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Foreword

This book is an ambitious attempt to bridge the infamous gap between theory and
practice in control. The book has ten chapters, written by seasoned researchers from
all over the world. It is organized in four parts: Large-scale Problems, Aerospace,
Vision and Sound and Electromechanical, and covers a very wide range of problems
from chemical reactors to magnetic bearings. In spite of the wide diversity of topics
and authors a coherent presentation is obtained by a uniform organization imposed
by the editors. Each chapter begins with a brief summary of the theory and a de-
scription of the application, followed by results of simulations or experiments and
conclusions. The problem descriptions and the discussions about the relevance of
the theory are more detailed than presentations normally found in papers. The book
is a nice complement to traditional textbooks and the wide range of topics illustrate
the richness and ubiquity of identification and control.

Santa Barbara, California, USA Karl Johan Åström
March 2007



Preface

System theory, in particular, automatic control and system identification have expe-
rienced a fast evolution in the past decades. Many new methods have been devel-
oped, performance requirements in traditional engineering areas have significantly
increased and new and more demanding applications in other areas of engineering
and science have appeared. Many textbooks have been written that present the rel-
evant theory and sometimes “practical” examples to which the theory has been ap-
plied. Other books focus directly on the practical issues involved, leaving the theory
out. However, there is still an important gap between theory and its application to
practical problems. Engineering decisions are usually made without the complete
assessment of existing theoretical tools. Many times, the key to the applicability of
new methods is based on such decisions. Hence, a problem appears when either the-
ory is lacking – it trails behind the practical issues, or when engineering decisions
are taken without the knowledge of recent theoretical developments.

Usually the theory/practice gap is covered by extensive simulations and/or ex-
perimental testing. There are very few (if any) situations in which the theory “fits”
the practical application without any extra modification. This gap is even more im-
portant in critical situations such as nuclear plants and space applications, where the
misfit between theory and practice could lead to dangerous or disastrous scenarios.
Nevertheless, this gap is the motor that keeps theoreticians and practitioners active
in developing new techniques and applying them in all areas of engineering. The
purpose of this book it to present some examples of this gap and in this way serve as
a reference, where new applied research areas are pointed out.

All chapters are written by textbook authors involved in “real world” applications
from different areas of engineering: acoustics, aerospace, chemical, computer vision,
electromechanical, industrial and mining. The chapters are organized with a similar
format: (1) a brief theoretical background section with references to previous works;
(2) the description of the application(s); (3) a presentation of simulations and/or ex-
perimental results, and (4) conclusions highlighting the discrepancy between theory
and practice. The latter is what distinguishes this book from others: the gap is delib-
erately exposed, not hidden. Furthermore, in each chapter the complete analysis and
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design process is covered, describing practical issues and decisions that accomodate
the existing theory to the particular problem.

The book will be useful for engineers facing complex applications and willing
to use recent methods of identification and control in solving them, in order to take
sound engineering decisions. In addition, applied researchers looking for areas in
which to contribute in reducing the theory/practice gap and exploring practical issues
should also benefit greatly from it.

The chapters describe how different identification and control techniques are ap-
plied to a wide variety of engineering applications. The identification methods go
from parametric identification of linear and nonlinear models, to robust set member-
ship identification and model (in)validation. Control techniques range from stochas-
tic optimal control to model predictive or robust H∞ and µ-synthesis control. Also,
fault tolerant and linear parameter varying (LPV) control, and the recent area of hy-
brid systems control techniques, have been used. Among the applications we can
mention: mine planning, polymerization reactors, a copper foundry process, and the
sewer network of Barcelona. Also, some electromechanical processes such as active
transmission and suspension, and a magnetic-bearing rotor appear. Computer vision,
aerospace applications like the NASA-JPL flexible structure or aeroservoelasticity in
the F18 aircraft and acoustic-noise attenuation, are also included.

Finally, we would like to thank all the authors who contributed to this book, for
producing an excellent collection of high-quality technical material. We would also
like to thank Springer UK personnel, particularly Oliver Jackson, who helped us
greatly in the development of this project, and our colleague Ari Ingimundarson for
refining part of this text.

Terrassa, Barcelona, Spain, Ricardo S. Sánchez Peña
March 2007 Joseba Quevedo Casín

Vicenç Puig Cayuela
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Part I

Large-scale Problems



1

Identification and Control of Polymerization Reactors

Eric J. Hukkanen1, Jeremy G. VanAntwerp2, and Richard D. Braatz3

1 Real-Time Analytics, Mettler-Toledo AutoChem, Inc., 14833 NE 87th Street, Redmond,
WA 98052, USA eric.hukkanen@mt.com

2 Calvin College, Department of Engineering, 1726 Knollcrest Circle, Grand Rapids, MI
49546, USA jva@calvin.edu

3 University of Illinois at Urbana-Champaign, Department of Chemical and Biomolecular
Engineering, 293 Roger Adams Laboratory, Box C-3, 600 South Mathews Avenue,
Urbana, IL 61801, USA braatz@uiuc.edu

Summary. This chapter considers the identification and control of free-radical polymeriza-
tion reactors. A discussion of the modeling and simulation of such reactors is followed by
an optimal control study that demonstrates the potential of optimal control of the molecular-
weight distribution based on mechanistic models. Achieving this potential in a batch reactor
requires an accurate estimation of the free-radical polymerization kinetic parameters. The re-
mainder of the chapter describes an experimental investigation of the free-radical polymeriza-
tion of methyl methacrylate, in which modern sensing techniques are used to estimate kinetic
parameters. The monomer conversion is measured using inline ATR-FTIR spectroscopy and
robust chemometrics, and the molecular-weight distribution is measured by gas-permeation
chromatography. The resulting parameter estimates and confidence intervals are used to dis-
cuss the importance of various reactions in the free-radical polymerization reaction mecha-
nism. Discrepancies between theory and experiments are discussed.

1.1 Background

Accurate mechanistic models for predicting the molecular-weight distribution are necessary
for effective design and control of free-radical polymerization reactors. Many studies have
been conducted to identify mechanistic models for free-radical polymerization ([8, 9, 11–
17, 20, 22, 23, 26–28]). The accuracy of the estimates of the kinetic parameters is directly
related to the accuracy and reliability of the sensors available for measuring the monomer con-
version and molecular-weight properties. This chapter makes use of two sensing technologies,
in situ attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy and
gel-permeation chromatography, for kinetic-parameter estimation in polymerization reactors.
The chapter also considers methods by which models for such processes can be simulated, as
a necessary first step to model identification, and considers the use of such models for control.

The first sensing technology is enabled by the availability of midrange infrared transmit-
ting optical fibers [21]. A significant advantage of ATR-FTIR spectroscopy over most other
methods for concentration measurement is the ability to provide simultaneous measurement
for multiple chemical species. This is useful, for example, for measuring the monomer concen-
tration in a polymerization reactor independent of the concentrations of dimers, trimers, etc.
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In ATR-FTIR spectroscopy, the infrared spectrum is characteristic of the vibrational structure
of the substance in immediate contact with the ATR immersion probe. The ATR-FTIR probe,
coupled with robust chemometrics, is used to monitor the conversion of monomer during ex-
periments. The second sensing technology, gel-permeation chromatography (GPC), measures
the molecular-weight distribution (MWD), which is the polymer property that determines its
end-use characteristics [21]. First, a calibration curve is constructed using narrowly distrib-
uted polymer samples of known molecular-weight. Then this calibration curve is used offline
to determine the MWD over the course of a reaction.

The specific polymerization under investigation is the free-radical polymerization of
methyl methacrylate. Various assumptions have been used to develop mechanistic models for
this process. It has been assumed that monomer transfer, ktrm, and/or termination by combi-
nation, ko

tc, do not significantly influence the polymerization process [8, 11–16, 22, 27, 28].
The results of a literature search [8, 9, 12, 14, 17, 20, 22, 23, 26, 27] of kinetic parameters used
for modeling methyl methacrylate bulk polymerization are summarized in Table 1.1. The large
variability of the values of the kinetic parameters may be partly due to the inclusion/exclusion
of ktrm and ko

tc. Also, past studies usually fit kinetic parameters based only on a measure-
ment of the monomer conversion over time for a small number of batch polymerizations, and
this is very limited information for estimating the values of multiple kinetic parameters, as
we will see later in this study. For control purposes, it is necessary to have an estimate of the
error in the parameter estimates. Most papers do not provide any uncertainty assessment of
their parameter estimates. In this chapter, monomer conversion profiles (as measured by in
situ ATR-FTIR spectroscopy [19]) and average molecular-weight properties (determined by
offline gel-permeation chromatography) are used to determine kinetic parameters for the free-
radical polymerization of methyl methacrylate (MMA) with benzoyl peroxide (BPO) initiator.
95% confidence intervals are reported with the parameter estimates.

The next section describes the polymerization kinetic model, model simulation, descrip-
tion of the experimental system, and formulation of the parameter estimation and optimal
control problems. This is followed by simulation-model verification and an evaluation of the
potential of optimal control of the molecular-weight distribution in free-radical polymeriza-
tion. Next, the kinetic parameters needed for optimal control design are experimentally de-
termined. The chapter ends with a discussion of discrepancies between the experimental data
and the model outputs obtained with the estimated kinetic parameters.

Table 1.1. Kinetic parameter estimates (along with 95% confidence regions) obtained from
literature values

Literature
Parameters values units

f 0.10–1.0 —
ktrm 1.6 ±7.8 [L mol−1 min−1]
ko

td × 10−9 1.8 ±0.8 [L mol−1 min−1]
ko

tc × 10−8 7.6 ±1.1 [L mol−1 min−1]
ko

p × 10−4 3.2 ±0.7 [L mol−1 min−1]
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1.2 Free-radical Polymerization

This section describes mechanistic modeling of a free-radical bulk polymerization reactor and
an algorithm for the direct simulation of the molecular-weight distribution. It is straightfor-
ward to revise the model to treat solution, suspension, or emulsion polymerization, or anionic
or cationic polymerization. Subsequent sections use this mechanistic model for parameter es-
timation and optimal control.

1.2.1 Kinetic Model

The reaction mechanism with reaction rates for free-radical polymerization with a single
monomer and initiator are

I2
kd−→ 2I · rd = 2fkd[I2] initiator decomposition

I · +M ki−→ P1 ri = ki [M ] [I ·] initiation

Pn +M
kp−→ Pn+1 rp = kp [M ] [Pn] propagation

Pn +M
ktrm−→ Dn + P1 rtrm = ktrm [M ] [Pn] monomer transfer

Pn + Pm
ktc−→ Dn+m rtc = ktc [Pm] [Pn] termination by combination

Pn + Pm
ktd−→ Dn +Dm rtd = ktd [Pm] [Pn] termination by disproportionation

It is straightforward to generalize the mechanism to include chain-transfer and solvent-transfer
reactions and multiple monomers and initiators.

The molar balances for a well-mixed batch reactor are, for initiator decomposition

1

V

d ([I2]V )

dt
= −kd[I2] (1.1)

free-radical concentration

1

V

d ([I ·]V )

dt
= −ki[I ·][M ] + 2fkd[I2] (1.2)

monomer concentration

1

V

d ([M ]V )

dt
= −ki[I ·][M ] − (kp + ktrm) [M ]

∞�
j=1

[Pj ] (1.3)

live polymer chains

1

V

d ([P1]V )

dt
= ki[I ·][M ] − kp[M ][P1] − ktrm[M ]

�
[P1] −

∞�
j=1

[Pj ]

�
(1.4)

− (ktc + ktd) [P1]

∞�
j=1

[Pj ]

1

V

d ([Pm]V )

dt
= kp[M ] ([Pm−1] − [Pm]) − ktrm[M ][Pm] (1.5)

− (ktc + ktd) [Pm]
∞�

j=1

[Pj ] form = 2, · · · , n
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and dead polymer chains

1

V

d ([Dm]V )

dt
= ktrm[M ][Pm] + ktd[Pm]

∞�
j=1

[Pj ] +
1

2
ktc

m−1�
j=1

[Pj ][Pm−j ] (1.6)

form = 2, · · · , n

The parameters kd, ki, kp, ktrm, ktc, and ktd are rate constants and f is the initiator effi-
ciency. The short average lifetime (<< 1 s) of an initiator radical molecule, I ·, implies that
the quasisteady-state approximation can be applied:

1

V

d([I ·]V )

dt
= 0 (1.7)

and
ki[I ·][M ] = 2fkd[I2] (1.8)

The total concentrations of live polymer molecules and monomer are

[P ] =

∞�
j=1

[Pj ] (1.9)

[M ] =
[Mo](1 − x)

1 + εx
(1.10)

where x is the conversion and ε is the volume-contraction factor

ε =
ρm(T ) − ρp(T )

ρp(T )
(1.11)

that takes into account the density differences between the polymer and monomer. Initially, the
reactor consists of pure monomer. Throughout the reaction, the volume of the reactant/product
mixture changes according to

V = V0(1 + εx) (1.12)

dV

dt
= V0ε

dx

dt
(1.13)

In this work, the gel effect or “Trommsdorf effect” is accounted for using the free-volume
correlation [25]. The void volume in a monomer/polymer solution is defined as the free vol-
ume. As conversion increases, the free volume decreases. Established methods are imple-
mented to account for the decrease in propagation and termination due to strong diffusion
limitations. The overall termination rate, kt, takes the form

kt = ktd + ktc (1.14)

kt = ko
t gt (1.15)

where

gt =

�
0.10575e17.15νf −0.01715(T−273.15) νf > νf,cr

0.23 × 10−5e75νf νf ≤ νf,cr
(1.16)

and the propagation rate takes the form

kp = ko
pgp (1.17)

gp =

�
1 νf > νf,cr

0.71 × 10−4e71.53νf νf ≤ νf,cr
(1.18)
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The free volume, νf , is defined by

νf = φmνf,m + φpνf,p (1.19)

where φm and φp are the volume fractions of monomer and polymer, respectively, and the
monomer νf,m and polymer νf,p free volumes are defined by

νf,m = 0.025 + 0.001(T − 167) (1.20)

νf,p = 0.025 + 0.00048(T − 387) (1.21)

The critical free volume, νf,cr , is defined by

vf,cr = 0.1856 − 2.965 × 10−4(T − 273.15) (1.22)

This free-volume model is adapted from [25] and has been used in several investigations [11–
13, 20, 26].

1.2.2 Model Simulation

This section describes how the kinetic model was simulated and presents the moment equation
method that was used to verify the accuracy of the simulation results.

Moment equations

The moments are defined by

λi =
∞�

j=1

ji[Pj ] (1.23)

for live (radical) polymer chains and

µi =
∞�

j=2

ji[Dj ] (1.24)

for dead polymer chains, where i is an integer. The infinite set of molar balance equations
can be used to derive a finite number of ordinary different equations (ODEs) by using the
relationships

∞�
j=1

d

dt

�
ji[Pj ]

�
=

dλi

dt
for i = 0, 1, 2 (1.25)

and ∞�
j=2

d

dt

�
ji[Dj ]

�
=

dµi

dt
for i = 0, 1, 2 (1.26)

The resulting finite set of ODEs are

d[I2]

dt
= −

�
kd +

ε

1 + εx

dx

dt

�
[I2] (1.27)

dx

dt
=

2fkd[I2] (1 + εx)

[Mo]
+ (kp + ktrm) (1 − x)λ0 (1.28)
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dλ0

dt
= 2fkd[I2] − (ktd + ktc)λ

2
0 −

ελ0

1 + εx

dx

dt
(1.29)

dλ1

dt
= 2fkd[I2] + kp[M ]λ0 + ktrm[M ] (λ0 − λ1)

− (ktd + ktc)λ0λ1 − ελ1

1 + εx

dx

dt
(1.30)

dλ2

dt
= 2fkd[I2] + kp[M ] (2λ1 + λ0) + ktrm[M ] (λ0 − λ2)

− (ktd + ktc)λ0λ2 − ελ2

1 + εx

dx

dt
(1.31)

dµ0

dt
= ktrm[M ]λ0 +

�
ktd +

1

2
ktc

�
λ2

0 −
εµ0

1 + εx

dx

dt
(1.32)

dµ1

dt
= ktrm[M ]λ1 + (ktd + ktc)λ0λ1 − εµ1

1 + εx

dx

dt
(1.33)

dµ2

dt
= ktrm[M ]λ2 + ktdλ0λ2 + ktc

�
λ0λ2 + λ2

1

�
− εµ2

1 + εx

dx

dt
(1.34)

with initial conditions

[I2](0) = [I2o] (1.35)

x(0) = 0 (1.36)

λi(0) = µi(0) = 0, for i = 0, 1, 2 (1.37)

The polymer product is commonly characterized by the number-average molecular-weight,
M̄n, weight-average molecular-weight, M̄w , and polydispersity, PD. These product quality
variables can be computed from the moments of live and dead polymer chains:

M̄n = Mw
λ1 + µ1

λ0 + µ0
(1.38)

M̄w = Mw
λ2 + µ2

λ1 + µ1
(1.39)

PD =
M̄w

M̄n
(1.40)

whereMw is the molecular-weight of the monomer. The above system of ODEs can be solved
using any stiff solver such as DASSL [24] or VODE [5].

Simulation of the Molecular-weight Distribution

Typically, the molecular-weight distribution (MWD) is simulated using stochastic codes,
which are time consuming. Here, the full MWD is simulated in less than 10 min per simulation
run. The above molar balances are directly integrated using parallel CVODE [1, 6, 7, 10, 31].
The maximum number of ODEs was determined experimentally by gel-permeation chro-
matography (GPC), which was double-checked at the end of the simulation to confirm that
the live and dead polymer concentrations at the largest chain lengths were negligible. The
user selects the number of processors and the maximum number of ODEs allowed on each
processor, and specifies which equations are on each processor. The parallel CVODE software
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handles all details of the integration including parallelization among multiple processors. The
user decides how to balance the computations among the processors. All communications be-
tween processors are handling using the message-passing interface (MPI) [18], using the basic
MPI_SEND, MPI_RECV, and MPI_BCAST commands. For a more indepth description of the
architecture of the parallel CVODE algorithm, the reader is referred to [1, 6, 7, 10, 31].

As the average lifetime of live polymer chains is very short, the quasisteady-state approx-
imation (QSSA) was applied, which greatly reduces the stiffness:

1

V

d ([Pm]V )

dt
= 0, form = 1, · · · ,∞ (1.41)

Applying the QSSA reduces the stiffness to ∼104, which is significantly more well behaved
numerically. This leads to the system of ODEs solved by parallel CVODE:

d[I2]

dt
= −

�
kd +

ε

1 + εx

dx

dt

�
[I2] (1.42)

dx

dt
=

2fkd[I2] (1 + εx)

[Mo]
+ (kp + ktrm) (1 − x) [P ] (1.43)

d[P ]

dt
= 2fkd[I2] − (ktd + ktc)λ

2
0 − ελ0

1 + εx

dx

dt
(1.44)

[P1] =
2fkd[I2] + ktrm[M ][P ]

(kp + ktrm) [M ] + (ktd + ktc) [P ] + ε
1+εx

dx
dt

(1.45)

[P2] =
kp[M ][P1]

(kp + ktrm) [M ] + (ktd + ktc) [P ] + ε
1+εx

dx
dt

(1.46)

...

[Pn] =
kp[M ][Pn−1]

(kp + ktrm) [M ] + (ktd + ktc) [P ] + ε
1+εx

dx
dt

(1.47)

[P ] =

n�
i=1

[Pi] = λ0, (1.48)

d[D2]

dt
= ktrm[M ][P2] + ktd[P2][P ] +

1

2
ktc[P1]

2 − ε

1 + εx

dx

dt
[D2] (1.49)

...

d[Dn]

dt
= ktrm[M ][Pn] + ktd[Pn][P ] +

ktc

2

n−1�
j=1

[Pj ][Pn−j ]

− ε

1 + εx

dx

dt
[Dn] (1.50)

1.2.3 Experimental Description

Materials and Instruments

Free-radical isothermal bulk polymerization reactions were conducted in a 500-mL jacketed
round-bottom flask (Lab-Glass, Vineland, NJ, see Figure 1.1). All of the experiments used
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water as the solvent, methyl methacrylate (MMA) as the monomer, and benzoyl peroxide
(BPO) as the initiator. Attenuated total reflection (ATR) Fourier transform infrared (FTIR)
spectroscopy was used to monitor in situ the conversion of monomer and decomposition of
the initiator during the polymerization reaction. Absorbance spectra were obtained with a
DIPPER-210 ATR-FTIR immersion probe with two reflections manufactured by Axiom An-
alytical, and analyzed using robust chemometrics [29, 30]. ZnSe was used as the internal re-
flectance element. The probe was attached to a Nicolet Protege 460 FTIR spectrophotometer
connected to a 333 MHz Pentium II running OMNIC 4.1a software from Nicolet Instrument
Corporation.

The spectrometer was purged with N2 gas for one hour before and during measurements
to reduce the effects of CO2 absorption in its optical path. A spectral resolution of 4 cm−1

was used as a compromise between scan speed and resolution. Samples were prepared using
methyl methacrylate (MMA) (99%, inhibited with 10–100 ppm MEHQ, Aldrich Chemical
Company, Inc.) with the inhibitor removed from the MMA using inhibitor removal columns
(Scientific Polymer Products, Inc.). The temperature of the samples was controlled to within
±0.20 ◦C. A single flat blade with a variable-speed IKA Eurostar Labortechnik stirrer driver
was used to agitate the vessel. Measurements of the MWD were obtained by gel-permeation
chromatography (GPC) applied to samples collected at intermediate times during the batch.
A Viscotek Triple Detector Array (TDA) Model 300, equipped with a Waters 515 high pres-
sure liquid chromatography (HPLC) pump, was used. A solution of 0.05 M LiBr in N,N-
dimethylformamide (DMF) (99.9+% HPLC grade, Sigma-Aldrich) was used for elution in
the column, as well as for sample preparation for GPC analysis. For calibration purposes, a
poly(methyl methacrylate) (PMMA) Calibration Kit (Scientific Polymer Products, Inc.) was
used.

Experimental Procedure

The round-bottom flask was thoroughly cleaned and rinsed with deionized water and then
allowed to dry. The ATR-FTIR probe, stirrer, condenser, and thermocouple were connected to
the vessel. All openings to the flask (e.g., top of condenser, open-neck joints) were sealed using
rubber septums, creating a closed environment. The system was purged with dry nitrogen gas
for several hours. Methyl methacrylate was added via a syringe to the vessel after removal of
inhibitor. A small amount of MMA was reserved for initiator addition. The temperature of the
system was set to a constant value. The vessel was agitated for several hours. This ensured
that the temperature was constant throughout the flask, the contents were well mixed, and
any residual air (i.e. oxygen) was removed. The initiator was measured out using a ceramic
spatula. The reaction was initiated when the remainder of the uninhibited MMA (kept at 5 ◦C)
and initiator were combined and added to the system via syringe.

Concentration measurements were made in 1-min intervals with the ATR-FTIR probe
and recorded to a data file for processing. A syringe was used to withdraw reaction mix-
tures during the experiments for molecular-weight distribution measurements. The solution of
MMA/PMMA was immediately added to flask of n-hexanes (0 ◦C). The precipitated poly-
mer was filtered from the solution and washed alternately with hexanes and methanol. The
polymer samples were prepared for offline GPC analysis.
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Fig. 1.1. Experimental setup for the free-radical bulk polymerization of methyl methacrylate
and benzoyl peroxide. The ATR-FTIR probe is located on the left and fits directly into the
reactor. GPC measurements were made offline (GPC equipment not shown in the picture).

min
θ≥0

Φ(θ) (1.51)

The parameters to be estimated are

θ =
�
f, ktrm, k

o
td, k

o
tc, k

o
p

�T
(1.52)

A common approach in the literature is to apply parameter estimation to measurements of only
the monomer conversion, which is fairly limited information and is likely one of the causes of
the large confidence intervals on the parameters (see Background section). Basing parameter
estimates only on monomer-conversion measurements does not consider the importance of the
molecular-weight distribution, which characterizes the composition of the polymer.

In this chapter, sensitivity analysis and experimental data including the monomer con-
version and MWD are incorporated into least-squares parameter estimation to determine the
kinetic parameters (e.g., initiator efficiency, monomer transfer, propagation, and termination)
and to estimate uncertainties in their values [4]. While the parameter-estimation algorithm
only utilized characteristics of the MWD, the direct method for simulating the full MWD was
used to compare the model predictions with measurements. The specific parameter-estimation
objective was

1.2.4 Parameter-estimation Formulation

The objective function for parameter estimation is described by
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where

Φ(θ)x =
N�

i=1

Mx
i�

j=1

wx
ij

�
xij − x̃ij

xij

�2

(1.54)

Φ(θ)n =
N�

i=1

Mn
i�

j=1

wn
ij

�
M̄n,ij − ˜̄Mn,ij

M̄n,ij

�2

(1.55)

Φ(θ)w =

N�
i=1

Mw
i�

j=1

ww
ij

�
M̄w,ij − ˜̄Mw,ij

M̄w,ij

�2

(1.56)

xij , M̄n,ij , and M̄w,ij are the measurement and x̃ij , ˜̄Mn,ij , and ˜̄Mw,ij are the model predic-
tions of the jth measurement of the ith experiment, wij is a weighting factor,N is the number
of experiments, and Mi is the number of measurements in the ith experiment. The weighting
factors were set based on the relative accuracy of the measurements [4].

The parameter estimates are stochastic variables because of noise associated with mea-
surements. An approximate confidence region for the parameters can be obtained by lineariz-
ing the model near the vicinity of the estimate [4]:

ỹi(θ) ≈ ỹi(θ
∗) + Fi(θ

∗)(θ − θ∗) (1.57)

where ỹi = [ỹi,1, . . . , ỹi,Mi ]
T is the vector of model predictions for the ith experiment, θ∗

is the maximum likelihood estimate for the parameter vector, and Fi is the Mi ×Np matrix,
where Np is the number of parameters, given by

Fi =
∂ỹi

∂θ

����
θ∗

(1.58)

which was calculated using centered finite differences. If it is assumed that the measurement
errors are normally distributed and independent, then the parameter covariance matrix Vθ for
the linearized problem is given by

Vθ
−1 =

N�
i=1

FT
i .V

−1
i Fi (1.59)

The approximate 100(1 − α)% confidence region is the hyperellipsoid defined by

(θ − θ∗)T
V−1 (θ − θ∗) ≤ χ2

Np
(α) (1.60)

where χ2 is the chi-squared distribution that is available in statistics textbooks. For this study,
α = 0.05 was used.

The eigenvectors of Vθ
−1 give the direction and the eigenvalues give the length of the

axes of the hyperellipsoid. It is not possible to visualize the hyperellipsoid for higher than
three dimensions. Therefore, approximate confidence intervals are reported

θ∗j −
�
χ2

Np
(α)Vθ,jj ≤ θj ≤ θ∗j +

�
χ2

Np
(α)Vθ,jj (1.61)

where Vθ,jj is the (j, j) element of Vθ . It should be noted that these confidence intervals on
each model parameter are not as reliable for quantifying the accuracy of the model parameters
as the original confidence hyperellipsoid (Equation (1.60)). Also, note that the use of the χ2

Np

Φ(θ) = Φ(θ)x + Φ(θ)n + Φ(θ)w (1.53)
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distribution in Equation (1.61) results in larger confidence intervals than using the student
t-distribution [4].

The linear correlation matrix R measures the degree of linear dependence between a pair
of parameters. A magnitude of 1 represents perfect correlation and a magnitude of 0 represents
no correlation. The coefficients of the correlation matrix [4] is given by

Rij = Vij (ViiVjj)
−1/2 (1.62)

The diagonal entries are 1. When all offdiagonal entries have a magnitude of 0.9 and larger,
the parameters are highly correlated and considered inaccurate [4].

The sequential quadratic program (SQP), FFSQP [33], was used to solve the optimization.
All simulations were run on a 1 GHz Pentium III personal computer.

1.2.5 Optimal Control Formulation

The optimal control problem is to compute the temperature profile that produces the desired
number-average molecular-weight, M̄n, and weight-average molecular-weight, M̄w. As is
standard in control-vector parameterization, the optimal temperature profile is discretized into
N intervals during the batch time. The temperature rate is constant between each time interval,
so that the overall temperature profile is a first-order spline. The initial initiator concentration
and the temperature at each discrete time k = 0, . . . , N are the optimization variables:

min
T (t),[I2o]

�
1 − M̄n

M̄∗
n

�2

+

�
1 − M̄w

M̄∗
w

�2

subject to
g1 (t) = Tmin (t) − T (t) ≤ 0
g2 (t) = T (t) − Tmax(t) ≤ 0

g3 (t) = Rmin (t) − dT (t)

dt
≤ 0

g4 (t) =
dT (t)

dt
−Rmax (t) ≤ 0

g5 = [I2o]min − [I2o] ≤ 0
g6 = [I2o] − [I2o]max ≤ 0

(1.63)

where Tmin, Tmax, Rmin, Rmax, [I2o]min, and [I2o]max are the minimum and maximum
temperatures, temperature ramp rates, and initial initiator concentrations, respectively, dur-
ing the batch process. The temperature constraints ensure that the temperature profile stays
within the operating range of the polymerization reactor while the initiator constraints ensure
that a reasonable initiator concentration is used. The values of the temperature and initiator
constraints are reported in Table 1.2. A fixed batch time of 150 minutes was used, although
it is easy to extend the approach to variable batch time by introducing another variable. The
nonlinear optimization (Equation (1.63)) was solved using sequential quadratic programming
(FFSQP) [33].

1.3 Simulation and Experimental Results

1.3.1 Model-simulation Verification

The MWD evolution was simulated for a well-mixed reactor initially containing methyl
methacrylate (MMA) and benzoyl peroxide (BPO) while following the four temperature pro-
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Table 1.2. Constraint values for optimal temperature and initiator concentration trajectories,
(Equation (1.63))

Variable Value Units

Tmin(t) 323.15 [K]
Tmax(t) 363.15 [K]
Rmin(t) −2.00 [K min−1]
Rmax(t) 2.00 [K min−1]
[I2o]min 0.40 [g]
[I2o]min 20.00 [g]

files reported in Table 1.3. The kinetic parameters and physical constants used for this sys-
tem are reported in Table 1.4. In each simulation, ∼95,000 ODEs were distributed across 20
processors. Two Linux clusters were used for all simulations. The Turing Cluster consisted
of 208 dual-processor machines with two 1 GHz Pentium III processors and 1 GB of RAM
each [2]. The National Center for Supercomputing Applications (NCSA) IA-32 Linux Cluster
consisted of 484 dual-processor machines with two 1-GHz Pentium III processors [3]. The
simulation times for each MWD simulation are reported in Table 1.5.

Table 1.3. Numerical conditions used in parallel CVODE simulations

Initiator concentration Temperature
Case (g BPO/g MMA) profile (◦C)

A 4.00 T (t) = 50
B 4.00 T (t) = 4t/15 + 50
C 4.00 T (t) = 90
D 4.00 T (t) = 90 − 4t/15

The moment equations were used to verify the full MWD simulated using parallel
CVODE. Figures 1.2–1.5 show the MWD evolution, the average molecular-weights M̄n and
M̄w, and the monomer conversion, x. The average molecular-weights and monomer conver-
sion from parallel CVODE and the moment equations are the same, confirming the validity of
the QSSA used to derive the set of polymerization reactions used by parallel CVODE. Nearly
complete conversion of monomer occurs at the highest operating temperature (Case C) where
a non-Gaussian molecular-weight distribution is produced. The total polymer concentration
increases and the average molecular-weights decrease with increasing temperature.

Figures 1.6–1.9 report the average molecular-weights for the live and dead polymer
chains. As expected, at initial times the dead polymer concentrations are lower than the live
polymer concentrations, with the average molecular-weights of the dead polymer chains be-
ing larger than for the live polymer chains. The average molecular-weights of the live polymer
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Table 1.4. Kinetic parameters and physical constants used in simulations

Parameter Value Units Reference

f 1.0 —
kd 1.7 × 1014 exp

�
−3.0 × 104/RT

�
s−1 [20]

ktrm 0.0 [L mol−1 s−1] [22]
ko

td 9.8 × 107 exp (−701/RT ) [L mol−1 s−1] [22]
ko

tc 0.0 [L mol−1 s−1] [22]
ko

p 4.92 × 105 exp (−4353/RT ) [L mol−1 s−1] [20]
R 1.987 [cal mol−1 K−1] —
ρm(T ) 968.0 − 1.15(T − 273.15) [g L−1] [27]
ρp(T ) 1.212 × 103 − 0.845(T − 273.15) [g L−1] [27]
Mw 100.12 [g mol−1] —

Table 1.5. Simulation times using parallel CVODE

Case Time (s)

A 484
B 913
C 480
D 513

decrease over time as the dead polymer concentrations increase. In Case C, almost 100%
monomer conversion is achieved. As a result, the termination kinetic parameters decrease as
a result of the gel effect and the total live polymer concentration increases. At this point the
QSSA is no longer valid, but using this method results in no more than 5% error at the final
time. Case D in which the temperature is decreased during the batch run is the most interest-
ing, in that the average molecular-weights of the live polymer decreases and then increases
to values larger than the molecular-weights of dead polymer. If the batch run was longer, this
would eventually lead to the formation of some longer dead polymer chains (see Figure 1.5).

The above MWDs were simulated with no prior knowledge of the shape of the MWD. This
is in contrast to alternative simulation methods that are accurate for only a range of MWDs. To
more fully demonstrate the advantage of using the simulation approach, a bimodal molecular-
weight distribution was simulated for the semibatch free-radical polymerization of methyl
methacrylate with 2,2’-azobisisobutyronitrile (AIBN) as an initiator and dodecyl mercaptan
(DDM) as a chain-transfer agent. The chain-transfer agent was added at t = 120 min. The
reaction mechanism is identical with the addition of a chain-transfer mechanism:

Pn + C
ktrc−→ Dn + P1, rtrc = ktrc [C] [Pn], polymer chain transfer
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Fig. 1.2. Simulation results for Case A: (a,b) evolution of the MWD for dead polymer chains
with (b) using a consistent scaling for all cases to enable different cases to be compared; (c)
average molecular-weights for the sum of dead and live polymer chains as computed by the
method of moments, (×) and (· · ·), and parallel CVODE, (—) and (− · −), respectively; (d)
monomer conversion computed from the method of moments (· · ·) and parallel CVODE (—).

where [C] is the chain-transfer agent concentration and ktrc is the rate constant for polymer
chain transfer. The molar balances on the semibatch approach, including chain-transfer agent,
is defined for initiator decomposition

1

V

d ([I2]V )

dt
= −kd[I2] (1.64)

free-radical concentration

1

V

d ([I ·]V )

dt
= −ki[I ·][M ] + 2fkd[I2] (1.65)

monomer concentration

1

V

d ([M ]V )

dt
= −ki[I ·][M ] − (kp + ktrm) [M ]

∞�
j=1

[Pj ] (1.66)

chain-transfer agent

1

V

d ([C]V )

dt
=

���
��

0, for t < 120

−ktrc[C]
∞�

j=1

[Pj ], for t ≥ 120 (1.67)
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Fig. 1.3. Simulation results for Case B: (a,b) evolution of the MWD for dead polymer chains
with (b) using a consistent scaling for all cases to enable different cases to be compared; (c)
average molecular-weights for the sum of dead and live polymer chains as computed by the
method of moments, (×) and (· · ·), and parallel CVODE, (—) and (− · −), respectively; (d)
monomer conversion computed from the method of moments (· · ·) and parallel CVODE (—).

live polymer chains

1

V

d ([P1]V )

dt
= ki[I ·][M ] − kp[M ][P1] − ktrm[M ]

�
[P1] −

∞�
j=1

[Pj ]

�
(1.68)

− (ktc + ktd) [P1]

∞�
j=1

[Pj ] − ktrc[C]

�
[P1] −

∞�
j=1

[Pj ]

�

1

V

d ([Pm]V )

dt
= kp[M ] ([Pm−1] − [Pm]) − ktrm[M ][Pm] (1.69)

− (ktc + ktd) [Pm]
∞�

j=1

[Pj ] − ktrc[C][Pm] form = 2, · · · , n

and dead polymer chains



18 E.J. Hukkanen, J.G. VanAntwerp and R.D. Braatz

Fig. 1.4. Simulation results for Case C: (a,b) evolution of the MWD for dead polymer chains
with (b) using a consistent scaling for all cases to enable different cases to be compared; (c)
average molecular-weights for the sum of dead and live polymer chains as computed by the
method of moments, (×) and (· · ·), and parallel CVODE, (—) and (− · −), respectively; (d)
monomer conversion computed from the method of moments (· · ·) and parallel CVODE (—).

1

V

d ([Dn]V )

dt
= ktrm[M ][Pn] + ktd[Pn]

∞�
j=1

[Pj ] +
1

2
ktc

n−1�
j=1

[Pj ][Pn−j ] (1.70)

+ ktrc[C][Pn] form = 2, · · · , n

Applying the QSSA in a similar manner as earlier gives the ordinary differential equations:

d[I2]

dt
= −

�
kd +

ε

1 + εx

dx

dt

�
[I2] (1.71)

dx

dt
=

2fkd[I2] (1 + εx)

[Mo]
+ (kp + ktrm) (1 − x) [P ] (1.72)

d[C]

dt
=

���
��

0, for t < 120

−ktrc[C]
∞�

j=1

[Pj ] − ε

1 + εx

dx

dt
[C], for t ≥ 120 (1.73)
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Fig. 1.5. Simulation results for Case D: (a,b) evolution of the MWD for dead polymer chains
with (b) using a consistent scaling for all cases to enable different cases to be compared; (c)
average molecular-weights for the sum of dead and live polymer chains as computed by the
method of moments, (×) and (· · ·), and parallel CVODE, (—) and (− · −), respectively; (d)
monomer conversion computed from the method of moments (· · ·) and parallel CVODE (—).

Fig. 1.6. Average molecular-weights, M̄n and M̄w , for Case A: for live polymer chains (−−),
dead polymer chains (− · −), and combined live and dead polymer chains (—)
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Fig. 1.7. Average molecular-weights, M̄n and M̄w, for Case B: for live polymer chains (−−),
dead polymer chains (− · −), and combined live and dead polymer chains (—)

Fig. 1.8. Average molecular-weights, M̄n and M̄w, for Case C: for live polymer chains (−−),
dead polymer chains (− · −), and combined live and dead polymer chains (—)

Fig. 1.9. Average molecular-weights, M̄n and M̄w , for Case D: for live polymer chains (−−),
dead polymer chains (− · −), and combined live and dead polymer chains (—)
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d[P ]

dt
= 2fkd[I2] − (ktd + ktc)λ

2
0 − ελ0

1 + εx

dx

dt
(1.74)

[P1] =
2fkd[I2] + ktrm[M ][P ] + ktrc[C][P ]

(kp + ktrm) [M ] + ktrc[C] + (ktd + ktc) [P ] + ε
1+εx

dx
dt

(1.75)

[P2] =
kp[M ][P1]

(kp + ktrm) [M ] + (ktd + ktc) [P ] + ktrc[C] + ε
1+εx

dx
dt

(1.76)

...

[Pn] =
kp[M ][Pn−1 ]

(kp + ktrm) [M ] + (ktd + ktc) [P ] + ktrc[C] + ε
1+εx

dx
dt

(1.77)

[P ] =

n�

i=1

[Pi] = λ0 (1.78)

d[D2]

dt
= ktrm[M ][P2] + ktd[P2][P ] +

1

2
ktc[P1]

2 + ktrc[C][P2]

− ε

1 + εx

dx

dt
[D2] (1.79)

...

d[Dn]

dt
= ktrm[M ][Pn] + ktd[Pn][P ] +

1

2
ktc

n−1�

j=1

[Pj ][Pn−j ] + ktrc[C][Pn]

− ε

1 + εx

dx

dt
[Dn] (1.80)

The kinetic parameters are reported in Table 1.6. Simulations were executed for an isother-
mal (70 ◦C) semibatch polymerization with 0.3 wt% AIBN and 0.8 wt% DDM. The algorithm
was implemented as discussed previously in Section 1.2.2, except now with the addition of the
chain-transfer agent. The time evolution of the full molecular-weight distribution is reported
in Figure 1.10. The chain-transfer agent was added at t = 120 min. This time was chosen
to produce a bimodal distribution with equal modes. The MWD at different time instants are
reported in Figure 1.11 to show how the bimodal distribution evolves with time.

The ability to simulate the full molecular-weight distribution opens many new possibili-
ties for identification and control. It enables the estimation of the kinetic parameters from the
full MWD. Simulating the full MWD also enables the estimation of kinetic parameters that
are length or mass dependent, in contrast to existing polymerization models that use an aver-
age value for each kinetic parameter. Considering the MWD enables the computation of the
optimal setpoint trajectories and feedback controllers to produce a desired molecular-weight
distribution, including MWDs with multiple modes.

1.3.2 Potential for Optimal Control of the MWD

Before moving to the experimental parameter-estimation study, this section describes a brief
study to assess the potential of optimal control based on the mechanistic model. Such initial
simulation studies should be completed before doing experiments for parameter estimation, to
assess whether the value of the identified model is worth the expense of doing experiments.
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Table 1.6. Kinetic parameters and physical constants used in parallel CVODE simulations of
semibatch free-radical polymerization of MMA, AIBN, and DDM

Parameter Value Units Reference

f 0.43 — [28]
kd 2.8 × 1015 exp (−15685/T ) [s−1] [28]
ktrm 2.324 × 108 exp (−9218/T ) [L mol−1 s−1] [28]
ktrc 771 at 70 ◦C [L mol−1 s−1] [28]
ko

td 9.8 × 107 exp (−353/T ) [L mol−1 s−1] [28]
ko

tc 0.0 [L mol−1 s−1] [28]
ko

p 4.9 × 105 exp (−2190/T ) [L mol−1 s−1] [28]
R 1.987 [cal mol−1 K−1] —
ρm(T ) 968.0 − 1.15(T − 273.15) [g L−1] [28]
ρp(T ) 1.212 × 103 − 0.845(T − 273.15) [g L−1] [28]
Mw 100.12 [g mol−1] —

Fig. 1.10. Full molecular-weight distribution evolution for semibatch isothermal free-radical
polymerization of methyl methacrylate (0.3 wt% AIBN and 0.8 wt% DDM)
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Fig. 1.11. Time instances of the full molecular-weight distribution evolution for semibatch
isothermal free-radical polymerization of methyl methacrylate (0.3 wt% AIBN and 0.8 wt%
DDM)

Table 1.7 reports three sets of average molecular-weight objectives investigated in this
study. This is not an exhaustive list, but merely an example of optimal control trajectories for
a desired set of average molecular-weights, M̄∗

n and M̄∗
w.

Table 1.7. Desired average molecular-weight objectives in optimal control study

M̄∗
n M̄∗

w

Case (g mol−1) (g mol−1)

A 100,000 200,000
B 1,000,000 2,000,000
C 40,000 80,000

The nonlinear optimization (Equation (1.63)) was solved by sequential quadratic pro-
gramming to determine the optimal initial initiator concentration and temperature trajectory.
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Table 1.8. Final average molecular-weight objectives for optimal control temperature trajec-
tories and initial initiator concentration

[I2o] To M̄n M̄w Monomer conversion
Case (g) (K) (g mol−1) (g mol−1) x

A 9.40 346 99,997 200,005 70%
B 0.93 323 999,985 2,000,078 7.5%
C 10.95 363 39,977 80,049 92%

Table 1.8 reports these values as well as the optimal average molecular-weights. Figures 1.12–
1.14 report the optimal temperature profile and resulting conversion and average molecular-
weight profiles for Cases A, B, and C. Case A has a monotonically decreasing optimal cooling
profile whereas the optimal temperature for Case B was nearly constant. A rapidly dropping
cooling profile was optimal for Case C. In all three cases, the optimal average molecular-
weights are very close to the desired values, suggesting that the experimental effort to develop
an accurate mechanistic model for use in such optimal control calculations is justified.

The optimal operating conditions strongly depend on the control objective. A wide range
of desired average molecular weights was considered that illustrated a wide range of tem-
perature trajectories. Higher monomer conversion is achieved with Cases A and C. This is
expected since the higher temperatures result in faster kinetics. Higher initiator concentration
produces smaller molecular-weights. For large molecular-weights (i.e. Case B), a low temper-
ature (almost isothermal) profile and low initiator concentration are optimal. This is consistent
with the fundamental chemistry. Also worth noting is that the average molecular-weights are
determined in the initial 50 min of the experiment (see Figures 1.12–1.14). The final average
molecular-weight properties strongly depend on the initial part of the reaction (e.g., initial
temperature, initial concentration, and temperature profile).

1.3.3 Parameter Sensitivity and Estimation

The above section demonstrates the potential of free-radical polymerization models for con-
trolling the molecular-weight distribution. To realize that potential, accurate estimates of the
kinetic parameters are required. A thorough parameter-sensitivity analysis (not shown for
brevity, interested readers can go to the thesis in [19]) indicated that:

• The monomer conversion is weakly sensitive to the value of the rate constant for monomer
transfer, ktrm, indicating that it is impossible to accurately estimate ktrm using only
monomer-conversion data. This explains the huge variation in reported values for ktrm in
the literature (see Background section). On the other hand, the average molecular-weights
are sensitive to the value of ktrm and so can be used to estimate its value.

• The monomer conversion and average molecular-weights are sensitive to the rate constant
for termination by disproportionation, ko

td, indicating that its value can be estimated.
• The monomer conversion and average molecular-weights are insensitive to the rate con-

stant for termination by combination, ko
tc, which agrees with past studies [32]. Hence, this

value can be neglected (ko
tc = 0) during parameter estimation.

• The rate constant for propagation, ko
p, affects monomer conversion and average molecular-

weights.
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Fig. 1.12. Optimal temperature profile for Case A as determined by Equation (1.63). Sim-
ulation profiles of fractional conversion and average molecular-weight properties employ-
ing the optimal temperature profile. The initial initiator concentration and resulting average
molecular-weight properties are reported in Table 1.8.

Hence, the four parameters f , ktrm, ko
td, and ko

p are the significant kinetic parameters to
estimate in the free-radical polymerization of methyl methacrylate.

A series of free-radical bulk polymerization experiments were conducted in which the
monomer concentration and molecular-weight distribution were measured, as described in the
experimental description section, with the experimental conditions reported in Table 1.9. Para-
meter estimates and 95% confidence regions obtained from measured values for the mononer
concentration and average molecular-weights are reported in Table 1.10 based on two sets of
assumptions:

• Case 1 – monomer transfer does not significantly affect the conversion and molecular-
weight distribution (ktrm = 0)

• Case 2 – monomer transfer is significant (ktrm �= 0).

Plots of the monomer conversion and average molecular-weights from experiments and
the nominal model for Case 1 are reported in Figures 1.15–1.18. The covariance matrix

Vθ =

�
���

f ko
td ko

p

2.00 × 10−5 −5.21 × 103 −2.49
−5.21 × 103 1.26 × 1016 8.10 × 1010

−2.49 8.10 × 1010 8.27 × 105

�
��� (1.81)
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Fig. 1.13. Optimal temperature profile for Case B as by Equation (1.63). Simulation pro-
files of fractional conversion and average molecular-weight properties employing the optimal
temperature profile. The initial initiator concentration and resulting average molecular-weight
properties are reported in Table 1.8.

Table 1.9. Experimental conditions for free-radical polymerization of methyl methacrylate
and benzoyl peroxide at 50 ◦C

Initiator
Experiment MMA (g) BPO (g) Concentration (wt%)

1 406.5 1.22 0.3
2 400.0 4.00 1.0
3 400.0 4.00 1.0
4 400.6 4.01 1.0
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Fig. 1.14. Optimal temperature profile for Case C as determined by Equation (1.63). Sim-
ulation profiles of fractional conversion and average molecular-weight properties employ-
ing the optimal temperature profile. The initial initiator concentration and resulting average
molecular-weight properties are reported in Table 1.8.

Table 1.10. Nominal parameters and confidence intervals obtained by least-squares parameter
estimation applied to experimental data. Two cases are considered: Case 1 without monomer
transfer (ktrm = 0.0), and Case 2 with monomer transfer (ktrm �= 0.0). Confidence intervals
are determined by Equation (1.61).

Parameters Case 1 Case 2 Units
f 0.11 0.066 —

±0.01 ±0.007
ktrm 0 1.2 ±0.3 [L mol−1 min−1]
ko

td × 10−9 2.0 2.0 [L mol−1 min−1]
±0.3 ±0.2

ko
tc 0 0 [L mol−1 min−1]
ko

p × 10−4 2.6 ±0.2 3.4 ±0.03 [L mol−1 min−1]
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and the correlation matrix

R =

�
�

1.00 −0.01 −0.61
−0.01 1.00 0.79
−0.61 0.79 1.00

�
� (1.82)

indicate some correlation between the estimated rate constant for propagation and the other
two kinetic parameters.

Fig. 1.15. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 2,
Experiment 1. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 1.

Fig. 1.16. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 2,
Experiment 2. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 2.

Figures 1.19–1.22 report the MWDs from experiments and simulated using the least-
squares parameter estimates for Case 1. The largest polymer chain length measured by using
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Fig. 1.17. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 2,
Experiment 3. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 3.

Fig. 1.18. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 2,
Experiment 4. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 4.

gel-permeation chromatography was ∼2 × 107 g mol−1. The number of simulated polymer
chain equations was 200,000 (Mw ≈ 20,000,000 g mol−1), which were distributed among 41
processors (1 master thread, 40 slave threads). The simulation times for each experiment are
reported in Table 1.11. Table 1.12 reports the experimental and simulated polydispersity and
average molecular-weights.

Although monomer transfer (Case 2) does not significantly affect conversion, it does af-
fect the average molecular-weights, M̄n and M̄w. The parameter estimates are similar to that
of Case 1, with the exception of ktrm (i.e. a nonzero value). Case 2 has smaller confidence in-
tervals for f , ko

td, and ko
p. Figures 1.23–1.26 compare the experimental and theoretical results

obtained using the objective function (1.53). Parameter estimates obtained for Case 2 provide
the best model fit to the experimental data, although the weight-average molecular weight,
M̄w, is not as good a fit as conversion and number-average molecular weight. The covariance
matrix is
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Table 1.11. Simulation times reported for free-radical bulk polymerization of methyl
methacrylate using parallel CVODE, Case 1

Experiment Time (s)

1 521
2, 3, 4 327

Fig. 1.19. Comparison of experimental (· · ·) and simulated (—) MWD from Case 1, Experi-
ment 1, for several time instants

Fig. 1.20. Comparison of experimental (· · ·) and simulated (—) MWD from Case 1, Experi-
ment 2, for several time instants
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Fig. 1.21. Comparison of experimental (· · ·) and simulated (—) MWD from Case 1, Experi-
ment 3, for several time instants

Fig. 1.22. Comparison of experimental (· · ·) and simulated (—) MWD from Case 1, Experi-
ment 4, for several time instants



32 E.J. Hukkanen, J.G. VanAntwerp and R.D. Braatz

Table 1.12. Experimental and simulation results (Case 1) for number-average molecular-
weight, weight-average molecular-weight, and polydispersity

Experiment 1 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

32 1.3×106 3.5×106 2.7 3.1×106 4.8×106 1.5
92 1.3×106 2.8×106 2.2 3.0×106 4.6×106 1.5
152 1.1×106 3.1×106 2.9 3.0×106 4.6×106 1.5

Experiment 2 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

20 7.6×105 2.5×106 3.3 1.7×106 2.7×106 1.6
60 8.6×105 2.4×106 2.8 1.7×106 2.5×106 1.5
100 1.1×106 4.2×106 3.8 1.7×106 2.5×106 1.5
140 9.2×105 3.0×106 3.2 1.6×106 2.5×106 1.5

Experiment 3 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

21 6.2×105 2.9×106 4.7 1.7×106 2.7×106 1.6
51 6.6×105 1.5×106 2.3 1.7×106 2.6×106 1.5
81 7.4×105 1.9×106 2.5 1.7×106 2.5×106 1.5
111 8.1×105 2.6×106 3.1 1.7×106 2.5×106 1.5

Experiment 4 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

29 8.8×105 3.5×106 4.0 1.7×106 2.6×106 1.6
59 8.9×105 2.8×106 3.1 1.7×106 2.5×106 1.5
89 9.2×105 3.2×106 3.5 1.7×106 2.5×106 1.5

Vθ =

�
�����

f ktrm ko
td ko

p

4.83 × 10−6 −1.96 × 10−4 1.34 × 105 −7.09 × 10−2

−1.96 × 10−4 1.12 × 10−2 −5.50 × 106 2.38
1.34 × 105 −5.50 × 106 3.78 × 1015 −1.71 × 109

−7.09 × 10−2 2.38 −1.71 × 109 1.10 × 104

�
�����

(1.83)

and the correlation matrix is

R =

�
���

1.00 −0.84 0.99 −0.31
−0.84 1.00 −0.84 0.21

0.99 −0.84 1.00 −0.27
−0.31 0.21 −0.27 1.00

�
��� (1.84)

The correlation matrix indicates that the kinetic parameters f , ktrm, and ko
td are highly cor-

related. In order to better address this correlation of kinetic parameters, optimal experimental
design [4] should be investigated.
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Fig. 1.23. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 3,
Experiment 1. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 1.

Fig. 1.24. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 3,
Experiment 2. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 2.

Figures 1.27–1.30 report the MWDs from experiments and simulated using the least-
squares parameter estimates for Case 2, where monomer transfer is incorporated into the
polymerization reaction mechanism. The simulation times for each experiment are reported
in Table 1.13. The average polymer properties, M̄n, M̄w, and PD, are reported in Table 1.14.

1.4 Discrepancies Between Theory and Experimental Results

Let us explore in more detail the differences between the monomer conversion and average
molecular-weights from experiments and the Case 1 model (Figures 1.15–1.18). The experi-
mental monomer conversion for Experiment 1 appears to oscillate about the model values. We
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Fig. 1.25. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 3,
Experiment 3. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 3.

Fig. 1.26. (a) Experimental (· · ·) and model prediction (—) conversion results for Case 3,
Experiment 4. (b) Experimental (×), (∗) and model prediction (—), (−−) results for number-
and weight-average molecular weight, respectively, for Experiment 4.

Table 1.13. Simulation times reported for free-radical bulk polymerization of methyl
methacrylate using parallel CVODE, Case 2

Experiment Time (s)

1 503
2, 3, 4 525
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Fig. 1.27. Comparison of experimental (· · ·) and simulated (—) MWD from Case 2, Experi-
ment 1, for several time instants

Fig. 1.28. Comparison of experimental (· · ·) and simulated (—) MWD from Case 2, Experi-
ment 2, for several time instants
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Fig. 1.29. Comparison of experimental (· · ·) and simulated (—) MWD from Case 2, Experi-
ment 3, for several time instants

Fig. 1.30. Comparison of experimental (· · ·) and simulated (—) MWD from Case 2, Experi-
ment 4, for several time instants
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Table 1.14. Experimental and simulation results (Case 2) for number-average molecular-
weight, weight-average molecular-weight, and polydispersity

Experiment 1 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

32 1.3×106 3.5×106 2.7 2.6×106 3.9×106 1.5
92 1.3×106 2.8×106 2.2 2.6×106 3.9×106 1.5
152 1.1×106 3.1×106 2.9 2.6×106 3.9×106 1.5

Experiment 2 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

20 7.6×105 2.5×106 3.3 1.8×106 2.7×106 1.5
60 8.6×105 2.4×106 2.8 1.8×106 2.7×106 1.5
100 1.1×106 4.2×106 3.8 1.8×106 2.7×106 1.5
140 9.2×105 3.0×106 3.2 1.8×106 2.7×106 1.5

Experiment 3 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

21 6.2×105 2.9×106 4.7 1.8×106 2.7×106 1.5
51 6.6×105 1.5×106 2.3 1.8×106 2.7×106 1.5
81 7.4×105 1.9×106 2.5 1.8×106 2.7×106 1.5
111 8.1×105 2.6×106 3.1 1.8×106 2.7×106 1.5

Experiment 4 M̄exp
n M̄exp

w M̄sim
n M̄sim

w

time (min) (g mol−1) (g mol−1) PDexp (g mol−1) (g mol−1) PDsim

29 8.8×105 3.5×106 4.0 1.8×106 2.7×106 1.5
59 8.9×105 2.8×106 3.1 1.8×106 2.7×106 1.5
89 9.2×105 3.2×106 3.5 1.8×106 2.7×106 1.5

could find no dynamics in the mechanistic model that would explain such an oscillation, and it
does not appear in the data for the other experiments. Three potential causes were considered:

• a slow drift in either temperature or monomer concentration that increased and decreased
in such a manner as to appear to be an oscillation,

• an oscillatory bias in the monomer concentration, and
• an oscillatory disturbance in the temperature.

The oscillation in Figure 1.15 certainly looks real enough, so potential causes #2 and #3 were
investigated. With many years of experience we had never seen an oscillatory bias from an
ATR-FTIR measurement, which makes potential cause #2 unlikely. Regarding #3, although
temperature was controlled within±0.2 ◦C, a low-magnitude oscillation in temperature within
those limits could lead to the observed oscillation in monomer concentration. The inlet hot wa-
ter flow to the jacket was heated by a resistive heater (not so commonly seen in the USA, but
quite common in hotel showers in some European countries) that used on-off control to regu-
late its output temperature. Further investigation determined that its outlet temperature, which
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was the inlet to the jacket of the reactor, did oscillate under certain conditions. This motivated
the replacement of the resistive heater with a steam-heated heat exchanger, which removed
temperature oscillations in future experiments (unfortunately, too late for the experiments re-
ported here).

Experiments 2–4 show up upward drift in monomer conversion that does not appear in the
model (Figures 1.16–1.18). We could not explain the drift in terms of the reaction mechanism,
and the drift is fairly reproducible for Experiments 2–4, suggesting that the drift is probably
associated with the sensor. Drift in the ATR-FTIR measurement of monomer conversion can-
not be ruled out since we have observed sensor drift in other ATR-FTIR studies, but such drifts
were almost always observed only after 2 h, not within the 2 h reported in Figures 1.16–1.18.
Further, ATR-FTIR drifts seen in other experiments have not been so reproducible. Our best
guess on the cause is associated with the large increase in viscosity of the polymer solution
that we observed between 50 and 100 min, which was measured by the increased torque on
the stirring bar. The ATR-FTIR probe measures the infrared spectrum of the thin liquid film
at its tip, and the liquid in this film will become less representative of the liquid in the rest
of the reactor as liquid becomes more viscous and sticks to the probe tip. Then Figures 1.16–
1.18 would report the monomer concentration next to the probe tip, with a small bias from the
monomer concentration in the rest of the polymerization reactor (which is over 99.999% of
the reactor volume).

There are no statistically significant temporal patterns in the deviations between the
average molecular-weights between experiments and model outputs in Figures 1.15–1.18.
The weight-average molecular-weight measurement appears to be quite noisy, and tends to
be larger than that computed from the Case 1 model. The experimental number-average
molecular-weight is much less noisy and is much better tracked by the model.

Although the simulated MWDs closely approximate the experimental MWDs in Case 1,
there are some differences. The experimental MWD has an extra bump off the main peak for
t = 152 min, whereas the simulated MWD is unimodal (see Figure 1.19c). As seen from
Table 1.12, the simulated polydispersities are smaller than the experimental values for all ex-
periments and the simulated number-average molecular-weights are larger for nearly all the
experiments. For experiments 2–4, the simulated MWD is more asymmetric than the experi-
mental MWD (Figures 1.20–1.22).

The model for Case 2 that includes monomer transfer results has average polymer prop-
erties similar to those of Case 1 that ignores monomer transfer, except for Experiment 1 in
which all of the average molecular-weights for Case 2 are much closer to the experimental
values. On average, the number-average molecular-weight for Case 2 are approximately 40%
more accurate than for Case 1, and the weight-average molecular-weight for Case 2 is a fac-
tor of 2 more accurate than for Case 2 (compare Tables 1.12 and 1.14). Recall from Table
1.9 that Experiment 1 was operated under much lower BPO and initiator concentration than
the other experiments, and that the MWD distribution from Experiment 1 (Figure 1.19) was
qualitatively different in shape than for the other experiments.

Based on the above comparisons, it might be tempting to reach the conclusion that
monomer transfer is important for the operating conditions for Experiment 1 and not important
for the other experiments. However, from this data it is not clear whether this is really true.
Recall that the model has many more experimental “outputs” to compare to, in the form of
the molecular-weight distribution. The difference in quality of the model predictions between
Cases 1 and 2 is not apparent when visually comparing the MWDs. Regardless of whether
monomer transfer is ignored (Case 1) or considered (Case 2) in the model, both models pro-
duce MWDs that are reasonably coincident with experimental MWDs for a wide range of
operating conditions and times. Subtle shifts in the MWD can have a dramatic effect on the
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moments of the distribution and the molecular-weights, as seen by comparing the MWDs in
Figures 1.19–1.30 with the values in Tables 1.12 and 1.14. The largest differences between the
simulated and experimental MWDs were for the MWD with the extra bump at t = 152 min
in Figures 1.19 and 1.27. Without repeating these experiments, it is not certain whether the
extra bump is an artifact due to a mistake made by the experimentalist, or a real effect of the
polymerization mechanism under those operating conditions. Often in industry, due to project
deadlines the engineer does not have the luxury of carrying out a more comprehensive study,
and the engineer must live with this ambiguity while moving on to the design or control stage.

The parameter sensitivity and estimation results indicate that Case 2 is the more accurate
approach to determine the kinetic parameters. The smaller confidence intervals indicate a bet-
ter estimate of the kinetic parameters. The next step of such a study would be to determine the
kinetics under nonisothermal conditions and at higher conversions. This would help determine
the functionality of the initiator efficiency, as well as the gel effect. An accurate estimate of
these parameters would lead to more accurate models of free-radical polymerization.

In summary, a systematic approach to parameter estimation has been presented for de-
termining kinetic parameters for the free-radical bulk polymerization of methyl methacrylate.
The monomer concentration was monitored using ATR-FTIR spectroscopy and chemometrics.
The average molecular-weights were determined by offline gel-permeation chromatography.
Parameter sensitivity analysis demonstrated that it is inaccurate to exclude monomer transfer
from free-radical polymerization models of MMA. Monomer transfer does not significantly
affect monomer conversion, but it does have a significant effect on the average molecular-
weights. The kinetic parameters were accurately determined using an objective function that
equally accounted for monomer conversion and average molecular-weight properties.
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Summary. To obtain maximal return from a mining operation it is important that the se-
quence of mining steps be carefully planned. In this chapter we show how this problem can
be converted into a closed-loop receding-horizon optimal control problem. Of particular inter-
est is the formulation of the associated optimization problem in the face of uncertainty, e.g.,
future ore prices. We show how one can formulate “open-loop”, “reactive” and “closed-loop”
policies to deal with price uncertainty. A “toy” example is presented to give insight into the
problem. Also, a realistic mine-planning exercise is briefly described to highlight discrepan-
cies between theory and practice.

Key words: Closed-loop control, mine planning, reactive control, receding horizon, scenario
generation, stochastic programming

2.1 Background

In this chapter we will be concerned with optimal open-cut mine planning. This is a quintessen-
tial example of a complex optimization problem in the face of uncertainty.

Considerable benefits can be obtained by careful planning of mining operations. Hence,
there has been a substantial research effort devoted to the topic of optimal mine planning, see
for example [1–3, 6–13, 32].

The essence of this problem is as follows: One has preliminary available data on the
location of an ore-body in a particular geological volume. Given the data, one would like to
know “where” and “when” to dig so as to optimize the “net present value”. A typical mining
operation can span 15 to 20 years or more and hence there is a temporal aspect to questions.
Also, the optimization needs to respect a host of constraints, e.g., mining capacity in each
year and slope constraints on the mine walls to avoid collapses. Finally, there are a number of
uncertainties, e.g., the location and extent of the ore body and, of course, one does not know
the future price that the ore will have.

When formulating solutions to optimization problems of the type described above, it is
helpful to distinguish between “open-loop”, “reactive” and “closed-loop” solutions. An open-
loop solution is the easiest to understand and solve. Here, one simply finds a single “control”
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sequence over the optimization horizon. Here, and in the following, we use the term “control”
to describe those variables that can be selected (at each time step) by the optimizer. Thus, in
the case of mining, we could define ujk(t) as the action of mining (or not) at location (xj , yk)
at time t. Then, {ujk(t)} becomes the “control variable”.

“Reactive” strategies are closely related to open-loop strategies. The key difference is that,
whereas in an open-loop strategy one applies the entire open-loop control sequence blindly,
in a reactive strategy one applies only the current control. Then, when new information (i.e.
the current ore price) arrives at the next time step, one does another open-loop plan beginning
from the current “state”. Again one implements only the first control step and so on.

“Closed-loop” strategies are quite different in the sense that, in these strategies, one takes
account of the fact that in the future additional information will become available. Thus,
closed-loop policies represent a mapping between the “information state” and the control. It
is well known that for a very special class of problems (e.g., linear-quadratic optimal control
problems) separation holds, i.e. the current control is not affected by the fact that, in the future,
additional information will become available. This is a remarkable result. Unfortunately, sepa-
ration does not hold in general. Thus, for general temporal closed-loop optimization problems,
such as the mine-planning case, one needs, in principle, to carry out a function optimization,
where the function maps the “information state” to the control.

The obvious problem with closed-loop optimization, as described above, is the need for
function optimization. Thus, in principle, one needs a different “control” for every possible
outcome of the uncertain variables. This is a formidable task. Indeed, even in the open-loop
case, typical optimization problems can be overwhelmingly complex. For example, in the
mine-planning problem one typically has thousands of variables per time step. Also, if one
has, say, 15 steps, then one can easily have 151000 variables to consider. This number is way
beyond comprehension and should be compared with 1080 that is the number of atoms in the
known universe. This is the well-known “curse of dimensionality” in temporal optimization.

Clearly one needs to make various simplifications to the problem if one is to have any hope
of solving it in a realistic time. Fortunately, by various “aggregation strategies” one can often
reduce the problem to an acceptable size. For example, in typical mining problems, various
strategies based on spatial quantization are used to simplify the problem. These strategies
have resulted in open-loop optimal mine planning becoming a feasible idea and, indeed, it is
frequently employed in practice.

One relatively recent idea, proposed by the current authors [17], is to also utilize nonuni-
form time quantization to simplify the calculations needed in open-loop planning. The basic
idea here is that, although the future cannot be ignored, it often has a diminishing impact on
the best control to use now. Based on this observation, one might conjecture that one will not
compromise performance too much if one quantizes time more coarsely in the distant future.
One then solves for the nonuniformly quantized “control” sequence and applies (or stores)
the first step. One then advances time by one step and repeats the procedure using a different
set of (nonuniformly) quantized times. This “rolling-horizon” approach allows one to build
a strategy with a small uniform time step by combining a sequence of moving nonuniformly
quantized problems. This idea has been adopted by industrial colleagues and used in realistic
mine-planning problems. Indeed, this has led to computational savings of the order of 10 : 1.
Consequently, one might believe that there is now scope to try more daring strategies, e.g.,
those based on some form of closed-loop planning.

The latter strategies have the potential to make the planning more “flexible” so that the
mine is better able to respond to future price variations.

An immediate stumbling block is that, as discussed above, one needs to essentially map
every possible realization of the uncertain variables into a different control sequence. Conse-
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quently, one is obviously limited to a small number of possible realizations. Indeed, for the
mining problem, it seems that only a handful (say 10 to 100) realizations could be contem-
plated.

Actually, the above problem has been long recognized in the planning literature, and there
exists a substantial volume of work on how one can choose a small, representative set of real-
izations of uncertain variables. This is often called the problem of “scenario generation” and
has been extensively discussed in the applied optimization literature including finance, man-
agement and statistics [5, 24, 25, 31, 34]. The problem is actually equivalent to approximating
a given continuous probability distribution by a discrete distribution having finite support of
given cardinality. In turn, this is a special type of quantization problem and it thus has links to
contemporary literature in signal processing.

2.2 Experiment Description

2.2.1 Formulation of Mine-planning Problem

To set the work in the current chapter in context, we will next give an outline of the mine-
planning problem. (Of course, real mine-planning problems involve a host of other practical
issues, e.g., processing capacity, stockpiling, etc., not covered here.) The basic idea of open-
cut mining can be visualized in Figure 2.1, which shows the ultimate pit of a typical mine,
that is, the opening left in the ground after mining operations have been completed. (Actually
this particular mine will be used as the basis of the discussion of discrepancies between theory
and experiments in Section 2.4.) For simplicity of exposition, we represent the potential mine
by the “box” shown in Figure 2.2, where the “surface” is divided into (J + 1) × (K + 1)
rectangles.

Fig. 2.1. Illustration of a typical mine ultimate pit



46 C.R. Rojas, G.C. Goodwin, M.M. Seron and M. Zhang

z

x

y

Fig. 2.2. Simplified representation of the mine

2.2.2 State-space Model of the Mine

So that we can utilize control-theory insights, we next cast the mine-planning problem in the
form of a control problem. Accordingly, we define the mine state as the set of pit depths at
the locations of the surface. We represent the evolution of this state via a linear, discrete-time
dynamic model where mining action is the control input. Specifically, we denote by xjk(t)
the mine depth at location jk at time t. Similarly, we denote by ujk(t) the action to mine (or
not) at time t in the location jk, j ∈ {0, . . . , J}, k ∈ {0, . . . , K}. We thus think of ujk(t) as
an (J + 1) × (K + 1) input vector. A state model for the system can then be written as

xjk(t+ 1) = xjk(t) + b1ujk(t); t ∈ N0

xjk(0) = 0; j ∈ {0, . . . , J}, k ∈ {0, . . . ,K}
(2.1)

where b1 is a constant that reflects the effect of one unit of mining action.

2.2.3 Constraints

Mining operations are subject to a number of constraints including constraints on the order
that material can be mined, slope constraints, mining capacity, etc., see for example [1–3, 6–
13, 30, 32]. In the state-space formulation presented in Section 2.2.2, these constraints can be
incorporated in a natural way.

For example, note that ujk(t) can take either the value 1 or 0 indicating the action of
mining or not at location jk at time t. Thus, ujk(t) is non-negative and the model (2.1) readily
ensures that the mine depth cannot decrease at any location. Also, slope constraints on the
mining depth can be directly incorporated by means of state constraints of the form

|x�n(t) − xjk(t)| ≤ b2; t ∈ N0, |�− j| = 1, |n− k| = 1 (2.2)

The mining-capacity constraint can be easily handled by imposing an input constraint
such that only a certain number of ujk(t) can be nonzero at any t. Other constraints, such
as processing-plant constraints, can also be modeled by introducing functions to model ore
content. Finally, the state-space formulation presented here can be extended to more com-
plex situations, such as multiple processing plants with variable capacities, multiple material
stockpiles, variable material price, etc.
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2.2.4 The Cost Function Representing Net Present Value

The value of the body of ore at different locations is typically obtained by preliminary drilling
work. Using this information one can construct a value function Vjk(xjk) that represents
the value assigned to the material in location jk at depth xjk. We also introduce a time-
discounting function dt to yield the net present value and assume that the price of ore at time
t is ct. The cost function to use for mine planning, representing the net present value achieved
by a given mining strategy over a planning horizon T , then takes the form

J :=

T�

t=1

J�

j=1

K�

k=1

dtct Vjk(xjk(t))ujk(t− 1) (2.3)

Note that we multiply by ujk(t − 1) in Equation (2.3) since the value in the ore is only
liberated when it is mined.

2.2.5 Introduction of Uncertainty

The formulation described so far assumes that all quantities are known into the future. To
illustrate the impact of uncertainty on the mine-planning problem, we assume that the only
uncertain variable is ct, the price of the ore at time t.

The simplest possible model for the ore price is as a deterministic sequence {ct}. For
example, if we take copper as an illustration, then the price has been falling in real terms (i.e.,
when expressed in 2006 dollars). However, this falling trend has also been accompanied by
random fluctuations and shocks. Thus, there is a strongly uncertain component in the planning
description.

We will illustrate the nature of this uncertainty by examining copper price.
We will consider data normalized by the Consumer Price Index (CPI) conversion factor in

the USA, that is, in terms of a fixed buying power for a unit of currency (USD). Typical data
is shown in Figure 2.3 (USA copper data from 1967 to 2002) normalized by the CPI.

We see from Figure 2.3 that there has been a general trend downwards (exponential curve
in the figure) with some added stochastic behavior including some key “shocks” at some points
in time. It will be convenient for data-fitting purposes to first remove the deterministic trend
by fitting an exponential and then subtracting it. The detrended data is shown in Figure 2.4.

It would be relatively easy to give a stochastic description for the data given in Fig-
ure 2.4. Indeed, there are a number of standard models used in mine-planning applications.
These include mean-reverting models, etc. (see, for example, [22]). Note, however, that these
models contain real-valued random variables. These models are useful for generating Monte
Carlo simulations but are unsuitable for use in closed-loop mine planning due to the cardi-
nality of the uncertainty description. Indeed, as we have already remarked, the mine-planning
problem is barely computationally feasible even if all variables are considered deterministic
and known. Hence, attempting function optimization with real-valued random variables for
ore price would be absolutely out of the question. Thus, this represents an interesting the-
ory/practice gap. Consequently, in practice we are forced to model the uncertain variables by
a random variable having a discrete distribution. Indeed, the cardinality of the support of the
distribution must be very small to make the problem computationally feasible. Thus, we must
carefully choose a “representative” set of scenarios to describe the uncertain variables for the
purpose of closed-loop planning. Further information on scenario generation is obtained in
[15, 18–20, 23, 26–28]. Note that these methods have an additional complexity beyond that
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Fig. 2.3. USA copper price (normalized by the CPI) and its exponential trend
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Fig. 2.4. Copper price after removing exponential trend

normally encountered in system identification [16], since the cardinality of the possible real-
izations must be restricted. Assuming that the scenarios are ct(s) for s = 1, . . . , S, where t
denotes the time (in years), then the cost function for the sth scenario becomes

Js :=
T�

t=1

J�

j=1

K�

k=1

dtct(s)Vjk(xjk(t))ujk(t− 1) (2.4)
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In the following, we will describe methods for optimizing (the expected value of) cost
functions of the general form of Equation (2.4). We first take a short digression to outline, in
general terms, the key concepts underlying “open-loop”, “reactive” and “closed-loop” plan-
ning.

2.2.6 Open-loop and Reactive Planning

In “open-loop” planning one solves an optimization problem at the outset based on the ex-
pected value of future ore price. Specifically, this policy minimizes (subject to the relevant
constraints) the cost function

J OL :=

S�

s=1

psJs (2.5)

where Js, defined in Equation (2.4), is the cost associated with each scenario and ps denotes
the probability of the sth scenario. The resulting optimal mining strategy is a sequence of
mining actions over the planning horizon T . Note that this policy does not use the information
that future knowledge about price will be available, that is, that the current ore price will
actually become known at each time step.

In “reactive” planning one applies only the first mining action resulting from the open-
loop policy described above. At the next step one solves another open-loop problem over a
planning horizon of length T − 1 and “reacts” to the current value of ore price by using this
value for the first time step. The procedure is repeated at each time step in a “rolling-horizon”
fashion. Hence, although this policy uses the current value of ore price at each step, the fact
that future information about ore price will be available is not taken into account.

2.2.7 Closed-loop Planning

“Closed-loop” planning (sometimes called “with recourse” in the stochastic programming lit-
erature) takes advantage of the fact that, in the future, the price will be known. Such policies
involve a function optimization that links the information state to the control action.

A simple way of capturing the closed-loop planning idea is to allocate a separate control
strategy to each scenario. This idea is illustrated by Figure 2.5, where four different price
scenarios are considered. In this figure, price at stage 1 can only take the value c1 = v1; at
stage 2, price can take the value c2 = v2, with probability α, or c2 = v3, with probability
1 − α; at stage 3, if price at stage 2 was v2, then price can take either the value c3 = v4, with
conditional probability β, or c3 = v5, with conditional probability 1 − β; and similarly for
the values v6 and v7. The price scenarios are then defined by each of the four branches of the
scenario tree (for example, scenario 1 corresponds to c1 = v1, c2 = v2 and c3 = v4). In
principle, we think of using 4 separate mines, each corresponding to a separate price scenario.
Note that the scenarios have a tree like structure, i.e. c1(1) = c1(2) = c1(3) = c1(4), c2(1) =
c2(2) and c2(3) = c2(4). To bring all of the separated problems together, we note that we
should not use future price information until we actually reach that time. This can be captured
by ensuring that the mining strategies are nested (i.e. they share common components).

We now introduce four corresponding mining optimization problems with inputs ujk(t, s),
for s ∈ {1, 2, 3, 4}, where

• ujk(t, s) = 1 means we mine at time t at the location jk under price scenario s.
• ujk(t, s) = 0 means we do not mine at time t at the location jk under price scenario s.
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Stage 1 Stage 2 Stage 3

1v

2v

3v

4v

5v

6v

7v

1

1

1

Scenario 1

Scenario 2

Scenario 3

Scenario 4

1c 2c 3c

Fig. 2.5. An example of a scenario tree structure for closed-loop mine planning

Correspondingly, the state models satisfy, for s = 1, 2, 3, 4,

xjk(t+ 1, s) = xjk(t, s) + b1ujk(t, s); t ∈ N0

xjk(0, s) = 0; j ∈ {0, . . . , J}, k ∈ {0, . . . ,K} (2.6)

As outlined above, it is important that we do not use information about price until it
becomes available. This is captured by adding constraints that ensure that the mining strategies
are equal at each node of the price-scenario tree. For the example above, these constraints have
the form:

ujk(0, 1) = ujk(0, 2) = ujk(0, 3) = ujk(0, 4)

ujk(1, 1) = ujk(1, 2) (2.7)

ujk(1, 3) = ujk(1, 4); j ∈ {0, . . . , J}, k ∈ {0, . . . ,K}

2.3 Simulation Results

Real mine-planning problems are exceedingly complex and can take weeks to solve on high-
speed computers. Also, they are notoriously nonconvex. Hence, it is difficult to gain insights by
examining real problems since one readily becomes lost in details. Accordingly, we will take
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maxx

( )kx t

Fig. 2.6. A simplified mine-planning problem

a simplified “toy” example to gain insight into the structure of the various planning strategies.
We thus choose a (very) simplified mining example as depicted in Figure 2.6.

A vertical ore bar of length xmax − xmin is assumed to be located at a depth xmin in the
soil. Our goal is to extract this ore in an optimal fashion subject to constraints. In particular,
we assume that we can only extract a certain maximum amount of material per year, and that
wall-slope constraints must be satisfied. We also assume that all extracted ore is immediately
sold at the current ore price, which varies in a “random” way. Our goal is to maximize the net
present value of the total return. Without loss of generality, we include the discount factor in
the ore price.

We consider a two-dimensional version of the problem, where we are looking at a cross
section of the soil. Using time and space quantization, let xk(t) be the depth of the soil at a
distance k ∈ {0, . . . ,K} to the right of the bar, at a time t ∈ {0, . . . , T }, where T ∈ N is
the time-horizon length and K is the maximum distance of the bar to be considered. Notice
that, due to the symmetry of the problem, we need only consider positive values of k, since
the solution for k < 0 is necessarily the mirror reflection of the solution for k > 0.

The cost function to be maximized is

J := E

�
T�

t=1

ctµ(x0(t− 1), x0(t))

�
(2.8)

where µ is a (positive Borel) measure of the ore distribution and {ct}t∈{1,...,T} is the ore price
(considered as a stochastic process, to be specified later).

To simplify the problem further, we make the assumption that the bar has infinite length
and that its top lies at the soil surface, i.e. that
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xmin = 0

xmax = ∞ (2.9)

The cost function (2.8) can then be written as

J = E

�
T�

t=1

ct[x0(t) − x0(t− 1)]

�
(2.10)

The constraints for this problem are:

1. Initial condition

xk(0) = 0; for all k ∈ {0, . . . ,K} (2.11)

2. Maximum amount of material to be extracted per year

x0(t) − x0(t− 1) + xK(t) − xK(t− 1)

2
+

K−1�
k=1

[xk(t) − xk(t− 1)] ≤ C

2
;

for all t ∈ {1, . . . , T } (2.12)

where C ∈ R
+. The form of this constraint comes from a trapezoidal approximation to

the integral of the extracted material.
3. Non-negativity constraints

xk(t) ≥ xk(t− 1); for all k ∈ {0, . . . ,K}, t ∈ {1, . . . , T } (2.13)

4. Slope constraints

|xk−1(t) − xk(t)| ≤ 1; for all k ∈ {1, . . . ,K}, t ∈ {1, . . . , T } (2.14)

Notice that both the cost function and the constraints are linear in the decision variables.
Thus, the problem can be described as a stochastic linear program and, as we will see, it can
be solved by rewriting it as a deterministic linear program (thus avoiding having to state and
solve Bellman’s equation explicitly [4, 29]).

In the following, we will restrict our attention to a simple three-stage price model as shown
in Figure 2.5.

According to this scenario tree, we have that

P{c2 = v2} = α

P{c2 = v3} = 1 − α
P{c3 = v4|c2 = v2} = β

P{c3 = v5|c2 = v2} = 1 − β (2.15)

P{c3 = v6|c2 = v3} = γ

P{c3 = v7|c2 = v3} = 1 − γ

We next transform the above stochastic problem into a deterministic one by introducing a
new state sequence x′k(t, s), where k denotes spatial position, t denotes time (or stage) and s
denotes the scenario number. Thus, we have
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xk(1) = x′k(1, 1) = x′k(1, 2) = x′k(1, 3) = x′k(1, 4); k ∈ {0, . . . ,K} (2.16)

xk(2) =

�
x′k(2, 1) = x′k(2, 2), c2 = v2
x′k(2, 3) = x′k(2, 4), c2 = v3

k ∈ {0, . . . ,K} (2.17)

xk(3) =

����
���

x′k(3, 1), c3 = v4
x′k(3, 2), c3 = v5
x′k(3, 3), c3 = v6
x′k(3, 4), c3 = v7

k ∈ {0, . . . ,K} (2.18)

Then, the cost of the deterministic equivalent program can be written as

J = E{c1[x0(1) − x0(0)] + c2[x0(2) − x0(1)] + c3[x0(3) − x0(2)]}
= v1x

′
0(1, 1)

+ v2α[x′0(2, 1) − x′0(1, 1)] + v3(1 − α)[x′0(2, 3) − x′0(1, 1)] (2.19)

+ α
�
v4β[x′0(3, 1) − x′0(2, 1)] + v5(1 − β)[x′0(3, 2) − x′0(2, 1)]

�
+ (1 − α)

�
v6γ[x

′
0(3, 3) − x′0(2, 3)] + v7(1 − γ)[x′0(3, 4) − x′0(2, 3)]

�

The constraints for this program are

x′0(1, 1) + x′K(1, 1)

2
+

K−1�
k=1

x′k(1, 1) ≤ C

2
(2.20)

x′0(2, s) + x′K(2, s) − x′0(1, 1) − x′K(1, 1)

2
+

K−1�
k=1

[x′k(2, s) − x′k(1, 1)] ≤ C

2
;

s ∈ {1, 3}

x′0(3, s) + x′K(3, s) − x′0(2, s) − x′K(2, s)

2
+

K−1�
k=1

[x′k(3, s) − x′k(2, s)] ≤ C

2
;

s ∈ {1, 2, 3, 4}

x′k(1, 1) ≥ 0; k ∈ {0, . . . ,K}
x′k(t, s) − x′k(t− 1, s) ≥ 0; k ∈ {0, . . . ,K}, s ∈ {1, 2, 3, 4}, t ∈ {2, . . . , T }

(2.21)

|xk−1(t, s) − xk(t, s)| ≤ 1; k ∈ {1, . . . ,K}, s ∈ {1, 2, 3, 4}, t ∈ {1, . . . , T } (2.22)

The solution of this program gives the optimal (closed-loop) solution of the mine-planning
problem.

Alternatively, if we are interested in the reactive solution to this problem, we can achieve
this by adding extra constraints as follows:
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x′k(2, 1) = x′k(2, 3); k ∈ {0, . . . ,K}
x′k(3, 1) = x′k(3, 2) = x′k(3, 3) = x′k(3, 4); k ∈ {0, . . . ,K} (2.23)

The inclusion of these constraints gives us a deterministic linear program whose solution
provides x′k(1, 1) for k ∈ {0, . . . , K}, since they force a open-loop solution for stage 1.
Similarly, we can repeat for stage 2 by considering two problems depending on whether c2
takes the value v2 or v3.

We will examine several sets of pricing data.

(i) Pricing data #1
Here we letK = 40, C = 400 and assume

v1 = 0.5 α = 32/33

v2 = 0.1 β = 17/24

v3 = 10 γ = 17/24 (2.24)

v4 = 0.01

v5 = 0.25

v6 = 1

v7 = 25

Under these conditions, it turns out that the closed-loop and reactive policies coincide.
The solution for the first two stages is shown in Figure 2.7, and the solution for stage 3 is
shown in Figure 2.8.
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Fig. 2.7. First two stages of the solution to the three-stage mine planning problem, with para-
meters given by Equation (2.24)
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Fig. 2.8. Third stage of the solution to the three-stage mine planning problem, with parameters
given by Equation (2.24)

It may seem strange that the reactive and closed-loop policies are identical for this exam-
ple. However, this can be explained as follows:
We note that

c1 = v1 = 0.5 > 0.4 = E{c2}
E{c2} = 0.4 > 0.32 = E{c3} (2.25)

v2 = 0.1 > 0.08 = E{c3|c2 = v2}
v3 = 10 > 8 = E{c3|c2 = v3}

Thus, at every stage the ore price “tends” to decrease (in a mean sense), so common sense
tells us that the best strategy is to extract as much ore as possible as soon as one can in
order to maximize the return. Since this tendency is exhibited in both a conditional and
unconditional sense (with respect to the information available at the present time), the
optimality of this strategy does not depend on how much information we actually have at
a specific stage, and thus the closed-loop and reactive policies must coincide.
Notice that the coefficients of the cost function (2.19) are proportional to the differences
in the conditional means. On the other hand, if we introduce the constraints (2.23) in the
cost function (2.19), the coefficients of the resulting cost function are proportional to the
differences in the unconditional means. This observation supports the conclusions of the
previous paragraph.

(ii) Pricing data #2
The above discussion suggests the form that alternative pricing data would need to take
to ensure that reactive and closed-loop policies were different. For example, if we now let
K = 40, C = 100 and choose
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v1 = 0.41 α = 32/33

v2 = 0.1 β = 17/24

v3 = 10.5 γ = 7/12 (2.26)

v4 = 0.01

v5 = 0.25

v6 = 1

v7 = 25

we now have that

c1 = v1 = 0.41 > 0.40588 ≈ E{c2}
E{c2} ≈ 0.40588 > 0.40118 ≈ E{c3} (2.27)

v2 = 0.1 > 0.08 = E{c3|c2 = v2}
v3 = 10.5 < 11 = E{c3|c2 = v3}

This means that the ore price exhibits an “unconditional tendency” to decrease, but if
c2 = v3 = 10.5, c3 “conditionally” tends to increase. Thus, the information available at
stage 2 has the potential to be quite valuable when making a decision. The above line of
reasoning suggests that, in this case, closed-loop and reactive policies might differ. This
is indeed exactly what happens, as is shown in Figure 2.9.
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Fig. 2.9. Solution of the three-stage mine-planning problem for the parameters given in Equa-
tion (2.26). (a) Closed-loop solution. (b) Reactive solution. The third stage of the solution
given by both policies is the same as the one shown in Figure 2.8.

2.4 Discrepancy Between Theory and Experiments

2.4.1 Discussion of the Simple Example of Section 2.3

Whilst it may seem, at first sight, that closed-loop planning would offer substantial advantages,
the differences between closed-loop and reactive planning appear to be relatively modest for
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the mine-planning problem. Specifically, the costs obtained for the example of Section 2.3
when using the closed-loop and reactive policies are 14.37744 and 14.23304, respectively.
The difference may seem small (1%), but in the mine industry even a 1% improvement can
equate to tens of millions of dollars! This means that there may indeed be cases where it might
be worthwhile to obtain the closed-loop solution instead of just computing the reactive one.

Perhaps of more interest in this example, is the qualitative difference between the strate-
gies. Indeed, we see from Figure 2.9b, that the reactive policy simply tries to extract as much
ore as possible. On the other hand, the closed-loop policy (Figure 2.9a) makes preparations
for a possible future price increase by removing some waste material so that one can be in a
better position, at the next step, to exploit a potential price increase by then allowing more ore
to be extracted.

2.4.2 Some General Observations

Although it is difficult in general to know in advance whether there will be differences between
the three kinds of stochastic programming policies for a particular problem, we have seen
that for the above mine-planning example it is relatively simple to arrive at some necessary
conditions for the existence of discrepancies. In particular, there have to be discrepancies
between the signs of the differences of the conditional means and the signs of the differences
of the unconditional means.

Another interesting observation we can make from this example is that the number of
possible optimal solutions is essentially finite, in the sense that to achieve the optimal cost,
we only need consider a finite number of strategies. This follows from the fact that the mine-
planning problem is equivalent to a deterministic linear program, which has a finite number
of basic solutions [21, p. 20].

Moreover, from the sensitivity theory of linear programming [33, Chapter 7], we know
that small changes in the coefficients of the cost function of a linear program do not change
the optimal solution (except for a set of parameter values of Lebesgue measure zero), and the
optimal cost is a continuous function of those coefficients.

Since the coefficients of the cost function are directly related to the scenario tree, the above
line of reasoning implies that the solution of the mine-planning problem is “locally insensitive”
to changes in the scenario tree (at least assuming that its structure remains unchanged), but it
may suffer “global bifurcations”, since the solution may “jump” to other entirely different
solutions for other changes in the scenario tree. This behavior is evident in the difference
between the solutions to the problem described above under Pricing Data #1 and Pricing Data
#2.

The previous remark is quite interesting, since it implies that it is unhelpful to try to find
an “exact” scenario tree to represent the uncertainty in the ore price. On the other hand, it
can be very insightful to generate several scenario trees in order to study the robustness of the
obtained solution to changes in the ore price structure. (This idea can be contrasted with the
“contamination technique” developed in [14], which is aimed at studying the local sensitivity,
or stability, of the stochastic program.)

2.4.3 Application to a Real Mine-planning Problem

The work described in this chapter has been carried out in collaboration with personnel at
BHP Billiton Melbourne Technology Centre. They have tested the relative efficacy of the dif-
ferent policies on real problems. For simple ore geometries it turns out that reactive planning
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achieves near-optimal performance. However, for more complex geometries, greater differ-
ences between open-loop, reactive and closed-loop planning become apparent.

To illustrate the potential discrepancies between the theory and practice, we consider a real
mine-planning exercise (actually based on the mine illustrated in Figure 2.1). Three planning
methods were tested, namely,

• open-loop,
• reactive,
• perfect knowledge.

The latter policy cannot be carried out in practice since future prices are unknown. However,
it does provide an upper bound on the achievable closed-loop performance.

Table 2.1 tabulates the average NPVs obtained over 6 tests using the expected forward
price conditional on the current spot price (i.e. “present knowledge” or “open-loop” approach),
the reactive approach and perfect knowledge of future price. In each test, 25 equally likely
price realizations were generated using Monte Carlo simulations based on a log-normal mean
reverting price model.

Table 2.1. Average NPVs for different planning methods

Test No. p0 p̄ NPVConditional NPVReactive NPVPerfect

1 0.68 0.89 1622 1662 1685
2 0.89 0.68 1262 1287 1306
3 0.68 0.68 1180 1207 1231
4 0.25 0.45 303 358 370
5 0.35 0.35 185 246 256
6 0.45 0.25 164 197 206

The notation used in Table 2.1 is as follows:

• p0 [$/lb]: the current spot price at time 0;
• p̄ [$/lb]: the long-term equilibrium commodity price;
• NPVConditional [million $]: the average NPV obtained using the expected forward price

conditional on the current spot price;
• NPVReactive [million $]: the average NPV obtained using the reactive approach;
• NPVPerfect [million $]: the average NPV obtained assuming that the future price is

perfectly known prior to producing a mine plan.

Figures 2.10 and 2.11 show some plots of the results of Test 4 (where p0 = 0.25 and p̄ =
0.45). Figure 2.10 shows the NPVs obtained using the three planning methods for each price
scenario. Figures 2.11a and 2.11b show the histograms of the NPV for each price scenario
using the “present knowledge” approach and the “reactive” approach, respectively.

It can be seen from the above results that, for this particular mine, the reactive approach
yields approximately 10 % improvement over the open-loop approach. This strongly suggests
that reactive planning offers considerable benefits over open-loop planning. On the other hand,
perfect knowledge yields only a further 2.7 % improvement. Thus, for this particular mine the
gap between reactive planning and planning with perfect knowledge is quite small. Thus one
might anticipate that the improvements resulting from closed-loop planning could be small.
However, one should be careful to draw general conclusions from this simple example. Indeed,
as discussed in Section 2.4.2, there can be situations where closed-loop planning can offer
substantial qualitative and quantitative advantages over reactive planning.
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Fig. 2.10. NPV for each price scenario using three mining-project-evaluation methods

Fig. 2.11. Histograms of NPV for each price scenario using: (a) the method with expected
price conditional on the current spot price and, (b) the reactive approach
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2.4.4 Conclusions

This chapter has described the application of closed-loop stochastic optimal control to optimal
mine planning. Key ideas that have emerged are:

1. This is a quintessential example of a complex optimization problem.
2. There is a substantial theory/practice gap associated with this problem and, indeed, to

have the slightest hope of solving it, one needs to make major simplifications.
3. For certain ore geometries and problem parameters, there appears to be little practical

gain to be achieved by using closed-loop planning rather than reactive planning.
4. For alternative ore geometries and/or different problem parameters, closed-loop planning

can be beneficial.
5. Due to the enormous complexity of this problem, one needs to carefully choose a repre-

sentative set of scenarios for the uncertain variables.
6. The cardinality of the scenarios must be quite small to be able to solve the closed-loop

planning problem in practice.
7. Real mine-planning problems involve a host of complexities not touched on here.
8. The ideas presented here undoubtedly have relevance to other complex planning problems

outside of the mining sphere.
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Summary. This chapter presents an application of advanced control techniques on a copper
smelter. The main objective of the control strategy is to keep the gas-circuit pressure at its
desired value while achieving energy saving. Another objective of the control strategy is to
reduce the risk of emissions. This chapter describes the design and implementation of the
gas-circuit control.

The design phase includes an identification procedure. This is a multivariable process
where a thorough analysis is needed for input-output matching. The identification phase in-
cluded the determination of the best input-output pairing.

The control strategy has been devised taking into account not only system performance
but also implementation issues. The designed controller runs on a distributed control system
(DCS) using the available single-loop blocks and is able to perform a predictive control strat-
egy with feedforward action using existing PID and lead-lag blocks.

3.1 Background

Advanced control techniques are normally used with two main objectives in mind: to reduce
the manpower required to operate the system and to make it more efficient by allowing it
to work closer to the optimal operating modes. model predictive control (MPC) is one of
the most popular advanced control techniques. MPC formulation integrates optimal control,
stochastic control, control of processes with dead time, multivariable control and future refer-
ences when available. Another advantage of MPC is that because of the finite control horizon
used, constraints and, in general nonlinear processes that are frequently found in industry, can
be handled [3]. In many cases advanced control techniques are applied on processes already
controlled by existing supervisory control and data acquisition (SCADA) systems. In these
cases, the new control techniques have to be implemented on existing equipment with small
requirements in terms of quality of data required for model tuning, computation capabilities
and plant operators retraining. Furthermore, in these cases, the success of the control technique
is not measured by its dynamic response but by economic gains obtained from an increase of
the production and/or quality and savings in the use of resources such as energy, raw material
or manpower.
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This chapter describes an application where the ideas described above are illustrated. The
main goal was to design a control scheme for the gas circuit of a copper smelter having in mind
all the limitations described above. The process requires to move high masses of gas pumped
by compressors with high energy consumptions. At the same time, because of environmental
reasons the operating pressure has to be kept below the ambient pressure.

The current status and future trends in the automation of mineral and metal processing is
reviewed in [5]. A survey of issues related to copper pyrometallurgical practice is presented in
[7] and some maintenance aspects in copper smelters are mainly considered in [9]. Although
there are not many reports about automatic control in copper smelters, some improvements
related to control of copper converters such as the diagnosis system are presented in [1]. The
relevance in terms of benefits obtained from the use of predictive controllers are discussed in
this chapter and can be compared with those of [10].

3.1.1 Plant Description

Atlantic Copper Smelter facilities in Huelva (Spain) include a Flash Furnace and four Pierce–
Smith converters, two of them blowing simultaneously. The three currents of gases generated
in these processes are mixed in the mixing chamber (MC) and sent to three acid plants operat-
ing in parallel. Figure 3.1 shows an overview of the plant, whose annual production is around
three hundred thousand tons of copper.

Fig. 3.1. General view of the copper smelter
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The flash furnace and converters are controlled by means of a DCS (DCS); the acid plants
are controlled by a SCADA-PLCs type system not connected to the DCS. Figure 3.2 shows
the main components of the plant.

Fig. 3.2. Block diagram of the plant showing the main process variables and manipulated
variables (thick arrows)

Taking into account that the converters operate on a batch mode, while those of the flash
furnace and acid plants are continuous, extremely high disturbances both in flow and SO2 con-
centration occur at the acid plants inlet due to the converters operating schedule. The existing
control strategy, based on independent single-loop PID controllers, was not able to cope with
those disturbances. Therefore, pressure-control performance was poor throughout the whole
offgas system. Problems such as coupling between loops or limit cycles appear periodically,
spreading these oscillations to the whole offgas system. This scenario brings about the follow-
ing problems:

• The causes of the oscillations are extremely difficult to detect.
• No clock synchronization is possible, so there are considerable uncertainties when trying

to measure cause–effect delays (uncertainties even as to deciding which is the cause and
which is the effect).

• Extremely high operator supervisory effort, operating in manual about some 75 % of the
time.

• No room for further process optimization.

The objective of the control strategy is to maintain the gas pressure in the mixing cham-
ber at a desired value, always below ambient pressure in order to avoid gas losses to the at-
mosphere. The main problem is that the controller cannot act on the incoming gas (upstream),
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since it comes form the plant’s furnaces, but only on the gas flows that leave the chamber and
enter into the sulfuric acid processing plants (downstream). This means that the upstream gas
condition cannot be used as the manipulated variable but must be considered as a disturbance.
These conditions must be measured in order to provide crucial information to the controller,
which must anticipate its action to the change in upstream conditions. Since the influence of
these measurable disturbances on the process output is high, the proposed control strategy is
based on anticipative control.

The objective of this work was to increase pressure-control performance along the whole
offgas system. Mixing-chamber pressure control error was chosen as the symptom for measur-
ing purposes, due to its high sensitivity to oscillations in any process involved. The operator
supervisory effort for keeping the pressure controlled should also be reduced. The variable se-
lected for measuring this effort is the percentage of time the system is operating in automatic
mode. The indicator that the control objective is fulfilled will be energy savings, measured as
the total gas compressor power consumption.

3.2 Experiment Description

Models of the mixing-chamber pressure (ypcm) have been obtained using data from tests car-
ried out at the smelter. Two methods have been used: the reaction-curve fitting and least-
squares identification to obtain first-order plus dead-time models. The models obtained from
these approaches are compared later with data coming from new tests.

During the tests the plant is stabilized around an operation point and all input variables are
kept as steady as possible in open loop except for the one that receives a step change in order
to measure its influence on the pressure ypcm. This is the only way to proceed since there are
no sensors that would provide separately the contribution of each input on the output. This
fact will not cause problems for the identification procedure as long as the experimentation is
carried out with enough care to prevent the system receiving changes other than the step in the
selected input. It will be shown later that this is easier said than done.

Proceeding in this way it is possible to obtain a submodel relating the change in the output
variable ypcm with changes in the input variable for each one of the possible inputs. Table 3.1
shows a list of the input variables and Figure 3.4 shows the global model obtained adding up
the contributions of the different submodels.

The submodels are autoregressive but their contributions are not measurable. Therefore a
difficulty arises when the global model is used. To work around this problem the submodels
are used in simulation, using their own past outputs as inputs for future predictions that are
added up to obtain ŷpcm, then the global error e = ypcm − ŷpcm is used to correct the future
predictions.

3.2.1 Data

A good part of the modeling effort was devoted to perform the test at the plant that would
supply data for identification. It has been pointed out previously that the test was carried out
in open-loop mode in order to facilitate the identification. Also, the test had to be performed
during normal operation of the plant in order to provide significative data. With great care
some data was finally gathered during periods in which open-loop operation was possible
with just one variable changing (significatively) at a time. As an example, Figure 3.3 shows
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Fig. 3.3. Evolution of the pressure in the mixing chamber due to changes in the input variables
during a typical test

the evolution of the pressure in the mixing chamber due to changes in the input variables
during a typical test.

Filtering and removal of outliers was also necessary and did take more effort than previ-
ously thought.

3.2.2 Variables

The variable of interest is the pressure in the mixing chamber ypcm, and its evolution is influ-
enced by others that are divided in two groups: control signals and disturbances. In Table 3.1
a brief description of the considered variables is given.

3.2.3 Identification

According to the block diagram in Figure 3.4, the output is viewed as the sum of contributions
vi due to input signals ui with i ∈ {1, 2, 3, 4, 5, 6} and of contributions wj due to measurable
disturbances pj , with j ∈ {1, 2, 4, 5}. For each input signal ui and disturbance pj a submodel
will be calculated relating the input variable with its contribution to the output ypcm.

The models considered are discrete-time transfer functions in the Z-transform. The trans-
fer function that relates V i(z) with U i(z) will be denoted as Gi(z) = P i(z)/Qi(z). Simi-
larly, Hj(z) = Rj(z)/Sj(z) will stand for the transfer function relatingW j(z) with P j(z).
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Table 3.1. List of variables considered for modeling

Name Code Description Units Type
ypcm 012 - y Pressure in mixing chamber mbar Output
qep1 009 - u1 Flow to plant 1 kN m3 h−1 Control
qep2 015 - u2 Flow to plant 2 kN m3 h−1 Control
qep3 013 - u3 Flow to plant 3 kN m3 h−1 Control
qdp1 059 - u4 Dilution flow to plant 1 N m3 h−1 Control
qdp2 064 - u5 Dilution flow to plant 2 N m3 h−1 Control
qdp3 065 - u6 Dilution flow to plant 3 N m3 h−1 Control
rahf 032 - p1 Reference for HF feeding Tons h−1 Measurable disturbance
vshf 004 - p2 Flow control valve for HF % Measurable disturbance
sohf 030 - p3 Fan speed in HF rpm Measurable disturbance
rso1 018 - p4 Reference for fan speed line 1 rpm Measurable disturbance
rso2 020 - p5 Reference for fan speed line 2 rpm Measurable disturbance

To keep things simple first-order plus dead-time models are considered. Then Gi(z) =

P i(z)/Qi(z) = biz−ri

/(1 − aiz−1) and Hj(z) = Rj(z)/Sj(z) = djz−sj

/(1 − cjz−1),
being ai, bi, cj and dj parameters to be estimated using data from the tests.

Fig. 3.4. Block diagram showing the different submodels

It is convenient to use an incremental model to calculate the predicted output ŷ using past
values of inputs and disturbances. To derive this model consider that

y(k) = y(k − 1) + 
y(k) + e(k) (3.1)

where e(k) is the sum of not measurable disturbances and noise and 
 = (1 − z−1) is the
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y(k) =
�

i


vi(k) +
�

j


wj(k) (3.2)

3.2.4 Parameter Estimation

During any of the tests, only an input variable is changed. For this reason the evolution ob-
served in the output is due to this variable and to e(k). This will allow the estimation of some
parameters in the following way:

Suppose that in a experiment only u∗ is changed, then


y(k) = 
v∗(k) + e(k) (3.3)

If e(k) has a random variation with zero mean, a least squares procedure can be used in


y(k) = a∗
y(k − 1) + b∗
u∗(k − r∗) (3.4)

to estimate the parameters a∗, b∗ and r∗ that produce a better adjustment of the model to the
observed output. This procedure has been used with data from the tests producing the results
presented in Table 3.2.

Table 3.2. Estimated parameters of the different submodels

Input
Signal

Model a b d

qep1 01 0.5000 –0.0300000 0
qep2 02 0.4100 –0.0300000 0
qep3 03 0.6036 –0.0041430 0
qdp1 04 0.5743 0.0000300 0
qdp2 05 0.6519 0.0000448 0
qdp3 06 0.4578 0.0000578 5
rahf 07 0.3520 0.0001680 4
vshf 08 0.6293 0.0317000 2
sohf 09 0.3131 0.0129000 1
rso1 10 0.4890 0.0044000 0
rso2 11 0.3586 0.0114000 0

Figure 3.5 shows the output of the plant ypcm and the one-step-ahead prediction calculated
by the model ym in a typical test.

In order to design the master controller the transfer function that relates the pressure in
the mixing chamber and the flow to plants 1 and 2 has to be identified. This transfer function
has been obtained as M(z) = KG1(z) + (1 −K)G2(z) since the flow ratio to plants 1 and
2 is fixed at the operational value ofKs, whose usual value isKs = 0.76.

3.2.5 Validation of Submodels

As a first test the one-step-ahead prediction error will be calculated with data used in the
identification of each submodel. The error of the prediction is calculated as

temporal increment operator. On the other hand, from the above definitions it is apparent that
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Fig. 3.5. The upper part shows the evolution of the output of the plant ypcm and the one-
step-ahead prediction calculated by the model ym during a typical test. The lower part is the
prediction error.

ŷ(k+ 1 | k) = y(k) +
ŷ(k+ 1 | k) = y(k) +
�

i


vi(k+ 1) +
�

j


wj(k+ 1) (3.5)

where y(k) is the output (ypcm) measured at sampling time k and ŷ(k+1 | k) is the prediction
done at that same instant for the output at the next sampling time k + 1.

Please note that the contributions of each submodel vi and wj are not measurable and
this implies that in expression (3.5) the values generated by the submodels have to be used. In
this situation the submodels are not predicting but simulating their outputs. In spite of this, the
global model is a prediction model because the value of y(k) is used to predict y(k + 1).

It has to be taken into account that for each test a global model has been used. By global
model we mean that the model contains all submodels.

3.2.6 Control

The models obtained in the previous section were used to develop a model-based control strat-
egy. The following considerations were taken into account in order to implement the selected
strategy:

• It should be easy to operate and to maintain (avoiding long training)
• It should be implemented using the existing control hardware, not requiring major invest-

ment in additional dedicated multivariable control systems.
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• It should be aimed at reducing the energy used.

Therefore, the designed control strategy runs on the existing DCS using standard pro-
gramming blocks, mainly PID single-loop regulators, lead-lag blocks for feedforward actions,
and blocks for simple mathematic calculations. The operating interface is very similar to the
existing one and the training period has been minimal.

As was mentioned above, the objective of the control strategy is to maintain the gas pres-
sure in the mixing chamber at a desired value, always under ambient pressure in order to avoid
gas losses to the atmosphere. In order to do so, set points of the downstream flow controller are
manipulated by the master controller. A good operation strategy can drastically reduce energy
expenses.

Description of the Control Strategy

The devised strategy is a two-level hierarchical control based on MPC [3, 6] and implemented
on the existing DCS using available single-loop routines and simple calculation modules. The
main loop is the mixing-chamber pressure control, that is performed as a generalized predic-
tive controller (GPC) [4] with feedforward action and the low-level control is composed of
slave controllers that are PIDs.

Since the upstream flow cannot be modified, the manipulated variable of the main loop is
the downstream flow, which is the gas flow sent to the acid plants. This flow must be shared
among the three acid plants, in a predetermined ratio. The main control loop (master) computes
this total flow to track the pressure set point, which is usually set into the band −4 to −2 mbar.
Notice that this value must always be kept below atmosphere pressure since higher values
could result in leakage of gas with a great concentration of SO2.

The gas circuit is composed of several compressors that must pump a large volume of
gas, demanding high energy consumption. If the system is not well controlled, fast and under-
damped control actions can make the energy demand reach undesirable. This happens because
in that case the pressure set point must be kept far from the limit in order to avoid undesirable
values and this is achieved by augmenting the depression using the compressors. If the control
actions are able to anticipate, the energy demand can be drastically reduced. This can be done
by the use of a predictive strategy that takes the disturbances into account.

The control strategy is composed of a master controller (predictive controller whose set
point is the desired pressure in the mixing chamber) with feedfoward action acting on the slave
controllers that regulate the gas flows to the acid plants. Figure 3.6 shows a block diagram of
the control strategy. The blocks labelled as FFi correspond to the feedforward (anticipative)
actions, as described in Section 3.2.6.

Apart from the normal operation, there also exists a safety mechanism that tracks the pres-
sure at the electrofilter located downstream of the scrubber. This pressure must be negative,
but cannot be too high (in absolute value) since a high negative pressure can seriously damage
the filter. In order to avoid this situation, an override action is added to the proposed strategy.
Another PI is used to control this variable, which has priority over the pressure in the MC
controller. This is a fast action that produces a quick response and it only acts in emergency
situations.

The gas coming from the chamber is diluted with fresh air before it enters acid plants 1
and 2. This is needed to keep the SO2 content of the inlet gas at each acid plant below the
designed maximum value. This is done by local dilution controllers that manipulate the flow
of fresh air into the incoming stream to the acid plants. The changes in the gas flow produced
by these local controllers act as disturbances to the pressure in the mixing chamber, since they
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Fig. 3.6. Block diagram showing the proposed control strategy

are in fact manipulating the flow downstream of the chamber and, therefore, disturbing the
pressure.

The following sections describe the two main parts of the control strategy: master con-
troller and feedforward blocks.

Master-controller Development

MPC has developed considerably over the last decades, both within the research control com-
munity and in industry. This success can be attributed to the fact that MPC is, perhaps, the
most general way of posing the process-control problem in the time domain. Although there
are many applications of MPC in industry [8], this technique has not yet reached the popu-
larity that its potential would suggest. One reason for this is that its implementation requires
some mathematical complexities that are not a problem in general for the research control
community, where mathematical packages are normally fully available, but that represent a
drawback for the use of the technique by control engineers in practice. This work shows how
the MPC concepts can be applied using the tools that are fully available in any commercial
control system.

In order to develop a predictive controller with low computational requirements, a first-
order plus dead-time model of the plant is used. This model is widely used in the process
industry since it can easily describe the dynamics of most plants by means of a static gain, a
time constant and a pure dead time:

G(s) =
K

1 + τs
e−τds
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When the dead time τd is an integer multiple of the sampling time T (τd = dT ), the
corresponding discrete transfer function has the form

G(z−1) =
bz−1

1 − az−1
z−d (3.6)

where discrete parameters a, b and d can easily be derived from the continuous parameters by
discretization of the continuous transfer function, resulting in the following expressions:

a = e−
T
τ b = K(1 − a) d =

τd
T

Using this discrete model, a predictive controller can be derived. One of the most popular
controllers of this family is GPC [4], which results in a linear control law that is easy to
implement once the controller parameters are known. The derivation of the GPC parameters
requires, however, some mathematical complexities such as recursively solving a Diophantine
equation, forming some matrices and then solving a set of linear equations. Although this is
not a problem for people in the research control community where mathematical packages
are normally available, it may be discouraging for practitioners used to much simpler ways of
implementing and tuning controllers. MPC can also be very difficult to implement using the
tools that are normally available in a commercial DCS. In order to overcome this problem, a
simple control law, similar to that of a simple PI, can be derived for first-order plus dead-time
models. This has been done for the mixing-chamber pressure, following the method presented
in [2] which is briefly described below.

The GPC algorithm consists of applying a control sequence that minimizes a multistage
cost function of the form:

J(N) =

d+N�

j=d+1

[ŷ(t+ j | t) − w(t+ j)]2 +
N�

j=1

λ[
u(t + j − 1)]2 (3.7)

where y(t + j | t) are the predictions of the plant output (controlled variable) along the
horizon, w(t+ j) are the future values of the reference trajectory (future set-point values) and

u(t+ j − 1) are the control action (manipulated variable) increments.

The computation of the control law involves an optimization performed online at every
sampling instant along the future horizon. Notice that this is an ambitious objective and there-
fore this controller needs a computational effort higher than that of a classical PID. However,
when constraints are not considered, a simple analytical solution can be found.

The cost function is minimized at every sampling time, giving rise to a control action that
is given by (see [4]):

u = (GT G + λI)−1GT (w − f)

where u is the vector of future control actions (whose first component is 
u(t)), G is a matrix
containing the step response coefficients, w is the vector of the future reference trajectory, f
is the free response of the plant and I is the identity matrix. Since G and f depend solely on
the plant parameters, the control law can be calculated in such a way that it can be computed
once the plant is known and the control weighting factor λ is chosen.

As shown in [2], the control increment 
u(t) can be rewritten as


u(t) = ly1ŷ(t+ d | t) + ly2ŷ(t+ d− 1 | t) + lrr(t) (3.8)

The coefficients ly1, ly2 and lr1 do not depend on the dead time d and are functions of a, b,
and λ. If the GPC is designed considering the plant to have a unit static gain, the coefficients
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in Equation (3.8) will only depend on λ (which is supposed to be fixed) and on the pole of the
plant that will change for the adaptive control case. Notice that by doing this, a normalized
weighting factor λ is used and it should be corrected for systems with different static gains.
The controller coefficients can be obtained by interpolating in a set of previously computed
values. Notice that this can be accomplished in this case because the controller coefficients
only depend on one parameter.

The predictor needed in the algorithm to calculate ŷ(t+d | t), ŷ(t+d−1 | t) is obtained
by applying Equation (3.9) sequentially for j = 1 − d · · · 0. Notice that it basically consists
of a model of the plant that is projected towards the future with the values of past inputs and
outputs, and it only requires straightforward computation.

ŷ(t+ d+ j | t) = (1 + a)ŷ(t+ d+ j − 1 | t) − aŷ(t+ d+ j − 2 | t)
+ b
 u(t+ j − 1) (3.9)

In the case of λ = 0.8 and for a control horizon of 15, the controller coefficients are given
by:

ly1 = −0.845 − 0.564
a

1.05 − a
ly2 = 0.128 + 0.459

a

1.045 − a (3.10)

lr = −ly1 − ly2

A general expression for these parameters when λ changes can be found in [3].
Notice that the control law (3.8) is similar to that provided by a simple proportional inte-

gral (PI) controller:
u(t) = u(t− 1) + q0e(t) + q1e(t− 1)

Taking into account that lr = −ly1 − ly2, Equation (3.8) can be rewritten as:

u(t) = u(t− 1) + ly1(ŷ(t+ d | t) − r(t)) + ly2(ŷ(t+ d− 1 | t) − r(t))

which corresponds to a PI with q0 = ly1 and q1 = ly2 that is fed with the “future” error
ŷ(t+d | t)−r(t) instead of the current one, e(t). This means that a MPC can be implemented
for this plant using the existing and roughly-tested PI routines available in existing control
system. This also facilitates its use by plant operators.

Notice that this can be programmed in any DCS using the basic “loop” function and a
simple calculation module that implements the prediction as given by Equation (3.9).

Then, the model obtained in the previous section is used to compute the GPC coefficients.
The identification procedure provides the following values for the discrete model that is used
by the GPC:

G(z) =
−0.017052z−1

1 − 0.42z−1

using Equation (3.10), the controller coefficients are given by:

ly1 = −1.2209
ly2 = 0.4364
lr = 0.7845

Notice that, since the static gain of the plant is not unitary, these values must be divided
by the static gain to get the real values to be used in the control law.
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As mentioned in Section 3.2.6 the output of the master controller is split between two
signals, which are used as set points to the flow controllers to the acid plants. The split ratio
Ks is computed based on the pumping capacity of the feeding circuits to the plants.

Feedforward Action

There are many disturbances acting on the plant that can be measured and therefore they can
be integrated in the control strategy, being added to the control action computed by the master
controller, as shown in Figure 3.6. After the identification of all measurable disturbances in
Section 3.2, the variables that are measured to compute the feedfoward actions are:

• Flash furnace: this is the main source of disturbance affecting the pressure. Three variables
related to this furnace are considered: the flow of raw material, the gas-blower speed and
the draft-valve position.

• Exhaust gas fans of lines 1 and 2: The converters batch operating schedule give rise to big
changes in the gas flow that enters the mixing-chamber

• Dilution air flow of plants 1, 2 and 3: the local controllers that control the composition of
the inlet gas of the acid plants influence the gas flow and consequently the pressure in the
MC.

• Gas flow inlet plant 2: this flow is not controlled by the master (as happens with plant 1
and 3).

The computation of the feedforward action is independent of the master controller, and is
calculated with the objective of canceling the disturbance effect. In this way, if the trans-
fer function of the disturbance d is Gd and that of the plant is G, a block with transfer
function Gff can be included such that the effect of the new block on the plant output,
Gff (s)G(s)D(s), cancels the effect of the disturbance Gd(s)D(s)

Therefore

Gff (s) = −Gd(s)

G(s)
(3.11)

Under the assumption of linearity, the effect of each disturbance can be addressed inde-
pendently, so nine feedforward blocks can be calculated and grouped into a compound signal
that is added to the master’s output (see Figure 3.6). The parameters of the nine feedforward
blocks are computed using the models obtained in Section 3.2.

Implementation

The devised control strategy runs on a Foxboro I/A Distributed Control System using available
routines. This makes production and maintenance personnel training almost unnecessary, since
they are used to managing PIDs, lead-lags and algebraic blocks. They can easily accept the
new control strategy since there are no abrupt changes in the way of operating the plant.

The coefficients of the master PI controller are obtained by translating the discrete values
of q0 and q1 to the continuous ones (gain and integral time) with a sampling time of 2 s using
the Tustin approach.

Since first-order plus delay models are used to describe the plant and the disturbances,
and using Equation (3.11) the structure of each of the nine feedforward blocks is given by:

Gff (s) = −Kd(1 + τs)

K(1 + τds)
e−(dtd−dt)s = K

s+ c

s+ p
e−ds (3.12)



76 Carlos Bordons, Manuel R. Arahal, Eduardo F. Camacho, and José M. Tejera

whereK, τ and dt are the parameters of the plant andKd, τd and dtd those of the disturbance.
It is seen that each feedforward loop gives rise to a transfer function with a static gain K, a
zero c, a pole p and a pure delay d, which can be implemented using a lead-lag with a pure
delay.

The parameters of the nine feedforward blocks were obtained based on the models devel-
oped in Section 3.2 and an onsite fine tuning. They had to be translated to the lead-lag block
of the DCS, which has the form:

y(t) + LTime
dy(t)

dt
= x(t) + LTime × LGain

dx(t)

dt
(3.13)

with x(t) the input signal and y(t) the output signal. Parameter LTime is equivalent to the pole
and LTime × LGain is equivalent to the zero of Equation (3.12). The parameters are shown in
Table 3.3 (times are in minutes).

Table 3.3. Parameters of the lead-lag blocks

Block Input Lead-lag gain Lead-lag time Gain Delay
1 Flash furnace raw material flow 3.2400 0.00319 –0.0035 0.1333
2 Gas-blower speed flash furnace 2.3380 0.0529 0.5703 0.53
3 Draft-valve flash furnace 1.8535 0.0720 –1.1402 0.0666
4 Fan-speed set-point Line 1 1.3470 0.1062 –0.1584 0
5 Fan-speed set-point Line 2 1.0350 0.1437 –0.2576 0
6 Dilution air-flow plant 1 2.1285 0.0601 –0.0009 0
7 Dilution air-flow plant 3 2.7110 0.0427 –0.0014 0.1666
8 Dilution air-flow plant 2 1.7405 0.0779 –0.0017 0
9 Gas flow inlet plant 2 2.9500 0.0374 0.6780 0

On the other hand, slave PIDs were experimentally tuned using the reaction curve method.
Once the starting values were taken from the Ziegler–Nichols rules, fine tuning was performed
with the help of operator experience.

The operator’s display is very simple, see Figure 3.7. The main screen shows the most
important disturbances acting on the system, the effect of the feedforward action, the master
controller, the slave controllers and the dilution controllers. It also shows the override safety
controller. The feedforward parameters of Table 3.3 can be updated by the maintenance op-
erators through the graphical interface. Production operators are allowed to cancel or resume
any feedforward block if necessary, for instance in case of instrument failure or misreading.

3.3 Results

This section shows the results of applying the proposed strategy to the plant. First, some
operation results are shown and later the economic profit is quantified.

3.3.1 Operational Results

As has been depicted throughout the chapter, the main control objective is to keep the pressure
in the mixing chamber below a threshold value in spite of the several disturbances that may
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 �

Fig. 3.7. Operator’s display

appear in the process. The following figures describe the evolution of the controlled variable
as well as the control action and main disturbances in several situations.

In order to show the disturbance rejection capabilities of the control strategy, Figure 3.8
shows how both the predictive controller and the feedforward actions make the pressure track
the desired set point during normal operation, when several disturbances appear due to the
changes in the operating regimes of the flash furnace and converters (lines 1 and 2) and the
changes in the dilution of the acid plants. The computed control action is the set point to the
slave controllers that track the desired value of the gas flow to plants 1 and 3. As described, the
value computed by the pressure master controller is split between both flow slave controller
using a specified ratio Ks that takes into account the capacity of each gas circuit. The figure
shows the feedforward action (thin line) as well as the total control action.

One of the main sources of disturbance is the flash furnace, whose operating point can
change very rapidly, with step changes in raw material feeding of 10 tons/h. This produces
an abrupt change in the gases generated in the furnace, which clearly disturbs the pressure in
the mixing chamber. This is reduced by the feedforward action as shown in Figure 3.9, which
shows pressure (upper graph), total control action including feedforward (middle graph) and
the set point of the feed controller, which is the disturbance (lower graph).

A similar source of disturbance is the load of the converters in the line upstream of the
chamber. Changes in the state of the converters (blowing or not blowing) give rise to changes in
the outlet gas flow of the converter, which can be measured and, consequently, an anticipative
action can be taken (see Figure 3.10 for changes in line 1).

Another example of the feedforward action is given in Figure 3.11, when changes in two
variables (gas flow in line 2 and air flow in the dilution loop of plant 1) appear during normal
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Fig. 3.8. Disturbance rejection. Pressure and control action (the thin line is the feedforward
action).

operation. The flow of gas in line 2 changes during all the experiment, while the dilution air
disturbance takes place between samples 900 and 1200.

The changes in the total gas flow produced by the dilution controllers are also disturbances
to the pressure in the mixing chamber. Figure 3.12 shows how the feedforward action is able
to reject the disturbance in the dilution flow of plant 3, which happens around sample 470.

One important element of the control strategy is the electrofilter safety control. As was
mentioned before, the electrofilter pressure controller overrides the master controller in order
to avoid low pressures. Figure 3.13 shows the behavior of this safety controller when pres-
sure reaches the operator threshold (−47.5 mbar) at sample number 337 (lower graph). At
this moment, the electrofilter controller overrides the master controller in order to relieve the
pressure off the filter, until this pressure reaches a safe value (sample 927). The figure shows
that this situation is repeated at sample 1347 until the end of the experiment. Notice that when
the safety controller is ON, the master controller for the mixing chamber is OFF and therefore
that pressure is out of control and might reach undesirable values (see upper graph). This only
happens in particular situations.

3.3.2 Energy Savings

The economic profit resulting from the implementation of the control strategy comes from the
fact that the system is now operating in automatic mode most of the time. This is achieved
thanks to a good pressure control in the mixing chamber that takes all disturbances into ac-
count and avoids operators setting the loops to manual (mainly the dilution controllers). Table
3.4 depicts the situation prior to the implementation of the control strategy and shows that
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Fig. 3.9. Disturbance rejection. Changes in flash-furnace feeding.

most of the time the dilution controllers were switched to manual mode in order to avoid
disturbances to the main pressure controller. When in manual mode the dilution valves are
normally wide open and consequently consuming more energy than necessary. After a reli-
able control strategy is implemented, both pressure and dilution control can work in automatic
mode, allowing the dilution blowers to consume only the necessary energy to fulfil the desired
objective, as shown in Table 3.5

Another source of energy saving comes from the strategy that splits the signal generated
by the master controller and is sent to the slave flow controllers of the acid plants. The three
acid plants are different in terms of maximum gas flowrate and in maximum gas SO2 con-
centration. Besides, they have different systems for flowrate regulation: Plant 2 by means of
inlet guide vanes; and plants 1 and 3 by means of main compressor motor-speed regulation
(VFD). For these reasons, it is not easy to decide on the best solution for splitting the total
flowrate into the three acid plants. Due to its regulation system, plant 2 is left open and the rest
is split between plants 1 and 3. A model was developed in order to evaluate the total energy
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Fig. 3.10. Disturbance rejection. Changes in Line 1 feeding.
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Fig. 3.11. Disturbance rejection. Changes in Line 2 feeding and air flow of dilution plant 1.
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Table 3.4. Percentage of time at each operating mode before the implementation of the pro-
posed strategy

Draft →
Dilution ↓ Automatic Manual Total

Automatic 27 % 8 % 35 %
Manual 55 % 10 % 65 %

Total 82 % 18 % 100 %

Table 3.5. Percentage of time at each operating mode after the implementation of the proposed
strategy

Draft →
Dilution ↓ Automatic Manual Total

Automatic 84 % 0 % 84 %
Manual 15 % 1 % 16 %

Total 99 % 1 % 100 %

consumption in different scenarios under varied splitting strategies, in order to select the most
economic splitting strategy, taking into account real plant conditions that can vary over time.
The splitting constant Ks varies in the range 0.75 − 0.85 and two tools have been developed
to find the best value:

• Operator’s tool: This is a display on the DCS that informs the operator in real time about
which actions should be taken in order to operate at minimum energy cost.

• Plant manager tool: This is a MS Excel tool that captures real plant data, adjusts the
economic calculations based on real plant conditions and gives advice for adjusting the
flowrate splitting factor. The tool informs on the economic impact of the suggested adjust-
ments.

The quantification of the benefits of the control strategy is shown in Figure 3.14. The bar
graph shows the evolution of the energy consumption (mainly due to the compressor motors
using to blow the gases). This consumption is specific, that is, corresponds to total energy
divided by production, and therefore takes changes in production into account. Baseline cor-
responds to the average consumption of the six months previous to the implementation of the
new control strategy.

It can be seen that the average is 4.22 %, reaching monthly values of even more than
5 % of reduction. This corresponds to a yearly saving of more that 1900 MWh, which is a
considerable figure.

The following results have been achieved:

• Control performance: The standard deviation of the mixing-chamber pressure control has
been reduced from 0.94 to 0.66 mm water column.

• Operator supervisory effort: The percentage of time operating in auto mode has been
raised from 27 % to 84 %.

• Energy savings: The total electricity consumption of the three acid plants main gas com-
pressors has been significantly reduced to 95.5 % of previous values. This implies slightly
more than a 3 % reduction in the total acid plants electricity consumption.
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Fig. 3.14. Electrical consumption reduction

3.4 Discrepancies between Theory and Practice

The first discrepancies were found when developing control models. Although there was abun-
dant data from every-day operations, it was very difficult to use this data for model identifi-
cation. Data had to be analyzed and interpreted before it could be used for identification or
model validation. There were signal excursions with no apparent cause that had to be inves-
tigated. The typical open-loop step-response tests that in theory seem so simple to perform,
were extremely difficult to implement in practice. You have to keep the system stable in an
open-loop mode and this is very difficult with a system with so many disturbances.

The second source of discrepancy between theory and practice was the complexity al-
lowed in practice. The new control scheme had to be implemented over the existing equip-
ment and the allowed complexity for the controller was limited. Classical control blocks had
to be used. However, this approach had some obvious advantages such as lower cost, less
commissioning time and less operator training requirements.

The third source of discrepancies came from the way in which the control objectives
are considered. While in academia, the success of a controller is measured by its dynamic
response, the main objective in practice is related to economic gains obtained from an increase
in the production and/or quality savings and the use of resources such as energy, raw material
or manpower. Although the two objectives are related, researchers rarely analyze the economic
implications of advanced control applications.

Finally, consideration of the human factor. This is of paramount importance in practice.
The need for training operators, or the level of knowledge required by them is seldom analyzed
in academia. Furthermore, operators need to understand how the control equipment works in
order to trust it. Otherwise, as soon as something strange occurs in the plant, the operators will
switch to manual because they will not understand how the controller operates. The percentage
of time a system works in automatic mode is a measure of the success of a control application
that is seldom taken into consideration in control theory.



3 Energy Saving in a Copper Smelter by means of Model Predictive Control 85

References

[1] Bergh, L., Chacana, P., Achurra, G., and Delgado, P. (2002). Improvements in the control
of the injection system of copper concentrate in teniente converters. Minerals Engineer-
ing 15, 369–372.

[2] Bordons, C. and Camacho, E. (1998). Generalized Predictive Controller for a Wide Class
of Industrial Process. IEEE Transaction on Control Systems Technology 6(3), 372–387.

[3] Camacho, E. and Bordons, C. (2004). Model Predictive Control in the Process Industry.
Second Edition. Springer-Verlag, London.

[4] Clarke, D., Mohtadi, C., and Tuffs, P. (1987). Generalized Predictive Control. Part I. The
Basic Algorithm. Automatica 23(2), 137–148.

[5] Jämsä-Jounela, S. (2001). Current status and future trends in the automation of mineral
and metal processing. Control Engineering Practice 9(9), 1019–1024.

[6] Maciejowski, J. (2001). Predictive Control with Constraints. Prentice Hall, Harlow.
ISBN 0-201-39823-0.

[7] Moskalyk, R. and Alfantazi, A. (2003). Review of copper pyrometallurgical practice:
today and tomorrow. Minerals Engineering 16, 893–919.

[8] Qin, S. and Badgwell, T. (2001). A survey of industrial model predictive control tech-
noloy. Control Engineering Practice 11, 733–764.

[9] Richet, D., Cotaina, N., Gabriel, M., and O’Reilly, K. (1995). Application of reliability
centred maintenance in the foundry sector. Control Engineering Practice Issue 3, 1029–
1034.

[10] Tenno, R. and Jämsä-Jounela, S.-L. (1996). Copper flotation profit and control-system
accuracy. Control Engineering Practice 4, 1545–1551.



4

On Hybrid Model Predictive Control of Sewer
Networks

Carlos Ocampo-Martinez1, Alberto Bemporad2, Ari Ingimundarson1 , and Vicenç Puig
Cayuela1

1 Sistemes Avançats de Control, ESAII, Universitat Politècnica de Catalunya (UPC), Rbla.
Sant Nebridi 10, Terrassa, 08222 Barcelona, Spain.
{carlos.ocampo,ari.ingimundarson,vicenc.puig}@upc.edu

2 Department of Information Engineering, University of Siena, Via Roma 56, I-53100 Siena,
Italy. bemporad@dii.unisi.it

Summary. Real-time control (RTC) of sewer-network systems plays an important role in
meeting increasingly restrictive environmental regulations to reduce release of untreated
wastewater to the environment. This chapter presents the application of hybrid model pre-
dictive control (HMPC) on sewer systems. It is known from the literature that HMPC has a
computational complexity growing exponentially with the size of the system to be controlled.
However, the average solution time of modern mixed integer program (MIP) solvers is often
much better than the predicted worst-case-solution time. The problem is to know when the
worst-case computational complexity appears. In addition to presenting the application, a sec-
ondary aim of the chapter is to discuss the limits of applicability due to real-time constraints
on computation time when HMPC is applied on large-scale systems such as sewer networks.
By using a case study of a portion of the Barcelona sewer system, it is demonstrated how the
computational complexity of HMPC appears for certain state and disturbance combinations.

4.1 Background

4.1.1 Introduction

Real-time control of sewer-network systems plays an important role in meeting increasingly
restrictive environmental regulations to reduce release of untreated wastewater or combined
sewage overflow (CSO) to the environment. Reduction of CSO often requires major in-
vestments in infrastructure within city limits and thus any improvement in efficient use of
existing infrastructure, for example by improved control, is of interest. The advantage of
sewer-network control has been demonstrated by a number of studies in the last decades,
see [22, 34, 41, 42].

Extensive research has been carried out on real-time control of urban drainage systems.
Comprehensive reviews that include a discussion of some existing implementations are given
in [43] and references cited therein, while practical issues are discussed by [44], among others.
The common idea is the use of optimization techniques to improve the system performance.
Common control objectives are to try to avoid street flooding, prevent CSO discharges to the
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environment, minimize the pollution, uniform utilization of the sewer-system storage capacity
and, in most of cases, minimize the operating costs [21, 45, 46, 52]. The multivariable and
large-scale nature of sewer networks has led to the use of some variants of model predictive
control (MPC), as control strategies.

In order to apply MPC on a sewer system, a model able to predict its future states over a
prediction horizon taking into account a rain forecast is needed. Sewer networks are systems
with complex dynamics since water flows through sewers in open channel. Their dynamics
are described by Saint-Vennant’s partial differential equations that can be used to perform
simulation studies but are highly complex to solve in real time.

Several control-oriented modeling techniques have been presented in the literature that
deal with sewer systems, see [19, 34]. In [17, 39], a conceptual linear model based on assum-
ing that a set of sewers in a catchment can be considered as a virtual tank or reservoir, has
been used. The main reason to use a linear model is to preserve the convexity of the MPC
optimization problem. A similar approach can be found in an early reference on MPC applied
on sewer systems [22].

There exist, however, several inherent phenomena (overflows in sewers and tanks) and ele-
ments (weirs) in the system that result in distinct behavior depending on the state (flow/volume)
of the network. These behaviors can not be neglected nor can they be modeled by a pure linear
model. Instead, they require to be modeled using nonlinear functions depending on logical
conditions [34]. This leads to the use of modeling methodologies that allow the inclusion of
both continuous and discrete dynamics. The continuous dynamic part is typically associated
with physical first principles while the discrete dynamic part comes from logic conditions
that establish commutations of operational mode depending on internal system variables. This
mixture of logical conditions and continuous dynamics gives rise to a hybrid system.

4.1.2 Hybrid Systems and Mixed Logical Dynamical Systems

The hybrid systems considered in this chapter are mixed logical dynamical (MLD) systems,
introduced in [7]. MLD systems have recently been shown to be equivalent to other represen-
tations of hybrid systems such as linear complementarity (LC) systems, min-max-plus scaling
(MMPS) systems and piecewise affine (PWA) systems, among others, under mild conditions,
see [25]. By considering hybrid dynamical systems in discrete time a number of mathematical
problems (like Zeno behavior, see [2], [26]) are avoided and allows models to be derived for
which tractable analysis and optimal/predictive control techniques exist.

MLD systems are described by linear dynamic equations subject to linear mixed-integer
inequalities, i.e. inequalities involving both continuous and binary (or logical, or 0–1) vari-
ables. These include physical/discrete states, continuous/integer inputs, and continuous/binary
auxiliary variables. The general MLD form is [7]:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (4.1a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (4.1b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (4.1c)

The meaning of the variables is the following:

• x are the continuous and binary states:

x =

�
xc

x�

�
, xc ∈ R

nc , x� ∈ {0, 1}n� (4.2)
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• y are the continuous and binary outputs:

y =

�
yc

y�

�
, yc ∈ R

pc , y� ∈ {0, 1}p� (4.3)

• u are the continuous and binary inputs:

u =

�
uc

u�

�
, uc ∈ R

mc , u� ∈ {0, 1}m� (4.4)

• Auxiliary binary variables: δ ∈ {0, 1}r�

• Auxiliary continuous variables: z ∈ Rrc .

Notice that by removing Equation (4.1c) and by setting δ and z to zero, Equations (4.1a)
and (4.1b) reduce to an unconstrained linear discrete-time system. The variables δ and z are
introduced when translating logic propositions into linear inequalities. All constraints are sum-
marized in the inequality (4.1c).

The transformation of certain hybrid system descriptions into the MLD form requires the
application of a set of given rules. To avoid the tedious procedure of deriving the MLD form
by hand, a compiler was developed in [51] to automatically generate the matrices A, Bi, C,
Di and Ei in Equation (4.1) through the specification language HYSDEL (HYbrid System
DEscription Language).

4.1.3 MPC and Hybrid Systems

Different methods for the analysis and design of hybrid control systems have been proposed
in the literature during the last few years [7], [13], [31]. One of the most studied techniques
involves optimal control and related variants such as hybrid MPC (HMPC). The formulation
of the optimization problem in hybrid MPC follows the approach in standard linear MPC
design; see [32]. The desired performance variables are expressed as affine functions of the
control variables, initial states and known disturbances. However, due to the Boolean auxiliary
variables present, the resulting optimization problem is a mixed integer quadratic or linear
program (MIQP or MILP, respectively). The control law obtained in this way is also referred
to as mixed integer predictive control.

In general, the HMPC structure is defined by the following optimal control problem. As-
sume that the hybrid system output should track a reference signal yr and xr, ur , zr are
desired references for the states, inputs and auxiliary variables, respectively. For a fixed pre-
diction horizon Hp, the sequences

xk = {x(1|k), x(2|k), . . . , x(Hp|k)}
∆k = {δ(0|k), δ(1|k), . . . , δ(Hp − 1|k)}
zk = {z(0|k), z(1|k), . . . , z(Hp − 1|k)}

(4.5)

are generated applying the input sequence uk = {u(0), u(1), . . . , u(Hp − 1)} to system
(4.1) from initial state x(0|k) � x(k), where x(k) is the measurement of the current state.

Hence, using the previous concepts, the HMPC optimal control problem is defined as:
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min
uk,∆k,zk

J (uk,∆k, zk, x(k)) � ‖Qxf (x(Hp|k) − xf )‖p

+

Hp−1�

i=1

‖Qx (x(i|k) − xr)‖p +

Hp−1�

i=0

‖Qu (u(i) − ur)‖p

+

Hp−1�

i=0

‖Qz (z(i|k) − zr)‖p +

Hp−1�

i=0

‖Qy (y(i|k) − yr)‖p (4.6a)

s. t.

��������
�������

x(0|k) = x(k),
xf = xr(Hp|k),

x(i+ 1|k) = Ax(i|k) +B1u(i) +B2δ(i|k) +B3z(i|k),
y(i|k) = Cx(i|k) +D1u(i) +D2δ(i|k) +D3z(i|k),

E2δ(i|k) + E3z(i|k) ≤ E1u(i) +E4x(i|k) +E5,
for i = 0, 1, · · · , Hp − 1

(4.6b)

where J(·) is the cost function and xf corresponds to the final desired value for the state
variable overHp. p is related to the selected cost norm (i.e. 1-norm, Euclidean or infinity).

Assuming that the HMPC problem (4.6) is feasible for x(k), there exists an optimal solu-
tion given by the sequence

u∗
k = {u∗(0), u∗(1), · · · , u∗(Hp − 1)}

Then, the receding horizon control philosophy sets [15], [32]

uMPC(x(k)) � u∗(0) (4.7)

and disregards the computed inputs u∗(1) to u∗(Hp − 1). The whole process is repeated at
the following time step. Equation (4.7) is known in the MPC literature as the MPC control
law. The equality constraint related to the final state within the HMPC problem (4.6) can be
relaxed so that x(Hp|k) is only required to belong to a terminal constraint set XT , [28].

Thus, the HMPC problem (4.6) is defined by a cost function J in Equation (4.6a), which
is given by the problem control objectives, and by a set of constraints in Equation (4.6b).

4.2 Hybrid Modeling and Control of Sewage Systems

4.2.1 Mathematical Modeling Principles

The water flow in sewer pipes is open channel. Open-channel flow is the flow of a certain
fluid in a channel in which the fluid shares a free surface with an empty space above. The
Saint-Venant equations3, based on physical principles of mass conservation and energy, allow
the accurate description of the open-channel flow in sewer pipes [36]. These equations are
expressed as:

3 Adhémar Jean Claude Barré de Saint-Venant (1797–1886) was a mechanician who de-
veloped the one-dimensional unsteady open-channel flow equations for shallow water or
Saint-Venant equations that are a fundamental set of equations in modern hydraulic engi-
neering.
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Fig. 4.1. Sewer network modeling by means of virtual tanks

∂q(x, t)

∂x
+
∂A(x, t)

∂t
= 0 (4.8)

∂q(x, t)

∂t
+
∂

∂x

�
q(x, t)2

A(x, t)

�
+ gA(x, t)

∂L(x, t)

∂x
− gA(x, t) (I0 − If ) = 0 (4.9)

where q(x, t) is the flow (m3 s−1), A(x, t) is the cross-sectional area of the pipe (m2), t is the
time variable (s), x is the spatial variable measured in the direction of the sewage flow (m),
g is the gravity (m s−2), I0 is the sewer-pipe slope (dimensionless), If is the friction slope
(dimensionless) and L(x, t) is the water level inside the sewer pipe (m). This pair of partial-
differential equations constitutes a nonlinear hyperbolic system. For an arbitrary geometry of
the sewer pipe these equations lack an analytical solution. Notice that these equations describe
the system behavior in great detail. However, such a level of detail is not useful for real-time
control implementation due to the complexity of obtaining the solution of Equations (4.8) and
(4.9) and the associated high computational cost.

Alternatively, several modeling techniques have been presented in the literature that deal
with real-time sewer system control, see [19], [21], [33], [34], among many others. The mod-
eling approach used in this chapter is close to the approach presented in [22]. Here, the sewer
system is divided into catchments that are treated as virtual tanks (see Figure 4.1). At any
given time, the stored volumes represent the amount of water inside the sewer pipes associ-
ated with the tank and are calculated on the basis of the rainfall of the catchment area of the
tank and flow exchanges between other interconnected virtual tanks. The volume is calculated
through the mass balance of the stored volume, the inflows and the outflow of the tank and the
input rain intensity. The mentioned mass balance can be written as the difference equation

vi(k + 1) = vi(k) +∆tϕiSiPi(k) +∆t
�
qin

i (k) − qout
i (k)

�
(4.10)

where ϕi is the ground absorption coefficient of the ith tank catchment, S is the surface area
of the ith tank catchment, ∆t is the time interval between measurements and P is the rain
intensity corresponding to the ith tank catchment in ∆t time units. qin

i (k) and qout
i (k) are the
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Fig. 4.2. Components for a basic scheme of a sewer network

sum of inflows and outflows, respectively. Real retention tanks are modeled in the same way
but without the precipitation term.

The tanks (either, real or virtual) are connected with flow paths or links that corresponds
to the main sewage pipes between the tanks. Figure 4.2 gives an idea of the interrelation
between different components of a very simple sewer network using the proposed modeling
methodology. The tank outflows are generally assumed to be a function of the tank volume.
For the current application a linear relation has been assumed, that is,

qout
i (k) = βivi(k) (4.11)

where βi (given in s−1) is defined as the volume/flow conversion coefficient as suggested in
[48].

The manipulated variables of the system, denoted as qui , are related to the outflows from
the tanks. In the case of a real tank, a retention gate is present to control the outflow. Virtual
tank outflows can not be closed but can be redirected with redirection gates (RG). The redirec-
tion gates divert the flow from a nominal flow path that the flow follows if the redirection gate
is closed. This nominal flow is denoted as Qi in the equation below, which expresses mass
conservation at the redirection gate:

qout
i (k) = Qi(k) +

�

j

qj
ui

(k) (4.12)
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where j is an index over all manipulated flows coming from the redirection gate. The flow
path that Qi represents is assumed to have a certain capacity and when this capacity reaches
its limits, an overflow situation occurs. This flow limit will be denoted Qi. When Qi reaches
its capacity, two cases are considered: first, the water starts to flow on the streets, causing
an overflow situation and secondly, it exits the sewer network and is considered lost to the
environment. In the first case, the overflow water either follows the nominal flow path and
ends up in the same tank asQi or it is diverted to another virtual tank. Flow to the environment
physically represents the situation when the sewage water ends up in a river or, in the case of
the Barcelona situation, in the Mediterranean sea.

When using this modeling approach where the inherent nonlinearities of the sewer net-
work are simplified by assuming that only flowrates are manipulated, physical restrictions
need to be included as constraints on system variables. For example, the manipulated vari-
ables qj

ui
that determine the redirection of an outflow from a tank should never be larger than

the nominal outflow from the tank given by Equation (4.11). This is expressed with the fol-
lowing inequality �

j

qj
ui

(k) ≤ qout
i (k) (4.13)

Usually the range of actuation is also limited so that the manipulated variable has to fulfill
qj

ui
≤ qj

ui
(k) ≤ qj

ui
, where q

ui
denotes the lower limit of manipulated flow and qui

denotes

its upper limit. When qj

ui
equals zero, this constraint is convex. But, if the lower bound is

larger than zero, a constraint representing mass conservation has to be included in the range
limitation leading to the following nonconvex inequality:

min(qj

ui
, qout

i (k) −
�

t �=j

qt
ui

(k)) ≤ qj
ui

(k) ≤ qj
ui

(4.14)

The sum in the expression is calculated for all outflows related to tank i except j.
A further complication is that if the control signal is an inflow to a real tank that has hard

constraints on its capacity, then the situation can occur that this lower limit is also limited by
this maximum capacity and the outflow from the real tank. The limit on the range of real tanks
is expressed as

0 ≤ vi(k) ≤ vi (4.15)

where vi denotes the maximum volume capacity given in m3. As this constraint is physical, it
is impossible to send more water to a real tank than it can hold.

The virtual tanks do not have a physical limit on their capacity. When they rise above
a decided level an overflow situation occurs. This represents the case when the level in the
sewers has reached a limit so that an overflow situation can occur in the streets. Notice that in
practice, the difference between tank and link overflows is often small.

Model Calibration from Real Data

Real data from sensor measurements were used to estimate the parameters of the virtual tanks.
Level is measured in sewer pipes using ultrasonic limnimeters. Notice that the sewer level is
measured instead of the flow through the sewer. As these level sensors have no contact with the
water flow, problems due to incorrect measurements caused by sensor faults are avoided. From
these level measurements, the flow entering and exiting each virtual tank can be estimated
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assuming steady uniform flow using the Manning formula4 [36]:

q = vSw (4.16)

where Sw is the wetted surface that depends on the cross-sectional sewer area A and water
level L within the sewer. The dependence ofA and L on x and t are omitted for compactness.
Moreover, v is the water velocity computed according to the parameters relation

v =
Kn

n
R

2/3
h I

1/2
0 (4.17)

where Kn is a constant whose value depends of the measurement units used in the equation,
n is the Manning coefficient of roughness that depends of flow resistance offered by the sewer
pipe material, Rh is the hydraulic radius defined as the relation of the cross-sectional area of
flow and the wetted perimeter Pw as Rh = A/Pw, and I0 is the sewer slope. For a given
geometry of the sewer cross section, wetted perimeter and hydraulic radius can be expressed
in terms of the sewer level L. For instance, given a rectangular cross section of width b, the
wetted surface Sw is bL, the wetted perimeter Pw is b+ 2L and the hydraulic radius is given
by Rh = bL

b+2L
.

Rain intensity is measured using a tipping bucket rain gauge (see Figure 4.3). This gauge
technology uses two small buckets mounted on a fulcrum (balanced like a see-saw). The tiny
buckets are manufactured with tight tolerances to ensure that they hold an exact amount of
precipitation. The tipping bucket assembly is located above the rain sewer, which funnels the
precipitation to the buckets. As rainfall fills the tiny bucket, it becomes overbalanced and tips
down, emptying itself as the other bucket pivots into place for the next reading. The action
of each tipping event triggers a small switch that activates the electronic circuitry to transmit
the count to the indoor console, recording the event as 1.2 mm h−1 of rainfall. The number
of tipping events in 5 min (sampling time) is accumulated and multiplied by 1.2 mm h−1 in
order to obtain the rain intensity P in m s−1 at each sampling time, after the appropriate units
conversion.

Given rain intensities as well as limnimeter data, data series with Pi and input/output
flows can be determined. By combining Equations (4.10) and (4.11), the following input/ouput
equation in function of the flow in sewers and rain intensity in catchments can be obtained:

qout
i (k + 1) = aqout

i (k) + b1Pi(k) + b2q
in
i (k) (4.18)

where a = (1 − βi∆t), b1 = βi∆tϕiSi and b2 = βi∆t. Figure 4.4 represents this equation
and the interaction of all described parameters and measurements.

Equation (4.18) is linear in the parameters. This allows the parameters to be estimated
using classical parameter estimation methods based on least-squares algorithms [30]. Hence,
the parameter associated with the ground absorption coefficient is estimated as

ϕi =
b1
b2Si

(4.19)

and the volume/flow conversion coefficient is estimated as

βi =
b2
∆t

(4.20)

4 The Manning formula is an empirical formula for open-channel flow, or flow driven by
gravity. It was developed by the French engineer Robert Manning and proposed on 1891 in
the Transactions of the Institution of Civil Engineers (Ireland).
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Fig. 4.3. Rain measurement principle using a tipping-bucket rain-gauge
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Fig. 4.4. Scheme of an individual virtual tank and its parameters and measurements

for the ith catchment.
Ground absorption and volume/flow conversion coefficients can be estimated online at

each sampling time using Equation (4.18) and the recursive least-squares (RLS) algorithm
[30]. Once estimated, these parameters are supplied to the MPC controller in order to take
into account their time variation and neglected nonlinearities.

4.2.2 Hybrid Modeling of Sewer Systems

The presence of intense precipitation can cause some sewers to reach their limits of capacity.
When this happens, excess sewage that normally would have been collected in the sewer can
flow to other parts of the sewer system. In this way, as mentioned in Section 4.1, flow paths
appear that are not always present and depend on the system state and inputs.
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Fig. 4.5. Scheme of a virtual tank

This behavior and other particular hybrid phenomena of sewer systems that depend on
system state can be conveniently modeled using the discrete-time hybrid dynamical models
introduced in Section 4.1. In what follows it will be shown how some common elements of
sewer systems can be represented with these models. Specifically, the elements that will be
considered are virtual tanks, flow links and redirection gates. Other common sewer-system el-
ements such as pumping stations can be easily modeled within the hybrid modeling methodol-
ogy but will be omitted as they do not occur in the case study presented later. Hybrid dynamic
behavior in sensors such as rain gauges and limnimeters is also omitted.

Virtual Tanks (VT)

When the maximum volume v in virtual tanks is reached, the excess volume above this maxi-
mum amount is redirected to another tank within the network. This creates a new outflow from
the tank denoted with qd in Figure 4.5. This phenomenon can be expressed mathematically as:

qd(k) =

�
(v(k)−v)

∆t
if v(k) ≥ v

0 otherwise
(4.21a)

qout(k) =

�
βv if v(k) ≥ v
βv(k) otherwise

(4.21b)

where v(k) corresponds to the tank volume (system state), v is its maximum volume capacity,
∆t is the sampling time and β is a proportional factor between the volume and the outflow,
see [38]. The flow qd is referred to as virtual tank overflow. The difference equation for the
virtual tank is

v(k + 1) = v(k) + qin(k) − qout(k) − qd(k) (4.22)
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Redirection Gates (RG)

These type of elements within a sewer network are used to redirect flow at a certain point in the
network. An inflow qin is redirected to outflows qa and qb as shown in Figure 4.6. Two types
of redirection elements are considered. In the first type referred to as passive (also known as
weirs), the flow follows the path qa until a limit qa is reached. If qin is larger than qa then the
difference flows through qb. In the other type, flow qa can be manipulated within its physical
limits. The expressions for the first type of redirection gates are:

qa(k) =

�
qin(k) if qin ≤ qa

qa otherwise
(4.23a)

qb(k) = qin(k) − qa(k) (4.23b)

while in the second type, since the flow qa is manipulated, the flow only has to fulfill the
following restrictions:

0 ≤ qa(k) ≤ qin (4.24a)

qa(k) ≤ qa (4.24b)

qa(k) = qin(k) − qb(k) (4.24c)

Flow Links (FL)

The outflow from virtual tanks is assumed to be unlimited to guarantee a feasible solution.
The same thing applies to the outflow qb from the retention gate element. But, most often,
flow links between elements in the sewer network have limited flow capacity. The flow link
element serves to model this limited capacity. When the limit of flow capacity is exceeded, the
resulting overflow is possibly redirected to another element in the system or is considered lost
to the environment. The overflow is denoted qc in Figure 4.7. The equations for the flow link
are:
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qb(k) =

�
qb if qin > qb

qin(k) otherwise
(4.25a)

qc(k) =

�
qin(k) − qb if qin > qb

0 otherwise
(4.25b)

where qb is the maximum flow through qb and qin is the inflow to the flow link.

The Hybrid Sewer System Model

The total sewer system model is constructed by connecting the system inflows (rain) and out-
flows (sewer treatment plants or outflows to the environment) with the inflows and outflows
of the elements as well as connecting the elements themselves. The manipulated variables of
the system, denoted as qu, are the manipulated variables of each component as described be-
fore. The logical conditions presented to describe the dynamics of the sewer-system elements
can be translated into linear integer inequalities as described in [7]. The whole sewer network
expressed in MLD form can be written as:

v(k + 1) = Av(k) +B1qu(k) +B2δ(k) +B3z(k) +B4d(k) (4.26a)

y(k) = Cv(k) +D1qu(k) +D2δ(k) +D3z(k) +D4d(k) (4.26b)

E2δ(k) + E3z(k) ≤ E1qu(k) + E4v(k) +E5 +E6d(k) (4.26c)

where v ∈ R
nc
+ corresponds to the vector of tank volumes (states), qu ∈ R

mic
+ is the vector of

manipulated sewer flows (inputs), d ∈ Rmd
+ is the vector of rain measurements (disturbance),

logic vector δ ∈ {0, 1}r� collects the Boolean overflow conditions and vector z ∈ R
rc
+ is

associated with variables that appear depending on system states and inputs. Variables δ and
z are auxiliary variables associated with the MLD form. Equation (4.26c) collects the set of
element constraints as well as translations from logic propositions. Notice that this model is a
more general MLD than was presented in [7] due to the addition of the measured disturbances.

If it is assumed that the disturbances are described with a disturbance model d(k + 1) =
Add(k), the MLD (4.26) form could be rewritten as:
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v(k + 1) =

�
A B4

0 Ad

� �
v(k)
d(k)

�
+
�
B1 B2 B3

�
�
� qu(k)
δ(k)
z(k)

�
� (4.27a)

y(k) =
�
C Cd

� � v(k)
d(k)

�
+
�
D1 D2 D3

�
�
� qu(k)
δ(k)
z(k)

�
� (4.27b)

�
E2 E3

� � δ(k)
z(k)

�
≤
�
E4 E6

� � v(k)
d(k)

�
+
�
E1 E5

� � qu(k)
1

�
(4.27c)

The type of model to be used for disturbance d(k) in sewer-system control is, in gen-
eral, an open research topic. Different types of rain-prediction models can be used (statistical,
AR models, etc.) [49] or the rain precipitation can be measured and predicted more directly
(radars, meteorological satellites, etc.) [53]. Combinations of the two approaches have also
been presented. According to [16], when an optimal control law is used in the RTC of sewer
networks with a short prediction horizon, assuming that the rain is constant over the prediction
horizon results in a moderate performance loss compared to knowing exactly the rain over the
horizon. This confirmed similar results reported in [22]. For constant rain over the prediction
horizon, matrix Ad is set as the identity matrix of suitable dimensions.

4.2.3 The Hybrid Control Strategy

As discussed in the previous section, the proposed hybrid modeling methodology is very rich
and allows the straightforward treatment of hybrid phenomena such as overflow and flooding.
Morever, HMPC has been applied successfully to a variety of control problems in recent years
using several approaches, see [5], [14], [29], [47], [50],

among others. This section presents a description of the HMPC formulation applied on
sewer networks. The different aspects discussed here are presented considering the particular
case study but can be easily extrapolated to other sewage-system topologies. The concepts and
definitions of Section 4.1.3 are applied in this section in a straightforward manner but taking
into account the particular notation used for sewer networks.

Control Objectives

The sewer-system control problem has multiple objectives with varying priority, see [34].
There exist many types of objectives according to the system design. In general, the most
common objectives are related to the manipulation of the sewage in order to avoid undesired
sewage overflow on the streets of the city. Other kinds of objectives are, for instance, related
to the control energy, i.e. the energy cost of the regulation of the gate movements. According
to the literature of sewer networks, the main objectives for the case study of this chapter are
listed below in order of decreasing priority:

• Objective 1: minimize flooding in streets (virtual tank overflow).
• Objective 2: minimize flooding in links between virtual tanks.
• Objective 3: maximize sewage treatment.
• Objective 4: minimize control action.

A secondary purpose of the third objective is to reduce the volume in the tanks to anticipate
future rainstorms. This objective also indirectly reduces pollution to the environment. This
is because if the treatment plants are used optimally along with the storage capacity of the
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network, pollution lost to the environment should be at a minimum. It should be noted that in
practice the difference between the first two objectives is small. According to the hybrid model
for sewer networks proposed in Section 4.2.2, all overflows and flows to treatment plants are
defined by auxiliary variables z. However, as some of the performance objectives are sums of
system variables, it is convenient to define system outputs where these sums are calculated.

The Cost Function

Each control objective corresponds to one term in the cost function. Hence, the expression of
that function depends on its constitutive variables (auxiliary or output type). In general form,
the structure for the cost function in Equation (4.6a) has the form

J [(uk, v(k)] �
Hp−1�

i=0

‖Qz(z(i|k) − zr)‖p +

Hp−1�

i=0

‖Qy(y(i|k) − yr)‖p (4.28)

where Qz and Qy correspond to weight matrices of suitable dimensions and zr, yr are ref-
erence trajectories related to auxiliary and output variables, respectively. For the objectives 1
and 2, the references are zero flow. For the third objective, the references are the maximum
capacity of the associated sewage-treatment plants. Priorities are set by selecting matricesQz

and Qy. The norm p can be selected as p = 1, 2 or p = ∞. Notice that due to the fact that
all performance variables are positive, the case when p = 1 is actually a simple sum of the
performance variables.

4.2.4 Case-study Description

The Barcelona Sewer Network

The city of Barcelona has a combined sewage system of approximately 1697 km length with
a storage capacity of 3,038,622 m3. It is a unitary system, that is, it combines waste and
rainwater into the same sewers. It is worth noting that Barcelona has a population that is
approximately around 1,593,000 inhabitants in an area of 98 Km2, resulting in a very high
density of population. Additionally, the yearly rainfall is not very high (600 mm year−1), but
it includes heavy storms (arriving to 90 mm h−1) typical of the Mediterranean climate that
can cause a lot of flooding problems and CSO to the receiving waters.

Clavegueram de Barcelona, S.A. (CLABSA) is the company in charge of the sewer system
management in Barcelona. There has been a remote control system in operation since 1994
that includes, sensors, regulators, remote stations, communications and a control center in
CLABSA. Nowadays, for control purposes, the urban drainage system contains 21 pumping
stations, 36 gates, 10 valves and 8 detention tanks that are regulated in order to prevent flooding
and CSO. The remote control system is equipped with 56 remote stations including 23 rain-
gauges and 136 water-level sensors that provide real-time information about rainfall and water
levels into the sewer system. All this information is centralized at the CLABSA Control Center
through a supervisory control and data acquisition (SCADA) system. The regulated elements
(pumps, gates and detention tanks) are currently controlled locally, i.e. they are handled from
the remote control center according to the measurements of sensors connected only to the local
station.
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Barcelona Test Catchment

In this chapter, a representative portion of the Barcelona sewer system is studied. Figure 4.8
shows the catchment over a real map of Barcelona. A calibrated and validated model of the
system following the methodology explained in Section 4.2.1 is available as well as rain-gauge
data for an interval of several years.

Fig. 4.8. Test Catchment located over the Barcelona map (Courtesy of CLABSA)

The catchment has a surface of 22.6 km2 and includes typical elements of the larger
network. Due to its size, there is a spatial difference in the rain intensity between rain gauges.
The system is presented in Figure 4.10 using the virtual-reservoir methodology presented
in Section 4.2.1. The catchment area considered has 1 retention gate associated with 1 real
tank, 3 redirection gates, 11 subcatchments defining the same number of virtual tanks, several
limnimeters and a pair of links connected to the same number of treatment plants. Also there
are 5 rain-gauges in the catchment but some virtual tanks share the same rain sensor. The
difference between the rain inflows for virtual tanks that share a sensor lies in the surface area
A and the ground absorbtion coefficient ϕ. This results in a different amount of rain entering
to the virtual tank even though the rain intensity is the same. The real tank corresponds to the
Escola Industrial reservoir, which is located under a soccer field of the Industrial School of
Barcelona (see Figure 4.9). It has a rectangle geometry of 94 × 54 m with a medium depth of
7 m and a maximum water capacity of 35000 m3 [18].

The related system model has 12 state variables corresponding to the volumes in the 12
tanks (1 real, 11 virtual), 4 control inputs and 5 measured disturbances corresponding to the
measurements of rain intensity over the virtual tanks. Two wastewater-treatment plants can
be used to treat the sewer water before it is released to the environment. It is supposed that
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Fig. 4.9. Retention tank located at Escola Industrial de Barcelona

all states (virtual-tank volumes) are estimated by using the limnimeters shown with a capital
letter L in Figure 4.10. The flows to the environment as pollution, (q10M, q7M, q8M and q11M

to the Mediterranean sea and q12s to an other catchment) and the flows to the treatment plants
(Q7L and Q11B) are shown in the figure as well. Also appearing in the figure are the rain
intensities P13, P14, P16, P19 and P20. The 4 controlled flows, denoted as qui , i = 1 . . . 4,
have a maximum flow capacity of 9.1, 25.0, 7.0 and 29.3 m3 s−1, respectively.

Figures 4.11a and 4.11b present the comparison between real level (from real data) and
predicted level (using the model described in Section 4.2.1) corresponding to the output flows
of virtual tank T1 and T2, respectively. It can be noticed that the fit obtained with the proposed
modeling approach is satisfactory.

Tables 4.1 and 4.2 summarize the description of the case-study variables as well as the
value of the parameters obtained by calibrating the system model following the procedures
described in Section 4.2.1. In Table 4.1 (and also in Figure 4.10), Ti denotes the ith virtual
tank and T3 denotes the real tank. Moreover, vi denotes the maximum capacity of the ith tank
(virtual or real). ElementsR1 toR5 denote passive redirection gates. The maximum capacities
of the redirection gate flows as well as flow links are given in Table 4.2.

4.3 Simulation and Results

4.3.1 Rain Episodes

The rain episodes included in the case study are based on real rain-gauge data obtained within
the city of Barcelona on the given dates (day-month-year) as seen in Table 4.4. These episodes
were selected to represent the meteorological behavior of Barcelona. In Figure 4.12, the read-
ing of the rain gauges for one of the rain episodes is shown. The rain storm presented in this
figure caused severe flooding in the city area under study.
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Fig. 4.10. Scheme of the Barcelona sewer-network catchment

4.3.2 Results

The purpose of this section is to show the performance of hybrid MPC for realistic episodes of
rainstorms. The assumptions made for the implementation will be presented and their validity
discussed before the results are given.
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Fig. 4.11. Results of model calibration using the approach given in Section 4.2.1

The transformation of the hybrid system equations into the MLD form requires the appli-
cation of the set of given rules [7]. The higher-level language and associated compiler HYS-
DEL (see [51]) is used here to avoid the tedious procedure of deriving the MLD form by
hand. Given the MLD model, the controllers were designed and the scenarios simulated using
the Hybrid Toolbox for MATLAB� (see [4]). Moreover, ILOG CPLEX 9.1 has been used for
solving the MIP problems.
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Table 4.1. Parameter values related to the subcatchments within the case study

Tank S (m2) ϕi βi (s−1) vi (m3)

T1 323,576 1.03 7.1×10−4 16,901
T2 164,869 10.4 5.8×10−4 43,000
T3 5,076 – 2.0×10−4 35,000
T4 754,131 0.48 1.0×10−3 26,659
T5 489,892 1.93 1.2×10−4 27,854
T6 925,437 0.51 5.4×10−4 26,659
T7 1,570,753 1.30 3.5×10−4 79,229
T8 2,943,140 0.16 5.4×10−4 87,407
T9 1,823,194 0.49 1.3×10−4 91,988
T10 385,274 5.40 4.1×10−4 175,220
T12 1,913,067 1.00 5.0×10−4 91,442
T12 11,345,595 1.00 5.0×10−4 293,248

Table 4.2. Description and maximum flow values of the main sewers in the case study

Sewer q (m3 s−1) Sewer q (m3 s−1)

q14 9.14 q128 63.40
q24 3.40 q57 14.96
q96 10.00 q68 7.70
qc210 32.80 q12s 60.00
q945 13.36 q811 30.00
q910 24.00 q7L 7.30
q946 24.60 q11B 9.00

Simulation of Scenarios

The performance of the control scheme is compared with the simulation of the sewer sys-
tem without control when the manipulated links have been used as passive elements, i.e. the
amount of flows qu1(k), qu2(k) and qu4(k) only depend on the inflow to the corresponding
gate and they are not manipulated (see Section 4.2.2), while qu3(k) is the natural outflow of
the real tank.

Two different MLD models are used to simulate the scenarios, one for the hybrid MPC
controller, MLDC , which has been described in Section 4.2, and one tailored for the open-
loop simulation, MLDOL. The difference lies in the fact that when the system is simulated in
open loop, logical conditions have to be added so that the physical constraints of the system
are respected. The model MLDOL is therefore augmented so that the control signals from
the controller are adjusted to respect the physical restrictions of the whole network. MLDOL

contains more auxiliary variables for this reason.
The MLDC model implemented has 22 logical variables and 44 auxiliary variables. The

prediction horizon Hp was set to 6, which is equivalent to 30 min (with the sampling time
∆t = 300 s, 5 min). The length of the simulation scenarios is 100 samples. The computation
times presented in Section 4.4 were obtained on an INTEL� PENTIUM� M 1.73 GHz machine.
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Fig. 4.12. Example of rain episode occurred in Barcelona on 14 September, 1999. Each curve
represents a rain gauge Pi.

The control tuning is done taking into account the prioritization of the control objectives.
In a preliminary study, different norms, cost-function structures and cost-function weights wi

have been used. In order to give a hierarchical priority to the control objectives, the relation of
wi between objectives is an order of magnitude.

Table 4.3 relates the auxiliary variables z with the control objectives discussed in Section
4.2.3. A suitable norm for the first objective is the ∞-norm. This minimizes the worst-case
street flooding at each sample. On the other hand, for the second objective, the 1-norm is more
suitable. As the variables are all positive, the following outputs are defined to implement the
1-norm indirectly with the ∞-norm-based cost function

y1 =
�

i

zsea(i)

y2 = z41 and y3 = z43

Performance Improvement

Taking into account that the system performance in open loop for the considered rain has a
flooding volume of 108 × 103, a pollution volume of 225.9 × 103 and a volume of treated
water of 278.3 × 103 (all in m3), the improvement obtained is between 4.5 % and 22.1 % for
the first objective and the other objectives keep almost the same values for most of the cases,
fulfilling the desired objective prioritization.

Table 4.4 summarizes the results for ten of the more representative rain episodes in
Barcelona between 1998 and 2002. The results were obtained considering p = 2, a cost func-
tion containing only output variables and with the weight of the most important of its terms
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Table 4.3. Relation between z variables and control objectives

Objective z vector z variable Description

z2 overflow in T1

z6 overflow in T2

z10 overflow in T4

z12 overflow in T9

z20 overflow in T5

1 zstrv z22 overflow in T6

z24 overflow in T7

z26 overflow in T12

z32 overflow in T8

z36 overflow in T10

z40 overflow in T11

2 zstrq

z4 overflow in q14
z8 overflow in q24
z14 overflow in q96
z18 overflow in q945
z30 overflow in q12s

z34 overflow in qc210

z29 flow to environment (q12s)
z35 flow to sea (q10M)

3 zsea z38 flow to sea (q8M)
z42 flow to sea (q11M)
z44 flow to sea (q7M)

4
— z43 flow to Llobregat WWTP
— z41 flow to Besòs WWTP

set as wstrv = 10−2. The system performance in general is improved when the hybrid control
strategy is applied (see percentages for some values).

4.4 Discrepancies and Misfits

4.4.1 Computational Complexity

The results obtained in the simulation study of the previous section show that important per-
formance improvements can be accomplished when HMPC is applied to sewer networks.
Furthermore, the hybrid modeling methodology is very rich and allows the straightforward
treatment of hybrid phenomena such as overflow and flooding.

However, the underlying optimization problem of HMPC is combinatorial and NP-hard
[40]. The worst-case computation time is exponential in the number of logical variables. Fig-
ure 4.13 shows how this problem appears in the case of the HMPC applied on the Barcelona
sewer-network case study. In the top graph, rain intensity measured by the five rain gauges
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Table 4.4. Obtained results of closed-loop performance using 10 representative rain episodes

Rain
episodes

Open loop Closed loop
Flooding Pollution Treated w. Flooding Pollution Treated w.

×103 (m3) ×103 (m3) ×103 (m3) ×103 (m3) ×103 (m3) ×103 (m3)

14-09-1999 108 225.8 278.4 92.9 (14 %) 223.5 280.7
09-10-2002 116.1 409.8 533.8 97.1 (16 %) 398.8 544.9
03-09-1999 1 42.3 234.3 0 (100 %) 44.3 232.3
31-07-2002 160.3 378 324.4 139.7 (13 %) 374.6 327.8
17-10-1999 0 65.1 288.4 0 58.1 (11 %) 295.3
28-09-2000 1 104.5 285.3 1 98 (6 %) 291.9
25-09-1998 0 4.8 399.3 0 4.8 398.8
22-09-2001 0 25.5 192.3 0 25 192.4
01-08-2002 0 1.2 285.8 0 1.2 285.8
20-04-2001 0 35.4 239.5 0 32.3 (9 %) 242.5

available in this part of the network is presented for the critical portion (second rain peak) of
the rain episode that occurred on October 17, 1999. This episode was relatively intensive with
a return rate of 0.7 years within the city of Barcelona. In the second graph, the computation
time to solve the MIP associated with the HMPC is shown as a function of time for the same
scenario. Recalling that the desired sampling time for this system is 300 s, it can be seen that
the MIP solver is unable to find the optimum within the desired sampling time. Furthermore,
it is seen that computation time varies greatly. Before sample 16 the calculation time is very
small.

If optimality is not achieved within a desired sampling time, feasibility is at least required.
Often feasibility is sufficient for proof of stability of MPC scheme, see [35]. The ILOG CPLEX

solver used in the current application can be configured to put special emphasis on finding a
feasible solution before an optimal one [1]. It is also possible to limit the time the solver has
to solve the problem at hand. In the second graph of Figure 4.13, the time required to find
a feasible solution is shown. It was found by iteratively increasing the maximum solution
time allowed for the solver until a feasible solution was found. The feature of CPLEX to
put emphasis on finding feasible solution was activated. Again, it can be seen that the time
required to find a feasible solution varies considerably. Furthermore, it should be stated that
the feasible solutions found were often of such poor quality that running the system in open
loop often yielded better performance.

In the current application, the MIQP problem solved in each sample has the following
generical form:

min
ρ

ρT H ρ+ fT ρ (4.29)

s.t Aρ ≤ b+ Cx0 (4.30)

where vector x0 collects the system initial conditions and predicted disturbances (rain), which
is the only thing that changes from sample to sample. The ability of the MIP solver to reduce
computation time from the worst case depends on its ability to exclude from consideration
as many nodes as possible when branching and bounding. This is done either by proving
them to be infeasible or that their solution is suboptimal to other solutions. The increase in
computation time is thus linked to an increase in the amount of feasible nodes. In the bottom
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Fig. 4.13. MIP problem characteristics for the rain episode occurred on October 17, 1999

graph of Figure 4.13, the number of nodes the CPLEX solver explored during branching is
shown. It is seen that there was a huge increase in the number of explored nodes between
samples. There is thus a dramatic change in the complexity of the optimization problem for
certain values of x0.

Physical insight into the network dynamic behavior can explain the increase in complexity
at time 11. At that time, due to the rain, many of the virtual tanks are very close to their
overflow limit. This in turn means that more trajectories for distinct switching sequences ∆k

are feasible. Similar behavior was encountered in other rain episodes and when other cost
functions were used.

The same problem regarding computation time occurs in nonlinear MPC, see [32]. When
the optimization problem is no longer convex, a fundamental question is how long will the
optimization take and whether the quality of the solution would be sufficient to justify the
application of the MPC control approach.
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It should be noted that it is common engineering practice to model the hybrid dynamics
of sewer systems with max or min functions and apply nonlinear MPC schemes [34]. How-
ever, the problem of finding a feasible solution is not avoided and the nonlinear programming
algorithms applied reach only a local optima which implies a suboptimal solution. Generally,
heuristical methods are used to find an initial feasible solution.

4.4.2 Strategies to Deal with the Complexity in HMPC

Control strategies have been proposed where the HMPC problem is relaxed to make it com-
putationally tractable. In [12] a decentralized control approach to HMPC was presented. The
class of systems considered were those made up of dynamically uncoupled subsystems but
where global control objectives were formulated with a global cost function.

A number of authors have also presented methods where the intent is to reduce complexity
offline. In [11] an explicit solution to the constrained finite-time optimal control problem was
presented for discrete-time linear hybrid systems. Mode enumeration (ME) [3, 23, 24] is an
offline technique to compute and enumerate explicitly the feasible modes of piecewise affine
PWA models. By pruning redundant modes where the dynamics are the same as in other
modes, the complexity of the hybrid model can be reduced. Such methods are usually limited
to systems of relatively small size.

The main source of complexity in the MIP problem is its combinatorial nature. In [27], a
HMPC strategy was presented where additional restrictions were added to the MIP problem to
reduce the number of possible combinations of the Boolean variables. Infeasibility is avoided
by restricting the number of combinations around a nominal feasible trajectory.

4.4.3 Phase Transitions in MIP problems

The performance of MIP solvers has improved greatly in recent years [9]. The size limit of
problems considered to be practically solvable has increased steadily. Part of the reason lies
in the many orders of magnitude improvement of desktop computing power over the years.
But there has also been tremendous improvement in solution algorithms for LPs and QPs,
which are a cornerstone of MIP solvers [8]. Furthermore, modern solvers have incorporated
many performance-improving features that have existed in the literature such as cutting-plane
capabilities. Generally, the solvers apply a barrage of techniques on each problem. A recent
improvement in solving the optimal control problem of HMPC by using symbolic techniques
to solve constraint satisfactions problems (CSP), was presented in [6].

The MIP problem is still NP-complete and equivalent to the archetypal NP-complete K-
satisfiability problem [37] (or the ZERO ONE INTEGER PROGRAMMING problem (ZIOP),
see [10]). It has recently been shown that K-satisfiability problems exhibit phase-transitions in
terms of computational difficulty and solution character when these aspects are considered as a
function of parameters such as the ratio of number of constraints to number of variables. Away
from the phase-transition region the problems become easier to solve, see [37] and references
therein. This is of interest as it can give information about how the problem can be modified to
distance it from the phase-transition region where it is most difficult to solve. Phase-transition
behavior has been reported in for example multivehicle task-assignment problems, see [20].
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4.4.4 Conclusions

Results presented in this chapter have shown that HMPC is a suitable control strategy for sewer
networks. The hybrid modeling framework presented can take into account several inherent
phenomena and elements that result in distinct behavior depending on the state of the network.

However, the exponential increase in computational complexity due to the NP-hard nature
of the underlying HMPC optimization problems is an issue that should be addressed in order
to face time constraints imposed by real-time implementation. For the case study presented, it
has been shown that the computational complexity of the MIP problem related to the HMPC
scheme can vary considerably depending on the measured state and disturbances.

Some techniques to address the computational complexity have been mentioned. More-
over, the existence of phase transitions in similar combinatorial problems should be explored
to gain information on how to modify the optimization problem to move it to regions of less
computational complexity.
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Summary. Identification methods for NARMAX models are applied to aeroelastic dynamics
and its properties demonstrated via continuous-time simulations and experimental conditions.
Identification of parametric nonlinear models involves estimating unknown parameters and
detecting its underlying structure. Structure computation is concerned with selecting a subset
of parameters to give a parsimonious description of the system that may afford greater insight
into the functionality of the system or a simpler controller design. Structure-detection methods
applicable to NARMAX modeling are applied to aeroelastic dynamics. Among other meth-
ods, a least absolute shrinkage and selection operator (LASSO) technique is investigated for
computing efficient model descriptions of nonlinear systems. Simulation results from a non-
linear dynamic aircraft model demonstrate that methods developed for NARMAX structure
computation provide good accuracy for selection of the exact model structure from an over-
parameterized model description. Applicability of the method to more complex systems such
as those encountered in aerospace applications is shown by identifying parsimonious system
descriptions of the F/A-18 active aeroelastic wing (AAW) using flight-test data.

Key words: Nonlinear system identification, structure detection, limit cycle oscillation (LCO),
flutter, aeroelasticity, NARMAX, parametric models, mathematical modeling

5.1 Background

5.1.1 Introduction

System identification or mathematical modeling is the process of developing or improving
a mathematical representation of a physical system based on observed data. System identifi-
cation is a critical step in aircraft development, analysis and validation for flight worthiness.
One such application of system identification in the aerospace community is for the analysis of
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protection in the United States. NASA is the owner of any foreign copyright that can be
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aeroelasticity. Aeroelasticity is concerned with the interaction of inertia, structural and aerody-
namic forces [38]. Previous approaches have modeled aeroelasticity with linear time-invariant
(LTI) models [49]. These linear models have been successful in providing approximate esti-
mates of an aircraft’s response to gust, turbulence and external excitations [48]. However, at
high angle-of-attack or transonic flight linear models no longer provide accurate predictions of
the aircraft’s behavior. Some of the behavior that cannot be modeled linearly includes air-flow
separation and transonic effects that can induce nonlinear phenomena such as limit cycle os-
cillations (LCO) [11, 12]. The onset of LCOs has been observed on several aircraft such as the
F-16C or F/A-18 and cannot be modeled properly as a LTI system [17]. This has necessitated
the application of nonlinear identification techniques to accurately model LCO dynamics.

Significant achievements have been made in several areas of nonparametric nonlinear sys-
tem identification ([27, 33, 45]). Recent work in the aerospace community has attempted to
address nonlinear aeroelastic phenomena using Volterra kernel methods [42]. These meth-
ods provide a convenient means of characterizing LCOs but suffer from a highly over-
parameterized model description and do not lend themselves to efficient control synthesis.

Parametric representations of nonlinear systems typically contain a small number of co-
efficients that can be varied to alter the behavior of the equation and may be linked to the
underlying system. Leontaritis and Billings [39, 40] have proposed the NARMAX (nonlinear
autoregressive, moving average exogenous) structure as a general parametric form for mod-
eling nonlinear systems. NARMAX models describe nonlinear systems in terms of linear-in-
the-parameters difference equations relating the current output to (possibly nonlinear) com-
binations of inputs and past outputs. They are suitable for modeling both the stochastic and
deterministic components of a system and capable of describing a wide variety of nonlinear
systems [5, 13]. NARMAX models have been successfully demonstrated for modeling the
input–output behavior of many complex systems such as ones found in engineering and bi-
ology [14, 35], and offer a promising framework for describing nonlinear behavior such as
aeroelastic aircraft dynamics.

Often, this formulation yields compact model descriptions that may be readily identified
and afford greater interpretability. This system representation, however, can yield a large num-
ber of possible terms required to represent the dynamic process [6]. In practice many of these
candidate terms are insignificant and can be removed. Consequently, the structure-detection
problem is that of selecting a subset of candidate terms that best predicts the output while
maintaining an efficient system description.

There are two fundamental approaches to the structure-detection problem: (1) exhaustive
search, where every possible subset of the full model is considered ([24, 58]), or (2) parameter
variance, where the covariance matrix, Pθ , based on input–output data and estimated residuals
is used to assess parameter relevance ([51]). Both have problems. Exhaustive search requires
a large number of computations, whereas parameter-variance estimates are often inaccurate
when the number of candidate terms is large.

A bootstrap method has been proposed to solve the structure-detection problem for over-
parameterized models [36]. Although it has been demonstrated that the bootstrap is a useful
tool for structure detection of NARMAX models, there is a limitation of the model complexity
that can be studied with this technique as a result of the large number of candidate terms, for a
given model order, and the data length required to guarantee convergence. It was demonstrated
that a necessary condition for bootstrap structure detection to yield accurate results is the
number of data points needed for identification be at least 10 times the square of the initial
number of candidate terms.

For many practical systems, collecting large data records may be financially and/or tech-
nically infeasible. Estimation techniques used for NARMAX identification all require an over-
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determined system of equations to solve for the unknown system parameters. Due to the large
number of possible candidate terms and limited data records available for any practical identi-
fication problem, it may not be feasible to analyze highly complex systems with the bootstrap
technique. Nonlinear aeroelastic dynamics of aircraft are highly complex processes likely in-
volving a large number of candidate terms that may not be accurately characterized by current
approaches.

System identification is a critical step in aircraft development, analysis and validation
for flight worthiness. The development and testing of aircraft typically takes many years and
requires considerable expenditure of limited resources. One reason for lengthy development
time/costs is inadequate knowledge of an appropriate model type or structure to use for pa-
rameter estimation. In aerospace systems analysis one of the main objectives is not only to
estimate system parameters but to gain insight into the structure of the underlying system.
Selection of an insufficient model structure may lead to difficulties in parameter estimation,
giving estimates with significant biases and/or large variances [43]. Structure computation
may indicate deficiencies in an analytical model and could lead to improved modeling strate-
gies and also provide a parsimonious, blackbox, system description of complex aeroelastic
behavior over a large operating range for control synthesis [30]. Therefore, structure compu-
tation is of significant relevance and importance to modeling, analysis, and design of aircraft
and aerospace vehicles.

Although the NARMAX structure is well suited to modeling the input–output behavior
of aeroelastic systems, it has not been investigated by the aerospace community. Therefore,
a nonlinear pitch-plunge model of aircraft aeroelastic dynamics will be analyzed to derive
its NARMAX representation and assess the applicability of NARMAX structure detection
methods to a simulated model of aircraft freeplay. F/A-18 active aeroelastic wing (AAW) [56]
flight-test data will then be investigated. Finally the application of a novel method for NAR-
MAX model identification via a least absolute shrinkage and selection operator (LASSO) [64]
will be demonstrated. This approach permits identification of NARMAX models in situations
where current methods cannot be applied.

The NARMAX model structure is described in Section 5.1.2. Section 5.1.3 summarizes
an estimation technique appropriate for NARMAX model identification, while Section 5.1.4
reviews commonly used techniques for assessing parameter significance as well as LASSO
and its application as a tool for structure computation.

Section 5.2 presents a continuous-time representation of a nonlinear pitch-plunge model
describing aircraft dynamics and its NARMAX representation is derived. Simulation results of
several NARMAX structure detection algorithms are presented in Section 5.2.2, Section 5.2.3
illustrates application to experimental F/A-18 AAW data, and Section 5.2.4 provides a discus-
sion and summary using the more common methods for structure detection. In Section 5.3,
simulation results of LASSO’s performance as a structure detection instrument are presented
in Section 5.3.1, while in Section 5.3.2 application results to AAW flight-test data is presented
and Section 5.3.3 discusses and summarizes LASSO results.

5.1.2 NARMAX Model Form

Kolmogorov–Gabor polynomials have been well known in control engineering for many years
[22, 65]. However, these equations have recently been popularized by Billings and coworkers
[39, 40] for use in identification, modeling, and control. The NARMAX (nonlinear autoregres-
sive, moving average exogenous) structure is a general parametric form for modeling nonlinear
systems [39]. This so-called NARMAX structure describes both the stochastic and determinis-
tic components of nonlinear systems. Many nonlinear systems are a special case of the general
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NARMAX structure [13]. The NARMAX structure models the input-output relationship as a
nonlinear difference equation of the form

z(n) = f [z(n− 1), · · · , z(n− nz), u(n), · · · , u(n− nu), e(n− 1), · · · , e(n− ne)]

+ e(n) (5.1)

where f denotes a nonlinear mapping, u is the controlled or exogenous input, z is the measured
output, and e is the uncontrolled input or innovation. For the special case where f is a nonlinear
mapping of polynomial form it may include a variety of nonlinear terms, such as terms raised
to an integer power (u3(n − 3)), products of present and past inputs (u(n)u(n − 2)), past
outputs (z2(n − 3)z(n − 5)), or crossterms (u(n − 1)z2(n − 3)). In general, the nonlinear
mapping, f , can be described by a wide variety of nonlinear functions such as sigmoids or
splines [5, 13].

For simplicity of the present discussion, nonlinearities are assumed to be described by a
polynomial expansion. Consider the following NARMAX model that is described by a poly-
nomial expansion as

z(n) = θ1z
2(n− 2) + θ2u

3(n− 1) + θ3u
2(n− 1)u(n− 2) + θ4z(n− 2)e(n− 2)

+ θ5e
2(n− 2) + e(n) (5.2)

This model contains a variety of nonlinear terms (regressors) but is linear-in-the-parameters
and, therefore, pseudolinear regression techniques can be used for parameter estimation [4, 8,
26, 58]. The order of a polynomial class NARMAX model may be defined as

O = [nu nz ne l] (5.3)

where nu is the maximum input lag, nz the maximum output lag, ne the maximum error
lag and l the maximum nonlinearity order. For a nonpolynomial-class NARMAX model, l
is simply replaced by an appropriate basis function. The maximum number of terms in a
NARMAX model with nu, nz and ne dynamic terms and lth-order nonlinearity is [8]

p =
l�

i=1

pi + 1; (5.4)

pi =
pi−1(nu + nz + ne + i)

i
, p0 = 1

For nonlinear systems, output additive noise can produce multiplicative terms between
input, output and itself. To compute unbiased parameter estimates a noise model needs to
be estimated. As a result, the number of candidate terms can become large for even mod-
erately complex models making structure detection difficult. For example, consider model
(5.2), which is of order O = [2 2 2 3]. A model of this order has p = 120 candidate terms
to be initially considered for identification. Due to excessive parameterization (the curse of
dimensionality), structure detection often leads to computationally intractable combinatorial
optimization problems.

To perform structure detection, estimates of the unknown system parameters and their
statistics are needed. An estimate of unknown system parameters can be obtained using stan-
dard prediction error (PE) identification techniques such as extended least-squares. Methods
to obtain estimates of the parameter statistics for NARMAX models are discussed in Section
5.1.4.
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5.1.3 Parameter Estimation

The structure-detection procedure begins by computing an unbiased estimate of the unknown
system parameters. Although NARMAX models provide a concise system representation, any
noise on the output enters the model as product terms with the system input and output [8].
Consequently, most parameter-estimation algorithms for linear systems cannot be applied di-
rectly because they assume that the noise terms in the model are independent [8, 43].

Extended least-squares (ELS) is one method appropriate for NARMAX models that easily
enables unbiased estimates to be computed. ELS is a technique that addresses the bias problem
by modeling the lagged errors to obtain unbiased parameter estimates. ELS for linear systems
has been widely studied and is also referred to as Panuska’s method, the extended matrix
method, or approximate maximum likelihood [53, 54, 66].

In general, since the noise sequence is a realization of a stochastic process, it is not pos-
sible to solve for the noise source e, and it will not be equal to the prediction errors [8]. The
prediction errors, ε̂ ∈ R

N×1, are defined as

ε̂ = Z − Ẑ (5.5)

where Z ∈ R
N×1 is the measured output and Ẑ = Ψθ̂ ∈ R

N×1 is the predicted output. In
ELS, the NARMAX formulation of Equation (5.1) is redefined into a prediction-error model
by replacing e with ε̂; making it a deterministic least-squares problem.

The ELS formulation is defined as

θ̂ = (Ψ T Ψ )−1Ψ T Z, Ψ = [Ψ zuΨ zuε̂Ψ ε̂] (5.6)

where θ̂ ∈ R
p×1 is an ELS estimate of the system parameters, and Ψ ∈ R

N×p is a parti-
tioned regressor matrix in which Ψ zu is a function of z and u only, Ψ zuε̂ represents all the
crossproducts involving ε̂, and Ψ ε̂ is a polynomial function of the prediction errors only [8].

Often ELS is considered a pseudolinear approach to parameter estimation [26, 53, 66].
Strictly speaking, the introduction of prediction errors into the model formulation no longer
makes the model linear-in-the-parameters because the prediction errors depend on the model
output that is a function of all model parameters. The ELS technique solves a nonlinear op-
timization problem by ignoring the nonlinear character of the model and employing a least-
squares approach. Essentially, ELS uses an approximate gradient of the model output with
respect to the model parameters as a regression vector.

The prediction-error method (PEM) is another approach to parameter estimation for non-
linear systems. PEM implements the true gradient to solve the nonlinear optimization problem.
ELS is an approximation of PEM. Here, ELS is chosen over PEM because it does not require
the computation of the true gradient. Computing the true gradient may be difficult in the gen-
eral case where the objective is to learn about the true form of the underlying system. Once
an estimate of the system parameters is computed, an estimate of their statistics is needed to
determine structure.

5.1.4 Structure Detection

In system identification it is necessary to form estimates of the unknown parameters governing
a random process using a finite set of sample values. These can be computed using the ELS
estimator. Parameter statistics are also needed to make a probability statement with respect to
the unknown true parameter values. One such probability statement is to assign two limits to a
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parameter and assert that, with some specified probability, the true value of the parameter will
be situated between those limits, which constitute the confidence interval.

Structure detection is concerned with how to best make a probability statement of the
parameter estimates while maintaining an efficient (parsimonious) system description and yet
complex enough to predict the system output. Many methods for structure detection have been
proposed over the years. In this section, techniques appropriate for NARMAX modeling are
discussed that are (i) easy to implement and (ii) have previously shown promising results for
polynomial NARMAX models. For a survey of the structure-detection literature the reader is
referred to [29].

t-test

The t-test in combination with regression analysis is sometimes referred to as a form of hy-
pothesis testing by computing the differences between means [19]. In regression, the signifi-
cance of each parameter estimate is checked using a statistical measure. If the model that was
postulated is more general than needed, tests of hypothesis are necessary to give a minimal
model description.

Suppose the following model was fit

E(Z) = θ̂1 + θ̂2ψ2 + θ̂3ψ3 + · · · + θ̂pψp (5.7)

The θ̂s are tested against the null hypothesis,H0, that θ̂i = 0, i = 1, 2, . . . , p. This allows the
experimenter to assess which parameters are significant and which are not, and consequently
which ones to retain.

Often in engineering applications, it is assumed that the errors are Gaussian independent,
identically distributed (iid) variables. This assumption implies that Z will be Gaussian iid with
mean Ψθ0 and variance σ2I,

Z ∈ N (θ0, σ
2I) (5.8)

where N (·) denotes the Gaussian (normal) distribution, θ0 the true unknown parameter vector,
σ2 the variance and I is an identity matrix of appropriate dimension [43]. The estimate θ̂ is
also Gaussian iid because it is a linear combination of Z,

θ̂ ∈ N (θ0,P) (5.9)

where P = σ2(Ψ T Ψ )−1. While the matrix (ΨT Ψ )−1 is known to the user, σ2 is typically
not known, and must be estimated as

σ̂2 =
1

N − p
�
Z − Ψθ̂

�T �
Z − Ψθ̂

�
∈ χ2(N − p) (5.10)

where χ2(N − p) denotes the Chi-squared distribution with N − p degrees of freedom, and
thus P̂ = σ̂2(Ψ T Ψ )−1.

These estimates are easily calculated as a byproduct to the regression procedure and lend
themselves to forming a confidence interval of the parameters via the Student’s t-distribution,
defined as the ratio of a normal random variable divided by the square root of a Chi-squared
random variable

t =
N (θ̂i, P̂)�

P̂ii

(5.11)
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where P̂ii denotes the ith diagonal element of P̂.
Specifically, the confidence interval for an estimate, θ̂i, is

θ̂i ± t(γ/2, N − p)P̂ii (5.12)

where t is the tabulated t ratio at the γ/2 level of significance (0 ≤ γ ≤ 1) withN−p degrees
of freedom. Therefore, the user is able to assess with (1− γ) % confidence that the parameter
lies within this range. If the interval includes zero, θ̂i is not significantly different from zero at
the γ level and can be removed from the model.

This procedure assumes that an accurate estimate of parameter variances, i.e. residuals, is
available [58]. Although this assumption is violated for overparameterized models, structure
detection of moderately overparameterized polynomial NARMAX models have shown good
results [36].

Stepwise Regression

The stepwise regression algorithm is a widely used tool for computing model structure [21].
Stepwise regression relies on the incremental change in the residual sums-of-squares (RSS)
resulting from adding or removing a parameter. Two Fisher-Snedecor distribution levels (F-
levels), Fout and Fin, are formed to determine whether a parameter should be removed from
the model (Fout) or included in the model (Fin) [21, 58, 60, 61]. These F-levels are based on
an F-distribution withN−p degrees of freedom for a predetermined γth level of significance.
The statistics Fin and Fout are estimated from the residual sums-of-squares for a model with
p parameters as

Fin =
RSSp − RSSp+1

RSSp+1/(N − p− 1)
and Fout =

RSSp−1 − RSSp

RSSp/(N − p) (5.13)

For good model parameterizations, Fout must not be greater than Fin [21, 47, 60, 61]. This
stepwise regression procedure can be summarized as follows [47].

1. Enter into the model any parameter(s) that are to be “forced” in.
2. Find the parameter from those not in the model but, available for inclusion, with the

largest Fin value. If it is at least as great as a prespecified value of Fin, then add the
parameter to the model. Stop if no parameter can be added.

3. Find the parameter among those in the model, other than those forced in, that has the
smallest Fout value. If it is less than a prespecified value of Fout, then remove the para-
meter from the model. Repeat this step until no further parameter can be removed. Go to
step 2.

It is well known this method is sensitive to the order in which the regressors are introduced
[16, 31, 44, 60]; however, previous results for structure computation of polynomial NARMAX
models have shown good results for simple models [36].

Bootstrap

Recently, the bootstrap has been shown to be a useful tool for structure detection of nonlin-
ear models [36]. The bootstrap is a numerical method for estimating parameter statistics that
requires few assumptions [20]. The conditions needed to apply bootstrap to least-squares esti-
mation are quite mild; namely, that the errors be independent, identically distributed, and have
zero mean.
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The bootstrap is a technique to randomly reassign observations that enables re-estimates
of parameters to be computed. This randomization and computation of parameters is done
numerous times and treated as repeated experiments. In essence, the bootstrap simulates a
Monte-Carlo analysis. For structure computation, the bootstrap method is used to detect spu-
rious parameters, those parameters whose estimated values cannot be distinguished from zero.

Application of ELS to measured data gives the predicted model response Ẑ, prediction er-
rors ε̂, and parameter estimate θ̂. A bootstrap version of the residuals, ε̂∗ = [ε̂∗1, ε̂

∗
2, . . . , ε̂

∗
N ], is

formed by random resampling, with replacement, of the estimated residuals ε̂ = [ε̂1, ε̂2, . . . , ε̂N ].
This resampling is accomplished by randomly selection from ε̂ with an equal probability as-
sociated with each of the N elements. As an example of the bootstrap resampling process,
consider a residual sequence with N = 4 data points. A possible bootstrap version of these
residuals might be, ε̂∗ = [ε̂3, ε̂1, ε̂3, ε̂2]. These resampled errors are added to the model re-
sponse to generate a bootstrap replication of the original data,

Z∗ = Ψθ̂ + ε̂∗ (5.14)

This bootstrap sample, Z∗, enables a new parameter estimate, θ̂
∗
, to be computed This pro-

cedure is repeated B times to provide a set of parameter estimates from the B bootstrap
replications,

Θ̂
∗

=
�
θ̂
∗
1, . . . , θ̂

∗
B

�
(5.15)

Parameter statistics are then easily computed from Θ̂
∗

by forming percentile intervals at a
chosen γ level of significance [36].

LASSO

As stated earlier, using least-squares it is difficult to estimate accurate parameter variance
when the number of candidate terms is large. A novel procedure that may enable structure
selection of highly overparameterized models is now considered.

The least absolute shrinkage and selection operator (LASSO) [64] is a least-squares-like
problem with the addition of an �1 penalty on the parameter vector as

min
θ

1

2
‖(Z − Ψθ)‖2

2 + λ ‖θ‖1 (5.16)

where ‖·‖2 denotes the �2-norm and ‖·‖1 denotes the �1-norm. The regularization parameter
R  λ = [λmin, . . . , λmax] controls the tradeoff between approximation error and sparse-
ness. The LASSO shrinks the least-squares estimator

min
θ

1

2
‖(Z − Ψθ)‖2

2 (5.17)

towards 0 and potentially sets θj = 0 for some j. Consequently, LASSO behaves as a
structure-selection instrument.

Solution of LASSO

A solution to LASSO can be constructed in a quadratic programming framework [15]. With
the introduction of slack variables the solution to this optimization problem can be written as
a simple bound-constrained quadratic program (QP)
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min
x

1

2
xT Mx + cT x (5.18)

such that xk ≥ 0 and where

M =

�
Ψ T Ψ −Ψ T Ψ
−Ψ T Ψ Ψ T Ψ

�
, c = λ1 −

�
Ψ T Z
−Ψ T Z

�
, x =

�
θ+

θ−

�

The model parameters are given by

θ = θ+ − θ−

The quadratic program can be solved readily using standard optimizers [46]. Thus, given a
suitable regularization parameter, the general structure computation problem can be solved.
A method that determines an appropriate regularization parameter, λ, for the penalty term in
(5.16) is the method of crossvalidation [59]. This approach allows the prediction error

PE = E [Z − Ψθ]2 (5.19)

to be estimated. The regularization parameter, λ, is chosen to minimize this estimate.

Unique Optimum and Convergence of LASSO

For identification it is often assumed that the excitation signal is persistently exciting, which
implies that Ψ T Ψ is positive-definite. As a result, the first term of Equation (5.16) is a strictly
convex function. Since the second term is convex, it follows that the sum is strictly convex
and a unique optimizer is guaranteed [10, 50]. Assume the optimal regularization parameter,
λ∗, is known. Since Equation (5.16) is strictly a convex optimization problem the solution
will converge to a unique global minimum [50]. From parametric optimization theory it is
known that PE(λ) is not necessarily a convex function (it is a piecewise quadratic function)
[28]. Hence, for several choices of λ giving the same PE, different model structures can result.
Section 5.3.1 uses a simulated nonlinear model to investigate the validity of LASSO to select
the correct model structure.

5.2 Application I

5.2.1 Nonlinear Aeroelastic Model

The aeroelastic equations governing pitch-plunge dynamics can be described as
�
m mxαb

mxαb Iα

� �
ḧ
α̈

�
+

�
ch 0
0 cα

� �
ḣ
α̇

�
+

�
kh 0
0 kα

� �
h
α

�
=

�
−L
M

�
(5.20)

where h denotes plunge motion, α pitch angle, xα the nondimensional distance between the
elastic axis and the center of mass,mwing mass, Iα mass moment of inertia of the wing about
the elastic axis, b the semichord of the wing, {ch, cα} plunge and pitch structural damping
coefficients, {kh, kα} plunge and pitch structural spring constants, and L, M aerodynamic
lift and moment.

Typically, quasisteady aerodynamic forces and moments are assumed that can be modeled
as
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L = ρU2bclα

�
α+

ḣ

U
+

�
1

2
− a

�
b
α̇

U

�
+ ρU2bclββ (5.21)

M = ρU2b2cmα

�
α+

ḣ

U
+

�
1

2
− a

�
b
α̇

U

�
+ ρU2b2cmββ

where ρ denotes density of air, U free-stream velocity, cmα , clα moment and lift coefficients
per angle-of-attack, cmβ , clβ moment and lift coefficient per control surface deflection β, and
a the nondimensional distance from midchord to elastic axis. Combining Equations (5.20) and
(5.21) gives the equations of motion as

�
m mxαb

mxαb Iα

��
ḧ
α̈

�
+

�
ch + ρUbclα ρUb2clα ( 1

2
− a)

ρUb2cmα cα − ρUb3cmα( 1
2
− a)

��
ḣ
α̇

�
(5.22)

+

�
kh ρU2bclα
0 −ρU2b2cmα + kα

��
h
α

�
=

�
−ρbclβ
ρb2cmβ

�
U2β

This model can be easily transformed to a continuous-time state-space form to simulate a sys-
tem response [41]. To transform these equations to the state-space form, define the following

M =

�
m mxαb

mxαb Iα

�
, C =

�
ch + ρUbclα ρUb2clα( 1

2
− a)

ρUb2cmα cα − ρUb3cmα ( 1
2
− a)

�
(5.23)

K =

�
kh ρU2bclα
0 −ρU2b2cmα + kα

�
, F =

�
−U2ρbclβ
U2ρb2cmβ

�
, x =

�
h
α

�
, u = β

Substituting definitions (5.23) into (5.22) and combining terms gives a state-space formulation
as �

ẋ
ẍ

�
=

�
0 I

−M−1K −M−1C

��
x
ẋ

�
+

�
0

−M−1F

�
u (5.24)

This system representation provides both pitch and plunge accelerations. Only plunge ac-
celerations are considered here. Given a persistently exciting input, the results for the pitch
component will be similar. In the subsequent development, denote plunge acceleration (ḧ) as
z to conform to the notation used in Equations (5.1)–(5.14).

It has been observed that aeroelastic structures present a well-defined low-frequency
elastic-mode composition [25, 62]. Therefore, the linear modal components of this case ex-
ample are represented using a fourth-order linear time-invariant (LTI) system [2].

Typically, an assumption is made that a structural nonlinearity exists in an aeroelastic
system that affects not only flutter speed, but also the characteristics of the motion [18, 38]. An
example of an aeroelastic nonlinearity is a preloaded spring tab system. It has been proposed
that this type of nonlinearity be modeled as a saturator [38]. This type of nonlinearity is chosen
as a hyperbolic tangent, tanh(·), because a wing section response typically saturates smoothly.

Consider the model class given in Figure 5.1. This blocked structured N-L model (sta-
tic nonlinearity followed by a causal, linear, time-invariant, dynamic system) is commonly
known as a Hammerstein model. Baldelli et al. [3] suggest that block-oriented model struc-
tures, including Hammerstein models, are capable of representing the nonlinear behavior of
most aeroelastic systems [52]. For this reason, the simulated aeroelastic example is a Ham-
merstein model – a static map represented by a hyperbolic tangent followed by a fourth-order
LTI system.
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Fig. 5.1. Hammerstein model structure

Continuous to Discrete-domain Approximations

A system’s response is sampled via an analog-to-discrete converter [43]. As a result, many
system representations are given in discrete time for identification and digital control synthe-
sis.

Several methods exist for discrimination of continuous-time infinite impulse response
(IIR) systems. Most commonly used are Tustin’s (also known as the bilinear transform) and
zero-order hold (ZOH) methods ([1, 23, 43]). Tustin’s and ZOH methods map the entire left-
half s-plane into the unit circle but do not offer the same model approximation. Tustin’s
method maps a proper continuous-time transfer function to a proper discrete-time transfer
function but maps a strictly proper continuous-time transfer function also to a proper discrete-
time transfer function. This often results in a large error in signal emulation due to loss of
the inherent time delay (lag). The ZOH explicitly accounts for the delay inherent in many
continuous-time systems and provides for better signal emulation. Although Tustin’s method
can also provide good signal estimation for high sampling rates, it provides a model that is
not intuitive. Models based on this approximation will include the current input as one of the
model terms, which may not be physically practical. For the aeroelastic system under inves-
tigation, the ZOH provides a system description that is both stable and intuitive. For these
reasons ZOH is chosen to model the system dynamics.

Discrete-time Representation of Nonlinear Aeroelastic Model

The aeroelastic system in Figure 5.1 is given in continuous time. This section shows how the
model can be converted to discrete time and rewritten as a NARMAX model. To do so, note
that each block can be analyzed separately.

The first block represents the aeroelastic nonlinearity and as a hyperbolic tangent, is un-
changed from continuous time to discrete time since it is a static map [43]. The second block
characterizes the linear modal component of an aeroelastic system as a fourth-order LTI sys-
tem and is converted to discrete time using the ZOH approximation [1]. In addition, assume
the model is corrupted by output additive (measurement) noise as
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z(n) = y(n) + e(n) (5.25)

where z(n) is the noise-corrupted output, y(n) the unmeasured noise-free output and e(n) the
measurement noise.

After collecting terms and combining, the overall nonlinear model was represented as a
nonlinear difference equation with 16 terms as

z(n) = θ1z(n− 1) + θ2z(n− 2) + θ3z(n− 3) + θ4z(n− 4)

+ θ5u(n− 1) + θ6u(n− 2) + θ7u(n− 3) + θ8u(n− 4)

+ θ9 tanh(u(n− 1)) + θ10 tanh(u(n− 2)) + θ11 tanh(u(n− 3))

+ θ12 tanh(u(n− 4)) + θ13e(n− 1) + θ14e(n− 2) + θ15e(n− 3) + θ16e(n− 4)

+ e(n)

This is a NARMAX model since (i) it includes input–output terms that are combinations
of linear and nonlinear terms and (ii) is linear-in-the-parameters.

Structure detection can provide useful insights that can be used in subsequent development
or refinement of physical models. Therefore, the sequel investigates (i) the performance of the
algorithms outlined in Section 5.1.4 on a simulated NARMAX model of aeroelastic structural
stiffness and, (ii) applicability to experimental aircraft data.

5.2.2 Simulation Studies

The efficacy of the bootstrap, stepwise regression and t-test structure-detection algorithms was
assessed using Monte-Carlo simulations of a continuous-time model representing aeroelastic
structural stiffness dynamics. The inputs were uniformly distributed, white, zero-mean, ran-
dom sequences with a variances of 8 rad2. One hundred Monte-Carlo simulations were gen-
erated in which each input–output realization was unique, and had a unique Gaussian white,
zero-mean, noise sequence added to the output. The output additive noise amplitude was in-
creased in increments of 5 dB, from 20 to 5 dB signal-to-noise ratio (SNR). For identification,
the data length was Ne = [10, 000 80, 000] points and increased in increments of 10, 000.
For the bootstrap method, an initial estimate of the system parameters was computed and
B = 100 bootstrap replications were generated to assess the distribution of each parameter.
The number B = 100 was used because it was previously shown that it is computationally
inefficient to select large B, B � 100 [34, 36]. For all three techniques, each parameter was
tested for significance at the 95 % confidence level and a backwards elimination approach was
implemented to reduce the fully parameterized model [19, 36]. Specifically, using backwards
elimination, parameters of an overparameterized model were estimated and their significance
tested to determine if they could be distinguished from zero. If the structure-detection method
indicated that the parameter(s) cannot be distinguished from zero, it/they were removed from
the model. Next, the reduced model parameters and residuals were updated and tested again
until convergence.

The model posed for structure computation was an additive nonlinear model of the form

z(n) =

q�

v=1

θvψ(n) +
r�

w=1

θwf(ψ(n)) + e(n), q + r = p (5.26)

The regressors posed for this identification problem were of the form given in Equation (5.1),
up to lag order 4, and the nonlinear mapping f(·) was chosen to be a hyperbolic tangent
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function (tanh(·)), O = [4 4 4 tanh]. As previously stated, a tanh was selected as a basis
because a wing-section response is limited due to structural stiffness and appears to saturate
smoothly. This gave a full model description with 27 candidate terms.

For each input–output realization, the structure-detection result was classified into one of
three categories:

1. Exact model: A model that contains only true system terms,
2. Overmodeled: A model with all its true system terms plus spurious parameters and
3. Undermodeled: A model without all its true system terms. An undermodeled system may

contain spurious terms as well.

The continuous-time values used in this study correspond to those found in experiments.
The continuous-time parameters used in this study are shown in Table 5.1. Figure 5.2 presents

Table 5.1. Continuous-time system coefficients

CT Coefficient Value
U 18.0 m s−1

a −0.600 m
b 0.135 m
Iα 0.065 m2 kg
kh 2844 N m−1

kα 2.82 N m rad−1

xa 0.247 m
ch 27.4 kg s−1

cα 0.180 m2 kg s−1

ρ 1.23 kg m−3

clα 3.28
clβ 3.36
cmα –0.628
cmβ –0.635
k 2

a 50 s slice of a typical input–output data set used for this study. The top panel shows a
uniform white input used as control surface deflection and the bottom panel shows the “mea-
sured” plunge acceleration response (5 dB SNR) superimposed on top of the noise-free plunge
acceleration.

Notice the input flap deflection (Figure 5.2, top) is large (5 rads or ∼286 deg), and would
not be possible for a real actuator. For this simulated example, an input of this amplitude
was selected to provide good coverage for the tanh nonlinearity and to avoid rescaling. With
experimental data a scaled nonlinearity is more appropriate.

Figure 5.3 shows the results of this study. The plots show the per cent rate at which each
structure-detection algorithm selected the exact model, overmodeled and undermodeled for
increasing data length and increasing SNR (decreasing noise amplitude).

The bootstrap technique had an approximately 0 % rate of exact modeling for low SNR
and small data length (5 dB SNR and Ne = 10, 000 − 20, 000), where undermodeling dom-
inated with a rate of 100 %. However, the rate of exact modeling increased linearly from
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Fig. 5.2. Fifty-second slice of a typical input–output data set used for structure computation.
Top: Control-surface deflection. Bottom: Measured (5 dB SNR) plunge-acceleration output
superimposed on top of noise-free plunge-acceleration output.

6 % to 95 % for Ne = 10, 000 − 80, 000 and 10–20 dB SNR. The rate of overmodel-
ing was 0 % for Ne = 10, 000 − 20, 000 at 5 dB SNR. For higher SNR (10–20 dB) and
Ne = 20, 000 − 80, 000 the overmodeling rate decreased linearly from 42 % to 5 %. Al-
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though undermodeling dominated for low SNR and short data length, it decreased linearly
from 48 % to 0 % for Ne = 20, 000 − 80, 000 and 10–20 dB SNR.

Stepwise regression undermodeling dominated the structure computation effort for all data
lengths for 5–10 dB SNR, with a rate of 100 %. However, for high SNR levels, 15–20 dB, and
Ne = 10, 000 − 80, 000 the undermodeling rate decreased from 97 % to 6 %. The rate of
overmodeling was low for all SNRs and data lengths, ranging from a minimum of 0 % to a
maximum of 9 %. The rate of selecting the exact model was constant at ∼ 0 % for all data
lengths and 5–10 dB SNR but increased from 1 % to 85 % for high SNR, 15–20 dB, and
Ne = 10, 000 − 80, 000.

The t-test approach undermodeling also dominated the structure-computation effort with
a rate of 100 % for all data lengths at 5–10 dB SNR. For higher SNR levels (15–20 dB) and
all data lengths, the undermodeling rate decreased linearly from 95 % to 8 %. The rate of
overmodeling was ∼ 0 % for all data lengths and 5–10 dB SNR. For higher SNRs of 15–
20 dB, the rate of over-modeling remained approximately constant for all data lengths with
a rate of ∼ 20 %. The rate of selecting the exact model was constant at ∼ 0 % for all data
lengths and 5–10 dB SNR but increased from 4 % to 70 % for all data lengths and high SNR,
15–20 dB.

For this overparameterized model describing aeroelastic dynamics, the bootstrap method
clearly outperformed the t-test and stepwise regression. As a result, the subsequent section
implements only the bootstrap structure method for the analysis of flight-test data.

5.2.3 Structure Detection of Experimental AAW Data

The applicability of using structure detection via a bootstrap approach for blackbox modeling
was assessed on experimental flight-test data from the F/A-18 active aeroelastic wing (AAW)
project at NASA Dryden Flight Research Center. The data analyzed for this study used col-
lective aileron-command input and structural accelerometer-response output.

Procedures

Flight data was gathered during subsonic flutter clearance of the AAW. At each flight condi-
tion, the aircraft was subjected to multisine inputs corresponding to collective and differential
aileron, collective and differential outboard leading edge flap, rudder, and collective stabilator
excitations in the range of 3–35 Hz for 26 s. Accelerometer data measured during the collec-
tive aileron sweeps at Mach 0.85, 4572 m (15,000 ft) was considered. The input collective
aileron command was the exact signal sent by the onboard computer. The output was taken as
the response of an accelerometer mounted near the left wing, outerfold aft. Data was sampled
at 400 Hz. For analysis, the recorded flight-test data were decimated by a factor of 2, resulting
in a final sampling rate of 200 Hz.

The system was identified by applying the bootstrap approach, as outlined in Section
5.2.2, except here scaled hyperbolic tangent functions were used because the input amplitude
is less than ±1 (Figure 5.4). The scale factors used for the input, output and error signals
were in the range of ν = [0.1 1.0] and increased in increments of 0.1. A scaled hyperbolic
tangent is denoted as tanh(·, ν). Models with every possible combination of scale factors
were considered (i.e. structure computation was performed on 1000 models). The model that
yielded the highest crossvalidation per cent fit was deemed the best-fit model.
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For computation of a model structure, Ne = 5200 points were used from accelerometer-
response measurements on the left wing. To validate the computed model structure a cross-
validation data set containing Nv = 5200 points was used from data collected at a similar
location on the right wing.

Results

The results of identifying the AAW data are presented. Figure 5.4 shows the input–output trial
used for this analysis. The data represents collective aileron-command sequence and structural
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Fig. 5.4. Experimental F/A-18 AAW data. Top: Recorded collective aileron position.
Bottom: Recorded structural accelerometer response (left wing outer wing-fold aft).

accelerometer response (left wing, outer wing-fold aft) used to compute the system structure.

Equation (5.27) depicts the model structure computed by the bootstrap method.

z(n) = θ̂0 + θ1z(n− 1) + θ̂2z(n− 3) + θ̂3z(n− 4) + θ̂4u(n) + θ̂5u(n− 2) (5.27)

+ θ̂6u(n− 4) + θ̂7 tanh(u(n), 0.3) + θ̂8 tanh(u(n− 1), 0.3)

+ θ̂9 tanh(u(n− 3), 0.3) + θ̂10 tanh(u(n− 4), 0.3) + θ̂11e(n− 1)

+ θ̂12e(n− 3) + θ̂13e(n− 4) + e(n)



134 S.L. Kukreja and M.J. Brenner

The computed model structure is represented as a Hammerstein model with direct feed-
through terms and contains a total of 14 terms.

Figure 5.5 shows the predicted output for a crossvalidation data set for the identified struc-
ture (Equation (5.27)). The upper panel displays the full 26 s time history of the accelerometer
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Fig. 5.5. Top: Recorded structural accelerometer response (right wing, outerfold aft). Bottom:
Predicted accelerometer response of right wing outerfold aft superimposed on top of measured
velocity output for identified NARMAX AAW model from flight-test data (Nv = 5200).

response recorded on the right wing outer wing-fold aft. The lower panel displays a 10 s
slice of the predicted output superimposed on top of the measured output that accounts for
over 94 % of the measured output variance. The result demonstrates that the computed model
structure is capable of reproducing the measured output with high accuracy.

5.2.4 Theory versus Simulation/Experimental Results

Simulations

For the simulated model of aeroelastic structural stiffness dynamics, results demonstrated that
for all SNR levels and sufficient data length (Ne = 60, 000 − 80, 000), the bootstrap method
had a low rate of selecting an undermodeled model (2–0 %) and a high rate of selecting the
exact model (60–95 %). The t-test and stepwise regression both had difficulty computing the
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correct structure in this case study with a selection range of 3–70 % and 2–85 % respectively,
for equivalent data lengths and SNR levels. Moreover, both had a significantly higher rate of
undermodeling, 100–6 % and 100–8 %, respectively.

Both the t-test and stepwise regression had difficulty, but for different reasons. For the
t-test, extraneous parameters model the noise. This results in a biased estimate of the variance,
which may give models with incorrect structure. Stepwise regression also fails since it uses
a F-ratio test to determine significance. This is sensitive to the order in which the terms are
entered into the model and how much each term contributes to the output [36].

Experimental Aircraft Data

Experimental results demonstrate that structure computation as a tool for blackbox modeling
may be a useful tool for the analysis of dynamic aircraft data. The bootstrap successfully
reduced the number of regressors posed to aircraft aeroelastic data yielding a parsimonious
model structure. Additionally, this parsimonious structure was capable of predicting a large
portion of the crossvalidation data, collected on the adjacent wing and with a different sensor.
This suggests that the identified structure and parameters explain the data well. Using per cent
fit alone as an indicator of model goodness could lead to incorrect interpretations of model
validity. However, for nonlinear models often this may be the only indicator that is readily
available.

Hyperbolic tangent with fourth-order input, output and error lag was used as a basis func-
tion to explain the nonlinear behavior of the F/A-18 AAW data. Different basis functions and
a higher dynamic order (lag-order) could be investigated to determine if another basis can pro-
duce accurate model predictions with reduced complexity. Moreover, further studies could be
used to evaluate whether the model structure is invariant under different operating conditions,
such as Mach number and altitude, and model parameterizations.

Significance

This study illustrates the usefulness of structure detection as an approach to compute a par-
simonious model of a highly complex nonlinear process, as demonstrated with experimental
data of aircraft aeroelastic dynamics. Moreover, analysis of input–output data can provide
useful process insights that can be used in subsequent development or refinement of physical
models. In particular, morphological models are based on assumptions (these effects are im-
portant and those are negligible), which may be incorrect [55, 57]. A structure computation
approach to model identification may help uncover such surprises.

Summary

Simulation results demonstrate that a bootstrap approach for structure computation of aircraft
structural stiffness provided a high rate of true model selection. The t-test and stepwise regres-
sion methods had difficulty providing accurate results for the system studied yet have previ-
ously been shown to provide reasonable results for polynomial class models. Using bootstrap,
it is possible to compute good estimates of parameter statistics resulting in accurate estimates
of model structure.

Moreover, this study contributes to the understanding of the use of structure detection
for modeling and identification of aerospace systems. These results may have practical sig-
nificance in the analysis of aircraft dynamics during envelope expansion and could lead to
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more efficient control strategies. In addition, this technique could allow greater insight into
the functionality of various systems dynamics by providing a quantitative model that is easily
interpretable.

5.3 LASSO Applications

5.3.1 Simulation Example

The efficacy of LASSO as a tool for structure detection was assessed using Monte–Carlo sim-
ulations of a polynomial nonlinear system. In these simulations, a white input with uniform
distribution was used. One thousand Monte–Carlo simulations were generated in which each
input-output realization was unique and had a unique Gaussian distributed, white, zero-mean,
noise sequence added to the output. The output additive noise amplitude was increased in in-
crements of 5 dB, from 20 to 0 dB signal-to-noise ratio (SNR). Each input–output set consisted
of 1000 data points.

The regularization parameter, λ, was determined by numerically minimizing the cross-
validation error across a discrete set of 1000 logarithmically spaced λ values (10λmin ≤
λ ≤ 10λmax ). The min-max regularization parameter levels were set to λmin = −10 and
λmax = 1.5. For crossvalidation, the last 1/3 of each data set was used; 667 points for estima-
tion and 333 for validation. Initially, with a single realization at each noise level, the min-max
regularization parameter levels were set to λmin = −10 and λmax = 1.5 using a coarse dis-
crimination of 100 logarithmically spaced λs. Then, the min-max levels were reset to be in the
neighborhood of the λ that best minimized the PE in this coarse grid and the discrimination
increased to 1000 logarithmically spaced λs before starting the Monte-Carlo analysis.

For each input–output realization, the structure detection result was again classified into
one of three categories:

1. Exact model: A model that contains only true system terms,
2. Overmodeled: A model with all its true system terms plus spurious parameters and
3. Undermodeled: A model without all its true system terms. An undermodeled model may

contain spurious terms as well.

Model Order Known

Consider the nonlinear polynomial system,

z(n) = 0.4[u(n − 1) + u(n− 1)2 + u(n− 1)3]

+ 0.8z(n − 1) − 0.8e(n− 1)

It was assumed that the system order is fully known, O = [1, 1, 1, 3], to assess the accuracy
of LASSO to compute the correct structure when the model is mildly overparameterized.
This system is described by 3 lagged inputs, 1 lagged output, 1 lagged error, and third-order
nonlinearity. A model of this order has 35 candidate terms, but the true system has only 5 true
terms. With 30 spurious parameters this NARMAX model is highly overparameterized.

The left panel in Figure 5.6 shows the LASSO method had a 0 % rate of undermodeling
for 20–10 dB SNR, which then increased from 12.3–30.3 % for 5–0 dB SNR. The rate of
over-modeling increased for 20–5 dB SNR, from 48.6–76.8 % then deceased at 0 dB SNR to
62.6 % where undermodeling started to increase rapidly. The rate of selecting the exact model
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Fig. 5.6. Left: Selection rate of exact, over- and undermodeling. Right: Mean and STD of
spurious term selection rate for overmodeling (Note that the abscissa is shown in decreasing
SNR, which corresponds to increasing noise intensity).

decreased across all SNR levels with a maximum of 51.4 % at 20 dB and a minimum of 7.1 %
at 0 dB.

The right panel illustrates the rate of selecting spurious terms when overmodeling oc-
curred. This rate was low for all SNR levels with a minimum of 1.01 ±0.0733 and a maximum
of 4.55 ± 1.72. For this third-order model with known model order, LASSO performed well
for high SNRs since it did not drop any true terms. The performance of LASSO deteriorated
when the SNR decreased. When LASSO selection was overmodeled the rate of spurious term
selection was low for all SNR levels.

Model Order Unknown but Bounded

Next is examined the performance of LASSO for the following system,

z(n) = 0.4[u(n − 1) + u(n− 1)2] + 0.8z(n − 1)

− 0.8e(n− 1) + e(n)

Here, it was assumed the system order was unknown but could be bounded as Omax =
[3, 3, 3, 3]. A model of this order has 286 candidate terms. However, only 4 true parameters
describe this system: two lagged inputs, one lagged output and one lagged error term. With
282 spurious parameters this NARMAX model is highly overparameterized.

The left panel in Figure 5.7 shows the LASSO method had a 0 % rate of undermodeling
for all SNR levels. The rate of overmodeling increased with decreasing SNR, from 63.09–
100 %. The rate of selecting the exact model decreased as the SNR decreased from 36.91–0 %.
The right panel illustrates the rate of selecting spurious terms when overmodeling occurred.
This rate was low for most SNR levels from 20 to 5 dB, with an average overmodeling rate
of 1.87 ± 0.754 at SNR=20 dB to 10.97 ± 2.87 at SNR=5 dB. However, at SNR=0 dB
the average overmodeling rate increased significantly to 53.53 ± 10.2 For this second-order
model with unknown but bounded model order, LASSO had a lower rate of selecting the exact
model for all noise levels. It was deemed that the performance of this approach is acceptable
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because, although the overparameterization was excessive, no true system terms were dropped
and the rate of spurious term selection was reasonable for all noise levels.

5.3.2 Experimental Aircraft Data

Finally, the LASSO technique was assessed on experimental flight-test data from the F/A-18
AAW. The data analyzed for this study used collective aileron-position input and structural
accelerometer-response output.

Procedures

Flight data was gathered during subsonic flutter clearance of the AAW. At each flight condi-
tion, the aircraft was subjected to multisine inputs corresponding to collective and differential
aileron, collective and differential outboard leading edge flap, rudder, and collective stabilator
excitations in the range of 3–35 Hz for 26 s. This study considers accelerometer data measured
during the collective aileron sweeps at Mach 0.85 at 4572 m (15,000 ft). The input collective
aileron position was obtained as the average of four position transducer measurements from
the right and left ailerons. The output was taken as the response of an accelerometer mounted
near the wing leading edge just inside the wing fold. Data was sampled at 400 Hz. For analy-
sis, the recorded flight test data was decimated by a factor of 2, resulting in a final sampling
rate of 200 Hz.

For identification a model with fourth-order input–output and error dynamics and third-
order nonlinearity, O = [3, 4, 4, 4], was used. A model with fourth-order dynamics was se-
lected because it has been observed that aeroelastic structures are well defined by a fourth-
order linear time-invariant (LTI) system [63]. The nonlinearity order was chosen as third order
because models of higher nonlinear order can often be decomposed to second or third order.
This gave a full model description with 560 candidate terms.
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The system was identified by applying the LASSO, as outlined in Section 5.3.1. For es-
timation, Ne = 5200 points were used from accelerometer-response measurements on the
right wing. For crossvalidation, Nv = 5200 points were used from data collected at a similar
location on the left wing. In both the estimation and crossvalidation sets the input was the col-
lective aileron position. The min-max regularization parameter levels were set to λmin = −10
and λmax = 1.0 (10λmin ≤ λ ≤ 10λmax ) with a discrimination grid of 1000 logarithmically
spaced λs. Each model class was identified separately and the one yielding the best output
prediction was deemed the best model.

Results

The results of identifying the AAW data are presented. Figure (5.8) shows the input-output
trial used for this analysis. The data represents collective aileron position and structural ac-
celerometer response (right wing) used to compute the system structure.
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Fig. 5.8. Top: Collective aileron position. Bottom: Structural accelerometer response.
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z(n) = θ̂0 + θ̂1u(n− 1) + θ̂2u(n− 2) + θ̂3u(n− 4)

+ θ̂4u
2(n− 1) + θ̂5u

2(n− 2) + θ̂6u
2(n− 4) (5.28)

+ θ̂7z(n− 1) + θ̂8z(n− 4) + θ̂9u
2(n− 1)z(n− 4)

+ θ̂10u
2(n− 2)z(n− 1) + θ̂11u

2(n− 4)z(n− 4)

+ θ̂12z
3(n− 1) + θ̂13z

3(n− 4) + θ̂14ε̂(n− 1)

+ θ̂15ε̂(n− 4) + θ̂16u
2(n− 1)ε̂(n− 4)

+ θ̂17u
2(n− 2)ε̂(n− 1) + θ̂18u

2(n− 4)ε̂(n− 4)

+ θ̂19z
2(n− 1)ε̂(n− 1) + θ̂20z(n− 1)ε̂2(n− 1)

+ θ̂21ε̂
3(n− 1) + θ̂22z

2(n− 4)ε̂(n− 4)

+ θ̂23z(n− 4)ε̂2(n− 4) + θ̂24ε̂
3(n− 4)

The computed model structure is represented by a combination of linear and nonlinear,
lagged input-output terms and contains 25 terms. Hence, the LASSO technique successfully
produced a parsimonious model description from the full set of 560 candidate terms.

5.3.3 Theory versus Simulation/Experimental Results

Simulations

The LASSO approach to structure detection yields good results for the nonlinear polynomial
model considered. It had a high rate of selecting the exact structure for high SNR levels. For
lower SNRs, overmodeling dominated the structure computation procedure except at 0 dB at
which the rate of undermodeling started to increase quickly. However, the rate of selecting
spurious terms was low, giving a model that is easily interpretable for all SNR levels when the
computed model was overmodeled.

For the highly overparameterized model, with unknown but bounded model order, over-
modeling dominated for all SNR levels. but gave an acceptable rate of selecting the correct
model structure for low noise amplitude (20 dB). Moreover, the rate of overparameterization
was low for all noise levels except 0 dB where it dominated completely. The results for this
case study were obtained using only 667 data points for estimation and 333 for validation.
Often there is more data available in many system-identification applications and, therefore,
the exact selection rate should improve given more data for identification.

Although the utility of LASSO to underdetermined identification cases was not demon-
strated, it has been shown in some applications that it provides an accurate and unique so-
lution [15]. This ill-posed problem is solved by the introduction of a regularizer or penalty
function to the standard least-squares metric. Moreover, the results demonstrate that LASSO,
at worst, provides a model that is slightly overparameterized. Consider an overparameterized
model better than an undermodeled model since it is not possible (with our backward selection
approach) to re-enter a parameter into the model once it has been removed. An overparame-
terized model that still contains its true parameters is clearly more useful than one that has
dropped a true parameter.

LASSO tends to provide a model that is slightly overparameterized. This feature may be
very useful in many applications such as those in aerospace or biomedical research where
there is little or no a priori information regarding the true underlying system structure. In
these situations, LASSO may be useful to reduce a large number of possible regressors to a
manageable level as demonstrated with the highly overparameterized model, with unknown

Equation (5.28) depicts the model structure computed by the LASSO method
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but bounded model order. Once the number of possible terms has been reduced, these remain-
ing terms can be further assessed for significance using a variety of tools such as covariance
matrix, ANOVA, state-dependent parameter estimation or bootstrap approaches [36, 51].

Experimental Aircraft Data

Experimental results demonstrate that LASSO may be a useful tool for structure computation
of dynamic aircraft data. LASSO successfully reduced the large number of regressors posed
to aircraft aeroelastic data yielding a parsimonious model structure. Additionally, this parsi-
monious structure was capable of predicting a large portion of the observed crossvalidation
data, collected on an adjacent wing and with a different sensor. This suggests that the iden-
tified structure and parameters explain the data well. Using per cent fit alone as an indicator
of model goodness may lead to incorrect interpretations of model validity. However, in many
cases, for nonlinear models this may be the only indicator that is readily available.

For this study, only a polynomial map was used as a basis function to explain the nonlinear
behavior of the F/A-18 AAW data. Clearly, different basis functions should be investigated to
determine if another basis can produce accurate model predictions with reduced or comparable
complexity. Moreover, further studies are necessary to evaluate whether the model structure
is invariant under different operating conditions, such as Mach number and altitude, and for
model parameterizations.

There may be more efficient ways to address the solution of Equation (5.16) for different
λ. The LASSO optimization problem can be viewed as a special case of a parameterized
QP. It is known that the solution θ(λ) is a piecewise function [28] and there are reasonably
efficient ways to construct this function for low-order dimension on the parametric variable λ
[37]. Since λ is scalar in our case, a parametric approach might be tractable. If the piecewise
function θ(λ) has a compact description, it could be more computationally efficient than a
brute-force gridding.

It should be acknowledged that the overall problem with the two stages, (i) computing a
finite set of optimal θ for varying λ and, (ii) optimizing λ in a second phase to minimize the
crossvalidation criteria, can be interpreted as an ad hoc approach to solve a bilevel optimiza-
tion problem. These problems are notoriously difficult to solve exactly. Improved computation
of suboptimal solutions may be possible by exploring more advanced approaches to address
the bilevel optimization problem

The optimization criteria in the LASSO setup is motivated by the well-known fact that
a ‖ · ‖1 penalty appended to a quadratic objective tends to yield a sparse solution. However,
it is only a heuristic for addressing the underlying problem: achieving few nonzero parame-
ters. An alternative way to address this, in an optimization framework, is to use combinatorial
optimization. Solving the regression problem (5.17) with a bound on the number of nonzero
parameters may be achieved in a straightforward manner using mixed binary quadratic pro-
gramming. Instead of performing the crossvalidation optimization problem over a bank of
solutions, computed using different λ, one could compute solutions for a different number of
nonzero parameters and use these solutions in the crossvalidation phase.

Summary

Nonlinear models have the advantage that they cover a wider range of system dynamics than
linear models that could allow for faster envelope expansion. Using nonlinear models to char-
acterize aeroelastic phenomena can provide significant time and cost savings for test and de-
velopment of aerospace vehicles.



142 S.L. Kukreja and M.J. Brenner

A model-validation technique for nonlinear systems, using higher-order correlations was
developed by Billings and Voon [7, 9]. Korenberg and Hunter [32] showed that this model-
validation technique fails for simple cases. Therefore, this approach was not implemented and
was used as an indicator of model goodness.

LASSO enhances the capability for structure detection of an overparameterized polyno-
mial NARMAX model in the presence of additive output noise. Application of structure com-
putation to aeroelastic modeling is again presented using flight-test data and shown to yield a
parsimonious model structure while maintaining a high per cent fit to crossvalidation data.

5.4 Concluding Remarks

NARMAX structure-detection techniques show a high degree of accuracy for selection of the
exact model structure with simulated data, but the applied structure-detection technique is a
key element to achieving satisfactory accuracy and may not apply in all cases. Analysis of
experimental flight-test data generally provides a parsimonious system description with a high
per cent fit for crossvalidated data. These analyses contribute to the understanding of the use of
parametric identification techniques and NARMAX structure detection for blackbox modeling
of nonlinear aerospace systems. Algorithms need to be developed for distributed processing
and automated for fast and efficient algorithms over a sensor array.

LASSO is a novel approach for detecting the structure of overparameterized nonlinear
models in situations where other methods may be inadequate. The main point is that the
LASSO technique is clearly amenable to the study of a wide range of nonlinear systems. Ap-
plication of structure computation to aeroelastic modeling is again presented using flight-test
data and shown to yield a parsimonious model structure while maintaining a high per cent fit
to crossvalidation data. These results may have practical significance in the analysis of aircraft
dynamics during envelope expansion and could lead to more efficient control strategies. This
technique could also allow greater insight into the functionality of various systems dynamics
by providing a model that is easily interpretable.
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6.1 Background

The problem of robust stability and performance for feedback control systems has been studied
for many years. A number of design procedures are proposed to tackle the robustness issue
for feedback control systems. These include design techniques in both the time and frequency
domains. While time-domain methods are popular in academic research, frequency-domain
techniques dominate the engineering practice. The primary reason is the existence of the model
uncertainty in both magnitude and phase responses of the plant model that is difficult to tackle
in the time domain that gives rise to H∞ control. In retrospect, H∞ control revived classical
frequency design techniques, and renewed traditional interests in analyzing feedback control
systems in the frequency domain. It provides the worst-case guarantee on robust stability and
performance provided that the model uncertainty is quantified in H∞ norm. In particular, H∞
loopshaping as investigated in [6] extends the lead/lag compensator design to multivariable
systems, and generalizes the synthesis method based on Bode plots to frequency shaping in
H∞. The rapid development in H∞ control also motivated modeling of uncertain systems
in the frequency domain. Identification in H∞ proposed in [5] attracted significant interest
in the control community that aims at modeling and quantification of H∞ norm-bounded
uncertainties compatible with H∞ control. The monograph [2] provides a glimpse in this
research area.

In spite of the aforementioned progress, modeling and control of uncertain systems are
studied separately, though not independently in light of [2, 5]. A more challenging issue is the
integration of modeling and control under the same framework of H∞ that will be investigated
in this chapter with JPL flexible structure [1] as an application platform. It is assumed that
the design specifications for feedback control of the lightly damped system are given in the
frequency domain, specified by the frequency shape of the open-loop system. Based on the
samples of the experimental frequency response measurements, normalized coprime factors
of the shaped plant model are identified with quantification of the modeling error in H∞ norm.
Several existing algorithms are employed to identify the plant model, and the modeling errors
in terms of the normalized coprime factor uncertainty are compared in H∞ norm. In addition
feedback controllers are synthesized to stabilize the true but unknown plant based on the H∞
loopshaping method. A complete design procedure will be presented that integrates modeling
and control in the frequency domain. The performance of the feedback control system with the
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true plant is analyzed based on the modeling error bound quantified in the identification stage.
For consistency, the proposed modeling and control technique will be developed in discrete
time. The notations are standard and will be made clear as we proceed.

6.2 Robust Stabilization

Robust stabilization refers to stabilization of a set of systems by a single feedback controller. In
[6] stabilization of uncertain systems described by normalized coprime factors is investigated.
It assumes that the nominal plant model is given by a transfer matrix of size p×m represented
by

P0(z) = M̃−1
0 (z)Ñ0(z) = N0(z)M

−1
0 (z) (6.1)

where M̃0(z), Ñ0(z),M0(z),N0(z) are normalized coprime factors or stable and proper
transfer matrices that satisfy3

M̃0(z)M̃0(z)
∼ + Ñ0(z)Ñ0(z)

∼ = I
M0(z)

∼M0(z) +N0(z)
∼N0(z) = I

(6.2)

If P0(z) has finitely many poles, then computation of its normalized coprime factors is
straightforward. Specifically in this case P0(z) admits a state-space realization with realiza-
tion matrices {A0, B0, C0,D0}. By convention

P0(z) =

�
A0 B0

C0 D0

�
:= D0 + C0(zI − A0)

−1B0 (6.3)

by an abuse of notation. Denote R0 = I + D′
0D0 and R̃0 = I + D0D

′
0, and X ≥ 0 and

Y ≥ 0 as the stabilizing solutions to the following algebraic Riccati equations (AREs):

X = A′
0XA0 +C′

0C0 − F ′
0(R0 +B′

0XB0)F0 (6.4)

F0 = −(R0 +B′
0XB0)

−1(B′
0XA0 +D′

0C0)

Y = A0Y A
′
0 +B0B

′
0 − L0(R̃0 + C′

0Y C0)L
′
0 (6.5)

L0 = −(A0Y C
′
0 +B0D

′
0)(R̃0 +C0Y C

′
0)

−1

Then the normalized coprime factors of P0(z) are given by [9]

G0(z) =

�
M0(z)
N0(z)

�
=

�
A B

C D

�
=

�
�A0 +B0F0 B0Ω

−1
0

F0 Ω−1
0

C0 +D0F0 D0Ω
−1
0

�
� (6.6)

G̃0(z) =
�
M̃0(z) Ñ0(z)

�
=

�
Ã B̃

C̃ D̃

�
=

�
A0 + L0C0 L0 B0 + L0D0

Ω̃−1
0 C0 Ω̃−1

0 Ω̃−1
0 D0

�
(6.7)

that are stable and satisfy G0(z)
∼G0(z) = I and G̃0(z)G̃0(z)

∼ = I where

Ω0 = (R0 +B′
0XB0)

1/2, Ω̃0 = (R̃0 + C0Y C
′
0)

1/2 (6.8)

Denote the set of all stable and proper transfer matrices by H∞. For any T (z) ∈ H∞, its
H∞ norm is given by

3 Notation T (z)∼ = T ′(z−1) is used.
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‖T‖∞ := sup
|z|>1

σmax [T (z)] (6.9)

with σmax(·) the maximum singular value. The true system is in the form of

P (z) = [M̃0(z) +∆M̃ (z)]−1[Ñ0(z) +∆Ñ(z)]

= [N0(z) +∆N (z)] [M0(z) +∆M (z)]−1 (6.10)

It assumes that ∆M̃ (z),∆Ñ(z),∆M (z),∆N (z) ∈ H∞ are unknown but a norm bound
‖∆‖∞ ≤ δ or ‖∆̃‖∞ ≤ δ̃ is available where

∆(z) =

�
∆M (z)
∆N(z)

�
, ∆̃(z) =

�
∆M̃ (z) ∆Ñ (z)

�
(6.11)

Hence, the true system P (z) lies in a set of uncertain systems with size δ or δ̃ and described
by the normalized coprime factors of its approximant or P0(z). Given the true plant P (z) and
nominal model P0(z), the norm bounds on the modeling error can be computed according to
[3]

δ = inf
Q∈H∞

‖G0 −GQ‖∞, δ̃ = inf
Q̃∈H∞

‖G̃0 − G̃Q̃‖∞ (6.12)

in which G(z) and G̃(z) are defined in the same way as G0(z) and G̃0(z), respectively with
P0(z) replaced by P (z). Under some mild condition the set of uncertain systems described
by normalized coprime factors is equivalent to the set of gap metric uncertain systems [3] that
in turn implies that

∆(z) = G(z)Q(z) −G0(z), ∆̃(z) = Q̃(z)G̃(z) − G̃0(z) (6.13)

for some Q(z), Q̃(z) ∈ H∞. It follows that P (z) in Equation (6.10) is characterized by
P0(z) and the norm bound δ or δ̃. Robust stabilization requires design of a single feedback
controller that stabilizes the set of plants in Equation (6.10) satisfying the given norm bound.
The solution to such a robust stabilization problem is provided in [6] for continuous-time
systems and will be provided next for discrete-time systems.

Denote the feedback controller asK0(z) that is synthesized based on P0(z). LetK0(z) =
V −1

0 (z)U0(z) be its left coprime factorization. Stabilization of P0(z) is equivalent to design
of {V0(z), U0(z)} such that

I = V0(z)M0(z) + U0(z)N0(z) = G+
0 (z)G0(z) (6.14)

where G+
0 (z) ∈ H∞ is a left inverse of G0(z). Because

V0(z)[M0(z) +∆M (z)] + U0(z)[N0(z) +∆N (z)] = I +G+
0 (z)∆(z) (6.15)

robust stabilization amounts to design of G+
0 (z) ∈ H∞ such that δ‖G+

0 ‖∞ < 1 which is the
so-called corona problem [3]. We skip the dual case for uncertain systems described by left
normalized coprime factors.

Remark 1. The equality (6.14) and δ‖G+
0 ‖∞ < 1 imply

γ0 = ‖G+
0 ‖∞ =

���V0 U0

���
∞ =

����
�
P0

I

�
(I −K0P0)

−1 �K0 I
�����

∞
< δ−1 (6.16)

It turns out that the set of uncertain systems stabilized by the above K0(z) is larger than that
described earlier. Indeed, denote L∞ as the set of all proper transfer matrices with bounded
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‖ · ‖∞. Then the set of uncertain systems with∆(z) ∈ L∞ and ‖∆‖∞ ≤ δ is also stabilized
[8] provided that

wno [det(I + P∼P0)] + η(P0) − η(P ) − η0(P ) = 0 (6.17)

holds, where η(·) and η0(·) denote the number of poles outside and on the unit circle, respec-
tively, and wno(·) is the winding number of the Nyquist plot about the origin. This observation
is important because modeling of the normalized coprime factors does not always guarantee
stability of the uncertainty ∆(z) or ∆̃(z) but the condition (6.17) can be rather easily en-
forced. In addition, given G0(z) and G(z), consisting of the normalized coprime factors of
P0(z) and P (z), the uncertainty bound can be computed according to [8]

δ = inf
Q∈L∞,wno(Q)=0

‖G0 −GQ‖∞ (6.18)

Recall that (A,B,C,D) is a realization of G0(z) with (p + m) × m the size of D,
assuming n × n is the size of A0 or A. Then D has full column rank and G0(z) is strictly
minimum phase implying the existence of proper and stable left inverses G+

0 (z). Indeed we
have

G0(z) =
�
I + C(zI − A)−1BL

�
D, BL = BD+ − LD+

⊥
for any L of size n×pwhereD+ is a left inverse ofD andD+

⊥ of size (p+m)×m satisfying

�
D+

D+
⊥

� �
D D⊥

�
=

�
Im 0
0 Ip

�
(6.19)

where Ik denotes the identity matrix of dimension k × k. Moreover, the following holds

rank

��
A− zI B
C D

��
= rank

��
�
	

 I −BD+

0 D+
⊥

0 D+

�
�
�
A− zI B
C D

��
�

= m+ rank

��
zI − A+BD+C

D+
⊥C

��

Thus, G0(z) being strictly minimum phase is equivalent to the detectability of (D+
⊥C,A −

BD+C). It follows that there exists an L such thatAL = A−BD+C+LD+
⊥C is a stability

matrix and

G+
0 (z) = D+

�
I + C(zI −A)−1BL

�−1
= D+

�
I − C(zI −AL)−1BL

�
(6.20)

is stable and proper. Define an augmented square transfer matrix as

Ga(z) =
�
G0(z) G0⊥(z)

�
:=
�
I + C(zI − A)−1BL

� �
D D⊥

�
(6.21)

Then Ga(z) is strictly minimum phase provided thatG0(z) is, and L is stabilizing. Hence

G−1
a (z) =

�
D D⊥

�−1 �
I +C(zI − A)−1BL

�−1
(6.22)

=

�
D+

D+
⊥

� �
I −C(zI − AL)−1BL

�
=:

�
G+

0 (z)
G+

0⊥(z)

�

is stable as well. The following characterizes all the stable and proper left inverses.
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Lemma 1. Suppose that G0(z) = D + C(zI − A)−1B is strictly minimum phase and D
has full column rank. Then there exists a stabilizing L such that the left inverse as in Equa-
tion (6.20) is stable and proper. Moreover, all stable and proper left inverses of G0(z) are
parameterized by

Ginv
0 (z) = G+

0 (z) + J(z)G+
0⊥(z) (6.23)

where J(z) is an arbitrary stable and proper transfer matrix.

Proof. Clearly for any stable and proper J(z),Ginv
0 (z) is stable and proper as well. Moreover

Ginv
0 (z)G0(z) = I holds by the relation in Equation (6.21). Conversely ifGinv

0 (z) is a stable
and proper left inverse of G0(z). Then

Ginv
0 (z)Ga(z) = Ginv

0 (z)
�
G0(z) G0⊥(z)

�
=
�
I J(z)

�
(6.24)

by taking J(z) = Ginv
0 (z)G0⊥(z), which is proper and stable. It follows that

Ginv
0 (z) =

�
I J(z)

�
G−1

a (z) = G+
0 (z) + J(z)G+

0⊥(z) (6.25)

that is in the same form as in Equation (6.23) and depends only on L and J(z).

In the case of normalized coprime factors, the following holds [6]

inf
J(z)∈H∞

‖G+
0 + JG+

0⊥‖∞ =
1�

1 − λmax[XY (I +XY )−1]
=: γopt (6.26)

In fact J(z) can be replaced by static gain J in computing a stable and proper left inverse
Ginv

0 (z) such that ‖Ginv
0 ‖∞ < γ for any γ > γopt.

Theorem 1. Consider the stable and proper left inverseGinv
0 (z) as in Equation (6.25). There

exist stabilizing gains L and J such that ‖Ginv
0 ‖∞ < γ, if and only if the following ARE

Σ = (A−BΠD′C)Σ[I + C′(I −DΠD′)CΣ]−1(A−BΠD′C)′ +BΠB′ (6.27)

withΠ = γ2(γ2D′D − I)−1 has a stabilizing solution Σ ≥ 0 such that

γ2(D′D)2 −
�
D′D +D′CΣ(I + C′D⊥D

′
⊥CΣ)−1C′D

�
> 0 (6.28)

In this case, a left inverse satisfying ‖Ginv
0 ‖[∞,T ] < γ is specified by

�
L
J

�
= −

�
A−BD+C
D+C

�
ΣC′D⊥(I +D′

⊥CΣC
′D⊥)−1

That is, J(·) can be chosen as a constant gain.

Proof. By the expression of Ginv
0 (z) in Equation (6.25), the required left inverse corresponds

to the H∞ output estimation problem described by

x(t+ 1) = (A−BD+C)x(t) −BD+η(t)
ζ(t) = −D+Cx(t) +D+η(t)
y(t) = D′

⊥Cx(t) +D′
⊥η(t)

(6.29)

where x(t) is the state vector of G0(z), ζ(t) is the output signal to be estimated, y(t) is the
output observation, and η(t) is an arbitrary energy bounded noise sequence. Specifically, the
output estimator has the structure
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x̂(t+ 1) = (A−BD+C)x(t) − L[y(t) −D′
⊥Cx̂(t)]

ζ̂(t) = D+Cx(t) − J [y(t) −D′
⊥Cx̂(t)]

(6.30)

Denote the estimator errors by xe(t) = x(t) − x̂(t) and ζe(t) = ζ(t) − ζ̂(t). Then, with the
expressions in Equations (6.29) and (6.30), we arrive at�

xe(t+ 1)
ζe(t)

�
=

�
A−BD+C + LD⊥C −BD+ + LD′

⊥
D+C + JD′

⊥C D+ + JD′
⊥

��
xe(t)
η(t)

�
(6.31)

that is identical to that in Equation (6.25). It is now clear that the existence of L and J(z)
such that Ginv

0 (z) is stable and satisfies ‖Ginv
0 ‖∞ < γ for some γ > 0 is an H∞ output

estimation problem and the formulas in [4] can be applied directly. In fact, the formulas in [4]
can be further simplified by noting the relation in Equation (6.19). Hence, we conclude that
there exists an output estimator such that Ginv

0 (z) is stable and ‖Ginv
0 ‖∞ < γ, if and only if

the ARE (6.27) admits a stabilizing solution Σ ≥ 0 such that the inequality (6.28) holds. The
detailed calculations are skipped.

Note that the ARE (6.27) can be rewritten in a more familiar form

Σ = AΠΣA
′
Π − AΠΣC

′(R+CΣC′)−1CΣA′
Π +BΠB′ (6.32)

with AΠ = A−BΠD′C although R = I − γ2DD′ is sign-indefinite.

Remark 2. Theorem 1 provides a procedure for computing the robust controller. LetGinv
0 (z) =�

V0(z) U0(z)
�

be the stable and proper left inverse ofG0(z) whose H∞-norm is bounded by
γ > 0. Then K0(z) = V −1

0 (z)U0(z) is the feedback controller that stabilizes the uncertain
system described by normalized coprime factors [3, 6] as long as the H∞-norm of the uncer-
tainty is no more than δ < γ−1. In fact, a two degree-of-freedom controller can be employed
as in Figure 6.1 to achieve not only robust stability but also good tracking performance [8].

� P (z)

−K0(z)

V −1
0 (z) � � �

�

r(t) u(t) y(t)

Fig. 6.1. Two degree-of-freedom control system whereK0(z) = V −1
0 (z)U0(z)

An application of the robust stabilization result is the H∞ loopshaping design procedure
developed in [6] in which it is observed that robust stabilization and performance objective
share the same cost function measured by H∞ norm. To be specific, assume that P0(z) has
the desired frequency shape dictated by the desired loop-gain performance. Then we have the
following result [6].

Theorem 2. Suppose that P0(z) admits normalized coprime factorizations as in Equation
(6.1) and G0(z) is defined as in Equation (6.6). Let Ginv

0 (z) be as in Theorem 1 satisfying
the condition γ0δ < 1 with γ0 = ‖Ginv

0 (z)‖∞ < γ. Then the following holds
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(i) If σmin(P0(e
jω)) >

�
γ2 − 1, then

σmin(K0(e
jω)) ≥ σmin(P0(e

jω)) −
�
γ2 − 1

1 + σmin(P0(ejω))
�
γ2 − 1

(ii) If σmax(P0(e
jω)) < 1/

�
γ2 − 1, then

σmax(K0(e
jω)) ≤

�
γ2 − 1 + σmax(P0(e

jω))

1 − σmax(P0(ejω))
�
γ2 − 1

(iii) For all ∆(z) ∈ H∞ such that δ = ‖∆‖∞ < 1/γ,
����
�
P
I

�
(I −K0P )−1 �K0 I

�����
∞
<

γ

1 − δγ

where P (z) is in the form of Equation (6.10).

The facts (i) and (ii) show that the loopshape of the feedback system consisting of the
nominal model is similar to that of the nominal model that can be suitably shaped by some
frequency weighting functions. This is the main reason why the robust stabilizing controller
can achieve the H∞ loopshaping performance. In light of Remark 1, fact (iii) implies that the
true loopshape of the feedback system in Figure 6.1 has a similar performance to that of the
nominal one provided that γ0δ << 1. That is, the robust stabilizing controller achieves the
robust performance as well.

The robust stabilization result in this section poses a modeling problem: How to identify
the normalized coprime factors with modeling error quantified in H∞ norm? In fact by Re-
mark 1, the uncertainty∆(z) can be allowed to be unstable, provided that the condition (6.17)
holds. This problem will be investigated in the next section.

6.3 Robust Modeling

Modeling of the normalized coprime factors is studied in this section. It is assumed that the ex-
perimental data consist of frequency-response measurements of the physical plant, corrupted
by an additive-type noise:

Ek = P (ejωk) + ηk, ωk ∈ [0, π], for k = 1, 2, · · · , N (6.33)

It is also assumed that frequency shape of the plant P represents the performance of the loop
gain. If this is not true, then weighting functions should be employed to shape the plant P
that is discussed in detail in [6]. The synthesis of the weighting function can be related to
filtering of the measurement noise {ηk}N

k=1. It is often the case that the low-frequency range
is the operation band, while the high-frequency range is not. Thus, integrators, or low-pass
filters are the typical weighting functions to shape the plant that is beneficial to improve the
signal-to-noise ratio in experimental data sequence {Ek}N

k=1. For this reason, it is assumed
that

ηk ∈ Nε(E) :=
�
N : σmax((I + EkE

∗
k)−1/2N ) ≤ ε

�
(6.34)

with superscript ∗ denoting transpose and conjugate. Hence, in the low-gain frequency range
the additive error in the plant gain measurements is small, and in the high-gain frequency
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range it is large, in contradiction with the assumption in [5]. It is also noted that Equation
(6.34) involves only experimental data, and thus the noise level ε can be estimated.

The first difficulty in modeling is the experimental frequency response data that is obtained
for the physical plant P , rather than for its normalized coprime factors. Denote

Φ[P ] =

�
P∼

−I

�
(I + PP∼)−1 �P −I

�
=

�
Ñ∼

−M̃∼

� �
Ñ −M̃

�
(6.35)

where P (z) = M̃−1(z)Ñ(z) = N(z)M−1(z) with {M̃, Ñ)} and {M,N} left and right
normalized coprime factors of P (z). The next result is useful.

Proposition 1. Let P0(z) in Equation (6.1) be the nominal model withG0(z) as in Equation
(6.6). LetP (z) in Equation (6.10) be the true plant and∆(z) as in Equation (6.11) satisfying
condition (6.17) and ‖∆‖∞ ≤ δ. Then

δ0 := ‖∆‖∞ = ‖Φ[P ]G0‖∞ (6.36)

holds, where Φ[P ] is the same as in Equation (6.35). Furthermore, the following holds

δd = ‖∆(jωk)‖�∞ := max
k
σmax(∆(ejωk)) ≤ ‖Φ[Ek]G0(e

jωk)‖�∞ + ε (6.37)

Proof. In light of Remark 1,

δ0 = ‖∆‖∞ = inf
Q∈L∞,wno(Q)=0

‖G0 −GQ‖∞ (6.38)

If condition (6.17) is true, then by [8],

δ0 =

����� Ñ −M̃
� �M0

N0

�����
∞

= ‖(I −GG∼)G0‖∞ = ‖Φ[P ]G0‖∞ (6.39)

By a similar argument as in [8] and the assumption in Equation (6.34),

‖Φ[Ek] − Φ[P0(e
jωk)]‖�∞ = ‖(I + P0(e

jωk)P0(e
jωk )∗)−1/2ηk(I + E∗

kEk)−1/2‖�∞

≤ ε

holds. Thus, the discretized error function satisfies

δd = ‖∆(ejωk )‖�∞ = ‖Φ[P (jωk)]G0(e
jωk)‖�∞

≤ ‖Φ[Ek]G0(e
jωk)‖�∞ + ‖

�
Φ[P (ejωk)] − Φ[Ek]

�
G0(e

jωk)‖�∞

≤ ‖Φ[Ek]G0(e
jωk)‖�∞ + ε

by the fact that G0(e
jωk)∗G0(e

jωk) = I for k = 1, 2, · · · , N .

Proposition 1 shows that the modeling error is hinged to minimization of

δmax = ‖Φ[Ek]G0(e
jωk )‖�∞ (6.40)

=

����
�
E∗

k

−I

�
(I + EkE

∗
k)−1 �E∗

k −I
�
G0(e

jωk )

����
�∞

Indeed, asM(z) and N(z) are right normalized coprime factors of P (z),
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M(z) = [I + P (z)∼P (z)]−1/2, N = P (z)[I + P (z)∼P (z)]−1/2

Hence, large abrupt variations of the frequency response of plant P (z) are smoothed away in
M(ejωk ) and N(ejωk ). Moreover if G0(z) admits a smooth frequency response, the mod-
eling error δ0 = ‖∆‖∞ tends to be close to δmax, provided that the noise bound ε is small,
and the number of experimental data points is large. The rest of this section will thus focus on
seeking the model G0(z) such that δmax is minimized.

ParameterizeG0(z) as

G0(z) =

�
M0(z)
N0(z)

�
=

�
R(z)
S(z)

�
T−1(z) (6.41)

X(z) =

�
R(z)
S(z)

�
=

n�
k=0

�
Rk

Sk

�
z−k =

n�
k=0

Xkz
−k (6.42)

where R(z)∼R(z) + S(z)∼S(z) = T (z)∼T (z) with T (z) square of sizem×m andXk of
size (p +m) ×m. Recall that m is the number of inputs and p the number of outputs of the
plant. Stability of the left normalized coprime factors requires that det [T (z)] �= 0,∀|z| ≥ 1.
Clearly T (z) is a spectral factor of R(z)∼R(z) + S(z)∼S(z) that is a polynomial of z and
z−1. Denote

X ′ =
�
X ′

0 X
′
1 · · · X ′

n

�
, Ωk =

�
I e−jωkI · · · e−jnωkI

�
(6.43)

All the above identities have size (p+m) × (p+m). The following relations hold

X(ejωk ) =

�
R(ejωk)
S(ejωk)

�
= ΩkX, T (ejωk)∗T (ejωk) = X ′Ω∗

kΩkX (6.44)

It follows from the proof of Proposition 1 and Equation (6.40) that for k = 1, 2, · · · , N ,

δ2maxI ≥
�
M0(e

jωk)∗ N0(e
jωk)∗

�
Φ[Ek]

�
M0(e

jωk )
N0(e

jωk)

�

= T−1(ejωk)∗
�
R∗

0(e
jωk) S∗

0 (ejωk)
�
Φ[Ek]

�
R(ejωk)
S(ejωk )

�
T−1(ejωk)

Multiplying T (ejωk)∗ from left, and T (ejωk) from right, and using the relations in Equation
(6.44) give the following equivalent expression:

X ′Ω∗
k

�
δ2maxI − Φ[Ek]

�
ΩkX ≥ 0 (6.45)

for 1 ≤ k ≤ N . Hence δmax can be alternatively defined as

δmax := inf
�
δ : X ′Ω∗

k

�
δ2I − Φ[Ek]

�
ΩkX ≥ 0 for 1 ≤ k ≤ N

�
(6.46)

Modeling of the right normalized coprime factors {M0(z), N0(z)} amounts to minimization
of δmax over all full rank matrices X with size (n + 1)(p + m) × m due to the fact that
G0(e

jω) is an orthogonal matrix and thus has full rank at each frequency.
For a fixed value of δ, it is difficult to find a feasibility solution X having full rank such

thatX ′Ω∗
k

�
δ2I − Φ[Ek]

�
ΩkX ≥ 0 for 1 ≤ k ≤ N . In what follows, an alternative is sought

to synthesize the matrixX that parameterizes the identified plant P0. Instead of searching for
an optimal solution to δmax, SK-iteration [7] will be employed to find a local minimum for
the �∞ objective function. To be more specific, at the ith step SK-iteration seeks X of size
(n+ 1)p×m having full rank such that it minimizes
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δq(X) = ‖
�
X ′

iΩ
∗
kΩkXi

�−1/2
Φ[Ek]ΩkX‖�q , (6.47)

with ‖·‖�q the �q-norm and assignsXi+1 = X for i = 0, 1, · · · . To avoid numerical difficulty,
R0, the first m rows of X, can be normalized to identity. The initial solution X0 is arbitrary
provided thatΩkX0 has full rank for each k. For instance,X0 can be taken to satisfyX0Ωk =
I for 1 ≤ k ≤ N . By norm properties, δp(X) in Equation (6.47) is a nondifferentiable and
convex function with respect to Ωk. Thus various algorithms for convex programming can
be employed to search for the optimal solution to δp(X). Moreover, for the case of p = 2,
an analytic solution is available for the minimum of δp(X) as in Equation (6.47) that is far
more efficient to compute than convex programming. As indicated in [1], the SK-iteration for
δp with p = 2 may also lead to a small error in δmax. It should be clear that if SK-iteration
converges, the limit {Xi} is a local minimum of δp. Therefore the SK-iteration provides an
effective numerical tool for searching the identified model P0(z) that is parameterized by
P0(s) = S(z)R−1(z). However, minimization of δp alone is not adequate, even if δmax is
small because condition (6.17) may not be satisfied. This will be addressed in the next result.

Theorem 3. Suppose that P0 has no fewer unstable poles than P , i.e. η(P0) + η0(P0) ≥
η(P ) + η0(P0). Then

κ = wno [det(I + P∼P0)] + η(P0) − η(P ) − η0(P ) ≥ 0 (6.48)

provided that ‖N∼
0 (P − P0)M0‖∞ < 1 or
�
�
�(I + P∼

0 P0)
−1/2P∼

0 (P − P0)(I + P∼
0 P0)

−1/2
�
�
�
∞
< 1 (6.49)

Proof. Denote Eid(z) = P0(z) − P (z). Then

I + P∼P0 = I + P∼
0 P0 − E∼

idP0 = (M∼
0 )−1M−1

0 − E∼
idN0M

−1
0

= (M∼
0 )−1 (I −M∼

0 E
∼
idN0)M

−1
0

as P0 = M̃−1
0 Ñ0 is a left normalized coprime factorization. Thus,

det(I + P∼P0) = det(I −M∼
0 E

∼
idN0)/[det(M0) det(M∼

0 )] (6.50)

It follows from the above and condition (6.49) that

wno [det(I + P∼P0)] = wno [det(I −M∼
0 E

∼
idN0)] − wno [det(M0)] − wno [det(M∼

0 )]

= −wno [det(M0)] − wno [det(M∼
0 )]

Using the property for the winding number and η(M−1
0 ) = η(P0),

wno [det(I + P∼P0)] = η0(P0) (6.51)

It is now straightforward to see that

κ = wno [det(I + P∼P0)] + η(P0) − η(P ) − η0(P )

= η(P0) + η0(P0) − η(P ) − η0(P ) ≥ 0

This concludes the proof.

The condition (6.49) is difficult to enforce unless η0(P0) = η0(P ). The next result pro-
vides a simpler condition.
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Theorem 4. Suppose that P0 has no fewer poles than P in C+, i.e., η(P0) ≥ η(P ). Then
κ = wno [det(I + P∼P0)] + η(P0) − η(P ) − η0(P ) ≥ 0, if

���(I + P∼P )−1/2P∼(P − P0)(I + P∼P )−1/2
���
∞
< 1 (6.52)

Proof. We follow the same procedure as in the proof of Theorem 3 with Eid(z) = P (z) −
P0(z). Then

I + P∼P0 = I + P∼P − P∼Eid = (M∼)−1M−1(z) − P∼Eid

= (M∼)−1 (I −N∼EidM)M−1

as P (z) = N(z)M−1(z) is a right normalized coprime factorization. Thus,

det(I + P∼P0) = det(I −N∼EidM)/[det(M) det(M∼)]

It follows from the condition (6.52) that

wno [det(I + P∼P0)] = wno [det(I −N∼EidM)] − wno [det(M)] − wno [det(M∼)]

= η0(P )

Hence, the hypothesis η(P0) ≥ η(P ) implies that

κ = wno [det(I + P∼P0)] + η(P0) − η(P ) − η0(P ) = η(P0) − η(P ) ≥ 0

This concludes the proof.

While Theorem 3 requires η0(P0) = η0(P ), the condition of Theorem 4 is more mild, and
easy to be incorporated into numerical computation. Indeed, ‖(I + P∼P )−1/2P∼‖∞ < 1,
if P has no pole on the imaginary axis and in general ‖(I + PP∼)−1/2P∼)‖∞ ≤ 1. Thus
condition (6.49) is ensured if

‖(P0 − P )(I + P∼P )−1/2‖∞ = ‖(P0 − P )M‖∞ =
���P0 −I

�
G
��
∞

=
���P0 −I

�
GG∼��

∞ < 1 (6.53)

The above can be written alternatively by defining

Ψ [P ] =

�
−P
I

�
(I + P∼P )−1 �−P∼ I

�
=

�
−N
M

� �
−N∼ M∼ �

(6.54)

In addition, the following equality also holds

‖Ψ [P (ejωk )] − Ψ [Ek)]‖�∞ ≤ ε (6.55)

Note that we can rewrite the condition in Equation (6.52) as
��� I P0

�
Ψ [P ]

��
∞ < 1 (6.56)

Due to the fact that P (z) is unknown and only N experimental data are available, the above
condition is replaced by

��� I P0(e
jωk)

�
Ψ [Ek]

��
�∞ < 1 − ε (6.57)

Because the modeling error is, according to [8],
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δ = ‖∆‖∞ = ‖(I + P∼P )−1/2(P0 − P )(I + P0P
∼
0 )−1/2‖∞

≤ ‖(P0 − P )(I + P∼P )−1/2‖∞

the condition (6.53) is consistent with the minimization of ‖∆‖∞. Therefore, to ensure con-
dition (6.53), the �q objective function in Equation (6.47) can be modified as

δq(α,X) =
�
δq

q(X) + α
��� I Ωp

kX(Ωm
k Xi)

−1
�
Ψ [Ek]

��q

�q

�1/q

(6.58)

with α > 0 a scalar weighting, and Ωm
k = ΩkSm and Ωm

k = ΩkSp where

Sm = In+1 ⊗
�
Im
0

�
, Sp = In+1 ⊗

�
0
Ip

�
, Sm + Sp = I

With a suitable choice of the weighting, it is possible to obtain an identified plant P0 such
that Equation (6.53) is true. The condition η(P0) ≥ η(P ) is relatively easy to satisfy since if
it is violated, an unstable transfer function, with prescribed number of unstable poles, having
arbitrarily small magnitude response can be added intoP0 that has little effect on the modeling
error. Thus, the SK-iteration provides a simple, and effective method for the modeling problem
studied in this chapter.

Remark 3. For robust stabilization, κ = 0 is required in light of the condition (6.17). In the
case η(P0) > η(P ), we may employ optimal Hankel norm approximation to reduce the
number of unstable poles of P0(z). If the modeling error is δ0 with the approximant P0(z).
Then with the optimal Hankel-norm approximant, the new P0(z) has the same number of
unstable poles as P (z) and the total modeling error is no more than 2δ0. The argument is
similar to the two-stage nonlinear algorithm in [2] that is omitted.

Once the approximate model P0(z) is obtained with modeling error δ, then the robust
feedback controller can be synthesized as in the previous section. In the next section our
integrated modeling and control method will be demonstrated with the JPL flexible structure
as the application example.

6.4 Simulation Results for the JPL Flexible Structure

In this section our proposed integrated approach to modeling and control of flexible structures
will be tested with the JPL flexible structure [1], for which a schematic diagram is given in the
graphic image of Figure 6.2.

Because the structure has a single input/output and is stable, modeling is simplified by
parameterizing it as a fraction of two polynomials:

P0(z) =
a(z)

b(z)
=
a0 + a1z

−1 + · · · + anz
−n

1 + b1z−1 + · · · + bnz−n
(6.59)

The condition in Theorem 4 is automatically satisfied. In addition, the error function in Propo-
sition 1 can be simplified into

δ0 = sup
ω

�����
P0(e

jω) − P (ejω)�
1 + |P0(ejω)|2

�
1 + |P (ejω)|2

����� (6.60)
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Fig. 6.2. JPL structure

that is, the ν-metric defined in [8] for κ = 0, with κ defined in Equation (6.48). Because P (z)
is unavailable except its experimental measurement data Ek, the discretized error uncertainty

|∆(ejωk )| =

�����
P0(e

jωk) − Ek�
1 + |P0(ejωk)|2

�
1 + |Ek|2

����� (6.61)

will be used. Let Ωk be as in Equation (6.43) and parameter vector be

X ′ =
�
0 a0 b1 a1 · · · bn an

�
(6.62)

Then, the following identity holds
�
b(ejωk)
a(ejωk)

�
=

�
1
0

�
+ΩkX (6.63)
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Fig. 6.3. (a) Frequency response of the true plant (solid) and estimated plant (dashed); (b)
Identification error plot for the curve-fitting method.

Hence the error uncertainty has the form

|∆(ejωk)| =

�����
Ek +

�
Ek −1

�
ΩkX�

hk(X)
�

1 + |Ek|2

����� (6.64)

hk(X) =

��
1
0

�
+ΩkX

�∗ ��
1
0

�
+ΩkX

�

The experimental data are given by N = 1024 frequency-response measurements uni-
formly distributed over [0, 2π). In fact, only 513 of them are independent measurements. Its
magnitude response in dB is plotted next with solid line. We employed the SK-iteration [7]
that is a popular curve-fitting algorithm to compute the parameter vectorX with �2 norm that
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Fig. 6.4. (a) Frequency response of the true plant (solid) and estimated plant (dashed); (b)
Identification error plot for the Kung’s algorithm.

uses the previously computed parameter vector in h(·) to obtain the new estimated parameter
vector. We also employed Kung’s algorithm to identify the open-loop plant as a comparison.
The nominal model of the identified plant is represented by a 24-order model.

In Figure 6.3, the magnitude responses of the true and estimated plants are plotted for the
identification method based on the curve-fitting algorithm as discussed earlier. Because the
error criterion is �2, the peak error is not minimized. The interesting part is that the estimated
model is stable. Figure 6.4 shows the corresponding results based on Kung’s algorithm.

Kung’s algorithm tends to achieve a small error in the form of additive uncertainty. The
identification error plot in Figure 6.4b corresponds to the discretized error uncertainty in Equa-
tion (6.61). The maximum error using the curve-fitting method is |∆|max = 0.3972, while
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Fig. 6.5. (a) Open-loop response of the true plant. (b) Closed-loop response with the H∞
loopshaping controller based on the curve-fitting model.

the maximum error using Kung’s algorithm is |∆|max = 0.5296. It can be seen that the
curve-fitting method performs better at reducing the error uncertainty.

After the estimated models are available, the loopshaping algorithm in Section 6.2 is ap-
plied to design the feedback controller. Figure 6.5 shows the disturbance rejection performance
based on the model obtained from the curve-fitting method compared with the performance
without feedback control.

The disturbance rejection performance for the case based on Kung’s algorithm is shown
in Figure 6.6.

It needs to be pointed out that with the curve-fitting model, the corresponding optimal
value as in Equation (26) is given by γopt = 1.5819, with Kung’s algorithm model, γopt =
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Fig. 6.6. (a) Open-loop response of true plant. (b) Closed-loop response with the H∞ loop-
shaping controller based on Kung’s algorithm model.

1.6223, which are very close to each other. In addition γ = 3 is used in the design of the H∞
loopshaping controller for both cases. The disturbance is a unit impulse. We comment that it
is hard to see the differences in terms of the output responses even though the modeling errors
are quite different.

6.5 Conclusion

An integrated approach to modeling and control of uncertainty systems is investigated in dis-
crete time. It is assumed that the design specifications for a feedback control system are given
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in the frequency domain, specified by the frequency shape of the open-loop system. Based on
the samples of the experimental frequency-response measurements, normalized coprime fac-
tors of the shaped plant model are identified with quantification of the modeling error in H∞
norm. In addition, feedback controllers are synthesized to stabilize the true but unknown plant
based on the H∞ loopshaping method. A complete design procedure has been presented that
integrates modeling and control in the frequency domain. The performance of the feedback
control system with the true plant is guaranteed provided that the modeling error bound quan-
tified for the ν-metric uncertainty is suitably small. The results are applied to modeling and
control of lightly damped systems with a JPL flexible structure as the application platform.
Different existing algorithms are employed to identify the plant model, and the modeling er-
rors in terms of the normalized coprime factor uncertainty are compared in the H∞ norm. The
simulation results are presented to illustrate the proposed integrated approach based on the
H∞ loopshaping design and frequency-domain identification method. It is interesting to ob-
serve that the disturbance rejection performances are very similar even though different iden-
tified models are used with quite different modeling errors in the frequency domain, which
demonstrates the advantage of our proposed integrated approach in this chapter.
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Summary. Recent hardware advances have rendered active-vision a viable option for a di-
verse spectrum of applications ranging from MEMS manufacture to assisting individuals with
disabilities. However, there are relatively few instances where these techniques have been suc-
cessfully applied in uncontrolled environments. This can be traced to the fragility of active-
vision systems designed using classical methods. In this chapter we show how a combination
of robust identification and model (in)validation tools can be used to obtain models of these
systems that combine the dynamics of the physical hardware and the image-processing al-
gorithms, along with an associated worst-case uncertainty description, suitable to be used in
the context of modern robust control tools. As shown here, this combination leads to systems
that achieve good tracking performance under a wide range of conditions. These results are
experimentally validated using a BiSight/UniSight robotic head–eye platform.

Key words: Active vision, visual servoing, robust control, robust identification, model (in)validation.

7.1 Background

7.1.1 Introduction and Motivation

In the past few years, active-vision systems – i.e. systems incorporating vision as an integral
part of the loop – have emerged as a viable option for a large number of applications, ranging
from vision-based assembly [22, 23, 55, 68, 80] to vision-assisted surgery [35, 39, 46, 78,
79], assisting individuals with disabilities [42, 67, 69, 77], and intelligent vehicle highway
systems [6, 25, 66, 75]. In practice, using active systems in dynamic scenes requires both real-
time visual processing and real-time closed-loop control. Recent hardware developments have
made this now possible, leading to a number of systems [16, 17, 20, 27, 56, 63].

Active-vision systems appeared as far back as the late 1970s [33] and have been the sub-
ject of much research since. An excellent survey of the state-of-the art as of 1996 and as of
2006 and a comprehensive literature reviews up to then can be found in [34] and [9, 10], re-
spectively. Earlier active-vision systems dealt with stability issues by detuning the controller,
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at the expense of performance, until stability was accomplished [34]. Later approaches com-
bined PID controllers with some prediction to explicitly address time delays [7, 24]. However,
these predictors can tolerate only small amounts of uncertainty [60]. Furthermore, the combi-
nation PID controller/predictor had to be tuned empirically, a process that entailed consider-
able experimentation [18].

Set-point tracking can be improved by using a two-degrees of freedom (2-DOF) controller
[18]. However, this approach can improve neither robustness nor disturbance rejection [45].
Optimal controllers have the potential to improve performance [30, 31, 52], but can lead to
fragile systems [52]. Empirical results [51, 65] show that adaptive controllers can accom-
modate calibration errors. However, this approach does not allow for achieving an a priori
established robustness level or to balance robustness versus performance.

A switching approach to visual servo control was introduced in [26]. In this approach two
controllers were designed: one that relied on the homography between initial and goal images,
and a second one based on an affine transformation approximating the motion between the
initial and goal camera configurations. However, stability of the switched system was not
formally addressed and it is difficult to prove.

Recent work has recognized the fact that robustness issues are central to the success
of active-vision systems. Robustness to calibration errors and estimation noise has been ad-
dressed in [28, 74] and [62], respectively. 2.5D or homography-based visual servo regulation
and tracking was addressed in [21] and [11], respectively, where a Lyapunov-based adaptive
control strategy was used to compensate for unknown depth measurements. However, a fixed
camera position was assumed (for regulation) and uncertainties in the camera-calibration pa-
rameters as well as mechanical system dynamics were not taken into account. Furthermore,
the intrinsic3 camera-calibration matrix was needed for tracking.

Nonlinear tracking controllers were introduced in [81], where two position-tracking con-
trollers were developed: One addressed nonlinear robot dynamics and the second compensated
for parametric uncertainties in the dynamics as well as in the camera-calibration parameters.
However, this approach assumed a fixed-camera configuration and a limited camera orien-
tation, and required calculating the inverse Jacobian. Moreover, higher overshoots occurred
during the transient response due to the high number of parameter estimates needed by the
adaptive controller. More recently, the adaptive controller proposed in [1] avoided overpara-
meterization and eliminated the need for restricting the camera orientation, but it still required
the calculation of the inverse Jacobian.

An alternative approach relies on the use of self-calibration methods to measure the cam-
era intrinsic parameters [15, 43, 54]. However, these techniques fail for camera-in-hand (cam-
era translation) applications. Indeed, [70] showed that in these cases, it is impossible to mea-
sure the camera internal parameters. Visual servoing invariant to changes in camera-calibration
parameters was considered in [41].

An additional drawback of the approaches mentioned above, is the implicit use of a “sep-
aration principle”, where the computer vision and control aspects of the problem are treated,
to a very large extent, independently. The interaction between these components was explic-
itly taken into account in [57], but neither model uncertainty nor measurement errors were
considered.

In [72] we used a simplified scenario, restricted motion of a single target in the absence of
clutter, as a vehicle to illustrate how to address the issues indicated above using robust control

3 The camera-calibration parameters consist of intrinsic and extrinsic parameters. The intrin-
sic parameters are the image center, the camera scale factor and the camera magnification
factor. The extrinsic parameters are the camera position and orientation.
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tools. Motivated by these results and those in [71], in this chapter we show how recently
developed robust identification, model (in)validation and robust control synthesis techniques
can be brought to bear on the problem to synthesize robust active-vision systems capable of
delivering good performance for a range of conditions.

This chapter is organized as follows: in Section 7.1 we introduce the notation that we
use and give a summary of the relevant theoretical and algorithmic tools. In Section 7.2 we
describe the identification and control issues that arise in the context of designing active-vision
systems and propose a solution based on a combination of robust identification/robust control
tools. In Section 7.3 we provide experimental results validating this approach In Section 7.4 we
comment on the shortcomings of existing tools, indicate possible solutions, and benchmark the
resulting systems against those obtained using classical design methods. Finally, in Section 7.5
we summarize our results and indicate directions for future research.

7.1.2 Notation

By L∞ we will denote the Lebesgue space of complex-valued matrix functions essentially
bounded on the unit circle, equipped with the norm:

‖G(z)‖∞ .
= ess sup

|z|=1

σ (G(z))

where σ denotes the largest singular value. By H∞ we denote the subspace of functions
in L∞ with a bounded analytic continuation outside the unit disk, equipped with the norm
‖G(z)‖∞ .

= ess sup|z|>1 σ (G(z)). Also of interest is the Banach space H∞,ρ of transfer
matrices in H∞ that have analytic continuation outside the disk of radius ρ < 1, i.e. the
space of exponentially stable systems with a stability margin of (1 − ρ), equipped with the
norm ‖G(z)‖∞,ρ

.
= sup|z|>ρ σ (G(z)). H∞,ρ(K) denotes the open K–ball in H∞,ρ, i.e.

{H ∈ H∞,ρ : ‖H‖∞,ρ < K}. In the following, we will use simply BH∞ for the case where
K = ρ = 1.

Finally, �2 denotes the space of bounded real sequences h = {hi} equipped with the norm

‖h‖2
�2

def
=
�∞

i=0 h
2
i . Similarly, �∞ denotes the space of bounded real sequences equipped with

the norm ‖h‖�∞
def
= supk |hk|.

7.1.3 Theoretical background

In this section, we summarize, for ease of reference, the theoretical and algorithmic results
used to identify and validate a combined model of the active-vision system, and to synthesize
a robust controller based on this model. A more detailed description can be found in several
textbooks such as [12] and [60].

Robust Identification

In principle, a detailed model of an active-vision system can be obtained by using first prin-
ciples to model the dynamics of both, the platform where the cameras are mounted and of
the imaging-processing algorithms. However, the resulting model will depend on several pa-
rameters, including the optical parameters of the imaging systems and the mass of a camera-
mounting structure such as a pan/tilt unit in our case. In addition, such an approach does not
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fully capture the interaction between the imaging and mechanical portions of the system, lead-
ing to poor performance or even instability. Finally, classical identification procedures [40] are
not well suited to be used in combination with robust control techniques (see [60], Chapter
10).

To avoid these difficulties in this chapter we will use recently developed nonparametric
robust identification techniques that, starting from experimental data and some mild a priori
assumptions on the plant, generate a nominal model as well as bounds on the worst-case
identification error suitable to be used by robust control synthesis methods. In particular, since
the experimental data used in this chapter originates from time-domain experiments and the
controller-synthesis algorithm requires H∞ bounds on the uncertainty description, we will
use H∞/�1 identification [13]. In the following we briefly cover the fundamentals of this
technique. A tutorial to the robust identification field and key to the relevant references can be
found for instance in [60], Chapter 10.

The experimental data used by the H∞/�1 method consists of the first Nt samples, cor-
rupted by additive noise, of the time response of the system
y(k) = h(k) + ηt(k), k = 0, . . . , Nt − 1 corresponding to a known input u(k). The a priori
assumptions are:

1. The system to be identified belongs to the class H∞,ρ(K) i.e. the set of exponentially sta-
ble systems with a stability margin of (1−ρ), and a peak response to complex exponential
inputs ofK.

2. A bound εt of the measurement noise ηt(k), i.e. ‖ηt‖�∞ ≤ εt is known.

The goal of the method is twofold:

1. Firstly, to establish whether or not the experimental data and the a priori assumptions are
consistent, i.e. whether or not there exist models in H∞,ρ(K) that interpolate the data
points within the experimental errors (the “consistency” problem, see Definition 8.1.1 in
Chapter 8) and,

2. If so, to obtain one such model as well as a bound on the worst-case identification error.

It can be shown [53] that the consistency problem reduces to a (convex) linear matrix in-
equality (LMI) feasibility problem that can be efficiently solved using commercially available
code. Specifically, the a posteriori experimental data and the a priori information are consis-
tent if and only if there exists a vector h = [ho, h1, . . . , hNt−1] such that the following LMIs
hold:

MR(h) =

�
�
R−2 FT

K

F
K

R2

�
� > 0

−εt < FT u − yt < εt

(7.1)

where R = diag[ 1 ρ ρ2 . . . ρNt−1 ] and

F =

�
����

h0 h1 . . . hNt−1

0 h0 . . . hNt−2

...
...

. . .
...

0 0 . . . h0

�
����

y = [y0, y1, . . . , yNt−1]
T

u = [u0, u1, . . . , uNt−1]
T

(7.2)
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Once the generalized Pick matrix MR (7.1) is found, the set of all models consistent
with both the a priori assumptions and the a posteriori experimental data can be para-
meterized as a linear fractional transformation (LFT) of a free parameter q(z) ∈ BH∞,
G(z) = F� [L(z), q(z)], where L(z) depends only onMR. In particular, the choice q(z) = 0
leads to the central model, of order less than or equal to the number of experimental data
points Nt. In this case an explicit state-space realization of G(z) is given by [3, 36]:

G(z) =

�
AG BG

CG DG

�

AG = A− [CT
−C− + (AT − I)MR]−1CT

−C−(A− I)

BG = −[(AT − I)MR + CT
−C−]−1C−

CG = C+[(AT − I)MR +CT
−C−]−1CT

−C−(A− I) − C+(A− I)

DG = C+[(AT − I)MR + CT
−C−]−1CT

−

(7.3)

where

A =

�
0 INt×Nt

0 0

�
, C− = [

Nt� �� �
1 0 . . . 0], C+ =

hTR

K

Finally, the worst-case identification error is bounded by [12]:

‖e‖∞ ≤
N−1�
k=0

min

�
ε

k�
i=0

|wi|. K
ρk

�
+
KρN−1

1 − ρ (7.4)

where wi depends only on the known input signal4.

Model (In)Validation

In the previous section we have outlined a robust identification algorithm that generates nom-
inal models and uncertainty descriptions suitable to be used by robust control synthesis meth-
ods. However, before this description can be used by the control engineer, it must be validated,
based on additional experimental data. This leads to the following model (in)validation prob-
lem:

• Given experimental data, corrupted by additive noise, find whether or not this data could
have been produced by the combination of the nominal model and some uncertainty in the
uncertainty set.

• If the answer is negative, then the assumed model does not provide a correct description
of the physical system.

In addition, these techniques allow for refining the uncertainty description, by establishing
the lowest uncertainty level that does not invalidate the model. These bounds are usually much
tighter than the one provided by Equation (7.4), leading to less conservative controller design.

Model (in)validation of linear time invariant (LTI) systems has been extensively studied
in the past decade (see for instance [12] and references therein). For ease of reference, we

4 In the simplest case where u = δ then w0 = 1, wi = 0, i ≥ 1
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quote the main result showing that in the case of unstructured uncertainty entering the plant as
an LFT, model (in)validation reduces to a convex optimization problem that can be efficiently
solved.

�
Go

∆ �

�
� � �

�

y

η

u

ζ ψ

Fig. 7.1. Setup for model (in)validation

Consider the interconnection shown in Figure 7.1, where Go =

�
P Q

R S

�
is a known

given system, ∆ represents unstructured bounded dynamic uncertainty, and the signals u and
y represent a known test input and the corresponding output corrupted by measurement noise
η. The a priori information consists on bounds on the “size” of the uncertainty, ‖∆‖∞ ≤ γ
and the magnitude of the measurement noise ‖η‖∞ ≤ εN . In this context it can be shown
[14] that, given measurements of the input u and output y, the model is not invalidated by
this experimental information if and only if there exist a vector ζ =

�
ζ1 . . . , ζn

�
such that the

following set of LMIs are feasible:

M(ζ)
.
=

�
� (TRTu)∗TRTu + (TRTu)∗TSTζ + T ∗

ζ T
∗
STRTu�

1
γ2 I − T ∗

STS

� 1
2
Tζ

T ∗
ζ

�
1

γ2 I − T ∗
STS

� 1
2

I

�
	 > 0

‖y − TP u + TQζ‖�∞ ≤ εN

(7.5)

where, for a given sequence h ∈ �2, Th represents its associated lower Toeplitz matrix:

Th =

�



�
h0 0 . . . 0
h1 h0 . . . 0
...

...
. . .

...
hn−1 hn−2 . . . h0

�
���	 (7.6)

and, for a given linear operator L : �2 → �2, TL denotes the lower Toeplitz matrix associated
with its convolution kernel. Note in passing that since Equation (7.5) is linear in 1

γ2 , the
problem of finding the tightest uncertainty bound such that the model is not invalidated by the
experimental data leads to a convex LMI optimization problem.
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Overview of Robust Controller Design via µ-synthesis

Once a nominal model of the plant has been identified and validated using the techniques
outlined above, standard control techniques can be used to synthesize suitable controllers that
achieve good performance for the nominal system. However, as noted in [32], the resulting
closed-loop system can be fragile to uncertainty and changes in the parameters of the camera,
such as the focal length f . To avoid this difficulty, in this chapter we will use robust control
tools (µ-synthesis) to design a controller, based on both the nominal model and the uncertainty
description provided by the identification step, that achieves robust performance.

�w

u∆

M � z

y∆�

∆u
�

�
w z

M(s)

�

∆u
�

∆p
�

(a) (b)

Fig. 7.2. (a) LFT uncertainty description. (b) Equivalence between robust performance and
stability.

Specifically, consider the generalized system interconnection shown in Figure 7.2, consist-
ing of a stable transfer function matrixM (in our case the combination of the pan–tilt unit, the
vision sensor and the controller) and a “feedback” term ∆u, representing model uncertainty
with a block-diagonal structure of the form:

∆u(s) ∈ ∆ ≡
�
∆(s) = block − diag

�
∆1(s),∆2(s), . . . ,∆n(s)

�
, ∆i(s) stable

�
(7.7)

It can be shown that this interconnection is stable for all ‖∆u(s)‖∞ ≤ 1 if and only if
µ∆u(M) < 1, where the structured singular value µ is defined as5 [19]:

µ∆u(M) =

� 1

min
∆u∈∆

{‖∆u‖∞ : det(I+M(jω)∆u(jω))=0 for some ω}

0 if no∆u ∈ ∆ destabilizes M
(7.8)

Robust performance (i.e. guaranteed performance for all possible model uncertainties in
the set) can be addressed by recasting the problem into an augmented robust stability prob-
lem by introducing an additional fictitious perturbation block ∆p, as shown in Figure 7.2b,

5 Roughly speaking, µ is the inverse of the “size” of the smallest destabilizing perturbation.
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where w and z represent exogenous inputs and outputs subject to performance specifications,
respectively. It can be shown (see the main loop theorem in [50]) that robust performance is
achieved if and only if:

µRP = sup
ω
µ∆(M) < 1

where∆ = diag{∆p,∆u} contains now both the uncertainty and the performance blocks.
µ provides a useful tool for robustness analysis that combines unstructured and structured

uncertainty, robust stability and robust performance in a unified, nonconservative, framework.
It can even be extended to cover parametric uncertainty (real µ). Unfortunately, at the present
time there are no efficient algorithms for computing the exact value of µ for general perturba-
tion structures. Instead, the following upper bound is used [19, 58]:

µ∆(M) ≤ inf
D∈D

‖DMD−1‖∞ (7.9)

where D represents a set of positive-definite Hermitian matrices with a diagonal block struc-
ture that commutes with that of ∆. It can be shown that problem (7.9) can be recast as a
convex optimization problem, leading to efficient computational algorithms. Moreover, this
upper bound coincides with the exact value of µ for perturbation structures having up to 3
blocks. For more than 3 blocks, the bound is no longer tight and recent results show that the
gap can increase linearly in the number of blocks [44]. However, in most cases arising in
practice the gap is small (less than 15 % [50]).

From the discussion above it follows that controllers guaranteeing robust stability or ro-
bust performance can be synthesized by solving the following optimization problem:

min
K stabilizing

µ∆

�
M(K)

�

where the notationM(K) is used to indicate explicitly that the closed-loop transfer matrixM
is a function of the controllerK. Due to the difficulties in computing the exact value of µ, the
upper bound (7.9) is used instead, yielding the following optimization problem (inK andD):

J = min
K stabilizing

�
inf

D∈D
‖DM(K)D−1‖∞

�
(7.10)

Robust stability or robust performance is achieved if J < 1.
While the optimization problem (7.10) is convex either in the scalesD or in the controller

K, it is not jointly convex in D and K. Thus, there potentially exist local minima where
an optimization algorithm may get trapped. The solution method currently used alternates
between finding the tightest possible upper bound by optimizing the scales D while holding
the controller constant (an infinite-dimensional convex optimization problem); and finding
an internally stabilizing controller that minimizes this upper bound (a standard H∞ control
problem). This algorithm, known as the “D–K” iteration, is implemented both in the Robust
control toolbox [59] and µ-analysis and synthesis toolbox [2], and can be summarized as
follows:

1. H∞ Synthesis. HoldingD fixed, use H∞ synthesis to solve:

min
K stabilizing

‖DM(K)D−1‖∞ (7.11)

In the first iterationD is often set to I(identity matrix). After the first iteration theD scale
obtained in step 3 is used.
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2. µ Analysis. Calculate the upper bound of µ for the closed-loop system obtained using
the controller K from step 1. This entails solving the following infinite-dimensional op-
timization problem:

inf
D∈D

‖DM(K)D−1‖∞ (7.12)

This problem is approximately solved by finding the value of D over a finite grid of
frequency points ωi.

3. D Fitting. The approximate solution to the optimal scaling problem of step 2 is found
by fitting the values D(jωi) with a real-rational, proper, stable, minimum-phase transfer
matrix D(s). Note that the order of the controller is that of the augmented plant (plant +
weights) + 2× order of D. Thus, in order to obtain controllers with reasonable complex-
ity, the order ofD should be kept low (usually first or second order).

4. Go to step 1 until the stop criterion is met, which means that the condition J < 1 is
satisfied.

As mentioned before, while due to the lack of joint convexity inK and D, this algorithm
is not theoretically guaranteed to converge to the global minimum, it works well in practice,
and has allowed for solving many difficult engineering problems (see, for instance, [64]).

7.2 Description of Application Example

The control-related issues involved in active-vision can be illustrated by considering the prob-
lem of smooth tracking of a noncooperative target, illustrated in the block diagram shown in
Figure 7.3. Here, the goal is to internally stabilize the plant and to track the target motion,
ytarget, using as measurements images possibly corrupted by noise.

y
Visual

Controller
target u

Optical Flow

Vision Sensor
and

S
e

Robot

+
+

+
-

Fig. 7.3. Block diagram of a visual tracking system

It can be shown (see [52] for details) that a simplified model of the plant is given by the
following state-space model:

x(k + 1) = Afx(k) +Bfu(k) + Efv(k)

y(k) = x(k) + η(k)
(7.13)

where the state x
.
= (x)T ∈ R

2 represents the position of the feature in the image plane,
v
.
= (vx, vy)T ∈ R

2 models the unknown (but bounded) target velocity, u
.
= (θx, θy)T ∈ R

2
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represents the control input (pan and tilt motion of the camera), y represents the measured
position of the feature corrupted by the noise η, and where the matrices are given by:

Af = I2, Ef =
τf

Zs(k)
I2

Bf = τ

�
x(k)y(k)

f
−(f + x2(k)

f
)

(f + y2(k)
f

) −x(k)y(k)
f

�
(7.14)

where f is the focal length of the camera, Zs its distance to the object, and τ the sampling
interval. In this context, the objective is to design a controller that stabilizes the model (7.13)
and keeps ‖e‖, the norm of the error signal, small.

If the change in the coordinates of the target feature is small, Equation (7.13) can be
linearized around the present position, yielding an (approximately) equivalent LTI problem,
that can be solved using a number of techniques either classical (PID [18, 52], pole-placement
[18, 52]) or modern (linear quadratic Gaussian (LQG) optimal [31, 51, 52]). However, while
the resulting closed-loop systems appear to have good performance, experimental results show
that actual performance can be far worse than expected based on simulations using the model
(7.13). As discussed in [71], this is largely due to the fact that this approach does not take
into account either the dynamical effects of the image-processing algorithms used to locate
the object in each frame, or potentially destabilizing modeling errors that include variations in
the optical parameters and unmodeled robot dynamics. The goal of this chapter is to illustrate
how these effects can be taken into account by exploiting a combination of recently developed
robust identification and model (in)validation techniques.

7.2.1 Hardware Description

The hardware setup used in this chapter, shown in Figure 7.4a, consists of a UniSight pan–tilt
platform equipped with a BiSight stereo head containing two Hitachi KP-M1 cameras and
Fujinon H10X11EMPX-31 motorized lenses. The input commands to the head and the lenses
are given using a 10-channel PMAC δ − τ controller, and the image processing required to
capture the images and locate the target are performed using a Datacube MaxSPARC S250
hosted by a dual processor Sun Ultra 2 workstation. A block diagram of the complete system
showing the interconnection of the various components is shown in Figure 7.4b.

This robotic head has four mechanical degrees of freedom:

• Pan is the rotation of the intercamera baseline about a vertical axis.
• Tilt is the rotation of the intercamera baseline about a horizontal axis.
• Right vergence is the rotation of the right camera about the vertical axis.
• Left vergence is the rotation of the left camera about the vertical axis.

There is a mechanical coupling between pan and tilt axes: if the pan motor is turned while
the tilt motor is held stationary, the tilt-axis will also rotate by 1/4 the amount of the pan-axis
rotation. However, moving the tilt motor by itself has no effect on the pan axis. To correct this
coupling, the tilt motor must be turned by a ratio of the pan-motor rotation in the opposite
direction of the pan-motor motion. The system also has six optical degrees of freedom (zoom,
focus and aperture of left and right cameras). The mechanical properties of the “head” can be
found in [36].
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Fig. 7.4. (a) The experimental setup. (b) Corresponding block diagram.

7.2.2 Tracking Algorithms

Next, we briefly discuss the choice of the image-processing algorithms used in this chapter.
The so-called “motion correspondence” problem – i.e. to determine the image position of
the object being tracked in the frames of the sequence has been extensively studied in the
computer-vision literature, and a large number of techniques have been proposed, both for
known and unknown objects (see, for instance, [4, 5, 8, 17, 29, 34, 37, 47, 56, 63, 76] and ref-
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erences therein). Correspondences between individual frames are usually integrated over time
to exploit the dynamical properties of the target, using for instance condensation trackers [47].
These trackers generalize Kalman-filter-based ones by allowing more general (multimodal)
observation-noise models, although in some cases can result in impractical computational re-
quirements [38].

Selection of the image-processing algorithm entails a compromise between complexity
and robustness, since time delays stemming from more sophisticated image-processing al-
gorithms have negative impact on the stability and overall performance of the closed-loop
system. Thus, as a compromise between complexity and robustness, we selected a normalized
crosscorrelation with template update [37] algorithm to track the target through a sequence
of frames. As shown in the following, this algorithm briefly described below achieves good
performance tracking targets at video rate, even in the presence of clutter.

Let T be a template image representing a memorized pattern of the object of interest
and Ii,j be the input image where the object must be found. The normalized crosscorrelation
between the template image T and a region R of the input image Ii,j is given by:

N(i, j) =

�
x,y∈R

T (x, y) · Ii,j(x, y)
||T (x, y)|| · ||Ii,j(x, y)||

(7.15)

where Ii,j(x, y) = I(x− i, y − j), and the denominator is a normalization factor to reduce
the effect of illumination variations. Regions R containing a pattern similar to the memorized
template result in high values of N(i, j) (N(i, j) = 1 corresponds to a perfect match). Thus,
searching for the object of interest can be reduced to the problem of finding a region R in the
input image Ii,j that has a high normalized crosscorrelation value with the stored template T .
Search time can be reduced by looking in a small window around the expected location of the
target.

The approach outlined above allows for tracking targets without prior models, it is invari-
ant to translation of the target and it is robust to illumination changes. Additional robustness
to orientation and scale variations, to a certain degree, is obtained by using template updating.
That is, the template is replaced by the best matched region from the current frame. How-
ever, in order to prevent correlator walkoff due to occlusion and image clutter, the template
is updated only when the crosscorrelation factor of the current frame drops from the previous
value by more than a threshold. In our experiments we have used 128 × 128 images, 18× 18
template size, 9×9 search window with increments of 2 pixels, and template update threshold
of 0.04.

7.3 Experimental Results

Synthesizing a robust active-vision controller requires first obtaining a model of the plant, as
well as an estimate of the associated uncertainty. In the following we describe the results of
applying the robust identification and model (in)validation algorithms outlined in Section 7.1.3
to find a combined model of the system that includes both the dynamics of the BiSight pan
and tilt unit and the computer vision module (image-processing algorithms)6. For the sake
of briefness an abbreviated description is given of the tilt-axis results, since the procedure is
similar to the one used for the pan axis.

6 Identifying a single model combining the dynamics of the pan–tilt unit and the computer-
vision module captures better the interaction among them, while avoiding artificially inflat-
ing the order of the resulting model.
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7.3.1 Identification Results

In order to identify the transfer function from the command input u to the pan and tilt units
to the displacements yp and yt of the target in the image, measured in pixels, the system was
sequentially excited in each axis with a step input of amplitude 67 encoder units7 (roughly
corresponding to an angular displacement of 1.5◦) and the position of a target (originally lo-
cated at the center of the image) was measured in pixels8. This process was repeated for eight
different zoom settings ranging from 0 to 70 % in increments of 10 %, with the goal of ob-
taining an accurate description of the system for this range of zoom values. The corresponding
images of the target for some representative zoom values are shown in Figure 7.5.

(a) 10 % Zoom (b) 30 % Zoom

(c) 50 % Zoom (d) 70 % Zoom

Fig. 7.5. Sample target images for different zoom values

Finally, the a priori information was determined by repeatedly measuring the location
of the target in the absence of input, to obtain an experimental noise level of approximately

7 Encoder units are the units used in the servo level PMAC controller commands to drive the
servo motors of the pan and tilt unit of BiSight Head-Eye platform.

8 Note that the input to the system is in the encoder units while the output of the system is in
pixels (output of the normalized crosscorrelation algorithm).
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εt = 2 pixels9, and by measuring the time-constants of the pan and tilt, leading to an estimated
value ρ ≡ 0.5. Using this data, the robust identification algorithm outlined in the previous
section was run in each case of 0 % through 70 % zoom levels with 10 % increments10.
Higher level zoom values (above 70 %) are not considered since very high level zoom values
caused too much blurring in our laboratory environment due to distance, the resulting images
were useless. For each case, Nt = 26 data samples were used that were followed by a model-
reduction step.

Figure 7.6 compares the step responses of the resulting identified models against the ex-
perimental data points (normalized by the input) for different zoom values. Here “o” denotes
an experimental data point used in the identification, while “∗” denotes additional experimen-
tal data, plotted for validation purposes11. As shown in the plots, these responses interpolate
the experimental data points within the normalized error bounds

�
2 pixels

67 encoder units

�
. Similar

results, omitted for space reasons, were obtained for the remaining values of the zoom. It is
also worth noticing the existence of a time delay between the time when the input was applied
and the system started to react. This delay, due to the image processing, fluctuates between 67
and 96 ms.

In the following we will use f = 50 % as the nominal value of the zoom12 for robust
controller design.

7.3.2 Uncertainty Description and Model Validation

Figures 7.7a and 7.7b show the frequency response corresponding to models identified for
different values of f . From these plots it follows that changes in f result in significant changes
in the dynamics, particularly in the low-frequency range. In turn, these changes can lead to loss
of stability or significant performance degradation13. In order to synthesize a robust controller
capable of accommodating these changes in the plant dynamics, in this chapter we will model
them as multiplicative dynamic uncertainty. Specifically, the transfer functionsGf,pan(z) and
Gf,tilt(z) corresponding to a chosen nominal value of the f will be modeled as:

Gf,pan(z) = Gnom,pan(z) [1 +∆pan(z)Wu,pan(z)]

Gf,tilt(z) = Gnom,tilt(z) [1 +∆tilt(z)Wu,tilt(z)]
(7.16)

where Gnom,pan and Gnom,tilt, the nominal transfer functions are given in Equation (7.18),
Wu,pan(z), Wu,tilt(z) are fixed weighting functions containing all the information available
about the frequency distribution of the uncertainty and∆pan(z), ∆tilt(z) ∈ BH∞ represent
dynamic model uncertainties.

9 This experimental error is mainly due to fluctuating conditions such as ambient light.
10 It is important to note that our proposed method does not require calibration of cameras.

Zoom changes were simply obtained through PMAC controller unit. Camera focal length
is not measured.

11 Due to space constraints, only the pan axis is shown, results for the tilt axis are similar.
12 As shown in the following, the frequency response of the corresponding transfer function

is roughly in the center of the family of models.
13 As we will show in the following, a classical PID controller designed for f=50 %, goes

unstable when f increases to 70 %. A PID controller designed for f = 70 % maintains
stability for the entire zoom range, but leads to very slow closed-loop systems for the lower
values of f due to the small value of the resulting loop gain.
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Fig. 7.6. Model of the pan axis (solid line) versus experimental data (dashed line) for different
zoom values
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Fig. 7.7. Frequency responses for different fs, the corresponding model uncertainty and the
overall uncertainty weights. (a) and (b): pan axis; (c) and (d): tilt axis.

Uncertainty Weight Function Selection

The transfer functionsWu,i(z) should be selected so that the family (7.16) covers all possible

plants [49]. Equivalently, its magnitude Bode plot should cover the plots of
Gf,i(z)−Gnom,i(z)

Gnom,i(z)

for all possible plants, shown in Figures 7.7b and 7.7d, where i =pan, tilt.
Based on our experimental data, we selected as uncertainty weights:

Wu =

�
�
Wu,pan(z)

Wu,tilt(z)

�
� =

�
�

2.5479z−2.152
z−0.4242

1.3324z−0.7944
z−0.0851

�
� (7.17)

As shown in Figures 7.7b and 7.7d, these weights cover the uncertainty due to the combination
of changes in f and high-order unmodeled dynamics.
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(a) 10 % Zoom (b) 30 % Zoom

(c) 50 % Zoom (d) 70 % Zoom

Fig. 7.8. A different target used to validate the models

Model and Uncertainty (In)Validation

In order to validate the models and uncertainty descriptions, the experiments were repeated
using a different target, shown in Figure 7.8. The new data collected was used to construct the
model (in)validation LMIs given in Equation (7.5). Table 7.1 shows the results of minimizing
γ subject to feasibility of these LMIs. Since in all cases γ < 1 and εN ≤ εt this new data does
not invalidate the model. Similar results were obtained with other targets.

7.4 Discrepancies/Misfits between Theory and Experimental
Results

In this section, we briefly comment on several issues where the existing theory failed to give a
complete solution to the identification problem and indicate the tools used to overcome these
difficulties.

7.4.1 Reduced-order Models

As indicated in Section 7.1, all models consistent with the a priori information and a poste-
riori experimental data can be parametrized as an LFT of a fixed transfer matrix, generated by
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Table 7.1. Model validation results

Pan axis Tilt axis
Zoom γ εN γ εN

0 % 0.4448 0.02985 0.5594 0.02985
10 % 0.4383 0.02984 0.4884 0.02985
20 % 0.2777 0.02985 0.3331 0.02985
30 % 0.2199 0.02984 0.2283 0.02985
40 % 0.2626 0.02985 0.1420 0.02985
50 % 0.0468 0.02984 0.0000 0.02984
60 % 0.2327 0.02985 0.5368 0.02982
70 % 0.5921 0.02985 0.5900 0.02971

the identification algorithm, and a free parameter: a transfer matrix q(z) ∈ BH∞. In particu-
lar, the central interpolant (corresponding to the choice q = 0) leads to a model of order Nt,
the number of experimental data points, with a state-space realization given by Equation (7.3).
Thus, in this case the central interpolant has order 26. Since popular robust control methods
lead to controllers having at least the same order as the plant, using these models would lead
to complex controllers. In principle, this difficulty can be avoided by using the additional de-
grees of freedom available in q to search for lower-order models inside the consistency set.
However, the resulting problem is difficult to solve, since the order of the model (or equiva-
lently the rank of the associated Hankel operator) is not a convex function of q. Thus, rather
than pursuing this approach, we simply model reduced the central interpolant using balanced
truncations. The resulting, reduced-order transfer functions (recall that these correspond to the
nondelayed portion of the model) are given by:

Gnom = [Gnom,pan Gnom,tilt]
T

Gnom,pan(z) =
0.0206z7 + 0.0765z6 + 0.0551z5

1.0000z7 + 0.412z6 + 0.3976z5

+0.0806z4 + 0.0233z3 + 0.0174z2 + 0.045z + 0.045

+0.1902z4 + 0.2079z3 + 0.0939z2 + 0.0628z + 0.026

Gnom,tilt(z) =
0.0297z5 + 0.0552z4 + 0.0515z3

1.0000z5 − 0.1554z4 + 0.0375z3

+0.0142z2 − 0.0179z + 0.0358

+0.0419z2 + 0.0138z + 0.0023
(7.18)

7.4.2 Existence of Variable Time Delays

Recall that the experimental data shows the existence of a variable time delay that fluctuates
between two and three sampling periods14, depending on the amount of time required to locate

14 Sampling frequency of our system is 33 Hz.
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the target in the image. This time delay cannot be captured by existing identification methods
(since it cannot be modeled by a finite-dimensional transfer function). To circumvent this dif-
ficulty, we modeled this variable time delay as a combination of (i) a fixed, two sampling
periods time delay, and (ii) multiplicative model uncertainty. This approach leads to a model
of the form of Equation (7.16) where the weighting functions Wu,pan(z) and Wu,tilt(z) are
increased to account for the additional terms of the form |e−s∆T − 1| arising from the time
delays. The final weighting functions, taking into account both model and time–delay uncer-
tainty are given below, with the corresponding Bode plots shown in Figures 7.9a and 7.9b.

Wut =

�
�
Wut,pan(z)

Wut,tilt(z)

�
� =

�
�

3.9315z−3.4584
z−0.3436

2.7045z−2.1925
z−0.1944

�
� (7.19)

7.4.3 Controller-implementation Considerations

Recall that in our setup the pan and tilt unit is controlled by a 10-channel δ-τ PMAC controller
board hosted by a Sun UltraSPARC workstation. In order to avoid time delays associated with
trajectory preplanning introduced by the PMAC controller board, the δ-τ PMAC board is
driven at the servo level, i.e. by directly accessing its commanded position (CP) registers.
A difficulty with this approach is that the relatively low sampling rate (33 Hz) can lead to
jerky camera motions. This effect was prevented by distributing the set-point changes over
the entire sampling period, resulting in smooth motions [61]. Distribution of these changes
was accomplished by running a PMAC plc0 background program that every 4 servo cycles
(approximately 1.77 ms) increments the value of the CP registers an amount equal to the
desired total set-point change divided by a suitable step size15, leading to the block diagram
shown in Figure 7.10.

It follows that the plc0 program can be modeled as: u(n) = u(n− 1) + û(n). Taking the
z-transform of both sides yields the following transfer function:

Hplc(z) =
z

z − 1
(7.20)

Hence, the net effect of the program is to add an integrator at the input to the system, thus
smoothing out high-frequency vibrations and guaranteeing zero steady-state tracking error to
step inputs. Combining this effect with the time delay and the transfer functions identified in
Section 7.3 leads to the following overall model of the plant:

Ĝnom,i = 1
z(z−1)

Gnom,i

Gnom,pan(z) = 0.0206z7+0.0765z6+0.0551z5+0.0806z4+0.0233z3+0.0174z2+0.045z+0.045
1.0000z7+0.412z6+0.3976z5+0.1902z4+0.2079z3+0.0939z2+0.0628z+0.026

Gnom,tilt(z) = 0.0297z5+0.0552z4+0.0515z3+0.0142z2−0.0179z+0.0358
1.0000z5−0.1554z4+0.0375z3+0.0419z2+0.0138z+0.0023

(7.21)
where Ĝnom,i denotes the identified, nondelayed transfer function corresponding to the axis
under consideration.

15 Our specific implementation uses 10 steps.
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Fig. 7.9. Model uncertainty including the time delay and overall uncertainty weights. (a) pan
axis. (b) tilt axis.

7.4.4 Limitations of Classical Controllers

Once a model of the plant has been identified, standard control techniques can be used to
synthesize suitable controllers. Note, however, that when using these techniques, the time
delay Td must be taken into account in order to guarantee stability [71].

As shown in Figure 7.11b, an optimal LQG controller designed taking this time delay
into account achieves good performance for the nominal system. However, these results also
illustrate its fragility: a change in the focal length f destabilizes the closed-loop system [32].
A similar situation arises when using a PID controller, experimentally tuned to achieve a
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Fig. 7.10. Controller implementation to avoid excessive jerk
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Fig. 7.11. Smooth pursuit: (a) Target for different values of f . (b) Tracking error of an LQG
controller (experimental).

compromise between settling time and overshoot. As shown in Figure 7.12a this controller
also achieves good performance for the nominal system. However, this is achieved by tuning
the controller to the nominal model Gnom, and, as in the LQG case, this leads to potentially
fragile closed-loop systems. This effect is illustrated in Figure 7.12b, showing the result of an
experiment where the focal length f of the system is increased while tracking, to zoom-in a
feature of interest, and then reduced to its previous value. As shown there, while the system
exhibits good performance for the nominal value of f , it becomes unstable as f is changed.

The loss of stability can be easily explained from the experimental data shown in Figure
7.16, showing that (in the low-frequency range) f enters the model virtually as a static gain
multiplying the control action. Thus, roughly speaking, the system becomes unstable when
this “gain” exceeds the gain margin.

In principle, stability can be guaranteed by designing a PID controller for the maximum,
rather than medium value of f , hence guaranteeing that the gain margin is never exceeded.
However, this leads to very slow closed-loop systems for the medium and minimum values of
f due to the small value of the gain that is required. As we show next, to a large extent this
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Fig. 7.12. Pan-axis tracking error using a PID controller: (a) Nominal model, simulation (solid)
and experimental (dashed). (b) Nominal versus off nominal f , experimental.

performance loss can be avoided by using the robust control tools described in Section 7.1 to
synthesize controllers that guarantee a given performance level for all possible values of the
parameters.

7.4.5 Robust Controller Design and Performance Weight Selection

In this section we describe how to combine the nominal model (7.21) and the associated un-
certainty description (7.19) with µ-synthesis in order to obtain a controller that achieves robust
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performance. The first step toward accomplishing this is to recast the plant into a suitable form
and to select weighting functions that encapsulate the control objectives.

Fig. 7.13. (a) Block diagram of the augmented plant for each axis. (b) Block diagram with the
uncertainty “pulled out” of the loop.

Figure 7.13a shows a block diagram of the active-vision system taking into account the
uncertainty. As discussed in Section 7.1.3, the additional block ∆p represents a fictitious per-
turbation block, which in conjunction with the weighting function Wp allows for imposing
performance specifications on the tracking error e(t). In particular, in our case Wp should be
selected to achieve the following specifications (for all values of 0 ≤ f ≤ 70 %):

1. Settling time to step inputs on the order of 1 s.
2. Fast rise time, with minimal overshoot, to avoid correlator walkoff problems.
3. Small control action to avoid actuator saturation.
4. Zero steady-state error tracking to step inputs16.

16 This specification is automatically satisfied as long asWp(1) �= 0, due to the integral action
introduced by the plc0 program.
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Unfortunately, there is no explicit way to exactly map these time-domain performance
specifications to frequency-domain weighting functions. Rather, there exist some well-established
practical rules. Specifically, suppose that it is desired to achieve the following performance
specifications:

• Steady-state error ≤ A
• Closed-loop bandwidth ≥WB

• High-frequency noise amplification ≤ P
Then the magnitude Bode plot of the sensitivity function should resemble the plot shown

in Figure 7.14a, which in turn leads to the performance weighting function shown in Figure
7.14b, [48].

Fig. 7.14. (a) Desired sensitivity function. (b) Desired performance weight function.

Wp
∼= 1

P

�
τcls+ P

τcls+ A

�
where τcl =

1

WB

In addition, commonly used rules of thumb are to

• Penalize low frequencies for good steady-state and settling-time.
• Penalize high frequencies for good transient response.

Taken into account these considerations, a good compromise between the performance
specifications was accomplished by using the following (experimentally tuned) function:

Wp(z) =
0.2604z + 0.1412

z + 0.2550
(7.22)

As shown in the Bode plot, Figure 7.15, this function has a low-pass characteristic, penalizing
the low-frequency components and leading to a closed-loop bandwidth larger than 30 Hz, in
order to achieve the settling-time specifications.

Figure 7.13b shows a block diagram of the plant in the standard form used for µ-synthesis.
Here, the augmented plant Gaug has the following realization:

�
�Zut

Zp

e

�
� =

�
� 0 0 Wut,iĜnom,i

−Wp Wp −WpĜnom,i

−1 1 −Ĝnom,i

�
�
�
�Vut

Vp

u

�
� (7.23)
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where Ĝnom,i, the transfer function of the axis under consideration, and Wut,i, the asso-
ciated uncertainty description, are given in Equations (7.21) and (7.19), respectively. Using
µ-synthesis with first-order scales, followed by a model reduction step leads to the following
controllers:

Kµpan(z) =
1.4181z6 − 0.7553z5 + 0.5886z4

z6 + 0.1265z5 + 0.2633z4

−0.0262z3 + 0.0439z2 + 0.0519z + 0.0143

+0.3171z3 + 0.2723z2 + 0.1087z + 0.3008
(7.24)

Kµtilt (z) =
1.7939z6 − 0.5281z5 + 0.1520z4

z6 + 0.6059z5 + 0.4315z4

+0.0588z3 + 0.0112z2 + 0.0117z − 0.0052

+0.2693z3 + 0.1625z2 + 0.1446z + 0.1123
(7.25)

The values of µ corresponding to the full (solid line) and reduced order (+) controllers
for the pan and tilt axes are shown in Figures 7.16a and 7.16b, respectively. Since in all cases
we have that µ < 1, it follows that these controllers achieve robust performance.

7.4.6 Experimental Validation

In order to validate the controllers, we performed the following sets of experiments:

• Step Response: The step responses (simulation and experimental) of the closed-loop sys-
tem corresponding to several values of f are shown in Figures 7.17 and 7.18. As illustrated
there, as opposed to both the LQG and PID controllers, these controllers achieve track-
ing throughout the entire range, without the need to sacrifice nominal performance or to
detuning in order to guarantee stability. Similar results, omitted for space reasons, were
obtained with other targets. Note in passing that there is very good agreement between the
predictions of the linear simulation based on the models (7.18) and the actual experimental
data.
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Fig. 7.16. (a) µ bounds for full (solid line) and reduced order (+) controllers. (a) Pan axis. (b)
Tilt axis.

• Smooth Pursuit: Figures 7.20 and 7.21 show the results of experiments where the person
shown in Figure 7.19 is tracked while zooming in and out of her features. As before, the
robust controllers were able to achieve good tracking performance in spite of the substan-
tial change in the dynamics of the plant due to the change in f , the uncertain time delay,
and the presence of clutter.
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Fig. 7.17. Tracking error for different zoom values, step-response experiments: pan axis (solid:
simulation, dashed: experimental).
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Fig. 7.18. Tracking error for different zoom values, step-response experiments: tilt axis (solid:
simulation, dashed: experimental).
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(a) 0 % Zoom (b) 10 % Zoom (c) 20 % Zoom (d) 30 % Zoom

(d) 40 % Zoom (e) 50 % Zoom (f) 60 % Zoom (g) 70 % Zoom

Fig. 7.19. Sample target images for zoom values 0 % through 70 %

7.5 Conclusions

Recent hardware developments have opened up the possibility of applying active-vision tech-
niques to a broad range of problems, such as intelligent vehicle highway systems, robotic-
assisted surgery, MEMS microassembly and automated spacecraft docking. A salient feature
common to all these applications is that using a feedback structure incorporating the visual
information in the loop (as opposed to open-loop control) offers the possibility of achieving
acceptable performance even in the presence of errors, stemming, for instance, from poorly
calibrated cameras, blurring or only partially determined feature correspondences between im-
ages. Arguably, at this time one of the critical factors limiting widespread use of active-vision
techniques is the fragility of the resulting systems. This lack of robustness can be traced, to
a large extent, to substantial variations in the dynamics of the plant due to variations in its
parameters, and to the existence of unmodeled dynamics.

In this chapter we illustrated how recently developed robust identification and model-
(in)validation techniques can be brought to bear on the problem. Rather than producing a
single model of the plant, these methods generate a nominal model as well as an uncertainty
description guaranteed to cover both the effects of unmodeled dynamics, modeling errors and
the variations due to changes in various parameters such as camera-zoom values. As shown
in Section 7.4.5, this description can be directly combined with robust control techniques to
synthesize controllers that guarantee acceptable performance for a large range of conditions.
A salient feature of the proposed approach is that it requires very few assumptions on the
system. For instance, neither the order nor the structure of the model needs to be fixed a
priori, and it produces a complete model that includes both the dynamics of the head and the
computer-vision module without the need to separate these components (and thus potentially
missing some of their coupling). Finally, it leads to simple, computationally tractable LMI
optimization problems.

The methodology was experimentally validated using an uncalibrated setup to success-
fully track an uncooperative target in a cluttered environment.
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(b) tilt-axis

Fig. 7.20. Target is moving and zoom is being changed from 0 % to 70 % in 3 steps

It is worth noticing that, for each axis, a single controller is able to yield good tracking
performance for a wide range of conditions. Naturally, this is achieved at the cost of mild
degradation of nominal performance. In addition, the systems corresponding to lower values
of f (and hence lower gain) exhibit slower responses than those corresponding to higher val-
ues. The results [73] indicate that these effects can be addressed by considering a family of
parameter-varying robust controllers, indexed by the parameter f . Research in this direction
is currently being explored.
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Fig. 7.21. Target is moving and zoom is being changed from 0 % to 70 % in 1 step
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Summary. The purpose of this chapter is to apply robust identification and control techniques
to perform active noise control (ANC). The identification phase is based on a control-oriented
robust identification approach that considers both parametric and nonparametric descriptions
of the system, and quantifies the uncertainty. The controller design compares the feedback
(FB), feedforward (FF) and hybrid (FB/FF) control structures. The feedback control is synthe-
sized and evaluated in the robust control framework. It is designed using H∞ optimal control
as a mixed-sensitivity problem, and the robust performance of the loop is analyzed via the
structured singular value (µ). The FF controller is an adaptive identifier, based on the robustly
normalized σ-algorithm. Two approaches are developed to decide what control structure is
more efficient on a 4-m duct example with broadband noise. In addition, the compromises
between identification and control, the inherent limitations of feedback and implementation
issues in ANC are explicitly pointed out. Relations between performance, controller order,
parametric/nonparametric models and digital signal processor (DSP) implementation are dis-
cussed. Theoretical and experimental results on the duct are compared. Finally the gaps that
still remain between theory and practice in this type of applications, are outlined.

Key words: Active noise control, H∞ control, feedforward control, hybrid controller, struc-
tured singular value.

8.1 Background

8.1.1 Active Noise Control

Active noise control has been a very active research area for many years since the seminal
ideas of [24]. Today, the underlying principles are well established ([23, 28]), but there are
still many practical issues to be solved. The appearance of signal processors, e.g. DSP,has
allowed ANC to become a feasible noise-suppression technology that has progressed from
laboratory research to industrial implementation. A wide variety of applications that include
aircraft engines, automobile interiors, heating, ventilation and air conditioning (HVAC) sys-
tems as well as household appliances have been produced. In general, ANC has been proven
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as a viable method for noise suppression in low-frequency ranges, where traditional passive
noise control devices become massive, bulky, or less effective.

The most widely used approach for ANC in practical applications is based on the use of
adaptive FF algorithms because they do not need a previous identification stage (see details in
Section 8.1.3). The FF–ANC efficiency usually depends on how accurately the online model
adjusts the primary path transfer function, and could suffer from possible instability. As no-
ticed in [3, 23], this does not preclude the use of feedback or hybrid (feedback/feedforward)
control structures. The feedback control structure of an ANC system was first introduced in
[29]. In this scheme, the system only requires the downstream error sensor. Unfortunately, this
configuration provides poor broadband noise attenuation over a limited frequency range due
to the spillover effect. A complete study of the limitations of feedback in ANC has been pre-
sented in [17], mainly based on the classical limitations of feedback loops ([14, 36]). However,
if a nonacoustical reference signal is not available and/or the order of the system is small, feed-
back control should be a feasible approach ([34]). Furthermore, many applications can only
deal with noise through a feedback control loop, e.g. headsets, windows ([21, 34]). Finally,
hybrid control combines both FF and FB, which could potentially ([43]) add up the benefits
of both approaches. Nevertheless, it is not always clear if this is so in practice. In this chapter
two different approaches are developed that compare hybrid versus FF and FB controllers, as
well as a systematic way of anticipating its possible benefits.

Plant uncertainty is one of the major contributing factors that affects performance and sta-
bility, in particular in ANC systems ([4]), as will be detailed throughout this chapter. It may
be caused by modeling, computational, and/or measurement errors, or even perturbations in
physical conditions. These factors lead to deviations of the plant from the nominal model,
which should be considered at the control synthesis stage so that the closed loop is robust.
Most robust control design methods dealing with uncertain models use a worst-case determin-
istic criterion to describe uncertainty, e.g. IMC or H∞ optimal control ([3, 4, 21, 40]). Physical
modeling can be used for simulations purposes, but in the end an experimental identification
procedure is applied when control is the final objective, as concluded in [18]. Usually, mod-
els are obtained using classical parameter-estimation ([3]) and there is no systematic way to
produce a deterministic uncertainty bound ([21]). The area of control-oriented and/or robust
identification ([9], Chapter 10 of [35]) is instrumental in the design of robust controllers for
ANC applications. Further explanations of the methodology used in the identification of the
ANC problem presented in this chapter are given in the next section.

Here, adaptive FF, H∞ FB and hybrid controller structures are systematically analyzed
based upon the identification and controller robustness and performance experimental results,
as suggested in [3]. Quantitative results at the identification stage using two different ap-
proaches, indicate if a hybrid controller adds extra benefits to a more standard FF adaptive
one.

8.1.2 Robust Identification

General Background

The robust identification problem has been posed in [16] and has attracted considerable at-
tention since then. It considers model uncertainty due to two different sources: measurement
noise and lack of knowledge of the system itself due to the limited information supplied by
the experimental data. Therefore, these identification procedures are based not only on the ex-
perimental data (a posteriori information), but also on the a priori assumptions on the class of
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systems to be identified. The algorithms produce a nominal model based on the experimental
information and a worst-case bound over the set of models defined by the a priori information.

From the different methods that use this approach, here we apply interpolatory algorithms,
based on the rational interpolation theory developed in [6]:

Theorem 8.1.1 There exists a transfer function f(z) ∈ BH∞ (BH∞) such that:
�

zo∈D
Resz=zof(z)C−(zI − A)−1 = C+ (8.1)

if and only if the following discrete-time Lyapunov equation has a unique positive (semi)-
definite solution.

M = A∗MA+C∗
−C− − C∗

+C+ (8.2)

where A,C− and C+ are constant complex matrices of appropriate dimensions. If M > 0
then the solution f(z) is nonunique and the set of solutions can be parameterized in terms of
Q(z), an arbitrary element of BH∞, as follows:

f(z) =
T11(z)q(z) + T12(z)

T21(z)q(z) + T22(z)
(8.3)

= F� [L(z), Q(z)] (8.4)

T (z) =

�
T11(z) T12(z)
T21(z) T22(z)

�
(8.5)

where system T (z) has the following state-space realization:

T (z) ≡
�
At Bt

Ct Dt

�
(8.6)

At = A

Bt = M−1 (A∗ − I)−1 �−C∗
+ C

∗
−
�

Ct =

�
C+

C−

�
(A− I)

Dt = I +

�
C+

C−

�
M−1 ∗X

X = (A∗ − I)−1 �−C∗
+ C

∗
−
�

where BH∞ (BH∞) is the open (closed) ball of H∞ =
�
sup|z|<1 ‖f(z)‖∞ <∞

�
. The

classical frequency response (Nevanlinna–Pick) and time response (Carathéodory–Fejér) in-
terpolation results can be obtained as special cases of the above, by a suitable selection of
the matrices A,C+, C−. This leads to the solution of the problem of simultaneously interpo-
lating time and frequency experimental information, which can be solved as a convex LMI
optimization problem ([25, 32]).

In many cases, part of the model has a clear parametric structure. In these cases, dis-
regarding this information may lead to conservative results. In addition, the model order in
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classical interpolatory results duplicates the number of data points (in the case of frequency
data), hence the use of parametric models (usually of order two) to fit the most significant
frequency peaks, drastically reduces the total model order. This is usually the case in mechan-
ical flexible structures and acoustic applications, which have a well-defined parametric model
for the lower-frequency modes. On the other hand, the unknown higher-frequency behavior
naturally leads to a nonparametric model.

The class of models traditionally considered in robust identification ([16]) is a subset of
H∞, denoted as S(K,ρ). It corresponds to exponentially stable systems (finite or infinite
dimensional) that have a stability margin of (ρ− 1), a peak response to complex exponential
inputs ofK, and satisfy the time-domain bound

|h(k)| ≤ Kρ−k

Here, this set will be used to characterize the nonparametric part of the model:Hnp(z).
In the application developed in this chapter, the a posteriori (frequency-domain) experi-

mental information and the a priori models and measurement noise sets are in the framework
presented in [31, 32], as follows:

T = {Hnp(z) +Hp(z) | Hnp ∈ S , Hp ∈ P} (8.7)

with

S(K, ρ) =

�
H ∈ H∞ | sup

|z|<ρ

‖H(z)‖∞ < K

�

P(G) =
�
pT G(z) | p ∈ R

Np , pi ∈ [ai, bi]
�

Nf (εf ) =
�
η ∈ C

Nf | |ηk| ≤ εf
�

yf =
�
[yf ]k = [ĥ]k + [η]k, k = 1, . . . , Nf , [ĥ]k = H(ejΩk), η ∈ Nf

�
Here, the nonparametric a priori information characterizes only the smoothness and magni-
tude of the whole class of models in S , but cannot distinguish among other properties, e.g.
low-frequency model structure. Instead, the a priori parametric knowledge in P provides
more “structured” information. This structure comes from the components gi(z) of vector
G(z), which are known linearly independent functions. In this case, a finite set of Kautz or-
thonormal bases Bi(z) has been selected, and tuned to the experimental information (see [5]).
In addition, the experimental data are theNf samples of the frequency response of the system
at frequency values Ωk, corrupted by realizations belonging to the noise set Nf , collected in
vector form yf = ĥ+ η ∈ C

Nf . The resulting identified model has the form:

Hid(z) = Hnp(z) +

Np�
i=1

piBi(z), pi ∈ [ai, bi], Hnp(z) ∈ S

Consistency and Identification

The result in [32] solves two problems: establishing consistency of the data and obtaining a
nominal model and bounds on the identification error. These are posed as a constrained finite-
dimensional convex optimization problem, that can be efficiently solved using linear matrix
inequalities techniques. In ([31]) this result is extended to parametric/nonparametric model
structures, as the ones stated previously.
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The important concept of consistency is defined in terms of the smallest set of models,
according to all the available input data (a priori and a posteriori), which are indistinguishable
from the point of view of the input information. This set should be “covered” when the final
goal is to design a robust controller, which can be applied to the actual plant. For the case
described before, it is as follows:

Definition 8.1.1 The consistency set contains all possible models that could have produced
the a posteriori information , in accordance with the class of measurement noise:

T (yf )
def
=
�
H ∈ T | (yf − ĥ) ∈ Nf

�

This means that, there is no way to select a smaller set of candidate models with the knowledge
of (yf , T ,Nf ). Note that the above set is independent of the metric selected and depends on
all the input information. From the above definition, the a posteriori and a priori information
are consistent if T (yf ) �= ∅ (Chapter 10 of [35]).

The optimization procedure that fits simultaneously the dynamic portion Hnp(z) and the
parameters {pi, i = 1, . . . , Np}, solves the following problem as a convex optimization one,
via a set of LMI’s.

Problem 1 Given the experiments yf and the a priori sets (T ,Nf ), determine:

(i) If the a priori and a posteriori information are consistent, i.e. the consistency set is non-
empty: T (yf ) �= ∅.

(ii) A nominal model that belongs to the consistency set T (yf ).

The above a priori and a posteriori information allows a less conservative identification than
in the cases where only time or frequency experiments are provided or when no knowledge of
the parametric part of the model is used. Another interpretation can be made in terms of the
“smaller” size of the consistency set, due to the fact that there is more experimental data and
structured a priori information.

This consistency set can be determined by a set of LMIs using the result in [31] for the
particular case where only frequency-domain experimental data is considered.

Theorem 8.1.2 Given the experiment yf , it is consistent with the a priori information if and
only if there exist two vectors:

p =

�
����

p1
p2
...
pNp

�
���� ,w =

�
����

w1

w2

...
wNf

�
����

that solve the following LMI feasibility problem:
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M =

�
Q−1 1

K
X(w)

1
K
X∗(w) Q

�
> 0 (8.8)

(yf − Pfp − w) ∈ Nf (8.9)

Here,H(zi) = wi, i = 1, . . . , Nf is considered, and the following matrices are defined:

Pf =

�
����
G1(z1) G2(z1) · · · GNp(z1)
G1(z2) G2(z2) · · · GNp(z2)

...
...

. . .
...

G1(zNf ) G2(zNf ) · · · GNp(zNf )

�
����

Q =

�
ρ2

ρ2 − z∗i−1zj−1

�
ij

, i, j = 1, . . . , Nf

X(w) = diag
�
w1 . . . wNf

	
Once consistency is established, the second step of Problem 1 can be solved: generat-

ing a nominal model in the consistency set T (yf ). The identification algorithm is based on
the parameterization of all solutions of the generalized interpolation problem presented in in
Theorem 8.1.1 ([6]). The algorithm can be summarized as follows.

1. Find feasible data vectors p,w for the consistency problem, by solving the LMI feasibil-
ity problem given by Equations (8.8) and (8.9). Note that there is no need of any kind of
optimality in the search for the feasible vectors. Instead, any pair p,w in the admissible
set will suffice.

2. Compute the Pick matrixM in Equation (8.8) (which should be positive-definite), corre-
sponding to the vectors computed in step 1.

3. Use Theorem 8.1.1 to compute a model from the consistency set T . Recall that all the
models in S (i.e. all the solutions to the interpolation problem) can be parameterized as a
linear fractional transformation (LFT) of a free parameter Q(z) ∈ BH∞ as follows:

H(z) = F� [L(z), Q(z)] (8.10)

L(z) =

�
�T12T

−1
22 T11 − T12T

−1
22 T21

T−1
22 −T−1

22 T21

�
� (8.11)

with T (z) in Equation (8.6). In particular, if the free parameter Q(z) is chosen as a
constant, then the nonparametric model order is less than or equal to 2Nf .

Bases Selection

The procedure here follows the steps taken in [5], although more systematic procedures can
be attempted (see for example [41]).

Let {Fk(z)}∞k=1 be a set of orthonormal bases functions defined in H2, i.e. 〈Fk, F�〉 =
δk,� with δk,� the Kronecker delta, and the inner product of every pair of functions f, g ∈ H2

is defined as

〈f, g〉 =
1

2π


 π

−π

f(ejΩ) g(ejΩ) dΩ (8.12)

Then, every G(z) ∈ H2 can be represented by the series expansion:
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G(z) =
∞�

k=1

g(k)Fk(z) (8.13)

where
�∞

k=1 |g(k)|2 converges in H2 and each coefficient g(k) is computed from the values
G(z1), . . . , G(zk). Therefore, truncating Equation (8.13) to the nth order can provide a low-
order approximation Gn(z) of G(z) as follows,

Gn(z) =
n�

k=1

g(k)Fk(z) (8.14)

It is possible to build a set of orthonormal bases functions from a family of stable all-
pass filters with input normal realizations (see [27]). The functions {Fk(z)}n

k=1 are com-
puted from a set of scalar allpass filters {Hi}m

i=1 ∈ RH2, each one with an associated
McMillan degree {ni}m

i=1, with n =
�m

i=1 ni. Their minimal realization is defined as
Hi(z) = Ci (zI −Ai)

−1 Bi + Di, with the eigenvalues of Ai lying outside the unit cir-
cle.

The series connection has a state-space input normal realization of the form:

H(z) =
m�

i=1

Hi(z) = Cn (zI −An)−1 Bn +Dn

with n =
�m

i=1 ni. Let x(t) = (x1(t), . . . ,xm(t))T , be the state of the filter H(z), where
each vector component xi assumes the form xi = (x1, . . . , xni)

T for i = 1, . . . ,m, then the
set of orthonormal bases are defined by the transfer functions, Fk(z), from the input u(t) of
the first allpass to each of the filter state components xk(t), with k = 1, . . . , n,

xk(t) = Fk(q)u(t) (8.15)

Fk(z) = ek (zI − An)−1Bn, k = 1, . . . , n (8.16)

with q the forward shift operator: qu(t) = u(t + 1) and ek the kth Euclidean bases vector
in R

n. It can be shown that the finite-dimensional subspace generated from the set of bases
functions Xn = span {F1(z), . . . , Fn(z)} generates a complete model set in H2, which can
be used to build the approximate modelGn(z) forG(z) ([33]). Complete model sets currently
in use are the Laguerre and Kautz models, the Cauchy kernel models or rational wavelets
([12]), and more recently fundamental models sets ([1]), among others.

In the application we make a broad use of the two parameter Kautz model as a priori
parametric set information, to tune the resonant frequencies of the system’s peaks. It has been
shown in [42] and [39], that for lightly damped systems or systems with scattered poles as in
the case of acoustic noise systems, Kautz models have optimal fixed denominator sets.

Finally, uniform boundedness in H∞ for several complete sets in H2 was derived in [7]
from the set of bases defined by equation,

Bi(z) =

�
1 − |zi|2

1 − z∗i z

i−1�
j=1

�
z − zj

1 − z∗j z

�
(8.17)

where zi is the ith number in the sequence (z1,1, . . . , z1,n1 , z2,1, . . . , z1,n2 , . . .) being zi,j

the jth pole of the ith allpass filter on the cascade.
For each resonant peak in the experimental frequency response curve – at frequency

ωk and with magnitude mk = |f(jωk)| – we have to specify a pair of complex-conjugate
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poles [pk, p̄k]. One way to approach this problem is by fitting the following second-order
continuous-time transfer function to an experimental peak:

fk(s) =
ck

s2 + 2ωnkζks+ ω2
nk

(8.18)

with poles located at:

[pk, p̄k] = ωnk

�
−ζk ± j

�
1 − ζ2k

�

The constant ck ≤ 1 is considered in Equation (8.18) to adjust the width of each peak. It is
easy to verify that the constants ωnk and ζk are related to the frequency and the magnitude of
the peak as follows:

ωk = ωnk

�
1 − 2ζ2k

mk =
ck

2ζkω2
nk

�
1 − ζ2k

Hence, given ωk and mk from the experimental curve, the resonant poles [pk, p̄k] associated
to each pair of filters of the orthogonal bases set can be computed. The procedure for discrete-
time experimental data can be made accordingly, transforming the continuous time data by a
bilinear transformation.
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Fig. 8.1. Interpolation points and peak frequencies

As an example, Figure 8.1 illustrates the 23 interpolation points used to identify the sec-
ondary channel of the acoustic setup presented in next section, which amounts to a nonpara-
metric model of order 46. In addition the seven asterisks indicate the peaks that will be fitted
by second-order models (see Figure 8.2), which adds an extra 14th-order model. The num-
ber of peaks to be fitted depends on the application, and in particular in the frequency region
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Fig. 8.2. Second-order bases fitted to the experimental data

where performance needs to be guaranteed. In Figure 8.3 the parametric and nonparamet-
ric components and model error of the acoustic system are presented, and in Figure 8.4 its
complete identified model. The resulting 60th-order model could be excessive or even unac-
ceptable, depending on the technology and the particular application. Further practical con-
siderations should be taken into account when using it in an actual implementation of a feed-
forward/feedback controller for acoustic applications. These practical issues will be detailed
further in this chapter.

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

  (Hz)

M
ag

ni
tu

de

Parametric
Non parametric
experimental error

Fig. 8.3. Parametric, dynamic and model error for experimental data
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Fig. 8.4. Identified model of experimental data

Uncertainty Description

The objective of robust identification is not only to derive a nominal model but also to compute
an upper bound for the worst-case identification error. This bound is global when it does not
depend on the particular experiment, but only on the a priori information. Usually it is given
in terms of the radius and diameter of information [10, 16] and is valid for all interpolatory
algorithms, taking the available a priori and a posteriori information as inputs. In our case,
due to the fact that the identified model is in set T (yf ), its distance to the (Chebyshev) center
of this consistency set is within the diameter of information. As a consequence, the algorithm
is optimal up to a factor of two when compared with central strongly optimal procedures. For
the same reason, it is also convergent and therefore the modeling error tends to zero as the
information is completed. Further details of global errors in robust identification can be found
in [35], and will not be explored here.

The computational requirements to obtain these bounds are minimal, and its main appli-
cation is to prove algorithm convergence. Due to the fact that these type of global errors are
independent of the particular experimental outcomes of the system, even for strongly opti-
mal algorithms, they produce exceedingly conservative bounds. The practical application of
these identification procedures requires alternative methods for computing uncertainty bounds
([15]). It is possible to obtain better ones by solving convex optimization problems using
the experimental data. A more practical approach is to consider a local identification error,
which depends on the particular experimental information at hand. In fact, even a frequency-
dependent uncertainty upper bound is desirable, due to the fact that it agrees with the usual nec-
essary and sufficient condition for model dynamic uncertainty and provides a less-conservative
set of models to describe the physical system.

In addition, the fact that from this procedure we obtain a consistency set, allows different
descriptions of the uncertainty. For instance, we can compute a bound that covers the whole



8 Identification and Control Structure Design in ANC 213

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

 (Hz)

M
ag

ni
tu

de

multiplicative error
W

Fig. 8.5. Relative identification error and multiplicative uncertainty weight Wδ(z)

set and includes both, the parametric and nonparametric uncertainty. This can also be inter-
preted as having “exact” nominal parameters and a global bound, due to the uncertainty of
the nonparametric portion. Unless we have extra information, both interpretations are indis-
tinguishable. In any case, the model set considered will be described as having multiplicative
uncertainty and involves the whole physical system, as follows:

G =
�
[I +∆Wδ(z)]G(z) | ∆ ∈ C

r×r , σ̄(∆) < 1
�

The nominal model G(z) has been determined by the interpolatory procedure in a previous
section. The uncertainty weight Wδ(z) should “cover” (in magnitude) the plot of the relative
identification error:

ek
r =

�
yf

k −G(ejΩk)
�
G−1(ejΩk), k = 1, . . . , Nf (8.19)

where yf
k is the experimental response at frequency Ωk (see Figure 8.5). Several practical

issues concerning this computation will be detailed in the next section.
Finally, this model set perfectly fits the framework of H∞ or µ-synthesis controller de-

sign.

8.1.3 Adaptive Identification

The term adaptive is usually related in the literature to online control techniques. The term
identification, conversely, is related to offline parameter-estimation techniques. This section
deals with online parameter-estimation techniques and makes use of results from both areas.

The application studied in this chapter, ANC, does not follow the typical closed-loop con-
trol scheme. Figure 8.6 shows a block diagram of the system and its control blocks. It can
be observed that the error signal is located at the output of the system, while the input signal
cannot be altered because it is the noise source. The controller’s main function is to identify
the dynamics of the sound-propagation system and to generate the opposite signal, thus pro-
ducing as much silence as possible. Figure 8.6 also shows that the controller is laid out in a
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feedforward fashion. The sound-propagation system, a duct in the present case, suffers from
slow dynamics variations due to temperature and humidity changes. It also collects sudden
external noise perturbations and pressure variations at its end. In view of this, the main task of
an active noise controller is to adaptively identify the sound-propagation system. An important

Fig. 8.6. Simplified conceptual system block diagram

difficulty with this kind of control structure is to maintain and assure stability. One of the main
concerns in this chapter is to deal with stability explicitly.

Stability is an important issue for different reasons. On the one hand, there are physical
reasons: the output loudspeaker is a nonminimum phase system and, as will be seen later,
its transfer function needs to be inverted; in addition, one of the main characteristics of this
kind of systems is their intrinsic delays, which also need to be accounted for, bringing up
stability considerations. On the other hand, the algorithms and filter structures used for noise
cancelation do not assure stability of the solution. The present chapter gives alternatives to the
state-of-the-art algorithms that are intrinsically stable.

Classical Feedforward Structures

Feedforward active noise control systems are implemented using two different control struc-
tures, FXLMS and FULMS, standing for filtered X and filtered U least mean squared algo-
rithms (see [23]). These control structures stem from different models or interpretations of the
system, which will be explained in the following paragraphs.

The first naive model of the acoustic duct neglects the dynamics of the sensors and the
actuator, and also neglects the propagation of the cancelation signal upstream and downstream
of the duct. This model is shown in Figure 8.7.

The output signal e = d − y = [Gpri(z) −W (z)]x becomes zero when Gpri(z) =
W (z). This means the controllerW (z) is exactly representing the dynamics of the duct, with
a phase difference of 180 degrees.

The most widely used cancelation algorithm is FXLMS, based on the model shown in
Figure 8.8. This model includes the secondary path, which is the propagation dynamics that
modifies signal y(n) through the cancelation speaker and the downstream portion of the duct
to the error microphone. Refining slightly the previous model of the system one can distinguish
several elements that were ignored. On the one hand, signals x(n) and e(n) are captured with
the reference and the error microphones, respectively. These signals are then amplified, filtered
and digitalized. On the other hand, signal y(n) is converted to an analogical, amplified one and
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Fig. 8.7. Naive model of the acoustic duct with controller

Fig. 8.8. Block diagram of the duct system including the secondary path

delivered by a loudspeaker. Finally, after signal y(n) is in the duct, it must travel some distance
to reach the error microphone. All these elements are captured in the transfer functions shown
in Figure 8.8, but considering that both signalsG′

pri(z)x andG′
sec(z)y pass through the same

piece of duct, R(z), assuming linear dynamics and using

Gpri(z) = R(z)G′
pri(z)

Gsec(z) = R(z)G′
sec(z)

(8.20)

it is possible to represent the same model in a more convenient way, as in Figure 8.9.
Considering

E(z) = R(z)[G′
pri(z) −G′

sec(z)W (z)]X(z)

and using Equation (8.20), it is easy to see that when the error signal, e(n), goes to zero (that
is when the filterW (z) has converged) its transfer function will be:

W (z) =
Gpri(z)

Gsec(z)
(8.21)
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Fig. 8.9. Simplified block diagram of the duct system including the secondary path

This equation reveals two important details of the cancelation filterW (z). First, if the overall
delay of the secondary path is larger than the delay of the primary path the filter will not be
realizable. This is the limiting causality constraint of FXLMS and FULMS control structures.
Second, if the secondary-path transfer function is nonminimum phase, then W (z) becomes
unstable. In fact, this is the usual circumstance due to the dynamics of loudspeakers. Therefore,
to avoid instability ofW (z), some modifications need to be done.

To understand the derivation of the FXLMS algorithm it is necessary to assume that the
parameters in W (z) are calculated with an LMS-like, or gradient descent, algorithm. In that
case the error to minimize is

e = d− y = d−W (z)Gsec(z)x (8.22)

but considering slow filter parameter variations, or linear dynamics, the order of W (z) and
Gsec(z) in Equation (8.22) can be swapped over. Gradient descent algorithms need to calcu-
late the gradient of the error with respect to the parameters,

∇e = Gsec(z)x (8.23)

According to Equation (8.23), the parameter adaptation algorithm must be fed with a filtered
version of signal x(n). The filter should be the secondary-path transfer function, Gsec(z),
which is not available but can be estimated either online or offline. A more suitable expression
of ∇e(n) would be

∇e = Ĝsec(z)x

where Ĝsec(z) is the estimate of Gsec(z). The previous transformations modify the control
structure shown in Figure 8.9 leading to the one shown in Figure 8.10, where W (z) is now

fed with x(n) and converges to Gpri(z) rather than
Gpri(z)

Gsec(z)
, as stated previously in Equation

(8.21). Of course, there are many important practical and theoretical considerations related to
the accuracy of Ĝsec(z), e.g. [8, 13, 37], but they will not be taken into account here for the
sake of brevity.

The FXLMS control structure, although being one of the most widely used, considers an
incomplete model of the system. The output signal y(n) is fed into the acoustic duct through
the secondary loudspeaker and is meant to counteract signal Gpri(z)x. When a signal is in-
serted into the duct, it travels downstream and it also travels upstream, but the effects of y(n)
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Fig. 8.10. Standard control scheme of FXLMS

upstream were ignored when FXLMS was generated. The control structure FULMS is meant
to contemplate the effects of signal y(n) upstream, which will be designated as acoustic feed-
back.

The acoustic feedback, shown in Figure 8.11 as transfer function F (z), is the effect that
signal y(n) has over signal u(n) when it is captured by the reference microphone. The transfer
function F (z) models the digital-to-analog conversion of signal y(n), the upstream dynamics
of the duct and the analog-to-digital conversion to obtain signal x(n). Neglecting the effects

Fig. 8.11. Model of the duct with the secondary path and the acoustic feedback

of acoustic feedback is not as dangerous as neglecting secondary-path effects, but analyzing
Figure 8.11 it is possible to conclude that the transfer function of the cancelation filter in
Equation (8.24) could become unstable if the product W (z)F (z) was larger than unity at
some frequency.

H(z) =
W (z)

1 −W (z)F (z)
(8.24)
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The best way to counteract feedback effects is to minimize the acoustic feedback, for instance
using a different transducer for the reference signal (like a piezoelectric sensor). Unfortunately,
this is not always possible, hence it is useful to include an acoustic feedback cancelation filter
in the control structure. This measure makes the overall control algorithm more complex, but
it adds robustness and performance as compensation.

The FULMS control structure is shown in Figure 8.12. Its relation with FXLMS is very
simple: the cancelation filter in FXLMS, an FIR filter, becomes an IIR filter un FULMS, i.e. a
rational transfer function with poles.

Fig. 8.12. FULMS control structure

From Figure 8.11 it is easy to verify that the optimal value ofW (z) is

W (z) =
Gpri(z)

Gsec(z) −Gpri(z)F (z)

therefore, in order to adaptively eliminate the acoustic feedback, cancel the secondary-path
effects and control the primary noise,W (z) needs to be implemented with an IIR filter.

However, taking into account the gradient considerations that led to the FXLMS algo-
rithm, the transfer function ofW (z) will have the same structure asH(z) in Equation (8.24),
i.e. a direct function modeling Gpri(z) and a feedback function estimating the acoustic feed-
back,

Y (z)

X(z)
=

D(z)

1 +D(z)F̂ (z)

This transfer function can be arranged as the usual configuration of an IIR filter,

Y (z)

X(z)
=

A(z)

1 −B(z)

where A(z) = D(z) and B(z) = −F̂ (z)D(z). The control structure shown in Figure 8.12
includes filters A(z) and B(z), as well as the estimation of the secondary-path transfer func-
tion, Ĝsec(z), needed to eliminate the instability effects of modeling its inverse.

The main drawback of IIR filters with LMS-like adaptation rules is that neither conver-
gence nor stability of the solution is assured. In fact, many practical situations give evidences
that IIR filter can become unstable quite easily, e.g. [2].
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Relation between Robust Adaptive Identification and Classical Feedforward
Structures

As stated earlier, this chapter is about active noise cancelation, but a fundamental concern is
to ensure the stability of the solution.

Most active noise-control solutions (commercial or not) are based on gradient-descent
algorithms. In fact, the most widely used algorithm is LMS, mainly for speed of execution,
which allows a large number of parameters to be applied in the cancelation filters. Many of
those applications try to ensure the stability of their solutions by using proven control struc-
tures, such as FXLMS, or by carefully accomplishing physical laws that are known to maxi-
mize the effect of cancelation systems. However, there is little concern with the robustness of
the algorithms employed.

Control researchers became very active in the 1980s in the area of robust adaptive control
(see [30]), showing, for example, that an adaptive scheme designed for a plant model without
disturbances considerations could go unstable in the presence of small disturbances ([19]).
They also developed a considerable number of robust adaptive laws and proved, in each case,
their robustness properties against different kinds of unstructured perturbations.

The adaptive algorithm used throughout this chapter in order to estimate the feedfor-
ward filter parameters is robust. The algorithm is the normalized LMS estimator with the
σ-modification, which will be explained next (see [20] for a more detailed description).

The LMS algorithm, developed by Widrow [22], is a gradient-descent-based algorithm.
The main equation of the gradient-descent algorithms is

w(n+ 1) = w(n) − µ

2
∇ξ(n) (8.25)

where w is the parameter vector, ∇ξ(n) is the gradient of the error function with respect
to w and µ is a convergence factor. This parameter-update law possesses many interesting
statistical properties and is a proven algorithm. Its main problem is that obtaining ∇ξ(n) is
often impractical and computationally intensive.

The simplest approximation to ξ(n) is to use the instantaneous squared error instead. Then

ξ̂(n) = e2(n)

and the gradient used in the algorithm is

∇ξ̂(n) = 2[∇e(n)]e(n) = −2x(n)e(n)

When the estimate of the gradient is substituted in Equation (8.25) the well-known LMS rule
is obtained:

w(n+ 1) = w(n) − µx(n)e(n) (8.26)

This algorithm, as stated before, is simple, computationally inexpensive and effective. It is a
good quality/price choice. One could argue, nevertheless, that its derivation was carried out
in an ideal environment, with no consideration of model uncertainties or noise of any kind,
which are necessary to guarantee boundedness properties of the parameters or the errors, or
even convergence of the algorithm. Two modifications were then applied to Equation (8.26),
in order to fulfill this lack of real considerations: robust normalization and σ-modification.

On the one hand, robust normalization is basically used to make the algorithm independent
of signal-power changes. On the other hand, σ-modification guarantees boundedness of the
parameters and its derivatives and boundedness of the estimation error against modeling errors,
and also convergence of the algorithm (zero error) when there is no modeling error.



220 M.A. Cugueró, B. Morcego and R.S. Sánchez Peña

Robust normalization and σ-modification are summarized in the following equations:

w(n+ 1) = (1 − cσ(n))w(n) + cε(n)

ε(n) = K[y(n) − ŷ(n)]

K =
r(n)

1 +ms(n)

ŷ(n) = wT (n)r(n)

where c is related to the convergence rate and is chosen by the designer from 0 < c < 1. The
adaptive value σ(n) plays an important role to avoid parameter drift, and it is defined as

σ(n) =

���
��

0 if ‖w(n)‖ ≤ M�
‖w(n)‖

M
− 1
�
σ0 if M < ‖w(n)‖ ≤ 2M

σ0 if ‖w(n)‖ > 2M

The constant σ0 is a positive value such that σ0 < (1 − c)/2. The constant M is a bound
of the Euclidean norm of the (unknown) true parameter set.M must be estimated beforehand
and it allows bounding the parameters if their norm grows larger than M . The normalizing
value ms(n), initialized to zero, is calculated with the following equation

ms(n+ 1) = (1 − δ0)ms(n) + x2(n) + y2(n)

where δ0 is a parameter related to the frequency band, considering bounded uncertainty.
The parameters of the algorithm were set to the following values throughout all the exper-

iments: c = 0.5, σ0 = (1 − c)/4 = 0.125, M = 0.5 and δ0 = 0.1.

8.2 Acoustic-noise Experimental Setup

8.2.1 Description

The application is illustrated in Figure 8.13. It consists of a 4-m long square tube connected
to a semianechoic3 room (Figure 8.14), the other end connected to a noise generator, either
a speaker or an industrial fan. This (primary) speaker generates noise in a certain controlled
frequency bandwidth by means of a signal generator, and may physically simulate different
noise sources. The advantage is that this noise source setup has a linear time invariant (LTI)
behavior and precise experiments on the duct can be carried on. The industrial fan, however, is
a real noise source with time-varying and nonlinear characteristics. Experimental results with
both will be obtained and presented in Section 8.3.

There is also an error microphone near the control actuator (secondary speaker) and one
near the noise source, known as the reference microphone. The microphones are omnidirec-
tional BEHRINGER ECM8000 with linear frequency response within a bandwidth of 15 Hz to
20 kHz and −60 dB acoustic sensitivity. For this reason, the identification data below 15 Hz is

3 These rooms have a nonabsorbing floor, hence the sound measurement also depends on the
floor reflection. This is not a problem in this application.
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unreliable and will not be considered in the uncertainty description (see details in Section 8.3).
The speakers are BEYMA model 5 MP60/N of 5", 50 W, with a bandwidth of 50 Hz to 12 kHz.

The secondary acoustic circuit is the one related to the feedback-control section, with the
control speaker as the input and the error microphone as the output. The perturbation signal
that enters the error microphone coming from the acoustic path with its origin in the noise
source is usually defined as the primary circuit. Both FF and FB controllers are implemented
with a DSpace DSP-based on a Texas Instruments TMS320C40 over a DS1003.05 floating-
point processor board. The sampling time for the identification experiments and control im-
plementation is Ts = 0.4 ms, which is good enough for the real-time computations needed for
both FF and FB controllers simultaneously. The complete signal-processing instrumentation
is illustrated in Figure 8.15.

Fig. 8.13. Tube and input noise source (fan)

The control scheme applies the classical method ([24, 29]) of generating a signal as close
as possible to the real noise but with opposite phase. This will be performed in three ways:
by fixed H∞ FB control, adaptive FF, and also combined as a hybrid controller (FF/FB),
conceptually illustrated in Figure 8.16. As mentioned previously, a hybrid controller can be
very effective in general ([43]), but the question if it really pays off in terms of performance
and/or robustness needs to be answered. The present work continues that in [3] and produces
a systematic approach to answer this question using two different approaches.

8.2.2 Physical Modeling

In this section, the main results on mathematical models for sound fields in rectangular tubes,
such as the one proposed, are presented.
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Fig. 8.14. Semianechoic room and tube output signal (arrow)

According to [18] and [4], below the cutoff frequency, the sound field in the duct can
be treated as unidimensional with spatial coordinate x ∈ [0, 1]. The control loudspeaker is
located at x = xs, while the feedback microphone is located at x = xm. A state-space model
of the acoustic duct can be developed from three fundamental equations: the state equation,
the continuity equation and the linearized inviscid force equation. Retaining r modes from
such equations allows the duct state-space model to be derived with the following structure:

ẋd(t) = Adxd(t) +Bd(t)us(t)
yd(t) = Cdxd(t)

(8.27)

where:

xd(t) =
�
q1(t) q̇1(t) · · · qr(t) q̇r(t)

�T

Ad = block-diag

��
0 1

−ω2
n1 −2ξ1ωn1

�
, · · · ,

�
0 1

−ω2
nr −2ξ1ωnr

��

Bd =
�
0 b1 · · · 0 br

�T
; Cd =

�
V1(xm) 0 · · · Vr(xm) 0

�
This model can be extended even further by including the transfer function from the speaker
voltage input Vs to the speaker baffle acceleration v̇s given by:

svs(s)

Vs(s)
=

Kss
2

s2 + 2ξsωns + ω2
ns

(8.28)

that leads to a state-space vector of order n = 2r + 2.
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Fig. 8.15. Signal-processing instrumentation composed by (a) DSpace system, (b) mixing
console, (c) audio amplifier, (d) signal generator, (e) host PC, plus the oscilloscope

Fig. 8.16. Conceptual view of acoustic noise suppression

However, according to [18], the parameters of such a state-space model should be obtained
by experimental identification. Therefore, in the next section a (control-oriented) identification
technique fits a nominal model plus a frequency-dependent model uncertainty bound to the
(noisy) frequency response with a worst-case criteria (usually the fitting is in a least-squares
sense, see [18] and [4]). Furthermore, the previous mathematical model supports the fact that
the nominal model should have parametric information based on second-order systems tuned
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to the modal frequencies of the duct. In the approach described next, this is performed via a
finite set of Kautz orthonormal bases, which also serves to keep the model order as low as
possible ([31]).

8.3 Identification and Control Experiments

8.3.1 Objectives

In this section, a hybrid (FF/FB) controller is designed to cancel the acoustic noise in the
tube described previously. The control system has a filtered U (FULMS) control structure
as shown in Figure 8.12, which has been explained in greater detail in Section 8.1.3. This
structure avoids the use of unstable filters for the cancelation of the nonminimum phase zeros
of the secondary path, and compensates the acoustic feedback. The FF controller is based on
the robustly normalized σ-algorithm and is adaptive in nature, and the FB is an H∞ optimal
controller.

The experiments are performed with three test inputs: the first one is a single tone of
105 Hz; the second one is a set of tones in the range [95, 115] Hz that physically simulates an
industrial fan, also called a synthetic fan. The third experiment is performed with the actual fan
that has nonlinear and time-varying characteristics. The first two noise sources are produced
by a signal generator connected to the primary speaker, as described in Section 8.2.

For both the FB controller and the FULMS structure, identified models of the secondary
path are necessary. These are obtained in different ways depending on the experiment, by
using the methodology described in Section 8.1.2. The two different identification approaches
are based on different assumptions and explained next.

The first approach is focused on a controlled LTI environment (single tone and synthetic
fan). The secondary path is identified with a standard multisinusoidal input, and separate de-
signs for the FF and the FB are based on it. The hybrid controller is the combination of the
FF and the FB obtained, and is tested with the hope that, if there is a close match between
synthetic and real fans, it will work there as well.

The second approach is focused on the industrial fan, and is based on its nonlinear/time-
varying characteristics. Using the previous secondary path, the FF is implemented and then
the same secondary path is identified again, but with the actual signals in the loop. With this
new model, the FB is designed and combined with the FF to produce the hybrid controller.

Therefore, the main objectives of this work are as follows:
Identification: The application of a robust (control-oriented) identification procedure to an
ANC system with a parametric/nonparametric model structure. Two approaches are used to
determine the applicability of an hybrid controller, based on two different identification steps.
Control: The design of an hybrid (FB/FF) controller for this application and a systematic
procedure to justify its advantages, in terms of performance and robustness, with respect to FF
or FB controllers.
Implementation: To explicitly point out the compromises and interplay between the identifi-
cation and controller design for this ANC system. In addition, the feedback-loop limitations
and the practical issues that arise are also pointed out.

8.3.2 Identification Approaches

The identification to design the hybrid controller for the single-tone and synthetic-fan ex-
periments is performed with a multisinusoidal input, which is fed to the secondary speaker,
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while the output is obtained from the error microphone. The identification method is the in-
terpolatory robust one, based on a parametric/nonparametric model and on the experimental
knowledge of low-frequency modes ([5, 31]), already explained in Section 8.1.2. The model
computed is used as Ĝsec(z) in the FULMS control structure (see Figure 8.12) and as the
nominal model Gsec(z) in the FB design (see Figure 8.26). In the latter, also a worst-case
deterministic multiplicative uncertainty bound Wδ(z) is obtained (see Section 8.1.2), which
exactly fits the H∞ optimal control method used to design the FB controller. This identifi-
cation setup is similar to the one that generates the synthetic fan using the primary speaker.
Therefore, due to the fact that the primary and secondary paths are essentially LTI, the FF and
FB controllers can be designed separately, but connected together to form the hybrid one.
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Fig. 8.17. Step 1: Interpolation points and peak frequencies

Instead, the identification to design the hybrid controller for the industrial-fan experiment
is performed in two steps, as follows:

1. The same procedure as before is used to identify the secondary-path model Ĝsec(z) to be
used in the FULMS control structure.

2. Once the FF control is designed with the FULMS structure, the secondary path is identi-
fied again, with the main acoustic noise source (fan) and the FF in place. Also in this case,
not only is the nominal model obtained, but also a worst-case deterministic multiplicative
uncertainty bound Wδ(z), both used in designing the FB controller.

The explanation for doing this consecutive identification is as follows. When including
the actual fan in the experiment, a nonlinear/time-varying behavior in the setup is noticed. On
the other hand, both the FF and FB need to work simultaneously, and the FF has its own real-
time identification algorithm. The objective is to cancel a large part of the noise with the FF
and add some extra performance and robustness through the FB controller, in this case in the
same frequency range. Therefore, it seems more realistic to identify the model used to design
the latter with the actual signals in the loop, i.e. with the noise source and the FF in place.
Again, this is due to the nonlinear/time-varying nature of the physical setup that may cause
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Fig. 8.18. Step 1: Second-order bases fitted to the experimental data
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Fig. 8.19. Step 1: Parametric, dynamic and model error for experimental data

the model to change for different levels of the input signal. The input to the secondary path
may be significantly lower when the FF is being used (there is already attenuation). Hence,
the secondary path identified in this way could be more realistic, and consequently the FB
controller that is based on it.

It could happen that the model obtained from this identification is bad, meaning that its
relative uncertainty is above one for almost all frequencies of interest. Then, using the common
(and controversial) adagio “... let the data speak ...”, we may conclude that the FB will not
be able to add extra attenuation, besides the one already achieved by the FF. In this case, it is
practical to use only the FF structure.
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Finally, in identification step 2, the output of the primary path is also measured. This is
useful to determine the weightWp(z), which represents the main frequencies to be attenuated
when designing the FB H∞ optimal controller (see Figure 8.25).

Identification Step 1
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Fig. 8.20. Step 1: Identified model of experimental data

In the first step, using a set of sinusoidal inputs that cover the frequencies from 5 to
500 Hz on a 4-s experiment, the secondary path is identified. Figure 8.17 illustrates the 22
interpolation points used to identify the secondary channel of the acoustic setup presented in
next section, which amounts to a nonparametric part of order 44. In addition, the five asterisks
indicate the peaks that will be fitted by second order models (see Figure 8.18), which adds
an extra 10th-order model. In Figure 8.19, the parametric and nonparametric components and
model error of the acoustic system are presented, and in Figure 8.20 its complete identified
model. The latter is a 16th-order model that has been obtained after balanced-truncation model
reduction, based on the Hankel singular values. As explained previously, this model is used in
all experiments as Ĝsec(z) in the FULMS control structure, and as the nominal model Gsec

(see Figure 8.26) for the FB design in the single-tone and synthetic-fan experiments. In this
last case, the multiplicative uncertainty weight Wδ(z) has also been computed, as illustrated
in Figure 8.30 with the dashed curve.

Identification Step 2

The identified model in this case can be seen in Figures 8.21 to 8.23. Note the difference with
similar figures for Step 1, especially the greater concentration of interpolation points in the
relevant frequency range. This has to do with practical compromises, as will be explained in
the last section. Also note that, in Step 2, these main frequencies have already been attenuated
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Fig. 8.21. Step 2: Interpolation points and peak frequencies

by the FF solution. From this procedure we also obtain the coverage of the relative identifi-
cation error (8.19) that is used as the uncertainty weighting functionWδ(z) in the FB design,
illustrated in Figure 8.24. Note the limited bandwidth where this weight is below one, when
compared with the one in Figure 8.30. This will produce quite different performance results
for the hybrid controller in both experiments, i.e. synthetic and industrial-fan inputs. Also, the
achievable weight Wp(z) is illustrated in Figure 8.27 and has been selected to attenuate the
ideal frequency range, indicated in Figure 8.25.
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Fig. 8.22. Step 2: Second-order bases fitted to the experimental data
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Fig. 8.23. Step 2: Identified model and experimental data

8.3.3 FB Controller Designs

The control objective is to minimize the acoustic-noise disturbance at the error microphone
output, due to the noise source passing through the primary circuit, as illustrated by the block
diagram in Figure 8.26. Therefore, the perturbations are a set of signals p in a certain frequency
range, represented by the weightWp(z) in the same figure. If the energy of signal y at the error
microphone has to be minimized, the approach from a worst-case perspective is to consider
all weighted disturbances p in the set. Hence, nominal performance is defined as follows:

min ‖y‖2 , ∀ ‖p‖2 < 1 ⇐⇒ min
i.s.K(z)

‖S(z)Wp(z)‖∞ (8.29)

where S(z) is the sensitivity function, ‖·‖2 represents the energy of the signal, and i.s. stands
for internally stabilizing. From Figure 8.26 it can be verified that the transfer function between
p and y is precisely S(z)Wp(z). The equivalent condition is simply a consequence of the
induced norm in L2. This exactly fits the H∞ optimal control procedure ([11, 35, 44]) applied
to a set of perturbations p, whereas H2 optimal control ([34]) could have been used in the case
of a single known perturbation.

In addition, a condition is added to take care of robustness, due to model uncertainty.
Here, the system is represented by a global dynamic (multiplicative) set of models G, and its
equivalent condition for robust (internal) stability is as follows:

i.s. K(z) ∀ G ∈ G def
= {[1 +Wδ(z)δ]Gsec(z), |δ| < 1}

⇐⇒ ‖T (z)Wδ(z)‖∞ ≤ 1 (8.30)

where T (z) is the complementary sensitivity function and Wδ(z) weights the uncertainty
among frequencies (see Figures 8.5, 8.24 and 8.26).

Performance in Equation (8.29) guaranteed for all models in the uncertainty set (8.30),
defines robust performance, which in addition solves both conditions simultaneously with the
same controller. The equivalent condition for robust performance is:
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Fig. 8.24. Step 2: Relative identification error and multiplicative uncertainty weight for the
industrial-fan experiment
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Fig. 8.25. Output of the primary path excited by the fan and ideal performance region (inside
the dashed lines)

min ‖y‖2 , ∀ ‖p‖2 < 1 and G ∈ G
⇐⇒ |T (z)Wδ(z)| + |S(z)Wp(z)| < 1, ∀z = ejΩTs (8.31)

This condition coincides with the µ (semi) norm for this SISO problem ([11, 35, 44]). In this
case, instead of using µ-synthesis, the design has been solved as a mixed-sensitivity problem
using H∞ control,

min
i.s.K(z)

����
�
T (z)Wδ(z)
S(z)Wp(z)

�����
∞

(8.32)
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This maintains the order of the controller limited to the order of the augmented plant’s model
(nominal model plus weights), which is important for the controller implementation.

�
−

� K � Gsec
�

� δ
�
Wδ

�� � �

�

p

Wp

� �
y

�

Secondary

Fig. 8.26. Feedback (FB) design setup, with primary circuit perturbation (Wp) and secondary
model with multiplicative uncertainty (Wδ)

Both the performance Wp(z) and the robustness Wδ(z) weights are related to the pertur-
bation and model identification data of the problem, respectively. The reasoning behind the
weight selection is as follows.

The performance objective is to decrease the sensitivity of the system at the main frequen-
cies of the disturbing (acoustic) signal, filtered by the primary path. The combination of pri-
mary circuit and noise-source response has the main peaks in the frequency range [95, 115] Hz,
both in the real and synthetic fan cases. Therefore, Wp(z) has been selected so that it in-
creases the performance at the ideal bandwidth, illustrated in Figure 8.25. The robustness
weight Wδ(z) is computed so that it “covers” the relative model error-frequency response
(see for example Figures 8.5 and 8.24). A tighter coverage of this modeling error should be
achieved in the main range where acoustic noise needs to be attenuated. The reason for this
is to improve performance in that frequency range, due to the relation between performance
and robustness in Equation (8.31). In addition, the order of both weights needs to be limited
due to the same fact pointed out before: they increase the order of the augmented plant and
consequently, of the controller. For example, compare the actual weights Wδ in Figures 8.24
and 8.30 with an hypothetical better fitted weight from Figure 8.5, which clearly will have
higher order.

Also, from a practical standpoint, the analysis of the robust performance condition (8.31)
could be improved by replacing the uncertainty weight Wδ(z) by the actual frequency mag-
nitude of the relative model error of Equation (8.19) (full line in Figure 8.29). This would
provide a more realistic analysis condition, although in the design stage the weightWδ(z) has
to be used.

Another practical issue is actuator saturation, which could be considered in the design
procedure. Again, in order not to increase unnecessarily the order of the controller, the actuator
signal with the controller in place can be verified to be within limits, instead of adding an extra
weight (at the controller output in Figure 8.26) to the design problem (8.32). This will also be
mentioned as part of the experimental compromises in the last section.
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Fig. 8.27. Achievable performance weight and sensitivity function for the industrial-fan ex-
periment

Design Cases

Two different designs have been made, according to the input noise source experiment. In
the first case, for the synthetic-fan and single-tone experiments, only Step 1 identification has
been used to design FF, FB and hybrid controllers. The uncertainty and performance weights,
as well as the sensitivity, are illustrated in Figure 8.30. Note that |Wp| is above one, and
|Wδ| and the sensitivity magnitude are below one in the performance bandwidth [95, 115] Hz.
Therefore, these weights can accommodate reasonable performance and robustness results,
as will be detailed in Section 8.3.4. Furthermore, the FB controller had order 12 and when
combined with the FF (order 30) as a hybrid controller, was perfectly realizable with the
actual DSP using Ts = 0.4 ms4.

The second case is tuned for the industrial-fan experiment. The two-step identification has
been performed, and the weights are shown in Figures 8.24 and 8.27. As indicated previously,
in this case the uncertainty weightWδ has a limited region where its magnitude is below one.
In addition, to satisfy the robust performance condition (8.31), the achievable performance
weight Wp magnifies the bandwidth [95, 115] Hz, but is still below one. Note also that, in
Figure 8.27, the sensitivity does not decrease significantly in the frequencies of interest, which
means that there will be almost no noise attenuation. Therefore, it is reasonable to state that
for this situation, the hybrid controller will not do a better job than the FF one. Besides, the
robust performance condition was achieved with a FB controller of order 50, which combined
with the FF control of order 30 cannot be implemented in this DSP. The analysis plots for
this design are presented in Figures 8.27 to 8.29. In addition, note that when using the actual
relative identification error in Figure 8.29, although robust performance is above one near 50
Hz, the design guarantees a practical robust stability condition.

The important point here is that the conclusions for both designs can be obtained solely
by using the identification information, Wδ andWp.

4 Previously, a Ts = 0.2 ms was used, but it limited too much the order of the controllers
due to implementation, particularly in the hybrid case.
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Fig. 8.28. Robust stability and nominal/robust performance conditions for the industrial-fan
experiment
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Fig. 8.29. Robust stability and performance experimental conditions using the relative identi-
fication error er for the industrial-fan experiment

8.3.4 Results

Three controllers have been designed: FF, FB and hybrid (FF/FB). These have been tested
with three input noise sources (see Section 8.2.1):

• A speaker-generated single-frequency tone of Ω = 105 Hz.
• A speaker-generated synthetic fan with bandwidth Ω ∈ [95, 115] Hz.
• The actual industrial fan.
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Fig. 8.30. Uncertainty (Wδ), performance (Wp) weights and sensitivity function S for the
synthetic-fan experiment

For the first two inputs, only Step 1 identification of the secondary path has been used,
as indicated in Section 8.3.2. The results are presented in Table 8.1. This first hybrid design
was also tested with the real fan and shows a good agreement with the synthetic test (see
values in the same Table). Figures 8.31, 8.32 and 8.33 compare the open-loop and closed-
loop responses for the three different input noise sources, respectively. Figure 8.34 shows the
attenuation attained by the hybrid (FF/FB) controller with the three different input signals.
The attenuation values for the actual and the synthetic fan correspond to the performance
bandwidth of interest.

A second hybrid design has been tuned to the actual fan input and hence, both identifi-
cation steps have been applied. The analysis indicated that this controller would not perform
better than the FF and, in addition the order (80) was too high to actually implement it in the
DSP. Therefore, no results are shown in this case.

Table 8.1. Experimental characteristics and attenuation for different control structures

Structure Identification Order Single tone Synthetic fan Industrial fan
FF step 1 30 81.25 dB 9.56 dB 7.56 dB
FB step 1 12 3.90 dB 4.15 dB 3.82 dB

Hybrid (1st) step 1 30+12 82.36 dB 12.72 dB 10.1 dB

Some final comments on these results. The FF controller performs much better for a single
tone. This seems less demanding for the adaptation algorithm than a set of different tones, for
which the performance decreases significantly. Nevertheless, in this last case where a finite
bandwidth is applied, the results are similar for both the synthetic and industrial fan.

The FB controller has clear performance limitations, mainly due to the nonminimum
phase zeros, hence it does not perform as well as the FF. It has been designed based on a
(conservative) set of models that represents the actual plant. This explains why this robust
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Fig. 8.31. FF, FB and hybrid controller attenuation in the case of a pure tone at Ω = 105 Hz
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Fig. 8.32. FF, FB and hybrid controller attenuation in the case of the synthetic fan Ω ∈
[95, 115] Hz
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Fig. 8.33. FF, FB and hybrid controller attenuation in the case of the industrial fan
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Fig. 8.34. Hybrid controller attenuation with the three different input signals
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controller performs similarly for all inputs. Only with more information on the real fan, i.e.
less uncertainty and a smaller model set, could the controller have performed better, probably
with the extra cost of a higher order. Another step to increase performance would be to include
the fan’s nonlinear/time-varying characteristics in the model and uncertainty descriptions, and
design a nonlinear controller.

In the same table, there is a good agreement in the attenuation produced by each controller
separately, and combined together in a hybrid structure for all three inputs, i.e. the sum of both
values add up to approximately the attenuation for the hybrid control. Although this design
approach was tuned to the synthetic signal, i.e. not considering the two-step identification
procedure described in Section 8.3.2, it performs very well when applied to the real fan, as
indicated in Table 8.1. This result can be justified by the fact that model uncertainty covered
both, synthetic and real fans, in the same set.

The methodology that uses a two-step identification procedure to design a hybrid con-
troller is more conservative. It could be successful in certain situations where there is clearly
a different behavior between real and synthetic inputs, due to nonlinearity and time variation.
It seems particularly useful in applications where the FF reduces most of the broadband noise
and the FB is designed to concentrate the attenuation in a certain (narrower) band. Clearly
in this particular application the main perturbations are located already in a narrow band
([95, 115] Hz) and the FF has eliminated most of it, hence the hybrid controller does not
add any benefit. The model of the secondary path obtained from the 2nd identification step, is
too uncertain at those frequencies and hence, no improvement can be achieved by adding a FB.
An irrelevantly low attenuation would have been obtained (see Figure 8.27) using the resulting
FB controller of order 50, which in fact could not be implemented in the DSP, combined with
the 30th-order FF.

8.4 Compromises and Discrepancies between Theory and
Practice

Practical Compromises

Besides maximizing performance and robustness, it is important to consider several practical
constraints. They generate compromises in the controller design and possible identification
iterations. These compromises arise from different sources: (i) feedback-loop constraints (see
[14, 36], and in particular for ANC, see [17]), (ii) identification and control design interplay,
(iii) implementation issues. These practical problems, which impose constraints in this appli-
cation, have already been commented on this chapter, and are enumerated altogether next.

1. The nominal model of the secondary path has right half-plane zeros that limits perfor-
mance in the FB case.

2. Frequency interpolation is used as an identification tool, therefore the model order is
directly related to the number of interpolation points.

3. The usual robustness/performance compromise is a direct consequence in this case of
Equation (8.31). This, in addition, forces an identification/control compromise, i.e. the
multiplicative identification error should be lower than one in frequencies where noise
attenuation (performance) is needed.

4. An additional problem is added related to the previous point. At certain frequencies where
the magnitude of the model is small, the relative identification error increases; sometimes
above unity.
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5. Performance and robustness design weights increase the order of the augmented plant’s
model and therefore, of the controller.

6. The FB controller usually has poles very close to the unit circle in the design stage, which
may lead to instability in the implementation, due to numerical issues.

7. The simplest way to represent the FB transfer function for controller implementation is
numerator/denominator polynomials. This may lead to important pole distortion when it
is implemented, specially with high-order polynomials.

8. Actuator saturation should be taken into account.
9. DSP implementation and sample time impose limitations on FF and FB controller orders.

Next, some solutions adopted in this application for the previous compromises are enu-
merated.

• Nonminimal phase models restrict performance in a well-known way. In fact they suffer
from the waterbed effect, pointed out in [14, 36], which determines lower bounds in the
size of the peaks of the sensitivity function magnitude

�
�S(ejΩTs )

�
�. It is clear from here

that the lower the sensitivity will be in certain frequency bands, the higher it will increase
in others. Hence, the performance weight Wp(z) should reflect a decrease in the sensi-
tivity only at frequency bands with the highest peaks of the error microphone output, i.e.
in the range in [95, 115] Hz. This frequency band, also called the “performance” range,
determines the frequencies in which the sensitivity is below one, as indicated by Equation
(8.29). The waterbed effect can be seen in Figure 8.30, where clearly the sensitivity is
below one, and hence there is disturbance attenuation, only in the “performance” range
[95, 115] Hz. Instead, the controller will amplify signals with frequency content outside
this range. This is not a problem when these signals have a small magnitude there, as
illustrated in this case by the fan signal in Figure 8.25.

• From Equation (8.31), it is clear that only at frequencies where the multiplicative identi-
fication error is below one can robust performance be achieved. Therefore,Wδ(z) should
be decreased as much as possible (while still bounding the relative identification error)
only in frequencies where attenuation is needed, i.e. at the “performance” range pointed
out previously. This has been solved by adding more interpolation points in this frequency
range, keeping the total number of points as low as possible to avoid increasing the order
(compare Figure 8.21 with Figure 8.17). This is a way of keeping track of the relation
between robustness and performance, as well as the order of the controller at the identifi-
cation stage, instead of only reducing the order of the controller at the end of the design.

• The order of the nominal model has also been decreased by eliminating interpolation
points and concentrating them in the important “performance” bands, as mentioned be-
fore. In addition, frequency peaks that appear above 255 Hz in Figure 8.22, have not been
fitted with Kautz bases for the same reason. If necessary at the end, a balanced model
order-reduction step can be applied to the controller, based upon its Hankel singular val-
ues.

• The relative identification error er, defined in Equation (8.19) and applied to the nominal
model of the secondary path Gsec(z) in Figure 8.26, could be larger at frequencies where
�
�Gsec(e

jΩk)
�
� is small. To decrease it, either the nominal model can be changed locally or

the noise set (and hence the identification error) can be made frequency dependent (see
Section 8.1.2). In the latter case, the identification error bound εkf is weighted to make it
directly proportional to

�
�Gsec(e

jΩk)
�
�.

• The orders of both weights, Wp and Wδ , have been kept as low as possible, while taking
into account the performance and robustness features pointed out previously. For example,
for the first design they have been chosen as follows:
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Wp(z) = 0.1776
z2 − 1.464z + 0.538

z2 − 1.869z + 0.931
(8.33)

Wδ(z) = 0.978
z2 − 1.914z + 0.9756

z2 − 1.775z + 0.8086
(8.34)

and illustrated in Figure 8.30.
• The FB controller has been finally implemented rescaling the magnitude of the poles

closest to the unit circle, to avoid controller fragility. Clearly, this modifies the dynamics of
the controller, therefore the analysis to assure robust performance must be rechecked. The
analysis figures presented in this chapter were obtained using the implemented nonfragile
FB controller.

• The previous controller was implemented using a series connection of second-order sec-
tions (SOS), which are numerically more efficient than the polynomial representation.

• Actuator saturation could be taken into account at the design stage by considering an
extra weight at the controller’s output. In this case, due to the fact that there was no clear
saturation problem, the controller action was evaluated at the analysis and implementation
stages, to avoid increasing the order of the augmented design model, and hence of the
controller. According to the experimental results, the controller action was well within
saturation limits.

Discrepancies between Theory and Practice

Active noise control is an active area of research and many different applications have been
attempted, e.g. industrial and air-conditioning ducts, high-energy transformers, helmets, win-
dows and airport surroundings. The main practical and commercial approaches consider linear
models and adaptive FF solutions. There are clearly still many practical issues to be solved,
for which more applied theory has to be developed. These issues increase when considering
3D environments like boxes, cabinets or even outdoor situations. A nonexhaustive list of the
main issues that arise in this particular application, is presented next.

• Stability and robustness issues in adaptive FF controllers should be carefully considered.
In practical situations, stability can be a potential (and fundamental) source of problems.
Nonconservative nonlinear analysis tools should be used to solve this problem, so that
stability and performance guarantees could be given.

• Control-oriented identification with a worst-case deterministic error bound that fits robust
design methods can be very conservative in general. In the present case, the robust identi-
fication procedure used a local (experimental) identification error, instead of the global er-
ror. The more detailed the description of the system, the better performance the controller
can obtain. Therefore, structured uncertainty, nonlinear and/or time-varying information
could improve the system’s description and hence the resulting performance. Very limited
results have been developed for nonlinear and/or time-varying system identification with
a worst-case deterministic error, e.g. [26, 38].

• High relative modeling errors (multiplicative uncertainty) in frequencies where the exper-
imental data has smaller absolute values clearly limits robust stability and, as a conse-
quence, the achievable robust performance at these frequencies. Control-oriented identifi-
cation could consider this problem as part of the procedure to obtain the nominal model,
as a way to minimize the uncertainty in certain frequency bandwidths.

• Controller order has to be limited due to its practical real-time implementation. Model
order-reduction methods, as the ones based on Hankel singular values or using frequency-
band weighting, are applied. At the different stages of the identification and controller
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design, there are instances where controller order can be limited, e.g. selection and number
of interpolation points, number of Kautz bases, order reduction of nominal model and
weight-order selection. A clear analysis on how to decide on each instance could be very
practical. In addition, design methods that consider the controller order as part of the
formulation, would decrease the number of design iterations.

• Controller implementation is also an important issue, which could destroy the theoretical
performance and robustness result. Numerical precision problems can arise, which pro-
duce a gap between the controller design and its implementation, derived in an internally
fragile controller. Problems such as digital filter poles too close to the unit circle or pole
distortion using numerator/denominator high-order polynomials, can be solved if they are
taken into account at the design stage. To this end, numerically robust representations, e.g.
series connection of SOS, can be used to implement the controllers in the DSP or micro-
computer. Tools to take these numerical issues into account and avoid controller fragility,
should be considered.

Future Research Issues

Finally, some issues that could be considered by interested researchers in this area are pointed
out.

• Sensor and actuator allocation should be part of the identification and controller design,
similarly to what has been done in aircraft design. This could provide a global optimiza-
tion design environment and would certainly relieve some of the present limitations.

• A procedure to decide beforehand whether to use linear or nonlinear hybrid controllers,
based on the desired performance, could be helpful. In some sense this would generalize
the method followed in this chapter, in the case of hybrid versus FF controllers.

Acknowledgements

The authors wish to thank the support received by the Research Commission of the Generalitat
de Catalunya (ref. 2005SGR00537), by the Spanish CICYT (ref. DPI2005-04722), and the
last author by ICREA. We also appreciate the support provided by Prof. Jordi Romeu and his
collaborators in the use of the acoustics laboratory.

References

[1] Akçay, H. and Ninness, B. (1995). Rational basis functions for robust identification
from frequency and time domain measurements. Technical report, Royal Institute of
Technology, Stockholm, Sweden.

[2] Anderson, B. (1985). Adaptive systems, lack of persistency of excitation and bursting
phenomena. Automatica 21(3), 247–58.

[3] Bai, M. and Lee, D. (1997). Comparison of active noise control structures in the presence
of acoustical feedback by using the H∞ synthesis technique. Journal of Sound and
Vibration 206(4), 453–471.

[4] Bai, M. and Lin, H. (1998). Plant uncertainty analysis in a duct active noise control
problem by using the H∞ theory. Journal of Acoustical Society of America 104(1),
237–247.



8 Identification and Control Structure Design in ANC 243

[5] Baldelli, D., Mazzaro, M. C., and Sánchez Peña, R. S. (2001). Robust identification of
lightly damped flexible structures by means of orthonormal bases. IEEE Transactions
on Control Systems Technology 9(5), 696–707.

[6] Ball, J., Gohberg, I., and Rodman, L. (1990). Interpolation of Rational Matrix Func-
tions,Operator Theory: Advances and Applications, volume 45. Birkhäuser.

[7] Bodin, P., e Silva, T. O., and Wahlberg, B. (1995). On the Construction of Orthonormal
Basis Functions for System Identification. Technical report, Royal Institute of Technol-
ogy, Stockholm, Sweden.

[8] Boucher, C., Elliott, S., and Nelson, P. (1991). Effect of errors in the plant model on the
performance of algorithms for adaptive feedforward control. IEE Proceedings. F, Radar
and Signal Processing 138(4), 313.

[9] Chen, J. and Gu, G. (2000). Control-Oriented System Identification - An H∞ Approach.
Wiley Interscience.

[10] Chen, J., Nett, C. N., and Fan, M. K. H. (1995). Worst-Case System Identification
in H∞: Validation of a priori Information, Essentially Optimal Algorithms, and Error
Bounds. IEEE Transactions on Automatic Control 40(7).

[11] Doyle, J. C., Francis, B., and Tannembaum, A. (1992). Feedback Control Theory.
Maxwell/Macmillan.

[12] Dudley, N. F. and Partington, J. R. (1996). Robust identification in the disc algebra using
rational wavelets and orthonormal basis functions. International Journal of Control 64,
409–423.

[13] Feintuch, P., Bershad, N., and Lo, A. (1993). A frequency domain model for ‘filtered’
LMS algorithms-stability analysis, design, and elimination of the training mode. IEEE
Transactions on Signal Processing 41(4), 1518.

[14] Freudenberg, J. and Looze, D. (1985). Right half plane poles and zeros and design
tradeoffs in feedback systems. IEEE Transactions on Automatic Control 30(6), 555–
565.

[15] Hakvoort, R. (1994). System identification for robust process control. Ph.D. thesis, Delft
University.

[16] Helmicki, J., Jacobson, C., and Nett, C. (1991). Control Oriented System Identification:
A worst case/deterministic approach in H∞. IEEE Transactions on Automatic Control
36(10).

[17] Hong, J. and Bernstein, D. (1998). Bode integral constraints, colocation, and spillover
in active noise and vibration control. IEEE Transactions on Control Systems Technology
6(1).

[18] Hong, J., et al. (1996). Modeling, identification and feedback control noise in an acoustic
duct. IEEE Transactions on Control Systems Technology 4(3), 283–291.

[19] Ioannou, P. and Kokotovic, P. (1984). Instability analysis and improvement of robustness
of adaptive control. Automatica 20(5), 583–94.

[20] Ioannou, P. and Sun, J. (1996). Robust Adaptive Control, chapter 8. Robust Adaptive
Laws, pp. 530–633. Prentice Hall.

[21] Kaiser, O., Pietrzko, S., and Morari, M. (2003). Feedback control of sound transmission
through a double glazed window. Journal of Sound and Vibration 263(4), 775–795.

[22] Kalman, R. and DeClaris, N., editors (1970). Aspects of Network and Systems Theory,
chapter “Adaptive Filters”, pp. 563–587. Rinehart and Winston.

[23] Kuo, S. and Morgan, D. (1995). Active Noise Control Systems: Algorithms and DSP
Implementations. John Wiley and Sons, New York.

[24] Lueg, P. (1934). Process of silencing sound oscillations. U.S. Patent 043,416.



244 M.A. Cugueró, B. Morcego and R.S. Sánchez Peña

[25] Mazzaro, M. C., Parrilo, P. A., and Sánchez Peña, R. S. (2004). Robust identification
toolbox. Latin American Applied Research 34(2), 91–100.

[26] Mazzaro, M. C. and Sznaier, M. (2004). Convex Necessary and Sufficient Conditions
for Frequency Domain Model (In)Validation Under SLTV Structured Uncertainty. IEEE
Transactions on Automatic Control 49(10), 1683–92.

[27] Mullis, C. T. and Roberts, R. A. (1987). Digital Signal Processing. Addison-Wesley.
[28] Nelson, P. and Elliot, S. (1992). Active Control of Sound. Academic Press.
[29] Olson, H. and May, E. (1953). Electronic sound absorber. Journal of Acoustical Society

of America 25, 1130–1136.
[30] Ortega, R. and Tang, Y. (1989). Robustness of adaptive controllers-a survey. Automatica

25(5), 651–77. ISSN 0005-1098.
[31] Parrilo, P. A., Sánchez Peña, R. S., and Sznaier, M. (1999). A parametric extension of

mixed time/frequency robust identification. IEEE Transactions on Automatic Control
44(2), 364–369.

[32] Parrilo, P. A., Sznaier, M., Sánchez Peña, R. S., and Inanc, T. (1998). Mixed
time/frequency-domain based robust identification. Automatica 34(11), 1375–1389.

[33] Partington, J. R. (1998). Interpolation, Identification and Sampling. Oxford Sciences
Publications.

[34] Rafaely, B. and Elliot, S. (1999). H2/H∞ active control of sound in a headrest: Design
and implementation. IEEE Transactions on Control Systems Technology 7(1), 79–84.

[35] Sánchez Peña, R. S. and Sznaier, M. (1998). Robust Systems Theory and Applications.
John Wiley & Sons, Inc.

[36] Serón, M., Braslavsky, J., and Goodwin, G. (1997). Fundamental Limitations in Filtering
and Control. Springer.

[37] Snyder, S. and Hansen, C. (1994). Effect of transfer function estimation errors on the
filtered-X LMS algorithm. IEEE Transactions on Signal Processing 42(4), 950.

[38] Sznaier, M. and Mazzaro, M. C. (2003). An LMI Approach to Control-Oriented Iden-
tification and Model (In)Validation of LPV Systems. IEEE Transactions on Automatic
Control 48(9), 1619–24.

[39] Tøffner-Clausen, S. (1996). Advances in Industrial Control, chapter 10. System Iden-
tification and Robust Control: A case study approach, pp. 166–167. Springer-Verlag
London Limited.

[40] Toochinda, V., Hollot, C., and Chait, Y. (2002). Disturbance attenuation in a SITO feed-
back control system. American Control Conference.

[41] Verboven, P., P-Guillaume, and Cauberghe, B. (2005). Multivariable frequency-response
curve fitting with application to modal parameter estimation. Automatica 41, 1773–1782.

[42] Wahlberg, B. (1994). System identification using Kautz models. IEEE Transactions on
Automatic Control 39(6), 1276–1281.

[43] Wu, J.-D. and Lee, T.-H. (2005). Application of H∞ hybrid active controller for acoustic
duct noise cancellation. International Journal of Vehicle Noise and Vibration 1(3/4),
183–193.

[44] Zhou, K., Doyle, J. C., and Glover, K. (1996). Robust and Optimal Control. Prentice-
Hall.



Part IV

Electromechanical



9

Iterative Identification and Control Design:
Methodology and Applications

Pedro Albertos, Alicia Esparza, and Antonio Sala

Dept. Systems Engineering and Control, Universidad Politécnica de Valencia, P.O. Box.
22012, E-46071, Valencia, Spain. pedro@aii.upv.es, alespei@isa.upv.es,
asala@isa.upv.es

Summary. When using model-based controller design methodologies in order to control a
plant whose model is not a priori known, there are several practical issues to be taken into
account. Theoretically, the procedure is to identify an accurate enough model of the plant and,
then, apply any model-based controller design technique. But the real world is much more
complex and issues as the presence of nonlinearities in the plant or/and in the actuators, the
noise that always corrupts the data, the existing actuator constraints or computational limita-
tions, etc. arise, imposing natural limitations over the achievable performance of the plant to
be controlled as well as in the possible model to be experimentally obtained. In this contribu-
tion, an iterative framework has been used to overcome some of these problems. The proposed
algorithm starts by using a very rough plant model and low-demanding specifications. These
and the plant model are progressively improved only as needed, i.e. until the final desired
performance is achieved or no improvements are attained in consecutive iterations. This pro-
cedure somehow avoids useless effort: on the one hand, the identification stage is only a tool
for controller design, not aiming at achieving a very accurate model at any working condition
but just at those frequencies that are interesting for control purposes; on the other hand, the
bandwidth is increased as long as the plant allows it, avoiding undesirable experimental results
trying to achieve what is not possible at all.

Key words: Iterative methods, iterative identification and control scheme, identification for
control, model-based control, model-free control, low-order controller design

9.1 Background

9.1.1 Introduction and Motivation

When a designer faces the task of designing a controller for an unknown plant, he/she can
chose among several available methodologies to be followed. One of the options is to use a
model-based technique to design a controller on the basis of a previously identified model of
the plant.

Usually, when using a model-based control design technique some assumptions are made:

• A perfect model of the plant is available. Otherwise, the uncertainty is also bounded and
such a bound is known, as well as the uncertainty structure.
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• The control requirements are completely stated. They could be expressed as either an
index to be optimized or a set of behavioral parameters (defining performance bounds in
the steady state and/or in the time or frequency domains) to be satisfied.

• There are many options to select the control structure and there are no constraints in the
actuators.

But reality is rather different: when addressing the problem of designing a controller for
a real plant, some issues are not at all completely defined and should be considered by the
designer.

First, the task of the control system is to generate the appropriate plant inputs (control
actions) to drive the plant into the required behavior, but:

1 Can the desired performance for the closed loop be achieved with a particular plant? We
know that there are clear limitations in such a way that some (desired) performance goals
cannot be achieved by any controller [35].
There are obvious power constraints, but there are also others regarding invertibility: for
instance, if there is a pure delay in the output/input relationship in the plant, no feedback
controller can counteract it (the physical controllers are causal).

In model-based control, the plant model is only used as a tool for controller design. This
gives rise to what is usually called identification for control. This way of thinking realizes that
the plant knowledge required to design the control in order to fulfill some goals very much
depends on the goals themselves. Sometimes, just knowing the sign of the response may be
enough to stabilize an unstable plant, by applying positive or negative feedback. Thus,

2 If the plant is available, what is a “good model” of it? That is, which are the plant proper-
ties to be captured that will allow the design of a controller achieving the desired closed-
loop performance?
For instance, assume the control goal is to stabilize the temperature of a room. An on/off
control (relay control), as is common in most home heating systems, is all that is needed,
and a very rough model of the plant suffices. But, again, looking at the first of the issues
under discussion (limitations), if the maximum capacity of the heat supply is not enough
to warm up the plant (due to losses or unexpected values of disturbances, outside temper-
atures, for instance), no control system will achieve this simple goal.

And finally, if there is a mismatch between the actual plant and its model,

3 How can the designer be confident that the controller (computed from the plant model)
achieves a closed-loop behavior in simulation close to the one achieved when operating
on the real plant?
To illustrate this, let us set out an application example: Based on a perfect model of a
mechanical system such as a CD drive, a controller can be designed. Initially, it works
properly, but, after a number of hours of operation, the influence of temperature and wear
will change the CD behavior. If this effect has not been taken into account in the plant
model, the control performance will degrade. Furthermore, the same controller applied to
another drive may also have a degraded performance.

All the above issues lead to a clear conclusion: to design a controller, the control goals
should be achievable and the plant model should be appropriate. One way of addressing these
matters is by using an iterative identification and control scheme. The approaches developed
in this work try to give practical responses mainly to the first two previously discussed items.
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Regarding the first one, if the final achievable performance is not a priori known, it seems
reasonable to look for it in an iterative way, i.e. by first specifying a low-demanding perfor-
mance, and by cautiously increasing it until no improvement is achieved in experiments.

The solution to the second issue can also be considered from the above iterative point of
view: if the first desired performance is low demanding, the required model of the plant need
not be excessively accurate. As long as the demands increase and the controllers designed upon
the previously identified model do provide a good closed-loop behavior, the model is kept
and used to synthesize new controllers. When the actually achieved closed-loop performance
degrades, a new model is sought, tailoring the experiment in order for it to more accurately
model the plant features that are important for the new closed-loop operation conditions (and
that were not caught by the previous model).

The third item involves assessing model quality and robustness issues. In fact, the robust-
ness can be introduced in this scheme by the caution in increasing the closed-loop desired
performance1.

9.1.2 High-order Model versus Low-order One

When using a model-based controller-design methodology, the identification step is crucial.
Several questions arise about the experiment design, the model order and its structure. In
theory, it could be advisable to identify a model as accurately as possible, in order to get a
“close to perfect” plant model. But this decision usually carries lots of problems in practice.

At this point, it is worth recalling that the model is only used as a tool for controller design.
So, why spend great effort in identifying a highly accurate and complex model if a simpler
one could suffice for a particular set of control purposes? The plant model should be identified
in accordance with the closed-loop specifications. That is, the identification is carried out for
control purposes. This, of course, gives rise to the term identification for control, which has
been the subject of much research during the 1990s [12, 13, 34, 36]. The conclusion is that
what really matters in identification for control is that the achieved closed loop behaves as
similar as possible to the designed one. It is not so significant to have a good fit between the
real plant G and its identified model Ĝ when measured through open-loop properties such as
step response, settling time, frequency response, etc.

To illustrate this statement, the following example is proposed. For a plant to be controlled,
a 6th-order model G is assumed. The transfer function is given by:

G(s) =
35.6(s2 + 6s+ 153)(s2 + 8s+ 500)

(s2 + 16s + 65)(s2 + 4s+ 104)(s2 + 3.4s + 402.9)
(9.1)

Now, consider a second-order transfer function, Ĝ, such as:

Ĝ(s) =
34.79

s2 + 6.45s + 120
(9.2)

Both, G and Ĝ, are very different in open-loop step or frequency response. But in closed

loop, with a 2nd-order controller C(s) = 7186(s2+6.45s+120)
s(s+1000)

designed to operate achieving a

1 In order to provide simple and practical methods from an engineering point of view, we
did not incorporate features such as “model error modeling” to obtain uncertainty bounds
for validation; the reader is referred to [15–17] for details on identification of uncertainty
models for controller validation; an alternative validation methodology based in “virtual”
closed loops is also discussed in [32].
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bandwidth of 500 rad/s, they have a very similar behavior. Figure 9.1 shows the Bode diagram
of the open and closed loop of both G and Ĝ. As can be observed, the frequency response
of both models in closed loop are almost indistinguishable, whereas the open loop ones differ
greatly. The trick, of course, is that they differ at frequencies for which the controller offers
good robustness.

Fig. 9.1. Frequency response of both G (dashed line) and Ĝ (solid line) in open (OL) and
closed (CL) loop

9.1.3 Iterative Identification and Control Scheme. Fundamentals

As previously mentioned, a reasonable solution to the controller design task for an unknown
plant is to identify an accurate enough plant model and subsequently use any model-based
controller-design technique. Both phases can be performed in an iterative framework, [3, 13],
and this is the proposed approach in this work.

The problem of designing a controller for a plant whose initial model is not well known,
and where the main goal is the maximization of a performance index, can be approached
following an iterative scheme, such as:

Given a plant model, design a controller improving the best performance achieved
with older controllers, validate it against constraints and possible mismodeling, test
on the real plant and use the new data to get a better model. Repeat until performance
objectives are achieved.

Specifications are updated, for a given model, as the iterations proceed, as far as there is
no constraint violation in the actual controlled plant. Under the current operating conditions,
that is, on the limit of the constraints, new data should be gathered from the process and a
more accurate model should be estimated.

The process ends if either there is no option to improve the model (because, for instance:
(a) the signal-to-noise ratio is very low, (b) the model class cannot capture relevant details,
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such as plant nonlinearity with linear models) or the last designed controller fulfills the re-
quirements (or hits limiting constraints).

Two classical problems can illustrate this situation:

• Most mechanical systems present resonance phenomena, but the resonance only appears
at high frequencies that are only excited if the required controlled-plant bandwidth is large
enough. Thus, on the one hand, a plant model able to cope with the resonance can only be
obtained from data gathered from the plant being excited in this range of frequencies. On
the other hand, if the required bandwidth is not so large, the resonance does not need to
be captured in the plant model.

• Given an unstable system there is no way to estimate its behavior around a desired equi-
librium point if the system is not first stabilized. Once a stable system is achieved, experi-
ments can be designed to estimate its behavior for small deviations around this equilibrium
point. A linear/nonlinear (rough) controller is first designed and then a fine controller can
be designed afterwards for better performances around the final target. Here, what mat-
ters is the signal’s size. For instance, to just control the full opening/closing position of a
piston stroke (an integrator), the friction and stickiness close to the final position are not
relevant, and it can be controlled by an on/off controller. If the final position is required
with a higher accuracy, now, some experiments can be carried out to determine the stroke
behavior close to the equilibrium, for small displacements and reduced speed.

The decoupling of the identification (ID) and control design activities has been studied in
different frameworks during the 1990s [14, 25, 27]. This methodology is rather general and
different choices of identification, analysis, control design, and iteration algorithms may be
applied.

The approach followed in this work is related to the features of the frequency-domain
response of the plant. Based on the theoretical models of the resonant processes, the attention
being focused on a simple set of such algorithms, in order to explore the main issues of this
approach. Given an initial model of a plant, which is accurate only in a low-frequency range
(it could be just a steady-state gain), the goal involves iteratively designing a controller that
stabilizes the plant while increasing the closed-loop bandwidth (so reducing the settling time
as much as possible). Low-complexity controllers (arising from low-order models) are sought.

Two iterative approaches have been simulated and also experimentally tested:

1. The first one is model based. Typical step responses, signal power spectrum analysis
and/or input/output correlation by using PRBS signals are used to estimate the additional
modes. Pole placement or just pure cancelation controllers are used to improve the de-
signed controlled plant performance.

2. The second one is a model-free iterative version of virtual reference feedback tuning
(VRFT) [7, 30, 32], where the controller is directly identified from filtered input–output
data according to a desired performance M and some frequency filters.

Of course, other more sophisticated identification and/or control algorithms can be fore-
seen. For instance, in [4] a GPC controller with reduced weight in the control action to get a
faster response is designed. A progressive reduction of the performance index can be achieved,
as far as the improvement on the process model allows for stronger control actions.

9.1.4 Iterative Algorithm

The fundamental ideas of the iterative scheme, as used in this work, are detailed in [31].
Applications of particular variations of the iterative scheme can be found in [1, 2, 4].



252 P. Albertos, A. Esparza and A. Sala

The general algorithm can be summarized in the following steps. Given a real plant, de-
termine the input/output pair of variables. Estimate the physical constraints based either on
device limitations (such as saturations) or control requirements (overshoot, time response, ...).
Then:

Step 0 Identify an initial model G0 (it could suffice with just the static gain or the number of
integrators) approximately valid at low-frequency ranges.

Step i Based on the current process model, Gi:
1. Design appropriate controllers by successively increasing the desired performance.
2. Before implementing each new controller, assess the closed-loop’s constraints.
3. If the achieved performance is fully satisfactory, the design is complete. If the

achieved performance differs too much from the designed goals, or if the real closed
loop violates some constraints, then go to the next step.

4. At this step a new modelGi+1 is identified. IfGi+1 is relevant, the step i+1 is carried
out. Otherwise stop.

Stop When either the achieved performance does not improve by using new plant models or
the final requirements are met, the algorithm is stopped and the controller providing the
last (best) performance is chosen.

In the following, some experimental applications will be presented so as to assess the
capabilities of the proposed iterative scheme. First, in Section 9.2, the systems to be controlled
will be described. In Section 9.3, the experimental designs will be exposed, helped in some
cases by simulations of the closed loop to be implemented. This chapter will end with some
comments on the attained experimental results.

The above-described iterative scheme will be refined/modified according to the particular
requirements and techniques used in each of the two applications.

9.2 Description of the Applications

The above-mentioned iterative scheme has been applied to several mechanical systems, with
different characteristics. Two illustrative systems are analyzed: a flexible transmission system
and an active suspension one. Both have a common feature: they present resonant modes.
This is a very typical situation that can be found in any flexible structure, like the one used
in Chapter 6. Resonant modes are also present in other kind of systems, such as the acoustic
noise model identified in Chapter 8.

Flexible Transmission System. A scheme of the flexible transmission system to be used for
applying particular iterative schemes is depicted in Figure 9.2. It consists of three pul-
leys joined by two flexible bands. The movement of the whole system is produced by
the rotation of a DC motor, which is located next to the first pulley and produces its
axis movement. This movement is transmitted to the other pulleys by the flexible linking
bands. The DC motor has a servo controller whose dynamics is very fast compared to
those of the pulleys. The objective of the whole system is to control the angular position
of the third pulley.
The control of the system is implemented by a computer, which communicates with the
transmission system by means of an input–output acquisition board, its input being con-
nected to the position transducer, and its output to the servo of the DC motor. The software
used either to gather data or to apply the control action to the system is the Real Time
Toolbox of MATLAB�. The sampling frequency considered for the actual experiments
was 20 Hz.
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Fig. 9.2. Flexible transmission system

Active Suspension System. The active suspension system used for this contribution is shown
in Figure 9.3 and located at the Laboratoire d’Automatique de Grenoble (INPG/CNRS)2.
Its objective is to attenuate disturbances in a large frequency band. Its structure is depicted
in Figure 9.4. The principal elements of this system are:
• An elastomer cone that encloses the main chamber filled with silicone oil (1).
• An inertia chamber enclosed with a flexible membrane (2).
• A piston (3) that is fixed on a DC motor; when the position of the piston is fixed, the

suspension system is passive.
• An orifice (4) that allows oil flow between two chambers.
The main idea of the active suspension is to change the elasticity of the system in order
to absorb the vibrations generated by the machine that it is expected to isolate. For the
experimental purposes the machine is replaced by a shaker that is driven by a computer-
generated control signal. The output of the system is the measured voltage corresponding
to the residual force. The control input drives the position of the piston via an actuator.
The system is controlled by a PC via a data-acquisition system. The sampling frequency
is 800 Hz.
The block diagram of the active suspension system is depicted in Figure 9.5. The transfer
function between the excitation of the shaker and the residual force is called the primary
path. The secondary path is defined as the transfer function between the control input and
the residual force.

The above-described systems are used as a benchmark for applying the iterative ID and
control design scheme presented in Section 9.1. Different particular ID and controller design
methodologies are used with each of them, to be detailed later.

2 The authors would like to thank the staff of Laboratoire d’Automatique de Grenoble, and
particularly Professor Ioan-Doré Landau, for their kindness and their help in allowing the
execution of our experiments.
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9.3 Simulations and Experimental Examples

Aiming at pointing out the existing differences between theory and “real world”, the controller-
design methodologies are first simulated using a high-order plant model, and will be applied
to the real system later.

9.3.1 Iterative Controller Design for a Flexible Transmission System

In this section, the iterative methodology outlined in Section 9.1 will be used to design a low-
order controller for a very flexible transmission system. The description of such a system is
provided in Section 9.2.

As already mentioned, the iterative identification and controller design scheme can be
applied using different identification algorithms and controller-design methodologies. In this
particular case, two variations of such an iterative scheme are applied:

• The first application uses the iterative scheme presented in [31]. For this particular appli-
cation, output-error (OE) algorithms are used in the identification step and the controllers
are designed to match a reference model by cancelation (i.e. for a plant G, given a target
closed-loop behavior M , the controller isM(1 −M)−1G−1).

• The second one entails using in an iterative way the VRFT methodology, presented and
extended in several contributions, such as [7, 8, 30, 32, 33]. The original methodology is
a one-shot (i.e. requiring just one batch of data) controller-design technique. In order to
apply it, it is necessary to select the desired reference model, as in the cancelation case.
As argued in Section 9.1, the absence of knowledge about the final achievable bandwidth
causes the iterations to appear.

As the final purpose of this chapter is to illustrate the differences between theoretical re-
sults and experimental ones, both applications will be previously simulated and finally carried
out on the real plant. In the simulations, the following 8th-order model, G, which approxi-
mately fits most of the collected experimental data in prior experiments, will be assumed:

G(z) = 0.025z7+0.39z6+1.38z5+1.76z4+0.92z3+0.21z2+0.042z−0.0015
z8+0.8z7+0.32z6+0.3z5+0.17z4+0.5z3+1.08z2+0.4z+0.102

(9.3)

The sampling rate was 20 Hz, the same as the one programmed in the experimental setup.
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Low-order Controller Design by Iterative ID and Control Design

The first application involves using the iterative algorithm proposed in [31] and summarized
in Section 9.1.4, which can be detailed as:

1. Identify a first plant model G0 at low frequencies (e.g., a gain).
2. Design a controller with low-demanding goals. If the achieved behavior is similar to the

desired one, slightly increase the desired bandwidth. If that is not the case, go to the next
step.

3. Identify a new model Gi, using the latest data gathered from the plant, around the band-
width that caused problems at the previous step (filtering input and output signals through
a filterW with the required bandpass frequency characteristics).

4. Design a controller using a reference model featuring this bandwidth.
5. Before implementing any controller, apply a robust-stability validation test (testing for

robustness using the previous models, which were accurate at lower frequencies).
If the validation test is successfully passed, implement the controller and go to step 6. If
that is not the case, change the ID criterion (increasing low-frequency fit requirements)
and reidentify a new model, going back to step 3.

6. Compare the achieved response with the desired one. If they are similar, go to step 7. If
the misfit between them is not acceptable, then go to step 3 and increase the model order
before carrying out the identification.

7. Cautiously increase the desired bandwidth and go to step 4.

End The algorithm ends due to one of the following three reasons:
• When satisfactory performance is reached.
• When significant constraints’ violation is unadvoidable.
• When further steps of model-order increments do not yield an improvement on the

achieved performance.

Simulated Procedure

The model used as the “true plant” is the one in expression (9.3), using a sampling rate of 20
Hz. All the models are identified using data collected from the (noiseless) simulated plant in
open loop.

For the first model G0, a step is introduced to the simulated plant as the input, recording
its output, and the system’s gain is identified to obtain the model:

G0(z) = 1.012 (9.4)

WithG0, the controllers are designed from a reference modelM0i defined as:

M0i(z) =
1 − e−λ0iTs

1 − e−λ0iTsz−1
, (9.5)

where λ0i is the desired bandwidth and Ts is the sampling period, that is, 0.05 s.
The controllers are designed by cancelation, i.e.:

Cij(z) =
1

Gi(z)

Mij(z)

1 −Mij(z)
(9.6)

In this way, two iterations were carried out, for bandwidths of λ01 = 0.1 and λ02 = 0.2
rad s−1, obtaining the controllersC01 and C02, respectively. As can be observed in Figure 9.6,
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Fig. 9.6. Iterations carried out with G0 for λ0i = 0.1 and 0.2 rad s−1

the second step response shows an evident oscillation, which is unacceptable and entails the
need of identifying a new model of the plant, that is,G1 that captures such oscillations arising
from a resonant mode of the plant, up to now unmodeled by G0.

For the new step, the identification experiment is done using two pseudorandom binary
sequences (PRBS) of amplitude ±1, generated by a 7-cell shift register and a frequency di-
visor of 4 (see [21] for more details). These two sequences are applied in a consecutive way,
obtaining an input/output record of 1024 samples. The step responses in Figure 9.6 reveal
that the resonant mode is around 12 rad s−1, so the new model is identified by filtering the
data through a passband prefilter with cutoff frequencies of 6 and 12.6 rad s−1. Using an OE
structure, this new model is:

G1(z) =
0.2274z + 0.21

z2 − 1.61z + 0.991
(9.7)

The reference model used at this step is the following one:

M1i(z) =
(1 − e−λ1iTs )2z−2

(1 − e−λ1iTsz−1)2
(9.8)

Using G1 and λ1i = 1, 2, 5, 10 and 15 rad s−1, the controllers {C11, . . . , C15} are de-
signed, respectively, yielding a step response depicted in Figure 9.7. The oscillating behavior
when using C15 involves the need of a new plant model, if the bandwidth has to be increased.
For information, the control action has also been plotted in Figure 9.7.

If this is the case, another step is carried out. This time, a 4th-order plant model is needed
in order to catch the dynamics of the system that are important for closed-loop operation. This
new model isG2, defined as:

G2(z) =
0.31z2 + 0.63z − 0.19

z4 − 1.34z3 + 1.51z2 − 1.26z + 0.9414
(9.9)

Now, the reference model is defined by:
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Fig. 9.7. Step response using G1 for λ1i = 1, 2, 5, 10 and 15 rad s−1

M2i(z) =
(1 − βz−1)(1 − e−λ2iTs )4z−3

(1 − β)(1 − e−λ2iTsz−1)4
(9.10)

where β = −2.3 is the nonminimum-phase zero of G2, added to the reference model to
avoid being canceled by the controller (which would have given rise to an internally unstable
system).

UsingG2, several controllers were designed for increasing bandwidths (15, 30 and 60 rad
s−1), the closed-loop system responses being depicted in Figure 9.8.
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Fig. 9.8. Iterations carried out using G2 for λ2i = 15, 30 and 60 rad s−1
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C02(z) =
0.01z

z − 1
(9.11)

C15(z) =
1.224z2 − 1.971z + 1.213

z3 − 0.03874z2 − 0.9112z − 0.05
(9.12)

C23(z) =
0.8z4 − 1.068z3 + 1.204z2 − 1.011z + 0.7515

z5 − 0.468z4 + 0.0684z3 − 0.2512z2 − 0.5021z + 0.1527
(9.13)

The procedure does not go further, because the closed loop is approaching the Nyquist
frequency (63 rad s−1), so the effort spent at the identification step is not worth it just to
slightly increase the final closed-loop bandwidth: the performance is deemed satisfactory at
this stage.

From this simulated example, an important conclusion can be drawn: The (simulated)
plant to be controlled is an 8th-order one (expression (9.3)). However, for low bandwidths
just a gain or a second-order model suffices (expressions (9.4) and (9.7), respectively). If the
specifications of the closed-loop increase, a fourth-order model will be enough (expression
(9.9)). As a conclusion drawn from this simulated example, we could say that it is not worth
spending too much effort at the identification step aiming at achieving a highly complex model
if no information about the plant and/or its achievable bandwidth is available. Figure 9.9 shows
the frequency response of the systemG and its consecutive low-order modelsG0,G1 andG2.
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Fig. 9.9. Frequency response of the original plant G (dashed line) and its models G0, G1 and
G2 (solid lines)

Another conclusion from this example is the interest of using the sampling rate as a de-
sign parameter (not tested): the design of low-performance controllers does not require fast
sampling, and possibly, the high-frequency oscillations appearing in, say, Figure 9.6 would be
less manifest if the sampling rate had been lower than 2 Hz. Note, indeed, that the additional
resonances in the full-order plant (Equation (9.3)) are not excited in Figure 9.8. Increasing the
performance (if actuator power were available) would require both a more complex model and
a faster sampling.

To summarize, the last controllers being designed at each step are the following ones:
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Experimental Application

Once the proposed iterative scheme under simulation is applied, it is time to put it into practice
in an experimental setup. This was carried out using the system described in Section 9.2. The
algorithm applied was the same as the one used for simulations.

The controlled plant, when using the controller being designed based on the simplest static
model (gain close to 1) exhibits markedly oscillatory behavior with a frequency of about 2 Hz
(12.6 rad s−1), similar to the simulations in Figure 9.6, when the target settling time was below
30 s.

So the first decision is to define the identification frequency range. The previous oscilla-
tory step response justifies the choice of a band between 6 and 12.6 rad s−1. This determines
the prefilters to be added in order to identify a new model.

The second decision is about the model complexity. To begin with, a second-order model
is chosen in order to catch the first resonant mode dynamics.

The identification is then carried out using an open-loop set of data {u(t), y(t)}. The
plant input u(t) is a PRBS generated with a 7-cell shift register with a frequency divisor of
2. Both input and output signals are filtered through a 4th-order Butterworth filter. The used
identification algorithm is the extended output error algorithm [21]. The obtained second-order
model G1 of the flexible transmission system is:

G1(z) =
0.229z + 0.1977

z2 − 1.608z + 0.9883
(9.14)

Using this plant model and a model reference defined by Equation (9.8), consecutive can-
celation controllers are designed up to λ = 7 rad s−1, where oscillations begin to appear. The
controller CIT designed for λ = 7 rad s−1 is:

CIT (z) =
0.217z3 − 0.173z2 − 0.06826z + 0.1738

z3 − 0.629z2 − 0.796z + 0.425
(9.15)

Figure 9.10 shows the comparison between the simulated and the experimental step re-
sponses with CIT . For the simulation, the model in Equation (9.3) has been used.

At this moment, due to the appearance of the oscillations, a new model has to be identi-
fied. However, as new identifications reveal that an order increment is needed so as to go on
increasing the closed-loop bandwidth, the whole process is stopped to avoid increasing the
controller’s complexity, as the achieved behavior is deemed satisfactory. The final controller
is then CIT in Equation (9.15).

Restricted-complexity Controller Design by Iteratively Applying VRFT

This second example tries to illustrate a different usage of an iterative scheme. As explained in
Section 9.1, the general (usual) iterative scheme consists of several interleaved plant identifi-
cation and controller design steps. However, this basic scheme can also be modified to account
for different controller design methodologies that are not based on the availability of a plant
model (nonmodel-based controllers). Instead, a model of the controller is iteratively estimated
by directly using input/output data.

This is the case, for example, of the virtual reference feedback tuning methodology. This
is a direct restricted complexity controller design. VRFT was introduced in [7], and further
developed in [32], and extended to nonlinear settings in [5, 30].

The basic idea is to directly identify the controller using a set of data collected from
the real plant in open or in closed loop, and to specify the desired performance by suitably
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Fig. 9.10. Comparison between the simulated (dashed line) and the achieved (solid line) step
response using the controller designed for λ = 7 rad s−1

choosing the identification criterion. This is carried out by computing some virtual signals
from the experimental data: the virtual reference (rv) and the virtual error (ev). If the desired
performance is defined as a reference model (M ) in the complementary sensitivity function,
these signals are computed as:

rv = M−1yex (9.16)

ev = (M−1 − 1)yex (9.17)

where yex is the experimental output when uex is applied to the plant’s input.
The so-defined virtual error is the input to the to-be-designed controller in a virtual closed

loop having rv as the reference, yex as the plant’s output and uex as the controller’s output
(see Figure 9.11).

C G
uex yexev+

-

rv

Fig. 9.11. Virtual loop built from the experimental data {uex, yex} and the reference model
M

Once the virtual error is computed, the controller is designed by identification given its
input, ev and its output uex.The reader is referred to [32] to see different options in this setting.

Iterative VRFT

The VRFT methodology involves the definition of a reference model. This can be imposed
over the complementary sensitivity function [6], the input or output sensitivity function [8, 23]
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or both the sensitivity and the complementary sensitivity functions [24]. In this particular ap-
plication, the complementary sensitivity function reference model, called M , is used. The
selection ofM entails the definition of the desired level of performance, i.e. the desired band-
width. But this is a hazardous task, as, if no information about the plant is available, we cannot
guess the final achievable bandwidth. This, of course, suggests to first choose a low bandwidth
and to increase it as more knowledge about the plant is gained. Therefore the proposed iterative
VRFT scheme is summarized as:

1. Collect a set of experimental data in open loop: {uex, yex}.
2. Define a low-bandwidth reference model Mi and compute the virtual signals rv and ev

with the most recent experimental data.
3. Identify the controller Ci between uex and ev , using a low-order model structure (in this

application, the OE algorithm is used).
4. Check the closed-loop stability before implementing the controller. To do this, in refer-

ence [32], the identification of the achieved input sensitivity function is proposed. If this
transfer function is stable, the controller is validated, so go to Step i-d. If this is not the
case, increase the controller’s order and go back to step 3.

5. Implement the controller. If the achieved performance is not so different from the designed
one, then increase the reference model’s bandwidth and go to step 2. If the misfit between
the achieved and the designed performances is unacceptable, then increase the controller’s
order and go back to step 3.

End The algorithm ends due to one or even to a combination of several reasons:
• The achieved final performance is satisfactory.
• The presence of noise and/or nonlinearities hinders the identification step.
• Further order increases do not provide a significant improve in the closed-loop’s be-

havior.

Application to the Flexible Transmission System

Next, this iterative VRFT scheme is applied to the system under consideration.
The methodology is first tested in simulation using the model in expression (9.3). So the

input uex is introduced to the model in open loop, and its output yex is recorded. This input is
the same sequence as that used for simulations at the previous section (two consecutive PRBS
of amplitude ±1 generated by a 7-cell shift register and a frequency divisor of 4).

The consecutive reference models Mij are designed using the following expression (re-
calling that λij and Ts are the current bandwidth and the sampling period, respectively):

Mij(z) =
(1 − e−λijTs )2z−3

(1 − e−λijTsz−1)2
(9.18)

In the expression above, the index i stands for the group of iterations considering the
same order for the controller. When the controller’s complexity has to be increased, the index
i increases by one. On the other hand, the index j indicates the number of the iteration within
each group.

The first batch of iterations is carried out using a second-order model for the controller.
This complexity is enough for bandwidths up to 1.5 rad s−1. In fact, in Figure 9.12, the step
responses of the closed loop when operating the controllers C11 and C12 designed for the
bandwidths λ11 = 1 rad s−1 and λ12 = 1.5 rad s−1, respectively, are depicted. For informa-
tion, the identified controller C12 has a transfer function given by:
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Fig. 9.12. Iterations with a second-order controller

C12(z) =
0.00253z2 + 0.000671z − 0.001858

z2 − 1.965z + 0.9653
(9.19)

As the controller’s complexity is not enough for achieving higher performances, its order
is increased by one, i.e. third-order controllers are then identified using VRFT methodology.
With this complexity, the iterations depicted in Figure 9.13 are carried on. As can be observed,
some oscillations appear from λ = 10 rad s−1, being bigger as the bandwidth increases. The
identification of controllers of higher order did not provide significant improvement in the step
response, so the algorithm stopped here.
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Fig. 9.13. Iterations with a third-order controller

To summarize, the last controllers of each group of iterations have been C12 in Equation
(9.19) and:
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C25(z) =
0.2764z3 − 0.1676z2 − 0.1711z + 0.273

z3 − 1.397z2 + 0.5382z − 0.1415
(9.20)

Experiments. The results when applying the above-explained iterative procedure to the true
flexible transmission system are now displayed. The model reference is also defined by the
expression (9.18).

First- and second-order controllers behaved similarly to the above simulations. The final
iterations were carried out by identifying third-order controllers, based on the experimental
set of data {uex, yex} obtained from the plant with a lower-order controller.

In this way, the best performance achieved by the true plant is for λ = 12 rad s−1. The
controller identified for achieving this bandwidth is called CV RF T , and its expression is:

CV RF T (z) =
0.0788z3 − 0.048z2 − 0.04884z + 0.078

z3 − 2.1188z2 + 1.615z − 0.4963
(9.21)

Figure 9.14 shows the comparison between the simulated and the experimental step re-
sponses, using again for simulations the model (9.3). The control action for the final controller
has also been plotted.
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Fig. 9.14. Comparison between the simulated (dashed line) and the experimental (solid line)
step response for λ = 12 rad s−1

Comparison between Both Approaches

To end with this first application, both previous iterative approaches are compared. Figure
9.15 shows both simulated step responses: the one using CIT and the other when operating
CV RF T (recall that these controllers were designed for λ = 7 and 12 rad s−1, respectively).

Finally, Figure 9.16 depicts the experimental step response achieved when implementing
both CIT and CV RF T .

Note that, in practice, the actually achieved performance is similar for both methodologies.
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Fig. 9.15. Comparison between the simulated step response when both CIT (solid line) and
CV RF T (dashed line) are operating
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Fig. 9.16. Comparison between the experimental step response when using CIT (solid line)
and CV RF T (dashed line)

9.3.2 Low-order Controller Design for an Active Suspension System

The second application is the iterative low-order controller design for an active suspension sys-
tem. Configuration and operation of the system are detailed in Section 9.2. The specifications
of the feedback loop to be designed are analogous to those of the benchmark proposed in [20],
where the reader may consult experimental results of alternative control-design approaches on
the same system.

The active suspension system is a complex plant, with several resonant modes. So, an ac-
curate model will present a high complexity. If the controller-design methodology is based on
such a model, it will deliver a high-order controller. In order to try to avoid such a complexity,
there are two possible paths to follow:
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1. An indirect approach, starting with ID of a high-order model. There are two options:
• Designing such a high-complexity controller and then using any controller-reduction

techniques [26].
• Reducing the model complexity (using any model-reduction technique); subsequently,

designing a low-order controller from that reduced-order plant model.
2. Directly designing a low-order controller using the experimental data. To achieve this, the

controller-design methodology can be either:
• Model based: If the model is a high-order one, the restricted-complexity controllers

may be directly designed by optimization [9, 10, 19, 22]. If, on the contrary, a low-
order plant model is directly identified from the experimental data, the controllers
can be designed using any model-based methodology [31]. This is one of the paths
that will be followed in this application.

• Model free: there are nonmodel-based controller design methodologies that obtain the
controller directly from the experimental data, without identifying any plant model
[7, 18, 29].

In this section, two approaches for controller design being tested will be used:

1. Indirect low-order controller design by identification in closed loop [11, 28].
2. Direct iterative low-order controller design using the scheme outlined on page 255 and

detailed in [31].

The reason for comparing these two different low-order controller design approaches is
that, as we shall see, theoretical and practical results do not totally agree. What a priori seemed
a more accurate way of addressing the problem (the indirect method, as will be discussed
later), has somewhat poorer results when put into practice.

Of course, following the same line as in the previous application (Section 9.3.1), both
methodologies are previously simulated, using a full-order model of the active suspension
system.

Indirect Low-order Controller Design

The first methodology used to design a low-order controller is the same as in [11, 28]. The
steps followed in these references are:

1. To identify a good model of the plant. This identification is carried out in open loop.
2. To design a controller based on the previously identified model. This controller is ob-

tained using a modified pole-placement methodology that also incorporates restrictions
on the shape of some sensitivity functions [11, 28].

3. With this controller, a new identification is done, but this time in closed loop.
4. The new (high-order) model obtained in step 3 is used to design a second controller by

pole placement, considering the same specifications as for the design done in step 2.
5. Finally, this controller is reduced using identification in closed loop.

The controller design for an active suspension system problem was addressed in [20]. In
this reference, a benchmark was proposed. The objective was to design a controller for this
system keeping its complexity as low as possible.

In this benchmark, a high-order model for the active suspension was provided to be used
by all authors. However, later experiments developed onsite by one of the present authors
obtained significant differences; therefore, the need for a new model for the active suspension
plant became evident in order to achieve good performance designs.
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The model used for simulations (calledG) is the result of the application of the algorithm
stated above; in particular, it is the one identified in closed loop at step 3: it has been identified
in closed loop when operating a controller that, in turn, was designed at step 2 for the required
performance. This helps the accuracy around the control-relevant frequencies. The model’s
structure is a SISO 16th-order transfer function. For brevity, it is not reproduced here because
it does not introduce any additional information, but its Bode diagram can be observed in
Figure 9.17.

This plant model is used to simulate the designed closed loop before implementing it.
Therefore, the simulated results can be used in two ways: first, they assess the closed-loop
performance (and even its stability); second, they can be used for comparison with the exper-
imental ones.
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Fig. 9.17. Identified model for the active suspension system

The required controllers of steps 2 and 4 are designed by the modified pole-placement
methodology using the MATLAB�’s toolbox ppmaster3. The specifications imposed on the
design are that both input and output sensitivity functions (Syp and Sup) must be below the
templates of Figure 9.18.

In summary, when applying the above-outlined procedure, the full-order controller ob-
tained at step 4, denoted as CF ULL, has order 24, and meets the specifications when simu-
lated. However, some discrepancies appear (around 20 Hz and at higher frequencies) with the
experimentally achieved output sensitivity function (Figure 9.19).

Controller-order Reduction

The methodology used to reduce the order of the above-designed controller is based on con-
troller identification in closed loop. In particular, the closed-loop input matching (CLIM) al-
gorithm is applied [21]. In some sense, CLIM is related to the previously used VRFT method-
ology [30].

3 This toolbox can be found in the website of the book [21] http://landau-
bookic.lag.ensieg.inpg.fr/english/index_ENG_Fonctions_liste.htm
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Fig. 9.18. Templates for the sensitivity functions Sup and Syp
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Fig. 9.19. Simulated (dashed line) and achieved (solid line) behavior with CF ULL operating
in the closed loop

Using this algorithm, a PRBS sequence generated by a 10-cell shift register is introduced
as the input r of the closed loop. Then, a new controller (CRED) is obtained (of 9th order) so
that the closed-loop behavior does not deteriorate too much. Figure 9.20 shows a comparison
between the simulated closed loops when CF ULL and CRED are applied. In addition, Figure
9.21 compares the real and simulated behavior of the closed loop with CRED.

Iterative Low-order Controller Design

Next, a low-order controller will be designed for the active suspension system following the
same iterative scheme as in Section 9.3.1, detailed on page 255. The performance evaluation,
however, is now based on frequency-domain characteristics, instead of the time-domain ones
used in the previously discussed flexible-link application.
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Fig. 9.20. Comparison between the theoretically expected behavior of the closed loop when
operating CF ULL (dashed line) and CRED (solid line)
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Fig. 9.21. Simulated (dashed line) and real (solid line) closed-loop behavior with the reduced-
order controller CRED in operation

Defining the Specifications to be Achieved by the Closed Loop

As previously discussed, the methodology involves progressively increasing the specifications
to be achieved by the closed loop. In this case, the desired final behavior is defined in Figure
9.18.

Performance increase will be understood as achieving progressively smaller values of the
output sensitivity, Syp.

Figure 9.22 shows Syp1, Syp2, Syp3 and Syp, i.e. the consecutive templates to be consid-
ered over the output sensitivity function. Note that the last one, called Syp, is the final target
template.
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Fig. 9.22. Output sensitivity function templates to be considered

Iterative-controller Design

The first step in this procedure is to identify a low-order model. The first iteration, based on a
very simple model capturing the lower-frequency resonant peak, shows unacceptable perfor-
mance. Thus, as the experimental responses reveals the existence of two significant resonant
peaks, and as the measurements (acceleration) include a double derivator, a sixth-order model
is sought.

Identification is carried out using the experimental plant’s output collected when the input
to the secondary path is a PRBS generated by a 10-cell shift register, applied in open loop.
First, these data are filtered through a bandpass Butterworth filter with cutoff frequencies of
1 and 400 Hz, to avoid high-frequency noise. The model is identified using an extended out-
put error algorithm, incorporating the prior knowledge of the double derivator. The resulting
model is:

G1(z) = −2.36·10−7z3+2.25·10−6z2−4.72·10−6z+5.8·10−6

z4−2.36z3+2.81z2−2.206z+0.856
·
�

z−1
zTs

�2

= −0.15z5+1.74z4−6.04z3+11.19z2−10.44z+3.71
z6−2.36z5+2.81z4−2.21z3+0.86z2 (9.22)

where Ts is the sampling period, i.e. 1.25 ms.
All controllers have been designed by pole placement, using again the software ppmaster.

The different graphs in Figure 9.23 show the simulated system behavior when operating the
different controllers. Recall that the full-order model G previously identified in closed loop
is used for simulation. In this figure, the dashed lines represent the frequency response of the
low-order model G1 and the solid ones show the behavior of the full-order model G, both
operating in closed loop with the controllers designed below.

The first controller is C11 (Figure 9.23a), designed from G1 to satisfy Syp1 and being of
6th order:

C11(z) = 0.02z6−0.0073z5+0.00038z4+0.012z3−0.016z2

z6−2.52z5+2.67z4−1.52z3+0.47z2−0.16z+0.076
(9.23)

C12 is designed fromG1 with the same order as before (Figure 9.23b), using the template
Syp2 and obtaining:
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C12(z) = 0.024z6+0.02z5+0.014z4+0.026z3+0.0083z2

z6−1.4z5+0.95z4−0.31z3+0.07z2−0.11z−0.036
(9.24)

Then, the output sensitivity template is changed to Syp3 and C13a is designed from G1,
again with the same order. As the behavior is not as expected at low frequencies (the achieved
output sensitivity function does not fit the specifications around 20–30 Hz, see Figure 9.23c),
the order has been increased to 8 in C13b (Figure 9.23d):

C13b(z) = 0.0071z8−0.018z7+0.014z6+0.0007z5−0.014z4+0.017z3−0.007z2

z8−4.95z7+10.47z6−12.3z5+8.64z4−3.65z3+0.92z2−0.17z+0.03
(9.25)

Finally, the output sensitivity function’s template considered is the final one (Syp) and
a first 6th-order controller C14a is designed from G1. Again, as the specifications are not
fulfilled (Figure 9.23e), C14b is designed as an 8th-order controller. This is the final controller,
as the specifications are almost met (Figure 9.23f), and its transfer function is:

C14b(z) = 0.03z8−0.07z7+0.062z6+0.003z5−0.067z4+0.065z3−0.02z2

z8−3.9z7+6.7z6−6.4z5+3.71z4−1.5z3+0.68z2−0.36z+0.1
(9.26)

Further attempts have been made considering both controller and model-order increments,
but the results have not improved substantially. Therefore, C14b has been applied to the real
system, obtaining the result depicted in Figure 9.24.

To end with this application, let us pay attention to Figure 9.25. In this figure, the achieved
behavior of the closed loop when implemented CRED (9th order) and C14b (8th order) is
depicted. Observe that C14b provides a better high-frequency behavior besides being of lower
order.

9.4 Discrepancies/Misfits between Theory and Experimental
Results

This work has presented simulations and experiments of iterative identification and control
design techniques for mechanical systems, putting emphasis on the use of low-order mod-
els and controllers when the required performance goals are not stringent. As the optimal
control goals themselves are uncertain when the controlled plant is uncertain, the suggested
procedures increase, cautiously, the required performance as far as it is not fully satisfactory
and basic constraints are not violated. Remodeling decisions are made when performance im-
provements appear in simulation but not in practice.

A typical discussion about this approach is the possibility of getting, from the very be-
ginning, a complete full-order model of the plant. From a theoretical point of view this is,
of course, a simpler approach, but from a practical perspective, the modeling effort can be
drastically reduced and tailored for the specific requirements.

In fact, all obtained models will be “reduced-complexity” ones as no system is exactly
linear, time invariant and finite order in practice. Hence, if assumedly “full-order” techniques
are used, it will be necessary, in fact, to consider the issues related to experiment design,
signal-to-noise ratio, performance goals, etc.

From the experience gained in the work described here and other trials, it seems that the
simulations, when all conditions prescribed in theory are fulfilled, allow a larger number of
iterations than practice does: other phenomena, unaccounted for in transfer-function models,
limit the achievable performance in practice earlier than in the simulations, as discussed below.

Indeed, noise-free simulations yield, when the order is increased, the “true” model and
hence, perfect performance can be achieved (with no nonlinear saturation constraints, of
course).
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Fig. 9.23. Output sensitivity when applying a) C11, b) C12, c) C13a, d) C13b, e) C14a, f) C14b

In contrast, at least for the relatively simple mechanical systems under study in this work,
reasonable performance can be achieved with low-order regulators in one or two “modeling-
control-(re)modeling-. . . ” iterations. Higher-order models and controllers do not seem to sub-
stantially improve the achieved performance: indeed, there is a poorer signal-to-noise ratio at
high frequencies and, importantly, nonlinearities (saturation, gear backlash, friction) start to
be relevant for high-performance control of mechanical systems (not being captured in linear
models, whatever its order is). Saturation, in particular, seems to be a key limiting factor. So,
it seems that, in mechanical systems subject to linear control, the decision of using low-order
models and controllers capturing just the first (and maybe the second) resonant modes is wise
and, in fact, iteration-stopping criteria do suggest it.
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Fig. 9.24. Syp and Sup achieved by C14b: simulated (dashed line) and experimental result
(solid line)
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Fig. 9.25. Comparison between the behavior of the closed loop when using CRED (solid line)
and C14b (dashed line)

Note that the proposed schemes may be conceived as part of one including nonlinear
control, where increased complexity of the models might mean not only increasing the order of
the dynamics but increasing the number of parameters for nonlinear function approximators,
if any. However, the nonlinear methodologies have not been explored in this work, requiring
further research, as the frequency-response issues used for identification experiment design
and robustness validation no longer hold.

As a conclusion of the work, two remarks are relevant: (a) the “full-model” approach never
exists in practice and approximations must always be made; (b) it is very difficult for any “one-
shot” theoretical procedure to succeed to find a high-performance design in a totally unknown
plant. Hence, identification and control design in practice will nearly always need some sort
of “iteration” because the attainable goals depend on the plant, and the plant modeling criteria
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depend on the goals of the entities that will afterwards use the model (i.e. controller design).
Time variations (aging) may force the need of retuning, repeating some of the steps.
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Summary. This chapter reports on the modeling, identification and control system design of
a magnetic-bearing system. The model used in order to carry out the design of the control
system is first obtained in a process with two steps. In the first one, a nonlinear model based
upon physical laws is derived. After a linearization step, and with a set of frequency-response
samples in hand, an ad hoc identification process follows that renders a linear model that
adequately fits the experimental frequency-response samples.

The control-system design problem is addressed through three different techniques. The
first one resorts to simplifying the multiple input multiple output (MIMO) 4 degrees of free-
dom (DOF) dynamics of the magnetic-bearing system to a set of single input single output
(SISO) transfer functions, one per DOF. A classical phase-lead controller is designed, its per-
formance being evaluated in terms of the phase margin. The second technique is H∞ robust
control. Through ad hoc considerations about the high-frequency behavior of the system, in
particular the rotating beam’s flexible modes, a family of transfer functions is derived that
represents the uncertain systems’ dynamics. The design deals with the problem of robustly
rejecting sinusoidal disturbance signals that actually represent the beam’s imbalance. Finally,
evolving from the H∞ design, the parameter variation nature of the system (as the rotation
rate of the beam changes) is introduced in order to derive a linear parameter varying (LPV)
model. This approach seeks rejection of the sinusoidal imbalance force carrying out an LPV
adaptation to the online measured rotation rate. The design process is thoroughly covered with
remarks concerning the discrepancies between theory and practice that appear when applying
the different methodologies.

Key words: Magnetic bearings, LPV control.
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10.1 Introduction and Background

10.1.1 Motivation

In this chapter different techniques have been used in order to design the active magnetic-
bearing (AMB) system of an MBC500 experimental magnetic-bearing system. The MBC500
is a product designed and manufactured for academic research by Magnetic Moments, a divi-
sion of LaunchPoint Technologies, LLC (see [16] for a detailed description and the company’s
website: http://www.launchpnt.com). The particular MBC500 used for the experi-
ments includes the “Turbo 500” option that allows for controlled rotation of the beam.

The addressed control problem deals with the stabilization of the machine’s rotating shaft.
No matter how well balanced the rotor may be, there is always an uncertain amount of ec-
centricity in it. This means that the axis of inertia is not exactly the geometric one, and as a
result, imbalance forces appear. As a consequence, controlling the vibration of the rotor due
to imbalance is within the main goals.

In practice, imbalance can be modeled as “external” forces representing the eccentricity,
while considering the rotor as a rigid body with its inertia and geometric axis being the same.
As functions of time, these forces are considered sinusoidal (while the machine rotates), with
uncertain but bounded magnitudes and phases, and measurable frequency (rotor’s rotation
speed).

From a practical point of view, the motivation derives from applications where very high
speed rotation should be controlled. This is the case in aerospace applications of momentum
wheels used in satellites as a sensor and control element and in unmanned aerial vehicles
(UAV) as an (electromechanical) energy-saving device. In both applications, weight is strongly
penalized, therefore if mechanical momentum is to be maximized a higher rotation speed is a
more efficient choice.

This work was originally based on the problem solved in [13]. In this chapter a loop-
shaping H∞ control for a motor with magnetic bearings is developed. Initially neglecting the
rotor’s rotation and imbalance, stabilization is achieved. Through an additional block (linear-
fractionally connected), the imbalance vibration is passed through a notch filter with a sched-
uled central frequency (filter’s central frequency varies with rotor speed). This classical gain-
scheduling approach was tested in practice. Nevertheless, certain performance parameters are
not taken into account at the initial design stage, such as the maximum rate of change in rota-
tion speed. It also suffers the usual problems of gain-scheduled controllers that motivates the
use of LPV control: there is no guarantee of stability of the time-varying closed-loop system
while switching among controllers.

Here we have considered the problem of choosing alternative control strategies for this
kind of application. First, the classical approach used in this kind of system consisting of a lead
controller (or PD) was designed seeking a good phase margin for each of the loops involved in
the system (one per DOF). With this design in hand the objective has been to investigate if, for
this application, a simpler and easily implementable controller can withstand the robustness
and time-varying stability requirements. On the other hand, we have considered taking into
account the rate of change of the varying parameter, the uncertainty due to high-order flexible
modes of the rotor (neglected by the rigid-body model), as well as to guarantee stability of
the time-varying closed-loop system. To this end we have considered H∞ and LPV control
as design tools. Therefore, we can account for the relative influence of uncertainty and the
time-varying nature of the model in the performance of the system.

In particular, the LPV control theory gives an elegant background for the well-known clas-
sical gain scheduling. In general, LPV models can arise from the linearization of a nonlinear
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model at various parameter-dependent operating points or simply from natural LPV dynamics.
This technique, produces a time-varying controller that schedules with the same varying para-
meters as the plant, which are measured in real time. In some sense it is an adaptive controller,
but without the delays added by the identification stage of classical adaptive control. On the
other hand, it can incorporate uncertainty in the usual linear fractional transformation (LFT)
framework, as in robust control. The stability of the complete time-varying system is taken
into account, considering also the bound on the parameter-variation rate. The controllers give
sufficient conditions for stability and performance throughout the whole parameter-variation
space.

When the scheduling parameters enter affinely into the system matrices a simplified ver-
sion of LPV controllers can be designed [4]. Considering the range of parameter variations
as a hypervolume defined by its vertices this methodology solves the controller in terms of a
finite number of “vertex” controllers. The controller is computed as a convex combination of
the vertex controllers giving a smooth scheduling as the parameter changes. In the following,
“parameter” will be taken as parameter vector. These results will be discussed in the following
section.

To address robustness concerns, the modeling approach is intended to deal with the flex-
ible dynamics of the MCB500’s rotor, covering them with global dynamic uncertainty fre-
quency bounds. Simple experimental tests have shown that due to the limited bandwith of the
current amplifier of the system, only the first two bending modes of the rotor show up in the
responses of the system to sinusoidal signals introduced at the voltage control inputs of the
current amplifiers.

The background section assumes knowledge of robust control theory, H∞ and µ-synthesis
methods, as well as modeling with dynamic uncertainty ([7, 22, 26, 27]) and covers the essen-
tial results on LPV Controllers, as developed in [4], which are used for synthesis throughout
the application example.

10.1.2 Gain Scheduling and LPV control

Gain scheduling is a technique that has been extensively used in control in the past (see
[19, 20] and references therein). Let us show a basic example that motivates gain schedul-
ing. Suppose you have a dynamic system modeled through the following nonlinear equation:

ẋ(t) = f [x(t), u(t), π(t)] (10.1)

We call the system modeled by Equation (10.1) a parameter-dependent system with the fol-
lowing remark: the state equation depends on the time “t” through the parameter vector π(t)
that is unknown a priori but can be measured in real time. For a specific trajectory of the
parameter π, Equation (10.1) turns into the model of a time-varying system.

Having x(t) ∈ R
n, u(t) ∈ R

nu and π(t) ∈ R
s classical gain scheduling consists of

gridding the R
n × R

nu × R
s real space. For each point in the grid, a linearization is carried

out on Equation (10.1) and a linear time invariant (LTI) controller is designed. The gain-
scheduling technique switches between controllers as the system evolves in R

n × R
nu × R

s.
The design and implementation of this kind of control strategy, involves intensive simula-

tion in order to empirically establish two important aspects concerning the response of the final
closed-loop system, namely system stability and maximum rate of change between operating
points in the grid. It must be pointed out that the local LTI controllers give no information
about these issues.
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On the other hand, LPV control theory provides stability and performance analyses for
a kind of linear system whose state-space matrices depend on a parameter π(t) ranging in a
compact set P ⊂ R

s. This section uses as main references classical work on LPV control the-
ory ([4, 25]). In [4] stability and performance of LPV systems is established both for synthesis
and analysis based upon quadratic Lyapunov functions. Although this approach is essentially
conservative because of the kind of Lyapunov function it is based upon, it is still appealing as
it renders very simple and computable solutions that are similar to the ones found in [8] for
H∞ control.

Reference [25] (a continuation of [4] in a way), bases its study of performance and stability
of LPV systems upon parameter-dependent Lyapunov functions (PDLF), a less conservative
approach.

This section is organized as follows. An analysis condition based upon a PDLF is pre-
sented first. The way this analysis condition changes for a single quadratic Lyapunov function
(SQLF) is shown afterwards according to [4]. A synthesis theorem is presented later, which
is an extension of the H∞ control synthesis condition presented in [8]. A corollary of the
synthesis theorem is presented next for affine LPV systems whose parameter-variation set is a
compact polytope in R

s. This corollary is the tool used for synthesis in the MBC500 applica-
tion of this chapter and is appealing for practice, as it renders synthesis conditions based upon
a linear matrix inequality (LMI) feasibility problem with a finite number of LMIs. The closing
subsections show extensions of this theory to pole-placement conditions along the lines of [6]
but for LPV systems (see also [11]).

10.1.3 Parameter-dependent Analysis

Definition 1 (Set of ξ-trajectories – Fξ
P .). Let P ⊂ R

s be a compact set and ξ ∈ R
s a

vector such that ξ =
�
ξ1 ξ2 . . . ξs

�T
. C1(R,Rs) is the set of continuous and differentiable

real functions with image in R
s. The set of ξ-trajectories of the parameter is defined as

Fξ
P � {π ∈ C1(R,Rs) : π(t) ∈ P , |π̇i(t)| ≤ ξi, i = 1, 2, ..., s ∀t ∈ R+}

with R+ being the [0,∞) interval.

Definition 2 (LPV System). The following four continuous matrix functions represent an n-
dimensional LPV system:
A : R

s → R
n×n

B : R
s → R

n×nw

C : R
s → R

nz×n

D : R
s → R

nz×n.
Let π ∈ Fξ

P be a specific trajectory. The system evolves according to the following state-space
equation: �

ẋ
z

�
=

�
A(π) B(π)
C(π) D(π)

� �
x
w

�
(10.2)

with x(t) ∈ R
n, z(t) ∈ R

nz and w(t) ∈ R
nw . The notation GPξ

GPξ ≡
�
A(·) B(·)
C(·) D(·)

�
(10.3)

will be used to denote the LPV system defined by the A,B, C andD matrix functions with the
set of parameter ξ-trajectories given by the compact set P and the ξ vector.
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Let π ∈ Fξ
P be a specific trajectory of the parameter. Gπ

Gπ ≡
�
A(π) B(π)

C(π) D(π)

�
(10.4)

will denote the linear time-varying (LTV) system whose dynamics are described by Equation
(10.2). For zero initial conditions, with Φ(t, t0) being the corresponding transition matrix, the
system of Equation (10.2), Gπ represents a linear operator as follows:

Gπ :L2 → L2

z =Gπw (10.5)

z(t) =

� t

t0

C(π(τ ))Φ(τ, t0)B(π(τ ))w(τ )dτ +Dw(t)

From these definitions, the LPV system is defined as the set of LTV systems that make the
LPV:

GFξ
P

= {Gπ : π ∈ Fξ
P}

Finally, the S matrix function will be defined as follows. Given a trajectory π ∈ Fξ
P ,

S(π(t)) ∈ R
(n+nz)×(n+nw). In all cases the S matrix will be defined by the A, B, C and D

matrices arranged as follows:

S ≡
�
A B
C D

�
(10.6)

Sπ will be toGπ what SPξ is toGPξ . We remark that an LPV system is a set of LTV systems.

π-Quadratic Stability

Consider now the LPV dynamics without input:

ẋ = A(π)x x(0) = x0 (10.7)

with π ∈ Fξ
P . A functional V is defined now as V (x) = xTP (π)x with P (π(t)) ∈ R

n×n

and with P (z) being an symmetric positive-definite matrix for all z ∈ P . For any π ∈ Fξ
P ,

being x(t) a state trajectory for Equation (10.7), v(t) = V (x(t)) is the functional V evaluated
on the trajectory of the state. With this notation in hand, the time derivative of v will then be

v̇ = xT [AT (π)P (π) + P (π)A(π)]x+

s�
1

π̇i
∂P (π)

∂πi

The dependence of v, x and π on time has not been made explicit for the sake of clarity.

Definition 3. The function A is π-quadratically stable over Pξ (or π-QS over Pξ) if there
exists a matrix function P : R

s �→ R
n×n such that for all π ∈ P ⊂ R

s and for any
ν =

�
ν1 ν2 . . . νs

�
, |νi| ≤ ξi the following inequality is satisfied:

xT [AT (π)P (π) + P (π)A(π)]x+

s�
1

νi
∂P

∂πi
< 0



282 A.S. Ghersin, R.S. Smith, and R.S. Sánchez Peña

It can be proved ([25]), that if the last inequality is satisfied, the system of Equation (10.7) is
exponentially stable for any π ∈ Fξ

P .
Given the linear operator defined by an LTV system (see Equation (10.5)), and based

upon the standard definition of the L2 induced norm for an operator, the supremum over all
parameter trajectories is defined in order to use it as a tool to evaluate performance of LPV
systems. The following lemma is presented first.

Lemma 1. Given a strictly proper (its D matrix is zero) π-QS LPV system GPξ , there exists
a positive numberM , such that

sup
π∈Fξ

P

‖Gπ‖∞ ≤M <∞

‖Gπ‖∞ = sup
‖w‖2=1

‖Gπ .w‖2

Proof. See [25].

Definition 4 (Norm of an LPV system). The norm of a π-QS LPV system is defined as

‖GPξ‖ = sup
π∈Fξ

P

sup
‖w‖2=1

‖Gπ .w‖2

Next a lemma that gives a sufficient analysis condition for the stability and performance of
LPV systems based upon a PDLF is presented.

Lemma 2. [Bounded real lemma for LPV systems] Let P ⊂ R
s be a compact set and let

{ξi}s
1 be a set of non-negative numbers. If there exists a continuously differentiable function

X : R
s �→ R

n×n withX(π) symmetric and positive-definite for all π ∈ P and if the following
inequality is satisfied

�
�
AT (π)X(π) +X(π)A(π) +

�s
1 νi

∂X
∂πi

X(π)B(π) CT (π)

BT (π)X(π) −γI DT (π)
C(π) D(π) −γI

�
� < 0 (10.8)

for all π ∈ P and for all |νi| ≤ ξi, with i = 1, 2, . . . , s, then the LPV system GPξ is π-QS.
Moreover the LPV norm of the system is ‖GPξ‖ < γ.

Proof. See [25].

10.1.4 The Control Synthesis Problem

Let the plant G be a finite n-dimensional LPV dynamical system, mapping disturbance inputs
w and control inputs u to performance outputs z and measured outputs y, its dynamics being
ruled by the following state-space equation:

�
�
ẋ
z
y

�
� =

�
�
A(π) B1(π) B2(π)
C1(π) D11(π) D12(π)
C2(π) D21(π) D22(π)

�
�
�
�
x
w
u

�
� (10.9)

Without lost of generality it is assumed that the D22 matrix is zero, a condition that can be
overcome through standard loop-shifting techniques (see [3]).

The γ-performance LPV control problem seeks an LPV controllerKPξ ,
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KPξ ≡
�
Ak(·) Bk(·)
Ck(·) Dk(·)

�
(10.10)

such that for the closed-loop system

Gcl
Pξ

≡
�
Acl(·) Bcl(·)
Ccl(·) Dcl(·)

�
(10.11)

with

Acl =

�
A+B2DkC2 B2Ck

BkC2 Ak

�

Bcl =

�
B1 + C2DkD21

BkD21

�

Ccl =
�
C1 +D12DkC2 D12Ck

�
Dcl =D11 +D12DkD21

the following analysis LMI is feasible
�
�A

T
cl(π)X∞(π) +X∞(π)Acl(π) +

�s
1 νi

∂X∞
∂πi

X∞(π)Bcl(π) CT
cl(π)

BT
cl(π)X∞(π) −γI DT

cl(π)
Ccl(π) Dcl(π) −γI

�
� < 0

for some matrix function X∞ : R
s → R

(n+nk)×(n+nk) with X∞(π) > 0 ∀π ∈ R
s. Based

upon Lemma 2, if this function exists, the closed-loop system is π-QS and the norm of the
system is ‖Gcl

Pξ
‖ < γ (see Figure 10.1).

w

u

z

y

KP

GP

Fig. 10.1. Feedback interconnection of plant and controller

Solution

The problem has been stated in [25] where it is defined as γ-performance and ξ-variation
LPV synthesis problem. From the analysis condition for the closed-loop system and through
algebraic manipulation, sufficient synthesis conditions can be derived. This passage from the
single LMI analysis condition to the three LMI synthesis condition based upon the open-loop
model, is carried out similarly in four different references.
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1. In [8] the discussion is for LTI systems. Beginning with the necessary and sufficient con-
dition for closed-loop internal stability with H∞ norm less than γ (bounded real lemma),
the derivation reaches a necessary and sufficient condition based upon the open-loop
data, for the existence of a controller solving the problem. The approach makes use of
a quadratic Lyapunov function of the form V (x) = xTX∞x with X∞ ∈ R

ncl×ncl be-
ing a symmetric and positive-definite matrix with ncl being the order of the closed-loop
system. The requirements imposed on the open-loop plant are (see [8]) that the (A,B2)
pair be stabilizable, and the (A,C2) pair be detectable withD22 = 0.

2. LPV systems with parameter trajectories in a set like Fξ
P are addressed in [25]. Beginning

with a sufficient condition for the exponential internal stability of the set of LTV closed-
loop mappings with L2-induced norm less than γ, a sufficient condition is reached that
solves the problem of controller existence based upon the open-loop information. The
approach is based upon a family of quadratic PDLFs of the form V (x) = xTX∞(π)x
withX∞(π(t)) ∈ R

ncl×ncl symmetric and positive-definite. It must be pointed out that
the bound on the maximum rate of variation of the parameter is taken into account.

3. Reference [4], which is prior to [25], is similar to the former as it concerns the algebraic
manipulations that are performed to derive the synthesis LMIs starting from a closed-
loop analysis LMI. The main difference between the two is in the kind of Lyapunov
function this approach employs. The fact that a SQLF as V (x) = xTX∞x is used,
with X∞ being a constant matrix, lead this approach to make no use of any bounds
available on the maximum rate of change of the parameter, technically allowing for the
parameter trajectories to be just piecewise continuous. The appealing aspect in such a
Lyapunov function stems from the fact that it turns out to be easily tractable from the
controller computation point of view. One the other hand, controller computation with
the PDLF approach is more difficult. As will be shown in the corollary of Theorem 1,
if the dependence of the state-space matrices of the open-loop augmented plant with the
parameter is affine, and if the compact set P is a polytope defined by a finite number
of vertices, the synthesis of LPV controllers can be carried out by solving a feasibility
problem with a finite number of LMIs.

4. A number of software packages that solve LMI problems are available (see, for instance,
[9, 23, 24]). In [9], the approach adopted is also through a SQLF. With the algebraic
manipulations used to obtain the synthesis LMIs, being similar to those in [8] for LTI
systems, it is necessary to restrict the B2, C2, D12 and D21 matrices of the open-loop
augmented plant to be constant. This does not pose any serious restriction as it can be
overcome through low-pass filtering at the plant’s input or output at the expense of in-
creasing the number of states of the augmented plant ([9]).

In the following section, the synthesis theorem that follows the approach of [9] is pre-
sented as it is among the tools employed for the design of the controller for the magnetic-
bearing system.

10.1.5 Single Lyapunov Function Analysis

Definition 5 (FP trajectory set.). Let P ⊂ R
s be a compact set. C(R,Rs) is the set of piece-

wise continuous functions with domain in R and codomain in R
s. The parameter trajectory

set FP is defined as

FP � {π ∈ C(R,Rs) : π(t) ∈ P ∀t ∈ R+}
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Definition 2 is valid in this context with π ∈ FP . The notation GP is equivalent to GPξ of
Equation (10.3). Let π be a trajectory with π ∈ FP . In this context we refer toGπ in the same
way as in Equation (10.4). Gπ represents a linear operator in the same way as in Equation
(10.5). Again, we have the set of LTV systems

GFP = {Gπ : π ∈ FP}
S is as in Equation (10.6) but with π ∈ FP .

Quadratic Stability

Consider now the LPV system with no input of Equation (10.7) but with π ∈ FP . The func-
tional V is defined as V (x) = xTPx with P ∈ R

n×n symmetric and positive-definite. For
any π ∈ FP , with x(t) a state trajectory of (10.7), v(t) = V (x(t)) denotes again the V
functional evaluated on the state trajectory. The time derivative of v is as a consequence

v̇ = xT [AT (π)P + PA(π)]x

Definition 6. The function A is quadratically stable on P (or QS on P) if there exists a matrix
P ∈ R

n×n with P = P T > 0, such that for all π ∈ P ⊂ R
s the following inequality

xT [AT (π)P + PA(π)]x < 0

is satisfied.

It can be proved that if the last inequality is satisfied, the system (10.7) is exponentially stable
for any π ∈ FP .

From the standard definition of the L2-induced norm for a linear operator given by an LTV
system, a norm is defined based upon the supremum over all parameter trajectories possible
for an LPV system. The following lemma parallels Lemma 1 in this context.

Lemma 3. Given a strictly proper QS LPV systemGP , there exists a positive numberM such
that

sup
π∈FP

‖Gπ‖∞ ≤M <∞

‖Gπ‖∞ = sup
‖w‖2=1

‖Gπ w‖2

Definition 7 (QS LPV system norm). The norm of a QS LPV system is defined as

‖GP‖ = sup
π∈FP

sup
‖w‖2=1

‖Gπ.w‖2

Lemma 4. [Bounded real lemma for QS LPV systems] Let P ⊂ R
s be a compact set. If there

exists a symmetric and positive-definite matrix X ∈ R
n×n such that the following inequality

is satisfied
�
�
AT (π)X +XA(π) XB(π) CT (π)

BT (π)X −γI DT (π)
C(π) D(π) −γI

�
� < 0 (10.12)

for all π ∈ P , then the LPV system GP is QS over P . Moreover, the norm is ‖GP‖ < γ.
It must be pointed out that the sufficiency condition for stability and norm boundedness given
by Lemma 4 is a particular case of Lemma 2, restricting the Lyapunov matrix to be constant.
We note in passing that in the corresponding LMI, the condition on the differential of X
disappears. It stems from this and from the definition of the FP trajectory set, that the stability
and performance condition obtained is strong, accepting discontinuous parameter trajectories.
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10.1.6 Control-problem Statement

The statement of Section 10.1.4 is repeated here. The plant G is an n-dimensional LPV dy-
namical system, mapping disturbance input w and control action u onto performance output z
and measured output y. It is described in state-space form by Equation (10.9). The following
assumptions are made on the plant:

A1. D22 = 0.
A2. B2, C2,D12 yD21 are constant.

Let π be the parameter trajectory with π ∈ FP . The γ-performance LPV control problem
consists in finding an LPV controllerKP such as the one of Equation (10.10) such that for the
closed-loop system Gcl

P of Equation (10.11) the following analysis LMI,
�
�A

T
cl(π)X∞ +X∞Acl(π) X∞Bcl(π) CT

cl(π)
BT

cl(π)X∞ −γI DT
cl(π)

Ccl(π) Dcl(π) −γI

�
� < 0 (10.13)

is feasible for some symmetric matrix X∞ ∈ R
(n+nk)×(n+nk) with X∞ > 0. Because of

the analysis theorem, if there exists such a matrix the closed-loop system is QS and its norm
is ‖Gcl

P‖ < γ.

10.1.7 Solution of the γ-performance Problem

Theorem 1. Let G be the plant of Equation (10.9) that satisfies requirements A1 and A2. NR

is a basis of the kernel of the
�
BT

2 D
T
12 0

�
matrix and NS is a basis of the kernel of the�

C2 D21 0
�

matrix. If there exist two symmetric positive-definite matrices, R and S ∈ R
n×n

such that the following LMI system

N T
R

�
�AR+RAT RCT

1 B1

C1R −γI D11

BT
1 DT

11 −γI

�
�NR < 0 (10.14)

N T
S

�
�A

TS + SA SB1 C
T
1

BT
1 S −γI DT

11

C1 D11 −γI

�
�NS < 0 (10.15)

�
R I
I S

�
≥ 0 (10.16)

is satisfied for all π ∈ R
s, then there exists an LPV controllerKP such as the one in Equation

(10.10) such that the closed-loop system Gcl
P is QS. Moreover, the norm of the closed-loop

system is ‖Gcl
P‖ < γ.

Comments on the Proof. In [8] the equivalence between LMI (10.13) and the system of LMIs
(10.14) to (10.16) is proved for the LTI case, i.e. for each point in P that renders sufficiency
for the analysis lemma. In [4] the following is pointed out:

LMIs (10.14), (10.15) and (10.16) are convex constraints on the R and S matrices. More-
over, given that the dependence of these inequalities on π ∈ P is continuous, the solution to
the LPV γ-performance problem ends up stated in terms of a convex LMI feasibility problem
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with an infinite number of constraints (as P is infinite). Gridding the parameter set P is the
typical approach employed in order to solve a finite approximation to this problem with an
infinite number of constraints. If a solution cannot be found on a finite grid of P , it is clear
that there is no solution for all P . On the other hand, if there exists a solution for the grid, there
is no guarantee that it is valid for all P . In this case, the practical approach intends to have the
LMI problem solved on a dense grid of P . As the number of parameters grows, the number
of points in the grid grows exponentially. Reference [4] points out that reasonable results are
expected for no more than four parameters, i.e. π ∈ P ⊂ R

4.

10.1.8 Affine Systems

As previously anticipated, additional constraints render a convex feasibility problem with a
finite number of LMIs. In fact, this is the case if the P set is restricted to be a convex polytope
with a finite number of vertices and if the dependence of the augmented open-loop plant’s
state-space matrices on the parameter is affine. This means that the corresponding system
matrix S(π) (see Equation (10.6)) depends on the parameter as follows:

S(π) = S0 + π1S1 + . . .+ πsSs

π(t) ∈ Θ = Co{π1, . . . , πp}

with Co being the convex hull of the set of vertices that define P and with the Si system
matrices being constant.

The affine LPV system can be equivalently given by the “vertex systems”, i.e. the images
of the p vertices that make up the set P as follows:

S(π(t)) ∈ Co{S1, . . . , Sp}
Si = S(πi) i = 1, . . . , p

in a way such that for every t the system matrix can be expressed as

S(π(t)) =

p�

1

Siηi(t) with (10.17)

π(t) =

p�

1

πiηi(t) and
p�

1

ηi(t) = 1

Systems given in this form are referred to as polytopic systems with the ηi numbers depending
on π being the polytopic coordinates of S. Having introduced affine systems the following
corollary is presented.

Theorem 2. Let P ⊂ R
s be a convex polytope defined by its p vertices. G is the augmented

plant of Equation (10.9) that satisfies conditions A1 and A2. Moreover, the plant G is a poly-
topic system whose S matrix can be given as in Equation (10.17). NR and NS are the same
as in Theorem 1. If there exist two symmetric and positive-definite matrices R and S ∈ R

n×n

such that the following system of (2p+ 1) LMIs:

N T
R

�
�
AiR+RAT

i RC
T
1i B1i

C1iR −γI D11i

BT
1i DT

11i −γI

�
�NR < 0 (10.18)
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N T
S

�
�A

T
i S + SAi SB1i C

T
1i

BT
1iS −γI DT

11i

C1i D11i −γI

�
�NS < 0 (10.19)

�
R I
I S

�
≥ 0 (10.20)

is satisfied for i = 1, . . . , p, then there exists an LPV polytopic controller KP such that the
closed-loop system is QS and such that the norm of the LPV system is ‖Gcl

P‖ < γ.

The fact that this is an LMI convex feasibility problem with a finite number of inequalities
is noted. The synthesis of LPV controllers based upon this theorem can be carried out with
any of the aforementioned software packages ([9, 23, 24]). As far as the resulting controller
is concerned, having the R and S matrices allows a Lyapunov matrix to be obtained for the
closed-loop system. In turn, for each vertex, having the closed-loop Lyapunov matrix allows
an LMI to be solved (see [8], page. 435, Equation (55)) the solution being a vertex controller
(in [8] the solution is the LTI controller). When the LMI system is such that the LMI (10.20)
is positive-definite, then the order of the controller is that of the augmented plant. As a con-
sequence, with R and S in hand, a direct computation of the vertex controllers is possible
without solving any LMI.

For every t, having a real-time measured value of the parameter π, and as a consequence,
its ηi polytopic coordinates, the LPV controller state-space matrices are obtained by convexly
combining the vertex controllers. This allows for digital implementation as follows:

π(t) =

p�
1

ηi(t)πi

Sk(π(t)) =

p�
1

ηi(t)Ski

with Ski being the vertex components of the controller and πi the vertices of P .
The fact that controller system matrix Sk(π(t)) is updated in real time with the measured

parameter π in hand is noted. We also remark that on the contrary, the vertex systems Ski are
computed offline. This form of adaptation makes LPV control appealing for gain scheduling.

10.1.9 LPV Pole Placement

As shown in [6], LMIs allow for the statement of constraints on the location of the eigenvalues
of square matrices. This allows us to state control problems with mixed objectives. The theory
developed in [6] for LTI systems, deals in particular with mixed H∞, H2 and pole-placement
problems.

An extension of this approach to LPV systems will be presented in this section. It must
be clear beforehand, that there is no such thing as poles of LTV systems. Nevertheless, the
eigenvalue-clustering technique of [6] applied to LPV dynamics has proved useful in the so-
lution of a particular kind of problem that eventually shows up when solving LPV control
problems. The kind of inconvenience is sometimes referred to as the fast poles problem and is
described in the following.

Suppose we have the LPV system given by the linear fractional interconnection of an aug-
mented plant GP and its corresponding controller KP , with P being the parameter-variation
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set (see Figure 10.1). For each point in P , the LTI system resulting from holding the parame-
ter π fixed, sometimes presents a usually small number of poles (two or four) whose real-part
modulus is much greater than the corresponding quantity of the rest of the closed-loop poles
(the condition of “fast” with respect to a pole depends on the particular application and the
practical know-how there is about it).

Fast poles bring up two problems from the practical point of view. Both problems have to
do with the numerical integration of a differential equation with both slow and fast states. For
the simulation phase as well as for the digital implementation of the controller, integration is
necessary and becomes difficult with these fast dynamics.

The approach used to deal with these difficulties is LPV pole placement. Through LMI
constraints, its objective is to keep the poles of each LTI closed-loop system resulting from
holding the parameter fixed at each point of the parameter-variation set, in a prescribed region
of the complex plane.

Analysis Conditions

We begin with the definitions of LMI region and matrix D-stability.

Definition 8. LMI Region A region in the complex plane D, is called an LMI region if there
exists a symmetric matrix α = [αkl] ∈ R

m×m and a matrix β = [βkl] ∈ R
m×m such that

D = {z ∈ C : fD(z) < 0}

with

fD(z) = α+ zβ + z̄βT = [αkl + βklz + βlkz̄]1≤k,l≤m (10.21)

A more detailed discussion on LMI regions can be found in [6]. It must be pointed out that
these regions are a dense subset in the set of regions of the complex plane that are symmetric
with respect to the real axis. This condition makes them usefull to specify requirements on
the location of the eigenvalues of any real square matrix. The definition of D-Stability and a
lemma that gives an LMI condition to check D-stability of a square matrix are next.

Definition 9. A matrix A ∈ R
n×n is D-stable if and only if its eigenvalues are in an LMI

region D

Lemma 5. A matrix A ∈ R
n×n is D-stable if and only if there exists a symmetric positive-

definite matrixXD such that
�
αklXD + βklAXD + βlkXDA

T
�
1≤k,l≤m

< 0

Now we present a lemma for the D-stability of a matrix function A : P ⊂ R
s → R

n×n in
each point of P .

Lemma 6. A matrix function A : P ⊂ R
s → R

n×n is D-stable for all π ∈ P if there exists
a matrix function XD : P ⊂ R

s → R
n×n with XD(π) symmetric and positive-definite for

each π ∈ P such that
�
αklXD(π) + βklA(π)XD(π) + βlkXD(π)A(π)T

�
1≤n,m≤n

< 0 ∀π ∈ P
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It is noted that this lemma gives an LMI-based analysis condition for the transient response of
an LPV system. With this in hand and with a set of bounds on the parameter-variation rate, as-
pects concerning the implementation phase can be evaluated as the necessary sampling rate of
the digital controller. Next, the LPV γ-performance problem with pole-placement constraints
is presented.

Let D be a region of the open left-hand side complex plane defined by Equation (10.21)
and let γ be a positive number. Given the LPV plant of Equation (10.9), an LPV controller
such as the one in Equation (10.10) is sought with the closed-loop system being such as the
one in Equation (10.11). If there is a controller such that there exist two matrix functions
X∞ : R

s → R
(n+nk)×(n+nk) and XD : R

s → R
(n+nk)×(n+nk), such that for all π ∈ P

the following LMIs

�
�A

T
cl(π)X∞(π) +X∞(π)Acl(π) +

�s
1 νi

∂X∞
∂πi

X∞(π)Bcl(π) CT
cl(π)

BT
cl(π)X∞(π) −γI DT

cl(π)
Ccl(π) Dcl(π) −γI

�
� < 0

�
αklXD(π) + βklAcl(π)XD(π) + βlkXD(π)Acl(π)T

�
< 0 (10.22)

∀k, l ∈ [1, m]

are satisfied, then the closed-loop system is π-QS with its norm being less than γ. Moreover,
the closed-loop system is D-stable for all π ∈ P .

As well as in Section 10.1.6, a single quadratic Lyapunov function approach is used in
this case, in order to have a tractable problem. As in the case of passing from the LPV π-QS
control problem to the LPV QS control problem and following the arguments in [6] for LTI
systems, the analysis problem is simplified by forcing the functions

X∞ : R
s → R

(n+nk)×(n+nk) y XD : R
s → R

(n+nk)×(n+nk)

to be the same constant matrix,

X∞(π) = XD(π) = Xcl ∈ R
(n+nk)×(n+nk) ∀π ∈ P

It is assumed again (with almost no loss of generality) that theB2, C2,D12 andD21 matrices
are constant for convexity and thatD22 = 0.

TheXcl andX−1
cl matrices are block-partitioned as follows

Xcl =

�
R M
MT U

�
, X−1

cl =

�
S N
NT V

�

A change of variables in the controller matrices is carried out as follows:

Bk(π) =NBk(π) + SB2Dk(π)

Ck(π) =Ck(π)MT +Dk(π)C2R (10.23)

Ak(π) =NAk(π)MT +NBk(π)C2R

+SB2Ck(π)MT + S(A(π) +B2Dk(π)C2)R

Note that having restricted the B2, C2, D12 and D12 matrices to be constant, the functional
dependence of the new Ak, Bk and Ck variables with the parameter is similar to that of the
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original Ak, Bk and Ck variables. With affine systems in mind, this means that if the latter
depend affinely on π so will the former.

If, as mentioned in [6] for the LTI case, M and N are invertible, given the Ak(·), Bk(·)
Ck(·) andDk(·) functions withR and S matrices, the controller is uniquely defined. Next, the
synthesis theorem is presented.

Theorem 3. LetD be an LMI region in the open left-hand side complex plane, with its charac-
teristic function as in Equation (10.21). The LPV γ-performance problem with pole-placement
constraints has a solution if the following LMI system

�
R I
I S

�
> 0 (10.24)

�
αkl

�
R I
I S

�
+ βklΦ(π) + βlkΦ

T (π)

�
< 0 ∀ k, l = 1, ..., m (10.25)

�
Ψ11(π) ΨT

21(π)
Ψ21(π) Ψ22(π)

�
< 0 (10.26)

is feasible for some set of matrix functions
Ak : R

s → R
nk×nk

Bk : R
s → R

nk×ny

Ck : R
s → R

nu×nk

Dk : R
s → R

nu×ny

and a pair of matrices R and S, for all π ∈ P . R and S are symmetric and positive-definite
in R

n×n. The Φ(·), Ψ11(·), Ψ21(·) and Ψ22(·) matrix functions are as follows:

Φ =

�
AR+B2Ck A+B2DkC2

Ak SA+ BkC2

�
(10.27)

Ψ11 =

�
AR+RAT +B2Ck + (B2Ck)T B1 +B2DkD21

(B1 +B2DkD21)
T −γI

�

Ψ21 =

�
Ak + (A+B2DkC2)

T SB1 + BD21

C1R+D12Ck D11 +D12DkD21

�

Ψ22 =

�
SA+ ATS + BkC2 + (BkC2)

T (C1 +D12DkC2)
T

C1 +D12DkC2 −γI

�

where the dependence of the corresponding matrices with the parameter π has been omitted
for the sake of clear notation. The resulting controller is of order nk = n.

As in the case of the LPV γ-performance control problem, if the augmented open-loop
plant’s matrices depend affinely on the parameter and if P is a convex polytope, the problem
can be stated in terms of the vertex systems that make up the affine representation. The result-
ing optimization problem is in terms of a finite number of LMIs. The complete LMI problem
consists in LMI (10.24) plus the m2 + 1 LMIs in Equations (10.25) and (10.26) for each
vertex. This could be a very large number.

The solution sought will be in terms of a pair of constant matricesR and S, as well as a set
of matrices {Ai,Bi, Ci,Di} per vertex. Given that LMI (10.24) is positive-definite, the sets
of matrices {Ai,Bi, Ci,Di} directly define the vertex controllers that make up the polytopic
controller.
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10.2 The Magnetic-bearing Experiment

In this section, a model for the dynamics of the rotor of an MBC500 is presented. A photograph
of the MBC500 can be seen in Figure 10.2.

The rotor whose dynamics we intend to describe is the horizontal shaft that can be seen
in the photograph. In this system, the stainless steel shaft or rotor can be levitated using eight
“horseshoe” electromagnets, four at each end of the rotor. This is described in the diagram of
Figure 10.3 for the horizontal dynamics. Hall-effect sensors placed just outside of the electro-
magnets at each end of the rotor measure the rotor-end displacement. As the diagram shows
(Figure 10.3), the displacement from equilibrium measured by the sensors is given by x1 (y1)
and x2 (y2), and the displacement of the rotor with respect to the electromagnets is given by
the X1 (Y1) and X2 (Y2) for the horizontal (vertical) dynamics. The values of the parameters
of the shaft according to [12, 16] are reproduced in Table 10.1.

Fig. 10.2. The MBC500

First, the 6-DOF dynamics of the rotor as a rigid body will be considered to derive after-
wards the 4-DOF model for control, taking into account the equations describing the sensors’
behavior as well as the magnetic forces acting on the rotor to stabilize it.
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Table 10.1. Parameters of the MBC500

Symbol Description Value
L Total length of the rotor 0.269 m
l Distance from each bearing 0.024 m

to the end of the rotor
l2 Distance from each Hall-effect sensor 0.0028 m

to the end of the rotor
I Moment of inertia of the rotor with respect 1.5884 × 10−3 kg m2

to rotation about the x- and y-axes
m Mass of the rotor 0.2629 kg

z

x

Electromagnets

Hall Eff. Sensors

L
l2
l

X1 x1 x2 X2

Fig. 10.3. Top view of the MBC500

10.2.1 4-DOF Rigid Model

In order to define the kinematic variables of the rotor, we begin with the definition of reference
frame I. This frame is fixed with respect to the MBC500’s body. In the ideal case, when the
rotor is at equilibrium, the output of the sensors is zero and the rotor’s CM coincides with the
origin of frame I. In this case the z-axis of the frame is aligned with the longitudinal axis of
the rotor as well. The x-axis completes the definition of the horizontal plane, and the y-axis
points upwards.

Frame B is fixed with respect to the rotor’s body. The rotation and displacement of frame
B with respect to frame I completely describes the state of the rotor. As the roll angle of the
rotor does not matter to the problem, frame B̃ is defined with its origin being at the rotor’s CM.
The z-axes of frames B̃ and B coincide (see Figure 10.4). Frames B̃ and B are just rotated with
respect to one another over the longitudinal axis of the rotor. In equilibrium, frames B̃ and I
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coincide even if the rotor is spinning with respect to its z-axis. The orientation of frame B̃ with
respect to frame I (i.e. the orientation of the revolving body) will be described using just two
Euler angles (Figure 10.5 shows displacement and rotation of frame B̃ with respect to frame
I for the horizontal dynamics). The φ (θ) angle and the horizontal (vertical) displacement of
the CM xo (yo) can be determined from the output of the horizontal (vertical) gap sensors.
As the rotor’s CM motion along its z-axis is limited by the bearings themselves only two

y

z

x x̄

ȳ

Fig. 10.4. Frames B̃ and B

x

z

z

x

θ

B̃

I

xo

Fig. 10.5. Frames B̃ and I. Top view.

displacement variables are necessary for the equations.
As is known, angular momentum and angular velocity are related in frame B by the inertia

tensor J :

hb = Jωb
bi (10.28)

where hb is the angular momentum, ωb
bi is the angular velocity of the rotor with respect to

frame I. Due to the symmetry of the rotor with respect to rotations in the x- and y-axes, it can
be shown that the inertia with respect to frame B̃ is constant and equals the inertia tensor with
respect to frame B. As a consequence, Equation (10.28) is valid in frame B̃ as well:
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hb̃ = Jωb̃
bi

Let d
dtI denote the derivative with respect to frame I. The reader is assumed to be fa-

miliar with derivatives with respect to different frames. The following expression relates the
derivatives with respect to frame B and I. Given any physical vector u,

du

dtB
=
du

dtI
+ ωbi × u (10.29)

LetM be the resulting moment of the forces applied on the rotor with respect to its CM.
The standard equation that relatesM to the derivative of the body’s angular momentum is:

M =
dh

dtI
=
dh

dtB̃
+ ωb̃i × h = J

dωbi

dtB̃
+ ωb̃i × Jωbi (10.30)

From the definition of the frames it follows that:

ωbi = ωbb̃ + ωb̃i

Specifying the equations in frame B̃ Equation (10.30) turns out to be:

M b̃ = (
dh

dtB̃
)b̃ + ωb̃

b̃i × h
b̃

= J

�
dωbi

dtB̃

�b̃

+ ωb̃
b̃i × Jω

b̃
bi

= J

�
dωbi

dtB̃

�b̃

+ ωb̃
b̃i × Jω

b̃
bb̃ (10.31)

From the definition of the frames we have:

ωb̃
bb̃ =

�
0 0 r

�T
ωb̃

b̃i =
�
p q 0

�T
M b̃ =

�
Mx My Mz

�T
Hence, Equation (10.31) can be rewritten as:

M b̃ = J

�
dωbi

dtB̃

�b̃

+ ωb̃
b̃i × Jω

b̃
bb̃�

�Mx

My

Mz

�
� = J

�
� ṗq̇
ṙ

�
�+

�
� q
−p
0

�
� Izr (10.32)

Further manipulation of Equation (10.32) renders the following expression that is suitable for
state-space treatment:

�
� ṗq̇
ṙ

�
� =

�
� 0 r Iz

I
0

−r Iz
I

0
0 0 0

�
�
�
� pq
r

�
�+

�
�

1
I

0 0
0 1

I
0

0 0 1
Iz

�
�
�
�Mx

My

Mz

�
�

Newton’s law for the spindle’s CM renders the other equation for the dynamics:
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�
�
v̇x

v̇y

v̇z

�
� =

�
�

1
m

0 0
0 1

m
0

0 0 1
m

�
�
�
�
Fx

Fy

Fz

�
�−

�
�

0
g
0

�
�

with v =
�
vx vy vz

�T
being the CM’s velocity in frame I. r0 =

�
x0 y0 z0

�T
is the

CM’s position in frame I with ṙ0 = v. The rotation b̃Ci is given in terms of the quaternion�
ib̃q0

ib̃qb̃
�

by

b̃Ci = I3 − 2 (ib̃q0)(
ib̃q×) + 2 (ib̃q×)(ib̃q×)

The equation for the evolution of the quaternion is:

ib̃q̇0 = −1

2
ib̃qb̃ · ωb̃

b̃i

ib̃q̇b̃ =
1

2
(ib̃q0I + ib̃qb̃×)ωb̃

b̃i

Taking into account an hypothesis of small angles, we make use of the corresponding Euler
angles with the following equivalences and approximations:

ib̃q0 ≈ 1

ib̃q ≈ 1

2

�
φ θ ψ

�T

�
φ̇ θ̇ ψ̇

�T
=

�
p q r

�T

Gathering the previous expressions the state-space equation turns out to be:

ẋ0 = vx (10.33)

θ̇ = q

v̇x =
1

m
Fx

q̇ =
1

I
My − r Iz

I
p

ẏ0 = vy (10.34)

φ̇ = p

v̇y =
1

m
Fy

ṗ =
1

I
Mx + r

Iz
I
q

It can be noted that the first four lines starting with Equation (10.33) describe the horizontal
dynamics, whereas the last four starting with Equation (10.34) describe the vertical dynamics.
Clearly, while the shaft is not spinning (r = 0), the horizontal and vertical dynamics are
decoupled.

10.2.2 Forces, Moments and Input/Output Voltages

The equations for measurements, forces and moments follow from those in [14]. A few sign
modifications take place, which account for discrepancies between the model of the cited
reference and measurements taken from the particular MBC500 used here.
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As we have mentioned previously, the x1, x2, y1 and y2 variables give the displacement
of the rotor with respect to equilibrium at the ends of the shaft where the magnetic forces are
applied (see Figure 10.3).

The variables in capital letters (X1,X2, Y1, Y2) refer to the displacement of the rotor with
respect to equilibrium at the point where the Hall-effect sensors are placed. These variables
are related to the kinematic variables as follows:

x1 = x0 + (
L

2
− l) sin (θ) (10.35)

x2 = −x0 + (
L

2
− l) sin (θ)

X1 = x0 + (
L

2
− l2) sin (θ)

X2 = −x0 + (
L

2
− l2) sin (θ)

y1 = y0 − (
L

2
− l) sin (φ) (10.36)

y2 = y0 + (
L

2
− l) sin (φ)

Y1 = y0 − (
L

2
− l2) sin (φ)

Y2 = y0 + (
L

2
− l2) sin (φ)

Let ix1 , ix2 , iy1 and iy2 be the currents of the electromagnets that exert the magnetic
forces on the shaft. According to [12, 14, 16] the forces exerted by the electromagnets are
given by the following expressions:

Fx1 = +k

��
ix1 + 0.5

x1 − 4 × 10−4

�2

−
�

ix1 − 0.5

x1 + 4 × 10−4

�2
�

(10.37)

Fx2 = −k
��

ix2 + 0.5

x2 − 4 × 10−4

�2

−
�

ix2 − 0.5

x2 + 4 × 10−4

�2
�

Fy1 = +k

��
iy1 + 0.5

y1 − 4 × 10−4

�2

−
�

iy1 − 0.5

y1 + 4 × 10−4

�2
�

Fy2 = +k

��
iy2 + 0.5

y2 − 4 × 10−4

�2

−
�

iy2 − 0.5

y2 + 4 × 10−4

�2
�

where k = 2.8 × 10−7 N m2

A2 . As a result of the latter expression, the forces and moments
exerted on the spindle are as follows:

Fx = Fx1 + Fx2 (10.38)

Fy = Fy1 + Fy2

My = (
L

2
− l)Fx1 − (

L

2
− l)Fx2

Mx = −(
L

2
− l)Fy1 + (

L

2
− l)Fy2
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According to [12, 14, 16] as well, the output voltages from the Hall-effect sensors are related
to the displacement variablesXi and Yi (i = 1, 2) by the following equality:

V o
xi

= 5 × 103Xi + 25 × 109X3
i i = 1, 2 (10.39)

V o
yi

= 5 × 103Yi + 25 × 109Y 3
i

10.2.3 Linearization and Change of Variables

In order to obtain a linear model suitable for control design, Equations (10.33) to (10.44) are
gathered and linearized as follows. A small-angles approximation (sin (x) � x) is carried
out in Equations (10.35) and (10.36). As a consequence, the following linear relations are
established: �

xo

θ

�
= T1h

�
x1

x2

�
(10.40)

�
yo

φ

�
= T1v

�
y1
y2

�
�
X1

X2

�
= T2h

�
x1

x2

�
(10.41)

�
Y1

Y2

�
= T2v

�
y1
y2

�

with

T1h =

�
1 (L

2
− l)

−1 (L
2
− l)

�−1

(10.42)

T1v =

�
1 (L

2
− l)

1 −(L
2
− l)

�−1

T2h =

�
1 (L

2
− l2)

−1 (L
2
− l2)

�
T1h

T2v =

�
1 (L

2
− l2)

1 −(L
2
− l2)

�
T1v

We remark that the change of variables of Equation (10.40) is valid for the corresponding time
derivatives as follows: �

vx

q

�
= T1h

�
ẋ1

ẋ2

�
�
vy

p

�
= T1v

�
ẏ1
ẏ2

�

To finish the process, we take partial derivatives in Equation (10.37) with respect to the cur-
rents ix1 , ix2 , iy1 and iy2 and the displacements x1, x2, y1 and y2. In Equation (10.39), first
of all take partial derivatives with respect to X1,X2, Y1 and Y2 and then apply the change of
variables (10.41) to obtain a linear approximation of Equation (10.39) in terms of x1, x2, y1
and y2.

The above depicted procedure on Equations (10.33) to (10.44), was carried with the help
of a symbolic math software package. As a result, the linearized equations turn out to be as
follows. Let the state variable x, be split into horizontal and vertical states:
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x =

�
xh

xv

�
xh =

�
���
x1

x2

ẋ1

ẋ2

�
��� xv =

�
���
y1
y2
ẏ1
ẏ2

�
���

The input and output variables are also split,

i =

�
ih
iv

�
ih =

�
ix1

ix2

�
iv =

�
iy1

iy2

�

y =

�
yh

yv

�
yh =

�
V o

x1

V o
x2

�
yv =

�
V o

y1

V o
y2

�

With this notation in hand the linear model is as follows:�
ẋh

ẋv

�
=

�
Ah rAhv

rAvh Av

� �
xh

xv

�
+

�
Bh 0
0 Bv

� �
ih
iv

�
(10.43)

�
yh

yv

�
=

�
Ch 0
0 Cv

� �
xh

xv

�

with the matrices being, respectively,

Ah =

�
02 I2
Ahh 02

�
Bh =

�
02

Bhh

�
Ch =

�
Chh 02

	

Av =

�
02 I2
Avv 02

�
Bv =

�
02

Bvv

�
Cv =

�
Cvv 02

	

The Ahh, Avv , Bhh, Bvv , Chh and Cvv matrices are determined by the partial derivatives
of the Equations (10.37) and (10.39) with respect to xh, xv , uh and uv . The Ahv and Avh

matrices are as follows:

Ahv = T−1
1h

�
03 03×1

01×3 − Iz
I

�
T1v

Avh = T−1
1v

�
03 03×1

01×3 − Iz
I

�
T1h

There is a current amplifier at the input of the system that regulates the current into the bear-
ings. The dynamics of this LR circuit are as follows:

dixi

dt
=

1

2.2 × 10−4



−ixi +

1

4
V i

xi

�
i = 1, 2 (10.44)

diyi

dt
=

1

2.2 × 10−4



−iyi +

1

4
V i

yi

�

With this notation in hand,

u =

�
uh

uv

�
uh = Vh =

�
V i

x1

V i
x2

�
uv = Vv =

�
V i

y1

V i
y2

�

the linear dynamics of the LR network, can be expressed in terms of the following transfer
function:
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ixi(s) =
ka

1 + s
2π fc

V i
xi

(s) fc = 723.43 Hz ka = 0.25 (10.45)

iyi(s) =
ka

1 + s
2π fc

V i
yi

(s) i = 1, 2

In the following section, the parameter-fitting process carried out on the system model will
be presented. Samples of the magnetic-bearing system’s frequency response were taken at
different frequency ranges. In order to do this ad hoc identification process of the rigid-body
dynamics, samples in the low frequency range (10 to 90 Hz) were used. As can be seen from
Equation (10.45), for that range the relation between voltage and current can be simplified to
ih = kauh and iv = kauv .

10.2.4 Experimental Data and Parameter Fitting

In order to obtain a linear model that adequately suits for controller design, we make a few
observations at this point. As will be introduced in the following pages, the rotor actually
suffers disturbances that are neglected by the rigid-body model. These disturbances are, as was
mentioned in the introduction of the chapter, imbalance and bending. Nevertheless, we point
out that imbalance is a much worse “disturbance” to the nominal nonspinning dynamics than
the gyroscopic effect is, as the dependence of the imbalance force with the rotation rate of the
shaft is quadratic, whereas the gyroscopic effect is linear. As a consequence, for the remainder
of this chapter we will neglect the horizontal–vertical coupling, i.e. we will assume Ahv = 0
and Avh = 0. Keeping this in mind, we further point out, that addressing the identification
and control of the horizontal subsystem, has proved to be enough with the purpose of drawing
conclusions from this experimentation. Keeping in mind that only the horizontal dynamics
will be addressed, a change in the notation is made. Because of the fact that the equations
presented so far model the rotor as a rigid body, in the next equation the notation changes as
follows with respect to Equation (10.43):

Ar = Ahh Br = Bhh Cr = Chh (10.46)

xr = xh yr = yh u = uh

As a consequence, Equation (10.43) is rewritten as follows, with the change in the notation
and bringing forward the fact that we neglect the horizontal–vertical coupling:

ẋr =

�
02 I2
Ar 02

�
xr +

�
02

B̃r

�
u (10.47)

yr =
�
Cr 02

�
xr

with B̃r = Brka. It can be said that the qualitative outcome of the modeling process is about
the shape of the above equation, whereas its quantitative counterpart is in the figures that
make up the Ao

r, B̃o
r and Co

r matrices that play the role of initial values for the parameter-
optimization process that we describe next.

Given that the magnetic bearing and shaft dynamics are open-loop unstable, no responses
can be obtained without a stabilizing compensator connected. The MBC500 comes with an
internal compensator, that allows for the spindle to levitate. This compensator was designed
with classical techniques neglecting all coupling between sides of the rotor. According to
[14, 16], the mapping from the sensed voltages to the control voltages is given by the following
transfer function:
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c(s) = kc

s
ωz

+ 1

( s
ωp

+ 1)( s
ωhf

+ 1)
∼= kc

s
ωz

+ 1
s

ωp
+ 1

with

fz = 178.63 Hz ωz = 2π fz (10.48)

fp = 482.29 Hz ωp = 2π fp

fhf = 21.9 KHz ωhf = 2π fhf

kc = 1.41.

The magnetic-bearing system has four inputs and eight outputs (see Figure 10.6). Four
switches at the front panel allow for operation with the internal compensator engaged (closed
loop) or disengaged (open loop).

The inputs placed on the front panel of the MBC500 have been used for two purposes
throughout this work. The first of them is injecting excitation signals in order to carry out
system identification with the internal compensator connected. The second one is injection of
control signals, with the internal compensator disconnected. A slight distinction with some
abuse in the notation is carried out as a consequence of using this front-panel inputs for differ-
ent uses.

For the identification phase (internal compensator engaged) this input signal is calledw =�
wx1

wx2

�
, whereas u is kept for the actual input signal to the current amplifier. In the control

phase, u denotes the input signal as well as the signal injected on the front-panel connector,
hence, the externally connected controller output signal.

For the identification phase, assuming linearity and time invariance (r = 0), the input-
sensitivity transfer function from w to u is denoted as Sr(s) and the transfer function from w
to y is denoted as GSr(s) with

Sr(s) = [I + C(s)Gr(s)]
−1 C(s) =

�
c(s) 0
0 c(s)

�

GSr(s) = Gr(s)Sr(s)

Frequency samples of the Sr(s) and GSr(s) transfer matrices were taken for n different
frequencies from 10 to 90 Hz with n = 81. The process of acquiring the frequency samples
was carried out in a SISO fashion. This means that for each input–output pair of the two-
input–two-output transfer matrices, and for each of the frequency points, a sinusoidal input
was injected, taking a time response. A spectral decomposition was then carried out on this
acquired signal keeping the component corresponding to the input frequency as a result. A
frequency sweep was completed for all input–output pairs, for both of the transfer matrices.
With this data in hand we calculate “samples” of the frequency response of the open-loop
rigid dynamics Gr(s). This procedure for the acquisition of open-loop “samples” is based
upon previous work of the second author (see [21] and references therein). For each of the n
frequency points ωl with l = 1, ..., n, the samples Gr(jωl) are

Gr(jωl) = GSr(jωl)Sr(jωl)
−1 =

�
Gr11(jωl) Gr12(jωl)
Gr21(jωl) Gr22(jωl)

�
(10.49)

For each frequency, the sample of the response consists of four complex values, one for
each entry of the two-input–two-output transfer matrix, as shown in Equation (10.49). These
four values are appended to form the ϑj vector in C

4. All these ϑl vectors in C
4, are appended
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Fig. 10.6. MBC500 with the compensator

as well, rendering the Θ vector in C
n×4 as can be seen in Equation (10.50), which contains

experimental data.

�
Gr11(jωl) Gr12(jωl)
Gr21(jωl) Gr22(jωl)

�
−→ ϑl =

�
���
Gr11(jωl)
Gr12(jωl)
Gr21(jωl)
Gh22(jωl)

�
��� −→ Θ =

�
��
ϑ1

...
ϑn

�
�� (10.50)

A process of optimization was carried out on theAr, B̃r andCr matrices, so that the frequency
response of the resulting model would fit the “experimental” samples with an error as small as
possible according to the following optimization criterion. For each of the n frequencies, the
frequency response of the model is given by the following calculation:

Gc
r(jωl) = Cr(jωlI − Ar)

−1B̃r =

�
Gc

r11(jωl) G
c
r12(jωl)

Gc
r21(jωl) G

c
r22(jωl)

�
(10.51)

where the c superscript denotes calculated. The Θc vector containing the frequency response
of the model is assembled as can be seen in Equation (10.52):

�
Gc

r11(jωl) G
c
r12(jωl)

Gc
r21(jωl) G

c
r22(jωl)

�
−→ ϑc

l =

�
���
Gc

r11(jωl)
Gc

r12(jωl)
Gc

r21(jωl)
Gc

r22(jωl)

�
��� −→ Θc =

�
��
ϑc

1

...
ϑc

n

�
�� (10.52)

A nonlinear least squares algorithm (see [5]) minimized the following quantity:

(Θc −Θ)∗(Θc −Θ)

where the ∗ symbol denotes the transpose complex conjugate.
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Equation (10.53) shows the Ao
r , B̃o

r and Co
r matrices that are the matrices resulting from

the linearization process and according to the parameters of the MBC500, L, l, l2, m, I and
the force constant k ([12, 16]). These were used by the algorithm as initial conditions for the
optimization process. The Ar , B̃r and Cr matrices resulting from the optimization process
are shown as well.

Ao
r = 104

�
5.0273 1.6990
1.6990 5.0273

�
Ar = 105

�
0.9460 0.6307
0.0118 1.1214

�
(10.53)

B̃o
r = 100

�
40.2180 13.5919
13.5919 40.2180

�
B̃r = 100

�
20.0832 8.8209
1.7109 30.2025

�

Co
r = 103

�
5.4796 0.4796
0.4796 5.4796

�
Cr = 104

�
1.1115 0.3419
0.1667 1.0206

�

The frequency response of the fitted system can be seen with the frequency samples in Fig-
ure 10.7.

10.2.5 Compensator Identification

An analysis of the documentation of the magnetic-bearing system ([12]), shows that the values
of the kc gains in the transfer functions of the compensators (see Equation (10.48) ) are likely
to be inaccurate. A look into the schematics of the analogic circuits that make up the compen-
sators shows that the fz , fp and fhf frequencies are determined by the values of resistors and
capacitors that are fixed, so these values can be trusted. On the other hand, a variable resistor
is present at the input of the compensator to adjust the compensator gain.

As a consequence, and based upon a method similar to the one described in the previ-
ous section, a fitting process was carried out on the compensator gains. For this purpose the
recently fitted model Gr transfer function was used, in order to carry out calculations. The
optimization criterion is exactly the same as in the previous section. The difference resides
in the fact that Gr is now a trusted transfer function and optimization was carried out on
two gains (one per compensator) to fit the frequency samples with the fitted compensator.
The fitted values are kc1 = 0.6647 for the left compensator and kc2 = 0.6395 for the right
compensator.

10.2.6 Flexible Modes

A thorough analysis of the rotor’s bending modes is not within the scope of this chapter.
Nevertheless, including a model of the first two bending modes has proved important as far
as these dynamics are likely to receive excitation especially due to the digital implementation
of the designed controllers. The reason for not including any modes higher than the second,
is that because of the bandwidth of the actuator’s current amplifiers in the electromagnet’s
L/R circuit, it is practically impossible that these modes would receive excitation. In [14] a
model with four states for the two first bending modes is presented. The resemblance of these
dynamics with the dynamics of a spring–mass system is stressed. In this chapter, taking after
[2], a differential equation with four states is used as well, to model the first two bending
modes.

As far as a spectral analysis of the rotor’s dynamics is concerned, a clear separation exists
between the flexible modes and the rigid-body modes. The rigid dynamics show up in the
frequency band from DC to about 100 Hz where it rolls off, and the flexible dynamics show
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Fig. 10.7. Fitted (dotted line) versus sampled (solid line) frequency responses – rigid dynam-
ics 10 to 90 Hz. Magnitude and phase for all input–output pairs.
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up at 777 Hz for the first bending mode and 2065 Hz for the second. A practical approach for
the final model, which reflects the rigid and flexible modes, consists in the superposition of
three linear blocks as shown in Figure 10.8.

Gr

Gf1

Gf2

u

yf1

yf2

yr
y

G

Fig. 10.8. Superposition of rigid and flexible dynamics

Let xfi =

�
x1

fi

x2
fi

�
be the state of the flexible blocks Gfi in Figure 10.8, with i = 1, 2.

The form of the state-space equations for each of the blocks is as follows:

ẋfi = Afixfi +Bfiu

yfi = Cfixfi

with

Afi =

�
0 ωfi

ωfi 0

�
Bfi =

�
bi1 b

i
2

0 0

�
Cfi =

�
0 ci1
0 ci2

�

Frequency samples of the GSr transfer function were obtained in a way similar to the
one described in Section 10.2.4. In this case the information of the identified compensator
was used. The parameter fitting on the Afi , Bfi and Cfi matrices with i = 1, 2 was carried
out seeking an adequate fitting of experimental and calculated frequency responses. The final
values of the model parameters for the bending modes are the following:

ωf1 = 2π 777
rad
s

b11 = 5.5 b12 = −8 c11 = 7 c12 = 7

ωf2 = 2π 2065
rad
s

b21 = 3 b22 = 3 c21 = −3 c22 = −5

In Figures 10.9 and 10.10, the corresponding frequency responses of models and samples
can be seen.
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Fig. 10.9. Fitted (dotted line) versus sampled (solid line) – first bending mode –GSr transfer
function
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Fig. 10.10. Fitted (dotted line) versus sampled (solid line) – second bending mode – GSr

transfer function
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10.2.7 Rotor Eccentricity

As was previously mentioned, the eccentricity is taken into account as external forces acting
on the the rotor. Rather than a fine identification of the magnitude and direction of the source
of the imbalance, we seek a gross estimate of this force. Another simplification carried out
concerning eccentricity is the fact that variations in the rotation rate of the shaft are neglected,
hence the eccentricity force of the model only depends on the square of the rotation rate. As a
consequence, a very simple calculation is carried out for this static case that slightly modifies
Equation (10.47) in order to take imbalance into account in the rigid dynamics as follows:

ẋr =

�
02 I2
Ar 02

�
xr +

�
02

B̃r

�
u+ r2

�
02

kimI2

�
wim (10.54)

yr =
�
Cr 02

�
xr

with

kim =
1

2

1

100
ro ro =

1

2
do do = 12 × 10−3m

where do is the diameter of the shaft. The 1
100

factor stems from the assumption that the
distance from the true CM to the geometrical axis of the rotor, is in the order of one per cent
of the shaft’s radius (an assumption which is somewhat pessimistic – see Figure 10.11). The
1
2

factor stems from the fact that two bearings cope with the eccentricity.

do

ro

CM

0.01 ro

Fig. 10.11. Diagram for the eccentricity model

To give an example that accounts for the soundness of this gross estimate, take for instance
a 10 000 rpm rotation rate (rmax = 2π 10 000/60 rad

s ). In this case, the magnitude of the
disturbance on the ẍi (i = 1, 2) accelerations would be ror2max = 43.86 m

s2 that is, according

to the B̃r matrix, a disturbance in the order of magnitude the electromagnets can handle with
an input voltage of a couple of volts.

As the Gf1 and Gf2 blocks are concerned, there is a priori knowledge of the frequency
band where the wim signal appears. This is directly related to the range of rotation rate of the
rotor, and it is assumed that this signal does not present an excitation to the bending modes,
because of the fact that the maximum rotation rate of the machine is 10 000 rpm, i.e. 166 Hz,
while the bending modes are in 777 Hz and 2065 Hz.
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A final comment concerns the neglecting of the pole of the L/R circuit of the electromag-
net. No serious discrepancies have appeared because of this, especially considering that the
design approach focuses on the rigid dynamics of the rotor treating the bending modes as ad-
ditive uncertainty. As a consequence, the relation between the current of the electromagnets
and the input voltage signals has been modeled as i = kau.

10.3 Control and Simulation Results

In this section the results of the control-system design are presented with simulations and
experimental results. The solution of the control problem aims towards the following goals.
Stabilize the shaft through a closed-loop controller, avoid excitation of bending modes (which
can actually and eventually be heard in practice) and render adequate imbalance rejection in a
range of rotating rates as broad as possible.

In order to evaluate performance of the designed controllers, frequency responses of the
output-sensitivity functions will be presented in all cases. In this problem, good tracking is
not the main goal, especially since it would demand a high loop gain at low frequency, which
in turn would lead to a peak in the sensitivity function at a frequency close to the crossover
frequency. This is because of fundamental limitations of closed-loop systems in the presence
of unstable poles, a subject beyond the scope of this chapter (see [15, 18]). Another way to
evaluate performance will be through simulated time responses to step inputs, which should
show no excitation of the bending modes and acceptable transient behavior. In particular, these
responses will be compared with the transient behavior of the internal compensator. Finally,
in the experimental phase, the spinning of the shaft will be the ultimate test, whereas time
responses to the equivalent sinusoidal inputs will be observed in the simulations.

10.3.1 SISO Synthesis

Based upon the Gr transfer function (Equation (10.47)), a SISO design is carried out, further
simplifying this model. Let xr =

�
x1 x2 ẋ1 ẋ2

�
be the state variable defined in Equation

(10.46). Neglecting the left (x1, ẋ1) and right states (x2, ẋ2) coupling of Equation (10.47),
a couple of SISO transfer functions are obtained. Let the Ar, Br and Cr matrices be given
elementwise as Ar = {Aij

r }, B̃r = {B̃ij
r } and Cr = {Cij

r } with i, j = 1, 2. The left- and
right-side transfer functions are described in state space as follows:

ẋL =

�
0 1
A11

r 0

�
xL +

�
0

B̃11
r

�
uL, y1 =

�
C11

r 0
�
xL with xL =

�
x1

ẋ1

�

ẋR =

�
0 1
A22

r 0

�
xR +

�
0

B̃22
r

�
uR, y2 =

�
C22

r 0
�
xR with xR =

�
x2

ẋ2

�

In transfer-function format the latter turns out to be as follows:

g1(s) =
2.36

s2

ω2
L
− 1

ωL = 2π fL fL = 48.95 Hz

g2(s) =
2.75

s2

ω2
R
− 1

ωR = 2π fR fR = 53.28 Hz
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With these transfer functions in hand, a SISO compensator was designed based upon simple
objectives, namely, to obtain a good phase margin for stability, to avoid too high loop gains at
low frequency, and to avoid excitation of the bending modes due to the digital implementation.

Following the approach of [14], a phase-lead controller was proposed with changes in the
frequencies of the zeros and poles with respect to values of the internal compensator. These
parameters, as well as the gain of the compensator, were adjusted by hand, in an iterative
process until satisfactory phase margins were obtained, as well as simulated and experimental
time responses. In order to avoid excitation of the bending modes, an ad hoc approach was
adopted, consisting in placing notch filters tuned to the frequencies of the bending modes
in a series interconnection with the phase-lead transfer function. The reason to report on the
design of this controller, apart from the internal compensator bundled in the MBC500’s box,
was to look into issues concerning the digital implementation. The transfer function of the
SISO compensator is as follows:

k(s) = k1(s)h1(s)h2(s)

k1(s) = ks

s
ωz

+ 1

( s
ωp1

+ 1)( s
ωp2

+ 1)

hi(s) = 1 − ζwfis

s2 + ζwfis+ w2
fi

with i = 1, 2 and

ks = 0.65 ωz = 2π 60
rad
s

ωp1 = 2π 240
rad
s

ωp1 = 2π 480
rad
s

ωf1 = 2π 777
rad
s

ωf2 = 2π 2065
rad
s

10.3.2 Robust H∞ and LPV designs

These two approaches are presented together, given that the statement of the problem is the
same for both. The details of the LPV approach are presented first, with remarks concerning
the feasible parameter-variation set. Regarding the Robust H∞ methodology, designs are pre-
sented that aim towards the operation of the rotating machine with a fixed rotation rate. These
designs, carried out at rotating rates of 5000 and 10 000 rpm, give a reference of the desirable
γ performance factor for the LPV design and this, in turn, is related to the subject of the size
of the parameter-variation set.

Anticipating the subject of the discrepancies between theory and practice, the conclusion
concerning the parameter-variation set, is not satisfactory for this application. Even though a
natural parameter-variation set exists (Pn = 0–10 000 rpm), which is given by the manufac-
turer of the magnetic-bearing experiment, it was not possible for this range to obtain a feasible
solution to the γ-performance LPV control problem (Theorem 1) as stated here.

Different parameter-variation sets were tried in order to establish in which cases a solution
to the control problem existed, and how performance was affected by the size of the parameter-
variation set (given feasibility). Before turning to the details of this trial and error process, the
statement of the control problem, i.e. the augmented plant with the weighting functions, will
be presented.

The diagram of Figure 10.12 shows the blocks involved in the augmented plant. In order
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Fig. 10.12. Augmented plant

to simplify the problem statement and with the objective of keeping the parameter-varying
part of the problem circumscribed to the W1 block, a minor modification is carried out on
Equation (10.54) as follows:

ẋr =

�
02 I2
Ar 02

�
xr +

�
02

B̃r

�
u+

�
02

kimI2

�
w̃im (10.55)

yr =
�
Cr 02

�
xr

rendering the Gr transfer matrix as follows:

Gr(s) ≡ =

�
A B1 B2

C 0 0

�
(10.56)

with

A =

�
02 I2
Ar 02

�
B1 =

�
02

kimI2

�

B2 =

�
02

B̃r

�
C =

�
Cr 02

�

In the modification turning Equation (10.54) into Equation (10.55), notice that the r2 factor
that accounts for the increase in the magnitude of the imbalance force (as the rotation rate
grows), has been removed. As the H∞ and LPV methods used for synthesis in this application
consider all disturbance inputs to be signals in L2 (i.e. d1, d2 ∈ L2), we resorted to including
the W1 block, a variable gain, variable-frequency bandpass prefilter, that accounts for the
fact the true wim signal (see Equation (10.54)) is a sinusoidal signal of known frequency
whose amplitude depends on r2. As was previously mentioned, this disturbance signal serves
the purpose of modeling the imbalance forces acting on the rotor. As a sinusoidal signal, its
frequency is given by the rotation rate of the shaft. Given a fixed rotation rate r, the transfer
function of theW1 filter turns out to be as follows:
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W1(s) =

�
w1(s) 0

0 w1(s)

�

w1(s) = r2
rs

s2 + 2ζrs+ r2
≡

�
�−2ζr −r2 r2

1 0 0

r 0 0

�
� (10.57)

Notice that the state-space representation of Equation (10.57) can be rewritten so that the affine
dependence of the state-space matrices of the filter on r and r2 is clear:

w1(s) ≡

�
� 0 0 0

1 0 0

0 0 0

�
�+ r

�
�−2ζ 0 0

0 0 0

1 0 0

�
� + r2

�
� 0 −1 1

1 0 0

0 0 0

�
�

When setting up the LPV synthesis problem, the existing relation between r and r2 will be
neglected. As far as the synthesis method is concerned, the w1 weighting function depends
affinely on two independent parameters p1 and p2 as follows:

w1(s) ≡

�
� 0 0 0

1 0 0

0 0 0

�
�+ p1

�
�−2ζ 0 0

0 0 0

1 0 0

�
�+ p2

�
� 0 −1 1

1 0 0

0 0 0

�
�

No advantage is derived from knowing that p2 = p21 and in that way, the approach is slightly
conservative.

On the other hand, theW∆(s) filter is shaped in frequency with two objectives in mind. In
the first place, penalize any control action above a given ωh frequency and secondly, give the
synthesis algorithm the frequency information concerning the bending modes. The transfer
function of this weighting functions is:

W∆(s) =

�
w∆(s) 0

0 w∆(s)

�

w∆(s) = wh(s)wb1(s)wb2(s)

wh(s) = kh
s

s+ ωh

wbi(s) =
s2 + ωbis+ ω2

bi

s2 + ζbiωbis+ ω2
bi

with i = 1, 2

and with

ωh = 2π 500
rad
s

kh = 1.3

ωb1 = 2π 777
rad
s

ζb1 = 0.02

ωb2 = 2π 2065
rad
s

ζb1 = 0.02

W∆(s) can be thought of as a combination of a weighting function for a family of plants with
additive uncertainty and a weighting function penalizing control action at high frequency.
Additive uncertainty is taken into account, as the norm reduction of the mapping from d2 to
y∆ (see Figure 10.12) is addressed by the synthesis algorithm minimizing the norm of the

mixed-sensitivities operator mapping

�
d1
d2

�
to

�
y∆

z1

�
.
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TheW2(s) weighting transfer function for the controlled output is as follows:

W2(s) =

�
w2(s) 0

0 w2(s)

�

w2(s) = kl
1

s
ωl

+ 1

with

ωl = 2π 60
rad
s

kl = 2

The shape of the w2 and wh filters follows typical guidelines for the choice of closed-loop
bandwidth and control bandwidth. Avoiding a high peak in the magnitude of the frequency
response of the sensitivity transfer function is sought as well (see [27], Chapter 6 and [26]).
An iterative process was carried out as well for the final fine tuning of these values.

Parameter-variation Set

Table 10.2. γ Performance index and parameter-variation set

Method Range[rpm] γ Index
H∞ r = 5000 2.572
LPV r ∈ [4000, 5000] 6.1483
LPV r ∈ [3500, 5000] infeasible
H∞ r = 10 000 20.42
LPV r ∈ [8000, 10 000] 49.598
LPV r ∈ [7000, 10 000] infeasible

The general observation concerning the parameter-variation set is that given a maximum
value for the rotation rate rmax, the reasonable parameter-variation set for the two-parameter
(r, r2) LPV system is

P = {(p1, p2) ∈ [rmin, rmax] × [r2min, r
2
max]}

with rmin = 0.8 rmax. This rule was empirically established following the aforementioned
criteria of feasibility of the corresponding LMI problem and γ performance index within two
times the γ performance index of the robust H∞ problem resulting from holding the parameter
r fixed at r = rmax.

Table 10.2 shows the different H∞ and LPV control designs that were attempted. Because
of the infeasibility of the optimization problem for the whole [0, 10 000] rpm range, two
ranges were tried in order to draw conclusions. Namely [4000, 5000] rpm and [8000, 10 000]
rpm. The H∞ designs carried out, correspond to r = 5000 rpm in one case and r = 10 000
rpm in the other. As can be seen in the table, greater intervals were infeasible.
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Fig. 10.13. Phase margin of the SISO internal compensator. Solid line: left-hand side transfer
function k(s)g1(s). Dotted line: left-hand side transfer function k(s)g2(s).
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Fig. 10.14. Frequency response of the sensitivities. rmax = 5000 rpm. Solid line: H∞,
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Fig. 10.15. Frequency response of the sensitivities. rmax = 10 000 rpm. Solid line: H∞,
dashed line: SISO, dash-dot line: LPV(rmax), dotted line: LPV(rmin).

10.3.3 Frequency Responses and Simulation Results

In the present section frequency-response graphics are shown, as well as simulated time re-
sponses. In Figure 10.13, the frequency response for the SISO open-loop transfer functions of
the SISO design can be seen. The sole purpose of this figure is to show the phase margin of
25 degrees that was part of the criteria to evaluate this design.

Figures 10.14 and 10.15 show the frequency response of the maximum singular value of
the output-sensitivity transfer function. Notice that the H∞ design, specifically designed for a
fixed rotation rate, renders a reduction of the sensitivity at the expected rotation-rate frequency.
On the other hand, the frequency responses of the LPV controller calculated for r = rmax

and r = rmin, show higher gains at low frequency than the H∞. Notice as well that the
reduction in the magnitude of the sensitivity at low frequency for the H∞ controller designed
for r = 10 000 rpm, is poor.

Figures 10.16 and 10.17 show time responses to step inputs to be followed by the x1

output. Recall that good tracking is not a must, but it cannot be too poor either. If that were
the case, the system might fail to stabilize the rotor for r = 0 rpm.

Figures 10.18, 10.19, 10.20 and 10.21 show time responses to sinusoidal inputs injected on
both sides that simulate imbalance forces. These are to be rejected. Notice that the H∞ design
performs better than the rest at the specific frequency it was designed for (rmax = 5000 and
10 000 rpm) while achieving a decent result for the low rotation rate the LPV was designed
for (rmax = 4000 and 8000 rpm). Naturally, the LPV performs better than the H∞ in this
case, but not by much.
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Fig. 10.16. Step responses. rmax = 5000 rpm. Solid line: H∞, dashed line: SISO, dash-dot
line:LPV(rmax), dotted line: LPV(rmin).
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Fig. 10.17. Step responses. rmax = 10 000 rpm. Solid line: H∞, dashed line: SISO, dash-dot
line: LPV(rmax), dotted line: LPV(rmin).
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Fig. 10.18. Responses to sinusoidal force of frequency rmax = 5000 rpm. Solid line: H∞,
dashed line: SISO, dash-dot line: LPV(rmax).
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Fig. 10.19. Responses to sinusoidal force of frequency rmax = 10 000 rpm. Solid line: H∞,
dashed line: SISO, dash-dot line: LPV(rmax).
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Fig. 10.20. Responses to sinusoidal force of frequency rmax = 4000 rpm. Solid line: H∞,
dashed line: SISO, dotted line: LPV(rmin).
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Fig. 10.21. Responses to sinusoidal force of frequency rmax = 8000 rpm. Solid line: H∞,
dashed line: SISO, dotted line: LPV(rmin).
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10.3.4 Experimental Results

Fig. 10.22. Experimental responses to 5000 rpm. x- and y-axes: internal compensator.

In this section, the experimental results are presented. The first thing that must be pointed
out, is that the LPV controller was not implemented because of the fast poles problem men-
tioned in Section 10.1.9. The material of that section has been included in the chapter for
reference, but in spite of the fact that a solution of the LPV synthesis problem with eigenvalue
clustering was tried, the outcome was not acceptable. When that algorithm was used, while
the optimization problem was feasible, the resulting controller was unstable, hence not a good
choice for implementation. The LMI region used was the following:

D = {z ∈ C : �(z) > −2π 2100}

which in terms of the α and β matrices of Equation (10.21) gives scalars α = −2π 2100 and
β = −1. In spite of the fact that this is a very simple LMI region as far the size of α and β
is concerned, the computation time of the LPV controller is considerably increased. Another
remark regards the H∞ controller designed for the 10 000 rpm rate; this controller did not
fulfill the basic stabilization requirement due to its low gain at low frequency.

Figures 10.22 to 10.27 show the response of the experimental equipment for three differ-
ent controllers with the machine rotating at 5000 and 10 000 rpm respectively. The measured
signals, displayed in an oscilloscope in XY mode, are the horizontal (x1) and vertical (y1)
displacements of the rotor on the left-hand side of the machine. The displayed voltage signals
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Fig. 10.23. Experimental responses to 10 000 rpm. x- and y-axes: internal compensator.

correspond with displacement with a factor of 1 mm per volt (i.e. 100 mV is 0.1 mm). The
scale of the horizontal and vertical axes for all figures is 200 mV/div. Notice that only the ex-
cursion in the x-axis matters in order to evaluate the performance of the designed controllers.
The control of the vertical axes y1 and y2 was left to the internal compensator. Figures 10.22
and 10.23 show the responses for the internal compensator of the MBC500, Figures 10.24
and 10.25 for the designed SISO compensator, and Figures 10.26 and 10.27 for the Robust
H∞ controller designed for imbalance forces at 5000 rpm (in the following H5000

∞ ). Fig-
ure 10.26 shows the filtering of imbalance forces that the H5000

∞ controller does at 5000 rpm.
On the other hand, the performance of the controller at higher rotation rates is comparable to
that of the internal compensator. The H5000

∞ also showed better behavior in the transition from
0 to 5000 rpm than the internal compensator as well as the designed SISO controller com-
pared to the internal compensator that shows little imbalance rejection at low rotation rates.
The behavior of the SISO design at high rates was quite poor.

10.4 Discrepancies between Theory and Practice

The use of LPV synthesis methods for this application is a priori appealing, motivated by
references such as [13] where traditional gain scheduling is used and by the results obtained
in simulations carried out for this chapter. In spite of the benefits it provides in terms of smooth
scheduling and guaranteed stability, the method has shown its problems in the implementation
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Fig. 10.24. Experimental responses to 5000 rpm. x-axis controller: SISO, y-axis controller:
internal.

phase too. The matter of the limited range the LPV method was capable of suggests the use of
less conservative techniques such as LPV synthesis based upon PDLFs ([25], see also [1]). The
use of more advanced LFT techniques, which give less conservative solutions, such as [17] is
another possible direction for LPV redesign. Regarding the techniques of [17], preliminary
research of the authors on the subject has shown their practical implementation is yet not a
fully solved problem (see [10]).

The matter of fast dynamics that prevents an easy implementation of controllers has been
already addressed. The LPV techniques of Theorem 2, which are pretty simple as the com-
plexity in their application is not greater than that of H∞ control, even rendering an LMI
problem with a finite number of constraints (at the expense of being conservative, perhaps),
showed limited applicability in this particular example. Its simplicity is appealing, but results
should be improved.

A word on the required hardware for the implementation of the controllers must be said
too. The internal analog compensator is a very simple solution with low cost, simple theory and
robust performance. Nevertheless, classical design is unlikely to address satisfactorily stricter
requirements regarding imbalance rejection and moreover, more challenging problems such
as avoiding the excitation of bending modes due to imbalance. For this chapter, sophisticated
PC hardware was used with expensive acquisition and control boards in order to implement
the more complex control techniques. In spite of this, experience exists in the implementation
of digital controllers with field-programmable gate array integrated circuits (FPGA ICs) for
this kind of application. While the PC hardware (AMD Athlon XP 2500+, 1800 MHz proces-
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Fig. 10.25. Experimental responses to 10 000 rpm. x-axis controller: SISO, y-axis controller:
internal.

sor) with the PCI boards used in this application (National Instruments PCI-6289 A/D - D/A
board) were capable of achieving at most 16 kHz sampling rates for an LTI digitalized state-
space controller with twenty states, the FPGA technology, which tends to have lower cost and
greater computation power, is known to easily achieve sampling rates of 50 kHz for the same
case, yet providing the needed flexibility for a control laboratory in order to carry out an it-
erative design process. Moreover, this kind of circuitry could provide affordable solutions for
magnetic-bearing machines manufactured with their controllers embedded and implementing
sophisticated techniques.
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Fig. 10.26. Experimental responses to 5000 rpm. x-axis controller: H5000
∞ , y-axis controller:
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speaker, 214–216, 220–222, 224, 225, 233
spectral factor, 155
stabilizing solution, 148, 151, 152
stepwise regression, 123
stochastic optimization problem, 52
structure detection, 122
supervisory control and data acquisition, 63

t-test, 122
templates, 267
time and space quantization, 51
tipping bucket rain gauge, 94
tracking performance, 152
Trommsdorf effect, 6
Tustin approach, 75
two degree-of-freedom control, 152

ultimate pit, 45
uncertainty, 43, 47, 204

virtual reference feedback tuning, 251
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virtual tanks, 91, 96

visual servoing, 168

volume-contraction factor, 6

volume/flow conversion coefficient, 92, 94

VRFT, 251, 260

VT, 96

weight-average molecular-weight, 8
weighting functions, 153
wetted surface, 94
worst-case criteria, 204, 205, 225, 229, 241

Zeno behavior, 88
Ziegler–Nichols rules, 76
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