dσ/kBA = 10, and panels C and D show the same for I0
Dσ/kBA = 100 and 1,000.

When I0
Dσ >> kBA, all the fluorescence comes from an arbitrarily small region

around r = 0, and the resolution has no theoretical limit. With depletion pulses
of intermediate intensities, the resolution limit is d ≈ λ/(2n sinα

√
1 + ID/ID,sat),

where ID,sat is the intensity that decreases the fluorescent population to 1/ e (Hell
2003).



230 5 Fluorescence

Fig. 5.15. Breaking the diffraction limit in fluorescence microscopy. A Relative intensities
of a Gaussian excitation pulse (IE(r)/I0

E = exp[−(|r|/r0)2], solid curve) and a concentric,
fluorescence-depleting pulse (ID(r)/I0

D = sin2(π|r|/4r0), dotted curve), as functions of po-
sition relative to a focal point. I0, r0, and σ are arbitrary scale factors. B–D The steady-
state fraction of the fluorophores that are capable of fluorescing during the depleting pulse
(kBA/[kBA+ID(r)σ], dashed curves), and the fluorescence amplitude (IE(r)kBA/[kBA+ID(r)σ],
solid curves), for I0

Dσ/kBA = 10 (B), 100 (C), and 1,000 (D)

One way to deplete the fluorescence, stimulated emission depletion (STED) mi-
croscopy, is to return the excited fluorophores to the ground state by stimulated
emission as we discussed before in connection with temporal resolution of Stokes
shifts (Sect. 5.2). Another approach is to use a variant of GFP that can be switched
between fluorescent and nonfluorescent states by light of different wavelengths
(Sect. 5.8). This switching can be achieved with lower light intensities than are
needed to induce stimulated emission (Hofmann et al. 2005). The essential re-
quirements in either case are for the depletion pulse intensity to be zero at or near
the focus of the excitation, and for the depletion process to approach saturation
rapidly as the pulse intensity increases.

Emission spectra and fluorescence lifetimes of individual molecules measured in
single-molecule experiments often vary substantially from molecule to molecule,
and fluctuate on a broad range of time scales (Goodwin et al. 1996; Kulzer et al.
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1997; Lu and Xie 1997; Wennmalm et al. 1997; Meixner and Kneppe 1998; Xie and
Trautman 1998; Moerner and Orrit 1999; Weiss 1999; Michalet et al. 2006). These
fluctuations can reflect varying interactions of the fluorescing molecules with their
surroundings, or chemical processes that change the spectroscopic properties, such
as cis–trans isomerizations and transitions between oxidized, reduced, or triplet
states. Emitting molecules sometimes abruptly go dark, presumably as a result
of irreversible photochemical reactions. In some cases, anisotropy measurements
have shown that the fluctuations in the fluorescence yield are not due simply to
rotational reorientation, because the fluorescence remains polarized parallel to the
excitation.

Applications of single-molecule spectroscopy to biomolecules have included
studies of conformational fluctuations of individual DNA molecules (Wennmalm
et al. 1997), hydrolysis of individual ATP molecules by a single molecule of myosin
(Iwane et al. 1997), individual kinesin molecules moving along microtubules (Iwane
et al. 1997), interconversions of the bound flavin in cholesterol oxidase between
its oxidized and reduced states (Lu et al. 1998), and elucidation of pathways for
folding of proteins and ribozymes (Deniz et al. 2000; Talaga et al. 2000; Zhuang et
al. 2000; Schuler et al. 2002; Zhuang and Rief 2003; Michalet et al. 2006). A powerful
extension of the technique is to measure resonance energy transfer between a pair
of fluorescent dyes attached to a macromolecule. As we discuss in Chap. 7, excitation
of one molecule can be followed by fluorescence from the other, and the efficiency
of this transfer of energy depends critically on the distance between the donor
and the acceptor. Willets et al. (2004) have described a series of fluorophores that
have the high fluorescence yields needed for single-molecule studies, but also are
strongly sensitive to the local environment.

5.11
Fluorescence Correlation Spectroscopy

Fluctuations of the fluorescence as an individual molecule hops between different
states or experiences varying interactions with the surroundings are averaged
out in a conventional measurements of fluorescence from large populations of
molecules. Between these extremes, fluorescence from a small number of molecules
can fluctuate in a way that provides information on the dynamics of the individual
molecules (Magde et al. 1972, 1974; Elson and Magde 1974; Eigen and Rigler 1994;
Webb 2001). Figure 5.16 illustrates some of the features of such fluctuations. In
the model considered here, the system contains a specified number of molecules
(N), each of which undergoes reversible transitions between a fluorescent (“on”)
a nonfluorescent (“off”) state with simple first-order kinetics. If a molecule is “on”
at a given time, the probability that it remains “on” after a short time interval Δt
is exp(−koffΔt); if the molecule is initially “off,” the probability of remaining “off”
after time Δt is exp(−konΔt). The equilibrium constant is Keq = [on]eq/[off]eq =
kon/koff. To simulate stochastic transitions between the two states, the algorithm
used to generate the figure compares exp(−konΔt) or exp(−koffΔt) to a random
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Fig. 5.16. Computer simulations of fluorescence fluctuations in a system with a specified
number (N) of molecules, each of which can be in either a fluorescent (“on”) or nonfluores-
cent (“off”) state. On each time step (Δt), a molecule in the fluorescent state has a probability
exp(−koffΔt) of remaining in this state and a probability 1 − exp(−koffΔt) of switching to the
nonfluorescent state; a molecule in the nonfluorescent state remains in this state with prob-
ability exp(−konΔt) and switches to the fluorescent state with probability 1 − exp(−konΔt).
The decision whether to change state is made by comparing exp(−koffΔt) and exp(−konΔt)
with a random number between 0 and 1. A Normalized fluorescence (F/N) as a function of
time for a single molecule (N = 1) with konΔt = 0.1, and koffΔt = 0.025. B The probability
that a molecule with konΔt = 0.1 and koffΔt = 0.025 changes to a different state (empty
circles on → off; filled circles off → on) as a function of time after the molecule enters the
first state. C Normalized fluorescence (F/N) as a function of time for 100 molecules with
konΔt = 0.1 and koffΔt = 0.025 (upper trace), or konΔt = 0.025 and koffΔt = 0.1 (lower trace).
D Relative probability of various deviations of the normalized fluorescence from the mean
(ΔF/N) for 100 molecules with konΔt = 0.01 and koffΔt = 0.1 (empty circles), konΔt = 0.1
and koffΔt = 0.1 (empty squares), or konΔt = 0.1 and koffΔt = 0.01 (filled circles)

number between 0 and 1 after each time step. Figure 5.16, panel A shows the
calculated fluorescence from a single molecule with konΔt = 0.1 and koffΔt =
0.025. The normalized fluorescence fluctuates randomly between 0 and 1, with the
molecule remaining, on average, 4 times longer “on” than “off” (Fig. 5.16, panel B).
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Panel C of Fig. 5.16 shows the results of averaging such fluctuations over 100
molecules. As we would expect, the average signal over the time period shown
is approximately 0.8 ([on]/[on + off] = Keq/[Keq + 1]) when kon/koff = 4:1, and
drops to about 0.2 when the rate constants are interchanged. However, the signals
fluctuate substantially around these mean values. As shown in Fig. 5.16, panel D,
the most probable deviation from the mean at any given time is not zero, unless
the two rate constants happen to be the same. If kon is greater than koff, so that the
mean is more than 0.5, the deviations are skewed to the positive side of the mean;
if kon is less than koff, they are skewed to the negative side. Some of the asymmetry
of the distribution function reflects the fact that the number of molecules in the
“on” state at any given time cannot be less than zero or more than the total number
of molecules.

In general, the deviations of the fluorescence amplitude around the mean follow
a binomial distribution. The binomial distribution function describes the proba-
bility, P(x, n, p), of having x “successes” in n trials if the probability of a success in
any individual trial is p and the probability of a failure is 1 − p. This is given by the
expression

P(x, n, p) =
n!

x!(n − x)!
px(1 − p)n−x , (5.75)

in which the factor n!/x!(n − x)! is the number of different possible combinations
of n items taken x at a time (Bevington and Robinson 2003). In the situation at
hand, n represents the number of molecules in the illuminated volume, p is the
probability that a given molecule is in the fluorescent state at any particular time,
and x is the total number of fluorescent molecules at that time. If we measure the
fluorescence a large number of times, the average number of fluorescent molecules
detected on each measurement will be np.

The mean (x) of a binomial distribution is, indeed, equal to np:

x =
n∑

x=0

x
n!

x!(n − x)!
px(1 − p)n−x = np , (5.76)

as you can prove by defining y = x + 1 and m = n − 1 and noting that

n∑

x=0

m!
y!(m − y)!

py(1 − p)m−y =
n∑

x=0

P(y, m, p) = 1 (5.77)

(Bevington and Robinson 2003). The variance (σ2, the average squared deviation
from the mean) is given by

σ2 =
n∑

x=0

(x − x)2 n!
x!(n − x)!

px(1 − p)n−x = np(1 − p) . (5.78)

There are several useful approximations for the binomial distribution that apply
in certain limits of n and p (Box 5.3); however, neither of these limits is generally
applicable to the situation we are considering here.
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Box 5.3 Binomial, Poisson, and Gaussian distributions

The limit of a binomial distribution (Eq. (5.76)) when the probability of
success on an individual trial is very small (p � 1) is the Poisson distribution,

PP(x, x) =
xx

x!
exp(−x) =

(np)x

x!
exp(−np) . (B5.3.1)

As in the underlying binomial distribution, x here is the mean value of x
and is equal to np where n is the number of trials. The variance of a Poisson
distribution also is np, as you can see by letting the factor (1 − p) in Eq. (5.78)
go to 1. The standard deviation from the mean of a Poisson distribution (σ)
thus is the square root of the mean.

The Poisson distribution is commonly used to analyze the statistics of
photon-counting experiments. It also is useful for describing how a photo-
physical or photochemical process depends on the intensity of the excitation
light. In a typical application, n represents the number of photons incident
on a sample, p is the probability that a given incident photon results in a de-
tectable process, and x is the total number of detectable events resulting from
n photons. If absorbing more than one photon has the same result as ab-
sorbing a single photon, x follows a cumulative one-hit Poisson distribution,
which expresses the probability that x = 0 as a continuous function of x:

1 − PP(0, x) = 1 −
x0

0!
exp(−x) = 1 − exp(−x) . (B5.3.2)

Binomial distributions have another important approximation in the limit
that n is infinitely large and p also is large enough so that np >> 1. This is the
Gaussian or normal distribution:

PG(x, x,σ) =
1

σ
√

2π
exp

[

−
1
2

(
x − x
σ

)2
]

, (B5.3.3)

in which x again is the mean of the distribution and σ is the standard
deviation from the mean. The Gaussian distribution, unlike the binomial
and Poisson distributions, is a continuous function of x and is symmetrical
around x. See Eqs. (3.56), (3.57), and (4.56) for several examples of Gaussian
distributions and Fig. 3.12 for an illustration.

Now consider the time dependence of the fluctuating fluorescence illustrated in
Fig. 5.16, panel C. Although the fluctuations are stochastic, they contain informa-
tion on the dynamics of transitions between the “on” and “off” states in the model.
This information can be extracted by calculating the autocorrelation function of
the fluctuations, which is a measure of the correlation between the amplitude of the
fluctuation at any given time and the amplitude at some later time. The autocorre-
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lation function of the fluctuations of a time-dependent function x(t) (sometimes
called the time-correlation function) is defined as

C(t) ≡ Δx(t′)Δx(t′ + t) , (5.79)

where Δx(t′) is the deviation from the mean at time t′ [Δx(t′) = x(t′) − x] and the
bar means an average over all times t′. At zero time, the autocorrelation function
defined in this way gives the variance of the distribution:

C(0) ≡ Δx(t′)Δx(t′) ≡ σ2 . (5.80)

At long times, the autocorrelation function decays to zero, because the amplitudes
of the fluctuations at two widely separated times are unrelated.

It often is useful to normalize an autocorrelation function relative to another
parameter of the system. If the fluctuations follow a binomial distribution, dividing
by the square of the mean and using Eqs. (5.76) and (5.78) gives

C(0)

x2 =
Δx2

x2 =
σ2

x2 =
np

(
1 − p

)

(
np
)2 =

1
n

q
p

. (5.81)

With this normalization, C(0) for the model described above is inversely propor-
tional to the number of molecules in the illuminated volume (n = N). It also is
inversely proportional to the ratio of the probabilities of finding a molecule in the
fluorescent and nonfluorescent states (q/p = koff/kon = 1/Keq).

Fluorescence correlation functions often are calculated by using the fluorescence
signal itself rather than the deviations from the mean. After normalization relative
to x2 , the resulting function is the same as C(t)/ x2 + 1:

G(t) =
x(t′)x(t′ + t)

x2 =
[x + Δx(t′)] [x + Δx(t′ + t)]

x2

=
x2 + x · Δx(t′) + x · Δx(t′ + t) + Δx(t′)Δx(t′ + t)

x2 = 1 +
C(t)

x2 . (5.82)

The terms Δx(t′) and Δx(t′ + t) average to zero.
Figure 5.17 shows autocorrelation functions calculated from several time courses

similar to those in Fig. 5.16, panel C but averaged over longer periods of time
(2 × 105 time steps). The autocorrelation functions are normalized relative to x2

as in Eq. (5.81). As predicted by Eq. (5.81), the normalized values at zero time are
inversely proportional to both N (Fig. 5.17, panel A) and Keq (Fig. 5.17, panel B). Flu-
orescence correlation spectroscopy thus provides a way to determine the number
of fluorescent molecules in a small region of a sample, along with the equilibrium
constant between states that have different fluorescence yields.

Inspection of Fig. 5.17 shows that the autocorrelation functions for this partic-
ular model decay exponentially with time, and that the rate constant for this decay
is the sum of the rate constants for forward and backward transitions between the
two states (kon + koff). The upper curve in Fig. 5.17, panel B, for example, decays to
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Fig. 5.17. A Normalized autocorrelation function of the fluorescence fluctuations for (from
top to bottom) N = 25, 50, 100, or 200, all with konΔt = koffΔt = 0.1. The autocorrelation
functions are normalized relative to the square of the mean fluorescence amplitude. B Nor-
malized autocorrelation function of the fluorescence fluctuations for N = 50, and konΔt
= 0.1, koffΔt = 0.1 (dotted curve); konΔt = 0.02, koffΔt = 0.02 (dashed curve); konΔt = 0.02,
koffΔt = 0.1 (solid curve); or konΔt = 0.01, koffΔt = 0.05 (dot-dashed curve). The results were
averaged over 2×105 time steps

1/ e (0.368) of its initial value in 16.67Δt, which is the reciprocal of (0.05 + 0.01)/Δt.
In classical kinetics, if a system with first-order reactions in the forward and back-
ward directions is perturbed by an abrupt change in the concentration of one of
the components, a change in temperature, or some other disturbance, it will relax
to equilibrium with a rate constant given by the sum of the rate constants for the
forward and backward reactions. The fact that the autocorrelation functions in
Fig. 5.17 decay with the relaxation rate constant of the system is a general property
of classical time-correlation functions (Kubo 1966; Harp and Bern 1970; Kubo et
al. 1985; Parson and Warshel 2004). One of the potential strengths of fluorescence
correlation spectroscopy is that the relaxation dynamics can be obtained with the
system at equilibrium; no perturbation is required.

Although the autocorrelation function provides the relaxation rate constant of
the system, it does not immediately give the individual rate constants for the for-
ward and backward reactions. These can be obtained by single-molecule studies as
illustrated in Fig. 5.16, panel B. In some cases, they can be obtained by measuring
the dependence of the relaxation rate constant on the concentration of one of the
reactants. For example, the relaxation rate constant for a system with bimolecular

reaction in one direction (A + B
k1−→ C) and a unimolecular reaction in the reverse

direction (C
k−1−→ A + B) is k+1([A] + [B]) + k−1, which can be separated experi-

mentally into parts that either depend on or are independent of the concentrations
of A and B.

The fluorescence from a small region of a sample in solution also can fluctuate
as a result of diffusion of the fluorescent molecules into and out of this region. The
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autocorrelation function of these fluctuations depends on the three-dimensional
translational diffusion coefficient of the molecule (D) and the geometry of the
illuminated region. In a commonly used model, excitation light focused by an
objective lens is assumed to have a three-dimensional Gaussian intensity profile of
the form

I = I0 exp
[

− 2(a2 + b2)/r2 − 2c2/l2
]

, (5.83)

where c represents the position along the optical axis, a and b are coordinates in
the focal plane normal to this axis, and r and l are distances at which the intensity
falls to exp(−2) of its maximum value. The normalized autocorrelation function
of fluorescence from molecules diffusing through such a region is given by (Eigen
and Rigler 1994)

C(t)

x2 =
1
N

(
1

4Dt/r2

)(
1

4Dt/l2

)1/2

. (5.84)

Fluorescence correlation spectroscopy thus provides a way to study processes that
change the translational diffusion coefficient, such as binding of a small, fluorescent
ligand to a macromolecule. However, the spatial dependence of the light intensity
in the focal region can be more complex than Eq. (5.83) assumes and this can add
spurious components to the autocorrelation function (Hess and Webb 2002).

When diffusion and a reaction that affects the fluorescence yield occur on
similar time scales, the fluorescence autocorrelation function consists of a product
of factors of the forms given in Eqs. (5.81) and (5.84). Rather than trying to analyze
the two components simultaneously, it may be best to slow diffusion by increasing
the viscosity. Some enzymes have been shown to function well in agarose gels
that restrict diffusion of the protein but allow the substrate and product to diffuse
relatively freely (Lu et al. 1998). However, diffusion may be necessary to replace
chromophores that are bleached irreversibly by the excitation light.

Applications of fluorescence correlation spectroscopy have included studies of
sparse molecules on cell surfaces (Maiti et al. 1997), diffusion of ligand–receptor
complexes in cell membranes (Widengren and Rigler 1998), conformational dy-
namics of DNA (Wennmalm et al. 1997; Eggeling et al. 1998b), excited-state prop-
erties of flavins and flavoproteins (van den Berg et al. 2001), photodynamics of
green and red fluorescent proteins (Haupts et al. 1998; Schenk et al. 2004), protein
unfolding pathways (Chattopadhyay et al. 2005), and lipid–protein interactions
(Sanchez and Gratton 2005).

An extension of fluorescence correlation spectroscopy is to measure the cross-
correlation of fluorescence from two different fluorophores, such as a ligand and
its receptors. Strongly correlated fluctuations of the fluorescence from a small
volume element indicate that the two species diffuse into and out of the element
together, as would be expected for a complex. This approach has been used to
study renaturation of complementary strands of nucleic acids (Schwille et al.
1997), enzymatic fusion and cleavage kinetics (Kettling et al. 1998), aggregation of
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prion protein (Bieschke et al. 2000), and DNA recombination (Jahnz and Schwille
2005) and repair (Collini et al. 2005).

In the related photon counting histogram technique, a histogram of the intensity
of fluorescence from individual molecules is collected as molecules diffuse through
the focal volume of a confocal microscope (Chen et al. 1999; Huang et al. 2004;
Perroud et al. 2005). If the sample contains a mixture of molecules with different
fluorescence properties, the histogram can reveal the relative amplitude of the
fluorescence from a single molecule of each class, as well as the number of molecules
in each class.

5.12
Intersystem Crossing, Phosphorescence, and Delayed Fluorescence

We saw in Chap. 4 that dipole interactions do not drive transitions between singlet
and triplet states. But when a molecule is raised to an excited singlet state, relaxation
into a triplet state often occurs with a rate constant (kisc in Eq. (5.47)) on the order
of 106–108 s−1, and even more rapidly if the molecule contains a heavy atom such
as Br. The excited molecule then can emit light (phosphorescence) as it decays from
the triplet state back to the singlet ground state. This process usually is much
slower than intersystem crossing from the excited singlet to the triplet state. For
aromatic hydrocarbons, the radiative lifetime for phosphorescence typically is on
the order of 30 s (Siebrand 1967b). In the absence of quenchers such as O2 or Br2,
radiationless intersystem crossing from the triplet state to the ground state also
usually is slow relative to the rate of formation of the triplet state. Typical lifetimes
of excited triplet states range from 10−5 s to more than 1 s.

As we discussed in Chap. 2, the angular momentum associated with an individual
electron’s spin must have a projection of either �/2 (spin state α) or −�/2 (spin
state β) on the axis of a magnetic field. A molecule in an excited singlet state [spin
wavefunction 2−1/2α(1)β(2) − 2−1/2α(2)β(1) with the numbers 1 and 2 denoting
the two electrons] has no net angular momentum associated with electron spin,
whereas a molecule in a triplet state with the spin wavefunction α(1)α(2) or
β(1)β(2) has an angular momentum of ±�, respectively, in addition to any angular
momentum associated with the orbital motions of the electrons. The third triplet
spin wavefunction, 2−1/2α(1)β(2) + 2−1/2α(2)β(1), has no spin angular momentum
projected along the field axis, but has angular momentum in the plane normal to
this axis (Fig. 2.9). To conserve the total angular momentum of the system, the
change in electron spin during a transition between singlet and triplet states must
be coupled to a change in the angular momentum associated with another part
of the system, such as orbital motions. It is the perturbation of the Hamiltonian
by such spin–orbit coupling that drives intersystem crossing in most aromatic
molecules.

The magnitude of spin–orbit coupling can be evaluated by considering the
interaction of the magnetic dipole associated with an electron’s spin with the
intramolecular electric and magnetic fields, including the magnetic field created
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by the electron’s own orbital motion (Hameka 1965; Siebrand 1967a, b; McGlynn
et al. 1969; Henry and Siebrand 1971; Richards et al. 1981; Atkins 1983). In some
molecules with π,π∗ singlet and triplet states, the rate of intersystem crossing or
phosphorescence depends on mixing with π,σ∗ and σ,π∗ states.

One reason that intersystem crossing from an excited singlet state (1Ψ1) to an
excited triplet state (3Ψ1) usually occurs more rapidly than phosphorescence or
radiationless decay of 3Ψ1 to the ground state is that the energy gap between the
zero-point vibrational levels of 1Ψ1 and 3Ψ1 usually is much smaller than the gap
between 3Ψ1 and the ground state. Within a related series of molecules, the rates
of radiationless intramolecular transitions decrease approximately exponentially
with the 0–0 energy difference between the initial and final states (ΔE00):

k = k00 exp
(
−aΔE00

)
, (5.85)

with constants k0 and a that depend on the type of molecule. This is known as
the energy-gap law (Siebrand 1967a, b; Turro 1978). The explanation is that if
ΔE00 is large, the product state must be formed in a highly excited vibrational
level in order to conserve energy during the electronic transition. For a harmonic
vibrational mode with a small displacement, the Franck–Condon factor, |〈χn|χ0〉|2,
for a transition from the lowest vibrational level of one state to level n of the other
state falls off rapidly as n increases, as shown in Fig. 5.18. When the possible
combinations of excitations in multiple vibrational modes are considered and some
anharmonicity is introduced in the vibrations, the logarithm of the overall Franck–

Fig. 5.18. Logarithm of the Franck–Condon factor |〈χn|χ0〉|2 for transitions from the lowest
vibrational level of one electronic state to level n of another state, when the transition is
coupled to a single, harmonic vibrational mode with a displacement of 0.1 (squares), 0.2
(circles), or 0.5 (triangles). The vibration frequency (υ) is assumed to be the same in the
two states. In a transition that is coupled to only one vibrational mode, energy conservation
requires that n ≈ ΔE00/hυ. More generally, ΔE00 is partitioned among multiple vibrational
modes of the molecule and the solvent
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Condon factor becomes an approximately linear function ofΔE00 (Siebrand 1967b;
Shipman, 1977).

Triplet states also can form by back reactions of radical-pair states that are
created by photochemical electron transfer. We discuss this process briefly in
Box 10.2.

Energies of triplet states can be measured in several ways. The phosphorescence
spectrum provides a direct measure of the energy difference between the triplet
and ground states at the Franck–Condon maximum. Phosphorescence can be
difficult to measure, however, because it is typically on the order of 106 times
weaker than fluorescence. An alternative is to measure the delayed fluorescence that
results from thermal excitation of the triplet state back to the excited singlet state.
The ratio of the amplitudes of delayed and prompt fluorescence depends on the
free-energy difference between the zero-point vibrational levels these two states,
and the temperature dependence of the ratio provides a measure of the enthalpy
difference. Such measurements have been made for the bacteriochlorophyll a dimer
in photosynthetic bacterial reaction centers, where the phosphorescence spectrum
puts the triplet state 0.42 eV below the excited singlet state (Takiff and Boxer 1988);
the temperature dependence of the delayed fluorescence gives a similar energy
gap of 0.40 eV (Shuvalov and Parson 1981). For molecules in solution, another
approach is to measure quenching of the triplet state by a series of molecules
whose triplet-state energies are known. When the excited molecule collides with
the quencher, energy and angular momentum can move from one molecule to
the other by an exchange of electrons, provided that the acceptor’s triplet state is
similar to or somewhat lower than the energy of the donor. We will discuss the
mechanism of this process in Chap. 7.

Delayed fluorescence also can be used to examine the energies and dynamics
of metastable states that are created photochemically by electron transfer or other
processes. In photosynthetic reaction centers of purple bacteria or plant photosys-
tem II, the amplitude of delayed fluorescence from an early ion-pair state decreases
in a multiphasic manner on picosecond and nanosecond time scales, while the
population of the state remains essentially constant (Woodbury and Parson 1984;
Booth et al. 1991; Ogrodnik et al. 1994; Woodbury et al. 1994). Both structural het-
erogeneity and relaxations of the protein around the ion-pair probably contribute
to the complex time dependence of the delayed fluorescence.

Phosphorescence generally exhibits anisotropy similar to fluorescence anisotro-
py. In addition, as long as a molecule remains in an excited triplet state its ground-
state absorption band will be bleached, giving an absorbance change that can have
a definite anisotropy with respect to the excitation light. Triplet states thus can
greatly extend the time scales over which linear dichroism and emission anisotropy
report on molecular motions. An illustration is the use of eosin-5-maleimide to
study rotational motions of proteins in erythrocyte plasma membranes (Che et al.,
1997). Rotation of the anion transport protein occurs with a time constant between
20 μs and several hundred microseconds depending on the oligomeric state of the
protein.



6 Vibrational Absorption

6.1
Vibrational Normal Modes and Wavefunctions

Excitations of molecules to higher vibrational states typically occur in the mid-
IR region of the spectrum, between 200 and 5,000 cm−1 (λ = 2.5–50 μm). In this
chapter we consider the main factors that determine the energies and strengths
of vibrational excitations and describe several applications of IR spectroscopy to
macromolecules. Chapter 12 discusses Raman spectroscopy, in which vibrational
transitions accompany the scattering of light at higher frequencies.

A molecule with N atoms has 3N degrees of motional freedom, of which three
pertain to translation of the center of mass, three to rotation of the molecule as
a whole, and the remaining 3N − 6 to internal vibrations that leave the center of
mass stationary. (A linear molecule has only two rotational degrees of freedom
and 3N − 5 vibrational modes.) In general, each vibrational mode of a complex
molecule involves collective motions of many nuclei and cannot be described sim-
ply as the stretching or bending of an individual bond. However, analysis of the
vibrations is simplified considerably if we assume that the vibrational potential
energy is a harmonic function of the atomic coordinates. This means that the
potential energy depends on quadratic terms such as x2

i or xixj, where xi and xj

are displacements of any of the 3N Cartesian coordinates from their equilibrium
values, but not on higher-order terms such as x3

i , x2
i xj, or xixjxk. In this situation, it

is possible to define a set of orthogonal normal coordinates made up of linear com-
binations of the individual atomic coordinates such that each vibrational mode, or
normal mode, involves motion along a single normal coordinate. The vibrational
potential energy of a molecule then can be written as

V =
1
2

∑

i

kiς2
i , (6.1)

where ςi is the normal coordinate for mode i and ki is a force constant for this
motion (Box 6.1).

Box 6.1 Normal coordinates

Consider a classical system with N particles and 3N Cartesian coordi-
nates x1, x2, ...x3N . Let us define the coordinates of each atom relative to
the equilibrium position of that atom, so that x1, x2, and x3 are defined

William W. Parson, Modern Optical Spectroscopy,
DOI: 10.1007/978-3-540-37542-5, © Springer-Verlag 2009
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relative to the equilibrium position of atom 1; x4, x5, x6, relative to the
equilibrium position of atom 2; and so forth. The total kinetic energy of the
system then is

T = (1/2)
∑

i

mi(∂xi/∂t)2 , (B6.1.1)

where mi is the mass of the particle with coordinate xi. We can simplify this
equation by using “mass-weighted” coordinates, ηi = (mi)1/2xi:

T = (1/2)
∑

i

(∂ηi/∂t)2 . (B6.1.2)

The potential energy of the system now can be expanded as a Taylor series
in powers of the mass-weighted coordinates:

V = V0 +
∑

i

(
∂V/∂ηi

)
0 ηi + (1/2)

∑

i

∑

j

bijηiηj... , (B6.1.3a)

where

bij =
(
∂2V

/
∂ηi∂ηj

)
0 , (B6.1.3b)

and the subscript 0 means that the derivatives are evaluated at the equilib-
rium positions (ηi,ηj = 0). If we set the potential energy to zero when all
the particles are at these positions, then V0 = 0. At the equilibrium posi-
tions, ∂V/∂ηi also must be zero for each coordinate, so neglecting cubic and
higher-order terms, the potential energy is

V = (1/2)
∑

i

∑

j

bijηiηj . (B6.1.4)

Because the force acting along coordinate xi is

Fi = −∂V/∂xi = −m1/2
i ∂V/∂ηi = −m1/2

i

∑

j

bijηj , (B6.1.5)

and the acceleration on this coordinate is

∂2xi
/
∂t2 = m−1/2∂2ηi

/
∂t2 , (B6.1.6)

Newton’s second law of motion can be written

∂2ηi
/
∂t2 +

∑

j

bijηj = 0 . (B6.1.7)

We can solve this equation immediately for ηi if the factors bij with j = i are
all zero, so that

∂2ηi
/
∂t2 + biiηi = 0 . (B6.1.8)
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The solution is simply

ηi = η0
i sin

(√
biit + φi

)
, (B6.1.9)

where η0
i is an arbitrary amplitude and φi is a phase shift.

Equation (B6.1.9) indicates that, if bij = 0 for j = i, each of the mass-
weighted coordinates oscillates sinusoidally around its equilibrium value.
The question now is whether it is always possible to convert Eq. (B6.1.7)
into an equation with the form of Eq. (B6.1.8) by a linear transformation of
variables, even if the factors bij with j = i are not all zero. The answer is yes,
as the following argument shows.

If the desired transformation is possible, the resulting normal coordinates
(ςk with k = 1, 2, ...3N) must allow us to write the kinetic and potential
energies of the system as

T = (1/2)
∑

j

(∂ςj/∂t)2 (B6.1.10)

and

V = (1/2)
∑

j

υjς2
j , (B6.1.11)

where υj is a frequency that remains to be determined. The equation of
motion for normal mode j then will be

ςj = ς0
j sin

(√υjt + φj
)

. (B6.1.12)

Suppose we start the system moving in a way that keeps all the amplitudes ς0
j

zero except for one, ς0
k. The motions on normal coordinate k then will have

the sinusoidal time dependence given by Eq. (B6.1.12). In principle, normal
coordinate k could contain contributions from any or all of the individual
mass-weighted coordinates (ηi). Conversely, since the ηi are linearly related
to the normal coordinates, we can write

ηi =
3N∑

k=1

Bikςk =
3N∑

k=1

Bikς0
k sin

(√
υkt + φk

)
, (B6.1.13)

where the coefficients Bik also remain to be determined. Equation (B6.1.13)
shows that any of the ηi for which Bik is not zero must have the same depen-
dence on time as normal coordinate k:

ηi = Bikς0
k sin

(√
υkt + δk

)
. (B6.1.14)

All these nuclei thus will move with the same frequency and phase, but with
varying amplitudes that depend on ς0

k and the coefficients Bik.
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Now consider the more general situation in which any of the normal-mode

amplitudes
(
ς0

j

)
could be nonzero. Substituting Eq. (B6.1.14) in (Eq. B6.1.10)

and (B6.1.11) and using Newton’s second law (Eq. (B6.1.7)) again gives

−υjAi +
3N∑

i=1

bijAi = 0 , (B6.1.15)

where Ai = Bijς0
j . This is a set of 3N simultaneous linear equations for the

3N unknown quantities Ai and thus, once all the ς0
j are specified, for the

coefficients Bij. A trivial solution to these equations is that all the Ai are zero.
As we discuss in Box 8.1, there will be one or more nontrivial solutions if,
and only if, the determinant constructed from the bij and υj (the secular
determinant) is zero:

∣∣∣∣∣∣∣∣

b11 − υj b12 · · · b13N

b21 b22 − υj · · · b23N

· · · · · · · · · · · ·
b3N 1 b3N 2 · · · b3N 3N − υj

∣∣∣∣∣∣∣∣

= 0 . (B6.1.16)

Equation (B6.1.12 therefore must be a valid equation of motion for the system
if frequency υj has one of the values that satisfy Eq. (B6.1.16). Once we obtain
one of these roots, we can substitute it into Eq. (B6.1.15) to find all the Ai and
hence the Bik, subject to the initial conditions and the constraint

3N∑

i=1

B2
ik = 1 . (B6.1.17)

This procedure will give 3N solutions to the equations of motion, one for
each of the roots of Eq. (B6.1.16), although some of these solutions could
be identical. Six of the solutions (five for a linear molecule) will describe
translation or rotation of the molecule as a whole and will have υj = 0; the
others will give the normal modes that we seek. The general solution for the
motions of the system can be written as a sum of these particular solutions

(Eq. (B6.1.14)), with amplitudes
(
ς0

j

)
and phases (δj) determined by the

initial conditions. In practice, it is not necessary to work out the individual
solutions one at a time in the manner outlined here; they can all be obtained
directly by diagonalizing the matrix of second derivatives (bij) corresponding
to the determinant as described in Box 8.2.

A method for finding the normal modes of small molecules was devised
by E.B. Wilson (Wilson 1939; Wilson et al. 1955). The procedure involves
constructing an N × N matrix of force constants (F) and a second matrix (G)
whose elements depend on the molecular masses and the bond lengths and
angles in the equilibrium geometry. Diagonalizing the product FG then gives
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the normal-mode vibrational frequencies and the coefficients for stretching
or bending of various bonds in each of the normal modes. Information on
the symmetry of the molecule can be used to facilitate setting up G, which
usually is the most complex part of the problem (Wilson et al. 1955; Painter
et al. 1982; Struve 1989; Cotton 1990; McHale 1999).

This approach bogs down for large molecules because the F and G matrices
are based on internal molecular coordinates. It is much simpler to use Carte-
sian coordinates and to find the second derivatives of the potential energy
with respect to the coordinates numerically. In this approach, which was pio-
neered by Lifson, Warshel, and Levitt (Lifson and Warshel 1968; Warshel et al.
1970; Warshel and Lifson 1970), the potential energy of a system is expressed
as a sum of terms for bond stretching and bending, torsional twisting, van
der Waals interactions, and electrostatic interactions (Fig. 6.1). The contri-
bution of atom i to the potential energy thus can be written (Warshel 1991;
Rapaport 1997)

Vi(t) =
bonds∑

b

kl
b

2

(
lb − l0

b

)2
+

angles∑

a

kφa
2

(
φa − φ0

a

)2
+

torsions∑

t

kθt
2

cos2 (n0
t θt − θ0

t

)

+
atoms∑

j=i

(
A0

i r−12
ij − B0

i r−6
ij + qiqjr−1

ij d−1
ij

)
+ constant . (B6.1.18)

The first sum in this expression runs over all the bonds to the atom, with lb

denoting the length of bond b and l0
b the nominal length of a bond of this

particular type. The second and third sums run over the bond angles (φ)
and torsional (dihedral) angles (θ); the fourth, over the van der Waals and
electrostatic interactions with atoms that are not bonded directly to atom i.
In the final sum, qi, qj, and rij are the partial charges and interatomic distance
for atoms i and j, and dij is a dielectric screening function that increases with
rij. The standard bond lengths and angles (l0

b, φ0
a, n0

t , and θ0
t ) are chosen

to reflect crystallographic information, and the force constants (kl
b, kφa, and

kθt ) are related to vibrational frequencies measured by IR spectroscopy. The
atomic charges can be obtained from quantum calculations and measured
dipole moments, and the van der Waals parameters from molecular densities
in crystals and liquids. Some treatments include additional terms that couple
the bond-stretching energies to the bond-bending and torsional angles.

Using Eq. (B6.1.18), we can compute the matrix of second derivatives (bij)
needed to find the normal modes by calculating the change in the potential
energy resulting from small changes in the atomic coordinates. Diagonalizing
this matrix then gives the normal-mode frequencies and coordinates. It is
important to remember, however, that the expressions underlying a normal-
mode analysis assume that the system is at a potential-energy minimum.
Macromolecules have a vast number of such minima, but finding the global
minimum can be very difficult.
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Molecular-dynamics simulations provide one way of taking a complex
structure to an energy minimum. In such a simulation, the atoms are assigned
random initial kinetic energies consistent with the temperature and are
allowed to move for a brief interval of time (typically 1 or 2 fs); the forces
on each atom then are evaluated from the derivatives of the potential-energy
function and the associated accelerations are calculated and used to update
the velocities. The system is allowed to move for another interval, and this
process is iterated many times at gradually decreasing temperatures.

Molecular-dynamics simulations also can be used to evaluate the vibra-
tional modes that are coupled to a transition such as an electronic excitation.
The fluctuating potential energy difference between the initial and final elec-
tronic states is evaluated at regular intervals during the molecular-dynamics
trajectory. As discussed in Chaps. 10 and 11, a Fourier transform of the auto-
correlation function of the fluctuations provides the frequencies and dimen-
sionless displacements (Δ) for the modes that are coupled to the transition.

Fig. 6.1. The contributions of atom i to the
classical potential energy of a system depend
on the lengths (l) and angles (φ) of the bonds
formed by the atom, the torsional rotations (θ)
around bonds formed by neighboring atoms,
and van der Waals and electrostatic interactions
with other atoms

Figure 6.2 illustrates the bending and stretching modes of linear and nonlinear
triatomic molecules. Although the normal modes of larger molecules can be much
more complicated, modes of interest often turn out to be dominated by movements
of a relatively small number of atoms.

As we discussed in Chap. 2, the solutions to the Schrödinger equation for
a quadratic potential energy function of coordinate x are the harmonic-oscillator
wavefunctions,

χn = NnHn(u) exp
(
−u2/2

)
, (6.2)

where the dimensionless coordinate u is x/(�/2πmrυ)1/2, mr is the reduced mass
of the system, υ is the classical vibrational frequency, Hn(u) is a Hermite polyno-
mial, and Nn is a normalization factor (Eq. (2.31) and Box 2.5). The frequency of
a harmonic oscillator with force constant k is given by

υ =
(
k/mr

)1/2 /2π . (6.3)
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Fig. 6.2. Normal modes of linear (A–C) and nonlinear (D–F) triatomic molecules. The open
and filled circles indicate positions of the atoms at two extremes of the motions; arrows
show the movements in one direction between these extremes. The bending and symmetric
stretching modes maintain reflection symmetry, whereas the asymmetric stretching mode
destroys this symmetry. A linear triatomic molecule has an additional bending mode per-
pendicular to the plane of the drawing (not shown), but has only two rotational modes,
whereas a nonlinear triatomic has three. Both also have a single translational mode

Within the limits of the harmonic approximation, a vibrational wavefunction for
a nonlinear molecule is simply a product of the wavefunctions of the 3N − 6 or
3N − 5 independent harmonic oscillators:

X
(
u1, u2, · · ·) =

3N−6∏

i=1

χn(i)
(
ui
)

. (6.4)

And to the same approximation, the vibrational energy of a molecule is the sum of
the energies of the individual normal modes:

Evib =
3N−6∑

i=1

(
ni +

1
2

)
hυi , (6.5)

where ni is the excitation level of mode i (Eq. (2.30)).

6.2
Vibrational Excitation

Excitation of a molecule to a higher vibrational state often can be described reason-
ably well as an elevation of an individual normal mode from quantum number ni
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to a higher number, mi. If the frequencies of the normal modes do not change
significantly when the molecule is excited, the excitation energy is (mi − ni)hυi

where υi is the vibration frequency of the mode.
To investigate the selection rules and dipole strengths for vibrational excitations,

we have to evaluate how the radiation field perturbs the vibrational energy and
how this perturbation depends on the normal coordinate. Consider first a diatomic
molecule so that we have only a single vibrational coordinate (x). The perturbation
term in the Hamiltonian takes the form

H̃′(x, t) ≈ −E(t) · μ , (6.6)

where E is the electric field and μ is the molecule’s dipole moment including
contributions from both electronic and nuclear charges. With this expression for
H̃′, the same line of reasoning that we applied to electronic transitions shows
that the strength of an excitation from vibrational level n to level m depends on
|Eo·μmn|2, where Eo is the amplitude of the field and μmn is the matrix element of
the electric dipole operator,

μmn =
〈
χm

∣∣̃μ
∣∣ χn

〉
. (6.7)

The dipole moment of a heteroatomic molecule cannot be written rigorously as
a simple analytical function of the normal coordinates because redistribution of
the electrons causes the atomic charges to change as the atoms move apart. For
a vibration of the single bond in a diatomic molecule, |μ| decreases if the two atoms
come close together, but it also must go to zero at large distances when the free
atoms dissociate; it is maximal at an intermediate bond length that depends on the
nature of the atoms (Fig. 6.3). We can, however, express |μ| in a Taylor series about
the equilibrium value of the normal coordinate:

∣∣μ(x)
∣∣ =

∣∣μ(0)
∣∣ +

(
∂
∣∣μ
∣∣/∂x

)
0 x +

1
2

(
∂2
∣∣μ
∣∣/∂x2)

0 x2 + ... , (6.8)

where x is the difference between the bond length and the equilibrium length
and the subscripts indicate that the derivatives are evaluated at the equilibrium
position (x = 0). The transition dipole then can be written

μmn = μ(0)
〈
χm

∣∣χn
〉

+
(
∂μ/∂x

)
0

〈
χm |x| χn

〉
+

1
2

(
∂2μ

/
∂x2)

0

〈
χm

∣∣x2
∣∣ χn

〉
+ ... ,

(6.9)

with the matrix elements also evaluated at x = 0.
The leading term in Eq. (6.9), μ(0)〈χm|χn〉, is zero for m = n because of the

orthogonality of the eigenfunctions. The term (∂μ/∂x)0〈χm|x|χn〉 thus dominates
the series, provided that (∂μ/∂x)0 = 0. Examination of the eigenfunctions of
a harmonic oscillator shows that the integral 〈χm|x|χn〉 in this term is nonzero
only if m = n ± 1 (Box 6.2). The formal selection rules for excitation of a harmonic
vibration are, therefore,

(
∂
∣∣μ
∣∣/∂x

)
0 = 0 , (6.10)

m − n = ±1 , (6.11)
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and
hν = hυ , (6.12)

where υ is the vibrational frequency at x = 0. The term (1/2)(∂2μ/∂x2)0〈χm|x2|χn〉
in Eq. (6.9) leads to a weak overtone transition at 2hυ.

Box 6.2 Selection rules for vibrational transitions

The magnitude of the integral 〈χm|x|χn〉 in Eq. (6.9) can be evaluated for
harmonic oscillators by using the recursion expression for Hermite polyno-
mials:

uHn(u) = (1/2)Hn+1(u) + nHn−1(u) (B6.2.1)

∣∣〈χm |x| χn
〉∣∣ =

∞∫

−∞
χm(u)uκ−1χn(u)dx

= NmNnκ−1

∞∫

−∞
Hm(u)uHn(u) exp(−u2/2) dx

=
Nnκ−1/2

2Nn+1

〈
χm

∣∣χn+1
〉

+ n
Nnκ−1/2

Nn−1

〈
χm

∣∣χn−1
〉

=
(

n + 1
2κ

)1/2

δm,n+1 +
( n

2κ

)1/2
δm,n−1 (B6.2.2)

(see Eq. (5.42)–(5.45)). 〈χm|x|χn〉 thus is zero unless m = n ± 1. The term
[(n + 1)/2κ]1/2δm,n+1 pertains to absorption (vibrational excitation), whereas
[n/2κ]1/2δm,n−1 pertains to emission. Equation (B6.2.2) is identical to the
expression we developed for emission and absorption of photons (Eq. (5.45)).
But note that here quantum numbers m and n refer to the excitation level of
the molecular vibration, i.e., the number of phonons in the mode, not to the
density of photons in the incident radiation.

Similar arguments show that the integral 〈χm|x2|χn〉 in the second-order
term in Eq. (6.9) is nonzero only for m = n ± 2, and the integral 〈χm|x3|χn〉
in the third-order term is nonzero only for m = n ± 3 (Struve 1989). The cor-
responding overtone absorption lines at ν = 2υ, 3υ and higher multiples of
υ are weak for harmonic vibrational modes because (∂2μ/∂x2)0, (∂3μ/∂x3)0,
and higher derivatives of μ usually are very small. However, such transitions
can become increasingly allowed if the vibration is anharmonic. To illustrate
this point, Fig. 6.4 shows the quantized wavefunctions and first-order tran-
sition dipoles (〈χm|x|χ0〉) for an oscillator with the Morse potential that we
considered in Fig. 2.1. Although the first few wavefunctions are qualitatively
similar to those of a harmonic oscillator, those with higher quantum numbers
are weighted in favor of progressively larger values of the vibrational coordi-
nate. As a result of this asymmetry, the matrix elements for the 0 → 12 and
0 → 13 transitions, which would be zero for a harmonic oscillator, are about
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19% that for the 0 → 1 transition (Fig. 6.4c). The matrix element for the
0 → 2 transition (also zero for a harmonic oscillator) is about 14% of
that for 0 → 1. The matrix element for excitation to the highest quantized
level (m = 14 in this illustration) drops back essentially to zero because
the wavefunction for this level spreads over a much larger region of the
coordinate space.

The wavefunctions in Fig. 6.4 were obtained with the Morse potential
V(r) = Ediss[1−exp(−2a(r−r0))]2, with the anisotropy parameter a = 0.035/r0

(Fig. 2.1). Neglecting rotational effects, the eigenfunctions of this potential
can be written

ψn(u) = Nn exp [η exp(−au)] [exp(−au)](k−2n−1)/2 L(k−2n−1)
n [2η exp(−au)]

(B6.2.3)

(Morse, 1929). In this expression, u = r − r0,η = (2mrEdiss)1/2/a�, k =
2(2mrEdiss)1/2/a�, n is an integer with allowed values 0, 1, ...(k − 1)/2, and Nn

is a normalization constant. L(k−2n−1)
n [2η exp(−au)] is a generalized Laguerre

polynomial defined by

L(α)
n (x) =

n∑

m=0

(n + α)!
(n − m)!(m + α)!

(−1)m

m!
xm , (B6.2.4)

and mr is the reduced mass of the system. Ter Haar (1946) derived an
equivalent expression in terms of a polynomial called the confluent hy-
pergeometric function. The eigenvalues are, to a close approximation, En =
hυ0[(n + 1/2) − a(n + 1/2)2], with υ0 = a(2Ediss/mr)1/2. Sage (1978), Sage
and Williams (1983), and Spirko et al. (1985) give analytical expressions for
〈χm|x|χn〉 and higher powers of x.

We have assumed that the normal modes of the chromophore do not
change significantly when the molecule is excited. For a more general treat-
ment that covers breakdowns of this assumption (Duschinsky effects), the
vibrational modes of the excited molecule can be written as linear combina-
tions of the modes in the ground state (Sharp and Rosenstock 1964; Sando
and Spears 2001; Sando et al. 2001).

The main conclusion that emerges from this analysis is that excitation of a har-
monic vibrational mode requires (∂μ/∂x)0 to be nonzero: the transition is allowed
only if the vibration perturbs the equilibrium geometry in a way that changes the
molecule’s dipole moment. A homonuclear diatomic molecule such as O2 retains
a dipole moment of zero for small changes in the bond length, and so cannot
undergo pure vibrational excitations. In addition, because the vector 〈χm|x|χn〉 is
directed along the bond axis in a diatomic molecule, a vibrational absorption band
exhibits linear dichroism with respect to this axis. The extinction coefficient of the
major IR absorption band of oriented CO molecules thus will depend on cos2θ,
where θ is the angle between the electric field of the light and the C–O axis.
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Fig. 6.3. The change in the permanent dipole
moment of a heteroatomic diatomic molecule as
the bond is stretched or compressed. The
abscissa is the change in bond length in
dimensionless units relative to the equilibrium
length. The dotted line shows the tangent to the
curve at the equilibrium position (x = 0)

If the selection rule m = n + 1 is satisfied and (∂μ/∂x)0 is nonzero, the dipole
strength of the corresponding IR absorption band depends on 〈χm|x|χn〉2, which for
a harmonic oscillator is proportional to (n+1) (Box 6.2). The extinction coefficient
for (n = 1, m = 2) is, therefore, approximately twice that for (n = 0, m = 1).
However, only the 0 → 1 absorption band is seen in most cases because the
population of the zero-point vibrational level (n = 0) usually is much greater
than the populations of the higher levels. Absorption bands reflecting 1 → 2
transitions sometimes are seen transiently in systems that are created in excited
vibrational states. Such bands typically occur at somewhat lower frequencies than
the 0 → 1 band because the vibrational potential surface is not strictly harmonic.
Photodissociation of CO bound to the heme of myoglobin, for example, generates
loosely bound CO with an IR absorption band at 2085 cm−1, and a weak satellite
band at 2059 cm−1 (Sagnella and Straub 1999; Sagnella et al. 1999). The amplitude of
the satellite band decays with a time constant of about 600 ps as the C=O vibration
equilibrates thermally with vibrational modes of the protein and the solvent.

A Taylor series expansion of the transition dipole for a polyatomic molecule
leads to a an expression similar to Eq. (6.9):

μmn =
3N−6∑

i=1

(
∂μ/∂xi

)
0

〈
χm

∣∣xi
∣∣χn

〉

+
1
2

3N−6∑

i=1

3N−6∑

j=1

(
∂2μ

/
∂xi∂xj

)
0

〈
χm(i)χm(j)

∣∣xixj
∣∣ χn(i)χn(j)

〉
+ ... , (6.13)

where μ refers to the total dipole moment of the molecule and the sums run over
all the normal modes. Again, the dominant absorption bands represent the terms
(∂μ/∂xi)0〈χm(i)|xi|χn(i)〉, which are nonzero if mi − ni = ±1 and (∂μ/∂xi)0 = 0;
the higher-order terms lead to weaker overtone and combination excitations. The
requirement for (∂μ/∂xi)0 to be nonzero means that IR transitions are forbidden
for vibrations that are totally symmetric with respect to the molecular structure. In
CO2 or H2O, for example, the antisymmetric stretching mode changes the dipole
moment of the molecule and gives an allowed IR transition, but the symmetric
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Fig. 6.4. Wavefunctions and transition dipole magnitudes for an anharmonic vibrational
mode. a The relative amplitudes of the first four wavefunctions of an oscillator with the
Morse potential illustrated in Fig. 2.1 (curves 0, 1, 2, and 3, respectively); wavefunction 13 is
shown in b, and wavefunction 14 (the highest quantized state) in d. The abscissa is the relative
departure of the vibrational coordinate (r) from its equilibrium value (r0). The curves are
normalized to the same integrated probabilities (squares of the wavefunction amplitudes)
in the range 0 < (r −r0)/r0 ≤ 11.5, and are scaled relative to the peak of wavefunction 0. This
normalization considers only part of wavefunction 14, which is at the dissociation energy
and continues indefinitely off scale to the right. c The relative magnitudes of the transition
dipoles (〈χm|x|χ0〉) for excitation from the lowest level (n = 0) to each of the other levels
below the dissociation limit

stretching mode does not (Fig. 6.2). We will return to this point in Sect. 12.4 when
we discuss selection rules for Raman scattering. The antisymmetric stretching
mode of water has a molar extinction coefficient on the order of 100 M−1 cm−1, and
occurs at frequencies between 2,700 and 3,700 cm−1, shifting to higher energy as
the strength of hydrogen bonding increases.
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6.3
IR Spectroscopy of Proteins

IR spectroscopy is widely used for structural analysis because many functional
groups have characteristic vibrational frequencies. Vibrations of the peptide bond
give rise to three major IR absorption bands (Table 6.1, Fig. 6.5):

1. The N–H bond-stretching mode of hydrogen-bonded amide groups occurs
in the region 3,280–3,300 cm−1. This absorption band is sometimes called
the “amide A” band. The absorption is polarized parallel to the N–H bond,
which is parallel to the helix axis in α-helical structures and perpendicular to
the polypeptide chain in β-sheets. The band shifts to lower frequency as the
strength of the hydrogen bonding increases (Krimm and Bandekar 1986).

2. The C=O stretching mode, with contributions from in-phase bending of the N–
H bond and stretching of the C–N bond, occurs in the region 1,650–1,660 cm−1

in α-helical structures and between 1,620 and 1,640 cm−1 in β-sheets (Chir-
gadze and Nevskaya 1976; Nevskaya and Chirgadze 1976). This band is often
called the “amide I” band. Its polarization in α and β secondary structures is
the same as that of the N–H stretching mode.

3. The “amide II” band occurs at lower energies than the amide I band, between 1,
540 and 1,550 cm−1 in α-helices and between 1,520 and 1,525 cm−1 in β-sheets.
This vibration involves in-plane bending of the N–H bond, coupled to C–N and
Cα–C stretching and C=O in-plane bending. It is polarized approximately along
the C–N bond (nearly perpendicular to the axis of anα-helix and nearly parallel
to the polypeptide chain in a β-sheet). In non-hydrogen-bonded peptides, the
N–H stretching and amide I mode shift to higher energies by 20–100 cm−1, and
the amide II mode shifts to a slightly lower energy.

IR spectra of polypeptides and proteins are affected by coupling of the vibrations
of neighboring peptide groups (Miyazawa et al. 1958; Miyazawa 1960; Krimm and
Bandekar 1986; Brauner et al. 2000, 2005). This coupling is analogous to exciton

Fig. 6.5. The main vibrational modes of a peptide bond
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Table 6.1. IR absorption bands of peptides

Vibrational mode Energy (cm−1)a Dichroismb

N–H stretch
α-helix 3,290–3,300 ||
β-sheet 3,280–3,300 ⊥
Amide I (C=O stretch)
α-helix 1,650–1,660 ||
β-sheet 1,620–1,640 ⊥
Amide II (in-plane N–H bend)
α-helix 1,540–1,550 ⊥
β-sheet 1,520–1,525 ||

aIn hydrogen-bonded peptide groups
bPolarization with respect to the peptide chain axis

interactions of electronic transitions (Chap. 8), and it results in a similar splitting
of the absorption bands. However, the situation is complicated by coupling of the
transitions through both covalent bonds and hydrogen bonds as well as through
space. In spite of this complexity, α-helices still exhibit a strong band polarized
parallel to the helix axis corresponding to the amide I mode, and a perpendicularly
polarized band at lower energy corresponding to the amide II mode. β-sheet struc-
tures have diagnostic amide I bands that involve coupled motions of four peptide
groups. Although amide I absorption bands of regions of a protein with different
secondary structures usually are not well resolved, the overall band sometimes can
be dissected by fitting to a sum of Gaussians (Byler and Susi 1986; Susi and Byler
1986). The IR absorption spectra of amino acid side chains have been described
by Venyaminov et al. (1990).

Surewicz et al. (1993) and Siebert (1995) have reviewed the use of IR spectroscopy
to study the conformations of polypeptides and proteins in solution. A notable
example is the study by Naik and Krimm (1986a, b), who determined the secondary
structure of the ionophore gramicidin A in a variety of environments. Time-
resolved measurements of changes in the amide bands have been used to study
the dynamics of refolding of myoglobin following denaturation by a temperature
jump (Gilmanshin et al. 1997, 1998; Callender et al. 1998).

IR spectroscopic studies of macromolecules have become increasingly powerful
with the development of Fourier transform techniques (Griffiths and de Haseth
1986; Braiman and Rothschild 1988; Mäntele 1993; Siebert 1995). (See Chap. 1
for a description of a Fourier Transform IR, FTIR, spectrometer.) FTIR measure-
ments can be used to probe changes in the bonding or interactions of individual
amino acid side chains in proteins. Bacteriorhodopsin provides an illustration.
When bacteriorhodopsin is illuminated, its protonated retinylidine Schiff base
chromophore isomerizes and then transfers a proton to a group in the protein.
FTIR measurements showed the formation of an absorption band at 1,763 cm−1 in
addition to a set of absorption changes attributable to the chromophore (Engelhard
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et al. 1985). In bacteriorhodopsin that was enriched in [4-13C]-aspartic acid, the
band appeared at 1,720 cm−1, and an additional shift to 1,712 cm−1 was obtained
when the solvent was replaced by D2O. These observations indicated that the band
reflected C=O stretching of a protonated aspartic acid, leading to identification
of a particular aspartic acid residue as the H+ acceptor for deprotonation of the
chromophore.

In photosynthetic reaction centers, FTIR measurements combined with site-
directed mutagenesis and isotopic substitutions have been used to identify residues
that interact with the electron carriers, or that bind a proton when one of the
carriers is reduced (Mäntele et al. 1988; Leonhard and Mantele 1993; Breton et al.
1997, 1999; Noguchi et al. 1997; Breton 2001). Figure 6.6 shows a typical spectrum of
the absorbance changes that result from illumination of bacterial reaction centers
at low temperatures. The absorption increases at 1703 and 1713 cm−1 are assigned
to the C=O stretching mode of the 131-keto groups of the two bacteriochlorophylls
that make up the photochemical electron donor (P), when the dimer is in its
oxidized form (P+). The absorption decreases at 1682 and 1682 cm−1 mark the
positions of the same vibrations when the dimer is in its neutral form. The bands
of the two bacteriochlorophylls appear at somewhat different frequencies as a result
of differences in hydrogen bonding and local electrical fields (Sect. 6.4).

Fig. 6.6. Fourier transform IR difference spectra (light minus dark) of the absorbance
changes associated with electron transfer from the special pair of bacteriochlorophylls
(P) to a quinone (QA) in photosynthetic reaction centers of Rhodobacter sphaeroides. The
negative absorption changes result mainly from loss of absorption bands of P; the positive
changes, from the absorption bands of the oxidized dimer (P+). These measurements were
made with a thin film of reaction centers at 100 K. (Adapted from Johnson et al. 2002)
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As we mentioned in Chap. 4, the linear dichroism of IR absorption bands has
been used to determine the orientation of CO bound to the heme of myoglobin in
solution and the change in orientation that occurs upon photodissociation (Lim
et al. 1995). A 35-ps pulse of polarized, 527-nm light was used to dissociate bound
CO, and a 0.2-ps pulse of IR light was used to probe the C–O stretching mode.
An absorption band attributable to this mode occurs near 1,900 cm−1 when CO
is bound to the heme and near 2,100 cm−1 when the CO is released from the
heme but remains in a pocket of the protein. The polarization of the flash-induced
absorbance changes showed that the C–O bond of the bound molecule is nearly
normal to the plane of the heme, whereas the released CO is oriented approximately
parallel to the plane. These observations necessitated a rethinking of ideas about
how myoglobin and hemoglobin discriminate against binding of CO in favor of O2.
Shifts in the IR absorption band also revealed that the photodissociated CO can
bind to the protein in several different ways (Lim et al. 1997; Lehle et al. 2005).

Other applications of polarized IR spectroscopy in molecular biophysics have
included studies of the orientations of tryptophan side chains in a filamentous virus
(Tsuboi et al. 1996) and studies of folding of integral membrane proteins (Hunt et
al. 1997). Additional biological applications of time-resolved IR spectroscopy have
been reviewed by Slayton and Anfinrud (1997).

Chiral molecules exhibit vibrational circular dichroism analogous to electronic
circular dichroism, and the underlying theory is essentially the same (Chap. 9).
Measurements of vibrational circular dichroism, though still much less common
than measurements of electronic circular dichroism, have been stimulated by
improvements in instrumentation and procedures for predicting the vibrational
circular dichroism spectra of small molecules (Stephens 1985; Buckingham et
al. 1987; Amos et al. 1988; Stephens and Devlin 2000), and have been correlated
empirically with secondary structural elements in proteins (Pancoska et al. 1993;
Baumruk et al. 1996). Stretching modes of heme–ligand bonds in some mutant
hemoglobins and myoglobins exhibit an unusually strong vibrational circular
dichroism that is sensitive to interactions of the ligand with the protein (Bormett
et al. 1992).

6.4
Vibrational Stark Effects

Because the vibrations that underlie IR absorption spectra must affect the electric
dipole of a molecule, we would expect the frequencies of these modes to be sensitive
to local electric fields, and this is indeed the case. Shifts in vibration frequencies
caused by external electric fields can be measured in essentially the same manner
as electronic Stark shifts, by recording oscillations of the IR transmission in the
presence of oscillating fields. The Stark tuning rate is defined as δυ = ∂υ/∂Eυ,
where υ is the wavenumber of the mode and Eυ is the projection of the field (E)
on the normal coordinate (Lambert 1988). To a first approximation, δυ is given by
−̂u · (Δμ + E · Δα)/hc, where û is a unit vector parallel to the normal coordinate,
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Δμ is the difference between the molecule’s dipole moments in the excited and
ground states, and Δα is the difference between the polarizability tensors in the
two states (Sect. 4.13, Boxes 4.15, 12.1). However, anharmonicity and geometrical
distortions caused by the field also can contribute to vibrational Stark effects (Park
and Boxer 2002; Brewer and Franzen 2003).

Typical Stark tuning rates for carbonyl stretching modes are on the order of
1/f cm−1/(MV cm−1) where f is the local-field correction factor (Park et al. 1999;
Park and Boxer 2002). The C–O stretching mode of CO bound to the heme Fe
of myoglobin has a relatively large Stark tuning rate about 2.4/f cm−1/(MV cm−1)
(Park et al. 1999). The frequency of this mode varies between 1937 and 1984 cm−1

in mutant myoglobins, cytochromes, and other heme proteins, and differences
in the local field probably account for much of this variation (Park et al. 1991,
1999; Jewsbury and Kitagawa 1994, 1995; Li et al. 1994; Ray et al. 1994; Laberge
et al. 1996; Phillips et al. 1999). Measurements of the Stark effect with CO bound
to a Ni surface showed that the Stark tuning rate for the CO vibration is positive
when the field makes the potential more positive at the C atom relative to that
at the O atom (Lambert 1988). Boxer and coworkers (Chattopadhyay and Boxer
1995; Park and Boxer 2002; Suydam and Boxer 2003) have measured Stark tuning
rates for the stretching modes of C–F, C–D, and a variety of other chemical bonds
that can be introduced at specific sites in proteins as potential reporters for local
electric fields. Mutations of photosynthetic bacterial reaction centers shift the C–O
vibration frequencies of the 131-keto groups of the two bacteriochlorophylls of the
special pair, and the shifts correlate well with calculated changes in the local fields
(Johnson et al. 2002).



7 Resonance Energy Transfer

7.1
Introduction

One way that an excited molecule can return to the ground state is to transfer the
excitation energy to another molecule. This process, resonance energy transfer,
plays a particularly important role in photosynthetic organisms. Extended arrays
of pigment–protein complexes in the membranes of plants and photosynthetic
bacteria absorb sunlight and transfer energy to the reaction centers, where the
energy is trapped in electron-transfer reactions (van Amerongen et al. 2000; Green
and Parson 2003). In other organisms, photolyases, which use the energy of blue
light to repair UV damage in DNA, contain a pterin or a deazaflavin that transfers
energy efficiently to a flavin radical in the active site (Sancar 2003). A similar
antenna has been found in cryptochromes, which appear to play a role in circadian
rhythms (Saxena et al. 2005). Because the rate of resonance energy transfer depends
on the distance between the energy donor and acceptor, the process also is used
experimentally to probe intermolecular distances in biophysical systems (van der
Meer et al. 1994). Typical applications are to measure the distance between two
proteins in a multienzyme complex or between ligands bound at two sites on
a protein, or to examine the rate at which components from two membrane vesicles
mingle in a fused vesicle. An inquiry into the mechanism of resonance energy
transfer also provides a springboard for discussing other time-dependent processes
such as electron transfer.

Consider two identical molecules for which the wavefunctions of the ground
states are φ1aχ1a and φ2aχ2a, where φ and χ represent electronic and nuclear wave-
functions, respectively, and subscripts 1 and 2 denote the molecules. Suppose, first,
that the two molecules do not interact. The Hamiltonian for the dimer then is just
the sum of the Hamiltonians for the individual molecules:

H̃ = H̃1 + H̃2 , (7.1)

where H̃1 operates only on molecule 1 and H̃2 operates only on molecule 2.
The Schrödinger equation for the ground state of the combined system is sat-
isfied by writing the wavefunction as a simple product of the molecular wave-
functions:

ΨA = φ1aχ1aφ2aχ2a . (7.2)

William W. Parson, Modern Optical Spectroscopy,
DOI: 10.1007/978-3-540-37542-5, © Springer-Verlag 2009
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If each of the individual molecules has energy Ea in the ground state, the energy
of the dimer’s ground state is simply 2Ea:

〈
φ1aχ1aφ2aχ2a

∣∣H̃1 + H̃2
∣∣ φ1aχ1aφ2aχ2a

〉

=
〈
φ1aχ1a

∣∣H̃1
∣∣φ1aχ1a

〉 〈
φ2aχ2a

∣∣φ2aχ2a
〉

+
〈
φ2aχ2a

∣∣H̃2
∣∣ φ2aχ2a

〉 〈
φ1aχ1a

∣∣φ1aχ1a
〉

= Ea + Ea = 2Ea . (7.3)

If either molecule can be raised to an excited state φbχb with energy Eb, there
are two possible excited states of the dimer:

ψ1 = φ1bχ1bφ2aχ2a (molecule 1 excited) (7.4a)

or

ψ1 = φ1aχ1aφ2bχ2b (molecule 2 excited) . (7.4b)

As long as the two molecules do not interact, both ψ1 and ψ2 are eigenfunctions
of the total Hamiltonian, and both states will have the same energy, Ea + Eb. In
addition,

〈
ψ1

∣∣H̃1 + H̃2
∣∣ψ2

〉
=
〈
ψ2

∣∣H̃1 + H̃2
∣∣ψ1

〉
= 0 . (7.5)

This means that states ψ1 and ψ2 are stationary states: the excitation has no
tendency to hop from one molecule to the other.

The wavefunction for the excited dimer also could be written as a linear combi-
nation of ψ1 and ψ2:

ΨB = C1ψ1 + C2ψ2 = C1φ1bχ1bφ2aχ2a + C2φ1aχ1aφ2bχ2b , (7.6)

with |C1|2 + |C2|2 = 1. In this representation, |C1|2 is the probability that molecule 1
is excited and |C2|2 the probability that molecule 2 is excited. The energy of the
excited state comes out the same (Ea + Eb) if we use this representation and is
independent of the values of C1 and C2 as long as the sum of their squares is 1.
The coefficients can have any magnitude between −1 and +1, and they could be
complex numbers. But if we excite molecule 1 so that |C1|2 = 1, |C2| will remain
zero indefinitely, and vice versa.

Now let us allow the two molecules to interact. This adds a new term to the
Hamiltonian:

H̃ = H̃1 + H̃2 + H̃21 . (7.7)

Because of the perturbation represented by H̃21,ψ1 andψ2 are no longer stationary
states. The interaction term allows the system to change between states ψ1 andψ2,
so the excitation energy moves back and forth between the two molecules. This
is resonance energy transfer. The interactions also could change the total energy
of the system, but we will put off a discussion of this point for now and focus on
the rate of transfer of energy between the molecules when the interactions are too
weak to affect the energy significantly.
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7.2
The Förster Theory

Suppose we know that the excitation is on molecule 1 at zero time. How fast will it
move to molecule 2? Let us start by describing the system by Eq. (7.6) with C1 = 1
and C2 = 0. Then, using Eq. (2.58), we can write

∂C2/∂t = −
(
i/�

)
H21 exp [i(E2 − E1)t/�] , (7.8)

where E1 and E2 are the energies of ψ1 and ψ2, and H21 is the interaction ma-
trix element, 〈ψ2|H̃21|ψ1〉. To find the probability that the excitation appears on
molecule 2 after a short interval of time (τ), we can obtain C2(τ) by integrating
Eq. (7.8) from t = 0 to τ, and then evaluate C∗

2 (τ)C2(τ).
If H21 is independent of time, and we restrict ourselves to intervals that are short

enough so that |C2|2 � 1, Eq. (7.8) can be integrated immediately:

C2(τ) = H21
(
1 − exp [i(E2 − E1)t/�]

)
/
(
E2 − E1

)
. (7.9)

As we found when we considered the absorption of light, Eq. (7.9) implies that
C∗

2 (τ)C2(τ) can have a significant magnitude only if |E2 − E1| is close to zero; this is

Fig. 7.1. Resonance energy transfer requires coupled downward and upward vibronic tran-
sitions. The energy lost by molecule 1 must match the energy gained by molecule 2 so that
energy is conserved in the overall process, and the Franck–Condon factors must be nonzero
for both transitions
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the resonance condition. In the case of absorption, one of the energies of the total
system includes the photon energy hν in addition to the energy of an unexcited
molecule; in resonance energy transfer we simply have two different ways of placing
an excitation in a system containing two molecules. The requirement for matching
the energies of the two states is illustrated in Fig. 7.1.

If we measure the rate of resonance energy transfer in a population of many
donor–acceptor pairs the energy difference E2 − E1 will vary from pair to pair
because the molecules will be in many different vibrational states. In addition,
the energy distributions will be broadened by relaxations of the excited states
(Sects. 2.6, 10.7) and by inhomogeneous interactions with the surroundings. The
measured rate will depend on an integral over the distribution of energies. For
each value of E1 in a particular donor–acceptor pair, we first need to integrate over
all possible values of E2. This integral can be evaluated as outlined in Box 4.6, and
the results are similar: the amount of energy transfer occurring in time τ is

∞∫

−∞
C∗

2 (τ, E21)C2(τ, E21)ρs2(E2)dE2 =
2πτ
�

|H21|2 ρs2(E1) , (7.10)

where E21 = E2 − E1 and ρs2(E) is the density of final states defined so that ρs2(E)dE
is the number of final states with energies in the small interval between E and
E + dE. We are interested specifically in ρs2(E1), the density of states around the
energy of the initial state, E1. Equation (7.10) is called Fermi’s golden rule. The
expression we derived in Chap. 4 for the rate of absorption of light (Eq. (4.8c)) is

the result of the golden rule for the case that
∣∣Htotal

21

∣∣2 = |E0 · μ|2 and the density of
radiation states per unit energy is h−1 times the density of oscillation modes per
unit frequency, ρν(ν). We will derive Fermi’s golden rule by a different approach
in Sect. 10.4.

To obtain the overall rate constant, we must integrate the expression in Eq. (7.10)
over the distribution of the initial energies, ρs1(E1), and then divide by τ:

krt =
2π
�

∞∫

−∞
|H21|2 ρs2(E1)ρs1(E1)dE1 . (7.11)

The interaction matrix element H21 in the integrand must consider the initial and
final nuclear states of the energy donor and acceptor in addition to the electronic
wavefunctions. However, to the extent that the Born–Oppenheimer approximation
is valid, the nuclei will not move significantly during the instant when the excitation
energy jumps between the molecules. H21 thus can be approximated as a product
of a purely electronic interaction matrix element (H21(el)) and two nuclear overlap
integrals (cf. Eq. (4.41)):

H21 =
〈
φ1aφ2b

∣∣H̃21
∣∣ φ1bφ2a

〉 〈
χ1a|χ1b

〉 〈
χ2b|χ2a

〉

= H21(el)
〈
χ1a|χ1b

〉 〈
χ2b|χ2a

〉
. (7.12)
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In general, the nuclear wavefunctions χb and χa could represent any of many
different vibrational states of the system. We have to weight the contribution
from each of these nuclear states by the appropriate Boltzmann factor. Taking the
Boltzmann factors into account gives the following expression for the rate constant:

krt =
2π
�

∣∣H21(el)
∣∣2
[
∑

n

∑

m

exp
(
−En(1)/kBT

)

Z1

∣∣〈χ1m|χ1n
〉∣∣2

×
∑

u

∑

w

exp
(
−Eu(2)/kBT

)

Z2

∣∣〈χ2w|χ2u
〉∣∣2
]

δ
(
ΔE1 − ΔE2

)
. (7.13)

Here |〈χ1m|χ1n〉|2 is the Frank–Condon factor for vibrational levels n and m in the
excited and ground states, respectively, of molecule 1; En(1) is the energy of vibra-
tional level n relative to the zero-point level of the excited state of molecule 1; and Z1

is the vibrational partition function for this molecule’s excited state (Eq. (B4.14.4)).
Similarly, |〈χ2w|χ2u〉|2 is the Franck–Condon factor for vibrational levels u and w
of the ground and excited states of molecule 2; Eu(2) is the energy of vibrational
level u relative to the zero-point level of the ground state of molecule 2; and Z2 is
the vibrational partition function for this molecule’s ground state. The first two
sums in Eq. (7.13) run over all vibrational states of molecule 1, and the second
two sums run over all the vibrational states of molecule 2. Finally, the delta func-
tion, δ(ΔE1 − ΔE2), is 1 if the energy of the downward vibronic transition (ΔE1) of
molecule 1 is the same as the energy of the upward transition (ΔE2) of molecule 2,
and zero otherwise. The delta function ensures that energy is conserved in the
overall process. We have assumed that the different donor–acceptor pairs in the
sample act independently, and that the Franck–Condon factors and the electronic
term H21 are the same for all the donor–acceptor pairs.

Although the double sums in Eq. (7.13) look forbidding, we will see below that
they are related to the absorption and emission spectra of the energy donor and
acceptor, so in many cases we do not need to evaluate them term by term.

Now consider the electronic interaction energy H21(el). Let us assume that there
is no orbital overlap between the two molecules, so that electrons can be assigned
unambiguously to one molecule or the other, we do not have to consider inter-
molecular exchange of electrons, and the motions of the electrons in one molecule
are not correlated with those in the other. The dominant electronic interactions
then are simply Coulombic. If we have a reasonably good description of the molec-
ular orbitals, we can estimate the magnitude of the interactions as follows:

H21(el) =
〈
φ1aφ2b

∣∣H̃21
∣∣ φ1bφ2a

〉 ≈ (
f 2/n2)

∫ ∫
φ∗

1aφ
∗
2b

e2

r21
φ1bφ2adr1dr2 , (7.14)

where r21 is the distance between electron 1 (on molecule 1) and electron 2 (on
molecule 2), and the integration parameters dr1 and dr2 are the coordinates of
the two electrons. The factor ( f 2/n2) represents (approximately) the local-field
effect and dielectric screening in a medium with refractive index n (Box 7.1).
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Evaluating Eq. (7.14) is straightforward if we write the molecular orbitals as linear
combinations of atomic pz orbitals as in Eqs. (4.19–4.22). The expression for H21(el)

then becomes a sum of “transition monopole” terms:

H21(el) ≈ (
2f 2/n2)∑

s

∑

t

C1a
s C1b

s C2a
t C2b

t

(
e2/rst

)
, (7.15)

where rst is the distance from atom s of molecule 1 to atom t of molecule 2 and the
Cs are the coefficients for the pz orbitals on these atoms in molecular orbitals φ1a,
φ1b, φ2a, and φ2b.

Even without an explicit description of the molecular orbitals, a useful approx-
imate expression for H21(el) can be obtained by breaking the intermolecular elec-
trostatic interactions into monopole–monopole, monopole–dipole, and dipole–
dipole terms. If the molecules have no net charges, and are sufficiently far apart
relative to the molecular dimensions, the main contributions to H21(el) usually
come from dipole–dipole interactions. H̃21 then can be replaced by the operator
for the energy of interaction of electric “point” dipoles located at the centers of the
two chromophores. The dipole–dipole operator is

Ṽ21 =
(

f 2/n2) [(μ̃1 · μ̃2
) |R21|−3 − 3

(
μ̃1 · R21

) (
μ̃2 · R21

) |R21|−5] , (7.16)

where μ̃1 and μ̃2 are the dipole operators for electrons on the two molecules and
R21 is the vector from the center of molecule 1 to the center of molecule 2 (Fig. 7.2,
Box 7.1).

Box 7.1 Dipole–dipole interactions

The classical energy of interaction between two dipoles μ1 and μ2 can be
found by evaluating the potential energy of μ2 in the electric field F1 gen-
erated by μ1: the interaction energy is −F1 · μ2. The field at a point with
coordinates (x, y, z) is F1(x, y, z) = −∇̃[V1(x, y, z)], where V1(x, y, z) is the
electric potential (a scalar) and ∇̃[V], the gradient of the potential, is the
vector (∂V/∂x, ∂V/∂y, ∂V/∂z) (Eq. (3.9)).

Fig. 7.2. The energy of interaction of two dipoles depends on the magnitudes of the dipoles
(|μ1| and |μ2|), the distance between the two centers of charge (|R21|), the angle between
the dipoles (θ), and the angles with respect to R21 (α and β)
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To find V1(x, y, z), let us represent μ1 by a positive charge q and an equal
negative charge −q separated by a fixed distance. Put the origin of the coor-
dinate system midway between the two charges. For the general case of an
arbitrary distribution of charges in a vacuum, the electric potential at a point
R = (x, y, z) is

V(x, y, z) =
∑

i

qi/|ri| =
∑

i

qi

/[(
x − xi

)2
+
(
y − yi

)2
+
(
z − zi

)2
]1/2

,

(B7.1.1)

where qi and (xi, yi, zi) are the charge and location of charge i, and ri is the
vector from charge i to the point (x, y, z) (Fig. 7.3).

The contribution from charge qi to V(R) can be expanded in a Taylor
series in |ri|−1 by the procedure described in Box 4.2 for finding the energy
of a set of charges in an external field:

V =
∑

i

qi |R|−1+
∑

i

qi
[
xi∂

(|ri|−1)/∂xi + yi∂
(|ri|−1)/∂yi + zi∂

(|ri|−1)/∂zi
]

+
1
2

∑

i

qi
[
xixi∂2 (|ri|−1)/∂x2

i + xiyi∂2 (|ri|−1)/∂xi∂yi

+ xizi∂2 (|ri|−1)/∂xi∂zi + xiyi∂2 (|ri|−1)/∂yi∂xi

+ yiyi∂2 (|ri|−1)/∂y2
i + yizi∂2 (|ri|−1)/∂yi∂zi

+ xizi∂2 (|ri|−1)/∂zi∂xi + yizi∂2 (|ri|−1)/∂zi∂yi

+ zizi∂2 (|ri|−1)/∂z2
i

]
+ ... (B7.1.2)

As in the problem we considered in Chap. 4, such a multipole expansion
will be most useful if the charges are not too far from the origin. The first
sum gives the potential if all the charges are located exactly at the origin;
this is the monopole term. The second sum contains the dot product of
∇̃(|ri|−1) with the dipole moment of the charge distribution (

∑
i qiri), while

the third sum involves the nine components of the quadrupole distribution.
If the system contains equal numbers of positive and negative charges, the
first sum vanishes and the dipolar interaction usually is the leading term.
The quadrupolar and higher terms are zero if the charge distribution con-
sists of only two charges, but can be important in larger systems if both
the monopole and the dipole terms are zero or small. (Figure 4.1b shows
a simple charge distribution with a quadrupole moment but no dipole mo-
ment. The linear CO2 molecule also has a quadrupole moment but no dipole
moment.)
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The derivatives of |ri|−1 with respect to xi, yi, and zi in the dipole term
can be rewritten as derivatives with respect to the coordinates of the point of
interest, and then can be simplified if the charges are sufficiently close to the
origin so that ri ≈ R:

∂
(|ri|−1) /∂xi = −∂

(|ri|−1) /∂x ≈ −∂
(|R|−1) /∂x = x/ |R|3 . (B7.1.3)

The potential at R from a dipole μ1 centered at the origin thus is

V(R) =
1

|R|3

∑

i

(
qixix + qiyiy + qiziz

)
=

μ1 · R

|R|3 , (B7.1.4)

and the field at R is

F1(R) = −∇ (|R|−3 μ1 · R
)

(B7.1.5a)

= −μ1 |R|−3 −
(
μ1 · R

)∇ {|R|−3} = −μ1 |R|−3 + 3
(
μ1 · R

)
R |R|−5 .

(B7.1.5b)

Finally, the energy of interaction between dipole μ2 and the field from μ1 is

V =
(
μ1 · μ2

) |R|−3 − 3
(
μ1 · R

) (
μ2 · R

) |R|−5 . (B7.1.6)

Corrections to this expression are needed if the dipoles are embedded
in a dielectric medium. For dipoles that fluctuate in position or orientation
very rapidly relative to the time scale of nuclear motions, the field in a ho-
mogeneous medium with refractive index n is reduced by a factor of 1/n2.
(The field from a dipole that fluctuates slowly would be screened by the low-
frequency dielectric constant of the medium rather than the high-frequency
dielectric constant, n2.) However, to be consistent with our treatment of
molecular transition dipoles in Chaps. 4 and 5, we should view the interact-
ing molecular dipoles as residing in small cavities that correspond roughly
to the molecular volumes. Moving dipole 1 into a spherical cavity increases
the effective field in the surrounding medium by a factor of approximately
3n2/(2n2 + 1) (Böttcher 1973). This is the cavity-field correction factor fc

(Eq. (3.35)). Moving dipole 2 into its cavity increases the local field acting
on the dipole by this same factor. The overall correction to the interaction
energy thus is approximately f 2

c /n
2, or f 2

L /n
2 if we use the Lorentz correction

factor fL (Eq. (3.35)) instead of the cavity-field factor. A more realistic treat-
ment would require a microscopic analysis of the molecular shapes and of the
surrounding material. This is not necessary for our present purposes because
the dielectric correction factors cancel out of the main results derived here
(Eqs. (7.24), (7.27)).
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Fig. 7.3. Evaluating the field at R from a set of charges near the origin by summing the fields
from the individual charges

If we approximate H̃21 by Ṽ21, the electronic interaction matrix element H21(el)

becomes

H21(el) =
f 2

n2

(〈
φ1b

∣∣μ1
∣∣ φ1a

〉 · 〈φ2b
∣∣μ2

∣∣ φ2a
〉

|R21|3

−3

(〈
φ1b

∣∣μ1
∣∣ φ1a

〉 · R21
) (〈

φ2b
∣∣μ2

∣∣ φ2a
〉 · R21

)

|R21|5

)

=
(

f 2/n2)
[√

Dba(1)
√

Dba(2)
(
cos θ − 3 cosα cos β

) |R21|−3
]

=
(

f 2/n2)√Dba(1)
√

Dba(2)κ |R21|−3 . (7.17)

Here Dba(1) and Dba(2) are the dipole strengths for the transitions of the two
monomers; θ is the angle between the two transition dipoles; α and β are the
angles that the transition dipoles make with R21; and κ = (cos θ − 3 cosα cos β)
(Fig. 7.2). This is the point-dipole approximation.

Because the orientation factor κ in Eq. (7.17) (cos θ − 3 cosα cos β) can vary
from −2 to +2 depending on the angles θ, α, and β, H21(el) can be either positive,
negative, or zero. Figure 7.4 illustrates the limiting cases. The sign of κ is of no
consequence for the rate of energy transfer because the rate depends on |H21(el)|2,
which is proportional to κ2. If the molecules tumble isotropically on a time scale
that is fast relative to the lifetime of the excited donor, κ2 has an average value of 2/3.

If the two molecules are identical, with Dba(1) = Dba(2) = Dba, the factor
(Dba(1)Dba(2))1/2 in Eq. (7.17) is simply Dba. If Dba is given in units of debyes squared
and |R21| in angstroms, then

H21(el) ≈ 5.03 × 103 ( f 2/n2)Dbaκ |R21|−3 , (7.18)

in units of cm−1. [1 cm−1 is 1.99 × 10−16 erg, 1.24 × 10−4 eV, or 2.86 cal mol−1.
(1 D×10−18 esu cm D−1)2(1 Å×10−8 cm Å−1)−3 = 10−12 esu2 cm = 10−12 erg×5.03×
1015 cm−1 erg−1 = 5.03 × 103 cm−1.]
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Fig. 7.4. The orientation factor κ in the dipole–dipole interaction energy can vary from −2
to +2. The rate of resonance energy transfer is proportional to κ2

Figure 7.5 shows the values of H21(el) calculated for a pair of trans-butadiene
molecules by the point-dipole (Eq. (7.18)) and transition-monopole (Eq. (7.15))
expressions. In Fig. 7.5, panel B, the orientations of both molecules are held fixed
while the center-to-center distance is varied; in Fig. 7.5, panel A the second molecule
is rotated at a fixed distance. As a rule of thumb, the point-dipole approximation
is reasonably satisfactory if the intermolecular distance is more than 4 or 5 times
the length of the chromophores, although the relative error can still be substantial
in some situations. See Sect. 8.3 for more on transition-monopole treatments.

Equation (7.13) says that the rate of transitions from state Ψ1 to state Ψ2 is
proportional to |H21(el)|2, which according to Eqs. (7.17) and (7.18) decreases with

Fig. 7.5. Electronic interaction matrix elements for two trans-butadiene molecules as cal-
culated by the transition-monopole (Eq. (7.15), solid curves) or point-dipole (Eq. (7.18),
dashed curves) expression. Molecule 1 is fixed in position in the xy plane, centered at the
origin, with its long axis parallel to the x-axis. The transition dipole for its lowest-energy
excitation lies in the xy plane at an angle of 169◦ from the positive x-axis. f 2/n2 is taken to
be 1. In A, molecule 2 is centered at (10 Å, 0, 0) and is rotated in the xy plane; the abscissa
indicates the angle (θ) between the two transition dipoles. In B, molecule 2 is centered at
various points along either x or y, in the same orientation as molecule 1; the abscissa gives
the center-to-center distance
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the sixth power of |R21|. To focus on the effect of varying the intermolecular
distance, it is useful to write the rate constant for resonance energy transfer (krt)
in the form

krt = τ−1 (|R21| /R0
)−6

, (7.19)

where τ is the fluorescence lifetime of the energy donor (molecule 1) in the absence
of the acceptor (molecule 2). R0 is the center-to-center distance at which krt is equal
to the overall rate constant for the decay of the excited state by all other mechanisms
including fluorescence (1/τ), so 50% of the decay involves energy transfer. R0 is
called the Förster radius after T. Förster, who first showed how the value of R0 for
a given donor–acceptor pair can be calculated from the spectroscopic properties
of the individual molecules (Förster 1948, 1965). Förster’s theory can be developed
as follows.

Equations (7.13) and (7.17) indicate that, for widely separated molecules with
a given intermolecular distance and orientation, the rate of resonance energy
transfer is proportional to the product of the dipole strengths (Dba(1) and Dba(2)).
The rate also depends on the thermally weighted Franck–Condon factors for the
pairs of downward and upward vibronic transitions that satisfy the resonance
condition. These facts suggest that we can relate the rate to the absorption spectrum
of the acceptor and the emission spectrum of the donor (Fig. 7.6).

Consider the emission spectrum of the energy donor (molecule 1). In the ab-
sence of energy transfer or other decay mechanisms, the rate constant for fluores-
cence at frequency ν would be

F1(ν)dν =
(
32π3nf 2ν3/3�c3)Dba(1)X1(E)ρ1(ν)dν , (7.20)

where ρ1(ν) is the density of excited donor states around frequency ν (states per
unit frequency) and X1(E) is a thermally weighted Franck–Condon factor for emis-
sion with energy E = hν (Eq. (5.12)). The number of excited donor states in energy

Fig. 7.6. In the Förster theory, the rate
of energy transfer from molecule 1
to molecule 2 is proportional to the
overlap integral, ∫ ε2(ν)F1(ν)ν−4dν.
Contributions to the integral come
only from the spectral region where
the weighted emission spectrum of
molecule 1 (F1ν

−3) overlaps the absorp-
tion spectrum of molecule 2 (ε2ν

−1).
The product ε2(ν)F1(ν)ν−4 (dotted
curve) can be viewed as a spectrum of
resonance energy transfer
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interval ΔE corresponding to frequency interval Δν is ρ1(E)ΔE = ρ1(ν)Δν, where
ρ1(E) = ρ1(ν)/h and ΔE = hΔν. The total rate constant for fluorescence integrated
over the emission spectrum, ∫ F1(ν)dν, is the reciprocal of the radiative time con-
stant, τr (Eq. (5.39)). Because τr = τ/Φ, where τ and Φ are the fluorescence lifetime
and yield in the absence of energy transfer (Eq. (5.42)), Eq. (7.20) implies that

Dba(1)X(E)ρ1(E)dE =
(

3�c3Φ
32π3nf 2τ

)
F1(ν)ν−3
∫

F1(ν)dν
. (7.21)

Now consider the absorption spectrum of the acceptor (molecule 2). From Eqs.
(4.15), (4.16a), and (4.38–4.41), we can write

Dba(2)X2(E)ρ2(E) = Dba(2)X2(E)
ρ2(ν)

h
=

1
h

(
3000 ln(10) nhc

8π3f 2NA

)
ε2(ν)

ν
, (7.22)

where ρ2(ν) is the density of acceptor states on a frequency scale, X2(E) is the
thermally weighted Franck–Condon factor for excitations with energy E = hν, and
NA is Avogadro’s number.

Förster’s expression for the rate of resonance energy transfer is obtained by
combining Eqs. (7.11), (7.17), (7.21), and (7.22):

krt =
2π
�

(
f 4

n4
Dba(1)Dba(2)κ2 |R21|−6

)∫
X1(E)ρ1(ν)X2(E)ρ2(ν)dE

=
2π
�

f 4

n4
κ2 |R21|−6

(
3000 ln(10)nhc

8π3f 2NAh

)(
3�c3Φ

32π3n f 2τ

) ∫
F1(ν)ε2(ν)ν−4dν
∫

F1(ν)dν
.

(7.23)

Collecting the constants gives

krt =
(

9000 ln(10)κ2c4Φ
128π5n4NAτ

)
|R21|−6 J , (7.24)

where J is an overlap integral of the absorption and fluorescence spectra with the
contribution in each frequency interval weighted by ν−4:

J =

∫
F1(ν)ε2(ν)ν−4dν
∫

F1(ν)dν
. (7.25)

As noted above, the donor’s fluorescence lifetime τ and yield Φ in Eq. (7.24) are
the values measured in the absence of energy transfer. The fluorescence amplitude
F1(ν)dν in Eq. (7.25) can be in any convenient units because the fluorescence is
normalized by the integral in the denominator. The acceptor’s molar extinction
coefficient ε2 has its usual units of per molar per centimeter. If |R21| is given in
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units of centimeters and ν is in per second, then the overlap integral J has units
of per molar per centimeter, seconds to the fourth power and krt is in units of per
second.

The overlap integral often is defined for absorption and fluorescence spectra on
a wavenumber scale (ν = ν/c = 1/λ) with ν in units of per centimeter:

J =

∫
F1(ν)ε2(ν)ν−4dν
∫

F1(ν)dν
=

∫
F1(λ)ε2(λ)λ2dλ
∫

F1(λ)λ−2dλ
. (7.26)

In this expression, J is Jc−4 and has units of per molar centimeters cubed. If this
definition is used and |R21| is given in angstroms, then Eq. (7.24) becomes

krt =
(

9000 ln(10)κ2Φ
128π5n4NAτ

)( |R21|
1 × 108

)−6

J =
(

8.78 × 1023κ2Φ
n4 τ

)
|R21|−6 J s−1 .

(7.27)

Finally, combining Eqs. (7.27) and (7.19) gives a value for the Förster radius:

R0 = 9.80 × 103(κ2Φn−4J)1/6 Å . (7.28)

The overlap integral J sometimes is written as ∫ F1(λ)ε2(λ)dλ/∫ F1(λ)dλ. This is not
strictly correct. Because dν = −λ−2dλ, the correct expression for J on a wavelength
scale is ∫ F1(λ)ε2(λ)λ2dλ/∫ F1(λ)λ−2dλ (Eq. (7.26)). However, the error may be
negligible if the two spectra overlap only over a narrow region.

Although the Förster radius is evaluated from the overlap of the absorption and
emission spectra of the two molecules, note that resonance energy transfer does
not involve emission and reabsorption of light. It occurs by a resonance between
two states of the entire system. Because the energy donor does not fluoresce in the
process, the common jargon “fluorescence resonance energy transfer” (FRET) is
somewhat misleading. The same acronym, however, could be used more precisely
for “Förster resonance energy transfer”.

The dependence of the rate on the sixth power of the intermolecular distance
makes resonance energy transfer particularly useful for exploring the locations
of binding sites for chromophores on macromolecules (Stryer 1978; van der Meer
et al. 1994; Selvin 1995; Lakowicz 1999). By choosing appropriate donor–acceptor
pairs, rates of energy transfer can be measured over distances ranging from 10 to
more than 100 Å. Yet, the rate for a given donor–acceptor pair can be sufficiently
sensitive to distance to afford a resolution on the order of 1 Å. In favorable cases,
the rate of energy transfer can be obtained by simply measuring the quenching of
fluorescence from the donor. From Eq. (5.52), the ratio of the fluorescence yields
in the absence (Φ) and presence (Φq) of the acceptor is

Φ
Φq

=
kr/ktot

kr/
(
ktot + krt

) = 1 +
krt

ktot
= 1 + krtτ , (7.29)
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where kr is the radiative rate constant and ktot is the sum of the rate constants for
all decay processes other than energy transfer (ktot = τ−1). Once the product krtτ
and the Förster radius are known, Eq. (7.19) gives the distance between the donor
and acceptor:

|R21| = R0
(
krtτ

)−1/6
= R0

(
Φ/Φq − 1

)−1/6
. (7.30)

However, it is important to show that the quenching of the fluorescence reflects
energy transfer rather than other processes such as electron transfer. This can be
done by exciting the sample at a wavelength where only the energy donor absorbs
significantly and measuring fluorescence at a wavelength where only the acceptor
emits.

Stryer and Haugland (1967) verified the dependence of the energy-transfer
rate on the inverse sixth power of the distance by using oligomers of dansyl-
polyproline-α-naphthylsemicarbazide (Fig. 7.7) to position the energy donor and
acceptor (naphthylene and a dansyl derivative, respectively) at distances rang-
ing from 12 to 46 Å. The rate was found to vary as R−5.9±0.3. Haugland et al.
(1969) demonstrated that the rate also was proportional to J over a 40-fold range
of J.

There are several possible complications in using the rate of resonance energy
transfer to determine intermolecular distances. First, the measured rate depends
on the average value of κ2, which usually is not known accurately. Fortunately,
a fairly limited rotational mobility of the chromophores is sufficient to make the
average value of κ2 approach 2/3, so the uncertainties in calculated distances
become relatively small (Stryer 1978; Dale et al. 1979). The motional freedom of
the chromophores can be assessed from measurements of fluorescence anisotropy
and linear dichroism as discussed in Chaps. 4 and 5.

If the sample has a distribution of donor–acceptor distances, the rate of energy
transfer will be weighted in favor of structures in which the distance is smaller
than average, making the fluorescence decay kinetics nonexponential. Figure 7.8
illustrates this effect for a Gaussian distribution of distances. If the distribution
is symmetric, Eq. (7.30) still gives a reasonably accurate estimate of the mean
donor–acceptor distance. The error in the case shown in Fig. 7.8 would be only
about 1%, even though the distribution is quite broad.

Fig. 7.7. Dansyl-(L-prolyl)n-α-naphthylsemicarbazide. The polyprolyl chain provides a rigid
spacer between the dansyl and naphthyl groups (left and right, respectively), each of which
can rotate relatively freely
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Fig. 7.8. Calculated decay kinetics of flu-
orescence from an ensemble of energy
donors with a Gaussian distribution
of donor–acceptor distances. The dis-
tribution is centered at R0 and has
a full width at half-maximum amplitude
(FWHM) of either 0.5R0 (solid line)
or zero (dashed line). The time course
of the fluorescence was calculated by
Eq. (7.31). Also shown is the exponen-
tial fluorescence decay in the absence of
energy transfer (dotted line). A FWHM
of 0.5R0 corresponds to a standard
deviation of 0.212R0

If the signal-to-noise ratio in the data is sufficiently high, a distribution of
donor–acceptor distances, P(R), can be extracted by fitting the fluoresence decay
kinetics to a function of the form

F(t) =

∞∫

0

P(R) exp
{

− [ktot + krt(R)] t
}

dR

=

∞∫

0

P(R) exp
{

−ktot
[
1 + (R/R0)−6] t

}
dR . (7.31)

Haas et al. (1975) used this approach to investigate the distribution of end-to-end
lengths in polyglutamyl peptides that were labeled with naphthalene at one end
and a dansyl group at the other. Both the mean and the width of the distribu-
tion were found to depend on the solvent. In similar studies, other workers have
probed the conformational heterogeneity of oligonucleotides labeled at opposite
ends with fluorescein and rhodamine (Parkhurst and Parkhurst 1995), of dansyl-
labeled zinc-finger peptides with and without bound Zn2+ (Eis and Lakowicz 1995),
and of calmodulin in the presence and absence of Ca2+ (Sun et al. 1999). Haas et
al. (1978) and Beechem and Haas (1989) also have treated the situation that the
intermolecular distance fluctuates during the lifetime of the donor’s excited state.
Rhoades et al. (2003, 2004) have examined the structural heterogeneity of sev-
eral proteins by measuring the distribution of energy-transfer rates between dyes
bound to different sites in single protein molecules, which they trapped in lipid
vesicles. Jang et al. (2004) have presented a generalized version of the Förster the-
ory for systems that contain multiple types of chromophores and heterogeneous
donor–acceptor distances, such as the mixtures of chlorophylls and carotenoids
found in photosynthetic antenna complexes.

Several additional points concerning the Förster theory need mentioning. First,
using the spectral overlap integral J as in Eqs. (7.23), (7.25), and (7.26) is strictly
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correct only for a homogeneous system such as a single donor–acceptor pair. As
we discussed in Chaps. 4 and 5, absorption and emission spectra usually represent
averages over large populations of molecules in various environments. Whether or
not the entire inhomogeneously broadened spectra should be included in the over-
lap integral depends on how rapidly the environments of the individual molecules
in the ensemble fluctuate relative to the lifetime of the donor’s excited state. If the
environmental shifts of the individual spectra fluctuate rapidly on this time scale,
then (assuming that the fluctuations in the donor and acceptor are not correlated)
the entire spectra of the ensemble are properly included in J. If these shifts are
frozen during the lifetime of the excited state, then the overlap integral will vary
among the donor–acceptor pairs in the ensemble and the individual values of J
should be weighted to reflect their contributions to the experimental measure-
ment. However, such weighting probably would have relatively small effects on the
calculated donor–acceptor distance in most cases.

The refractive index n in Eqs. (7.20) and (7.21) pertains to the bulk medium
in which the absorption and emission spectra of the chromophores are measured.
This factor, however, cancels out when Eqs. (7.20) and (7.21) are combined in
Eq. (7.23). The factor of n−4 that remains in Eqs. (7.23), (7.24), (7.27), and (7.28)
enters through |H21(el)|2 and reflects the attenuation of high-frequency electro-
static interactions between the energy donor and acceptor. It therefore pertains
to the protein or other material that surrounds the interacting molecules, not
to the solvent used to measure the individual spectra. The appropriate value of
the refractive index usually is not known accurately, but for proteins probably is
comparable to that of N-methylacetamide (1.43 at 589.3 nm). Using the refractive
index of water (1.33) would increase the calculated rate constant for energy trans-
fer [(1.43/1.33)4 ≈ 1.34], but the resulting error in R0 or |R21| would be relatively
small [(1.43/1.33)4/6 ≈ 1.05].

Finally, it is important to remember that the Förster theory assumes that the
donor and acceptor molecules interact only very weakly. This means that the
interactions must not change the absorption or emission spectra significantly. It
also means that, once the excitation energy moves from the donor to the acceptor,
the energy has little probability of returning to the donor. In most cases, vibrational
and rotational relaxations of the acceptor and the solvent rapidly dissipate some of
the excitation energy rapidly as heat, so the overlap integral J for energy transfer
back to the original donor is small. The excited acceptor instead either fluoresces
or decays by some other path. We will discuss this point in more detail in Chap. 10.

Resonance energy transfer is used widely to detect the formation of complexes
between proteins. Variants of green fluorescent protein (GFP) make particularly
useful energy donors and acceptors because genes for GFPs with different absorb-
tion and emission spectra can be fused with the genes for the proteins of interest
(Sects. 5.7, 5.10). The built-in chromophore makes it unnecessary to label the pro-
teins with exogenous fluorescent dyes. Muller et al. (2005) have used this approach
to determine the three-dimensional arrangement of five different proteins in the
yeast spindle pole body. They used fluorescence microscopy to measure energy
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transfer between GFP fused at either the N-terminal or the C-terminal end of
one protein and and a cyan fluorescent variant (CFP) fused at either end of an-
other protein. Their paper describes a procedure for correcting the measurements
for “spillover” fluorescence from the donor that contaminates signals from the
acceptor.

Sensors for Ca2+ called “chameleons” have been constructed by fusing CFP
with the Ca2+-binding protein calmodulin, a calmodulin-binding peptide, and
a green- or yellow-fluorescing variety of GFP (YFP) (Miyawaki et al. 1997, 1999).
Binding of Ca2+ to the calmodulin causes a conformational change that increases
resonance energy transfer between the CFP and YFPs, changing the color of the
fluorescence. To examine the distribution of Ca2+-conducting glutamate receptors
in neuromuscular junctions, a chameleon was fused with a protein that localizes
in the postsynaptic terminal (Guerrero et al. 2005).

A variation on the resonance energy transfer technique is to use a biolumines-
cence system as the energy donor (Xu et al. 1999; Angers et al. 2000). The gene
for a luciferase, a protein that catalyzes a bioluminescence reaction, is fused with
the gene for one of the proteins of interest, while a GFP gene is fused with that
for the other protein. If formation of a complex brings the luciferase and the GFP
sufficiently close together, energy transfer will shift the emission to the longer
wavelength characteristic of the GFP. In another variation, a chelated lanthanide
ion serves as the donor (Selvin et al. 1994; Heyduk and Heyduk 2001; Selvin 2002;
Reifenberger et al. 2003; Posson et al. 2005). Lanthanide excited states have life-
times on the order of milliseconds and typically have very low emission anisotropy,
making energy transfer insensitive to the orientation of the donor.

7.3
Exchange Coupling

Förster’s theory describes the rate of energy transfer between chromophores that
are relatively far enough apart. In addition to using the point-dipole approxima-
tion, the theory assumes that the intermolecular interactions have no significant
effect on the absorption or fluorescence spectra of the molecules. In the next
chapter we will discuss what happens when these assumptions break down. How-
ever, it is pertinent to mention one other limitation of the Förster treatment here.
The treatment considers only the spatial parts of the molecular wavefunctions;
the spin wavefunctions are implicitly assumed to be constant. The theory thus is
applicable to a transition in which a molecule in an excited singlet state returns
to the singlet ground state and another molecule is elevated to an excited singlet
state. It also could apply to excited triplet states but only if the ground states also
are triplet states, which is not usually the case. It would not allow a transition in
which a molecule in an excited triplet state decays to a singlet ground state, raising
another molecule from a singlet to a triplet state. As predicted by the theory, this
last type of energy transfer does not occur at significant rates between widely
separated molecules. However, it does occur between molecules that are in close
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contact, and an additional mechanism clearly is needed to account for this fact.
Such a mechanism was proposed by D.L. Dexter (1953).

To see how triplet–triplet energy transfer can occur, we need to expand Eq. (7.14)
to include spin wavefunctions. Let us refine the notation used there so that φ1a and
φ1b now explicitly denote spatial wavefunctions of molecule 1, φ2a and φ2b denote
spatial wavefunctions of molecule 2, andσ1a,σ1b,σ2a, andσ2b denote corresponding
spin wavefunctions. As we discussed in Chap. 4, the overall wavefunctions must
be antisymmetric for an exchange of labels between any two electrons:

Ψ1 = 2−1/2 [φ1b(1)σ1b(1)φ2a(2)σ2a(2) − φ1b(2)σ1b(2)φ2a(1)σ2a(1)] (7.32a)

and

Ψ2 = 2−1/2 [φ1a(1)σ1a(1)φ2b(2)σ2b(2) − φ1a(2)σ1a(2)φ2b(1)σ2b(1)] , (7.32b)

where (1) and (2) denote the coordinates of electrons 1 and 2. With these wave-
functions, the electronic interaction matrix element becomes

H21(el) = HCoulomb
21 + Hexchange

21 , (7.33)

where

HCoulomb
21 =

〈
φ1a(1)φ2b(2)

∣∣H̃21
∣∣ φ1b(1)φ2a(2)

〉 〈
σ1a(1)

∣∣σ1b(1)
〉 〈
σ2b(2)

∣∣σ2a(2)
〉

=
〈
φ1a(1)φ2b(2)

∣∣∣∣
e2

r21

∣∣∣∣ φ1b(1)φ2a(2)
〉 〈
σ1a(1)

∣∣σ1b(1)
〉 〈
σ2b(2)

∣∣σ2a(2)
〉

,

(7.34a)

and

Hexchange
21 = −

〈
φ1a(2)φ2b(1)

∣∣H̃21
∣∣ φ1b(1)φ2a(2)

〉 〈
σ2b(1)

∣∣σ1b(1)
〉 〈
σ1a(2)

∣∣σ2a(2)
〉

= −
〈
φ1a(2)φ2b(1)

∣∣∣∣
e2

r21

∣∣∣∣ φ1b(1)φ2a(2)
〉 〈
σ2b(1)

∣∣σ1b(1)
〉 〈
σ1a(2)

∣∣σ2a(2)
〉

.

(7.34b)

The term HCoulomb
21 , which is the one that the Förster theory considers, is called the

Coulomb or direct interaction. It pertains to a process in which one electron moves
from φ1b to φ1a while the other electron moves from φ2a to φ2b. Each electron thus
remains on its original molecule (Fig. 7.9a). The product of spin integrals in this
term will be nonzero only if σ1a = σ1b and σ2a = σ2b; there must be no change

of spin on either molecule. The term Hexchange
21 is called the exchange interaction.

Here one electron moves from φ1b to φ2b (from molecule 1 to molecule 2) while
the other electron moves from φ2a to φ1a (from molecule 2 to molecule 1) as shown
in Fig. 7.9b. In this case, the product of spin integrals will be nonzero if σ1b = σ2b

and σ2a = σ1a. The electron spins of the two molecules are interchanged. This
condition is consistent with either singlet or triplet energy transfer because σ1a
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Fig. 7.9. The Coulomb contribution to the interaction matrix element H21(el) reflects a two-
electron transition in which each electron remains on its original molecule (a). This process
requires conservation of spin on each molecule. The exchange contribution to H21 represents
a transition in which electrons are interchanged between the molecules (b). The electron
spins associated with the two molecules also are interchanged

does not necessarily have to be the same as σ1b and σ2a does not have to be the
same as σ2b.

Equation (7.34b) indicates that Hexchange
21 can be appreciable only if there is

a region of space where both φ1a and φ2a are significantly different from zero, and

the same for φ1b and φ2b. This means that Hexchange
21 requires significant overlap of

the two molecular orbitals. The magnitude of Hexchange
21 depends on the details of the

molecular orbitals but generally is taken to fall off approximately as exp(−Redge/L),
where Redge is the edge-to-edge intermolecular distance and L is on the order of
1 Å. This is a much stronger dependence on distance than the R−6 dependence of

HCoulomb
21 . HCoulomb

21 therefore usually dominates heavily over Hexchange
21 as long as the

edge-to-edge distance is more than 4 or 5 Å. However, in addition to accounting for
triplet transfer, the exchange term can contribute to singlet energy transfer when
the Förster mechanism is ineffective because the donor or acceptor has a very low
dipole strength.

In addition to HCoulomb
21 and Hexchange

21 , H12 can include other higher-order terms
that reflect mixing of the excited singlet statesψ1 andψ2 with triplet states (Struve
1995). Again, these terms usually are significant only when HCoulomb

21 is small.

7.4
Energy Transfer to and from Carotenoids in Photosynthesis

Excited carotenoid molecules can transfer energy rapidly to nearby chlorophyll
molecules in photosynthetic antenna complexes (Young et al. 1997). It has been
suggested that this process involves exchange coupling, because the radiative tran-
sitions from the lowest excited singlet states of the carotenoids to the ground
states are forbidden by molecular symmetry (Box 4.12). However, the rate could
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Fig. 7.10. The relative energies of excited states of chlorophyll a (Chl) and the carotenoids
(car) violaxanthin (a) and zeaxanthin (b). The structures of violoxanthin and zeaxanthin
are shown in c. Plants convert violaxanthin to zeaxanthin when they grow in strong light,
and convert zeaxanthin to violaxanthin in weak light. The transition dipole for excitation of
either carotenoid from the ground state to the second excited singlet state (2S) is much larger
than the transition dipole for the lowest excited state (1S), but the excited molecule relaxes
rapidly from 2S to 1S (Polivka et al. 1999). A possible mechanism of nonphotochemical
quenching in chloroplasts is the transfer of energy from excited chlorophyll (Chl*) to zeax-
anthin, followed by decay of zeaxanthin from 1S to the ground state by internal conversion.
The 1S state of violaxanthin may be too high in energy to quench Chl*. Instead, zeaxanthin
would transfer energy to chlorophyll
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possibly be explained by considering the full expression for the direct interaction
(Eq. (7.14)) instead of just dipole–dipole interactions (Krueger et al. 1998).

Plants adjust the carotenoids in their antenna complexes in response to changes
in the ambient light intensity and other conditions (Frank et al. 1994; Young
et al. 1997). At low light intensity, the energy of light absorbed by the antenna is
transferred efficiently to the reaction centers; at high light intensity, a substantial
fraction of the excitations are diverted to heat. The “nonphotochemical quenching”
that occurs at high light intensity is important for preventing destructive side
reactions that occur if the reaction centers are oversaturated with excitations.
The process involves, in part, enzymatic conversion of the carotenoid zeaxanthin
to antheraxanthin and then violaxanthin by succesive epoxidation reactions in
strong light, and the regeneration of violaxanthin by de-epoxidations in weak light
(Fig. 7.10).

Epoxidation decreases the number of conjugated bonds in the carotenoid, which
raises the energy of the lowest excited state. Violaxanthin has nine conjugated dou-
ble bonds, antheraxanthin has ten, and zeaxanthin has eleven. The lowest excited
singlet state of violaxanthin thus lies above that of zeaxanthin by about 300 cm−1

(Martinsson et al. 1999; Polivka et al. 1999; Frank et al. 2000). Although the absolute
energies are subject to some uncertainty, the excitation energy of violaxanthin is
close to that of chlorophyll a in its lowest excited singlet state. At low light inten-
sities, energy absorbed by violaxanthin could flow by resonance energy transfer
to chlorophyll molecules in the antenna and from there to the photosynthetic
reaction centers. At high intensities, when zeaxanthin predominates over violax-
anthin, excitation energy would tend to move from chlorophyll a to zeaxanthin,
where it would be degraded to heat by internal conversion (Fig. 7.10). However,
this probably is not the whole story because nonphotochemical quenching appears
to involve structural changes in the antenna complexes in addition to changes in
the carotenoid composition (Ruban et al. 1998).
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8.1
Stationary States of Systems with Interacting Molecules

The Förster theory we considered in the last chapter applies to molecules that are
far enough apart so that intermolecular interactions are very weak. Jumping of
excitations from one molecule to the other is slow relative to the vibrational relax-
ation and dephasing that determine the homogeneous widths of the absorption
bands, and it has little effect on the absorption spectra of the molecules. If the
energy donor and acceptor are distinguishable we could examine the overall ab-
sorption or stimulated-emission spectrum of the system and, at least in principle,
determine which molecule is excited at any given time. But suppose we move the
molecules together so that the time required for energy to hop from one molecule
to the other becomes shorter and shorter. At some point, it will be impossible to
say which molecule is excited. In this situation, we might expect that resonance be-
tween multiple excited states could cause the absorption spectrum of an oligomer
to differ from the spectra of the individual molecules, and indeed this turns out to
be the case.

The term exciton means an excitation that is delocalized over more than one
molecule, or that moves rapidly from molecule to molecule. Exciton interac-
tions, the intermolecular interactions that cause the excitation to spread over
several molecules, are physically just the same as the weak interactions that re-
sult in stochastic jumping of excitations by resonance energy transfer; they are
just stronger because the molecules are closer together or have larger transi-
tion dipoles. As a result, the absorption, fluorescence, and circular dichroism of
the system can be significantly different from those of the individual molecules.
But we are not yet in the region where overlap of the molecular orbitals allows
new bonds to form and the definition of the molecules themselves becomes
blurred.

Our discussion will concern mainly what are called Frenkel excitons, in which
an electron that has been excited to a normally empty molecular orbital remains
associated with a vacancy or “hole” in a normally filled orbital as they migrate
from one molecule to another. In Wannier excitons, the electron and hole can be
on separate molecules, although they usually are not far apart.

As long as the two molecules are not so close together as to become covalently
bonded, it still makes sense to describe the wavefunctions of a dimer with combi-
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nations of the individual molecular wavefunctions, as we did in Eqs. (7.2), (7.4),
and (7.6):

ΨA = φ1aχ1aφ2aχ2a (ground state) (8.1)

and

ΨB = C1ψ1 + C2ψ2 = C1φ1bχ1bφ2aχ2a + C2φ1aχ1aφ2bχ2b (excited state) . (8.2)

As before, the basis statesψ1 andψ2 forΨB represent states in which the excitation
is localized on molecule 1 or 2, respectively. These are not stationary states because
excitations hop back and forth between the two molecules. Setting one of the
coefficients C1 or C2 to 1 and the other to 0 cannot, therefore, describe the system
well on time scales comparable to or longer than the oscillation period. But we
will see that it is possible to find values of the coefficients that make ΨB into
a stationary state. As we might expect, the values of C1 and C2 that are required
depend strongly on the interaction term in the Hamiltonian, H̃

′
, which is the term

that causes oscillations between the two basis states (Sect. 7.2).
Let us consider how the energies of the ground and excited states described by

Eqs. (8.1) and (8.2) depend on H̃′. The electronic energy of the ground state is

EA =
〈
φ1aφ2a

∣∣∣H̃1 + H̃2 + H̃
′∣∣∣ φ1aφ2a

〉
= E1a + E2a +

〈
φ1aφ2a

∣∣∣H̃
′∣∣∣ φ1aφ2a

〉
, (8.3)

where E1a and E2a are the energies of the individual molecules in their ground
states. Similarly, the electronic energy of the excited state is

EB =
〈
C1ψ1 + C2ψ2

∣∣∣H̃1 + H̃2 + H̃
′∣∣∣C1ψ1 + C2ψ2

〉

= |C1|2 E1 + |C2|2 E2 +
〈
C1ψ1 + C2ψ2

∣∣∣H̃
′∣∣∣C1ψ1 + C2ψ2

〉
, (8.4)

where E1 = E1b + E2a and E2 = E1a + E2b. 〈ψ1|H̃2|ψ1〉 and 〈ψ2|H̃1|ψ2〉 are zero be-
cause H̃2 operates only on ψ2 and H̃1 acts only on ψ1; 〈ψ1|H̃2|ψ2〉 and 〈ψ2|H̃1|ψ1〉
evaluate to E2〈ψ1|ψ2〉 and E1〈ψ2|ψ1〉, which also are zero if ψ1 and ψ2 are orthog-
onal. The energies of both the ground and the excited states thus differ from the
corresponding energies of a system in which the molecules do not interact. In the
absence of interactions, the ground-state energy would be simply E1a + E2a, and
the two excited states would have energies E1 and E2.

If molecules 1 and 2 are uncharged and have only small permanent dipole
moments, the term 〈φ1aφ2a|H̃′|φ1aφ2a〉 in Eq. (8.3) will be relatively small and the
energy of the ground state will still be approximately E1a + E2a. The effect on the
excited state often is more significant. To evaluate EB and to see how it is related
to the coefficients C1 and C2, we can follow essentially the same approach that
we used for time-dependent perturbations, with the simplification that here we
are interested only in stationary (time-independent) states. First, write the time-
independent Schrödinger equation for the excited dimer:

(
H̃1 + H̃2 + H̃

′) (C1ψ1 + C2ψ2
)

= EB
(
C1ψ1 + C2ψ2

)
. (8.5a)
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Now multiply both sides of this equation by ψ∗
1, integrate over all space, and drop

the terms that are zero (〈ψ1|H̃2|ψ1〉, 〈ψ1|H̃2|ψ2〉, and 〈ψ1|H̃1|ψ2〉). On the left side
this gives

C1

(〈
ψ1

∣∣H̃1
∣∣ψ1

〉
+
〈
ψ1

∣∣∣H̃
′∣∣∣ψ1

〉)
+ C2

〈
ψ1

∣∣∣H̃
′∣∣∣ψ2

〉
, (8.5b)

and on the right side,

EB
(
C1

〈
ψ1

∣∣ψ1
〉

+ C2
〈
ψ1

∣∣ψ2
〉)

= EBC1 . (8.5c)

Equating the quantities obtained from the two sides, we have

C1

(〈
ψ1

∣∣H̃1
∣∣ψ1

〉
+
〈
ψ1

∣∣∣H̃
′∣∣∣ψ1

〉
− EB

)
+ C2

〈
ψ1

∣∣∣H̃
′∣∣∣ψ2

〉
= 0 . (8.6a)

Similarly, multiplying both sides of Eq. (8.5a) by ψ∗
2 and integrating leads to

C1

〈
ψ2

∣∣∣H̃
′∣∣∣ψ1

〉
+ C2

(〈
ψ2

∣∣H̃2
∣∣ψ2

〉
+
〈
ψ2

∣∣∣H̃
′∣∣∣ψ2

〉
− EB

)
= 0 . (8.6b)

We now have two simultaneous equations relating EB to C1 and C2 (Eq. (8.6)),
which we can rewrite in the following compact form:

C1
(
H11 − EB

)
+ C2H12 = 0 (8.7a)

and

C1H21 + C2
(
H22 − EB

)
= 0 , (8.7b)

where

H11 ≡
〈
ψ1

∣∣∣H̃1 + H̃′∣∣∣ψ1

〉
= E1 +

〈
ψ1

∣∣∣H̃
′∣∣∣ψ1

〉
, (8.8a)

H22 ≡
〈
ψ2

∣∣∣H̃2 + H̃
′∣∣∣ψ2

〉
= E2 +

〈
ψ2

∣∣∣H̃
′∣∣∣ψ2

〉
, (8.8b)

and

H21 ≡
〈
ψ2

∣∣∣H̃
′∣∣∣ψ1

〉
, H12 ≡

〈
ψ1

∣∣∣H̃
′∣∣∣ψ2

〉
. (8.8c)

Because the Hamiltonian operator is Hermitian (Box 2.1), H12 = H∗
21. In the

cases of interest here, these matrix elements generally are real numbers and are
identical. In many cases, H11 and H22 are approximately equal to E1 and E2. The
additional term 〈ψ1|H̃′|ψ1〉 in H11, for example, represents the effect that molecule
2 has on the energy of the excited molecule 1 when molecule 2 remains in the
ground state; if the molecules are not charged, this often will be a relatively small
effect and will be comparable to the term 〈φ1aφ2a|H̃′|φ1aφ2a〉 in the energy of the
ground state (Eq. (8.3)). The small difference between H11 and E1 thus will make
little contribution to the excitation energy, EB − EA. However, our derivation does
not require that this effect be negligible.
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A trivial solution to Eq. (8.7) is C1 = C2 = 0. There can be another, nonzero
solution only if the determinant formed from the Hamiltonian matrix elements
and energies in the equations is equal to zero (Box 8.1):

∣∣∣∣

(
H11 − EB

)
H21

H21
(
H22 − EB

)
∣∣∣∣ = 0 . (8.9)

This is called the secular determinant. Expanding the determinant gives a quadratic
equation for EB in terms of H21, H11, and H22. The quadratic equation has two
possible solutions for EB, which we will call EB+ and EB−. After we find these
solutions, we can plug either EB+ or EB− back into Eq. (8.8a) and (8.8b) to find the
corresponding values of C1 and C2.

Box 8.1 Why must the secular determinant be zero?

The term “secular” is used in classical mechanics for a state or motion
that persists for a long period of time. In quantum mechanics, the set of
simultaneous equations that describe a long-lasting state (Eq. (8.7) in the
situation we are considering) are called the secular equations of the system.

A set of simultaneous linear equations can be solved conveniently by
Cramer’s rule, which involves finding the quotient of two determinants.
Given the equations

a1x + b1y + c1z + · · · = m1,

a2x + b2y + c2z + · · · = m2, (B8.1.1)

a3x + b3y + c3z + · · · = m3,

· · · ,

the solutions for x, y, and z, ... are

x =

∣∣∣∣∣∣∣∣∣

m1 b1 c1 · · ·
m2 b2 c2 · · ·
m3 b3 c3 · · ·

...
...

...
. . .

∣∣∣∣∣∣∣∣∣

/

∣∣∣∣∣∣∣∣∣

a1 b1 c1 · · ·
a2 b2 c2 · · ·
a3 b3 c3 · · ·
...

...
...

. . .

∣∣∣∣∣∣∣∣∣

, (B8.1.2a)

y =

∣∣∣∣∣∣∣∣∣

a1 m1 c1 · · ·
a2 m2 c2 · · ·
a3 m3 c3 · · ·
...

...
...

. . .

∣∣∣∣∣∣∣∣∣

/

∣∣∣∣∣∣∣∣∣

a1 b1 c1 · · ·
a2 b2 c2 · · ·
a3 b3 c3 · · ·
...

...
...

. . .

∣∣∣∣∣∣∣∣∣

, etc. (B8.1.2b)

Applying Cramer’s rule to Eq. (8.7) yields the following solution for C1

and C2:
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C1 =

∣∣∣∣
0 H21

0 (H22 − EB)

∣∣∣∣
/ ∣∣∣∣

(H11 − EB) H21

H21 (H22 − EB)

∣∣∣∣ (B8.1.3a)

and

C2 =

∣∣∣∣
(H11 − EB) 0

H21 0

∣∣∣∣
/ ∣∣∣∣

(H11 − EB) H21

H21 (H22 − EB)

∣∣∣∣ . (B8.1.3b)

The determinants in the numerators evaluate to zero because each of them
has a column of zeros. It follows that there can be a nonzero solution for C1

and C2 only if the determinant in the denominator also is zero.

A more powerful procedure is to use matrix algebra to solve Eq. (8.7) simul-
taneously for the two sets of EB, C1, and C2. Mathematically, the problem is to
diagonalize the matrix H of Hij terms (Box 8.2). It is the off-diagonal terms H12

and H21 in the matrix that cause the system to oscillate between the nonstationary
basis states ψ1 and ψ2. Diagonalization converts H to a matrix that characterizes
a stationary state because all the off-diagonal terms are zero. In the process, it
transforms the basis states from ψ1 and ψ2 into ΨB+ and ΨB−.

Box 8.2 Solving eigenvalue equations by matrix algebra

The simultaneous equations Eq. (8.7) can be written as a single matrix equa-
tion by using the rules of matrix multiplication (Appendix 2):

H · C = EBC . (B8.2.1)

Here H is the Hamiltonian matrix
[

H11 H12

H21 H22

]
and C denotes a column

vector,
[

C1

C2

]
. In general, there will be two eigenvalues of EB that satisfy this

equation, EB+ and EB−, each with its own eigenvector CB±. The eigenvectors
can be arranged into a square matrix C, in which each column corresponds
to a particular eigenvalue:

C =
[

C1(B+) C1(B−)

C2(B+) C2(B−)

]
. (B8.2.2)

If we then find C−1 (the inverse of C), the product C−1·H·C turns out to be
a diagonal matrix with the eigenvalues EB+ and EB− on the diagonal:

C−1 · H · C =
[

EB+ 0
0 EB−

]
(B8.2.3)
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The problem of finding the eigenvalues and eigenvectors of the Hamil-
tonian thus is to diagonalize the Hamiltonian by finding a matrix C and its
inverse such that the product C−1·H·C is diagonal (Appendix 2). Although we
have considered a system with only two basis states, the procedure extends
straightforwardly to systems with any number of states.

The Hamiltonian matrix is always Hermitian, and for all the cases that
concern us here is symmetric (Appendix 2). Its eigenvectors (Ci) are, there-
fore, always real. In addition, there is always a normalizable set of orthogonal
eigenvectors (Ci · Cj = 0 for i = j, and Ci · Ci = 1) (Press et al. 1989).

The solutions to Eq. (8.7) depend on how the magnitude of the interaction term
H21 compares with the difference between H11 and H22. The general solutions can
be written

ΨB+ =

√
(1 + s)

2
ψ1 +

√
(1 − s)

2
ψ2; EB+ = E0 +

1
2

√
δ2 + 4H2

12 , (8.9a)

ΨB− =

√
(1 − s)

2
ψ1 −

√
(1 + s)

2
ψ2; EB− = E0 −

1
2

√
δ2 + 4H2

12 , (8.9b)

where

s = δ
/√

δ2 + 4H2
12 , (8.9c)

E0 is the average of the energies of the two basis states and δ is the difference
between these energies: δ = (H11 − H22) and E0 = (H11 + H22)/2.

Fig. 8.1. The coefficients (C1(B+) and C2(B+), left) and their squares (|C1(B+)|2 and |C2(B+)|2,
right) for one of the excited states of a dimer, as a function of the energy difference between
the two basis states ψ1 and ψ2 (δ = H11 − H22). The interaction energy H21 is held constant
as δ is varied. When |δ| >> |H21|, one of the coefficients for each eigenstate goes to ±1.0 and
the other goes to 0. When |δ| � |H21|, |C1|2 = |C2|2 = 1/2
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Fig. 8.2. A Energies of the excited states of a dimer (EB±, solid curves) as functions of the
energy difference (δ) between the basis states ψ1 and ψ2. The energy scales are in units of
the interaction energy H21, which is held constant as in Fig. 8.1. The energy of ψ2 (E2) is
fixed at zero while that of ψ1 (E1) is varied (dotted lines). B An expanded view of the region
around δ ≈ 0, where EB+ and EB− are separated by 2H21. Away from this region, EB+ and
EB− approach E1 and E2

Figures 8.1 and 8.2 show how the coefficients and energies of the eigenstates
depend on the ratio of |δ| to |H21|. If the two basis states are widely separated
in energy (|δ| >> |H21|), so that s ≈ 1, then the coefficients C1 and C2 for ΨB+

approach 1.0 and 0, respectively (Fig. 8.1). At the same time, C1 and C2 for ΨB−

(not shown in the figure) go to 0 and −1.0, respectively.ΨB+ andΨB− thus approach
ψ1 and −ψ2:

ΨB+ → ψ1 , EB+ → H11 (8.10a)

and

ΨB− → −ψ2 , EB− → H22 . (8.10b)

In this region, C2 for ΨB+ is given approximately by −H21/(H22 − H11), and C1 for
ΨB− by −H12/(H11 − H22). On the other hand, if the basis states are located close
together (|δ| � |H21|), so s ≈ 0, then the two solutions become

ΨB+ = 2−1/2 (ψ1 + ψ2
)

, EB+ = E0 + H21 (8.11a)

and

ΨB− = 2−1/2 (ψ1 − ψ2
)

, EB− = E0 − H21 . (8.11b)

In this case, the two excited states (ΨB+ andΨB−) are symmetric and antisymmetric
combinations of ψ1 and −ψ2.

When |δ| >> |H21|, the energies of the eigenstates approach H11 and H22 (Fig. 8.2).
But in the opposite limit, when |δ| � |H21|, the energies of the eigenstates are not
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simply the average of H11 and H22, and the two energies do not become identical.
Instead, the energies split apart to lie above and below E0 by ±H21 (Eq. (8.11)).
This resonance splitting of the energy is a purely quantum mechanical effect that
results from mixing of the two basis states and distribution of the excitation over
the two molecules (Box 8.3).

Box 8.3 Real and avoided crossings of energy surfaces

The basis states ψ1 and ψ2 are called diabatic states, which means that they
do not diagonalize the Hamiltonian of the system. ΨB+ and ΨB−, which do
diagonalize H, are called adiabatic. Equation (8.9) for the adiabatic energies
applies not only to the particular situation we have discussed, in which an
excitation is distributed over two molecules, but to any two-state system.
However, the energy diagram in Fig. 8.2, in which the adiabatic energies
remain apart at points where the diabatic energies intersect, is less general.
Such an “avoided crossing” of the adiabatic energy surfaces is strictly required
only if the interaction energy H12 and the diabatic energy difference δ both
can be expressed as functions of a single variable.

In general, H12 and δ for a molecule with N nuclei are functions of (3N-6)
nuclear coordinates, or (3N-5) coordinates if the molecule is linear. From
Eq. (8.9), the adiabatic energies EB+ and EB− must differ unless there is
a nuclear configuration that makes δ and H12 both zero. This condition
cannot be met in a diatomic molecule, where H12 and δ will have different
dependences on the bond length (the only geometric variable). EB+ and EB−

therefore must have an avoided crossing in a diatomic molecule. However,
a larger system with M geometric variables will have an (M-2)-dimensional
hyperline along which both δ and H12 for a given pair of diabatic states
are zero and the adiabatic energy surfaces have real, rather than avoided
crossings. Such crossings are called conical intersections because if the energy
surfaces are plotted as functions of the two remaining geometric variables
they resemble a double cone. A system with two geometric variables, for
example, will have a single point at which both δ and H12 are zero and the
adiabatic energies are the same. But this conical intersection is not necessarily
in an accessible region of the configuration space; depending on the molecule,
it could involve a geometry with a very high energy. For further discussion
of conical intersections and their possible roles in photochemical processes
such as the isomerization of rhodopsin, see Salem (1982), Bonacic-Koutecky
et al. (1987), Klessinger (1995), Garavelli et al. (1998), Toniolo et al. (2003,
2004), and Martin et al. (2004).

The eigenfunctions ΨB+ and ΨB− given by Eq. (8.9) are normalized and orthog-
onal:

〈
ΨB+

∣∣ΨB+
〉

=
〈
ΨB−

∣∣ΨB−
〉

= 1 (8.12a)
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and

〈
ΨB+

∣∣ΨB−
〉

=
〈
ΨB+

∣∣ΨB−
〉

= 0 . (8.12b)

In addition,

〈
ΨB+

∣∣∣H̃
′∣∣∣ΨB−

〉
=
〈
ΨB−

∣∣∣H̃
′∣∣∣ΨB+

〉
= 0 (8.13)

(Box 8.4). This means that the two excited states ΨB+ and ΨB− obtained by di-
agonalizing the Hamiltonian matrix are stationary states. H̃

′
causes oscillations

between the two basis states ψ1and ψ2, but not between ΨB+ and ΨB−. This is
because we included H̃

′
in the Hamiltonian that we used to find ΨB+ and ΨB−.

It is instructive to compare these results with the results we obtained in earl-
ier chapters where we used time-dependent perturbation theory. In the present
chapter, we have found two, and only two states that diagonalize the 2 × 2 Hamil-
tonian matrix, H. In Chap. 7, we found an infinite number of states that satisfied
the time-dependent Schrödinger equation for the same Hamiltonian. Although we
focused on the region where C1(t) ≈ 1 and C2(t) ≈ 0, the coefficients were con-
tinuous functions of time and thus could have any values. The only restriction was
that |C1(t)|2 + |C2(t)|2 = 1. The difference is that here we have found the two sta-
tionary states of the system; the continuum of states obtained by time-dependent
perturbation theory are nonstationary states.

Box 8.4 Exciton states are stationary in the absence of further pertur-
bations

To see that the states described by Eq. (8.9) are stationary in the absence of
other perturbations, let the coefficients C1 and C2 for state ΨB+ be C1(B+) and
C2(B+), and the coefficients for ΨB− be C1(B−) and C2(B−). Using Eq. (8.5a) to
replace (H̃1 + H̃2 + H̃

′
)(C1(B)ψ1 + C2(B−)ψ2) by EB−(C1(B−)ψ1 + C2(B−)ψ2) then

gives

〈
ΨB+

∣∣H̃
∣∣ΨB−

〉
=
〈
C1(B+)ψ1 + C2(B+)ψ2

∣∣∣H̃1 + H̃2 + H̃
′∣∣∣C1(B−)ψ1 + C2(B−)ψ2

〉

(B8.4.1)

= EB−
〈
C1(B+)ψ1 + C2(B+)ψ2

∣∣C1(B−)ψ1 + C2(B−)ψ2
〉

. (B8.4.2)

If the basis wavefunctions ψ1 and ψ2 are orthogonal and normalized, this
expression reduces to

〈
ΨB+

∣∣H̃
∣∣ΨB−

〉
= EB−

(
C1(B+)C1(B−) + C2(B+)C2(B−)

)
, (B8.4.3)

which evaluates to zero when we insert the expressions for the coefficients
given in Eq. (8.9a) and (8.9b).
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8.2
Effects of Exciton Interactions on the Absorption Spectra
of Oligomers

What effects do the intermolecular interactions have on the absorption spectrum
of the dimer? Note first that, for each absorption band of the individual molecules,
the dimer has two absorption bands representing the transitions ΨA → ΨB+ and
ΨA → ΨB−. If |δ| � |H21|, the two absorption bands are separated in energy by
2H21 (Eq. (8.11)). The former transition has an energy of (H11 + H22)/2 + H21, and
the latter has an energy of (H11 + H22)/2 − H21, so which energy is higher depends
on the sign of H21.

Once the coefficients C1 and C2 for the excited state are known, the transition
dipoles and dipole strengths of the two exciton bands can be related straightfor-
wardly to the spectroscopic properties of the monomers:

μBA± =
〈
ΨB±

∣∣μ1 + μ2
∣∣ΨA

〉
=
〈
C1(B±)φ1bφ2a + C2(B±)φ1aφ2b

∣∣μ1 + μ2
∣∣ φ1aφ2a

〉

(8.14a)

= C1(B±)
〈
φ1b

∣∣̃μ1
∣∣ φ1a

〉
+ C2(B±)

〈
φ2b

∣∣̃μ2
∣∣ φ2a

〉
= C1(B±)μ1 + C2(B±)μ2 (8.14b)

and

DBA± =
(
C1(B±)μba(1) + C2(B±)μba(2)

) · (C1(B±)μba(1) + C2(B±)μba(2)
)

(8.15a)

= C2
1(B±)Dba(1) + C2

2(B±)Dba(2) + 2C1(B±)C2(B±)μba(1) · μba(2) , (8.15b)

where μba(1) and μba(2) are the transition dipole vectors of the two individual
molecules, and Dba(1) and Dba(2) are the individual dipole strengths. Because the
coefficients for ΨB+ (C1(B+) and C2(B+)) generally are different from the coefficients
for ΨB− (C1(B−) and C2(B−)), the transition dipoles and dipole strengths of the two
absorption bands will differ.

For a dimer of two identical molecules (δ = 0 and Dba(1) = Dba(2) = Dba),
Eqs. (8.14) and (8.15) become

μBA+ = 2−1/2 (μba(1) + μba(2)
)

, (8.16a)

μBA− = 2−1/2 (μba(1) − μba(2)
)

, (8.16b)

DBA+ = (1/2) [Dba + Dba + 2Dba(1 + cos θ)] = Dba(1 + cos θ) , (8.16c)

and

DBA− = (1/2) [Dba + Dba + 2Dba(1 − cos θ)] = Dba(1 − cos θ) . (8.16d)

These expressions show that the transition dipoles of the dimer’s two bands are
proportional to the vector sum and difference of the transition dipoles of the
monomers (Fig. 8.3). DBA+ and DBA− thus can range from 0 to 2Dba depending on
the angle θ between the transition dipoles of the monomers; however, the sum of
DBA+ and DBA− is always simply 2Dba.
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Fig. 8.3. The transition dipoles for a dimer of identical molecules are the vector sum and
difference of the transition dipoles of the two monomeric chromophores. The sum and
difference of any two vectors are always perpendicular to each other

Figure 8.4 illustrates the application of these results to dimers of identical
molecules in several different arrangements. The point-dipole approximation
(Eq. (7.17)) was used to calculate the signs and relative magnitudes of the interac-
tion matrix element (H21) for the different geometries. If the transition dipoles of
the monomers are parallel and are aligned along the intermolecular axis (Fig. 8.4,
panel A) H21 is negative. ΨB+ then lies lower in energy than ΨB− and all of the
dimer’s dipole strength is associated with excitation to ΨB+. The higher-energy
excitation to ΨB− has no dipole strength because the transition dipoles of the
monomers enter with opposite signs and cancel. Figure 8.4, panel A does not
show it, but the dimer’s absorption spectrum would be just the same if one of the
monomers were turned around by 180◦. In that case, H21 would be positive and
ΨB− would be lower in energy than ΨB+, but all the dimer’s dipole strength still
would go to the lower-energy transition.

If the transition dipoles of the monomers are perpendicular (Fig. 8.4, panel B),
H21 is zero and the dimer’s two excited states have the same energy. Transitions
to both states are allowed but are indistinguishable. If the monomer transition
dipoles are parallel to each other but both are perpendicular to the intermolecular
axis (Fig. 8.4, panel C), H21 is positive. In this case, ΨB+ is the higher-energy state
and all of the dimer’s dipole strength goes to the higher-energy excitation. Again,
rotating one of the dipoles by 180◦ would change the sign of H21 and interchange the
assignments of the transitions but leave the spectrum unchanged. Finally, Fig. 8.4,
panel D shows an arrangement of the monomers in which both of the dimer’s
absorption bands have significant dipole strengths.

No matter what the orientations of the two monomer transition dipoles, the
vector sum and difference of these dipoles are always perpendicular to each other
(Fig. 8.3). The two absorption bands of the dimer therefore have perpendicular
linear dichroism.

Equations (8.14) and (8.15) do not require that the two molecules be identical.
If the excitation energies of the individual molecules are different (δ = 0), the



292 8 Exciton Interactions

Fig. 8.4. Calculated absorption spectra of homodimers with four different geometries. The
orientations of the transition dipoles and the geometrical factor κ are indicated in the box
below each spectrum. The absorption spectrum of the monomer is shown with a dotted
line and the spectrum of the dimer with a solid line. From left to right, the relative dipole
strengths of the ΨB− and ΨB+ transitions are 0:2, 1:1, 0:2, and 0.5:1.5. (ΨB− is the high-
energy transition in A and the low-energy transition in C, D.) The sum of the dipole
strengths is always twice the dipole strength of the monomer. The exciton bands have been
given Gaussian shapes with an arbitrary width

separation between the energies of the two excited states of the dimer will be larger
than 2H21 (Fig. 8.2). In addition, the results can be more complex if the oligomer
consists of more than two molecules, or if the individual molecules have more than
one excited state. However, these situations can be treated straightforwardly by
writing the wavefunctions for excited states of the oligomer in a more general way:

ΨB =
∑

m

∑

b

CB
b(m)

1ψba(m) . (8.17)

Here 1ψba(m) represents the wavefunction obtained by raising molecule m from
its ground state (a) to excited singlet state b and leaving all the other molecules
in their ground states. Equation (8.17) allows each of the individual molecules in
the oligomer to have any number of excited states (b = 1, 2, 3, ...). ΨB includes
contributions from all these states, although some of the contributions may be
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negligible depending on the geometry of the oligomer and the energies of the
transitions in the monomers. An oligomer containing m monomeric subunits,
each with b excited singlet states, has m × b excited singlet states, which are termed
exciton states.

The coefficients CB
b(m) in Eq. (8.17) can be found by solving a set of simulta-

neous equations analogous to Eq. (8.7). Again, this is done by diagonalizing the
interaction matrix H, in which the diagonal terms are the excitation energies of the
monomers and the off-diagonal terms are the interaction energies, or interaction
matrix elements:

H =

⎡

⎢⎢⎢
⎣

H11 H12 · · · H1n

H21 H22 · · · H2n
...

...
...

...
Hn1 Hn1 · · · Hnn

⎤

⎥⎥⎥
⎦

. (8.18)

The transition dipole vector for the oligomer’s absorption band associated with
exciton wavefunction ΨB is obtained by simply summing over of the monomer
transitions:

μBA =
∑

m

∑

b

CB
b(m)μba(m) . (8.19)

The dipole strength then is DBA = |μBA|2. If the monomeric subunits have several
different excited states, the oscillator strengths of these bands are redistributed
among all the exciton bands of the oligomer. This can result in hyperchromism or
hypochromism, which means an excess or deficiency of the oligomer’s absorbance
in a particular region of the spectrum compared with the absorbance of the
monomeric constituents (Tinoco 1961, 1962). For an oligomer made up of m
monomers, DBA for any one of the exciton bands can be greater (or less) than m
times the dipole strength of the corresponding absorption band of the monomers
(mDBA), provided that some other exciton band is decreased (or increased) in
strength correspondingly. The sum of the dipole strengths of all the bands is
constant (Box 8.5).

Box 8.5 The sum rule for exciton dipole strengths

The sum of the dipole strengths of the exciton bands of an oligomer is the
same as the sum of the dipole strengths for the individual molecules. This
is easy to see for a dimer of identical molecules (see Eq. (8.16c), (8.16d)). To
show that the statement can be generalized to larger oligomers, let us rewrite
the coefficients CB

b(m) as a matrix C with elements Cik, where i indicates an
exciton state and j indicates one of the monomer transitions. The Cik are the
eigenvectors of the interaction matrix H. With this notation, the sum of the
exciton dipole strengths is
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∑

i

Di =
∑

i

∑

j

∑

k

CijCik
(
μj · μk

)

=
∑

j

∑

k

(
μj · μk

)∑

i

CT
jiCik =

∑

j

∑

k

(
μj · μk

)
Gjk , (B8.5.1)

where G = CT· C and CT is the transpose of C (CT
ji = Cij) and we have used

the definition of matrix multiplication from Appendix 2.
Because H is both real and symmetric, we now can make use of the fact

that the matrix of eigenvectors of any real, symmetric matrix is orthogonal,
which means that CT = C−1 (Appendix 2). Therefore, G = C−1 · C = 1, where
1 is a matrix with all the diagonal terms equal to 1 and all the off-diagonal
terms zero. The double sum in Eq. (B8.5.1) thus reduces to

∑

j

(
μj · μj

)
=
∑

j

∣∣μj
∣∣2 , (B8.5.2)

which is the sum of the monomer dipole strengths.
The sum rule for exciton absorption bands sometimes is stated in terms of

oscillator strengths rather than dipole strengths. This is strictly correct only if
the intermolecular interactions are very weak, so the exciton transitions have
essentially the same energies as the corresponding monomer transitions.

Figure 8.5 illustrates the transfer of dipole strength between absorption bands
in different regions of the spectrum for dimers with two different structures. The
side-by-side geometry (Fig. 8.5, panel A) is qualitatively similar to that of the bases
in double-stranded DNA. With this alignment, most of the dipole strength in each
region of the spectrum goes to the exciton band that lies above the monomer
transition in energy (Fig. 8.4, panel C). In addition, mixing of the transitions
in different regions of the spectrum results in transfer of dipole strength from
absorption bands in the lower-energy region to bands at higher energies. The high-
energy bands of the nucleotide bases occur too far into the UV to be measured
conveniently, whereas the low-energy bands occur in the more accessible region
around 260 nm. The loss of dipole strength in the 260-nm region is therefore seen
experimentally as hypochromism (Tinoco 1961, 1962; Fig. 1.3, panel b). Similar
hypochromism is seen in the region of 200 nm when peptides such as polylysine
adopt a helical conformation.

Photosynthetic systems provide numerous examples of chlorophyll or bacte-
riochlorophyll (BChl) oligomers with alignments similar to that considered in
Fig. 8.5, panel B. In this geometry, most of the dipole strength in each region of the
absorption spectrum goes to the exciton band that lies below the monomer tran-
sition. Mixing of the transitions in different regions now transfers dipole strength
from the higher-energy region around 400 nm to lower-energy bands in the re-
gion 700–1,000 nm (Scherz and Parson 1984a, b). The low-energy region of the
spectrum thus exhibits hyperchromism.



8.3 Transition-Monopole Treatments and Charge-Transfer Transitions 295

Fig. 8.5. Hyperchromism and hypochromism in dimers with two geometries. Each
monomeric unit is assumed to have two absorption bands with transition dipoles oriented
along the long axis of the molecule (double arrows in shaded boxes). A The two monomers
are aligned side by side; B one monomer is displaced along an axis parallel to the transition
dipoles. The monomer absorption spectra are assumed to peak at 15,900 and 17,100 cm−1

and are shown (multiplied by 2) with dotted curves. The spectra drawn with dashed curves
consider exciton interactions only between monomer transitions in the same region of
the spectrum. The spectra with solid lines include interactions of all of the transitions. In
the side-by-side dimer (A), the spectrum in the high-energy region is strengthened at the
expense of the low-energy region; in the in-line structure (B), the spectrum is strengthened
at low energies

8.3
Transition-Monopole Treatments of Interaction Matrix Elements
and Mixing with Charge-Transfer Transitions

For purposes of illustration in Figs. 8.4 and 8.5, we have used the point-dipole
approximation to evaluate the interaction matrix element H12 (Eqs. (7.16), (7.17)).
This is a good approximation as long as the molecules are far apart relative to
the molecular dimensions. For molecules that are closer together, a transition-
monopole treatment based on Eqs. (7.14) and (7.15) is, in principle, more accurate.
To illustrate the transition-monopole treatment, suppose that the relevant transi-
tions of the monomers both involve only a single configuration, excitation from
the monomer’s highest ocupied molecular orbital (HOMO) to the lowest unoccu-
pied molecular orbital (LUMO), and that the molecular orbitals can be written as
linear combinations of atomic pz orbitals as in Eq. (2.36). Inserting the antisym-
metrized singlet wavefunctions for two electrons on each molecule (Eqs. (2.43),
(2.44), (2.47), (4.20), and (4.21)) leads straightforwardly to the expression

H12 ≈ 2
(

f 2/n2)∑

s

∑

t

CHOMO
s CLUMO

s CHOMO
t CLUMO

t

(
e2/rst

)
, (8.20)
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where rst is the distance between atom s on molecule 1 and atom t on molecule 2,
and f 2/n2 is an approximate correction for the dielectric effects of a homoge-
neous medium. Equation (8.20) can be refined by replacing the simple 1/rst by
a parameterized semiempirical function of rst and by incorporating a dependence
on the relative orientation of the two atomic z-axes (Warshel and Parson 1987;
Alden et al. 1997). The dielectric screening factor can be made somewhat more
realistic by making it a function of the interatomic distance (Alden et al. 1997). But
even with these refinements, Eq. (8.20) tends to overestimate the magnitude of the
interactions in the same manner that Eq. (4.26) usually overestimates the dipole
strengths of the electronic transitions of individual molecules. Comparisons of
the observed and calculated dipole strengths of the monomer absorption bands
can be used to correct for the approximations inherent in the molecular orbital
expansion coefficients (Murrell and Tanaka 1964; Warshel and Parson 1987; Alden
et al. 1997).

If the interacting molecules are in direct contact, descriptions of the system in
terms of molecular orbitals for the individual molecules become problematic. One
possibility is to treat the entire complex as a supermolecule with molecular orbitals
that extend over all of the constituents. An intermediate approach is to augment
Eq. (8.17) to include charge-transfer (CT) transitions in which an electron moves
from one molecule to the other (Warshel and Parson 1987; Lathrop and Friesner
1994; Renger 2004).

If we consider only the HOMO and LUMO of the two molecules, a dimer will
have two CT states in addition to the two exciton states that we have considered
above. An electron can move from the HOMO of molecule 1 to the LUMO of
molecule 2, as shown schematically in Fig. 8.6, or from the HOMO of molecule 2
to the LUMO of molecule 1. The two CT states can lie either above or below the
corresponding exciton states of the dimer, depending mainly on the electrostatic
interactions of the species with each other and with the surrounding medium.

CT transitions usually have very little intrinsic dipole strength because, to a first
approximation, the initial and final molecular orbitals have no atoms in common;
at the level of Eq. (4.26), the transition dipole is zero. However, CT states can mix
with exciton states to give hybrid eigenstates that are shifted up or down in energy
and have varying amounts of CT character.

The strength of the mixing of CT and intramolecular transitions depends on
the extent of orbital overlap between the interacting molecules (Warshel and Par-
son 1987). The coefficients and energies for the four excited states of a dimer are
obtained by diagonalizing a 4 × 4 interaction matrix in which the CT transition
energies appear on the diagonal along with the energies of the two intramolecular
transitions. The off-diagonal interaction matrix element that mixes the intramolec-
ular excitation of molecule 1 with a CT transition in which an electron moves from
the HOMO of molecule 1 to the LUMO of molecule 2 takes the form

H1,CT ≈
∑

s

∑

t

CLUMO
s CLUMO

t βst . (8.21)
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Fig. 8.6. Mixing of a charge-transfer (CT)
transition with intramolecular transi-
tions. The diagonal arrow represents
a CT transition in which an electron
moves from the highest occupied molec-
ular orbital (HOMO) of molecule 1 to
the lowest unoccupied molecular orbital
(LUMO) of molecule 2. This transition
is mixed with the two intramolecular
transitions by off-diagonal terms in the
interaction matrix (H1,CT and H2,CT)

Here βst is a semiempirical atomic resonance integral that depends on the orbital
overlap of atom s of molecule 1 with atom t of molecule 2 (Warshel and Parson
1987; Alden et al. 1997). The corresponding matrix element for mixing the same
CT transition with the intramolecular excitation of molecule 2 is

H2,CT ≈ −
∑

s

∑

t

CHOMO
s CHOMO

t βst . (8.22)

In the first case (Eq. (8.21)), where the intramolecular and intermolecular transi-
tions both remove an electron from the same orbital (the HOMO of molecule 1),
the matrix element depends on the overlap of the two orbitals to which the electron
can be promoted. In the second case (Eq. (8.22)), where both transitions promote
an electron to the same orbital (the LUMO of molecule 2), the matrix element de-
pends on the overlap of the two orbitals from where the electron could originate.
The off-diagonal matrix element for two CT transitions in opposite directions is
zero.

Semiempirical expressions have been developed for the atomic resonance in-
tegrals as functions of interatomic distance and orientation (Warshel and Parson
1987; Alden et al. 1997). Because the resonance integrals drop off very rapidly with
distance at separations greater than about 3.5 Å, the off-diagonal interaction ma-
trix elements involving CT transitions usually are much smaller than the terms that
mix purely intramolecular transitions. Absorption bands that are predominantly
CT in character typically are very broad because their energies depend strongly
on electrostatic interactions of the charged species with each other and with the
surroundings. The final absorption spectrum thus includes broad, weak bands
representing transitions that are mostly CT in character and stronger exciton-type
bands with smaller admixtures of CT character. However, each exciton-type band
is shifted up or down in energy, depending on the location of the CT transition
with which it mixes most strongly. An exciton-type transition interacting with
a CT transition that lies above it in energy will be shifted down in energy, while
one interacting with a CT transition lying at lower energies will be shifted up.

CT transitions play an important role in the long-wavelength absorption band
of photosynthetic bacterial reaction centers. These pigment-protein complexes
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contain four molecules of BChl and two bacteriopheophytins. Two of the BChls are
located close together, with their macrocyclic planes approximately parallel and
about 3.8 Å apart. The center-to-center distance is about 6 Å. When the reaction
center is excited by light or by resonance energy transfer from an antenna complex,
it is this “special pair” of BChls that undergoes photooxidation. Whereas the long-
wavelength (Qy) absorption band of monomeric BChl solution is in the region of
770 nm, the corresponding band of the special pair of BChls in the reaction center
occurs at 865 nm (Fig.4.12a). The shift of the band to longer wavelengths probably
results in part from exciton interactions and interactions with the protein, but also
from mixing of the exciton transitions with CT transitions (Parson and Warshel
1987; Warshel and Parson 1987; Lathrop and Friesner 1994; Zhou and Boxer 1997,
1998a, b; Renger 2004). This interpretation has been tested experimentally by site-
directed mutations that move the CT states of the dimer upward or downward in
energy by changing the hydrogen bonding of the BChls (Zhou and Boxer 1997,
1998a, b). In agreement with the idea that the lowest excited state has substantial
CT character, Stark measurements have shown that the excitation is coupled to
a relatively large change in dipole moment (Lösche et al. 1987; Zhou and Boxer
1997, 1998a, b).

8.4
Exciton Absorption Band Shapes and Dynamic Localization
of Excitations

The expressions we have derived for the absorption spectrum of an oligomer
apply as well to stimulated emission, and they can be extended to spontaneous
fluorescence by using the Einstein relationships (Chap. 5). However, we have not yet
considered relaxations that might follow excitation of an oligomer to an exciton
state. As we discussed in Chaps. 4 and 5, excitation of an individual molecule
changes the molecule’s electrostatic interactions with the surroundings. The energy
of the excited state decreases with time as the solvent relaxes in response to the
new distribution of charge. To the extent that an exciton is distributed over several
molecules, the changes in interactions with the solvent will be smaller than they
would be for a localized excitation. But relaxations still should occur, and in some
cases they can cause the excitation to become increasingly localized with time.

Consider first the case that the exciton interaction energy between the two
molecules of a homodimer is large relative to the solvent reorganization energy of
either molecule alone. Figure 8.7, panel A illustrates how the energies of the excited
states might depend on a nuclear coordinate of the solvent. The coordinate could
represent the rotational orientation of a particular nearby water molecule, for
example, or a composite of many independent degrees of freedom. For any value
of the solvent coordinate, the energy of the lower exciton state (EB−) in Fig. 8.7,
panel A has a single minimum that lies below the minima for the localized excited
states. If the dimer is raised from its ground state to ΨB− by a short flash when
the solvent coordinate is somewhat displaced from zero, the ensuing relaxations
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Fig. 8.7. Dependence of the excited-state energy surfaces on a generalized solvent coordinate
in cases of strong (A) and weak (B) exciton interactions. H11 and H22 (dashed lines) are the
excited-state energies of individual molecules, which are assumed to be identical. EB+ and
EB− (solid lines) are the energies of the two exciton states as given by Eq. (8.9). (Exciton state
ΨB+ is assumed arbitrarily to have a higher energy than ΨB−) The ground-state energy is
off scale at the bottom. In the units of energy used for the ordinate scale, H12 is 0.4 in A and
0.04 in B

of the solvent will stabilize ΨB− but will not cause the excitation to localize on
an individual molecule. Note also in Fig. 8.7, panel A that the curvature of EB− is
less than the curvatures of H11 and H22. This difference in curvature reduces the
Stokes shift for the dimer relative to that of a monomer. By contrast, if |H12| is
small compared to the reorganization energy of the monomer, EB− will have two
minima that coincide closely with the energy minima for the two localized states
(Fig. 8.7, panel B). In this case, relaxations will move the system out of the region
of resonance so that the eigenstates become more localized with time.

Exciton absorption bands typically are sharper than the corresponding absorp-
tion bands of the monomeric chromophores (Simpson and Peterson 1957; Förster
1965). Figure 8.8 shows the origin of this effect. In Fig. 8.8, panel A, the energy of
the ground state of a homodimer is represented by a contour plot as a function
of two orthogonal coordinates (x and y) that could be either solvent coordinates
or intramolecular vibrational coordinates. The energy minimum is at the origin.
The energy surface of the lowest excited state of one the monomeric units of the
dimer is displaced along x as shown in Fig. 8.8, panel B, and that of the other is
displaced by the same amount (Δ) along y (Fig. 8.8, panel C). If the two molecules
do not interact, the energy difference between the ground state and the excited
state therefore depends only on x if molecule 1 is excited and only on y if molecule 2
is excited. Figure 8.8, panel D shows the contour plot for the energy of the dimer’s
lowest exciton state when the molecules interact strongly enough so that the ex-
cited state has a single minimum, as in Fig. 8.7, panel A. The energy difference
between the ground and the excited state still can be described in terms of a single
coordinate, but this is now the linear combination 2−1/2(x+y) indicated by the solid
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Fig. 8.8. Contour plots of energy surfaces of the ground state (A) and lowest exciton state (D)
of a homodimer and of the lowest excited states of the monomeric units (B, C), as functions
of two orthogonal coordinates (x and y). The energy minimum (filled circle) of the excited
state of one of the monomers is displaced from the ground-state minimum by Δ along x
(B), and that of the other monomer is displaced similarly along y (C). The energy surfaces
for the monomers are assumed to increase quadratically with distance from the minimum.
The excited-state energy of the dimer was calculated by Eq. (8.9) with H12 equal to twice the
reorganization energy of the monomer. In this model, the energy minimum in the dimer’s
excited state is displaced by 2−1/2Δ along the diagonal indicated by the thick solid line in D.
The displacement along the orthogonal coordinate (thin line) is zero

diagonal line in Fig. 8.8, panel D. The minimum is equidistant from the minima
of H11 and H22, so its displacement from the origin along this coordinate is 2−1/2Δ.
The displacement of the minimum along the perpendicular coordinate indicated
by the thin line in Fig. 8.8, panel D, 2−1/2(x − y), is zero. Because the width of an
absorption band that is strongly coupled to a nuclear coordinate is proportional
to Δ (Eq. (4.56)), the dimer’s absorption band will be narrower than the monomer
band by approximately a factor of

√
2.

At room temperature, the narrowing of exciton bands sets in when the inter-
action energy H21 is on the order of the reorganization energy of the monomer
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absorption band (Λm). (In Fig. 8.8, H21 = 2Λm.) Weaker interactions give an en-
ergy surface with a double minimum as shown in Fig. 8.7 panel B, and the exciton
band width approaches the width of the monomer band.

This analysis of the shapes of exciton absorption bands neglects mixing of
different vibrational levels of the two chromophores. A more general treatment is
to write the excited states of the dimer as in Eq. (8.17), using Born–Oppenheimer
vibronic states of the individual chromophores as the basis. Each off-diagonal
element in the interaction matrix H (Eq. (8.18)) then consists of a product of an
electronic interaction energy and the vibrational overlap integral for a particular
pair of basis states. After diagonalizing H, one can evaluate the absorption spectrum
essentially as in Eq. (8.19), using a different spectral distribution function for each
of the basis transitions.

Because CT transitions generally involve substantial changes in dipole moment,
CT absorption bands are broadened by both strong vibronic coupling and inho-
mogeneous interactions of the chromophores with the surroundings. Absorption
bands that reflect mixed exciton and CT transitions are, therefore, typically much
broader than the bands of the monomeric chromophores. Friesner and coworkers
(Friesner 1982; Lagos and Friesner 1984; Lathrop and Friesner 1994), Zhou and
Boxer (1997 1998a, b), and Renger (2004) have described methods for treating the
shapes of such mixed bands. Renger’s treatment appears to account well for the
temperature dependence of the long-wavelength absorption band of photosyn-
thetic bacterial reaction centers.

8.5
Exciton States in Photosynthetic Antenna Complexes

The LH2 or B800-850 antenna complexes of purple photosynthetic bacteria illus-
trate many of the points discussed in the previous sections of this chapter. These
pigment–protein complexes absorb light and transfer the excitation energy to the
photosynthetic reaction centers that carry out the initial electron-transfer reactions
of photosynthesis (Sects. 4.7, 4.11). The LH2 complex from Rhodopseudomonas
acidophila contains nine copies each of two small proteins arranged in a cylindri-
cal structure with C9 rotational symmetry, along with 27 BChl molecules and 18
carotenoids (McDermott et al. 1995). Rhodospirillum molischianum has a similar
complex containing eight copies of each protein, 24 BChls, eight carotenoids and
C8 symmetry (Koepke et al. 1996). The BChls in each complex form two rings:
an inner ring of 16 or 18 B850 BChls with center-to-center distances of about
9 Å and an outer ring, offset toward one side of the membrane, containing eight
or nine B800 BChls with center-to-center distances of about 21 Å. The Qy transi-
tion dipoles of the B850 BChls lie approximately in the plane of the membrane,
while those of the B800 BChls are approximately normal to the membrane. The
complexes have a strong absorption band at 850 nm that is assigned to the B850
BChls, and a band at 800 nm attributed mainly to the B800 BChls (Fig. 8.9). Their
spectroscopic properties have been studied extensively by both theoretical and
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Fig. 8.9. Observed (dashed line) and calculated (dotted line) absorption spectra of the LH2
antenna complex of Rhodopseudomonas acidophila (Alden et al. 1997). See the text for
a description of the calculations

experimental approaches (see Pearlstein 1991 and van Amerongen et al. 2000 for
reviews).

Figure 8.10 shows the calculated contributions of the Qy excitations of the 18
individual B850 molecules to the overall transition dipoles for forming the first
three excited states of the Rhodopseudomonas acidophila complex (Alden et al.
1997). The arrows are the weighted vectors CB

b(m)μba(m) that appear in Eq. (8.19),
which together with minor additional contributions from the higher-energy Qx,
Bx, By, and CT transitions form the total transition dipole for each excited state
(μBA). (See Sect. 4.7 for an explanation of the Qx, Bx, and By states of BChl and
related molecules.) The calculations used for Fig. 8.10 assume that the Qy transi-
tion energies of all the individual BChls are the same. In the lowest excited state
(Fig. 8.10a), the contributions from the different BChls all have approximately the
same magnitude and the weighted transition dipoles point in a consistent direction
around the ring. The total electric transition dipole for forming this state (the result
of a complete cycle around the ring) is zero, so (neglecting interactions with the
magnetic field of light) excitation into the first excited state is formally forbidden.
In the second and third excited states (Fig. 8.10b, c), monomer transition dipoles
with large coefficients collect on opposite sides of the ring, with the contributions
from the two sides adding vectorially to give large total transition dipoles. The en-
ergies of these two states are the same, and their transition dipoles are orthogonal.
Excitations to the second or third states have large transition dipoles with perpen-
dicular orientations, accounting for the strong absorption band in the region of
850 nm (Alden et al. 1997). Above these states are an additional 15 Qy exciton states,
including two that resemble the second and third states except that the transition
dipoles on opposite sides of the ring oppose each other rather than cooperating.
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Fig. 8.10. Calculated coefficients for monomer Qy excitations in the first three excited singlet
states of a photosynthetic bacterial antenna complex (a–c, respectively) (Alden et al. 1997).
The complex contains a ring of 18 bacteriochlorophylls (BChls), represented here by rounded
rectangles, and a larger, concentric ring of nine BChls that interact relatively weakly with
the ring of 18 (not shown). Alternating BChls in the ring shown have slightly different
conformations. The arrows represent the products of the coefficient for the Qy excitation
of each molecule (m) in the excited state (CB

b(m)) and the molecule’s Qy electric transition
dipole (μba(m)). In the lowest excited state (a) the weighted vectors sum to zero; in the
next two states (b, c) the magnitudes of CB

b(m)μba(m) peak on opposite sides of the ring and
combine to give strong total transition dipoles that are orthogonal for the two states

The calculated dipole strengths of all these states are much smaller than those
of the second and third states. The nine B800 BChls contribute a similar pair of
strong bands in the 800-nm region, along with seven weaker bands. Bands that
come largely from Qx, Bx, By, or CT transitions are predicted for higher energies.

The model just described neglects perturbations of the symmetry of the complex
by heterogeneity in the energies of the individual pigments. Although the model
considers coupling to a set of vibrational modes with experimentally measured
frequencies and coupling factors (Alden et al. 1997), the predicted width of the
absorption bands is much sharper than observed. Figure 8.9 shows the result of
repeating the calculations many times with random variations in the energies of
the individual transitions, on the assumption that each of the monomer transitions
has a Gaussian distribution of energies. The width of the energy distribution at
half maximum amplitude was taken to be 100 cm−1. Introducing such disorder in
the monomer transition energies causes the two strong transitions of the complex
to split apart in energy and lose some of their dipole strength, while the previously
weak transitions become stronger. The agreement with the observed spectrum now
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is reasonably satisfactory, although the predicted 850-nm band remains somewhat
too narrow and the 800-nm band is too broad. Disorder in the interaction energies
would have a qualitatively similar effect.

Aartsma and coworkers (van Oijen et al. 1999a, b, 2000; Ketelaars et al. 2001;
Kohler et al. 2001; Matsushita et al. 2001) tested the exciton model by measuring
fluorescence excitation spectra of individual LH2 complexes at low temperatures.
In agreement with the picture presented above, the excitation spectrum of an
individual complex typically included two dominant components with orthogonal
polarizations, and the transition energies varied from complex to complex.

Following the absorption of light, an ensemble of excited LH2 complexes proba-
bly relaxes rapidly to a thermally equilibrated mixture of states in which the lowest
excited state features more prominently (Nagarajan et al. 1996, 1999; Wu et al.
1997a, b). Because radiative transitions from the lowest excited state to the ground
state probably are relatively weak in spite of the disorder in the monomer transi-
tion energies, a decrease in the intensity of stimulated and prompt emission should
accompany this relaxation, and this is seen experimentally. However, structural
fluctuations that perturb the monomer transition energies or the electronic inter-
actions can cause the excitation to localize in smaller regions of the ring (Jimenez
et al. 1996; Kumble et al. 1996; Kühn and Sundström 1997; Meier et al. 1997;
Monshouwer et al. 1997; Nagarajan et al. 1999; Yang et al. 2001; Kühn et al. 2002).

8.6
Excimers and Exciplexes

Some molecules that do not form complexes in the ground state do form com-
plexes when they are excited with light. Such a complex is called an excimer if the
molecules are identical, and an exciplex if they are different (Förster 1969; Gordon
and Ware 1975). Formation of a complex in the excited state can be recognized
by a concentration-dependent fluorescence emission band at long wavelengths
where the individual molecules do not fluoresce. For example, the aromatic hy-
drocarbon pyrene forms excimers in which the aromatic rings stack together face
to face about 3.5 Å apart (Förster 1969). Figure 8.11 shows a qualitative diagram
of the energies of the ground and excited states as functions of the interplanar
distance. The excited state can be described as a combination of an antisymmetric
exciton state (2−1/2Ψ1 − 2−1/2Ψ2, where Ψ1 and Ψ2 are the lowest excited singlet
states of the individual molecules) and an antisymmetric “charge resonance” state
(2−1/2Ψ± −2−1/2Ψ∓, whereΨ± andΨ∓ are CT states in which an electron has moved
from the HOMO of molecule 1 to the LUMO of molecule 2 or vice versa) (McGlynn
et al. 1965).

Pyrene excimers fluoresce with a broad, unstructured emission band peaking
between 450 and 500 nm, whereas the monomer has a highly structured emission
spectrum with peaks near 385 and 400 nm. If the concentration of a solution
of pyrene is increased, the excimer emission grows in strength relative to the
monomer emission. Changing the concentration has little effect on the absorption
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Fig. 8.11. A qualitative depiction of the
energies of two pyrene molecules as
functions of the interplanar distance
when both molecules are in the ground
state (dotted curve) or when one is in
an excited singlet state (solid curve).
The molecules form a complex in the
excited state but not in the ground state
(note the minimum in the energy of the
excited state). The energy separation
between the two curves is not to scale

spectrum because the molecules do not form a complex in the ground state.
When a solution of 1 mM pyrene in cyclohexane is excited with light, the emission
spectrum changes with time as excited and ground-state molecules that encounter
each other by diffusion form excimers (Yoshihara et al. 1971). At 1 ns after the
excitation, the fluorescence comes mainly from pyrene monomers; by 100 ns it
comes mainly from excimers.

Measurements of excimer or exciplex fluorescence can be used to determine
whether a pair of macromolecules or two regions of a macromolecule are able
to come in close contact during the lifetime of the excited state. Derivatives of
pyrene that can be attached to various functional groups in proteins, lipids, or
polysaccharides lend themselves well to such studies (Betcher-Lange and Lehrer
1978; Pal et al. 1988; Stegmann et al. 1993; Jung et al. 1994; Sahoo et al. 2000). In
one application, the N-terminus of the EcoR1 restriction endonuclease was labeled
with N-(1-pyrenyl)iodoacetamide (Liu et al. 1998). A broad excimer emission band
at 480 nm indicated that the N-termini of two molecules come into close proximity
when the protein dimerizes. The N-termini are essential for enzymatic activity but
are too disordered to be seen in a crystal structure of the protein.



9 Circular Dichroism

9.1
Magnetic Transition Dipoles and n–π∗ Transitions

In our analysis of how an electromagnetic radiation field interacts with electrons,
we have, to this point, considered only the oscillating electric field, E(t). We set
aside possible effects of the magnetic field, B(t), on the grounds that they usually
are much smaller than the effects of the electric field. With this assumption we
found that the strength of the absorption band for a transition between two states
with wavefunctions ψa and ψb depends on the square of the dot product of Eo

with the electric dipole matrix element, μba. There are, however, cases in which
the symmetry of the wavefunctions makes μba zero, and yet the transition still
has a measurable dipole strength. The absorption in these cases sometimes results
from quadrupole, octupole, or other small terms that we have neglected in using
the dipole operator, but in other cases it can be traced to interactions with the
magnetic field. In addition, coupled interactions involving both E(t) and B(t) can
cause the dipole strength of a transition to be different for left- and right-circularly
polarized light. This is circular dichroism.

To treat effects of the magnetic field of radiation by the same semiclassical
approach that we used for the electric field, we can expand Eq. (4.2) so that
the time-dependent perturbation term in the Hamiltonian (H̃′) includes a term
proportional to B(t):

H′(t) = −E(t) · μ̃ − B̃(t) · m̃ . (9.1)

Here m̃ is the magnetic dipole operator, which is given by

m̃ = (e/2mec)
(
r × p̃ + geS

)
, (9.2)

where e and me are the electron charge and mass, c is the speed of light, r is
the position of the electron, p̃ is the linear momentum operator (−i�∇̃), ge is
the electron g-factor (2.00232), S is the angular momentum associated with the
electron spin, and × denotes a vector cross product (Appendix 2). The factor
−e/2me (a positive number, since we use the convention that e is negative) is called
the electronic gyromagnetic ratio. The cross product r × p̃ in Eq. (9.2) is the orbital
angular momentum operator, and the product (e/2mec)r × p̃ corresponds to the
classical expression for the magnetic moment generated by a current in a coil of
wire with radius |r| (Fig. 9.1). The term (e/2mec)geS usually does not contribute

William W. Parson, Modern Optical Spectroscopy,
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significantly to molecular absorption or circular dichroism spectra, and we will
neglect it.

The term for magnetic interactions in Eq. (9.1) gives rise to a magnetic transition
dipole matrix element (mba) for a transition of a system between different states.
A magnetic transition dipole is a vector analogous to an electric transition dipole
(μba) but with the magnetic-dipole operator m̃ replacing μ̃:

mba =
〈
Ψb |m̃|Ψa

〉
. (9.3)

If mba is nonzero, perturbations of the molecule by the magnetic field of light
can cause transitions between the two states. The strength of such a transition is
proportional to |mba|2|B|2cos2θ, where θ is the angle between the magnetic field
and mba. This is analogous to Eq. (4.8c) for transitions driven by the electric field
of light. Magnetic dipoles and magnetic transition dipoles commonly are stated
in units of (−e�/2me), which is called the Bohr magneton μB. A Bohr magneton
is the magnetic dipole that would result from the classical circular motion of a 1s
electron in the Bohr model of a hydrogen atom. It also is the fundamental unit
of the magnetic moment associated with an electron’s quantized orbital angular
momentum. The component of the angular momentum in a specified direction is
constrained to integer multiples of�, which restricts the corresponding component
of the orbital magnetic moment to multiples of −e�/2me. One Bohr magneton is
9.274 × 10−21 emu cm or 9.274 × 10−21 erg G−1 in CGS units (9.274 × 10−24 J T−1 in
SI units). For comparison, the debye unit for electric dipoles is about 2 orders of
magnitude larger (10−18 esu cm). The molar extinction coefficient for absorption

Fig. 9.1. a An electric current (shaded arrow) flowing through a wire creates a circular
magnetic field around the wire. If the wire forms a ring, the magnetic field lines have the
same shape as those around a uniformly magnetized disk with the same area. b At large
distances, the magnetic field lines are equivalent to those created by a magnetic dipole
whose magnitude is the product of the current and the area of the ring. Classically, the
angular momentum associated with circular motion of a particle is given by r × p, where r
is the vector from the center of the circle to a point on the trajectory and p is the particle’s
linear momentum at that point
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driven by an electric transition dipole of 1 D is, therefore, on the order of 104 times
that for the absorption driven by a magnetic transition dipole of 1 μB.

The magnetic transition dipole mba for a molecular excitation to an excited sin-
glet state can be evaluated by writing the molecular orbitals as linear combinations
of atomic orbitals. For a system constructed with atomic 2p orbitals, mba takes
a form similar to Eq. (4.28):

mba =
(

−
√

2i�e/2mec
)∑

s

∑

t

Cb
s Ca

t

〈
ps
∣∣r × ∇̃∣∣pt

〉
. (9.4)

As in Eq. (4.22e and (4.28)), pt denotes a 2p orbital centered on atom t, Ca
t is the

expansion coefficient for this atomic orbital in molecular wavefunction Ψa, and r
is the position vector in a coordinate system with its origin at the center of the
rotation. To examine the ways that the expression in Eq. (9.4) can give a nonzero
magnetic transition dipole, it is helpful to write the position vector r in the integral
〈ps|r × ∇̃|pt〉 as the sum of two vectors, Rt and rt, where Rt is the location of atom
t and rt describes the position of an electron relative to the center of atom t. The
constant factor Rt then can be factored out of its term in the matrix element, giving

mba =
(

−
√

2i�e/2mec
)∑

s

∑

t

Cb
s Ca

t

(〈
ps
∣∣rt × ∇̃∣∣pt

〉
+
〈
ps
∣∣Rt × ∇̃∣∣pt

〉)
(9.5a)

=
(

−
√

2i�e/2mec
)∑

s

∑

t

Cb
s Ca

t

(〈
ps
∣∣rt × ∇̃∣∣pt

〉
+ Rt ×

〈
ps
∣∣∇̃∣∣pt

〉)
. (9.5b)

The first term in the second set of parentheses in Eq. (9.5b) pertains mainly to
pairs of atomic orbitals centered on the same atom; the second term relates to the
relative positions of the atoms that make up the chromophore. Writing out the x,
y, and z components of and the vector cross product in the first term gives

〈
ps
∣∣rt × ∇̃∣∣pt

〉
=
〈
ps
∣∣y

∂
∂z

− z
∂
∂y

∣∣pt
〉

x̂ −
〈
ps
∣∣x

∂
∂z

− z
∂
∂x

∣∣pt
〉

ŷ

+
〈
ps
∣∣x

∂
∂y

− y
∂
∂x

∣∣pt
〉

ẑ , (9.6)

where x̂, ŷ, and ẑ are unit vectors in a coordinate system centered on atom t.
Consider the integral 〈ps|y∂/∂z − z∂/∂y|pt〉, which contributes the x component of
〈ps|rt × ∇̃|pt〉. Figure 9.2 illustrates the functions that enter into this integral when
ps and pt are, respectively, 2py and 2pz orbitals of the same atom. Differentiating
2pz with respect to z and then multiplying by y gives the function y∂(2pz)/∂z, as
shown in panels B and D of Fig. 9.2. Panels C and E show the functions generated
by differentiating with respect to y and then multiplying by z. In both cases, the
result is an even function of z and an odd function of y. Multiplying these func-
tions by 2py generates the completely symmetric functions illustrated in panels G
and H. Further, because the two final functions have opposite signs, they combine
constructively if we subtract one from the other as prescribed in Eq. (9.6). In fact,
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Fig. 9.2. Construction of the x component of the magnetic transition matrix element for 2p
atomic orbitals. A, F Contour plots in the yz plane of the amplitude of atomic 2pz and 2py
orbitals (pz and py); B, C the derivatives ∂pz/∂z and ∂pz/∂y, respectively; D, E the products
y · ∂pz/∂z and z · ∂pz/∂y. Note that the last two products are odd functions of y. G, H The
functions py · y · ∂pz/∂z and py · z · ∂pz/∂y, respectively; I py · y · ∂pz/∂z − py · z · ∂pz/∂y.
Solid lines denote positive amplitudes; dotted lines, negative ones. The contour intervals are
arbitrary. See Fig. 4.17, panels C and D for similar plots of ∂ψa/∂y and ∂ψa/∂z for the first
π–π∗ excitation of ethylene

�

the combination y∂(2pz)/∂z − z∂(2pz)/∂y has exactly the same spatial distribution
as 2py (Hansen 1966; Král 1970). The x component of 〈2py(t)|rt × ∇̃|2pz(t)〉 therefore
is proportional to 〈2py|2py〉, which is 1 if the two wavefunctions are centered on the
same atom. The magnetic dipole matrix element mba thus has a nonzero x compo-
nent. A similar analysis shows that the y and z components of 〈2py(t)|rt × ∇̃|2pz(t)〉,
and thus the y and z components of mba, are zero for this pair of orbitals, so mba is
oriented on the x-axis.

The results are qualitatively the same if ps is a 2py orbital of a different atom,
except that the x component of 〈2py(s)|rt × ∇̃|2py(t)〉 is smaller for s = t because
the overlap of the two wavefunctions falls off with the interatomic distance. The
overlap integral can be evaluated by procedures similar to those described in
Box 4.11 (Král 1970). By studying Fig. 9.2 you also can see that all three components
of 〈2pz(s)|rt × ∇̃|2pz(t)〉 (i.e., the corresponding matrix element for two atomic 2pz

orbitals with parallel z-axes) are zero.
An example of a transition that involves 2py and 2pz orbitals of the same atom

is an n–π∗ excitation of a carbonyl group, in which an electron is excited from
a nonbonding (n) orbital of the oxygen atom to a π∗ molecular orbital constructed
of oxygen and carbon 2p orbitals (Fig. 9.3). In the absence of structural distortions,
the electric transition dipole (μba) for such an excitation is zero by symmetry. The
magnetic transition dipole (mba) for an n–π∗ excitation is nonzero and is directed
along the C=O bond, which means that the transition can be driven by an oscillating
magnetic field with this orientation. However, n–π∗ transitions typically are much
weaker than π–π∗ transitions of common chromophores. Saturated ketones have
n–π∗ transitions with molar extinction coefficients of 20–30 M−1 cm−1 in the re-
gion of 280 nm. The n–π∗ transition of acetamide in water, which occurs at 214 nm,
has an extinction coefficient of 60 M−1 cm−1. n–π∗ transitions of the peptide bonds
contribute to the absorption by proteins in the region 200–220 nm (Table 9.1), but
probably owe most of their dipole strengths to excitonic mixing with π–π∗ transi-
tions rather than to their magnetic transition dipoles directly (Ham and Platt 1952;
Barnes and Simpson 1963; Callomon and Innes 1963; Woody and Tinoco 1967).

Returning to Eq. (9.5b), we still need to consider the term Rt × 〈ps|∇̃|pt〉. If the
atomic orbitals that participate in the molecular wavefunctions are dominated by
a single atom, as is the case for the n–π∗ transition just discussed, the atomic center
will be the center of the rotation, which makes Rt zero. The term Rt ×〈ps|∇̃|pt〉 then
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disappears. But if the molecular orbitals involve multiple atoms, Eq. (9.5b) calls for
a sum Cb

s Ca
t Rt × 〈ps|∇̃|pt〉 over all the pairs of atoms, and the result will depend on

the geometry of the chromophore. The factor 〈ps|∇̃|pt〉 is the matrix element of the
gradient operator for 2p atomic orbitals on atoms s and t. We discussed this matrix
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Fig. 9.3. The lowest-energy n → π∗ transition of a carbonyl group requires rotational
displacement of an electronic wavefunction. The shaded ovals represent boundary surfaces
of atomic 2p orbitals of carbon and oxygen atoms of an amide group lying in the xy plane
(Fig. 2.5). The C atom is at the origin and the C=O bond is along the x-axis. In the ground
state (a) the nonbonding (n) electrons of the oxygen occupy a 2py orbital (py(O)). The
π∗ orbital of the excited state (b) is represented by an antisymmetric combination of 2pz
orbitals, 2−1/2(pz(C) − pz(O)). The electric transition dipole is 2−1/2〈(pz(C) − pz(O))|̃μ|py(O)〉 =
2−1/2〈pz(C) |̃μ|py(O)〉−2−1/2〈−pz(O) |̃μ|py(O)〉. The integrals 〈pz(C) |̃μ|py(O)〉 and 〈−pz(O) |̃μ|py(O)〉
are both zero by symmetry. The magnetic transition dipole, 2−1/2〈(pz(C) − pz(O))|m̃|py(O)〉, is
nonzero because py(O) is perpendicular to pz(C) and pz(O), as explained in the text and Fig. 9.2

element in Chap. 4, where we showed that it is oriented along the line between the
two atoms (Eq. (4.27)–(4.29), Boxes 4.10, 4.11, Fig. 4.17–4.19). Its contribution to
the overall magnetic transition matrix element (mba) depends the coefficients for
atoms s and t in the initial and final molecular orbitals (Ca

t and Cb
s ) and on the

position of atom t (Rt). The sum over all pairs of atoms in Eq. (9.5b) usually is
treated by an expression with the form of Eq. (4.29). If the atomic pz orbitals are all
close to parallel, so that the first term in the second set of parentheses in Eq. (9.5b)
is effectively zero for all the atoms, we then have

mba =
(

−
√

2i�e/2mec
)∑

s>t

∑

t

2
(
Ca

s Cb
t − Cb

s Ca
t

)
Rmid(s,t) ×

〈
ps
∣∣∇̃∣∣pt

〉
, (9.7)

where Rmid(s,t) is the vector from the origin of the coordinate system to a point
midway between atoms s and t.

The dependence of Eq. (9.7) on the positions of the atoms is potentially prob-
lematic because it means that we might get spurious results simply by shifting the
origin of the coordinate system. But this nonphysical sensitivity of the calculated
mba to the choice of the coordinate system occurs only if excitation from ψa to
ψb has a nonzero electric transition dipole. You can see this by considering what
happens if we shift the coordinate system by adding any arbitrary vector Rarb to Rt

for all the atoms in the chromophore. The calculated value of mba will become

m′
ba = m0

ba −
(√

2i�e/2mec
)
Rarb ×

[∑

s>t

∑

t

2
(
Ca

s Cb
t − Cb

s Ca
t

)〈
ps
∣∣∇̃∣∣pt

〉]
, (9.8)
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where m0
ba is result obtained before we change the coordinate system. We showed

in Sect. 4.8 that the factor in the brackets is proportional to the electric transition
dipole, μba. So shifting the coordinate system will have no effect on mba if |μba| is
zero. This argument applies to either exact or inexact wavefunctions as long as we
obtain μba with the gradient operator (∇̃) rather than with μ̃.

Values of mba calculated by Eq. (9.7) do depend on the choice of the coordinate
system if the electric transition dipole is not zero. But this is basically no different
from the formula for angular momentum in classical physics (r×p), which assumes
that the motion is circular and that we know the center of the rotation: the result is
physically meaningless if the motion is linear or if we use the wrong center. As we
will see later in this chapter, we usually are less concerned with mba itself than with
the dot product of mba and μba. This is independent of the choice of the coordinate
system as long as mba and μba are calculated consistently by using ∇̃ and the same
coordinate system.

As an illustration of these points, consider trans-butadiene. The pertinent
molecular orbitals are shown in Fig. 4.19, along with vector diagrams of the
weighted atomic matrix elements (Cb

s Ca
t 〈ps|∇̃|pt〉) that combine to make the elec-

tric transition dipoles for the first four excitations. Figure 9.4 reproduces the vector
diagrams for excitations from the highest occupied molecular orbital (ψ2) to the
two lowest unoccupied molecular orbitals (ψ3 and ψ4). The figure also shows the
position vectors Rmid(s,t) that are needed to calculate mba by Eq. (9.7). For the
excitation ψ2 → ψ3, combining the weighted 〈ps|∇̃|pt〉 vectors for atom pairs
(s,t) = (2,1), (3,2), and (4,3) gives an electric transition dipole that points along
the principle axis of the molecule (Fig. 4.19, panel E, 9.4, panel A). The magnetic
transition dipole calculated by Eq. (9.7) is zero for this excitation if we center
the coordinate system at the molecule’s center of symmetry as shown in Fig. 9.4.
The contribution from atom pair (3,2) (Rmid(3,2)Cb

3 Ca
2〈p3|∇̃|p2〉) is zero because the

position vector Rmid(3,2) is zero in this coordinate system; the contributions from
atom pairs (2,1) and (4,3) sum to zero because Cb

2 Ca
1〈p2|∇̃|p1〉 = Cb

4 Ca
3〈p4|∇̃|p3〉 and

Rmid(2,1) = −Rmid(4,3). The lack of a magnetic transition dipole for this excitation is
not surprising, because the electron motions depicted by the vectors do not con-
stitute a rotation around the molecular center of symmetry, or indeed around any
point at a finite distance. Equation (9.7) would, nevertheless, give a nonzero result
with no physical significance if we shifted the coordinate system off the center of
symmetry.

The situation is reversed for ψ2 → ψ4. Here, the electric transition dipole is
zero because Cb

3 Ca
2〈p3|∇̃|p2〉 = 0 and Cb

2 Ca
1〈p2|∇̃|p1〉 = −Cb

4 Ca
3〈p4|∇̃|p3〉 (Fig. 4.19,

panel F, 9.4, panel B), whereas the magnetic transition dipole is nonzero. Inspection
of Fig. 9.4, panel B shows that, although the electron motions represented by the
vectors do not complete a circle, they occur in opposite directions on either side of
the center of symmetry. The opposite signs of Cb

2 Ca
1〈p2|∇̃|p1〉 and Cb

4 Ca
3〈p4|∇̃|p3〉

rectify the inversion of Rmid, making the sum of Rmid(s,t) × Cb
s Ca

t 〈ps|∇̃|pt〉 over the
atoms nonzero. As we would expect, shifting the origin of the coordinate system
does not affect the calculated value of mba for this excitation.
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Fig. 9.4. Vector diagrams of contribu-
tions to the transition-gradient matrix
elements for the first two excitations
of trans-butadiene. The initial and fi-
nal molecular wavefunctions in the
four-orbital model used for Fig. 4.19
are indicated. The atoms are labeled
1–4 by the empty circles indicating the
positions. The solid arrows indicate
the directions and relative magnitudes
of Cb

s Ca
t 〈ps|∇̃|pt〉 for pairs of bonded

atoms; Cb
s and Ca

t are the coefficients for
atomic 2pz orbitals of atoms s and t in the
final and initial wavefunction, respec-
tively; 〈ps|∇̃|pt〉 is the matrix element of
the gradient operator for the two atomic
orbitals. The vectors (Rmid(s,t)) from the
origin of the coordinate system to points
midway between the pairs of bonded
atoms are indicated with dotted arrows
[black for atom pair (2,1) and gray for
(4,3)]. The transition gradient matrix el-
ement for each excitation is given by the
vector sum of the solid arrows. (Includ-
ing the contributions from the pairs of
nonbonded atoms would not change the
results.) The magnetic transition dipole
(mba) is obtained by summing the cross
products Rmid(s,t) × Cb

s Ca
t 〈ps|∇̃|pt〉

Transitions involving magnetic transition dipoles also can be treated by the
quantum-mechanical approach we used in Chap. 5 to account for fluorescence.
Remarkably, although the final results are the same and the problem of choosing
the coordinate system remains, the quantum theory does not require distinguish-
ing between the magnetic and electric fields of the radiation. Instead, as explained
in Box 9.1, “magnetic dipole-allowed” transitions are related to the change in the
amplitude of the vector potential with position across the chromophore. This ap-
proach provides a different perspective on the question of why magnetic-dipole
transitions typically are much weaker than electric-dipole transitions. If the wave-
length of the radiation is large compared to the size of the chromophore, as is
usually the case in electronic spectroscopy, the variation in the vector potential
across the chromophore will be relatively insignificant.
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Box 9.1 Quantum theory of magnetic-dipole and electric-quadrupole
transitions

To see how the quantum theory accounts for interactions of a chromophore
with the magnetic field of light, we return to the expressions we used in
Chap. 5 for the energy of interaction of an electron with a linearly polarized
radiation field (Eq. (5.32)):

H̃′ = −
�e

imec
V · ∇̃ +

e2

2mec2

∣∣V
∣∣2 (B9.1.1a)

= −
e�π1/2

ime

∑

j

(
êj · ∇̃)

[̃qj exp
(
2πikj · r

)
+ q̃∗

j exp
(

− 2πikj · r
)
] + · · · .

(B9.1.1b)

Here V is the vector potential of the radiation field; êj and kj are, respectively,
the polarization axis and the wavevector of radiation mode j; and me is the
electron mass. The ellipsis in Eq. (B9.1.1b) represents two-photon processes
that we continue to defer to Chap. 12.

In Sect. 5.5, our next step was to assume that the wavelength of the radiation
was long enough so that the factors exp(±2πikj · r) could be set equal to 1
(see Eq. (5.33)). Here we include the second-order term in a power-series
expansion of the exponential,

exp
(

± 2πikj · r
)

= 1 ± 2πikj · r +
1
2

(
2πikj · r

)2
+ · · · . (B9.1.2)

For 300-nm light and a chromophore with dimensions in the range 1–3 nm,
the product kj · r in the second-order term will be in the region of 0.01,
which is small enough to justify neglecting it in most cases. But suppose
that the electric transition dipole μba for a transition of an electron between
wavefunctions ψa and ψb is zero by symmetry, which means that the first
term on the right in Eq. (B9.1.2) does not contribute to the overall matrix
element for the transition. The second term then gives

〈
ψbχj(m)

∣∣H̃′∣∣ψaχj(n)
〉

= −
2πe�π1/2

me

〈
ψb

∣∣(kj · r
)(

êj · ∇̃)∣∣ψa
〉〈
χj(m)

∣∣Q̃
∣∣χj(n)

〉
,

(B9.1.3)

where Q̃ is the photon position operator and χj(n) denotes the photon wave-
function for the nth excitation level of mode j. We analyzed the factor
〈χj(m)|Q̃j|χj(n)〉 in Sect. 5.5, and found that it includes separate terms for
absorption (m = n − 1) and emission (m = n + 1). Our interest now is the
factor 〈ψb|(kj · r)(̂ej · ∇̃)|ψa〉.

Consider a single mode of radiation that propagates along the y-axis with
wavelength λba and is polarized in the z direction. The dot product kj · r then
reduces to the y component of r; êj ·∇̃ reduces to ∂/∂z; and the matrix element
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for excitation of ψa to ψb becomes

−
2e�π3/2

me

〈
ψb

∣∣(k · r
)(

ê · ∇̃)∣∣ψa
〉

= −
2e�π3/2

me

1
λba

〈
ψb

∣∣( ŷ · r
)(

ẑ · ∇̃)∣∣ψa
〉

(B9.1.4a)

= −
2e�π3/2

meλba

〈
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∂
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∣∣ψa
〉

. (B9.1.4b)

The integral on the right side of Eq. (B9.1.4b) can be manipulated to give

−
2e�π3/2

meλba

〈
ψb

∣∣y
∂
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∣∣ψa
〉

+
〈
ψb

∣∣z
∂
∂y

∣∣ψa
〉)]

. (B9.1.5)

The quantity in the first set of parentheses on the right side of this expression
is, except for multiplicative constants, the x component of the magnetic
transition dipole:

−
2e�π3/2

meλba

1
2

(〈
ψb

∣∣∣∣y
∂
∂z

∣∣∣∣ψa

〉
−
〈
ψb

∣∣∣∣z
∂
∂y

∣∣∣∣ψa

〉)
= −

e�π3/2

meλba

〈
ψb

∣∣r × ∇̃∣∣ψa
〉
x

=
(

−
e�π3/2

meλba

)(
2mec
−i�e

) (
mba

)
x =

2π3/2c
iλba

(
mba

)
x = −i2π3/2νba

(
mba

)
x .

(B9.1.6)

Now look at the quantity in the second set of parentheses on the right
side of Eq. (B9.1.5). By using the relationship between the matrix elements
of the gradient operator and the commutator of the Hamiltonian and dipole
operators (Box 4.10), we can relate this term to the matrix element of the
product yz (Hameka 1965; Schatz and Ratner 1993). This gives

−
2e�π3/2

meλba

1
2

(〈
ψb

∣∣∣∣y
∂
∂z

∣∣∣∣ψa

〉
+
〈
ψb

∣∣∣∣z
∂
∂y

∣∣∣∣ψa

〉)

=
2e�π3/2

meλba

1
2

(
2πmeνba

�

) 〈
ψb

∣∣yz
∣∣ψa

〉

=
2π5/2νba

λba
e
〈
ψb

∣∣yz
∣∣ψa

〉
. (B9.1.7)

Further, the factor e〈ψb|yz|ψa〉 in Eq. (B9.1.7) is recognizable as the yz ele-
ment of the electric quadrupole interaction matrix (Eqs. (4.5), (B4.2.4)).

A similar analysis for radiation propagating along the x- or z-axis in-
stead of the y-axis, or polarized along y or x instead of z, gives corresponding
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results with the y or z component of mba replacing the x component in
Eq. (B9.1.6), and/or with different components of the quadrupole matrix
replacing the yz element in Eq. (B9.1.7) (Hameka 1965; Schatz and Ratner
1993). By including the second-order term in the dependence of the vector
potential V on position, we thus obtain a transition matrix element that com-
monly is ascribed to a magnetic transition dipole (Eq. (B9.1.6)), along with
a matrix element representing the quadrupolar distribution of the wavefunc-
tion (Eq. (B9.1.7)). Including the third-order term in the distance dependence
would add a matrix element for octupolar interactions. Since the magnetic-
dipole and electric-quadrupole matrix elements both arise from the same
term in the distance dependence, they should have comparable magnitudes
and generally should be much smaller than electric-dipole matrix elements.

As pointed out above, the quantum theory of absorption differs from
the semiclassical theory in that it does not distinguish explicitly between
the electric and magnetic fields of electromagnetic radiation. Although the
vector potential was obtained originally as a solution to Maxwell’s equations,
which generalize a large body of experimental observations on electric and
magnetic effects, the distinction between electric and magnetic interactions
no longer seems as necessary as it did in classical physics.

9.2
The Origin of Circular Dichroism

The difference between the dipole strengths for left- and right-circularly polarized
light is characterized experimentally by the rotational strengthR of an absorption
band:

R ≈ 3000 ln(10)hc
32π3NA

(
n
f 2

)∫
Δε(ν)

ν
dν (9.9a)

≈ 0.248
(

n
f 2

)∫
Δε(ν)

ν
dν
(
DμB

)
/
(
M−1cm−1) , (9.9b)

where NA is Avogadro’s number, Δε is the difference between the molar extinction
coefficients for left- and right-circularly polarized light (εl − εr) in units of per
molar per centimeter, ν is the frequency, n is the refractive index, and f is the
local-field correction. Rotational strengths commonly are expressed in units of
debye·Bohr magnetons (9.274 × 10−39 esu2 cm2 or 9.274 × 10−39 erg cm3). Unlike
the dipole strength,R can be either positive or negative.

For historical reasons, circular dichroism often is described in terms of the molar
ellipticity, [θ]M, in the arcane units of 100 degrees per molar per centimeter·(degrees
centimeters squared per decimole). The angular units reflect the fact that plane-
polarized light passing through an optically active sample emerges with elliptical
polarization (Box 9.2, Fig. 9.5). Ellipticity is defined as the arctangent of the ratio
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Fig. 9.5. A linearly polarized beam of light passing through an optically active material
becomes elliptically polarized. As in Figs. 3.9 and 3.10, the straight arrows represent the
electric fields of light propagating away from the observer; the numbers indicate equal
increasing intervals of time. a The electric field of linearly polarized light (double-headed
solid arrow) can be viewed as the resultant of equal fields from left-circularly polarized light
(dotted arrows) and right-circularly polarized light (dashed arrows). The circles indicate
the bounds of the rotating fields and the curved arrows indicate the directions of rotation.
b After passage through an optically active material, light with one of the two circular
polarizations (here, the right-circular polarization) is attenuated relative to that with the
other. The resultant of the two fields now sweeps out an ellipse. c The ellipticity (θ) is defined
as the arctangent of the ratio of the minor to the major half-axes of the ellipse. This figure
greatly exaggerates the minor axis of the ellipse relative to the major axis. It neglects rotation
of the ellipse (optical rotation) caused by the difference between the refractive indices for
left- and right-circularly polarized light

dmin/dmax, where dmin and dmax are the short and long axes of the ellipse. The
relationship between [θ]M and εl − εr is

[θ]M =
100 ln(10)180◦Δε

4π
= 3298Δε . (9.10)

Early circular dichroism spectrometers actually measured ellipticity, but most
modern instruments measure Δεmore directly and sensitively by switching a light
beam rapidly between right- and left-circular polarization (Chap. 1). In studies of
proteins or polynucleotides, the molar ellipticity usually is divided by the number
of amino acid residues or nucleotide bases in the macromolecule to obtain the
mean residue ellipticity.

Circular dichroism is a very small effect, typically amounting to a difference of
only about 1 part in 103 or 104 between the extinction coefficients for light with
left- or right-circular polarization. But in spite of its small magnitude, circular
dichroism proves to be a very sensitive probe of molecular structure.

Rosenfeld (1928) showed that the rotational strength of a transition depends on
the dot product of the magnetic transtion dipole mba and the electric transition
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dipole μba:

Rba = −Im
(〈
Ψb

∣∣m̃
∣∣Ψa

〉 · 〈Ψb
∣∣̃μ
∣∣Ψa

〉)
= −Im

(
mba · μba

)
, (9.11)

where, as before, Im(...) means the imaginary part of the quantity in parentheses.
Because mba · μba is imaginary,Rba is real.

Before we consider the derivation of Eq. (9.11), let us look at what the equation
says: the rotational strength depends on the extent to which the magnetic and
electric transition dipoles cooperate or oppose each other. More precisely,Rba can
be nonzero only if mba and μba have components that are parallel or antiparallel.
This immediately implies that planar molecules cannot show circular dichroism. If
a molecule is planar, μba must lie in this plane, but mba will be normal to the plane
(Figs. 9.1, 9.2). The electric and magnetic transition transition dipoles hence will
be perpendicular to each other. In a helical molecule, on the other hand, mba and
μba both could have components along the axis of the helix. Such a molecule can
have a nonzero rotational strength, and we might expect that the sign ofRba will
depend on whether the helix has a left- or right-handed twist.

More generally, Eq. (9.11) implies that an isotropic solution of an absorbing
molecule can exhibit circular dichroism only if the molecule is chiral, which means
that it is distinguishable from its mirror image (enantiomer). If a molecule is
transformed into its mirror image, μba changes sign but mba does not, so Rba

becomes −Rba. [Remember that mba depends on a sum of cross products of the
position vector (r) with matrix elements of the gradient operator for each pair of
atoms (∇st); converting a molecule to its mirror image changes the sign of both r
and ∇st, leaving the sign of the cross product the same.] If the original molecule
and the mirror image are indistinguishable,Rba must be equal to −Rba, which can
be true only if Rba is zero. In particular, chirality requires that the molecule not
have a plane of symmetry or a center of inversion, because a molecule with either
of these symmetry elements can be superimposed on its mirror image. Modern
quantum chemical methods have made it possible to use comparisons of calculated
and measured circular dichroism to determine the absolute stereochemistry of
moderately sized organic molecules (Hansen and Bak 1999; Berova et al. 2000;
Lightner and Gurst 2000; Autschbach et al. 2002; Diedrich and Grimme 2003).

The principle that only chiral molecules can be optically active does not nec-
essarily hold in anisotropic systems. Molecules that would be indistinguishable in
solution can be distinguished by their fixed orientations in some crystal forms.
A crystal of an achiral material thus can display optical activity when it is illumi-
nated along a particular crystallographic axis. Such optical activity was first seen
in crystalline AgGaS2 and CdGa2S4 (Hobden 1967, 1968), and has been demon-
strated recently in other achiral materials, including pentaerythritol, C(CH2OH)4

(Claborn 2006). However, it is difficult to measure in the presence of the strong
linear dichroism that is typical of crystals.

Equation (9.11) also informs us that a molecule can have circular dichroism
only if 〈Ψb |̃μ|Ψa〉 is nonzero. Further, the circular dichroism spectrum of a sin-
gle molecule will have approximately the same shape as the absorption spec-
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trum, though a much smaller absolute amplitude. Circular dichroism spectra
differ in this regard from optical rotatory dispersion spectra, which reflect differ-
ences between the indices of refraction for right- and left-circularly polarized light
(Box 9.2).

Box 9.2 Ellipticity and optical rotation

As we discussed in Chap. 3, the electric and magnetic fields of linearly po-
larized light can be viewed as superpositions of fields from right- and left-
circularly polarized light (Figs. 3.9, 3.10, 9.5a). Consider a beam of linearly
polarized light after it has passed through 1 cm of a 1 M solution of an op-
tically active material. If the molar absorption coefficient for left-circular
polarization exceeds that for right-circular polarization by Δε, the ratio of
the intensities of the transmitted light with left- and right-circular polar-
ization will be Il/Ir = exp[− ln(10)Δε]. Since the electric field amplitude is
proportional to the square root of the intensity, the ratio of the fields will be

∣∣El
∣∣/
∣∣Er

∣∣ = exp[− ln(10)Δε/2] . (B9.2.1)

The resultant field will oscillate in amplitude from |Emax| = |Er| + |El| when
the two fields are aligned in parallel (the times labeled 0 and 4 in Fig. 9.5b)
to |Emin| = |Er| − |El| when they are antiparallel (times 2 and 6). The minor
and major half-axes of the ellipse swept out by the resultant field (Fig. 9.5b)
are |Emin| and |Emax|, which have the ratio

dmin

dmax
=

1 − exp[− ln(10)Δε/2]
1 + exp[− ln(10)Δε/2]

≈ ln(10)Δε/2
2

= ln(10)Δε/4 (B9.2.2)

when Δε � 1. Equation (9.10) is obtained by making the approximation
arctan(φ) ≈ φ, which holds when φ � 1, multiplying by 180o/π to convert
from radians to degrees, and multiplying by 100 to give the conventional
units.

Optically active materials also have different indices of refraction for right-
and left-circularly polarized light. As a result, the ellipse shown in Fig. 9.5b
and c will be rotated slightly relative to the orientation of the original lin-
early polarized beam. This is the phenomenon of optical rotation, and its
dependence on wavelength is optical rotatory dispersion (ORD). Circular
dichroism and optical rotatory dispersion spectra are related by general
expressions called the Kramers–Kronig transforms (Moffitt and Moscowitz
1959; Moscowitz 1962). The contribution of a particular absorption band
to the optical rotatory dispersion of a sample has opposite signs on either
side of the band and extends to wavelengths far from the band. We will not
discuss optical rotatory dispersion in further detail because it provides little
additional information or experimental advantage and because overlapping
contributions from distant absorption bands complicate its interpretation.
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As in previous chapters, the wavefunction for the initial state is written on
the right in the matrix elements in Eq. (9.11), and the wavefunction for the final
state on the left. For the electric dipole operator the order is immaterial because
〈Ψb |̃μ|Ψa〉 = 〈Ψa |̃μ|Ψb〉, but this is not the case for the magnetic dipole operator.
Here, interchanging the orbitals changes the sign of the integral. Thus, because
〈Ψb|m̃|Ψa〉 = −〈Ψa|m̃|Ψb〉, the Rosenfeld equation (Eq. (9.11)) also can be writ-
ten

Rba = Im
(〈
Ψa

∣
∣m̃

∣
∣Ψb

〉 · 〈Ψb
∣
∣̃μ
∣
∣Ψa

〉)
= Im

(
mab · μba

)
. (9.12)

To derive the Rosenfeld equation, we must consider the linked time dependence
of the electric and magnetic fields of circularly polarized light. For light propagating
along the z-axis, the electric field can be written

E±(t) = 2Ic[ cos(2πνt)̂x ± sin(2πνt)̂y] (9.13a)

= Ic
{
[ exp(2πiνt) + exp(−2πiνt)]̂x ∓ i[ exp(2πiνt) − exp(−2πiνt)]̂y

}
,

(9.13b)

where Ic is a scalar magnitude that depends on the light intensity and the local-field
correction, and x̂ and ŷ are unit vectors in the x and y directions. E+ describes left-
circular polarization; E− describes right-circular polarization (Fig. 3.9). Similarly,

B±(t) = 2Bc[ − cos(2πνt)̂y ± sin(2πνt)̂x] (9.14a)

= Bc
{

− [ exp(2πiνt) + exp(−2πiνt)]̂y ∓ i[ exp(2πiνt) − exp(−2πiνt)]̂x
}

,

(9.14b)

where Bc is a scalar magnitude of the magnetic field. The electric and magnetic
fields are perpendicular to each other, and rotate together around the z-axis at
frequency ν.

Now consider a molecule with electronic states a and b. If the molecule is in state
a at zero time [Ca(0) = 1 and Cb(0) = 0], illumination with circularly polarized
light will cause Cb to grow with time according to Eq. (2.58), with H̃′ given by
Eq. (9.1) and E(t) and B(t) given by Eqs. (9.13) and (9.14). By proceeding just as
we did to derive Eq. (4.7), we can obtain an expression for Cb(τ) that has separate
terms for Eb > Ea (absorption) and Eb < Ea (stimulated emission). The result for
absorption over time interval τ is as follows:

C±
b (τ) =

(
exp [i

(
Eb − Ea − hν

)
τ/�]

Eb − Ea − hν

)(
Icμx

bâx ± iIcμ
y
ba ŷ − Bcmy

ba ŷ ± iBcmx
bâx

)
.

(9.15)

Here μx
ba and μy

ba are the x and y components of μba, and mx
ba and my

ba are the x
and y components of mba. We now need to form the complex conjugate of C±

b (τ),
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remembering that the complex conjugate of mba is −mba, and then integrate the
product C±∗

b (τC±
b (τ) over a range of frequencies as in Eq. (4.8) (Box 4.4). This gives

∞∫

0

C±∗
b (τ)C±

b (τ)ρν(ν)dν

=
[
ρν(ν)τ/�2] (Icμx

bâx ∓ iIcμ
y
ba ŷ + Bcmy

ba ŷ ± iBcμx
bâx

)

×
(
Icμx

bâx ± iIcμ
y
bây − Bcmy

bây ± iBcμx
bâx

)

=
[
ρν(ν)τ/�2]

[
I2

c

(∣∣μx
ba

∣∣2 +
∣∣μy

ba

∣∣2) + B2
c

(∣∣mx
ba

∣∣2

+
∣∣my

ba

∣∣2) ∓ 2IcBcIm
(
μx

bamx
ba + μy

bamy
ba

)]
, (9.16)

which, upon averaging over all orientations of the molecular axes, becomes

∞∫

0

C±∗
b (τ)C±

b (τ)ρν(ν)dν

=
[
2ρν(ν)τ/3�2]

[
I2

c

∣∣μba
∣∣2 + B2

c

∣∣mba
∣∣2 ∓ 2IcBcIm

(
μba · mba

)]
. (9.17)

The terms containing |μba|2 and |mba|2 in Eq. (9.17) represent the electric and
magnetic dipole strengths. These terms have positive signs whether the light is
left- or right-circularly polarized. The term containing the dot product μba · mba,
however, enters Eq. (9.17) with a positive sign for right-circular polarization but
with a negative sign for left-circular polarization. The difference between the rates
of absorption of left- and right-circularly polarized light is therefore proportional
to −[8ρν(ν)τ/3�2]IcBcIm(μba · mba). Evaluating the factors ρν(ν), Ic, and Bc just as
we did to obtain Eq. (4.16) gives Eq. (9.9) and the Rosenfeld equation (Eq. (9.11)).

9.3
Circular Dichroism of Dimers and Higher Oligomers

Dimers and larger oligomers often exhibit relatively strong circular dichroism
even when the individual molecules do not (Kirkwood 1937; Moffitt 1956; Tinoco
1962; Schellman 1975; Charney 1979; Fasman 1996; Berova et al. 2000). To see how
this circular dichroism arises, let us describe the excited state of an oligomer by
a linear combination of the excited states of the individual molecules as in Eq. (8.17)
and (8.19):

ΨB =
∑

n

∑

b

CB
b(n)

1ψba(n) (9.18)
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and

μBA =
∑

n

∑

b

CB
b(n)μba(n) . (9.19)

The magnetic transition dipole of the oligomer’s absorption band takes the same
form:

mBA =
∑

n

∑

b

CB
b(n)mba(n) . (9.20)

μba(n) and mba(n) are the electric and magnetic transition dipoles for exciting
subunit n of the oligomer from its ground state (a) to excited state b. The Rosenfeld
equation (Eq. (9.11)) then gives the rotational strengths of the oligomer’s exciton
bands:

RBA = − Im
(
mBA · μBA

)
. (9.21)

Following the procedure we used in Eqs. (9.5)–(9.7), we can evaluate the magnetic
transition dipoles of the subunits by breaking the position vector for electron i in
subunit n(ri(n)) into two parts:

ri(n) = Rn + r′
i . (9.22)

Here Rn is a vector from the origin of the coordinate system to the center of
subunit n, and r′

i is a vector from the center of this subunit to the position of the
electron (Fig. 9.6). With this decomposition of ri(n), mba(n) becomes the sum of two
terms:

mba(n) = (e/2mc)
〈
ψb(n)

∣∣ ri(n) × p̃
∣∣ψa(n)

〉
(9.23a)

= (e/2mc)
〈
ψb(n)

∣∣Rn × p̃
∣∣ψa(n)

〉
+ (e/2mc)

〈
ψb(n)

∣∣ r′
i × p̃

∣∣ψa(n)
〉

(9.23b)

= (e/2mc)Rn ×
〈
ψb(n)

∣∣ p̃
∣∣ψa(n)

〉
+ m′

ba(n) . (9.23c)

From Eqs. (9.20) and (9.23c), the oligomer’s magnetic transtion dipole is

mBA =
∑

n

∑

b

CB
b(n)

[
m′

ba(n) + (e/2mc)Rn ×
〈
ψb(n)

∣∣ p̃
∣∣ψa(n)

〉]
. (9.24)

The term m′
ba(n) in this expression is an intrinsic property of subunit n and

is independent of where this molecule is located in the oligomer. The term
(e/2mc)Rn ×〈ψb(n) |̃p|ψa(n)〉 depends on the position and orientation of monomer n
in the oligomer.

The integral 〈ψb(n) |̃p|ψa(n)〉 in Eq. (9.24) can be evaluated directly from the
molecular orbitals ψb(n) and ψa(n) if these are written as linear combinations of
atomic orbitals (Box 4.11, Eqs. (9.5)–(9.7)). Alternatively, it can be obtained from
the electric transition dipole by using the expression

〈
ψb(n)

∣∣ p̃
∣∣ψa(n)

〉
=
(
−2πimc/eλba(n)

) 〈
ψb(n)

∣∣ μ̃
∣∣ψa(n)

〉
, (9.25)
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Fig. 9.6. The position vector ri(n) for electron i in subunit n of an oligomer is the sum of
a vector from the origin of the coordinate system to the center of the subunit (Rn) and
a vector from the subunit’s center to the location of electron i (r′

i)

where λba(n) is the wavelength of the monomer’s absorption band. This expression
is useful if the orbitals are not known accurately, because the magnitude of the
electric transition dipole can be obtained experimentally by measuring the dipole
strength. Equation (9.25) follows directly from the relationship

〈
ψb

∣∣ ∇̃ ∣∣ψa
〉

= −
[(

Eb − Ea
)

m/�2e
] 〈
ψb

∣∣ μ̃
∣∣ψa

〉
, (9.26)

which we discussed in Chap. 4 (Eq. (4.27, Box 4.10).
Inserting Eq. (9.25) in Eq. (9.24) gives

mBA =
∑

n

∑

b

CB
b(n)

[
m′

ba(n) +
(
−iπ/λba(n)

)
Rn × μba(n)

]
. (9.27)

For a dimer of identical molecules, each with one excited state, Eqs. (9.18), (9.19),
and (9.27) yield the following results for the two exciton bands:

μBA± = 2−1/2 (μba(1) ± μba(2)
)

, (9.28)

mBA = 2−1/2 [m′
ba(1) ± m′

ba(2) −
(
iπ/λba

) (
R1 × μba(1) ± R2 × μba(2)

)]
, (9.29)

and

RBA± = − Im
(
mBA± · μBA±

)

=(−1/2) Im
(
m′

ba(1) · μba(1) + m′
ba(2) · μba(2)

)

± (−1/2) Im
(
m′

ba(1) · μba(2) + m′
ba(2) · μba(1)

)

±
(
π/2λba

) (
R2 − R1

) · (μba(2) × μba(1)
)

. (9.30)
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Here the ± signs refer to symmetric and antisymmetric combinations of the excited
states of the two monomers, as in Eqs. (8.11) and (8.16): the positive signs are for
ΨB+, and the negative signs for ΨB−. In deriving Eq. (9.30) we have used the facts
that interchanging the order of any two vectors in a triple product c · a × b changes
the sign of the product and that the product is zero if any two of the vectors are
parallel (Appendix 1).

Equation (9.30) reveals that there are three contributions to a dimer’s rotational
strength,Rmon,Re-m, andRex:

Rmon ≡ (−1/2) Im
(
m′

ba(1) · μba(1) + m′
ba(2) · μba(2)

)
, (9.31a)

Re-m ≡ ±(−1/2) Im
(
m′

ba(1) · μba(2) + m′
ba(2) · μba(1)

)
, (9.31b)

Rex ≡ ±
(
π/2λba

) (
R2 − R1

) · (μba(2) × μba(1)
)

. (9.31c)

Rmon is simply the sum of the intrinsic rotational strengths of the individual
molecules, with the contribution of each subunit weighted by the square of the
corresponding coefficient in ΨB±. This term, sometimes called the “one-electron”
contribution, is independent of how the two molecules are arranged with respect
to each other in the dimer, assuming that the intermolecular interactions do not
affect the magnetic and electronic transition dipoles of the individual molecules.
However, it also can include perturbations of μba or m′

ba by the electrostatic envi-
ronment in the dimer.

The second term,Re-m, reflects coupling between the electric transition dipole
of one molecule and the magnetic transition dipole of the other molecule. This is
called electric-magnetic coupling.

Finally,Rex, the exciton or coupled-oscillator term, depends on the two electric
transition dipoles and on the geometry of the dimer. We can write this term more
compactly as

Rex = ±
(
π/2λba

)
R21 · μba(2) × μba(1) (9.32a)

= ±
(
π/2λba

) |R21| Dba sin θ cos φ , (9.32b)

where R21 is the vector from the center of molecule 1 to the center of molecule 2, Dba

is the dipole strength of the monomeric absorption band, θ is the angle between
μba(1) and μba(2), and φ is the angle between R21 and the cross product of μba(1)

and μba(2). If |R21| and λba are given in the same units (e. g., angstroms) and the
transition dipoles are in debyes,

Rex ≈ ±
(
171/λba

)
R21 · μba(2) × μba(1) (DμB) D−2 . (9.33)

For electronically allowed transitions, Rex often dominates over Rmon and Re-m

because the dipole strength Dba usually is much larger than either Im(m′
ba(1) ·

μba(1) + m′
ba(2) · μba(2)) or Im(m′

ba(1) · μba(2) + m′
ba(2) · μba(1)). Rmon will be zero if

the individual molecules are not optically active, whereas Rex does not require
that either molecule exhibit optical activity. But as Eq. (9.32b) indicates, Rex is
extremely sensitive to the geometry of the dimer. It will be zero if any two of the
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three vectors (μba(1), μba(2), and R21) are parallel or if all three vectors lie in the
same plane.

Equations (9.30) and (9.32) show that the contributions of Rex to the dimer’s
two exciton bands are equal in magnitude but opposite in sign (Fig. 9.7, panel B).
This is in contrast to the dipole strengths of the two exciton bands, which are
always positive but can differ substantially in magnitude (Eq. (7.16c,d), Figs. 8.4,
9.7, panel A).
Re-m, like Rex, contributes rotational strengths with equal magnitudes and

opposite signs to the two exciton bands, whereas the contributions from Rmon

have the same sign. A circular dichroism spectrum in which the positive and
negative rotational strengths of corresponding bands balance is called conserva-
tive. A nonconservative circular dichroism spectrum can reflect either significant
contributions from Rmon or mixing with other excited states at higher or lower
energies. If the total rotational strength is integrated from ν = 0 to ∞, so that
excitations from the ground state to the complete set of excited states are included,
the integral must be zero (Condon 1937). We saw an analogous sum rule for ab-
sorption spectra in Chap. 8: the sum of the dipole strengths for excitation of one
electron from the ground state to all possible excited states of a dimer is the same
as the sum of the dipole strengths for the two monomers.

Fig. 9.7.Rex contributes opposite rota-
tional strengths to the exciton bands of
a dimer. The dotted lines in A show the
exciton absorption bands of a dimer; the
solid curve is the total absorption spec-
trum. In B, the dotted lines are the circu-
lar dichroism (CD) of the two bands and
the solid curve is the total CD spectrum.
The spectra are for a homodimer with
Dba(1) = Dba(2) = 10 D2, |R21| = 7 Å,
θ = 71◦, α = β = 90◦ (Fig. 7.2), and
λba = 4,444 Å. This geometry makes
H21 positive (H21 = 50 cm−1 in the
point-dipole approximation) and gives
the ΨB+ exciton band the higher transi-
tion energy, the larger dipole strength,
and a positive rotational strength. For
purposes of illustration, the exciton
bands were assigned Gaussian shapes
with arbitrary widths
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Fig. 9.8. Calculated exciton CD spectra of homodimers with |R21| = 7, 8, 9, or 10 Å (A), and
10, 15, 20, 25, or 30 Å (B). Except for the variable separation |R21|, the dimer geometries
are as in Fig. 9.7; the dipole strengths are 20 D2. The bands are given Gaussian shapes with
arbitrary widths. For |R21| = 7, 10, and 30 Å, H21 (in the point-dipole approximation) is 100,
34, and 1.3 cm−1, respectively, whileRex = 5.0, 7.1, and 21.4 DμB

According to Eqs. (9.32) and (9.33), |Rex| increases linearly and indefinitely
with |R21|. This seems counter to intuition. How can the rotational strength arising
from the interactions of two molecules be large if the molecules are far apart? The
observed strengths of the circular dichroism bands, however, do not behave this
way. They go to zero at large values of |R21| because the two bands have opposite
signs and the separation between the bands (2H21) decreases as |R21|−3 (Eq. (7.17),
Fig. 7.5). When the molecules are far apart, the opposite rotational strengths of
the two overlapping bands cancel. Figure 9.8 illustrates this point. In the example
shown, the net circular dichroism increases as |R21| is raised from 7 to 10 Å (Fig. 9.8,
panel A), but then decreases at larger distances (Fig. 9.8, panel B).

Examination of Fig. 9.8, panel B shows that when the two exciton bands overlap
the positions of the positive and negative circular dichroism peaks are relatively
insensitive to |R21|. This points out a general problem in interpreting experimental
circular dichroism spectra: complexes with different structures can give simi-
lar spectra. Circular dichroism spectra also can be complicated by mixing with
higher excited states such as states in which more than one of the monomeric
units are excited. For these reasons and because of the uncertainties in calcu-
lations of exciton-interaction matrix elements, attempts to deduce the structure
of an oligomer primarily on the basis of a circular dichroism spectrum must
be viewed critically. However, measurements of both the circular dichroism and
the absorption spectra in the regions of several absorption bands may provide
enough information to rule out some of the possible structures with good confi-
dence.
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9.4
Circular Dichroism of Proteins and Nucleic Acids

The circular dichroism of proteins between 190 and 230 nm arises primarily from
coupled transitions of multiple peptide groups. Because the coupling depends
strongly on the relative positions and orientations of these groups, circular dichro-
ism provides a sensitive probe of protein secondary structure (Greenfield and
Fasman 1969; Saxena and Wetlaufer 1971; Johnson 1992; Ramsay and Eftink 1994;
Woody 1995; Fasman 1996; Plaxco and Dobson 1996; Berova et al. 2000). A com-
mon application is to measure the extent or rate of protein folding or unfolding.
For examples, see Ramsay and Eftink (1994), Woody (1995), Plaxco and Dobson
(1996), and Pan and Sosnick (1997).

Circular dichroism spectra representative of α-helical, β-sheet, and unordered
(“random coil”) conformations have been obtained by studying polypeptides that
adopt different structures depending on the pH, ionic strength, and tempera-
ture (Greenfield and Fasman 1969), and also by decomposing circular dichroism
spectra of sets of proteins with known crystal structures (Saxena and Wetlaufer
1971). Figure 9.9, panel B illustrates the first of these approaches; Fig. 9.9, panel C,
the second. Right-handed α-helical elements in proteins typically have a circular
dichroism band with positive rotational strength at 190 nm and bands with neg-
ative rotational strengths near 205 and 222 nm, whereas β-sheets have a positive
band near 195 nm and a single negative band at 215 nm. Random coils have a very
different spectrum, with negative circular dichroism to the blue of 210 nm and
positive circular dichroism to the red. Polyproline-I (a right-handed helix with
cis peptide bonds that is stable only in relatively nonpolar solvents) gives a posi-
tive circular dichroism peak at 215 nm and a weaker negative peak near 200 nm;
polyproline-II (a left-handed helix with trans peptide bonds that is the more stable
structure in water) gives a broader negative band near 205 nm (Bovey and Hood
1967; Woody 1992).

Except for peptides with many aromatic amino acids, the circular dichroism
spectra of α-helical polypeptides comprising more than about ten amino acid
residues are relatively independent of the exact amino acid composition (Woody
1995). A minimum of two to three turns of helix (7–11 residues) appears to be suffi-
cient to generate a typical spectrum (Manning et al. 1988). The circular dichroism
of β-sheet structures is more variable, probably mainly as a result of different
amounts of twisting (Manning et al. 1988). β-turns also have highly variable spec-
tra.

The contributions that various secondary structural elements make to a protein
of unknown structure can be estimated by fitting the observed circular dichroism
spectrum with a sum of basis spectra like those shown in Fig. 9.9, panels B and C
(Greenfield and Fasman 1969; Saxena and Wetlaufer 1971; Provencher and Glock-
ner 1981; van Stokkum et al. 1990; Johnson 1992; Andrade et al. 1993; Sreerama
et al. 1999). A Web server providing a variety of algorithms for this analysis is
available (Lobley et al. 2002; Whitmore and Wallace 2004).
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Fig. 9.9. A CD spectra of myoglobin (filled symbols) and ribonuclease A (open symbols).
In crystal structures, myoglobin is composed of approximately 71% α-helix, no β-sheet,
and 29% other secondary structures such as turns. Ribonuclease A has approximately
12% α-helix, 36% β-sheet, and 52% other secondary structures. B CD spectra of polyly-
sine under conditions that cause the polypeptide to adopt α-helix (filled circles), β-sheet
(open circles), or random coil (triangles) structures . The α-helix was obtained at pH 11.1,
22 ◦C; the β-sheet, at the same pH but after heating to 52 ◦C and recooling to 22 ◦C; and
the random coil, at pH 5.7. (At low pH, electrostatic interactions of the positively charged
lysine side chains prevent the polypeptide from packing into a compact structure.) C CD
basis spectra for α-helix (filled circles), β-sheet (open circles) and other (triangles) sec-
ondary structures, obtained by fitting the observed spectra of myglobin, ribonuclease A,
and lysozyme. (Lysozyme contains intermediate amounts of α-helix and β-sheet compared
with myoglobin and ribonuclease A.) (A Adapted from Quadrifoglio and Urry 1968; Saxena
and Wetlaufer 1971. B Adapted from Greenfield and Fasman 1969. C Adapted from Saxena
and Wetlaufer 1971)

Attempts to predict the circular dichroism spectra of proteins from first princi-
ples are complicated by the fact that each peptide group has five, poorly resolved
π–π∗ or n–π∗ transitions between 125 and 210 nm (Table 9.1). The strongest



330 9 Circular Dichroism

Table 9.1. Amide transitions in the near UV

Assignment λ (nm) |μ| (D) |m| (μB)

n–π∗ 210 0 0.6
π–π∗ 190 3.1 0
n–π∗ 165 1.4 0.2
n–σ∗ 150 1.8 0.8
π–π∗ 125 1.7 0

Adapted from Woody and Tinoco (1967)

π–π∗ transition occurs near 190 nm and has a dipole strength of about 9 D2. The
lowest-energy transition is the n–π∗ transition commencing from a nonbonding
2p oxygen orbital. As discussed above, this transition has essentially no electric
dipole strength, but is weakly allowed by its magnetic transition dipole; it can gain
dipole strength by exciton interactions with the π–π∗ transitions of neighboring
residues. It is seen in UV absorption spectra of α-helical proteins as a very weak
shoulder in the region of 230 nm (Gratzer et al. 1961; Rosenheck and Doty 1961).

In simple models of an α-helix, the π–π∗ transitions of the peptide groups
are predicted to generate three main exciton bands: a band with negative circular
dichroism in the region of 205 nm, and two bands with positive circular dichroism
at shorter wavelengths (Moffitt 1956; Tinoco et al. 1963; Woody and Tinoco 1967;
Woody 1968; Sreerama and Woody 2004). The 205-nm band should be polarized
parallel to the helix axis, while both higher-energy bands are perpendicular to
this axis. Mixing with higher-energy π–π∗ and n–π∗ transitions is expected to
split one of the perpendicularly polarized bands into a complex band with positive
circular dichroism on the red side and negative circular dichroism on the blue
side. The low-energy n–π∗ transitions of the peptide groups are predicted to gain
dipole strength by exciton interactions with the π–π∗ transitions, giving rise to an
absorption band with negative circular dichroism near 220 nm. Figure 9.10, panel A
shows the calculated contributions of the individual bands to the circular dichroism
spectrum of α-helical poly(L-alanine), and Fig. 9.10, panel B shows a comparison
of the total theoretical spectrum with the measured circular dichroism spectrum
(Woody 1968). The agreement of the predicted and observed spectra is remarkably
good.

Inβ-sheets, exciton interactions of theπ–π∗ transitions are predicted to generate
a band with positive rotational strength in the region of 200 nm, along with a band
with negative rotational strength at shorter wavelengths. The n–π∗ transitions
again are expected to gain dipole strength by mixing with the π–π∗ transitions,
giving rise to a band with negative circular dichroism near 215 nm. However, theo-
retical calculations of the spectra of proteins that are rich in β-sheets generally are
less satisfactory than those for proteins that are predominantly α-helical (Tinoco
et al. 1963; Woody and Tinoco 1967; Woody 1968; Manning et al. 1988; Hirst 1998;
Sreerama and Woody 2004), possibly because the calculated spectrum for aβ-sheet
is very sensitive to twisting of the sheet.
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Fig. 9.10. A Calculated contributions to
the CD spectrum of α-helical poly(L-
alanine) from the lowest-energy n–π∗
transition (a), the π–π∗ transition po-
larized parallel to the helix axis (b), and
theπ–π∗ transitions with perpendicular
polarization (c, d). B The total calcu-
lated spectrum (dashed curve) and the
measured CD spectrum (solid curve).
The widths of the calculated bands were
adjusted to optimize the agreement of
the calculated and measured spectra
(Adapted from Woody 1968)

Fig. 9.11. CD spectra of double-stranded
poly[d(G-C)] in three different helical
forms (Riazance et al. 1985). Dotted
curve, B form (10 mM phosphate);
dashed curve, A form (0.67 mM phos-
phate, 80% trifluoroethanol);
solid curve Z form (10 mM phosphate,
2 M NaClO4). The ordinate scale is the
mean difference between the molar
extinction coefficients for left- and
right-circularly polarized light (εl–εr),
with molarity referring to the concen-
tration of nucleotide base pairs
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Exciton interactions of tryptophan side chains can give rise to pairs of circular
dichroism bands in the region of 220 nm, along with weaker bands in the near UV
(Grishina and Woody 1994; Cochran et al. 2001). The bands around 220 nm stem
from the indole 1Bb transition.

Circular dichroism spectra of DNA and RNA also depend strongly on the molec-
ular structure. As shown in Fig. 9.11, B-form DNA typically has a circular dichroism
band with positive rotational strength near 185 nm and negative bands in the re-
gions of 200 and 250 nm, while Z-form DNA has positive bands at 180 and 260 nm
and negative bands at 195 and 290 nm.

9.5
Magnetic Circular Dichroism

Although only chiral molecules have intrinsic circular dichroism, almost any sub-
stance can be made to exhibit circular dichroism by placing it in a magnetic field.
Magnetic circular dichroism is the difference between the extinction coefficients
measured with left- and right-circularly polarized light when a magnetic field is
imposed along the axis of the measuring beam. Magnetic circular dichroism is
a manifestation of the Zeeman effect, which is a shift of transition energy by a mag-
netic field. Like ordinary circular dichroism, magnetic circular dichroism is a very
small effect. However, it has been particularly useful for probing the binding sites
of Fe and other metals in metalloproteins.

The physical origins of magnetic circular dichroism have been discussed in de-
tail by Stephens (1970, 1974). Reviews by Thomson et al. (1993) and Solomon et al.
(1995) describe the methodology and numerous applications to metalloproteins.
Atomic 2s → 2p transitions will illustrate the principle. An imposed magnetic
field changes the relative energies of the three p orbitals because these orbitals
have different angular momenta, and thus different magnetic moments, along the
axis of the field. The magnitude of the orbital angular momentum is given by

|L| =
√

l (l + 1)� , (9.34)

where l is the azimuthal quantum number (Sect. 2.3.4), and the component of the
angular momentum parallel to the field takes the values Lz = −�, 0, or +� for l = 1
and ml (the magnetic quantum number) = −1, 0, or 1, respectively. A magnetic
field B along the z-axis raises the p+ orbital in energy by (−e/2m)|B|� and lowers p−

by the same amount (Fig. 9.12). At a field strength of 1 T, the separation between
p+ and p− is about 0.5 cm−1. The 2s orbital, with l = 0, has no orbital angular
momentum and is unaffected by magnetic fields.

To conserve angular momentum when an electron is excited, the change in
the orbital angular momentum must match the angular momentum contributed
by the photon. (We assume again that no change in electron spin occurs dur-
ing the excitation.) Right-circularly polarized light propagating along the z-axis
has an angular momentum of +� on this axis, whereas left-circularly polarized
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Fig. 9.12. Left: In the absence of a magnetic field (|B| = 0), the three atomic 2p orbitals
are degenerate. Right: A magnetic field along the z-axis (|B| > 0) splits the p orbitals into
different energies but has no effect on s orbitals. To conserve angular momentum, a 2s → 2p−

excitation with light propagating along the z-axis requires right-circularly polarized (c.p.)
light; a 2s → 2p+ excitation requires left-circularly polarized light. The 2s → 2pz excitation
is z-polarized and is forbidden for light propagating in this direction

light has an angular momentum of −�. This means that right-circularly po-
larized light will drive excitations from 2s to 2p− orbitals, while left-circularly
polarized light drives excitations from 2s to 2p+ (Fig. 9.12). In the absence of
a magnetic field the 2s → 2p absorption band has no net circular dichroism be-
cause the transitions to 2p+ and 2p− are degenerate. In the presence of a field,
transitions to 2p+ give a net positive rotational strength on the high-energy side
of the band, whereas transitions to 2p− give a net negative rotational strength
on the low-energy side of the band. The resulting magnetic circular dichro-
ism spectrum (Fig. 9.13) resembles the first derivative of the absorption spec-
trum.

The effects of a magnetic field are somewhat different if the field splits the
ground state rather than the excited state. The ground-state sublevel that moves to
lower energies then is populated preferentially, depending on the temperature. The
unequal populations of the different sublevels give rise to a net magnetic circular
dichroism signal that has the same shape as the overall absorption spectrum,
rather than the derivative shape shown in Fig. 9.13, panel B. The magnitude of the
magnetic circular dichroism increases with decreasing temperature, but levels off
at high fields or very low temperatures when essentially all the systems are in the
lowest sublevel.

Magnetic fields also can modify the mixing of the ground and excited states with
other states at higher or lower energy (Stephens 1970, 1974). However, this effect
probably makes a relatively minor contribution to the magnetic circular dichroism
spectrum in most cases.
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Fig. 9.13. A In the absence of a magnetic field, the 2s → 2p+ and 2s → 2p− transitions
contribute opposite rotational strengths at the same energies (dotted lines), so the net CD
(solid line) is zero. B In the presence of a field, the two transitions occur at slightly different
frequencies (dotted lines), giving a net positive magnetic CD signal on the high-energy side
of the absorption band and a negative signal on the low-energy side (solid line)

Magnetic circular dichroism has been particularly informative in studies of the
energy levels of d electrons in ferrous iron proteins (Thomson et al. 1993; Solomon
et al. 1995). Interactions with the surrounding ligands modify the relative energy
levels of the five d orbitals of the iron in a way that depends sensitively on the
geometry of the complex. In a symmetrical octahedral complex with six ligands,
two of the orbitals (dz2 and dx2−y2 ) are pushed up in energy relative to the other three
(dxz, dyz, and dxy); this is because lobes of the dz2 and dx2−y2 orbitals point directly
at the electronegative ligands, while dxz, dyz, and dxy are oriented at intermediate
angles. The splitting between the two groups is on the order of 10,000 cm−1, and
gives rise to a weak absorption band in the near IR. If one or both of the ligands
on the z-axis move closer to the iron, dz2 , dxz, and dyz shift up in energy, while
dx2−y2 and dxy shift down, modifying the absorption spectrum. Square-pyramidal,
tetrahedral, or other arrangements of the ligands give still different patterns.
Measurements of the magnetic circular dichroism in the IR bands as a function
of temperature and field strength are commonly used to explore the geometry of
metal binding sites and to probe structural changes that occur on interaction with
substrates.
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10.1
Oscillations Between Quantum States of an Isolated System

The time-dependent perturbation theory that we have used to treat resonance
energy transfer and absorption of light assumes that we know that a system is in
a given state (state 1), so the coefficient associated with this state (C1) is 1, while
the coefficient for finding the system in a different state (C2) is zero. The resulting
expression for the rate of transitions to state 2 (Eq. (2.58) or Eq. (7.8)) neglects
the possibility of a return to state 1. It can continue to hold at later times only if
the transition to state 2 is followed by a relaxation that takes the two states out of
resonance. Without such relaxations, the system would oscillate between the two
states as described by the coupled equations

∂C1/∂t = −
(
i/�

) 〈
ψ1

∣∣∣H̃
′∣∣∣ψ2

〉
exp

[
i
(
E1 − E2

)
t/�

]
C2 −

(
i/�

) 〈
ψ1

∣∣∣H̃
′∣∣∣ψ1

〉
C1

(10.1a)

and

∂C2/∂t = −
(
i/�

) 〈
ψ2

∣∣∣H̃
′∣∣∣ψ1

〉
exp

[
i
(
E2 − E1

)
t/�

]
C1 −

(
i/�

) 〈
ψ2

∣∣∣H̃
′∣∣∣ψ2

〉
C2 .

(10.1b)

Equation (10.1) just restates Eq. (2.55) for a two-state system with spatial wave-
functions ψ1 and ψ2 that are mixed by perturbation operator H̃′. E1 and E2 are the
energies of the states in the absence of the perturbation. The factor 〈ψ1|H̃′|ψ1〉 in
Eq. (10.1a) represents any shift in the energy of state 1 caused by the perturbation,
and 〈ψ2|H̃′|ψ2〉 in Eq. (10.1b) is the corresponding shift in the energy of state 2. In
resonance energy transfer, for example, interactions between the two molecules
could shift the excitation energy of the donor molecule, even though the acceptor
remains in its ground state. Such shifts in the excitation energies are analogous to
the effects of varying the solvent, and usually are relatively small.

Equation (10.1) simplifies if 〈ψ1|H̃′|ψ1〉 and 〈ψ2|H̃′|ψ2〉 are zero, because then
the rate of change of C1 depends only on C2 and vice versa. If these matrix elements
are not zero, we can achieve the same simplification by defining adjusted basis-state
energies H11 and H22 that include 〈ψ1|H̃′|ψ1〉 and 〈ψ2|H̃′|ψ2〉,

H11 =
〈
ψ1

∣∣∣H̃1 + H̃
′∣∣∣ψ1

〉
= E1 +

〈
ψ1

∣∣∣H̃
′∣∣∣ψ1

〉
(10.2a)
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and

H22 =
〈
ψ2

∣∣∣H̃2 + H̃
′∣∣∣ψ2

〉
= E2 +

〈
ψ2

∣∣∣H̃
′∣∣∣ψ2

〉
. (10.2b)

The differential equations for C1 and C2 then are

∂C1/∂t = −
(
i/�

)
H12 exp

(
iE12t/�

)
C2 (10.3a)

and

∂C2/∂t = −
(
i/�

)
H21 exp

(
iE21t/�

)
C1 , (10.3b)

where H21 = 〈ψ2|H̃′|ψ1〉 as before and E21 = H22 − H11.
Equation (10.3) can be solved by differentiating each of the expressions again

with respect to time; straightforward substitutions then yield separate differential
equations for C1 and C2 (see, e.g., Atkins 1983). Assuming again that the system is
in state 1 at time zero, so that C1(0) = 1 and C2(0) = 0, the solutions are

C1(t) =
[
cos

(
Ωt/�

)
− i

(
E12/2Ω

)
sin

(
Ωt/�

)]
exp

(
iE21t/2�

)
(10.4a)

and

C2(t) = −i
(
H21/Ω

)
sin

(
Ωt/�

)
exp

(
−iE21t/2�

)
, (10.4b)

with

Ω = (1/2)
[(

E21
)2

+ 4
(
H21

)2
]1/2

. (10.4c)

From Eq. (10.4b), the probability of finding the system in state 2 at time t is

|C2(t)|2 =
(
H21/Ω

)2
sin2 (Ωt/�

)

= (1/2)
(
H21/Ω

)2 [
1 − cos

(
2Ωt/�

)]
. (10.5)

This oscillates with a period of 2π�/2Ω, or h/2Ω, with the mean probability being
(H21/Ω)2/2.

Figure 10.1, panel A shows the predicted oscillations of C1 and C2 when the
adjusted energies of the two basis states are the same (E21 = 0). In this case,
Ω = H21, and Eq. (10.5) simplifies to

|C2(t)|2 = (1/2)
[
1 − cos

(
2H21t/�

)]
, (10.6)

which oscillates between 0 and 1 at a frequency of 2H21/h. A remarkable feature
of this result is that the system is guaranteed to be in state 2 at certain times (e.g.,
at t = h/4H21) no matter how large or small H21 is. This is a consequence of exact
resonance and does not hold for any value of E21 other than 0.
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Fig. 10.1. Oscillations of |C1(t)|2 (solid curves) and |C2(t)|2 (dotted curves), the probabilities
that the excitation is found on molecule 1 or 2, respectively, as functions of time after
excitation of molecule 1. The plots in A were obtained with E21 = 0, which reduces Eq. (10.6)
to Eq. (10.5); those in B were obtained by Eq. (10.6) with E21 = −4|H21|

In the opposite limit, when |E21|2 >> 4|H21|2, we have Ω = E12/2, and Eq. (10.5)
becomes

|C2(t)|2 = 2
(
H21/E21

)2 [
1 − cos

(
E21t/�

)]
. (10.7)

Now the oscillation frequency increases linearly with |E21|, while the amplitude of
the oscillations and the average probability of finding the excitation on molecule 2
both decrease. If |E21| >> |H21|, the system has very little probability of moving to
state 2. Figure 10.1, panel B illustrates the results for the case E12 = −4|H21|.

Oscillations of the type described by Eqs. (10.4) and (10.5) usually occur for, at
most, only a short period on the picosecond or subpicosecond time scale. There
are several reasons for this. First, these expressions pertain to a single system with
sharply defined energies. In most experimental measurements of resonance energy
transfer, we record the average behavior of a very large number of molecules with
a range of energies and various values of H21. The individual donor–acceptor pairs
in such an inhomogeneous ensemble may oscillate as prescribed by Eqs. (10.4) and
(10.5), but at various frequencies. Even if they all begin with precise timing, the os-
cillations soon get out of phase. As a result, the probability of finding the excitation
on molecule 2 undergoes damped oscillations converging on (H21/Ω)2/2, where
the bar denotes the average value for the ensemble. Figure 10.2 illustrates this effect
for ensembles in which E21 and H21 have Gaussian distributions around the values
used in Fig. 10.1. The oscillations of an ensemble are said to be coherent if the
individual microscopic systems that comprise the ensemble oscillate in phase, and
incoherent or stochastic if the phases of the microscopic systems are random.

A second problem is that Eqs. (10.4) and (10.5) apply only to an isolated system.
If the system can transfer energy to or from the surroundings, it will relax toward an
equilibrium in which the relative probabilities of being in various states are given
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Fig. 10.2. Oscillations of |C2(t)|2 as functions of time in an ensemble of donor–acceptor
pairs. The dotted curves show Eq. (10.6) for a single donor–acceptor pair with E21 = 0 (A)
or E21 = −4H21 (B); these are the same as the dotted curves in Fig. 10.1. The solid curves
were obtained by averaging Eq. (10.6) over uncorrelated Gaussian distributions of E21 and
H21. The mean values of H21 and E21 in the distributions (H21 and E21) were the same
as the corresponding values for the dotted curves. Both distributions had full widths at
half-maximum amplitude (FWHM) of 0.2H21 (standard deviation σ = FWHM/(8 ln 2)2 =
0.084H21)

by the Boltzmann equation. Equations (10.4) and (10.5) provide no mechanism for
this relaxation: the system apparently will continue to oscillate forever. In Fig. 10.2,
panel B, for example, the probability of finding the system in state 2 after a long
time is only about 10%, even though this state has the lower energy. We would
expect to find the system mostly in state 2 at equilibrium, unless the temperature
is greater than E12/kB.

As we discussed in Chaps. 4 and 5, relaxations of the product state also will
broaden the distribution of energies of the state. This homogeneous broadening
applies to an ensemble of molecules as well as to an individual molecule or a single
donor–acceptor pair. It will damp the measured oscillations of |C2|2 in a manner
that is qualitatively similar to the damping shown in Fig. 10.2 for an inhomogeneous
distribution of E12. However, we will see in Chap. 11 that the detailed time course
of the damping will be somewhat different.

Förster’s theory of resonance energy transfer depends implicitly on thermal
equilibration to trap the excitation on the acceptor. But the Förster theory is silent
concerning the oscillations predicted by Eqs. (10.4) and (10.5), and it does not ad-
dress how rapidly the system equilibrates with the surroundings; it simply assumes
that equilbration occurs rapidly compared to the rate at which the excitation can
return to the donor.

Clearly, we need a more complete theory that bridges the gap between the
Förster theory and the coherent oscillations described by Eqs. (10.4) and (10.5).
If the oscillations of the individual systems in an ensemble start out in phase, we
would like to understand how this coherence decays, and how this decay affects the
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observed properties of the ensemble. To address such questions, we must deal with
large ensembles of molecules that interact stochastically with their surroundings.
We will develop some basic tools for this in the next three sections.

10.2
The Density Matrix

Consider, again, an individual system with wavefunctionΨ(t) = C1(t)ψ1exp[−i(H11

t/� + ζ1)] + C2(t)ψ2 exp[−i(H22t/� + ζ2)], where ψ1 and ψ2 are spatial wavefunc-
tions for two basis states with energies H11 and H22, and ζn is a phase shift that
depends on when state n is created. Let us combine the time-dependent coefficients
C1 and C2 with the corresponding time-dependent exponential factors by defining
a new set of coefficients c1 and c2:

cn(t) = Cn(t) exp
[
−i
(
Hnnt/� + ζn

)]
. (10.8)

The wavefunction for the system then can be written simply as

Ψ(t) = c1(t)ψ1 + c2(t)ψ2 . (10.9)

In principle, we can find the expectation value of any dynamic property A of the
system by evaluating the expression

〈A(t)〉 =
〈
Ψ(t)

∣∣Ã
∣∣Ψ(t)

〉
=
〈
c1(t)ψ1 + c2(t)ψ2

∣∣Ã
∣∣ c1(t)ψ1 + c2(t)ψ2

〉

= c∗
1(t)c1(t)

〈
ψ1

∣∣Ã
∣∣ψ1

〉
+ c∗

1(t)c2(t)
〈
ψ1

∣∣Ã
∣∣ψ2

〉

+ c∗
2(t)c1(t)

〈
ψ2

∣∣Ã
∣∣ψ1

〉
+ c∗

2(t)c2(t)
〈
ψ2

∣∣Ã
∣∣ψ2

〉

= c∗
1(t)c1(t)A11 + c∗

1(t)c2(t)A12 + c∗
2(t)c1(t)A21 + c∗

2(t)c2(t)A22 , (10.10)

where Ã is the corresponding operator. We used this approach in Box 4.5 to find
the electric dipole of a superposition state. More generally, for any system that can
be described by a linear combination of basis states, the expectation value of A is

〈A(t)〉 =
∑

m

∑

n

c∗
m(t)cn(t)

〈
ψm

∣∣Ã
∣∣ψn

〉
=
∑

m

∑

n

c∗
m(t)cn(t)Amn , (10.11)

where ψm and ψn again represent purely spatial wavefunctions. All the observ-
able time dependence of the system thus resides in the array of products of the
coefficients, c∗

mcn.
Equation (10.11) can be written more succinctly if we define a matrix ρ whose

terms are

ρnm(t) = cn(t)c∗
m(t) . (10.12)

The double sum over n and m in Eq. (10.11) then can be related to the product of
matrices ρ and A. The definition of a matrix product is given in Appendix 2: for W =
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ρA, Wnm =
∑

k ρnkAkm. With this definition and Eqs. (10.11) and (10.12), we have

〈A(t)〉 =
∑

n

∑

m

cn(t)c∗
m(t)Amn =

∑

n

∑

m

ρnm(t)Amn

=
∑

n

(
ρA

)
nn = Tr

(
ρA

)
, (10.13)

where Tr(ρA) means the sum of the diagonal elements of the matrix product ρA
(Appendix 2). ρ is called the density matrix of the system.

The definition of the density matrix given in Eq. (10.12), in which in cn and c∗
m

include the factors exp(−iHnnt/�) and exp(iHmmt/�) along with the coefficients
Cn(t) and C∗

m(t), uses what is called the “Schrödinger representation.” An alter-
native formulation called the “interaction representation” is ρnm = Cn(t)C∗

m(t). In
the interaction representation, the factors exp(−iHnnt/�) and exp(iHmmt/�) must
be introduced separately in order to obtain the complete time dependence of the
system. Both representations are widely used, and the choice is mostly a matter of
personal preference. We will use the Schrödinger representation.

Equation (10.13) is a remarkably general expression. The density matrix ρ
could refer to any system that can be described with a linear combination of basis
wavefunctions. Further, A could represent the matrix of expectation values of the
operator for any dynamic property. The only requirement, but an important one
to note, is that the matrix elements of A and ρ must be expressed in terms of the
same set of basis wavefunctions.

With a slight modification, Eq. (10.13) provides a powerful way to deal with an
ensemble of many systems. The expectation value of observable A for an ensemble is

〈A(t)〉 = Tr
(

ρ(t)A
)

, (10.14)

where ρ(t)A means an average of the product ρA for all the systems in the ensem-
ble at time t. Equation (10.14) follows from Eq. (10.13) because the trace obeys
the distributive law of arithmetic. For more formal justifications see Kubo (1966),
Davidson (1976), Kubo et al. (1985), Lin et al. (1991), and Blum (1996).

We have used the diagonal elements of the density matrix implicitly in previous
chapters to represent the probabilities of finding a system in various basis states
[ρnn = cn(t)c∗

n(t) = Cn(t)C∗
n(t)]. When the density matrix is averaged over the

ensemble, the diagonal elements can be interpreted as the relative populations of
the corresponding states. The time-dependent factors from the basis wavefunctions
[exp(−iHnnt/�)] cancel out in the diagonal elements of ρ because each of the
exponential factors is multiplied by its complex conjugate. The diagonal elements
hence are always real numbers with positive signs, and all their time dependence
comes from the coefficients |Cn(t)|2. The off-diagonal elements, however, can be
complex numbers, either positive or negative in sign. They generally oscillate at
a frequency that increases with the energy difference between states n and m. They
consist of products of the form

ρnm = Cn(t)C∗
m(t) exp

(
−iEnmt/�

)
exp

(
−iζnm

)
, (10.15)



10.2 The Density Matrix 341

with Enm = En − Em, ζnm = ζn − ζm, and n = m. The off-diagonal elements also
depend on any interaction matrix elements that couple the two states. We will see
that when the density matrix is averaged over the ensemble, the magnitudes of the
off-diagonal elements provide information on the coherence of the ensemble.

As an illustration, consider an ensemble of N molecules, each of which has
a ground state (state 1) and an excited electronic state (2). Suppose that all the
molecules initially are in state 1; any given molecule ( j) thus has coefficients
C1( j) = 1 and C2( j) = 0. If we now expose the ensemble to a short pulse of light,
molecule k might be promoted to state 2 so that C2(k) = 1 and C1(k) = 0, while
molecule j remains in state 1. The ensemble-average of ρ22 at time t after the
excitation pulse then is

ρ22(t) = N−1
N∑

k=1

c2(k)(t)c∗
2(k)(t) = |c2(t)|2 =

∣∣C2(t)
∣∣2 , (10.16)

which is just the average probability of finding a molecule in state 2 at time t. The
ensemble-average of ρ12 at time t is, similarly,

ρ12(t) = N−2
N∑

j=1

N∑

k=1

C1( j)(t)C∗
2(k)(t) exp

(
−iE1( j)2(k)t/�

)
, (10.17)

where E1( j)2(k) is the difference between the energies of molecules j and k when
molecule j is in state 1 and k is in state 2 (E1( j) − E2(k)).

If the energy difference between states 1 and 2 is the same for all the molecules
(E1( j)2(k) = E12), Eq. (10.17) simplifies to

ρ12(t) = C1( j)(t)C∗
2(k)(t) exp

(
−iE12t/�

)
. (10.18)

The factor exp(−iE12t/�) in this expression contains real and imaginary parts, both
of which oscillate with period |h/E12|. The factor C1(t)C∗

2 (t) also can oscillate if the
interaction matrix element H12 is nonzero, and can evolve with time as the excited
molecules decay from state 2 back to state 1.

On the other hand, if E1( j)2(k) varies from molecule to molecule, the oscillation
frequencies in Eq. (10.17) will vary, and after a sufficiently long time ρ12(t) will
average to zero. The off-diagonal elements of ρ thus reflect the phase coherence of
the ensemble as a whole. Using a broad excitation flash would spread out the times
at which molecules are excited to state 2, which would impart random phase shifts
to the oscillations ofρ12 for the individual molecules and causeρ12 to average to zero
more rapidly. To anticipate the discussion below, we might expect that fluctuating
interactions with the surroundings also will cause the off-diagonal elements of ρ
to decay to zero with time. At this point, however, we are still considering systems
that are isolated from their surroundings.

A differential equation describing the time dependence of both the diagonal and
the off-diagonal elements of ρ can be obtained as follows. Let the wavefunction for
the system again be

Ψ(t) =
∑

n

cn(t)ψn(r) , (10.19)



342 10 Coherence and Dephasing

where theψn are spatial wavefunctions and the cn include all the time dependence.
Applying the time-dependent Schrödinger equation as we did to derive Eqs. (2.55)
and (10.1) (still neglecting interactions with the surroundings) yields

∂cm

∂t
= −

(
i/�

)∑

k

Hmkck(t) , (10.20)

where the index k runs over all the basis states including state m. From the definition
of ρnm (Eq. (10.12)), using Eq. (10.20) and the product rule for differentiation gives

∂ρnm

∂t
=
∂
(
cnc∗

m

)

∂t
= cn

∂c∗
m

∂t
+ c∗

m
∂cn

∂t
(10.21a)

=
(
i/�

)
(

cn

∑

k

H∗
mkc∗

k − c∗
m

∑

k

Hnkck

)

=
(
i/�

)∑

k

(
Hkmρnk − Hnkρkm

)
(10.21b)

=
(
i/�

)∑

k

(
ρnkHkm − Hnkρkm

)
. (10.21c)

In Eq. (10.21b), we have taken advantage of the facts that ρmn = ρ∗
nm (by definition)

and H∗
mk = Hkm (because the Hamiltonian operator is Hermitian).

Equation (10.21c) can be rewritten in terms of products of the matrices ρ and H
by using the expression for matrix multiplication again and noting that ρH − Hρ
is the commutator [ρ, H]. Using the notation [A]nm for element Anm of matrix A,

∂ρnm

∂t
=
(
i/�

) {
[ρH]nm − [Hρ]nm

} ≡ (
i/�

)
[ρ, H]nm . (10.22)

The commutator of two matrices is defined analogously to the commutator of two
operators (Box 2.2).

Finally, we can cast Eq. (10.22) symbolically in terms of the matrices themselves
rather than particular matrix elements:

∂ρ
∂t

=
(
i/�

)
[ρ, H] , (10.23)

or for the average density matrix in an ensemble,

∂ρ
∂t

=
(
i/�

)
[ρ, H] . (10.24)

Equation (10.24) is called the von Neumann equation after the mathematician John
von Neumann, who originated the concept of the density matrix. It also is known
as the Liouville equation because of its parallel to Liouville’s classical statistical
mechanical theorem on the density of dynamic variables in phase space.

The time dependence of the nine elements of ρ for an isolated system with three
basis states is written out in Box 10.1.
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Box 10.1 Time dependence of the density matrix for an isolated three-
state system

The elements of the density matrix for an isolated system with three basis
states evolve with time as described by Eq. (10.21c):

∂ρ11/∂t =
(
i/�

) (
ρ11H11 + ρ12H21 + ρ13H31 − ρ11H11 − ρ21H12 − ρ31H13

)

=
(
i/�

) (
ρ12H21 − ρ21H12 + ρ13H31 − ρ31H13

)
, (B10.1.1)

∂ρ22/∂t =
(
i/�

) (
ρ21H12 + ρ22H22 + ρ23H32 − ρ12H21 − ρ22H22 − ρ32H23

)

=
(
i/�

) (
ρ21H12 − ρ12H21 + ρ23H32 − ρ32H23

)
, (B10.1.2)

∂ρ33/∂t =
(
i/�

) (
ρ31H13 + ρ32H23 + ρ33H33 − ρ13H31 − ρ23H32 − ρ33H33

)

=
(
i/�

) (
ρ31H13 − ρ13H31 + ρ32H23 − ρ23H32

)
, (B10.1.3)

∂ρ12/∂t =
(
i/�

) (
ρ11H12 + ρ12H22 + ρ13H32 − ρ12H11 − ρ22H12 − ρ32H13

)

=
(
i/�

) [(
ρ11 − ρ22

)
H12 + ρ12

(
H22 − H11

)
+ ρ13H32 − ρ32H13

]
,

(B10.1.4)

∂ρ21/∂t =
(
i/�

) (
ρ21H11 + ρ22H21 + ρ23H31 − ρ11H21 − ρ21H22 − ρ31H23

)

=
(
i/�

) [(
ρ22 − ρ11

)
H21 + ρ21

(
H11 − H22

)
+ ρ23H31 − ρ31H23

]
,

(B10.1.5)

∂ρ13/∂t =
(
i/�

) (
ρ11H13 + ρ12H23 + ρ13H33 − ρ13H11 − ρ23H12 − ρ33H13

)

=
(
i/�

) [(
ρ11 − ρ33

)
H13 + ρ13

(
H33 − H11

)
+ ρ12H23 − ρ23H12

]
,

(B10.1.6)

∂ρ31/∂t =
(
i/�

) (
ρ31H11 + ρ32H21 + ρ33H31 − ρ11H31 − ρ21H32 − ρ31H33

)

=
(
i/�

) [(
ρ33 − ρ11

)
H31 + ρ31

(
H11 − H33

)
+ ρ32H21 − ρ21H32

]
,

(B10.1.7)

∂ρ23/∂t =
(
i/�

) (
ρ21H13 + ρ22H23 + ρ23H33 − ρ13H21 − ρ23H22 − ρ33H23

)

=
(
i/�

) [(
ρ22 − ρ33

)
H23 + ρ23

(
H33 − H22

)
+ ρ21H13 − ρ13H21

]
,

(B10.1.8)

and

∂ρ32/∂t =
(
i/�

) (
ρ31H12 + ρ32H22 + ρ33H32 − ρ12H31 − ρ22H32 − ρ32H33

)

=
(
i/�

) [(
ρ33 − ρ22

)
H32 + ρ32

(
H22 − H33

)
+ ρ31H12 − ρ12H31

]
.

(B10.1.9)

The same expressions hold for the corresponding elements of ρ for an
ensemble of systems. Note that, because ρnm = ρ∗

mn, ∂ρnm/∂t = ∂ρ∗
mn/∂t =

(∂ρmn/∂t)∗.

Inspection of Eqs. (B10.1.1)–(B10.1.3) shows that any change of the population
of one of the states (i.e., a change in one of the diagonal elements of ρ) is equal and
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opposite to the sum of the changes of the population in the other states, as it must
be to maintain mass balance in an isolated system:

∂ρmm/∂t = −
∑

n=m

∂ρnn/∂t . (10.25)

These equations also show that the rate of change of a diagonal element of ρ
depends on the off-diagonal elements, but does not depend directly on the other
diagonal elements. So, if the ensemble starts in state 1, i.e., with ρ11(0) = 1 and all
the other elements of ρ zero, population cannot appear immediately in state 2 or 3
(ρ22 or ρ33); there first must be a build-up of one or more off-diagonal terms such
as ρ12 or ρ21. This is consistent with the sin2 t dependence of |C2|2 in Eq. (10.3) for
a two-state system (Fig. 10.1). Finally, Eqs. (B10.1.4)–(B10.1.9) indicate that if H12,
H13, and H23 are zero, so that ψ1, ψ2, and ψ3 are stationary states, then the rate of
change of an off-diagonal element ρnm depends only on the product of ρnm itself
and the energy difference between states n and m. This means that once all the
off-diagonal elements of ρ have gone to zero they must remain there. Coherence,
once lost, cannot be recovered without external perturbations.

10.3
The Stochastic Liouville Equation

Now let our ensemble of quantum systems interact with the surroundings. Transfer
of energy to or from the surroundings should cause the ensemble to approach
thermal equilibrium. In principle, we could use Eq. (10.23) to describe this process,
provided that the density matrix included the states of the surroundings and
the Hamiltonian matrix included a term for each interaction. But this usually
would require an astronomically large matrix. Specifying all the quantum states
of a large number of solvent molecules would be virtually impossible. It is more
practical to use the explicit elements of ρ and H only for an ensemble of individual
quantum systems, as we have done heretofore, and to introduce interactions with
the surroundings in a statistical way. A density matrix that is restricted in this way
is called a reduced density matrix.

What becomes of the various elements of the averaged reduced density ma-
trix ρ as the ensemble approaches equilibrium? Consider the diagonal elements,
which represent the populations of the basis states of the quantum systems. The
equilibrium populations (ρo

nn) should depend on the Boltzmann factors for these
states:

ρo
nn = Z−1 exp

(
−En/kBT

)
, (10.26)

where Z is the partition function. Classical kinetics theory suggests that ρnn will
evolve toward ρo

nn at a rate that depends on a set of rate constants for intercon-
versions between state n and all the other states. If all the reaction steps follow
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first-order kinetics, we can write
(
∂ρnn/∂t

)
stochastic =

∑

m=n

(
knmρmm − kmnρnn

)
, (10.27)

Here kmn and knm are the microscopic classical rate constants for conversion of
state n to state m and vice versa. The subscript “stochastic” indicates that we are
considering relaxations that depend on random fluctuations of the surroundings,
not the oscillatory, quantum-mechanical phenomena described by Eq. (10.23). The
ensemble will relax to a Boltzmann distribution of populations if the ratio kmn/knm

is given by exp(−Enm/kBT). According to Eq. (10.27), relaxations of the diagonal
elements toward thermal equilibrium do not depend on the off-diagonal elements
of ρ, which is in accord with classical treatments of kinetic processes simply in
terms of populations.

For a two-state system, any changes of the populations of the two states must
always be equal and opposite, which means that ρ11 − ρo

11 and ρ22 − ρo
22 must both

decay to zero with the same time constant, T1:
[
∂
(
ρnn − ρo

nn

)
/∂t

]
stochastic = −

1
T1

(
ρnn − ρo

nn

)
. (10.28)

The relaxation time constant for a two-state system is the reciprocal of the sum
of the forward and backward rate constants k12 and k21 (1/T1 = k12 + k21). In nu-
clear magnetic resonance and electron paramagnetic resonance spectroscopy, T1

is called the longitudinal relaxation time or the spin-lattice relaxation time.
Assuming that the basis states used to define ρ are stationary, the off-diagonal

elements of ρ must go to zero at equilibrium. There are several reasons for this.
First, stochastic fluctuations of the diagonal elements will cause an ensemble to lose
coherence. This is because stochastic kinetic processes modify the coefficients (ck)
of the individual systems at unpredictable times, imparting random phase shifts,ζk .
We will show in Sect. 10.5 that a relaxation of ρ11 and ρ22 occurring with rate
constant 1/T1 causes the off-diagonal elements ρ12 and ρ21 to decay to zero with
a rate constant of 1/(2T1).

Inhomogeneity in the energies of the individual systems also causes the off-
diagonal elements of ρ to decay to zero. As we pointed out above, the oscillation
frequency for an off-diagonal element ρnm in an individual system depends on the
energy difference between states n and m in that system (Eqs. (10.15), (10.18)),
and the oscillations will get out of phase if Enm varies from system to system in the
ensemble. This mechanism of loss of coherence is called pure dephasing. In a two-
state system, pure dephasing can be characterized by a first-order time constant
that is generally called “T∗

2 ”. The off-diagonal matrix elements then decay to zero
with a composite time constant (T2) that depends on both T∗

2 and 2T1:
(
∂ρnm/∂t

)
stochastic = −

1
T2

ρnm , (10.29a)

where

1/T2 ≈ 1/T∗
2 + 1/2T1 . (10.29b)

In magnetic resonance spectroscopy, T2 is called the transverse relaxation time.
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Equations (10.25), (10.27), and (10.29) suggest that the dynamics of both the
diagonal and off-diagonal elements of a reduced density matrix can be described
by a general expression of the form

∂ρnm/∂t =
(
i/�

)
[ρ, H]nm +

∑

j,k

Rnm,jkρjk , (10.30)

where the bars again denote averages over the ensemble, the commutator de-
scribes the quantum mechanical processes that underlie the von Neumann equa-
tion (Eq. (10.24)), and the Rnm,jk are a set of rate constants for stochastic processes.
More abstractly, we can write

∂ρ/∂t =
(
i/�

)
[ρ, H] + Rρ . (10.31)

Equation (10.30) is called the stochastic Liouville equation and R is the relaxation
matrix.

10.4
Effects of Stochastic Relaxations on the Dynamics
of Quantum Transitions

We now are ready to examine how stochastic relaxations affect the dynamics of
transitions between two quantum states. We will use the stochastic Liouville equa-
tion with phenomenological first-order relaxation time constants 1/T1 and 1/T2

for the diagonal and off-diagonal density matrix elements, respectively, although
we will see later that the off-diagonal elements generally have a more complicated
time dependence in systems with more than two states.

Figure 10.3 shows the calculated dynamics of transitions between two states
that are separated by an energy gap E12 and coupled by an interaction matrix
element (H12) of E12/4. Stochastic transitions between the two quantum states
are assumed to be negligible (T1 = ∞), so the ensemble loses coherence only by
pure dephasing. The curves shown in Fig. 10.3 were generated by using a Runge–
Kutta procedure to integrate Eq. (10.30) numerically, starting with ρ11 = 1.0 and
ρ12 = ρ21 = ρ22 = 0 at time 0. (In a Runge–Kutta integration of a set of differential
equations, the derivatives with respect to the independent variable are evaluated
at the initial value of the variable and after a series of small increments in the
variable. The results are used to approximate the dependent variables after the
last increment, and the process is repeated until the integral converges or reaches
a limit.) Figure 10.3, panel A shows the results when the time constant for pure
dephasing (T∗

2 ) is much longer than |h/H12|. An ensemble starting in state 1 then
undergoes the sustained oscillations we saw in Fig. 10.1, panel B. The real parts
of the off-diagonal elements of ρ (dotted curve) oscillate in phase with ρ22. In the
opposite limit, when pure dephasing occurs very rapidly (T∗

2 � |h/H12|), ρ12 and
ρ21 are held close to zero, the oscillations of ρ11 and ρ22 are severely damped,
and interconversions of states 1 and 2 are suppressed (Fig. 10.3, panel F). The
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Fig. 10.3. Elements of ρ for an ensemble of systems with two states that are coupled quan-
tum mechanically by an interaction matrix element (H21) of E12/4, where E12 is the energy
gap between the states (H11 − H22). The solid curves show ρ11 (the population of state 1);
the dashed curves, ρ22 (the population of state 2); and the dotted curves, the real part of
ρ12 or ρ21 [(ρ12 + ρ21)/2]. The time constant for pure dephasing (T∗

2 ) was 103h/H21 (A),
10h/H21 (B), h/H21 (C), 0.1h/H21 (D), 0.01h/H21 (E), or 0.001h/H21 (F). The time con-
stant for stochastic transitions between the two states (T1) was 104h/H21 in all cases. If
E12 = 100 cm−1 and H21 = 25 cm−1, the oscillation period (|h/2Ω| in Eq. (10.6)) is 0.3 ps
[(3.33 × 10−11 cm−1 s)/(111.8 cm−1)] and the full time scale shown is 1.33 ps
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last effect can be understood by recalling that the rates of change of ρ11 and ρ22

depend on the off-diagonal elements ρ12 and ρ21 (Eqs. (B10.1.1), (B10.1.2)). If the
off-diagonal elements of are quenched rapidly, changes in the diagonal elements
must slow down. Figure 10.3, panels B–E show results for intermediate situations
in which the oscillations are damped less severely. Under these conditions, the
population of state 1 decreases asymptotically with time, while the population of
state 2 increases.

Note that the ensembles considered in Fig. 10.3 all evolve toward an equal
mixture of states 1 and 2, without regard to the temperature or the value of E12.
This is because the stochastic decay of ρ12 and ρ21 caused by pure dephasing is
equally likely to trap the quantum system in either state. Thermal equilibrium
would be attained only at times exceeding T1, which in Fig. 10.3 is taken to be very
long.

Now consider two states that are coupled by the same interaction matrix ele-
ment (H21) but have equal energies (E12 = 0), and suppose that state 2 can relax
stochastically to a third state of much lower energy. The ensemble starts in state 1,
and we are interested in how rapidly population appears in state 3. This is a sim-
ple model for resonance energy transfer, which can be pulled along by thermal
equilibration of the products with the surroundings. Figure 10.4 shows the time
dependence of the populations calculated with various values of the time constant
for stochastic relaxation of state 2 to state 3 (T1). To focus on the effects of the
relaxation, the time constant for pure dephasing (T∗

2 ) is assumed to be very long.
We also assume, as in Fig. 10.3, that interconversion of states 1 and 2 is driven
only by the quantum mechanical coupling factor H21, so that T1 applies only to
interconversion of 2 and 3 (R11,22 = 0 and R22,11 = 0); |H13| also is taken to be
zero.

If the thermal equilibration of states 2 and 3 is very slow, the oscillations between
states 1 and 2 continue indefinitely (Fig. 10.4, panel A). As the time constant for
conversion of state 2 to state 3 is decreased, the oscillations are damped and state 3
is formed more rapidly (Fig. 10.4, panels B–D). But when T1 becomes much less
than |h/H21|, the rate of formation of state 3 decreases again (Fig. 10.4, panels E, F)!
This quantum mechanical effect is completely contrary to what one would expect
from a classical kinetics model of a two-step process, where increasing the rate
constant for conversion of the intermediate state to the final product can only speed
up the overall reaction (Box 10.2). In the stochastic Liouville equation, the slowing
of the overall process results from very rapid quenching of the off-diagonal terms
of ρ by the stochastic decay of state 2. This is essentially the same as the slowing of
equilibration of two quantum states when T∗

2 is much less than |h/H12|, which we
saw in Fig. 10.3.

In Fig. 10.5, the relaxation rates of the ensembles considered in Figs. 10.3 and
10.4 are plotted as functions of 1/T∗

2 and 1/T1, respectively. The left-hand limb
of each curve shows the expected speeding up of the relaxation as 1/T∗

2 or 1/T1

increases; the right-hand limb shows the more surprising slowing when 1/T∗
2 or

1/T1 becomes much larger than H21/h.
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Fig. 10.4. Populations of states 1, 2, and 3 in an ensemble of systems in which states 1 (thin,
solid curve) and 2 (dashed curve) are isoenergetic (E21 = 0) and are coupled quantum me-
chanically by an interaction matrix element H21, and state 3 (thick, solid curve) lies below
states 1 and 2 by 40×|H21|. State 3 is formed stochastically from state 2 with a time constant T1

of∞ (A), 10h/H21 (B), h/H21 (C), 0.1h/H21 (D), 0.01h/H21 (E), or 0.001h/H21 (F). The temper-
ature is assumed to be much less than less than E23/kB, making the decay of state 2 to state 3
effectively irreversible. The time constant for pure dephasing (T∗

2 ) was 103 ps (750h/H21). If
H21 = 25 cm−1 and E23 = 1,000 cm−1, the oscillation period (|h/2H21| in Eq. (10.7)) is 0.67 ps
[(3.33 × 10−11 cm−1 s)/(50 cm−1)], T∗

2 = 103 ps, and the full time scale shown is 2.66 ps
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Box 10.2 The “watched-pot” or “quantum Zeno” paradox

As Figs. 10.3 and 10.5 illustrate, the stochastic Liouville equation predicts that
the overall rate of a two-step process will decrease if the rate of stochastic
equilibration of states 2 and 3 becomes very large. Although its mathematical
origin in the stochastic Liouville equation is straightforward, there are several
ways of rationalizing this strange effect. In one view, the stochastic process
tests the state of each system in the ensemble at intervals of approximately T1.
All systems that are identified as being in state 2 are converted to state 3.
After each such sorting, the clock for the coherent oscillations between states
1 and 2 is reset to zero for all the systems that were found to be in state 1.
Because the probability of being in state 2 at very early times increases with
sin2 t, the overall rate of depletion of state 1 is approximately proportional to
(1/T1) sin2 T1, which becomes approximately equal to T1 as T1 approaches 0.
This reasoning recalls the adage that the more closely you watch a pot of
water on a stove, the longer the water takes to boil. It also calls to mind Zeno’s
classic paradox in which a tortoise argued that he could outrun Achilles by
dividing time and distance into sufficiently small intervals.

Another way to view the situation is that a very rapid decay of state 2
broadens the homogeneous distribution of energies associated with this
state. As Fig. 10.1 illustrates, the amplitude of oscillations between states 1
and 2 falls off rapidly as the two states move out of resonance. According to
Fermi’s golden rule (Eq. (7.10)) the average rate depends on the density of
states in the region of E12 = 0, which decreases as the energy distribution
broadens.

The three-state model considered in Fig. 10.4 is pertinent to the radical-
pair states that are formed in the initial electron-transfer steps of photo-
synthesis. Transfer of a electron from the excited singlet state of an electron
donor (D∗) to a nearby acceptor (A) generates a radical pair (D+A−), in which
the spins of the unpaired electrons on the two radicals remain antiparallel.
The radical pair thus is born in a singlet state overall. However, because the
unpaired electrons are on separate molecules, the singlet and triplet radi-
cal pairs (1[D+A−] and 3[D+A−]) are similar in energy. Interactions of the
electron spins with nuclear spins of the two molecules can cause the radi-
cal pair to oscillate back and forth between the singlet and triplet states. If
secondary electron-transfer reactions are blocked, the radical pair eventu-
ally decays by a back reaction in which an electron moves from A− to D+.
Back reactions that occur from 3[D+A−] place the original electron donor in
a triplet excited state (3D); back reactions occurring from 1[D+A−] regener-
ate the (singlet) ground state. From this analysis, we would expect the yield
of 3D at first to increase with an increase in the rate constant for the step
3[D+A−]→ 3D, and then to decrease again as the rate constant becomes be-
comes very large. See Haberkorn and Michel-Beyerle (1979), Bray and Moore
(1982), Reimers and Hush (1989), Kitano (1997), Schulman (1997), Ashkenazi
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et al. (1999), Prezhdo (2000), Facchi et al. (2001), Kofman and Kurizki (2001),
Toschek and Wunderlich (2001), and Parson and Warshel (2004) for further
discussion of the quantum Zeno effect and the “anti-Zeno” effect (accelera-
tion of a decay process by frequent measurements) in this and other systems.
The effect was first observed experimentally in the escape of cold sodium
atoms trapped in a potential well (Chiu et al. 1977).

Fig. 10.5. Relaxation rate for the ensem-
ble described in Fig. 10.3 as a function
of 1/T∗

2 (curve a), and for the ensemble
described in Fig. 10.4 as a function of
1/T1 (curve b). The quantity plotted as
curve a is the reciprocal of the time for
the population of state 1 to fall from 1 to
0.684 (1–0.5/e); that plotted as curve b
is the reciprocal of the time for the
population of state 3 to rise from 0 to
0.632 (1–1/e)

The Förster theory that we discussed in Chap. 7 applies only to weak inter-
molecular interactions, which we now can define more precisely as meaning
that |H21|/h � 1/T2. It is instructive to derive a steady-state approximation
to the stochastic Liouville equation for a two-state reaction in this limit. From
Eqs. (B10.1.4), (10.29), and (10.30), we have

∂ρ12/∂t =
(
i/�

) [(
ρ11 − ρ22

)
H12 + ρ12

(
H22 − H11

)]
− ρ12/T2 . (10.32)

If |H21|/h � 1/T2, then |ρ12/t| will be close to zero in the steady state, so from
Eq. (10.32),

ρ12 ≈
(
i/�

) (
ρ22 − ρ11

)
H12(

i/�
) (

H22 − H11
)

− 1/T2
=

(
ρ22 − ρ11

)
H12(

H22 − H11
)

+ i�/T2
(10.33a)

and

ρ21 = ρ∗
12 =

(
ρ22 − ρ11

)
H21(

H22 − H11
)

− i�/T2
. (10.33b)

Assuming that states 1 and 2 are coupled only by H21, we also have

∂ρ22/∂t =
(
i/�

) (
ρ21H12 − ρ12H21

)
, (10.34)



352 10 Coherence and Dephasing

from Eq. (B10.1.2). Inserting the steady-state values of ρ12 and ρ21 (Eq. (10.33))
into Eq. (10.34) gives

∂ρ22/∂t =
(
ρ11 − ρ22

) |H21|2
(

2/T2

(E12)2 + (�/T2)2

)
. (10.35)

The steady-state rate of population of state 2 thus has a Lorentzian dependence on
the energy gap E12. As we discussed in Chap. 2, the Lorentzian function can be
equated to the homogeneous distribution of E12 when the mean value of E12 is zero
and state 2 has a lifetime of T2/2. Note that, according to Eq. (10.29b), T2/2 = T1

when pure dephasing is negligible. If we identify the time constant T2 in Eq. (10.35)
with 2T in Eq. (2.67), and identify the energy difference E12 with (E − Ea), then
the factor in the second set of parentheses in Eq. (10.35) must be 2π/� times the
distribution function Re[G(E)] in Eq. (2.67).

Finally, if we define ρs(0)dE12 as the number of states for which the energy gap
falls within a small interval (dE12) around zero, we have

∂ρ22/∂t =
(
ρ11 − ρ22

) |H21|2 2π
�
ρs(0) . (10.36)

This result is formally identical to Fermi’s “golden rule” (Eq. (7.10)).
Equation (10.36) has the form of a classical first-order kinetics expression. In

the limit of weak coupling where the golden rule applies, any quantum mechanical
oscillations are damped so strongly that we can describe the kinetics simply in
terms of stochastic transitions of the system between the reactant and product
states. The net rate in the forward or backward direction then is proportional to
the population difference between the two states (ρ11 −ρ22). Persistent oscillations
of the populations evidently occur only in the opposite limit, when |H21|/h is
comparable to, or larger than 1/T2.

10.5
A Density-Matrix Treatment of Steady-State Absorption

In the last section, we used the stochastic Liouville equation to find the steady-state
rate of transitions between two weakly coupled quantum states, on the assumption
that coherence decayed rapidly relative to the rate of the transitions. The resulting
expression (Eq. (10.36)) reproduced Fermi’s golden rule. We can use the same
approach to find the rate of absorption of weak, continuous light. Consider an
ensemble of systems with two electronic states (a and b) that are stationary in the
absence of external perturbations. In the presence of electromagnetic radiation
with angular frequency ω (ω = 2πν) and electric field amplitude E0, the electric-
dipole matrix element that mixes the two states is

Vab = −μab · E(t) = −μab · [Eo(t) exp(iωt) + E∗
o(t) exp(−iωt)] , (10.37)

where μab is the transition dipole 〈ψa |̃μ|ψb〉. We have written the radiation field
in a general way that will be useful in Chap. 11, although we usually will assume
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that its amplitude is real (E∗
0 = E0) and has only a weak dependence on time

compared with the complex exponential factors. Let us also assume for now that
all the molecules in the ensemble have the same transition dipole and orientation
with respect to E0 so that Vab is the same for all the molecules. The differential
equation for ρab (Eq. (10.32)) then takes the form

∂ρab/∂t = (i/�)
{(
ρbb − ρaa

)
μab · [Eo exp(iωt) + E∗

o exp(−iωt)] + ρabEba
}

− ρab/T2

=
(
i/�)

(
ρbb − ρaa

)
μab · [Eo exp(iωt) + E∗

o exp(−iωt)]

+
(
iωba − 1/T2

)
ρab , (10.38)

where Eba is the energy difference between the two states (Hbb – Haa) and we have
defined ωba = Eba/� to simplify the notation. The populations ρbb and ρaa are
written without an explicit time dependence here, on the assumption that at low
light intensities they change only slowly relative to ρab.

As discussed in Sect. 4.2, one of the two exponential terms in the brackets will
dominate, depending on whether Eba is positive or negative. If we retain the term
E0 exp(iωt), which dominates when Hbb > Haa, then Vab = −μab · E0 exp(iωt),
and Eq. (10.38) reduces to

∂ρab/∂t =
(
i/�

) (
ρbb − ρaa

)
μab · Eo exp(iωt) +

(
iωba − 1/T2

)
ρab . (10.39)

The coherence ρab described by Eq. (10.39) is a function of both frequency and
time. Because the ensemble is driven by an oscillating electric field, we would
expect the solution to this equation to include a factor that oscillates at the same
frequency as the field. Let us try writing

ρab(ω, t) = ρab exp(iωt) , (10.40)

whereρab is an average of ρab over an oscillation period of the field (1/ω).ρab might
change rapidly at short times after the light is turned on, but presumably becomes
constant at long times (t > T2 and >> 1/ω). With this substitution, Eq. (10.39) gives

∂ρab/∂t = exp(iωt)∂ρab/∂t + iω · exp(iωt)ρab

=
(
i/�

) (
ρbb − ρaa

)
μab · E0 exp(iωt) +

(
iωba − 1/T2

)
ρab exp(iωt) .

(10.41)

Equation (10.41) can be solved immediately for ρab in a steady state, when ∂ρab/
∂t = 0:

ρab =

(
i/�

) (
ρbb − ρaa

)
μab · Eo

i
(
ω − ωba

)
+ 1/T2

. (10.42a)

Similarly, setting ρba = ρba exp(−iωt) gives

ρba =

(
i/�

) (
ρbb − ρaa

)
μba · E∗

o

i
(
ω − ωba

)
− 1/T2

. (10.42b)
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Here we retained only the exp(−iωt) component of E, making Vba = −μba ·
E∗

0 exp(−iωt). This is consistent with the hermiticity of the Hamiltonian opera-
tor: if Vab = −μab · E0 exp(iωt), then Vba = V∗

ab = −μba · E∗
0 exp(−iωt).

To find the steady-state rate of excitation of molecules from state a to state b in
the absence of stochastic decay processes, we now can use Eq. (10.21c):

∂ρbb/∂t =
(
i/�

) (
ρbaVab − ρabVba

)

≈ (
i/�

) {[
exp(−iωt)ρba

]
[−μab · E∗

0 exp(iωt)]

−
[
exp(iωt)ρab

]
[−μba · E0 exp(−iωt)]

}

=
(
ρbb − ρaa

)
∣∣μba · E0

∣∣2

�2

(
1

i
(
ωba − ω

)
+ 1/T2

−
1

i
(
ωba − ω

)
− 1/T2

)

=
(
ρaa − ρbb

)
∣∣μba · E0

∣∣2

�2

(
2/T2

(
ωba − ω

)2
−
(
1/T2

)2

)

. (10.43)

Equation (10.43) is just the same as Eq. (10.35) for the particular case of absorption
of light. It predicts again that the absorption spectrum will be a Lorentzian func-
tion of frequency. The width of the Lorentzian corresponds to the homogeneous
distribution of transition energies when the effective lifetime of the excited state is
T2/2, as we discussed in Sect. 10.4. However, this result depends on our assumption
that dephasing of the ensemble is described adequately by an exponential decay
with single time constant, T2. As we will discuss in Sect. 10.7, the absorption band
shape depends on a Fourier transform of the dephasing dynamics, which usually is
more complex than we have assumed here. Note also that Eq. (10.43) pertains only
to times greater than T2. We will consider shorter times in the following chapter.

The total steady-state rate of excitation also can be written as

∂ρbb/∂t = −∂ρaa/∂t =
(
2π/�

) (
ρaa − ρbb

) ∣∣μba · E0
∣∣2 ρs(Eba) , (10.44)

where ρs(Eba)dE is the number of states for which the excitation energy is within
dE of Eba. This again is equivalent to Fermi’s golden rule (Eqs. (7.10), (10.36)).
As in Eq. (10.36), the density of states ρs here has units of reciprocal energy (e.g.,
states per inverse centimeter). Equation (4.8) has an additional factor of h in the
denominator because ρν, the corresponding density of oscillation modes in units
of reciprocal frequency (modes per inverse hertz), is hρs.

If the molecules in the ensemble have different orientations relative to the
excitation, then Eqs. (10.43) and (10.44) require additional averaging over the ori-
entations. For an isotropic sample, the average value of |μ21 ·E0|2 is (1/3)|μ21|2|E0|2

(Eq. (4.11), Boxes 4.6 and 10.5).
Equations (10.43) and (10.44) also describe the rate of stimulated emission. The

corresponding rates for the situation that Hbb < Haa are obtained in the same
manner by retaining the term exp(−iωt) instead of exp(iωt) in Vab and vice versa
for Vba.
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10.6
The Relaxation Matrix

Our discussion so far has focused on systems with only two quantum states, and
our treatment of the time constants T1 and T∗

2 has been entirely phenomenological.
We now discuss the elements of the relaxation matrix R in a more general way and
consider how they depend on the strengths and dynamics of interactions with the
surroundings.

Following work by Pound, Bloch, and others, Alfred Redfield (1965) explored de-
scriptions of relaxations of the density matrix by the stochastic Liouville equation
(Eqs. (10.24), (10.28–10.31)). Redfield’s treatment showed clearly how the main
elements of the relaxation matrix R depend on the frequencies and strengths of
fluctuating interactions with the surroundings. His basic approach was to write the
Hamiltonian matrix for the system as H(t) = H0 +V(t), where H0 is independent of
time and V(t) represents interactions with fluctuating electric or magnetic fields
from the surroundings. Redfield then used the von Neumann–Liouville equation
(Eq. (10.24)) to find the effects of V(t) on ρ for the system. In the following outline
of the derivation, we use the Schrödinger representation of the density matrix for
simplicity and consistency with Sects. 10.2 and 10.3. Redfield (1965) and Slichter
(1963), who provided an excellent introduction to the theory, used the interac-
tion representation and then returned to the Schrödinger picture for the final
expressions.

If we know the averaged reduced density matrix for the ensemble at zero time,
ρ(0), we can obtain an estimate of ρ for a later time (t) by integrating the von
Neumann–Liouville equation (Eq. (10.24)), using ρ(0) in the commutator:

ρ(t) = ρ(0) +
i
�

t∫

0

[
ρ(0), H(t1)

]
dt1 . (10.45)

For a better estimate, we could use Eq. (10.45) to find ρ at an intermediate time (t2)
and then use ρ(t2) instead of ρ(0) in the commutator:

ρ(t) =
i
�

t∫

0

⎡

⎢
⎣

⎛

⎝ρ(0) +
i
�

t2∫

0

[ρ(0), H(t1)] dt1

⎞

⎠ , H(t2)

⎤

⎥
⎦ dt2 . (10.46)

Differentiating this expression gives ∂ρ/∂t at time t:

∂ρ(t)
∂t

=
i
�

[
ρ(0), H(t)

]
+
(

i
�

)2 t∫

0

[
[ρ(0), H(t1)] , H(t)

]
dt1 , (10.47)

where, as indicated above, H(t) = H0 + V(t).
According to the ergodic hypothesis of statistical mechanics, the ensemble-

averages indicated by bars in Eq. (10.47) are equivalent to averages for a single
system over a long period of time. If the fluctuating interactions with the sur-
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roundings, V(t), vary randomly between positive and negative values, the matrix
elements of V will average to zero:

Vnm(t) =
〈
ψn|Ṽ(t)|ψm

〉
= 0 . (10.48)

(Any constant interactions with the surroundings could be included in H0 and
used simply to redefine the basis states.) [ρ(0), V(t)] thus is zero and does not
contribute to ∂ρ(t)/∂t. The average value of (Vnm(t))2 or Vnm(t)Vjk(t), however,
generally is not zero, and these factors contribute to ∂ρ(t)/∂t through the integral
on the right side of Eq. (10.47).

The integrand in Eq. (10.47) includes a sum of terms of the form
ρ(0)Vnm(t1)Vjk(t2), each of which involves the product of the density matrix
at zero time with a correlation function or memory function, Mnm,jk(t1, t2) =
Vnm(t1)Vjk(t2). Mnm,jk(t1, t2) is the ensemble-average of the product of Vnm at time
t1 with Vjk at time t2. If Vnm and Vjk vary randomly, their average product should
not depend on the particular times t1 and t2, but only on the difference, t = t2 − t1.
The correlation function Mnm,jk therefore can be written as a function of this single
variable:

Mnm,jk(t) = Vnm(t1)Vjk(t1 + t) , (10.49)

where the bar implies an average over time t1 as well as an average over the en-
semble. For jk = nm, Mnm,jk(t) is the same as the autocorrelation function of Vnm

(Eq. (5.79)). Figure 10.6b shows the autocorrelation function of the fluctuating
quantity shown in Fig. 10.6a.

The initial value of a correlation function is the mean product of the fluctu-
ating quantities, Mnm,jk(0) = VnmVjk, which for an autocorrelation function is

simply the mean-square amplitude of the fluctuations, Mnm,nm(0) = |Vnm|2. At
long times, Mnm,jk approaches the product of the two means, Mnm,jk(∞) = Vnm Vjk,
which is zero (Eq. (10.48)). In the simplest model, Mnm,jk(t) decays exponentially
to zero with a single time constant τc called the correlation time: Mnm,jk(t) =
Mnm,jk(0) exp(−t/τc). The correlation time for more complex decays can be defined
by the expression

τc =
[
1/Mnm,jk(0)

]
∞∫

0

Mnm,jk(t)dt , (10.50)

which reduces to the exponential time constant if the decay is monoexponential.
Redfield’s analysis does not make any assumptions about the detailed time course
of the decay, but it does assume that the correlation functions decay rapidly relative
to the phenomenological relaxation time constants T1 and T∗

2 that we introduced
in Eqs. (10.28) and (10.29) (i.e., τc � T1, T∗

2 ).
The correlation function Mnm,jk(t) describes the fluctuations of VnmVjk as a func-

tion of time: slow fluctuations have long correlation times. The same fluctuations
also can be described as a function of frequency (ν) or angular frequency (ω = 2πν)
by taking a Fourier transform of Mnm,jk(t). According to the Wiener–Khinchin theo-
rem of statistical mechanics, the Fourier transform of the autocorrelation function
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Fig. 10.6. a A fluctuating interaction energy, V(t), with a mean value (V) of zero and
a mean square [M(0) = V2] of 1.0 cm−2 (root mean square 1.0 cm−1). b The autocorrelation
function, M(t), of V(t). c The spectral density function, J(ν), of V(t) as defined by Eq. (10.52).
[Some authors use the term “spectral density function” to refer the product νJ(ν) orωJ(ω).]
d A semiclassical spectral density function JSC(ν) = J(ν)/[1 + exp(−hν/kBT)] for T = 295 K
(kBT = 205 cm−1). Note the slight asymmetry of JSC(ν) relative to J(ν)

of a fluctuating quantity is the power spectrum of the fluctuations, where the power
at a given frequency is the mean-square amplitude of the fluctuations at that fre-
quency. To convert Mnm,jk(t) to a suitable function of frequency, Redfield (1965)
defined the spectral density function, Jnm,jk(ω), as

Jnm,jk(ω) =

∞∫

0

Mnm,jk(t) exp(iωt)dt . (10.51)

In this formulation, the integral on the right includes only positive frequencies.
But if the correlation function is a real and even function of time [Mnm,jk(−t) =
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Mnm,jk(t)], then Jnm,jk(ω) also is real and is just half the integral from t = −∞ to ∞,

Jnm,jk(ω) =
1
2

∞∫

−∞
Mnm,jk(t) exp(iωt)dt . (10.52)

This is, except for a normalization factor, the Fourier transform of the correlation
function (Appendix 3). The Fourier transform in Eq. (10.51) is sometimes called
a “half” Fourier transform.

Figure 10.6c shows the spectral density function obtained from the correlation
function shown in Fig. 10.6b. If the correlation function Mnm,jk decays exponen-
tially with a single time constant τc, Jnm,jk(ω) is a Lorentzian peaking at ω = 0
(Appendix 3, Eq. (2.67)). The Lorentzian has a peak amplitude of VnmVjk and
a width at half-maximal amplitude of 2/τc.

With these definitions, the elements of the relaxation matrix R can be written
(Slichter 1963; Redfield 1965; Silbey 1989)

Rnm,jk =
1

2�2

[
Jnj,mk

(
ωmk

)
+ Jnj,mk

(
ωnj

)]

− δmk

∑

i

Jij,in
(
ωij

)
− δnj

∑

i

Jim,ik
(
ωik

)
, (10.53)

where ωjk = (Hjj − Hkk)/� = Ejk/�, δjk is the Kronecker delta function (1 if
j = k, 0 if j = k), and Jnm,jk(ωjk) means the value of Jnm,jk at frequency ωjk.
The relaxation matrix described by Eqs. (10.51) and (10.53) cannot be entirely
correct, however, because it does not take the ensemble to a Boltzmann equilibrium
at long times. At equilibrium, the diagonal elements of ρ (the populations of
the various basis states) should depend on the relative energies of the states, so
ρnn/ ρmm = exp(−�ωnm/kBT). This requires the rate constants for forward and
backward transitions between two states to have the relationship, Rnn,mm/Rmm,nn =
exp(�ωnm/kBT). Instead, Eq. (10.53) gives Rnn,mm = Rmm,nn, which makes all the
diagonal elements of ρ eventually become equal. The problem is that Eq. (10.53)
considers only the density matrix of the system. It neglects the transfer of energy
to or from the surroundings that must occur in order for the system to reach
thermal equilibrium. We encountered the same problem in Fig. 10.3, where we
found that pure dephasing alone does not take an ensemble of two-state systems
to a Boltzmann equilibrium.

To satisfy detailed balance, Redfield (1965) multiplied the spectral density func-
tion by the factor exp(−�ωnm/2kBT). More recent authors (Oxtoby 1981; Yan and
Mukamel 1991; Mercer et al. 1999) have used “semiclassical” spectral density func-
tions of the form

JSC
nm,jk

(
ωαβ

)
= Jnm,jk

(
ωαβ

) [
1 + exp

(
�ωαβ/kBT

)]−1
, (10.54)

where Jnm,jk is the classical spectral density function defined by Eq. (10.51). Fig-
ure 10.6d shows such a modified spectral density function. These semiclassical
spectral density functions incorporate the quantum-mechanical zero-point energy,
and they meet the requirement for detailed balance, JSC

nn,mm(ωnm) =
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JSC
mm,nn(ωmn) exp(�ωmn/kBT), as you can see by the following algebraic manipu-

lations:

JSC
nn,mm

(
ωnm

)
exp

(
�ωnm/kBT

)
= Jnn,mm

(
ωnm

) exp
(
�ωnm/kBT

)

1 + exp
(
�ωnm/kBT

)

= Jnn,mm
(
ωnm

) [
1 + exp

(
−�ωnm/kBT

)]−1

= Jmm,nn
(
ωmn

) [
1 + exp

(
�ωmn/kBT

)]−1

= JSC
mm,nn

(
ωmn

)
. (10.55)

The semiclassical spectral density function JSC(ω) can be written as a sum of
two components that are, respectively, even and odd functions of ω. The fact that
the odd component is not zero implies that the correlation function obtained by
an inverse Fourier transform of JSC(ω) is complex (Appendix 3). The imaginary
component of the correlation function can be viewed as conveying the direction-
ality of time that is missing in classical physics. We will return to this point in
Sect. 10.7.

Replacing the classical spectral density functions by their semiclassical analogs
in Eq. (10.53) gives the following expression for the relaxation matrix:

Rnm,jk =
1

2�2

(
Jnj,mk

(
ωmk

)

1 + exp
(
�ωmk/kBT

) +
Jnj,mk

(
ωnj

)

1 + exp
(
�ωnj/kBT

)

)

− δmk

∑

i

Jij,in
(
ωij

)

1 + exp
(
�ωij/kBT

) − δnj

∑

i

Jim,ik
(
ωik

)

1 + exp
(
�ωik/kBT

) . (10.56)

The elements of R for a two-state system are given in Box 10.3.

Box 10.3 The relaxation matrix for a two-state system

Equation (10.56) gives the following results for a two-state system. We have
written out all the terms in the sums only for R11,11, R11,22, and R12,12; the
other matrix elements are obtained from these easily by symmetry.

R11,11 =
1

2�2

(
J11,11(0) + J11,11(0) − J11,11(0) −

J21,21(ω21)
1 + exp(�ω21/kBT)

−J11,11(0) −
J21,21(ω21)

1 + exp(�ω21/kBT)

)

= −
1
�2

(
J21,21(ω21)

1 + exp(�ω21/kBT)

)
, (B10.3.1a)

R22,22 = −
1
�2

(
J12,12(ω12)

1 + exp(�ω12/kBT)

)
, (B10.3.1b)
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R11,22 = −
1

2�2

(
J12,12(ω12)

1 + exp(�ω12/kBT)
+

J12,12(ω12)
1 + exp(�ω12/kBT)

)

= −
1
�2

(
J12,12(ω12)

1 + exp(�ω12/kBT)

)
(B10.3.2a)

R22,11 = −
1
�2

(
J21,21(ω21)

1 + exp(�ω21/kBT)

)
, (B10.3.2b)

R12,12 =
1

2�2

(
J11,22(0) + J11,22(0) − J11,11(0) −

J21,21(ω21)
1 + exp(�ω21/kBT)

−
J12,12(ω12)

1 + exp(�ω12/kBT)
− J22,22(0)

)

=
−1
2�2
[J11,11(0) − 2J11,22(0) + J22,22(0)] +

1
2

(
R22,11 + R11,22

)
,

(B10.3.3a)

R21,21 =
−1
2�2
[J22,22(0) − 2J22,11(0) + J11,11(0)] +

1
2

(
R11,22 + R22,11

)
,

(B10.3.3b)

R12,21 =
1

2�2
[J12,21(0) + J12,21(0)] =

1
�2

J12,21(0) , (B10.3.4a)

and

R12,21 =
1
�2

J21,12(0) . (B10.3.4b)

If the interaction matrix elements V12 and V21 are real, J21,21(ω) = J12,12(ω)
and J21,12(ω) = J12,21(ω).

Inspection of Eqs. (B10.3.1) and (B10.3.2) shows that the rate constant for con-
version of state 1 to state 2 is k21 = −R11,11 = �−2J21,21(ω21)[1+exp(�ω21/kBT)]−1 =
�

−2JSC
21,21(ω21). The rate constant thus depends on the spectral density of electric

or magnetic fields from the surroundings that fluctuate at angular frequency ω21,
which is the frequency corresponding to the energy difference between the two
states (E21 = �ω21). The amplitude of JSC

21,21(ω21) in an ensemble of systems is
proportional to the mean-square amplitude of the fluctuating interaction matrix

element, |V12|2. The parallel between these results and the expressions we derived
for the rate of absorption or emission of light should be evident.

The rate constant for the reverse reaction is, similarly, k12 = −R22,22 = �−2

J12,12(ω12)[1+exp(�ω12/kBT)]−1 = �−2JSC
12,12(ω12). From Eq. (10.56), the ratio of the

rate constants for the forward and backward reactions is k21/k12 = exp(�ω12) =
exp[(H11 − H22)/kBT], as required for detailed balance. The equilibration time
constant T1 (Eq. (10.29b)) is given by 1/T1 = k21 + k12 = �−2[JSC

21,21(ω21) +
JSC

12,12(ω12)].
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Turning to R12,12, which pertains to the first-order decay of ρ12 in a two-state
system, the terms in Eq. (B10.3.3a) that are evaluated at ω = 0 [J11,11(0), J22,22(0)
and J11,22(0)] each consists of a product of a correlation time (τc) and the amplitude
of one of the correlation functions at zero time (Eq. (10.51)). More generally,

Jnm,jk(ω = 0) =

∞∫

0

Mnm,jk(t)dt = τcMnm,jk(t = 0) . (10.57)

Because Mnm,jk(0) = VnmVjk, the quantity [J11,11(0) − 2J11,22(0) + J22,22(0)] in
Eq. (B10.3.3a) is the product of τc and the mean square of the fluctuating component
of the energy gap between states 1 and 2:

[J11,11(0) − 2J11,22(0) + J22,22(0)] = τc
(
V11V11 − 2V11V22 + V22V22

)

= τc
(
V11 − V22

)2
. (10.58)

We can identify this part of −R12,12 with the rate constant for pure dephasing (1/T∗
2 ),

which is the first term on the right-hand side of Eq. (10.29b):

1
T∗

2
=

τc

2�2

(
V11 − V22

)2
. (10.59)

Because the mean value of V11 − V22 is zero,
(
V11 − V22

)2
is simply the variance

(the square of the standard deviation) of the energy gap.
The expression for R12,12 (Eq.(B10.3.3a)) also contains (1/2)(R11,22 + R22,11). This

is half the sum of the rate constants for interconversions of the two states, or
1/2T1, which is the second term on the right-hand side of Eq. (10.29b). If the
system had additional basis states, R12,12 would include further terms of the form
(1/2)(R11,33 + R11,44 + ... + R22,33 + R22,44 + ...), or in general,

1
T2

=
1

T∗
2

−
1
2

∑

j=n,m

(
Rnn,jj + Rmm,jj

)
. (10.60)

According to the stochastic Liouville equation (Eq. (10.30)), the rate of change of
a given element of ρ (∂ρnm/∂t) depends on the sum of the product of Rnm,jkρjk for all
the other elements. This can make evaluation of the dynamics arduous for systems
with many states, because the size of the density matrix increases quadratically
with the number of states. For an off-diagonal element (ρnm with n = m), however,
the effects of another off-diagonal matrix element (ρjk, j = k) usually are greatest
if ωjk ≈ ωnm. The two matrix elements then oscillate more or less in synchrony, so
Rnm,jkρjk consistently either increases or decreases ∂ρnm/∂t when ρnm is positive
and has the opposite effect when ρnm is negative. The effects of a matrix element
that does not meet this resonance condition tend to average to zero. Retaining only
the terms of R for which ωjk ≈ ωnm is called the rotating-wave approximation.
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For systems with three or more states, Redfield (1965) also derived terms of the
relaxation matrix for transfer of coherence between two pairs of states. These terms
allow one off-diagonal density matrix element (ρjk) to increase at the expense of
another (ρnm). Again, these terms are most important if ωjk ≈ ωnm.

We have found that fluctuations of the surroundings at angular frequency ω21

can cause transitions between states that differ in energy by �ω21. Suppose that
the pertinent correlation function for these fluctuations M21,21(t) is an exponen-
tial function of time, so that the classical spectral density function J21,21(ω) is
Lorentzian. Decreasing the correlation time τc (i.e., speeding up the fluctuations)
will broaden the spectral density function, which increases its amplitude at high
frequencies but decreases the amplitude at low frequencies (Fig. 2.12). Figure 10.7
illustrates how the classical spectral densities at several frequencies vary with τc.
In general, the spectral density at frequency ω21 peaks when τc = 1/ω21. Speeding
up the fluctuations thus increases the rate constant for transitions between the two
states as long as τc > 1/ω21, but decreases the rate constant if τc < 1/ω21. At low
frequencies (ω � 1/τc), J(ω) is proportional to τc and independent of ω.

According to Eqs. (B10.3.3) and (10.57)–(10.59), the rate of pure dephasing
(1/T∗

2 ) depends on the spectral densities at ω = 0, which increase linearly with τc

(Fig. 10.7). Perhaps counter to intuition, slowing the fluctuations increases the rate
of pure dephasing. One way to view this result is that during a period when the
energy difference between states 1 and 2 for a particular system deviates from the
mean value of this difference in the ensemble, the oscillations of ρ21 for this system
build up a phase difference relative to the average oscillations of ρ21. The longer
the deviation of the energy gap persists, the greater the accumulated deviation
of the phase. Pure dephasing thus results from heterogeneity of the oscillation
frequencies during the periods when the energies of the individual systems do not
change greatly. In the limit of extremely rapid fluctuations, the oscillations remain
in phase because all the systems experience the same average energy difference
(E0). In magnetic resonance, this effect is termed motional narrowing.

Fig. 10.7. Spectral densities (Jnm,jk) at
several frequencies (ω = 0, 0.5, 1, and
2 × 1012 s−1) as functions of the corre-
lation time (τc) of the corresponding
correlation function (Mnm,jk). Mnm,jk is
assumed to decay exponentially with
a time constant of τc, making Jnm,jk
a Lorentzian function of ω
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In addition to assuming that the fluctuations of the surroundings occur rapidly
relative to T1 and T∗

2 , Redfield’s theory applies only to times that are long compared
with τc. Box 10.4 shows that the kinetics of dephasing are different in the opposite
limit of very slow fluctuations: the off-diagonal density matrix elements then
decay with a Gaussian dependence on time. In the next section we will discuss
more general relaxation functions that bridge these two limits.

Box 10.4 Dephasing by static inhomogeneity

Consider the decay of coherence between two states, j and k, whose energies
(Hjj and Hkk) vary from system to system in an ensemble but are essentially
constant for any given system. If the factors Cj and C∗

k also are constant, the
average of ρjk for the ensemble can be written

ρjk(t) = ρjk(0)

∞∫

−∞
G(Ejk) exp

(
−iEjkt/�

)
dEjk , (B10.4.1)

where ρjk(0) is the mean value of ρjk at zero time, Ejk = Hjj − Hkk for a given
system, and G(Ejk) is the normalized distribution of Ejk for the ensemble.

Suppose G(Ejk) is a Gaussian with mean E0 and standard deviation σ. If
we define x = t/�, α = Ejk − E0, and f (α) = (1/σ) exp(−α2/2σ2), then

ρjk(t)

ρjk(0)
=

1√
2πσ

∞∫

−∞

{
exp

[
−(Ejk − E0)2/2σ2] exp

(
−iEjkt/�

)}
d(Ejk − E0)

=
exp

(
−iE0t/�

)

√
2πσ

∞∫

−∞

[
exp

(
−α2/2σ2) exp

(
−iαt/�

)]
dα

=
exp

(
−iE0t/�

)

√
2π

∞∫

−∞
f (α) exp(−iαx)dα = exp

(
−iE0t/�

)
F(x) ,

(B10.4.2)

where F(x) is the Fourier transform of f (α). The Fourier transform of this
function is exp(−σ2x2/2), another Gaussian (Appendix 3), so

ρjk(t)/ρjk(0) = exp
(
−iE0t/�

)
exp

(
−σ2t2/2�2) . (B10.4.3)

If the ensemble is homogeneous (σ = 0), then Eq. (B10.4.3) gives ρjk(t)/
ρjk(0) = exp(−iE0t/�), which oscillates at frequency E0/h with a constant
amplitude of 1. Inhomogeneity in the energies (σ > 0) causes the magnitude
of the oscillations to decay to zero as exp(−σ2t2/2�2), which gives a Gaus-
sian dependence on time. |ρjk(t)| falls to half its initial value in a time τ1/2 =
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(2 ln 2)1/2
�/σ = 1.177�/σ. A standard deviation (σ) of 1 cm−1 gives τ1/2 =

1.177 × 5.31 × 10−12 (cm−1 s)/(cm−1) = 6.2 ps.
Figure 10.8 shows a plot of the amplitude of ρjk(t)/ρjk(0) for ensembles

with Gaussian distributions of Ejk and several values of σ. Gaussian decays
of coherence also can be seen in Fig. 10.2, but the models considered there
include static heterogeneity in the interaction matrix element that couples
the two quantum states (H21) in addition to the energy difference between
the states.

10.7
More General Relaxation Functions and Spectral Lineshapes

We have seen that if the interactions of a quantum system with its surroundings
fluctuate rapidly, the decay of coherence in an ensemble of such systems can be
described by a relaxation matrix of microscopic first-order rate constants. But if
the energies of the basis states vary statically from system to system, coherence
decays with a Gaussian dependence on time (Box 10.4, Figs. 10.2, 10.8). We now
seek a more general expression for pure dephasing to connect the domains in
which the fluctuations of the surroundings are either very slow or very fast.

To start, consider an off-diagonal density matrix element ρnm of an individ-
ual system when the energies of states n and m (Hnn and Hmm) vary with time
(Eq. (10.15)). Assume that n and m are stationary states so that the factors Cn and
C∗

m are independent of time. The initial value of ρnm then is ρnm(0) = CnC∗
m. ρnm

now begins to oscillate with an angular frequencyωnm(0) = (Hnn − Hmm)/�, which
we take to be constant for a short interval of time Δt. By the end of this interval,
ρnm has become

ρnm(t = Δt) = ρnm(0) exp
{

−i [ωnm(0)Δt]
}

. (10.61)

Fig. 10.8. The amplitude of ρjk(t)/ρjk(0)
in ensembles in which the energy
difference between states j and k (Ejk)
has a Gaussian distribution with a mean
of E0 and a standard deviation (σ) of
0.01H0, 0.1H0, or H0. The oscillation
period of ρjk is h/H0
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Suppose that at time Δt, the oscillation frequency changes to some new value,
ωnm(1), which then persists for the same increment of time. At the end of this
second interval, ρnm is

ρnm(t = 2Δt) = ρnm(0) exp
{

−i [ωnm(0)Δt + ωnm(1)Δt]
}

, (10.62)

and in general,

ρnm(t) = ρnm(0) exp

⎛

⎝−i

t∫

0

ωnm(τ)dτ

⎞

⎠ . (10.63)

In an ensemble of such systems, the detailed time dependence of ωnm will
vary randomly from one system to the next. Let the average frequency for the
ensemble be ωnm, and call the variable part for our particular system wnm, so that
ωnm(τ) = ωnm + wnm(τ). Then, for an individual system,

ρnm(t)ρ∗
nm(0) = ρnm(0)ρ∗

nm(0) exp

⎛

⎝−i

t∫

0

[ωnm + wnm(τ)] dτ

⎞

⎠ (10.64a)

=
∣∣ρnm(0)

∣∣2 exp

⎛

⎝−iωnmt − i

t∫

0

wnm(τ)dτ

⎞

⎠ . (10.64b)

Assuming that |ρnm(0)|2 is not correlated with the fluctuations of ωnm, we can
obtain a correlation function for the ensemble-averaged density matrix element
by averaging the integral in Eq. (10.64b):

ρnm(t) ρ∗
nm(0)

∣∣ρnm(0)
∣∣2

= exp [−iωnmt − gnm(t)] = exp
(
−iωnmt

)
φnm(t) , (10.65)

where

gnm(t) = i

t∫

0

wnm(τ)dτ (10.66a)

and

φnm(t) = exp [−gnm(t)] . (10.66b)

The dephasing of the ensemble thus is contained in the relaxation function
φnm(t) = exp[−gnm(t)], with gnm(t) (sometimes called the lineshape or line-
broadening function) defined in Eq. (10.66a).
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Kubo (Kubo 1966; Kubo et al. 1985) showed that if wnm has a Gaussian distribu-
tion about zero, gnm(t) is given by

gnm(t) =

t∫

0

dτ1

τ1∫

0

wnm(τ1)wnm(τ2)dτ2

= σ2
nm

t∫

0

dτ1

τ1∫

0

Mnm(τ2)dτ2 . (10.67)

Here σ2
nm is the mean square of the frequency fluctuations (σ2

nm =
∣∣w2

nm

∣∣ in units of
radians squared per second squared) and Mnm(t) is a normalized autocorrelation
function of the fluctuations:

Mnm(t) =
1
σ2

nm
wnm(τ + t)wnm(τ) . (10.68)

If Mnm(t) decays exponentially with time constant τc, evaluating the integrals in
Eq. (10.67) is straightforward and yields

φnm(t) = exp [−gnm(t)] = exp
{

−σ2
nmτ

2
c

[(
t/τc

)
− 1 + exp

(
−t/τc

)]}
. (10.69)

Figure 10.9 shows the behavior of this expression for several values of τc and σnm.
At short times (t � τc), Eq. (10.69) reduces to φnm(t) = exp(−σ2

nmt2/2). [You can
see this by expanding the inner exponential in Eq. (10.69) as exp(−t/τc) = 1− t/τc +
(t/τc)2/2! − ...]. In this limit the relaxation dynamics are independent of τc, and
ρnm has a Gaussian dependence on time in accord with Eq. (B10.4.3). At the other

Fig. 10.9. The Kubo relaxation function φ(t) as given by Eq. (10.69) for an ensemble in
which the correlation function decays exponentially with time constant τc. A τc (indicated
in arbitrary time units) is varied, while the root mean square amplitude of the fluctuations
(σ) is fixed at 1 reciprocal time unit. B τc is fixed at 1 time unit and σ is varied
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extreme, when t >> τc, Eq. (10.69) goes to φnm(t) = exp(−σ2
nmτct). ρnm then decays

exponentially with a rate constant (1/T∗
2 ) of σ2

nmτc, in accord with the Redfield the-
ory and Eq. (10.29). Kubo’s function thus captures both the exponential dephasing
that results from fast fluctuations and the Gaussian dephasing associated with slow
fluctuations. It shows that the operational terms “fast” and “slow” relate to the ra-
tio of the observation time (t) to τc, and it reproduces the reciprocal relationship
between τc and the rate of pure dephasing that we discussed in the previous section.

If the off-diagonal matrix elements that describe the coherence between a ground
state and an excited electronic state decay exponentially with time, the homoge-
neous absorption line should have a Lorentzian shape (Figs. 10.6, 10.7, Eqs. (2.67),
(10.35)). More generally, as we discussed in Sect. 10.6, the spectral lineshape is the
Fourier transform of the relaxation function:

ε(ω − ω0)
ω

∝ ∣∣μab
∣∣2

∞∫

−∞
ei(ω−ω0)tφ(t)dt , (10.70)

where ω0 is the angular frequency corresponding to the 0–0 transition and we
have omitted the subscript nm to generalize the relationship. Figure 10.10 shows
spectra calculated by using this expression with the relaxation function φ(t) from
Eq. (10.69) and several values of the underlying correlation time (τc) and vari-
ance (σ) of the fluctuations. As we saw in Fig. 10.9, φ(t) can vary from Gaussian
to exponential depending on t/τc. Because the Fourier transform of a Gaussian is
another Gaussian, whereas the Fourier transform of an exponential is a Lorentzian,
the absorption lineshape can range from Gaussian to Lorentzian. A long correla-
tion time gives a Gaussian absorption band, as we would expect for a spectrum
that is inhomogeneously broadened; a short correlation time gives a Lorentzian
band corresponding to the homogeneous lineshape.

Equation (10.70) is a manifestation of a general principle called the fluctuation–
dissipation theorem, which describes how the response of a system to a small
perturbation such as an electric field is related to the fluctuations of the system at
thermal equilibrium. Derivations and additional discussion can be found in Callen
and Greene (1952), Greene and Callen (1952), Berne and Harp (1970), de Groot
and Mazur (1984), Mukamel (1995), McHale (1999), and May and Kühn (2000).

Although Kubo’s relaxation function can describe dephasing on time scales
that are either shorter or longer than the energy correlation time, it rests on
a particular model of the fluctuations and it still assumes that the correlation
function, M(t), decays exponentially with time. Sinusoidal components can be
added to M(t) in Eq. (10.69) to represent coupling to particular vibrational modes
of the molecule (Mukamel 1995; de Boeij et al. 1996; Joo et al. 1996). But more
importantly, Eq. (10.69) also assumes that the mean energy difference between
states n and m (�ωnm) is independent of time and is the same whether the system
is in state n or state m. These assumptions are not very realistic because relaxations
of the solvent around an excited molecule cause the emission to shift with time.
This brings us back to the distinction between classical and semiclassical spectral
density functions, which we discussed briefly in Sect. 10.6 in connection with the
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Fig. 10.10. Absorption spectral lineshapes calculated as the Fourier transform of the Kubo
relaxation function φ(t). A τc (indicated in arbitrary time units) is varied, while σ is fixed
at 1 reciprocal time unit; B τc is fixed at 1 time unit and σ is varied as indicated. To use the
full Fourier transform (Eq. (10.70)), φ(t) is treated as an even function of time (Fig. 10.11a)

Redfield theory. We saw there that relaxations of a system to thermal equilibrium
with the surroundings require a spectral density function that is not a purely even
function of frequency (Eq. (10.54)), or equivalently, a relaxation function that
includes an imaginary component.

Noting that the relaxation and lineshape functions should, in principle, be
complex, Shaul Mukamel (Mukamel 1990, 1995; Yan and Mukamel 1991) obtained
the following more general expression for g(t):

g(t) = σ2

t∫

0

dτ1

τ1∫

0

M(τ2)dτ2 + iΛs

t∫

0

M(τ1)dτ1 . (10.71)

Here as in Eq. (10.68), M(t) is the classical correlation function of the fluctuations,
which is assumed to be the same in the ground and excited states. The scale factor
Λs for the imaginary term is the solvent reorganization energy in units of angular
frequency (Fig. 4.28). If M(t) decays exponentially with time constant τc, then
evaluating the integrals in Eq. (10.71) and defining Γ = 1 − exp(−t/τc) yields

g(t) = σ2τ2
c

{(
t/τc

)
− [1 − exp(−t/τc)]

}
+ iΛsτc [1 − exp(−t/τc)] (10.72)

and

φ(t) = exp
{

−σ2τ2
c

[(
t/τc

)
− Γ

]
− iΛsτcΓ

}

= exp
{

−σ2τ2
c

[(
t/τc

)
− Γ

]}
[cos(ΛsτcΓ) − i sin(ΛsτcΓ)] . (10.73)

Fourier transforms of φ(t) and φ∗(t) give the absorption and emission spectra,
respectively (Mukamel 1990; Yan and Mukamel 1991; Mukamel 1995; Fleming and
Cho 1996).
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The reorganization energy Λs generally increases with σ2. A large value of σ2

means that the energy difference between the ground and the excited state depends
strongly on fluctuating interactions of the molecule with the solvent, which implies
that relaxations of the solvent will cause a substantial decrease in the energy of the
excited state. The expected relationship in the high-temperature limit is (Yan and
Mukamel 1991)

Λs = σ2
�/2kBT . (10.74)

Evaluating the constants for 295 K gives Λs = (1.295 × 10−14 s)σ2.
Figure 10.11a shows the real and imaginary parts of the relaxation function φ

given by Eqs. (10.73) and (10.74) when τcσ = 10. Kubo’s relaxation function
(Eq. (10.69)) is shown for comparison. Figure 10.11b shows the calculated absorp-
tion and emission spectra for τcσ = 2, 5, and 10. Including the term involving
Λs in the relaxation function shifts the absorption to higher energies and the flu-
orescence to lower energies. In agreement with the relationship we discussed in
Chap. 5, the Stokes shift is 2Λs. Increasingσ increases the Stokes shift as it broadens
the spectra.

Relaxations of solvent–chromophore interactions can be studied experimentally
by hole-burning spectroscopy, time-resolved pump–probe measurements, and
photon-echo techniques that we discuss in the next chapter. If the temperature is
low enough to freeze out pure dephasing, and a spectrally narrow laser is used to
burn a hole in the absorption spectrum (Sect. 4.11), the zero-phonon hole should
have the Lorentzian lineshape determined by the homogeneous lifetime of the

Fig. 10.11. a The real (solid line) and imaginary (dashed line) parts of the complex relaxation
function φ(t) given by Eqs. (10.73) and (10.74) with τc = 1 arbitrary time unit and σ = 10
reciprocal time units. The dotted line shows the Kubo relaxation function (Eq. (10.69)),
treated as an even function of time, φ(−t) = φ(t). b Absorption (solid lines) and emission
(dashed lines) spectra calculated as the Fourier transforms of, respectively, the complex
relaxation function φ(t) (Eqs. (10.72), (10.73)) and its complex conjugate φ∗(t). The auto-
correlation time constant τc was 1 arbitrary time unit, and σ was 2, 5, or 10 reciprocal time
units, as indicated
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excited state. The hole width increases with increasing temperature as the pure
dephasing associated with σ2 comes into play (Volker 1989; Reddy et al. 1992a,b).

The parameters σ2 and τc also can be obtained by classical molecular-dynamics
simulations in which one samples the fluctuations of the energy difference between
the ground and excited states during trajectories on the potential surfaces of ground
and excited states. The variance and autocorrelation function of the fluctuations
in the ground state provide σ2 and τc for the absorption spectrum, and those in
the excited state give the corresponding parameters for fluorescence. A Fourier
transform of the autocorrelation function of the energy gap also can be used to
identify the frequencies and dimensionless displacements of vibrational modes
that are strongly coupled to an electronic transition (Warshel and Parson 1991,
2001).

Further discussion of relaxation functions can be found in Chap. 8 and Berne
and Harp (1970), Mukamel (1990, 1995), de Boeij et al. (1996, 1998), Fleming and
Cho (1996), Joo et al. (1996), Myers (1998), and McHale (1999).

10.8
Anomalous Fluorescence Anisotropy

In this section, we discuss a manifestation of electronic coherence in fluorescence
spectroscopy: fluorescence anisotropy exceeding the classical maximum of 0.4.
Such anisotropy has been seen at short times after excitation with femtosecond
laser pulses that cover a sufficiently broad band of wavelengths to excite multiple
optical transitions coherently.

To examine the effect of coherence on fluorescence anisotropy, consider a system
with a ground state (state 1) and two electronically excited states (2 and 3), and
assume as before that the interaction matrix elements H12, H13, and H23 are zero in
the absence of electromagnetic radiation. Suppose that an ensemble of systems in
the ground state is excited with a weak pulse of light that is much shorter than the
lifetime of the excited state (T1). In the impulsive limit, the population of excited
state 2 generated by the pulse is

ρ22(0) ≈ ∣∣̂μ21 · êi
∣∣2K22 , (10.75a)

where

K22 = Θ

0∫

−∞
dt

∞∫

0

ε21(ν)ν−1I(ν, t)dν . (10.75b)

Here êi and μ̂21 are unit vectors defining the polarization of the excitation light and
the orientation of the transition dipole μ21, respectively; Θ = (3,000 ln 10)/hNA;
ε21(ν) is the molar extinction coefficient for excitation to state 2; and I(ν, t) de-
scribes the dependence of the excitation flash intensity on frequency and time. The
bars indicate averaging over the ensemble as usual, but we assume here that |μ21|
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is the same for all the molecules, so that the averaging procedure needs to consider
only the distribution of orientations relative to the polarization of the excitation
light. To the same approximation,

ρ33(0) ≈ ∣∣̂μ31 · êi
∣∣2K33 , (10.75c)

where

K33 = Θ

0∫

−∞
dt

∞∫

0

ε31(ν)ν−1I(ν, t)dν . (10.75d)

The initial value of ρ32 created by the excitation flash can be estimated similarly:

ρ32(0) ≈ ∣∣̂μ31 · êi
∣∣2 ∣∣̂μ21 · êi

∣∣2K32 , (10.76a)

where

K32 = Θ
∫

dt
∫
[ε31(ν)ε21(ν)]1/2 ν−1I(ν, t)dν , (10.76b)

where the square root can be taken arbitrarily to be positive. The expressions in
Eq. (10.76), which are a generalization of an expression suggested by Rahman et al.
(1979), arbitrarily assignρ32(0) a purely real value. In general,ρ23(0) is complex and
depends on the convolution of Eq. (B10.1.9) with the electric field in the excitation
pulse, E(ν, t). The main point is that a short excitation pulse can create coherence
between states 2 and 3 if it overlaps the absorption bands for excitation to both
states. Such overlap is a common feature of measurements made with femtosecond
laser pulses, which inherently have large spectral widths.

Following the excitation pulse, ρ32(t) will execute damped oscillations with
a period of h/|E32|. How does the transient coherence between states 2 and 3 affect
the fluorescence intensity and anisotropy as a function of time after the excitation?
Because fluorescence reflects radiative decay of ρ22 or ρ33, let us find steady-state
expressions for ∂ρ22/∂t and ∂ρ33/∂t during a probe pulse of weak, broadband light.
If the pump and probe pulses are well separated in time, these derivatives will tell
us the rate of stimulated emission, which will be proportional to the intensity of
spontaneous fluorescence. A more refined analysis that incorporates the detailed
time courses of the pump and probe pulses requires evaluating the interaction of
the probe field with the time-dependent third-order polarization as described in
Chap. 11.

By proceeding as we did to obtain Eq. (10.39) but adding the term involving
ρ32H13 from Eq. (B10.1.4), we obtain

∂ρ12(t)/∂t =
(
i/�

) (
ρ22 − ρ11

)
μ12 · E0 exp(2πiνt) +

[(
i/�

) (
E21

)
− 1/T2

]
ρ12(t)

+
(
i/�

)
μ13 · E0 exp(2πiνt)ρ32(t) . (10.77)
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We have written this expression for the density matrix of a particular individual
system rather than the averaged density matrix for an ensemble of systems. This
is because, although the transition dipoles μ12 and μ13 for an individual system
might have any angle with respect to the laboratory coordinates or with respect to
the electric field vector of the pump pulse, we assume that their orientations do
not change during the short time interval between the pump and probe pulses. We
therefore need to average the product μ13 · E0 exp(2πiνt)ρ32 and the other similar
products in Eq. (10.77) over all the orientations of the individual systems, rather
than calculating the product of the ensemble-averages of the separate components.
We will do the required averaging after we find∂ρ22/∂t and∂ρ33/∂t for an individual
system.

Continuing as in Eqs. (10.39)–(10.42) and making the steady-state approxima-
tion for ρ12 and ρ21 gives

ρ12(ν) ≈ (
−i/�

) [
μ12 · E0

(
ρ22 − ρ11

)
+ μ13 · E0ρ32

]
/
[(

i/�
) (

E21 − hν
)

− 1/T2
]

(10.78a)

and

ρ21(ν) ≈ (
i/�

) [
μ21 · E0

(
ρ22 − ρ11

)
+ μ31 · E0ρ23

]
/
[(

i/�
) (

E21 − hν
)

− 1/T2
]

.
(10.78b)

And because H23 and H32 are assumed to be zero and we are considering only
radiative transitions between states 1 and 2, the expression corresponding to
Eq. (B10.1.2) becomes

∂ρ22/∂t =
(
i/�

)
[ρ21(t)H12 − ρ12(t)H21]

=
(
i/�

)
[exp(−2πiνt)ρ21(ν)H12 − exp(2πiνt)ρ12(ν)H21]

=
{(
ρ11 − ρ22

) ∣∣μ21 · E0
∣∣2 − (1/2)

[(
μ31 · E0

) (
μ12 · E0

)
ρ23

+
(
μ13 · E0

) (
μ21 · E0

)
ρ32

] }
W12(ν)

=
[(
ρ11 − ρ22

) ∣∣μ21 · E0
∣∣2 − Re

(
ρ23

) (
μ21 · E0

) (
μ31 · E0

)]
W12(ν) ,

(10.79)

where W12(ν) is a Lorentzian lineshape function for fluorescence from state 2,

W12(ν) =
(
2/T2

)
/
[(

E21 − hν
)2

+
(
�/T2

)2
]

. (10.80)

Since Re(ρ23) oscillates and decays with time, Eq. (10.79) indicates that the ampli-
tude of fluorescence from state 2 will execute similar damped oscillations, converg-
ing on a level that depends on the population difference ρ11 −ρ22. The fluorescence
from state 3 will oscillate at the same frequency, because Re(ρ23) = Re(ρ32).

To calculate the expected fluorescence anisotropy, we now evaluate the rate
of fluorescence with frequency ν and polarization êf, following excitation with
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polarization êi. Because we are interested in the initial rate of radiative transitions
from state 2 to state 1, we can set ρ11 to zero in Eq. (10.79). The density matrix
elements ρ22 and ρ23 can be obtained from Eqs. (10.75) and (10.76). Averaging over
all orientations then gives the initial rate of emission from state 2:

F12
(
ν, êi, êf

)
=
[(

êi · μ̂21
)2 (

êf · μ̂21
)2

K22

+
(
êi · μ̂21

) (
êi · μ̂31

) (
êf · μ̂21

) (
êf · μ̂31

)
K23

]
W21(ν) . (10.81)

In Chap. 5 we considered the fluorescence anisotropy of a molecule with only one
excited state. In that case, or in the event that the excitation pulse does not overlap
with both the 1 → 2 and 1 → 3 transitions, K23 = 0. The second term on the right

side of Eq. (10.81) then drops out, leaving F12 =
(
êi · μ̂21

)2 (
êf · μ̂21

)2
K22W21(ν). For

an isotropic sample, the orientational average in this last expression evaluates to
1/5 if êf is parallel to êi, and to 1/15 if êf and êi are perpendicular (Box 10.5). The
fluorescence polarized parallel to the excitation thus is 3 times the fluorescence
with perpendicular polarization, which gives a fluorescence anisotropy of 0.4 in
agreement with Eqs. (5.61) and (5.62). [Recall that the fluorescence anisotropy r is
(F|| − F⊥)/(F|| + 2F⊥).]

Box 10.5 Orientational averages of vector dot products

Orientational averages such as those in Eq. (10.81) can be evaluated by a gen-
eral procedure involving the use of Euler angles (van Amerongen and Struve
1995). Here are the results for several cases of interest.

Let the excitation polarization êi be parallel to the laboratory x-axis, and
the fluorescence detection polarization êf be parallel to x for a measurement
of F|| or to y for a measurement of F⊥; let ξ be the angle between transition
dipoles μ21 and μ31. If the sample is isotropic, then

(
x̂ · μ̂21

)2
= 1/3 , (B10.5.1)

(
x̂ · μ̂21

)4
= 1/5 , (B10.5.2)

(
x̂ · μ̂21

) (
ŷ · μ̂21

)
= 1/15 , (B10.5.3)

(
x̂ · μ̂21

) (
x̂ · μ̂31

)
= (cos ξ)/3 , (B10.5.4)

(
x̂ · μ̂21

)2 (
x̂ · μ̂31

)2
= (1 + 2cos2 ξ)/15 , (B10.5.5)

(
x̂ · μ̂21

)2 (
ŷ · μ̂31

)2
= (2 − cos2 ξ)/15 , (B10.5.6)

and
(
x̂ · μ̂21

) (
x̂ · μ̂31

) (
ŷ · μ̂21

) (
ŷ · μ̂31

)
= (3cos2 ξ − 1)/30 . (B10.5.7)
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The values 3/5 and 1/5 given by Eqs. (5.61) and (5.62) refer to
(
x̂ · μ̂)4

/
(
x̂ · μ̂)2

and
(
x̂ · μ̂)2 (

ŷ · μ̂)2
/
(
x̂ · μ̂)2

, respectively. Equations (B10.5.5) and (B10.5.6)
account for the anisotropy of incoherent emission from a molecule with
absorption and emission transition dipoles oriented at an angle ξ (Eq. (5.68)).

The text describes the use of the above expressions to calculate the fluo-
rescence anisotropy of an ensemble of molecules in which states 2 and 3 are
excited coherently. The same expressions also can be used to calculate the flu-
orescence anisotropy for an incoherent mixture of states 2 and 3. In the latter

situation, F|| will be proportional to
[
ρ22

(
x̂ · μ̂21

)4
+ ρ33

(
x̂ · μ̂21

)2 (
x̂ · μ̂31

)2
]

K22

+
[
ρ33

(
x̂ · μ̂31

)4
+ ρ22

(
x̂ · μ̂31

)2 (
x̂ · μ̂21

)2
]

K33, where ρ22 and ρ33 are the pop-

ulations of the two states and K22 and K33 are as defined in the text. F⊥ will

be proportional to
[
ρ22

(
x̂ · μ̂21

)2 (
ŷ · μ̂21

)2
+ ρ33

(
x̂ · μ̂21

)2 (
ŷ · μ̂31

)2
]

K22

+
[
ρ22

(
x̂ · μ̂31

)2 (
ŷ · μ̂31

)2
+ ρ33

(
x̂ · μ̂31

)2 (
ŷ · μ̂21

)2
]

K33. If K22 = K33 andρ22 =

ρ33, the anisotropy will be (1 + 3 cos2 ξ)/10, which is 0.4 for ξ = 0◦ and 0.1 for
ξ = 90◦.

The second term on the right side of Eq. (10.81) represents the coherence
between excited states 2 and 3. Because such coherences usually decay on a subpi-
cosecond time scale, they are of little significance in conventional measurements
of fluorescence amplitudes or anisotropy. We therefore neglected them in Chap. 5.
However, coherence can have large effects on the fluorescence at short times (Rah-
man et al. 1979; Wynne and Hochstrasser 1993; van Amerongen and Struve 1995).
Suppose for simplicity that K23 ≈ K22, and let the angle between the transition
dipoles μ21 and μ31 be ξ. The initial anisotropy calculated from Eq. (10.81) and the
orientational averages given in Box 10.5 then is

r =
F|| − F⊥

F|| + 2F⊥
=

F12(ν, x̂, x̂) − F12(ν, x̂, ŷ)
F12(ν, x̂, x̂) + 2F12(ν, x̂, ŷ)

=

[
1/5 + (1 + 2 cos2 ξ)/15

]
−
[
1/15 + (3 cos2 ξ − 1)/30

]

[1/5 + (1 + 2 cos2 ξ)/15] + 2 [1/15 + (3 cos2 ξ − 1)/30]
=

7 + cos2 ξ
10 + 10 cos2 ξ

.

(10.82)

Figure 10.12 shows how the calculated anisotropy and the amplitude of the isotropic
fluorescence (F|| + 2F⊥) depend on ξ. If ξ = 90◦, which as we discuss in Chap. 9
is the expected angle between the transition dipoles of the two “exciton” states
of a dimer, coherence between states 2 and 3 does not affect the amplitude of
the isotropic fluorescence. The initial anisotropy, however, will be 0.7 instead
of 0.4. The predicted anisotropy will drop to 0.4 as the off-diagonal density matrix
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Fig. 10.12. Anisotropy and isotropic
fluorescence amplitude calculated by
Eqs. (10.84) and (10.85) (with K23 = K22)
for an ensemble with two coherently
excited states, as functions of the
angle (ξ) between the transition dipoles.
The isotropic fluorescence is expressed
relative to the amplitude expected for
an incoherently excited ensemble of
systems with the same value of ξ

elements ρ23 and ρ32 decay to zero. For a three-state system with three orthogonal
transition dipoles, the initial anisotropy is predicted to be 1.0, which means that
the fluorescence is completely polarized parallel to the excitation (van Amerongen
and Struve 1995)!

To generalize Eq. (10.81), consider a system with M excited states. If we can
evaluate the product of the density matrix and the fluorescence operator for an
ensemble of systems, we can use Eq. (10.14) to calculate the fluorescence from any
given excited state. Equation (10.74) suggests that the operator F̃ for the dipole
strength of fluorescence with polarization êf can be written symbolically as

F̃ = μ̃ · êf
∣∣ψ1

〉 〈
ψ1

∣∣ μ̃ · êf , (10.83)

which has matrix elements Fmn = 〈ψm |̃μ ·̂ef|ψ1〉〈ψ1 |̃μ ·̂ef|ψn〉, or (μm1 · êf)(μn1 · êf).
Here ψm, ψn, and ψ1 are the wavefunctions of states m, n, and the ground state,
respectively. If we include the homogeneous emission spectrum W1n(ν) as a gen-
eralization of W12(ν) (Eq. (10.80)), it follows from Eq. (10.14) that the fluorescence
from state n with polarization êf and frequency ν is

F1n
(
ν, êi, êf

)
=

⎡

⎣ρnnFnn + (1/2)
M∑

m=n

(
ρnmFmn + ρmnFnm

)
⎤

⎦W1n(ν) , (10.84)

where the ρnmFjk depend on the excitation polarization. If the density matrix
immediately after the excitation pulse is given by Eqs. (10.75) and (10.76), the
initial fluorescence from state n will be

F1n
(
ν, êi, êf

)
=
∑

m

(
êi · μ̂n1

) (
êi · μ̂m1

) (
êf · μ̂n1

) (
êf · μ̂m1

)
KnmW1n(ν) . (10.85)

Note that Eq. (10.85) describes the fluorescence immediately after the excitation
pulse. As the off-diagonal elements decay to zero, the fluorescence becomes simply
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(
êi · μ̂n1

)2 (
êi · μ̂n1

)2
KnnW1n(ν). Equation (10.85) also assumes that Wn1(ν), Knn,

and Knm are the same for all the systems in the ensemble; if this is not the case,
these factors must be averaged along with the geometric parameters.

Initial fluorescence anisotropies greater than 0.4 have been measured in por-
phyrins, which have two degenerate excited states with orthogonal transition
dipoles (Sect. 4.7; Wynne and Hochstrasser 1993). Anisotropies that appear to
exceed 0.4 initially and that decay on a time scale of about 30 fs also have been
seen in the stimulated emission from photosynthetic bacterial antenna complexes
(Nagarajan et al. 1999). As we discussed in Chap. 8, these complexes have sev-
eral allowed transitions with similar energies and approximately perpendicular
transition dipoles. Excitation with a short pulse probably creates a coherent su-
perposition of excited states that relaxes rapidly to an incoherent mixture of states
with approximately the same populations, and then to a Boltzmann equilibrium.



11 Pump–Probe Spectroscopy,
Photon Echoes,
and Vibrational Wavepackets

11.1
First-Order Optical Polarization

In the last chapter, we used a steady-state treatment to relate the shape of an ab-
sorption band to the dynamics of relaxations in the excited state. Because a period
on the order of the electronic dephasing time (T2) will be required to establish
a steady state, Eqs. (10.43) and (10.44) apply only on time scales longer than this.
We need to escape this limitation if we hope to use spectroscopic techniques to
explore the relaxation dynamics themselves. Our first goal in this chapter is to
develop a more general approach for analyzing spectroscopic experiments on fem-
tosecond and picosecond time scales. This provides a platform for discussing how
pump–probe and photon-echo experiments can be used to probe the dynamics of
structural fluctuations and the transfer of energy or electrons on these short time
scales.

Consider an ensemble of systems, each of which has two states (a and b) with en-
ergies Ea and Eb. Let H0 be the Hamiltonian of the individual systems in the absence
of external perturbations and assume that its off-diagonal elements (H0

ba and H0
ab)

are zero, so that the ensemble is stationary. The elements of the commutator [ρ, H0]
then are [ρ, H0]nm =

∑
k

(
ρnkH0

km − H0
nkρkm

)
= (Em −En)ρnm. To simplify the nota-

tion below, letωmn = (Em −En)/� = −ωnm. In the presence of a weak radiation field
E(t) = E0[exp(iωt)+exp(−iωt)], the Hamiltonian becomes H(t) = H0+V(t), where
the elements of the interaction matrix V are Vnm = −μnm ·E0[exp(iωt)+exp(−iωt)]
and μnm is the transition dipole. The commutator that determines the time depen-
dence of the density matrix then is [ρ, H] = [ρ, H0] + [ρ, V].

We can simplify things further if we adjust all the elements of ρ by subtracting
the Boltzmann-equilibrium values in the absence of the radiation field (0 for off-
diagonal elements and ρ0

nn as prescribed by Eq. (10.26) for diagonal elements). The
rate constant for stochastic relaxations of the adjusted density-matrix element ρnm

then can be written simply as γnm, where γnm = 1/T1 for n = m and 1/T2 for n = m.
With these definitions and adjustments, the stochastic Liouville equation

(Eq. (10.30)) for the ensemble of two-state systems in the presence of the radi-
ation field takes the form

∂ρnm/∂t =
(
i/�

) [
ρ, H0]

nm +
(
i/�

)
[ρ, V]nm − γnmρnm (11.1a)

=
(
i/�

)
[ρ, V]nm −

(
iωnm + γnm

)
ρnm . (11.1b)
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The trick now is to expand ρnm(t) in a series of increasing orders of perturbation
by the radiation field (Slichter 1963):

ρnm = ρ(0)
nm + ρ(1)

nm + ρ(2)
nm + · · · (11.2)

where ρ(0)
nm is the density matrix at equilibrium in the absence of the radiation

field, ρ(1)
nm is the perturbation to ρ(0)

nm in the limit of a very weak field (a linear, or

first-order perturbation), ρ(2)
nm is a perturbation that is quadratic in the strength

of the field, and so forth. If we view perturbations of progressively higher orders
as developing sequentially in time, we can use Eq. (11.1b) to write their rates of
change:

∂ρ(0)
nm

∂t
= −

(
iωnm + γnm

)
ρ(0)

nm , (11.3a)

∂ρ(1)
nm

∂t
=
(
i/�

) [
ρ(0), V

]

nm
−
(
iωnm + γnm

)
ρ(1)

nm , (11.3b)

and

∂ρ(2)
nm

∂t
=

(
i/�

) [
ρ(1), V

]

nm
−
(
iωnm + γnm

)
ρ(2)

nm , (11.3c)

and in general,

∂ρ(k)
nm

/
∂t =

(
i/�

) [
ρ(k−1), V

]

nm
−
(
iωnm + γnm

)
ρ(k)

nm . (11.4)

The solution to Eq. (11.4) for ρ(k)
nm at time τ is

ρ(k)
nm(τ) =

(
i/�

)
τ∫

0

[
ρ(k−1), V

]

nm
exp

[
−
(
iωnm + γnm

) (
τ − t

)]
dt . (11.5)

The terms in Eq. (11.2) thus represent the results of sequential interactions of
the ensemble with the radiation field, convolved with the oscillations and decay dy-
namics of the states and coherences generated by these interactions. If an ensemble
of two-state systems starts out with all the systems in the ground state (a), a single
interaction with the field creates one of the off-diagonal density matrix elements
(ρab or ρba), which represent coherences of state a with the excited state (b). A sec-
ond interaction can either create a population in state b (ρbb) or regenerate ρaa.
Such sequences of interactions are described as pathways in Liouville space, and
can be represented schematically as shown in Fig. 11.1. A Liouville-space diagram
consists of a square lattice, with each of the lattice points (circles in Fig. 11.1)
labeled by the two indices of a density-matrix element. A vertical line connecting
two circles represents an interaction that changes the left index; a horizontal line,
an interaction that changes the right index. The convention used here is that the
density matrix of a resting ensemble begins at the lower-left corner of the diagram
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Fig. 11.1. Pathways in Liouville space. The circles labeled a,a and b,b represent the diagonal
elements of the density matrix (populations) for a two-state system; those labeled a,b and
b,a represent off-diagonal elements (coherences). Lines represent individual interactions
with a radiation field, with vertical lines denoting interactions that change the left-hand
(ket) index of the density matrix and horizontal lines those that change the right-hand
(bra) index. In the convention used here, the zero-order density matrix (ρ(0)) is at the
lower left, and time increases upwards and to the right; downward or leftward steps are not
allowed. The coherences in the shaded circles are end points of the two one-step pathways
[ρa,a → ρb,a (b) and ρa,a → ρa,b (c)] that contribute to the first-order density matrix (ρ(1))
and the first-order optical polarization (P(1)). A second interaction with the radiation field
(dotted line) can convert a coherence to the excited state (ρbb) or the ground state (ρaa).
The pathways in b and c are described as complex conjugates because one can be generated
from the other by interchanging the two indices at each step

and spreads upward and to the right on each interaction with an electromag-
netic radiation field. The coherences or populations that are generated by a given
number of interactions, and so make up that order of the density matrix, lie on an
antidiagonal line. In Fig. 11.1, the coherences that contribute to ρ(1) are highlighted
in gray.

Figure 11.2 shows another useful representation, called a double-sided Feynman
diagram. The two vertical lines in this diagram represent the left and right indices
of the density matrix, and each interaction with the field is represented by a wavy
arrow pointing to or away from one of the lines. Time increases upwards. Arrows
pointing toward a vertical line are associated with absorption of a photon; arrows
pointing away, with emission of a photon. The diagram also can convey additional
information such as the wavevector and frequency of the radiation (Ward 1965; Yee
and Gustafson 1978; Druet and Taran 1981; Yan et al. 1989; Mukamel 1990, 1995;
Joo and Albrecht 1993; Sepulveda and Mukamel 1995; Fleming and Cho 1996; Su
and Yu 2003).

The power-series expansion of ρ(t) can be used with Eq. (10.14) to find the
expectation value of the macroscopic electric dipole for an ensemble of systems
exposed to an electromagnetic field:

〈
μ(t)

〉
=
∑

k

P(k)(t) , (11.6)
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Fig. 11.2. Double-sided Feynman diagrams. The two vertical lines represent the evolution of
the left (ket) and right (bra) indices of the density matrix. Time increases from the bottom
to the top of the diagram. In the two-state system considered here, diagonal elements of ρ
are labeled a,a and b,b for the ground and excited states, respectively, and a,b and b,a denote
off-diagonal elements. Wavy arrows labeled with a frequency (ω) indicate interactions
with an electromagnetic radiation field. Incoming arrows are associated with absorption
of a photon (an increase in one of the indices of ρ); outgoing arrows are associated with
emission ( a decrease in one of the indices). A single interaction with the field at time
zero generates a coherence that contributes to the first-order optical polarization. A second
interaction at time τ converts a coherence to either the excited state (a, c) or the ground
state (b, d). The sequences depicted in c and d are the complex conjugates of those in
a and b, respectively. a and b correspond to the paths shown in Fig. 11.1b; c and d to
those in Fig. 11.1c. Double-sided Feynman diagrams also can be used to convey additional
information, such as the wavevectors of incoming and outgoing radiation in experiments
involving multiple pulses (Yee and Gustafson 1978; Druet and Taran 1981; Mukamel 1995)

with

P(k)(t) = Tr
(

ρ(k)(t) μ
)

=
∑

n

∑

m

ρ(k)
nm(t) μmn (11.7)

and μmn = 〈ψm |̃μ|ψn〉. The terms P(k) are referred to as various orders of the op-
tical polarization. The first-order optical polarization is the quantum-mechanical
analog of the classical linear polarization of a dielectric by an oscillating electro-
magnetic field (Box 3.3); the higher-order polarizations correspond to classical
components that depend on higher powers of the field. But note that, according to
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Eqs. (11.4)–(11.7), increasing orders of the optical polarization develop sequen-
tially in time, whereas the classical polarizations with various dependences on the
field were assumed to form instantaneously and simultaneously.

The benefit of expanding the optical polarization in this way is that various
optical phenomena can be assigned to the terms with particular values of k (Arm-
strong et al. 1962; Bloembergen 1965; Ward 1965; Shen 1984; Butcher and Cotter
1990; Mukamel 1990). The first-order, or linear optical polarization (P(1)) per-
tains to ordinary absorption of light; the second-order optical polarization (P(2))
to the generation of sum and difference frequencies; and the third-order optical
polarization (P(3)) to “four-wave mixing” experiments that include pump–probe
spectroscopy, transient-grating spectroscopy, and photon-echo experiments. More
precisely, each class of optical phenomena can be related to interaction of the elec-
tric field with a particular order of the polarization.

Classically, the optical polarization is viewed as a macroscopic oscillating dipole
that can serve as either a source or an absorber of electromagnetic radiation. In
a semiclassical picture in which we treat electromagnetic radiation classically, the
energy of interaction of a radiation field E(t) with an optically polarized system is
given by

〈
H′(t)

〉
= −

〈
μ(t)

〉 · E(t) = −
∑

k

P(k)(t) · E(t) , (11.8)

or using Eq. (10.14),

〈
H′(t)

〉
= Tr

[
ρ(t) V(t)

]
, (11.9)

where V is the interaction matrix [Vnm = −μnm · E(t)]. The rate of absorption of
energy from the field is the derivative of this quantity with respect to time:

d
〈
H′〉

dt
=

d
dt

Tr
(
ρ V

)
= Tr

(
∂
(
ρ V

)

∂t

)

= Tr
(

ρ
dV

dt

)
+ Tr

(
V

dρ
dt

)
. (11.10)

The last term on the right side of Eq. (11.10) is zero. You can show this by using
the Von Neumann equation (Eq. (10.24)) and noting that, because cyclic permu-
tation of three matrices does not change the trace of the product of the matrices
(Appendix 2), Tr(VρV) − Tr(VVρ) = 0:

Tr
(

V
dρ
dt

)
=
(
i/�

)
Tr
(
V [ρ, V]

)

=
(
i/�

) [
Tr
(
V ρV

)
− Tr

(
V V ρ

)]
= 0 . (11.11)

If we drop this term, write the oscillating radiation field as in Eq. (10.37), and
assume that the envelope of the field amplitude (E0) changes only slowly relative
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to exp(iωt), Eq. (11.10) gives

d
〈
H′〉

dt
= Tr

(
ρ

dV
dt

)
= −P(t) · d

dt
[E0 exp(iωt) + E∗

0 exp(−iωt)]

≈ −iωP(t) · [E0 exp(iωt) + E∗
0 exp(−iωt)] . (11.12)

The instantaneous rate of excitation thus is proportional to the dot product of the
optical polarization and the field, P(t) · E(t).

We saw in Eqs. (10.40)–(10.42) that the elements of the first-order density matrix
contain factors that oscillate at the same frequency as the electromagnetic field
that generates them. The same is true of the optical polarization. P therefore can
be put in the form

P(t) = P0(t) exp(iωt) + P∗
0(t) exp(−iωt) , (11.13)

where P0 and P∗
0, like E0, E∗

0 and the factors ρab and ρba in Eqs. (10.40)–(10.42),
change comparatively slowly with time. With P written in this way, Eq. (11.12)
becomes

d
〈
H′〉

dt
= −iω [P0 exp(iωt) + P∗

0 exp(−iωt)] [E0 exp(iωt) − E∗
0 exp(−iωt)]

= iω
(
P0E∗

0 − P∗
0E0

)
+ iω [P0E0 exp(2iωt) − P∗

0E∗
0 exp(−2iωt)] . (11.14)

If we average this expression over the period of the oscillation, the factors contain-
ing exp(±2iωt) drop out, leaving

d
〈
H′〉

dt
= iω

(
P0E∗

0 − P∗
0E0

)
= 2ω Im

(
P0E∗

0

)
. (11.15)

To illustrate the use Eqs. (11.4)–(11.7) and (11.15), let us evaluate ρ(1) and P(1)

for an ensemble of two-state systems that are exposed to light. If the ensemble is
at thermal equilibrium before the light is switched on, the initial density matrix is

ρ(0) =

[
ρ0

aa 0

0 ρ0
bb

]

. (11.16)

Suppose that the amplitude of the oscillating electric field rises from zero to E0

at time zero and then remains constant at this level. Neglecting the initial rise,
the perturbation matrix V for t ≥ 0 then is given by Vab = −μab · E(t). We have
assumed here that the transition dipoles are the same for all members of the
ensemble (Vab = Vab), although Vab usually must be averaged together with ρ over
molecules with different orientations relative to the incident radiation. Let us also
neglect any dependence of E0 and μab on ω, and assume further that the two basis
states have no net charge or dipole moment, so Vaa = Vbb = 0.
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With these assumptions, the commutator
[

ρ(0), V
]

is zero for t < 0, and becomes

[
ρ(0), V

]
=

⎡

⎣
0

(
ρ0

aa − ρ0
bb

)
Vab(

ρ0
bb − ρ0

aa

)
Vba 0

⎤

⎦ (11.17)

for t ≥ 0. You can check these matrix elements by referring to Eq. (10.21) and
Box 10.1. For example, the entry for [ρ(0), V]ab, which pertains to the growth of

ρ(1)
ab , is
[

ρ(0), V
]

ab
=
∑

k

(
ρ(0)

ak Vkb − Vakρ
(0)
kb

)

=
(
ρ(0)

aa − ρ(0)
bb

)
Vab + ρ(0)

ba

(
Vbb − Vaa

)
=
(
ρ(0)

aa − ρ(0)
bb

)
Vab. (11.18)

Similarly, [ρ(0), V]aa = ρ(0)
ab Vba − ρ(0)

ba Vab = 0, because ρ(0)
ab and ρ(0)

ba are zero.

Using [ρ(0), V]ab from Eq. (11.18) with Vab from Eq. (10.37), Eq. (11.5) gives

ρ(1)
ab (τ) =

(
i/�

) (
ρ0

bb − ρ0
aa

)

×

τ∫

0

{
exp

[
−
(
iωab + γab

)
(τ − t)

]
μab · E0 [exp(iωt) + exp(−iωt)]

}
dt . (11.19)

The integrand in Eq. (11.19) includes factors of the forms exp[i(ωab + ω)t] and
exp[i(ωab − ω)t], where ωab again is (Haa − Hbb)/�. Because ωab = −ωba and
excitation from state a to state b will occur only if ω ≈ωba, exp[i(ωab + ω)t] ≈ 1.
The factor exp[i(ωab −ω)t], on the other hand, is approximately exp(2iωabt), which
oscillates rapidly between positive and negative values and contributes little to the
final value of the integral at times greater than 1/ω. Neglecting the term exp(−iωt)
is essentially the same as the rotating-wave approximation we used in Sect. 10.6.
With this approximation, we have

ρ(1)
ab (τ) ≈ i

�

(
ρ0

bb − ρ0
aa

)
μab · E0 exp

[
−
(
iωab + γab

)
τ
]

×

τ∫

0

{
exp

[ (
iωab + iω + γab

)
t
]}

dt

=
i
�

(
ρ0

bb − ρ0
aa

)
μab · E0 exp

[
−
(
iωab + γab

)
τ
]

×

(
exp

[ (
iωab + iω + γab

)
τ
]

− 1

i
(
ωab + ω

)
+ γab

)

=
i
�

(
ρ0

bb − ρ0
aa

)
μab · E0

exp(iωτ) − exp [−(iωab + γab)τ]
i (ωab + ω) + γab

. (11.20)
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For comparison of Eq. (11.20) with the corresponding steady-state expres-

sion, multiplying ρ(1)
ab by exp(−iωτ) to remove the rapid oscillation with time

(Eq. (10.40)), and setting ω ≈ ωba = −ωab, gives

ρ(1)
ab = ρ(1)

ab exp(−iωτ) =
i
�

(
ρ0

bb − ρ0
aa

)
μab · E0

1 − exp
[
−
(
iωab + iω + γab

)
τ
]

i
(
ωab + ω

)
+ γab

≈ i
�

(
ρ0

bb − ρ0
aa

)
μ12 · E0

1 − exp
(
−γabτ

)

i
(
ωab + ω

)
+ γab

. (11.21)

Except for the additional factor [1 − exp(−γabτ)] in the numerator, this is the same
as Eq. (10.42a). As τ increases, the factor [1 − exp(−γabτ)] takes ρab exp(−iωτ) to
its steady-state value with time constant 1/γab, which is T2 in a two-state system.

Now that we have ρ(1), we can use Eq. (11.4) to find ∂ρ(2)
bb /∂t, which will give us

the time course of excitation to state b. The required element of the commutator
[ρ(1),V] is

[
ρ(1), V

]

bb
= Vabρ

(1)
ba − Vbaρ

(1)
ab = Vab

(
ρ(1)

ab
∗ − ρ(1)

ab

)
(11.22)

and inserting [ρ(1),V]bb into Eq. (11.4) gives

∂ρ(2)
bb

/
∂t =

(
i/�

)
Vab

(
ρ(1)

ab

∗
− ρ(1)

ab

)
− γbbρ

(2)
bb . (11.23)

If we are interested in the rate of excitation at times that are short relative to the
lifetime of the excited state (t � T1 = 1/γbb), we can neglect the last term on the

right side of Eq. (11.23). Using ρ(1)
ab from Eq. (11.20), making the rotating-wave

approximation of dropping terms that oscillate at frequencies greater than ωba,
and setting ω + ωab ≈ 0, Eq. (11.23) then gives

∂ρ(2)
bb

/
∂t ≈ −

(
i
�

)(
ρ(0)

bb − ρ(0)
aa

) ∣∣μab · E0
∣∣2 [exp(iωτ) + exp(−iωτ)]

×
(

i
�

)(
exp(−iωτ) − exp [(iωab − γab)τ]

i
(
ωab + ω

)
− γab

−
exp(iωτ) − exp

[
−
(
iωab + γab

)
τ
]

i
(
ωab + ω

)
+ γab

)

≈
(
ρ(0)

bb − ρ(0)
aa

) ∣∣μ12 · E0
∣∣2

�2

(
1 − exp

(
−γabτ

)

i
(
ωab + ω

)
− γab

−
1 − exp

(
−γabτ

)

i
(
ωab + ω

)
+ γab

)

=
(
ρ(0)

aa − ρ(0)
bb

) ∣∣μ12 · E0
∣∣2

�2

(
2γab

(
ω − ωba

)2
+ γ2

ab

)
[
1 − exp

(
−γabτ

)]
. (11.24)

This is just the steady-state expression (Eq. (10.43)) multiplied by the same factor
of [1 − exp(−γabτ)] that appears in Eq. (11.22). Equation (11.24) indicates that the
rate of formation of state 2 starts at zero, increases linearly with time at short
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Fig. 11.3. The time dependence of ρ(2)
22

according to Eq. (11.27). The solid
curve is the integral of the function
[1 − exp(−γ12t)] from time t = 0 to τ.
The dashed line is the asymptote at long
times

times, and levels off at times exceeding 1/γab. The population of the excited state
therefore will increase quadratically with time at short times, as we anticipated in
Sect. 4.2. Figure 11.3 shows the predicted kinetics.

Now let us see if we get the same result by evaluating the first-order polarization.

Because ρ(1)
aa and ρ(1)

bb are zero, the first-order optical polarization at time t has only
two terms:

P(1)(t) =
∑

n

∑

m

ρ(1)
nm(t)μmn = ρ(1)

ab (t)μba + ρ(1)
ba (t)μab

= ρ(1)
ab (t) exp(iωt) μba + ρ(1)

ba (t) exp(−iωt) μab

= P(1)
0 (t) exp(iωt) + P(1)∗

0 (t) exp(−iωt) , (11.25)

with ρ(1)
ab given by Eq. (11.21) and P(1)

0 ≡ ρ(1)
ab μba.

Combining this result with Eqs. (11.15) and (11.21) gives the rate of absorption
of energy:

d
〈
H′〉

dt
= 2ω Im

(
P(1)

0 · E∗
0

)

≈ 2ω Im

[
i
�

(
ρ0

bb − ρ0
aa

) (
μab · E0

) 1 − exp
(
−γabτ

)

i
(
ωab + ω

)
+ γab

μba · E∗
0

]

= ω
(
ρ(0)

aa − ρ(0)
bb

) ∣∣μab · E0
∣∣2

�

(
2γab

(
ω − ωba

)2
+ γ2

ab

)
[
1 − exp

(
−γabt

)]
.

(11.26)

Except for a factor of �ω (the energy absorbed per excitation), this is the same as
Eq. (11.24). Using Eq. (11.15) thus gives the same result as working through the
complete first-order density matrix.
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11.2
Third-Order Optical Polarization and Nonlinear Response Functions

Although evaluating the first-order optical polarization is reasonably straightfor-
ward, the algebra becomes increasingly cumbersome, and the interpretation of
the results less transparent, as we move to higher-order terms of P. Mukamel and
coworkers (Mukamel 1982a, 1995; Mukamel and Loring 1986; Yan et al. 1989) have
developed procedures based on pathways in Liouville space that greatly simplify
the bookkeeping and that help to clarify the interpretations of various nonlinear
optical experiments. We will give an overview of these procedures for P(1) and P(3).
See Mukamel (1995) and Schuller (2002) for additional mathematical details and
more formal discussions of how operators that work in Liouville space relate to
quantum-mechanical operators that work in ordinary vector space (Hilbert space).

Consider an ensemble of systems with two electronic states (a and b), and

an initial density matrix ρ(0)
aa = 1 and ρ(0)

bb = ρ(0)
ab = ρ(0)

ba = 0. Referring to the
diagrams in Fig. 11.1, we see that each of the off-diagonal elements of ρ that
contributes to P(1) (ρab and ρba) can be formed by a pathway in Liouville space that
involves a single interaction with the radiation field (ρaa → ρab or ρaa → ρba);
a second interaction then is required to generateρbb. Take the pathway throughρab.

Rewriting Eq. (11.20) for ρ(0)
bb = 0, ρ(1)

ab at time τ is

ρ(1)
ab (τ) =

(
−i/�

)
τ∫

0

{
exp

[
−
(
iωab + γab

) (
τ − t

)]
μab · E(t)ρ(0)

aa

}
dt , (11.27)

where E(t) is the electric field at time t. The right side of this expression can be
dissected conceptually into three operations:

1. The electromagnetic radiation field acts on ρ(0)
aa for a short interval of time (Δt)

at time t, creating a small increment of an off-diagonal density-matrix element

representing coherence between states a and b
(
ρ(1)

ab

)
. The magnitude of the

increment is Δρ(1)
ab (t) = (−i/�)μab · E(t)ρ(0)

aa Δt.

2. The increment of ρ(1)
ab evolves from time t until time τ, undergoing oscillations

in the complex plane at frequency ωab and decaying with rate constant γab as
a result of fluctuating interactions with the surroundings. The fraction of the
increment remaining at time τ is exp[−(iωab + γab)(τ − t)].

3. Integrating processes 1 and 2 from t = 0 to τ gives the total value of ρ(1)
ab at time

τ resulting from excitations at all earlier times.

Steps 1–3 together comprise a convolution of the time-dependent excitation with
a time-dependent response function.

To describe this process in a general way that can be extended to higher-order
polarizations, consider a Liouville-space operator L̃mk,nk that converts density-
matrix element ρnk into element ρmk. We also need a conjugate operator L̃km,kn that
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converts ρkn to ρkm. Using these operators, we can write

−μmn · E(t)̃Lmk,nkρnk = −μmn · E(t)ρmk (11.28a)

and

−μmn · E(t)̃Lkm,knρkn = −μmn · E(t)ρkm . (11.28b)

We next define a time evolution operator G̃mn(t1) that acts on ρnm at a given time t
and generates the value at time t + τ, so that ρnm(t + t1) = G̃mn(t1)ρnm(t). Operators
of this general type are called Green functions or Green’s functions in recognition
of the nineteenth century mathematician and physicist George Green. (The name
is used broadly for solutions to linear partial differential equations. In problems
concerning the transfer of heat, for example, a Green function might describe the
heat sensed at position x2 and time t + t1 after introduction of a small amount of
heat at position x1 and time t.) If ρnm decays exponentially with time constant γnm,
the operator we need can be defined by its action on an arbitrary function A as

G̃mn(t)A = exp [−(iωmn + γmn)t] A . (11.29)

With these definitions, we have

μbaρ
(1)
ab (τ) =

∣∣μba · ê
∣∣2
(

i
�

) τ∫

0

R(τ − t)E(t) dt , (11.30)

where

R(t) = G̃ba(t)̃Lba,aaρaa , (11.31)

and ê is a unit vector indicating the polarization of the radiation field. Then,
because ρba = ρ∗

ab, the first-order optical polarization resulting from the paths
through both ρba and ρab is

P(1)(τ) = μbaρ
(1)
ab (τ) + μabρ

(1)∗
ab (τ)

=
∣∣μba · ê

∣∣2
(

i
�

) τ∫

0

[R(τ − t) − R∗(τ − t)]E(t) dt

=

τ∫

0

S(1)(τ − t)E(t) dt , (11.32)

where the linear response function S(1)(t) is

S(1)(t) =
∣∣μba · ê

∣∣2 (i/�
)
[R(t) − R∗(t)] =

(
i/2�

) ∣∣μba · ê
∣∣2 Im [R(t)] . (11.33)
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This analysis rests on the basic assumption of causality, which means that the
response of the system must follow the interaction with the field rather than
preceding it.

The Green function expressed in Eq. (11.29) assumes that off-diagonal elements
of ρ decay by simple exponential kinetics. As we discussed in Sect. 10.7, actual
relaxation functions generally are complex and can include exponential, Gaussian,
and oscillatory components. To incorporate a more realistic relaxation function,
we can generalize Eq. (11.29) to

G̃mn(t)A = exp [−iωmn − g(t)] A, (11.34)

with g(t) given by Eq. (10.71), Eq. (10.72), or another model such as a damped
harmonic oscillator.

Let us now extend the Liouville-space approach to third-order optical polar-
ization. Figure 11.4 shows four of the pertinent pathways for a two-state system
and Fig. 11.5 shows double-sided Feynman diagrams for the same paths. As in
Fig. 11.1, the first step starting from (a,a) in the lower-left corner in Fig. 11.4a
generates a coherence that is represented diagrammatically by (b,a) or (a,b) de-
pending on whether the perturbation acts on the left index (paths R1 and R4 in
Figs. 11.4b, 11.5b) or on the right index (paths R2 and R3). The second step, delayed
by time t1 after the first, converts the coherence to either (b,b) (paths R1 and R2)
or (a,a) (paths R3 and R4). The third interaction occurs at time t2 after the second
and creates coherences again. There are eight (23) different three-step paths that
end with a coherence represented by one of the shaded circles in Fig. 11.4a. The
missing paths in Fig. 11.4 are the complex conjugates of the four paths that are
shown (i.e., the paths obtained by replacing each vertical step by a horizontal step
and vice versa, or simply interchanging the bra and ket subscripts of the density
matrix element at each point). A fourth step from any of the coherences at time t
(t3 after the third interaction) gives either ρaa or ρbb.

By comparing the Feynman diagrams for P(3) (Fig. 11.5) with those for P(1)

(Fig. 11.2), and referring to Eqs. (11.29)–(11.33) for the first-order polarization,
you will find that the third-order polarization can be written

P(3)(t) =

t∫

0

dt3

t∫

0

dt2

t∫

0

dt1 S3(t3, t2, t1) E(t − t3)E(t − t3 − t2)E(t − t3 − t2 − t1) .

(11.35)

Here S(3)(t3, t2, t1) is the third-order nonlinear response function,

S(3)(t3, t2, t1) =
∣∣μba · ê

∣∣4
(

i
�

)3 4∑

σ=1

[Rσ(t3, t2, t1) − R∗
σ(t3, t2, t1)] , (11.36)

in which the Rσ are response functions for the four pathways shown in Figs. 11.4
and 11.5:
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Fig. 11.4. Generation of the third-order polarization by pathways in Liouville space. a An
extension of Fig. 11.1a, with the coherences that contribute to ρ(3) and P(3) denoted by shaded
circles. There are eight three-step pathways that start at a,a (lower-left corner) and end at
one of these circles. b Four of these pathways; the other four are the complex conjugates of
the ones shown. A fourth interaction with the field (vertical line or horizontal dotted line in
a) generates either the excited state (b,b) or the ground state (a,a) (not shown). Pathways
R1, R2, R3, and R4 correspond to the four individual response functions R1–R4 (Eq. (11.37))
that combine with their complex conjugates to make the third-order nonlinear response
function S3 (Eq. (11.36))

R1(t3, t2, t1) = G̃ba(t3)̃Lba,bb × G̃bb(t2)̃Lbb,ba × G̃ba(t1)̃Lba,aaρ
(0)
aa , (11.37a)

R2(t3, t2, t1) = G̃ba(t3)̃Lba,bb × G̃bb(t2)̃Lbb,ab × G̃ab(t1)̃Lab,aaρ
(0)
aa , (11.37b)

R3(t3, t2, t1) = G̃ba(t3)̃Lba,aa × G̃aa(t2)̃Laa,ab × G̃ab(t1)̃Lab,aaρ
(0)
aa , (11.37c)

and

R4(t3, t2, t1) = G̃ba(t3)̃Lba,aa × G̃aa(t2)̃Laa,ba × G̃ba(t1)̃Lba,aaρ
(0)
aa . (11.37d)
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Fig. 11.5. The third-order polarization by double-sided Feynman diagrams. The symbols
have the same meanings as in Fig. 11.2. The times between the interactions with the radiation
field are indicated by τ1, τ2, and τ3. The diagrams correspond to the Liouville-space paths
in Fig. 11.4 and to third-order nonlinear response functions R1–R4 (Eq. (11.4)). However,
only stimulated emission that repopulates the ground state (ρaa) is shown for the fourth
interaction with the field. This interaction also could convert the last coherence or its
complex conjugate to ρbb

The sequence of operations in these expressions proceeds from right to left and
the symbol × denotes an ordinary scalar product.

Consider the path labeled R1 in Figs. 11.4 and 11.5. In the notation used here, t1,
t2, t3, and t are the times between successive interactions with the radiation field.
The first interaction occurs at t − t1 − t2 − t3 and creates a coherence represented
by ρba. This coherence evolves for a period with length t1, bringing the time to
t − t2 − t3, when the second interaction generates ρbb. The excited state evolves
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for a period t2, bringing us to t − t3, when the third interaction regenerates ρba.
The third-order polarization created in this manner then evolves for period t3,
bringing us to t, when the final interaction yields either ρaa (as shown in Figs. 11.4,
11.5) or ρbb (not shown). The complex conjugate of this pathway (also not shown)
is ρaa → ρab → ρbb → ρab → ρaa or ρbb.

Mukamel (1982b, 1995) showed that the nonlinear response functions of
Eq. (11.37) can be calculated from a complex lineshape function g(t) of the type
introduced in Eq. (10.71). The derivation uses a cumulant expansion procedure in
which exp[−g(t)] is expanded as a Taylor series in g(t), and g(t) is expanded in
powers of the fluctuating electronic energy difference between the ground and ex-
cited states. Truncating the power series after the quadratic term gives the following
results:

R1 = exp [ − iωba(t3 + t1) − g∗(t3) − g(t1) − g∗(t2)

+ g∗(t2 + t3) + g(t1 + t2) − g(t1 + t2 + t3)] , (11.38a)

R2 = exp [ − iωba(t3 − t1) − g∗(t3) − g∗(t1) + g(t2)

− g(t2 + t3) − g∗(t1 + t2) + g∗(t1 + t2 + t3)] , (11.38b)

R3 = exp [ − iωba(t3 − t1) − g(t3) − g∗(t1) + g∗(t2)

− g∗(t2 + t3) − g∗(t1 + t2) + g∗(t1 + t2 + t3)] , (11.38c)

and

R4 = exp [ − iωba(t3 + t1) − g(t3) − g(t1) − g(t2) + g(t2 + t3)

+ g(t1 + t2) − g(t1 + t2 + t3)] . (11.38d)

These expressions apply to a variety of experiments that depend on the third-order
polarization, including pump–probe and photon-echo experiments. Three-pulse
photon-echo experiments, for example, depend on R2.

11.3
Pump–Probe Spectroscopy

In a typical pump–probe experiment, a sample is excited with a pulse with fre-
quency ω1 and wavevector k1, and is probed by a second pulse with frequency ω2

and wavevector k2. The optical path of one of the pulses is varied to change the
delay between the two pulses. The measured signal is the difference between the
intensities of the transmitted probe pulses in the presence and absence of the exci-
tation pulses, and usually is averaged over many pulses (Fig. 1.9). In a system with
only two electronic states, the difference can reflect either stimulated emission
from the excited state or bleaching of the absorption band of the ground state.
The probe frequency often is selected by dispersing a spectrally broad probe beam
after it has passed through the sample, as illustrated schematically in Fig. 1.9 (Brito
Cruz et al. 1986; Becker et al. 1988). Alternatively, part of the primary laser pulse
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can be split out before the sample and sent to a nonlinear optical device to generate
a probe pulse at a different frequency. The frequencies might, for example, be
chosen to pump on the blue side of the absorption band and to measure bleaching
or stimulated emission on the red side. Since the individual probe pulses are not
resolved, the signal reflects an integral of the product −μbaP(3)(t)E(t) from time
t = −∞ to ∞.

The radiation fields that enter into Eq. (11.35) are combinations of the fields
from the pump and probe pulses, and are given by

E(r, t′) = E1(t′ + τ)
[
exp

(
ik1 · r − iω1t′

)
+ exp

(
−ik1 · r + iω1t′

)]

+ E2(t′)
[
exp

(
ik2 · r − iω2t′

)
+ exp

(
−ik2 · r + iω2t′

)]
, (11.39)

where Ej(t) is the temporal envelope and polarization of pulse j and τ is the de-
lay between the peaks of the two pulses. In principle, the measured signal could
leave the sample with any linear combination of the four individual wavenumbers
(±k1 ± k1 ± k2 ± k2) and the same combination of the four frequencies (±ω1 ± ω1

±ω2 ±ω2), but only some of these combinations survive the rotating-wave approxi-
mation; others result in high-frequency oscillations that make little contribution to
the measured signals (Yan et al. 1989; Mukamel 1995). For example, if the pump and
probe pulses are well separated in time, the exponents in the terms exp(±iωt) must
have opposite signs for the first and second interactions with the field. Additional
signals, often called “coherence artifacts” but actually predictable consequences
of four-wave mixing, can be generated when the two pulses overlap.

In a three-state system, formation of the third state (c) can be probed by excited-
state absorption (excitation from state b to state c) as well as by stimulated emission
or ground-state bleaching. This simplifies the situation if the pump frequency (ω1)
is resonant for transitions between states a and b, whereas the probe frequency
(ω2) is selective for transitions between states b and c. Figure 11.6 shows the per-
tinent double-sided Feynman diagrams for four pathways that contribute to third-
order optical polarization. Again, the third-order nonlinear response function,
S(3)(t3, t2, t1), also includes the complex coordinates of these pathways, which are
not shown in the figure. Three interactions with the radiation field along pathway
R1, R2, or R3 lead to the coherence ρbc, which can generate either state b (ρbb) or
state c (ρcc) when it is probed by the fourth interaction. Figure 11.6 shows only
the branch leading to ρcc, and also omits the pathways shown in Fig. 11.5, which
occur in both two- and three-state systems. Pathway R4 reaches ρca but then drops
back to ρba, which can give only ρbb or ρaa on the fourth interaction. It therefore
does not contribute a measured signal indicative of state c except possibly when
the pump and probe pulses overlap in time.

Probably the most interesting of the pathways shown in Fig. 11.6 is R3. Although
this pathway yields state c on the fourth interaction with the radiation field, state b
is never actually populated: the route proceeds entirely through the coherences ρab,
ρac, and ρbc! The pathway should, therefore, be particularly sensitive to dephasing
and should occur only if delay t2 is very short. This is similar to Raman scattering,
which also involves coherences rather than “real” intermediate states (Chap. 12).
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Fig. 11.6. Double-sided Feynman diagrams for the third-order polarization in a three-state
system. Pathways that generate or pass through a coherence involving the third state are
shown. Each of these has a complex conjugate that is not shown. Only formation of the third
state is shown for the fourth interaction in pathways R1–R3, and only regeneration of the
ground state in R4

Yan et al. (1989) also connect this pathway with electron tunneling in which electron
transfer from a donor to an acceptor is facilitated by quantum-mechanical coupling
to a “virtual” intermediate state that lies higher in energy than either the initial or
the final state.

Pump–probe techniques using picosecond and subpicosecond laser pulses have
made it possible to probe chemical processes on the time scale of nuclear motions
(Zewail 1988). Figure 11.7, panel A shows a typical measurement of the early time
course of stimulated emission from a dye molecule (IR132) in solution (Nagarajan
et al. 2002). The dye was excited on the blue side of its absorption band (830 nm)
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Fig. 11.7. Pump–probe measurements of stimulated emission from (A) the laser dye IR132 in
dimethyl sulfoxide, and (B) the lowest excited singlet state of the bacteriochlorophyll dimer
that serves as the primary electron donor in reaction centers from Rhodobacter sphaeroides
(Nagarajan et al. 2002). The excitation flash was centered at 830 nm and had a full width
at half-maximum amplitude (FWHM) of about 16 fs in both cases. The probe pulse had
a FWHM of about 80 fs and was centered at 900 nm in A and 940 nm in B. The ordinate
scales are arbitrary

and stimulated emission was measured at 900 nm. The signal includes a slow-rise
component with a time constant of several hundred femtoseconds that represents
part of the Stokes shift of the emission into the detection region. The oscillatory
features reflect coherent vibrational motions that dephase as the excited state
relaxes (Sect. 11.5).

Pump–probe spectroscopy has been particularly useful in studies of light-driven
processes in photosynthesis, vision, bacteriorhodopsin, photoactive yellow pro-
tein, green fluorescent protein, and DNA photolyase. Figure 11.7, panel B shows
a measurement of the kinetics of the initial electron-transfer step in photosynthetic
bacterial reaction centers (Nagarajan et al. 2002). In this experiment, reaction cen-
ters were excited on the blue side of the long-wavelength absorption band of the
bacteriochlorophyll dimer (P) that acts as the primary electron donor, and stimu-
lated emission from the first excited singlet state of the dimer (P∗) was measured
at 940 nm. The decay of the stimulated emission reflects the dynamics of electron
transfer from P* to the neighboring bacteriochlorophyll. Fitting the decay to a bi-
exponential expression gives a major component with a time constant of 2.3 ps and
a minor component with a time constant of 7.3 ps. For some other representative
studies of bacterial reaction centers see Woodbury et al. (1985), Fleming et al.
(1988), Lauterwasser et al. (1991), Vos et al. (1994), Holzwarth and Muller (1996),
Streltsov et al. (1997), Kirmaier et al. (2002), and Haffa et al. (2004).

An extension of the pump–probe technique is to collect two-dimensional spectra
of absorption or emission signals as functions of the pump frequency on one axis
and the probe frequency on the other. The delay between the two pulses provides
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a third variable. This approach has been used to examine the correlation of IR
transitions that mix by exciton interactions in peptides and proteins (Hamm et al.
1998; Zanni and Hochstrasser 2001; Park et al. 2004).

11.4
Photon Echoes

We saw in Chap. 10 that static inhomogeneity in the energy of an excited elec-
tronic state causes an ensemble to lose coherence with Gaussian kinetics, whereas
dynamic fluctuations cause an exponential decay. Photon-echo spectroscopy pro-
vides a way to measure the fluctuation dynamics without distortion from the effects
of static inhomogeneity. We will focus on “three-pulse” photon echoes, which are
generated by illuminating a sample with three short pulses separated by adjustable
delays. Figure 11.8 shows the sequence of pulses and the optical layout in a typical
experiment, and Fig. 11.9 shows the relevant double-sided Feynman diagrams.
In both figures, interactions of the sample with the radiation field occur at times
t − t1 − t2 − t3, t − t1 − t2, t − t1, and t. The time between the centers of pulses 1 and
2 is τ, and T is the time between the centers of pulses 2 and 3.

The pulses in a three-pulse photon-echo experiment enter the sample at different
angles of incidence, and the emitted light that forms the signal is collected at
a particular angle with respect to the incident beams (Fig. 11.8a). As we discussed in
the previous section, a signal can appear with any combination of the wavevectors
of the three incident fields: ks = ±k1 ± k2 ± k3, but only certain combinations
conserve momentum and satisfy the rotating-wave conditions for a given pathway
in Liouville space. The dominant signals usually are obtained at ks = k3 + k2 − k1,
which meets the requirements for pathways R2 and R3 in Fig. 11.9, and at k′

s =
k3 + k1 − k2, which satisfies the conditions for R∗

2 and R∗
3 (Weiner et al. 1985; Joo

and Albrecht 1993; Joo et al. 1996).
Look first at path R2, in which pulse 1 precedes pulse 2 (t1 > 0) (Fig. 11.9).

This path has two periods of coherence (delay periods t1 and t3) and the density-
matrix element in the second period (ρba) is the complex conjugate of that in the
first (ρab). The two periods of coherence are separated by a “population” interval
(t2) when the systems are in the excited state (ρbb). During period t1, both static
and dynamic inhomogeneity in the energies of the molecules in the ensemble
will cause the coherence to decay. But any truly static contribution to the energy
of a given molecule will remain constant until period t3, when it will have the
opposite effect that it had during period t1. This is because the Green function
for ρba is the complex conjugate (more precisely, the Hermitian conjugate) of that
for ρab (Eq. (11.37)). Static inhomogeneity in the energy difference between states
a and b creates a distribution of the factors exp(−iωbat) in the Green function for
ρba, which disappears when it is multiplied by the same distribution of the factors
exp(−iωabt) in the Green function for ρab. Thus, the dephasing caused by static
inhomogeneity in period t1 is reversed during period t3, regenerating a coherence
that will appear as a pulse of emitted light when t3 ≈ t1. This is the photon echo.
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Fig. 11.8. Pulse sequence, optical arrangement, and field-matter interactions in a three-pulse
photon-echo experiment. a Pulses 1, 2, and 3, traveling from right to left in this diagram,
reach the sample with different wavevectors (k1, k2 and k3). Pulses 1 and 2 are separated by
time interval τ; pulses 2 and 3 by interval T. Photon echoes with wavevectors k3 ± (k2 − k1)
are measured. b Interactions of the sample with the electromagnetic fields (wavy arrows)
occur at times t – t3 – t2 – t1 (sometime during pulse 1), t –t3 – t2 (during pulse 2), and t – t3

(during pulse 3), and the echo is emitted at time t. The signal is integrated from t3 = 0 to ∞

Dephasing due to dynamic fluctuations does not undergo such a reversal, be-
cause it enters the Green functions for both ρba and ρab in an identical manner,
for example, as exp(−t/T2) for both Green functions if the coherence has a simple
exponential decay. The amplitude of the photon echo therefore will be largest when
t2 is short, and will decrease as t2 is lengthened and fluctuations on a broader range
of time scales invade the Hermitian relationship between the two Green functions.
The dependence of the echo amplitude on t2 thus will report on the fluctuation
dynamics with relatively little disturbance by the effects of static inhomogeneity.

Now look at path R1, which can be obtained from R2 by simply delaying pulse 1
so that it follows pulse 2 (t1 < 0 in Figs. 11.8, 11.9). R1 and its complex conjugate
both have two periods with the same coherence (ρba) separated by a population
interval. They do not result in echoes.

The complex conjugate of R2 (not shown in Fig. 11.9) gives photon echoes that are
the same as those of R2 but, as mentioned above, appear with wavevector ks = k1 −
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Fig. 11.9. Double-sided Feynman diagrams for the third-order polarization pathways that
generate photon echoes within the rotating-wave approximation (paths R2, R3, and their
complex conjugates), and the pathways that survive the rotating-wave approximation but
do not generate photon echoes (paths R1, R4, and their complex conjugates). If the first
three interactions with the field occur during three separate pulses as sketched in Fig. 11.8,
delaying pulse 1 so that it follows pulse 2 converts R2 into R1 and R3 into R4

k2−k3. R3 is similar to R2 in having two periods with conjugate coherences separated
by a population period. However, because the system spends the population period
in the ground state (ρaa), this path and its complex conjugate usually do not
contribute an observable signal (Joo et al. 1996). R4 and R∗

4 have corresponding
relationships to R1 and R∗

1, and also give no echoes.
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In what is probably the most informative type of three-pulse photon-echo exper-
iment, the time between pulses 1 and 2 (τ) is varied, while that between pulses 2 and
3 (T) is held constant (Figs. 11.8, 11.9). The echo signal in direction ks = k2 −k1 +k3

is integrated over time t3, and the measurements are repeated with different values
of T. The signal reflects the third-order polarization with wavevector ks, P(3)(ks),
and can be detected either by collecting the emitted light directly (homodyne
detection) or by mixing P(3)(ks) with an additional radiation field (heterodyne de-
tection). With heterodyne detection, the signal is proportional to the product of
P(3)(ks) and the additional field; with homodyne detection, it is proportional to
the squared amplitude (modulus) of the third-order polarization:

I(ks) =

∞∫

0

∣∣P(3)(ks)
∣∣2 dt3 . (11.40)

If we consider only path R2, which dominates the echo signal if pulse 1 precedes
pulse 2, the third-order polarization at time t is given by

P(3)(ks, t) =
∣∣μba · ê

∣∣4
(

i
�

)3 t∫

0

dt3

t∫

0

dt2

t∫

0

dt1 R2(t3, t2, t1)

×
[∣∣E0

3(t − t3)
∣∣ exp(iω t3)

]

×
[∣∣E0

2(t − t3 − t2 + T)
∣∣ exp(−iω t2)

]

×
[∣∣E0

1(t − t3 − t2 − t1 + τ + T)
∣∣ exp(−iω t1)

]
, (11.41)

where |E0
3(t)|, |E0

2(t)|, and |E0
1(t)| are the envelopes of the field amplitudes in the

three pulses and the response function R2(t3, t2, t1) is related to the line-broadening
function g(t) by Eq. (11.38b) (Mukamel 1995; Cho et al. 1996; Joo et al. 1996). We
have assumed that the three pulses have the same frequency (ω) and that the field
envelopes are all real functions of time.

Now suppose that the light pulses are short relative to the time intervals t1, t2,
and t3, so that t1 ≈ τ and t2 ≈ T. In this limit, Eqs. (11.40) and (11.41) reduce to

I(ks, τ > 0) =
∣∣μba · ê

∣∣6
(∣∣E0

3

∣∣2 ∣∣E0
2

∣∣2 ∣∣E0
1

∣∣2
/
�

6
) ∞∫

0

|R2|2 dt3 , (11.42)

where |E0
3|, |E0

2|, and |E0
1| are averages of the field strengths over the pulses. The

notation “τ > 0” indicates that pulse 1 must precede pulse 2 to enforce the order
of the first two interactions that make up path R2. Using Eq. (11.38b) for R2, we
obtain

I(ks, τ > 0) ∝
∞∫

0

∣∣ exp [ − g∗(t3) − g∗(t1) + g(t2) − g(t2 + t3)

− g∗(t1 + t2) + g∗(t1 + t2 + t3)]
∣∣2dt3 . (11.43)
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If pulse 1 is delayed so that it follows pulse 2 (τ < 0), R1(t3, t2, t1) replaces
R2(t3, t2, t1), and using Eq. (11.38a) for R1 gives

I(ks, τ < 0) =
∣∣μba · ê

∣∣6
(∣∣E0

3

∣∣2 ∣∣E0
2

∣∣2 ∣∣E0
1

∣∣2
/
�

6
) ∞∫

0

|R1|2 dt3

∝
∞∫

0

∣∣ exp [ − g∗(t3) − g(t1) − g∗(t2) + g∗(t2 + t3) + g(t1 + t2)

− g(t1 + t2 + t3)]
∣∣2dt3 . (11.44)

Figure 11.10 shows how the integrands in Eqs. (11.43) and (11.44) depend on
time t3 for three values of t2 at a fixed value of t1. The Kubo relaxation function
(Eq. (10.69)) was used for exp[g(t)]. If pulse 1 precedes pulse 2, so that Eq. (11.43)
applies, and if t2 is close to zero, the signal peaks when t3 ≈ t1, demonstrating
the expected rephasing by path R2 (Fig. 11.10, panel A). The peak decreases in
amplitude and moves toward t3 = 0 as t2 is lengthened and the coherence created
by pulse 1 decays. When pulse 1 follows pulse 2 so that Eq. (11.44) applies, the peak

Fig. 11.10. Dependence of three-pulse
photon-echo signals on delay time t3,
as calculated in the impulsive limit
with Eq. (11.43) for t1 = τ (the delay
between pulses 1 and 2) = 5 (A) and with
Eq. (11.44) for t1 = τ = −5 (B). The delay
between pulses 2 and 3 (t2 = T) was 0,
10, or 100, as indicated. The units of time
are arbitrary. All calculations used the
Kubo relaxation function (Eq. (10.69))
with τc = 40 time units and σ = 0.1
reciprocal time units
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Fig. 11.11. Dependence of three-pulse
photon-echo integrated signals on delay
time t1, as calculated in the impulsive
limit with Eq. (11.43) for t1 = τ (the
delay between pulses 1 and 2) < 0 and
with Eq. (11.44) for t1 = τ > 0. The delay
between pulses 2 and 3 (t2 = T) was 0,
10, or 100, as indicated. The units of time
are arbitrary. All calculations used the
Kubo relaxation function (Eq. (10.69))
with τc = 40 time units and σ = 0.1
reciprocal time units

occurs at t3 = 0 for all values of t2 because path R1 does not support rephasing
(Fig. 11.10, panel B). |R1|2 and |R2|2 become equivalent as t2 goes to ∞ and the
system loses all memory of the first pulse.

Figure 11.11 shows how the integrated signals depend on t1 for the same three
values of t2. Equation (11.44) was used when t1 < 0 and Eq. (11.43) when t1 < 0.
Again, positive values of t1 result in an echo peak that collapses toward the origin
as t2 is increased. Fleming and coworkers (Cho et al. 1996; Fleming and Cho 1996;
Joo et al. 1996; Jimenez et al. 1997; Passino et al. 1997; Jordanides et al. 1999;
Lang et al. 1999) have shown that the effect of t2 on the shift of this peak away
from zero on the t1-axis (the three-pulse photon-echo peak shift) provides a par-
ticularly useful measure of the kinetics of dynamic dephasing. Plots of this effect
are illustrated in Fig. 11.12) for several values of the correlation time constant τc

in the Kubo relaxation function. As discussed in Sect. 10.7, the Kubo function
includes both static (Gaussian) and dynamic (exponential) dephasing originating
in energy fluctuations with a single correlation time constant. The Gaussian three-
pulse photon-echo peak shift recovers the dynamic component of this dephasing.

Photon echoes also can be obtained by using only two pulses instead of three.
These can be described with the same theoretical formalism by letting the second
and third pulses coincide and setting k2 = k3 and |E0

2(t)| = |E0
3(t)| (Yan and

Mukamel 1991).
Since their first observation with ruby laser pulses lasting 10−8 s (Kurnit et al.

1964), photon echoes generated with a variety of pulsed lasers have been used to
study solvation dynamics on time scales ranging from 10−14 to 10−1 s (Hesselink
and Wiersma 1979; Weiner et al. 1985; Becker et al. 1989; Bigot et al. 1991; Nibbering
et al. 1991; Cho et al. 1996; de Boeij et al. 1996; Fleming and Cho 1996; Joo et al.
1996; Fleming et al. 1997; Passino et al. 1997; Momelle et al. 1998; Jordanides et
al. 1999; Lang et al. 1999; Nagasawa et al. 2003). Applications to the motions of
proteins surrounding bound chromophores have included studies of myoglobin
(Leeson and Wiersma 1995; Leeson et al. 1997; Fayer 2001), zinc cytochrome c
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Fig. 11.12. Dependence of three-pulse
photon-echo peak shift on delay time t2,
calculated as in Fig. 11.11 for the Kubo
relaxation function (Eq. (10.69)) with
τc = 10, 20, or 40 time units as indicated
and σ = 0.05 (A) or 0.1 (B) reciprocal
time units

(Leeson et al. 1994), bacteriorhodopsin (Kennis et al. 2002), antibodies (Jimenez
et al. 2002), and calmodulin (Changenet-Barret et al. 2000). Proteins generally
show multiphasic relaxation dynamics consistent with hierarchical, richly textured
potential surfaces. Relaxations with effective correlation times of 1.3–4 ns were
found to occur in zinc cytochrome c even at 1.8 K (Leeson et al. 1994). IR photon
echoes have been used to study the vibrational dynamics of peptides and small
molecules (Ge and Hochstrasser 2002; Park et al. 2004), and have been combined
with isotopic labeling to probe the dynamics of the amide I vibration at a specific
residue in a transmembrane peptide (Mukherjee et al. 2004).

11.5
Transient Gratings

If two plane waves of light overlap in an absorbing medium, their fields create
sinusoidal interference patterns like those shown in Fig. 11.13. In regions where the
interference is constructive, the absorbance of the medium can change as a result
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Fig. 11.13. Formation of a transient grating by overlapping plane waves. A, B Image plots of
the electric fields at zero time in two plane waves propagating to the right and downward
(A) or upward (B) at an angle of 30◦ relative to the horizontal (x) axis (θex = 60◦). The x
and y coordinates are given relative to the wavelength of the radiation (λex). Black indicates
positive fields; white indicates negative fields. C The sum of the fields in A and B. D–F The
same as A–C, respectively, at time 1/0.25νex, where νex is the frequency of the radiation.
The vertical nodes in C and F move from left to right with time (note, e.g., the vertical
gray stripe at x/λex = 0 in C and at x/λex = 0.25 in F), while the horizontal nodes (e.g.,
y/λex = ±0.5) are stationary. The combined fields therefore will interact with the medium
mainly in horizontal bands at y/λex = −1, 0, +1, etc. In general, plane waves intersecting at
angle θex will give bands separated by y/λex = 1/2 sin(θex/2)
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of ground-state bleaching or excited-state absorption; where it is destructive, little
is changed. The spacing of the excitation bands is λband = λex/2sin(θex/2), where
θex is the angle between the wavevectors of the two beams. The density of the
medium also can change in the same pattern if the excitation causes local heating
or volume changes, and this will affect the refractive index. Such bands of modified
absorbance or refractive index can act as a diffraction grating to diffract a probe
beam whose wavelength (λprobe) and angle of incidence relative to the mean of
the two wavevectors (θprobe) satisfy the Bragg condition jλprobe = 2λband/cos θprobe,
where j is an integer. The grating, however, will disappear as the excited molecules
return to their original state or diffuse away from their initial positions and as the
heat generated by the excitation also diffuses away. The diffraction of the probe
beam thus provides a way of measuring the decay dynamics of the excited state or
of volume changes caused by the excitation (Salcedo et al. 1978).

Figure 11.14 shows a typical pump–probe arrangement for studying transient
gratings on picosecond time scales (Salcedo et al. 1978; Nelson and Fayer 1980;

a

b

pump pulses

variable

delay

detector

sample
probe pulse

lens

sample

Fig. 11.14. a Apparatus for picosecond transient-grating experiments. Two beams of pi-
cosecond pulses (heavy dotted lines) are made parallel and then focused by a lens so that
they overlap in the sample. A probe beam of picosecond pulses (light dotted lines) is focused
by the same lens so that it strikes the overlap region at the Bragg angle. Probe light that
diffracts off the transient grating in the sample passes through a slit to a detector. A variable
delay line is used to control the time between the excitation and probe pulses as in ordinary
pump–probe experiments. (Another delay stage, not shown, is used to adjust the path of
one of the excitation beams so that the two excitation pulses reach the sample at the same
time.) b Expanded view of the region where the excitation beams (light gray areas) intersect
in the sample, showing the orientation of the transient grating (darker gray bands)
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Nelson et al. 1982; Genberg et al. 1989). In this scheme, a train of pulses from a laser
is split into three beams, two of which converge in the sample to create the grating.
The third beam is used to generate probe pulses at the same or a different frequency.
The probe pulses strike the sample at an adjustable time after the pump pulses,
and the portion of the probe beam that diffracts off the grating passes through
a slit to reach the detector. For measurements on time scales of nanoseconds or
longer, a continuous beam from a separate laser is used as the probe, and the
intensity of the diffracted beam is recorded in real time with an oscilloscope or
transient-digitizer (Terazima and Hirota 1991; Terazima et al. 1995).

Contributions to a transient grating from absorbance changes can be distin-
guished from effects involving the real part of the refractive index by their different
dependence on the probe frequency (Nelson et al. 1982). Gratings created by ther-
mal expansion can be recognized by their rapid decay, because thermal diffusion
often is faster than other processes that follow the excitation (Terazima et al. 1995;
Hara et al. 1996). Transient-grating techniques thus offer a useful alternative to
photoacoustic spectroscopy, in which thermal effects usually are identified by their
dependence on the solvent’s coefficient of thermal expansion (Ort and Parson 1978;
Arata and Parson 1981). In recent work, transient gratings have been used to study
volume and enthalpy changes that follow photodissociation of carbon monoxide
from myoglobin and hemoglobin (Richard et al. 1992; Dadusc et al. 2001; Sakakura
et al. 2001a, b; Choi and Terazima 2002; Nishihara et al. 2004), excitation of photoac-
tive yellow protein (Takashita et al. 2002) and rhodopsin (Nishioku et al. 2002), and
folding of cytochrome c (Nada and Terazima 2003; Nishida et al. 2004). They also
have been used to study exciton migration in photosynthetic antenna complexes
(Salverda et al. 2003).

Transient gratings also can be examined on a femtosecond time scale as a func-
tion of the time between the two pulses that create the grating (Park and Joo 2004).
As our discussion in the previous section suggests, the two radiation fields do
not actually need to be present in the sample simultaneously; the second field can
interfere constructively or destructively with coherence generated by the first. This
makes femtosecond transient-grating experiments potentially useful for explor-
ing relaxations that destroy such coherence. However, photon-echo experiments
provide a more thoroughly developed path to this end.

11.6
Vibrational Wavepackets

Fluorescence from molecules that are excited with short flashes can exhibit oscil-
lations that reflect coherent excitation of multiple vibrational levels. Suppose that
an ensemble of molecules occupy the lowest nuclear wavefunction of the ground
electronic state. The probability that the flash will populate vibrational level k of
an excited electronic state then depends on the electronic transition dipole, the
spectrum and intensity of the flash, and the overlap integral 〈χk(e)|χ0(g)〉, where
χ0(g) and χk(e) are the spatial parts of the ground and excited-state vibrational
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wavefunctions, respectively. If the flash includes a broad band of energies relative
to the spacing of the vibrational eigenvalues, it will excite multiple vibronic levels
(j, k, l, ...) coherently, and this coherence will be expressed in the off-diagonal
elements of the vibrational density matrix. Consider, for example, an individual
molecule that has a single vibrational mode with energy hυ. If we neglect vibra-
tional relaxations and decay of the excited electronic state following the flash, the
off-diagonal density matrix elements will oscillate at frequencies that are various
multiples of υ:

ρjk(t) = ρjk(0) exp
[
−i(Ej − Ek)t/�

]
= ρjk(0) exp [−2πi(j − k)υt] . (11.45)

Constructive and destructive interference between these oscillations can give rise
to oscillatory features in the fluorescence.

An excited ensemble with vibrational coherence can be described by a linear
combination of vibrational wavefunctions:

X(u, t) =
∑

k

Ckχk(e)(u) exp [−2πi(k + 1/2)υt] . (11.46)

Here u represents a dimensionless nuclear coordinate andχk(e)(u) again denotes the
spatial part of basis function k. A system with such a combination of wavefunctions
is called a wavepacket. The coefficients Ck represent averages over the ensemble.
Making the Born–Oppenheimer approximation and neglecting relaxations of the
excited state and nonlinear effects in the excitation, they are given by

Ck ≈ N−1
∑

j

exp [−(j + 1/2)hυ/kBT]
Z

〈
χk(e)

∣∣χj(g)
〉
Ik,j , (11.47)

where Ik,j is the spectral overlap of the excitation pulse with the homogeneous
absorption band for the vibronic transition from level j of the ground state to
level k of the excited state, kB and T are the Boltzmann constant and temperature,
Z is the vibrational partition function, and N−1 is a factor that depends on the
electronic dipole strength and the intensity and width of the excitation flash.
Figure 11.15b shows the probability function |X(u, t)|2 for such a wavepacket
immediately after the excitation and at several later times. For this illustration, we
used one-dimensional harmonic oscillator wavefunctions as the basis and assumed
that all the molecules start in the lowest vibrational level of the ground state, which
will be the case if T � hυ/kB. The potential energies for the ground and excited
states are plotted in Fig. 11.15a along with the first few basis functions and energies.

At time zero, the probability function |X(u, t)|2 of the wavefunction is centered
at the potential minimum of the ground state. The wavepacket moves away from
this point with time, passing through the potential minimum of the excited state
when t = τ/4, where τ is the vibrational period 1/υ (Fig. 11.15b, curve 3). It reaches
the other side of the potential well and turns around at t = τ/2 (Fig. 11.15b,
curve 5). All the individual wavefunctions come back into phase again at t = τ,
when the wavepacket arrives back at its original position. Note that Fig. 11.15b
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Fig. 11.15. a Wavefunctions and relative energies for a one-dimensional harmonic oscil-
lator with a displacement (Δ) of 2.0 between the ground and excited electronic states.
The abscissa is the dimensionless coordinate u = (2πmrυ/h)−1/2x, where mr and υ are
the reduced mass and classical vibration frequency (Eq. (2.32)); the origin is midway
between the potential minima of the ground and excited states. The dotted lines show
the potential energies. The 0–0 energy difference between the ground and excited states
is arbitrary. b The probability function (|X (u,t)|2) of a wavepacket at t = 0, τ/8, τ/4,
3τ/8, and τ/2 (curves 1–5, respectively), where τ = 1/υ. The origin of the vibrational co-
ordinate is the same as in a. Vibrational levels from k = 0 to 12 were included in the
wavepacket with overlap integrals 〈χk(e)|χ0(g)〉 calculated as described in Box 4.13. The ex-
citation flash was centered at the Franck–Condon absorption maximum, which for Δ = 2
is 1.5υ above the 0–0 energy. (The squares of the overlap integrals for k = 0–7 are 0.368,
0.520, 0.520, 0.425, 0.300, 0.190, 0.110, and 0.059.) The pulse included a broad band of
energies (FWHM >> hυ), so Ik,0/N ≈ 1 in Eq. (11.47) for all the vibrational levels of the
excited state that overlap significantly with χ0(g). Vibrational relaxations and dephasing
were neglected

shows |X(u, t)|2 rather than the wavepacket itself, which changes sign once each
vibrational period and oscillates between purely real values when t = 0, τ, 2τ, ...
and purely imaginary values when t = τ/2, 3τ/2, 5τ/2, ....

The excitation pulse used in Fig. 11.15 was assumed to include a broad band
of energies relative to the vibrational energy spacing hυ. In this rather special
situation, |X(u, t)|2 has a Gaussian shape that remains constant indefinitely as the
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wavepacket oscillates. Such wavepackets provide a useful description of the radia-
tion emitted from a continuous-wave laser. In this picture, the spatial oscillations of
the wavepacket resemble the oscillating electric field associated with a continuous
stream of photons with constant energy (Glauber 1963).

Anharmonic vibrational potential wells or excitation pulses with narrower spec-
tral widths can create wavepackets with more complicated, time-dependent shapes
(Kowalczyk et al. 1990; Dunn et al. 1993; Jonas et al. 1995). Figure 11.16 shows an
example in which the full width at half-maximum amplitude of the excitation pulse
is decreased to 3hυ. Here |Xe(u, t)|2 broadens as it passes through the minimum of
the potential well and becomes noticeably asymmetric as it moves away from the
minimum. In addition, the wavepacket originates displaced from the ground-state
minimum on the vibrational coordinate and its excursions are more restricted
than they are with broader excitation. If the excitation spectrum is narrower than
hυ, |X(u, t)|2 peaks at the Franck–Condon maximum (Fig. 4.21).

Now consider the spontaneous fluorescence from the excited system. In a clas-
sical picture, the frequency of the emission at any time depends on the vertical
difference between the potential energy curves for the ground and excited states.
For harmonic potentials, the energy difference is a linear function of the vibrational
coordinate. To see this, let K be the vibrational force constant, and put the potential
minima of the excited and ground states at ±Δ/2 as shown in Figs. 11.15–11.17.
The classical potential energy difference between the two states then is

Ve − Vg = E00 + (K/2)(u − Δ/2)2 − (K/2)(u + Δ/2)2 = E00 − uKΔ , (11.48)

Fig. 11.16. Probability function for a wavepacket created with an excitation pulse width
(FWHM) of 3hυ. Curves 1–5 are |X(u, t)|2 at times t = 0, τ/8, τ/4, 3τ/8, and τ/2, respectively;
the potential energy of the excited state is shown in arbitrary units.Δ = 2.0, and the abscissa
gives u relative to a point halfway between the ground- and excited-state minima. Because
the excitation spectrum biases the coefficients of the vibrational levels, |X(u, t)|2 is less
symmetrical than in Fig. 11.15 and initially peaks at u ≈ −0.5 rather than −1.0
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Fig. 11.17. A classical particle that is
raised suddenly to an excited electronic
state oscillates in the potential well
of this state. If the potential well is
displaced with respect to the ground-
state well along one or more nuclear
coordinates, the energy difference
between the two states oscillates in
phase with the motions of the particle

where E00 is the electronic energy difference. The classical energy difference thus
oscillates in phase with the oscillations of the excited particle in its potential well
(Fig. 11.17).

In the quantum-mechanical picture, the excited state has a constant total en-
ergy. However, the probability that the molecule will fluoresce at frequency ν

depends on the Franck–Condon factor for a transition between the excited-state
wavepacket and the ground-state vibronic level that lies lower in energy by hν.
As the wavepacket moves back and forth, its overlap with the various nuclear
wavefunctions of the ground state changes, causing the fluorescence at a given
frequency to oscillate. The fluorescence associated with transitions to vibrational
level j of the ground state is

Fj(t) ∝
∣∣∣∣∣

∑

k

Ck
〈
χj(g)

∣∣χk(e)
〉
exp [−2πi(k + 1/2)υt]

∣∣∣∣∣

2

, (11.49)

with Ck given by Eq. (11.47).
Figure 11.18 illustrates the calculated time course of the fluorescence at several

different energies. Figure 11.18, panel A is for a vibrational mode that is coupled
weakly to the electronic transition (Δ = 0.5), and Fig. 11.18, panel B shows the
results for a mode with the stronger coupling used in Fig. 11.15 (Δ = 2.0). In both
cases, the fluorescence resulting from transitions to the lowest vibrational level of
the ground state (the curves labeled 0) peaks when t = 0, τ, 2τ, ... (i.e., whenever the
wavepacket is at its starting position), whereas fluorescence reflecting transitions
to high vibrational levels of the ground state peaks at t = τ/2, 3τ/2, 5τ/2 .... The
oscillations of the fluorescence on the blue and red sides of the spectrum thus are
180◦ out of phase. For transitions with strong vibronic coupling, the fluorescence
at intermediate wavelengths oscillates in a more complicated manner because
the wavepacket passes through the middle of the potential well twice, moving in
opposite directions, for each time it turns around at one of the edges. (Fig. 11.18,
panel B, curves 1, 4, 6)
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Fig. 11.18. Fluorescence at several frequencies, following formation of a vibrational
wavepacket in an excited electronic state. A vibrational mode with period τ is coupled
to the electronic transition with a displacement Δ of either 0.5 (A) or 2.0 (B). Wavepackets
are created from the lowest vibrational level of the ground state by excitation with a spec-
trally broad pulse as in Fig. 11.15. The curves labeled 0 show the relative amplitude of
fluorescence from transitions back to the lowest level of the ground state; these transitions
account for the high-energy edge of the emission spectrum. Curves labeled 1, 2, ... rep-
resent transitions to higher vibrational levels of the ground state, which give emission at
progressively lower energies. A Transitions to levels 0, 1, and 2 account for essentially all the
emission. (The dashed curve near the abscissa is for level 3.) B Transitions to higher levels
make significant contributions; five representative curves are shown. Vibrational dephas-
ing and relaxations and the overall decay of the excited state are neglected, and the total
fluorescence is normalized to 1.0 at all times

Figure 11.19 shows the calculated fluorescence emission spectra at several dif-
ferent times between 0.1τ and 0.5τ for a system with Δ = 2.0. As the fluorescence
oscillates between higher and lower frequencies, the width of the emission spec-
trum also oscillates. The spectrum is sharpest when the wavepacket is at u = 0
and broadest at the opposite edge of the potential well. Again, anharmonic po-
tential wells can give more complicated emission spectra that are broadest when
the wavepacket is at intermediate positions. The time dependence of the emis-
sion spectrum thus can provide information on the shape of the potential surface
(Kowalczyk et al. 1990; Dunn et al. 1993; Jonas et al. 1995), although it is unlikely
to identify the shape uniquely in most cases.

It is instructive to compare these results with the fluorescence oscillations we
discussed in Sect. 10.8 (Eq. (10.79)). The electronic coherences we considered
there cause the amplitudes of the fluorescence at different frequencies to oscillate in
phase. Here the oscillations at different frequencies are out of phase. The difference
is that in Sect. 10.8 we considered coherences between two excited electronic states
that decay to a single ground state, whereas here we are discussing transitions
from a single excited electronic state to various vibrational levels of the ground
state.
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Fig. 11.19. Calculated fluorescence emis-
sion spectra for the system considered
in Fig. 11.15 (Δ = 2.0) at times t = 0.1τ
(filled circles), 0.2τ (up triangles), 0.3τ
(open circles), 0.4τ (down triangles), and
0.5τ (squares), where τ is the vibrational
period. The abscissa gives the vibronic
transition frequency (ν) minus the 0–0
transition frequency (ν00), relative to
the vibrational frequency (υ)

Oscillations of fluorescence, stimulated emission, and excited-state absorption
have been studied by pump–probe techniques and fluorescence upconversion,
and have been seen in numerous small molecules in solution (Fig. 11.7, panel A;
Wise et al. 1987; Mokhtari et al. 1989; Dunn et al. 1993; Zewail, 2000), and also in
photosynthetic bacterial reaction centers (Vos et al. 1993 1994; Stanley and Boxer
1995). They typically damp out over the course of several picoseconds as a result
of vibrational relaxations and dephasing. Vibrational coherences generally decay
more slowly than electronic coherences because the energies of vibrational states
are not coupled as strongly to fluctuating interactions with the surroundings.
Vibrational dephasing also tends to be less dependent on the temperature.

In multidimensional systems, coherently excited vibrational states of an ensem-
ble of molecules probably are described best with the density-matrix formalism.
Such a description has been used to rationalize oscillatory features in the dynam-
ics of the initial electron-transfer step in photosynthetic bacterial reaction centers
after excitation with subpicosecond flashes (Parson and Warshel 2004a, b). Vibra-
tional modes that are coupled to electron transfer were identified by recording the
fluctuating energy gap between the reactant and product states (P∗B and P+B−)
during molecular-dynamics simulations. The frequencies and displacements of the
vibrational modes were obtained by taking a Fourier transform of the autocorrela-
tion function of the fluctuations (Eqs. (10.51), (10.52)). A reduced density matrix
then was constructed from approximately 650 vibronic states of five representative
vibrational modes and the two electronic states. Initial values of the density matrix
elements, ρjk(0), were obtained for excitation of the reactive bacteriochlorophyll
complex to P∗ with a Gaussian excitation pulse at a specified temperature by using
the expressions

ρjk(0) = N−1Z−1
∑

i∈P

exp(−εi/kBT)pi,j,k , (11.50a)
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pi,j,k =

{
5∏

m=1

〈
χj

m
∣∣χi

m

〉}{
5∏

m=1

〈
χk

m

∣∣χi
m

〉
}

exp
{

−
[(
εj − εex

)2
+
(
εk − εex

)2
]
/2Γex

}
,

(11.50b)

N = Z−1
∑

i∈P

exp(−εi/kBT)
∑

j∈P∗
pi,j,j , (11.50c)

and

Z =
∑

i∈P

exp(−εi/kBT) . (11.50d)

Here i denotes a vibronic substate of the ground electronic state (P), and j and k
denote substates of P∗; χl

m is the harmonic-oscillator wavefunction for mode m
in vibronic state l; �υl is the energy of state l, εex is the center of the excitation
spectrum; and Γex = (Wex)2/4 ln 2, where Wex is the full spectral width of the
excitation spectrum at half-maximal amplitude (Parson and Warshel 2004b). The
time dependence of the density matrix after the initial excitation was followed by
integrating the stochastic Liouville equation (Eq. (10.30)). Quantum mechanical
interaction matrix elements for transitions between vibronic levels of different
electronic states were written as products of the pertinent vibrational overlap
integrals for all the modes and an assumed electronic coupling factor. The elements
of the relaxation matrix R for thermal equilibration of two vibrational substates
of a given electronic state were related to the numbers of vibrational quanta in
the two substates, the energy difference between the substates, and a fundamental
time constant for equilibration of the two lowest levels of each mode (T0

1 ). Terms
for pure dephasing and for transfer of coherence between different pairs of states
also were included in R.

In the density-matrix model, the energy gap between P∗ and P+B−, U(t), oscil-
lates as the wavepacket evolves on the multidimensional potential surface of the
excited state. The time dependence of the gap is given by

〈U(t)〉 = Tr
(

ρ(t) · U(t)
)

=
∑

k,j

ρkj(t)Ujk(t) , (11.51)

where U(t) is a matrix representation of U(t) and the bars denote ensemble averages
(Eq. (10.14)). The matrix elements of U for a system in the state P∗ can be written

Ujk =
∑

m

�ωmΔm

[
δj,k

Δm

4
+
(
1 − δj,k

) 〈
χj

m
∣∣Q̃m

∣∣ χk
m

〉 ∏

μ=m

〈
χj
μ

∣∣∣χk
μ

〉]
(11.52a)

=
∑

m

�ωmΔm

{
δj,k

Δm

4
+
(
1 − δj,k

)
(11.52b)
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Hereωm is the frequency of vibrational mode m, Δm is the dimensionless displace-
ment along the coordinate for this mode in P+B− relative to P∗, Q̃m is the position
operator for the mode (Eqs. (5.44), (5.45)), and nk

m is the number of phonons of
mode m in vibrational state k. The term δj,kΔm/4 for the diagonal elements of U
assumes that the origin of coordinate m is midway between the potential minima
of P∗ and P+B−, and changes sign for a system in the product state. The product
of overlap integrals for all the modes (μ) other than m restricts the off-diagonal
elements of U to those for gain or loss of a single phonon (nj

m = nk
m ±1 and nj

μ = nk
μ

for μ = m). The matrix elements for gain or loss of more than one phonon would
be much smaller.

Figure 11.20, panel A shows the calculated dynamics of the energy gap when
the fundamental time constant for vibrational equilibration (T0

1 ) was taken to
be 2 ps, a value that made the damping of the energy gap similar to that seen
in the molecular-dynamics simulations (Parson and Warshel 2004a, b). Electron
transfer from P∗ to B was turned off for this simulation. The rapid decay of the
energy gap during the first 0.1 ps results from dephasing of vibrational modes with

Fig. 11.20. A Calculated fluctuations of
the energy gap between the excited
state P* and the first electron-transfer
state (P+B−) in a density-matrix model
of photosynthetic reaction centers of
R. sphaeroides (Parson and Warshel
2004a, b). The model includes five effec-
tive vibrational modes. The simulation
begins with excitation of P to P∗ with
a short pulse of light, which generates
a multidimensional wavepacket in the
excited state. The energy gap depends
on fluctuating electrostatic interactions
of the protein and solvent with the
electron carriers, the mean energy of
the excitation flash, and a constant “gas-
phase” energy difference that is adjusted
arbitrarily for this figure. Electronic cou-
pling between P* and P+B− is turned off
in this simulation, so the oscillations are
damped only by vibrational relaxations.
B Calculated populations of P∗ (solid
curve), P+B− (dotted curve), and the
next electronic state, P+H− (dashed
curve), in the same model when elec-
tronic coupling is turned on. Electron
transfer occurs mainly at times when
the energy gap between P∗ and P+B− is
small
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different frequencies, whereas the slower damping reflects thermal equilibration.
Figure 11.20, panel B shows the calculated time dependence of the populations of P∗,
P+B−, and the next electron-transfer state (P+H−) when the electronic coupling is
switched on. In this simulation, the probability of electron transfer peaks whenever
the multidimensional wavepacket of P∗ approaches the potential energy surface
of P+B−. Transient absorbance changes suggesting such stepwise electron transfer
have been seen experimentally (Streltsov et al. 1997; Vos and Martin 1999; Yakovlev
et al. 2000, 2002). The density-matrix model with T0

1 on the order of 1–10 ps also
reproduced the unusual temperature dependence of the electron transfer rate
(Parson and Warshel 2004b).

11.7
Wavepacket Pictures of Spectroscopic Transitions

The concept of time-dependent wavepackets is particularly useful for analyzing
the spectroscopic properties of systems in which the vibrational states are too
congested to treat individually. Indeed, it may provide the most realistic way to
treat the spectral lineshapes of systems with more than five to ten atoms, in which
the density of vibrational and rotational states can exceed 1010 per reciprocal cen-
timeter (Heller 1981). An explicit quantum-mechanical treatment of all these states
would be impossible with any presently conceivable computer. The classical energy
surfaces of the ground and excited electronic states, however, can be mapped by
molecular-dynamics simulations for molecules of almost any size and complexity
(Box 6.1). If the vibrational states are spaced close together, as they must be for any
molecule with a large number of vibrational modes, the movements of a quantum-
mechanical wavepacket in the excited electronic state are essentially identical to
the dynamics of a Gaussian-shaped classical particle on the corresponding energy
surface.

One fruitful application this approach is to relate the absorption spectrum to the
spatial overlap of the wavepacket initially created by the excitation, X(0), with the
moving wavepacket at later times, X(t). Heller and coworkers (Heller 1975, 1978,
1981; Kulander and Heller 1978; Lee and Heller 1979 Myers et al. 1982) showed
that the spectrum can be obtained by a Fourier transform of the time-dependent
overlap integral 〈X(0)|X(t)〉:

ε(ω)
ω

∝
∞∫

−∞
exp [i(ω + E00/h)t] 〈X(0)|X(t)〉 exp

(
−t/τc

)
dt . (11.53)

Here E00 is the electronic energy difference again and τc is a dephasing time constant
that determines the homogeneous width of the vibronic lines. This expression can
be rationalized by using Eqs. (11.46) and (11.47) to evaluate 〈X(0)|X(t)〉 for a one-
dimensional system. If we factor out the dependence of X(0) on the light source by
setting Ik/N = 1 for all k, and assume for simplicity that only the lowest vibrational
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level of the ground state is occupied before the excitation, then X(0) = χ0(g) and

〈
Xg(0) |Xe(t)

〉
=

〈

χ0(g)

∣∣∣∣∣

∑

k

Ckχk(e) exp [−2πi(k + 1/2)υt]

〉

=
∑

k

Ck
〈
χ0(g)

∣∣χk(e)
〉
exp [−2πi(k + 1/2)υt]

=
∑

k

∣∣〈χ0(g)
∣∣χk(e)

〉∣∣2 exp [−2πi(k + 1/2)υt] . (11.54)

A Fourier transform of this function gives a set of lines separated in frequency
by υ, with each line weighted by the Franck–Condon factor |〈χk(e)|χ0(g)〉|2. This is
just the result we obtained in Chap. 4 for the shape of an absorption spectrum. If
we multiply 〈X(0)|X(t)〉 by the damping factor exp(−t/τc) that is included on the
right side of Eq. (11.53), each vibronic line returned by the Fourier transform will
have a Lorentzian shape with a width inversely proportional to τc, in agreement
with the discussion in Chaps. 4 and 10.

Equation (11.53) suggests the picture that light of frequencyω acts continuously
on the ground-state wavefunction, transforming it piecewise to Xe(0) in the ex-
cited state with phase exp(iωt) (Kulander and Heller 1978; Heller 1981). Meanwhile,
pieces of the wavefunction that were promoted earlier are moving away from their
birthplace [as Xe(t)] and then are returning to interfere constructively or destruc-
tively with the pieces that are just arriving. Constructive interferences give peaks in
the absorption spectrum at the frequencies of the coupled vibrational modes. This
picture may help to bring out the point that, although 〈X(0)|X(t)〉 and exp(−t/τ)
are functions of time, Eq. (11.53) is not intended to describe a time-dependent
absorption spectrum; rather, it describes a continuous spectrum whose shape is
determined by the vibrational dynamics of the excited state (Myers and Mathies
1987). Lee and Heller (1979) and Myers et al. (1982) give more formal derivations
of Eq. (11.53), along with explicit expressions for 〈X(0)|X(t)〉 in multidimensional
harmonic systems.

Figure 11.21a shows the real and imaginary parts of the time-dependent overlap
integral 〈X(0)|X(t)〉 as given by Eq. (11.54) for a single harmonic vibrational mode
with frequency υ, Δ = 2.0, and a relaxation time constant τc of 2/ν. Figure 11.21b
shows the normalized Fourier transform. As expected, the calculated spectrum has
a vibronic line at the 0–0 transition frequency and a ladder of higher-frequency
lines at intervals of υ. The vibrational lines are approximately Lorentzian, and
although the figure does not demonstrate this, their widths depend inversely on
the relaxation time constant τc. The overall width of the spectrum (dashed line in
Fig. 11.21b) is determined by the fastest component in the time domain, which is
the initial drop in 〈X(0)|X(t)〉 near t = 0. In the semiclassical wavepacket model,
the speed of this drop depends on the steepness of the excited-state energy surface
at the point where the wavepacket is created (Heller 1981).

The fluorescence emission spectrum can be obtained in the same way as the
absorption spectrum by considering the time dependence of a wavepacket in the
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Fig. 11.21. a Real (solid curve) and imaginary (dotted curve) parts of the time-dependent
overlap integral 〈X(0)|X(t)〉, as given by Eq. (11.54) for a molecule with a single harmonic
vibrational mode with frequency υ, dimensionless displacementΔ = 2.0 in the excited state,
vibrational period τ = 1/υ, and vibrational relaxation time constant τc = 2τ. b Normalized
magnitude of the Fourier transform of the overlap integral shown in a. The abscissa is the
absorption frequency (ν) relative to the 0–0 transition frequency (ν00), in units of υ. The
envelope of the calculated absorption spectrum (dotted curve) depends on the speed with
which 〈X(0)|X(t)〉 decreases near t = 0

ground electronic state following a transition from the excited state. The weighting
factor ω−1 on the left-hand side of Eq. (11.53) is simply replaced by ω−3 in accord
with the Einstein coefficients (Chap. 5).

The main utility of the wavepacket approach lies in the evaluation of spectro-
scopic properties of molecules with congested vibrational modes. As we discussed
in Chap. 4, the ground-state vibrational wavefunctions Xa(g) for a molecule with
multiple vibrational modes are products of the wavefunctions for all the individual
modes: Xa(g) = χa1(g)χa2(g)χa3(g).... If the normal coordinates do not change signifi-
cantly in the excited electronic state, X(t) will be a product of wavepackets for the
individual modes [X(t) = X1(t)X2(t)X3(t)...] and the same product appears in the
time-dependent overlap integral 〈X(0)|X(t)〉 (Myers 1997):

〈X(0) |X(t) 〉 = 〈X1(0) |X(t) 〉 〈X2(0) |X(t) 〉 〈X3(0) |X(t) 〉 ... . (11.55)

The time dependences of the wavepackets for the individual modes can be
predicted by molecular-dynamics simulations even for comparatively complex
molecules. Applications of the wavepacket treatment to resonance Raman spec-
troscopy are discussed in Chap. 12.



12 Raman Scattering
and Other Multiphoton Processes

12.1
Types of Light Scattering

The vibrational transitions discussed in Chap. 6 occur by absorption of a photon
whose energy matches a vibrational energy spacing, hυ. Vibrational or rotational
transitions also can occur when a molecule scatters light of higher frequencies;
this is the phenomenon of Raman scattering. Raman scattering is one of a group
of two-photon processes in which one photon is absorbed and another is emitted
essentially simultaneously. Figure 12.1 illustrates the main possibilities. Rayleigh
scattering (Fig. 12.1, transition A) is an elastic process, in which there is no net
transfer of energy between the molecule and the radiation field: the incident and
emitted photons have the same energy. Raman scattering is an inelastic process
in which the incident and departing photons differ in energy and the molecule is
either promoted to a higher vibrational or rotational level of the ground electronic
state, or demoted to a lower level. Raman transitions in which the molecule gains
vibrational or rotational energy, called Stokes Raman scattering (Fig. 12.1, transi-
tion B), usually predominate over transitions in which energy is lost (anti-Stokes
Raman scattering; Fig. 12.1, transition C) because resting molecules populate
mainly the lowest levels of any vibrational modes with hυ > kBT. The strength of
anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to
Stokes scattering provides a way to measure the effective temperature of a molecule.
Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the
incident light falls within a molecular absorption band (Fig. 12.1, transition D).
The scattering then is termed resonance Raman scattering.

There are other types of light scattering that involve transfer of different forms
of energy between the molecule and the radiation field. In Brillouin scattering, the
energy difference between the absorbed and emitted photons creates acoustical
waves in the sample; in quasielastic or dynamic light scattering, the energy goes
into small changes in velocity or rotation. In two-photon absorption, the second
photon is absorbed rather than emitted, leaving the molecule in a excited electronic
state whose energy is the sum of the energies of the two photons.

Raman scattering was discovered in 1928 by the Indian physicist C.V. Raman.
It usually is measured by irradiating a sample with a narrow spectral line from
a continuous laser, but time-resolved measurements also can be made by using
a pulsed laser as the light source. Light scattered at 90◦ or another convenient angle
from the axis of incidence is collected through a monochromator, and the intensity

William W. Parson, Modern Optical Spectroscopy,
DOI: 10.1007/978-3-540-37542-5, © Springer-Verlag 2009



418 12 Raman Scattering and Other Multiphoton Processes

Fig. 12.1. Types of light scattering. The three solid horizontal lines at the bottom represent
vibrational levels of the ground electronic state. In Rayleigh scattering (A) a molecule
absorbs a photon and emits a photon with the same energy. In Raman scattering (B–D),
a photon with a different energy is emitted, leaving the molecule in either a higher or lower
vibrational level (B Stokes and C anti-Stokes Raman scattering, respectively). Resonance
Raman scattering (D) occurs if the photon energies match transition energies to a higher
electronic state

of the signal is plotted as a function of the difference in frequency or wavenumber
between the excitation light and the scattered photons (νe − νs). The spectrum
resembles an IR absorption spectrum (Fig. 12.2); however, the relative intensities
of the Raman and IR lines corresponding to various vibrational modes generally
differ, as we will discuss below. Resonance Raman spectra of macromolecules
also differ from IR spectra and off-resonance Raman spectra in that signals from
bound chromophores can be much stronger than the background signals from the
protein. In Fig. 12.2, panel D, for example, the resonance Raman spectrum of the
chromophore in green fluorescent protein (GFP) is readily observable, whereas
absorption due to the protein would completely overwhelm the IR absorption
spectrum of the chromophore. (Also note the higher signal-to-noise ratio in the
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Fig. 12.2. IR absorption and Raman scattering spectra of the green fluorescent protein
(GFP) and 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI; Fig. 5.9b), a model
of the GFP chromophore (Esposito et al. 2001; Schellenberg et al. 2001). A Fourier trans-
form IR (FTIR) absorption spectrum of HBDI dispersed in a KBr pellet. B Off-resonance
Raman emission spectrum of HBDI in ethanol with excitation at 532.0 nm (18,800 cm−1).
C Resonance Raman emission spectrum of HBDI in ethanol with excitation at 368.9 nm
(27,100 cm−1). D Resonance Raman emission spectrum of GFP in aqueous solution with
excitation wavelength of 368.9 nm. The abscissa for the Raman spectra is the difference
between the wavenumbers of the signal and the excitation light. The amplitudes of the Ra-
man spectra are normalized to the peak near 1,562 cm−1, which is assigned to an in-plane
stretching mode of the C=N bond in the imidazolinone ring and the C=C bond between
the phenolic and imidazolinone rings (Esposito et al. 2001; Schellenberg et al. 2001). The
FTIR spectrum is normalized to the peak at 1,605 cm−1, which represents a mode that is
localized mainly to the phenolic ring. HBDI in neutral ethanol has an absorption maximum
at 372 nm and GFP has a corresponding absorption band at 398 nm

resonance Raman spectrum of 4-hydroxybenzylidene-2,3-dimethylimidazolinone,
HBDI, in Fig. 12.2, panel C compared with that in the off-resonance Raman spec-
trum in Fig. 12.2, panel B.)

The Liouville-space diagrams in Fig. 12.3a–d help to clarify the main physical
distinction between Raman scattering and ordinary fluorescence. Both processes
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Fig. 12.3. Liouville-space diagrams for spontaneous fluorescence and Raman scattering.
a The Liouville-space pathways connecting an initial state (a), an intermediate state (k),
and a final state (b). (See Sect. 11.1, Figs. 11.1, 11.4 for an explanation of these diagrams.)
b–d Three of the six possible paths from a to b with four steps (four interactions with
a radiation field). The other three paths are the complex conjugates of the ones shown. All
six paths contribute to spontaneous fluorescence; Raman scattering involves only the path
shown in d (and its complex conjugate), in which the intermediate state is never populated.
e A double-sided Feynman diagram for the path in d

require four interactions with a radiation field, and therefore four steps in Liouville
space (Mukamel 1995). There are six possible pathways with four steps between
the initial state whose population is indicated by “a,a” at the lower-left corner of
Fig. 12.3a and the final state (b,b) at the upper right: the three paths shown in
Fig. 12.3b–d and their complex conjugates. Ordinary fluorescence occurs by the
paths shown in Fig. 12.3b and c, whereas Raman scattering and the other two-
photon processes discussed in this chapter occur by the path shown in Fig. 12.3d
and its complex conjugate. Inspection of the Liouville diagrams shows that the
paths in Fig. 12.3b and c proceed through an intermediate state (k) that is transiently
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populated and thus is, in principle, measurable. The path in Fig. 12.3d passes
through two coherences with state k (a,k and k,b) and a coherence between the
initial and final states (a,b), but never generates a population in state k. Raman
scattering thus differs from fluorescence in involving only a “virtual” intermediate
state that is not directly measureable. A double-sided Feynman diagram for the
path in Fig. 12.3d is shown in Fig. 12.3e.

Experimentally, Raman scattering differs from fluorescence in several ways.
First, Raman emission lines are much narrower than fluorescence emission spec-
tra. Raman lines for small molecules in solution typically have widths on the
order of 10 cm−1 as compared with several hundred reciprocal centimeters for
fluorescence. Second, the emission spectra have very different dependences on the
frequency of the excitation light. Fluorescence emission spectra of many molecules
are essentially independent of the excitation frequency, whereas Raman lines shift
linearly with νe so as to maintain a constant value of |νs − νe|. This reflects the re-
quirement for overall conservation of energy during the Raman process (νs +υ = νe

for Stokes Raman scattering, νs − υ = νe for anti-Stokes scattering), in which the
virtual intermediate has no opportunity to equilibrate thermally with the sur-
roundings. Whereas spontaneous fluorescence typically has a lifetime of several
nanoseconds, Raman scattering follows the time course of an excitation pulse
with essentially no delay. Finally, the integrated strength of off-resonance Raman
scattering usually is much lower than that of fluorescence.

In the classical explanation of Raman scattering, the incident electromagnetic
radiation field E0 cosωe creates an oscillating induced dipole whose magnitude
depends on the product of the field and the polarizability of the medium. The
induced dipole constitutes the source of the radiation we detect as scattered light.
If the polarizability (α) is modulated at a lower frequency by a molecular vibration
(α = α0 + α1 cosωm), the induced dipole will be proportional to the product
E0 cosωe(α0 + α1 cosωm), which is the same as E0α0 cos(ωe) + (E0α1/2)[cos(ωe +
ωm) + cos(ωe − ωm)]. The scattering thus will have components at frequencies
ωe ±ωm in addition toωe. The classical theory predicts correctly that the strength
of Raman scattering depends on the extent to which a vibration changes the
molecular polarizability as we discuss in Sect. 12.4, although it does not account
readily for the difference between the strengths of Stokes and anti-Stokes scattering.

Kramers and Heisenberg (1925), who predicted the phenomenon of Raman
scattering several years before Raman discovered it experimentally, advanced
a semiclassical theory in which they treated the scattering molecule quantum
mechanically and the radiation field classically. Dirac (1927) soon extended the
theory to include quantization of the radiation field, and Placzec, Albrecht (1961),
and others explored the selection rules for molecules with various symmetries.
A theory of the resonance Raman effect based on vibrational wavepackets was
developed by Heller Mathies, Meyers, and their colleagues (Lee and Heller 1979;
Heller 1981; Myers et al. 1982; Craig and Thirunamachandran 1984; Myers and
Mathies 1987; Myers 1997). Mukamel (1988, 1995) presented a comprehensive the-
ory that considered the nonlinear response functions for pathways in Liouville



422 12 Raman Scattering and Other Multiphoton Processes

space. Having briefly described the pertinent pathways in Liouville space above,
we will look at the Kramers–Heisenberg–Dirac theory next and then turn to the
wavepacket picture.

12.2
The Kramers–Heisenberg–Dirac Theory

Consider a molecule with ground-state wavefunction Ψa and excited-state wave-
function Ψk, and energies Ea and Ek. When a weak, continuous radiation field
with frequency νe and amplitude Ee[exp(2πiνet) + exp(−2πiνet)] is introduced,
the coefficient for state k (Ck) oscillates with time. We need an expression for Ck

that incorporates uncertainty in the energies caused by electronic dephasing or
decay of state k. We can find Ck at a short time (τ) by evaluating the density matrix
element ρka (τ) for an ensemble of molecules exposed to steady-state illumination.
Recall that, in the Schrödinger representation,

ρka(τ) = ck(τ)c∗
a(τ) = Ck (τ)C∗

a (τ) exp
[
−i
(
Ek − Ea

)
τ
/
�
]

, (12.1)

where the bars indicate averaging over the ensemble (Eqs. (10.8), (10.12)). If we
replace C∗

a (τ) by 1 on the assumption that virtually all the molecules are in the
ground state, then

Ck(τ) = ρka(τ) exp
[
i
(
Ek − Ea

)
τ
/
�
]

. (12.2)

We found in Chap. 10 that the steady-state value of ρka can be written

ρka ≈ ρka exp
(

iωe t
)

, (12.3)

with

ρka =

(
i/�

) (
ρkk − ρaa

)
μka · Ee

i
(
ωe − ωak

)
+ 1/T2

(12.4a)

≈ μka · Ee

Ek − Ea − hνe − i�/T2
, (12.4b)

where μka is the transition dipole and T2 is the time constant for decay of electronic
coherence between states a and k (Eqs. (10.40), (10.42a)). We have dropped the
term with +hνe replacing −hνe, which is negligible when Ek > Ea, and in Eq. (12.4b)
we have again set ρaa ≈ 1 and ρkk ≈ 0. Combining Eqs. (12.2)–(12.4), and omitting
the bar over Ck to simplify the notation gives

Ck(τ) =
μka · Ee

Ek − Ea − hνe − i�/T2
exp

[
i
(
Ek − Ea − hνe

)
τ/�

]
. (12.5)

Now suppose that a second radiation field, Es[exp(2πiνst) + exp(−2πiνst)],
couples state k to some other state, b. As the subscripts “e” and “s” denoting
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“excitation” and “scattered” suggest, the scattered radiation could have a different
frequency, amplitude, and/or polarization than the excitation radiation. We are
interested here mainly in the zero-photon radiation field that induces molecules
in state k to return to the ground electronic state by spontaneous fluorescence, but
for generality we will also consider an intensity-dependent field that might cause
stimulated emission or excite the molecule to a state with higher energy (Sect. 12.7).
We assume that neither the first nor the second radiation field can convert state
a directly to state b. Neglecting any population of state b that is present at zero
time, we can find how the coefficient for state b (Cb) grows with time by continuing
the same perturbation treatment that we used to find Ck(τ). But here we will retain
terms with either +hνs or −hνs in the denominator, so that Eb can be either greater
or less than Ek. By applying Eq. (4.6) to the transition from state k to state b, and
considering a time t that is short enough so that Cb is small and Ca is still close
to 1, we obtain

Cb(t) =
(

i
�

)
μbk · Es

t∫

0

exp
[
i
(
Eb − Ek + hνs

)
τ/�

]

+ exp[i(Eb − Ek − hνs)τ/�] Ck(τ)dτ

= αba

⎧
⎨

⎩

t∫

0

exp
[
i
(
Eb − Ea + hνs − hνe

)
τ/�

]
dτ

+

t∫

0

exp
[
i
(
Eb − Ea − hνs − hνe

)
τ/�

]
dτ

⎫
⎬

⎭
, (12.6)

with

αba =

(
μbk · Es

) (
μka · Ee

)

Ek − Ea − hνe − i�/T2
. (12.7)

Evaluating the integrals gives

Cb(t) = αba

[(
exp

[
i
(
Eb − Ea + hνs − hνe

)
t/�

]
− 1

Eb − Ea + hνs − hνe

)

+

(
exp

[
i
(
Eb − Ea − hνs − hνe

)
t/�

]
− 1

Eb − Ea − hνs − hνe

)]

. (12.8)

The first term in the brackets on the right-hand side of Eq. (12.8) accounts
for both Rayleigh and Raman scattering; the second accounts for two-photon
absorption, which we will discuss in Sect. 12.7. If state b is the same as state a, as is
the case for Rayleigh scattering, the first term goes to it/� when νs = νe (Box 4.3),
while the second term is negligible for any positive values of νe and νs. If states
a and b are different, as they are in Raman scattering, the first term goes to it/�
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when Eb − Ea = hνe − hνs. Finally, if Eb >> Ea, the first term in the brackets usually
is small but the second term goes to it/� when Eb − Ea ≈ hνe + hνs.

The intensity of Rayleigh or Raman scattering of nearly monochromatic light
should be proportional to the integral of C∗

bCb over a narrow band of the frequency
difference νe − νs (Eq. (4.8)). If we perform this integration for the first term in the
brackets in Eq. (12.8), the intensity of scattering by an isotropic material becomes

Sba =
∣∣Einc

0 · 〈Ψb |̃α|Ψa〉
∣∣2 ρν(ν)
�2

= |αba|2
∣∣Einc

0

∣∣2 ρν(ν)
�2

. (12.9)

Here Einc
0 and ρν(ν) are the amplitude of the field and the density of modes of the

incident radiation; α̃ denotes the operator for light scattering; and αba, the matrix
element of this operator for states a and b, is given by Eq. (12.7).

To this point, we have considered only a single intermediate state (k) between
states a and b. A molecule generally will have many excited electronic states,
each with many vibrational levels, and any of these vibronic states could serve as
a virtual state for Rayleigh or Raman scattering. If we assume for simplicity that the
dephasing time constant T2 is approximately the same for all the important vibronic
levels (clearly a significant approximation), then summing the contributions to
Cb(t) gives

Cb(t) ≈
(

exp
[
i
(
Eb − Ea + hΔν

)
t/�

]
− 1

Eb − Ea + hΔν

)
∑

k

(
μbk · Es

) (
μka · Ee

)

Ek − Ea − hνe − i�/T2
, (12.10)

whereΔν = νs −νe and we have again retained only the first term from the brackets
in Eq. (12.8). The matrix element for light scattering thus becomes

αba =
∑

k

(
μbk · Es

) (
μka · Ee

)

Ek − Ea − hνe − i�/T2
, (12.11)

or for the particular case of Rayleigh scattering (i.e., if states a and b are the same),

αaa =
∑

k

(
μka · Es

) (
μka · Ee

)

Ek − Ea − hνe − i�/T2
. (12.12)

Resonance Raman scattering occurs when the incident light falls within an ab-
sorption band, so Ek(e) − Ea(g) ≈ hνe for a set of vibronic levels (k) of the excited
electronic state. Because the vibronic levels of this state will dominate the sum
in Eq. (12.11), we can use the Born–Oppenheimer and Condon approximations
(Sect. 4.10) to factor the transition dipole μka into a vibrational overlap integral
(〈Xk(e)|Xa(g)〉) and an electronic transition dipole that is averaged over the nuclear
coordinates (μeg). Pulling the electronic transition dipoles out of the sum then
yields

αba ≈ (
μge · Es

) (
μeg · Ee

) ∑

k

〈
Xb(g)

∣∣Xk(e)
〉 〈

Xk(e)
∣∣Xa(g)

〉

Ek(e) − Ea(g) − hνe − i�/T2
, (12.13)

where 〈Xi|Xj〉 is the vibrational overlap integral for states i and j.
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Equation (12.12) indicates that the strength of Rayleigh scattering depends on
the product of the squares of the two field strengths, |Ee|2|Es|2, where Ee again is
the excitation field and Es is the field of spontaneous emission from the virtual
excited state. From Chap. 3, we know that |Ee|2 is proportional to the intensity
and frequency of the incident light (Ieνe). From Chap. 5, |Es|2 is independent
of the incident light intensity, but depends on the cube of the frequency of the
emitted light, ν3

s . Because νe = νs = ν for Rayleigh scattering, the strength of
Rayleigh scattering is proportional to Iν4. The Kramers–Heisenberg–Dirac theory
thus reproduces the well-known increase of Rayleigh scattering with the fourth
power of the frequency as long as the frequency is well removed from the frequency
of electronic absorption bands. The theory also predicts the polarization of the
scattered light correctly: the intensity of the scattered light with polarization Ê
is proportional to (̂Ee · Ês)2. (See Sect. 12.9, Berne and Pecora 1976, and Craig
and Thirunamachandran 1984 for further discussion of directional aspects of light
scattering.)

Because fields Ee and Es have different frequencies in Raman scattering, the
strength of Raman scattering depends on Ieνeν

3
s , instead of simply Iν4; however,

the difference between νe and νs usually is small enough so that this dependence
on the frequencies has relatively minor effects on measured Raman spectra.

The matrix elements given by Eqs. (12.11)–(12.13) also depend on the dipole
strength of the electronic transition (|μeg|2), and on a sum of products of weighted
overlap integrals of vibrational level k of the excited electronic state with the initial
and final levels of the ground state. Each term in the sum is weighted inversely by
(Ek(e) – Ea(g)−hνe – i�/T2). But note that we have considered only a single vibrational
level of the initial system. In a more complete description, 〈Xk(e)|Xa(g)〉 is replaced
by a sum of thermally weighted products of overlap integrals as described in
Box 4.14 for ordinary absorption.

The dephasing factor i� /T2 in Eqs. (12.11)–(12.13) makes the matrix elements
for Rayleigh and Raman scattering complex quantities. The real and imaginary
parts can be separated by multiplying each term in the sum by 1 in the form of
(Ek(e) – Ea(g) − hνe + i� /T2)/(Ek(e) – Ea(g) − hνe + i� /T2). Dissecting Eq. (12.13) in
this way gives

αba =
∣∣μge

∣∣2
∑

k

[
(
Ek(e) − Ea(g) − hνe

)
( 〈

Xb(g)
∣∣Xk(e)

〉 〈
Xk(e)

∣∣Xa(g)
〉

(
Ek(e) − Ea(g) − hνe

)2
+
(
� /T2

)2

)

+ i(� /T2)

〈
Xb(g)

∣∣Xk(e)
〉 〈

Xk(e)
∣∣Xa(g)

〉

(Ek(e) − Ea(g) − hνe)2 + (� /T2)2

]

. (12.14)

A comparison of Eq. (12.14) with Eq. (10.43) shows that the imaginary part of
αaa (the matrix element for resonance Rayleigh scattering) is proportional to the
matrix element for ordinary absorption. The real part of αaa can be related to the
refractive index (Box 3.3; Yariv 1988).
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Fig. 12.4. Calculated resonance Raman excitation spectrum (|αba|2, solid curves) and ho-
mogeneous absorption spectrum [Im(αaa), dotted curves] for a molecule with a single
harmonic vibrational mode of frequency υ. αaa is for scattering at the excitation frequency,
and αba for scattering from the zero-point vibrational level into the first excited level (hν1 -
hν2 = hυ). The abscissa is the difference between the excitation frequency (ν1) and the 0–0
transition frequency (νoo), in units of the vibrational frequency (υ). The absorption spectra
are normalized to the Raman excitation spectra at the highest peaks. A � /T2 = 0.1hυ and
Δ (dimensionless displacement of the vibrational coordinate in the excited electronic state)
= 1.0. B � /T2 = 0.2hυ, Δ = 1.0. C � /T2 = 0.1hυ, Δ = 2.0. D � /T2 = 0.2hυ, Δ = 2.0. All
vibrational levels of the excited state up to k = 25 were included in the sums. The overlap
integrals were calculated as explained in Box 4.13

Figure 12.4 shows spectra of |αba|2 for a resonance Raman transition between
vibrational levels 0 and 1 of the ground electronic state, as calculated by Eqs. (12.13)
for a molecule with a single harmonic vibrational mode. The spectra are plotted
as functions of the excitation frequency (νe) for several values of T2 and the
displacement of the vibrational coordinate in the excited state (Δ). Note that these
are excitation spectra for resonance Raman scattering, not plots of the emission
intensity as a function of νe − νs (cf. Fig. 12.2), and note also that they do not
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Fig. 12.5. Integrated Raman scattering excitation cross section, ∫ |αba|2 dν, for a molecule
with a single harmonic vibrational mode with frequency υ. The model system is the same
as in Fig. 12.4. A The integrated cross section as a function of Δ with �/T2 fixed at 0.1hυ.
B The integrated cross section as a function of �/T2 with Δ fixed at 1.0

consider inhomogeneous broadening. For comparison, the figure also shows the
homogeneous absorption spectra calculated as Im(αaa) for the same systems.

Spectra of |αba|2 resemble a homogeneous absorption spectrum in having peaks
at the 0–0 transition frequency and at integer multiples of υ above this, where the
excitation energy matches the energy difference between the ground and excited
vibronic states. However, the relative heights of the peaks differ. Note, for example,
that the peak at (νe − ν00)/υ = 2 is missing entirely in the |αba|2 spectrum when
Δ = 2 (Fig. 12.4, panels C, D), but not when Δ = 1 (Fig. 12.4, panels A, B). In
addition, whereas changing Δ redistributes the ordinary absorption among the
vibronic peaks without altering the integrated absorbance, it affects the integrated
strength of Raman scattering. This point is illustrated in Fig. 12.5, panel A, where
the integrated Raman scattering cross section, ∫ |αba|2 dν, is plotted as a function
of Δ. Scattering into the first excited vibrational level peaks at Δ ≈ 0.9.

The dephasing time constant T2 also has different effects on Raman and absorp-
tion spectra. An integrated absorption spectrum is independent of � /T2, whereas
the integrated strength of Raman scattering decreases as the dephasing becomes
faster (Fig. 12.5, panel B). Comparisons of the absolute cross sections for Raman
scattering and ordinary absorption thus provide a way to measure the dynamics
of dephasing (Myers and Mathies 1987; Myers 1997).

In the classical picture of light scattering that we mentioned above, light passing
through a polarizable medium generates oscillating induced electric dipoles that
then can radiate light in various directions. The intensity of the scattering depends
on the square of the induced dipole moment, and thus on the square of the
polarizability. Box 12.1 describes a quantum-mechanical treatment of electronic
polarizability and shows that the matrix elements for light scattering are indeed
proportional to the matrix elements for polarizability.
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Box 12.1 Quantum theory of electronic polarizability

Electronic polarizability generally is described by a second-rank tensor, α,
which means that applying an electric field along a particular axis can gen-
erate an induced dipole with components perpendicular, as well as parallel,
to this axis. However, it always is possible to choose a molecular coordinate
system in which α is diagonal and polarizability can be described by a vector
with magnitude α. Applying a field along the x-, y-, or z-axis of this coordi-
nate system generates an induced dipole only along the same axis. These are
called the “principal axes” of the polarizability. For an isotropic sample, the
magnitude of the induced dipole is proportional to the scalar quantity α =
(1/3)Tr(α), which does not depend on the choice of the coordinate system.

In a quantum-mechanical picture, polarizability reflects mixing of the
ground state with higher-energy states when a molecule is perturbed by an
external electric field. We will describe the theory first for a molecule in
a static field and then consider a time-dependent field.

In the presence of a static field E, a molecule’s total electric dipole can be
expressed as a Taylor series in powers of the field:

μ = μ0 + μind = μ0 + αE + ... , (B12.1.1)

where μ0 is the permanent dipole in the absence of the field.
μ0 and α also can be related to the first and second derivatives of the

energy with respect to the field:

μ0 = −∂E/∂E , (B12.1.2)

and

α = −∂2E
/
∂E2 . (B12.1.3)

Equation (B12.1.2) is the same as Eq. (4.2). Equations (B12.1.2) and (B12.1.3)
follow from a general theorem called the Hellman–Feynman theorem, which
says that the derivative of the energy with respect to any parameter is
equal to the expectation value of the derivative of the Hamiltonian with
respect to the parameter. In the present case, the Hellman–Feynman theo-
rem informs us that, for a system with wavefunction Ψ and eigenvalue E,
∂E/∂E = 〈Ψ|∂H/∂E|Ψ〉 = −〈Ψ|μ|Ψ〉 = −μ. To use this relationship, we first
expand the energy as a Taylor series in powers of E:

E = E0 +
(
∂E/∂E

)
0 E +

1
2

(
∂2E

/
∂E2)

0 E2 + ... , (B12.1.4)

where all the derivatives are evaluated at E = 0. Differentiating Eq. (B12.1.4)
with respect to E gives, according to the Hellman–Feynman theorem,

μ = −
(
∂E/∂E

)
0 −

(
∂2E

/
∂E2)

0 E − · · · . (B12.1.5)
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Equating terms with the same powers of E in Eqs. (B12.1.1) and (B12.1.5)
then yields Eqs. (B12.1.2) and (B12.1.3).

Now consider a molecule with eigenfunctionsΨk in the absence of external
fields. The wavefunction in the presence of a static field can be written as
a linear combination of these basis functions:

Ψ =
∑

k

CkΨk . (B12.1.6)

To find α by Eq. (B12.1.3), we must evaluate how the energy of this superpo-
sition state depends on the field. We can do this by following the procedure
we used in Chap. 8 to find how two states with diabatic energies Ea and Ek

are mixed by a weak perturbation (H̃
′
). Let state a be the ground state, and

assume that the coefficient for any higher-energy state k is much smaller
than that of state a (0 < |Ck| � |Ca| ≈ 1). The energy of the system (E) then
will be approximately the same as that of state a, so that from Eq. (8.6) we
have

Ck = −CaHka
/(

Hkk − E
) ≈ −Hka

/(
Hkk − Haa

)
(B12.1.7)

and

E =
(
CaHaa + CkHak

)/
Ca ≈ Haa − HakHka

/(
Hkk − Haa

)

= Ea + Haa − HakHka
/(

Hkk − Haa
)

, (B12.1.8)

where Haa, Hkk, Hak and Hka are defined as in Eq. (8.8).
For the problem at hand, the perturbation operator H̃

′
is the dipole opera-

tor μ̃. Summing over all the higher-energy states, and letting μij = 〈Ψi |̃μ|Ψj〉
as usual, the energy of the system in the presence of the external field is

E ≈ Ea − μaa · E −
∑

k=a

(
μak · E

) (
μka · E

)

Ek − Ea
= Ea − μaa · E −

∑

k=a

(
μka · E

)2

Ek − Ea
.

(B12.1.9)

Taking the second derivative of the energy with respect to E gives, according
to Eq. (B12.1.3),

α ≈ 2
∑

k=a

∣∣μka
∣∣2

Ek − Ea
. (B12.1.10)

This derivation does not hold for a field that oscillates rapidly with time.
In such a field, the induced dipole oscillates and the amplitude of these
oscillations depends on the frequency. We can, however, define a frequency-
dependent dynamic polarizability, or molecular electric susceptibility, as the
ratio of the amplitudes of the two oscillations (Sect. 3.1.5). Suppose an en-
semble of molecules in the ground state (a) is exposed to an oscillating field.
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If we write the density matrix ρ with a basis of ground and excited-state
wavefunctions, the expectation value of the total dipole is given by Eqs. (10.13)
and (10.14) as

〈
μ(t)

〉
= Tr [ρ(t)μ] =

∑

j

∑

k

ρjk(t) μkj (B12.1.11)

≈
∑

k

[ρak(t) μka + ρka(t) μak] = μaa +
∑

k=a

[ρak(t) μka + ρka(t) μak] .

Here μaa is the permanent dipole moment in the ground state, and the sum
over k represents the induced dipole, μind. If we use steady-state expres-
sions for the density matrix elements (Eqs. (10.42), (12.3), (12.4)) for a field
E0[exp(2πiνt) + exp(−2πiνt)], and neglect terms that are more than first
order in the field strength, the induced dipole is

〈
μind(t)

〉
=
∑

k

(
μakμka · E0 exp(−2πiνt)

Ek − Ea − hν − i�/T2
+

μkaμak · E0 exp(2πiνt)
Ek − Ea − hν + i�/T2

)
.

(B12.1.12)

Because both the permanent and the induced components of 〈μ〉 are real,
the polarizability operator must be Hermitian. This will be the case if we
define the polarizability operator so that

μind(t) = αaaE0 exp(2πiνt) + α∗
aaE0 exp(−2πiνt) . (B12.1.13)

A comparison of Eqs. (B12.1.12) and (B12.1.13) with Eq. (12.11) shows that
the matrix elements of the dynamic polarizability defined in this way are the
same as the matrix elements for Rayleigh scattering.

12.3
The Wavepacket Picture of Resonance Raman Scattering

Although evaluating the matrix element for resonance Raman scattering by
Eq. (12.13) is straightforward for a molecule with only one or two vibrational
modes, it rapidly becomes intractable for larger molecules, and a wavepacket treat-
ment similar to the one described for absorption in Chap. 11 becomes increasingly
useful. To recast Eq. (12.13) in a time-dependent form, we first note that the factor
1/(Ek(e) – Ea(g) – hνe – i�/T2) that appears in each term of the sum is (2π)1/2i times
the half Fourier transform of the function exp[−i(Ek(e) − Ea(g))t/� − �t/T2]:

√
2π i

1√
2π

∞∫

0

{
exp

[
−i
(
Ek(e) − Ea(g)

)
t
/
� − �t/T2

]}
exp

(
2π iνet

)
dt



12.3 The Wavepacket Picture of Resonance Raman Scattering 431

= i

∞∫

0

exp
[
−i
(
Ek(e) − Ea(g) − hνe

)/
� − �t/T2

]
dt

= 1
/(

Ek(e) − Ea(g) − hνe − i�/T2
)

. (12.15)

This function has the same form as the function we used in Sect. 2.6 to rep-
resent a wavefunction that decays exponentially with time (Eqs. (2.63), (2.64),
Appendix 3). The decay time constant T in Eqs. (2.63) and (2.64) corresponds to
T2/2� in Eq. (12.15).

Let us now construct an excited-state wavepacket X(t) as in Eqs. (11.46) and
(11.47) but with a dephasing time constant of T2, so that

〈
Xb(g)

∣∣X(t)
〉

=
〈
Xb(g)

∣∣X(t)
〉

=

〈

Xb(g)

∣∣∣∣∣

∑

k

CkXk(e) exp [−iEk(e)t/� − �t/T2]

〉

=
∑

k

〈
Xb(g)|Xk(e)

〉 〈
Xk(e)

∣∣Xa(g)
〉
exp

(
−iEk(e)t/� − �t/T2

)
. (12.16)

Note that the products of vibrational overlap integrals in this expression are the
same as those in Eq. (12.13).

Combining Eqs. (12.13), (12.15), and (12.16) gives

αba =
∣∣μeg

∣∣2
∑

k

〈
Xb(g)

∣∣Xk(e)
〉 〈

Xk(e)
∣∣Xa(g)

〉

Ek(e) − Ea(g) − hνe − i�/T2

= i
∣∣μeg

∣∣2
∞∫

0

〈
Xb(g) |X(t)

〉
exp

[
i
(
Ea(g) + hνe

)
t/�

]
dt . (12.17)

The matrix element for resonance Raman scattering thus is proportional to a half-
Fourier transform of the overlap of the final vibrational wavefunction (Xb(g)) with
the time-dependent wavepacket X(t) created by exciting the molecule with white
light in the ground state. See Lee and Heller (1979) and Myers et al. (1982) for
more complete proofs of this relationship, and Myers (1997) for a review of some
of its extensions and applications. The resonance Raman excitation spectrum is
proportional to |αba|2 as explained above.

Because the vibrational wavefunctions of the ground electronic state are orthog-
onal, the overlap of Xb(g) with the excited-state wavepacket X(t) is zero at t = 0,
when the wavepacket is simply a vertical projection of Xa(g) onto the excited-state
surface. The overlap grows with time as the wavepacket moves away from its ori-
gin (Fig. 12.6). This description provides a new perspective on the sensitivity of
the amplitude of resonance Raman scattering to the dephasing time constant T2

(Fig. 12.5). If T2 is short, the wavepacket decays before overlap of X(t) with Xb(g)

has much opportunity to develop, with the result that Raman scattering is very
weak. Ordinary absorption and Rayleigh scattering, by contrast, depend on the
overlap of X(t) with the initial wavefunction Xa(g), which is maximal at zero time
(Eq. (11.54)).
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Fig. 12.6. Calculated magnitude of the overlap integral |〈χj(g)|X(t)〉| as a function of time
for j = 0 (solid curves), 1 (dotted curves), or 2 (dashed curves), in a molecule with a single
harmonic vibrational mode with frequency υ and Δ = 1 (A) or Δ = 2 (B). The dephasing
time constant was assumed to be much longer than the vibrational period (T2 = 1,000/υ).
Note that the overlap of the excited-state wavepacket, X(t), with the zero-point wavefunction
of the ground state, χ0(g), is maximal at t = 0, whereas the overlaps with higher levels begin
at zero and peak at progressively later times. See Fig. 11.18 for plots of the real and imaginary
parts of |〈χ0(g)|X(t)〉| when Δ = 2 and T2 = 2/υ

If the normal coordinates do not change significantly upon excitation, the overall
wavepacket X(t) for a molecule with multiple vibrational modes is a product of
wavepackets for the individual modes [X(t) = X1(t)X2(t)X3(t)...] and the time-
dependent overlap integral 〈Xb(g)|X(t)〉 consists of a similar product (Myers 1997):

〈
Xb(g)

∣∣X(t)
〉

=
〈
χb,i(g)

∣∣Xi(t)
〉 〈
χb,j(g)

∣∣Xj(t)
〉 〈
χb,k(g)

∣∣Xk(t)
〉 · · · . (12.18)

Here χb,i(g) denotes a vibrational wavefunction for level bi of mode i in the ground
electronic state. As we discussed in connection with absorption spectra in Chap. 11,
Eq. (12.18) makes the wavepacket formalism much more manageable than the
Kramers–Heisenberg–Dirac expression for calculating Raman excitation spectra.
It is not necessary to sum over all possible combinations of quantum numbers for
the different modes.

12.4
Selection Rules for Raman Scattering

Inspection of Fig. 12.2 shows that some of the bands in an IR absorption spectrum
also feature in the off-resonance Raman emission spectrum. The relative intensities
of the bands are different, however, and there generally are bands that appear
in only one spectrum or the other. The strong IR absorption band of HBDI at
1,677 cm−1 (Fig. 12.2, panel A) has little or no Raman intensity (Fig. 12.2, panel B),
while the band at 1,562 cm−1 that dominates the Raman spectrum contributes only



12.4 Selection Rules for Raman Scattering 433

a weak shoulder on the side of the IR absorption band at 1,572 cm−1. The relative
intensities differ again in resonance Raman spectra (Fig. 12.2, panel C).

We saw in Chap. 6 that there are two main selection rules for direct excitation
of a harmonic oscillator from level n to level m: first, m = n ± 1, and, second, the
vibration must change the permanent dipole moment of the molecule. Arguments
parallel to those we used to find the selection rules for IR absorption can be used to
predict qualitatively whether or not a particular vibrational mode will contribute
to off-resonance Raman scattering. The difference is that for Raman scattering we
relate the scattering matrix element αba to the molecular polarizability (α) rather
than the permanent dipole moment. If the polarizability is expanded in a Taylor
series as a function of the normal coordinate (x) for the mode, the matrix element
for Raman scattering becomes

〈
χm |α| χn

〉
= α(0)

〈
χm

∣∣χn
〉

+
(
∂α/∂x

)
0

〈
χm |x| χn

〉
+

1
2

(
∂2α

/
∂x2)

0

〈
χm

∣∣x2
∣∣ χn

〉
+ ...

=
(
∂α/∂x

)
0

〈
χm |x| χn

〉
+

1
2

(
∂2α

/
∂x2)

0

〈
χm

∣∣x2
∣∣ χm

〉
+ ... , (12.19)

whereχn andχm are the initial and final vibrational wavefunctions for the mode, all
the quantities refer to the ground electronic state, and the derivatives are evaluated
at x = 0. This expression indicates that 〈χm|α|χn〉 can be nonzero only if m = n ± 1,
so 〈χm|x|χn〉 = 0. In addition, (∂α/∂x)0 must be nonzero. The vibration therefore
must change the molecule’s polarizability, just as a vibration must change the
molecule’s permanent dipole in order to have an allowed IR transition.

As a rule of thumb, changes in α are associated with vibrations that increase
the molecular size. Raman scattering thus is allowed in homonuclear diatomic
molecules such as O2, where IR transitions are forbidden by symmetry. Similarly,
the symmetric stretching mode of a triatomic molecule gives an allowed Raman
transition, whereas the antisymmetric stretching mode does not (Fig. 12.7). Note,
however, that Eqs. (12.11)–(12.13) require summing the weighted products of
〈Xb(g)|Xk(e)〉 and 〈Xk(e)|Xa(g)〉 over all vibrational levels of the excited state (k)
before we take the square of Mba to find the Raman strength. This summation can
lead to interferences that do not arise in IR transitions. Remember also that, just
as in electronic and vibrational absorption, the fact that a Raman transition is
allowed by symmetry means only that the matrix element for the transition is not
necessarily zero; it does not say anything more about the magnitude of the matrix
element.

Resonance Raman scattering emphasizes the vibrational modes that are cou-
pled most strongly to the resonant electronic transition (i.e., modes with the largest
displacement in the excited state). This tends to makes resonance Raman spectra
much more selective than off-resonance Raman spectra, as we saw in Fig. 12.2. At
the same time, the coupling to an electronic transition also relaxes the requirement
that m = n ± 1. Consider the matrix element for resonance Raman scattering as
given by Eq. (12.13). Whereas the orthogonality of the vibrational wavefunctions
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Fig. 12.7. Off-resonance Raman transitions for a vibrational mode with normal coordinate x
are allowed when the molecular polarizability (α) has a nonzero slope at the mean value of
the normal coordinate. This is the case for the symmetric stretching mode of a triatomic
molecule (a), but not for the asymmetric stretching mode (b)

within a given electronic state makes 〈Xb(g)|Xa(g)〉 = 0 unless state a is the same as
state b, both 〈Xb(g)|Xk(e)〉 and 〈Xk(e)|Xa(g)〉 can be nonzero because the two vibra-
tional wavefunctions in each integral are for different electronic states. Resonance
Raman scattering therefore has no formal selection rule that prevents scattering
from a given vibrational level (m) to m ± 2 or any other level. These transitions to
higher-energy vibrational levels can make parts of the resonance Raman spectrum
extremely rich, providing a unique “fingerprint” for a molecule. The cis and trans
isomers of the retinylidine Schiff base chromophore in rhodopsin photoproducts
were readily distinguishable in this way (Sect. 12.6).

In spite of the relaxation of the selection rule m = n ± 1, the strongest resonance
Raman scattering peaks usually reflect transitions in which the quantum number
for a particular vibrational mode goes from 0 to 1 with no changes in other modes.
We can rationalize this by using the wavepacket picture of Raman scattering. If
all the vibrations are at their zero-point levels in the resting molecule, the overlap
integral for Raman scattering from level 0 to level 1 of mode i (Eq. (12.18)) reads

〈
Xb(g)

∣∣X(t)
〉

=
〈
χ1,i(g)

∣∣Xi(t)
〉 ∏

j=i

〈
χ0,j(g)

∣∣Xj(t)
〉

. (12.20)

This usually is larger than the corresponding integral for scattering to bi(g) = 2
because, in the wavepacket picture, Xi(t) builds up overlap withχ1,i(g) more quickly
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than it does with χ2,i(g) (Fig. 12.6). Dephasing of the wavepacket frustrates the rise
of 〈χ2,i(g)|Xi(t)〉. In addition, the build-up of 〈χ2,i(g)|Xi(t)〉 must occur while the
wavepackets for all the other modes (j = i) retain good overlap with the initial,
ground-state wavefunction, which becomes progressively more difficult as the
number of vibrational modes increases.

Because most of the molecules of interest in biophysics have very low symmetry,
their vibrational modes cannot be described accurately as being either symmet-
ric or antisymmetric, and the peaks in a Raman or resonance Raman spectrum
cannot be assigned on the basis of simple selection rules. However, normal-mode
analysis often can be used to identify the vibrational modes that are coupled most
strongly to excitation of a chromophore. Isotopic labeling, chemical modifications
of the chromophore, or site-directed mutagenesis can be used to shift a particular
vibration to higher or lower frequency, and thus to verify the assignment.

12.5
Surface-Enhanced Raman Scattering

The fortuitous discovery that Raman scattering by pyridine becomes much stronger
when the pyridine is adsorbed on a roughened silver surface (Fleischmann et al.
1974) initiated a continuing discussion of the physical basis for this effect (Moscov-
its 1985; Otto et al. 1992; Campion and Kambhampati 1998; Moscovits et al. 2002;
Wang et al. 2003). Surface-enhanced Raman scattering (SERS) occurs with other
noble metals, including gold and copper, and with a variety of “nanoparticles”
formed from colloidal metals or fabricated by lithography. Astonishing enhance-
ments by a factor of 1014 have been obtained with single molecules adsorbed on
colloidal silver particles (Emory and Nie 1997; Kneipp et al. 1997; Nie and Emory
1997; Wang et al. 2003), although factors between 108 and 1010 are more typical.

There is general agreement that the main factor leading to SERS is the strong ra-
diation field created by surface plasmons in the metal (Box 3.2; Jeanmaire and Van
Duyne 1977; Moscovits 1978, 1985; Haynes and Van Duyne 2001, 2003; Moscov-
its et al. 2002; Wang et al. 2003; Futamata et al. 2004). The highly curved sur-
faces of colloidal metal particles evidently lead to irregular localization of sur-
face plasmons and to coupling of the fields generated by surface plasmons on
neighboring particles, so the fields acting on adsorbed molecules can vary enor-
mously from site to site. Resonances with charge-transfer transitions in which an
electron moves from the adsorbed molecule to the metal or vice versa probably
contribute additional enhancement by factors of 102–103 (Albrecht and Creighton
1977; Lombardi et al. 1986; Doering and Nie 2002; Vosgrone and Meixner 2005).
Anions and cations affect the enhancement in ways that are still not well under-
stood.
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12.6
Biophysical Applications of Raman Spectroscopy

Raman spectroscopy has been particularly useful in studies of rhodopsin and
bacteriorhodopsin. As discussed in Chap. 4, excitation of rhodopsin or bacteri-
orhodopsin by light causes isomerization of the retinyl chromophore. In rhodopsin,
the chromophore changes from 11-cis to all-trans; in bacteriorhodopsin, it goes
from all-trans to 13-cis. Resonance Raman measurements showed that the iso-
merization was essentially complete in metastable intermediate states that formed
within a few picoseconds (Aton et al. 1980; Eyring et al. 1980; Pande et al. 1981;
Loppnow and Mathies 1988; Doig et al. 1991; Yan et al. 1991; Lin et al. 1998). The
conformations of these states were ascertained by comparisons of the resonance
Raman spectra with those of model compounds.

Raman spectroscopy also has proved an effective way to study the ligation states
and environments of hemes in proteins (Shapleigh et al. 1992; Varotsis et al. 1993;
Hu and Spiro 1997; Peterson and Friedman 1998; Schelvis et al. 1998; Wang and
Spiro 1998; Hu et al. 1999; Huang et al. 1999; Lee et al. 2000; Maes et al. 2001;
Smulevich et al. 2005), and to examine the ligands and hydrogen bonding of the
protein to the pigments in photosynthetic reaction centers and antenna complexes
(Mattioli et al. 1991, 1995; Goldsmith et al. 1996; Olsen et al. 1997; Ivancich et al.
1998; Stewart et al. 1998; Lapouge et al. 1999). The bacteriochlorophyll ring has
a characteristic vibrational mode near 1,615 cm−1 when the magnesium has one
axial ligand, and near 1,600 cm−1 when there are two ligands. Hydrogen bonding
to the acetyl or keto group shifts the C=O stretching mode to lower frequency, and
the magnitude of this shift depends approximately linearly on the strength of the
hydrogen bond (Mattioli et al. 1995; Ivancich et al. 1998). Shifts of the resonance
Raman frequency upon site-directed mutagenesis have been used similarly to
identify residues that form hydrogen bonds to the formyl group of heme a in
cytochrome oxidase (Shapleigh et al. 1992). Measurements of resonance Raman
scattering are advantageous in such studies because the incident light can be tuned
to the absorption band of a particular subset of the pigments, such as the special
pair of bacteriochlorophylls that serve as the initial electron donor in bacterial
reaction centers. Comparisons of the resonance Raman excitation cross sections
of the different pigments indicate that the dephasing time constant T2 is very
different for these pigments compared with that for the other bacteriochlorophylls
in the reaction center or in the antenna complexes (Cherepy et al. 1997a, b).

The experiments on GFP illustrated in Fig. 12.2 were aimed partly at the question
of how excitation of the chromophore leads to dissociation of a proton from the
phenolic −OH group (Fig. 5.9). Comparisons of resonance Raman spectra of GFP
with spectra of the chromophore in ordinary and deuterated ethanol, together
with normal-mode assignments of the Raman bands, indicated that stretching of
the O–H bond is not strongly coupled to the initial excitation, and must develop
later in the evolution of the excited state (Esposito et al. 2001; Schellenberg et al.
2001).
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Advancing techniques for obtaining laser light in the UV have opened the
door to time-resolved resonance Raman studies of tyrosine, phenylalanine, and
tryptophan residues in proteins (Hu and Spiro 1997; Deng and Callender 1999; Bal-
akrishnan et al. 2004a, b, 2005; Ahmed et al. 2005Overman et al. 2005; Rodriguez-
Mendieta et al. 2005; Sato and Mizutani 2005). UV resonance Raman also appears
to be a potentially powerful source of information on the secondary structure and
the distribution of Ramachandran ψ angles in polypeptides (Asher et al. 2004;
Mikhonin et al. 2005).

Much of the interest in SERS to date has focused on potential analytical appli-
cations. The technique has been used in a sensitive biosensor of glucose (Shafer-
Peltier et al. 2003) and to assay lysophosphatidic acid, a biomarker for ovarian
cancer (Seballos et al. 2005). With the advent of single-molecule SERS, biophysical
studies comparable to the single-molecule fluorescence experiments described in
Sect. 5.9 should be interesting.

12.7
Coherent Raman Scattering

“Coherent” or “stimulated” Raman scattering is a four-wave mixing technique
in which Raman transitions are strongly enhanced (Maker and Terhune 1964;
Bloembergen 1967; Druet and Taran 1981; Shen 1984; Mukamel 1995). Although
a complete analysis reveals some interesting subtleties (Mukamel 1995), the pro-
cess is basically the same as ordinary off-resonance Raman scattering except that
emission of Raman-shifted radiation is stimulated by radiation at the emission
frequency. The magnitude of the resulting signal increases quadratically with the
intensity of the stimulating radiation, and can be on the order of 104 times as
strong as the signal from unstimulated Raman transitions, in which the emission
depends on the zero-photon radiation field. Either Stokes or anti-Stokes Raman
transitions can be stimulated, but anti-Stokes transitions (coherent anti-Stokes Ra-
man scattering, or CARS) have the technical advantage of being shifted out of the
region of background fluorescence. The term “coherent” in this context does not
refer to coherences with a virtual intermediate state, which play the same role here
as in spontaneous Raman scattering (Fig. 12.3d). It refers to the fact that emission
from many molecules occurs coherently across a macroscopic region where the
four waves overlap. In ordinary Raman scattering, the molecules in the illuminated
region emit light independently and with random phases.

Figure 12.8 shows a typical arrangement of the excitation and signal beams
for coherent Raman scattering. Two incident beams are required. The sample
interacts twice with a field with frequency νp and wavevector kp from the “pump”
beam and twice with a field with wavevector ks and frequency νs from the “Stokes”
beam. If the two fields overlap temporally and spatially, they can induce anti-
Stokes Raman transitions of a vibrational mode with frequency υ when νs - νp = υ.
Stimulated Raman signals then propagate with wavevector k = 2kp − ks. Coaxial
arrangements of the excitation beams also can be used, and lend themselves well to
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Fig. 12.8. In coherent Raman spectroscopy, a beam of electromagnetic radiation with fre-
quency νp and wavevector kp, and a second beam, with frequency νs and wavevector ks,
are focused on the sample. Radiation emitted with frequency ν = 2νp − νs and wavevector
kf = 2kp − ks is collected. Stokes Raman transitions of the ground electronic state are
stimulated when νp − νs = υ, where hυ is a vibrational mode of the sample; anti-Stokes
transitions are stimulated when νp − νs = −υ

confocal microscopy (Bjorklund 1975; Zumbusch et al. 1999; Volkmer et al. 2001;
Cheng et al. 2002, 2003). Signals propagating in the reverse direction can be greatly
augmented by scattering of the forward-going signals in turbid materials such as
living tissues (Evans et al. 2005).

Coherent Raman scattering has several features that make it particularly at-
tractive for microscopy (Evans et al. 2005). First, the excitation frequencies can
be chosen to image structures with particular chemical compositions. Since the
selectivity depends on the difference between the two frequencies rather than their
absolute values, the wavelengths required are shorter than would be needed for
imaging the same vibrational modes by IR absorption, and this provides greater
spatial resolution. Because external labels are not required, the signals are not
limited by bleaching of the probe as they usually are in fluorescence microscopy,
nor are they perturbed by effects of the probe on the sample. The quadratic de-
pendence of the signal on the intensity of the second beam, combined with the
linear dependence on the intensity of the first beam, allows very tight focusing of
the image. Finally, the technique can be remarkably sensitive, as shown by studies
of single lipid bilayers (Potma and Xie 2003; Wurpel et al. 2004, 2005).

Cheng et al. (2002) have used CARS microscopy to image live cells undergoing
mitosis and apoptosis. Two pulsed Ti:Sapphire lasers that could be tuned indepen-
dently between 700 and 900 nm (14,300 and 11,100 cm−1) provided the radiation.
A frequency difference of 2,870 cm−1 was used to probe C–H stretching vibrations
of phospholipid side chains in cellular membranes. In another study, Cheng et al.
(2003) compared the symmetric CH2 stretching vibration in multilamellar phos-
phatidylserine and phosphatidylcholine vesicles with the O–H stretching mode of
water at the membrane surfaces (3,445 cm−1). The dependence of the signals on
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the polarization of the radiation showed that the water molecules were oriented
with their symmetry axis normal to the membrane surface.

12.8
Multiphoton Absorption

Two-photon absorption resembles Raman scattering in that alternating interac-
tions of a molecule with two radiation fields create a series of coherences with
a virtual state. However, the final state is an excited electronic state rather than the
ground state. The Liouville-space diagrams for the process, one of which is shown
in Figure 12.9a, are identical to those for Raman scattering (Fig. 12.3d). To indicate
that all the steps are associated with absorption, the directions of two of the wavy
arrows in the double-sided Feynman diagram (Fig. 12.9b) are reversed relative to
those for Raman scattering (cf. Fig. 12.3e). As with Raman scattering, the essential
feature of two-photon absorption is that it proceeds entirely through coherences.
The same final state often can be attained by two discrete steps in which a lower
excited state is populated as a real, if transient, intermediate. For comparison,
Fig. 12.9c and d shows Liouville-space and double-sided Feynman diagrams for
one of the pathways that contribute to the latter process.

The condition for energy conservation in two-photon absorption is hν1 + hν2 =
Eb − Ea, where ν1 and ν2 are the frequencies of the two fields and Ea and Eb are the
energies of the ground and excited states. Resonance with excitation to the virtual
intermediate state is not required, although it would enhance the process just as
it enhances Raman scattering. Experimentally, a single excitation beam is used in
most cases, so ν2 = ν1 = ν, k2 = k1, and Eb – Ea = 2hν. The product state can
be measured by its spontaneous fluorescence, stimulated emission, ground-state
bleaching, excited-state absorption, or conversion of the excitation energy to heat
(Birge 1986). If it is a higher excited singlet state, the product usually decays rapidly
to the lowest such state by internal conversion so, in accordance with Kasha’s rule
(Sect. 5.6), the fluorescence emission spectrum and lifetime are very similar to
those obtained by single-photon excitation.

Two-photon excitation was first predicted in her doctoral thesis by Maria
Göppert-Mayer (1931), who recognized that it was a corollary of the Kramers–
Heisenberg–Dirac theory of light scattering. It was not observed experimentally
until 30 years later, when pulsed ruby lasers finally provided the high photon flux
that was required (Kaiser and Garrett 1961). Göppert-Mayer received the Nobel
prize in 1963 for unrelated work on nuclear structure.

The matrix element for two-photon absorption is essentially the same as that
for off-resonance Raman scattering (12.11). Assuming that the two photons have
the same frequency (ν) and field strength (E) but possibly different polarizations
(̂e1 and ê2), we have

αba =
∑

k

(
μbk · ê2

) (
μka · ê1

)

Ek − Ea − hν − i�/T2
, (12.21)
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Fig. 12.9. Liouville-space and double-sided Feynman diagrams for two-photon absorption
(a, b) and a representative pathway resulting in ordinary excited-state absorption (c, d).
The ground state and the final excited state are labeled a and b. Excited-state absorption
requires populating an intermediate state (k), whereas two-photon absorption proceeds
entirely through coherences. Both processes also occur by the complex conjugates of the
pathways shown. Excited-state absorption also can occur by the pathway shown in Fig. 12.3b
and its complex conjugate

where μka and μbk are the transition dipoles connecting the virtual intermediate
state k to the ground and excited states, respectively. Note that the virtual interme-
diate state k does not have to lie below state b in energy; in many cases it will be
higher.

Inspection of Eq. (12.21) shows that the selection rules for two-photon excitation
are somewhat different than those for one-photon excitation. Consider a molecule
with inversion symmetry, for which each wavefunction has either gerade (g) or
ungerade (u) symmetry (Box 4.8, Figs. 4.6–4.8). One-photon excitation from one
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g wavefunction to another or from one u wavefunction to another are forbidden
by symmetry, whereas excitations that change the symmetry (u → g or g →
u) are allowed. In order for αba to be nonzero, therefore, the wavefunction for
the virtual intermediate state k must have different inversion symmetry from the
wavefuctions for both state a and state b, which means that states a and b must
have the same symmetry. Excitations that are forbidden by symmetry for one-
photon absorption thus can be allowed for two-photon absorption and vice versa.
Although this selection rule breaks down in less symmetric chromophores, the
relative strengths of two-photon excitation to various excited states generally will
differ from the relative strengths for one-photon excitation.

The different dependence on orbital symmetries makes two-photon spectro-
scopy a useful technique for studying some excited states that are not readily
accessible by one-photon excitation. Birge (1986) used two-photon excitation to
explore the 21A−

g excited state of retinyl derivatives (Box 4.12) in solution and
bound to rhodopsin. Excitation to this state from the ground state is, to a first
approximation, forbidden in a one-photon transition but is allowed as a two-
photon transition. Comparisons of the one- and two-photon absorption spectra of
the unprotonated Schiff base of all-trans-retinal in solution showed that the 21A−

g

state lies below 11B+
u . Protonating the Schiff base moves 11B+

u down in energy and
inverts the order. In rhodopsin containing a “locked” 11-cis-retinyl derivative that
was unable to undergo photoisomerization, 11B+

u was found to lie below 21A−
g , in

accord with other indications that the Schiff base is protonated (Birge et al. 1985;
Birge 1986).

Comparisons of rates of one- and two-photon absorption can be confusing
because the two processes have different dependences on the light intensity. The
rate of two-photon excitation, in particular, depends strongly on the spatial and
temporal distribution of the excitation light (Xu and Webb 1996). The pertinent
factor is the integral of 〈I2〉over the illuminated volume, where I is the light intensity
and 〈I2〉 is the average of I2 over the period of the measurement. 〈I2〉 generally
differs from 〈I〉2, depending on the temporal coherence of the laser. Xu and Webb
(1996) have measured the two-photon absorption cross sections of a variety of
fluorescent dyes, using wavelengths between 690 and 900 nm from a pulsed Ti:S
laser. Typical values are between 10−50 and 10−48 cm4 s per photon, or 1–100 in the
unofficial but frequently used units of “Göppert-Mayers” (1 G.M. = 10−50 cm4 s).
Psoralen has a two-photon absorption cross section of 20 × 10−50 cm4 s (Oh et
al. 1997), and quantum dots with cross sections as high as 47,000 × 10−50 cm4 s
have been described (Larson et al., 2003). To put these values in perspective,
with the instrumentation described by Xu and Webb (1996), a 1-mW continuous
laser beam gave a pulse intensity of about 1028 photons cm−2 s−1), or 〈I〉2 ≈ 1056

photons2/cm−4 s−2. A molecule with a two-photon absorption cross section of
10−50 cm4 s per photon would be excited about 106 times per second.

The dependence on the polarization of the excitation light also differs for one-
and two-photon absorption. For one-photon absorption in an isotropic system,
the average of (μba · ê )2 over all orientations of the transition dipole with respect
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to an axis of linear polarization (̂e) is simply |μba|2/3 (Box 4.6). In two-photon
absorption, because the polarizations of the two photons are not necessarily the
same, the quantity α2

ba that is averaged is a tensor product rather than a dot
product. As a result, the ratio of the two-photon absorptivity with circularly and
linearly polarized exciting light is particularly informative. Methods for relating
this ratio (Ω) to the symmetry of the initial and final wavefunctions were developed
by McClain (Monson and McClain 1970; McClain 1971, 1972; Drucker and McClain
1974), and were extended to fluorescence anisotropy by Callis (1993, 1997). In
3-methylindole, Ω is 1.4 for excitation to the 1Lb state and 0.5 for the 1La state
(Rehms and Callis, 1987). The calculated cross sections for two-photon excitation
with unpolarized light also differ for the 1La and 1Lb states, being four to eight times
larger for the 1La state, although the overall absorption spectra are coincidentally
very similar with one- and two-photon excitation (Rehms and Callis 1987; Callis
1991, 1993, 1997).

Multiphoton excitation has proved to be especially useful in confocal fluo-
rescence microscopy, where it has several distinct advantages over one-photon
excitation (Denk et al. 1990; Xu et al. 1996; Yuste and Konnerth 2000; Helmchen
and Denk 2005; Sanchez and Gratton 2005). Because multiphoton excitation has
a quadratic or higher dependence on the light intensity, it can be focused more
tightly than one-photon excitation. This not only improves the spatial resolution,
but also decreases the amount of absorption, photobleaching of the fluorophore,
and photodamage to the specimen in regions that are out of the focal plane. UV
optics are not required, and the red or near-IR excitation tends to penetrate tis-
sues better than UV or blue light does. Finally, the emission spectrum of the
excited fluorophore often is well to the blue of the excitation light, facilitating their
separation.

Two-photon excitation has been used to visualize cell–cell interactions (Bu-
osso et al. 2002) and linear dichroism in cell membranes (Benninger et al. 2005).
It has been combined with resonance energy transfer to image protein–protein
interactions during T cell activation (Zal and Gascoigne 2004).

12.9
Quasielastic (Dynamic) Light Scattering
(Photon Correlation Spectroscopy)

Our discussion of light scattering in Sects. 12.1 and 12.2 focused on scattering by
an individual electron. We now consider how interference between light scattered
from different regions of a macromolecule can provide information on molecular
structure and dynamics. Such interference occurs when the molecular dimensions
are comparable to or greater than the wavelength of the light, so that the radiation
field at any given time varies with the position in the molecule. We assume,
however, that the molecule is still small enough, and the solution sufficiently
dilute, so that the velocity of light is effectively constant throughout the solution
under study. Scattering by large particles that delay light significantly relative to
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light passing by outside (called “Mie scattering” for spherical particles) is more
strongly directional than the process we consider here.

Consider an idealized macromolecule consisting of N chemically identical “seg-
ments” that scatter light independently. Our first task is to relate the field of the
radiation scattered by a given segment to the location of the segment relative to the
incoming and outgoing light rays. Suppose the incident light is a plane wave propa-
gating with wavevector ki, while the detector receives a plane wave of scattered light
propagating with wavevector ks, the angle between ks and ki being ϑ (Fig. 12.10a).
If the incident and scattered light have the same wavelength (λ) or very nearly so
(i.e., if the scattering is elastic or quasielastic), ks and ki have essentially the same
magnitude (1/λ) and differ significantly only in direction. Referring to Fig. 12.10a,
we will arbitrarily define point “o” as the origin of the coordinate system, so that
the incident light reaches the origin along line a o and light scattered at the origin
reaches the detector via line o f . Incident light reaches segment j of the molecule

Fig. 12.10. a A plane wave of light with wavefront a c and wavevector ki is scattered by various
segments of a molecule (gray circles), and a detector collects a plane wave of scattered light
with wavefront f h and wavevector ks. Segment j is located at rj relative to the origin of an
arbitrary coordinate system (o). Lines o d and e j are perpendicular to ki and ks, respectively.
The field at the detector from light scattered by segment j experiences a phase shift of
(2π/λ)(o e − d j) = 2πrj · (ks − ki) relative to light scattered at the origin. b A geometrical
construction shows that the magnitude of the scattering vector K is (2/λ) sin(ϑ/2), where ϑ
is the angle between ks and ki
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along b j and is scattered to the detector along j g. Because these paths differ in
length by d j − o e, the radiation field scattered by segment j is shifted in phase
relative to the field scattered at the origin. The phase shift, δj, is

δj =
2π
λ

(
o e − d j

)
= 2π

(
rj · ks − rj · ki

)
= 2π rj · K , (12.22)

where rj is the position of segment j and K ≡ ks − ki. Figure 12.10b shows that the
magnitude of K, the scattering vector, is related to the scattering angle (ϑ) by

|K| = |ks − ki| = |ki| sin
(
ϑ/2

)
+ |ks| sin

(
ϑ/2

) ≈ 2 |ki| sin
(
ϑ/2

)
=

2
λ

sin
(
ϑ/2

)
.

(12.23)

From Eq. (12.22), we see that the phase δj can change with time if the segment
moves, but that only the component of the movement parallel to K contributes to
this change. Including the phase shift, the field of the light with polarization ês seen
at the detector at time t after scattering by segment j at time τ = 0 can be written

Es(j)(t) = Es(o)(τ = 0)
{

exp
[
2πi(νt − ks · R + rj · K)

]

+ exp
[
−2πi(νt − ks · R + rj · K)

] }
, (12.24)

with

Es(o)(τ = 0) = Ee(τ = 0) · ês ρ1/2
ν αaa�

−1sin θ/|R| . (12.25)

In Eq. (12.25), θ is the angle between the polarization of the incident radiation
(Ee) and the direction of propagation of the scattered wave (ks), R is the position
of the detector, αaa is the dynamic polarizability of the segment, and ρν(ν) is the
density of modes of the incident radiation at frequency ν (Eqs. (12.9), (12.12),
(B12.1.13)). The factor sin θ/|R| is the same factor that determines the amplitude
of the field from an oscillating electric dipole (Figs. 3.1, 3.2), or the fluorescence
from an excited molecule whose transition dipole is oriented along a fixed axis
(Sect. 5.9). The polarizability αaa can be obtained from the difference between the
dielectric constant of the solution and that of the pure solvent.

Now suppose there are M macromolecules in the region where the incident
and scattered beams overlap (the scattering region). Assume that we can neglect
photons that are scattered twice (i.e., by more than one segment) before they reach
the detector. To obtain the average intensity of the scattered light at the detector (Is),
we must sum the fields from the individual segments of all the molecules in the
scattering region, square the modulus of the total field, and integrate over the
period of the radiation. Assuming that |Es(o)|2 (the time-averaged square of the
modulus of Es(o)) is the same for all the segments, the average irradiance of the
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light reaching the detector with scattering vector K is

Is(K) =
∣∣Es(o)

∣∣2
M∑

m1=1

M∑

m2=1

N∑

j=1

N∑

k=1

{
exp

[
2πiK · (rj − rk)

]

+ exp
[
−2πiK · (rj − rk)

] }
, (12.26)

where the sum over j is for segments of molecule m1 and the sum over k is for
segments of m2. Terms of the form exp[4πi(νt − k · R + rj · K/2 + rk · K/2)] have
dropped out as a result of averaging over time.

In free solution, the positions of the segments in two different molecules gen-
erally will be uncorrelated. Assuming that M >> 1, the terms of Eq. (12.26) for
m1 = m2 therefore sum to zero, leaving us with

Is(K) =
∣∣Es(o)

∣∣2 M
N∑

j=1

N∑

k=1

{
exp

[
2πiK · (rj − rk)

]
+ exp

[
−2πiK · (rj − rk)

]}
,

(12.27)

with both sums pertaining to the same molecule. Expanding the exponentials in
this expression gives, to second order in |K|,

Is(K) ≈ ∣∣Es(o)
∣∣2 M

N∑

j=1

N∑

k=1

{
2 −

[
2πK · (rj − rk)

]2
− · · ·

}
. (12.28)

Inspection of Eq. (12.28) shows that the scattered irradiance at |K|=0 is 2MN2|Es(o)|.
The intensity of the scattering at small angles thus provides a way of determining
the number of segments in the molecule (N), and from that, the molecular size
(Zimm 1948; Kerker 1969; Berne and Pecora 1976; Chu 1991).

Since the segments are assumed to be identical, and thus to have the same
mass, the sum of the quadratic terms in Eq. (12.28) is proportional to −(|K|2R2

g)/3,
where Rg is the molecule’s radius of gyration (Berne and Pecora 1976). The factor
of (|K|2)/3 comes from summing the square of the dot product over random
orientations of the vector (rj – rk) relative to K. The slope of a plot of Is versus |K|2

at small scattering angles therefore can be used to obtain Rg.
Brownian diffusion and internal motions of a macromolecule cause the intensity

of quasielastically scattered light to fluctuate with time, and the autocorrelation
function of the scattering provides information on the dynamics of these motions
just as we discussed in Sect. 5.11 for fluorescence fluctuations. Berne and Pec-
ora (1976), Schurr (1977, 1984), Chu (1991), and Brown (1993) give expressions
for the autocorrelation functions that apply to various models for proteins and
nucleic acids, along with further information on data collection and analysis. If
the autocorrelation function decays with a single exponential time constant τ, the
molecule’s diffusion coefficient is 1/(2τ|K|2). The autocorrelation function of dy-
namic light scattering by a sample with a distribution of molecular sizes will have
multiple components.
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Vectors are used to represent properties that have both magnitude and direction.
Scalars have a magnitude but no direction. Velocity, for example, is a vectorial
property, while mass is a scalar. A vector in an N-dimensional coordinate space
has N independent components (Ak), each parallel to one of the coordinate axes.
In the text we denote a vector by a boldface letter in italics or by enclosing a list of
the individual components in parentheses:

A =
(
A1, A2, A3, · · ·) . (A.1)

In a three-dimensional coordinate system, for example, A = (Ax, Ay, Az), where Ax,
Ay, and Az are the components parallel to the x-, y-, and z-axes. The components
can be arranged in either a row or a column. A vector with unit length parallel to
the k-axis is designated by a letter with a caret (∧) on top (̂k).

The magnitude, modulus, or length of vector A is the square root of the sum of
the squares of the individual components:

|A| =

(
∑

k

A2
k

)1/2

. (A.2)

The sum or difference of two vectors is obtained by simply adding or subtracting
the corresponding components. In three dimensions, for example,

A ± B =
(
Ax ± Bx, Ay ± By, Az ± Bz

)
. (A.3)

There are two types of vector products. The dot product or scalar product A · B
of vectors A and B is a scalar whose magnitude is the sum of the products of the
corresponding components:

A · B =
∑

k

AkBk . (A.4)

The magnitude of A therefore can be written as |A| = (A·A)1/2. In three dimensions,

A · B = |A| |B| cos θ , (A.5)

where θ is the angle between the two vectors.
The cross product or vector product of two vectors, denoted A × B or A ∧ B,

is a vector that is perpendicular to both A and B and has magnitude |A||B| sin θ.
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A × B is oriented in the direction in which a right-handed screw would advance if
turning the screw rotates A onto B. Thus, A × B and B × A have the same magnitude
but point in opposite directions. In vector notation,

A × B = ([AyBz − AzBy], −[AxBz − AzBx], [AxBy − AyBx]) , (A.6)

which can be written in the form of a determinant:

A × B =

∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
. (A.7)

The scalar triple product of three vectors,

C · A × B = C · (A × B) , (A.8)

is a scalar whose sign changes if the order of any two of the vectors is interchanged:
C · A × B = −A · C × B = B · C × A = −B · A × C. The scalar triple product is zero if
any two of the three vectors are parallel.

The gradient of a scalar quantity A, which we will write ∇̃A, is a vector whose
components are derivatives of A with respect to the corresponding coordinates. In
three dimensions, the gradient operator is

∇̃ =
(
∂A/∂x, ∂A/∂y, ∂A/∂z

)
. (A.9)

Several other functions of the derivatives of vectors occur frequently in discussions
of electromagnetic fields. The divergence of a vector A, written divA, is defined as

div A = ∇̃ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
, (A.10)

and the curl (curl A) is

curl A = ∇̃ × A =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

Ax Ay Az

∣∣∣∣∣∣

= x̂
(
∂Az

∂y
−
∂Ay

∂z

)
+ ŷ

(
∂Ax

∂z
−
∂Az

∂x

)
+ ẑ

(
∂Ay

∂x
−
∂Ax

∂y

)
.

(A.11)

Figure A.1a illustrates a vector function of x and y that has a nonzero curl but
a divergence of zero. A vector with a nonzero divergence but a curl of zero is shown
in Fig. A.1b.
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Fig. A.1. a The vector function −ŷx+ x̂y has nonzero curl but zero divergence. b The function
x̂x + ŷy has nonzero divergence but zero curl



Appendix 2 – Matrices

A matrix is an ordered, two-dimensional array of elements, Aij, with the first
index (i) indicating the row in which the term is located in the array and the
second (j) indicating the column. Matrices are denoted in the text by letters in
boldface without italics or by enclosing the elements in brackets. For example, if

A =
[

41 73
9 12

]
, (A.12)

then A11 = 41, A12 = 73, A21 = 9, and A22 = 12. We are concerned mainly with
square matrices, which are matrices in which the number of rows is the same as
the number of columns.

A diagonal matrix is a matrix in which nonzero elements occur only on the
major diagonal, for example,

A =
[

17 0
0 3

]
. (A.13)

The trace, or character, of matrix A, denoted Tr(A), is the sum of the diagonal
elements:

Tr(A) =
∑

k

Akk . (A.14)

For example, the trace of the matrix given in Eq. (A.12) is Tr(A) = 41 + 12 = 53.
The trace of a matrix obeys the distributive law of arithmetic: if C = A + B, Tr(C)
= Tr(A) + Tr(B).

The sum or difference of two matrices A and B is obtained by adding or sub-
tracting the corresponding elements. With 2 × 2 matrices, for example,

A ± B =
[

A11 A12

A21 A22

]
±
[

B11 B12

B21 B22

]
=
[

A11 ± B11 A12 ± B12

A21 ± B21 A22 ± B22

]
. (A.15)

The product of two matrices A and B (written A · B or simply AB) is another matrix
C whose elements are given by

Cij =
∑

k

AikBkj . (A.16)
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For example, the product of two 3 × 3 matrices is

A · B =

⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ ·
⎡

⎣
B11 B12 B13

B21 B22 B23

B31 B32 B33

⎤

⎦ (A.17)

=

⎡

⎣
A11B11 + A12B21 + A13B31 A11B12 + A12B22 + A13B32 A11B13 + A12B23 + A13B33

A21B11 + A22B21 + A23B31 A21B12 + A22B22 + A23B32 A21B13 + A22B23 + A23B33

A31B11 + A32B21 + A33B31 A31B12 + A32B22 + A33B32 A31B13 + A32B23 + A33B33

⎤

⎦ .

From Eqs. (A.14) and (A.16), the trace of the product AB is

Tr(AB) =
∑

i

∑

k

AikBki =
∑

k

∑

i

AkiBik = Tr(BA) . (A.18)

And from this and the fact that ABC = A · (BC) = (AB) · C it follows that the trace
of ABC is invariant to cyclic permutations:

Tr
(
ABC

)
= Tr

(
CAB

)
= Tr

(
BCA

)
. (A.19)

However, Tr(ABC) is not generally equal to Tr(CBA).
The product of a matrix A with a column vector B is a vector C with elements

defined by

Ci =
∑

k

AikBk . (A.20)

The transpose (AT) of matrix A is obtained by interchanging rows and columns, so
that element Aij becomes Aji.

The inverse (A−1) of A is a matrix that when multiplied by A gives a diagonal
matrix with all the diagonal terms equal to 1. So, for a 2 × 2 matrix,

A−1 · A =
[

1 0
0 1

]
. (A.21)

Such a diagonal matrix of 1s is often denoted by a boldface 1. Finding the inverse
of a square matrix (inverting the matrix) is a common procedure that provides
the solutions to sets of linear algebraic equations. Press et al. (1989) give efficient
algorithms for doing this.

A matrix A is said to be symmetric if, for all its elements, Aij = Aji. It is Hermitian
if, for all its elements, Aij = A∗

ji, where A∗
ji is the complex conjugate of Aji. A matrix

is called orthogonal if its transpose is the same as its inverse, so that

AT · A = A−1 · A = 1 . (A.22)

The gradient of a vector function A, which we write as ∇̃A, is a matrix in which
element Aij is the derivative of component i of the vector with respect to coordinate j.
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Thus, if A = (Ax, Ay, Az), its gradient is

∇̃A =

⎡

⎣
∂Ax/∂x ∂Ay/∂x ∂Az/∂x
∂Ax/∂y ∂Ay/∂y ∂Az/∂y
∂Ax/∂z ∂Ay/∂z ∂Az/∂z

⎤

⎦ . (A.23)

The solutions to many problems in quantum mechanics and spectroscopy require
diagonalizing matrices. Given a nondiagonal matrix A, the task is to find another
matrix C and its inverse C−1 such that the product C−1· A · C is diagonal. Computer
algorithms are available for diagonalizing even large matrices rapidly (Press et al.
1989).
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The Fourier transform of a function f (t) of time is the integral

F(ν) =

∞∫

−∞
f (t) exp(2πiν t) dt . (A.24)

If f (t) is defined everywhere in the interval −∞ < t < ∞ and the integral of f (t)dt
over this interval converges (i.e., is finite), the Fourier transform F(ν) also will
converge. In addition, an inverse Fourier transform will regenerate the original
function:

f (t) =

∞∫

−∞
F(ν) exp(−2π iν t) dν . (A.25)

The pair of functions f (t) and F(ν) can be viewed as two different representations
of the same physical quantity. For example, if f (t) expresses a quantity as a function
of time (in seconds), F(ν) expresses the same quantity as a function of frequency
(in cycles per second, or hertz). Sometimes it is convenient to use the angular
frequency, ω = 2πν, in units of radians per second; the transforms then must be
scaled by a factor of (2π)−1/2:

F(ω) =
1√
2π

∞∫

−∞
f (t) exp(iωt) dt (A.26)

and

f (t) =
1√
2π

∞∫

−∞
F(ω) exp(−iωt) dω . (A.27)

The same expressions can be used with other pairs of variables. The Fourier trans-
form of a function of position (in units of, say, angstroms) gives a function of
inverse length (cycles per angstrom). The Fourier transform of an interferogram
obtained in a Fourier transform IR spectrometer thus gives the intensity of radia-
tion as a function of the wavenumber ν.

In Chap. 2, we encounter a one-sided, complex exponential function of the form
f (t) = exp(−at − ibt) for t > 0 and f (t) = 0 for t < 0 (Eq. (2.65) with a = 1/2T and
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b = Ea/�.) The Fourier transform of this function is

F(ω) =
(

1
�

) (
1√
2π

) (
i

ω − b + ia

)
(A.28a)

=
1

�
√

2π

(
i

ω − b + ia

) (
ω − b + ia
ω − b + ia

)
=

1

�
√

2π

(
a + i(ω − b)

(ω − b)2 + a2

)
,

(A.28b)

where ω = E/� and dω = E/�. Equation (2.67) is obtained by multiplying the real
part of this expression by the normalization factor (2/π)1/2.

The Fourier transform in Eq. (A.28) includes both real and imaginary parts.
This is because the original function f (t) is not symmetrical around t = 0. For
functions that are symmetrical around zero in the sense that |f (−t)| = |f (t)|, the
nature of the Fourier transform depends on whether the function has the same or
opposite signs on either side of zero. A function is said to be even if f (−t) = f (t),
and odd if f (−t) = −f (t). The Fourier transform of any real, even function is also
real and even, whereas the transform of a real, odd function is purely imaginary
and odd. The Fourier transform of exp(−|t/τ|) (a real and even function) thus has
only a real part, which turns out to be a Lorentzian:

f (t) = exp(−|t/τ|) (A.29)

and

F(ω) =
√

2/π
(

1/τ
(1/τ)2 + ω2

)
(A.30)

(Eq. (2.67), Fig. 2.12).
If a function does not have either even or odd symmetry, its Fourier transform

is complex. The real and imaginary parts of the transform consist of the cosine
and sine Fourier transforms described in Appendix 4.

To illustrate these points, panels A and B of Fig. A.2 show the even, two-sided
decay function f2(t) = exp(−|t|/τ) and its Fourier transform, F2(ω). Figure A.2,
panel C shows the one-sided function f1(t) = exp(−t/τ) for t ≥ 0, f1(t) = 0 for
t < 0, and Fig. A.2, panel D shows the Fourier transform of this function [F1(ω)]
along with its real and imaginary parts. After scaling by a factor of 2 to compensate
for the fact that it represents only positive values of t, the real part of F1(ω) is the
same as F2(ω).

The Fourier transform of a Gaussian function centered at t = 0 (a real and even
function of t) is another Gaussian:

f (t) = exp(−at2) (A.31)

and

F(ν) = (2a)−1/2 exp(−ν2/4a) . (A.32)
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Fig. A.2. A An even, two-sided decay function: f2(t) = exp(−|t|/τ). B F2(ω), the Fourier
transform of f2(t), is a purely real Lorentzian. C A one-sided decay function: f1(t) = exp(−t/τ)
for t ≥ 0, f1(t) = 0 for t < 0. D 2F1(ω), the Fourier transform of f1(t) (solid curve) and its
real and imaginary parts (dotted curves). 2 Re[F1(ω)] is identical to F2(ω). Note that the
ordinate scales are different in B and D

If the Gaussian is centered at some value m other than zero, the Fourier transform
is multiplied by exp(imν), or cos(mν) + i sin(mν), and thus has an imaginary
component.

Fourier transforms provide a way of representing the Dirac delta function, δ(x),
which is defined by the conditions δ(x) = 0 if x = 0, and

a∫

−a

δ(x)dx = 1 (A.33)

for a > 0. δ(x) is a function that peaks sharply at x = 0, in the limit that the
width of the peak goes to zero while the height becomes infinite so that the area
remains constant. It is useful for analyzing the dynamics of a process that occurs
at a significant rate only when the energy difference between two states is close to
zero. If a function f (x) is defined over the region x1 < x < x2 and X is a particular
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value of x in this region, then

x2∫

x1

f (x)δ(X − x)dx = f (X) . (A.34)

δ(x) can be expressed as (2π)−1/2 times the Fourier transform of the constant
f (x) = 1:

δ(x) =
1

2π

∞∫

−∞
exp(ixy)dy . (A.35)

One way to look at this relationship is to note that f (x) can be a constant only if
its oscillation frequencies are distributed infinitely sharply around zero.

The Fourier transform of cos(ω0t) is δ(ω±ω0), a pair of delta functions located
atω = ±ω0. The transform of sin(ω0t) is a similar pair of delta functions, but with
imaginary amplitudes. The transform of an arbitrary, fluctuating function can be
viewed as a superposition of many such delta functions with amplitudes reflecting
the contributions that oscillations at particular frequencies make to the overall
function.

Tables of Fourier transforms of many other functions are available (Beyer 1973),
and there are rapid computational methods for finding the Fourier transform of
an arbitrary function (Press et al. 1989). For additional information on Fourier
transforms, see Butkov (1968).
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and Modulation

To derive the expressions for the fluorescence phase shift (φ) and modulation ampli-
tude (m) in Fig. 1.16, suppose the fluorescence (F(t)) generated by an instantaneous
excitation pulse decays exponentially with time constant τ. The integrated fluores-
cence signal following such a pulse then is

∫∞
0 aF(t)dt =

∫∞
0 a exp(−t/τ)dt = aτ,

where a is an instrumental factor. Now let the oscillatory part of the excitation in-
tensity be I(t′) = sin(ωt′). The oscillatory part of the signal measured at time t, S(t),
is obtained by integrating the fluorescence from excitation at all earlier times, t′:

S(t) = a

t∫

0

I(t′)F(t − t′)dt′ = a

t∫

0

sin(ωt′) exp(−(t − t′)/τ) dt′

= a exp(−t/τ)

t∫

0

sin(ωt′) exp(t′/τ) dt′

= a
(1/τ) sin(ωt) − ω cos(ωt) + ω exp(−t/τ)

(1/τ)2 + ω2
. (A.36a)

If t >> τ, the term ω exp(−t/τ) goes to zero, giving

S(t) = a
(1/τ) sin(ωt) − ω cos(ωt)

(1/τ)2 + ω2
. (A.36b)

Dividing the oscillatory component by the total signal (aτ) gives

S(t)
aτ

=
sin(ωt) − (ωτ) cos(ωt)

1 + (ωτ)2
. (A.37)

Equating this ratio to m · sin(ωt + φ) and using the relationship sin(ωt + φ) =
sin(ωt) cos(φ) + cos(ωt) sin(φ) gives the desired expressions:

m cos(φ) =
1

1 + (ωτ)2
, (A.38)

m sin(φ) =
ωτ

1 + (ωτ)2
, (A.39)

tan(φ) = m sin(φ)/m cos(φ) = ωτ , (A.40)

m2 = m2 cos2(φ) + m2 sin2(φ) =
(
1 + (ωτ)2)/

(
1 + (ωτ)2)2

, (A.41)
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and

m =
(
1 + (ωτ)2)−1/2

. (A.42)

If the fluorescence response to an instantaneous excitation pulse is multiexpo-
nential,

F(t) =
∑

k

Bk exp(−t/τk) , (A.43)

then equation (A.37) becomes:

S(t)
∞∫

0
F(t)dt

=

(
∑

k

Bk
τk sin(ωt) − ωτ2

k cos(ωt)

1 + (ωτk)2

)/(
∑

k

Bkτk

)

. (A.44)

The cosine and sine terms in this expression can be viewed as normalized sine
and cosine Fourier transforms of the fluorescence decay function. If we define the
normalized sine and cosine Fourier transforms of F(t) as

Ssin(ω) =

∞∫

0

F(t) sin(ωt) dt
/ ∞∫

0

F(t) dt =

(
∑

k

Bk
ωτ2

k

1 + (ωτk)2

)/(
∑

k

Bkτk

)

(A.45)

and

Scos(ω) =

∞∫

0

F(t) cos(ωt) dt
/ ∞∫

0

F(t) dt =

(
∑

k

Bk
τk

1 + (ωτk)2

)/(
∑

k

Bkτk

)

,

(A.46)

then equations (A.40) and (A.42) take the forms

tan(φ) = Ssin(ω)/Scos(ω) , (A.47)

and

m =
((

Ssin(ω)
)2

+
(
Scos(ω)

)2
)−1/2

. (A.48)

More generally, the sine Fourier transform Gsin(ω) of a function g(t) is

Gsin(ω) = i(2π)−1/2

∞∫

−∞
g(t) sin(ωt) dt , (A.49)
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which is zero if g is an even function of t. The cosine Fourier transform,

Gcos(ω) = (2π)−1/2

∞∫

−∞
g(t) cos(ωt) dt , (A.50)

is zero for odd functions of t. The continuous Fourier transform defined in
Eq. (A.26) is the sum of the sine and cosine Fourier transforms, as can be seen
from the relationship exp(iθ) = cos(θ) + i sin(θ). The factor i/(2π)1/2 in Eq. (A.49)
is often omitted, because only the product of this factor and the corresponding
factor in the inverse transform is determined uniquely.



Appendix 5 – CGS and SI Units and Abbreviations

Physical quantity CGS unit SI (MKS) equivalent

Electric current abampere, biot (Bi) 10 amperes (A)
Energy calorie (cal) 4.1868 joules (J)
Dipole moment debye (D) 3.3356 × 10−30

coulomb · meters (C m)
Force dyne (dyn) 10−5 newtons (N)
Magnetic dipole moment emu 10−3 ampere · meters

squared (A m2)
1.2566 × 10−3 teslas (T)

Energy, work erg 10−7 joules (J)
Electric charge esu, statcoulomb, or

franklin (Fr)
3.3356 × 10−10 coulombs (C)

Magnetic flux density
(magnetic induction)

gauss (G) 10−4 teslas (T)

Wavenumber kayser (cm−1) 100 per meter (m−1)
Luminance lambert (Lb) 3.1831 × 103 candelas

per square meter · (Cd m−2)
Magnetic flux maxwell (Mx) 10−8 webers (Wb)
Magnetic field strength oersted (Oe) 79.577 ampere-turns

per meter (At m−1)
Illumination phot 104 lux (lx)
Dynamic viscosity poise (P) 0.1 pascal · seconds (Pa s)
Electric current statampere 3.3356 × 10−10 amperes (A)
Electric charge statcoulomb 3.3356 × 10−10 coulombs (C)
Potential statvolt 299.79 volts (V)
Magnetic flux unit pole 1.2564 × 10−7 webers (Wb)
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Exercises

To Chapter 1

1. Complete the following table of oscillation frequencies, wavenumbers and pho-
ton energies of monochromatic light with wavelengths of 300 and 700 nm and
the molar excitation energies of molecules that absorb at these wavelengths.

Wavelength
(nm)

Frequency
(s−1)

Wavenumber
(cm−1)

Photon energy
(J photon−1)

Excitation energy
(kJ mol−1)

300
700

2. What fraction of the incident light at a given wavelength is absorbed by samples
that have absorbances of (a) 0.1, (b) 0.5, and (c) 2.0?

3. Molecule A has molar extinction coefficients of 10,000 M−1 cm−1 at 300 nm and
20,000 M−1 cm−1 at 400 nm. The molar extinction coefficients of molecule B at
these wavelengths are 15,000 and 12,000 M−1 cm−1, respectively. If a solution
containing only a mixture of A and B has absorbances of 0.5 at 300 nm and 0.8
at 400 nm, what are the concentrations of A and B?

4. The minimum energy that a photon must transfer to an electron in order to free
the electron from the surface of a particular metal is called the “photoelectric
work function.” The work function for Cs is approximately 2.1 eV. What is the
maximum wavelength of light that would free an electron from a Cs surface?

5. The fluorescence from a sample of interest decays with multiphasic kinetics
extending over several time domains. What would be the relative merits and
limitations of measuring these kinetics by (a) time-correlated photon counting,
(b) fluorescence phase-shift and amplitude modulation, and (c) fluorescence
upconversion?

6. Quenching of protein fluorescence by a water-soluble agent such as I− can be
used to probe the exposure of a tryptophan residue to the solvent. If such
a quencher decreases the yield of fluorescence from a homogeneous sample by
90%, how would the fluorescence lifetime change?

7. What are the technical advantages and limitations of a Fourier transform
spectrometer compared to a conventional spectrophotometer?
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To Chapter 2

1. (a) Let ψ1 be the complete, normalized wavefunction of an enzyme, and ψ2

the complete, normalized wavefunction of the substrate. What wavefunction
would you use as a first approximation for the enzyme-substrate complex?
Your wavefunction should be consistent with the fact that the enzyme and
the substrate both exist simultaneously as well as individually, and should be
normalized. (b) Why is your wavefunction for the combined system only an
approximation?

2. Given a complete set of orthonormalized eigenfunctions of the Hamiltonian
operator,ψ1,ψ2, ...,ψn, you could describe any arbitrary wavefunction as a lin-
ear combination of the form Ψ =

∑
i Ciψi. (a) Show that Ψ is normalized if∑

i C∗
i Ci = 1. (b) When might it be appropriate to describe a system by such

a linear combination? (c) Why would this be a poor choice for the enzyme-
substrate complex considered in problem 1?

3. Using the treatment described in problem 2, you find that only two eigenfunc-
tions (ψ1 and ψ2) make significant contributions to Ψ. Suppose the system is
twice as likely to be in state ψ1 as to be in ψ2. (a) Find the values of C1 and C2,
assuming that both values are real. (b) If the energies of ψ1 and ψ2 are E1 and
E2, what is the energy of Ψ?

4. (a) Consider two spatial wavefunctions for a free, one-dimensional particle of
mass m, ψ1 = A exp(i

√
2mE1x/�) and ψ2 = A exp(i

√
2mE2x/�). Show that the

momentum operator (̃p = −i�∂/∂x) conforms to the relationship 〈ψ2 |̃p|ψ1〉 =
〈ψ1 |̃p|ψ2〉∗ for these wavefunctions. (b) The relationship [̃B, Ã] = −[Ã, B̃] for
any two operators Ã and B̃ follows simply from the definition of the commutator
[Ã, B̃] (Box 2.2). Show that it holds in particular for the one-dimensional
position and momentum operators by evaluating [̃x, p̃]ψ and [̃p, x̃]ψ explicitly
for an arbitrary wavefunction ψ.

5. Assuming that the energies of the atomic orbitals of carbon increase in the
same order as those of hydrogen and that Hund’s rule holds, what are the
electron configurations of (a) the ground state and (b) the first excited state of
atomic carbon?

6. Find the expectation values of the position of an electron in the first two non-
trivial eigenstates (n = 1 and 2) of a particle in a one-dimensional rectangular
box with infinitely high walls.

7. (a) Write a Slater determinant for a singlet-state wavefunction of a system of
four electrons. (b) Expand the determinant to write out the combination of
spatial and spin wavefunctions that it represents. (c) Using whichever of the
two representations you prefer, show that the wavefunction is antisymmetric
for interchange of two electrons.

8. Consider two eigenstates of a one-dimensional system, with singlet wavefunc-
tions ψa(x, t) and ψb(x, t). Show that, according to first-order perturbation
theory, a perturbation H̃

′
to the Hamiltonian can cause transitions between

the two states only if H̃
′

is a function of position (x).
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To Chapter 3

1. Consider three particles with the following charges (esu) and coordinates (cm):
q1 = 0.5, r1 = (1.0, 0.0, 0.5); q2 = −0.6, r2 = (−0.5, 0.5, 0.0); q3 = −0.4, r3 =
(1.5, 1.0, −0.5). Calculate the following electrostatic quantities and give the
results in both CGS and MKS units: (a) the electrostatic field at particle 1 from
particles 2 and 3; (b) the potential at particle 1; (c) the energy of electrostatic
interaction of particle 1 with field; (d) the electrostatic force acting on particle 1;
and (e) the total electrostatic energy of the system.

2. (a) How long does it take a photon to travel from the sun to the earth, assuming
that the photon takes the most direct path (mean distance, 1.496 × 1011 m) and
neglecting effects of the earth’s atmosphere? (b) Suppose a 500-nm photon
travels simultaneously by two paths that differ in length. What difference in
length would make the radiation arrive 180◦ out of phase, so that the resultant
field strength is zero?

3. Consider a plane wave of light passing through a medium with a refractive
index of 1.2. (a) Neglecting local-field corrections, what is the magnitude
(|E0|) of the oscillating electric field at frequency ν if the irradiance I(ν)dν

is 1 watt cm−2? (b) What is the total energy density (ρ(ν)dν) in frequency
interval dν? (c) Including the cavity-field correction, calculate the magnitude
of the field acting on a molecule in a spherical cavity embedded in the medium.
(d) Calculate the magnitude of the field acting on a molecule using the Lorentz
correction. (e) What component of the field is included (approximately) in the
Lorentz correction but not in the cavity-field correction.

4. What is the energy density of radiation at 500 nm emitted by a blackbody
source at the surface temperature of the sun (6,600 K)?

5. (a) What are the frequencies (s−1) of the first six modes of a radiation field
in a rectangular box with dimensions 1000 × 1500 × 2,000 Å3? (By “first” we
mean the modes with lowest energies.) (b) What is the total energy of these six
modes if there are no photons in any of the modes. (Indicate the convention
you use for zero energy.) (c) Using the same convention for zero energy, what
is the total energy of the six modes if there is one photon in the first mode, two
in the second, and none in the higher modes?

6. (a) A light beam propagating along the x-axis of a Cartesian coordinate system
is passed through a polarizer oriented in either the y or the z-direction. The
intensity of the light measured with the y orientation of the polarizer is 1.3 times
that measured with z. What is the ellipticity of the light? (b) What ellipticity
corresponds to complete circular polarization?

7. What are the spectral bandwidths (FWHM of the frequency distributions) of
pulses of light that have a Gaussian temporal shapes with widths of (a) 1 fs and
(b) 1 ps?
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To Chapter 4

1. The highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) of ethylene can be represented as symmetric and
antisymmetric combinations of atomic pz orbitals (ψp1 and ψp2) centered
on the two carbon atoms: Ψa = 1√

2
(ψp1 + ψp2) and Ψb = 1√

2
(ψp1 − ψp2),

respectively. Does the transition Ψa → Ψb change the permanent dipole
moment of ethylene? Explain.

2. The graph below shows the absorption spectrum of a molecule in water (refrac-
tive index = 1.33). The spectrum is simplified for ease of integration. Calculate
the dipole strength of the absorption band and the transition dipole moment.
Specify the units of both quantities. Save your results for use in the exercises
for Chaps. 5 and 6.

3. Explain (a) the Born–Oppenheimer approximation and (b) the Condon ap-
proximation.

4. The two highest filled molecular orbitals of trans-butadiene (ψ1 and ψ2) are
π orbitals that can be described by linear combination of atomic pz orbitals
centered on the four carbon atoms. The first two unoccupied orbitals (ψ3

and ψ4) can be described in the same way. The table below gives the atomic
coordinates of the carbon atoms in trans-butadiene (x, y, z, in Å) and the
coefficients (Ci) for the contribution of the pz orbital of atom i to each of the
four molecular orbitals. (a) The lowest-energy excitation of trans-butadiene
consists almost exclusively of a single configuration, ψ2 → ψ3. Calculate the
transition dipole vector and the dipole strength for this transition. (b) Each
of the next two excitations in order of increasing energy includes two con-
figurations. The first of these is 0.6574(ψ2 → ψ4) − 0.7535(ψ1 → ψ3); the
second is 0.7535(ψ2 → ψ4) + 0.6574(ψ1 → ψ3). Show from the symmetry
of the molecular orbitals that both of these transitions are forbidden. (c) The
next higher excitation again consists almost exclusively of the configuration
ψ1 → ψ4. Explain qualitatively why the dipole strength for this transition will
be considerably smaller than that for ψ2 → ψ3. (You do not need to calculate
the dipole strength in order to see this qualitatively; just look at the symmetry
of the orbitals.)
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Atom Coordinates Coefficients
x y z ψ1 ψ2 ψ3 ψ4

1 −1.731 −0.634 0.000 0.4214 −0.5798 −0.5677 0.4050
2 −0.390 −0.626 0.000 0.5677 −0.4050 0.4214 −0.5798
3 0.389 0.626 0.000 0.5679 0.4049 0.4215 0.5796
4 1.731 0.634 0.000 0.4215 0.5796 −0.5679 −0.4049

5. Show that the transition dipole for excitation of a system with two electrons
from the ground singlet state to the excited triplet state with Ms = −1 has
a magnitude of zero.

6. Using Eq. 2.35a for a 2pz orbital, (a) write analytical expressions for the HOMO
(Ψa) and LUMO (Ψb) wavefunctions of an ethylene molecule with the C=C
bond oriented along the y-axis. Put atom C1 at the origin of the coordinate
system and C2 at (0, y2, 0), where y2 = 1.33 Å (see problem 9 below). (b) Write
an analytical expression for ∂Ψa/∂y. (c) Write an analytical expression for the
quantity Ψb∂Ψa/∂y. (d) Show either by symmetry arguments or by evaluating
the triple integral that

∫∫∫
(Ψb∂Ψa/∂y)dxdydz is non-zero. (e) What is the

relationship of this integral to 〈Ψb|∇̃|Ψa〉?
7. In aqueous solution, the reduced nicotinamide ring of NADH has an absorption

band at 340 nm. The excitation could be described approximately as a move-
ment of a non-bonding electron from the N atom of the pyridine ring to the
amide O atom as shown in the valence-bond diagrams below. When NADH
binds to liver alcohol dehydrogenase (ADH), the band shifts to 325 nm. Outline
how you might calculate the effects of water and the protein on (a) the exci-
tation energy and (b) the reorganization energy for this excitation, based on
a crystal structure of the holoprotein. (c) What major approximations would
limit the reliability of your calculation?

8. X-rays with an energy of about 7.1 × 106 eV are sufficiently energetic to dislodge
an electron from the 1s shell of Fe. At higher energies, an electron leaves the
atom, carrying the extra energy away as kinetic energy. Just below this edge,
Fe has an absorption band associated with transitions from 1s to the 3d shell.
The 1s → 3d transition is very weak if the Fe atom binds six ligands in an
octahedral arrangement, provided that the ligands on opposite sides of the Fe
are similar. It becomes much stronger if Fe has four ligands in a tetrahedral
arrangement, as happens in some metalloproteins such as rubredoxin. How
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could you explain these results? Hint: Atomic s and d orbitals both have the
same (even) inversion symmetry with respect to any axis passing through the
center of the atom. (For the purposes of this question, do not worry about the
spin of a photon.)

9. The C=C bond of ethylene has a mean length of 1.33 Å when a molecule is
in the ground state. The bond length probably increases by about 0.05 Å in
the first singlet π − π∗ excited state. (a) Assuming that the stretching of the
bond is a harmonic vibrational mode with a frequency of 1,623 cm−1 in both
the ground and the excited states, calculate the vibronic coupling strength
(Huang–Rhys factor) and the Debye–Waller factor for this mode. Making the
same assumptions, calculate (b) the Franck–Condon factors for excitation
from the lowest vibrational level (m = 0) of the ground electronic state to the
first three vibrational levels (m = 0, 1 and 2) of the excited electronic state,
and (c) the Franck–Condon factors for excitation from the m = 1 level of the
ground state to the m = 1, 2 and 3 levels of the excited state.

10. When photosynthetic bacterial reaction centers at 5 K are excited with light,
a bacteriochlorophyll dimer transfers an electron to a neighboring molecule
with a time constant of about 1 ps. It has been suggested that the reaction
is preceded by a transition of the excited dimer from its lowest π − π∗ state
to an internal charge-transfer state. Observations relevant to this suggestion
came from hole-burning studies, also performed at 5 K, which elicited a zero-
phonon hole with a width of about 6 cm−1 in the dimer’s long-wavelength
absorption band. The width did not change significantly when the wavelength
the laser used for burning the hole was tuned over a broad region. Assuming
that excitation in the long-wavelength band generates the π − π∗ state, what
does the width of the zero-phonon hole imply with regard to the reaction
mechanism?

To Chapter 5

The solid curve in the graph below is the absorption spectrum considered in
problem 4.2. The dashed curve is the fluorescence emission spectrum of the same
compound in water.
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1. Using the spectra and information from problem 4.2, calculate the radiative
lifetime of the molecule.

2. In the absence of added quenchers, the fluorescence quantum yield is found
to be 30%. Calculate the fluorescence lifetime under these conditions on the
assumption that the fluorescence decay is monophasic.

3. 10 mM NaI causes the fluorescence yield and lifetime both to decrease to 10%
of their original values. Calculate the Stern–Volmer quenching constant.

4. Calculate the bimolecular rate constant for the quenching by NaI.
5. How would your interpretation of the results differ if a quencher caused the

fluorescence yield to decrease to 10% of its original value but had no effect on
the measured fluorescence lifetime?

6. How would the amplitude of spontaneous fluorescence change if environmen-
tal effects shifted a chromophore’s emission wavelength from 280 to 260 nm
without altering the transition dipole or quenching by non-radiative processes?

7. Consider a quantized radiation field with frequency ν = 1015 s−1. The Hamilto-
nian matrix element for interaction of the field with a molecule is proportional
to |〈χm|Q̃|χn〉|, where Q̃ is the position operator and χn and χm are eigen-
functions of the radiation field before and after the interaction, respectively.
Quantum numbers n and m can be interpreted as the initial and final numbers
of photons in the field. Evaluate |〈χm|Q̃|χn〉| for fields with n = 1,000,000 and
m = (a)999,999, (b) 1,000,000 and (c) 1,000,001.

8. A molecule is excited with polarized light and the fluorescence is measured at
90◦ to the excitation. In the absence of quenchers, the fluorescence measured
through a polarizer perpendicular to the excitation polarizer is 80% as strong
as that measured through a polarizer with parallel orientation. Calculate the
fluorescence polarization and anisotropy.

9. Explain qualitatively how a quencher that decreases the measured fluorescence
lifetime will affect the fluorescence anisotropy.

10. (a) Fluorescence of a homogeneous solution of molecules is measured through
a confocal microscope and found to have a mean amplitude of 100 photons
s−1 with a variance (σ2) of 200 photons2 s−2. What is the mean number of
fluorescent molecules in the illuminated region?

11. Explain how excitation with a second pulse of light can be used to increase the
spatial resolution of fluorescence excited by the first pulse, so that the classical
diffraction limit of resolution no longer holds.

12. Explain Kasha’s rule.
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To Chapter 6

1. In the molecular vibrations diagrammed below, denote bonds that are
stretched at a particular time, and denote bonds that are compressed at
this time. Which of these vibrations can result in infrared absorption?

2. Consider the excitations (0 → 1), (0 → 2) and (1 → 2) of a weakly anharmonic
oscillator, where the two numbers for each excitation denote the initial and
final vibrational quantum numbers. (a) If the (0 → 1) excitation has a relative
dipole strength of 1.0, what is the expected relative dipole strength of the
(1 → 2) excitation? (b) Suppose the (0 → 1) absorption has an energy of
200 cm−1. Estimate the ratio of the observed strengths of the (1 → 2) and
(0 → 1) absorption bands at 295 K. (c) Would the excitation energy of the
(1 → 2) band be the same as, smaller than, or greater than that of the (0 → 1)
band?

3. The figure below shows hypothetical IR absorption (—) and linear dichroism
(- -) spectra of membrane vesicles containing a protein that transports a sugar
and Na+ ions across a cellular membrane. The vesicles are flattened by depo-
sition and partial drying on a glass slide, and linear dichroism is measured
with respect to an axis normal to the slide. In the presence of the sugar (S),
the linear dichroism in the region of 1,650 cm−1 becomes more positive, and
that around 1,560 cm−1 becomes more negative. Suggest an interpretation of
the spectra and the effect of the sugar.
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To Chapter 7

Graph 1 below replots the absorption and emission spectra considered in Chaps. 4
and 5. Suppose these spectra apply to a chromophore bound to a protein (A).
Graph 2 shows similar spectra for a different chromophore bound to a second pro-
tein (B), which can combine with A and a third protein (C) to form a heterotrimer,
ABC. The table gives the amplitudes of fluorescence emission at 335 and 365 nm
when the individual chromophore-protein complexes and the heterotrimer were
excited at 315 nm. Assume that the absorption spectrum of ABC is simply the sum
of those of A and B.

System Fluorescence amplitude (arb. units)
335 nm 365 nm

A 4000 10
B < 10 10
ABC 1000 2000

1. Calculate the emission-absorption overlap integral (J) for A and B. (Be sure to
give the units.)

2. Using your results from problem 4.2 and the fluorescence yield given in prob-
lem 5.2, calculate the Förster radius (Ro) for resonance energy transfer from A
to B.
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3. Estimate the distance between the chromophores bound to A and B in the ABC
complex, assuming that the change in the fluorescence yield of A relative to that
for monomeric A is due solely to resonance energy transfer. Assume also that
the transition dipoles of both chromophores rotate rapidly and isotropically
on the timescale of fluorescence.

4. Estimate the distance between the chromophores as in question 3 but on
the assumption that the transition dipoles are fixed in position along the
intermolecular axis (↔ · · · · · · ↔).

5. Does the fluorescence of the ABC complex at 365 nm verify the assumption
that the change in the fluorescence yield of A results solely from resonance
energy transfer? Why or why not?

6. If each of the fluorescence amplitudes in the table has an uncertainty of ±10%,
what would be the uncertainty in the distance calculated in problem 3?

7. In the diagram below, the circles represent positive or negative unit charges
located as indicated by the grid; distances are given in Å. Calculate the vacuum
interaction energy between the two electric dipoles indicated by the dashed
lines, using (a) the point-dipole approximation and (b) explicit point charges.
Specify the sign and units of your answers.

8. Under what circumstances is resonance energy transfer between two molecules
likely to occur more rapidly by exchange-coupling than by dipole-dipole cou-
pling?
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To Chapter 8

A molecule has an absorption band at 700 nm with a dipole strength of 25 debye2.
Two such molecules form a co-planar complex with a center-to-center distance of
8 Å as sketched below. The arrows represent intramolecular vectors that are aligned
with the transition dipoles

1. Calculate the dipole-dipole interaction energy (Hab) in the point-dipole ap-
proximation for a medium with index of refraction n = 1.2. Specify the sign
and units of your answer. Save your result for use in Chap. 10.

2. What are the excitation energies for the dimer’s two excited states?
3. Calculate the dipole strengths of the two exciton absorption bands of the dimer.

(Assume that each molecule has only one excited state.)
4. (a) Sketch the predicted absorption spectrum of the dimer, indicating the

wavelengths and relative intensities of the two bands. (b) What would happen
to the absorption spectrum if one of the molecules is rotated 180◦ about an
axis normal to the molecular plane, so that the transition dipole points in the
opposite direction?

5. Sketch the predicted absorption spectrum of the dimer in the situation that
interactions with the surroundings shift one of the monomer absorption bands
to 690 nm and the other to 710 nm.

6. Consider a protein in which the amino group of the N-terminal tryptophan
(Trp) residue is acetylated. The first table below gives the atomic expansion
coefficients (the Ck

n of Eq. 2.36) for a π molecular orbital description of the Trp
residue and its two peptide links. Atoms C5 and O6 are the acetyl carboxyl C and
O atoms; N7 is the Trp amino nitrogen; C14-C28 and N17 are in the indole ring;
and C29, O30 and N31 represent the Trp carboxyl group and the amino N of the
next residue. Wavefunctionsψ6 −ψ9 are the four highest occupiedπmolecular
orbitals, and ψ10 − ψ14 the five lowest unoccupied orbitals. The second table
gives the configuration-interaction coefficients (the Aa,b

j,k of Eq. 4.26) for the first
three singlet excitations of the system. (a) Qualitatively, how would you describe
wavefunctions ψ6, ψ9 and ψ11? (b) What types of processes do excitations 1
and 3 represent? (c) Verify your answer to (b) by calculating the changes of
charge in the -CONH- and indole groups. (d) What is the dipole strength of
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excitation 3 (within the accuracy of Eqs. 4.22a–4.22e and the numbers given
in the tables)? (e) Which of these three excitations would probably undergo
the largest variations in energy as the protein structure fluctuates in solution?
Explain your answer.

Atom Coefficients
ψ6 ψ7 ψ8 ψ9 ψ10 ψ11 ψ12 ψ13 ψ14

C5 0.184 0.000 0.000 0.000 0.000 0.820 0.000 0.000 0.000
O6 0.726 0.000 0.000 0.000 0.000 −0.485 0.000 0.000 0.000
N7 −0.663 0.000 0.000 0.000 0.000 −0.304 0.000 0.000 0.000
C14 0.000 0.481 −0.025 −0.508 0.000 0.000 −0.288 −0.008 0.518
C15 0.000 0.195 −0.380 −0.383 0.000 0.000 0.479 −0.175 −0.466
N17 0.000 −0.304 −0.290 0.361 0.000 0.000 −0.197 0.246 0.214
C19 0.000 −0.181 0.485 0.123 0.000 0.000 −0.004 −0.513 −0.178
C20 0.000 −0.415 0.234 −0.360 0.000 0.000 0.462 0.168 0.378
C22 0.000 −0.314 −0.308 −0.302 0.000 0.000 −0.400 0.303 −0.392
C24 0.000 0.068 −0.479 0.205 0.000 0.000 −0.085 −0.588 0.223
C26 0.000 0.373 −0.124 0.426 0.000 0.000 0.451 0.378 0.057
C28 0.000 0.437 0.377 0.077 0.000 0.000 −0.256 0.192 −0.295
C29 0.000 0.000 0.000 0.000 0.839 0.000 0.000 0.000 0.000
O30 0.000 0.000 0.000 0.000 −0.521 0.000 0.000 0.000 0.000
N31 0.000 0.000 0.000 0.000 −0.155 0.000 0.000 0.000 0.000

Excitation Configurations and CI coefficients

1 0.761(Ψ8 → Ψ12) + 0.498(Ψ9 → Ψ13) − 0.298(Ψ9 → Ψ12)
+ 0.166(Ψ7 → Ψ13) + 0.142(Ψ8 → Ψ13) + 0.106(Ψ9 → Ψ14) + ...

2 0.924(Ψ9 → Ψ12) + 0.241(Ψ9 → Ψ13) + 0.235(Ψ8 → Ψ12)
− 0.129(Ψ8 → Ψ13) − 0.057(Ψ7 → Ψ12) + 0.055(Ψ8 → Ψ14) + ...

3 0.979(Ψ9 → Ψ10) + 0.132(Ψ8 → Ψ10) − 0.118(Ψ7 → Ψ10)
+ 0.088(Ψ5 → Ψ10) + ...

To Chapter 9

1. Calculate the rotational strength (R) of the transition represented by the CD
spectrum of Fig. 1.

2. What are the exciton rotational strengths (Rex) of the two exciton bands of the
dimer discussed in problem 8.1? Explain your answer.

3. The dimer sketched in Fig. 2 is similar to that of problem 8.1, except that
molecules a and b lie in two parallel planes (xaya and xbyb) that are separated
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Fig. 1.

Fig. 2.

by 4 Å along the z-axis. (Axes xa and xb project toward the viewer.) Again, the
monomeric molecule absorbs at 700 nm with a dipole strength of 25 debye2.
(a) Calculate the contributions of Rex to the rotational strengths of the two
exciton bands of this dimer. (b) Sketch the predicted absorption and CD spectra
of the dimer on the assumption that Rex dominates the rotational strengths.
Indicate the wavelengths and relative intensities of the two bands in each
spectrum. (c) What would happen to the CD spectrum if you rotated one
molecule by 180◦ about an axis normal to the molecular plane?

4. Molecules a and b in the dimer shown in Fig. 3 are the same as those of Fig. 2,
and also lie in planes separated by 4 Å in the z-direction. Axes xa and xb again
project out toward the viewer. (a) What is the stereochemical relation between
this structure and that of Fig. 2? (b) Calculate the contributions of Rex to
the rotational strengths of the two exciton bands of this dimer. (c) Sketch the
predicted absorption and CD spectra, assuming again thatRex dominates the
problem.
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Fig. 3.

To Chapter 10

1. Assume that molecule a of the dimer considered in exercise 8.1 is excited at
time t = 0, and that the excitation then oscillates between the two molecules.
(a) Calculate the frequency of the oscillation if the excitation energy of the two
molecules is the same. (b) What would the oscillation frequency be if the exci-
tation energy of molecule a is 1,000 cm−1 above that of molecule b? (c) Calculate
the time-averaged probability of finding the excitation on molecule a for the
second case (Eba = Ea −Eb = 1,000 cm−1) in the absence of thermal relaxations,
and compare your result with the probability of finding the excitation on this
molecule at thermal equilibrium.

2. Consider the excited dimer as a system with two basis states, with ca(t) and
cb(t) representing coefficients for the states in which the excitation is on, re-
spectively, molecule a or molecule b. (a) Define the four elements of the density
matrix (ρ) for this system. (b) Using the notation Haa, Hab, etc., for the Hamil-
tonian matrix elements, write an expression for the time dependence of each
element of ρ (e. g., ∂ρaa/∂t) in the absence of stochastic relaxations. (c) What is
the relationship between ρab(t) and ρba(t)? (d) Suppose that interconversions
of the two basis states are driven only by the quantum mechanical coupling
element Hab, but that stochastic fluctuations of the energies cause pure de-
phasing with a time constant T∗

2 . What are the longitudinal (T1) and transverse
(T2) relaxation times in this situation? (e) Write out the stochastic Liouville
expression for the time dependence of each element of ρ. (f) How would T1

and T2 be modified if the system also changes stochastically from state a to b
with rate constant kab and from b to a with rate constant kba? (g) In what limit
does the stochastic Liouville equation reduce to the golden-rule expression?

3. (a) Write an expression relating the stochastic rate constant for conversion of
an ensemble of two-state quantum systems from state a to b (−Raa,aa, where R
is the Redfield relaxation matrix) to the spectral density of fluctuating electric
fields from the surroundings. Your expression should indicate that the rate
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constant depends on the fluctuations that occur at a particular frequency. (b)
How does the important frequency depend on the energy difference between
the two states (Eba)? (c) Relate the pertinent spectral density function to the
autocorrelation function (memory function) of a quantum mechanical matrix
element. (d) If the autocorrelation function decays exponentially with time
constant τc, how does the rate constant depend on the value of τc? (e) In what
limit of time does the Redfield theory apply? (f) Outline the modifications or
extensions that are needed in order to account for a directional relaxation such
as the Stokes shift of fluorescence relative to absorption.

To Chapter 11

1. Consider a system with two excited states (1 and 2). (a) Draw Liouville-space
diagrams for all of the independent pathways starting from an ensemble of
systems at thermal equilibrium in the ground state (state 0) and leading to
coherence between states 1 and 2. By “independent” here we mean that no
two pathways are simply complex, or Hermitian, conjugates of each other.
(b) Draw the Liouville-space diagram for the complex conjugate of each of
the pathways in a. (c) Using the conventions illustrated in Fig. 11.2, draw
a double-sided Feynman diagram corresponding to each of the pathways in a
and b. (d) Which of the pathways in a, b and c require populating excited
state 1, which require populating excited state 2, and which do not require
populating either excited state? (e) How many interactions of the system with
a radiation field are required to create the coherence by each pathway in a,
b and c? (f) How many additional interactions with the radiation field would
be required to convert the coherence into a population of state 2? (g) If the
interactions in e and f occur sequentially during separate short flashes of light
at times t1, t2, t3, ..., which pathways will be most sensitive to the time interval
t3–t2?

2. Suppose states 1 and 2 are different singlet electronic states with energies E1

and E2 and transition dipoles μ1 and μ2 for excitation from the ground state,
which also is a singlet state. (a) Write an approximate expression for the initial
magnitude of the coherence relative to the population of state 1 (|ρ12(0)|/ρ11(0))
following excitation of the ensemble with a short flash of white light. Assume
that “white” light has equal intensities at frequencies E1/h and E2/h, and that
all the requisite interactions with the radiation field occur during the same
flash. (b) How would |ρ12(0)|/ρ11(0) differ from that in a if the intensity of
the excitation flash at E1/h is 100 times that at E2/h? (c) How will the ratio
|ρ12(t)|/ρ11(t) depend on time (t) if the ensemble is isolated from stochastic
interactions with its surroundings?

3. Suppose that states 1 and 2 are levels m = 1 and m = 2 of a harmonic vibrational
mode of the same excited singlet electronic state. Assume that the ensemble
starts entirely in vibrational level m = 0 of the same mode in the ground
electronic state, that the vibrational mode has an energy of �ω = 200 cm−1,
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and that the coupling strength (Huang–Rhys factor) for the vibronic excitation
is S = 0.2. (a) Write an approximate expression for the initial value of the ratio
|ρ12(0)|/ρ11(0) following excitation of the ensemble with a short flash of white
light. (b) How will the ratio |ρ12(t)|/ρ11(t) depend on time in the absence of
stochastic interactions with the surroundings? (c) Now assume that stochastic
processes at temperature T cause transitions between levels 2 and 1 with rate
constants k21 = 1 × 1012 s−1 and k12 = exp(−�ω/kBT) × 1012 s−1. How will
|ρ12(t)| and ρ11(t) depend on time at 300 K in this situation?

4. Considering the vibronic system of problem 3 again, suppose the excitation
flash is centered 400 cm−1 above the 0-0 transition energy and has a Gaus-
sian spectral envelope with a FWHM of 300 cm−1. Though not truly “white,”
the flash then can populate multiple vibrational levels of the excited state. (a)
Estimate the initial coefficients (Cm) for vibrational levels m = 0 through 4.
(b) Calculate the relative energy and time course of fluorescence from transi-
tions from the excited system to vibrational level m = 0 of the ground electronic
state. (c) Calculate the relative energy and time course of fluorescence from
transitions from the excited system to vibrational level m = 2 of the ground
electronic state.

5. In a three-pulse photon echo experiment, light pulses with wavevectors k1, k2

and k3 pass confocally through a sample at times τ1, τ2 and τ3, respectively,
and photon echos leaving the sample in direction k3 + k2 − k1 are measured.
Explain why echos are seen only if τ2 > τ1.

6. Explain why, in the semiclassical wavepacket picture, the width of an absorp-
tion band increases with the slope of the excited-state potential surface in the
region of the Franck–Condon maximum, whereas the width of an emission
band increases with the corresponding slope of the ground-state potential
surface.

To Chapter 12

1. The figure shows an emission spectrum measured when a protein containing
tryptophan was excited at 280 nm. (a) Suggest an assignment for the peak at



Exercises 521

310 nm and point out the features of the spectrum that support the assignment.
(b) How could you test your explanation?

2. The strength of resonance Raman scattering by a molecule typically decreases
strongly with increasing temperature, while the absorbance and fluorescence
change very little. Explain this observation using (a) the Kramers–Heisenberg–
Dirac theory and/or (b) the semiclassical wavepacket theory.

3. (a) Explain why a symmetric vibrational mode that makes little or no contri-
bution to the IR absorption spectrum can contribute strongly to the Raman
spectrum. (b) Does the formal selection rule Δm = ±1, where m is the vibra-
tional quantum number, apply to both resonance and off-resonance Raman
scattering?

4. How does coherent anti-Stokes Raman scattering resemble, but differ from
(a) ordinary anti-Stokes Raman scattering, and (b) ordinary stimulated emis-
sion?

5. (a) What are the potential advantages of two-photon excitation relative to one-
photon excitation in fluorescence microscopy? (b) How do the selection rules
for two-photon excitation differ from those for one-photon excitation?
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Liouville equation 342–346, 355–356
Liouville-space operators 386–389

Liouville-space pathways 378–379,
386–391, 419–421

local field correction 94–98, 183, 124–126
Lorentz correction 95–96, 124–126
Lorentzian lineshape 69–70, 171, 352, 357
luciferase 194, 275
luminance 84
LUMO see molecular orbital

magnetic circular dichroism see circular
dichroism, magnetic

magnetic
– field 74, 84–86, 322
– monopole 74
– transition dipole see transition dipole,

magnetic
mass-weighted coordinate 242
matrix diagonalization 285–286
Maxwell’s equations 78–81, 99
mean residue ellipticity 318
memory function see correlation function
metalloproteins 334
methylenetetrahydrofolate 176
mirror-image law 195–197
mixed state 42
MKS units 74–75, Appendix 5
mode (oscillation) 84, 241–246
molecular dynamics simulations 245–246,

370
molecular orbital
– bonding, antibonding 54–55
– HOMO, LUMO 52–56, 60–62, 126–128,

148, 149–150, 154–155
– as combination of atomic orbitals 52–57
– π 54–55, 126–128
– semiempirical 56
– symmetry 54–55, 128–142, 149
momentum
– angular 49, 57–62, 238, 307–308, 333
– linear 44–45
– of photon 36, 102
– operator 31–35, 307
Morse potential 40, 249–252
motional narrowing 362
Mukamel lineshape function 368–370, 391
Mulliken symbol 136–138
multiphoton absorption 439–442
myoglobin 147–148, 251, 254, 256, 257, 329,

400, 404
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naphthyl group 272, 273
near-field microscopy 226
node 43
nonphotochemical quenching 279
normal coordinates 241–247
normal mode 241–247
n–π∗ transition 174, 310–312, 330–331
nucleic acids 6–7, 223, 231, 237–238, 273

optical density 3
optical rotation 319–320
optical rotatory dispersion 319–320
optical sectioning 228
order parameter 224–225
orientational averages 122–123, 219–222,

373–374
orthogonal functions 35, 41, 52, 57, 66
oscillator strength 92, 126
overlap
– electronic 276–277, 296–298
– integral, spectral 269–272
– integral, vibrational 164–171, 195–196,

413–415
O2 61, 218, 250

particle in a box 43–46, 130–131
partition function 63, 168–169, 198–202
Pauli 58–60, 63
peptides 133, 139, 253–255, 310, 394–395,

401
phonon side-band 172
phosphorescence 24, 209, 238–240
photoacoustic spectroscopy 17–18, 404
photoactive yellow protein 183, 394, 404
photobleaching 218–219
photoelectric effect 9–10
photolyases 176, 259, 394
photomultiplier 10–11
photon
– concept and properties 9–10, 36, 102
– counting 22, 234
– counting histogram 238
– echo 395–401
– interference 104–106
plane wave 78, 85
plasmon surface polariton 90
point-dipole approximation 267–268
point group 131–142
Poisson distribution 234

polarizability 91–98, 183–188, 428–430
polarizability operator 430
polarization
– of chromophore or solvent 85–86, 94–98,

177–178
– of light 78, 98–100, 104, 106
polarization, optical 379–391
– first-order 381
– optical, third-order 371, 386–391
– second-order 377–385
porphyrins 133, 139, 149–150, 188, 376
position operator 31–35, 102, 111
pump-probe spectroscopy 13–14, 391–395
pyrene excimer 304–305

quadrupole moment 111–114, 140, 265
quantum dot 216, 441
quantum number
– electronic orbital 49
– nuclear orbital 43
– spin 57–62
quantum theory
– of absorption and emission 203–208,

314–317
– of radiation 100–106
quantum Zeno paradox 346–351
quasielastic light scattering see scattering,

dynamic
Qx, Qy states 149–150, 222, 301–304

radial distribution function 50, 51
radiant intensity 84
radiation
– black-body 96–98
– evanescent 87–90
– field 76–90
– modes 84, 96, 103
– quantum theory of 100–106
– vacuum field 102–103
radiative lifetime 208
Raman scattering 24–25, 392, 417–439
– by amino acids and peptides 437
– classical theory 421, 427
– coherent (stimulated) 437–439
– cross section 427
– KHD theory 421–427
– Liouville-space theory 419–421
– resonance 25, 175, 417–418, 424
– Stokes and antiStokes 417–418, 421
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– surface-enhanced 435, 437
– wavepacket picture 430–432, 434–435
Rayleigh scattering 25, 417–418, 422–425
reaction center (photosynthetic) 144–145,

152, 173–174, 188, 240, 255, 257,
297–298, 301, 350–351, 394, 410–413, 436

reaction field 95, 176–178
Redfield theory 355–364
red fluorescent protein 217–218, 237
redshift 174
reflection 88–90
refractive index
– effect on dipole strength 124–126
– effect on energy transfer 274
– effect on transition energy 176–178
– grating 403–404
relaxation
– dynamics 236, 240, 339–370
– functions 364–370
– matrix 346–364, 411
– of solvent 192–194, 298–301, 393–404
– time, longitudinal (T1) 345
– time, pure dephasing (T∗

2 ) 345
– time, transverse (T2) 345, 352
reorganization energy
– solvent 181, 298–301, 368–370
– vibrational 192–193
representation 135–136
resolution limit, microscopy 229–230
resonance 2, 117, 120, 169–170, 261, 336
– energy transfer 208–209, 231, 240,

259–279, 348
– integral 296–297
– Raman scattering see resonance Raman

scattering
– splitting 287–288
response functions 386–391
– linear 387
– third-order nonlinear 388
retinal see rhodopsin and cone-opsins
rhodopsin 145–147, 174–176, 288, 394, 404,

434, 436, 441
rod cell see rhodopsin
Rosenfeld equation 318–323
rotating-wave approximation 361, 383
rotational
– absorption lines 174
– correlation time 222–225

rotational strength 317–328
Runge–Kutta integration 346

scalar potential 80, 82, 100–101, 203–204
scattering
– Brillouin 417
– dynamic (quasielastic) 417, 442–445
– Mie 442
– Raleigh see Raleigh scattering
– Raman see Raman scattering
– Stokes and antiStokes see Raman

scattering
– vector 443
Schrödinger equation
– time-dependent 36–44, 65–68, 100–103
– time-independent 38–57
Schrödinger representation 340
secular determinant 244, 284–285
selection rules
– for circular dichroism 317–319, 326–327
– for electronic absorption 128–142,

160–161
– for Raman scattering 432–435
– for two-photon excitation 440–441
– for vibrational excitation 248–252
similarity transformation 135
single-molecule fluorescence 225–232, 236,

304
singlet state 57–62, 127, 161–162, 238–240
singlet-triplet splitting 61
site-distribution function 170
Slater determinant 61–62
Slater-type orbital 55, 156, 158–159
Snell’s law 87–89, 93
solvation dynamics 192–194, 298–301,

393–404
solvent coordinate, generalized 181–182
solvent effects on spectra 174–182, 339
spectral density function 357–364, 367–370
spectral diffusion 172
spectral lineshape 170–171, 364–370
spectrophotometer 11–13
spin, electron 57–64, 307, 350
spin, photon 98, 103, 141–142
spin-orbit coupling 238–240
Stark effect, electronic 182–188, 298
Stark effect, vibrational 256–257
Stark spectroscopy, higher order 187–188
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Stark tuning rate 256–257
static quenching 212
stationary state 65, 68, 282–289
Stern-Volmer equation 210–214
Stern-Volmer quenching constant 210–214
stimulated emission 25, 115, 189–191, 194,

206, 371–373, 391–395
stimulated-emission depletion 194,

229–230
stochastic fluctuations 337
stochastic Liouville equation 344–352, 361

411
Stokes–Einstein expressions 222–223
Stokes scattering see Raman scattering
Stokes shift 192–194, 298–299, 367–370
Strickler–Berg equation 197–202
sum rule 126, 293–294, 326
superposition state 41–42, 46, 104–106,

118–121
surface plasmon 87–90, 435
symmetry elements 131–142, 319
symmetry operations 131–142, 160–161

thermal equilibration 338, 344–346
three-pulse photon echo peak shift 400
time-correlation function see

autocorrelation function
time-dependent perturbation 65–68
time-evolution operator 387–391
total internal reflection 87–90, 218–219,

228
totally symmetric 136, 149
trans-butadiene see butadiene
transformation 136–138
transform-limited pulse 107
transient grating 401–404
transition dipole
– electric 2, 118–131, 138–142, 152–162,

189, 247–252, 324–325
– magnetic 307–328
– quadrupolar 314–317
transition energy see solvent effects
transition hyperpolarizability 186–187
transition monopole 264–268, 295–296
triplet state 57–62, 161–162, 238–240
triplet-triplet energy transfer 275–277
tryptophan
– absorption 6, 256

– circular dichroism 332
– fluorescence 192–194, 211–214, 223
– 1La, 1Lb states 151–152
– molecular orbitals 56, 140–143, 149
– permanent dipoles 179–181
– Stark effects 188
– transition dipoles 140–143, 151–152
– two-photon absorption 441–442
tunneling 46, 89
two-photon absorption see multiphoton

absorption
two-photon excitation 228, 417, 423
tyrosine fluorescence 214

uncertainty principle 68–71
ungerade 136

vacuum radiation field see zero-point
radiation field

vector potential 80, 82, 100–101, 203–204
vibrational
– circular dichroism see circular

dichroism, vibrational
– excitation 247–252
– overtone 249, 251
– potential energy 241–247
– relaxations 192–194, 274
– wavefunctions 40, 46–49, 246–247
vibronic coupling 140, 165–167, 173
vibronic state 163
virtual intermediate 393, 421
Voight spectrum 171
von Neumann equation 342–346, 355–356,

381

watched-pot effect 346–351
water 133, 139, 251–252, 438–439
wavefunction 32, 35, 38–41, 49–57, 196
– Born’s interpretation 29–30, 40
– orthonormal 35, 41, 52
– spin 57–62
– symmetric, antisymmetric 54–55, 57–62
wavepacket, optical 106, 407
wavepacket, vibrational 46, 49, 404–413,

430–432, 434–435
Weiner–Khinchin theorem 356–357

yellow fluorescent protein (YFP) 217
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Zeeman effect 58, 332–337
zero-field splitting 61
zero-phonon hole 172–174

zero-point energy 49, 102, 165, 170
zero-point radiation field 102–103,

423
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