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Preface

This monograph is written for advanced Master’s students, Ph.D. students,
and researchers in mathematical statistics and decision theory. It should be
useful not only as a basis for graduate courses, seminars, Ph.D. programs, and
self-studies, but also as a reference tool.

At the very least, readers should be familiar with basic concepts covered in
both advanced undergraduate courses on probability and statistics and intro-
ductory graduate-level courses on probability theory, mathematical statistics,
and analysis. Most statements and proofs appear in a form where standard
arguments from measure theory and analysis are sufficient. When additional
information is necessary, technical tools, additional measure-theoretic facts,
and advanced probabilistic results are presented in condensed form in an ap-
pendix. In particular, topics from measure theory and from the theory of
weak convergence of distributions are treated in detail with reference to mod-
ern books on probability theory, such as Billingsley (1968), Kallenberg (1997,
2002), and Dudley (2002).

Building on foundational knowledge, this book acquaints readers with the
concepts of classical finite sample size decision theory and modern asymptotic
decision theory in the sense of LeCam. To this end, systematic applications to
the fields of parameter estimation, testing hypotheses, and selection of popu-
lations are included. Some of the problems contain additional information in
order to round off the results, whereas other problems, equipped with solu-
tions, have a more technical character. The latter play the role of auxiliary
results and as such they allow readers to become familiar with the advanced
techniques of mathematical statistics.

The central theme of this book is what optimal decisions are in general
and in specific decision problems, and how to derive them. Optimality is un-
derstood in terms of the expected loss, i.e. the risk, or some functional of it.
In this regard estimators, tests, and selection rules are initially considered in
the book side by side, and then individually in the last three chapters.

Originally we were motivated to write this book by the lack of any no-
ticeable coverage of selection rules in books on decision theory. In over more
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than 50 years’ worth of scholarship, the majority of the over 1000 published
articles on selection rules do not utilize a rigorous decision-theoretic approach.
Instead, many articles on selection rules restrict themselves to a specific para-
metric family, propose an ad hoc rule, study its performance characteristics,
and (at the very best) compare its performance with another competing se-
lection rule. By contrast, this book offers a fuller point of view, and the last
chapter provides a thorough presentation of optimal selection rule theory.

Two other justifications for including selection theory are as follows.
First, in modern medium-level books on mathematical statistics, the decision-
theoretic approach is usually presented in a rather restricted and concise
manner. This practice, combined with an emphasis on estimation under the
squared error loss and on testing under the zero–one loss, fails to explain why
extra efforts should be made to become familiar with decision theory and to
use it. Of course, dealing with selection rules requires new types of loss struc-
tures, and learning more about them leads to a better understanding of the
wide range of powerful tools that decision theory has to offer. Second, permu-
tation invariance plays an important role in selection theory. The structure
of the problem of optimal permutation invariant selection rules, along with
its multisample statistical model, is quite unique. Indeed, it provides a rather
different setting in decision theory when compared to estimation and testing
problems based on a single sample, and we wished to make those differences
more readily available to our readers. In addition, as we wrote the first parts
of the book, which we began in the spring of 1999, it became clear that two
additional aspects of decision theory were important to us: asymptotic deci-
sion theory and the coexistence of the frequentist and Bayes approaches in
decision theory. With this final realization, we settled on our main topics for
the book, and they have carried us along ever since.

This book combines innovation and tradition in ways that we hope can
usefully extend the line of scholarship that starts with classical monographs
on decision theory by Wald (1950), Blackwell and Girshick (1954), Fergu-
son (1967), and DeGroot (1970) and continues with modern works by Pfan-
zagl and Wefelmeyer (1982, 1985), Strasser (1985), Janssen, Milbrodt, and
Strasser (1985), LeCam (1986), LeCam and Yang (1990), Torgersen (1991),
Bickel, Klaasen, Ritov, and Wellner (1993), Rieder (1994), and Shiryaev and
Spokoiny (2000). Most of these recent publications focus primarily on funda-
mental structural relationships in finite and asymptotic decision theory. By
contrast, we have chosen to include parts of mathematical statistics as they
have been represented by Witting (1985), Lehmann (1986), Pfanzagl (1994),
Witting and Müller-Funk (1995), Lehmann and Casella (1998), and Lehmann
and Romano (2005). As a result, this monograph is uniquely able to syn-
thesize otherwise disparate materials, while establishing connections between
classical and modern decision theory and inviting readers to explore their
interrelationships.

The importance of creating a bridge between the classical results of math-
ematical statistics and the modern asymptotic decision theory founded by
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LeCam should not be underestimated. So far, LeCam’s theory has been ap-
plied primarily to estimation and testing problems, which we now also present
in the last part of Chapter 9 with treatments of selection problems. We also
include new applications of this theory, which we hope demonstrate its broad
and powerful applicability. The prominent monographs in that area are by
Strasser (1985), LeCam (1986), Torgersen (1991), Bickel, Klaasen, Ritov, and
Wellner (1993), and LeCam and Yang (2000). These are written for mathe-
matical researchers in decision theory, and they are only partially accessible
to graduate students. Representations of parts of modern decision theory,
mainly applications of LAN theory to estimation and testing problems, that
are accessible to graduate students can be found in the books by Behnen
and Neuhaus (1989), Witting and Müller-Funk (1995), Hájek, Šidák, and Sen
(1999), and Lehmann and Romano (2005). In these works, however, considera-
tions are restricted to the asymptotic behavior of the log-likelihood under, say,
a null hypothesis and local alternatives. As a consequence, the general theory
of statistical models and their convergence are deliberately excluded, as are
central statements of modern asymptotic decision theory. These statements
provide the fundamental link between the convergence of the distributions of
the likelihood ratio, the decision-theoretically motivated concept of conver-
gence of models, and the closely related randomization criterion. They make
it possible to establish the asymptotic lower Hájek–LeCam bound on the risk.
The combination of this asymptotic lower bound, linearization techniques for
the log-likelihood, projection techniques for the statistics, and the lemmas of
LeCam constitute the backbone of modern asymptotic statistical theory. In
this book we wish to present the fundamental facts and their relations to each
other on an intermediate level in a form that is mathematically self-contained.
This style of presentation will, we hope, enable the reader to gain deep insight
into and appreciation for the structure of modern decision theory.

Another goal of this book is to provide a broad coverage of both the
frequentist and the Bayes approaches in decision theory. Most existing books
seem to prefer one or the other. We consider the Bayes approach to be a useful
decision-theoretic framework among others, and we use it heavily throughout
the book; however, we do so without extra nonmathematical philosophical
justification. In this spirit we distinguish between the average risk, where the
randomness of parameters is not an issue, and the Bayes risk. This distinction
allows us also to treat settings with improper priors just mathematically with
the average risk. Readers who are interested in contemporary presentations
of Bayesian analysis, including its philosophical foundation, reasoning, and
justification, are referred to the fundamental books on Bayesian analysis by
Berger (1985), Bernardo and Smith (1994), Robert (2001), and Ghosh and
Ramamoorthi (2003).

Chapter 1. The fundamental probabilistic concepts and technical tools
are provided here. These are in the first section properties of exponential fam-
ilies, where we have used Brown (1986) as a guideline for our presentation.
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At first glance, the importance of this class of distributions seems to be more
or less due to its favorable analytical form. However, several deeper reaching
characterization theorems show that, roughly speaking, finite optimal deci-
sions are only possible for this class of distributions. The class of conjugate
priors that are important for Bayes decisions, which arises in a natural way
from an exponential family, is studied systematically after the Bayes frame-
work has been introduced in Section 1.2. Tools that are used later on for Bayes
estimation, testing, and selection are also prepared here.

Distances between distributions play a central role. They reflect, for ex-
ample, the degree of information content in a binary model, and they explain
why a decision between distributions that are farther apart is easier than
a decision between distributions that are closer together. Moreover, some of
the distances or transforms, (e.g., the variational and the Hellinger trans-
forms) and their mutual relations are utilized to introduce and establish the
concepts of the strong and weak convergence of statistical models. The vari-
ational and Hellinger distance, as well as the Kullback–Leibler distance, the
χ2-distance, and the Bayes error for testing hypotheses in binary models are
special members of the class of v-divergences that were independently intro-
duced by Csiszár (1963) and Ali and Silvey (1966) and constructed with the
help of a convex function v. The behavior under randomization and interre-
lations of these functionals for different convex functions studied in Section
1.3 provides a deeper understanding of these functionals and prepares for ap-
plications in subsequent chapters. Information in Bayes models is considered
next, and the chapter concludes with an introduction to L2-differentiability,
where we have used Witting (1985) as a guideline for our presentation.

Chapter 2. The central topic is the Neyman–Pearson lemma and its
extensions. Links between Neyman–Pearson, minimax, and Bayes tests are
discussed and studied in detail. After a consideration of statistical models
with stochastic ordering, especially with a monotone likelihood ratio, which
include exponential families, Neyman–Pearson’s lemma is extended to tests
for composite one-sided hypotheses.

Chapter 3. An introduction to the general framework of decision theory is
given, followed by a discussion of its components. The concept of convergence
of decisions and the sequentially weak compactness of the set of all decisions
for a given model are central topics. Here and at several other places of the
book, we restrict ourselves to compact decision spaces and dominated models.
This practice helps keep technical tools at the graduate level, and it usefully
restricts references to results in other literature.

Special properties of the risk as a function of the parameter as well as
of the decision are studied to prepare for theorems of the existence of Bayes
and minimax decisions. Furthermore, the interrelations between Bayes and
minimax decisions are studied in preparation of proofs of minimaxity of esti-
mators and tests later on that are based on Bayes properties and a constant
risk. Γ -minimax decisions, which are analogues to minimax decisions in the
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Bayes approach, are also briefly considered in Section 3.6, and the chapter
concludes with special versions of the minimax theorem and the complete
class theorem. For readers interested in further results, references are made
to the fundamental monographs by Strasser (1985) and LeCam (1986).

Chapter 4. The chapter begins with examples in which randomizations
of models appear in a natural way. The concept of ε-deficiency due to LeCam
(1964), which is a comparison of the risk function “up to ε”, is essential for the
approximation and convergence of models and takes the center stage in this
chapter. Another fundamental result is the randomization theorem of decision
theory. It shows that the decision-theoretic concept of ε-deficiency is identical
with the variational distance between one model and a suitable randomization
of the other model. A transition to standard models gives the statement that
finite models are uniquely determined by their standard distributions and the
Hellinger tranforms. The characterization of the ε-deficiency via Bayes risks
leads to the concept of standard decision problems for which the associated
risk is just a special v-divergence. This is the concave function criterion of
decision theory, and it connects concepts from information and decision theory.

In the second part of the chapter, sufficient statistics are characterized
by the fact that the induced model is equivalent to the original model. The
v-divergences are used to give for the sufficiency an information-theoretic char-
acterization due to Csiszár (1963), the test-theoretic characterization due to
Pfanzagl (1974), and the well-known factorization criterion by Neyman. A
discussion of the different concepts of sufficiency such as pairwise sufficiency,
Blackwell sufficiency, and Bayes sufficiency is included. A brief discussion of
ancillarity, which includes Basu’s theorem, concludes the chapter.

Chapter 5. The treatment of the reduction by invariance is kept concise
by mainly considering the groups of permutations, location-scale transforms,
and rotations. Whereas permutation invariance is especially relevant for selec-
tion rules, the other groups are utilized to prove the Hunt–Stein theorem on
the minimaxity of best invariant tests. Hereby the existence of the Haar mea-
sure can be established directly in a simple manner without having recourse
to further literature. The connection between best equivariant estimators and
minimax estimators is provided by the Girshick–Savage theorem. With the
conclusion of this chapter all tools from finite decision theory that are neces-
sary for our purposes have been collected.

Chapter 6. The previous results on ε-deficiency and the randomization
theorem are used to develop a theory of convergence of models within our
fixed framework. Asymptotically normal models play a central role. Whereas
the term model is standard in mathematical statistics, the term experiment
is more common in modern decision theory. As both concepts are essentially
the same (see Lehmann and Romano (2005) p. 550), we use the term model
throughout the book. The transition to standard models makes it possible to
get for finite models the well-known bounds on the ε-deficiency in terms of the
Dudley metric of standard distributions, which leads to the characterization of
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the convergence of finite models in terms of the distributions of the likelihood
ratios. For binary models the concepts of contiguity and entire separation are
introduced through the accumulation points of a sequence of models. As in
Jacod and Shiryaev (1987, 2002) and Liese (1986), we use Hellinger integrals
to get the results on the contiguity and the entire separation of sequences
of binary models, especially the results of Oosterhoff and van Zwet (1979)
for triangular arrays of independent models. In the study of the asymptotic
normality of double sequences of binary models, we follow the ideas of LeCam
and Yang (1990).

After the introduction and brief discussion of Gaussian models the LAN-
and ULAN-properties are introduced and established for localized sequences
of differentiable models. From the start, after Witting and Müller-Funk (1995)
and Rieder (1994), regression coefficients that satisfy the Noether condition
are used. Special cases then are the row-wise i.i.d. case, the two-sample prob-
lem, and regression models with deterministic covariables. Suitable versions
of the third lemma of LeCam are given. These results allow us to study the
risks of sequences of decisions in a shrinking sequence of the localization point
of the models, providing a comparison of the efficiency of different sequences
of decisions.

In the remainder of the chapter, the lower Hájek–LeCam bound is derived.
To avoid advanced techniques from topology, the bound is established here
only for compact decision spaces and dominated limit models. This proves
sufficient for our purposes, as the models considered here are nearly always
parametric models. The lower Hájek–LeCam bound makes it possible to break
up the proof of asymptotic optimality of estimators, tests, and selection rules
into separate steps. The first step consists of finding in the asymptotic Gaus-
sian model the optimal solution, which depends only on the sufficient central
variable. By replacing the central variable with the central sequence a se-
quence of decisions is obtained. Under additional regularity assumptions the
convergence of the risks to the lower Hájek–LeCam follows, and this in turn
guarantees the optimality of the sequence of decisions.

Chapter 7. The chapter on parameter estimation begins with the Cramér–
Rao inequality and the result, which has been proved by various authors under
different regularity assumptions: namely that equality only holds for exponen-
tial families. This result corroborates the importance of exponential families
for statistical analyses under finite sample sizes and it distinguishes a need
for asymptotic considerations. Classical results on UMVU estimators, selected
topics on Bayes estimators, and considerations regarding the admissibility of
estimators conclude the first part of this chapter.

The second part is devoted to the study of the asymptotic properties of
estimators of parameters. For all asymptotic considerations it is mandatory
to deal first with the question of the consistency of estimators. Only for esti-
mators with this property can classical and modern linearization techniques
be utilized. From a variety of possible approaches to consistency we have
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chosen the concept of M -estimators, and we follow here to some extent the
presentation in Pfanzagl (1994). Besides a treatment of the consistency of
M -estimators and the MLEs, and a discussion of the existence of MLEs in
exponential families, we study location and regression models. Techniques
from convex analysis, due to Hjort and Pollard (1993), allow us to verify
consistency without assumptions regarding compactness for convex criterion
functions. The part on consistency is completed with the consistency in Bayes
models. In giving the fundamental results of Doob (1949) and Schwartz (1965)
we follow Ghosh and Ramamoorthi (2003). One way of proving the asymp-
totic normality of M -estimators is based on the classical Taylor expansion.
However, for the treatment of regression models with not necessarily differen-
tiable criterion functions it is preferable to follow linearization techniques for
convex criterion functions based on Hjort and Pollard (1993). Doing so avoids
conditions regarding differentiability. The necessity of taking the second way
arises in L1-regression and more generally in quantile regressions, as they are
represented in Jurečková and Sen (1996). The asymptotic normality of the
posterior distribution (i.e., the Bernstein–von Mises theorem) is established
and used to prove the asymptotic normality of the Bayes estimator.

The last section of this chapter deals with the asymptotic optimality of
the MLE. The result by Bahadur (1964) on the majorization of the covari-
ance matrix of the limit distribution of an asymptotically normal estimator
over the inverse of Fisher’s information matrix is presented. Then the estima-
tion problem is treated systematically as a decision problem, and the lower
bound on the risks is derived under different conditions by utilizing the gen-
eral results from Chapter 6. This is done in the finite-dimensional case for
the asymptotically median unbiased estimators. In the multivariate case, an
asymptotic minimax bound is derived. It is shown that in each case, under
weak assumptions the MLE achieves the respective lower bound. With these
main theorems in asymptotic estimation theory this chapter is completed.

Chapter 8. At the beginning uniformly best unbiased level α tests for
two-sided hypotheses in one-parameter exponential families are characterized.
Then there follows a section on testing linear hypotheses in multivariate nor-
mal distributions with a common known covariance matrix. These results con-
stitute, from an asymptotic point of view, the solution of the decision problem
in the limit model. Uniformly best unbiased level α tests in d-parameter expo-
nential families, which are conditional tests, are derived next. Selected topics
on uniformly best invariant level α tests and Bayes tests conclude the first
part of this chapter.

The second part is devoted to the study of the asymptotic properties of
tests. It begins with the study of exponential rates of error probabilities in
binary models, which leads to the theorems of Stein and Chernoff. The major
treatment of asymptotic tests starts with a problem that is of importance of
its own: the central question about the linearizations of statistics. Whereas
in the area of parameter estimation such linearizations are the result of the
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linearization of equations, supporting tools of this type are not available for
tests. For the latter, the projection techniques due to Hájek are fundamental.
This has been used already for U -statistics in the special case of Hoeffding.
The usefulness of these projection techniques is demonstrated on U -statistics
and rank statistics, which serve as preparation for the results on the local
asymptotic optimality of linear rank tests. Projection techniques are also used
to study statistics that include estimated nuisance parameters.

The results on the linearization of statistics are used to establish the
asymptotic normality of the test statistics under the null hypothesis. A com-
bination of the asymptotic upper Hájek–LeCam bound for the power with the
third lemma of LeCam allows the characterization of locally asymptotically
most powerful tests and the calculation of the relative efficiency of given tests.
For one-dimensional and multivariate parameters of interests, in models with
or without nuisance parameters, we characterize the locally asymptotically
optimal tests. In particular, we study Neyman’s score test, the likelihood ra-
tio tests, and tests that are based on the MLE known as Wald tests. The
asymptotic relative efficiency of selected rank tests, especially for the two-
sample problem, is determined by investigating the local asymptotic power
along parametric curves in the space of the distributions. For given rank tests,
the parametric models are determined for which these rank tests are locally
asymptotically best.

Chapter 9. Selection rules are presented here within the decision theo-
retic framework of the book. The goal is to select a best, or several of the
best, of k independent populations. The foundation of finite sample size selec-
tion rules goes back to Paulson (1949, 1952), Bahadur and Goodman (1952),
Bechhofer (1954), Bechhofer, Dunnett, and Sobel (1954), Gupta (1956, 1965),
Lehmann (1957a,b, 1961, 1963, 1966), and Eaton (1967a,b). The first research
monographs were written by Bechhofer, Kiefer, and Sobel (1968), Gibbons,
Olkin, and Sobel (1977), and Gupta and Panchapakesan (1979).

After an introduction of the selection models, optimal point selection rules
are derived for parametric and especially for exponential families. For equal
sample sizes the fundamental Bahadur–Goodman–Lehmann–Eaton theorem
states that the natural selection rule is the uniformly best permutation invari-
ant decision. For unequal sample sizes the situation changes dramatically and
the natural selection rule loses many of its qualities (see Gupta and Miescke
(1988)). Bayes selection rules in explicit form are not always readily avail-
able. For exponential families, conjugate priors can be chosen such that the
posterior distributions are balanced and provide Bayes solutions of a simple
form. Combining selection with the estimation of the parameter of the selected
population is also considered. The next section deals with subset selections
and especially with Gupta’s subset selection rule. Γ -minimax selections are
also considered here. Section 9.3 deals with multistage selection rules that im-
prove the efficiency by combining the approaches of the previous two sections
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(see, e.g., Miescke (1984a, 1999)). Selected results, including Bayes designs for
stagewise sampling allocations, are presented in detail.

The second part of the chapter is on asymptotic properties of selection
rules, and it starts with the exponential rates of the error probabilities of
selection rules from Liese and Miescke (1999a). These results are related to
results of Chernoff (1952, 1956) and Krafft and Puri (1974). Then localized
parametric models are considered. It is shown that under equal sample sizes
the natural selection rule based on the central sequence is both locally asymp-
totically uniformly best in the class of all permutation invariant selection rules
and locally asymptotically minimax in terms of the pointwise comparison of
the asymptotic risks. Because the statistics used by the selection rules have
a specific difference structure, which is similar to the situation of two-sample
problems, the localization point that appears in the central sequence can be re-
placed by an estimator without changing the asymptotic efficiency. The same
holds true for additional nuisance parameters. In the nonparametric selection
model we study selection rules that are based on rank statistics. Here we use
results that have been prepared previously for nonparametric tests.

There are a number of people and institutions that we would like to thank
for supporting this book project. Several rounds of reviews over the past three
years have given us immeasurable help getting the book into shape, and we are
deeply indebted to all of the experts who were willing to review our material
and provide critical comments and suggestions. We are very grateful to the
Mathematical Research Institute at Oberwolfach for letting us stay and work
within its RIP program for two weeks in both 2004 and 2005. The support we
have received from Springer Verlag and the guidance we have received from
John Kimmel and his technical staff have greatly facilitated our work, and we
are especially appreciative. We also thank the colleagues in our departments
who have contributed to countless discussions throughout the progress of the
book. Their input as well as their understanding of our long preoccupation
with this project are very much appreciated. Additionally, thanks are due to
our departments and universities for the time and working space that they
have provided us. We thank Peter Dencker and Jin Tan for proofreading parts
of the book and Jenn Fishman for helping us with the revision of the preface.

Our special thanks go to Ingo Steinke, who proofread several versions of the
book, pointed out many inaccurate details, and provided valuable suggestions
for improving the book’s overall layout. His continuous interest and help in
this project is highly appreciated.

Finally, we would like to say some words in memory of Shanti S. Gupta,
who passed away in 2002. His inspiration, support, and encouragement have
deeply affected our lives and, in particular, our work on this book.

Rostock and Chicago, Friedrich Liese
October 2007 Klaus-J. Miescke



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Priors and Conjugate Priors for Exponential Families . . . . . . . . 16
1.3 Divergences in Binary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 Information in Bayes Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.5 L2-Differentiability, Fisher Information . . . . . . . . . . . . . . . . . . . . . 58
1.6 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2 Tests in Models with Monotonicity Properties . . . . . . . . . . . . . 75
2.1 Stochastic Ordering and Monotone Likelihood Ratio . . . . . . . . . 75
2.2 Tests in Binary Models and Models with MLR . . . . . . . . . . . . . . 83
2.3 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Statistical Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1 Decisions in Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 Convergence of Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.3 Continuity Properties of the Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.4 Minimum Average Risk, Bayes Risk, Posterior Risk . . . . . . . . . . 121
3.5 Bayes and Minimax Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.6 Γ -Minimax Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.7 Minimax Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.8 Complete Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.9 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4 Comparison of Models, Reduction by Sufficiency . . . . . . . . . . 156
4.1 Comparison and Randomization of Models . . . . . . . . . . . . . . . . . . 156
4.2 Comparison of Finite Models by Standard Distributions . . . . . . 166
4.3 Sufficiency in Dominated Models . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.4 Completeness, Ancillarity, and Minimal Sufficiency . . . . . . . . . . 188
4.5 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



XVI Contents

5 Invariant Statistical Decision Models . . . . . . . . . . . . . . . . . . . . . . 198
5.1 Invariant Models and Invariant Statistics . . . . . . . . . . . . . . . . . . . 198
5.2 Invariant Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.3 Hunt–Stein Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.4 Equivariant Estimators, Girshick–Savage Theorem . . . . . . . . . . . 222
5.5 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6 Large Sample Approximations of Models and Decisions . . . . 235
6.1 Distances of Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.2 Convergence of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.3 Weak Convergence of Binary Models . . . . . . . . . . . . . . . . . . . . . . . 248
6.4 Asymptotically Normal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6.4.1 Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.4.2 The LAN and ULAN Property . . . . . . . . . . . . . . . . . . . . . . 269

6.5 Asymptotic Lower Risk Bounds, Hájek–LeCam Bound . . . . . . . 281
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1

Statistical Models

The starting point of all statistical inference is the observation of data that are
subject to unavoidable random errors. The intention is to draw conclusions
from the data in such a way that the information that is contained in the data
is exploited as much as possible. For this purpose we need a mathematical
model that explains the fluctuation of the observations from measurement to
measurement, then a mathematical frame for possible conclusions, and finally
a tool for the assessment of the quality of concrete conclusions. Although
usually error-free conclusions from disturbed data cannot be drawn, we can
improve, or even optimize, the inference by utilizing our knowledge of the
probabilities of the random events that are relevant for the statistical problem
at hand.

The basic object is a suitably chosen space X in which all concrete mea-
surements can be observed. Following standard practice in probability theory
let there be given a σ-algebra A of subsets of X so that A contains all subsets
of X that are relevant for the problem. The pair (X ,A) is called the sample
space. If X is a metric space, then we use the Borel sets as the σ-algebra A.
On the other hand, if X is finite or countably infinite, then we use the power
set P(X ) for A.

To explain the fluctuation of the observations we assume that each obser-
vation x ∈ X is the realization of a random variable X with values in X that
is defined on some underlying abstract probability space (Ω,F,P), where P is
a probability measure on (Ω,F). By definition, such a random variable is a
mapping X : Ω → X that is F-A measurable, i.e., X−1(A) ∈ F, A ∈ A, where
X−1(A) = {ω : X(ω) ∈ A, ω ∈ Ω}. To indicate that X is measurable we use
the notation X : Ω →m X .

To be able to work on concrete problems a link to a family of concrete
probability spaces, say (X ,A, Pθ), θ ∈ Δ, has to be established by means of
possible distributions Pθ of X at θ ∈ Δ that include the true but unknown
distribution of X. This leads to the concept of a statistical model. The first
step toward a statistical model is to choose a suitable family (Pθ)θ∈Δ of distri-
butions of X on (X ,A). This can be a difficult and challenging task, depending

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 1, c© Springer Science+Business Media, LLC 2008



2 1 Statistical Models

on the experimental situation. The choice has to be made based on the initial
information that is available about the random behavior of X in the exper-
iment. To be mathematically consistent we assume that there is a family of
probability measures (Pθ)θ∈Δ on (Ω,F) such that for every θ ∈ Δ the distri-
bution of X under Pθ is given by Pθ = Pθ ◦ X−1; i.e., Pθ(A) = Pθ(X ∈ A),
A ∈ A. By combining the sample space with the set of possible distributions
of X we arrive at the statistical model

M = (X ,A, (Pθ)θ∈Δ). (1.1)

If the parameter set Δ is finite, then we call M a finite model. The simplest
models are binary models where Δ consists only of two elements.

1.1 Exponential Families

Many of the frequently used parametric families of distributions (Pθ)θ∈Δ in a
statistical model M = (X ,A, (Pθ)θ∈Δ) are special cases of exponential fami-
lies. Examples are the normal, binomial, Poisson, beta, and gamma families.
Because all of these families share properties that are typical for an exponen-
tial family, it is natural and proves useful to study first this important general
statistical model, and to collect analytical properties that are used throughout
this book.

We are following here the tradition set by Lehmann (1959, 1983) in his clas-
sical books on testing and estimation, and continued in their respective second
editions: Lehmann (1986), Lehmann and Casella (1998), and Lehmann and
Romano (2005). More general treatments of exponential families are provided
in Barndorff-Nielsen (1978) and Brown (1986). We also refer to Hoffmann-
Jørgensen (1994), Johansen (1979), and Küchler and Sørensen (1997).

Let (X ,A) be a given measurable space and T : X →m R
d be a statistic.

For any μ ∈Mσ(A), we take

Δ = {θ :
∫

exp{〈θ, T 〉}dμ <∞} ⊆ R
d, and (1.2)

K(θ) = ln(
∫

exp{〈θ, T 〉}dμ), θ ∈ Δ, (1.3)

where 〈θ, T 〉 = θTT =
∑d

i=1 θiTi is the Euclidean scalar product of the vectors
θ = (θ1, ..., θd)T and T = (T1, ..., Td)T . Given 0 < α < 1, we set p = 1/α and
q = 1/(1 − α). Then 1/p + 1/q = 1 and by Hölder’s inequality (see Lemma
A.13) it holds for θ1, θ2 ∈ Δ,
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exp{K(αθ1+(1− α)θ2)} =
∫

exp{〈αθ1 + (1− α)θ2, T 〉}dμ (1.4)

=
∫

exp{〈αθ1, T 〉} exp{〈(1− α)θ2, T 〉}dμ

≤ (
∫

exp{〈θ1, T 〉}dμ)α(
∫

exp{〈θ2, T 〉}dμ)1−α

= exp{αK(θ1) + (1− α)K(θ2)}.

This means that the set Δ in (1.2) is a convex set, and that the function K
in (1.3) is convex. For every θ ∈ Δ,

Pθ(A) =
∫
A

exp{〈θ, T 〉 −K(θ)}dμ, A ∈ A, (1.5)

is a probability measure on (X ,A), and the family of distributions (Pθ)θ∈Δ is
called an exponential family . We denote by

fθ(x) :=
dPθ
dμ

(x) = exp{〈θ, T (x)〉 −K(θ)}, x ∈ X , (1.6)

the density of Pθ with respect to μ, θ ∈ Δ.
It should be noted that, in general, the parameter set Δ is neither closed

nor open. An exponential family (Pθ)θ∈Δ is called regular if Δ = Δ0, where
here and in the sequel Δ0 denotes the interior of Δ.

Throughout the book, whenever an exponential family is considered, the
following two assumptions are made to make sure that the dimensions of R

d

and Δ can not be reduced.

(A1) The statistics T1, ..., Td are linearly independent in the sense that for
a0, a1, ..., ad ∈ R, the relation a1T1 + · · · + adTd = a0, μ-a.e., implies that
ai = 0, i = 0, 1, ..., d.

(A2) The interior Δ0 of Δ is nonempty.

If the condition (A1) is fulfilled, then the parameter θ is identifiable; that
is, Pθ1 = Pθ2 implies θ1 = θ2. If not already achieved from the very beginning,
the technical tools of reparametrization and a suitable choice of the measure
μ are available for this purpose.

Definition 1.1. Under the assumptions (A1) and (A2) made on T and Δ,
respectively, the family of distributions (Pθ)θ∈Δ given by (1.5) is called a d-
parameter exponential family in natural form, with natural parameter θ and
generating statistic T . The statistical model

Mne = (X ,A, (Pθ)θ∈Δ) (1.7)

with (Pθ)θ∈Δ from (1.5) is called a natural exponential model. It is called
regular if Δ is open.
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An exponential family in natural form is also called an exponential family
in canonical form in the literature.

Problem 1.2.∗ The representation of an exponential family in natural form by
(1.5) is not unique in the triplet (T, θ,μ).

The ambiguity pointed out in the above problem is often utilized to find
representations that are better adapted to the problem under consideration.

As the density in (1.5) is positive we see that the distributions from the
exponential family are measure-theoretically equivalent to μ; that is, Pθ(B) =
0 if and only if μ(B) = 0, or in short μ 
� Pθ. This implies

Pθ 
� Pθ0 , θ0, θ ∈ Δ, (1.8)

and that the density of Pθ with respect to Pθ0 is given by

dPθ
dPθ0

= exp{〈θ − θ0, T 〉 −K(θ) +K(θ0)}, θ0, θ ∈ Δ.

For d = 1 the condition (A1) only means that the statistic T is not μ-a.e.
constant and therefore in view of (1.8) T is not Pθ-a.s. constant. For d > 1 the
condition (A1) excludes the cases where Pθ-a.s. the statistic T takes on values
in a lower-dimensional subspace. We show later that Eθ ‖T‖2 <∞, θ ∈ Δ. For
such a random vector the fact that only values from a subspace are attained
can be characterized with the help of the covariance matrix.

Problem 1.3.∗ Let Y1, ..., Yd be random variables with finite second moments.
There exist a0, a1, ..., ad ∈ R with

∑d
i=1 a2

i > 0 and a1Y1 + · · · + adYd = a0, P-a.s.,
if and only if the covariance matrix of (Y1, ..., Yd) is singular.

For some purposes it proves convenient to study the family of induced
distributions Qθ = Pθ ◦ T−1. The statistical model

Mre = (Rd,Bd, (Qθ)θ∈Δ), (1.9)

is called the reduced model or the model in minimal form. For every B ∈ Bd

and ν = μ ◦ T−1,

Qθ(B) =
∫
IB(T ) exp{〈θ, T 〉 −K(θ)}dμ =

∫
B

exp{〈θ, t〉 −K(θ)}ν(dt),

so that
gθ(t) :=

dQθ

dν
(t) = exp{〈θ, t〉 −K(θ)}, t ∈ R

d. (1.10)

When passing from the natural form to the reduced form we changed the
sample space with the consequence that the new generating statistic (i.e.,
the identical mapping) is very simple. Later we show that the two models, the
natural model and the reduced model, are identical from the decision-theoretic
point of view.
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It is an important property of exponential families that the distributions of
a sample of size n form again an exponential family where the new generating
statistic is the sum. The following proposition presents the precise statement
which is a consequence of the fact that the density of a product measure with
respect to another product measure is simply the product of the individual
densities; see Proposition A.29.

Proposition 1.4. Let (Pθ)θ∈Δ be a natural exponential family with respect to
μ. Then (P⊗n

θ )θ∈Δ ⊆ P(A⊗n) is a natural exponential family with respect to
μ⊗n with generating statistic T⊕n(x1, ..., xn) :=

∑n
i=1 T (xi) and it holds that

dP⊗n
θ

dμ⊗n
= exp{〈θ, T⊕n〉 − nK(θ)}.

If X and Y are independent random vectors with distributions P and Q,
respectively, then the distribution of X +Y is given by the convolution of the
two distributions P and Q, defined by

(P ∗Q)(B) :=
∫
P (B − x)Q(dx), B ∈ Bd.

According to (1.9) the reduced version of P⊗n
θ is given by Qn,θ := P⊗n

θ ◦T−1
⊕n .

As T⊕n is the sum of n independent identically distributed (i.i.d.) random
vectors we see that the reduced model is given by

Qn,θ = L(T⊕n|P⊗n
θ ) = (Pθ ◦ T−1)∗n,

where ∗n denotes then-fold convolution.
For practical purposes we may also change the parameter set. Such a

reparametrization can often be made to get new parameters that allow for a
better statistical interpretation. Let Λ ⊆ R

d and κ : Λ → Δ be a mapping.
Then (1.5) can be reparametrized to

Ppe,η(A) : = Pκ(η)(A) =
∫
A

exp{〈κ(η), T 〉 −K(κ(η))}dμ, A ∈ A, (1.11)

hη(x) : =
dPpe,η
dμ

(x) = exp{〈κ(η), T (x)〉 −K(κ(η))}, x ∈ X ,

where η ∈ Λ. The statistical model

Mpe = (X ,A, (Ppe,η)η∈Λ), (1.12)

with (Ppe,η)η∈Λ from (1.11), is called a reparametrized exponential model .
Whenever the representation (1.12) is used, we assume without loss of gen-
erality that the mapping κ : Λ → Δ is a one-to-one mapping of Λ into Δ.
This guarantees that for any two parameter points η1, η2 ∈ Λ, Ppe,η1 = Ppe,η2

implies η1 = η2. In this case, the parameter η in the family (Ppe,η)η∈Λ is iden-
tifiable. Moreover, we use γ = κ−1 in the sequel. A concrete statistical model
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usually is introduced by specifying (Ppe,η)η∈Λ, where the parameter η admits
a direct statistical interpretation.

In the following examples, we look at some common parametric families
of distributions and represent them as exponential families. As the natural
parameter is not necessarily the parameter that admits a statistical interpre-
tation we often introduce another more meaningful parameter.

Here and in the sequel, whenever an at most countable sample space X
appears we use the power set P(X ), i.e., the system of all subsets of X , as
σ-algebra A in our statistical model. Unless explicitly mentioned otherwise,
we use the counting measure as the dominating measure so that we have only
to deal with the probability mass function (p.m.f.), f(x) := P ({x}), x ∈ X ,
which is the density of P with respect to the counting measure. We set

Sd−1 = {(p1, ..., pd−1) : pi > 0, i = 1, ..., d− 1,
∑d−1

j=1 pj < 1},
So
d = {(p1, ..., pd) : pi > 0, i = 1, ..., d,

∑d
j=1 pj = 1},

Sc
d = {(p1, ..., pd) : pi ≥ 0, i = 1, ..., d,

∑d
j=1 pj = 1}.

(1.13)

Example 1.5. Let X1, ..., Xn be a sample of i.i.d. observations from an experiment
with d possible outcomes that have probabilities pi, i = 1, ..., d. The sample space is
X = {(ε1, ..., εn) : εi ∈ {1, ..., d}, i = 1, ..., n} and it holds

P(X1 = ε1, ..., Xn = εn) =
∏n

i=1
pεi

= exp{
∑d

j=1
Tj(x) ln pj}, x = (ε1, ..., εn) ∈ X , where

Tj(x) = |{i : εi = j, i = 1, ..., n}|

is the number of observations with outcome j, j = 1, ..., d. As
∑d

j=1 pj = 1 the
assumption (A2) is not met. However, by a reduction to d − 1 parameters we can
get an exponential family (1.5) in natural form. Put for i = 1, ..., d− 1,

θi = κi(p) := ln(pi/pd), pi = γi(θ) = exp{θi}(1 +
∑d−1

j=1 exp{θj})−1,

pd = 1−
∑d−1

i=1 pi, pd = γd(θ) = 1−
∑d−1

i=1 γi(θ),

T = (T1, ..., Td−1), K(θ) = n ln(1 +
∑d−1

j=1 exp{θj}),

θ = (θ1, ..., θd−1) ∈ Δ = R
d−1, p = (p1, ..., pd) ∈ So

d.

As
∑d

i=1 ki ln pi =
∑d

i=1 kiθi we see that Pθ = L(X1, ..., Xn) has the p.m.f.

fθ(x) = exp{
∑d

i=1
Ti(x) ln pi}

= exp{
∑d−1

i=1
Ti(x) ln pi + (n−

∑d−1

i=1
Ti(x)) ln(1−

∑d−1

i=1
pi)}

= exp{
∑d−1

i=1
θiTi(x)−K(θ)}.

With μ being the counting measure we see that (Pθ)θ∈Δis a regular (d−1) parameter
exponential family with natural parameter θ ∈ R

d−1 that satisfies (A1) and (A2).
The distributions in the reduced model are then
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Pθ ◦ T−1 = M(n, γ(θ)), θ ∈ R
d−1,

where M(n, p) denotes the multinomial distribution with parameters n and p =
(p1, ..., pd) ∈ So

d.

Problem 1.6. Verify the statements in the previous example regarding (A1) and
(A2).

Problem 1.7. Let X1, ..., Xn be i.i.d. Bernoulli variables with success probability
p ∈ (0, 1). Then the joint distribution on X = {0, 1}n is given by ((1−p)δ0+pδ1)

⊗n,
where δa is the δ-distribution that is concentrated at point a. Set

θ = κ(p) := ln(p/(1− p)), p = γ(θ) :=
exp{θ}

1 + exp{θ} ,

K(θ) = n ln(1 + eθ), Δ = R,

T (x) =
∑n

i=1
xi, x = (x1, ..., xn) ∈ {0, 1}n.

Then the family of distributions (Pθ)θ∈Δ = ((1−γ(θ))δ0 +γ(θ)δ1)
⊗n has the p.m.f.

fθ = exp{θT −K(θ)} and is thus a one-parameter exponential family with natural
parameter θ and generating statistic T. The distributions in the reduced model are
Pθ ◦ T−1 = B(n, γ(θ)), θ ∈ R.

Problem 1.8.∗ Sometimes, the parameter set (0, 1) of the binomial distribution
B(n, p) is extended by putting B(n, 0) = δ0 and B(n, 1) = δn. Show that the ex-
tended family B(n, p), p ∈ [0, 1], cannot be represented as an exponential family.

Problem 1.9.∗ The family of Poisson distributions (Po(λ))λ>0 with p.m.f.

poλ(k) =
λk

k!
exp{−λ}, k ∈ N, λ > 0,

can be represented as a one-parameter exponential family in natural form.

Example 1.10. The exponential families in Example 1.5 and in the Problems 1.7
and 1.9 are regular, i.e., their natural parameter sets are open. This property is
often met, but there is an important exponential family that does not share this
property. Let W (t), t > 0, be a standard Wiener process and ν and σ be fixed
positive constants . For a > 0 we denote by Ta = inf{t : νt + σW (t) ≥ a} the first
passage time at which the process νt+σW (t) crosses the level a. It can be shown (see
Seshadri (1993)) that Ta is finite with probability one and that it has a distribution,
called the inverse Gaussian distribution Gi(λ,m), that has the Lebesgue density

giλ,m(x) =

√
λ

2πx3
exp{− λ

2m2

(x−m)2

x
}I(0,∞)(x), (1.14)

where λ = (a/σ)2 and m = a/ν. Letting m → ∞ we get as the density of the first
passage time of the standard Wiener process

giλ,∞(x) =

√
λ

2πx3
exp{− λ

2x
}I(0,∞)(x). (1.15)
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To present the densities giλ,m in standard exponential form we set X = (0,∞) and

introduce the measure μ by μ(dx) = (2πx3)−1/2λ(dx) on B(0,∞). If T1(x) = x,
T2(x) = 1/x,

(θ1, θ2) = (− λ

2m2
,−λ

2
), K(θ1, θ2) = 2

√
θ1θ2 −

1

2
ln(−2θ2),

then
dGi(λ,m)

dμ
(x) = exp{θ1x + θ2

1

x
−K(θ1, θ2)}.

The natural parameter set is Δ = (−∞, 0] × (−∞, 0) which is not open. This set
corresponds to the set (0,∞)× (0,∞] in the original parametrization.

Normal distributions are exponential families. The two-parameter case is
studied in the next example. The one-parameter cases, where either the vari-
ance or the mean is known, are considered in Lemma 1.37 and Example 1.38,
respectively.

Example 1.11. Let X be an observation from a normal distribution N(μ, σ2),
where (μ, σ2) ∈ Λ = R × (0,∞) is unknown. The density ϕμ,σ2 of the distribution
N(μ, σ2) with respect to the Lebesgue measure λ on R is

ϕμ,σ2(x) = (2πσ2)−1/2 exp
{
−(2σ2)−1(x− μ)2

}
= exp

{
κ1(μ, σ

2)T1(x) + κ2(μ, σ
2)T2(x)− (1/2)[μ2/σ2 + ln(2πσ2)]

}
,

where

(T1(x), T2(x)) =
(
x, x2) , (1.16)

(θ1, θ2) =
(
κ1(μ, σ

2), κ2(μ, σ
2)
)

:=
(
μ/σ2,−1/(2σ2)

)
,(

μ, σ2) = (γ1(θ), γ2(θ)) := (−θ1/(2θ2),−1/(2θ2)).

Hence N(μ, σ2), (μ, σ2) ∈ R × (0,∞), is a reparametrized exponential family with
generating statistic T = (T1, T2) and ϕμ,σ2 turns into

fθ(x) = exp {θ1T1(x) + θ2T2(x)−K(θ)} , where

K(θ) = −(1/2)[−θ2
1/(2θ2) + ln(−θ2/π)], θ ∈ R× (−∞, 0). (1.17)

The set Δ = R× (−∞, 0) is the natural parameter set as
∫

exp {θ1T1(x) + θ2T2(x)}λ(dx) <∞

if and only if (θ1, θ2) ∈ R × (−∞, 0). Thus we have a regular two-parameter expo-
nential family, represented in natural form by fθ, θ ∈ R× (−∞, 0), and represented
in reparametrized form by ϕμ,σ2 , (μ, σ2) ∈ R × (0,∞). The latter is based on the
statistically relevant parameters μ and σ2.

Suppose now that we have a sample of size n; i.e., let X1, ..., Xn be i.i.d. with
distribution N(μ, σ2). Then by Proposition 1.4 N⊗n(μ, σ2), (μ, σ2) ∈ R × (0,∞), is
again an exponential family, but now with the generating statistic

T⊕n(x1, ..., xn) = (
∑n

i=1
xi,
∑n

i=1
x2

i ).
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Problem 1.12.∗ The family of distributions in the reduced model (N⊗n(μ, σ2)) ◦
T−1
⊕n has the Lebesgue density σ−2ϕnμ,nσ2(s1)hn−1(s2/σ

2 − s2
1/(nσ

2)), where hn−1

is the Lebesgue density of a χ2-distribution with n− 1 degrees of freedom.

Next we consider some exponential families that appear as distributions
of nonnegative random variables.

Example 1.13. Let (Ga(λ, β))λ,β>0 be the family of gamma distributions which
have the Lebesgue densities

gaλ,β(x) =
βλ

Γ (λ)
xλ−1 exp{−βx}I(0,∞)(x), x ∈ R, λ, β > 0.

We introduce the measure μ by μ(dx) = I(0,∞) (x)x−1λ(dx), and set T1(x) = lnx,
T2(x) = −x, x > 0. The μ-density is then given by (1.6), with K(λ, β) = lnΓ (λ)−
λ lnβ, and (Ga(λ, β))λ,β>0 becomes a two-parameter exponential family in natural
form with natural parameter θ = (λ, β) ∈ Δ = (0,∞) × (0,∞) and generating
statistic T (x) = (lnx,−x).

Problem 1.14. Represent the family (Ga(λ, β))λ,β>0 for a fixed known λ, as well
as for a fixed known β, as a one-parameter exponential family in natural form.
Extend this representation to the case of an i.i.d. sample X1, ..., Xn where the dis-
tribution of X1 belongs to the gamma family.

Problem 1.15.∗ Let (Be(α, β))α,β>0 be the family of beta distributions, which
have the Lebesgue densities

beα,β(x) =
Γ (α + β)

Γ (α)Γ (β)
xα−1(1− x)β−1I(0,1)(x), x ∈ R, α, β > 0.

It can be represented as a two-parameter exponential family in natural form.

Perhaps the most important and useful analytic property of an exponential
family in natural form is that in its expectations, differentiations with respect
to the coordinates of θ = (θ1, ..., θd) ∈ Δ0 and integration with respect to
x ∈ X can be exchanged. Denote by C = {z : z = u + iv, u, v ∈ R} the
set of complex numbers, where u and v are the real and imaginary parts
of z, respectively. Similarly, we set C

d = {z : z = u + iv, u, v ∈ R
d} and

again denote by u and v the real and imaginary parts of the vector z ∈ C
d.

A function ψ = ψ1 + iψ2 is called measurable if ψ1 and ψ2 are real-valued
measurable functions and denote this again by ψ : X →m C. We set for any
μ ∈M(A)

U = {u : u ∈ R
d,

∫
|ψ(x)| exp{〈u, T (x)〉}μ(dx) <∞}.

Then with z = u + iv the relation | exp{iα}| = 1 yields | exp{〈z, T (x)〉}| =
| exp{〈u, T (x)〉}| so that the function

Mψ(z) =
∫
ψ(x) exp{〈z, T (x)〉}μ(dx)
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is well defined on F = U + iRd = {z : z = u+ iv, u ∈ U, v ∈ R
d}. For brevity,

we introduce the notation

Dα : =
∂m1+···+md

∂zm1
1 · · · ∂zmd

d

, α = (m1, ...,md) ∈ N
d,

|α| =
∑d

l=1
ml, zα = zm1

1 · · · zmd

d .

We recall that for an open set A ⊆ C
d a function f : A→ C, is called analytic

if, for every z0 ∈ A, f can be expanded in a power series

f(z) =
∑∞

k=0

∑
α:|α|=k

1
m1! · · ·md!

aα(z − z0)α

which is absolutely convergent in some neighborhood of z0. In this case f is
infinitely often differentiable and it holds

Dαf(z0) = aα. (1.18)

The following result has been established in the literature in several different
versions. Presumably, the first proof was presented in Lehmann (1959).

Lemma 1.16. For every θ0 ∈ U
0 there exists some ε > 0 such that

∫
exp{ε ‖T (x)‖}|ψ(x)| exp{〈θ0, T (x)〉}μ(dx) <∞. (1.19)

The function Mψ(z) =
∫
ψ(x) exp{〈z, T (x)〉}μ(dx) is analytic in the interior

F
0 = U

0 + iRd of F, and it holds for α = (m1, ...,md),

DαMψ(z) =
∫
ψ(x)Tm1

1 (x) · · · Tmd

d (x) exp{〈z, T (x)〉}μ(dx)

=
∫
ψ(x)Dα exp{〈z, T (x)〉}μ(dx), z ∈ F

0.

Proof. Fix z0 = (z1,0, ..., zd,0) ∈ U
0 + iRd and z = (z1, ..., zd) and de-

note by ui and ui,0 the real parts of z and z0, respectively. The inequalities
‖T‖ ≤

∑d
i=1 |Ti| and exp{|x|} ≤ exp{x} + exp{−x} imply (1.19). The latter

inequality and
∑n

k=0 |w|k/k! ≤ exp{|w|} yields for ‖z − z0‖ ≤ δ

|ψ(x) exp{〈z0, T (x)〉}|
∑n

l=0

| 〈z − z0, T (x)〉 |l
l!

≤ | ψ(x) exp{
∑d

j=1
uj,0Tj(x)} | exp{δ

∑d

j=1
|Tj(x)|}

≤
∑

ε1,...,εd∈{−1,0,1}
|ψ(x)| exp{

∑d

j=1
(uj,0 + εjδ)Tj(x)}.
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For sufficiently small δ and the vectors (u1,0 + ε1δ, ..., ud,0 + εdδ) belong to U
0

so that the function on the right-hand side of the above inequality is integrable
with respect to μ. Hence by Lebesgue’s theorem (see Theorem A.18),

Mψ(z) =
∫
ψ(x) exp{〈z0, T (x)〉}

∑∞

k=0

〈z − z0, T (x)〉k

k!
μ(dx)

=
∑∞

k=0

∑
|α|=k

1
m1! · · ·md!

aα(z − z0)α,

where
aα =

∫
ψ(x)Tm1

1 (x) · · · Tmd
1 (x) exp{〈z0, T (x)〉}μ(dx).

The relation aα = Dαf(z0) in (1.18) with f = Mψ completes the proof.

Theorem 1.17. Let (Pθ)θ∈Δ be an exponential family in natural form as
given by (1.5). Then for every θ ∈ Δ0 there exists an ε > 0 with

Eθ exp{ε ‖T‖} <∞, (1.20)

so that
Eθ ‖T‖a <∞ for every a > 0. (1.21)

The function K is infinitely often differentiable in Δ0 and it holds for every
α = (m1, ...,md) ∈ N

d,

EθT
m1
1 · · · Tmd

d = exp{−K(θ)}Dα exp{K(θ)}. (1.22)

Proof. The statement (1.20) follows from (1.19), and (1.21) is implied by
(1.20). From Lemma 1.16 we can see for ψ(x) ≡ 1 that the real-valued function
exp{K(θ)} =

∫
exp{〈θ, T 〉}dμ is infinitely often differentiable in U

0 = Δ0.
Because

∫
exp{〈θ, T 〉}dμ �= 0, the function K(θ) is also infinitely often differ-

entiable. To prove (1.22) we note that by Lemma 1.16

exp{K(θ)}EθT
m1
1 · · · Tmd

d =
∫
Tm1

1 (x) · · · Tmd

d (x) exp{〈θ, T (x)〉}μ(dx)

=
∫
Dα exp{〈θ, T (x)〉}μ(dx) = Dα

∫
exp{〈θ, T (x)〉}μ(dx)

= Dα exp{K(θ)}.

Remark 1.18. In the previous lemma we have proved the existence of all mo-
ments of T provided the parameter belongs to the interior of Δ. For the bound-
ary points, in general, this statements is no longer true as the following example
shows. Consider the inverse Gaussian distribution Gi(λ,m) with natural parameters
(θ1, θ2) =

(
−λ/(2m2),−λ/2

)
∈ (−∞, 0]× (−∞, 0) and Lebesgue density giλ,m from

(1.14) for θ1 = 0, i.e., giλ,∞ in (1.15). Obviously E0,θ2T1 =
∫∞
0

x giλ,∞(x)dx = ∞.
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There is a simple explanation for this effect. We have pointed out in Example 1.10
that giλ,m is the density of the first passage time at which the process νt + σW (t)

crosses the level a, where λ = (a/σ)2 and m = a/ν. The case m = ∞ corresponds
to ν = 0, i.e., there is no positive drift. In this case the Wiener process hits the level
a very late so that the hitting time is finite with probability one, but the expected
value is infinite.

For brevity, we introduce the notation

∇ =
(

∂

∂θ1
, ...,

∂

∂θd

)T

and ∇∇T =
(

∂2

∂θi∂θj

)
1≤i,j≤d

.

The following formulas for calculating the means and covariances of T1, ..., Td
are direct consequences of (1.22).

Corollary 1.19. Under the assumptions of Theorem 1.17, and conditions
(A1) and (A2), for every θ ∈ Δ0 the mean vector and the covariance ma-
trix of T are given by

EθT = ∇K(θ), Cθ(T ) = ∇∇TK(θ). (1.23)

The matrix ∇∇TK(θ) is nonsingular for every θ ∈ Δ0 and the infinitely often
differentiable function K is strictly convex in Δ0.

Proof. Let θ ∈ Δ0. From (1.22) we get for any θ ∈ Δ0 and Dα = ∂
∂θi

,

EθTi = exp{−K(θ)} ∂

∂θi
exp{K(θ)} =

∂K(θ)
∂θi

.

This proves the first statement. Similarly with Dα = ∂2

∂θi∂θj
,

EθTiTj = exp{−K(θ)} ∂2

∂θi∂θj
exp{K(θ)}

=
∂K(θ)
∂θi

∂K(θ)
∂θj

+
∂2K(θ)
∂θi∂θj

=
∂K(θ)
∂θi

∂K(θ)
∂θj

+
∂2K(θ)
∂θi∂θj

.

The nonsingularity of ∇∇TK(θ) follows from Cθ(T ) = ∇∇TK(θ) and the
fact that by assumption (A1) the components of T are not a.s. linearly de-
pendent, and Problem 1.3. We already know from (1.4) that K is convex. The
nonsingularity of ∇∇TK(θ) implies that K is strictly convex.

We illustrate the above results by examples.

Example 1.20. It has been shown in Example 1.13 that (Ga(α, β))α,β>0 is a two
parameter exponential family in natural form with natural parameter (λ, β) and gen-
erating statistic T (x) = (T1(x), T2(x)), where by K(λ, β) = lnΓ (λ)−λ lnβ, λ, β > 0.
From (1.23) we get, with Ψ = Γ ′/Γ ,

EθT = (Ψ(λ)− lnβ,−λ

β
) and Cθ(T ) =

(
Ψ ′(λ) − 1

β

− 1
β

λ
β2

)
.
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Example 1.21. Let X1, X2, ... be a Bernoulli sequence with success probability p,
where p ∈ (0, 1). For a fixed given k ∈ {1, 2, ...} let X = min{n : X1 + · · · + Xn =
k} − k. Thus, X + k is the number of times one has to play a game with winning
probability p in independent repetitions until k games have been won. X follows a
negative binomial distribution Nb(k, η) with p.m.f.

nbk,p(x) =
(x + k − 1)!

x!(k − 1)!
pk(1− p)x, x = 0, 1, 2, ...

Put θ = κ(p) = ln(1−p), and μ({x}) = (x+k−1)!/(x!(k−1)!). Then the distribution
of X has the density fθ(x) = exp{θx + k ln(1 − exp{θ})} with respect to μ. This
shows that Nb(k, 1 − eθ) is a one-parameter exponential family with T (x) = x and
K(θ) = −k ln(1− exp{θ}). From (1.23) we get

Eκ(p)T = k
1− p

p
and Vκ(p)(T ) = k

1− p

p2
.

In the previous examples we have already studied different ways of
parametrizing an exponential family. However, among all parametrizations
there is one in particular, not mentioned so far, that has a special meaning.
This is the so-called mean value parametrization which is considered at the
conclusion of this section. To prepare for this parametrization we need the
following well-known result (see, e.g., Brown (1986) and Witting (1985)).

Theorem 1.22. Under the assumptions of (A1) and (A2) the mapping

γm : θ �→ ∇K(θ) = EθT (1.24)

is a diffeomorphism of Δ0 onto the open set γm(Δ0).

Proof. We already know from Corollary 1.19 that K is strictly convex.
This yields for every θ1, θ2 ∈ Δ0 with θ1 �= θ2,

K(θ1) > K(θ2) + 〈(θ1 − θ2),∇K(θ2)〉 ,
K(θ2) > K(θ1) + 〈(θ2 − θ1),∇K(θ1)〉 .

Hence, 〈θ2 − θ1,∇K(θ1)−∇K(θ2)〉 < 0, so that θ1 �= θ2 implies ∇K(θ1) �=
∇K(θ2) and γm is a bijection. As by Proposition 1.16 K is infinitely often
differentiable we see that the mapping γm is continuously differentiable. An
application of the global inverse function theorem (see, e.g., Theorem 3.2.8 in
Duistermaat and Kolk (2004)) completes the proof.

Brown (1986) proved under the so-called steepness condition a stronger re-
sult which at the same time characterizes the range γm(Δ0). We come back to
this result later when we study maximum likelihood estimators in exponential
families in Section 7.5.

By denoting the inverse mapping of γm by κm, we can represent the expo-
nential family in the mean value parametrization, at least for θ ∈ Δ0, by

Pκm(μ), μ ∈ γm(Δ0).
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The name of this particular parametrization reflects the obvious fact that
Eκm(μ)T = μ. If we have a reparametrized exponential family (Pκ(η))η∈Λ, then
we get the mean value parametrization if we use μ = γm(κ(η)). Instead of
calculating the functions κ and γm it is often easier to express μ directly by η
via the relation Eκ(η)T = μ.

Example 1.23. We have seen in Example 1.7 that the binomial distribution
B(n, p), 0 < p < 1, is the reduced form of a one-parameter exponential family and
therefore again an exponential family where the generating statistic T is the identical
mapping. Hence with μ = EpT = np the p.m.f. in the mean value parametrization
is given by (

n

k

)(μ
n

)k (
1− μ

n

)n−k

, μ ∈ (0, n).

Problem 1.24. Find the Lebesgue density of N(μ, σ2), where both μ and σ2 are
unknown, in the mean value parametrization.

When inspecting the structure of the density fθ of an exponential family
one might get the impression that the factor exp{−K(θ)} plays only a subor-
dinate role as a normalizing factor. However, the reduced form of the exponen-
tial family in (1.10) reveals the meaning of exp{−K(θ)}. Only this function
and the underlying measure ν vary from one family to another. Therefore
exp{−K(θ)} carries the full structure of the exponential family. Furthermore,
we show that K(θ) determines the measure ν = μ ◦ T−1 uniquely.

Proposition 1.25. Suppose μ1 and μ2 are σ-finite measures on (X ,A) and
T : X →m R

d. If there are ah < bh for h = 1, ..., d such that

Xd
h=1(ah, bh) ⊆ {θ :

∫
exp {〈θ, T 〉} dμ1 =

∫
exp {〈θ, T 〉} dμ2},

then μ1 ◦ T−1 = μ2 ◦ T−1.

Proof. Use any θ0 = (θ0,1, ..., θ0,d) ∈ Xd
h=1(ah, bh) and turn to the mea-

sures
μ̃j(dx) := exp {〈θ0, T 〉}μj(dx), j = 1, 2.

After a normalization by the same constant c we may assume that Qj =
cμ̃j ◦ T−1 are probability measures so that for u ∈ Xd

h=1(ah − θ0,h, bh − θ0,h),
∫

exp {〈u, t〉}Q1(dt) =
∫

exp {〈u, t〉}Q2(dt).

The functions Mj(z) :=
∫

exp {〈z, t〉}Qj(dt) with z = u + iv are analytic
in (Xn

h=1(ah − θ0,h, bh − θ0,h)) + iRd in view of Lemma 1.16. By the unique-
ness theorem for analytic functions of several variables (see Theorem 9.4.2 in
Dieudonné (1960)) we get M1(z) = M2(z) for every z ∈ (Xn

h=1(ah− θ0,h, bh−
θ0,h)) + iRd. Hence especially for real parts equal to zero
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∫
exp {i 〈v, t〉}Q1(dt) =

∫
exp {i 〈v, t〉}Q2(dt)

for every v ∈ R
d. From the uniqueness of characteristic functions (see Theorem

A.51) we get Q1 = Q2 and by (μj ◦ T−1)(dt) = (1/c) exp {〈θ0, t〉}Qj(dt),
j = 1, 2, the statement.

One of many other reasons for the wide applicability of exponential fam-
ilies in several applications and especially in physics (see von der Linden et
al. (1999)) is that these distributions maximize the Shannon entropy under
linear constraints. To be more precise we introduce the Shannon entropy as
a measure that describes how much the probability mass of a distribution is
scattered on the sample space. Assume ν ∈ Mσ(A) and consider the set of
distributions defined by

PS = {P : P ∈ P(A) : P 
 ν,
∫ ∣∣∣∣dPdν ln

dP

dν

∣∣∣∣ dν <∞}.
For every P ∈ PS we call

Sν(P ) := −
∫

dP

dν
ln
dP

dν
dν (1.25)

the Shannon entropy of P.

Example 1.26. Consider the natural exponential family (Pθ)θ∈Δ with generating
statistic T and μ = γ. Then with EθT = ∇K(θ) from (1.23),

Sν(Pθ) = −Eθ ln
dPθ

dν
= −〈θ,EθT 〉+ K(θ) (1.26)

= −〈θ,∇K(θ)〉+ K(θ).

Problem 1.27. If ν is the Lebesgue measure and Pθ = N(μ, σ2), then

Sν(N(μ, σ2)) = −
∫

ϕμ,σ2(t) lnϕμ,σ2(t)dt

=
1

2
ln(2πσ2) +

∫
ϕμ,σ2(t)

(t− μ)2

2σ2
dt =

1

2
+

1

2
ln(2πσ2). (1.27)

We see from the last example that the Shannon entropy may assume
any real value and is not bounded. This means that we need constraints
when searching for distributions that maximize the Shannon entropy. Let
T = (T1, ..., Td) : X →m R

d and consider for fixed θ0 ∈ Δ0 the following
subset of PS defined by linear constraints for the expectation.

Pθ0 = {P : P ∈ PS,

∫
‖T‖ dP <∞,

∫
〈θ0, T 〉 dP ≥

∫
〈θ0, T 〉 dPθ0}

= {P : P ∈ PS, EP ‖T‖ <∞, 〈θ0,EPT 〉 ≥ 〈θ0,Eθ0T 〉}.

The distribution from the natural exponential family is singled out by the fact
that it maximizes the Shannon entropy in Pθ0 .
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Theorem 1.28. Suppose (Pθ)θ∈Δ is a natural exponential family with gener-
ating statistic T and μ = γ. If θ0 ∈ Δ0, then the distribution Pθ0 maximizes
the Shannon Sν entropy in the class Pθ0 and is uniquely determined by this
property.

Proof. Suppose that the distribution P belongs to Pθ0 and has the ν-
density fθ0 = dPθ0/dν. Then by (1.26) and

Sν(Pθ0)− Sν(P ) = −〈θ0,Eθ0T 〉+K(θ0)− Sν(P )

≥ −〈θ0,EPT 〉+K(θ0)− Sν(P ) = −
∫

(〈θ0, T 〉 −K(θ0))fdν − Sν(P )

=
∫
f ln(f/fθ0)dν =

∫
[(f/fθ0) ln(f/fθ0) + 1− f/fθ0 ]fθ0dν.

The function g(x) = x lnx + 1 − x, x > 0, satisfies g(1) = g′(1) = 0 and
g′′(x) = x−1 > 0. Hence g(x) ≥ 0 and g(x) = 0 if and only if x = 1. This
means Sν(Pθ0) − Sν(P ) ≥ 0 where the equality holds if and only if f = fθ0
ν-a.e.

Example 1.29. Let X = R,A = B, ν = λ. We characterize the set of distribu-
tions in which the normal distribution attains maximum Shannon entropy. We have
according to (1.16), (θ1, θ2) = (μ/σ2,−(2σ2)−1). Furthermore, T (x) = (x, x2) and
EθT = ∇K(θ) = (μ, μ2 + σ2). Hence Pθ0 is the set of all distributions with finite
second moment and

∫
〈θ0, T 〉 dP =

μ0

σ2
0

∫
tP (dt) + (− 1

2σ2
0

)

∫
t2P (dt) ≥ μ2

0

2σ2
0

− 1

2
,

or

Pθ0 = {P :

∫
t2P (dt) <∞,

1

2

∫
t2P (dt)− μ0

∫
tP (dt) ≤ σ2

0

2
− μ2

0

2
}.

Especially if we consider the subclass of all distributions from Pθ that satisfy∫
tP (dt) = μ0 we see that the normal distribution N(μ0, σ

2
0) maximizes the Shannon

entropy in the class of all distributions with expectation μ0 and a variance that does
not exceed σ2

0 .

Problem 1.30. The exponential distribution with expectation θ0 maximizes the
Shannon entropy in the class of all distributions on R+ that are absolutely continuous
with respect to the Lebesgue measure and have an expectation that does not exceed
θ0.

1.2 Priors and Conjugate Priors for Exponential Families

In a Bayes model the parameter is treated as a random variable and (Pθ)θ∈Δ
is interpreted as a family of conditional distributions. To deal with such situ-
ations we present some basic facts on conditional distributions and the con-
struction of distributions on product spaces with given marginal and transition
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probabilities. Suppose (X ,A) and (Δ,BΔ) are measurable spaces. Later on
we use (X ,A) as the sample space and Δ as the parameter set. At this stage,
however, the two spaces are still kept arbitrary.

If (X,Θ) is a random vector with values in X × Δ, then a stochastic
kernel P : A×Δ→k [0, 1] (see Definition A.35) is called a regular conditional
distribution of X, given Θ = θ, if

P((X,Θ) ∈ C) =
∫

[
∫
IC(x, θ)P(dx|θ)]Π(dθ), C ∈ A⊗BΔ,

where Π = P◦Θ−1 is the distribution of Θ. The standard extension technique
of measure theory, see Lemma A.6, shows that this condition is equivalent to

Eh(X,Θ) =
∫

[
∫
h(x, θ)P(dx|θ)]Π(dθ)

for every h : X × Δ →m R+. Furthermore by the disintegration lemma (see
Lemma A.41) it holds

E(h(X,Θ)|Θ = θ) =
∫
h(x, θ)P(dx|θ), Π-a.s. (1.28)

So far we have analyzed the distribution of (X,Θ) by decomposing it into
a conditional distribution and a marginal distribution. On the other hand,
we often start with a given family of distributions (Pθ)θ∈Δ that satisfies the
following condition; see also Definition A.35.

(A3) P : A × Δ → [0, 1], defined by P(A|θ) = Pθ(A), A ∈ A, θ ∈ Δ, is a
stochastic kernel.

Then for any distribution Π ∈ P(BΔ)

(P⊗Π)(C) :=
∫

[
∫
IC(x, θ)P(dx|θ)]Π(dθ), C ∈ A⊗BΔ, (1.29)

is a distribution on A ⊗BΔ, and by Fubini’s theorem for stochastic kernels
(see Proposition A.40) it holds

∫
h(x, θ)(P⊗Π)(dx, dθ) =

∫
[
∫
h(x, θ)P(dx|θ)]Π(dθ) (1.30)

for every h : X ×Δ→m R+. If the condition (A3) is satisfied and L(X,Θ) =
P ⊗ Π, then (X,Θ) is called a Bayes model and Θ is called a model for the
parameter θ. The marginal distributions are then given by Π and

M(A) := (PΠ)(A) = (P⊗Π)(A×Δ).

When we turn to a sample of size n, then the assumption of indepen-
dence of the observations that is made in the classical (frequentist) model
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has to be replaced by the conditional independence in the Bayes model. The
Bayes model for n observations X1, ...,Xn consists of the random variables
X1, ...,Xn, Θ, where X1, ...,Xn are conditionally i.i.d., given Θ = θ, for θ ∈ Δ.
This means that for any A ∈ A⊗n ⊗BΔ,

P((X1, ...,Xn, Θ) ∈ A)

=
∫

(
∫

(· · ·
∫
IA(x1, ..., xn, θ)Pθ(dx1) · · · )Pθ(dxn))Π(dθ),

which is equivalent to

Eh(X1, ...,Xn, Θ) =
∫

(
∫

(· · ·
∫
h(x1, ..., xn, θ)Pθ(dx1) · · · )Pθ(dxn))Π(dθ),

for every h : Xn × Δ →m R+. Using the notation with the symbol ⊗ from
Definition A.36 we may write in short

L(X1, ...,Xn, Θ) = P⊗n ⊗Π, (1.31)

which is in accordance with (1.29) if we replace there P with P⊗n. It should be
pointed out that in the Bayes model for a sample of size n the marginal dis-
tribution of X = (X1, ...,Xn) is not a product distribution. More specifically,
L(X1, ...,Xn) is a mixture of product measures,

(P⊗nΠ)(B) = P((X1, ...,Xn) ∈ B) =
∫
P⊗n
θ (B)Π(dθ), B ∈ A⊗n.

Because (1.29), when P is replaced with P⊗n, is equivalent to (1.31) we
subsequently deal mainly with the case of n = 1.

An important step is the disintegration of P ⊗ Π with respect to M; see
Lemma A.41. To guarantee the existence of regular conditional distributions
we establish the following condition.

(A4) The space (Δ,BΔ) is a Borel space.

For the definition of a Borel space see Definition A.7. Under condition
(A4), by Theorem A.37, there exists a stochastic kernel Π : BΔ×X →k [0, 1]
such that∫

[
∫
h(x, θ)P(dx|θ)]Π(dθ) =

∫
[
∫
h(x, θ)Π(dθ|x)]M(dx) (1.32)

for every h : X ×Δ→m R+. Instead of (1.30) and (1.32) we also make use of
the intuitive and short notation

(P⊗Π)(dx, dθ) = P(dx|θ)Π(dθ) = Π(dθ|x)M(dx). (1.33)

Often, the joint distribution of (X,Θ) is constructed by assuming that the
distribution of Θ has a density π with respect to some τ ∈ Mσ(BΔ), and
that the family (Pθ)θ∈Δ satisfies the following condition.
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(A5) Pθ 
 μ for some μ ∈Mσ(A) and (x, θ) �→ fθ(x) := dPθ

dμ (x) is A⊗BΔ-B
measurable.

Under condition (A5) fθ(x)π(θ) is the μ⊗ τ density of (X,Θ), i.e., it holds

Eh(X,Θ) =
∫

[
∫
h(x, θ)fθ(x)μ(dx)]π(θ)τ (dθ)

=
∫

[
∫
h(x, θ)P(dx|θ)]π(θ)τ (dθ)

for every h : X×Δ→m R+, where P defined by P(dx|θ) = fθ(x)μ(dx) satisfies
(A3) and is a regular version of the conditional distribution of X, given Θ = θ.
Moreover, the joint distribution of (X,Θ) is given by P⊗Π. By construction
P⊗Π 
 μ⊗ τ , and with M = PΠ as the marginal distribution of X,

d(P⊗Π)
d(μ⊗ τ )

(x, θ) = fθ(x)π(θ), μ⊗ τ -a.e., and

m(x) :=
dM

dμ
(x) =

∫
fθ(x)π(θ)τ (dθ), μ-a.e. (1.34)

We set

π(θ|x) =
{
fθ(x)π(θ)/m(x) if m(x) > 0
π(θ) if m(x) = 0 , and (1.35)

Π(B|x) =
∫
B

π(θ|x)τ (dθ), B ∈ BΔ.

Then, without any additional assumption on (Δ,BΔ), Π is a stochastic kernel
and (1.32) holds. π(θ|x) is called the conditional density of Θ, given X = x.
Now (1.33) can also be written in terms of densities,

fθ(x)π(θ) = π(θ|x)m(x), μ⊗ τ -a.e.,

and
E(h(X,Θ)|X) =

∫
h(X, θ)π(θ|X)τ (dθ), P-a.s.

Finally we remark that whenever the joint distribution P ⊗ Π is absolutely
continuous with respect to a σ-finite product measure, then it can be domi-
nated by the product of the marginal distributions of P⊗Π.

Problem 1.31.∗ If P⊗Π � μ⊗τ holds for some μ ∈Mσ(A) and τ ∈Mσ(BΔ),
then P⊗Π � M⊗Π with M = PΠ.

In Bayes analysis the observation X and the parameter Θ are both con-
sidered to be random variables. The basic idea is that after the unobservable
random variable Θ has been realized and provided a value θ, a second ran-
dom variable X is realized and provides a value x, where the conditional
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distribution of X, given Θ = θ, is Pθ for every θ ∈ Δ. To construct the joint
distribution of X and Θ, we start with two measurable spaces (X ,A) and
(Δ,BΔ), with the understanding that the values of X and Θ belong to X and
Δ, respectively. It is clear that the dependence of X on Θ, as specified by the
linking conditional distributions Pθ, θ ∈ Δ, and the marginal distribution Π
of Θ, are the crucial ingredients. Π is called the prior distribution, in short
prior, as it controls the outcome of Θ = θ prior to the experiment. For the
inference on Θ based on the observation X = x, however, the conditional
distribution Π(·|x) of Θ, given X = x, usually turns out to be the crucial
tool. It is called the posterior distribution, or in short, posterior.

For the remainder of this section let us assume that (Pθ)θ∈Δ is an expo-
nential family in natural form (1.5), where Pθ has the density fθ(x) in (1.6)
with respect to μ. For special priors both the marginal and the posterior dis-
tribution can be explicitly evaluated. We use the symbol f ∝ g to express
that the functions f and g are identical up to a constant factor.

Problem 1.32.∗ If Ga(λ, β) is the conditional distribution of X given Θ = β, and
π(β) = gaa,b(β), β ∈ R, a, b > 0, then π(β|x) = gaa+λ,b+x(β), β ∈ R, x > 0, and

m(x) ∝ xλ−1(b + x)−(a+λ)I(0,∞)(x).

As a special class of priors we introduce now the so-called conjugate priors
for exponential families that are fundamental to Bayes analysis. This concept
makes many Bayes decision problems feasible and explicitly tractable. More-
over, as the posterior distribution turns out here to be of the same type as
the prior distribution it can be assessed what has been learned about the
unknown parameter θ after X = x has been observed.

Because (x, θ) �→ exp{〈θ, T (x)〉} is A⊗Bd measurable the natural param-
eter set Δ ⊆ R

d in (1.2) is a Borel set. Let BΔ stand for the σ-algebra of Borel
subsets of Δ. Then fθ(x) from (1.6) is measurable as a function of (x, θ), i.e.,
assumption (A5) is satisfied, and P(·|θ) := Pθ(·) is a stochastic kernel for Pθ
as defined by (1.5).

Fix τ ∈Mσ(BΔ). As in (1.4) one can see easily that

Υ = {(a, b) : a ∈ R, b ∈ R
d,
∫

exp{〈b, θ〉 − aK(θ)}τ (dθ) <∞} (1.36)

is a convex subset of R
d+1. The set Υ is later used as the parameter set of a

family of prior distributions. Therefore the structure of Υ is of special interest.
A complete characterization of Υ was given by Brown (1986) when τ is the
Lebesgue measure. To formulate that result we need some properties of the
measure ν = μ ◦ T−1. Let S(ν) denote the support of ν, i.e.,

S(ν) = {t : ν({y : ‖y − t‖ > ε}) > 0 for every ε > 0}.

It is the smallest closed set B with ν(Rd\B) = 0. Furthermore,

CS(ν) := closure of the convex closure of S(ν)
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is called the convex support of ν. For a proof of the following result we refer
to Brown (1986), p. 113.

Theorem 1.33. If (Pθ)θ∈Δ is a d-parameter exponential family in natural
form (1.10) that satisfies conditions (A1) and (A2), and if τ is the Lebesgue
measure, then

Υ = {(a, b) : a ∈ R, b ∈ R
d, a > 0,

1
a
b ∈ (CS(ν))0}, (1.37)

where (CS(ν))0 is the interior of CS(ν).

Analogously to (1.3) we set

L(a, b) = ln(
∫

exp{〈b, θ〉 − aK(θ)}τ (dθ)), (a, b) ∈ Υ, (1.38)

and introduce the family of τ -densities πa,b(θ) and the family of distributions
Πa,b, (a, b) ∈ Υ , respectively, on (Δ,BΔ) by

πa,b(θ) = exp{〈b, θ〉 − aK(θ)− L(a, b)}, (1.39)

Πa,b(B) =
∫
B

πa,b(θ)τ (dθ), B ∈ BΔ.

Definition 1.34. Suppose that Υ in (1.37) is nonempty. For an exponential
family (Pθ)θ∈Δ in natural form (1.5), and τ ∈Mσ(BΔ), the family of distri-
butions (Πa,b)(a,b)∈Υ given by (1.39) is called the family of conjugate priors
for the natural parameter θ ∈ Δ.

The notation of conjugate prior is not unique in the literature. Some au-
thors call (Πa,b)(a,b)∈Υ the family of natural conjugate priors and any family
of priors a conjugate family if the posterior distributions belong to the same
family. For further details and references we refer to Diaconis and Ylvisaker
(1979), Robert (2001), and Gutierréz-Peña and Smith (1997).

With Πa,b as the prior, and P(·|θ) := Pθ(·) with μ-density fθ from (1.6),
we get

(P⊗Πa,b)(C) =
∫

[
∫
IC(x, θ)P(dx|θ)]Πa,b(dθ)

=
∫
IC(x, θ)fθ(x)πa,b(θ)(μ⊗ τ )(dx, dθ), C ∈ A⊗BΔ.

By (1.34) the density ma,b of the marginal distribution Ma,b = PΠa,b of X is

ma,b(x) =
∫
fθ(x)πa,b(θ)τ (dθ)

= exp{L(a+ 1, b+ T (x))− L(a, b)}. (1.40)
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As ∫
[
∫
fθ(x)πa,b(θ)τ (dθ)]μ(dx) =

∫
ma,b(x)μ(dx) = 1,

we see that (a + 1, b + T (x)) ∈ Υ , μ-a.e. The conditional density of Θ, given
X = x, denoted by πa,b(θ|x), with respect to τ is

πa,b(θ|x) =
fθ(x)πa,b(θ)

ma,b(x)
(1.41)

= exp{〈b+ T (x), θ〉 − (a+ 1)K(θ)− L(a+ 1, b+ T (x))}
= πa+1,b+T (x)(θ), θ ∈ Δ, x ∈ X , (a, b) ∈ Υ.

The next statement is a consequence of (1.41) and shows that the posterior
distribution can be obtained in a simple manner. Presumably this was one of
the reasons for introducing conjugate priors in the literature.

Lemma 1.35. If Πa,b, (a, b) ∈ Υ , is a conjugate prior for θ in the Bayes
model with L(X,Θ) = P⊗Πa,b, then the stochastic kernel

Πa,b(·|x) = Πa+1,b+T (x)(·) (1.42)

is a version of the conditional distribution L(Θ|X = x), x ∈ X .
For every n = 1, 2, ..., the family of conjugate priors for (P⊗n

θ )θ∈Δ is again
(Πa,b)(a,b)∈Υ . If Πa,b, (a, b) ∈ Υ , is a conjugate prior for Θ in the Bayes model
with L(X1, ...,Xn, Θ) = P⊗n ⊗Πa,b, then the stochastic kernel

Πn,a,b(·|x1, ..., xn) := Πa+n,b+T⊕n(x1,...,xn) (1.43)

is a version of the conditional distribution L(Θ|X1 = x1, ...,Xn = xn),
(x1, ..., xn) ∈ Xn.

Proof. The first statement follows from (1.41). To prove the second state-
ment we note that by Proposition 1.4 (P⊗n

θ )θ∈Δ is an exponential family with
μ⊗n-density fn,θ = exp{〈θ, T⊕n〉−Kn(θ)}, where Kn(θ) = nK(θ), θ ∈ Δ. Set

Υn = {(α, β) : α ∈ R, β ∈ R
d, (1.44)

Ln(α, β) = ln
(∫

exp{〈β, θ〉 − αKn(θ)}τ (dθ)
)
<∞},

πn,α,β(θ) = exp{〈β, θ〉 − αKn(θ)− Ln(α, β)},

Πn,α,β(B) =
∫
B

πn,α,β(θ)τ (dθ), B ∈ BΔ, (α, β) ∈ Υn.

Then with Ln(α, β) = L(nα, β) we get at x = (x1, ..., xn) ∈ Xn,

mn,α,β(x) =
∫
fn,θ(x)πn,α,β(θ)τ (dθ)

= exp{Ln(α+ 1, β + T⊕n(x))− Ln(α, β)}
= exp{L(nα+ n, β + T⊕n(x))− L(nα, β)},

fn,θ(x)πn,α,β(θ)
mn,α,β(x)

= exp{〈β, θ + T⊕n(x)〉 − nαK(θ)− L(nα+ n, β + T⊕n(x))}.
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Apparently, πn,α,β = πa,b for (a, b) = (nα, β), and it holds (α, β) ∈ Υn if
and only if (a, b) ∈ Υ . The proof is thus completed.

Suppose now that there is another parameter set Λ that is equipped with
a σ-algebra, say BΛ, and there is a mapping κ : Λ → Δ from Λ onto Δ
that is one-to-one. Let the inverse mapping be denoted by γ : Δ →m Λ
and suppose that both mappings, κ and γ, are measurable with respect to
the corresponding σ-algebras. This is called bimeasurability of κ and denoted
by κ : Λ ↔m Δ. At any time, depending on the concrete situation, one may
choose to work with the exponential model in natural or reparametrized form.
Any prior of Θ in the first model determines the prior of Ξ = γ(Θ) in the
reparametrized model and vice versa. Sometimes it is easier to work with a
prior of Ξ, and sometimes it is easier to work with a prior of Θ. However,
in applications the final results are usually reported for Ξ if η ∈ Λ is the
parameter that admits a better statistical interpretation. We call

(Γa,b)(a,b)∈Υ with Γa,b := Πa,b ◦ γ−1, (a, b) ∈ Υ ,

the family of conjugate priors for η ∈ Λ. To evaluate the prior Γa,b we es-
tablish a transformation for the prior densities. To this end we introduce the
measure κκκ on (Λ,BΛ) by κκκ = τ ◦ γ−1. The situation simplifies further if
τ = λd is the Lebesgue measure. Then λd(∂Δ) = 0; see Lang (1986). Con-
sequently for all priors that are absolutely continuous with respect to λd the
boundary points of Δ are irrelevant. Therefore we may restrict the family
(Pθ)θ∈Δ and consider only parameter values from the interior Δ0 which is not
empty by assumption (A2). We assume that Λ is open and

κ : Λ↔ Δ0 a diffeomorphism with Jacobian J(η) =
(
∂κi
∂ηj

)
1≤i,j≤d

. (1.45)

Proposition 1.36. If κ : Λ ↔m Δ, then the conjugate prior Γa,b for η has
the κκκ-density

dΓa,b
dκκκ

(η) = exp{〈κ(η), b〉−aK(κ(η))−L(a, b)} = πa,b(κ(η)), η ∈ Λ. (1.46)

If τ 
 λd and (1.45) is satisfied, then

dΓa,b
dλd

(η) = exp{〈κ(η), b〉 − aK(κ(η))− L(a, b)} dτ
dλd

(κ(η)) |J(η)| , (1.47)

where |J(η)| is the absolute value of the determinant of J(η). If Γa,b =
Πa,b ◦ γ−1, (a, b) ∈ Υ, is a conjugate prior for η in the Bayes model with
L(X1, ...,Xn, Ξ) = P⊗n ⊗ Γa,b, then the stochastic kernel

Γn,a,b(·|x1, ..., xn) := Γa+n,b+T⊕n(x1,...,xn) (1.48)

is a version of the posterior distribution Γn,a,b of Ξ, given (X1, ...,Xn) =
(x1, ..., xn) ∈ Xn.
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Proof. As κ : Λ → Δ is one-to-one, and both mappings κ and γ are
measurable, we have τ = κκκ ◦ κ−1, and for every h : Λ→m R+ it holds

∫
h(η)Γa,b(dη) =

∫
h(γ(θ))πa,b(θ)τ (dθ) =

∫
h(η)πa,b(κ(η))κκκ(dη).

This proves (1.46). If (1.45) is satisfied, then by the transformation theorem
for the Lebesgue measure (see Theorem A.23),

dκκκ

dλd
(η) =

dτ

dλd
(κ(η)) |J(η)| , λd-a.e.

Let Q be the kernel Pκ(η) and h : Xn × Λ →m R+. Then it holds in view of
(1.43) and P⊗nΠa,b = Q⊗nΓa,b,∫

[
∫
h(x, η)P⊗n

κ(η)(dx)]Γa,b(dη) =
∫

[
∫
h(x, κ(θ))P⊗n

θ (dx)]Πa,b(dθ)

=
∫

[
∫
h(x, κ(θ))Πa+n,b+T⊕n(x)(dθ)](P⊗nΠa,b)(dx)

=
∫

[
∫
h(x, η)Γa+n,b+T⊕n(x)(dη)](Q⊗nΓa,b)(dx),

which completes the proof.
Subsequently we find families of conjugate priors for important classes

of distributions. We start with normal distributions where one of the two
parameters is assumed to be known.

Lemma 1.37. The family (N(σ2θ, σ2))θ∈R, where σ2 > 0 is known, is a one-
parameter exponential family with the density fθ(x) = exp{θT (x) − K(θ)},
where T (x) = x and K(θ) = σ2θ2/2, with respect to the dominating measure

μ(dx) = (2πσ2)−1/2 exp{−(2σ2)−1x}λ(dx).

If τ = λ, then the family of conjugate priors for θ in (N⊗n(σ2θ, σ2))θ∈R is
the family of all normal distributions N(ν, δ2), ν ∈ R, δ2 > 0. If Ξ ∼ N(ν, δ2)
is a prior for μ = σ2θ in the Bayes model L(X1, ...,Xn, Ξ) = N⊗n(μ, σ2) ⊗
N(ν, δ2), then

L(Ξ|X1 = x1, ...,Xn = xn) = N(μ(x1, ..., xn), τ2), where

μ(x1, ..., xn) =
1

nδ2 + σ2
(δ2
∑n

i=1
xi + νσ2) and τ2 =

σ2δ2

nδ2 + σ2
.

Proof. The first statement follows from the structure of ϕμ,σ2(x). To find
the family of conjugate priors we note that by (1.36) and (1.39),

Υ = {(a, b) : a, b ∈ R ,

∫
exp{θb− a

σ2

2
θ2}λ(dθ) <∞} = (0,∞)× R,

πa,b(θ) ∝ exp{bθ − a
σ2

2
θ2)}, (a, b) ∈ (0,∞)× R.
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But this is the family of densities ϕγ,ρ2 if we set γ = b/(aσ2) and ρ2 = 1/(aσ2).
Now we set μ = κ(θ) = σ2θ. Then Γa,b = N(γ, ρ2)◦κ−1 = N(b/a, σ2/a). Hence
for a = σ2/δ2 and b = νσ2/δ2 we obtain Γa,b = N(ν, δ2). The statement on
L(Ξ|X1 = x1, ...,Xn = xn) follows from (1.48). Indeed,

Γa+n,b+T⊕n
= N((b+ T⊕n)/(a+ n), σ2/(a+ n))

is a normal distribution with the parameters (νσ2 + T⊕nδ
2)/(σ2 + nδ2) and

σ2δ2/(σ2 + nδ2).

Next we consider conjugate priors in other models. As we have seen in
Lemma 1.37 it is sufficient to consider the case n = 1. Then the conjugate
prior for arbitrary n can be obtained via (1.48).

Example 1.38. Consider the family (N(μ, σ2))σ2>0, where μ ∈ R is known. Put
T (x) = (x − μ)2, θ = −(2σ2)−1 ∈ Δ = (−∞, 0) and K(θ) = (1/2) ln(−π/θ). Then
the Lebesgue densities are

fθ(x) =
dN(μ, σ2)

dμ
(x) = exp {θT (x)−K(θ)} ,

so that N(μ,−1/(2θ)),where μ ∈ R is known, is an exponential family. Hence, by
(1.36) and (1.39), with τ = λ,

Υ = {(a, b) : a, b ∈ R,

∫ 0

−∞
(−θ)a/2 exp{θb}λ(dθ) <∞} = (−2,∞)× (0,∞),

πa,b(θ) ∝ exp{bθ − aK(θ)} ∝ I(−∞,0)(θ)(−θ)a/2 exp{θb}.

As the distribution of Ξ = −(2Θ)−1 is the conjugate prior for σ2 we see from the
transformation rule (1.47) that the family of inverse gamma distributions Ig(a

2
+1, b

2
),

(a, b) ∈ (−2,∞)× (0,∞), with Lebesgue densities

igα,β(t) =
βα

Γ (α)
t−α−1 exp{−β

t
}I(0,∞)(t), (α, β) = (

a

2
+ 1,

b

2
) ∈ (0,∞)2,

is the family of conjugate priors for N(μ, σ2), σ2 > 0, when μ ∈ R is known.

Remark 1.39. In Bayes analysis quite often normal distributions are parametrized
as N(μ, ρ−1), μ ∈ R, ρ > 0, where ρ is called the precision of the normal distribution.
Besides the intuitive interpretation, this has the advantage of dealing with gamma
distributions, rather than with inverse gamma distributions, in the conjugate prior.

Problem 1.40. Revise the results of Example 1.38 to fit the parametrization
N(μ, σ2(ρ)) with σ2(ρ) = 1/ρ, where ρ > 0 is unknown, but μ ∈ R is known.
Determine also the posteriors of σ2 > 0 and the posteriors of ρ > 0. Extend the
results to an i.i.d sample.

Finally we consider normal distributions where both the mean and variance
are unknown. In contrast to the previous two examples we have to deal now
with bivariate priors.
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Example 1.41. We know from Example 1.11 that N(μ, σ2), μ ∈ R, σ2 > 0, is a
two parameter exponential family. Using (1.17) we get from the definition of the
conjugate prior in (1.39), that Πa,b has the density

πa,b(θ) ∝ exp{〈b, θ〉 − aK(θ)} (1.49)

∝ (−θ2)
a/2 exp{b1θ1 + b2θ2 + aθ2

1/(4θ2)}, θ ∈ Δ,

with respect to the Lebesgue measure on R× (−∞, 0). From here we see that

Υ = (0,∞)× {(b1, b2) :

∫ ∞

0

s(a+1)/2 exp{−s(b2 − b21/a)}ds <∞}

=
{
(a, b1, b2) : ab2 > b21, a > −3

}
.

For practical purposes, the conjugate prior density (1.49) offers less useful inter-
pretations than the associated prior of Ξ which is the random version of (μ, σ2).
The absolute value of the determinant of the Jacobian J(μ, σ2) of the mapping
κ(μ, σ2) = (μ/σ2, 1/(2σ2))T is given by J(η) = 1/(2σ6). If now πa,b from (1.49) is
the prior density of Θ, then the prior density γa,b of Ξ is determined by

γa,b(μ, σ
2) = πa,b(κ(μ, σ2))

∣∣J(μ, σ2)
∣∣ ∝ exp{

〈
b, κ(μ, σ2)

〉
− aK(κ(μ, σ2))} 1

2σ6

∝ exp{ b1μ
σ2

− b2
2σ2

− aμ2

2σ2
}(σ2)−(a/2)−3

∝ 1

σ
exp{− a

2σ2
(μ− b1

a
)2}(σ2)−(a+5)/2 exp{−1

2
(b2 −

b21
a

)(σ2)−1}

∝ ϕb1/a,σ2/a(μ)ig(a+3)/2,(ab2−b21)/(2a)(σ
2).

This prior of Ξ = (Ξ1, Ξ2) can be interpreted as follows. Given Ξ2 = η2, Ξ1 has
a normal distribution N

(
b1/a, σ

2/a
)
, and marginally, Ξ2 has an inverse gamma

distribution Ig((a + 3)/2, (ab2 − b21)/(2a)), (a, b1, b2) ∈ Υ .

To prepare for the next result, which deals with multinomial distributions,
we determine the Jacobian of a special transformation.

Problem 1.42.∗ The determinant of the d× d matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

a1 1 · · · 1
1 a2 ·
· · ·
· · ·
1 · 1
1 · · · 1 ad

⎞
⎟⎟⎟⎟⎟⎟⎠

with a1, ..., ad in the main diagonal and 1 in all other positions is given by

Dd(a1, ..., ad) =
∏d

j=1
(aj − 1) +

∑d

i=1

∏d

j=1,j �=i
(aj − 1).

Problem 1.43.∗ Consider the differentiable mapping κ : Sd−1 → R
d−1 with

κi(p) = ln (pi)− ln(1−
∑d−1

i=1
pi), i = 1, ..., d− 1.



1.2 Priors and Conjugate Priors for Exponential Families 27

The Jacobian, i.e., J(η) =
(

∂κi
∂pj

)
1≤i,j≤d−1

, has the determinant

det(J(p)) = (1−
∑d−1

i=1
pi)

−1
∏d−1

j=1

1

pj
.

The next result is a continuation of Example 1.5. As we have seen there
the multinomial distribution

M(n, (p1, p2, ..., pd−1, 1−
∑d−1

i=1
pi)), (p1, ..., pd−1) ∈ Sd−1,

can be represented as a (d− 1)-parameter exponential family. Let Mn be the
stochastic kernel given by Mn(B|p1, p2, ..., pd−1) = M(n, (p1, p2, ..., pd−1, 1 −∑d−1

i=1 pi))(B), B ∈ B
⊗d
+ , (p1, ..., pd−1) ∈ Sd−1.

Lemma 1.44. With τ = λd−1 as the dominating measure on the parameter
space Δ = R

d−1 the family of all Dirichlet distributions on the Borel sets of
Sd−1 with the Lebesgue densities

di(α1,...,αd)(t1, ..., td−1) =
Γ (
∑d

i=1 αi)∏d
i=1 Γ (αi)

∏d

i=1
tαi−1
i ISd−1((t1, ..., td−1)),

αi > 0, i = 1, ..., d, td = 1−
∑d−1

i=1
ti,

is the family of conjugate priors for the family of multinomial distributions
M(n, (p1, p2, ..., pd−1, 1−

∑d−1
i=1 pi)), (p1, ..., pd−1) ∈ Sd−1. If L(X1, ...,Xd, Ξ) =

Mn ⊗ Di(α1,...,αd), then for every x1, ..., xd ∈ N with
∑d

i=1 xi = n,

L(Ξ|X1 = x1, ...,Xd = xd) = Di(α1+x1,...,αd+xd). (1.50)

Proof. From Proposition 1.36 and Problem 1.43 we see that

dΓa,b
dλd

(p) ∝ exp{〈κ(p), b〉 − aK(κ(p))} |J(p)|

∝ exp {〈κ(p), b〉 − an ln(pd)}
∏d

j=1

1
pj
∝
∏d

i=1
pbi−1
i ,

where pd = 1−
∑d−1

i=1 pi and bd = an−
∑d−1

i=1 bi. As the integral of the right-
hand term with respect to the Lebesgue measure over Sd−1 is finite if and
only if bi > 0, i = 1, ..., d, we get

Υ = {(b1, ..., bd−1, a) : bi > 0, i = 1, ..., d− 1, an−
∑d−1

i=1
bi > 0},

Γa,b = Di(α1, ..., αd), αi > 0, i = 1, ..., d.

The statement regarding the posterior distribution of Ξ follows from (1.48)
and an−

∑d−1
i=1 (bi + xi) = an−

∑d−1
i=1 bi − (n− xd) = (a+ 1)− (bd + xd).

An interesting special case is conjugate priors of binomial distributions.
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Example 1.45. We have seen in Example 1.7 that the binomial distribution is
an exponential family. This family is, of course, a special case of a multinomial
distribution. We set d = 1, p1 = p, p2 = 1−p, α1 = α, and α2 = β. Then by Lemma
1.44 the family of beta distributions Be(α, β), α, β > 0, is the family of conjugate
priors with Lebesgue density

beα,β(p) =
Γ (α + β)

Γ (α)Γ (β)
pα−1(1− p)β−1I(0,1)(p), α, β > 0.

If Ξ has a beta distributions Be(α, β), then by (1.50)

L(Ξ|X = x) = Be(α + x, β + n− x).

The expectation of the distribution Be(α, β) is α/(α + β), and thus we get

E(Ξ|X = x) =
α + β

α + β + n

α

α + β
+

n

α + β + n

x

n
,

i.e., E(Ξ|X = x) is on {0, 1, ..., n} a convex linear combination of the prior expecta-
tion α/(α + β) and x/n.

In the last example it turned out that the conditional expectation E(Ξ|X =
x) is a convex linear combination of the prior expectation and x/n. A similar
fact has been established previously for the normal means model in Lemma
1.37. This is no coincidence. The following more general result regarding
EθT ≡ ∇K(θ) (see Corollary 1.19) is due to Diaconis and Ylvisaker (1979);
see also Brown (1986).

E(∇K(Θ)|X = x) =
b+ T⊕n(x)

a+ n
, Ma,b-a.s., x ∈ Xn, (1.51)

which is a convex linear combination of E(EΘT ) = E(∇K(Θ)) = b/a and
n−1

∑n
i=1 T (xi). Conversely, every prior with a Lebesgue density that has

this property (1.51) must have one of the densities from (1.39) with respect
to τ = λd.

Problem 1.46. Show that the priors for the gamma distributions Ga(λ, θ), θ > 0,
where λ > 0 is fixed known, that have been derived in Problem 1.32 are the family
of conjugate priors.

For many concrete exponential families the concept of conjugate priors may
lead to families of priors that are exotic and unheard of. However, for several
exponential families that are commonly in use the families of conjugate priors
are known and well-established families of distributions. A comprehensive
list of commonly used conjugate priors can be found in Bernardo and Smith
(1994). We also refer to Diaconis and Ylvisaker (1979) for further details on
conjugate priors.

For reference purposes later on some of the commonly used conjugate
priors are listed below under (1.52).
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L(X|Ξ) Prior L(Ξ) Posterior L(Ξ|X = x)

B(n, p) Be(α, β) Be(α+ x, β + n− x)

M(n, p) Di(α1, ..., αd) Di(α1 + x1, ..., αd + xd)

Po(λ) Ga(α, β) Ga(α+ x, β + 1)

Ex(λ) Ga(α, β) Ga(α+ 1, β + x)

Ga(α0, λ), α0 known Ga(α, β) Ga(α+ α0, β + x)

N(μ, σ2
0), σ2

0 known N(ν, τ2) N
(
σ2
0ν+τ2x

τ2+σ2
0
,

τ2σ2
0

τ2+σ2
0

)

N(μ0, σ
2), μ0 known Ig(α, β) Ig(α+ 1

2 , β + 1
2 (μ0 − x)2)

(1.52)

The problem of choosing the right prior in a model is a field of intensive
research and discussion in Bayes statistics. As the model is only complete after
the prior has been chosen this problem is in fact a model choice problem. Often
it is desired to find a rich and flexible parametric class of priors for which the
posterior densities of Θ or Ξ and the marginal densities of X are explicitly
available. This goal is in fact met with the conjugate family of priors, as long
as the function L(a, b) can be calculated explicitly. This is usually the case
when τ is the Lebesgue measure. However, since the measure τ is completely
arbitrary, we actually may choose τ = Π for any given prior Π, say. In this
case the set Υ in (1.36) contains the point (0, 0) and thus is nonempty. If
(Πa,b)(a,b)∈Υ is the conjugate family with respect to τ = Π, then, of course,
Π = Π0,0 ∈ (Πa,b)(a,b)∈Υ . To summarize, we have found a method to embed
any given prior Π in a family of conjugate priors. Two examples for that
situation are given below.

Example 1.47. We have seen in Lemma 1.37 that the conjugate priors for the
normal distributions N(μ, σ2) with a known σ2 > 0 are the normal distributions
N(ν, δ2), ν ∈ R, δ2 > 0, if τ is the Lebesgue measure λ. Suppose now instead that
for some α < β,

τ (dt) =
1

β − α
I[α,β](t)λ(dt). (1.53)

Although the conjugate prior and posterior densities are still the same from (1.39)
and (1.41), respectively, they are now with respect to the measure τ given by (1.53).
We conclude that the family of conjugate priors for μ ∈ R consists of all normal
distributions N(α,β)(ν, δ2), ν ∈ R, δ2 > 0, that are truncated at α and β. Their
Lebesgue densities are
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ϕ
(α,β)

ν,δ2 (μ) = [Φ((β − ν)/δ)− Φ((α− ν)/δ)]−1ϕν,δ2(μ)I[α,β](μ), μ ∈ R.

As in Lemma 1.37 we get the posterior distributions

N(α,β)

(
σ2ν + δ2∑n

i=1 xi

σ2 + nδ2
,

σ2δ2

σ2 + nδ2

)
.

Problem 1.48. In the setting of Example 1.45, find the conjugate priors of the
binomial distributions B(n, p), p ∈ (0, 1), when τ is given by (1.53) with 0 < α <
β < 1.

Another feature of conjugate priors is that this class is large enough to
be used to approximate any prior by a mixture of conjugate priors. General
results in this direction are due to LeCam (1986). We refer to Robert (2001)
for a detailed discussion of this topic and illustrate the situation only by an
example.

Example 1.49. In Example 1.37 the family of conjugate priors of N(μ, σ2), μ ∈ R,
where σ2 > 0 is known, has been seen to be the family of all normal distributions
on R for τ = λ. Let now Π be any prior. The question is whether Π can be
approximated by mixtures of normal distributions. Consider the mixture of normal
densities

πτ2(t) =

∫
ϕs,τ2(t)Π(ds) =

∫
ϕ0,τ2(t− s)Π(ds),

and denote by Πτ2 the associated distributions. Then for any bounded and contin-
uous function ψ,

∫
ψ(t)Πτ2(dt) =

∫
[

∫
ψ(t)

1√
2πτ

exp{−1

2
(
t− s

τ
)2}Π(ds)]dt

=

∫
[

∫
ψ(s + τx)

1√
2π

exp{−x2

2
}dx]Π(ds).

By the continuity of ψ and Lebesgue’s theorem (see Theorem A.18) we obtain

lim
τ2→0

∫
ψ(t)Πτ2(dt) =

∫
ψ(t)Π(dt),

which means that Πτ2 converges weakly to Π. Moreover, if Π has a Lebesgue density
π, say, then we have even convergence in variational distance. Indeed,

‖Πτ2 −Π‖ =

∫
|πτ2(t)− π(t)|dt =

∫
|
∫

ϕ0,τ2(s− t)π(s)ds− π(t)|dt

≤
∫

[

∫
|π(t + τx)− π(t)|dt]ϕ0,1(x)dx→ 0,

which follows from the fact that every function that is integrable with respect to the
Lebesgue measure is L1-continuous, i.e.,

∫
|π(s + ε) − π(s)|ds → 0, as ε → 0 (see,

e.g., Dudley (2002)).
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1.3 Divergences in Binary Models

In this section we introduce and study classes of distances in the space of
probability distributions which originated from different roots. Some of them
were introduced in information theory to describe the amount of information,
or the amount of uncertainty, delivered by a random sample. When the sam-
ple size tends to infinity the investigation of the rate of convergence of error
probabilities leads to special information functionals. Other functionals are
linked to the Cramér–Rao inequality and its generalizations. Hellinger inte-
grals are Laplace transforms of the log-likelihood and thus describe completely
the structure of a binary model. Information functionals are also used later on
to characterize the sufficiency and the approximate sufficiency of a statistic.
More results on information functionals can be found in Vajda (1989), Liese
and Vajda (1987), and in the references that are given there.

First we collect well-known properties of convex functions that are be used
in the sequel. A function v : (a, b) → R is called a convex function if for every
x, z ∈ (a, b) and 0 ≤ α ≤ 1 it holds

v(αx+ (1− α)z) ≤ αv(x) + (1− α)v(z).

For α = (z − y)/(z − x) it is easy to see that this condition is equivalent to

v(y)− v(x)
y − x

≤ v(z)− v(x)
z − x

≤ v(z)− v(y)
z − y

, a < x < y < z < b. (1.54)

The next problem presents further well-known properties of convex functions.

Problem 1.50.∗ Every convex function v : (a, b) → R is continuous in (a, b), and
it has at each x ∈ (a, b) a derivative from the left D−v(x) which is left continuous
and a derivative from the right D+v(x) which is right continuous. Both D−v and
D+v are nondecreasing and it holds

v(y)− v(x) ≥ (y − x)D+v(x), a < x < y < b, (1.55)

D−v(x) ≤ D+v(x) ≤ D−v(y) ≤ D+v(y) a < x < y < b, (1.56)

D−v(z) = D+v(z − 0), and D−v(z + 0) = D+v(z), z ∈ (a, b). (1.57)

The inequalities in (1.54) show that (v(y)− v(x))/(y−x) is nondecreasing
in both x and y. Hence

v(c)− v(c− ε)
ε

≤ v(t)− v(s)
t− s

≤ v(d+ ε)− v(d)
ε

,

for a < c−ε < s < t < d+ε < b. Putting L = ε−1 max(|v(d+ε)−v(d)|, |v(c)−
v(c− ε)|) it follows that

|v(t)− v(s)| ≤ L|t− s|, c ≤ s ≤ t ≤ d.

This implies especially that v is absolutely continuous. It is well-known (see
Theorem A.24) that the derivative of every absolutely continuous function
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exists λ-almost everywhere. But it follows from Problem 1.50 that for a convex
function the derivative exists up to an at most countable set which is just the
set of points of discontinuities of D+v or, equivalently, of D−v. Theorem A.24
implies

v(y)− v(x) =
∫ y

x

D+v(s)ds =
∫ y

x

D−v(s)ds, a < x < y < b. (1.58)

The next problem gives a direct proof of (1.58).

Problem 1.51.∗ If v : (a, b) → R is convex, then (1.58) holds. Conversely, if
v(y) − v(x) =

∫ y

x
g(s)ds, a < x < y < b, for some nondecreasing function g, then v

is convex.

The second statement in Problem 1.51 implies in particular that every
twice continuously differentiable function v with v′′(x) ≥ 0 is convex. Fur-
thermore, for a convex v the limits limx↓a v(x) and limx↑b v(x) exist and have
values from [−∞,∞]. We thus can extend v by setting v(a) = limx↓a v(x) and
v(b) = limx↑b v(x).

As D+v is continuous from the right there is a uniquely determined σ-finite
measure γv on the Borel sets of (a, b) that satisfies

γv((x, y]) = D+v(y)−D+v(x), a < x < y < b. (1.59)

For a twice continuously differentiable v the function D+v is continuously
differentiable, so that for 0 < x < y,

D+v(y)−D+v(x) =
∫ y

x

v′′(t)dt and γv(B) =
∫
B

v′′(t)dt. (1.60)

Therefore the measure γv can be viewed as a measure for the curvature of v.
We use this measure for the curvature to establish a generalized second-order
Taylor expansion.

Lemma 1.52. If v : (a, b) → R is convex, then for a < x, y < b

v(y)− v(x)−D+v(x)(y − x) =

⎧⎨
⎩
∫

(y − t)I(x,y](t)γv(dt) if x < y,∫
(t− y)I(y,x](t)γv(dt) if y < x.

(1.61)

If v : (0,∞) → R, then the function

v0(x) = v(x)− v(1)− (x− 1)D+v(1) (1.62)

has the representation

v0(x) =

⎧⎨
⎩
∫

(x− t ∧ x)I(1,∞)(t)γv(dt) if x > 1,∫
(t− t ∧ x)I(0,1](t)γv(dt) if 0 < x ≤ 1. (1.63)



1.3 Divergences in Binary Models 33

Proof. We have for x < y from (1.58) and Fubini’s theorem (see Theorem
A.26)

v(y)− v(x)−D+v(x)(y − x) =
∫ y

x

(D+v(s)−D+v(x))ds

=
∫

[
∫
I(x,y](s)I(x,s](t)γv(dt)]ds =

∫
(y − t)I(x,y](t)γv(dt).

By interchanging the roles of x and y we get for x > y,

v(y)− v(x)−D+v(x)(y − x)

= −(v(x)− v(y)−D+v(y)(x− y)) + (D+v(x)−D+v(y))(x− y)

= −
∫

(x− t)I(y,x](t)γv(dt) +
∫

(x− y)I(y,x](t)γv(dt)

=
∫

(t− y)I(y,x](t)γv(dt).

The statement (1.63) follows from (1.61) as v0(1) = D+v0(1) = 0.

A convex function v is called strictly convex at x0 if the function v is not
linear in (x0 − ε, x0 + ε) for any ε > 0. v is called strictly convex in (a, b) if it
is strictly convex at every x0 ∈ (a, b).

Problem 1.53.∗ A convex function v : (a, b) → R is strictly convex at x0 ∈ (a, b)
if and only if γv((x0 − ε, x0 + ε)) > 0 for every ε > 0. If v is twice continuously
differentiable and v′′(x) > 0, 0 < x < ∞, then the function v is strictly convex in
(a, b). A convex function v is strictly convex in (a, b) if and only if

v(αx + (1− α)y) < αv(x) + (1− α)v(y), a < x, y < b, x �= y, 0 < α < 1.

The next problem collects properties of the function v0 in (1.62).

Problem 1.54.∗ Let v : (0,∞)→ R be convex. Then v0 from (1.62) is nonnegative
and v0(1) = 0. It holds D+v0(x) = D+v(x)−D+v(1). The function v0 is nonincreas-
ing in (0, 1] and nondecreasing in (1,∞). The function v is strictly convex at 1 if
and only if at least one of the following two cases holds: v0(x) > 0, x ∈ (0, 1), or
v0(x) > 0, x ∈ (1,∞).

For later purposes we define the ∗-conjugate function by

v∗(x) = xv(
1
x

), x > 0. (1.64)

Problem 1.55.∗ If v : (0,∞) → R is convex, then v∗ : (0,∞) → R is convex, too,
and

(v∗)∗ = v, v∗(0) = lim
x→∞

1

x
v(x),

where v∗(0) := limx↓0 v∗(x) ∈ (−∞,∞].
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The concept of the likelihood ratio, introduced below, plays a major role in
many areas of statistics. Let (X ,A) be a given measurable space and P0, P1 ∈
P(A). Suppose that P0 and P1 are dominated by μ ∈Mσ(A) with f0 and f1

as the respective densities. We set

P1,a(A) = P1(A ∩ {f0 > 0}) and P1,s(A) = P1(A ∩ {f0 = 0}).

Then we get the Lebesgue decomposition of P1 with respect to P0,

P1 = P1,a + P1,s, P1,a ⊥ P1,s

P1,a 
 P0, P1,s ⊥ P0
, (1.65)

where P1,a ⊥ P1,s means that P1,a(A) = P1,s(X\A) = 0 for some A ∈ A, and
P1,s ⊥ P0 is meant analogously. P1,a is called the absolute continuous part
and P1,s the singular part of P1 with respect to P0.

Problem 1.56.∗ The measures P1,a and P1,s are uniquely determined by the de-
composition (1.65).

Now we are ready to introduce the concept of the likelihood ratio of P1

with respect to P0, regardless of whether P1 is absolutely continuous with
respect to P0.

Definition 1.57. Every function L0,1 : X →m [0,∞] that satisfies

P1(B) =
∫
B

L0,1dP0 + P1(B ∩ {L0,1 =∞}), B ∈ A, (1.66)

is called the likelihood ratio of P1 with respect to P0

For a proof of the next lemma we refer, for example, to Strasser (1985).

Lemma 1.58. L0,1 is by the condition (1.66) {P0, P1}-a.s. uniquely deter-
mined, and it holds

L0,1 =
dP1,a

dP0
, P0-a.s., P1,s(B) = P1(B ∩ {L0,1 =∞}), B ∈ A. (1.67)

Using the densities f0 and f1 it is easy to see that

L0,1(x) :=
f1(x)
f0(x)

I{f0>0}(x) +∞I{f0=0,f1>0}(x), x ∈ X , (1.68)

is a likelihood ratio.

Problem 1.59. It holds P0(L0,1 <∞) = 1.

Now we introduce a general class of information functionals. Let P0, P1 ∈
P(A) be dominated by μ ∈Mσ(A) and f0, f1 be their respective μ-densities.
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Definition 1.60. For every convex function v : (0,∞) → R the functional

Iv(P0, P1) :=
∫

v(f0/f1)f1I{f0>0,f1>0}dμ (1.69)

+ v(0)P1(f0 = 0) + v∗(0)P0(f1 = 0)

is called the v-divergence of P0 with respect to P1.

To see that the right-hand term is well defined we remark that by v0 ≥ 0
it holds v(0), v∗(0) > −∞ and refer to inequality (1.55) that gives

v(f0/f1)I{f0>0}f1 ≥ v(1)f1 + (D+v(1))(f0 − f1).

As the right-hand function is integrable we see that the integral in (1.69)
is well defined but may take on the value +∞. Note that P1(f0 = 0) and
P0(f1 = 0) are the weights of the singular parts of P1 and P0 with respect
to P0 and P1, respectively. They are independent of the special choice of the
dominating measure μ. This follows also for the integral in (1.69) by the chain
rule; see Proposition A.28. Therefore the definition of Iv(P0, P1) is independent
of the special choice of μ.

Problem 1.61.∗ The values v(0) and v∗(0) appearing in (1.69) can be expressed
in terms of γv. It holds

lim
x↓0

v∗(x) = γv((1,∞)) + D+v(1), (1.70)

lim
x↓0

v(x) =

∫
tI(0,1](t)γv(dt) + v(1)−D+v(1). (1.71)

The concept of v-divergence was independently introduced by Csiszár
(1963) and Ali and Silvey (1966). This general class of functionals includes
special cases which appeared in Bhattacharyya (1946), Kakutani (1948), Kull-
back and Leibler (1951), Chernoff (1952), Matusita (1955), Rényi (1960), and
others.

The functional Iv(P0, P1)− v(1) depends only on the nonlinear part of v.

Problem 1.62.∗ If w(x) = v(x) + ax + b, then

Iv(P0, P1)− v(1) = Iw(P0, P1)− w(1), (1.72)

and especially v0 in (1.62) satisfies Iv(P0, P1)− v(1) = Iv0(P0, P1).

Although the functional Iv(P0, P1) does not satisfy the axioms of a metric
in general, it has several properties that allow this functional to be interpreted
as a measure of distance.

Proposition 1.63. If v : (0,∞) → R is convex, then Iv(P0, P1) − v(1) ≥ 0,
with equality holding for P0 = P1. If v is strictly convex at x0 = 1, then
Iv(P0, P1) − v(1) = 0 implies P0 = P1. The functional Iv∗ is dual to Iv in the
sense that

Iv(P0, P1) = Iv∗(P1, P0). (1.73)
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Proof. The function v0 is nonnegative so that Iv0(P0, P1) = Iv(P0, P1) −
v(1) is nonnegative as well. If P0 = P1, then f0 = f1, μ-a.e., and P1(f0 = 0) =
P0(f1 = 0) = 0 so that the integral on the right-hand side of (1.69) has the
value v(1).

Assume now that v is strictly convex at x0 = 1. In view of Problem 1.62
it is sufficient to consider v0. Then by Problem 1.54 either v0(x) > 0 for every
x > 1 or v0(x) > 0 for every 0 < x < 1. Suppose that the first condition holds.
Then v0(x) ≥ 0 and Iv(P0, P1) − v(1) = 0, together with (1.69) for v = v0,
show that μ(f0 > f1) = 0. This implies

0 =
∫

(f1 − f0)dμ =
∫
{f1>f0}

(f1 − f0)dμ,

and therefore μ(f1 > f0) = 0. Hence μ(f1 �= f0) = 0 and P1 = P0. The case
where v0(x) > 0 holds for every 0 < x < 1 can be treated similarly. The
statement (1.73) is an immediate consequence of (1.69) and (1.64).

Iv(P0, P1) − v(1) does not satisfy the triangular inequality and in general
it is not symmetric in (P0, P1). From Definition 1.60 it follows that symmetry
in (P0, P1) holds if v(x) = v∗(x) := xv(1/x). To keep the notation simple we
use the symbol Iv(P0, P1) also if v is concave.

Now we present some special parametrized classes of functions, which are
either convex or concave, and provide well-known information functionals.

v Iv(P0, P1)

ms =

⎧⎨
⎩
|x− 1|s if 1 ≤ s <∞

|xs − 1| 1s if 0 < s < 1
χs(P0, P1)

vs = xs, if s > 0, s �= 1 Hs(P0, P1)

ws =

⎧⎪⎨
⎪⎩

xs−sx−(1−s)
s(s−1) , if s > 0, �= 1

x lnx− x+ 1, if s = 1

⎧⎨
⎩

Ks(P0, P1)

K(P0, P1)

kπ = π ∧ (1− π)− (πx) ∧ (1− π), 0 < π < 1 Bπ(P0, P1)

(1.74)

The functionals χs(P0, P1) are called χs-divergences. Especially,

χ2(P0, P1) =
∫

(f1 − f0)2

f1
I{f1>0}dμ+∞P0(f1 = 0)

is the well-known χ2-distance. Furthermore, χ
1
2 (P0, P1) =

∫
(
√
f0 −

√
f1)2dμ

is the square of the Hellinger distance of P0 and P1 which is defined by
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D(P0, P1) = [
∫

(
√
f0 −

√
f1)2dμ]1/2. (1.75)

It is clear that D(P0, P1) is a metric on P(A) because D(P0, P1) is the L2(μ)-
distance of the square roots of the densities. For s = 1 we get

χ1(P0, P1) =
∫
|f1 − f0|dμ =: ‖P0 − P1‖ , (1.76)

the variational distance of P0 and P1. Clearly, ‖P0 − P1‖ is also a metric on
P(A). We note that the functionals χs(P0, P1), Hs(P0, P1), and Ks(P0, P1) are
symmetric in (P0, P1) for s = 1/2 in each family. The functionals

Hs(P0, P1) =

⎧⎨
⎩
∫
fs0f

1−s
1 dμ if 0 < s < 1,∫

fs0f
1−s
1 I{f1>0}dμ+∞P0(f1 = 0) if s > 1,

(1.77)

from (1.74) are called Hellinger integrals. In the literature they are mainly
used for 0 < s < 1, but for some purposes an extension to s > 1 proves useful.
The Hellinger integral of order 1/2 and the Hellinger distance are related by

D2(P0, P1) = 2[1− H1/2(P0, P1)]. (1.78)

Some reasons for the wide applicability of Hellinger integrals are that they
appear in many problems in statistics as lower bounds for the risks and that
they can be evaluated explicitly for important classes of distributions.

Problem 1.64. For normal distributions it holds for s �= 1,

Hs(N(μ1, σ
2
1),N(μ2, σ

2
2)) (1.79)

= [
σ

2(1−s)
1 σ2s

2

sσ2
2 + (1− s)σ2

1

]1/2 exp{−1

2
s(1− s)

(μ1 − μ2)
2

sσ2
2 + (1− s)σ2

1

}.

Likewise, for Poisson distributions it holds for s �= 1,

Hs(Po(λ1),Po(λ2)) = exp{λs
1λ

1−s
2 − sλ1 − (1− s)λ2}.

The functionals Ks(P0, P1) from (1.74) are simple transformations of the
Hellinger integrals which are studied in more detail in the next section. It
holds

Ks(P0, P1) =
1

s(1− s)
[1− Hs(P0, P1)], s �= 1, s > 0. (1.80)

The functional K(P0, P1) from (1.74) is called the Kullback–Leibler distance
of P0 and P1.

K(P0, P1) =
∫

[(f0/f1) ln(f0/f1)− (f0/f1) + 1]f1I{f1>0}dμ+∞P0(f1 = 0).

=
{∫

(ln(f0/f1))dP0 if P0 
 P1

∞ otherwise. (1.81)
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Problem 1.65. It holds

K(N(μ1, σ
2
1),N(μ2, σ

2
2)) =

1

2
[ln(σ2

2/σ
2
1) + (σ2

1/σ
2
2)− 1 + (μ1 − μ2)

2/σ2
2 ].

The Kullback–Leibler distance appears in many problems in probability
and statistics theory. One reason for this is that it is, up to the sign, the
expectation of the log-likelihood. This expectation comes into consideration
when we study in Chapter 8 the exponential rate at which the second-kind
error probabilities of level α tests tend to zero. By construction the functions
ws form a continuous family of convex functions, and especially ws → w1

as s → 1. The Kullback–Leibler distance is closely related to the Shannon
entropy that was introduced in (1.25). Indeed we see from (1.81), by inter-
changing the roles of P0 and P1, that K(P1, P0) = −SP0(P1). This means that
for fixed P0 the search for distributions P1 that maximize the Shannon en-
tropy can be done by minimizing K(P1, P0) with respect to P1. The question
of whether such a distribution P1 exists for a given convex set P0 is closely
related to the lower semicontinuity of K(P1, P0) with respect to the conver-
gence in variational distance. Distributions that minimize K(·, P0) are called
projections and were first studied by Csiszár (1963).

To give a statistical interpretation of Bπ(P0, P1) in (1.74) we consider the
problem of testing the simple null hypothesis H0 : P0 versus the alternative
HA : P1. A statistical test ϕ is a measurable mapping ϕ : X →m [0, 1] and
the value ϕ(x) is the probability of rejecting H0. If H0 is true, then

∫
ϕdP0 is

the probability of falsely rejecting H0, which is called the error probability of
the first kind . Similarly, if HA is true, then

∫
(1− ϕ)dP1 is the probability of

falsely rejecting HA, which is called the error probability of the second kind.
For any 0 ≤ π ≤ 1 the average

π

∫
ϕdP0 + (1− π)

∫
(1− ϕ)dP1

is called the Bayes risk. In the next chapter we systematically study tests for
the binary model and especially tests that minimize the Bayes risk. Here we
calculate only the minimal Bayes risk.

Lemma 1.66. In the binary model (X ,A, {P0, P1}) the minimal Bayes risk

bπ(P0, P1) = inf
ϕ

(π
∫
ϕdP0 + (1− π)

∫
(1− ϕ)dP1)

is given by

bπ(P0, P1) =
∫

(πf0) ∧ ((1− π)f1)dμ, (1.82)

where μ is a σ-finite dominating measure and fi = dPi/dμ.

Proof. It holds
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π

∫
ϕdP0 + (1− π)

∫
(1− ϕ)dP1 =

∫
[πϕf0 + (1− π)(1− ϕ)f1]dμ

= (1− π) +
∫
ϕ[πf0 − (1− π)f1]dμ.

The right-hand side becomes minimal if we set ϕ0 = 1 if πf0 < (1− π)f1 and
0 else. The Bayes risk of this test is given by

∫
[πϕ0f0 + (1− π)(1− ϕ0)f1]dμ =

∫
(πf0) ∧ ((1− π)f1)dμ.

We see from (1.82) that the minimal Bayes risk is related to the divergence
Ikπ

(P0, P1) defined by kπ in (1.74) by

Bπ(P0, P1) = π ∧ (1− π)− bπ(P0, P1). (1.83)

The functional Bπ(P0, P1) admits the following interpretation. π ∧ (1 − π)
can be considered as the minimal Bayes error probability that is made if
no data are available, and bπ(P0, P1) as the minimal Bayes error probability
after an observation is made. Therefore Bπ(P0, P1) may be considered as an
information gain.

Problem 1.67.∗ The function π �→ bπ(P0, P1) is continuous in (0, 1).

Using (1.63) we show in the next theorem that Iv(P0, P1)−v(1) is a super-
position of the functionals of the information gains Bπ(P0, P1) with respect
to a curvature measure ρv on (0, 1), defined by

ρv(B) =
∫

(1 + t)IB(
1

1 + t
)γv(dt), (1.84)

which is equivalent to
∫
h(π)ρv(dπ) =

∫
(1 + t)h(

1
1 + t

)γv(dt), h : (0, 1) →m R+. (1.85)

The representations of v-divergences in the next theorem have been estab-
lished by Österreicher and Feldman (1981) for twice-differentiable functions v,
and by Torgersen (1991) for the special case of Hellinger integrals. The general
case was treated in Liese and Vajda (2006). Such representations connect the
concept of the distance of distributions measured by the v-divergence with
decision-theoretic concepts based on the minimal Bayes risk.

Theorem 1.68. For every convex function v : (0,∞) → R and every distri-
bution P0, P1 it holds

Iv(P0, P1)− v(1) =
∫

(0,1)

Bπ(P0, P1)ρv(dπ). (1.86)
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Corollary 1.69. It holds

Ks(P0, P1) =
∫

(0,1)

Bπ(P0, P1)
(1− π)1+sπ2−s

dπ, −∞ < s <∞,

Hs(P0, P1) = s(1− s)
∫

(0,1)

bπ(P0, P1)
(1− π)1+sπ2−s

dπ, 0 < s < 1.

Proof. Due to the invariance property (1.72) the left-hand term in (1.86)
remains unchanged if we turn from v to v0 in (1.62). As γv = γv0 the right-
hand term also remains unchanged. Hence we may assume v(1) = D+v(1) = 0
without loss of generality. We see from (1.63) that

∫
I(0,∞)(f0)v(

f0

f1
)dP1

=
∫

(
∫
{I(1,∞)(t)[f0 − (tf1) ∧ f0)] + I(0,1](t)[tf1 − (tf1) ∧ f0)]}γv(dt))

× I(0,∞)(f0 ∧ f1)dμ

=
∫

[P0(f1 > 0)− (1 + t)b1/(1+t)(P0, P1)]I(1,∞)(t)γv(dt)

+
∫

[tP1(f0 > 0)− (1 + t)b1/(1+t)(P0, P1)]I(0,1](t)γv(dt).

Now we use (1.70) and (1.71) and obtain

Iv(P0, P1) =
∫
I(1,∞)(t)[1− (1 + t)b1/(1+t)(P0, P1)]γv(dt)

+
∫
I(0,1](t)[t− (1 + t)b1/(1+t)(P0, P1)]γv(dt)

=
∫
I(0,∞)(t)(1 + t)[

1
1 + t

∧ t

1 + t
− b1/(1+t)(P0, P1)]γv(dt).

To complete the proof of the theorem we only have to utilize (1.85).
In order to prove the corollary we use ws(x) from (1.74). Then γws

(dx) =
xs−2dx. Hence for every Borel set B ⊆ (0, 1),

ρws
(B) =

∫
IB(

1
1 + t

)(1 + t)ts−2dt =
∫
IB(π)(1− π)s−2π−1−sdπ,

which proves the first statement of the corollary. For the second statement we
use in addition

s(1− s)
∫

(0,1)

[π ∧ (1− π)](1− π)s−2π−1−sdπ = 1, 0 < s < 1,

and (1.77).
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In addition to the binary model M = (X ,A, {P0, P1}) let now (Y,B) be
another measurable space and K : B×X →k [0, 1] be a stochastic kernel. By
setting for i = 0, 1,

(KPi)(B) =
∫

K(B|x)Pi(dx), B ∈ B,

N = (Y,B, {Q0, Q1}) with Qi = KPi, i = 0, 1, is again a binary model. Intu-
itively it is clear that the model N is less informative than M as it is harder
to distinguish between KP0 and KP1 than to distinguish between P0 and P1.
Thus we can anticipate that the inequality Iv(KP0,KP1) ≤ Iv(P0, P1) holds
true. This inequality is the content of the following monotonicity theorem
which goes back to Csiszár (1963). In preparation for this theorem we study
first the information gain Bπ(P0, P1) in (1.83). Let us consider the hypothesis
testing problem H0 : KP0 versus HA : KP1. For any test ϕ : Y →m [0, 1] for the
model N we get from Fubini’s theorem for stochastic kernels (see Proposition
A.40) ∫

ϕd(KP0) =
∫

[
∫
ϕ(y)K(dy|x)]P0(dx),

where x �→
∫
ϕ(y)K(dy|x) is a test for the model M. As bπ(KP0,KP1) is the

minimal Bayes risk we arrive at

Bπ(KP0,KP1) = sup
ϕ

[π ∧ (1− π)− π

∫
ϕd(KP0)− (1− π)

∫
(1− ϕ)d(KP1)]

≤ sup
ψ

[π ∧ (1− π)− π

∫
ψdP0 − (1− π)

∫
(1− ψ)dP1],

where the first and second supremum are taken over all tests for N and M,
respectively. Hence

Bπ(KP0,KP1) ≤ Bπ(P0, P1). (1.87)

This inequality says that the information gain by taking an observation is
smaller in the model N than in the model M.

We now establish the monotonicity property of v-divergences. This helps us
to discuss the concept of sufficiency and to specify the approximate sufficiency
of a statistic. The basic idea is as follows. Suppose we are faced with two
distributions P0 and P1 and employ a statistic T for data compression. By
doing so we are aware of the fact that the distance between P0 and P1 has been
reduced and that it is now harder to distinguish between P0◦T−1 and P1◦T−1

than it has been before to distinguish between P0 and P1. The question arises
as to how much information has been lost, and how to quantify that. An
answer is provided by the following monotonicity theorem.

Theorem 1.70. If (X ,A) and (Y,B) are measurable spaces and K : B ×
X →k [0, 1] is a stochastic kernel, then for P0, P1 ∈ P(A) and every convex
function v : (0,∞) → R,
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Iv(KP0,KP1) ≤ Iv(P0, P1), (1.88)

with equality holding for

bπ(KP0,KP1) = bπ(P0, P1), 0 < π < 1. (1.89)

Conversely, if v is strictly convex in (0,∞), then Iv(KP0,KP1) = Iv(P0, P1) <
∞ implies (1.89).

Corollary 1.71. If T : X →m Y, G is a sub-σ-algebra of A, and PG
i is the

restriction of Pi to G, then

Iv(PG
0 , PG

1 ) ≤ Iv(P0, P1) (1.90)
Iv(P0 ◦ T−1, P1 ◦ T−1) ≤ Iv(P0, P1), (1.91)

with equality holding in both inequalities if (1.89) holds with KPi replaced by
PG
i and P1 ◦ T−1, respectively. For strictly convex v and Iv(P0, P1) < ∞ the

equality in (1.90) or (1.91) implies (1.89).

Proof. The inequality (1.88) follows directly from (1.87) and Theorem
1.68. If (1.89) is satisfied, then the equality in (1.88) follows from Theorem
1.68. Suppose now that v is strictly convex on (0,∞). In view of Problem 1.53
this requirement is equivalent to the condition that γv((a, b)) > 0 for every
0 < a < b <∞, which by the definition of ρv is equivalent to

ρv((a, b)) > 0, 0 < a < b < 1. (1.92)

Suppose now that Iv(KP0,KP1) = Iv(P0, P1) <∞. Then by Theorem 1.68,

0 = Iv(P0, P1)− Iv(KP0,KP1) =
∫

[bπ(KP0,KP1)− bπ(P0, P1)] ρv(dπ).

The integrand is nonnegative in view of (1.87). Consequently,

ρv({π : bπ(KP0,KP1) �= bπ(P0, P1)}) = 0. (1.93)

As by Problem 1.67 the function π �→ bπ(KP0,KP1)−bπ(P0, P1) is continuous
the relations (1.92) and (1.93) provide bπ(KP0,KP1) = bπ(P0, P1) for every
0 < π < 1, which completes the proof. The corollary follows from the fact
that measurable mappings are special kernels.

The next problem deals with a simple application of (1.88).

Problem 1.72.∗ The variational distance and the Hellinger distance satisfy

‖KP0 − KP1‖ ≤ ‖P0 − P1‖ and D(KP0,KP1) ≤ D(P0, P1). (1.94)

Csiszár (1963) not only proved inequality (1.88). He showed also that for
a strictly convex function v equality implies that the kernel K is sufficient,
which means especially for a kernel that is induced by a statistic that this
statistic has to be sufficient. To study this problem in more detail we need
auxiliary results.
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Lemma 1.73. Let X0,X1 be nonnegative random variables on (Ω,F,P) with
EXi <∞, i = 0, 1. If F0 ⊆ F is a sub-σ-algebra of F, then

E((X0X1)1/2|F0) ≤ (E(X0|F0)E(X1|F0))1/2, P-a.s. (1.95)

The P-a.s. equality holds if and only if

X0E(X1|F0) = X1E(X0|F0), P-a.s. (1.96)

Proof. We put Yi = E(Xi|F0) and Ai = {Yi = 0}. Then it holds EIAi
Xi =

E(IAi
Xi|F0) = 0 and

EIAi
E((X0X1)1/2|F0) = EIAi

(X0X1)1/2 = 0,

so that both sides of (1.95) and (1.96) are P-a.s. zero on A1∪A2. Thus for the
rest of the proof we may assume that Y1 and Y2 are positive. Put Zi = Xi/Yi.
Then E(Zi|F0) = 1 and

0 ≤ E((Z1/2
0 − Z

1/2
1 )2|F0) = 2− 2E((Z0Z1)1/2|F0)

= 2− 2(Y0Y1)−1/2
E((X0X1)1/2|F0),

which proves (1.95), where equality holds if and only if Z0 = Z1, P-a.s., which
is equivalent to (1.96).

Suppose (X ,A) and (Y,B) are two measurable spaces. Let K : B×X →k

[0, 1] be a stochastic kernel and P a distribution on (X ,A). Denote by S :
X×Y →m Y the projection onto Y. Recall that K⊗P and KP are distributions
on (X × Y,A⊗B) and (Y,B), respectively, defined by

(K⊗ P )(C) =
∫

[
∫
IC(x, y)K(dy|x)]P (dx), C ∈ A⊗B,

(KP )(B) = (K⊗ P )(X ×B), B ∈ B.

If T : X →m Y and K(·|x) = δT (x)(·), then obviously KP = P ◦ T−1. The
next problem gives the density of K ⊗ P with respect to K ⊗ Q, and that of
KP with respect to KQ.

Problem 1.74.∗ If P and Q are any distributions on (X ,A) with P � Q, then
with L = dP/dQ it holds

d(K⊗ P )

d(K⊗Q)
(x, y) = L(x), K⊗Q-a.s., (1.97)

d(KP )

d(KQ)
(y) = EK⊗Q(L|S = y), KQ-a.s., (1.98)

d(P ◦ T−1)

d(Q ◦ T−1)
(y) = EQ(L|T = y), Q-a.s. (1.99)
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Set
P =

1
2
(P0 + P1), Li =

dPi

dP
, i = 0, 1. (1.100)

Then L1 = 2− L0, P -a.s., and by (1.75)

D2(P0, P1) = EP (L1/2
0 − (2− L0)1/2)2. (1.101)

Moreover (1.97) implies

D2(P0, P1) = D2(K⊗ P0,K⊗ P1). (1.102)

Now we formulate conditions on the density L0 so that equality holds in
D(KP0,KP1) ≤ D(P0, P1). Later in Chapter 4 we show that this condition
is closely related to the concept of sufficiency. In view of (1.102) and KPi =
(K ⊗ Pi) ◦ S it is sufficient to study the problem under which conditions the
Hellinger distance is preserved under a measurable mapping.

Proposition 1.75. It holds D(P0 ◦ T−1, P1 ◦ T−1) = D(P0, P1) if and only if

EP (L0|T ) = L0, P -a.s. (1.103)

Proof. It holds

D2(P0, P1) = EP (L1/2
0 − (2− L0)1/2)2 = EP (2− 2(L0(2− L0))1/2),

and similarly by (1.99)

D2(P0 ◦ T−1, P1 ◦ T−1) = EP (2− 2(EP (L0|T )(2− EP (L0|T )))1/2).

Hence D(P0 ◦ T−1, P1 ◦ T−1) = D(P0, P1) if and only if

E(EP (L0|T )(2− EP (L0|T )))1/2 = EP (L0(2− L0))1/2.

An application of Lemma 1.73 with X0 = L0 and X1 = 2− L0 completes the
proof.

The condition EP (L0|T ) = L0 is equivalent to L0 being σ(T )-measurable.
But then 2−L0, which is the density of P1, is also σ(T )-measurable. Later in
Chapter 4 we study how this measurability condition is related to the concept
of sufficiency.

There are many concepts to reduce or condense a large sample X1, ...Xn.
One of them is to choose a partition p = {A1, ..., An} of the sample space X
and then to use only the relative frequencies at which the observations have
appeared in the cells of the partition. Hereby it is understood that a partition
p of X is a collection {A1, ..., An} of subsets of X with Ai ∈ A, Ai∩Aj = ∅ for
i �= j, and A1 ∪ · · · ∪ An = X . Instead of the original sample space (X ,A) we
use now the sample space (X , σ(p)), where σ(p) is the σ-algebra generated by
the partition p. Suppose that we have a nondecreasing sequence of partitions
pn so that the sequence of σ-algebras An := σ(pn) generates A. Then we can
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approximate A-measurable tests by An-measurable tests. Consequently, we
can get to the minimal Bayes risk approximately if we only know the cells to
which the observations belongs, provided that n is large enough so that the
partition is sufficiently fine.

Lemma 1.76. Let A1 ⊆ A2 ⊆ · · · be a nondecreasing sequence of sub-σ-
algebras of A which generates A, and let PAn

0 and PAn
1 be the restrictions of

P0 and P1, respectively, to An, n = 1, 2, ... Then Bπ(PAn
0 , PAn

1 ) ↑ Bπ(P0, P1)
as n tends to infinity.

Proof. The monotonicity follows from (1.87). Set P = 1
2 (P0 + P1) and

consider the densities Li = dPi/dP , i = 0, 1, as random variables on (X ,A, P ).
The conditional expectation EP (Li|An) =: Li,n with respect to P satisfies for
every A ∈ An ∫

A

EP (Li|An)dP =
∫
A

LidP = PAn
i (A),

which implies Li,n = dPAn
i /dP

An
. Hence by Levy’s martingale convergence

theorem (see Theorem A.34), EP |Li − Li,n| → 0. Using the elementary in-
equality |a ∧ b− c ∧ d| ≤ |a− b|+ |c− d| we arrive at
∫
|(πL0) ∧ ((1− π)L1)dP − (πL0,n) ∧ ((1− π)L1,n|dP → 0, as n→∞.

By combining this fact with (1.82) we get Bπ(PAn
0 , PAn

1 ) ↑ Bπ(P0, P1).

Theorem 1.77. If A1 ⊆ A2 ⊆ · · · is a nondecreasing sequence of sub-σ-
algebras of A which generates A, then

lim
n→∞

Iv(PAn
0 , PAn

1 ) = Iv(P0, P1). (1.104)

Corollary 1.78. It holds

Iv(P0, P1) = sup
p

∑
A∈p

v(
P0(A)
P1(A)

)P1(A),

where the supremum is taken over all partitions p with p ⊆ A, and where the
conventions v(0/0)0 = 0 and v(a/0)0 = av∗(0) for a > 0 are used.

Proof. The statement (1.104) follows from Lemma 1.76, the representation
(1.86), and the monotone convergence theorem; see Theorem A.16.

To prove the corollary we first note that by (1.90)

sup
p

Iv(P
σ(p)
0 , P

σ(p)
1 ) = sup

p

∑
A∈p

v(
P0(A)
P1(A)

)P1(A) ≤ Iv(P0, P1).

To show that in fact equality holds we set F = σ(f0, f1). As fi = dPF
i /dμ

F

we get from (1.82),
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bπ(PF
0 , P

F
1 ) = bπ(P0, P1), 0 < π < 1,

and Iv(PF
0 , P

F
1 ) = Iv(P0, P1) by Corollary 1.71. As open intervals (a, b) with

rational endpoints generate B, the σ-algebra of Borel sets on R, and the
complete images of (a, b) under f0 and f1 generate F we see that F is countably
generated. This means that we find a nondecreasing sequence of algebras An

that generate F. If pn is the system of atoms of An, then pn, n = 1, 2, ..., is a
nondecreasing sequence of partitions with F = σ(∪∞

n=1pn). Hence,

Iv(P0, P1) = Iv(PF
0 , P

F
1 ) = lim

n→∞
Iv(PAn

0 , PAn
1 )

by (1.104) if we replace A by F there.

Problem 1.79.∗ It holds,

‖P0 − P1‖ = sup
p

∑
A∈p

|P0(A)− P1(A)| = 2 sup
A∈A

|P0(A)− P1(A)|

Hs(P0, P1) = inf
p

∑
A∈p

P s
0 (A)P 1−s

1 (A) ≤
∑

A∈p
P s

0 (A)P 1−s
1 (A), 0 < s < 1.

Problem 1.80.∗ If P0 and P1 are distributions on (X ,A) and h : X →m R is
bounded, say ‖h‖u ≤ c, then

|
∫

hdP0 −
∫

hdP1 |≤ c ‖P0 − P1‖ and sup
‖h‖u≤1

|
∫

hdP0 −
∫

hdP1 |= ‖P0 − P1‖ ,

where ‖h‖u = supx∈X |h(x)|. If X is a metric space and A the σ-algebra of Borel
sets, then the supremum may be taken only over all continuous functions h with
‖h‖u ≤ 1.

In the remainder of this section we collect properties of Hellinger integrals
that are needed in the following chapters.

Recall that by (1.69), (1.74), and (1.80),

Hs(P0, P1) =
∫
fs0f

1−s
1 dμ, 0 < s < 1, (1.105)

Hs(P0, P1) =
∫
fs0f

1−s
1 I{f1>0}dμ+∞P0(f1 = 0), 1 < s <∞, (1.106)

Ks(P0, P1) =
1

s(1− s)
(1− Hs(P0, P1)), s �= 1, s > 0.

In the next problem we collect some simple properties of Hellinger integrals
that are used frequently.

Problem 1.81.∗ Suppose Li, i = 0, 1 and P are defined in (1.100) and denote by
L0,1 the likelihood ratio of P1 with respect to P0. Then

Hs(P0, P1) = EP0L
1−s
0,1 (1.107)

= EPLs
0(2− L0)

1−s, s �= 1, s > 0, (1.108)
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where we used the convention 0−a = ∞ for a > 0. It holds

(Hs1(P0, P1))
1/(1−s1) ≥ (Hs2(P0, P1))

1/(1−s2), 0 < s1 < s2 < 1. (1.109)

The Hellinger distance and the Hellinger integral are related by

2(1− H1/2(P0, P1)) = D2(P0, P1) = E0(L
1/2
0,1 − 1)2 + (1− E0L0,1). (1.110)

For 0 < s < 1 it holds

0 ≤ Hs(P0, P1) ≤ 1, (1.111)

Hs(P0, P1) = 0⇔ P0 ⊥ P1 and Hs(P0, P1) = 1⇔ P0 = P1. (1.112)

For 1 < s <∞ it holds

1 ≤ Hs(P0, P1) ≤ ∞, (1.113)

Hs(P0, P1) = 1⇔ P0 = P1 and Hs(P0, P1) <∞⇒ P0 � P1.

We recall the Lebesgue decomposition (1.65), where dP1,a = f1I(0,∞)(f0)dμ
is the part of P1 that is absolutely continuous with respect to P0. That its
total mass P1(f0 > 0) can be obtained by Hellinger integrals was first noticed
by Nemetz (1967, 1974).

Problem 1.82.∗ It holds

lim
s↓0

Hs(P0, P1) = P1(f0 > 0) = P1(L0,1 <∞),

P1 � P0 ⇔ lim
s↓0

Hs(P0, P1) = 1. (1.114)

Statement (1.114) has been used by several authors to find conditions that
guarantee the absolute continuity of stochastic processes; see, e.g., Jacod and
Shiryaev (1987) and Liese and Vajda (1987) for details and references.

Sometimes it is necessary to consider the Hellinger integral as a function
of a complex variable.

Problem 1.83.∗ If P0 and P1 are not mutually singular, then the function z �→
Hs+it(P0, P1) :=

∫
(f0/f1)

s+itf1dμ, z = s + it, is analytic for s ∈ (0, 1), t ∈ R.

Often the information functionals do not appear directly in a problem
under consideration. Then inequalities between the different expressions are
useful. This especially concerns the situation where one statistical model has
to be approximated by another model in the strong sense of variational dis-
tance. If that is possible, then optimal decisions in the approximating model
are at least approximately optimal in the original model.

Inequalities that provide bounds on the variational distance ‖P0 − P1‖
by means of the tractable Hellinger distance and Kullback–Leibler distance
originated from different areas of probability theory, information theory, and
statistics, and thus were independently established by several authors; see
Nemetz (1967), Kailath (1967), Vajda (1971), LeCam (1974), Strasser (1985),
Reiss (1989), and Jongbloed (2000).
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Proposition 1.84. It holds,

D2(P0, P1) ≤ ‖P0 − P1‖ ≤
[
4− D2(P0, P1)

]1/2
D(P0, P1)

≤ 2D(P0, P1),

D2(P0, P1) ≤ 2(1− exp{−1
2
K(P0, P1)}) (1.115)

‖P0 − P1‖ ≤ 2
√

K(P0, P1). (1.116)

Proof. The first inequality follows from (
√
a1 −

√
a2)2 ≤ |a1 − a2|. To get

the second and third inequality we apply the Schwarz inequality to |f0−f1| =
|
√
f0 −

√
f1||
√
f0 +

√
f1| and use

∫
|
√
f0 +

√
f1|2dμ = 4− D2(P0, P1) ≤ 4.

To prove (1.115) we may assume P0 
 P1 as otherwise K1(P0, P1) = ∞ and
the inequality becomes trivial. If now P0 
 P1, then by (1.81), K(P0, P1) =
EP0 ln(dP0/dP1). Then with Y = −(1/2) ln(dP0/dP1),

D2(P0, P1) = 2(1− H1/2(P0, P1)) = 2(1− EP0(dP0/dP1)−1/2)
= 2(1− EP0 exp{Y }) ≤ 2(1− exp{EP0Y }),

by the convexity of the exponential function and Jensen’s inequality.

The inequality ‖P0 − P1‖ ≤ c
√

K(P0, P1) with some constant c has a long
history and was independently established by many authors; see Liese and
Vajda (1987) for details. There one can also find improved bounds. An im-
portant application of inequality (1.116) can be found in Reiss (1993), where
the following result has been established.

Proposition 1.85. The Hellinger distance and the variational distance of the
binomial distribution and the Poisson distribution satisfy

D(B(n, λ/n),Po(λ)) ≤
√

3λ/n and
‖B(n, λ/n)− Po(λ)‖ ≤ 2λ/n.

These inequalities imply as a special case the well-known convergence of
B(n, λ/n) to Po(λ) for fixed λ. But they also allow an approximation of bino-
mial distribution B(n, pn) by Poisson distributions if pn tends to 0 at a lower
rate. For applications and extensions of Proposition 1.85 to binomial processes
and curve estimations we refer to Reiss (1993). Other applications of the in-
equalities of Proposition 1.84 can be found in Jacod and Shiryaev (2002) and in
Liese (1986), where Hellinger integrals of distributions of stochastic processes
have been evaluated and used to examine the variational distance between two
such distributions. Hellinger integrals for independent observations behave as
characteristic functions of independent random variables.



1.3 Divergences in Binary Models 49

Problem 1.86.∗ Suppose (Xi,Ai), i = 1, 2, ..., are measurable spaces and Pi, Qi ∈
P(Ai), i = 1, 2, ... Then for every n = 1, 2, ...,

Hs(
⊗n

i=1 Pi,
⊗n

i=1 Qi) =
∏n

i=1
Hs(Pi, Qi), 0 < s < 1, (1.117)

Hs(
⊗∞

i=1 Pi,
⊗∞

i=1 Qi) =
∏∞

i=1
Hs(Pi, Qi), 0 < s < 1,

D2(
⊗n

i=1 Pi,
⊗n

i=1 Qi) ≤
∑n

i=1
D2(Pi, Qi). (1.118)

Definition 1.87. Given a finite model (X ,A, {P1, ..., Pm}), where Pk is dom-
inated by μ ∈ Mσ(A) and has the density fk = dPk/dμ, 1 ≤ k ≤ m, we call
the function

s �→ Hs(P1, ..., Pm) =
∫
fs11 · · · fsm

m dμ, s = (s1, ..., sm) ∈ S0
m, (1.119)

the Hellinger transform of the family {P1, ..., Pm}.

If m = 2, then we have

H(s,1−s)(P1, P2) = Hs(P1, P2), (1.120)

so that for 0 < s < 1 the functional H(s,1−s)(P1, P2) is the Hellinger integral
Hs(P0, P1) of order s in (1.105). Set

P = m−1
∑m

i=1
Pi, Li =

dPi

dP
, i = 1, ...,m. (1.121)

Then by the chain rule (see Proposition A.28)

Hs(P1, ..., Pm) = EP

∏m

i=1
Lsi
i ,

which shows the definition of Hs(P1, ..., Pm) is independent of the choice of
the dominating measure.

Example 1.88. Let (Pθ)θ∈Δ be an exponential family with μ-densities fθ(x) =
exp{〈θ, T (x)〉 −K(θ)}, θ ∈ Δ. For fixed θ1, ..., θm ∈ Δ we get for s ∈ S0

m,

Hs(Pθ1 , ..., Pθm) =

∫
exp{

∑m

i=1
si 〈θi, T 〉 −

∑m

i=1
siK(θi)}dμ (1.122)

= exp{K(
∑m

i=1
siθi)−

∑m

i=1
siK(θi)}.

Especially for normal distributions (N(μ, σ2))μ∈R with a known variance σ2 we get
from Lemma 1.37, with θ = μ/σ2 and K(θ) = σ2θ2/2,

Hs(N(μ1, σ
2), ...,N(μm, σ2)) = exp{ 1

2σ2
(
∑m

i=1
siμi)

2 − 1

2σ2

∑m

i=1
siμ

2
i }.

Problem 1.89. If N(μ,Σ) is a d-dimensional normal distribution with known non-
singular covariance matrix Σ, then for s ∈ S0

m

Hs(N(μ1, Σ), ...,N(μm, Σ)) = exp{1

2
‖
∑m

i=1
siΣ

−1/2μi ‖2 −
1

2

∑m

i=1
siμ

T
i Σ−1μi}.
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Hellinger integrals and Hellinger transforms behave as characteristic func-
tions for sums of independent random variables when turning to product mod-
els. The reason for this fact is that

Hs(P1, ..., Pm) = EP exp{
∑m

i=1
si lnLi}

is, up to the sign, the Laplace transform of the vector of the log-likelihoods.

Proposition 1.90. If P1, ..., Pm ∈ P(A) and Q1, ..., Qm ∈ P(B), then

Hs(P1 ⊗Q1, ..., Pm ⊗Qm) = Hs(P1, ..., Pm)Hs(Q1, ..., Qm), s ∈ S0
m.

Proof. Introduce Q and M1, ...,Mm analogously to P and L1, ..., Lm; see
(1.121). Then by Proposition A.29 d(Pi⊗Qi) = Li(x)Mi(y)d(P ⊗Q), so that
(L1, ..., Lm) and (M1, ...,Mm) are independent with respect to P ⊗Q and

Hs(P1 ⊗Q1, ..., Pm ⊗Qm) = EP⊗Q

∏m

i=1
Lsi
i M

si
i

= (EP

∏m

i=1
Lsi
i )(EQ

∏m

i=1
Msi

i ), s ∈ S0
m.

The next result corresponds to Corollary 1.77, where we have considered
v-divergences for the restrictions of two distributions to a nondecreasing se-
quence of sub-σ-algebras.

Proposition 1.91. If G1 ⊆ G2 ⊆ · · · is a nondecreasing sequence of sub-σ-
algebras and G = σ(∪∞

i=1Gi), then for s ∈ S0
m it holds

Hs(PGn
1 , ..., PGn

m ) → Hs(PG
1 , ..., PG

m ) as n→∞.

Proof. For i = 1, ...,m we get Li,n := EP (Li|Gn) = dPGn
i /dP

Gn from
(1.99). Levy’s martingale convergence theorem (see Theorem A.34) gives
limn→∞ EP |Li,n − Li| = 0. Using the inequality |as − bs| ≤ |a− b|s, a, b ≥ 0,
0 < s < 1, we get

|Hs(PGn
1 , ..., PGn

m )− Hs(PG
1 , ..., PG

m )|
≤ EP |L1,n − L1|s1Ls2

2,n · · · Lsm
m,n + · · ·+ EP (Ls1

1 · · · Lsm−1
m−1 )|Lm,n − Lm|sm .

Hence, by the generalized Hölder inequality (see Lemma A.13)

|Hs(PGn
1 , ..., PGn

m )− Hs(PG
1 , ..., PG

m )| ≤
∑m

i=1
(EP |Li,n − Li|)si ,

which completes the proof.

Proposition 1.92. It holds for s ∈ S0
m,

Hs(P1, ..., Pm) = inf
p

∑
A∈p

P s1
1 (A) · · ·P sm

m (A),

where the infimum is taken over all finite partitions of the sample space into
sets from A.
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Proof. Let p = {A1, ..., Ak}, Ai ∈ A, be any partition. Then by the general
Hölder inequality it holds

Hs(P1, ..., Pm) =
∑k

i=1

∫
IAi

Ls1
1 · · ·Lsm

m dP

≤
∑k

i=1
(
∫
IAi

L1dP )s1 · · · (
∫
IAi

LmdP )sm =
∑k

i=1
P s1

1 (Ai) · · ·P sm
m (Ai).

Denote by σ(p) the σ-algebra generated by p and set Ll,p = dP
σ(p)
l /dP

σ(p)
.

Then by
∑k

i=1 si = 1 and

Ll,p(x) =
∑k

i=1
IAi

(x)
Pl(Ai)
P (Ai)

,

∑k

i=1
P s1

1 (Ai) · · ·P sm
m (Ai) =

∫
(
∏m

l=1
Ll,p(x))P (dx) = Hs(P

σ(p)
1 , ..., Pσ(p)

m ).

Denote by G the smallest σ-algebra with respect to which L1, ..., Lm are mea-
surable. Then dPG

l /dP
G

= dPl/dP and Hs(PG
1 , ..., PG

m ) = Hs(P1, ..., Pm). As
G is countably generated there is a nondecreasing sequence of partitions pn

such that σ(pn) generates G. It remains to apply Proposition 1.91.

Now we study Hellinger transforms of finite models that are models re-
duced by a statistic or by randomization via a stochastic kernel. Let (X ,A)
and (Y,B) be measurable spaces, K : B × X →k [0, 1] a stochastic kernel,
and {P1, ..., Pm} ⊆ P(A). The next proposition is the monotonicity property
of Hellinger transforms (see, e.g., Strasser (1985)).

Proposition 1.93. Suppose that (X ,A) and (Y,B) are measurable spaces,
K : B × X →k [0, 1] is a stochastic kernel, and P = {P1, ..., Pm} ⊆ P(A).
Then

Hs(KP1, ...,KPm) ≥ Hs(P1, ..., Pm), s ∈ S0
m. (1.123)

Corollary 1.94. If T : X →m Y, then

Hs(P1 ◦ T−1, ..., Pm ◦ T−1) ≥ Hs(P1, ..., Pm), s ∈ S0
m.

Proof. The statement in the corollary follows from Proposition 1.92. The
relation (1.97) yields

Hs(K⊗ P1, ...,K⊗ Pm) = Hs(P1, ..., Pm).

If S : X × Y →m Y is the projection onto Y, then KPi = (K ⊗ Pi) ◦ S−1, so
that (1.123) follows from the corollary.
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1.4 Information in Bayes Models

In this section we consider divergences of distributions on a product space con-
structed with different conditional distributions but with the same marginal
distribution. More precisely, let (X ,A), (Y,B) be measurable spaces, K, L :
B × X →k [0, 1] stochastic kernels, and P a distribution on (X ,A). Subse-
quently we give a representation of Iv(K⊗ P, L⊗ P ).

Proposition 1.95. If B is countably generated, then

Iv(K⊗ P, L⊗ P ) =
∫

Iv(K(·|x), L(·|x))P (dx).

Proof. As B is countably generated we find an increasing sequence of
partitions pn = {Bn,1, ..., Bn,mn

}, Bn,i ∈ B, where B = σ(∪∞
n=1pn). Let

M(B|x) = 1
2 (K(B|x)+L(B|x)), and denote by (M⊗P )σ(pn)⊗B the restriction

of M⊗ P to σ(pn)⊗B. Then

d(K⊗ P )A⊗σ(pn)

d(M⊗ P )A⊗σ(pn)
(x, y) =

∑mn

i=1

K(Bi,n|x)
M(Bi,n|x)

IBi,n
(y) =

dKσ(pn)(·|x)
dMσ(pn)(·|x)

(y)

d(L⊗ P )A⊗σ(pn)

d(M⊗ P )A⊗σ(pn)
(x, y) =

∑mn

i=1

L(Bi,n|x)
M(Bi,n|x)

IBi,n
(y) =

dLσ(pn)(·|x)
dMσ(pn)(·|x)

(y).

It follows from Definition 1.60 that

Iv((K⊗ P )A⊗σ(pn), (L⊗ P )A⊗σ(pn)) =
∫

Iv(Kσ(pn)(·|x), Lσ(pn)(·|x))P (dx).

An application of Theorem 1.77 to the left-hand side gives

Iv(K⊗ P, L⊗ P ) = lim
n→∞

Iv((K⊗ P )A⊗σ(pn), (L⊗ P )A⊗σ(pn)).

We know that Iv(Kσ(pn)(·|x), Lσ(pn)(·|x)) is bounded below by v(1); see Propo-
sition 1.63. By Theorem 1.77 Iv(Kσ(pn)(·|x), Lσ(pn)(·|x)) tends increasingly to
Iv(K(·|x), L(·|x)). An application of the monotone convergence theorem (see
Theorem A.16) completes the proof.

To study the dependence between the random variables X and Y with
values in (X ,A) and (Y,B), respectively, we compare the joint distribution
L(X,Y ) with the product of the marginal distributions L(X)⊗L(Y ). It is clear
that the smaller this distance is the weaker is the dependence between X and
Y. To specify the distance between the distributions we use the divergences
introduced in Definition 1.60,

Iv(X||Y ) := Iv(L(X,Y ),L(X)⊗ L(Y )),

and call Iv(X||Y ) the mutual information of X and Y. It is obvious that
Iv(X||Y ) is symmetric in X and Y.
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Suppose L(X,Y ) is absolutely continuous with respect to μ ⊗ ν, where
μ and ν are σ-finite measures on (X ,A) and (Y,B), respectively. Denote by
fY,X , fX , fY the corresponding densities. By Definition 1.60

Iv(X||Y ) =
∫

[
∫

v(
fX,Y (x, y)
fX(x)fY (y)

)fX(x)μ(dx)]fY (y)ν(dy). (1.124)

If v(x) = x lnx, then Iv is the Kullback–Leibler distance; see (1.74) and (1.81).
In this case I(X||Y ) := Ix lnx(X||Y ) satisfies

I(X||Y ) =
∫

[
∫

ln(
fY,X(x, y)
fX(x)fX(y)

)fX,Y (x, y)μ(dx)]ν(dy)

=
∫
fX,Y ln fX,Y d(μ⊗ ν)−

∫
fX ln fXdμ−

∫
fY ln fY dν

= Sμ(L(X)) + Sν(L(Y ))− Sμ⊗ν(L(X,Y )),

where Sν is the Shannon entropy introduced in (1.25). As

Sν(L(Y )) + Sμ(L(X)) = Sν⊗μ(L(Y )⊗ L(X)), (1.125)

we can say that Iv(Y ||X) is the reduction of entropy due to the dependence
of X and Y .

Example 1.96. Suppose that (X,Y ) has a normal distribution N(a,Σ) with ex-
pectation a = (a1, a2) and covariance matrix

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where we assume −1 < ρ < 1 and σ2
i > 0, i = 1, 2. Then

fX,Y (x, y) = (2πσ1σ2)
−1(1− ρ2)−1/2 exp{− 1

2(1− ρ2)

[
s2 − 2ρst + t2

]
},

where s = (x− a1)/σ1 and t = (y − a2)/σ2. Let μ = ν = λ. Then

Sλ2(N(a,Σ)) = ln(2πσ1σ2) +
1

2
ln(1− ρ2)

+
1

2(1− ρ2)
[E(

X − a1

σ1
)2 − 2ρE(

X − a1

σ1
)(

Y − a2

σ2
) + E(

Y − a2

σ2
)2]

= ln(2πσ1σ2) +
1

2
ln(1− ρ2) + 1.

On the other hand, Sλ(N(ai, σ
2
i )) = 1

2
+ 1

2
ln(2πσ2

i ) by (1.27), so that I(X||Y ) =
− 1

2
ln(1− ρ2).

The mutual information can also be expressed in terms of the conditional
densities. Indeed, (1.124) yields
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Iv(X||Y ) = Iv(Y ||X) =
∫

[
∫

v(
fY |X(y|x)
fY (y)

)fY (y)ν(dy)]fX(x)μ(dx)

=
∫

Iv(K(·|x), PY )PX(dx),

where fY |X(y|x) = fY,X(x, y)/fX(x) is the conditional density of Y , given
X = x, and

K(B|x) =
∫
B

fY |X(y|x)ν(dy)

is the conditional distribution of Y , given X = u. The next proposition shows
that a similar statement holds without the existence of densities, provided
that regular conditional distributions exist.

Proposition 1.97. Suppose that (Y,B) is a Borel space, and that K(·|x) =
L(Y |X = x) is a regular conditional distribution. Then

Iv(Y ||X) =
∫

Iv(K(·|x), PY )PX(dx),

where PX and PY are the distributions of X and Y , respectively.

Proof. Introduce the kernel L by L(B|x) = PY (B) and apply Proposition
1.95.

We consider the model (X ,A, (Pθ)θ∈Δ) that satisfies the condition (A3)
and suppose that Π is a prior on (Δ,BΔ) with L(X,Θ) = P⊗Π. It is clear
that we can make better inferences on Θ based on X if there is a stronger
dependence between the random variables. In this sense we can characterize
the informativeness of the model (Pθ)θ∈Δ by making the dependence between
X and Θ as large as possible. More precisely, for a family of priors P we set

Cv(P,P) = sup
Π∈P

Iv(Θ||X), L(Θ) = Π, Π ∈ P.

For v(x) = x lnx the value Cv(P,P) is called the channel capacity in infor-
mation theory; see Cover and Thomas (1991). It can be shown that Cv(P,P)
is the maximum amount of information that can be transmitted through the
channel P = (Pθ)θ∈Δ. In our context we use Cv(P,P) as a numerical value that
characterizes the maximum dependence between X and Θ. We call Π0 ∈ P a
most informative prior if

Iv(Θ0||X) = Cv(P,P), L(Θ0) = Π0.

We recall that by Proposition 1.97

Iv(Θ||X) = Iv(P⊗Π, (PΠ)⊗Π) =
∫

Iv(Pθ,PΠ)Π(dθ),

so that a prior that maximizes Iv(X||Θ) guarantees a maximum dependence
between X and Θ, i.e., a largest distance between the joint distribution and
the product of the marginal distributions. The next theorem shows that the
conjugate prior is most informative in Gaussian models.
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Theorem 1.98. For the model (X ,A, (Pθ)θ∈Δ) = (R,B, (N(θ, σ2))θ∈R), with
a known σ2 > 0, and v(x) = x lnx, the prior Π0 = N(0, τ2) is most informa-
tive in the class

P0 = {Π : Π ∈ P(BΔ), Π 
 λ,

∫
θΠ(dθ) = 0,

∫
θ2Π(dθ) ≤ τ2}.

The channel capacity is given by Cv(P,P) = 1
2 ln(1 + τ2/σ2).

Proof. Put π(θ) = (dΠ/dλ)(θ). Then L(X,Θ) has a Lebesgue density
that is given by ϕθ,σ2(x)π(θ). We evaluate the Shannon entropy of L(X,Θ).

Sλ2(L(X,Θ))

= −
∫

[
∫
ϕθ,σ2(x)π(θ) ln(ϕθ,σ2(x)π(θ))dx]dθ

= −
∫

[
∫
ϕ0,σ2(x− θ) ln(ϕ0,σ2(x− θ))dx]π(θ)dθ −

∫
π(θ) lnπ(θ)dθ

= −
∫
ϕ0,σ2(x) ln(ϕ0,σ2(x))dx−

∫
π(θ) lnπ(θ)dθ

= Sλ(N(0, σ2)) + Sλ(Π).

Hence by (1.125),

I(X||Θ) = Sλ(L(X)) + Sλ(L(Θ))− Sλ(N(0, σ2))− Sλ(Π)
= Sλ(L(X))− Sλ(N(0, σ2)).

If Z and Θ are independent and L(Z) = N(0, σ2), then L(X) = L(Z + Θ).
The independence of Z and Θ yields

E(Z +Θ)2 = EZ2 + EΘ2 = σ2 + τ2.

We know from Example 1.29 that N(0, σ2
0) maximizes the Shannon entropy

in the class of all distributions with expectation 0 and variance σ2
0 . Hence

Sλ(L(Z +Θ)) ≤ Sλ(N(0, σ2 + τ2)),

where for L(Θ) = N(0, τ2) the equality is attained. Finally,

Cv(P,P0) = max
L(Θ)∈P0

I(X||Θ)

= Sλ(N(0, σ2 + τ2))− Sλ(N(0, σ2)) =
1
2

ln(1 + τ2/σ2).

We recall the concept of Markov dependence and a Markov chain. Suppose
U, V,W are random variables on (Ω,F,P) which take values in (U ,U), (V,V),
and (W,W), respectively, which we assume to be Borel spaces. Let K(·|u) be
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a regular conditional distribution of V given U = u, and L(·|v) a regular con-
ditional distribution of W given V = v. Denote by P(U,V,W ) = P◦ (U, V,W )−1

and P(U,V ) = P ◦ (U, V )−1 the joint distributions of (U, V,W ) and (U, V ),
respectively, and let PU = P ◦ U−1 be the marginal distribution of U. The
sequence U, V,W is called a Markov chain if

P(W,V,U) = L⊗ (K⊗ PU ). (1.126)

Equivalently, we can say that U, V,W is a Markov chain if

L(W |U = u, V = v) = L(W |V = v), P(U,V )-a.s.

This means that the conditional distribution of W depends on the “past”
U, V only through V. In general, any sequence of random variables X0,X1, ...
is called a Markov chain if for every n ≥ 1 the random variables U =
(X0, ...Xn−1), V = Xn, and W = (Xn+1,Xn+2, ...) form a Markov chain.
The interpretation is that the future behavior depends only on the presence
V, and for a fixed presence the strict past does not have any influence.

Problem 1.99.∗ The following statements are equivalent.

(A) U, V,W is a Markov chain.
(B) W,V,U is a Markov chain.
(C) U and W are conditionally independent in the sense

L((U,W )|V = v) = L(U |V = v)⊗ L(W |V = v), L(V )-a.s.

Problem 1.100. If U, V,W is a Markov chain, K(·|u) a regular conditional distri-
bution of V given U = u, and L(·|v) a regular conditional distribution of W given
V = v, then

M(B|u) := (LK)(B|u) =

∫
L(B|v)K(dv|u)

is a regular conditional distribution W , given U = u. The marginal distributions
PU , PV , and PW are related by

PV (A) = (KPU )(A) :=

∫
K(A|u)PU (du), A ∈ V

PW (B) = (LPV )(B) :=

∫
L(B|v)PV (dv), B ∈ U.

In a Markov chain the influence of the initial distributions PU becomes
weaker in the future. This result is known as data processing inequality in
information theory; see Cover and Thomas (1991).

Proposition 1.101. If U, V,W is a Markov chain, then

Iv(W ||U) ≤ Iv(V ||U).

Proof. It follows from Proposition 1.97 and Problem 1.100 that

Iv(W ||U) =
∫

Iv(M(·|u), PW )PU (du) =
∫

Iv(LK(·|u), LPV )PU (du).
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Now we apply Theorem 1.70 to get

Iv(LK(·|u), LPV ) ≤ Iv(K(·|u), PV )

for every u. Hence by Proposition 1.97 again

Iv(W ||U) ≤
∫

Iv(K(·|u), PV )PU (du) = Iv(V ||U).

In the previous part of this section we have used the information-theoretic
approach to find priors which maximize the dependence between X and
Θ. Now we study the structure of hierarchical Bayes models. Suppose that
(Υ,BΥ ) is another measurable space, and that Πξ, ξ ∈ Υ , is a family of prior
distributions on BΔ so that the mapping ξ �→ Πξ(B) is BΥ -B measurable for
every B ∈ BΔ. Hence Πξ defines a stochastic kernel Π : BΔ×Υ →k [0, 1]. Let
now Γ be a distribution on (Υ,BΥ ). By a hierarchical Bayes model we mean
a random vector (Ξ,Θ,X) for which L(X,Θ,Ξ) = P⊗Π⊗Γ , or equivalently,
for every h : X ×Δ× Υ →m R+,

Eh(X,Θ,Ξ) =
∫

[
∫

[
∫
h(x, θ, ξ)Pθ(dx)]Πξ(dθ)]Γ (dξ). (1.127)

The random variable Θ is a random version of the parameter θ, and the
random variable Ξ is a random version of the hyperparameter ξ. Suppose
now that (X ,A), (Υ,BΥ ), and (Δ,BΔ) are Borel spaces. By construction the
conditional distribution of X, given Θ = θ and Ξ = ξ, depends only on θ so
that (Ξ,Θ,X) is a Markov chain in the sense of (1.126). Let K = L(Θ|X = x)
and L = L(Ξ|Θ = θ) be regular conditional distributions. Then by (1.127),

L((X,Ξ)|Θ = θ) = Pθ ⊗ L(·|θ),

so that X and Ξ are conditionally independent, given Θ.
The idea of a hyperparameter arises in view of the fact that the choice of

the prior affects the inference in Bayes analysis. Often it is more appropriate
to make the choice flexible and to fix the prior only in a second step of the
Bayes hierarchy. The fact that this second step (i.e., the choice of the hyper-
parameter) has less influence on the inference can be made mathematically
rigorous by comparing the mutual information of Θ and X with that of Ξ
and X. The next result is a direct consequence of Proposition 1.101.

Proposition 1.102. If (X ,A), (Υ,BΥ ), and (Δ,BΔ) are Borel spaces, then

Iv(Ξ||X) ≤ Iv(Θ||X). (1.128)

The inequality (1.128) shows that the random hyperparameter Ξ has less
influence on the inference based on X than Θ has. One special case, for the
convex function v(x) = x lnx, appears in Lehmann and Casella (1998), and
another one, for Hellinger integrals, in Goel and DeGroot (1981).
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1.5 L2-Differentiability, Fisher Information

In this section we introduce a differentiability concept for parametrized sta-
tistical models. Our starting point is the statistical model (X ,A, (Pθ)θ∈Δ),
Δ ⊆ R

d. We recall from Definition 1.57 that for θ0, θ ∈ Δ any measurable
function Lθ0,θ with values in [0,∞] is called the likelihood ratio of Pθ with
respect to Pθ0 if

Pθ(A) =
∫
A

Lθ0,θdPθ0 + Pθ(A ∩ {Lθ0,θ =∞}).

It holds Pθ(Lθ0,θ = ∞) = 1 − Eθ0Lθ0,θ, and Lθ0,θ is a probability density of
Pθ with respect to Pθ0 if and only if Pθ 
 Pθ0 . If μ ∈ Mσ(A) dominates the
subfamily {Pθ0 , Pθ} with corresponding densities fθ0 , fθ, then

Lθ0,θ = (fθ/fθ0)I{fθ0>0} +∞I{fθ0=0,fθ>0}

is the likelihood ratio which is {Pθ0 , Pθ}-a.s. uniquely determined; see Lemma
1.58. In the following θ0 ∈ Δ0 remains fixed, and we introduce the notation
Lθ0(u) := Lθ0,θ0+u, for θ0+u ∈ Δ. To introduce a differentiability concept, the
first idea would be to require that there be a vector-valued measurable function
L̇θ0 such that for any u → 0 the remainder R(u) = Lθ0(u) − 1 − 〈u, L̇θ0〉
satisfies R(u) = oPθ0

(‖u‖). In this case L̇θ0 would be considered as a gradient
where the degree of approximation is specified by stochastic convergence. As it
turns out, however, this type of approximation is too weak for many purposes.
This is mainly due to the fact that stochastic convergence does not imply
convergence in the squared mean, or more generally in the rth mean for r ≥ 1.
A stronger concept could require that R(u) tends to zero in the sense of
Lr(Pθ0), r ≥ 1. However, this approach has the shortcoming that for r > 1,
and especially for the important case of r = 2, additional moment assumptions
become necessary as not every probability density is squared integrable. The
following simple fact shows how to get out of this dilemma. If t → 1, then
r(t1/r − 1)/(t − 1) → 1. Thus r(L1/r

θ0
(u) − 1) has the same local behavior as

Lθ0(u) − 1, but in addition r(L1/r
θ0

(u) − 1) has a finite moment of order r.
This is the basic idea of the concept of Lr-differentiability. The special case
of r = 2 is of utmost importance as L2(Pθ0) is a Hilbert space, and thus we
utilize primarily this fact in the sequel. Set

L2,d(Pθ0) = {T : T : X →m R
d, Eθ0 ‖T‖

2
<∞}. (1.129)

Definition 1.103. The family (Pθ)θ∈Δ is called L2-differentiable at θ0 ∈ Δ0

if there exists a neighborhood U(θ0) of θ0 such that

Pθ 
 Pθ0 , θ ∈ U(θ0), (1.130)

and there exists some L̇θ0 = (L̇θ0,1, ..., L̇θ0,d)
T ∈ L2,d(Pθ0), called the L2-

derivative (of the model) at θ0, such that as u→ 0,
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Eθ0([L
1/2
θ0

(u)− 1]− 1
2
〈L̇θ0 , u〉)2 = o(‖u‖2) (1.131)

The matrix I(θ0) = Eθ0L̇θ0L̇
T
θ0

is called the Fisher information matrix.

For detailed discussions and results related to L2-differentiability and other
differentiability concepts and approaches we refer to Strasser (1985), LeCam
(1986), Witting (1985), Pfanzagl and Wefelmeyer (1985), Bickel, Klaassen,
Ritov, and Wellner (1993), and Janssen (1998).

Remark 1.104. Often, instead of (1.130), it is only required that the total mass
of the part of Pθ0+u that is singular to Pθ0 satisfies Pθ0+u(Lθ0(u) = ∞) = o(‖u‖2).
It is easy to see that in this case there are distributions P̃θ � Pθ0 , θ ∈ U(θ0), with

D2(Pθ0+u, P̃θ0+u) = o(‖u‖2). Then (P̃θ)θ∈U(θ0) is again L2-differentiable and has the
same L2-derivative. This is the reason why we directly require (1.130).

Typically, the distributions Pθ, θ ∈ Δ, are defined by a family of densities
fθ, θ ∈ Δ, with respect to some σ-finite measure μ. Then it proves useful to
deal directly with the densities.

Problem 1.105.∗ If (1.130) is satisfied, then (Pθ)θ∈Δ is L2-differentiable at θ0 if
and only if there is some ḟθ0 ∈ L2,d(μ), defined analogously to (1.129), with

∫
(f

1/2
θ0+u − f

1/2
θ0

− 1

2
〈u, ḟθ0〉)2dμ = o(‖u‖2).

In this case it holds L̇θ0 = ḟθ0/f
1/2
θ0

, Pθ0 -a.s.

For any sequence of random variables a convergence in L2(Pθ0) implies the
Pθ0-stochastic convergence. For the reverse direction an additional condition
is needed that makes the sequence uniformly squared integrable. By Vitali’s
theorem (see Theorem A.21) this condition is equivalent to the norm conver-
gence. This splitting of the L2(Pθ0)-convergence is sometimes useful and is
more or less the content of the next lemma.

Lemma 1.106. If Pθ 
 Pθ0 , θ ∈ U(θ0), is satisfied, then the family (Pθ)θ∈Δ
is L2-differentiable at θ0 ∈ Δ0 with L2-derivative L̇θ0 if and only if the fol-
lowing two conditions are met.

Lθ0(u)− 1 = 〈u, L̇θ0〉+ oPθ0
(‖u‖) (1.132)

Eθ0(L
1/2
θ0

(u)− 1)2 =
1
4
uT I(θ0)u+ o(‖u‖2). (1.133)

Under the assumption (1.132) the condition (1.133) is equivalent to the uni-
form integrability of ‖u‖−2 (L1/2

θ0
(u)− 1)2 as u→ 0.

Proof. The expansion
√

1 + x = 1 + 1
2x + o(x), as x → 0, shows that

(1.132) is equivalent to
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L
1/2
θ0

(u)− 1 =
1
2
〈u, L̇θ0〉+ oPθ0

(‖u‖).

The rest follows from Vitali’s theorem; see Theorem A.21.

The norm given by Eθ0(L
1/2
θ0

(u) − 1)2 is closely related to the Hellinger
distance. Indeed, (1.110) and Pθ 
 Pθ0 yield

Eθ0(L
1/2
θ0

(u)− 1)2 = D2(Pθ0+u, Pθ0) = D2(Pθ0 , Pθ0+u).

From (1.133) we obtain

D2(Pθ0+u, Pθ0) =
1
4
uT I(θ0)u+ o(‖u‖2)

H1/2(Pθ0 , Pθ0+u) = 1− 1
8
uT I(θ0)u+ o(‖u‖2), as u→ 0. (1.134)

Similar expansions may be obtained for Hs(Pθ0 , Pθ0+u), 0 < s < 1.

Problem 1.107.∗ If the family (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ0, then

Hs(Pθ0 , Pθ0+u) = 1− 1

2
s(1− s)uT I(θ0)u + o(‖u‖2), as u→ 0.

A more general result can be established for the functionals Iv(P0, P1) if
the function v tends to infinity only moderately.

Problem 1.108.∗ If the convex function v is twice continuously differentiable and
satisfies v(0) + v∗(∞) <∞, then

Iv(Pθ0+u, Pθ0)− v(1) =
1

2
v′′(1)uT I(θ0)u + o(‖u‖2).

The results of the last two problems show that the local distance of dis-
tributions is determined by the Fisher information. The question arises as to
whether one can use this fact to consider differentiable models as a differen-
tiable manifold for which all geometric properties are expressed in terms of
the Fisher information. This was the idea of Amari (1985) and other authors.
For details we refer to Amari (1985).

The following technical result is useful for the next propositions.

Problem 1.109.∗ If X,Xn, Yn, n = 1, 2, ..., are random variables with EX2 <∞,
E(Xn − X)2 → 0, and supn EY 2

n < ∞, then the sequence XnYn, n = 1, 2, ..., is
uniformly integrable.

Next we show that the L2-differentiability implies the L1-differentiability
specified in the next proposition. Furthermore it is shown that the expectation
of L̇θ0 at θ0 is zero.

Proposition 1.110. If the family (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ0

with L2-derivative L̇θ0 , then

Eθ0 |(Lθ0(u)− 1)− 〈u, L̇θ0〉| = o(‖u‖) and Eθ0L̇θ0 = 0.
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Proof. The first statement is equivalent to

lim
n→∞

‖un‖−1 Eθ0 |(Lθ0(un)− 1)− 〈un, L̇θ0〉| = 0

for every sequence un → 0 with ‖un‖−1
un → a. The relation (1.132) implies

Zn := ‖un‖−1 ((Lθ0(un)− 1)− 〈un, L̇θ0〉) = oPθ0
(1).

To prove the first statement it remains to show that the sequence Zn is uni-
formly integrable. The uniform integrability of ‖un‖−1 〈un, L̇θ0〉 follows from
| ‖un‖−1 〈un, L̇θ0〉| ≤‖ L̇θ0 ‖ and Eθ0 ‖ L̇θ0 ‖2< ∞. Set X = 1

2 〈a, L̇θ0〉, Xn =
‖un‖−1 (L1/2

θ0
(un)−1), and Yn = (L1/2

θ0
(un)+1). Then the uniform integrability

of Zn follows from Problem 1.109. By condition (1.130) Eθ0(Lθ0(un)− 1) = 0
for all sufficiently large n. Hence Eθ0〈a, L̇θ0〉 = 0. By using the sequence
un = εnEθ0L̇θ0 , εn → 0, we get Eθ0〈Eθ0L̇θ0 , L̇θ0〉 =‖ Eθ0L̇θ0 ‖2= 0.

For exponential families we have shown in Theorem 1.17 that the function
θ �→ EθT is differentiable and that the derivation can be carried out under
the integral sign. A similar statement holds for L2-differentiable families.

Proposition 1.111. If the family (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ0 with
L2-derivative L̇θ0 , T : X →m R, and supθ∈U(θ0) EθT

2 < ∞, then g(θ) = EθT
is differentiable at θ0 and it holds

∇g(θ0) = Eθ0T L̇θ0 .

Proof. Fix a sequence un → 0 with ‖un‖−1
un → a. Then for all suffi-

ciently large n

‖un‖−1 [g(θ0 + un)− g(θ0)]− Eθ0T 〈a, L̇θ0〉
= Eθ0(‖un‖

−1 [Lθ0(un)− 1]T − T 〈a, L̇θ0〉).

As the sequence under the expectation is oPθ0
(1), in view of (1.132), we have

only to show the uniform integrability of this sequence. To apply the result of
Problem 1.109 we write

‖un‖−1 [Lθ0(un)− 1]T = [‖un‖−1 (L1/2
θ0

(un)− 1)][(L1/2
θ0

(un) + 1)T ] = XnYn

and set X = 〈a, L̇θ0〉. The L2-differentiability of (Pθ)θ∈Δ at θ0 ∈ Δ0 yields the
L2-convergence of Xn to X. The moment condition on Yn is obtained from

Eθ0Y
2
n ≤ 2Eθ0(Lθ0(un) + 1)T 2 ≤ 2 sup

θ∈U(θ0)

EθT
2

for all sufficiently large n.

Sometimes a reparametrization of the family (Pθ)θ∈Δ is useful. Suppose
θ0 ∈ Δ0 and U(θ0) ⊆ Δ0 is an open neighborhood of θ0. Let Λ ⊆ R

k be an
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open set and let κ = (κ1, ..., κd)T : Λ → U(θ0) be differentiable. Then with
the Jacobian

Jκ(η) =
(
∂κi
∂ηj

(η)
)
i=1,...,d, j=1,...,k

(1.135)

the first-order Taylor expansions of κ(η) can be written as

κ(η + w)− κ(η) = Jκ(η)w + o(‖w‖), η ∈ Λ, w ∈ R
k. (1.136)

Proposition 1.112. Let κ be differentiable at η0 ∈ Λ. If (Pθ)θ∈Δ is L2-
differentiable at θ0 = κ(η0) ∈ Δ0 with L2-derivative L̇θ0 and Fisher informa-
tion matrix I(θ0), then (Pκ(η))η∈Λ is L2-differentiable at η0 with L2-derivative
JTκ (η0)L̇κ(η0) and Fisher information matrix JTκ (η0)I(κ(η0))Jκ(η0).

Proof. For η → η0 and u(η) = κ(η)− κ(η0) it follows from (1.131) that

Eθ0 [(L
1/2
κ(η0)

(κ(η))− 1)− 1
2
〈κ(η), L̇κ(η0)〉]2 = o(‖κ(η)‖2).

Hence with (1.136) and Eθ0 ‖ L̇κ(η0) ‖2<∞,

Eθ0 [(L
1/2
κ(η0)

(κ(η))− 1)− 1
2
(JTκ (η0)L̇κ(η0))

T (η − η0)]2 = o(‖η − η0‖)2.

The L2-differentiability is preserved if we turn to a finite number of inde-
pendent observations.

Problem 1.113.∗ If (Xi,Ai, (Pi,θ)θ∈Δ) is L2-differentiable at θ0 ∈ Δ0 with deriva-
tives L̇i,θ0 and Fisher information matrices Ii(θ0), i = 1, ..., n, then

(Xn
i=1Xi,

⊗n
i=1 Ai, (

⊗n
i=1 Pi,θ)θ∈Δ)

is L2-differentiable with derivative L̇⊗n,θ0(x1, ..., xn) =
∑n

i=1 L̇i,θ0(xi) and Fisher
information matrix I⊗n(θ0) =

∑n
i=1 Ii(θ0).

In many situations one is confronted with the following problem. Suppose
the model (Pθ)θ∈Δ is L2-differentiable and T is some statistic which takes
values in Y, where (Y,B) is another measurable space. Then the question
arises if the reduced model (Qθ)θ∈Δ = (Pθ◦T−1)θ∈Δ is again L2-differentiable,
and if so, how the new L2-derivative is related to the previous one.

Theorem 1.114. Assume that the family (Pθ)θ∈Δ is L2-differentiable at θ0 ∈
Δ0 with L2-derivative L̇θ0 and Fisher information matrix I(θ0). Then for any
statistic T the family (Qθ)θ∈Δ = (Pθ ◦ T−1)θ∈Δ is again L2-differentiable at
θ0 ∈ Δ0 with L2-derivative and Fisher information matrix, respectively,

L̇T , θ0(t) = Eθ0(L̇θ0 |T = t), Qθ0-a.s.,
IT (θ0) = Eθ0([Eθ0(L̇θ0 |T )][Eθ0(L̇θ0 |T )]T ).
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Corollary 1.115. The Fisher information matrix of the reduced model is not
larger, in the Löwner semiorder, than the Fisher information matrix of the
original model, i.e., IT (θ0) satisfies uT [I(θ0)− IT (θ0)]u ≥ 0 for every u ∈ R

d.

Proof. It is clear that condition (1.130) implies Qθ 
 Qθ0 , θ ∈ U(θ0).
The relation (1.99) gives dQθ/dQθ0 = Eθ0(Lθ0(u)|T ). Proposition 1.110 gives
for u→ 0,

Eθ0 |[Eθ0(Lθ0(u)|T )−1]−〈Eθ0(L̇θ0 |T ), u〉| ≤ Eθ0 |[Lθ0(u)−1]−〈L̇θ0 , u〉| = o(‖u‖),

so that
Eθ0(Lθ0(u)|T )− 1− 〈Eθ0(L̇θ0 |T ), u〉 = oPθ0

(‖u‖).
For uniformly integrable sequences of random variables we may carry out the
limit under the expectation. Therefore it remains to show that

‖u‖−2 [(Eθ0(Lθ0(u)|T ))1/2 − 1]2

is uniformly integrable for u→ 0. From Eθ0(L
1/2
θ0

(u)|T ) ≤ (Eθ0(Lθ0(u)|T ))1/2

we get

‖u‖−2 [(Eθ0(Lθ0(u)|T ))1/2 − 1]2

= ‖u‖−2 [Eθ0(Lθ0(u)|T )− 2(Eθ0(Lθ0(u)|T ))1/2 + 1]

≤ ‖u‖−2 [Eθ0(Lθ0(u)− 2L1/2
θ0

(u) + 1)|T )]

= Eθ0(‖u‖
−2 [L1/2

θ0
(u)− 1]2|T ).

Therefore we get from Lemma A.32, that the terms on the right-hand side are
uniformly integrable as u→ 0. To conclude the proof we apply Lemma 1.106.

The following result provides a technical tool for proving the next theorem.
The subsequent general formulation is taken from Srivastava (1998).

Problem 1.116.∗ Let (X ,A) be a measurable space and S, T be metric spaces
with the corresponding σ-algebras of Borel sets S and T. Suppose that S is separable.
Suppose that ψ : S ×X → T has the following properties. ψ(s, ·) is A-T measurable
for every s from a dense subset of S and ψ(·, x) is continuous for every x ∈ X . Then
ψ is (S ⊗ A) -T measurable.

The differentiability concept discussed above refers to the L2-convergence.
Quite often the densities fθ(x) are differentiable with respect to the param-
eter θ in the common sense for almost all x. Therefore criteria that link the
usual differentiability with the L2-differentiability turn out to be useful when-
ever local approximations for a given model are desired. We use the notation
∇ = (∂/∂θ1, ..., ∂/∂θd)T and formulate suitable conditions that imply the
L2-differentiability.
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(A6) Given the model M = (X ,A, (Pθ)θ∈Δ) we require that

(A) (Pθ)θ∈Δ, Δ ⊆ R
d, is dominated by some μ ∈ Mσ(A).

(B) An A ∈ A exists with μ(X\A) = 0, fθ(x) =
dPθ
dμ

(x) > 0, x ∈ A, θ ∈ Δ.

(C) The function θ �→ fθ(x) is differentiable

and ∇fθ(x) is continuous in Δ0, x ∈ A.

The following criterion goes back to Hájek (1972); see also Strasser (1985)
and Witting (1985).

Theorem 1.117. Suppose the condition (A6) is fulfilled. Assume that there
is an open neighborhood U(θ0) of θ0 such that∫

‖∇ ln fθ‖2 fθdμ <∞, θ ∈ U(θ0), and (1.137)

θ �→
∫

(∇ ln fθ)(∇ ln fθ)T fθdμ is continuous in U(θ0). (1.138)

Then (Pθ)θ∈Δ is L2-differentiable at θ0 with L2-derivative L̇θ0 = ∇ ln fθ0 and
Fisher information

I(θ0) =
∫

(∇ ln fθ0)(∇ ln fθ0)
T fθ0dμ.

Proof. Put L̇(u) := ∇ ln fθ0+u. Then for u→ 0 by assumption (1.138),

Eθ0 ‖ L̇(u)L1/2
θ0

(u) ‖2= Eθ0+u ‖ L̇(u) ‖2→ Eθ0 ‖ L̇(0) ‖2 .

A componentwise application of Vitali’s theorem (see Theorem A.21) and the
continuity of ∇fθ yields limu→0 Eθ0 ‖ L̇(u)L1/2

θ0
(u)− L̇(0) ‖2= 0 and therefore

lim
δ→0

sup
‖u‖≤δ

Eθ0 ‖ L̇(u)L1/2
θ0

(u)− L̇(0) ‖2= 0. (1.139)

As
d

ds
L

1/2
θ0

(su) = f
−1/2
θ0

d

ds
f

1/2
θ0+su =

1
2
L

1/2
θ0

(su)〈u, L̇(su)〉

is continuous in s for every x ∈ A we get from Problem 1.116 that the right-
hand term is a measurable function of (s, x). Hence

Eθ0 [L
1/2
θ0

(u)− 1− 1
2
〈u, L̇(0)〉]2 =

1
4
Eθ0 [
∫ 1

0

L
1/2
θ0

(su)〈u, L̇(su)〉ds− 〈u, L̇(0)〉]2

≤ 1
4

∫ 1

0

Eθ0 [L
1/2
θ0

(su)〈u, L̇(su)〉ds− 〈u, L̇(0)〉]2ds

≤ 1
4
‖u‖2

∫ 1

0

Eθ0 ‖ L
1/2
θ0

(su)L̇(su)− L̇(0) ‖2 ds→ 0,

by (1.139).
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Remark 1.118. If the regularity conditions (A6) are satisfied and (1.138) holds we
know from Theorem 1.117 that (Pθ)θ∈Δ is L2-differentiable with Fisher information
matrix I(θ0) as specified in 1.103. Independent of this situation, if the regularity
conditions are fulfilled, then regardless of whether (1.138) holds, as long as (1.137)
holds we call

I(θ) =

∫
(∇ ln fθ)(∇ ln fθ)

T fθdμ

the Fisher information matrix.

Example 1.119. Suppose f : R → (0,∞) is a continuously differentiable Lebesgue
density with

∫
[f ′(x)]2

1

f(x)
λ(dx) <∞ and

∫
x2[f ′(x)]2

1

f(x)
λ(dx) <∞.

Let Pθ be the distribution with the Lebesgue density

fθ(x) =
1

σ
f(

x− μ

σ
), θ = (μ, σ) ∈ Δ = R× (0,∞).

Then fθ(x) is continuously differentiable with respect to θ, and it holds

(∇ ln fθ(x))T =
1

fθ(x)

(
− 1

σ2
f ′(

x− μ

σ
),− 1

σ2
f(

x− μ

σ
)− x− μ

σ3
f ′(

x− μ

σ
)

)
.

From here it follows, by calculating the corresponding integrals, that the Fisher
information matrix is

I(θ) =
1

σ2

⎛
⎝
∫

[f ′(x)]2/f(x)λ(dx)
∫
x[f ′(x)]2/f(x)λ(dx)∫

x[f ′(x)]2/f(x)λ(dx)
∫
x2[f ′(x)]2/f(x)λ(dx)− 1

⎞
⎠ .

Obviously, I(θ) is continuous, so that (Pθ)θ∈Δ, in view of Theorem 1.117, is L2-
differentiable at any θ0 ∈ Δ. The considered location-scale model is even L2-
differentiable under weaker assumptions on f. For details we refer to Strasser (1985).

Example 1.120. Let (Pθ)θ∈Δ be an exponential family with natural parameter
θ and μ-densities fθ(x) = exp{〈θ, T (x)〉 − K(θ)}, θ ∈ Δ. By Proposition 1.17 the
function K(θ) is continuously differentiable in Δ0. Furthermore, by Corollary 1.19
it holds EθT = ∇K(θ) and Cθ(T ) = ∇∇TK(θ). Hence

∫
(∇ ln fθ)(∇ ln fθ)

T dPθ = ∇∇TK(θ),

in view of Proposition 1.17, is a continuous function. Consequently, all assumptions
in Theorem 1.117 are fulfilled so that (Pθ)θ∈Δ is L2-differentiable at any θ0 ∈ Δ0with
L2-derivative L̇θ0 = T −∇K(θ0) and Fisher information matrix I(θ0) = ∇∇TK(θ0).

In (A6) we have assumed that θ �→ fθ is continuously differentiable. This
condition, however, is not satisfied in some special, but important, models.
Thus we ask for weaker conditions, but confine ourselves to the location
model. For the definition of absolutely continuity of a function we refer to
the discussion before Theorem A.24. Absolute continuous functions are λ-a.e.
differentiable. The subsequent criterion goes back to Hájek (1972).
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Lemma 1.121. Let f be a Lebesgue density on R, and let Pθ be the distribu-
tion with Lebesgue density f(x − θ). If f(x) > 0 for every x ∈ R, f is abso-
lutely continuous, and I :=

∫
((f ′)2/f)dλ <∞, then the family (Pθ)θ∈R is L2-

differentiable at every θ0 ∈ R with derivative L̇θ0(x) = −f ′(x− θ0)/f(x− θ0)
and Fisher information I.

Proof. As f is absolutely continuous it is also continuous. As f is positive
infa≤x≤b f(x) > 0, say f(x) ≥ C > 0, a ≤ x ≤ b. Then g(x) := f1/2(x)
satisfies

|g(x)− g(y)| = |f(x)− f(y)|
g(x) + g(y)

≤ 1
2C

|f(x)− f(y)| ,

so that g is absolutely continuous, and it holds g(x+h)−g(x) =
∫ x+h

x
g′(t)dt;

see Theorem A.24. To show that it holds∫
(g(x− (θ0 + h))− g(x− θ0) + hg′(x− θ0))2dx = o(h2),

it is, in view of Vitali’s theorem, and the fact that the integral on the left does
not depend on θ0, enough to show that

lim sup
h→0

1
h2

∫
(g(x− h)− g(x))2dx ≤

∫
(g′(x))2dx.

The Schwarz inequality gives for h > 0

1
h2

∫
(g(x− h)− g(x))2dx =

1
h2

∫
(
∫
I(x−h,x)(t)g′(t)dt)2dx

≤ 1
h

∫
(
∫
I(x−h,x)(t)(g′(t))2dt)dx =

∫
(g′(t))2dt,

which completes the proof.

The next example is from LeCam and Yang (2000).

Example 1.122. Suppose f(x) = C(β) exp{−|x|β}, β > 0. Then f is λ-a.e. dif-
ferentiable with derivative

f ′(x) = C(β) sgn(x)β|x|β−1 exp{−|x|β},

and it holds
∫
|f ′(x)|dx < ∞. Hence f is absolutely continuous. Apparently,∫

((f ′)2/f)dλ < ∞ if and only if β > 1/2. Hence in this case the location

model (Pθ)θ∈R with parent density f is L2-differentiable with derivative L̇θ0(x) =
− sgn(x− θ0)β|x− θ0|β−1.

In Proposition 1.110 we have shown that the expectation of the L2-
derivative L̇θ0 is zero at θ0. For any P ∈ P(A), and with L2,d(P ) analogously
to (1.129), we set

L
0
2,d(P ) = {T : T ∈ L2,d(P ), EPT = 0}. (1.140)

The question arises as to whether every T ∈ L
0
2,d(P ) may appear as the L2-

derivative of a differentiable model. That this is in fact true is the content of
the next example. The construction is taken from Janssen (2004).
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Example 1.123. For a fixed T ∈ L
0
2,d(P ) and θ ∈ Δ = R

d we set

C(θ) = EP (1 +
1

2
〈θ, T 〉)2, fθ = C(θ)−1(1 +

1

2
〈θ, T 〉)2

Pθ(A) =

∫
A

fθdP, θ ∈ Δ, A ∈ A.

We show that the family (Pθ)θ∈Δ is L2-differentiable at θ0 = 0 and it holds L̇0 = T.
To establish the L2-differentiability we apply Lemma 1.106. The condition (1.132)
follows from L0(u) = fu,

C(u) = EP (1 +
1

2
〈u, T 〉)2 = 1 +

1

4
EP (〈u, T 〉)2 = 1 + o(‖u‖),

Lθ0(u)− 1 = (1 + o(‖u‖))−1(1 + 〈u, T 〉+
1

4
〈u, T 〉)2)− 1 = 〈u, T 〉+ oP (‖u‖).

To prove the uniform integrability of ‖u‖−2 (L
1/2
θ0

(u)−1)2 for u→ 0 we remark that

‖u‖−2 (L
1/2
θ0

(u)− 1)2 ≤ 2 ‖u‖−2

( |1 + 1
2
〈u, T 〉 | − 1

C(u)

)2

+ 2 ‖u‖−2

(
C(u)− 1

C(u)

)2

.

Applying ||a| − |b|| ≤ |a− b| and | 〈u, T 〉 | ≤ ‖u‖ ‖T‖ to the first term we arrive at

‖u‖−2 (L
1/2
θ0

(u)− 1)2 ≤ 1

2(1 + o(‖u‖)) ‖T‖
2 + O(‖u‖).

Hence by taking for u a sequence un → 0 the left-hand side is dominated by a
nonnegative random variable with finite expectation. This proves the uniform inte-
grability of ‖u‖−2 (L

1/2
θ0

(u)− 1)2.

1.6 Solutions to Selected Problems

Solution to Problem 1.2: Let M be a d × d matrix of full rank, a, b ∈ R
d, and

consider θ̃ = MT (θ − b) and T̃ = M−1(T − a). Then with θ̃ = MT (θ − b) we get

〈θ, T 〉 = 〈θ̃, T̃ 〉+ bTMT̃ + θ̃TM−1a + bTa.

By absorbing the last three summands into K̃(θ̃) and μ̃, say, we see that (1.5) still

holds if θ, T,K,μ are replaced by θ̃, T̃ , K̃, μ̃, respectively. �

Solution to Problem 1.3: Without loss of generality we may assume EYi = 0 and
a0 = 0. Then for some vector a = (a1, ..., ad)

E(
∑d

i=1
aiYi)

2 =
∑d

i,j=1
aiajcov(Yi, Yj) = 0

if and only if a = 0 or the matrix (cov(Yi, Yj))1≤i,j≤d is singular. �

Solution to Problem 1.8: The extended family fails e.g. to satisfy (1.8). �
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Solution to Problem 1.9: For k ∈ N and λ > 0, the measure μ with point

masses μ({k}) = 1/k!, and θ = lnλ, T (k) = k, and K(θ) = exp{θ}, it holds

(dPoλ/dμ)(k) = exp {θT (k)−K(θ)} . �

Solution to Problem 1.12: (N⊗n(μ, σ2)) ◦ T−1
⊕n is the distribution of the random

vector (
∑n

i=1 Xi,
∑n

i=1 X2
i ) = (nXn, (n − 1)S2

n + nX
2
n). nXn and (n − 1)S2

n are
independent, where L(nXn) = N(nμ, nσ2) and the distribution of (n− 1)S2

n/σ
2 has

the Lebesgue density hn−1. For every h : R
2 →m R+

Eh(nXn, (n− 1)S2
n + nX

2
n)

=

∫
[

∫
h(t1, t2σ

2 + t21/n)ϕnμ,nσ2(t1)hn−1(t2)dt1]dt2

=

∫
[

∫
h(s1, s2)σ

−2ϕnμ,nσ2(s1)hn−1(s2/σ
2 − s2

1/(nσ
2))ds1]ds2. �

Solution to Problem 1.15: Set μ(dx) = x−1(1−x)−1I(0,1)(x)λ(dx). For α, β > 0
and x ∈ R,

dBeα,β

dμ
(x) =

Γ (α + β)

Γ (α)Γ (β)
xα−1(1− x)β−1x(1− x)I(0,1)(x)

= exp {〈θ, T (x)〉 −K(θ)} , θ ∈ (0,∞)2,

where θ = (α, β), T (x) = (T1(x), T2(x)) = (ln(x), ln(1 − x)), and K(θ) =

ln (Γ (θ1)Γ (θ2)/Γ (θ1 + θ2)) . �

Solution to Problem 1.31: If A = {x : m(x) > 0} and B = {θ : π(θ) > 0}, then

(P⊗Π)(A×B) =

∫
A

[

∫
B

fθ(x)π(θ)τ (dθ)]μ(dx) =

∫
A

m(x)μ(dx) = 1.

The proof follows from (μ ⊗ τ )(· ∩ (A×B))�� (M⊗Π)(· ∩ (A×B)). �

Solution to Problem 1.32: Straightforward calculations give

gaλ,β(x)gaa,b(β) = gaa+λ,b+x(β)
Γ (a + λ)

Γ (a)Γ (λ)
ba xλ−1

(b + x)a+λ
I(0,∞)(x)

= π(β|x)m(x). �

Solution to Problem 1.42: First note that Dd(1, a2, ..., ad) =
∏d

j=2(aj − 1).
Evaluating the determinant according to the first column we get

Dd(a1, ..., ad) = a1Dd−1(a2..., ad) + b(a2..., ad),

where b(a2..., ad) is a function of a2..., ad only. Putting a1 = 1 we see that

b(a2..., ad) =
∏d

j=2
(aj − 1)−Dd−1(a2..., ad).
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Hence Dd(a1, ..., ad) = (a1 − 1)Dd−1(a2..., ad) +
∏d

j=2(aj − 1). The proof follows by

induction. �

Solution to Problem 1.43: Put pd = 1−
∑d−1

i=1 pi. Then

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
p1

+ 1
pd

1
pd

· · · 1
pd

1
pd

1
p2

+ 1
pd

1
pd

· · ·
· · ·
1

pd
· 1

pd
1

pd
· · · 1

pd

1
pd−1

+ 1
pd

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the notation from the previous problem we get

det(J(p)) =
1

pd
d

Dd−1(1 +
pd

p1
, ..., 1 +

pd

pd−1
)

=
1

pd
d

(
∏d−1

j=1

pd

pj
)(1 +

∑d−1

j=1

pj

pd
) =

1

pd
(
∏d−1

j=1

1

pj
). �

Solution to Problem 1.50: The continuity is implied by the existence of the one-

sided derivatives which we show now. The second inequality in (1.54) yields that

the difference quotient is nondecreasing in the increment so that the derivative from

the right exists and the inequality (1.55) is fulfilled. The proofs of the existence of

the left-hand derivative and of (1.56) are similar. Add εn ↓ 0 to x and y in (1.55) to

get for x < y, (x− y)−1(v(x + εn)− v(y + εn)) ≥ D+v(x + εn). If first n→∞ and

then y ↓ x we get limn→∞ D+v(x + εn) ≤ D+v(x) which gives the right continuity

as D+v is nondecreasing. The left continuity of D−v is similarly seen. (1.57) follows

from (1.55) and the left and right continuity of D−v and D+v, respectively. �

Solution to Problem 1.51: The inequality (1.55) implies

(v − t)D+v(t) ≤ v(v)− v(t) ≤ (v − t)D+v(v), a < t < v < b.

For hn = (y − x)/n we get

∫ y

x

D+v(s)ds =
∑n

i=1

∫ x+ihn

x+(i−1)hn

D+v(s)ds ≤
∑n

i=1
hnD

+v(x + ihn)

≤
∑n

i=1
[v(x + (i + 1)hn)− v(x + ihn)] ≤ v(y + hn)− v(x + hn),

and analogously
∫ y

x
D+v(s)ds ≥ v(y−hn)−v(x−hn). The continuity of v completes

the proof of the first statement for D+v. The statement for D−v follows from the
fact that D+v and D−v differ only on an at most countable set. As to the second
statement, let x < y and α ∈ (0, 1). Set z = αx+(1−α)y, A = inf{g(s) : z ≤ s ≤ y},
andB = sup{g(s) : x ≤ s ≤ z}. Then

αv(x) + (1− α)v(y)− v(z) = (1− α)

∫ y

z

g(s)ds− α

∫ z

x

g(s)ds

≥ α(1− α)(A−B)(y − x) ≥ 0. �
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Solution to Problem 1.53: As v is convex we have from (1.61) v(y) − v(x) −
D+v(x)(y− x) ≥ 0, so that v is strictly convex at x0 ∈ (a, b) if and only if for every
ε > 0 it holds max(vl(ε), vr(ε)) > 0, where

vr(ε) = v(x0 + ε)− v(x0)−D+v(x0)ε, vl(ε) = v(x0 − ε)− v(x0) + D+v(x0)ε.

As both vr and vl are nondecreasing the last statement is equivalent to the fact
that at least one, say vr, is positive for every ε > 0. Then by (1.61) 0 < vr(ε) =∫

(x0 + ε − t)I(x0,x0+ε](t)γv(dt) and consequently γv((x0 − ε, x0 + ε)) > 0 for every
ε > 0. Conversely, if the latter condition holds, then by (1.61) at least one of the
functions vr or vl is strictly positive. If v is not strictly convex at every a < x < b,
then there is some interval where v is linear, Taking x, y from this interval we see
that v(αx + (1 − α)y) = αv(x) + (1 − α)v(y). Conversely, if v is strictly convex,
x0 = αx + (1 − α)y, then for 0 < α < 1, x < y, it holds ε1 := x0 − x > 0,
ε2 := y − x0 > 0 so that by the definition of vr, vl and α(−ε1) + (1− α)ε2 = 0

αv(x) + (1− α)v(y)− v(αx + (1− α)y) = αvl(ε1) + (1− α)vr(ε2) > 0. �

Solution to Problem 1.54: The statements D+v0(x) = D+v(x) − D+v(1) and

v0(1) = 0 are clear from (1.62). v0(x) ≥ 0 follows from (1.58) as D+v0 is nondecreas-

ing. From the Solution of Problem 1.53 we know that v is strictly convex at 1 if and

only if one of the two functions vr(ε) = v0(1 + ε) or vl(ε) = v0(1− ε) is positive for

every ε > 0. �

Solution to Problem 1.55: For 0 < α < 1, 0 < x1 < x2, x0 = αx1 + (1− α)x2,

v∗(x0) = x0v(
1

x0
) = x0v(

αx1

x0

1

x1
+

(1− α)x2

x0

1

x2
)

≤ x0
αx1

x0
v(

1

x1
) + x0

(1− α)x2

x0
v(

1

x2
) = αv∗(x1) + (1− α)v∗(x2). �

Solution to Problem 1.56: If P1 = P1,a+P1,s = P̃1,a+P̃1,s are two decompositions

that satisfy (1.65), then there are P0-null sets N and Ñ such that P1,s(B ∩ N) =

P1,s(B) and P̃1,s(B ∩ Ñ) = P̃1,s(B) for every B ∈ A. Set N0 = N ∪ Ñ . Then

P1,s(X\N0) = P̃1,s(X\N0) = 0 and P1,a(A ∩ N0) = P̃1,a(A ∩ N0) = 0 for every

A ∈ A. Hence P1,s(B) = P1,s(B ∩ N0) = P̃1,s(B ∩ N0) = P̃1,s(B), which implies

P1,a = P̃1,a. �

Solution to Problem 1.61: By γv = γv0 it is enough to consider the function v0

in (1.62). The relation (1.61) and the monotone convergence theorem give

lim
y→∞

1

y
v0(y) = lim

y→∞

∫
1

y
(y − t)I(1,y](t)γv0(dt) = γv0((1,∞)),

lim
x↓0

v0(x) = lim
x↓0

∫
(t− x)I(x,1](t)γv0(dt) =

∫
tI(0,1](t)γv0(dt). �
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Solution to Problem 1.62: By the definition of Iv(P0, P1) in (1.69)

Iw(P0, P1) :=

∫
w(f0/f1)f1I{f0>0,f1>0}dμ + w(0)P1(f0 = 0)

+ w∗(0)P0(f1 = 0)

=

∫
v(f0/f1)f1I{f0>0,f1>0}dμ +

∫
a(f0/f1)f1I{f0>0,f1>0}dμ

+

∫
bf1I{f0>0,f1>0}dμ + (v(0) + b)P1(f0 = 0)

+ (v∗(0) + a)P0(f1 = 0) = Iv(P0, P1) + a + b,

so that Iv(P0, P1)− v(1) = Iw(P0, P1)− w(1). �

Solution to Problem 1.67: Use (πf0) ∧ ((1 − π)f1) ≤ f0 + f1 and Lebesgue’s

theorem. �

Solution to Problem 1.72: Apply (1.88) with v(x) = (
√
x−1)2 and v(x) = |x−1|.

�

Solution to Problem 1.74:∫
IC(x, y)L(x)(K⊗Q)(dx, dy) =

∫
[

∫
IC(x, y)L(x)K(dy|x)]Q(dx)

=

∫
[

∫
IC(x, y)K(dy|x)]P (dx) = (K⊗ P )(C).

Similarly, by the definition of the conditional expectation and (K⊗Q) ◦ S−1 = KQ,

∫
IB(y)EK⊗Q(L|S = y)(KQ)(dy) =

∫
IB(S)EK⊗Q(L|S) d(K⊗Q)

=

∫
EK⊗Q(IB(S)L|S) d(K⊗Q) =

∫
IB(S)Ld(K⊗Q)

=

∫
[

∫
IB(y)L(x)K(dy|x)]Q(dx) =

∫
IB(y)(KP )(dy), B ∈ B.

Finally,
∫

IB(y)EQ(L|T = y)(Q ◦ T−1)(dy) = EQIB(T )EQ(L|T )

= EQ(EQ(IB(T )L|T )) =

∫
IB(T )LdQ =

∫
IB(t)(P ◦ T−1)(dt). �

Solution to Problem 1.79: The first equation in the first statement follows

from Corollary 1.78 with v(x) = |x − 1|. It holds
∑

B∈p
(P0(B) − P1(B)) = 0 and∑

B∈p
|P0(B)−P1(B)| =

∑
B:P0(B)≥P1(B)(P0(B)−P1(B))−

∑
B:P0(B)<P1(B)(P0(B)−

P1(B)) = 2(P0(A)−P1(A)), A = ∪B:P0(B)≥P1(B)B, which implies the second equal-

ity. The second statement follows from Corollary 1.78 using the convex function

−xs, 0 < s < 1. �
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Solution to Problem 1.80: Using (1.76) we get

|
∫

hdP0 −
∫

hdP1 | ≤ |
∫

(hf0 − hf1)dμ |≤ c

∫
|f0 − f1| dμ = c ‖P0 − P1‖ .

The stated equality follows with h0 = IA − IA where A = {f0 > f1}.
Now let X be a metric space. Without loss of generality we may assume that μ

in (1.76) is a probability measure. It follows from Theorem 7.1.3 in Dudley (2002)
that μ(B) = sup{μ(F ) : F ⊆ B, F closed}. Hence there is a sequence of closed
sets F1 ⊆ F2 ⊆ · · · ⊆ A such that μ(A\Fn) → 0. Pi � μ implies that for every
ε > 0 there is some n0 with |Pi(A)− Pi(Fn0)| < ε/4. Let ρ be the metric of X and
ρ(x, F ) = inf{ρ(x, y) : y ∈ F}. Set ϕ(t) = 1 if t ≤ 0, ϕ(t) = 1 − t if 0 ≤ t ≤ 1, and
ϕ(t) = 0 if t ≥ 1. Put hm,n(x) = ϕ(mρ(x, Fn)). Then 0 ≤ hm,n(x) ≤ 1 is continuous
and hm,n0(x) ↓ IFn0

(x) for every x. Hence |
∫
hm0,n0dPi − Pi(Fn0)| < ε/4 for some

m0. Put h = 2hm0,n0 − 1. Then |h| ≤ 1, and with ‖P0 − P1‖ = 2(P0(A) − P1(A))
we get

| ‖P0 − P1‖ − (

∫
hdP0 −

∫
hdP1) |

≤ |
∫

(2IA − 1− h)dP0|+ |
∫

(2IA − 1− h)dP1| < 2ε,

and ‖P0 − P1‖ ≤ |
∫
hdP0 −

∫
hdP1 | +2ε. �

Solution to Problem 1.81: The statements (1.107) and (1.108) follow from

(1.105), (1.106), L0,1 = (f1/f0)I{f0>0} +∞I{f0=0,f1>0}, L1 = 2f1/(f0 + f1), and

L0 = 2− L1. (1.109) follows from (1.105) and Hölder’s inequality as Hs2(P0, P1) =∫
(f1/f0)

1−s2dP0 ≤ (
∫

(f1/f0)
1−s1dP0)

(1−s2)/(1−s1). (1.110) follows directly from the

definitions of the terms that are involved. (1.111) follows from sf0 + (1 − s)f1 −
fs
0f

1−s
1 ≥ 0, 0 < s < 1, with equality to 1 if and only if f0 = f1. Moreover,

P0(f0 > 0) = 1 implies that Hs(P0, P1) = 0 holds if and only if P0(f1 > 0) = 0,

which is equivalent to the singularity of P0 and P1. This gives (1.112). The proof of

(1.113) is similar to that of (1.109). The last statement follows from (1.106). �

Solution to Problem 1.82: fs
0f

1−s
1 ≤ sf0 + (1 − s)f1 ≤ f0 + f1 and Lebesgue’s

theorem yield lims↓0 Hs(P0, P1) = lims↓0
∫
fs
0f

1−s
1 dμ = P1(f0 > 0) = P1(L0,1 <∞),

which is one if and only if P1 � P0. �

Solution to Problem 1.83: It holds

Hs+it(P0, P1) =

∫
(
f0

f1
)s+itdP1.

To complete the proof we have only to apply Lemma 1.16. �

Solution to Problem 1.86: Dominate Pi, Qi by the probability measure μi, i =
1, ..., n; use

d(
⊗n

i=1 Pi)

d(
⊗n

i=1 μi)
(x1, ..., xn) =

∏n

i=1

dPi

dμi
(xi),

⊗n
i=1 μi-a.s.,
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and a similar statement for
⊗n

i=1 Qi. Then Fubini’s theorem (see Theorem A.26)
gives the first statement. Denote by Gn the σ-algebra generated by the first n co-
ordinates. Let PGn , QGn , and μGn be the restrictions of P , Q, and μ, respectively,
to Gn. Then

dPGn

dμGn
(x1, x2, ...) =

∏n

i=1

dPi

dμi
(xi),

and a similar statement holds for QGn . This gives

Hs(P
Gn , QGn) = Hs(

⊗n
i=1 Pi,

⊗n
i=1 Qi) =

∏n
i=1 Hs(Pi, Qi).

An application of Theorem 1.77 completes the proof. To establish (1.118) we employ
(1.110) to get

2[1− H1/2(P0, P1)] = D2(P0, P1) and H1/2(P0, P1) = 1− (1/2)D2(P0, P1).

Hence by the first statement,

D2(
⊗n

i=1 Pi,
⊗n

i=1 Qi) = 2[1−
n∏

i=1

(1− (1/2)D2(Pi, Qi))] ≤
n∑

i=1

D2(Pi, Qi),

by the well-known inequality
∣∣1−∏n

i=1(1− ai)
∣∣ ≤∑n

i=1 ai, 0 ≤ ai ≤ 1. �

Solution to Problem 1.99: As K(·|u) = L(V |U = u) and L(·|v) = L(W |V = v),

P(W ∈ dw, V ∈ dv, U ∈ du) = L(dw|v)K(dv|u)PU (du). (1.141)

If the stochastic kernel J is defined by PU (du)K(dv|u) = J(du|v)PV (dv), then

P(U ∈ du, V ∈ dv,W ∈ dw) = J(du|v)L(dw|v)PV (dv),

which is the stated conditional independence. Conversely, if the last equation holds,

then we introduce the kernel K by the requirement PU (du)K(dv|u) = J(du|v)PV (dv),

which implies the Markov property (1.141). As the condition of conditional inde-

pendence of U and W , given V , is symmetric in U and W the sequence W,V,U is

also a Markov chain. �

Solution to Problem 1.105: The condition (1.130) and the chain rule (see Propo-
sition A.28) imply Lθ0(u) = fθ0+uf

−1
θ0

so that

Eθ0(L
1/2
θ0

(u)− 1− 1

2
〈u, L̇θ0〉)2 =

∫
(f

1/2
θ0+u − f

1/2
θ0

− 1

2
〈u, ḟθ0〉)2dμ = o(‖u‖2). �

Solution to Problem 1.107: We get from (1.107) that

1− H1−s(Pθ0 , Pθ0+u) = 1− Eθ0L
s
θ0(u) = Eθ0(1− s + sLθ0(u)− Ls

θ0(u)).

ψ(x) = (1− s + sx− xs)(1− 1/2 + (1/2)x− x1/2)−1 is bounded on 0 ≤ x <∞, say

by C. Let un → 0 be a sequence which we may assume to be of the form un = εnhn,

where hn → h and ‖hn‖ = 1. Put Tn =: ε−2
n (1/2 + 1/2Lθ0(un) − L

1/2
θ0

(un)). Then

Eθ0Tn = ε−2
n (1 − H1/2(Pθ0 , Pθ0+un)) → 1

8
hT I(θ0)h

T by (1.134). It holds Tn =
1
2
(ε−1

n (L
1/2
θ0

(un)−1))2 and Tn →Pθ0 1
8
(hT L̇θ0)

2. As Eθ0
1
8
(hT L̇θ0)

2 = 1
8
hT I(θ0)h

T we
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get from the Theorem of Vitali (see Theorem A.21) that Tn is uniformly integrable.

Then by 0 ≤ ε−2
n (1 − s + sLθ0(un) − Ls

θ0(un)) ≤ CTn the sequence ε−2
n (1 − s +

sLθ0(un) − Ls
θ0(un)) is also uniformly integrable and the statement follows from

ε−2
n (1− s + sLθ0(un)− Ls

θ0(un)) →Pθ0 1
2
s(1− s)(hT L̇θ0)

2. �

Solution to Problem 1.108: Set v0(x) = v(x)− v(1)− v′(1)(x− 1). Then v(0) +

v∗(∞) < ∞ implies that ψ(x) = v0(x)(
√
x − 1)−2 is bounded and limx→1 ψ(x) =

4v′′(1). The rest is similar to the previous proof. �

Solution to Problem 1.109: It holds

|XYn|I[N,∞)(|XYn|) ≤ |XYn|I[√N,∞)(|X|) + |XYn|I[√N,∞)(|Yn|),
and thus

E|XYn|I[N,∞)(|XYn|)

≤ sup
n

[
EY 2

n

]1/2
([EX2I[

√
N,∞)(|X|)]

1/2 + [EX2I[
√

N,∞)(|Yn|)]1/2).

As EI[
√

N,∞)(|Yn|) ≤ N−1 supn EY 2
n we get for every sequence Nn → ∞ that

I[
√

Nn,∞)(|Yn|) →P 0 and EX2I[
√

Nn,∞)(|Yn|) → 0 by Lebesgue’s theorem, which

also implies EX2I[
√

Nn,∞)(|X|) → 0. Hence XYn, n = 1, 2, ... is uniformly inte-
grable. As

E|XYn −XnYn| ≤
[
E(X −Xn)2

]1/2
sup

n

[
EY 2

n

]1/2 → 0,

the uniform integrability follows from Vitali’s theorem, A.21. �

Solution to Problem 1.113: It is enough to consider the case n = 2. The general
case follows by mathematical induction. If u is sufficiently small, then by the defini-
tion of L2-differentiability Pi,θ0+u � Pi,θ0 , and the likelihood in the product model
is L⊗2,θ0(u)(x1, x2) = L1,θ0(u)(x1)L2,θ0(u)(x2), where

Li,θ0(u)(xi) =
dPi,θ0+u

dPi,θ0

(xi).

The L2-differentiability implies Li,θ0(u)− 1 = oPi,θ0
(1). The decomposition

L⊗2,θ0(u)− 1 = (L1,θ0(u)− 1)L2,θ0(u) + (L2,θ0(u)− 1)

shows that the first condition in Lemma 1.106 is satisfied. The second condition to

be proved for L⊗2,θ0(u) follows from the corresponding condition for Li,θ0(u) and

the relations (1.78) and Problem 1.86. �

Solution to Problem 1.116: Denote by ρS and ρT the metric in S and T ,
respectively, and let D be a dense and at most countable subset of S. Denote
by ρT (t, C) = inf{ρT (t, s), s ∈ C} the distance of the point t to the set C.
As the closed subsets C of T generate the σ-algebra T it suffices to show that
{(s, x) : ψ(s, x) ∈ C} ∈ S ⊗ A for every closed subset C. But this follows from

{(s, x) : ψ(s, x) ∈ C}

=
⋂∞

n=1

⋃
u∈D

({s : ρS(s, u) ≤ 1

n
} × {(u, x) : ρT (ψ(u, x), C) ≤ 1

n
}). �



2

Tests in Models with Monotonicity Properties

2.1 Stochastic Ordering and Monotone Likelihood Ratio

In this section we deal with problems where it is useful to extend the real line
to R = R ∪{∞} ∪ {−∞} and to admit the random variables to take values
in R. If we equip R with the metric ρ in Remark A.1, then (R, ρ) becomes
a compact metric space. By B we denote the σ-algebra of Borel sets and
random variables with values in R are F-B measurable mappings. We denote
by P(B) the set of all distributions on (R,B), whereas P(B) is the set of all
distributions on (R,B). The distributions P ∈ P(B) can be identified with
the distributions Q from P(B) with Q({∞} ∪ {−∞}) = 0.

Now we introduce and study a semiorder, called stochastic ordering, in the
space of distributions P(B).This ordering is used frequently in probability the-
ory and statistical analysis. In particular it proves useful for the construction
of level α tests for one-sided and two-sided testing problems and the study of
their power functions. Although the concept of stochastic ordering is too weak
to establish optimality, it leads to optimal level α tests whenever such tests
exist. An important tool for the construction of level α tests is the quantile
function of a distribution on (R,B).

Definition 2.1. Let F be the c.d.f. of a distribution Q ∈ P(B); that is,
F (t) = Q((−∞, t]), t ∈ R. The quantile function of Q, or generalized inverse
of F , is defined by

F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1], and (2.1)
F−1(0) = sup{x : F (x) = 0}.

For u ∈ [0, 1] the point cu = F−1(u) in R is called the u-quantile of F or the
(100u)th percentile of F .

Problem 2.2. Show that for every c.d.f. F the following hold.

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 2, c© Springer Science+Business Media, LLC 2008
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F (x) ≥ y iff x ≥ F−1(y), x ∈ R, y ∈ [0, 1].

F (F−1(y)− 0) ≤ y ≤ F (F−1(y)), y ∈ [0, 1].

F−1(F (x)) ≤ x ≤ F−1(F (x) + 0), x ∈ {t : F (t) > 0, t ∈ R}.

Here we have used the notation F (x − 0) = limε↓0 F (x − ε) and F−1(y + 0) =
limε↓0 F−1(y + ε).

Problem 2.3.∗ Let F be the c.d.f. of a distribution on (R,B), and let U be a
random variable that has a uniform distribution on [0, 1]. Then F−1(U) has the
c.d.f. F . On the other hand, if a random variable X with values in R has a c.d.f.
F : R → [0, 1] that is continuous, then F (X) has a uniform distribution on [0, 1].

Now we introduce the stochastic semiorder of distributions on (R,B).

Definition 2.4. For two distributions Q1, Q2 ∈ P(B) on R with c.d.f.s
Fi(t) = Qi([−∞, t]), t ∈ R, i = 1, 2, we call Q1 stochastically not larger
than Q2, denoted by Q1 � Q2, if

F1(t) ≥ F2(t), t ∈ R.

A family of distributions (Pθ)θ∈Δ on (R,B) with Δ ⊆ R is called stochastically
nondecreasing if for every θ1, θ2 ∈ Δ with θ1 < θ2 it holds Pθ1 � Pθ2 .

The relation � is obviously a semiorder in P(B) and is called the stochas-
tic semiorder . This semiorder, restricted to P(B), implies the pointwise
semiorder for the quantile functions that were introduced in Definition 2.1.

Proposition 2.5. Let Q1, Q2 ∈ P(B) with c.d.f.s F1, F2, respectively. If
Q1 � Q2, then

F−1
1 (α) ≤ F−1

2 (α), 0 ≤ α ≤ 1.

Proof. If Q1 � Q2, then {t : F1(t) ≥ α} ⊇ {t : F2(t) ≥ α}, which gives
the statement.

If X1 and X2 are random variables with X1 ≤ X2, P-a.s., then obviously
L(X1) � L(X2). On the other hand, it proves useful that for two distributions
their comparison via � can be reduced to the pointwise comparison of random
variables. This is the content of the next statement.

Proposition 2.6. For Q1, Q2 ∈ P(B) it holds Q1 � Q2 if and only if there
are random variables X1 and X2 with

L(Xi) = Qi, i = 1, 2, and X1 ≤ X2, P-a.s.

Proof. The statement that X1 ≤ X2, P-a.s., implies Q1 � Q2 is trivial.
Conversely, let Q1 � Q2 with c.d.f.s F1, F2, respectively. For some U that is
uniformly distributed on [0, 1], set Xi = F−1

i (U), i = 1, 2. By Proposition
2.5 we have F−1

1 (U) ≤ F−1
2 (U). Finally, by Problem 2.3, L(F−1

i (U)) = Qi,
i = 1, 2.

The stochastic semiorder can be characterized by a corresponding relation
for expectations.
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Proposition 2.7. Suppose X1,X2 are random variables with values in R and

L(X1) � L(X2). (2.2)

If φ : R→ R is a nondecreasing function with E|φ(Xi)| <∞, i = 1, 2, then

Eφ(X1) ≤ Eφ(X2). (2.3)

Conversely, if (2.3) holds for every nonnegative, bounded, and nondecreasing
function φ : R→ R, then the relation (2.2) holds.

Proof. If X1 and X2 are random variables with values in R, then the first
statement follows from Proposition 2.6. The extension to the case where X1 or
X2 may also assume the values −∞ and ∞ is straightforward. The converse
statement of the proposition is obtained by choosing φ = I(t,∞], t ∈ R.

To illustrate the stochastic semiorder in P(B) we give some examples.

Example 2.8. Let X be a random variable with c.d.f. F . For any θ ∈ R the c.d.f.
of X + θ is F (· − θ). Thus, (L(X + θ))θ∈R is stochastically nondecreasing.

Problem 2.9. Let F be any c.d.f. and denote by Qα, α > 0, the distribution that
has the c.d.f. Fα = 1− (1−F )α. Then Qα is stochastically nonincreasing for α > 0.

An important fact is that the distribution of likelihood ratio L0,1 is under
P1 stochastically not smaller than under P0. Somewhat more can be stated.

Theorem 2.10. If for the binary model (X ,A, {P0, P1}) the likelihood ratio
is of the form L0,1 = h(T ), where T : X →m R and h : R →m R is non-
decreasing, then L(T |P0) � L(T |P1).

Proof. By the definition of the likelihood ratio L0,1 (see Definition 1.57),∫
gdP1 =

∫
gL0,1dP0 +

∫
gI{∞}(L0,1)dP1

holds for every g : X →m R+. Let ϕ : R → R be any nonnegative, bounded,
and nondecreasing function. Put A0 = {t : h(t) < 1} and A1 = {t : h(t) > 1}.
As h is nondecreasing the sets Ai are some intervals, open or closed, and we
have a0 := supt∈A0

ϕ(t) ≤ inft∈A1 ϕ(t) =: a1. Hence,∫
ϕ(T )dP1 −

∫
ϕ(T )dP0

=
∫
IA0∪A1(T )ϕ(T )(L0,1 − 1)dP0 +

∫
ϕ(T )I{∞}(L0,1)dP1

≥ a0

∫
IA0(T )(L0,1 − 1)dP0 + a1

∫
IA1(T )(L0,1 − 1)dP0

+ a1

∫
I{∞}(L0,1)dP1 ≥ a0

∫
(L0,1 − 1)dP0 + a0

∫
I{∞}(L0,1)dP1 = 0.

Now we study families of distributions (Pθ)θ∈Δ for which the likelihood
ratio Lθ0,θ1 of Pθ1 with respect to Pθ0 , θ0, θ1 ∈ Δ, has a special structure.
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Definition 2.11. A model (X ,A, (Pθ)θ∈Δ) with Δ ⊆ R is said to have a
nondecreasing (increasing) likelihood ratio in the statistic T : X →m R if for
every θ0, θ1 ∈ Δ with θ0 < θ1 there is a nondecreasing (increasing) function
hθ0,θ1 : R →mR+ such that Lθ0,θ1 = hθ0,θ1(T ), {Pθ0 , Pθ1}-a.s. We also say in
short that (Pθ)θ∈Δ has (strict) MLR, i.e., (strict) monotone likelihood ratio,
in T .

Many of the families that are used in statistics have a nondecreasing like-
lihood ratio. Some examples follow below.

Example 2.12. Let U(0, θ), θ ≥ 0, be the uniform distribution on [0, θ] with den-
sity u0,θ(x) = (1/θ)I[0,θ](x). Assume that X1, ..., Xn are i.i.d. with distribution
U(0, θ). Then the distribution U(0, θ)⊗n of (X1, ..., Xn) has the Lebesgue density
gθ(M) = θ−nI[0,θ](M), where M(x1, ..., xn) = max(x1, ..., xn). For 0 < θ0 < θ1 <∞
the likelihood ratio is

Lθ0,θ1 = (θ0/θ1)
n I[0,θ0](M) +∞I(θ0,θ1](M),

which is a nondecreasing function of M , {U(0, θ0)
⊗n,U(0, θ1)

⊗n}-a.s. Thus the
family (U(0, θ)⊗n)θ>0 has MLR in M .

Example 2.13. Consider the one-parameter exponential family (Pθ)θ∈Δ from
(1.5). The natural parameter set Δ is an interval and the likelihood ratio is

Lθ0,θ1 = exp{(θ1 − θ0)T −K(θ1) + K(θ0)},

which for θ0 < θ1, θ0, θ1 ∈ Δ, is obviously an increasing function of T . Thus the
family (Pθ)θ∈Δ has strict MLR in T . Moreover, if Λ is an interval and κ : Λ→ Δ is
a nondecreasing (increasing) function, then the family (Pκ(η))η∈Λ has (strict) MLR
in T .

To study the structure of special location models that have the MLR
property we need the concepts of unimodality and strong unimodality of a
distribution. Furthermore we need the concepts of convexity and subconvexity.
Convex functions of one variable have been introduced and studied already
in Section 1.3. Let C ⊆ R

d be a convex set. A function g : C → R is called
convex if

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y), x, y ∈ C, 0 ≤ α ≤ 1.

g is called concave if −g is convex. A function g : C → R is called subconvex
if {t : g(t) ≤ a, t ∈ C} is a convex subset of R

d for every a. It is clear that
every convex function is subconvex.

Problem 2.14. If g : O → R is subconvex and h : R → R is nondecreasing, then
h(g) is again subconvex.

Problem 2.15.∗ If g : R
d → R is subconvex and g(x) ≥ g(x0) for every x ∈ R

d,
then the function s �→ g(x0 + s(x−x0)) is nondecreasing on [0,∞) for every x ∈ R

d.
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Definition 2.16. A distribution P ∈ P(B) is called unimodal at mode m if
F (t) = P ((−∞, t]), t ∈ R, is convex in (−∞,m) and concave in (m,∞). P
is called strongly unimodal if P 
 λ and there is a λ-density f and an open
interval (a, b), finite or infinite, such that f(t) = 0 for t /∈ (a, b), f(t) > 0
for t ∈ (a, b), and g = − ln f is convex in (a, b). Then we also say that P is
log-concave.

Next we characterize unimodal distributions.

Proposition 2.17. A distribution Q is unimodal if and only if Q = αδm +
(1− α)P, 0 ≤ α ≤ 1, where P 
 λ and there is a λ-density f of P which is
nondecreasing for t < m and nonincreasing for t > m.

Proof. Consider the representation Q = αδm+(1−α)P with P ({m}) = 0,
which is valid regardless of Q being unimodal or not. As the c.d.f. of δm is
constant for t < m and t > m we see that Q is unimodal if and only if P is
unimodal. It suffices to consider the case t < m. If P is unimodal, then the
c.d.f. F of P is convex, has in view of Problem 1.50 a nondecreasing derivative
from the right, and (1.58) yields

F (b)− F (a) =
∫ b

a

D+F (s)ds, a < t < b < m.

Hence f := D+F is a version of the density and is nondecreasing for t < m.
Conversely, if there exists a version f of the density that is nondecreasing for
t < m, then by

F (b)− F (a) =
∫ b

a

f(s)ds, a < b < m,

and Problem 1.51 the function F is convex for t < m.
Next we establish properties of strongly unimodal distributions.

Proposition 2.18. If P is a strongly unimodal distribution with Lebesgue
density f , then limx→±∞ f(x) = 0, there is some m ∈ R such that f(x) ≤
f(m), and P is unimodal with mode m.

Proof. If g is convex, then D+g is nondecreasing and it follows from
(1.58) that there are x0 < x1 such that g is monotone for x < x0 and x >
x1. Hence f = exp{−g} is also monotone in this area. From

∫
fdx = 1

we get the first statement. This statement implies for the convex function
g that limx→±∞ g(x) = ∞. As g is continuous we get that there is at least
one minimum point, say m. Hence f(x) ≤ f(m). The convex function g is
subconvex. Hence −f = − exp{−g} is again subconvex; see Problem 2.14. It
remains to apply Problem 2.15 to the function −f.

There is an important characterization of the strong unimodality which
is due to Ibragimov (1956). For the definition of the generalized inverse of a
c.d.f. that is used below we refer to Definition 2.1.
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Proposition 2.19. A distribution P with Lebesgue density f that is lower
semicontinuous and satisfies f(x) = 0 on the complement of (F−1(0), F−1(1))
is strictly unimodal if and only if the distribution P ∗Q is unimodal for every
unimodal distribution Q.

Examples of strongly unimodal distributions are the Laplace distribution
with Lebesgue density lp(t), and the logistic distribution with Lebesgue den-
sity lo(t), where

lp(t) = 2 exp{−|t|} and lo(t) = exp{t}(1 + exp{t})−2.

The convexity of − ln lp(t) is clear, and the convexity of − ln lo(t) follows from
(− ln lo(t))′′ > 0.

Now we show that a strongly unimodal distribution used as a parent dis-
tribution in a location model generates a model with MLR.

Proposition 2.20. If the distribution P = L(X) is strongly unimodal with a
density that is positive everywhere, then the location family Pθ := L(X + θ),
θ ∈ R, has MLR in the identity.

Proof. fθ(t) := f(t−θ) is a Lebesgue density of Pθ. As fθ(t) > 0 it suffices
to show that

f(t0 − θ1)f(t1 − θ0) ≤ f(t0 − θ0)f(t1 − θ1),

t0, t1, θ0, θ1 ∈ R, t0 ≤ t1, and θ0 ≤ θ1. Put r = t0 − θ1, u = t1 − θ0, s =
min(t0 − θ0, t1 − θ1), and t = max(t0 − θ0, t1 − θ1). Then r ≤ s ≤ t ≤ u and
the above inequality is equivalent to

f(r)f(u) ≤ f(s)f(t), r ≤ s ≤ t ≤ u, u− t = s− r.

For g = − ln f the last inequality is equivalent to g(u) − g(t) ≥ g(s) − g(r).
As u − t = s − r we obtain this inequality from the convexity of g and the
inequality (1.54).

Suppose the sample space is R, and that (Qθ)θ∈Δ is dominated by some
μ ∈Mσ(B) and has μ-densities (gθ)θ∈Δ. Assume that it holds

gθ1(x0)gθ0(x1) ≤ gθ0(x0)gθ1(x1), θ0 < θ1, x0 < x1, (2.4)

for θ0, θ1 ∈ Δ and x0, x1 ∈ R.

Problem 2.21. Let (Qθ)θ∈Δ with Δ ⊆ R be a family of distributions on (R,B)
that is dominated by some μ ∈Mσ(B) and has μ-densities (gθ)θ∈Δ, where gθ(x) > 0
for every x ∈ R and θ ∈ Δ. Then (2.4) holds if and only if (Qθ)θ∈Δ has MLR in the
identity.

We get from Theorem 2.10 for the c.d.f.s Fθ(t) = Pθ((−∞, t]), t ∈ R,
θ ∈ Δ, the inequality Fθ1(t) ≤ Fθ0(t) for θ0 < θ1. The following problem
shows that an even stronger property holds.



2.1 Stochastic Ordering and Monotone Likelihood Ratio 81

Problem 2.22.∗ If (2.4) is satisfied, then for every x0, x1 and θ0, θ1 as speci-
fied there it holds Fθ0(x1)Fθ1(x0) ≤ Fθ0(x0)Fθ1(x1) as well as (1 − Fθ0(x1))(1 −
Fθ1(x0)) ≤ (1− Fθ0(x0))(1− Fθ1(x1)).

If the density gθ is continuously differentiable with respect to θ, then (2.4)
can be expressed with the help of derivatives. The condition (2.4) and the
following criterion go back to Karlin (1957).

Problem 2.23. Let (Qθ)θ∈Δ, where Δ is an open interval, be a family of distribu-
tions on (R,B) with Qθ0 �� Qθ1 , θ0, θ1 ∈ Δ. Suppose there is a μ ∈Mσ(B) with
μ�� Qθ, θ ∈ Δ, such that gθ(t) := dQθ/dμ is continuously differentiable with re-
spect to θ ∈ Δ. Then (2.4) holds if and only if t �→ ((∂ ln gθ)/∂θ)(t) is nondecreasing
for every fixed θ ∈ Δ.

For x ∈ R
n we introduce the rank statistic r and the order statistic s by

r(x) = (r1(x), ..., rn(x)) = (
∑n

i=1
I[0,∞)(x1 − xi), ...,

∑n

i=1
I[0,∞)(xn − xi)),

s(x) = (s1(x), ..., sn(x)), where
s1(x) = min(x1, ..., xn), and
si(x) = min({x1, ..., xn}\{s1(x), ..., si−1(x)}), i = 2, ..., n.

Following tradition, we use standard notation by setting for x ∈ R
n, and

for a random vector X with values in R
n,

(x[1], ..., x[n]) := (s1(x), ..., sn(x)),

X[·] = (X[1], ...,X[n]) := (s1(X), ..., sn(X)),

Xn,[·] = (Xn,[1], ...,Xn,[n]) := (s1(X), ..., sn(X)),

Rn = (Rn,1, ..., Rn,n) = (r1(X), ..., rn(X)).

(2.5)

Xn,[·] is used instead of X[·] whenever the dependence of X[·] on n is relevant
and thus has to be indicated.

Problem 2.24.∗ Let X1, ..., Xn be i.i.d. random variables in R with a common
distribution Qθ that has the Lebesgue density gθ, θ ∈ Δ ⊆ R. Let X[1], ..., X[n] be
the order statistics. If (gθ)θ∈Δ satisfies (2.4), then for every i ∈ {1, ..., n} (Qθ,i)θ∈Δ

with Qθ,i = L(X[i]) has Lebesgue densities (gθ,i)θ∈Δ that satisfy (2.4) as well.

We conclude this section by considering some families of distributions that
are frequently used in statistics. The first are the noncentral chi-square distri-
butions. Let X1, ...,Xn be independent random variables with Xi ∼ N(μi, 1),
i = 1, ..., n. If μ1 = · · · = μn = 0, then

∑n
i=1 X

2
i has a chi-square distribution

H(n) with n degrees of freedom, which has the Lebesgue density

hn(t) =
1

2n/2Γ (n/2)
t(n/2)−1 exp{− t

2
}I(0,∞)(t), t ∈ R.
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To find the distribution of
∑n

i=1 X
2
i for any μ1, ..., μn ∈ R we make use

of the following two facts. Since H(n) = Ga(n/2, 1/2) the distribution of
w−1

∑n
i=1 X

2
i is Ga(n/2, w/2) for any w > 0. The gamma distributions satisfy

Ga(α1, β) ∗ Ga(α2, β) = Ga(α1 + α2, β) α1, α2, β > 0. (2.6)

Problem 2.25.∗ Let X1, ..., Xn,W be independent, where Xi ∼ N(μi, 1), i =
1, ..., n, and W is positive with probability one. Consider the Poisson distributions
Po(λ) with p.m.f. poλ(k), λ > 0, and set in addition Po(0) = δ0. Then

L(W−1
∑n

i=1
X2

i )(B) =
∑∞

k=0
poδ2/2(k)

∫ ∞

0

Ga(k + n/2, w/2)(B)PW (dw),

where PW is the distribution of W , B is a Borel set, and δ2 =
∑n

i=1 μ2
i .

For independent random variables Xi ∼ N(μi, 1), i = 1, ..., n, we call

H(n, δ2) := L(
∑n

i=1
X2

i ), where δ2 =
∑n

i=1
μ2
i , (2.7)

the noncentral χ2-distribution with n degrees of freedom and noncentrality
parameter δ2. From Problem 2.25 we obtain, with the choice of W ≡ 1,

H(n, δ2) =
∑∞

k=0
poδ2/2(k)H(n+ 2k). (2.8)

Next we consider the noncentral F -distributions. Let X1, ...,Xn1 and
Y1, ..., Yn2 be independent random variables with L(Xi) = N(μi, 1), i =
1, ..., n1, and L(Yj) = N(0, 1), j = 1, ..., n2. Let δ2 =

∑n
i=1 μ

2
i . We call

F(n1, n2, δ
2) := L((n2

∑n1

i=1
X2

i )/(n1

∑n2

i=1
Y 2
i ))

the noncentral F -distribution with n1 and n2 degrees of freedom and non-
centrality parameter δ2. We could, of course, have also allowed a noncentral
chi-square distribution for the denominator as well, but that more general
setting would not be of any use later on. From Problem 2.25 we get

F(n1, n2, δ
2) =

∑∞

k=0
poδ2/2(k)F(n1 + 2k, n2), (2.9)

where F(n1, n2) = F(n1, n2, 0) denotes the central F -distribution with n1 and
n2 degrees of freedom.

Problem 2.26. The distributions H(m) and F(m,n) have MLR in the identity
with respect to the parameter m.

Finally, we deal with the noncentral t-distributions. Let X and Y be in-
dependent random variables with L(X) = N(μ, 1) and L(Y ) = H(k). Then

T(k, μ) := L((X
√
k)/(

√
Y )) (2.10)

is called the noncentral t-distribution with k degrees of freedom and noncen-
trality parameter μ.
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Theorem 2.27. The families T(k, μ), H(m, δ2), and F(m,n, δ2) have MLR
in the identity with respect to the parameters μ, δ2, and δ2, respectively.

Proof. For the proofs of the noncentral t- and F -distributions we refer
to Lehmann (1986), p. 295 and p. 428. As to H(m, δ2), its Lebesgue density
hm,δ2 has, in view of (2.8), the representation

hm,δ2 =
∑∞

k=0
poδ2/2(k)hm+2k.

Hence for δ20 < δ21 and t0 < t1,

hm,δ20
(t0)hm,δ21

(t1)− hm,δ21
(t0)hm,δ20

(t1)

=
∑∞

k,l=0
poδ20/2(k)poδ21/2(l)[hm+2k(t0)hm+2l(t1)− hm+2k(t1)hm+2l(t0)]

=
∑∞

k=0

∑∞

l=k+1
[poδ20/2(k)poδ21/2(l)− poδ20/2(l)poδ21/2(k)]

× [hm+2k(t0)hm+2l(t1)− hm+2k(t1)hm+2l(t0)].

The first bracket is nonnegative as Po(λ), λ > 0, has MLR in the identity. Sim-
ilarly, the second bracket is nonnegative as for fixed β0 the family Ga(α, β0),
α > 0, is an exponential family with generating statistic ln t which has MLR
in ln t and thus also in the identity.

2.2 Tests in Binary Models and Models with MLR

Often one has to decide, based on a sample, which of two different situations
holds true. For instance, this could be the decision whether a new treatment
is better than a standard, or whether a newly manufactured item has a longer
expected lifetime than all other items of this type used so far. To deal with
such a problem, we start with the statistical model

M = (X ,A, (Pθ)θ∈Δ), (2.11)

divide Δ into two disjoint subsets Δ0 and ΔA, and formulate the hypotheses

H0 : θ ∈ Δ0 and HA : θ ∈ ΔA. (2.12)

H0 is called the null hypothesis, HA is called the alternative hypothesis, and
we want to decide whether H0 or HA is true. In the classical Neyman–Pearson
approach the tool for making decisions is a test ϕ : X →m [0, 1], where ϕ(x)
is the probability of deciding in favor of HA after x ∈ X has been observed.

Definition 2.28. Every function ϕ : X →m [0, 1] is called a test, and the
function θ �→ Eθϕ is called the power function of the test ϕ. The set of all
tests ϕ : X →m [0, 1] is denoted by T . A test ϕ ∈ T is called nonrandomized
if ϕ takes on only the values 0 and 1, and it is called randomized otherwise.
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For a test ϕ, the set {ϕ = 0} is its acceptance area of H0, {ϕ = 1} is
its acceptance area of HA, and {0 < ϕ < 1} is its randomization area in X .
Deciding in favor of HA when H0 is true is called an error of the first kind .
Deciding in favor of H0 when HA is true is called an error of the second kind.
Consequently, for θ ∈ Δ0, Eθϕ is the probability of making an error of the
first kind, and for θ ∈ ΔA, 1 − Eθϕ is the probability of making an error of
the second kind.

The simplest testing model consists of just two distributions P0 and P1.
In such a so-called binary model ,

M0,1 = (X ,A, {P0, P1}), (2.13)

each of the two hypotheses, expressed in terms of the associated distributions,

H0 : P0 and HA : P1 (2.14)

consists of one single distribution. Such hypotheses are called simple and all
others are called composite. Searching now for an optimal test leads to a
dilemma due to the interrelation between the error probability of the first
kind E0ϕ and the error probability of the second kind E1(1− ϕ). Minimizing
the former calls for making ϕ small whereas minimizing the latter calls for
making ϕ large. Indeed, as the following proposition shows, optimal tests exist
only in trivial situations.

Proposition 2.29. For the model M0,1 in (2.13) and the hypotheses (2.14)
there exists a test ψ with minimum error probabilities, that is,

E0ψ = inf
ϕ∈T

E0ϕ and E1(1− ψ) = inf
ϕ∈T

E1(1− ϕ), (2.15)

if and only if P0 ⊥ P1. In that case E0ψ = E1(1− ψ) = 0.

Proof. If P0 ⊥ P1, then there is some A ∈ A with P0(A) = P1(X\A) = 0.
Set ψ = IA. Then E0ψ = 1 − E1ψ = 0, so that both conditions in (2.15)
are satisfied. Conversely, suppose that an optimal test ψ in the sense of (2.15)
exists. Then, in view of the trivial tests φ0 ≡ 0 and φ1 ≡ 1, E0ψ = E1(1−ψ) =
0. This implies P0(ψ = 0) = 1 and P1(ψ = 1) = 1 and thus P0 ⊥ P1.

Because there is no optimal test in the sense of (2.15), unless P0 ⊥ P1, we
have to restrict ourselves to a suitable subclass of tests. This, of course, holds
also for the general setting of (2.11) and (2.12). One approach is to control
the error probabilities of the first kind and then to minimize the error proba-
bilities of the second kind. This approach is suitable for situations where the
consequences of the two errors are substantially different. Controlling the error
probabilities of the first kind is appropriate if these errors are less acceptable
than those of the second kind. The following two definitions are given in full
generality. In the second “uniformly” may be dropped, of course, for binary
models.
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Definition 2.30. For any test ϕ : X →m [0, 1] its size is defined to be α(ϕ) :=
supθ∈Δ0

Eθϕ. For α ∈ (0, 1) a test ϕ is called a level α test for H0 if α(ϕ) ≤ α.
Especially we say that a test ϕ attains the level α if α(ϕ) = α.

Definition 2.31. Let T0 ⊆ T be a subclass of tests. A test ψ is called a
uniformly best test in T0 for H0 versus HA if ψ ∈ T0 and for every ϕ ∈ T0 it
holds

Eθϕ ≤ Eθψ, θ ∈ ΔA.

Especially, if T0 = {ϕ : ϕ ∈ T , α(ϕ) ≤ α}, for some α ∈ (0, 1), is the set of
all level α tests, then ψ is called a uniformly best level α test.

Uniformly best is also called uniformly most powerful (UMP). In the above
definitions we have deliberately excluded the cases of α = 0 and α = 1 be-
cause they are trivial from a statistical point of view. Nevertheless, they are
somewhat intricate; see Remark 2.46. With the next problem it is shown that
a uniformly best level α test exhausts the side condition under H0 in the sense
of α(ϕ) = α, unless it has power 1 throughout HA.

Problem 2.32.∗ Let α ∈ (0, 1) be fixed and ψ be a uniformly best level α test for
the testing problem (2.12). If Eθ1ψ < 1 for at least one θ1 ∈ ΔA, then α(ψ) = α.
On the other hand, if Eθψ = 1 for all θ ∈ ΔA, then α(ψ) < α may occur, but there

is also a test ψ̃ with α(ψ̃) = α and Eθψ = 1 for all θ ∈ ΔA.

Thus, in the search for a uniformly best level α test for the testing problem
(2.12) we may restrict ourselves to the class of tests that attain the level α
and then search within that class for a uniformly best test.

For the sequel we assume that the parameter set Δ is a subset of the real
line and that the hypotheses are one-sided.

M = (X ,A, (Pθ)θ∈Δ), Δ ⊆ R,

H0 : Δ0 = (−∞, θ0] ∩Δ, HA : ΔA = (θ0,∞) ∩Δ, (2.16)

where θ0 ∈ Δ with (θ0,∞) ∩Δ �= ∅.
Let us consider now tests that are based on a suitable statistic T : X →m

R. It is clear that a statistic that reflects the order structure of Δ should have
on average larger values under larger parameters, which means that the family
of distributions Qθ = Pθ ◦T−1, θ ∈ Δ, is stochastically nondecreasing. In this
case it is reasonable to reject H0 for large values of T . To formalize this idea,
let Fθ(t) = Pθ(T ≤ t), t ∈ R, be the c.d.f. of T under Pθ, θ ∈ Δ. We assume
that Pθ0(T < ∞) = 1. For a fixed α ∈ (0, 1), let c1−α = F−1

θ0
(1 − α) be the

(1−α)-quantile of T under Pθ0 , see Definition 2.1. Let the test ψα : R →m [0, 1]
be given by

ψα(t) =

⎧⎨
⎩

1 if t > c1−α

γα if t = c1−α

0 if t < c1−α

, t ∈ R, (2.17)

where
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γα = [Fθ0(c1−α)− (1− α)] Pθ0(T = c1−α), with (2.18)
b a = b/a if a �= 0 and b a = 0 otherwise.

Moreover, let the test ϕT,α : X → [0, 1] be given by

ϕT,α(x) = ψα(T (x)), x ∈ X . (2.19)

Obviously we have Eθ0ϕT,α = α. Especially if Fθ0 is continuous at c1−α, then
Pθ0(T = c1−α) = 0 and ϕT,α is a nonrandomized test.

Theorem 2.33. Suppose that Δ = (a, b) ⊆ R and that θ0 ∈ (a, b) is fixed.
Let T : X →m R be a statistic for which the family Qθ = Pθ ◦ T−1, θ ∈ Δ,
is stochastically nondecreasing. If Pθ0(T < ∞) = 1 and α ∈ (0, 1), then ϕT,α
from (2.19) is a level α test for the null hypothesis H0 in (2.16) that attains
the level. Moreover, the power function θ �→ EθϕT,α is nondecreasing on Δ.

Proof. By construction of the test Eθ0ϕT,α = α. As the function ψα is
nondecreasing we get from Theorem 2.7 that the function

θ �→ EθϕT,α =
∫
ψαdQθ

is nondecreasing on Δ. This also implies that ϕT,α is a level α test for H0.

Let us now illustrate how such statistics T that satisfy the conditions of
Theorem 2.33 can be found and utilized.

Problem 2.34. If the family Pθ, θ ∈ (a, b), is stochastically nondecreasing and
T : R

n →m R is componentwise nondecreasing, then Qθ = P⊗n
θ ◦ T−1, θ ∈ Δ, is

again stochastically nondecreasing.

Example 2.35. There is a large variety of statistics T : R
n →m R that are com-

ponentwise nondecreasing. To give a few examples, there is the arithmetic mean
xn = (1/n)

∑n
i=1 xi, the β-trimmed mean

Tβ(x1, ..., xn) =
1

βn

∑[(1−β)n]

i=[βn]
x[i], β ∈ (0, 1/2),

where [βn] is the integer part of βn and x[1] ≤ x[2] ≤ · · · ≤ x[n] are the ordered
values of x1, ..., xn, and the median

md(x1, ..., xn) =

{
x[k+1] if n = 2k + 1,
1
2
(x[k] + x[k+1]) if n = 2k.

Next we study Gaussian models, that is, normal distributions, where σ2

may be known or unknown. For the latter case the following well-known fact
is established first.

Problem 2.36.∗ Suppose Z1, ..., Zn are i.i.d. N(0, 1). Then Zn := (1/n)
∑n

i=1 Zi

and
∑n

i=1(Zi−Zn )2 are independent, where Zn has the distribution N(0, 1/n) and∑n
i=1(Zi − Zn )2 has a χ2-distribution with n− 1 degrees of freedom.
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Example 2.37. We consider the Gaussian model and the one-sided testing prob-
lem for μ when σ2

0 is known; that is,

(Rn,Bn, (N
⊗n(μ, σ2

0))μ∈R), H0 : μ ≤ μ0, HA : μ > μ0, σ2
0 known. (2.20)

We denote by X1, ..., Xn the projections R
n → R and note that under N⊗n(μ, σ2

0)
the X1, ..., Xn are i.i.d. random variables with common distribution N(μ, σ2

0). We
set

U0 =

√
n

σ0
(Xn − μ0), where Xn =

1

n

∑n

i=1
Xi. (2.21)

Then
L(U0|N⊗n(μ, σ2

0)) = N(μ− μ0, 1).

For a fixed 0 < α < 1 we denote by u1−α the α-quantile of N(0, 1), that is, u1−α =
Φ−1(1− α), and set ψI(t) = I(u1−α,∞)(t). The test

ϕU0,α = ψI(U0) (2.22)

is called the Gauss test, or U -test. As the family (N(μ− μ0, 1))μ∈R is stochastically
nondecreasing in μ it is a level α-test for the hypotheses in (2.20). The power function
is

EμϕU0,α = 1− Φ(u1−α −
√
n(μ− μ0)

σ0
), μ ∈ R.

Now we consider the Gaussian model and the one-sided testing problem for μ
when σ2 is unknown, that is,

(Rn,Bn, (N
⊗n(μ, σ2))μ∈R,σ2>0), H0 : μ ≤ μ0, σ2 > 0, HA : μ > μ0, σ2 > 0.

(2.23)
We set

T =

√
n

Sn
(Xn − μ0), where S2

n =
1

n− 1

∑n

i=1
(Xi −Xn)2.

Then by the definition of the noncentral t-distribution in (2.10) it holds

L(T |N⊗n(μ, σ2)) = T(n− 1,
√
n(μ− μ0)/σ).

Denote by Tn−1(t) = T(n−1, 0)((−∞, t)) the c.d.f. of the central t-distribution with
n−1 degrees of freedom, and denote by t1−α,n−1 = T−1

n−1(1−α) its (1−α) quantile.
The test

ϕT,α =

{
1 if T > t1−α,n−1

0 if T ≤ t1−α,n−1
(2.24)

is called the t-test. As Tn−1 is continuous, and T(n−1,
√
n(μ−μ0)/σ) is stochastically

nondecreasing, we see that ϕT,α is a level α test for the hypotheses in (2.23). The
power function is

EμϕT,α = 1− Tn−1,
√

n(μ−μ0)/σ(t1−α,n−1), μ ∈ R.

Next we deal with a classical k sample problem which is called analysis of
variance or ANOVA. Here we utilize the stochastic ordering of the noncentral
F -distributions to construct a suitable level α test. Later, in Chapter 8, it is
shown that this test is optimal in a certain class of invariant tests. Technical
tools that are needed for the construction are prepared first.
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A symmetric d× d matrix is called idempotent if AA = A. Let L ⊆ R
d be

the linear subspace spanned by the column vectors of A. Then for every x ∈ R
d

the vector Ax belongs to L and x−Ax ⊥ L since A(x−Ax) = Ax−AAx = 0.
In other words, A is the matrix of the projection onto the subspace L.

Problem 2.38.∗ Show that the eigenvalues of a symmetric and idempotent matrix
A are either 0 or 1, where the number of 1s is the rank of the matrix A.

Problem 2.39.∗ Assume that X1, ..., Xk are independent and L(Xi) = N(μi, σ
2),

i = 1, ..., k. Set X = (X1, ..., Xk)T and μ = (μ1, ..., μk)T . If d ≤ k and A is a k × k
idempotent matrix of rank d, then L(XTAX/σ2) is a noncentral χ2-distribution
with d degrees of freedom and noncentrality parameter δ2 = μTAμ/σ2.

Example 2.40. Let Xi,1, ..., Xi,ni , i = 1, ..., k, be independent i.i.d. samples from
k normal populations. More specifically, we assume that L(Xi,j) = N(θi, σ

2), i =
1, ..., k, where σ2 > 0 is known. Suppose we want to test whether there are any
differences between the k expectations. For this purpose we set n =

∑k
i=1 ni, θ· =

(1/n)
∑k

i=1 niθi,

η2 =
∑k

i=1
ni(θi − θ·)

2, (2.25)

and consider testing the null hypothesis H0 : η2 = 0 against the alternative HA :
η2 > 0. To set up a suitable test statistic we introduce some standard notation. Let

Xi,· =
1

ni

∑ni

j=1
Xi,j and X·,· =

1

n

∑k

i=1
niXi,· . (2.26)

A suitable test statistic may be obtained by substituting the parameters θi and θ·
in (2.25) by estimators, and by attaching an appropriate normalizing factor. We
consider the test statistic

χ2 =
1

σ2

∑k

l=1
ni(Xi,· −X·,·)

2.

Set γi =
√

ni/n, γ = (γ1, ..., γk)T and A = γγT . Then A = AT and AA = A,
so that A is an idempotent matrix of rank 1. Consequently, I −A is an idempotent
matrix of rank k − 1. It holds,

χ2 =
∑k

i=1
(
√
niXi,·/σ)2 − (

∑k

i=1
γi
√
niXi,·/σ)2 = ZT (I −A)Z,

where Z = (
√
n1X1,·/σ, ...,

√
nkXk,·/σ)T is a vector with independent components

that are distributed according to N(δi, 1), where δi =
√
niθi/σ, i = 1, ..., k. From

Problem 2.39 we see that χ2 has a chi-square distribution with k − 1 degrees of
freedom and noncentrality parameter

δ2 = (δ1, ..., δk)T (I −A)(δ1, ..., δk)

=
∑k

i=1
δ2

i − (
∑k

i=1
γiδi)

2 =
1

σ2

∑k

i=1
ni(θi − θ·)

2. (2.27)

This leads to the χ2-test given by

ϕχ2,α =

{
1 if χ2 > χ2

1−α,k−1

0 if χ2 ≤ χ2
1−α,k−1

,
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where χ2
1−α,k−1 is the (1 − α)-quantile of the central chi-square distribution with

k−1 degrees of freedom. The distribution of χ2 at θ = (θ1, ..., θk) ∈ R
k is H(k−1, δ2),

which by Theorems 2.27 and 2.10 is a family that is stochastically nondecreasing in
the parameter δ2 ≥ 0. Thus, by Theorem 2.33, the power function of the test ϕχ2 is
a nondecreasing function in δ2 ≥ 0. Also here, the power function can be evaluated
explicitly. Indeed, from (2.8) we have

Eθϕχ2,α =
∑∞

l=0
poδ2/2(l)(1− Hk−1+2l(χ

2
1−α,k−1)).

The case of an unknown variance σ2 is more involved.

Example 2.41. Under the assumptions of the previous example, but where σ2 > 0
is now unknown, we use the following estimator of σ2,

σ̂2 =
1

n− k

∑k

i=1

∑ni

j=1
(Xi,j −Xi,·)

2.

Because X1,1, ..., Xk,nk are independent normal random variables (X1,1, ..., Xk,nk)
is multivariate normal. The relations X·,· =

∑k
i=1(ni/n)Xi,· and

cov((Xi,· −X·,·), (Xl,j −Xl,·))

= cov(Xi,·, Xl,j)− cov(Xi,·, Xl,·)− cov(X·,·, Xl,j) + cov(X·,·, Xl,·)

=
σ2

ni
δi,l −

σ2

ni
δi,l −

∑k

i=1

ni

n

σ2

ni
δi,l +

∑k

i=1

ni

n

σ2

ni
δi,l = 0

show that χ2 and σ̂2 depend on random vectors that are independent, so that

χ2/σ2 and χ̃2 = σ̂2/σ2 are independent. Similarly as in the previous example one

can show that χ̃2 = σ̂2/σ2 has a chi-square distribution with n − k degrees of
freedom. The statistic F = ((n−k)χ2)/((k−1)χ̃2) has the noncentral F -distribution
F(k−1, n−k, δ2) with δ2 from (2.27). This can be utilized to construct a level α test.
Let z1−α,k−1,n−k be the (1−α)-quantile of the central F -distribution F(k−1, n−k, 0).
Then by Theorems 2.27 and 2.33, the test

ϕF,α =

{
1 if F > z1−α,k−1,n−k

0 if F ≤ z1−α,k−1,n−k

is a level α test for H0, and its power function is a nondecreasing function of δ2 ≥ 0.
Also here, we have an explicit representation of the power function. It holds

EθϕF,α =

∫ ∞

z1−α,k−1,n−k

fk−1,n−k,δ2(t)dt,

where fk−1,n−k,δ2 is the Lebesgue density of F(k− 1, n− k, δ2). This test ϕF,α is the
well-known Fisher’s F -test for the analysis of variance one-way layout. We conclude
the example with the remark that the noncentral F -distribution F(k − 1, n− k, δ2)
can be, similarly as the noncentral χ2-distribution, expanded as a Poisson mixture
of central F -distributions; see (2.9).

The crucial question that has been left open so far is whether the tests in
the previous examples have good power properties, and especially if they are
uniformly best level α tests, at least in a suitable class of tests. To study this
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problem in detail we have to return to the very beginning, i.e., to a binary
modelM0,1 from (2.13). Likewise as in the previous examples the construction
of suitable tests is usually based on a statistic, called the test statistic, whose
values indicate somehow which of the two hypotheses is more likely to be
true. When we are dealing with a binary model, then the likelihood ratio L0,1

seems to be the appropriate test statistic because by Theorem 2.10 L0,1 is
under under P1 stochastically not smaller than under P0.

Set P = 1
2 (P0 + P1) and Li = dPi/dP , i = 0, 1. Then L1 = 2 − L0 and

according to (1.68) the likelihood ratio L0,1 has the representation

L0,1 = ((2− L0)/L0)I{L0>0} +∞I{L0=0}, and (2.28)

L0 =
2

1 + L0,1
and L1 =

2L0,1

1 + L0,1
,

with the convention of 2/∞ = 0 and (2∞)/(1 +∞) = 2.

Definition 2.42. For the model M0,1 in (2.13) and the hypotheses in (2.14),
a test ϕc ∈ T is called a likelihood ratio test at c ∈ [0,∞) if ϕc = 1 on
{L0,1 > c}, {P0, P1}-a.s., and ϕc = 0 on {L0,1 < c}, {P0, P1}-a.s. It is called
a likelihood ratio test at c = ∞ if ϕ∞ = 0 on {L0,1 < ∞}, {P0, P1}-a.s. The
set of all likelihood ratio tests for any c ∈ [0,∞) is denoted by R0,1.

Set
F0(t) := P0(L0,1 ≤ t), t ≥ 0, (2.29)

and recall that P0(L0,1 <∞) = 1 by P0(L0 = 0) = 0 and (2.28). The existence
of a likelihood ratio test with size α for any given α ∈ (0, 1) is shown next.
The construction follows along the lines of (2.17), (2.18), and (2.19). Here it
is based on c1−α := F−1

0 (1− α), the (1− α)-quantile of F0.

Proposition 2.43. Let α ∈ (0, 1) be fixed. If

ψα(t) =

⎧⎨
⎩

1 if t > c1−α

γα if t = c1−α

0 if t < c1−α

, t ∈ R, (2.30)

where

c1−α = F−1
0 (1− α), γα = [F0(c1−α)− (1− α)] P0(L0,1 = c1−α),

and F0 is given by (2.29), then E0ψα(L0,1) = α.

Proof. We have E0ψα(L0,1) = (1 − F0(c1−α)) + γαP0(L0,1 = c1−α) = α.

The test ψα(L0,1) with ψα in (2.30) is of course a likelihood ratio test
as ψα(L0,1) meets the conditions of Definition 2.42. In the testing problem
(2.14) for the statistical model (2.13) let α ∈ (0, 1) be a fixed given level. In
practice, the values of α are usually small; e.g. α = 0.05 or α = 0.01. Of minor
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interest are the excluded trivial cases of α = 0 and α = 1 which are, however,
considered briefly in Remark 2.46.

The likelihood ratio tests introduced by Definition 2.42 have important
properties.

Proposition 2.44. Every ϕc ∈ R0,1 minimizes the second kind error prob-
ability in the class of all tests φ ∈ T with size α(φ) ≤ α(ϕc). On the other
hand, let ϕ ∈ T be any test that minimizes the second kind error probability
in the class of all tests φ ∈ T with size α(φ) ≤ α(ϕ). If α := α(ϕ) ∈ (0, 1),
then ϕ and the test ψα(L0,1) with ψα from (2.30) are {P0, P1}-a.s. identical
outside of {L0,1 = c1−α}.

Proof. Let ϕc ∈ R0,1. We use the notation from (2.28). By Definition 2.42
it holds for every φ ∈ T ,

0 ≤ (ϕc − φ)(L1 − cL0), {P0, P1}-a.s. (2.31)

Hence for every φ ∈ T with α(φ) ≤ α(ϕc) we get

0 ≤ EP (ϕc − φ)(L1 − cL0) ≤ EP (ϕc − φ)L1 = E1ϕc − E1φ.

To prove the second statement, assume that 0 < α(ϕ) < 1 and put α = α(ϕ).
Then ψα(L0,1) with ψα from (2.30) is another best test with size α. Hence

EP (ψα − ϕ)(L1 − c1−αL0) = EP (ψα − ϕ)L1 = 0,

which, in view of (2.31), completes the proof.

We have seen in Proposition 2.29 that under the model M0,1 from (2.13)
for the hypotheses (2.14) in general we cannot find a test that minimizes E0ϕ
and E1(1 − ϕ) simultaneously. We have then adopted the optimality crite-
rion of minimizing 1 − E1ϕ subject to E0ϕ ≤ α, where α ∈ (0, 1) is given.
This approach, where the two hypotheses are no longer treated symmetri-
cally, has proved to be very useful in many real-life situations. It reflects a
strong desire of accepting HA, but with the insurance that under H0 the prob-
ability of a wrong decision is at most α. Under the general model M from
(2.11) for the hypotheses (2.12) this approach has been generalized to the
concept of a uniformly best level α test for H0 versus HA in (2.12). The next
result, combined with the previous two propositions, is called the fundamen-
tal Neyman–Pearson lemma, which characterizes completely the best level
α test for H0 versus HA in (2.14). The first comprehensive presentation was
presumably provided by Lehmann (1959).

Theorem 2.45. (Neyman–Pearson Lemma) For testing H0 : P0 versus
HA : P1, every ϕc ∈ R0,1 is a best level α(ϕc) test. For α ∈ (0, 1) every best
level α test ϕ for H0 versus HA with α(ϕ) = α and the test ψα(L0,1) with ψα
from (2.30) are {P0, P1}-a.s. identical outside of {L0,1 = c1−α0}.
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Proof. The statements follow from Proposition 2.44.
It should be noted that each test ϕc ∈ R0,1 has been left arbitrary on the

set {L0,1 = c}. On that set we cannot distinguish the two distributions by
means of the threshold c for L0,1. All we know is that for every measurable
set B ⊆ {L0,1 = c} it holds P0(B) = cP1(B). An important consequence
of Theorem 2.45 and Proposition 2.43 is that every test ϕc ∈ R0,1 can be
modified on {L0,1 = c} to be constant there and still have the same power
function.

Remark 2.46. Under the binary model (2.13) let us briefly consider some trivial
tests for (2.14). Here we use the notation from (2.28). If ϕ is a level α test, then
E0ϕ = EPL0ϕ = 0 implies P (ϕ > 0, L0 > 0) = 0. Such a test ϕ is a best test if and
only if ϕ = 1 P1-a.s. on {L0 = 0}, which is equivalent with ϕ = 1 P -a.s. on {L0 = 0}
as P0(L0 = 0) = 0. Hence a test is a best level 0 test if and only if ϕ = I{L0=0}
P -a.s. For α = 1 the test φ ≡ 1 is a best level 1 test. However, ϕ∞ = I{L1>0} is also
a best level 1 test, but with size E0ϕ∞ that may be less than 1. A similar fact has
been established in Problem 2.32 where it has been shown that a level α ∈ (0, 1)
test ϕ with E1ϕ = 1 may have α(ϕ) < α.

Problem 2.47.∗ For α ∈ (0, 1) the best level α test ψα(L0,1) satisfies E1ψα(L0,1) ≥
α. Moreover, E1ψα(L0,1) = α holds if and only if P0 = P1.

Problem 2.48.∗ For fixed 0 < a < 1 < b, consider the following model of two
uniform distributions and the testing problem

M0,1 = (R,B, {U(0, 1),U(a, b)}), H0 : U(0, 1), HA : U(a, b).

Find a best level α test for H0 versus HA for a fixed given α ∈ (0, 1).

The Neyman–Pearson lemma can be used to establish uniformly best level
α tests for one-sided testing problems in one-parameter families. The next
theorem is for families with MLR and due to Karlin and Rubin (1956). It was
established earlier for exponential families by Blackwell and Girshick (1954).

Theorem 2.49. Suppose that in the model (X ,A, (Pθ)θ∈Δ) the family of dis-
tributions has a nondecreasing likelihood ratio in the statistic T : X →m R.
Let H0 : Δ0 = (−∞, θ0] ∩ Δ and HA : ΔA = (θ0,∞) ∩ Δ for some θ0 ∈ Δ,
where Δ0,ΔA �= ∅. For α ∈ (0, 1) the test ϕT,α from (2.19) is a uniformly
best level α test for H0 versus HA. Furthermore, the power function EθϕT,α is
nondecreasing in θ ∈ Δ, and it satisfies

EθϕT,α ≤ α = Eθ0ϕT,α ≤ EθϕT,α, θ ≤ θ0 ≤ θ, θ, θ ∈ Δ. (2.32)

Moreover, for every test ϕ with Eθ0ϕ = α it holds

EθϕT,α ≤ Eθϕ, θ < θ0, and EθϕT,α ≥ Eθϕ, θ > θ0. (2.33)

Proof. Let θ > θ0 be fixed. By Definition 2.11, Lθ0,θ
= hθ0,θ(T ), {Pθ0 , Pθ}-

a.s., where hθ0,θ is a nondecreasing function. For c := hθ0,θ(c1−α) it holds,
{Pθ0 , Pθ}-a.s.,
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hθ0,θ(T ) > c implies T > c1−α and (2.34)
hθ0,θ(T ) < c implies T < c1−α.

This means that the test ϕT,α is a likelihood ratio test at c. Hence by Theorem
2.45, ϕT,α is a best level α test at the level of α = Eθ0ϕT,α for testing Pθ0
versus Pθ. This proves the first statement and the second inequality of (2.33).
The inequalities in (2.32) follow from Theorem 2.10, Proposition 2.7, and the
fact that ϕT,α is a nondecreasing function of T . To prove the first inequality
of (2.33) let θ < θ0 be fixed. We remark that the tests 1−ϕ and 1−ϕT,α are
level (1 − α) tests for Pθ0 versus Pθ. Set hθ0,θ = (hθ,θ0)

−1 with the standard
conventions of 1/0 = ∞ and 1/∞ = 0. Then Lθ0,θ = hθ0,θ(T ), so that the
likelihood ratio is a nonincreasing function of T . As in (2.34) one can see that
1 − ϕT,α is a level (1 − α) likelihood ratio test for testing Pθ0 versus Pθ. An
application of Theorem 2.45 now shows that

EθϕT,α = 1− Eθ(1− ϕT,α) ≤ 1− Eθ(1− ϕ) = Eθϕ,

which completes the proof.
For a symmetric and unimodal parent distribution the power of any test

in the associated location model can be explicitly bounded by the power of
the best test.

Problem 2.50.∗ Suppose X has a symmetric and strongly unimodal distribution
P with a density f that is everywhere positive and c.d.f. F . For 0 < α < 1 let u1−α

be a (1− α)–quantile. If Pθ = L(X + θ) and ϕ : R →m [0, 1] is a test, then

∫
ϕdPθ1 ≤ α implies

∫
ϕdPθ2 ≤ F (uα + |θ2 − θ1|),

∫
ϕdPθ1 ≥ α implies

∫
ϕdPθ2 ≥ F (uα − |θ2 − θ1|).

Now we apply the last theorem to a reparametrized one-parameter expo-
nential family (Pκ(η))η∈(a,b) from (1.11) with μ-densities

dPκ(η)

dμ
(x) = exp{κ(η)T (x)−K(κ(η))}, x ∈ X , (2.35)

where κ : (a, b) → Δ0 is increasing and continuous. Then (Pκ(η))η∈(a,b) has
an increasing likelihood ratio in the generating statistic T . Denote by Fη the
c.d.f. of T under Pκ(η).

Proposition 2.51. Suppose that (Pκ(η))η∈(a,b) is a one parameter exponential
family on (X ,A) with μ-densities (2.35) and generating statistic T , where κ
is increasing. For a fixed η0 ∈ (a, b) let

H0 : η ≤ η0 versus HA : η > η0, η ∈ (a, b).

Then for α ∈ (0, 1) the test ϕT,α = I(c1−α,∞)(T ) + γαI{c1−α}(T ) with
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c1−α = F−1
η0

(1− α), γα = [Fη0(c1−α)− (1− α)] Pκ(η0)(T = c1−α)

is a uniformly best level α test for H0 versus HA and has an increasing power
function η �→ EηϕT,α. Moreover, for every other test φ with Eη0φ = α it holds

Eηφ > EηϕT,α, η < η0,

Eηφ < EηϕT,α, η > η0.

Proof. In view of Theorem 2.49 it only remains to prove the strict
monotonicity of the power function η �→ EηϕT,α. Assume that there are
η1, η2 ∈ (a, b) with η1 < η2 and Eη1ϕT,α = Eη2ϕT,α. We set α0 = Eη1ϕT,α.
As all distributions are equivalent we have 0 < α0 < 1. Then for the testing
problem H0 : Pκ(η1) versus HA : Pκ(η2) the test ϕT,α is a likelihood ratio test
and thus by Theorem 2.45 a best level α0-test. Because of Eη1ϕT,α = Eη2ϕT,α
the test ψ ≡ α0 is also a best level α0 test for H0 : Pκ(η1) versus HA : Pκ(η2),
and thus by Theorem 2.45 that ϕT,α = α0, Pκ(η1)-a.s., outside of {T = c1−α}.
As Pκ(η1)(ϕT,α = α0, T �= c1−α) = 0 we get Pκ(η1)(T = c1−α) = 1. But this is
impossible according to the assumption (A1) made in Section 1.1.

Although Proposition 2.51 gives the explicit structure of the UMP test the
remaining problem is to determine the quantile c1−α, which leads to numerical
methods unless the distribution of T under Pθ0 is known. The next example
presents such a situation.

Example 2.52. Consider the testing problem (2.20). We know from the second
part of Example 1.11 that (N⊗n(μ, σ2

0))μ∈R is a reparametrized exponential family
with generating statistic U(x1, ..., xn) =

∑n
i=1 xi and thus has MLR in U . But then

this family has also MLR in U0 from (2.21). Hence we see that the Gauss test (2.22)
is a uniformly best level α test for the testing problem (2.20).

Example 2.53. Suppose X1, ..., Xn are i.i.d. with distribution L(Xi) = (1−p)δ0+
pδ1, p ∈ (0, 1). As we have seen in Example 1.7, ((1−p)δ0+pδ1)

⊗n is an exponential
family with generating statistic T⊕n(x1, ..., xn) =

∑n
i=1 xi, where x = (x1, ..., xn) ∈

X = {0, 1}n. We want to construct a uniformly best level α test for

H0 : 0 < p ≤ p0 versus HA : p0 < p < 1. (2.36)

Under ((1− p0)δ0 + p0δ1)
⊗n the statistic T⊕n has a binomial distribution B(n, p0).

Let c1−α and γ1−α be determined by

∑c1−α−1

l=0
bn,p0(l) < 1− α ≤

∑c1−α

l=0
bn,p0(l), and (2.37)

γα =
1

bn,p0(c1−α)

[∑c1−α

l=0
bn,p0(l)− (1− α)

]
.

Then, according to Proposition 2.51, the test

ϕT,α(x) =

⎧⎨
⎩

1 if T⊕n(x) > c1−α

γα if T⊕n(x) = c1−α

0 if T⊕n(x) < c1−α

(2.38)

is a uniformly best level α test for H0 versus HA.
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The next problem deals with the Poisson distribution where the natural
parameter λ of the exponential family is the parameter of interest.

Problem 2.54. Let Po(λ) be a Poisson distribution with parameter λ > 0 and
p.m.f. poλ(x) = (1/k!)λk exp{−λ}, k ∈ N. Similarly to the previous example, for
λ0 > 0 and α ∈ (0, 1) fixed find a uniformly best level α test for H0 : λ ≤ λ0 versus
HA : λ0 < λ.

Example 2.55. We know from Example 1.13 that the family of distributions
(Ga⊗n(λ, β))λ,β>0 of an i.i.d. sample of size n from a gamma distribution is a two-
parameter exponential family with generating statistic

T (x1, ..., xn) = (T1(x1, ..., xn), T2(x1, ..., xn)) = (
∑n

i=1
lnxi,−

∑n

i=1
xi).

By Problem 1.14 for a fixed λ0 > 0 the family Ga⊗n(λ0, θ), θ > 0, is a one-
parameter exponential family with natural parameter θ and generating statistic
T2(x1, ..., xn) = −

∑n
i=1 xi. From (2.6) we know that under Ga⊗n(λ0, θ), S := −T2

has the distribution Ga(nλ0, θ). Let θ0 > 0 and α ∈ (0, 1) be fixed. We consider the
testing problem H0 : 0 < θ ≤ θ0 versus HA : θ0 < θ <∞. Let cα be determined by

∫ cα

0

ganλ0,θ0
(s)ds = α,

i.e., cα is the α-quantile of Ga(nλ0, θ0). Then by Proposition 2.51 the test

ϕ(x1, ..., xn) =

{
1 if

∑n
i=1 xi < cα

0 if
∑n

i=1 xi ≥ cα

is a uniformly best level α test for H0 versus HA. In this testing problem we have
assumed that λ0 is known. On the other hand, in many situations the nuisance
parameter is unknown. In Chapter 8 it is shown how to find optimal tests in such
more complicated settings.

Next we consider families with MLR that are not exponential families.

Problem 2.56.∗ Let X1, ..., Xn be i.i.d. random variables with L(X1) = U(0, θ),
θ > 0. For θ0 > 0 and α ∈ (0, 1) fixed find a uniformly best level α test for H0 : θ ≤ θ0

versus HA : θ > θ0.

Problem 2.57.∗ Let X1, ..., Xn be i.i.d. random variables with L(X1) = U(θ, θ+1),
θ ∈ R. Let θ0 ∈ R and α ∈ (0, 1) be fixed. Show that for n = 1 there exists a
uniformly best level α test for H0 : θ ≤ θ0 versus HA : θ > θ0. Show also that the
concept of MLR cannot be utilized in the case of n > 1.

Problem 2.56, and the first part of Problem 2.57 with n = 1, give examples
of families with MLR that are not exponential families. This can be seen
easily because the supports of the distributions depend on θ ∈ Δ. A converse
of Proposition 2.51 is due to Pfanzagl (1968). Under mild conditions, the
existence of a uniformly best level α test for one-sided alternatives, for one
α ∈ (0, 1) and all sample sizes n = 1, 2, ..., implies that the underlying family
of distributions is an exponential family.
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For a family with MLR in T the uniformly best level α test for one-
sided hypotheses is nonrandomized whenever the statistic T has a continuous
c.d.f. under Pθ0 . This is reflected by several of the previous examples and
problems. In contrast to that situation the testing problem (2.36) for binomial
distributions leads to a uniformly best level α test that is randomized, except
for a few (“natural”) choices of α for which γa = 0, that is, when

∑c1−α

l=0
bn,p0(l) = 1− α

occurs. γa = 1 is not possible because of the definition of c1−α. If now γa ∈
(0, 1) and T⊕n(x) = c1−α, then we have to generate a random variable U that
is uniformly distributed in (0, 1), reject H0 if U ≤ γα, and accept H0 if U > γα.

Sometimes it is more convenient to incorporate a randomization right from
the beginning, with the effect that the distributions in the new model have
continuous c.d.f.s. More specifically, let X be a random variable with values in
N and distribution Pθ, θ ∈ Δ. Let pθ(k) = Pθ({k}), k ∈ N, θ ∈ Δ, denote the
associated p.m.f.s, i.e., densities with respect to the counting measure κ on N.
Let U be uniformly distributed in (0, 1), independent of X, and set Y = X+U .
It is important to know that there is a one-to-one relation between Y and the
pair (X,U). Indeed, if [x] denotes the largest integer less than or equal to x,
then

(X,U) = ([Y ], Y − [Y ]).

Thus the random variable Y contains the same information as (X,U). For
θ ∈ Δ the distribution of Y = X + U is Qθ = Pθ ∗ U(0, 1), which has the
piecewise constant Lebesgue density

fθ(t) =
∑∞

l=0
pθ(l)I[l,l+1)(t). (2.39)

Suppose now that Δ ⊆ R. The family (Pθ)θ∈Δ of distributions on N has MLR
in the identity if and only if the p.m.f.s pθ satisfy

pθ0(k1)pθ1(k0) ≤ pθ0(k0)pθ1(k1), 0 ≤ k0 < k1, ki ∈ N, θ0 < θ1.

It is easy to verify that in this case

fθ0(t1)fθ1(t0) ≤ fθ0(t0)fθ1(t1), 0 ≤ t0 < t1, θ0 < θ1,

so that the family (Qθ)θ∈Δ has MLR in the identity as well.
For θ0 ∈ Δ0 and α ∈ (0, 1), consider now the testing problem

H0 : θ ≤ θ0 versus HA : θ > θ0. (2.40)

For the family (Pθ)θ∈Δ a uniformly best level α test based on X is ϕX,α(k),
k ∈ N, with c1−α and γα determined by (2.18), analogously to (2.38) with
(2.37). On the other hand, for the family (Qθ)θ∈Δ the uniformly best level α
test based on Y is ϕY,α(y), y > 0, given by
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ϕY,α(y) =
{

1 if y ≥ d1−α

0 if y < d1−α
where

∫ ∞

d1−α

fθ0(t)dt = α.

To summarize with the proposition below, by using the interpolation (2.39)
of discrete distributions a randomized test for discrete distributions (Pθ)θ∈Δ
can be replaced by a nonrandomized test for distributions (Qθ)θ∈Δ that have
Lebesgue densities.

Proposition 2.58. Let (Pθ)θ∈Δ be a family of distributions on N that has
MLR in the identity. Let Qθ = Pθ ∗ U(0, 1), θ ∈ Δ. Then (Qθ)θ∈Δ has MLR
in the identity as well. For fixed α ∈ (0, 1) the uniformly best level α test ϕX,α

based on X with distribution Pθ, θ ∈ Δ, and the uniformly best level α test
ϕY,α based on Y with distribution Pθ, θ ∈ Δ, have the same power function;
that is,

EPθ
ϕX,α = EQθ

ϕY,α, θ ∈ Δ.

Proof. It holds d1−α = c1−α + γα, and thus

EQθ
ϕY,α =

∫ ∞

d1−α

fθ(t)dt = γapθ(c1−α) +
∑∞

l=c1−α+1
pθ(l) = EPθ

ϕX,α.

We now return to the basic setting of a binary model M0,1 from (2.13).
As has been pointed out already, a best level α test, in the sense of Neyman–
Pearson, is set up for situations where an error of the first kind has more
serious consequences than an error of the second kind. Protecting ourselves
against an error of the first kind by means of the level α has a price, however.
For smaller choices of α this may lead to a larger value of the probability of
an error of the second kind. The same effect, of course, is caused by P1 getting
closer to P0.

The Neyman–Pearson approach is not appropriate for all situations where
tests in binary models are under concern. As an alternative approach one
could utilize weights c0, c1 > 0 that reflect the relative importance of the two
hypotheses and require to minimize the function ϕ �→ c0E0ϕ + c1E1(1 − ϕ).
Apparently, in this approach only the relative weights ci/(c0 + c1), i = 0, 1,
are relevant, and thus we may as well consider for any prior distribution
Π = πδ0 + (1− π)δ1, π ∈ (0, 1), the Bayes risk of a test ϕ,

r(Π,ϕ) = πE0ϕ+ (1− π)E1(1− ϕ).

Definition 2.59. Under the prior Π = πδ0 + (1 − π)δ1 with π ∈ [0, 1], the
value bπ(P0, P1) = infϕ∈T r(Π,ϕ) is called the Bayes risk of the testing prob-
lem H0 : P0 versus H1 : P1. The function π → bπ(P0, P1) is called the error
function. Every test ϕB with r(Π,ϕB) = bπ(P0, P1) is called a Bayes test.

In the above definition we have included the cases of π = 0 and π = 1
although they are trivial from a statistical point of view. Obviously, ϕB ≡ 1
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is a Bayes test for π = 0, ϕB ≡ 0 is a Bayes test for π = 1, and the Bayes risk
is 0 in both cases.

We dominate P0, P1 by μ ∈Mσ(A) and set fi = dPi/dμ, i = 0, 1. Then

L0,1 = I{f0>0}f1/f0 +∞I{f1>0,f0=0}

is a likelihood ratio of P1 with respect to P0; see (1.68). Recall that for any
c ≥ 0 every test ϕc that is 1 for f1 > cf0 and 0 for f1 < cf0 is called a
likelihood ratio at c, see Definition 2.42. The next theorem extends Lemma
1.66.

Theorem 2.60. If Π = πδ0 + (1 − π)δ1 with π ∈ (0, 1), then a test ϕB is
a Bayes test if and only if it is {P0, P1}-a.s. a likelihood ratio test at c =
π/(1− π); that is,

ϕB = 1, {P0, P1}-a.s. on {(1− π)f1 > πf0}, (2.41)
ϕB = 0, {P0, P1}-a.s. on {(1− π)f1 < πf0}.

Moreover, the Bayes risk is given by

bπ(P0, P1) =
∫

(πϕBf0 + (1− π)(1− ϕB)f1)dμ (2.42)

=
∫

(πf0) ∧ ((1− π)f1)dμ.

Proof. Put g0 = πf0, g1 = (1− π)f1. For any test ϕ it holds

r(Π,ϕ)− r(Π,ϕB)

=
∫

[πϕf0 + (1− π)(1− ϕ)f1 − (πf0) ∧ ((1− π)f1)]dμ

=
∫

[ϕ(g0 − g0 ∧ g1) + (1− ϕ)(g1 − g0 ∧ g1)]dμ ≥ 0,

and equality holds if and only if ϕ = 0 on {g0 > g1} and ϕ = 1 on {g0 < g1},
μ-a.e., which is equivalent to (2.41).

It is important to know that any Bayes test ϕB from (2.41) can be arbi-
trarily modified on the set {f1 = cf0}. Thus in particular there always exists
a nonrandomized Bayes test.

Problem 2.61.∗ The error function π �→ bπ(P0, P1), π ∈ [0, 1], has the following
properties.

b0(P0, P1) = b1(P0, P1) = 0. (2.43)

0 ≤ bπ(P0, P1) ≤ πs(1− π)1−sHs(P0, P1), s > 0, s �= 1. (2.44)

bπ(P0, P1) = π ∧ (1− π) ⇔ P0 = P1. (2.45)

bπ(P0, P1) = 0 ⇔ P0 ⊥ P1. (2.46)

π �→ bπ(P0, P1) is continuous and concave.

‖P0 − P1‖ = 2− 4b1/2(P0, P1). (2.47)
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For the binary model M0,1 from (2.13) the testing problem (2.14) admits
an interesting geometric interpretation. For this purpose we introduce the risk
set of tests,

R = {(E0ϕ, 1− E1ϕ) : ϕ ∈ T }. (2.48)

As T is a convex set the set R is also convex. To describe the lower bound of
the set R we put

gα(P0, P1) := inf{E1(1− ϕ) : E0ϕ ≤ α, ϕ ∈ T }, α ∈ [0, 1]. (2.49)

By Theorem 2.45, for α ∈ (0, 1) the point (α, gα(P0, P1)) corresponds to a best
level α test ψα(L0,1). Therefore α �→ gα(P0, P1) is a nonincreasing function of
α. As the lower boundary of the convex set R the function α �→ gα(P0, P1) is
also convex; that is,

gqα1+(1−q)α2(P0, P1) ≤ qgα1(P0, P1) + (1− q)gα2(P0, P1), q ∈ [0, 1]. (2.50)

Furthermore, because ψ ≡ α is a level α test we get

gα(P0, P1) ≤ 1− α, α ∈ (0, 1).

If gα(P0, P1) = 1 − α for some α ∈ (0, 1), then by Theorem 2.45 ψ ≡ α is
{P0, P1}-a.s. identical with ψα outside of {L0,1 = c1−α}, which, however, is
impossible as α ∈ (0, 1). Consequently,

gα(P0, P1) < 1− α, α ∈ (0, 1).

Next we study interrelations between gα(P0, P1) and bπ(P0, P1). The proof
of the next theorem follows along the lines of Torgersen (1991), pp. 590–591.

Theorem 2.62. For the binary model M0,1 from (2.13) it holds

bπ(P0, P1) = min
0<α<1

[πα+ (1− π)gα(P0, P1)], π ∈ (0, 1), (2.51)

gα(P0, P1) = max
0<π<1

1
1− π

[bπ(P0, P1)− πα], α ∈ (0, 1). (2.52)

Proof. For any fixed π ∈ (0, 1) the inequality

bπ(P0, P1) ≤ πα+ (1− π)gα(P0, P1), α ∈ (0, 1),

follows from the definition of gα(P0, P1). It implies

bπ(P0, P1) ≤ inf
0<α<1

[πα+ (1− π)gα(P0, P1)], π ∈ (0, 1),

gα(P0, P1) ≥ sup
0<π<1

1
1− π

[bπ(P0, P1)− πα], α ∈ (0, 1).

If α0 ∈ (0, 1) is fixed, then let ψα0 be the likelihood ratio test ψα0(L0,1) which
by Theorem 2.45 is a best level α0-test. Hence ψα0 is according to Theorem
2.60 also a Bayes test for π = c1−α0/(1 + c1−α0). This yields

πα0 + (1− π)E1(1− ψα0) = bπ(α0)(P0, P1),

and we have established the equalities in (2.51) and (2.52).
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Remark 2.63. The representation (2.51) shows that π �→ bπ(P0, P1) is a concave
function, whereas (2.52) shows that α �→ gα(P0, P1) is a convex function. The latter
has been established already in (2.50).

Problem 2.64.∗ Given are two coins C0 and C1 with probability of heads equal
to p0 and p1, respectively. Assume that 0 < p0 < p1 < 1. One of these coins is tossed
once and x ∈ {0, 1} is observed, where 0 stands for tails and 1 stands for heads. Set
Pi = (1 − pi)δ0 + piδ1, i = 0, 1, and Δ = {0, 1}. For a fixed α ∈ (0, 1) find a best
level α test for H0 : P0 versus H1 : P1. For a fixed π ∈ (0, 1) find a Bayes test for
the prior Π = πδ0 + (1− π)δ1.

2.3 Solutions to Selected Problems

Solution to Problem 2.3: From the first statement of Problem 2.2 we get

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x), x ∈ R. On the other hand, if F is

continuous, then by the second statement of Problem 2.2 F (F−1(u)) = u, u ∈ [0, 1].

Thus P(F (F−1(U)) ≤ y) = P(U ≤ y) = y, y ∈ [0, 1]. F−1(U) has the same c.d.f. F

as X. �

Solution to Problem 2.15 Let x, x0 ∈ R
d and s2 > 0 be fixed. By assumption,

g(x0) ≤ g(x0+s2(x−x0)) = t, say. As g is subconvex {y : g(y) ≤ t} is a convex subset

of R
d. Thus for every α ∈ [0, 1] it holds αx0+(1−α)(x0+s2(x−x0)) ∈ {y : g(y) ≤ t}.
Let now s1 ∈ (0, s2). For α = 1− s1/s2 we get

αx0 + (1− α)(x0 + s2(x− x0)) = x0 + s1(x− x0),

and thus g(x0 + s1(x− x0)) ≤ t. �

Solution to Problem 2.22: With x0 < x1 and θ0 < θ1 (2.4) yields

Fθ0(x1)Fθ1(x0)

= Fθ0(x0)Fθ1(x0) + [Fθ0(x1)− Fθ0(x0)]Fθ1(x0)

= Fθ0(x0)Fθ1(x0) +

∫
I(x0,x1](v)[

∫
I(−∞,x0](u)gθ1(u)gθ0(v)μ(du)]μ(dv)

≤ Fθ0(x0)Fθ1(x0) +

∫
I(x0,x1](v)[

∫
I(−∞,x0](u)gθ0(u)gθ1(v)μ(du)]μ(dv)

= Fθ0(x0)Fθ1(x0) + [Fθ1(x1)− Fθ1(x0)]Fθ0(x0)

= Fθ0(x0)Fθ1(x1).

The second statement can be shown analogously. �

Solution to Problem 2.24: For any fixed i ∈ {1, ..., n} the Lebesgue density of
X[i] is given by fθ,i(x) = i

(
n
i

)
Fθ(x)i−1 [1− Fθ(x)]n−i fθ(x), x ∈ R. The condition

fθ1,i(x0)fθ0,i(x1) ≤ fθ0,i(x0)fθ1,i(x1), θ0 < θ1, x0 < x1,

follows from (2.4) and Problem 2.22. �



2.3 Solutions to Selected Problems 101

Solution to Problem 2.25: Let h0 : R →m R+ and L(X) = N(μ, 1). Then

Eh0(X
2) =

1

2
E[h0(X

2) + h0((−X)2)]

=
1

2
√

2π

∫
h0(s

2)[exp{−(s− μ)2/2}+ exp{−(s + μ)2/2}]ds

=
1

2
√

2π
exp
{
−μ2/2

} ∫ ∞

0

h0(s)s
−(1/2) exp {−s/2} [2

∑∞

k=0
(μ
√
s)2k/(2k)!]ds

=
∑∞

k=0
poμ2/2(k)

∫ ∞

0

h0(s)h2k+1(s)ds,

where we have used Γ (2k) = 22k−1Γ (k)Γ (k + 1/2)/
√
π. Hence for w > 0,

P(X2/w ≤ t) = EI(−∞,tw](X
2) =

∑∞

k=0
poμ2/2(k)

∫ tw

0

h2k+1(s)ds

=
∑∞

k=0
poμ2/2(k)Ga(k + 1/2, w/2)((0, t]),

and therefore
L(X2/w) =

∑∞

k=0
poμ2/2(k)Ga(k + 1/2, w/2).

Using (2.6) and Po(λ1) ∗ Po(λ2) = Po(λ1 + λ2) we get

L(
1

w
(X2

1 + · · ·X2
n)) = L(X2

1/w)∗n =
∑∞

l=0
poδ2/2(l)Ga(l + n/2, w/2)

The random variables W−1X2
1 , ...,W

−1X2
n are conditionally, given W = w, inde-

pendent. Hence for every h : R →m R+,

Eh(W−1(
∑n

i=1
X2

i )) =

∫
[Eh(W−1(

∑n

i=1
X2

i ))|W = w)]PW (dw)

=

∫
[

∫
h(t)

∑∞

l=0
poδ2/2(l)Ga(l + n/2, w/2)(dt)]PW (dw),

which completes the proof. �

Solution to Problem 2.32: Suppose that α(ψ) < α < 1. Then we take ε =

(α−α(ψ))/(1−α(ψ)), which satisfies ε ∈ (0, 1), and consider the test ψ̃ := (1−ε)ψ+ε.

It holds α(ψ̃) = α and Eθψ̃ = (1 − ε)Eθψ + ε, θ ∈ Δ. If now Eθ1ψ < 1 for some

θ1 ∈ ΔA, then Eθ1 ψ̃ > Eθ1ψ. This is a contradiction to ψ being a uniformly best

level α test, and thus α(ψ) = α must hold. On the other hand, if Eθψ = 1 for all

θ ∈ ΔA, then the same test ψ̃ has Eθψ = 1 for all θ ∈ ΔA. �

Solution to Problem 2.36: Let O be an orthogonal n × n matrix with the

last row equal to (1/
√
n, ..., 1/

√
n), and set Y = OZ where Z = (Z1, ..., Zn )T .

Then Y1, ..., Yn are i.i.d. N(0, 1) and Yn =
√
nZn . Furthermore

∑n
i=1(Zi − Zn )2 =

‖Z‖2 − Y 2
n = ‖Y ‖2 − Y 2

n =
∑n−1

i=1 Y 2
i . Obviously, Zn = Yn/

√
n and

∑n−1
i=1 Y 2

i are

independent. The statements regarding the distributions are clear. �

Solution to Problem 2.38: There exists an orthogonal matrix O such that

OTAO = Λ is a diagonal matrix consisting of the eigenvalues. The assumption
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AA = A yields ΛΛ = OTAOOTAO = OTAO = Λ which implies the first statement.

The second statement follows from the fact that multiplying A with an orthogonal

matrix does not change its rank. �

Solution to Problem 2.39: Let O be an orthogonal matrix with OTAO = Λ,

where Λ is a diagonal matrix. As A is an idempotent matrix of rank d, the diagonal

matrix Λ has d entries 1 and the remaining are zero. Without loss of generality

we assume that the first d entries in the diagonal are 1. The random vector Y =

σ−1OTX has a normal distribution with expectation ν = σ−1OTμ and the unit

matrix I as covariance matrix. It holds σ−2(XTAX) = Y TOTAOY = Y TΛY =∑d
i=1 Y 2

i which has by the definition of the noncentral χ2-distribution in (2.7) a

noncentral χ2-distribution with d degrees of freedom and noncentrality parameter∑d
i=1 ν2

i = νTΛν = σ−2μTOΛOTμ = σ−2μTAμ. �

Solution to Problem 2.47: The power of ψα(L0,1) is not smaller than the power
of the no-data test φ ≡ α, and thus E1ψα(L0,1) ≥ α. If E1ψα(L0,1) = α, then φ is
a best test and by E0φ = α ∈ (0, 1) and the uniqueness statement in Theorem 2.45
we have φ = ψα(L0,1), {P0, P1}-a.s., outside of {L0,1 = c1−α}. That means that

Pi(L0,1 < c1−α) = Pi(L0,1 > c1−α) = 0, i = 0, 1.

From (1.68) we get P1(B) = c1−αP0(B) for every Borel set B. This yields c1−α = 1

and P0 = P1. �

Solution to Problem 2.48: The Lebesgue densities of U(0, 1) and U(a, b) are

f0(x) = I[0,1](x) and (b − a)−1I[a,b](x), x ∈ R, respectively. We get from (1.68)

L0,1(x) = 0 for x ∈ [0, a), L0,1(x) = 1/(b−a) for x ∈ [a, 1], and L0,1(x) = ∞ for x ∈
(1, b]. For α ∈ [1−a, 1] a best level α test is given by ϕ(x) = I[a,b](x)+ α−1+a

a
I[0,a](x),

and for α ∈ [0, 1 − a] a best level α test is given by ψ(x) = I[1,b](x) + α
1−a

I[a,1](x).

�

Solution to Problem 2.50: Let H0 : Pθ1 and HA : Pθ2 . Suppose θ1 < θ2. As the
c.d.f. is continuous for t �= 0 and the family (Pθ)θ∈R has MLR in the identity we get
from Theorem 2.49 that the test ψ = I(θ1+u1−α,∞) is a best level α test. Hence by
u1−α = −uα

∫
ϕdPθ2 ≤

∫
ψdPθ2 = P(X + θ2 > θ1 + u1−α) = 1− F (θ1 − θ2 + u1−α)

= F (uα + (θ2 − θ1)).

If θ2 < θ1 we switch the roles of θ1 and θ2. The second statement follows by turning

to 1−ϕ and to 1−α and using 1−F (u1−α + |θ2 − θ1|) = 1−F (−uα + |θ2 − θ1|) =

F (uα − |θ2 − θ1|). �

Solution to Problem 2.56: By Example 2.12, for 0 < θ1 < θ2 <∞ the likelihood
ratio is

Lθ1,θ2 = (θ1/θ2)
n I[0,θ1](max(x1, ..., xn)) +∞I(θ1,θ2](max(x1, ..., xn)),
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which is a nondecreasing function of max(x1, ..., xn). max(X1, ..., Xn) has the 1− α
quantile θ0(1− α)1/n under U(0, θ0) so that the uniformly best level α test is

ϕ(x) =

{
1 if max(x1, ..., xn) > θ0(1− α)1/n,

0 if max(x1, ..., xn) ≤ θ0(1− α)1/n. �

Solution to Problem 2.57: For n = 1, θ1 ∈ R, and θ2 ∈ (θ1, θ1 +1) the likelihood

ratio is Lθ1,θ2(x) = 0 for x ∈ [θ1, θ2), Lθ1,θ2(x) = 1 for x ∈ [θ2, θ1 + 1], and

Lθ1,θ2(x) = ∞ for x ∈ (θ1 + 1, θ2 + 1]. Thus we have a nondecreasing likelihood

ratio. Without loss of generality we may assume that θ0 = 0, because we could

subtract θ0 from X1 to get to that setting. The uniformly best level α test is now

given by the best level α test in Problem 2.48 for a = θ2 and b = θ2 + 1.
For n > 1, the Lebesgue density of X = (X1, ..., Xn) is

fθ(x) =
∏n

i=1
I[θ,θ+1](xi)

= I[θ,∞)(min{x1, ..., xn})I[0,θ+1](max{x1, ..., xn}), x ∈ R
n.

For θ1 < θ2, θ1, θ2 ∈ R, the likelihood ratio Lθ1,θ2(x) cannot be represented as a

nondecreasing function of a statistic T (x) and thus the family of distributions of X

does not have MLR. For further details see Lehmann (1986), p. 115. �

Solution to Problem 2.61: The statements (2.43), (2.45), and (2.46) follow di-
rectly from (2.42). (2.44) follows from a∧ b ≤ asb1−s and (2.42). The continuity was
already established in Problem 1.67. If 0 < π1, π2 < 1 and 0 < q < 1, then

bqπ1+(1−q)π2(P0, P1)

= inf
ϕ

∫
[(qπ1 + (1− q)π2)ϕf0 + (1− (qπ1 + (1− q)π2))(1− ϕ)f1]dμ

≥ q inf
ϕ

∫
[π1ϕf0 + (1− π1)(1− ϕ)f1]dμ

+(1− q) inf
ϕ

∫
[π2ϕf0 + (1− π2)(1− ϕ)f1]dμ,

which proves the concavity. (2.47) follows from ‖P0 − P1‖ =
∫
|f0−f1|dμ along with

|a− b| = a + b− 2(a ∧ b). �

Solution to Problem 2.64: The likelihood ratio is

L0,1(x) = I{0}(x)(
1− p1

1− p0
) + I{1}(x)

p1

p0
.

For α ∈ [0, p0], ϕ(0) = 0, and ϕ(1) = γ, where γ = α/p0 follows from α = E0ϕ = γp0.
For α ∈ (p0, 1], ϕ(0) = γ and ϕ(1) = 1, where γ = (α − p0)/(1 − p0) follows
from α = E0ϕ = γ(1 − p0) + p0. A nonrandomized Bayes test is given by ϕB =
I(π/(1−π),∞)(L0,1(x)), which is equivalent to

ϕB(0) =

{
1 if π < 1−p1

1−p0+1−p1

0 otherwise
, ϕB(1) =

{
1 if π < p1

p0+p1

0 otherwise
.

�



3

Statistical Decision Theory

3.1 Decisions in Statistical Models

The concept of a statistical model M = (X ,A, (Pθ)θ∈Δ) has been introduced
at the beginning of Chapter 1. The purpose of statistical inference is to draw
conclusions on the true but unknown distribution Pθ of X after the experiment
has been carried out and the observation x is available.

To create a mathematical frame that makes “conclusions” more precise we
choose a nonempty set D and call it the decision space. To be able to utilize
tools from probability theory we assume that D is equipped with a σ-algebra
D. The simplest way of making a decision is to select a point a ∈ D after
x ∈ X has been observed. Such a decision, called a nonrandomized decision,
is a measurable mapping d : X →m D, where d(x) is the decision that is
made after x ∈ X has been observed. However, for many statistical problems
this approach turns out to be too narrow. Several arguments, some given
below and others later, can be made for utilizing a more general approach of
randomized decisions. Roughly speaking, a randomized decision selects a point
in D at random after x ∈ X has been observed. An appropriate mathematical
structure for representing randomized decisions is the stochastic kernel . Here
and in the following, a stochastic kernel is understood to be a mapping D :
D×X →k [0, 1] which has the following two properties. For every fixed x ∈ X
the object D(·|x) is a probability distribution on (D,D). For every fixed B ∈ D

the mapping x �→ D(B|x) from X into [0, 1] is A-B[0,1] measurable. We call
every stochastic kernel D : D × X →k [0, 1] a randomized decision rule or
simply a decision. The interpretation of D(A|x) is that after x ∈ X has been
observed D(A|x) is the probability that a point in A ∈ D is selected.

The nonrandomized decisions can be embedded in this general approach
by simply setting D(·|x) = δd(x)(·) for every d : X →m D. As such a decision
D(·|x) is concentrated at d(x) for every x ∈ X it may be called a nonran-
domized decision as well. Among the two representations of a nonrandomized
decision (i.e., in terms of D and d), the latter is usually more convenient to
use.

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 3, c© Springer Science+Business Media, LLC 2008
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Some preliminary justifications of the extension to randomized decisions
seem appropriate. From a purely mathematical point of view by admitting
randomized decisions the chances of finding decisions that are optimal in some
way can only improve or, in the worst case, just remain the same. Both sce-
narios may occur, depending on the type of statistical problem considered.
We have seen already in Chapter 2 that randomized tests should be included
in the search for best level α tests. In the search for best decisions one of-
ten has to impose constraints on the class of decisions under consideration
in order to guarantee the existence of a best decision. Such constraints are
usually linear in some way, and then the fact that the set of all randomized
decisions is convex allows us to use arguments and techniques from convex
optimization. Moreover, if the constraints are set in terms of inequalities, then
we can expect that optimal decisions, whenever they exist, must exhaust the
constraints by establishing equalities in the inequalities. Without a convex
structure of decisions it may not be possible to find a decision that exhausts
the constraints.

By summarizing all the components of the above decision process we arrive
at the following general definition of a decision.

Definition 3.1. Given a statistical model (X ,A,(Pθ)θ∈Δ) and a decision
space (D,D), a decision D is a stochastic kernel D : D×X →k [0, 1]. The class
of all decisions D is denoted by D. A decision D is called a nonrandomized
decision if D(·|x) = δd(x) for some d : X →m D.

The process of first observing the data and then making a decision can
also be described by means of a random vector (A,X) that is defined on
some probability space, say (Ω,F,Pθ), θ ∈ Δ. Hereby the random variable
X : Ω →m X is the observation, and A : Ω →m D is the statistician’s action
after observing X. Clearly, A depends on the outcome of X = x and is gov-
erned by the decision D(·|x), x ∈ X . More precisely, D(·|x) is the conditional
distribution of A given X = x, and L(X) = Pθ ◦ X−1 =: Pθ, θ ∈ Δ, is the
marginal distribution of X. This means that by the definition of the condi-
tional distribution (see Definition A.36 and (A.3)), for every set C ∈ D ⊗ A

it holds

L(A,X) : = Pθ ◦ (A,X)−1 = D⊗ Pθ, where (3.1)

(D⊗ Pθ)(C) =
∫

[
∫
IC(a, x)D(da|x)]Pθ(dx), C ∈ D⊗ A.

By the standard extension technique, via linear combinations of indica-
tor functions and the approximation of nonnegative measurable functions by
increasing sequences of such linear combinations, one obtains

Eθh(A,X) =
∫

[
∫
h(a, x)D(da|x)]Pθ(dx), (3.2)

for every h : D ×X →m R+.
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The natural question that arises now is which decision should be chosen.
Here we recall that the observations are subject to unavoidable random errors
and thus no decision based on such data can be perfect. This suggests our
adopting the concept of a loss due to decisions. To be able to measure the loss
numerically we assume that it is given by some values L(θ, a), θ ∈ Δ, a ∈ D,
where L(θ, a) is the loss when a decision is made in favor of a and the true
parameter is θ.

Definition 3.2. A loss function L is a function L : Δ×D → R such that for
every fixed θ ∈ Δ the function L(θ, ·) is D-B measurable and it holds

−∞ < inf
a∈D

L(θ, a), θ ∈ Δ. (3.3)

The condition (3.3) guarantees that for any probability measure μ the
integral

∫
L(θ, a)μ(da) is well defined despite the fact that it may be ∞. In

most cases we consider only nonnegative loss functions. Occasionally, however,
when dealing with bounded loss functions, it proves convenient to have a real-
valued loss function which allows us to keep the formulations simple.

Under a decision D, after X has been observed, the statistician’s action
toward a final decision is the random variable A, where the joint distribution
of X and A is given by (3.1). Therefore the loss under D is a random variable
L(θ,A). In view of condition (3.3) the expected loss exists, but it may assume
the value ∞. We now introduce the risk of a decision as its expected loss.

Definition 3.3. Given a statistical model (X ,A,(Pθ)θ∈Δ) and a loss function
L : Δ×D → R, the risk function (in short, risk) of a decision D ∈ D is given
by

R(θ,D) = EθL(θ,A), θ ∈ Δ,

where L((A,X)|Pθ) = D⊗ Pθ, θ ∈ Δ.

Usually it proves more convenient to evaluate the risk in terms of the
corresponding distributions. From L((A,X)|Pθ) = D ⊗ Pθ and (3.2) we get
that

R(θ,D) =
∫

[
∫
L(θ, a)D(da|x)]Pθ(dx), θ ∈ Δ. (3.4)

If D(·|x) = δd(x)(·), x ∈ X , is a nonrandomized decision based on d : X →m D,
then we write, instead of R(θ,D), just

R(θ, d) = EθL(θ, d(X)) =
∫
L(θ, d(x))Pθ(dx), θ ∈ Δ.

Now we have all components together to be able to say what a statistical
decision problem is.

Definition 3.4. A statistical decision problem (in short, decision problem) is
a triple (M, (D,D), L) that consists of a statistical model M from (1.1), a
decision space (D,D), and a loss function L.
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Special types of statistical decision problems are estimation of parame-
ters, testing of hypotheses, selection of populations, and classification. In an
estimation problem it is intended to approximate the true parameter θ, or at
least a function κ(θ) of it, after an observation has been made. Often θ is a
vector and one is only interested in some of its components. Then κ(θ) is the
subvector that consists of the components of interest. If Δ is a function space,
for instance the space of all distribution functions F , then we may focus on
some κ(F ) that is a real-valued functional of F , which may be the median or
a specific quantile of F.

Let the model M from (1.1) be given. Suppose that κ : Δ → S is fixed
and that we want to estimate κ(θ). We suppose that S is equipped with a
σ-algebra S. In most cases it holds S = R

d and S = Bd.

Definition 3.5. An estimation problem is a decision problem that consists of
a model (X ,A, (Pθ)θ∈Δ), a function κ : Δ → S, the decision space (D,D) =
(S,S), and a loss function L(θ, a) = l(κ(θ), a), where l : S × S →m R with
−∞ < infa∈S l(s, a), s ∈ S. A decision D : S × X →k [0, 1] is called a
randomized estimator. Every nonrandomized decision S : X →m S is called
an estimator.

In the case of S = R
d typical examples for l are given by l(t, a) =

�(‖t− a‖), where � : R+ → R+ is a nondecreasing function; for example,
�(s) = s or ρ(s) = s2. The risk of a randomized estimator is given by

R(θ,D) =
∫

[
∫
l(κ(θ), a)D(da|x)]Pθ(dx), θ ∈ Δ.

If D(·|x) = δS(x)(·), x ∈ X , is nonrandomized, then its risk R(θ, S), say, is

R(θ, S) =
∫
l(κ(θ), S(x))Pθ(dx) = Eθl(κ(θ), S), θ ∈ Δ,

which can be interpreted as the average distance, measured by l, between S
and κ(θ) that is to be estimated.

Suppose S = R
d and l(κ(θ), a) is a convex function of a for every θ ∈ Δ.

If ∫
[
∫
‖a‖D(da|x)]Pθ(dx) <∞, θ ∈ Δ,

then the estimator S(x) :=
∫
aD(da|x), x ∈ X , satisfies, by Jensen’s inequality

(see Lemma A.33) for every θ ∈ Δ,

R(θ, S) =
∫
l(κ(θ), S(x))Pθ(dx) ≤

∫
[
∫
l(κ(θ), a)D(da|x)]Pθ(dx) = R(θ,D).

(3.5)
This is one of the reasons why for convex loss functions only estimators, and
not randomized estimators, are considered.
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If κ(θ) = θ, θ ∈ Δ, then we want to estimate the parameter θ. Despite
this it proves useful to allow the decision space to be a set S that contains Δ,
but not necessarily being equal to Δ. For example, let Δ ⊆ R

d where Δ is not
closed. If the estimator is introduced by some minimization or maximization
procedure, then typically the extreme points belong to the closure of Δ and
the concrete value S(x) of the estimator may be a boundary point. A similar
situation is met when Δ = R and due to compactness reasons we have to use
the extended real line R = [−∞,∞] as the decision space.

A multiple decision problem is a decision problem where the decision space
D is finite. In this case D is taken as the power set of D. Let D = {a1, ..., ak}.
Put ψi(x) := D({ai}|x), x ∈ X , i = 1, ..., k. Then

D(A|x) =
∑k

i=1
ψi(x)δai

(A), A ⊆ D, (3.6)

ψi(x) ≥ 0, i = 1, ..., k, and
∑k

i=1
ψi(x) = 1, x ∈ X . (3.7)

This allows us to represent every decision D by a vector ψ = (ψ1, ..., ψk), where
ψi(x) is the probability of deciding in favor of ai after x has been observed,
i = 1, ..., k. Conversely, every ψ = (ψ1, ..., ψk) that satisfies (3.7) leads to a
decision D via (3.6). We may consider such a ψ as a measurable mapping
ψ : X →m Sc

k, where

Sc
k = {(p1, ..., pk) : pi ≥ 0, i = 1, ..., k,

∑k

i=1
pi = 1}

is the unit simplex, equipped with the σ-algebra of Borel sets Sc
k. If we con-

sider (Sc
k,S

c
k) as a new decision space, then every randomized decision D for

the decision space (D,D) can be identified with a nonrandomized decision ψ
for the new decision space (Sc

k,S
c
k).

The loss function L(θ, a) consists of k functions L(·, ai) : Δ →m R, i =
1, ..., k. The risk of a decision D is given by

R(θ,D) =
∑k

i=1
L(θ, ai)qi(θ), θ ∈ Δ, where

qi(θ) =
∫
ψi(x)Pθ(dx)

is the probability of deciding in favor of ai when θ is the true parameter,
i = 1, ..., k.

Remark 3.6. Quite often we deal with ψ that represents D in (3.6) rather than
with D itself, and then we use the notation R(θ, ψ) rather than R(θ,D) for the risk
of D.

If the model is also finite, say Δ = {1, ...,m}, then the loss function L can
be represented by the k vectors
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v1 =

⎛
⎜⎝

L(1, a1)
...

L(m,a1)

⎞
⎟⎠ , ..., vk =

⎛
⎜⎝

L(1, ak)
...

L(m,ak)

⎞
⎟⎠ , (3.8)

and the risk function R(θ,D) can be identified with the points

v = (
∑k

i=1
L(1, ai)qi(1), ...,

∑k

i=1
L(m,ai)qi(m))T ,

which belong to the polyhedron that is spanned by the vectors v1, ..., vk.
In multiple decision problems it is typical that the parameter set Δ is

decomposed in k disjoint subsets, say Δ1, ...,Δk, and for θ ∈ Δi the decision
ai is correct whereas every other decision aj , j �= i is false. To reflect this the
so-called zero–one loss function L0,1 is used. It is defined by

L0,1(θ, ai) = 1− IΔi
(θ), θ ∈ Δ, i = 1, ..., k. (3.9)

In this case R(θ, q) = 1 −
∑k

i=1 IΔi
(θ)qi(θ), where

∑k
i=1 IΔi

(θ)qi(θ) is the
probability of making a correct decision and R(θ, q) is the probability of mak-
ing a false decision.

The special case of a multiple decision problem with k = 2 is called a
testing problem. The subsequent definition integrates the concept of testing of
hypotheses into the decision-theoretic framework.

Definition 3.7. A testing problem is a decision problem that consists of a
model (X ,A, (Pθ)θ∈Δ), a decomposition of Δ into two disjoint subsets Δ0

and ΔA that represent the null hypothesis H0 and the alternative hypothesis
HA, the decision space (D,D) = ({0, 1},P({0, 1})), and a loss function L :
Δ× {0, 1} → R.

To link the decision-theoretical concept with the concept of a statistical
test we set ϕ(x) := D({1}|x) and note that ϕ(x) is the probability of deciding
in favor of HA after x has been observed, x ∈ X . This means that ϕ(x) is
the probability of rejecting the null hypothesis and therefore is a statistical
test in the sense of Definition 2.28. Clearly then 1 − ϕ(x) = D({0}|x) is the
probability of accepting H0 after x has been observed. Conversely, every test
ϕ(x) defines by

D(·|x) = (1− ϕ(x))δ0(·) + ϕ(x)δ1(·), x ∈ X ,

a decision for the decision space D = {0, 1}.
In testing problems the loss is usually taken as the zero–one loss function

in (3.9), which may be written as

L0,1(θ, a) = aIΔ0(θ) + (1− a)IΔA
(θ), θ ∈ Δ, a ∈ {0, 1}.

Then for θ ∈ Δ0, R(θ, ϕ) = Eθϕ is the probability of making an error of the
first kind, and for θ ∈ ΔA, R(θ, ϕ) = 1− Eθϕ is the probability of making an
error of the second kind.
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From Section 2.2 we know already that in the framework of the Neyman–
Pearson theory tests (i.e., randomized decisions) have to be considered to find
optimal decisions. This is necessary to be able to exhaust the constraints set
by the concept of a level α test; see also Problem 2.32.

The simplest statistical model consists of just two distributions P0 and P1.
In such a binary model M0,1 = (X ,A, {P0, P1}) the hypotheses are H0 : P0

and HA : P1. The vectors in (3.8) are, adjusted to D = {0, 1}, v0 = (0, 1)T

and v1 = (1, 0)T , and R = {(E0ϕ, 1 − E1ϕ) : ϕ : X →m [0, 1]} is the risk set
of tests in (2.48) which is convex.

A selection problem is a special case of a multiple decision problem where
the model consists of k populations, usually of a similar type. Let Xi, i =
1, ..., k, be observations with values in Xi and distributions Pi,θi

, θi ∈ Δ, from
k independent populations. More specifically, let the statistical model be

M = (Xk
i=1Xi,

⊗k
i=1 Ai, (Pθ)θ∈Δk), θ = (θ1, ..., θk), (3.10)

where the Pi,θi
are the marginal distributions of the distribution

Pθ =
⊗k

i=1 Pi,θi
.

Typically, we have one common sample space X for all observations, but the
sample sizes may not be the same for all populations. Then Xi = Xni and
Pi,θi

= P⊗ni

θi
.

Suppose that κ : Δ→ R is a real-valued function and we want to find a best
population, which is meant to be a population with index i0 for which κ(θi0) =
max1≤i≤k κ(θi), i.e., i0 ∈ arg max1≤i≤k κ(θi). As we select one population this
type of decision is called a point selection, in contrast to a subset selection
where a subset of populations is selected.

Definition 3.8. A point selection problem is a decision problem that consists
of the model (3.10), a function κ : Δ → R, the decision space (Dpt,D) =
({1, ..., k},P({1, ..., k})), and a loss function L : Δk × {1, ..., k} → R. Every
ψ = (ψ1, ..., ψk) : Xk

i=1Xi →m Sc
k is called a point selection rule, or in short a

selection rule, and the associated decision kernel is defined by (3.6).

Let the loss be given by the zero–one loss function

L0,1(θ, i) = 1−IM(θ)(i), θ=(θ1, ..., θk) ∈ Δk, i = 1, ..., k, where (3.11)

M(θ) = arg max
1≤i≤k

κ(θi) = {i : κ(θi) = max
1≤j≤k

κ(θj)}, θ ∈ Δk.

Then the risk of a decision D, in terms of the associated selection rule ψ (see
Remark 3.6) is

R(θ, ψ) = 1−
∑k

i=1
IM(θ)(θi)Eθψi, θ ∈ Δk. (3.12)

Representing the decision process by the random vector (A,X) defined on
(Ω,F,Pθ), where X = (X1, ...,Xk), it can be seen from (3.1) that the risk
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R(θ, ψ) = Pθ(A /∈ M(θ)) is the probability that the action A does not fall into
the set M(θ) where the function κ attains its maximum. Therefore

Pθ(A ∈ M(θ)) =
∑k

i=1
IM(θ)(θi)Eθψi, (3.13)

is called the probability of a correct selection, which we also denote by

Pcs(θ, ψ) :=
∑k

i=1
IM(θ)(θi)Eθψi.

In preparation for the next example some simple properties of the maxi-
mum of independent random variables are established.

Problem 3.9.∗ Let X1, ..., Xk be independent random variables with distributions
P1, ..., Pk and continuous c.d.f.s F1, ..., Fk, respectively. Then

P(Xi > max
j �=i

Xj) =

∫ ∏
j �=i

Fj(t)Pi(dt), i = 1, ..., k.

Problem 3.10.∗ Let Xi ∼ N(μi, σ
2), μi ∈ R, σ2 > 0, i = 1, ..., k, be independent,

and Z ∼ N(0, 1) be a generic random variable. Then

P(Xi > max
j �=i

Xj) = E

∏
j �=i

Φ(Z + (μi − μj)/σ) and

P(Xi0 > max
j �=i0

Xj) = max
1≤i≤k

P(Xi > max
j �=i

Xj) ⇔ μi0 = μ[k],

where μ[k] = max{μ1, ..., μk}.

Example 3.11. Let Xi ∼ Pθi , i = 1, ..., k, be independent random variables in R,
where (θ1, ..., θk) ∈ Δk = R

k is unknown. Suppose we want to find a population that
has the largest parameter. Here κ(θi) = θi, i = 1, ..., k, and Dpt = {1, ..., k}. We use
the zero–one loss from (3.11), and thus the risk of a selection rule ψ is given by (3.12).
If (Pθ)θ∈Δ has MLR in the identity, then it seems natural to select a population with
the largest value of the observations, and to break ties at random. This selection
rule Dnat is called the natural selection rule. It is a randomized decision, as for every
x ∈ R

k it is the uniform distribution on the set

M(x) = arg max
i∈{1,...,k}

xi = {i : xi = max
1≤j≤k

xj}, x = (x1, ..., xk) ∈ R
k.

Thus, with |M(x)| denoting the number of elements of M(x),

ϕnat(x) = (ϕnat
1 (x), ..., ϕnat

k (x)) :=
1

|M(x)| (IM(x)(1), ..., IM(x)(k)), (3.14)

Dnat(A|x) =
∑k

i=1
ϕnat

i (x)δi(A), A ⊆ {1, ..., k}, x ∈ R
k.

Especially, let Xi ∼ N(μi, σ
2), i = 1, ..., k, be independent with μ ∈ Δk = R

k, where
σ2 > 0 may be known or unknown. In this case the natural selection rule turns out
to be nonrandomized. If μ ∈ R

k with μi > maxj �=i μj , then in view of Problem 3.10,
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Pμ(A ∈ M(μ)) = Pμ(Xi > max
,j �=i

Xj) =

∫ ∏
j �=i

Φ(t + (μi − μj)/σ)ϕ(t)dt,

R(μ, ϕnat) = 1−
∫ ∏

j �=i
Φ(t + (μi − μj)/σ)ϕ(t)dt ∈ (0, 1− 1

k
), (3.15)

with A in (3.13), where Φ and ϕ are the c.d.f. and density of N(0, 1), respectively.
Consider now the no-data selection rule ψnd ≡ (1, 0, ..., 0) which selects the first

population, regardless of the outcome of the observations. If the first population has
the largest mean, then ψnd has risk 0 and outperforms ϕnat because of (3.15). On
the other hand, if the first population does not have the largest mean, then ψnd has
risk 1 and is outperformed by ϕnat because of (3.15). We conclude that a uniformly
best selection rule does not exist, unless we turn to a subclass of selection rules
that excludes exotic rules such as ψnd. This can be achieved by imposing invariance
requirements on the selection rules. For details we refer to Chapter 9.

Finally we introduce a type of statistical decision problem that is called
a classification problem. Let X,X1, ...,Xk be independent random variables
with values in X , where Xi has the distribution Pθi

, θi ∈ Δ, i = 1, ..., k and
X has the distribution Pθ, θ ∈ {θ1, ..., θk}. The statistical model is

M = (X k+1,A⊗(k+1), (Pθ ⊗ (
⊗k

i=1 Pθi
))(θ,θ1,...,θk)∈Γ ), where (3.16)

Γ = {(θ, θ1, ..., θk) : (θ1, ..., θk) ∈ Δk, θ ∈ {θ1, ..., θk}}.

The model specification implies that Pθ ∈ {Pθ1 , ..., Pθk
}. Here we want to find

a population with index i0 for which Pθi0
= Pθ. If the θis are all different,

and the parameter θ in (Pθ)θ∈Δ is identifiable, then this index i0 is uniquely
determined. We take D = {1, ..., k} as the decision space.

Definition 3.12. A classification problem is a decision problem that consists
of the model (3.16), the decision space (D,D) = ({1, ..., k},P({1, ..., k})), and
a loss function L : Γ ×{1, ..., k} → R. Every ψ = (ψ1, ..., ψk) : Xk

i=1Xi →m Sc
k

is called a classification rule, and the associated decision kernel is defined by
(3.6).

Let the loss be given by the zero–one loss function L0,1(ϑ, i) = 1−IG(ϑ)(i),
i = 1, ..., k, where G(ϑ) = {j : θ = θj}, ϑ = (θ, θ1, ..., θk) ∈ Γ . Then the risk
of a classification rule ψ is

R(ϑ, ψ) = 1−
∑k

i=1
IG(ϑ)(θi)Eϑψi, ϑ = (θ, θ1, ..., θk) ∈ Γ.

Similarly as in the previous example we see from (3.1) that the risk R(ϑ, ψ) =
Pϑ(A /∈ G(ϑ)) is the probability of an incorrect classification.

The purpose of statistical decision theory is to find decisions that are opti-
mal within a specific framework that consists of three components: a statistical
model, a decision space, and a loss function. The optimality of decisions is then
determined by means of their risk functions.
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The performance of a decision D ∈ D is measured, pointwise at every
θ ∈ Δ, by its expected loss, i.e., its risk R(θ,D), which is given by (3.4). Now
we want to compare two decisions D1,D2 ∈ D in terms of their risks. As the
parameter θ is unknown we have to compare their risk functions at every
θ ∈ Δ. The pointwise semiorder of the risk functions leads to a semiorder in
the space of all decisions. If R(θ,D2) ≤ R(θ,D1) for all θ ∈ Δ, then D2 is called
as good as D1. If in addition R(θ0,D2) < R(θ0,D1) for some θ0 ∈ Δ, then D2

is called better than D1. Ideally, we would like to find a decision D∗ ∈ D that
is as good as all other decisions in D, i.e., that is uniformly best in D in terms
of the risk. Although a decision with such a strong optimality property does
not exist in general, it may be possible to achieve this goal at least within
a suitable subclass of decisions D0 ⊂ D. In an estimation problem this could
be the class of all unbiased estimators, in a testing problem the class of all
level α tests, and in a selection problem the class of all permutation-invariant
selection rules.

A decision that performs optimally in terms of the risk at every θ ∈ Δ may
not exist, as the pointwise comparison of the risk functions provides only a
semiorder in the class of all decisions. Unfortunately, this situation may even
prevail after a restriction to some suitable subclass D0 ⊂ D with a structure
based on some widely accepted principle, such as the principle of invariance.
Thus, working at the “good end” can be challenging. It can also be so at the
“bad end”, where one would like to discard any decision coming across for
which another better decision exists. Obviously, one should ignore a decision
once a better one has been found. The idea of discarding decisions for which
better decisions can be found leads to the concept of admissibility.

Definition 3.13. A decision Da ∈ D0 ⊆ D is called admissible in D0 if there
does not exist a decision Db ∈ D0 that is better than Da. A decision Di ∈ D0 ⊆
D is called inadmissible in D0 if it is not admissible in D0. Whenever D0 = D,
“in D0” is omitted for brevity.

Obviously, a decision D ∈ D0 ⊆ D that has a minimum risk in D0, uni-
formly in θ ∈ Δ, is admissible in D0. Proving the admissibility of other deci-
sions can be difficult. On the other hand, proving that a particular decision
D is inadmissible in D0 consists of presenting a better decision Db from D0.
In concrete situations, this can be a difficult task as well. Some useful tech-
niques for such purposes are presented later. We conclude this section with a
prominent example for an inadmissible decision.

Example 3.14. Let Xi ∼ N(θi, σ
2), i = 1, ..., d, be independent, where θ =

(θ1, ..., θd) ∈ Δ = R
d is unknown, but σ2 > 0 is known. Without loss of gener-

ality let σ2 = 1. Suppose that θ ∈ Δ has to be estimated under the squared error
loss L(θ, a) = ‖θ − a‖2. We consider the natural estimator Tnat(x) = x, x ∈ R

d. It
was a breakthrough in statistics when James and Stein (1960) showed that Tnat(x)
is inadmissible for d ≥ 3 by proving that

R(θ, Tnat)− R(θ, SJS) = Eθ ‖ Tnat − θ ‖2 −Eθ ‖ SJS − θ ‖2

= (d− 2)2Eθ ‖ Tnat ‖−2,
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where SJS(x) = (1−(d−2) ‖x‖−2)x, x ∈ R
d, is the celebrated James–Stein estimator.

It is a remarkable fact that for d = 1 (see Example 3.45) and d = 2 the estimator
Tnat is admissible. For further details we refer to Chapter 7. It should be noted
that SJS belongs to the class of shrinkage estimators that has been studied in many
papers. References can be found in Berger (1985) and Hoffmann (1992).

3.2 Convergence of Decisions

In this section we introduce a concept of convergence of decisions that is
utilized in many situations later on. One such situation occurs in the search
for optimal decisions in the Bayes or the minimax approach where the Bayes
or the maximum risk, respectively, has to be minimized as a function of the
decision. A natural question that arises here is whether a sequence of decisions
converges to some decision if their associated risks converge to the minimum
value. Other situations that require the use of convergence concepts occur
when, for increasing sample sizes, asymptotically optimal decisions are desired.

For some purposes it proves useful to extend a stochastic kernel to a bi-
linear form on special function spaces. More precisely, let the decision space
D be a metric space and D be the σ-algebra of Borel sets. Furthermore, let
Q be a distribution on the sample space (X ,A). Later on Q is specified as a
probability measure that dominates a given model. Let Cb(D) be the space of
all bounded continuous functions and L1(Q) be the space of all Q-integrable
real functions where we identify Q-a.s. identical functions. Denote by

‖f‖u = sup
a∈D

|f(a)| and ‖g‖1 :=
∫
|g|dQ

the norm in Cb(D) and L1(Q), respectively. Let K : D × X →k [0, 1] be a
stochastic kernel. Then for every f ∈ Cb(D) the function x �→

∫
f(a)K(da|x)

is bounded and measurable, and thus

B(f, g) =
∫

[
∫
f(a)K(da|x)]g(x)Q(dx) (3.17)

is well defined for every g ∈ L1(Q). The mapping B : Cb(D) × L1(Q) → R

has, for f, f1, f2 ∈ Cb(D) and g, g1, g2 ∈ L1(Q), the following properties.

B(a1f1 + a2f2, g) = a1B(f1, g) + a2B(f2, g), a1, a2 ∈ R,

B(f, b1g1 + b2g2) = b1B(f, g1) + b2B(f, g2), b1, b2 ∈ R, (3.18)
B(f, g) ≥ 0, f, g ≥ 0, with B(1, 1) = 1,
|B(f, g)| ≤ ‖f‖u ‖g‖1 .

Thus B is bilinear, nonnegative, and normalized. A mapping B : Cb(D) ×
L1(Q) → R that satisfies the conditions in (3.18) is called a positive normed
bilinear form. The question of whether each positive normed bilinear form
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can be represented by (3.17) with a suitable stochastic kernel turns out to
be a crucial point. It is clear that this question is closely related to the Riesz
representation theorem for positive linear forms on the space of continuous
functions on a compact space. The following measure-theoretic result is a
special case of Theorem 6.11 in Strasser (1985).

Theorem 3.15. Let (D, ρD) be a compact metric space, D the σ-algebra of
Borel sets, and Q a probability measure on (X ,A). If B : Cb(D)×L1(Q) → R is
a mapping that satisfies the conditions in (3.18), then there exists a stochastic
kernel K : D×X →k [0, 1] such that

B(f, g) =
∫

[
∫
f(a)K(da|x)]g(x)Q(dx), f ∈ Cb(D), g ∈ L1(Q).

It is clear that the stochastic kernel K in the last theorem can be modified
on Q-null sets without changing the bilinear form B.

In the course of investigating the existence of an optimal decision we usu-
ally have to select a convergent subsequence from a given sequence. This,
however, is only possible under additional conditions. As a preparation in this
regard we have to deal with the separability of L1(Q).

Problem 3.16.∗ Let A0 ⊆ A be a sub-σ-algebra that is countably generated; i.e.,
there exists a sequence A1, A2, ... ∈ A which generates A0. Let Q0 be the restriction
of Q to A0. Then the space L1(Q0) is separable.

The next statement is essentially Theorem 20.4 in Heyer (1982).

Theorem 3.17. Let (D, ρD) be a compact metric space, D the σ-algebra of
Borel sets, and Q a probability measure on (X ,A). If Kn : D × X →k [0, 1],
n = 1, 2, ..., is a sequence of stochastic kernels, then there is a subsequence
Knk

and a stochastic kernel K : D×X →k [0, 1] such that

lim
k→∞

∫
[
∫
f(a)Knk

(da|x)]g(x)Q(dx)

=
∫

[
∫
f(a)K(da|x)]g(x)Q(dx), f ∈ Cb(D), g ∈ L1(Q).

Proof. The space Cb(D) is separable; see Proposition A.4. Let {f1, f2, ...} ⊆
Cb(D) be an at most countable dense subset. Denote by A0 the small-
est σ-algebra with respect to which all mappings x �→

∫
fk(a)Kn(da|x)

are measurable. Then A0 is generated by the countable system of sets
{x :

∫
fk(a)Kn(da|x) < t}, where t ∈ Q and k, n = 1, 2, .... Denote by

Q0 the restriction of Q to A0. Then according to Problem 3.16 there ex-
ists an at most countable and dense subset L = {g1, g2, ...} of L1(Q0). Define
Bn(f, g) by (3.17) where K is replaced with Kn. Consider the array Bn(fk, gl),
n, k, l = 1, 2, ..., where |Bn(fk, gl)| ≤ ‖fk‖u ‖gl‖1 in view of (3.18). This array
can be rearranged as a double array with Bn(f1, g1), Bn(f1, g2), Bn(f2, g1),
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Bn(f2, g2), ... as its nth row, n = 1, 2, .... By utilizing the diagonal tech-
nique we get a subsequence Bnm

such that Bnm
(fk, gl) converges to some

real number, say B(fk, gl). To define B for every f ∈ Cb(D) and g ∈ L1(Q0)
we choose fki

and gli such that ‖f − fki
‖u → 0 and ‖g − gli‖1 → 0. Then

D1 = supi ‖fki
‖u <∞, D2 = supi ‖gli‖1 <∞, and

|B(fki
, gli)−B(fkj

, glj )|
≤ | lim

m→∞
Bnm

(fki
− fkj

, gli)|+ | lim
n→∞

Bnm
(fkj

, gli − glj )

≤ D1

∥∥fki
− fkj

∥∥
u

+D2

∥∥gli − glj
∥∥

1
,

so that B(fki
, gli) is a Cauchy sequence and thus converges to some value, say

B(f, g). If f̃i, g̃i are any other approximating sequences, then as above, with
(fkj

, glj ) replaced with (f̃i, g̃i) and some constant D,

|B(fki
, gli)−B(f̃i, g̃i)| ≤ D ‖ fki

− f̃i ‖u +D ‖gki
− g̃i‖1 → 0, as i→∞.

This means that the definition of B is independent of the approximating
sequence. As every Bnm

satisfies the conditions in (3.18) we see that B(f, g) =
limi→∞ limm→∞Bnm

(fki
, gli) satisfies the conditions in (3.18), too. Hence

by Theorem 3.15 with A replaced with A0 there exists a stochastic kernel
K : D×X →k [0, 1] such that K(A|·) is A0 measurable and

B(f, g) =
∫

[
∫
f(a)K(da|x)]g(x)Q(dx), f ∈ Cb(D), g ∈ L1(Q0).

Thus by construction, for every f ∈ Cb(D) and g ∈ L1(Q0)

lim
m→∞

∫
[
∫
f(a)Knm

(da|x)]g(x)Q(dx) =
∫

[
∫
f(a)K(da|x)]g(x)Q(dx).

It remains to show that this statement holds for every g ∈ L1(Q). For any
g ∈ L1(Q) we denote by EQ(g|A0) the conditional expectation of g under the
condition A0. Then

EQ(hg|A0) = hEQ(g|A0) and EQ(hg) = EQ(hEQ(g|A0))

for every bounded and A0-measurable function h. Approximating any f ∈
Cb(D) uniformly by a sequence from the dense set {f1, f2, ...} ⊆ Cb(D) we see
that hnk

(x) =
∫
f(a)Knk

(da|x) and h(x) =
∫
f(a)K(da|x) are A0-measurable

functions for every f ∈ Cb(D) by the definition of A0. Hence

lim
k→∞

∫
[
∫
f(a)Knk

(da|x)]g(x)Q(dx)

= lim
k→∞

∫
[
∫
f(a)Knk

(da|x)](EQ(g|A0)(x))Q(dx)

=
∫

[
∫
f(a)K(da|x)](EQ(g|A0)(x))Q(dx) =

∫
[
∫
f(a)K(da|x)]g(x)Q(dx),

as h(x) =
∫
f(a)K(da|x) is A0-measurable.
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Remark 3.18. The above theorem has been proved in Heyer (1982), Theorem
20.4, with different techniques. To break down the considerations into suitable sub-
sequences, instead of nets as in topology, Heyer has used in Lemma 20.5 Eberlein’s
theorem which states that bounded sets in L1(Q) are w∗-sequentially compact. Our
reduction step, using conditional expectations, is taken from Witting (1985), Theo-
rem 2.14, which deals with statistical tests.

The concept of weak convergence of distributions is fundamental to all
areas of statistics that deal with large sample sizes. Let S be a metric space
and S be the σ-algebra of Borel sets. According to Definition A.42 a sequence
of distributions Qn ∈ P(S) is called weakly convergent to the distribution
Q ∈ P(S) if

lim
n→∞

∫
f(s)Qn(ds) =

∫
f(s)Q(ds)

for every bounded and continuous function f. Now we introduce, in a simi-
lar way, the concept of weakly convergent sequences of decisions for a fixed
statistical model.

Definition 3.19. Let M = (X ,A, (Pθ)θ∈Δ) be a statistical model. Suppose
that the decision space D is a metric space and let D be the σ-algebra of Borel
sets. A sequence of decisions Dn : D×X →k [0, 1] is called weakly convergent
to D : D×X →k [0, 1] if for every f ∈ Cb(D) it holds

lim
n→∞

∫
[
∫
f(a)Dn(da|x)]Pθ(dx) =

∫
[
∫
f(a)D(da|x)]Pθ(dx), θ ∈ Δ. (3.19)

In this case we write Dn ⇒ D. We call a set D0 of kernels weakly closed if for
every sequence Dn ∈ D0 with Dn ⇒ D it follows that D ∈ D0. Finally, we call
such a set D0 weakly sequentially compact if for every sequence Dn : D×X →k

[0, 1] with Dn ∈ D0 there exists a subsequence Dnk
and some D ∈ D0 such that

Dnk
⇒ D.

To discuss the concept of weak convergence in terms of random variables
let (An,Xn), n = 1, 2, ..., and (A,X) be random vectors that are defined on
some probability space (Ω,F,Pθ), taking on values in D ×X , and have the
distributions L(An,Xn) = Dn⊗Pθ and L(A,X) = D⊗Pθ, respectively. Then
for every f ∈ Cb(D) it holds∫

[
∫
f(a)Dn(da|x)]Pθ(dx) = Eθf(An), n = 1, 2, ...,

∫
[
∫
f(a)D(da|x)]Pθ(dx) = Eθf(A).

This shows that

Dn ⇒ D if and only if L(An|Pθ) ⇒ L(A|Pθ), θ ∈ Δ, (3.20)

so that the weak convergence of decisions is nothing else than the conver-
gence in distribution of the associated random variables An under each of the
distributions in the model.
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Lemma 3.20. For every ρ ∈ Mσ(BΔ) there exists some Π ∈ P(BΔ) with
ρ
� Π.

Proof. There are pairwise disjoint sets Ci ∈ BΔ with ∪∞
i=1Ci = Δ and

0 < ρ(Ci) < ∞. Set g(θ) =
∑∞

i=1(2
iρ(Ci))−1ICi

(θ) and Π(dθ) = g(θ)ρ(dθ).
Then Π is a probability measure which is equivalent to ρ as g is positive.

Although the following theorem is a direct consequence of Theorem 3.17
we present it here separately because it is a crucial tool in later chapters.

Theorem 3.21. If the decision space D is a compact metric space and the
model M = (X ,A, (Pθ)θ∈Δ) is dominated, then the set of all decisions is
weakly sequentially compact.

Proof. Denote by Q a distribution that dominates the family of distribu-
tions (Pθ)θ∈Δ. Given any sequence of decisions Dn we get from Theorem 3.17
that there exists a subsequence Dnk

such that (3.19) holds. To complete the
proof we have only to note that dPθ/dQ ∈ L1(Q).

To illustrate the concept of weak convergence we turn to some special
cases.

Example 3.22. If Kn and K are nonrandomized decisions, i.e., there are mappings
Tn : Xn →m D and T : X →m D such that Kn = δTn and K = δT , then

∫
[

∫
f(a)Kn(da|x)]Pθ(dx) =

∫
f(Tn(x))Pθ(dx) = EPθf(Tn),

∫
[

∫
f(a)K(da|x)]Pθ(dx) =

∫
f(T (x))Pθ(dx) = EPθf(T ).

Hence we see that Kn ⇒ K holds if and only if the sequence of distributions L(Tn|Pθ)
converges weakly to the distribution L(T |Pθ).

Example 3.23. Suppose the decision space is finite and considered as a metric
space with the discrete metric. Set qa,n(x) = Kn({a}|x) and qa(x) = K({a}|x),
a ∈ D. Then 0 ≤ qa, qa,n ≤ 1,

∑
a∈D qa,n = 1, and

∑
a∈D qa = 1. Instead of all

functions f in (3.19) we have to consider only indicator functions of one point sets
so that (3.19) is equivalent to

lim
n→∞

∫
qa,n(x)Pθ(dx) =

∫
qa(x)Pθ(dx), θ ∈ Δ, a ∈ D.

If D = {0, 1}, then we consider statistical tests and weak convergence of decisions is
equivalent to the convergence of the power functions.

3.3 Continuity Properties of the Risk

According to its definition the risk function R(θ,D) depends on θ and D. If θ
belongs to a metric space, then we may investigate if R(θ,D) as a function of
θ is lower semicontinuous, or even continuous, for every fixed D. For a metric
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space S a function f : S → (−∞,∞] is called lower semicontinuous if for every
convergent sequence in S, say sn → s, it holds lim infn→∞ f(sn) ≥ f(s). Anal-
ogously, f is called upper semicontinuous if g = −f is lower semicontinuous.
Obviously, if f is lower and upper semicontinuous, then it is continuous.

It is clear that such continuity properties, in connection with compactness
arguments, are extremely helpful in the search for decisions that minimize the
risk in compact subsets of decisions. To establish statements in this direction
we need a suitable concept of continuity of the model (X ,A, (Pθ)θ∈Δ). For
this purpose we make the following assumption.

(A7) In the model (X ,A, (Pθ)θ∈Δ) the parameter set Δ is a metric space, and
θ �→ Pθ is continuous in variational distance.

We call a model that satisfies (A7) a continuous model . Assumption (A7)
seems to be relatively strong. However, if the model is dominated, say Pθ 
 μ
with fθ = dPθ/dμ, and if fθn

→ fθ, μ-a.e., for a sequence θn → θ in Δ, then
by the lemma of Scheffé (see Lemma A.19),

‖Pθn
− Pθ‖ =

∫
|fθn

− fθ|dμ → 0.

Note that under (A7), if Δ is a separable metric space, then the model is
dominated.

Problem 3.24.∗ Every continuous model with a separable parameter set is dom-
inated.

For further results on dominance and separability we refer to Strasser
(1985).

Proposition 3.25. Let (X ,A, (Pθ)θ∈Δ) be a statistical model where Δ is a
metric space. Let L : Δ × D → R+ be lower semicontinuous in θ ∈ Δ for
every fixed a ∈ D, and measurable in a ∈ D for every fixed θ ∈ Δ. If (A7) is
satisfied, then for every decision D the risk R(θ,D) is a lower semicontinuous
function of θ ∈ Δ. If L : Δ × D → R is bounded and continuous in θ ∈ Δ
for every fixed a ∈ D, then for every fixed D the risk R(θ,D) is a continuous
function of θ ∈ Δ.

Proof. Let M(θ, x,D) :=
∫
L(θ, a)D(da|x) and θn be any sequence in

Δ with θn → θ. Then by Fatou’s lemma (see Lemma A.17) and the lower
semicontinuity of L(·, a),

lim inf
n→∞

M(θn, x,D) ≥M(θ, x,D), x ∈ X .

Hence by the inequality in Problem 1.80, for every N > 0,
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lim inf
n→∞

R(θn,D) ≥ lim inf
n→∞

∫
[M(θn, x,D) ∧N ]Pθn

(dx)

≥ lim inf
n→∞

∫
[M(θn, x,D) ∧N ]Pθ(dx)−N lim sup

n→∞
‖Pθn

− Pθ‖

≥
∫

[M(θ, x,D) ∧N ]Pθ(dx).

As M(θ, x,D) ≥ 0 we get from the monotone convergence theorem (see The-
orem A.16) the first statement by taking N → ∞ on the right-hand side. If
|L| is bounded by C and continuous in θ, then instead of Fatou’s Lemma we
may apply Lebesgue’s theorem (see Theorem A.18) and get that |M(θ, x,D)|
is bounded by C and continuous in θ for every fixed x. This gives

|R(θn,D)−R(θ,D)| ≤ |
∫

[M(θn, x,D)−M(θ, x,D)]Pθ(dx)|+ 2C ‖Pθn
− Pθ‖ .

Taking the limit as n→∞ we get the statement.
To prepare for the next statement we need a simple result on the equicon-

tinuity of families of continuous functions.

Problem 3.26.∗ Let Δ be a metric space with metric ρΔ, D a compact metric
space, and L : Δ × D → R be continuous. Then θ �→ L(θ, a) is equicontinuous in a
in the sense that for every fixed θ0 ∈ Δ it holds

lim
δ→0

sup
θ:ρΔ(θ,θ0)≤δ

sup
a∈D

|L(θ, a)− L(θ0, a)| = 0.

Proposition 3.27. Let (X ,A, (Pθ)θ∈Δ) be a statistical model that is contin-
uous in the sense of (A7). If D is a compact metric space, L : Δ× D → R+

is continuous, and L(θ, a) ≤ C for some constant C, then the family of risk
functions R(θ,D), D ∈ D, is equicontinuous at every θ ∈ Δ in the sense that

lim
n→∞

sup
D∈D

|R(θn,D)− R(θ,D)| = 0

for every sequence θn → θ.

Proof. It holds

sup
D∈D

|R(θn,D)− R(θ,D)| ≤ sup
D∈D

|
∫

[
∫

(L(θn, a)− L(θ, a))D(da|x)]Pθn
(dx) |

+ sup
D∈D

|
∫

[
∫
L(θ, a)D(da|x)](Pθn

− Pθ)(dx) |

≤ sup
a∈D

|L(θn, a)− L(θ, a)|+ C ‖Pθn
− Pθ‖ ,

where the last inequality follows from the inequality in Problem 1.80. The
proof is completed by the application of the statement in Problem 3.26 and
the continuity of the model.
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Now we fix θ ∈ Δ and consider R(θ,D) as function of D. According to the
concept of weak convergence, for every fixed θ the mapping D �→ R(θ,D) is
continuous for bounded continuous loss functions. Next we study this conti-
nuity property in more details.

Proposition 3.28. Let (X ,A, (Pθ)θ∈Δ) be a statistical model and D a metric
space. Assume that the loss function L : Δ×D → R+ is lower semicontinuous
in a ∈ D for every fixed θ ∈ Δ. Then for every sequence Dn with Dn ⇒ D for
some D it holds

lim inf
n→∞

R(θ,Dn) ≥ R(θ,D).

Moreover, if in addition Δ is a compact metric space, L : Δ × D → R is
continuous, |L(θ, a)| ≤ C for some constant C, and (A7) holds, then

lim
n→∞

sup
θ∈Δ

|R(θ,Dn)− R(θ,D)| = 0.

Proof. We know from (3.20) that Dn ⇒ D if and only if Qn,θ :=
L(An|Pθ) ⇒ Qθ := L(A|Pθ), θ ∈ Δ. The first statement follows from point
(G) in Theorem A.49. To prove the second statement we introduce the family
of continuous functions F = {L(θ, ·) : θ ∈ Δ} on D. Then by |L(θ, a)| ≤ C
and the compactness of Δ the family F satisfies the conditions in Proposition
A.45 and the proof is complete.

3.4 Minimum Average Risk, Bayes Risk, Posterior Risk

In many situations the search for a decision that has, uniformly on the param-
eter set Δ, minimum risk within D, or at least within a given class D0 ⊂ D,
remains unsuccessful. As we have pointed out already, such an optimal decision
may not even exist. To deal with such difficulties one approach is to restrict
the search even further to some suitable subclass Ds ⊂ D0 where this task
becomes feasible. Another approach is to replace the optimality that is based
on uniform risk comparisons by some weaker optimality criterion. Rather than
comparing decisions by their risks, pointwise throughout Δ, comparisons are
now made by means of some suitably chosen functional of the risk function.
Several functionals that reflect, in one way or another, the extent of risk can
be chosen for this purpose. One choice is the supremum of the risk on Δ, which
leads to minimax decisions. Another choice is an average of the risk, where
some weight that depends on θ ∈ Δ is associated with the risk function. This
leads to minimum average risk decisions, and in particular to Bayes decisions.

It should be pointed out that in real-life situations an appropriate optimal-
ity criterion is not just simply given. It has to be adopted based on a thorough
understanding of the task at hand, including the choice of the statistical model
and the loss function. In the minimax approach, the supremum risk of some
decisions may be attained only at parameter points θ ∈ Δ that are very un-
likely to occur in reality, and the risk function may be peaked there. In the
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minimum average risk approach, the weight used for averaging the risk may
be much larger at some points, where less care of a loss is taken, than at other
points. This interrelation, or redundancy, between loss and weight may cause
conflicts in an attempt to choose a suitable optimality criterion.

In this section we study the structures of the average, Bayes, and posterior
risk. Here we establish general concepts and results that provide a systematic
way of finding decisions that minimize the average risk or the Bayes risk.

Let the parameter set Δ be equipped with a σ-algebra BΔ of subsets, and
denote by Mσ(BΔ) the set of all σ-finite measures on (Δ,BΔ). We assume
that the family (Pθ)θ∈Δ satisfies assumption (A3), i.e., that the mapping
θ �→ Pθ(B) is measurable for every B ∈ A. In addition we make the following
assumption.

(A8) (Δ,BΔ) is a measurable space and L : Δ × D → R+ is (BΔ ⊗D)-B+

measurable.

To indicate that this condition holds we also write L : Δ × D →m R+. It
follows from Fubini’s theorem for stochastic kernels (see Proposition A.40)
that for every D ∈ D the risk

R(θ,D) =
∫

[
∫
L(θ, a)D(da|x)]Pθ(dx)

is a nonnegative measurable function of θ that can be integrated with respect
to every ρ ∈ Mσ(BΔ). We define the average risk of D with respect to the
weight measure ρ by

r(ρ,D) =
∫

R(θ,D)ρ(dθ).

Fubini’s theorem and (3.4) yield

r(ρ,D) =
∫

(
∫

[
∫
L(θ, a)D(da|x)]P(dx|θ))ρ(dθ). (3.21)

If ρ = Π is a probability measure, then we call Π the prior and r(Π,D) the
Bayes risk of D under the prior Π.

Remark 3.29. (Convention). In view of (3.21), the assumptions (A3) and (A8)
are essential, and thus tacitly assumed to hold, whenever we are dealing with the
average risk or the Bayes risk. Occasionally, however, they are mentioned again as
a reminder of this convention.

By a particular choice of ρ we emphasize special areas of the parameter
set with the intention of getting decisions that perform well at least in the
areas with high weights of ρ. If ρ is finite, but not a probability measure, then
a normalization shows that minimizing r(ρ,D) is equivalent to minimizing
r(Π,D) with Π = ρ(Δ)−1ρ. A similar reduction can be made if ρ is σ-finite.
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Remark 3.30. Using the ρ-density of the distribution Π in Lemma 3.20 and the
chain rule we may represent the average risk as

r(ρ,D) =

∫
(

∫
[

∫
L(θ, a)D(da|x)]P(dx|θ))ρ(dθ)

=

∫
(

∫
[

∫
L̃(θ, a)D(da|x)]P(dx|θ))Π(dθ),

L̃(θ, a) = L(θ, a)
dρ

dΠ
(θ).

This means that every average risk can be written as a Bayes risk with a modified
loss function. Thus, in principle, we could have operated with probability measures
as averaging measures right from the beginning. However, the new loss function L̃
may be less intuitive than the original L, and it may complicate the minimization
of the posterior risk that is introduced later. As L is nonnegative L̃ is bounded from
below. The above representation reveals the duality between the averaging measure
ρ and the loss function L. Especially in Bayes analysis, where Π is interpreted as
a prior, one should be aware that the choice of the prior and the choice of the loss
function are intimately linked.

To create an approach which simultaneously covers the case of finite and
infinite averaging measures we need some technical results. For ρ ∈Mσ(BΔ)
we set

(Pρ)(A) =
∫
Pθ(A)ρ(dθ), A ∈ A.

The measure Pρ is not necessarily σ-finite even though ρ is σ-finite. Indeed,
if ρ(Δ) = ∞ and X is finite, then (Pρ)({x}) = ∞ must hold for at least
one point x ∈ X which rules out σ-finiteness. For dominated models the σ-
finiteness of Pρ is equivalent with the fact that the normalizing factor m(x)
in (1.35) is finite.

Problem 3.31.∗ If condition (A5) holds, then

m(x) =

∫
fθ(x)ρ(dθ) <∞, μ-a.e. x ∈ X ⇔ Pρ is σ-finite. (3.22)

d(Pρ)

dμ
= m.

A crucial point in the subsequent considerations is a disintegration of the
measure P⊗ ρ, i.e., a representation (P⊗ ρ)(dx, dθ) = (Π ⊗ Pρ)(dθ, dx) with
the help of a stochastic kernel Π. Such a decomposition of P⊗ ρ exists for a
σ-finite ρ under weak conditions, as the next proposition shows. Let m be the
marginal density in (3.22).

Proposition 3.32. Let ρ ∈ Mσ(BΔ) and assume that at least one of the
following two conditions holds.

(A4) is satisfied and Pρ is σ-finite.
(A5) is satisfied and m <∞, μ-a.e. (3.23)
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Then there exists a stochastic kernel Π : BΔ ×X →k [0, 1] such that
∫

[
∫
h(x, θ)Pθ(dx)]ρ(dθ) =

∫
[
∫
h(x, θ)Π(dθ|x)]Pρ(dx), (3.24)

for every h : X × Δ →m R+. If (3.23) is satisfied, τ ∈ Mσ(BΔ), and π =
dρ/dτ , then a version of the posterior distribution is given by

Π(dθ|x) = π(θ|x)τ (dθ), where (3.25)

π(θ|x) =
1

m(x)
π(θ)fθ(x)I(0,∞)(m(x)) + π(θ)I{0}(m(x)).

Proof. As ρ is σ-finite we get from Lemma 3.20 that there is a distribution
Π with Π 
� ρ. Condition (A4) and Theorem A.37 imply that there is a
stochastic kernel Π0 : BΔ ×X →k [0, 1] such that

∫
[
∫
g(x, θ)Pθ(dx)]Π(dθ) =

∫
[
∫
g(x, θ)Π0(dθ|x)]PΠ(dx),

for every g : X ×Δ→m R+. We note that Π 
� ρ implies PΠ 
� Pρ. As
Pρ is σ-finite the theorem of Radon–Nikodym (see Theorem A.27) provides
the existence of a density d(PΠ)

d(Pρ) . Set

Π1(B|x) =
d(PΠ)
d(Pρ)

(x)
∫
IB(θ)

dρ

dΠ
(θ)Π0(dθ|x).

Then Π1(·|x) is a measure on BΔ for every fixed x and Π1(B|x) is a
measurable function of x for every fixed B ∈ BΔ. Moreover, for every
h : X ×Δ→m R+, by the chain rule and g(x, θ) = h(x, θ) dρ

dΠ (θ),
∫

[
∫
h(x, θ)Π1(dθ|x)]Pρ(dx) =

∫
[
∫
h(x, θ)

dρ

dΠ
(θ)Π0(dθ|x)]PΠ(dx)

=
∫

[
∫

(h(x, θ)
dρ

dΠ
(θ))Pθ(dx)]Π(dθ) =

∫
[
∫
h(x, θ)Pθ(dx)]ρ(dθ). (3.26)

Putting h(x, θ) = IA(x), A ∈ A, we arrive at
∫
IA(x)Π1(Δ|x)Pρ(dx) =

∫
[
∫
IA(x)Pθ(dx)]ρ(dθ) = Pρ(A).

As Pρ is σ-finite we may conclude that

(Pρ)({x : Π1(Δ|x) �= 1}) = 0.

Set Π(·|x) = Π1(·|x) if Π1(Δ|x) = 1 and Π(·|x) = Π2(·|x) if Π1(Δ|x) �= 1,
where Π2 is any fixed stochastic kernel. Then Π is a stochastic kernel that
satisfies (3.24) in view of (3.26). To prove the second statement we note that
Π in (3.25) satisfies (3.24) by the definition of π(θ|x) and Fubini’s theorem.
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Definition 3.33. If ρ ∈ Mσ(BΔ), then every stochastic kernel Π : BΔ ×
X →k [0, 1] that satisfies (3.24) is called a posterior distribution. For any
such stochastic kernel Π,

r(ρ, a|x) : =
∫
L(θ, a)Π(dθ|x), and (3.27)

r(ρ,D|x) : =
∫
r(ρ, a|x)D(da|x),

are called the posterior risk at x of making a decision a ∈ D and the posterior
risk at x using the decision D, respectively.

For later reference we give the representations of the posterior risk in the
dominated case. That the statement below holds for every a ∈ D follows
immediately from Definition 3.33 and (3.25).

r(ρ, a|x) =
1

m(x)

∫
L(θ, a)fθ(x)π(θ)τ (dθ), Pρ-a.e. (3.28)

From (3.21) and (3.24) it follows that

r(ρ,D) =
∫

r(ρ,D|x)Pρ(dx). (3.29)

Now we study the posterior risk for exponential families under their con-
jugate priors. The next result is an immediate consequence of the definition of
the densities of conjugate priors in (1.39) and the posterior densities in (1.41).

Proposition 3.34. Let (Pθ)θ∈Δ be an exponential family with generating
statistic T and natural parameter θ. Let ρ = Πu,v, (u, v) ∈ Υ , be a conju-
gate prior with the τ -density from (1.39). Then

r(ρ, a|x) =
∫
L(θ, a)πu+1,v+T (x)(θ)τ (dθ).

The next example deals with binomial distributions.

Example 3.35. Let B(n, p), p ∈ (0, 1), be the family of binomial distributions on
X = {0, 1, ..., n}. For an inference on p we utilize the conjugate prior Be(α, β) from
Example 1.45 and set ρ = Be(α, β). The posterior at x ∈ X is Be(α + x, β + n− x).
Moreover,

r(ρ, a|x) =

∫ 1

0

L(κ(p), a)beα+x,β+n−x(p)dp, r(ρ,D|x) =

∫
r(ρ, a|x)D(da|x),

and κ(p) = ln(p/(1− p)) = θ.

We introduce the concepts of minimum average risk and Bayes decisions.
We recall that assumptions (A3) and (A8) are assumed to hold.
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Definition 3.36. Given a model (X ,A, (Pθ)θ∈Δ), D0 ⊆ D, and ρ ∈Mσ(BΔ)
a decision D0 ∈ D0 with r(ρ,D0) = infD∈D0 r(ρ,D) is called a minimum average
risk decision in D0 under the average measure ρ. If ρ = Π ∈ P(BΔ), then D0

is called a Bayes decision in D0 under the prior Π. Whenever D0 = D, “in
D0” is not mentioned.

Now we characterize the minimum average risk and Bayes decisions in D0.

Theorem 3.37. Let ρ ∈ Mσ(BΔ), (X ,A, (Pθ)θ∈Δ) be a statistical model.
Assume that a posterior distribution exists. Let D0 ⊆ D be a class of decisions.
If infD∈D0 r(ρ,D) < ∞, then a decision D0 ∈ D0 is a minimum average risk
decision in D0 if and only if

(Pρ)({x : r(ρ,D0|x) > r(ρ,D|x)}) = 0, D ∈ D0.

Proof. The sufficiency follows from (3.29). Conversely, if for some D1 ∈ D0

we have (Pρ)(A) > 0 for A = {x : r(ρ,D0|x) > r(ρ,D1|x)}, then

D2(·|x) := D1(·|x)IA(x) + D0(·|x)IA(x).

is a better decision in terms of the average risk.
Condition (3.31) says that a minimum average decision can be obtained

by finding for every fixed x a distribution D(·|x) that is concentrated on
arg mina∈D r(ρ, a|x), i.e., the set of all a ∈ D that minimizes r(ρ, a|x).

Now we consider Bayes decisions in a normal model.

Example 3.38. Consider the family (N⊗n(μ, σ2))μ∈R, where σ2 > 0 is known. We
take ρ = N(ν, δ2). Then by Lemma 1.37 it holds for every loss function L : R×D →m

R+,

r(ρ, a|x) =

∫
L(t, a)ϕμ(x),τ2(t)dt, where

μ(x) =
(n/σ2)

(n/σ2) + (1/δ2)
xn +

(1/δ2)

(n/σ2) + (1/δ2)
ν, τ2 =

1

(n/σ2) + (1/δ2)
.

If D = R, then we have the problem of estimating the parameter μ. If the loss
function is given by L(μ, a) = (μ− a)2, then the pointwise minimization of

r(N(ν, δ2), a|x) =

∫
(t− a)2ϕμ(x),τ2(t)dt

provides the Bayes estimator

TB(x1, ..., xn) =
(n/σ2)

(n/σ2) + (1/δ2)
xn +

(1/δ2)

(n/σ2) + (1/δ2)
ν. (3.30)

For infinite averaging measures ρ it often occurs that the risk r(ρ,D) is not
finite, but the posterior risk r(ρ,D|x) is Pρ-a.e. finite. This occurs typically
in invariant models if D is an invariant decision for which the risk R(θ,D) is
independent of θ and ρ is an invariant measure on the parameter space with
infinite total mass. Such situations are met later on in Chapter 7 when we
deal with the Pitman estimator.
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Definition 3.39. Let ρ ∈Mσ(BΔ). Suppose that (X ,A, (Pθ)θ∈Δ) is a statis-
tical model for which a posterior distribution exists. Let D0 ⊆ D be a class of
decisions. A decision D0 ∈ D0 is called a generalized Bayes decision in D0 if
it holds

(Pρ)({x : r(ρ,D0|x) > r(ρ,D|x)}) = 0, D ∈ D0.

It is clear from the definition that every minimum average risk decision
with finite risk is a generalized Bayes decision.

Corollary 3.40. Assume that for r(ρ, a|x) from (3.27) infa∈D r(ρ, a|x) is a
measurable function of x. Then every decision D0 ∈ D0 that satisfies

Pρ({x : D0({a : r(ρ, a|x) > inf
b∈D

r(ρ, b|x)}|x) > 0}) = 0 (3.31)

is a generalized Bayes decision and a minimum average risk decision in D0.

Proof. Condition (3.31) implies Pρ-a.e.

r(ρ,D0|x) ≤ inf
b∈D

r(ρ, b|x) ≤
∫
r(ρ, a|x)D(da|x) = r(ρ,D|x).

Subsequently we consider situations where r(ρ, a|x) can be evaluated ex-
plicitly. This is especially the case when we are dealing with an exponen-
tial family and conjugate priors. On the other hand, there are many situa-
tions where the integrals associated with r(ρ, a|x) in (3.27) and (3.28) cannot
be evaluated explicitly. In this case one has to have recourse to numerical
methods. Several techniques for that purpose have been developed in the last
decades. A special role is hereby played by Monte Carlo methods that run fast
and provide powerful tools for Bayes analyses. For details we refer to Chen,
Shao, and Ibrahim (2000).

Example 3.41. Suppose that in the model (X ,A, (Pθ)θ∈Δ) the parameter set
Δ = {1, ...,m} is finite. The task of deciding which of the values in D = {1, ...,m}
is associated with the true distribution is called a classification problem. In the con-
text of decision theory this can also be interpreted as the problem of estimating
a parameter when the parameter set Δ is finite. For a given prior Π on Δ we set
πi = Π({i}), i = 1, ...,m. Let fi be the density of Pi with respect to a dominating
σ-finite measure μ, i = 1, ...,m. Then the posterior risk r(Π, a|x) from (3.27) has
the form

r(Π, a|x) =
1

m(x)

∑m

i=1
L(i, a)fi(x)πi, a = 1, ...,m, x ∈ X .

As the factor 1/m(x) is irrelevant for minimizing r(Π, a|x) as a function of a an
application of Corollary 3.40 yields that a classification rule DΠ is Bayes with respect
to the prior Π if and only if

DΠ(A(x)|x) = 1, μ-a.e., where

A(x) = arg min
1≤a≤m

∑m

i=1
L(i, a)fi(x)πi.
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Especially, under the zero–one loss function L0,1(θ, a) = 1− I{a}(θ), we have

r(Π, a|x) =
1

m(x)

∑
i�=a

fi(x)πi and A(x) = arg max
1≤a≤m

fa(x)πa.

We conclude the series of examples with a model where the posterior risk
is finite whereas the risk is infinite for all invariant decisions.

Example 3.42. Let Pθ = N⊗n(θ, 1), θ ∈ R, and ρ = λ. Then at x = (x1, ..., xn) ∈
R

n, and with xn = (1/n)
∑n

i=1 xi,

fθ(x) = (2π)−n/2 exp{−1

2

∑n

i=1
(xi − θ)2},

m(x) =

∫
(2π)−n/2 exp{−1

2

∑n

i=1
(xi − θ)2}dθ

= (2π)−(n−1)/2n−1/2 exp{−1

2

∑n

i=1
(xi − xn)2} <∞,

π(θ|x) = (2π)−1/2n1/2 exp{−n

2
(θ − xn)2}.

If L(θ, a) = (θ − a)2 (i.e., the squared error loss function), then

r(ρ, a|x) =

∫
(θ − a)2π(θ|x)dθ <∞.

To find a generalized Bayes estimator we have to minimize the function a �→ r(ρ, a|x)
for every fixed x. This gives the estimator T�(x) = xn. The posterior risk of this
estimator is

r(ρ, T�|x) :=

∫
r(ρ, a|x)δxn(da) = r(ρ, xn|x) = n−1

and thus finite. In contrast to that the average risk of T�(x) = xn is infinite. Indeed,
the relation (3.29) implies

r(ρ, T ) =

∫
[

∫
r(ρ, T�|x)Pθ(dx)]dθ =

∫
(

∫
n−1Pθ(dx))dθ = ∞.

Later on in Chapter 7 we show that T�(x) = xn is the Pitman estimator, which is
then introduced for a more general class of models.

Minimum average decisions reflect the risk according to the averaging mea-
sure ρ. If this measure is sufficiently well spread out across Δ, then a minimum
average decision cannot be outperformed by any other decision uniformly in
θ ∈ Δ. Indeed minimum average risk decisions are admissible under weak
assumptions. To pursue this idea in a more flexible way, Stein (1955b) and
LeCam (1955) were the first to consider sequences of priors to establish ad-
missibility. These ideas have been used in many papers: see e.g. Diaconis
and Stein (1983), Farrell (1968), Brown (1971), and Rukhin (1986). Here we
present only the classical sufficient condition for admissibility, due to Blyth
(1951), which is based on the continuity of the risk function. Conditions under
which this continuity holds have been investigated in Section 3.3.
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Theorem 3.43. Assume that Δ is a metric space and that the risk function
R(θ,D) is continuous in θ for every D ∈ D0. Let D0 ∈ D0. If there exists a
sequence ρn ∈Mσ(BΔ), and associated minimum average decisions Dn ∈ D0

with r(ρn,Dn) <∞, such that

lim
n→∞

[r(ρn,D0)− r(ρn,Dn)] = 0 (3.32)

and
lim inf
n→∞

ρn(B) > 0 for every open set B ⊆ Δ, (3.33)

then D0 is admissible in D0.

Corollary 3.44. If the risk function R(θ,D) is continuous in θ for every D ∈
D0 and ρ(B) > 0 for every open set B ⊆ Δ, then a minimum risk decision
D0 ∈ D0 with finite risk is admissible.

Proof. Suppose D0 is not admissible. Then there are some D ∈ D0 and
θ0 ∈ Δ such that

R(θ,D) ≤ R(θ,D0), θ ∈ Δ, and R(θ0,D) < R(θ0,D0).

The continuity of both R(θ,D0) and R(θ,D) implies that for every sufficiently
small ε > 0 the set U(ε, θ0) = {θ : R(θ,D) + ε < R(θ,D0)} is open and
nonempty. By (3.33) we get

lim
n→∞

[r(ρn,D0)− r(ρn,Dn)] ≥ lim inf
n→∞

[r(ρn,D0)− r(ρn,D)]

= lim inf
n→∞

∫
[R(θ,D0)− R(θ,D)]ρn(dθ) ≥ lim inf

n→∞
ερn(U(ε, θ0)) > 0,

which is a contradiction to (3.32). The corollary follows with ρn = ρ and
Dn = D0.

In the above corollary the condition that the risk of D0 is finite is essential.
As we have seen already generalized Bayes decisions may have an infinite risk.
Thus their possible admissibility cannot be concluded from the corollary.

We illustrate the last theorem with a classical result.

Example 3.45. Let X follow a normal distribution N(μ, 1), μ ∈ R. Suppose that
we want to estimate μ under the squared error loss L(μ, a) = (a− μ)2. The natural
estimator Tnat(x) = x has the risk R(μ, Tnat) =

∫
s2ϕ0,1(s)ds = 1. We compare this

estimator with the Bayes estimator for the prior Π = N(0, δ2). According to (3.30)
the Bayes estimator is

TB(x) = �2
1x, �2

1 = δ2/(1 + δ2),

which has the risk R(μ, TB) = �4
1 + (1 − �2

1)
2μ2 and the Bayes risk r(Π,TB) = �2

1.
Now we take ρn =

√
nN(0, n). The factor

√
n does not change the minimum

average risk estimator which is mn(x) = (n/(n + 1))x. The density of ρn is
(2π)−1/2 exp{−s2/(2n)}. As
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lim
n→∞

√
n

∫ b

a

ϕ0,n(s)ds =
b− a√

2π
> 0, a < b,

the condition (3.33) is satisfied. It remains to show that the condition (3.32) is met,
too. Indeed,

lim
n→∞

√
n[r(ρn, Tnat)− r(ρn,mn)] = lim

n→∞

√
n(1− n

1 + n
) = 0.

Therefore the natural estimator Tnat(x) = x is admissible.

Now we focus on decisions in Bayes models; i.e., we consider (X,Θ) as a
pair of random variables where X is observable and takes on values in (X ,A),
whereas Θ is not observable and takes on values in (Δ,BΔ). Θ is the object
of interest and the inference. We assume that (A3) is satisfied which means
that P(·|θ) = Pθ(·) is a stochastic kernel. The distribution Π of Θ is called the
prior distribution, and the stochastic kernel P(·|θ) = Pθ(·) is the conditional
distribution of X, given Θ = θ. Hence (X,Θ) has the joint distribution P⊗Π.
When making an inference we have to deal with the random action A, where
A is a random variable whose conditional distribution, given X = x and
Θ = θ, depends only on x and is specified by D(·|x). Altogether, we model
the observation and decision process by the probability space

(Ω,F,P) = (D ×X ×Δ,D⊗ A⊗BΔ,D⊗ P⊗Π), (3.34)

where P = D⊗ P⊗Π is defined by

P(E) =
∫

(
∫

[
∫
IE(a, x, θ)D(da|x)]P(dx|θ))Π(dθ);

see Proposition A.40. If A,X, and Θ denote the projections on D,X , and Δ,
respectively, then (A,X,Θ) is a random vector with values in D×X ×Δ such
that

Eh(A,X,Θ) =
∫

(
∫

[
∫
h(a, x, θ)D(da|x)]P(dx|θ))Π(dθ) (3.35)

holds for every h : D × X × Δ →m R+. From here we see that Θ,X,A is a
Markov chain; see (1.126). Suppose there exists a posterior distribution Π in
the sense of Definition 3.33. Then for every g : X ×Δ→m R+,

∫
[
∫
g(x, θ)Pθ(dx)]Π(dθ) =

∫
[
∫
g(x, θ)Π(dθ|x)](PΠ)(dx).

This means that in the Bayes model the posterior distribution is just a regular
conditional distribution of Θ, given X = x. The representation (3.35) implies
that for every h : D ×X ×Δ→m R+,

Eh(A,X,Θ) =
∫

[
∫

[
∫
h(a, x, θ)D(da|x)]Π(dθ|x)](PΠ)(dx).
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We see from here that the conditional distribution of (A,Θ), given X = x, is
D(·|x)⊗Π(·|x). This means that the decision A and the random parameter Θ
are conditionally independent, given X = x, which is a property that holds for
every Markov chain; see Problem 1.99. Moreover, we may write the posterior
risk as a conditional expectation.

r(Π, a|x) =
∫
L(θ, a)Π(dθ|x) = E(L(Θ, a)|X = x), PΠ-a.s.

It also holds
r(Π,D|x) = E(L(Θ,A)|X = x), PΠ-a.s.

Now we consider examples of Bayes decision problems where explicit solutions
can be obtained.

Example 3.46. Consider the Bayes decision model (3.34). Let κ : Δ →m R be
a function and suppose we want to predict the random variable κ(Θ). Each such
prediction T : X →m R is called a Bayes estimator of Θ. We use the squared error
loss L(θ, a) = [κ(θ)− a]2 and assume that Eκ2(Θ) <∞. Then

r(Π, a|x) =

∫
[κ(θ)− a]2Π(dθ|x)

=

∫
[κ(θ)−

∫
κ(θ̃)Π(dθ̃|x)]2Π(dθ|x) +

∫
[a−

∫
κ(θ̃)Π(dθ̃|x)]2Π(dθ|x).

Therefore,

TΠ(x) =

∫
κ(θ)Π(dθ|x) = E(κ(Θ)|X = x)

is the PΠ-a.s. uniquely determined Bayes estimator.

Example 3.47. Let (X ,A, (Pθ)θ∈Δ) be a statistical model that satisfies condition
(A5). We consider the problem of testing the hypotheses H0 : Δ0 versus HA : ΔA,
where Δ0 and ΔA is a decomposition of Δ. Let Π be a prior on (Δ,BΔ). We assume
that v := Π(Δ0) satisfies 0 < v < 1, and decompose Π into

Π = vΠ0 + (1− v)ΠA, where Π0 = Π(·|Δ0) and ΠA = Π(·|ΔA).

If m0,mA, and m denote the marginal densities

m0(x) =

∫
fθ(x)Π0(dθ), mA(x) =

∫
fθ(x)ΠA(dθ), m(x) =

∫
fθ(x)Π(dθ), (3.36)

then m(x) = vm0(x) + (1− v)mA(x). The decision space is D = {0, 1}. For any test
ϕ the associated decision rule is D(·|x) = (1−ϕ(x))δ0(·)+ϕ(x)δ1(·). Assuming that
there is no loss for making a correct decision, we adopt a loss function of the form

L(θ, a) = al0(θ)IΔ0(θ) + (1− a)l1(θ)IΔA(θ),

where l0, l1 : Δ→m R+. Then by (3.28) with τ = Π and π = 1,

r(Π, 0|x) =
v

m(x)

∫
l0(θ)fθ(x)Π0(dθ), r(Π, 1|x) =

1− v

m(x)

∫
l1(θ)fθ(x)ΠA(dθ).
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According to Corollary 3.40, we get a Bayes decision by choosing any test ϕΠ with

ϕΠ(x) =

{
1 if r(Π, 1|x) < r(Π, 0|x),

0 if r(Π, 1|x) > r(Π, 0|x).
(3.37)

Especially, under the zero–one loss, i.e., L(θ, a) = aIΔ0(θ)+ (1−a)IΔA(θ), a = 0, 1,
we get

ϕΠ(x) =

{
1 if (1− v)mA(x) < vm0(x),

0 if (1− v)mA(x) > vm0(x).
(3.38)

The test ϕΠ in (3.37) and (3.38) can be chosen arbitrarily, but of course measur-
able, for observations x for which r(Π, 1|x) = r(Π, 0|x) and (1−v)mA(x) = vm0(x),
respectively. Thus in particular, every Bayes test may be chosen to be a nonrandom-
ized test. The test in (3.38) admits an interesting interpretation. The densities of
the marginal distributions PΠ0 and PΠA with respect to the dominating measure
μ of the family (Pθ)θ∈Δ are given by

d(PΠ0)

dμ
(x) = m0(x) and

d(PΠA)

dμ
(x) = mA(x).

This means that in view of Theorem 2.60 ϕΠ in (3.38) is a Bayes test for the simple
hypotheses H0 : PΠ0 versus HA : PΠA under the prior (v, 1− v).

ϕΠ(x) = 1 if v
d(PΠ0)

dμ
(x) < (1− v)

d(PΠA)

dμ
(x),

ϕΠ(x) = 0 if v
d(PΠ0)

dμ
(x) > (1− v)

d(PΠA)

dμ
(x).

Now we assume that the data are from the Bayes model (3.34). We consider the
posterior probabilities of {Θ ∈ Δ0} and {Θ ∈ ΔA} at X = x. As τ = Π and π = 1
the posterior density in (3.25) is π(θ|x) = (fθ(x)/m(x))I(0,∞)(m(x)) + I{0}(m(x))
and

P(Θ ∈ Δ0|X = x) =

∫
IΔ0(θ)π(θ|x)τ (dθ) = v

m0(x)

m(x)
,

P(Θ ∈ ΔA|X = x) =

∫
IΔA(θ)π(θ|x)τ (dθ) = (1− v)

mA(x)

m(x)
.

Therefore

ϕΠ(x) = 1 if P(Θ ∈ Δ0|X = x) < P(Θ ∈ ΔA|X = x),

ϕΠ(x) = 0 if P(Θ ∈ Δ0|X = x) > P(Θ ∈ ΔA|X = x).

The ratio of the posterior odds ratio and the prior odds ratio,

B(x) =
P(Θ ∈ Δ0|X = x)/P(Θ ∈ ΔA|X = x)

v/(1− v)

is called the Bayes factor in favor of Δ0.
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3.5 Bayes and Minimax Decisions

As pointed out previously, in general we cannot find a decision D that mini-
mizes R(θ,D) uniformly in θ ∈ Δ. We also have already considered concepts
for dealing with the risk function by means of a functional. The common idea
behind these concepts is to assign a numerical value to the risk function that
has to be minimized in order to get an optimal decision. One of these con-
cepts is to average the risk function which leads to the concept of a minimum
average risk decision and especially to Bayes decisions; see Definition 3.36.
Another approach is to look at the worst case which is the maximum of the
risk function.

Definition 3.48. Given a statistical model (X ,A, (Pθ)θ∈Δ) and a class of de-
cisions D0 ⊆ D, a decision D0 ∈ D0 is called a minimax decision in D0 if
supθ∈Δ R(θ,D0) = infD∈D0 (supθ∈Δ R(θ,D)). Whenever D0 = D, “in D0” is
not mentioned.

In this section we study the relations between minimax and minimum
average risk decisions. First we deal with the problem of the existence of
minimax and minimum average risk decisions. The crucial point here is that
under weak conditions the risk and the Bayes risk are lower semicontinuous
functions of the decisions and the space of all decision is compact.

Proposition 3.49. Suppose that in (X ,A, (Pθ)θ∈Δ) the family (Pθ)θ∈Δ is
dominated, the decision space D is a compact metric space, and the loss func-
tion L(θ, a) is lower semicontinuous in a for every θ ∈ Δ. If D0 is closed under
the weak convergence of decisions, then there exists at least one decision that
is minimax in D0.

Proof. We know from Proposition 3.28 that for every fixed θ the function
D �→ R(θ,D) is a lower semicontinuous function with respect to the weak
convergence of decisions. As the model is dominated and the decision space
is a compact metric space, the space of all decisions D is weakly sequentially
compact; see Theorem 3.21. Hence, without loss of generality, we may choose
a sequence Dn such that supθ∈Δ R(θ,Dn) → infD∈D0 supθ∈Δ R(θ,D) where Dn

converges weakly to some D0, and where D0 ∈ D0 by assumption. By the
lower semicontinuity of R(θ,D) it follows R(θ,D0) ≤ lim infn→∞ R(θ,Dn) and
thus

sup
θ∈Δ

R(θ,D0) ≤ lim inf
n→∞

sup
θ∈Δ

R(θ,Dn) = lim
n→∞

sup
θ∈Δ

R(θ,Dn) = inf
D∈D0

sup
θ∈Δ

R(θ,D).

The existence of a minimum average decision can be guaranteed similarly.
For the next proposition we assume that (A3) and (A8) are satisfied.
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Proposition 3.50. Suppose that in (X ,A, (Pθ)θ∈Δ) the family (Pθ)θ∈Δ is
dominated, the decision space D is a compact metric space, and the loss
function L(θ, a) is nonnegative and lower semicontinuous in a for every
θ ∈ Δ. If D0 is closed under the weak convergence of decisions, then for
every ρ ∈ Mσ(BΔ) there exists at least one minimum average risk decision
in D0.

Proof. We again use Proposition 3.28 to see that for every fixed θ the
function D �→ R(θ,D) is a lower semicontinuous function. By Fatou’s lemma
we get that D �→ r(ρ,D) is a lower semicontinuous function on D. The rest of
the proof is analogous to the proof of Proposition 3.49.

Finding minimax decisions, provided there exists at least one, is a difficult
problem which can be solved directly only in special situations. Therefore we
study the minimax concept under various conditions, and also the relations
to other concepts. To prepare for that, we establish for a class D0 ⊆ D a
lower bound for the minimax value in D0, i.e., for infD∈D0 supθ∈Δ R(θ,D). For
any θ0 ∈ Δ and D0 ∈ D0 it holds infD∈D0 R(θ0,D) ≤ supθ∈Δ R(θ,D0), which
implies

sup
θ∈Δ

inf
D∈D0

R(θ,D) ≤ inf
D∈D0

sup
θ∈Δ

R(θ,D). (3.39)

If there exists a decision D0 ∈ D0 that is minimax in D0, then the search for
a minimax decision can be simplified considerably if there exists some θ0 ∈ Δ
which is least favorable for D0 in the sense of R(θ0,D0) = supθ∈Δ R(θ,D0).
The combination of these two ideas leads to the concept of a saddle point .

Definition 3.51. Given a model (X ,A, (Pθ)θ∈Δ), a decision space (D,D),
and a class of decisions D0 ⊆ D, a pair (θ0,D0) ∈ Δ × D0 is called a saddle
point in Δ× D0 if

R(θ,D0) ≤ R(θ0,D0) ≤ R(θ0,D), θ ∈ Δ, D ∈ D0.

Whenever D0 = D, “in Δ× D0” is not mentioned.

It is easy to see that the existence of a saddle point in Δ × D0 implies
equality in (3.39).

Proposition 3.52. If (θ0,D0) is a saddle point in Δ× D0, then

sup
θ∈Δ

inf
D∈D0

R(θ,D) = R(θ0,D0) = sup
θ∈Δ

R(θ,D0) = inf
D∈D0

sup
θ∈Δ

R(θ,D),

so that in particular D0 is minimax in D0 and θ0 is least favorable for D0.

Proof. It holds

inf
D∈D0

sup
θ∈Δ

R(θ,D) ≤ R(θ0,D0) ≤ inf
D∈D0

R(θ0,D) ≤ sup
θ∈Δ

inf
D∈D0

R(θ,D),

so that the statement follows from inequality (3.39).
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The inequality R(θ,D0) ≤ R(θ0,D0) says that θ0 is a least favorable pa-
rameter configuration for decision D0, whereas R(θ0,D0) ≤ R(θ0,D) says that
D0 is the best decision at parameter point θ0. These can also be viewed as
monotonicity properties of the risk function at the point (θ0,D0), and thus it
is not surprising that in testing problems the MLR property is crucial in this
regard.

Example 3.53. As before in Theorem 2.49, consider testing H0 : (b0, θ0] versus
HA : (θ0, b1) as a decision problem with Δ = (b0, b1), where D(·|x) = (1−ϕ(x))δ0(·)+
ϕ(x)δ1(·) and L(θ, a) = aI(b0,θ0](θ) + (1− a)I(θ0,b1)(θ), θ ∈ Δ, a ∈ D = {0, 1}. Here
we have

R(θ,D) = I(b0,θ0](θ)Eθϕ + I(θ0,b1)(θ)(1− Eθϕ), θ ∈ Δ.

For a fixed α ∈ (0, 1/2] let D0 be the class of decisions associated with tests ϕ that
satisfy Eθ0ϕ = α. Suppose that (Pθ)θ∈(b0,b1), has MLR in T . Let ϕT,α be the tests
from (2.19) and

D0 = (1− ϕT,α)δ0 + ϕT,αδ1.

The relation (2.32) in Theorem 2.49 gives R(θ,D0) ≤ R(θ0,D0) = α for θ ∈ Δ.
Furthermore, by the construction of D0 it holds R(θ0,D0) = R(θ0,D) for every
D ∈ D0. Therefore (θ0,D0) is a saddle point in Δ× D0.

In the definition of a saddle point (θ0,D0) the point θ0 plays the role of
a least favorable parameter configuration for the decision D0. A similar role
of a least favorable prior can be assigned when we are dealing with Bayes
decisions. For the remainder of this section it is assumed that conditions (A3)
and (A8) are satisfied.

Definition 3.54. For a decision problem under the model (X ,A, (Pθ)θ∈Δ),
and a class of decisions D0 ⊆ D, a distribution Π0 ∈ P(BΔ) is called a least
favorable prior for D0 if

sup
Π∈P(BΔ)

inf
D∈D0

r(Π,D) = inf
D∈D0

r(Π0,D).

Whenever D0 = D, “for D0” is not mentioned.

There is a close connection between the minimax approach and the concept
of a least favorable prior which is studied next. In Bayes analysis, after a prior
Π and a class D0 ⊆ D have been chosen, the goal is to find a decision D0 for
which r(Π,D0) ≤ r(Π,D), D ∈ D0. Regarding the choice of the prior, the
concept of a least favorable prior for D0 targets a prior Π0 that maximizes
the minimal Bayes risks in D0 for all priors Π ∈ P(BΔ). To examine how this
is related to the minimax approach, we start with some obvious facts. The
following hold.

inf
D∈D0

sup
θ∈Δ

R(θ,D) = inf
D∈D0

sup
Π

r(Π,D),

w := sup
Π

inf
D∈D0

r(Π,D) ≤ inf
D∈D0

sup
θ∈Δ

R(θ,D) = inf
D∈D0

sup
Π

r(Π,D) =: w. (3.40)
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If Π0 is least favorable for D0 and D0 is Bayes in D0 under Π0, then

sup
Π

inf
D∈D0

r(Π,D) = r(Π0,D0).

The question that remains open is whether equality holds in (3.40), i.e.,
whether

sup
Π

inf
D∈D0

r(Π,D) = inf
D∈D0

sup
θ∈Δ

R(θ,D). (3.41)

Any statement that establishes (3.41) is called a minimax theorem. If (3.41)
holds, then, at least approximately, every minimax decision is a Bayes decision.
This is a completeness statement to which we come back later on. The question
regarding the validity of a minimax theorem is also related to another concept.

Definition 3.55. Given a model (X ,A, (Pθ)θ∈Δ) and a decision space (D,D),
a pair (Π0,D0) ∈ P(BΔ)× D0 is called a saddle point in P(BΔ)× D0 if

r(Π,D0) ≤ r(Π0,D0) ≤ r(Π0,D), D ∈ D0, Π ∈ P(BΔ). (3.42)

The existence of a saddle point is of great importance for establishing
(3.41), as the next result shows.

Proposition 3.56. If (Π0,D0) is a saddle point in P(BΔ)×D0, then (3.41)
holds, Π0 is a least favorable prior for D0, D0 is Bayes in D0 under Π0, and
D0 is minimax in D0.

Proof. To establish (3.41) we remark that (3.42) yields

w = inf
D∈D0

sup
Π

r(Π,D) ≤ r(Π0,D0) ≤ sup
Π

inf
D∈D0

r(Π,D) = w.

In view of (3.40) we have equality. The statements that Π0 is a least favorable
prior for D0, and that D0 is Bayes in D0 under Π0, are direct consequences of
(3.42). It remains to show that D0 is minimax in D0. As a prior can also be
chosen to be a δ-distribution we get

sup
θ∈Δ

R(θ,D0) = sup
Π

r(Π,D0) ≤ r(Π0,D0) ≤ r(Π0,D) ≤ sup
θ∈Δ

R(θ,D),

which proves the minimaxity.

We also consider the following condition.

sup
θ̃∈Δ

R(θ̃,D0) = R(θ,D0), Π0-a.s. θ ∈ Δ, D0 is Bayes under Π0. (3.43)

Decisions that satisfy the first part in (3.43) have constant risk and are called
equalizer decisions.

Theorem 3.57. The conditions (3.42) and (3.43) are equivalent, and they
imply that D0 is minimax in D0.
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Proof. The conditions on the right-hand sides of (3.42) and (3.43) are
identical. Then the left-hand condition in (3.42) is equivalent to

sup
Π

r(Π,D0) = sup
θ∈Δ

R(θ,D0) = r(Π0,D0) =
∫

R(θ,D0)Π0(dθ).

But this in turn is equivalent to
∫

(sup
θ̃∈Δ

R(θ̃,D0)− R(θ,D0))Π0(dθ) = 0,

which is equivalent to the first part in (3.43). The second statement follows
from Proposition 3.56.

The next proposition is based on a more general version of condition (3.43).

Proposition 3.58. If there exist a sequence of priors Πn, and an associated
sequence Dn of Bayes decisions in D0 under Πn, n = 1, 2, ..., such that

sup
θ∈Δ

R(θ,D0) = lim
n→∞

r(Πn,Dn), (3.44)

then D0 is a minimax decision in D0.

Proof. The assumption and (3.40) imply

sup
θ∈Δ

R(θ,D0) ≤ sup
Π∈P(BΔ)

inf
D∈D0

r(Π,D) ≤ inf
D∈D0

sup
θ∈Δ

R(θ,D).

Every sequence Πn that satisfies (3.44) is called a least favorable sequence
of priors for D0, and D0 is called an approximate Bayes decision in D0.

Example 3.59. We consider the problem of estimating the parameter p in a bi-
nomial distribution B(n, p), p ∈ Δ = (0, 1). Here X = {0, 1, ..., n} and the decision
space is D = Δ = (0, 1). We use the squared error loss L(p, a) = (a − p)2. Let the
prior Π on Δ = (0, 1) be the beta distribution Be(α, β) with parameters α, β > 0.
From Example 3.35, with the loss L(κ(p), a) = (a− p)2, we get

r(Π, a|x) =

∫ 1

0

(p− a)2beα+x,β+n−x(p)dp, a ∈ Δ, x ∈ X .

According to Corollary 3.40 we have to minimize r(Π, a|x) for every fixed x. Hence

Tα,β(x) :=

∫ 1

0

pbeα+x,β+n−x(p)dp =
α + x

α + β + n

is a Bayes estimator for p under the prior Be(α, β), and

R(p, Tα,β) =
∑n

l=0
bn,p(l)(

α + l

α + β + n
− p)2

=
1

(α + β + n)2
[
p2((α + β)2 − n) + p(n− 2α(α + β)) + α2] .
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We see that R(p, Tα,β) is constant in p if and only if α = β =
√
n/2. By Theorem

3.57

T√
n/2,

√
n/2(x) =

1√
n + n

(x +
√
n/2)

is a minimax estimator. To better understand which areas of the parameter space are
emphasized by the prior, we recall that Be(α, β) has the expectation μ and variance
σ2, respectively,

μ =
α

α + β
and σ2 =

αβ

(α + β)2(α + β + 1)
,

which for α = β =
√
n/2 turn out to be μn = 1/2 and σ2

n = [4(
√
n+1)]−1. Although

n is fixed here, we see that σ2
n is small for large n so that the interpretation of the

least favorable prior is that parameter values close to 0 and 1 are easier to estimate
than those in the middle, an effect that is increasing with n.

Next we consider the problem of estimating the mean θ of a d-variate
normal distribution. We use a loss function that depends on the difference of
the estimate and the unknown parameter, similarly as it has been done in some
of the previous examples. Especially we use subconvex functions l that are an
extension of the class of convex functions. We recall from Section 2.1 that a
function l : R

d → R is subconvex if {x : l(x) ≤ c, x ∈ R
d} is a convex set for

every c ∈ R, and convex if l(αx+ (1− α)y) ≤ αl(x) + (1− α)l(y), α ∈ [0, 1],
x, y ∈ R

d. The next problem shows that subconvexity can be expressed in
terms of some less restrictive inequalities.

Problem 3.60. l : R
d → R is subconvex if and only if

l(αx + (1− α)y) ≤ max(l(x), l(y)), α ∈ [0, 1], x, y ∈ R
d.

A function l is called centrally symmetric if l(−x) = l(x). We denote by Ld

the class of all nonnegative centrally symmetric subconvex Borel measurable
functions on R

d with l(0) = 0. Examples of subconvex functions on R are
all convex functions, such as |x|p, p ≥ 1. However, the class of subconvex
functions is larger, and in particular it contains functions that are used in
robust statistics to reduce the influence of outliers. Examples are

l∗(x) = x2I[−1,1](x)+|x|IR\[−1,1](x) and l∗∗(x) = x2I[−1,1](x)+IR\[−1,1](x).

The function l∗ is a linear continuation of the quadratic function, whereas l∗∗

is bounded.

Problem 3.61. It holds l ∈ L1 if l is symmetric and l : [0,∞) → [0,∞) is nonde-
creasing. If l ∈ L1, then for ld(x) := l(‖x‖) it holds ld ∈ Ld.

The following result is the famous Anderson’s lemma. For a proof we refer
to Strasser (1985), Lemma 38.21.
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Proposition 3.62. If P is a distribution on the Borel sets of R
d that has a

centrally symmetric Lebesgue density f for which −f is subconvex and l ∈ Ld,
then ∫

l(x)P (dx) ≤
∫
l(x+ a)P (dx), a ∈ R

d.

If P = N(0, Σ) is a normal distribution with regular covariance matrix Σ
and expectation zero, then the Lebesgue density is

ϕ0,Σ(x) = (2π)−n/2(det(Σ))−1/2 exp{−1
2
xTΣ−1x}.

Obviously, −ϕ0,Σ is centrally symmetric and subconvex. Hence by Anderson’s
lemma for every l ∈ Ld,∫

l(x)ϕ0,Σ(x)λd(dx) ≤
∫
l(x+ a)ϕ0,Σ(x)λd(dx), a ∈ R

d. (3.45)

Problem 3.63.∗ Let Yi ∼ N(μi, Σi), where μi ∈ R
d and Σi is a nonsingular d× d

matrix, i = 1, 2. If Y1 and Y2 are independent, then the conditional distribution of
Y2 given X := Y1 + Y2 = x is a normal distribution with expectation μ2 + Σ2(Σ1 +
Σ2)

−1(x− (μ1 + μ2)) and covariance matrix Σ2 −Σ2(Σ1 + Σ2)
−1Σ2.

Example 3.64. We consider again the estimation problem of Example 3.14 in a
somewhat more general setting. We want to estimate the parameter θ in the family
(N(θ,Σ0))θ∈Rd where Σ0 is nonsingular and known. The decision space is D = R

d.
Let the prior be Πn = N(0, nΣ0). Then by Problem 3.63 the posterior distribution
is the normal distribution N(μn(x), Σn) with

μn(x) =
n

n + 1
x and Σn =

n

n + 1
Σ0.

If L(θ, a) = l(θ − a) for some l ∈ Ld, then the function r(Πn, a|x) in (3.28) turns
out to be

r(Πn, a|x) =

∫
l(θ − a)ϕμn(x),Σn(θ)λd(dθ)

=

∫
l(θ − [a− μn(x)])ϕ0,Σn(θ)λd(dθ).

We get from (3.45) that∫
l(θ − [a− μn(x)])ϕ0,Σn(θ)λd(dθ) ≥

∫
l(θ)ϕ0,Σn(θ)λd(dθ).

As

inf
a∈D

r(Πn, a|x) =

∫
l(θ)ϕ0,Σn(θ)λd(dθ)

is independent of x and therefore a measurable function of x, we get from Corollary
3.40 that Tn(x) = (n/(n+ 1))x is a Bayes estimator for the prior Πn under the loss
function l. The Bayes risk of this estimator is given by

r(Πn, Tn) =

∫
[

∫
l(

n

n + 1
x− θ)N(θ,Σ0)(dx)]N(0, nΣ0)(dθ)

=

∫
l(τnw)N(0, Σ0)(dw), where τ2

n =
n

n + 1
.
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Theorem 3.65. For the family of normal distributions (N(θ,Σ0))θ∈Rd , with
a known nonsingular Σ0, and the loss function L(θ, a) = l(a − θ), l ∈ Ld,
θ ∈ R

d, a ∈ R
d, the estimator Tnat(x) = x is a minimax estimator in the class

of all randomized estimators; that is,

inf
D

sup
θ∈Rd

∫
[
∫
l(a− θ)D(da|x)]N(θ,Σ0)(dx)

= sup
θ∈Rd

∫
l(Tnat(x)− θ)N(θ,Σ0)(dx) =

∫
l(t)N(0, Σ0)(dt).

Moreover, the minimax theorem

sup
Π

inf
D

∫
(
∫

[
∫
l(a− θ)D(da|x)]N(θ,Σ0)(dx))Π(dθ) (3.46)

=
∫
l(t)N(0, Σ0)(dt)

holds. If l is bounded, then it holds

lim
m→∞

inf
D

sup
θ∈Rd,‖θ‖≤m

∫
(
∫
l(a− θ)D(da|x))N(θ,Σ0)(dx) (3.47)

=
∫
l(t)N(0, Σ0)(dt).

Proof. We use the notations from Example 3.64. It holds

r(Πn, Tn) = C

∫
l (τnw) exp{−wTΣ−1

0 w/2}λd(dw)

= τ−d
n C

∫
exp{− 1

2n
tTΣ−1

0 t}l (t) exp{−tTΣ−1
0 t/2}λd(dt),

where C = (2π)−d/2(det(Σ0))−1/2. An application of the monotone conver-
gence theorem yields

lim
n→∞

r(Πn, Tn) = C

∫
l (t) exp{−tTΣ−1

0 t/2}λd(dt) = R(0, Tnat) = R(θ, Tnat).

Hence
lim
n→∞

r(Πn, Tn) = sup
θ∈Rd

R(θ, Tnat),

and Proposition 3.58 yields the minimaxity of Tnat. As Tn is a Bayes estimator
under the prior Πn we get with w and w in (3.40) that

w ≤ lim
n→∞

r(Πn, Tn) = lim
n→∞

inf
D

r(Πn,D) ≤ sup
Π

inf
D

r(Π,D) = w,

and the minimax theorem (3.46) is established. If l is bounded, then for some
C > 0 we have 0 ≤ l ≤ C and 0 ≤ R(θ,D) ≤ C. For every prior Π we
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set Bm = {θ : ‖θ‖ ≤ m} and Π(m)(B) = Π(B|Bm), where the conditional
probability is well defined for all sufficiently large m. Then

| r(Π,D)− r(Π(m),D) |

≤ | (1− 1
Π(Δm)

)
∫
IΔm

(θ)R(θ,D)Π(dθ) | +
∫
IΔ\Δm

(θ)R(θ,D)Π(dθ)

≤ C | 1− 1
Π(Δm)

| +C(1−Π(Δm)).

Furthermore,

sup
Π:Π(Bm)=1

inf
D

r(Π,D) ≤ inf
D

sup
Π:Π(Bm)=1

r(Π,D)

≤ inf
D

sup
‖θ‖≤m

R(θ,D) ≤ inf
D

sup
θ∈Rd

R(θ,D) = sup
Π

inf
D

r(Π,D)

≤ sup
Π:Π(Bm)=1

inf
D

r(Π,D) + C | 1− 1
Π(Δm)

| +C(1−Π(Δm)).

Taking m→∞ we get (3.47).

3.6 Γ -Minimax Decisions

Sometimes the prior information on the unknown parameter is rather vague,
consisting only of a set of priors known to contain the true prior. In this case
the Bayes approach cannot be utilized due to the incomplete knowledge of the
prior. To overcome this shortcoming we choose here a minimax approach that
protects against the effects of priors that are causing the worst Bayes risks.
Let (X ,A, (Pθ)θ∈Δ) be the statistical model. We recall that whenever we are
dealing with Bayes risks, assumptions (A3) and (A8) are assumed to hold; see
Remark 3.29. Let now Γ ⊆ P(BΔ) be a given set of priors.

Definition 3.66. For given classes D0 ⊆ D and Γ ⊆ P(BΔ), we call D0 ∈ D0

a Γ -minimax decision in D0 if

sup
Π∈Γ

r(Π,D0) = inf
D∈D0

sup
Π∈Γ

r(Π,D).

Whenever D0 = D, “in D0” is not mentioned.

The Γ -minimax approach is set up somewhere in between the Bayes and
the minimax approaches which have been studied already in the previous
section. It is equivalent to the Bayes approach if Γ = {Π0} for some Π0 ∈
P(BΔ), and it is equivalent to the minimax approach if Γ = P(BΔ). As an
analogue to (3.39) we have

sup
Π∈Γ

inf
D∈D0

r(Π,D) ≤ inf
D∈D0

sup
Π∈Γ

r(Π,D). (3.48)
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The converse inequality, which would imply the minimax statement

sup
Π∈Γ

inf
D∈D0

r(Π,D) = inf
D∈D0

sup
Π∈Γ

r(Π,D), (3.49)

holds only under some additional conditions. A first simple result concerns
the case of a saddle point.

Problem 3.67. If (Π0,D0) is a saddle point in Γ ×D0 in the sense of (3.42), then
the statement (3.49) holds and the decision D0 is Γ -minimax in D0.

A typical application concerns the testing of one-sided hypotheses for a
one-dimensional parameter where the power function is monotone. This is
certainly true for families with MLR; see Theorem 2.49. To be more precise,
we assume that Δ ⊆ R is an interval and (Pθ)θ∈Δ is a family of distributions
on (X ,A) where (A3) is satisfied. For θ0 ∈ Δ and some d > 0 with θ0 +d ∈ Δ
we consider the testing problem

H0 : θ ∈ (−∞, θ0] ∩Δ versus HA : θ ∈ [θ0 + d,∞) ∩Δ. (3.50)

Instead of the zero–one loss function, which gives the same weight to the error
of the first and the second kind, we use the loss function

L(θ, a) = L1I{0}(a)I[θ0+d,∞)(θ) + L2I{1}(a)I(−∞,θ0](θ), a ∈ {0, 1}, (3.51)

where L1, L2 ≥ 0 are fixed. Given π, π′ > 0 with π + π′ ≤ 1, let Γ be the set
of all priors Π on the Borel sets of Δ that satisfy

Π([θ0 + d,∞) ∩Δ) ≤ π and Π((−∞, θ0] ∩Δ) ≤ π′. (3.52)

These conditions guarantee that not too much mass of the prior is on either
side. We denote by ϕρ,B a Bayes test for the zero–one loss function, where the
hypotheses and the prior are given by

H0 : Pθ0 versus HA : Pθ0+d, and (3.53)
Πρ = ρδθ0 + (1− ρ)δθ0+d, ρ = L2π

′/(L1π + L2π
′).

According to Theorem 2.60 every Bayes test for the Bayes testing problem
(3.53) under the zero–one loss function is a likelihood ratio test and thus of
the form ϕρ,B = I(c,∞)(T ) + γI{c}(T ) for some c ∈ R and γ ∈ [0, 1].

Proposition 3.68. Suppose that (Pθ)θ∈Δ has MLR in T , and that c and γ
are chosen such that, under the zero–one loss function, the test

ϕρ,B = I(c,∞)(T ) + γI{c}(T )

is a Bayes test for the Bayes testing problem (3.53). If Π0 satisfies Π0({θ0 +
d}) = π, Π0({θ0}) = π′, and Π0((θ0, θ0 + d)) = 1 − π − π′, then the pair
(ϕρ,B ,Π0) is a saddle point for the testing problem (3.50) under the loss func-
tion (3.51).
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Proof. Using the fact that ϕρ,B is a nondecreasing function of T , so that
θ �→ Eθϕρ,B is a nondecreasing function of θ by Theorem 2.10 and Proposition
2.7, we get for any prior on Δ,

r(ϕρ,B ,Π) =
∫

[L1I[θ0+d,∞)(θ)[1− Eθϕρ,B ] + L2I(−∞,θ0](θ)Eθϕρ,B ]Π(dθ)

≤
∫
L1I[θ0+d,∞)(θ)[1− Eθ0+dϕρ,B ]Π(dθ) +

∫
L2I(−∞,θ0](θ)Eθ0ϕρ,BΠ(dθ)

≤ L1π[1− Eθ0+dϕρ,B ] + L2π
′Eθ0ϕρ,B = r(ϕρ,B ,Π0).

The remaining inequality r(ϕρ,B ,Π0) ≤ r(ϕ,Π0), for every test ϕ, follows from
the fact that ϕρ,B is a Bayes test for (3.53) under the zero–one loss.

To construct the Bayes test ϕρ,B in concrete situations we use the fact
that by Theorem 2.60 ϕρ,B is a likelihood ratio test.

Example 3.69. Suppose (Pθ)θ∈Δ is a one-parameter exponential family on (X ,A)
with generating statistic T , where the conditions (A1) and (A2) are fulfilled. If the
sample size is n, then (P⊗n

θ )θ∈Δ is again an exponential family with generating
statistic T⊕n and μ⊗n-density

dP⊗n
θ

dμ⊗n
(x) = exp{θT⊕n(x)− nK(θ)}, x ∈ Xn.

Let θ0 ∈ Δ and d > 0 with θ0 + d ∈ Δ be fixed. Then according to Theorem 2.60
the test ϕρ,B in Proposition 3.68 can be written as

ϕρ,B(x) = I(c,∞)(T⊕n) + γI{c}(T⊕n),

where

c =
1

d
[ln

L2π
′

L1π
+ nK(θ0 + d)− nK(θ0)],

and γ ∈ [0, 1] is arbitrary. It follows from Proposition 3.68 that ϕρ,B is a Γ -minimax
test for the testing problem 3.50 under the loss function (3.51) for the class Γ of all
priors Π that satisfy (3.52).

Another example concerns location models that are generated by a log-
concave, i.e., strongly unimodal, density; see Definition 2.16.

Example 3.70. Let f be a Lebesgue density on R that is positive, where ln f is
a concave function. Let Pθ be defined by Pθ(dx) = f(x − θ)dx.The family (Pθ)θ∈R

has, in view of Proposition 2.20, MLR in the identity T (x) = x. Let θ0 and d > 0
be fixed. Then Lθ0,θ0+d(x) = f(x− θ0 − d)/f(x− θ0) is a nondecreasing function of
x. Hence, for

c0 = inf{x : Lθ0,θ0+d(x) > L2π
′/(L1π)}

it holds that x ≤ c0 implies Lθ0,θ0+d(x) ≤ L2π
′/(L1π) and x > c0 implies

Lθ0,θ0+d(x) ≥ L2π
′/(L1π). Then Lθ0,θ0+d(x) > Lθ0,θ0+d(c0) implies x > c0 and

Lθ0,θ0+d(x) < Lθ0,θ0+d(c0) implies x < c0 so that every test that satisfies

ϕρ,B(x) =

{
1 if x > c0
0 if x < c0
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is a likelihood ratio test and thus a Bayes test for Pθ0 versus Pθ0+d under the
zero–one loss and the prior (ρ, 1 − ρ) with ρ = L2π

′/(L1π + L2π
′). It follows from

Proposition 3.68 that ϕρ,B is a Γ -minimax test for the testing problem 3.50 under
the loss function (3.51) for the class Γ of all priors Π that satisfy (3.52).

Another condition that establishes Γ -minimaxity is similar to Proposition
3.58 and employs suitable sequences of priors.

Proposition 3.71. If for D0 ∈ D0 there exists a sequence of priors Πn ∈ Γ ,
and a sequence Dn of associated Bayes decisions in D0, such that

sup
Π∈Γ

r(Π,D0) ≤ lim inf
n→∞

r(Πn,Dn),

then D0 is Γ -minimax in D0.

Proof. We have

sup
Π∈Γ

r(Π,D0) ≤ lim inf
n→∞

r(Πn,Dn) ≤ sup
Π∈Γ

inf
D∈D0

r(Π,D).

The rest follows from inequality (3.48).
The usefulness of the above proposition is demonstrated below by some

examples.

Example 3.72. We consider the problem of estimating the parameter μ in the
model (R,B, (N(μ, 1))μ∈R) under the squared error loss L(μ, a) = (μ − a)2. Let
ν ∈ R and δ2 > 0 be fixed, and the family of priors be given by

Γ = {Π : Π ∈ P(B1),

∫
tΠ(dt) = ν,

∫
(t− ν)2Π(dt) = δ2}. (3.54)

As we know already from (3.30) in Example 3.38, for the prior Π0 = N(ν, δ2) the
Bayes estimator is given by

d0(x) =
δ2

1 + δ2
x +

1

1 + δ2
ν. (3.55)

Its risk function is

R(μ, d0) =

∫
[

δ2

1 + δ2
x +

1

1 + δ2
ν − μ]2ϕ(x)(dx) =

δ4

(1 + δ2)2
+

(ν − μ)2

(1 + δ2)2
.

Thus,

r(Π, d0) =
δ4

(1 + δ2)2
+

δ2

(1 + δ2)2
=

δ2

1 + δ2

for every Π ∈ Γ . This means that

sup
Π∈Γ

r(Π, d0) = r(Π0, d0) = inf
d

r(Π0, d),

as d0 is a Bayes estimator under the prior Π0. Hence d0 from (3.55) is Γ -minimax
for Γ given by (3.54).



3.6 Γ -Minimax Decisions 145

Next we apply the Γ -minimax approach to a type of estimation problem
where it is known that the parameter belongs to a given bounded interval. Let
the family be given by N(μ, 1), μ ∈ [0, c], where c > 0 is known. The problem
of constructing a Γ -minimax estimator in this setting has been studied in
Zinzius (1981). Here we use the prior Πc = 1

2 (δ0 + δc).

Problem 3.73.∗ For the family N(μ, 1), μ ∈ [0, c], where c > 0 is fixed,

Tc(x) = c− c

1 + exp{cx− c2/2}

is the Bayes estimator for the prior Πc = 1
2
(δ0 + δc) under the squared error loss.

The risk of Tc is given by

R(μ, Tc) = (2π)−1/2

∫
(Tc(x)− μ)2 exp{−(x− μ)2/2}dx

= (2π)−1/2

∫
(Tc(x+ μ)− μ)2 exp{−x2/2}dx, μ ∈ [0, c].

R(μ, Tc) as a function of μ is twice continuously differentiable and it holds for
every fixed a > 0

lim
c↓0

sup
0≤μ≤a

|R′′(μ, Tc)− R′′(μ, T0)| = 0.

As T0 = 0 it holds R(μ, T0) = μ2 and R′′(μ, T0) = 2. We see that there is a
sufficiently small c0 > 0 such that for c ≤ c0 the function R(μ, Tc) is convex.

As Tc(c − x) = c − Tc(x) we get R(μ, Tc) = R(c − μ, Tc), μ ∈ [0, c]. This
together with the convexity of R(μ, Tc) yields for c ≤ c0

max
0≤μ≤c

R(μ, Tc) = R(0, Tc) = R(c, Tc). (3.56)

Proposition 3.74. There exists a c0 > 0 such that for any fixed c ≤ c0 the
following statement holds. For the family N(μ, 1), μ ∈ [0, c], under the squared
error loss, the estimator Tc(x) = c(1− [1 + exp{cx− c2/2}]−1) is Γ -minimax
for the class Γ = {Π : Π ∈ P(B), Π([0, c]) = 1} and minimax.

Proof. The relation (3.56) allows us to apply Proposition 3.71 with Πn =
Πc. As the class Γ contains all one-point distributions on the interval [0, c]
the concepts Γ -minimax and minimax are identical.

It has been shown in Zinzius (1981) that the largest possible c0 is the
unique solution of the equation

2− c2 − 2c2√
2πe

(1 + exp{−c− c2/2})2 = 0.

It holds 1.2 < c0 < 1.21. Numerical calculations show that for c > 1.21
the two-point prior Πc is no longer least favorable. Instead, a Bayes estimator
based on a discrete distribution on three points becomes a minimax estimator.
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Finally, we consider Γ -minimax estimators for a nonsymmetric loss func-
tion. A popular choice for the loss is the LINEX loss function, which is defined
by

Lα(θ, a) = exp{α(a− θ)} − α(a− θ)− 1,

where α �= 0 is any real number. The family N(μ, 1), μ ∈ [−c, c], where c > 0
is given, along with the class of priors Γ = {Π : Π ∈ P(B), Π([−c, c]) = 1},
has been studied in Bischoff, Fieger, and Wulfert (1995).

Problem 3.75. The Bayes estimator for the prior Πβ,c = βδ−c +(1−β)δc, under
the LINEX loss function, is given by

Tβ,c(x) =
1

α
ln(

β exp{−xc}+ (1− β) exp{xc}
β exp{−xc + αc}+ (1− β) exp{xc− ac} ).

Proposition 3.76. Let α > 0, c0 = min((
√

3/2)− 1)α, (ln 3)/(2α)), and c ≤
c0. Then there exists a β∗ ∈ (0, 1) such that, under the LINEX loss function,
the prior Πβ∗,c = 1

2 (β∗δ−c + (1 − β∗)δc) is least favorable, and the Bayes
estimator Tβ∗,c for Πβ∗,c is Γ -minimax and minimax.

The proof of the proposition in Bischoff et al. (1995) consists mainly of
two steps. First it is shown that the risk function R(μ, Tβ,c) is convex for
c ≤ c0. Then, secondly, it is shown that there exists some β∗ ∈ (0, 1) such
that R(−c, Tβ∗,c) = R(c, Tβ∗,c).

3.7 Minimax Theorem

As we have mentioned already the minimax condition (3.41) relates approx-
imately minimax decisions to Bayes decisions under a least favorable prior.
If the stronger condition of the existence of a saddle point is satisfied, then,
as we have seen in Proposition 3.56, this statement is true not only approx-
imately but in the strict sense. The minimax statement (3.41) also plays an
important role in later chapters.

Now we are ready to prove the minimax theorem of decision theory. In a
first step we consider a parameter set � that is a finite subset of Δ. By F(Δ)
we denote the system of finite subsets of Δ. For a finite subset � ⊆ Δ let
P(�) denote the set of all distributions on �. Suppose that (A3) is satisfied.

Theorem 3.77. Let (X ,A, (Pθ)θ∈�) be a finite model. Assume that D0 is
a convex set of decisions that is closed under the weak convergence. If the
decision space is a compact metric space and a �→ L(θ, a) is continuous, then
it holds

sup
Π∈P(�)

inf
D∈D0

r(Π,D) = inf
D∈D0

sup
θ∈�

R(θ,D).
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Proof. As the decision space D is compact and L(θ, a) is continuous it
holds L(θ, a) ≥ C, a ∈ D, θ ∈ �, for some constant C. Hence we may assume
that L(θ, a) ≥ 0. In view of (3.40) we have only to show that

inf
D∈D0

sup
θ∈�

R(θ,D) ≤ sup
Π∈P(�)

inf
D∈D0

r(Π,D).

Let θ1, ..., θn be the elements of �. Due to the compactness theorem (see
Theorem 3.21) and the continuity of the loss function, the set

K = {(R(θ1,D), ...,R(θn,D)), D ∈ D},

is compact and convex. Thus the set A(K) of all vectors which are, in the
componentwise semiorder, larger than or equal to some vector from K, by
Problem 3.81, is closed and convex. Set

C := sup
Π∈P(�)

inf
D∈D0

∑
θ∈�

R(θ,D)Π({θ}).

Then for every Π ∈ P(�),
∫
CΠ(dθ) ≥ inf

D∈D0

∑
θ∈�

R(θ,D)Π({θ}).

From Problem 3.81 we get that there exists a decision D0 such that the vector
(C, ..., C) is bounded from below by the vector (R(θ1,D0), ..., R(θn,D0)) in the
componentwise semiorder. This means C ≥ R(θ,D0) for θ ∈ � and therefore

inf
D∈D0

sup
θ∈�

R(θ,D) ≤ sup
θ∈�

R(θ,D0) ≤ sup
Π∈P(�)

inf
D∈D0

∑
θ∈�

R(θ,D)Π({θ})

≤ sup
Π∈P(�)

inf
D∈D0

∑
θ∈�

R(θ,D)Π({θ}).

In most decision problems, of course, the parameter set is not finite. There-
fore we look for minimax statements without this restrictive condition. A
simple consequence of the previous theorem is that

sup
Π∈P(Δ)

inf
D∈D0

r(Π,D) ≥ sup
�∈F(Δ)

inf
D∈D0

sup
θ∈�

R(θ,D).

Instead of the right-hand term it is desired to have infD∈D0 supθ∈Δ R(θ,D), of
course, which is equivalent to having

sup
�∈F(Δ)

inf
D∈D0

sup
θ∈�

R(θ,D) = inf
D∈D0

sup
θ∈Δ

R(θ,D).

The next theorem gives conditions under which this statement holds.
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Theorem 3.78. Suppose that both the parameter set Δ and the decision space
D are compact metric spaces, and that L(θ, a) is a continuous function of
(θ, a). If the model (X ,A, (Pθ)θ∈Δ) is continuous in the sense of (A7), and
D0 is convex and closed with respect to the weak convergence, then

sup
Π∈P(Δ)

inf
D∈D0

r(Π,D) = inf
D∈D0

sup
θ∈Δ

R(θ,D). (3.57)

Proof. Denote by ρΔ the metric on Δ. Proposition 3.27 implies that the
family of functions θ �→ R(θ,D), D ∈ D0, is equicontinuous at every θ ∈ Δ. As
Δ is compact this equicontinuity holds uniformly in θ. This means that for
every ε > 0 there exists a δε > 0 such that

sup
ρΔ(θ1,θ2)<δε

sup
D∈D0

|R(θ1,D)− R(θ2,D)| < ε.

The compactness of Δ yields that there exists a finite set � such that the
open balls with radius δε and center at a point in � cover Δ. This yields

| sup
Π∈P(�)

inf
D∈D0

r(Π,D)− sup
Π

inf
D∈D0

r(Π,D)| ≤ ε and

| inf
D∈D0

sup
θ∈Δ

R(θ,D)− inf
D∈D0

sup
θ∈�

R(θ,D)| ≤ ε.

According to Theorem 3.77, for every finite subset � ⊆ Δ, it holds

sup
Π∈P(�)

inf
D∈D0

r(Π,D) = inf
D∈D0

sup
θ∈�

R(θ,D).

This implies

| sup
Π∈P(Δ)

inf
D∈D0

r(Π,D)− inf
D∈D0

sup
θ∈Δ

R(θ,D)| ≤ 2ε.

We conclude this section with the remark that more general minimax the-
orems can be found in LeCam (1986), Strasser (1985), and Torgersen (1991).
Theorem 3.78 corresponds to Theorem 46.5 in Strasser (1985), where the
assumptions on the model are weaker than those we have made here. The
techniques that are used in the above books go beyond the scope of this book.

The subsequent problems concern technical results that have been used
above.

Problem 3.79.∗ If K ⊆ R
n is a closed convex set, then every minimal sequence

xn ∈ K, i.e., every sequence with limn→∞ ‖xn‖ = inf{‖x‖, x ∈ K}, converges to
some xK with ‖xK‖ = inf{‖x‖, x ∈ K}, and the point xK ∈ K is unique.

Problem 3.80.∗ Let K ⊆ R
n be a closed convex set. If z /∈ K and xK ∈ K satisfies

‖xK − z‖ = inf{‖x− z‖, x ∈ K}, then infx∈K 〈x, b〉 > 〈z, b〉 for b = xK − z.
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Problem 3.81.∗ For every bounded, closed, and convex set B ⊆ R
n
+ the set

A(B) := {(y1, ..., yn) : yi ≥ xi, i = 1, ..., n, for some (x1, ..., xn) ∈ B} (3.58)

is a closed convex set. A point z ∈ R
n
+ is contained in A(B) if and only if

〈α, z〉 ≥ inf
y∈A(B)

〈α, y〉 , α = (α1, ..., αn), α1, ..., αn ≥ 0,
∑n

i=1
αi = 1.

3.8 Complete Classes

In the previous sections we have seen that Bayes decisions are also minimax
decisions if, roughly speaking, the risk is constant; see Theorem 3.57 and
Proposition 3.58. This means that in the search for minimax decisions one
should focus on the class of Bayes decisions with constant risk. In this sec-
tion we deal with the important question of whether every decision can be
outperformed by a Bayes decision, where of course the priors have to be suit-
ably constructed. Statements of this type are referred to in the literature as
complete class theorems. Assume that (A3) is satisfied.

Theorem 3.82. Suppose that Δ is a separable metric space, D is a compact
metric space, and L(θ, a) is bounded and continuous in (θ, a). Assume that the
model is continuous in the sense of (A7). Then for every D ∈ D there exists a
D0 ∈ D and a sequence of priors Πk with respective Bayes decisions DΠk

∈ D

such that
DΠk

⇒ D0 and R(θ,D0) ≤ R(θ,D), θ ∈ Δ.

Corollary 3.83. If in addition the parameter set Δ is a compact metric space,
then for every D ∈ D there exists a prior Π0 and a Bayes decision D0 ∈ D

with respect to Π0 such that

R(θ,D0) ≤ R(θ,D), θ ∈ Δ.

Proof. We follow the ideas of the proof of Theorem 47.7 in Strasser
(1985) and start with a finite set Δn = {θ1, ..., θn} ⊆ Δ. By Proposi-
tion 3.50, for every Π ∈ P(Δn) there exists a Bayes decision DΠ with re-
spect to Π. Due to the compactness theorem (see Theorem 3.21) the set
Bn = {(R(θ1,D), ...,R(θn,D)) : D ∈ D} is compact and convex so that by
Problem 3.81 the set A(Bn) from (3.58) is closed and convex. Set

ε = inf
Π∈P(Δn)

[
∑

θ∈Δn

R(θ,D)Π({θ})− inf
D̃∈D

r(Π, D̃)].

Then ε ≥ 0, and for every Π ∈ P(Δn),
∫

(R(θ,D)− ε)Π(dθ) ≥ inf
D̃∈D

r(Π, D̃) = inf
D̃∈D

∑
θ∈Δn

R(θ, D̃)Π({θ}).
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From Problem 3.81 we get that there exists a decision D0,n such that the
vector (R(θ1,D) − ε, ..., R(θn,D) − ε) is bounded from below by the vec-
tor (R(θ1,D0,n), ..., R(θn,D0,n)) in the componentwise semiorder. This means
that R(θ,D)− ε ≥ R(θ,D0,n), θ ∈ Δn, and thus

0 ≤ inf
Π∈P(Δn)

[
∑

θ∈Δn

R(θ,D0,n)Π({θ})− inf
D̃∈D

r(Π, D̃)]

≤ inf
Π∈P(Δn)

[
∑

θ∈Δn

R(θ,D)Π({θ})− inf
D̃∈D

r(Π, D̃)]− ε = 0.

This yields ε = 0, and therefore

R(θ,D) ≥ R(θ,D0,n), θ ∈ Δn. (3.59)

As Δn is finite, the function Π �→
∫
R(θ,D)Π(dθ), Π ∈ P(Δn), is continu-

ous, so that the function Π �→ [
∑

θ∈Δn
R(θ,D)Π({θ})− infD r(Π,D)] is lower

semicontinuous with respect to the pointwise convergence of the probability
mass function and attains the minimum on the closed simplex P(Δn). Hence
for some Π̃n ∑

θ∈Δn

R(θ,D)Π̃n({θ}) ≤ inf
D

r(Π̃n,D),

which means that D0,n is Bayes with respect to Π̃n.
Now we turn to the general case. Let {θ1, θ2, ...} ⊆ Δ be an at most

countable subset of Δ that is dense in Δ. As θ �→ Pθ is continuous we get
from Problem 3.24 that the family (Pθ)θ∈Δ is dominated. Hence by Theorem
3.21 and the continuity of L we find a subsequence Πk of Π̃n, decisions DΠk

that are Bayes with respect to Πk, and a decision D0 such that DΠk
⇒ D0.

Hence
lim
k→∞

R(θ,DΠk
) = R(θ,D0) ≤ R(θ,D), θ ∈ {θ1, θ2, ...},

where the inequality follows from (3.59). We already know from Proposition
3.25 that R(θ,D) is continuous in θ for every D. This gives R(θ,D0) ≤ R(θ,D)
for every θ ∈ Δ.

To prove the corollary, we remark that the compactness of Δ and Pro-
horov’s theorem (see Theorem A.48) imply that Πk contains a subsequence
Πkl

which converges weakly to some prior Π0. Hence we have Dl := DΠkl
⇒ D0

and Πkl
⇒ Π. It remains to prove that D0 is Bayes with respect to Π0.

The weak convergence Dl ⇒ D0 implies the pointwise convergence of the
risk functions. But as Δ is compact we get from Proposition 3.28 that
supθ∈Δ |R(θ,Dl)− R(θ,D0)| → 0 which, together with Πkl

⇒ Π0, implies

inf
D

∑
θ∈Δ

R(θ,D)Πkl
({θ}) =

∑
θ∈Δ

R(θ,Dl)Πkl
({θ}) →

∫
R(θ,D0)Π(dθ).

On the other hand,
∑
θ∈Δ

R(θ,D)Πkl
({θ}) →

∫
R(θ,D)Π(dθ)
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for every fixed D, which proves
∫

R(θ,D)Π(dθ) ≥
∫

R(θ,D0)Π(dθ), so that D0

is Bayes with respect to Π0.

If Δ is not compact, then the limit of Bayes decisions is not necessarily
a Bayes decision. Thus the assumption of Δ being a compact metric space is
indispensable in general. We illustrate this by an example.

Example 3.84. We consider the problem of estimating, under the squared error
loss, the parameter μ in the family (N(μ, σ2))μ∈R, where σ2 > 0 is known. If we use
the same prior N(ν, δ2) for μ as in Problem 3.38, then by (3.30) the Bayes estimator
is given by

Tν,δ(x) =
(1/σ2)

(1/σ2) + (1/δ2)
x +

(1/δ2)

(1/σ2) + (1/δ2)
ν.

Set Tnat(x) = x. We recall that by Example 3.22 for δ → ∞ the decisions δTδ

converge weakly to δTnat if and only if L(δTν,δ |N(μ, σ2)) ⇒ L(δTnat |N(μ, σ2)). But
this is true as Tν,δ(x) → Tnat(x) for every x and the pointwise convergence of random
variables implies the weak convergence of the distributions.

However, as shown in the next problem, the estimator Tnat(x) is not a Bayes
estimator for any prior with a finite second moment.

Problem 3.85.∗ For the family (N(μ, 1))μ∈R, under the squared error loss L(θ, a) =
(θ − a)2, the estimator Tnat(x) = x is not a Bayes estimator for any prior with a
finite second moment.

Now we use the above complete class theorem to characterize minimax
classification rules and minimax tests. First we consider minimax classifica-
tion rules under the zero–one loss function. Classification rules have been
introduced in Example 3.41. From Corollary 3.83 we already know that there
exist a prior Π0 and a Bayes classification rule DΠ0 with respect to Π0 that
is minimax.

Proposition 3.86. Let (Pθ)θ∈Δ, Δ = {1, ...,m}, be a finite family of dis-
tributions. For the classification problem with decision space D = {1, ...,m},
under the zero–one loss L(θ, a) = 1−I{θ}(a), there exists at least one minimax
classification rule. For every minimax classification rule D there exists a prior
Π such that D is Bayes with respect to Π. If a classification rule D satisfies

∫
[1− D({1}|x)]P1(dx) = · · · =

∫
[1− D({m}|x)]Pm(dx), (3.60)

and is a Bayes decision for some prior Π, then D is minimax.

Proof. The existence of a minimax decision D follows from Proposition
3.49. The second statement follows from Corollary 3.83, and the third follows
from Proposition 3.58.

Condition (3.60) can be utilized to find a least favorable prior for which a
minimax classification rule is Bayes.
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Example 3.87. Suppose that the distributions Pθi , i = 1, ...,m, are from an ex-
ponential family (Pθ)a<θ<b with natural parameter θ and generating statistic T ; see
Definition 1.1. As in Example 3.41 we set Δ = D = {1, ...,m}, use the zero–one
loss, and get the following. Dπ is a Bayes classification rule with respect to a prior
π = (π1, ..., πm) if and only if Dπ(A(x)|x) = 1, μ-a.s. x ∈ X , where

A(x) = {a : fθa(x)πa = max
1≤j≤m

fθj (x)πj}

= {a : θaT (x) + γa = max
1≤j≤m

(θjT (x) + γj)},

and γj = lnπj −K(θj), j = 1, ...,m. Such a Bayes classification rule Dπ is minimax
if the prior π satisfies R(1,Dπ) = · · · = R(m,Dπ). Especially if Pθi(T ≤ t), t ∈ R, is
continuous for every i = 1, ...,m, then

R(i,Dπ) = Pθi((θi − θj)T < (γj − γi), j �= i), i = 1, ...,m.

In the special case of m = 2 the classification problem reduces to a testing
problem. Instead of using the, use the zero–one loss let us adopt here the more
general loss function

L(i, a) = aρI{0}(i) + (1− a)(1− ρ)I{1}(i), ρ ∈ (0, 1), i, a ∈ {0, 1}. (3.61)

Instead of the factors ρ and 1 − ρ in the loss function L any other pair of
numbers l0 ≥ 0 and l1 ≥ 0 could have been chosen. However, then dividing
the loss by l0 + l1 would not change the decision problem, except for a factor
1/(l0 + l1) on the risk, and the modified loss would be of the type (3.61). The
quantity

mρ(P0, P1) = inf{max(ρE0ϕ, (1− ρ)E1(1− ϕ)), ϕ ∈ T } (3.62)

is called the minimax value of the testing problem.

Problem 3.88.∗ For 0 < ρ < 1 it holds 0 ≤ mρ(P0, P1) ≤ ρ(1− ρ), where

mρ(P0, P1) = 0 ⇔ P0 ⊥ P1,

mρ(P0, P1) = ρ(1− ρ) ⇔ P0 = P1.

We consider now the nontrivial case where P0 and P1 are neither identical
nor mutually singular. Let L0,1 be the likelihood ratio of P1 with respect to
P0; set Fi(t) = Pi(L0,1 ≤ t), i = 0, 1, and G = ρF0 + (1− ρ)F1. As P0 and P1

are not mutually singular it holds limt↑∞ F1(t) > 0 so that limt↑∞ F0(t) = 1
implies limt↑∞G(t) > ρ. Hence {t : G(t) > ρ} �= ∅ and we may put c = G−1(ρ)
(see Definition 2.1) and γ = (G(c)− ρ) (G(c)−G(c− 0)). Let

ψ(t) = I(c,∞)(t) + γI{c}(t). (3.63)

It holds

ρ(1− F0(c) + γ[F0(c)− F0(c− 0)])− (1− ρ)(F1(c)− γ[F1(c)− F1(c− 0)])
= ρ−G(c) + γ[G(c)−G(c− 0)] = 0,
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ρE0ψ(L0,1) = (1− ρ)E1ψ(L0,1).

As customary, tests that provide minimax decisions are called, in reference to
their power properties, maximin tests.

Theorem 3.89. Let P0 and P1 be the two distributions of a binary model. If
the loss function is defined as in (3.61), then there exists at least one maximin
test for H0 : P0 versus HA : P1. Every maximin test ϕ satisfies

ρE0ϕ = (1− ρ)(1− E1ϕ). (3.64)

Every likelihood ratio test that satisfies (3.64) is a maximin test. If P0 and
P1 are not mutually singular, then the test ψ(L0,1) with ψ from (3.63) is a
maximin test. If 0 < mρ(P0, P1) < ρ(1 − ρ), then every maximin test ϕ and
ψ(L0,1) are {P0, P1}-a.s. identical outside of {L0,1 = c}.

Proof. The existence follows from Proposition 3.49. Let ϕ0 be any max-
imin test. If ρE0ϕ0 �= (1− ρ)(1− E1ϕ0), say ρE0ϕ0 < (1− ρ)E1(1− ϕ0), then
we set ϕε = (1− ε)ϕ0 + ε for a sufficiently small ε > 0 and get

max(ρE0ϕε, (1− ρ)(1− E1ϕε)) < max(ρE0ϕ0, (1− ρ)(1− E1ϕ0)),

which contradicts the assumption that ϕ0 is a maximin test. The likelihood ra-
tio test ψ(L0,1), is according to Theorem 2.60, a Bayes test for a suitable prior.
Hence ψ(L0,1) is maximin by Proposition 3.58. The condition mρ(P0, P1) > 0
implies 0 < ρ < 1, E0ϕ = E0ψ(L0,1) > 0, and E1ϕ = E1ψ(L0,1) < 1. Hence
the test ϕ has the same size and the same power as the likelihood ratio test
ψ(L0,1). An application of Theorem 2.45 yields the stated uniqueness.

Problem 3.90. For α ∈ (0, 1), construct a maximin level α test for H0 : N(μ1, σ
2
1)

versus HA : N(μ2, σ
2
2), where μ1, μ2 ∈ R and σ2

1 , σ
2
2 > 0 are fixed given.

3.9 Solutions to Selected Problems

Solution to Problem 3.9: It holds

P(Xi > max
j �=i

Xj) =

∫
[

∫ ∏
j �=i

I(−∞,t)(tj)
⊗

j �=i Pj(dtj)]Pi(dt)

=

∫ ∏
j �=i

Fj(t)Pi(dt), i = 1, ..., k.

The last equation follows from the continuity of F1, ..., Fk. �

Solution to Problem 3.10: Using Problem 3.9 we have

P(Xi > max
j �=i

Xj) =

∫ ∏
j �=i

Φ(
t− μj

σ
)
1

σ
ϕ(

t− μi

σ
)dt

=

∫ ∏
j �=i

Φ(s +
μi − μj

σ
)ϕ(s)ds.
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As
∏

j �=i Φ(s + (μi − μj)/σ) is an increasing function of μi − μj the probability

P(Xi0 > maxj �=i0 Xj) is maximal if μi0 −μj is maximal for each j �= i0. This is true

if and only if μi0 = μ[k]. �

Solution to Problem 3.16: As A0 is countably generated there exists an increas-

ing sequence of finite partitions zn = {A1,n, ..., Amn,n} so that A0 is generated by

z1, z2, .... Then for A0,n = σ(zn) and fn = EQ0(f |A0,n) it holds
∫
|fn−f |dQ0 → 0 by

Levy’s martingale theorem; see Theorem A.34. Modify the finite number of values

of fn in such a way that the new function f̃n has rational values and the sequence

satisfies again
∫
|f̃n − f |dQ0 → 0. Hence the family of functions f : X →m Q that

are A0,n-measurable for some n rational values is at most countable and dense in

L1(Q0). �

Solution to Problem 3.24: Let Δ0 = {θ1, θ2, ...} be a subset that is dense in

Δ. Q =
∑∞

k=1 2−kPθk is a probability measure. For a fixed θ ∈ Δ choose kl such

that supB∈A 2|Pθkl
(B) − Pθ(B)| = ‖Pθkl

− Pθ‖ → 0 as l → ∞. If Q(A) = 0, then

Pθk(A) = 0 for every k and Pθ(A) = 0. �

Solution to Problem 3.26: If the statement is not true, then there is a subsequence

θn → θ0, and a sequence an which may be assumed to be convergent in view of the

compactness of D, say an → a, such that for some ε > 0 it holds |L(θn, an) −
L(θ0, an)| ≥ ε, which contradicts the continuity of L. �

Solution to Problem 3.31: If m(x) < ∞, μ-a.e., then for every An ∈ A with

μ(An) < ∞, ∪∞
n=1An = X , and BN = {x : m(x) < N} it holds (Pρ)(An ∩

BN ) =
∫

An∩BN
m(x)μ(dx) < ∞. On the other hand, Cn ↑ X with (Pρ)(Cn) =∫

Cn
m(x)μ(dx) < ∞ yields m(x) < ∞,μ-a.e. on Cn for every n, and therefore

m(x) < ∞,μ-a.e. The statement d(Pρ)/dμ = m follows from
∫

A
m(x)μ(dx) =∫

[
∫
IA(x)fθ(x)ρ(dθ)]μ(dx) =

∫
Pθ(A)ρ(dθ). �

Solution to Problem 3.63: The joint density of (X,Y2) is ϕμ1,Σ1(x−y2)ϕμ2,Σ2(y2).

The marginal density of X is ϕμ1+μ2,Σ1+Σ2(x). Consider the ratio to get the result.

�

Solution to Problem 3.73: We have to minimize r(ρ, a|x) in (3.28). Hence we have

to minimize g(a) = 1
2
a2ϕ0,1(x)+ 1

2
(a−c)2ϕ0,c(x) which is a convex and differentiable

function. The zero of g′(a) gives Tc. �

Solution to Problem 3.79: If xn satisfies ‖xn‖ → infx∈K ‖x‖, then it follows from
‖ 1

2
(xn + xm) ‖≤ 1

2
‖xn‖ + 1

2
‖xm‖ that limm,n→∞ ‖ 1

2
(xn + xm) ‖= infx∈K ‖x‖ .

Hence
1

4
‖xn − xm‖2 =

1

2
‖xn‖2 +

1

2
‖xm‖2− ‖

1

2
(xn + xm) ‖2

implies limm,n→∞ ‖xn − xm‖ = 0, so that by the completeness of R
d it holds xn →

xK , where xK ∈ K as K is closed. �
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Solution to Problem 3.80: For every x ∈ K and every α ∈ [0, 1],

0 ≤ f(α) = ‖α(x− z) + (1− α)(xK − z)‖2 − ‖xK − z‖2 ,

so that f(0) = 0 implies

f ′(0) = 2(〈x− z, xK − z〉 − ‖xK − z‖2) ≥ 0

and infx∈K 〈x− z, xK − z〉 ≥ ‖xK − z‖2 > 0. �

Solution to Problem 3.81: The convexity of A(B) follows from the convexity

of B. Let y  x be the coordinatewise semiorder and yn → y, yn ∈ A(B). Then

there exist xn ∈ B with yn  xn, and by the compactness of B a convergent

subsequence xnk → x ∈ B, so that y  x and thus y ∈ A(B). If z /∈ A(B), then by

Problem 3.80 there is some b ∈ R
n with 〈b, z〉 < infy∈A(B) 〈b, y〉 . By construction

of A(B) and z ∈ R
n
+ each coordinate of b �= 0 must be nonnegative as otherwise

infy∈A(B) 〈b, y〉 = −∞. The vector b with nonnegative components can be normalized

to be a distribution. �

Solution to Problem 3.85: The posterior density is

π(θ|x) = (m(x)
√

2π)−1 exp{−1

2
(θ − x)2}, where

m(x) =

∫
1√
2π

exp{−1

2
(θ − x)2}Π(dθ).

If Tnat(x) = x is a Bayes estimator for the prior Π, then by E(Θ|X = x) = x,

∫
1√
2π

θ exp{−1

2
(θ − x)2}Π(dθ) = xm(x), λ-a.e.

∫
(θ − x) exp{−1

2
(θ − x)2}Π(dθ) = 0, λ-a.e.

The function g(x) =
∫

exp{− 1
2
(θ − x)2}Π(dθ) is continuously differentiable and

g′ = 0 λ-a.e. Hence g is a constant. As g(0) > 0 and limx→∞ g(x) = 0 we get a

contradiction. �

Solution to Problem 3.88: Let ϕ be a test with

mρ(P0, P1) = max(ρE0ϕ, (1− ρ)E1(1− ϕ)).

If mρ(P0, P1) = 0, then E0ϕ = E1(1 − ϕ) = 0, and P0(ϕ = 0) = 1, P1(ϕ = 0) = 0

implies P0 ⊥ P1. If P0 ⊥ P1, then for some A, P0(A) = 0 = 1−P1(A). ϕ = IA yields

mρ(P0, P1) = 0. Let ψ1−ρ(L0,1) be the best level 1− ρ test with E0ϕ = 1− ρ. Then

by Problem 2.47 E1(1− ψ1−ρ(L0,1)) ≤ ρ with equality if and only if P0 = P1. �
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Comparison of Models, Reduction by
Sufficiency

4.1 Comparison and Randomization of Models

A statistical inference on an unknown distribution parameter is made after
observations have been drawn that contain information about it. Hereby it is
clear that samples of larger sizes would produce more information. Large sets
of data, however, may become too unwieldy. Then summary data, such as the
sample mean or sample variance, may be utilized instead to get some insight
into the situation and to draw first conclusions. It is clear that there may be
some loss of information if we take into account only such summary data for
our inference, which in turn may have a negative effect on the quality of the
inference. Some framework that provides a precise formulation of the loss of
information due to the reduction of data becomes necessary. We start with
a statistical model M = (X ,A, (Pθ)θ∈Δ), another measurable space (Y,B),
and a statistic T : X →m Y that provides the reduction of the data from
x ∈ X to T (x) ∈ Y. Here we call

N = (Y,B, (Qθ)θ∈Δ), where Qθ = Pθ ◦ T−1, θ ∈ Δ, (4.1)

the reduced model.

Example 4.1. Let (X ,A) = (Rn,Bn). For a sample X1, ..., Xn we consider the
rank statistic Rn = (Rn,1, ..., Rn,n) that has been introduced in (2.5). Rn takes
on values in {1, ..., n}n and gives information on the order relations between the
observations, but does not say anything about their values. On the other hand,
together with the order statistic X[·] = (X[1], ..., X[n]) in (2.5) the sample X1, ..., Xn

can be reconstructed from (Rn, X[·]), and therefore (Rn, X[·]) carries the complete
information that is contained in the data. However, if we use only Rn, or only X[·],
then the full information cannot be exploited.

In some situations the reduction of data is not made by the statistician.
Instead, the observation process is incomplete and even possibly disturbed by
random errors.

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 4, c© Springer Science+Business Media, LLC 2008
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Example 4.2. In reliability theory, when random lifetimes are considered, it is
typical that the lifetimes can only be observed up to certain time points. The simplest
case is where from an i.i.d. sample X1, ..., Xn of lifetimes we can only observe X1 ∧
c, ..., Xn ∧ c, where c > 0 is a given constant. More generally, let C1, ..., Cn be
i.i.d. censoring times. Suppose that we can observe only (X1 ∧ C1, D1), ..., (Xn ∧
Cn, Dn), where Di = I[Ci,∞)(Xi), i = 1, ..., n. In this model, which is called a
random censorship model, we may observe only the minimum of the lifetime and
the censoring time, but in addition we get the information whether this value was a
lifetime or a censoring time.

Occasionally, in interviews additional errors are included on purpose by
the statistician in order to protect the identities of interviewed people.

Example 4.3. Here we consider a randomized response technique that is used,
among others, in sampling surveys when a sensitive question about a personality
property E, say, is asked that a person may perhaps not want to answer truthfully.
E may, for example, stand for using drugs. Let X = 1 if the interviewed person has
property E, and let X = 0 otherwise. Suppose we want to estimate the proportion
of people that have property E. In an interview two questions are presented to a
respondent. The first is whether the respondent’s social security number is even, and
the second is whether the respondent has the property E. Instead of answering both
questions the respondent is now asked to flip a coin and not to reveal the result to
the interviewer. Then the respondent is asked to answer the first question if the coin
had turned up “tails”, and to answer the second question if the coin had turned up
“heads”. Here it can be assumed that the respondent will answer truthfully.

Let Z = 0 if the coin turns up “tails”, and let Z = 1 otherwise. Moreover, let S =
1 if the respondent’s social security number is even, and let S = 0 otherwise. What
the interviewer observes in this setting is Y := (1−Z)S+ZX. The random variable X
remains hidden from the interviewer, and he cannot find out whether the respondent
has the property E, as long as he does not know whether the respondent’s social
security number is even or odd. There are several other randomization techniques
available for estimating proportions that circumvent possibly biased answers. For
further details we refer to Chaudhuri and Mukerjee (1988).

The examples 4.2 and 4.3 are covered by the following more general setup.
Let X be a random variable that takes on values in (X ,A). Let V be another
random variable with values in (V,V) that is independent of X. Let (Y,B)
be a third measurable space, g : X ×V →m Y, and suppose that Y = g(X,V )
is the random variable that we observe. Then by the independence of X and
V for any B ∈ B it holds

K(B|x) := E(IB(Y )|X = x) = EIB(g(x, V )), x ∈ X ,
where the right-hand side determines the version of the conditional expecta-
tion used in the middle. It is easy to see that K is a stochastic kernel that
satisfies

(L(Y,X))(C) = (K⊗ P )(C) =
∫

[
∫
IC(x, y)K(dy|x)]P (dx) and

(L(Y ))(B) = (KP )(B) =
∫

K(B|x)P (dx), P = L(X). (4.2)
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The two equations in (4.2) describe a fairly general situation of restrictedly
observable data and lead to the following definition.

Definition 4.4. Given a model M = (X ,A, (Pθ)θ∈Δ), a measurable space
(Y,B), and a stochastic kernel K : B × X →k [0, 1], we call the model N =
(Y,B, (KPθ)θ∈Δ) the randomization of M by the kernel K, and we write N =
KM.

For T : X →m Y we introduce the special kernel K by setting K(·|x) =
δT (x). Then KPθ = Pθ ◦ T−1 so that the reduced model in (4.1) is a special
case of randomization.

Up to this point we have studied situations where a possible random in-
fluence on the data leads to a new model which we know is a randomization
of the original model. Now we look at the more general situation where any
two models M = (X ,A, (Pθ)θ∈Δ) and N = (Y,B, (Qθ)θ∈Δ) are given and
we want to decide, say, if N is a randomization of M. This allows us to
clarify if M contains more information on the parameter than N . To this
end we formulate first necessary conditions. We already know that the ap-
plication of a stochastic kernel to distributions is a contraction in the sense
that the distance between the new distributions does not exceed the original
distance if the distance is measured by means of v-divergences. Indeed, the
monotonicity theorem for v divergences (see Theorem 1.70) and the corre-
sponding statement for Hellinger transforms in Proposition 1.93 show that
for (Qθ)θ∈Δ = (KPθ)θ∈Δ it holds

Iv(Pθ1 , Pθ2) ≥ Iv(Qθ1 , Qθ2), θ1, θ2 ∈ Δ, (4.3)
Hs(Pθ1 , ..., Pθk

) ≤ Hs(Qθ1 , ..., Qθk
), θ1, ..., θk ∈ Δ, s ∈ So

k.

Although the inequalities in (4.3) are only necessary conditions for a random-
ization they are also sufficient if we restrict ourselves to special families of
distributions.

Example 4.5. For fixed positive σ2 and τ2 we consider the models

M = (R,B, (N(μ, σ2)μ∈R) and N = (R,B, (N(μ, τ2)μ∈R).

If σ2 ≤ τ2, then
N(μ, τ2) = N(μ, σ2) ∗ N(0, τ2 − σ2),

so that N = KM, where K is the convolution kernel K(A|x) = (N(0, τ2−σ2))(A−x).
Conversely, suppose that N = KM for some kernel K. Then

Hs(N(μ1, σ
2),N(μ2, σ

2)) ≤ Hs(N(μ1, τ
2),N(μ2, τ

2)), 0 < s < 1,

and by (1.79) and (4.3),

H1/2(N(μ1, σ
2),N(μ2, σ

2)) = exp{−1

8

(μ1 − μ2)
2

σ2
}

≤ exp{−1

8

(μ1 − μ2)
2

τ2
} = H1/2(N(μ1, τ

2),N(μ2, τ
2)),

which means σ2 ≤ τ2. Altogether we have obtained that N = KM if and only if
σ2 ≤ τ2.
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In Example 4.5 we used a normally distributed Z to randomize the model
M. The question that remains open is whether another random variable could
have been used instead.

Problem 4.6.∗ If X and Z are independent with L(X) = N(μ1, σ
2
1) and L(Y ) =

N(μ2, σ
2
2), then it holds L(Y ) = L(X + Z) if and only if σ2

1 ≤ σ2
2 and L(Z) =

N(μ2 − μ1, σ
2
2 − σ2

1).

Problem 4.7.∗ Let Σ1 be nonsingular. (N(μ,Σ2))μ∈Rd is a randomization of

(N(μ,Σ1))μ∈Rd if and only if Σ1 ! Σ2 in the Löwner semiorder, i.e., uT (Σ2−Σ1)u ≥
0, u ∈ R

d.

In the above problem multivariate normal distributions are compared. The
more general situation of linear models with normally distributed errors is
studied in Lehmann (1988), Torgersen (1991), and Luschgy (1992b).

For fixed variances the two families compared in Example 4.5 are location
models with parent normal distributions. The question arises as to whether
similar statements can be made for any location model. This problem was first
studied by Boll (1955). His result has been generalized by many authors and
is called the convolution theorem. Here we present only a special version of
the general convolution theorem. We refer to Strasser (1985), Theorem 55.12,
for the general case and its proof.

Theorem 4.8. Let P and Q be distributions on the Borel sets of R
d, and

set M = (Rd,Bd, (P (· − θ))θ∈R) and N = (Rd,Bd, (Q(· − θ))θ∈R). Then the
following holds. Model N is a randomization of M if and only if there exists
a distribution R such that Q = R ∗ P.

To see that Q = R∗P leads to a randomization, we set Pθ(B) = P (B−θ),
Qθ(B) = Q(B−θ) and introduce K as convolution kernel K(B|x) = R(B−x).
Then

Qθ(B) =
∫
Pθ(B − x)R(dx) =

∫
R(B − x)Pθ(x) = (KPθ)(B).

Now we consider decision-theoretic consequences of the concept of ran-
domization. Whenever two models M and N are simultaneously under con-
sideration, then we indicate by a subscript M or N at a decision D to which
model it belongs. Let M = (X ,A, (Pθ)θ∈Δ) be a model and N = KM =
(Y,B, (KPθ)θ∈Δ) be a randomization of M. Let L(θ, ·) : D →m R be a
bounded loss function and DN : D × Y →k [0, 1] a decision for the model
N . Using Fubini’s theorem for stochastic kernels (see Proposition A.40) and
the definition of KPθ in (4.2), the risk function may be written as

R(θ,DN ) =
∫

[
∫
L(θ, a)DN (da|y)](KPθ)(dy)

=
∫

[
∫
L(θ, a)(DNK)(da|x)]Pθ(dx) = R(θ, (DNK)M), where

(DNK)M(A|x) =
∫

DN (A|y)K(dy|x), A ∈ D, x ∈ X ,
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is again a stochastic kernel, and (DNK)M is a decision for the model M. This
means that for every decision DN for the model N there is a decision (DNK)M
for the model M such that the associated risk functions are the same. Hence
a minimization over a set of decisions will lead for the model M to a smaller
risk than the minimization for the model N .

Now we consider the case where the risk function of the model N is only
up to some ε ≥ 0 larger than the risk function of the model M. For every loss
function L : Δ × D → R we set ‖L‖u = supθ∈Δ,a∈D |L(θ, a)|. The following
definition is taken from Torgersen (1991), Section 6.2.

Definition 4.9. For ε ≥ 0 a model M = (X ,A, (Pθ)θ∈Δ) is called ε-deficient
with respect to N = (Y,B, (Qθ)θ∈Δ) if for every finite subset � ⊆ Δ, every
finite decision space D, every loss function L with ‖L‖u ≤ 1, and every DN :
D× Y →k [0, 1], there exists a DM : D×X →k [0, 1] such that

R(θ,DM) ≤ R(θ,DN ) + ε, θ ∈ �. (4.4)

In this case we write M#ε N . If M is 0-deficient with respect to N , then we
call M at least as informative as N and write M# N instead of M#0 N . If
M# N and N #M, then we call M and N equivalent and write M∼ N .

If L is any bounded loss function, with absolute value not necessarily
bounded by 1, then we may switch from L to L̃ = (supa∈D |L(θ, a)|)−1L and
see that (4.4) is equivalent to

R(θ,DM) ≤ R(θ,DN ) + ε sup
a∈D

|L(θ, a)|, θ ∈ �.

Similarly, in terms of nonnegative and bounded loss functions we can say
that (4.4) is equivalent to

R(θ,DM) ≤ R(θ,DN ) +
ε

2
sup
a∈D

L(θ, a), θ ∈ �,

for every nonnegative and bounded loss function L.
Let F(Δ) denote the system of all finite subsets of Δ, and let M� be the

finite submodel of M that is obtained from M by restricting the parameter
set to some � ∈ F(Δ). It is immediately clear from the definition that

M#ε N if and only if M� #ε N� for every � ∈ F(Δ).

Corollary 4.10. Let M = (X ,A, (Pθ)θ∈Δ) and N = (Y,B, (Qθ)θ∈Δ) be two
statistical models. If there is a kernel K : B×X →k [0, 1] such that

‖KPθ −Qθ‖ ≤ ε, θ ∈ Δ, (4.5)

then M#ε N , and especially

N = KM implies M# N .
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Proof. If ‖L‖u ≤ 1, then

R(θ, (DNK)M) = R(θ,DN ) +
∫

[
∫
L(θ, a)DN (da|y)](KPθ −Qθ)(dy)

≤ R(θ,DN ) + ‖KPθ −Qθ‖ ≤ R(θ,DN ) + ε,

where the first inequality follows from the inequality in Problem 1.80.

Problem 4.11.∗ Let M = (X ,A, (Pθ)θ∈Δ) be a model. Assume that there is a
T : X →m Y where T is a mapping onto B ∈ B and the inverse mapping S : B → X
is measurable with respect to BB = {C : C ∈ B, C ⊆ B}. If N = (Y,B, (Qθ)θ∈Δ)
with Qθ = Pθ ◦ T−1, then M and N are mutual randomizations of each other and
therefore equivalent.

Problem 4.12. Suppose that for the model M = (X ,A, (Pθ)θ∈Δ) the σ-algebra A

is finite with the atoms A1, ..., Am. Let Y = {y1, ..., ym} be any set. If Qθ is defined
by Qθ({yi}) = Pθ(Ai), i = 1, ...,m, then M and N are mutual randomizations of
each other and therefore equivalent.

Next we establish a criterion which states that under certain conditions
(4.5) is not only sufficient but also necessary for the relation M #ε N . This
criterion, called the randomization criterion, is shown to play a crucial role
when we deal with the convergence of models in the next section. Setting up
this randomization criterion requires some technical preparations. One step
hereby is a simple special version of the classical minimax theorem. As we
need only a special result we prove this statement directly. For a general form
of the minimax theorem we refer to LeCam and Yang (1990) and to Torgersen
(1991) for the relations to game theory. Recall that a subset L ⊆ R

d is called
a polytope if it is the convex hull of a finite number of vectors from R

d.

Lemma 4.13. Let K ⊆ R
k be a convex and compact set and L ⊆ R

d be a
polytope. If Ψ : K× L → R is continuous and satisfies

Ψ(αy1 + (1− α)y2, z) = αΨ(y1, z) + (1− α)Ψ(y2, z), (4.6)
Ψ(y, αz1 + (1− α)z2) = αΨ(y, z1) + (1− α)Ψ(y, z2),

for α ∈ [0, 1], y, y1, y2 ∈ K, and z, z1, z2 ∈ L, then there is some y0 with

sup
z∈L

Ψ(y0, z) = inf
y∈K

sup
z∈L

Ψ(y, z) = sup
z∈L

inf
y∈K

Ψ(y, z).

Proof. The inequality

v := sup
z∈L

inf
y∈K

Ψ(y, z) ≤ inf
y∈K

sup
z∈L

Ψ(y, z) =: v. (4.7)

holds in any case. To prove the converse inequality we note that we may
assume that Ψ is nonnegative and L is the convex hull of z1, ..., zN . By the
assumption on Ψ the set
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K̃ = {(Ψ(y, z1), ..., Ψ(y, zN )), y ∈ K}

is a compact and convex subset of R
N
+ . For any αi ≥ 0 with

∑N
i=1 αi = 1,

inf
y∈K

∑N

i=1
αiΨ(y, zi) = inf

y∈K

Ψ(y,
∑N

i=1
αizi) ≤ v.

By Problem 3.81 there is some y0 ∈ K such that (Ψ(y0, z1), ..., Ψ(y0, zN ))
is, with respect to the componentwise semiorder, not larger than the vector
(v, ..., v), i.e., Ψ(y0, zi) ≤ v, i = 1, ..., N . As every z ∈ L is a convex linear
combination of the zi we get supz∈L

Ψ(y0, z) ≤ v and thus

v = inf
y∈K

sup
z∈L

Ψ(y, z) ≤ sup
z∈L

Ψ(y0, z) ≤ v,

which together with (4.7) completes the proof.
In the definition of ε-deficiency the risk functions are compared pointwise.

For later purpose, when we deal with the convergence of models, we need also
characterizations in terms of the Bayes risk and in terms of the performance
function. The latter assigns to each θ the distribution of the decision, i.e., this
function is defined by θ �→ DPθ. The following theorem is Corollary 6.3.2 in
Torgersen (1991).

Theorem 4.14. For any two statistical models M = (X ,A, (Pi)i∈Δ) and
N = (Y,B, (Qi)i∈Δ) with a common finite parameter set Δ, any finite deci-
sion space D, and any ε ≥ 0, the following statements are equivalent.

(A) Pointwise comparison of risk:
For every loss function L with ‖L‖u ≤ 1 and every decision DN there
exists a decision DM with

R(θ,DM) ≤ R(θ,DN ) + ε, θ ∈ Δ.

(B) Comparison of Bayes risks:
For every loss function L with ‖L‖u ≤ 1, every prior Π on Δ, and every
decision DN , there exists a decision DM with

r(Π,DM) ≤ r(Π,DN ) + ε.

(C) Comparison of performance functions:
For every decision DN there exists a decision DM with

∑
a∈D

|
∫

DM({a}|x)Pθ(dx)−
∫

DN ({a}|x)Qθ(dx)| ≤ ε, θ ∈ Δ.

Proof. (A) → (B) is a consequence of r(Π,DM) =
∑

θ∈Δ R(θ,DM)Π({θ})
and a similar relation for r(Π,DN ).
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To show (B)→ (C), let Δ = {θ1, ..., θm} and D = {a1, ..., aN}. We set for
any prior Π with πi := Π({θi}) > 0 for every i = 1, ...,m,

M(DM, L) := (r(Π,DM)− r(Π,DN ))− ε (4.8)

= (
∑m

i=1

∑N

j=1
[πi
∫
L(θi, aj)DM({aj}|x)Pθi

(dx)− πiγi,j ])− ε,

γi,j =
∫
L(θi, aj)DN ({aj}|y)Qθi

(dy), i = 1, ...,m, j = 1, ..., N.

Denote by D the set of all decisions DM for the model M. Set

K = {(
∫

DM({a1}|x)Pθ1(dx), ...,
∫

DM({aN}|x)Pθm
(dx)) : DM ∈ D},

L = Xm
i=1[−πi, πi]N .

The set K is convex and by the compactness theorem (see Theorem 3.21) is a
compact subset of R

mN , and L is a polytope. Put

y = (
∫

DM({aj}|x)Pθi
(dx))1≤i≤m,1≤j≤N ∈ K,

z = (πiL(θi, aj))1≤i≤m,1≤j≤N ∈ L,

and Ψ(y, z) = M(DM, L). The function Ψ(y, z) is continuous and satisfies the
conditions in (4.6). Thus by Lemma 4.13 there is some decision D

(0)
M with

sup
L∈L

M(D(0)
M , L) = inf

DM∈D

sup
L∈L

M(DM, L) = sup
L∈L

inf
DM∈D

M(DM, L) ≤ 0,

where the inequality on the right-hand side follows from condition (B) and
the representation (4.8). Hence,

sup
‖L‖u≤1

∑m

i=1

∑N

j=1
πiL(θi, aj)

× [
∫

D
(0)
M ({aj}|x)Pθi

(dx)−
∫

DN ({aj}|y)Qθi
(dy)] ≤ ε.

Now we fix i0 ∈ {1, ...,m} and a function g : D → [−1, 1]. We set L(θi0 , aj) =
g(aj) and L(θi, aj) = 0 for i �= i0. Then by πi0 > 0,

sup
‖g‖u≤1

∑N

j=1
g(aj)[

∫
D

(0)
M ({aj}|x)Pθi0

(dx)−
∫

DN ({aj}|y)Qθi0
(dy)] ≤ ε

πi0
.

To get (C) we let πi0 ↑ 1 and set g(aj) = 1 if
∫

D
(0)
M ({aj}|x)Pθi0

(dx) ≥
∫
L(i0, aj)DN ({aj}|y)Qθi0

(dy),

and g(aj) = −1 otherwise. To prove (C) → (A), for i = 1, ...,m it holds
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|R(θi,DM)− R(θi,DN )|

≤ |
∑N

j=1
L(θi, aj)[

∫
DM({aj}|x)Pθi

(dx)−
∫

DN ({aj}|y)Qθi
(dy)] |

≤
∑N

j=1
|
∫

DM({aj}|x)Pθi
(dx)−

∫
DN ({aj}|y)Qθi

(dy) |≤ ε.

A simple fact, with far-reaching consequences, is that in the comparison
of two finite models we have to consider only the minimal Bayes risks, i.e.,
the Bayes risks of the two problems. For a fixed decision space D denote by
DM and DN the set of all decisions for model M and N , respectively.

Corollary 4.15. Under the assumptions of Theorem 4.14, if the conditions
(A)− (C) are satisfied, the following holds. M#ε N if and only if for every
finite decision space D, for every loss function L with ‖L‖u ≤ 1, and for every
prior Π

inf
D∈DM

r(Π,D) ≤ inf
D∈DN

r(Π,D) + ε. (4.9)

Proof. As the models and the decision space are finite we know from
Proposition 3.50 that the infima are attained at some decisions which are
the Bayes decisions DΠ,M and DΠ,N , respectively. If M #ε N , then by con-
dition (B) in Theorem 4.14 for DΠ,N there exists a DM with r(Π,DM) ≤
r(Π,DΠ,N ) + ε. The inequality (4.9) follows from r(Π,DΠ,M) ≤ r(Π,DM).
The proof of the opposite direction is similar.

In Corollary 4.10 we have seen that M #ε N if N is a randomization of
M “up to ε”. The natural question arises whether M #ε N implies (4.5).
This means that we ask whether a model M is approximately as informative
as N if and only if N is an approximate randomization of M. This problem
was studied by Blackwell (1951, 1953) for finite decision spaces. For general
results we refer to Strasser (1985), LeCam (1986), and Torgersen (1991). We
establish here the randomization criterion only for Borel spaces (Y,B) and
finite models. This is sufficient for our purposes. Some remarks on more general
results in the literature are made after the following theorem which is a special
case of Theorem 6.4.1 in Torgersen (1991).

Theorem 4.16. (Randomization Criterion) Let M = (X ,A, (Pθ)θ∈Δ)
and N = (Y,B, (Qθ)θ∈Δ) with Δ = {θ1, ..., θm} be two finite models. If (Y,B)
is a Borel space, then for every fixed ε ≥ 0 the model M is ε-deficient with
respect to N if and only if there exists a kernel K : B×X →k [0, 1] such that
‖KPθ −Qθ‖ ≤ ε, θ ∈ Δ.

Corollary 4.17. Under the assumptions of the theorem it holds N � M if
and only if N is a randomization of M.

Proof. One direction is clear from Corollary 4.10. To prove the opposite
direction we note that by the definition of a Borel space and Problem 4.11
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we may restrict ourselves to the case where Y is a compact metric space with
metric ρ and B is the σ-algebra of Borel sets. From the compactness of Y
we get the existence of an increasing sequence of partitions p1 ⊆ p2 ⊆ ...,
pn = {A1,n, ..., ANn,n} where Ai,n has a diameter not exceeding 1/n. It holds
for every continuous function ϕ and points yi,n ∈ Ai,n,

sup
y∈Y

|ϕ(y)−
∑Nn

i=1
IAi,n

(y)ϕ(yi,n)| ≤ ω1/n(ϕ),

where ωδ(ϕ) = supρ(s,t)≤δ |ϕ(s) − ϕ(t)| is the modulus of continuity of ϕ.
Introduce the finite decision space Dn by Dn = {y1,n, ..., yNn,n} and set
Dn(·|y) = δT (y)(·), where T (y) = yj,n, y ∈ Aj,n. Let D be the set of all
stochastic kernels Ln : P(Dn)×X →k [0, 1]. By (C) in Theorem 4.14 we find
a decision L0

n such that

max
θ∈Δ

∑Nn

j=1
|
∫

L0
n({yj,n}|x)Pθ(dx)−

∫
Dn({yj,n}|y)Qθ(dy)| ≤ ε.

Introduce the kernel K0
n : B×X →k [0, 1] by

K0
n(B|x) =

∑Nn

j=1
L0
n({yj,n}|x)δyj,n

(B).

The relations∫
ϕ(y)(K0

nPθ)(dy) =
∑Nn

i=1
ϕ(yi,n)

∫
L0
n({yi,n}|x)Pθ(dx),

∣∣∣∣
∑N

j=1

∫
ϕ(y)Dn({yj,n}|y)Qθ(dy)−

∫
ϕ(y)Qθ(dy)

∣∣∣∣ ≤ ω1/n(ϕ),

yield for a continuous function ϕ with values in [−1, 1],

|
∫
ϕ(y)(K0

nPθ)(dy)−
∫
ϕ(y)Qθ(dy)| ≤ ε+ ω1/n(ϕ), θ ∈ Δ.

In view of the compactness theorem (see Theorem 3.21) and the fact that Δ
is finite there is a subsequence nm and a kernel K : B×X →k [0, 1] such that

lim
m→∞

∫
ϕ(y)(K0

nm
Pθ)(dy) =

∫
ϕ(y)(KPθ)(dy), θ ∈ Δ,

for every continuous function ϕ. Hence |
∫
ϕ(y)(KPθ)(dy)−

∫
ϕ(y)Qθ(dy)| ≤ ε.

The supremum over all continuous functions ϕ with |ϕ(x)| ≤ 1 provides the
variational distance; see Problem 1.80. This completes the proof. The corollary
follows for ε = 0.

We conclude this section with some remarks on the concept of deficiency
and the randomization theorem. Our definition of deficiency in Definition 4.9
is taken from Torgersen (1991), Section 6.2. Other authors have relaxed the
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assumption of a finite decision space by assuming only that it is a topological
space, and they have assumed only that the loss function is continuous; see
Strasser (1985) and LeCam (1986). But this approach is equivalent to that
given in Definition 4.9; see Corollary 6.4.4 in Torgersen (1991). We have con-
fined ourselves here to Borel spaces and to a finite parameter set in order to
deal with kernels and make use of the compactness theorem which provides
the sequential compactness of decisions. By using topological arguments that
are more far-reaching one may drop the assumption that the parameter set is
finite. However, one would then have to deal with randomizations in a more
general sense that requires additional topological tools. For details we refer to
LeCam (1986), Strasser (1985), and Torgersen (1991).

4.2 Comparison of Finite Models by Standard
Distributions

It is clear that models with the same sample space are easier to compare
than models with different sample spaces. Therefore we investigate how one
can switch from a given model to another equivalent model for which the
sample space is universal, that is, common to all models. First we formulate a
sufficient condition that guarantees that a reduced model is equivalent to the
original model.

To find conditions on a statistic T that lead to an equivalent model we start
with the decision-theoretic framework that was introduced in Chapter 3; see
(3.1). Given a model (X ,A, (Pθ)θ∈Δ), a decision space (D,D), and a decision
D : D×X →k [0, 1], we assume that (A,X) is a random vector that is defined
on the probability space, say (Ω,F,Pθ), θ ∈ Δ, such that L(X|Pθ) = Pθ and
D(·|x) is the conditional distribution of the decision A given X = x. This
means that

L((A,X)|Pθ) = D⊗ Pθ, where

(D⊗ Pθ)(C) =
∫

[
∫
IC(a, x)D(da|x)]Pθ(dx), C ∈ D⊗ A.

Suppose now that we have another measurable space (Y,B) and a statistic
T : X →m Y. If C : D × Y →k [0, 1] is a decision for the model (Y,B, (Pθ ◦
T−1)θ∈Δ), then we call

D(·|x) = C(·|T (x)), x ∈ X ,

a decision factorized by the statistic T and write in short D = C ◦ T. Such
decisions depend on the observations only through the statistic T. The next
theorem provides a sufficient criterion for the existence of factorized decisions.
Later on, when we deal with the concept of sufficiency, it is shown that this
condition is also necessary.
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Theorem 4.18. Suppose that the model M = (X ,A, (Pθ)θ∈Δ) is dominated
and the decision space (D,D) is a Borel space. Let (Y,B) be a measurable
space and T : X →m Y. If there exists a dominating probability measure Q
such that the densities dPθ/dQ are σ(T )-measurable, then for every decision
D there exists a decision factorized by T , say C ◦ T , such that for any loss
function L(θ, ·) : D →m R+,

R(θ,D) = R(θ,C ◦ T ), θ ∈ Δ. (4.10)

In particular, for N = (Y,B, (Pθ ◦ T−1)θ∈Δ) it holds that M∼ N .

Proof. Let (A,X) be a random vector, defined on (Ω,F,P), such that
L((A,X)|P) = D ⊗ Q. As (D,D) is a Borel space there exists a stochastic
kernel C : D × Y →k [0, 1] that is the conditional distribution of A given
T = y, i.e., L((A, T (X))|P) = C ⊗ (Q ◦ T−1). For every h : D × Y → R+ it
holds that∫

[
∫
h(a, T (x))D(da|x)]Q(dx) = Eh(A, T (X))

=
∫

[
∫
h(a, T (x))C(da|T (x))]Q(dx).

As dPθ/dQ is σ(T )-measurable it holds (dPθ/dQ)(x) = gθ(T (x)) for some
gθ : Y →m R+. Hence with h(a, T (x)) = L(θ, a)gθ(T (x)) we get

R(θ,C ◦ T ) =
∫

[
∫
L(θ, a)C(da|T (x))]gθ(T (x))Q(dx)

=
∫

[
∫
L(θ, a)D(da|x)]gθ(T (x))Q(dx) = R(θ,D),

which proves the first statement. To prove the second statement, we remark
that M # N follows from Corollary 4.10. The converse statement N # M
follows from (4.10) as each finite decision space D is a Borel space.

The above decision D is the conditional distribution of A given X. The
kernel C that is used to factorize decision D is nothing else than the conditional
distribution of A given T. The crucial point has been to find a version of the
conditional distribution that is independent of the parameter.

Problem 4.19.∗ Under the assumptions of Theorem 4.18, C is a conditional dis-
tribution of A given T that is independent of the parameter, which is equivalent
to ∫

[

∫
h(a, t)C(da|t)](Pθ ◦ T−1)(dt) =

∫
[

∫
h(a, T (x))D(da|x)]Pθ(dx)

for every h : D × Y →m R+ and θ ∈ Δ.

Now we consider a special situation where the conditions of the previous
theorem are satisfied. Every finite model (i.e., every model that consists only
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of a finite number of different distributions) is dominated. For such a model
we can use the arithmetic mean as the dominating distribution. Let

M = (X ,A, {P1, ..., Pm}),

P = 1
m

∑m
i=1 Pi, M = (M1, ...,Mm) = (dP1

dP
, ..., dPm

dP
).

(4.11)

We recall Sm to be the simplex

Sm = {x : x = (x1, ..., xm), xi ≥ 0,
∑m

i=1
xi = m}, (4.12)

and Sm the Borel σ-algebra of subsets of Sm.By construction the vector M
from (4.11) is a measurable mapping M : X →m Sm. We call

μ := P ◦M−1, (4.13)

the standard distribution of the model M. Denote by Zi(x) = xi the projection
of Sm onto the ith coordinate. It holds for any h : Sm →m R+,
∫
h(x)(Pi ◦M−1)(dx) =

∫
h(M(x))Pi(dx) =

∫
h(M(x))

dPi

dP
(x)P (dx)

=
∫
h(M(x))Zi(M(x))P (dx) =

∫
hZidμ, so that

dQi

dμ
= Zi, where Qi := Pi ◦M−1, i = 1, ...,m. (4.14)

Definition 4.20. A distribution μ on (Sm,Sm) is called a standard distribu-
tion if

∫
Zidμ = 1, i = 1, ...,m, where Zi(x) = xi is the projection of Sm onto

the ith coordinate. The model

N = (Sm,Sm, {Q1, ..., Qm}), with dQi = Zidμ, (4.15)

is called a standard model. If μ is defined by (4.13), then we call N the stan-
dard model of M.

Remark 4.21. The finite model (X ,A, {P1, ..., Pm}) can also be dominated by the
finite measure μ =

∑m
i=1 Pi which differs from P only by the factor m. Then the

vector (dP1/dμ, , ..., dPm/dμ) takes on values in the unit simplex, and instead of
dealing with a standard distribution one deals with a standard measure with total
mass m.

An essential step toward the comparison of models is the next proposition.
Its statement is an immediate consequence of Theorem 4.18 for T = M .

Proposition 4.22. The models M in (4.11) and N in (4.15) are equivalent
in the sense of Definition 4.9.
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We recall the Hellinger transform; see Definition 1.87. Using the notations
in (4.11) we have

Hs(P1, ..., Pm) =
∫
Ms1

1 · · ·Msm
m dP

=
∫
ts11 · · · tsm

m μ(dt1, ...dtm), s ∈ So
m, (4.16)

So
m = {s : s = (s1, .., sm), si > 0,

∑m

i=1
si = 1},

where μ = L((M1, ...,Mm)|P ) is the standard distribution, which is defined
on the σ-algebra Sm of Borel sets in Sm from (4.12). Hs(P1, ..., Pm) may also
be viewed as a transformation of the standard distribution μ. If m = 2, then
by (1.77) H(s1,s2)(P1, P2) is related to Hs(P1, P2) in (1.105) by

Hs(P1, P2) = H(s1,s2)(P1, P2), s1 = s, s2 = 1− s.

If the model is not homogeneous (i.e., if not all Pi and Pj are mutually
absolutely continuous) then there is the difficulty that Hs(P1, ..., Pm), for ev-
ery s ∈ So

m, does not provide the Hellinger transforms for submodels, say
for the model {P1, ..., Pm−1}. Indeed, if, for example, Pm is mutually singu-
lar to P1, ..., Pm−1, then Hs(P1, ..., Pm) = 0 for every s ∈ So

m. Nevertheless,
Hs(P1, ..., Pm), for every s ∈ So

m, determines uniquely the amount of μ on

Som = {(x1, ..., xm) : xi > 0,
∑m

i=1
xi = m}.

Lemma 4.23. For two models (Xi,Ai, {Pi,1, ..., Pi,m}), i = 1, 2, it holds

Hs(P1,1, ..., P1,m) = Hs(P2,1, ..., P2,m), s ∈ So
m,

if and only if
μ1(B) = μ2(B), B ∈ So

m,

where So
m = {B : B ∈ Sm, B ⊆ Som}.

Proof. The fact that μ1 = μ2 on So
m implies the equality of the Hellinger

transforms follows from (4.16). To prove the opposite statement we denote by
Z1, ..., Zm the projections of Som on the coordinates. Set μ̃i(B) = μi(B ∩Som).
Then (4.16) yields
∫

exp{
∑m

i=2
si ln(Zi/Z1)}Z1dμ̃1 =

∫
exp{

∑m

i=2
si ln(Zi/Z1)}Z1dμ̃2

(4.17)
for every s2, ..., sm ∈ (0, 1) with

∑m
i=2 si < 1. Set

dνi = Z1dμ̃i and T = (ln(Z2/Z1), ..., ln(Zm/Z1)).

As the set of all vectors (s2, ..., sm) that satisfy (4.17) contains an open rect-
angle Xm

j=2(aj , bj), we get from Proposition 1.25 ν1 ◦ T−1 = ν2 ◦ T−1. The
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mapping T : Som → R
m−1 is one-to-one, and obviously both T and the in-

verse mapping are measurable. Hence ν1 ◦ T−1 = ν2 ◦ T−1 implies ν1 = ν2 or
Z1dμ̃1 = Z1dμ̃2. Similar considerations show that Zidμ̃1 = Zidμ̃2, i = 2, ...,m.
Taking the sum on both sides the relation

∑m
k=1 Zk = m yields μ̃1 = μ̃2.

If the model M is homogeneous, then the standard distribution is concen-
trated on Som so that in the class of homogeneous models the Hellinger trans-
form determines the standard distribution uniquely. To deal with the general
case there are different possibilities. One way is to extend Hs to s ∈ Sc

m, where
Sc
m ⊃ So

m is the unit simplex where some of the coordinates may vanish; see
(1.13). Using the convention 00 = 1 all Hellinger transforms of submodels can
be concluded from Hs(P1, ..., Pm). A technical disadvantage is that additional
formulations are necessary to distinguish between the cases of s ∈ So

m and
s ∈ Sc

m\So
m. For our purposes the way of smoothing the model seems to be

more appropriate. More precisely, given M = (X ,A, {P1, ..., Pm}), we set

Mα = (X ,A, {P1,α, ..., Pm,α}), 0 ≤ α ≤ 1,

Pi,α = (1− α)Pi + αP , 0 ≤ α ≤ 1, i = 1, ...,m.
(4.18)

ObviouslyM =M0. ButMα is homogeneous for 0 < α ≤ 1 and ‖Pi − Pi,α‖ ≤
2α, so that M can be approximated by homogeneous models Mα in the sense
of the variational distance. Moreover,

Pα =
1
m

∑m

i=1
Pi,α = P

Mi,α =
dPi,α

dPα

=
dPi,α

dP
= (1− α)Mi + α.

Denote by μα = L((M1,α, ...,Mm,α)|P ) the standard distribution of Mα. Let
ϕ : Sm → R be a continuous function on Sm which is bounded due to the
compactness of Sm. Then∫

ϕ(u1, ..., um)μα(du1, ..., dum)

=
∫
ϕ((1− α)u1 + α, ..., (1− α)um + α)μ(du1, ..., dum).

For two modelsMi, i = 1, 2, with the parameter set {1, ...,m} we denote by μi
and μi,α the standard distributions of the models Mi and Mi,α, respectively.
Taking the limit α ↓ 0 in the above equality we get from the fact that ϕ was
any continuous function the following statement.

μ1 = μ2 implies μ1,α = μ2,α for every 0 ≤ α ≤ 1,

μ1,α = μ2,α for every 0 < α < 1 implies μ1 = μ2.
(4.19)

Problem 4.24.∗ IfMi, i = 1, 2, are models with the parameter set {1, ...,m}, and
the Mi,α, i = 1, 2 are defined as in (4.11), then M1 ∼ M2 implies M1,α ∼ M2,α

for 0 ≤ α ≤ 1.
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Because for any finite model the standard distribution is defined on the
simplex Sm, no matter what the original sample spaces may have been, we now
have the opportunity to compare models with possibly different sample spaces.
Moreover, if the distributions in the model were given by means of densities,
then by turning to dPi/dP the new statistic M = (M1, ...,Mm) is independent
of the original dominating measure. The choice of P as dominating measure
is some type of self-normalization.

Theorem 4.25. Suppose that Mi = (Xi,Ai, {Pi,1, ..., Pi,m}) is a finite model
with the standard distribution μi, i = 1, 2. Then the following conditions are
equivalent.

(A) M1 ∼M2.
(B) μ1 = μ2.
(C) Hs(P1,1,α, ..., P1,m,α) = Hs(P2,1,α, ..., P2,m,α), s ∈ So

m, 0 ≤ α ≤ 1.

Corollary 4.26. If one of the models M1 or M2 is homogeneous, then con-
dition (C) can be replaced by the weaker condition

(D) Hs(P1,1, ..., P1,m) = Hs(P2,1, ..., P2,m), s ∈ So
m.

Corollary 4.27. For m = 2 the equivalent conditions (A) and (B) hold if
and only if

(E) Hs(P1,1, P1,2) = Hs(P2,1, P2,2), 0 < s < 1.

Proof. (A) implies M1,α ∼M2,α for every 0 ≤ α ≤ 1 in view of Problem
4.24. Proposition 4.22 yields that the corresponding standard models Ni,α

are equivalent. As the simplex Sm is a compact metric space we get from
the randomization criterion (see Theorem 4.16) that N1,α and N2,α are mu-
tual randomizations. A twofold application of Proposition 1.93 implies (C) for
every 0 ≤ α ≤ 1. Assume now that (C) holds. The models Mi,α are homoge-
neous for 0 < α < 1. Hence the μi,α are concentrated on Som and we get from
Lemma 4.23 that μ1,α = μ2,α. Thus (4.19) provides (B). If (B) holds, then
N1 = N2, and thus M1 ∼M2 by Proposition 4.22.

To prove the first corollary, we have only to note that (D) implies that
μ1 and μ2 are identical for the Borel subsets of Som and therefore identical on
Sm, as at least one of the two probability measures is concentrated on Som.
To prove the second corollary, we note that

S2 = {(x1, x2) : xi ≥ 0, x1 + x2 = 2},

and Lemma 4.23 shows that μ1(B) = μ2(B) for every Borel set B with

B ⊆ So2 = {(x1, x2) : xi > 0, x1 + x2 = 2}.

Thus it remains to show that μ1({(2, 0)}) = μ2({(2, 0)}) and μ1({(0, 2)}) =
μ2({(0, 2)}). But this follows from

∫
tjμi(dt1, dt2) = 1,
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lim
s↓0

Hs(Pi,1, Pi,2) = lim
s↓0

∫
ts1t

1−s
2 μi(dt1, dt2)

=
∫
I(0,2](t1)t2μi(dt1, dt2) = 1− 2μi({(0, 2)}),

and by a similar consideration for s ↑ 1.
We consider the situation in Example 1.88. Let (Pi,θ)θ∈Δ be a natural ex-

ponential family on (Xi,Ai) with μi-density fi,θ(x) = exp{〈θ, Ti(x)〉−Ki(θ)},
i = 1, 2, where the parameter θ belongs to the same parameter set Δ ⊆ R

d.
Then we know from Example 1.120 that for θ ∈ Δ0 the Fisher information
matrices for the models

Mi = (Xi,Ai, (Pi,θ)θ∈Δ0),
dPi,θ
dμi

= exp{〈θ, Ti〉 −Ki(θ)}, i = 1, 2, (4.20)

are given by
Ii(θ) = ∇∇TKi(θ), θ ∈ Δ0, i = 1, 2. (4.21)

Proposition 4.28. For the exponential family models in (4.20) the following
statements are equivalent.

(A) M1 ∼M2.
(B) (X1,A1, {P1,θ1 , P1,θ2}) ∼ (X2,A2, {P2,θ1 , P2,θ2}), θ1, θ2 ∈ Δ0.
(C) I1(θ) = I2(θ), θ ∈ Δ0.

Proof. According to Definition 4.9 condition (A) is equivalent to the state-
ment that for every finite subset � = {θ1, ..., θm} ⊆ Δ the finite models M1,�

and M2,� are equivalent. As the exponential families provide homogeneous
models we get from condition (D) in Corollary 4.26 and from Example 1.88
the equivalent condition
∑m

j=1
sjK1(θj)−K1(

∑m

j=1
sjθj) =

∑m

j=1
sjK2(θj)−K2(

∑m

j=1
sjθj)

(4.22)
for every (s1, ..., sm) ∈ So

m and every finite subset � = {θ1, ..., θm} ⊆ Δ.
Using mathematical induction it is easy to see that (4.22) is equivalent to the
requirement that (4.22) holds for m = 2, i.e., for 0 < s < 1,

sK1(θ1) + (1− s)K1(θ2)−K1(sθ1 + (1− s)θ2) (4.23)
= sK2(θ1) + (1− s)K2(θ2)−K2(sθ1 + (1− s)θ2), θ1, θ2 ∈ Δ0.

But this is, according to condition (A) in Theorem 4.25 and Corollary 4.26,
equivalent to condition (B).

It remains to show that condition (C) is equivalent to (4.23). To this end
we fix θ2 ∈ Δ0 and consider the function

G(θ1) = s(K1(θ1)−K2(θ1)) + (1− s)(K1(θ2)−K2(θ2))
−K1(sθ1 + (1− s)θ2) +K2(sθ1 + (1− s)θ2).
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Then

G(θ2) = 0 and ∇G(θ1)|θ1=θ2 = 0,
∇∇TG(θ1)|θ1=θ2 = s(1− s)[∇∇TK1(θ2)−∇∇TK2(θ2)].

From here we see that the condition (4.23) implies that for every θ2 ∈ Δ0

condition C) is satisfied in view of (4.21). Conversely, if (4.21) and thus
∇∇TK1(θ2) = ∇∇TK2(θ2) holds for every θ2 ∈ Δ0, then a Taylor expan-
sion of G(θ1) at θ2 shows that G(θ1) = 0. As θ1 ∈ Δ0 was arbitrary we get
(4.23).

The importance of the standard distribution is also reflected by its relation
to the minimal Bayes risk for a finite model. More precisely, consider the finite
model in (4.11) and suppose that D is a compact metric space that is equipped
with the Borel sets D. Let Π be a prior on Δ = {1, ...,m} and set πi = Π({i}),
i = 1, ...,m. Then for any loss function L(θ, ·) : D →m R+ and any decision
D the Bayes risk is given by

r(Π,D) =
∑m

i=1

∫
L(i, a)D(da|x)Pi(dx)πi.

We know from Theorem 4.18 that we only have to consider decisions that are
factorized by the statistic M in (4.11). Hence for some C : D × Sm →k [0, 1]
it holds

r(Π,D) =
∑m

i=1

∫
πiL(i, a)C(da|t)tiμ(dt),

where we have utilized the fact that by (4.14),

d(Pi ◦M−1)
d(P ◦M−1)

(t) = Zi(t) = ti, t ∈ Sm.

We consider the vector (
∫
π1L(1, a)C(da|t), ...,

∫
πmL(m,a)C(da|t)). If C runs

through all possible kernels and t takes on all possible points in the simplex
Sm, then we get a set of vectors which is obviously given by

DL,Π = {(
∫
π1L(1, a)P (da), ...,

∫
πmL(m,a)P (da)) : P ∈ P(A)}. (4.24)

Problem 4.29. If D is a compact metric space and L(i, a) is continuous in a for
every i = 1, ...,m, then DL,Π is a compact and convex subset of R

m.

If c : Sm →m DL,Π denotes the measurable mapping

c(t) = (
∫
π1L(1, a)C(da|t), ...,

∫
πmL(m,a)C(da|t)),

then we get the following representation of the Bayes risk.

r(Π,D) =
∫
〈c(t), t〉μ(dt). (4.25)
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Therefore the problem of finding a Bayes decision is reduced to the minimiza-
tion of c �→

∫
〈c(t), t〉μ(dt), where the minimum is taken over all measurable

mappings c : Sm →m DL,Π . No matter how the convex and compact set
D has been defined, the minimization of c �→

∫
〈c(t), t〉μ(dt) over C := {c :

c : Sm →m D} is considered to be a standard decision problem. To solve the
minimization problem we call

ψD(t) := inf
y∈D

〈y, t〉 , t ∈ R
m
+ , (4.26)

the lower envelope function of a convex set D. Subsequently we use, instead
of the Euclidean metric, the maximum norm which is defined by ‖x‖u =
max1≤i≤m |xi|.
Problem 4.30.∗ If D is a convex and compact set, then ψD(t) = infy∈D 〈y, t〉 is a
concave and Lipschitz-continuous function with a Lipschitz constant not exceeding
m supy∈D ‖y‖u, i.e., it holds

|ψD(t1)− ψD(t2)| ≤ m
(
supy∈D ‖y‖u

)
‖t1 − t2‖u . (4.27)

We recall from (A.6) that the Dudley metric ‖μ1 − μ2‖D of two distribu-
tions on a metric space (S, ρS) is defined by

‖μ1 − μ2‖D = sup
ϕ
|
∫
ϕdμ1 −

∫
ϕdμ2|,

where the supremum is taken over all functions ϕ with |ϕ(s)| ≤ 1 and |ϕ(t)−
ϕ(s)| ≤ ρS(s, t), t, s ∈ S. If S = Sm , then we use the metric ρSm

(s, t) =
‖s− t‖u = max1≤i≤m |si − ti|.

Theorem 4.31. Let M = (X ,A, {P1, ..., Pm}) be a finite model with the stan-
dard distribution μ on (Sm,Sm) given by (4.13). For every compact and con-
vex set D ⊆ R

m there exists a decision cD : Sm →m D for the standard
decision problem which minimizes the risk, i.e.,∫

〈cD(t), t〉μ(dt) = inf
c∈C

∫
〈c(t), t〉μ(dt). (4.28)

Moreover,

inf
c∈C

∫
〈c(t), t〉μ(dt) =

∫
ψD(t)μ(dt), (4.29)

where ψD is the envelope function in (4.26).

Corollary 4.32. If D is a compact metric space, L(θi, ·) : D → R is a con-
tinuous function for every 1 ≤ i ≤ m, and Π is a prior on Δ = {1, ...,m},
then the minimal Bayes risk is given by

inf
D

r(Π,D) =
∫
ψDL,Π

(t)μ(dt), (4.30)

where DL,Π is defined in (4.24).
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Corollary 4.33. Let Mi = (Xi,Ai, (Pi,θ)θ∈Δ), i = 1, 2, be finite models with
|Δ| = m, and with the respective standard distributions μi on (Sm,Sm) given
by (4.13), i = 1, 2. If D and L satisfy the conditions in Corollary 4.32, then

| inf
DM1

r(Π,DM1)− inf
DM2

r(Π,DM2) |≤ ‖L‖um ‖μ1 − μ2‖D ,

where ‖L‖u = supa∈D,θ∈Δ |L(θ, a)|.

Proof. Set Ψ(x, t) = 〈x, t〉 , x ∈ D, t ∈ Sm. As D is compact for every t
there is some cD(t) such that Ψ(cD(t), t) = infx∈D Ψ(x, t). As Ψ satisfies the
assumptions of the measurable selection theorem (see Theorem A.10) we may
choose cD to be measurable. This proves (4.28). The statement (4.29) results
from the definition of the lower envelope function. The statement (4.30) is a
consequence of the representation of the Bayes risk in (4.25). To prove the
statement of the second corollary we remark that for t ∈ Sm and m = |Δ|,

|ψDL,Π
(t)|

≤ | infy∈DL,Π
〈y, t〉 | ≤ supy∈DL,Π

| 〈y, t〉 | = supy∈DL,Π
|
∑m

i=1
tiyi|

≤ (supy∈DL,Π
‖y‖u)(

∑m

i=1
ti) ≤ ‖L‖um,

|ψDL,Π
(t1)− ψDL,Π

(t2)|
≤ (supy∈DL,Π

‖y‖u)m ‖t1 − t2‖u ≤ ‖L‖um ‖t1 − t2‖u ,

where the first inequality in the last line follows from (4.27). Hence by the
definition of the Dudley metric,

| inf
DM1

r(Π,DM1)− inf
DM2

r(Π,DM2)| = |
∫
ψDL,Π

(t)(μ1 − μ2)(dt)|

≤ ‖L‖um ‖μ1 − μ2‖D .

In Chapter 1 we have introduced and studied v-divergences as a concept
to measure the distance between two distributions. We have also interpreted
this distance as a measure of informativeness of a binary model. The idea
hereby is that it is easier to distinguish between two distributions if there
is a large distance between them. A statement that makes this interpreta-
tion precise is Theorem 1.68 where v-divergences are expressed in terms of
the Bayes risk. Now we show that v-divergences are the minimal risks for a
standard decision problem in a binary model where the convex function v is
the lower envelope of the compact convex set that appears in the definition
of the standard decision problem. More precisely, let D ⊆ R

m be a compact
and convex set and μ be a standard measure that generates the standard
model N = (Sm,Sm, {Q1, ..., Qm}), where dQi = Zidμ, i = 1, ...,m. We use
D := D as the decision space and define the loss function L by L(i, a) = ai,
a = (a1, ..., am) ∈ D. For every decision D : D× Sm →k [0, 1] the risk is
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R(i,D) =
∫

[
∫
aiD(da1, ..., dam|t1, ..., tm)]tiμ(dt1, ..., dtm),

i = 1, ...,m. As D is closed and convex it holds for t = (t1, ..., tm) that

d(t) := (
∫
a1D(da1, ..., dam|t1, ..., tm), ...,

∫
amD(da1, ..., dam|t1, ..., tm)) ∈ D,

and d is a nonrandomized decision that has the same risk function as D. Hence
by (4.28) and (4.29),

inf
D

∑m

i=1
R(i,D) =

∫
ψD(t)μ(dt),

where ψD is defined in (4.26). Let D be a compact and convex subset of R
2

and ψD be the associated lower envelope function in (4.26). We have already
seen in Problem 4.30 that for a compact and convex set D ⊆ R

2 the lower
envelope function

ψD(t0, t1) = inf{t0x0 + t1x1, (x0, x1) ∈ D}, t0, t1 ≥ 0,

is Lipschitz-continuous and concave. The function ψD is homogeneous in the
sense that it satisfies ψD(at0, at1) = aψD(t0, t1) for every a > 0. We introduce
the convex function v by

v(x) = −ψD(x, 1).

Then the conjugate convex function v∗(x) = xv(1/x) is given by v∗(x) =
−ψD(1, x).

We recall that according to (4.11), M = (M0,M1), Mi = dPi/dP , i = 0, 1,
where P = 1

2 (P0 + P1), and the standard distribution is defined by μ =
P ◦M−1. As M1 = 2−M0, P -a.s., we get

∫
ψD(t0, t1)μ(dt0, dt1) =

∫
ψD(M0,M1)dP =

∫
ψD(M0, 2−M0)dP

= ψD(2, 0)P (M1 = 0) + ψD(0, 2)P (M0 = 0)

+
∫
I(0,2)(M0)ψD(

M0

M1
, 1)M1dP .

It holds P (M1 = 0) = 1
2P0(M1 = 0) and P (M0 = 0) = 1

2P1(M0 = 0).
Hence by ψD(2, 0) = −2v∗(0), ψD(0, 2) = −2v(0), and the definition of the
v-divergence in Definition 1.60,

∫
ψD(t0, t1)μ(dt0, dt1) = −Iv(P0, P1). (4.31)

The following theorem establishes the relation between the minimal risk in
standard decision problems and v-divergences. It explains why v-divergences
are not only distances, but also characterize the informativeness of a model in
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the sense that it is harder to distinguish between distributions with smaller
distances than between those with larger distances. The theorem shows that
−Iv(P0, P1) is the minimal Bayes risk of a standard decision problem, where−v
is the lower envelope of the convex set that appears in the standard decision
problem. Thus we can say that each standard decision problem defines in an
inherent manner a special distance.

We recall bπ(P0, P1), the minimal Bayes risk for testing H0 : P0 versus
HA : P1 with prior (π, 1 − π) that was introduced in (1.82), and ρv, the
curvature measure in (1.84). The next theorem and its corollary show that
for binary models one model is already more informative than the other if it
is more informative than the other under all testing problems, which means
that for every 0 < π < 1 the minimum Bayes risk is not larger than the other
one.

Theorem 4.34. Let M = (X ,A, {P0, P1}) be a binary model with the stan-
dard distribution μ, and let D be a convex and compact subset of R

2. If ψD is
the lower envelope and v = −ψD(x, 1), then

inf
D

(R(0,D) + R(1,D)) = −Iv(P0, P1),

inf
D

(R(0,D) + R(1,D)) = ψD(1, 1)−
∫

Bπ(P0, P1)ρv(dπ), (4.32)

where Bπ(P0, P1) = π ∧ (1− π)− bπ(P0, P1).

Corollary 4.35. If M = (X ,A, {P0, P1}) and N = (Y,B, {Q0, Q1}) are two
binary models, then M # N holds if and only if bπ(P0, P1) ≤ bπ(Q0, Q1),
0 < π < 1.

Proof. The first statement follows from (4.31) and (4.29). The second
statement follows from the first statement and Theorem 1.68.

To prove the corollary, let M# N . Then bπ(P0, P1) ≤ bπ(Q0, Q1), 0 <
π < 1, by condition (B) in Theorem 4.14. Conversely, if the last inequality
holds, then by (4.30) and (4.32),

inf
DM

r(Π,DM) = ψDL,Π
(1, 1)−

∫
Bπ(P0, P1)ρv(dπ)

≤ ψDL,Π
(1, 1)−

∫
Bπ(Q0, Q1)ρv(dπ) = inf

DN
r(Π,DN ).

To complete the proof we have only to apply (B) from Theorem 4.14 for ε = 0.

4.3 Sufficiency in Dominated Models

In this section we introduce and discuss the classical concepts of sufficiency
and show how these concepts are related to the decision-theoretic concept of
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equivalence of models. Roughly speaking, it is shown that a model induced
by a sufficient statistic contains the same information as the original model
in the sense that the two models are equivalent. As dominated models play a
crucial role hereby their structure is studied in the first part of this section.

For any model (X ,A, (Pθ)θ∈Δ) we call

[(Pθ)θ∈Δ] = {P : P =
∑∞

j=1
cjPθj

, cj ≥ 0,
∑∞

j=1
cj = 1, θj ∈ Δ} (4.33)

the convex hull of (Pθ)θ∈Δ.
If the family (Pθ)θ∈Δ is separable, in the sense that there is an at most

countable family {P0, P1, ...} that is dense in (Pθ)θ∈Δ with respect to the
variational distance, then it is easy to see that for any positive numbers αi with∑∞

i=0 αi = 1 the distribution
∑∞

i=0 αiPi dominates the model. The general
case, where (Pθ)θ∈Δ is any dominated family, is covered by the following
famous lemma due to Halmos and Savage (1949).

Lemma 4.36. If (X ,A, (Pθ)θ∈Δ) is a model where the family (Pθ)θ∈Δ is dom-
inated by some μ ∈Mσ(A), then there exists a P ∈ [(Pθ)θ∈Δ] that dominates
the family (Pθ)θ∈Δ.

Proof. By Lemma 3.20 we may assume without loss of generality that the
dominating measure is a probability measure, say Q. For every P from the
convex hull [(Pθ)θ∈Δ] (see (4.33)) we set SP = {x : (dP/dQ)(x) > 0}. It holds
for any P1, P2 ∈ [(Pθ)θ∈Δ] and any 0 < α < 1,

Q(SαP1+(1−α)P2) = Q(SP1 ∪ SP2) ≥ max(Q(SP1), Q(SP2)). (4.34)

If Pn ∈ [(Pθ)θ∈Δ] is a sequence with

Q(SPn
) → sup

P∈[(Pθ)θ∈Δ]

Q(SP ) =: s,

and P =
∑∞

n=1 2−nPn, then Q(SP ) = s by (4.34). Hence for any P ∈
[(Pθ)θ∈Δ]

s ≥ Q(S(P+P )/2) = Q(SP ) +Q(SP \SP ) = s+Q(SP \SP ),

which implies Q(SP \SP ) = 0, and by P 
 Q also P (SP \SP ) = 0. This yields
for any A ∈ A,

P (A\SP ) = P ((A ∩ SP )\SP ) = 0. (4.35)

If A ∈ A and P (A) = 0, then P (A ∩ SP ) = 0. As the density of P is positive
on SP we get Q(A∩ SP ) = 0 and P (A∩ SP ) = 0 by P 
 Q. Hence by (4.35)

P (A) = P (A ∩ SP ) + P (A\SP ) = 0.

Now we introduce several types of sufficiency.
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Definition 4.37. Let (X ,A, (Pθ)θ∈Δ) be a model, (Y,B) a measurable space,
and T : X →m Y a statistic.
T is called sufficient for (Pθ)θ∈Δ if for every A ∈ A there is a function kA :
Y →m R such that

Eθ(IA|T ) = kA(T ), Pθ-a.s., θ ∈ Δ. (4.36)

T is called regular sufficient for (Pθ)θ∈Δ if there exists a stochastic kernel
M : A× Y →k [0, 1] such that

Eθ(IA|T ) = M(A|T ), Pθ-a.s., θ ∈ Δ, A ∈ A. (4.37)

T is called Blackwell sufficient for (Pθ)θ∈Δ if there exists a stochastic kernel
M : A× Y →k [0, 1] such that

Pθ = M(Pθ ◦ T−1), θ ∈ Δ.

T is called pairwise sufficient for (Pθ)θ∈Δ if T is sufficient for every binary
submodel {Pθ1 , Pθ2}, θ1, θ2 ∈ Δ.

A sub-σ-algebra G ⊆ A is called (regular, pairwise) sufficient for (Pθ)θ∈Δ if
(Y,B) = (X ,A) and the identical mapping T is (regular, pairwise) sufficient.

Historically, the independence of the conditional probabilities, given T , of
the parameter was the starting point of the concept of sufficiency. This goes
back to Fisher (1920, 1934) who considered a statistic T to be sufficient if the
conditional distribution of any other statistic S, given T = t, is independent
of the parameter, so that T contains the complete information. This means
that given T (x) = t, the additional information on which values x have led to
T (x) = t contains no additional information on the parameter.

The difference between sufficiency and pairwise sufficiency is that for
a pairwise sufficient statistic T the function kA(T ), defined by kA(T ) =
Eθ(IA|T ), depends on the particular pair θ1 and θ2. This difficulty disappears
in dominated models.

Problem 4.38.∗ If (X ,A, (Pθ)θ∈Δ) is dominated by some μ ∈ Mσ(A), then T :
X →m Y is sufficient for (Pθ)θ∈Δ if and only if T is pairwise sufficient for (Pθ)θ∈Δ.

Example 1.5.7 from Torgersen (1991), which follows below, shows that the
assumption of the family to be dominated is indispensable.

Example 4.39. Assume that A0 ⊆ A is a sub-σ-algebra that separates the distri-
butions in the family (Pθ)θ∈Δ in the sense that for every θ1, θ2 ∈ Δ with θ1 �= θ2

there exists a set B ∈ A0 such that Pθ1(B) = 1 and Pθ2(B) = 1. Then

∫
B

Eθ1(IA|A0)dPθ2 =

∫
B

Eθ2(IA|A0)dPθ1 = 0,

which shows that kA = Eθ1(IA|A0) + Eθ2(IA|A0) satisfies kA = Eθi(IA|A0), i = 1, 2.
Hence A0 is pairwise sufficient for (Pθ)θ∈Δ. The model ([0, 1],B[0,1], (δθ)θ∈[0,1]) is an



180 4 Comparison of Models, Reduction by Sufficiency

example for which the separation condition holds. This model cannot be dominated
by a σ-finite measure μ as the set of all points x with μ({x}) > 0 is at most countable.
Let A0 be the sub-σ-algebra of B[0,1] that consists of all sets A for which either A or
A is at most countable. A0 separates the model (δθ)θ∈[0,1] and is therefore pairwise
sufficient for (Pθ)θ∈Δ. However, A0 is not sufficient for (Pθ)θ∈Δ. Indeed, k[0,1/2] from
the definition of sufficiency would have to satisfy

k[0,1/2](θ) =

∫
{θ}

k[0,1/2](x)δθ(dx) = δθ({θ} ∩ [0, 1/2]) = I[0,1/2](θ),

which contradicts the requirement that k[0,1/2](θ) is A0-measurable.

The independence of the parameter of the conditional probability in the
definition of sufficiency extends easily to the conditional expectation of any
nonnegative random variable and thus also to any random variable with ex-
isting expectation.

Problem 4.40.∗ Suppose that S : X →m R+. If T is sufficient for (Pθ)θ∈Δ, then
there exists some kS : Y →m R such that Eθ(S|T ) = kS(T ), Pθ-a.s., θ ∈ Δ.

A simple fact is that one-to-one measurable mappings are sufficient.

Problem 4.41.∗ Suppose that T : X → Y is a one-to-one mapping of X onto Y
and that both, T and the inverse mapping U , are measurable. Then T is sufficient.

For discrete distributions the sufficiency of a statistic can often be verified
directly from the definition.

Problem 4.42. The statistic T : N
n → N, defined by T (k1, ..., kn) = k1 + · · ·+kn,

is sufficient for the family (Po⊗n(λ))λ>0.

It is an interesting fact, which is used on several occasions, that the suf-
ficiency of a statistic continues to hold if we turn to the convex hull of the
model.

Problem 4.43.∗ If T is sufficient for (Pθ)θ∈Δ, then T is also sufficient for [(Pθ)θ∈Δ].

Condition (4.37) is equivalent to

Pθ(A ∩ {T ∈ B}) =
∫
IB(T (x))M(A|T (x))Pθ(dx), A ∈ A, B ∈ B. (4.38)

It is easy to see that the set of all C ∈ A⊗B for which
∫
IC(x, T (x))Pθ(dx) =

∫
[
∫
IC(x, t)M(dx|t)](Pθ ◦ T−1)(dt) (4.39)

holds is a σ-algebra that contains, in view of (4.38), all sets A × B, A ∈ A,
B ∈ B. As these product sets generate A ⊗ B we see that (4.39) holds for
every C ∈ A⊗B. If X is a random variable with L(X) = Pθ, then (4.39) can
be written as
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L(X,T (X)) = M⊗ (Pθ ◦ T−1).

Turning to the marginal distribution we get Pθ = M(Pθ ◦ T−1) which is the
Blackwell sufficiency. Blackwell sufficiency, sometimes called exhaustivity, is
a condition that refers only to the marginal distribution, whereas sufficiency
and regular sufficiency refer to the joint distribution of X and T (X). Thus we
cannot expect that the Blackwell sufficiency implies the regular sufficiency in
general. However, under additional assumptions it is shown later that the two
concepts are equivalent.

For EQ(IA|σ(T )), the conditional probability of A, given the σ-algebra
σ(T ), under Q, an interesting question is if it can also be the conditional
probability under another distribution, say P . A sufficient condition on the
relation of P and Q for this to be true is given in the next problem.

Problem 4.44.∗ Let P and Q be distributions on (X ,A) with P � Q. If (Y,B) is
another measurable space, T : X →m Y a statistic, and dP/dQ is σ(T )-measurable,
then for every h : X →m R+

EP (h|σ(T )) = EQ(h|σ(T )), P -a.s.

Later on, in the proof of the factorization lemma, it is shown that cri-
teria for sufficiency of the binary submodels are essential. Thus, let us con-
sider a binary model M = (X ,A, {P0, P1}) and the reduced model N =
(Y,B, {Q0, Q1}) with Qi = Pi ◦ T−1, i = 0, 1, for some T : X →m Y. We set

P =
1
2
(P0 + P1), Q =

1
2
(Q0 +Q1), Li :=

dPi

dP
, Mi :=

dQi

dQ
, i = 0, 1.

Let D(P0, P1) be the Hellinger distance in (1.75) and bπ(P0, P1) from (1.82).

Theorem 4.45. Given M = (X ,A, {P0, P1}), a statistic T : X →m Y, and
N = (Y,B, {Q0, Q1}) with Qi = Pi ◦ T−1, i = 0, 1, the following statements
are equivalent.

(A) T is sufficient for {P0, P1}.
(B) EP (L0|T ) = L0, P -a.s.
(C) D(Q0, Q1) = D(P0, P1).
(D) bπ(Q0, Q1) = bπ(P0, P1), 0 < π < 1.

Corollary 4.46. If T is sufficient for {P0, P1}, then

Iv(Q0, Q1) = Iv(P0, P1) (4.40)

for every convex function v : (0,∞) → R. Conversely, if (4.40) holds for
one strictly convex function v : (0,∞) → R with Iv(P0, P1) < ∞, then T is
sufficient for {P0, P1}.

Corollary 4.47. If T is Blackwell sufficient for {P0, P1}, then T is sufficient
for {P0, P1}.
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Proof. The proof follows the scheme (A) → (D) → (C) → (B) → (A).
To show (A) → (D), let ϕB be a Bayes test for H0 : P0 versus HA : P1.
Then by Problem 4.40 there is a test ψ with ψ(T ) = EPi

(ϕB |T ), Pi-a.s. Hence
EPi◦T−1ψ = EPi

ϕB and bπ(Q0, Q1) ≤ bπ(P0, P1). The opposite inequality
is trivial as the set of the tests ϕ : X →m [0, 1] that are functions of T
is a subset of all tests. To establish (D) → (C), we set v(x) = (

√
x − 1)2.

Then D2(P0, P1) = Iv(P0, P1) and (C) follows from Theorem 1.68. (C) → (B)
follows from Proposition 1.75. Finally, (B) → (A) follows from Problem 4.44
with Q = P and the fact that L0 and L1 = 2− L0 are σ(T )-measurable.

Corollary 4.46 follows from Theorem 1.70 and condition (D). To prove
Corollary 4.47, we fix any strictly convex function v with Iv(P0, P1) <∞. For
example, we may choose v(x) = (

√
x− 1)2. A twofold application of Theorem

1.70 yields Iv(P0, P1) ≥ Iv(P0◦T−1, P1◦T−1) ≥ Iv(M(P0◦T−1),M(P1◦T−1)) =
Iv(P0, P1), so that the statement follows from Corollary 4.46.

Problem 4.48.∗ (X ,A, {P0, P1}) ∼ (Y,B, {Q0, Q1}) holds if and only if we have
gα(P0, P1) = gα(Q0, Q1), 0 < α < 1, where gα is the minimal probability of an error
of the second kind of a level α test; see (2.49).

Remark 4.49. The statement of Corollary 4.46 is an information-theoretic char-
acterization of sufficiency that presumably goes back to Csiszár (1963). For the
Hellinger distance this relation is condition (C) in Theorem 4.45 and can also be
found in LeCam (1986). The equivalence of conditions (A) and (D) in Theorem 4.45
is a testing-theoretic characterization of sufficiency which is due to Pfanzagl (1974),
where the equivalent condition in Problem 4.48 is used. For further references and
historical remarks we refer to Pfanzagl (1994) and Torgersen (1991). Sverdrup (1966)
is an exposition of the central ideas of classical papers on sufficiency.

Now we extend the above results for binary models to dominated models.
Here we utilize the statement in Problem 4.44 where the σ(T )-measurability
of the density has been used. It turns out that this condition works also for
dominated models, and is also a necessary condition. This is the content of
the famous factorization criterion for sufficiency due to Neyman (1935).

Theorem 4.50. (Neyman Criterion) In (X ,A, (Pθ)θ∈Δ), let (Pθ)θ∈Δ be
dominated by some μ ∈ Mσ(A), and fθ = dPθ/dμ, θ ∈ Δ. Then for any
statistic T : X →m Y the following holds. T is sufficient for (Pθ)θ∈Δ if and
only if there are functions gθ : Y →m R, θ ∈ Δ, and h : X →m R, such that

fθ = gθ(T )h, μ-a.e. (4.41)

Proof. Suppose that T is sufficient and P is from Lemma 4.36. Then
according to Problem 4.43 the statistic T is sufficient for {Pθ, 1

2 (Pθ + P )}.
Hence we get from (B) in Theorem 4.45 that dPθ/d( 1

2 (Pθ+P )) is a measurable
function of T. Then

dPθ

d( 1
2 (Pθ + P ))

=
2dPθ/dP

1 + dPθ/dP
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shows that dPθ/dP is a measurable function of T, say gθ(T ). Putting h =
dP/dμ we get (4.41). Conversely, if (4.41) is satisfied, then by Problem 4.44
EP (IA|T ) is a version of the conditional probability that is independent of the
parameter.

Example 4.51. Let X1, ..., Xn be an i.i.d. sample from a distribution that belongs
to an exponential family (Pθ)θ∈Δ in natural form with Δ ⊆ R

d and generating
statistic T : X →m R

d. Then L((X1, ..., Xn)) = P⊗n
θ , and by Proposition 1.4

dP⊗n
θ

dμ⊗n
= exp {〈θ, T⊕n〉 − nK(θ)} .

Consequently, by Theorem 4.50 the generating statistic T⊕n(x1, ..., xn) =
∑n

i=1 T (xi)
is sufficient for the family (P⊗n

θ )θ∈Δ.

In a finite model the likelihood carries the complete information.

Example 4.52. For every finite model (X ,A, {P1, ..., Pm}) the statistic M in
(4.11) is sufficient for {P1, ..., Pm}. This follows directly from the factorization cri-
terion Theorem 4.50.

If we turn from one statistic by a one-to-one bimeasurable mapping to
another statistic, then by Problem 4.41 the new statistic is again sufficient.
The next problem illustrates this for normal distributions.

Problem 4.53.∗ For a model there are in general several different sufficient statis-
tics available. Consider the model

(Rn,Bn, (N
⊗n(μ, σ2))μ∈R,σ2>0).

Let Xn = (1/n)
∑n

i=1 Xi and S2
n = (1/(n − 1))

∑n
i=1(Xi − Xn)2, where Xi :

R
n → R, i = 1, ..., k, are the projections on the coordinates. The statistics

(
∑n

i=1 Xi,
∑n

i=1 X2
i ) and (Xn, S

2
n) are both sufficient for (N⊗n(μ, σ2))μ∈R,σ2>0.

The next problem shows that there is a close relationship between the
concepts of a monotone likelihood ratio (MLR) and sufficiency.

Problem 4.54.∗ If M = (X ,A, (Pθ)θ∈Δ), Δ ⊆ R, is dominated by some μ ∈
Mσ(A) and has a monotone likelihood ratio in T : X →m R (see Definition 2.11),
then T is sufficient for (Pθ)θ∈Δ.

We have seen in Problem 4.41 that a one-to-one statistic is sufficient. For
dominated models we can say more.

Problem 4.55. Let (X ,A, (Pθ)θ∈Δ) be dominated by some μ ∈ Mσ(A), T :
X →m Y, and g : Y →m Y. If S = g(T ) is sufficient for (Pθ)θ∈Δ, then T is
sufficient for (Pθ)θ∈Δ as well.

In dominated models sufficiency can be characterized by the fact that the
distances between the distributions in the reduced model are the same as in
the original model.
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Problem 4.56.∗ Let (X ,A, (Pθ)θ∈Δ) be dominated by some μ ∈ Mσ(A), and let
T : X →m Y be a statistic. T is sufficient for (Pθ)θ∈Δ if and only if D(Pθ1 , Pθ2) =
D(Pθ1 ◦ T−1, Pθ2 ◦ T−1) for every θ1, θ2 ∈ Δ.

Problem 4.57.∗ Suppose that (X ,A, (Pθ)θ∈Δ), Δ ⊆ R
d, is a statistical model

which is L2-differentiable at θ0 ∈ Δ0 with Fisher information matrix I(θ0). Let
T : X →m Y be a statistic and IT (θ0) be the Fisher information matrix in the
family Qθ = Pθ ◦T−1, θ ∈ Δ; see Theorem 1.114. If T is sufficient for (Pθ)θ∈Δ, then
IT (θ0) = I(θ0).

By Corollary 4.47 Blackwell sufficiency implies pairwise sufficiency which
for dominated models is equivalent to sufficiency. Moreover, regular sufficiency
is stronger than sufficiency and Blackwell sufficiency. This leads to the follow-
ing relation between the different types of sufficiency.

Proposition 4.58. Let (X ,A, (Pθ)θ∈Δ) be dominated by some μ ∈ Mσ(A)
and (X ,A) be a Borel space. Then for a statistic T : X →m Y the conditions
pairwise sufficient, sufficient, Blackwell sufficient, and regular sufficient for
(Pθ)θ∈Δ are equivalent.

Proof. We have only to show that the sufficiency implies the regular suf-
ficiency. Let P be from Lemma 4.36 and M : A× Y →k [0, 1] be a stochastic
kernel such that P (A|σ(T )) = M(A|T ), P -a.s. By the factorization criterion
(see Theorem 4.50) the density dPθ/dP is σ(T )-measurable and therefore by
Problem 4.44 it holds Pθ(A|σ(T )) = M(A|T ), Pθ-a.s., which gives the regular
sufficiency.

Remark 4.59. If A is finite, then the model (X ,A, (Pθ)θ∈Δ) is readily dominated.

If A has the atoms A1, ..., An, then we may turn to the new finite sample space X̃ =
{{A1}, ..., {An}}. As every finite set is a Borel space we get from Proposition 4.58
that for a finite σ-algebra A the conditions pairwise sufficient, sufficient, Blackwell
sufficient, and regular sufficient are equivalent.

The concept of sufficiency is also meaningful in the Bayes framework. Let
(X ,A, (Pθ)θ∈Δ) be a given statistical model. We assume that the condition
(A3) in Section 1.2 is fulfilled so that (X,Θ) has the distribution P⊗Π.

Definition 4.60. T : X →m Y is called Bayes sufficient for (Pθ)θ∈Δ if for
every prior Π and every B ∈ BΔ there is a function bB : Y →m R+ such that

P(Θ ∈ B|X) = bB(T (X)), P-a.s.

The next proposition clarifies how Bayes sufficiency is related to the other
types of sufficiency. It is due to Blackwell and Ramamoorthi (1982); see also
Schervish (1995), Theorem 2.14.

Proposition 4.61. If (Δ,BΔ) is a Borel space, (Pθ)θ∈Δ satisfies (A3), and
T : X →m Y is regular sufficient for (Pθ)θ∈Δ, then T is Bayes sufficient for
(Pθ)θ∈Δ. Conversely, if (Δ,BΔ) is arbitrary but {θ} ∈ BΔ, θ ∈ Δ, (Pθ)θ∈Δ
is dominated by some μ ∈ Mσ(A), and T : X →m Y is Bayes sufficient for
(Pθ)θ∈Δ, then T is sufficient for (Pθ)θ∈Δ.
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Proof. If T is regular sufficient, then by the standard extension technique
we get from (4.39) that for every h : X × T →m R+,

∫
[
∫
h(x, T (y))M(dx|T (y))]Pθ(dy) =

∫
h(x, T (x))Pθ(dx). (4.42)

The family of distributions Qθ = Pθ ◦ T−1 is a stochastic kernel, say Q. As
(Δ,BΔ) is a Borel space we can find a stochastic kernel L such that

Qθ(dt)Π(dθ) = L(dθ|t)(QΠ)(dt). (4.43)

It follows from (4.42) that for every g : X ×Δ →m R+ and h(x, t) = g(x, θ)
for fixed θ ∫

g(x, θ)Pθ(dx) =
∫

[
∫
g(x, θ)M(dx|T (y))]Pθ(dy).

Integration with respect to θ yields
∫

[
∫
g(x, θ)Pθ(dx)]Π(dθ) =

∫
[
∫

[
∫
g(x, θ)M(dx|T (y))]Pθ(dy)]Π(dθ)

=
∫

[
∫

[
∫
g(x, θ)M(dx|t)]Qθ(dt)]Π(dθ)

=
∫

[
∫

[
∫
g(x, θ)M(dx|t)]L(dθ|t)](QΠ)(dt).

Hence with h(x, t) =
∫
g(x, θ)L(dθ|t) and (4.42),

∫
[
∫
g(x, θ)Pθ(dx)]Π(dθ) =

∫
[
∫

[
∫
h(x, T (y))M(dx|T (y))]Pθ̃(dy)]Π(dθ̃)

=
∫

[
∫
h(x, T (x))Pθ̃(dx)]Π(dθ̃) =

∫
[
∫

[
∫
g(x, θ)L(dθ|T (x))]Pθ̃(dx)]Π(dθ̃)

=
∫

[
∫
g(x, θ)L(dθ|T (x))](PΠ)(dx).

This means that P(Θ ∈ B|X = x) = L(B|T (x)), so that the Bayes sufficiency
is established.

Conversely suppose that T is Bayes sufficient. Choose the prior Π =
1
2 (δθ1 + δθ2) and put fθi

= 2dPθi
/d(Pθ1 + Pθ2). Then fθ1 + fθ2 = 2 and

P(Θ = θi|X = x) =
2fθi

(x)
fθ1(x) + fθ2(x)

= fθi
(x)

is a measurable function of T. From the factorization criterion in Theorem
4.50 we get that T is sufficient for {Pθ1 , Pθ2}. Hence T is pairwise sufficient
for (Pθ)θ∈Δ. The rest follows from Problem 4.38.

Now we study the case where T is sufficient, not necessarily regular suffi-
cient, and the model (X ,A, (Pθ)θ∈Δ) is dominated by some μ ∈ Mσ(A). We
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use the notations in Section 1.2, and take μ = P from Lemma 4.36 as the
dominating measure. Then gθ(T ) = dPθ/dP by Theorem 4.50. Suppose that
condition (A5) is satisfied for μ = P . If T : X →m Y is sufficient for (Pθ)θ∈Δ,
then we obtain the marginal and the posterior density, respectively,

m(x) = n(T (x)), n(t) =
∫
gθ(t)π(θ)τ (dθ),

π(θ|x) = ξ(θ|T (x)), ξ(θ|t) =
{
gθ(t)π(θ)/n(t) if n(t) > 0,
π(θ) if n(t) = 0,

with gθ in (4.41). Thus we have obtained the following result.

Proposition 4.62. If the model (X ,A, (Pθ)θ∈Δ) is dominated by some μ ∈
Mσ(A), T : X →m Y is sufficient for (Pθ)θ∈Δ, and gθ(t) is a measurable
function of (θ, t), then T is Bayes sufficient for (Pθ)θ∈Δ and

P(Θ ∈ B|X = x) =
∫
B

ξ(θ|T (x))τ (dθ), L(X|P)-a.s.

Example 4.63. Let (Pθ)θ∈Δ be a natural exponential family with dominating
measure μ and generating statistic T. We consider the model (Xn,A⊗n, (P⊗n

θ )θ∈Δ),
which by Proposition 1.4 is again a natural exponential family, but now with the
μ⊗n-density exp{〈θ, T⊕n〉−nK(θ)}. For (a, b) ∈ Υ , which was introduced in (1.36),
we use the conjugate prior with the τ -density πa,b = exp{〈b, θ〉 − aK(θ)− L(a, b)}.
From (1.43) in Lemma 1.35 we get that the posterior distribution of Θ, given X = x,
is

Πn,a,b(B|x) =

∫
B

πa+n,b+T⊕n(x)(θ)τ (dθ), x ∈ Xn, B ∈ BΔ.

Hence the posterior distribution depends on the data x only through the statistic
T⊕n(x). This is in accordance with the fact that T⊕n is sufficient; see Example 4.51.

The display below gives relations among different types of sufficiency.

Relations between types of sufficiency
Regular

sufficient
−→ Blackwell

sufficient

↘
↓ Sufficient ↓

↘
Bayes

sufficient
−→ Pairwise

sufficient

For further relations among different concepts of sufficiency under additional
assumptions on the model see Problem 4.38 and Propositions 4.58 and 4.61.

For an i.i.d. sample from a member of a family of distributions that are
equivalent to the Lebesgue measure on R the reduction by a one-dimensional
sufficient statistic works only for exponential families. This is a very important
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fact, as it clarifies the role of reduction by sufficiency as well as the role of
exponential families in statistical analysis. Following up on previous results by
Koopman (1936), Pitman (1936), Dynkin (1951), Borges and Pfanzagl (1963),
Brown (1964), Denny (1970), and Pfanzagl (1972), the next theorem, due
to Hipp (1974), establishes this fact for statistics that satisfy the following
condition. A statistic T : R

n →m R is called locally Lipschitz if for every
x ∈ R

n, there exists a c ≥ 0 and an open set U ⊆ R
n with x ∈ U such that

(T (y)− T (z))2 ≤ c
∑n

i=1(yi − zi)2 for all y, z ∈ U .

Theorem 4.64. Let (Pθ)θ∈Δ be a family of distributions on the Borel sets
of R, where each Pθ is equivalent to the Lebesgue measure on R. If for some
n ≥ 2 there exists a statistic T : R

n →m R that is sufficient for (P⊗n
θ )θ∈Δ

and locally Lipschitz, then (Pθ)θ∈Δ is a one-parameter exponential family.

An essential assumption in the last theorem is the equivalence of the dis-
tributions in the family (Pθ)θ∈Δ to the Lebesgue measure on R. This means
that examples for dominated families which have a one-dimensional sufficient
statistic but do not form an exponential family are those for which the sup-
ports of the distributions depend on the parameter. An example follows below;
see also Problem 2.56.

Example 4.65. The statistic Mn (x1, ..., xn) = max{x1, ..., xn} is sufficient for
(U⊗n(0, θ))θ>0. This follows from the fact that U⊗n(0, θ) has the Lebesgue density
θ−nI[0,θ] (Mn) so that Mn is a sufficient statistic by the Neyman criterion.

Now we study how the different concepts of sufficiency are related to the
decision-theoretically motivated concept of equivalence of models. Let the
model M = (X ,A, (Pθ)θ∈Δ) be given, (Y,B) be another measurable space,
and T : X →m Y. The reduced model N = (Y,B, (Qθ)θ∈Δ) with Qθ =
Pθ ◦ T−1, θ ∈ Δ, is a randomization and thus at most as informative as
M, i.e., N � M. If T is Blackwell sufficient, then we can find a kernel M :
A × Y →k [0, 1] such that Pθ = MQθ and thus M = MN . Consequently,
the two models M and N are mutual randomizations of each other and thus,
by Corollary 4.10, they are equivalent. Beyond this equivalence we have even
more. For every decision DM for the model M the decision DN := DMM for
the model N has the same risk function,

R(θ,DM) = R(θ,DN ), θ ∈ Δ,

which follows from the fact that for every θ ∈ Δ,

R(θ,DM) =
∫

[
∫
L(θ, a)DM(da|x)]Pθ(dx)

=
∫

[
∫
L(θ, a)DN (da|y)]Qθ(dy) = R(θ,DN ). (4.44)

An analogous statement holds if T is sufficient, the model is dominated, and
the decision space is a Borel space. The next theorem extends the results of
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Theorem 4.18 and relates the different types of sufficiency to the decision-
theoretically based concept of equivalence of models.

Theorem 4.66. Assume that either T is Blackwell sufficient or that the model
(X ,A, (Pθ)θ∈Δ) is dominated by some μ ∈Mσ(A), T : X →m Y is sufficient,
and (D,D) is a Borel space. Then for every decision D : D×X →k [0, 1] there
is a decision factorized by T which has the same risk function; i.e., there is a
decision C : D× Y →k [0, 1] such that

R(θ,D) = R(θ,C ◦ T ), θ ∈ Δ. (4.45)

Corollary 4.67. If T : X →m Y is a statistic, then the following holds. The
models M = (X ,A, (Pθ)θ∈Δ) and N = (Y,B, (Qθ)θ∈Δ) with Qθ = Pθ ◦ T−1,
θ ∈ Δ, are equivalent if and only if T is pairwise sufficient.

Proof. In Theorem 4.66 the statement under the first assumption follows
from (4.44) by setting C = DN . The statement under the second assumption
follows from Theorems 4.18 and 4.50.

To prove Corollary 4.67, suppose M and N are equivalent. Then for ev-
ery fixed θ1, θ2 ∈ Δ the models (X ,A, {Pθ1 , Pθ2}) and (Y,B, {Qθ1 , Qθ2}) are
also equivalent, and thus H1/2(Pθ1 , Pθ2) = H1/2(Qθ1 , Qθ2) by Theorem 4.25.
Theorem 4.45 provides that T is sufficient for {Pθ1 , Pθ2} so that T is pairwise
sufficient. Conversely, if T is pairwise sufficient, then it is sufficient for every
finite submodel (Pθ)θ∈�, see Problem 4.38. As (Pθ)θ∈� is dominated, and ev-
ery finite decision space is a Borel space, we get the stated equivalence from
R(θ,D) = R(θ,C� ◦ T ), θ ∈ �, and the definition of equivalence in Definition
4.9.

From (4.45) we see the decision theoretic difference between dominated
and undominated models. If we have a pairwise sufficient statistic T , then we
can find for every decision D and every finite set � ⊆ Δ a decision C� that
gives the same risk for θ ∈ �. In the dominated case we can put all these C�

together, i.e., find one universal C that satisfies (4.45).

Remark 4.68. (Reduction by Sufficiency) If either T is Blackwell sufficient
or the model M = (X ,A, (Pθ)θ∈Δ) is dominated, T is sufficient, and the decision
space is a Borel space, then by Theorem 4.66 we may restrict all risk considerations
to decisions that are factorized by T , i.e., that depend on x ∈ X only through T (x).
Following such a restriction is called a reduction by sufficiency.

4.4 Completeness, Ancillarity, and Minimal Sufficiency

On several occasions we have already been faced with the necessity of the fam-
ily (Pθ ◦ T−1)θ∈Δ being sufficiently large. This becomes an important issue
later on in Chapter 7 when we characterize uniformly best unbiased estima-
tors. However, we have to deal with it already in this section for studying the
interrelation of sufficiency and ancillarity. To give a precise formulation we
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introduce the concept of completeness which is due to Lehmann and Scheffé
(1947, 1950). Before, it has been used implicitly already in Scheffé (1943) and
Halmos (1946).

Definition 4.69. For any model (X ,A, (Pθ)θ∈Δ) a statistic T : X →m Y is
called (boundedly) complete if for every (bounded) h ∈

⋂
θ∈Δ L1(Pθ ◦ T−1)

with
∫
h(T )dPθ = 0 for every θ ∈ Δ it follows that h(T ) = 0, Pθ-a.s., for

every θ ∈ Δ. If T is complete, then we also say that the family (Pθ ◦T−1)θ∈Δ
is complete.

Remark 4.70. If g : Y →m S is one-to-one and the inverse mapping is also mea-
surable, then S = g(T ) is (boundedly) complete if and only if T is (boundedly)
complete.

It is clear that completeness implies boundedly completeness. An example
which shows that the converse statement is not true in general can be found
in Lehmann and Scheffé (1950). For recent results on this topic we refer to
Mattner (1993).

Roughly speaking the completeness of a family of distributions means that
it is sufficiently large. The next problem illustrates completeness in the dom-
inated case.

Problem 4.71. If (Pθ)θ∈Δ is dominated by μ ∈Mσ(A) and the set of finite linear
combinations of {dPθ/dμ : θ ∈ Δ} is dense in L1(μ), then (Pθ)θ∈Δ is complete.

For families of discrete distributions completeness can be often directly
verified.

Problem 4.72.∗ The family of distributions B(n, p), p ∈ (0, 1), on {0, 1, ..., n} is
complete.

The binomial distributions in the last problem are a special exponential
family. Now we show that the generating statistic of any exponential family
in natural form, in the sense of Definition 1.1, is complete. This fact, which
appeared first in Sverdrup (1953), was established explicitly in Lehmann and
Scheffé (1955).

Theorem 4.73. Let (X ,A, (Pθ)θ∈Δ) be a d-parameter exponential family in
natural form, with natural parameter θ ∈ Δ and generating statistic T : X →m

R
d, that satisfies conditions (A1) and (A2). If Δ0 is a subset of Δ so that

the interior Δ0
0 of Δ0 is nonempty, then for the model (X ,A, (Pθ)θ∈Δ0) the

statistic T is complete.

Proof. Suppose that h : R
d →m R satisfies Eθ|h(T )| <∞, and Eθh(T ) =

0, θ ∈ Δ0. Then with dμ1 = h+(T )dμ and dμ2 = h−(T )dμ it holds∫
exp{〈θ, T 〉 −K(θ)}dμ1 =

∫
exp{〈θ, T 〉 −K(θ)}dμ2

for every θ in some open rectangle. An application of Proposition 1.25 yields
μ1 = μ2, which implies h+(T ) = h−(T ), μ-a.e., which is equivalent to h(T ) =
0, μ-a.e., and thus we get h(T ) = 0, Pθ-a.s., as Pθ 
 μ.



190 4 Comparison of Models, Reduction by Sufficiency

Example 4.74. The model (Rd,Bd,N
⊗n(μ, σ2)μ∈R,σ2>0) is, according to Example

1.11, an exponential family with natural parameter θ = (μ/σ2,−1/σ2) ∈ R×(−∞, 0)
and generating statistic T⊕n(x1, ..., xn) = (

∑n
i=1 xi,

∑n
i=1 x2

i ). The latter is complete
according to Theorem 4.73. It should be noted that the statistic (Xn, S

2
n) is also

complete, which follows from Remark 4.70.

The next problem establishes the completeness of a family that is not an
exponential family.

Problem 4.75.∗ The family of uniform distributions U(0, θ), θ > 0, is complete.

Now we consider a type of statistic that plays a role opposite to that of a
sufficient statistic, in the sense that we cannot get any information about the
parameter if we observe only this statistic.

Definition 4.76. Given the model (X ,A, (Pθ)θ∈Δ) and a statistic V : X →m

V, V is called ancillary if Pθ ◦ V −1 is independent of θ for every θ ∈ Δ.

To discuss jointly the concepts of ancillarity and sufficiency let us consider
the following situation where (X ,A), (U ,U), and (V,V) are measurable spaces.
Suppose that U : X →m U and V : X →m V are statistics which carry the
complete information in the sense that there exists a mapping

ψ : U × V →m X with ψ(U(x), V (x)) = x, x ∈ X . (4.46)

The next theorem shows that for independent statistics U and V , whenever
V is ancillary, the ancillary component V can be cancelled and the remaining
component U is sufficient.

Theorem 4.77. Assume that there exists a mapping ψ that satisfies (4.46) for
two statistics U : X →m U and V : X →m V that are independent with respect
to Pθ for every θ ∈ Δ. If now V is ancillary, then U is regular sufficient.

Proof. Set Q = Pθ ◦ V −1, which by assumption is independent of θ ∈ Δ.
Introduce the stochastic kernel M by M (A|u) =

∫
IA(ψ(u, v))Q(dv), A ∈ A,

u ∈ U . Then for every A ∈ A and B ∈ U,
∫

M (A|u) IB (u) (Pθ ◦ U−1) (du)

=
∫
IB (u) [

∫
IA(ψ(u, v))Q(dv)](Pθ ◦ U−1) (du)

=
∫
IB (u) IA(ψ(u, v))(Pθ ◦ (U, V )−1) (du, dv) =

∫
IA (x) IB (U (x))Pθ (dx) .

Consequently Eθ(IA|U = u) = M (A|u) is independent of θ ∈ Δ which implies
the regular sufficiency.

The concept of ancillarity is somewhat subtle and deserves further expla-
nation. If Pθ ◦V −1 is independent of θ, then an observation of V only does not
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provide any information about the unknown parameter. However, this does
not mean that for any other statistic W : X →m W the observation (W,V )
contains the same information as W . Indeed, if W and V are not independent,
then V may contribute some information about the unknown parameter via
(W,V ). To illustrate this issue we use an example from Pfanzagl (1994). First,
a problem is given that serves as a preparation.

Problem 4.78.∗ Let Xi ∼ N(0, σ2
i ) for i = 1, 2, and L : R → R+ be symmetric and

strictly increasing on R+. If σ2
1 < σ2

2 and EL(X1) <∞, then EL(X1) < EL(X2).

Example 4.79. We consider the model M =
(
R

n,Bn, (N
⊗n(θ, a2θ2)

)
θ∈R

), where

a > 0 is fixed, with the statistics Xn and S2
n. Obviously, Xn/Sn is ancillary.

Let us focus on two types of estimators of θ. The first is Xn, and here we have
L(
√
n
(
Xn − θ

)
) = N(0, a2θ2). The other is the maximum likelihood estimator

(MLE) which is

Tn =
1

2a2
[4a2S2

n +
(
1 + 4a2) (Xn)2]1/2 −Xn.

Then by Pfanzagl (1994), p. 305, the distribution of
√
n (Tn − θ) converges to

N(0, a2θ2/(1+2a2)) as n→∞. Hence by Problem 4.78, for any symmetric function
L which is increasing, continuous, and bounded on R+ we have for all θ ∈ R and
sufficiently large n,

EθL
(√

n(Xn − θ)
)
> EθL

(√
n(Tn − θ)

)

which implies that
(
Xn, Xn/Sn

)
contains more information about θ than Xn alone.

Here, of course, Xn and Xn/Sn are not independent.

Problem 4.80.∗ Suppose that X = (X1, ..., Xn) ∼ N⊗n(μ, σ2). Then Xn and
V =

(
X1 −Xn, ..., Xn −Xn

)
are independent.

Example 4.81. For M =
(
R

n,Bn, (N
⊗n(μ, σ2))μ∈R

)
, where σ2 is known, we set

U(x1, ..., xn) = xn and V (x1, ..., xn) = (x1 − xn, ..., xn − xn) . For ψ (u, v1, ..., vn) =
(v1 + u, ..., vn + u) we have ψ (U, V1, ..., Vn) (x1, ..., xn) = (x1, ..., xn) . Since V is
ancillary and independent of U it follows that U is sufficient for (N⊗n(μ, σ2))μ∈R.

In Theorem 4.77 we have decomposed the observation in two independent
components U and V and have shown that ancillarity of V implies that U is
sufficient. The next theorem, due to Basu (1955, 1958), deals with the converse
direction as it shows that independence is necessary under weak additional
assumptions.

Theorem 4.82. Let (U ,U) and (V,V) be measurable spaces, U : X →m U
a sufficient statistic, and V : X →m V another arbitrary statistic. Then the
following hold.
(A) If (Pθ)θ∈Δ 
 Pθ0 for some θ0 ∈ Δ and U and V are independent with
respect to Pθ0 , then V is ancillary.
(B) If V is ancillary and

(
Pθ ◦ U−1

)
θ∈Δ is boundedly complete, then U and

V are independent with respect to Pθ for every θ ∈ Δ.
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Proof. First we prove (A). Using the function kA : U →m R that appears
in Definition 4.37, where T corresponds to U , we get∫

IB (U) IC (V ) dPθ =
∫
IB (U) kV −1(C) (U) dPθ, θ ∈ Δ, (4.47)

for B ∈ U and C ∈ V. The independence of U and V under Pθ0 yields

0 =
∫ [

Pθ0 (V ∈ C)− kV −1(C) (U)
]
IB (U) dPθ0 .

As B was arbitrary and Pθ 
 Pθ0 we get Pθ0 (V ∈ C) = kV −1(C) (U), Pθ-a.s.,
θ ∈ Δ. Hence by (4.47) with B = U ,

Pθ0 (V ∈ C) =
∫
kV −1(C) (U) dPθ = Pθ (V ∈ C) .

To prove (B), we fix θ1 ∈ Δ. Then by Pθ1 (V ∈ C) = Pθ (V ∈ C) and
(4.47) with B = U ,∫ [

Pθ1 (V ∈ C)− kV −1(C) (U)
]
dPθ = 0, θ ∈ Δ.

The boundedly completeness of
(
Pθ ◦ U−1

)
θ∈Δ yields

Pθ1 (V ∈ C) = kV −1(C) (U) , Pθ-a.s., θ ∈ Δ.

Hence by (4.47)

Pθ(U ∈ B, V ∈ C) =
∫
IB (U) IC (V ) dPθ =

∫
IB (U) kV −1(C) (U) dPθ

=
∫
IB (U)Pθ1 (V ∈ C) dPθ = Pθ (U ∈ B)Pθ (V ∈ C) .

Example 4.83. Let X1, ..., Xn be an i.i.d. sample from a gamma distribution
Ga(λ, β) with Lebesgue density gaλ,β (x) = I(0,∞) (x)βλΓ (λ)−1 xλ−1 exp{−βx},
λ, β > 0. We consider the statistics Xn and

Tn(X1, ..., Xn) = Xn

[∏n

i=1
Xi

]−n

.

Fix λ > 0. As {(Ga(λ, β))⊗n : β > 0} is an exponential family generated by Xn

we see that the statistic Xn is sufficient and complete for {(Ga(λ, β))⊗n : β > 0}.
The distribution of Tn does not depend on β. Hence Tn and Xn are stochastically
independent under (Ga(λ, β))⊗n for every λ, β > 0.

Example 4.84. Suppose that X = (X1, ..., Xn) ∼ N⊗n(μ, σ2). We consider the
statistics Xn and S2

n. S2
n is a measurable function of V =

(
X1 −Xn, ..., Xn −Xn

)
and thus by Problem 4.80 independent of Xn.

If σ2 > 0 is fixed, then Xn is a generating statistic for the exponential family
(N⊗n(μ, σ2))μ∈R and therefore complete. As S2

n is ancillary, by Theorem 4.82 Xn

and S2
n are independent, which provides an alternative proof to that in Problem

4.80.
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Obviously, the identical mapping is always a sufficient statistic, but it does
not provide any reduction of the data. For a given model there is usually more
than one sufficient statistic. The question arises as to whether there are suf-
ficient statistics that reduce the data by mapping multiple points into single
points, and if so, how far this reduction can be pushed without losing suffi-
ciency. Clearly, a sufficient statistic S reduces the data more than a sufficient
statistic T if S is a function of T , but T is not a function of S. In this case the
range of S is in a way smaller than the range of T . This leads to the concept
of a minimal sufficient statistic.

Definition 4.85. Given the model (X ,A, (Pθ)θ∈Δ) and a sufficient statistic
T : X →m Y, T is called minimal sufficient if for any other sufficient statistic
S that takes values in some (S,S) there exists a mapping h : S →m Y such
that T = h(S), Pθ-a.s., for every θ ∈ Δ.

Example 4.86. Given the model (X ,A, (Pθ)θ∈Δ), let R
Δ be the set of all mappings

ψ : Δ→ R and let Zθ, θ ∈ Δ, be the family of evaluation maps, i.e., Zθ(ψ) = ψ(θ).
Let B

⊗Δ be the σ-algebra of subsets of R
Δ generated by the evaluation maps.

Assume that the family P = (Pθ)θ∈Δ is dominated and take P from Lemma 4.36
as the dominating measure. Set fθ = dPθ/dP and introduce T : X → R

Δ by
T : x �→ (fθ(x))θ∈Δ. The sufficiency of T follows from Theorem 4.50. However, T
is even minimal sufficient. Indeed, if S : X →m S is a sufficient statistic, then by
Theorem 4.50 there are functions gθ : S →m R so that dPθ/dP = gθ(S), P-a.s.
Introduce h : S →m R

Δ by h(s) = (gθ(s))θ∈Δ. Then T = h(S) and therefore T is
minimal sufficient. If Δ = {1, ...,m}, then M in (4.11) is minimal sufficient.

Next a sufficient condition is given for a statistic to be minimal sufficient.

Theorem 4.87. Assume that the model (X ,A, (Pθ)θ∈Δ) is dominated and
(Y,B) is a Borel space. If T : X →m Y is sufficient and boundedly com-
plete, then T is minimal sufficient.

Proof. We follow Pfanzagl (1994). Suppose S : X →m S is any sufficient
statistic. Let the dominating measure be chosen to be P from Lemma 4.36.
Sufficiency of S implies that for every A ∈ A there exists a function kA :
S →m [0, 1] such that kA(S) = Eθ(IA|S), Pθ-a.s. for every θ ∈ Δ. Sufficiency
of T implies that there is a function lA such that lA(T ) = Eθ(kA(S)|T ), Pθ-a.s.
for every θ ∈ Δ. Hence for A = T−1(B), B ∈ B, it holds
∫
lT−1(B)(T )dPθ =

∫
IT−1(B)dPθ =

∫
IB(T )dPθ, Pθ-a.s. for every θ ∈ Δ.

Boundedly completeness of T yields lT−1(B)(T ) = IB(T ), Pθ-a.s. for every
θ ∈ Δ, and by the definition of kT−1(B)(S) and lT−1(B)(T ) we have

∫
IC(T )(IB(T )− kT−1(B)(S))dPθ

=
∫
IC(T )(lT−1(B)(T )− kT−1(B)(S))dPθ = 0, C ∈ B.
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As P is a convex linear combination of some distributions Pθ we get
∫
IC(T )[IB(T )− kT−1(B)(S)]dP = 0, C ∈ B,

∫
IB(T )[IB(T )− kT−1(B)(S)]dP = 0, and

∫
IB(T )kT−1(B)(S)dP = 0.

Hence by 0 ≤ kT−1(B)(S) ≤ 1,
∫
|IB(T )− kT−1(B)(S)|dP

≤
∫
IB(T )[IB(T )− kT−1(B)(S)]dP +

∫
IB(T )kT−1(B)(S)dP = 0,

and IB(T ) = kT−1(B)(S), P -a.s. This means that IB(T ) is P -a.s. identical with
some σ(S)-measurable function. It remains to show that there is a g : Y →m S
such that T = g(S), P -a.s. As the Borel space Y is Borel isomorphic to a Borel
set of [0, 1] this statement has to be proved only for a real-valued T. But then
the statement follows via a pointwise approximation by linear combinations
of indicator functions.

An application of the last theorem, in combination with Theorem 4.73, to
exponential families gives the following statement.

Proposition 4.88. Under the assumptions of Theorem 4.73 the generating
statistic T in an exponential family with natural parameter θ ∈ Δ is minimal
sufficient for the model (X ,A, (Pθ)θ∈Δ0).

4.5 Solutions to Selected Problems

Solution to Problem 4.6: The inequality |Z| ≤ |Y | + |X| shows that Z has

a finite second moment. Hence σ2
2 = V(X + Z) = σ2

1 + V(Z) ≥ σ2
1 . Denote

by ϕX , ϕX , ϕZ the characteristic functions of X,Y, Z. Then exp{itμ2 − 1
2
σ2

2t
2} =

exp{itμ1 − 1
2
σ2

1t
2}ϕZ(t), which proves L(Z) = N(μ2 − μ1, σ

2
2 − σ2

1). �

Solution to Problem 4.7: If Σ1 ! Σ2, then Σ2 −Σ1 is positive semidefinite and
N(μ,Σ2) = N(μ,Σ1) ∗ N(μ,Σ2 −Σ1). Conversely, there exists a nonsingular matrix
A such that ATΣ1A = I is the unit matrix and ATΣ2A = Λ is a diagonal matrix
with diagonal elements λ1 ≥ · · · ≥ λd ≥ 0; see Anderson (1984), p. 589. Hence
we may assume that Σ1 = I and Σ2 = Λ. Then N(μ,Σ1) =

⊗d
i=1 N(μi, 1) and

N(μ,Σ2) =
⊗d

i=1 N(μi, λi), μ ∈ R
d. Hence

Hs(N(0, Σ1),N(μ,Σ1) = exp{−s(1− s)
∑d

i=1
μ2

i }

≥ Hs(N(0, Σ2)N(μ,Σ2)) = exp{−s(1− s)
∑d

i=1
μ2

i /λi}.

As the μi are arbitrary it follows λi ≤ 1, i = 1, ..., d. �
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Solution to Problem 4.11: We have only to show that M is a randomization of

N . We extend S by setting S(y) = x0 if y /∈ B, where x0 is any fixed point. Fix

A ∈ A. Then for x0 /∈ A it holds {y : S(y) ∈ A} = {y : S(y) ∈ A} ∩ B ∈ B. If

x0 ∈ A, then {y : S(y) ∈ A} = ({y : S(y) ∈ A} ∩ B) ∪ B ∈ B so that S : Y → X is

measurable. As (Pθ ◦ T−1)(B) = 0 and T : X ←→ B we get (Pθ ◦ T−1) ◦ S−1 = Pθ.

Then Pθ = L(Pθ ◦ T−1) where L = δS . �

Solution to Problem 4.19: This follows from Lemma A.15. �

Solution to Problem 4.24: Let DM2,α be a decision for the finite decision space
D and the model M2,α. As M2 has the same sample space it is also a decision for
M2. Then by (C) in Theorem 4.14 there is a decision DM1 such that for j = 1, ...,m

∫
DM1({a}|x1)P1,j(dx1) =

∫
DM2,α({a}|x2)P2,j(dx2), and thus

∫
DM1({a}|x1)P 1(dx1) =

∫
DM2,α({a}|x2)P 2(dx2).

Taking the convex linear combination with weights 1−α and α we get for j = 1, ...,m

∫
DM1({a}|x1)P1,j,α(dx1) =

∫
DM2,α({a}|x2)P2,j,α(dx2).

Putting DM1,α = DM1 we see from (C) in Theorem 4.14 that M1,α  M2,α.

Interchanging the role of M1,α and M2,α we get the statement. �

Solution to Problem 4.30: The concavity is obvious. If t1 and t2 are fixed, then

inf
y∈D

〈y, t1〉 ≤ inf
y∈D

〈y, t2〉+ sup
y∈D

| 〈y, t1 − t2〉 | and

inf
y∈D

〈y, t2〉 ≤ inf
y∈D

〈y, t1〉+ sup
y∈D

| 〈y, t1 − t2〉 |.

The proof follows from

| 〈y, t1 − t2〉 | = |
m∑

i=1

yi(t1,i − t2,i)| ≤ ‖y‖u

m∑
i=1

|t1,i − t2,i|

≤ m ‖y‖u ‖t2 − t1‖u . �

Solution to Problem 4.38: We must show that pairwise sufficiency implies
sufficiency. Let P =

∑∞
j=1 cjPθj be from Lemma 4.36. Set fθ = dPθ/dP and

gθ = EP (fθ|T ). As EP IA(
∑∞

j=1 cjfθj ) = P (A) for every A ∈ A the function∑∞
j=1 cjfθj is a version of the density of P with respect to P . Hence

∑∞

j=1
cjfθj = 1 and

∑∞

j=1
cjgθj = 1, P -a.s. (4.48)

Denote by Qθ and Q the restrictions of Pθ and P on σ(T ). Then as in Problem 1.74
Qθ � Q and gθ = dQθ/dQ. Hence for every B ∈ σ(T ),
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EP (IBIAfθ) = Eθ(IBEθ(IA|T )) = EP (IBgθEθ(IA|T ))

for every A ∈ A, B ∈ σ(T ), which implies

EP (IAfθ|T ) = gθEθ(IA|T ), P -a.s. (4.49)

By the pairwise sufficiency, for every A ∈ A there are σ(T )-measurable functions
kA,θ,j : X →m R such that

kA,θ,j = Eθ(IA|T ), Pθ-a.s. and kA,θ,j = Eθj (IA|T ), Pθj -a.s. (4.50)

Set Aj = {gθj > 0}. Then Q(· ∩ Aj) ∼ Qθj (· ∩ Aj) and thus Qθ(· ∩ Aj) �
Qθj (· ∩ Aj). As the functions that appear in (4.50) are σ(T )-measurable we may
replace Pθ with Qθ and Pθj with Qθj . This together with Qθ(· ∩Aj)� Qθj (· ∩Aj)
yields

IAj Eθ(IA|T ) = IAj Eθj (IA|T ), Qθ-a.s., and

gθj Eθ(IA|T ) = gθj Eθj (IA|T ), Pθ-a.s.

By (4.48), (4.49), and (4.50),

EP (IA|T ) =
∑∞

j=1
cjEP (IAfθj |T ) =

∑∞

j=1
cjgθj Eθj (IA|T )

=
∑∞

j=1
cjgθj Eθ(IA|T ) = Eθ(IA|T ), Pθ-a.s.,

is a version of the conditional expectation that is independent of θ. �

Solution to Problem 4.40: Define kS(T ) =
∑n

i=1 cikAi for S =
∑n

i=1 ciIAi .

Approximate any nonnegative S by an increasing sequence of step functions Sn and

set for the nondecreasing sequence kSn kS = limn→∞ kSn . �

Solution to Problem 4.41: By assumption we find for every A ∈ A a set B ∈ B

with A = T−1(B). Then kA(T ) = IB(T ) is σ(T )-measurable, and for every C ∈ B

it holds that EθIAIC(T ) = Pθ(T ∈ B ∩ C) = EθkA(T )IC(T ). �

Solution to Problem 4.43: Fix A ∈ A and B ∈ A. Then∫
IA(x)IB(T (x))Pθj (dx) =

∫
kA(T (x))IB(T (x))Pθj (dx)

by (4.36) for every j. Multiplying this equation by cj and taking the sum we see

that kA(T ) is also a version of EP (IA|T ) where P=
∑∞

j=1 cjPθj . �

Solution to Problem 4.44: By assumption dP/dQ = g(T ) for some measurable
function g of T. Then for any fixed B ∈ B,
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∫
IB(T )EQ(h|σ(T ))dP

=

∫
IB(T )EQ(h|σ(T ))dP =

∫
EQ(IB(T )h|σ(T ))g(T )dQ

=

∫
EQ(IB(T )hg(T )|σ(T ))dQ =

∫
IB(T )g(T )hdQ

=

∫
IB(T )hdP. �

Solution to Problem 4.48: Use Theorem 2.62. �

Solution to Problem 4.53: The sufficiency of (
∑n

i=1 Xi,
∑n

i=1 X2
i ) follows from

Example 4.51. To prove the sufficiency of (Xn, S
2
n) use Problem 4.41. �

Solution to Problem 4.54: By the definition of MLR the likelihood ratio Lθ0,θ1

of Pθ1 with respect to Pθ0 is a function of T. Hence dPθi/d(
1
2
(Pθ0 + Pθ1)), i = 0, 1,

are also measurable functions of T. The factorization criterion yields the statement.

�

Solution to Problem 4.56: Combine Problem 4.38 with Theorem 4.45. �

Solution to Problem 4.57: Use Problem 4.56 and Lemma 1.106. �

Solution to Problem 4.72: Put p = η/(1 + η). Then

0 = (1 + η)−n
∑n

k=0
h(k)

(
n
k

)
ηk

for every 0 < η <∞, which implies h(k) = 0 for k = 0, 1, ..., n. �

Solution to Problem 4.75: Eθ|h| < ∞ and Eθh = 0 for every θ imply that

dμ+ = h+dλ and dμ− = h−dλ are locally finite measures that are identical on

[0, θ]. Hence μ+ ([a, b)) = μ− ([a, b)) for every 0 ≤ a < b < ∞ so that μ+ = μ−

by the uniqueness theorem for σ-finite measures. As the densities h+, h− are λ-a.e.

uniquely determined it follows that h = 0, λ-a.e., and thus U(0, θ)-a.s. �

Solution to Problem 4.78: It holds,

EL(Xi) = 2

∫ ∞

0

L(t)ϕ0,σ2
i
(t)dt = 2

∫ ∞

0

L(σis)ϕ0,1(s)ds, i = 1, 2.

Therefore,

EL(X2)− EL(X1) = 2

∫ ∞

0

[L(σ2s)− L(σ1s)]ϕ0,1(s)ds > 0,

as L is strictly increasing and σ2 > σ1. �

Solution to Problem 4.80:
(
X1 −Xn, ..., Xn −Xn, Xn

)
is a linear function of X

and thus again normal. The independence follows from cov(X1 −Xn, Xn) = 0. �
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Invariant Statistical Decision Models

5.1 Invariant Models and Invariant Statistics

In this section we study statistical models and decision problems that have
special invariance properties. By adopting the principle of invariance the
search for best decisions may then be restricted to the class of invariant de-
cisions. To introduce the concept of invariance, and to get results on optimal
invariant decisions, a suitable mathematical framework has to be established.

Given a set X we denote by SX the set of all one-to-one mappings u : X →
X of X onto X . With the composition (u◦v)(x) := u(v(x)) the set SX becomes
a group. This group is known as the symmetric group. The identical mapping
is the unit element in this group. For a measurable space (X ,A) we denote
by Sm,X ⊆ SX the set of all u ∈ SX for which u and the inverse mapping
u−1 are measurable with respect to the σ-algebra A. Such mappings are called
bimeasurable bijections. Instead of u ∈ Sm,X we also write u : X ↔m X .

Problem 5.1. If u ∈ SX and B ⊆ X , then the inverse image of a set is the image
of the set under the inverse mapping, i.e., {x : u(x) ∈ B} = {u−1(y) : y ∈ B}.
Moreover, for u ∈ Sm,X and A ∈ A it holds u(A) ∈ A.

For a given statistical model (X ,A, (Pθ)θ∈Δ) we study subgroups of Sm,X
that act on the sample space and leave the model unchanged. Often such sub-
groups are parametrized in a natural way by some parameter γ that belongs
to a multiplicative group G.

Definition 5.2. Let G be a group that satisfies (5.1) and let U = {uγ : γ ∈ G}
be a subgroup of Sm,X . We call U a group of measurable transformations if
γ �→ uγ is a homomorphism; that is, uγ1(uγ2(x)) = uγ1γ2(x) for γ1, γ2 ∈ G
and x ∈ X .

Often G is endowed with a σ-algebra G so that the following holds.

(γ1, γ2) �→ γ1γ2 is (G⊗G)-G measurable,
γ �→ γ−1 is G-G measurable. (5.1)

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 5, c© Springer Science+Business Media, LLC 2008



5.1 Invariant Models and Invariant Statistics 199

To average over γ we need uγ(x) to be a measurable function of (x, γ), i.e.,

(x, γ) �→ uγ(x), is (A⊗G)-A measurable. (5.2)

Groups of measurable transformations that act on statistical models are
not studied here in full generality. We rather consider only such groups G that
are either finite or Borel subsets of an Euclidean space R

m. In the latter case
the sample space X is also an Euclidean space, say X = R

n, and the group
of operations as well as (x, γ) �→ uγ(x) are seen to be continuous mappings.
The measurability conditions in (5.1) and (5.2) are then fulfilled if we use

G := BG = {B ∩ G : B ∈ Bm} and A = Bn. (5.3)

We also need the concept of an invariant measure. Let Aγ = {γ̃γ : γ̃ ∈ A},
γ ∈ G, A ∈ G. A measure μ on G is called right invariant if μ(Aγ) = μ(A),
γ ∈ G, A ∈ G. If the group is at most countable, then the counting measure is,
up to a factor, the only invariant measure, and especially there exists an in-
variant distribution, namely the uniform distribution, if and only if the group
is finite. More generally, right invariant measures exist on locally compact
groups and are uniquely determined up to a factor; see Nachbin (1976) or Wi-
jsman (1990). Such right invariant measures are called Haar measures. Right
invariant distributions exist only if the locally compact group is compact. The
special groups that are considered here have right invariant measures that are
absolutely continuous with respect to the Lebesgue measure, and the special
form of their densities can be verified directly without having recourse to the
general theory of Haar measures.

Now we collect some transformation groups that are used systematically in
the sequel. In each of the following cases the sample space is (X ,A) = (Rn,Bn)
and the set G can be considered as a Borel set of R

m for a suitable m. We use
G = BG from (5.3) as the σ-algebra of subsets of G.

G Combina-

tion Rule

Group Notation

(description)
uγ(x)

Right Invariant

Measure

Mr
n×n B1B2

Ugl
(general linear)

Bx 1
| det(B)|n λn2(dB)

Ld a1 + a2
Ut
(translation)

a+ x λn

On×n O1O2
Urot
(rotation)

Ox
Rn

see Problem 5.4

R⊕ a1 + a2
Ul
(location)

x+ a1 λ

R
+
• b1b2

Us
(scale)

bx 1
bλ(db)

Πk γ1 ◦ γ2
Uper
(permutation)

(xγ(1), ..., xγ(k)) λ(γ) = 1
k! , γ ∈ Πk

(5.4)
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where 1 = (1, ...,1)T and the following notations have been used.

R⊕n = R
n as additive group, especially R⊕ = R⊕1,

R
+
• = (0,∞) as multiplicative group,
Mr

n×n as multiplicative group of nonsingular n× n matrices,
On×n as multiplicative group of orthogonal n× n matrices,
Ld ⊆ R

n linear subspace as group of translations of R
n.

That all of these groups are groups of measurable transformations follows
from the obvious fact that the mappings that appear in (5.1) and (5.2) are
continuous and thus measurable. As to the statement on the right invariant
measure for the general linear group Ugl we refer to Wijsman (1990). The
statements for Ut and Ul follow directly from the translation invariance of the
Lebesgue measure. The statements for Us and Urot are settled with the next
two problems.

Problem 5.3. Consider the multiplicative group R
+
• of the positive numbers. Set

μ(B) :=
∫
t−1IB(t)λ(dt), B ∈ B+. Then μ(B) = μ(Bs), B ∈ B+, s > 0.

Problem 5.4.∗ Let Z1, ..., Zn be i.i.d. random (column) vectors with common dis-
tribution N(0, I). We apply the Gram–Schmidt procedure and arrange the obtained
vectors as column vectors in a matrix, say M. Then the distribution Rn of MT on
(G,G) is a right invariant distribution on the group of all orthogonal matrices; that
is, on the goup of all rotations.

The right invariance of a measure is equivalent to the following invariance
of integrals.

Problem 5.5. μ is right invariant if and only if for every g : G →m R+

∫
g(γγ−1

0 )μ(dγ) =

∫
g(γ)μ(dγ), γ0 ∈ G.

Often, two transformations from the above groups have to be applied one
after the other. To get again a transformation group one has to set up the
rule of combination in a suitable manner. Furthermore, when the product of
two groups from (5.4) is formed, where both have invariant measures that
are absolutely continuous with respect to the Lebesgue measure, an invariant
measure on the product space can be found by applying the transformation
rules for the Lebesgue measure.

Problem 5.6.∗ G = R⊕× R
+
• with

(α1, β1)# (α2, β2) = (α1 + β1α2, β1β2), (αi, βi) ∈ R⊕ × R
+
• ,

where # stands for the combination, is a group. Moreover,

Uls = {uα,β : uα,β(x1, ..., xn) = (βx1 + α, ..., βxn + α), (α, β) ∈ R⊕ × R
+
• }, (5.5)
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is a group of measurable transformations which is called the location-scale group.
The measure

μls(C) =

∫
[

∫
IC(α, β)

1

β
λ(dα)]λ(dβ)

is right invariant.

The following example is relevant for nonparametric statistical models.

Example 5.7. Let Fm be the set of all strictly monotone increasing and continuous
functions γ that map R onto R. Equipped with the composition of functions the set
Fm is a group. Introduce uγ : (Rn,Bn) ↔m (Rn,Bn) by

uγ(x1, ..., xn) = (γ(x1), ..., γ(xn)) . (5.6)

Then U = {uγ : γ ∈ Fm} is a group of measurable bijections.

The invariance of a statistical model is introduced next.

Definition 5.8. For a group of measurable transformations U = {uγ : γ ∈ G}
we call the statistical model (X ,A, (Pθ)θ∈Δ), and likewise the family (Pθ)θ∈Δ,
U-invariant if

Pϑ ◦ u−1
γ ∈ {Pθ : θ ∈ Δ}, ϑ ∈ Δ, γ ∈ G. (5.7)

Whenever it is clear which group U is involved we simply call them invariant.

Establishing invariance becomes a trivial task when the parametrized
model is generated by the application of a transformation group on one fixed
distribution.

Example 5.9. Let U = {uγ : γ ∈ G} ⊆ Sm,X be given, and a distribution P
on (X ,A) be fixed. Set Δ = G and (Pγ)γ∈G = (P ◦ u−1

γ )γ∈G . It is obvious that
M = (X ,A, (Pθ)θ∈Δ) is U-invariant. This model is called a group model. For the
special subgroups collected in (5.4) we obtain the following models for any fixed
P ∈ P(Bn).

Pl = (P ◦ u−1
α )uα∈Ul location model. (5.8)

Ps = (P ◦ u−1
β )uβ∈Us scale model. (5.9)

Pls = (P ◦ u−1
α,β)uα,β∈Uls location-scale model. (5.10)

Problem 5.10. Let G = R
n
⊕ ×Mr

n×n be the affine group with the rule of com-
bination (a1, B1) # (a2, B2) = (a1 + B1a2, B1B2). Then the invariant model that
is generated by the standard normal distribution N(0, I) is the set of all normal
distributions with nonsingular covariance matrices Σ, say Σ ∈Mr

s,n×n.

{N(0, I) ◦ u−1
γ : γ = (a,B) ∈ R

n
⊕ ×Mr

n×n} = {N(μ,Σ) : μ ∈ R
n, Σ ∈Mr

s,n×n}.

The next example is relevant for the k-sample problem.
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Example 5.11. Suppose that k experiments are performed where (X ,A) is the
common sample space. Then the sample space for all k observations is (X k,A⊗k).
Denote by Πk the group of all permutations γ of (1, ..., k) and define uγ : Xn →m Xn

by uγ(x1, ..., xk) = (xγ(1), ..., xγ(k)). Then

Uper = {uγ : γ ∈ Πk} (5.11)

is a group of measurable transformations. Moreover, for any family (Pθ)θ∈Δ the
model (X k,A⊗k, (

⊗k
j=1 Pθj )(θ1,...,θk)∈Δk) is an Uper-invariant statistical model.

Next we introduce the concept of an invariant statistic.

Definition 5.12. Let (X ,A) be a sample space, U = {uγ : γ ∈ G} a group of
measurable transformations of (X ,A), and (T ,T) another measurable space.
A statistic T : X →m T is called U-invariant if

T (uγ (x)) = T (x) , x ∈ X , γ ∈ G. (5.12)

Whenever it is clear which group U is involved we simply say that T is in-
variant. A subset A ⊆ X is called invariant if the indicator function IA is
invariant.

For every x ∈ X we call the set {uγ (x) : γ ∈ G} the orbit of x in X . Then
we can say that a statistic is invariant if and only if it is constant on every
orbit in X .

In the class of all U-invariant statistics the so-called maximal invariant
statistics are of special importance.

Definition 5.13. An invariant statistic T : X →m T is called maximal in-
variant if for every x, y ∈ X the equality T (x) = T (y) implies that there
exists some γ ∈ G with y = uγ (x).

Apparently, a maximal invariant statistic separates and thus identifies the
orbits in X .

Problem 5.14. A statistic T : X →m T is maximal invariant if and only if for
every t ∈ T the set {x : T (x) = t} is either empty or an orbit in X .

Problem 5.15.∗ The system I of all measurable and invariant subsets is a sub-σ-
algebra of A and is called the σ-algebra of invariant sets. Every invariant statistic
T : X →m T is measurable with respect to I.

Problem 5.16. If S : R
n →m R is equivariant with respect to Ul from (5.8)

in the sense that S (x1 + α, ..., xn + α) = α + S (x1, ..., xn), x ∈ R
n, α ∈ R,

then TS (x1, ..., xn) = (x1 − S (x1, ..., xn) , ..., xn − S (x1, ..., xn)) is maximal invari-
ant with respect to Ul. Especially for the equivariant statistic S (x1, ..., xn) = x1 we
get

TS (x1, ..., xn) = (0, x2 − x1, ..., xn − x1) .
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Problem 5.17. If S : (R �=0)
n →m R �=0 is equivariant with respect to Us from (5.4)

in the sense that S (βx1, ..., βxn) = βS (x1, ..., xn), x ∈ (R �=0)
n, β > 0, then each of

the two statistics,

TS (x1, ..., xn) =
1

S (x1, ..., xn)
(x1, ..., xn) , Ts (x1, ..., xn) =

1

|x1|
(x1, x2, ..., xn) ,

is maximal invariant with respect to Us in (5.9). Ts is a special version of TS .

Problem 5.18.∗ Set R
n
�= = {x : xi �= xj for i �= j, x ∈ R

n}. The statistics
Tls : R

n
�= →m {−1, 1} × R

n−1, defined by

Tls (x1, ..., xn) = (sgn(x2 − x1),
x3 − x1

x2 − x1
, ...,

xn − x1

x2 − x1
), (5.13)

is maximal invariant with respect to Uls in (5.10).

Example 5.19. We reconsider the group Fm of Example 5.7 along with the
transformations uγ : R

n
�= ↔m R

n
�= from (5.6). Let Pc = {P : P ∈ P(B),

P ({x}) = 0, x ∈ R} be the set of all atomless distributions on the Borel
sets B of R. Then P⊗n(Rn

�=) = 1 for P ∈ Pc, and the nonparametric model
Mnp =

(
R

n
�=,Bn,�=, (P⊗n)P∈Pc

)
is invariant with respect to U = {uγ : γ ∈ Fm}. Let

R = (R1, ..., Rn) be the vector of ranks (see Example 4.1) which is here a random
permutation of (1, ..., n). The corresponding inverse permutation S = (S1, ..., Sn) is
called the vector of antiranks. Both vectors, R and S, are obviously Fm-invariant.
To see that they are even maximal invariant it suffices to consider the antiranks.
If S (x1, ..., xn) = S (y1, ..., yn) = (s1, ..., sn), say, then by the definition of the anti-
ranks xs1 < · · · < xsn and ys1 < · · · < ysn . Let γ be a strictly increasing piecewise
linear function with γ (xsi) = ysi , i = 1, ..., n. Then (γ (x1) , ..., γ (xn)) = (y1, ..., yn)
proves that S is maximal invariant.

It is clear that every function of an invariant statistic is again an invariant
statistic. A maximal invariant statistic T is maximal in the sense that every
invariant statistic S is a function of T .

Proposition 5.20. Let (T ,T) and (S,S) be measurable spaces. If T : X →m

T is maximal invariant and S : X →m S is invariant, then there exists a
function h : T → S with S = h (T ).

Proof. For t ∈ T (X ) we choose any x ∈ T−1 ({t}) and set h (t) = S (x) .
Due to the maximal invariance of T and the invariance of S the definition of
h (t) is independent of the actual choice of x. To complete the proof we have
only to fix any y0 ∈ S and to define h (t) = y0 for t ∈ T \T (X ) .

Although Proposition 5.20 clarifies the concept of maximal invariance it
leaves the question open as to whether h is measurable. In the subsequent
models such a measurable representation is given directly. Therefore we do
not formulate general conditions that guarantee that such a measurable choice
of h is possible. We only give a simple but useful sufficient condition for the
measurability of h.

Problem 5.21.∗ Suppose that T : X →m T is maximal invariant and S : X →m S
is invariant. If (S,S) is a Borel space and T generates the σ-algebra I of invariant
sets, then there exists a function h : T →m S with S = h (T ).
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5.2 Invariant Decision Problems

From now on we assume that in the statistical model (X ,A, (Pθ)θ∈Δ) the
parameter θ ∈ Δ is identifiable, which means that

Pθ1 = Pθ2 implies θ1 = θ2, θ1, θ2 ∈ Δ. (5.14)

Suppose that the model is invariant under a group of measurable transforma-
tions U = {uγ : γ ∈ G} ⊆ Sm,X . Then we see that for every θ ∈ Δ and γ ∈ G
there is a uniquely determined, say, vγ(θ) ∈ Δ, such that

Pθ ◦ u−1
γ = Pvγ(θ). (5.15)

Problem 5.22. V = {vγ : γ ∈ G} is a subgroup of SΔ, i.e., vγ : Δ → Δ is
one-to-one and it holds vγ1(vγ2(θ)) = vγ1γ2(θ) for every θ ∈ Δ and every γ1, γ2 ∈ G.

The group V = {vγ : γ ∈ G} is called the induced group. A simple conse-
quence is that the distribution of an invariant statistic is also invariant in the
following sense.

Problem 5.23.∗ If (5.12) and (5.15) are satisfied, then Pθ ◦ T−1 = Pvγ(θ) ◦ T−1

for every θ ∈ Δ and γ ∈ G.

The following transformation rule follows by the standard extension tech-
nique via linear combinations of indicator functions and monotone increasing
approximating sequences of nonnegative measurable functions.

Problem 5.24. The condition (5.15) is equivalent to

∫
g(x)Pvγ(θ)(dx) =

∫
g(uγ(x))Pθ(dx), g : X →m R+, γ ∈ G. (5.16)

Suppose now that in addition a decision space (D,D) and a loss function
L(θ, ·) : D →m R are given. The loss function L is called invariant if there is
a subgroup W = {wγ : γ ∈ G} ⊆ Sm,D such that

L(θ, a) = L(vγ(θ), wγ (a)), θ ∈ Δ, a ∈ D, γ ∈ G. (5.17)

Definition 5.25. Given a statistical model (X ,A, (Pθ)θ∈Δ), a decision space
(D,D), and a loss function L, the decision problem is called invariant if the
family (Pθ)θ∈Δ of distributions is invariant in the sense of (5.7), the parameter
θ ∈ Δ is identifiable (i.e., (5.14) is fulfilled), and the loss function L satisfies
(5.17).

For an invariant decision problem the group W = {wγ : γ ∈ G} ⊆ Sm,D
comes into consideration via the invariant loss function. Sometimes, however,
the transformation groupW is given directly. Independently of how the group
W has been constructed we define invariant decisions in the following way.
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Definition 5.26. Given an invariant decision problem and a group of mea-
surable transformations W = {wγ : γ ∈ G} ⊆ Sm,D we call a decision D ∈ D

invariant if

D (A|x) = D (wγ(A)|uγ(x)) , A ∈ D, x ∈ X , γ ∈ G. (5.18)

The subclass of all decisions from D that are invariant is denoted by Dinv. A
uniformly best invariant decision is a decision in Dinv that is uniformly best
in Dinv.

If D ∈ D is a nonrandomized decision, then it has the representation
D (A|x) = δd(x)(A) for some d : X →m D. In this case D is invariant if and
only if

δd(x)(A) = δd(uγ(x))(wγ(A))

holds for every A ∈ D, x ∈ X , and γ ∈ G. If now {a} ∈ D for every a ∈ D,
then the invariance of a nonrandomized decision D is equivalent with the fact
that the associated d : X →m D is equivariant in the following sense.

d(uγ(x)) = wγ(d(x)), x ∈ X , γ ∈ G. (5.19)

The following is a transformation rule for integrals under an application
of G.

Lemma 5.27. If (5.15) and (5.18) hold, then for every θ ∈ Δ, γ ∈ G, and
L(θ, ·) : D →m R,
∫

[
∫
L (vγ(θ), a) D(da|x)]Pvγ(θ)(dx) =

∫
[
∫
L (vγ(θ), wγ(a))D(da|x)]Pθ(dx).

If in addition (5.17) is satisfied, then

R (θ,D) = R (vγ(θ),D) , θ ∈ Δ, γ ∈ G. (5.20)

Proof. As L (θ, a) is lower bounded for fixed θ we may assume that L is
nonnegative. Replace wγ(A) in (5.18) with wγ(wγ−1(B)) to see that

D (B|uγ(x)) = D(wγ−1(B)|x) =
∫
IB(wγ(a))D (da|x) .

Applying the standard extension technique via linear combinations of indica-
tor functions and monotone increasing approximating sequences the invariance
of D implies

∫
h(a)D (da|uγ(x)) =

∫
h(wγ(a))D (da|x) , h : X →m R+.

Combined with (5.16) this yields
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∫
[
∫
L (vγ(θ), wγ(a)) D(da|x)]Pθ(dx) =

∫
[
∫
L (vγ(θ), a) D(da|uγ(x))]Pθ(dx)

=
∫

[
∫
L (vγ(θ), a) D(da|x))]Pvγ(θ)(dx).

The second statement of the lemma is obvious.
For every θ ∈ Δ we call the set {vγ(θ) : γ ∈ G} the orbit of θ in Δ. Then

we can say that for an invariant decision problem the risk function of any
invariant decision is constant on every orbit of Δ.

Let us consider invariant tests for the model (X ,A, (Pθ)θ∈Δ) and the test-
ing problem H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA from (2.12). The decision space
is (D,D) = ({0, 1},P ({0, 1})). Only the identical mapping of the decision
space makes sense here and thus the transformation group W becomes triv-
ial. Let L be the zero–one loss function L (θ, a) = aIΔ0(θ) + (1 − a)IΔA

(θ),
θ ∈ Δ, a = 0, 1. The invariance requirement (5.17) imposed on L means
L (θ, a) = L (vγ (θ) , a), θ ∈ Δ, a ∈ {0, 1}, γ ∈ G, which implies that

vγ (Δ0) = Δ0, vγ (ΔA) = ΔA, γ ∈ G. (5.21)

For an invariant model (X ,A, (Pθ)θ∈Δ) we call the testing problem H0 : θ ∈ Δ0

versus HA : θ ∈ ΔA under the zero–one loss function invariant if (5.21) holds.
Because of wγ (0) = 0 and wγ (1) = 1 a decision

D (A|x) = ϕ (x) δ1 (A) + (1− ϕ (x)) δ0 (A) , x ∈ X , A ∈ D,

is invariant, i.e., satisfies (5.18), if and only if the test ϕ(x) = D ({1}|x) is
invariant in the sense that

ϕ (uγ (x)) = ϕ (x) , x ∈ X , γ ∈ G. (5.22)

Such tests are called invariant tests. Some examples for invariant models and
invariant decision problems follow.

Example 5.28. Consider the model

(Rn,Bn, (P ◦ u−1
θ )θ∈R),

where x = (x1, ..., xn), 1 = (1, ..., 1), and uθ(x) = x+θ1, which is the location model
with the family Pl in (5.8) that has the parent distribution P ∈ P(Bn). Denote by
(X1, ..., Xn) the projections on the coordinates. The parameter θ is identifiable and
the associated group V = {vγ : γ ∈ R⊕} from (5.15) is given by vγ (θ) = θ + γ.
If we want to estimate the unknown location parameter θ the decision space is
(D,D) = (R,B). For l : R →m R+ we introduce the loss function by L(θ, a) =
l(a − θ). Taking W = V we see that the decision problem of estimating θ ∈ R

is invariant. For any estimator T : R
n →m R the equivariance (5.19) means that

T (x1 +α, ..., xn +α) = α+T (x1, ..., xn). Every such estimator provides an invariant
decision in the sense of Definition 5.26. Examples of equivariant estimators are
Xn = (1/n)

∑n
i=1 Xi, ∧n

i=1Xi, and ∨n
i=1Xi.
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Problem 5.29. (1/n)
∑n

i=1 Xi, ∧n
i=1Xi, and ∨n

i=1Xi are equivariant in the scale
model (5.9).

The next example is a combination of the last two cases.

Example 5.30. Consider the model

(Rn,Bn, (P ◦ u−1
θ )θ∈R),

where x = (x1, ..., xn), 1 = (1, ..., 1), and uθ(x) = βx+α1, which is the multivariate
location-scale model that has the parent distribution P ∈ P(Bn). The parameter
θ = (α, β) is identifiable unless P = δ0 a.s., which we assume to be excluded. An
example for an equivariant estimator of θ = (α, β) is

(
Xn, Sn

)
.

Example 5.31. Consider the group of measurable transformations Urot in (5.4)
such that uO : R

n ↔m R
n is defined by uO(x) = Ox, O ∈ On×n. As the normal

distribution N(μ, I), μ ∈ R, satisfies N(μ, I) ◦ u−1
O = N(Oμ, I) we see that the model

(Rn,Bn, (N(μ, I))μ∈Rn)

is On×n-invariant. The testing problem H0 : μ = 0 versus HA : μ �= 0 is invariant
in the sense of (5.21). An intuitively appealing test is based on the Urot-invariant
statistic χ2(x) =

∑n
i=1 x2

i and given by ϕ(x) = I(c,∞)(χ
2(x)), x ∈ R

n. This test is
obviously invariant in the sense of (5.22). Later on in Theorem 5.33 we show that
for a proper choice of c this test is a uniformly best level α test for H0 : μ = 0 versus
HA : μ �= 0 in the class of all rotation invariant level α tests.

Now we look at a typical selection problem.

Example 5.32. According to Definition 3.8 for the model

(X k,A⊗k, (
⊗k

i=1 Pθi)(θ1,...,θk)∈Δk)

every ϕ = (ϕ1, ..., ϕk) : Xk
i=1Xi →m Sc

k is called a point selection rule, and the
associated decision is given by

D(A|x) =
∑k

i=1
ϕi (x) δi(A), A ⊆ D = {1, ..., k}.

This is a special case of the model in (3.10). It is permutation invariant, i.e., Uper-
invariant, where Uper is defined in (5.11). By assumption the parameter θ is iden-
tifiable in the family (Pθ)θ∈Δ and thus the transformation group V is given by
vγ (θ1, ..., θk) = (θγ(1), ..., θγ(k)), γ ∈ Πk. Let κ : Δ→ R be a functional and suppose
that we want to select a population which is associated with the largest value of
κ(θ1), ..., κ(θk). Denote by γ−1 the inverse of permutation γ ∈ Πk and introduce the
group W = {wγ : γ ∈ Πk} by wγ (a) = γ−1 (a), a ∈ D. As

D(wγ (A) |uγ(x)) =
∑k

i=1
ϕi (uγ(x)) δi(γ

−1 (A)),

a decision D is invariant in the sense of (5.18) if and only if

ϕi

(
xγ(1), ..., xγ(k)

)
= ϕγ(i) (x1, ..., xk) , x ∈ X k, γ ∈ Πk, i = 1, ..., k.
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After a permutation γ of the k populations any particular population i now appears
in (Pθγ(1) , ..., Pθγ(k)) at position γ−1(i). Let now S : X k →m R

k be an estimator of
(κ(θ1), ..., κ(θk)). We call

ϕnat
S = (ϕnat

S,1 , ..., ϕ
nat
S,k ) with ϕnat

S,i (x) =
1

|M(S(x))|IM(S(x)) (i) , i = 1, ..., k,

and M(S(x)) = {i : Si(x) = max1≤j≤k Sj(x)}, the natural selection rule based on
S. Obviously, ϕnat

S is invariant in the sense of Definition 5.25. Especially, if the
components S1, ..., Sk are all different, then ϕnat

S selects the population which is
associated with the largest value of S1, ..., Sk.

We return to the topic of invariant tests. Let T : X →m T , be an invariant
statistic that generates the σ-algebra I. Then every invariant test is a function
of T , see Problem 5.21. This means that in the search for an optimal invariant
test we may switch to the reduced model

(T ,T, (Pθ ◦ T−1)θ∈Δ). (5.23)

Quite often this model has additional useful properties, such as monotone
likelihood ratio, which facilitates the search for optimal tests. A switch to the
model (5.23), which may also be made in any other invariant decision problem,
is called reduction by invariance. Often one can find an optimal decision for the
smaller model (5.23). By representing any invariant decision for the original
model (X ,A, (Pθ)θ∈Δ) as a function of the maximal invariant statistic T we
can find an optimal invariant decision for the model (X ,A, (Pθ)θ∈Δ). The
following testing problem illustrates this approach.

Suppose we want to test H0 : μ = 0 versus HA : μ �= 0 in the statistical
model

M = (Rn,Bn, (N(μ, I))μ∈Rn), (5.24)

which obviously is rotation invariant. Using the invariant statistic χ2(x) =
‖x‖2 we switch to the reduced model

(R+,B+, (N(μ, I) ◦ (χ2)−1)μ∈Rn), (5.25)

where N(μ, I) ◦ (χ2)−1 = H(n, δ2(μ)), the χ2-distribution with n degrees of
freedom and noncentrality parameter δ2(μ) =

∑n
i=1 μ

2
i . Denote by Sr = {x :

‖x‖ = r} the sphere with radius r ≥ 0 and fix a unit vector e0. If the test ϕ
is rotation invariant, then ϕ is constant on Sr. Hence

ϕ(x) = h(‖x‖), where h(r) = ϕ(re0), x �= 0. (5.26)

Theorem 5.33. For the model M in (5.24) and δ20 ≥ 0 the χ2-test

ϕχ2,α(x) = I(χ2
1−α,n,∞)(χ

2(x))

is a uniformly best invariant level α test for H0 : δ2(μ) = 0 versus HA :
δ2(μ) > δ20; that is,



5.2 Invariant Decision Problems 209

Eμϕχ2,α ≥ Eμϕ, δ2(μ) > δ20 ,

holds for every test ϕ that satisfies E0ϕ ≤ α and ϕ(Ox) = ϕ(x), x ∈ R
n, for

every orthogonal matrix O.

Proof. We know from Theorem 2.27 that the family (H(n, δ2))δ2>0 has
a nondecreasing likelihood ratio in the identity. Hence we get from Theorem
2.49 that ψα(t) = I(χ2

1−α,n,∞)(t) is a uniformly best level α test for H0 : δ2 = 0
versus HA : δ2 > 0 in the reduced model (5.25). Hence ψα is also a uniformly
best level α test for H0 : δ2 = 0 versus HA : δ2 > δ20 . As any rotation invariant
test ϕ can in view of (5.26) be represented as a measurable function of χ2(x)
we get the statement.

That the χ2-test in the last theorem is also a maximin test for H0 : δ2(μ) =
0 versus HA,δ20

: δ2(μ) > δ20 for every fixed δ20 > 0 is shown in Theorem 5.43.
Now we consider a decision problem where permutation, reflection, and

location invariance are natural requirements. Suppose we have independent
samples of common size n from three normal populations N(μ1, σ

2), N(μ2, σ
2),

N(μ, σ2), where μ1, μ2, μ ∈ R are unknown and σ2 > 0 is known. By a re-
duction by sufficiency (see Remark 4.68) we may assume that n = 1. Let
X1,X2,X be the respective observations. We consider the following classifi-
cation problem. Let it be known that μ ∈ {μ1, μ2} holds, and suppose we want
to decide whether μ = μ1 or μ = μ2 is true. The statistical model is a special
case of (3.16),

(R3,B3, (Pθ)θ∈Δ), where (5.27)
Pθ = N(μ1, σ

2)⊗ N(μ2, σ
2)⊗ N(μ, σ2),

Δ = {θ : θ = (μ1, μ2, μ), (μ1, μ2) ∈ R
2, μ ∈ {μ1, μ2}},

and the decision space is D = {1, 2}. It is clear that every decision D, called
a classification rule here, may be written as

D(A|x1, x2, y) = ϕ(x1, x2, y)δ1(A) + [1− ϕ(x1, x2, y)]δ2(A), A ⊆ D,

where ϕ : R
3 →m [0, 1] is a test and ϕ(x1, x2, y) is the probability of deciding

in favor of μ = μ1 after (x1, x2, y) ∈ R
3 has been observed. We adopt the

zero–one loss function

L((μ1, μ2, μ), a) = I{(μ1,2)}(μ, a) + I{(μ2,1)}(μ, a). (5.28)

The risk R(θ, ϕ) := R(θ,D), θ = (μ1, μ2, μ) ∈ Δ, is given by

R((μ1, μ2, μ), ϕ) (5.29)

=
∫

(ϕ(x1, x2, y)I{μ2}(μ) + [1− ϕ(x1, x2, y)]I{μ1}(μ))Pθ(dx1, dx2, dy).

Set G = {1, 2, 3, 4}×R and consider the set of transformations u(i,b) :→ R
3,

(i, b) ∈ G, defined by
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u(1,b)(x1, x2, y) = (x1 + b, x2 + b, y + b),

u(2,b)(x1, x2, y) = (−x1 + b,−x2 + b,−y + b),

u(3,b)(x1, x2, y) = (x2 + b, x1 + b, y + b),

u(4,b)(x1, x2, y) = (−x2 + b,−x1 + b,−y + b).

(5.30)

It is clear that a suitable multiplication can be introduced in G so that uγ1 ◦
uγ2 = uγ1γ2 holds. For example, (1, b1)(2, b2) = (2, b2 − b1). We do not need
the explicit structure of the multiplication in the sequel. The induced group
on the parameter set then consists of the four families of transformations
v(i,b)(μ1, μ2, μ) = u(i,b)(μ1, μ2, μ), i = 1, ..., 4, with common parameter b ∈ R.
Finally we introduce the family of transformations on the decision space by
w(1,b)(1) = w(2,b)(1) = 1, w(1,b)(2) = w(2,b)(2) = 2, w(3,b)(1) = w(4,b)(1) = 2,
w(3,b)(2) = w(4,b)(2) = 1. Then with the loss function from (5.28) we get an
invariant decision problem.

Problem 5.34. A classification rule ϕ(x1, x2, y) is invariant if and only there is
some ψ : R

2 →m [0, 1] such that

ϕ(x1, x2, y) = ψ(x1 − y, x2 − y), (5.31)

ψ(t1, t2) = ψ(−t1,−t2), and ψ(t1, t2) = 1− ψ(t2, t1).

The following theorem is due to Kudo (1959).

Theorem 5.35. In the above invariant decision problem for model (5.27) and
loss function (5.28) the classification rule

ϕ0(x1, x2, y) =
{

1 if |x1 − y| ≤ |x2 − y|,
0 if |x1 − y| > |x2 − y|,

is a uniformly best rule in the class of all classification rules that are invariant
under the group of transformations given by (5.30).

Proof. We use (5.29) to get

R((μ1, μ2, μ2), ϕ) = Eϕ(X1,X2,X), if X ∼ N(μ2, σ
2),

R((μ1, μ2, μ1), ϕ) = E(1− ϕ(X1,X2,X)), if X ∼ N(μ1, σ
2).

We know from (5.20) that the risk of an invariant classification rule ϕ is
constant on orbits θ �→ vγ(θ), γ = (i, b) ∈ G, θ = (μ1, μ2, μ) ∈ Δ. This means
that

R((μ1, μ2, μ1), ϕ) = R((0, μ2 − μ1, 0), ϕ) = R((μ2 − μ1, 0, 0), ϕ)
= R((μ1 − μ2, 0, 0), ϕ) = R((μ1, μ2, μ2), ϕ).

Hence for any invariant classification rule ϕ, the test ψ in (5.31), and X ∼
N(μ2, σ

2),
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R(θ, ϕ) =
1
4

E[ψ(X1 −X,X2 −X) + ψ(X −X1,X −X2)

+(1− ψ(X2 −X,X1 −X)) + (1− ψ(X −X2,X −X1))],

where θ = (μ1, μ2, μ) ∈ Δ. Therefore we have to minimize

Eψ(X1 −X,X2 −X)− Eψ(X2 −X,X1 −X) (5.32)
+Eψ(X −X1,X −X2)− Eψ(X −X2,X −X1)

as a function of ψ. The vector (X1 − X,X2 − X) has a normal distribution
with mean vector (δ, 0) = (μ1 − μ2, 0) and covariance matrix

Σ = σ2

(
2 1
1 2

)
,

so that the Lebesgue density of (X1 −X,X2 −X) is given by

ϕ(δ,0),Σ(t1, t2) =
1√

32πσ2
exp{− 1

3σ2
[(t1 − δ)2 − (t1 − δ)t2 + t22]}.

The expectation in (5.32) is given by

1√
32πσ2

∫
[
∫
ψ(t1, t2)(exp{− 1

3σ2
[(t1 − δ)2 − (t1 − δ)t2 + t22]}

− exp{− 1
3σ2

[t21 − t1(t2 − δ) + (t2 − δ)2]}

+ exp{− 1
3σ2

[(t1 + δ)2 − (t1 + δ)t2 + t22]}

− exp{− 1
3σ2

[t21 − t1(t2 + δ) + (t2 + δ)2]})dt1]dt2

=
∫

[
∫
ψ(t1, t2)g(t1, t2)h(t1, t2)dt1]dt2,

where for δ̃ = δ/(3σ2),

g(t1, t2) =
1√

32πσ2
exp{− δ2

3σ2
} exp{− 1

3σ2
(t21 − t1t2 + t22)},

h(t1, t2) = exp{2δ̃t1 − δ̃t2} − exp{2δ̃t2 − δ̃t1}+ exp{δ̃t2 − 2δ̃t1}
− exp{δ̃t1 − 2δ̃t2}

= [exp{ δ̃
2
(t1 + t2)} − exp{− δ̃

2
(t1 + t2)}]

× [exp{3δ̃
2

(t1 − t2)} − exp{−3δ̃
2

(t1 − t2)}].

Now, h(t1, t2) ≤ 0 holds if and only if
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either δ(t1 + t2) ≥ 0 and δ(t1 − t2) ≤ 0,
or δ(t1 + t2) ≤ 0 and δ(t1 − t2) ≥ 0,

which is equivalent to

δ2(t1 + t2)(t1 − t2) = δ2(t21 − t22) ≤ 0.

This means that ψ(t1, t2) = I[0,|t2|](|t1|) provides a classification rule that
minimizes the expression in (5.32), and the proof is thus completed.

Because ϕ0 does not depend on σ2, Theorem 5.35 holds also in the case
where σ2 is unknown. It should be noted that in Kudo (1959) the case of
unequal sample sizes has also been considered. In that case the invariance
conditions on the decisions have to be changed and depend now on the sample
sizes. Because the main ideas in Kudo (1959) have become clear already with
a common sample size we omit the general case for brevity.

We conclude this section with some remarks on the relation between the
concepts of sufficiency and invariance. The concept of sufficiency is closely
related to possible invariance properties of a model under consideration. Below
we look at the simple situation where the group G is finite and not only the
model, but all distributions in the model, are invariant.

Proposition 5.36. Let (X ,A,(Pθ)θ∈Δ) be a model and U = {uγ : γ ∈ G} ⊆
Sm,X a finite group. If Pθ ◦ u−1

γ = Pθ for every γ ∈ G and θ ∈ Δ, then the
σ-algebra of invariant sets is sufficient.

Proof. Denote by |G| the cardinality of G. Let A ∈ A. The measurable
function H(x) = |G|−1

∑
γ∈G IA(uγ(x)) is invariant and thus I-measurable.

For C ∈ I it holds IC(x) = IC(uγ(x)), γ ∈ G. This yields
∫
IC(x)H(x)Pθ(dx) = |G|−1

∑
γ∈G

∫
IC(uγ(x))IA(uγ(x))Pθ(dx)

= |G|−1
∑

γ∈G

∫
IC(y)IA(y)(Pθ ◦ u−1

γ )(dy)

= |G|−1
∑

γ∈G

∫
IC(y)IA(y)Pθ(dy) =

∫
IC(y)IA(y)Pθ(dy).

Consequently, Eθ (IA|I) = H, Pθ-a.s., so that H is a version of the conditional
probability that is independent of θ ∈ Δ.

Example 5.37. Assume X1, ..., Xn are i.i.d. real-valued random variables with a
common distribution P. We consider the full nonparametric model

M = (Rn,Bn, (P
⊗n)P∈P(B)). (5.33)

Let T↑ : R
n → R

n be the order statistic T↑(x1, ..., xn) = (x[1], ..., x[n]) that was
introduced in Example 4.1. T↑ is obviously continuous and thus Bn-Bn measurable.
Let G be the transformation group induced by the permutations of the coordinates,
i.e., for a permutation γ the mapping uγ is defined by uγ(x) = (xγ(1), ..., xγ(n)).
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The mapping uγ : R
n → R

n is continuous and consequently Bn-Bn measurable. As
σ(T↑) = I we obtain from Proposition 5.36 that the order statistic T↑ is sufficient
for the model (5.33).

In conclusion, we remark that the requirement of a statistic to be suffi-
cient as well as equivariant is restrictive and can be fulfilled only in certain
situations. The following has been shown in Dynkin (1951). For a statistical
model on the real line with a continuous, sufficient, and equivariant statistic
the family of distributions must either be a location family with a normal
parent distribution, or a scale family with a gamma parent distribution. For
more details and further references we refer to Pfanzagl (1972, 1994).

5.3 Hunt–Stein Theorem

In the examples of the previous sections we have constructed invariant deci-
sions mainly by using suitably constructed invariant or equivariant statistics.
However, if there exists an invariant distribution on the group G, then we may
construct invariant decisions also by averaging. To this end we suppose that
that the conditions (5.1) and (5.2) are satisfied and that L : Δ × D →m R+

is a measurable function of (θ, a). Let Q be any distribution on (G,G). Given
any decision D we denote by DQ the decision

DQ(A|x) =
∫

D(wγ(A)|uγ(x))Q(dγ). (5.34)

By the standard extension technique we get for any g : D →m R+,∫
g(a)DQ(da|x) =

∫
[
∫
g(wγ−1(a))D(da|uγ(x))]Q(dγ). (5.35)

For any Q ∈ P(G) we set Qγ0(G) = Q(Gγ−1
0 ), G ∈ G, γ0 ∈ G. Then

∫
h(γ)Qγ0(dγ) =

∫
h(γγ0)Q(dγ), h : G →m R+. (5.36)

Recall that Q is right invariant if Q(G) = Q(Gγ), G ∈ G, γ ∈ G.

Lemma 5.38. If Q is right invariant, then DQ is invariant in the sense of
Definition 5.26, and for every invariant loss function L : Δ×D →m R+,

R(θ,DQ) =
∫

R(vγ(θ),D)Q(dγ), θ ∈ Δ. (5.37)

Proof. The relation (5.36) and Q = Qγ0 yield

DQ(wγ0(A)|uγ0(x)) =
∫

D(wγγ0(A)|uγγ0(x))Q(dγ)

=
∫

D(wγ(A)|uγ(x))Qγ0(dγ) = DQ(A|x).



214 5 Invariant Statistical Decision Models

Using (5.35) and the invariance of L (see (5.17)) we get for θ ∈ Δ,
∫
L(θ, a)DQ(da|x) =

∫
[
∫
L(θ, wγ−1(a))D(da|uγ(x))]Q(dγ)

=
∫

[
∫
L(vγ(θ), a)D(da|uγ(x))]Q(dγ).

Hence by (5.16),

R(θ,DQ) =
∫

[
∫
L(θ, a)DQ(da|x)]Pθ(dx)

=
∫

[
∫

[
∫
L(vγ(θ), a)D(da|uγ(x))]Pθ(dx)]Q(dγ)

=
∫

[
∫

[
∫
L(vγ(θ), a)D(da|x)]Pvγ(θ)(dx)]Q(dγ)

=
∫

R(vγ(θ),D)Q(dγ), θ ∈ Δ.

Now we study the relation between the concept of invariance and the
Bayes approach. Despite the fact that more general results can be achieved
we restrict ourselves here to results on finite groups G that are used later on.
A prior Π is called invariant if Π ◦ v−1

γ = Π. If Π is any prior, then it is
obvious that

Π(B) :=
1
|G|
∑

γ∈G
(Π ◦ v−1

γ )(B)

is an invariant prior.

Proposition 5.39. Assume that G is finite. Given an invariant decision prob-
lem specified by the invariant model (X ,A, (Pθ)θ∈Δ), the invariant loss func-
tion L, and the decision space (D,D), an invariant decision D0 is a uniformly
best invariant decision if and only if it is a Bayes decision with respect to
every discrete invariant prior.

Proof. For every θ ∈ Δ we denote by Πθ = |G|−1
∑

γ∈G δvγ(θ) the uniform
distribution on the finite orbit {vγ(θ) : γ ∈ G}. Every invariant discrete prior
Π satisfies Π({vγ1(θ)}) = Π({vγ2(θ)}), γ1, γ2 ∈ G. Hence Π is the mixture of
some Πθi

, i.e., Π =
∑m

i=1 αiΠθi
.

From here we see that a decision is a Bayes decision with respect to every
discrete invariant prior if and only if it is a Bayes decision with respect to
every Πθ. Suppose that D0 is a uniformly best invariant decision and D is any
decision. Let Q be the uniform distribution on G. As DQ is invariant we have
R(θ,D0) ≤ R(θ,DQ), and in view of (5.37), we get
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1
|G|
∑

γ∈G
R(vγ(θ),D0) ≤

1
|G|
∑

γ∈G
R(vγ(θ),DQ)

=
1
|G|
∑

γ∈G

1
|G|
∑

γ̃∈G
R(vγ̃(vγ(θ)),D) =

1
|G|
∑

γ∈G
R(vγ(θ),D),

which shows that D0 is Bayes with respect to the prior Πθ. Conversely, if D0

and D are invariant, then by (5.20) for any fixed θ0 ∈ Δ,

R(θ0,D0) = R(vγ(θ0),D0) and R(θ0,D) = R(vγ(θ0),D), γ ∈ G.

Averaging over γ ∈ G by using the uniform distribution on the orbit {vγ(θ) :
γ ∈ G} we get

R(θ,D0) =
1
|G|
∑

γ∈G
R(vγ(θ),D0) = r(Πθ,D0),

R(θ,D) =
1
|G|
∑

γ∈G
R(vγ(θ),D) = r(Πθ,D).

If now D0 is a Bayes decision with respect to Πθ, then R(θ,D0) ≤ R(θ,D).
Another relation exists between admissibility and the property of a deci-

sion to be uniformly best invariant.

Proposition 5.40. Assume that G is finite. Then every uniformly best in-
variant decision D0 is admissible.

Proof. Assume D0 is not admissible. Then there is some D with R(θ,D) ≤
R(θ,D0), θ ∈ Δ, and R(θ0,D) < R(θ0,D0) for some θ0 ∈ Δ. If Πθ0 is the
uniform distribution on the orbit {vγ(θ0) : γ ∈ G}, then by the invariance
of D and D0 it follows r(Πθ0 ,D) < r(Πθ0 ,D0). Hence D0 is not Bayes with
respect to Πθ0 and thus not uniformly best invariant by Proposition 5.39.

Next we consider the relation between invariant decisions and minimax
decisions. The main idea here is the following. If there exists an invariant
distribution Q on the group G, then for any given decision D the decision DQ

is invariant, and its maximum risk satisfies in view of (5.37)

sup
θ

R(θ,DQ) ≤ sup
θ

R(θ,D).

This gives the following statement.

Proposition 5.41. Assume that there exists an invariant distribution Q on
(G,G). Suppose that D0 is a subset of decisions for a decision problem that is
invariant in the sense of Definition 5.25. If D0 is closed under averaging with
Q (i.e., if for every D ∈ D0 the decision DQ belongs to D0), then

inf
D∈D0

sup
θ

R(θ,D) = inf
D∈D0∩Dinv

sup
θ

R(θ,D) = inf
D∈D0

sup
θ

R(θ,DQ),

where Dinv is the set of all invariant decisions.
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Remark 5.42. In an invariant testing problem all transformations wγ , γ ∈ G,
coincide with the identical mapping. Moreover, the group V = {vγ : γ ∈ G} leaves
Δ0 and ΔA invariant, see (5.21). Suppose ϕ is a test that defines the decision D =
ϕδ1 + (1− ϕ) δ0. Then

DQ = ϕQδ1 + (1− ϕQ) δ0, where

ϕQ(x) =

∫
ϕ(uγ(x))Q(dγ).

If ϕ is a level α test for H0 : θ ∈ Δ0, then ϕQ is also a level α test for H0.

Now we consider again the χ2-test for the testing problem that was treated
in Theorem 5.33. From there we know already that this test is a uniformly
best invariant level α test for H0 : δ2(μ) = 0 versus HA : δ2(μ) > 0, where
δ2(μ) =

∑n
i=1 μ

2
i . Now we establish the maximin property. For δ20 ≥ 0 we

set Δ̃ = {0} ∪ {μ : δ2(μ) > δ20} and consider the restricted model and the
restricted testing problem given by

(Rn,Bn, (N(μ, I))μ∈Δ̃)

H0 : δ2(μ) = 0 versus HA,δ20
: δ2(μ) > δ20 .

(5.38)

Theorem 5.43. For the statistical model and the testing problem in (5.38)
the χ2-test ϕχ2,α(x) = I(χ2

1−α,n,∞)(χ2(x)) is a maximin level α test; that is, it
holds

inf
δ2(μ)>δ20

Eμϕ ≤ inf
δ2(μ)>δ20

Eμϕχ2,α (5.39)

for every test ϕ that satisfies E0ϕ ≤ α.

Proof. The restricted model (Rn,Bn, (N(μ, I))μ∈Δ̃) is rotation invariant.
Let (G,G) = (On×n,BOn×n

) be the group of orthogonal matrices equipped
with the Borel sets. Then Rn in Problem 5.4 is a right invariant distribution
on (G,G). If we use the zero–one loss function so that R(θ,D) = 1−Eμϕ, and
Δ = {μ : δ2(μ) > δ20}, we get from Proposition 5.41 and Remark 5.42 that it
holds

sup
ϕ∈Tα

inf
δ2(μ)>δ20

Eμϕ = sup
ϕ∈Tα,inv

inf
δ2(μ)>δ20

Eμϕ,

where Tα is the class of all level α tests and Tα,inv is the class of all rotation
invariant level α tests. It remains to prove that inequality (5.39) holds for
every rotation invariant level α test ϕ. This, however, follows from Theorem
5.33.

The crucial point in Proposition 5.41 and in Theorem 5.43 has been that
there exists a right invariant distribution on the group G. For compact topo-
logical groups such a distribution always exists and is called the Haar measure;
see Nachbin (1965).
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For noncompact groups that are at least locally compact there exist only
right invariant measures, also called Haar measures, which have infinite total
mass; see Nachbin (1965). Examples of such measures are |det(B)|−nλn2(dB)
for the general linear group, b−1λ(db) for the scale group, and λd for the
translation group; see (5.4). Although for noncompact groups, such as R

d

and R
+
• , right invariant distributions fail to exist there are often sequences of

distributions available that behave as uniform distributions. For a measurable
group (G,G) we call a sequence Qn ∈ P (G), n = 1, 2, ..., asymptotically right
invariant if

lim
n→∞

|Qn (B)−Qn (Bγ0) | = 0, B ∈ G, γ0 ∈ G. (5.40)

As every bounded measurable function h : G →m R can be approximated
uniformly by finite linear combinations of indicator functions we get for such
a function h and an asymptotically right invariant sequence Qn,

lim
n→∞

∫
(h(γ)− h(γγ0))Qn (dγ) = 0, γ0 ∈ G. (5.41)

Due to this property such a sequence Qn is also called an invariant mean.
Groups that have invariant means are called amenable. Such groups have been
studied in many papers. A classical reference is Bondar and Milnes (1981).
Often one can construct sequences Qn that satisfy (5.40) by using an invariant
σ-finite measure λ, a suitably chosen sequence An with 0 < λ (An) <∞, and
setting

Qn (·) =
1

λ (An)
λ (· ∩An) . (5.42)

This technique of constructing sequences Qn can be applied to locally compact
groups under weak additional assumptions. If G is a locally compact and σ-
compact Abelian group, G the σ-algebra of Borel sets, and λ a Haar measure,
then there exists a sequence A1 ⊆ A2 ⊆ ··· of elements in G such that Qn from
(5.42) satisfies (5.40). For a proof we refer to Kerstan and Matthes (1969).
Here we consider only some special cases where the sets An can be constructed
in a straightforward manner.

Problem 5.44. Set An = [−n, n]. Then the uniform distribution Qn on An satis-
fies limn→∞ |Qn(A)−Qn(A + t)| = 0 for every A ∈ B and t ∈ R. Similarly, for the
multiplicative measurable group (R+

• ,B+) we introduce the sequence Bn = [n−1, n]
and set Qn(B) = μ(Bn)−1μ(B ∩ Bn), B ∈ B+, with μ from Example 5.3. Then
|Qn(B)−Qn(Bs)| → 0 for every B ∈ B+ and s > 0.

In the remainder of this section we consider only testing problems. Lemma
5.38 provides an averaging technique, based on a right invariant distribution Q
on (G,G), to get an invariant decision from a decision, and thus also an invari-
ant test from a test. If, instead of such a Q, we have only a sequence Qn that
satisfies (5.40), then we may consider the sequence of tests

∫
ϕ(uγ(x))Qn(dγ)

with the idea that perhaps the limit, if such exists, or at least an accumulation
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point is invariant. However, as we show in the course of the proof of the next
lemma, a limiting test is only almost invariant in the sense of the subsequent
lemma. This leads to the question of whether for an almost invariant statistic
there exists an invariant statistic that differs from it only on a set of proba-
bility zero. A precise formulation of this question and conditions that lead to
a positive answer are given below.

Lemma 5.45. Suppose that the model (X ,A, (Pθ)θ∈Δ) is invariant. Let T :
X →m R be a statistic such that for every γ ∈ G there exists an N(γ) ∈ A with
{x : T (uγ(x)) �= T (x)} ⊆ N(γ) and Pθ(N(γ)) = 0 for every θ ∈ Δ. Suppose
that there exists a σ-finite measure μ on (G,G) that satisfies the following
condition.

μ(A) = 0 ⇒ μ(Aγ) = 0, γ ∈ G, A ∈ G. (5.43)

Then there exists an invariant statistic T : X →m R and an N ∈ A with
Pθ(N) = 0, θ ∈ Δ, such that T (x) = T (x) for every x /∈ N .

For a proof we refer to Pfanzagl (1994), Theorem 1.9.8. It should be noted
that the condition (5.43) is satisfied if there exists a σ-finite invariant measure,
which then can be taken for μ. In (5.34) we have constructed an invariant
decision by averaging with an invariant distribution on (G,G). The next lemma
provides a similar technique for cases where only sequences of distributions
on (G,G) exist that satisfy (5.40).

Lemma 5.46. Let (X ,A, (Pθ)θ∈Δ) be an invariant and dominated model.
Suppose there exists a σ-finite measure μ on (G,G) that satisfies (5.43). If
there exists a sequence of distributions Qn on (G,G) that satisfies (5.40),
then for each test ϕ there exists an invariant test ϕ and a subsequence∫
ϕ(uγ(x))Qnk

(dγ) such that

lim
k→∞

∫
[
∫
ϕ(uγ(x))Qnk

(dγ)]Pθ(dx) =
∫
ϕ(x)Pθ(dx), θ ∈ Δ.

Proof. As the decision space {0, 1} is finite, and the model is dominated,
from Theorem 3.21 it follows that there exists a subsequence and a test, say
ψ, such that

lim
k→∞

∫
[
∫
ϕ(uγ(x))Qnk

(dγ)]g(x)P (dx) =
∫
ψ(x)g(x)P (dx) (5.44)

for every g : X →m R with
∫
|g|dP <∞, where P =

∑∞
i=0 ciPθi

is taken from
Lemma 4.36.

Let h be any bounded and measurable function and set g = h(dPθ/dP ).
Then by (5.16), for any γ0 ∈ G,



5.3 Hunt–Stein Theorem 219

lim
k→∞

∫
[
∫
ϕ(uγγ0(x))Qnk

(dγ)]h(x)Pθi
(dx)

= lim
k→∞

∫
[
∫
ϕ(uγ(uγ0(x)))Qnk

(dγ)]h(uγ−1
0

(uγ0(x)))Pθi
(dx)

= lim
k→∞

∫
[
∫
ϕ(uγ(x))Qnk

(dγ)]h(uγ−1
0

(x))Pvγ0 (θi)(dx)

=
∫
ψ(x)h(uγ−1

0
(x))Pvγ0 (θi)(dx) =

∫
ψ(uγ0(x))h(x)Pθi

(dx).

For every fixed γ0 ∈ G the sequence
∫

[ϕ(uγ(x))− ϕ(uγγ0(x))]Qnk
(dγ)

is bounded by 2 and tends, in view of (5.41), to zero for every fixed x ∈ X .
Hence by Lebesgue’s theorem for every bounded and measurable function h,

∫
[ψ(x)− ψ(uγ0(x))]h(x)Pθi

(dx) = 0,

which implies

Pθi
({x : ψ(x) = ψ(uγ0(x))}) = 1 and P ({x : ψ(x) = ψ(uγ0(x))}) = 1.

Hence Pθ({x : ψ(x) = ψ(uγ0(x))}) = 1, θ ∈ Δ, so that T = ψ satisfies the
condition in Lemma 5.45. Thus there exists an invariant test ϕ with Pθ({x :
ψ(x) = ϕ(x)}) = 1.

The next statement is a version of a famous theorem by Hunt and Stein
who did not publish it. Lehmann (1986), p. 536, refers to an unpublished
paper of Hunt and Stein (1946). We establish here only the classical version
for testing hypotheses, which says that under weak assumptions in the search
for a maximin test we may restrict ourselves, without loss in terms of the
risk, to considering only the invariant tests. A more general Hunt–Stein type
theorem can be found in Strasser (1985) and LeCam (1986). For references
to general results of the Hunt–Stein type we refer to Lehmann (1998), pp.
421–422.

Theorem 5.47. (Hunt–Stein) Suppose that (X ,A, (Pθ)θ∈Δ) is an invari-
ant and dominated model, that there exists a σ-finite measure μ that satisfies
(5.43), and that there exist distributions Qn on (G,G) that satisfy (5.40). If
the testing problem for H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA is invariant, then for
every test ϕ there exists an invariant test ϕ such that

sup
θ∈Δ0

Eθϕ ≤ sup
θ∈Δ0

Eθϕ and inf
θ∈ΔA

Eθϕ ≤ inf
θ∈ΔA

Eθϕ.

Corollary 5.48. Under the assumptions of the last theorem for every level α
test ϕ for H0 there exists an invariant level α test ϕ such that infθ∈ΔA

Eθϕ ≤
infθ∈ΔA

Eθϕ.
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Proof. By Lemma 5.46, (5.16), (5.21), and Fubini’s theorem,

sup
θ∈Δ0

∫
ϕ(x)Pθ(dx) = sup

θ∈Δ0

lim
k→∞

∫
[
∫
ϕ(uγ(x))Qnk

(dγ)]Pθ(dx)

= sup
θ∈Δ0

lim
k→∞

∫
[
∫
ϕ(x)Pvγ(θ)(dx)]Qnk

(dγ) ≤ sup
θ∈Δ0

Eθϕ.

Analogously, infθ∈ΔA

∫
ϕ(x)Pθ(dx) ≥ infθ∈ΔA

Eθϕ.
Now we consider again the model (Rk,Bk, (N(μ, I))μ∈Rk) and set

χ2
∗(x) =

∑k

i=1
(xi − xk)2 and δ2∗(μ) =

∑k

i=1
(μi − μk)

2,

where xk = k−1
∑k

i=1 xi and μk = k−1
∑k

i=1 μi. Here we want to test if all
components of μ are equal. This testing problem can be formulated as

H∗
0 : δ2∗(μ) = 0 versus H∗

A : δ2∗(μ) > 0. (5.45)

Let L1 be the one-dimensional subspace of R
k that consists of vectors x =

(a, ..., a) = a1, a ∈ R. Then we have

H∗
0 : μ ∈ L1 versus H∗

A : μ /∈ L1.

Let O be the set of all orthogonal matrices O that leave L1 invariant, and
thus also leave the orthogonal complement L

⊥
1 invariant. We introduce the

group G = L1 ×O by setting

(a1, O1) ◦ (a2, O2) = (a1 + a2, O1O2),
uγ(x) = O(x+ a), γ = (a,O) ∈ L1 ×O.

Then uγ1(uγ2(x)) = uγ1γ2(x). We consider G as a subset of R × R
(k−1)2 and

use the Borel subsets as the σ-algebra G.

Problem 5.49.∗ For the group (G,G) = (L1 × O,BL1×O) there exists a σ-finite
right invariant measure μ and a sequence of distributions Qn that satisfies (5.40).

The next proposition establishes the maximin property of the χ2-test for
comparing the means of k independent normal distributions with a common
known variance. The latter, without loss of generality, is put to 1.

Proposition 5.50. For the model (Rk,Bk, (N(μ, I)μ∈Rk) the χ2-test

ϕχ2
∗,α

(x) = I(χ2
1−α,k−1,∞)(χ

2
∗(x))

is a uniformly best (L1 × O)-invariant level α test for the testing problem
(5.45). Furthermore, for every fixed δ20 ≥ 0 it holds

inf
δ2∗(μ)>δ20

Eμϕχ2
∗,α
≥ inf

δ2∗(μ)>δ20

Eμϕ
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for every test ϕ that satisfies E0ϕ ≤ α, so that the test ϕχ2
∗,α

is a maximin
level α test for

H∗
0 : δ2∗(μ) = 0 versus H∗

A,δ20
: δ2∗(μ) > δ20 .

Proof. The proof of the first statement is similar to the proof of Theorem
5.33. First of all we note that for δ2∗(μ) = 0 the distribution N(μ, I) ◦ (χ2

∗)
−1

is a χ2-distribution with k − 1 degrees of freedom. Next we show that every
(L1×O)-invariant test ϕ can be represented as a measurable function of χ2

∗(x).
To this end we fix a unit vector e0 and note that

ϕ(x) = h(‖x− xk1‖), x− xk1 �= 0, where h(r) = ϕ(re0),
ϕ(x) = h(‖x− xk1‖)I(0,∞)(‖x− xk1‖) + ϕ(0)I{0}(‖x− xk1‖).

As in the proof of Theorem 5.33 it suffices to find a uniformly best level α
test for the reduced model

(R+,B+, (N(μ, I) ◦ (χ2
∗)

−1)μ∈Rk).

But Theorem 2.49 yields that ψα(t) = I(χ2
1−α,k−1,∞)(t) is a uniformly best

level α test for H0 : δ2 = 0 versus HA : δ2 > 0 in the reduced model. Hence

ψα(χ2
∗(x)) = ϕχ2

∗,α
(x)

is a uniformly best invariant level α test. To prove the second statement we
note that also the reduced model with N(μ, I), μ ∈ Δ∗

0 ∪ Δ∗
A = L1 ∪ ({μ :

δ2∗(μ) > δ20}), as well as the hypotheses are invariant.
In view of Problem 5.49 there is a σ-finite invariant measure μ that satisfies

(5.43) and a sequence Qn that satisfies (5.40). As ϕχ2
∗,α

is a test of size α we
get the statement from Corollary 5.48.

It is known that asymptotically right invariant sequences of distributions
exist for every Abelian locally compact group; see Bondar and Milnes (1981).
If a group is not Abelian, then in relatively simple situations already condition
(5.40) may not be satisfied. The following example, due to Stein, is taken from
Lehmann (1986), Example 9 in Chapter 9.

Example 5.51. Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be independent and
normally distributed random vectors with expectation zero and covariance matrices
Σ and σΣ, respectively, where Σ is nonsingular, σ > 0, and σ and Σ are both
unknown. Suppose we want to test H0 : σ ≤ 1 versus HA : σ > 1 + δ, where δ > 0 is
fixed given. The statistical model is

(R2n,B2n,N(0, Σ)⊗ N(0, σΣ)), where

θ = (σ,Σ) ∈ Δ = {(σ,Σ) : σ ∈ (0, 1] ∪ (1 + δ,∞], Σ symmetric positive definite}.

We use the general linear group Mr
n×n from (5.4) and equip Mr

n×n with the
σ-algebra of Borel sets. For γ = B ∈ Mr

n×n we set uγ(x, y) = (Bx,By) and
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vγ(θ) = (σ,BΣBT ). This shows that the model and the testing problem are invari-
ant. According to (5.4) the measure | det(B)|−nλn2(dB) is σ-finite and invariant, so
that (5.43) is fulfilled. Now we show that for n ≥ 2 the statement of the Hunt–Stein
theorem is not true, i.e., that the group Mr

n×n is not amenable. Indeed, if a test
ϕ is invariant, then ϕ(x) = ϕ(Bx) for every B ∈ Mr

n×n. As for n ≥ 2 and any
x1, x2 ∈ R

n there exists some B ∈ Mr
n×n with x2 = Bx1, we see that every invari-

ant test is constant. Thus every best invariant level α test is constant and takes on
the value α. But this test cannot be a maximin test. Note that F = σ2X2

1/Y
2
1 has a

F distribution with (1, 1) degrees of freedom. If f1−α,1,1 denotes the 1− a quantile
and we reject H0 whenever X2

1/Y
2
1 > f1−α,1,1, then we get a level α test with a

strictly increasing power function. This means that the constant test cannot be a
maximin level α test.

5.4 Equivariant Estimators, Girshick–Savage Theorem

In this section we study equivariant estimators in an invariant location model,
establish a minimax theorem, and prove the minimax property of the Pitman
estimator. In Chapter 7 we continue the study of the Pitman estimator. There
we emphasize more the fact that the Pitman estimator is a generalized Bayes
estimator, and establish conditions under which the Pitman estimator is ad-
missible.

The results on the minimaxity of the Pitman estimator go back to Girshick
and Savage (1951). These results have been generalized by other authors to
more general models that are generated by a fixed distribution and the ap-
plication of a transformation group. Here in this section we concentrate on
the location model and mainly use the quadratic loss function. The presenta-
tion below follows Witting (1985). Results related to general transformation
groups can be found in Strasser (1985).

We use the additive group R⊕ and the corresponding transformation group
Ul from (5.4). Hence

uθ(x) = x+ θ1, x ∈ R
n, θ ∈ R, (5.46)

where 1 = (1, ..., 1)T ∈ R
n. We denote by I ⊆ Bn the sub-σ-algebra of

invariant Borel sets, which are the sets B ∈ Bn with IB(x+ θ1) = IB(x) for
every x ∈ R

n and θ ∈ R. According to Definition 5.13 an invariant statistic
T : R

n →m R
n is maximal invariant if T (x) = T (y) implies x = y+θ1 for some

θ ∈ R. A statistic E : R
n →m R is called equivariant if E (x+ α1) = E (x) +α

holds for every x ∈ R
n and α ∈ R. By E we denote the set of all equivariant

statistics.

Example 5.52. The following statistics are equivariant.

(x1, ..., xn) �→ xn, (x1, ..., xn) �→ min
1≤i≤n

xi, (x1, ..., xn) �→ x1.
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If E ∈ E, then TE (x) := x − E (x)1 is invariant. If TE (x) = TE(y), then
x − y = (E (x) − E (y))1 so that TE is maximal invariant. Moreover, if S :
R
n →m R

n is any invariant statistic, then S(x−E (x)1) = S(x). Hence every
invariant statistic S : R

n →m R
n satisfies S = S (TE) and can therefore be

written as a measurable function of the equivariant statistic TE .
We study the location model

Mlo =
(
R
n,Bn, (P ◦ u−1

θ

)
θ∈R

), (5.47)

where by the definition of uθ in (5.46) Pθ := P ◦ u−1
θ is given by

Pθ(B) =
∫
IB(x+ θ1)P (dx),

and especially P = P0. We use the loss function L (θ, α) = l (θ − α), where
l : R →m R+. Defining V = W as in Example 5.28 we get a decision problem
that is invariant in the sense of Definition 5.25. According to (5.19) a non-
randomized decision D is invariant if and only if the associated statistic d is
equivariant.

Under the loss function L(θ, a) = l(θ − a) the risk of any estimator S is
given by R (θ, S) = Eθl (S − θ), θ ∈ R. If now S is equivariant, then

R (θ, S) =
∫
l (S(x)− θ) (P ◦ u−1

θ )(dx)

=
∫
l (S(x+ θ1)− θ)P0(dx) = R (0, S) = E0l (S) , θ ∈ R.

It should be noted that this is a special case of (5.20).

Definition 5.53. Let L(θ, a) = l(θ − a), θ, a ∈ R. An equivariant estimator
P that satisfies E0l (P) <∞ and E0l (P) ≤ E0l (S) , S ∈ E, is called a Pitman
estimator under the loss function L. In the special case of l(t) = t2, t ∈ R, it
is simply called a Pitman estimator.

For a strictly convex l the Pitman estimator under the loss L is unique.

Problem 5.54.∗ Let C be a convex subset of estimators and l be strictly convex
and nonnegative. Then for S0, S1 ∈ C the condition

E0l(S0) = E0l(S1) = inf
S∈C

E0l(S) <∞

implies that S0 = S1, P0-a.s.

Problem 5.55.∗ Given the probability space (Rn,Bn, P ) and the sub-σ-algebra
of invariant Borel sets, we fix a regular conditional distribution given I, i.e., some
K : Bn × R

n →k [0, 1] for which x �→ K(A|x) is I-measurable for every A ∈ Bn and
that satisfies

P (A ∩B) =

∫
B

K(A|x)P (dx), A ∈ Bn, B ∈ I.
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Such a stochastic kernel exists; see Theorem A.37. Then for every T : R
n → R that

is I-Bn measurable, and every h : R
n × R →mR+, it holds∫

h(x, T (x))P (dx) =

∫
[

∫
h(y, T (x))K(dy|x)]P (dx). (5.48)

For S = E0 − T with E0 ∈ E it follows from (5.48) that

E0l (S) = E0(E0(l(E0 − T )|I)) (5.49)

=
∫

[
∫
l(E0(y)− T (x))K(dy|x)]P (dx).

If K is known, then we may fix any E0 ∈ E and find a T that minimizes
E0l(S) by minimizing t �→

∫
l(E0(y) − t)K(dy|x) for every fixed x. Then T

becomes automatically equivariant, provided the minimization point is unique.
If l(t) = t2 and E0E2

0 <∞, then
∫
E2
0 (y)K(dy|x) <∞, P -a.s., and

arg min
t∈R

∫
(E0(y)− t)2K(dy|x) = {

∫
E0(y)K(dy|x)}, P -a.s. (5.50)

Theorem 5.56. If E0 is equivariant and satisfies E0E2
0 <∞, then the Pitman

estimator exists, is P -a.s. uniquely determined, and it holds

P(x) = E0(x)−
∫
E0(y)K(dy|x), P -a.s., (5.51)

where K is a regular conditional distribution given the σ-algebra of invariant
Borel sets I.

Proof. Combine (5.50) and Problem 5.54.

To calculate the Pitman estimator we need the distribution KE0(·|x) :=
K(E−1

0 (·)|x) for only one E0. This means that we have to find a stochastic
kernel KE0 that satisfies

KE0(A|x+ a1) = KE0(A|x), A ∈ Bn, x ∈ R
n, a ∈ R∫

IB(x)KE0(A|x)P (dx) = P (E−1
0 (A) ∩B), B ∈ I.

(5.52)

We use E0(x1, ..., xn) = x1. The conditional distribution KE0(·|x) can be rep-
resented by means of the conditional density if P has a Lebesgue density.

Lemma 5.57. If P has the Lebesgue density f , then
∫
f (x+ s1) ds > 0, P -

a.s. Let E0(y1, ..., yn) = y1, y ∈ R
n, and

f(y1|x) =
f (y1, x2 − x1 + y1, ..., xn − x1 + y1)∫
f (s, x2 − x1 + s, ..., xn − x1 + s) ds

if
∫
f (s, x2 − x1 + s, ..., xn − x1 + s) ds > 0, and f(y1|x) = g (y1) otherwise,

where g is any Lebesgue density. Then

KE0(C|x) =
∫
C

f(y1|x)dy1

is a stochastic kernel that satisfies the conditions in (5.52).
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Proof. The set A0 = {x :
∫
f (x+ s1) ds = 0} is invariant; that is, IA0 (x)

= IA0 (x+ t1) for every t ∈ R. Hence by Fubini’s theorem and the definition
of A0,

0 =
∫

[
∫
IA0 (x) f (x+ s1) ds]λn(dx) =

∫
[
∫
IA0 (x− s1) f (x) λn(dx)]ds

=
∫

(
∫
IA0(x)P (dx))ds,

which implies P (A0) = 0. For every D ∈ Bn−1 and T̃ (x1, ..., xn) = (x2 −
x1, ..., xn − x1) it holds

P (T̃ ∈ B) =
∫
ID(y2 − y1, ..., yn − y1)P (dy)

=
∫
ID(s)[

∫
f (y1, s2 + y1, ..., sn + y1) dy1]λn−1(ds),

where s = (s2, ..., sn). Hence

d(P ◦ T̃−1)
dλn−1

(s) =
∫
f (y1, s2 + y1, ..., sn + y1) dy1, λn−1-a.e. (5.53)

Suppose that A ∈ B and B ∈ I. Put D = {(s2, ..., sn) : IB(0, s2, ..., sn) = 1}.
Then D ∈ Bn−1 and by the invariance of B it holds IB(x1, ..., xn) = ID(x2 −
x1, ..., xn − x1).∫

B

[
∫
A

f(y1|x)dy1]P (dx)

=
∫

[
∫
IA(y1)ID(x2 − x1, ..., xn − x1)

× f (y1, x2 − x1 + y1, ..., xn − x1 + y1)∫
f (t, x2 − x1 + t, ..., xn − x1 + t) dt

dy1]P (dx)

=
∫

[
∫
IA(y1)ID(s2, ..., sn)

× f (y1, s2 + y1, ..., sn + y1)∫
f (t, s2 + t, ..., sn + t) dt

dy1](P ◦ T̃−1)(ds2, ..., dsn).

Using (5.53) we get
∫
B

[
∫
A

f(y1|x)dy1]P (dx)

=
∫

[
∫
IA(y1)ID(s2, ..., sn)f (y1, s2 + y1, ..., sn + y1) dy1]λn−1(ds2, ..., dsn)

=
∫

[
∫
IA(y1)ID(y2 − y1, ..., yn − y1)f (y1, ..., yn) dy1]λn−1(dy2, ..., dyn)

=
∫
IA(y1)IB(y1, ..., yn)P (dy1, ..., dyn) = P (E−1

0 (A) ∩B).
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Using the conditional density in Lemma 5.57 we find an explicit represen-
tation of the Pitman estimator.

Proposition 5.58. If l(t) = t2, t ∈ R,
∫
x2

1P (dx1, ..., dxn) < ∞, and P has
the Lebesgue density f , then the Pitman estimator P in (5.51) is given by

P(x1, ..., xn) =
∫
sf (x1 − s, ..., xn − s) ds∫
f (x1 − s, ..., xn − s) ds

, P -a.s. (5.54)

Proof. We use E0 (x1, ..., xn) = x1 in Theorem 5.56. Then by Lemma 5.57,

P(x) = E0(x)−
∫
E0(y)K(dy|x)

= x1 −
∫
y1f (y1, x2 − x1 + y1, ..., xn − x1 + y1) dy1∫

f (s, x2 − x1 + s, ..., xn − x1 + s) ds

=
∫
sf (x1 − s, ..., xn − s) ds∫
f (x1 − s, ..., xn − s) ds

, P -a.s.

Example 5.59. Assume that we have observed n independent random variables
with a common normal distribution Nθ,σ2 . Then P in (5.47) is given by P = N⊗n

0,σ2 .

Hence f(x) = (2π)−n/2σ−n exp{−(2σ2)−1 ‖x‖2}, x = (x1, ..., xn) ∈ R
n, and by

(5.54),

P(x) =

[∫ ∏n

i=1
ϕs,σ2(xi)ds

]−1 [∫
s
∏n

i=1
ϕs,σ2(xi)ds

]

=
exp{− 1

2σ2

∑n
i=1 (xi − xn)2}

∫
s exp{− n

2σ2 (s− xn)2}ds
exp{− 1

2σ2

∑n
i=1 (xi − xn)2}

∫
exp{− n

2σ2 (s− xn)2}ds
= xn.

Example 5.60. Assume that we have observed n independent random variables
with a common exponential distribution Ex(1). Then the Lebesgue density of P in
(5.47) is given by f(x) = I(0,∞)(x[1]) exp{−

∑n
i=1 xi}, where x[1] = min{x1, ..., xn},

x = (x1, ..., xn) ∈ R
n. Then by (5.54),

P(x) =

∫
sI(0,∞)(x[1] − s) exp{−

∑n
i=1(xi − s)}ds∫

I(0,∞)(x[1] − s) exp{−
∑n

i=1(xi − s)}ds

=

∫
sI(−∞,x[1])

(s) exp{ns}ds∫
I(−∞,x[1])

(s) exp{ns}ds = x[1] −
1

n
.

Pitman estimators can also be considered for more general models where
the family of distributions is generated by any group of measurable trans-
formations. We do not go into more detail but refer to Strasser (1985) and
Witting (1985).

Now we study the problem of whether optimal equivariant estimators are
also optimal in the minimax sense in the class of all estimators. The answer
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is given by a theorem due to Girshick and Savage (1951). We prove, in a first
step, a minimax result that is similar to Theorem 3.57 and corresponds to the
Hunt–Stein theorem 5.47 for testing problems. In contrast to Theorem 3.57
we have here a special model, but the decision space is not compact. For any
l : R →m R+ and an estimator S for θ in the location model (5.47) we set

R(θ, S) =
∫
l(S(x)− θ)Pθ(dx) (5.55)

=
∫
l(S(x+ θ1)− θ)P0(dx), θ ∈ R,

r(Π,S) =
∫

R(θ, S)Π(dθ),

where Π ∈ P(B) is any prior. For an equivariant estimator S it holds

R(θ, S) = R(0, S) =
∫
l(S(x))P0(dx), θ ∈ R.

Theorem 5.61. (Girshick–Savage) If l : R →m R+ is bounded, then it
holds in the location model (5.47),

sup
Π

inf
S

r(Π,S) = inf
S

sup
θ

R(θ, S) = inf
S∈E

R(0, S),

where infS is the infimum over all estimators S.

Proof. It holds,

sup
Π

inf
S

r(Π,S) ≤ inf
S

sup
θ

R(θ, S) ≤ inf
S∈E

sup
θ

R(θ, S) = inf
S∈E

R(0, S). (5.56)

Therefore we have to show that infT∈E R(0, T ) ≤ supΠ infS r(Π,S). We use
the prior N(0, σ2) and fix an estimator S : R

n →m R. Let E be equivariant;
e.g., E(x1, ..., xn) = x1. It follows from (5.55) and Fubini’s theorem that

r(N(0, σ2), S) =
∫

[
∫
l(S(x+ θ1)− θ)ϕ0,σ2(θ)dθ]P0(dx)

=
∫

[
∫
l(S(x+ θ1)− E(x+ θ1) + E(x))ϕ0,σ2(θ)dθ]P0(dx)

=
∫

[
∫
l(Sη(x))ϕE(x),σ2(η)dη]P0(dx),

where
Sη(x) = S(x+ (η−E(x))1)− E(x+ (η−E(x))1) + E(x),

is an equivariant estimator for every η. The risk of Sη under P0 satisfies
∫

[
∫
l(Sη(x))ϕ0,σ2(η)dη]P0(dx) =

∫
[
∫
l(Sη(x))P0(dx)]ϕ0,σ2(η)dη

≥ inf
T∈E

∫
l(T (x))P0(dx).
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Because l is bounded, say by C, then by the inequality in Problem 5.64,

r(N(0, σ2), S) =
∫

[
∫
l(Sη(x))ϕE(x),σ2(η)dη]P0(dx)

≥
∫

[
∫
l(Sη(x))ϕ0,σ2(η)dη]P0(dx)

− 2
√

2C
∫

[1− exp{−E2(x)/(8σ2)}]1/2P0(dx)

≥ inf
T∈E

∫
l(T (x))P0(dx)− 2

√
2C
∫

[1− exp{−E2(x)/(8σ2)}]1/2P0(dx).

Taking the infimum over all estimators S on the the left-hand side and letting
σ2 →∞ we get from Lebesgue’s theorem that

sup
Π

inf
S

r(Π,S) ≥ lim sup
σ2→∞

inf
S

r(N(0, σ2), S)

≥ inf
T∈E

∫
l(T (x))P0(dx) = inf

T∈E
R(0, T ).

Now we consider the important case of a quadratic loss function.

Theorem 5.62. (Girshick–Savage) If for the location model (5.47) there
exists an equivariant statistic E0 with E0E2

0 <∞, then

sup
Π

inf
S

∫
Eθ(S − θ)2Π(dθ) = inf

S
sup
θ

Eθ(S − θ)2 = inf
S∈E

E0S
2 = E0P2,

where P is the Pitman estimator in (5.51).

Proof. As the last equality in the statement follows from Theorem 5.56
we have in view of (5.56) only to show

E0P2 ≤ sup
Π

inf
S

∫
Eθ(S − θ)2Π(dθ). (5.57)

To this end we set AN = {x : |E0(x)| ≤ N}, PN (B) = P0(B|AN ), and note
that P0(AN ) → 1 as N → ∞. Furthermore, we put EN = {E : PN (|E| ≤
2N) = 1} and lN (t) = min(t2, 4N2). Let PN be the Pitman estimator for
the model (5.47) according to Theorem 5.61 when P is replaced by PN . The
application of Theorem 5.61 to the loss function lN yields

inf
S∈E

∫
min(S2, 4N2)dPN (5.58)

= sup
Π

inf
S

∫
[
∫

min((S(x− θ1))2, 4N2)PN (dx)]Π(dθ)

≤ 1
P (AN )

sup
Π

inf
S

∫
Eθ(S − θ)2Π(dθ).
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For ε > 0 we find SN,0 ∈ E with
∫

min(S2
N,0, 4N

2)dPN ≤ inf
S∈E

∫
min(S2, 4N2)dPN + ε. (5.59)

Note that the set BN = {|SN,0 − E0| ≤ N} is invariant. Hence S̃N,0 =
SN,0IBN

+ E0IBN
is equivariant. It holds

{S̃2
N,0 > min(S2

N,0, 4N
2)} ∩BN

= ({S̃2
N,0 > S2

N,0} ∩BN ) ∪ ({S̃2
N,0 > 4N2} ∩BN )

= {|SN,0| > 2N} ∩ {|SN,0 − E0| ≤ N} ⊆ {|E0| > N}
{S̃2

N,0 > min(S2
N,0, 4N

2} ∩BN = ({E2
0 > S2

N,0} ∩BN ) ∪ ({E2
0 > 4N2} ∩BN )

⊆ {E2
0 > S2

N,0} ∩ {|SN,0|+ |E0| > N} ∪ {|E0| > 2N} ⊆ {|E0| > N/2}.

Hence {S̃2
N,0 > min(S2

N,0, 4N
2)} ⊆ {|E0| > N/2}, and by |E0| ≤ N PN -a.s.,

∫
S̃2
N,0dPN ≤

∫
min(S2

N,0, 4N
2)dPN +

∫
I[N/2,∞)(|E0|)E2

0dPN .

From PN = E0 − EPN
(E0|I), PN -a.s., we get

EPN
(E0 − EPN

(E0|I))2 =
∫
P2
NdPN = inf

S∈E

∫
minS2dPN ≤

∫
S̃2
N,0dPN

≤
∫

min(S2
N,0, 4N

2)dPN +
∫
I[N/2,∞)(|E0|)E2

0dPN

≤ inf
S∈E

∫
min(S2, 4N2)dPN + ε+

∫
I[N/2,∞)(|E0|)E2

0dPN

≤ 1
P (AN )

sup
Π

inf
S

∫
Eθ(S − θ)2Π(dθ) + ε+

∫
I[N/2,∞)(|E0|)E2

0dPN ,

where the last two inequalities follow from (5.59) and (5.58). Taking N →∞,
by Problem 5.66 with P = P0, P (AN ) → 1, and

∫
I[N/2,∞)(|E0|)E2

0dPN → 0,
we get that

E0P2 = E0(E0 − E0(E0|I))2 ≤ sup
Π

inf
S

∫
Eθ(S − θ)2Π(dθ) + ε.

Letting ε→ 0 we get (5.57).

We conclude this section with some remarks on Pitman estimators in the
scale model. To this end we assume that P is a distribution on (Rn,Bn) and
consider the scale model given by (5.9). For some function l : (0,∞)→mR+ we
introduce the loss function by L(θ, a) = l(a/θ), where θ > 0 is the unknown
parameter in the model

(Rn,Bn, (Pθ)θ∈(0,∞)), Pθ = P ◦ u−1
θ , uθ(x) = θx, x ∈ R

n. (5.60)
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Hence Pθ(B) =
∫
IB(θx)P (dx). By construction the problem of estimating the

parameter θ, under the loss function L(θ, a) = l(a/θ), is an invariant decision
problem. An estimator T : R

n →m (0,∞) is equivariant if T (θx) = θT (x),
θ > 0, x ∈ R

n. Denote by I the σ-algebra of Borel sets that are invariant
under the group of measurable transformations Us = {uθ : θ > 0}. Then for
every equivariant estimator T

EθL(θ, T ) = Eθl(
T

θ
) = E1l(T ), (5.61)

and for any equivariant estimator E1, similarly as in (5.49),

E1l (S) = E1(E1(l(E1
S

E1
)|I)) =

∫
[
∫
l(
E1(y)
T (x)

)K(dy|x)]P (dx),

where T = E1/S is invariant, and K is a regular conditional distribution,
given the σ-algebra of scale invariant Borel sets. We may fix any E1 and find
the equivariant estimator with minimum risk, T (x) say, by minimizing t �→∫
l(E1(y)/t)K(dy|x). If l(t) = (t− 1)2, then the Pitman estimator P is defined

to be that equivariant estimator P which minimizes the risk E1 (S − 1)2. To
find P we start with an equivariant estimator E1 with E1(E1− 1)2 <∞. Then∫
E2
1 (y)K(dy|x) <∞, P -a.s. The function

∫
(E1(y)/t− 1)2K(dy|x) attains the

minimum at

T (x) =
[∫

E1(y)K(dy|x)
]−1 ∫

E2
1 (y)K(dy|x).

Hence

P(x) =
E1(x)

∫
E1(y)K(dy|x)∫

E2
1 (y)K(dy|x)

.

Again we denote by E the set of all equivariant estimators.

Proposition 5.63. If l : (0,∞)→mR+ is bounded, then it holds in the model
(5.60),

sup
Π

inf
S

r(Π,S) = inf
S

sup
θ

R(θ, S) = inf
S∈E

R(1, S).

Proof. Similarly as in the proof of Theorem 5.61 we have to show that
infS∈E R(1, S) ≤ supΠ infS r(Π,S). We use the prior Ga(α, 1) and fix an es-
timator S : R

n →m (0,∞). It follows from (5.61) and Fubini’s theorem with
η = θE(x),

r(Ga(α, 1), S) =
∫

[
∫
l(S(x)/θ)Pθ(dx)]gaα,1(θ)dθ

=
∫

[
∫
l(S(θx)/θ)gaα,1(θ)dθ]P1(dx)

=
∫

[
∫
l

(
S(

ηx

E(x)
)
E(x)
η

)
gaα,1/E(x)(η)dη]P1(dx).
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Note that Sη(x) = S(ηx/E(x))E(x)/η is an equivariant estimator. Hence

r(Ga(α, β), S) ≥ inf
T∈E

∫
l(T (x))P1(dx).

By assumption l is bounded, say by C. Then by the inequality in Problem
5.67 with β1 = 1 and β2 = 1/E(x),

r(Ga(α, 1), S) =
∫

[
∫
l(Sη(x))gaα,1/E(x)(η)dη]P1(dx)

≥
∫

[
∫
l(Sη(x))gaα,1(η)dη]P1(dx)

− 2
√

2C
∫

(1− 2α[
√
E(x) + 1/

√
E(x)]−α)1/2P1(dx)

≥ inf
T∈E

∫
l(T (x))P1(dx)

− 2
√

2C
∫

(1− 2α[
√
E(x) + 1/

√
E(x)]−α)1/2P0(dx).

Taking the infimum over all estimators S on the the left-hand side and letting
α→ 0 we get from Lebesgue’s theorem that

sup
Π

inf
S

r(Π,S) ≥ lim sup
α→0

inf
S

r(Ga(α, 1), S)

≥ inf
T∈E

∫
l(T (x))P1(dx) = inf

T∈E
R(1, T ).

Subsequently we collect some problems that have been used in the previous
proofs.

Problem 5.64.∗ If g : R →m R is bounded, say |g| ≤ C, then

|
∫

g(t)N(0, σ2)(dt)−
∫

g(t)N(μ, σ2)(dt)| ≤ 2
√

2C[1− exp{−μ2/(8σ2)}]1/2.

Problem 5.65.∗ Let P and Q be distributions on (X ,A) with Q� P . Let G ⊆ A

be a sub-σ-algebra of A. If T : X →m R is a statistic with EP |T | <∞ and EQ|T | <
∞, then

EP (T dQ
dP
|G) = EP ( dQ

dP
|G)EQ(T |G), P -a.s.

EQ(T |G) =
[
EP ( dQ

dP
|G)
]−1

EP (T dQ
dP
|G), Q-a.s.

(5.62)

Problem 5.66.∗ Let An ∈ A with limn→∞ P (An) = 1 and set Pn(B) = P (B|An),
B ∈ A. Let G ⊆ A be a sub-σ-algebra and T : X →m R with EPT 2 <∞. Then

lim
n→∞

EPn(T − EPn(T |G))2 = EP (T − EP (T |G))2.

Problem 5.67.∗ If g : R →m R is bounded, say |g| ≤ C, then

|
∫

g(t)Ga(α, β1)(dt)−
∫

g(t)Ga(α, β2)(dt)| ≤ 2
√

2C

(
1−
(

2
√
β1β2

β1 + β2

)α)1/2

.
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5.5 Solutions to Selected Problems

Solution to Problem 5.4: For column vectors x1, ..., xn we use the Gram–Schmidt
orthogonalization procedure by setting y1 = x1/ ‖x1‖ and

yi = (xi −
∑i−1

j=1
(xT

i yj)yj) ‖ xi −
∑i−1

j=1
(xT

i yj)yj ‖−1, i = 2, ..., n,

to define the continuous mapping M : D(M) → G by M((x1, ..., xn)) = (y1, ..., yn)T ,

where D(M) ⊆ R
n2

is the set of all nonsingular matrices (x1, ..., xn). Let O be an
orthogonal matrix. We replace xi with x̃i = Oxi and denote the resulting vectors
after the mapping M by ỹi. Then ỹ1 = (‖x̃1‖)−1x̃1 = Oy1 and

ỹi = (Oxi −
∑i−1

j=1
(Oxi)

T (Oyj)Oyj)) ‖ Oxi −
∑i−1

j=1
(Oxi)

T (Oyj)Oyj) ‖−1

= O(xi −
∑i−1

j=1
(xT

i yj)yj) ‖ xi −
∑i−1

j=1
(xT

i yj)yj) ‖−1, i = 2, ..., n.

Hence OM ((x1, ..., xn)) = M (O(x1, ..., xn)) for every orthogonal matrix O. If

Xi,j , 1 ≤ i, j ≤ n, are i.i.d. N(0, 1), then (X1, ..., Xn) = (Xi,j)1≤i,j≤n ∈ D(M)

a.s. As L(OM (X1, ..., Xn)) = L(M (X1, ..., Xn)) it follows that the distribution of

MT (X1, ..., Xn) is a right invariant distribution. �

Solution to Problem 5.6: The first statement is clear. For the second apply the

transformation rule for the Lebesgue measure; see Theorem A.23. �

Solution to Problem 5.15: A is invariant if and only if u−1
γ (A) = A for every γ. As

the intersection, the union, and the complement can be interchanged with the inverse

image operation I is a sub-σ-algebra of A. If T is invariant, then T◦uγ = T . Therefore

u−1
γ (T−1(B)) = T−1(B). As u−1

γ (T−1(B) = uγ−1(T−1(B)) and γ is arbitrary the

invariance follows. �

Solution to Problem 5.18: If(
sgn(x2 − x1),

x3 − x1

x2 − x1
, ...,

xn − x1

x2 − x1

)
=

(
sgn(y2 − y1),

y3 − y1

y2 − y1
, ...,

yn − y1

y2 − y1

)
,

then for α = x1 − βy1, and β = (x2 − x1)/(y2 − y1) > 0 it holds xi = βyi + α. �

Solution to Problem 5.21: Apply the factorization lemma; see Lemma A.9. �

Solution to Problem 5.23:

(Pvγ(θ) ◦ T−1)(B) = Pvγ(θ)(T
−1(B)) = Pθ(u

−1
γ (T−1(B))

= Pθ(T (uγ) ∈ B) = Pθ(T ∈ B). �

Solution to Problem 5.49: If (G,G) and (G̃, G̃) are two measurable groups, where

between them there is a bimeasurable isomorphism, then for one group there is a σ-

finite invariant measure if and only if the same holds for the other group. The same

statement holds true for the existence of distributions Qn that have the property



5.5 Solutions to Selected Problems 233

(5.40). Consider now the group (G̃, G̃) = (R×O(k−1)×(k−1),BR×O(k−1)×(k−1)). There

is bimeasurable isomorphism between (G,G) and (G̃, G̃). Hence we have only to

consider (G̃, G̃). Using the invariant distribution Rk−1 on the group O(k−1)×(k−1) of

all rotations of Rk−1, whose existence has been proved in Problem 5.4, we set μ =

λ⊗Rk−1 to get a σ-finite invariant measure. If U(−n, n) is the uniform distribution,

then Qn = U(−n, n)⊗Rk−1 satisfies (5.40). �

Solution to Problem 5.54: The inequalities l( 1
2

(S0 + S1)) ≤ 1
2
l(S0)+ 1

2
l(S1) and

E0l(S0) = E0l(S1) ≤ E0l(
1
2

(S0 + S1)) imply

E0

[
1

2
l(S0) +

1

2
l(S1)− l(

1

2
(S0 + S1))

]
= 0.

As the bracket is nonnegative it must vanish P0-a.s. The strict convexity of l yields

S0 = S1, P0-a.s. �

Solution to Problem 5.55: If h(y, t) = IA(y)IC(t), A ∈ Bn, C ∈ B, then B =

T−1(C) ∈ I and
∫
h(x, T (x))P (dx) =

∫
[
∫
h(y, T (x))K(dy|x)]P (dx) by the definition

of K. To complete the proof one has only to apply the standard extension technique.

�

Solution to Problem 5.64: The first inequality in Problem 1.80 yields

|
∫

g(t)N(0, σ2)(dt)−
∫

g(t)N(μ, σ2)(dt)| ≤ C
∥∥N(0, σ2)− N(μ, σ2)

∥∥ .
As to the variational distance, we combine ‖P0 − P1‖ ≤ 2D(P0, P1) from Proposition

1.84, D2(P0, P1) = 2(1− H1/2(P0, P1)) from (1.110), and H1/2(N(0, σ2),N(μ, σ2)) =

exp{−μ2/(8σ2)} from (1.79). �

Solution to Problem 5.65: Denote by PG and QG the restrictions of P and Q,
respectively, to G. It follows from

∫
B

EP (
dQ

dP
|G)dP =

∫
B

dQ

dP
dP = Q(B), B ∈ G,

that

EP (
dQ

dP
|G) =

dQG

dPG
.

Hence for B ∈ G,

∫
B

EP (
dQ

dP
|G)EQ(T |G)dP =

∫
B

dQG

dPG
EQ(T |G)dPG .

The G-measurability of EQ(T |G) yields

∫
B

dQG

dPG
EQ(T |G)dPG =

∫
B

EQ(T |G)dQG =

∫
B

TdQ =

∫
B

T
dQ

dP
dP.

To prove the second statement we set A = {EP (dQ/dP |G) = 0}. Then A ∈ G and
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Q(A) =

∫
A

dQ

dP
dP =

∫
A

EP (
dQ

dP
|G)dP = 0. �

Solution to Problem 5.66: Set Q = Pn. Then Pn � P and dQ/dP = Ln :=
P (An)−1IAn . Then by (5.62)

EP (Ln|G)EPn(T |G) = EP (TLn|G). (5.63)

By Lemma A.33 and P (An) → 1

EP (EP (Ln|G)− 1)2 ≤ EP (EP (Ln|G)− 1)2 ≤ EP (Ln − 1)2 → 0,

EP (EP (TLn − T |G))2 ≤ EP (TLn − T )2 → 0,

where the last statement follows from Lebesgue’s theorem. Hence EPn(T |G) →P

EP (T |G). Then by Proposition A.12 for every subsequence nk there is a new subse-
quence, say nkl , so that TIAnkl

− EPnkl
(T |G)IAnkl

→ T − EP (T |G), P -a.s. Hence

by Fatou’s lemma,

lim inf
l→∞

EPnkl
(T − EPnkl

(T |G))2 = lim inf
l→∞

EP (T − EPnkl
(T |G))2IAnkl

≥ EP (T − EP (T |G))2.

As the subsequence nk was arbitrary we get

lim inf
n→∞

EPn(T − EPn(T |G))2 ≥ EP (T − EP (T |G))2. (5.64)

The assumption P (An) → 1 implies EPn(T |G)IAn →P EP (T |G) and TIAn →P T.
As

EPn(EP (T |G))2 ≤ 1

P (An)
EP (EP (T |G))2 ≤ 1

P (An)
EPT 2 <∞

and the conditional expectation provides the best approximation in mean square it
holds

lim sup
n→∞

EPn(T − EPn(T |G))2 = lim sup
n→∞

EP (T − EPn(T |G))2
1

P (An)
IAn

≤ lim sup
n→∞

EP (T − EP (T |G))2
1

P (An)
= EP (T − EP (T |G))2,

where the last equality follows from P (An) → 1. In view of (5.64) the proof is

completed. �

Solution to Problem 5.67: The solution is similar to that of Problem 5.64 if one
uses

H1/2(Ga(α, β1),Ga(α, β2)) =

( √
β1β2

1
2
(β1 + β2)

)α

. �



6

Large Sample Approximations of Models and
Decisions

6.1 Distances of Statistical Models

Let us be given two models Mi = (Xi,Ai, (Pi,θ)θ∈Δ), i = 1, 2. According to
Definition 4.9, for every ε ≥ 0 the model M1 is ε-deficient with respect to
model M2, denoted by M1 #ε M2, if the following holds. For every finite
subset � ⊆ Δ, every finite decision space D, every real-valued loss function
L with ‖L‖u ≤ 1, and every decision DM2 : D × X2 →k [0, 1], there exists a
decision DM1 : D×X1 →k [0, 1] with

R(θ,DM1) ≤ R(θ,DM2) + ε, θ ∈ �. (6.1)

We set

d(M1,M2) = inf{ε : M1 #ε M2, ε ≥ 0}, (6.2)
δ(M1,M2) = max{d(M1,M2), d(M2,M1)},

and call δ(M1,M2) the deficiency of the models M1 and M2. δ(M1,M2) is
nonnegative and symmetric. Moreover, if M1,M2,M3 are any models with
the same parameter set, then

d(M1,M3) ≤ d(M1,M2) + d(M2,M3),

and thus δ satisfies the triangular inequality

δ(M1,M3) ≤ δ(M1,M2) + δ(M2,M3).

This means that δ(M1,M2) is a pseudometric in the space M(Δ), say, of all
models with parameter set Δ. If � is any subset of Δ and Mi,� is the model
extracted fromMi with the restricted parameter set �, then by the definition
of d and δ it holds

δ(M1,�,M2,�) ≤ δ(M1,M2). (6.3)

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 6, c© Springer Science+Business Media, LLC 2008
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Problem 6.1.∗ For any models M1 and M2 with the same parameter set Δ it
holds

δ(M1,M2) = sup
�⊆Δ,|�|<∞

δ(M1,� ,M2,�). (6.4)

The pseudometric δ is consistent with the equivalence of models in the
sense of Definition 4.9.

Lemma 6.2. For two models M1 M2 the condition δ(M1,M2) = 0 holds if
and only if M1 ∼M2; that is, M1 #M2 and M2 #M1.

Proof. As M1 ∼ M2 if and only if M1,� ∼ M2,� for every finite
subset � ⊆ Δ, and in view of (6.4) δ(M1,M2) = 0 holds if and only if
δ(M1,�,M2,�) = 0 for every finite subset � ⊆ Δ, we may restrict ourselves
to the finite models M1,� and M2,�. If δ(M1,�,M2,�) = 0, then there is a
sequence εn ≥ 0 with εn → 0 such that M1,� #εn M2,�. We have to show
that this implies M1,� #0 M2,�. For any finite decision space D, any loss
function L with ‖L‖u ≤ 1, and every decision DM2 : D × X2 →k [0, 1], there
exist decisions DM1,n : D×X1 →k [0, 1] with

R(θ,DM1,n) ≤ R(θ,DM2) + εn, θ ∈ �.

As the finite model M1,� is dominated and the decision space is finite, and
therefore compact, Theorem 3.17 provides the existence of a subsequence nk
and a decision DM1,0 such that

lim
k→∞

R(θ,DM1,nk
) = R(θ,DM1,0), θ ∈ �.

Hence R(θ,DM1,0) ≤ R(θ,DM2), θ ∈ �, which yields M1,� #0 M2,�. Inter-
changing the roles of M1,� and M2,� completes the proof.

There is another way of expressing that one model is up to ε as informative
as another model. IfM2 is a randomization ofM1 up to ε, then we have shown
already in Corollary 4.10 that M2 is ε-deficient with respect to M1. For any
finite models Mi = (Xi,Ai, {Pi,1, ..., Pi,m}), i = 1, 2, we set

D(M1,M2) = inf
K

max
j=1,...,m

‖P2,j − KP1,j‖ ,

Δ(M1,M2) = max{D(M1,M2),D(M2,M1)}, (6.5)

where the infimum is taken over all stochastic kernels K : A2 × X1 →k [0, 1].
The definition of Δ(M1,M2) gives

Δ(M1,M2) ≥ 0 and Δ(M1,M2) = Δ(M2,M1). (6.6)

Let M1,M2,M3 be finite models with the same parameter set {1, ...,m}.
Suppose there are kernels K : A2×X1 →k [0, 1] and L : A3×X2 →k [0, 1] such
that for some ε1, ε2 > 0,

‖P2,j − KP1,j‖ < ε1 and ‖P3,j − LP2,j‖ < ε2, j = 1, ...,m.
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Then the kernel (LK)(dx3|x1) :=
∫

L(dx3|x2)K(dx2|x1) satisfies

‖P3,j − LKP1,j‖ ≤ ‖P3,j − LP2,j‖+ ‖LP2,j − LKP1,j‖
≤ ‖P3,j − LP2,j‖+ ‖P2,j − KP1,j‖ ≤ ε1 + ε2,

where the second inequality follows from (1.94). Hence we get D(M1,M3) ≤
D(M1,M2) + D(M2,M3), which together with (6.5) gives the triangular
inequality

Δ(M1,M3) ≤ Δ(M1,M2) +Δ(M2,M3). (6.7)

Remark 6.3. The definition of Δ(M1,M2) is soon extended to all modelsM1 and
M2 with a common, but not necessarily finite, parameter set. It follows then from
(6.6) and (6.7) that Δ(M1,M2) is also a pseudometric on M(Δ). The relations
between the two pseudometrics δ(M1,M2) and Δ(M1,M2) are fundamental to
decision theory.

For Mi = (Xi,Ai, {Pi,1, ..., Pi,m}), i = 1, 2, with (X1,A1) = (X2,A2), we
may use the kernel generated by the identical mapping to get an upper bound
for Δ(M1,M2).

Δ(M1,M2) ≤ max
j=1,...,m

‖P1,j − P2,j‖ . (6.8)

Another conclusion of Corollary 4.10 is the following statement.

Lemma 6.4. For any finite models Mi = (Xi,Ai, {Pi,1, ..., Pi,m}), i = 1, 2, it
holds

δ(M1,M2) ≤ Δ(M1,M2). (6.9)

Proof. For every α > Δ(M1,M2) there is a kernel K : A2 × X1 →k [0, 1]
such that maxj=1,...,m ‖P2,j − KP1,j‖ < α. For any decision DM2 we set

(DM2K)(da|x1) =
∫

DM2(da|x2)K(dx2|x1).

Hence

R(j,DM2)− R(j,DM2K)

=
∫

[
∫
L(j, a)DM2(da|x2)]P2,j(dx2)−

∫
[
∫
L(j, a)(DM2K)(da|x1)]P1,j(dx1)

=
∫
gj(x2)[P2,j(dx2)− (KP1,j)(dx2)], where

gj(x2) =
∫
L(j, a)DM2(da|x2).

As |gj | ≤ 1 we obtain |R(j,DM2) − R(j,DM2K)| ≤ ‖P2,j − KP1,j‖ and
R(j,DM1) ≤ R(j,DM2) + α with the decision DM1 := DM2K for the model
M1. HenceM1 #α M2. SimilarlyM2 #α M1 and therefore δ(M1,M2) ≤ α.
Taking α ↓ Δ(M1,M2) we get the statement.
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Our goal is now to show that equality holds in (6.9), and that it can be
generalized to any, not necessarily finite, models M1 and M2. A first step
in this direction concerns models Ni = (Yi,Bi, (Qi,θ)θ∈�) with finite sample
spaces Yi. Then the randomization criterion Theorem 4.16 applies and we get

δ(N1,N2) = Δ(N1,N2), for |Yi| <∞. (6.10)

The technique used in the following is to approximate any model by models
with a finite sample space. Here we often use the simple fact that

δ(M,N ) = Δ(M,N ) = 0 if M and N are mutual randomizations. (6.11)

The crucial point for the subsequent considerations is that models with a finite
parameter set can be approximated by models with a finite sample space. For
a model M = (X ,A, {P1, ..., Pm}) we set

P = 1
m

∑m
j=1 Pj , Mj = dPj

dP
, j = 1, ...,m,

Lj = Mj

M1
I(0,∞)(M1) +∞I{0}(M1), j = 2, ...,m.

(6.12)

Lemma 6.5. Let M = (X ,A, {P1, ..., Pm}) be a finite model. Then for every
ε > 0 there exists a model N = (Y,B, {Q1, ..., Qm}) with |Y| <∞ and

Δ(M,N ) ≤ ε.

Proof. Approximating Mj by nonnegative step functions in the sense of
L1(P ) we see that there is a partition A1, ..., AN of X with Ai ∈ A and
probability densities M̃j =

∑N
i=1 ci,jIAi

(x) such that the distributions

P̃j(A) =
∫
IA(x)M̃j(x)P (dx), A ∈ A, j ∈ �,

satisfy ‖ P̃j − Pj ‖≤ ε. Set M̃ = (X ,A, {P̃1, ..., P̃m}). The inequality (6.8)
implies Δ(M̃,M) ≤ ε. From each Ai we select a point xi ∈ Ai and set
Y = {x1, ..., xN}, B = P(Y), B ∈ B,

Qj(B) =
∑N

i=1
P̃j(Ai)δxi

(B), and N = (Y,B, {Q1, ..., Qm}).

Then obviously Qj = P̃j ◦ T−1, where T : X → Y is the mapping defined by
T (x) = xi for x ∈ Ai. Hence N is a randomization of M̃. To show that M̃ is
also a randomization of N we introduce the kernel K : A× Y →k [0, 1] by

K(A|y) =
∑N

i=1

P (A ∩Ai)
P (Ai)

δy(Ai).

Then with ci,j = P̃j(Ai)/P (Ai),
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(KQj)(A) =
∑N

i=1

P (A ∩Ai)
P (Ai)

Qj({xi})

=
∑N

i=1

P (A ∩Ai)
P (Ai)

P̃j(Ai) =
∫
IA
∑N

i=1
IAi

ci,jdP

=
∫
IAM̃jdP = P̃j(A).

Hence M̃ is a randomization ofN and the proof is completed in view of (6.11).

Let �∗ ⊆ � ⊆ Δ be finite subsets of Δ. IfMi,�∗ andMi,� are the models
with the restricted parameter sets �∗ and �, respectively, i = 1, 2, then by
(6.5)

Δ(M1,�∗ ,M2,�∗) ≤ Δ(M1,�,M2,�). (6.13)

Suppose now that that Mi = (Xi,Ai, (Pi,θ)θ∈Λ), i = 1, 2 are two models with
any parameter set Λ, say. Then we set

Δ(M1,M2) = sup
�⊆Λ,|�|<∞

Δ(M1,�,M2,�) (6.14)

and call Δ(M1,M2) the Δ-distance of M1 and M2. For every finite subset
� ⊆ Λ with � = {θ1, ..., θm} we introduce the standard distribution μi,� as
in (4.13), the standard model as in (4.15), and denote the latter by

Ni,� = (S|�|,S|�|, {Qi,1, ..., Qi,|�|}), i = 1, 2.

The next result, in a different formulation, is due to LeCam (1964); see also
Torgersen (1991) and Strasser (1985).

Theorem 6.6. For any models Mi = (Xi,Ai, (Pi,θ)θ∈Λ), i = 1, 2, it holds

Δ(M1,M2) = δ(M1,M2).

Moreover, Δ(M1,M2) = 0 holds if and only if for every finite subset � ⊆ Λ
the standard distributions μi,�, i = 1, 2, are identical.

Proof. In view of (6.4) and (6.14) it suffices to deal with finite models.
By (6.9) we have only to show that

Δ(M1,M2) ≤ δ(M1,M2).

By Lemma 6.5 and (6.10), for ε > 0 there are models Ni with finite samples
spaces such that

Δ(Mi,Ni) ≤ ε, i = 1, 2, and Δ(N1,N2) = δ(N1,N2).

Hence by the triangular inequalities for δ and Δ, together with (6.9),
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Δ(M1,M2) ≤ Δ(N1,N2) + 2ε = δ(N1,N2) + 2ε
≤ δ(M1,M2) + 2ε+ δ(M1,N1) + δ(M2,N2)
≤ δ(M1,M2) + 2ε+Δ(M1,N1) +Δ(M2,N2) ≤ δ(M1,M2) + 4ε,

which completes the proof of the first statement. As to the second, we note
that by (6.14), the first statement, and Lemma 6.2 it holds Δ(M1,M2) = 0
if M1,� ∼ M2,� for every finite �. By Proposition 4.22 this is equivalent to
N1,� ∼ N2,�. An application of Theorem 4.25 completes the proof.

For the next section, which deals with the convergence of models, it is im-
portant to have an upper bound for Δ(M1,M2) in terms of the Dudley metric
(see (A.6)) of the associated standard distributions. The bridge is the equality
of δ(M1,M2) and Δ(M1,M2), which has been established in Theorem 6.6,
and the relation of δ(M1,M2) to the Bayes risks in M1,M2.

Theorem 6.7. For any finite models Mi = (Xi,Ai, {Pi,1, ..., Pi,m}), i = 1, 2,

Δ(M1,M2) = sup
Π,L:‖L‖u≤1,D

| infDM1
r(Π,DM1)− infDM2

r(Π,DM2)|,

where the supremum is taken over all priors Π, all loss functions L with
‖L‖u ≤ 1, and all finite decision spaces D. Furthermore,

Δ(M1,M2) ≤ m ‖μ1 − μ2‖D , (6.15)

where ‖μ1 − μ2‖D is the Dudley distance of the standard distributions μ1 and
μ2 that belong to the models M1 and M2, respectively.

Proof. The expression infDMi
r(Π,DMi

) is a function of Π, L, and D, say
ψi(Π,L,D), i = 1, 2. Corollary 4.15 implies that M1 #ε M2 if and only if
ψ1(Π,L,D) − ψ2(Π,L,D) ≤ ε for every prior Π, every loss function L with
‖L‖u ≤ 1, and every finite decision space D. This yields

inf{ε : M1 #ε M2} = supΠ,L,D{ψ1(Π,L,D)− ψ2(Π,L,D)}.
By switching the roles of M1 and M2 and using the fact that

δ(M1,M2) = max (inf{ε : M1 #ε M2}, inf{ε : M2 #ε M1}) ,
we get the first statement. To prove the stated inequality we note that
δ(M1,M2) = Δ(M1,M2) by Theorem 6.6. To complete the proof we ap-
ply Corollary 4.33.

We conclude this section with the remark that the explicit evaluation of
Δ(M1,M2) is a challenging problem that can be completed only in special
cases. The deficiency of binary models was obtained by Torgersen (1970); see
also LeCam (1986) and Strasser (1985). We also refer to Luschgy (1992b),
Lehmann (1988), and Torgersen (1991), where the deficiency of two linear
models is evaluated. Finally we remark that in many cases one needs only
tractable upper bounds for Δ(M1,M2) for two models with the same sample
space. Then the inequality (6.8) can be used as long as the variational distance,
or a suitable bound for it, can be evaluated. Results in this direction can be
found, for example, in Shiryaev and Spokoiny (2000).
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6.2 Convergence of Models

In this section we introduce and study convergence concepts for statistical
models by using the deficiency of models. As weak convergence is concerned
with the finite submodels, we first consider relations among standard distribu-
tions, Hellinger transforms, and deficiencies of the finite submodels to prepare
for the results on the convergence of models.

When dealing with the convergence of not necessarily homogeneous models
it proves useful to turn to a smoothed model which is homogenous. More
precisely, given M = (X ,A, {P1, ..., Pm}), we set P = (1/m)

∑m
i=1 Pi and

Mα = (X ,A, {P1,α, ..., Pm,α}), 0 ≤ α ≤ 1, where
Pi,α = (1− α)Pi + αP , 0 ≤ α ≤ 1, i = 1, ...,m. (6.16)

If N = (Y,B, {Q1, ..., Qm}) is another finite model and Nα is introduced in
the same way as Mα, then for kernels K : B×X →k [0, 1] and L : A×Y →k

[0, 1] it holds
∥∥(1− α)Qi + αQ− K((1− α)Pi + αP )

∥∥
≤ (1− α) ‖Qi − KPi‖+ α

1
m

∑m

i=1
‖Qi − KPi‖ ≤ max

1≤i≤m
‖Qi − KPi‖ .

Similarly,
∥∥(1− α)Pi + αP − L((1− α)Qi + αQ)

∥∥ ≤ max
1≤i≤m

‖Pi − LQi‖ .

Hence by the definition of the Δ-distance in (6.5),

Δ(Mα,Nα) ≤ Δ(M,N ), 0 ≤ α ≤ 1. (6.17)

Problem 6.8.∗ If P1, ..., Pm, Q1, ..., Qm are distributions on (X ,A), then

|Hs(P1, ..., Pm)− Hs(Q1, ..., Qm)| ≤ 2
∑m

i=1
‖Pi −Qi‖m(s) ,

s ∈ So
m = {s : s = (s1, ..., sm), si > 0,

∑m

i=1
si = 1}, m(s) = min{s1, ..., sm}.

The distance Δ(M,N ) gives upper bounds for the differences of the
Hellinger transforms.

Proposition 6.9. For any statistical models M = (X ,A, {P1, ..., Pm}) and
N = (Y,B, {Q1, ..., Qm}) and 0 ≤ α ≤ 1 it holds

|Hs(P1,α, ..., Pm,α)− Hs(Q1,α, ..., Qm,α)| ≤ 2m(Δ(M,N ))m(s), s ∈ So
m.

Proof. Inequality 1.123 yields for any stochastic kernels K : B × X →k

[0, 1] and L : A× Y →k [0, 1],

Hs(P1,α, ..., Pm,α) ≤ Hs(KP1,α, ...,KPm,α),
Hs(Q1,α, ..., Qm,α) ≤ Hs(LQ1,α, ..., LQm,α).
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Hence by Problem 6.8, applied to Pi,α, Qi,α instead of Pi, Qi,

Hs(P1,α, ..., Pm,α) ≤ Hs(KP1,α, ...,KPm,α)

≤ 2
∑m

i=1
‖KPi,α −Qi,α‖m(s) + Hs(Q1,α, ..., Qm,α),

Hs(Q1,α, ..., Qm,α) ≤ Hs(LQ1,α, ..., LQm,α)

≤ 2
∑m

i=1
‖LQi,α − Pi,α‖m(s) + Hs(P1,α, ..., Pm,α),

|Hs(P1,α, ..., Pm,α)− Hs(Q1,α, ..., Qm,α)|
≤ 2m max

1≤i≤m
max{‖KPi,α −Qi,α‖m(s)

, ‖LQi,α − Pi,α‖m(s)}.

Taking the infimum over K and L we get

|Hs(P1,α, ..., Pm,α)− Hs(Q1,α, ..., Qm,α)| ≤ 2m(Δ(Mα,Na))m(s).

To complete the proof we apply inequality (6.17).
Now we use the concept of deficiency to introduce convergence concepts

for any, not necessarily finite, statistical models. We recall that for two models
the Δ-distance has been defined by (6.14).

Definition 6.10. If Mn = (Xn,An, (Pn,θ)θ∈Λ) and M = (X ,A, (Pθ)θ∈Λ) are
models with the same parameter set Λ, then the sequence of models Mn is said
to be convergent to the model M if limn→∞Δ(Mn,M) = 0. If Λn ↑ Λ, then
the sequence of models Mn = (Xn,An, (Pn,θ)θ∈Λn

) is called weakly convergent
to the model M = (X ,A, (Pθ)θ∈Λ) if for every finite subset � ⊆ Λ it holds
limn→∞Δ(Mn,�,M�) = 0. In this case we write Mn ⇒ M. We call M0

an accumulation point of the sequence Mn if there exists a subsequence Mnk

with Mnk
⇒M0.

Remark 6.11. If the parameter set Λ is finite, then it follows from the previous
definition and (6.13) that the convergence and the weak convergence are identical.

Remark 6.12. It should be noted that the limiting model is not uniquely deter-
mined as Δ is only a pseudometric. Indeed, Lemma 6.2 and Theorem 6.6 imply
that

Δ(M1,M2) = 0 if and only if M1 ∼M2. (6.18)

This means that the convergence of models is, more precisely, a convergence of
classes of equivalent models to an equivalence class of models.

The relation between the convergence and the weak convergence becomes
clear if we take into account (6.14). The distance Δ(Mn,�,M�) is small if
there are kernels K� and L� depending on � such that maxθ∈� ‖K�Pn,θ − Pθ‖
and maxθ∈� ‖Pn,θ − L�Pθ‖ are small. On the other hand, Δ(Mn,M) is small
if and only if the supremum over all such maxima is small.

As it turns out, the concept of weak convergence is flexible enough to cover
typical situations in both parametric and nonparametric statistics, and strong
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enough to create a rich and fruitful asymptotic theory of statistical models. A
key role in this regard is played by manageable criteria for weak convergence
which are criteria for the convergence of finite models. Let

Mn = (Xn,An, {Pn,1, ..., Pn,m}), M = (X ,A, {P1, ..., Pm}),

n = 1, 2, ..., be models. We set

Pn =
1
m

∑m

i=1
Pn,i, P =

1
m

∑m

i=1
Pi, Mn,i =

dPn,i

dPn

, Mi =
dPi

dP
,

Ln,j =
Mn,j

Mn,1
I(0,∞)(Mn,1) +∞I{0}(Mn,1),

Lj =
Mj

M1
I(0,∞)(M1) +∞I{0}(M1), j = 2, ...,m.

We recall that Ln,j and lnLn,j are random variables with values in R =
[−∞,∞] which, together with the metric ρ(x, y), form the compact metric
space (R, ρ); see Remark A.1. The weak convergence of distributions refers to
this metric. Furthermore, we denote by

μn = L((Mn,1, ...,Mn,m)|Pn) and μ = L((M1, ...,Mm)|P ) (6.19)

the standard distributions of the models Mn and M, respectively. Note that
μn and μ are defined on the Borel sets of the simplex

Sm = {(t1, ..., tm) : ti ≥ 0,
1
m

∑m

i=1
ti = 1}.

Introduce Pn,i,α and Pi,α as in (6.16). Then by the definition of the Hellinger
transforms (see Definition 1.87),

Hs(Pn,1,α, ..., Pn,m,α) =
∫ ∏m

i=1((1− α)ti + α)siμn(dt),

Hs(P1,α, ..., Pm,α) =
∫ ∏m

i=1((1− α)ti + α)siμ(dt).

Theorem 6.13. For any models Mn = (Xn,An, {Pn,1, ..., Pn,m}) and M =
(X ,A, {P1, ..., Pm}), the following statements are equivalent.

(A) limn→∞Δ(Mn,M) = 0.

(B) μn ⇒ μ.

(C) limn→∞ Hs(Pn,1,α, ..., Pn,m,α) = Hs(P1,α, ..., Pm,α), α ∈ [0, 1], s ∈ S0
m.

Corollary 6.14. If the model M is homogeneous, then condition (C) can be
replaced by the weaker condition

(D) limn→∞ Hs(Pn,1, ..., Pn,m) = Hs(P1, ..., Pm), s ∈ S0
m.
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Corollary 6.15. If the model M is homogeneous, then each of the conditions
(A) through (D) is equivalent to

(E) L((lnLn,2, ..., lnLn,m)|Pn,1) ⇒ L((lnL2, ..., lnLm)|P1).

Proof. (A) → (C): the stated convergence follows from Proposition 6.9.
(C) → (B): as the simplex Sm is a compact metric space according to Pro-
horov’s theorem (see Theorem A.48), every subsequence of {μn} contains a
weakly convergent subsequence. It remains to show that all accumulation
points are identical. But this follows from the fact that

t �→
∏m

i=1((1− α)ti + α)si

is a continuous and bounded function on Sm and the uniqueness theorem
4.25. (B) → (A): as the Dudley metric metricizes the weak convergence (see
Theorem A.50) condition (B) implies ‖μn − μ‖D → 0. Inequality (6.15) im-
plies (A). The first corollary follows from Corollary 4.26. To prove the second
corollary we note that, as lnx is a homeomorphism between R+ and R, the
statement (E) is equivalent to

L((Ln,2, ..., Ln,m)|Pn,1) ⇒ L((L2, ..., Lm)|P1). (6.20)

It follows from the definition of the Hellinger transform in Definition 1.87 and
the definition of the likelihood ratios Ln,i and Li, respectively,

Hs(Pn,1, ..., Pn,m) =
∫
Ms1

n,1 · · ·Msm
n,mdPn =

∫
Ls2
n,2 · · · Lsm

n,mdPn,1,

Hs(P1, ..., Pm) =
∫
Ls2

2 · · · Lsm
m dP1.

Set fn = Ls2
n,2 · · · Lsm

n,m. Then
∫
f1/(1−s1)
n dPn,1 =

∫
L
s2/(1−s1)
n,2 · · · Lsm/(1−s1)

n,m dPn,1

≤
∏m

i=2
(
∫
Ln,2dPn,1)si/(1−s1) ≤ 1.

Hence,

lim sup
c→∞

lim sup
n→∞

∫
fnI[c,∞)(fn)dPn,1 ≤ lim sup

c→∞
c−1/(1−s1) = 0,

and we get from (6.20) and Proposition A.44 that Hs(Pn,1, ..., Pn,m) →
Hs(P1, ..., Pm). The statement follows from the previous corollary.

The next proposition shows that every sequence of finite models is rela-
tively compact, so that the convergence of the sequence of models depends
only on whether there is just one or perhaps several accumulation points.
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Proposition 6.16. Every sequence Mn = (Xn,An, {Pn,1, ..., Pn,m}), n =
1, 2, ..., of finite models is relatively sequentially compact in the sense that
for every subsequence nk there is a subsequence nkl

and a model M =
(X ,A, {P1, ..., Pm}) such that

lim
l→∞

Δ(Mnkl
,M) = 0.

Proof. We recall that by Theorem 4.25 every finite model M and the
associated standard model N are equivalent and therefore Δ(M,N ) = 0 by
(6.18). Hence it suffices to consider standard models

Nn = (Sm,Sm, {Pn,1, ..., Pn,m}), where

Pn,i(B) =
∫
IB(x1, ..., xm)xiμn(dx1, ..., dxm), B ∈ Sm.

Sm is compact, and by Prohorov’s theorem (see Theorem A.48) the sequence
μnk

contains a subsequence nkl
that converges weakly to some distribution μ.

The latter is again a standard distribution as the mapping (x1, ..., xm) → xi is
a bounded and continuous function on Sm. Put N = (Sm,Sm, {P1, ..., Pm}),
where dPi = xiμ(dx1, ..., dxm). Then liml→∞Δ(Nnkl

,N ) = 0 by The-
orem 6.13. To complete the proof we set M = (X ,A, {P1, ..., Pm}) =
(Sm,Sm, {P1, ..., Pm}).

Example 6.17. A model N = (Y,B, (Qθ)θ∈Δ) is called totally informative if

Qθ1 ⊥ Qθ2 , θ1 �= θ2, θ1, θ2 ∈ Δ.

If Δ is finite, say Δ = {1, ...,m}, then one may decompose Y into m disjoint sets Ai

with Qi(Ai) = 1. This means that the true distribution can be identified without
any error by a sample of size n = 1. Consider now a sequence of models

Mn = (Xn,An, (Pn,θ)θ∈Δn).

If N is totally informative, then for every finite set � ⊆ Δ the model N� is
totally informative as well. By Problem 1.81 it holds Qθ1 ⊥ Qθ2 if and only if
H1/2(Qθ1 , Qθ2) = 0. If Mn ⇒ N , then by (C) in Theorem 6.13

lim
n→∞

H1/2(Pn,θ1 , Pn,θ2) = H1/2(Qθ1 , Qθ2) = 0, θ1 �= θ2. (6.21)

But this condition is also sufficient for Mn ⇒ N . To see this we have, in view of the
sequential compactness in Proposition 6.16, only to show that every accumulation
point (Y,B, (Qθ)θ∈�) of Mn,� is totally informative. But this follows from

H1/2(Qθ1 , Qθ2) = lim
n→∞

H1/2(Pn,θ1 , Pn,θ2) = 0

and the fact that H1/2(Qθ1 , Qθ2) = 0 implies Qθ1 ⊥ Qθ2 . Hence we have obtained
that (6.21) is necessary and sufficient for the weak convergence of Mn to the totally
informative model N = (Y,B, (Qθ)θ∈Δ).

Suppose we are given i.i.d. observations X1, ..., Xn with common distribution
Pθ. Then we have the sequence of models
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Mn = (Xn,A⊗n, (P⊗n
θ )θ∈Δ).

If the parameter θ is identifiable, then θ1 �= θ2 implies Pθ1 �= Pθ2 and thus
H1/2(Pθ1 , Pθ2) < 1; see Problem 1.81. Then by Problem 1.86,

lim
n→∞

H1/2(P
⊗n
θ1

, P⊗n
θ2

) = 0,

lim
n→∞

H1/2(P
⊗n
θ1

, P⊗n
θ2

) = H1/2(P
⊗∞
θ1

, P⊗∞
θ2

).

Hence we get that the sequence of models (Xn,A⊗n, (P⊗n
θ )θ∈Δ) tends weakly to the

totally informative model (X∞,A⊗∞, (P⊗∞
θ )θ∈Δ).

The exponential families constitute another class of models for which the
weak convergence of models can be reduced to the weak convergence of all
binary submodels. Suppose we are given the following exponential models.

M = (X ,A, (Pθ)θ∈Δ), dPθ

dμ (x) = exp{〈θ, T (x)〉 −K(θ)},

Mn = (Xn,An, (Pn,θ)θ∈Δn
), dPn,θ

dμn
(xn) = exp{〈θ, Tn(xn)〉 −Kn(θ)}.

Proposition 6.18. Let Mn and M be exponential models where the param-
eter sets satisfy Δn ⊆ Δ ⊆ R

d with Δn ↑ Δ, and M satisfies the conditions
(A1) and (A2). Then Mn ⇒M if and only if for every θ1, θ2 ∈ Δ, and every
0 < s < 1,

limn→∞[sKn(θ1) + (1− s)Kn(θ2)−Kn(sθ1 + (1− s)θ2)]

= sK(θ1) + (1− s)K(θ2)−K(sθ1 + (1− s)θ2).
(6.22)

The latter condition is equivalent to

lim
n→∞

Hs(Pn,θ1 , Pn,θ2) = Hs(Pθ1 , Pθ2), θ1, θ2 ∈ Δ, s ∈ (0, 1). (6.23)

Proof. As M is homogeneous Theorem 6.13 and Example 1.88 show that
Mn ⇒M holds if and only if

Kn(
∑m

i=1
siθi)−

∑m

i=1
siKn(θi)→ K(

∑m

i=1
siθi)−

∑m

i=1
siK(θi) (6.24)

for every si > 0,
∑m

i=1 si = 1, every θi and every m, so that (6.22) is necessary.
Set

θ̃1 = θm, θ̃2 =
∑m−1

i=1

si
1− sm

θi, s = sm.

Then

Kn(
∑m

i=1
siθi)−

∑m

i=1
siKn(θi)

= Kn(sθ̃1 + (1− s)θ̃2)− sKn(θ̃1)− (1− s)Kn(θ̃2)

+ (1− s)(Kn(
∑m−1

i=1

si
1− s

θi)−
∑m−1

i=1

si
1− s

K(θi)).
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This relation and mathematical induction show that (6.22) and (6.23) are
equivalent.

The question arises of how we can model situations for i.i.d. samples if
nontrivial limit models are desired. The idea is to turn to a double array
Xn,i with L(Xn,i) = Pn,θ, i = 1, ..., n, n = 1, 2, .... If for large n one more
observation Xn,i provides little additional information (i.e., if the distributions
Pn,θ1 and Pn,θ2 get closer and closer for large n), then we may expect to get
a nontrivial limit model for (P⊗n

n,θ )θ∈Δ. One way to achieve this goal is the
localization of the parameter. We fix some θ0 ∈ Δ, introduce a local parameter
h by setting θ = θ0 + h/

√
n, and study the sequence of models

Mn = (Xn,A⊗n, (P⊗n
θ0+h/

√
n
)h∈Δn

), Δn = {h : θ0 + h/
√
n ∈ Δ}.

Example 6.19. Suppose M = (X ,A, (Pθ)θ∈Δ), Δ ⊆ R, is a one-parameter expo-
nential family with density dPθ/dμ = exp{θT −K(θ)}. Then

Pn,h = P⊗n
θ0+h/

√
n

leads again to an exponential family, but now with the parameter h. It follows from
Example 1.88 and Problem 1.86 that

Hs(Pn,h1 , Pn,h2) = (Hs(Pθ0+h1/
√

n, Pθ0+h2/
√

n))n

= exp{−n[sK(θ0 +
h1√
n

) + (1− s)K(θ0 +
h2√
n

)−K(θ0 +
sh1 + (1− s)h2√

n
)]}.

Consider the function

f(t) = sK(θ0 + th1) + (1− s)K(θ0 + th2)−K(θ0 + t(sh1 + (1− s)h2)).

It holds f(0) = 0, f ′(0) = 0, and

f ′′(0) = K′′(θ0)(sh
2
1 + (1− s)h2

2 − (sh1 + (1− s)h2)
2)

= −s(1− s)(h1 − h2)
2K′′(θ0).

We know from Example 1.120 that K′′(θ0) is the Fisher information I(θ0). Hence

Hs(Pn,h1 , Pn,h2)→ exp{−1

2
s(1− s)(h2 − h1)

2I(θ0)}.

The relation 1.79 yields

Hs(N(I(θ0)h1, I(θ0)),N(I(θ0)h2, I(θ0))) = exp{−1

2
s(1− s)I(θ0)(h2 − h1)

2}.

Using the criterion for the weak convergence of models given by exponential families,
which has been established in Proposition 6.18, we arrive at

(Xn,A⊗n, (P⊗n
θ0+h/

√
n)h∈Δn) ⇒ G = (R,B, (N(I(θ0)h, I(θ0)))h∈R).

Later we show that such a convergence to the Gaussian model G holds for any
L2-differentiable family of distributions (Pθ)θ∈Δ.
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Another example of a situation where for large n one more observation
provides little additional information is met in the Poisson limit theorem
considered below.

Example 6.20. For every fixed n let εn,1, ..., εn,n be i.i.d. Bernoulli variables with
success probability pn = λ/n. Set Pn,λ = ((1 − (λ/n))δ0 + (λ/n)δ1)

⊗n, λ ∈ Δn =
(0, n). We consider the sequence of models

Mn = ({0, 1}n,P({0, 1}n), ((1− λ

n
)δ0 +

λ

n
δ1)

⊗n
λ∈Δn

),

M = (N,P(N), (Po(λ))λ∈Λ), Λ = (0,∞).

Both families of distributions are exponential families. Using

Hs((1− p1)δ0 + p1δ1, (1− p2)δ0 + p2δ1) = (1− p1)
s(1− p2)

1−s + ps
1p

1−s
2

we get

Hs((1−
λ1

n
)δ0 +

λ1

n
δ1)

⊗n, (1− λ2

n
)δ0 +

λ2

n
δ1)

⊗n)

=

(
(1− λ1

n
)s(1− λ2

n
)1−s +

1

n
λs

1λ
1−s
2

)n

→ exp
{
−sλ1 − (1− s)λ2 + λs

1λ
1−s
2

}
.

As Hs(Po(λ1),Po(λ2)) = exp
{
−sλ1 − (1− s)λ2 + λs

1λ
1−s
2

}
we get from Proposition

6.18 that the sequence of Bernoulli models Mn converges weakly to the Poisson
model M. This is, roughly speaking, the Poisson limit theorem in the language of
convergence of models.

6.3 Weak Convergence of Binary Models

To prepare the criteria for the convergence of products of models we study
binary models in this section. Compared with multivariate limit theorems,
one could say here that the binary models are comparable with the one-
dimensional marginal distributions, whose convergence provides already im-
portant properties of the sequence of multivariate distributions. For example,
one may conclude the tightness of a sequence of multivariate distributions
from the tightness of all marginal distributions. We start with a binary model
M and set

M = (X ,A, {P,Q}), R = 1
2 (P +Q), M = dP

dR ,

L = 2−M
M I(0,2)(M) +∞I{0}(M), μ = L((M, 2−M)|R).

(6.25)

It holds that dQ/dR = 2−M , and L is the likelihood ratio of Q with respect
to P. We note that L is a random variable with values in R+ = [0,∞]. The
latter is a compact metric space with the metric that is induced by the one-
to-one mapping ψ(x) = x/(1 + |x|) of R+ on [0, 1]; see Remark A.1. Let B+

denote the σ-algebra of Borel sets of R+. Then L is a measurable mapping
with values in R+, and by the distribution of L we mean L(L|P ) = P ◦L−1. We
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also consider the log-likelihood and note that the extension of the logarithm,
by setting ln 0 = −∞ and ln∞ = ∞, is a homeomorphism of the compact
metric spaces R+ and R. If B is the σ-algebra of Borel sets of R, then lnL is a
random variable with value in (R,B). Finally, χ(x) = (2x/(1 + x), 2/(1 + x))
is a homeomorphism of the compact metric spaces R+ = [0,∞] and

S2 = {(t1, t2) : t1, t2 ≥ 0, t1 + t2 = 2}.

We have already characterized the weak convergence of models in terms of
the standard measures. For binary models we show that this is equivalent to
the convergence of the distributions of likelihood ratios. Suppose we are given
a sequence of binary models Mn. We set

Mn = (Xn,An, {Pn, Qn}), Mn = dPn

dRn
, Rn = 1

2 (Pn +Qn),

Ln = 2−Mn

Mn
I(0,∞)(Mn) +∞I{0}(Mn), μn = L((Mn, 2−Mn)|Rn).

(6.26)

Theorem 6.21. For binary models Mn = (Xn,An, {Pn, Qn}), n = 1, 2, ...,
and M = (X ,A, {P,Q}) with the standard distributions μn and μ, respec-
tively, the following statements are equivalent.

(A) limn→∞Δ(Mn,M) = 0.

(B) μn ⇒ μ.

(C) limn→∞ Hs(Pn, Qn) = Hs(P,Q), 0 < s < 1.

(D) L(Ln|Pn) ⇒ L(L|P ).

Proof. Theorem 6.13 implies the equivalence of (A) and (B) and the
necessity of (C). If (C) is fulfilled and μ̃ is an accumulation point of the
sequence μn, then the fact that xs1x

1−s
2 is a continuous function on S2 implies

∫
xs1x

1−s
2 μ̃(dx1, dx2) = Hs(P,Q) =

∫
xs1x

1−s
2 μ(dx1, dx2), 0 < s < 1,

so that by Corollary 4.27 all accumulation points of the sequence μn are
identical with μ. As S2 is compact the sequence μn is sequentially compact
with respect to the weak convergence by Prohorov’s theorem (see Theorem
A.48). Hence we have the weak convergence of μn to μ which is (B). Now we
show (D) → (C). It holds for 0 < s < 1,

lim
N→∞

sup
n

∫
I[N,∞)(Ln)L1−s

n dPn ≤ lim
N→∞

sup
n

1
Ns

∫
LndPn ≤ lim

N→∞

1
Ns

= 0.

Then (D) and Proposition A.44 give

Hs(Pn, Qn) =
∫
Ms

n(2−Mn)1−sdRn =
∫
L1−s
n dPn →

∫
L1−sdP = Hs(P,Q).
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Finally we show (B) → (D). Suppose ϕ : [0,∞] → R is continuous. Then
ψ(x1, x2) = ϕ(x2/x1)x1, 0 < x1 ≤ 2, x2 = 2 − x1, with ψ(0, 2 − 0) = 0, is
continuous on S2. Hence

lim
n→∞

∫
ϕ(Ln)dPn = lim

n→∞

∫
ϕ(

2−Mn

Mn
)MndRn = lim

n→∞

∫
ψdμn

=
∫
ψdμ =

∫
ϕ(L)dP.

If μ is the standard distribution ofM = (X ,A, {P,Q}), then the properties
of P and Q to be absolutely continuous, or to be mutually singular, can be
expressed with the help of the standard distribution. Indeed,

Q
 P ⇔ R(M = 0) = μ({(0, 2)}) = 0, (6.27)
P 
 Q ⇔ R(M = 2) = μ({(2, 0)}) = 0,

P ⊥ Q ⇔
{
R(M = 2) = μ({(2, 0)}) = 1/2,

R(M = 0) = μ({(0, 2)}) = 1/2.

Now we study sequencesMn = (Xn,An, {Pn, Qn}) for which each accumu-
lation point M = (X ,A, {P,Q}) has the property Q
 P, which is equivalent
to μ({(0, 2)}) = 0.

Definition 6.22. For a sequence of binary models Mn = (Xn,An, {Pn, Qn})
we call the sequence {Qn} contiguous with respect to the sequence {Pn} if
Q
 P for each accumulation point M = (X ,A, {P,Q}). In this case we write
{Qn} � {Pn}. If {Pn} � {Qn} holds as well, then we write {Pn} �� {Qn}.

The definition can be reformulated by saying that {Qn} is contiguous with
respect to {Pn} if and only if each accumulation point ν of the sequence of
standard distributions satisfies Q(L = ∞) = ν({(0, 2)}) = 0. It is clear from
its definition that contiguity is in a way an asymptotic version of the concept
of absolute continuity. Indeed, if (Xn,An, {Pn, Qn}) = (X ,A, {P,Q}), then
{Qn} � {Pn} if and only if Q 
 P. However, if we have only Mn ⇒ M,
then from Qn 
 Pn for every n one cannot conclude that the limit model
satisfies Q
 P. This is due to the simple fact that for a convergent sequence
of standard measures μn with μn({(0, 2)}) = 0 the limit μ does not necessarily
satisfy μ({(0, 2)}) = 0.

Example 6.23. This is a special case of Example 6.17. Let P0 and P1 be two
different distributions on (X ,A) that are mutually absolutely continuous. The
relation P0 �= P1 yields Hs(P0, P1) < 1. We consider the sequence of models
Mn = (Xn,A⊗n, {P⊗n

0 , P⊗n
1 }). It follows from Problem 1.86 that

Hs(P
⊗n
0 , P⊗n

1 ) = (Hs(P0, P1))
n → 0, s ∈ (0, 1).

Hence by Theorem 6.21 Δ(Mn,M) → 0, where M = (X ,A, {P,Q}) is the to-
tal informative model that consists of two mutually singular distributions P and
Q. Hence the associated standard distributions satisfy μn({(0, 2), (2, 0)}) = 0 and
μ({(0, 2), (2, 0)}) = 1.
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We see from the previous example that absolute continuity in the limit
model will occur only if the absolute continuity is uniform along the sequence.
This is reflected in the next theorem by the condition that the likelihood ratios
are uniformly integrable. Sometimes it is not advisable to try to verify this
condition directly. Then it may be better to deal with Hellinger integrals that
are often directly available and reflect uniform integrability by their behavior
under s→ 0. This conjecture is based on the fact that

Q
 P ⇔ Q(L =∞) = lim
s↓0

(1− Hs(P,Q)) = 0, (6.28)

which has been established in Problem 1.82.
To study Hs(Pn, Qn) as a function of both variables s and n we need

suitable inequalities for the family of functions

us(x) = sx+ (1− s)(2− x)− xs(2− x)1−s, 0 ≤ x ≤ 2, 0 < s < 1.

Note in particular that u1/2(x) = 1
2 (
√
x −

√
2− x)2. The importance of this

family originates from the relations

1− Hs(P,Q) =
∫

us(M)dR,

2[1− H1/2(P,Q)] = 2
∫

u1/2(M)dR = D2(P,Q).

Problem 6.24.∗ For every 0 < s < 1 there are positive constants cs and ds such
that for 0 ≤ x ≤ 2,

csus(x) ≤ u1/2(x) ≤ dsus(x). (6.29)

It holds for every 0 < ε < 1,

α(ε) := sup
0<s<1,|x−1|≤ε

|us(x)− 4s(1− s)u1/2(x)

u1/2(x)
| → 0, as ε ↓ 0, (6.30)

and

β(ε) := sup
0<s≤1/2

sup
ε≤x≤2

us(x)

4s(1− s)u1/2(x)
<∞, ε > 0. (6.31)

It holds for every 0 ≤ x, y ≤ 1 with y ≥ cx, c > 0, and 0 < s < 1,

1− xsy1−s − (1− x)s(1− y)1−s ≥ ((1− s)− s/c− c−s)y. (6.32)

Lemma 6.25. It holds, in the settings of Problem 6.24, for every c > 1,

1− Hs(P,Q) ≥ [(1− s)− s/c− c−s]Q(L ≥ c), (6.33)
1− Hs(P,Q) ≤ 4β(2/(1 + c))s(1− s)D2(P,Q) +Q(L > c). (6.34)

Proof. Set A = {2 −M ≥ cM} for c > 0. An application of Hölder’s
inequality yields

Hs(P,Q) = ERIAM
s(2−M)1−s + ERIAM

s(2−M)1−s

≤ P s(A)Q1−s(A) + P s(A)Q1−s(A). (6.35)
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Hence by Q(2−M ≥ cM) ≥ cP (2−M ≥ cM) and inequality (6.32),

1− Hs(P,Q) ≥ [(1− s)− s/c− c−s]Q(2−M ≥ cM).

We have for 0 < ε < 1

1− Hs(P,Q) =
∫

us(M)dR =
∫

us(M)I[0,ε)(M)dR+
∫

us(M)I[ε,2](M)dR

≤ β(ε)4s(1− s)
∫

u1/2(M)I[ε,2](M)dR

+
∫

[sM + (1− s)(2−M)−Ms(2−M)1−s]I[0,ε)(M)dR

≤ β(ε)4s(1− s)
∫

u1/2(M)dR +
∫

(2−M)(s
ε

2− ε
+ (1− s))I[0,ε)(M)dR

≤ β(ε)4s(1− s)D2(P,Q) +Q(M < ε).

It remains to set ε = 2/(1 + c) and to use the definition of L in (6.25).

The next theorem presents necessary and sufficient conditions for contigu-
ity. One condition is the uniform integrability of the likelihood ratios, whereas
the other is an asymptotic version of (6.28).

Theorem 6.26. For a sequence of binary models (Xn,An, {Pn, Qn}), n =
1, 2, ..., the condition {Qn} � {Pn} is equivalent to any one of the following
conditions.

(A) For any An ∈ An, limn→∞ Pn(An) = 0 implies limn→∞Qn(An) = 0.

(B) It holds limn→∞Qn(Ln =∞) = 0
and limc→∞ lim supn→∞

∫
I(c,∞)(Ln)LndPn = 0.

(C) limc→∞ lim supn→∞Qn(Ln > c) = 0.

(D) lim infs↓0 lim infn→∞ Hs(Pn, Qn) = 1.

Corollary 6.27. If (X ,A, {P,Q}) is a model, and L in (6.25) and Ln in
(6.26) satisfy L(Ln|Pn) ⇒ L(L|P ), then {Qn} � {Pn} holds if and only if
Q
 P.

Proof. Conditions (B) and (C) are equivalent by the definition of the
likelihood ratio. (A) → (C): if (C) is not valid, then there is a sequence
cn →∞ with lim supn→∞Qn(Ln > cn) > 0. Put An = {Ln > cn}. Then

lim sup
n→∞

Pn(Ln > cn) ≤ lim sup
n→∞

1
cn

∫
LndPn ≤ lim sup

n→∞

1
cn

= 0,

which contradicts (A). (C) → (D): it follows from (6.34), D2(Pn, Qn) ≤ 2,
and the second condition in (B) that
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lim sup
s↓0

lim sup
n→∞

(1− Hs(Pn, Qn))

≤ lim sup
c→∞

lim sup
s↓0

8β(2/(1 + c))s(1− s) + lim sup
c→∞

lim sup
n→∞

Qn(Ln > c) = 0.

(D) → (A): an application of Hölder’s inequality yields, as in (6.35),

Hs(Pn, Qn) ≤ P s
n(An)Q1−s

n (An) + P s
n(An)Q1−s

n (An).

If (A) is not fulfilled, then there is a sequence Ank
with limk→∞ Pnk

(Ank
) = 0,

where α = limk→∞Qnk
(Ank

) > 0. Then

lim inf
s↓0

lim inf
n→∞

Hs(Pn, Qn) (6.36)

≤ lim inf
s↓0

lim sup
k→∞

[P s
n(Ank

)Q1−s
n (Ank

) + P s
n(Ank

)Q1−s
n (Ank

)]

= lim inf
s↓0

lim sup
k→∞

P s
n(Ank

)Q1−s
nk

(Ank
) = lim inf

s↓0
(1− α)1−s = 1− α < 1,

which contradicts (D).
It remains to show that the conditions (A) through (D) are equiva-

lent to {Qn} � {Pn}. Suppose mn is a subsequence with Mmn
⇒ M =

(X ,A, {P,Q}). Then by Theorem 6.13 limn→∞ Hs(Pmn
, Qmn

) = Hs(P,Q). If
(D) is satisfied, then

lim
s↓0

Hs(P,Q) = lim
s↓0

lim
n→∞

Hs(Pmn
, Qmn

) ≥ lim
s↓0

lim inf
n→∞

Hs(Pn, Qn) = 1,

which together with (6.28) gives Q
 P and thus {Qn} � {Pn}.
If (C) is not fulfilled, then there is a subsequence nk and ck → ∞ such

that α = lim infk→∞Qnk
(Lnk

> ck) > 0. Set Ank
= {Lnk

> ck}. Then

Pnk
(Ank

) =
∫

1
Lnk

IAnk
dQnk

≤ 1
ck
→ 0,

which, as in (6.36), implies

lim sup
k→∞

Hs(Pnk
, Qnk

) ≤ (1− α)1−s.

If Mnkl
⇒M = (X ,A, {P,Q}), then

Hs(P,Q) = lim
l→∞

Hs(Pnkl
, Qnkl

) ≤ (1− α)1−s

by Theorem 6.13. Hence lims↓0 Hs(P,Q) < 1 and we have an accumulation
point M for which Q
 P is not satisfied, so that {Qn} � {Pn} is not true.

To prove the corollary we remark that the assumption and Theorem 6.21
yield that Mn ⇒M = (X ,A, {P,Q}), so that all accumulation points of Mn

are identical with M. The statement then follows directly by the definition of
the contiguity.

A simple sufficient condition for contiguity is given in the next problem.
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Problem 6.28.∗ If v : (0,∞)→ R is a convex function with limx↓0 v(x) = ∞, then

sup
n

Iv(Pn, Qn) <∞ implies {Qn} � {Pn}.

In the sequel we often make use of the fact that stochastic convergence
is preserved under switching from a sequence of distributions to a contiguous
sequence. A precise formulation of this fact is as follows.

Problem 6.29.∗ Let (Xn,An, {Pn, Qn}), n = 1, 2, ..., be a sequence of binary
models and Xn : Xn →m R, n = 1, 2, .... If {Qn} � {Pn}, then Xn →Pn 0 implies
that Xn →Qn 0.

Problem 6.30.∗ If Tn : Xn →m R
d satisfies Tn = OPn(1) and {Qn} � {Pn}, then

Tn = OQn(1).

Remark 6.31. The concept of contiguity was introduced by LeCam (1960); see
LeCam and Yang (1990), p. 29. If Qn � Pn, then condition (B) in Theorem 6.26
means that the likelihood ratios are uniformly integrable. Condition (D) is due to
Jacod and Shiryaev (1987) and Liese (1986, 1987a,b) and has been used to study
the contiguity of sequences of stochastic processes. A comprehensive discussion of
topics related to the concept of contiguity can be found in Roussas (1972).

Now we consider situations where the log-likelihood is asymptotically nor-
mal.

Proposition 6.32. (First Lemma of LeCam) For any sequence of models
Mn = (Xn,An, {Pn, Qn}) the following statements are equivalent.

(A) L(lnLn|Pn) ⇒ N(−σ2/2, σ2).

(B) L(lnLn|Qn) ⇒ N(σ2/2, σ2).

(C) Mn ⇒ (R,B, {N(0, 1),N(σ, 1)}).

Proof. We set P = N(0, 1), Q = N(σ, 1), and L = dQ/dP. Then
lnL(x) = σx − σ2/2. As lnx is a homeomorphism between R and R+ the
weak convergence of L(lnLn|Qn) to L(lnL|Q) is equivalent to the weak con-
vergence of L(Ln|Qn) to L(L|Q). To prove the equivalence of (A) and (C) we
apply Theorem 6.21 and note that

L(lnL|P ) = N(−σ2/2, σ2).

The proof of the equivalence of (B) and (C) is similar if we exchange the roles
of Pn and Qn, note that − lnLn is the log-likelihood of Pn with respect to
Qn, and do that analogously with P and Q.

The following situation is typically met in the area of testing hypotheses for
large sample sizes. Given a sequence of modelsMn and a sequence of statistics
Sn : Xn →m S, where we know the limit distribution of the Sn under the null
hypothesis, the question of what can be said about the distributions under the
alternative is answered by the so-called third lemma of LeCam. We remark at
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this point that the notation of the first, second, and third lemma of LeCam
is due to Hájek (1962).

Let Mn = (Xn,An, {Pn, Qn}), n = 1, 2, ..., and M = (X ,A, {P,Q}) be
models, S a metric space with the σ-algebra of Borel sets B, and Sn : Xn →m

S and S : X →m S statistics. With Ln and L from (6.26) and (6.25), respec-
tively, we set

P ∗ = L((S,L)|P ), Q∗ = L((S,L)|Q),

P ∗
n = L((Sn, Ln)|Pn), Q∗

n = L((Sn, Ln)|Qn).
(6.37)

If Q
 P , then for any h : S × R →m R+,
∫
h(s, t)Q∗(ds, dt) =

∫
h(S(x), L(x))Q(dx)

=
∫
h(S(x), L(x))L(x)P (dx) =

∫
h(s, t)tP ∗(ds, dt).

Hence,
dQ∗

dP ∗ (s, t) = t, P ∗-a.s. (6.38)

Theorem 6.33. If P ∗
n and Q∗

n are defined by (6.37), then P ∗
n ⇒ P ∗ and

Q
 P imply Q∗
n ⇒ Q∗.

Proof. As the weak convergence of distributions of random vectors im-
plies the weak convergence of the marginal distributions we get L(Ln|Pn) ⇒
L(L|P ) and thus Mn ⇒ M from Theorem 6.21. Then {Qn} � {Pn} by
Corollary 6.27, and the weight of the part of Qn which is singular to Pn tends
to zero. Hence we may assume that Qn 
 Pn. Let ϕ : S × R → R+ be a
continuous and bounded function, say |ϕ| ≤ b. Similarly as in (6.38) it holds
Q∗
n(ds, dt) = tP ∗

n(ds, dt). Set f(s, t) = ϕ(s, t)t. Then
∫
I[c,∞)(|f(s, t)|)P ∗

n(ds, dt) ≤
∫
I[c/b,∞)(t)P ∗

n(ds, dt) ≤
∫
I[c/b,∞)(

dQn

dPn
)dPn.

Hence {Qn} � {Pn} and condition (B) in Theorem 6.26 yield

lim sup
c→∞

lim sup
n→∞

∫
I[c,∞)(|f(s, t)|)P ∗

n(ds, dt) = 0.

Hence by Proposition A.44,

lim
n→∞

∫
ϕdQ∗

n = lim
n→∞

∫
ϕ(s, t)tP ∗

n(ds, dt) =
∫
ϕ(s, t)tP ∗(ds, dt) =

∫
ϕdQ∗,

which yields the statement.
We consider now the situation where the joint distribution of the log-

likelihood lnLn and a statistic Sn is asymptotically normal.
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Proposition 6.34. (Third Lemma of LeCam for Binary Models) Let
Mn = (Xn,An, {Pn, Qn}), n = 1, 2, ..., be any sequence of models and Sn :
Xn →m R. Then for any fixed μ ∈ R, σ2 ≥ 0, and τ ≥ 0,

L ((Sn, lnLn)T |Pn) ⇒ N

((
μ

−σ2/2

)
,

(
τ2 ρστ
ρστ σ2

))
(6.39)

implies

L ((Sn, lnLn)T |Qn) ⇒ N

((
μ+ ρστ

σ2/2

)
,

(
τ2 ρστ
ρστ σ2

))
. (6.40)

Proof. As lnx is a homeomorphism between R+ and R we see that
under the assumptions of Theorem 6.33 the relation L((Sn, lnLn)|Pn) ⇒
L((S, lnL)|P ) implies L((Sn, Ln)|Qn) ⇒ L((S,L)|Q). We introduce the model
M and S such that L((S, lnL)|P ) becomes the normal distribution on the
right-hand side of (6.39). Put

M = (R2,B2, {P,Q}), where
P = N(μ, 1)⊗ N(0, 1) and Q = N(μ, 1)⊗ N(σ, 1).

Denote by X and Y the projections R2 → R onto the coordinates. Then

lnL = ln
dQ

dP
= σY − σ2

2
.

Define S : R2 → R for σ2 = 0 by S = X and for σ2 > 0 by

S = a(X − μ) +
ρτ

σ
(lnL+

σ2

2
) + μ, where a = τ(1− ρ2)1/2.

Then the vector (S, lnL) is a linear image of (X,Y ) and has thus a normal
distribution under both, P and Q. It holds

EP lnL = −σ2/2, EPS = μ, VP (S) = (1− ρ2)τ2 + (
ρτ

σ
)2σ2 = τ2,

VP (lnL) = σ2, covP (S, lnL) =
ρτ

σ
VP (lnL) = ρστ.

Hence L((S, lnL)|P ) is the normal distribution on the right-hand side of
(6.39). To apply Theorem 6.33 we have to calculate L((S, lnL)|Q). As (S, lnL)
is a linear image of (X,Y ) the distribution L((S, lnL)|Q) is normal, and it
holds

EQ lnL = σ2/2, EQS = μ+
ρτ

σ
σ2 = μ+ ρστ,

VQ(S) = (1− ρ2)τ2 + (
ρτ

σ
)2σ2 = τ2,

VQ(lnL) = σ2, covQ(S, lnL) =
ρτ

σ
VQ(lnL) = ρστ.

The third lemma of LeCam can be used to calculate the asymptotic power
of tests under the alternative.
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Example 6.35. Consider the sequence of testing problems H0 : Pn versus HA : Qn,
n = 1, 2, .... Let μ ∈ R, τ2 > 0, and α ∈ (0, 1) be fixed. For a sequence of test
statistics Sn : X →m R that satisfies L(Sn|Pn) ⇒ N(μ, τ2) we set

ϕn = I[μ+τu1−α,∞)(Sn),

where u1−α = Φ−1(1−α). Then EPnϕn → α, so that the sequence is an asymptotic
level α test. To study its power under the alternatives let us assume that (6.39)
holds. Then by (6.40),

L(Sn|Qn) ⇒ N(μ + ρστ, τ2),

lim
n→∞

EQnϕn = 1− Φ(u1−α − ρσ).

This means that the limiting power of the tests ϕn based on the test statistics Sn

depends on the asymptotic correlation ρ, so that test statistics that have a high
positive correlation with the log-likelihood provide a large asymptotic power. The
maximum asymptotic power is attained with Sn = lnLn because in this case ρ = 1.
Later on in Chapter 8 we make systematic use of the third lemma of LeCam to
find the asymptotic power of given tests, and to characterize best tests under local
alternatives.

Above we studied sequences of models for which the limiting model
(X ,A, {P,Q}) satisfies the condition Q 
 P. Now we consider the case of
P ⊥ Q.

Definition 6.36. For a sequence of binary models Mn = (Xn,An, {Pn, Qn}),
n = 1, 2, ..., the sequences {Pn} and {Qn} are called entirely separated if there
exists at least one accumulation point M = (X ,A, {P,Q}) for which P ⊥ Q.
In this case we write {Pn} � {Qn}.

Entire separation is closely related to sequences of models for which se-
quences of tests exist with their error probabilities of the first and second kind
tending to zero.

Theorem 6.37. For a sequence of binary models (Xn,An, {Pn, Qn}), n =
1, 2, .., the following statements are equivalent.

(A) {Pn} � {Qn}.
(B) lim infn→∞ Hs(Pn, Qn) = 0, 0 < s < 1.

(C) lim infn→∞ bπ(Pn, Qn) = 0, 0 < π < 1.

Corollary 6.38. Condition (B) is satisfied if and only if there exists an s0 ∈
(0, 1) with lim infn→∞ Hs0(Pn, Qn) = 0. Condition (C) is satisfied if and only
if there exists a π0 ∈ (0, 1) with lim infn→∞ bπ0(Pn, Qn) = 0.

Corollary 6.39. {Pn} � {Qn} holds if and only if there exists a sequence
Ank

∈ Ank
with

lim
k→∞

Pnk
(Ank

) = 0 and lim
k→∞

Qnk
(Ank

) = 1. (6.41)
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Proof. (B) → (C) follows from inequality (2.44). As bπ(Pn, Qn) ≤
π ∧ (1 − π) we may carry out the limit in the integral representation of
Hs(Pn, Qn) in Corollary 1.69 and obtain that (C) implies (B). The equiv-
alence of (A) and (B) follows from the relative compactness of the sequence
Mn and Theorem 6.21. The sufficiency of the first condition of Corollary 6.38
follows from inequality (2.44) for s = s0 and the equivalence of (C) and (B).
The sufficiency of the second condition can be obtained from the inequalities

bπ(P,Q) ≤ 2b1/2(Pn, Qn), 2(π ∧ (1− π))b1/2(Pn, Qn) ≤ bπ(P,Q).

If (6.41) holds, then the tests ϕnk
= IAnk

satisfy bπ(Pnk
, Qnk

) ≤ πPnk
(Ank

)+
(1 − π)Qnk

(Ank
) → 0. Conversely, if bπ(Pnk

, Qnk
) → 0, then let ψnk

be a
nonrandomized Bayes test. Putting Ank

= {ψnk
= 1} we get (6.41).

Subsequently we need an elementary inequality for the Hellinger distance.

Problem 6.40.∗ It holds

D2(P,Q) ≤ 2D2(P,
1

2
(P + Q)) + 2D2(Q,

1

2
(P + Q)) ≤ 2D2(P,Q).

In preparation for the next theorem we collect some properties of Hellinger
integrals of product measures. We set Gs(P,Q) = − ln Hs(P,Q), where
Gs(P,Q) := ∞ if Hs(P,Q) = 0. Then by (1.109),

0 ≤ Gs(P,Q) ≤ ∞,

1
1−s1

Gs1(P,Q) ≤ 1
1−s2

Gs2(P,Q), 0 < s1 < s2 < 1,

Gs(
⊗n

i=1 Pi,
⊗n

i=1 Qi) =
∑n

i=1 Gs(Pi, Qi).

(6.42)

Lemma 6.41. It holds for 0 < s < 1,
∑n

i=1(1− Hs(Pi, Qi)) ≤
∑n

i=1 Gs(Pi, Qi)

≤ 3
2 (min1≤i≤n Hs(Pi, Qi))−2

∑n
i=1(1− Hs(Pi, Qi)),

(6.43)

and

1− exp{−3[2−max1≤i≤n D2(Pi, Qi)]−2
∑n

i=1 D2(Pi, Qi)}
≤ 1

2D2(
⊗n

i=1 Pi,
⊗n

i=1 Qi) ≤ 1− exp{− 1
2

∑n
i=1 D2(Pi, Qi)}.

(6.44)

Proof. The Taylor expansion up to the second order gives for 0 < x < 1,

x ≤ x+
1
2
x2 ≤ − ln(1− x) ≤ x+

x2

2(1− x)2
≤ 3

2
x

(1− x)2
.

Putting x = 1 − Hs(Pi, Qi) and taking the sum we get (6.43) from the third
statement in (6.42). Furthermore, with x = 1− H1/2(Pi, Qi) = 1

2D2(Pi, Qi),
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exp{−
n∑
i=1

G1/2(Pi, Qi)} =
n∏
i=1

H1/2(Pi, Qi) = 1− 1
2
D2(
⊗n

i=1 Pi,
⊗n

i=1 Qi),

D2(
⊗n

i=1 Pi,
⊗n

i=1 Qi) = 2[1− exp{−
∑n

i=1 G1/2(Pi, Qi)}]

≤ 2[1− exp{−1
2
∑n

i=1 D2(Pi, Qi)}],

D2(
⊗n

i=1 Pi,
⊗n

i=1 Qi) ≥ 2[1− exp{−3
2
∑n

i=1
D2(Pi,Qi)/2

(1−D2(Pi,Qi)/2)2
}].

Now we look at sequences of statistical models that correspond to indepen-
dent observations and establish conditions for the contiguity and the entire
separation. For n = 1, 2, ... let

Mn = (Xn
i=1Xn,i,

⊗n
i=1 An,i, {Pn, Qn}),

Pn =
⊗n

i=1 Pn,i, Qn =
⊗n

i=1 Qn,i, and Rn =
⊗n

i=1 Rn,i,

Rn,i = 1
2 (Pn,i +Qn,i),

Mn,i = dPn,i

dRn,i
and Ln,i = 2−Mn,i

Mn,i
I(0,∞)(Mn,i) +∞I{0}(Mn,i),

(6.45)

where Mn,i and Ln,i are considered to be random variables on Xn
i=1Xn,i.

Theorem 6.42. For the models Mn in (6.45) the following statements are
equivalent.

(A) {
⊗n

i=1 Qn,i} � {
⊗n

i=1 Pn,i}.
(B) lims↓0 lim supn→∞

∑n
i=1 Gs(Pn,i, Qn,i) = 0.

(C) lims↓0 lim supn→∞
∑n

i=1(1− Hs(Pn,i, Qn,i)) = 0.

(D)
{

(D1) lim supn→∞
∑n

i=1 D2(Pn,i, Qn,i) <∞, and
(D2) limc→∞ lim supn→∞

∑n
i=1 Qn(Ln,i > c) = 0.

Proof. The equivalence of (A) and (B) follows from Theorem 6.26. The
equivalence of (B) and (C) follows from (6.43). Hence (A), (B), and (C) are
equivalent. If condition (C) is satisfied, then the inequality (6.29) and

1− Hs(Pn,i, Qn,i) =
∫

us(Mn,i)dRn

provide (D1). The inequality (6.33) gives
∑n

i=1
(1− Hs(Pn,i, Qn,i)) ≥ [(1− s)− s/c− c−s]

∑n

i=1
Qn(Ln,i ≥ c).

Taking first n→∞, then c→∞, and finally s ↓ 0, we get (D2). Similarly, if
(D) is satisfied, then
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∑n

i=1
(1− Hs(Pn,i, Qn,i))

≤
∑n

i=1
4β(2/(1 + c))s(1− s)D2(Pn,i, Qn,i) +Qn(Ln,i > c)

by (6.33). Taking first n→∞, then c→∞, and finally s ↓ 0, we get (C).

Remark 6.43. The equivalence of (A) and (D) in Theorem 6.42 is a well-known
result by Oosterhoff and van Zwet (1979). Our proof is taken from Liese and Vajda
(1987).

We apply Theorem 6.42 to the special case where the double array of
distributions in (6.45) is in fact a sequence. Then the question of contiguity
reduces to that of the absolute continuity of the corresponding product mea-
sures. The next theorem is due to Kakutani (1948). The subsequent proof is
taken from Kühn and Liese (1978).

Theorem 6.44. It holds
⊗∞

i=1 Qi 

⊗∞

i=1 Pi if and only if

Qi 
 Pi, i = 1, 2, ... and (6.46)∑∞

i=1
D2(Pi, Qi) <∞. (6.47)

Under the condition (6.46)
⊗∞

i=1 Qi 

⊗∞

i=1 Pi or
⊗∞

i=1 Qi ⊥
⊗∞

i=1 Pi holds,
depending on whether (6.47) is satisfied.

Proof. The necessity of (6.46) is clear, and the necessity of (6.47) follows
from condition (D1) in Theorem 6.42. Conversely, (1.117) and the inequality
(6.42) imply for 0 < s < 1/2 that

− ln Hs(
⊗∞

i=1 Pi,
⊗∞

i=1 Qi) =
∑∞

i=1 Gs(Pi, Qi)

≤
∑N

i=1
Gs(Pi, Qi) + 2(1− s)

∑∞

i=N+1
G1/2(Pi, Qi).

If (6.46) is fulfilled, then by (6.28) and Gs(Pi, Qi) = − ln(1− Hs(Pi, Qi)),

lim
s↓0

(− ln Hs(
⊗∞

i=1 Pi,
⊗∞

i=1 Qi)) ≤ 2
∑∞

i=N+1 G1/2(Pi, Qi). (6.48)

That inequality H1/2(Pi, Qi) > 0 holds for every i follows from (6.46), because
H1/2(Pi, Qi) = 0 would imply Pi ⊥ Qi. If in addition (6.47) holds, then
inf1≤i<∞ H1/2(Pi, Qi) > 0 by

∑∞

i=1
D2(Pi, Qi) =

∑∞

i=1
2(1− H1/2(Pi, Qi)) <∞.

Hence
∑∞

i=1 G1/2(Pi, Qi) <∞ by inequality (6.43). To complete the proof we
let N →∞ in (6.48) and apply (6.28) to P =

⊗∞
i=1 Pi and Q =

⊗∞
i=1 Qi.

To prove the second statement it is enough to note that by ln(1− x) ≤ x,
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H1/2(
⊗∞

i=1 Pi,
⊗∞

i=1 Qi) =
∏∞

i=1 H1/2(Pi, Qi)

≤ exp{−
∑∞

i=1
(1− H1/2(Pi, Qi))} = exp{−1

2

∑∞

i=1
D2(Pi, Qi)},

so that
∑∞

i=1 D2(Pi, Qi) = ∞ implies
⊗∞

i=1 Pi ⊥
⊗∞

i=1 Qi.

The second statement of Theorem 6.44 is referred to as a dichotomy as
only two extreme situations are possible.

Example 6.45. For normal distributions the Hellinger integral can be explicitly
calculated. Indeed, (1.79) yields

H1/2(N(μ1, σ
2),N(μ2, σ

2)) = exp{−1

8

(μ1 − μ2)
2

σ2
},

D2(N(μ1, σ
2),N(μ2, σ

2)) = 2(1− H1/2(N(μ1, σ
2),N(μ2, σ

2))).

Using the inequality x− x2/2 ≤ 1− exp{−x} ≤ x, x ≥ 0 it follows that
∑∞

i=1
(1− D2(N(μi, σ

2),N(0, σ2))) <∞ ⇔
∑∞

i=1
μ2

i <∞.

Hence by Theorem 6.44 it holds
⊗∞

i=1 N(μi, 1) ��
⊗∞

i=1 N(0, 1) or
⊗∞

i=1 N(μi, 1) ⊥
⊗∞

i=1 N(0, 1),

depending on whether
∑∞

i=1 μ2
i is finite or infinite. A more general situation for

exponential families is studied in Problem 6.54.

In order to establish limit theorems for the log-likelihood of independent
observations we use concepts from the classical field of limit theorems of sums
of independent random variables. We recall the notations in (6.45) and set
Yn,i = L

1/2
n,i − 1. The first two moments of Yn,i are closely related to the

Hellinger distance, and also to each other. Indeed, the following statements
are direct consequences of (1.110).

H1/2(Pn,i, Qn,i) = EPn
L

1/2
n,i , D2(Pn,i, Qn,i) = 2[1− H1/2(Pn,i, Qn,i)],

EPn
Yn,i = − 1

2D2(Pn,i, Qn,i), EPn
Y 2
n,i +Qn(Yn,i =∞) = D2(Pn,i, Qn,i),

VPn
(Yn,i) = D2(Pn,i, Qn,i)− 1

4 (D2(Pn,i, Qn,i))2 −Qn(Yn,i = ∞).
(6.49)

Definition 6.46. A double array of models (Xn,i,An,i, {Pn,i, Qn,i}), i =
1, ..., n, n = 1, 2, ..., is called bounded if

lim sup
n→∞

D2(
⊗n

i=1 Pn,i,
⊗n

i=1 Qn,i) < 2. (6.50)

It is called infinitesimal if

lim
n→∞

max
1≤i≤n

D2(Pn,i, Qn,i) = 0. (6.51)

It is called to satisfy the Lindeberg condition if for every ε > 0,

lim
n→∞

∑n

i=1
(EPn,i

I(ε,∞)(|Yn,i|)Y 2
n,i +Qn(Yn,i =∞)) = 0. (6.52)
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Condition (6.50) means that the models Mn in (6.45) stay away from
each totally informative model M = (X ,A, {P,Q}) which is characterized
by D2(P,Q) = 2, or equivalently by P ⊥ Q. Condition (6.51) says that the
individual models (Xn,i,An,i, {Pn,i, Qn,i}) contribute very little information
to Mn as the Hellinger distance D2(Pn,i, Qn,i) is, uniformly in i = 1, ..., n,
small for large n.

Proposition 6.47. Condition (6.52) implies (6.51). If (6.51) holds, then
(6.50) is satisfied if and only if

lim sup
n→∞

∑n

i=1
D2(Pn,i, Qn,i) <∞. (6.53)

Proof. The relation (6.52) yields

max
1≤i≤n

D2(Pn,i, Qn,i) = max
1≤i≤n

[EPn
Y 2
n,i +Qn(Yn,i =∞)]

≤ ε2 + max
1≤i≤n

[EPn
I(ε,∞)(|Yn,i|)Y 2

n,i +Qn(Yn,i =∞)]

≤ ε2 +
∑n

i=1
[EPn

I(ε,∞)(|Yn,i|)Y 2
n,i +Qn(Yn,i =∞)].

Taking first n → ∞, and then ε → 0, we get the first statement. The second
statement follows from inequality (6.44).

The Lindeberg condition (6.52) implies that the likelihood ratios Ln,i are
uniformly close to 1, so that lnLn,i is uniformly small. The Problems 6.55 and
6.56 formulate other conditions to express this property in terms of the Yn,i.

Lemma 6.48. If the conditions (6.53) and (6.52) are satisfied and Yn,i =
L

1/2
n,i − 1, then

∑n

i=1
Y 2
n,i −

∑n

i=1
D2(Pn,i, Qn,i) = oPn

(1). (6.54)

Proof. We set Cn,i = {|Yn,i| ≤ 1
2}. Then

∑n

i=1
(Y 2

n,i − EPn
Y 2
n,i) =

∑n

i=1
Wn,i + Sn, where

Wn,i = ICn,i
Y 2
n,i − EPn

ICn,i
Y 2
n,i and EPn

|Sn| ≤ 2
∑n

i=1
EPn

ICn,i
Y 2
n,i.

The Lindeberg condition yields EPn
|Sn| → 0. The independence of the Wn,i

and EPn
Wn,i = 0 give

EPn
(
∑n

i=1
Wn,i)2 =

∑n

i=1
EPn

W 2
n,i

≤
∑n

i=1
EPn

ICn,i
Y 4
n,i ≤

∑n

i=1
EPn

(Y 2
n,i ∧ |Yn,i|3) → 0,

where the last statement follows from Problem 6.55. To complete the proof
we use (6.49).
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Now we prove the asymptotic normality of a double array of models that
correspond to a double array of independent observations. More precisely, we
consider the models Mn in (6.45). Let Ln be the likelihood ratio of Qn =⊗n

i=1 Qn,i with respect to Pn =
⊗n

i=1 Pn,i. With the likelihood ratios Ln,i of
Qn,i with respect to Pn,i that have been introduced in (6.45) we have

Ln =
∏n

i=1
Ln,i, Pn-a.s.,

where we use the convention 0 · ∞ = 0. The next theorem is similar to The-
orem 6.3 in Janssen, Milbrodt, and Strasser (1985), and closely related to
Proposition 3 in LeCam and Yang (1990).

Theorem 6.49. Suppose that the sequence of binary models Mn in (6.45)
satisfies (6.52). If

lim
n→∞

∑n

i=1
D2(Pn,i, Qn,i) = σ2/4 > 0, (6.55)

then

lnLn = 2
∑n

i=1
Yn,i −

∑n

i=1
Y 2
n,i + oPn

(1) (6.56)

= 2
∑n

i=1
Yn,i − σ2/4 + oPn

(1), (6.57)

and
Mn ⇒M = (R,B, {N(0, 1),N(σ, 1)}). (6.58)

Corollary 6.50. Under the assumptions of the above theorem it holds that
{
⊗n

i=1 Pn,i} �� {
⊗n

i=1 Qn,i}.

Proof. The Taylor expansion of ln(1 + x) up to the third order gives

| ln(1 + x)− x+
1
2
x2| ≤ 1

3
|x|3

(1 + x)3
≤ 8

3
(|x|3 ∧ x2), |x| ≤ 1

2
.

To establish the expansion of lnLn we note that, by the definition of Yn,i,

lnLn =
∑n

i=1
lnLn,i =

∑n

i=1
2 ln(1 + Yn,i), Pn-a.s.

Set An = {max1≤i≤n |Yn,i| ≤ 1/2}.As the double array {Yn,i} satisfies the
Lindeberg condition (6.52) it follows from (6.60) that Pn(An) → 1. Hence

lnLn =
∑n

i=1
(2Yn,i − Y 2

n,i) +
∑n

i=1
[2 ln(1 + Yn,i)− (2Yn,i − Y 2

n,i)]IAn

+
∑n

i=1
[2 ln(1 + Yn,i)− (2Yn,i − Y 2

n,i)]IAn

=
∑n

i=1
(2Yn,i − Y 2

n,i) + Tn + oPn
(1),

where we used ZnIAn
= oPn

(1) for any sequence Zn. As
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EPn
|Tn| ≤

16
3

∑n

i=1
EPn

(|Yn,i|3 ∧ Y 2
n,i) → 0

by Problem 6.55 the proof of (6.56) is completed. The statement (6.57) follows
from (6.54). Set X̃n,i = Yn,i − EPn

Yn,i. Then by (6.49)

∑n

i=1
EPn

(Yn,i − X̃n,i)2 =
∑n

i=1
(EPn

Yn,i)2 =
1
4

∑n

i=1
(D2(Pn,i, Qn,i))2.

As max1≤i≤n D2(Pn,i, Qn,i) → 0 by Proposition 6.47, and
∑n

i=1 D2(Pn,i, Qn,i)
is bounded by assumption (6.55), we get from Problem 6.59 that the double ar-
ray X̃n,i satisfies the Lindeberg condition (6.52). We know from Problem 6.57
and (6.55) that limn→∞ σ2

n = limn→∞
∑n

i=1 D2(Pn,i, Qn,i) = σ2/4. Hence the
double array Xn,i = (1/σn)X̃n,i satisfies the Lindeberg condition in Theorem
A.54, which implies that

L(
∑n

i=1
Xn,i|Pn) ⇒ N(0, 1),

lim
n→∞

μn = −σ
2

8
, lim

n→∞
σn =

σ

2
, and

L(
∑n

i=1
2Yn,i −

σ2

4
|Pn) ⇒ N(−1

2
σ2, σ2),

in view of Problem 6.57. Hence (6.58) follows from (6.57) and Proposition
6.32.

Remark 6.51. Theorem 6.49 can be found, for example, in LeCam and Yang
(1990), Witting and Müller-Funk (1995), Rieder (1994), and Bickel, Klaassen, Ritov,
and Wellner (1993). A general theory for double arrays of binary models can be
found in Janssen, Milbrodt, and Strasser (1985) and LeCam and Yang (1990). In
both books a general theory of infinitely divisible models is created. The possible
limit models are then not necessarily Gaussian models.

Subsequently we collect additional and some technical problems.

Problem 6.52.∗ If the condition (D1) in Theorem 6.42 is not satisfied, then
{
⊗n

i=1 Qn,i} � {
⊗n

i=1 Pn,i}.

Problem 6.53. Let K(Q,P ) be the Kullback–Leibler distance introduced in (1.81);
that is, K(Q,P ) =

∫
(ln(dQ/dP ))dQ if Q � P , and K(Q,P ) = ∞ otherwise. Then

lim supn→∞
∑n

i=1 K(Qn,i, Pn,i) <∞ implies {
⊗n

i=1 Qn,i} � {
⊗n

i=1 Pn,i}.

Problem 6.54. Let (Pθ)θ∈Δ, Δ ⊆ R, be a one-parameter exponential family, and
θ0 ∈ Δ0 be fixed. By Example 1.88

Hs(Pθ1 , Pθ2) = exp{K(sθ1 + (1− s)θ2)− sK(θ1)− (1− s)K(θ2)}.

If C := lim supn→∞ max1≤i≤n |cn,i| <∞ and [θ0−C, θ0 +C] ⊆ Δ0, then it holds ei-
ther {

⊗n
i=1 Pθ0+cn,i} � {P⊗n

θ0
} or {

⊗n
i=1 Pθ0+cn,i} � {P⊗n

θ0
}, depending on whether

lim supn→∞
∑n

i=1 c2n,i <∞ or lim supn→∞
∑n

i=1 c2n,i = ∞.
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Problem 6.55.∗ If the condition (6.53) holds, then (6.52) is equivalent to

lim
n→∞

∑n

i=1
[EPn(Y 2

n,i ∧ |Yn,i|3) + Qn(Yn,i = ∞)] = 0.

Problem 6.56.∗ The condition (6.52) implies

lim sup
n→∞

max
1≤i≤n

EPnY
2

n,i = 0 (6.59)

as well as
lim

n→∞
Pn( max

1≤i≤n
|Yn,i| > ε) = 0, ε > 0. (6.60)

Problem 6.57.∗ If the conditions (6.53) and (6.52) are satisfied, then μn :=∑n
i=1 EPnYn,i and σ2

n :=
∑n

i=1 VPn(Yn,i) satisfy for n→∞,

μn =
∑n

i=1
(−1

2
D2(Pn,i, Qn,i)) and σ2

n −
∑n

i=1
D2(Pn,i, Qn,i)→ 0.

Problem 6.58. The Lindeberg condition (6.52) holds if and only if for every ε > 0,
limn→∞

∑n
i=1

∫
gε(Mn,i)dRn = 0, where gε(x) = I(ε,∞)(|x− 1|)(

√
2− x−√x)2.

Problem 6.59.∗ Suppose Yn,i and Zn,i are random variables. Then the following
holds. limn→∞

∑n
i=1 Eθ0(Yn,i−Zn,i)

2 = 0 and limn→∞
∑n

i=1 EZ2
n,iI(ε,∞)(|Zn,i|) = 0

for every ε > 0 implies

lim
n→∞

∑n

i=1
EY 2

n,iI(ε,∞)(|Yn,i|) = 0 for every ε > 0.

6.4 Asymptotically Normal Models

In this section we study the convergence to a Gaussian shift model and estab-
lish conditions under which this convergence holds. In particular we investi-
gate models that are associated with independent observations and a localized
parameter. This leads to the concept of local asymptotic normality of mod-
els which has been introduced by LeCam (1960). It isolates the central idea
of proving optimality of sequences of decisions that were obtained in Wald
(1943) and LeCam (1953) by exponential approximation. The concept of con-
vergence of models allows us to break up the proof of asymptotic optimality
of decisions into three subproblems which can be treated separately. The first
is to establish the convergence of the models. The second is to find optimal
solutions in the limit model. Once optimal decisions have been found in the
limit model, the third is to determine whether these decisions, applied to the
sequence of models, provide asymptotically optimal solutions of the decision
problem under consideration. To establish a relation between the members
in sequences of decisions for the sequence of models it is not enough to have
convergence of the models. Moreover, one has to relate the risks of the se-
quence of decisions to the risk of the optimal decision in the limit model. This
is the topic of the next section. Here in this section we prove the convergence
to a Gaussian model, a property that is called the asymptotic normality of
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a sequence of models. This concept, with all of its consequences, is of similar
fundamental importance as the central limit theorem is to probability theory
and classical areas of mathematical statistics. The reason is that for Gaus-
sian shift models explicit optimal solutions for large classes of decisions are
known. This covers estimation problems under a wide class of loss functions,
one- and two-sided testing problems, and selection problems. The results of
this section have been taken from Strasser (1985), LeCam and Yang (1990),
Rieder (1994), and Witting and Müller-Funk (1995).

6.4.1 Gaussian Models

To start with we collect some well-known facts on the multivariate normal
distribution and introduce Gaussian models that appear as limit models in
subsequent chapters. For the following considerations we use moment gener-
ating functions. If X is any random vector with values in R

d, then

ϕX(t) = E exp {tTX}, t ∈ R
d,

is the moment generating function which, according to Theorem A.51, deter-
mines the distribution L(X) of X uniquely, provided that {t : ϕX(t) < ∞}
contains an open neighborhood of 0, see also Proposition 1.25. A random
vector Z = (Z1, ..., Zd)T that consists of i.i.d. standard normally distributed
components Zi is called a standard normal vector. Its moment generating
function is given by

ϕZ(t) = E exp {tTZ} = exp{‖t‖2 /2}.

Recall that any random (column) vector X with values in R
d has a multi-

variate normal distribution if it can be written as X = AZ + b, where A is a
possibly singular d× d matrix and b ∈ R

d. It is easy to see that

μ : = EX = b and Σ := C(X) = AAT ,

ϕX(t) = E exp {tT (AZ + b)} = exp {tT b}ϕZ(AT t)

= exp {tTμ+
1
2
tTΣt}, t ∈ R

d. (6.61)

This representation, in conjunction with the uniqueness statement in Propo-
sition 1.25, shows that the distribution of X = AZ+ b depends only on μ and
Σ and is independent of the concrete representation of X, and the following
well-known transformation rule holds. If L(X) = N(μ,Σ) then for a matrix A
and a vector b

L(AX + b) = N(Aμ+ b, AΣAT ). (6.62)

It is well known that L(X) = N(μ,Σ) is absolutely continuous with respect
to the Lebesgue measure if and only if det(Σ) �= 0. If Σ is nonsingular, then
the Lebesgue density is
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ϕμ,Σ(x) (6.63)

= (2π)−n/2(det(Σ))−1/2 exp {−1
2
(x− μ)TΣ−1(x− μ)}, x ∈ R

d,

and as ϕμ,Σ is positive all distributions N(μ,Σ), μ ∈ R
d, are equivalent (i.e.,

mutually absolutely continuous). This equivalence is no longer true if Σ is
singular. To study this case in more detail we use a suitable rotation. As
Σ is symmetric and positive semidefinite there are nonnegative numbers λi,
the eigenvalues, and orthonormal column vectors ei such that Σei = λiei,
i = 1, ..., d. Let r be the rank of Σ, and assume without loss of generality that
λi > 0, 1 ≤ i ≤ r, and λi = 0, r+1 ≤ i ≤ d. It follows from x =

∑d
i=1(x

T ei)ei
that

L := {Σx : x ∈ R
d} = {

∑r

i=1
tiei : t1, ..., tr ∈ R}. (6.64)

Let Λ be the diagonal matrix with entries λ1, ..., λd, and O the orthogonal
matrix with columns e1, ..., ed. The rotation to principal axes and the inverse
transformation are given by

OTΣO = Λ and Σ = OΛOT ,

OT
L = {x : x = (x1, ..., xd) ∈ R

d, xi = 0, i = r + 1, ..., d}.

Lemma 6.60. If X has a normal distribution with expectation zero and co-
variance matrix Σ, then X ∈ L, P-a.s. For every θ ∈ R

d it holds either
N(θ,Σ) 
� N(0, Σ) or N(θ,Σ) ⊥ N(0, Σ), where the latter case holds if and
only if θ /∈ L. If θ ∈ L, θ = Σh, then N(θ,Σ) 
� N(0, Σ) and

dN(Σh,Σ)
dN(0, Σ)

(x) = exp{hTx− 1
2
hTΣh}, N(0, Σ)-a.s.

Proof. Put Xi = eTi X. Then EX2
i = eTi Σei = λi. Hence EX2

i = 0,
i = r + 1, ..., d,

X =
∑d

i=1
Xiei =

∑r

i=1
Xiei, P-a.s.,

and thus X ∈ L, P-a.s., by (6.64). If θ /∈ L, then N(0, Σ)(L) = 1 and
N(θ,Σ)(L + θ) = 1. As θ /∈ L implies L ∩ (L + θ) = ∅ we get N(θ,Σ) ⊥
N(0, Σ). If θ ∈ L then by 6.64 it holds θ = Σh for some h ∈ R

d. It re-
mains to show N(Σh,Σ) 
� N(0, Σ) and to establish the density formula.
To this end we consider the measure

Q(B) =
∫
IB(x) exp{hTx− 1

2
hTΣh}N(0, Σ)(dx), B ∈ Bd,

and calculate the moment generating function. If X has the distribution
N(0, Σ), then by (6.61) with μ = 0 it follows
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∫
exp{tTx}Q(dx) = E exp{tTX + hTX − 1

2
hTΣh}

= exp{−1
2
hTΣh} exp{1

2
(t+ h)Σ(t+ h)} = exp{1

2
tTΣt+ tTΣh}

=
∫

exp{tTx}N(Σh,Σ)(dx),

where the last equation follows from (6.61) with μ = Σh. The uniqueness
statement for the moment generating function (see Proposition 1.25) gives
Q = N(Σh,Σ) and the proof is completed.

For a known symmetric and positive semidefinite matrix I0 we consider
the Gaussian model

G = (Rd,Bd, (N(I0h, I0))h∈Rd). (6.65)

Regardless of whether I0 is invertible, Lemma 6.60 implies that G is homoge-
neous and it holds

dN(I0h,I0)
dN(0,I0)

= exp{hTZ − 1
2h

T I0h},

ln(dN(I0h,I0)
dN(0,I0)

) = hTZ − 1
2h

T I0h, Z(x) = x.
(6.66)

Hence (N(I0h, I0))h∈Rd is an exponential family. The generating statistic is
Z(x) = x and is called the central variable of G. Note that the exponential
family (N(I0h, I0))h∈Rd does not satisfy the condition (A1) unless I0 is invert-
ible.

For a known covariance matrix Σ0 we consider the Gaussian model

G0 = (Rd,Bd, (N(h,Σ0))h∈Rd).

We get from Lemma 6.60 that this model is homogenous, i.e. N(h1, Σ0) 
�
N(h2, Σ0) for every h1, h2 ∈ R

d if and only if Σ0 is nonsingular. In this case

dN(h,Σ0)
dN(0, Σ0)

(x) = exp{hTΣ−1
0 x− 1

2
hTΣ−1

0 h}, (6.67)

and (N(h,Σ0))h∈Rd is an exponential family with generating statistic T =
Σ−1

0 Z. If I0 is nonsingular then for Σ0 := I−1
0 , S(x) = Σ0x, and T (x) = I0x it

holds

N(I0h, I0) = N(h,Σ0) ◦ T−1 (6.68)

N(h,Σ0) = N(I0h, I0) ◦ S−1.

Thus the two models G0 and G are mutual randomizations and we get

Δ(G0,G) = 0, (6.69)

which implies that G0 and G belong to the same equivalence class of models.
This is also reflected by the Hellinger transforms.



6.4 Asymptotically Normal Models 269

Problem 6.61. For every s ∈ So
m and h1, ..., hm ∈ R

d it holds

Hs(N(I0h1, I0), ...,N(I0hm, I0))

= exp{1

2
(
∑m

i=1
sihi)

T I0(
∑m

i=1
sihi)−

1

2

∑m

i=1
sih

T
i I0hi}.

If I0 is invertible, then we may replace I0 with I−1
0 and hi with I−1

0 hi. As
the right-hand term remains unchanged after this transformation we get

Hs(N(I0h1, I0), ...,N(I0hm, I0)) = Hs(N(h1, I
−1
0 ), ...,N(hm, I−1

0 )). (6.70)

Problem 6.62.∗ It holds for every h1, h2 ∈ R
d,

H1/2(N(I0h1, I0),N(I0h2, I0)) = exp{−1

8
(h1 − h2)

T I0(h1 − h2)},

D2(N(I0h1, I0),N(I0h2, I0)) = 2[1− exp{−1

8
(h1 − h2)

T I0(h1 − h2)}],

‖N(I0h1, I0)− N(I0h2, I0)‖2 ≤ (h1 − h2)
T I0(h1 − h2).

If det(I0) �= 0 and Σ0 = I−1
0 , then N(I0hi, I0) can be replaced with N(hi, Σ0), i = 1, 2.

The models G0 and G are special cases of a more general concept, the
concept of a Gaussian shift model. Let H be a Hilbert space with scalar product
〈·, ·〉 . H serves as the parameter space. A statistical model G = (X ,A, (Ph)h∈H)
is called a Gaussian shift model on H if Ph 
 P0, h ∈ H, and there is a family
L(h) : X →m R, h ∈ H, called the central process, such that

L(ah+ bg) = aL(h) + bL(g) h, g ∈ H, a, b ∈ R,

dPh
dP0

= exp{L(h)− 1
2
‖h‖2}, and

L(L(h)|P0) = N(0, ‖h‖2), h ∈ H.

It is not hard to show (see, e.g., Strasser (1985)) that for a finite-dimensional
Hilbert space H there is a random variable T, called the central variable, such
that L(h) = 〈T, h〉 . If we use the Euclidean scalar product, then we see from
(6.66) that G in (6.65) is a Gaussian shift with central variable Z(x) = x.
For G0 we introduce the new scalar product 〈a, b〉 = aTΣ−1

0 b. Then G0 is a
Gaussian shift with central variable Z. As we deal mainly with parametric
models the general theory of Gaussian shift models is not needed. We refer to
Strasser (1985) for details on general Gaussian shift models.

6.4.2 The LAN and ULAN Property

The concept of asymptotic normality of models means, roughly speaking, that
for a sequence of models the log-likelihood admits asymptotically a lineariza-
tion as in (6.66). This leads to an asymptotic linearization of the log-likelihood
with the help of a central sequence that plays the role of the central variable Z
in (6.66). This property, called the LAN property, is the backbone of modern
asymptotic statistics.
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Definition 6.63. A sequence of models Mn = (Xn,An, (Pn,h)h∈Δn
) with

Δn ↑ R
d is called locally asymptotically normal (LAN) if there exist a se-

quence Zn : Xn →m R
d, called the central sequence, a positive semidefinite

and symmetric d × d matrix I0, called the Fisher information matrix, and
rn(h) : Xn →m R such that the log-likelihood lnLn,h of Pn,h with respect to
Pn,0 admits the expansion

lnLn,h = hTZn −
1
2
hT I0h+ rn(h), (6.71)

rn(h) →Pn,0 0, h ∈ R
d, (6.72)

L(Zn|Pn,0) ⇒ N(0, I0). (6.73)

The sequence Mn is called uniformly locally asymptotically normal (ULAN)
if instead of (6.72) the stronger condition

lim
n→∞

sup
h∈C

Pn,0(|rn(h)| > ε) = 0, ε > 0,

holds for every compact subset C ⊆ R
d.

Remark 6.64. Local means in the LAN and ULAN conditions an approximation
of the log-likelihood in (6.71) if a localized parameter is used and the sample size is
large. For example, we show later that the sequence of localized models with Pn,h =
P⊗n

θ0+h/
√

n
satisfies the ULAN condition, provided that (Pθ)θ∈Δ is L2-differentiable

at θ0. As a short notation we also use LAN(Zn, I0) and ULAN(Zn, I0) to indicate
the central sequence and the information matrix.

The next theorem connects the LAN property with the convergence of
models. We show that the LAN property is equivalent to the weak convergence
of the modelsMn to the model G in (6.65). This relation has far-reaching con-
sequences as it connects the convergence of distributions of the log-likelihoods
with the decision-theoretic convergence of models concept that is based on
the Δ-distance.

We recall that the weak convergence of models is denoted by ⇒; see Defi-
nition 6.10.

Theorem 6.65. If a sequence of models Mn = (Xn,An, (Pn,h)h∈Δn
) satisfies

the LAN(Zn, I0) condition, then

Mn = (Xn,An, (Pn,h)h∈Δn
) ⇒ G = (Rd,Bd, (N(I0h, I0))h∈Rd). (6.74)

Conversely, if (6.74) holds, then there is a sequence Zn : Xn →m R
d such that

Mn satisfies the LAN(Zn, I0) condition.

Corollary 6.66. If Σ0 is a symmetric positive definite d×d matrix, then the
LAN(Zn, I0) condition for I0 = Σ−1

0 implies

Mn = (Xn,An, (Pn,h)h∈Δn
) ⇒ G0 = (Rd,Bd, (N(h,Σ0))h∈Rd). (6.75)
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Corollary 6.67. If the sequence of models Mn satisfies the LAN(Zn, I0) con-
dition, then for every h1, h2 ∈ R

d the sequences {Pn,h1} and {Pn,h2} are
mutually contiguous.

Proof. We know from Lemma 6.60 that for Z(x) = x the log-likelihood
of N(I0h, I0) with respect to N(0, I0) satisfies

lnLh = hTZ − 1
2
hT I0h and L(Z|N(0, I0)) = N(0, I0). (6.76)

Hence the condition LAN(Zn, I0) implies that for every h1, ..., hm ∈ R
d

L((lnLn,h1 , ..., lnLn,hm
)|Pn,0) ⇒ L((lnLh1 , ..., lnLhm

)|N(0, I0)). (6.77)

This implies Mn ⇒ G in view of Corollary 6.15 as G is homogeneous.
Conversely, fix h ∈ R

d and an orthonormal system e1, ..., ed and set for
An = {max1≤i≤d | lnLn,ei

|+ | lnLn,h| <∞},

Zn =
∑d

i=1
(lnLn,ei

+
1
2
eTi I0ei)IAn

ei.

Suppose that Mn ⇒ G. As the limit model of the sequence of binary submod-
els (Xn,An, {Pn,g, Pn,h}) is

(Rd,Bd, {N(I0g, I0),N(I0h, I0)}),

and N(I0g, I0) 
� N(I0h, I0), we get

{Pn,g} �� {Pn,h}, g, h ∈ R
d, (6.78)

and limn→∞ Pn,0(An) = 1 and limn→∞ Pn,0(| lnLn,h| = ∞) = 0 from Theo-
rem 6.26. Hence Mn ⇒ G and Corollary 6.15 show that the distribution un-
der Pn,0 of every linear function of (lnLn,e1)IAn

, ..., (lnLn,ed
)IAn

, (lnLn,h)IAn

tends weakly to the distribution under N(0, I0) of the same linear function of
lnLe1 , ..., lnLed

, lnLh. For hi = eTi h it holds

L(lnLh +
1
2
hT I0h−

∑d

i=1
hi(lnLei

+
1
2
eTi I0ei)|N(0, I0)) = δ0.

The weak convergence of distributions to δ0 is equivalent to the stochas-
tic convergence of the associated random variables. Taking into account
limn→∞ Pn,0(An) = 1 we get

lnLn,h +
1
2
hT I0h−

∑d

i=1
hi(lnLn,ei

+
1
2
eTi I0ei) →Pn,0 0.

The first corollary is only a reformulation of the theorem as G and G0 are
equivalent; see (6.69). The second corollary follows from (6.78).

Now we study sequences of models for which the stochastic convergence
to zero of the remainder term rn(h) in (6.72) is uniform in h ∈ C for com-
pact subsets C ⊆ R

d. It turns out that this condition is equivalent to an
equicontinuity property of the sequence of models. The next statement is a
modification of Theorem 80.13 in Strasser (1985).
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Proposition 6.68. Let Mn = (Xn,An, (Pn,h)h∈Δn
),Δn ↑ R

d be a sequence
of models that satisfies the condition LAN(Zn, I0) in Definition 6.63. Then for
every compact set C ⊆ R

d the following conditions are equivalent.

(A) ULAN(Zn, I0).

(B) rn(hn) →Pn,0 0 for every convergent sequence hn. (6.79)
(C) lim

δ↓0
lim sup
n→∞

sup
‖h1−h2‖≤δ, h1,h2∈C

‖Pn,h1 − Pn,h2‖ = 0. (6.80)

Proof. (A) → (B) is clear. (B) → (A): set ϕn(h) = Pn,0(|rn(h)| > ε)
and ϕ(h) = 0 and use Problem 6.79. (C) → (B): suppose hn → h. Set
Qn = (1/3)(Pn,hn

+ Pn,h + Pn,0) and fn,h = dPn,h/dQn. Then
∫
|Ln,hn

− Ln,h|dPn,0 =
∫
I(0,∞)(fn,0) |

fn,hn

fn,0
− fn,h
fn,0

| fn,0 dQn

≤
∫
|fn,hn

− fn,h| dQn = ‖Pn,hn
− Pn,h‖ .

If condition (6.80) is satisfied, then

lim
n→∞

∫
|Ln,hn

− Ln,h|dPn,0 = 0. (6.81)

The conditions (6.71), (6.72), and (6.73) imply

lim inf
δ↓0

lim inf
n→∞

Pn,0(Ln,h > δ) = 1,

which together with (6.81) provide lnLn,hn
−lnLn,h →Pn,0 0. As (6.73) implies

that the sequence Zn is stochastically bounded with respect to Pn,0 we get

rn(hn)− rn(h)

= lnLn,hn
− lnLn,h − 〈Zn, hn − h〉+

1
2
hTn I0hn −

1
2
hT I0h→Pn,0 0.

(B) → (C): put ϕn(h) = Pn,h, and denote by Tn the space of all distributions
on (Xn,An). Use the variational distance as metric ρTn

to conclude from
condition (6.100) in Problem 6.81 that in order to prove (6.80) it is enough
to show that limn→∞ ‖Pn,hn

− Pn,h‖ = 0 for every h and every sequence hn
with hn → h. The conditions (6.71) and (6.73) imply Pn,0(Ln,h > 0) → 1.
This implies for the likelihood ratio of Pn,hn

with respect to Pn,h, say Mn,
that

lnMn = lnLn,hn
− lnLn,h

= 〈Zn, hn − h〉 − 1
2
(hTn I0hn − hT I0h) + rn(hn)− rn(h) + oPn,0(1).

Corollary 6.67 yields {Pn,h} �� {Pn,0} and therefore



6.4 Asymptotically Normal Models 273

rn(hn) = oPn,0(1) = oPn,h
(1) and Zn = OPn,0(1) = OPn,h

(1),

where the last statement follows from Problem 6.30. Hence L(lnMn|Pn,h) ⇒
δ0. By Theorem 6.21 the weak convergence of the binary models {Pn,hn

, Pn,h}
to a binary model {P, P} follows, where P is any distribution on, (X ,A),
say. From condition (B) in Theorem 6.21 we get limn→∞ D(Pn,hn

, Pn,h) =
D(P, P ) = 0 and limn→∞ ‖Pn,hn

− Pn,h‖ = 0 by Proposition 1.84.

Now we study sequences of models that satisfy the LAN condition. We
start with a parametrized family of distributions (Pθ)θ∈Δ on (X ,A), where
Δ ⊆ R

d, and θ0 ∈ Δ0 is fixed. As we have explained already previously (see
Examples 6.17, 6.19, and 6.20) one can only arrive at nontrivial limit models
by turning away from the standard i.i.d. case to a double array of observations,
where for increasing sample sizes each individual observation contributes less
and less information to the whole model. With this in mind, let us introduce
a local parameter by setting

Δn = {h : h ∈ R
d, θ0 + h/

√
n ∈ Δ}, n = 1, 2, ..., Δn ↑ R

d,

and study the sequence of models

Mn = (Xn,A⊗n, (P⊗n
θ0+h/

√
n
)h∈Δn

). (6.82)

To establish the ULAN condition we use the linearization of the log-likelihood
for binary models. Let {cn,i} be a double array of regression coefficients that
satisfy

lim
n→∞

max
1≤i≤n

c2n,i = 0 and lim
n→∞

∑n

i=1
c2n,i = 1. (6.83)

For a fixed θ0 ∈ Δ0 and a convergent sequence hn ∈ R
d we consider the

sequence of binary models

Mn = (Xn,A⊗n, {P⊗n
θ0

,
⊗n

i=1 Pθ0+cn,ihn
}).

We denote by Lθ0(h) the likelihood ratio of Pθ0+h with respect to Pθ0 . Set

Xn,i(xn) = xn,i, xn = (xn,1, ..., xn,n) ∈ Xn,

Ln,i = Lθ0+cn,ihn
(Xn,i), and Yn,i = L

1/2
n,i − 1.

To apply the results on binary models we assume that (Pθ)θ∈Δ is L2-
differentiable at θ0 with derivative L̇θ0 and Fisher information I(θ0) =
Eθ0L̇θ0L̇

T
θ0

; see Definition 1.103. Especially, we get from this definition that for
all sufficiently large n it holds Qn,i := Pθ0+cn,ihn


 Pn,i := Pθ0 , and therefore
Qn,i(Ln,i =∞) = 0. Set

R(δ) : = sup
‖h‖≤δ

‖h‖−2 Eθ0

∣∣∣∣[L1/2
θ0

(h)− 1]− 1
2
hT L̇θ0

∣∣∣∣
2

,

γ(δ) : = sup
‖h‖≤δ

‖h‖−2

∣∣∣∣Eθ0 [L
1/2
θ0

(h)− 1]2 − 1
4
hT I(θ0)h

∣∣∣∣ .
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If (Pθ)θ∈Δ is L2-differentiable at θ0, then R(δ) and γ(δ) tend to zero as
δ → 0. An approximation of the first two moments of Yn,i is considered next.

Problem 6.69.∗ It holds

| Eθ0Yn,i − (−1

8
c2n,ih

T
n I(θ0)hn) |≤ γ(δn) ‖cn,ihn‖2 , (6.84)

| Eθ0Y
2

n,i −
1

4
c2n,ih

T
n I(θ0)hn |≤ γ(δn) ‖cn,ihn‖2 , (6.85)

Eθ0(Yn,i − Eθ0Yn,i −
1

2
cn,ih

T
n L̇θ0(Xn,i))

2 ≤ ρn,i, where (6.86)

ρn,i = 2R(δn) ‖cn,ihn‖2 + 2(
1

8
c2n,ih

T
n I(θ0)hn + γ(δn) ‖cn,ihn‖2)2,

for every sufficiently large n, and where δn = max1≤i≤n ‖cn,ihn‖ .

The following version of the so-called second lemma of LeCam is taken
from Witting and Müller-Funk (1995).

Theorem 6.70. (Second Lemma of LeCam) Suppose that (Pθ)θ∈Δ is L2-
differentiable at θ0 ∈ Δ0 with derivative L̇θ0 and Fisher information matrix
I(θ0) = Eθ0L̇θ0L̇

T
θ0
. Suppose that the conditions in (6.83) are satisfied. Then

the sequence of models

(Xn,A⊗n, (
⊗n

i=1 Pθ0+cn,ih)h∈Δn
), Δn = {h : θ0 + cn,ih ∈ Δ, i = 1, ..., n},

satisfies the ULAN(Zn, I0) condition with Zn =
∑n

i=1 cn,iL̇θ0(Xn,i) and I0 =
I(θ0).

Corollary 6.71. Under the assumptions of the theorem the sequence

(Xn,A⊗n, (P⊗n
θ0+h/

√
n
)h∈Δn

), Δn = {h : θ0 + h/
√
n ∈ Δ},

satisfies the ULAN(Zn, I0) condition with Zn = (1/
√
n)
∑n

i=1 L̇θ0(Xn,i) and
I0 = I(θ0).

Proof. We apply Theorem 6.49 with Pn,i = Pθ0 and Qn,i = Pθ0+cn,ihn
,

where hn → h. To establish (6.52) we remark that by the definition of
the L2-differentiability (see Definition 1.103) it holds Qn,i(Yn,i = ∞) = 0
for all sufficiently large n. It follows from Problem 6.59 and (6.86) that
we have to establish the Lindeberg condition only for the double array
Eθ0Yn,i + 1

2cn,ih
T
n L̇θ0(Xn,i). Utilizing Problem 6.59 once more (6.84) shows

that we have to prove the Lindeberg condition for cn,ihTn L̇θ0(Xn,i) only. As
the L̇θ0(Xn,i) are i.i.d. under P⊗n

θ0
, and Eθ0 ‖ L̇θ0(X1,1) ‖2<∞, the Lindeberg

condition for cn,ihTn L̇θ0(Xn,i) follows from Problem 6.82.
Condition (6.55) with σ2 = hT I(θ0)h follows from Eθ0Y

2
n,i = D2(Pn,i, Qn,i),

(6.85), hn → h, and (6.83). Hence we get from Theorem 6.49,

lnLn,hn
= 2
∑n

i=1
Yn,i − σ2/4 + oP⊗n

θ0
(1), σ2 = hT I(θ0)h.
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The random variables Vn,i = Yn,i−Eθ0Yn,i− 1
2cn,ih

T
n L̇θ0(Xn,i) are independent

and have expectation zero. Hence,

Eθ0(
∑n

i=1
Vn,i)2 =

∑n

i=1
Eθ0V

2
n,i ≤

∑n

i=1
ρn,i → 0,

by (6.86). Thus by (6.84) and (6.83),

lnLn,hn
=
∑n

i=1
[cn,ihTn L̇θ0(Xn,i) + 2Eθ0Yn,i]− σ2/4 + oP⊗n

θ0
(1)

= hTnZn −
1
2
hTn I0hn + oP⊗n

θ0
(1),

which is the expansion (6.71) with I0 = I(θ0). It remains to show that
L(Zn|P⊗n

θ0
) ⇒ N(0, I0). To this end we fix h and consider the random variables

Zn,i = cn,ih
T L̇θ0(Xn,i), which satisfy the Lindeberg condition by Problem

6.82. As Eθ0Zn,i = 0 by Proposition 1.110, and

∑n

i=1
Vθ0(Zn,i) =

∑n

i=1
c2n,ih

T I(θ0)h→ hT I(θ0)h,

we get L(Zn|P⊗n
θ0

) ⇒ N(0, I0) from Theorem A.54 and the Cramér–Wold
device; see Criterion A.52. The proof of the corollary follows by setting cn,i =
1/
√
n.

In the following theorem we formulate the third lemma of LeCam in the
language of the LAN condition. In the next three chapters we systematically
use the statements of the subsequent theorem and its corollaries. They allow
us to evaluate the risk of estimators, tests, and selection rules asymptotically
under local alternatives. Such statements are the main tools to evaluate the
efficiency of decisions, and thus they are the backbone of the entire LeCam
theory. The concept of weak convergence of distributions relies on the expec-
tation of bounded and continuous functions of the random variables under
consideration. Sometimes one has to deal with functions that are discontin-
uous at a few points. Such functions are indicator functions of intervals that
appear in the theory of testing statistical hypotheses, or convex loss func-
tions when estimating parameters. A function ϕ : R

d →m R is called λd-a.e.
continuous if the set of all points of discontinuity has the Lebesgue measure
zero.

Theorem 6.72. (Third Lemma of LeCam Under LAN) Suppose that
the sequence of models Mn = (Xn,An, (Pn,h)h∈Δn

) with Δn ↑ R
d fulfils the

LAN(Zn, I0) condition, and let Sn : Xn → R
m. Then

L
(
(ST

n , Z
T
n )T |Pn,0

)
⇒ N (0, Σ) (6.87)

implies

L
(
(ST

n , Z
T
n )T |Pn,h

)
⇒ N

((
Σ1,2h
Σ2,2h

)
, Σ

)
, h ∈ R

d, (6.88)
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where (Σi,j)1≤i,j≤2 is the partition of Σ into submatrices and Σ2,2 = I0.
Furthermore, for every bounded and continuous ϕ : R

m+d → R and every
h ∈ R

d,

lim
n→∞

∫
ϕ(Sn(xn), Zn(xn))Pn,h(dxn) (6.89)

=
∫
ϕ(x+Σ1,2h, y +Σ2,2h)N(0, Σ)(dx, dy).

If ϕ : R
d →m R is bounded and λd-a.e. continuous, and I0 is nonsingular,

then

lim
n→∞

∫
ϕ(Zn(xn))Pn,h(dxn) =

∫
ϕ(x+ I0h)N(0, I0)(dx). (6.90)

If ϕ : R
m →m R is bounded and λm-a.e. continuous, and Σ1,1 is nonsingular,

then

lim
n→∞

∫
ϕ(Sn(xn))Pn,h(dxn) =

∫
ϕ(x+Σ1,2h)N(0, Σ1,1)(dx). (6.91)

Corollary 6.73. If in addition the ULAN(Zn, I0) condition holds, then the
convergence in (6.89), (6.90), and (6.91) is locally uniform in h.

Proof. Fix g0 ∈ R
m, h0 ∈ R

d and set S̃n = gT0 Sn + hT0 Zn. Then by (6.71)
and (6.87),

L((S̃n, lnLn,h)T |Pn,0) ⇒ N

((
0

− 1
2σ

2

)
,

(
τ2 ρτσ
ρτσ σ2

))
,

where

τ2 = gT0 Σ1,1g0 + hT0 Σ2,2h0 + gT0 Σ1,2h0 + hT0 Σ2,1g0, σ
2 = hTΣ2,2h,

ρτσ = gT0 Σ1,2h+ hT0 Σ2,2h.

Hence by Proposition 6.34

L(S̃n|Pn,h) ⇒ N
(
ρτσ, τ2

)
.

As g0 and h0 are arbitrary we get the statement (6.88) from the Cramér–
Wold device; see Criterion A.52. The statement (6.88) implies (6.89) for every
bounded and continuous ϕ : R

m+d → R. Suppose now ϕ : R
d → R is bounded

and λd-a.e. continuous. If I0 is nonsingular, then ϕ is also N (I0h, I0)-a.s. con-
tinuous. Hence (6.90) follows from the fact that (6.88) implies the weak con-
vergence of the marginal distributions and (F ) in Theorem A.49. The proof
of (6.91) is similar. To prove the corollary, we set

ϕn(h) =
∫
ϕ(Sn(xn), Zn(xn))Pn,h(dxn).
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If the ULAN(Zn, I0) condition holds, then in view of (6.80) and the inequality
in Problem 1.80,

lim
δ↓0

lim sup
n→∞

sup
‖h1−h2‖≤δ, h1,h2∈C

|ϕn(h1)− ϕn(h2)| = 0.

An application of the statement in Problem 6.80 completes the proof.
For i.i.d. observations the sequence of models has a product structure., i.e.

Mn = (Xn,A⊗n, (P⊗n
θ0+h/

√
n
)h∈Δn

), Δn ↑ R
d. (6.92)

Denote by X1, ...,Xn the projections of Xn on X . The sequence of statistics
Sn : Xn →m R

m admits in many cases a so-called stochastic Taylor expansion;
that is,

Sn =
1√
n

∑n

i=1
Ψ(Xi) + oP⊗n

θ0
(1), (6.93)

where Ψ belongs to the space L
0
2,m(Pθ0) of functions Ψ : X →m R

d with
Eθ0Ψ = 0 and Eθ0 ‖Ψ‖

2
<∞. For such sequences we get the following version

of the third lemma of LeCam.

Corollary 6.74. Assume that for the model (X ,A, (Pθ)θ∈Δ), Δ ⊆ R
d, the

family (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ0 with derivative L̇θ0 . Suppose
that Sn : Xn →m R

m is a sequence of statistics that admits the representation
(6.93). Then it holds

L(Sn|P⊗n
θ0+h/

√
n
) ⇒ N(Cθ0(Ψ, L̇θ0)h,Cθ0(Ψ)), h ∈ R

d. (6.94)

For every bounded and continuous function ϕ : R
m → R it holds locally uni-

form in h,

lim
n→∞

∫
ϕ(Sn(xn))P⊗n

θ0+h/
√
n
(dxn) =

∫
ϕ(x+ Cθ0(Ψ, L̇θ0)h)N(0,Cθ0(Ψ))(dx).

(6.95)
If Cθ0(Ψ) is nonsingular, then (6.95) holds locally uniform in h for every
ϕ : R

m →m R that is bounded and λd-a.e. continuous.

Proof. We note that by the second lemma of LeCam (see Corollary
6.71) the sequence of models (Xn,A⊗n, (P⊗n

θ0+h/
√
n
)h∈Δn

), Δn = {h : θ0 +
h/
√
n ∈ Δ}, satisfies the ULAN(Zn, I(θ0)) condition with central sequence

Zn = n−1/2
∑n

i=1 L̇θ0(Xi) and Fisher information matrix I(θ0) = Cθ0(L̇θ0).
The central limit theorem for i.i.d. random vectors and Slutsky’s lemma yield
that the distribution of

(
Sn
Zn

)
=

1√
n

n∑
i=1

(
Ψ(Xi)
L̇θ0(Xi)

)
+ oP⊗n

θ0
(1)

tends to a normal distribution with expectation zero and covariance matrix
Σ given by
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∑
=
(

Cθ0(Ψ) Cθ0(Ψ, L̇θ0)
Cθ0(L̇θ0 , Ψ) I(θ0)

)
.

To complete the proof we have only to apply the already proved statements
in Theorem 6.72 and Corollary 6.73.

The shift Cθ0(Ψ, L̇θ0)h that appears in (6.95) indicates how the statistic
Sn measures the deviation from θ0 when the data are from a local alternative.
Suppose for simplicity that d = 1. Then Cθ0(Ψ) is the variance Vθ0(Ψ). If we
turn to the normalized statistic

S̃n = (Vθ0(Ψ))−1/2Sn,

and denote by ρ the correlation between Ψ and L̇θ0 , and by I(θ0) the Fisher
information, then

L(S̃n|P⊗n
θ0+h/

√
n
) ⇒ N(ρI1/2(θ0)h, 1).

Thus, to maximize the shift means to maximize the correlation coefficient.
If we are interested in a positive shift, then the maximum shift is produced
by taking Ψ = L̇θ0 . This is easy to understand as the tangent L̇θ0 of the
model reflects best the behavior of the model if we operate with first-order
linearizations.

The simplest situations where the ULAN condition is satisfied are those
with exponential families.

Example 6.75. Let (Pθ)θ∈Δ be an exponential family on (X ,A) with generating
statistic T : X → R

d and natural parameter θ ∈ Δ. We assume that the conditions
(A1) and (A2) are satisfied. Then by (1.6)

dPθ

dμ
(x) = exp{〈θ, T (x)〉 −K(θ)}, x ∈ X .

By Example 1.120 the family is L2-differentiable with derivative L̇θ0 = T −∇K(θ0),
θ0 ∈ Δ0. Hence the sequence P⊗n

θ0+hn/
√

n
satisfies the ULAN(Zn, I0) condition with

Zn =
1√
n

∑n

i=1
L̇θ0(Xi) =

1√
n

∑n

i=1
(T (Xi)−∇K(θ0))

and I0 = ∇∇TK(θ0). But this can also be obtained directly. Indeed, for hn → h,

lnLn,hn := ln(dP⊗n
θ0+hn/

√
n/dP

⊗n
θ0

)

=
∑n

i=1
(hn/

√
n)T [T (Xi)−∇K(θ0)] +

1

2
hT I0h + rn(θ0, h), where

rn(θ0, hn) = n[K(θ0 + hn/
√
n)−K(θ0)− (hn/

√
n)T∇K(θ0)]−

1

2
hT

n I0hn → 0.

If a sequence of models satisfies the LAN condition, then by (6.71),

Ln,h ≈ exp{hTZn −
1
2
hT I0h},
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which means that (Pn,h)h∈Δn
is an approximate exponential family. Two prob-

lems arise in an attempt to bring this statement into a mathematically rigorous
form. First, the LAN(Zn, I0) condition does not say anything about possible
moments of Zn. Especially we cannot expect that

∫
exp{hTZn}dPn,0 < ∞,

and thus we cannot turn exp{hTZn} into a density by a proper normalization.
To overcome this difficulty we apply a truncation technique by setting, for a
sequence cn with cn →∞,

Z∗
n = I[0,cn](‖Zn‖)Zn,

Kn(h) = ln(
∫

exp{hTZ∗
n}dPn,0),

dQn,h

dPn,0
= exp{hTZ∗

n −Kn(h)}. (6.96)

Second, to make the phrase “approximate exponential family” precise, we
measure the difference between Pn,h and Qn,h with the variational distance.
The next theorem is due to LeCam (1960). For a proof we refer to Strasser
(1985), Theorem 81.1.

Theorem 6.76. LetMn = (Xn,An, (Pn,h)h∈Δn
) be a sequence of models with

Δn ↑ R
d that fulfils the LAN(Zn, I0) condition. Then there exists a sequence

cn with cn →∞ such that

lim
n→∞

‖Pn,h −Qn,h‖ = 0, h ∈ R
d,

lim
n→∞

Kn(h) =
1
2
hT0 I0h, h ∈ R

d,

for Qn defined in (6.96).

The above theorem has far-reaching consequences. As the sequence of gen-
erating statistics Z∗

n is sufficient for the family Qn,h, which approximates Pn,h
in terms of the variational distance, Z∗

n and thus Zn are approximately suffi-
cient for the family Pn,h in the following sense.

Theorem 6.77. Let the assumptions of Theorem 6.76 be satisfied. If the deci-
sion space (D,D) is a Borel space, and DMn

: D×Xn →k [0, 1] is a sequence
of decisions for the models Mn, then there are decisions D∗

Mn
factorized by

Zn; that is, there are Dn : D× R
d →k [0, 1] with D∗

Mn
(A|x) = Dn(A|Zn(x)),

such that for every bounded loss function L,

lim
n→∞

(R(h,DMn
)− R(h,D∗

Mn
)) = 0, h ∈ R

d.

Proof. By Theorem 4.18 there are decisions D∗
Mn

factorized by Z∗
n, and

thus factorized by Zn, such that
∫

[
∫
L(h, a)DMn

(da|x)]Qn,h(dx) =
∫

[
∫
L(h, a)Dn(da|Zn(x))]Qn,h(dx).
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If ‖L‖u ≤ c, then |
∫
L(h, a)Dn(da|Zn(x))| ≤ c. Hence by the inequality

|
∫
fd(P0 − P1)| ≤ c ‖P0 − P1‖ for ‖f‖u ≤ c (see Problem 1.80) we get

|R(h,DMn
)− R(h,D∗

Mn
)|

= |
∫

[
∫
L(h, a)(DMn

(da|x)− Dn(da|Zn(x)))]Pn,h(dx)|

≤ |
∫

[
∫
L(h, a)(DMn

(da|x)− Dn(da|Zn(x)))]Qn,h(dx)|

+|
∫

[
∫
L(h, a)(DMn

(da|x)− Dn(da|Zn(x)))](Pn,h −Qn,h)(dx)|

≤ 2c ‖Pn,h −Qn,h‖ .

Remark 6.78. The LAN condition was introduced by LeCam (1960). The more
general concept of local asymptotic mixed normality (LAMN) is due to Jeganathan
(1980a,b). A somewhat more general concept is that of locally asymptotically
quadratic families; see LeCam and Yang (1990). Shiryaev and Spokoiny (2000) in-
troduced another concept for asymptotic normality. The starting point for this is
the fact that weak convergence of distributions can be replaced by the a.s. conver-
gence of random variables with the same distributions if one defines the new random
variables on a suitably constructed probability space.

We have established the LAN property only for i.i.d. observations. This fun-
damental condition can be proved in a more general setting. For independent but
not necessarily identically distributed observations we refer to Strasser (1985) and
Rieder (1994). There are many papers dealing with the LAN condition for stochas-
tic processes. First results are contained in the books by Basawa and Prakasa Rao
(1980) and Basawa and Scott (1983). The LAN condition appears then as a special
case of the LAMN condition when the considered process is ergodic. Without be-
ing complete, for diffusion processes we refer to Jeganathan (1980a,b), Basawa and
Prakasa Rao (1980), Basawa and Scott (1983), Davies (1985), and Luschgy (1992a).
Ergodic diffusion processes are considered in Kutoyanc (2004), and Markov statis-
tical models are studied in Höpfner, Jacod, and Ladell (1990). The LAN condition
for spatial Poisson processes has been established in Liese and Lorz (1999). Thinned
point processes are considered in Falk and Liese (1998).

For further details of the history and development of the concept of asymptotic
normality of sequences of models and related concepts we refer to Strasser (1985),
Chapter 13, LeCam and Yang (1990), and Shiryaev and Spokoiny (2000).

Finally, we collect some technical problems that concern well-known results
on the uniform convergence of functions.

Problem 6.79.∗ Let S and T be any metric spaces with metrics ρS and ρT ,
respectively, and let ϕ,ϕ1, ... be functions on S with values in T . If S is compact
and ϕ is continuous, then

lim
n→∞

sup
s∈S

ρT (ϕn(s), ϕ(s)) = 0 ⇐⇒ lim
n→∞

ρT (ϕn(sn), ϕ(s)) = 0, (6.97)

for every sn, s ∈ S with sn → s.
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Problem 6.80.∗ Suppose S and T are metric spaces and ϕ,ϕn : S → T . If S is
compact, ϕ is continuous, and the sequence ϕn satisfies

lim
δ↓0

lim sup
n→∞

sup
s1,s2:ρS(s1,s2)≤δ

ρT (ϕn(s1), ϕn(s2)) = 0,

then the pointwise convergence ϕn(s) → ϕ(s) for all s from a dense subset implies
the uniform convergence of ϕn to ϕ.

Problem 6.81.∗ Suppose S and Tn are metric spaces and ϕn : S → T n. If S is
compact, then the following conditions are equivalent.

lim
δ↓0

lim sup
n→∞

sup
s1,s2:ρS(s1,s2)≤δ

ρTn(ϕn(s1), ϕn(s2)) = 0. (6.98)

lim
δ↓0

lim sup
n→∞

sup
s:ρS(s,s0)≤δ

ρTn(ϕn(s), ϕn(s0)) = 0, s0 ∈ S. (6.99)

lim
n→∞

ρTn(ϕn(sn), ϕn(s0)) = 0, sn, s0 ∈ S, sn → s0. (6.100)

Problem 6.82.∗ Let V1, V2, ... be i.i.d. random vectors with E ‖V1‖2 <∞. If hn,i,
i = 1, ..., n, n = 1, 2, ..., is a double array of vectors with supn

∑n
i=1 ‖hn,i‖2 <∞ and

limn→∞ max1≤i≤n ‖hn,i‖2 = 0, then Zn,i = hT
n,iVi satisfies the Lindeberg condition

lim
n→∞

∑n

i=1
EZ2

n,iI(ε,∞)(|Zn,i|) = 0, ε > 0.

6.5 Asymptotic Lower Risk Bounds, Hájek–LeCam
Bound

In the previous sections we have studied the dependence of the risk and the
Bayes risk on their relevant components. In Chapter 3 it has been shown that
under mild assumptions the risk function R(θ,D) is continuous in θ. Moreover,
for a bounded and continuous loss function L the risk R(θ,D) has been shown
to depend continuously on D. Now we study the dependence of the risk on
the model; that is, we consider the behavior of the risk under the weak con-
vergence of models. This investigation is motivated by the following fact. We
have seen that under mild assumptions the limit model is a Gaussian model.
In such models one can often find optimal decisions under weak restrictions
on the class of decisions under consideration. Consider, for example, the prob-
lem of testing the hypotheses H0 : μ ≤ μ0 versus HA : μ > μ0 in the model
(Rn,Bn, (N(μ, σ2))μ∈R) where σ2 is known. In Example 2.52 we have seen that
the Gauss test ϕ that rejects the null hypothesis for large values of Xn is a uni-
formly best level α test for α = Eμ0ϕ. In the next chapter it is shown that Xn

as an estimator of μ has several optimality properties under the squared error
loss. Another example is testing H0 : μ1 = · · · = μk versus HA : δ2 > 0, where
δ2 =

∑k
i=1 μ

2
i , in the model (Rn,Bn, (

⊗n
i=1 N(μi, σ2))(μ1,...,μn)∈Rn) with a

known σ2. Here the maximin property of the χ2-test has been established in
Theorem 5.43. These are just a few examples. In the next three chapters we
study estimation, testing, and selection problems systematically with the aim
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of finding optimal decisions. Especially optimal decisions for Gaussian models
are found there.

Suppose we are given a sequence of modelsMn and consider a sequence of
associated decisions DMn

. Let the models Mn tend to a model M for which
we have found an optimal decision DM. Then we could call the sequence DMn

optimal for the sequenceMn if the risk functions of DMn
inMn approximate

in some specific way the risk function of DM in M. For example, this could
mean that the maximum risks of DMn

converge to the maximum risk of a
minimax decision in the limit model, if such a decision exists. Or it could
mean that the risk functions of DMn

converge pointwise to the risk function
of a uniformly best decision in the limit model, if such a decision exists. With
these ideas in mind we set up the following program for finding asymptotic
optimal decisions.

(A) Establish the convergence Mn ⇒ G.
(B) Establish an asymptotic lower bound for R(θ,DMn

)
in terms of the limit model.

(C) Find an optimal decision DG(·|Z) for G that attains the lower
bound and is factorized by the central variable Z.

(D) Replace Z by Zn and show that for DM∗
n

:= DG(·|Zn)
the risks R(θ,DM∗

n
) tend to the lower bound of the risks.

(6.101)
Point (A) has been the topic of the previous section on asymptotic nor-

mality of models and the LAN and ULAN condition. As to point (C), some
results on finding optimal decisions have been established already in the pre-
vious chapters. The motivation of (D) is the following. As the central variable
in a Gaussian model that appears as a limit model is a sufficient statistic each
optimal decision can be written as a function of the central variable. As we
know from Theorem 6.77 that the central sequence is asymptotically sufficient
it is obvious to replace the central variable by the central sequence. To show
that the sequence of decisions DM∗

n
obtained in this way is asymptotically

optimal, one has to prove the convergence of the risks. This is not a difficult
task as the LAN condition implies the weak convergence of the distributions
of the central sequences. It just remains to find conditions under which the
expectations involved in the risks converge as well. Here in this section we
focus on point (B).

The crucial point in the subsequent considerations is a compactness prop-
erty for sequences of decisions that belong to weakly convergent sequences of
models. To make this property precise we need a concept of convergence of
decisions, similar to that which has been introduced in Chapter 3 for a fixed
model. Below we introduce a similar concept for a weakly convergent sequence
of models.
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Definition 6.83. Let Mn = (Xn,An, (Pn,θ)θ∈Δn
) with Δn ↑ Δ be a sequence

of statistical models that converge weakly to the model M = (X ,A, (Pθ)θ∈Δ).
Suppose that the decision space D is a metric space and D is the σ-algebra
of Borel sets. A sequence of decisions Dn : D × Xn →k [0, 1] is called weakly
convergent to D : D×X →k [0, 1] if for every f ∈ Cb(D) and θ ∈ Δ,

lim
n→∞

∫
[
∫
f(a)Dn(da|x)]Pn,θ(dx) =

∫
[
∫
f(a)D(da|x)]Pθ(dx). (6.102)

In this case we write Dn ⇒ D. We call D0 : D×X →k [0, 1] an accumulation
point of the sequence Dn if there exists a subsequence Dnk

with Dnk
⇒ D0.

Turning to a special case, let Kn and K be nonrandomized decisions. Then
there are mappings Tn : Xn →m D and T : X →m D such that Kn = δTn

and
K = δT , and thus∫

[
∫
f(a)Kn(da|x)]Pn,θ(dx) =

∫
f(Tn(x))Pn,θ(dx) = En,θf(Tn),

∫
[
∫
f(a)K(da|x)]Pθ(dx) =

∫
f(T (x))Pθ(dx) = Eθf(T ).

Hence we see that Kn ⇒ K holds if and only if the sequence of distributions
L(Tn|Pn,θ) converges weakly to the distribution L(T |Pθ) for every θ ∈ Δ.

To prepare for the next consideration we study the convergence (6.102) in
more detail.

Problem 6.84.∗ If (6.102) holds and D is a metric space, then

lim inf
n→∞

∫
[

∫
f(a)Dn(da|x)]Pn,θ(dx) ≥

∫
[

∫
f(a)D(da|x)]Pθ(dx), θ ∈ Δ,

for every lower bounded and lower semicontinuous function f : D → (−∞,∞].

Problem 6.85.∗ If Δ is a metric space and M is continuous in the sense of (A7),
then for a fixed f ∈ Cb(D) the convergence in (6.102) for every θ from a dense subset
of Δ implies the convergence for every θ ∈ Δ.

Now we establish the existence of an accumulation point, or the compact-
ness, of any sequence of decisions that belong to a weakly convergent sequence
of models.

Proposition 6.86. Let Mn = (Xn,An, (Pn,θ)θ∈Δn
), n = 1, 2, ..., and M =

(X ,A, (Pθ)θ∈Δ) be models with Δn ↑ Δ. Assume that D is a compact metric
space. If Mn ⇒ M, then for every sequence of decisions DMn

for Mn and
every at most countable subset Δ0 ⊆ Δ there exists a subsequence DMnk

and
a decision DM for M such that for every f ∈ Cb(D) and every θ ∈ Δ0,

lim
l→∞

∫
[
∫
f(a)DMnl

(da|x)]Pnl,θ(dx) =
∫

[
∫
f(a)DM(da|x)]Pθ(dx).

(6.103)
If Δ is a separable metric space and the model M is continuous in the sense
of (A7), then (6.103) holds for every θ ∈ Δ.
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Proof. Let Δ0 = {θ1, θ2, ...} ⊆ Δ and set �m = {θ1, ..., θm}. According to
Definition 6.10 we have Δ(Mn,�m

,M�m
) → 0. It follows from (6.5) that for

every m there is a sequence of kernels Kn,m with limn→∞ ‖Pθi,n − Kn,mPθi
‖ =

0, i = 1, ...,m. We consider the decision

(DMn
Kn,m)(B|x) :=

∫
DMn

(B|xn)Kn,m(dxn|x)

for the model M�m
. Then by |

∫
f(a)DMn

(da|xn)| ≤ ‖f‖u and Problem 1.80,
∣∣∣∣
∫

[
∫
f(a)DMn

(da|xn)]Pn,θi
(dxn)−

∫
[
∫
f(a)(DMnKn,m)(da|x)]Pθi

(dx)
∣∣∣∣

=
∣∣∣∣
∫

[
∫
f(a)DMn

(da|xn)]Pn,θi
(dxn)

−
∫

[
∫
f(a)DMn

(da|x)](Kn,mPθi
)(dxn)

∣∣∣∣ ≤ ‖f‖u ‖Pn,θi
− Kn,mPθi

‖ → 0

as n → ∞, i = 1, ...,m. From the compactness theorem (see Theorem 3.21)
we get that for every m there exists a subsequence nm,k and a decision D0,m

such that DMnm,k
Knm,k,m ⇒ D0,m, which implies that for k →∞,

lim
k→∞

∫
[
∫
f(a)DMnm,k

(da|x)]Pnm,k,θi
(dx) (6.104)

=
∫

[
∫
f(a)D0,m(da|x)]Pθi

(dx),

for every f ∈ Cb(D) and i = 1, ...,m. It is clear that we may choose the
subsequences to satisfy {nm,k} ⊆ {nm−1,k}. Due to Theorem 3.21 again we
may assume that for some DM it holds D0,m ⇒ DM. Otherwise we turn to a
subsequence. Let nl be the diagonal sequence if we arrange {nm,k}, m = 1, 2, ...
in a double array. Then by (6.104), for every f ∈ Cb(D) and every θ ∈ Δ0,

lim
l→∞

∫
[
∫
f(a)DMnl

(da|x)]Pn,θ(dx) =
∫

[
∫
f(a)DM(da|x)]Pθ(dx).

The additional statement follows from Problem 6.85.
Recall that a real-valued function f on a metric space T is lower semi-

continuous at t0 if lim infn→∞ f(tn) ≥ f(t0) for every sequence tn → t0. Now
we formulate and prove the famous asymptotic Hájek–LeCam bound for the
maximum risk in a sequence of weakly convergent models. This statement cor-
responds in some sense to the Cramér–Rao inequality and other lower bounds
for the risk for a finite sample size, and it takes care of point (B) in (6.101).

Theorem 6.87. Let Mn = (Xn,An, (Pn,θ)θ∈Δn
), n = 1, 2, ..., and M =

(X ,A, (Pθ)θ∈Δ) be models with Δn ↑ Δ that satisfy Mn ⇒M. Assume that
the parameter space Δ is a separable metric space, and that the model M is
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continuous in the sense of (A7). Assume that the decision space is a compact
metric space and D0 is a set of decisions that contains all accumulation points
of the sequence DMn

. Let for every fixed θ ∈ Δ the loss function a �→ L(θ, a)
be nonnegative and lower semicontinuous at every a ∈ D. Then

lim inf
n→∞

R(θ,DMn
) ≥ inf

DM∈D0
R(θ,DM), θ ∈ Δ. (6.105)

If Δ̃ ⊆ Δ, and in addition for every fixed a ∈ D the function θ �→ L(θ, a) is
lower semicontinuous at every θ ∈ Δ̃, then

lim inf
n→∞

sup
θ∈Δ̃

R(θ,DMn
) ≥ inf

DM∈D0
sup
θ∈Δ̃

R(θ,DM). (6.106)

Proof. To prove (6.105) we fix θ0 and choose a subsequence nl such that

lim inf
n→∞

R(θ0,DMn
) = lim

l→∞
R(θ0,DMnl

).

In view of Proposition 6.86 we may assume that DMnl
converges weakly to

some decision D0,M for the model M. Otherwise we turn to a subsequence.
Hence by Problem 6.84,

lim inf
n→∞

R(θ0,DMn
) = lim

l→∞
R(θ0,DMnl

) ≥ R(θ0,D0,M) ≥ inf
DM∈D0

R(θ0,DM).

Now let Δ0 be a countable and dense subset of Δ̃ and set

A = lim inf
n→∞

sup
θ∈Δ0

R(θ,DMn
).

Let nk be a subsequence such that limk→∞ supθ∈Δ0
R(θ,DMnk

) = A. Similarly
to the first part of the proof we may assume that there exists a decision
DM ∈ D0 such that DMnk

⇒ DM as k →∞. Hence,

lim inf
n→∞

sup
θ∈Δ0

R(θ,DMn
) ≥ R(θ0,DM)

for every fixed θ0 ∈ Δ0. As θ0 is arbitrary we may take the supremum on
the right-hand side over θ0 ∈ Δ0, and then the infimum over all accumulation
points. This gives

lim inf
n→∞

sup
θ∈Δ̃

R(θ,DMn
) ≥ inf

DM∈D0
sup
θ∈Δ0

R(θ,DM).

To complete the proof we have only to note that the continuity of the
model and the lower semicontinuity of L imply, in view of Proposition
3.25, that R(θ,DM) is lower semicontinuous. Hence supθ∈Δ0

R(θ,DM) =
supθ∈Δ̃ R(θ,DM) and the proof is completed.

Remark 6.88. The asymptotic lower bound that has been established in (6.106)
is called the lower Hájek–LeCam bound. It is only a special case of more general
results established in LeCam (1972, 1979), and for estimators in Hájek (1972). See
also Millar (1983) and Strasser (1985).
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Suppose now that the LAN(Zn, I0) condition in Definition 6.63 holds; that
is, that the sequence of models Mn converges in view of Theorem 6.65 weakly
to

G = (Rd,Bd, (N(I0h, I0))h∈Rd) or (6.107)
G0 = (Rd,Bd, (N(h,Σ0))h∈Rd), for det(I0) �= 0, Σ0 = I−1

0 . (6.108)

We now specify the two lower bounds, for the risk and the maximum risk, that
have been established in Theorem 6.87 for the case where the limit model is
given by (6.107) or (6.108).

Proposition 6.89. Let Mn = (Xn,An, (Pn,h)h∈Δn
) be a sequence of models

with Δn ↑ R
d that fulfills the LAN(Zn, I0) condition in Definition 6.63. If

the decision space D is a compact metric space, C ⊆ R
d, L : C ×D → R+ is

lower semicontinuous, and DG contains all accumulation points of the sequence
DMn

, then

lim inf
n→∞

sup
h∈C

R(h,DMn
) ≥ inf

DG∈DG
sup
h∈C

∫
[
∫
L(h, a)DG(da|x)]N(I0h, I0)(dx),

lim inf
n→∞

R(h,DMn
) ≥ inf

DG∈DG

∫
[
∫
L(h, a)DG(da|x)]N(I0h, I0)(dx), (6.109)

for all h ∈ R
d. If DG0 contains all accumulation points of the sequence DMn

and det(I0) �= 0, then with Σ0 = I−1
0 it holds

lim inf
n→∞

sup
h∈C

R(h,DMn
) ≥ inf

DG0∈DG0

sup
h∈C

∫
[
∫
L(h, a)DG0(da|x)]N(h,Σ0)(dx),

lim inf
n→∞

R(h,DMn
) ≥ inf

DG0∈DG0

∫
[
∫
L(h, a)DG0(da|x)]N(h,Σ0)(dx),(6.110)

for all h ∈ R
d.

Proof. Problem 6.62 shows that the models with (N(I0h, I0))h∈Rd , and
with (N(h,Σ0))h∈Rd for det(I0) �= 0 and Σ0 = I−1

0 , are continuous in the sense
of condition (A7). Therefore (6.109) and (6.110) follow from (6.106), where
the corresponding second statement follows from the former one by setting
C = {h}.

Although the statements (6.109) and (6.110) are equivalent due to the
equivalence of G and G0, it is convenient to have separate formulations, as it
depends on the concrete situation which model is easier to deal with.

The term on the right-hand side of (6.109) is the lower Hájek–LeCam
bound if the limit model is a finite-dimensional Gaussian shift model. As we
have pointed out already such bounds become important when characterizing
the asymptotic optimality of decisions in a minimax sense. In a first step, of
course, one has to evaluate such a bound. The lower bound in (6.109) refers
to the limit model which is the model (6.107). If there exists a uniformly best
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decision in D0 for the limit model G, say D0, then we call every sequence of
decisions DMn

asymptotically uniformly best with respect to D0 that satisfies

lim
n→∞

R(h,DMn
) = R(h,D0), h ∈ Δ,

where Δ is either R
d or a subset of R

d, depending on the problem under
consideration. In testing problems, D0 is typically chosen to be the class of
all level α tests, or the class of all unbiased level α tests. Likewise, we call
a sequence of decisions DMn

that attains the lower Hájek–LeCam minimax
bounds in Proposition 6.89 asymptotically minimax. Sequences of estimators,
tests, and selection rules that are asymptotically uniformly best, or asymp-
totically minimax, are studied systematically in the next three chapters.

6.6 Solutions to Selected Problems

Solution to Problem 6.1: In view of the inequality (6.3) and the definition of
δ(M1,M2) in (6.2) it is enough to show that

d(M1,M2) ≤ sup
�⊆Δ,|�|<∞

d(M1,� ,M2,�),

and a corresponding statement holds for d(M2,M1). It suffices to prove the first one.
If the right-hand term is smaller than A, then d(M1,� ,M2,�) < A for every finite �.
Hence for every finite decision space D and every loss function L with ‖L‖u ≤ 1 and
every decision DM2 : D×X2 →k [0, 1], there exists a decision DM1 : D×X1 →k [0, 1]
with

R(θ,DM1) ≤ R(θ,DM2) + A, θ ∈ �.

But this implies d(M1,M2) ≤ A and the proof is complete. �

Solution to Problem 6.8: Let μ dominate Pi and Qi with densities fi and gi,
respectively, i = 1, ...,m. Then |as − bs| ≤ |a− b|s for a, b ≥ 0 and 0 < s < 1 implies

|Hs(P1, ..., Pm)− Hs(Q1, ..., Qm)|

≤
∫
|f1 − g1|s1fs2

2 · · · fsm
m dμ + · · ·+

∫
gs1
1 · · · gsm−1

m−1 |fm − gm|smdμ

≤
∑m

i=1
(

∫
|fi − gi|dμ)si =

∑m

i=1
‖Pi −Qi‖si .

The last inequality follows from the generalized Hölder inequality
∫
hα1

1 · · ·hαm
m dμ ≤

(
∫
h1dμ)α1 · · · (

∫
hmdμ)αm , hi ≥ 0, αi > 0,

∑m
i=1 αi = 1. Hence by ‖Pi −Qi‖ ≤ 2,

|Hs(P1, ..., Pm)− Hs(Q1, ..., Qm)| ≤
∑m

i=1
2si(‖Pi −Qi‖ /2)si

≤ 2
∑m

i=1
‖Pi −Qi‖m(s) . �

Solution to Problem 6.24: The functions fs(x) = us(x)/u1/2(x) and 1/fs(x) are
bounded and continuous on [0, 2]. This proves (6.29). The function
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ws(z) = sz + (1− s)− zs − 4s(1− s)(
1

2
z +

1

2
− z1/2)

satisfies ws(1) = w′
s(1) = 0 and w′′

s (z) = s(1− s)(zs−2 − z−3/2). Hence

sup{ |ws(z)|
(z − 1)2

:
1− ε

1 + ε
≤ z ≤ 1 + ε

1− ε
, 0 < s < 1} → 0, ε→ 0.

Otherwise limz→1(z − 1)−2( 1
2
z + 1

2
− z1/2) = 1

8
. To complete the proof of (6.30) we

remark that
us(x)− 4s(1− s)u1/2(x) = ws(

x

2− x
)(2− x).

To prove (6.31), we set

vs(z) =
1

s(1− s)
(sz + (1− s)− zs).

Then vs(1) = v′s(1) = v1/2(1) = v′1/2(1) = 0. If z ≥ ε/(2 − ε), 0 < ε < 1, and
0 < s ≤ 1/2, then

v′′s (z) = zs−2 = zs−1/2v′′1/2(z) ≤ (
2− ε

ε
)1/2v′′1/2(z),

vs(z) =

∫ z

1

(z − t)v′′s (t)dt

≤ (
2− ε

ε
)1/2

∫ z

1

(z − t)v′′1/2(t)dt = (
2− ε

ε
)1/2v1/2(z).

Replacing z with x/(2− x) we get

sup
0<s<1/2, ε≤x<2

vs(x/(2− x))(2− x)

v1/2(x/(2− x))(2− x)
= sup

0<s<1/2, ε≤x<2

us(x)

u1/2(x)
≤ (

2− ε

ε
)1/2.

To prove (6.32) we remark that

1− xsy1−s − (1− x)s(1− y)1−s ≥ 1− xsy1−s − s(1− x)− (1− s)(1− y)

= sx + (1− s)y − xsy1−s ≥ sx + (1− s)y − c−sy ≥ (1− s− c−s)y. �

Solution to Problem 6.28: It holds v∗(x) = xv(1/x) and thus limx→∞ x−1v∗(x) =
∞. Furthermore, by (1.73) it holds supn Iv∗(Qn, Pn) = supn Iv(Pn, Qn) <∞. With-
out loss of generality we may assume that v∗ ≥ 0 and that v∗ is nondecreasing for
x ≥ 1. Otherwise we could turn to v∗0 in (1.62). We get from (1.69) that Qn � Pn

for every n. Put w(c) = supx≥c(x/v
∗(x)). Then limc→∞ w(c) = 0 and by v∗ ≥ 0,

Qn(Ln > c) =

∫
I(c,∞)(Ln)LndPn ≤

∫
Ln

v∗(Ln)
I(c,∞)(Ln)v∗(Ln)dPn

≤ w(c)

∫
v∗(Ln)dPn = w(c)(sup

n
Iv(Pn, Qn)).

Hence limc→∞ supn Qn(Ln > c) = 0 and we get the condition (C) in Theorem 6.26.

�
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Solution to Problem 6.29: Put An = {|Xn| > ε} and apply (A) in Theorem 6.26.

�

Solution to Problem 6.30: Tn = OPn(1) means limc→∞ lim supn→∞ Pn(‖Tn‖ >

c) = 0, which implies limn→∞ Pn(‖Tn‖ > cn) = 0 for every sequence cn → ∞.

Conversely if limc→∞ lim supn→∞ Pn(‖Tn‖ > c) > 0, then there is a sequence

cn → ∞ with lim infn→∞ Pn(‖Tn‖ > cn) > 0. Hence Tn = OPn(1) if and only if

limn→∞ Pn(‖Tn‖ > cn) = 0 for every sequence cn →∞. Hence limn→∞ Qn(‖Tn‖ >

cn) = 0 by {Qn} � {Pn} (see Theorem 6.26) and thus Tn = OQn(1). �

Solution to Problem 6.40: Set R = 1
2
(P + Q), M = dP/dR. Then D2(P,Q) =

ER(M1/2 − (2 −M)1/2)2, D2(P, 1
2
(P + Q)) = ER(M1/2 − 1)2, D2(Q, 1

2
(P + Q)) =

ER((2 −M)1/2 − 1)2. Then by (a + b)2 ≤ 2(a2 + b2) the left-hand side inequality
follows with a = M1/2 − 1 and b = 1 − (2 − M)1/2. On the other hand, by the
concavity of

√
x,

ER(M1/2 − 1)2 = 2(1− ERM1/2) = 2− 2ER(
1

2
[M + (2−M)]M)1/2

≤ 2− ER (MM)1/2 − ER ((2−M)M)1/2 = 1− H1/2(P,Q) =
1

2
D2(P,Q).

Hence 2D2(P, 1
2
(P +Q)) ≤ D2(P,Q) and 2D2(Q, 1

2
(P +Q)) ≤ D2(Q,P ) = D2(P,Q)

by exchanging the roles of P and Q. �

Solution to Problem 6.52: Using (6.43) it holds

1

2

∑n

i=1
D2(Pn,i, Qn,i) =

∑n

i=1
(1− H1/2(Pn,i, Qn,i)) ≤

∑n

i=1
G1/2(Pn,i, Qn,i)

= − ln
∏n

i=1
H1/2(Pn,i, Qn,i) = − ln H1/2(

⊗n
i=1 Pn,i,

⊗n
i=1 Qn,i).

It remains to apply Theorem 6.37. �

Solution to Problem 6.55: It holds for 0 < ε < 1,

∑n

i=1
EPn(Y 2

n,i ∧ |Yn,i|3)

≤
∑n

i=1
EPnI[0,ε)(|Yn,i|)|Yn,i|3 +

∑n

i=1
EPnI(ε,∞)(|Yn,i|)Y 2

n,i

≤ ε
∑n

i=1
EPnY

2
n,i +

∑n

i=1
EPnI(ε,∞)(|Yn,i|)Y 2

n,i.

By taking first n → ∞, and then ε → 0, we get the statement from (6.52). Con-
versely,

∑n

i=1
EPnI(ε,∞)(|Yn,i|)Y 2

n,i ≤ ε2
∑n

i=1
EPn(

Yn,i

ε
)2 ∧ (

|Yn,i|
ε

)3 ≤

ε2
∑n

i=1
EPn

Y 2
n,i

ε2 ∧ ε3
∧ |Yn,i|3

ε2 ∧ ε3
≤ ε2

ε2 ∧ ε3

∑n

i=1
EPn(Y 2

n,i ∧ |Yn,i|3). �



290 6 Large Sample Approximations of Models and Decisions

Solution to Problem 6.56:

max
1≤i≤n

EPnY
2

n,i ≤ ε2 + max
1≤i≤n

EPnI[ε,∞)(|Yn,i|)Y 2
n,i ≤ ε2 +

∑n

i=1
EPnI[ε,∞)(|Yn,i|)Y 2

n,i.

By taking first n → ∞, and then ε → 0, we get the statement (6.59). The second
statement follows from Problem 6.55 and

Pn( max
1≤i≤n

|Yn,i| > ε) ≤
∑n

i=1
Pn(|Yn,i| > ε)

≤ 1

ε2 ∧ ε3

∑n

i=1
EPn(Y 2

n,i ∧ |Yn,i|3). �

Solution to Problem 6.57: The first statement follows from (6.49). The second

statement follows from (6.49), (6.51), and (6.53). �

Solution to Problem 6.59: The inequalities (a + b)2 ≤ 2a2 + 2b2 and

Z2
n,iI(0,ε/2](|Zn,i|)I(ε,∞)(|Yn,i|) ≤ (Yn,i − Zn,i)

2

imply

∑n

i=1
EY 2

n,iI(ε,∞)(|Yn,i|)

≤ 2
∑n

i=1
EZ2

n,iI(ε,∞)(|Yn,i|) + 2
∑n

i=1
E(Yn,i − Zn,i)

2,
∑n

i=1
EZ2

n,iI(ε,∞)(|Yn,i|)

≤
∑n

i=1
EZ2

n,iI(ε/2,∞)(|Zn,i|) +
∑n

i=1
EZ2

n,iI(0,ε/2](|Zn,i|)I(ε,∞)(|Yn,i|)

≤
∑n

i=1
EZ2

n,iI(ε/2,∞)(|Zn,i|) +
∑n

i=1
E(Yn,i − Zn,i)

2. �

Solution to Problem 6.62: We get from (6.66), L(Z|N(0, I0)) = N(0, I0), and
(6.61),

H1/2(N(I0h1, I0), N(I0h2, I0))

= E0 exp{1

2
(h1 + h2)

TZ − 1

4
hT

1 I0h1 −
1

4
hT

2 I0h2}

= exp{1

8
(h1 + h2)

T I0(h1 + h2)−
1

4
hT

1 I0h1 −
1

4
hT

2 I0h2}

= exp{−1

8
(h1 − h2)

T I0(h1 − h2)}.

The relation D2(Ph1 , Ph2) = 2(1−H1/2(Ph1 , Ph2)) yields the second statement. The

third statement follows from the inequality ‖P0 − P1‖ ≤ 2D(P0, P1); see Proposition

1.84. �

Solution to Problem 6.69: The statement (6.85) follows from the definition of

γ(δ). It holds Qn,i(Yn,i = ∞) = 0 for all sufficiently large n. The relation (6.49)

yields EPnY
2

n,i = −2EPnYn,i for such n. This gives (6.84). The statement (6.86)

follows from (a + b)2 ≤ 2a2 + 2b2, the definition of R(δ), and (6.84). �
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Solution to Problem 6.79: The direction ⇒ is clear. Conversely, if A :=
lim supn→∞ sups∈S ρT (ϕn(s), ϕ(s)) > 0, then there exist subsequences ϕnk and snk ,
where the sequence snk by the compactness of S may be assumed to be convergent,
say to s, such that A = limk→∞ ρT (ϕnk (snk), ϕ(snk )). The continuity of ϕ yields

0 = lim
k→∞

ρT (ϕnk (snk), ϕ(s)) ≥

lim
k→∞

ρT (ϕnk(snk ), ϕ(snk))− lim
k→∞

ρT (ϕ(snk ), ϕ(s)) = A > 0. �

Solution to Problem 6.80: Cover S with a finite number of balls Bδ(si), i =
1, ..., N , with a diameter not exceeding δ and the centers si from the dense subset
on which the pointwise convergence holds. Then

sup
s∈S

ρT (ϕn(s), ϕ(s)) ≤ max
1≤i≤N

ρT (ϕn(si), ϕ(si))

+ sup
s1,s2:ρS(s1,s2)≤δ

ρT (ϕn(s1), ϕn(s2)) + sup
s1,s2:ρS(s1,s2)≤δ

ρT (ϕ(s1), ϕ(s2)).

Take first n→∞, and then δ → 0, to get the statement. �

Solution to Problem 6.81: The direction (6.98) ⇒ (6.99) is clear. If (6.98) is
not fulfilled, then there is a subsequence nk, a sequence δk → 0, and sequences sk,i

with ρS(sk,1, sk,2) ≤ δk and ρTnk
(ϕnk(sk,1), ϕnk(sk,2)) ≥ ε > 0 for some ε > 0.

Due to the compactness of S we may assume that the sequences sk,i converge. They
converge to the same point, say s0, as ρS(sk,1, sk,2) ≤ δk → 0. The inequality

ρTnk
(ϕnk(sk,1), ϕnk (sk,2)) ≤ ρTnk

(ϕnk (sk,1), ϕnk(s0)) + ρTnk
(ϕnk(s0), ϕnk(sk,2))

contradicts (6.99).

The implication (6.98) ⇒ (6.100) again is clear. If (6.98) is not fulfilled there

is a subsequence snk which may assumed to be convergent to s0, say, such that

limk→∞ ρTnk
(ϕnk(snk), ϕnk(s0)) > 0, which contradicts (6.100). Hence the equiva-

lence of (6.98), (6.99), and (6.100) is established. �

Solution to Problem 6.82: Put αn = max1≤i≤n ‖hn,i‖ . Then for ε > 0,

∑n

i=1
EI(ε,∞)(|Zn,i|)Z2

n,i

≤
∑n

i=1
‖hn,i‖2 EI(ε,∞)(αn ‖Vi‖) ‖Vi‖2

≤ [E ‖V1‖2 I[ε/αn,∞)(‖V1‖)]
∑n

i=1
‖hn,i‖2 .

Lebesgue’s theorem, αn → 0, and supn

∑n
i=1 ‖hn,i‖2 < ∞ yield the statement for

n→∞. �

Solution to Problem 6.84: Use (6.102) and Theorem A.49. �

Solution to Problem 6.85: As the weak convergence of models implies the conver-
gence of the Hellinger distances (see Theorem 6.13) we get from the first inequality
in Proposition 1.84,
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lim sup
n→∞

‖Pn,θ1 − Pn,θ2‖

≤ 2 lim
n→∞

D(Pn,θ1 , Pn,θ2) = 2D(Pθ1 , Pθ2) ≤ 2 ‖Pθ1 − Pθ2‖1/2 .

Let θ ∈ Δ be fixed and θm be from the dense set with θm → θ. Then

lim sup
n→∞

|
∫

[

∫
f(a)Dn(da|x)]Pn,θ(dx)−

∫
[

∫
f(a)D(da|x)]Pθ(dx) |

≤ lim sup
n→∞

|
∫

[

∫
f(a)Dn(da|x)](Pn,θ − Pn,θm)(dx) |

+ lim sup
n→∞

|
∫

[

∫
f(a)Dn(da|x)]Pn,θm(dx)−

∫
[

∫
f(a)D(da|x)]Pθm(dx) |

+ lim sup
n→∞

|
∫

[

∫
f(a)D(da|x)](Pθm − Pθ)(dx) |

≤ 2 ‖f‖u ‖Pθm − Pθ‖1/2 + ‖f‖u ‖Pθm − Pθ‖ ,

as the middle term on the right-hand side of the first inequality vanishes by assump-

tion. Take m→∞ to complete the proof. �



7

Estimation

7.1 Lower Information Bounds in Estimation Problems

The theory of estimation is a fundamental part of mathematical statistics with
a long history. A complete presentation is not given in this section. Instead,
we concentrate on basic ideas and establish selected results, which, admit-
tedly, reflect the personal taste of the authors. However, the main ideas are
presented in a way that allows the reader to get connected with the classical
monographs, such as Lehmann and Casella (1998), Pfanzagl (1994), Witting
(1985), and Witting and Müller-Funk (1995). Readers who are mainly inter-
ested in asymptotic results are referred to the fundamental monograph by
Bickel, Klaassen, Ritov, and Wellner (1993) and to the books by Lehmann
(1998) and Serfling (1980).

As we have seen already in the previous sections, a statistical inference for a
model (X ,A, (Pθ)θ∈Δ) can be made under different points of view, depending
on the goals that are pursued. The goals are then specified by the choice of
the decision space. In this section our goal is to estimate the parameter θ
or a function κ(θ) of it. For this purpose we want to construct a mapping
S : X →m Δ that approximates the unknown θ, or κ(θ), as well as possible.
According to Definition 3.5 the estimation problem consists of a statistical
model (X ,A, (Pθ)θ∈Δ), a function κ : Δ → S, where S is equipped with the
σ-algebra S, and a function l : S × S →m R that is bounded from below and
defines the loss by L(θ, a) = l(κ(θ), a). If Δ ⊆ R

d and κ(θ) = θ, so that S = Δ,
then we assume that Δ ∈ Bd and S = BΔ. A decision (i.e., a randomized
estimator) is then a stochastic kernel D : S × X →k [0, 1]. If D(·|x) = δS(x),
then S is called an estimator; see Definition 3.5. The risk of both types of
estimators is given by

R(θ,D) =
∫

[
∫
l(κ(θ), a)D(da|x)]Pθ(dx),

R(θ, S) =
∫
l(κ(θ), S(x))Pθ(dx) = Eθl(κ(θ), S).

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 7, c© Springer Science+Business Media, LLC 2008
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To exclude exotic or meaningless estimators, such as no-data estimators,
one often has to restrict the class of estimators considered. One commonly
used restriction is the requirement of unbiasedness.

Definition 7.1. Given a model (X ,A, (Pθ)θ∈Δ) and a function κ : Δ → R
d,

we call an estimator S : X →m R
d unbiased if Eθ ‖S‖ <∞, and EθS = κ(θ),

θ ∈ Δ.

Depending on the structure of the model and the function κ unbiased
estimators may or may not exist, as the following example shows.

Example 7.2. Consider the problem of estimating the success probability in the
binomial distribution, so that the model is ({0, ..., n},P({0, ..., n}), (Bn,p)0<p<1). If
there exists an unbiased estimator of κ : (0, 1)→ R, then κ(p) must be a polynomial
with a degree not exceeding n, because every unbiased estimator must satisfy

∑n

k=0
S(k)bn,p(k) =

∑n

k=0
S(k)

(
n

k

)
pk(1− p)n−k = κ(p), 0 < p < 1.

Consider the case of some real-valued function κ : Δ → R and use the
squared error loss l(t, a) = (t− a)2. Then the risk of an estimator S : X →m

R is given by R(θ, S) = Eθ(S − κ(θ))2. If the estimator is unbiased, then
R(θ, S) = Vθ(S) = Eθ(S−EθS)2, whereas in general the bias EθS−κ(θ) leads
to an additional term; that is, R(θ, S) = Vθ(S) + (EθS − κ(θ))2.

We now construct lower bounds for the variance, and also for the more gen-
eral risk Eθ|S−κ(θ)|β , β > 1, of an unbiased estimator S. These lower bounds
include special v-divergences that have been introduced in (1.74). Especially,
we recall the Hellinger distance introduced in (1.75) and the χs-divergence in
(1.74). We also recall that by (1.69) and the definition of χs(P0, P1) in (1.74)
for s > 1 it holds χs(P0, P1) = ∞ if P0 is not absolutely continuous with
respect to P1.

Theorem 7.3. If S is an unbiased estimator of κ : Δ→ R with finite second
moment, then for every point θ1, θ2 ∈ Δ it holds

Vθ1(S) + Vθ2(S) ≥ 1− D2(Pθ1 , Pθ2)
2D2(Pθ1 , Pθ2)

[κ(θ1)− κ(θ2)]2. (7.1)

If Pθ2 
 Pθ1 , then

Eθ1 |S − κ(θ1)|β ≥
|κ(θ2)− κ(θ1)|β
[χα(Pθ2 , Pθ1)]β/α

, α > 1,
1
α

+
1
β

= 1. (7.2)

Corollary 7.4. Let (Pθ)θ∈Δ, Δ ⊆ R, be a one-parameter family that is L2-
differentiable at θ0 ∈ Δ0 with Fisher information I(θ0) > 0. Suppose that
κ : Δ → R is differentiable at θ0. If S is an unbiased estimator of κ(θ) with
finite second moment, and θ �→ Vθ(S) is continuous at θ0, then

Vθ0(S) ≥ [κ′(θ0)]2

I(θ0)
. (7.3)
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Proof. Set P = 1
2 (Pθ1 + Pθ2), κ = 1

2 (κ(θ1) − κ(θ2)), and fi = dPθi
/dP ,

i = 1, 2. Then

κ(θ1)− κ(θ2) =
∫

(S − κ)(f1/2
1 + f

1/2
2 )(f1/2

1 − f
1/2
2 )dP .

By Schwarz’ inequality, and (f1/2
1 + f

1/2
2 )2 ≤ 2(f2 + f2),

(κ(θ1)− κ(θ2))2 ≤ 2[
∫

((S − κ)2 (f1 + f2)dP ][
∫

(f1/2
1 − f

1/2
2 )2dP ].

Note that the second factor on the right-hand side is the square of the Hellinger
distance D(Pθ1 , Pθ2). The term in the first brackets is

Eθ1 (S − κ)2 + Eθ2 (S − κ)2 = Vθ1(S) + Vθ2(S) +
1
2
(κ(θ1)− κ(θ2))2,

which proves (7.1). Set Lθ1,θ2 = dPθ2/dPθ1 . Then by Hölder’s inequality, with
β > 1 and α−1 + β−1 = 1,

|κ(θ2)− κ(θ1)| = |Eθ1(S − κ(θ1))(Lθ1,θ2 − 1)|
≤ [Eθ1 |S − κ(θ1)|β ]1/β [Eθ1 |Lθ1,θ2 − 1|α]1/α

= [Eθ1 |S − κ(θ1)|β ]1/β [χα(Pθ2 , Pθ1)]
1/α.

To prove the corollary, we note that by Lemma 1.106

D2(Pθ, Pθ0) =
1
4
I(θ0)(θ − θ0)2 + o((θ − θ0)2).

Hence by the inequality (7.1) and the continuity of θ �→ Vθ(S),

2Vθ0(S) ≥ lim
θ→θ0

[1− D2(Pθ0 , Pθ)](θ0 − θ)2

2D2(Pθ0 , Pθ)
[κ(θ0)− κ(θ)]

(θ0 − θ)2

2

=
2[κ′(θ0)]2

I(θ0)
.

The subsequent problems show that the bounds that appear in the above
theorem can be explicitly evaluated in many cases.

Problem 7.5. Consider a one-parameter exponential family (Pθ)θ∈Δ, Δ ⊆ R. Re-
call that γm(θ) = K′(θ), θ ∈ Δ0, is the expectation EθT of the generating statistic
T ; see (1.24). If κ(θ) = γm(θ), then T is an unbiased estimator of κ. To evaluate the
right-hand side note that by (1.110) and Example 1.88 it holds

D2(Pθ1 , Pθ2) = 2[1− exp{K(
1

2
(θ1 + θ2))−

1

2
K(θ1)−

1

2
K(θ2)}].

Plug in this expression to get an explicit lower bound for Vθ1(T ) + Vθ2(T ).

Problem 7.6. For an exponential family the χ2-distance that appears in (7.2) is

χ2(Pθ2 , Pθ1) = Eθ1L
2
θ2,θ1 − 1 = exp{K(2θ2 − θ1)− 2K(θ2) + K(θ1)} − 1.
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Inequality (7.1) is taken from Ibragimov and Has’minskii (1981). Inequal-
ity (7.2) is due to Vajda (1973), where the special case of α = β = 2 was
studied in Chapman and Robbins (1951). Although both inequalities are sim-
ilar, the two-point inequality (7.1) has in comparison to inequality (7.2) for
α = β = 2 the advantage that in any case the right-hand term is not de-
generate because 0 ≤ D2(Pθ1 , Pθ2) ≤ 2, where equality on the left-hand side
appears only for Pθ1 = Pθ2 , which means for θ1 �= θ2 that the parameter is not
identifiable. The χα-distance χα(Pθ2 , Pθ1) that appears in (7.2) is finite only
if the likelihood ratio is integrable to the power of α > 1. Moreover, we see
from the inequalities in Theorem 7.3 that the lower bound for the risks con-
nected with the estimation of the function depends on the distance between
the corresponding distributions, where the type of the distance used depends
on the chosen loss function. Roughly speaking, to every loss function there is
a specific distance that gives a lower bound for the risk. Instead of discussing
this question in full generality we refer to Vajda (1973), Kozek (1977a,b), and
Liese (1988). Inequality (7.3) is a version of the Cramér–Rao inequality that
is due to Cramér (1946) and Rao (1945). Forerunners are Fréchet (1943) and
Darmois (1945).

Classical approaches to the Cramér–Rao bound do not use the concept
of L2-differentiability and the continuity condition of the variance function.
Instead, direct sufficient conditions are established that guarantee that the
derivative with respect to the parameter can be carried out under the integral
sign. The Cramér–Rao inequality is also called the “information inequality”
by some authors, a notation introduced by Savage (1954).

Next we establish the multivariate Cramér–Rao inequality. Hereby we uti-
lize the Löwner semiorder of matrices, which is defined by A # B if and only if
A−B is positive semidefinite. The subsequent version of the Cramér–Rao in-
equality, and the discussion of its stability, is taken from Witting (1985) and
Ibragimov and Has’minskii (1981). Recall that for a differentiable function
g = (g1, ..., gk)T : R

d → R
k the Jacobian Jg(θ) is the k × d matrix of partial

derivatives; that is, Jg(θ) = ((∂gi/∂θj))1≤i≤k,1≤j≤d. The transposed matrix
JTg (θ) will be denoted by ġ(θ) and called the derivative of g. The columns of
ġ(θ) are ∇gl; that is, the gradient of gl, l = 1, ..., k. Especially if g : R

d → R,
then ġ(θ) = JTg (θ) = ∇g(θ).

Theorem 7.7. (Cramér–Rao Inequality) Suppose (Pθ)θ∈Δ, Δ ⊆ R
d, is

L2-differentiable at θ0 ∈ Δ0 with derivative L̇θ0 and Fisher information matrix
I(θ0), where det(I(θ0)) �= 0. Suppose S = (S1, ..., Sk)T : X →m R

k satisfies
supθ∈U(θ0) Eθ ‖S‖2 <∞ for some neighborhood U(θ0) of θ0. Then g(θ) := EθS
is differentiable at θ0 with derivative

ġ(θ0) = Eθ0L̇θ0S
T , (7.4)

and the covariance matrix Cθ(S) satisfies the Cramér–Rao inequality

Cθ0(S) # ġT (θ0)(I(θ0))−1ġ(θ0). (7.5)
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Equality holds in (7.5) if and only if

S − Eθ0S = ġT (θ0)(I(θ0))−1L̇θ0 , Pθ0-a.s. (7.6)

Proof. That g(θ) is differentiable and (7.4) holds follows from a compo-
nentwise application of Proposition 1.111. As θ0 is fixed, we omit θ0 in I(θ0)
and ġ(θ0) to simplify the formulas. The relation (7.4) and Eθ0L̇θ0 = 0 (see
Proposition 1.110) imply that for every u ∈ R

k and v ∈ R
d,

Eθ0u
T (S − g)(L̇T

θ0v) = uT ġT v.

Hence by the Schwarz inequality (uT ġT v)2 ≤ (uTCθ0(S)u)(vT Iv). If we set
v = I−1ġu, then

(uT ġT I−1ġu)2 ≤ (uTCθ0(S)u)(uT ġT I−1II−1ġu)
= (uTCθ0(S)u)(uT ġT I−1ġu),

which implies (7.5). To study the case when equality holds in (7.5), we note
that by Eθ0L̇θ0 = 0 and relation (7.4) it holds

Eθ0(S − Eθ0S)(ġT I−1L̇θ0)
T = ġT I−1ġ.

As the matrix on the right-hand side is symmetric we get

Eθ0

[
S − Eθ0S − ġT I−1L̇θ0

] [
S − Eθ0S − ġT I−1L̇θ0

]T

= Cθ0(S)− 2ġT I−1ġ + ġT I−1ġ = 0,

which proves (7.6) provided that equality holds in (7.5).

Remark 7.8. The lower bound in (7.5) does not depend on the concrete type of
parametrization. To see this let Δ and Λ be open subsets of R

d and κ : Λ ↔ Δ be
a diffeomorphism. If (Pθ)θ∈Δ, Δ ⊆ R

d, is L2-differentiable at θ0 = κ(η0) ∈ Δ0 with
Fisher information I(θ0), then by Proposition 1.112 (Pκ(η))η∈Λ is L2-differentiable
at η0 with Fisher information

κ̇T (η0)I(κ(η0))κ̇(η0) = Jκ(η0)I(κ(η0))J
T
κ (η0).

Moreover, by the chain rule the Jacobian of g(κ(η)) is Jg(κ(η))Jκ(η). Hence the
lower bound (7.5) for the model (Pκ(η))η∈Λ at θ0 = κ(η0) is

Jg(κ(η0))Jκ(η0)[Jκ(η0)I(κ(η0))J
T
κ (η0)]

−1(Jg(κ(η0))Jκ(η0))
T

= Jg(θ0)I
−1(θ0)J

T
g (θ0).

Remark 7.9. If we turn from the model (X ,A, (Pθ)θ∈Δ), Δ ⊆ R
d, to the model

(Xn,A⊗n, (P⊗n
θ )θ∈Δ), i.e., to the case of a sample of size n, then according to Prob-

lem 1.113 the Fisher information matrix now is nI(θ0). For any unbiased estimator
S : Xn →m Δ that satisfies supθ∈U(θ0) Eθ ‖S‖2 < ∞ the Cramér–Rao inequality
becomes

Cθ0(S)  1

n
ġT (θ0)(I(θ0))

−1ġ(θ0). (7.7)
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Example 7.10. We consider an exponential family (Pθ)θ∈Δ with generating statis-
tic T and a density given by (1.6). A sample of size n has then a distribution from
the family (P⊗n

θ )θ∈Δ, which again is an exponential family but now with generat-
ing statistic T⊕n; see Proposition 1.4. The Fisher information matrix for the model
(P⊗n

θ )θ∈Δ is, according to Example 1.120 and Problem 1.113, given by I⊗n(θ0) =
n∇∇TK(θ0). Let S : Xn →m Δ be an estimator with Eθ ‖S‖2 < ∞, θ ∈ Δ. Ac-
cording to Lemma 1.16 the function θ �→ Eθ ‖S‖2 is continuous in Δ0, which implies
that for some neighborhood of θ0 the condition supθ∈U(θ0) Eθ ‖S‖2 <∞ is fulfilled.
If S is unbiased, then (7.5) for g(θ) = θ implies

Cθ0(S) ≥ (n∇∇TK(θ0))
−1.

If we want to estimate the expectation μ = ∇K(θ), then we have to put g(θ) =
EθT = ∇K(θ) to make T an unbiased estimator of g(θ). It holds ġ(θ0) = ∇∇TK(θ0).
The symmetry of ∇∇TK(θ0) and (7.5) yield

Cθ0(S) ≥ (∇∇TK(θ0))(n∇∇TK(θ0))
−1(∇∇TK(θ0)) =

1

n
∇∇TK(θ0).

The estimator (1/n)T⊕n is the arithmetic mean of i.i.d. random vectors with covari-
ance matrix Cθ0(n

−1T⊕n) = n−1∇∇TK(θ0). Hence

1

n
ġT (θ0)(I(θ0))

−1ġ(θ0) =
1

n
∇∇TK(θ0),

so that (1/n)T⊕n attains the lower Cramér–Rao bound.

Example 7.11. We consider a sample of size n from a normal distribution, so that
Pθ = N⊗n(μ, σ2), θ = (μ, σ2) ∈ R× (0,∞). We apply Theorem 1.117 to calculate
the Fisher information matrix. It holds

∇ lnϕμ,σ2(x) = (
x− μ

σ2
,
(x− μ)2

2σ4
− 1

2σ2
)T ,

I(μ, σ2) =

∫
(∇ lnϕμ,σ2(x))(∇ lnϕμ,σ2(x))Tϕμ,σ2(x)dx =

(
1

σ2 0
0 1

2σ4

)
,

and N⊗n(μ, σ2) has the Fisher information matrix nI(μ, σ2). Let S = (S1, S2) be
any unbiased estimator of the parameter θ = (μ, σ2) with Eμ,σ2 ‖S‖2 < ∞, μ ∈ R,
σ2 > 0. As in Example 7.10 one can use Lemma 1.16 to see that the condition
sup(μ,σ2)∈U(μ0,σ2

0) Eμ,σ2 ‖S‖2 < ∞ is satisfied. Hence by (7.7) with g(θ) = θ, and ġ
thus being the unit matrix,

Cμ,σ2(S)  
(

σ2/n 0
0 2σ4/n

)
.

Set Xn = (1/n)
∑n

i=1 Xi and S2
n = (1/(n − 1))

∑n
i=1(Xi −Xn)2. Then EθXn = μ

and EθS
2
n = σ2. Furthermore, Vθ(Xn) = σ2/n, Vμ,σ2(S2

n) = 2σ4/(n − 1), and

covμ,σ2(Xn, S
2
n) = 0 due to the independence of Xn and S2

n. Hence the relation
(7.5) with κ(θ) = θ reads

Cμ,σ2(Xn, S
2
n) =

(
σ2/n 0

0 2σ4/(n− 1)

)
 
(

σ2/n 0
0 2σ4/n

)
,

so that the arithmetic mean attains the lower Cramér–Rao bound whereas S2
n does

not attain the lower bound despite the fact that S2
n is a uniformly best unbiased

estimator, as we show in Example 7.20.
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There are several improvements of the Cramér–Rao inequality that re-
move, at least up to a certain extent, the unsatisfactory fact that some
uniformly best unbiased estimators do not attain the lower bound in the
Cramér–Rao inequality. To explain the basic idea let Pθ, θ ∈ Δ ⊆ R, be
dominated with density fθ that is positive and k times differentiable. If
κ(θ) =

∫
T (x)fθ(x)μ(dx) is also k times differentiable, and the derivative

and the integral can be exchanged, then one has for any c1, ..., ck ∈ R,∫
([(T (x)− κ(θ))f1/2

θ (x)]
∑k

l=1
clf

(l)
θ (x)f−1/2

θ (x))μ(dx) =
∑k

l=1
clκ

(l)(θ).

An application of Schwarz’ inequality gives
[
Eθ(
∑k

l=1
clf

(l)
θ f−1

θ )2
]−1 [∑k

l=1
clκ

(l)(θ)
]2
≤ Vθ(T ).

As the cl can be chosen freely one can try to maximize the left-hand expression
as a function of c1, ..., ck. This leads to the improvement of the Cramér–Rao
bound due to Bhattacharyya (1946, 1947a), to which we refer for further
details.

Examples 7.10 and 7.11 lead to the question if there are there other families
of distribution, besides exponential families, for which equality is attained in
the Cramér–Rao inequality. This problem has been studied in several papers
which differ in the differentiability concepts applied to the family of distribu-
tions under consideration; see Wijsman (1973), Barankin (1949), Fabian and
Hannan (1977), Joshi (1976), Čenvoc (1982), and Müller-Funk, Pukelsheim,
and Witting (1989). Subsequently we follow the representation in Müller-
Funk, Pukelsheim, and Witting (1989) and use the concept of continuous
L2-differentiability. To avoid technical difficulties and to simplify the proof
we consider only homogeneous models. Let Δ be a open subset of R

d. A ho-
mogeneous model (X ,A, (Pθ)θ∈Δ) is called continuously L2-differentiable on
Δ if (Pθ)θ∈Δ is L2-differentiable at every θ0 ∈ Δ, say with derivative L̇θ0 , and
it holds

lim
θ→θ0

Eθ0 ‖ L
1/2
θ,θ0

L̇θ − L̇θ0 ‖2= 0, θ0 ∈ Δ.

An important feature is that continuous differentiability implies continuity
and even differentiability of other functions that are derived from the model.

Problem 7.12.∗ If (Pθ)θ∈Δ is continuously L2-differentiable on Δ, then θ �→ I(θ)
is continuous. For every B ∈ A the function θ �→ Pθ(B) is continuously differentiable
with derivative

∇Pθ(B) = EθIBL̇θ. (7.8)

Problem 7.13.∗ Suppose (Pθ)θ∈Δ is continuously L2-differentiable on Δ. If θ �→
Eθ ‖S‖2 is continuous, then ġ(θ) = EθL̇θS

T is continuous in θ ∈ Δ.

Problem 7.14.∗ Let T : X →m R
d be a statistic with EP ‖T‖2 < ∞ and

det(CP (T )) �= 0. If for some a ∈ R
d and b ∈ R f(x) = exp{〈a, T (x)〉 + b} is a

probability density with respect to P , then exp{〈a, T (x)〉+ b} = exp{〈c, T (x)〉+ d},
P -a.s., implies a = c and b = d.
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The following result is a special case of Theorem 1 in Müller-Funk,
Pukelsheim, and Witting (1989).

Theorem 7.15. Let (X ,A, (Pθ)θ∈Δ) be a model where Δ ⊆ R
d is an open

and connected set, the family (Pθ)θ∈Δ is continuously L2-differentiable on Δ,
and it holds det(I(θ)) �= 0, θ ∈ Δ. Suppose S : X →m R

d is a statistic for
which Eθ ‖S‖2 <∞, θ ∈ Δ, det(Cθ(S)) �= 0, and θ �→ Cθ(S) is continuous. If
the equality in the Cramér–Rao inequality (7.5) holds for g(θ) = EθS at every
θ ∈ Δ, then for a fixed θ0 ∈ Δ there are functions b, c : Δ→ R

k such that

dPθ
dPθ0

= exp{〈b(θ), S〉+ c(θ)}, Pθ0-a.s.

Proof. The continuity of θ �→ Cθ(S) implies supθ∈U(θ0) Eθ ‖S‖2 < ∞ for
some neighborhood of θ0. Hence by Theorem 7.7 the function g(θ) = EθS
is differentiable and the Jacobian ġ(θ)T = EθSL̇

T
θ is continuous in view of

Problem 7.13. The assumption det(Cθ(S)) �= 0 and the equality in (7.5) show
that ġT (θ)(I(θ))−1 has the rank d. Hence the inverse matrix of ġT (θ)(I(θ))−1

exists and we get from (7.6) that Pθ-a.s.,

L̇θ = A(θ)S + a(θ), A(θ) = I(θ)(ġT (θ))−1, a(θ) = −I(θ)(ġT (θ))−1(EθS),

where A(θ) and a(θ) depend continuously on θ as ġ(θ), I(θ), and g(θ) = EθS
do. We fix θ0 and connect θ0 and θ with a continuously differentiable path
θ(s), 0 ≤ s ≤ 1. This is possible as Δ is connected and open. Denote by θ̇(s)
the derivative and set

β(s) = AT (θ(s))θ̇(s), b(θ) =
∫ 1

0

β(s)ds, c(θ) =
∫ 1

0

aT (θ(s))θ̇(s)ds

f(x) = exp{
∫ 1

0

θ̇T (s)L̇θ(s)(x)ds} = exp{
∫ 1

0

〈β(s), S(x)〉 ds+ c(θ)}.

We show that f = dPθ/dPθ0 . Then by Problem 7.14 the functions b(θ) and c(θ)
are independent of the chosen path and the statement is established. To prove
f = dPθ/dPθ0 we fix ε > 0 and a partition of R

d into rectangles Ri, i = 1, 2, ...
with a diameter not exceeding ε. We fix B ∈ A, set Bi = B ∩ {S ∈ Ri}, and
let p(s) = Pθ(s)(Bi). We suppose Pθ0(Bi) > 0. Then by the homogeneity of
the model Pθ(s)(Bi) > 0 for every 0 ≤ s ≤ 1. Hence by (7.8),

ln
Pθ(Bi)
Pθ0(Bi)

=
∫ 1

0

d

ds
ln p(s)ds =

∫ 1

0

1
Pθ(s)(Bi)

Eθ(s)IBi
〈θ̇(s), L̇θ(s)〉ds

=
∫ 1

0

1
Pθ(s)(Bi)

Eθ(s)IBi
θ̇T (s)(A(θ(s))S + a(θ(s)))ds

=
∫ 1

0

1
Pθ(s)(Bi)

Eθ(s)IBi
〈β(s), S〉 ds+ c(θ), and
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Pθ(Bi)
Pθ0(Bi)

exp{−
∫ 1

0

1
Pθ(s)(Bi)

Eθ(s)IBi
〈β(s), S〉 ds− c(θ)} = 1.

Hence,
∫
Bi

fdPθ0 =
Pθ(Bi)
Pθ0(Bi)

∫
Bi

exp{
∫ 1

0

〈β(s), S − 1
Pθ(s)(Bi)

Eθ(s)IBi
S〉ds}dPθ0 .

For x ∈ Bi the vector S(x) belongs to some Ri. Hence (Pθ(s)(Bi))−1Eθ(s)IBi
S

also belongs to Ri so that
∥∥S(x)− (Pθ(s)(Bi))−1Eθ(s)IBi

S
∥∥ ≤ 2ε. The conti-

nuity of β(s) yields c := sup0≤s≤1 ‖β(s)‖ <∞. Hence

exp{−2cε}Pθ(Bi) ≤
∫
Bi

fdPθ0 ≤ exp{2cε}Pθ(Bi),

and by taking the sum over all i,

exp{−2cε}Pθ(B) ≤
∫
B

fdPθ0 ≤ exp{2cε}Pθ(B),

which completes the proof if we let ε tend to zero.

7.2 Unbiased Estimators with Minimal Risk

On several occasions we have used already a reduction by sufficiency, as in
the presence of a sufficient statistic we have to make our decisions only based
on the sufficient statistic; see Theorem 4.66.

Suppose T : X →m T is sufficient and S : X →m R
m satisfies Eθ ‖S‖ <

∞, θ ∈ Δ. Then a componentwise application of Problem 4.40 provides the
existence of some g : T →m R

m with

Eθ(S|T ) = g(T ), Pθ-a.s., θ ∈ Δ.

Theorem 7.16. (Rao–Blackwell) Suppose T : X →m T is sufficient for
the model (X ,A, (Pθ)θ∈Δ) and S : X →m R

m is an estimator of the function
κ : Δ → R

m that satisfies Eθ ‖S‖ < ∞, θ ∈ Δ. If the loss function L(θ, a) is
convex in a ∈ R

m, then R(θ, g(T )) ≤ R(θ, S). Moreover, if S is unbiased, then
g(T ) is also unbiased.

Proof. By the iterated expectation rule (see (a) in A.31) and Jensen’s
inequality for the conditional expectation (see Lemma A.33),

R(θ, S) = EθL(θ, S) = Eθ(Eθ(L(θ, S)|T )) ≥ Eθ(L(θ,Eθ(S|T )))
= Eθ(L(θ, g(T ))) = R(θ, g(T )).

The unbiasedness of g(T ) follows from the iterated expectation rule.
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As the set of all unbiased estimators is convex we get from Problem 5.54
that a uniformly best unbiased estimator is uniquely determined for strictly
convex loss functions. The subsequent theorem of Lehmann and Scheffé shows
that this estimator is a function of the complete sufficient statistic whenever
such a statistic exists.

Theorem 7.17. (Lehmann–Scheffé) Suppose T : X →m T is sufficient
and complete for the model (X ,A, (Pθ)θ∈Δ), there exists at least one unbiased
estimator S for the function κ : Δ → R

m, and the loss function L(θ, a) is
convex in a ∈ R

m.

(A) There exists at least one unbiased estimator of the form h(T ), where
h : T →m R

m.
(B) If g : T →m R

m and g(T ) is unbiased, then g(T ) is a uniformly best
unbiased estimator and it is Pθ-a.s., θ ∈ Δ, uniquely determined in the
class of all estimators that are functions of T.

(C) If L(θ, a) is strictly convex for every θ, then a uniformly best unbiased
estimator with finite risk is, Pθ-a.s., uniquely determined for every θ ∈ Δ.

Proof. To prove (A) we note that the sufficiency of T implies that by
Problem 4.40 there is some h : T →m R

m such that Eθ(S|T ) = h(T ), Pθ-a.s.,
θ ∈ Δ. The iterated expectation rule, see (a) in A.31, provides the unbi-
asedness of h(T ). To prove (B) let S0 be any unbiased estimator. Applying
Rao–Blackwell’s theorem we get functions h and h0 such that

EθL(θ, h(T )) ≤ EθL(θ, S) and EθL(θ, h0(T )) ≤ EθL(θ, S0), θ ∈ Δ.

As h(T ) and h0(T ) are unbiased we may conclude that

Eθ(h(T )− h0(T )) =
∫

(h(t)− h0(t))(Pθ ◦ T−1)(dt) = 0.

The completeness of T yields h(T ) = h0(T ), Pθ-a.s., and therefore

EθL(θ, h(T )) = EθL(θ, h0(T )) ≤ EθL(θ, S0).

This shows that h(T ) is uniformly best and unbiased which follows from the
iterated expectation rule. The uniqueness follows as above. If h1(T ) and h2(T )
are any unbiased estimators, then Eθ(h1(T )−h2(T )) = 0 and the completeness
of T give the uniqueness. The statement (C) follows from Problem 5.54.

Definition 7.18. Given a model (X ,A, (Pθ)θ∈Δ) and a function κ : Δ→ R
m,

let U be the family of all unbiased estimators U : X →m R
m, that is, estimators

with EθU = κ(θ), that satisfy Eθ ‖U‖2 < ∞, θ ∈ Δ. We call S ∈ U a UMVU
estimator if Cθ(S) � Cθ(U) in the Löwner semiorder for every θ ∈ Δ and
U ∈ U.
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UMVU stands for “uniformly minimum variance unbiased”. If the condi-
tions of the Lehmann–Scheffé theorem are satisfied, then, to find a uniformly
best unbiased estimator, we have to find a function h that satisfies the system
of equations ∫

h(T (x))Pθ(dx) = κ(θ), θ ∈ Δ. (7.9)

On the other hand, if h in (7.9) runs through the class of all functions that
are integrable with respect to Pθ ◦T−1, then we obtain all possible unbiasedly
estimable functions κ. The next examples present special exponential families
for which the system of equations (7.9) can be solved for h when κ is given.
The first example is taken from Pfanzagl (1994).

Example 7.19. If X has a binomial distribution with parameters n and p, then

EX(X − 1) · · · (X −m + 1) =
∑n

k=0
k(k − 1) · · · (k −m + 1)

(
n
k

)
pk(1− p)n−k

=
∑n

k=m

k!

(k −m)!

(
n
k

)
pk(1− p)n−k

= pm n!

(n−m)!

∑n−m

l=0

(n−m)!

((n−m)− l)!l!
pl(1− p)n−m−l = pm n!

(n−m)!
.

For κ(p) =
∑n

m=0 ampm the estimator S(k) =
∑n

m=0 amSm(k) with

Sm(k) =
k(k − 1) · · · (k −m + 1)

n(n− 1) · · · (n−m + 1)
,

is an unbiased estimator that is a function of the complete and sufficient statistic
T (k) = k. As we are considering the reduced model every estimator is a function of
T. Hence by (B) in Theorem 7.17 S is the uniquely determined UMVU estimator.

Example 7.20. We consider the model (Rn,Bn, (N
⊗n(μ, σ2))μ∈R.,σ2>0) which, by

Proposition 1.4 and Example 1.11, is an exponential family with generating statistic
T⊕n = (

∑n
i=1 Xi,

∑n
i=1 X2

i ) and natural parameter θ = (θ1, θ2) = (μ/σ2,−1/(2σ2)).
Put κ(θ) = (μ, σ2) and consider the statistic (Xn, S

2
n) in Example 7.11. Then

Eθ(Xn, S
2
n) = (μ, σ2). As (Xn, S

2
n) is a function of T⊕n we get that (Xn, S

2
n) is

the N⊗n(μ, σ2)-a.s. uniquely determined UMVU estimator. That Xn is the UMVU
estimator of μ was already established in 7.11. Now the gap regarding S2

n, that has
been left open there, is also closed.

Problem 7.21. In the model of the previous example
√

2Γ ((n−1)/2)
Γ ((n−2)/2)

Xn
Sn

is a UMVU

estimator of μ/σ.

Problem 7.22. Consider the model (Rn,Bn, (Ga⊗n(λ, β))λ,β>0). Then Xn is a
UMVU estimator of λ/β.

Problem 7.23.∗ For the model (Rn,Bn, (N(0, σ2I))σ2>0), n > 2, the estimator

1̂/σ2(x) = (n− 2) ‖x‖−2 is a UMVU estimator of 1/σ2.
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We now consider linear models and show that for normal errors the least
squares estimator is a UMVU estimator.

Let L be a linear subspace of R
n that has dimension d < n. Denote by

L
⊥ = {x : xT y = 0, y ∈ L} the orthogonal complement of L. Recall that

every x ∈ R
n can be uniquely represented as x = xL + xL⊥ , where xL ∈ L

and xL⊥ ∈ L
⊥. The mapping x �→ xL is called the projection of x on L and is

denoted by ΠL. The definition of the projection shows that

z = ΠL(x) if and only if z ∈ L and x− z ⊥ L. (7.10)

The next problems collect some well-known properties of the projection.

Problem 7.24.∗ It holds ‖x− xL‖2 = infy∈L ‖x− y‖2 .

As the mapping ΠL is linear there is a matrix CL with ΠL(x) = CLx.
We call CL a projection matrix. Such matrices have been briefly considered
already in Section 2.2; see Problem 2.38.

Problem 7.25.∗ A matrix C is a projection matrix if and only if CT = C and
CC = C. In this case Cx is a projection onto the linear subspace that is generated
by the column vectors of C.

Problem 7.26.∗ If L is generated by the d linearly independent column vectors
of the n × d matrix B, then the d × d matrix BTB is nonsingular and it holds
ΠL(x) = B(BTB)−1BTx.

If the column vectors of the matrix B generate the linear subspace L, then
L = {Bw, w ∈ R

d}. This means that for every x ∈ R
n the projection ΠL(x)

of x onto L can be written as ΠL(x) = Bv with some v ∈ R
d. Putting z = Bv

in (7.10) we see that (Bw)T (x−Bv) = 0 for every w ∈ R
d. Hence we obtain

ΠL(x) = Bv from the following so-called normal equations

ΠL(x) = Bv and BTBv = BTx. (7.11)

If B has full rank, then (BTB)−1 exists and ΠL(x) = B(BTB)−1BTx as in
Problem 7.26.

If X and Y are random (column) vectors of dimensions m and n, respec-
tively, and have finite second moments, then we set

C(X,Y ) = E(X − EX)(Y − EY )T ,

so that C(X,Y ) is the matrix of all covariances of components of the vec-
tors X and Y. It is called the covariance matrix of X and Y . An immediate
consequence is that

C((AX), (BY )) = AC(X,Y )BT . (7.12)

The random vectors X and Y are called uncorrelated if C(X,Y ) = 0.
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Problem 7.27. If X and Y are random vectors of dimension d with finite second
moments and expectation zero, then E ‖X + Y ‖2 = E ‖X‖2+E ‖Y ‖2+2tr(C(X,Y )),
where tr(A) is the trace of the matrix A.

Suppose L and M are linear subspaces and the matrices CL and CM provide
the projections onto L and M, respectively. If L ⊥ M, then (CLx)T (CMy) = 0
for every x, y ∈ R

n, which is equivalent to CLCM = 0. An often-used fact is
that measurable functions of independent random vectors are independent. A
similar statement holds if we restrict the functions to be linear and require
only that the vectors are uncorrelated.

Problem 7.28.∗ Suppose Z is a random vector with C(Z) = σ2I. Let L and M be
linear subspaces of R

n. Then L ⊥ M, or equivalently CLCM = 0, implies

C(AΠL(Z), BΠM(Z)) = 0,

for any k × n and m× n matrices A and B, respectively.

We consider the problem of estimating μ and σ in the linear model

X = μ+ σZ, μ ∈ L, σ > 0, with EZ = 0, C(Z) = I, (7.13)

where L is a d-dimensional subspace of R
n. The method of least squares goes

back to Gauss and Legendre. The estimator μ̂ is defined by the requirement
that the distance between vectors μ ∈ L and the observation x ∈ R

n is to be
minimized , i.e.,

μ̂(x) ∈ arg min
μ∈L

‖x− μ‖2 .

Hence μ̂(x) = ΠL(x) by Problem 7.24. Often the subspace L is specified by
d linearly independent column vectors b1, ..., bd ∈ R

n that generate L. If B is
the n× d matrix with the columns b1, ..., bd, then μ̂(x) = B(BTB)−1BTx by
Problem 7.26. Every μ ∈ L can be written in a unique way as μ = Bθ, θ ∈ R

d.
Then we define θ̂ by the relation B(BTB)−1BTx = Bθ̂, which implies

θ̂ = (BTB)−1BTx.

We estimate the variance σ2 in the model (7.13) by

σ̂2(x) =
1

n− d
‖x− μ̂(x)‖2 .

Problem 7.29.∗ The estimator σ̂2 is unbiased.

Let Lu be the class of all linear unbiased estimators T (x) = Dx in the
model (7.13). We call an estimator S ∈ Lu UMVU in Lu if Cθ(S) � Cθ(U) in
the Löwner semiorder for every θ ∈ Δ and U ∈ Lu.

Theorem 7.30. (Gauss–Markov) The least squares estimator for μ in the
model (7.13) (i.e., ΠL(x) = μ̂(x) = B(BTB)−1BTx) is UMVU in Lu. If
L(Z) = N(0, I), then ΠL(x) is a UMVU estimator of μ and σ̂2(x) is a UMVU
estimator of σ2.
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Proof. It holds

EΠL(X) = EΠL(μ+ σZ) = μ.

If DX is any linear and unbiased estimator, then μ = EDX = DEX = Dμ
for every μ ∈ L. Hence Dμ = ΠLμ and DΠL(Z) = ΠL(Z). Thus we arrive at

E ‖DX − μ‖2 = E ‖D(X − μ)‖2 = E ‖D(ΠL +ΠL⊥)(X − μ)‖2

= σ2
E ‖DΠL(Z) +DΠL⊥(Z)‖2 = σ2

E ‖ΠL(Z)‖2 + σ2
E ‖DΠL⊥(Z)‖2 ,

where the last equality follows from Problems 7.28 and 7.27. Hence

E ‖DX − μ‖2 ≥ σ2
E ‖ΠL(Z)‖2 = E ‖ΠL(X − μ)‖2 = E ‖ΠL(X)− μ‖2 ,

and the first statement is established. To prove the second statement we note
that the Lebesgue density of L(X) = N(μ, σ2I) is given by

ϕμ,σ2I(x) = (2πσ2)−n/2 exp{− 1
2σ2

(T1(x)− 2 〈T2(x), μ〉+ ‖μ‖2)},

where T1(x) = ‖x‖2 and T2(x) = ΠL(x).
It follows from (1.6) that (N(μ, σ2I))μ∈L,σ2>0 is an exponential family with

generating statistic (T1, T2) and natural parameter θ = (−1/(2σ2), μ/σ2) ∈
Δ = (−∞, 0)× L. By Example 4.51 with n = 1 and T = (T1, T2) we see that
T is sufficient. Moreover by Theorem 4.73 the statistic T is complete. As

(μ̂(x), σ̂2(x)) = (T2(x),
1

n− d
(T1(x)− ‖T2(x)‖2))

is a function of (T1, T2), and μ̂ and σ̂2 are unbiased, the statement follows
from Lehmann–Scheffé’s theorem; see Theorem 7.17.

Example 7.31. Consider the linear regression model

Xi = α + βti + σεi, i = 1, ..., n,

with uncorrelated εi that have expectation zero and variance one. t1, ..., tn are fixed
given values at which the measurements have been made. The model space L is
generated by the vectors 1 =(1, ..., 1)T and t = (t1, ..., tn)T which are linearly inde-
pendent by assuming that

∑n
i=1(ti − tn)2 > 0. The normal equations in (7.11) are

here two linear equations for the parameters α and β,(
n

∑n
i=1 ti∑n

i=1 ti
∑n

i=1 t2i

)(
α
β

)
=

(∑n
i=1 xi∑n
i=1 tixi

)
,

which leads to the well-known estimators

α̂n(x) = xn − β̂(x)tn, β̂n(x) =

∑n
i=1(xi − xn)(ti − tn)∑n

i=1(ti − tn)2
,

σ̂2(x) =
1

n− 2

∑n

i=1
[xi − α̂n(x)− β̂n(x)ti]

2,

where x = (x1, ..., xn).
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Problem 7.32. Show directly that the estimators α̂n, β̂n, and σ̂2 are unbiased,
and that

Vα,β(α̂n) =
σ2∑n

i=1 t2i
n
∑n

i=1(ti − tn)2
, Vα,β(β̂n) =

σ2∑n
i=1(ti − tn)2

.

We refer to Christensen (1987) for a comprehensive representation of linear
models.

In the above considerations we have restricted the class of estimators to
unbiased estimators in order to find estimators that are optimal under the
squared error loss. The requirement that the estimator be unbiased means that
the true parameter value is in the center of the distribution of the estimator.
Another possibility of making the notion of “center” precise is to use the
median of the distribution of the estimator. This leads to the theory of median
unbiased estimators. Recall that R = [−∞,∞] is the extended real line and
B the σ-algebra of Borel sets of R.

Definition 7.33. Given a model (X ,A, (Pθ)θ∈Δ) and a function κ : Δ → R,
the randomized estimator D : B×X →k [0, 1] is called median unbiased if
∫

D([κ(θ),∞]|x)Pθ(dx) ≥ 1
2

and
∫

D([−∞, κ(θ)]|x)Pθ(dx) ≥ 1
2
, θ ∈ Δ.

The concept of median unbiasedness was already used by Laplace (1774)
who showed that L1-estimators are median unbiased in the location model.
Brown (1947) seems to have been the first who reestablished this concept.
For discussions on the concept of unbiasedness we refer to Lehmann (1951),
Birnbaum (1964), and van der Vaart (1961).

Problem 7.34.∗ The set D0 of all median unbiased randomized estimators for the
model (X ,A, (Pθ)θ∈Δ) with values in R and the function κ : Δ → R is closed with
respect to the weak convergence of decisions in the sense of Definition 3.19.

Suppose � : R → R is a continuous function, where � is nonincreasing for
x < 0, nondecreasing for x > 0, and �(0) = 0. Let μ� be the measure on the
Borel sets of R with

μ�((a, b]) = �(b)− �(a), 0 ≤ a < b <∞, (7.14)
μ�((a, b]) = �(a)− �(b), −∞ < a < b ≤ 0.

Subsequently we apply a well-known integration by parts technique.

Problem 7.35.∗ If � : R → R is a continuous function, nonincreasing on (−∞, 0),
nondecreasing on (0,∞), with �(0) = 0, and Q is a distribution on (R,B), then

∫
I(θ,∞)(s)�(s− θ)Q(ds) =

∫
I(0,∞)(t)Q([t + θ,∞))μ�(dt) and

∫
I(−∞,θ](s)�(s− θ)Q(ds) =

∫
I(−∞,0)(t)Q((−∞, t + θ])μ�(dt), θ ∈ R.
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If Q and � are symmetric, i.e., Q(−B) = Q(B), B ∈ B, and �(−s) = �(s), s ∈ R,
then∫

�(s− θ)Q(ds) =

∫
I(0,∞)(t)(Q([t + θ,∞)) + Q([t− θ,∞)))μ�(dt). (7.15)

The next theorem is due to Pfanzagl (1970, 1971). It gives the optimal
unbiased estimator in a location model with parent distribution P that is
symmetric in the sense of P (−B) = P (B), B ∈ B, and strongly unimodal.

Theorem 7.36. Let � : R → [0,∞] be a symmetric continuous function that
is nondecreasing on [0,∞]. Suppose P = L(Z) is a symmetric and strongly
unimodal distribution on (R,B) with a Lebesgue density positive everywhere.
Let Pθ = L(Z + θ), θ ∈ R. If D : B × X →k [0, 1] is a median unbiased
estimator for the model (X ,A, (Pθ)θ∈Δ), and κ(θ) = θ, then

R(θ,D) :=
∫

[
∫
�(y − θ)D(dy|x)]Pθ(dx) ≥

∫
�(s)P (ds).

The natural estimator Tnat(x) = x is a uniformly best estimator in the class
of all median unbiased estimators under the loss function L(θ, a) = �(a− θ).

Proof. Without loss of generality we may assume that �(0) = 0. As
�(∞) ≥ 0 it is sufficient to consider randomized estimators D with D({∞}|x) =
0 for every x. Using the integration by parts in Problem 7.35 with Q = D, and
then Q = P for θ = 0, we see that the statement to be proved is equivalent to∫

[
∫
I[0,∞)(t)(D([t+ θ,∞)|x) + D([t− θ,∞)|x))Pθ(dx)]μ�(dt)

≥ 2
∫
I[0,∞)(t)P ([t,∞))μ�(dt).

As the density of P is symmetric it holds P−θ = Pθ so that it is sufficient to
show that ∫

D([t+ θ,∞)|x)Pθ(dx) ≥ 1− F (t), t > 0, (7.16)

where F is the c.d.f. of P. We set ϕ(x) = D([t + θ,∞)|x) and α = 1/2. The
median unbiasedness of D and F (−t) = 1− F (t) yield

∫
D([t+ θ,∞)|x)Pθ+t(dx) ≥ 1/2.

An application of the second inequality in Problem 2.50 with θ1 = θ + t and
θ2 = θ yields (7.16). The statement that Tnat is a uniformly best unbiased
estimator follows from the fact that, due to the symmetry of P , the estimator
Tnat is median unbiased and

2
∫
I[0,∞)(t)P ((t,∞))μ�(dt) = 2

∫
I[0,∞)(t)�(t)P (dt) =

∫
�(t)P (dt)

is the risk of Tnat under the loss function L(θ, a) = �(a− θ).
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7.3 Bayes and Generalized Bayes Estimators

We start with the model (X ,A, (Pθ)θ∈Δ) and assume that condition (A3)
is satisfied. Suppose we want to estimate a function κ : Δ →m R

d. Then
(D,D) = (Rd,Bd) is the decision space. We fix l : R

d × R
d →m R+ and

introduce the loss function by setting L(θ, a) = l(κ(θ), a). Recall that a ran-
domized estimator is a stochastic kernel D : Bd × X →k [0, 1]. Especially if
T : X →m R

d, then the kernel D = δT is an estimator. The risk is given by

R(θ,D) =
∫

[
∫
l(κ(θ), a)D(da|x)]Pθ(dx).

We recall that for ρ ∈ Mσ(BΔ) a posterior distribution is a stochastic
kernel Π such that Pθ(dx)ρ(dθ) = Π(dθ|x)(Pρ)(dx), where (Pρ)(dx) =∫
Pθ(dx)ρ(dθ). Conditions for the existence of a posterior distribution have

been established in Proposition 3.32. If we turn to the location or the scale
model, then for an invariant averaging measure the posterior distribution turns
out to be closely related to the conditional distribution with respect to the
σ-algebra of invariant Borel sets of some equivariant statistics.

Example 7.37. We consider the model

Mlo =
(
R

n,Bn, (P ◦ u−1
θ

)
θ∈R

), (7.17)

where (P ◦ u−1
θ )(B) = P (B − θ1), and assume that P has the Lebesgue density f.

Set ρ = λ and m(x) =
∫
f(x− θ1)λ(dθ). It holds for a < b,

∫
I[a,b](x1)m(x1, ..., xn)λn(dx1, ..., dxn) = b− a.

Hence m <∞, λn-a.e., and we see from (3.25) that Π(dθ|x) = π(θ|x)λ(dθ), where

π(θ|x) =

{
f(x−θ1)∫
f(x−s1)ds

if m(x) > 0,

g (θ) if m(x) = 0,
(7.18)

and where g is a fixed Lebesgue density. Hence f(x1 − θ|x) = π(θ|x), where f(y1|x)
has been defined in Lemma 5.57. This means that the posterior distribution Π(·|x)
and the conditional distribution KE0 , defined in Lemma 5.57, of the equivariant
statistic E0(x) = x1 given the σ-algebra of invariant Borel sets, are related by

KE0(x1 − C|x) = Π(C|x). (7.19)

Definition 7.38. Given a weight measure ρ ∈ Mσ(BΔ), a randomized es-
timator D0 is called a minimum average estimator if r(ρ,D0) ≤ r(ρ,D) for
every randomized estimator D. If ρ = Π is a prior, then D0 is called a Bayes
estimator. For any ρ ∈Mσ(BΔ) for which a posterior distribution exists the
decision D0 is called a generalized Bayes estimator if the posterior risk in
Definition 3.33 satisfies

r(ρ,D0|x) ≤ r(ρ,D|x), Pρ-a.e.
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If a posterior distribution exists it follows from Theorem 3.37 that a ran-
domized estimator D0 with r(ρ,D0) < ∞ is a minimum average estimator if
and only if it is a generalized Bayes estimator. Especially every Bayes estima-
tor with finite risk is a generalized Bayes estimator. Another feature is that,
according to Corollary 3.40, a Bayes estimator can be obtained by a pointwise
minimization of the function a �→ r(ρ, a|x) introduced in Definition 3.33, i.e.,
by finding a mapping S : X →m R

d such that

r(ρ, S(x)|x) ≤ r(ρ, b|x), b ∈ R
d.

Proposition 7.39. Assume that condition (A3) is satisfied for the model
(X ,A, (Pθ)θ∈Δ), ρ ∈ Mσ(BΔ), a posterior distribution exists, and the loss
function is L(θ, a) = ‖κ(θ)− a‖2. If

∫
‖κ(θ)‖2 Π(dθ|x) <∞, PΠ-a.e., then

S(x) =
∫
κ(θ)Π(dθ|x),

is a generalized Bayes estimator, and S is, PΠ-a.e., uniquely determined in
the class of all nonrandomized estimators.

Proof. The posterior risk in Definition 3.33 satisfies

r(ρ, a|x) =
∫
‖κ(θ)− a‖2 Π(dθ|x) ≥

∫
‖κ(θ)− S(x)‖2 Π(dθ|x).

If T : X →m R
d is another generalized Bayes estimator, then by the convexity

of L the estimator 1
2 (S+T ) is again a generalized Bayes estimator and it holds,

PΠ-a.e.,

0 =
1
2

∫
(‖κ(θ)− S(x)‖2 + ‖κ(θ)− T (x)‖2)Π(dθ|x)

−
∫
‖ κ(θ)− 1

2
(S(x) + T (x)) ‖2 Π(dθ|x) =

1
4
‖S(x)− T (x)‖2 .

Now we consider the Bayes model

(Ω,F,P) = (X ×Δ,A⊗BΔ,P⊗Π),

where Π is a prior and X and Θ are the projections of X ×Δ on X and Δ,
respectively. In this Bayes model we may operate directly with the conditional
expectation to get the Bayes estimator. Let L(θ, a) = ‖κ(θ)− a‖2 . Then for
any randomized estimator D it holds

r(Π,D) =
∫

(
∫
‖κ(θ)− a‖2 D(da|x))(PΠ)(dx).

If E ‖κ(Θ)‖2 <∞ and r(Π,D) <∞, then
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r(Π,D) ≥
∫
‖κ(θ)− SD(x)‖2 (PΠ)(dx) = r(Π,SD), where (7.20)

SD(x) =
∫
aD(da|x).

This means that it suffices to deal with nonrandomized estimators if we use
the squared error loss; see also the discussion of (3.5).

Proposition 7.40. If L(θ, a) = ‖κ(θ)− a‖2 and E ‖κ(Θ)‖2 < ∞, then
S(x) = E(κ(Θ)|X = x)) is a Bayes estimator. Moreover S is, PΠ-a.e.,
uniquely determined in the class of all nonrandomized estimators.

Proof. If S0(X) is any estimator with finite risk E ‖S0 − κ(Θ)‖2 < ∞,
then the relation

E(
(
S(X)− S0(X))T (S(X)− κ(Θ))|X

)
= (S(X)− S0(X))TE (S(X)− κ(Θ)|X) = 0

gives

E ‖S(X)− κ(Θ)‖2 = E ‖S(X)− S0(X)‖2 + E ‖S(X)− κ(Θ)‖2

and the proof is completed.
In the Bayes model, under the weak assumption that at least one of the

conditions (A4) or (A5) is satisfied, a regular conditional distribution of Θ,
given X, (i.e., a posterior distribution) exists and it holds

E(κ(Θ)|X = x) =
∫
κ(θ)Π(dθ|x), PΠ-a.e., (7.21)

provided that E ‖κ(Θ)‖ <∞; see (1.32). Moreover, if E ‖κ(Θ)‖2 <∞, then

E ‖κ(Θ)‖2 =
∫

(
∫
‖κ(θ)‖2 Π(dθ|x))(PΠ)(dx) <∞,

which implies
∫
‖κ(θ)‖2 Π(dθ|x) < ∞, PΠ-a.e. Hence the generalized Bayes

estimator is identical with the Bayes estimator, and the latter can be obtained
via the posterior distribution. In exponential families there is the opportunity
to give more explicit expressions. Under a conjugate prior the conditional ex-
pectation is directly available from the posterior, which is again an exponential
family.

Example 7.41. Let (Pθ)θ∈Δ be a one-parameter exponential family with natu-
ral parameter θ and generating statistic T . Let Πa,b, (a, b) ∈ Υ , be the family of
conjugate priors. Then the posterior distributions are Πa+1,b+T (x), (a, b) ∈ Υ. If

(a, b) ∈ Υ 0, then by Theorem 1.17
∫
‖θ‖2 Πa,b(dθ) <∞, so that at x ∈ X ,

Sa,b(x) =

∫
θΠa+1,b+T (x)(dθ) (7.22)
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is the Bayes estimator of θ under the prior Πa,b. Similar results hold under
reparametrization. The Bayes estimator of the success probability in a binomial
distribution, under the squared error loss and a Be(α, β) prior, is a special case that
has been considered in Example 3.59.

Example 7.42. We consider the location model (7.17), assume that P has a
Lebesgue density, and choose ρ to be the Lebesgue measure. For the equivariant
statistic E0(x) = x1 let KE0 be given by Lemma 5.57. Then by (7.19) the posterior
distribution exists and is given by Π(C|x) = KE0(x1 −C|x). From here we see that
under the assumption

∫
x2

1P (dx) <∞ it holds

∫
θ2Π(dθ|x) =

∫
(x1 − t)2KE0(dt|x) <∞, P -a.s.,

and the generalized Bayes estimator
∫

θΠ(dθ|x) = x1 −
∫

tKE0(dt|x) = P(x)

is the Pitman estimator in (5.51) for E0(x) = x1.

Problem 7.43.∗ Let 0 < α < 1 and τα(t) = (1− α)|t|I(−∞,0](t) + αtI(0,∞)(t). Let
X be a random variable with c.d.f. F , and uα be an α-quantile, i.e., F (uα − 0) ≤
α ≤ F (uα). Then

E(τα(X − θ)− τα(X − uα)) =

∫
I[uα,θ](s)(F (s)− α)ds, θ > uα,

E(τα(X − θ)− τα(X − uα)) =

∫
I[θ,uα](s)(α− F (s))ds, θ < uα.

Example 7.44. Let (Pθ)θ∈Δ be a one-parameter exponential family with natural
parameter θ and generating statistic T . Let Πa,b, (a, b) ∈ Υ 0, be a conjugate prior,
so that the posterior is Πa+1,b+T (x) and by Theorem 1.17

∫
|θ|Πa,b(dθ) <∞. If we

use the loss function L(θ, a) = τα(θ − a), 0 < α < 1, then by Problem 7.43 every
α-quantile qα(x) of the distribution Πa+1,b+T (x) is a Bayes estimator of θ ∈ Δ.

Example 7.45. We consider the situation in Example 7.42 and assume that P
has a Lebesgue density and

∫
|x1|P (dx) < ∞. The posterior distribution is given

by (7.18). If we use the loss function L(θ, a) = τα(θ − a), then every solution of the
equation ∫ S(x)

−∞
π(θ|x)dθ = α

that depends measurably on x is a generalized Bayes estimator.

The construction of a Bayes or a generalized Bayes estimator depends on
the given model, a fixed loss function, and an appropriately chosen prior or
averaging measure. After the loss function has been fixed the remaining task
is to adjust a prior. Now we use the hierarchical Bayes approach to construct
estimators. This means that instead of one prior Π we use a family of priors
Πξ that depend on a hyperparameter ξ, the outcome of a random variable Ξ,
where the model is completed by a choice of the distribution Γ of Ξ.
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Often, the conditional distributions involved in the hierarchical Bayes
model are given by conditional densities. Assume that μ, τ , and ρ are
σ-finite measures on (X ,A), (Δ,BΔ), and (Υ,BΥ ), respectively. Suppose
(x, θ) �→ fθ(x), (θ, ξ) �→ p(θ|ξ), and ξ �→ r(ξ) are nonnegative and measurable
with respect to the corresponding σ-algebras, and assume that

∫
fθ(x)μ(dx) = 1,

∫
p(θ|ξ)τ (dθ) = 1,

∫
r(ξ)ρ(dξ) = 1.

The distribution L(X,Θ,Ξ) is specified by the requirement that it has the
density

dL(X,Θ,Ξ)
d(μ⊗ τ ⊗ ρ)

(x, θ, ξ) = fθ(x)p(θ|ξ)r(ξ). (7.23)

Let
m(x) =

∫
[
∫
fθ(x)p(θ|ξ)r(ξ)ρ(dξ)]τ (dθ)

be the marginal density of X. Then the posterior density π(θ|x) and the
posterior distribution Π(dθ|x) are given by

π(θ|x) =
{ 1

m(x)

∫
fθ(x)p(θ|ξ)r(ξ)ρ(dξ) if m(x) > 0,

π(θ) if m(x) = 0,

Π(B|x) =
∫
B

π(θ|x)τ (dθ), B ∈ BΔ,

and according to (7.21) the Bayes estimator can be represented as

E(κ(Θ)|X = x) =
∫
κ(θ)π(θ|x)τ (dθ).

In the hierarchical Bayes approach the choice of a prior is only completed
after the hyperparameter has been implemented and its distribution has been
specified. According to (7.23) the random variables X,Θ,Ξ form a Markov
chain, and by Problem 1.100 the random variables Ξ,Θ,X form a Markov
chain again. Hence by Proposition 1.101,

Iv(X||Ξ) ≤ Iv(X||Θ),

so that the hyperparameter Ξ has less influence on the inference than the
parameter Θ.

The next example presents special Bayes hierachical models. For more
models we refer to Lehmann and Casella (1998).

Example 7.46. The normal Bayes hierarchical model is given by the following
specification of the conditional distributions.

L(X|Θ = θ) = N⊗n(θ, σ2), L(Θ|Ξ = ξ) = N(0, ξ), L(Ξ) = Ig(λ, β),

where σ2, λ, and β are known. Similarly, the Poisson Bayes hierarchical model is
given by
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L(X|Θ = θ) = Po(θ), L(Θ|Ξ = ξ) = Ga(λ, ξ), L(Ξ) = Ga(κ, τ),

where again λ, κ, and τ are known. The calculation of the conditional density of Θ,
given X = x, is facilitated by the choice of the prior to be a conjugate prior. For
further details we refer to Lehmann and Casella (1998).

After the implementation of a hyperparameter in the prior the model
choice is not complete until the distribution of the hyperparameter has been
specified. The empirical Bayes approach solves the problem of not knowing the
hyperparameter in the prior by estimating it based on the marginal distribu-
tion of the data. This means that instead of averaging on the hyperparameter
in the prior distribution we estimate this parameter using the data. We illus-
trate this approach by an example.

Example 7.47. Let Pθ = N(θ, I), θ ∈ R
d, and suppose we want to estimate θ

under the loss L(θ, a) = ‖θ − a‖2 . We use the prior N(0, τ2I) for Θ. Then

fθ(x)π(θ) = (2π)−d exp{−1

2
(‖x− θ‖2 + τ−2 ‖θ‖2)}

= (2π)−d exp{−1 + τ2

2τ2

∥∥θ − τ2x/(1 + τ2)
∥∥2 − ‖x‖2 /(2(1 + τ2))}.

Hence Π(·|x) = N( τ2

1+τ2 x, τ
2I) is the posterior distribution, and the Bayes estimator

is

E(Θ|X = x) =
τ2

1 + τ2
x = (1− 1

1 + τ2
)x. (7.24)

The marginal distribution of X is N(0, (1 + τ2)I). According to Problem 7.23 the
UMVU estimator of 1/σ2 = (1 + τ2)−1 is (n− 2)/ ‖x‖2. Plugging in this estimator
we get the empirical Bayes estimator

SJS(x) = (1− (d− 2) ‖x‖−2)x, (7.25)

which is nothing else than the famous James–Stein estimator that has been discussed
already in Example 3.14. We may also estimate 1/σ2 = (1+ τ2)−1 by the maximum
likelihood estimator that is obtained by maximizing the function

τ2 �→ (2π)−d(1 + τ2)−d/2 exp{− 1

2(1 + τ2)
‖x‖2}.

This gives the estimator

̂(1 + τ2)−1 =

{
d/ ‖x‖2 if ‖x‖2 > d,

0 if ‖x‖2 ≤ d.

Plugging this estimator into the Bayes estimator we get a truncated James–Stein
estimator given by

S+
JS(x) = max((1− d ‖x‖−2), 0)x.

For empirical Bayes estimators in other models, and evaluations of the
risks, we refer to Chapter 4 in Lehmann and Casella (1998).
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7.4 Admissibility of Estimators, Shrinkage Estimators

In Theorem 3.43 we have studied the problem of admissibility of any decision
by comparisons with minimum average and especially Bayes decisions, which
is the method by Blyth (1951). In this section we study the admissibility of
some special estimators. We start with a simple but useful result for Bayes
estimators. Suppose (X ,A, (Pθ)θ∈Δ) satisfies condition (A3) and Π is a prior
on (Δ,BΔ) which is a Borel space. Suppose we want to estimate a function
κ : Δ →m R

d. We fix l : R
d × R

d →m R+ and introduce the loss function by
setting L(θ, a) = l(κ(θ), a).

Proposition 7.48. Assume that for the prior Π there exists a nonrandomized
Bayes estimator T : X →m R

d that is uniquely determined in the sense that
for any further nonrandomized estimator S : X →m R

d the relation r(Π,S) =
r(Π,T ) implies S = T , Pθ-a.s., for every θ ∈ Δ. Then the Bayes estimator T
is admissible is the class of all nonrandomized estimators.

Proof. If T0 dominates T in the sense that R(θ, T0) ≤ R(θ, T ) for every θ,
with strict inequality for at least one θ0, then by the assumed uniqueness it
holds T0 = T , Pθ0-a.s., which contradicts R(θ0, T0) < R(θ0, T ).

Problem 7.49.∗ If (Pθ)θ∈Δ satisfies (A3) and the family (Pθ)θ∈Δ is homogeneous,
then for every prior Π it holds PΠ �� Pθ, θ ∈ Δ.

It follows from (7.20) that for the squared error loss function every es-
timator that is admissible in the class of all nonrandomized estimators is
automatically admissible in the class of all estimators. Combining this fact
with Propositions 7.40 and 7.48 we get the following statement.

Proposition 7.50. Suppose (Pθ)θ∈Δ satisfies (A3) and is homogeneous. As-
sume that

∫
‖κ(θ)‖2 Π(dθ) <∞. Then under the squared error loss L(θ, a) =

‖κ(θ)− a‖2 the Bayes estimator T (x) = E(κ(Θ)|X = x) is admissible.

Example 7.51. Under the squared error loss, in (7.22) the Bayes estimator Sa,b

for the parameter in an exponential family is admissible.

Another criterion for admissibility was provided by Theorem 3.43 and its
corollary. Since the Pitman estimator is a generalized Bayes estimator under
an infinite average measure (see Example 7.42) the simplified version of Blyth’s
method in the corollary of Theorem 3.43 is not applicable as it would be in
the case of Bayes decisions with finite risk. Stein succeeded in establishing the
admissibility of the Pitman estimator under the squared loss by using suitable
sequences of priors. For details we refer to Stein (1959), Lehmann and Casella
(1998), p. 342, and Perng (1970).

Now we investigate the case of a Gaussian location model in higher dimen-
sions. Here we study especially the so-called Stein effect which says that for
dimensions larger than two the natural estimator, which is here the identity,
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is no longer admissible. This result, due to Stein (1955a) and James and Stein
(1960), was a breakthrough in mathematical statistics. It was the starting
point of a new branch of mathematical statistics called shrinkage estimators.

Let X = (X1, ...,Xd)T be a d-dimensional normal vector with distribution
N(θ,Σ) and known covariance matrix Σ. Then we may assume Σ = I and
have the model

M = (Rd,Bd, (N(θ, I))θ∈Rd).

Using the squared error loss L(θ, a) =‖ θ − a ‖2 we want to estimate θ. We
already know from Theorem 3.65 that the natural estimator Tnat(x) = x is
minimax, not only for the squared error loss but also for all subconvex and
symmetric loss functions. Moreover, we know from Proposition 7.50 that the
Bayes estimator E(Θ|X = x) = (τ2/(1 + τ2))x in (7.24) is admissible. By
letting τ2 → ∞ we would obtain the natural estimator Tnat. However, the
pointwise limit of admissible estimators is not necessarily admissible. To see
this, recall that we have estimated the hyperparameter τ2 to get the James–
Stein estimator SJS(x) = (1 − (d − 2) ‖x‖−2)x in (7.25). Now we show that
this estimator has for d ≥ 3 a smaller risk than Tnat. Our starting point is
a suitable integration by parts formula. The subsequent result is known as
Stein’s identity for the normal distribution. A similar result, not needed in
our context, holds also for any exponential family, see Lehmann and Casella
(1998), p. 31.

Lemma 7.52. Let X = (X1, ...,Xd), L(X) = N(θ, I), θ ∈ R
d, and assume

that g : R
d → R is continuously differentiable. If E|g(X)(Xi − θi)| < ∞ for

some i ∈ {1, ..., d}, and E ‖∇g(X)‖ <∞, then

Eg(X)(Xi − θ) = E
∂g

∂xi
(X), i = 1, ..., d. (7.26)

Proof. First we assume that g(x) = 0 for |x1| > N . The density ϕθ1,1(s)
of X1 satisfies ϕ′

θ1,1
(s) = (θ1 − s)ϕθ1,1(s). Hence we get

E
∂g

∂x1
(X) = E

∫ ∞

−∞

∂g

∂x1
(t,X2, ...,Xd)ϕθ1,1(t)dt

= E

∫ ∞

−∞

∂g

∂x1
(t,X2, ...,Xd)[

∫ t

−∞
(θ1 − s)ϕθ1,1(s)ds]dt

= E

∫ ∞

−∞
[
∫ ∞

s

∂g

∂x1
(t,X2, ...,Xd)dt](θ1 − s)ϕθ1,1(s)ds

= −E

∫ ∞

−∞
g(s,X2, ...,Xd)(θ1 − s)ϕθ1,1(s)ds = Eg(X)(X1 − θ1).

To deal with the general case, we denote by hN (t) a sequence of continu-
ously differentiable functions with |hN | ≤ 1 which is 1 for |t| ≤ N , zero for
|t| ≥ N + 1, and for which C := supt,N |h′N (t)| < ∞. Set gN (x1, ..., xd) =
g(x1, ..., xd)hN (x1). Then we have
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EgN (X)(X1 − θ1) = E
∂gN
∂x1

(X). (7.27)

Because of |gN (X)(X1 − θ1)| ≤ |g(X)(X1 − θ1)| and

| ∂gN
∂x1

(X) |≤| ∂g
∂x1

(X) | +C |g(X)| ,

we may apply Lebesgue’s theorem to (7.27) and obtain the statement for the
first coordinate in (7.26). The statement for the other coordinates can be
treated analogously.

Problem 7.53.∗ If X = (X1, ..., Xd) is a random vector with L(X) = N(0, I), then
E ‖X − θ‖−2 <∞ for d ≥ 3 and θ ∈ R

d.

We employ a function g = (g1, ..., gd)T : R
d → R

d that is continuously
differentiable to introduce a class of estimators by

Tg(X) = X − g(X).

Using (7.26) for the functions gi and the squared error loss function we get,
with T0(x) = x, for the risk

R(θ, Tg) = E(X − g(X)− θ)T (X − g(X)− θ)
= E(X − θ)T (X − θ)− 2E(X − θ)T g(X) + Eg(X)T g(X)

= R(θ, T0)− 2
∑d

i=1
E
∂gi
∂xi

(X) + E ‖g(X)‖2 . (7.28)

In an attempt to improve the estimator T0, one may look for functions g that
satisfy

E ‖g(X)‖2 − 2
∑d

i=1
E
∂gi(X)
∂xi

≤ 0.

The next theorem shows that the idea of correcting the natural estimator by
a term g(X) works well for a large class of functions g. The estimators

Sr(x) = (1− r(‖x‖)
‖x‖2

)x (7.29)

with r > 0 are called shrinkage estimators. The construction is based on the
idea to shrink samples x according to the length ‖x‖ of x. The special case of
(1−(d−2) ‖x‖−2)x is the James–Stein estimator that was discovered by Stein
(1955a). It was used by James and Stein (1960) to prove the inadmissibility
of the natural estimator for d ≥ 3. The following result is due to Baranchik
(1970).
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Theorem 7.54. Let r : [0,∞) → [0, 2(d − 2)] be a nondecreasing function
that is continuously differentiable in (0,∞). Then for d ≥ 3, under the
squared error loss, the risk of the estimator Sr in (7.29) for θ in the model
(Rd,Bd, (N(θ, I))θ∈Rd) satisfies

R(θ, Sr) = E ‖Sr(X)− θ‖2 ≤ R(θ, T0), θ ∈ R
d,

where L(X) = N(θ, I) and T0(x) = x. Moreover, Sr is a minimax estimator.

Corollary 7.55. For d ≥ 3 the risk of the estimator Tc = (1− c d−2
‖x‖2 )x is

R(θ, Tc) = d− (d− 2)2c(2− c)E
1

‖X‖2
.

T1 is the James–Stein estimator, which has minimum risk in the class of the
estimators Tc. For c < 2 it holds

R(θ, Tc) < R(θ, T0), θ ∈ R
d. (7.30)

Proof. Suppose that r is continuously differentiable, and set gi(x) =
‖x‖−2

r(‖x‖)xi. Using ∂‖x‖
∂xi

= xi

‖x‖ we get

∑d

i=1

∂gi(x)
∂xi

=
dr(‖x‖)
‖x‖2

+
r′(‖x‖)
‖x‖ − 2r(‖x‖)

‖x‖2
.

Hence,

E ‖g(X)‖2 − 2
∑d

i=1
E
∂gi(X)
∂xi

= E

[
r(‖X‖)(4− 2d+ r(‖X‖))

‖X‖2
− 2

r′(‖X‖)
‖X‖

]
≤ 0.

Thus by (7.28) the maximum risk of Sr does not exceed the maximum risk of
the estimator T0, which is a minimax estimator, as it has been established in
Theorem 3.65. To prove the corollary we set r = c(d− 2). Then

R(θ, Tc) = R(θ, T0)− E ‖g(X)‖2 + 2
∑d

i=1
E
∂gi(X)
∂xi

= d− c(2− c)(d− 2)2E
1

‖X‖2
.

The next theorem summarizes results on the admissibility of the natural
estimator for multivariate normal distributions.
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Theorem 7.56. For the model (Rd,Bd, (N(θ, I))θ∈Rd), under the squared er-
ror loss, the natural estimator Tnat(x) = x is admissible for d = 1 and d = 2.
Tnat is inadmissible for d ≥ 3.

Proof. The admissibility for d = 1 was proved in Theorem 3.65. The proof
of the admissibility for d = 2 is more convoluted as the conjugate priors fail
to work, see Lehmann and Casella (1998), p. 398. Another sequence of prior
was used in James and Stein (1960). These priors were modified in Brown
and Hwang (1982), who also proved a general result for the admissibility of
estimators that includes the admissibility of Tnat for d = 2. According to
(7.30) for d ≥ 3 and c < 2 each estimator Tc, and especially the James–Stein
estimator, has a smaller risk.

We conclude this section with the remark that the so-called Stein phe-
nomenon, i.e., the fact that well established estimators, say maximum likeli-
hood estimators or UMVU estimators, are admissible for low dimensions and
inadmissible for higher dimensions. The Stein effect is not restricted to normal
distributions or to distributions that have a Lebesgue density. An example is
the Clevenson–Zidek estimator for estimating the parameters of independent
Poisson random variables under the loss function (θ − a)2/θ. For details and
a comprehensive overview of the Stein effect, shrinkage estimators, and dif-
ferent types of improvements of standard estimators, we refer to Lehmann
and Casella (1998), where it is also shown that the James–Stein estimator is
inadmissible.

7.5 Consistency of Estimators

7.5.1 Consistency of M-Estimators and MLEs

Consistency of M-Estimators, Argmin Theorem

So far we have constructed estimators for a fixed sample size n, and they
are tainted with uncertainty due to the randomness of the observations. The
question arises as to whether this uncertainty can be reduced by increasing the
sample size. Answers can be found in the area of consistency of decisions. Here
we deal with the consistency of estimators, which is a first but important step
toward an asymptotic investigation of estimators. If a sequence of estimators
is consistent (i.e., tends in a suitable manner to the unknown parameter), then
in smooth models all further considerations can be based on a locally linear
approximation of the estimator and the model. This is an important fact that
is used systematically later on.

When we consider estimators under increasing sample sizes, then we have
to deal with a sequence of models Mn = (Xn,An, (Pn,θ)θ∈Δ). We assume
that the parameter set Δ is a separable metric space endowed with the metric
ρΔ. If Xn is the observation with values in Xn, then we envision that the
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sequence Xn is defined on a probability space (Ω,F,Pθ0), where L(Xn|Pθ0) =
Pθ0◦Xn = Pn,θ0 for some θ0 ∈ Δ. For i.i.d. observations we may use the infinite
product space. More precisely, we consider the product space (X∞,A⊗∞)
where X∞ = {(x1, x2, ...) : xi ∈ X} and A⊗∞ is the smallest σ-algebra for
which all coordinate mappings Xi : X∞ → X , defined by Xi((x1, x2, ...)) = xi,
i = 1, 2, ..., are measurable. Let P⊗∞

θ be the infinite product measure on
(X∞,A⊗∞), which is defined by the condition

P⊗∞
θ (B ×X × X × · · ·) = P⊗n

θ (B), B ∈ A⊗n, θ ∈ Δ, n = 1, 2, ... .

For the existence of the infinite product measure we refer to Kallenberg (1997).
Altogether we arrive at the probability space

(Ω,F, (Pθ)θ∈Δ) = (X∞,A⊗∞, (P⊗∞
θ )θ∈Δ)

with the coordinate mappings X1,X2, ... as observations. For a finite sample
size n the observation Xn = (X1, ...,Xn) is modeled by

Mn = (Xn,An, (Pn,θ)θ∈Δ) = (Xn,A⊗n, (P⊗n
θ )θ∈Δ),

where again the Xi are the coordinate mappings that formally depend on n.
We suppress this dependence in the notation by writing Xi only. Furthermore,
to avoid unnecessarily convoluted formulations it is not always mentioned
explicitly whether the Xi are defined on (Ω,F,Pθ0) or on (Xn,A⊗n, P⊗n

θ0
). It

is, however, indicated by Eθ0 and Pθ0 if we use any (Ω,F,Pθ0), and by En,θ0

and Pn,θ0 = P⊗n
θ0

if we use Mn.

Definition 7.57. Given the sequence of models (Xn,An, (Pn,θ)θ∈Δ), a se-
quence of estimators θ̂n : Xn →m Δ is called consistent at θ0 if θ̂n(Xn) →Pθ0

θ0, and strongly consistent at θ0 if θ̂n(Xn) → θ0, Pθ0-a.s.. If a type of consis-
tency holds for every θ0, then “at θ0” is omitted.

The consistency of estimators can be directly expressed by the Pn,θ. In-
deed, the sequence θ̂n is consistent if and only if

lim
n→∞

Pn,θ0(ρΔ(θ̂n, θ0) > ε) = 0, ε > 0.

A stronger version is the uniform consistency on a subset of the parameter
space. A sequence θ̂n of estimators is called uniformly consistent on K ⊆ Δ if

lim
n→∞

sup
θ∈K

Pn,θ(ρΔ(θ̂n, θ) > ε) = 0, ε > 0.

There are different methods for constructing consistent estimators. One of
these, and probably one of the most important methods, is the concept of M -
estimators which includes as special cases the maximum likelihood principle,
the method of least squares, and the concept of L1-estimators. Moreover,
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this approach can be used to construct robust estimators and is applicable to
semiparametric situations where the likelihood approach fails to apply.

The starting point is to find an estimator by minimizing a suitably con-
structed sequence of criterion functions Mn(θ, x1, ..., xn) about θ. Here the
criterion function is constructed in such a way that if θ0 is the true parameter,
then these random functions tend to a deterministic function that attains its
minimum at θ0. To guarantee the convergence of the criterion functions they
are often defined to be an arithmetic mean of independent terms that include
both the observations and the unknown parameter. More specifically, for the
models Mn = (Xn,A⊗n, (P⊗n

θ )θ∈Δ) we consider the criterion functions

Mn(θ,xn) =
1
n

∑n

i=1
�θ(xi), θ ∈ Δ, xn = (x1, ..., xn) ∈ Xn,

where �θ has to be adapted to the model (X ,A, (Pθ)θ∈Δ). We also useMn(θ) =
(1/n)

∑n
i=1 �θ(Xi) for brevity.

Definition 7.58. Let M = (X ,A, (Pθ)θ∈Δ) be a model, where Δ is a separa-
ble metric space with Borel σ-algebra BΔ. A function � : Δ×X → R is called
a contrast function for M if for every fixed θ ∈ Δ the function x �→ �θ(x) is
measurable, for every x ∈ X the function θ �→ �θ(x) is continuous, it holds
Eθ0 |�θ − �θ0 | <∞ for every θ, θ0 ∈ Δ, and � satisfies the contrast condition

M(θ, θ0) := Eθ0(�θ − �θ0) > 0, θ �= θ0. (7.31)

Remark 7.59. It follows from Example 1.116 that the function (θ, x) �→ �θ(x) is
a measurable function of (θ, x).

Example 7.60. Consider the location model (X ,A, (Pθ)θ∈R) where Pθ = L(X+θ),∫
|t|Pθ(dt) <∞, and

∫
tP0(dt) = 0. Then Eθ0

∣∣(X − θ)2 − (X − θ0)
2
∣∣ <∞ and

Eθ0((X − θ)2 − (X − θ0)
2) = (θ − θ0)

2,

so that the contrast condition is satisfied for �θ(x) = (x− θ)2.

It should be noted that the condition Eθ0�θ > Eθ0�θ0 , θ �= θ0, which
seems to be more intuitive is equivalent to (7.31) if Eθ0 |�θ0 | < ∞. However,
by working with (7.31) unnecessary additional conditions can be avoided. In
the above example, if �θ(x) = (x − θ)2, Eθ0 |X| < ∞, and Eθ0X

2 = ∞, then
Eθ0�θ =∞ for every θ so that Eθ0�θ > Eθ0�θ0 is not fulfilled.

Example 7.61. Consider the location model (X ,A, (Pθ)θ∈R) with Pθ = L(Z + θ),
where Z has the c.d.f. G which has the α-quantile 0, so that G(0− 0) ≤ α ≤ G(0).
Let X = Z + θ0 be the observation, which has the c.d.f. F (t) = G(t − θ0). Put
τα(t) = (1−α)|t|I(−∞,0](t)+αtI(0,∞)(t) and �θ(x) = τα(x−θ). From ||a+b|−|a|| ≤ |b|
we then get Eθ0 |�θ(X)− �θ0(X)| <∞. As uα = θ0 is an α-quantile of F , Problem
7.43 yields
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Eθ0(�θ(X)− �θ0(X)) = E0(τα(X − θ)− τα(X − θ0))

=

{∫
I[θ0,θ](s)(F (s)− α)ds if θ > θ0,∫
I[θ,θ0](s)(α− F (s))ds if θ < θ0.

Using F (t) = G(t − θ0) we see that the contrast condition (7.31) is satisfied if and
only if G(−ε) < α < G(ε), ε > 0, which is equivalent to the α-quantile of being
unique.

Definition 7.62. Given a contrast function � : Δ × X → R an estimator
θ̂n : Xn →m Δ is called an M -estimator at xn ∈ Xn if Mn(θ̂n(xn),xn) =
infθ∈ΔMn(θ,xn). If θ̂n is an M -estimator at every xn ∈ Xn, then we simply
call it an M -estimator.

The existence of an M -estimator can be easily established if the parameter
space is compact.

Proposition 7.63. If Δ is a compact metric space and � : Δ × X → R is a
contrast function, then for every n there exists at least one M -estimator.

Proof. The compactness of Δ and the continuity of Mn(θ,xn) as a func-
tion of θ imply that for every xn ∈ Xn there exists at least one θ̂n(xn) such
that θ̂n(xn) is a minimum point. As Δ is a Polish space, Theorem A.10 yields
the existence of a measurable version of the minimizer θ̂n.

The minimization of Mn(θ,xn) over θ is equivalent to the minimization
of Mn(θ,xn) −Mn(θ0,xn) over θ. Due to the law of large numbers it holds
Mn(θ) −Mn(θ0) → M(θ, θ0), P-a.s. The contrast condition (7.31) suggests
that each sequence of minimizers of Mn converges to θ0. To explain this idea
we remark that for Xn = (X1, ...,Xn),

ρΔ(θ̂n(Xn), θ0) > ε implies (7.32)

Mn(θ0,Xn) ≥ inf
θ∈Bε

Mn(θ,Xn) ≥ 1
n

∑n

i=1
�Bε

(Xi), where

�Bε
(xi) = inf

θ∈Bε

�θ(xi) and Bε = {θ : ρΔ(θ, θ0) > ε}.

Note that due to the continuity of � and the separability of Δ the function �Bε

is measurable and takes on values in [−∞,∞). The term (1/n)
∑n

i=1 �Bε
(Xi)

is approximately Eθ0�Bε
(X1). If Eθ0�Bε

(X1) > Eθ0�θ0(X1), then θ̂n(Xn) can-
not have a distance of more than ε from θ0 for large n. This basic idea for
proving consistency appeared already in Wald (1949), and it has been used
since then by many authors in various situations. Our representation follows
Perlman (1972), Pfanzagl (1969, 1994), Liese and Vajda (1994, 1995), and
Berlinet, Liese, and Vajda (2000). We note that by �A−�η ≤ 0 for η ∈ A and
Eθ0 |�η − �θ0 | <∞ the expectation Eθ0(�A − �θ0) is well defined.
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Condition 7.64 Let Δ be a separable metric space and � : Δ × X → R a
contrast function for the model M = (X ,A, (Pθ)θ∈Δ). We say that � and M
satisfy the finite covering property at θ0 if for every ε > 0 there are a finite
number of sets Δ1, ...,ΔN that satisfy Bε = {θ : ρΔ(θ, θ0) ≥ ε} ⊆ ∪Ni=1Δi,
and

Eθ0(�Δi
− �θ0) > 0, i = 1, ..., N,

where �Δi
(x) = infθ∈Δi

�θ(x).

The finite covering property can easily be verified for compact parameter
spaces.

Lemma 7.65. If Δ is a compact metric space and

Eθ0(�θ0 − infθ∈Δ �θ) <∞, (7.33)

then the finite covering property at θ0 is satisfied.

Proof. Let U(θ, δ) be an open ball with diameter δ and center θ. By the
continuity of η �→ �η(x), condition (7.33) and Lebesgue’s theorem yield

lim
δ↓0

Eθ0 inf
η∈U(θ,δ)

(�η − �θ0) = Eθ0(�θ − �θ0) > 0,

for every θ �= θ0 by the contrast condition. Hence for every θ ∈ Bε there is
some δ(ε, θ) > 0 such that Eθ0(infη∈U(θ,δ(ε,θ)) �η − �θ0) > 0. As Δ is compact
we may cover Bε already by finitely many Δi = U(θ, δ(ε, θi)), i = 1, ...N .

We also consider estimators θ̂n that are only approximate M -estimators.
To be more precise let L(Xn|Pθ0) = P⊗n

θ0
and set

Dn(Xn) = Mn(θ̂n(Xn),Xn)− inf
θ∈Δ

Mn(θ,Xn),

for any estimator θ̂n : Xn →m Δ. Depending on in which sense Dn(Xn)
becomes small for large n we distinguish between different types of estimators.

For subsequent purposes we introduce some new notation for a sequence
Yn of random variables. We say that

Yn = oPθ0
(0) if Pθ0(Yn �= 0) → 0. (7.34)

Note that such sequences Yn converge stochastically to zero, but in a special
way. For any sequence Cn of numbers, or even random variables, we see that

Yn = oPθ0
(0) implies CnYn = oPθ0

(0).

Definition 7.66. A sequence of estimators {θ̂n} is called a strongly approxi-
mate M -estimator at θ0 if Dn(Xn) → 0, Pθ0-a.s. Similarly, {θ̂n} is called an
approximate M -estimator if Dn(Xn) →Pθ0 0. We call the sequence {θ̂n} an
asymptotic M -estimator at θ0 if Dn(Xn) = oPθ0

(0).
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Obviously every asymptotic M -estimator is an approximate M -estimator.

Theorem 7.67. Let Δ be a separable metric space and � : Δ × X → R be
a contrast function for M = (X ,A, (Pθ)θ∈Δ). If the finite covering property
is satisfied at θ0, and the estimator θ̂n : Xn →m Δ is a strongly approxi-
mate M -estimator at θ0, then θ̂n is strongly consistent at θ0. Similarly an
approximate M -estimator at θ0 is consistent at θ0. Especially every asymp-
totic M -estimator is consistent.

Corollary 7.68. The statement of the theorem is valid if the finite covering
condition is replaced by the assumption that Δ is compact and (7.33) holds.

Proof. For Bε in Condition 7.64 and every m = 1, 2, ... there are
Δm,1, ...,Δm,Nm

such that

B1/m ⊆
⋃Nm

i=1
Δm,i and Eθ0(�Δm,i

(X1)− �θ0(X1)) > 0, i = 1, ..., Nm.

Set

Am,i = { lim
n→∞

1
n

∑n

j=1
(�Δm,i

(Xj)− �θ0(Xj)) = Eθ0(�Δm,i
(X1)− �θ0(X1))}.

The strong law of large numbers yields Pθ0(Am,i) = 1. Suppose that Dn → 0,
Pθ0 -a.s., and set

A = { lim
n→∞

Dn(Xn) = 0} ∩
⋂∞

m=1

⋂Nm

i=1
Am,i.

Then Pθ0(A) = 1 and for fixed ω ∈ A and ε > 0 we choose m such that
ε > 1/m. If ρΔ(θ̂n, θ0) > 1/m, then by the definition of Dn

inf
θ∈B1/m

Mn(θ,Xn) ≤Mn(θ̂n,Xn) = inf
θ∈Δ

Mn(θ,Xn)+Dn ≤Mn(θ0,Xn)+Dn.

Hence,

0 ≥ inf
θ∈B1/m

Mn(θ,Xn(ω))−Mn(θ0,Xn(ω))−Dn(Xn(ω))

≥ min
1≤i≤Nm

1
n

∑n

j=1
[�Δm,i

(Xj(ω))− �θ0(Xj(ω))]−Dn(Xn(ω))

→ min
1≤i≤Nm

Eθ0(�Δm,i
− �θ0) > 0.

This shows that the inequality ρΔ(θ̂n(Xn(ω)), θ0) > 1/m may hold only for
a finite number of n. Hence θ̂n → θ0, Pθ0 -a.s. The proof of the stochastic
convergence follows from a subsequence argument and Proposition A.12. The
corollary follows from Lemma 7.65.
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Remark 7.69. There are situations where Condition 7.64 is not fulfilled, but it
can be made valid if we replace �θ(x) with �̃θ(x1, ..., xk) = (1/k)

∑k
j=1 �θ(xj). Using

this idea Condition 7.64 can be weakened. For details we refer to Perlman (1972)
and Pfanzagl (1994).

The statement in the corollary is closely related to proofs of consistency
that are based on uniform laws of large numbers. Then the special structure
of Mn of being an arithmetic mean is irrelevant in this respect.

Theorem 7.70. (Argmin Theorem) Let Δ be a compact metric space.
Suppose (W (θ))θ∈Δ and (Wn(θ))θ∈Δ are continuous stochastic processes, de-
fined on (Ω,F,P), and let ‖Wn −W‖u = supθ∈Δ |Wn(θ)−W (θ)| . Suppose
W has a unique minimizer θ̂ : Ω →m Δ and θ̂n : Ω →m Δ. Then for
Dn = Wn(θ̂n)− infθ∈ΔWn(θ) the following hold.

(A) If Dn → 0, P-a.s., and ‖Wn −W‖u → 0, P-a.s., then θ̂n → θ̂, P-a.s.

(B) If Dn →P 0 and ‖Wn −W‖u →P 0, then θ̂n →P θ̂.

Proof. The process W is continuous on the compact set Δ and has a
unique minimum at θ̂. Hence δε = infρΔ(θ,θ̂)≥ε(W (θ) −W (θ̂)) > 0, P-a.s. If

ρΔ(θ̂n, θ̂) ≥ ε, then

inf
ρΔ(θ,θ̂)≥ε

Wn(θ) ≤Wn(θ̂n) = inf
θ∈Δ

Wn(θ) +Dn,

and

W (θ̂) + δε = inf
ρΔ(θ,θ̂)≥ε

W (θ) ≤ sup
θ∈Δ

|Wn(θ)−W (θ)|+ inf
ρΔ(θ,θ̂)≥ε

Wn(θ)

≤ sup
θ∈Δ

|Wn(θ)−W (θ)|+ inf
θ∈Δ

Wn(θ) +Dn

≤ 2 sup
θ∈Δ

|Wn(θ)−W (θ)|+W (θ̂) +Dn.

Dn → 0 and ‖Wn −W‖u → 0, P-a.s., imply that ρΔ(θ̂n, θ̂) ≥ ε is possible
only for a finite number of n. The statement (B) follows from a subsequence
argument and Proposition A.12.

The uniform law of large numbers has been assumed to hold in Theorem
7.70. For the sequence of arithmetic means it holds under a condition that is
a bit stronger than the conditions of Corollary 7.68.

Proposition 7.71. Suppose X1,X2, ... are defined on (Ω,F,P) and are i.i.d.
If Δ is a compact metric space and

Mn(θ) =
1
n

∑n

i=1
�θ(Xi),

then E supθ∈Δ |�θ(X1)− �θ0(X1)| <∞ implies

sup
θ∈Δ

|(Mn(θ)−Mn(θ0))− E(�θ(X1)− �θ0(X1))| → 0, P-a.s.
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Proof. Set

πδ(X1) = sup
ρΔ(θ1,θ2)≤δ

|�θ1(X1)− �θ2(X1)|.

Then πδ(X1) is nondecreasing in δ. Hence limδ↓0 πδ(X1) exists, and by
E supθ∈Δ |�θ(X1)− �θ0(X1)| <∞ and Lebesgue’s theorem it holds

lim
δ↓0

Eπδ(X1) = E lim
δ↓0

πδ(X1) = 0.

Set ωδ(Mn) = supρΔ(θ1,θ2)≤δ |Mn(θ1)−Mn(θ2)|. Then

ωδ(Mn) ≤ 1
n

∑n

i=1
πδ(Xi).

Cover Δ by a finite number of balls Bδ(θi) with center in θi and a radius
that does not exceed δ, i = 1, ...,m. Then with Wn(θ) = Mn(θ) −Mn(θ0),
W (θ) = E(�θ(X1)− �θ0(X1)), and ωδ(Mn) = ωδ(Wn),

supθ∈Δ |Wn(θ)−W (θ)| ≤ max
1≤i≤m

|Wn(θi)−W (θi)|+ ωδ(Mn) + ωδ(W ).

Wn(θi) →W (θi), P -a.s., holds by the strong law of large numbers. We apply
the latter to the πδ(Xi) to get

lim sup
n→∞

supθ∈Δ |Wn(θ)−W (θ)| ≤ lim sup
n→∞

ωδ(Mn)+ωδ(W ) ≤ Eπδ(X1)+ωδ(W ).

limδ↓0 ωδ(W ) = 0 holds as the continuous function W on the compact set Δ
is uniformly continuous. The statement limδ↓0 Eπδ(X1) = 0 has been already
established.

Statements on the convergence of minimizers (maximizers) of convergent
sequences of stochastic processes Mn, are called argmin (argmax) theorems.
General forms of argmax theorems can be found in van der Vaart and Wellner
(1996). We note that such statements are also used in stochastic optimization;
see, for example, Wets (1989).

Theorem 7.70 used the compactness of Δ. If the parameter space is not
compact, say Δ = R

d, then one needs additional conditions which, roughly
speaking, prevent the minimizer from running out of every compact set. There
is one important class of criterion functions, namely convex functions, for
which this property is automatically satisfied. This is one of the reasons why
convex criterion functions are so popular. The other point is the equicontinuity
of sequences that are pointwise convergent. This property is needed to con-
clude local uniform convergence from pointwise convergence that is provided
by the classical laws of large numbers.

Let O ⊆ R
d be an open convex set and f : O → R a convex function. Then

for x = (x1, ..., xd) ∈ O and fixed x1, ..., xi−1, xi+1, ..., xd the function xi �→
f(x1, ..., xd) is a convex function of xi. The left- and right-hand derivatives
∂−f/∂xi and ∂+f/∂xi exist according to Problem 1.50.
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Problem 7.72.∗ If x, c ∈ O, then for any εi ∈ {+,−},

g(x) := f(x)− f(c)−
∑d

i=1
(∂εif(c)/∂xi)(xi − ci) ≥ 0.

The next problem establishes the well-known Lipschitz property of convex
functions; see, for example, Rockafellar (1970).

Problem 7.73.∗ Suppose O ⊆ R
d is an open convex set, K ⊆ O is a compact set,

and f : O → R is convex. Then for every ε > 0 with

Kε := {y : y = x + z, x ∈ K, z ∈ R
d, ‖z‖ ≤ ε} ⊆ O,

it holds

|f(x)− f(y)| ≤ 1

ε
( sup
x∈Kε

f(x)− inf
x∈Kε

f(x)) ‖y − x‖ .

We modify this result to get a Lipschitz constant that is better suited for
our purposes.

Problem 7.74.∗ Suppose O ⊆ R
d is an open convex set and K ⊆ O is a compact

set. Then there are a constant C and points b1, ..., bm ∈ O such that for every convex
function f : O → R it holds

|f(x)− f(y)| ≤ C
∑m

i=1
|f(bi)| ‖y − x‖ , x, y ∈ K. (7.35)

A consequence of the inequality (7.35) is that every convex function
is uniformly continuous on compact subsets. Moreover, if the sequence fn
converges pointwise to f on O and K is a fixed compact set, then L =
supn C

∑m
i=1 |fn(bi)| is a common Lipschitz constant for the fn. Hence this se-

quence is equicontinuous on K and the pointwise convergence implies the uni-
form convergence on K. This is a classical result of convex analysis; see Theo-
rem 10.8 in Rockafellar (1970) for a different proof. The stochastic counterpart
is known as the convexity lemma which was established and reestablished by
several authors; see, e.g., Haberman (1989), Niemiro (1992), Jurečková (1977,
1992), Anderson and Gill (1982), Pollard (1990, 1991), and Hjort and Pol-
lard (1993). If O ⊆ R

d is an open convex set, we call a stochastic process
(M(θ))θ∈O, convex if M(·, ω) is a convex function for every ω ∈ Ω. As a con-
vex function on O is Lipschitz on compact subsets (see Problem 7.74), we get
that every convex process is continuous.

Lemma 7.75. (Convexity Lemma) Let O ⊆ R
d be open and convex, M(θ)

and Mn(θ), θ ∈ O, be convex stochastic processes, and D be a dense subset of
O. Then for any compact subset K of O the following hold.

(A) Mn(θ) →M(θ), P-a.s., θ ∈ D, implies sup
θ∈K

|Mn(θ)−M(θ)| → 0, P-a.s.

(B) Mn(θ) →P M(θ), θ ∈ D, implies sup
θ∈K

|Mn(θ)−M(θ)| →P 0.
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Proof. Let K be fixed. Without loss of generality we may assume that
b1, ..., bm in Problem 7.74 belong to D. Set A = {ω : Mn(θ, ω) → M(θ, ω),
θ ∈ D}. Then P(A) = 1, and for every fixed ω ∈ A the sequence of functions
θ �→ Mn(θ, ω) converges pointwise on a dense subset of K to the function
θ �→M(θ, ω) and satisfies

sup
θi∈K,‖θ1−θ2‖≤δ

|Mn(θ1, ω)−Mn(θ2, ω)| ≤ L(ω)δ,

for L(ω) = supn C
∑m

i=1 |Mn(bi, ω)| <∞. The statement follows from the fact
that an equicontinuous sequence of functions that converges pointwise on a
dense subset converges uniformly; see Problem 6.80. To prove statement (B)
it suffices to show that for every subsequence Mnk

there is again a subsequence
that converges uniformly in θ, P-a.s. By a diagonal technique there is a sub-
sequence Mnkl

such Mnkl
(θ) → M(θ), P-a.s., for every θ from the countable

set D in the first part of the proof. With the same argument as in that part
we get supθ∈K |Mnkl

(θ)−M(θ)| → 0, P-a.s.

If we combine the convexity lemma with Theorem 7.70 we can say that for a
pointwise converging sequence of criterion functions, and a compact parameter
space, the minimizers are consistent estimators, unless the minimizer in the
limiting function is not unique. The compactness condition could be removed
if we would know that minimizers of sequences of convex criterion functions
cannot run out of compact sets. This can be concluded from the following
lemma by Hjort and Pollard (1993), which gives a bound for the distance of
minimizers of two convex functions.

Lemma 7.76. Suppose O ⊆ R
d is open and convex, f : O → R is a convex

function, and g : O → R is continuous. If x0 ∈ O and y0 ∈ O are minimizers
of f and g, respectively, then

sup
y∈O,‖y−y0‖≤ε

2 |f(y)− g(y)| < inf
y∈O,‖y−y0‖=ε

[g(y)− g(y0)] (7.36)

implies ‖x0 − y0‖ ≤ ε.

Proof. Suppose x0, y0 ∈ O satisfy a := ‖x0 − y0‖ > ε > 0. Set u =
a−1(x0 − y0). Then ‖u‖ = 1, x0 = y0 + au, and the convexity of f implies
(1− ε/a)f(y0) + (ε/a)f(x0) ≥ f(y0 + εu). Hence

ε

a
(f(x0)− f(y0)) ≥ f(y0 + εu)− f(y0)

= g(y0 + εu)− g(y0) + [f(y0 + εu)− g(y0 + εu)] + [g(y0)− f(y0)]
≥ inf

y∈O,‖y−y0‖=ε
[g(y)− g(y0)]− sup

y∈O,‖y−y0‖≤ε

2|f(y)− g(y)|.

If (7.36) is satisfied, then the left-hand term is positive. This contradicts the
fact that x0 is a minimizer of f. Hence ‖x0 − y0‖ > ε is impossible.

Now we combine the Hjort–Pollard lemma with the convexity lemma to
establish an argmin theorem for convex processes.
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Theorem 7.77. (Argmin Theorem for Convex Processes) Suppose O ⊆
R
d is open and convex and assume that Mn(θ) and M(θ), θ ∈ O, are convex

stochastic processes, where M has a unique minimizer θ̂ : Ω →m O. If θ̂n :
Ω →m O are respective minimizers of Mn, then the following hold.

(A) Mn(θ) →M(θ), P-a.s., θ ∈ O, implies θ̂n → θ̂, P-a.s.
(B) Mn(θ) →P M(θ), θ ∈ O, implies θ̂n →P θ̂.

Proof. To prove (A) let Mn(θ) → M(θ), θ ∈ O, P-a.s. Let Km be an
increasing sequence of compact sets with Km ↑ O. By Lemma 7.75 we find
some A ∈ F with P(A) = 1 and

sup
θ∈Km

|Mn(θ, ω)−M(θ, ω)| → 0, ω ∈ A, m = 1, 2, ... .

Let ε > 0 and ω ∈ A be fixed. As θ̂(ω) is the unique minimizer of M(·, ω) it
holds

D(ω) = inf
θ∈O,‖θ−θ̂(ω)‖=ε

|M(θ, ω)−M(θ̂(ω), ω) |> 0.

As O is open and Km ↑ O we find some m0 with

{θ : θ ∈ O, ‖ θ − θ̂(ω) ‖≤ ε} ⊆ Km0 .

Hence,
sup

θ∈O,‖θ−θ̂(ω)‖≤ε

2 |Mn(θ, ω)−M(θ, ω)| < D(ω),

for all sufficiently large n, say n ≥ n0, and therefore ‖ θ̂n(ω) − θ̂(ω) ‖≤ ε
for n ≥ n0 by Lemma 7.76. To prove (B) we fix a countable subset D of O
that is dense in O. Then by the diagonal technique we find a subsequence
Mnk

(θ) of Mn(θ) that converges to M(θ), P-a.s., for every θ ∈ D. Hence by
the convexity lemma we have Mnk

(θ) → M(θ), P-a.s., for every θ ∈ O. To
complete the proof it suffices to apply the first statement to this subsequence
and to use the subsequence characterization of the stochastic convergence; see
Proposition A.12.

Consistency of MLEs

Here in this section we apply the general results on M -estimators to the
problem of consistency of maximum likelihood estimators.

Suppose M = (X ,A, (Pθ)θ∈Δ) is a model for which the family (Pθ)θ∈Δ
is dominated by a σ-finite measure μ. Set fθ(x) = (dPθ/dμ)(x). Then the
functions θ �→ fθ(x) and Λ(θ) : θ �→ ln fθ(x) are the likelihood and the log-
likelihood functions at x, respectively. Analogously, for i.i.d. observations the
likelihood and log-likelihood functions are, according to Proposition A.29,
given by
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fn,θ(xn) =
∏n

i=1
fθ(xi), Λn(θ,xn) =

∑n

i=1
ln fθ(xi), (7.37)

where xn = (x1, ..., xn) ∈ Xn. We also use Λn(θ) =
∑n

i=1 ln fθ(Xi) for brevity.
Let Δ be a separable metric space with the σ-algebra of Borel sets BΔ. The

estimator θ̂n : Xn →m Δ is called a maximum likelihood estimator (MLE)
at xn ∈ Xn if fn,θ(xn) ≤ fn,θ̂n(xn)(xn), θ ∈ Δ. If θ̂n is an MLE at every
xn ∈ Xn, then we omit “at every xn ∈ Xn”. Equivalently, we may require for
the log-likelihood function Λn that

Λn(θ,xn) ≤ Λn(θ̂n(xn),xn), θ ∈ Δ, xn ∈ Xn, (7.38)

where we use the convention ln 0 = −∞.
Let M = (X ,A, (Pθ)θ∈Δ) be a dominated model, where Δ is a separable

metric space. We assume that the sample space and the dominating σ-finite
measure μ can be chosen in such a way that for some version of the density
fθ(x) the following conditions hold.

θ �→ fθ(x) is continuous for every x ∈ X ,
fθ(x) > 0, x ∈ X , θ ∈ Δ.

(7.39)

As x �→ fθ(x) is measurable for every θ ∈ Δ it follows from Problem 1.116
that (θ, x) �→ fθ(x) is measurable.

We recall the Kullback–Leibler distance (see (1.81)),

K(Pθ0 , Pθ) = Eθ0 ln
fθ0
fθ

, if Pθ0 
 Pθ, and K(Pθ0 , Pθ) =∞, else.

As the convex function v(x) = x lnx − x + 1, on which the introduction of
K(Pθ0 , Pθ) in (1.74) has been based, is strictly convex at x0 = 1 we get from
Proposition 1.63 that K(Pθ0 , Pθ) ≥ 0, with equality holding if and only if
Pθ0 = Pθ. Moreover, if Pθ0 
 Pθ, then

K(Pθ0 , Pθ) =
∫

v(fθ0/fθ)fθdμ.

As v(x) ≥ 0 and
∫
|fθ0/fθ − 1|fθdμ < ∞ we see that Eθ0 |ln fθ − ln fθ0 | < ∞

holds if and only if K(Pθ0 , Pθ) <∞. Hence �θ = − ln fθ satisfies the contrast
condition (7.31), provided that K(Pθ0 , Pθ) <∞, θ0, θ ∈ Δ, and the parameter
is identifiable. We call �θ = − ln fθ the likelihood contrast function. By turning
from the likelihood to the log-likelihood function we may directly apply the
results for M -estimators to the criterion function Mn(θ) = −Λn(θ).

We also consider estimators θ̂n that are only an approximate MLE in the
sense that the value of the likelihood function at θ̂n is only an approximate
maximum. To be more precise let

Dn(Xn) = sup
θ∈Δ

Λn(θ,Xn)− Λn(θ̂n(Xn),Xn)
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for the estimator θ̂n : Xn →m Δ. Similarly as for M -estimators we say that
{θ̂n} is a strongly approximate MLE at θ0 if Dn(Xn) → 0, Pθ0-a.s. Similarly
we say that{θ̂n} is an approximate MLE at θ0 if Dn(Xn)→Pθ0 0. We say that
{θ̂n} is an asymptotic MLE at θ0 if

Dn(Xn) = oPθ0
(0), (7.40)

with oPθ0
(0) as defined in (7.34).

Theorem 7.78. Suppose Δ is a separable metric space, (Pθ)θ∈Δ is domi-
nated, and (7.39) is satisfied. Suppose θ1 �= θ2 implies Pθ1 �= Pθ2 , and
K(Pθ0 , Pθ) < ∞ for every θ ∈ Δ. If the finite covering condition 7.64 at
θ0 is fulfilled for the likelihood contrast function �θ(x) = − ln fθ(x), then ev-
ery strongly approximate MLE is strongly consistent, and every approximate
MLE is consistent. Especially every asymptotic MLE is consistent.

Corollary 7.79. The statement of the theorem remains valid if the finite cov-
ering condition is replaced by the assumption that Δ is compact and it holds
Eθ0(supθ∈Δ ln fθ − ln fθ0) <∞.

Proof. Apply Theorem 7.67 and its corollary.

Remark 7.80. If Δ is compact and instead of Eθ0(supθ∈Δ ln fθ − ln fθ0) <∞ the
stronger condition Eθ0 supθ∈Δ | ln fθ − ln fθ0 | < ∞ holds, then the consistency can
be also concluded from a combination of Theorem 7.70 and Proposition 7.71.

The following example for a location model is taken from Pfanzagl (1994).

Example 7.81. Let f be a positive and continuous density on R and consider the
location model (X ,A, (Pθ)θ∈R) where Pθ has the Lebesgue density f(x−θ). Assume
in addition that

lim
x→±∞

f(x) = 0, K(P, Pa) <∞, a ∈ R, and −
∫

f(x) ln f(x)dx <∞. (7.41)

Using characteristic functions one can see that Pθ1 = Pθ2 if and only if θ1 = θ2.Then
�θ(x) = − ln f(x − θ) is a contrast function. We establish the finite covering prop-
erty for the likelihood contrast function �θ(x) = − ln f(x − θ). The condition
limx→±∞ f(x) = 0 and the continuity of f imply that f is bounded, say f ≤ C.
Furthermore limc→∞ sup|θ|>c ln f(x− θ) = −∞. As ln f(x− θ) ≤ lnC we get from
the monotone convergence theorem

lim
c→∞

∫
(sup|θ|>c ln f(x− θ))f(x)dx = −∞.

Consequently, if θ0 is fixed, then there exists some c0 such that∫
[infθ:|θ−θ0|>c0(− ln f(x− θ)) + ln f(x− θ0)]f(x− θ0)dx > 0.

For the finite covering property it remains to consider Δ0 = {θ : |θ − θ0| ≤ c0}. As
f ≤ C we have [− ln f(x − θ0) − infθ∈Δ0(− ln f(x − θ))] ≤ lnC − ln f(x − θ0) and
by (7.41)
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∫
[− ln f(x− θ0)− infθ∈Δ0(− ln f(x− θ))]f(x− θ0)dx <∞,

so that we may apply Lemma 7.65 and obtain the finite covering property. Then the
previous theorem shows that every sequence of MLEs is strongly consistent. Below
are two typical densities that satisfy the conditions in (7.41).

Distribution f �

Normal (2π)−1/2 exp{−t2/2} 1
2

ln(2π) + 1
2
t2

Laplace 1
2

exp{−|t|} ln 2 + |t|

In the first case the MLE is the arithmetic mean Xn, so that the strong consistency
deduced from Proposition 7.101 is just the strong law of large numbers. We show
below that the sample median is the M -estimator that belongs to the contrast
function |t| in a location model. Hence we get that the median, which is the MLE
for the Laplace parent distribution, is strongly consistent; see Example 7.108.

Next we present another approach to the consistency of an MLE. It pro-
vides bounds for the rate of convergence of the stochastic convergence of
an MLE. More precisely, let M = (X ,A, (Pθ)θ∈Δ) be a dominated model,
where Δ is a separable metric space. Set fθ = dPθ/dμ and suppose that
θ �→ fθ(x) is continuous for every x ∈ X . For any Borel set A ⊆ Δ we set
fA(x) = supθ∈A fθ(x). The separability of Δ and the continuity of fθ(x) guar-
antees that fA is a measurable function. If Bε = {θ : ρΔ(θ, θ0) > ε} and θ̂n is
a maximum likelihood estimator, then, similarly to (7.32),

{x : ρΔ(θ̂(x), θ0) > ε} ⊆ {x : fBε
(x) ≥ fθ0(x)}. (7.42)

We set for any Borel set A ⊆ Δ and 0 < s < 1,

Hs(θ0, A) =
∫

(fA(x))s f1−s
θ0

(x)μ(dx). (7.43)

Then Pθ0({x : fA(x) ≥ fθ0(x)}) ≤ Hs(θ0, A). If A ⊆ ∪Ni=1Ai for some Borel
sets A1, ..., AN , then

Pθ0({x : fA(x) ≥ fθ0(x)}) ≤ Pθ0({x : max
1≤i≤m

fAi
(x) ≥ fθ0(x)}) (7.44)

≤
∑N

i=1
Pθ0({x : fAi

(x) ≥ fθ0(x)}) ≤
∑N

i=1
Hs(θ0, Ai).

The following property of Hs(θ0, A) corresponds to the product property of
Hellinger integrals in Problem 1.86. Let Mi = (Xi,Ai, (Pi,θ)θ∈Δ), i = 1, 2, be
two dominated models with densities fi,θ, i = 1, 2, depending continuously on
θ. Set M = (X1 ×X2,A1 ⊗ A2, (P1,θ ⊗ P2,θ)θ∈Δ). Then the inequality

sup
θ∈A

(f1,θ(x1)f2,θ(x1)) ≤ (sup
θ∈A

f1,θ(x1))(sup
θ∈A

f2,θ(x1))
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implies
H⊗,s(θ,A) ≤ H1,s(θ,A)H2,s(θ,A), (7.45)

where H⊗,s and Hi,s refer to M and Mi, i = 1, 2, respectively. The next
condition is similar to the finite covering condition in Condition 7.64.

Condition 7.82 We say that the finite Hellinger covering property at θ0 is
fulfilled if there exists some 0 < s < 1 such that for every ε > 0 there is a
finite number of sets Cε,i, i = 1, ..., N(ε), with

Bε = {θ : ρΔ(θ, θ0) ≥ ε} ⊆
⋃N(ε)

i=1
Cε,i and Hs(ε) := max

1≤i≤N(ε)
Hs(θ0, Cε,i) < 1.

Similarly as for Condition 7.64 the Hellinger covering property is satisfied
for compact parameter spaces.

Problem 7.83.∗ Suppose that θ �→ fθ(x) is continuous for every x ∈ X , the
parameter θ is identifiable, Δ is a compact metric space, and it holds∫

(supθ∈Δ fθ(x))sf1−s
θ0

(x)μ(dx) <∞. (7.46)

Then the finite Hellinger covering property at θ0 is fulfilled.

The subsequent theorem is taken from Rüschendorf (1988).

Theorem 7.84. Let M = (X ,A, (Pθ)θ∈Δ) be dominated, where Δ is a sepa-
rable metric space, and suppose that θ �→ fθ(x) is continuous for every x ∈ X .
If the finite Hellinger covering property is satisfied, then every sequence of
MLEs θ̂n : Xn →m Δ satisfies

P⊗n
θ0

(ρΔ(θ̂n, θ0) ≥ ε) ≤ N(ε)(Hs(ε))n (7.47)

and is strongly consistent at θ0.

Corollary 7.85. The statement of the theorem remains valid if the finite
Hellinger covering property is replaced by the assumption that Δ is compact
and (7.46) holds.

Proof. Set fn,θ(x1, ..., xn) =
∏n

i=1 fθ(xi) and introduce Hn,s(θ0, A) as
Hs(θ0, A) in (7.43) with fθ replaced by fn,θ. Then Hn,s(θ0, A) ≤ (Hs(θ0, A))n

by (7.45). Hence (7.42) and (7.44) yield

P⊗n
θ0

(ρΔ(θ̂n, θ0) ≥ ε) ≤
∑N(ε)

i=1
Hn,s(θ0, Cε,i) ≤ N(ε)(Hs(ε))n.

Thus
∑∞

n=1 Pn,θ0(ρΔ(θ̂n, θ0) ≥ ε) < ∞ for every ε > 0. The Borel–Cantelli
lemma implies that Pθ0-a.s. for every fixed ε > 0 the inequality ρΔ(θ̂n, θ0) ≥ ε
holds only for a finite number of n, and thus the proof is completed. The
corollary follows from Problem 7.83.

The inequality (7.47) gives an exponential rate for the stochastic conver-
gence of the MLE. For further results and references in this regard we refer
to Pfaff (1982).
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Remark 7.86. There are numerous papers that deal with the consistency of max-
imum likelihood estimators. Cramér (1946) proved the existence of consistent solu-
tions of the likelihood equations. The consistency of maximum likelihood estimators,
defined by maximizing the likelihood function, was established in Wald (1949). This
result was generalized and refined by several authors; see, e.g., LeCam (1953), Kraft
(1955), Bahadur (1958), and Huber (1967). Perlman (1972) introduced the weaker
form of the finite covering property, discussed in Remark 7.69, and avoids the com-
pactness conditions in earlier papers. We also refer to Strasser (1981a) who studied
the relation between the consistency of MLEs and Bayes estimators. For further de-
tails in the history of maximum likelihood estimation the reader is referred to Pratt
(1976), LeCam (1990), and Pfanzagl (1994). The paper by Pfanzagl (1969) contains
fundamental results on the consistency of M -estimators.

There are several classical examples of inconsistent maximum likelihood
estimators, which show that the sufficient conditions set in Theorems 7.78 and
7.84 are in general indispensable. The first example concerns the case where
θ �→ fθ is not continuous.

Example 7.87. Let Pθ = N(θ, 1), θ ∈ R\{−1, 1}, P−1 = N(1, 1), and P1 =
N(−1, 1). Then the density fθ of Pθ is not a continuous function. The maximum
likelihood estimator is given by

θ̂n(x1, ..., xn) =

{
xn if xn /∈ {−1, 1}
−xn if xn ∈ {−1, 1} .

Hence θ̂n = xn, P⊗n
θ -a.s., and θ̂n →P⊗n

1 −1, so that θ̂n is not consistent.

We refer to Bahadur (1958) for other examples of models where the MLE
is inconsistent. The next example shows that maximum likelihood estimators
may run to a boundary point of the parameter set that may not belong to it.
It is taken from Pfanzagl (1994), to which we refer for a proof.

Example 7.88. Let X = (0, 1) and A be the σ-algebra of Borel sets in (0, 1).
Suppose the family (Pθ)θ∈Δ, Δ = (0, 1], is given by Lebesgue densities fθ that
satisfy the following conditions.

θ �→ fθ(x) is continuous for x ∈ (0, 1),

1

2
≤ fθ(x) ≤ fθ(θ), (θ, x) ∈ (0, 1]× (0, 1],

fθ(θ) = 2θ−3−1, θ ∈ (0, 1], and f1(x) = 1.

Then every sequence of MLEs converges, Pθ-a.s., to 0, θ ∈ Δ.

Although we have established conditions that guarantee the consistency of
MLEs, these conditions say nothing about the existence of an MLE for a finite
sample size or whether an MLE can be found as the solution of the likelihood
equation. We now study these questions regarding the existence of an MLE
for exponential families. We recall the notations from (7.37) and (7.38). If
Δ ⊆ R

d, then a necessary condition for θ̂n(xn) to be an MLE is to satisfy the
likelihood equation
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Λ̇n(θ̂n(xn),xn) = 0, (7.48)

provided that θ �→ Λn(θ,xn) is differentiable and θ̂n(xn) is an inner point ofΔ.
The dot on top of Λ̇n denotes the gradient with respect to the parameter vector
θ, i.e., Λ̇n(θ,xn) = ∇Λn(θ,xn). It should be mentioned that a solution of
(7.48) is not necessarily a maximizer of the likelihood function, or equivalently,
of the log-likelihood function. On the other hand, if θ̂n(xn) is a boundary point
of Δ, then (7.48) may not be satisfied. Moreover, this equation, as a necessary
condition, is based on the differentiability of the likelihood function which
may not be given. Nevertheless, in such cases an MLE can often be calculated
directly.

Example 7.89. Let X1, ..., Xn be an i.i.d. sample from a uniform distribution
U(0, θ), θ > 0. The likelihood function is then given by

fn,θ(x1, ..., xn) =
1

θn
I[0,θ]( max

1≤i≤n
xi).

To maximize fn,θ over θ ∈ (0,∞) we have only to consider the case max1≤i≤n xi ≤ θ.

In this area the function θ−n attains its maximum at θ̂n(x1, ..., xn) = max1≤i≤n xi.

The existence of an MLE can be concluded from the compactness of the
parameter space and the continuity of the likelihood function, as has been
done in Proposition 7.63. Without the compactness an MLE may fail to exist
for special outcomes of a sample.

Example 7.90. Let X = {0, 1, .., n} and consider the binomial distribution B(n, p),
p ∈ (0, 1), as an exponential family parametrized by the natural parameter θ =
ln(p/(1 − p)) ∈ Δ = R. Using the measure with point masses

(
n
k

)
as dominating

measure the density is given by fθ(k) = exp{θk − n ln(1 + eθ)}, k ∈ X , θ ∈ Δ; see
Problem 1.7. The maximum likelihood estimator, provided it exists, maximizes the
function fθ(k) as a function of θ for any observation k ∈ X . For k = 0 the function
fθ(0) = (1 + exp{θ})−n has no maximum point.

Now we study systematically the existence of maximum likelihood esti-
mators in exponential families. As T⊕n is a sufficient statistic it is enough to
consider the case n = 1. Let (Pθ)θ∈Δ be a d-parameter exponential family
in natural form, with natural parameter θ and generating statistic T , and
μ-density fθ(x) = exp{〈θ, T (x)〉 −K(θ)}, x ∈ X , θ ∈ Δ; see (1.6). The log-
likelihood function Λ(θ, x) = 〈θ, T (x)〉 −K(θ) is a concave function of θ. It is
strictly concave on Δ0 as the Hessian ∇∇TK(θ) is positive definite there.

Problem 7.91.∗ If conditions (A1) and (A2) are fulfilled, then for every fixed
x ∈ X the following statements for Λ are equivalent.

(A) Λ(·, x) has a global maximum at θ̂(x) ∈ Δ0.

(B) Λ(·, x) has a local maximum at θ̂(x) ∈ Δ0.

(C) θ̂(x) ∈ Δ0 is a solution of Λ̇(θ, x) = 0.

In each of the equivalent cases (A), (B), and (C), θ̂(x) is uniquely determined.
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Let Δ ⊆ R
d be a convex set with Δ0 �= ∅ and boundary ∂Δ, and let

K : Δ→ R be a convex function which is differentiable in Δ0. K is called steep
if for every θ ∈ Δ0 and every η ∈ ∂Δ the function κ(λ) := K(λθ + (1− λ)η)
satisfies the condition

lim
λ↓0

dκ(λ)
dλ

= −∞. (7.49)

If d = 1, then Δ is some interval. If this is a finite and open interval, say
Δ = (a, b), then for η = b it holds κ(λ) = K(λθ + (1 − λ)b), so that (7.49)
holds if and only if limθ↑bK

′(θ) = ∞. The case of η = a can be treated
similarly.

Problem 7.92.∗ Let K : Δ → R be a steep convex function and t ∈ R
d be fixed.

If 〈θ, t〉 −K(θ), as a function of θ, has a global maximum over Δ at the point θ0,
then θ0 ∈ Δ0.

Now we are ready to present the main result on the existence of an MLE
in exponential families.

Proposition 7.93. Let (Pθ)θ∈Δ be an exponential family in natural form,
with natural parameter θ, that satisfies (A1) and (A2). Let γm(θ) = EθT .
Then for every x with T (x) ∈ γm(Δ0), there is a uniquely determined solution
θ̂(x) of the equation

∇K(θ) = T (x), (7.50)

and θ̂(x) is the unique point at which the log-likelihood function Λ(θ, x) =
〈θ, T (x)〉 −K(θ) attains its maximum. On the other hand, if T (x) /∈ γm(Δ0),
and K is steep, then the function θ �→ Λ(θ, x) does not attain a maximum at
any point of Δ.

Proof. If T (x) ∈ γm(Δ0), then (7.50) yields condition (C) in Problem 7.91
which gives the statement. From Problem 7.92 and the steepness condition, we
see that the function Λ(θ, x) = 〈θ, T (x)〉 −K(θ) cannot attain its maximum
at any boundary point. Therefore, if Λ(θ, x) would attain the maximum at
some θ̂(x) ∈ Δ, then θ̂(x) ∈ Δ0, and consequently θ̂(x) would be a point of a
local maximum and thus a solution of equation (7.50). But this would mean
that T (x) ∈ γm(Δ0), in contradiction to the assumption.

Proposition 7.93 gives a complete characterization of the existence of an
MLE in an exponential family under (A1) and (A2). However, the set γm(Δ0)
may not be easy to characterize, which could be a drawback. An insight of the
structure of γm(Δ0) gives the following proposition. The convex support CS(ν)
of ν = μ◦T−1 is the closure of the convex hull of the support of ν, where the
support of ν is the minimal closed subset C of R

d with ν(Rd\C) = 0. For a
proof of the next statement we refer to Brown (1986), pp. 73–75.

Proposition 7.94. Let (Pθ)θ∈Δ be an exponential family with natural param-
eter θ ∈ Δ, where (A1) and (A2) are fulfilled. Let γm(θ) = EθT. If the function
K satisfies the steepness condition (7.49), then γm(Δ0) = (CS(ν))0, the inte-
rior of CS(ν).
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The measures Qθ = Pθ◦T−1 and ν = μ◦T−1 are equivalent and thus have
the same support. The statistic T takes, Qθ-a.s., only values in the support of
Qθ which is a subset of CS(Qθ). But since in general Qθ(CS(Qθ)\(CS(Qθ))0) >
0, it may occur that the statistic T takes on values outside of γm(Δ0)
with positive probability. However, there is one important special case where
this situation cannot occur. For the Lebesgue measure λd on R

d it is well
known that the boundary ∂C of a convex set C satisfies λd(∂C) = 0; see
Lang (1986). Hence, if Qθ is absolutely continuous with respect to λd, then
Qθ(CS(Qθ)\(CS(Qθ))0) = 0, and consequently Qθ((CS(Qθ))0) = 1. Thus in
this case T takes on values in (CS(Qθ))0 = γm(Δ0) with probability one. To
summarize, the following can be stated.

Proposition 7.95. Suppose (Pθ)θ∈Δ is an exponential family in natural form
where (A1) and (A2) are fulfilled. Let Qθ = Pθ ◦T−1 be absolutely continuous
with respect to the Lebesgue measure. If the function K(θ) is steep, then for
every θ ∈ Δ the maximum likelihood estimator θ̂(x) exists for Pθ-almost all x,
it holds θ̂(x) ∈ Δ0, and θ̂(x) is the unique solution of the likelihood equation
∇K(θ) = T (x).

The setting of Proposition 7.95 covers many families of distributions that
are relevant in statistics, e.g., normal, exponential, and gamma distributions.

Example 7.96. Consider the exponential family (N⊗n(μ, σ2))μ∈R.σ2>0. Repre-
sented in natural form (see Example 1.11) it has K(θ1, θ2) = −(n/2)(θ2

1/(2θ2) +
ln(−θ2/π)). Hence,

γm(θ1, θ2) = ∇K(θ1, θ2) =
n

2
(−2θ1

θ2
,
θ2
1

2θ2
2

− 1

θ2
),

so that γm(Δ0) = γm(Δ) = γm(R × (−∞, 0)) = R × (0,∞). Fix η ∈ ∂Δ = R × {0},
say η = (η1, 0). Then κ(λ) = K(λθ + (1− λ)η) satisfies

dκ(λ)

dλ
= −n

2

(
2(λθ1 + (1− λ)η1)

2θ2
(θ1 − η1) +

1

λ

)
→

λ→0
−∞,

and the steepness condition (7.49) is fulfilled. We can use Proposition 7.95 to con-
clude that the maximum likelihood estimator exists Pθ-a.s. But this route is not
necessary as T⊕n takes on only values in γm(Δ0) so that we may apply Problem
7.91. As there is a one-to-one relationship between (θ1, θ2) and (μ, σ2) we get that
the maximum likelihood estimator of (μ, σ2) also exists Pθ-a.s., that it is the unique
solution of the likelihood equations

∂

∂μ

∑n

i=1
lnϕμ,σ2(xi) = 0 and

∂

∂σ2

∑n

i=1
lnϕμ,σ2(xi) = 0,

and that it is given by

μ̂(x1, ..., xn) = xn and σ̂2(x1, ..., xn) =
1

n

∑n

i=1
(xi − xn)2.

The next example shows that the assumption Qθ 
 λd is essential.
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Example 7.97. As in Example 1.7, let X follow a binomial distribution B(n, p)
with parameters n ∈ {1, 2, ...} and p ∈ (0, 1). The sample space is X = {0, 1, ..., n}.
The density of B(n, p) with respect to the measure μ that has the point masses
μ({x}) =

(
n
x

)
, x ∈ X , is given by

fθ(x) = exp{θx−K(θ)}, x ∈ X , θ ∈ Δ = R,

where K(θ) = n ln(1 + eθ), and θ(p) = ln(p/(1 − p)), p ∈ (0, 1). As ∂Δ = ∂R = ∅
the steepness condition is satisfied. Furthermore,

γm(θ) = n
eθ

1 + eθ
, γm(Δ0) = γm(Δ) = (0, n). (7.51)

Hence T (x) = x ∈ γm(Δ0) if and only if x ∈ {1, ..., n−1}. At every x ∈ {1, 2, ..., n−1}
an MLE θ̂(x) is readily found by maximizing fθ(x) = exp{θx}(1+exp{θ})−n, which

gives θ̂(x) = ln (x/(n− x)). However, for x ∈ {0, n}MLEs θ̂(0) and θ̂(n) do not exist,
which is in accordance with (7.51). If we extend the parameter space in the original
parametrization, i.e., we allow p ∈ [0, 1], with the convention bn,0(0) = bn,1(n) = 1,
then there always exists an MLE of p, and it is unique. It is p̂(x) = x/n, x ∈
{0, 1, ..., n}. But p̂(0) and p̂(n) are not solutions of the likelihood equation, which
fail to exist for x = 0 and x = n.

We conclude this section with the asymptotic of the MLE in exponential
families. Let X1, ...,Xn be a sample from an exponential family with gener-
ating statistic T and natural parameter θ. The log-likelihood function is then
given by Λn(θ,xn) = 〈θ, T⊕n(xn)〉 − nK(θ), xn = (x1, ..., xn) ∈ Xn, so that
the likelihood equation reads T⊕n(xn) = n∇K(θ). Set γm(θ) = EθT = ∇K(θ)
and denote by κm : γm(Δ0) → Δ0 the inverse mapping, which exists according
to Theorem 1.22. Set Tn = (1/n)T⊕n and

θ̃n(xn) =

⎧⎨
⎩
κm(Tn(xn)), if Tn(xn) ∈ γm(Δ0),

θ∗, if Tn(xn) /∈ γm(Δ0),
(7.52)

where θ∗ ∈ Δ is any fixed parameter value.

Proposition 7.98. If the conditions (A1) and (A2) are satisfied, then for the
sequence of models (Xn,A⊗n, (Pθ)θ∈Δ) the sequence θ̃n is a strongly approxi-
mate and asymptotic MLE. θ̃n is strongly consistent at every θ0 ∈ Δ0.

Proof. If Dn := supθ∈Δ Λn(θ) − Λn(θ̃n), then by Problem 7.91 it holds
Dn = 0 for Tn ∈ γm(Δ0). By the strong law of large numbers there is some
A ∈ F with Pθ0(A) = 1 such that Tn(X1(ω), ...,Xn(ω)) → γm(θ0), ω ∈
A. Hence Dn(ω) = 0 for all sufficiently large n. This means that θ̃n is a
strongly approximate and asymptotic MLE. As θ0 ∈ Δ0, and γm(Δ0) is open
by Theorem 1.22, there is some n0(ω) such that

θ̃n(X1(ω), ...,Xn(ω)) = κm(Tn(X1(ω), ...,Xn(ω))), n ≥ n0(ω).
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The continuity of κm (see Theorem 1.22) implies

κm(Tn(X1(ω), ...,Xn(ω))) → κm(γm(θ0)) = θ0, ω ∈ A,

which proves the strong consistency.

Consistency in Location and Regression Models

To prepare for the results on the consistency in regression models we deal
with the location model and construct contrast functions. We assume that
� : R → R+ satisfies the following conditions.

� is continuous, nonincreasing in (−∞, 0), nondecreasing in (0,∞),
�(0) = 0, limt→−∞ �(t) > 0, and limt→∞ �(t) > 0. (7.53)

Let Pθ = L(Z + θ) be a location model with parent distribution P0 = P =
L(Z). Suppose that

E |�(Z + a)− �(Z)| <∞, a ∈ R. (7.54)

We set �θ(x) = �(x− θ) and want to impose conditions on � and P such that
�θ becomes a contrast condition, that is, satisfies

Eθ0(�θ − �θ0) =
∫

(�θ(t)− �θ0(t))Pθ0(dt)

=
∫

(�(t− (θ − θ0))− �(t))P (dt) ≥ 0 and = 0⇔ θ = θ0.
(7.55)

It is shown that this condition is satisfied for symmetric unimodal distributions
and a symmetric �. To this end we need the following statement.

Problem 7.99.∗ If Z has a distribution that is symmetric about 0 and unimodal
with mode 0, then the function a �→ P(|Z − a| < t) is nonincreasing for a > 0.

We recall the measure μ� in (7.14), defined by a continuous function �
that satisfies (7.53). If � is symmetric, then μ�(−B) = μ�(B) for every Borel
subset of (0,∞). This symmetry is used in the subsequent lemma that presents
conditions for a function � to generate a contrast function in the location
model.

Lemma 7.100. Suppose P = L(Z) and � are symmetric, and (7.53) and
(7.54) are fulfilled. Then

E(�(Z + a)− �(Z)) = E[
1
2
(�(Z + a) + �(Z − a))− �(Z)]

=
∫

(P(|Z| < t)− P(|Z + a| < t))I(0,∞)(t)μ�(dt).
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Proof. The first statement follows from L(�(Z − a)) = L(�(−Z + a)) =
L(�(Z + a)). If � is bounded, then by (7.15)

∫
(�(s+ a)− �(s))P (ds)

=
∫

(P ([t+ a,∞)) + P ([t− a,∞))− 2P ([t,∞)))I(0,∞)(t)μ�(dt)

=
∫

(P(|Z| < t)− P(|Z + a| < t))I(0,∞)(t)μ�(dt),

where we have used μ�({x}) = 0 for every x, which comes from the continuity
of �. To complete the proof we approximate � by �N = min(�,N).

We see from the above lemma that E(�(Z + a) − �(Z)) ≥ 0 holds if � is
convex or L(Z) is unimodal. According to Proposition 2.17 every unimodal,
symmetric about 0, distribution P with P ({0}) = 0 has a Lebesgue density.
Conditions for the consistency of M -estimators in location models are now
given.

Proposition 7.101. Suppose L(Z) is unimodal with mode m = 0 and P(Z =
0) = 0. Assume in addition that L(Z) and � are symmetric, and (7.53) and
(7.54) are fulfilled. Suppose that at least one of the following conditions is
satisfied.

(A) The density f of L(Z) is decreasing on (0,∞).
(B) � is increasing in (0,∞).

Then for Pθ = L(Z+θ) and �θ(t) = �(t−θ) the contrast condition (7.55) holds,
and every strongly approximate sequence of M -estimators for the sequence of
location models (Rn,Bn, (P⊗n

θ )θ∈R) is strongly consistent.

Proof. If (A) is fulfilled, then for every a, t > 0,

P(|Z| < t)− P(|Z + a| < t) =
∫ t

t−a

f(s)ds−
∫ t+a

t

f(s)ds > 0.

As μ�((0,∞)) = �(∞) > 0 we get from the previous lemma v�(a) = E(�(Z +
a)− �(Z)) > 0. The case of a < 0 follows from v�(−a) = v�(a). Suppose (B)
is fulfilled. The set

Aa = {t : t > 0,
∫ t

t−a

f(s)ds−
∫ t+a

t

f(s)ds > 0}

is nonempty and open. As � is increasing it holds μ�((b1, b2)) > 0 for every
0 < b1 < b2, and thus μ�(Aa) > 0. Hence v�(a) > 0 for a > 0, and v�(a) > 0
for a < 0 by v�(−a) = v�(a). Thus the contrast condition is proved under (A)
and (B).
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We establish the finite covering property. We have to show that for every
ε > 0 the set (−∞,−ε) ∪ (ε,∞) can be covered by finitely many Δi with
E(infa∈Δi

�(Z + a) − �(Z)) > 0. As � ≥ 0 and is nondecreasing in |t| we get
for |a| ≥ 1

| inf |a|≥1 �(Z + |a|)− �(Z)| ≤ |�(Z + 1)− �(Z)|+ |�(Z − 1)− �(Z)|.

This means that the nondecreasing sequence inf |a|≥N �(Z + a) − �(Z) is
bounded from below by a random variable with finite expectation. Hence
by the monotone convergence theorem

lim
N→∞

E(inf |a|≥N �(Z + a)− �(Z)) = E(�(∞)− �(Z)) > 0,

and thus E(inf |a|≥N0 �(Z + a) − �(Z)) > 0 for some N0 > 0. Put Δ0 =
(−∞,−N0) ∪ (N0,∞). As for |t− a| < δ

|�(Z + t)− �(Z)| ≤ |�(Z + a+ δ)− �(Z)|+ |�(Z + a− δ)− �(Z)|,

we get from condition (7.54) and Lebesgue’s theorem that

limδ↓0 E( inf |t−a|<δ �(Z + t)− �(Z)) = E(�(Z + a)− �(Z)) > 0.

Hence we may cover the compact set [−N0,−ε]∪ [ε,N0] by a finite number of
sets Δ1, ...,ΔN that satisfy E(infa∈Δi

�(Z + a)− �(Z)) > 0. To complete the
proof we have only to apply Theorem 7.67.

Example 7.102. A contrast function that originated from robust statistics is
�(t) = 1

2
t2I[−c,c](t) + (c|t| − c2/2)I(c,∞)(|t|). �̇(t) = tI[−c,c](t)+sgn(t)cI(c,∞)(|t|),

its derivative, is nondecreasing. Hence � is convex with a curvature measure
γ� = λ(· ∩ [−c, c]), so that � is strictly convex in [−c, c]. The linear continuation
guarantees that possible gross errors have less influence than under a quadratic con-
trast function. If the influence of outliers is reduced one more step, then one arrives
at nonconvex contrast functions. For a collection of such functions and their statisti-
cal properties we refer to Andrews et al. (1972). Some of these functions have special
names. The M -estimator that belongs to �(t) = 1

2
t2I[−c,c](t) + cI(c,∞)(|t|) is called

the skipped mean, and to �(t) = 1
2
|t|I[−c,c](t) + cI(c,∞)(|t|) the skipped median.

Now we construct estimators by minimizing convex criterion functions. It
is clear that for a convex function v : R →R the set arg mint∈R v(t) is either
an interval or empty. To avoid the interval consisting of more than one point
one has to require that v be strictly convex in a neighborhood of the minimum
point.

Problem 7.103.∗ Let v : R → R be convex. Then θ0 is a minimizer if and only
if D−v(θ0) ≤ 0 ≤ D+v(θ0). The minimizer is uniquely determined if and only if
D−v(θ0 − ε) < 0 < D+v(θ0 + ε), ε > 0. If v is strictly convex in a neighborhood of
θ0, then the minimizer θ0 is unique.
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If � is convex and (7.54) is satisfied, then

v�(a) := E(�(Z + a)− �(Z)) (7.56)

is obviously a convex function on R. The next problem gives the relation
between the one-sided derivatives and the curvature measures γ� and γv�

of
the convex functions � and v�. We recall that according to (1.59),

γ�((a, b]) = D+�(b)−D+�(a), γv�
((a, b]) = D+v�(b)−D+v�(a). (7.57)

Problem 7.104.∗ If � is a convex function, then (7.54) implies that for every
a ∈ R it holds E

∣∣D±�(Z + a)
∣∣ <∞,

D+v�(a) = ED+�(Z + a), D−v�(a) = ED−�(Z + a), and

γv�(B) =

∫
γ�(B + s)P (ds), (7.58)

where P = L(Z).

By the definition of v� we see that the question of whether the contrast
condition (7.31) is satisfied is here whether a = 0 is the unique minimum
point of v�. The uniqueness is clear as long as v� is strictly convex in some
interval (−δ0, δ0). From Problem 1.53 we know that this is equivalent with

γv�
((a, b)) > 0, for every (a, b) ⊆ (−δ0, δ0), a < b. (7.59)

Remark 7.105. In view of (7.58) condition (7.59) is certainly fulfilled if � is
strictly convex on R, as in this case γ�((a, b)) > 0 for every a < b. This holds,
for example, for �(t) = |t|p with p > 1. If �(x) = |x|, then � is strictly convex at
x0 = 0 but not in (−δ0, δ0). To make v� strictly convex in (−δ0, δ0) it is, for example,
enough to assume that P has a Lebesgue density that is positive and continuous at
x0 = 0. Indeed, we get from γ� = 2δ0 and (7.58) that (7.59) is fulfilled.

The next proposition presents conditions for a function � to generate a
contrast function in the location model.

Proposition 7.106. Let Z be a random variable, and let � : R → R be a
convex function that satisfies (7.54). Then a0 = 0 is the unique minimum
point of v� in (7.56) if and only if

ED−�(Z − ε) < 0 < ED+�(Z + ε), ε > 0. (7.60)

If (7.59) is fulfilled, then ED−�(Z) ≤ 0 ≤ ED+�(Z) implies that a0 = 0 is
the unique minimum point of v�.

Proof. The proof follows from the Problems 7.103 and 7.104, and the fact
that (7.59) implies that v� is strictly convex in a neighborhood of 0.
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Example 7.107. If �(t) = t2, then v�(a) in (7.56) satisfies the condition (7.54) if
and only if E|X| < ∞. As D+v�(a) = D−v�(a) = EX + a we see that −EX is the
unique minimum point of v�(a). Set

τα(t) = (1− α)|t|I(−∞,0](t) + αtI(0,∞)(t), α ∈ (0, 1).

Then

D+τα(t) = −(1− α)I(−∞,0)(t) + αI[0,∞)(t) = α− I(−∞,0)(t)

D−τα(t) = −(1− α)I(−∞,0](t) + αI(0,∞)(t) = α− I(−∞,0](t).
(7.61)

If �(t) = τα(t), then (7.54) is satisfied for every random variable, and it holds

D+v�(a) = ED+vα(X + a) = α− F (−a− 0),

D−v�(a) = ED−vα(X + a) = α− F (−a).

Hence D−v�(a) ≤ 0 ≤ D+v�(a) holds if and only if uα = −a is an α-quantile of the
distribution of X. According to (7.60) the minimum point uα is unique if and only
if

F (uα − ε) < α < F (uα + ε), ε > 0. (7.62)

If now x1, ..., xn ∈ R, F̂n(t) = n−1∑n
i=1 I(−∞,t](xi), and Mn(θ) = n−1∑n

i=1 τα(xi−
θ), then θ̂n ∈ arg minθ∈R Mn if and only if

F̂n(θ̂n − 0) ≤ α ≤ F̂n(θ̂n), (7.63)

which means that θ̂n is a sample α-quantile.

Example 7.108. Suppose � is convex and (7.54) is satisfied. Suppose further that
ED+�(Z − ε) < 0 < ED+�(Z + ε), ε > 0. Then v�(a) = E(�(Z + a) − �(X)) has
a unique minimum at a = 0 (see Proposition 7.106) so that the contrast condition

(7.55) is satisfied. Let X1, ..., Xn be independent replications of X = Z + θ0, and θ̂n

be a minimizer of

Mn(θ) =
1

n

∑n

i=1
�(Xi − θ).

As Mn(θ) → v�(θ0 − θ), Pθ0 -a.s., we get θ̂n → θ0, Pθ0 -a.s., from Theorem 7.77. Let
τα be as in Example 7.107, F be the c.d.f. of X, and uα be an α-quantile. Then we
know from Example 7.107 that under the assumption (7.62) the function

M(θ, θ0) = Eθ0(τα(X1 − θ)− τα(X1))

is convex and has a unique minimum at uα. Hence we obtain from Theorem 7.77
that every sequence of sample α-quantiles θ̂n tends, Pθ0 -a.s., to the α-quantile of F .
This is a well-known result on the strong consistency of the sample quantiles.

Now we study the problem of consistency in regression models. The starting
point for constructing a regression model is a one-parameter parent family
of distributions (Pη)η∈(a,b), defined on the sample space (Y,B), where we
assume that this family is a stochastic kernel, i.e., η �→ Pη(B) is a measurable
mapping for every B ∈ B. The sample is influenced by covariables, also called
regressors, that take on values in X , with (X ,A) as the measurable space.
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The distribution of the observation and its covariable are connected by the
regression function g : Δ × X → (a, b) in such a way that for a fixed value
x of the covariable the observation Y has the distribution Pgθ(x). We assume
that Δ is a separable metric space, let Cm(Δ,X ) denote the class of functions
that are continuous in θ and measurable in x, and assume that the regression
function satisfies

g ∈ Cm(Δ,X ). (7.64)

One has to distinguish between two types of regression models, depend-
ing on whether the covariable is random. A regression model with random
regressor is given by a pair of random variables (Y,X), where the conditional
distribution of Y , given X = x, is given by Kθ(·|x) = Pgθ(x). Denote the
marginal distribution of X on (X ,A) by μ. A sample of size n consists of
independent pairs (Yi,Xi), i = 1, ..., n, with common distribution

L(Yi,Xi) = Kθ ⊗ μ, i = 1, ..., n. (7.65)

In a regression model with nonrandom regressors we fix an experimental
design, i.e., values x1, ..., xn ∈ X at which the n measurements are taken.
Then the observations Y1, ..., Yn are independent and have the distributions
Pgθ(x1), ..., Pgθ(xn), respectively. To make an asymptotic treatment of this re-
gression model possible it is generally assumed that X is a separable metric
space, and that the sequence of empirical measures μn = (1/n)

∑n
i=1 δxi

tends
weakly to some limiting experimental design. Although both regression mod-
els are different their technical treatments are similar. Although regression
models with random regressors admit the application of limit theorems for
i.i.d. random variables, regression models with nonrandom regressors require
additional conditions that, roughly speaking, guarantee that the distributions
Pgθ(xi) do not fluctuate too much. These conditions increase the technical de-
tails, and because of this we mainly deal with regression models with random
regressors.

Depending on the structures of the regression function and the parent
model that are combined, different types of regression models are obtained.

Linear regression: gθ(x) = θTx, θ, x ∈ R
d.

Generalized linear regression: gθ(x) = ϕ(θTx), θ, x ∈ R
d.

Nonlinear regression: gθ(x), θ ∈ Δ ⊆ R
k, x ∈ R

d.

The function ϕ in generalized linear regression is assumed to be continuous
and is called the link function. Often-used parent models are based on the
following.

Location family : Pη = L(ε+ η), η ∈ R.

Exponential family : dPη/dμ = exp{ηT −K(η)}, η ∈ (a, b).
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In general, the likelihood approach with the construction of maximum
likelihood estimators cannot be applied to regression models as these models
are not completely specified and thus a likelihood function is not available.
This occurs, for example, if the location family is used as parent model, and
about the distribution of the errors εi = Yi − g(Xi, θ) it is only known that
its expectation, median, or some other location invariant functional is zero.

Lemma 7.109. If �η is a contrast function for the parent family (Pη)η∈(a,b),
and ∫

[
∫
| �gθ(x)(y)− �gθ0 (x)(y) | Pgθ0 (x)(dy)]μ(dx) <∞ (7.66)

is fulfilled, then the condition

μ({x : gθ(x) = gθ0(x)}) = 1 ⇒ θ = θ0 (7.67)

implies that �̃θ(x, y) := �gθ(x)(y) is a contrast function for the regression model
(Y × X ,B⊗ A, (Kθ ⊗ μ)θ∈Δ), where Kθ ⊗ μ is from (7.65).

Proof. It holds

Eθ0(�gθ(X)(Y )− �gθ0 (X)(Y )) =
∫

[
∫

(�gθ(x)(y)− �gθ0 (x)(y))Pgθ(x)(dy)]μ(dx).

As ∫
(�η(y)− �η0(y))Pη0(dy) > 0, η �= η0,

the statement follows from (7.67).

The next example illustrates the identifiability condition (7.67).

Example 7.110. In the linear regression model with random regressor it holds
Y = θTX + ε and gθ(x) = θTx. Set �η(t) = (t− η)2. Then �η is a contrast function
for the location model Pη = L(ε + η), provided that E |ε| < ∞ and Eε = 0. If X is
a random covariable with μ = L(X), then the condition (7.67) may be written as

P((θ − θ0)
TX = 0) = 1 implies θ = θ0. (7.68)

If E ‖X‖2 < ∞, then the latter condition holds if and only if the matrix EXXT is
nonsingular.

If the location family is used as parent family, then regardless of whether
the regression function is linear, we make the assumption that � is a contrast
function in the location model generated by the i.i.d. errors εi, i.e.,

� satisfies (7.53),

E|�(ε1 + a)− �(ε1)| <∞,

E(�(ε1 + a)− �(ε1)) > 0, a �= 0.

(7.69)
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We impose the following conditions on the regression model.

X1, ...,Xn, ε1, ..., εn, are independent, L(Xi) = μ, L(εi) = P,

Yi = gθ0(Xi) + εi, θ0 ∈ Δ, i = 1, ..., n, g ∈ Cm(Δ,X ).
(7.70)

Theorem 7.111. (Nonlinear Regression) Assume that Δ is a compact
metric space and the conditions (7.69) and (7.70) are satisfied. If in addition

E sup
θ∈Δ

|�(ε1 − [gθ(X1)− gθ0(X1)])− �(ε1)| <∞

and (7.67) hold, then every sequence of minimizers θ̂n : Xn × Yn →m Δ of

Mn(θ) =
1
n

∑n

i=1
�(Yi − gθ(Xi))

is strongly consistent.

Proof. The statement follows from Theorem 7.70, Proposition 7.71, and
Lemma 7.109 if we use �̃θ(x, y) = �(y − gθ(x)) as the contrast function, and
set Wn(θ) = Mn(θ)−Mn(θ0) and W (θ) = E(�(Y1 − gθ(X1))− �(ε1)).

If E|ε1| <∞, then �(t−η) = (t−η)2 is a contrast function for the location
model Pη = L(ε1+η). On the other hand, assume that the common c.d.f. F of
the εi satisfies F (−ε) < 1/2 < F (ε), ε > 0, and that �(t) = |t|. Then �(·−η) is
a contrast function for the location model Pη = L(ε1 +η), see Example 7.107.
By combining these contrast functions for the location model with Theorem
7.111 one can easily establish sufficient conditions for the strong consistency
of least squares and L1-estimators for nonlinear regression models. There are
a large number of papers that deal with the consistency of M -estimators in
nonlinear regression models, where in some papers random regressors and
in others nonrandom regressors are considered. See, e.g., Jurečková and Sen
(1996) and Liese and Vajda (1999, 2003a,b, 2004) for references. If � = τα,
then the estimators are called regression quantiles, which have been introduced
by Koenker and Bassat (1978) and studied by other authors. See Jurečková
and Sen (1996) for references.

Now we study the linear regression model and use convex criterion func-
tions.

Theorem 7.112. (Linear Regression) Suppose Xi, εi satisfy (7.70), and
� : R → R is a convex function that satisfies

E|�(ε1 + a)− �(ε1)| <∞ and E(�(ε1 + a)− �(ε1)) > 0, a �= 0. (7.71)

If (7.68) holds, then for the linear regression model Yi = θT0 Xi+εi, i = 1, ..., n,
every sequence of minimizers θ̂n that minimize

1
n

∑n

i=1
�(Yi − θTXi)

over θ ∈ R
d is strongly consistent.
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Proof. θ̂n minimizes

Mn(θ) =
1
n

∑n

i=1
(�(Yi − θTXi)− �(εi)),

and
M(θ) = E(�(Y1 − θTX1)− �(ε1))

has in view of (7.68) and (7.71) a unique minimum at θ0. It remains to apply
the strong law of large numbers to Mn(θ) for fixed θ and the argmin theorem
for convex processes; see Theorem 7.77.

Example 7.113. For p ≥ 1 it holds |s+t|p ≤ 2p−1(|s|p+|t|p). As ||x + a|p − |x|p| ≤
p(|x|p−1 + |x + a|p−1)|a|, we get

||x + a|p − |x|p| ≤ p((1 + 2p−1)|a||x|p−1 + |a|p).

Hence E|εi|p−1 < ∞ implies the first condition in (7.71) for � = |x|p. To verify the
second condition we set v�(a) = E(|ε1 + a|p− |ε1|p). This function is strictly convex
for p > 1 and D−v�(0− 0) = D+v�(0 + 0) = E(sgn(ε1) |ε1|p−1). Hence we get from
Proposition 7.106 that

E(sgn(ε1) |ε1|p−1) = 0

implies that the second condition in (7.71) holds for p > 1. In the case of least
squares estimators (i.e., p = 2), the last condition means Eε1 = 0. If p = 1, then
instead of �(x) = |x| we may also use τ1/2(x) = 1

2
|x| and get from (7.62) in Example

7.107 that v�(a) = E(|ε1 + a| − |ε1|) has a unique minimum at a0 = 0 if and only if
a0 = 0 is the unique median of the c.d.f. of ε1.

7.5.2 Consistency in Bayes Models

In this section we study the behavior of the posterior distribution for large
sample sizes. There are several reasons for doing this. One is to investigate
the influence of the prior on the posterior distribution, and thus on the pos-
terior risk introduced in Definition 3.33. Results in this direction are referred
to as Bayes robustness. Another is a frequentist verification of Bayes proce-
dures with the aim to show that Bayes estimators are consistent and even
asymptotically efficient.

We start with the Bayes model introduced in Chapter 1 and suppose that
(Pθ)θ∈Δ is a family of distributions on (X ,A) where (Δ,BΔ) is a measurable
space. We assume that the condition (A3) is satisfied so that P(A|θ) = Pθ(A),
A ∈ A, is a stochastic kernel. Then by Proposition A.39

Pn(B|θ) := P⊗n
θ (B), B ∈ A⊗n, θ ∈ Δ,

is also a stochastic kernel. We consider the product space (Xn×Δ,A⊗n⊗BΔ)
and denote by X1, ...,Xn, Θ the projections on the coordinates. For a prior
distribution Π on (Δ,BΔ) we consider the probability space

(Xn ×Δ,A⊗n ⊗BΔ,Pn ⊗Π).
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Then L(X1, ...,Xn, Θ) = Pn ⊗ Π, so that X1, ...,Xn are conditionally i.i.d.,
given Θ = θ, with regular conditional distribution Pn. We now assume that
(Δ,BΔ) is a Borel space. Then (see Theorem A.37) there exists a stochastic
kernel Πn : BΔ ×Xn →k [0, 1] such that for every h : Xn ×Δ→m R+

∫
[
∫
h(x, θ)Pn(dx|θ)]Π(dθ) =

∫
[
∫
h(x, θ)Πn(dθ|x)](PnΠ)(dx). (7.72)

This is equivalent to the fact that Πn is a regular conditional distribution ofΘ,
given (X1, ...,Xn) = x, and PnΠ is the marginal distribution of (X1, ...,Xn).
Our aim is to study the sequence of posterior distributions Πn and to show
that under mild conditions these distributions concentrate themselves more
and more around the “true parameter”. To make such a statement precise we
consider the product space (X∞,A⊗∞) where A⊗∞ is the smallest σ-algebra
for which all projections Xi, i = 1, 2, ..., are measurable. The family of subsets
of X∞,

C =
⋃∞

n=1
{(X1, ...,Xn)−1(B) : B ∈ A⊗n},

called the family of cylinder sets, is an algebra that generates A⊗∞. As in
Section 7.5.1, let P⊗∞

θ be the infinite product measure on (X∞,A⊗∞), defined
by the condition

P⊗∞
θ (B ×X × X × · · ·) = P⊗n

θ (B), B ∈ A⊗n, θ ∈ Δ, n = 1, 2, ...

Hence the mapping θ �→ P⊗∞
θ (A) is measurable for every A ∈ C. As the class

of all A ∈ A⊗∞ for which θ �→ P⊗∞
θ (A) is measurable is a monotone class

that contains the algebra C it follows from the monotone class theorem (see
e.g. Kallenberg (1997)) that

P∞(A|θ) = P⊗∞
θ (A), A ∈ A⊗∞, θ ∈ Δ, (7.73)

is again a stochastic kernel. To summarize, we arrive at the probability space

(Ω,F,P) = (X∞ ×Δ,A⊗∞ ⊗BΔ,P∞ ⊗Π), (7.74)

on which the random variables Xi, i = 1, 2, ..., and Θ are defined to be the
coordinate mappings. In a first step of the consistency considerations we study
the posterior distributions of Θ, given X1, ...,Xn, and ask for conditions under
which the sequences of posterior distributions concentrate themselves more
and more on a neighborhood of Θ. Let us first consider this problem in a
special case.

Example 7.114. Consider the special case of i.i.d. Bernoulli variables X1, ..., Xn

with distribution (1−p)δ0+pδ1, p ∈ Δ = (0, 1). Then
∑n

i=1 Xi is a sufficient statistic
for the model (((1− p)δ0 + pδ1)

⊗n)p∈(0,1). Hence by Proposition 4.62 the posterior
distribution depends on (X1, ..., Xn) only through T =

∑n
i=1 Xi. If Π = Be(α, β) is

the beta distribution with parameters α, β > 0, then by Example 1.45 it holds for
the posterior Πn in (7.72) that
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Πn(·|x1, ..., xn) = Be(α +
∑n

i=1
xi, β + n−

∑n

i=1
xi).

As the beta distribution Be(α, β) has the expectation α/(α + β) we get

E(Θ|X1 = x1, ..., Xn = xn) =
α + β

α + β + n

α

α + β
+

n

α + β + n

1

n

∑n

i=1
xi.

Moreover, the variance of the beta distribution Be(α, β) is αβ
(α+β)2(α+β+1)

. Hence the

variance of the posterior distribution is

(α +
∑n

i=1 Xi)(β + n−
∑n

i=1 Xi)

(α + β + n)2(α + β + n + 1)
≤ (α + n)(β + n)

(α + β + n)2(α + β + n + 1)
→ 0.

Therefore,

E(Θ − E(Θ|X1, ..., Xn))2 = E(E(Θ − E(Θ|X1, ..., Xn))2|X1, ..., Xn)

≤ (α + n)(β + n)

(α + β + n)2(α + β + n + 1)
→ 0,

so that for large n the posterior Πn concentrates more and more around the unob-
servable Θ. Taking Tn = E(Θ|X1, ..., Xn) or the arithmetic mean (1/n)

∑n
i=1 Xi we

get that Tn consistently approximates Θ, or is a consistent estimator in the Bayes
model (7.74).

Now we establish a first result on the consistency of the posterior distribu-
tion in the Bayes model (7.74). The subsequent result is due to Doob (1949).
Stronger results can be found in Schwartz (1965). The version of Doob’s re-
sult presented here is taken from Schervish (1995); see also Schervish and
Seidenfels (1990).

Theorem 7.115. Suppose (X ,A) and (Δ,BΔ) are Polish spaces. Let Π be a
prior on (Δ,BΔ) and (Pθ)θ∈Δ be a family that satisfies the condition (A3).
Let Πn be a regular version of the posterior distribution specified by (7.72).
If there exists a sequence Tn : Xn →m Δ with Tn(X1, ...,Xn) →P Θ, then for
every B ∈ BΔ it holds

lim
n→∞

Πn(B|X1, ...,Xn) = IB(Θ), P-a.s.

Proof. Recall that Xi and Θ are the projection mappings on Ω in
(7.74). We introduce a sequence of sub-σ-algebras of A⊗∞ ⊗ BΔ by Fn =
σ(X1, ...,Xn) and set F∞ = σ(X1,X2, ...). Then by Levy’s martingale theo-
rem (see Theorem A.34) it holds

lim
n→∞

Πn(B|X1, ...,Xn) = lim
n→∞

E(IB(Θ)|Fn) = E(IB(Θ)|F∞), P-a.s.

The condition imposed on Tn and Proposition A.12 yield the existence of a
subsequence nk such that Tnk

(X1, ...,Xnk
) converges to Θ, P-a.s. For every

ω = (x, θ) ∈ X∞ ×Δ and any fixed θ0 ∈ Δ we set

T (ω) = lim
k→∞

Tnk
(X1(ω), ...,Xnk

(ω)),
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if the limit exists, and T = θ0 else. Then T is measurable with respect to F∞
and it holds IB(T ) = IB(Θ), P-a.s. Hence E(IB(Θ)|F∞) = IB(Θ), P-a.s., and
the proof is completed.

Another focus of an asymptotic investigation of the posterior distribution
concerns the dependence of the predictive distribution on the prior distri-
bution. More precisely, let Un = (X1, ...,Xn) and Vn = (Xn+1,Xn+2, ...).
Consider the random variables to be defined on the probability space (7.74).
Then for every h : Xn ×X × · · · ×Δ →m R+ it holds

Eh(Un, Vn, Θ) =
∫

[
∫

[
∫
h(u, v, θ)(

⊗n
i=1 Pθ)(du)](

⊗∞
i=n+1 Pθ)(dv)]Π(dθ).

Especially, by taking into account (7.72), it holds

Eg(Un, Vn) =
∫

[
∫

[
∫
g(u, v)(

⊗n
i=1 Pθ)(du)](

⊗∞
i=n+1 Pθ)(dv)]Π(dθ)

=
∫

[
∫

[
∫
g(u, v)(

⊗∞
i=n+1 Pθ)(dv)]Πn(dθ|u)](PnΠ)(du),

for every g : Xn × X∞
i=n+1X →m R+. We see from here that

Λn(B|u) =
∫

(
⊗∞

i=n+1 Pθ(B))Πn(dθ|u), B ∈
⊗∞

i=n+1 A,

is a regular version of the conditional distribution of Vn = (Xn+1,Xn+2, ....),
given Un = (X1, ...,Xn). Λn is called the predictive distribution of Vn, given
Un. The conditional distribution Λn depends, of course, on the prior Π. To
indicate this dependence we also write Λn,Π . The next theorem shows that
for two priors Π1 and Π2 which assign the same parameters a positive weight,
i.e., are measure-theoretic equivalent, the predictive distributions Λn,Π1 and
Λn,Π2 are close for large n. We recall that by the definition of Λn,Πi

it holds

L((Un, Vn)|P∞Πi) = Λn,Πi
⊗ (PnΠi), i = 1, 2.

One way to formulate the agreement of the predictive distributions is to re-
place PnΠ2 with PnΠ1 and to compare the distributions Λn,Π1 ⊗ (PnΠ1) and
Λn,Π2 ⊗ (PnΠ1). Suppose A and consequently A⊗∞ are countably generated.
Then by (1.76) and Proposition 1.95 it follows that

‖Λn,Π1 ⊗ (PnΠ1)−Λn,Π2 ⊗ (PnΠ1)‖ (7.75)

=
∫
‖Λn,Π1(·|un)−Λn,Π2(·|un)‖ (PnΠ1)(dun).

For every prior Π and P∞ from (7.73) we introduce the distribution PΠ on
(X∞,A⊗∞) by PΠ = P∞Π and denote by EΠ the expectation with respect
to PΠ . If Π1 
 Π2, then

PΠ2(B) =
∫
P⊗∞
θ (B)Π2(dθ) = 0
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implies
∫
P⊗∞
θ (B)Π1(dθ) = 0 and therefore PΠ1 
 PΠ2 . Put

Z = dPΠ1/dPΠ2 , Fn = σ(X1, ...,Xn), and Zn = EΠ2(Z|Fn).

Then for every B ∈ Fn it holds∫
IBEΠ2(Z|Fn)dPΠ2 =

∫
IBZdPΠ2 = PΠ1(B),

dPn,Π1

dPn,Π2

= Zn,

where Pn,Πi
is the restriction of PΠi

on Fn. Hence EΠ2(Z|Fn) is a martingale,
so that Levy’s martingale convergence theorem (see Theorem A.34) implies

lim
n→∞

EΠ2 |Zn − Z| = 0. (7.76)

Theorem 7.116. Let (X ,A) and (Δ,BΔ) be standard Borel spaces, and Π1

and Π2 be priors on (Δ,BΔ) with Π1 
 Π2. If the family (Pθ)θ∈Δ satisfies the
condition (A3), and Λn,Πi

, i = 1, 2, are any regular versions of the predictive
distributions, then

lim
n→∞

‖Λn,Π1 ⊗ (PnΠ1)−Λn,Π2 ⊗ (PnΠ1)‖ = 0,

‖Λn,Π1(·|X1, ...,Xn)−Λn,Π2(·|X1, ...,Xn)‖ →PΠ1 0. (7.77)

Proof. The variational distance of two distributions is nonnegative and
does not exceed 2. This, in conjunction with (7.75), yields that the two state-
ments are equivalent. To show the first one we use Zn = dPn,Π1/dPn,Π2 and
get for every measurable function h that

sup
‖h‖u≤1

∣∣∣∣
∫

[
∫
h(un, vn)(Λn,Π1(dvn|un)−Λn,Π2(dvn|un))](PnΠ1)(dun)

∣∣∣∣
= sup

‖h‖u≤1

∣∣∣∣
∫

[
∫
h(un, vn)Z(un, vn)Λn,Π2(dvn|un)](PnΠ2)(dun)

−
∫

[
∫
h(un, vn)Zn(un)Λn,Π2(dvn|un)](PnΠ2)(dun)

∣∣∣∣ ≤ EΠ2 |Z − Zn| → 0,

where the last statement follows from (7.76). To complete the proof it suffices
to note that in view of Problem 1.80 the term on the left-hand side of the
equality is ‖Λn,Π1 ⊗ (PnΠ1)−Λn,Π2 ⊗ (PnΠ1)‖ .

There are other versions of the agreement of predictive distributions. For
example, in Schervish (1995), p. 456, it is proved that the convergence in (7.77)
holds true also for the PΠ1 -a.s. convergence if a version for the predictive
distribution is used that is defined via the densities Z and Zn.

Up to this point we have studied the posterior and the predictive distri-
bution in the Bayes model (7.74). Now we fix a parameter value, say θ0, and
assume that the data X1,X2, ... are from the frequentist model
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(Ω,F,P) := (X∞,A⊗∞, P⊗∞
θ0

). (7.78)

We ask whether the sequence of posteriors concentrates more and more around
the true value θ0.

Definition 7.117. Let Δ be a Polish space, BΔ the σ-algebra of Borel sets,
and (X ,A) a standard Borel space. Suppose (A3) is satisfied. For a prior Π
on (Δ,BΔ) the sequence of posteriors Πn is called strongly consistent at θ0
if for every open set O that contains the point θ0 it holds

Πn(O|X1, ...,Xn) → 1, P⊗∞
θ0

-a.s.

We assume that the prior Π has a density π with respect to some τ ∈
Mσ(BΔ), the model (Pθ)θ∈Δ is dominated, and the family (fθ)θ∈Δ satisfies
the condition (A5). Set xn = (x1, ..., xn),

mn(xn) =
∫ ∏n

i=1 fθ(xi)π(θ)τ (dθ),

πn(θ|xn) =
{ 1

mn(xn)

∏n
i=1 fθ(xi)π(θ) if mn(xn) > 0,

π(θ) if mn(xn) = 0,
(7.79)

Πn(B|xn) =
∫
B

πn(θ|xn)τ (dθ), B ∈ BΔ, PnΠ-a.s. (7.80)

Then Πn is a version of the posterior distribution.
The subsequent result on the posterior robustness can be found in Ghosh

and Ramamoorthi (2003), from where the proof has been taken. Suppose the
priors Πi, i = 1, 2, are absolutely continuous with respect to τ with densities
πi, i = 1, 2. Suppose that the posterior densities πi,n are defined by (7.79),
and the posterior distributions Πi,n, i = 1, 2, are defined by (7.80) with πn
replaced with πi,n, i = 1, 2.

Theorem 7.118. Assume that X and Δ are Polish spaces, endowed with the
Borel σ-algebras A and BΔ, and that (A5) is satisfied. Suppose Πi 
 τ ,
πi = dΠi/dτ , i = 1, 2, are continuous and positive at θ0. If the posterior
distributions Πi,n, i = 1, 2, are both strongly consistent at θ0, then

‖Π1,n(·|X1, ...,Xn)−Π2,n(·|X1, ...,Xn)‖ → 0, P⊗∞
θ0

-a.s.

Proof. Set hn(θ, ω) =
∏n

i=1 fθ(Xi(ω)) and put, for A ∈ BΔ,

μi,n(A,ω) =
∫
IA(θ)hn(θ, ω)Πi(dθ).

Let O1 ⊇ O2 ⊇ · · · be a sequence of open balls with centers θ0 and diameters
tending to zero. Then there is a set A ∈ F with P⊗∞

θ0
(A) = 1 so that for every

ω ∈ A and a given η > 1 there exists some n0(η,m) with
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Πi,n(Om|X1(ω), ...,Xn(ω)) =
μi,n(Om, ω)
μi,n(Δ,ω)

≥ 1
η

for every n ≥ n0(η,m). The continuity of π1 and π2 yields the existence of
m0 such that

α

η
≤ π1(θ)
π2(θ)

≤ ηα, θ ∈ Om0 ,

where α = π1(θ0)/π2(θ0). Hence for every n ≥ n0(η,m0) and A ∈ BΔ

α

η
≤ μ1,n(A ∩Om0 , ω)

μ2,n(A ∩Om0 , ω)
≤ ηα,

μ1,n(Δ,ω)
μ2,n(Δ,ω)

=
μ1,n(Δ,ω)
μ1,n(Om0 , ω)

μ2,n(Om0 , ω)
μ2,n(Δ,ω)

μ1,n(Om0 , ω)
μ2,n(Om0 , ω)

,

α

η2
≤ μ1,n(Δ,ω)

μ2,n(Δ,ω)
≤ η2α.

Therefore, and with μi,n(Δ,ω) = mi,n(Xn(ω)),

Π1,n(A|X1(ω), ...,Xn(ω))−Π2,n(A|X1(ω), ...,Xn(ω))

≤ μ1,n(A ∩Om0 , ω)
μ1,n(Δ,ω)

− μ2,n(A ∩Om0 , ω)
μ2,n(Δ,ω)

+
μ1,n(Δ\Om0 , ω)

μ1,n(Δ,ω)

≤ (η3 − 1)
μ2,n(Om0 , ω)
μ2,n(Δ,ω)

+
μ1,n(Δ\Om0 , ω)

μ1,n(Δ,ω)
.

Hence by the consistency of Πi,n, i = 1, 2,

lim sup
n→∞

sup
A∈BΔ

(Π1,n(A|X1(ω), ...,Xn(ω))−Π2,n(A|X1(ω), ...,Xn(ω))) ≤ η3−1.

To complete the proof we note that η > 1 was arbitrary and

‖Π1,n −Π2,n‖ = 2 sup
A∈BΔ

(Π1,n(A)−Π2,n(A)).

Now we establish conditions that guarantee consistency. A first result in
this direction goes back to Doob (1949). It says that for any prior Π the
posterior distributions are consistent at Π-almost all θ ∈ Δ. Although this
results says that consistency holds in almost all cases, the proof ensures only
the existence of a subset Δ0 of the parameter space with Π(Δ0) = 1 so that
we have consistency for θ ∈ Δ0. For details of the proof we refer to Ghosh
and Ramamoorthi (2003). As Doob’s result guarantees only the existence of
Δ0, but does not specify Δ0, for a given θ one cannot decide whether the
sequence of priors is consistent at θ. This problem was studied by Schwartz
(1965). To present this result we recall the Kullback–Leibler distance, i.e.,
K(P,Q) =

∫
ln(dP/dQ)dP if P 
 Q, and K(P,Q) = ∞ else; see (1.81).

Applying this to the product measures we get from Proposition A.29 that
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K(P⊗n
θ0

, P⊗n
θ ) = nK(Pθ0 , Pθ). (7.81)

Subsequently, we often have some functions that are well defined, PnΠ-
a.s., but we want them to be well defined, P⊗n

θ0
-a.s. This is certainly true if

P⊗n
θ0


 PnΠ. The next problem gives a sufficient condition.

Problem 7.119.∗ If (A5) is satisfied and Π({θ : K(Pθ0 , Pθ) < ∞}) > 0, then
P⊗n

θ0
� PnΠ for every n.

Given a family (Pθ)θ∈Δ we introduce the Kullback–Leibler neighborhood
of θ0 by

Kε(θ0) = {θ : K(Pθ0 , Pθ) < ε}.
If condition (A5) is satisfied, then θ �→ K(Pθ0 , Pθ) =

∫
ln(fθ0/fθ)dPθ0 is a

measurable function so that Kε(θ0) ∈ BΔ. If Π is a prior, we say that θ0
belongs to the Kullback–Leibler support of Π if Π(Kε(θ0)) > 0 for every ε > 0.

We express the condition for consistency with the help of the conditional
densities πn in (7.79). If θ0 belongs to the Kullback–Leibler support of the
prior Π, then by L(X1, ...,Xn|P⊗∞

θ0
) = P⊗n

θ0
and Problem 7.119 it holds

Πn(Δ\O|X1, ...,Xn) =

∫
IΔ\O(θ)

∏n
i=1 fθ(Xi)Π(dθ)∫ ∏n

i=1 fθ(Xi)Π(dθ)
, P⊗∞

θ0
-a.s.

Thus it suffices to show that for every open set O that contains θ0,
∫
IΔ\O(θ)

∏n
i=1(fθ(Xi)/fθ0(Xi))Π(dθ)∫ ∏n

i=1(fθ(Xi)/fθ0(Xi))Π(dθ)
→ 0 P⊗∞

θ0
-a.s.

The idea is to find conditions so that, P⊗∞
θ0

-a.s., for every β > 0, and for some
β0 > 0,

lim inf
n→∞

exp{nβ}
∫ ∏n

i=1

fθ(Xi)
fθ0(Xi)

Π(dθ) =∞, (7.82)

lim sup
n→∞

exp{nβ0}
∫
IΔ\O(θ)

∏n

i=1

fθ(Xi)
fθ0(Xi)

Π(dθ) = 0. (7.83)

Lemma 7.120. Suppose condition (A5) is fulfilled. If θ0 is in the Kullback–
Leibler support of the prior Π, then (7.82) holds.

Proof. Suppose Π(Kε(θ0)) > 0, and set Πε(B) = Π(B|Kε(θ0)). For every
θ ∈ Kε(θ0) it holds K(Pθ0 , Pθ) < ∞ and thus Pθ0 
 Pθ. Hence for w1(t) =
t ln t− t+ 1,

K(Pθ0 , Pθ) =
∫

ln(
fθ0(x)
fθ(x)

)Pθ0(dx) =
∫

w1(
fθ0(x)
fθ(x)

)fθ(x)μ(dx).

As w1 ≥ 0 the subsequent integrals are well defined, and by Fubini’s theorem
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∫
[
∫

w1(
fθ0(x)
fθ(x)

)fθ(x)Πε(dθ)]μ(dx) =
∫

K(Pθ0 , Pθ)Πε(dθ) ≤ ε.

Hence,

−∞ <

∫
[
∫

ln
fθ0(x)
fθ(x)

Πε(dθ)]Pθ0(dx) ≤ ε. (7.84)

We consider the i.i.d. random variables

Yi =
∫

(ln
fθ0(Xi)
fθ(Xi)

)Πε(dθ), i = 1, 2, ...

on the probability space (7.78). Then EY1 ≤ ε by (7.84). The strong law of
large numbers provides the existence of an Ω0 ∈ F with P⊗∞

θ0
(Ω0) = 1 and

1
n

∑n

i=1
Yi(ω) → EY1 ≤ ε, ω ∈ Ω0.

Hence by the convexity of exp{x}, Jensen’s inequality, and Fatou’s lemma,

lim inf
n→∞

exp{2nε}
∫ ∏n

i=1

fθ(Xi(ω))
fθ0(Xi(ω))

Π(dθ)

≥ lim inf
n→∞

∫
IKε(θ0)(θ) exp{n[2ε− 1

n

∑n

i=1
ln

fθ(Xi(ω))
fθ0(Xi(ω))

]}Π(dθ)

≥ Π(Kε(θ0)) lim inf
n→∞

exp{n(2ε− 1
n

∑n

i=1
Yi(ω))} =∞.

For Π(Δ\O) > 0 we set ΠΔ\O(B) = Π(B|Δ\O) and assume that for some
DO > 0 and qO < 1,

H1/2(P⊗n
θ0

,PnΠΔ\O) ≤ DOq
n
O. (7.85)

Lemma 7.121. If (A5) is satisfied, then the condition (7.85) implies the ex-
istence of some β0 > 0 such that (7.83) holds.

Proof. We have only to consider the case of Π(Δ\O) > 0. Then

H1/2(P⊗n
θ0

,PnΠΔ\O)

=
∫

[
∏n

i=1 fθ0(xi)]
1/2 [
∫ ∏n

i=1 fθ(xi)ΠΔ\O(dθ)]1/2μ⊗n(dx1, ..., dxn)

= Eg1/2(X1, ...,Xn) ≤ DOq
n
O,

where g(X1, ...,Xn) =
∫ ∏n

i=1(fθ(Xi)/fθ0(Xi))ΠΔ\O(dθ). If Z ≥ 0, then
P(Z > 1) ≤ EZ. Hence for r > 0,

P(r2ng(X1, ...,Xn) ≥ 1) = P(rng1/2(X1, ...,Xn) ≥ 1) ≤ DO(rqO)n.
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Choose 1 < r < 1/qO. Then by Borel–Cantelli’s lemma, with P⊗∞
θ0

-probability
one, the inequality r2ng(X1, ...,Xn) ≥ 1 holds only for a finite number of n.
Hence we get (7.83) for every β0 > 0 that satisfies exp{β0} < r.

The condition (7.85) implies, in view of Lemma 1.66 and the inequality
min(a, b) ≤

√
ab, that the minimal Bayes risk b1/2(P⊗n

θ0
,PnΠΔ\O) for testing

H0 : P⊗n
θ0

versus HA : PnΠΔ\O tends to zero at an exponential rate.
Now we establish equivalent conditions that are sufficient for (7.85). In the

proof we make use of a special case of Hoeffding’s inequality. If Z1, ..., Zn are
independent and |Zi| ≤ 1, then

P(
∑n

i=1
(Zi − EZi) ≥ t) ≤ exp{−2t2

n
}, t ≥ 0. (7.86)

For a proof we refer to Hoeffding (1963). The next proposition is taken from
Ghosh and Ramamoorthi (2003). It studies the behavior of error probabilities
for the sequence of testing problems H0 : P⊗n

θ0
versus HA : P⊗n

θ , θ ∈ Δ\O.

Proposition 7.122. Let O be an open set that contains θ0. Then the following
conditions are equivalent and imply (7.85).

(A) There exists a sequence of tests ϕn that is uniformly consistent in the
sense that ∫

ϕndP
⊗n
θ0

+ sup
θ∈Δ\O

∫
(1− ϕn)dP⊗n

θ → 0.

(B) For some m there exists a strictly unbiased test ϕ in the sense that
∫
ϕdP⊗m

θ0
< inf

θ∈Δ\O

∫
ϕdP⊗m

θ .

(C) There exists a sequence of nonrandomized tests ϕn and C, β > 0 with
∫
ϕndP

⊗n
θ0

+ sup
θ∈Δ\O

∫
(1− ϕn)dP⊗n

θ ≤ C exp{−nβ}.

Proof. It is clear that (A) implies (B), and (C) implies (A). We show that
(B) implies (C) and consider first the case m = 1. It holds α =

∫
ϕdPθ0 < γ =

infθ∈Δ\O
∫
ϕdPθ. Set

An = {(x1, ..., xn) :
∑n

i=1
(ϕ(xi)− α) >

n

2
(γ − α)}.

Then by Hoeffding’s inequality (7.86) it follows that

P⊗n
θ0

(An) ≤ exp{−n
2(γ − α)2

4n
}.

On the other hand, for θ ∈ Δ\O by α <
∫
ϕdPθ it follows that
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P⊗n
θ (An) ≥ P⊗n

θ (
n∑
i=1

[ϕ(Xi)−
∫
ϕdPθ] >

n

2
(α−γ)) ≥ 1−exp{−n

2(γ − α)2

4n
},

where the second inequality follows from an application of Hoeffding’s inequal-
ity (7.86) to ϕ(Xi). Thus ϕn = IAn

is the required sequence of tests.
Now we consider the case where m is arbitrary. Then we replace Pθ with

P⊗m
θ to get a sequence of tests ψk, some β̃ > 0, and C̃ > 0 so that

∫
ψkdP

⊗km
θ0

+ sup
θ∈Δ\O

∫
(1− ψk)dP⊗km

θ ≤ C̃ exp{−kβ̃}.

It remains to set ϕn = ψk if (k− 1)m ≤ n < km. Indeed, as ϕn depends only
on x1, ..., x(k−1)m it follows that
∫
ϕndP

⊗n
θ0

+ sup
θ∈Δ\O

∫
(1− ϕn)dP⊗n

θ ≤ C̃ exp{−(k − 1)β̃} ≤ C exp{−nβ},

where C = C̃ exp{β̃} and β = β̃/m. Finally we show that (C) implies the
condition (7.85). Set An = {ϕn = 1}. Then by Schwarz’ inequality

H1/2(P⊗n
θ0

,PnΠΔ\O)

=
∫

(
∏n

i=1 fθ0(xi))
1/2 [
∫ ∏n

i=1 fθ(xi)ΠΔ\O(dθ)]1/2μ⊗n(dx1, ..., dxn)

≤ (P⊗n
θ0

(An))1/2(PnΠΔ\O(An))1/2

+(P⊗n
θ0

(Xn\An))1/2(PnΠΔ\O(Xn\An))1/2.

The inequality (7.85) follows from P⊗n
θ0

(An) ≤ C exp{−nβ} and

(PnΠΔ\O)(Xn\An)

≤ 1
Π(Δ\O)

∫
IΔ\O(θ)P⊗n

θ (An)Π(dθ) ≤ C

Π(Δ\O)
exp{−nβ}.

Now we are ready to formulate the result of Schwartz (1965) on the con-
sistency of posterior distributions.

Theorem 7.123. (Schwartz) Let X and Δ be Polish spaces, endowed with
the Borel σ-algebras A and BΔ, respectively, and assume that condition (A5)
is satisfied. Let Π be a prior on (Δ,BΔ). If θ0 belongs to the Kullback–Leibler
support of Π, and the condition (7.85) holds for every open set O that contains
θ0, then the sequence of posterior Πn in (7.72) is strongly consistent.

Proof. Apply Lemmas 7.120 and 7.121 with β = β0.
Now we discuss the condition that θ0 belongs to the Kullback–Leibler

support of Π and present examples where condition (7.85), or one of the
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conditions in Lemma 7.122, is satisfied. Suppose that θ0 belongs to the support
of the prior Π, i.e., Π(Uθ0) > 0 for every open neighborhood of θ0. If the
function θ �→ K(Pθ0 , Pθ) is continuous at θ0, then K(Pθ0 , Pθ0) = 0 implies
that θ0 belongs to the Kullback–Leibler support of Π. If θ �→ K(Pθ0 , Pθ) is
not continuous, and instead of the condition that θ0 belongs to the support
of Π the stronger condition Π({θ0}) > 0 holds, then θ0 belongs again to the
Kullback–Leibler support of Π. We give examples where θ �→ K(Pθ0 , Pθ) is
continuous, and one where it is not.

Example 7.124. Suppose Δ is a compact metric space and BΔ is the σ-algebra
of Borel sets. Suppose that (Pθ)θ∈Δ is dominated, say by μ, the densities satisfy
fθ(x) > 0, x ∈ X , θ ∈ Δ, and θ �→ fθ(x) is continuous for every x. If∫

sup
θ∈Δ

|ln fθ0(x)− ln fθ(x)|Pθ0(dx) <∞,

then Lebesgue’s theorem implies the continuity of θ �→ K(Pθ0 , Pθ). If in addition θ0

belongs to the support of the prior Π, then under (7.85) we have a situation where
the sequence of posteriors is strongly consistent, and in view of Corollary 7.79 we
have at the same time that every sequence of maximum likelihood estimators is
strongly consistent.

Example 7.125. If (Pθ)θ∈Δ is an exponential family with natural parameter θ ∈
Δ, then K(Pθ0 , Pθ) can be explicitly evaluated. By (1.6) and (1.23), for θ0 ∈ Δ0,

K(Pθ0 , Pθ) =

∫
ln(dPθ0/dPθ)dPθ0 =

∫
(〈θ0 − θ, T (x)〉 −K(θ0) + K(θ))Pθ0(dx)

= K(θ)−K(θ0)− 〈θ − θ0,∇K(θ0)〉 .

For θ0 ∈ Δ0 the continuity of θ �→ K(Pθ0 , Pθ) at θ0 follows from Theorem 1.17.

Example 7.126. Consider the family of uniform distributions U(0, θ) on (0, θ),
where θ ∈ Δ = (0,∞). Fix θ0 ∈ (0,∞). For θ < θ0 the distribution U(0, θ0) is
not absolutely continuous with respect U(0, θ) so that K(U(0, θ0),U(0, θ)) = ∞ and
θ �→ K(U(0, θ0),U(0, θ)) is not continuous at θ0.

Now we give examples where the assumptions of Schwartz’ theorem hold.

Example 7.127. We assume that Condition 7.82 is fulfilled. Using the notation
from there we get with O = {θ : ρΔ(θ, θ0) < ε}, fn,θ(x) =

∏n
i=1 fθ(xi), x =

(x1, ..., xn), and fn,Cε,i(x) = supθ∈Cε,i
fn,θ(x),

H1/2(P
⊗n
θ0

,PnΠΔ\O) =

∫
[fn,θ0(x)]1/2 [

∫
fn,θ(x)ΠΔ\O(dθ)]1/2μ⊗n(dx)

≤
∫

[fn,θ0(x)]1/2 [
∑Nε

i=1
ΠΔ\O(Cε,i)fn,Cε,i(x)]1/2μ⊗n(dx).

The inequality (
∑Nε

i=1 ai)
1/2 ≤

∑Nε
i=1 a

1/2
i , ΠΔ\O(Cε,i) ≤ 1, and (7.45) yield

H1/2(P
⊗n
θ0

,PnΠΔ\O) ≤
∑Nε

i=1

∫
[fn,θ0(x)]1/2 [fn,Cε,i(x)]1/2μ⊗n(dx)

≤ Nε( max
1≤i≤Nε

∫
[fθ0(x)]1/2 [supθ∈Cε,i

fθ(x)]1/2μ(dx))n.
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Hence Condition 7.82 implies (7.85). If in addition θ0 belongs to the Kullback–Leibler
support of the prior Π, then we have a situation where the sequence of posteriors
is strongly consistent, and in view of Theorem 7.84 we have at the same time that
every sequence of maximum likelihood estimators is strongly consistent.

Now we give an example where the condition (B) in Proposition 7.122 is
fulfilled.

Example 7.128. Let (Pθ)θ∈(a,b) be a one-parameter exponential family with nat-
ural parameter θ, and let θ0 ∈ (a, b) and α ∈ (0, 1) be fixed. Under the standard
conditions (A1) and (A2) we show in Theorem 8.11 that the power function of the
uniformly best unbiased level α test ϕ for testing H0 : θ = θ0 versus HA : θ �= θ0 is
strictly decreasing for θ < θ0, strictly increasing for θ > θ0, and equal to α at θ0.
This means that the condition (B) in Proposition 7.122 is satisfied.

Above we have given examples where both the strong consistency of the
posterior distributions and the strong consistency of every sequence of MLEs
are satisfied. One could get here the impression that one has in any case
either consistency or inconsistency of both the posteriors and the MLE. This,
however, is not true. There are examples where the MLE is consistent but
the posteriors are inconsistent, and vice versa. For the detailed construction
of these examples, and for references to other examples in literature, we refer
to Ghosh and Ramamoorthi (2003) and Diaconis and Freedman (1986a,b).
Finally, we refer to Strasser (1981a), who refined Perlman’s necessary and
sufficient conditions for the consistency of the MLE to show that under weak
regularity conditions the consistency of the MLE implies the consistency of
the Bayes estimator.

7.6 Asymptotic Distributions of Estimators

7.6.1 Asymptotic Distributions of M-Estimators

Approximation of the Criterion Function

After the consistency of a special type of estimators has been established the
question is now what are good sequences of estimators. Consistency is a qual-
itative property that does not say anything about the rate of convergence.
One way of specifying what good estimators are is based on the rate of con-
vergence of P(ρΔ(θ̂n, θ) > ε) to zero. This sequence typically tends to zero at
an exponential rate, so that lim supn→∞ ln P(ρΔ(θ̂n, θ) > ε) is an appropriate
measure of the quality of estimators. The proofs of the corresponding results
require techniques from the area of large deviations. We do not go into detail
for results of this type which can be found in Bahadur (1960) and Kester and
Kallenberg (1986). Instead of following this way we use a sequence of constants
cn → ∞ and study the limit distribution of cn(θ̂n − θ), provided it exists. A
typical form of the constants cn is cn =

√
n, and the limit distribution is
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usually a normal distribution, say N(0, Σ), where Σ depends on the concrete
sequence of estimators under consideration. As different types of estimators
have different covariance matrices in the limit distribution comparisons of es-
timators can be made based on their associated covariance matrices of the
limit distributions.

It proves useful to reformulate the weak convergence of distributions of
statistics Sn : Xn →m R

d directly with the help of the models (Xn,An, Pn).
If Q is a distribution on (Rd,Bd), then we write L(Sn|Pn) ⇒ Q if

lim
n→∞

EPn
ϕ(Sn) =

∫
ϕ(x)Q(dx),

for every ϕ ∈ Cb(Rd). We say that Sn converges Pn-stochastically to a ∈ R
d

if Pn(‖Sn − a‖ > ε) → 0, ε > 0, and denote this by Sn →Pn a.
We recall the useful Landau and stochastic Landau symbols. If an and bn

are any sequences of real numbers, then we write an = O(bn) if bn �= 0 for all
n ≥ n0 and an/bn is bounded for n ≥ n0. Similarly an = o(bn) if bn �= 0 for
all n ≥ n0 and an/bn tends to zero as n→∞.

We call Sn : Xn →m R
m stochastically bounded, if

lim
c→∞

lim sup
n→∞

Pn(‖Sn‖ > c) = 0. (7.87)

We write Sn = OPn
(cn) if (1/cn)Sn is stochastically bounded. We write Sn =

oPn
(cn) if (1/cn)Sn tends Pn-stochastically to zero. If Sn are random matrices,

then we write Sn = OPn
(cn) if all entries of Sn are OPn

(cn) and use a similar
convention for the other cases. We write, similarly to (7.34),

Sn = oPn
(0), if Pn(Sn �= 0) → 0, as n→∞. (7.88)

We do not use separate symbols for scalars, vectors, and matrices. Whether
OPn

, oPn
,oPn

is a scalar, vector, or matrix should be clear from the context.
The next problem collects well-known rules for dealing with OPn

, oPn
,oPn

symbols.

Problem 7.129.∗ If Tn : Xn →m R
d, T : X →m R

d, and L(Tn|Pn) ⇒ L(T |P ),
then Tn = OPn(1). It holds OPn(1) + oPn(1) = OPn(1), OPn(1)oPn(1) = oPn(1).
If Sn : Xn →m R

d and An : Xn →m R
kd are random matrices, then Sn = oPn(0)

implies AnSn = oPn(0).

Problem 7.130.∗ If Un : Xn → R
d is stochastically bounded and Un = (Σ +

oPn(1))Vn + oPn(1), where Σ is a nonsingular matrix, then Vn = Σ−1Un + oPn(1).

The first question, of course, is which constants should be used when study-
ing the limit distribution of Tn = cn(θ̂n−θ0). If the distributions of cn(θ̂n−θ0)
converge, then this sequence is stochastically bounded. Given a sequence of
models (Xn,An, (Pn,θ)θ∈Δ), where Δ ⊆ R

d is a Borel set, and cn → ∞, we
say a sequence of estimators θ̂n : Xn →m Δ is cn-consistent at θ0 if
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lim
c→∞

lim sup
n→∞

Pn,θ0(cn ‖ θ̂n − θ0 ‖> c) = 0,

i.e., cn(θ̂n−θ0) is stochastically bounded with respect to Pn,θ0 . If this condition
is satisfied for every θ0, then we say θ̂n is cn-consistent. We call θ̂n uniformly
cn-consistent on K if

lim
c→∞

lim sup
n→∞

sup
θ∈K

Pn,θ(cn ‖ θ̂n − θ ‖> c) = 0.

For regular models and uniformly consistent estimators the sequence cn cannot
tend to infinity faster than

√
n.

Proposition 7.131. Let Δ ⊆ R
d, and suppose (Pθ)θ∈Δ is L2-differentiable

at θ0 ∈ Δ0. Suppose O ⊆ Δ0 is an open set that contains θ0. Then for the
sequence of models (Xn,A⊗n, (P⊗n

θ )θ∈Δ) there is no sequence of estimators
that is uniformly cn-consistent on O for any sequence cn with cn/

√
n→∞.

Proof. We get from (1.134) that

H1/2(Pθ0+u, Pθ0) = 1− 1
8
uT I(θ0)u+R(u) and lim

u→0
‖u‖−2

R(u) = 0.

Hence by (1.117)

H1/2(P⊗n
θ0+h/

√
n
, P⊗n

θ0
) = (1− 1

8n
hT I(θ0)h+R(h/

√
n))n (7.89)

→ exp{−1
8
hT I(θ0)h}.

Set
An = {‖ cn(θ̂n − θ0) ‖≥‖ cn(θ̂n − θ0)− cnh/

√
n ‖}.

Suppose there are θ̂n and cn with cn/
√
n → ∞ such that the sequence Tn =

cn(θ̂n − θ0) is stochastically bounded under P⊗n
θ0

. Then

P⊗n
θ0

(An) = P⊗n
θ0

(
‖Tn‖ ≥

∥∥Tn − cnh/
√
n
∥∥)→ 0, h �= 0.

On the other hand, for all sufficiently large n it holds θ0 + h/
√
n ∈ O, and

cn(θ̂n − (θ0 + h/
√
n)) = Tn − cnh/

√
n is, in view of the uniform consistency

for θ ∈ O, stochastically bounded under P⊗n
θ0+h/

√
n
. Otherwise, ‖Tn‖ tends

stochastically to ∞ with respect to P⊗n
θ0+h/

√
n
. Hence P⊗n

θ0+h/
√
n
(An) → 1.

Using the inequality in Problem 1.79 we get

H1/2(P⊗n
θ0+h/

√
n
, P⊗n

θ0
) ≤[P⊗n

θ0
(An)P⊗n

θ0+h/
√
n
(An)]1/2

+ [(1− P⊗n
θ0

(An))(1− P⊗n
θ0+h/

√
n
(An))]1/2 → 0,

which contradicts (7.89).
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In nonregular models there may exist estimators that are nα-consistent
with α > 1/2. We demonstrate this by an example. For a general treatment of
such models we refer to Akahira and Takeuchi (1981) and Janssen and Mason
(1990).

Example 7.132. Suppose X1, ..., Xn is a sample from a uniform distribution
U(0, θ) with θ > 0. For θ > 1 we consider 1−H1/2(U(0, θ),U(0, 1)) = 1−θ−1/2. Com-
paring this with (1.134) we see that (U(0, θ))θ>0 is not L2-differentiable at θ0 = 1.
Similarly it follows that (U(0, θ))θ>0 is not L2-differentiable at any θ0 > 0. We con-

sider the estimator θ̂n = max(X1, ..., Xn). It holds Fn(t) = P(θ̂n ≤ t) = Fn(t),
where F (t) = θ−1tI[0,θ)(t) + I[θ,∞)(t). Hence

P(n(θ̂n − θ) ≤ t) = I[0,∞)(t) + I[−nθ,0)(t)(1 +
t

nθ
)n → exp{ t

θ
}I(−∞,0)(t) + I[0,∞)(t)

as n → ∞. As the weak convergence of the distributions of n(θ̂n − θ) implies the

stochastic boundedness we see that θ̂n is n-consistent.

Suppose � : Δ × X → R is a contrast function in the sense of Definition
7.58 which yields the criterion function

Mn(θ, (x1, ..., xn)) =
1
n

∑n

i=1
�θ(xi).

To establish the asymptotic distribution of a consistent minimizer there are
several approaches. One way to get the asymptotic distribution of the mini-
mizer is to study (Mn(θ))θ∈Δ as a stochastic process. Then the technique of
local parameters proves useful. We set

Wn(h) =
∑n

i=1
(�θ0+h/

√
n(Xi)− �θ0(Xi)), (7.90)

and minimize Wn(h) over h. The minimizers obtained by minimizing Mn and
Wn are related by ĥn =

√
n(θ̂n − θ0). Let �̇θ0 := ∇�θ0 be the gradient (a

column vector) and �̈θ0 = ∇∇T �θ0 be the matrix of the second derivatives,
where the derivatives refer to the components of θ. A formal Taylor expansion
gives

Wn(h) =
1√
n

∑n

i=1
hT �̇θ0(Xi) +

1
2n

∑n

i=1
hT �̈θ0(Xi)h+Rn(h).

If we could neglect the remainder Rn(h), then we would have to minimize only
a quadratic function. The difficulty comes with the remainder term which we
want to be uniformly small in h ∈ R

d, but that is hard to prove. One needs
maximal inequalities and techniques from the theory of large deviations. For
details we refer to Ibragimov and Has’minskii (1981). The above-mentioned
difficulties disappear when the Wn are convex stochastic processes. For such
processes Hjort and Pollard (1993) obtained the following result.



7.6 Asymptotic Distributions of Estimators 363

Theorem 7.133. Let (Wn(h))h∈Rd be a sequence of convex stochastic pro-
cesses on (Ω,F,P). If there exists a sequence of random vectors Sn with
L(Sn) ⇒ N(0, Σ0), where det(Σ0) �= 0, and a nonsingular symmetric ma-
trix Σ1 such that

Wn(h)− hTSn →P
1
2
hTΣ1h, h ∈ R

d, (7.91)

then for every sequence ĥn of minimizers of Wn it holds

L(ĥn|P) ⇒ N(0, Σ−1
1 Σ0Σ

−1
1 ).

Corollary 7.134. Suppose �θ is convex in θ ∈ R
d, Wn(h), h ∈ R

d, is de-
fined in (7.90), and θ̂n is a minimizer of Mn(θ) = (1/n)

∑n
i=1 �θ(Xi). If Wn

satisfies the conditions of the theorem, then

L(
√
n(θ̂n − θ0)|P⊗n

θ0
) ⇒ N(0, Σ−1

1 Σ0Σ
−1
1 ).

Proof. The stochastic processes W̃n(h) = Wn(h) − hTSn, h ∈ R
d, are

convex, and by assumption W̃n(h) →P 1
2h

TΣ1h. Set Vn(h) = hTSn+ 1
2h

TΣ1h.
Then by Lemma 7.75 it holds for every c > 0,

sup
‖h‖≤c

|Wn(h)− Vn(h)| = sup
‖h‖≤c

| W̃n(h)− 1
2
hTΣ1h |→P 0. (7.92)

Note that Un = −Σ−1
1 Sn is the minimizer of Vn(h) over h ∈ R

d. Set

Δn = sup
h∈Rd,‖h−Un‖≤ε

|Wn(h)− Vn(h)| , δn = inf
h∈Rd,‖h−Un‖=ε

Vn(h)− Vn(Un).

Then

δn = infh∈Rd,‖h‖=ε[(Un + h)TSn +
1
2
(Un + h)TΣ1(Un + h)− UT

n Sn

− 1
2
UT
n Σ1Un] =

1
2

infh∈Rd,‖h‖=ε h
TΣ1h =

1
2
λminε

2,

where λmin > 0 is the smallest eigenvalue of Σ1. We apply Lemma 7.76 to the
convex processes Wn and Vn with f = Wn and g = Vn to get

P(‖ ĥn − Un ‖> ε) ≤ P(Δn ≥
1
2
δn) = P(Δn ≥

1
4
λminε

2),

where ĥn is a minimizer ofWn(h). The statement follows from Slutsky’s lemma
(see Lemma A.46) and L(Sn) ⇒ N(0, Σ0). To prove the corollary we remark
that for every minimizer θ̂n ofMn(θ) the functionWn(h) in (7.90) is minimized
by ĥn =

√
n(θ̂n − θ0).

To apply Theorem 7.133 to linear regression models with a convex criterion
function we study first the location model. Suppose � : R → R is a convex
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function and assume that condition (7.54) is satisfied. We study the behavior
of the function

w�(a) = E(�(Z + a)− �(Z)− a(D+�(Z))) = v�(a)− aE(D+�(Z))

in a neighborhood of a = 0. As in view of Problem 7.104 D+v�(0) = ED+�(Z)
we have D+w�(0) = 0. The definition of γv�

in (7.57) yields γv�
= γw�

. Using
the generalized Taylor formula in Lemma 1.52 we arrive at

w�(a) =

{∫
(a− u)I(0,a](u)γv�

(du), a > 0,∫
(u− a)I(a,0](u)γv�

(du), a < 0.
(7.93)

Lemma 7.135. Let � : R → R be a convex function, and assume that condi-
tion (7.54) is satisfied. If for some δ0 > 0,

γv�
(· ∩ (−δ0, δ0)) 
 λ, g =

dγv�
(· ∩ (−δ0, δ0))

dλ
, (7.94)

and g(t) is continuous at t = 0, then lima→0 w�(a)/a2 = 1
2g(0).

Proof. If a > 0, then by (7.93)

1
a2

w�(a)−
1
2
g(0) =

1
a2

∫
(a− u)I(0,a](u)(g(u)− g(0))du→ 1

2
g(0),

where the last statement follows from the continuity of g at u = 0. The case
a < 0 is similar.

Now we consider a linear regression model under the following conditions.

Yi = θT0 xi + εi, i = 1, ..., n, where ε1, ..., εn are i.i.d.,

x1, ..., xn ∈ R
d, ‖xi‖ ≤ C, and Σn := 1

n

∑n
i=1 xix

T
i → Σ.

(7.95)

Set Yn = (Y1, ..., Yn). The subsequent result is closely related to the results
in Jurečková and Sen (1996), Chapter 5, and Liese and Vajda (2003b, 2004).

Theorem 7.136. Let � : R → R be convex with E |�(εi + a)− �(εi)| < ∞,
a ∈ R, ED+�(εi) = 0, and σ2 = E(D+�(εi))2 < ∞. Suppose that (7.94) is
satisfied, g is continuous in (−δ0, δ0), g(0) > 0, and

R(a) := E(�(ε1 − a)− �(ε1) + aD+�(ε1))2 = o(a2). (7.96)

Assume that (7.95) is fulfilled and Σ is nonsingular. If θ̂n : (R×R
d)n →m R

d

minimizes Mn(θ) = (1/n)
∑n

i=1 �(Yi − θTxi), then

L(
√
n(θ̂n(Yn)− θ0)) ⇒ N(0,

σ2

g2(0)
Σ−1).
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Proof. Set

Wn(h) =
∑n

i=1
[�(Yi − (θ0 + n−1/2h)Txi)− �(Yi − θT0 xi)]

=
∑n

i=1
[�(εi − n−1/2hTxi)− �(εi)],

and define Sn in (7.91) to be Sn = −n−1/2
∑n

i=1 D
+�(εi)xi. Note that

ED+�(εi)xi = 0 follows from ED+�(εi) = 0. Then

Wn(h)− hTSn =
∑n

i=1
Vi(h), where

Vi(h) = �(εi − n−1/2hTxi)− �(εi) + n−1/2D+�(εi)hTxi.

By the independence of ε1, ..., εn,

E

∑n

i=1
(Vi(h)− EVi(h))2 =

∑n

i=1
V(Vi(h)) ≤

∑n

i=1
E(Vi(h))2

=
1
n

∑n

i=1
nR(hTxi/

√
n).

As ‖xi‖ ≤ C condition (7.96) implies limn→∞ max1≤i≤n nR(hTxi/
√
n) = 0.

Hence
∑n

i=1(Vi(h)− EVi(h)) →P 0. Set

r(δ) = sup
|a|≤δ

1
a2
| w�(a)−

a2

2
g(0) | .

Then

|
∑n

i=1
EVi(h)− 1

n

∑n

i=1
(hTxi)2

1
2
g(0) |≤ 1

n

∑n

i=1
(hTxi)2r(‖xi‖ ‖h‖ /

√
n)

≤ r(C ‖h‖ /
√
n)hT (

1
n

∑n

i=1
(xixTi ))h→ 0,

as (1/n)
∑n

i=1(xix
T
i ) → Σ. Hence we have obtained

Wn(h) + n−1/2
∑n

i=1
D+�(εi)hTxi →P

1
2
g(0)hTΣh.

The sequence of random variables (1/
√
n)D+�(εi)hTxi satisfies the Linde-

berg condition, which follows from Problem 6.82. As ED+�(εi) = 0, and the
variance of (1/

√
n)
∑n

i=1 D
+�(εi)hTxi is σ2hT (Σn)h→ σ2hTΣh, we obtain

L(n−1/2
∑n

i=1
D+�(εi)hTxi) ⇒ N(0, σ2hTΣh),

so that by the Cramér–Wold device

L(n−1/2
∑n

i=1
D+�(εi)xi) ⇒ N(0, σ2Σ).

It remains to apply Theorem 7.133 with Σ0 = σ2Σ and Σ1 = g(0)Σ.
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Problem 7.137.∗ If the convex function � is twice continuously differentiable,
�̈(x) > 0, x ∈ R, and

E sup
|a|≤δ0

|�̈(ε1 + a)|2 <∞ (7.97)

for some δ0 > 0, then the conditions (7.94) and (7.96) are fulfilled.

Problem 7.138.∗ If �(t) = τα(t) is from Example 7.107 and the distribution P of
ε1 has a Lebesgue density f that is continuous in a neighborhood of 0 with f(0) > 0,
then the conditions (7.94) and (7.96) are fulfilled.

Example 7.139. This is a continuation of Example 7.108. Let X1, ..., Xn be i.i.d.
with common distribution P and c.d.f. F. Let uα be an α-quantile of F ; that is,
F (uα − 0) ≤ α ≤ F (uα). Assume that P has a Lebesgue density f which is positive

at uα and continuous in a neighborhood of uα. Let θ̂n be a sample α-quantile; that
is, F̂n(θ̂n − 0) ≤ α ≤ F̂n(θ̂n), where F̂n(t) = (1/n)

∑n
i=1 I(−∞,t](Xi). By Example

7.107 θ̂n is a minimizer of

Mn(θ) =
1

n

∑n

i=1
τα(Xi − θ).

The assumptions on f imply (7.62). Hence θ̂n → uα, P-a.s., by Example 7.108. The
c.d.f. F is continuous at uα and it holds F (uα) = α. Hence

ED+τα(X1) = −(1− α)P(X1 < uα) + αP(X1 ≥ uα) = 0,

E(D+τα(X1 − uα))2 = (1− α)2α + α2(1− α) = α(1− α).

We set εi = Xi − uα. Then the εi have the density g(t) = f(t + uα). As D+τα(t) =
−(1 − α)I(−∞,0)(t) + αI[0,∞)(t) the curvature measure γτα in (7.57) is given by
γτα = δ0, so that by Problem 7.104 it holds γvτα

= Q, where Q = L(εi). As Q
has the Lebesgue density g we get from Problem 7.138 that (7.94) and (7.96) are
satisfied. We consider the location model Yi = θ + εi as a special regression model
with xi = 1 and obtain from Theorem 7.136, with σ2 = α(1 − α), the well-known
asymptotic normality of the sample α-quantiles,

L(
√
n(θ̂n − uα)|P⊗n) ⇒ N(0, α(1− α)/f2(uα)).

We conclude this section with the remark that the technique for proving
Theorem 7.136 also works if the function � is not necessarily convex, but of
locally bounded variation. The advantage of this approach is that typical func-
tions of robust statistics which have at some points only one-sided derivatives
are included. But in contrast to the case of a convex function � one needs ad-
ditional conditions to guarantee the consistency. For details we refer to Liese
and Vajda (2003b, 2004).

Asymptotic Solution of M-Equation

As before at some places in previous chapters subsequently we need regularity
conditions that guarantee a Taylor expansion. If A is a k × m matrix with
entries ai,j we set ‖A‖ = sup‖x‖≤1 ‖Ax‖ . Then obviously ‖Ax‖ ≤ ‖A‖ ‖x‖ .
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Suppose O ⊆ R
d is open. We denote by C(k)(O) the class of all k times

continuously differentiable functions ψ : O → R. For the space of continu-
ous functions we simply write also C(O) instead of C(0)(O). Let (X ,A) be a
measurable space, and let C

(k)
m (O,X ) be defined as follows.

C
(k)
m (O,X ) = {ψ : ψ : O ×X → R,

θ �→ ψθ(x) belongs to C(k)(O), for every x ∈ X ,
x �→ ψθ(x) is measurable for every θ ∈ O}.

(7.98)

We note that every ψ ∈ C
(0)
m (O,X ) is a measurable function of (θ, x). This

follows from Problem 1.116. If ψ : O → R
l, then ψ ∈ C

(k)
m (O,X ) means that

ψ = (ψ1, ..., ψl)T and ψi ∈ C
(k)
m (O,X ), i = 1, ..., l. Then ψ̇ = JTψ , where Jψ

is the Jacobian Jψ(θ) = ((∂ψi/∂θj))1≤i≤l,1≤j≤d, is the derivative of ψ. The
columns of ψ̇θ are ∇ψi, i.e., the gradient of ψi, i = 1, ..., l. All derivatives refer
to the components of θ = (θ1, ..., θd). With these notations we see that the
first-order Taylor expansion in Theorem A.2 can be written as

ψθ+h − ψθ =
∫ 1

0

ψ̇T
θ+shhds, θ, θ + h ∈ O. (7.99)

(A9) Given a model (X ,A, (Pθ)θ∈Δ) with Δ ⊆ R
d, we assume that ψθ(x),

θ ∈ Δ, x ∈ X , satisfies for some open neighborhood U(θ0) of θ0 ∈ Δ0

(A) ψ ∈ C
(1)
m (U(θ0),X ).

(B) Eθ0(supθ∈U(θ0) ‖ ψ̇θ ‖) <∞.

(C) Eθ0 ‖ ψθ0 ‖2<∞.

A consequence of these regularity conditions is that differentiation and
expectation can be exchanged.

Problem 7.140.∗ If ψ ∈ C
(1)
m (U(θ0),X ) and condition (B) in (A9) is satisfied,

then
∇(Eθ0ψθ) = Eθ0 ψ̇θ, θ ∈ U(θ0).

The following statement on the remainder term in a stochastic Taylor
expansion is used subsequently at several places. For a set Δ ⊆ R

d we consider
the sequence of models (Xn,A⊗n, (P⊗n

θ )θ∈Δ), and denote by X1, ...,Xn the
projections which are i.i.d. with common distribution Pθ under P⊗n

θ .

Lemma 7.141. Let Δ ⊆ R
d be a Borel set and θ̂n : Xn →m Δ with θ̂n →P⊗n

θ0

θ0. If for some open neighborhood U(θ0) of θ0 ∈ Δ0 the function ϕ : Δ×X →
R
k satisfies ϕ ∈ Cm(U(θ0),X ), and it holds Eθ0 supθ∈U(θ0) ‖ϕθ‖ <∞, then

Sn =
1
n

∑n

i=1
ϕθ̂n

(Xi)→P⊗n
θ0 Eθ0ϕθ0 .
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If ψ : Δ×X → R
d satisfies (A) and (B) in (A9), then

Tn =
1
n

∑n

i=1

∫ 1

0

(ψ̇θ0+s(θ̂n−θ0)
(Xi)− ψ̇θ0(Xi))ds→P⊗n

θ0 0.

Proof. Let δ > 0 be so small that {‖θ − θ0‖ < δ} ⊆ U(θ0) and set
An = {‖ θ̂n − θ0 ‖< δ}. Then

‖Sn − Eθ0ϕθ0‖ IAn
≤ IAn

1
n

∑n

i=1
sup‖θ−θ0‖<δ ‖ϕθ(Xi)− ϕθ0(Xi)‖

+ ‖ 1
n

∑n

i=1
ϕθ0(Xi)− Eθ0ϕθ0 ‖= S1,n(δ) + S2,n.

To deal with S1,n(δ) we note that

lim
δ↓0

lim sup
n→∞

EP⊗n
θ0

S1,n(δ) (7.100)

≤ lim
δ↓0

EPθ0
sup‖θ−θ0‖<δ ‖ϕθ(X1)− ϕθ0(X1)‖ = 0

by Lebesgue’s theorem and the continuity of θ �→ ϕθ. Hence

P⊗n
θ0

(‖Sn − Eθ0ϕθ0‖ > ε) ≤ P⊗n
θ0

(An) + P⊗n
θ0

(S1,n(δ) + S2,n > ε)

≤ P⊗n
θ0

(An) + P⊗n
θ0

(S2,n >
ε

2
) + P⊗n

θ0
(S1,n(δ) >

ε

2
)

≤ P⊗n
θ0

(An) + P⊗n
θ0

(S2,n >
ε

2
) +

2
ε
EP⊗n

θ0
S1,n(δ).

It holds P⊗n
θ0

(An) → 0 by the consistency of θ̂n. The relation P⊗n
θ0

(S2,n >
ε/2) → 0 follows from the law of large numbers. Hence

lim sup
n→∞

P⊗n
θ0

(‖Sn − Eθ0ϕθ0‖ > ε) ≤ 2
ε
Eθ0 sup‖θ−θ0‖<δ ‖ϕθ(X1)− ϕθ0(X1)‖ .

Letting δ → 0 we get the first statement from (7.100). The proof of the second
statement is similar. It holds

‖Tn‖ IAn
≤ IAn

1
n

∑n

i=1
sup

‖θ−θ0‖<δ

‖ ψ̇θ(Xi)− ψ̇θ0(Xi) ‖= Tn(δ).

Condition (A), Lebesgue’s theorem, and the continuity of θ �→ ψ̇θ yield

lim
δ↓0

lim sup
n→∞

EP⊗n
θ0

Tn(δ) ≤ lim
δ↓0

Eθ0 sup
‖θ−θ0‖<δ

‖ ψ̇θ(X1)− ψ̇θ0(X1) ‖= 0.

The rest of the proof is similar to that of the first statement.
If θ̂n : Xn →m Δ is an M -estimator that minimizes the criterion function

Mn(θ,xn) = (1/n)
∑n

i=1 �θ(xi), xn = (x1, ..., xn) ∈ Xn, then

Ṁn(θ̂n(xn),xn) =
1
n

∑n

i=1
�̇θ̂n(xn)(xi) = 0, (7.101)
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provided that θ̂n(xn) belongs to the interior of Δ and � is differentiable with
respect to θ. It should be pointed out that the notion of an M -estimator is
not unique in the literature. Some authors call every solution of the equation
(7.101) anM -estimator. It is clear that a minimum point may not solve (7.101)
unless it is an interior point, and the solution of (7.101) may not be a minimizer
of the criterion function.

We know that even in exponential families the special M -estimator, an
MLE, may not exist for some outcomes of a sample. However, the proba-
bilities of the events on which an MLE fails to exist typically tend to zero
for increasing sample size. Let An be the event on which θ̂n is a minimizer.
Suppose �θ is differentiable with respect to θ, θ0 ∈ Δ0, and θ̂n is consistent
at θ0. If ε > 0 is small enough, then {θ : ‖θ − θ0‖ < ε} ⊆ Δ0. Hence for
Xn ∈ Bn = An ∩{‖ θ̂n− θ0 ‖< ε} the criterion function has a local minimum
at the interior point θ̂n(xn), so that

Ṁn(θ̂n(Xn),Xn) =
1
n

∑n

i=1
�̇θ̂n(Xn)(Xi) = 0, Xn ∈ Bn, Pn,θ0(Bn) → 1.

It turns out that this property of θ̂n only in conjunction with the consistency
is enough to develop the complete asymptotic theory of M -estimators. As
long as we know that a solution of (7.101) is consistent we don’t need to
check whether the criterion function Mn(θ,xn) really has a minimum at θ̂n.
This is a fortunate situation as the sufficient conditions for a function of
several variables to have a minimum at a given point are rather unwieldy. Now
we adopt a more general point of view. Regardless of whether the function
ψ : Δ × X →m R

m is given by ψθ = �̇θ or has been motivated by other
arguments, we say that a sequence of estimators θ̂n : Xn →m Δ solves the
M -equation asymptotically if

1
n

∑n

i=1
ψθ̂n(Xn)(Xi) = oPn,θ0

(0), (7.102)

where oPn,θ0
(0) is defined in (7.88). We study systematically sequences of

estimators that are consistent and solve a given equation asymptotically in
the sense of (7.102). We emphasize that equations of the above type are not
necessarily motivated by the minimization of a criterion function. For example,
the method of moments that expresses the moments by the parameters, and
estimates these moments in a nonparametric way, is another way to establish
equations of the type (7.101). For a systematic approach to estimators defined
by equations we refer to Godambe (1991).

The function ψθ characterizes the influence of the observed data on the
values of the estimators. In the so-called gross error model it is allowed that a
few values of the sample take on extremely large values and the goal is to con-
struct estimators that are robust to such occurrences. Roughly speaking we
have this property if the influence function is either bounded or tends slowly
to infinity for |x| → ∞. A precise formulation can be given by considering
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an estimator as a functional of the empirical distribution and by character-
izing the influence by suitable differentiability concepts for functionals. For
details we refer to the monographs by Huber (1981) and Hampel, Ronchetti,
Rousseeuw, and Stahel (1986), and the references given there.

We consider the sequence of models

(Xn,A⊗n, (Pn,θ)θ∈Δ), Pn,θ = P⊗n
θ , Δ open subset of R

d,

denote again by Xi : Xn → X the projections, and study estimators that
solve asymptotically the M -equation in the sense of (7.102).

Theorem 7.142. Assume that θ̂n : Xn →m Δ is a sequence of estimators
that is consistent at θ0 and solves the M -equation (7.102) asymptotically,
condition (A9) is fulfilled, Eθ0ψθ0 = 0, Σ1 = Eθ0ψθ0ψ

T
θ0
, Σ2 = Eθ0 ψ̇

T
θ0

, and
det(Σ2) �= 0. Then

√
n(θ̂n − θ0) admits the asymptotic linearization

√
n(θ̂n − θ0) = − 1√

n

∑n

i=1
Σ−1

2 ψθ0(Xi) + oP⊗n
θ0

(1), (7.103)

and it holds
L(
√
n(θ̂n − θ0)|P⊗n

θ0
) ⇒ N(0, Σ), (7.104)

where Σ = Σ−1
2 Σ1Σ

−T
2 .

Proof. Set Gn(θ) = (1/n)
∑n

i=1 ψθ(Xi). For U(θ0) in (A9) we set

θ̃n = θ̂nIU(θ0)(θ̂n) + θ0IΔ\U(θ0)(θ̂n).

Then θ̃n is again an estimator that is consistent at θ0 and satisfies Gn(θ̃n) =
oPn,θ0

(0). We apply the first-order Taylor expansion (see (7.99)) to Gn and
get

Gn(θ̃n)−Gn(θ0) = [
∫ 1

0

1
n

∑n

i=1
ψ̇T
θ0(θ0 + s(θ̃n − θ0),Xi)ds](θ̃n − θ0).

Note that Gn(θ̃n) = oPn,θ0
(0) implies

√
nGn(θ̃n) =

√
noPn,θ0

(0) = oPn,θ0
(0).

Hence by Lemma 7.141, the law of large numbers, and the fact that oPn,θ0
(0)

is a sequence oPn,θ0
(1), we get with Σ2 = Eθ0 ψ̇

T
θ0

,

−
√
nGn(θ0) = (Σ2 + oPn,θ0

(1))
√
n(θ̂n − θ0) + oPn,θ0

(1).

In view of Eθ0ψθ0 = 0 and the assumption (C) in (A9) we may apply the
central limit theorem for i.i.d. random vectors to
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√
nGn(θ0) = n−1/2

∑n

i=1
ψθ0(Xi)

and get L(
√
nGn(θ0)|Pn,θ0) ⇒ N(0, Σ1). Hence

√
nGn(θ0) is stochastically

bounded. An application of Problem 7.130 yields the statement (7.103). The
already established asymptotic normality of Gn(θ0) yields (7.104).

In the previous theorem we have proved the asymptotic normality of con-
sistent estimators that solve the M -equation asymptotically, where the M -
equation was a necessary condition for M -estimators. Let us go back one
more step to the contrast condition (7.31). If we set ψθ = �̇θ and formally
carry out the derivative under the expectation in (7.31), then we arrive at
Eθ0ψθ0 = 0 for every θ0 ∈ Δ. If this condition is at least satisfied in a neigh-
borhood of θ0, and the model is differentiable, then we may express Eθ0 ψ̇θ0
with the help of the L2-derivative. The formal calculation is nothing but the
product rule. Denote by Lθ0,θ the likelihood ratio of Pθ with respect to Pθ0 .
Then

0 = ∇Eθψθ = ∇Eθ0Lθ0,θψθ = Eθ0L̇θ0,θψ
T
θ + Eθ0Lθ0,θψ̇θ.

The next lemma justifies this calculation.

Lemma 7.143. Assume that the family (Pθ)θ∈Δ is L2-differentiable at θ0 with
derivative L̇θ0 . Suppose that ψ : Δ× X → R satisfies the conditions in (A9).
If in addition the conditions

limθ→θ0 Eθ ‖ψθ − ψθ0‖
2 = 0, limθ→θ0 Eθ0 ‖ψθ − ψθ0‖

2 = 0,

Eθψθ = 0, θ ∈ U(θ0),
(7.105)

are fulfilled, then Eθ0 ψ̇θ0 = −Eθ0ψθ0L̇
T
θ0

.

Proof. By the definition of L2-differentiability it holds Pθ 
 Pθ0 for
all θ in some neighborhood U0 ⊆ U(θ0) of θ0.Then Eθ0+hψθ0 − Eθ0ψθ0 =
−Eθ0+h(ψθ0+h−ψθ0) by Eθψθ = 0, θ ∈ U(θ0), for θ0 +h ∈ U0. The first condi-
tion in (7.105) yields supθ∈U1

Eθ ‖ψθ‖2 <∞ for some neighborhood U1 ⊆ U0.

Hence Eθ0+hψθ0−Eθ0ψθ0 = (Eθ0ψθ0L̇
T
θ0

)h+o(h) by Proposition 1.111. Further-

more by (Lθ0+h,θ0−1) = (L1/2
θ0+h,θ0

−1)(L1/2
θ0+h,θ0

+1) and Schwarz’ inequality,

‖Eθ0+h(ψθ0+h − ψθ0)− Eθ0(ψθ0+h − ψθ0)‖
= ‖Eθ0(Lθ0+h,θ0 − 1)(ψθ0+h − ψθ0)‖
≤ (Eθ0(L

1/2
θ0+h,θ0

− 1)2)1/2(Eθ0(L
1/2
θ0+h,θ0

+ 1)2 ‖ψθ0+h − ψθ0‖
2)1/2.

The first factor is O(‖h‖) by the definition of L2-differentiability; see Lemma
1.106. To deal with the second factor we remark that (

√
x+1)2 = x+2

√
x+1 ≤

2x+ 2. Hence

Eθ0((L
1/2
θ0+h,θ0

+ 1) ‖ψθ0+h − ψθ0‖)2

≤ 2Eθ0 ‖ψθ0+h − ψθ0‖
2 + 2Eθ0+h ‖ψθ0+h − ψθ0‖

2
,
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which tend to zero by assumption (7.105). Thus we have by Eθψθ = 0

(Eθ0ψθ0L̇
T
θ0)h+ o(h) = −Eθ0+h(ψθ0+h − ψθ0) = −Eθ0(ψθ0+h − ψθ0) + o(‖h‖).

To complete the proof we apply Problem 7.140 to Eθ0ψθ.
The next statement is a direct consequence of the last lemma and (7.103).

Proposition 7.144. Suppose the family (Pθ)θ∈Δ is L2-differentiable at θ0
with derivative L̇θ0 . Suppose condition (A9) is satisfied and (7.105) holds. Sup-
pose θ̂n : Xn →m Δ is a sequence of consistent estimators that is consistent
at θ0 and solves the M -equation (7.102) asymptotically. If Σ0 = Eθ0ψθ0L̇

T
θ0

is
nonsingular, then

√
n(θ̂n − θ0) =

1√
n

∑n

i=1
Σ−1

0 ψθ0(Xi) + oP⊗n
θ0

(1).

Theorem 7.142 is a basic result in the theory of M -estimators. It was
established and reestablished by several authors; see, for example, Jurečková
and Sen (1996), Chapter 5.2, and Liese and Vajda (2004). Later on we use this
theorem to establish the limit distribution for consistent MLEs. In the present
section we apply this theorem to regression models with random covariates.
We consider the nonlinear regression model (7.70) and set Xn = (X1, ...,Xn)
and Yn = (Y1, ..., Yn).

The M -equation in (7.102) that is associated with the minimization of

Mn(θ) =
1
n

∑n

i=1
�(Yi − gθ(Xi))

is as follows.

Ṁn(θ̂n) =
1
n

∑n

i=1
ψθ̂n(Xn,Yn)(Xi, Yi) = oPn,θ0

(0), (7.106)

where Pn,θ0 = L(Xn,Yn), and ψθ and its derivative are given by

ψθ(Xi, Yi) = −�̇(Yi − gθ(Xi))ġθ(Xi),
ψ̇θ(Xi, Yi) = �̈(Yi − gθ(Xi))(ġθ(Xi))(ġθ(Xi))T − �̇(Yi − gθ(Xi))g̈θ(Xi).

As we assume that the estimators are already known to be consistent we
operate with the corresponding M -equation and require that

σ2 := Eθ0(�̇(ε1))
2 <∞, Eθ0 �̇(ε1) = 0,

Eθ0 |�̈(ε1)| <∞, λ := Eθ0 �̈(ε1) �= 0

Eθ0 ‖ġθ0(X1)‖2 <∞, Eθ0 ‖g̈θ0(X1)‖2 <∞.

(7.107)

We also suppose that

Σ0 = Eθ0(ġθ0(X1))(ġθ0(X1))T is nonsingular,

Eθ0 ‖ψθ0(X1, Y1)‖2 <∞, Eθ0(supθ∈U(θ0) ‖ ψ̇θ(X1, Y1) ‖) <∞.

(7.108)
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We note that by the independence of the ε1 and X1,

Eθ0ψθ0(X1, Y1) = −Eθ0 �̇(ε1)Eθ0 ġθ0(X1) = 0,

Eθ0(ψθ0(X1, Y1))(ψθ0(X1, Y1))T = σ2Σ0, and Eθ0 ψ̇θ0(X1, Y1) = λΣ0.

Theorem 7.145. Let Y1, ..., Yn be from the regression model (7.70). Suppose
that � ∈ C(2)(R), g ∈ C

(2)
m (U(θ0),X ), and (7.107) and (7.108) are satisfied. If

θ̂n : R
n × R

n →m Δ is consistent at θ0 and satisfies (7.106), then

L(
√
n(θ̂n(Xn,Yn)− θ0)|Pn,θ0) ⇒ N(0, Σ),

where Σ = (σ2/λ2)Σ−1
0 with Σ0 from (7.108) and σ2 and λ in (7.107).

Proof. We replace the observations Xi by (Xi, Yi) and apply Theorem
7.142 to the function �θ(x, y) = �(y − gθ(x)). The conditions for ψθ = �̇θ in
(A9) follow immediately from (7.107) and (7.108). The structure of Σ follows
from Σ1 = Eθ0ψθ0ψ

T
θ0

= σ2Σ0 and Σ2 = Eθ0 ψ̇
T
θ0

= λΣT
0 = λΣ0.

Example 7.146. The conditions in the above theorem simplify if the function � is
more specific or the regression model is linear. Let us consider robust estimators for
the linear regression model Yi = θT

0 Xi + εi. Robust estimators belong to �-functions
that do not increase too rapidly if |t| → ∞. This condition guarantees that possible
gross errors have only a small influence on the estimator. Suppose that g(θ, x) = θTx,
and that � is twice continuously differentiable and �, �̇, �̈ are bounded. We suppose
that E�̇(ε1) = 0, E�̈(ε1) �= 0, and E ‖X1‖2 <∞. Let θ̂n be a sequence of consistent
estimators that satisfy

1

n

∑n

i=1
�̇(Yi − θ̂T

nXi)Xi = oPn,θ0
(0).

To calculate the matrix Σ0 we note that ġθ0(X1) = X1. Hence Σ0 = E(X1X
T
1 ),

which we assume to be nonsingular. Then all conditions of Theorem 7.145 are sat-
isfied and L(

√
n(θ̂n − θ0)|Pn,θ0) ⇒ N(0, Σ), where

Σ =
E(�̇(ε1))

2

(E�̈(ε1))2
(E(X1X

T
1 ))−1.

A simple example is �(t) = t2. Then the above M -equation has an explicit solution.
Indeed,

1

n

∑n

i=1
�̇(Yi −XT

i θ̂n)Xi =
2

n

∑n

i=1
(YiXi −XiX

T
i θ̂n).

Hence we set

θ̂n =

{
( 1

n

∑n
i=1 XiX

T
i )−1( 1

n

∑n
i=1 YiXi) if det( 1

n

∑n
i=1 XiX

T
i ) �= 0,

θ̃ otherwise,

where θ̃ is any fixed value from the parameter space. The strong law of large numbers
yields
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1

n

∑n

i=1
XiX

T
i → EX1X

T
1 , P-a.s.

If the matrix EX1X
T
1 is nonsingular, then the probabilities of the events An =

{det((1/n)
∑n

i=1 XiX
T
i ) �= 0} tend to one. Hence θ̂n satisfies (7.106). To verify that

θ̂n is consistent we remark that

1

n

∑n

i=1
YiXi → EY1X1 = E(θT

0 X1 + ε1)X1 = E(X1X
T
1 )θ0, P-a.s.,

by the strong law of large numbers, provided that Eε1 = 0. Hence θ̂n is strongly
consistent. Suppose that Eεi = 0 and Eε2

i <∞. The constants σ2 and λ in (7.107) are

given by σ2 = E(2εi)
2 and λ = E2 = 2. Hence we see that L(

√
n(θ̂n − θ0)|Pn,θ0) ⇒

N(0, Σ), where Σ = (Eε2
1)(E(X1X

T
1 ))−1.

7.6.2 Asymptotic Distributions of MLEs

Let M = (X ,A, (Pθ)θ∈Δ) be a dominated model, where Δ ⊆ R
d is a Borel

set. We consider the sequence of models

(Xn,A⊗n, (P⊗n
θ )θ∈Δ),

where the projections Xi : Xn → X , i = 1, ..., n, are i.i.d. under P⊗n
θ . Set fθ =

(dPθ/dμ) and recall that the log-likelihood is given by Λn(θ) =
∑n

i=1 ln fθ(Xi),
where Λn(θ) = Λn(θ,Xn) is used for brevity. The aim of this section is to study
the limit distribution of

√
n(θ̂n − θ0) when θ̂n is an MLE. We apply the the-

ory of M -estimators for the likelihood contrast function �θ(x) := − ln fθ(x).
Similar to the considerations of the asymptotic normality of M -estimators we
suppose that the MLE θ̂n is consistent. As a consequence of the considera-
tions on M -estimators (see (7.102)) and the definition of an asymptotic MLE
(see (7.40)), we get that every consistent sequence of MLEs is an asymptotic
solution of the likelihood equation. This means that

Λ̇n(θ̂n) =
∑n

i=1
∇ ln fθ̂n

(Xi) = oP⊗n
θ0

(0), (7.109)

for the log-likelihood Λn(θ) =
∑n

i=1 ln fθ(Xi), provided that ln fθ(x) is differ-
entiable with respect to θ, θ̂n is consistent, and θ0 is an inner point of Δ. The
sharper requirement

Λ̇n(θ̂n) =
∑n

i=1
∇ ln fθ̂n

(Xi) = 0, (7.110)

is called the likelihood equation, which may not have a solution for every
sample outcome. We have discussed this issue for exponential families in detail
in Proposition 7.93. Similarly as for M -estimators we need some regularity
conditions. The following assumptions may be considered as a tightening of
the regularity condition (A6).

(A10) Let M = (X ,A, (Pθ)θ∈Δ), where Δ ⊆ R
d is open. Suppose that for

some μ ∈ Mσ(A) and θ0 ∈ Δ0 the following conditions hold.
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(A) Pθ 
 μ, fθ(x) = dPθ

dμ (x) > 0, (θ, x) ∈ Δ×X .

(B) f ∈ C
(2)
m (U(θ0),X ), for some open neighborhood U(θ0) ⊆ Δ.

(C)
∫
∇∇T fθdμ = 0, θ ∈ U(θ0).

(D) Eθ0(supθ∈U(θ0)

∥∥∇∇T ln fθ
∥∥) <∞.

(E) Eθ0(supθ∈U(θ0) ‖∇ ln fθ‖2) <∞.

The next lemma shows that under (A10) the function ψθ = −∇ ln fθ
satisfies the regularity conditions in (A9).

Lemma 7.147. If condition (A10) is satisfied, then the following hold.

(A) The family (Pθ)θ∈U(θ0) is L2-differentiable with derivative L̇θ = ∇ ln fθ,
and ψθ = −L̇θ satisfies condition (A9).

(B) The Fisher information I(θ) := EθL̇θL̇
T
θ is continuous in U(θ0), and

I(θ) = −Eθ(∇∇T ln fθ), (7.111)∫
∇fθdμ = EθL̇θ = 0, θ ∈ U(θ0). (7.112)

Proof. First of all we note that by fθ > 0 and condition (B) the func-
tion θ �→ ∇ ln fθ(x) is twice continuously differentiable for every x and
ψ ∈ C

(1)
m (U(θ0),X ). The conditions (B) and (C) in (A9) follow from (D)

and (E) in (A10). To prove the L2-differentiability we note that (A10) im-
plies (A6). Thus we have only to prove the continuity of I(θ) to get the L2-
differentiability from Theorem 1.117. This continuity follows from the condi-
tion (E), the continuity of θ �→ ∇ ln fθ(x) for every x, and Lebesgue’s theorem.
The first equality in (7.112) follows from Theorem 1.117. The second equal-
ity in (7.112) follows for every θ ∈ U(θ0) from the L2-differentiability and
Proposition 1.110. Furthermore,

∇∇T ln fθ = ∇(
1
fθ
∇T fθ) =

1
fθ
∇∇T fθ −

1
f2
θ

(∇fθ)(∇T fθ)

=
1
fθ
∇∇T fθ − (∇ ln fθ)(∇ ln fθ)T .

Integrating fθ(∇∇T ln fθ) = ∇∇T fθ − (∇ ln fθ)(∇ ln fθ)T fθ with respect to
μ, and using (C), we get the statement (7.111).

Now we are ready to establish the asymptotic normality of MLEs. As in
the case of M -estimators we assume that the estimators are already known
to be consistent.

Theorem 7.148. (Asymptotic Normality of MLEs) Let (X ,A, (Pθ)θ∈Δ)
satisfy condition (A10), and θ̂n : Xn →m Δ be consistent at θ0 and fulfil
(7.109). If the Fisher information matrix is nonsingular, then
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√
n(θ̂n − θ0) =

1√
n

∑n

i=1
I−1(θ0)L̇θ0(Xi) + oP⊗n

θ0
(1), (7.113)

L(
√
n(θ̂n − θ0)|P⊗n

θ0
) ⇒ N(0, I−1(θ0)).

Proof. The function ψθ(x) = −∇ ln fθ(x) satisfies condition (A9). As

Σ1 = Eθ0(ψθ0(X1))(ψθ0(X1))T = Eθ0L̇θ0L̇
T
θ0 = I(θ0),

Σ2 = Eθ0 ψ̇θ0(X1) = −Eθ0(∇∇T ln fθ0(x)) = I(θ0),

and Eθ0ψθ0 = Eθ0L̇θ0 = 0, we get the statement from Theorem 7.142.
We apply the above theorem to an exponential family.

Example 7.149. Let (Pθ)θ∈Δ be an exponential family with natural parameter θ
and generating statistic T. Then ln fθ(x) = 〈θ, T (x)〉 −K(θ),

L̇θ = ∇ ln fθ(x) = T (x)−∇K(θ) and ∇∇T ln fθ(x) = −∇∇TK(θ).

We see from here that all conditions in (A10) are satisfied, where (C) follows di-

rectly from Theorem 1.17. It holds I(θ) = ∇∇TK(θ). We consider the estimator θ̃n

introduced in (7.52). We have shown in Proposition 7.98 that θ̃n is consistent and
an asymptotic solution of the likelihood equation

∑n

i=1
T (Xi)− n∇K(θ̃n) = o

P⊗n
θ0

(0).

If the standard assumptions (A1) and (A2) are satisfied, then det(I(θ)) �= 0 and we
get from Theorem 7.148 that

L(
√
n(θ̃n − θ0)|P⊗n

θ0
) ⇒ N(0, I−1(θ0)).

Next we illustrate the limit distribution of an MLE with the location
model.

Example 7.150. Suppose f is a Lebesgue density that is everywhere positive and
twice continuously differentiable. We consider the location family fθ(x) = f(x− θ),
θ ∈ Δ = R. Then

∂

∂θ
ln fθ(x) = − ḟ(x− θ)

f(x− θ)
,

∂2

∂θ2
ln fθ(x) =

f(x− θ)f̈(x− θ) + (ḟ(x− θ))2

f2(x− θ)
,

and the Fisher information is independent of θ and given by I =
∫

(ḟ(t))2/f(t)dt,
provided the integral is finite. If X1, ..., Xn have the density f(x−θ0), then condition
(A10) is satisfied if

∫
f̈(x)dx = 0,

∫
sup

θ:|θ|<ε

(
ḟ(x− θ)

f(x− θ)
)2f(x)dx <∞,

∫
sup

θ:|θ|<ε

|f̈(x− θ)|
f(x− θ)

f(x)dx <∞.

(7.114)

The MLE θ̂n satisfies the likelihood equation

∑n

i=1
ḟ(Xi − θ̂n)/f(Xi − θ̂n) = 0.
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Suppose that f satisfies in addition the conditions in Example 7.81. Then from here
we see that the MLE θ̂n is strongly consistent. Hence under the condition (7.114)
and I > 0 Theorem 7.148 yields that

√
n(θ̂n − θ0) = −

∑n

i=1
I−1ḟ(Xi − θ0)/f(Xi − θ0) + o

P⊗n
θ0

(1),

L(
√
n(θ̂n − θ0)|P⊗n

θ0
) ⇒ N(0, I−1).

The likelihood equation in (7.110) is in general a nonlinear system of equa-
tions. To solve it one has to use numerical methods, e.g. a Newton approxi-
mation or some suitable modification. For all these methods one needs some
starting values. One idea that goes back to LeCam is to start with any

√
n-

consistent estimator θ∗n and then to make a one-step Newton approximation.
Recall that by

√
n-consistency of θ∗n we mean that

√
n(θ∗n − θ0) = OP⊗n

θ0
(1).

The somewhat surprising fact is that the new estimator θ̃n obtained from
the one-step Newton approximation differs from the MLE θ̂n only by terms
oP⊗n

θ0
(1/
√
n), so that

√
n(θ̃n − θ0) and

√
n(θ̂n − θ0) have the same limit dis-

tribution. To be more specific let us assume that condition (A10) is satisfied.
Then the log-likelihood function Λn(θ) =

∑n
i=1 ln fθ(Xi) is twice continu-

ously differentiable and the one-step Newton approximation to the likelihood
equation Λ̇n(θ) = 0 is a solution of the equation

Λ̇n(θ∗n) + Λ̈n(θ∗n)(θ − θ∗n) = 0. (7.115)

We see from Lemma 7.141 that (1/n)Λ̈n(θ∗n) →P⊗n
θ0 Eθ0(∇∇T ln fθ0) = −I(θ0).

If the Fisher information matrix is nonsingular, then P⊗n
θ0

(An) → 1, where
An = {det(Λ̈n(θ∗n)) �= 0}. On An we find the one-step Newton approximation
by solving the equation (7.115) and set

θ̃n = [θ∗n − (Λ̈n(θ∗n))−1Λ̇n(θ∗n)]IAn
+ θ∗nIXn\An

. (7.116)

The first statement in Lemma 7.141 gives

Λ̈n(θ∗n) = oP⊗n
θ0

(n)− nI(θ0).

Using a first-order Taylor expansion we get from the second statement in
Lemma 7.141,

Λ̇n(θ∗n) = Λ̇n(θ0) + [
1
n

∫ 1

0

Λ̈n(θ0 + s(θ∗n − θ0))ds]n(θ∗n − θ0)

= Λ̇n(θ0) + (oP⊗n
θ0

(n)− nI(θ0))(θ∗n − θ0). (7.117)

Hence,

(θ̃n − θ∗n)IAn
= −(oP⊗n

θ0
(n)− nI(θ0))−1Λ̇n(θ0)IAn

+ (oP⊗n
θ0

(n)− nI(θ0))−1(oP⊗n
θ0

(n)− nI(θ0))(θ∗n − θ0)IAn
.
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Multiplying this equation with
√
n and using P⊗n

θ0
(An) → 0 we get

√
n(θ̃n − θ∗n) = −(oP⊗n

θ0
(1)− I(θ0))−1n−1/2Λ̇n(θ0) + (oP⊗n

θ0
(1)− I(θ0))−1

×(oP⊗n
θ0

(1)− I(θ0))
√
n(θ∗n − θ0) + oP⊗n

θ0
(1).

As the distribution of n−1/2Λ̇n(θ0) = n−1/2
∑n

i=1 L̇θ0(Xi) tends to a normal
distribution we see that n−1/2Λ̇n(θ0) is stochastically bounded.

√
n(θ∗n − θ0)

is stochastically bounded by assumption. Hence,
√
n(θ̃n − θ∗n) = I−1(θ0)n−1/2Λ̇n(θ0)−

√
n(θ∗n − θ0) + oP⊗n

θ0
(1),

√
n(θ̃n − θ0) = I−1(θ0)n−1/2Λ̇n(θ0) + oP⊗n

θ0
(1). (7.118)

Now we compare the one-step Newton approximation θ̃n with the MLE θ̂n.

Proposition 7.151. If condition (A10) is satisfied, and θ∗n is any estimator
that is

√
n-consistent at θ0, then the one-step Newton approximation θ̃n in

(7.116) satisfies (7.118) and

L(
√
n(θ̃n − θ0)|P⊗n

θ0
) ⇒ N(0, I−1(θ0)).

If θ̂n is a consistent estimator that solves the likelihood equation asymptoti-
cally (i.e., if it holds (7.109)), then the one-step Newton approximation θ̃n in
(7.116) is asymptotically equivalent to θ̂n in the sense that

√
n(θ̂n − θ̃n) =

oP⊗n
θ0

(1).

Proof. The first statement follows from the already established relation
(7.118). To prove the second statement we have only to use (7.113).

In (7.117) we have approximated n−1Λ̈n(θ∗n) by −I(θ0). Under assumption
(A10) the Fisher information is a continuous function of θ in a neighborhood
of θ0. Hence n−1Λ̈n(θ∗n) = −I(θ∗n) + oP⊗n

θ0
(1). If we use this approximation

instead of (7.117), then by almost the same arguments as above one can see

that the modified one-step approximation ˜̃θn = θ∗n + I(θ∗n)−1Λ̇n(θ∗n) satisfies

√
n(θ̂n − ˜̃θn) = oP⊗n

θ0
(1), L(

√
n(˜̃θn − θ0)|P⊗n

θ0
) ⇒ N(0, I−1(θ0)). (7.119)

Example 7.152. We consider the location model f(x−θ), θ ∈ R, where f is a pos-
itive and twice continuously differentiable Lebesgue density with Fisher information
I(θ) =

∫
[ḟ(x− θ)]2[f(x− θ)]−1dx =

∫
[ḟ(x)]2[f(x)]−1dx =: I <∞. It holds

Λ̇n(θ,xn) = −
∑n

i=1
ḟ(xi − θ)/f(xi − θ),

and the modified one-step approximation to the likelihood equation is given by˜̃
θn = θ∗n + I−1Λ̇n(θ∗n). If θ∗n is a

√
n-consistent estimator and the condition (7.114)
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is satisfied, then (7.119) holds. If f has a finite second moment and
∫
xf(x)dx = 0,

then we may estimate θ by Xn, and the
√
n-consistency follows from the central

limit theorem. However, if f is the Cauchy distribution, then the moment condition
is not satisfied. But then we may estimate the location parameter θ by the median
which is

√
n-consistent in view of Example 7.139.

We conclude this section with a reference to Searle, Casella, and McCulloch
(1992) who have studied the performance of the one-step approximation.

7.6.3 Asymptotic Normality of the Posterior

In Section 7.5.2 we have studied the posterior distributions in the frequen-
tist model and have given conditions that imply the consistency. It is clear
that asymptotic normality can only be achieved by an appropriate center-
ing and scaling. The famous Bernstein–von Mises theorem states that the
right centering point is the MLE, and that after scaling with

√
n the pos-

terior distributions converge to a normal distribution. Under an additional
moment condition on the prior the Bernstein–von Mises theorem implies the
asymptotic equivalence of the MLE and the Bayes estimator. We start with
an example to illustrate the situation.

Example 7.153. With X1, ..., Xn as the coordinate projections the MLE for the
family (((1−p)δ0 +pδ1)

⊗n)p∈(0,1) is the relative frequency p̂n = (1/n)
∑n

i=1 Xi. On
the other hand, we have seen in Example 7.114 that the Bayes estimator for a Beta
prior under the quadratic loss is the conditional expectation, given by

E(Θ|X1, ..., Xn) =
α + β

α + β + n

α

α + β
+

n

α + β + n

1

n

∑n

i=1
Xi.

Hence in the frequentist model (7.78), where the Xi are i.i.d., we get

√
n(E(Θ|X1, ..., Xn)− p̂n)

=

√
n(α + β)

α + β + n

α

α + β
+
√
n(

n

α + β + n
− 1)

1

n

∑n

i=1
Xi

=

√
n(α + β)

α + β + n

α

α + β
−
√
n

α + β

α + β + n

1

n

∑n

i=1
Xi →P 0.

This means especially that
√
n(E(Θ|X1, ..., Xn)− p) and

√
n(p̂n − p) have the same

limit distribution and the Bayes estimator shares the asymptotic optimality of the
MLE.

We assume now that the parameter set Δ is an open subset of R
d, the

prior Π has a density π with respect to the Lebesgue measure λd, the model
(Pθ)θ∈Δ is dominated, and the family (fθ)θ∈Δ satisfies the condition (A5).
We set π(θ) = 0 for θ ∈ R

d\Δ. Let the density of the posterior distribution
be defined as in (7.79); that is, for xn = (x1, ..., xn) ∈ Xn we have
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πn(θ|xn) =

{ 1
mn(xn)

∏n
i=1 fθ(xi)π(θ) if mn(xn) > 0,

π(θ) if mn(xn) = 0, where
(7.120)

mn(xn) =
∫ ∏n

i=1 fθ(xi)π(θ)λd(dθ).

We denote the log-likelihood function by Λn(θ,xn) =
∑n

i=1 ln fθ(xi). Suppose
that θ̂n : Xn →m Δ is consistent at θ0 and an asymptotic solution of the
likelihood equation, i.e., it holds (7.109). In the Bayes model πn(θ|xn) is the
posterior density of Θ under the prior Π. We center Θ at θ̂n and consider the
scaled variable

√
n(Θ − θ̂n) which has, for mn(xn) > 0, the posterior density

π∗
n(η|xn) =

exp{Un(η,xn)}π(θ̂n(xn) + η/
√
n)∫

exp{Un(η,xn)}π(θ̂n(xn) + η/
√
n)λd(dη)

, where

Un(η,xn) = Λn(θ̂n(xn) + η/
√
n,xn)− Λn(θ̂n(xn),xn), η ∈ R

d.

Although the density π∗
n(η|xn) has been obtained from the Bayes model, where

Θ is a random variable, we may consider π∗
n(η|xn) as a statistic in the frequen-

tist model (Xn,A⊗n, P⊗n
θ0

) and study the asymptotic as n tends to infinity.
In a first step we expand Un(η,Xn).

Lemma 7.154. Suppose that condition (A10) is satisfied, where Δ is an open
subset of R

d. Suppose θ̂n : Xn →m Δ is consistent at θ0 and an asymptotic
solution of the likelihood equation; that is, it holds (7.109). Then

Un(η,Xn) →P⊗∞
θ0 −1

2
ηT I(θ0)η

for every fixed η ∈ R
d, where I(θ0) is the Fisher information matrix.

Proof. Set An = {xn : Λ̇n(θ̂n(xn),xn) = 0}. Using a second-order Taylor
expansion (see Theorem A.2) we get for

Vn = Un(η,Xn)− 1
2
ηT Λ̈n(θ̂n(Xn),Xn)η,

the representation

VnIAn
(Xn)

=
1
n
ηT [
∫ 1

0

(1− s)(Λ̈n(θ̂n(Xn) +
s√
n
η,Xn)− Λ̈n(θ̂n(Xn),Xn))ds]ηIAn

(Xn).

Set Bn,ε = {‖ θ̂n(Xn) − θ0 ‖≤ ε/2} and denote by ‖A‖ the matrix norm
‖A‖ = sup‖x‖≤1 ‖Ax‖ . Then for n−1/2 ≤ ε/2 it holds

En,θ0 |Vn|IAn
(Xn)

≤ ‖η‖2 1
2n

∑n

i=1
En,θ0 sup

‖θ−θ0‖≤ε

∥∥∇∇T ln fθ(Xi)−∇∇T ln fθ0(Xi)
∥∥

≤ ‖η‖2 1
2
Eθ0 sup

‖θ−θ0‖≤ε

∥∥∇∇T ln fθ(X1)−∇∇T ln fθ0(X1)
∥∥ .
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Hence limε→0 supn En,θ0 | Vn|IAn
(Xn) = 0 and

P⊗n
θ0

(|Vn| > δ) ≤ 1
δ

sup
n

En,θ0 |Vn|IAn
(Xn) + P⊗n

θ0
(An).

Taking first n→∞ and then ε→ 0 we get

Vn →P⊗n
θ0 0.

To complete the proof we apply Lemma 7.141 to ϕθ = ∇∇T ln fθ to get

Λ̈n(θ̂n(Xn),Xn) =
1
n

∑n

i=1
∇∇T ln fθ̂n(Xn)(Xi)

= Eθ0∇∇T ln fθ0(X1) + oP⊗n
θ0

(1) = −I(θ0) + oP⊗n
θ0

(1).

Hence

Un(η,Xn) = Vn +
1
2
ηT Λ̈n(θ̂n(Xn),Xn)η = −1

2
ηT I(θ0)η + oP⊗n

θ0
(1).

Theorem 7.155. (Bernstein–von Mises) Assume that condition (A10)
is satisfied, where Δ is an open subset of R

d. Suppose θ̂n : Xn →m Δ is
consistent at θ0 and an asymptotic solution of the likelihood equation; that
is, (7.109) holds. If the prior Π has a density π with respect to the Lebesgue
measure which is continuous at θ0, then

exp{Un(η,Xn)}π(θ̂n(Xn) + η/
√
n) →P⊗∞

θ0 π(θ0) exp{−1
2
ηT I(θ0)η}. (7.121)

If in addition the matrix I(θ0) is nonsingular, π(θ0) > 0, and the condition∫
exp{Un(η,Xn)}π(θ̂n(Xn) + η/

√
n)λd(dη) (7.122)

→P⊗∞
θ0 π(θ0)(2π)d/2(det(I(θ0)))−1/2

holds, then ∫
|π∗

n(η|Xn)− ϕ0,I−1(θ0)(η)|λd(dη)→P⊗∞
θ0 0. (7.123)

Corollary 7.156. If instead of (7.122) the condition∫
(1 + ‖η‖) exp{Un(η,Xn)}π(θ̂n(Xn) + η/

√
n)λd(dη) (7.124)

→ P⊗∞
θ0 π(θ0)

∫
(1 + ‖η‖) exp{−1

2
ηT I(θ0)η}λd(dη)

holds, then∫
(1 + ‖η‖)|π∗

n(η|Xn)− ϕ0,I−1(θ0)(η)|λd(dη) →P⊗∞
θ0 0. (7.125)
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Proof. The first statement follows from Lemma 7.154, the continuity of
π, and the consistency of θ̂n. To prove the second statement, we introduce a
probability measure μ that is equivalent to the Lebesgue measure by setting
μ(dη) = h(η)λd(dη), where h is a positive and bounded probability density.
Furthermore, let

Vn(η,Xn) = exp{Un(η,Xn)}π(θ̂n(Xn) + η/
√
n),

Wn(η,Xn) = Vn(η,Xn)− π(θ0) exp{−1
2
ηT I(θ0)η}.

Then the statement (7.121) may be written as

gn(η) := En,θ0

|Wn(η,Xn)|
1 + |Wn(η,Xn)| → 0.

As 0 ≤ gn(η) ≤ 1 we get
∫
gn(η)μ(dη) → 0 and from Fubini’s theorem that

∫ |Wn(η,Xn(ω))|
1 + |Wn(η,Xn(ω))| (P

⊗∞
θ0

⊗ μ)(dω, dη) → 0.

Hence,
Wn(η,Xn)→P⊗∞

θ0
⊗μ 0. (7.126)

The integrals in (7.123) are bounded by 2. If (7.123) is not true, then by (7.126)
and by turning to a suitable subsequence nk we find a set A ∈ A⊗∞ ⊗ Bd

with (P⊗∞
θ0

⊗ μ)(A) = 1 and a set B ∈ A⊗∞ with P⊗∞
θ0

(B) = 1 such that

lim inf
k→∞

Enk,θ0

∫
|π∗

nk
(η|Xn)− ϕ0,I−1(θ0)(η)|λd(dη) > 0, (7.127)

and

limk→∞ Vnk
(η,Xnk

(ω)) = π(θ0) exp{− 1
2η

T I(θ0)η}, (ω, η) ∈ A,∫
Vnk

(η,Xnk
(ω))λd(dη) → π(θ0)(2π)d/2

√
det(I(θ0)), ω ∈ B.

(7.128)

Set Aω = {η : (ω, η) ∈ A}. Then Aω ∈ Bd, and by Fubini’s theorem
∫

[
∫
IAω

(η)μ(dη)]P⊗∞
θ0

(dω) =
∫
IA(ω, η)(P⊗∞

θ0
⊗ μ)(dω, dη) = 1.

Hence P⊗∞
θ0

({ω : μ(Aω) = 1}) = 1, and by the equivalence of the measures μ
and λd we get P⊗∞

θ0
({ω : λd(Rd\Aω) = 0}) = 1. Put

C = {ω : λd(Rd\Aω) = 0} ∩B.

Then for every fixed ω ∈ C we obtain from

π∗
nk

(η|Xnk
(ω)) = (

∫
Vnk

(η,Xnk
(ω))λd(dη))−1Vnk

(η,Xnk
(ω))
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and (7.128) that

π∗
nk

(η|Xnk
(ω)) → ϕ0,I−1(θ0)(η), λd-a.e., and

∫
π∗
nk

(η|Xn)λd(dη) → 1.

An application of Scheffé’s lemma (see Lemma A.19) gives for every ω ∈ C,

lim
k→∞

∫
|π∗

nk
(η|Xnk

(ω))− ϕ0,I−1(θ0)(η)|λd(dη) = 0.

As P⊗∞
θ0

(C) = 1 we may take the expectation, which we may exchange with
the limit as the integrals are bounded by 2, and obtain a contradiction to
(7.127). The proof of the corollary is similar.

Remark 7.157. The Bernstein–von Mises theorem has a long history. An early
version is in Laplace (1820). This result was reobtained by Bernstein (1917) and
von Mises (1931). More general versions are due to LeCam (1958), Bickel and Yahav
(1969), and Ibragimov and Has’minskii (1972, 1981). Ghosh, Sinha, and Joshi (1981)
give expansions of the posterior that refine posterior normality. For further references
we refer to Ghosh and Ramamoorthi (2003). The version that we have presented
here follows Ferguson (1986).

We finally note that the assumption that Xn consists of i.i.d. components is
used only at a few places. Indeed, to establish Lemma 7.154 one needs only that
the MLE is consistent and that the sequence Λ̈n(θ) is equicontinuous at θ0 in the

sense that we may plug in θ̂n(Xn) without changing the asymptotic. For details
in the more general situation where X1, X2, ... are not necessarily i.i.d. we refer to
Schervish (1995) and the references there.

In the above version of the Bernstein–von Mises theorem, besides a stan-
dard Taylor expansion, the crucial points are the conditions (7.122) and
(7.124). These conditions guarantee a uniform integrability of the correspond-
ing functions of η which, together with the pointwise convergence in (7.121),
provide the L1-convergence. To find sufficient conditions for (7.122) and
(7.124) one needs assumptions that allow one to control the log-likelihood and
henceforth the posterior density for large η. For details we refer to Ghosh and
Ramamoorthi (2003) and Lehmann (1998). Here we only show that (7.122)
and (7.124) are satisfied for exponential families.

Example 7.158. We consider a one-parameter exponential family (Pθ)θ∈Δ and
recall that the density is given by fθ(x) = exp{θT (x)−K(θ)}. If θ0 ∈ Δ0, then by
Proposition 7.93 and the arguments in the proof of Proposition 7.98 there is a set
A ∈ A

⊗∞ with P⊗∞
θ0

(A) = 1 such that for every ω ∈ A the MLE θ̂n(Xn(ω)) exists
for all sufficiently large n,

K̇(θ̂n(Xn(ω))) =
1

n

∑n

i=1
T (Xi(ω)) and θ̂n(Xn(ω))→ θ0.

We fix ε > 0 so that C = {θ : |θ − θ0| ≤ 2ε} ⊆ Δ0. Put D0 = infθ∈C K̈(θ). Then
D0 > 0, and for all sufficiently large n and |η| < ε

√
n,
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Un(η,Xn(ω))

= n[
η√
n

1

n

∑n

i=1
T (Xi(ω))−K(θ̂n(Xn(ω)) + η/

√
n) + K(θ̂n(Xn(ω)))]

= n[
η√
n
K̇(θ̂n(Xn(ω)))−K(θ̂n(Xn(ω)) + η/

√
n) + K(θ̂n(Xn(ω)))]

= −η2

∫ 1

0

(1− s)K̈(θ̂n(Xn(ω)) + sη/
√
n)ηds ≤ −η2

2
D0.

Hence with D1 = supθ∈C π(θ), for fixed ω, and all sufficiently large n,

Vn(η,Xn(ω))I[−ε
√

n,ε
√

n](η) ≤ D1 exp{−η2

2
D0}.

To deal with the case |η| ≥ ε
√
n we note that by the strict convexity of K

inf
|θ−θ0|≤ε,|h|>ε

−[hK̇(θ)−K(θ + h) + K(θ)] =: A > 0.

Hence,

Vn(η,Xn(ω))I[ε√n,∞)(|η|) ≤ exp{−An}π(θ̂n(Xn(ω)) + η/
√
n)I[ε√n,∞)(|η|),∫

Vn(η,Xn(ω))I[ε√n,∞)(|η|)dη ≤
√
n exp{−An} → 0.

Lebesgue’s theorem yields

lim
n→∞

∫
Vn(η,Xn(ω))dη = lim

n→∞

∫
Vn(η,Xn(ω))I[−ε

√
n,ε

√
n](η)dη

=

∫
lim

n→∞
Vn(η,Xn(ω))dη =

∫
π(θ0) exp{−1

2
ηT I(θ0)η}dη

= π(θ0)(2π)d/2(det(I(θ0)))
−1/2.

With πn(θ|xn) in (7.120) it holds
∫
‖θ‖Π(dθ) =

∫
[
∫
‖θ‖πn(θ|x)λd(dθ)](PnΠ)(dx).

If Π({θ : K(Pθ0 , Pθ) <∞}) > 0, then P⊗n
θ0


 PnΠ by Problem 7.119, so that
under the condition

∫
‖θ‖Π(dθ) <∞,

θ̃n(xn) :=
∫
θπn(θ|xn)λd(dθ)

is PnΠ-a.s. and P⊗n
θ0

-a.s. well defined. If
∫
‖θ‖2 Π(dθ) < ∞, then θ̃n is

the Bayes estimator with respect to the quadratic loss function L(θ, a) =
‖θ − a‖2 . If the weaker condition

∫
‖θ‖2 πn(θ|xn)λd(dθ) <∞, PnΠ-a.s.,
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holds, then θ̃n(xn) is a generalized Bayes estimator in the sense that θ̃n(xn)
minimizes the posterior risk

r(Π, a|xn) =
∫
‖θ − a‖2 πn(θ|xn)λd(dθ)

of making the decision a after xn has been observed, see Proposition 7.39.

Theorem 7.159. Suppose condition (A10) is satisfied, where Δ is an open
subset of R

d. Suppose θ̂n : Xn →m Δ is consistent at θ0 and an asymptotic
solution of the likelihood equation; that is, (7.109) holds. Assume that the prior
Π has a density π with respect to the Lebesgue measure which is continuous
at θ0, π(θ0) > 0, and satisfies

∫
‖θ‖π(θ)λd(dθ) < ∞. If I(θ0) is nonsingular

and the condition (7.124) holds, then

√
n(θ̃n(Xn)− θ̂n(Xn)) → P⊗∞

θ0 0 and

L(
√
n(θ̃n(Xn)− θ0)|P⊗∞

θ0
) ⇒ N(0, I−1(θ0)).

Proof. It holds

√
n(θ̃n(Xn)− θ̂n(Xn)) =

∫
ηπ∗

n(η|Xn)λd(dη),
∫
ηϕ0,I−1(θ0)(η)λd(dη) = 0.

Hence

‖
√
n(θ̃n(Xn)− θ̂n(Xn)) ‖≤

∫
‖η‖ |π∗

n(η|Xn)− ϕ0,I−1(θ0)(η)|λd(dη) →P⊗∞
θ0 0

in view of (7.125). The second statement follows from Theorem 7.148 and
Slutsky’s lemma; see Lemma A.46.

We illustrate the Bernstein–von Mises theorem. A first example is Example
7.153 where we have established the equivalence of the MLE and the Bayes
estimators for the binomial model with the conjugate beta prior. The next
example concerns the gamma distribution with a gamma prior.

Example 7.160. By taking the derivative with respect to β of the log-likelihood
function

∑n
i=1 ln gaλ,β(xi), and then putting the corresponding expression equal to

zero, one can see that for a fixed known λ0 the solution of the likelihood equation
for β in the model with Ga⊗n(λ0, β) is

β̂n(x1, ..., xn) =
λ0

xn
,

which according to Problem 7.91 is the MLE. If we take for Pθ the distribution
Ga(λ0, β), and Π = Ga(a, b) as the prior for the parameter β, then similar to Problem
1.32 the posterior density in πn in (7.120) is given by

πn(β|xn) = ganλ0+a,nxn+b(β),

where xn = (x1, ..., xn). As for any β, λ > 0 the distribution Ga(λ, β) has the
expectation λ/β we get that the Bayes estimator under the quadratic loss is
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β̃n(x1, ..., xn) =
λ0 + a/n

xn + b/n
.

Hence for Xn ∼ Ga⊗n(λ0, β0),

√
n(β̃n(Xn)− β̂n(Xn)) =

√
n(

λ0 + a/n

Xn + b/n
− λ0

Xn

)

=
1√

n Xn(Xn + b/n)
Xn(a− λ0b) −→Ga⊗n(λ0,β0) 0,

which is the equivalence stated in the previous theorem.

7.7 Local Asymptotic Optimality of MLEs

In the first part of this chapter we have established lower bounds for the risk of
estimating parameters under finite sample sizes. One of them is given by the
Cramér–Rao inequality, and unbiased estimators that attain this lower bound
are automatically UMVU. The large sample counterpart of the Cramér–Rao
inequality is the lower Hájek–LeCam bound for the risks in a sequence of
convergent models, and the natural question arises as to which estimators
attain this lower bound.

Another aspect is that in some introductory textbooks a sequence of es-
timators is called efficient if L(

√
n(θ̂n − θ0)|P⊗n

θ0
) ⇒ N(0, I−1(θ0)). One can

easily find various examples of estimators that have this property. Moreover,
we already know that under weak regularity conditions the MLE also has
this property. So one could conclude that the MLE is asymptotically efficient.
However, this approach is not satisfactory from a rigorous mathematical point
of view. The question that remains open is whether in special situations there
are any other suitably constructed estimators that outperform the MLE. The
goal of this section is to find additional conditions on the estimators such
that within this class one can find asymptotically optimal estimators. Then it
turns out that the MLE asymptotically outperforms all estimators from this
class. These additional conditions correspond to the finite sample size con-
cepts of unbiasedness, median unbiasedness, and equivariance. It has been a
long way for statisticians to figure out such additional conditions that clarify
in which sense the MLE is asymptotically the best estimator. For a detailed
presentation of the history of asymptotic properties of the MLE we refer to
Pfanzagl (1994). Here in this section we follow Pfanzagl (1994), Rieder (1994),
and Witting and Müller-Funk (1995), from which the main results have been
taken.

The starting point for the development of proving the asymptotic efficiency
of the MLE is probably Fisher (1922). A breakthrough was an example by
Hodges, Jr. which shows that even in the simple case of estimating the mean
of N⊗n(θ, 1), θ ∈ R, where the sample mean Xn is the UMVU estimator and
also the MLE, this estimator is asymptotically not the best estimator for every
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θ ∈ R. This fact is called the effect of superefficiency. The following example is
due to Hodges, Jr. who did not publish this result. LeCam (1953) and LeCam
and Yang (1990) refer to Hodges, Jr.

Example 7.161. We consider the model (R,B, (N(θ, 1)θ∈R)), which at every θ0 ∈
R is L2-differentiable and has Fisher information I(θ0) = 1. If we have an i.i.d.
sample X1, ..., Xn, then Xn is the UMVU estimator as well as the MLE, and we
have L(

√
n(Xn − θ0)|N⊗n(θ0, 1)) = N(0, 1). As I(θ0) = 1 one might consider, in

view of the above discussion, Xn as asymptotically efficient. Now we modify Xn by
setting

X̃n =

{
Xn if

∣∣Xn

∣∣ > n−1/4,
1
2
Xn if

∣∣Xn

∣∣ ≤ n−1/4.

Put Pn,θ0 = N⊗n(θ0, 1). Then

Pn,θ0(X̃n �= Xn) = Pn,θ0(
∣∣Xn

∣∣ ≤ n−1/4)

= Φ0,1(−
√
nθ0 + n1/4)− Φ0,1(−

√
nθ0 − n1/4).

For θ0 �= 0 it follows Pn,θ0(X̃n �= Xn) → 0, and Slutsky’s lemma yields

L(
√
n(X̃n − θ0)|N⊗n(θ0, 1))⇒ N(0, 1).

For θ0 = 0 it holds

Pn,θ0(X̃n �=
1

2
Xn) = Pn,0(

∣∣Xn

∣∣ > n−1/4) = 1− Φ0,1(n
1/4) + Φ0,1(−n1/4) → 0,

and, again by Slutsky’s lemma, L(
√
nX̃n|N⊗n(0, 1)) ⇒ N(0, 1/4). Hence at θ0 = 0

we have the effect of superefficiency in the sense that the variance of the asymptotic
normal distribution of the normalized estimator

√
n(X̃n − θ0) is smaller than the

inverse of the Fisher information, i.e., the lower bound in the Cramér–Rao inequality.

From the above example one can get the impression that a suitable modi-
fication of a good estimator with the aim of producing superefficiency is only
possible for special points of the parameter space, i.e., that the set of such
exceptional points is expected to be small. The subsequent theorem makes
“small” precise by showing that this set has Lebesgue measure zero. This
results was established by LeCam (1953) and Bahadur (1964).

Theorem 7.162. (LeCam–Bahadur) Suppose Δ ⊆ R
d is open, the model

(X ,A, (Pθ)θ∈Δ) is L2-differentiable at every θ0 ∈ Δ, and the Fisher informa-
tion matrix I(θ) is nonsingular for every θ ∈ Δ. Let Tn : Xn →m Δ be a
sequence of estimators such that L(

√
n(Tn − θ)|P⊗n

θ ) ⇒ N(0, Σ(θ)) for every
θ ∈ Δ. Then there is a set N of Lebesgue measure zero such that, in terms of
the Löwner semiorder,

I−1(θ) � Σ(θ), θ ∈ Δ\N.
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The proof of this theorem is based on the asymptotic power of best tests.
We deal with this topic in Chapter 8 and thus present a proof of the above
theorem there on page 493.

In Theorem 7.162 the sequence of estimators was completely arbitrary.
Now we consider estimators that admit similar representations as the M -
estimators. Let Mn = (Xn,A⊗n, (P⊗n

θ )θ∈Δ), with Δ ⊆ R
d, be a sequence of

models, and for a fixed θ0 ∈ Δ0 set Pn,θ0 = P⊗n
θ0

. Given the sequence of models
Mn, we say that the sequence of estimators θ̂n : Xn →m Δ is asymptotically
linear at θ0 with influence function Ψθ0 if Ψθ0 ∈ L

0
2,d(Pθ0) and

√
n(θ̂n − θ0) =

1√
n

∑n

i=1
Ψθ0(Xi) + oPn,θ0

(1) or (7.129)

θ̂n = θ0 +
1
n

∑n

i=1
Ψθ0(Xi) + oPn,θ0

(n−1/2).

The second statement is often referred to as a first-order stochastic Tay-
lor expansion. The stochastic Taylor expansion (7.129) has been established
in Proposition 7.144 for consistent estimators that solve the M -equation
asymptotically. In that case the influence function had the special structure
Ψθ0 = Σ−1

0 ψθ0 , where Σ0 = Cθ0(ψθ0 , L̇θ0), and where Cθ0(X,Y ) is the co-
variance matrix of the random vectors X and Y . If θ̂n,MLE is a sequence
of MLEs, then the expansion (7.129) is also valid for Ψθ0 = I−1(θ0)L̇θ0 un-
der the assumptions formulated in Theorem 7.148. A sequence of estimators
θ̂n : Xn →m Δ is called regular at θ0 ∈ Δ0 if there is a distribution Qθ0 on
(Rd,Bd) such that

L(
√
n(θ̂n − (θ0 + h/

√
n))|Pn,θ0+h/

√
n) ⇒ Qθ0 , h ∈ R

d.

Proposition 7.163. Suppose that (Pθ)θ∈Δ is L2-differentiable with derivative
L̇θ0 . Then for the sequence of models (Xn,A⊗n, (P⊗n

θ )θ∈Δ) a sequence of esti-
mators θ̂n that satisfy (7.129) is regular at θ0 if and only if Cθ0(Ψθ0 , L̇θ0) = I.

Proof. Corollary 6.74 shows that

L(
√
n(θ̂n − (θ0 + h/

√
n))|Pn,θ0+h/

√
n) ⇒ N(Cθ0(Ψθ0 , L̇θ0)h− h,Cθ0(Ψθ0)).

The statement follows as h is arbitrary.
If the conditions in Proposition 7.144 are satisfied, then

√
n(θ̂n − θ0) =

1√
n

∑n

i=1
(Cθ0(ψθ0 , L̇θ0))

−1ψθ0(Xi) + oP⊗n
θ0

(1),

so that Ψθ0 = (Cθ0(ψθ0 , L̇θ0))
−1ψθ0 satisfies the condition Cθ0(Ψθ0 , L̇θ0) = I

and θ̂n is regular.
The motivation for introducing the concept of regularity is to exclude the

effect of superefficiency; that is, the opportunity to get an estimator that is



7.7 Local Asymptotic Optimality of MLEs 389

better than the MLE at isolated points. To see that the Hodges estimator X̃n

is not regular we note that by Problem 1.86 and (1.79) it holds

Hs(N⊗n(0, 1),N⊗n(h/
√
n, 1)) =

(
Hs(N(0, 1),N(h/

√
n, 1))

)n
= exp{−1

2
s(1− s)h2}.

Hence Pn,h = N⊗n(h/
√
n, 1) �� Pn,0 = N⊗n(0, 1) by Theorem 6.26. Using

the notation in Example 7.161 and the fact that Pn,h �� Pn,0 we get from
(A) in Theorem 6.26 that Pn,h(X̃n �= 1

2Xn) → 0, and by Slutsky’s lemma

lim
n→∞

L(
√
n(X̃n − h/

√
n)|N⊗n(h/

√
n, 1))

= lim
n→∞

L(
√
n(

1
2
Xn − h/

√
n)|N⊗n(h/

√
n, 1)) = N(−h/2, 1/4),

which obviously depends on h, so that X̃n is not regular.
Now we turn back to estimators that have the stochastic Taylor expansion

(7.129), which implies the asymptotic normality

L(
√
n(θ̂n − θ0)|P⊗n

θ0
) ⇒ N(0,Cθ0(Ψθ0)).

This allows a comparison, within the class of regular estimators that satisfy
(7.129), of the asymptotic efficiency of the estimators by comparing the co-
variance matrices in the limit distributions.

Proposition 7.164. Suppose (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ0 with
nonsingular Fisher information matrix I(θ0). Let θ̂n be an asymptotic MLE
that has the stochastic Taylor expansion (7.113). Then θ̂n is asymptotically
efficient, in the sense of Cθ0(Ψθ0) # I−1(θ0), within the class of all regu-
lar estimators θ̃n that admit a stochastic Taylor expansion (7.129). It holds
Cθ0(Ψθ0) = I−1(θ0) if and only if Ψθ0 = I−1(θ0)L̇θ0 , Pθ0-a.s..

Proof. First of all we note that by (7.113) the MLE has the influence
function I−1(θ0)L̇θ0 and is thus regular by Proposition 7.163. If θ̃n has the
expansion (7.129), then the assumed regularity implies, again by Proposition
7.163, that Cθ0(Ψθ0 , L̇θ0) = I. Hence, in terms of the Löwner semiorder,

0 � Eθ0(Ψθ0 − I−1(θ0)L̇θ0)(Ψθ0 − I−1(θ0)L̇θ0)
T

= Cθ0(Ψθ0) + Eθ0 I
−1(θ0)L̇θ0L̇

T
θ0 I

−1(θ0)− Eθ0 I
−1(θ0)L̇θ0Ψ

T
θ0

− Eθ0Ψθ0L̇
T
θ0 I

−1(θ0) = Cθ0(Ψθ0)− I−1(θ0).

To complete the proof we note that for a random vector X with expectation
zero it holds Cθ0(X) = 0 if and only if X = 0, Pθ0-a.s.

Remark 7.165. There is a simple interpretation for the inequality Cθ0(Ψθ0)  
I−1(θ0). In the class of all sequences of estimators that admit the representation
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(7.129) the estimators for which the influence function Ψθ0 is constructed with the
help of the “gradient” L̇θ0 of the model at θ0 are most efficient. It is clear that
after a linearization of the model such statistics reflect best the local behavior of
the model. The influence function I−1(θ0)L̇θ0 that belongs to the MLE is, in view
of Cθ0(Ψθ0)  I−1(θ0) = Cθ0(I

−1(θ0)L̇θ0), the most efficient influence function. The
L2-derivative L̇θ0 is also called the score function. Thus the score function provides,
after a normalization, the most efficient influence function.

We have studied regular estimators with a stochastic Taylor expansion in
Proposition 7.164. Now we investigate the larger class of all regular estimators.
The condition of regularity corresponds for a fixed sample size to the require-
ment of equivariance. The latter is a condition that refers to every sample.
In contrast to this requirement of equivariance the regularity is formulated in
terms of the distributions induced by the sequence of statistics and is adapted
to convergent sequences of models. The convolution theorem of Hájek (1970)
and Inagaki (1970) states that for sequences of asymptotic normal models ev-
ery sequence of regular estimators is asymptotically more spread out than the
central variable in the limiting Gaussian model. The finite sample counterpart
is the fact that the identity is under the squared error loss the best equivariant
estimator for the family (N(μ, σ2))μ∈R; see Example 5.59 and Theorem 5.56.

Theorem 7.166. (Hájek–Inagaki) Suppose Mn = (Xn,An, (Pn,h)h∈Δn
),

Δn ↑ R
d, satisfies the LAN(Zn, I0) condition in Definition 6.63. If I0 is non-

singular and Sn : Xn →m R
d is a sequence such that L(Sn−h|Pn,h) converges

for every h ∈ R weakly to some distribution Q that is independent of h, then
there is a distribution R on (Rd,Bd) such that the following hold.

(A) Q = N(0, I−1
0 ) ∗R.

(B) L(Sn − I−1
0 Zn|Pn,h) ⇒ R.

(C) Sn = I−1
0 Zn + oPn,0(1) ⇔ R = δ0.

Proof. The LAN condition implies L(Zn|Pn,0) ⇒ N(0, I0). As by assump-
tion L(Sn|Pn,0) ⇒ Q, we get that Zn and Sn are stochastically bounded with
respect to Pn,0. Then the vector (Sn, Zn) with values in R

2d is stochastically
bounded as well. As a subset of R

2d is compact if and only if it is bounded
and closed, we get from Theorem A.48 that the sequence L((Sn, Zn)|Pn,0) is
tight, so that there is a subsequence nk with L((Snk

, Znk
)|Pn,0) ⇒ μ for some

distribution μ on B2d. Denote by S and Z the projections of R
2d = R

d × R
d

on the first and second component of this product, respectively. Hence with
this notation and the LAN property

L((Snk
, Znk

)|Pnk,0) ⇒ L((S,Z)|μ) and L(Z|μ) = N(0, I0),

Ln,h = dPn,h/dPn,0 = exp{hTZn −
1
2
hT I0h+ oPn,0(1)}.

Set
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Vn = exp{itTSn − itTh}Ln,h

= exp{itTSn − itTh+ hTZn −
1
2
hT I0h+ oPn,0(1)} and

V = exp{itTS − itTh+ hTZ − 1
2
hT I0h}.

The LAN condition implies that the sequence Pn,h is contiguous with respect
to Pn,0; see Corollary 6.67. This implies in view of Theorem 6.26 that the se-
quence Lnk,h, and consequently also the sequence Vnk

, is uniformly integrable
with respect to Pnk,0 in the sense that

lim
N→∞

lim sup
k→∞

Enk,0|Vnk
|I[N,∞)(|Vn|) = 0.

Hence by Slutsky’s lemma (see Lemma A.46) and Proposition A.44,

lim
k→∞

Enk,0Vnk
= lim

k→∞
Enk,h exp{itTSnk

− itTh}

= Eμ exp{itTS − itTh+ hTZ − 1
2
hT I0h}.

Otherwise, by the assumption limn→∞ L(Sn − h|Pn,h) = limn→∞ L(Sn|Pn,0),

lim
k→∞

Enk,h exp{itTSnk
− itTh} = lim

k→∞
Enk,0 exp{itTSnk

} = Eμ exp{itTS}.

Hence for every t, h ∈ R
d,

exp{−itTh− 1
2
hT I0h}Eμ exp{itTS + hTZ} = Eμ exp{itTS}. (7.130)

As L(Z|μ) = N(0, I0) it holds Eμ exp{hTZ} < ∞ for every h. If we represent
exp{itTS} as a linear combination of four nonnegative functions fj , and set
dμj = fjdμ, j = 1, ..., 4, then we get from Lemma 1.16 that Eμ exp{itTS +
zTZ} is an analytic function of z. Hence (7.130) remains valid if we replace h
with z ∈ R

d + iRd. Thus we may set h = −iI−1
0 t and obtain

exp{−1
2
tT I−1

0 t}Eμ exp{itT (S − I−1
0 Z)} = Eμ exp{itTS}.

The facts that the characteristic function of a convolution of distributions
is the product of their characteristic functions, and that exp{− 1

2 t
T I−1

0 t} is
the characteristic function of N(0, I−1

0 ), in conjunction with the uniqueness
theorem for characteristic functions (see Theorem A.51) yield statement (A)
for Q = L(S|μ) and R = L(S − I−1

0 Z|μ).
To prove (B) we recall that by the proof of (A) the sequence (Sn, Zn) is

stochastically bounded with respect to Pn,0. Hence by the contiguity of Pn,h
with respect to Pn,0 the sequence (Sn, Zn), and consequently the sequence
Sn − I−1

0 Zn, is stochastically bounded under Pn,h, and thus the sequence of
distributions L(Sn− I−1

0 Zn|Pn,h) is tight. We have already shown in the proof
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of (A) that R = L(S − I−1
0 Z|μ) is an accumulation point of the sequence

L(Sn − I−1
0 Zn|Pn,h). If nl is any subsequence so that L(Snl

− I−1
0 Znl

|Pnl,h)
tends weakly to some distribution R̃, say, then we apply the already estab-
lished statement (A) to the sequence nl to get Q = N(0, I−1

0 ) ∗ R̃. On the
other hand we already know that Q = N(0, I−1

0 ) ∗R. Turning to characteristic
functions and using the fact that the characteristic function of N(0, I−1

0 ) is
exp{− 1

2 t
T I−1

0 t}, which is nonzero for every t, we get from Theorem A.51 that
R̃ = R. Hence all accumulation points, in the sense of weak convergence, of
the tight sequence L(Sn−I−1

0 Zn|Pn,h) are identical, so that (B) is established.
(C) follows from (B) as the weak convergence of the distributions to δ0 and
the stochastic convergence to 0 are identical.

Remark 7.167. The statement in Theorem 7.166 was independently established
in papers by Hájek (1970) and Inagaki (1970). The proof given above follows Witting
and Müller-Funk (1995). For forerunners, other versions, and historical remarks we
refer to Pfanzagl (1994) and Strasser (1985).

The essence of the Hájek–Inagaki convolution theorem is that the limit dis-
tribution Qθ0 is more spread out than the limit distribution of the MLE. An
easy way to see this is to fix independent random vectors S and U such that
L(S) = N(0, I−1(θ0)) and L(U) = R. Then L(S+U) = N(0, I−1(θ0))∗R. More-
over, if E ‖U‖2 <∞, then C(S + U) # C(S), in the Löwner semiorder, which
clarifies in which sense N(0, I−1(θ0))∗R is more spread out than N(0, I−1(θ0)).
The consideration of the covariance matrices holds for any sum of independent
random vectors. However, as we are in the specific situation where S has a
normal distribution more can be said. It follows from Anderson’s lemma (see
Proposition 3.62) that for any nonnegative subconvex and centrally symmetric
function l : R

d →m R+ it holds

El(S + U) =
∫

[
∫
l(s+ u)N(0, I−1(θ0))(ds)]R(du) (7.131)

≥
∫

[
∫
l(s)N(0, I−1(θ0))(ds)]R(du) = El(S),

and the statement that L(S + U) is more spread out than L(S) is specified
by this inequality.

We apply the convolution theorem to regular estimators that are based on
i.i.d. observations. Recall that Ld is the class of all nonnegative measurable
subconvex and centrally symmetric functions l on R

d.

Proposition 7.168. Let Δ ⊆ R
d be open. Assume that the family (Pθ)θ∈Δ is

L2-differentiable at θ0, and that the Fisher information matrix I(θ0) is non-
singular. If θ̃n : Xn →m Δ is a sequence of regular estimators for which the
distributions L(

√
n(θ̃n−θ0)|P⊗n

θ0
) tend weakly to some limit distribution, then

lim inf
n→∞

∫
l(
√
n(θ̃n − θ0))dP⊗n

θ0
≥
∫
l(t)N(0, I−1(θ0))(dt),
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for every continuous l ∈ Ld. If condition (A10) is fulfilled and θ̂n is a sequence
of estimators that solves the likelihood equation asymptotically, i.e., satisfies
(7.109), and is consistent at θ0, then θ̂n is a sequence of regular estimators
that is asymptotically efficient in the sense that this sequence achieves the
above lower bound for every bounded and continuous l ∈ Ld, i.e.,

lim
n→∞

∫
l(
√
n(θ̂n − θ0))dP⊗n

θ0
=
∫
l(t)N(0, I−1(θ0))(dt).

Proof. The L2-differentiability implies that the sequence P⊗n
θ0+h/

√
n

satis-
fies the ULAN condition. If l is bounded, then the stated inequality follows
from Theorem 7.166 and (7.131). To deal with the general case we remark
that l is lower bounded and set lN = min(l, N). Then

lim inf
n→∞

∫
l(
√
n(θ̃n − θ0))dP⊗n

θ0
≥
∫
lN (t)ϕ0,I−1(θ0)(t)λ(dt).

The monotone convergence theorem completes the proof of the first statement.
The regularity of θ̂n follows from Proposition 7.163 and (7.113). The fact that
θ̂n attains the lower bound for a bounded and continuous l ∈ Ld follows from
Theorem 7.148.

In Proposition 7.168 we have established a lower bound for the risk of all
regular estimators for which the distributions L(

√
n(θ̃n − θ0)|P⊗n

θ0
) converge.

This is true for all regular estimators that admit a stochastic Taylor expan-
sion (7.129). Now we operate directly with the family of localized models and
find an asymptotic lower bound for the maximum risk by using the Hájek–
LeCam bound in Proposition 6.89, where the concrete bound is provided by
the optimal estimator in the Gaussian limit model. More precisely, assume
that Δ ⊆ R

d is open and that (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ0. We
remark that

Mn = (Xn,A⊗n, (Pn,h)h∈Δn
), where

Pn,h = P⊗n
θ0+h/

√
n
, h ∈ Δn = {h : h ∈ R

d, θ0 + h/
√
n ∈ Δ},

satisfies the ULAN condition; see Theorem 6.70. This implies especially that
Mn converges weakly to the Gaussian model G0; that is,

Mn ⇒ G0 = (Rd,Bd,N(h, I−1(θ0))h∈Rd) (7.132)

(see Corollary 6.66). For any given sequence of estimators θ̂n : Xn → Δ we
introduce estimators for the local parameter h by setting ĥn =

√
n(θ̂n − θ0).

Given l : R
d →m R+ we introduce the risk in the local model by setting it

equal to
∫
l(ĥn − h)dPn,h. Turning back to the original model we get
∫
l(
√
n(θ̂n − θ0)− h/

√
n)dP⊗n

θ0+h/
√
n

=
∫
l(ĥn − h)dPn,h.
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Using this relation, an application of Proposition 6.89 gives for h = 0 asymp-
totic lower bounds for

∫
l(
√
n(θ̂n − θ0))dP⊗n

θ0
, but we can also arrive at mini-

max results by letting h vary on compact sets.
Let us first consider the limiting model G0. In Theorem 3.65 it has been

shown that

inf
D

sup
h∈R

R(h,D) = inf
D

sup
h∈R

∫
[
∫
l(a− h)D(da|x)]N(h, I−1(θ0))(dx)

=
∫
l(t)N(0, I−1(θ0))(dt) = R(h, Tnat) = R(0, Tnat),

where Tnat(x) = x. Furthermore, by Theorem 3.65,

lim
m→∞

inf
D

sup
θ∈Rd,‖θ‖≤m

∫
[
∫
l(a− θ)D(da|x)]N(θ, I−1(θ0))(dx) (7.133)

=
∫
l(t)N(0, I−1(θ0))(dt),

provided that, in addition, the above l is bounded.

Theorem 7.169. (Local Asymptotic Minimax Theorem) Suppose that
Δ ⊆ R

d is open, (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ, θ̂n : Xn →m Δ is a
sequence of estimators, and l ∈ Ld is continuous. Then

lim
m→∞

lim inf
n→∞

sup
‖h‖≤m

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n

(7.134)

≥
∫
l(t)N(0, I−1(θ0))(dt).

If condition (A10) is fulfilled and θ̂n is a sequence of estimators that solves the
likelihood equation asymptotically (i.e., satisfies (7.109)) and is consistent at
θ0, then θ̂n is asymptotically minimax in the sense that this sequence achieves
the above lower bound for every bounded and continuous l ∈ Ld, i.e.,

lim
m→∞

lim
n→∞

sup
‖h‖≤m

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n

=
∫
l(t)N(0, I−1(θ0))(dt).

Proof. By the subconvexity of l, l ≥ 0, and l(0) = 0 the function
l(t1, ..., td) is nondecreasing in ti for ti ≥ 0 and fixed tj , j �= i; see Prob-
lem 2.15. Furthermore this function is symmetric in ti ∈ R. From here it
follows that every continuous l ∈ Ld can be extended to a continuous function
l : R

d → [0,∞] in such a way that l(t1, ..., ti, ..., td) ≤ l(t1, ...,∞, ..., td) for
every ti ∈ R and tj ∈ R, j �= i. We use the decision space (D,D) = (R

d
,Bd)

and note that D is a compact metric space. Let D0 be the set of all randomized
estimators D : Bd×R

d →k [0, 1] for the model N(h, I−1(θ0))h∈Rd . D0 is closed
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as the set of all decisions is sequentially compact; see Theorem 3.17. In view
of (7.132) we may apply Proposition 6.89 and obtain

lim inf
n→∞

sup
‖h‖≤m

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n

≥ inf
D∈D0

sup
‖h‖≤m

∫
[
∫
l(t− h)D(dt|x)]N(h, I−1(θ0))(dx).

To carry out the minimization over D ∈ D0 for the model G0 we note that we
have to extend the infimum only over all estimators D with D(R

d\Rd|x) = 0.
Hence by (7.133),

lim
m→∞

lim inf
n→∞

sup
‖h‖≤m

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n
≥
∫
l(t)N(0, I−1(θ0))(dt),

provided that l is bounded. If l is unbounded we set lN = min(l, N). Then
∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n
≥
∫
lN (
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n
,

lim
N→∞

∫
lN (t)N(0, I−1(θ0))(dt) =

∫
l(t)N(0, I−1(θ0))(dt),

completes the proof of the first statement.
If condition (A10) is fulfilled and θ̂n is a sequence of estimators that

solves the likelihood equation asymptotically, and is consistent at θ0, then√
n(θ̂n − θ0) = I−1(θ0)Zn + oP⊗n

θ0
(1); see (7.113). Set Ψ = I−1(θ0)L̇θ0 . Then

Cθ0(Ψ, L̇θ0) = I, Cθ0(Ψ) = I−1(θ0) and by Corollary 6.74 it follows for every
bounded and continuous function ϕ

lim
n→∞

∫
ϕ(
√
n(θ̂n − θ0))dP⊗n

θ0+h1/
√
n

=
∫
ϕ(t+ h1)N(0, I−1(θ0))(dt)

for every fixed h1. Putting ϕh2(t) = l(t− h2) we get for every fixed h2

lim
n→∞

∫
l(
√
n(θ̂n − θ0)− h2)dP⊗n

θ0+h1/
√
n

=
∫
l(t+ h1 − h2)N(0, I−1(θ0))(dt).

The family ϕh2(t) = l(t−h2), ||h2|| ≤ m, satisfies the conditions in Proposition
A.45. Hence the above convergence is uniform in h2 for every fixed h1. As the
family P⊗n

θ0+h1/
√
n

satisfies the ULAN-condition we get from the asymptotic

local equicontinuity of P⊗n
θ0+h1/

√
n

in the sense of variational distance (see
(6.80)) and the boundedness of l that for every m > 0 the above convergence
is simultaneously uniform in h1 and h2 for ‖h1‖ ≤ m and ‖h2‖ ≤ m. Putting
h1 = h2 = h we get

lim
n→∞

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n

=
∫
l(t)N(0, I−1(θ0))(dt)
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locally uniformly in h. Hence,

lim
n→∞

sup
‖h‖≤m

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n

=
∫
l(t)N(0, I−1(θ0))(dt).

Taking m→∞ we get the second statement.

Remark 7.170. Instead of (7.134) one might also prove

lim inf
n→∞

sup
h∈Δn

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√

n ≥
∫

l(t)N(0, I−1(θ0))(dt),

where Δn = {h : θ0 +
√
nh ∈ Δ}. If Δ = R

d, then Δn = R
d and the lower bound

will not be attained in general as the ULAN property gives only the local uniform
convergence.

Now we consider the one-dimensional case and asymptotically median un-
biased estimators. We show that the MLE is within this class asymptotically
uniformly best. To establish this result we apply the lower Hájek–LeCam
bound which was established in Section 6.6, where we have assumed that the
decision space is compact. Therefore we use the decision space R = [−∞,∞].
As every l ∈ L1 is symmetric, nondecreasing for t ≥ 0, and nonincreasing for
t ≤ 0, we may extend every continuous l ∈ L1 continuously on R by setting
l(−∞) = l(∞) := limt→∞ l(t).

Let Δ ⊆ R be open and (Pθ)θ∈Δ be a one-parameter family of distributions
on (X ,A). A sequence of estimators θ̂n : Xn →m R for the parameter θ ∈ Δ
is called asymptotically median unbiased at θ0 if for every h ∈ R and Pn,h =
P⊗n
θ0+h/

√
n

it holds

lim inf
n→∞

([Pn,h(
√
n(θ̂n − θ0) ≤ h)] ∧ [Pn,h(

√
n(θ̂n − θ0) ≥ h)]) ≥ 1

2
. (7.135)

The following result is due to Pfanzagl (1970).

Theorem 7.171. Let (Pθ)θ∈Δ be L2-differentiable at θ0 ∈ Δ0 with I(θ0) > 0.
Suppose θ̂n : Xn →m R is a sequence of asymptotically median unbiased
estimators at θ0. If l ∈ L1 is continuous, then for every h ∈ R,

lim inf
n→∞

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n
≥
∫
l(t)N(0, I−1(θ0))(dt).

If condition (A10) is fulfilled and θ̂n is a sequence of estimators that solves
the likelihood equation asymptotically (i.e., satisfies (7.109)), and is consistent
at θ0, then θ̂n is a sequence of asymptotically median unbiased estimators at
θ0 that is asymptotically efficient in the sense that this sequence achieves the
above lower bound for every bounded and continuous l ∈ L1, i.e.,

lim
n→∞

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n

=
∫
l(t)N(0, I−1(θ0))(dt),

where the convergence is locally uniform in h.
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Proof. The decision space is (D,D) = (R,B) and D is a compact metric
space. Let D0 be the set of all median unbiased randomized estimators D :
B × R →k [0, 1] for the model N(h, I−1(θ0))h∈Rd . As by Problem 7.34 D0 is
closed and it holds (7.132) we may apply Proposition 6.89 to obtain

lim inf
n→∞

∫
l(
√
n(θ̂n − θ0)− h)dP⊗n

θ0+h/
√
n

≥ inf
D∈D0

∫
[
∫
l(t− h)D(dt|x)]N(h, I−1(θ0))(dx)

=
∫
l(t)N(0, I−1(θ0))(dt),

where the last equality follows from Theorem 7.36 with � = l. If (A10) and
(7.109) hold, then by Corollary 6.74 it follows that L(

√
n(θ̂n−θ0)|P⊗n

θ0+h/
√
n
) ⇒

N(h, I−1(θ0)) locally uniformly in h, which gives the asymptotic median unbi-
asedness and the stated equality.

We illustrate the efficiency of estimators by considering location models.

Example 7.172. Suppose f : R → (0,∞) is a twice continuously differentiable
Lebesgue density with finite Fisher information I =

∫
[ḟ(x)]2[f(x)]−1dx < ∞. The

log-likelihood function for the location model is Λn(θ,xn) =
∑n

i=1 ln f(xi − θ), and
the likelihood equation reads

Λ̇n(θ) =
∑n

i=1
ḟ(Xi − θ)/f(Xi − θ) = 0.

Example 7.81 gives the strong consistency of the MLE θ̂n under the conditions there
which we assume to be fulfilled. If in addition 7.114 is fulfilled, then by Example
7.150 it holds

√
n(θ̂n − θ0) = −

∑n

i=1
I−1ḟ(Xi − θ0)/f(Xi − θ0) + o

P⊗n
θ0

(1).

Hence θ̂n is a regular and asymptotically median unbiased estimator which is efficient
in the sense that it attains the lower bounds in 7.169. Suppose now that the second
moment

∫
t2f(t)dt is finite and it holds

∫
tf(t)dt = 0. Then the parameter θ is the

expectation which we may estimate by the arithmetic mean Xn. If σ2 is the variance
of the density f , then L(

√
n(Xn − θ0)|P⊗n

θ0
) ⇒ N(0, σ2), so that by Theorem 7.171

σ2 ≥ I−1. If f = ϕ0,σ2 , then we have equality. The question arises as to whether
there are other distributions with σ2 = I−1. The answer is given by Proposition
7.164 which says that σ2 = I−1 implies I−1L̇θ0 = I−1ḟ(x)/f(x) = Ψθ0(x) = x − θ0.
By integrating this differential equation we see that f = ϕθ0,σ2 . Hence in the class of
all location models that satisfy the above regularity conditions the arithmetic mean
is asymptotically efficient if and only if the location model is generated by a normal
distribution.

Example 7.173. In the previous example we have used relatively strong assump-
tions to make the general results applicable to the location model. But in more
specific location models the MLE is directly available and can be seen to be asymp-
totically normal. Suppose we are given a location model generated by a positive
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strongly unimodal and continuous density f. This is equivalent to the log-concavity
so that f(t) = exp{−�(t)} for some convex function �. We know from Proposition
2.18 that limx→±∞ f(x) = 0. Suppose that in addition the remaining conditions
in (7.41) are satisfied. Then we get from Example 7.81 that the MLE is strongly
consistent.

A special strongly unimodal distribution is the Laplace distribution, i.e., f(t) =
1
2

exp{−|t|}. The convex function �(t) = 1
2
|t| has derivatives from the right and from

the left which differ only at zero. Hence � and thus f are differentiable, λ-a.e., and
it holds ḟ(t) = −sgn(t) exp{−|t|} for t �= 0. As

∫ b

a
|ḟ(t)|dt < ∞ for every a < b we

get that f is absolutely continuous. Moreover,

I =

∫
[ḟ(t)/f(t)]2f(t)dt =

∫
f(t)dt = 1.

We get from Lemma 1.121 that the location model is L2-differentiable with L2-
derivative L̇θ0(t) = −sgn(t− θ0), λ-a.e. As

Λn(θ) = −
∑n

i=1
|Xi − θ| − n ln 2,

we get from Example 7.107 that the MLE is the sample median. From Example
7.139 we get for α = 1/2 the representation of the sample median θ̂n,

√
n(θ̂n − u1/2) = −(f(u1/2))

−1n−1/22−1
∑n

i=1
sgn(Xi − θ0) + oP⊗n(1)

= −n−1/2
∑n

i=1
sgn(Xi − θ0) + oP⊗n(1),

where X1, ..., Xn are i.i.d. with common density f(t−θ0). This is, in view of L̇θ0(t) =

−sgn(t − θ0), exactly the expansion (7.113). As θ̂n is consistent we see that the
median is the asymptotically efficient estimator in the location model generated
by the Laplace distribution, where “efficient” is specified by Proposition 7.164 and
Theorems 7.171 and 7.169.

Sometimes the parameter vector θ = (τT , ξT )T consists of two parts, where
τ is the k-dimensional parameter of interest and ξ is the (d− k)-dimensional
nuisance parameter that is only used to fit the model to the data. We suppose
that (Pθ)θ∈Δ is L2-differentiable and split the L2-derivative L̇θ into Uθ and
Vθ, respectively.

L̇θ =
(
Uθ

Vθ

)
, θ =

(
τ
ξ

)
∈ Δ0.

The covariance matrix Cθ0(L̇θ0) is the Fisher information matrix, and we
partition it analogously.

Cθ0(L̇θ0) = I(θ0) =
(

I1,1(θ0) I1,2(θ0)
I2,1(θ0) I2,2(θ0)

)

=
(

Cθ0(Uθ0) Cθ0(Uθ0 , Vθ0)
Cθ0(Vθ0 , Uθ0) Cθ0(Vθ0)

)
.

Later on we use the inverse matrix I−1(θ0) also represented by block ma-
trices.
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Problem 7.174.∗ Let I be a symmetric positive semidefinite d×d matrix consisting
of the block matrices (Ii,j)1≤i,j≤2. Then I is invertible if and only if I2,2 and G :=
I1,1 − I1,2I

−1
2,2I2,1 are invertible. In this case I and G are positive definite and the

inverse matrix J = I−1 has the block matrices (Ji,j)1≤i,j≤2 given by

(
J1,1 J1,2

J2,1 J2,2

)
=

(
G−1 −G−1I1,2I

−1
2,2

−(I1,2I
−1
2,2)

T G−1 I−1
2,2 + (I1,2I

−1
2,2)

T G−1(I1,2I
−1
2,2)

)
.

Problem 7.175.∗ Let I be symmetric positive definite, and J1,1 and G be the
matrices introduced in Problem 7.174. Then I1,1−G is positive semidefinite, so that
I1,1  G in the Löwner semiorder.

Problem 7.176. Let A and B be positive definite symmetric matrices. If A ! B
in the Löwner semiorder, then B−1 ! A−1.

In the presence of a nuisance parameter ξ0 one has to distinguish two cases
when the parameter of interest τ0 is to be estimated. If ξ0 is known, then one
has the model (Pτ,ξ0)τ∈Υ . If the regularity conditions of Theorem 7.148 are
satisfied, then the MLE τ̂n satisfies L(

√
n(τ̂n − τ0)|P⊗n

τ0,ξ0
) ⇒ N(0, I−1

1,1(τ0, ξ0)).
On the other hand, if ξ0 is unknown, then one has to estimate both τ0 and
ξ0; that is, we have the model (Pθ)θ∈Δ, where θ = (τ, ξ) ∈ Δ. If the regularity
conditions of Theorem 7.148 are satisfied for this model, then the MLE θ̃n =
(τ̃n, ξ̃n) satisfies

L
(√

n

((
τ̃n

ξ̃n

)
−
(
τ0
ξ0

)) ∣∣∣P⊗n
τ0,ξ0

)
⇒ N

(
0,
(

J1,1 J1,2

J2,1 J2,2

))
,

and therefore L(
√
n(τ̃n − τ0)|P⊗n

τ0,ξ0
) ⇒ N(0, J1,1). In view of Problem 7.175

we have I1,1 # J−1
1,1 and thus I−1

1,1 � J1,1, i.e., for large n the estimator τ̂n
is more concentrated around τ0 than τ̃n. This is not surprising since for the
construction of τ̂n we could use the known nuisance parameter ξ0, but not
for the construction of τ̃n. Moreover, if I1,2(θ0) = Cθ0(Uθ0 , Vθ0) = 0, then
I−1
1,1 = J1,1 and both estimators have asymptotically the same precision. The
condition Cθ0(Uθ0 , Vθ0) = 0 can be considered as an orthogonality of the
tangent vectors that belong to the parameters τ0 and ξ0. In this case it does
not matter if ξ0 is known or unknown when we estimate τ by the MLE. Such
situations are called adaptive cases. We return to this point in Chapter 8 when
we are constructing tests in the presence of nuisance parameters.

Example 7.177. To illustrate the concept of adaptivity we consider the problem
of estimating parameters in a location-scale model. Suppose f : R → (0,∞) is
a continuously differentiable Lebesgue density with

∫
[ḟ(x)]2[f(x)]−1dx < ∞ and∫

x2[ḟ(x)]2[f(x)]−1dx <∞. Let Pθ be the distribution with the Lebesgue density

fθ(x) =
1

σ
f(

x− μ

σ
), θ = (μ, σ) ∈ Δ = R× (0,∞).

Then by Example 1.119 the family (Pθ)θ∈Δ is L2-differentiable, and the Fisher
information matrix is given by
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I(θ) =
1

σ2

( ∫
[ḟ(x)]2[f(x)]−1dx

∫
x[ḟ(x)]2[f(x)]−1dx∫

x[ḟ(x)]2[f(x)]−1dx
∫
x2[ḟ(x)]2[f(x)]−1dx− 1

)
.

If now f is symmetric, then
∫
x[ḟ(x)]2[f(x)]−1dx = 0, so that adaptivity holds. This

situation is especially met for the family of normal distributions.

7.8 Solutions to Selected Problems

Solution to Problem 7.12 The continuous differentiability means that the map-
ping θ �→ L

1/2
θ,θ0

L̇θ is continuous in the sense of L2,d(Pθ0). The continuity of the scalar
product yields the first statement. The L1-differentiability established in Proposi-
tion 1.110 implies Pθ0+u(B)−Pθ0(B) = Eθ0IB〈u, L̇θ0〉+ o(‖u‖). Hence Eθ0IBL̇θ0 is
the gradient. The continuity follows from

‖ EθIBL̇θ − Eθ0IBL̇θ0 ‖=‖ Eθ0IB(Lθ,θ0 L̇θ − L̇θ0) ‖
≤ Eθ0 ‖ L

1/2
θ,θ0

L̇θ − L̇θ0 ‖ +Eθ0 ‖ L
1/2
θ,θ0

(L̇θ − L
1/2
θ,θ0

L̇θ) ‖

≤ (Eθ0 ‖ L
1/2
θ,θ0

L̇θ − L̇θ0 ‖2)1/2 + (Eθ ‖ L̇θ ‖2)1/2(Eθ0(1− L
1/2
θ,θ0

)2)1/2.

The first term tends to zero by the continuous differentiability. Eθ0(1 − L
1/2
θ,θ0

)2 =

o(‖ θ− θ0 ‖) by (1.133). Eθ ‖ L̇θ ‖2 is the trace of I(θ) and therefore bounded as I(θ)

is continuous in θ. �

Solution to Problem 7.13: The mapping θ �→ L
1/2
θ,θ0

S is stochastically continuous

with respect to Pθ0 . The assumed continuity of θ �→ Eθ ‖S‖2 and Vitali’s theorem

imply the continuity of θ �→ L
1/2
θ,θ0

S in the sense of L2,d(Pθ0). As θ �→ L
1/2
θ,θ0

L̇θ is

continuous in the sense of L2,d(Pθ0) by the continuous differentiability, the statement

follows from the continuity of the scalar product. �

Solution to Problem 7.14: The required equality yields 〈c− a, T (x)〉 = d − b.

det(Cθ(T )) �= 0 implies c = a and thus d = b, see Problem 1.3. �

Solution to Problem 7.23: σ̂2 is a function of the complete and sufficient statis-

tic T (x) = ‖x‖2 . T/σ2 has a χ2-distribution with n degrees of freedom. Hence

E(σ2/T ) = (2n/2Γ (n/2))−1σ2
∫∞
0

(1/t)t(n/2)−1 exp{−t/2}dt = 1/(n− 2). �

Solution to Problem 7.24: For y ∈ L it holds ‖x− y‖2 = ‖xL + x
L⊥ − y‖2

= ‖xL − y‖2 +‖xL⊥‖2, and ‖xL − y‖2 = 0 for y = xL. The statement follows now

with xL⊥ = x− xL. �

Solution to Problem 7.25: If Cx = ΠL(x) for some subspace L, then by (7.10)

xTCy = xTΠL(y) = (ΠL(x))TΠL(y) = (Cx)TΠL(y) = xTCT y for every x, y ∈ R
n.

CC = C follows from ΠL(ΠL(x)) = x. Conversely if CT = C and CC = C hold, and

L is generated by the column vectors of C, then Cx ∈ L and (x − Cx)T (Cy) = 0,

so that x− Cx ⊥ L. �
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Solution to Problem 7.26: If for some x �= 0 it holds BTBx = 0, then ‖Bx‖2 =

xTBTBx = 0, which is impossible as the rank of B is d. C = B(BTB)−1BT satisfies

C = CT , CC = C, Cx = x if x ∈ L = {By : y ∈ R
d}, and Cx = 0 if x ⊥ L, as x ⊥ L

holds if and only if xTB = 0. �

Solution to Problem 7.28: Represent ΠL(Z) and ΠM(Z) by matrices ΠL(Z) =

CLZ and ΠM(Z) = CMZ. Then by (7.12) C(ACLZ,BCMZ) = AC(CLZ,CMZ)BT =

ACLC(Z,Z)CMBT = σ2ACLICMBT = 0 if CLCM = 0, i.e., L ⊥ M. �

Solution to Problem 7.29: Let b1, ..., bn be an orthonormal basis such that

b1, ..., bd is a basis for L and bd+1, ..., bn for L
⊥. Set Y = (Y1, ..., Yn)T , Yi = XT bi.The

covariance matrix of Y is σ2I. The claim follows from ‖Π
L⊥(X)‖2 =

∑n
i=d+1 Y 2

i . �

Solution to Problem 7.34: Let fm : R be the piecewise linear function which is
one for t ≥ κ(θ), and zero for t ≤ κ(θ)− 1

m
. Then fm is bounded and continuous on

R and fm ↓ I[κ(θ),∞]. If the Dn are median unbiased and Dn ⇒ D, then

1

2
≤ lim

n→∞

∫
[

∫
fm(a)Dn(da|x)]Pθ(dx) =

∫
[

∫
fm(a)D(da|x)]Pθ(dx),

1

2
≤ lim

m→∞

∫
[

∫
fm(a)D(da|x)]Pθ(dx) =

∫
D([κ(θ),∞]|x)Pθ(dx).

The case of [−∞, κ(θ)] is similar. �

Solution to Problem 7.35: As �(0) = 0 we get from Fubini’s theorem

∫
I(θ,∞)(s)�(s− θ)Q(ds) =

∫
I(θ,∞)(s)[

∫
I(0,s−θ](t)μ�(dt)]Q(ds)

=

∫
I(0,∞)(t)[

∫
I[t+θ,∞)(s)Q(ds)]μ�(dt) =

∫
I(0,∞)(t)Q([t + θ,∞))μ�(dt).

∫
I(−∞,θ](s)�(s− θ)Q(ds) =

∫
I(−∞,θ](s)[

∫
I(s−θ,0](t)μ�(dt)]Q(ds)

=

∫
I(−∞,0](t)[

∫
I(−∞,t+θ)(s)Q(ds)]μ�(dt) =

∫
I(−∞,0)(t)Q((−∞, t + θ])μ�(dt),

where the last equality follows from μ�({a}) = 0, a ∈ R. If Q and μ� are symmetric,
then ∫

I(−∞,0)(t)Q((−∞, t + θ])μ�(dt) =

∫
I(−∞,0)(t)Q([−t− θ,∞))μ�(dt)

=

∫
I(0,∞)(t)Q([t− θ,∞))μ�(dt). �

Solution to Problem 7.43: Without loss of generality we assume that uα = 0.
For θ > 0 and P = L(X) it holds

τα(X − θ)− τα(X) = θ(1−α)I(−∞,0](X) + [−X + θ(1−α)]I(0,θ](X)−αθI(θ,∞)(X),
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E(τα(X − θ)− τα(X))

= (1− α)θF (0)− EXI(0,θ](X) + (1− α)θ(F (θ)− F (0))− αθ(1− F (θ))

= −
∫

I(0,θ](t)[

∫
I(0,t)(s)ds)]P (dt)− θ(α− F (θ))

= −
∫

I(0,θ](s)[

∫
I(s,θ](t)P (dt)]ds− θ(α− F (θ))

= −
∫

I(0,θ](s)(F (θ)− F (s))ds− θ(α− F (θ)) =

∫
I[0,θ](s)(F (s)− α)ds.

The case of θ < 0 is similar. �

Solution to Problem 7.49: If Pθ0(A) = 0, then by the homogeneity of the model

Pθ(A) = 0, θ ∈ Δ, and thus (PΠ)(A) =
∫
Pθ(A)Π(dθ) = 0, θ ∈ Δ. Conversely,

(PΠ)(A) = 0 implies Pθ0(A) = 0 for at least one θ0 and thus Pθ(A) = 0, θ ∈ Δ. �

Solution to Problem 7.53: L(‖X − θ‖2) is a χ2-distribution with noncentrality

δ2 = ‖θ‖2 and d degrees of freedom. We know from Theorem 2.27 that L(‖X − θ‖2)
is stochastically nondecreasing in δ2. Hence by Proposition 2.7 E ‖X − θ‖−2 ≤
E ‖X‖−2 = 2−d/2Γ (d/2)

∫∞
0

(1/t)t(d/2)−1 exp{−t/2}dt <∞ if d ≥ 3. �

Solution to Problem 7.72: As in the one-dimensional case one can see that the

left- and right-hand partial derivatives exist and it holds ∂−f/∂xi ≤ ∂+f/∂xi.

Set εi(x) = sgn(xi − ci) for fixed x = (x1, ..., xd) and c = (c1, ..., cd). The function

v(t) = f(c+t(x−c)) is convex and satisfies D+v(0) =
∑d

i=1(∂
εi(x)f(c)/∂xi)(xi−ci).

Hence f(c + (x− c))− f(c)−
∑d

i=1(∂
εi(x)f(c)/∂xi)(xi − ci) ≥ 0 by (1.55). For any

εi ∈ {+,−} it holds (∂εi(x)f(c)/∂xi)(xi − ci) ≥ (∂εif(c)/∂xi)(xi − ci) and the

statement is established. �

Solution to Problem 7.73: Fix x, y ∈ K and put z = x+ε(y−x)/ ‖y − x‖ . Then
z ∈ Kε and for α = (1/ε) ‖y − x‖ ≤ 1 it holds y = (1− α)x + αz, and

f(y) ≤ (1− α)f(x) + αf(z) = f(x) + α(f(z)− f(x))

f(y)− f(x) ≤ α(f(z)− f(x)) ≤ α(supx∈Kε
f(x)− infx∈Kε f(x)).

As x and y are arbitrary we get for ‖y − x‖ ≤ ε

|f(x)− f(y)| ≤ ε−1 ‖y − x‖ (supx∈Kε
f(x)− infx∈Kε f(x)).

But for ‖y − x‖ > ε this inequality is trivial. �

Solution to Problem 7.74: If v is a convex function on an open interval (a, b) of
the real line, then by (1.54) the function (v(t)− v(u))/(t− u) is nondecreasing in t
and nonincreasing in u. Hence for a + ε < x < b− ε,

v(x)− v(x− ε)

ε
≤ D+v(x) ≤ v(x + ε)− v(x)

ε
.

Let ei be the vector with 1 in the ith component and 0 in the others. Let c ∈ K be
fixed. Let ε > 0 be so small that Kε ⊆ O. It holds
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| ∂
+f

∂xi
(c) |≤ 1

ε
|f(c + εei)− f(c)| ≤ 1

ε
(max(|f(c + εei)| , |f(c− εei)|) + |f(c)|).

Denote the vectors c±εei c by b1, ..., b2d+1. Then gf (x) = f(c)+
∑n

i=1
∂+f
∂xi

(c)(xi−ci)
satisfies

|gf (x)− gf (y)| ≤ ‖x− y‖
∑d

i=1

∣∣∣∣∂
+f

∂xi
(c)

∣∣∣∣ ≤ ‖x− y‖ 1

ε

(∑2d

i=1
|f(bi)|+ d|f(c)|

)

|gf (x)| ≤ ( sup
x,y∈Kε

‖x− y‖)1

ε

∑2d

i=1
|f(bi)|+ |f(c)| ≤M

∑2d+1

i=1
|f(bi)|,

where M is some constant. f̃(x) = f(x) − gf (x) is a nonnegative convex function.

Hence by Problem7.73 |f̃(x)− f̃(y)| ≤ ε−1 ‖x− y‖ supx∈Kε
f̃(x). As O is open and

Kε ⊆ O we may cover Kε by a finite number of cubes whose union is contained in
O. For x in some cube the value of f̃(x) does not exceed the maximum of the values

of f̃ at the vertices. Denoting all vertices of the cubes by b̃1, ..., b̃N we get

|f̃(x)− f̃(y)| ≤ 1

ε
‖x− y‖

∑N

i=1
f̃ (̃bi)

≤ 1

ε
‖x− y‖

∑N

i=1
(|f (̃bi)|+ M

∑2d+1

j=1
|f(bj)|).

Now use f = f̃ + gf and |gf (x)− gf (y)| ≤ ‖x− y‖ ε−1
(∑2d

i=1 |f(bi)|+ d|f(c)|
)
. �

Solution to Problem 7.83: If Cε(θ) = {η : ρΔ(η, θ) < ε}, then by Lebesgue’s

theorem limε↓0H(θ0, Cε(θ)) = Hs(Pθ0 , Pθ) < 1. Hence for every θ ∈ Bε there is

some ε(θ) with H(θ0, Cε(θ)(θ)) < 1. The rest follows from the compactness of Bε. �

Solution to Problem 7.91: (A) ⇒ (B) ⇒ (C) is clear. Fix any θ ∈ Δ0 and

consider the function ϕ(s) = Λ(θ̂(x) + s(θ − θ̂(x)), x), which for a sufficiently small
ε > 0 is defined on (−ε, 1 + ε). As

ϕ′′(s) = −(θ − θ̂(x))T∇∇TK(θ̂(x) + s(θ − θ̂(x))(θ − θ̂(x)) < 0,

the function ϕ is strictly concave for θ̂(x) �= θ. If (C) is fulfilled, then ϕ′(0) = 0

and the function ϕ is strictly decreasing for s > 0. Hence lnL(θ̂(x), x) > lnL(θ, x)

which gives (A). The global maximum point is uniquely determined as the function

is strictly concave. �

Solution to Problem 7.92: Choose θ ∈ Δ0, and consider the function

κ∗(λ) := K(λθ + (1− λ)θ0)− 〈λθ + (1− λ)θ0, t〉 .

It holds dκ∗(λ)
dλ

= 〈∇K(λθ + (1− λ)θ0), θ − θ0〉 − 〈t, θ − θ0〉. Suppose that θ0 ∈ ∂Δ.

Then the steepness condition (7.49) implies limλ↓0
dκ∗(λ)

dλ
= −∞, so that there exists

at least one λ0 ∈ (0, 1) with

K(λ0θ + (1− λ0)θ0)− 〈λ0θ + (1− λ0)θ0, t〉 = κ∗(λ0) < κ∗(0) = K(θ0)− 〈θ0, t〉 ,

which contradicts K(θ0)− 〈θ0, t〉 ≤ K(θ)− 〈θ, t〉 , θ ∈ Δ. �
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Solution to Problem 7.99: We use Proposition 2.17. It is sufficient to consider the

case of P(Z = 0) = 0. The distribution of Z has a density f(s) that is nonincreasing

for s > 0. As the distribution of Z is symmetric we may assume that f is symmetric.

Hence P(|Z − a| < t) = F (a + t) − F (a − t), which is the integral over the λ-a.e.

existing derivative f(a + t)− f(a− t) ≤ 0, a > 0. �

Solution to Problem 7.103: D−v(θ0) ≤ 0 ≤ D+v(θ0) follows from the definition

of D−v and D+v. Conversely, if these inequalities hold, then by (1.58) the function v

is nonincreasing for t ≤ θ0 and nondecreasing for t ≥ θ0. The minimizer is unique if

and only if this monotonicity is strict. By (1.58) this is equivalent to D−v(θ0− ε) <

0 < D+v(θ0 + ε), ε > 0. The strict convexity of v in a neighborhood of θ0 implies

that D+v is strictly increasing. �

Solution to Problem 7.104: It holds

1

h
[v�(a + h)− v�(a)] =

∫
1

h
[�(t + (a + h))− �(t + a)]P (dt).

To carry out the limit under the integral we remark that by (1.54) for h ∈ (0, 1),

�(t + a)− �(t + a− 1) ≤ 1

h
[�(t + a)− �(t + a− h)] ≤ D−�(t + a)

≤ D+�(t + a) ≤ 1

h
[�(t + a + h)− �(t + a)] ≤ �(t + a + 1)− �(t + a).

This inequality implies E
∣∣D±�(Z + a)

∣∣ < ∞, and the first statement in (7.58) is
obtained by an application of Lebesgue’s theorem. To determine γv� we calculate
γv�((a, b]). It holds

γv�((a, b]) = D+v�(b)−D+v�(a) = ED+�(Z + b)− ED+�(Z + a)

=

∫
γ�((a, b] + t)P (dt). �

Solution to Problem 7.119: In view of (7.81) it suffices to consider the case

n = 1. If (PΠ)(A) =
∫
Pθ(A)Π(dθ) = 0 for some A ∈ A, then there exists at least

one θ ∈ {θ : K(Pθ0 , Pθ) <∞} with Pθ(A) = 0. As K(Pθ0 , Pθ) <∞ we get Pθ0 � Pθ

and therefore Pθ0(A) = 0. �

Solution to Problem 7.129: It is enough to consider the case of d = 1. Let
ρN : R → R be the piecewise linear function which is defined by the following
conditions. 0 ≤ ρN ≤ 1, ρN (t) = 1 for |t| ≥ N, and ρN (t) = 0 for |t| < N − 1. Then
L(Tn|Pn) ⇒ L(T |P ) implies

lim
N→∞

lim sup
n→∞

Pn(|Tn| > N) ≤ lim
N→∞

lim sup
n→∞

∫
ρN (Tn)dPn = lim

N→∞

∫
ρN (T )dP = 0,

where the last equality follows from Lebesgue’s theorem. If Xn = OPn(1) and Yn =
oPn(1), then

lim sup
n→∞

Pn(|XnYn| > ε) ≤ lim sup
n→∞

Pn(|Yn| > ε/N) + lim sup
n→∞

Pn(|Xn| > N).
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The first term on the right-hand side is zero, whereas the second tends to zero as

N →∞. The last statement is clear from the definition of oPn(0). �

Solution to Problem 7.130: The mapping A �→ det(A) is continuous. Hence

Pn(An) → 1, where An = {det(Σ + oPn(1)) �= 0}. Hence VnIAn = (Σ +

oPn(1))−1UnIAn + (Σ + oPn(1))−1oPn(1) = (Σ + oPn(1))−1UnIAn + oPn(1). As

Un is stochastically bounded we have (Σ + oPn(1))−1Un = Σ−1Un + oPn(1). Hence

Vn = Σ−1Un + oPn(1). �

Solution to Problem 7.137: It holds γ�(B) =
∫

B
�′′(x)λ(dx); see (1.60). Hence

by Remark 7.105 f(x) =
∫
�′′(x+ t)P (dt) = E�′′(ε+ x) is a Lebesgue density of γv�

which is strictly positive. The continuity of f follows from the continuity of �′′, as by

(7.97) we may pull the limit t → t0 under the integral sign. The Taylor formula in

Theorem A.2 gives E(�(ε1 + a)− �(ε1)− a�′(ε1))
2 = a4

E(
∫ 1

0
(1− s)�′′(ε+ sa)ds)2 ≤

a4
∫ 1

0
E(�′′(ε + sa))2ds = O(a4) = o(a2). �

Solution to Problem 7.138: To verify (7.94) use Remark 7.105. It holds τα(ε1 +
a)− τα(ε1)−aD+τα(ε1) = 0 if sgn(ε1 +a) = sgn(ε1). If a > 0, ε1 +a > 0, then with
ε1 < 0,

τα(ε1 + a)− τα(ε1)− aD+τα(ε1)I(−a,0)(ε1)

= [α(ε1 + a)− (1− α)ε1 + a(1− α)]I(−a,0)(ε1) = [(2α− 1)ε1 + a]I(−a,0)(ε1),

E[τα(ε1 + a)− τα(ε1)− aD+τα(ε1)]
2I(−a,0)(ε1)

≤ 4a2
EI(−a,0)(ε1) = 4a2

∫ 0

−a

f(t)dt = o(a2). The other cases are similar. �

Solution to Problem 7.140: It holds

Eθ0(ψθ+h − ψθ)− Eθ0(ψ̇
T
θ h) = Eθ0

∫ 1

0

(ψ̇T
θ+shh− Eθ0(ψ̇

T
θ h))ds,

‖ Eθ0(ψθ+h − ψθ)− Eθ0 ψ̇
T
θ h ‖ ≤

∫ 1

0

Eθ0 ‖ ψ̇T
θ+shh− ψ̇T

θ h ‖ ds = o(‖ h ‖),

where the last equality follows from Eθ0 supθ∈U(θ0) ‖ ψ̇θ ‖<∞, Lebesgue’s theorem,

and the continuity of ψ̇θ. �

Solution to Problem 7.174: If I is invertible, then for every z = (xT , yT )T �= 0

0 < zT Iz = xT I1,1x + 2xT I1,2y + yT I1,1y.

x = 0 gives that I2,2 is invertible. Set y = −I−1
2,2I2,1x. Then 0 < zT Iz = xT (I1,1 −

I1,2I
−1
2,2I2,1)x shows that G is invertible. The representation of I−1 follows by the

multiplication of the two matrices. For example,

(J1,1,−J1,1I1,2I
−1
2,2)(I1,1, I2,1)

T

= (I1,1 − I1,2I
−1
2,2I2,1)

−1I1,1 − (I1,1 − I1,2I
−1
2,2I2,1)

−1I1,2I
−1
2,2I2,1 = I. �

Solution to Problem 7.175: I2,2 and I−1
2,2 are symmetric and positive definite.

Furthermore, xT I1,1x− xT (I1,1 − I1,2I
−1
2,2I2,1)x = (I2,1x)T I−1

2,2(I2,1x) ≥ 0. �
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Testing

The foundation of the framework of testing statistical hypotheses has been
laid in Section 2.2. For a statistical model M = (X ,A, (Pθ)θ∈Δ) a test
ϕ : X →m [0, 1] decides, based on an observation from some Pθ with an
unknown θ ∈ Δ, whether the null hypothesis H0 : θ ∈ Δ0 or the alterna-
tive HA : θ ∈ ΔA is true, where Δ0 and ΔA is a fixed given partition of Δ.
A comprehensive presentation of the theory of optimal tests is provided by
Lehmann (1959, 1986) and Lehmann and Romano (2005), where also notes
on historical developments can be found. Other books in this area are by Fer-
guson (1967), Hájek and Šidák (1967), Strasser (1985), Witting (1985), and
Schervish (1995), where the majority of the subsequent results can be found.

8.1 Best Tests for Exponential Families

8.1.1 Tests for One–Parameter Exponential Families

In this section tests for one-parameter exponential families (Pθ)θ∈Δ are con-
sidered. According to Definition 1.1 the μ-density of Pθ is

fθ(x) = exp{θT (x)−K(θ)}, x ∈ X , θ ∈ Δ. (8.1)

Here Δ ⊆ R is a convex set and thus an interval that may be open or closed,
and finite or infinite, on either side. For (8.1) the likelihood ratio

Lθ0,θ1(x) = exp{(θ1 − θ0)T (x)−K(θ1) +K(θ0)}, x ∈ X ,

of Pθ1 with respect to Pθ0 is an increasing function of T (x) for every x ∈ X and
θ0, θ1 ∈ Δ with θ0 < θ1. If we reparametrize the family and introduce a new
parameter η by setting θ = κ(η), then the MLR property is preserved if κ is
nondecreasing. Such reparametrizations have been systematically considered
in Chapter 1. We also recall the assumptions (A1) and (A2) for exponential
families that have been made at the beginning of Chapter 1. (A1) guarantees

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 8, c© Springer Science+Business Media, LLC 2008
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that the generating statistic T is not a constant, Pθ-a.s.; that is, Vθ(T ) =
K ′′(θ) > 0, θ ∈ Δ. (A2) guarantees that Δ0 �= ∅.

Uniformly best level α tests for one-sided hypotheses under nondecreasing
likelihood ratio in T have been established already in Theorem 2.49. In this
section we also consider systematically the hypotheses summarized below.

Testing Problem H0 : θ ∈ Δ0 HA : θ ∈ ΔA

(I) Δ0 = (−∞, θ0] ∩Δ ΔA = (θ0,∞) ∩Δ

(II) Δ0 = {θ0} ΔA = Δ\{θ0}

(III) Δ0 = Δ\(θ1, θ2) ΔA = (θ1, θ2) ∩Δ

(IV ) Δ0 = [θ1, θ2] ∩Δ ΔA = Δ\[θ1, θ2]

(8.2)

For testing problem (I) a uniformly best (UMP) level α test has been
given in (2.19). Testing problem (IV ) is in some way a reflection of testing
problem (III). Somewhat surprising, there exists a uniformly best level α test
for testing problem (III), but not for the testing problems (II) and (IV ). We
also remark that (II) is a limiting case of (IV ). Tests for (II) and (IV ) are
used to test whether the true parameter deviates from a norm values or is
outside of a norm interval, respectively. In contrast to this the tests for

(V ) H0 : θ ∈ Δ\{θ0} versus HA : θ = θ0 ∈ Δ

and (III) are used to show that the data are from a model for which the
true parameter is a given standard value or belongs to a standard interval, re-
spectively. Tests for such hypotheses are called equivalence tests. If the power
function is continuous, which holds, for example, in exponential models, then
every level α test for testing problem (V ) has at most power α on the alterna-
tive. One way to remedy this is to stretch the alternative by turning to testing
problem (III). For more details on equivalence tests we refer to Wellek (2003)
and Lehmann and Romano (2005).

To deal with the above testing problems we need some general concepts
that are introduced and discussed subsequently. Let (X ,A, (Pθ)θ∈Δ) be a
model, and Δ0 and ΔA be a fixed given partition of Δ.

Definition 8.1. A level α test ϕ for

H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA (8.3)

is called unbiased if infθ∈ΔA
Eθϕ ≥ α. A test ψ is called a uniformly best

unbiased level α test for (8.3) if it is an unbiased level α test for (8.3) and
Eθψ ≥ Eθφ, θ ∈ ΔA, holds for every unbiased level α test φ for (8.3).

Uniformly best unbiased is also called uniformly most powerful unbiased
(UMPU). UMPU level α tests are admissible in a special way.
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Problem 8.2.∗ Let α ∈ (0, 1) be fixed. Every uniformly best unbiased level α test
ψ for (8.3) is admissible in the following sense. There is no level α test φ for (8.3)
with Eθψ ≤ Eθφ, θ ∈ ΔA, and Eθ1ψ < Eθ1φ at some θ1 ∈ ΔA.

For Δ ⊆ R
d the boundary of Δ0 and ΔA, denoted by J, is the set of all

θ ∈ Δ for which there are points from both, Δ0 and ΔA, in every open ball
B ⊆ R

d with center θ. Note that this boundary may be empty. This happens,
e.g., if the two hypotheses consist of two disjoint closed intervals. A test ϕ is
called α-similar on the boundary of Δ0 and ΔA if Eθϕ = α for every θ ∈ J.

Problem 8.3. If Δ ⊆ R
d and J �= ∅, then every unbiased level α test for (8.3) for

which θ �→ Eθϕ is continuous is α-similar on the boundary.

Thus in particular every unbiased level α test ϕ for (8.3) for which θ �→ Eθϕ
is continuous attains the level α, in the sense of Definition 2.30, provided that
J �= ∅. This holds especially for an exponential family that satisfies (A1) and
(A2), as in this case θ �→ Eθϕ is continuous for every test ϕ; see Lemma 1.16.

Problem 8.4.∗ Suppose that θ �→ Eθψ is continuous for every test ψ. Let ϕ be a
level α test for (8.3) that is α-similar on the boundary J , where J �= ∅. If Eθφ ≤ Eθϕ,
θ ∈ ΔA, for every test φ with Eθφ = α, θ ∈ J , then ϕ is a uniformly best unbiased
level α test for (8.3).

Two-sided testing problems in (8.2) for Δ ⊆ R and α ∈ (0, 1) are consid-
ered next. First it is shown that there are no uniformly best level α tests for
(II) and (IV ).

Proposition 8.5. Let (Pθ)θ∈Δ, Δ ⊆ R, be a one-parameter exponential fam-
ily in natural form that satisfies (A1) and (A2). Let θ1, θ2 ∈ Δ0 with θ1 < θ2
and α ∈ (0, 1). Then there does not exist a uniformly best level α test for the
testing problems (II) and (IV ) in (8.2).

Proof. Take a, b ∈ Δ with [θ1, θ2] ⊆ (a, b) and consider the two testing
problems H0 : θ ≤ θ1 versus HA : θ > θ1 and H0 : θ ≤ θ2 versus HA : θ > θ2.

For the first testing problem, let p1(θ) denote the power function of the
uniformly best (1 − α) level test that appears in Proposition 2.51. Similarly,
let p2(θ) denote the power function of the uniformly best level α test for the
second testing problem. If ψ is a uniformly best level α test for problem (IV )
with power function p(θ) = Eθψ, then p2(θ) = p(θ), θ > θ2, and therefore, in
view of Theorem A.3, p2(θ) = p(θ) for every θ ∈ (a, b) as both functions are
analytic; see Lemma 1.16. Similarly it follows that 1− p1(θ) = p(θ) for every
θ ∈ (a, b). This, however, is impossible as p1 and p2 are increasing functions;
see Proposition 2.51. The proof for problem (II) is analogous.

Tests for problem (I) in (8.2) have been studied already in Chapter 2. It
has been shown (see Theorem 2.49) that for families with MLR in T every test
of the form I(c,∞)(T )+γI{c}(T ) is a uniformly best level α test if the constants
c ∈ R and γ ∈ [0, 1] are determined by α = Eθ0(I(c,∞)(T ) + γI{c}(T )). We
show in the subsequent theorems that for the two-sided testing problems (II),
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(III), and (IV ) in (8.2) the optimal tests, for (II) and (IV ) restricted to the
class of unbiased tests, are also piecewise constant. The display below gives
the structure of these optimal tests and the conditions for their constants.

Test Structure of Test Constraints

ϕI(T ) ϕI = I(c,∞) + γI{c} Eθ0ϕI(T ) = α

ϕII(T )
ϕII = I(−∞,b1) + ς1I{b1}

+ ς2I{b2} + I(b2,∞)

Eθ0ϕII(T ) = α
Eθ0ϕII(T )T = αEθ0T

ϕIII(T ) ϕIII = I(c1,c2) + ς1I{c1} + ς2I{c2}
Eθ1ϕIII(T ) = α
Eθ2ϕIII(T ) = α

ϕIV (T )
ϕIV = I(−∞,b1) + ς1I{b1}

+ ς2I{b2} + I(b2,∞)

Eθ1ϕIV (T ) = α
Eθ2ϕIV (T ) = α

(8.4)

The following theorem establishes the optimal tests for problem (IV ).

Theorem 8.6. Let (Pθ)θ∈Δ be a one-parameter exponential family in natural
form that satisfies (A1) and (A2), and let θ1, θ2 ∈ Δ0 with θ1 < θ2 be fixed.

(A) For every α ∈ (0, 1) there exist b1, b2 ∈ R and ς1, ς2 ∈ [0, 1] such that

Eθ1ϕIV (T ) = Eθ2ϕIV (T ) = α. (8.5)

(B) Every test ϕIV (T ) in (8.4) that satisfies (8.5) is a uniformly best unbiased
level α test for the testing problem (IV ) in (8.4).

(C) For every test ϕIV (T ) from (8.4) that satisfies (8.5) the power EθϕIV (T )
has a minimum at some uniquely determined θ∗ ∈ (θ1, θ2), and it increases
as θ tends away from θ∗ in either direction.

Proof. For a proof of (A) we refer to Lehmann (1959), Ferguson (1967),
and Witting (1985). Now we prove statement (B). To this end we remark
that it suffices to consider the case where [0, 1] ⊆ Δ0, θ1 = 0, and θ2 = 1, as
the general case can be reduced to this case by a linear transformation of the
parameter set. Using the density fθ in (8.1) we consider the function

ρ(t, ρ1, ρ2) = ρ1
f0(t)
fθ(t)

+ ρ2
f1(t)
fθ(t)

= ρ1 exp{−θt−K(0) +K(θ)}+ ρ2 exp{(1− θ)t−K(1) +K(θ)},

along with the equations

ρ(b1, ρ1, ρ2) = ρ(b2, ρ1, ρ2) = 1. (8.6)

The solution ρ∗1, ρ
∗
2 is given by
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ρ∗1 =
1
D

[exp{(1− θ)b2} − exp{(1− θ)b1}] , (8.7)

ρ∗2 =
1
D

[exp{−θb1} − exp{−θb2}] ,

D = exp{(1− θ)b2 − θb1} − exp{(1− θ)b1 − θb2} > 0.

The inequality (1− θ)b2 − θb1 − (1− θ)b1 + θb2 = b2 − b1 > 0 implies

ρ∗1 > 0 and ρ∗2 < 0 for θ < 0, (8.8)
ρ∗1 < 0 and ρ∗2 > 0 for 1 < θ.

The derivative ρ′(t, ρ∗1, ρ
∗
2) = −ρ∗1θ exp{−θt}+ ρ∗2(1− θ) exp{(1− θ)t} of the

function ρ(t, ρ∗1, ρ
∗
2) has the unique zero

t0 = ln
ρ∗1θ

ρ∗2(1− θ)
,

which by (8.6) belongs to [b1, b2]. From (8.8) and limt→∞ ρ(t, ρ∗1, ρ
∗
2) = −∞

we obtain

ρ(t, ρ∗1, ρ
∗
2) ≥ 1, for b1 ≤ t ≤ b2, (8.9)

ρ(t, ρ∗1, ρ
∗
2) ≤ 1, for t ≤ b1 and t ≥ b2.

As E0ϕIV (T ) = E1ϕIV (T ) = α, it holds for every test ψ that satisfies (8.5),

Eθ(ϕIV (T )− ψ) = Eθ(ϕIV (T )− ψ)− ρ∗1E0(ϕIV (T )− ψ)− ρ∗2E1(ϕIV (T )− ψ)
= Eθ(ϕIV (T )− ψ)[1− ρ(T, ρ∗1, ρ

∗
2)].

By the definition of ϕIV (T ) and (8.9) both brackets are simultaneously posi-
tive or negative so that the product is nonnegative in any case. This gives

Eθ(ϕIV (T )− ψ) ≥ 0, θ /∈ [0, 1].

Especially, ψ ≡ α is an unbiased level α test, and thus the inequality
EθϕIV (T ) ≥ α, θ /∈ [0, 1], is established. As θ was arbitrary we see that
ϕIV (T ) is a uniformly best unbiased test, provided that

EθϕIV (T ) ≤ α, 0 ≤ θ ≤ 1.

As we have noted at the beginning of the proof the consideration of θ1 = 0
and θ2 = 1 is no restriction of generality. Hence we obtain the following
remarkable property of the power function p(θ) := EθϕIV (T ). For any η1 < η2

and η /∈ [η1, η2],

0 < Eη1ϕIV (T ) = Eη2ϕIV (T ) < 1 implies EηϕIV (T ) ≥ Eη1ϕIV (T ).

This property and the continuity of the function p(η) = EηϕIV (T ) (see Lemma
1.16) implies that p(η) does not cross any level more than twice in 0 ≤ η ≤ 1.
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Because p(η) is an analytic function that is uniquely determined by its values
in any open subset of Δ, and ϕIV (T ) is not a constant (i.e., equal to α, Pθ-
a.s.) there is a uniquely determined θ∗ at which p(η) attains the minimum,
and p(η) increases if η tends away from θ∗. This completes the proof of (B),
and also the proof of (C).

Problem 8.7. Suppose that Pθ has the Lebesgue density fθ(x) = θxθ−1I[0,1](x),
x ∈ R, θ ∈ Δ = (0,∞). For 0 < θ1 < θ2 fixed, let H0 : θ ∈ [θ1, θ2] and HA : θ ∈
(0, θ1) ∪ (θ2,∞). For a fixed α ∈ (0, 1) find a uniformly best unbiased level α test
for H0 versus HA.

Now we deal with testing problem (III) in (8.2) for α ∈ (0, 1). For c1, c2 ∈
R with c1 < c2, and γ1, γ2 ∈ [0, 1], let ϕIII(T ) be defined in (8.4). In contrast
to the previous theorem this test, subject to

Eθ1ϕIII(T ) = Eθ2ϕIII(T ) = α, (8.10)

turns out to be a uniformly best level α test for testing problem (III), that
is, not only in the restricted class of unbiased level α tests, but in the class of
all level α tests.

Theorem 8.8. Let (Pθ)θ∈Δ be a one-parameter exponential family in natural
form that satisfies (A1) and (A2), and let θ1, θ2 ∈ Δ0 with θ1 < θ2 be fixed.

(A) For every α ∈ (0, 1) there exist c1, c2 ∈ R and γ1, γ2 ∈ [0, 1] such that
(8.10) holds.

(B) Every test ϕIII(T ) from (8.4) that satisfies (8.10) is a uniformly best level
α test for the testing problem (III) in (8.2).

(C) The power EθϕIII(T ) of every test ϕIII(T ) from (8.4) that satisfies (8.10)
has a maximum at some θ∗ ∈ (θ1, θ2). Moreover, it decreases as θ tends
away from θ∗ in either direction.

Proof. The proof is similar to that of the previous theorem. For a proof of
(A) we refer again to Lehmann (1959), Ferguson (1967), and Witting (1985).
Now we prove statement (B) and assume again without loss of generality
that θ1 = 0 and θ2 = 1. As before we start with the system of equations (8.6)
which has the solution (8.7). But now 0 < θ < 1, which implies that ρ∗1, ρ

∗
2 are

positive, and thus ρ(t, ρ∗1, ρ
∗
2) is a strictly convex function. In view of E0ψ ≤ α,

E1ψ ≤ α, and ρ∗i ≥ 0, i = 1, 2, we have

Eθ(ϕIII(T )− ψ)
≥ Eθ(ϕIII(T )− ψ)− ρ∗1E0(ϕIII(T )− ψ)− ρ∗2E1(ϕIII(T )− ψ)
= Eθ(ϕIII(T )− ψ)[1− ρ(T, ρ∗1, ρ

∗
2)] ≥ 0

by the definition of ϕIII(T ) and the property (8.9) of ρ(t, ρ∗1, ρ
∗
2). State-

ment (C) follows from the analogous statement (C) in Theorem 8.6 by using
ϕIII(T ) := 1− ϕIV (T ).
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Problem 8.9. As before in Problem 8.7, let Pθ have the Lebesgue density fθ(x) =
θxθ−1I[0,1](x), x ∈ R, θ ∈ Δ = (0,∞). For 0 < θ1 < θ2 fixed, let H0 : θ ∈ (0, θ1] ∪
[θ2,∞) and HA : θ ∈ (θ1, θ2). For a fixed α ∈ (0, 1) find a uniformly best level α test
for H0 versus HA.

Now we discuss the duality between Theorems 8.6 and 8.8. If ψ is any
level α test for (IV ) in (8.2) that is α-similar on the boundary {θ1, θ2} (i.e.,
Eθ1ψ = Eθ2ψ = α), then ψ = 1−ψ is a level 1−α test for (III) in (8.2) that
is (1 − α)-similar on the boundary {θ1, θ2}. Especially we have for the tests
from (8.4)

1−ϕIV (T ) = I[b1,b2](T )+(1−ς1)I{b1}(T )+(1−ς2)I{b2}(T ) = ϕIII(T ) (8.11)

by setting bi = ci and γi = (1− ςi), i = 1, 2. However, if ψ is a uniformly most
powerful level α test for testing problem (III), then 1−ψ is only a uniformly
most powerful in the class of all unbiased level 1− α test for testing problem
(IV ). Despite this fact, the relationship between ϕIII(T ) and ϕIV (T ) leads
to a statement of the power function of ϕIV (T ).

Proposition 8.10. Suppose that the assumptions of Theorems 8.6 and 8.8 are
fulfilled. Then for every unbiased level α test ψ for the testing problem (IV )
in (8.2) with Eθ1ψ = Eθ2ψ it holds that EθϕIV (T ) ≤ Eθψ for all θ ∈ [θ1, θ2],
and EθϕIV (T ) ≥ Eθψ for all θ /∈ [θ1, θ2].

Proof. The second statement is clear from Theorem 8.6. To prove the first
statement we remark that 1− ϕIV (T ) is by assumption a level 1− α test for
the testing problem (III) in (8.2). Hence this test is, according to Theorem
8.8 and (8.11), a uniformly best level 1−α test for the testing problem (III)
in (8.2). This proves the first statement.

Consider the testing problem (II) in (8.2) at the level α ∈ (0, 1). In view
of Lemma 1.16 the power function p(θ) := Eθψ of a test ψ is infinitely often
differentiable, and the differentiation can be carried out under the expectation.
If ψ is an unbiased level α test, then the power function p(θ) := Eθψ has a
local minimum at θ = θ0 so that by Lemma 1.16 and K ′(θ) = EθT from (1.23)
it holds

p′(θ) = Eθ(Tψ)− Eθ(ψK ′(θ)) = 0.

Hence we see that every unbiased level α test that attains the level α satisfies
the conditions

Eθ0ψ = α, (8.12)
Eθ0(Tψ) = αEθ0T. (8.13)

Now we show that tests with the structure ϕII(T ) in (8.4) are uniformly
best unbiased level α tests for the testing problem (II) in (8.2).

Theorem 8.11. Let (Pθ)θ∈Δ be a one-parameter exponential family in natu-
ral form that satisfies (A1) and (A2), and let θ0 ∈ Δ0 be fixed.
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(A) For every α ∈ (0, 1) there exist b1, b2 ∈ R and ς1, ς2 ∈ [0, 1] such that a
test ϕII(T ) in (8.4) satisfies (8.12) and (8.13).

(B) Every test ϕII(T ) in (8.4) that satisfies (8.12) and (8.13) is a uniformly
best unbiased level α test for testing problem (II) in (8.2).

(C) The power EθϕII(T ) of every test ϕII(T ) from (8.4) that satisfies (8.12)
and (8.13) has a minimum at θ0 and increases as θ tends away from θ0 in
either direction.

Proof. The proof is similar to that of Theorem 8.6. For (A) we refer again
to Lehmann (1959), Ferguson (1967), and Witting (1985). Now we prove (B)
and similarly as before assume without loss of generality that θ0 = 0. For
θ �= 0 we study the function ρ(t, ρ1, ρ2) = exp{θt−K(θ) +K(0)}+ ρ1 + ρ2t.
As the first expression on the right-hand side is a strictly convex function of t
we find ρ∗1 and ρ∗2 such that line ρ∗1 + ρ∗2t crosses this function at the points b1
and b2. Hence, ρ(t, ρ1, ρ2) ≥ 0 for b1 ≤ t ≤ b2 and ρ(t, ρ1, ρ2) ≤ 0 otherwise.
Let ψ be any test that satisfies the conditions (8.12) and (8.13). Then

Eθ(ϕII(T )− ψ) = Eθ(ϕII(T )− ψ) + E0(ρ∗1 + ρ∗2T )(ϕII(T )− ψ)
= E0(ϕII(T )− ψ)ρ(T, ρ∗1, ρ

∗
2).

By the definition of ϕII(T ) and the construction of ρ(T, ρ∗1, ρ
∗
2) the two terms

ϕII(T ) − ψ and ρ(T, ρ∗1, ρ
∗
2) have the same sign. Hence Eθ(ϕII(T ) − ψ) ≥ 0

so that ϕII(T ) is uniformly best among all tests that satisfy the conditions
(8.12) and (8.13), which are also satisfied by the constant test ψ ≡ α. As
ϕII(T ) is a level α test we arrive at

E0ϕII(T ) ≤ α ≤ EθϕII(T ), θ ∈ ΔA.

Hence ϕII(T ) is an unbiased level α test. As the class of all unbiased test
level α tests is a subclass of tests that satisfy (8.12) and (8.13), and ϕII(T ) is
uniformly best in this class, we see that ϕII(T ) is a uniformly best unbiased
level α test. The proof of (C) is similar to that in Theorem 8.6.

Problem 8.12. As before in Problem 8.7, let Pθ have the Lebesgue density fθ(x) =
θxθ−1I[0,1](x), x ∈ R, θ ∈ Δ = (0,∞). For some fixed θ0 > 0 let H0 : θ = θ0 and
HA : θ �= θ0. For a fixed α ∈ (0, 1) find a uniformly best unbiased level α test for H0

versus HA.

Problem 8.13. Let X1, ..., Xn be an i.i.d. sample from a Poisson distribution
Po(λ) with λ > 0. For some fixed λ0 > 0 let H0 : λ = λ0 and HA : λ �= λ0.
For a fixed α ∈ (0, 1) find a uniformly best unbiased level α test for H0 versus HA.

Fortunately, an occasional symmetry in the model allows for a simpler
determination of the constants b1, b2, ς1, ς2 in (8.4) that specify the optimal
tests in the Theorems 8.8 and 8.11. Suppose that for every θ ∈ Δ there exists
an m(θ) such that T −m(θ) and m(θ)− T have the same distribution under
Pθ, i.e., that
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Pθ(T −m(θ) ≤ t) = Pθ(m(θ)− T ≤ t), t ∈ R, θ ∈ Δ. (8.14)

In this case, of course, we also have

m(θ) = EθT, θ ∈ Δ. (8.15)

By utilizing the symmetry that is given by (8.14) we can represent the test
ϕ2,T in a symmetric version. Let Fθ0(t) := Pθ0(T −m(θ0) ≤ t), t ∈ R, and
put for α ∈ (0, 1)

ψsy(T ) = I(−∞,−c1−α/2)(T −m(θ0)) + γI{−c1−α/2}(T −m(θ0)) (8.16)
+γI{c1−α/2}(T −m(θ0)) + I(c1−α/2,∞)(T −m(θ0)),

γ = (Fθ0(c1−α/2)− (1− α/2)) Pθ0(T −m(θ0) = c1−α/2),

where c1−α/2 = F−1
θ0

(1 − α/2). By this construction the condition (8.12) is
fulfilled. Moreover, because the test ψsy(T ) is symmetric in T − m(θ0), we
also have Eθ0(T −m(θ0))ψsy(T ) = 0, which, together with (8.15), gives the
second side condition (8.13).

Proposition 8.14. Under the conditions of Theorem 8.11 and the symmetry
assumption (8.14), the test ψsy(T ) given by (8.16) is identical with test ϕII(T )
in Theorem 8.11, and thus it has the optimality properties stated there.

In the above theorems we have constructed optimal tests, but the problem
of uniqueness has been left open. In general one cannot expect uniqueness in
the class of all level α tests. However, if we consider only tests that depend
on T , then there is uniqueness, as specified in the following remark.

Remark 8.15. Let (Pθ)θ∈Δ be a one-parameter exponential family in natural form
that satisfies (A1) and (A2). If for two tests ψ1(T ) and ψ2(T ), and some interval
(a, b) ⊆ Δ0, it holds Eθψ1(T ) = Eθψ2(T ) for every θ ∈ (a, b), then ψ1(T ) = ψ2(T ),
Pθ-a.s., θ ∈ Δ, follows from the completeness of the generating statistic T in an
exponential family; see Theorem 4.73.

If the exponential family is represented in reparametrized form (Ppe,η)η∈Λ,
as specified in (1.11), then for a strictly monotone mapping κ : Λ → Δ the
above hypotheses are transformed to hypotheses that are again intervals.

Remark 8.16. Let (Pθ)θ∈Δ be a one-parameter exponential family with generat-
ing statistic T and natural parameter θ. If η = κ(θ) and S = g(T ) is another test
statistic, where κ and g are increasing, then the optimal tests ϕI(T ), ..., ϕIV (T ) can
be found in the following way. Formulate the testing problems in terms of η; find
constants so that the tests ϕ̃I(S), ..., ϕ̃IV (S) are piecewise constant and satisfy the
constraints in (8.4). Then ϕ̃I(g(T )), ..., ϕ̃IV (g(T )) are optimal level α tests for the
corresponding problems. This simple fact shows that we don’t have to go back to the
original parameter θ and the generating statistic T. If we have increasing functions
of these terms, then it is enough to mimic the construction of the optimal tests
ϕI(T ), ..., ϕIV (T ).
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In the first of the following three examples symmetry is utilized to simplify
two-sided tests.

Example 8.17. We consider the family (N⊗n(μ, σ2
0))μ∈R, where μ ∈ R is unknown,

but σ2
0 > 0 is known. By (1.11) N⊗n(μ, σ2

0) is a one parameter exponential family
with natural parameter θ = μ/σ2

0 and generating statistic T (x) =
∑n

i=1 xi, x =
(x1, ..., xn) ∈ R

n. As θ and μ differ only by a constant positive factor the null
hypotheses that appear in (8.2) can be written as follows.

Testing Problem H0 HA

(I) μ ≤ μ0 μ > μ0

(II) μ = μ0 μ �= μ0

(III) |μ− μ0| ≥ dσ0/
√
n |μ− μ0| < dσ0/

√
n

(IV ) |μ− μ0| ≤ dσ0/
√
n |μ− μ0| > dσ0/

√
n

(8.17)

where d > 0 is a constant. As the family of normal distributions is generated
by location-scale transformations we may obtain the constants that appear in the
optimal tests from N(0, 1). For 0 < γ < 1 let uγ be the γ-quantile of N(0, 1),
i.e., Φ(uγ) = γ. We note that for every d > 0 and 0 < α < 1 the equation
Φ(z − d)− Φ(−z − d) = α has a unique positive solution zd,α, say. We set

Standard Gauss Tests

ψI(s) = I(u1−α,∞)(s), ψII(s) = 1− I(−u1−α/2,u1−α/2)(s),

ψIII(s) = I(−zd,α,zd,α)(s), ψIV (s) = 1− I(−zd,1−α,zd,1−α)(s),
(8.18)

and call the tests ψI , ..., ψIV Gauss tests. We consider the testing problems (8.17)
for the model M and the test statistic S given by

(Rn,Bn, (N
⊗n(μ, σ2

0))μ∈R) and S =
√
n(Xn − μ0)/σ0, (8.19)

respectively, where X1, ..., Xn : R
n → R are the i.i.d. projections and Xn =

(1/n)
∑n

i=1 Xi. Then

Eμ0ψI(S) = Eμ0ψII(S) = α,

Eμ0±dσ0/
√

nψIII(S) = Eμ0±dσ0/
√

nψIV (S) = α.

We already know from Example 2.52 that ψI(S) is a uniformly best level α test
for testing problem (I) in (8.17). By Remark 8.16, Proposition 8.14, Theorems 8.8
and 8.6, the tests ψII(S), ψIII(S), and ψIV (S), with S from (8.19), have the fol-
lowing optimality properties.

ψI(S) UMP for (I), ψII(S) UMPU for (II),

ψIII(S) UMP for (III), ψIV (S) UMPU for (IV ).
(8.20)
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Problem 8.18. Evaluate the power of the tests ψI(S), ..., ψIV (S) in Example 8.17.

Example 8.19. We consider the family (N⊗n(μ0, σ
2))σ2>0, where μ0 ∈ R is

known, but σ2 > 0 is unknown. By (1.11) we know that N⊗n(μ0, σ
2) is a one-

parameter exponential family with natural parameter θ = κ(σ2) = −(2σ2)−1 and
generating statistic T (x) =

∑n
i=1(xi − μ0)

2, x = (x1, ..., xn) ∈ R
n. Let σ2

0 > 0 and
α ∈ (0, 1) be fixed. We follow again the advice in Remark 8.16 and use the test
statistic S = σ−2

0 T , which under N⊗n(μ0, σ
2
0) has the χ2-distribution with n degrees

of freedom H(n). Symmetry cannot be utilized to simplify the construction of the
optimal test for the testing problem H0 : σ2 = σ2

0 versus HA : σ2 �= σ2
0 , which

is problem (II) in (8.2). Denote by χ2
1−α,n the 1 − α quantile of H(n). It holds

Eμ0,σ2
0
T = nσ2

0 . According to the constraints in (8.12) and (8.13) we have to find

α1, α2 > 0 such that for c1 = χ2
α1,n and c2 = χ2

1−α2,n,

ϕII(T ) = I(0,c1](T/σ2
0) + I[c2,∞)(T/σ2

0)

satisfies Eμ0,σ2
0
ϕII(T ) = α1 + α2 = α and Eμ0ϕII(T )T = αnσ2

0 . The latter can be
written as ∫ χ2

1−α2,n

χ2
α1,n

shn(s)ds = (1− α)n,

where hn is the Lebesgue density of H(n), given by

hn(s) =
1

2n/2Γ (n
2
)
s(n/2)−1 exp{− s

2
}I(0,∞)(s), s ∈ R.

Hence shn(s) = nhn+2(s), and with Hn(t) =
∫ t

0
hn(s)ds the side conditions now read

Hn+2(χ
2
1−α2,n)− Hn+2(χ

2
α1,n) = 1− α,

α1 + α2 = α.

To find α1 and α2 one has to solve this system of nonlinear equations numerically.
The quite often-made choice of α1 = α2 = α/2 is an approximation for large n
as then Hn+2 ≈ Hn. Finally we remark that the other testing problems studied in
Theorems 8.8 and 8.6 can be treated similarly.

The next example studies tests for the scale parameter in a family of
gamma distributions. It is a generalization of the result in the previous exam-
ple as every χ2-distribution is a special gamma distribution.

Example 8.20. Let X1, ..., Xn be an i.i.d. sample from a gamma distribution
Ga(λ, β) with Lebesgue density

gaλ,β (x) =
βλ

Γ (λ)
xλ−1 exp{−βx}I(0,∞) (x) , x ∈ R, β > 0,

where λ > 0 is known. Ga
⊗n

(λ, β) is an exponential family with natural parameter
θ = κ(β) = −β and generating statistic T (x1, ..., xn) =

∑n
i=1 xi. Testing H0 : β = β0

versus HA : β �= β0 for a given β0 ∈ (0,∞) is covered by Theorem 8.11. A uniformly
best unbiased level α test is given by

ϕ2,T = I(0,b1](T ) + I[b2,∞)(T ),
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where b1 and b2 are determined according to (8.12) and (8.13). To calculate the
constants b1, b2 we remark that T/β0 has under H0 the density ga⊗n

λ,1, so that

∫ β0b2

β0b1

ganλ,1 (t) dt = 1− α and

∫ β0b2

β0b1

tganλ,1 (t) dt = (1− α)nλ.

Also here, in practice quite often the α/2-approach is chosen; see Example 8.19.

Example 8.21. Let X follow a binomial distribution B(n, p), where p ∈ (0, 1) is
unknown. We know from Example 1.7 that B(n, p) is an exponential family with
natural parameter θ = κ(p) = ln(p/(1 − p)) and generating statistic T (x) = x. As
κ is increasing we may use the advice in Remark 8.16. By Theorem 8.6 a uniformly
best unbiased level α test for H0 : p ∈ [p1, p2] versus HA : p ∈ (0, p1) ∪ (p2, 1) is

ϕIV (T (x)) = I{0,...,b1−1}(x) + ς1I{b1}(x) + ς2I{b2}(x) + I{b2+1,...,n}(x),

x ∈ {0, 1, ..., n}, where b1, b2 and ς1, ς2 are determined by

∑b1−1

k=0
bn,pj (k) + ς1bn,pj (b1) + ς2bn,pj (b2) +

∑n

x=b2+1
bn,pj (k) = α, j = 1, 2.

Calculating the values of b1, b2 and ς1, ς2 in concrete situations usually requires
the use of a computer program. When testing H0 : p = p0 versus HA : p �= p0

for a given p0 ∈ (0, 1), in practice quite often the α/2-approach is chosen and
that, conservatively, without randomization; that is, H0 is rejected at x whenever
B(n, p0)({0, 1, ..., x}) ≤ α/2 or B(n, p0)({x, x + 1, ..., n}) ≤ α/2.

8.1.2 Tests in Multivariate Normal Distributions

We consider the Gaussian model

G0 = (Rd,Bd, (N(θ,Σ0))θ∈Rd),

where Σ0 is known. Here we want to test linear hypotheses in terms of cT θ,
where c ∈ R

d is a fixed given vector. The four testing problems considered
are those given in (8.17), where in the present setting μ = cT θ. If X has the
distribution N(θ,Σ0), then it seems intuitively reasonable to use cTX as the
test statistic and switch to the reduced model (R,B, (N(cT θ, cTΣ0c))θ∈Rd) for
which the optimal tests are readily available from Example 8.17. It may be
somewhat surprising that this simple idea in fact provides the optimal tests.
However, closer inspection reveals that this is the right approach. Indeed,
τ = cT θ is the parameter of interest, and the projection of θ on the linear
subspace, say L

⊥
c , that is orthogonal to c is a nuisance parameter that may

vary freely in the (d − 1)-dimensional subspace L
⊥
c . Intuitively it is clear

that a level α test should not depend on that projection ΠL⊥
c
X but only

on cTX. First, it should be pointed out that by a linear transformation the
testing problem can be reduced to c = (1, 0, ..., 0)T , i.e., where we test the
first component of θ. Second, when testing τ ≤ a0, ξ ∈ R

d−1, versus τ > a0,
ξ ∈ R

d−1, it is enough to consider the case a0 = 0.
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Denote by U the projection on the first k, and by V the projection on the
remaining d − k components in the model G0. Let Σi,j , 1 ≤ i, j ≤ 2, be the
block matrices of Σ0, i.e., Σ1,1 = Cθ(U,U), Σ1,2 = Cθ(U, V ), Σ2,1 = Cθ(V,U),
and Σ2,2 = Cθ(V, V ). Suppose that Σ1,1 is nonsingular, introduce the linear
mapping and its inverse by

B(u, v) =
(
u
v −Σ2,1Σ

−1
1,1u

)
and B̃(y, z) =

(
y
z +Σ2,1Σ

−1
1,1y

)
, (8.21)

respectively, and set
(
Y
Z

)
= B(U, V ) =

(
U

V −Σ2,1Σ
−1
1,1U

)
.

Then it holds

Cθ(Y,Z) = Cθ(V −Σ2,1Σ
−1
1,1U,U) = Cθ(V,U)− Cθ(Σ2,1U,U)Σ−1

1,1 = 0.

As B is a linear mapping and (Y T , ZT )T has a normal distribution we get
that Y and Z are independent. The definition of (Y T , ZT )T implies

N(θ,Σ0) ◦B−1 = L((Y T , ZT )T |N(θ,Σ0))
= N(τ,Σ1,1)⊗ N(ξ −Σ2,1Σ

−1
1,1τ, Γ ) (8.22)

with Γ = Σ2,2−Σ2,1Σ
−1
1,1Σ1,2. This relation between the family (N(θ,Σ0))θ∈Rd

and the family (N(θ,Σ0) ◦ B−1)θ∈Rd is the crucial point in the proof of the
next theorem. Parts of this theorem, proved with different arguments, can
also be found in van der Vaart (1998) and Lehmann and Romano (2005). We
consider the following testing problems.

Testing Problem H0 HA

(I) cT θ ≤ 0 cT θ > 0

(II) cT θ = 0 cT θ �= 0

(III) |cT θ| ≥ dσ0 |cT θ| < dσ0

(IV ) |cT θ| ≤ dσ0 |cT θ| > dσ0

(8.23)

Theorem 8.22. For the model G0 = (Rd,Bd, (N(θ,Σ0))θ∈Rd) with known co-
variance matrix Σ0 and σ2

0 = cTΣ0c > 0, the hypotheses in (8.23), the Gauss
tests ψI , ..., ψIV in (8.18), and T (x) = cTx/σ0, x ∈ R

d, the subsequent tests
are level α tests and optimal as stated below.

ψI(T ) UMP for (I), ψII(T ) UMPU for (II),

ψIII(T ) UMP for (III), ψIV (T ) UMPU for (IV ).
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Proof. We have seen already that it is enough to consider the special case
of c = (1, 0, ..., 0)T . The assumption cTΣ0c > 0 gives σ2

0 = Σ1,1 > 0. We set
k = 1 and note that the mapping B in (8.21) is one-to-one. Therefore we
have only to consider tests that depend on (Y,Z), i.e., we consider the model
(8.22). In the first part of the proof we consider the testing problem (I) in
(8.23). Let ϕ be any level α test; that is,
∫

[
∫
ϕ(y, z)N(τ,Σ1,1)(dy)]N(ξ −Σ2,1Σ

−1
1,1τ, Γ )(dz) ≤ α, τ ≤ 0, ξ ∈ R

d−1.

As ξ ∈ R
d−1 is arbitrary we get with σ2

0 = Σ1,1∫
[
∫
ϕ(y, z)N(τ, σ2

0)(dy)]N(ξ, Γ )(dz) ≤ α, τ ≤ 0, ξ ∈ R
d−1.

For fixed ξ ∈ R
d−1 the test ψξ(y) :=

∫
ϕ(y, z)N(ξ, Γ )(dz) is a level α test

for H0 : N(τ, σ2
0), τ ≤ 0, versus HA : N(τ, σ2

0), τ > 0. As ψI(t/σ0) =
I(u1−α,∞)(t/σ0) is a uniformly best level α test (see Example 2.52) we get

∫
[
∫
ϕ(y, z)N(τ, σ2

0)(dy)]N(ξ, Γ )(dz)

≤
∫

[
∫
ψI(y/σ0)N(τ, σ2

0)(dy)]N(ξ, Γ )(dz),

so that ψI(y/σ0) has a power not smaller than that of ϕ(y, z) at every τ > 0
and ξ ∈ R

d−1, and therefore at every τ > 0 and ξ − Σ2,1Σ
−1
1,1τ. The proofs

for the cases (II), (III), and (IV ) in (8.17) with μ− μ0 = cT θ are similar if
we use Example 8.17, where in the cases (II) and (IV ) we have to take into
account that ψξ(y) is unbiased if ϕ is.

Problem 8.23. The power functions of the tests ψI(T ), ..., ψIV (T ) are given by

pI(θ) = 1− Φ(u1−α − (cT θ)/σ0),

pII(θ) = 1− Φ(u1−α/2 − (cT θ)/σ0) + Φ(−u1−α/2 − (cT θ)/σ0),

pIII(θ) = Φ(zd,α − (cT θ)/σ0)− Φ(−zd,α − (cT θ)/σ0),

pIV (θ) = 1− Φ(zd,1−α − (cT θ)/σ0) + Φ(−zd,1−α − (cT θ)/σ0).

Now we allow the parameter of interest to be k-dimensional and consider
maximin tests. We fix δ > 0, assume that the k×k matrix Σ1,1 is nonsingular,
and consider the testing problem

H0 : τ = 0, ξ ∈ R
d−k versus HA : τTΣ−1

1,1τ ≥ δ2, ξ ∈ R
d−k. (8.24)

The next statement is a well-known property of the χ2-test. See, for example,
Strasser (1985), Chapter 6. Denote by χ2

1−α,k the 1 − α quantile of the χ2-
distribution with k degrees of freedom, and by Hk,δ2 the c.d.f. of the χ2-
distribution with k degrees of freedom and parameter of noncentrality δ2. As
before, let U be the projection on the first k coordinates.
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Theorem 8.24. For the model G0 = (Rd,Bd, (N(θ,Σ0))θ∈Rd), with known
covariance matrix Σ0 and nonsingular Σ1,1, the test

ϕχ2,G0 = I(χ2
1−α,k,∞)(U

TΣ−1
1,1U) (8.25)

is a maximin level α test for the testing problem (8.24), where the maximin
value of the power is given by infτTΣ−1

1,1τ≥δ2 Eθϕχ2,G0 = 1− Hk,δ2(χ2
1−α,k).

Proof. We use the one-to-one mapping B in (8.21) to turn to the family
N(τ,Σ1,1)⊗ N(ξ −Σ2,1Σ

−1
1,1τ, Γ ). The minimum power of any test ϕ satisfies

inf
τTΣ1,1τ≥δ2,ξ∈Rd−k

∫
[
∫
ϕ(u, v)N(τ,Σ1,1)(du)]N(ξ −Σ2,1Σ

−1
1,1τ, Γ )(dv)

≤ inf
τTΣ1,1τ≥δ2

∫
[
∫
ϕ(u, v)N(0, Γ )(dv)]N(τ,Σ1,1)(du).

Hence it remains to search for maximin level α tests that depend only on u.
Denote by Σ

−1/2
1,1 a positive definite symmetric matrix with Σ

−1/2
1,1 Σ

−1/2
1,1 =

Σ−1
1,1 and set T = Σ

−1/2
1,1 U. Then L(T |N(τ,Σ1,1)) = N(Σ−1/2

1,1 τ, I). Theorem
5.43 yields that ϕχ2,α is a maximin level α test for the family N(μ, I) for
testing μ = 0 versus ‖μ‖2 ≥ δ2. Hence ϕχ2,α(‖T‖2) is a maximin level α test
for the family N(τ,Σ1,1) for testing τ = 0 versus ‖ Σ−1/2

1,1 τ ‖2= τTΣ−1
1,1τ ≥ δ2.

Example 8.25. Suppose we want to compare the means of two normal distribu-
tions with known variances. By a reduction by sufficiency we may assume that the
sample size is one for each population, so that we have the model

(R2,B2, (N(μ1, σ
2
1)⊗ N(μ2, σ

2
2))(μ1,μ2)∈R2),

where σ2
1 , σ

2
2 > 0 are known. Set σ2

0 = σ2
1 + σ2

2 , θ = (μ1, μ2)
T , c = (1,−1)T and

T (x, y) = x−y. Then the following tests are level α tests, and they are optimal level
α test as stated below.

ψI(T/σ0) UMP for μ1 ≤ μ2 versus μ1 > μ2,

ψII(T/σ0) UMPU for μ1 = μ2 versus μ1 �= μ2,

ψIII(T/σ0) UMP for |μ1 − μ2| ≥ dσ0 versus |μ1 − μ2| < dσ0,

ψIV (T/σ0) UMPU for |μ1 − μ2| ≤ dσ0 versus |μ1 − μ2| > dσ0.

8.1.3 Tests for d-Parameter Exponential Families

Now we deal with d-parameter exponential families where the parameter
θ is split again into a parameter of interest τ and a nuisance parameter
ξ. To construct optimal tests for hypotheses in terms of τ in the model
M = (X ,A, (Pθ)θ∈Δ) we reduce it with a statistic T = (U, V ), where U and
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V are measurable mappings from (X ,A) into the spaces (U ,U) and (V,V),
respectively. Then with Qθ = Pθ ◦ T−1 the reduced model can be written as
N = (U × V,U⊗V, (Qθ)θ∈Δ). Occasionally, in favorable situations, the con-
ditional distribution of U , given V , is independent of the nuisance parameter.
Then, under the assumption that (U ,U) is a Borel space, we can find a family
of stochastic kernels Kτ : U ⊗ V →k [0, 1] such that for θ = (τ, ξ) the distri-
bution Qθ can be written as Qθ = Kτ ⊗ Pθ,V , where Pθ,V = Pθ ◦ V −1 is the
marginal distribution of Qθ induced by V ; see Lemma A.41. This representa-
tion of Qθ is equivalent to the requirement that for every h : U×V →m [0,∞),

Eθh(U, V ) =
∫

[
∫
h(u, v)Kτ (du|v)]Pθ,V (dv). (8.26)

To construct a level α test for H0 : (τ, ξ) ∈ Δ0 for some Δ0 ⊆ Δ we could, in
a first step, choose any test ϕ : U × V →m [0, 1] that satisfies

∫
ϕ(u, v)Kτ (du|v) ≤ α, P(τ,ξ),V -a.s., (τ, ξ) ∈ Δ0.

Such a test ϕ(·, v) is called a conditional level α test , given V = v. Then (8.26)
yields

Eθϕ(U, V ) =
∫

[
∫
ϕ(u, v)Kτ (du|v)]Pθ,V (dv) ≤ α, θ = (τ, ξ) ∈ Δ0,

so that ϕ(U, V ) is a level α test for H0. If we turn to a reduced model we may
have a loss of information and a best test within a specific class of tests may
not be a function of T. This issue disappears if T is sufficient, as it is the case
when T = (U, V ) is the generating statistic of an exponential family (Pθ)θ∈Δ,
Δ ⊆ R

d, in natural form where the parameter vector is split into θ = (τ, ξ).
A first essential step is to investigate whether the nuisance parameter can
be eliminated under the null hypothesis by conditioning on V. Let (Pθ)θ∈Δ,
Δ ⊆ R

d, be an exponential family in natural form, with natural parameter θ
and generating statistic T , as given by (1.5). Denote by Qθ = Pθ ◦ T−1 the
distribution of T under Pθ. Starting with θ = (θ1, ..., θd) and T = (T1, ..., Td),
we set

U = T1 and V = (T2, ..., Td), (8.27)
τ = θ1 and ξ = (θ2, ..., θd).

To avoid overly convoluted formulations we impose a weak condition on the
parameter set that is satisfied in all subsequent special cases. We assume that
Δ = Υ ×Ξ, where Υ is an open interval of R and Ξ is an open subset of R

d−1.
We consider the following four testing problems, where τi ∈ Υ , i = 0, 1, 2, are
fixed.
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Testing Problem H0 : θ = (τ, ξ) ∈ Δ0 HA : θ = (τ, ξ) ∈ ΔA

(I) τ ≤ τ0, ξ ∈ Ξ, τ > τ0, ξ ∈ Ξ,

(II) τ = τ0, ξ ∈ Ξ, τ �= τ0, ξ ∈ Ξ,

(III) τ /∈ (τ1, τ2), ξ ∈ Ξ, τ ∈ (τ1, τ2), ξ ∈ Ξ,

(IV ) τ ∈ [τ1, τ2], ξ ∈ Ξ, τ /∈ [τ1, τ2], ξ ∈ Ξ.

(8.28)

The boundary J of Δ0 and ΔA depends on the testing problem and is

J = {τ0} ×Ξ for (I) and (II),

J = {τ1} ×Ξ ∪ {τ2} ×Ξ for (III) and (IV ).
(8.29)

Let now θ∗ = (τ∗, ξ∗) ∈ Δ be fixed. Since U takes on values in R there
exists a regular conditional distribution of U , given V = v, i.e., a stochastic
kernel Kθ�

: B1×R
d−1 →k [0, 1] with Qθ∗ = Kθ∗⊗Pθ∗,V . At any θ = (τ, ξ) ∈ Δ

it holds

Eθh(U, V ) =
∫
h(u, v)Qθ(du, dv)

=
∫
h(u, v) exp{(τ − τ )u+ 〈ξ − ξ , v〉 −K(θ) +K(θ )}Qθ�

(du, dv)

=
∫

[
∫
h(u, v) exp{(τ − τ )u}Kθ�

(du|v)]

× exp{〈ξ − ξ , v〉 −K(θ) +K(θ )}Pθ�,V (dv).

Hence,

dPθ,V
dPθ�,V

(v) = exp{〈ξ − ξ , v〉+Kv(τ)−K(θ) +K(θ )}, (8.30)

Kv(τ) = ln{
∫

exp{〈τ − τ , u〉}Kθ�
(du|v)}.

We note that Kv(τ) < ∞, Pθ�,V -a.s., take some generic distribution Q on
(R,B), and introduce a stochastic kernel Kτ by

Kτ (B|v) =

⎧⎨
⎩
∫
B

exp{〈τ − τ , u〉 −Kv(τ)}Kθ�
(du|v) if Kv(τ) <∞

Q(B) otherwise.
(8.31)

Then the above representation of Eθh(U, V ) and (8.30) yield Qθ = Kτ ⊗ Pθ,V
and we see that there exists a regular conditional distribution Kτ of U , given
V = v, that is independent of the nuisance parameter ξ.
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Proposition 8.26. Let (Pθ)θ∈Δ be an exponential family in natural form,
with natural parameter θ = (τ, ξ) and generating statistic T = (U, V ), where
τ = θ1 and U = T1. Then the conditional distribution of U , given V = v, as
specified in (8.31) is independent of the nuisance parameter ξ.

For dimension one the constants that appear in the tests (8.4) have been
chosen in Theorem 8.6 in such a way that the test attains the level α on the
boundary. Thus for constructing conditional tests one could try to construct
tests that satisfy

∫
ϕ(u, v)Kτ (du|v) = α, Pθ,V -a.s., θ ∈ J, (8.32)

where in J from (8.29) τ = τ0, or τ = τ1 and τ = τ2, depending on which of
the four problems of (8.28) is being considered. Tests that satisfy the condition
(8.32) are said to have Neyman structure. The lemma below shows that this
condition is not very restrictive.

Lemma 8.27. Let (Pθ)θ∈Δ be an exponential family that satisfies (A1) and
(A2), where Δ = Υ × Ξ is open, along with the splitting from (8.27), and
α ∈ (0, 1) be fixed. Then every unbiased level α test ϕ for each of the four
testing problems in (8.28) has Neyman structure (8.32) at τ0, τ0, τ1 and τ2,
and τ1 and τ2, respectively.

Proof. For an exponential family the power function Eθψ of every test ψ
is continuous on Δ; see Lemma 1.16. Hence by Problem 8.3 every unbiased
level α test is α-similar on J . Thus∫

[
∫
ϕ(u, v)Kτ (du|v)− α]P(τ,ξ),V (dv) = 0, (τ, ξ) ∈ J,

where in J we have τ = τi, i ∈ {0, 1, 2}, depending on the testing problem.
As Ξ is open we get from Theorem 4.73 that the exponential family P(τi,ξ),V ,
ξ ∈ Ξ, is complete. Hence

∫
ϕ(u, v)Kτ (du|v)− α = 0, P(τ,ξ),V -a.s., for τ = τi.

As all distributions Pθ,V , θ ∈ Δ, are equivalent the statement follows.

To construct, for a fixed given α ∈ (0, 1), an optimal level α test in the
class of all unbiased tests we search for an optimal test in the class of all (all
unbiased) level α tests ϕ(·, v) that satisfy (8.32). As Kτ (·|v) is an exponential
family we employ the results on optimal tests for one-parametric exponential
families. The only difference is that the constants that appear in (8.4) now
depend on the condition v. The technical arguments are similar. For the given
α and any fixed v ∈ R

d−1 we now construct a test ϕI,U : R
d →m [0, 1] by

setting

ϕI,U (u, v) = I(c1−α(v),∞)(u) + γ(v)I{c1−α(v)}(u), u ∈ R, (8.33)

where c1−α(v) ∈ R and 0 ≤ γ(v) ≤ 1 are chosen in such a way that
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∫
ϕI,U (u, v)Kτ0(du|v) = α.

Suitable constants c1−α(v) and γ(v) can be found by using

Fτ0(t|v) := Kτ0((−∞, t]|v), t ∈ R,

the c.d.f. of the conditional distribution of U , given V = v, taking

c1−α(v) = F−1
τ0 ((1− α)|v) and (8.34)

γ(v) = [Fτ0(c1−α(v))− (1− α)] (Kτ0({c1−α(v)})|v), v ∈ R
d−1.

Obviously, the mapping v → (c1−α(v), γ(v)) is measurable, which implies that
ϕI,U : R

d →m [0, 1].

Theorem 8.28. Let (Pθ)θ∈Δ be an exponential family in natural form that
satisfies (A1) and (A2), Δ = Υ × Ξ be open, along with the splitting from
(8.27), and α ∈ (0, 1) be fixed. For c1−α(v) and γ(v) given by (8.34), the test
ϕI,U (u, v) is a uniformly best unbiased level α test for testing problem (I) in
(8.28).

Proof. First we note that by (8.33) and (8.34) the test ϕI,U is an unbiased
level α test for H0 versus HA. Let now ψ be any other unbiased level α test
for H0 versus HA. By Lemma 8.27,

∫
ψ(u, v)Kτ0(du|v) = α, Pθ,V -a.s., θ ∈ Δ.

In view of Theorem 2.49 we have for every τ > τ0,
∫
ψ(u, v)Kτ (du|v) ≤

∫
ϕI,U (u, v)Kτ (du|v), Pθ,V -a.s., θ ∈ Δ.

Integration of both sides with respect to Pθ,V , θ = (τ, ξ) ∈ Δ with τ > τ0,
gives by (8.26) the inequality Eθψ(U, V ) ≤ EθϕI,U (U, V ), and the proof is
completed.

The previous theorem shows the line of how to deal with the other testing
problems in (8.28). Subsequently we focus only on the testing problem (II)
which is of special importance. Let us discuss the constraints that follow for
tests that are supposed to be unbiased. If the test ψ is unbiased, then its
power function τ �→ E(τ,ξ)ψ, (τ, ξ) ∈ Δ, has a local minimum at τ0 for every
fixed ξ ∈ Ξ. Both Kτ and P(τ,ξ),V are exponential families, and thus the power
function of ψ has derivatives of all orders in the open set Δ, where we may
exchange differentiation with respect to τ with the integrations; see Lemma
1.16. By utilizing this and (8.31) we arrive at

∫
[
∫

(uψ(u, v)−K ′
v(τ0)ψ(u, v))Kτ0(du|v)]P(τ0,ξ),V (dv) = 0.
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The completeness of the family P(τ0,ξ),V for ξ ∈ Ξ implies that P(τ0,ξ),V -a.s.,
and consequently Pθ,V -a.s., for every θ ∈ Δ,

∫
uψ(u, v)Kτ0(du|v) = K ′

v(τ0)
∫
ψ(u, v)Kτ0(du|v) =

∫
uKτ0(du|v)α,

where the second equation follows from Corollary 1.19 and (8.32). Thus every
unbiased level α test ϕ satisfies

∫
ϕ(u, v)Kτ0(du|v) = α, Pθ,V -a.s., θ ∈ Δ, (8.35)

∫
uϕ(u, v)Kτ0(du|v) = α

∫
uKτ0(du|v), Pθ,V -a.s., θ ∈ Δ.

Analogously to (8.4) we set

ϕII,U (u, v) = I(−∞,b1(v))(u)+ ς1(v)I{b1(v)}(u)+ ς2(v)I{b2(v)}(u)+ I(b2(v),∞)(u)

and state the following.

Theorem 8.29. Let (Pθ)θ∈Δ be an exponential family in natural form that
satisfies (A1) and (A2), where Δ = Υ × Ξ is open, along with the splitting
from (8.27), and α ∈ (0, 1) be fixed.

(A) There exist measurable functions bi(v) and ςi(v), i = 1, 2, such that ϕII,U
defined above satisfies ϕII,U : R

d →m [0, 1] and the conditions in (8.35).
(B) The test ϕII,U (U, V ) is a uniformly best unbiased level α test for the

testing problem (II) in (8.28).

Proof. For the proof of (A) we refer to Lehmann (1959), Ferguson (1967),
and Witting (1985). To prove statement (B), we note that by Theorem 8.11,
for every τ �= τ0 and every v ∈ R

d−1,

α =
∫
ϕII,U (u, v)Kτ0(du|v) ≤

∫
ϕII,U (u, v)Kτ (du|v), Pθ,V -a.s., θ ∈ Δ.

Thus, integration with respect to P(τ,ξ),V gives the unbiasedness of ϕII,U .
Above, when motivating the relations in (8.35), we have shown that every
unbiased level α test ϕ satisfies (8.35). As ϕII,U also satisfies these conditions
we get that, Pθ,V -a.s., the conditional power

∫
ϕ(u, v)Kτ (du|v) of ϕ does not

exceed the conditional power of ϕII,U . Integration with respect to P(τ,ξ),V

completes the proof.
In the examples to follow, one-sided tests in the setting of Theorem 8.28

and two-sided tests in the setting of Theorem 8.29 are considered. First, for
a normal distribution with unknown mean and variance, the one-sided Stu-
dent’s t-test for the mean and the one-sided chi-square test for the variance
are derived. According to the above considerations we have to deal with the
conditional distribution Kτ0 and its quantiles, which may be cumbersome.
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Helpful hereby is an idea, following below, that can be utilized in this and
in similar situations. Let α ∈ (0, 1) be fixed. If Z has the distribution Q on
(R,B) with c.d.f. G we set c1−α = G−1(1− α) and

ϕI,G(z) = I(c1−α,∞(z) + γ1I{c1−α}(z), where
γ1 = [G(c1−α)− (1− α)] Q({c1−α}).

If the distribution Q of Z is symmetric about 0, then we also set

ϕII,G(z) = I(c1−α/2,∞)(z) + γ2I{c1−α/2}(z)
+γ2I{c1−α/2}(−z) + I(c1−α/2,∞)(−z), where

γ2 = [G(c1−α/2)− (1− α/2)] Q({c1−α/2}).

Proposition 8.30. Let (Pθ)Δ be an exponential family with natural param-
eter θ, where Δ = Υ × Ξ is open, along with the splitting from (8.27), and
τ0 ∈ Υ be fixed. Suppose that there is a family of mappings u �→ hv(u) from R

into R that are strictly increasing and continuous in u for P(τ0,ξ),V -almost all
v, and measurable in (u, v). If the distribution Q of Z := hV (U) under P(τ0,ξ)

does not depend on ξ, then Z and V are independent under P(τ0,ξ). In this
case

ψI(u, v) = ϕI,G(hv(u)) (8.36)

is a uniformly best unbiased level α test for H0 : τ ≤ τ0, ξ ∈ Ξ, versus
HA : τ > τ0, ξ ∈ Ξ. If in addition the distribution of Z under P(τ0,ξ) is
symmetric, then

ψII(u, v) = ϕII,G(hv(u)) (8.37)

is a uniformly best unbiased level α test for H0 : τ = τ0, ξ ∈ Ξ, versus
HA : τ �= τ0, ξ ∈ Ξ.

Proof. The statistic Z is ancillary for the family P(τ0,ξ), ξ ∈ Ξ. As V is
sufficient for the same family and P(τ0,ξ),V , ξ ∈ Ξ, is complete we get the
independence of Z and V under P(τ0,ξ) from Basu’s theorem; see Theorem
4.82. This means that there is a version of the conditional distribution Kτ0(·|v)
that does not depend on v, and it holds Q = Kτ0(·|v)◦ h−1

v . This, and the strict
monotonicity and continuity of u �→ hv(u), yield

ψI(U, V ) = ϕI,U (U, V ), P(τ0,ξ)-a.s., ξ ∈ Ξ,

and thus Pθ-a.s. for every θ ∈ Δ, where ϕI,U (U, V ) is the test in (8.33). This,
in view of Theorem 8.28, proves the first statement. The proof of the second
statement is similar and uses Theorem 8.29.

Example 8.31. We consider the model (Rn,Bn, (N
⊗n(μ, σ2))(μ,σ2)∈R×(0,∞)) for

which the projections on the coordinates X1, ..., Xn are i.i.d. with common distri-
bution N(μ, σ2), where (μ, σ2) ∈ R× (0,∞) is unknown. We recall the statistics

Xn =
1

n

∑n

i=1
Xi and S2

n =
1

n− 1

∑n

i=1
(Xi −Xn)2.
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By Example 1.11 N⊗n(μ, σ2) can be represented as an exponential family in natural
form with natural parameter θ = (τ, ξ) = (μ/σ2,−1/(2σ2)), parameter set Δ =
R× (−∞, 0), and generating statistic T = (U, V ) = (

∑n
i=1 Xi,

∑n
i=1 X2

i ). Suppose
we want to test, for a fixed given μ0 ∈ R, H0 : μ ≤ μ0, σ

2 > 0, versus HA : μ > μ0,
σ2 > 0. We assume without loss of generality that μ0 = 0, as otherwise we may
switch from X1, ..., Xn to X1 − μ0, ..., Xn − μ0. Expressed in terms of the natural
parameters the hypotheses read

H0 : τ ≤ 0, ξ < 0 versus HA : τ > 0, ξ < 0. (8.38)

Δ = R × (−∞, 0) = Υ × Ξ is open and thus we may apply Theorem 8.28. Instead
of constructing the conditional test we apply Proposition 8.30 with

hv(u) =
√
n

1
n
u√

1
n−1

(v − 1
n
u2)

,

where u = nxn and v =
∑n

i=1 x2
i are the generating statistics. It is easy to see that

(∂/∂u)hv(u) > 0 holds for every fixed v > 0, so that the assumptions on hv(u) in
Proposition 8.30 are satisfied. Set x = (x1, ..., xn). As the distribution of

hV (U) =
√
nXn/

√
S2

n

under P(τ0,ξ) = N⊗n(0, σ2) is T(n − 1) (i.e., Student’s t-distribution with n − 1
degrees of freedom) we see that this distribution is independent of ξ. Hence for the
testing problem (8.38) a uniformly best unbiased level α test from (8.36) is given by

ϕI,U (U, V ) = I[t1−α,n−1,∞)(
√
nXn/

√
S2

n), (8.39)

where t1−α,n−1 is the 1 − α quantile of T(n − 1). This is the one-sided version of
Student’s t-test from (2.24).

The testing problem H0 : μ = μ0, σ2 > 0, versus HA : μ �= μ0, σ2 > 0, can be
treated similarly. For μ0 = 0 the resulting uniformly best unbiased level α test from
(8.37) is the two-sided version of Student’s t-test, given by

ϕII,U (U, V ) = I[t1−α/2,n−1,∞)(|
√
nXn/

√
S2

n |). (8.40)

Suppose now that we want to test, for a fixed given σ2
0 > 0, H0 : σ2 ≤ σ2

0 ,
μ ∈ R, versus HA : σ2 > σ2

0 , μ ∈ R. With respect to the previous testing problem,
the roles of U and V and those of τ and ξ are now exchanged. We set (τ̃ , ξ̃) :=

(−1/(2σ2), μ/σ2) and (Ũ , Ṽ ) = (
∑n

i=1 X2
i ,
∑n

i=1 Xi), and consider

hṽ(ũ) =
1

σ2
0

(ũ− 1

n
ṽ2),

which is strictly increasing and continuous in ũ for every fixed ṽ ∈ R. As hṼ (Ũ),
defined by

hṼ (x)(Ũ) =
1

σ2
0

∑n

i=1
(Xi −Xn)2,

has under Pτ̃0,ξ̃ = N⊗n(μ, σ2
0) a chi-square distribution H(n− 1) with n− 1 degrees

of freedom, which is independent of μ, we may apply the same arguments as above.
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This shows that the test (8.36) turns out to be the one-sided χ2-test, which is given
by

ϕ̃Ũ (Ũ , Ṽ ) = I[χ2
1−α,n−1,∞)(

1

σ2
0

∑n

i=1
(Xi −Xn)2),

where χ2
1−α,n−1 is the 1− α quantile of H(n− 1).

In the next example, Fisher’s exact test is derived.

Example 8.32. Let X and Y be two independent random variables, where X ∼

B(n, p) with n ∈ N and p ∈ (0, 1), and Y ∼ B(m, q) with m ∈ N and q ∈ (0, 1).
The distribution of (X,Y ) belongs to the family (B(n, p) ⊗ B(m, q))p,q∈(0,1) with
probability mass function

bn,p(x)bm,q(y) =

(
n

x

)
px(1− p)n−x

(
m

y

)
qy(1− q)m−y,

(x, y) ∈ X := {0, 1, ..., n} × {0, 1, ...,m}, p, q ∈ (0, 1). Suppose we want to test
H0 : p ≤ q versus HA : p > q. Intuitively, one would represent the family as a
two-parameter exponential family in natural form, with natural parameter θ̃(p, q) =

(ln(p/(1 − p)), ln(q/(1 − q))) and generating statistic T̃ (x, y) = (x, y). However, in
this form Theorem 8.28 cannot be used to find a uniformly best unbiased level α
test for H0 versus HA. A more suitable representation has natural parameter

θ(p, q) =

(
ln

p(1− q)

(1− p)q
, ln

q

1− q

)

and generating statistic T (x, y) = (U(x), V (x)) = (x, x + y). With respect to the
dominating measure μ with point mass

(
n
x

)(
m
y

)
at (x, y) ∈ X , the density of Pθ(p,q) :=

B(n, p)⊗ B(m, q) at (x, y) ∈ X is

fp,q(x, y) = exp{θ1(p, q)x + θ2(q)(x + y) + n ln(1− p) + m ln(1− q)},

where (θ1, θ2) ∈ Δ = R
2. Testing H0 versus HA is equivalent to testing H0 : θ1 ≤ 0

versus HA : θ1 > 0. By Theorem 8.28 we get a uniformly best unbiased level α test
ϕU . To calculate the conditional distribution of U , given V , at θ1 = 0 (i.e., at p = q)
we note that in this case X + Y has a binomial distribution with parameters m+ n
and p. Put Pp = B(n, p)⊗B(m, p), p ∈ (0, 1). Then for 0∨ (v−m) ≤ u ≤ n∧ v and
v ∈ {0, 1, ..., n + m},

K0({u}|v) = Pp(U = u|V = v) =
Pp(X = u)Pp(Y = v − u)

Pp(V = v)

=
bn,p(u)bm,p(v − u)

bn+m,p(v)
=

(
n
u

)(
m

v−u

)
(

n+m
v

) ,

which is a hypergeometric distribution. Given v ∈ {0, 1, ..., n + m}, we set

ϕI,U (u, v) = I[b(v)+1,...,n∧v](u) + ς(v)I{b(v)}(u), 0 ∨ (v −m) ≤ u ≤ n ∧ v,

where b(v) ∈ [0 ∨ (v −m), n ∧ v] ∩ N and ς(v) ∈ [0, 1] are determined by

∑n∧v

u=0∨(v−m)
ϕI,U (u, v)K0({u}|v) = α.
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The numerical evaluation of b(v) and ς(v) has to be done on a computer. Further
results on this test and its two-sided version can be found in Finner and Strassburger
(2002b).

The data in Example 8.32 are typically presented in form of a 2× 2 con-
tingency table, i.e.,

x1,1 x1,2 x1,· = x1,1 + x1,2

x2,1 x2,2 x2,· = x2,1 + x2,2

x·,1 = n x·,2 = m N = m+ n
(8.41)

where the marginal totals are indicated by dots in the subscripts. Such tables
may also arise in other settings, as we show in the next example. In the above
Example 8.32, x·,1 = n and x·,2 = m are fixed given, N = n + m, whereas
x1,· and x2,· are the outcomes of the random variables V and n + m − V ,
respectively. The optimal test is a conditional test based on x1,1, the outcome
of X, given the total X + Y = x1,·.

Another quite common situation where data in a 2× 2 contingency table
have to be analyzed is considered in the next example. At this point it should
also be mentioned that the results of Examples 8.32 and 8.33 can be extended
to similar analyses of a × b contingency tables by using similar approaches,
see Agresti (1992, 2002) for further details.

Example 8.33. Let W1, ...,WN be an i.i.d. sample from a distribution on the
points (1, 1), (1, 2), (2, 1), (2, 2), with probabilities pi,j > 0, i, j = 1, 2. Assume that
with respect to two certain characteristics A and B, say, (1, 1) means that both,
A and B, are present, (1, 2) means that A is present but not B, (2, 1) means that
A is not present but B is, and (2, 2) means that both, A and B, are not present.
An interesting question is whether the occurrences of A and B are stochastically
independent or not. In the latter case, A and B are said to be associated. A test for
this purpose is now derived. Let

pi,· = pi,1 + pi,2 and p·,j = p1,j + p2,j , i, j = 1, 2.

The null hypothesis (“independence”) is that pi,j = pi,·p·,j holds for all i, j = 1, 2,
whereas the alternative (“dependence”) is its complement. In the present 2 × 2
layout, the null hypothesis is equivalent to p1,1 = p1,·p·,1. However, for larger a× b
layouts more than just one equation of the type pi,j = pi,·p·,j would have to be
stated in the null hypothesis. Let

Xi,j := |{k : Wk = (i, j), k = 1, ..., N}|, i, j = 1, 2.

These outcomes can be summarized in a 2× 2 contingency table of the form

x1,1 x1,2 x1,· = x1,1 + x1,2

x2,1 x2,2 x2,· = x2,1 + x2,2

x·,1 = x1,1 + x2,1 x·,2 = x1,2 + x2,2 N

In contrast to the contingency table (8.41) x·,1 and x·,2 are now realizations
of random variables, so that all four marginal totals x1,·, x2,·, x·,1, and x·,2 in
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the 2 × 2 contingency table are the outcomes of random variables. Apparently,
X = (X1,1, X1,2,X2,1,X2,2) follows a multinomial distribution M(N, p) with param-
eters N and p = (p1,1, p1,2, p2,1, p2,2) and p.m.f.

N !

x1,1!x1,2!x2,1!x2,2!
p

x1,1
1,1 p

x1,2
1,2 p

x2,1
2,1 p

x2,2
2,2 ,

where xi,j ∈ {0, ..., N} and x1,1 + x1,2 + x2,1 + x2,2 = N. We have seen in
Example 1.5 that with respect to the dominating measure μ with point masses
N !/(x1,1!x1,2!x2,1!x2,2!) the family M(N, p) can be represented as an exponential
family in natural form with natural parameter

θ̃(p1,1, p1,2, p2,1) = (ln(
p1,1

p2,2
), ln(

p1,2

p2,2
), ln(

p2,1

p2,2
))

and generating statistic T̃ (x11, x12, x21) = (x1,1, x1,2, x2,1). As before in Example
8.32, however, we need another representation that is more suitable for the testing
problem at hand. This can be achieved by using as a natural parameter θ = (τ, ξ)
with

τ(p1,1, p1,2, p2,1) = ln(
p1,1p2,2

p1,2p2,1
) and ξ(p1,1, p1,2, p2,1) = (ln(

p1,2

p2,2
), ln(

p2,1

p2,2
)),

and as generating statistics T = (U, V ) with

U(x1,1, x1,2, x2,1) = x1,1 and V (x1,1, x1,2, x2,1) = (x1,·, x·,1).

Because p1,·p·,1 = p1,1 − (p1,1p2,2 − p1,2p2,1), the null hypothesis is equivalent to
H0 : τ = 0, and the alternative is equivalent to HA : τ �= 0. A uniformly best
unbiased level α test ϕII,U is provided by Theorem 8.29 which is based on the
conditional distribution of U given V = (x1,·, x·,1) at τ = 0. The distribution is
given in the problem below.

Problem 8.34. Show that in Example 8.33,

P0,ξ1,ξ2(U = u|V1 = x1,·, V2 = x·,1) =

(
x·,1

u

)(
N−x·,1
x1,·−u

)
(

N
x1,·

) ,

where 0 ∨ (x1,· + x·,1 − N) ≤ u ≤ x1,· ∧ x·,1 and x1,· ∈ {0, 1, ..., N}. Compare this
with the conditional distribution of U , given V , at θ1 = 0, in Example 8.32.

It is interesting to note that in Example 8.32, the uniformly best unbiased
level α test for testing H0 : p = q versus HA : p �= q provided by Theorem
8.29, which has not been derived here for brevity, turns out to be technically
identical with the test ϕII,U in Example 8.33. Likewise, in Example 8.33,
the uniformly best unbiased level α test for testing H0 : p1,1/p·,1 ≤ p1,2/p,2
versus HA : p1,1/p·,1 > p1,2/p·,2 provided by Theorem 8.28, which has not
been derived here, turns out to be technically identical with the test ϕI,U in
Example 8.32. Despite these technical identities, however, Examples 8.32 and
8.33 are based on different statistical models. Therefore the respective tests
for one-sided hypotheses provide different decisions, and the same holds for
two-sided hypotheses.
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Problem 8.35.∗ Let X1, ..., Xn be an i.i.d. sample from a Poisson distribution
Po(λ1) with λ1 > 0, and Y1, ..., Yn be an i.i.d. sample from a Poisson distribution
Po(λ2) with λ2 > 0, where the samples are independent. Let α ∈ (0, 1) be fixed
given. As an application of Theorem 8.28, find a uniformly best unbiased level α
test for H0 : λ1 ≤ λ2 versus HA : λ1 > λ2. As an application of Theorem 8.29, find
a uniformly best unbiased level α test for H0 : λ1 = λ2 versus HA : λ1 �= λ2.

8.2 Confidence Regions and Confidence Bounds

For a statistical model (X ,A, (Pθ)θ∈Δ) with Δ ⊆ R
d we have considered the

problem of estimating θ under various aspects in Chapter 7. An estimator, by
definition, is a mapping S : X →m R

d. After observing x ∈ X the estimate
for θ is S(x), but it does not provide any information on how close it is to θ.
The concept of confidence regions is tailored for this need. In this approach
the idea of using a point estimator S : X →m R

d is abandoned in favor of
a region estimator C : X → P(Δ), where P(Δ) is the set of all subsets of
Δ. Here one has to assume that {x : θ ∈ C(x)} ∈ A for every θ ∈ Δ. After
observing x ∈ X the set C(x) ⊆ R

d is interpreted as the region where θ is
estimated to be located. The attractive feature of a confidence region is that
it comes along with a lower bound on the probability of including the true θ.
For d = 1 (i.e., Δ ⊆ R) and for most of the concrete models studied so far,
confidence regions are either finite or one-sided intervals.

Definition 8.36. Let (X ,A, (Pθ)θ∈Δ) be a given model with Δ ⊆ R
d, and let

α ∈ (0, 1) be fixed. A mapping C : X → P(Δ) is called a confidence region at
the level 1− α if {x : θ ∈ C(x)} ∈ A for every θ ∈ Δ, and

Pθ(θ ∈ C) ≥ 1− α, θ ∈ Δ.

For Δ ⊆ R some special forms are distinguished.

C(x) = [Blcb(x),∞) lower confidence bound Blcb(x),
C(x) = [Blci(x), Buci(x)] confidence interval [Blci(x), Buci(x)]. (8.42)

The upper confidence bounds can be introduced and treated in a similar way
as the lower confidence bounds.

The standard technique to construct confidence regions is based on a
duality between confidence regions and the acceptance regions of tests. Let
α ∈ (0, 1) be fixed given. We consider a family of testing problems with sim-
ple null hypotheses for which there is a family of nonrandomized level α tests
ψ = (ψθ)θ∈Δ; that is,

H0(θ0) : θ = θ0 versus HA(θ0) : θ ∈ ΔA(θ0), where
ΔA(θ0) ⊆ Δ\{θ0} is predetermined, and
ψθ0 : X →m {0, 1}, Eθ0ψθ0 = α, θ0 ∈ Δ.
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It is important to note that ΔA(θ0) does not have to be equal to Δ\{θ0}.
The interpretation of ΔA(θ0) is that it contains the unacceptable parameter
values when θ0 is true. For example, in a location parameter problem we may
have ΔA(θ0) = (θ0,∞) ⊂ Δ = R. We restrict ourselves to the most common
special cases where ΔA(θ0) = (−∞, θ0) ∩Δ for all θ0 ∈ Δ, ΔA(θ0) = Δ\{θ0}
for all θ0 ∈ Δ, or ΔA(θ0) = (θ0,∞) ∩Δ for all θ0 ∈ Δ. This is good enough
to establish optimal confidence bounds and intervals for models with one-
parameter families of distributions that have MLR, or are even exponential
families. For a broader coverage of this topic we refer to Lehmann (1959, 1986).
A more general approach to confidence regions that includes composite null
hypotheses can be found in Witting (1985). The restriction to nonrandomized
tests is made here to avoid technical complications; see Remark 8.37. Let

Aψ(θ) = {x : ψθ(x) = 0}, θ ∈ Δ, and
Cψ(x) = {θ : x ∈ Aψ(θ)}, x ∈ X . (8.43)

Then Aψ(θ) is the acceptance region of the test ψθ, θ ∈ Δ, and

x ∈ Aψ(θ) if and only if θ ∈ C(x), x ∈ X , θ ∈ Δ, (8.44)

shows that {x : θ ∈ C(x)} ∈ A, θ ∈ Δ. If for each θ ∈ Δ the test ψθ is a level
α test for H0(θ), we get

Pθ(θ ∈ Cψ) = 1− Eθψθ ≥ 1− α, θ ∈ Δ. (8.45)

Thus we have constructed a confidence region Cψ at the level 1− α from the
family of tests ψ = (ψθ)θ∈Δ, where ψθ0 is a level α test for H0(θ0) : θ = θ0
for every θ0 ∈ Δ. We call Cψ the confidence region associated with the family
of tests ψ = (ψθ)θ∈Δ. Apparently, the form of ΔA(θ0), θ0 ∈ Δ, has not been
used hereby.

Conversely, suppose we are given a confidence region C at the level 1− α.
Then we set

ψC,θ0(x) = 1− IC(x)(θ0), x ∈ X , θ0 ∈ Δ. (8.46)

If C is at the level 1− α we get

Eθ0ψC,θ0 = 1− Pθ0(θ0 ∈ C) ≤ α, θ0 ∈ Δ. (8.47)

Thus, for every θ0 ∈ Δ the test ψC,θ0 is a level α test for H0(θ0) : θ = θ0
versus HA(θ0) : θ ∈ ΔA(θ0), where ΔA(θ0) ⊆ Δ\{θ0} may be chosen in any
way. We call ψC,θ0 , θ0 ∈ Δ, the family of tests associated with the confidence
region C.

Remark 8.37. If the confidence region in (8.43) were based on a family ψ =
(ψθ)θ∈Δ of randomized tests, then at any x ∈ X and θ ∈ Δ with ψθ(x) ∈ (0, 1) the
parameter value θ would have to be included in C(x) with probability 1 − ψθ(x).
To make such an approach rigorous additional concepts would be needed that go
beyond the short introduction into confidence regions given in this section.
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For a family ψ = (ψθ)θ∈Δ of nonrandomized level α tests ψθ0 for H0(θ0) :
θ = θ0, θ0 ∈ Δ, let us examine how their power on the respective alternatives
HA(θ0) : θ ∈ ΔA(θ0) ⊆ Δ\{θ0}, θ0 ∈ Δ, affects the performance of the
associated confidence region Cψ. From (8.44) we get

Eθψθ0 = 1− Pθ(θ0 ∈ Cψ), θ �= θ0, θ0 ∈ Δ. (8.48)

This can be utilized to derive optimal confidence regions from optimal tests,
and vice versa. The optimality concept for confidence regions is now estab-
lished.

Definition 8.38. Let (X ,A, (Pθ)θ∈Δ) be a model with Δ ⊆ R
d, and let

ΔA(θ) ⊆ Δ\{θ} be given for very θ ∈ Δ. For α ∈ (0, 1) a confidence re-
gion C∗at the level 1−α is called a uniformly most accurate confidence region
with respect to (ΔA(θ))θ∈Δ at the level 1− α if for every confidence region C
at the level 1− α it holds

Pθ(θ0 ∈ C∗) ≤ Pθ(θ0 ∈ C), θ ∈ ΔA(θ0), θ0 ∈ Δ.

Especially for Δ ⊆ R, a lower confidence bound B∗
lcb(x) at the level 1− α

is called a uniformly most accurate lower confidence bound at the level 1− α
if for every lower confidence bound Blcb(x) at the level 1− α it holds

Pθ(B∗
lcb ≤ θ0) ≤ Pθ(Blcb ≤ θ0), θ ∈ (θ0,∞) ∩Δ, θ0 ∈ Δ.

The duality of lower confidence bounds for θ at the level 1 − α and level α
tests for H0(θ0) : θ = θ0 versus HA(θ0) : θ ∈ (θ0,∞) ∩Δ, θ0 ∈ Δ, is extended
below to include optimality.

Let now (X ,A, (Pθ)θ∈Δ) be a statistical model with Δ = (a, b) ⊆ R.
Furthermore, let T : X →m R be a statistic. To avoid too many technical
difficulties we assume here for Fθ(t) = Pθ(T ≤ t), t ∈ R, that

Fθ(t) is continuous in t ∈ R for θ ∈ (a, b), (8.49)
Fθ(t) is decreasing in θ ∈ (a, b) for t ∈ R with 0 < Fθ(t) < 1.

The next statement is a special case of Theorem 4 on p. 90 in Lehmann (1986).

Theorem 8.39. Suppose that (Pθ)θ∈(a,b) with (a, b) ⊆ R has MLR in T , and
that Fθ(t) satisfies (8.49). Let α ∈ (0, 1) be fixed. If there exists a B∗

lcb : X →m

(a, b) with
FB∗

lcb(x)(T (x)) = 1− α, Pθ-a.s., θ ∈ (a, b), (8.50)

then B∗
lcb(x) is a uniformly most accurate lower confidence bound at the level

1− α.

Proof. For every lower confidence bound Blcb(x) at the level 1 − α and
fixed θ0 ∈ (a, b) we introduce the test ψθ0(x) = I(θ0,b)(Blcb(x)). By (8.45)
Eθ0ψθ0 = Pθ0(θ0 < Blcb) ≤ α, and thus ψθ0 is a level α test for H0(θ0) : θ = θ0
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versus HA(θ0) : θ ∈ (θ0, b). For θ ∈ (θ0, b) we get from (8.48) Eθψθ0 = 1 −
Pθ(Blcb ≤ θ0). Due to the continuity of Fθ0 it holds

Pθ0(F
−1
θ0

(1− α) ≤ T ) = Pθ0(F
−1
θ0

(1− α) < T ) = α,

so that by Theorem 2.49 the test ψ := I(1−α,1](Fθ0(T )) is a uniformly best
level α test for H0(θ0) : θ = θ0 versus HA(θ0) : θ ∈ (θ0, b). Because Fθ(t) is
decreasing in θ ∈ (a, b) for every t ∈ R with 0 < Fθ(t) < 1 it holds in view of
(8.50),

θ0 < B∗
lcb(x) ⇔ Fθ0(T (x)) > FB∗

lcb(x)(T (x)) = 1− α, Pθ-a.s., θ ∈ (a, b).

Thus the test ψ∗
θ0

(x) = I(θ0,b)(B
∗
lcb(x)) satisfies ψ∗

θ0
(x) = ψ(x), Pθ-a.s., θ ∈

(a, b), and is a uniformly best level α test for H0(θ0) : θ = θ0 versus HA(θ0) :
θ ∈ (θ0, b). This shows that 1− α ≤ 1− Eθ0ψ

∗
θ0

= Pθ0(B
∗
lcb ≤ θ0) and

Pθ(B∗
lcb ≤ θ0) = 1− Eθψ

∗
θ0 ≤ 1− Eθψθ0 = Pθ(Blcb ≤ θ0), θ ∈ (θ0, b), θ0 ∈ Δ,

which completes the proof.

Example 8.40. We consider the family (Pμ)μ∈R = (N⊗n(μ, σ2
0))μ∈R, where σ2

0 is
known, and the level α Gauss test ψI(

√
n(Xn − μ0)/σ0) for testing H0(μ0) : μ ≤ μ0

versus HA(μ0) : μ > μ0 from (8.18) and (8.19). For

ψ = ψI(
√
n(Xn − μ0)/σ0), μ0 ∈ R,

we have Aψ(μ0) = {x : xn < μ0 + u1−ασ0/
√
n, x ∈ R

n}, μ0 ∈ R, and thus

Cψ(x) = {μ0 : x ∈ Aψ(μ0)} = [B∗
lcb(x),∞), x ∈ R

n, where

B∗
lcb(x) = xn − u1−ασ0/

√
n,

and the conditions (8.49) and (8.50) are satisfied. If now Blcb(x) is another lower

confidence bound at the level 1 − α, then ψ̃μ0(x) = I(μ0,∞)(Blcb(x)) is a level α
test for testing H0 : μ0 versus HA : μ > μ0 for every μ0 ∈ R. As the Gauss test
is uniformly most powerful at the level α we get Eμψ̃μ0 ≤ EμψI for μ > μ0, which
implies

Pμ(B∗
lcb ≤ μ0) ≤ Pμ(Blcb ≤ μ0), μ > μ0, μ0 ∈ R.

Example 8.41. We consider binomial distributions B(n, p), p ∈ (0, 1), as in Ex-
ample 2.53, but this time with the goal to construct a lower confidence bound for
the parameter p. The difficulties pointed out in Remark 8.37 are avoided here by
utilizing the interpolation technique of Proposition 2.58. Let Qp be the distribution
of Y = X + U , where X and U are independent, X follows a binomial distribution
B(n, p), and U is uniformly distributed in (0, 1), p ∈ (0, 1). By Proposition 2.58
(Qp)p∈(0,1) has MLR in the identity. According to (8.50) we have to find for X = x
and U = u (i.e., Y = x + u = y) a solution p ∈ (0, 1) for the equation

∑[y]−1

i=0
bn,p(i) + (y − [y])bn,p([y]) = 1− α, (8.51)

where [y] denotes the integer part of y. As the family of binomial distributions has
strict MLR in the identity the expression on the left-hand side is a continuous and
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decreasing function of p ∈ (0, 1) so that there exists a unique solution B∗
lcb(y) for

p in (8.51), which by Theorem 8.39 is a uniformly most accurate lower confidence
bound at the level 1− α.

To simplify matters in practice often the solution B̃0(y) of
∑[y]−1

i=0 bn,p(i) = 1−α
is used instead. Then, because of [y] = x, the random variable U can be ignored

altogether. Here we have B̃0(y) ≤ B0(y) and thus another lower confidence bound
at the level 1−α, but it is conservative. This is the classical Clopper–Pearson lower
confidence bound; see Witting (1985).

Problem 8.42. The Clopper–Pearson lower confidence bounds for the binomial
distributions B(n, p), p ∈ (0, 1), are solutions of the equation

n!

([y]− 1)!(n− [y])!

∫ 1

p

t[y]−1(1− t)n−[y]dt = 1− α.

Now we apply the results on optimal two-sided tests to the construction of
confidence intervals C(x) = [Blci(x), Buci(x)]; see (8.42). Suppose that (Pθ)θ∈Δ
is a one-parameter family of distributions on (X ,A), where Δ = (a, b) ⊆ R

is an open interval. Let T : X → R be a statistic, where Fθ(t) = Pθ(T ≤ t)
is continuous in t ∈ R for θ ∈ (a, b). Let α ∈ (0, 1) be fixed. Suppose that
ci(θ0, α), i = 1, 2, are functions on Δ× (0, 1) such that for every θ0 ∈ Δ,

ψθ0(x) = 1− I[c1(θ0,α),c2(θ0,α)](T (x)), x ∈ X , (8.52)

is a level α test for H0 : θ = θ0 versus HA : θ �= θ0. If the functions ci(θ0, α)
are nondecreasing and continuous in θ0 ∈ Δ, then

{θ0 : c1(θ0, α) ≤ T (x) ≤ c2(θ0, α), θ0 ∈ Δ}

is an interval with endpoints Bψ,lci(x) and Bψ,uci(x). To get a closed interval,
i.e., [Bψ,lci(x), Bψ,uci(x)], we assume for simplicity that limθ0↓a c1(θ0, α) =
−∞ and limθ0↑b c2(θ0, α) = ∞. It is called the confidence interval associated
with the family of tests ψ = (ψθ)θ∈Δ, and by (8.45) its confidence level is
1− α; that is, it holds

Pθ0(Bψ,lci(x) ≤ θ0 ≤ Bψ,uci(x)) ≥ 1− α, θ0 ∈ Δ. (8.53)

Conversely, if [Blci(x), Buci(x)], x ∈ X , is a confidence interval at the level
1− α, then for every θ0 ∈ Δ

ψB,θ0(x) = 1− I[Blci(x),Buci(x)](θ0), x ∈ X , (8.54)

by (8.47) is a level α test for H0 : θ = θ0 versus HA : θ �= θ0, called the
test associated with the confidence interval [Blci, Buci]. Similar as for two-
sided tests, a restriction to unbiased confidence intervals is needed to get
optimality. A confidence interval [Blci, Buci] is called unbiased at the level
1− α if it satisfies (8.53) and

Pθ1(Blci(x) ≤ θ0 ≤ Buci(x)) ≤ 1− α, θ0 �= θ1, θ0, θ1 ∈ Δ.
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Similarly to confidence bounds (see Theorem 8.39) optimality properties of
the tests ψθ0 , θ0 ∈ Δ, lead to optimality properties of the confidence interval
associated with the tests ψθ0 , θ0 ∈ Δ.

Proposition 8.43. Suppose that (Pθ)θ∈Δ, Δ = (a, b) ⊆ R, is an exponential
family, where Fθ(t) is continuous in t ∈ R for θ ∈ (a, b). Let α ∈ (0, 1)
be fixed. Assume that for every θ0 ∈ Δ the test ψθ0 is an unbiased level α
test for H0 : θ = θ0 versus HA : θ �= θ0, where the functions ci(θ0, α) are
nondecreasing and continuous in θ0 ∈ Δ with limθ0↓a c1(θ0, α) = −∞ and
limθ0↑b c2(θ0, α) = ∞. Then [Bψ,lci, Bψ,uci] is an unbiased confidence interval
at the level 1−α. Moreover, if for every θ0 ∈ Δ the test ψθ0 is a uniformly best
unbiased level α test for H0 : θ = θ0 versus HA : θ �= θ0, then [Bψ,lci, Bψ,uci] is
uniformly most accurate unbiased in the sense that for every θ0, θ1 ∈ Δ with
θ1 �= θ0 it holds

Pθ1(Bψ,lci(x) ≤ θ0 ≤ Bψ,uci(x)) ≤ Pθ1(Blci(x) ≤ θ0 ≤ Buci(x))

for every unbiased confidence interval [Blci, Buci] at the level 1− α.

Proof. The definition of ψθ0 in (8.52) yields Bψ,lci(x) ≤ θ0 ≤ Bψ,uci(x) if
and only if ψθ0(x) = 0. Eθ0ψθ0 ≤ α implies Pθ0(Bψ,lci ≤ θ0 ≤ Bψ,uci) ≥ 1−α,
and Eθ1ψθ0 ≥ α implies Pθ1(Bψ,lci ≤ θ0 ≤ Bψ,uci) ≤ 1− α.

Now we prove the second statement. Let [Blci, Buci] be any confidence
interval that is unbiased at the level 1 − α. Then for every θ0 ∈ Δ the test
ψB,θ0 in (8.54) satisfies

Eθ1ψB,θ0 = 1− Pθ1(Blci(x) ≤ θ0 ≤ Buci(x)), θ0, θ1 ∈ Δ,

and is thus an unbiased level α test for H0 : θ = θ0 versus HA : θ �= θ0. As ψθ0
is a uniformly best unbiased level α test for H0 : θ = θ0 versus HA : θ �= θ0 for
every θ0 ∈ Δ, the proof is completed.

Example 8.44. Consider the family (N⊗n(μ, σ2
0))μ∈R, where σ2

0 > 0 is known. To
construct a uniformly most accurate unbiased confidence interval for μ ∈ R at the
level 1 − α we use the Gauss test ψII(

√
n(Xn − μ0)/σ0) = I(u1−α/2,∞)(

√
n|Xn −

μ0|/σ0) from Example 8.17. The confidence interval associated with this test is

[Xn − u1−α/2σ0/
√
n,Xn + u1−α/2σ0/

√
n].

From Proposition 8.43 we get that this is a most accurate unbiased confidence in-
terval for μ ∈ R at the level 1− α.

We conclude this section with a brief comment on optimal confidence in-
tervals in other situations where optimal tests are available. One is where a
uniformly best unbiased level α test for testing a one-dimensional parame-
ter of interest in a d-parameter exponential family exists. The considerations
on one-parameter exponential families can be extended in a straightforward
manner to exponential families with nuisance parameters. Here we give only
an example. For further results we refer to Section 5.7 in Lehmann (1986).
Analogously to Problem 8.44 we get the following.
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Example 8.45. For the family (N⊗n(μ, σ2))μ∈R,σ2>0, a uniformly most accurate
unbiased confidence interval for μ ∈ R at the level 1 − α can be derived from the
two-sided version of the Student’s t-test in Example 8.31. It turns out to be

[Xn − (1/
√
n)
√

S2
nt1−α/2,n−1, Xn + (1/

√
n)
√

S2
nt1−α/2,n−1].

Finally we remark that asymptotic level α tests and locally asymptotically
best level α tests can be used to establish asymptotic confidence intervals that
have the analogous optimality properties as the tests on which they are based.
For details we refer to Chapter 8 in Pfanzagl (1994).

8.3 Bayes Tests

In the previous section we have studied testing problems for a one-dimensional
parameter, the parameter of interest. Later, a nuisance parameter was admit-
ted to make the model more flexible for a better fit to the data. However,
this approach does not cover all interesting situations, for example, composite
hypotheses which typically appear in problems that arise with k independent
samples. In this section we start out with a general statistical model and
later focus on exponential families. Before constructing Bayes tests for con-
crete testing problems we recall some notations and useful facts from Example
3.47. Let (X ,A, (Pθ)θ∈Δ) be a statistical model that satisfies the assumption
(A5). We consider the testing problem and the loss function, respectively,

H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA,

L(θ, a) = al0(θ)IΔ0(θ) + (1− a)l1(θ)IΔA
(θ),

where l0, l1 : Δ →m R+. The risk function and the Bayes risk of a test
ϕ : X →m [0, 1] are

R(θ, ϕ) = l0(θ)IΔ0(θ)
∫
ϕ(x)fθ(x)μ(dx)

+ l1(θ)IΔA
(θ)
∫

[1− ϕ(x)]fθ(x)μ(dx), θ ∈ Δ,

r(Π,ϕ) =
∫

R(θ, ϕ)Π(dθ) =
∫
ϕ(x)g0(x)μ(dx) +

∫
[1− ϕ(x)]g1(x)μ(dx),

where

g0(x) =
∫
IΔ0(θ)fθ(x)l0(θ)Π(dθ), (8.55)

g1(x) =
∫
IΔA

(θ)fθ(x)l1(θ)Π(dθ).

The “sufficient part” of the following proposition has been established already
in (3.37) and formulated in terms of the posterior risks.
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Proposition 8.46. Suppose (X ,A, (Pθ)θ∈Δ) is a statistical model that satis-
fies the assumption (A5), and Π is a prior with 0 < Π(Δ0) < 1. A test ϕΠ
is a Bayes test for H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA if and only if

ϕΠ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if g1(x) > g0(x),

γ(x) if g1(x) = g0(x),

0 if g1(x) < g0(x),

(8.56)

holds μ-a.e., where γ : X →m [0, 1] may be any measurable function.

Proof. The case infϕ r(Π,ϕ) = ∞ is trivial. Let now ϕ be a test with
r(Π,ϕ) <∞ and assume that ϕΠ satisfies (8.56) PΠ-a.e. Then

[ϕ(x)− ϕΠ(x)][g0(x)− g1(x)] ≥ 0, μ-a.e.

By integrating both sides with respect to μ, we get r(Π,ϕ) − r(Π,ϕΠ) ≥ 0.
Since r(Π,ϕ) <∞, equality holds if and only if the condition (8.56) holds.

Example 8.47. Let (Pθ)θ∈Δ, Δ = (a, b), a < b, be a one-parameter exponential
family, where fθ(x) = exp{θT (x) −K(θ)} is the μ-density of Pθ, θ ∈ Δ. Consider
the testing problem H0 : θ ∈ (a, θ0] versus HA : θ ∈ (θ0, b), where θ0 ∈ (a, b) is fixed.
Let Π be a prior on (a, b) with 0 < Π((a, θ0]) < 1. Here we use the piecewise linear
loss function l0(θ) = (θ − θ0)I(θ0,b)(θ) and l1(θ) = (θ0 − θ)I(a,θ0](θ).

Assume that
∫
|θ|Π(dθ) <∞, and thus

∫
[

∫
|θ| exp{θT (x)−K(θ)}Π(dθ)]μ(dx) <∞. (8.57)

The functions g0 and g1 from (8.55) are given by

g0(x) =

∫
(θ − θ0)I(θ0,b)(θ) exp{θT (x)−K(θ)}Π(dθ), x ∈ X ,

g1(x) =

∫
(θ0 − θ)I(a,θ0](θ) exp{θT (x)−K(θ)}Π(dθ), x ∈ X ,

where the integrals are μ-a.e. finite in view of (8.57). Hence g1(x) < g0(x) holds if
and only if ∫

(θ − θ0) exp{θT (x)−K(θ)}Π(dθ) > 0.

To analyze this condition in more detail, we set ν(dθ) = exp{−K(θ)}Π(dθ) and
consider the function φ(t) =

∫
exp{θt}ν(dθ), t ∈ R. If ν is not concentrated at one

point, which we assume to hold here, then Hölder’s inequality yields

φ(αt1 + (1− α)t2) ≤ [φ(t1)]
α [φ(t2)]

1−α , t1, t2 ∈ R, α ∈ (0, 1),

where equality holds if and only if t1 = t2. Hence, lnφ(t) is strictly convex, and
ψ(t) = φ′(t)/φ(t) is a strictly increasing function on (u, v), say, the interior of the
interval in which φ is finite. If now

lim
t↓u

ψ(t) = −∞ and lim
t↑v

ψ(t) = ∞,
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then there exists a uniquely determined c such that ψ(c) = θ0. In this case c is also
the unique solution of the equation

∫
(θ − θ0) exp{θt−K(θ)}Π(dθ) = 0.

This means that g1(x) < g0(x) if and only if T (x) > c, and g1(x) > g0(x) if and only
if T (x) < c. That g1(x) > g0(x) is equivalent to T (x) < c can be shown analogously.
To conclude, a test ϕΠ is a Bayes test if and only if

ϕΠ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if T (x) > c,

γ(x) if T (x) = c,

0 if T (x) < c,

holds μ-a.e., where γ : X →m [0, 1] may be any measurable function.

Problem 8.48. In the setting of Example 8.47, let (X,Θ) have the distribution
P ⊗ Π, where P(·|θ) = Pθ, θ ∈ Δ. Let ψ(x) = 1 if E(Θ|X = x) > θ0, ψ(x) = 0 if
E(Θ|X = x) < θ0, and ψ(x) = γ(x) otherwise, x ∈ X . Then ψ ≡ ϕΠ .

In the remainder of this section we only make use of the zero–one loss (i.e.,
l0 = l1 = 1) so that

L0,1(θ, a) = aIΔ0(θ) + (1− a)IΔA
(θ), θ ∈ Δ, a ∈ {0, 1}.

Then the functions g0 and g1 are closely related to the marginal densities m0

and mA that correspond to the priors Π0 and ΠA, respectively. It follows from
(3.36) that

g0(x) = vm0(x) = v

∫
fθ(x)Π0(dθ), (8.58)

g1(x) = (1− v)mA(x) = (1− v)
∫
fθ(x)ΠA(dθ).

From Proposition 8.46 it follows that ϕB is a Bayes test for H0 : θ ∈ Δ0 versus
HA : θ ∈ ΔA under the prior Π with 0 < v = Π(Δ0) < 1 if and only if μ-a.e.,

ϕB(x) =

⎧⎨
⎩

1 if (1− υ)mA(x) > υm0(x),
γ(x) if (1− υ)mA(x) = υm0(x),
0 if (1− υ)mA(x) < υm0(x),

(8.59)

where γ : X →m [0, 1] is arbitrary and m0 and mA are defined in (3.36). It
should be noted that the test ϕB is a likelihood ratio test for testing PΠ0

versus PΠA.

Problem 8.49. Let (X,Θ) have the distribution P⊗Π, where P(·|θ) = Pθ, θ ∈ Δ.
Let φ be a test with φ(x) = 1 if P(Θ ∈ Δ1|X = x) > 1/2 and φ(x) = 0 if
P(Θ ∈ Δ1|X = x) < 1/2, x ∈ X . Then φ is a version, up to γ, of the Bayes test ϕB

in (8.59).
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Let us now consider testing problems where the null hypothesis is simple:

H0 : θ = θ0 versus HA : θ ∈ ΔA = Δ\{θ0}, (8.60)

i.e., where Δ0 = {θ0} for some fixed θ0 ∈ Δ. Here we choose some υ ∈ (0, 1)
and Π = υδθ0 + (1− υ)ΠA, where ΠA is any distribution on Δ that satisfies

ΠA({θ0}) = 0. (8.61)

For a simple null hypothesis we may set m0(x) = fθ0(x) in (8.59). For any
α ∈ (0, 1), by suitable choices of υ and γ(x), we can make ϕB be a level α
test. Indeed, let Fθ0 be the c.d.f. of mA(X)/m0(X) under H0, and let c1−α =
F−1
θ0

(1− α) be its 1− α quantile. Then the test

ϕB,α = I(c1−αm0(x),∞)(mA(x)) + γI{c1−αm0(x)}(mA(x)), where
γ = [Fθ0(c1−α)− (1− α)] [Pθ0(mA(x) = c1−αm0(x))] ,

satisfies, by construction,
∫
ϕB,αdPθ0 = α. Hence if υ = c1−α/(1+c1−α), then

the test ϕB,α is a Bayes test, and at the same time a level α test for the simple
null hypothesis H0 : θ = θ0. In the following examples Bayes tests for simple
null hypotheses are studied.

Example 8.50. Let N(θ,Σ0), θ ∈ Δ = R
d, be the family of all normal distributions

where Σ0 is a known nonsingular covariance matrix. We consider the testing problem
H0 : θ = 0 versus HA : θ �= 0. Set ΠA = N(0, Σ1), where Σ1 is nonsingular. Then
the condition (8.61) is fulfilled. By construction mA is the density of X + Θ, where
X ∼ N(θ,Σ0) and Θ ∼ N(0, Σ1) are independent. This yields

mA(x) = ϕ0,Σ0+Σ1(x) = (2π)−d/2(det(Σ0 + Σ1))
−1/2 exp{−1

2

〈
x, (Σ0 + Σ1)

−1x
〉
}.

As m0(x) = ϕ0,Σ0(x), the Bayes test ϕB from (8.59) is given by

ϕB(x) =

{
1 if

〈
x, (Σ−1

0 − (Σ0 + Σ1)
−1)x

〉
≥ c,

0 if
〈
x, (Σ−1

0 − (Σ0 + Σ1)
−1)x

〉
< c,

where c = 2 ln(υ/(1− υ))− ln(det(Σ0 +Σ1)) + ln(det(Σ0)). As (Σ0 +Σ1)
−1 ! Σ−1

0

in the Löwner semiorder, the null hypothesis is rejected for large values of the
nonnegative (quadratic form) statistic

S(x) =
〈
x, (Σ−1

0 − (Σ0 + Σ1)
−1)x

〉
.

If Σ0 and Σ1 are diagonal matrices with diagonal elements σ2
0,i and σ2

1,i, respectively,
then Σ−1

0 −(Σ0+Σ1)
−1 is a diagonal matrix, with σ2

1,i/(σ
2
0,i(σ

2
0,i+σ2

1,i)), i = 1, ..., d,
in the diagonal, so that H0 is rejected for large values of

∑d

i=1

σ2
1,i

σ2
0,i(σ

2
0,i + σ2

1,i)
x2

i .

This test may be viewed as a weighted χ2-test. It reduces to the standard χ2-test
under σ2

0,1 = · · · = σ2
0,d and σ2

1,1 = · · · = σ2
1,d.
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A variety of Bayes tests can be obtained for exponential families by using
conjugate priors. The use of computers may be necessary for explicit eval-
uations. If the measure τ that is associated with the conjugate priors (see
Definition 1.34) is atomless (i.e., τ ({θ}) = 0 for every θ ∈ Δ), then the conju-
gate priors have the same property, so that Πa,b({θ}) = 0, θ ∈ Δ, (a, b) ∈ Υ.
For H0 : θ = θ0, the fixed υ ∈ (0, 1), and some (a, b) ∈ Υ we introduce the
prior by

Π = υδθ0 + (1− υ)Πa,b. (8.62)

We set S(x) = L(a+ 1, b+T (x))−L(a, b)−〈θ0, T (x)〉+K(θ0), where L(a, b)
is defined in (1.38).

Proposition 8.51. Let (Pθ)θ∈Δ be an exponential family as specified by (1.7).
If the dominating measure τ for the conjugate priors is atomless and (a, b) ∈
Υ , then under the zero–one loss every test of the form

ϕB(x) =

⎧⎨
⎩

1 if S(x) > ln υ
1−υ ,

γ(x) if S(x) = ln υ
1−υ ,

0 if S(x) < ln υ
1−υ ,

where γ : X →m [0, 1] is arbitrary, is a Bayes test for the testing problem
(8.60) under the prior Π from (8.62).

Proof. We apply the test (8.59) with mA(x) = ma,b(x) from (1.40) and
with m0(x) = exp{〈θ0, T (x)〉 −K(θ0)}.

Example 8.52. Let X1, ..., Xn be an i.i.d. sample from an exponential distribu-
tion, that is, with the Lebesgue density

fθ(x) = θ exp{−θx}I(0,∞)(x), θ ∈ Δ = (0,∞).

We use the gamma distribution Ga(λ, β) for ΠA. Then

mA(x) = I(0,∞)(x)

∫ ∞

0

θ exp{−θx} βλ

Γ (λ)
θλ−1 exp{−βθ}dθ =

λβλ

(x + β)λ+1
.

Hence for the prior Π = υδθ0 + (1− υ)Ga(λ, β) it holds

mA(x)

m0(x)
=

λβλ exp{θ0x}
θ0(x + β)λ+1

I(0,∞)(x).

From here we get the test (8.59).

Next we deal with testing problems that have composite null hypothe-
ses. We start with a one-sided testing problem in a specific one-parameter
exponential family.

Example 8.53. For the family of binomial distributions B(n, p), p ∈ (0, 1), con-
sider the testing problem H0 : p ≤ 1/2 versus HA : p > 1/2. Using for Π0 and ΠA

the uniform distributions on [0, 1/2] and (1/2, 1], respectively, we get
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m0(x) =
(

n
x

)
2
∫ 1/2

0
px(1− p)n−xdp and mA(x) =

(
n
x

)
2
∫ 1

1/2
px(1− p)n−xdp .

Hence,

mA(x)

m0(x)
=

∫ 1/2

0
pn−x(1− p)xdp∫ 1/2

0
px(1− p)n−xdp

.

If we choose υ = 1/2 in (8.59), then ϕB is given by

ϕB(x) =

⎧⎨
⎩

1 if x > n/2,
γ if x = n/2 and n is even,
0 if x < n/2.

Problem 8.54. In the previous example verify the specific form of ϕB for υ = 1/2.

Now we consider composite hypotheses in the multivariate setting. Sup-
pose that k independent populations are associated with the distributions
Pθ1 , ..., Pθk

that all belong to an exponential family (Pϑ)ϑ∈Δ in natural form.
We set θ = (θ1, ..., θk). The statistical model is then given by

(X k,A⊗k, (
⊗k

i=1 Pθi
)θ∈Δk).

Let the testing problem be H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA, where

Δ0 = {θ : θ1 = · · · = θk ∈ Δ} and
ΔA = {θ : θi �= θj for some i and j, θ ∈ Δk}.

To create Π0(·) = Π(·|Δ0), let Ξ be a random variable with values in Δ0

and Π0 be the distribution of the vector (Ξ, ..., Ξ) which consists of identical
components. To define ΠA(·) = Π(·|ΔA) we randomly spread the values of
the vector (Ξ, ..., Ξ) in Δ0 into a vector which takes values in ΔA. To this
end let Ξ,Ξ1, ..., Ξk be independent random variables with values in Δ = R,
say, where the distributions of Ξ1, ..., Ξk are atomless so that (Ξ1, ..., Ξk)
belongs to ΔA with probability one. Then (Ξ+Ξ1, ..., Ξ+Ξk) belongs to ΔA

with probability one. Π0 is the distribution of (Ξ, ..., Ξ), whereas ΠA is the
distribution of (Ξ +Ξ1, ..., Ξ +Ξk).
Example 8.55. Consider the model (Rk,Bk, (

⊗k
i=1 N(θi, σ

2))θ∈Rk ), where σ2 > 0
is known, and where we want to test

H0 : θ1 = · · · = θk versus HA : θi �= θj for some i and j.

Assume that Ξ,Ξ1, ..., Ξk are independent, where Ξ has the distribution N(0, σ2
0)

and Ξ1, ..., Ξk have the common distribution N(0, σ2
A). According to (3.36),

m0(x1, ..., xk) =

∫ ∏k

i=1
ϕξ,σ2(xi)ϕ0,σ2

0
(ξ)dξ

= (2πσ2)−k/2(τ2
0 /σ

2
0)1/2 exp{− 1

2σ2

∑k

i=1
x2

i +
τ2
0

2σ4
(
∑k

i=1
xi)

2},

mA(x1, ..., xk) =

∫
[
∏k

i=1

∫
ϕξ+ξi,σ2(xi)ϕ0,σ2

A
(ξi)dξi]ϕ0,σ2

0
(ξ)dξ

=

∫ ∏k

i=1
ϕξ,σ2+σ2

A
(xi)ϕ0,σ2

0
(ξ)dξ = (2π(σ2 + σ2

A))−k/2(τ2
A/σ2

0)1/2

× exp{− 1

2(σ2 + σ2
A)

∑k

i=1
x2

i +
τ2

A

2(σ2 + σ2
A)2

(
∑k

i=1
xi)

2},
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where τ2
0 = σ2

0σ
2/(σ2 + kσ2

0) and τ2
A = σ2

0(σ2 + σ2
A)/(σ2 + σ2

A + kσ2
0). With m0 and

mA as calculated above, the Bayes test is given by (8.59).

The question of which prior should be used is one of the basic questions in
Bayesian analysis. For detailed discussions of and solutions to the problem of
choosing hierarchical priors we refer to Schervish (1995) and Berger (1985).

8.4 Uniformly Best Invariant Tests

The framework of uniformly best invariant tests has been introduced in Sec-
tion 5.2, but the topic has been touched on only briefly. In this section we
study it in more detail. For a given statistical model (X ,A, (Pθ)θ∈Δ) we con-
sider the problem of testing H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA, where Δ0 and
ΔA is a decomposition of Δ, under the zero–one loss at a fixed level α ∈ (0, 1).
Suppose that the testing problem is invariant, in the sense of Definition 5.25
with (5.21), under a group of measurable transformations U = (uγ)γ∈G . We
restrict ourselves to tests ϕ that are invariant, that is, tests ϕ that satisfy
ϕ(uγ(x)) = ϕ(x), x ∈ X , γ ∈ G. If there exists a maximal invariant statistic
T , then we may write ϕ as ϕ = h(T ), where h may be chosen to be measurable
if the conditions of Problem 5.21, or those of Problem 8.56 below, are satisfied.
In such a case it suffices to construct an optimal test for the reduced model
(T ,T, (Pθ ◦ T−1)θ∈Δ). This reduction step is called reduction by invariance.
Typically the reduction by invariance simplifies the model and facilitates the
construction of uniformly best tests for the reduced model, and consequently
uniformly best invariant tests for the original model (X ,A, (Pθ)θ∈Δ). The fol-
lowing technical result is sometimes useful in the reduction process.

Problem 8.56.∗ Suppose T is a maximal invariant statistic, T (X ) = T , and there
is a mapping U : T →m X such that T (U(t)) = t for every t ∈ T . Then for every
invariant statistic S : X →m S it holds S = h(T ), where h = S(U) : T →m S.

To illustrate the main ideas of a reduction by invariance we begin with a
pivotal model and testing problem, respectively,

(Rn
�=0,Bn, �=0, (N(μ, I))μ∈Rn),

H0 : μ = 0 versus HA : μ �= 0,

that has been considered already in Chapter 5. This decision problem is invari-
ant under the group of rotations Urot for which χ2

n : X = R
n
�=0 → T = (0,∞),

that is, χ2
n (x) = ‖x‖2, is maximal invariant. According to Problem 8.56 every

rotation invariant test is a measurable function of χ2
n. Hence we may reduce

our model by invariance and get the model

(T ,T, (Pθ ◦ T−1)θ∈Δ) = ((0,∞),B(0,∞), (H(n, δ2))δ2≥0). (8.63)
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In Theorem 5.33 it has been shown that the test ϕχ2
n

= I[χ2
1−α,n,∞)(χ2

n) is
a uniformly best level α test in the class of all tests that are invariant un-
der Urot. The main ingredient of the proof was the fact that the new family
N(μ, I) ◦ (χ2

n)−1 = H(n, δ2) of noncentral χ2-distributions with n degrees of
freedom and noncentrality parameter δ2 = ‖μ‖2 has MLR in the identity; see
Theorem 2.27. Hence for H0 : δ2 = 0 versus HA : δ2 > 0 the test I[χ2

1−α,n,∞)

is a uniformly best level α test for the model (8.63), and ϕχ2
n

is a uniformly
best rotation invariant level α test. A similar reduction technique can also be
applied in other models.

Problem 8.57.∗ In Example 8.31, the test ϕI,U in (8.39) is a uniformly best scale-
invariant level α test for H0 : μ ≤ 0, σ2 > 0, versus HA : μ > 0, σ2 > 0, and ϕII,U in
(8.40) is a uniformly best scale-invariant level α test for H0 : μ = 0, σ2 > 0, versus
HA : μ �= 0, σ2 > 0.

To construct the analysis of variance (ANOVA) model we choose as the
parameter space a k-dimensional linear subspace Lk, say, of R

n. Let Ah be
a linear subspace of Lk that represents the null hypothesis. Let Bk−h be the
(k− h)-dimensional linear subspace of Lk that is orthogonal to Ah. Likewise,
let Cn−k be the (n−k)-dimensional linear subspace of R

n that is orthogonal to
Lk. This may be expressed by writing Ah⊕Bk−h = Lk and Lk ⊕Cn−k = R

n.
Let ΠAh

x, ΠBk−h
x, ΠLk

x, and ΠCn−k
x denote the (orthogonal) projections

of x ∈ R
n on Ah, Bk−h, Lk, and Cn−k, respectively. Thus the model and the

hypotheses are related in the following way.

Sample space Model space H0 HA

R
n = Lk ⊕ Cn−k Lk = Ah ⊕ Bk−h Ah ⊂ Lk Lk\Ah

Let On×n be the group of orthogonal n×n matrices that leave the spaces
Ah, Bk−h, and Cn−k invariant. We consider the linear subspace Ah as an
additive group of measurable transformations of (Rn,Bn) and introduce the
rule of combination on GAN := (0,∞)×On×n × Ah by

γ1 * γ2 = (α1, A1, b1)* (α2, A2, b2) = (α1α2, A1A2, α1A1b2 + b1) .

Then UAN = {uγ : γ ∈ GAN} with uγ (x) = αOx+ b is a group of measurable
transformations of (Rn,Bn). This group leaves the set

X = {x : ΠLk
x−ΠAh

x �= 0, x−ΠLk
x �= 0}

invariant. Putting A = Bh ⊗Bk−h, �=0 ⊗Bn−k, �=0, we introduce the ANOVA
model and testing problem, respectively, by

MAN = (X ,A, (N(μ, σ2I))μ∈Lk,σ2>0), (8.64)
H0 : μ ∈ Ah versus HA : μ ∈ Lk\Ah.
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By construction the model (8.64) is UAN -invariant, and for V = UAN the
hypothesis testing problem is invariant. Consider the statistic

F (x) =
1

k−h ‖ΠLk
x−ΠAh

x‖2
1

n−k ‖x−ΠLk
x‖2

, x ∈ X . (8.65)

It holds ΠLk
x − ΠAh

x = ΠBk−h
x and x − ΠLk

x = ΠCn−k
x, x ∈ X . By con-

struction F : X →m (0,∞) is an invariant mapping. Moreover, F is maximal
invariant. Indeed, if F (x) = F (y), then there is some α > 0 such that

∥∥ΠBk−h
αx
∥∥2 =

∥∥ΠBk−h
y
∥∥2 and ‖ ΠCn−k

αx ‖2=‖ ΠCn−k
y ‖2 .

As the rotations from On×n leave the spaces Ah, Bk−h, and Cn−k invariant
we find a rotation O ∈ On×n with αOΠBk−h

x = ΠBk−h
y and αOΠCn−k

x =
ΠCn−k

y. Hence,

y = ΠAh
y +ΠBk−h

y +ΠCn−k
y = ΠAh

y + αOΠBk−h
x+ αOΠCn−k

x

= αOΠAh
x+ αOΠBk−h

x+ αOΠCn−k
x+ΠAh

y − αOΠAh
x = αOx+ b,

where b = ΠAh
y − αOΠAh

x ∈ Ah.
Finally, we construct the mapping U : (0,∞) →m X in Problem 8.56 by

setting U(r) = re0, where e0 ∈ R
h×R

k−h
�=0 ×R

n−k
�=0 is any fixed unit vector. Then

we see from Problem 8.56 that every UAN -invariant statistic, and especially
every invariant test, is a measurable function of F .

As we have seen above for the model (8.64), under the transformation
group GAN the statistic F in (8.65) is maximal invariant, and every invariant
test is a measurable function of F . To get the induced distribution we need
the following fact. If the random vector X has the distribution N(μ, σ2I), then

((X −ΠLk
X)T , (ΠLk

X −ΠAh
X)T ),

being a linear image of X, is again normally distributed. As (ΠLk
X−ΠAh

X)T

is a vector that belongs to Lk it is orthogonal to (X−ΠLk
X)T which belongs

to L
⊥
k . Hence the covariance matrix between these two vectors is zero, and

due to the joint normal distribution they are independent. Thus we turn to
the reduced model

(T ,T, (Pθ ◦ T−1)θ∈Δ) = ((0,∞),B(0,∞), (F(k − h, n− h, δ2))δ2≥0), (8.66)

where we have used the fact that N(μ, σ2I) ◦ F−1 = F(k − h, n − h, δ2), the
F -distribution with k − h and n − k degrees of freedom and noncentrality
parameter δ2 = ‖ΠLk

μ−ΠAh
μ‖ /σ2; see also Example 2.41. In the reduced

model the original testing problem H0 : μ ∈ Lk versus HA : μ ∈ Lk\Ah has now
the form H0 : δ2 = 0 versus HA : δ2 > 0, where δ2 = ‖ΠLk

μ−ΠAh
μ‖2 /σ2.

We recall from Theorem 2.27 that F(k − h, n − h, δ2) has MLR in the
identity. Thus by Theorem 2.49 we get a uniformly best level α test for the
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reduced model (8.66), and it rejects H0 for large values of the identity. Let
F1−α,k−h,n−k be the 1− α quantile of the F -distribution F(k − h, n− k). As
the set R

n\X = R
n\(Rh × R

k−h
�=0 × R

n−k
�=0 ) has probability zero under every

N(μ, I), μ ∈ R
n, we may switch back to the original sample space R

n and
obtain the following result.

Theorem 8.58. Under the model (Rn,Bn, (N(μ, σ2I))μ∈Rn,σ2>0), for testing
H0 : μ ∈ Ah, σ2 > 0, versus HA : μ ∈ Lk\Ah, σ2 > 0, the F -test defined by

ϕF (x) =

⎧⎨
⎩

1 if
1

k−h‖ΠLk
x−ΠAh

x‖2

1
n−k‖x−ΠLk

x‖2 ≥ F1−α,k−h,n−k

0 otherwise,

is a uniformly best level α test in the class of the UAN -invariant tests.

Example 8.59. Let us consider the one-way layout ANOVA model. It is given by
Xi,j = μi + εi,j , μi ∈ R, where εi,j , j = 1, ..., ni, i = 1, ..., k, are i.i.d. from N(0, σ2).
Suppose we want to test H0 : μ1 = · · · = μk, σ2 > 0, versus HA : μi �= μj for
some i �= j, σ2 > 0. Set n =

∑k
i=1 ni. The linear subspace Lk is the linear hull

of the orthogonal vectors ei, i = 1, ..., k, where the components of ei at the places
n1 + · · ·+ ni−1 + 1, ..., n1 + · · ·+ ni are equal to 1 and 0 elsewhere, i = 1, ..., k. For
example, e1 = (1, ..., 1, 0, ..., 0)T where 1 occurs n1 times. Furthermore, h = 1 and
A1 is the one-dimensional subspace generated by 1 = (1, ..., 1)T . We introduce the
standard ANOVA notation

xi,· =
1

ni

∑ni

j=1
xi,j , i = 1, ..., k

x·,· =
∑k

i=1

ni

n
xi,· =

1

n

∑k

i=1

∑ni

j=1
xi,j .

The projections of the vector x = (x1,1, ..., x1,n1 , x2,1, ..., x2,n2 , ..., xk,1, ..., xk,nk )
on Lk and A1 are, respectively, given by

ΠLkx =
∑k

i=1
〈x, 1

‖ei‖
ei〉

1

‖ei‖
ei =

∑k

i=1

1

ni

∑ni

j=1
xi,jei =

∑k

i=1
xi,·ei,

ΠA1x = 〈x, 1

‖1‖1〉
1

‖1‖1 = x·,·1.

Hence, by 1 =
∑k

i=1 ei and the orthogonality of the ei,

F =
1

k−1
‖ΠLkx−ΠA1x‖2

1
n−k

‖x−ΠLkx‖
2 =

1
k−1

‖
∑k

i=1 xi·ei − x·,·1 ‖2
1

n−k
‖ x−

∑k
i=1 xi,·ei ‖2

=
1

k−1

∑k
i=1 ni(xi,· − x·,·)

2

1
n−k

∑k
i=1

∑ni
j=1(xi,j − xi,·)2

.

This means that the test ϕF rejects H0 if F ≥ F1−α,k−1,n−k.

That the distribution of the maximal invariant statistic could be eval-
uated explicitly, and that the family of distributions in the reduced model
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had MLR, have been the crucial points in the above construction of best
invariant tests. In the situations considered above the conditions were favor-
able as to guarantee that the maximal invariant statistic T generates the
σ-algebra I of invariant sets, and that every invariant statistic S with values
in R

q, or more generally in a Borel space, is a measurable function of T . As
long as this is guaranteed we may, equivalently, deal with either the model
(T ,T, (Pθ ◦ T−1)θ∈Δ) or with (X ,I, (P I

θ )θ∈Δ), where P I
θ is the restriction

of Pθ to the sub-σ-algebra I. The following simple fact proves useful when
evaluating the likelihood ratio in the family (P I

θ )θ∈Δ.

Problem 8.60.∗ If T : X →m T is maximal invariant and generates I, and Mθ0,θ

is a version of the likelihood ratio of Pθ ◦ T−1 with respect to Pθ0 ◦ T−1, then
LI

θ0,θ := Mθ0,θ(T ) is a version of the likelihood ratio of P I
θ with respect to P I

θ0 .

Next we study some other models where the distribution of the likeli-
hood ratio LI

θ0,θ
can be evaluated explicitly. We start with the binary model

(Rn,Bn, {P0, P1}), use the group Ul in (5.4) that generates location models,
and denote by Il the σ-algebra of measurable and Ul-invariant sets.

Problem 8.61.∗ Suppose the distributions P0 and P1 have the Lebesgue densities
f0 and f1, respectively, and set

f i(x1, ..., xn) =

∫ +∞

−∞
fi(x1 + s, ..., xn + s)ds, i = 0, 1,

L
Il
0,1 = (f1/f0)I{f0>0} +∞I{f0=0,f1>0}.

Then L
Il
0,1 is a version of the likelihood ratio of P

Il
1 with respect to P

Il
0 .

We consider again the model (Rn,Bn, {P0, P1}), but now we use the group
Uls in (5.5) that generates location-scale models. Let Ils be the σ-algebra of
measurable and Uls-invariant sets.

Problem 8.62.∗ Suppose that the distributions P0 and P1 have Lebesgue densities
f0 and f1, respectively, and set

f i(x1, ..., xn) =

∫ ∞

0

wn−2[

∫ ∞

−∞
fi(wx1 + v, ..., wxn + v)dv]dw, i = 0, 1,

L
Ils
0,1 = (f1/f0)I{f0>0} +∞I{f0=0,f1>0}. (8.67)

Then L
Ils
0,1 is a version of the likelihood ratio of P

Ils
1 with respect to P

Ils
0 .

Set Pi = (Pi ◦ u−1
α,β)α∈R,β>0, i = 0, 1, where uα,β(x1, ..., xn) = (βx1 +

α, ..., βxn + α). In the next theorem we study for the statistical model
(Rn,Bn,P0 ∪ P1) the testing problem H0 : P ∈ P0 versus HA : P ∈ P1.
It should be noted that the distributions induced by the maximal invariant
statistic Tls from (5.13) do not dependent on α and β. Indeed, by utilizing
the invariance, Tls(uα,β(x)) = Tls(u0,1(x)) = Tls(x) implies

(Pi ◦ u−1
α,β)(Tls ∈ B) = Pi(Tls(uα,β) ∈ B) = Pi ◦ T−1

ls (B), i = 0, 1. (8.68)
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Theorem 8.63. If the distributions P0 and P1 have Lebesgue densities, then
for LIls

0,1 in (8.67) the test

ϕIls
= I(c1−α,∞)(L

Ils
0,1) + γI{c1−α}(L

Ils
0,1),

with γ ∈ [0, 1] and E0ϕIls
= α, is a uniformly best Uls-invariant level α test

for H0 : P ∈ P0 versus HA : P ∈ P1.

Proof. As the Pi have Lebesgue densities it holds (Pi ◦ u−1
α,β)(Rn

�=) = 1,
i = 0, 1, so that we may switch to the reduced sample space R

n
�= and consider

the distributions Qi = (Pi ◦u−1
αi,βi

) ◦T−1
ls , i = 0, 1. The latter are independent

of αi, βi in view of (8.68). If M0,1 is a version of the likelihood ratio of Q1

with respect to Q0, then in view of Problem 8.60 M0,1(Tls) is a version of
the likelihood ratio of P Ils

1 ◦ u−1
α1,β1

with respect to P Ils
0 ◦ u−1

α0,β0
, which is

independent of the αi, βi and is, P Ils
i -a.s., identical with LIls

0,1 , i = 0, 1. To
complete the proof we have only to apply Neyman–Pearson’s lemma (see
Theorem 2.45) and to use the representation of LIls

0,1 in Problem 8.62.

Problem 8.64.∗ If f0(x) =
∏n

i=1 ϕ0,1(xi) is the density of n independent standard
normal random variables, then

f0(x1, ..., xn) = cn[sn(x1, ..., xn)]−n+1, where

cn =
1

2
n−1/2[(n− 1)π]−(n−1)/2Γ ((n− 1)/2), and

sn(x1, ..., xn) = (
1

n− 1

∑n

i=1
(xi − xn)2)1/2.

If f1(x) =
∏n

i=1 exp{−xi}I(0,∞)(xi) is the density of n independent random
variables from an exponential distribution Ex(1), then with x[1] = min{x1, ..., xn},

f1(x1, ..., xn) =
1

n
Γ (n− 1)[n(xn − x[1])]

−n+1.

Next we take Ex(α, β), the shifted exponential distribution with Lebesgue
density exα,β(t) = β exp{−β(t−α)}I[α,∞)(t), as the alternative hypothesis to
normality.

Example 8.65. To find the uniformly best Uls-invariant level α test for testing
H0 : N⊗n(μ, σ2), μ ∈ R, σ2 > 0, versus HA : Ex⊗n(α, β), α ∈ R, β > 0, we consider
the ratio of the densities in the previous problem. With some constant d(n) that
depends only on n we get

L
Ils
0,1 (x1, ..., xn) = d(n)

(
sn(x1, ..., xn)

xn − x[1]

)n−1

.

Note that Tn(x1, ..., xn) = sn(x1, ..., xn)/(xn−x[1]) has a distribution with a contin-
uous c.d.f. According to Neyman–Pearson’s lemma the uniformly best level α test
rejects H0 for large values of f1/f0, which is an increasing function of Tn. Thus the
uniformly best level α test is given by ϕ = I(c1−α,∞)(Tn), where c1−α is the 1 − α

quantile of the distribution of Tn under N⊗n(0, 1).
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Problem 8.66.∗ If f0(x) =
∏2

i=1

∏ni
j=1 ϕ0,1(xi,j), and

f1(x) =
∏n1

a=1
ϕμ,1(x1,a)

∏n2

b=1
ϕ0,1(x2,b),

for x = (x1,1, ..., x2,n2) ∈ R
n and n = n1 + n2, then

L
Ils
0,1 (x) = exp{−n1n2μ

2

2n
}2−(n−3)/2(Γ (

n− 1

2
))−1 (8.69)

×
∫ ∞

0

wn−2 exp{−w2

2
+ wμV (x)}dw,

where
V (x) =

n1n2

n
(x1,· − x2,·)(

∑2

i=1

∑ni

j=1
(xi,j − x·,·)

2)−1/2, (8.70)

and where x1,·, x2,·, and x·,· are as in Example 8.59 in the special case of k = 2.

It is clear that in a similar manner best invariant tests can be established
as long as only location or scale models are considered. The above examples
are special cases in the theory of separate families of distributions which was
initiated by Cox (1961, 1962). A review is provided in Pereira (1977).

Example 8.67. Consider the following two-sample testing problem for normal
populations.

H0 : N⊗n1(μ, σ2)⊗ N⊗n2(μ, σ2), μ ∈ R, σ2 > 0, versus

HA : N⊗n1(μ1, σ
2)⊗ N⊗n2(μ2, σ

2), μ1 > μ2, σ
2 > 0.

As we restrict ourselves to Uls-invariant tests we may assume without loss of gener-
ality that μ1 = μ, μ2 = 0, and σ2 = 1. Thus we consider the testing problem H0 :
μ = 0 versus HA : μ > 0. As μ > 0 in the alternative, the likelihood ratio f1/f0 is
an increasing function of V from (8.70). Thus the uniformly best invariant level α
test rejects H0 for large values of V . This test is equivalent to the one-sided version
of the two-sample t-test which rejects H0 for large values of

Tn−2(x) = (n1n2(n− 2)/n)1/2(x1· − x2·)(
∑2

i=1

∑ni

j=1
(xi,j − xi·)

2)−1/2.

As the distribution of Tn−2 at μ1 = μ2 is T(n−2), H0 is rejected if Tn−2 ≥ t1−α,n−2.
This test is also a uniformly best unbiased level α test, which can be shown within
the framework of Section 8.1.3 with a three-parameter exponential family. A proof
of this fact is given in Section 5.3 of Lehmann (1986).

The two-sided version of the two-sample t-test for H0 versus HA : μ1 �= μ2,
σ2 > 0, can be obtained as a uniformly best invariant level α test if we extend
the group Gls by including reflections (x1, ..., xn) → (−x1, ...,−xn). For details and
extensions to the more general settings of linear models we refer to Giri (1996) and
Witting (1985).

Problem 8.68. In the settings of the previous example, show that V (x) from
(8.70) is an increasing function of Tn−2(x). Then establish the one-sided version of
the two-sample t-test at a given level α ∈ (0, 1).
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Problem 8.69. In the settings of the previous example, let HA be replaced by
HA : μ1 �= μ2, σ2 > 0. Then the two-sided two-sample t-test, which rejects H0 for
large values of |V |, is equivalent to the test ϕF in Example 8.59 in the special case
of k = 2.

Remark 8.70. The crucial point in the above examples has been the calculation
of the likelihood ratio. A general approach to this for a locally compact group G
with the left invariant Haar measure λ is due to Stein (1956), who established

f1(x)

f0(x)
=

∫
f1(uγ(x))λ(dγ)∫
f0(uγ(x))λ(dγ)

(8.71)

without stating conditions under which this formula holds. Later on this problem
was studied in Schwartz (1967), Anderson (1982), and Wijsman (1969, 1985). For
details and further references we refer to Giri (1996) and Wijsman (1990). If G is the
group of all translations, which generates the location model, then the Haar measure
is the Lebesgue measure, and f1/f0 in (8.71) is LI

0,1 in Problem 8.61. Similarly, for
the group in the location-scale model the Haar measure is w−1dvdw and then f1/f0

in (8.71) is LI
0,1 in Problem 8.62.

8.5 Exponential Rates of Error Probabilities

Our starting point is a sequence of models Mn = (Xn,An, (Pn,θ)θ∈Δ) with
a common parameter set Δ. Suppose we want to test H0 : θ ∈ Δ0 versus
HA : θ ∈ ΔA, where Δ0 and ΔA is a decomposition of Δ. By an asymptotic
test {ϕn} we mean a sequence of tests ϕn : Xn →m [0, 1], n = 1, 2, .... For sim-
plicity we often just write ϕn instead of {ϕn}. The first question is whether
there are asymptotic tests that separate the null hypothesis and the alter-
native completely. Such sequences of tests are called completely consistent.
Consequently, an asymptotic test ϕn is completely consistent if

lim
n→∞

En,θ1(1− ϕn) = 0, θ1 ∈ ΔA and lim
n→∞

En,θ0ϕn = 0, θ0 ∈ Δ0.

For i.i.d. observations we have already established conditions in Proposi-
tion 7.122 under which both, the error probabilities of the first and of the
second kind, tend to zero at an exponential rate. The aim of this section is to
establish the exact exponential rate for a simple null hypothesis and a simple
alternative.

Recall that bπ(P,Q) is the minimal Bayes risk for testing H0 : P versus
HA : Q; see Lemma 1.66. The next problem gives a simple bound for the Bayes
risk.

Problem 8.71.∗ For any distributions P0, P1 on (X ,A) it holds bπ(P⊗n, Q⊗n) ≤
πs(1− π)1−s(Hs(P,Q))n, 0 < s < 1.

The inequality in Problem 8.71 gives an upper bound for the exponential
rate of convergence of bπ(P⊗n, Q⊗n). It holds
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lim sup
n→∞

1
n

ln bπ(P⊗n, Q⊗n) ≤ inf
0<s<1

ln Hs(P,Q). (8.72)

The next theorem states that in (8.72) in fact equality holds. This statement
is due to Chernoff (1952).

Theorem 8.72. (Chernoff’s Theorem) Under the prior (π,1−π) the min-
imum Bayes risk bπ(P⊗n, Q⊗n) for testing H0 : P⊗n versus HA : Q⊗n satisfies

lim
n→∞

1
n

ln bπ(P⊗n, Q⊗n) = inf
0<s<1

ln Hs(P,Q), π ∈ (0, 1).

Corollary 8.73. The minimax risk mρ(P⊗n, Q⊗n) satisfies

lim
n→∞

1
n

ln mρ(P⊗n, Q⊗n) = inf
0<s<1

ln Hs(P,Q), ρ ∈ (0, 1).

The upper bound for the convergence rate is already established by (8.72).
For a proof that it is also a lower bound we refer to Chernoff (1952) and Krafft
and Plachky (1970). The statement of the corollary follows from

mρ(P⊗n, Q⊗n) ≤ bρ(P⊗n, Q⊗n) ≤ 2mρ(P⊗n, Q⊗n).

The quantity
C(P,Q) = − inf

0<s<1
ln Hs(P,Q) (8.73)

is called the Chernoff index of P and Q. It provides the exponential rate at
which the minimum Bayes risk bπ(P⊗n, Q⊗n) tends to zero. With the Chernoff
index the statements of Theorem 8.72 and Corollary 8.73 may be written as

lim
n→∞

1
n

ln bπ(P⊗n, Q⊗n) = lim
n→∞

1
n

ln mρ(P⊗n, Q⊗n) = −C(P,Q). (8.74)

Example 8.74. To illustrate the statement above suppose that Pθ, θ ∈ Δ ⊆ R
d, is

an exponential family with natural parameter θ and generating statistic T : X →m

R
d. Then by Example 1.88,

C(Pθ1 , Pθ2) = inf
0<s<1

{sK(θ1) + (1− s)K(θ2)−K(sθ1 + (1− s)θ2)}.

If Pθ = N(θ, σ2), then by (1.79)

ln Hs(N(θ0, σ
2),N(θ1, σ

2)) = − 1

2σ2
s(1− s)(θ0 − θ1)

2, and

C(N(θ0, σ
2),N(θ1, σ

2)) = (θ0 − θ1)
2/(8σ2). (8.75)

Now we consider for the model (Xn,A⊗n, {P⊗n, Q⊗n}) the problem of
testing H0 : P⊗n versus HA : Q⊗n at a fixed given level α ∈ (0, 1). The
exponential rate of the probability of an error of the second kind of the best
level α test, as n tends to infinity, can be characterized as follows.
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Theorem 8.75. (Stein’s Theorem) If K(P,Q), the Kullback–Leibler diver-
gence, is finite, then the error probability of the second kind gα(P⊗n, Q⊗n) of
the best level α test ϕn for testing H0 : P⊗n versus HA : Q⊗n satisfies

− lim
n→∞

1
n

ln gα(P⊗n, Q⊗n) = K(P,Q). (8.76)

Proof. K(P,Q) <∞ and (1.81) imply that P 
 Q and K(P,Q) = EP ln f ,
where f = dP/dQ. Let L = (1/f)I(0,∞)(f)+∞I{0}(f) be the likelihhood ratio
of Q with respect to P and X1, ...,Xn : Xn → X be the projections. If Ln

denotes the likelihhood ratio of Q⊗n with respect to P⊗n, then Definition 1.57
and Proposition A.29 yield Ln = exp{

∑n
i=1 lnL(Xi)} and

∫
hdQ⊗n =

∫
I(0,∞)(Ln)hLndP

⊗n +
∫
I{∞}(Ln)hdQ⊗n,

for every h : Xn →m R+. For Tn = n−1 lnLn and α ∈ (0, 1) we find by
Theorem 2.45 constants cn and γn ∈ [0, 1] such that ϕn = I(cn,∞)(Tn) +
γnI{cn}(Tn) is a best level α test. On An = {|Tn + K(P,Q)| < ε}, ε > 0, it
holds Ln ≥ exp{n(−ε− K(P,Q))}. Hence with h = 1− ϕn,

∫
(1− ϕn)dQ⊗n ≥ exp{n(−ε− K(P,Q))}

∫
(1− ϕn)IAn

dP⊗n.

The fact that K(P,Q) = EP ln f = −EP lnL and the law of large numbers
yield limn→∞ P⊗n(An) = 1 and

∫
(1 − ϕn)IAn

dP⊗n → 1 − α. Taking first
n→∞ and then ε→ 0 one arrives at

lim
n→∞

1
n

ln(
∫

(1− ϕn)dQ⊗n) ≥ −K(P,Q).

To prove the opposite inequality, we note that 1 − ϕn > 0 implies Tn ≤ cn.
Hence,

∫
(1− ϕn)dQ⊗n =

∫
(1− ϕn)LndP

⊗n ≤ exp{ncn}
∫

(1− ϕn)dP⊗n.

As P⊗n(An) → 1 implies cn → −K(P,Q) we get, together with
∫

(1 −
ϕn)dP⊗n = 1− α, the opposite inequality.

In the proof of the previous theorem we have shown that the critical values
cn, that appear in the Neyman–Pearson level α test for testing P⊗n versus
Q⊗n, satisfy cn → −K(P,Q). Thus the statement of Stein’s theorem may also
be written as

lim
n→∞

1
n

ln gα(P⊗n, Q⊗n) = lim
n→∞

cn = −K(P,Q). (8.77)

Theorem 8.75 is called Stein’s theorem in the literature. Chernoff (1956) and
Kullback (1959) refer to an unpublished paper by Stein for the statement
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(8.76). In the theorem above we have assumed that the Kullback–Leibler
divergence K(P,Q) is finite. The case of K(P,Q) = ∞ has been studied in
Janssen (1986), where conditions are established that guarantee that the first
equality in (8.77) is valid even in the case of K(P,Q) = ∞.

Example 8.76. We illustrate the above theorem by considering two distributions
P = Pθ0 and Q = Pθ1 that come from the same exponential family. Then

K(P,Q) =

∫
(ln

dPθ0

dPθ1

)dPθ0 =

∫
〈T, θ0 − θ1〉 dPθ0 + K(θ1)−K(θ0)

= 〈∇K(θ0), θ0 − θ1〉+ K(θ1)−K(θ0),

where we have used (1.23). If Pθ = N(θ, σ2
0), then

K(Nθ0,σ2
0
,Nθ1,σ2

0
) =

∫
(ln

ϕθ0,σ2
0
(x)

ϕθ1,σ2
0
(x)

)ϕθ0,σ2
0
(x)dx =

(θ0 − θ1)
2

2σ2
0

.

This means that

− lim
n→∞

1

n
ln gα(N⊗n

θ0,σ2
0
,N⊗n

θ1,σ2
0
) =

(θ0 − θ1)
2

2σ2
0

. (8.78)

We compare this rate with the exact value of gα(N⊗n

θ0,σ2
0
N⊗n

θ1,σ2
0
), which is nothing

else than the probability of an error of the second kind of the Gauss test. We get
from Example 2.37 that for θ0 < θ1 the minimal error probability of a level α test
is given by gα(N⊗n

θ0,σ2
0
,N⊗n

θ1,σ2
0
) = Φ0,1(u1−α −

√
n(θ1 − θ0)/σ0). In order to evaluate

the right-hand side for large n we use Mill’s ratio; see Mitrinovic and Vaic (1970).

|x|/(1 + x2) ≤ Φ0,1(x)/ϕ0,1(x) ≤ 1/|x|, x < 0.

Hence with an = u1−α −
√
n(θ1 − θ0)/σ0 and all sufficiently large n,

|an|
(1 + a2

n)
√

2πσ0

exp{− a2
n

2σ2
0

} ≤ gα(N⊗n

θ0,σ2
0
,N⊗n

θ1,σ2
0
) ≤ 1

|an|
√

2πσ0

exp{− a2
n

2σ2
0

}.

As limn→∞ n−1 ln |an| = 0 we obtain the result of (8.78) once again. But from this
example we see that the exponential rate alone by itself provides an asymptotic
expression that ignores the factor (|an|

√
2πσ0)

−1 ∼ n−1/2. This means that in our
example the actual error probability of the second kind tends by the factor n−1/2

faster to zero than is indicated by the exponential rate.

Remark 8.77. There are a large number of papers that deal with the exponential
rate of the convergence of error probabilities for increasing sample sizes. Without an
attempt to give a complete list we refer to Bahadur (1971), Steinebach (1980), Ellis
(1985), and other standard books on large deviations. Using the results of Chernoff
and Stein one may characterize the efficiency of statistical tests by comparing their
exponential rates for the error probabilities with the exponential rates provided by
likelihood ratio tests which appear in both the Bayes approach and the approach via
level α tests. But the evaluation of the exponential rates requires techniques from
the area of large deviation. We do not consider that topic in this book. Instead we
refer to Bahadur (1971) and Kester (1987).
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Because both types of error probabilities are involved when the efficiency
of tests is investigated, one has to establish side conditions to get one numer-
ical value that characterizes the asymptotic quality of a test. In the Chernoff
approach the error probabilities of the first kind αn and of the second kind βn
tend to zero and the common distribution of the i.i.d. sample is fixed. Several
other approaches are possible. One that requires that αn → 0 and βn → β > 0
is due to Bahadur. For other approaches we refer to the overview given in Ser-
fling (1980). As pointed out in Lehmann and Romano (2005), p. 539, there
is one exceptional approach which is the Pitman efficiency, or the concept of
local alternatives. In this case αn → α > 0 and βn → β > 0, where the com-
mon distributions depend on n and originate from a localization procedure.
In the concept of local alternatives the limiting models that appear there are
not degenerate. They are typically Gaussian models, and the optimal solu-
tions of the decision problems provide the asymptotically optimal decisions
by substituting the central sequence for the central variable. These facts pre-
sumably are the reason for the superiority of the Pitman approach over other
efficiency concepts. In the subsequent part of this chapter we systematically
use the sketched way to construct sequences of tests that are optimal in se-
quences of localized models. Finally, we refer to Serfling (1980) and Nikitin
(1995) for detailed discussions of different concepts of efficiency in statistics.

8.6 U -Statistics and Rank Statistics

We have seen in Chapter 7 that stochastic Taylor expansions in combina-
tion with the third lemma of LeCam are the fundamental tools to study the
asymptotic behavior of estimators under local alternatives. For example, us-
ing this approach we have established there the local asymptotic optimality
of the MLE. In this section we use a similar idea for tests. In a first step we
approximate a given test statistic Tn under the null hypothesis by a linear
test statistic

Tn =
1√
n

∑n

i=1
Ψ(Xi) + oP⊗n

θ0
(1), Ψ ∈ L

0
2,m(Pθ0). (8.79)

Statistics of this type have appeared already at several places where nonlinear
statistics of the observations have been approximated by statistics of a linear
type. Approximating the log-likelihood in the second lemma of LeCam (see
Theorem 6.70), a linearization has been obtained that contains the so-called
central sequence which is given by

Zn =
1√
n

∑n

i=1
L̇θ0(Xi).

In Theorem 7.148 we have established a stochastic Taylor expansion for the
MLE,
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√
n(θ̂n − θ0) =

1√
n

∑n

i=1
I−1(θ0)L̇θ0(Xi) + oP⊗n

θ0
(1).

We have also established linear approximations for M -estimators; see Theo-
rem 7.142. An application of Corollary 6.74 shows that the limit distribution
of Tn under local alternatives P⊗n

θ0+h/
√
n

differs from the limit distribution un-

der P⊗n
θ0

by a shift that depends on the correlation of L̇θ0 and the influence
function Ψ. The test statistic of an asymptotically optimal test produces the
maximum shift, and this occurs when Ψ and L̇θ0 are proportional. Roughly
speaking, these steps are the content of the test theory in localized models.

In situations where there is no parametric model one has to analyze statis-
tical tests that are based on nonparametric estimators of special functionals
of distributions, e.g., the median. The question arises as to what can be said
about the power of such a nonparametric test. To answer this question one
may fix a distribution P and choose a one-parameter L2-differentiable family
of distributions (Pθ)a<θ<b such that Pθ0 = P belongs to the null hypothesis
and Pθ for θ �= θ0 belongs to the alternative. Then this curve characterizes
the deviations from the null hypotheses in a specific direction that is given
by the L2-derivative L̇θ0 . The L2-derivative L̇θ0 is the influence function of
the most efficient test statistics as in the case where the correlation between
Ψ and L̇θ0 becomes maximum. Otherwise, for any test based on the influence
function Ψ the correlation between Ψ and L̇θ0 characterizes the asymptotic
efficiency of ϕn in the direction given by L̇θ0 . This approach allows us to find
the direction in which the nonparametric test has a good performance, and
also directions where its power is poor.

Necessary for the realization of the program sketched above is both a suit-
able linearization of the log-likelihood and a linearization of the sequence of
the relevant nonlinear test statistics. The linearization of the log-likelihood
has been established already within the framework of the LAN theory in
Chapter 6. It remains to create an asymptotic linearization technique for
nonlinear test statistics. By an asymptotic linearization we mean the follow-
ing. Let X1, ...,Xn be a sample where the Xi takes on values in (X ,A) and
let Tn : Xn →m R

d be a sequence of statistics. If there exists Ψ : X →m R
d

with EΨ(Xi) = 0 and E ‖Ψ(Xi)‖2 < ∞ such that (8.79) holds, then we call
n−1/2

∑n
i=1 Ψ(Xi) an asymptotic linearization and (8.79) a stochastic Tay-

lor expansion. Typically the X1, ...,Xn are i.i.d. Then we get from Slutsky’s
lemma and the multivariate central limit theorem that Tn is asymptotically
normal.

We start with a classical Taylor expansion technique known as the δ-
method. Suppose Wn is a sequence of random vectors in R

d such that

L(
√
n(Wn − a)) ⇒ N(0, Σ). (8.80)

Let U(a) ⊆ R
d be an open neighborhood of a and g = (g1, ..., gk)T : U(a) →

R
k be a function for which all components are differentiable at a. Let

Jg = (∂gi/∂tj)1≤i≤k,1≤j≤d
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denote the Jacobian of g. Then we call ġ(a) = JTg (a) the derivative of g. If
k = 1, then ġ is the gradient. We set g(Wn) = 0 if Wn /∈ U(a). As P(Wn /∈
U(a)) → 0, it is irrelevant for further asymptotic considerations how g(Wn)
is defined for Wn /∈ U(a).

Proposition 8.78. (δ-Method) Suppose that g : U(a) → R
k is differentiable

at a. Then (8.80) implies

L(
√
n(g(Wn)− g(a))) ⇒ N(0, ġT (a)Σġ(a)).

Moreover, √
n(Wn − a) = n−1/2

∑n

i=1
Ψ(Xi) + oP(1)

implies

√
n(g(Wn)− g(a)) = n−1/2

∑n

i=1
ġT (a)Ψ(Xi) + oP(1).

Proof. Put R(x) = g(x)−g(a)− ġT (a)(x−a). Then ‖R(x)‖ = o(‖x− a‖)
as x→ a, by the differentiability of g at a. The condition L(

√
n(Wn − a)) ⇒

N(0, Σ) implies that
√
n ‖Wn − a‖ is stochastically bounded and Wn tends

stochastically to a. Hence

√
n(g(Wn)− g(a))− ġT (a)

√
n(Wn − a) =

√
n ‖Wn − a‖ R(Wn)

‖Wn − a‖ = oP(1)

implies the first statement. Plugging in the linear representation of
√
n(Wn−a)

we get the second statement.

Problem 8.79. Suppose X1, ..., Xn are i.i.d. with common distribution Ex(β).
Then Wn = 1/Xn is a consistent estimator for β. Establish an asymptotic lin-
earization for

√
n(Wn − β) and the limit distribution.

Suppose X1, ...,Xn are i.i.d. with EX2m
1 <∞, and set ai = EXi

1. Let Σ be
the matrix with entries σi,j = E(Xi

1−ai)(Xj
1−aj) = ai+j−aiaj , 1 ≤ i, j ≤ m.

Set Mn,i = (1/n)
∑n

l=1 X
i
l , i = 1, ...,m. Then

L(n1/2((Mn,1, ...,Mn,m)− (a1, ..., am))T ) ⇒ N(0, Σ)

by the multivariate central limit theorem; see Theorem A.53. If g : R
m → R

is any function that is differentiable at a = (a1, ..., am)T , then the δ-method
provides the limit distribution of

√
n(g(Mn,1, ...,Mn,m)−g(a1, ..., am))T . This

is a way to get the limit distribution of functions of empirical moments. For
example,

g1(a1, a2, a3) =
E(X1 − EX1)3

(V(X1))3/2
=
a3 − 3a2a1 + 2a3

1

(a2 − a2
1)3/2

and

g2(a1, ..., a4) =
E(X1 − EX1)4

(V(X1))2
=
a4 − 4a3a1 + 6a2a

2
1 − 3a4

1

(a2 − a2
1)2
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are called the skewness and kurtosis of the distribution of X1, respectively.
Let γ1 = g1(a1, a2, a3) and γ2 = g1(a1, ..., a4). Then the limit distribution of

√
n

(
G1,n − γ1

G2,n − γ2

)
:=
√
n

(
g1(Mn,1,Mn,2,Mn,3)− γ1

g2(Mn,1,Mn,2,Mn,3,Mn,4)− γ2

)

is provided by the δ-method. From here one may construct an asymptotic test
for normality based on the statistic

n(G1,n − γ1)2 + n(G2,n − γ2)2.

Although this way is not difficult it requires somewhat lengthy calculations for
ġT (a)Σġ(a). But we note that with similar considerations one may obtain a
large variety of classical asymptotic tests, for example, the test for dependence
based on the correlation coefficients; see Serfling (1980). Another way is to
simplify the statistic by a direct linearization. An example is given below.

Example 8.80. Suppose again X1, ..., Xn are i.i.d. with EX6
1 < ∞. Set μ = EX1

and σ2 = E(X1 − μ)2. It holds

1

n

∑n

i=1
(Xi −Xn)3 =

1

n

∑n

i=1
[(Xi − μ)− (Xn − μ)]3

=
1

n

∑n

i=1
(Xi − μ)3 − 3(Xn − μ)

1

n

∑n

i=1
(Xi − μ)2 + 2(Xn − μ)3.

The central limit theorem gives (Xn−μ) = OP(1/
√
n). Hence (Xn−μ)3 = OP(n

−3/2)
and by the law of large numbers,

(Xn − μ)
1

n

∑n

i=1
(Xi − μ)2 = σ2(Xn − μ) + (Xn − μ)(

1

n

∑n

i=1
(Xi − μ)2 − σ2)

= σ2(Xn − μ) + oP(1/
√
n) and

1√
n

∑n

i=1
(Xi −Xn)3 =

1√
n

∑n

i=1
((Xi − μ)3 − 3σ2(Xi − μ)) + oP(1).

Set Sn = n−1∑n
i=1(Xi − μ)2. If we want to test H0 : E(X1 − μ)3 = 0, then under

H0 by Slutsky’s lemma we obtain

L(S−3/2
n n−1/2

∑n

i=1
(Xi−Xn)3) ⇒ N(0, τ2), τ2 =

1

σ6
E((X1−μ)3−3σ2(X1−μ))2.

Especially, if the Xi are normally distributed, then by the well-known formula for
central moments for X1 ∼ N(μ, σ2), i.e., E(X1−μ)2k = 1 ·3 · · · (2k−1)σ2k, it follows
τ2 = 6.

Now we present a general technique that allows the approximation of any
statistic by a linear statistic in the sense of (8.79). This is the famous projection
lemma. Our representation follows Hájek, Šidák, and Sen (1999) and Witting
and Müller-Funk (1995). Recall that for a given probability space (Ω,F,P) the
space L2(P) is the space of all real-valued random variables X with EX2 <∞,
where P-a.s. identical random variables are identified. Then L2(P) is a Hilbert
space that is equipped with the scalar product 〈X,Y 〉 = E(XY ) and thus
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with the norm ‖X‖ = (EX2)1/2. We write X ⊥ Y if 〈X,Y 〉 = 0. If A ⊆ L2(P)
is any subset, then span(A) denotes the linear hull of A and [A] the closure
of span(A). A linear subspace L ⊆ L2(P) is called finite-dimensional if there
are X1, ...,Xn such that L = span({X1, ...,Xn}). It is a simple but important
fact that finite-dimensional linear subspaces are closed; see Problem 8.94.

We recall the concept of an (orthogonal) projection. If L ⊆ L2(P) is a
closed linear subspace of L2(P) and Y ∈ L2(P), then there exists a uniquely
determined element in L, denoted by ΠLY, called the projection of Y on L,
such that ‖Y −ΠLY ‖ = infX∈L ‖Y −X‖; see Problem 8.95. The following
characterization of the projection (see Problem 8.96) is often used.

Z = ΠLY ⇐⇒ Z ∈ L and Y − Z ⊥ X, X ∈ L. (8.81)

If Y = (Y1, ..., Yk)T is a k-dimensional random vector, then we set

ΠLY := (ΠLY1, ...,ΠLYk)T (8.82)

and call ΠLY the projection of Y on L. Let P be a distribution on (X ,A)
and introduce the subspace L

0
2(P ) of L2(P ) by

L
0
2(P ) = {a : a ∈ L2(P ),

∫
adP = 0}.

We use the notation Pn = P⊗n and consider the Hilbert space L2(Pn). Denote
by X1, ...,Xn the projections of Xn on X . Set

L = {S : S = a0 +
∑n

i=1
ai(Xi), a0 ∈ R, a1, ..., an ∈ L

0
2(P )}. (8.83)

Then L is a closed linear subspace of L2(Pn) and the representation of S by
the ai is unique; see Problems 8.101 and 8.100.

For Tn ∈ L2(Pn) we find a best approximation by elements from L by
taking the projection of Tn on L, which is given by

ΠLTn = b0 +
∑n

i=1
bi(Xi) (8.84)

for some b0 ∈ R and bi ∈ L
0
2(P ). To find the bi we note that L is spanned by

1 and a(Xj), j = 1, ..., n, a ∈ L
0
2(P ). Hence by taking the scalar product of

Tn − b0 −
∑n

i=1 bi(Xi) with 1 and the a(Xj) we get from (8.81)

EPn
Tn = b0, and EPn

Tna(Xj) = EPn
bj(Xj)a(Xj), j = 1, ..., n,

for every a ∈ L
0
2(P ). Set H

0
j = {a(Xj) : a ∈ L

0
2(P )} ⊆ L2(Pn). Then (8.81)

implies that bj(Xj) is the projection of Tn on H
0
j . Hence,

bj(Xj) = EPn
(Tn|σ(Xj))− EPn

Tn (8.85)

by Problem 8.99. By Problem 8.98 we have
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bj(xj) =
∫
Tn(x)P⊗ �=j (dx �=j)− EPn

Tn, (8.86)

where P⊗ �=j (dx �=j) = P (dx1)···P (dxj−1)·P (dxj+1)···P (dxn). The subsequent
lemma is due to Hájek (1968); see also Hájek, Šidák, and Sen (1999).

Lemma 8.81. (Projection Lemma) If Tn ∈ L2(Pn), where Pn = P⊗n,
then for L in (8.83) it holds with bj from (8.86),

ΠLTn = T̂n := EPn
Tn +

∑n

j=1
bj(Xj),

VPn
(Tn) = VPn

(T̂n) + VPn
(Tn − T̂n), (8.87)

EPn
(Tn − T̂n)2 = VPn

(Tn)− VPn
(T̂n). (8.88)

Proof. The first statement follows from (8.84), (8.85) and (8.86). The
relations (8.87) and (8.88) follow from Tn − T̂n ⊥ T̂n and Tn − T̂n ⊥ EPn

Tn,
and therefore Tn − T̂n ⊥ T̂n − EPn

Tn.

The bj in (8.86) depend on j in general. But this dependence disappears if
Tn is permutation invariant or, in other words, symmetric. Subsequently we
study an important class of such statistics.

Let Ψ ∈ L2(P⊗m) be symmetric; i.e., Ψ(x1, ..., xm) = Ψ(xγ(1), ..., xγ(m))
for every permutation γ. For m < n the statistic

Un(x1, ..., xn) =
1(
n
m

) ∑
1≤i1<···<im≤n

Ψ(xi1 , ..., xim),

is called a U -statistic of order m with kernel Ψ. The concept of U -statistics was
introduced by Hoeffding (1948) who proved the asymptotic normality. Since
then numerous papers on U -statistics have been published; see Koroljuk and
Borovskich (1994) for a comprehensive presentation and references.

Set Am = {A : A ⊆ {1, ..., n}, |A| = m}. For A = {i1, ..., im} ∈ Am

let Ψ(xA) = Ψ(xi1 , ..., xim), where the order of the xij in Ψ(xi1 , ..., xim) is
irrelevant. Hence we may write

Un(x1, ..., xn) =
1(
n
m

) ∑
A∈Am

Ψ(xA).

We set for k = 1, ...,m− 1,

Ψk(x1, ..., xk) =
∫
Ψ(x1, ..., xm)P⊗(m−k)(dxk+1, ..., dxm),

γ = EP⊗mΨ =
∫
Ψ(x1, ..., xm)P⊗m(dx1, ..., dxm).

(8.89)

Proposition 8.82. If Un is a U -statistic, then with L in (8.83),

Ûn = ΠLUn = γ +
m

n

∑n

j=1
(Ψ1(Xj)− γ).
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Proof. The projection lemma (see Lemma 8.81) and (8.85) give

bj(xj) =
1(
n
m

) ∑
A∈Am

∫
Ψ(xA)P⊗ �=j (dx �=j)− γ.

It holds, ∫
Ψ(xA)P⊗ �=j (dx �=j) =

{
γ if j /∈ A,
Ψ1(xj) if j ∈ A.

As

|{A : A ∈ Am, j /∈ A}| =
(
n−1
m

)
and |{A : A ∈ Am, j ∈ A}| =

(
n−1
m−1

)
,

it follows that

bj(xj) =
1(
n
m

) [(n−1
m

)
γ +

(
n−1
m−1

)
Ψ1(xj)]− γ =

m

n
(Ψ1(xj)− γ).

Theorem 8.83. If Ψ ∈ L2(P⊗m) is symmetric, and Ψ1 and γ are defined
by (8.89), then EP⊗n(Un − Ûn)2 = o(1/n), and the U -statistic Un admits the
representation

√
n(Un − γ) =

m√
n

∑n

i=1
(Ψ1(Xi)− γ) + oP⊗n(1).

Proof. Use EPn
(Un − Ûn)2 = o(1/n), which follows from Problem 8.102

and Proposition 8.82.
Subsequently we present a few select examples that demonstrate that many

of the frequently used test statistics are U -statistics, or can be transformed
easily to U -statistics.

Example 8.84. Let X1, ..., Xn be i.i.d. with finite fourth moments, and denote by
μ, σ2, and μ4 the expectation, variance, and fourth central moment of X1, respec-
tively. It holds

S2
n =

1

n− 1

∑n

i=1
(Xi −Xn)2 =

1

n(n− 1)

∑
1≤i<j≤n

(Xi −Xj)
2.

Hence S2
n is a U -statistic of order 2 with kernel Ψ(x1, x2) = 1

2
(x1−x2)

2, and it holds

γ =

∫
1

2
(x1 − x2)

2P⊗2(dx1, dx2) = σ2,

Ψ1(x1) =

∫
1

2
(x1 − x2)

2P (dx2) =
1

2

[
(x1 − μ)2 + σ2] ,

Ûn = σ2 +
1

n

∑n

i=1
((Xi − μ)2 − σ2), and VPn(Ûn) =

1

n
(μ4 − σ4).

Hence VPn(Un) − VPn(Ûn) = 2σ4/(n(n − 1)) by Problem 8.103, and by Theorem
8.83,
√
n(S2

n − σ2) =
√
n(Ûn − σ2) + oPn(1) = n−1/2

∑n

i=1
((Xi − μ)2 − σ2) + oPn(1).

From Slutsky’s lemma we get L(
√
n(S2

n − σ2))⇒ N(0, μ4 − σ4).
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One generalization of the U -statistics considered above concerns the k-
sample problem, where a kernel Ψ(x1,1, ..., x1,m1 , ..., xk,1, ..., xk,mk

) is given
which, for every fixed i ∈ {1, ..., k}, is symmetric in the variables xi,1, ..., xi,mi

.
We consider here only the special case of a two-sample U statistic of order
m1 = 1 and m2 = 1. We set

Un1,n2 =
1

n1n2

∑n1

i=1

∑n2

j=1
Ψ(X1,i,X2,j),

Ψ1(x1) =
∫
Ψ(x1, x2)P2(dx2), Ψ2(x2) =

∫
Ψ(x1, x2)P1(dx1),

U1
n1

=
1
n1

∑n1

i=1
Ψ1(X1,i), U2

n2
=

1
n2

∑n2

j=1
Ψ2(X2,j),

where Xi,1, ...,Xi,ni
take on values in (Xi,Ai) and have the common distri-

bution Pi, i = 1, 2. Put Pn1,n2 = P⊗n1
1 ⊗ P⊗n2

2 . In the special case under
consideration the linearization of Un1,n2 can be directly obtained. It holds

EPn1,n2
[(Un1,n2 − γ)− (U1

n1
− γ)− (U2

n2
− γ)]2 ≤ 1

n1

1
n2
σ2 (8.90)

for EP1⊗P2Ψ
2 <∞, γ = EP1⊗P2Ψ, and σ2 = VP1⊗P2(Ψ); see Problem 8.104.

Now we let n1 and n2 tend to infinity at the same rate; that is, we assume
that for n = n1 + n2 it holds

κ = lim
n→∞

n1

n
and 0 < κ < 1. (8.91)

The subsequent proposition is the well-known asymptotic Hoeffding decom-
position of two-sample U -statistics in a special case.

Proposition 8.85. Suppose Ψ : X ×X →m R satisfies EPn1,n2
Ψ2(X1,1,X2,1)

<∞. If γ = EPn1,n2
Ψ(X1,1,X2,1) and the condition (8.91) is satisfied, then

√
n1n2

n
(Un1,n2 − γ) =

√
n1n2

n
[(U1

n1
− γ) + (U2

n2
− γ)] + oPn1,n2

(1),

L(
√
n1n2

n
(Un1,n2 − γ)|Pn1,n2) ⇒ N(0, (1− κ)σ2

1 + κσ2
2).

Proof. U1
n1
− γ and U2

n2
− γ are independent, and it holds

L(
√
ni(U i

ni
− γ)|Pni

) ⇒ N(0, σ2
i ), i = 1, 2.

Hence,

L(
√
n1n2

n
[(U1

n1
− γ) + (U2

n2
− γ)]|Pn1,n2) ⇒ N(0, (1− κ)σ2

1 + κσ2
2).

To complete the proof we use (8.90).
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Example 8.86. Suppose the observations Xi,j , 1 ≤ j ≤ ni, i = 1, 2, are real-
valued random variables. We consider the Wilcoxon statistic in the Mann–Whitney
form; that is,

Wn1,n2 =
1

n1n2

∑n1

i=1

∑n2

j=1
I(X2,j ,∞)(X1,i),

which is, up to the constant 1/(n1n2), the number of inversions of the pairs
(X1,i, X2,j). Wn1,n2 is a U -statistic with m1 = m2 = 1 and the kernel Ψ(s, t) =
I(t,∞)(s). Suppose L(Xi,k) = Pi with a continuous c.d.f. Fi, i = 1, 2. Then

γ = EP1⊗P2Ψ(X1,1, X2,1) =

∫
[

∫
I(t,∞)(s)P1(ds)]P2(dt) =

∫
[1− F1(t)]P2(dt).

If P1 = P2 =: P , then F (X2,1) has a uniform distribution on (0, 1), so that γ = 1
2
.

Moreover,

Ψ1(s) =

∫
I(t,∞)(s)P (dt) = F (s), Ψ2(t) =

∫
I(t,∞)(s)P (ds) = 1− F (t),

σ2
1 = σ2

2 =

∫
(1− F (s)− 1

2
)2P (ds) =

1

12
.

From Proposition 8.85 we get under the condition (8.91)

√
n1n2

n
(Wn1,n2 −

1

2
) =

√
n1n2

n
[(U1

n1 −
1

2
) + (U2

n2 −
1

2
)] + oPn1,n2

(1)

=

√
n1n2

n
[

1

n1

∑n1

i=1
(F (X1,i)−

1

n2

∑n2

j=1
(F (X2,j)] + oPn1,n2

(1),

and

L(

√
n1n2

n
(Wn1,n2 −

1

2
)|P⊗n1 ⊗ P⊗n2) ⇒ N(0,

1

12
),

which is the classical result on the asymptotic distribution of the Mann–Whitney
statistic.

Remark 8.87. Theorem 8.83 and Proposition 8.85 deal with special U -statistics
and thus provide only first results. A deeper insight into the structure of U -statistics
gives the Hoeffding decomposition of Un into mutually uncorrelated statistics. For
this and other results we refer to Koroljuk and Borovskich (1994).

Often one is interested in a comparison of two or more populations with
the goal of finding that one with the stochastically largest distribution. If the
data are not explained by a parametric model, then rank methods come into
consideration. To study the behavior of tests that are based on rank statistics
under both the null hypothesis and local alternatives, we need several technical
results that are taken from Hájek, Šidák, and Sen (1999).

We recall the rank statistic r(x) and the order statistic s(x) that have
been introduced in (2.5). If x ∈ R

n
�=, then all components of the vector

r(x) are different so that r(x) is a permutation of (1, ..., n). Then the in-
verse permutation of r(x) is called the vector of antiranks and is denoted by
d(x) = (d1(x), ..., dn(x)). It holds
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xi = sri(x)(x) and si(x) = xdi(x), x ∈ R
n
�=, i = 1, ..., n. (8.92)

Let Πn be the group of permutations of (1, ..., n). For every γ ∈ Πn we
set uγ(x1, ..., xn) = (xγ(1), ..., xγ(n)). We recall that the distribution P on the
Borel sets of the real line is called atomless if P ({t}) = 0 for every t ∈ R, which
is equivalent to the continuity of the c.d.f. F (t) = P ((−∞, t]), t ∈ R. In that
case P⊗n(Rn

�=) = 1 (see, e.g., Problem 8.105). Let X1, ...,Xn be the coordinate
mappings of R

n onto R which are i.i.d. random variables on (Rn,Bn, P
⊗n).

For X = (X1, ...,Xn) we introduce the antirank statistic Dn by

Dn = (Dn,1, ...,Dn,n) = (d1(X), ..., dn(X)). (8.93)

We also recall the standard notation, that is, X[·] = (Xn,[1], ...,Xn,[n]) = s(X)
for the order statistic and Rn = (Rn,1, ..., Rn,n) = r(X) for the rank statistic;
see (2.5).

Proposition 8.88. If P is atomless, then the rank statistic Rn and the order
statistic X[·] are independent. Rn = (Rn,1, ..., Rn,n) has a uniform distribution
on Πn. X[·] = (Xn,[1], ...,Xn,[n]) has the distribution n!P⊗n(· ∩ R

n
<).

Proof. The product measure Pn = P⊗n is concentrated on R
n
�= and is

permutation invariant. Hence we get for any γ ∈ Πn and B ∈ Bn,< from
(8.92) that

Pn(Rn = γ, X[·] ∈ B) = Pn((Xγ−1(1), ...,Xγ−1(n)) ∈ B)

=
∫
IB(x1, ..., xn)Pn(dxγ(1), ..., dxγ(n)) = Pn(B).

Taking the sum over all permutations we get Pn(X[·] ∈ B) = n!Pn(B). On
the other hand, for B = Rn,< the permutation invariance of P⊗n yields

Pn(Rn = γ) = Pn(Rn,<) =
1
n!
.

Hence,
Pn(Rn = γ, X[·] ∈ B) = Pn(Rn = γ)Pn(X[·] ∈ B).

Next we consider the model (Rn,Bn, Pn), where Pn = P⊗n, and P is the
uniform distribution on (0, 1). To indicate this we denote now the coordinate
mappings by U1, ..., Un. Set

L2((0, 1)) = {ϕ :
∫ 1

0

ϕ2(t)dt <∞, ϕ : (0, 1) →m R},

aϕn(k) = EPn
(ϕ(U1)|Rn,1 = k), ϕ ∈ L2((0, 1)), k = 1, ..., n.

We note that xi = sri(x)(x) in (8.92) implies
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Ui = Un,[Rn,i], i = 1, ..., n. (8.94)

Hence by the independence of (Un,[1], ..., Un,[n]) and Rn = (Rn,1, ..., Rn,n), and
Problem 8.98,

aϕn(k) = EPn
ϕ(Un,[k]), k = 1, ..., n.

The next proposition, as well as the other subsequent results on rank statistics,
are taken from Hájek, Šidák, and Sen (1999).

Proposition 8.89. It holds for every ϕ ∈ L2((0, 1)),

lim
n→∞

EPn
(aϕn(Rn,1)− ϕ(U1))2 = 0.

Proof. Consider all random variables that appear below to be defined on
(Ω,F,P). Problem 8.109 implies that (n+1)−1Rn,1 tends stochastically to U1.
Hence by Proposition A.12 there is a subsequence nk such that (nk+1)−1Rnk,1

tends to U1, P-a.s. Hence U1 = Ũ , P-a.s., for some random variable Ũ that is
measurable with respect to the sub-σ-algebra generated by allRn,k, 1 ≤ k ≤ n,
n = 1, 2, .... Denote by Fn the sub-σ-algebra generated by Rm,k, 1 ≤ k ≤ m ≤
n. Then F1 ⊆ F2 ⊆ · · ·, and F∞ is generated by Fi, i = 1, 2, .... We note
that by the definition of aϕn it holds E(ϕ(U1)|Fn) = aϕn(Rn,1). As ϕ(Ũ) is
F∞-measurable and U1 = Ũ , P-a.s., the martingale convergence theorem (see
Theorem A.34) gives the statement.

Let [x] denote the the integer part of x. Then aϕn(1+[un]) is a piecewise con-
stant function of u on [0, 1) that takes on the value aϕn(k) on [(k− 1)/n, k/n),
k = 1, ..., n. Put for completeness aϕn(n+ 1) := aϕn(n).

Lemma 8.90. It holds limn→∞
∫ 1

0
(aϕn(1 + [un]) − ϕ(u))2du = 0 for every

ϕ ∈ L2((0, 1)).

Proof. Set bn(u) = [un]. It holds for ϕ,ψ ∈ L2((0, 1)),
∫ 1

0

(aϕn(1 + bn(u))− aψn(1 + bn(u)))2du

= EPn

∫ 1

0

(EPn
(ϕ(U1)− ψ(U1)|Rn,1 = 1 + bn(u)))2du

=
∫ 1

0

EPn
(EPn

(ϕ(U1)− ψ(U1)|Rn,1 = 1 + bn(u)))2du (8.95)

≤ EPn
(ϕ(U1)− ψ(U1))2.

As the set of all bounded and continuous functions ϕ is dense in L2((0, 1))
it suffices to show the statements for such a ϕ. Note that by Problem 8.108
Un,[k] has the distribution Be(k, n − k + 1). By (8.94), the independence of
(Un,[1], ..., Un,[n]) and Rn = (Rn,1, ..., Rn,n), and Problem 8.98, we get that
the conditional distribution of U1, given Rn,1 = 1 + bn(u), is the distribution
of Un,[1+bn(u)], which is Be(1 + bn(u), n− bn(u)). As
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VPn
(Un,[1+bn(u)]) =

(1 + bn(u))(n− bn(u))
(n+ 1)2(n+ 2)

→ 0, and

EPn
Un,[1+bn(u)] = (1 + bn(u))/(n+ 1) → u,

we get that the distributions Be(1+ bn(u), n− bn(u)) tend weakly to the delta
distribution at u. Hence

aϕn(1 + bn(u)) =
∫
ϕ(t)Be(1 + bn(u), n− bn(u))(dt) → ϕ(u), 0 < u < 1,

for every ϕ that is bounded and continuous on (0, 1). The inequality (8.95)
gives for ψ = 0

∫ 1

0

(aϕn(1 + bn(u)))2du = E(ϕ(U1))2 ≤
∫ 1

0

(ϕ(u))2du.

Applying Vitali’s theorem (see Theorem A.21) completes the proof.

Let ci,n, i = 1, ..., n, be constants in R that satisfy
∑n

i=1
ci,n = 0 and

∑n

i=1
c2i,n = 1. (8.96)

Lemma 8.91. If P is the uniform distribution on (0, 1), Pn = P⊗n, and
(8.96) is satisfied, then for any an(k), k = 1, ..., n,

EPn
(
∑n

i=1
ci,nan(Rn,i)−

∑n

i=1
ci,nϕ(Ui))2 ≤

n

n− 1
EPn

(an(Rn,1)−ϕ(U1))2.

Proof. As U[·] = (Un,[1], ..., Un,[n]) and Rn = (Rn,1, ..., Rn,n) are indepen-
dent, and Ui = Un,[Rn,i], i = 1, ..., n,

EPn
((
∑n

i=1
ci,n(an(Rn,i)− ϕ(Ui)))2|U[·] = (u1, ..., un))

= EPn
(
∑n

i=1
ci,n(an(Rn,i)− ϕ(uRn,i

)))2.

As Rn,i has a uniform distribution on {1, ..., n} it holds,

EPn

∑n

i=1
ci,n(an(Rn,i)−ϕ(uRn,i

)) =
∑n

i=1
ci,n

1
n

∑n

k=1
(an(k)−ϕ(uk)) = 0.

Hence by Problem 8.106 and
∑n

i=1 c
2
i,n = 1,

EPn
(
∑n

i=1
ci,n(an(Rn,i)− ϕ(uRn,i

)))2 = σ2
a ≤

1
n− 1

∑n

k=1
a2(k),

where a(k) = an(k)− ϕ(uk). This yields

EPn
(
∑n

i=1
ci,n(an(Rn,i)− ϕ(Ui)))2 ≤

1
n− 1

∑n

k=1
EPn

(an(k)− ϕ(Un,[k]))2

=
1

n− 1

n∑
k=1

EPn
(an(Rn,k)− ϕ(Un:Rn,k

))2 =
n

n− 1
EPn

(an(Rn,1)− ϕ(U1))2,
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where we have used that Un,[Rn,k] = Uk and L(Rn,k, Uk) = L(Rn,1, U1).
Now we are ready to establish the basic result on the approximation of

linear rank statistics. The statement below is Theorem 1 on p. 194 in Hájek,
Šidák, and Sen (1999).

Theorem 8.92. Suppose U1, ..., Un are i.i.d. with a common uniform distri-
bution on (0, 1), ϕ ∈ L2((0, 1)), and (8.96) is satisfied. If

lim
n→∞

∫ 1

0

(an(1 + [un])− ϕ(u))2du = 0, (8.97)

then ∑n

i=1
ci,nan(Rn,i) =

∑n

i=1
ci,nϕ(Ui) + oPn

(1).

Proof. In view of Lemma 8.91, with ϕ = 0 and an replaced by an− aϕn, it
holds

EPn
(
∑n

i=1
ci,nan(Rn,i)−

∑n

i=1
ci,na

ϕ
n(Rn,i))2

≤ n

n− 1
EPn

(an(Rn,1)− aϕn(Rn,1))2

≤ n

n− 1

∫ 1

0

(an(1 + [un])− aϕn(1 + [un]))2du

≤ 2n
n− 1

[
∫ 1

0

(an(1 + [un])− ϕ(u))2du+
∫ 1

0

(aϕn(1 + [un])− ϕ(u))2du].

Now we use condition (8.97) and Lemma 8.90 to get
∑n

i=1
ci,nan(Rn,i) =

∑n

i=1
ci,na

ϕ
n(Rn,i) + oP(1) =

∑n

i=1
ci,nϕ(Ui) + oP(1),

where the second equality follows from Lemma 8.91.
Next we present some ways of constructing scores an(k) that satisfy (8.97).

Lemma 8.93. The condition (8.97) is fulfilled if the an(k) satisfy at least one
of the following conditions.

Exact scores Averaged scores
Approximate

scores

an(k) = EPn
ϕ(Un,[k]) an(k) = n

∫ k/n
(k−1)/n

ϕ(t)dt an(k) = ϕ( k
n+1 )

ϕ ∈ L2((0, 1)) ϕ ∈ L2((0, 1))
ϕ is a finite sum of

monotone functions

(8.98)

Proof. The statement for the exact scores has been established already
in Lemma 8.90. The statement for the averaged scores is clear for continuous
functions. As these functions are dense in L2((0, 1)) there is a sequence of
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continuous functions ϕm with
∫ 1

0
(ϕm(t)− ϕ(t))2dt→ 0. If aϕm

n (k) and aϕn(k)
are defined by ϕm and ϕ, respectively, then by (8.95)

∫ 1

0

(aϕm
n (1 + [un])− aϕn(1 + [un]))2du ≤

∫ 1

0

(ϕm(t)− ϕ(t))2dt,

which completes the proof of the second statement. As to the third statement,
we note that ϕ, and therefore |ϕ|, is of bounded variation in every closed
subinterval of (0, 1), so that we may assume that |ϕ| is nondecreasing. Set
ϕn(u) := ϕ((1 + [un])/(n+ 1)). Then

n

n+ 1

∫ 1

0

|ϕn(u)|2du =
1

n+ 1

∑n

j=1
|ϕ(j/(n+ 1))|2

≤
∑n

j=1

∫
I( j

n+1 ,
j+1
n+1 ](u)|ϕ(u)|2du ≤

∫ 1

0

|ϕ(u)|2du.

Hence,

lim sup
n→∞

∫ 1

0

|ϕn(u)|2du ≤
∫ 1

0

|ϕ(u)|2du.

The set of points of discontinuity is at most countable, so that ϕn(u) → ϕ(u),
a.e. with respect to the Lebesgue measure. An application of Vitali’s theorem
(see Theorem A.21) completes the proof.

Theorem 8.92 gives an approximation of a linear rank statistic by a linear
statistic. This allows us to study the asymptotic distribution of the linear rank
statistics under both the null hypothesis and local alternatives. Now, given a
linear statistic

∑n
i=1 ci,nΨ(Xi), where X1, ...,Xn are i.i.d. with a continuous

c.d.f. F, we use Xi = F−1(Ui), P-a.s., for Ui = F (Xi) to get
∑n

i=1
ci,nΨ(Xi) =

∑n

i=1
ci,nϕ(Ui), where

ϕ(u) = Ψ(F−1(u)), 0 < u < 1.

To rewrite the linear statistic as a linear rank statistic we assume that
EΨ2(X1) <∞, which implies that ϕ ∈ L2((0, 1)). If the scores an are chosen
to satisfy condition (8.98), then by Theorem 8.92

∑n

i=1
ci,nΨ(Xi) =

∑n

i=1
ci,nan(Rn,i) + oP(1). (8.99)

Statistics of the type
∑n

i=1 ci,nΨ(Xi), with regression coefficients ci,n satisfy-
ing (8.96), typically appear in two-sample problems. Indeed, if we consider two
samples X1,1, ...,X1,n1 and X2,1, ...,X2,n2 , where under the null hypothesis the
distributions in both populations are the same, then statistics

Tn =
√
n1n2

n
[

1
n1

∑n1

j=1
Ψ(X1,j)−

1
n2

∑n2

j=1
Ψ(X2,j)],
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where n = n1 + n2, are often used as test statistics. If we set Xi = X1,i,
i = 1, ..., n1, and Xi+n1 = X2,i, i = 1, ..., n2, and

ci,n =
√

n1n2
n

1
n1
, 1 ≤ i ≤ n1,

ci,n = −
√

n1n2
n

1
n2
, i = n1 + 1, ..., n1 + n2,

(8.100)

then (8.96) is satisfied. We get from (8.99)

Tn =
√
n1n2

n
[

1
n1

∑n1

i=1
an(Rn,i)−

1
n2

∑n

i=n1+1
an(Rn,i)] + oP(1), (8.101)

F is the c.d.f. of Xi,j , an and ϕ = Ψ(F−1) are related by (8.97).

The influence function Ψ often comes into consideration as the L2-derivative
of a one-parameter model. The next display presents linear rank statistics that
originate from the location model f(x− θ) with Ψ = L̇0 = −f ′/f .

Fisher-Yates Median Wilcoxon

f 1√
2π

exp{−x2

2 }
1
2 exp{−|x|} exp{−x}

(1+exp{−x})2

ϕ = − f ′

f (F−1) Φ−1(u) sgn(2x− 1) 2x− 1

an(k) EPn
Φ−1(Un,[k]) sgn( k

n+1 − 1) 2k
n+1 − 1

(8.102)

Let us consider once more the statistic Tn =
∑n

i=1 ci,nΨ(Xi). If Tn is used
as the test statistic, then under the null hypothesis the Xi are i.i.d. If the
test rejects the null hypothesis for large values of Tn one needs the 1 − α
quantile of the distribution of Tn which can be hardly calculated in closed
form unless the Ψ(Xi) satisfy additional conditions which guarantee that the
convolutions involved can be carried out. One way out of this dilemma is large
sample approximations, which have the shortcoming that the level α may be
exceeded. Another way is the concept of permutation tests. Suppose that the
Xi are i.i.d. with a continuous distribution. Using the ranks Rn,i in (8.92) we
get

TΨ,n =
∑n

i=1
ci,nΨ(Xi) =

∑n

i=1
ci,nΨ(Xn,[Rn,i]).

Now we use the fact that the order statistic X[·] and the rank vector Rn are
independent. The conditional distribution of Tn, given X[·] = (x[1], ..., x[n]),
is the distribution of

∑n
i=1 ci,nΨ(x[Rn,i]), where the vector Rn is uniformly

distributed on the set of all permutations. Then a conditional test, called
permutation test, can be established according the concept of a conditional
test that we have dicussed in Section 8.1.3. For further details on permutation
tests we refer to Lehmann and Romano (2005).
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Subsequently, problems are listed whose results have been used in the
preceding proofs.

Problem 8.94.∗ If Xi ∈ L2(P), then L = span({X1, ..., Xn}) is closed. If
X1, X2, ...are i.i.d. with Xi ∼ N(μ, 1) and μ �= 0, then L = span({X1, X2, ...}) is
not closed.

Problem 8.95.∗ Prove the existence and uniqueness of the projection ΠLY.

Problem 8.96.∗ For Z ∈ L2(P) it holds Z = ΠLY if and only if Z ∈ L, and
Y − Z ⊥ X, X ∈ L.
Problem 8.97.∗ Set X = (X1, ..., Xn)T , L = span({X1, ..., Xn}) and suppose
that X1, ..., Xn ∈ L2(P) are linearly independent. Then E(XXT ) is nonsingular and
ΠLY = (E(Y XT ))(E(XXT ))−1X for Y ∈ L2(P).

Problem 8.98.∗ If X and Y are independent random variables with values in
(X ,A) and (Y,B), respectively, and h : X ×Y →m R satisfies E|h(X,Y )| <∞, then
E(h(X,Y )|σ(X)) = g(X), P-a.s., where g(x) = Eh(x, Y ) =

∫
h(x, y)PY (dy).

Problem 8.99.∗ Let G be a sub-σ-algebra of F. Let H be the subspace of L2(P)
of all Z ∈ L2(P) which are G-measurable, and H

0 ⊆ H the subspace for which in
addition EZ = 0 holds. Then for EX2 <∞ it holds E(X|G) = ΠHX and E(X|G)−
EX = ΠH0X.

Problem 8.100.∗ For S ∈ L it holds EPnS
2 = a2

0 +
∑n

i=1 EPna
2
i (Xi), and the

representation S = a0 +
∑n

i=1 ai(Xi) is unique.

Problem 8.101.∗ The space L in (8.83) is a closed linear subspace of L2(P
⊗n).

Problem 8.102.∗ VPn(Un) =
(

n
m

)−1∑m
k=1

(
m
k

)(
n−m
m−k

)
σ2

k, where σ2
k is given by

σ2
k = VPn(Ψk(X1, ..., Xk)). VPn(Ψk(X1, ..., Xk)) ≤ VPn(Ψm(X1, ..., Xm)), k ≤ m.

EPn(Un − Ûn)2 = VPn(Un)− VPn(Ûn) = o(1/n).

Problem 8.103. Let X1, ..., Xn be i.i.d. with finite fourth moments, and denote
by σ2 the variance and by μ4 the fourth central moment. Then the variance of
S2

n = (n− 1)−1∑n
i=1(Xi −Xn)2 is V(S2

n) = n−1(μ4 − σ4) + 2[n(n− 1)]−1σ4.

Problem 8.104.∗ Show (8.90) for Ψ : X1 ×X2 →m R, σ2 = VP1⊗P2Ψ
2 <∞.

Problem 8.105. For independent random variables X and Y it holds P(X = Y ) =∫
P(X = t)PY (dt) =

∑
t∈A P(X = t)P(Y = t), where the set A of all t with P(X =

t)P(Y = t) �= 0 is at most countable.

Problem 8.106.∗ For Sn =
∑n

i=1 ci,nan(Rn,i) it holds EPnSn = an

∑n
i=1 ci,n and

VPn(Sn) = σ2
an

∑n
i=1(ci,n − cn)2, where an = n−1∑n

i=1 an(i), cn = n−1∑n
i=1 ci,n,

and σ2
an

= (n− 1)−1∑n
i=1(a(i)− an)2.

Problem 8.107. If Bea,β is the c.d.f. of a beta distribution and bn,p is the p.m.f.
of a binomial distribution, then

∑n
l=k bn,p(l) = Beα,β(p) for α = k and β = n−k+1.

Problem 8.108.∗ If U1, ..., Un are i.i.d. with a uniform distribution on (0, 1), then
the distribution of Un,[k] is Be(k, n− k + 1), and it holds EPnUn,[k] = k/(n+ 1) and
VPn(Un,[k]) = k(n− k + 1)/[(n + 1)2(n + 2)].

Problem 8.109.∗ If P is the uniform distribution on (0, 1), then it holds that
EPn(U1 − (n + 1)−1Rn,1)

2 = n−1∑n
k=1 k(n− k + 1)[(n + 1)2(n + 2)]−1 < 1/n.
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8.7 Statistics with Estimated Parameters

Quite often in testing problems the parameter θ ∈ Δ ⊆ R
d consists of two

components, the parameter of interest τ and a nuisance parameter ξ. For
d-parameter exponential families we were able to eliminate the nuisance pa-
rameter by conditioning. This technique, however, is restricted to exponential
families. For asymptotic tests another idea appears to be intuitively feasible.
Suppose we want to test H0 : τ = τ0 versus HA : τ �= τ0. In a first step,
we could fix ξ = ξ0, construct an asymptotically optimal test for the simple
null hypothesis, and then, in a second step, plug in a consistent estimator for
the unknown ξ0. This technique seems to be the “natural way”. However, the
problem arises that this plug-in procedure may change the asymptotic size of
the test. In other words, the new test may not be an asymptotic level α test,
unless additional suitable conditions are satisfied. The aim of this section is
to find such conditions, and to present a technique that allows a systematic
construction of test statistics that are insensitive to the estimation of nuisance
parameters. Here again, the concept of projection is of great importance.

We consider estimators that admit a stochastic Taylor expansion, where
the influence function depends on some nuisance parameter ξ. For the model
(X ,A, (Pξ)ξ∈Ξ) denote by X1, ...,Xn the projections of Xn → X onto the
coordinates, and set Pn,ξ0 = P⊗n

ξ0
. Let Ξ ⊆ R

m be open and ξ̂n : Xn →m Ξ
be a sequence of estimators of ξ0 that admits the stochastic Taylor expansion

√
n(ξ̂n − ξ0) =

1√
n

∑n

i=1
Ψ(Xi) + oPn,ξ0

(1), Ψ ∈ L
0
2,m(Pξ0). (8.103)

The next result is a transformation rule for the influence function of statistics
with estimated parameters.

Proposition 8.110. (Transformation of Influence Function) Assume
the function S : Ξ × X → R

k satisfies S ∈ C
(1)
m (U(ξ0),X ) and condition

(B) in (A9) is satisfied for the model (X ,A, (Pξ)ξ∈Ξ). If ξ̂n : Xn →m Ξ is a√
n-consistent estimator at ξ0, then

1√
n

∑n

i=1
Sξ̂n

(Xi) =
1√
n

∑n

i=1
Sξ0(Xi)

+(Eξ0 Ṡ
T
ξ0(X1))

√
n(ξ̂n − ξ0) + oPn,ξ0

(1).

If in addition (8.103) holds, then

1√
n

∑n

i=1
Sξ̂n

(Xi) =
1√
n

∑n

i=1
S̃ξ0(Xi) + oPn,ξ0

(1), where

S̃ξ0 = Sξ0 + (Eξ0 Ṡ
T
ξ0)Ψ. (8.104)

Proof. The Taylor expansion in Theorem A.2 and Lemma 7.141 give
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1√
n

∑n

i=1
(Sξ̂n

(Xi)− Sξ0(Xi))

= (
1
n

∑n

i=1

∫ 1

0

ṠT
ξ0+s(ξ̂n−ξ0)

(Xi)ds)
√
n(ξ̂n − ξ0) + oPn,ξ0

(1)

= (Eξ0 Ṡ
T
ξ0(X1) + oPn

(1))
√
n(ξ̂n − ξ0) + oPn,ξ0

(1)

= (Eξ0 Ṡ
T
ξ0(X1))

√
n(ξ̂n − ξ0) + oPn,ξ0

(1),

where the last equality follows from the fact that
√
n(ξ̂n− ξ0) = OPn,ξ0

(1).

The above transformation rule admits a simple interpretation. The plug-
in procedure produces an additional term that depends on Eξ0 Ṡξ0(X1) and
the influence function Ψ that expresses the fluctuation of the estimator. If
Eξ0 Ṡξ0(X1) = 0, then the difference

1√
n

∑n

i=1
Sξ̂n

(Xi)−
1√
n

∑n

i=1
Sξ0(Xi)

is asymptotically negligible. Such a situation is typical for the two-sample
case. Consider the sequence of models

(Xn1 ×Xn2 ,A⊗n1 ⊗ A⊗n2 , (P⊗n1
ξ ⊗ P⊗n2

ξ )ξ∈Ξ),

for which the projections X1,1, ...,X1,n1 and X2,1, ...,X2,n2 are i.i.d. with
L(Xi,j) = Pξ, j = 1, ..., ni, i = 1, 2. Set Pn1,n2,ξ = P⊗n1

ξ ⊗ P⊗n2
ξ and

n = n1 + n2.

Lemma 8.111. Assume that the function S : Ξ × X → R
k satisfies S ∈

C
(1)
m (U(ξ0),X ) and (B) in (A9) is fulfilled. If there are positive constants c1

and c2 such that c1 ≤ ni/n ≤ c2, then for every sequence of
√
n-consistent

estimators ξ̂n : Xn →m Ξ of ξ0 it holds

1
n1

∑n1

j=1
Sξ̂n

(X1,j)−
1
n2

∑n2

j=1
Sξ̂n

(X2,j)

=
1
n1

∑n1

j=1
Sξ0(X1,j)−

1
n2

∑n2

j=1
Sξ0(X2,j) + oPn1,n2,ξ0

(1/
√
n).

Proof. As Eξ0 Ṡξ0(X1,1) = Eξ0 Ṡξ0(X2,1) it is, in view of c1 ≤ ni/n ≤ c2,
enough to show that for i = 1, 2,

1
ni

∑ni

j=1
(Sξ̂n

(Xi,j)−Sξ0(Xi,j)−(Eξ0 Ṡ
T
ξ0(X1,1))(ξ̂n−ξ0)) = oPn1,n2,ξ0

(1/
√
n).

But this follows from Proposition 8.110.
We have seen in Proposition 8.110 that a linearized statistic is insensitive

to plugging in an estimated parameter if Eξ0 Ṡξ0 = 0 holds. To analyze this
condition in more detail we suppose that k = m = 1, Sξ(x) satisfies S ∈
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C
(1)
m (U(ξ0),X ), and (A9) is fulfilled. Suppose the family (Pξ)ξ∈U(ξ0) is L2-

differentiable with derivative L̇ξ0 . Assume in addition that

EξSξ = 0, ξ ∈ U(ξ0), lim
ξ→ξ0

Eξ0(Sξ − Sξ0)
2 = 0.

Then by Lemma 7.143 it holds Eξ0 Ṡξ0 = −Eξ0Sξ0L̇ξ0 . This means that
Eξ0 Ṡξ0 = 0 if and only if the influence function Sξ0 is orthogonal to L̇ξ0

in the sense of L2(Pξ0). Regardles of whether the last condition holds we set

Wξ = Sξ + (EξṠξ)I−1(ξ)L̇ξ.

Then Wξ0 satisfies this orthogonality condition, i.e., it holds Eξ0Wξ0L̇ξ0 = 0.
Hence we may expect that the new influence function Wξ leads to a sequence
of statistics that is insensitive against plugging in estimators for ξ. This is
the content of the next proposition, which we formulate for vector-valued
functions S for later purposes.

Proposition 8.112. Suppose the family (Pξ)ξ∈U(ξ0), U(ξ0) ⊆ R
m, satisfies

condition (A10), and the Fisher information matrix I(ξ) is nonsingular for
ξ ∈ U(ξ0). Assume that S : U(ξ0)×X → R

k satisfies S ∈ C
(1)
m (U(ξ0),X ) and

condition (A9) is fulfilled. If ξ �→ (EξṠξ)T I−1(ξ) is continuous and

Wξ := Sξ + (EξṠ
T
ξ )I−1(ξ)L̇ξ, (8.105)

then

1√
n

∑n

i=1
Wξ̂n

(Xi) =
1√
n

∑n

i=1
Wξ0(Xi) + oP⊗n

ξ0
(1) (8.106)

holds for every
√
n-consistent sequence of estimators ξ̂n.

Proof. The distribution of n−1/2
∑n

i=1 L̇ξ0(Xi), by the central limit the-
orem, tends to a normal distribution. Hence n−1/2

∑n
i=1 L̇ξ0(Xi) is stochas-

tically bounded (see, e.g., Problem 7.129). Thus we get by the continuity of
A(ξ) := (EξṠ

T
ξ )I−1(ξ),

[A(ξ̂n)−A(ξ0)]n−1/2
∑n

i=1
L̇ξ0(Xi) = oPn,ξ0

(1).

Proposition 8.110 yields

1√
n

∑n

i=1
(Wξ̂n

(Xi)−Wξ0(Xi))

=
1√
n

∑n

i=1
[(Sξ̂n

(Xi)− Sξ0(Xi)) +A(ξ̂n)(L̇ξ̂n
(Xi)− L̇ξ0(Xi))] + oPn,ξ0

(1)

= [Eξ0 Ṡ
T
ξ0 +A(ξ̂n)

1
n

∑n

i=1

∫ 1

0

L̈ξ0+s(ξ̂n−ξ0)
(Xi)ds]

√
n(ξ̂n − ξ0) + oPn,ξ0

(1)

= [Eξ0 Ṡ
T
ξ0 +A(ξ0)Eξ0L̈ξ0(X1)]

√
n(ξ̂n − ξ0) + oPn,ξ0

(1),
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where we have used Lemma 7.141 and the continuity of A to get the last equal-
ity. Using Eξ0L̈ξ0(X1) = −I(ξ0) from (7.111), and thus A(ξ0)Eξ0L̈ξ0(X1) =
−Eξ0 Ṡ

T
ξ0

, we get the statement.

Now we split the parameter θ ∈ Δ ⊆ R
d into two parts by setting θ =

(τT , ξT )T . Part one is τ, which has dimension k, and is the parameter of
interest. Part two is ξ, which has dimension m = d − k, and is the nuisance
parameter. We suppose that (Pθ)θ∈U(θ0) satisfies (A10). Let

L̇θ =
(
Uθ

Vθ

)
, θ =

(
τ
ξ

)
∈ Δ0, (8.107)

be the partition of the L2-derivative L̇θ, where Uθ and Vθ are the vectors that
contain the derivatives of the log-likelihood with respect to the components of
τ and ξ, respectively. The covariance matrix Cθ0(L̇θ0) is the Fisher information
matrix, and we partition it analogously by

Cθ0(L̇θ0) = I(θ0) =
(

I1,1(θ0) I1,2(θ0)
I2,1(θ0) I2,2(θ0)

)
.

Set Sξ = Uτ0,ξ. Then I(ξ) = I2,2(τ0, ξ) and (7.111) implies EξṠ
T
ξ = −I1,2(τ0, ξ).

We use the transformation (8.105) that transforms Sξ into the statistic Wξ.
Then

Wτ0,ξ = Uτ0,ξ − I1,2(τ0, ξ)I−1
2,2(τ0, ξ)Vτ0,ξ, (τ0, ξ) ∈ U(θ0). (8.108)

Proposition 8.113. Suppose (Pθ)θ∈U(θ0) satisfies (A10) and I2,2(θ0) is non-
singular. If ξ̃n is any

√
n-consistent sequence of estimators for the submodel

(P(τ0,ξ))(τT
0 ,ξT )T ∈U(θ0) for which τ0 is known, then

1√
n

∑n

i=1
Wτ0,ξ̃n

(Xi) =
1√
n

∑n

i=1
Wτ0,ξ0(Xi) + oP⊗n

θ0
(1).

Proof. To prove the statement we set Pξ = P(τ0,ξ) in Proposition 8.112.
The assumption (A10) implies that Sξ = Uτ0,ξ satisfies the conditions in
(A9). Furthermore, I(ξ) = I2,2(τ0, ξ) and I(ξ0) is nonsingular. Moreover, ξ �→
(EξṠ

T
ξ )I−1(ξ) = −I1,2(τ0, ξ)I−1

2,2(τ0, ξ) is continuous by assumption (A10) and
Lemma 7.147, so that the statement follows from Proposition 8.112.

8.8 Asymptotic Null Distribution

In this section we study the asymptotic behavior of the distributions of test
statistics under the null hypothesis. These results are used to construct asymp-
totic tests that have asymptotically under the null hypothesis an error prob-
ability that does not exceed a given α ∈ (0, 1).
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Let Mn = (Xn,An, (Pn,θ)θ∈Δ) be a sequence of models. The asymptotic
test {ϕn} is called an asymptotic level α test if lim supn→∞ En,θϕn ≤ α,
θ ∈ Δ0. An asymptotic level α test {ϕn} is called an asymptotically unbiased
level α test if

lim inf
n→∞

En,θϕn ≥ α, θ ∈ ΔA. (8.109)

For a simple null hypothesis asymptotic tests are often based on asymp-
totically normal statistics. We consider the simple null hypothesis H0 :
{θ0} and the alternative HA : Δ\{θ0} in the sequence of models Mn =
(Xn,An, (Pn,θ)θ∈Δ). Recall that χ2

1−α,d is the 1 − α quantile of the χ2-
distribution with d degrees of freedom.

Proposition 8.114. Suppose Δ ⊆ R
d is open and θ̂n : Xn →m Δ satisfies

L(
√
n(θ̂n − θ0)|Pn,θ0) ⇒ N(0, Σ(θ0)), where Σ0 is nonsingular. Then

ϕn = I(χ2
1−α,d,∞)(n(θ̂n − θ0)TΣ−1(θ0)(θ̂n − θ0)) (8.110)

is an asymptotic level α test for H0 : {θ0} versus HA : Δ\{θ0} for α ∈ (0, 1).

Proof. If the random vector Z in R
d has the distribution N(0, Σ(θ0)),

where Σ(θ0) is nonsingular, then it follows from a transformation to principal
axes that ZTΣ−1(θ0)Z has a χ2-distribution with d degrees of freedom. The
statement follows from L(

√
n(θ̂n − θ0)|Pn,θ0) ⇒ L(Z).

If θ̂n is the MLE, then under the conditions of Theorem 7.148 it holds

L(
√
n(θ̂n − θ0)|P⊗n

θ0
) ⇒ N(0, I−1(θ0)),

so that the test ϕn in (8.110) turns into the test

ϕn,W = I(χ2
1−α,d,∞)(n(θ̂n − θ0)T I(θ0)(θ̂n − θ0)).

ϕn,W was introduced by Wald who based asymptotic level α tests on the MLE.
There is a close connection between the MLE and the central sequence of the
localized models. Indeed, if the conditions of Theorem 7.148 are satisfied,
then the model is L2-differentiable, fulfils the ULAN(Zn, I(θ0)) condition with
central sequence Zn = n−1/2

∑n
i=1 L̇θ0(Xi), and by (7.113)

√
n(θ̂n − θ0) = I−1(θ0)Zn + oP⊗n

θ0
(1).

Hence we may also operate directly with the statistic Zn that is already de-
fined if the model is L2-differentiable, which is a weaker condition than the
conditions in Theorem 7.148. As L(Zn|P⊗n

θ0
) ⇒ N(0, I(θ0)) we see that the

sequence of tests

ψn,NR =
{

1 if (
∑n

i=1 L̇θ0(Xi))T I−1(θ0)(
∑n

i=1 L̇θ0(Xi)) > nχ2
1−α,d

0 else
(8.111)
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is an asymptotic level α test, which is called the Neyman–Rao test.
Often there are nuisance parameters present in the model. In that case we

consider the partition (8.107), where Uθ0 corresponds to the k derivatives of
the log-likelihood with respect to the components of τ and Vθ0 corresponds
to the m = d − k derivatives with respect to the components of ξ. To make
the statistic Uθ0 = Uτ0,ξ0 insensitive to plugging in an estimator for ξ0 we
have to project Uτ0,ξ0 on the orthogonal complement of the linear subspace
[Vθ0 ]. This projection is just the transformation rule (8.108), which provides
the new influence function and test statistic given by, respectively,

Wθ0 = Uθ0 − I1,2(θ0)I−1
2,2(θ0)Vθ0 ,

Sn,NR(θ0) =
1√
n

∑n

i=1
Wθ0(Xi). (8.112)

We recall the formula for the inverse of a matrix given in block form from
Problem 7.174. If I−1(θ0) exists, then by omitting θ0 for brevity,

⎛
⎝ I1,1 I1,2

I2,1 I2,2

⎞
⎠

−1

=

⎛
⎝ G−1 − G−1I1,2I

−1
2,2

−(I1,2I−1
2,2)

TG−1 I−1
2,2+(I1,2I

−1
2,2)

TG−1(I1,2I
−1
2,2)

⎞
⎠ , (8.113)

where G = I1,1 − I1,2I
−1
2,2I2,1. We get from here that the statistic Sn,NR(θ0) in

(8.112) and the central sequence

Zn = n−1/2
∑n

i=1
L̇θ0(Xi) = n−1/2

∑n

i=1

(
Uθ0(Xi)
Vθ0(Xi)

)

are related by
Sn,NR(θ0) = G(θ0)Πk

(
I−1(θ0)Zn

)
, (8.114)

where Πk is the projection on the first k coordinates. We calculate the covari-
ance matrix of Wθ0 . It holds

Cθ0(Wθ0) = Eθ0Wθ0W
T
θ0 (8.115)

= I1,1(θ0)− I1,2(θ0)I−1
2,2(θ0)I2,1(θ0) = G(θ0).

Now we consider the MLE θ̂n in the full model, where we use the partition θ̂n =
(τ̂Tn , ξ̂

T
n )T . Under the assumptions of Theorem 7.148 we have the expansion

√
n

(
τ̂n − τ0
ξ̂n − ξ0

)
=

1√
n

∑n

i=1

(
I1,1(θ0) I1,2(θ0)
I2,1(θ0) I2,2(θ0)

)−1(
Uθ0(Xi)
Vθ0(Xi)

)
+ oP⊗n

θ0
(1).

The representation of I−1(θ0) in (8.113) gives
√
n(τ̂n − τ0) = G−1(θ0)Sn,NR(θ0) + oP⊗n

θ0
(1). (8.116)
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This means that, up to a normalization by a suitable matrix that depends
on θ0 = (τ0, ξ0), the statistics

√
n(τ̂n − τ0) and Sn,NR are asymptotically

equivalent. We introduce a quadratic statistic to construct asymptotic tests
by

Qn,NR(τ0, ξ) : = Sn,NR(τ0, ξ)G−1(τ0, ξ)Sn,NR(τ0, ξ), (8.117)

Qn,W (τ0, ξ) : = n (τ̂n − τ0)
T G(τ0, ξ) (τ̂n − τ0) . (8.118)

To eliminate the dependence on the nuisance parameter ξ we replace ξ
by estimators. Let ξ̃n be any

√
n-consistent estimator for the submodel

(P⊗n
(τ0,ξ)

)ξ∈Ξ(τ0), and ξ̂n be from the partition θ̂n = (τ̂Tn , ξ̂
T
n )T . The tests

ψn,NR =
{

1 if Qn,NR(τ0, ξ̃n) > χ2
1−α,k

0 else
(8.119)

ψn,W =
{

1 if Qn,W (τ0, ξ̂n) > χ2
1−α,k

0 else
(8.120)

are called the Neyman–Rao test and Wald test, respectively, for testing τ = τ0
in the presence of nuisance parameters. We consider the hypotheses

H0 : (τ, ξ) = (τ0, ξ), (τ0, ξ) ∈ Δ, HA : (τ, ξ) �= (τ0, ξ), (τ, ξ) ∈ Δ. (8.121)

The two test statistics differ in the construction. The idea in the Neyman–Rao
statistic is to use any

√
n-consistent estimator ξ̃n under the null hypothesis,

i.e., for the submodel (P⊗n
(τ0,ξ)

)ξ∈Ξ(τ0), where Ξ(τ0) = {ξ : (τT0 , ξ
T )T ∈ Δ},

to construct the test statistic Sn,NR(θ0) and to plug in τ0 and ξ̃n in the
normalizing matrix G−1 and in Sn,NR(θ0). The Wald test requires the MLE
θ̂n = (τ̂Tn , ξ̂

T
n )T for the whole model. The first component τ̂Tn is used to con-

struct the quadratic form, whereas the second component is plugged into the
normalizing matrix G.

Proposition 8.115. (Neyman–Rao and Wald Tests) Suppose Δ ⊆ R
d

is open and the model (X ,A, (Pθ)θ∈Δ) satisfies the assumption (A10). If ξ̃n :
Xn →m {ξ : (τT0 , ξ

T )T ∈ Δ} is a sequence of
√
n-consistent estimators for the

submodels (Xn,A⊗n, (P⊗n
(τ0,ξ)

)ξ∈Ξ(τ0)), and I(θ0) is nonsingular, then ψn,NR

is an asymptotic level α test for testing problem (8.121). If in addition the
assumptions of Theorem 7.148 are satisfied, then

Qn,NR(τ0, ξ̃n) = Qn,NR(τ0, ξ0) + oP⊗n
θ0

(1) (8.122)

= Qn,W (τ0, ξ̂n) + oP⊗n
θ0

(1) = Qn,W (τ0, ξ0) + oP⊗n
θ0

(1),

so that the Wald test is also an asymptotic level α test for testing problem
(8.121).
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Proof. The central limit theorem entails, in view of (8.115), the rela-
tion L(Sn,NR|P⊗n

θ0
) ⇒ N(0,G(θ0)). Especially the Sn,NR are stochastically

bounded. By assumption (A10) the matrices Ii,j(θ) depend continuously on
θ ∈ U(θ0). Hence by Proposition 8.113

Qn,NR(τ0, ξ̃n) = Qn,NR(τ0, ξ0) + oP⊗n
θ0

(1).

The first statement follows from here as in the proof of Proposition 8.114.
The representation (8.116) yields that

√
n(τ̂n − τ0) is stochastically bounded.

Hence Qn,W (τ0, ξ̂n) = Qn,W (τ0, ξ0)+oP⊗n
θ0

(1) and (8.122) holds. This relation
implies that the Wald test is an asymptotic level α test. To complete the proof
we remark that Qn,W (τ0, ξ0) = Qn,NR(τ0, ξ0) + oP⊗n

θ0
(1) by (8.116).

The above tests are based on the central sequence and the MLE, respec-
tively. Now we operate directly with the log-likelihood function Λn,θ based on
n observations. We consider the maximum value of the log-likelihood obtained
on Δ (i.e., maxθ∈Δ Λn,θ) and compare it with maxθ∈Δ0 Λn,θ. If the true value
θ0 belongs to Δ0, then after the same normalization the two sequences should
be of the same order. If θ0 belongs to ΔA, then we expect maxθ∈Δ0 Λn,θ to
be essentially smaller than maxθ∈Δ Λn,θ. This is the motivation for likelihood
ratio tests.

We start with a simple hypothesis H0 : {θ0} and evaluate maxθ∈Δ Λn,θ −
Λn,θ0 . We consider the sequence of models (Xn,A⊗n, (P⊗n

θ )θ∈Δ), where Δ
is an open subset of R

d. Then the coordinate projections X1, ...,Xn are i.i.d.
with distribution Pθ. We assume that the condition (A10) is satisfied and that
Λn(θ) =

∑n
i=1 ln fθ(Xi) is the log-likelihood. The following theorem presents

the likelihood ratio test for a simple null hypothesis and is closely related to
Theorem 7.148.

Theorem 8.116. (Likelihood Ratio Test I) If θ̂n is a consistent asymp-
totic solution of the likelihood equation (7.109), and the conditions of Theorem
7.148 are satisfied, then

Λn(θ̂n)− Λn(θ0) =
1
2n

(
∑n

i=1
L̇θ0(Xi))T I−1(θ0)(

∑n

i=1
L̇θ0(Xi)) + oP⊗n

θ0
(1)

=
1
2
n(θ̂n − θ0)T I(θ0)(θ̂n − θ0) + oP⊗n

θ0
(1), (8.123)

L(2[Λn(θ̂n)− Λn(θ0)]|P⊗n
θ0

) ⇒ H(d), (8.124)

where H(d) is the χ2-distribution with d degrees of freedom. The sequence of
tests

ϕn =
{

1 if 2[Λn(θ̂n)− Λn(θ0)] > χ2
1−α,d

0 else

is an asymptotic level α test for H0 : θ = θ0 versus HA : θ �= θ0.
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Proof. Set Λθ = ln fθ and apply a second-order Taylor expansion with
respect to θ, where Λ̇θ is the gradient and Λ̈θ the Hessian matrix. We have
Λ̇n(θ̂n) = oP⊗n

θ0
(0) in view of (7.109), where oP⊗n

θ0
(0) denotes a sequence of

random vectors that are nonzero only on events whose probabilities tend to
zero. Hence by the Taylor expansion in Theorem A.2 at θ̂n,

Λn(θ̂n)− Λn(θ0) =
√
n(θ̂n − θ0)T (

1
2
I(θ0) +Rn(θ̂n, θ0))

√
n(θ̂n − θ0) + oP⊗n

θ0
(1),

Rn(θ, θ0) =
1
n

∑n

i=1

∫ 1

0

[−(1− s)Λ̈θ0+s(θ−θ0 )(Xi)− (1− s)I(θ0)]ds.

To show that Rn(θ̂n, θ0) = oP⊗n
θ0

(1) we note that Eθ0Λ̈θ0 = −I(θ0) by Lemma

7.147. Condition (A10) was assumed in Theorem 7.148 and implies that Λ̇θ

satisfies the conditions in (A9) and we may apply Lemma 7.141 to

ϕθ(x) =
∫ 1

0

[−(1− s)Λ̈θ0+s(θ−θ0 )(x)− (1− s)I(θ0)]ds.

To get (8.123) we note that
√
n(θ̂n− θ0) is by (7.113) stochastically bounded.

The statement (8.124) follows as in the proof of Proposition 8.114.

Example 8.117. Let X be an observation with d possible outcomes that have
probabilities p1, ..., pd. More specifically, let

X = {1, ..., d}, and Pθ =
∑d

i=1 pi(θ)δi,

p(θ) = (p1(θ), ..., pd(θ)), pi(θ) = θi, i = 1, ..., d− 1,

pd(θ) = 1−
∑d−1

i=1 θi, and θ = (θ1, ..., θd−1) ∈ Sd−1.

(8.125)

Condition (A10) is obviously fulfilled, the information matrix is given by the ele-
ments ∑d

i=1

∂ ln pi(θ)

∂θk

∂ ln pi(θ)

∂θl
pi(θ) =

1

θk
δk,l + (1−

∑d−1

i=1
θi)

−1,

and it has rank d− 1; see Problem 1.42. If we have a sample of n observations, then
the density with respect to the counting measure is

fn,θ(x1, ..., xn) =
∏d

i=1
(pi(θ))

Yi,n(xn),

where xn = (x1, ..., xn) and Yi,n(xn) = |{j : 1 ≤ j ≤ n, xj = i}|. The likelihood
equations are given by

∂

∂θk

∑d

i=1
Yi,n(xn) ln pi(θ) = 0, i.e.,

Yk,n

pk(θ)
=

Yd,n

pd(θ)
, k = 1, ..., d− 1.

Denoting the right-hand side by C we get Cpk(θ) = Yk,n(xn), and by the sum over
k and

∑d
i=1 Yi,n = n we arrive at

pk(θ̂n) =
Yk,n

n
k = 1, ..., d. (8.126)
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Thus we estimate θ by θ̂n, so that pk(θ̂n) are the relative frequencies which are

consistent. Hence the θ̂n are also consistent. As in this case the likelihood equation
(7.109) is given by (8.126) we see that the conditions in Theorem 7.148 are satisfied
for θ0 ∈ Sd−1, and we get for p0,k = p(θ0),

2(Λn(θ̂n)− Λn(θ0)) =
∑d

k=1
Yk,n(ln pk(θ̂n)− ln p0,k) (8.127)

= 2n
∑d

k=1
(Yk,n/n) ln

(Yk,n/n)

p0,k
.

Let

Hk,n =
Yk,n

n
, P̂n =

∑d

k=1
Hk,nδk, and Pθ0 =

∑d

k=1
p0,kδk, (8.128)

where θ0 = (p0,1, ..., p0,d−1) ∈ Sd−1, denote the relative frequencies, empirical distri-
bution, and distribution of the observations, respectively. Then

∑d

k=1
(Yk,n/n) ln

(Yk,n/n)

p0,k
=
∑d

k=1
(
Hk,n

p0,k
ln

Hk,n

p0,k
)p0,k = K(P̂n, Pθ0), (8.129)

which is the Kullback–Leibler distance between P̂n and Pθ0 that has been introduced
in (1.74). This distance is based on the convex function x lnx. This leads to the idea

of taking any convex function v and then to use Iv(P̂n, Pθ0) as test statistics. For
example, if we use v(x) = (x− 1)2, then we arrive at the famous χ2-statistic

χ2(P̂n, Pθ0) =
∑d

k=1

(Hk,n − p0,k)2

p0,k
.

With other convex functions one arrives at the Hellinger distance and other distances
between the empirical and the hypothetical distribution. The use of such statistics
is studied systematically in Pardo (2006). As we show subsequently all of these
statistics are asymptotically equivalent and lead to the same limiting distribution.

The next lemma shows that all test statistics Iv(P̂n, Pθ0) are asymptotically
equivalent under the null hypothesis provided that v is smooth. Later we see
that the same statement continues to hold under local alternatives.

Lemma 8.118. If P̂n is defined as in (8.128), and v1 and v2 are convex func-
tions that are twice continuously differentiable in a neighborhood of x0 = 1
and satisfy v′′i (1) > 0, i = 1, 2, then

2n
v′′1 (1)

[Iv1(P̂n, Pθ0)− v1(1)] =
2n

v′′2 (1)
[Iv2(P̂n, Pθ0)− v2(1)] + oP⊗n

θ0
(1).

Proof. If we set wi(x) = vi(x)− vi(1)− v′i(1)(x− 1), i = 1, 2, then in view
of
∑d

k=1(Hk,n/p0,k)p0,k = 1 it holds

Ivi
(P̂n, Pθ0)− vi(1) = Iwi

(P̂n, Pθ0), i = 1, 2.

For fixed k the random variable Yk,n has a binomial distribution with suc-
cess probability p0,k. Hence L(

√
n(Hk,n − p0,k)) ⇒ N(0, p0,k(1− p0,k)) which
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implies that the sequence n(Hk,n − p0,k)2 is stochastically bounded. As
limx→1 w2(x)/(x − 1)2 = v′′2 (1)/2 we see that the sequences nw2(Hk,n/p0,k),

k = 1, ..., d, are also stochastically bounded. Then by Hk,n →P⊗n
θ0 p0,k,

nIw1(P̂n, Pθ0) =
∑d

k=1
(w1(Hk,n/p0,k)) (w2(Hk,n/p0,k))

−1
nw2(Hk,n/p0,k)p0,k

= (v′′2 (1))−1v′′1 (1)nIw2(P̂n, Pθ0) + oP⊗n
θ0

(1).

Theorem 8.119. (Divergence Tests) Let Yn = (Y1,n, ..., Yd,n) have a
multinomial distribution with parameters p0,1, ..., p0,d ∈ (0, 1). If v is a convex
function that is twice continuously differentiable in a neighborhood of x0 = 1
and satisfies v′′(1) > 0, then

L(
2n

v′′(1)
(Iv(P̂n, Pθ0)− v(1))|P⊗n

θ0
) ⇒ H(d− 1).

The sequence of tests

ϕn =

{
1 if Iv(P̂n, Pθ0)− v(1) > v′′(1)

2n χ2
1−α,d−1

0 else

is an asymptotic level α test for H0 : (p1, ..., pd) = (p0,1, ..., p0,d) versus HA :
(p1, ..., pd) �= (p0,1, ..., p0,d).

Proof. The model (X ,A, (Pθ)θ∈Δ) specified by (8.125) satisfies the condi-
tions of Theorem 7.148; see Example 8.117. We get from (8.127) and (8.129)
that 2(Λn(θ̂n) − Λn(θ0)) = 2nK(P̂n, Pθ0). Hence L(2nK(P̂n, Pθ0)|P⊗n

θ0
) ⇒

H(d− 1) by Theorem 8.116. The rest follows from Lemma 8.118.

Now we study the case where the null hypothesis H0 : Δ0 is a lower-
dimensional subset of Δ. We assume that Υ ⊆ R

k, k < d, and Δ0 ⊆ R
d are

open sets, and that κ : Υ → Δ0 is a twice continuously differentiable mapping
of Υ on Δ0. Under H0 we have now the family (Pκ(η))η∈Υ . If θ0 ∈ Δ0 and
(Pθ)θ∈Δ satisfies (A10), then it is easy to see that (Pκ(η))η∈Υ also satisfies
(A10) for the new parameter set Υ. If gη := fκ(η) and the log-likelihood for
Pκ(η) is denoted by Γ (η) := Λκ(η), then the L2-derivative is

Ṁη = κ̇(η)L̇κ(η), (8.130)

where κ̇T = Jκ = (∂κi/∂ηj)1≤i≤d,1≤j≤k is the Jacobian; see Proposition 1.112.
The information matrix for the family (Pk(η))η∈Υ is given by

Ĩ(η0) = Eη0Ṁη0Ṁ
T
η0

= κ̇(η0)I(θ0)κ̇T (η0),
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see also Proposition 1.112. Suppose now that η̂n maximizes Γn(η) = Λn(κ(η))
on Υ. Then θ̃n = κ(η̂n) maximizes Λn(θ) on Δ0. Let θ̂n maximize the log-
likelihood Λn(θ) of the whole model on Δ. Set fn,θ(xn) = Πn

i=1fθ(xi). The
next theorem gives the asymptotic distribution of the likelihood ratio statistic

2 ln
supθ∈Δ fn,θ(xn)
supθ∈Δ0

fn,θ(xn)
= 2[Λn(θ̂n(xn),xn)− Λn(θ̃n(xn),xn)].

Theorem 8.120. (Likelihood Ratio Test II) Suppose Δ ⊆ R
d and Υ ⊆

R
k, k < d, are open. Let κ : Υ → Δ be a twice continuously differentiable

mapping where κ̇(η) has rank k for every η ∈ Υ. Assume that (Pθ)θ∈Δ satisfies
(A10) for every θ0 ∈ Δ, and that the information matrix I(θ0) is nonsingular.
Assume that θ̂n : Xn →m Δ and η̂n : Xn →m Υ are consistent and asymptotic
solutions of the likelihood equations for the families (Pθ)θ∈Δ and (Pκ(η))η∈Υ ,
respectively, at every parameter θ0 ∈ Δ and η0 ∈ Υ. If η0 ∈ Υ and θ0 = κ(η0)
is the true parameter, then the likelihood ratio statistic Qn,LR = 2[Λn(θ̂n) −
Λn(κ(η̂n)] satisfies

L(Qn,LR|P⊗n
θ0

) ⇒ H(d− k). (8.131)

Corollary 8.121. The likelihood ratio test

ψn,Qn,LR
=
{

1 if Qn,LR > χ2
1−α,d−k

0 else

is an asymptotic level α test for H0 : θ ∈ κ(Υ ) versus HA : θ ∈ Δ\κ(Υ ).

Proof. Let I1/2(θ0) and I−1/2(θ0) be symmetric matrices that are sat-
isfying I1/2(θ0)I1/2(θ0) = I(θ0) and I−1/2(θ0)I−1/2(θ0) = I−1(θ0). The ex-
istence of I1/2(θ0) follows from a principal axes transformation. Put A0 =
κ̇(η0)I1/2(κ(η0)). Then Ĩ(η0) = A0A

T
0 . Set

Sn = n−1/2
∑n

i=1
I−1/2(θ0)L̇θ0(Xi).

Theorems 7.148 and 8.116 yield
√
n(θ̂n − θ0) = I−1/2(θ0)Sn + oP⊗n

θ0
(1),

2(Λn(θ̂n)− Λn(θ0)) = ST
n Sn + oP⊗n

θ0
(1). (8.132)

As I(θ0) is nonsingular and κ̇ has rank k the matrix A0 has rank k. By The-
orems 7.148 and 8.116, applied to η̂n and (8.130), we get

√
n(η̂n − η0) =

1√
n

∑n

i=1
Ĩ−1(η0)Ṁη0(Xi) + oP⊗n

θ0
(1)

= Ĩ−1(η0)κ̇(η0)I1/2(θ0)Sn + oP⊗n
θ0

(1) = (A0A
T
0 )−1A0Sn + oP⊗n

θ0
(1),

2(Λn(θ̃n)− Λn(θ0)) = 2(Γn(η̂n)− Γn(η0)) (8.133)

= n(η̂n − η0)TA0A
T
0 (η̂n − η0) + oP⊗n

θ0
(1) = ST

nA
T
0 (A0A

T
0 )−1A0Sn + oP⊗n

θ0
(1),
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where θ̃n = κ(η̂n). B0 = AT
0 (A0A

T
0 )−1A0 is the projection matrix that

projects a vector on the subspace spanned by the column vectors of A0, see
Problem 7.26. As BT

0 B0 = B0 and BT
0 = B0 we get

2(Λn(θ̂n)− Λn(θ̃n)) = ST
n Sn − ST

nB0Sn + oP⊗n
θ0

(1)

= ((I−B0)Sn)T ((I−B0)Sn) + oP⊗n
θ0

(1).

As B0 has rank k the projection matrix I−B0 has rank d−k. By the definition
of Sn and the central limit theorem it follows that L(Sn|P⊗n

θ0
) ⇒ N(0, I). To

complete the proof we use Slutsky’s lemma and the fact that ((I−B0)Z)T ((I−
B0)Z) has a χ2-distribution with d − k degrees of freedom for Z ∼ N(0, I),
see Problem 2.38. The corollary is a direct consequence of (8.131).

Subsequently we need a special decomposition of the inverse of the Fisher
information matrix that follows from the block representation in Problem
7.175.

Problem 8.122.∗ Suppose we have a block matrix I = (Ii,j)1≤i,j≤2. If I is invert-
ible, then with G = I1,1 − I1,2I

−1
2,2I2,1,

I−1 =

(
I

−I−1
2,2I

T
1,2

)
G−1 ( I, −I1,2I

−1
2,2

)
+

(
0 0
0 I−1

2,2

)
.

Now we compare the likelihood ratio test with the Neyman–Rao test and
the Wald test in the special case where the parameter vector is decomposed
into the k-dimensional component τ, the parameter of interest, and the m =
(d − k)-dimensional component ξ, the nuisance parameter. We consider the
partition (8.107) and set

(
Un(θ0)
Vn(θ0)

)
=

1√
n

n∑
i=1

(
Uθ0(Xi)
Vθ0(Xi)

)
, θ0 =

(
τ0
ξ0

)
∈ Δ. (8.134)

Then by (8.123),

2(Λn(θ̂n)− Λn(θ0)) =
(
Un(θ0)
Vn(θ0)

)T

I−1(θ0)
(
Un(θ0)
Vn(θ0)

)
+ oP⊗n

θ0
(1). (8.135)

Similarly, if ξ̃n is a consistent MLE for the submodel (P⊗n
(τ0,ξ)

)ξ∈Ξ(τ0), then for

θ̃n = (τT0 , ξ̃
T
n )T ,

2(Λn(θ̃n)− Λn(θ0)) = Vn(θ0)I−1
2,2(θ0)Vn(θ0) + oP⊗n

θ0
(1).

Taking the difference, we get from Problem 8.122 and the representation of√
n(τ̂n − τ0) with the help of (8.112) and (8.116) that

Qn,LR = 2[Λn(θ̂n)− Λn(θ̃n)] = n(τ̂n − τ0)TG(θ0)(τ̂n − τ0) + oP⊗n
θ0

(1)

= Qn,NR(τ0, ξ̃n) + oP⊗n
θ0

(1) = Qn,W (τ0, θ̂n) + oP⊗n
θ0

(1).
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If ξ̃n is
√
n-consistent, then by (8.112), (8.117), and Proposition 8.113,

Qn,LR = Qn,NR(τ0, ξ0) + oP⊗n
θ0

(1).

Similarly, by the representation of
√
n(τ̂n − τ0) in (8.116) and (8.118),

Qn,LR = Qn,W (τ0, ξ0) + oP⊗n
θ0

(1).

To summarize, we have obtained the following result for the Neyman–Rao,
Wald, and likelihood ratio tests from Proposition 8.115.

Proposition 8.123. Under the conditions of Proposition 8.115 the Neyman–
Rao statistic Qn,NR(τ0, ξ̃n) and the Wald statistic Qn,W (τ0, ξ̂n) differ only by
terms oP⊗n

θ0
(1) as n → ∞. If in addition the assumptions of Theorem 7.148

hold for the subfamily (P(τ0,ξ))ξ∈Ξ(τ0), then also the likelihood ratio statistic
Qn,LR differs only by terms oP⊗n

θ0
(1) from Qn,NR(τ0, ξ̃n) and Qn,W (τ0, ξ̂n) as

n→∞.

Now we consider the likelihood ratio tests for special models.

Example 8.124. We consider the situation in Theorem 8.58. Let Ah ⊆ Lk ⊆ R
n

be linear subspaces. Suppose we want to test in the model (Rn,Bn, (N(μ, σ2I))μ∈Lk )
H0 : μ ∈ Ah, σ2 > 0, versus HA : μ ∈ Lk\Ah, σ2 > 0. The log-likelihood is given by

Λn(μ, σ2) =
n

2
[− ln(2πσ2)− ‖x− μ‖2

nσ2
].

As for any linear subspace L ⊂ R
n it holds N(μ, σ2I)(L) = 0 we get, N(μ, σ2I)-a.s.,

sup
μ∈L,σ2>0

Λn(μ, σ2) = sup
σ2>0

Λn(ΠLx, σ
2)

= Λn(ΠLx,
1

n
‖x−ΠLx‖2) =

n

2
[− ln(

2π

n
‖x−ΠLx‖2)− 1],

sup
μ∈Lk,σ2>0

Λn(μ, σ2)− sup
μ∈Ah,σ2>0

Λn(μ, σ2) =
n

2
ln
‖x−ΠAhx‖

2

‖x−ΠLkx‖
2 ,

and H0 is rejected for large values of ‖x−ΠAhx‖
2 / ‖x−ΠLkx‖

2 . As ‖x−ΠAhx‖
2 =

‖x−ΠLkx‖
2 + ‖ΠLkx−ΠAhx‖

2 a test statistic that leads to the same test is

F (x) =
(n− k) ‖ΠLkx−ΠAhx‖

2

(k − h) ‖x−ΠLkx‖
2 , x ∈ R

n.

The test that rejects H0 for large values of F is the F -test in Theorem 8.58.

Example 8.125. Here we construct tests for testing if the random variables A and
B are independent, where A and B take on the values 1, ..., a and 1, ..., b, respectively.
We set X = (A,B) and use the notation from Example 8.117. For n independent
observations (A1, B1), ..., (An, Bn) we set xn = (a1, b1, ..., an, bn) and

Yi,j,n(xn) = |{r : (ar, br) = (i, j), 1 ≤ r ≤ n}|, 1 ≤ i ≤ a, 1 ≤ j ≤ b.
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Then the probability mass function is

fn,θ(a1, b1, ..., an, bn) =
∏a,b

i=1,j=1
p

Yi,j,n(xn)

i,j (θ),

pi,j(θ) = θi,j , (i, j) �= (a, b), pa,b(θ) = 1−
∑

(i,j) �=(a,b)
θi,j ,

θ = (θ1,1, ..., θa,b−1) ∈ Sab−1, θa,b = 1−
∑

(i,j) �=(a,b)
θi,j ,

and the log-likelihood has the form

Λn(θ) =
∑a,b

i=1,j=1
Yi,j,n ln pi,j(θ).

The likelihood equations are given by

∂

∂θk,l

∑a,b

i,j=1
Yi,j,n(xn) ln pi,j(θ) = 0, (k, l) �= (a, b),

so that
Yk,l,n

pk,l(θ)
=

Ya,b,n

pa,b(θ)
, (k, l) �= (a, b).

Denoting the right-hand side by C we get Cpk,l(θ) = Yk,l,n(xn), and by the sum
over k, l and

∑a,b
k,l=1 Yk,l,n(xn) = n we arrive at

pk,l(θ̂n) =
1

n
Yk,l,n, k = 1, ..., a, l = 1, ..., b.

Thus we estimate θ by θ̂n, so that the pk,l(θ̂n) are the relative frequencies. We want
to test if the components A and B are independent. The null hypothesis is given
by Δ0 = {(piqj , 1 ≤ i ≤ a, 1 ≤ j ≤ b) : (p1, ..., pa−1) ∈ Sa−1, (q1, ..., qb−1) ∈ Sb−1}.
Under the null hypothesis the likelihood equations read piqj = Yi,j,n/n. Taking the

sum over j = 1, ..., b we get pi(θ̃n) = Yi,·,n/n, and analogously qj(θ̃n) = Y·,j,n/n.
Thus the likelihood ratio statistic is

Qn,LR = Λn(θ̂n)− Λn(θ̃n) =
∑a,b

i=1,j=1
Yi,j,n[ln pi,j(θ̂n)− ln(pi(θ̃n)qj(θ̃n))]

=
∑a,b

i,j=1
Yi,j,n ln

nYi,j,n

Yi,·,nY·,j,n
.

We rewrite this expression. Put

P̂n =
∑a,b

i,j=1
(
1

n
Yi,j,n)δi,j , P̂1,n =

∑a

i=1
(
1

n
Yi,·,n)δi, P̂2,n =

∑b

j=1
(
1

n
Y·,j,n)δj .

(8.136)

Then, similarly as in Example 8.117, it holds Qn,LR = nK(P̂n, P̂1,n ⊗ P̂2,n).

Proposition 8.126. (Test of Independence) Let Yn = (Y1,1,n, ..., Ya,b,n)
have a multinomial distribution with parameter (p1,1, ..., pa,b), where pi,j =
pi,·p·,j > 0. If v is a convex function that is twice continuously differentiable
in a neighborhood of x0 = 1 and satisfies v′′(1) > 0, and P̂n, P̂1,n, and P̂2,n

are defined as in (8.136), then

L((2n/v′′(1))[Iv(P̂n, P̂1,n ⊗ P̂2,n)− v(1)]) ⇒ H((a− 1)(b− 1)).
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The sequence of tests

ϕn =

{
1 if 2n

v′′(1) [Iv(P̂n, P̂1,n ⊗ P̂2,n)− v(1)] > χ2
1−α,(a−1)(b−1)

0 else

is an asymptotic level α test for testing

H0 : pi,j = pi,·p·,j > 0, 1 ≤ i ≤ a, 1 ≤ j ≤ b, versus
HA : pi0,j0 �= pi0,·p·,j0 , for at least one (i0, j0).

Proof. If v(x) = x lnx, then by Example 8.125 and Theorem 8.120 we get
L(2nK(P̂n, P̂1,n ⊗ P̂2,n)) ⇒ H(d− k), where d− k = (ab− 1)− (a+ b− 2) =
(a−1)(b−1). Hence the statement holds for the convex function v(x) = x lnx.
If v1, v2 are two twice continuously differentiable functions with v′′i (1) > 0,
then the statement

2n
v′′1 (1)

[Iv1(P̂n, P̂1,n⊗ P̂2,n)− v1(1)] =
2n

v′′2 (1)
[Iv2(P̂n, P̂1,n⊗ P̂2,n)− v2(1)]+oP(1)

can be established as in the proof of Lemma 8.118.
By specializing the convex function v that appears in the above proposition

one obtains classical tests for independence. Putting v(x) = (x − 1)2 we get
the χ2-test of independence. v(x) = x lnx gives the likelihood ratio test. The
choice of v(x) = (

√
x − 1)2 leads to a test statistic that compares the joint

empirical distribution P̂n with the product of marginals P̂1,n⊗ P̂2,n by means
of the Hellinger distance.

8.9 Locally Asymptotically Optimal Tests

8.9.1 Testing of Univariate Parameters

Testing a Linear Contrast

Let (Pθ)θ∈Δ be a parametrized family of distributions on (X ,A) with Δ ⊆ R
d

where we want to test the hypotheses H0 : θ ∈ Δ0 versus HA : θ ∈ ΔA

for increasing sample sizes. We assume that the hypotheses are specified by
a linear function of the parameter, say cT θ. If θ has dimension 1, then we
set c = 1 so that the tests refer directly to the parameter θ ∈ Δ. If θ has
dimension d > 1, then for c = (1, 0, ..., 0) we test the first component of θ, and
the remaining components are nuisance parameters. For c = (1,−1, 0, ..., 0)
we test the difference between the first and second component of θ, and the
remaining components are nuisance parameters. Especially, this case covers
the comparison of two one-dimensional parameters in a two-sample problem.

We have seen already in Theorem 8.75 that for a fixed point in ΔA the
power of an asymptotic test typically tends to one, which is due to the fact
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that for θ0 �= θ1 the sequences P⊗n
θ0

and P⊗n
θ1

are entirely separated. This
means that the distributions P⊗n

θ0
and P⊗n

θ1
are, for large n, approximately

concentrated on disjoint sets. A localization of the model, which has been
introduced in Chapter 7 in the study of the efficiency of estimators, is also
used here to turn to sequences of models for which the limiting models are
not degenerate. To study the above testing problem we use a point θ0 from
the boundary of the null hypothesis as the localization point and consider the
localized models with (P⊗n

θ0+h/
√
n
)h∈Δn

and Δn = {h : θ0+h/
√
n ∈ Δ}. If θ0 is

an interior point of Δ, then Δn ↑ R
d, so that every h ∈ R

d belongs to Δn for
all sufficiently large n. Because of this we may use R

d as the parameter set for
asymptotic testing problems. We imagine that the localization point is known
in this section. This is in fact true if we test a simple null hypothesis and
we localize the model at the null hypothesis. For other testing problems the
power of tests that include a known localization point is used as a benchmark
for tests lacking this knowledge.

Regardless of whether the sequence of models originates from a localization
procedure, we consider the following asymptotic testing problems.

Mn = (Xn,An, (Pn,h)h∈Δn
), Δn ↑ R

d,

H0 : h ∈ Δ0, HA : h ∈ ΔA, Δ0 ∩ΔA = ∅, Δ0 ∪ΔA = R
d.

(8.137)

We have already introduced the concepts of asymptotic level α tests and
asymptotic unbiased level α tests at (8.109).

Definition 8.127. Given a sequence of models Mn and the testing problem
in (8.137) we call an asymptotic level α test ϕn : Xn →m [0, 1] a locally
asymptotically uniformly best (LAUMP) level α test if for every asymptotic
level α test ψn and every h ∈ ΔA it holds

lim inf
n→∞

(En,hϕn − En,hψn) ≥ 0. (8.138)

An asymptotic unbiased level α test ϕn is called a locally asymptotically uni-
formly best unbiased (LAUMPU) level α test if for every asymptotic unbiased
level α test ψn it holds (8.138) for every h ∈ ΔA.

Remark 8.128. The abbreviation LAUMP means locally asymptotically uni-
formly most powerful, where “uniformly” refers to the fact that (8.138) holds for
every h ∈ ΔA. Similarly as before in the fixed sample size case, we use “best” instead
of “most powerful” in the text, but maintain the traditional abbreviations LAUMP
and LAUMPU. In all subsequent cases the limiting power limn→∞ En,hψn of the
best asymptotic test exists. If the ULAN condition holds, then (8.138) implies for
every compact subset C ⊆ ΔA

lim inf
n→∞

inf
h∈C

(En,hϕn − En,hψn) ≥ 0, (8.139)

so that another uniformity comes into consideration. Sequences of tests that satisfy
(8.139) are called locally asymptotically uniformly most powerful in Lehmann and
Romano (2005).
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The construction of locally asymptotically best level α tests consists of two
steps. To derive an upper bound for the power of asymptotic tests we treat
the testing problem as a decision problem with decision space D = {0, 1}
under the zero–one loss. Then minimizing the risk on the alternative means
just maximizing the power. Hence asymptotic lower bounds for the risk turn
into asymptotic upper bounds for the power function. We derive these bounds
from the general Hájek–LeCam bound in Proposition 6.89. In a second step
we search for tests that achieve these upper bounds. Such tests are typically
constructed with the help of the limit model. Under the LAN condition the
limit model is a Gaussian model and the central variable is a sufficient statistic,
so that every test here is equivalent to a test that depends on the central
variable. The construction principle for asymptotically best tests is to replace
the central variable in the Gaussian model with the central sequence of the
sequence of models.

Suppose that the sequence of models in (8.137) satisfies the LAN(Zn, I0)
condition (see Definition 6.63) with positive definite Fisher information matrix
I0. Then by Corollary 6.66 we have the weak convergence of models

Mn = (Xn,An, (Pn,h)h∈Δn
) ⇒ G0 = (Rd,Bd, (N(h, I−1

0 )h∈Rd). (8.140)

If Zn is the central sequence, then the third lemma of LeCam (see Theorem
6.72) implies that

L(I−1
0 Zn|Pn,h) ⇒ N(h, I−1

0 ), h ∈ R
d, (8.141)

where in view of Corollary 6.73 the convergence is locally uniform if instead
of the LAN(Zn, I0) condition the stronger ULAN(Zn, I0) condition is satisfied.

For a fixed vector c, a constant d > 0, and σ2
0 = cT I−1

0 c, we consider the
following testing problems for the local parameter h.

Testing Problem H0 HA

(I) cTh ≤ 0 cTh > 0

(II) cTh = 0 cTh �= 0

(III) |cTh| ≥ dσ0 |cTh| < dσ0

(IV ) |cTh| ≤ dσ0 |cTh| > dσ0

(8.142)

We recall the standard Gauss tests ψI , ψII , ψIII , ψIV from (8.18), and
Problem 8.23 which provides the power of the best tests in Theorem 8.22 for
the model G0 in (8.140). We set Tn = cT I−1

0 Zn/σ0 and
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pI(h) = 1− Φ(u1−α − (cTh)/σ0)

pII(h) = 1− Φ(u1−α/2 − (cTh)/σ0) + Φ(−u1−α/2 − (cTh)/σ0)

pIII(h) = Φ(zd,α − (cTh)/σ0)− Φ(−zd,α − (cTh)/σ0)

pIV (h) = 1− Φ(zd,1−α − (cTh)/σ0) + Φ(−zd,1−α − (cTh)/σ0).

(8.143)

Problem 8.129.∗ If the LAN(Zn, I0) condition is satisfied, then it holds pi(h) =
limn→∞ En,hψi(Tn) for i = I, II, III, IV , where the convergence is locally uniform
if the ULAN(Zn, I0) condition is satisfied.

Theorem 8.130. Assume the sequence of modelsMn = (Xn,An, (Pn,h)h∈Δn
)

with Δn ↑ R
d satisfies the LAN(Zn, I0) condition with a nonsingular Fisher

information matrix I0. Let ϕI,n, ..., ϕIV,n be asymptotic level α tests for the
testing problems (I)–(IV ) in (8.142), respectively. Assume in addition that
ϕII,n and ϕIV,n are asymptotically unbiased. Then for i ∈ {I, II, III, IV } it
holds under HA,

lim sup
n→∞

En,hϕi,n ≤ pi(h). (8.144)

The tests ψi(Tn), with ψi in (8.18), i = I, II, III, IV, are asymptotic level α
tests and attain the respective upper bounds, where the convergence is locally
uniform if the ULAN(Zn, I0) condition is satisfied.

Corollary 8.131. The tests ψi(Tn), i = I, II, III, IV, have the following op-
timality properties for the testing problems in (8.142).

ψI(Tn) LAUMP for (I), ψII(Tn) LAUMPU for (II),

ψIII(Tn) LAUMP for (III), ψIV (Tn) LAUMPU for (IV ).

Proof. Let i ∈ {I, III, IV, II}. We use the decision space D = {0, 1} and
the zero–one loss function L(h, a) = (1 − a)IΔi,A

(h) + aIΔi,0(h). Let Di,G0

denote the set of all decisions ϕδ1 + (1 − ϕ)δ0, where ϕ is a level α test for
the model G0. For i ∈ {II, IV } we require in addition that the tests in Di,G0

are unbiased. As the weak convergence of such decisions defined by tests is
just the convergence of power functions (see Definition 6.83) we get that Di,G0

is closed. From the convergence (8.140) and Proposition 6.89 we get for any
fixed h from the alternative,

lim sup
n→∞

En,hϕi,n ≤ sup
ϕ∈Di,G0

∫
ϕ(x)N(h, I−1

0 )(dx).

The convergence limn→∞ En,hψi(Tn) = pi(h), including the local uniform con-
vergence, was established already in Problem 8.129. To conclude the proof it
remains to remark that according to Theorem 8.22 it holds

sup
ϕ∈Di,G0

∫
ϕ(x)N(h, I−1

0 )(dx) = pi(h).
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Tests in One-Parameter Families

In this section we consider one-parameter families (Pθ)θ∈(a,b), where we want
to test if the true parameter is in a certain range, that is related to a given
norm value. Depending on the concrete situation we have four different types
of testing problems. For a fixed θ0 ∈ (a, b) we consider the localized models

Mn = (Xn,A⊗n, P⊗n
θ0+h/

√
n
)h∈Δn

, Δn = {h : a < θ0 + h/
√
n < b},

and for a fixed constant d > 0 the following testing problems.

Testing Problem H0 HA

(I) h ≤ 0 h > 0

(II) h = 0 h �= 0

(III) |h| ≥ d I−1/2(θ0) |h| < d I−1/2(θ0)

(IV ) |h| ≤ d I−1/2(θ0) |h| > d I−1/2(θ0)

(8.145)

The meaning of (I) and (II) is clear. In (III) we want to detect if there
is only a small deviation from the norm value θ0. Tests for (III) are called
equivalence tests. In (IV ) we want to detect if there is more than a small
deviation from the norm value θ0.

We suppose that (Pθ)θ∈(a,b) is L2-differentiable with derivative L̇θ0 and
Fisher information I(θ0), and we set

Zn(θ0) = n−1/2
∑n

i=1
L̇θ0(Xi) and Tn(θ0) = I−1/2(θ0)Zn(θ0). (8.146)

Proposition 8.132. Suppose the family (Pθ)θ∈(a,b) is L2-differentiable at θ0
with positive Fisher information I(θ0). Let ϕI,n, ..., ϕIV,n be asymptotic level
α tests for the testing problems (I)–(IV ) in (8.145), respectively, where ϕII,n
and ϕIV,n are in addition asymptotically unbiased. Then for i = I, ..., IV ,
under the alternative HA, it holds

lim sup
n→∞

En,hϕi,n ≤ pi(h),

where pi(h) is given by (8.143) with c = 1. The asymptotic upper bounds for
the power are locally uniformly attained by the respective tests ψi(Tn(θ0)).

Corollary 8.133. The tests ψi(Tn(θ0)), i = I, II, III, IV, have the following
optimality properties for the testing problems in (8.145).

ψI(Tn(θ0)) LAUMP for (I), ψII(Tn(θ0)) LAUMPU for (II),

ψIII(Tn(θ0)) LAUMP for (III), ψIV (Tn(θ0)) LAUMPU for (IV ).
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Proof. The L2-differentiability implies the ULAN(Zn, I(θ0)) condition.
The statement follows from Theorem 8.130 and its corollary if we observe
that c = 1, σ2

0 = I−1
0 , and Tn(θ0) = cT I−1

0 Zn(θ0)/σ0 = I
−1/2
0 Zn.

The test ψIII(I−1/2(θ0)Zn(θ0)) is an equivalence test. The asymptotic
power of such tests is studied in Lehmann and Romano (2005) and Romano
(2005). A nonparametric approach to equivalence tests is given in Janssen
(2000). The tests ψI(Tn(θ0)) and ψII(Tn(θ0)), known as Rao’s score tests,
were studied in Rao (1947). Wald (1939, 1941a,b, 1943) used the MLE to
construct asymptotic level α tests and studied the power.

To discuss the relations between the above tests and the Wald-type tests
based on the MLE we suppose that the assumptions of Theorem 7.148 are
satisfied. Then the MLE satisfies

√
n I(θ0)(θ̂n − θ0) = n−1/2

∑n

i=1
L̇θ0(Xi) + oP⊗n

θ0
(1).

We replace the central sequence with
√
n I(θ0)(θ̂n − θ0) to get tests that are

again asymptotic level α tests and have under local alternatives the same
asymptotic behavior as the tests in Proposition 8.132. Although the tests
based on Zn and

√
n I(θ0)(θ̂n−θ0) are equivalent under the null hypothesis, and

by the contiguity in Corollary 6.67 also under local alternatives, the situation
changes if we turn to fixed alternatives. Consider, for example, the case where
the MLE is consistent at every θ0 and the testing problem is H0 : θ = θ0 versus
HA : θ �= θ0. It is easy to see that for θ �= θ0 it holds EθψII(

√
n I(θ0)(θ̂n−θ0)) →

1 so that the error probabilities of the second kind tend to zero and the
sequence of tests is consistent in this sense. On the other hand, Proposition
8.132 needs only the L2-differentiability, but the consistency of the asymptotic
test ψII(Tn(θ0)) remains open. Moreover, Rao’s score tests can be applied in
nonparametric models by considering a one-parameter subfamily. In this case
there is no MLE available to construct a Wald-type test.

The following example deals with a one-parameter exponential family.

Example 8.134. Let (Pθ)θ∈(a,b) be a one parameter exponential family with gen-
erating statistic T. The family (Pθ)θ∈(a,b) is L2-differentiable at every θ0 ∈ (a, b)

with derivative L̇θ0 = (T − K′(θ0)) and Fisher information I(θ0) = K′′(θ0), see
Example 1.120. Hence the central sequence Zn is given by

Zn(θ0) =
1√
n

∑n

i=1
(T (Xi)−K′(θ0)).

If we use T⊕n =
∑n

i=1 T (Xi) instead of T in the Theorems 8.6, 8.8, and 8.11 we see
that the tests ψi(Tn(θ0)) are just asymptotic versions of the corresponding tests in
these theorems in the sense that the tests are nonrandomized tests and the critical
values, at which the null hypothesis is rejected, are determined with the help of the
normal approximation L(Zn|P⊗n

θ0
) ⇒ N(0, I(θ0)).

The next example deals with the important class of location models.
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Example 8.135. We consider location models. Let f be a Lebesgue density on
R, and let Pθ be the distribution with Lebesgue density f(x − θ). If f(x) > 0 for
every x ∈ R, f is absolutely continuous, and I :=

∫
((f ′)2/f)dλ <∞, then we know

from Lemma 1.121 that the family (Pθ)θ∈R is L2-differentiable at every θ0 ∈ R with
derivative L̇θ0(x) = −f ′(x − θ0)/f(x − θ0) and Fisher information I. We assume
without loss of generality that θ0 = 0. A localization at θ0 = 0 gives the central
sequence and the distribution under local alternatives P⊗n

h/
√

n
, respectively,

Zn = − 1√
n

∑n

i=1
f ′(Xi)/f(Xi) and L(Zn|P⊗n

h/
√

n) ⇒ N(Ih, I).

Then the tests ψi(I
−1/2Zn) for the local alternatives in (8.145) have under local

alternatives the asymptotic power pi(h), where pi(h) is given by (8.143) with c = 1.
Moreover they have the optimality properties stated in Corollary 8.133. Some special
densities and their score functions are shown below, where we assume that β > 1/2.

f c(β) exp{−|x|β} 1
2

exp{−|x|} 1√
2π

exp{−x2/2} 1
π(1+x2)

−f ′/f β sgn(x)|x|β−1 sgn(x) x 2x
1+x2

The question arises as to what happens if we use the score function from a model
which is different from the model from which the data originate, and why we should
do that. For example, the score function for the Laplace distribution is sgn(x), which
is a bounded function. Hence for data from a normal distribution gross error outliers
have less influence on the inference than for the exact and unbounded score function
−f ′(x)/f(x) = x. Hence the “false” score function protects us against such outliers.
Now to the efficiency. If X1, ..., Xn is the observed sample we set εi = sgn(Xi)
and Tn =

∑n
i=1 εi. We consider the one-sided testing problem H0 : θ ≤ 0 versus

HA : θ > 0 and the test ψn = I(u1−α,∞)(Tn/
√
n). By construction En,0ψn → α. To

calculate the power we note that by Corollary 6.74,

L(Tn/
√
n|N⊗n(h/

√
n, 1))⇒ N(σ1,2h, 1), where

σ1,2 =

∫
[sgn(x)ϕ′

0,1(x)/ϕ0,1(x)]ϕ0,1(x)dx =

∫
sgn(x)xϕ0,1(x)dx =

√
2/π.

On the other hand, the finite and asymptotically optimal test is the Gauss test
ϕn = I(u1−α,∞)(n

1/2Xn). Obviously L(
√
n Xn|N⊗n(h/

√
n, 1)) = N(h, 1). Hence we

obtain the following asymptotic power under local alternatives.

lim
n→∞

En,hψn = 1− Φ(u1−α − h
√

2/π), lim
n→∞

En,hϕn = 1− Φ(u1−α − h), (8.147)

so that ϕn has larger asymptotic power than ψn, but not by much.

In the previous example we have studied the efficiency of various asymp-
totic tests for the location model. Now we study the efficiency of tests sys-
tematically. We use asymptotically linear statistics to construct tests. Such
statistics have appeared already at several places. For asymptotic tests that
are based on such statistics the investigation of asymptotic power can be re-
duced to a comparison of the influence function and the score function L̇θ0
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that appears in the central sequence. More precisely, suppose that the model
under consideration is a one-parameter model for which we study the local-
ized models (Xn,A⊗n, (P⊗n

θ0+h/
√
n
)h∈Δn

) and the hypotheses in (8.145). For
simplicity of the formulation we confine ourselves to the first testing problem.
We fix an influence function Ψ ∈ L

0
2(Pθ0), set σ1,1 = Eθ0Ψ

2, and construct the
sequence of tests

ϕΨ,n := I(u1−α,∞)(σ
−1/2
1,1 n−1/2

∑n

i=1
Ψ(Xi)). (8.148)

To calculate the asymptotic power we note that by Corollary 6.74,

L(σ−1/2
1,1 n−1/2

∑n
i=1 Ψ(Xi)|P⊗n

θ0+h/
√
n
) ⇒ N(hσ−1/2

1,1 σ1,2, 1),

lim
n→∞

En,hϕΨ,n = 1− Φ(u1−α − hσ
−1/2
1,1 σ1,2), σ1,2 = Eθ0(ΨL̇θ0).

(8.149)

These expressions for the asymptotic power lead to the concept of asymp-
totic relative efficiency. Assume that ϕn and ϕ̃n are any asymptotic level α
tests for which locally uniform for h > 0 and for some nonnegative γ and γ̃,

lim
n→∞

En,hϕn = 1−Φ(u1−α−hγ), lim
n→∞

En,hϕ̃n = 1−Φ(u1−α−hγ̃). (8.150)

Then
ARE(ϕ̃n : ϕn|Pn,h) := γ̃2/γ2 (8.151)

is called the asymptotic relative efficiency (ARE) of the asymptotic level α
test ϕ̃n with respect to the asymptotic level α test ϕn. It admits a simple inter-
pretation in localized models P⊗n

n,θ0+h/
√
n
. Suppose β := γ̃2/γ2 < 1. For every

n, we take, instead of the test ϕn based on the sample size n, the test ϕ[βn]

which uses only the observations X1, ...,X[βn] and neglects X[βn]+1, ...,Xn.
Then we get from (8.150)

lim
n→∞

En,hϕ[βn] = 1− Φ(u1−α −
√
βhγ) = 1− Φ(u1−α − hγ̃).

Thus we see that the sequence of tests ϕ[βn] based on the sample size [βn]
has asymptotically the same power as the tests ϕ̃n based on the sample size
n. This means that ϕn is more efficient than ϕ̃n, as already a sample of size
[βn] is sufficient to produce the same power as ϕ̃n for n → ∞. For example,
we get from (8.147) that for a normal population, and the problem of testing
μ, the median test ψn has with respect to the Gauss test ϕn the asymptotic
relative efficiency ARE(ψn : ϕn|Pn,h) = 2/π.

Within the class of tests that are based on linearized statistics the ARE
is just the squared ratio of the correlations of the influence functions and the
derivative of the model. For any two random variables X,Y we denote by
ρθ0(X,Y ) their correlation under Pθ0 .
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Proposition 8.136. Suppose (Pθ)θ∈Δ with Δ ⊆ R is L2-differentiable at
θ0 ∈ Δ0 with derivative L̇θ0 and positive Fisher information I(θ0). Let
Ψ, Ψ̃ ∈ L

0
2(Pθ0). If ϕΨ,n and ϕΨ̃ ,n are the tests which are defined by the influ-

ence functions Ψ and Ψ̃ , see (8.148), then it holds

lim
n→∞

En,hϕΨ̃ ,n = 1− Φ(u1−α − ρθ0(Ψ̃ , L̇θ0)h I1/2(θ0)),

lim
n→∞

En,hϕΨ,n = 1− Φ(u1−α − ρθ0(Ψ, L̇θ0)h I1/2(θ0)),

and ARE(ϕΨ̃ ,n : ϕΨ,n|Pn,h) = ρ2
θ0

(Ψ̃ , L̇θ0)/ρ
2
θ0

(Ψ, L̇θ0).

Proof. The statement follows from (8.149).

Remark 8.137. To illustrate the concept of ARE we have studied only the testing
problem I in (8.145). However, from that display one can see that the ratio γ̃2/γ2

on the right-hand side of (8.151) admits the same interpretation via the sample sizes
for the other testing problems II, III, IV.

The ARE was introduced by Pitman (1949). Lehmann and Romano (2005)
refer to an unpublished set of lecture notes and point out that Pitman de-
veloped the ARE concept and applied it to several examples, including the
Wilcoxon test. Noether (1955) generalized Pitman’s results.

In the remainder of this section we present the proof of Theorem 7.162.
Its proof had been postponed as it requires results on locally optimal tests.
The proof below is taken from Witting and Müller-Funk (1995).

Proof. (LeCam–Bahadur’s Theorem 7.162) Fix u ∈ R
d. The as-

sumption on Tn implies L(
√
nuT (Tn − θ)|P⊗n

θ ) ⇒ N(0, uTΣ(θ)u), θ ∈ Δ.
This means that

fn(θ, u) := |1
2
− P⊗n

θ (
√
nuT (Tn − θ) > 0)| → 0, θ ∈ Δ, u ∈ R

d.

We extend fn(θ, u) by setting fn(θ, u) = 0 if θ ∈ R
d\Δ, u ∈ R

d. Then
∫
fn(θ + v/

√
n, u)N(0, I)(dθ)

=
∫

(2π)−n/2fn(t, u) exp{−1
2
(t− v/

√
n)T (t− v/

√
n)}λd(dt).

As (t− v/
√
n)T (t− v/

√
n) ≥ tT t− 2tT v/

√
n ≥ 1

2 t
T t for ‖v/√n‖ ≤ ‖t‖ /4 we

may apply Lebesgue’s theorem to the above integral and get for every v ∈ R
d

fn(θ + v/
√
n) →N(0,I) 0.

Let D be a countable dense subset of R
d. As every stochastic convergent se-

quence contains an a.s. convergent subsequence (see Proposition A.12) and
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D is countable, we may use the diagonal technique to find a universal subse-
quence nk and a Borel set N with N(0, I)(N) = 0 such that for every θ ∈ Δ\N
and u, v ∈ D,

P⊗n
θ+v/

√
nk

(
√
nku

T (Tnk
− θ) > uT v)→ 1

2
.

We fix θ0 ∈ Δ\N. As Δ is open it holds θ0 + ηv/
√
n ∈ Δ for all sufficiently

large n. The family Qη = Pθ0+ηv is L2-differentiable at η0 = 0 with derivative
vT L̇θ and Fisher information vT I(θ0)v; see Proposition 1.112. We consider
the testing problem H0 : η ≤ 0 versus HA : η > 0. Then by (8.144), every
asymptotic level α test ϕn satisfies for η = 1

lim sup
n→∞

En,1ϕn ≤ 1− Φ(u1−α − (vT I(θ0)v)1/2). (8.152)

The assumption L(
√
n(Tn − θ)|P⊗n

θ ) ⇒ N(0, Σ(θ)) implies that for u ∈ D,
u �= 0 the tests ψn = I(uT v,∞)(

√
nuT (Tn − θ0)), satisfy

lim
n→∞

En,0ψn = lim
n→∞

P⊗n
θ0

(
√
nuT (Tn − θ0) > uT v) = 1− Φ0,uTΣ(θ0)u(uT v)

= 1− Φ((uTΣ(θ0)u)−1/2(uT v)).

Put α0 = 1−Φ((uTΣ(θ0)u)−1/2(uT v)) so that u1−α0 = (uTΣ(θ0)u)−1/2(uT v).
Then ψn becomes an asymptotic level α0 test. As limk→∞ Enk,1ψnk

= 1/2 by
the construction of the subsequence nk we get from (8.152),

1
2
≤ 1− Φ((uTΣ(θ0)u)−1/2(uT v)− (vT I(θ0)v)1/2),

which implies (uT v)2 ≤ (uTΣ(θ0)u)(vT I(θ0)v), for every u, v ∈ D, u �= 0. As
the left- and right-hand terms are continuous functions of u and v, we obtain

(uT v)2 ≤ (uTΣ(θ0)u)(vT I(θ0)v), u, v ∈ R
d.

Put v = I−1(θ0)u to conclude uT I−1(θ0)u ≤ uTΣ(θ0)u for every u ∈ R
d, and

the proof is completed.

Testing Univariate Parameters in Multivariate Models

In this section we consider the case where the parameter vector θ = (τ, ξT )T

consists of a one-dimensional parameter τ of interest and a d− 1 dimensional
nuisance parameter ξ. We assume that the model is L2-differentiable at θ0 ∈
Δ0. According to the partition of the parameter θ we have the following
partitions of the L2-derivative of the model and the central sequence.

L̇θ0 =
(
Uθ0

Vθ0

)
, Zn(θ0) =

1√
n

n∑
i=1

(
Uθ0(Xi)
Vθ0(Xi)

)
, θ0 =

(
τ0
ξ0

)
∈ Δ0. (8.153)

The Neyman–Rao statistic
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Sn,NR(θ0) = n−1/2
∑n

i=1
Wθ0(Xi), where

Wθ0 = Uθ0 − I1,2(θ0)I−1
2,2(θ0)Vθ0 , (8.154)

has been introduced in (8.112). We consider the localized models

Mn = (Xn,A⊗n, (P⊗n
τ0+h/

√
n,ξ0+g/

√
n
)(h,g)∈Δn

),

Δn = {(h, g) : (τ0 + h/
√
n, (ξ0 + g/

√
n)T )T ∈ Δ}.

(8.155)

It holds

Eθ0(Uθ0Wθ0) = Eθ0W
2
θ0

= I1,1(θ0)− I1,2(θ0)I−1
2,2(θ0)I2,1(θ0) = G(θ0).

As Eθ0(Wθ0V
T
θ0

) = 0 we get from Corollary 6.73 for (h, gT )T ∈ R
d,

L(Sn,NR(θ0)|P⊗n
τ0+h/

√
n,ξ0+g/

√
n
) ⇒ N(G(θ0)h,G(θ0)). (8.156)

For the sequence of models (8.155) we consider the following hypotheses.

Testing Problem H0 HA

(I) h ≤ 0, g ∈ R
d−1 h > 0, g ∈ R

d−1

(II) h = 0, g ∈ R
d−1 h �= 0, g ∈ R

d−1

(8.157)

We normalize the Neyman–Rao statistic in (8.154) and set

Tn(θ0) = G−1/2(θ0)Sn,NR(θ0) =
1√
n

∑n

i=1
G−1/2(θ0)Wθ0(Xi).

The following result goes back to Neyman (1959), who constructed an asymp-
totically optimal test in the presence of nuisance parameters.

Theorem 8.138. (Neyman’s Test) Suppose the family (Pθ)θ∈Δ, Δ ⊆ R
d,

satisfies condition (A10) and I(θ0) is nonsingular. Let θ = (τ, ξT )T , and
suppose ξ̃n is a

√
n-consistent estimator of ξ for the sequence of submodels

(P⊗n
(τ0,ξ)

)ξ∈Ξ(τ0). Let α ∈ (0, 1) be fixed. Then

ψI(Tn(τ0, ξ̃n)), where ψI(t) = I(u1−α,∞)(t), t ∈ R,

is a LAUMP level α test for testing problem (I) in (8.157), and

ψII(Tn(τ0, ξ̃n)), where ψII(t) = I(−∞,−u1−α/2)(t) + I(u1−α/2,∞)(t), t ∈ R,

is a LAUMPU level α test for testing problem (II) in (8.157).
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Proof. By Theorem 8.130 the test ψI(Tn(τ0, ξ0)) is a LAUMP level α test
and ψII(Tn(τ0, ξ0)) is a LAUMPU level α test. It follows from Proposition
8.113 that

Tn(τ0, ξ̃n) = Tn(τ0, ξ0) + oP⊗n
(τ0,ξ0)

(1).

The contiguity in Corollary 6.67 and Slutsky’s lemma show that Tn(τ0, ξ̃n)
and Tn(τ0, ξ0) have the same limit distributions under P⊗n

τ0+h/
√
n,ξ0+g/

√
n

and
provide tests with the same asymptotic power.

We consider a location-scale model M = (R,B, (Pμ,σ)μ∈R,σ>0), generated
by a distribution with Lebesgue density f that is positive and continuously dif-
ferentiable, and apply Theorem 8.138. The distribution Pμ,σ has the Lebesgue
density fμ,σ(t) = σ−1f((t− μ)/σ). We set

U(x) = −f
′(x)
f(x)

, V (x) = −1− x
f ′(x)
f(x)

,

(
I K
K J

)
=

⎛
⎝
∫ (f ′(x))2

f(x) dx
∫
x

(f ′(x))2

f(x) dx∫
x

(f ′(x))2

f(x) dx
∫
x2 (f ′(x))2

f(x) dx− 1

⎞
⎠ .

If I < ∞, J < ∞, and G = I − K2/J, then by Example 1.119 the family
(Pμ,σ)μ∈R,σ>0 is L2-differentiable at θ0 = (μ0, σ0) with L2-derivative and in-
formation matrix, respectively, given by

L̇θ0(x) =
(
Uθ0(x)
Vθ0(x)

)
=

1
σ0

(
U(x−μ0

σ0
)

V (x−μ0
σ0

)

)
,

I(θ0) =
(

I1,1(θ0) I1,2(θ0)
I2,1(θ0) I2,2(θ0)

)
=

1
σ2

0

(
I K
K J

)
,

G(θ0) = I1,1(θ0)− I1,2(θ0)I−1
2,2(θ0)I2,1(θ0) =

1
σ2

0

G.

The statistic Wθ0 in (8.154) is given by

Wθ0(x) = Uθ0(x)− I1,2(θ0)I−1
2,2(θ0)Vθ0(x) =

1
σ0

(U(
x− μ0

σ0
)− K

J
V (

x− μ0

σ0
)).

The next example considers one-sample tests for location-scale models.

Example 8.139. Suppose the family of densities fθ(x) = σ−1f((t − μ)/σ), θ =
(μ, σ) ∈ R × (0,∞), satisfies the condition (A10) and consider the two testing
problems

(I) H0 : μ ≤ μ0, σ2 > 0 versus HA : μ > μ0, σ2 > 0,

(II) H0 : μ = μ0, σ2 > 0 versus HA : μ �= μ0, σ2 > 0.

To this end we introduce the local parameters h and g by setting μ = μ0 + h/
√
n

and σ = σ0 + g/
√
n. If I < ∞ and J < ∞, then by Example 1.119 the fam-

ily (Pμ,σ)μ∈R,σ>0 is L2-differentiable at θ0 = (μ0, σ0), and the sequence of models
(Rn,Bn, P

⊗n
μ0+h/

√
n,σ0+g/

√
n
) satisfies the ULAN condition with central sequence
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Zn =
1√
n

∑n

i=1
(

1

σ0
U(

Xi − μ0

σ0
),

1

σ0
V (

Xi − μ0

σ0
))T .

The test statistic Sn,NR(μ0, σ0) in (8.112) is

Sn,NR(μ0, σ0) =
1√
n

∑n

i=1

1

σ0
[U(

Xi − μ0

σ0
)− K

J
V (

Xi − μ0

σ0
)].

For testing problem (I) σ0 is a nuisance parameter and has to be estimated. Set
σ̂2

n = n−1∑n
i=1(Xi−μ0)

2. If X1 has a finite fourth moment μ4, then by the central
limit theorem L(

√
n(σ̂2

n − σ2
0)) ⇒ N(0, μ4). With the δ-method (see Proposition

8.78) we get L(
√
n(σ̂n − σ0)) ⇒ N(0, μ4/(4σ

2
0)), and thus σ̂n is

√
n-consistent. For

τ0 = μ0 and ξ̃n = σ̂n the test statistic Tn(μ0, σ̂n) in Theorem 8.138 is

Tn(μ0, σ̂n) =
1√
n
σ̂n(I− K2/J)−1/2

∑n

i=1

1

σ̂n
[U(

Xi − μ0

σ̂n
)− K

J
V (

Xi − μ0

σ̂n
)]

=
1√
n

(I− K2/J)−1/2
∑n

i=1
[U(

Xi − μ0

σ̂n
)− K

J
V (

Xi − μ0

σ̂n
)].

Theorem 8.138 implies that the test ψI(Tn(μ0, σ̂n)) = I(u1−α,∞)(Tn(μ0, σ̂n)) is a
LAUMP level α test for testing problem (I), and that ψII(Tn(μ0, σ̂n)) = 1 −
I(−u1−α/2,u1−α/2)(Tn(μ0, σ̂n)) is a LAUMPU level α test for testing problem (II).

If the fourth moments are not finite (e.g., for the Cauchy distribution), then one
can find a

√
n-consistent estimator by estimating the interquartile distance, i.e., the

difference of the (3/4)th and the (1/4)th quantile with the help of quantiles of the
empirical distribution; see Example 7.139 for the limit theorem for quantiles. Finally,
for symmetric densities it holds K = 0 and the test statistic Tn(μ0, σ̂n) reduces to

Tn(μ0, σ̂n) =
1√
n

I−1/2
∑n

i=1
U(

Xi − μ0

σ̂n
).

If f is the standard normal density, then I = 1 and U(x) = x. Hence

Tn(μ0, σ̂n) =
1

σ̂n
√
n

∑n

i=1
(Xi − μ0) = Tn + oN⊗n(μ0,σ2

0)(1),

where

Tn =
1√
n

[
1

n− 1

∑n

i=1
(Xi −Xn)2]−1/2

∑n

i=1
(Xi − μ0)

is the test statistic of the t-test; see (8.40). Hence the sequence of tests ψI(Tn(μ0, σ̂n))
and the sequence of t-tests for testing problem (I) are both asymptotic level α tests.
The mutual contiguity of N⊗n(μ0, σ

2
0) and N⊗n(μ0 + h/

√
n, (σ0 + g/

√
n)2) implies

that the tests ψI(Tn(μ0, σ̂n)) and the sequence of t-tests have the same asymptotic
power under the local alternatives N⊗n(μ0 + h/

√
n, (σ0 + g/

√
n)2). As the sequence

ψI(Tn(μ0, σ̂n)) is LAUMP the sequence of t-tests has the same property, which is not
surprising as the t-test is already for every fixed n a UMP test. A similar equivalence
holds for ψII(Tn(μ0, σ̂n)) and the two-sided t-tests where the optimality is now in
terms of LAUMPU. Finally we remark that tests for the scale parameter can be
constructed in a similar way by estimating the location nuisance parameter with
the sample mean if the second moment is finite, and by the median otherwise.
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Testing in Two-Sample Models

For testing the hypothesis H0 : θ1 = θ2 in a two-sample model we suppose
that from each marginal model there is a sample of size ni, i = 1, 2. If the
sample sizes are different, then the families P⊗n1

θ1
and P⊗n2

θ2
, θi ∈ Δ ⊆ R

d,
contain different information on the respective parameters. We compensate
this by including the possibly different sample sizes in the definition of the
local parameter. More precisely, we localize θ1 and θ2 by setting

θ1 = θ0 +
g√
n

+ d1,nh and θ2 = θ0 +
g√
n

+ d2,nh,

d1,n =
1
n1

√
n1n2

n
and d2,n = − 1

n2

√
n1n2

n
, n = n1 + n2.

The idea of this parametrization is that the parameters contain a joint
value θ0 + g/

√
n from which the parameters in the populations deviate in

opposite directions with a rate that depends on the sample sizes. We study
the models

Mn = (Xn1 ×Xn2 ,A⊗n1 ⊗ A⊗n2 , (P1,n,g,h ⊗ P2,n,g,h)(g,h)∈Δn
),

P1,n,g,h = P⊗n1
θ0+g/

√
n+d1,nh

and P2,n,g,h = P⊗n2
θ0+g/

√
n+d2,nh

,

Δn = {(g, h) : θ0 + g/
√
n+ di,nh ∈ Δ, i = 1, 2}.

(8.158)

Suppose that ni = ni(n), i = 1, 2, are sequences with n1 + n2 = n and

lim
n→∞

n1

n
= κ, 0 < κ < 1. (8.159)

Denote by X1,1, ...,X1,n1 ,X2,1, ...X2,n2 the projections of Xn1 ×Xn2 onto X .
Suppose (Pθ)θ∈Δ is L2-differentiable at θ0 ∈ Δ0. Then

ln(dP⊗ni

θ0+gi/
√
ni
/dP⊗ni

θ0
) = gTi

1√
ni

∑ni

j=1
L̇0(Xi,j)−

1
2
gTi I(θ0)gi + o

P
⊗ni
θ0

(1).

Replacing gi/
√
ni with g/

√
n+ di,nh we get

ln

(
d(P⊗n1

θ0+g/
√
n+d1,nh

⊗ P⊗n2
θ0+g/

√
n+d2,nh

)

d(P⊗n1
θ0

⊗ P⊗n2
θ0

)

)

= hTUn + gTVn −
1
2
gT I(θ0)g −

1
2
hT I(θ0)h+ o

P
⊗n1
θ0

⊗P
⊗n2
θ0

(1), where

Un(θ0) =
√
n1n2

n
[

1
n1

∑n1

j=1
L̇θ0(X1,j)−

1
n2

∑n2

j=1
L̇θ0(X2,j)],

Vn(θ0) =
1√
n

∑2

i=1

∑ni

j=1
L̇θ0(Xi,j). (8.160)
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This expansion, together with the central limit theorem and condition (8.159),
entails that the sequence of models (8.158) satisfies the LAN(Zn, Ĩ(θ0)) con-
dition, where the central sequence Zn and the information matrix Ĩ(θ0) are

Zn(θ0) =
(
Un(θ0)
Vn(θ0)

)
, Ĩ(θ0) =

(
I(θ0) 0
0 I(θ0)

)
. (8.161)

From now on we consider only univariate parameters, i.e., let Δ = (a, b) ⊆
R. We consider the following hypotheses for the local parameters g, h ∈ R.

Testing Problem H0 HA

(I) h ≤ 0, g ∈ R, h > 0, g ∈ R,

(II) h = 0, g ∈ R, h �= 0, g ∈ R.

(8.162)

These hypotheses correspond to the hypotheses (I) and (II) in (8.142) for
c = (1, 0)T and (h, g)T instead of h. Then

σ2
0 := cT (̃I(θ0))−1c =

1
I(θ0)

, (8.163)

and the test statistic Tn(θ0) in Theorem 8.130 is given by

Tn(θ0) = cT (̃I(θ0))−1Zn/σ0

= I−1/2(θ0)
√
n1n2

n

[
1
n1

∑n1

j=1
L̇θ0(X1,j)−

1
n2

∑n2

j=1
L̇θ0(X2,j)

]
.

Theorem 8.140. (Two-Sample Tests) Suppose that the family (Pθ)θ∈(a,b)

satisfies condition (A10), condition (8.159) is fulfilled, and I(θ0) is positive.
Let θ̂n : Xn1×Xn2 →m (a, b) be a sequence of estimators that is

√
n-consistent.

Then for ψI and ψII in (8.18), and the sequence of models in (8.158), the test
ψI(Tn(θ̂n)) is a LAUMP level α test for testing problem (I) in (8.162), and
ψII(Tn(θ̂n)) is a LAUMPU level α test for testing problem (II) in (8.162).

Proof. The L2-differentiability gives the LAN(Zn, Ĩ(θ0)) condition with Zn

and Ĩ(θ0) in (8.161). Hence Theorem 8.130 implies that the tests ψi(Tn(θ0))
have the stated optimality properties. It remains to show that ψi(Tn(θ̂n)) has
the same power as ψi(Tn(θ0)) under local alternatives. To this end we note
that (A10) implies the continuity of the Fisher information I(θ). Hence we get
from Lemma 8.111 that Tn(θ̂n) = Tn(θ0) + Rn, where Rn = o

P
⊗n1
θ0

⊗P
⊗n2
θ0

(1).

The contiguity of the sequences

P⊗n1
θ0+g/

√
n+d1,nh

⊗ P⊗n2
θ0+g/

√
n+d2,nh

and P⊗n1
θ0

⊗ P⊗n2
θ0

follows from the LAN(Zn, Ĩ(θ0)) condition (see Lemma 6.67) and implies
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Rn = o
P

⊗n1
θ0+g/

√
n+d1,nh

⊗P
⊗n2
θ0+g/

√
n+d2,nh

(1).

Hence by the Slutsky’s lemma,

L(Tn(θ̂n)|P⊗n1
θ0+g/

√
n+d1,nh

⊗ P⊗n2
θ0+g/

√
n+d2,nh

) and

L(Tn(θ0)|P⊗n1
θ0+g/

√
n+d1,nh

⊗ P⊗n2
θ0+g/

√
n+d2,nh

)

tend to the same normal distribution. Thus,

lim
n→∞

∫
ψi(Tn(θ0))d(P⊗n1

θ0+d1,nh1
⊗ P⊗n2

θ0+d2,nh2
)

= lim
n→∞

∫
ψi(Tn(θ̂n))d(P⊗n1

θ0+d1,nh1
⊗ P⊗n2

θ0+d2,nh2
).

In the two-sample case, instead of L̇θ0 , one may also use any function
Ψ : X →m R to construct the test statistics

Sn =
√
n1n2

n

[
1
n1

∑n1

j=1
Ψ(X1,j)−

1
n2

∑n2

j=1
Ψ(X2,j)

]
. (8.164)

This approach is often used in nonparametric statistics to test whether the
distributions in the two populations are the same. More precisely, let P be
any family of distributions on (X ,A) and consider the sequence of models and
the hypotheses

Mn1,n2 = (Xn1 ×Xn2 ,A⊗n1 ⊗ A⊗n2 , P⊗n1
1 ⊗ P⊗n2

2 ),
H0 : P1 = P2 versus H0 : P1 �= P2, P1, P2 ∈ P.

To study the power of a test based on the test statistic Sn, we consider a one-
parameter differentiable curve through the null hypothesis, i.e., we suppose
that (Pθ)θ∈(a,b) is L2-differentiable and for some θ0 it holds P1 = P2 = Pθ0 .
To study Sn under the local models 8.158 we set μ = Eθ0Ψ(X1,1) and

Si,n =
√
n1n2

n

1
ni

∑ni

j=1
(Ψ(Xi,j)− μ).

Put σ1,1 = Vθ0(Ψ), σ2,2 = Vθ0(L̇θ0), and σ1,2 = Cθ0(Ψ, L̇θ0). Then by Corol-
lary 6.74 for every convergent sequence gi,n → gi it holds

L(Si,n|P⊗ni

θ0+gi,n/
√
ni

) ⇒ N(σ1,2κigi, κ
2
iσ1,1), where

κ1 = lim
n→∞

√
n2/n = (1− κ)1/2 and κ2 = lim

n→∞

√
n1/n = κ1/2.

If gi,n/
√
ni = g/

√
n1 + n2 + di,nh, i = 1, 2, then

lim
n→∞

g1,n = gκ1/2 + h(1− κ)1/2 and lim
n→∞

g2,n = g(1− κ)1/2 − hκ1/2.
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Hence by the independence of the populations

L(Sn|P⊗n1
θ0+g/

√
n+d1,nh

⊗ P⊗n2
θ0+g/

√
n+d2,nh

)

⇒ N(σ1,2((1− κ)κ)1/2g + (1− κ)h), (1− κ)σ1,1)

∗ N(−σ1,2((1− κ)κ)1/2g + κh), κσ1,1) = N(σ1,2h, σ1,1).

From here one obtains the asymptotic power pi(h) of the tests ψi(Sn/
√
σ1,1)

for the hypotheses in (8.162). For example, if we test H0 : h ≤ 0 versus
HA : h > 0, then ψI(Sn/

√
σ1,1) = I(u1−α,∞)(Sn/

√
σ1,1), and

lim
n→∞

En,h,gψI(Sn/
√
σ1,1) = 1− Φ(u1−α − hσ1,2/

√
σ1,1).

If we use L̇θ0 instead of Ψ, then Sn turns into Un in 8.160 and the asymptotic
power of the test

ψI(I−1/2(θ0)Un(θ0)) = I(u1−α,∞)(I−1/2(θ0)Un(θ0))

turns out to be

lim
n→∞

En,hψI(I−1/2(θ0)Un(θ0)) = 1− Φ(u1−α − I−1/2(θ0)h).

It follows from Schwarz’ inequality that σ1,2/
√
σ1,1 ≤ √σ2,2, where equality

holds if and only if Ψ = cL̇θ0 for some constant c. Thus we see again that
the correlation σ1,2/

√
σ1,1σ2,2 between the influence function Ψ and the score

function L̇θ0 describes the relative efficiency of a two-sample test that is based
on Ψ.

Now we study the efficiency of two-sample rank tests. To this end we
suppose X = R in the sequence of models (8.158), so that we observe real-
valued and independent X1,1, ...,X1,n1 with distribution P1 and X2,1, ...,X2,n2

with distribution P2. We introduce the pooled sample by setting Xi = X1,i,
i = 1, ..., n1, and Xi = X2,i, i = n1 + 1, ..., n, where n = n1 + n2. Let
(Rn,1, ..., Rn,n1 , Rn,n1+1, ..., Rn,n) denote the vector of ranks of the pooled
sample. We introduce the regression coefficients ci,n, i = 1, ..., n1 + n2, by

ci,n =
1
n1

√
n1n2

n
, i ≤ n1, ci,n = − 1

n2

√
n1n2

n
, i ≥ n1 + 1. (8.165)

Using a sequence of scores an as in (8.98) we employ the rank statistic

Sn =
∑n

i=1
ci,nan(Rn,i)

to test H0 : P1 = P2 versus HA : P1 �= P2. It is clear that such tests will have
a good power only for special deviations from the null hypothesis.

We assume that under H0 the distribution P := P1 = P2 is atomless,
which is equivalent to P having a continuous c.d.f. F . To construct a rank
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test for a special direction when deviating from the null hypothesis, we take a
smooth curve Pθ through P = P1 = P2 with Pθ0 = P , say. The next theorem
shows that a rank test is locally asymptotically best in the direction of the
chosen curve if we construct the scores with the help of the tangent (i.e.,
L2-derivative) of the given curve. More precisely, we set ϕ(t) = L̇θ0(F

−1(t)),

σ2
θ0 =

∫ 1

0

ϕ2(t)dt =
∫
L̇2
θ0dPθ0 = I(θ0),

and define the scores an(k) as in (8.98). For the rank vector (Rn,1, ..., Rn,n)
of the pooled sample we introduce the two-sample rank statistic by

Sn =
√
n1n2

n

[
1
n1

∑n1

i=1
an(Rn,i)−

1
n2

∑n

i=n1+1
an(Rn,i)

]
. (8.166)

Theorem 8.141. (Two-Sample Rank Tests) Let P be an atomless distri-
bution on (R,B). Suppose (Pθ)θ∈(a,b) is an L2-differentiable family of distri-
butions with Pθ0 = P, Fisher information I(θ0) > 0, and L2-derivative L̇θ0 .
For ϕ(t) = L̇θ0(F

−1(t)) let an(k) be defined by one of the versions in (8.98).
Let Sn be defined by (8.166). Then for the model (8.158) the sequence of tests
ψI(Sn/σθ0), is a LAUMP level α test for testing problem (I) in (8.162), and
ψII(Sn/σθ0), is a LAUMPU level α tests for testing problem (II) in (8.162).

Proof. The continuity of F implies that U1 = F (X1), ..., Un = F (Xn) are
i.i.d. under H0 with a common distribution that is the uniform distribution
on [0, 1]. Moreover it holds Xi = F−1(Ui), Pθ0-a.s. Set ϕ(t) = L̇θ0(F

−1(t)).
Then with ci,n in (8.165),

Tn =
√
n1n2

n

[
1
n1

∑n1

j=1
L̇θ0(X1,j)−

1
n2

∑n2

j=1
L̇θ0(X2,j)

]

=
∑n

i=1
ci,nϕ(Ui) =

∑n

i=1
ci,nan,i(Rn,i) + o

P
⊗n1
θ0

⊗P
⊗n2
θ0

(1)

= Sn + o
P

⊗n1
θ0

⊗P
⊗n2
θ0

(1),

where the third equality follows from Theorem 8.92. Similar as in the proof of
Theorem 8.140 one can see that the test statistics Tn and Sn differ under local
alternatives only by terms that tend stochastically to zero, so that the asso-
ciated asymptotic level α tests have identical power functions. In the proof of
Theorem 8.140 it has been pointed out that the tests that are based on Tn(θ0)
are asymptotic level α tests with the stated optimality properties.Therefore
the tests that are based on Tn have the same properties. This completes the
proof.

A typical application of rank tests concerns location models for which the
Fisher information I(θ0) is a constant value, i.e., does not depend on the point
of localization. Two-sample Wilcoxon tests are considered below.
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Example 8.142. Let (Pθ)θ∈R be the location family that is generated by the lo-
gistic distribution. Suppose we have ni observations from population i that has the
distribution Pθi , i = 1, 2, and set n = n1 + n2. Here we want to test if θ1 = θ2, or
θ1 ≤ θ2. To this end we turn to the sequence of localized models Mn in (8.158). As
the ranks are invariant under a common translation of all data we may assume that
θ0 = 0, and thus Pθ0 = P0. Then by (8.102) ϕ = L̇θ0(F

−1(t)) = 2t − 1. Using the
approximate scores in (8.98) it holds an(k) = 2k/(n + 1)− 1 and

Sn =

√
n1n2

n

[
1

n1

∑n1

i=1
(
2Rn,i

n
− 1)− 1

n2

∑n

i=n1+1
(
2Rn,i

n
− 1)

]
.

As R1,i − i is the number of j with X2,j < X1,i we get for the Mann–Whitney
statistic Wn1,n2 in Example 8.86,

Wn1,n2 =
1

n1n2

∑n1

i=1

∑n2

j=1
I(X2,j ,∞)(X1,i) =

1

n1n2

∑n1

i=1
(Rn,i − i)

=
1

n1n2

∑n1

i=1
Rn,i −

(n1 + 1)

2n2
.

As
∑n

i=1 Rn,i = n(n + 1)/2 it follows that

Sn = 2

√
n1n2

n
(Wn1,n2 −

1

2
).

We have proved already that

L(

√
n1n2

n
(Wn1,n2 −

1

2
)|P⊗n1 ⊗ P⊗n2)⇒ N(0,

1

12
)

in Example 8.86. Hence ψI(Sn/
√

3) is a LAUMP level α test, and ψII(Sn/
√

3) is
a LAUMPU level α test, for the corresponding testing problem in (8.157) for the
models (8.158), provided the parent distribution P is the logistic distribution.

8.9.2 Testing of Multivariate Parameters

We have studied testing problems with a one-dimensional parameter of inter-
est in the previous section, where we allowed that the models contain nuisance
parameters. Now we use the minimax concept to get, in that sense, asymp-
totically optimal tests. As we use the zero–one loss function exclusively we
deal with the error probabilities, so that the minimax concept for decisions
translates into the maximin concept for tests that has been used already in
Theorem 8.24.

Suppose that for the model (X ,A, (Pθ)θ∈Δ), Δ ⊆ R
d, and θ0 ∈ Δ0, we

want to test the simple null hypothesis H0 : θ = θ0 against the alternative
HA : θ �= θ0. Again we turn, by localization, to a sequence of models that
satisfies the LAN(Zn, I0) condition. For δ2 ≤ c we set

Δc,δ = {h : δ2 ≤ hT I0h ≤ c}.

Recall that Hd,δ2 is the c.d.f. of the χ2-distribution with ddegrees of freedom
and noncentrality parameter δ2, and that χ2

1−α,d is the 1 − α quantile of
Hd = Hd,0.
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Theorem 8.143. If the sequence of models Mn = (Xn,An, (Pn,h)θ∈Δn
),

Δn ↑ R
d, satisfies the LAN(Zn, I0) condition with invertible Fisher informa-

tion matrix I0, then for every 0 ≤ δ2 ≤ c,

lim sup
n→∞

(
infh∈Δc,δ

En,hϕn
)
≤ Hd,δ2(χ2

1−α,d), (8.167)

for every sequence of asymptotic level α tests ϕn : Xn →m [0, 1] for H0 : h = 0
versus HA : h �= 0. If the ULAN(Zn, I0) condition is satisfied, then the sequence
of tests

ϕn,χ2 = I(χ2
1−α,d,∞)(Z

T
n I−1

0 Zn) (8.168)

satisfies

lim
n→∞

En,0ϕn,χ2 = α,

lim
n→∞

(infh∈Δc,δ
En,hϕn,χ2) = Hd,δ2(χ2

1−α,d), (8.169)

so that ϕn,χ2 is an asymptotic level α test that is locally asymptotically max-
imin (LAMM) for H0 : h = 0 versus HA : h ∈ Δc,δ in the sense that for every
further asymptotic level α test ψn it holds

lim sup
n→∞

(infh∈Δc,δ
En,hψn) ≤ lim

n→∞
(infh∈Δc,δ

En,hϕn,χ2). (8.170)

Proof. By the same argument as in the proof of Theorem 8.130 we see
that the set D0 of all level α tests for the model G0 = (Rd,Bd, (N(h, I−1

0 ))h∈Rd)
is closed. An application of the Hájek–LeCam bound in Proposition 6.89 to
the testing problem H0 : h = 0 versus HA : h �= 0 under the zero–one loss
function with C = Δc,δ gives

lim sup
n→∞

(
infh∈Δc,δ

En,hϕn
)
≤ sup

ϕ∈D0

inf
h∈Δc,δ

∫
ϕ(x)N(h, I−1

0 )(dx).

To evaluate the right-hand term we note that by Theorem 5.43 the test
I(χ2

1−α,d,∞)(‖x‖2) is a maximin level α test for the family N(μ, I) for test-

ing μ = 0 versus δ2 ≤ ‖μ‖2, where the maximin value is attained for
‖μ‖2 = δ2. Hence I(χ2

1−α,d,∞)(xT I0x) is a maximin level α test for the family

(N(h, I−1
0 ))h∈Rd for testing h = 0 versus δ2 ≤ hT I0h ≤ c, and the maximin

value is Hd,δ2(χ2
1−α,d). This proves (8.167). The relation (6.90) in the third

lemma of LeCam, Theorem 6.72, and Corollary 6.73 yield that for every λd-
a.e. continuous and bounded function ϕ,

En,hϕ(ZT
n I−1

0 Zn) →
∫
ϕ(yT y)N(I1/20 h, I)(dy),

where the convergence is locally uniform. This implies
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lim
n→∞

(
infh∈Δc,δ

En,hϕn
)

= inf
h∈Δc,δ

∫
I(χ2

1−α,d,∞)(y
T y)N(I1/20 h, I)(dy)

= Hd,δ2(χ2
1−α,d).

We apply the above theorem to L2-differentiable models and consider the
localized models

Mn = (Xn,A⊗n, (P⊗n
θ0+h/

√
n
)h∈Δn

), Δn = {h : θ0 + h/
√
n ∈ Δ}.

Proposition 8.144. (Rao’s Score Test) If (Pθ)θ∈Δ is L2-differentiable at
θ0 ∈ Δ0 with derivative L̇θ0 and nonsingular Fisher information matrix I(θ0),
then the Neyman–Rao Test ψn,NR in (8.111) satisfies

lim
n→∞

En,0ψn,NR = α,

lim
n→∞

(
infh∈Δc,δ

En,hψn,NR

)
= Hd,δ2(χ2

1−α,d),

so that ψn,NR is an asymptotic level α test for H0 : h = 0 versus HA : h �= 0,
and is LAMM for testing H0 : h = 0 versus HA : h ∈ Δc,δ in the sense that

lim sup
n→∞

(infh∈Δc,δ
En,hϕn) ≤ lim

n→∞
(infh∈Δc,δ

En,hψn,NR)

for every further asymptotic level α test ϕn.

Proof. The L2-differentiability implies in view of the second lemma of
LeCam (see Theorem 6.70) that the ULAN(Zn, I(θ0)) condition is satisfied
with Zn = n−1/2

∑n
i=1 L̇θ0(Xi). The statement follows from (8.169).

Tests of the above type were introduced and studied by Rao (1947). The
statistic I

−1/2
0 Zn is commonly called the score statistic and therefore the test

in (8.168) is called Rao’s score test.
As we have mentioned already, the score statistic I

−1/2
0 Zn is closely related

to the MLE θ̂n, provided the MLE is consistent and additional regularity
conditions are satisfied which guarantee that θ̂n admits a stochastic expansion.
Indeed, if the assumptions of Theorem 7.148 are satisfied, then the MLE θ̂n
satisfies

n ‖ θ̂n − θ0 ‖2=‖ I−1/2(θ0)Zn ‖2 +oP⊗n
θ0

(1). (8.171)

However, the assumptions for Rao’s score test are weaker, as only the L2-
differentiability is needed. Moreover, it is not necessary to calculate the MLE.
On the other hand, in some special models such as in exponential families
the MLE can be evaluated explicitly. Then it is more convenient to use the
left-hand term in (8.171) as the test statistic. A positive side-effect is that this
sequence of tests is consistent in the sense that the error probabilities of the
second kind tend to zero whenever the MLE is consistent.
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Rao’s score test can be used to construct goodness-of-fit tests for a simple
null hypothesis. The classical way of doing this is to embed the distribution
P of the null hypothesis into an exponential family. This idea goes back to
Neyman (1937), who constructed a special class of tests that is discussed
subsequently.

Let P be a distribution on (X ,A). We fix d and functions Ti ∈ L
0
2(P ),

i = 1, ..., d, such that the set

Δ = {(θ1, ..., θd) : K(θ) := ln(
∫

exp{
∑d

i=1
θiTi}dP ) <∞}

is nonempty and contains 0 as an inner point. Moreover, we assume that the
covariance matrix of the vector T = (T1, ..., Td)T is nonsingular. Then the
exponential family (Pθ)θ∈Δ defined by

dPθ = exp{
∑d

i=1
θiTi −K(θ)}dP (8.172)

satisfies (A1) and (A2). We consider the sequence of models

Mn = (Xn,A⊗n, (P⊗n
h/

√
n
)h∈Δn

), Δn = {h : h/
√
n ∈ Δ}. (8.173)

Denote by Xj : Xn → X , j = 1, ..., n, the projections. As the family (Pθ)θ∈Δ
is L2-differentiable at θ0 = 0 with derivative L̇θ0 = (T1, ..., Td)T and Fisher
information matrix I(0) = ∇∇TK(0) = C0(T ) (see Corollary 1.19) we get that
the sequenceMn satisfies the ULAN(Zn, I(0)) condition with central sequence

Zn =
1√
n

∑n

j=1
(T1(Xj), ..., Td(Xj))T ,

where we used the assumption E0Ti = 0. To simplify the calculation of I−1(0)
one often assumes that the statistics Ti are orthonormal in the sense that

∫
TiTjdP = δi,j , i, j = 1, ..., d. (8.174)

If this condition is not satisfied, then one can apply the Gram–Schmidt or-
thogonalization procedure to turn to an orthonormal system. If (8.174) is
satisfied, then C0(T ) = I and the Rao test, which rejects the null hypothe-
sis for large values of the squared norm of the score statistic, is now called
Neyman’s smooth test , which is given by

ψn,N = I(χ2
1−α,d,∞)(

1
n

∑d

i=1
[
∑n

j=1
Ti(Xj)]2).

Let us consider the local alternatives Pn,h = P⊗n
h/

√
n
, h = (h1, ..., hd). As by

construction I(0) = I we get from the third lemma of LeCam (see Theorem
6.72) that L(Zn|Pn,h) ⇒ N(h, I). Hence



8.9 Locally Asymptotically Optimal Tests 507

lim
n→∞

En,hψn,N = Hd,δ2(χ2
1−α,d),

where δ2 =
∑d

i=1 h
2
i . This means that Neyman’s smooth test distributes the

power uniformly to all directions in the space of distributions that are defined
by the functions T1, ..., Td. The following examples taken from Lehmann and
Romano (2005) consider tests for uniformity and normality.

Example 8.145. Consider the models Mn in (8.173), where X = [0, 1] and P is
the uniform distribution on [0, 1]. We consider the functions Tj that are obtained
by constructing an orthonormal system starting with power functions xj . This leads
to the Legendre polynomials. It follows from the Gram–Schmidt procedure that
T0(x) = 1, T1(x) =

√
3(2x− 1), T2(x) =

√
5(6x2 − 6x + 1), and T3(x) =

√
7(20x3 −

30x2 + 12x− 1). Then Ti ∈ L
0
2(P ), and Neyman’s smooth test is given by

ψn,N = I(χ2
1−α,3,∞)(

1

n

∑3

i=1
[
∑n

j=1
Ti(Xj)]

2).

This test is LAMM for the sequence of models obtained from (8.172) by a localization
at θ = 0.

Example 8.146. Consider the models Mn in (8.173) where X = R and P is the
standard normal distribution. We again consider the functions Tj that are obtained
by constructing an orthonormal system starting with power functions xj . This leads
to the Hermite polynomials. The first of them are H0(x) = 1, H1(x) = x, H2(x) =
2−1/2(x2 − 1), H3(x) = 6−1/2(x3 − 3x), and H4(x) = 24−1/2(x4 − 6x2 + 3). It holds
Hi ∈ L

0
2(P ), and Neyman’s smooth test is

ψn,N = I(χ2
1−α,4,∞)(

1

n

∑4

i=1
[
∑n

j=1
Hi(Xj)]

2).

The four squared terms admit a simple statistical interpretation. [
∑n

j=1 H1(Xj)]
2

becomes large if there are deviations from the expectation zero. If the expectation
is zero, then the second term indicates deviations from the variance. If the first two
moments are 0 and 1, then the third term hints at a possible skewness, whereas the
fourth term becomes large if the data from the alternative have a nonzero kurtosis.

In some cases it is more convenient to turn from the score statistic to the
likelihood ratio statistic, which differs from the score statistic only by terms
oP⊗n

θ0
(1); see Theorem 8.116.

The following example considers χ2 goodness-of-fit tests.

Example 8.147. This a continuation of Example 8.117. Suppose that for the
multinomial distribution we want to test H0 : p = (p1, ..., pd) = p0 = (p0,1, ..., p0,d)
versus HA : p �= p0. We use the parametrization in Example 8.117. Then we obtain
from Theorem 8.116 and (8.127) that

‖ I−1/2(θ0)Zn ‖2= 2n
∑d

k=1
(Yk,n/n) ln

(Yk,n/n)

p0,k
+ o

P⊗n
θ0

(1).

We know that the score test, which rejects the null hypothesis for large values of
‖ I−1/2(θ0)Zn ‖2, is LAMM for local alternatives that satisfy δ2 ≤ hT I(θ0)h ≤ c. To
analyze this condition we note that in view of Example 8.117 it holds
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I(θ0) =

(
1

θ0,k
δk,l + (1−

∑d−1

i=1
θ0,i)

−1

)
1≤k,l≤d−1

.

Hence with p0,l = θ0,l, 1 ≤ l ≤ d− 1, and p0,d = 1−
∑d−1

i=1 θ0,i,

hT I(θ0)h =
∑d−1

l=1

1

p0,l
h2

l +
1

p0,d
(
∑d−1

l=1
hl)

2.

If we set hd = −
∑d−1

l=1 hl, then the local alternatives can be written as

pn,k = p0,k + hk/
√
n,

∑d

l=1
hl = 0, δ2 ≤

∑d

l=1

1

p0,l
h2

l ≤ c. (8.175)

We get from Theorem 8.143 that the sequence of Rao score tests is an asymp-
totic level α test and has the LAMM property on the set of local alternatives
of the type (8.175). Under the null hypothesis the statistic ‖ I−1/2(θ0)Zn ‖2 dif-
fers from the likelihood ratio, and in view of Lemma 8.118 also from the statistics
(2n/v′′(1))[Iv(P̂n, Pθ0)−v(1)], only by terms o

P⊗n
θ0

(1). As the ULAN condition is sat-

isfied the sequence of models is asymptotically equicontinuous in the sense of (6.80).
This implies that the power of the three tests tends locally uniformly to the same
function. As the sequence of score tests has been verified already to be LAMM we
get the same property for the likelihood ratio test and the test that is based on
(2n/v′′(1))[Iv(P̂n, Pθ0)− v(1)].

Similarly as in (8.155), we consider again the sequence of localized model

Mn = (Xn,A⊗n, (P⊗n
τ0+h/

√
n,ξ0+g/

√
n
)(h,g)∈Δn

), (8.176)

Δn = {(h, g) : ((τ0 + h/
√
n)T , (ξ0 + g/

√
n)T )T ∈ Δ},

where the parameter of interest, however, is now of dimension k. To construct
a test statistic we use Sn,NR(θ0) in (8.112) and set

Qn,NR(θ0) = ST
n,NR(θ0)G−1(θ0)Sn,NR(θ0). (8.177)

The subsequent theorem corresponds to Theorem 8.138, but now it concerns
the case where the parameter of interest is multivariate and the criterion for
optimality is the maximin concept.

Theorem 8.148. Suppose the family (Pθ)θ∈Δ, Δ ⊆ R
d, satisfies condition

(A10) and I(θ0) is nonsingular. Assume that ξ̃n is a
√
n-consistent estima-

tor of ξ for the sequence of submodels (P⊗n
(τ0,ξ)

)ξ∈Ξ(τ0). Then the sequence of
Neyman–Rao tests

ψn,NR = I(χ2
1−α,k,∞)(Qn,NR(τ0, ξ̃n))

is an asymptotic level α test for the testing problem H0 : h = 0, g ∈ R
d−k,

versus HA : h �= 0, g ∈ R
d−k in the sequence of models Mn in (8.176), and it

holds
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lim
n→∞

inf
(g,h)∈Δc,δ

En,g,hψn,NR = Hd,δ2(χ2
1−α,k), (8.178)

where Δc,δ = {(g, h) : δ2 ≤ hTG(θ0)h ≤ c, gT g ≤ c}, 0 ≤ δ2 ≤ c. The sequence
ψn,NR is LAMM for testing H0 : h = 0 versus HA : h ∈ Δc,δ in the sense that

lim sup
n→∞

(infh∈Δc,δ
En,hϕn) ≤ lim

n→∞
(infh∈Δc,δ

En,hψn,NR).

for every further asymptotic level α test ϕn.

Proof. Condition (A10) allows the application of Proposition 8.113, which
yields, with θ0 = (τT0 , ξ

T
0 )T ,

1√
n

∑n

i=1
Wτ0,ξ̃n

(Xi) =
1√
n

∑n

i=1
Wτ0,ξ0(Xi) + oP⊗n

θ0
(1).

We note that

Cθ0(Wθ0 , Vθ0) = 0 and Cθ0(Wθ0 ,Wθ0) = G(θ0),

by the definition of Wθ0 in (8.112) and (8.115), respectively. Hence

Cθ0(G
−1/2(θ0)Wθ0 , L̇θ0) = Cθ0

(
G−1/2(θ0)Wθ0 ,

(
Uθ0

Vθ0

))
= (G1/2(θ0), 0).

Corollary 6.74 provides the locally uniform convergence

L(G−1/2(θ0)Sn,NR(θ0)|P⊗n
τ0+h/

√
n,ξ0+g/

√
n
) = N(G1/2(θ0)h, I),

lim
n→∞

∫
ψn,NRdP

⊗n
τ0+h/

√
n,ξ0+g/

√
n

= Hk,hT G(θ0)h(χ2
1−α,k),

which shows that ψn,NR is an asymptotic level α test and (8.178) holds. Using
Theorem 8.143 it remains to prove that Hd,δ2(χ2

1−α,k) is the maximin value
for the limit model G0 = (Rd,Bd, (N(θ, I−1(θ0)))θ∈Rd). But this follows from
Theorem 8.24, where we have to use Σ0 = I−1(θ0) so that Σ1,1 = G−1(θ0) in
view of (8.113) and Σ−1

1,1 = G(θ0).
Now we investigate how the Neyman–Rao test ϕn,χ2(Qn,NR(τ0, ξ̃n)) is re-

lated to the Wald test and the likelihood ratio test. We assume that the
conditions in Proposition 8.115 hold, so that especially θ̂n = (τ̂n, ξ̂n) is the
MLE for the total model, and ξ̃n is a

√
n-consistent estimator for ξ in the

submodel with (P(τ0,ξ))ξ∈Ξ(τ0). Then under the assumptions of Proposition
8.123 the test statistics Qn,NR(τ0, ξ̃n) in (8.119), Qn,W (τ0, ξ̂n) in (8.120), and
the likelihood ratio statistic QN,LR = 2(Λn(θ̂n)−Λn(θ̃n)) differ only by terms
oP⊗n

θ0
(1), so that that the pointwise limits of the power functions of the as-

sociated tests are identical. Due to (6.80) the convergence is locally uniform.
This gives the following statement.

Proposition 8.149. If the conditions of Proposition 8.123 hold, then the
Neyman–Rao test, the Wald test, and the likelihood ratio test are asymptotic
level α tests that have the LAMM property for the testing Problem H0 : h = 0,
g ∈ R

d−k, versus HA : δ2 ≤ hTG(θ0)h ≤ c, gT g ≤ c.
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8.10 Solutions to Selected Problems

Solution to Problem 8.2: Eθψ ≤ Eθφ, θ ∈ ΔA, implies that the test φ is unbiased.

Eθ1ψ < Eθ1φ at some θ1 ∈ ΔA would contradict that ψ is a uniformly best unbiased

level α test. �

Solution to Problem 8.4: The special choice of φ ≡ α shows that the test ϕ

is unbiased. By Problem 8.3 every unbiased level α test ψ for which θ → Eθψ is

continuous satisfies Eθψ = α, θ ∈ J . �

Solution to Problem 8.35: (X,Y ) = (
∑n

i=1 Xi,
∑n

i=1 Yi) is sufficient for (λ1, λ2) ∈
(0,∞)2, where X and Y are independent and follow a Poisson distribution Po(nλ1)
and Po(nλ2), respectively. Let ηj = nλj , j = 1, 2. The p.m.f. of (X,Y ) is

poη1
(x)poη2

(y) =
(η1)

x

x!
exp{−η1}

(η2)
y

y!
exp{−η2}

= exp{x ln(
η1

η2
) + (x + y) ln(η2)− η1 − η2}

1

x!y!

= exp{U(x, y)τ + V (x, y)ξ −K(τ, ξ)} 1

x!y!
,

where U(x, y) = x and V (x, y) = x + y, (x, y) ∈ N
2. This complies with (8.27).

As τ = ln(η1/η2) = ln(λ1/λ2), H0 : λ1 ≤ λ2 is equivalent to H0 : τ ≤ 0, and

HA : λ1 > λ2 is equivalent to HA : τ > 0. Now Theorem 8.28 can be applied which

provides the uniformly best unbiased level α test ϕ1,U (u, v) for H0 versus HA. At

τ = 0 the conditional distribution of U , given V = v, is the binomial distribution

B(v, λ1/(λ1 + λ2)). Testing H0 : λ1 = λ2 versus HA : λ1 �= λ2 goes analogously. �

Solution to Problem 8.56: As T is maximal invariant the sample space X can be

written as a union of the disjoint orbits {x : T (x) = t}, t ∈ T , on which the statistic

S takes on the constant value S(x) = S(U(T (y))) for every y ∈ {x : T (x) = t}. �

Solution to Problem 8.57: As (Xn, S
2
n) is sufficient for (μ, σ2) ∈ R × (0,∞)

we consider only tests that are based on (Xn, S
2
n). The hypotheses remain invariant

under scale transformations. Scale invariance leads to the maximal invariant statistic

T =
√
n Xn/

√
S2

n, which follows a noncentral t-distribution T(n − 1,
√
nμ/σ); see

Example 2.37. By Theorem 2.27 it has MLR in the identity. The rest follows from

Theorem 2.49. �

Solution to Problem 8.60: As T generates I every A ∈ I may be written as
A = T−1(B), B ∈ T. Hence by the definition of the likelihood ratio Mθ0,θ,

Pθ(A) = (Pθ ◦ T−1)(B) =

∫
B

Mθ0,θd(Pθ0 ◦ T−1) + (Pθ ◦ T−1)({Mθ0,θ = ∞} ∩B)

=

∫
A

Mθ0,θ(T )dPθ0 + Pθ({Mθ0,θ(T ) = ∞} ∩B). �
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Solution to Problem 8.61: If the distribution of (X1, ..., Xn) has the Lebesgue

density f , then the distribution of (X1, X2 − X1..., Xn − X1) has the Lebesgue

density f (t1, t2 + t1,..., tn + t1). Integration over t1 gives the marginal density of

(X2 −X1, ..., Xn −X1). �

Solution to Problem 8.62: In a first step we calculate the density g of

(X1, X2 −X1,
X3 −X1

X2 −X1
, ...,

Xn −X1

X2 −X1
),

where (X1, ..., Xn) has the Lebesgue density f . The mapping

(t1, ..., tn) → (t1, t2 − t1,
t3 − t1
t2 − t1

, ...,
tn − t1
t2 − t1

)

is a diffeomorphism D(t1, ..., tn) : R
n
�=0 → R× R �=0×R

n−2 with the inverse mapping
D−1(s1, ..., sn) = (s1, s1 + s2, s1 + s3s2, ..., s1 + sns2), which has the Jacobian

JD−1(s1, ..., sn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
1 1 0 · · 0
1 s3 s2 0 · 0
· · 0 s2 ·
· · · · ·
· · · · ·
1 sn 0 · · s2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The absolute value of the determinant of JD−1 is |s2|n−2 so that the density g is,
according to the transformation theorem for Lebesgue densities, given by

g(s) = |JD−1(s)|f(D−1(s))| = |s2|n−2f(s1, s1 + s2, s1 + s3s2, ..., s1 + sns2),

where s = (s1, ..., sn). Hence the density h of(
X2 −X1,

X3 −X1

X2 −X1
, ...,

Xn −X1

X2 −X1

)

is the marginal density

h(s2, ..., sn) =

∫
|s2|n−2f(s1, s1 + s2, s1 + s3s2, ..., s1 + sns2)ds1.

Set ε = sgn(X2 −X1), Yi = (Xi −X1)/(X2 −X1), i = 3, ..., n, and fix a Borel set
B ∈ Bn−2. Then with u = (s3, ..., sn),

P(ε = ±1, (Y3, ..., Yn) ∈ B) =

∫
I(0,∞)(±s2)[

∫
B

h(s2, u)λn−2(du)]λ(ds2).

Let % denote the counting measure on {−1, 1} and h± the integrand. Then the
distribution of Tls = (ε, Y3, ..., Yn) has, with respect to % ⊗ λn−2, the density

k(δ, s3, ..., sn) = I{−1}(δ)h−(s3, ..., sn) + I{1}(δ)h+(s3, ..., sn)

= I{−1}(δ)

∫ 0

−∞
[

∫ ∞

−∞
|s2|n−2f(s1, s1 + s2, s1 + s3s2, ..., s1 + sns2)ds1]ds2

+ I{1}(δ)

∫ ∞

0

[

∫ ∞

−∞
|s2|n−2f(s1, s1 + s2, s1 + s3s2, ..., s1 + sns2)ds1]ds2

=

∫ ∞

0

[

∫ ∞

−∞
sn−2
2 f(s1, s1 + δs2, s1 + s3δs2, ..., s1 + snδs2)ds1]ds2.
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Set δ(x1, x2) = 1 if x1 < x2, and δ(x1, x2) = −1 if x1 > x2. Then we have
δ(x1, x2)(x2 − x1) = |x2 − x1|, and k(Tls(x1, ..., xn)) is given by

k(Tls(x1, ..., xn))

=

∫ ∞

0

[

∫ ∞

−∞
sn−2
2 f(s1, s1 + s2

x2 − x1

|x2 − x1|
, ..., s1 +

xn − x1

|x2 − x1|
s2)ds1]ds2

= |x2 − x1|n−1

∫ ∞

0

[

∫ ∞

−∞
wn−2f(s1, s1 + w(x2 − x1), ...,

s1 + w(xn − x1))ds1]dw

= |x2 − x1|n−1

∫ ∞

0

[

∫ ∞

−∞
wn−2f(v + wx1, v + wx2, ..., v + wxn)dv]dw.

To complete the proof we have only to apply Problem 8.60. �

Solution to Problem 8.64: If f0(x1, ..., xn) = (2π)−n/2 exp{− 1
2

∑n
i=1 x2

i }, then∑n
i=1(wxi + v)2 = (n− 1)w2s2

n + n(wxn + v)2, and with x = (x1, ..., xn),

f0(x) = (2π)−n/2

∫ ∞

0

wn−2[

∫ ∞

−∞
exp{−1

2

∑n

i=1
(wxi + v)2})dv]dw

= (2π)−n/2

∫ ∞

0

wn−2 exp{−1

2
(n− 1)w2s2

n}

× [

∫ ∞

−∞
exp{−1

2
n(wxn + v)2}dv]dw

= (2π)−n/2(2π)1/2n−1/2

∫ ∞

0

wn−2 exp{−1

2
(n− 1)w2s2

n}dw

= (2π)−(n−1)/2n−1/2[(n− 1)s2
n]−(n−1)/2

∫ ∞

0

un−2 exp{−1

2
u2}du

=
1

2
n−1/2[(n− 1)π]−(n−1)/2Γ (

n− 1

2
)s−n+1

n .

If f1(x1, ..., xn) = exp{−
∑n

i=1 xi}I(0,∞)(x[1]), then with x = (x1, ..., xn),

f1(x) =

∫ ∞

0

wn−2[

∫ ∞

−∞
I(0,∞)(wx[1] + v) exp{−nwxn − nv}dv]dw

=

∫ ∞

0

wn−2 exp{−nwxn}[
∫ ∞

−wx[1]

exp{−nv}dv]dw

= n−1Γ (n− 1)[n(xn − x[1])]
−n+1. �

Solution to Problem 8.66: If f1(x) =
∏n1

j=1 ϕμ,1(x1,j)
∏n2

j=1 ϕ0,1(x2,j), x =
(x1,1, ..., x2,n2) ∈ R

n, where n = n1 + n2, then

f1(x) = (2π)−n/2

∫ ∞

0

wn−2[

∫ ∞

−∞
exp{−1

2

∑n1

j=1
(wx1,j + v − μ)2

−1

2

∑n2

j=2
(wx2,j + v)2}dv]dw.

The inner integral can be solved by rearranging the quadratic terms. This leads to
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f1(x) = n−1/2(2π)−(n−1)/2[
∑2

i=1

∑ni

j=1
(xi,j − xi·)

2]−(n−1)/2

× exp{−n1n2μ
2

2n
}
∫ ∞

0

wn−2 exp{−1

2
w2 + wμV (x)}dw.

For μ = 0 we get f0(x). The ratio f1(x)/f0(x) turns out to be (8.69). �

Solution to Problem 8.71: Using the elementary inequality a ∧ b ≤ asb1−s we

get the inequality from (1.82). �

Solution to Problem 8.94: Use the Gram–Schmidt orthogonalization procedure

to find an orthonormal basis Z1, ..., Zn. The mapping X → (〈X,Z1〉 , ..., 〈X,Zn〉)
is an isometry between L and R

n, i.e., it is linear, preserves the scalar prod-

uct, and is one-to-one. Hence for a convergent sequence Xm → X the vectors

(〈Xm, Z1〉 , ..., 〈Xm, Zn〉) converge to the vector (〈X,Z1〉 , ..., 〈X,Zn〉) so that we

have X =
∑n

i=1 〈X,Zi〉Zi ∈ L. As to the second statement, we remark that every

X ∈ span({X1, X2, ...}) is either zero or has a positive variance. μ = limn→∞ Xn

does not have this property but belongs to the closure of L. �

Solution to Problem 8.95: Use the same arguments as in Problem 3.79. �

Solution to Problem 8.96: Suppose Z = ΠLY and consider for X ∈ L the

function f(t) = ‖Y −ΠLY + tX‖22 = t2 ‖X‖2 + 2t 〈Y −ΠLY,X〉 + ‖Y −ΠLY ‖2
which has the minimum at t = 0. Then 2 〈Y −ΠLY,X〉 = f ′(0) = 0. Conversely, if

(8.81) holds, then for every X ∈ L, and thus for Y − ΠLY ⊥ ΠLY − X, it holds

‖Y −X‖2 = ‖Y −ΠLY ‖2 + ‖ΠLY −X‖2 ≥ ‖Y −ΠLY ‖2 . �

Solution to Problem 8.97: Put aT = (E(Y XT ))(E(XXT ))−1 and Z = aTX.
Then Z ∈ L and for every b ∈ R

n it holds

E(Y − aTX)bTX = E(Y XT )b− aT
E(XXT )b = 0. �

Solution to Problem 8.98: If A ∈ σ(X), then A = X−1(B) for some B ∈ B and

EIAg(X) = EIB(X)g(X) =
∫

[
∫
IB(x)h(x, y)PY (dy)]PX(dx) = EIB(X)h(X,Y ) =

EIAh(X,Y ). �

Solution to Problem 8.99: For Z ∈ H the relations (a) and (b) in Proposition

A.31 imply E(X−E(X|G))Z = 0 so that X−E(X|G) ⊥ H and E(X|G) ∈ H. The first

statement follows from Problem 8.96. The second follows from E(X|G)− EX ∈ H
0

and EZ(X − E(X|G) + EX) = 0, Z ∈ H
0, and Problem 8.96 again. �

Solution to Problem 8.100: The independence of Xi and Xj for i �= j im-

plies EPn(ai(Xi)aj(Xj)) = EPnai(Xi)EPnaj(Xj) = 0 which gives the statement on

EPnS
2. If T = b0 +

∑n
i=1 bi(Xi), then EPn(S−T )2 = (a0−b0)

2 +
∑n

i=1 EPn(ai(Xi)−
bi(Xi))

2 which gives the uniqueness. �
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Solution to Problem 8.101: Consider a sequence Sm = am,0 +
∑n

i=1 am,i(Xi)

which converges to some S ∈L2(P
⊗n). Then Sm is a Cauchy sequence and it follows

from Problem 8.100 that the am,0 ∈ R and the am,i ∈ L
0
2(P ) form a Cauchy sequence

and thus converge to some a0 ∈ R and ai ∈ L
0
2(P ). Then by the first statement in

Problem 8.100 Sm converges in the sense of L
0
2(P ) to a0 +

∑n
i=1 ai(Xi) which is S.

�

Solution to Problem 8.102: Without loss of generality assume γ = 0. Then
VPn(Un) =

((
n
m

)(
n
m

))−1∑
A,B∈Am

EPnΨ(XA)Ψ(XB). It holds EPnΨ(XA)Ψ(XB) = 0

if A ∩ B = ∅ and EPnΨ(XA)Ψ(XB) = σ2
k if |A ∩ B| = k. The number of such pairs

of A and B are obtained as follows. There are
(

n
k

)
selections of the k joint elements

from 1, ..., n. Select from the set of size n − k the m − k elements for A and from
the n−m elements the remaining m− k for B. Hence we get(

n
k

)(
n−k
m−k

)(
n−m
m−k

)
=
(

n
m

)(
m
k

)(
n−m
m−k

)
possibilities. As γ = 0 we have with X = (X1, ..., Xk),

VPn(Ψk(X)) =

∫
[

∫
Ψ(x1, ..., xm)P⊗(m−k)(dxk+1, ..., dxm)]2P⊗k(dx1, ..., dxk)

≤
∫

Ψ(x1, ..., xm)2P⊗m(dx1, ..., dxm) = σ2
m.

VPn(Ûn) = (m2/n)VPn(Ψ1(X1)) = (m2/n)σ2
1 yields

0 ≤ VPn(Un)− VPn(Ûn) =
1(
n
m

) ∑m

k=1

(
m
k

)(
n−m
m−k

)
VPn(Ψk(X1, ..., Xk))− m2

n
σ2

1

=
1(
n
m

) (m
1

)(
n−m
m−1

)
σ2

1 −
m2

n
σ2

1 +
1(
n
m

) ∑m

k=2

(
m
k

)(
n−m
m−k

)
VPn(Ψk(X1, ..., Xk))

≤
∣∣∣∣m

2

n
− m2(n−m)!(n−m)!

n!(n− 2m + 1)!

∣∣∣∣ σ2
m + σ2

m
1(
n
m

) ∑m

k=2

(
m
k

)(
n−m
m−k

)
.

It holds

m2

n
− m2(n−m)!(n−m)!

n!(n− 2m + 1)!
=

m2

n
(1− (n−m) · · · (n− 2m + 2)

(n− 1)(n− 2) · · · (n−m + 1)
) = o(1/n),

1(
n
m

) ∑m

k=2

(
m
k

)(
n−m
m−k

)
= o(1/n).

As Ûn is the projection of Un on L it holds Un − Ûn ⊥ Ûn and EPn(Un − Ûn)2 =

EPnU2
n − EPn Û2

n. �

Solution to Problem 8.104: We may assume γ = 0. Put V (X1,i, X2,j) =
Ψ(X1,i, X2,j) − Ψ1(X1,i) − Ψ2(X2,j). By the independence of X1,i, X2,j , X1,k, X2,l,
i �= k, j �= l, and the independence of X1,i, X2,j , X2,l, i, j �= l,

EPn1,n2
V (X1,i, X2,j)V (X1,k, X2,l) = 0, i �= k, j �= l,

EPn1,n2
V (X1,i, X2,j)V (X1,i, X2,l) = EPn1,n2

Ψ(X1,i, X2,j)Ψ(X1,i, X2,l)

− EPn1,n2
Ψ(X1,i, X2,j)Ψ1(X1,i)− EPn1,n2

Ψ1(X1,i)Ψ(X1,i, X2,l) + EPn1,n2
Ψ2

1 (X1,i)

= EPn1,n2
Ψ2

1 (X1,i)− EPn1,n2
Ψ2

1 (X1,i)− EPn1,n2
Ψ2

1 (X1,i) + EPn1,n2
Ψ2

1 (X1,i) = 0,
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if j �= l. Hence,

EPn1,n2
(

1

n1

1

n2

∑n1

i=1

∑n2

j=1
V (X1,i, X2,j))

2

=
1

n2
1

1

n2
2

∑n1

i=1

∑n2

j=1
EPn1,n2

V (X1,i, X2,j)V (X1,i, X2,j)

=
1

n1

1

n2
EPn1,n2

V 2(X1,1, X2,1),

EPn1,n2
V 2(X1,1, X2,1) = EPn1,n2

(Ψ2(X1,1, X2,1) + Ψ2
1 (X1,1) + Ψ2

2 (X2,1))

− 2EPn1,n2
(Ψ(X1,1, X2,1)Ψ1(X1,1) + Ψ(X1,1, X2,1))Ψ2(X2,1) + Ψ1(X1,1)Ψ2(X2,1))

= EPn1,n2
(Ψ2(X1,1, X2,1)− Ψ2

1 (X1,1)− Ψ2
2 (X2,1)) ≤ σ2. �

Solution to Problem 8.106: It holds

EPnSn =
∑n

i=1
ci,nEPnan(Rn,i) = (

∑n

i=1
ci,n)(

1

n

∑n

j=1
an(j)) = an

∑n

i=1
ci,n.

As Sn−nancn =
∑n

i=1 ci,n(an(Rn,i)−an) =
∑n

i=1(ci,n−cn)(an(Rn,i)−an) it suffices
to consider the case of an = cn = 0 to calculate the variance. Using

∑
i:i�=j ci,n =

−cn,j and
∑

k:k �=l an(k) = −an(l) we get

EPnS
2
n =

∑n

i,j=1
EPnci,nan(Rn,i)cn,jan(Rn,j)

=
∑

i�=j
ci,ncj,nEPnan(Rn,i)an(Rn,j) +

∑n

i=1
c2i,nEPna

2
n(Rn,i)

=
1

n(n− 1)

∑
i�=j

ci,ncj,n

∑
k �=l

an(k)an(l) +
1

n

∑n

i=1
c2i,n
∑n

k=1
a2

n(k)

=
1

n− 1

∑n

i=1
c2i,n
∑n

k=1
a2

n(k). �

Solution to Problem 8.108: Set εi = I(0,t](Ui), 0 < t < 1.
∑n

i=1 εi has a binomial

distribution B(n, t). Then Pn(Un,[k] ≤ t) = Pn(
∑n

i=1 εi ≥ k) = Bea,β(t) in view

of Problem 8.107. The mean and variance of Be(α, β) are α/[α + β] and αβ/[(α +

β)2(α + β + 1)], which imply the expressions for EPnUn,[k] and VPn(Un,[k]). �

Solution to Problem 8.109: If (Un,[1], ..., Un,[n]) is the order statistic, then U1 =
Un,[Rn,1]. Hence by the independence of (Un,[1], ..., Un,[n]) and Rn = (Rn,1, ..., Rn,n),
and Problem 8.98,

EPn(U1 −
1

n + 1
Rn,1)

2 = EPn(EPn((Un,[Rn,1] −
1

n + 1
Rn,1)

2|Rn,1))

=
1

n

n∑
k=1

EPn(Un,[k] −
k

n + 1
)2 =

1

n

n∑
k=1

k(n− k + 1)

(n + 1)2(n + 2)
≤ n2

(n + 1)2(n + 2)
. �

Solution to Problem 8.122: Use the representation of I−1 in (8.113). �

Solution to Problem 8.129: Use (6.90) and Corollary 6.73. �



9

Selection

9.1 The Selection Models

Competition, determination of the winner, and subsequent consequences are
parts of normal life. The variety of ways selection problems have been formu-
lated for k competing populations is great. For example, the goal could be
to find a best population, r best populations, r populations that include a
best population, a subset of random size of populations that includes a best
population, or a complete ranking of all k populations. Because of the latter,
this research area was originally given the name ranking and selection. Since
ranking plays only a minor role in the literature “ranking” is rarely men-
tioned anymore. Another earlier name, multiple decision procedures, has lost
its popularity as well because its meaning has become too broad. It covers
also multiple comparisons, and even inferential methods based on a sample
from one population where three decisions (e.g., a small, medium, or large
mean) or more are made.

Among the early contributions to the literature of selection procedures,
called selection rules here, are the papers by Paulson (1949, 1952), Bahadur
(1950), Bahadur and Robbins (1950), Bahadur and Goodman (1952), Bech-
hofer (1954), Bechhofer, Dunnett, and Sobel (1954), Dunnett (1955, 1960),
Gupta (1956, 1965), Sobel (1956), Lehmann (1957a,b, 1961, 1963, 1966), Hall
(1959), and Eaton (1967a,b). The first research monograph was written by
Bechhofer, Kiefer, and Sobel (1968) with the focus on a sequential approach for
exponential (Koopman–Darmois) families. The dramatic developments that
would follow in the field inspired Gupta and Panchapakesan (1979) to write
their classical monograph that provides an up to the time complete overview of
the entire related literature. Soon after, an extension of this overview followed
with Gupta and Huang (1981). A categorized guide to selection and ranking
procedures was provided by Dudewicz and Koo (1982). Collections of research
papers on selection rules are included in Gupta and Yackel (1971), Gupta and
Moore (1977), Gupta (1977), Dudewicz (1982), Santner and Tamhane (1984),
Gupta and Berger (1982, 1988), Hoppe (1993), Miescke and Herrendörfer
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(1993, 1994), Miescke and Rasch (1996a,b), Panchapakesan and Balakrishnan
(1997), and Balakrishnan and Miescke (2006). Several books that emphasize
the methodology of selection rules are by Dudewicz (1976), Gibbons, Olkin,
and Sobel (1977), Büringer, Martin, and Schriever (1980), Mukhopadhyay and
Solanky (1994), Bechhofer, Santner, and Goldsman (1995), Rasch (1995), and
Horn and Volland (1995).

Selection problems in their various settings are not only statistically highly
relevant, but also theoretically challenging, with technical parts that are quite
different from those of estimation and testing problems. Although often intu-
itively assumed to be appropriate, it simply is not good enough to compare
populations just in terms of optimal estimators, or pairwise with optimal two-
sample tests, of the relevant parameters to end up with an optimal selection
decision.

Inasmuch as this book is restricted to decision theory, many of the research
publications on selection rules are not mentioned here due to a missing link to
decision theory. Readers who are interested in such publications are referred
to the references given above. The purpose of this chapter is to provide an
outline of such a theory. However, we focus on the main branches of this field,
leaving out others that are nevertheless interesting and worth being studied
further. Even in the main branches that are covered here many theoretical
questions remain open, as the readers will notice. It is hoped that this will
stimulate the readers’ interest in pursuing their own research work in this
regard.

Let X = (X1, ...,Xk) be the vector of observations from the k populations
that take on values in (Xi,Ai) and have the distribution Pi,θi

, i = 1, ..., k,
where the parameters θ1, ..., θk belong to the same parameter set Δ. Let κ :
Δ→ R be a given functional. Each population is addressed either by Pi,θi

or
for simplicity just by its index i, i = 1, ..., k. The typical goal in the area of
selection theory is to find a best population. This is a population i0, say, for
which i0 ∈ Mκ(θ), where θ = (θ1, ..., θk) ∈ Δk and

Mκ(θ) = arg max
i∈{1,...,k}

κ(θi) = {i : κ(θi) = max
1≤l≤k

κ(θl)}. (9.1)

In many selection problems Δ ⊆ R is one-dimensional, and in this case κ is
usually taken as the identical mapping. On the other hand, if Δ ⊆ R

d for some
d > 1, then to be able to establish the concept of a “best population” on a
one-dimensional scale, a suitable functional κ has to be chosen. For example,
κ could be the projection onto one specific coordinate of the parameter vector
in Δ, where the remaining d − 1 coordinates are treated as nuisance param-
eters. To give another example, in nonparametric models, where Δ may be a
family of distributions, κ could be the median or some other nonparametric
functional.

Whether we select one population and declare it to be a best population, or
we select a subset of populations and declare that it contains a best population,
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depends on the given decision-theoretic framework. This is discussed in more
detail later on.

We do not require that the populations be independent. This means
that Pi,θi

, i = 1, ..., k, are the marginal distributions of the distribution of
(X1, ...,Xk) which is denoted by Pθ, θ = (θ1, ..., θk) ∈ Δk. The general selec-
tion model is

Ms = (Xk
i=1Xi,

⊗k
i=1 Ai, (Pθ)θ∈Δk). (9.2)

Throughout this chapter it is assumed that P = (Pθ)θ∈Δk is a stochastic
kernel. This allows us to utilize Bayes techniques for finding optimal selection
rules.

Often the populations are independent so that the joint distribution Pθ is
the product distribution of the marginal distributions Pi,θi

. Then we have the
independent selection model

Mis = (Xk
i=1Xi,

⊗k
i=1 Ai, (

⊗k
i=1 Pi,θi

)θ∈Δk), θ = (θ1, ..., θk), (9.3)

which has been considered previously in (3.10). We call the independent se-
lection model balanced if the sample spaces (Xi,Ai) as well as the families
(Pi,θi

)θi∈Δ are identical. The balanced selection model is given by

Mbs = (X k,A⊗k, (
⊗k

i=1 Pθi
)θ∈Δk), θ = (θ1, ..., θk). (9.4)

A typical situation where we have to deal with an unbalanced selection
model occurs when the sampling design is unbalanced. More precisely, let
Xi,1, ...,Xi,ni

be observed from population Pθi
, i = 1, ..., k, where the obser-

vations are altogether independent. Then we have the selection model

Mus = (Xk
i=1Xni ,

⊗k
i=1 A⊗ni , (

⊗k
i=1 P

⊗ni

θi
)θ∈Δk). (9.5)

It is of the form (9.3) if we identify Xni with Xi, A⊗ni with Ai, and P⊗ni

θi

with Pi,θi
. It is clear that Mus is balanced if and only if n1 = · · · = nk.

Often we reduce the model Ms in a first step by means of a statistic
V : Xk

i=1Xi →m R
k and obtain the reduced model

Mss = (Rk,Bk, (Qθ)θ∈Δk), (9.6)

where Qθ = Pθ ◦ V −1. Usually such a statistic V is sufficient, and then the
models Mss and Ms are equivalent; see Remark 4.68. Regardless of whether
(Qθ)θ∈Δk inMss has been obtained via Qθ = Pθ◦V −1 or has been introduced
in any other way we call Mss the standard selection model.

To set up a selection model that is based on a one-parameter exponential
family let Mne = (X ,A, (Pϑ)ϑ∈Δ), Δ ⊆ R, be from (1.7) with d = 1 and
satisfy (A1) and (A2). Denote by Xi,j : Xk

i=1Xni → X , j = 1, ..., ni, i =
1, ..., k, the projections on the coordinates. Similarly as in Proposition 1.4
one obtains from the structure of the density in (1.6) that (

⊗k
i=1 P

⊗ni

θi
)θ∈Δk
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is again an exponential family with natural parameter θ = (θ1, ..., θk) and
generating statistic

V = (T1,⊕n1 , ..., Tk,⊕nk
), Ti,⊕ni

=
∑ni

j=1
T (Xi,j), i = 1, ..., k, (9.7)

which by Theorem 4.50 is sufficient for the family (
⊗k

i=1 P
⊗ni

θi
)θ∈Δk . This

means that for the exponential family (Pϑ)ϑ∈Δ the model (9.5) can be reduced
by sufficiency and is, with θ = (θ1, ..., θk), equivalent to the model

Msel = (Rk,Bk, (
⊗k

i=1 Qni,θi
)θ∈Δk), where (9.8)

Qni,θi
= L(Ti,⊕ni

|
⊗k

i=1 P
⊗ni

θi
), i = 1, ..., k.

As Ti,⊕ni
is the sum of the random variables T (Xi,j), j = 1, ..., ni, which are

i.i.d. under
⊗k

i=1 P
⊗ni

θi
with distribution Qθi

:= L(T (Xi,j)|Pθi
), it holds

Qni,θi
= L(Ti,⊕ni

|
⊗k

i=1 P
⊗ni

θi
) = Q∗ni

θi
, i = 1, ..., k,

where ∗ denotes the convolution of distributions. Hence with θ = (θ1, ..., θk),

Msel = (Rk,Bk, (
⊗k

i=1 Q
∗ni

θi
)θ∈Δk). (9.9)

With νi := ν⊗ni ◦S−1
i , i = 1, ..., k, where Si := Ti,⊕ni

, i = 1, ..., k, the density
of S = (S1, ..., Sk) with respect to

⊗k
i=1 νi is given by

hθ(s) = exp{〈θ, s〉 −
∑k

i=1 niK(θi)}, s ∈ R
k, θ ∈ Δk. (9.10)

Whenever the sample sizes n1, ..., nk are not equal the distribution of S lacks
symmetry, which is reflected in

∑k
i=1 niK(θi) and

⊗k
i=1 νi =

⊗k
i=1 ν⊗ni◦S−1

i .

Example 9.1. We consider the problem of selecting from k normal populations
N(μi, σ

2
i ), i = 1, ..., k, one that has the largest mean μ[k] = max{μ1, ..., μk}, where

the σ2
i are known. Hence the model of the type Mus in (9.5) is given by

MNormal1 =
⊗k

i=1(R
ni ,Bni , (N

⊗ni(μi, σ
2
i ))μi∈R). (9.11)

We recall that in view of ϕμ,σ2(x) ∝ exp{−μx/σ2}, N(μ, σ2) is an exponential family
with generating statistic T (x) = x/σ2 and natural parameter θ = μ. The sufficient
statistic V in (9.7) and the induced model in (9.9) are given, respectively, by

V = (σ−2
1

∑n1

j=1
X1,j , ..., σ

−2
k

∑nk

j=1
Xk,j),

MNormal2 = (Rk,Bk, (
⊗k

i=1 N(niμiσ
−2
i , niσ

−2
i ))μ∈Rk ),

which is obviously equivalent to

MNormal3 = (Rk,Bk, (
⊗k

i=1 N(μi, σ
2
i /ni))μ∈Rk ). (9.12)

The reduced model based on T = (T 1, ..., T k) = (T1,⊕n1/n1, ..., Tk,⊕nk/nk), is also
of the type Mss.



520 9 Selection

Example 9.2. Suppose that we want to find one of the k Bernoulli populations
(1 − pi)δ0 + piδ1 that has the largest parameter p[k] = max {p1, ..., pk} , where ni

observations are taken from the population with index i, i = 1, ..., k. Hence the
model of the type Mus in (9.5), with n = n1 + · · ·+ nk, is given by

Mus = (Rn,Bn, (
⊗k

i=1((1− pi)δ0 + piδ1)
⊗ni)(p1,...,pk)∈(0,1)k).

According to Problem 1.7, the family ((1 − p)δ0 + pδ1)p∈(0,1) is a one-parameter
exponential family with generating statistic T (x) = x and θ = ln(p/(1 − p)). As
((1− pi)δ0 + piδ1)

∗ni = B(ni, pi) we see that that model in (9.9) turns into

MBinomial = (Rk,Bk, (
⊗k

i=1 B(ni, pi))(p1,...,pk)∈(0,1)k).

9.2 Optimal Point Selections

9.2.1 Point Selections, Loss, and Risk

Point selection rules are decisions on which of the k populations is best. To
specify what is meant by “best”, in the general selection model Ms from
(9.2) we assume that, according to the goal of the experimenter, a functional
κ : Δ → R has been chosen where a population i0 is considered to be best
if i0 ∈ Mκ(θ) with Mκ(θ) from (9.1). Although there may be more than
one best population, a point selection rule (see Definition 3.8) selects exactly
one population, and thus the decision space is Dpt = {1, ..., k}. Given the
model Ms from (9.2) a point selection rule D is a stochastic kernel D(A|x),
A ∈ P({1, ..., k}), x = (x1, ..., xk) ∈ Xk

i=1Xi. Setting

ϕi(x) = D({i}|x), x ∈ Xk
i=1Xi, i = 1, ..., k,

D(A|x) =
∑k

i=1
ϕi(x)δi(A), A ⊆ {1, ..., k}, x ∈ Xk

i=1Xi,

we may identify the stochastic kernel D with ϕ = (ϕ1, ..., ϕk), where

ϕi : Xk
i=1Xi →m [0, 1],

∑k

i=1
ϕi(x) = 1. (9.13)

An equivalent condition is ϕ : X →m Sc
k where Sc

k is the closed unit sim-
plex from (1.13) whose elements are the vectors (p1, ..., pk) with pi ≥ 0 and∑k

i=1 pi = 1. For brevity ϕ is also called a selection rule or a selection.
Let L : Δk×Dpt → R be any loss function. As the integration with respect

to D(·|x) is a weighted sum the risk of a selection rule ϕ under L is given by

R(θ, ϕ) =
∑k

i=1
L(θ, i)

∫
ϕi(x)Pθ(dx) =

∑k

i=1
L(θ, i)Eθϕi, θ ∈ Δk. (9.14)

In view of the general goal, which is based on (9.1), the loss functions used for
selections depend on θ = (θ1, ..., θk) ∈ Δk only through (κ(θ1), ..., κ(θk)). As
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the decision space is finite our standard assumption that L(θ, ·) be bounded
from below for every θ ∈ Δk is automatically fulfilled here.

In the special case of k = 2 we see that ϕ = ϕ1 is a test and ϕ2 =
1 − ϕ. In this case the selection problem reduces to the problem of testing
the hypotheses H0 : κ(θ2) ≥ κ(θ1) versus HA : κ(θ2) < κ(θ1), where ϕ is the
probability of rejecting H0.

If there exists a sufficient statistic V , then we may restrict our search for
optimal selections to selections that depend on the data only through V . The
following proposition is a direct consequence of Theorem 4.66; see also Remark
4.68.

Proposition 9.3. If the model Ms in (9.2) is dominated and V : X →m R
k

is a sufficient statistic, then for every selection rule ϕ : X →m Sc
k for the

model Ms there exists a selection rule ψ : R
k →m Sc

k for the model (9.6) with

R(θ, ϕ) =
∑k

i=1
L(θ, i)Eθϕi =

∑k

i=1
L(θ, i)Eθψi(V ) = R(θ, ψ(V )).

Example 9.4. Let Mne = (X ,A, (Pϑ)ϑ∈Δ), Δ ⊆ R, be an exponential family
from (1.7) with generating statistic T. Then V = (T1,⊕n1 , ..., Tk,⊕nk) in (9.7) is
sufficient, so that all selection rules can be based on V or, equivalently, on T =
(T 1, ..., T k) = (T1,⊕n1/n1, ..., Tk,⊕nk/nk).

In the literature, since the beginning in the 1950s, the favorite loss function
for selections has been the zero–one loss,

L0,1(θ, i) = 1− IMκ(θ)(i), θ = (θ1, ..., θk) ∈ Δk, i = 1, ..., k, (9.15)

with Mκ(θ) from (9.1). For this loss the risk of a selection rule ϕ is

R(θ, ϕ) = 1−
∑k

i=1
IMκ(θ)(i)Eθϕi, θ ∈ Δk. (9.16)

Denote by κ[1](θ) ≤ · · · ≤ κ[k](θ) the ordered values of κ(θ1), ..., κ(θk).
As in (3.1) we suppose that A and X = (X1, ...,Xk) are random variables

on (Ω,F,Pθ) such that L(A,X) = D⊗ Pθ, where D(B|x) =
∑k

i=1 ϕi(x)δi(B)
is the conditional distribution of A, given X = x. Then

Pθ(A ∈ Mκ(θ)) =
∑k

i=1
IMκ(θ)(i)

∫
ϕi(x)Pθ(dx), θ ∈ Δk.

Therefore, as in (3.13),

Pcs(θ, ϕ) :=
∑k

i=1
IMκ(θ)(i)Eθϕi, θ ∈ Δk, (9.17)

is called the probability of a correct selection (PCS).
Because Pcs(θ, ϕ) = 1 − R(θ, ϕ), maximizing the PCS is equivalent to

minimizing the risk. Let
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Δ∗ = {θ : κ[k−1](θ) < κ[k](θ), θ ∈ Δk}

be the set of parameters where the best population is unique. For θ ∈ Δ∗ the
set Mκ(θ) is a singleton, say Mκ(θ) = {i∗(θ)}, and it holds

Pcs(θ, ϕ) = Eθϕi∗(θ), θ ∈ Δ∗.

In the indifference zone approach of Bechhofer (1954) the PCS of a selection
rule is required to be at least P ∗ on the so-called preference zone

Δδ = {θ : κ[k−1](θ) ≤ κ[k](θ)− δ, θ ∈ Δk}, (9.18)

where δ > 0 and P ∗ ∈ (1/k, 1) are fixed given. On the set Δk\Δδ, which is
called the indifference zone, the performance of a selection rule is considered
to be of no importance.

One way to construct selection rules is to start with a statistic S =
(S1, ..., Sk) : X →m R

k for which κ(θi) > κ(θj) implies that Si > Sj is in
some way more likely to be expected than Si < Sj . Typically Si is an estima-
tor of κ(θi), i = 1, ..., k. Set

M(s) = arg max
i∈{1,...,k}

si, s = (s1, ..., sk) ∈ R
k, (9.19)

and let |M(s)| denote the number of elements in M(s).

Definition 9.5. For the model (9.2) the selection rule

ϕnatS (x) =
1

|M(S(x))| (IM(S(x))(1), ..., IM(S(x))(k)), x ∈ Xk
i=1Xi, (9.20)

is called the natural selection rule based on the statistic S. For Xk
i=1Xi = R

k

and S(t) ≡ t we call

ϕnat(t) =
1

|M(t)| (IM(t)(1), ..., IM(t)(k)), t ∈ R
k,

the natural selection rule.

The natural selection rule ϕnatS has been considered previously, within
limited settings, in Example 3.11 regarding its optimality, and in Example
5.32 regarding its permutation invariance. In the following example the risk
of the natural selection rule is studied for a normal location model with a
common sample size n for the k populations.

Problem 9.6.∗ If Z1, ..., Zr are i.i.d. with continuous c.d.f. F and distribution P ,
then for every h : R →m R+ it holds

Eh( max
1≤j≤r

Zj) = r

∫
h(t)F r−1(t)P (dt).
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For any subset Δ ⊆ R of the real line we denote by

Δk
r = {θ : θ ∈ Δk, θ[k] = θ[k−1] = · · · = θ[k−r+1] > θ[k−r] ≥ ·· · ≥ θ[1]} (9.21)

the set of all k-dimensional vectors for which r components are tied for the
largest value. Especially Δk

1 is the set of all vectors for which there exists
exactly one largest value, and

Δk
k = {θ : θ ∈ Δk, θ1 = · · · = θk}

is the diagonal. We study the zero–one risk or the PCS of a natural selection
rule that is based on the statistic S.

Proposition 9.7. Consider the model (9.4) and S = (S1, ..., Sk) with Si(x) =
T (xi), where T : X →m R and x = (x1, ..., xk) ∈ X k. Set Qθ = Pθ ◦ T−1 and
suppose that the c.d.f. Fθ(t) = Pθ(T ≤ t) is continuous for every θ ∈ Δ. Then

Pcs(θ, ϕnatS ) = r

∫
(
∏

j �=[k]
Fθ[j](t))Qθ[k](dt), θ ∈ Δk

r . (9.22)

Proof. As the natural selection rule and the zero–one loss are permutation
invariant we may assume that θ1 ≤ · · · ≤ θk. If θ ∈ Δk

r , then M(θ) =
{k − r + 1, ..., k}.

By the independence of the populations and the continuity of the c.d.f.
the natural selection rule

ϕnati,S =
1

|M(S1, ..., Sk)|
IM(S1,...,Sk)(i)

takes on only the values 0 or 1,
⊗k

i=1 Pθi
-a.s., and it holds

Pcs(θ, ϕnatS ) =
∑k

i=1
IM(θ)(i)Eθϕ

nat
i,S

=
∑k

i=k−r+1
(
⊗k

i=1 Pθi
)(Si > maxj �=i Sj).

Using {Si1 > maxj �=i1 Sj} ∩ {Si2 > maxj �=i2 Sj} = ∅ for i1 �= i2 we get

Pcs(θ, ϕnatS ) = (
⊗k

i=1 Pθi
)(max1≤i≤k−r Si < maxk−r+1≤j≤k Sj).

Let Q be the distribution of maxk−r+1≤j≤k Sj . Then by the Problems 3.9 and
9.6

(
⊗k

i=1 Pθi
)(max1≤i≤k−r Si < maxk−r+1≤j≤k Sj) =

∫
(
∏k−r

j=1 Fθj
(t))Q(dt)

= r

∫
(
∏k−r

j=1
Fθj

(t))F r−1
θk

(t)(Pθk
◦ T−1)(dt)

= r

∫
(
∏k−1

j=1
Fθ[j](T (x)))Pθ[k](dx).
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Example 9.8. We consider the selection model (9.12) in the balanced case, that
is, where n1 = · · · = nk = n and σ2

1 = · · · = σ2
k = σ2. A reduction by sufficiency

shows that it suffices to consider the model

M = (Rk,Bk,
⊗k

i=1(N(μi, σ
2))μ∈Rk ), μ = (μ1, ..., μk).

To apply the previous proposition we denote by Xi : R
k → R the projections and

set X = R, T (xi) = xi, and S = (X1, ..., Xk). Note that Xi has the distribution
N(μi, σ

2) and

Δk
r = R

k
r = {μ : μ = (μ1, ..., μk), μ[k] = · · · = μ[k−r+1] > μ[k−r]}.

The natural selection rule ϕnat in Definition 9.5 selects the population with the
largest Xi. We get from (9.22) that the probability of a correct selection is given by

PN,cs(μ, σ
2, ϕnat) = r

∫ ∏k−1

i=1
Φμ[i],σ

2(t)ϕμ[k],σ
2(t)dt

= r

∫ ∏k−1

i=1
Φ((μ[k] − μ[i])/σ + s)ϕ(s)ds, μ ∈ R

k
r . (9.23)

This yields

infμ∈Rk
r
PN,cs(μ, σ

2, ϕnat) = r

∫
Φk−1(s)ϕ(s)ds =

r

k
, (9.24)

infμ∈Rk PN,cs(μ, σ
2, ϕnat) = min

1≤r≤k
infμ∈Rk

r
PN,cs(μ, σ

2, ϕnat) =
1

k
, (9.25)

where the value of the integral follows from Problem 9.6 with h = 1. If we have n
observations in each population, then by a reduction by sufficiency we have only to
switch to σ2/n. Let now δ > 0 and P ∗ ∈ (1/k, 1) be fixed given. Then according to
(9.23) the infimum PCS of ϕnat on R

k
1,δ = {μ : μ[k−1] ≤ μ[k]− δ, μ ∈ R

k} is attained
at the least favorable parameter configuration (LFC) μ[1] = · · · = μ[k−1] = μk − δ,
and the P ∗-condition turns out to be∫

Φ(
√
nδ/σ + z)k−1ϕ(z)dz ≥ P ∗.

The left-hand side is increasing in n and tends to 1 as n→∞. This can be utilized
to determine the smallest common sample size n for which the P ∗-condition is met.

The no-data rule which selects each population with probability 1/k has a
PCS that is always equal to r/k whenever r populations are tied for the best,
r = 1, ..., k. This may serve as a justification for requiring that P ∗ ∈ (1/k, 1)
and for adopting the indifference zone approach.

Another loss function for selections that is often used is the linear loss,

Llin(θ, i) = κ[k](θ)− κ(θi), θ ∈ Δk, i = 1, ..., k. (9.26)

The risk of a selection rule ϕ under this loss is

R(θ, ϕ) = κ[k](θ)−
∑k

i=1
κ(θi)Eθϕi, θ ∈ Δk,
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which is the difference between the value of κ of the parameter of a best
population and its expected value of the parameter of the selected population.
In this case an optimal selection rule would maximize

∑k
i=1 κ(θi)Eθϕi, θ ∈ Δk.

Next we consider minimum average risk and especially Bayes selection
rules ψ, utilizing the general framework of Section 3.4. According to Remark
3.30 we may restrict ourselves to Bayes selection rules.

If (Δ,BΔ) is a Borel space, then (Δk,B⊗k
Δ ) is also a Borel space (see

Lemma B.41 in Schervish (1995)) and we can find a stochastic kernel Π :
B

⊗k
Δ × (Xk

i=1Xi) →k [0, 1] such that

P(dx|θ)Π(dθ) = Π(dθ|x)(PΠ)(dx).

For a statistic V : Xk
i=1Xi →m R

k and the reduced model (Rk,Bk, (Qθ)θ∈Δk)
from (9.6) we introduce for the stochastic kernel Q = (Qθ)θ∈Δk the posterior
ΛQ by

Q(dt|θ)Π(dθ) = ΛQ(dθ|t)(QΠ)(dt). (9.27)

For any sufficient statistic V the posterior for the original model can be factor-
ized by V . This is Bayes sufficiency which has been introduced by Definition
4.60.

If the populations are independent so that Pθ =
⊗k

i=1 Pi,θi
, the kernels P

and Pi are defined by Pθ and Pi,θi
, respectively, and the prior Π is a product

distribution Π =
⊗k

i=1 Πi, then we introduce the posteriors Πi : BΔ×Xi →k

[0, 1] of the populations by

Pi(dxi|θi)Πi(dθi) = Πi(dθi|xi)(PiΠi)(dxi), i = 1, ..., k. (9.28)

Problem 9.9. For the independent model (9.3), that is, where Pθ =
⊗k

i=1 Pi,θi

and Π =
⊗k

i=1 Πi, it holds P ⊗ Π =
⊗k

i=1(Pi ⊗ Πi) =
⊗k

i=1(Πi ⊗ (PiΠi)), and
Π : B

⊗k
Δ × (Xk

i=1Xi) →k [0, 1] satisfies, with x = (x1, ..., xk),

Π(dθ|x) =
⊗k

i=1 Πi(dθi|xi), PΠ-a.s. (9.29)

We call (see Definition 3.33)

r(Π, i|x) =
∫
L(θ, i)Π(dθ|x) (9.30)

the posterior risk of selecting population i ∈ {1, ..., k} at x ∈ Xk
i=1Xi. Accord-

ing to (3.27) the posterior risk at x for a selection rule ψ is given by

r(Π,ψ|x) =
∑k

i=1
r(Π, i|x)ψi(x). (9.31)

For r(Π, i|x) from (9.30) we set

Mpt
Π (x) = arg min

i∈{1,...,k}
r(Π, i|x).

The next proposition is a direct consequence of Theorem 3.37 and the repre-
sentation of the posterior risk in (9.31).
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Proposition 9.10. Let (Δ,BΔ) be a Borel space and L(·, i) : Δ →m R+,
i = 1, ..., k. A selection rule ψ : X →m Sc

k is a Bayes rule for the selection
model (9.2) if and only if

∑
i∈Mpt

Π (x)
ψi(x) = 1, PΠ-a.s.

Remark 9.11. Under the assumptions of the above proposition there are of course
nonrandomized Bayes selection rules. For example, ψnr = (ψnr

1 , ..., ψnr
k ), defined by

ψnr
j (x) = 1 if j = min{i : i ∈Mpt

Π (x)} and ψnr
j (x) = 0 otherwise, is a nonrandomized

Bayes selection rule.

Next we evaluate the set Mpt
Π (x) for special loss functions.

Corollary 9.12. Under the assumptions of Proposition 9.10, for any prior
Π ∈ P(B⊗k

Δ ) and any κ : Δ→m R, it holds,

Mpt
Π (x) = arg max

i∈{1,...,k}
Π({θ : κ(θi) = κ[k](θ)}|x), if L = L0,1, (9.32)

Mpt
Π (x) = arg max

i∈{1,...,k}

∫
κ(θi)Π(dθ|x), if L = Llin, (9.33)

where θ = (θ1, ..., θk), and where in the second case
∫
|κ(θi)|Π(dθ) < ∞,

i = 1, ..., k, is assumed to hold.

Proof. If L = L0,1, then L(θ, i) = 1− IMκ(θ)(i), and

r(Π, i|x) = 1−Π({θ : i ∈ Mκ(θ)}|x) = 1−Π({θ : κ(θi) = κ[k](θ)}|x),

which proves the first statement. The proof of the second statement is similar.

To deal with (9.32) in concrete situations the following technical tool for
stochastically ordered distributions proves useful.

Proposition 9.13. Let Θ1, ..., Θk be independent random variables with val-
ues in R and L(Θ1) � · · · � L(Θk). Then

P(Θ1 = Θ[k]) ≤ · · · ≤ P(Θk = Θ[k]).

Proof. Let Qi be the distribution of Θi, i = 1, ..., k. For a < b it holds

P(Θa = Θ[k]) =
∫ ∏k

i=1,i �=a
Qi((−∞, t])Qa(dt)

≤
∫ ∏k

i=1,i �=a,b
Qi((−∞, t])Qa((−∞, t])Qa(dt)

≤
∫ ∏k

i=1,i �=b
Qi((−∞, t])Qb(dt) = P(Θb = Θ[k]),

where the first inequality follows from L(Θa) � L(Θb), and the second from
Proposition 2.7.

Applications to some specific parametric families are considered next. The
first example is taken from Gupta and Miescke (1988).
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Example 9.14. We consider the problem of selecting the population with the
largest mean in the selection model (9.11). For fixed νi ∈ R and δ2

i > 0, let the prior
for Θ, the random version of μ = (μ1, ..., μk) ∈ R

k, be Π =
⊗k

i=1 N(νi, δ
2
i ), that is,

the product of the conjugate prior from Lemma 1.37. The posterior distribution Λ,
in view of Lemma 1.37 and (9.29), is

Π =
⊗k

i=1 N
(
αi + βiTi,⊕ni , τ

2
i

)
, Ti,⊕ni(x) =

∑ni
j=1 xi,j ,

αi =
σ2

i νi

σ2
i + niδ2

i

, βi =
δ2

i

σ2
i + niδ2

i

, τ2
i =

σ2
i δ

2
i

σ2
i + niδ2

i

, i = 1, ..., k.

Then under the loss L0,1, the set (9.32) is given by

Mpt
Π (x) = arg max

1≤i≤k
P(Θ̃i = Θ̃[k]), where

(Θ̃1, ..., Θ̃k) ∼
⊗k

i=1 N
(
αi + βiTi,⊕ni , τ

2
i

)
.

If for some τ2 < σ2
i /ni, i = 1, ..., k, we choose δ2

i so as to satisfy

1

δ2
i

+
ni

σ2
i

=
1

τ2
, i = 1, ..., k, (9.34)

i.e., that the sum of the precisions provided by the prior and the sample mean are
equal for the k populations, then τ2

1 = · · · = τ2
k = τ2, and by Proposition 9.13,

arg max
1≤i≤k

P(Θ̃i = Θ̃[k]) =arg max
1≤i≤k

(αi + βiTi,⊕ni).

In this case the natural selection rule ϕnat
S based on the statistic

S = (α1 + β1

∑n1

j=1
x1,j , ..., αk + βk

∑nk

j=1
xk,j)

is a Bayes selection rule. Specializing further, if ni = n, σ2
i = σ2, νi = ν, and δ2

i = δ2,
i = 1, ..., k, then ϕnat

S selects the population with the largest mean n−1∑n
j=1 xi,j .

Other related work for normal distributions has been done by Berger and
Deely (1988), Bansal and Gupta (1997), Bansal and Misra (1999), and Bansal
and Miescke (2002).

Problem 9.15.∗ Consider the problem of selecting the binomial population with
the largest success probability in the selection model (X k,P(X k),

⊗k
i=1 B(n, pi)),

where the observations are x1, ..., xk ∈ X = {0, 1, ..., n}. For fixed α, β > 0, let the
prior of Ξ, the random version of p = (p1, ..., pk) ∈ (0, 1)k, be Be(α, β)⊗k, that is,
the k-fold product of the conjugate prior from Example 1.45. Show that under either
of the loss functions L0,1 or Llin every Bayes selection rule selects in terms of the
largest value of x1, ..., xk.

Results for the unbalanced model (Xk
i=1Xi,P(Xk

i=1Xi),
⊗k

i=1 B(ni, pi)),
with Xi = {0, 1, ..., ni}, i = 1, ..., k, by Abughalous and Miescke (1989) are
presented in Example 9.41.
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9.2.2 Point Selections in Balanced Models

When the sizes of the independent samples from the k populations are equal,
and the underlying family of distributions has monotone likelihood ratio, or is
even an exponential family, then the natural selection rule is the best permuta-
tion invariant selection rule under any loss function L that satisfies (9.42) and
(9.43). This is essentially the content of the Bahadur–Goodman–Lehmann–
Eaton theorem. It was established, starting with Bahadur (1950) and Bahadur
and Goodman (1952), by Lehmann (1966) and Eaton (1967a).

We recall that Πk denotes the group of permutations γ of (1, ..., k). For any
measurable space (T ,T) we set uγ(t) = (tγ(1), ..., tγ(k)), t = (t1, ..., tk) ∈ T k,
γ ∈ Πk. We call a measure μ defined on (T k,T⊗k) permutation invariant if
μ ◦ u−1

γ = μ, γ ∈ Πk. Let (S,S) be another measurable space, where we set
uγ(B) = {uγ(s) : s ∈ B}, B ∈ S⊗k, γ ∈ Πk. Assume Γ : S⊗k × T k →k [0, 1]
is a stochastic kernel and that μ ∈Mσ(T⊗k) is permutation invariant.

Definition 9.16. We say that the stochastic kernel Γ is μ-a.e. permutation
invariant if for every fixed γ ∈ Πk, B ∈ S⊗k,

Γ (uγ(B)|uγ(t)) = Γ (B|t) (9.35)

holds μ-a.e. with respect to t. We say that Γ is permutation invariant if (9.35)
holds for every t ∈ T k, B ∈ S⊗k.

It follows from (9.35) and the standard extension technique that for every
h : R

k →m Rm,
∫
h(uγ(s))Γ (ds|t) =

∫
h(s)Γ (ds|uγ(t)), γ ∈ Πk. (9.36)

Kernels with the above invariance properties are of importance in this section.
We consider now situations where larger observations are in some way

more likely to occur at larger parameters. To make this idea precise, let S
and T be Borel subsets of R, and let t(i,j) ∈ R

k be the vector that is obtained
from t ∈ R

k by exchanging the coordinates ti and tj .

Definition 9.17. Let μ be a permutation invariant probability measure on
(T k,T⊗k), and Γ : B

⊗k
S ×T k →k [0, 1] be a stochastic kernel that is permuta-

tion invariant. We say that Γ has the DT property if for every g : R
k →m R+,

every i, j ∈ {1, ..., k}, and every t ∈ T k it holds,
∫
g(s)I[ti,∞)(tj)I[si,∞)(sj)Γ (ds|t(i,j)) (9.37)

≤
∫
g(s)I[ti,∞)(tj)I[si,∞)(sj)Γ (ds|t).

If the latter condition only holds μ-a.s. for every g, then we say that Γ has
the DT property μ-a.s.
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The next lemma is of central importance. It shows that for a random vector
(S, T ) with L(S, T ) = Γ ⊗Π, and the posterior Π defined by L(T, S) = Π ⊗
ΓΠ, the kernel Π has the same permutation invariance and DT properties
as Γ in L(S, T ). Typically in applications, S represents the data or a function
of them, whereas T represents the random parameter in the Bayes model. By
establishing this type of symmetry between S and T the task of minimizing
the posterior risk of selection rules is facilitated.

Lemma 9.18. Let S and T be Borel subsets of R, and let Π ∈ P(B⊗k
T ) be

permutation invariant. If Γ : B
⊗k
S × T k →k [0, 1] is permutation invariant

and has the DT property, then there exists a kernel Π that is permutation
invariant, has the DT property ΓΠ-a.s., and satisfies∫

[
∫
h(s, t)Γ (ds|t)]Π(dt) =

∫
[
∫
h(s, t)Π(dt|s)](ΓΠ)(ds) (9.38)

for every h : S × T →m R+.

Proof. Let Π0 be any kernel that satisfies (9.38). It follows from the
permutation invariance of Γ and Π that the permutation invariant kernel

Π(B|t) =
1
k!

∑
γ∈Πk

Π0(uγ(B)|uγ(t))

also satisfies (9.38). With γ as the permutation that exchanges i and j, and
leaves the other k − 2 arguments unchanged, we see that condition (9.37)
implies ∫

[
∫
h(s, t)I[tj ,∞)(ti)I[si,∞)(sj)Γ (ds|t)]Π(dt)

≤
∫

[
∫
h(s, t)I[ti,∞)(tj)I[si,∞)(sj)Γ (ds|t)]Π(dt)

for every h : Sk × T k →m R+. Hence∫
[
∫
h(s, t)I[tj ,∞)(ti)I[si,∞)(sj)Π(dt|s)(ΓΠ)(ds)

≤
∫

[
∫
h(s, t)I[ti,∞)(tj)I[si,∞)(sj)Π(dt|s)(ΓΠ)(ds).

As h is arbitrary we get that for every g : T k →m R+ there is a ΓΠ-null set,
say Ng, such that
∫
g(t)I[tj ,∞)(ti)I[si,∞)(sj)Π(dt|s) ≤

∫
g(t)I[ti,∞)(tj)I[si,∞)(sj)Π(dt|s)

for all s /∈ Ng.

The kernel Γ is often defined by densities with respect to a σ-finite per-
mutation invariant measure. In this case the conditions (9.35) and (9.37) are
consequences of properties of the corresponding densities.
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Problem 9.19.∗ Let S and T be Borel subsets of R. Let μ be a σ-finite permutation
invariant measure on (Sk,B⊗k

S ) and (gt)t∈T k a family of probability densities such
that gt(s) is measurable in (s, t) and satisfies

guγ(t)(uγ(s)) = gt(s), s ∈ Sk, t ∈ T k, γ ∈ Πk. (9.39)

Then the kernel Γ (A|t) :=
∫
IA(s)gt(s)μ(ds), A ∈ B

⊗k
S , is permutation invariant.

Moreover, if

gt(i,j)(s) ≤ gt(s), ti ≤ tj , si ≤ sj , s ∈ Sk, t ∈ T k, i, j ∈ {1, ..., k}, (9.40)

then the kernel Γ has the DT property.

The typical situation where (9.39) and (9.40) occurs is the following.

Problem 9.20. Let S and T be Borel subsets of R. Let gt(s) =
∏k

i=1 fti(si),
s ∈ Sk, t ∈ T k, where fb(a), a ∈ S, b ∈ T , is positive and has the following property.
fb2(a)/fb1(a) is nondecreasing in a ∈ S for every b1, b2 ∈ T with b1 < b2. Then gt(s),
s ∈ Sk, t ∈ T k, satisfies (9.39) and (9.40). As a one-parameter exponential family
has MLR (see Example 2.13) the density hθ(s) in (9.10) satisfies (9.39) and (9.40)
if and only if n1 = · · · = nk.

Remark 9.21. The combination of (9.39) and (9.40) is called property M in Eaton
(1967a), and decreasing in transposition property (DT) in Hollander, Proschan, and
Sethuraman (1977).

Some special cases are considered below. We start with the case of inde-
pendent populations. For that we need a special property of families with the
MLR property. The following is a generalized version of Problem 2.22.

Problem 9.22.∗ If (Pθ)θ∈Δ is a family of distributions on (R,B) that has the
MLR property in the identity, then for every θ1, θ2 ∈ Δ with θ1 ≤ θ2 and every
function h : R

2 →m R+ it holds for x = (x1, x2),∫
h(x)I(x1,∞)(x2)(Pθ2 ⊗ Pθ1)(dx) ≤

∫
h(x)I(x1,∞)(x2)(Pθ1 ⊗ Pθ2)(dx). (9.41)

Problem 9.23.∗ Let (Pϑ)ϑ∈Δ be a one-parameter family of distributions on (R,B)
that is a stochastic kernel, and let Pθ =

⊗k
i=1 Pθi , θ = (θ1, ..., θk) ∈ Δk. Then the

stochastic kernel P = (Pθ)θ∈Δk satisfies (9.35). Moreover, if the stochastic kernel
(Pϑ)ϑ∈Δ has the MLR property in the identity, then the stochastic kernel P =
(Pθ)θ∈Δk has the DT property.

Now we consider cases where the populations are not independent.

Example 9.24. Suppose that Si : R →m R, i = 1, ..., k, and κ : Δ → R, with
Δ ⊆ R, are nondecreasing, and that ν is a σ-finite symmetric measure on (Rk,Bk).
If there exists a nonnegative nondecreasing function f and a permutation symmetric
function g such that for x = (x1, ..., xk) ∈ R

k and θ = (θ1, ..., θk) ∈ Δk,

dQθ

dν
(x) = g(θ)f(

∑k
i=1 Si(xi)κ(θi)),

then (dQθ/dν)(x) satisfies the conditions (9.39) and (9.40).
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Problem 9.25.∗ The kernel K(B|θ) = N(θ,Σ)(B) defined by the normal distri-
bution N(θ,Σ), θ ∈ R

k, with a known and nonsingular Σ, is permutation invariant
and has the DT property if and only if

Σ−1 = αI + β11T , α > 0, α + kβ > 0.

For further results we refer to Eaton (1967a).

Problem 9.26.∗ The multinomial distributions M(n, p) with p ∈ So
k satisfy the

conditions (9.39) and (9.40).

Regarding the loss we consider the large class of loss functions L : Δk ×
Dpt →m R+ that are permutation invariant, that is,

L(θ, γ(i)) = L(uγ(θ), i), i = 1, ..., k, θ ∈ Δk, γ ∈ Πk, (9.42)

and that favor selections of larger values of κ; that is, for θ = (θ1, ..., θk),

L(θ, i) ≥ L(θ, j), κ(θi) ≤ κ(θj), i, j ∈ {1, ..., k}, θ ∈ Δk. (9.43)

The key lemma of this subsection is as follows.

Lemma 9.27. Let S and T be Borel subsets of R, and let the loss function L
satisfy (9.42) and (9.43), where Δ = T and κ is the identical mapping. As-
sume that K : B

⊗k
T ×Sk →k [0, 1] and μ ∈ P(B⊗k

S ). If K is μ-a.s. permutation
invariant and μ-a.s. DT, then

M(s) ⊆ arg min
i∈{1,...,k}

∫
L(t, i)K(dt|s), μ-a.s. (9.44)

Proof. Let i, j ∈ {1, ..., k} be fixed. It follows from κ(ϑ) = ϑ and condition
(9.43) that L(t, i)− L(t, j) = 0 for t = (t1, ..., tk) and ti = tj . Hence

∫
[L(t, i)− L(t, j)]K(dt|s) =

∫
[L(t, i)− L(t, j)]I(ti,∞)(tj)K(dt|s)

+
∫

[L(t, i)− L(t, j)]I(tj ,∞)(ti)K(dt|s).

Let t(i,j) ∈ R
k be the vector that is obtained from t ∈ R

k by exchanging the
coordinates ti and tj . On A = {s : s = (s1, ..., sk), si ≤ sj} it holds μ-a.s.

∫
[L(t, i)− L(t, j)]I(tj ,∞)(ti)K(dt|s)

=
∫

[L(t(i,j), j)− L(t(i,j), i)]I(tj ,∞)(ti)K(dt|s)

=
∫

[L(t, j)− L(t, i)]I(ti,∞)(tj)K(dt|s(i,j))

≥
∫

[L(t, j)− L(t, i)]I(ti,∞)(tj)K(dt|s),
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where we have used in the first equation (9.42), in the second equation
(9.35), and in the inequality (9.43) and (9.37). Consequently,

∫
[L(t, i) −

L(t, j)]K(dt|s) ≥ 0, and the proof is completed.

As we have explained already in Example 3.11, one cannot find uniformly
best selection rules in the class of all selection rules. Consequently we restrict
ourselves to selection rules that are permutation invariant, which have been
discussed already in a special case in Example 3.11.

Definition 9.28. For the model in (9.2) a selection rule ψ : Xk
i=1Xi →m Sc

k

is called permutation invariant if

ψi(xγ(1), ..., xγ(k)) = ψγ(i)(x1, ..., xk), i = 1, ..., k,

holds for every permutation γ ∈ Πk and every (x1, ..., xk) ∈ Xk
i=1Xi.

The following example is given for clarification.

Example 9.29. For a permutation invariant selection rule ψ the expressions
ψγ(i)(xγ(1), ..., xγ(k)) and ψi(x1, ..., xk) are in general not equal. This can be seen
for k = 3. Let γ(1) = 3, γ(2) = 1, and γ(3) = 2. Then ψγ(1)(xγ(1), xγ(2), xγ(3)) =
ψ3(x3, x1, x2), which by the permutation invariance of ψ is equal to ψ2(x1, x2, x3).

Problem 9.30. Verify that the natural selection rule ϕnat
S based on a statistic S

(see Definition 9.5) is permutation invariant.

The fundamental Bahadur–Goodman–Lehmann–Eaton theorem can now
be stated.

Theorem 9.31. (Bahadur–Goodman–Lehmann–Eaton) Let Δ ⊆ R be
a Borel set and κ the identical mapping. Suppose that for the selection model
Ms in (9.2) there exists a sufficient statistic V : X →m R

k such that for
Qθ = Pθ ◦ V −1 the family Q = (Qθ)θ∈Δk is a stochastic kernel that is permu-
tation invariant and has the DT property. If the loss function satisfies (9.42)
and (9.43), then the natural selection rule ϕnatV based on V has the following
optimality properties.

(A) Bayes:
ϕnatV is a Bayes selection rule under every discrete permutation invariant
prior.

(B) Uniformly best invariant:
ϕnatV is a uniformly best permutation invariant selection rule.

(C) Minimax:
supθ∈A

R(θ, ϕnatV ) ≤ supθ∈A
R(θ, ϕ) for every selection rule ϕ and every

permutation invariant A ⊆ Δk.
(D) Admissible:

ϕnatV is admissible in the class of all selection rules ϕ.
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Corollary 9.32. Suppose that for the balanced selection model Mbs in (9.4)
the family of distributions (Pϑ)ϑ∈Δ on (X ,A) with Δ ⊆ R is dominated and
has MLR in T , and that the loss function L satisfies (9.42) and (9.43). Then
for Mbs the natural selection rule based on S = (S1, ..., Sk), where Si(x) =
T (xi), i = 1, ...k, x = (x1, ..., xk) ∈ X k, has the optimality properties stated
in the theorem.

Proof. Due to the reduction by sufficiency in Proposition 9.3 we have only
to deal with the model Mss. To show (A) we fix any permutation invariant
prior Π. Then in view of Lemma 9.18 the posterior Π is QΠ-a.s. permutation
invariant and QΠ-a.s. DT. This means that the kernel K = Π satisfies the
conditions in Lemma 9.27 with μ = QΠ so that (A) follows from ( 9.44) and
Proposition 9.10. (B) follows from (A) and Proposition 5.39.

Next we prove (C). In the class of all permutation invariant selection rules
the natural selection rule ϕnatV based on the identity is uniformly best, and thus
also minimax, in this class of selection rules for the model (Rk,Bk, (Qθ)θ∈A).
(C) follows now from Proposition 5.41 if we take D0 as the set of all selection
rules and Q as the uniform distribution on the set of all permutations.

As to (D), suppose that ϕnatV is not admissible. Then there exists a selection
rule φ with R(θ, φ) ≤ R(θ, ϕnatV ), θ ∈ Δ, and R(θ̃, φ) < R(θ̃, ϕnatV ) for at least
one θ̃ ∈ Δ. We fix one such θ̃ and denote by μ the uniform distribution on the
orbit Δθ̃ = {uγ(θ̃) : γ ∈ Πk}. Apparently, μ is a permutation invariant prior
on Δθ̃ and r(μ, φ) < r(μ, ϕnatV ), which is a contradiction to (A).

To prove the corollary, we first remark that in view of Problem 4.54 and
the independence of the populations the statistic S(x) = (T (x1), ..., T (xk)) is
sufficient. The permutation invariance and the DT property of Q follow from
Problem 9.23.

Example 9.33. Suppose that the k populations are independent, and that we
have ni observations from population i, i = 1, ..., k. The model is then given in
(9.5). Assume that (Pϑ)ϑ∈Δ is a one-parameter exponential family with generating
statistic T . Hence dPϑ/dμ = exp{ϑT −K(ϑ)}. The reduced model

(Rk,Bk,
⊗k

i=1 Qi,θi), Qi,θi = P⊗ni
θi

◦ T−1
i,⊕ni

,

in (9.8) is equivalent to the original model by Proposition 9.3. We see from (9.9) and
(9.10), respectively, that the stochastic kernel Q = (Qθ)θ∈Δk with Qθ =

⊗k
i=1 Qi,θi

is permutation invariant in the sense of Definition 9.16 if and only if the model is
balanced (i.e., n1 = · · · = nk). If the sample sizes are all equal to n, say, then by
Problem 9.23 the kernel Q is, according to Definition 9.17, DT as well since the
exponential family (P⊗n

ϑ )ϑ∈Δ has MLR in T⊕n. In this case the natural selection
rule ϕnat

S based on the statistic S = (T1,⊕n, ..., Tk,⊕n) has the optimality properties
(A)–(D). Usually the parameter of interest is not the natural parameter itself. Let Λ
be an interval and κ : Λ↔m Δ. If κ is nondecreasing, then P⊗n

κ(η) has again MLR, so

that the natural selection rule based on S in turn is optimal in the sense of (A)–(D)
for selecting the population with the largest value of η1, ..., ηk.
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Example 9.34. Let us reconsider Examples 9.14 and 9.8, i.e., the problem of se-
lecting the population with the largest mean in the model (Rk,Bk,

⊗k
i=1 N(μi, σ

2)),
but where now σ2 > 0 is unknown. Because for every fixed σ2 the assumptions of
Corollary 9.32 are satisfied, whereas ϕnat

S does not depend on σ2, it follows that
ϕnat

S has the optimality properties (A)–(D), even if σ2 is unknown.

Another aspect of the optimality of the natural selection rule is that, under
the assumptions of Theorem 9.31, it is most economical in the sense that
no other permutation invariant selection rule can have the same PCS with
a smaller common sample size. Details in this regard can be found in Hall
(1959) and Miescke (1979a).

Now we examine the minimax statement (C) in Theorem 9.31 in more de-
tail. For a fixed permutation invariant set A ⊆ Δk ⊆ R

k we call θ0 ∈ A a least
favorable configuration (LFC) on A for the selection rule ϕ if supθ∈A

R(θ, ϕ) =
R(θ0, ϕ).

Proposition 9.35. Assume the assumptions of Corollary 9.32 are satisfied,
Δ is an interval, and the zero–one loss L0,1 is used for the natural selection
rule ϕnatS based on S. Suppose that Fϑ(t) := Pϑ(T ≤ t), t ∈ R, is continuous
for every ϑ ∈ Δ. For every δ > 0, ϑ∗ ∈ Δ, and ϑ∗ − δ ∈ Δ we set

Δk
r,δ = {θ : θ ∈ Δk, θ[k] = · · · = θ[k−r+1] ≥ θ[k−r] + δ}.

Then

sup
θ∈Δk

r,δ

R(θ, ϕnatS ) (9.45)

= 1− r[infϑ∗,ϑ∗−δ∈Δ

∫
F k−r
ϑ∗−δ(T (x))F r−1

ϑ∗ (T (x))Pϑ∗(dx)].

Proof. Apply Proposition 9.7 and use the fact that Fϑ is stochastically
nondecreasing in ϑ; see Theorem 2.10.

In location models the above minimization can be carried out explicitly.
As an example we consider the normal distribution.

Example 9.36. We reconsider the selection problem of Example 9.8 and establish
the minimaxity of the natural selection rule in the indifference zone approach. The
model is (Rk,Bk,

⊗k
i=1 N(μi, σ

2)) and the loss is the L0,1. Then

Δk
r,δ = R

k
r,δ = {μ : μ ∈ R

k, μ[k] = · · · = μ[k−r+1] ≥ μ[k−r] + δ},

where δ > 0 is fixed given. As Δk
r,δ is permutation invariant, by Theorem 9.31 (C)

the natural selection rule ϕnat is minimax on Δk
r,δ. As we use the zero–one loss we

may operate with Pcs(μ, ϕ
nat). It follows from (9.23),

infμ∈R
k
r,δ

PN,cs(μ, σ
2, ϕnat) = r infμ∈R

k
r,δ

∫ ∏k−1

i=1
Φ((μ[k] − μ[i])/σ + s)ϕ(s)ds,

= r

∫
Φk−r(

δ

σ
+ s)Φr−1(s)ϕ(s)ds, μ ∈ R

k
r,δ. (9.46)
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This means that every vector for which for any real number ν, k−r components have
the value ν−δ and the remaining r have the value ν, is a least favorable configuration
on R

k
r,δ. We may also consider the probability of a correct selection for μ ∈ R

k. Then
ϕnat is again minimax and by (9.23) the minimax value for the risk or the maximin
value for PN,cs is given by

infμ∈Rk PN,cs(μ, σ
2, ϕnat) = infμ∈Rk

∫ ∏k−1

i=1
Φ((μ[k] − μ[i])/σ + s)ϕ(s)ds

=

∫
Φk−1(s)ϕ(s)ds =

1

k
.

The above proposition can be utilized to find the LFC of ϕnatS on Δδ = {θ :
θ[k] ≥ θ[k−1] + δ, θ ∈ Δk}. This may still be a difficult task as one has to go
through all ϑ∗ ∈ Δ. Once the LFC has been found then the minimum common
sample size n can be determined for which the natural selection rule meets
the P ∗-condition on Δδ, similarly as it has been done in Example 9.8. The
LFC of the natural selection rule for stochastically ordered families has been
established in Bofinger (1976). In an alternative approach, a lower confidence
bound on the PCS of the natural selection rule for location parameter families
with MLR has been provided by Kim (1986).

We conclude this section with some historical remarks. In the earlier times
of the development, a selection problem was usually formulated for a model
with a specific parametric family of distributions such as normal or binomial. A
selection rule was then proposed, implemented under some basic requirement
such as the P ∗-condition in Example 9.8, studied in detail, and perhaps also
compared to other existing selection rules. Such an ad hoc rule typically selects
in terms of the largest of k estimates, based on an optimal single-sample
estimator for the parameter of interest, and is then simply called the natural
selection rule. This works well and indeed often leads to optimal selection
rules. According to Corollary 9.32 this is the case when the populations are
independent, the underlying family of distributions has monotone likelihood
ratio (see Definition 2.11), and the k samples sizes are equal. However, in other
settings this concept is questionable. Let us briefly look at two scenarios in
support of the decision theoretic approach.

In the first scenario, suppose that the sample sizes are equal but there is
no MLR. This occurs, for example, if the underlying family of distributions is
a location parameter family (Qθ)θ∈R with Lebesgue densities qϑ(t) = q(t−ϑ),
t, ϑ ∈ R, where q(t) > 0, t ∈ R, but q is not log-concave; see Proposition
2.20. In this case the statement of Corollary 9.32 is no longer valid. On the
other hand, as the family (Qθ)θ∈R is stochastically nondecreasing (see Exam-
ple 2.8), Proposition 9.35 can be easily extended to the present case. This
means that the “natural selection rule” based on S from Corollary 9.32 can
be implemented under the P ∗-condition in the indifference zone approach.
Again, however, there is no guarantee of optimality. Selection rules that may
be reasonable could be based on other sufficient statistics or functions of them,
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especially estimators of θ that are optimal in some way. References to non-
parametric selection rules for location parameter families can be found on
p. 68 in Bechhofer, Santner, and Goldsman (1995), and at the end of this
chapter.

In the second scenario, suppose that the sample sizes are not all equal, but
MLR is present. Here we restrict ourselves to the normal means case with a
common variance. The first who cast doubt on using the “natural selection
rule” based on the sample means under unequal sample sizes were Lam and
Chiu (1976). They showed that if the means are close together its PCS de-
creases if more observations are taken from the best population. There is a
simple explanation for this effect. Using reduction by sufficiency (see (9.12)),
the case of unequal sample sizes is equivalent to that of finding the popula-
tion with largest mean among k normal distributions with different variances.
However, such distributions are not comparable in terms of the stochastic
semiorder of distributions. A discussion of the behavior of the natural selec-
tion rule of not being most economical, and further references, can be found
in Tong and Wetzell (1979), Bofinger (1985), and Gupta and Miescke (1988).
In the latter it has been shown that the natural selection rule is not minimax
under the zero–one loss if the sample sizes are not equal, whereas the no-data
rule that selects each population with probability 1/k is minimax. This is
explained in detail in the next section.

Miescke and Park (1999) have studied the performance of the natural
selection rule under normality, i.e., in the setting of Example 9.1. It turns out
that under the linear loss (9.26) and a specific prior, utilizing (9.33), it is the
unique, up to Lebesgue null sets, Bayes rule and thus admissible. On the other
hand, under the zero–one loss it could not be shown whether it is admissible.
The method of Blyth (1951), in the form given in Berger (1985), has been
utilized. A minimum average risk (generalized Bayes) selection rule has also
been considered where the weight measure is the Lebesgue measure.

9.2.3 Point Selections in Unbalanced Models

In this section we consider selection rules for the unbalanced selection model
(9.5). Theorem 9.31 is no longer applicable here as the permutation invariance
in (9.35) is not given. Now the samples from the k populations contain different
types of information on the respective parameters. If we turn to the Bayes
approach, then there is an opportunity to counterbalance this by switching
to a suitable prior which adjusts the posterior risk accordingly. Such a prior,
however, would no longer be permutation invariant. The alternative approach
of switching to a suitable loss function (see Remark 3.30), is not pursued here.

To sketch the construction of such a suitable prior we recall that in the
proof of part (A) in Theorem 9.31 we had L(V,Θ) = Q⊗Π, where Π was a
discrete permutation invariant prior and the stochastic kernel Q was permu-
tation invariant and DT. The Bayes risk in this setting is
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r(Π,ψ) =
∑k

i=1
Eψi(V )L(Θ|i)

=
∑k

i=1

∫
[
∫
ψi(t)L(θ|i)Π(dθ|t)](QΠ)(dt).

Under the above conditions on Q and Π, by Lemma 9.18, the posterior Π
turned out to be permutation invariant and DT. The crucial point in the proof
of (A) in Theorem 9.31 was the minimization of i �→

∫
L(θ|i)Π(dθ|t) which

was taken care of by Lemma 9.27. If now Q fails to be permutation invariant
and DT, then we may try to find a suitable prior Π, no longer permutation
invariant, such that the posterior Π is permutation invariant and DT. If such
a prior can be found, then Lemma 9.27 can be utilized in the search for a
Bayes selection rule.

Theorem 9.37. Let Δ ⊆ R be a Borel set. Suppose that for the model Ms

in (9.2) there exists a sufficient statistic V :
⊗k

i=1 Xi →m R
k and that for

Qθ = Pθ ◦ V −1 the family Q = (Qθ)θ∈Δk is a stochastic kernel. Suppose that
there is a prior Π ∈ P(BΔk) such that the posterior ΛQ for the reduced model
in (9.27) admits the representation

ΛQ(B|t) = K(B|S(t)), QΠ-a.s., B ∈ BΔk , (9.47)

with a stochastic kernel K : Bk ×Δk →k [0, 1] and a statistic S : R
k → Δk. If

K is permutation invariant and DT, and the loss function satisfies (9.42) and
(9.43), then the natural selection based on S(V ) is a Bayes selection rule.

Proof. The statement follows from Proposition 9.10 and Lemma 9.27.

We consider now the problem of finding priors that satisfy the condition
in Theorem 9.37 for one-parameter exponential families. Let (Pθ)θ∈Δ be an
exponential family on (X ,A) with natural parameter θ and generating statistic
T , where Δ ⊆ R. The set Δ is convex and thus an interval. We assume that
the variance of T is positive and that Δ has an inner point, which are the
standard assumptions (A1) and (A2), respectively. We recall the family of
conjugate priors introduced in Section 1.2. For a σ-finite measure τ on Δ we
set

Υ = {(a, b) : a, b ∈ R, L(a, b) = ln(
∫

exp{θb− aK(θ)}τ (dθ)) <∞},

πa,b(θ) = exp{bθ − aK(θ)− L(a, b)}, θ ∈ Δ ⊆ R, (a, b) ∈ Υ ,

Πa,b(B) =
∫
B

exp{bθ − aK(θ)− L(a, b)}τ (dθ), B ∈ BΔ, (a, b) ∈ Υ.

From Proposition 1.4 we know that P⊗n
θ is again an exponential family,

now with generating statistic T⊕n. The conjugate priors are againΠa,b, (a, b) ∈
Υ ; see Lemma 1.35. According to (1.43) the posterior distributions under these
priors are given by
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Πn,a,b(B|x) =
∫
B

πa+n,b+T⊕n(x)(θ)τ (dθ) (9.48)

= Πa+n,b+T⊕n(x)(B), B ∈ BΔ, x ∈ Xn, (a, b) ∈ Υ,

where by Lemma 1.35 for every (a, b) ∈ Υ it holds

(a+ n, b+ T⊕n(x)) ∈ Υ, μ⊗n-a.e. (9.49)

For k populations we set θ = (θ1, ..., θk), a = (a1, ..., ak), b = (b1, ..., bk),
and n = (n1, ..., nk), and consider the selection model and the prior, respec-
tively,

Mse = (Xk
i=1Xni ,

⊗k
i=1 A⊗ni , (

⊗k
i=1 P

⊗ni

θi
)θ∈Δk), (9.50)

Πa,b =
⊗k

i=1 Πai,bi
, (a, b) ∈ Υ k.

As the populations, as well as the parameters under the prior, are independent
the posterior distribution, given X = x, for any x ∈ Xk

i=1Xni , turns out to be

Πa+n,b+T⊕(x) =
⊗k

i=1 Πai+ni,bi+Ti,⊕ni
(xi), (a, b) ∈ Υ k, (9.51)

where T⊕(x) = (T1,⊕n1(x1), ..., Tk,⊕nk
(xk)) with Ti,⊕ni

(xi) =
∑ni

j=1 T (xi,j),
i = 1, ..., k.

In the next proposition we study Bayes selection rules for the above ex-
ponential selection model and its conjugate priors. Let P be the stochastic
kernel (

⊗k
i=1 P

⊗ni

θi
)θ∈Δk .

Proposition 9.38. For the selection model (9.50) a selection rule ψ is Bayes
with respect to the prior Πa,b =

⊗k
i=1 Πai,bi

, (a, b) ∈ Υ k, if and only if

PΠa,b({x :
∑

i∈Mpt
Πa,b

(x)
ψi(x) = 1, x ∈ Xk

i=1Xni}) = 1,

where Mpt
Πa,b

(x) denotes the set

arg min
i∈{1,...,k}

∫
L(θ, i) exp{〈b+ T⊕(x), θ〉 −

∑k

j=1
(aj + nj)K(θj)}τ⊗k(dθ).

Proof. The statement follows from Proposition 9.10, (9.51), and (9.48),
as the factor

exp{−
∑k

j=1
L(aj + nj , bj + Tj,⊕nj

(xj))}

is independent of θ and therefore irrelevant for the minimization.

The next problem deals with the question of under which circumstances
the posterior

⊗k
i=1 Πai+ni,bi+ti satisfies the conditions in Theorem 9.37.
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Problem 9.39.∗ Suppose that

a1 + n1 = · · · = ak + nk =: a0, (9.52)

and set Υa0 = {b : (a0, b) ∈ Υ}. Then the kernel

K(·|t) = (
⊗k

i=1 Πa0,ti)(·), t = (t1, ..., tk) ∈ Υ k
a0 , (9.53)

is permutation invariant and DT.

Now we are ready to deal with the selection model for unequal sample
sizes.

Theorem 9.40. For the selection model (9.50), suppose that (9.52) holds for
some a0 and b1, ..., bk ∈ Υa0 are fixed. If the loss function satisfies (9.42) and
(9.43), then the natural selection rule based on

W := (b1 + T1,⊕n1 , ..., bk + Tk,⊕nk
)

is a Bayes selection rule for the selection model (9.50) under the prior⊗k
i=1 Πai,bi

. In particular, if b1 = · · · = bk, then selecting in terms of the
largest Ti,⊕ni

, i = 1, ..., k, is a Bayes selection rule.

Proof. For Υa0 = {b : (a0, b) ∈ Υ} it holds bi + Ti,⊕ni
∈ Υa0 , μ⊗ni-a.e.,

by (9.49). Then S ∈ Υ k
a0

holds μ⊗(n1+···+nk)-a.e., so that S and K in (9.53)
satisfy (9.47). By Problem 9.39 the kernel K is permutation invariant and DT.
An application of Theorem 9.37 with S(V ) = W completes the proof.

When dealing with exponential families that are not given in the natural
form a direct application of Theorem 9.37 could also be used instead of first
transforming to natural parameters and then using Theorem 9.40.

Example 9.41. Let Xi ∼ B(ni, pi), pi ∈ (0, 1), i = 1, ..., k, be independent bino-
mial random variables, and set X = (X1, ..., Xk). Suppose we want to select from
the populations B(ni, pi), pi ∈ (0, 1), i = 1, ..., k, one with the largest parameter
p[k] = max {p1, ..., pk}. Hence our selection model is

(Rk,Bk, (
⊗k

i=1 B(ni, pi))p∈(0,1)k).

Let the prior Π of the random version of the parameter p = (p1, ..., pk) be the
product of conjugate priors; that is, Π =

⊗k
i=1 Be(αi, βi) with αi, βi > 0, i = 1, ..., k.

Using this fact and Example 1.45 we get that under this prior the posterior, given
X1 = x1, ..., Xk = xk, is

Π(·|x) =
⊗k

i=1 Be(αi + xi, βi + ni − xi) =
⊗k

i=1 Be(si, αi + βi + ni − si),

where x = (x1, ..., xk) and si = αi + xi, i = 1, ..., k. For any fixed δ > n[k] let the
parameters ai, βi be chosen as to satisfy

αi + βi + ni = δ, i = 1, ..., k. (9.54)

Then
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Π(·|x) =
⊗k

i=1 Be(αi + xi, δ − (αi + xi)). (9.55)

As the Lebesgue density bes,δ−s of Be(s, δ − s)satisfies

bes,δ−s(p) ∝ I(0,1)(p)p
s−1(1− p)δ−s−1

we get that the Lebesgue density of Qθ =
⊗k

i=1 Be(αi + xi, δ − (αi + xi)) with
θi = αi + xi satisfies the condition in Example 9.24 for Si(xi) = αi + xi. Problem
9.19 implies that Π(·|x) in (9.55) has the DT property. Theorem 9.37 yields that
the natural selection rule based on S(x1, .., xk) = (α1 + x1, ..., αk + xk) is a Bayes
selection rule for the prior Π =

⊗k
i=1 Be(αi, βi) if the parameters αi, βi satisfy

(9.54). In particular, if α1 = · · · = αk, then selecting in terms of the largest xi,
i = 1, ..., k, is a Bayes selection rule. Apparently, for unequal sample sizes, these
selection rules differ dramatically from the natural selection rule which selects in
terms of the largest value of xi/ni, i = 1, ..., k. These and further results for selection
rules in the binomial case can be found in Abughalous and Miescke (1989).

Problem 9.42. Compare the normal means selection problem in Example 9.14
with the binomial selection problem in Example 9.41.

We now explain, following Gupta and Miescke (1988), the loss of min-
imaxity under the zero–one loss of the natural selection rule for k normal
populations with a common variance σ2 > 0 when the sample sizes n1, ..., nk
are unequal. Technically, these parameters appear only in the form σ2/ni,
i = 1, ..., k, and thus we consider the more general selection model

MNormal4 = (Rk,Bk, (
⊗k

i=1 N(μi, σ2
i ))μ∈Rk), (9.56)

where σ2
i > 0, i = 1, ..., k. In practical applications, however, one usually deals

with the special case of σ2
i = σ2/ni, i = 1, ..., k.

The following auxiliary result is due to Tong and Wetzell (1979), but
formulated and proved here differently.

Lemma 9.43. The function

H(γ1, ..., γk−1) =
∫ ∏k−1

i=1
Φ(γiz)ϕ(z)dz

is strictly increasing in γi > 0, i = 1, ..., k − 1.

Proof.
∂

∂γ1
H(γ1, ..., γk−1) =

∫ ∏k−1

i=2
Φ(γiz)zϕ(γ1z)ϕ(z)dz.

Combining the two ϕ-functions, and then integrating by parts, leads to

∂

∂γ1
H(γ1, ..., γk−1) =

1√
2π

1
1 + γ2

1

∫
M(y)ϕ(y)dy,

where
M(y) =

∂

∂y

∏k−1

i=2
Φ(

γi√
1 + γ2

1

y), y ∈ R.

Obviously, M(y) > 0, y ∈ R.
Now we state the following result.
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Theorem 9.44. For the model in (9.56) consider the problem of selecting a
population with the largest mean under the zero–one loss. The natural selection
rule ϕnat is minimax if and only if σ2

1 = σ2
2 = · · · = σ2

k. The minimax value
of the problem is 1− 1/k.

Proof. Let σ2
1 = σ2

2 = · · · = σ2
k. We know already from Example 9.36 that

ϕnat is minimax, and that the supremum of the risk of ϕnat is 1− 1/k.
Suppose now that min1≤i≤k σ

2
i < max1≤i≤k σ

2
i , and assume without loss of

generality that σ2
k = max1≤i≤k σ

2
i . Then for μn = (0, ..., 0, 1/n) by Proposition

9.7,

lim
n→∞

R(μn, ϕnat) = 1− lim
n→∞

∫ ∏k−1

i=1
Φ(
z + 1/n

σi
)

1
σk

ϕ(
z

σk
)dz

= 1−
∫ ∏k−1

i=1
Φ(

z

σi
)

1
σk

ϕ(
z

σk
)dz > 1− 1/k,

where the inequality follows from Lemma 9.43. On the other hand, the no-data
rule φ = (1/k, ..., 1/k) satisfies supμ R(μ, φ) = 1 − 1/k, and thus the natural
selection rule ϕnat is not minimax.

Now we show that the minimax value of the problem remains 1 − 1/k
under min1≤i≤k σ

2
i < max1≤i≤k σ

2
i = σ2

k. Assume without loss of generality
that σ1 = min1≤i≤k σ

2
i , and consider the two models

M = (Rk,Bk, (
⊗k

i=1 N(μi, σ2
1))μ∈Rk)

M̃ = (Rk,Bk, (
⊗k

i=1 N(μi, σ2
i ))μ∈Rk).

Then M̃ is a randomization of M, see Problem 4.7. Hence the corresponding
minimax values satisfy

inf
ϕ

sup
μ

RM(μ, ϕ) ≤ inf
ϕ

sup
μ

RM̃(μ, ϕ).

ϕnat is minimax in the balanced model M and supμ RM(μ, ϕ) = 1 − 1/k.
On the other hand, the no-data rule φ = (1/k, ..., 1/k) satisfies RM̃(μ, φ) =
1− 1/k, and thus the proof is completed.

For normal populations with unequal variances, sample size allocations
have been studied in Dudewicz and Dalal (1975) and Bechhofer, Hayter, and
Tamhane (1991). Nonminimaxity of natural decision rules under heteroscedas-
ticity has been shown in Dhariyal and Misra (1994). Selection of the best of
k exponential families has been studied by Abughalous and Bansal (1995).
Although restricted to families with a quadratic variance function, many of
their results can be extended to general one-parameter exponential families.
Selecting the best treatment in a generalized linear model has been studied
in Bansal and Miescke (2006).
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9.2.4 Point Selections with Estimation

After a population has been selected some natural follow-up questions may
arise. The first is how large the parameter of the selected population is. A
second is how far the parameter of the selected population is away from the
largest parameter of the k populations. A third is how large the largest pa-
rameter of the k populations is. In this section we mainly deal with the first
question, and briefly with the second. References for work on the third ques-
tion can be found in Gupta and Panchapakesan (1979). Answers to the first
question have been provided for specific statistical models by Cohen and Sack-
rowitz (1988), Gupta and Miescke (1990, 1993), Bansal and Miescke (2002,
2005), and Misra, van der Meulen, and Branden (2006). All of these works
have been done in the Bayes approach which is also utilized here. We deal
slightly more generally with a functional of the parameters rather than with
the parameters.

We start with the general selection model (9.2) and assume that a func-
tional κ : Δ → R is given. The new decision space is Dpt,es = {1, ..., k} × R

which we equip with the σ-algebra D = P({1, ..., k}) ⊗ B. For any deci-
sion D : D × (Xk

i=1Xi) →k [0, 1] and x = (x1, ..., xn) ∈ Xk
i=1Xi we set

ϕi(x) = D({i} × R|x), and for any fixed kernel K : B× (Xk
i=1Xi) →k [0, 1] we

set

Ki(E|x) =

⎧⎨
⎩

1
ϕi(x)D({i} × E|x) if ϕi(x) > 0

K(E|x) if ϕi(x) = 0
, E ∈ B,

i = 1, ..., k. Obviously, the Ki : B× (Xk
i=1Xi) →k [0, 1] are stochastic kernels,

ϕ = (ϕ1, ..., ϕk) is a point selection rule, and it holds

D(C × E|x) =
∑k

i=1
ϕi(x)δi(C)Ki(E|x), C ⊆ {1, ..., k}, E ∈ B. (9.57)

It is clear that conversely, every point selection rule ϕ, along with a sequence
of kernels K1, ...,Kk, leads to a decision D that is defined by (9.57).

Let A : Δk ×{1, ..., k} → R+ and B : R×R → R+, and introduce the loss
function

L(θ, (i, t)) = A(θ, i) +B(κ(θi), ti), θ ∈ Δk, i = 1, ..., k, t ∈ R
k, (9.58)

where θ = (θ1, ..., θk) and t = (t1, ..., tk).

Example 9.45. For the loss function in (9.58) one could take for part A the
zero–one loss from (9.15) or the linear loss from (9.26). For part B one could take
B(θi, ti) = |κ(θi)− ti|q, i = 1, ..., k, for some fixed q > 0.

From (9.57) we see that the risk of a decision D is

R(θ,D) =
∑k

i=1
A(θ, i)

∫
ϕi(x)Pθ(dx)

+
∑k

i=1

∫
ϕi(x)[

∫
B(κ(θi), ti)Ki(dti|x)]Pθ(dx), θ ∈ Δk.
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The special structure of this risk allows us to minimize the risk, as a function
of D, in two consecutive steps. At any fixed x ∈ Xk

i=1Xi, in the first step best
estimators K0

i (·|x) for i = 1, ..., k are determined, provided there are any. Set

Ci(θ, x) =
∫

(B(κ(θi), ti)K0
i (dti|x), i = 1, ..., k,

and consider
arg min
i∈{1,...,k}

[A(θ, i) + Ci(θ, x)], θ ∈ Δk.

As this set depends on θ we cannot construct an optimal selection rule ϕ
by concentrating the discrete distribution ϕ(x) on this set. To overcome the
dependence on θ we use the Bayes approach. Suppose that Δ ⊆ R is a Borel
set, κ is the identical mapping, and the nonnegative functions A and B in
(9.58) are measurable. We assume that the populations are independent so
that Pθ =

⊗k
i=1 Pi,θi

. Suppose that Pi = (Pi,θi
)θi∈Δ is a stochastic kernel,

i = 1, ..., k. Let the prior Π on (Δk,B⊗k
Δ ) be given by Π =

⊗k
i=1 Πi, so that

the posteriors of the populations are determined by (9.28). Due to the inde-
pendence of the populations and priors we may restrict ourselves to estimators
Ki that depend on x only through xi, i = 1, ..., k. The Bayes risk is given by

r(Π,D) =
∑k

i=1
A(θ, i)

∫
[
∫
ϕi(x)Pθ(dx)]Π(dθ)

+
∑k

i=1

∫
[
∫
ϕi(x)(

∫
B(θi, ti)K(dti|x))Pθ(dx)]Π(dθ)

=
∑k

i=1
A(θ, i)

∫
[
∫
ϕi(x)

⊗k
i=1 Πi(dθi|xi)]

⊗k
j=1(PjΠj)(dxj)

+
∑k

i=1

∫
[
∫
ϕi(x)(

∫
B(θi, ti)K(dti|x))(

⊗k
i=1 Pi,θi

)(dx)]Πi(dθi).

As we have seen in (3.5) there is usually no need for considering randomized
estimators. In this regard for Bayes estimators we refer to Corollary 3.40. Let,
for every i = 1, ..., k, S0

i : Xi →m R be a nonrandomized estimator that
minimizes the posterior risk, so that PiΠi-a.s. for every Ki it holds

∫
B(θi, S0

i (xi))Πi(dθi|xi) ≤
∫

[
∫
B(θi, ti)Ki(dti|x)]Πi(dθi|xi) (9.59)

=
∫

[
∫
B(θi, ti)Πi(dθi|xi)]Ki(dti|x).

Then for every decision D we have

r(Π,D) ≥
∑k

i=1

∫
ϕi(x)[

∫
(A(θ, i)

⊗k
j=1 Πj(dθj |xj) (9.60)

+
∫
B(θi, S0

i (xi))Πi(dθi|xi)]
⊗k

j=1(PjΠj)(dxj).
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Introduce, for i = 1, ..., k,

Vi(x) =
∫
A(θ, i)

⊗k
j=1 Πj(dθj |xj) +

∫
B(θi, S0

i (xi))Πi(dθi|xi), (9.61)

and let
Mpt,es

Π (x) = arg min
i∈{1,...,k}

Vi(x), x ∈ Xk
i=1Xi. (9.62)

Fix any mapping p0 : Xk
i=1Xi →m {1, ..., k} with p0(x) ∈ Mpt,es

Π (x), x ∈
Xk
i=1Xi. Then

Vp0(x)(x) = min
i∈{1,...,k}

Vi(xi), x ∈ Xk
i=1Xi. (9.63)

Finally, let the nonrandomized decision d0 : Xk
i=1Xi → {1, ..., k}×R

k be given
by

d0(x) = (p0(x), S0
1(x1), ..., S0

k(xk)), x ∈ Xk
i=1Xi. (9.64)

Then S0
p0(x)(x) is the estimator of the parameter of the selected population.

For the class of all point selections with estimation,

D0 = {D : D(C × E|x) =
∑k

i=1
ϕi(x)δi(C)Ki(E|x), C ⊆ {1, ..., k},

E ∈ B, ϕ : Xk
i=1Xi →m Sc

k, Ki : B×Xi →k [0, 1], i = 1, ..., k},

the subsequent statement follows directly from (9.60).

Theorem 9.46. Assume that Δ ⊆ R is a Borel set, the family Pi = (Pi,θi
)θi∈R

is a stochastic kernel, i = 1, ..., k, and A and B from (9.58) are measurable. If
there are estimators S0

1 , ..., S
0
k that satisfy (9.59), then for every point selection

rule ϕ0 that satisfies
∑k

i=1
IMpt,es

Π (x)(i)ϕ
0
i (x) = 1, PΠ-a.s., (9.65)

the decision

D0(C × E|x) =
∑k

i=1
ϕ0
i (x)δi(C)δS0

i (xi)(E),

C ⊆ {1, ..., k}, E ∈ B, x ∈ Xk
i=1Xi, satisfies r(Π,D0) ≤ r(Π,D) for every

decision D ∈ D0. Especially the nonrandomized decision d0 in (9.64) satisfies
r(Π, d0) ≤ r(Π,D).

As we have seen above, each of the decisions D0 and d0 has to be evaluated
at X = x in two consecutive steps. First one has to find the Bayes estimators
S0

1(x), ..., S0
k(x). Then V1(x), ..., Vk(x) are determined from which an optimal

point selection ϕ0(x) can be derived. Hence we see that rather than estimating
after selection, the Bayes approach leads to selecting after estimation. The
statement of the theorem is taken from Gupta and Miescke (1990), which is
a straightforward extension of the work by Cohen and Sackrowitz (1988).

The following example is taken from Gupta and Miescke (1990), where the
case of k independent normal populations has been studied in detail.
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Example 9.47. In the setting of Examples 9.1 and 9.14, let us consider Bayes si-
multaneous selection and estimation rules under the same prior Π =

⊗k
i=1 N(νi, δ

2
i )

with νi ∈ R and δ2
i > 0, i = 1, ..., k. Let the loss function be given by

L1(μ, (i, ti)) = a(μ[k] − μi) + ρ(μi − ti), μ ∈ R
k, ti ∈ R, i = 1, ..., k,

where a > 0 is fixed given and ρ is a nonnegative function with ρ(−x) = ρ(x),
ρ(0) = 0, and ρ is nondecreasing for x > 0. We know from Anderson’s lemma (see
Proposition 3.62, or (3.45)) that for every Y ∼ N(μ, σ2) the function a→ Eρ(Y −a)
attains its minimum at μ; that is, that

μ ∈ arg min
a∈R

Eρ(Y − a). (9.66)

We know from Example 9.14 that at any x = (x1, ..., xk) with xi = (xi,1, ..., xi,ni) ∈
R

ni , i = 1, ..., k,

Π(·|x) =
⊗k

i=1 Πi(·|xi) =
⊗k

i=1 N
(
S0

i (xi), τ
2
i

)
, where

τ2
i =

σ2
i δ

2
i

σ2
i + niδ2

i

, S0
i (xi) =

σ2
i

σ2
i + niδ2

i

νi +
niδ

2
i

σ2
i + niδ2

i

1

ni

∑ni

j=1
xi,j ,

i = 1, ..., k. By (9.66) the S0
i are the Bayes estimators in (9.60) and

∫
B(si, S

0
i (xi))Πi(dsi|xi) =

∫
ρ(si − S0

i (xi))ϕS0
i (xi),τ

2
i
(si)dsi

=

∫
ρ(

si

τi
)ϕ0,1(si)dsi.

Hence the statistics Vi in (9.61) are

Vi(x) =

∫
a[ max

j=1,...,k

sj − S0
j (xj)

τj
− si − S0

i (xi)

τi
]N⊗k(0, 1)(ds1, ..., dsk)

+

∫
ρ(

si

τi
)ϕ0,1(si)dsi, i = 1, ..., k.

The optimal nonrandomized decision d0 is then determined by (9.63) and (9.64).

Some interesting special cases of the above example are considered in the
following problems.

Problem 9.48.∗ In Example 9.47, let σ2
1 = · · · = σ2

1 = σ2, say, and in the loss
function L1 let ρ(t) = |t|, t ∈ R. Consider the following three special cases. (a) The
limiting case of the prior where δ2

i → ∞, i = 1, ..., k. This leads to Bayes decisions
under a noninformative prior. (b) The case where the prior variances are proportional
to the respective variances of the sample means, i.e., where δ2

i = bσ2/ni, i = 1, ..., k,
for some fixed b > 0. (c) The case where the posterior is permutation invariant and
DT, that is, where (9.34) holds.

Problem 9.49. In Example 9.47, consider the same three special cases of Problem
9.48 for σ2

1 = · · · = σ2
1 = σ2, but now under the loss function

L2(μ, (i, ti)) = a(μ[k] − μi)
2 + (μi − ti)

2, μ ∈ R
k, ti ∈ R, i = 1, ..., k.
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The following example is taken from Gupta and Miescke (1993), where the
case of k binomial populations has been studied in detail.

Example 9.50. In the setting of Example 9.41, let us consider Bayes simultane-
ous selection and estimation rules under the same prior Π =

⊗k
i=1 Be(αi, βi) with

αi, βi > 0, i = 1, ..., k. Let the loss function be given by

L(p, (i, ti)) = p[k] − pi + b(pi − ti)
2, p ∈ (0, 1)k, ti ∈ R, i = 1, ..., k,

where b > 0 is fixed given. It follows from Example 1.45 that

Π(·|x) =
⊗k

i=1 Πi(·|xi) =
⊗k

i=1 Be(αi + xi, βi + ni − xi).

Recall that the expectation and variance of Be(α, β) are

α

α + β
and

αβ

(α + β)2(α + β + 1)
,

respectively. For i ∈ {1, ..., k}, under the given loss, the Bayes estimator S0
i and its

associated posterior risk
∫
B(pi, S

0
i (xi))Πi(dpi|xi) are the conditional expectation

and, up to the factor b, the conditional variance.

S0
i (xi) =

αi + xi

αi + βi + ni
,

∫
B(pi, S

0
i (xi))Πi(dpi|xi) = b

(αi + xi)(βi + ni − xi)

(αi + βi + ni)2(αi + βi + ni + 1)
.

Hence the statistic Vi in (9.61) is given by

Vi(x) =

∫
p[k]

(⊗k
j=1 Be(αj + xj , βj + nj − xj)

)
(dp1, ..., dpk)

− αi + xi

αi + βi + ni
+ b

(αi + xi)(βi + ni − xi)

(αi + βi + ni)2(αi + βi + ni + 1)
.

As the first term is independent of i the point selection rule ϕ0(x) from (9.65) is
concentrated on

arg max
i∈{1,...,k}

(αi + xi)[(αi + βi + ni)(αi + βi + ni + 1)− b(βi + ni − xi)]

(αi + βi + ni)2(αi + βi + ni + 1)
.

Together with S0
1 , ..., S

0
k the optimal decision rule d0(x) in (9.64) is completely de-

termined.

Some interesting special cases and modifications of the above example are
considered in the following problems.

Problem 9.51. In Example 9.50, suppose that n1 = · · · = nk, α1 = · · · = αk,
and β1 = · · · = βk hold altogether. Then the point selection ϕ0 turns out to be the
natural selection rule based on the identity.

Problem 9.52. In Example 9.50, examine the special case where b > αi + βi +
ni +1, i = 1, ..., k. If all k estimates are close to zero, then ϕ0(x) would favor smaller
estimates because of a smaller posterior risk due to estimation.
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Problem 9.53.∗ In Example 9.50, replace the loss function by

L∗(p, (i, ti)) = p[k] − pi + b
(pi − ti)

2

pi(1− pi)
, p ∈ (0, 1)k, ti ∈ R, i = 1, ..., k,

and derive the Bayes simultaneous selection and estimation rules for the same prior
Π =

⊗k
i=1 Be(αi, βi) with αi, βi > 0, i = 1, ..., k.

For general linear models, Bansal and Miescke (2002) have derived Bayes
simultaneous selection and estimation rules for proper and improper (non-
informative) priors. The problem of finding Bayes designs (i.e., designs that
have minimum Bayes risk) within a given class of designs is also discussed
there. Similar work for comparisons with a control has been done in Bansal
and Miescke (2005).

9.3 Optimal Subset Selections

9.3.1 Subset Selections, Loss, and Risk

Subset selection rules are decisions on subsets of the set of k populations, and
a selected subset should contain good or best populations in some specified
way. If the subsets are restricted to a fixed size t, then usually it is desired
that it contain t best populations, that is, t populations that have the t largest
values of κ(θ1), ..., κ(θk) for a given functional κ : Δ→ R. This type of prob-
lem can be treated within a moderate extension of the framework of Section
9.2.2, as shown later on. Slightly more involved is the problem of partitioning
the k populations into q groups, of fixed sizes t1, ..., tq, of increasingly better
populations, which has been treated under the assumption of DT by Eaton
(1967a). Minimax results for problems of this type can be found in Bansal,
Misra, and van der Meulen (1997).

In this section we consider the selection of a subset of populations that
may also be of random size. Here several goals are reasonable. The classical
approach, due to Gupta (1956, 1965), is to select a nonempty subset, of prefer-
ably small size, that contains a best population with a probability of at least
P ∗, where P ∗ ∈ (1/k, 1) is fixed given.

In subset selection problems where the subset size may be random the
decision space is given by

Dsu = {A : A ⊆ {1, ..., k}, A �= ∅},

where a decision for A ∈ Dsu means that exactly the populations with i ∈ A
are selected. The decision space Dsu consists of 2k − 1 elements.

Given the model Ms in (9.2) we call every stochastic kernel K : P(Dsu)×
Xk
i=1Xi →k [0, 1] a subset selection rule. Putting ϕA(x) = K({A}|x) every

subset selection rule can be represented, analogously to (9.13), by



548 9 Selection

ϕA : Xk
i=1Xi →m [0, 1], A ∈ Dsu,

∑
A∈Dsu

ϕA(x) = 1, x ∈ Xk
i=1Xi,

or equivalently by ϕ = (ϕA)A∈Dsu
: Xk

i=1Xi →m Sc
2k−1.

It is clear that there is a trade-off between the probability of a best popu-
lation being included in a selected subset A and the size |A| of A. Several loss
functions are presented below that are suitable for handling this. For A ∈ Dsu,
θ ∈ Δk, κ[k](θ) = max{κ(θ1), ..., κ(θk)}, and a fixed c > 0, let

L1a(θ,A) =
∑

i∈A
[κ[k](θ)− κ(θi)], L1b(θ,A) =

1
|A|L1a(θ,A), (9.67)

L2(θ,A) = κ[k](θ)−max
i∈A

κ(θi) + c |A| ,

L3(θ,A) =
∑

i∈A
[κ[k](θ)− κ(θi)− ε],

L4a(θ,A) = c |A| − I{κ[k](θ)}(max
i∈A

κ(θi)),

L4b(θ,A) = c |A| −
∑

i∈A
I{κ[k](θ)}(κ(θi)),

L5(θ,A) =
∑k

i=1
[l1(θ, i)IA(i) + l2(θ, i)IA(i)], l1, l2 ≥ 0.

From the structure of each of these loss functions it can be seen easily in
which particular way they are managing the trade-off mentioned above. In the
literature usually Δ ⊆ R is a Borel set and κ is the identical mapping. L1,a

and L1,b have been introduced by Deely and Gupta (1968). Goel and Rubin
(1977) have utilized L2. Miescke (1979b) has made use of L3, and L4a and
L4b appear in Gupta and Miescke (2002). The loss L4a combines the zero–
one loss for including a best population with the loss of including any more
populations. Note that the inclusion of any more than one best population, if
such a population exists, is penalized under L4a, but not under L4b. The loss
function L5 goes back to Lehmann (1957a,b, 1961). A discussion and further
references can be found in Bjørnstad (1981) and Gupta and Miescke (2002).
An alternative approach can be found in Liu (1995).

Let the loss function now be given by some L : Δk × Dsu →m R+. That
L is a measurable function of (θ,A) is equivalent to L(·, A) : Δk →m R+ for
every A ∈ Dsu. For any subset selection rule ϕ = (ϕA)A∈Dsu

the associated
risk R(θ, ϕ) under the selection model (9.2), with the stochastic kernel P =
(Pθ)θ∈Δk , is

R(θ, ϕ) =
∑

A∈Dsu

L(θ,A)
∫
ϕA(x)Pθ(dx), θ ∈ Δk.

If (Δ,BΔ) a Borel space, Π a prior, and Π the posterior, then the Bayes risk
of a subset selection rule is
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r(Π,ϕ) =
∫

R(θ, ϕ)Π(dθ)

=
∫ ∑

A∈Dsu

L(θ,A)[
∫
ϕA(x)Pθ(dx)]Π(dθ)

=
∫ ∑

A∈Dsu

ϕA(x)[
∫
L(θ,A)Π(dθ|x)](PΠ)(dx).

We call ϕ a Bayes subset selection rule if it minimizes r(Π,ϕ). Set

Msu
Π (x) = arg min

A∈Dsu

∫
L(θ,A)Π(dθ|x), x ∈ Xk

i=1Xi. (9.68)

Similarly as in the case of point selections, which has been treated in the
previous section, the following characterization of Bayes subset selections is a
direct consequence of Theorem 3.37.

Proposition 9.54. Under any loss function L : Δk × Dsu →m R+ a subset
selection rule ϕ is a Bayes subset selection rule if and only if

∑
A∈Msu

Π (x)
ϕA(x) = 1, PΠ-a.s.

It should be pointed out that under the assumptions of the proposition
above, every A ∈ Msu

Π (x) can be chosen as a nonrandomized Bayes subset
selection rule at x by simply taking ϕA(x) = 1. The extension of Proposition
9.54 to minimum average risk subset selection rules is straightforward.

Example 9.55. Let κ : Δ →m R be a given functional and consider the loss
function L4a in (9.67) for a fixed c > 0. Then by (9.68),

Msu
Π (x) = arg min

A∈Dsu

[c |A|+ Π({θ : max
i∈A

κ(θi) < κ[k](θ)}|x)].

This means that under a prior Π a Bayes subset selection rule selects in terms of
the smallest weighted average of the posterior probability of not including a best
population and the subset size.

The corresponding set Msu
Π (x) under the loss function L4b is given by

Msu
Π (x) = arg min

A∈Dsu

[(c− 1) |A|+
∑

i∈A Π({θ : κ(θi) < κ[k](θ)}|x)].

Example 9.56. Let the loss function be given by L3, where ε > 0 is fixed. Then
the set Msu

Π (x) in (9.68) turns out to be

Msu
Π (x) = arg min

A∈Dsu

∑
i∈A

∫
[κ[k](θ)− κ(θi)− ε]Π(dθ|x).

This time, in contrast to (9.33), it also depends on the term κ[k](θ) that appears in
the loss function.
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Problem 9.57.∗ Assume that
∫
|κ[k](θ)|Π(dθ) <∞. In the previous example, that

is, under the loss function L3, the following holds. The set Msu
Π (x) consists of all

nonempty sets B ⊆ {1, ..., k} with

{i :

∫
κ(θi)Π(dθ|x) >

∫
κ[k](θ)Π(dθ|x)− ε}

⊆ B ⊆ {i :

∫
κ(θi)Π(dθ|x) ≥

∫
κ[k](θ)Π(dθ|x)− ε},

as long as the set on the right-hand side is not empty. Otherwise, the set Msu
Π (x)

consists of all singletons {i0} ⊆ {1, ..., k} with
∫

κ(θi0)Π(dθ|x) = max
j∈{1,...,k}

∫
κ(θj)Π(dθ|x).

Similarly as done for point selections with (9.42) and (9.43) let us choose
now a large class of loss functions that reflect our goals of subset selection.
Again, there are two natural assumptions that are also made here. The first
is that the loss function is permutation invariant.

L(θ, uγ(A)) = L(uγ(θ), A), A ∈ Dsu, θ ∈ Δk, γ ∈ Πk, (9.69)

where uγ(θ) = (θγ(1), ..., θγ(k)) and uγ(A) = {γ(i) : i ∈ A}. The second is that
populations with larger parameter values are preferred for selections. More
precisely, we assume that for any i, j ∈ {1, ..., k} and C ⊆ {1, ..., k} with
{i, j} ∩ C = ∅,

L(θ, C ∪ {i}) ≥ L(θ, C ∪ {j}), κ(θi) ≤ κ(θj), θ ∈ Δk. (9.70)

Problem 9.58. Verify that the loss functions in (9.67) have the properties (9.69)
and (9.70).

For the above class of loss functions and permutation invariant models
with DT the following natural property of Bayes subset selections can be
established.

Proposition 9.59. Let Δ ⊆ R be a Borel set, κ(θ) = θ, and Π ∈ P(BΔk) be
a permutation invariant prior. Suppose L satisfies (9.69) and (9.70). Assume
that for the selection model Ms in (9.2) P = (Pθ)θ∈Δk is a stochastic kernel,
V : Xk

i=1Xi →m R
k a sufficient statistic, and Qθ = Pθ ◦ V −1. Assume that

Q = (Qθ)θ∈Δk , is a permutation invariant stochastic kernel that is DT at every
θ ∈ Δk and Msu

Π (x) is from (9.68). Let {i, j}, C ⊆ {1, ..., k} with {i, j} ∩C =
∅.Then PΠ-a.s.

(C ∪ {i}) ∈Msu
Π (x) and Vi(x) ≤ Vj(x) implies (C ∪ {j}) ∈Msu

Π (x).

Proof. The proof follows along the lines of the proof of Lemma 9.27. For
{i, j} ∩ C = ∅ and Vi(x) ≤ Vj(x) let Ci = C ∪ {i}, Cj = C ∪ {j}, and
V (x) = v. From (9.70) it follows that L(θ, Ci)−L(θ, Cj) = 0 if θi = θj . With
Qθ(dv)Π(dθ) = ΛQ(dθ|v)(QΠ)(dv) from (9.27) we have
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∫
[L(θ, Ci)− L(θ, Cj)]ΛQ(dθ|v)

=
∫

[L(θ, Ci)− L(θ, Cj)]I[θi,∞)(θj)ΛQ(dθ|v)

+
∫

[L(θ, Ci)− L(θ, Cj)]I[θj ,∞)(θi)ΛQ(dθ|v).

The last integral satisfies, in view of (9.69),
∫

[L(θ, Ci)− L(θ, Cj)]I[θj ,∞)(θi)ΛQ(dθ|v)

=
∫

[L(θ(i,j), Cj)− L(θ(i,j), Ci)]I[θj ,∞)(θi)ΛQ(dθ|v)

=
∫

[L(θ, Cj)− L(θ, Ci)]I[θi,∞)(θj)ΛQ(dθ|v(i,j))

≥
∫

[L(θ, Cj)− L(θ, Ci)]I[θi,∞)(θj)ΛQ(dθ|v),

where the inequality follows from (9.70) and (9.37). Therefore
∫

[L(θ, Ci)− L(θ, Cj)]ΛQ(dθ|v) ≥ 0,

and by ΛQ(dθ|v) = Π(dθ|x) the proof is completed.
For γ ∈ Πk, x ∈ R

k, and A ⊆ {1, ..., k}, we set γ(x) = (xγ(1), ..., xγ(k))
and γ(A) = {γ(i) : i ∈ A}.

Definition 9.60. We call a subset selection ϕ = (ϕA)A∈Dsu
permutation in-

variant if ϕγ(A)(x) = ϕA(γ(x)) for every γ ∈ Πk, x ∈ R
k, and A ⊆ {1, ..., k}.

Corollary 9.61. Suppose that the subset to be selected is restricted to be of
size t, say, where t is fixed given. Then under the assumption of Proposition
9.59 the natural subset selection rule ϕnatV,t which selects in term of the t largest
values of V1(x), ..., Vk(x), breaking ties with equal probabilities, is a uniformly
best permutation invariant subset selection rule.

Proof. Let t < k be fixed. Let D ⊂ {1, ..., k} with |D| = t satisfy Vi(x) ≤
Vj(x) for every i /∈ D and j ∈ D. Then by the same arguments as in the proof
of the above proposition it follows that PΠ-a.s.

D ∈ arg min
A∈Dsu,|A|=t

∫
L(θ,A)Π(dθ|x), x ∈ Xk

i=1Xi.

Thus, ϕnatV,t is a Bayes rule for every permutation invariant prior Π ∈ P(BΔk).
The rest follows as in the proof of (B) in Theorem 9.31.

Remark 9.62. A more general problem is to partition the k populations into t1
with the t1 smallest, t2 with the t2 next smallest, ..., tq with the tq largest parameters.
This can be solved analogously; see Eaton (1967a).
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According to the previous proposition Bayes selections under a permuta-
tion invariant prior are made in terms of the largest values of V1(x), ..., Vk(x).
This result is, of course, not completely satisfactory because the question re-
garding the optimal size of the selected subset remains open. Obviously, that
depends on the particular loss chosen and indeed may be a difficult problem.

To get more results on the structure of Bayes selection rules we consider
loss functions that are additive, such as L5(θ,A) in (9.67). The nonnegative
functions l1 and l2 represent losses due to the exclusion and inclusion, respec-
tively, of an individual population. Denote by

ψi(x) =
∑

A∈Dsu

IA(i)ϕA(x), x ∈ Xk
i=1Xi, (9.71)

the probability that population i is included in the selected subset of the subset
selection rule ϕ at x, i = 1, ..., k. Note that the vector of inclusion probabilities
(ψ1(x), ..., ψk(x)) of ϕ is not a probability distribution. In contrast to (9.13)
we have now the following.

Problem 9.63.∗ The inclusion probabilities in (9.71) of a subset selection rule ϕ
satisfy

∑k
i=1 ψi(x) ≥ 1. There may be more than one subset selection rule that has

the same inclusion probabilities, unless ψi(x) ∈ {0, 1}, i = 1, ..., k.

Remark 9.64. To construct subset selection rules we use the following simple fact.
If ψi : Xk

i=1Xi →m {0, 1}, i = 1, ..., k, and
∑k

i=1 ψi(x) > 0 for x ∈ Xk
i=1Xi, then

d(x) := {i : ψi(x) = 1}. (9.72)

is a nonrandomized subset selection rule.

Under the additive loss function L5 the risk of a subset selection rule ϕ
depends only on its inclusion probabilities.

Lemma 9.65. Under the additive loss function L5 in (9.67) the risk of a
subset selection rule ϕ with inclusion probabilities ψi, i = 1, ..., k, is given by

R(θ, ϕ) =
∑k

i=1
[l2(θ, i)− l1(θ, i)]Eθψi +

∑k

i=1
l1(θ, i)

=
∑k

i=1
[l2(θ, i)Eθψi + l1(θ, i)(1− Eθψi)], θ ∈ Δk.

Proof. It holds,

R(θ, ϕ) =
∑

A∈Dsu

[
∑

i∈A
l2(θ, i) +

∑
j /∈A

l1(θ, j)]
∫
ϕA(x)Pθ(dx)

=
∑k

i=1
[l2(θ, i)− l1(θ, i)]

∫ ∑
A∈Dsu

IA(i)ϕA(x)Pθ(dx) +
∑k

j=1
l1(θ, j)

=
∑k

i=1
[l2(θ, i)− l1(θ, i)]

∫
ψi(x)Pθ(dx) +

∑k

j=1
l1(θ, j).
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The problem of minimizing the risk R(θ, ϕ) has been reduced to solving k
separate testing problems, and then to comply with the requirement that the
selected subset must not be empty. Because there is no test that minimizes
both types of error probabilities, except in trivial cases (see Proposition 2.29),
we take recourse to the Bayes approach.

Suppose that (Δ,BΔ) is a standard Borel space, l1(θ, i) and l2(θ, i) are
measurable in θ, and the prior Π satisfies

∫
lm(θ, i)Π(dθ) < ∞, m = 1, 2,

i = 1, ..., k. Then by the last equation in the proof above,

r(Π,ϕ) =
∫

R(θ, ϕ)Π(dθ)

=
∫

(
∑k

i=1
ψi(x)[

∫
[l2(θ, i)− l1(θ, i)]Π(dθ|x)])(PΠ)(dx)

+
∑k

j=1

∫
l1(θ, j)Π(dθ).

Due to the additivity of the posterior risk all Bayes subset selections can be
found by first optimizing the inclusion probabilities separately at every fixed
x ∈ Xk

i=1Xi. If that leads to an empty set, then an adjustment has to be
made that is described below; see also Problem 9.57. If there exists a Bayes
solution at x ∈ Xk

i=1Xi, then there is always one with inclusion probabilities
ψi(x) ∈ {0, 1}, i = 1, ..., k, which in turn determine uniquely the selected
subset at x. Let

S<(x) = {i :
∫

[l2(θ, i)− l1(θ, i)]Π(dθ|x) < 0},

S=(x) = {i :
∫

[l2(θ, i)− l1(θ, i)]Π(dθ|x) = 0},

S>(x) = {i :
∫

[l2(θ, i)− l1(θ, i)]Π(dθ|x) > 0}.

Three cases have to be considered. The first is S<(x) �= ∅. Here the Bayes
subset selections are the sets B with S<(x) ⊆ B ⊆ S<(x) ∪ S=(x). The
second case is S<(x) = ∅ and S=(x) �= ∅. Here the Bayes subset selections
are all nonempty sets B with B ⊆ S=(x). The third case is S<(x) = ∅ and
S=(x) = ∅. Here the Bayes subset selections are all singletons {i0} ⊆ {1, ..., k}
with∫

[l2(θ, i0)− l1(θ, i0)] Π(dθ|x) = min
j∈{1,...,k}

∫
[l2(θ, j)− l1(θ, j)] Π(dθ|x).

The above findings can be summarized by stating that the set Msu
Π (x) from

(9.68) is

Msu
Π (x) = arg min

A∈Dsu

∑
i∈A

∫
[l2(θ, i)− l1(θ, i)]Π(dθ|x).
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Let now l1(θ, i) and l2(θ, i) be permutation invariant in the sense of (9.42).
Then (9.69) holds. Moreover, let −l1(θ, i) and l2(θ, i) satisfy (9.43). Then
(9.70) holds as well. Therefore, according to Proposition 9.59, under the as-
sumptions stated there, every Bayes subset selection at x ∈ Xk

i=1Xi consists
of populations that are associated with the largest values of V1(x), ..., Vk(x).

Example 9.66. Let l1(θ, i) = L1,iI(θ0,i,∞)(θi) and l2(θ, i) = L2,iI(−∞,θ0,i](θi), θ =

(θ1, ..., θk) ∈ Δk, where L1,i, L2,i ≥ 0 and θ0,i ∈ Δ ⊆ R are fixed given, i = 1, ..., k.
Let Bi = {θ : θi ≤ θ0,i, θ ∈ Δ}, i = 1, ..., k. Then

Msu
Π (x) = arg min

A∈Dsu

∑
i∈A

[L2,iΠ(Bi|x)− L1,i(1−Π(Bi|x))]

= arg min
A∈Dsu

∑
i∈A

[(L1,i + L2,i)Π(Bi|x)− L1,i].

The Bayes subset selections can be constructed as follows. Each population i with
Π(Bi|x) < L1,i/(L1,i +L2,i) is included. The inclusion of any subset of populations
i with Π(Bi|x) = L1,i/(L1,i +L2,i) is optional. If that does not lead to a nonempty
subset, then exactly one population i0 is selected with

i0 ∈ arg min
i∈{1,...,k}

[(L1,i + L2,i)Π(Bi|x)− L1,i].

Problem 9.67. In the previous example the Bayes subset selections at x ∈ Xk
i=1Xi

are based on Bayes tests for H
(i)
0 : θi ≤ θ0,i versus H

(i)
A : θi > θ0,i, i = 1, ..., k. Such

tests have been studied in Example 3.47. Consider also the special case of L1,i = L2,i,
i = 1, ..., k.

In the remainder of this section we discuss Gupta’s (1956, 1965) approach
to subset selection. It was introduced in the setting of k normal populations
(i.e., in the setting of Example 9.1), but with equal sample sizes and equal
variances. After a reduction by sufficiency we only have to deal with the k
sample means, say, Xi ∼ N(μi, σ2/n), i = 1, ..., k. We consider the class of
subset selection rules ϕ for which the minimum probability of a correct selec-
tion (PCS), which means here the probability of including a best population,
is at least P ∗, where P ∗ ∈ (1/k, 1) is fixed given. The PCS in the balanced
selection model

M = (Rk,Bk, (
⊗k

i=1 N(μi, σ2/n))μ∈Rk),

with μ = (μ1, ..., μk) ∈ R
k, is defined here by

Pcs(μ, ϕ) =
∑

A:A∩Mκ(μ) �=∅

∫
ϕA(x)(

⊗k
i=1 N(μi, σ2/n))(dx), (9.73)

where Mκ(μ) is from (9.1) with κ as the identical mapping, θ = μ, and x =
(x1, ..., xk) ∈ R

k. The basic idea of Gupta’s approach is that the selected
subset should include a best population with the P ∗-guarantee while being as
small as possible. One way toward this goal would be to search for a subset
selection rule that meets the P ∗-requirement and has a minimum expected
subset size, uniformly in μ ∈ R

k. Unfortunately, however, no such rule exists;
see Deely and Johnson (1997).
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Remark 9.68. The case of P ∗ ≤ 1/k is trivial. The no-data selection rule which
selects each {i} ⊆ {1, ..., k} with probability 1/k, i = 1, ..., k, would meet the P ∗-
requirement and would produce a subset of minimum size 1.

Gupta’s subset selection rule ϕgup is defined as follows.

ϕgupA (x) = 1, A = {i : xi ≥ x[k] − dσ/
√
n}, x ∈ R

k,

where the constant d is determined by
∫
Φk−1(t+ d)ϕ(t)dt = P ∗.

Proposition 9.69. The infimum of the PCS of Gupta’s subset selection rule
on R

k is P ∗.

Proof. First we assume that exactly one population has the largest mean.
As Gupta’s subset selection rule is permutation invariant we may assume
without loss of generality that μ1, ..., μk−1 < μk. Let Z1, ..., Zk be generic
i.i.d. standard normal random variables. Then by

(σn−1/2Z1 + μ1, ..., σn
−1/2Zk + μk) ∼

⊗k
i=1 N(μi, σ2/n),

together with (9.73) and {A : A∩Mκ(μ) �= ∅} = {A : k ∈ A}, we get that the
PCS in (9.73) of Gupta’s rule is

P(Zi < Zk + (
√
n/σ)[μk − μi] + d, i < k)

=
∫ ∏k−1

i=1 Φ(t+ (
√
n/σ)[μk − μi] + d)ϕ(t)dt ≥

∫
Φk−1(t+ d)ϕ(t)dt = P ∗,

where the first term tends to P ∗ as μk−μi → 0 for i = 1, ..., k−1. To complete
the proof we note that on R

k\Rk
1 , where R

k
1 = {μ : μ[k−1] < μ[k], μ ∈ R

k},
apparently the infimum PCS is bigger than P ∗.

Establishing an ad hoc subset selection rule at the P ∗-condition in various
specific distribution models has been the topic of many earlier papers on
subset selection problems; see Gupta and Panchapakesan (1979).

Questions regarding the quality of the performance of Gupta’s subset se-
lection rule, also for its extensions to the case of unequal sample sizes, have
been considered by various authors; see Gupta and Panchapakesan (1979).
The minimax aspect has been studied by Berger and Gupta (1980). In Hsu
(1981) an alternative approach has been introduced for location parameter
families that provides simultaneous confidence intervals for all distances from
the best population. See also Hsu (1982), Hsu and Edwards (1983), and Hsu
(1996). Another approach by Finner and Giani (1996), based on the duality
of multiple testing and selection, has been shown to be in favor of Gupta’s
subset selection rule. Subset selections for certain two-factor normal models
can be found in Santner and Pan (1997).
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An interesting class of subset selection rules has been considered by Seal
(1955, 1957). A rule in this class selects population i ∈ {1, ..., k} if xi ≥
α1yi:1 + · · ·+αk−1yi:k−1 +c, where yi:1 ≤ ·· · ≤ yi:k−1 are the ordered values of
x1, ..., xi−1, xi+1, ..., xk. Each choice of nonnegative weights α1, ..., αk−1 with
α1 + · · · + αk−1 = 1 is hereby allowed, and the constant c is determined by
setting the infimum of the PCS equal to P ∗. At least it could be shown that
for k = 3 and P ∗ ∈ [2/3, 1) there exist constants a, b ≥ 0 such that Gupta’s
subset selection rule has, within Seal’s class, a minimum expected subset size
on

M = {μ : μ[2] − μ[1] > a, μ[3] − μ[2] > b, μ ∈ R
3}.

The proof and further details in this regard can be found in Gupta and Miescke
(1981). In Bjørnstad (1984) it has been shown that Gupta’s rule is the only
rule in Seal’s class that can be asymptotically consistent. An extension of this
work can be found in Bjørnstad (1986).

Under a class of additive loss functions, which includes L3 from (9.67), ϕgup

has been shown in Miescke (1979b) to be the pointwise limit of Bayes rules as
n→∞. Under the loss functions L3 and L4b from (9.67) Gupta and Miescke
(2002) have made an attempt to determine whether ϕgup is admissible. In the
course of that work two respective generalized Bayes rules have been derived
with the Lebesgue measure acting as noninformative prior. In a simulation
study by Miescke and Ryan (2006) ϕgup has then been compared with these
two generalized Bayes rules under their respective loss functions and under a
common P ∗-condition. The results have been favorable for ϕgup.

9.3.2 Γ -Minimax Subset Selections

Subset selection problems with a standard or control have not been considered
so far. A standard is a given value θ0,i ∈ Δ ⊆ R that separates Δ into “good”
and “bad” parameter values for population i ∈ {1, ..., k}. If θ0,i is not known
and Pθ0,i

has to be sampled to gain information on θ0,i, then it is called a
control. This is an important area, and some remarks and references are given
at the end of this section. For brevity only one type of such problems is pre-
sented here in the Γ -minimax approach, which has been considered previously
in Section 3.6. The results in this subsection are taken from Randles and Hol-
lander (1971) and Miescke (1981), which are based on Lehmann (1957a, 1961)
and Blum and Rosenblatt (1967).

We begin with a general subset selection problem, under an additive loss
function, that includes problems with a standard or control. Let the decision
space be Dsc = {A|A ⊆ {1, ..., k}}, where the empty set may also be selected.
The subset selection rules in this section are represented by ϕ = (ϕA)A∈Dsc

with

ϕA : Xk
i=1Xi →m [0, 1], A ∈ Dsc, and

∑
A∈Dsc

ϕA(x) = 1, x ∈ Xk
i=1Xi.
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The loss function is assumed to be additive, of the form as L5 in (9.67), but
now also being defined on the empty set.

L(θ,A) =
∑

j /∈A
l1(θ, j) +

∑
i∈A

l2(θ, i), A ∈ Dsc, θ ∈ Δk, (9.74)

where l1(·, i) : Δk →m R+ represents the loss of not selecting population
i when it is good, and l2(·, i) : Δk →m R+ represents the loss of selecting
population i when it is bad, i = 1, ..., k. The sum over an empty set is assumed
to be zero.

The risk and the Bayes risk of a subset selection rule ϕ = (ϕA)A∈Dsc

under the loss function (9.74) can be seen to depend only on the k inclusion
probabilities

ψi(x) =
∑

A∈Dsc

IA(i)ϕA(x), x ∈ Xk
i=1Xi, i = 1, ..., k. (9.75)

The inclusion probabilities in (9.71) and (9.75) are actually identical since
Dsu = Dsc\∅. Lemma 9.65 and its proof can be extended in a straightforward
manner to subset selection rules that may also select the empty set. Thus,

R(θ, ϕ) =
∑k

i=1
[l2(θ, i)Eθψi + l1(θ, i)(1− Eθψi)], θ ∈ Δk.

Let now Γ ⊆ P(BΔk) be a given set of priors. The Bayes risk of ϕ under a
prior Π ∈ Γ is

r(Π,ϕ) =
∑k

i=1
r(i)(Π,ψi), where (9.76)

r(i)(Π,ψi) =
∫

[l2(θ, i)Eθψi + l1(θ, i)(1− Eθψi)]Π(dθ) i = 1, ..., k.

As before in the previous subsection, if there exists a Bayes solution at x ∈
Xk
i=1Xi, then there exists a nonrandomized Bayes subset selection rule d which

has inclusion probabilities ψi(x) ∈ {0, 1}, i = 1, ..., k. Moreover, by (9.72) the
inclusion probabilities uniquely determine d.

The simplest way of constructing a subset selection rule ϕΓ that has the
inclusion probabilities ψΓ is to make the k inclusion decisions, given x ∈
Xk
i=1Xi, mutually independent; that is,

ϕΓA(x) =
∏

i∈A ψ
Γ
i (x), x ∈ Xk

i=1Xi, A ∈ Dsc.

Of course, if the k inclusion probabilities at some x ∈ Xk
i=1Xi are all either

0 or 1, then the selected subset is uniquely determined at that x. Fixing this
construction we may identify a selection rule ϕ with a vector ψ = (ψ1, ..., ψk) :
Xk
i=1Xi →m [0, 1]k, i = 1, ..., k. Let Psc be the class of all such vectors.

We consider now a special case of the above problem where the selection
model is based on a one-parameter exponential family and a standard is given
for every population. The model considered here is Msel from (9.8). Suppose
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that for each population i ∈ {1, ..., k} a standard θ0,i ∈ Δ0 is given, along
with some distance value di > 0 with θ0,i + di ∈ Δ0. The loss is assumed to
be a special case of (9.74).

L(θ,A) =
∑

j /∈A
L1,jI[θ0,j+dj ,∞)(θi) +

∑
i∈A

L2,iI(−∞,θ0,i](θi), (9.77)

A ∈ Dsc, θ ∈ Δk, where L1,i, L2,i ≥ 0, i = 1, ..., k, are fixed given constants.
Let Δ be a Borel subset of R and denote by Π1, ...,Πk the marginal distribu-
tions of a prior Π ∈ P(BΔk). Let Γ ⊆ P(BΔk) be the class of priors Π ∈ Γ
that satisfy

Πi([θ0,i + di,∞) ∩Δ) ≤ πi and Πi((−∞, θ0,i] ∩Δ) ≤ π′
i, (9.78)

where πi, π′
i ≥ 0 with πi+π′

i ≤ 1, i = 1, ..., k, are fixed given. These constraints
prevent too much mass of the prior from being concentrated on either side.
Then the following holds.

Theorem 9.70. Suppose the observations Xi,j , j = 1, ..., ni, i = 1, ..., k, are
from the model (9.5), where (Pθ)θ∈Δ is a one-parameter exponential family
with generating statistic T. Let the loss be given by (9.77), and let ψΓ =
(ψΓ

1 , ..., ψ
Γ
k ) ∈ Psc, where ψΓ

i = I[ci,∞)(T⊕ni
) with

ci =
1
di

[ln
L2,iπ

′
i

L1,iπi
+ niK(θ0,i + di)− niK(θ0,i)], i = 1, ..., k.

Then, ψΓ is Γ -minimax in the class Psc. Every subset selection rule ϕΓ that
has the inclusion probabilities ψΓ is Γ -minimax in the class of all subset se-
lection rules that are allowed to select also the empty set.

Proof. By the definition of the Bayes risk in (9.76) we see that for yi =
(xi,1, ..., xi,ni

), i = 1, ..., k,

r(Π,ϕ) =
∑k

i=1
r(i)(Πi, ψi) where

r(i)(Πi, ψi) =
∫

[L1,iI[θ0,j+dj ,∞)(θi)[1−
∫
ψi(yi)P⊗ni

θi
(dyi)]

+L2,iI(−∞,θ0,i](θi)
∫
ψi(yi)P⊗ni

θi
(dyi)]Πi(dθi).

Denote by Γi the set of priors that satisfy (9.78). Then

inf
ψΓ ∈Psc

sup
Π∈Γ

r(Π,ϕ) =
∑k

i=1
inf
ψi

sup
Πi∈Γi

r(i)(Πi, ψi),

because r(i)(Πi, ψi) is completely restricted to the ith population’s Γ -minimax
problem, i = 1, ..., k. To complete the proof we have only to apply Example
3.69.

A special case is the following.
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Problem 9.71. Let Xi,j ∼ N(μi, σ
2
i ), j = 1, ..., ni, i = 1, ..., k, be independent,

where σ2
i > 0 , i = 1, ..., k, are known. Let x̄i = (1/ni)

∑ni
j=1 xi,j , i = 1, ..., k, be the

sample means. Then under the loss function from (9.77) the subset selection rule
ϕΓ that has the inclusion probabilities

ψΓ (x̄1, ..., x̄k) = (ψΓ
1 (x̄1), ..., ψ

Γ
k (x̄k)),

where ψΓ
i (t) = I[bi,∞)(t), t ∈ R, and

bi = θ0,i +
di

2
+

1

nidi
σ2

i ln
L2,iπ

′
i

L1,iπi
, i = 1, ..., k,

is Γ -minimax in the class of all subset selection rules that are allowed to select also
the empty set.

Now we consider situations where there are unknown control parameters
θ0,1, ..., θ0,k. The distance values di > 0, i = 1, ..., k, remain, however, fixed
given and are used in the same way as before.

If the control consists of k independent populations, one for each treat-
ment population, where the 2k populations are independent, then the selection
model becomes

Mctrl1 = (R2k,B2k, (
⊗k

i=1(Qni,θi
⊗Qmi,θ0,i

))θ,η∈Δk),

where θ = (θ1, ..., θk) and η = (θ0,1, ..., θ0,k). Under this model, and the loss
from (9.77), a Γ -minimax subset selection rule can still be found by solving
a Γ -minimax problem individually for each of the k pairings of a treatment
population and its control population. The arguments are very similar to those
that have been used above and thus they are omitted here for brevity.

Quite a different situation arises when the control parameters are known
to be equal, i.e., θ0,1 = · · · = θ0,k = θ0, say, and one single control population
has to be shared by the k treatment populations. In this case the model is

Mctrl2 = (Rk+1,Bk+1, (
⊗k

i=0 Qni,θi
)θ∈Δk+1),

which is the modelMsel from (9.8), augmented by the control population with
the parameter θ0. Now we have θ = (θ0, θ1, ..., θk) and S = (S0, S1, ..., Sk),
where θ0 ∈ Δ is the unknown control parameter, common to the k treat-
ment populations, and S0 is the statistic of the observations from the con-
trol population. Under this model, and the loss function from (9.77) with
θ0,1 = · · · = θ0,k = θ0, that is,

L0(θ,A) =
∑

j /∈A
L1,jI[θ0+dj ,∞)(θj) +

∑
i∈A

L2,iI(−∞,θ0](θi), (9.79)

A ∈ Dsc, θ ∈ Δk, a Γ -minimax subset selection rule is harder to find. Results
are only known for a restricted class of subset selection rules. Hereby the
k + 1 populations may be of different types, but each must be a location
parameter family with MLR; see Example 2.20. Let now Γ be the set of all
priors Π ∈ P(BΔk+1) that satisfy
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Π({θ : θ0 + di ≤ θi} ∩Δ) ≤ πi and Π({θ : θi ≤ θ0} ∩Δ) ≤ π′
i,

where πi, π′
i ≥ 0 with πi + π′

i ≤ 1, i = 1, ..., k, are fixed given.

Theorem 9.72. Let Z0, Z1, ..., Zk be independent random variables and Wi =
Zi − Z0. Suppose that Zi has the Lebesgue density

fi,θi
(zi) = fi(zi − θi), zi, θi ∈ R,

that has MLR in the identity, i = 0, 1, ..., k. Let gi(wi − [θi − θ0]), wi ∈ R,
be the Lebesgue density of Wi = Zi −Z0. Let the loss function be from (9.79)
and ψ̃Γ = (I[a1,∞)(z1 − z0), ..., I[ak,∞)(zk − z0)), z = (z0, z1, ..., zk) ∈ R

k+1,
where ai is chosen such that

[L2,iπ
′
igi(a)− L1,iπigi(a− di)](ai − a) ≥ 0, a ∈ R, i = 1, ..., k.

Then ψ̃Γ is Γ -minimax in the class of all ψ̃(z) = (ψ̃1(z0, z1), ..., ψ̃k(z0, zk)),
z ∈ R

k+1, with ψ̃i : R
2 →m [0, 1], i = 1, ..., k. Every subset selection rule

ϕΓ that has the inclusion probabilities ψ̃Γ is Γ -minimax in the class of all
subset selection rules ϕ that are allowed to select also the empty set and have
inclusion probabilities of the form ψ̃(z) = (ψ̃1(z0, z1), ..., ψ̃k(z0, zk)), z ∈ R

k+1,
with ψ̃i : R

2 →m [0, 1], i = 1, ..., k.

The above theorem was first stated in Randles and Hollander (1971). An
essential argument is that for every i ∈ {1, ..., k},

gi(wi − [θi − θ0]) =
∫
fi(wi + t− θi)f0(t− θ0)dt, wi ∈ R,

has MLR if θi − θ0 is treated as a location parameter of Wi. This result
is due to Schoenberg (1951). A proof of the above theorem, which is based
on Proposition 3.71, can be found in Miescke (1981). The sequence of priors
utilized there is as follows. For every n = 1, 2, ..., Θ0 ∼ U(−n, n), and given
Θ0 = θ0, Θ1, ..., Θk are independent, where Θi assumes the values θ0 + di, θ0,
and θ0+di/2 with probabilities πi, π′

i, and 1−πi−π′
i, respectively, i = 1, ..., k.

A special case of the above theorem is the following.

Problem 9.73. Let Xi,,j ∼ N(μi, σ
2), j = 1, ..., ni, i = 0, 1, ..., k, be indepen-

dent, where the common variance σ2 > 0 is known. Let x̄i = (1/ni)
∑ni

j=1 xi,j ,
i = 0, 1, ..., k, be the sample means. Then under the loss function from (9.79) a
Γ -minimax subset selection rule ϕΓ in the class of subset selection rules specified in
Theorem 9.72 is given by the inclusion probabilities

ψ̃Γ (x̄0, x̄1, ..., x̄k) = (ψ̃Γ
1 (x̄1 − x̄0), ..., ψ̃

Γ
k (x̄k − x̄0)),

where ψ̃Γ
i (t) = I[ei,∞)(t), t ∈ R, and

ei =
di

2
+

σ2

di
(

1

ni
+

1

n0
) ln

L2,iπ
′
i

L1,iπi
, i = 1, ..., k.
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Finally, it should be mentioned that in the setting of Problem 9.73, but
with σ2 > 0 unknown, minimax subset selection rules under both a common
standard and a common control have been derived in Gupta and Miescke
(1985) for the loss function

L∗
0(θ,A) =

∑
j /∈A

L1,jI[θ0,∞)(θj) +
∑

i∈A
L2,iI(−∞,θ0)(θi),

A ∈ Dsc, θ ∈ Δk. In this approach Proposition 3.71 has been used with
Γ = P(BΔk). References to other papers on comparing k normal populations
with a standard or a control can also be found there.

There are other ways of separating good and bad populations with respect
to a standard or control. In the frequentist approach recent work has been done
by Huang, Panchapakesan, and Tseng (1984), Finner and Giani, (1994), Giani
and Strassburger (1994, 1997, 2000), and Finner, Giani, and Strassburger
(2006). The latter is based on a partition principle by Finner and Strassburger
(2002a). In the Bayes or empirical Bayes approach recent work has been done
by Liang (1997), Gupta and Liang (1999a,b), Gupta and Liese (2000), Gupta
and Li (2005), Liang (2006), and Huang and Chang (2006). Further references
can be found in these papers.

9.4 Optimal Multistage Selections

Let the selection model Mus from (9.5) be extended in such a way that
independent sequences of i.i.d. observations Xi,1,Xi,2, ... from population Pθi

,
i = 1, ..., k, become available in the search for a best population. In this
section selection models are considered that are based on a one-parameter
exponential family that satisfies (A1) and (A2). Let the reduced model Msel

from (9.8) be extended correspondingly. The goal is to find a best population,
i.e., a population that has the largest parameter θ[k] = max{θ1, ..., θk}. A
great variety of sequential and multistage selection rules has been considered
in the literature, mainly under the P ∗-condition for the PCS, but some also in
the decision-theoretic and especially in the Bayes approach. The motivation
for developing such procedures is to reduce the expected total number of
observations required to make a terminal point or subset selection under a
given performance or optimality requirement. Books that include results on
multistage selection rules are Bechhofer, Kiefer, and Sobel (1968), Gibbons,
Olkin, and Sobel (1977), Gupta and Panchapakesan (1979), Mukhopadhyay
and Solanky (1994), and Bechhofer, Santner, and Goldsman (1995).

9.4.1 Common Sample Size per Stage and Hard Elimination

In this section we consider multistage selection rules. These are truncated
sequential selection rules where the number of stages is limited to some pre-
determined number q, say. However, the classical sequential selection rule by
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Bechhofer, Kiefer, and Sobel (1968) for selecting t best populations should
be at least mentioned here, and subsequently some related rules. Below it is
presented for the case of t = 1. The generalization to t ≥ 1 is straightforward.

Example 9.74. Let δ∗ > 0 and P ∗ ∈ (1/k, 1) be fixed given. The following sequen-
tial selection rule for the extended version of model Mus from (9.5), where (Pϑ)ϑ∈Δ

is a one-parameter exponential family, consists of the following three parts.

Sampling Rule: At Stage j observe (X1,j , ..., Xk,j), j = 1, 2, ...

Stopping Rule: Stop at the first Stage m with

∑k−1

l=1
exp{−δ∗(T

(m)

[k] − T
(m)

[l] )} ≤ (1− P ∗)/P ∗,

where T
(m)

[1] ≤ · · · ≤ T
(m)

[k] are the ordered values of

T
(m)
i =

∑m

r=1
T (Xi,r), i = 1, ..., k.

Terminal Decision Rule: Select the population i with the largest value of T
(m)
i ,

i = 1, ..., k. If r populations are tied for the largest value, then select each of them
with probability 1/r.

For this sequential selection rule the probability of correctly selecting the popu-
lation with the largest parameter θ[k] is at least P ∗ whenever θ[k] − θ[k−1] ≥ δ∗. It
stops almost surely in finitely many stages; see Bechhofer, Kiefer, and Sobel (1968)
p. 258.

For k normal populations with a common known variance a truncated version
(i.e., where the number of stages is restricted by a given number q) has been pro-
vided by Bechhofer and Goldsman (1989) which has a smaller expected number of
observations. References to previous related work by these authors are given there.
Optimality considerations of the above rules should involve, besides the probabil-
ity of a correct selection (PCS), the expected total number of observations and/or
the expected number of stages. Comparisons of several rules in this regard that are
based on simulations can be found in Bechhofer, Santner, and Goldsman (1995).

Related sequential selection rules for finding t of k coins with the largest success
probabilities can be found in Levin and Robbins (1981), Leu and Levin (1999a,b,
2007), and Levin and Leu (2007).

The earliest multistage selection rule is due to Paulson (1964).

Example 9.75. Let Xi,1, Xi,2, ... be an i.i.d. sequence from N(μi, σ
2), i ∈ S1 =

{1, ..., k}, where σ2 > 0 is known. The sequences are assumed to be independent. Let
P ∗, δ∗, and λ be given constants with P ∗ ∈ (1/k, 1) and 0 < λ < δ∗. For the following
multistage selection rule the probability of correctly selecting the population with
the largest mean is at least P ∗ whenever μ[k] − μ[k−1] ≥ δ∗. Let

aλ =
σ2

δ∗ − λ
ln

k − 1

1− P ∗

and wλ be the largest integer less than aλ/λ.

Stage 1: Observe Xi,1 with i ∈ S1. Eliminate all populations i ∈ S1 with

Xi,1 < max
r∈S1

Xr,1 − aλ + λ.
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Let the remaining populations be S2 ⊆ S1. If S2 contains only one population, then
stop and select that population. Otherwise proceed to Stage 2.

The subsequent Stages m ∈ {2, ..., wλ} are set up as follows.

Stage m: Observe Xi,m with i ∈ Sm. Eliminate all populations i ∈ Sm with

∑m

j=1
Xi,j < max

r∈Sm

∑m

j=1
Xr,j − aλ + mλ.

Let the remaining populations be Sm+1 ⊆ Sm. If Sm+1 contains only one population,
then stop and select that population. Otherwise proceed to Stage m + 1.

Stage wλ + 1: Observe Xi,wλ+1 with i ∈ Swλ+1 . Select the population with the

largest value of
∑wλ+1

j=1 Xi,j , i ∈ Swλ+1 . Ties occur only with probability zero.

For this rule, apparently, we have q = wλ +1. Some questions regarding optimal-
ity, starting with that of an optimum choice of λ, still remain open. References can
be found in Gupta and Panchapakesan (1979). An improved version, due to Paulson,
can be found in Bechhofer, Santner, and Goldsman (1995); see also Paulson (1994).

A multistage selection rule for finding a best population consists of four
types of decisions that have to be made throughout the q stages. At the begin-
ning it has to be decided which observations to draw from the k populations
(sampling rule). At every stage, after the observations have been drawn, based
on all observations drawn up to that point, it has to be decided whether to
stop (stopping rule). In the case of stopping a point (or subset) selection has
to be made (terminal decision rule). In the case of not stopping populations
may be eliminated from further sampling (elimination rule) and a decision has
to be made which observations to draw from the not eliminated populations
at the next stage (sampling rule).

The simplest stopping rule is never to stop until all q stages have been
completed with sampling. Many other more sophisticated stopping rules, such
as those in the previous two examples, are possible. The sampling rule may,
for example, assign a common fixed sample size to each stage which, however,
may differ from stage to stage. In the previous two examples the common
sample size for each stage is 1. More generally, the sampling rule for a next
stage may depend on the observations drawn thus far. We call this an adaptive
sampling rule. Such a rule could, for example, decide from which population
to draw the next single observation. There are two types of elimination rules.
A soft elimination occurs if a population is eliminated from further sampling
but still remains in the pool of populations that can be selected eventually. A
hard elimination occurs if a population is eliminated from further sampling
and selection. The elimination rule could be, for example, to keep the tm
best performing populations from Stage m, m = 1, ..., q, where t1 ≥ t2 ≥
· · · ≥ tq = 1 are fixed given. It could also be at every Stage m with m < q
some subset selection rule, such as a Gupta’s type rule. The optimal terminal
decision rule turns out to be the natural selection rule whenever the entire
selection problem is permutation invariant and the loss favors selections of
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populations with larger parameters. With adaptive sampling, however, other
terminal decision rules may be optimal, such as those considered in Section
9.2.3. An overview of the literature in this area is provided in Miescke (1984a).

Multistage selection rules can be based on the selection model Mus from
(9.5), and especially on Msel from (9.8). Those which employ terminal point
selections can be viewed as competitors to the point selection rules that have
been considered in Section 9.2 under such models. Similarly, those with termi-
nal subset selections may compete with the subset selection rules considered
in Section 9.3. The basic idea is that for some point or subset selection rule
there may exist a multistage selection rule that can complete the same task
equally well, but with less observations on average. The majority of papers in
this area deal with two-stage selection rules, and some also include decision-
theoretic results. Results on two-stage selection rules for Weibull populations
with type-II censored data can be found in Gupta and Miescke (1987). A two-
stage selection rule for normal populations (see Example 9.76), which utilizes a
Gupta-type subset selection rule for screening at the first stage, has been con-
sidered by Cohen (1959), Alam (1970), Tamhane and Bechhofer (1977, 1979),
Miescke and Sehr (1980), Gupta and Miescke (1982a), Sehr (1988), Bhan-
dari and Chaudhuri (1990), Santner and Hayter (1992), and Hayter (1994).
A variant can be found in Santner and Behaxeteguy (1992).

Example 9.76. Let Xi,1, ..., Xi,n1+n2 be an i.i.d. sample from N(μi, σ
2), i ∈ S1 =

{1, ..., k}, where σ2 > 0 is known. The k samples are assumed to be independent.
Let c > 0 be a fixed given constant.

Stage 1: Observe (Xi,1, ..., Xi,n1), i = 1, ..., k, and set

S2 = {r :
∑n1

j=1
Xr,j ≥ max

i∈S1

∑n1

j=1
Xi,j − c, r ∈ {1, ..., k}}.

If S2 contains only one population, then stop and select that population. Otherwise
proceed to the next stage.

Stage 2: Observe (Xi,n1+1, ..., Xi,n1+n2) with i ∈ S2 and select the population with
the largest value of

∑n1+n2
j=1 Xi,j , i ∈ S2.

To guarantee that the probability of correctly selecting the population with the
largest mean is at least P ∗ whenever μ[k] − μ[k−1] ≥ δ∗, where P ∗ ∈ (1/k, 1) and
δ∗ > 0 are given constants, the least favorable parameter configuration (LFC) for
μ = (μ1, ..., μk) ∈ R

k with μ[k] − μ[k−1] ≥ δ∗ has to be found to determine the right
value of c. A long standing conjecture that the LFC is (t, ..., t, t + δ∗), t ∈ R, has
been proved by Miescke and Sehr (1980) to be correct for k = 3. Further results in
this respect can be found in the references given above.

A variant, taken from Gupta and Miescke (1982a), is the following.

Example 9.77. In the setting of Example 9.76 other subset selection rules could
be used for screening. Instead of the S2 there we take

S2 = {r :
∑n1

j=1
Xr,j is one of the t largest values of

∑n1

j=1
Xi,j , i ∈ S1},



9.4 Optimal Multistage Selections 565

where t ∈ {2, ..., k − 1} is fixed given. S2 is almost surely uniquely determined. To
guarantee that the PCS is at least P ∗ for μ[k]−μ[k−1] ≥ δ∗, where P ∗ ∈ (1/k, 1) and
δ∗ > 0 are given constants, the LFC for μ = (μ1, ..., μk) ∈ R

k with μ[k]−μ[k−1] ≥ δ∗

has to be found to determine appropriate sample sizes n1 and n2. Also here the LFC
is the slippage configuration (t, ..., t, t + δ∗), t ∈ R.

Another variant, also from Gupta and Miescke (1982a), this time with a
standard, is as follows.

Example 9.78. In the setting of Example 9.76 let μ0 ∈ R be a given standard.
Instead of the S2 there we take

S2 = {r :
∑n1

j=1
Xr,j ≥ br, r ∈ S1},

where b1, ..., bk ∈ R are fixed given constants. The screening device is now a multiple
testing procedure, simultaneously testing each population if it is better than the
standard. The set S2 may turn out to be empty, in which case it is decided that
none of the populations is better than the control.

We set up the requirement that the probability of S2 being empty should be
at least β

∗
whenever μ1, ..., μk ≤ μ0, where β∗ ∈ (0, 1) is fixed given. Moreover,

we require that the PCS on all μ = (μ1, ..., μk) ∈ R
k with μ[k] − μ[k−1] ≥ δ∗ and

μ[k] > μ0 be at least P ∗, where P ∗ ∈ (1/k, 1) and δ∗ > 0 are given constants. Here
the LFC is (t, ..., t, t + δ∗) with t + δ∗ > μ0, t ∈ R.

The problem of finding a best population with respect to a standard or
control in two stages has also been treated in Gupta and Miescke (1982b) and
Miescke (1984b). For models with the DT property, if the selection problem
is permutation invariant and the loss favors selections of larger parameters,
two-stage selection rules that select in terms of the largest sufficient statistics
at both stages are optimal. Such a generalization of the Bahadur–Goodman–
Lehmann–Eaton theorem 9.31 is intuitively to be expected, and it has in fact
been proved in Gupta and Miescke (1982b). More work in this direction, for
models with and without standard or control, has been done by Gupta and
Miescke (1983, 1984b). The most general results in relation to Theorem 9.31
have been established in Gupta and Miescke (1984a).

In Gupta and Miescke (1984a) sequential selection rules for exponential
families have been studied in the decision-theoretic approach. Let Mne =
(X ,A, (Pϑ)ϑ∈Δ), Δ ⊆ R, from (1.7) with d = 1 satisfy (A1) and (A2) and
be chosen as the basic underlying natural exponential model. We restrict here
our considerations to the results on multistage selection rules with q stages. In
the presence of a standard, terminally selected subsets may be allowed to be
empty. Suppose that at Stage m there are nm observations X(m)

i,j , j = 1, ..., nm,
available from population i ∈ {1, ..., k}, m = 1, ..., q, where n1, ..., nq are fixed
given. All Nq = k(n1 + · · ·+nq) observations are assumed to be independent.
The model is a version of Mbs from (9.4).

Mmss1 = (XNq ,A⊗Nq , (
⊗k

i=1

⊗q
m=1 P

⊗nm

θi
)θ∈Δk), (9.80)

dPθi

dμ
(x) = exp{θiT (x)−K(θi)}, x ∈ X .
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Denote by X
(m)
i,j the projections of XNq on the coordinates. A reduction by

sufficiency at each stage, restricted to the observations drawn at that stage
leads, as in Section 9.1, to the statistics

Ui,m =
∑nm

j=1
T (X(m)

i,j ), m = 1, ..., q, i = 1, ..., k. (9.81)

If Qθ = Pθ ◦ T−1, then Q∗nm

θi
= L(Ui,m|P⊗nm

θi
), m = 1, ..., q, i = 1, ..., k, and

the resulting model, analogously to Msel in (9.8), is

Mmss = (Rkq,Bkq, (
⊗k

i=1

⊗q
m=1 Qnm,θi

)θ∈Δk), (9.82)
Qnm,θi

= Q∗nm

θi
.

Problem 9.79.∗ Set νnm = μ⊗nm ◦ T−1
⊕nm

and

fNq,θ(t) = exp{tT θ −
∑k

i=1
(n1 + · · ·+ nq)K(θi)}. (9.83)

Then fNq,θ(
∑q

m=1 um) is the density of
⊗k

i=1

⊗q
m=1 Qnm,θi with respect to

⊗q
m=1

ν⊗k
nm

, where um = (u1,m, ..., uk,m)T , θ = (θ1, ..., θk)T .

For m = 1, ..., q let

Um = (U1,m, ..., Uk,m), Vm = (U1, ...,Um), Wm = U1 + · · ·+Um. (9.84)

The multistage selection rules considered here are first described briefly
before a formal definition is presented. Such a rule decides at every stage,
after sampling at that stage has been completed, either to stop (ξ), how
many populations to retain (ϕ), and which populations to select as a terminal
decision (ψ), or not to stop (1− ξ), how many populations to retain (ϕ̃), and
which populations to select for further examination at the next stage (ψ̃).
At Stage q only stopping is allowed. These rules are assumed to use hard
elimination. Once a population has been eliminated it can never be sampled
or selected at any subsequent stage. Hard elimination guarantees that the
various decisions that are made in the course of a multistage selection rule are
based on an equal number of observations from each of the populations that
are still in the competition. This allows us to utilize optimization techniques
similar to those used to prove Theorem 9.31 and Proposition 9.59.

Because of the complexity of the setup of q-stage selection rules we consider
first the special case of q = 2 in full detail, and then report the general results
without proofs. The optimization steps and technical tools can be developed
and explained already with two-stage selection rules. Stage 1 starts with all
populations S1 = {1, ..., k} and ends with populations S2 ⊆ S1. Stage 2, if
entered, starts with populations S2 and ends with populations S3 ⊆ S2. At
Stage 2 observations are made only from populations S2. To deal with that
restriction on the observations we utilize the projection pS2 : R

k → R
|S2| onto

the coordinates i with i ∈ S2.
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The decision space D2st is chosen to consist of two components, one for
decisions that are made without ever entering Stage 2, and all others. We set
D2st = D1 ∪ D2, where

D1 = {(1, r2, S2) : S2 ⊆ S1, |S2| = r2, 0 ≤ r2 ≤ k} and
D2 = {(2, r2, S2, r3, S3) : S3 ⊆ S2 ⊆ S1, |S2| = r2, |S3| = r3,

0 ≤ r3 ≤ r2, 1 ≤ r2 ≤ k}.

The two-stage selection rules are now introduced as distributions on D2st in
dependence of the observations U1 = u1 and U2 = u2. They are constructed
by means of several components. Let ξ : R

k →m [0, 1], which acts as the
stopping rule. We consider functions

ϕr2 , ψS2|r2 : R
k →m [0, 1]

for (1, r2, S2) ∈ D1, and functions

ϕ̃r2 , ψ̃S2|r2 : R
k →m [0, 1], ϕr3|S2 , ψS3|r3,S2 : R

k × R
|S2| →m [0, 1]

for (2, r2, S2, r3, S3) ∈ D2. We assume that

∑k

r2=0
ϕr2 =

∑k

r2=1
ϕ̃r2 = 1,

∑|S2|

r3=0
ϕr3|S2 = 1, ∅ �= S2 ⊆ S1, (9.85)

and
∑

S2⊆S1, |S2|=r2
ψS2|r2 = 1, 0 ≤ r2 ≤ k, (9.86)

∑
S2⊆S1, |S2|=r2

ψ̃S2|r2 = 1, 1 ≤ r2 ≤ k,

∑
S3⊆S2, |S3|=r3

ψS3|r3,S2 = 1, 0 ≤ r3 ≤ |S2| , ∅ �= S2 ⊆ S1.

Definition 9.80. A two-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) is, for every fixed
(u1,u2) ∈ R

2k, a distribution D(·|u1,u2) on D2st that satisfies

D({(1, r2, S2)}|u1,u2) = ξ(u1)ϕr2(u1)ψS2|r2(u1),

for (1, r2, S2) ∈ D1, and

D({(2, r2, S2, r3, S3)}|u1,u2)
= (1− ξ(u1))ϕ̃r2(u1)ψ̃S2|r2(u1)ϕr3|S2(u1, pS2(u2))ψS3|r3,S2(u1, pS2(u2)),

for (2, r2, S2, r3, S3) ∈ D2, where the components of (ξ, ϕ, ϕ̃, ψ, ψ̃) are as spec-
ified above and satisfy (9.85) and (9.86).

The interpretation of a two-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) is as follows.
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Stage 1: At the beginning of this stage U1 = u1 = (u1,1, ..., uk,1) is observed.
The rule decides with probability ξ(u1) to stop, and with probability 1−ξ(u1)
not to stop.

If it stops, then it decides with probability ϕr2(u1) that r2 ∈ {0, 1, ..., k}
populations should be selected from S1. After that it selects with probability
ψS2|r2(u1) any subset S2 ⊆ S1 of size |S2| = r2, which is the terminal decision.

If it doesn’t stop, then it decides with probability ϕ̃r2(u1) that r2 ∈
{1, ..., k} populations should be selected from S1. After that it selects with
probability ψ̃S2|r2(u1) any subset S2 ⊆ S1 of size |S2| = r2. Now Stage 2 is
entered with S2.

Stage 2: At the beginning of this stage pS2(U2) = pS2(u2) = (ui1,2, ..., uir2 ,2
)

is observed, where 1 ≤ i1 ≤ · · · ≤ ir2 ≤ k and {i1, ..., ir2} = S2.
It decides with probability ϕr3|S2(u1, pS2(u2)) that r3 ∈ {0, 1, ..., r2} pop-

ulations should be selected from S2. After that it selects with probability
ψS3|r3,S2(u1, pS2(u2)) any subset S3 ⊆ S2 of size |S3| = r3, which is the ter-
minal decision.

Remark 9.81. The above definition includes one-stage selection rules as a special
case. They are obtained by setting ξ ≡ 1.

Remark 9.82. The above definition includes two-stage selection rules for problems
with standards. In such cases it makes sense to allow entering Stage 2 with a subset
S2 of size 1. This would simply mean that one population has not been decided yet
to be good enough and further sampling on it is needed. On the other hand, without
a standard every subset S2 for Stage 2 should contain at least two populations. This
can be enforced by imposing restrictions on ϕ̃r2 , or by including cost of sampling in
the loss.

Problem 9.83. Verify that the selection rules in Examples 9.76, 9.77, and 9.78
are two-stage selection rules in the sense of Definition 9.80.

We focus now on the goal of optimizing the two components ψ and ψ̃,
thereby generalizing Theorem 9.31 and Proposition 9.59. Hereby we have to
restrict ourselves to permutation invariant two-stage selection rules, and to
loss functions that are permutation invariant and favor selections of popula-
tions with larger parameters.

For every γ ∈ Πk and Sm ⊆ S1 we set γ(Sm) = {γ(i) : i ∈ Sm},m = 1, 2, 3,
and γ(um) = (uγ(1),m, ..., uγ(k),m), m = 1, 2.

Definition 9.84. A two-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) is called permuta-
tion invariant if the five types of decision functions are permutation invariant
in the following sense. For any γ ∈ Πk it holds P(U1,U2)-a.s.

ξ(u1) = ξ(γ(u1)),
ϕr2(u1) = ϕr2(γ(u1)),

ϕr3|γ(S2)(u1, pγ(S2)(u2)) = ϕr3|S2(γ(u1), pS2(γ(u2)))
ψγ(S2)|r2(u1) = ψS2|r2(γ(u1))

ψγ(S3)|r3,γ(S2)(u1, pγ(S2)(u2)) = ψS3|r3,S2(γ(u1), pS2(γ(u2))),
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and ϕ̃ and ψ̃ have the same properties as ϕ and ψ, respectively.

Problem 9.85. Verify that the selection rules in Examples 9.76, 9.77, and 9.78
are permutation invariant two-stage selection rules in the sense of Definition 9.84.

Finally, we adopt a class of loss functions that are permutation invariant
and favor selections of populations with larger parameters. Let L1(θ, S2) be
the loss that occurs at θ ∈ Δk if at Stage 1 the procedure stops and selects
S2, where L1(·, S2) : Δk →m R+. Let L2(θ, S2, S3) be the loss that occurs
at θ ∈ Δk if at Stage 1 subset S2 ⊆ S1, and at Stage 2 subset S3 ⊆ S2, is
selected, where L2(·, S2, S3) : Δk →m R+. Analogously to (9.69) and (9.70)
we assume that for all S3 ⊆ S2 ⊆ S1,

L1(θ, γ(S2)) = L1(γ(θ), S2), (9.87)
L2(θ, γ(S2), γ(S3)) = L2(γ(θ), S2, S3), γ ∈ Πk, θ ∈ Δk,

and, moreover,

L1(θ, S̃2) ≤ L1(θ, S2), (9.88)

L2(θ, S̃2, S̃3) ≤ L2(θ, S2, S3),

if at θ ∈ Δk for some i, j ∈ {1, ..., k} with θi ≤ θj the following holds. For
every c ∈ {2, 3} with i ∈ Sc and j /∈ Sc, S̃c = (Sc\{i}) ∪ {j}, and S̃c = Sc,
otherwise. This means that a worse population should be eliminated at an
earlier stage than a better population.

Problem 9.86. Determine the loss functions used in Examples 9.76, 9.77, and
9.78, and verify that they satisfy (9.87) and (9.88).

In this permutation invariant selection problem a two-stage selection rule
(ξ, ϕ, ϕ̃, ψ, ψ̃) can often be improved by replacing ψ by ψnat and ψ̃ by ψ̃nat,
where ψnat and ψ̃nat are the natural selections defined below.

Definition 9.87. For every fixed u1 let ψnat
S2|r2(u1) be the uniform distribu-

tion on the sets S2 ⊆ S1 with |S2| = r2 and max{ui,1 : i ∈ S1\S2} ≤
min{ui,1 : i ∈ S2}. Let ψ̃nat

S2|r2(u1) = ψnat
S2|r2(u1). For every fixed (u1,u2)

let ψnat
S3|r3,S2

(u1, pS2(u2)) be the uniform distribution on the sets S3 ⊆ S2 with
|S3| = r3 and max{ui,1 + ui,2 : i ∈ S2\S3} ≤ min{ui,1 + ui,2 : i ∈ S3}.

In a first step we consider the switch from (ξ, ϕ, ϕ̃, ψ, ψ̃) to (ξ, ϕ, ϕ̃, ψnat, ψ̃)
which affects only the terminal decisions. Under a loss with the properties
(9.87) and (9.88) a permutation invariant two-stage selection rule should be
modified by making the terminal decisions with the natural selections ψnat.
This is the content of the next theorem.

The properties (9.87) and (9.88) of the loss carry over to the posterior
risks under favorable circumstances. To show and to utilize this we introduce
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a class of auxiliary functions. For this purpose we represent (S1, S2) with
S2 ⊆ S1 by (T1, T2), where T1 = S1\S2 and T2 = S2. Let T2 denote the
set of all decompositions (T1, T2) of S1. Likewise, let us represent (S1, S2, S3)
with S3 ⊆ S2 ⊆ S1 by (T1, T2, T3), where T1 = S1\S2, T2 = S2\S3, and
T3 = S3. Let T3 denote the set of all decompositions (T1, T2, T3) of S1. Now,
for a fixed Borel set A ⊆ R let L1(·, T1, T2) : Ak →m R+, (T1, T2) ∈ T2, and
L2(·, T1, T2, T3) : Ak →m R+, (T1, T2, T3) ∈ T3.

Definition 9.88. The function L1 is said to have the property D(1, A) if for
every a ∈ Ak, γ ∈ Πk, and (T1, T2) ∈ T2 the following holds.

L1(a, γ(T1), γ(T2)) = L1(γ(a), T1, T2) and

L1(a, T̃1, T̃2) ≤ L1(a, T1, T2),

if for some i, j ∈ {1, ..., k} with ai ≤ aj, i ∈ T2, j ∈ T1, T̃1 = (T1\{j}) ∪ {i},
and T̃2 = (T2\{i}) ∪ {j}.

The function L2 is said to have the property D(2, A) if for every a ∈ Ak,
γ ∈ Πk, and (T1, T2, T3) ∈ T3 the following holds.

L2(a, γ(T1), γ(T2), γ(T3)) = L2(γ(a), T1, T2, T3) and

L2(a, T̃1, T̃2, T̃3) ≤ L2(a, T1, T2, T3),

if for some i, j ∈ {1, ..., k} with ai ≤ aj, and 1 ≤ α < β ≤ 3, j ∈ Tα, i ∈ Tβ,
T̃α = (Tα\{j}) ∪ {i}, and T̃β = (Tβ\{i}) ∪ {j}, and T̃ρ = Tρ for ρ /∈ {α, β}.

Problem 9.89. Suppose that for θ ∈ Δk, L1(θ, T1, T2) = L1(θ, T2), (T1, T2) ∈ T2,
and L2(θ, T1, T2, T3) = L2(θ, T2 ∪ T3, T3), (T1, T2, T3) ∈ T3. Then for m = 1, 2 the
following holds. Lm satisfies the respective conditions (9.87) and (9.88) if and only
if Lm has the property D(m,Δ).

The key lemma of this section is as follows.

Lemma 9.90. Suppose K : BAk ×Bk →k [0, 1] is permutation invariant and
has the DT property; see Definition 9.17. If L1 has the property D(1, A) and

L̃1(b, T1, T2) =
∫

L1(a, T1, T2)K(da|b), b ∈ Bk, (T1, T2) ∈ T2, (9.89)

then L̃1 has the property D(1, B). If L2 has the property D(2, A) and

L̃2(b, T1, T2, T3) =
∫

L2(a, T1, T2, T3)K(da|b), b ∈ Bk, (T1, T2, T3) ∈ T3,

(9.90)
then L̃2 has the property D(2, B).

Proof. The proof can be reduced to the proof of Lemma 9.27. For fixed
i, j ∈ {1, ..., k} and a = (a1, ..., ak) ∈ Ak we denote by a(i,j) the vector for
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which the components ai and aj are interchanged whereas the other compo-
nents remain unchanged. Let M,L be two nonnegative measurable functions
on Ak that have the following properties

L(a(i,j)) = M(a) and L(a)I[ai,∞)(aj) ≥M(a)I[ai,∞)(aj). (9.91)

We have shown in the proof of Lemma 9.27 that for bi ≤ bj it holds
∫
L(a)K(da|b) ≥

∫
M(a)K(da|b).

Let T1, T2 be a partition of S2. Suppose that ai ≤ aj for some i ∈ S1 and
j �= S1. Set L(a) = L1(a, T1, T2). Then L(a(i,j)) = L1(a, T̃1, T̃2) =: M(a).The
property D(1, A) for L1 implies that (9.91) is satisfied and the first statement
follows. The proof of the second statement is similar.

The risk of a two-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) at θ ∈ Δk is defined by

R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)) =
∑

S2⊆S1
L1(θ, S2)Eθ[ξ(U1)ϕ|S2|(U1)ψS2||S2|(U1)]

+
∑

∅�=S2⊆S1

∑
S3⊆S2

L2(θ, S2, S3)Eθ[(1− ξ(U1))ϕ̃|S2|(U1)ψ̃S2||S2|(U1)

× ϕ|S3||S2(U1, pS2(U2))ψS3||S3|,S2(U1, pS2(U2))],

which, apparently, is finite. The Bayes risk under a permutation invariant prior
Π on the Borel sets of Δk is used to establish ψnat and ψ̃nat as improvements
over ψ and ψ̃, respectively, of a permutation invariant two-stage selection rule,
similarly as has been done in Proposition 9.59. Again, also here, the question
regarding the optimization of ϕ and ϕ̃, which decide on the sizes of the subsets
to be selected, remains open as this depends on the form of the loss functions
chosen for the individual stages and on the prior; see Gupta and Miescke
(1984b). The Bayes risk is defined by

r(Π, (ξ, ϕ, ϕ̃, ψ, ψ̃)) =
∫

R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃))Π(dθ).

To evaluate this risk we turn to the Bayes model

(Ω,F,P) = (XNq ×Δk,A⊗Nq ⊗BΔk ,PNq
⊗Π),

PNq
(·|θ) =

⊗k
i=1

⊗q
m=1 P

⊗nm

θi
,

and denote by Θ the projection of XNq ×Δk on Δk. Then by Problem 9.79

d((
⊗k

i=1 Q
∗n1
θi

)⊗ (
⊗k

i=1 Q
∗n2
θi

))

d(ν⊗k
n1 ⊗ ν⊗k

n2 )
(u1,u2) = fN2,θ(u1 + u2).

Introduce the marginal density, conditional density, and conditional distribu-
tion by



572 9 Selection

mn1,n2(w) =
∫
fN2,θ(w)Π(dθ) and f(θ|w) =

fN2,θ(w)
mn1,n2(w)

, w ∈ R
k,

K(B|w) =
∫
IB(θ)f(θ|w)Π(dθ), w ∈ R

k. (9.92)

The expression for fN2,θ(w) in (9.83) gives

f(θ|w) = (
∫

exp{wT θ −N2

∑k

i=1
K(θi)}Π(dθ))−1 (9.93)

× exp{wT θ −N2

∑k

i=1
K(θi)}.

Furthermore,

Eh(Θ,U1,U2) = E

∫
h(θ,U1,U2)K(dθ|U1 + U2), (9.94)

for every h : Δk × R
k × R

k →m R+. This implies that U1 + U2 is Bayes
sufficient and the kernel K in (9.92) is a regular conditional distribution of Θ
given U1,U2. Then the Bayes risk of a two-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃)
under a prior Π ∈ P(BΔk) can be represented as follows.

r(Π, (ξ, ϕ, ϕ̃, ψ, ψ̃)) (9.95)

= E[ξ(U1)
∑k

r2=0
ϕr2(U1)

∑
S2⊆S1,|S2|=r2

ψS2|r2(U1)E(L1(Θ,S2)|U1)

+ (1− ξ(U1))
∑k

r2=1
ϕ̃r2(U1)

∑
S2⊆S1,|S2|=r2

ψ̃S2|r2(U1)

×E{
∑r2

r3=0
ϕr3|S2(U1, pS2(U2))

×
∑

S3⊆S2,|S3|=r3
ψS3|r3,S2(U1, pS2(U2))E(L2(Θ,S2, S3)|U1,U2)|U1}].

Now we can state the following.

Theorem 9.91. Given the model Mmss1 in (9.80) and the decision space
D2st let the loss L1 and L2 satisfy (9.87) and (9.88). Then for every permu-
tation invariant two-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) it holds

R(θ, (ξ, ϕ, ϕ̃, ψnat, ψ̃)) ≤ R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)), θ ∈ Δk.

Proof. For a fixed permutation invariant prior Π ∈ P(BΔk) it follows
from (9.94) that for W2 = U1 + U2 and every S3 ⊆ S2 ⊆ S1,

E(L2(Θ,S2, S3)|U1,U2) =
∫
L2(θ, S2, S3)K(dθ|W2), P-a.s.

It follows from (9.48) and (9.92) that the kernel K is permutation invariant.
Taking in addition into account Problem 9.19 we see from (9.48) that K has
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the DT property. Consider now L2 that has been introduced in Problem 9.89.
According to the statement there, because L2 has the properties (9.87) and
(9.88), L2 has the property D(2,Δ). Let

L̃2(w, T1, T2, T3) =
∫
Δk

L2(θ, T1, T2, T3)K(dθ|w). (9.96)

Then by Lemma 9.90 L̃2 has the property D(2,R). Let S2 ⊆ S1 and r3 ≤
|S2| be fixed, and set (T1, T2, T3) = (S1\S2, S2\S3, S3). L̃2(w, T1, T2, T3) is
minimized, subject to S3 ⊆ S2 and |S3| = r3, for those S3 that are associated
with r3 of the largest wi, i ∈ S2. It should be noted here that the wj with
j ∈ S1\S2 do not play any role at this point. Since at every (u1,u2) with
u1 + u2 = w we have ψnat

·|r3,S2
(u1, pS2(u2)) as the uniform distribution on

these sets (see Definition 9.87), the minimum posterior risk is achieved if
every ψS3|r3,S2 in (9.95) is replaced with the corresponding ψnat

S3|r3,S2
.

At Stage 1, the same arguments used above hold analogously, just in a
simpler setting with W1 = U1, and the minimum posterior risk is achieved
if every ψS2|r2 in (9.95) is replaced with the corresponding ψnat

S2|r2 . Thus, alto-
gether, we get

r(Π, (ξ, ϕ, ϕ̃, ψnat, ψ̃)) ≤ r(Π, (ξ, ϕ, ϕ̃, ψ, ψ̃)).

Finally, let θ0 ∈ Δk be fixed and let Λθ0 be the prior that contributes mass
1/k! to every γ(θ0), γ ∈ Πk. Note that if some coordinates in θ0 are equal,
then γ1(θ0) = γ2(θ0) may occur for some γ1, γ2 ∈ Πk. In this case Λθ0(γ1(θ0))
is the appropriate multiple of 1/k!. Because for every permutation invariant
two-stage rule (ξ, ϕ, ϕ̃, ψ, ψ̃), by (5.20) in Lemma 5.27, we have

r(Λθ, (ξ, ϕ, ϕ̃, ψ, ψ̃)) = R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)), θ ∈ Δk, (9.97)

and Λθ is permutation invariant for every θ ∈ Δk, the proof is completed.

Remark 9.92. Suppose we replace in (9.95) the decisions ψS3|r3,S2(U1, pS2(U2))
by decisions of the form ψS3|r3,S2(U1,U2). Then, according to the above proof, the
natural decision functions ψnat

S3|r3,S2
(U1, pS2(U2)) would still be optimal. That for

S2 ⊆ S1 and r3 ≤ r2 only the observations pS2(U1) and pS2(U2) are relevant for
the optimization of S3 at Stage 2, and in fact only pS2(U1) + pS2(U2) is used, is
due to the special structure of the two-stage selection rules and the loss.

Problem 9.93. Show that Proposition 9.59 is a special case of Theorem 9.91.

The two-stage selection rules in Examples 9.76, 9.77, and 9.78 employ
ψnat, which is under any loss that satisfies (9.87) and (9.88), according to the
last theorem, the optimal choice.

Next, we consider several applications and extensions of Theorem 9.91,
mainly for situations where in addition to ψ also ψ̃ can be improved. This
turns out to be a more challenging task. To optimize a Bayes procedure, or
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some part of it, at Stage 1 we have to know the Bayes posterior risk to be
expected at Stage 2. This means that the optimization process has to go
backwards, starting with Stage 2. Once Stage 2 has been optimized, then we
have to move back to Stage 1 and optimize that as well. This process is called
backward optimization.

To prepare for the next results we need some results on log-concave ex-
ponential families. We assume that the dominating measure μ for the one-
parameter exponential family Pθ is absolutely continuous with respect to the
Lebesgue measure λ. It should be pointed out that discrete exponential fami-
lies can also be treated in this setting by utilizing the interpolation technique
from Proposition 2.58. In the case of Lebesgue densities that is considered
here we suppose that

dQθ

dλ
(t) = exp{θt−K(θ)}d(t), d =

dμ

dλ
.

Without loss of generality we may assume that d is a probability density and
0 ∈ Δ. Otherwise we turn to exp{θ0T (x)−K(θ0)}d(t) for some fixed θ0. The
exponential family is called log-concave if d(t) is positive on some interval
and ln d(t) is concave. Obviously ln d(t) is concave if and only if ln(dQθ/dλ)
is concave.

Problem 9.94.∗ If the density d(t) is log-concave, then for every m the distribution
Q∗m

θ has the λ-density

f
(m)
θ (u) = exp{θu− rK(θ)}dr(u),

which is again log-concave. Here d1 = d, and for r = 2, 3, ..., dr(u) denotes the r-fold
convolution of d which is defined by

dr(u) =

∫
dr−1(u− s)d(s)ds.

We assume now that the distribution of T (X(m)
i,j ) has the Lebesgue density

qθi
(t) = exp{θit−K(θi)}d(t), t ∈ R, θi ∈ Δ,

j = 1, ..., ni, i = 1, ..., k, m = 1, 2. Then the Lebesgue density of Um is

f
(m)
θ (u) = exp{θTu−Knm

(θ)}dnm
(u), u ∈ R

k, θ ∈ Δk, where

Knm
(θ) = nm

∑nm

i=1
K(θi), dnm

(u) = Πk
i=1dnm

(ui), m = 1, 2.

Lemma 9.95. Let Π be a permutation invariant prior on BΔk . Based on the
joint distribution of (Θ,W1,W2), where W1 = U1 and W2 = U1 + U2, let
PΠ
w be the conditional distribution of W2, given W1 = w. If the function

d : B →m R+ is positive and log-concave, then there is a regular version of
the conditional distribution PΠ

w so that the stochastic kernel PΠ = (PΠ
w )w∈Rk

is permutation invariant and DT.
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Proof. The translation invariance of λk yields for every h : R
2k → R+

Eh(U1,U1 + U2)

=
∫

(
∫

[
∫
h(u1,u1 + u2)f

(1)
θ (u1)f

(2)
θ (u2)Π(dθ)]λk(du1))λk(du2)

=
∫

(
∫

[
∫
h(s1, s2)f

(1)
θ (s1)f

(2)
θ (s2 − s1)Π(dθ)]λk(ds1))λk(ds2).

This shows that the conditional density of U1 + U2, given U1, is given by

ξ(2)(s2|s1) =
∫
f

(1)
θ (s1)f

(2)
θ (s2 − s1)Π(dθ)∫

[
∫
f

(1)
θ (s1)f

(2)
θ (s2 − s1)Π(dθ)]λk(ds2)

=:
ϕ(s1, s2)
ψ(s1)

.

It holds

ϕ(s1, s2) =
∫

exp{θT s1 −Kn1(θ)}dn1(s1)

× exp{θT (s2 − s1)−Kn2(θ)}dn2(s2 − s1)Π(dθ)

=
∫

exp{θT s2 −Kn1(θ)−Kn2(θ)}Π(dθ)dn2(s2 − s1)dn1(s1),

ψ(s1) =
∫

exp{θT s1 −Kn1(θ)}

× [
∫

exp{θT (s2 − s1)−Kn2(θ)}dn2(s2 − s1)λk(ds2)]Π(dθ)dn1(s1).

As λk is translation invariant and exp{θTw−Kn2(θ)}dn2(w) is a density we
get

ψ(s1) = dn1(s1)
∫

exp{θT s1 −Kn1(θ)}Π(dθ),

and
ξ(2)(s2|s1) = g(s1, s2)dn1(s2 − s1),

where

g(s1, s2) =
∫

exp{θT s2 −KN2(θ)}Π(dθ)∫
exp{θT s1 −KN1(θ)}Π(dθ)

,

N1 = n1, N2 = n1 +n2, and g(s1, s2) is permutation invariant, i.e., g(s1, s2) =
g(γ(s1), γ(s2)). By considering s1,i as a parameter we get from Problem 9.94
and Proposition 2.20 that dN1(s2,i−s1,i) as a function of s2,i has MLR in s2,i.
Hence dN1(s2 − s1) satisfies the conditions (9.39) and (9.40). The permuta-
tion invariance of g shows that ξ(2)(s2|s1) also satisfies (9.39) and (9.40). An
application of Problem 9.19 completes the proof.

For the backward optimization we also need the following.

Lemma 9.96. Let A ⊆ R be a fixed Borel set. Suppose that the function L2

has the property D(2, A). For every a ∈ Ak and (T1, T2) ∈ T2 let
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L1(a, T1, T2) = min{L2(a, (T1, T̂2, T̂3) : T̂2 ∪ T̂3 = T2, T̂2 ∩ T̂3 = ∅}. (9.98)

Then L1 has the property D(1, A).

Proof. Let a ∈ Ak, (T1, T2) ∈ T2, and γ ∈ Πk be fixed. As L2 is permu-
tation invariant in the sense of Definition 9.88,

L1(γ(a), T1, T2)
= min{L2(a, γ(T1), T ∗

2 , T
∗
3 ) : T ∗

2 ∪ T ∗
3 = γ(T2), T ∗

2 ∩ T ∗
3 = ∅}

= L1(a, γ(T1), γ(T2)),

which means that L1 in permutation invariant.
Suppose that for some fixed i, j ∈ {1, ..., k} with ai ≤ aj we have j ∈ T1

and i ∈ T2. Let T̃1 = (T1\{j}) ∪ {i} and T̃2 = (T2\{i}) ∪ {j}. Moreover,
we distinguish between two types of decompositions T̂2, T̂3 of T2. The first is
where i ∈ T̂2. Here we set T 2 = (T̂2\{i}) ∪ {j} and T 3 = T̂3. The second is
where i ∈ T̂3. Here we set T 2 = T̂2 and T 3 = (T̂3\{i}) ∪ {j}. For either type
T 2, T 3 is a decomposition of T̃2, and

L2(a, T̃1, T 2, T 3) ≤ L2(a, (T1, T̂2, T̂3),

which implies that L1(a, T̃1, T̃2) ≤ L1(a, T1, T2).

Remark 9.97. Sometimes restrictions on the sizes of the subsets to be selected are
imposed on a two-stage selection rule which affects ϕ and ϕ̃. Customized versions of
Lemma 9.96 have then to be created and proved in a similar manner. The minimum
in (9.98) has to be restricted and the proof adjusted accordingly.

The next result is derived by backward optimization.

Theorem 9.98. Suppose that the underlying exponential family is strongly
unimodal with an everywhere positive density. Let the loss functions L1 and
L2 satisfy (9.87) and (9.88). Let (ξ, ϕ, ϕ̃, ψ, ψ̃) be a permutation invariant two-
stage selection rule that does not stop at Stage 1 and has a fixed predetermined
subset size R3 ≥ 1 for selections at Stage 2. Then it holds

R(θ, (ξ, ϕ, ϕ̃, ψnat, ψ̃nat)) ≤ R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)), θ ∈ Δk.

Proof. Let Π be any permutation invariant prior on BΔk that has a
finite support, and thus the Bayes risk of (ξ, ϕ, ϕ̃, ψ, ψ̃) is finite. In (9.95), by
assumption, we have ξ = 0 and ϕR3|S2 = 1.

At Stage 2, by Theorem 9.91, the component of ψnat associated with Stage
2 is optimal. Let r2 ∈ {1, ..., k} and S2 ⊆ S1 with |S2| = r2 be fixed. Set
T1 = S1\S2 and T2 = S2. Within E{·|U1} of (9.95) we insert ϕR3|S2 = 1 and
ψS3|R3,S2 = ψnat

S3|R3,S2
. Then the conditional expectation E{·|U1} in (9.95)

turns out to be

H̃(U1, T1, T2) = E(H(W2, T1, T2)|U1), where
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H(w, T1, T2) = min{L̃2(w, T1, T̂2, T̂3) : T̂2 ∪ T̂3 = T2, T̂2 ∩ T̂3 = ∅, |T̂3| = R3}
for w ∈ R(W2), and where L̃2 is defined in (9.96). The crucial point is that
the component of ψnat at Stage 2 remains optimal even if the component of
ψ at Stage 2 were allowed to make use of (U1,U2), and thus in particular of
W2 = U1 + U2.

As stated in the proof of Theorem 9.91, L̃2 has, by Lemma 9.90, the prop-
erty D(2,R(W1,2)). By Lemma 9.96 and Remark 9.97 it follows that H has
the property D(1,R(W1,2)). Lemma 9.95 states that the conditional distribu-
tion of W2, given W1, is permutation invariant and DT. Therefore another
application of Lemma 9.90 implies that H̃ has the property D(1,R(W1,1)). As
the Bayes risk has been reduced to

E[
∑k

r2=1
ϕ̃r2(U1)

∑
S2⊆S1,|S2|=r2

ψ̃S2|r2(U1)H̃(U1, S1\S2, S2)],

apparently ψ̃nat
S2|r2 is optimal. In view of (9.97) the proof is completed.

The above results on two-stage selection rules have been presented in
slightly different form in Gupta and Miescke (1983). They are special cases of
results in Gupta and Miescke (1984a) on q-stage selection rules. The proofs
for the latter are similar to those given above, but more involved. These more
general results are reported below without proofs. We recall that the model is
assumed to be from (9.82) and the observations are explained by (9.81) and
(9.84). For the m + 1 subsets of populations that are selected up to the end
of Stage m we introduce the notation

Sm+1 = (S1, ..., Sm+1), S1 ⊇ S2 ⊇ · · · ⊇ Sm+1, m = 1, ..., q. (9.99)

S1 = S1 = {1, ..., k} are the populations available at the beginning of Stage
1. S2 = (S1, S2) means that at Stage 1 we start with populations S1, sample
from populations S1 and select populations S2 ⊆ S1, either as the terminal
decision or to be sampled at Stage 2, and so on. Sq+1 = (S1, ..., Sq+1) means
that at the end of Stage q the terminal decision is the selection of Sq+1.

The decision space Dqst is chosen to consist of q components, one for
decisions that make their terminal decision at the end of Stage m, m = 1, ..., q.
We set Dqst =

⋃q
m=1Dm, where for m = 1, ..., q,

Dm = {(m, r2, S2, ..., rm+1, Sm+1) : S1 ⊇ S2 ⊇ · · · ⊇ Sm+1, |Si| = ri,

i = 2, ...,m+ 1, k ≥ r2 ≥ r3 ≥ · · · ≥ rm ≥ 1, 0 ≤ rm+1 ≤ rm}.

The q-stage selection rules are now introduced as distributions on Dqst in
dependence of the observations Vq = (U1, ...,Uq) from (9.84). We consider
functions ξ̂Sm

, ϕ̂rm+1|Sm
, ψ̂Sm+1|rm+1,Sm

: Xm
j=1R

|Sj | →m [0, 1] and set

ξSm
(vm) = ξ̂Sm

(u1, pS2(u2), ..., pSm
(um)),

ϕrm+1|Sm
(vm) = ϕ̂rm+1|Sm

(u1, pS2(u2), ..., pSm
(um)),

ψSm+1|rm+1,Sm
(vm) = ψ̂Sm+1|rm+1,Sm

(u1, pS2(u2), ..., pSm
(um)),
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for (m, r2, S2, ..., rm+1, Sm+1) ∈ Dm, vm = (u1, ...,um) ∈ R
km and m =

1, ..., q. ϕ̃rm+1|Sm
and ψ̃Sm+1|rm+1,Sm

are set up analogously to ϕrm+1|Sm
and

ψSm+1|rm+1,Sm
, respectively, for m = 1, ..., q − 1. We assume, analogously to

(9.85) and (9.86), that for every fixed m and vm = (u1, ...,um) ∈ R
km each

function introduced above sums up to 1 over the range of objects on which it
is defined.

Definition 9.99. A q-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) is, for every fixed
vq = (u1, ...,uq) ∈ R

kq, a distribution D(·|vq) on Dqst that satisfies

D({(m, r2, S2, ..., rm+1, Sm+1)}|vq)

=
∏m−1

j=1
(1− ξSj

(vj))ϕ̃rj+1|Sj
(vj)ψ̃Sj+1|rj+1,Sj

(vj)

× ξSm
(vm)ϕrm+1|Sm

(vm)ψSm+1|rm+1,Sm
(vm)

for (m, r2, S2, ..., rm+1, Sm+1) ∈ Dm, m = 1, ..., q, and also ξSq
(vq) = 1.

The interpretation of a q-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) is analogous to
that given after Definition 9.80 and omitted here for brevity. The approach
above can be extended to include sequential selection rules by letting q →∞.
The Bechhofer–Kiefer–Sobel sequential selection rule of Example 9.74 is an
example for such a rule.

Problem 9.100. Verify that the selection rules in Examples 9.75, 9.76, 9.77, and
9.78 are q-stage selection rules in the sense of Definition 9.99.

We focus again on the goal of optimizing the two components ψ and ψ̃ of
q-stage selection rules. Also here we have to restrict ourselves to permutation
invariant q-stage selection rules, and to loss functions that are permutation
invariant and favor selections of populations with larger parameters.

Let m ∈ {1, ..., q}, Sm = (S1, ..., Sm), vm = (u1, ...,um) ∈ R
km, and

γ ∈ Πk, be fixed. We set γ(Sm) = (γ(S1), ..., γ(Sm)), where γ(Sr) = {γ(i) :
i ∈ Sr}, r = 1, ...,m. Moreover, we set γ(vm) = (γ(u1), ..., γ(um)), where
γ(ur) = (uγ(1),r, ..., uγ(k),r), r = 1, ...,m.

Definition 9.101. A q-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) is called permuta-
tion invariant if the five types of decision functions are permutation invariant
in the following sense. For any γ ∈ Πk and m ∈ {1, ..., q} it holds PVm

-a.s.

ξγ(Sm)(vm) = ξSm
(γ(vm)),

ϕrm+1|γ(Sm)(vm) = ϕrm+1|Sm
(γ(vm)),

ψγ(Sm+1)|rm+1,γ(Sm)(vm) = ψSm+1|rm+1,Sm
(γ(vm)),

and for any γ ∈ Πk and m ∈ {1, ..., q − 1} ϕ̃ and ψ̃ have the same properties
as ϕ and ψ, respectively.
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Problem 9.102. Verify that the selection rules in Examples 9.75, 9.76, 9.77, and
9.78 are permutation invariant q-stage selection rules in the sense of Definition 9.101.

Finally, we adopt a class of loss functions that are permutation invariant
and favor selections of populations with larger parameters. For m = 1, ..., q,
let Lm(θ,Sm+1) be the loss that occurs at θ ∈ Δk if at Stage m the proce-
dure stops and produces the subset configuration Sm+1, where Lm(·,Sm+1) :
Δk →m R+. Analogously to (9.87) and (9.88) we assume that

Lm(θ, γ(Sm+1)) = Lm(γ(θ),Sm+1), γ ∈ Πk, θ ∈ Δk, (9.100)

and, moreover,
Lm(θ, S̃m+1) ≤ Lm(θ,Sm+1) (9.101)

if for some i, j ∈ {1, ..., k} with θi ≤ θj the following holds. For every c ∈
{1, ...,m + 1} with i ∈ Sc and j /∈ Sc, S̃c = (Sc\{i}) ∪ {j}, and S̃c = Sc,
otherwise. Thus, according to (9.101), a worse population should be eliminated
at an earlier stage than a better population.

In permutation invariant selection problems, under a loss that satisfies
(9.100) and (9.101), a q-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) can be improved by
replacing ψ by ψnat and ψ̃ by ψ̃nat, where ψnat and ψ̃nat are defined below.

Definition 9.103. For every fixed m ∈ {1, ..., q}, Sm, rm+1 ≤ |Sm|, vm =
(u1, ...,um) ∈ R

km, and wm = (w1,m, ..., wk,m) = u1 + · · · + um, let
ψnat
Sm+1|rm+1,Sm

(vm) be equal to a positive constant value for all Sm+1 ⊆ Sm
with |Sm+1| = rm+1 that satisfy

max{wi,m : i ∈ Sm\Sm+1} ≤ min{wj,m : j ∈ Sm+1},

and be zero otherwise. For m ∈ {1, ..., q − 1} let ψ̃nat be defined in the same
way; that is, ψ̃nat = ψnat.

Switching from a q-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) to (ξ, ϕ, ϕ̃, ψnat, ψ̃nat)
enforces that in the transition from any Sm to Sm+1 ⊆ Sm only populations
with the largest values of wi,m, i ∈ Sm, are included in Sm+1.

In a first step we consider the switch from (ξ, ϕ, ϕ̃, ψ, ψ̃) to (ξ, ϕ, ϕ̃, ψnat, ψ̃)
which affects only the terminal decisions. Under a loss with the properties
(9.100) and (9.101) a permutation invariant q-stage selection rule should be
modified by making the terminal decisions with natural selection rules. This
is the content of the next theorem, which has been proved in Gupta and
Miescke (1984a). The technical tools used in the proof are straightforward
generalizations of Definition 9.88, Problem 9.89, and Lemma 9.90 to the q-
stage setting.

The risk of a q-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) at θ ∈ Δk is given by

R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)) =
∑q

m=1

∑
Sm+1

Lm(θ,Sm+1) (9.102)

×Eθ[
∏m−1

j=1
(1− ξSj

(Vj))ϕ̃|Sj+1||Sj
(Vj)ψ̃Sj+1||Sj+1|,Sj

(Vj)

× ξSm
(Vm)ϕ|Sm+1||Sm

(Vm)ψSm+1||Sm+1|,Sm
(Vm)],
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where the second sum is with respect to Sm+1 = (S1, ..., Sm+1) with Sm+1 ⊆
Sm ⊆ · · · ⊆ S1 = {1, ..., k} and Sm �= ∅, and where ξSq

= 1.

Remark 9.104. It should be pointed out that (9.102) holds also for untruncated
(open sequential) procedures as long as they stop almost surely in finitely many
steps and the risk is finite. One has to drop the assumption that ξSq = 1 and then
take q =∞ in (9.102).

The Bayes risk under a permutation invariant prior Π on the Borel sets of
Δk can be used to establish ψnat and ψ̃nat (see Definition 9.103) as improve-
ments over ψ and ψ̃, respectively, in a permutation invariant q-stage selection
rule, similarly as has been done in Proposition 9.59. Again, also here, the
question regarding the optimization of ϕ and ϕ̃, which decide on the sizes of
the subsets to be selected, remains open as this depends on the form of the loss
functions chosen for the individual stages and on the prior. The generalization
of Theorem 9.91 to q-stage selection rules is as follows.

Theorem 9.105. Let the loss Lm(θ, Sm+1) for all Sm+1 from (9.99), m =
1, ..., q, and θ ∈ Δk, satisfy (9.100) and (9.101). Then for every permutation
invariant q-stage selection rule (ξ, ϕ, ϕ̃, ψ, ψ̃) it holds

R(θ, (ξ, ϕ, ϕ̃, ψnat, ψ̃)) ≤ R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)), θ ∈ Δk.

The q-stage selection rules in Examples 9.75, 9.76, 9.77, and 9.78 employ
ψnat, which is the optimal choice, according to Theorem 9.105, under any loss
that satisfies (9.100) and (9.101).

Problem 9.106. Suppose that a permutation invariant q-stage selection rule is
not allowed to eliminate any population at Stages 1 through q− 1. This means that
ϕ̃rm+1|Sm = 1 for rm+1 = k and every Sm from (9.99), m = 1, ..., q − 1. In this

case, no matter which stopping rule is used, the natural terminal decision rule ψnat

is optimal. This can be extended to the case of q → ∞, and thus in particular the
sequential selection rule in Example 9.74 employs the optimal terminal decision.

To conclude this section, several applications and extensions of Theo-
rem 9.105 are considered in situations where in addition to ψ also ψ̃ can
be improved. This turns out to be a more challenging task. To optimize, in
the Bayes approach, a q-stage selection rule, or some part of it, at Stage
m,m+ 1, ..., q− 1 we have to know the Bayes posterior risk to be expected at
Stage m+1,m+2, ..., q, respectively. This means that the optimization process
has to go backwards, starting with Stage q. Once Stage q has been optimized,
we have to move back to Stage q − 1 and optimize that, and so on. This
process is called backward optimization. If a specific optimization technique is
used repeatedly through the stages, then we can utilize backward induction.
From this point on, as before with two-stage selection rules, we assume that
the underlying exponential family is strongly unimodal. The technical tools
used to prove the results below are straightforward generalizations of Lemma
9.95, and Lemma 9.96 to the q-stage setting.
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The following generalization of Theorem 9.98 to q-stage selection rules has
been proved in Gupta and Miescke (1984a) by backward optimization and
backward induction.

Theorem 9.107. Suppose that the underlying exponential family is strongly
unimodal. Let the loss Lm(θ, Sm+1) for all Sm+1 from (9.99), m = 1, ..., q,
and θ ∈ Δk, satisfy (9.100) and (9.101). Let (ξ, ϕ, ϕ̃, ψ, ψ̃) be a permutation
invariant q-stage selection rule that has fixed predetermined subset sizes r2 ≥
· · · ≥ rq+1 for selections at Stages 1 through q, respectively, and does not stop
at Stages 1 through q − 1. Then it holds

R(θ, (ξ, ϕ, ϕ̃, ψnat, ψ̃nat)) ≤ R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)), θ ∈ Δk.

If the assumptions of Theorem 9.107 are relaxed by allowing the subset
sizes R2 ≥ · · · ≥ Rq for selections at Stages 1 through q − 1, respectively, to
be random, then the situation becomes more difficult. What can be shown,
however, is the following.

Corollary 9.108. If the assumptions of Theorem 9.107 are relaxed by allow-
ing r2 ≥ · · · ≥ rq to be random, then

R(θ, (ξ, ϕ, ϕ̃, ψnat, ψ̃•)) ≤ R(θ, (ξ, ϕ, ϕ̃, ψ, ψ̃)), θ ∈ Δk,

where the components of ψ̃• are the same as those of ψ̃, except for Stage q−1
where the component of ψ̃• is that of ψ̃nat.

The statement of the corollary can be stretched somewhat further. More
precisely, the main tool for optimizing a permutation invariant q-stage selec-
tion rule in terms of ψ̃ appears to work only s stages backwards from the last
stage, provided that rq−s+2 ≥ · · · ≥ rq+1 are fixed predetermined. Further
optimization of ψ̃ under permutation invariant priors seems to be infeasible
under a random rq−s+1, s = 1, ..., q−1. In view of this shortcoming Bayes rules
under i.i.d. priors have been studied in Gupta and Miescke (1984a). This leads
to the following result, which has also been proved by backward optimization
and backward induction.

Theorem 9.109. Suppose that the underlying exponential family is strongly
unimodal. Let the loss Lm(θ,Sm+1) for all Sm+1 from (9.99), and θ ∈ Δk,
satisfy (9.100) and (9.101), and in addition let it be a function of only those θi
with i ∈ Sm+1, m = 1, ..., q. Let Π ∈ P(BΔ). If under the prior Υ = Π⊗k for
Θ = (Θ1, ..., Θk) there exists a Bayes permutation invariant q-stage selection
rule, then there also exists, under the same prior Υ , a Bayes permutation
invariant q-stage selection rule of the form (ξ, ϕ, ϕ̃, ψnat, ψ̃nat).

Problem 9.110. Determine which of the selection rules in Examples 9.75, 9.76,
9.77, and 9.78 are optimized in the sense of Theorems 9.105, 9.107, and 9.109.
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9.4.2 Bayes Sampling Designs for Adaptive Sampling

In this section we consider multistage selection rules that are quite different
from the q-stage selection rules in the previous subsection. This time a prede-
termined total number N of observations is taken in a sequential fashion from
the k populations and then a terminal decision is made in form of a point
selection; see Section 9.2. At certain stages of the sampling process decisions
are made regarding the populations to be sampled next, utilizing all of the the
information gathered so far, which includes the information provided by the
prior. In other words, adaptive sampling is employed. As shown, ideally one
should take one observation at a time and then allocate the next observation
to a population in an optimal way. In practical applications, however, this may
not always be feasible, and then one has to have recourse to approximately
optimal allocations.

The Bayes multistage selection rules are developed heuristically, starting
with one-stage rules, moving on to two-stage rules, and eventually establishing
the general case. The basic idea of the Bayes look-ahead method that is used
hereby has been taken from Berger (1985) and utilized for multistage selection
problems in Miescke (1990, 1993), Gupta and Miescke (1994, 1996a,b), Miescke
and Shi (1995), Miescke and Park (1997), and Miescke (1999).

Let the statistical model be given by

Mmsa = (X kN ,A⊗kN , (
⊗k

i=1 P
⊗N
θi

)θ∈Δk),

where θ = (θ1, ..., θk), which allows us to take N independent observations
Xi,j , j = 1, ..., ni, i = 1, ..., k, with n1 + · · ·+ nk = N in any fashion from the
k populations. The parameter set Δ is assumed to be a Borel subset of R. As
we are utilizing the Bayes approach we assume that the standard condition
(A3) is satisfied so that the family (Pθ)θ∈Δ is a stochastic kernel, say P. Our
goal is to find a population with the largest parameter value.

We begin with the study of one-stage selection rules. Let the N obser-
vations be allocated in such a way that ni are drawn from population i,
i = 1, ..., k, where n1 + · · · + nk = N . Let Π ∈ P(B⊗k

Δ ) be a given prior for
Θ = (Θ1, ..., Θk). Altogether, our Bayes decision problem is modeled by the
probability space

(Ω,F,P) =((Xk
i=1Xni)×Δk, (

⊗k
i=1 A⊗ni)⊗B

⊗k
Δ , (

⊗k
i=1 P⊗ni)⊗Π),

where ⊗ denotes the product of the stochastic kernels; see Proposition A.39.
The means here that

((
⊗k

i=1 P⊗ni)⊗Π)(dx1,1, ..., dx1,n1 , ..., dxk,1, ..., dxk,nk
, dθ1, ..., dθk)

= (
⊗k

i=1

⊗ni

j=1 Pθi
(dxi,j))⊗Π(dθ1, ..., dθk).

To simplify notation let X1,1, ...,Xk,nk
, Θ1, ..., Θk denote the projections on

the coordinates. Moreover, we set Xi,ni
= (Xi,1, ...,Xi,ni

), Θ = (Θ1, ..., Θk),
xi,ni

= (xi,1, ..., xi,ni
), and θ = (θ1, ..., θk).
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As to the loss, cost of sampling is of no concern because N observations
are always drawn altogether. Elimination of populations is not allowed here
and thus we assume that the loss function is of the form L : Δk×Dpt →m R+

and satisfies (9.42) and (9.43) with κ as the identity. For any nonrandomized
selection rule dn : Xk

i=1Xni →m {1, ..., k}, where n = (n1, ..., nk), the Bayes
risk is

r(Π, dn) = EL(Θ, dn(X1,n1 , ...,Xk,nk
))

=
∫

[
∫
L(θ, dn(x1,n1 , ...,xk,nk

))(
⊗k

i=1 P⊗ni)(dx1,n1 , ..., dxk,nk
|θ)]Π(dθ).

We note that in view of Remark 9.11 it is sufficient to deal with nonrandomized
selection rules. Turning to the posterior risk at i ∈ {1, ..., k}, that is,

r(Π, i|x1,n1 , ...,xk,nk
) = E(L(Θ, i)|X1,n1 = x1,n1 , ...,Xk,nk

= xk,nk
),

we get

r(Π, dn) = E

∑k

i=1
r(Π, i|X1,n1 , ...,Xk,nk

)I{i}(dn(X1,n1 , ...,Xk,nk
)).

Hence the minimum Bayes risk is attained by any nonrandomized selection
rule dBn that satisfies

dBn (x1,n1 , ...,xk,nk
) ∈ arg min

1≤i≤k
{r(Π, i|x1,n1 , ...,xk,nk

)},

and it holds

r(Π, dBn ) = E( min
1≤i≤k

r(Π, i|X1,n1 , ...,Xk,nk
))

= E( min
1≤i≤k

E(L(Θ, i)|X1,n1 , ...,Xk,nk
)).

Up to this point the sample sizes n1, ..., nk for the samples taken from the
k populations have been assumed to be fixed. Now we allow an additional
optimization step by requiring only that the total number of observations
|n| := n1 + · · · + nk = N is fixed. A sampling allocation n∗ with |n∗| = N
that provides the smallest Bayes risk satisfies

r(Π, dBn∗) = min
|n|=N

E( min
1≤i≤k

E(L(Θ, i)|X1,n1 , ...,Xk,nk
)), (9.103)

and we call n∗ a Bayes design for the one-stage selection problem.

Example 9.111. According to Corollary 9.12, with κ as the identity, an optimal
sampling allocation n∗ under the zero–one loss from (9.15) is determined by finding

max
|n|=N

E( max
1≤i≤k

P(Θi = Θ[k]|X1,n1 , ...,Xk,nk)),

and under the linear loss from (9.26) by finding

max
|n|=N

E( max
1≤i≤k

E(Θi|X1,n1 , ...,Xk,nk)).
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Problem 9.112. Evaluate (9.103) in the settings of Examples 9.14 and 9.41 under
the zero–one loss and under the linear loss.

Moving on to two-stage selection rules, let nl = (nl,1, ..., nl,k), l = 1, 2,
be the sample sizes at Stages 1 and 2, respectively. Let N1 and N2 with
N1 + N2 = N be fixed. We consider now sampling designs (n1,n2) with
|n1| = N1 and |n2| = N2. To utilize again the Bayes approach we set

Ynl
= Xk

i=1Xnl,i , Bnl
=
⊗k

i=1 A⊗nl,i , Pnl
=
⊗k

i=1 P⊗nl,i , l = 1, 2,

and consider the probability space

(Ω,F,P) =(Yn1 × Yn2 ×Δk,Bn1 ⊗Bn2 ⊗B
⊗k
Δ , (Pn1 ⊗ Pn2)⊗Π). (9.104)

Denote by

Yl,nl
= (Xl,1,n1 , ...,Xl,k,nk

) = ((Xl,1,1, ...,Xl,1,n1), ..., (Xl,k,1, ...,Xl,k,nk
)),

l = 1, 2, and Θ = (Θ1, ..., Θk) the corresponding projections. The crucial point
is now that

(Pn1 ⊗ Pn2)⊗Π)(dy1,n1 , dy2,n2 , dθ) (9.105)

= (
⊗k

i=1 P
⊗n1,i

θi
)(dy1,n1)(

⊗k
i=1 P

⊗n2,i

θi
)(dy2,n2)Π(dθ).

Let us consider the joint distribution of Y1,n1 and Θ, which is given by

(
⊗k

i=1 P
⊗n1,i

θi
)(dy1,n1)Π(dθ),

and denote by PY1,n1
the distribution of Y1,n1 under P in (9.104). As Δ is

assumed to be a Borel subset of R we may choose the conditional distribution
of Θ, given Y1,n1 = y1,n1 , as a stochastic kernel, say Π1, so that

(
⊗k

i=1 P
⊗n1,i

θi
)(dy1,n1)Π(dθ) = Π1(dθ|y1,n1)PY1,n1

(dy1,n1).

Then it holds

((Pn1 ⊗ Pn2)⊗Π)(dy1,n1 , dy2,n2 , dθ)

= (
⊗k

i=1 P
⊗n2,i

θi
)(dy2,n2)Π1(dθ|y1,n1)PY1,n1

(dy1,n1).

That the conditional distribution of Y2,n2 , given Θ = θ and Y1,n1 = y1,n1 ,
depends only on θ is due to the fact that according to (9.105) Y1,n1 and Y2,n2

are conditionally independent, given Θ = θ, so that according to Problem 1.99
Y1,n1 , Θ,Y2,n2 is a Markov chain, and the conditional distribution of Y2,n2 ,
given Θ = θ and Y1,n1 = y1,n1 , is independent of y1,n1 . This Markov property
admits the following statistical interpretation. After the observations at the
first stage have been made the value of Y1,n1 = y1,n1 is fixed. Then the further
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sampling and inference depend only on the conditional distribution of Y2,n2 ,
given Θ, which is the original conditional distribution (

⊗k
i=1 P

⊗n2,i

θi
)(dy2,n2),

and on a new prior Π1(dθ|y1,n1). The latter is called the updated prior based
on the observation Y1,n1 = y1,n1 which, of course, is just the posterior for the
observations in the first step.

For any nonrandomized two-stage selection rule dn1,n2 : Xk
i=1Xn1,i ×

Xk
i=1Xn2,i →m {1, ...k}, where n1 = (n1,1, ..., n1,k) and n2 = (n2,1, ..., n2,k)

are fixed, the Bayes risk can be written as follows.

r(Π, dn1,n2) = EL(Θ, dn1,n2(Y1,n1 ,Y2,n2))
= E(E(L(Θ, dn1,n2(Y1,n1 ,Y2,n2)|Θ,Y1,n1))

=
∫

E(L(Θ, dn1,n2(y1,n1 ,Y2,n2)|Θ)PY1,n1
(dy1,n1)

=
∫

[
∫

[
∫
L(θ, dn1,n2(y1,n1 ,y2,n2))Pn2(dy2,n2 |θ)]Π1(dθ|y1,n1)]

× PY1,n1
(dy1,n1).

Let Π2(dθ|y1,n1 ,y2,n2) be the second-stage posterior, which is a regular condi-
tional distribution of Θ, given Y1,n1 = y1,n1 and Y2,n2 = y2,n2 . Furthermore
let the stochastic kernel Q represent the conditional distribution of Y2,n2 ,
given Y1,n1 . Then

r(Π, dn1,n2) =
∫

[
∫

[
∫
L(θ, dn1,n2(y1,n1 ,y2,n2))Π2(dθ|y1,n1 ,y2,n2)]

× Q(dy2,n2 |y1,n1)]PY1,n1
(dy1,n1). (9.106)

Denote by dBn1,n2
the Bayes selection rule with fixed sample size design

(n1,n2); that is, dBn1,n2
is defined by

r(Π, dBn1,n2
) = min

dn1,n2

r(Π, dn1,n2).

If we minimize r(Π, dn1,n2), not only over the selection rules dn1,n2 , but also
over all sampling designs given by n1 = (n1,1, ..., n1,k) and n2 = (n2,1, ..., n2,k)
subject to |n1| = N1 and |n2| = N2, where N1 and N2 are fixed with N1+N2 =
N , then we get

min
|n1|=N1,|n2|=N2

r(Π, dBn1,n2
) = min

|n1+n2|=N
r(Π, dBn1+n2

) = r(Π, dBn∗), (9.107)

where r(Π, dBn∗) is from (9.103), and apparently nothing has been gained.
However, the Bayes risk can be improved further by an optimization of n2

in dependence of n1 and y1,n1 , followed by an optimization of n1. We call
the resulting design (n∗

1,n
∗
2(n

∗
1,Y1,n1)), in short (n∗

1,n
∗
2), an adaptive Bayes

design. It is derived by the look-ahead method, or in other words by backward
optimization. Let dBn∗

1 ,n
∗
2

denote the associated Bayes selection rule. The next
theorem shows that the minimization can be carried out stepwise under the
integrals, starting with θ, going back to y2,n2 , and then going back to y1,n1 .
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Theorem 9.113. For the Bayes model (9.104), under the constraints |n1| =
N1, |n2| = N2, and N1 +N2 = N , the Bayes risk of the adaptive Bayes design
(n∗

1,n
∗
2) and the associated Bayes selection rule dBn∗

1 ,n
∗
2

satisfy

r(Π, dBn∗
1 ,n

∗
2
) ≤ r(Π, dBn∗),

where r(Π, dBn∗) is from (9.103).

Proof. The statement follows from

r(Π, dBn∗
1 ,n

∗
2
)

= min
|n1|=N1

∫
min

|n2|=N2

[
∫

min
1≤i≤k

[
∫
L(θ, i)Π2(dθ|y1,n1 ,y2,n2)]Q(dy2,n2 |y1,n1)]

× PY1,n1
(dy1,n1)

≤ min
|n1|=N1

min
|n2|=N2

∫
[
∫

min
1≤i≤k

[
∫
L(θ, i)Π2(dθ|y1,n1 ,y2,n2)]Q(dy2,n2 |y1,n1)]

× PY1,n1
(dy1,n1)

= r(Π, dBn∗),

where the last equation follows from (9.107).

Remark 9.114. The process of breaking up one stage with N observations into
Stage 1 with N1 and Stage 2 with N2 observations, subject to N1 + N2 = N , can
be iterated with either of the two stages, and each breakup leads to a new Bayes
risk that is less than or equal to the previous one. The overall smallest Bayes risk
is achieved by taking the N observations one at a time and using a Bayes N -stage
selection rule.

The practical use of the above approach is rather limited if Y1,n1 is not a
discrete random variable. Although in r(Π, dBn∗

1 ,n
∗
2
) the minimization in terms

of n2 may be carried out for every y1,n1 and n1 with |n1| = N1, the evaluation
of the outer integral with respect to PY1,n1

, and thus its minimization, may
not be feasible. For such cases approximations to the adaptive Bayes design
can be found in the literature, with references given at the beginning of this
subsection.

Example 9.115. Let (Xi,1, ..., X,i,ni , Θi), i = 1, ..., k, n1 + · · · + nk = N , be
independent random vectors, where Xi,1, ..., Xi,ni are conditionally independent
Bernoulli variables with success probabilities θi, given Θi = θi, i = 1, ..., k. Let
the prior be given by

⊗k
i=1 Be(αi, βi) with αi, βi > 0, i = 1, ..., k. Due to the in-

dependence of the vectors (Xi,1, ..., Xi,ni , Θi), i = 1, ..., k, we may calculate the
posterior distribution for each population i and then take the product to get the
posterior. According to Example 7.114 the conditional distribution of Θi, given
Xi,1 = xi,1, ..., Xi,ni = xi,ni , is Be(αi +

∑ni
j=1 xi,j , βi + ni −

∑ni
j=1 xi,j). Thus with

xi :=
∑ni

j=1 xi,j , i = 1, ..., k, utilizing Bayes sufficiency, (9.103) turns out to be
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r(Π, dB
n∗) = min

|n|=N

∑n1

x1=0
· · ·
∑nk

xk=0
[ min
i=1,...,k

∫
L(θ, i)

⊗k
i=1 Beαi+xi,βi+ni−xi(dθi)]

×
⊗k

i=1 peni,αi,βi
(xi),

where peni,αi,βi
(xi) is the probability mass function of the Pólya–Eggenberger dis-

tribution; see Gupta and Miescke (1993).
Moving on to two-stage selection rules, let nl = (nl,1, ..., nl,k), l = 1, 2, be the

sample sizes at Stages 1 and 2, respectively. Let N1 and N2 with N1 + N2 = N be
fixed. We consider now sampling designs (n1,n2) with |n1| = N1 and |n2| = N2.
Let Xl,i,j , j = 1, ..., nl,i, i = 1, ..., k, be the observations at Stage l, l = 1, 2. If we
use the posterior of Stage 1 as the prior for Stage 2, then the posterior of Stage 2 is

⊗k
i=1 Be(αi +

∑2
l=1

∑nl,i

j=1 xl,i,j , βi + n1,i + n2,i −
∑2

l=1

∑nl,i

j=1 xl,i,j).

Then with xi :=
∑ni

j=1 x1,i,j and yi :=
∑2

l=1

∑nl,i

j=1 xl,i,j , i = 1, ..., k, utilizing Bayes
sufficiency, we get

r(Π, dB
n∗
1 ,n∗

2
)

= min
|n1|=N1

∑n1,1

x1=1
· · ·
∑n1,k

xk=1
[ min
|n2|=N2

∑x1+n2,1

y1=x1
· · ·
∑xk+n2,k

yk=xk

[ min
1≤i≤k

∫
L(θ, i)

×
⊗k

i=1 Beαi+yi,βi+n1,i+n2,i−yi(dθi)]
⊗k

i=1 Hn2,i|n1,i
(yi|xi)]

⊗k
i=1 pen1,i,αi,βi

(xi),

where Hn2,i|n1,i
(yi|xi) is the p.m.f. of the distribution of

∑2
l=1

∑nl,i

j=1 Xl,i,j , given∑n1,i

j=1 X1,i,j = xi. Dealing with it can be avoided by using the method of updating
the prior at the end of Stage 1.

The minimizations that appear in the previous example have been carried
out numerically for k = 3 in Miescke and Park (1997), where the optimal allo-
cation of observations, taken one at a time, has been determined by backward
optimization. Numerical comparisons with other multistage selection rules,
including the look-ahead one stage selection rule, can also be found there.

The problem of finding a best binomial population in several stages, or
sequentially, with adaptive sampling has been studied by many authors in
various settings in the past. The best-known allocation method, due to Rob-
bins (1956), is play-the-winner , which has been utilized in Sobel and Weiss
(1972a,b). For an overview of the work done in this area we refer to Gupta
and Panchapakesan (1979).

9.5 Asymptotically Optimal Point Selections

9.5.1 Exponential Rate of Error Probabilities

In Chapter 8 we have studied, for binary models with independent observa-
tions, the exponential rate at which the error probabilities of the second kind
of best level α tests tend to zero. Similar results have been established for
the Bayes error probabilities and for the maximum of the error probabilities.
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In this section we study the exponential rate of error probabilities in classifi-
cation problems, slightly different from those considered previously, which is
due to Krafft and Puri (1974). The results are then utilized to investigate the
rate at which the error probabilities of point selection rules tend to zero.

Let M = (X ,A, (Pθ)θ∈Δ) be a statistical model with m distinct distribu-
tions, i.e., Δ = {1, ...,m}. Suppose we want to estimate the parameter θ ∈ Δ,
i.e., find the true distribution. Then the decision space is D = {1, ...,m} and
D = P({1, ...,m}). For any decision D : D × X →k [0, 1] and x ∈ X we set
ϕi(x) = D({i}|x), i = 1, ...,m, and call ϕ(x) = (ϕ1(x), ..., ϕm(x)) a classifi-
cation rule. By construction, ϕi(x) is the probability of deciding in favor of
i ∈ {1, ...,m} after x has been observed, and it holds

∑m
i=1 ϕi(x) = 1.

We use the zero–one loss function L(θ, i) = 1− I{θ}(i), i, θ ∈ D. The risk
is then given by

R(θ, ϕ) =
∫ ∑m

i=1
L(θ, i)ϕi(x)Pθ(dx) =

∫
(1− ϕθ(x))Pθ(dx),

which is the probability of a false classification. For θ1 �= θ2 it holds 1 −
ϕθ2(x) ≥ ϕθ1(x) and thus

max{R(θ1, ϕ),R(θ2, ϕ)} = max{
∫

(1− ϕθ1)dPθ1 ,
∫

(1− ϕθ2)dPθ2} (9.108)

≥ max{
∫

(1− ϕθ1)dPθ1 ,
∫
ϕθ1dPθ2} ≥ 2m1/2(Pθ1 , Pθ2),

where m1/2(Pθ1 , Pθ2) is the minimax value from (3.62).
Suppose now that an i.i.d. sample of size n is available, so that we deal

with the sequence of statistical models (Xn,A⊗n, (P⊗n
θ )θ∈Δ). If ϕ(n) is any

sequence of classification rules, then by (9.108)

max
1≤θ≤m

R(θ, ϕ(n)) ≥ 2 max
1≤θ1 �=θ2≤m

m1/2(P⊗n
θ1

, P⊗n
θ2

).

We apply Theorem 8.72 to the right-hand side and get

lim inf
n→∞

1
n

ln( max
1≤θ≤m

R(θ, ϕ(n)))

≥ lim inf
n→∞

1
n

ln( max
1≤θ1 �=θ2≤m

m1/2(P⊗n
θ1

, P⊗n
θ2

))

≥ max
1≤θ1 �=θ2≤m

(−C(Pθ1 , Pθ2)) = − min
1≤θ1 �=θ2≤m

C(Pθ1 , Pθ2), (9.109)

where C(Pθ1 , Pθ2) is the Chernoff index of Pθ1 and Pθ2 from (8.73).
The natural question arises as to whether we can find a classification rule

that attains asymptotically the lower bound for the risk in (9.109). In the
sequel it is shown that the maximum likelihood classification rule below has
that property. Fix a μ ∈Mσ(A) that dominates all Pθ, let fn,θ = dP⊗n

θ /dμ⊗n,
and
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Bn(x) = {η : η ∈ {1, ...,m}, fn,η(x) = max
1≤θ≤m

fn,θ(x)}, x ∈ Xn.

The maximum likelihood classification rule is defined to be

ϕ
(n)
ml (x) =

1
|Bn(x)| (IBn(x)(1), ..., IBn(x)(m)), x ∈ Xn. (9.110)

For any x ∈ Xn, if Bn(x) ⊆ {1, ...,m} is a singleton, then ϕ
(n)
ml decides for

this value. Otherwise, ϕ(n)
ml selects a point from Bn(x) at random by using the

uniform distribution on Bn(x).
To derive an upper bound for the risk of this rule we note that IBn(x)(i) > 0

implies that fn,i(x) = maxη∈Δ fn,η(x) ≥ fn,θ(x), θ ∈ {1, ...,m}. Hence,

R(θ, ϕ(n)
ml ) =

∑
i�=θ

∫
1

|Bn(x)|IBn(x)(i)P⊗n
θ (dx) ≤

∑
i�=θ

P⊗n
θ (fn,θ ≤ fn,i)

≤
∑

i�=θ

∫
(fn,θ ∧ fn,i)dμ⊗n ≤ 2

∑
i,j:i�=j

b1/2(P⊗n
j , P⊗n

i ),

where b1/2(P0, P1) has been introduced in Lemma 1.66.

Problem 9.116.∗ For any sequences an, bn ≥ 0 it holds

lim sup
n→∞

1

n
ln(an + bn) = max{lim sup

n→∞

1

n
ln an, lim sup

n→∞

1

n
ln bn}. (9.111)

An application of Theorem 8.72 and (9.111) to the above inequality yields

lim sup
n→∞

1
n

ln( max
1≤θ≤m

R(θ, ϕ(n)
ml )) ≤ − min

1≤θ1 �=θ2≤m
C(Pθ1 , Pθ2).

By combining this with (9.109) we get the following result which has been
established in Krafft and Puri (1974).

Theorem 9.117. If ϕ(n) is a sequence of classification rules for the sequence
of models (Xn,A⊗n, (P⊗n

θ )θ∈Δ), where Δ = {1, ...,m}, then

lim inf
n→∞

1
n

ln( max
1≤θ≤m

R(θ, ϕ(n))) ≥ − min
1≤θ1 �=θ2≤m

C(Pθ1 , Pθ2). (9.112)

The maximum likelihood classification rule ϕ
(n)
ml in (9.110) attains the lower

bound of the probability of an incorrect classification; that is,

lim
n→∞

1
n

ln( max
1≤θ≤m

R(θ, ϕ(n)
ml )) = − min

1≤θ1 �=θ2≤m
C(Pθ1 , Pθ2).

Example 9.118. Let (Pθ)θ∈Δ be an exponential family with natural parameter θ,
and let {θ1, ..., θm} be a finite subset of Δ. From Example 8.74 we get the exponential
rate of the maximum error probabilities of the asymptotically optimal classification
rule
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inf
1≤θi �=θj≤m

C(Pθi , Pθj )

= inf
1≤θi �=θj≤m,0<s<1

{sK(θi) + (1− s)K(θj)−K(sθi + (1− s)θj)}.

Especially, if Pθj = N(θj , σ
2), then by (8.75),

inf
1≤θi �=θj≤m

C(N(θi, σ
2),N(θj , σ

2)) =
1

8σ2
min
i�=j

(θi − θj)
2.

Now we turn to the error probabilities in another type of problem with
a finite decision space. Let Q1, ..., Qk be given distinct distributions on the
sample space (X ,A), where one of them, say Qk, is singled out as the best
population. We take a sample from each of the k distributions, say X1, ...,Xk,
and assume that they are independent. The model assumption is that we know
that {L(X1), ...,L(Xk)} = {Q1, ..., Qk}, but not the actual pairing. Such a
problem is called an identification problem, see, for example, Bechhofer, Kiefer,
and Sobel (1968) and Miescke (1979a). This is the simplest form of a selection
problem. We take Δ = Πk, i.e., the set of all k! permutations θ of (1, ..., k),
and Pθ =

⊗k
i=1 Qθ(i), where Qθ(i) = L(Xi), i = 1, ..., k, at θ ∈ Δ. Our goal

is to identify that particular i ∈ {1, ..., k} for which L(Xi) = Qk, and thus
the decision space is D = {1, ..., k}. Each decision D(A|x), A ⊆ D, x ∈ X k,
can be reduced to elementary probabilities by switching to ϕi(x) := D({i}|x),
the probability of selecting the ith population, i = 1, ..., k, after x ∈ X k has
been observed. Because θ−1(k) is the position of the best population if θ is the
true parameter, the zero–one loss function, which we adopt here, has the form
L(θ, i) = 1−I{θ−1(k)}(i), θ ∈ Δ, i = 1, ..., k. The risk is R(θ, ϕ) = 1−Pcs(θ, ϕ),
where, analogously to (9.17),

Pcs(θ, ϕ) =
∫
ϕθ−1(k)(x)Pθ(dx), θ ∈ Δ,

is the probability of a correct selection (PCS). To deal with R(θ, ϕ) we use
similar ideas as in (9.108). For θ1, θ2 ∈ Δ with θ−1

1 (k) �= θ−1
2 (k) it holds

1− ϕθ−1
2 (k) ≥ ϕθ−1

1 (k), and thus as in (9.108),

max(R(θ1, ϕ),R(θ2, ϕ)) ≥ 2m1/2(Pθ1 , Pθ2). (9.113)

To study the rate of error probabilities for increasing sample size n we replace
Pθ =

⊗k
i=1 Qθ(i) by P⊗n

θ =
⊗k

i=1 Q
⊗n
θ(i) and obtain from (9.112) that

lim inf
n→∞

1
n

ln(max
θ∈Δ

R(θ, ϕ(n))) ≥ − min
θ1,θ2:θ

−1
1 (k) �=θ−1

2 (k)
C(Pθ1 , Pθ2).

Denote by xn,i ∈ Xn the vector of the n observations from the ith pop-
ulation, and by xn = (xn,1, ..., xn,k) ∈ Xnk the collection of all observa-
tions. We dominate Q1, ..., Qm by a σ-finite measure μ, say, put fi = dQi/dμ,
f

(n)
i = dQ⊗n

i /dμ⊗n, i = 1, ..., k, and
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fn,θ(xn) =
∏k

i=1
f

(n)
θ(i)(xn,i).

To construct a maximum likelihood selection rule we recall that Δ is the
set Πk of all permutations of (1, ..., k) and denote by

Bn(xn) = {γ : fn,γ(xn) = max
θ∈Δ

fn,θ(xn), γ ∈ Δ}

the set of all permutations γ that maximize the likelihood function at xn ∈
Xnk. Set

Cn(xn) = {j : there exists a permutation γ ∈ Bn(xn) with j = γ−1(k)}.

The maximum likelihood selection rule ϕ
(n)
ml is defined to be the uniform dis-

tribution on Cn(xn); that is,

ϕ
(n)
ml (xn) =

1
|Cn(xn)| (ICn(xn)(1), ..., ICn(xn)(k)), xn ∈ Xnk.

If the true permutation θ satisfies θ−1(k) /∈ Cn(xn), then there is a permuta-
tion γ with θ−1(k) �= γ−1(k) such that fn,γ(xn) ≥ fn,θ(xn). Hence,

R(θ, ϕ(n)
ml ) ≤

∑
i�=θ−1(k)

∫
1

|Cn(xn)|ICn(xn)(i)P⊗n
θ (dxn) (9.114)

≤
∑

γ:γ−1(k) �=θ−1(k)

P⊗n
θ (fn,θ ≤ fn,γ) ≤ 2

∑
γ:γ−1(k) �=θ−1(k)

b1/2(P⊗n
θ , P⊗n

γ ).

The following result has been established in Liese and Miescke (1999a).

Theorem 9.119. Let ϕ(n) be a sequence of respective selection rules for the
sequence of models (Xn,A⊗n, (P⊗n

θ )θ∈Δ), where P⊗n
θ =

⊗k
i=1 Q

⊗n
θ(i). Then

lim inf
n→∞

1
n

ln(max
θ∈Δ

R(θ, ϕ(n))) ≥ 2max
j �=k

(ln H1/2(Qj , Qk)).

The maximum likelihood selection rule in (9.114) attains the lower bound of
the probability of an incorrect selection; that is,

lim
n→∞

1
n

ln(max
θ∈Δ

R(θ, ϕ(n)
ml )) = 2max

j �=k
(ln H1/2(Qj , Qk)).

Proof. Similar as in the proof of the previous theorem an application of
Theorem 8.72 to the inequalities (9.113) and (9.114) yields, respectively,

lim inf
n→∞

1
n

ln(max
θ∈Δ

R(θ, ϕ(n))) ≥ − inf
θ1,θ2:θ

−1
1 (k) �=θ−1

2 (k)
C(Pθ1 , Pθ2),

lim sup
n→∞

1
n

ln(max
θ∈Δ

R(θ, ϕ(n)
ml )) ≤ − inf

θ1,θ2:θ
−1
1 (k) �=θ−1

2 (k)
C(Pθ1 , Pθ2).
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To complete the proof we have to evaluate the right-hand side. It holds

inf
θ1,θ2:θ

−1
1 (k) �=θ−1

2 (k)
C(Pθ1 , Pθ2) = inf

θ:θ−1(k) �=k
C(
⊗k

i=1 Qθ(i),
⊗k

i=1 Qi)

= inf
θ:θ−1(k) �=k

[ sup
0<s<1

∑k

i=1
(− ln(Hs(Qθ(i), Qi)))].

As 0 ≤ Hs(Qθ(i), Qi) ≤ 1, we have to take the infimum only over permutations
that exchange k with another j, but do not change any other of the i ∈
{1, ..., k}. Similar as in (1.4) one can use Hölder’s inequality to show that the
function s �−→ ln Hs(Qj , Qk) is convex. As H1−s(Qj , Qk) = Hs(Qk, Qj) we
get that s �−→ (ln Hs(Qj , Qk) + ln Hs(Qk, Qj)) is a convex function that is
symmetric about 1/2. Hence

inf
θ:θ−1(k) �=k

C(
⊗k

i=1 Qθ(i),
⊗k

i=1 Qi)

= inf
j �=k

[ sup
0<s<1

(− ln(Hs(Qj , Qk)− ln(Hs(Qk, Qj))] = −2max
j �=k

(ln H1/2(Qj , Qk)),

which completes the proof.

Example 9.120. Assume that Qθ, θ ∈ (a, b), is a one-parameter exponential fam-
ily with natural parameter θ and generating statistic T . Suppose that θ1 < · · · < θk

are given values from (a, b), and that we want to select the population with the
largest parameter value. From Theorem 9.119 we know that the maximum likeli-
hood selection rule has the maximum exponential rate, which is given by

lim inf
n→∞

1

n
ln(max

θ∈Δ
R(θ, ϕ

(n)
ml )) = 2 max

j �=k
(ln H1/2(Qθj , Qθk)).

It follows from (1.122) that

ln(H1/2(Qθj , Qθk)) = K(
1

2
(θj + θk))− 1

2
(K(θj) + K(θk)).

The convexity of K yields that the right-hand term as function of θj is increasing,
so that

2max
j �=k

(ln H1/2(Qθj , Qθk)) = 2 ln H1/2(Qθk−1 , Qθk).

This means that the population Qθk−1 that is closest to Qθk determines the expo-
nential rate.

9.5.2 Locally Asymptotically Optimal Point Selections

After considering the exponential rate of error probabilities of selection pro-
cedures for k given distributions, where one is tagged as the best, we turn
now to selection models with k families of distributions. Here we utilize the
approach based on model localization to compare asymptotically the quality
of point selection rules, and to find locally optimal point selection rules. In a
first step we deal with the limiting model which again is a Gaussian model.
We consider the model
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(Rk,Bk, (
⊗k

i=1 N(μi, σ2
0))μ∈Rk).

Suppose we want to find at the true but unknown μ = (μ1, ..., μk) ∈ R
k

a population that is associated with μ[k], where μ[1] ≤ μ[2] ≤ · · · ≤ μ[k]

denote the ordered values of μ1, ..., μk. The decision space is D = {1, ..., k}.
Let L : R

k × D → R+ be a given loss function. As in (9.14) the risk of a
selection rule ψ under L is

R(μ, ψ) =
∑k

i=1
L(μ, i)

∫
ψi(x)N(μ, σ2

0I)(dx).

Set M(μ) = {i : μi = μ[k]}. Especially if L0,1(μ, i) = 1− IM(μ)(i), then

R(μ, ψ) = 1− Pcs(μ, ψ), (9.115)

where the probability of a correct selection Pcs(μ, ψ) (see (9.17)) is given by

PN,cs(μ, σ2
0 , ψ) :=

∑k

i=1
IM(μ)(i)

∫
ψi(x)N(μ, σ2

0I)(dx).

We recall the natural selection rule

ϕnat(x1, ..., xk) = (ϕnat1 (x1, ..., xk), ..., ϕnatk (x1, ..., xk)) (9.116)

=
1

|M(x1, ..., xk)|
(IM(x1,...,xk)(1), ..., IM(x1,...,xk)(k)),

and note that by the definition of M(x1, ..., xk) = {i : xi = x[k]} it holds

ϕnati (x1, ..., xk) = ϕnati (0, x2 − x1, ..., xk − x1). (9.117)

It holds |M(x1, ..., xk)| = 1, N(μ, σ2
0I)-a.s. Hence Eμϕ

nat
i is the probability that

the ith component of a vector with distribution N(ν, I), ν ∈ R
k, is the largest

component of this vector. According to Problem 3.9 this probability is

Eμϕ
nat
i =

∫
IM(x)(i)N(μ, σ2

0I)(dx) =
∫ ∏

j:j �=i
Φ(
μi − μj
σ0

+ t)ϕ(t)dt =: γi,N(σ−1
0 μ), where (9.118)

γi,N(ν) =
∫ ∏k

j=1,j �=i
Φ(νi − νj + t)ϕ(t)dt, ν = (ν1, ..., νk) ∈ R

k.

We recall that for a permutation γ of (1, ..., k) the mapping uγ is defined
by uγ(x) = (xγ(1), ..., xγ(k)), and that by Definition 9.28 a selection rule ψ is
permutation invariant if ψ(uγ(x)) = uγ(ψ(x)). Suppose that the loss function
satisfies the conditions in (9.42) and (9.43); that is,

L(uγ(μ), i) = L(μ, γ(i)) and L(μ, i) ≥ L(μ, j) for μi ≤ μj , (9.119)
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where μ = (μ1, ..., μk) ∈ R
k and γ ∈ Πk. By Theorem 9.31 the selection rule

ϕnat in (9.116) is a uniformly best permutation invariant selection rule. This
means that for every permutation invariant selection rule ψ it holds

R(μ, ψ) ≥ R(μ, ϕnat) =
∑k

i=1
L(μ, i)γi,N(σ−1

0 μ). (9.120)

For the zero–one loss function the risk can be expressed by the probability
of a correct selection. Then by (9.115) and (9.23)

PN,cs(μ, σ2, ψ) ≤ PN,cs(μ, σ2, ϕnat) (9.121)

= r

∫ ∏k−1

i=1
Φ((μ[k] − μ[i])/σ + s)ϕ(s)ds, μ ∈ R

k
r .

Moreover, it follows from Theorem 9.31 that for every permutation invariant
subset C of R

k, for every not necessarily permutation invariant ψ, and for any
loss function L that satisfies (9.119) it holds

supμ∈C R(μ, ψ) ≥ supμ∈C R(μ, ϕnat) (9.122)

infμ∈C PN,cs(μ, σ2, ψ) ≤ infμ∈C PN,cs(μ, σ2, ϕnat).

Now we deal with sequences of models for which we want to construct
locally optimal selection rules. To this end we use the LAN concept introduced
in Definition 6.63. Assume that (Xn,An, (Pn,h)h∈Δn

) with Δn ↑ R satisfies the
LAN(Zn, I0) condition. As the selection problem is a k sample problem we turn
to the product space model

Mn = (X k
n ,A

⊗k
n , (Pn,h)h∈Δk

n
), with Pn,h =

⊗k
i=1 Pn,hi

, (9.123)

h = (h1, ..., hk) ∈ Δk
n, and denote by Xn,i : X k

n → Xn the projection onto the
ith coordinate, i = 1, ..., k. Subsequently we use the following simple fact.

Remark 9.121. Suppose the sequence of models (Xn,An, (Pn,g)g∈Δn) with Δn ↑
R satisfies the LAN(Zn, I0)-condition with central sequence Zn : Xn →m R and
Fisher information I0. Now we replace g with hi and turn to the k sample model
Mn in (9.123). Then it follows directly from Definition 6.63 that Mn satisfies the
LAN(Zn,⊗k, I0)-condition, where the central sequence and the Fisher information
matrix are given by

Zn,⊗k = (Zn(Xn,1), ..., Zn(Xn,k))T , central sequence,
I0 := I0I, Fisher information matrix,

(9.124)

and I is the k× k unit matrix. Similarly, if the sequence (Xn,An, (Pn,g)g∈Δn) satis-
fies the ULAN(Zn, I0)-condition, then Mn satisfies the ULAN(Zn,⊗k, I0)-condition,
where the central sequence and the Fisher information matrix are given by (9.124).

Our goal is to select a population that is associated with h[k]. Let ϕn =
(ϕn,1, ..., ϕn,k) be a sequence of selection rules forMn, and let ϕ = (ϕ1, ..., ϕk)
be a selection rule for the Gaussian model
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G = (Rk,Bk, (N(I0h, I0)h∈Rk), I0 := I0I, I0 > 0. (9.125)

If the LAN(Zn,⊗k, I0)-condition is satisfied, then we have the weak con-
vergence of models Mn ⇒ G, see Theorem 6.65. As the decision space
D = {1, ..., k} is finite we get from Definition 6.83 that the weak convergence
of the decisions ϕn to ϕ is equivalent to

lim
n→∞

∫
ϕn,i(xn)Pn,h(dxn) =

∫
ϕi(x)N(I0h, I0)(dx), h ∈ R

k, (9.126)

i = 1, ..., k. If I0 > 0, then by I0 = I0I the family (N(I0h, I0)h∈Rk) is complete,
and the distributions N(I0h, I0) are equivalent to N(0, I). We see that every
limit ϕ = (ϕ1, ..., ϕk) is N(0, I)-a.s. uniquely determined.

Problem 9.122.∗ If the sequence of models Mn satisfies the LAN(Zn,⊗k, I0)-
condition, it holds I0 > 0, and ϕn is a sequence of permutation invariant selection
rules that converges weakly to ϕ, then there exists a permutation invariant selection
rule ψ such that ϕ = ψ, N(0, I)-a.s.

Problem 9.123.∗ Let D0 be the set of all selection rules ϕ for the model G in
(9.125), where I0 > 0, for which for every ϕ ∈ D0 there exists a permutation invariant
selection rule ψ with ϕ = ψ, N(0, I)-a.s. Then the set D0 is closed with respect to
the weak convergence of decisions in the sense of Definition 3.19.

Next we introduce the concept of locally asymptotically uniformly best
selection rules and focus on permutation invariant selection rules. As these
concepts originate from the LAN theory we use the term “local” despite the
fact that the sequence of models is arbitrary in the first step. The “local”
character of the parameter becomes clear later on when we deal with the
localization of differentiable models.

Definition 9.124. Given a loss function L : R
k × {1, ..., k} → R+ that sat-

isfies (9.119), a sequence of selection rules ϕn : X k
n →m Sc

k for the mod-
els Mn in (9.123) is called locally asymptotically best permutation invariant
(LABP) if ϕn is permutation invariant for every n, and for every further
sequence of permutation invariant selection rules ψn : X k

n →m Sc
k it holds

lim sup
n→∞

[R(h, ϕn)− R(h, ψn)] ≤ 0, h = (h1, ..., hk) ∈ R
k.

The sequence ϕn is called locally asymptotically minimax (LAMM) if for every
permutation invariant compact set C ⊆ R

k it holds

lim sup
n→∞

[sup
h∈C

R(h, ϕn)− sup
h∈C

R(h, ψn)] ≤ 0,

for every other sequence of selection rules ψn : X k
n →m Sc

k.
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If the LAN(Zn, I0)-condition holds, then the LAN(Zn,⊗k, I0)-condition is
also fulfilled; see Remark 9.121. For ϕnat in (9.116) we denote by

ϕnatZn,⊗k
= ϕnat(Zn,⊗k) (9.127)

the natural selection rule based on the central sequence Zn,⊗k; see (9.124).
Beside the loss function the essential ingredient of the risk is the probabil-
ity that the ith population is selected by the rule under consideration. For
the natural selection rule ϕnatZn,⊗k

= (ϕnat1,Zn,⊗k
, ..., ϕnatk,Zn,⊗k

) this probability is∫
ϕnati,Zn,⊗k

dPn,h and the risk given by

R(h, ϕnatZn,⊗k
) =
∑k

i=1
L(h, i)

∫
ϕnati,Zn,⊗k

dPn,h. (9.128)

As the functions ϕnati = IM(x)(i) in (9.116), i = 1, ..., k, are bounded and
λk-a.e. continuous it follows from (6.90) that

lim
n→∞

∫
ϕnati,Zn,⊗k

dPn,h =
∫
ϕnati (x)N(I0h, I0)(dx) = γi,N(I1/20 h), (9.129)

where according to (9.118)

γi,N(I1/20 h) =
∫ ∏k

j=1,j �=i
Φ(t+ I

1/2
0 (hi − hj))ϕ(t)dt. (9.130)

We recall that for any sequence of selection rules ϕn = (ϕn,1, ..., ϕn,k) for
the models Mn in (9.123) the risk and the probability of a correct selection,
respectively, are given by

R(h, ϕn) =
∑k

i=1
L(h, i)

∫
ϕn,idPn,h, and

Pcs(h, ϕn) =
∑k

i=1
IM(h)(i)

∫
ϕn,idPn,h,

where M(h) = {i : hi = h[k]}. Now we establish the pointwise lower Hájek–
LeCam bound for selection rules.

Theorem 9.125. Suppose the sequence of models (Xn,An, (Pn,g)g∈Δn
), with

Δn ↑ R, satisfies the LAN(Zn, I0) condition, and it holds I0 > 0. Suppose the
loss function L : R

k × {1, ..., k} → R+ satisfies the conditions

L(uγ(h), i) = L(h, γ(i)) and L(h, i) ≥ L(h, j) for hi ≤ hj , (9.131)

h ∈ R
k, i, j = 1, ..., k. Then for the models Mn in (9.123) every sequence of

permutation invariant selection rules ϕn satisfies, with γi,N(I1/20 h) in (9.130),

lim inf
n→∞

R(h, ϕn) ≥ R(h, ϕnat) =
∑k

i=1
L(h, i)γi,N(I1/20 h), h ∈ R

k.
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The sequence of natural selection rules ϕnatZn,⊗k
based on the central sequence

Zn,⊗k in (9.124) for the models Mn in (9.123) is LABP, and it holds

lim
n→∞

R(h, ϕnatZn,⊗k
) = R(h, ϕnat), h ∈ R

k. (9.132)

If the ULAN(Zn, I0)-condition is satisfied and

DC := suph∈C, i=1,...,k L(h, i) <∞, (9.133)

for the compact set C, then the convergence is uniform on C.

Corollary 9.126. Under the assumptions of Theorem 9.125 it holds

lim sup
n→∞

Pcs(h, ϕn) ≤ PN,cs(I0h, I0, ϕnat),

lim
n→∞

Pcs(h, ϕnatZn,⊗k
) = PN,cs(I0h, I0, ϕnat), h ∈ R

k,

where for h ∈ R
k
r = {h : h ∈ R

k, h[1] ≤ · · · ≤ h[k−r] < h[k−r+1] = · · · = h[k]},
r = 1, ..., k, according to (9.23) it holds

PN,cs(I0h, I0, ϕnat) = r

∫ ∏k−1

i=1
Φ(I1/20 (h[k] − h[i]) + s)ϕ(s)ds. (9.134)

The convergence is uniform in h on compact sets if the ULAN(Zn, I0)-
condition is satisfied.

Proof. In Remark 9.121 we have pointed out already that the sequence
of models Mn in (9.123) fulfils the LAN(Zn,⊗k, I0) condition, so that the
sequence Mn converges weakly to the model G in (9.125). Denote by DG
the set of all selection rules φ for which there exists a permutation invariant
selection ψ such that φ = ψ, N(h, I)-a.s. Then by Problems 9.122 and 9.123
DG is closed and contains all accumulation points of the sequence ϕn. As for
every φ ∈ DG there is a permutation invariant rule ψ with the same risk
function, we get from (9.120) and (9.118) that

infφ∈DG R(h, φ) = R(h, ϕnat) =
∑k

i=1
L(h, i)γi,N(I1/20 h).

Hence by (6.109),

lim inf
n→∞

R(h, ϕn) ≥
∑k

i=1
L(h, i)γi,N(I1/20 h).

The statement (9.132) follows from (9.128) and (9.129). As ϕnatZn,⊗k
is permu-

tation invariant by definition the property LABP follows. It holds

suph∈C | R(h, ϕnatZn,⊗k
)− R(h, ϕnat) |

= suph∈C |
∑k

i=1
L(h, i)(

∫
ϕnati,Zn,⊗k

dPn,h − γi,N(I1/20 h)) | (9.135)

≤ DC

∑k

i=1
sup
h∈C

|
∫
ϕnati,Zn,⊗k

dPn,h − γi,N(I1/20 h) |,
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with DC in (9.133). As the functions ϕnati = IM(x)(i) in (9.116) are bounded
and λk-a.e. continuous it follows from (6.90) and Corollary 6.73 that under
the ULAN(Zn, I0)-condition the convergence in (9.129) is uniform on compact
subsets. The corollary follows from the theorem and (9.121). To prove the
uniform convergence we use the inequality

| Pcs(h, ϕnatZn,⊗k
)− PN,cs(I0h, I0, ϕnat) |

= |
∑k

i=1
IM(h)(i)(

∫
ϕnati,Zn,⊗k

dPn,h − γi,N(I1/20 h)) |

≤
∑k

i=1
|
∫
ϕnati,Zn,⊗k

dPn,h − γi,N(I1/20 h)) |,

and the fact the convergence in (9.129) is uniform on compact subsets under
the ULAN(Zn, I0)-condition.

The Hájek–LeCam bound in Theorem 9.125 is a pointwise inequality that
holds for every sequence of permutation invariant selection rules. Now we
turn to arbitrary selection rules, but consider the maximum risk instead of
the pointwise risk.

Theorem 9.127. Suppose the conditions of Theorem 9.125 are satisfied.
Then for every permutation invariant subset C ⊆ R

k and every sequence
of selection rules ϕn it holds

lim inf
n→∞

sup
h∈C

R(h, ϕn) ≥ sup
h∈C

∑k

i=1
L(h, i)γi,N(I1/20 h). (9.136)

If in addition the ULAN(Zn, I0)-condition is satisfied, C is compact and per-
mutation invariant, and condition (9.133) is fulfilled, then the sequence of
natural selection rules ϕnatZn,⊗k

in (9.127), which is based on the central se-
quence Zn,⊗k in (9.124) for the models Mn in (9.123), satisfies

lim
n→∞

sup
h∈C

R(h, ϕnatZn,⊗k
) = sup

h∈C
R(h, ϕnat) = sup

h∈C

∑k

i=1
L(h, i)γi,N(I1/20 h)

and has therefore the LAMM property.

Corollary 9.128. If the conditions of Theorem 9.127 are satisfied and C is
permutation invariant, then

lim sup
n→∞

inf
h∈C

Pcs(h, ϕn) ≤ inf
h∈C

PN,cs(I0h, I0, ϕnat).

If in addition C is compact and the ULAN(Zn, I0)-condition is fulfilled, then
with PN,cs(I0h, I0, ϕnat) in (9.134),

lim
n→∞

inf
h∈C

Pcs(h, ϕnatZn,⊗k
) = inf

h∈C
PN,cs(I0h, I0, ϕnat).
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Corollary 9.129. For Kc,δ = {h : h ∈ R
k, ‖h‖ ≤ c, h[1] ≤ · · · ≤ h[k−1] <

h[k] − δ} and 0 < δ < c <∞ it holds

lim sup
n→∞

inf
h∈Kc,δ

Pcs(h, ϕn) ≤
∫
Φk−1(t+ I

1/2
0 δ)ϕ(t)dt

lim
n→∞

inf
h∈Kc,δ

Pcs(h, ϕnatZn,⊗k
) =
∫
Φk−1(t+ I

1/2
0 δ)ϕ(t)dt.

Proof. The proof is almost identical with the proof of the previous the-
orem. In contrast to the proof there we denote now by DG the set of all se-
lection rules. The stated inequality follows from Proposition 6.89 and (9.122).
Finally, the fact that ϕnatZn,⊗k

attains the asymptotic lower minimax bound
follows from the locally uniform convergence of the risk if the ULAN(Zn, I0)-
condition holds; see Theorem 9.125. The first corollary follows from the uni-
form convergence of Pcs(h, ϕnatZn,⊗k

) established in Corollary 9.126. The second
corollary follows from the first one, the relation (9.134) for r = 1, and

inf
h∈Kc,δ

∫ ∏k−1

i=1
Φ(t+ I

1/2
0 (h[k] − h[i]))ϕ(t)dt =

∫
Φk−1(t+ I

1/2
0 δ)ϕ(t)dt.

Let (X ,A, (Pθ)θ∈(a,b)) be a model for which the family (Pθ)θ∈(a,b) is L2-
differentiable at θ0 ∈ (a, b) with derivative L̇θ0 and Fisher information I(θ0).
We consider the sequence of models

Mn = (X kn,A⊗kn, (
⊗k

i=1 P
⊗n
θ0+hi/

√
n
)h∈Δk

n,
), (9.137)

where h = (h1, ..., hk) and Δn = (
√
n(a − θ0),

√
n(b − θ0)). We denote by

Xi,j the projections of X kn onto the respective coordinates, omitting the
dependence of Xi,j on n for simplicity. It holds for j = 1, ..., n and i = 1, ..., k,

L(Xi,j |Pn,h) = Pθ0+hi/
√
n , where Pn,h =

⊗k
i=1 P

⊗n
θ0+hi/

√
n
. (9.138)

We have seen in Theorems 9.125 and 9.127 that the natural selection rule
based on the central sequence is the asymptotically best selection rule, in a
sense that is specified in these theorems. There is, however, one shortcoming.
The central sequence n−1/2

∑n
j=1 L̇θ0(Xi,j) (see Corollary 6.71) depends on θ0

and provides an optimal selection rule for populations with parameters close
to some fictive common central point θ0. The latter is, of course, unknown
so that ϕnatZn,⊗k

is not a selection rule in the strict sense. It only provides a
benchmark with which other selection rules can be compared. The following
two examples deal with point selections that are based on given influence
functions. We study the efficiency of such selection rules.

Example 9.130. We construct a point selection rule by using a linear statistic.
Fix a function Ψ ∈ L

0
2(Pθ0) and set Vn = (Vn,1, ..., Vn,k) with



600 9 Selection

Vn = (n−1/2
∑n

j=1
Ψ(X1,j), ..., n

−1/2
∑n

j=1
Ψ(Xk,j)). (9.139)

We study the efficiency of the natural selection rule based on Vn under the assump-
tion that the family (Pθ)θ∈(a,b) is L2-differentiable at θ0 ∈ (a, b). By the second
lemma of LeCam (see Corollary 6.71) and Remark 9.121 the sequence of models
Mn in (9.123) satisfies the ULAN(Zn,⊗k, I0)-condition with central sequence

Zn,⊗k = (n−1/2
∑n

j=1
L̇θ0(X1,j), ..., n

−1/2
∑n

j=1
L̇θ0(Xk,j)) (9.140)

and Fisher information matrix I0 = I(θ0)I, where I(θ0) = Eθ0 L̇
2
θ0 is the Fisher

information in the marginal model (Pθ)θ∈(a,b). Let

Σ = Cθ0((Ψ, L̇θ0)
T ) =

(
σ1,1 σ1,2

σ2,1 σ2,2

)
(9.141)

be the covariance matrix of the two-dimensional vector (Ψ, L̇θ0). Then especially
σ2,2 = I(θ0). We assume that σ1,1 > 0 and σ2,2 > 0. Denote by Γ the (2k) × (2k)
matrix

Γ =

(
σ1,1I σ1,2I
σ2,1I σ2,2I

)
,

where I is the k × k unit matrix. The statistics Vn can be represented in the form
(6.93) if we replace Ψ(Xi) with (Ψ(X1,i), ..., Ψ(Xk,i)). As

Cθ0((Ψ(X1,1), ..., Ψ(Xk,1))
T , L̇θ0) = σ1,2I

we get from Corollary 6.74, locally uniformly in h = (h1, ..., hk) ∈ R
k,

lim
n→∞

∫
ϕ(Vn)dPn,h =

∫
ϕ(x)N (σ1,2h, σ1,1I) (dx), (9.142)

for every bounded and λk-a.e. continuous function ϕ : R
k → R. Using ϕ = ϕnat

i in
(9.116) we get for the natural selection rule ϕnat

Vn
based on Vn,

lim
n→∞

R(h, ϕnat
Vn

) =
∑k

i=1
L(h, i)γi,N(σ

−1/2
1,1 σ1,2h), h ∈ R

k,

with γi,N in (9.118). Especially for the zero–one loss function,

lim
n→∞

Pcs(h, ϕ
nat
Vn

) = PN,cs(σ1,2h, σ1,1, ϕ
nat), (9.143)

where according to (9.23)

PN,cs(σ1,2h, σ1,1, ϕ
nat) = (9.144)

r

∫ ∏k−1

i=1
Φ(t +

σ1,2√
σ1,1

(h[k] − h[i]))ϕ(t)dt, h ∈ R
k
r

and the convergence is locally uniform in both cases. From here we see that the
asymptotic efficiency of the selection rule ϕnat

Vn
, measured by Pcs(h, ϕ

nat
Vn

), depends

only on the correlation between the influence function Ψ and the score function L̇θ0 .
It follows from the Schwarz inequality that

σ1,2√
σ1,1

≤ √σ2,2 = I1/2(θ0), (9.145)
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where equality holds if Ψ = cL̇θ0 , Pθ0 -a.s., for some constant c. To summarize, we
can say that the loss of efficiency, when using Ψ instead of the optimal influence
function L̇θ0 , is measured by the correlation σ1,2/

√
σ1,1σ2,2 of Ψ and L̇θ0 .

Example 9.131. We consider the location family (Pθ)θ∈R that is generated by
the positive and absolutely continuous Lebesgue density f with finite Fisher in-
formation I. According to Lemma 1.121 the model is L2-differentiable at every θ0

with derivative L̇θ0(x) = −f ′(x − θ0)/f(x − θ0). Suppose that
∫
xf(x)dx = 0 and

σ2 =
∫
x2f(x)dx <∞. Then the location parameter θ0 is the expectation. Set

Vn =
√
n(Xn,1 − θ0, ..., Xn,k − θ0), where Xn,i =

1

n

∑n

j=1
Xi,j , i = 1, ..., k.

Then the natural selection rule based on Vn selects the population with the largest
value of the Xn,i. Moreover, Ψ(x) = x− θ0 is the influence function in (9.139). We
have seen in Example 9.130 that the efficiency of the selection rule is characterized
by the ratio σ1,2/

√
σ1,1σ2,2. For the natural selection rule ϕnat

Vn
this ratio is given by

σ1,2√
σ1,1σ2,2

= − 1

σI1/2

∫
(x− θ0)

f ′(x− θ0)

f(x− θ0)
f(x− θ0)dx = − 1

σI1/2

∫
xf ′(x)dx ≤ 1,

where the inequality is from (9.145). If f = ϕ0,σ2 is the density of N(0, σ2), then
f ′(x)/f(x) = −x/σ2, −

∫
xf ′(x)dx = 1, and I0 = σ−2, so that we have equality

in the last inequality. But this is not surprising, as for normal distributions the
natural selection rule based on the arithmetic mean is, according to Theorem 9.31,
the uniformly best permutation invariant selection rule.

As mentioned already, the locally asymptotically optimal selection rule still
depends on the localization point θ0 which is an unknown nuisance parameter.
To get rid of it in the decision rule we make use of the MLEs θ̂n,1, ..., θ̂n,k in
the k populations. If the assumptions of Theorem 7.148 are satisfied, then it
follows from (7.113) that for i = 1, ..., k,

√
n(θ̂n,i − θ0) =

1√
n

∑n

j=1
I−1(θ0)L̇θ0(Xi,j) + oPn,0(1). (9.146)

From here and (9.140) we see that, up to terms oPn,0(1), the selection rule
ϕnatZn,⊗k

is identical with the natural selection rule ϕnat
θ̂n

based on the vector

θ̂n = (θ̂n,1, ..., θ̂n,k) of the MLEs from the individual populations.

Theorem 9.132. If the assumptions of Theorem 7.148 are met for the model
(X ,A, (Pθ)θ∈(a,b)) at θ0 ∈ (a, b), then the natural selection rule ϕnat

θ̂n
=

(ϕnat
1,θ̂n

, ..., ϕnat
k,θ̂n

) based on θ̂n is consistent in the sense that in the sequence
of models

Mn = (X kn,A⊗kn, (
⊗k

i=1 P
⊗n
θi

)θ∈(a,b)k),

where θ = (θ1, ..., θk), it holds

lim
n→∞

Pcs(θ, ϕnatθ̂n
) = 1,
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for every θ = (θ1, ..., θk) ∈ (a, b)k with θ[k] > θ[k−1]. Moreover, if (9.133) is
satisfied, then in the localized model with Pn,h from (9.138) it holds, locally
uniformly in h, with γi,N(I1/20 h) in (9.130),

lim
n→∞

R(h, ϕnat
θ̂n

) =
∑k

i=1
L(h, i)γi,N(I1/20 h),

and ϕnat
θ̂n

is LABP and LAMM, provided that the loss function satisfies (9.131)
and (9.133).

Proof. Without loss of generality we may assume that θ1 ≤ · · · ≤ θk−1 <
θk. Then

∑
i�=k

ϕnat
i,θ̂n

=
∑
i�=k

1

|M(θ̂n)|
IM(θ̂n)(i) ≤ IAN

, where

AN = { max
1≤j≤k−1

θ̂n,j ≥ θ̂n,k} =
⋃k−1

j=1
{θ̂n,j ≥ θ̂n,k}.

Choose an ε > 0 such that ε ≤ θk − θk−1. Then for every j �= k,

(
⊗k

i=1 P
⊗n
θi

)({θ̂n,j ≥ θ̂n,k}) ≤ (
⊗k

i=1 P
⊗n
θi

)({θ̂n,j − θj ≥ θ̂n,k − θk + ε})
≤ (
⊗k

i=1 P
⊗n
θi

)(θ̂n,j − θj ≥ ε/2) + (
⊗k

i=1 P
⊗n
θi

)(θ̂n,k − θk ≤ −ε/2) → 0,

by the consistency of θ̂n. The condition (A10) that is assumed in Theo-
rem 7.148 implies the L2-differentiability and thus, as in Example 9.130, the
ULAN(Zn,⊗k, I0)-condition, where I0 = I(θ0)I and Zn,⊗k is given in (9.140).
We see from the definition of ϕnat(θ̂n), the representation (9.146) and Corol-
lary 6.74 that both

R(h, ϕnat
θ̂n

) =
∑k

i=1
L(h, i)

∫
ϕnat
i,θ̂n

(xn)Pn,h(dxn)

and
R(h, ϕnatZn,⊗k) =

∑k

i=1
L(h, i)

∫
ϕnati,Zn,⊗k

(xn)Pn,h(dxn),

with Zn,⊗k in (9.140), converge locally uniform to
∑k

i=1 L(h, i)γi,N(I1/20 h).
Hence the LABP and LAMM property of ϕnat

θ̂n
follow from the corresponding

property of ϕnatZn,⊗k which was established in Theorems 9.125 and 9.127.
Now we return to selection rules that are based on a given influence func-

tion, which may be, for example, the score function L̇θ0 . As we have pointed
out already, the dependence of the selection rule on the localization point is
undesirable and thus we want to get rid of it by plugging in an estimator.
As in concrete applications (e.g., in location-scale families) the score function
may depend on additional nuisance parameters we now study selection rules
that utilize estimated parameters in a general setting. Similarly as in Section
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8.7 we operate in a first step with two types of parameters. The first, θ ∈ Δ,
specifies the model whereas the second, η ∈ Λ, specifies the influence function.
We suppose that Λ is an open subset of R

m and recall the class of functions
introduced in (7.98). We assume that

Ψ : Λ×X →m R and Ψ·(x) ∈ C
(1)
m (U(η0),X ),

Ψη0(·) ∈ L
0
2(Pθ0) and EPθ0

supη∈U(η0) ‖ Ψ̇η ‖<∞.
(9.147)

The family of statistics Vn,η = (Vn,1,η, ..., Vn,k,η) with

Vn,i,η = n−1/2
∑n

j=1
Ψη(Xi,j), i = 1, ..., k,

provides the family of natural selection rules ϕnatVn,η
. It is an important fact that

under the mild regularity conditions (9.147) we may plug in a
√
n-consistent

estimator into ϕnatVn,η
without changing the local asymptotic risk.

Proposition 9.133. Suppose that the family (Pθ)θ∈(a,b) is L2-differentiable
at θ0 ∈ (a, b). If the condition (9.147) is satisfied and η̂n : X kn →m Λ is
under P⊗kn

θ0
a
√
n-consistent estimator at η0, then the following convergence

is locally uniform. With γi,N in (9.118),

lim
n→∞

R(h, ϕnatVn,η̂n
) = lim

n→∞

∑k

i=1
L(h, i)

∫
ϕnati,Vn,η̂n

(xn)Pn,h(dxn)

= lim
n→∞

R(h, ϕnatVn,η0
) =
∑k

i=1
L(h, i)γi,N(σ−1/2

1,1 σ1,2h), h ∈ R
k.

lim
n→∞

Pcs(h, ϕnatVn,η̂n
) = lim

n→∞
Pcs(h, ϕnatVn,η0

) = PN,cs(σ1,2h, σ1,1, ϕ
nat)

= r

∫ ∏k−1

i=1
Φ(t+

σ1,2√
σ1,1

(h[k] − h[i]))ϕ(t)dt, h ∈ R
k
r ,

where the σi,j are the elements of the matrix (9.141) with Ψ = Ψη0 .

Proof. First of all we remark that Lemma 8.111 yields

Vn,i,η̂n
− Vn,1,η̂n

= Vn,i,η0 − Vn,1,η0 + oP⊗kn
θ0

(1). (9.148)

Hence,⎛
⎜⎝
Vn,2,η̂n

− Vn,1,η̂n

...
Vn,k,η̂n

− Vn,1,η̂n

⎞
⎟⎠ =

1√
n

n∑
j=1

⎛
⎜⎝
Ψη0(X2,j)− Ψη0(X1,j)

...
Ψη0(Xk,j)− Ψη0(X1,j)

⎞
⎟⎠+ oP⊗kn

θ0
(1).

Thus by Corollary 6.74, and for every bounded and λk−1-a.e. continuous func-
tion ϕ, it holds locally uniformly in h,

lim
n→∞

∫
ϕ(Vn,2,η̂n

− Vn,1,η̂n
, ..., Vn,k,η̂n

− Vn,1,η̂n
)dPn,h

= lim
n→∞

∫
ϕ(Vn,2,η0 − Vn,1,η0 , ..., Vn,k,η0 − Vn,1,η0)dPn,h = N(μ(h), Σ),
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where in view of (9.142) N(μ(h), Σ) is the distribution of (V2 − V1, ..., Vk −
V1), and (V1, ..., Vk) has the distribution N(σ1,2h, σ1,1I). Hence the relation
ϕnati (t1, t2, ..., tk) = ϕnati (0, t2 − t1, ..., tk − t1) yields locally uniformly in h,

lim
n→∞

∫
ϕnati (0, Vn,2,η̂n

−Vn,1,η̂n
, ..., Vn,k,η̂n

−Vn,1,η̂n
)dPn,h = γi,N(σ−1/2

1,1 σ1,2h),

with γi,N in (9.118), and the first statement is proved. The statement con-
cerning the probability of a correct selection follows from (9.115) and (9.134).

Now we assume that the parameter θ ∈ Δ ⊆ R
d consists of two parts. One

is τ , which has dimension one and is the parameter of interest, and the other
one is ξ, which has dimension m = d − 1 and is a nuisance parameter. Thus
we have the partitions θ = (τ, ξT )T and L̇θ = (Uθ, V

T
θ )T as in (8.107). We use

the component Uθ as influence function Ψ to construct a selection rule, and
any

√
n-consistent estimator to estimate θ. Recall that Xi,j : X kn → X , i =

1, ..., k, j = 1, ..., n, are the projections, and that Pn,h =
⊗k

i=1 P
⊗n
τ0+hi/

√
n,ξ0

.
We consider the sequence of localized models for k samples with a common
nuisance parameter ξ0; that is,

Mn = (X kn,A⊗kn, (
⊗k

i=1 P
⊗n
τ0+hi/

√
n,ξ0

)h∈Rk). (9.149)

If we use any estimator θ̂n : X kn →m Δ and plug it into the statistic

Sn(θ) = (n−1/2
∑n

j=1
Uθ(X1,j), ..., n−1/2

∑n

j=1
Uθ(Xk,j)), (9.150)

then the natural selection rule ϕnat
Sn(θ̂n)

based on the statistic Sn(θ̂n) is not

necessarily permutation invariant, unless the estimator θ̂n is invariant under
permutations of the populations; that is,

θ̂n(x1,1, ..., xi,j , ..., xk,n) = θ̂n(xγ(1),1, ..., xγ(i),j , ...., xγ(k),n), (9.151)

for every (x1,1, ..., xi,j , ..., xk,n) ∈ X kn and every permutation γ of (1, ..., k).
This condition is not very restrictive. One could start, for example, with a
sequence θ̃n : Xn →m Δ and put

θ̂n(x1,1, ..., xi,j , ..., xk,n) =
1
k

∑k

r=1
θ̃n(xr,1, ..., xr,n).

Then θ̂n is obviously permutation invariant.

Theorem 9.134. Suppose that the family of distributions (Pθ)θ∈Δ satisfies
condition (A10), where L̇θ = (Uθ, V

T
θ )T is the L2-derivative and I(θθ) is the

invertible information matrix with block matrices Ii,j(θθ). Suppose that θ̂n :
X kn →m Δ is a sequence of

√
n-consistent estimators for θ0 and the loss
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function satisfies (9.131) and (9.133). Then for the risk of the natural selection
rule ϕnat

Sn(θ̂n)
based on Sn(θ̂n) with Sn(θ) in (9.150) it holds

lim
n→∞

∑k

i=1
L(h, i)

∫
ϕnat
i,Sn(θ̂n)

dPn,h =
∑k

i=1
L(h, i)γi,N(I1/21,1 (θ0)h), h ∈ R

k,

locally uniformly in h, and ϕnat
Sn(θ̂n)

has the LAMM property. If in addition the

condition (9.151) is satisfied, then ϕnat
Sn(θ̂n)

is LABP.

Proof. The condition (A10) implies the L2-differentiability at θ0 ∈ Δ
which yields the ULAN(Zn, I(θ0))-condition by the second lemma of LeCam;
see Corollary 6.71. Hence the ULAN(Zn,⊗k, I1,1(θ0)I)-condition for the se-
quence of models (9.149) is satisfied, where Sn(θ0) in (9.150) is the central
sequence. We set η = (τ, ξ) and Ψη = Uτ,ξ. The condition (A10) implies
that Ψη satisfies (9.147). To use Proposition 9.133 we set Vn = Zn,⊗k. Then
σ1,1 = σ1,2 = I1,1(θ0), and it holds locally uniformly in h,

lim
n→∞

R(h, ϕnatSn(θ0)
) = lim

n→∞
R(h, ϕnat

Sn(θ̂n)
) =
∑k

i=1
L(h, i)γi,N(I1/21,1 (θ0)h),

with γi,N in (9.118). This means that the maximum risk over permutation
invariant and compact sets attains the asymptotic lower bound in (9.136) and
ϕnat
Sn(θ̂n)

is therefore LAMM. If in addition (9.151) is satisfied, then ϕnat
Sn(θ̂n)

is a sequence of permutation invariant selection rules which attains the lower
bound for the risk of sequences of permutation invariant selection rules in
Theorem 9.125 . Hence ϕnat

Sn(θ̂n)
is LABP.

In the previous theorem we have shown that a nuisance parameter can
be replaced with a

√
n-consistent estimator without reducing the efficiency.

Similar results were obtained in Liese and Miescke (1999b) for the semipara-
metric random censorship model and by Liese (1996) for the semiparametric
location model.

The next example deals with point selections in location-scale models with
nuisance scale parameters.

Example 9.135. Let f be a positive twice continuously differentiable Lebesgue
density so that the family of densities fθ(x) = σ−1f((x − μ)/σ), θ = (μ, σ) ∈
R× (0,∞), satisfies (A10). Then the L2-derivative with respect to the parameter μ
is

Uθ(x) = −σ−2U((x− μ)/σ), where U(x) = −f ′(x)/f(x).

To construct the statistic Sn(θ̂n) from (9.150) we need
√
n-consistent estimators

for μ and σ. If the second moment of f is finite, then we may assume without loss
of generality that

∫
xf(x)dx = 0 and

∫
x2f(x)dx = 1. Then the parameter μ in

the family of densities σ−1f((x− μ)/σ) is the expectation and σ2 the variance. We
estimate θ = (μ, σ) by

μ̂n =
1

kn

∑
i,j

Xi,j , and σ̂n = (
1

kn

∑
i,j

(Xi,j − μ̂n)2)1/2.
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Then both μ̂n and σ̂2
n are permutation invariant. Moreover, if

∫
x4f(x)dx <∞, then

both estimators are
√
n-consistent. The statement for μ̂n is clear. The statement for

σ̂n follows from Example 8.84 and the δ-method; see Proposition 8.78. The statistic
Sn in (9.150) leads to

Sn(θ̂n) =
1√
nσ̂2

n

(
∑n

j=1
U((X1,j − μ̂n)/σ̂n), ...,

∑n

j=1
U((Xk,j − μ̂n)/σ̂n)). (9.152)

As the factor 1/(
√
nσ̂2

n) is irrelevant for the natural selection rule based on Sn(θ̂n)
we see that ϕnat

Sn(θ̂n)
is the uniform distribution on

Mn = {l :
∑n

j=1
U((Xl,j − μ̂n)/σ̂n) = max

1≤i≤k

∑n

j=1
U((Xi,j − μ̂n)/σ̂n)}.

We know from Theorems 9.125 and 9.127 that ϕnat
Sn(θ̂n)

has the properties LABP

and LAMM. If f is the density of N(0, 1), then U(x) = x and we see that

Mn = {l :
∑n

j=1
(Xl,j − μ̂n)/σ̂n = max

1≤i≤k

∑n

j=1
(Xi,j − μ̂n)/σ̂n}

= {l : Xn,l = max
1≤i≤k

Xn,i}.

This means that ϕnat
Sn(θ̂n)

selects the population with the largest sample mean. We

know from Theorem 9.31 that this selection rule is already for every fixed sample
size n a uniformly best permutation invariant selection rule.

If the above moment conditions are not fulfilled one has to turn to other estima-
tors of μ and σ. This is necessary, for example, if we consider a location-scale model
generated by the Cauchy distribution. We use sample quantiles to estimate μ and
σ. To this end let F be the c.d.f. with the density f. Put Fμ,σ(t) = F ((t − μ)/σ)
and note that F is strictly increasing as f has been assumed to be positive ev-
erywhere. We fix 0 < α < β < 1 and set zα = F−1(α) and zβ = F−1(β). Then
σzα + μ = F−1

μ,σ(α) and σzβ + μ = F−1
μ,σ(β). Hence

σ =
F−1

μ,σ(β)− F−1
μ,σ(α)

zβ − zα
and μ = F−1

μ,σ(α)− zα
F−1

μ,σ(β)− F−1
μ,σ(α)

zβ − zα
.

Let (X1, ..., XN ) = (X1,1, ..., Xk,n) be the pooled sample and F̂N the empirical c.d.f.
Then it follows from Example 7.139 that

L(
√
n(F̂−1

N (α)− F−1
μ,σ(α)))⇒ N(0, α(1− α)/f2

μ,σ(zα)).

Hence F̂−1
N (α) is a

√
n-consistent and permutation invariant estimator of zα. The

same holds analogously for F̂−1
N (β). We set

σ̂n =
F̂−1

N (β)− F̂−1
N (α)

zβ − zα
and μ̂n = F̂−1

N (α)− zασ̂n.

This representation shows that μ̂n and σ̂n are
√
n-consistent and permutation in-

variant estimators that can be used to construct the statistic Sn(θ̂n) in (9.152).
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In the location-scale model studied above the location parameter was the
parameter of interest and the scale parameter the nuisance parameter. It is
clear that more complex models, that include, for example, a shape parameter
for the density, may be treated in a similar manner. One may even include
the density f itself as an infinite-dimensional parameter in the location model.
This would mean that f(x− θ) constitutes a semiparametric location model,
where f is common for all populations, but the parameter θ takes on different
values. Asymptotically optimal selection rules for this semiparametric location
model have been constructed in Liese (1996).

9.5.3 Rank Selection Rules

If the k populations are stochastically ordered, and we want to select the
stochastically largest population, then the use of ranks seems to be an ade-
quate approach. Suppose that Xi,j , j = 1, ..., n, is an i.i.d. sample from popu-
lation i, i = 1, ..., k, where the k samples are independent. Set N = kn, denote
by X1, ...,XN the pooled sample of all observations, and let RN,1, ..., RN,N be
the ranks of the pooled sample. Selection rules based on such ranks have been
considered in Lehmann (1963), Puri and Puri (1968, 1969), Bhapkar and Gore
(1971), and Büringer, Martin, and Schriever (1980). Further references can be
found in Gupta and Panchapakesan (1979).

To set up a suitable statistic for selection, let us first assume that all N
observations have a common distribution P with a continuous c.d.f. F . We
set Ur = F (Xr), r = 1, ..., N . For a sequence of score functions aN we use the
same score function aN in each population and introduce the k-dimensional
rank statistic by

Sn = (
∑n

i=1
aN (RN,i), ...,

∑kn

i=(k−1)n+1
aN (RN,i)). (9.153)

If the sequence aN satisfies the condition (8.97) for some ϕ : (0, 1) →m R

with ϕ ∈ L2(λ), and the regression coefficients ci,N , i = 1, ..., N , satisfy the
condition (8.96), then by Theorem 8.92,

∑N

i=1
ci,NaN (RN,i) =

∑N

i=1
ci,Nϕ(Ui) + oP⊗N (1).

This implies that for i = 2, ..., k,

n−1/2[
∑in

j=(i−1)n+1
aN (RN,j)−

∑n

j=1
aN (RN,j)] (9.154)

= n−1/2[
∑in

j=(i−1)n+1
ϕ(F (Xi,j))−

∑n

i=1
ϕ(F (X1,j))] + oP⊗N (1),

where F is the c.d.f. of Xi,j under P , and F is assumed to be continuous.
The next theorem studies the asymptotic behavior of selection rules gen-

erated by linear rank statistics under local alternatives. We set P = Pθ0 and
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Pn,h =
⊗k

i=1 P
⊗n
θ0+hi/

√
n
,

σ1,1 =
∫
ϕ2(F−1(x))Pθ0(dx), σ1,2 = σ2,1 =

∫
ϕ(F−1(x))L̇θ0(x)Pθ0(dx),

σ2,2 = I(θ0) =
∫
L̇2
θ0(x)Pθ0(dx).

Theorem 9.136. Suppose the sequence aN satisfies the condition (8.97) for
some ϕ : (0, 1) →m R with ϕ ∈ L

0
2(λ). Assume that (Pθ)θ∈R is a one-

parameter family of distributions on (R,B) that is L2-differentiable at θ0 with
derivative L̇θ0 and Fisher information I(θ0) > 0, where Pθ0 has a continuous
c.d.f. Then the natural selection rule ϕnatSn

based on Sn in (9.153) satisfies
locally uniform in h ∈ R

k,

lim
n→∞

R(ϕnatSn
, h) = lim

n→∞

∑k

i=1
L(h, i)

∫
ϕnati,Sn

dPn,h (9.155)

=
∑k

i=1
L(h, i)γi,N(σ−1/2

1,1 σ1,2h), h ∈ R
k,

with γi,N in (9.118).

Corollary 9.137. It holds locally uniform in h ∈ R
k,

lim
n→∞

Pcs(ϕnatSn
, h) = PN,cs(σ1,2h, σ1,1, ϕ

nat)

= r

∫ ∏k−1

i=1
Φ(t+

σ1,2√
σ1,1

(h[k] − h[i]))ϕ(t)dt, h ∈ R
k
r .

Proof. The proof is almost identical with the proof of Proposition 9.133.
One has only to use (9.154) instead of (9.148) and to replace Vn,i,η̂n

− Vn,1,η̂n

with
n−1/2

∑in

j=(i−1)n+1
aN (RN,j)− n−1/2

∑n

j=1
aN (RN,j),

and Vn,i,η0 − Vn,1,η0with

n−1/2
∑in

j=(i−1)n+1
ϕ(F (Xi,j))− n−1/2

∑n

j=1
ϕ(F (X1,j)).

Problem 9.138.∗ If the loss function L satisfies (9.131), then
∑k

i=1 L(h, i)γi,N(γh)
is decreasing in γ ≥ 0, for every h ∈ R

k.

If the loss function L satisfies the condition (9.131) in Theorem 9.125, then
by the above problem we see that the right-hand term in (9.155) becomes
minimal if σ1,2 = √

σ1,1σ2,2. By similar arguments as in Example 9.130 we
get that equality holds if and only if

ϕ(F (x)) = cL̇θ0(x), Pθ0-a.s.,



9.6 Solutions to Selected Problems 609

for some nonnegative constant c. This means that whenever we have a distri-
bution P with a continuous c.d.f. and we want to construct a rank selection
rule that is optimal in the sense that it has the properties LABP and LAMM in
Definition 9.124 in a special direction that is defined by an influence function
Ψ ∈ L

0
2(P ), we set ϕ(t) = Ψ(F−1(t)) and define the aN (k) as in Lemma 8.93.

Then the condition in (8.97) is satisfied. Furthermore, for any L2-differentiable
curve (Pθ)θ∈R with Pθ0 = P and L2-derivative L̇θ0 = Ψ Theorem 9.136, in
combination with Theorems 9.125 and 9.127, shows that the rank selection
rule ϕnatSn

, with Sn from (9.153), has the properties LABP and LAMM.
A typical field of application of rank selection procedures concerns the

location models. The following example deals with point selections based on
Wilcoxon rank sum statistics.

Example 9.139. Let

Fθ(x) =
exp{x− θ}

1 + exp{x− θ} , x, θ ∈ R,

be the c.d.f. of the logistic distribution with location parameter θ. Then

fθ(x) =
exp{x− θ}

(1 + exp{x− θ})2

L̇θ0(x) = −1 + 2
exp{x− θ}

1 + exp{x− θ} = −1 + 2Fθ(x),

ϕ(t) = L̇θ0(F
−1
θ0

(t)) = −1 + 2t.

Set N = kn. The approximate scores are given by aN (k) = −1 + 2k/(N + 1). Then
the statistic Sn in (9.153) is given by

Sn = (−n + 2
∑n

i=1
RN,i, ...,−n + 2

∑kn

i=(k−1)n+1
RN,i).

It is clear that ϕnat
Sn

is identical with the selection rule that selects the population
with the largest rank sum, and this selection rule has the properties LABP and
LAMM if the data are from the family of logistic distributions.

We conclude this section with the remark that the construction of asymp-
totically optimal selection rules via the convergence of models also works if the
limit model is not necessarily Gaussian. In Liese (2006) the selection problem
for thinned point processes under the sparse conditions has been studied. The
limit model is then a Poisson point process.

9.6 Solutions to Selected Problems

Solution to Problem 9.6: Let U1, ..., Ur be i.i.d. with common uniform distribu-
tion on (0, 1). Then F−1(U1), ..., F

−1(Ur) are i.i.d. with common distribution P. As
max1≤j≤r Uj has the Lebesgue density rsr−1I(0,1)(s) it holds
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Eh( max
1≤j≤r

F−1(Uj)) = Eh(F−1( max
1≤j≤r

Uj)) =

∫
h(F−1(s))rsr−1ds.

Let U be uniformly distributed in (0, 1). Then F−1(U) has the distribution P and

∫
h(F−1(s))rsr−1ds = Eh(F−1(U))r(F (F−1(U)))r−1 = r

∫
h(t)F r−1(t)P (dt). �

Solution to Problem 9.15: The posterior distribution of Ξ, the random version

of p = (p1, ..., pk), given x1, ..., xk, is
⊗k

i=1 Be (α + xi, β + n− xi).
For y ∈ {0, 1, ..., n} the Lebesgue density of Be (α + y, β + n− y) is

beα+y,β+n−y(t) =
Γ (α + β + n)

Γ (α + y)Γ (β + n− y)
tα+y(1− t)β+n−yI(0,1)(t), t ∈ R.

If y ∈ {0, 1, ..., n} is treated as a parameter, and α, β, and n are held fixed, then

beα+y,β+n−y(t), t ∈ R, has a nondecreasing MLR in the identity. Thus, by Problem

2.22, Be (α + y, β + n− y) is stochastically nondecreasing in y ∈ {0, 1, ..., n}. The

statement for the loss L0,1 follows now from (9.32) and Proposition 9.13.

The expectation of Be (α + xi, β + n− xi) is (α + xi)/(α + β + n), i = 1, ..., k.

Thus under the loss Llin, according to (9.33), every Bayes selection rule again selects

in terms of the largest value of x1, ..., xk. �

Solution to Problem 9.19: Let h ≥ 0 be measurable. It holds
∫

h(uγ(s))Γ (ds|t) =

∫
h(uγ(s))gt(s)μ(ds) =

∫
h(uγ(s))guγ(t)(uγ(s))μ(ds)

=

∫
h(s)guγ(t)(s)μ(ds) =

∫
h(s)Γ (ds|uγ(t)),

and thus (9.35). To establish (9.37) we note that for ti < tj
∫

h(s)I[si,∞)(sj)Γ (ds|t(i,j)) =

∫
h(s)I[si,∞)(sj)gt(i,j)(s)μ(ds)

≤
∫

h(s)I[si,∞)(sj)gt(s)μ(ds) =

∫
h(s)I[si,∞)(sj)Γ (ds|t). �

Solution to Problem 9.22: Let θ1 ≤ θ2. An application on the monotone con-
vergence theorem shows that it suffices to deal with bounded nonnegative functions
h that vanish for x2 ≤ x1. First we assume that Pθ2 � Pθ1 . The likelihood ratio
Lθ1,θ2 is then the Pθ1 -density dPθ2/dPθ1 and we have

∫ ∫
h(x1, x2)[Pθ1(dx1)Pθ2(dx2)− Pθ2(dx1)Pθ1(dx2)] =

∫
[

∫
h(x1, x2)[Lθ1,θ2(x2)− Lθ1,θ2(x1)]Pθ1(dx1)]Pθ1(dx2) ≥ 0,

as h(x1, x2) = 0 for x2 ≤ x1, and Lθ1,θ2(x2) − Lθ1,θ2(x1) ≥ 0 and h(x1, x2) ≥ 0
for x1 < x2. If Pθ2 � Pθ1 is not satisfied we set P θ1 = (Pθ1 + Pθ2)/2. It holds
Pθ2 � P θ1 and
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dPθ2

dP θ1

=

{
2Lθ1,θ2

Lθ1,θ2+1
if Lθ1,θ2 <∞,

2 if Lθ1,θ2 = ∞.

Thus the density dPθ2/dP θ1 is a nondecreasing function of the identity. Hence by
P θ1 = (Pθ1 + Pθ2)/2 and the first step of the proof,

1

2

∫
[

∫
h(x1, x2)Pθ2(dx1)]Pθ1(dx2) +

1

2

∫
[

∫
h(x1, x2)Pθ2(dx1)]Pθ2(dx2)

≤ 1

2

∫
[

∫
h(x1, x2)Pθ1(dx1)]Pθ2(dx2) +

1

2

∫
[

∫
h(x1, x2)Pθ2(dx1)]Pθ2(dx2). �

Solution to Problem 9.23: The first statement is clear. In view of the permutation
invariance we may assume i = 1 and j = 2. Suppose θ1 ≤ θ2 and let g be nonnegative
and measurable. An application of (9.41) to

h(x1, x2) = I(x1,∞)(x2)

∫
g(x1, x2, x3, ..., xk)(

⊗k
i=3 Pθi)(dx3, ..., dxk).

completes the proof of the second statement. �

Solution to Problem 9.25: Let ϕθ,Σ(x), x ∈ R
k, be the Lebesgue density of

a multivariate normal distribution. The Lebesgue measure μ = λk is permutation
invariant. The density ϕθ,Σ(x) is permutation invariant in the sense of (9.39) if
and only if uγ(z)TΣ−1uγ(z) = zTΣ−1z, z ∈ R

k, γ ∈ Πk. We show now that
this holds if and only if Σ−1 is of the form Σ−1 = αI + β11T with α > 0 and
α + kβ > 0, where 1T = (1, ..., 1) ∈ R

k. If Σ−1 is of the form Σ−1 = αI + β11T ,
then clearly uγ(z)TΣ−1uγ(z) = zTΣ−1z, z ∈ R

k, γ ∈ Πk. Conversely, suppose
that uγ(z)TΣ−1uγ(z) = zTΣ−1z, z ∈ R

k, γ ∈ Πk. Let Σ−1 = (ci,j)i,j=1,...,k. Let
e(i) ∈ R

k be the vector with 1 in position i, and 0 in all other positions, i = 1, ..., k. It
holds eT

(i)Σ
−1e(i) = ci,i, i = 1, ..., k, and thus c1,1 = c2,2 = ··· = ck,k. Let e(i,j) be the

vector with 1 in the two positions i and j, and 0 in all other positions, 1 ≤ i < j ≤ k.
It holds eT

(i,j)Σ
−1e(i,j) = ci,i + ci,j + cj,i + cj,j = 2c1,1 + 2ci,j , and thus ci,j = c1,2,

1 ≤ i < j ≤ k. This means that Σ−1 is of the form Σ−1 = αI + β11T . Now we
determine the range of α and β for which αI +β11T is positive definite. The case of
β = 0 is trivial. As to the case of β �= 0, let y ∈ R

k\{0} and set y = (1/k)
∑k

i=1 yi.
It holds (αI +β11T )y = λy if and only if βky1 = (λ−α)y. The solutions are λ = α
along with y = 0, and λ = α + kβ along with y = y1. Thus, αI + β11T is positive
definite if and only if α > 0 and α + kβ > 0. If Σ−1 = αI + β11T , α > 0, and
α + kβ > 0, then ϕθ,Σ(x) satisfies (9.40). This can be seen as follows.

(x− θ)TΣ−1(x− θ) = α
∑k

i=1(xi − θi)
2 + β[

∑k
i=1(xi − θi)]

2, x, θ ∈ R
k.

For any i, j ∈ {1, ..., k} let x, θ ∈ R
k with xi ≤ xj and θi ≤ θj . Let θ(i,j) be the

vector that is obtained from θ by exchanging the coordinates θi and θj . Then

(x− θ(i,j))TΣ−1(x− θ(i,j))− (x− θ)TΣ−1(x− θ)

= α[(xi − θj)
2 + (xj − θi)

2 − (xi − θi)
2 − (xj − θj)

2] = 2α(θj − θi)(xj − xi) ≥ 0,

which implies ϕθ(i,j),Σ(x) ≤ ϕθ,Σ(x). Moreover, Σ = α̃I + β̃11T , where α̃ = α−1

and α̃ + kβ̃ = (α + kβ)−1. �



612 9 Selection

Solution to Problem 9.26: Obviously, W = {x : x ∈ {0, 1, ..., n}k,
∑k

i=1 xi = n}
and C = {p : pi ∈ (0, 1), i = 1, ..., k,

∑k
i=1 pi = 1} are symmetric, and the counting

measure κd on BW = P(W ) is permutation invariant. The κd-density of M(n, p) is

mn,p(x) =
n!

x1! · · · xk!

∏k

i=1
pxi

i , x ∈W, p ∈ C.

It obviously satisfies (9.39). To verify (9.40) let x ∈W , where for some i, j ∈ {1, ..., k}
with pi − pj ≤ 0 we have xi − xj ≥ 0. Then

mn,p(x)

mn,p(x(i,j))
= (pi/pj)

xi−xj ≤ 1. �

Solution to Problem 9.39: Use Problem 9.19 and Example 9.24. �

Solution to Problem 9.48: Let yi =
∑ni

j=1 xi,j , i = 1, ..., k. The set Mpt,es
Π (x)

from (9.62) turns out to be here

Mpt,es
Π (x) = arg max

i∈{1,...,k}
[S0

i (xi)−
1

a
(
2

π

σ2δ2
i

σ2 + niδ2
i

)1/2], x ∈
⊗k

i=1 R
ni .

(a): If δ2
i →∞, then S0

i (xi) → yi/ni, i = 1, ..., k, and

Mpt,es
Π (x) → arg max

i∈{1,...,k}
[
yi

ni
− 1

a
(
2

π

σ2

ni
)1/2].

It is interesting to note here that the selection is not made strictly in terms of the

largest of the sample means yi/ni, i = 1, ..., k, but with an adjustment that depends

on the sample sizes n1, ..., nk.
(b): Let δ2

i = bσ2/ni, i = 1, ..., k, for some fixed b > 0. Then

S0
i (xi) =

b(yi/ni) + νi

b + 1
, i = 1, ..., k, and

Mpt,es
Π (x) = arg max

i∈{1,...,k}
{ b(yi/ni) + νi

b + 1
− 1

a
(
2

π

b

b + 1

σ2

ni
)1/2}.

Especially if ν1 = · · · = νk, then

Mpt,es
Π (x) = arg max

i∈{1,...,k}
{ yi

ni
− 1

a
(
2

π

b + 1

b

σ2

ni
)1/2}.

(c): Suppose that (1/δ2
i ) + (ni/σ

2) = 1/c2, i = 1, ..., k, holds for some constant
c2 > 0. Then

S0
i (xi) = c2(

yi

σ2
+

νi

δ2
i

), i = 1, ..., k, and Mpt,es
Π (x) = arg max

i∈{1,...,k}
{ yi

σ2
+

νi

δ2
i

}.

Especially if ν1 = · · · = νk = ν, say, then Mpt,es
Π (x) = arg max

i∈{1,...,k}
{ni((yi/ni) − ν)}.

Thus if a population has a sample mean larger (smaller) than the common prior

mean ν, then a larger sample size is an advantage (a handicap) for a population to

be selected. �
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Solution to Problem 9.53: Let x ∈
⊗k

i=1{0, 1, ..., ni} be fixed. First let us assume
that αi, βi > 1, i = 1, ..., k. Then the Bayes estimate for population i ∈ {1, ..., k} is

S0
i (xi) = arg min

wi∈[0,1]

∫
[0,1]

(t− wi)
2

t(1− t)
beαi+xi,βi+ni−xi(t)dt

= c(αi, βi, xi) arg min
wi∈[0,1]

∫
[0,1]

(t− wi)
2beαi+xi−1,βi+ni−xi−1(t)dt,

where c(αi, βi, xi) compensates for the switch of the normalizing factors of the two
beta densities. It is

c(αi, βi, xi) =
Γ (αi + βi + ni)

Γ (αi + xi)Γ (βi + ni − xi)

Γ (αi + xi − 1)Γ (βi + ni − xi − 1)

Γ (αi + βi + ni − 2)

=
(αi + βi + ni − 1)(αi + βi + ni − 2)

(αi + xi − 1)(βi + ni − xi − 1)
.

Similarly to Example 9.50 we see that S0
i (xi) = (αi +xi−1)/(αi +βi +ni−2). Next

we have to determine the posterior expected loss due to estimation when population
i is selected. It is

∫
[0,1]

(t− wi)
2

t(1− t)
beαi+xi,βi+ni−xi(t)dt

= c(αi, βi, xi)

∫
[0,1]

(t− wi)
2beαi+xi−1,βi+ni−xi−1(t)dt

= c(αi, βi, xi)
(αi + xi − 1)(βi + ni − xi − 1)

(αi + βi + ni − 2)2(αi + βi + ni − 1)
=

1

(αi + βi + ni − 2)
.

Thus, every Bayes rule ϕB(x) satisfies ϕB
i (x) = 0, i /∈Mpt,es

Π (x), where

Mpt,es
Π (x) = arg min

i∈{1,...,k}
[

αi + xi

αi + βi + ni
+

ρ

(αi + βi + ni − 2)
]. (9.156)

Adjustments to priors with αi, βi > 0, i = 1, ..., k, are straightforward. If αi ≤ 1

and xi = 0, then S0
i (xi) = 0, and the last summand in (9.156) for that particular i

changes to ραi/(βi + ni − 1). If βi ≤ 1 and xi = ni, then S0
i (xi) = 1, and the last

summand in (9.156) for that particular i changes to ρβi/(αi + ni − 1). �

Solution to Problem 9.57: By Example 9.56 we have for every x ∈ X ,

Msu
Π (x) = arg min

A∈Dsu

∑
i∈A

∫
[κ[k](θ)− κ(θi)− ε]Π(dθ|x)

= arg min
A∈Dsu

∑
i∈A

[

∫
κ[k](θ)Π(dθ|x)− ε−

∫
κ(θi)Π(dθ|x)].

From here the statements follow easily. �

Solution to Problem 9.63: At any x ∈ X , the posterior expected size of the
selected subset A, say, under a selection rule ϕ satisfies
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1 ≤ E(|A| |x) =
∑

A∈Dsu

|A|ϕA(x) =
∑

A∈Dsu

[
∑k

i=1
IA(i)]ϕA(x)

=
∑k

i=1
[
∑

A∈Dsu

IA(i)ϕA(x)] =
∑k

i=1
ψi(x).

The inequality follows from the fact that the empty set cannot be selected, and the

last equation follows from (9.71).

Let k = 3 and s ∈ R
3 be fixed. Set ϕ{i}(x) = 1/4, i = 1, 2, 3, and ϕ{1,2,3}(x) =

1/4. Set ϕ̃{i}(x) = 1/6, i = 1, 2, 3, and ϕ̃{1,2}(x) = ϕ̃{1,3}(x) = ϕ̃{2,3}(x) = 1/6. For

both, ϕ and ϕ̃, the inclusion probabilities are ψi(x) = 1/2, i = 1, 2, 3. �

Solution to Problem 9.79: Apply Proposition A.29 and the substitution rule

Lemma A.15 to the exponential structure of dPθ/dμ. �

Solution to Problem 9.94: It is enough to consider the case θ = 0. The state-

ment then follows from the fact that, according to Barndorff-Nielsen (1978), the

m-fold convolution of d is again a log-concave function. This fact follows also from

Proposition 2.19 which states that a density is log-concave or strictly unimodal if

the convolution with an unimodal density is again unimodal. �

Solution to Problem 9.116: It holds,

1

n
ln an,

1

n
ln bn ≤

1

n
ln(an + bn) ≤ 1

n
ln(2(an ∨ bn)),

lim sup
n→∞

1

n
ln(2(an ∨ bn)) = (lim sup

n→∞

1

n
ln an) ∨ (lim sup

n→∞

1

n
ln bn). �

Solution to Problem 9.122: The conditions (9.126), ϕn(uγ(x)) = uγ(ϕn(x)),

and the completeness of the family (N(I0h, I0)h∈Rk) imply the existence of Nγ with

ϕ(uγ(x)) = uγ(ϕ(x)), x /∈ Nγ , and N(0, I)(Nγ) = 0. Set N = ∪γNγ and define

ψ(x) = ϕ(x) for x /∈ N, and as the uniform distribution on {1, ..., k} for x ∈ N. The

equivalence of the distributions N(I0h, I0), h ∈ R
k, and N(0, I) completes the proof.

�

Solution to Problem 9.123: The statement follows from Problem 9.122 if we set

Mn = G. �

Solution to Problem 9.138: Without loss of generality let h1 ≤ · · · ≤ hk. Then
L(h, 1) ≥ · · · ≥ L(h, k). Let Z1, ..., Zk be generic i.i.d. standard normal random
variables. Set ai = P(Zj + γhj ≤ Zi + γhi, j �= i), γ ≥ 0, i = 1, ..., k. Then

∑k

i=1
L(h, i)

∫
IM(x)(i)N(γh, I)(dx) =

∑k

i=1
L(h, i)ai

=
∑k−1

q=1
[L(h, q)− L(h, q + 1)]

∑q

i=1
ai + L(h, k)

∑k

i=1
ai.

Now for q = 1, ..., k,∑q

i=1
ai = P( max

a≥q+1
(Za + γha) ≤ max

b≤q
(Zb + γhb))

= P( max
a≥q+1

(Za + γ(ha − hq)) ≤ max
b≤q

(Zb + γ(hb − hq))).

Because ha ≥ hq for a ≥ q + 1 and hb ≤ hq for b ≤ q, the proof is completed. �
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Appendix:
Topics from Analysis, Measure Theory, and
Probability Theory

In the following three sections we collect results from analysis, measure theory,
and probability theory that are used in the book. We emphasize that these
results are not necessarily established in their most possible generality. Some-
times we present only special cases of general results that are sufficient for
our purposes. This allows us to avoid unnecessarily convoluted formulations,
extended notations, and additional concepts. We do not give proofs unless a
suitable version of a result that is needed is not directly available.

A.1 Topics from Analysis

Let R = (−∞,+∞) be the real line and denote by R = [−∞,+∞] the ex-
tended real line. The sum, product, and ratio of elements of R are defined
by the standard conventions that can be found, for example, in Hewitt and
Stromberg (1965), pp. 54–55. Set ψ(x) = (1 + |x|)−1x, x ∈ R, ψ(−∞) = −1,
and ψ(∞) = 1. Put ρ(x, y) = |ψ(x) − ψ(y)|, x, y ∈ R. For the product space
R
d

= [−∞,+∞]d, x = (x1, ..., xd) ∈ R
d
, and y = (y1, ..., yd) ∈ R

d
we set

ρd(x, y) =
∑d

i=1 ρ(xi, yi).

Remark A.1. (R, ρ) and (R
d
, ρd) are compact metric spaces.

Let A ⊆ R
d be an open set. The function f : A→ R is called differentiable

at x0 ∈ A if there is a vector, called a gradient and denoted by column vector
∇f(x0), such that

f(x0 + u)− f(x0) = 〈u,∇f(x0)〉+ o(‖u‖),

where ‖u‖ is the Euclidean norm and o(‖u‖)/ ‖u‖ → 0 for u→ 0. We also use
the notations ( ∂f

∂t1
(x0), ..., ∂f

∂td
(x0))T and ḟ(x0) for the gradient ∇f(x0). If the

partial derivatives ∂f
∂ti

, i = 1, ..., d, of f exist, and are continuous in a neighbor-
hood of x0, then f is differentiable at x0 with gradient ( ∂f

∂t1
(x0), ..., ∂f

∂td
(x0))T .
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If A ⊆ R
d is a open set and f : A → R

k, then we call f = (f1, ..., fk)T

differentiable at x0 if every fi is differentiable at x0. In this case the k × d
matrix

Jf (x0) := (∇f1(x0), ...,∇fk(x0))T =
(
∂fi
∂tj

(x0)
)

1≤i≤k,1≤j≤d

is called the Jacobian of f , and the first-order Taylor expansion can be written
as f(x0 +u)−f(x0) = Jf (x0)u+o(‖u‖). We call f continuously differentiable
in A if f is differentiable at every x0 ∈ A and Jf (x) is continuous on A. The
corresponding multiple differentiability of vector-valued functions is defined
componentwise. If A,B ⊆ R

d are open sets, f : A → B ⊆ R
k is one-to-one,

and both f and its inverse mapping g are continuously differentiable, then we
call f a diffeomorphism.

The subsequent Taylor expansion with remainder term follows from Theo-
rem 8.14.3 in Dieudonné (1960) by an application to the vector-valued function
f.

Theorem A.2. If A ⊆ R
d is an open set and f : A → R

k is continuously
differentiable in a neighborhood U(x) of x ∈ A, then for x + sh ∈ U(x),
0 ≤ s ≤ 1,

f(x+ h)− f(x) =
∫ 1

0

Jf (x+ sh)hds.

If f : A → R is twice continuously differentiable in a neighborhood U(x) of
x ∈ A, ḟ is the gradient, and f̈ the matrix of the second derivatives, then for
x+ sh ∈ U(x), 0 ≤ s ≤ 1,

f(x+ h)− f(x) = ḟT (x)h+
∫ 1

0

(1− s)hT f̈(x+ sh)hds.

Let C = {z : z = u + iv, u, v ∈ R} denote the space of the complex
numbers and A ⊆ C

d be open. A function f : A → C is called analytic if for
every (z1,0, ..., zd,0) ∈ A it can be expanded in a power series

f(z) =
∞∑
k=0

∑
m1+···+md=k

1
m1! · · ·md!

am1,...,md

∏d

j=1
(zj − zj,0)mj , z ∈ A,

which is absolutely convergent in some neighborhood of (z1,0, ..., zd,0). The
uniqueness theorem below is a special case of 9.4.2 in Dieudonné (1960).

Theorem A.3. Suppose A ⊆ C
d is an open connected set that contains

an open real rectangle Xd
j=1(ai, bi). If f, g : A → C are analytic on A

and f(u1, ..., ud) = g(u1, ..., ud) for every (u1, ..., ud) ∈ Xd
j=1(ai, bi), then

f(z) = g(z) for every z ∈ A.
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Let (X , ρX ) be a metric space. We denote by C(X ) the space of all real-
valued continuous functions on X , by Cb(X ) the subspace of all bounded
functions in C(X ), and by Cu,b(X ) the subspace of all uniformly continuous
functions in Cb(X ). It is clear that for a compact metric space C(X ) = Cb(X ) =
Cu,b(X ). We set ‖f‖u = supx∈X |f(x)| for every f : X → R. It is easy to see
that ρC(f, g) := ‖f − g‖u is a metric on Cb(X ).

A special class of uniformly continuous functions is the Lipschitz functions.
We set for f : X → R

‖f‖Lip = ‖f‖u + Lf , where Lf = sup
s �=t

1
ρX (s, t)

|f(s)− f(t)|, (A.1)

and denote by Lip(X ) = {f : ‖f‖Lip <∞} the space of all bounded Lipschitz
functions. It is clear that Lip(X ) ⊆ Cu,b(X ). The next statement is Theorem
11.2.4. and Corollary 11.2.5 in Dudley (2002) to which we refer for a proof.

Proposition A.4. If (X , ρX ) is a compact metric space, then C(X ) and
Lip(S) are separable metric spaces and the space Lip(X ) is dense in C(X )
for ‖·‖u .

The next lemma concerns the pointwise approximation of lower semicon-
tinuous functions.

Lemma A.5. If (X , ρX ) is a metric space and f : X → [0,∞] is a lower
semicontinuous function, then there is a nondecreasing sequence of Lipschitz
functions fn : X → [0,∞) such that f(x) = limn→∞ fn(x) for every x ∈ X .

Proof. If f ≡ ∞, then set fn = n. Otherwise set fn(x) = infy∈X (f(y) +
nρX (y, x)). Then fn(x) ≤ fn+1(x) < ∞ and fn(x) ≤ f(x) for every x and
|fn(x1) − fn(x2)| ≤ nρX (x1, x2). It remains to show that limn→∞ fn(x) =
f(x). If limn→∞ fn(x0) < f(x0) for some x0, then by the lower semicontinuity
of f there is some β with limn→∞ fn(x) < β < f(x0) and some δ > 0 such
that f(z) > β for every y with ρX (z, x0) < δ. If ρX (y, x0) ≥ δ, then by f ≥ 0
it holds f(y) + nρX (y, x0) ≥ β for all sufficiently large n. If ρX (y, x0) ≤ δ,
then f(y) + nρX (y, x0) ≥ β. Hence fn(x0) ≥ β for all sufficiently large n and
the proof is completed.

A.2 Topics from Measure Theory

For a nonempty set X let P(X ) denote the system of all subsets of X . If G ⊆
P(X ), then σ(G) denotes the smallest σ-algebra containing G. If A ⊆ P(X )
is a σ-algebra, then the pair (X ,A) is called a measurable space. For A ∈ A

we call AA := {A ∩B : B ∈ A} the trace σ-algebra of subsets of A.
For a mapping f : X → Y the set f−1(B) := {x : f(x) ∈ B} is called the

inverse image of B. Given two measurable spaces (X ,A) and (Y,B) and a
mapping f : X → Y the system
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σ(f) := {f−1(B) : B ∈ B} ⊆ P(X )

is a σ-algebra called the σ-algebra generated by f. If σ(f) ⊆ A, then the
mapping f is called A-B measurable. Whenever it is clear which σ-algebras
are involved, we just call f measurable and express it by f : X →m Y. If f
is a bijection and the inverse mapping, denoted by f−1, is B-A measurable,
then we say that f is A-B bimeasurable and write f : X ↔m Y. In this case
we say that (X ,A) and (Y,B) are Borel isomorphic.

If (X , ρ) is a metric space, and O denotes the system of all open subsets,
then we call B = σ(O) the σ-algebra of Borel sets. This σ-algebra is sometimes
also denoted by BX . For X = R and X = R the σ-algebra of Borel sets B and
B, respectively, is generated by the open intervals. If Y = R,R,R+, or R+,
then X →m Y means A-B,A-B,A-B+, or A-B+ measurability, respectively.

At many places we utilize the so-called standard extension technique which
establishes a statement step by step from indicator functions to linear com-
binations of indicator functions and then by monotone convergence to all
nonnegative measurable functions. This technique is based on the fact that
every nonnegative measurable function is the pointwise limit of a nondecreas-
ing sequence of nonnegative step functions; see, e.g., Kallenberg (1997).

Lemma A.6. (Standard Extension Technique) Suppose (X ,A) is a mea-
surable space and F is a set of measurable functions f : X →m R+ with the
following three properties. (a) IA ∈ F for every A ∈ A. (b) f, g ∈ F, a, b ≥ 0,
implies af + bg ∈ F. (c) fn ∈ F and fn ↑ f implies f ∈ F. Then F is the set
of all f : X →m R+.

For several more advanced technical issues in probability theory the con-
cept of a Borel space is useful.

Definition A.7. A measurable space (Z,C) is called a Borel space if there
exists a Borel set B ⊆ [0, 1] and a bijection b : Z ↔ B which is a C-BB

bimeasurable mapping.

Lemma A.8. If Z is a complete separable metric space, and C is the σ-algebra
of Borel sets, then (Z,C) is a Borel space.

For a proof we refer to Theorem A.1.6 in Kallenberg (1997).

Lemma A.9. (Factorization Lemma) Let (X ,A), (Y,B), and (Z,C) be
measurable spaces and g : X →m Y. If (Z,C) is a Borel space, then f : X → Z
is σ(g)-C measurable if and only if there exists a B-C measurable function
h : Y → Z such that f(x) = h(g(x)), x ∈ X .

For a proof we refer to Lemma 1.13 in Kallenberg (1997).

Theorem A.10. (Measurable Selection Theorem) Suppose (X ,A) is a
measurable space, Y is a Polish space, and f : X ×Y → R fulfils the following
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conditions: x �→ f(x, y) is measurable for every y ∈ Y and y �→ f(x, y)
is continuous for every x ∈ X . If for every x there exists some g(x) ∈ Y
such that f(x, g(x)) = infy∈Y f(x, y), then there exists a measurable mapping
θ̂ : X →m Y such that f(x, θ̂(x)) = infy∈Y f(x, y) for every x ∈ X .

For a proof and references we refer to Theorem 6.7.22 in Pfanzagl (1994).

A measure μ defined on (X ,A) is called σ-finite if there is an increasing
sequence Bi ∈ A with μ(Bi) < ∞, i = 1, 2, ... and ∪∞

i=1Bi = X . We denote
by M(A), Mσ(A), and P(A) the set of all measures, σ-finite measures, and
probabilities on (X ,A), respectively. (X ,A, μ) is called a measure space.

Definition A.11. Let (X ,A, μ) be a measure space and f, fn : X →m R. We
say the following.

fn converges almost everywhere to f , in short fn → f , μ-a.e., if
μ({x : fn(x) � f(x)}) = 0.
fn converges in measure to f , in short fn →μ f , if
limn→∞ μ({x : |fn(x)− f(x)| > ε}) = 0 for every ε > 0.
fn converges locally in measure to f , in short fn →μ

loc f , if
IAfn →μ IAf for every A ∈ A with μ(A) <∞.

For a finite measure μ the local convergence in measure is identical with
the convergence in measure. Especially for a probability measure μ we call the
convergence in measure stochastic convergence, and the almost everywhere
convergence almost sure ( a.s.) convergence.

Let X be a separable metric space with metric ρ, and let A be the σ-algebra
of Borel sets. If X,Y : Ω →m X are random variables defined on (Ω,F,P),
then ω �→ ρ(X(ω), Y (ω)) is F-B[0,∞) measurable. For X,Xn : Ω →m X we
write Xn →P X if ρ(X,Xn) →P 0, and Xn → X, P-a.s., if ρ(X,Xn) → 0,
P-a.s.

Proposition A.12. It holds ρ(X,Xn) →P 0 if and only if for every subse-
quence Xnk

there exits a subsequence Xnkl
with ρ(X,Xnkl

) → 0, P-a.s.. The
P-a.s. convergence of random variables with values in a separable metric space
implies the stochastic convergence with respect to P.

For a proof we refer to Kallenberg (1997).
Given a measurable space (X ,A) and μ ∈ M(A) we set

∫
g(x)μ(dx) =∑n

i=1 aiμ(Ai) for a nonnegative step function g(x) =
∑n

i=1 aiIAi
(x), ai ∈ R+,

Ai ∈ A, i = 1, ..., n. Note that here and in the sequel we tacitly use the
standard convention for calculations on the extended real line. If f : X →m

R+ = [0,∞], then we set
∫
fdμ =

∫
f(x)μ(dx) = sup

∫
gdμ,

where the supremum is taken over all nonnegative step functions g that satisfy
g(x) ≤ f(x) for every x ∈ X . For f : X →m R, we introduce f+(x) =
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max {f(x), 0} , f−(x) = −min {f(x), 0} . It holds
∫
|f |dμ < ∞ if and only if∫

f+dμ <∞ and
∫
f−dμ <∞. If min(

∫
f+dμ,

∫
f−dμ) <∞ we set

∫
fdμ =∫

f+dμ−
∫
f−dμ. The spaces Lp(μ) are defined by

Lp(μ) = {f : f : X →m R,

∫
|f |pdμ <∞}, p > 0.

For p ≥ 1 the pseudonorm norm ‖·‖p is given by

‖f‖p = (
∫
|f |pdμ)1/p, f ∈ Lp(μ), p ≥ 1.

The functions in L1(μ) are called μ-integrable, or just integrable, if it is clear
which measure is used. If (Ω,F,P) is a probability space and X : Ω →m R+

is a random variable, then EX :=
∫
XdP is called the expectation or mean of

X. If X : Ω →m R and min(EX+,EX−) <∞ we set EX = EX+−EX− and
call EX the expectation of X.

For proofs of the following classical inequalities we refer to Dudley (2002),
Theorems 5.1.2 and 5.1.5.

Lemma A.13. For fi, f, g : X →m R, and pi > 1, i = 1, ..., k, the following
inequalities hold.

∫
|fg|dμ ≤ ‖f‖p ‖g‖q ,

1
p

+
1
q

= 1, p > 1, Hölder
∫
|
∏k

i=1
fi|dμ ≤

∏k

i=1
‖fi‖pi

,
∑k

i=1

1
pi

= 1, generalized Hölder
∫
|fg|dμ ≤ ‖f‖2 ‖g‖2 , Schwarz

‖f + g‖p ≤ ‖f‖p + ‖g‖p , p ≥ 1, Minkowski.

Minkowski’s inequality shows that the spaces Lp(μ), p ≥ 1, are linear
spaces and that ‖f‖p is a pseudonorm. If we identify functions that differ only
on μ-nullsets, then the pseudonorm ‖f‖p becomes a norm. The spaces Lp(μ),
p ≥ 1, are complete and thus Banach spaces. For a proof of the completeness
statement below we refer to Dudley (2002), Theorem 5.2.1.

Theorem A.14. If fn ∈ Lp(μ), p ≥ 1, satisfy limm,n→∞
∫
|fm − fn|pdμ = 0,

then there is an f ∈ Lp(μ) with limn→∞
∫
|fn − f |pdμ = 0.

Let (X ,A) and (Y,B) be measurable spaces and T : X → Y be A-B mea-
surable. If μ ∈M(A), then μ ◦ T−1, defined by (μ ◦ T−1)(B) = μ(T−1(B)) =
μ({x : T (x) ∈ B}), B ∈ B, is easily seen to be a measure on B which is called
the induced measure. The following substitution rule is a simple consequence
of the standard extension technique in Lemma A.6.

Lemma A.15. (Substitution Rule) If T : X → Y is A-B measurable, then
it holds that

∫
h(y)(μ ◦ T−1)(dy) =

∫
h(T (x))μ(dx) for every h : Y →m R+.
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Next we present the basic limit theorems of measure theory.

Theorem A.16. (Monotone Convergence Theorem) Let fn, gn : X →m

R+ with 0 ≤ f1(x) ≤ f2(x) ≤ · · · and g1(x) ≥ g2(x) ≥ · · · for every x ∈ X . If∫
gn0dμ <∞ for some n0, then

lim
n→∞

∫
fndμ =

∫
lim
n→∞

fndμ and lim
n→∞

∫
gndμ =

∫
lim
n→∞

gndμ.

Lemma A.17. (Lemma of Fatou) If fn : X →m R+, n = 1, 2, ..., and
μ ∈M(A), then

lim inf
n→∞

∫
fndμ ≥

∫
(lim inf
n→∞

fn)dμ.

Theorem A.18. (Theorem of Lebesgue) Let fn, f : X →m R, n = 1, 2, ...,
μ ∈M(A), and g ∈ L1(μ) with |fn| ≤ g. If at least one of the conditions, (a)
fn → f, μ-a.e., or (b) fn →μ

loc f and μ is σ-finite, is fulfilled, then f ∈ L1(μ),

lim
n→∞

∫
|fn − f |dμ = 0, and lim

n→∞

∫
fndμ =

∫
fdμ.

For a proof of the monotone convergence theorem, Fatou’s lemma, and
Lebesgue’s theorem under the condition (a) we refer to Section 4.3 in Dud-
ley (2002). If (b) is fulfilled, then we use Proposition A.12 and a subsequent
argument.

The next statement is Lemma 21.6 in Bauer (2001).

Lemma A.19. (Lemma of Scheffé) Let fn, f : X →m R+, n = 1, 2, ...,
and μ ∈ Mσ(A). If limn→∞

∫
fndμ =

∫
fdμ < ∞ and fn →μ

loc f , then
limn→∞

∫
|fn − f |dμ = 0.

In some situations the assumption of |fn| ≤ g in Lebesgue’s theorem is too
strong and not flexible enough.

Definition A.20. M ⊆ L1(μ) is called uniformly integrable if for every ε > 0
there is an fε ∈ L1(μ) with fε ≥ 0 so that supf∈M

∫
{|f |>fε} |f |dμ < ε.

Theorem A.21. (Theorem of Vitali) If μ ∈ Mσ(A), fn, f ∈ Lp(μ), and
0 < p <∞, then the following conditions are equivalent.

(a) fn →μ
loc f and {|fn|p} is uniformly integrable.

(b) fn →μ
loc f and lim

n→∞

∫
|fn|pdμ =

∫
|f |pdμ.

(c) fn →μ
loc f and lim sup

n→∞

∫
|fn|pdμ ≤

∫
|f |pdμ.

(d) lim
n→∞

∫
|fn − f |pdμ = 0.



622 Appendix A: Analysis, Measure Theory, Probability Theory

Proof. (a) ↔ (d) is Theorem 21.4 in Bauer (2001). (b) → (d): Set gn =
|fn|p and g = |f |p. Scheffé’s lemma yields limn→∞

∫
|gn − g|dμ = 0, so that

by the equivalence of (a) and (d) for gn and g the sequence |fn|p is uniformly
integrable. Then the sequence |fn − f |p is also uniformly integrable and (d)
follows from (a) applied to |fn − f |p. (d) → (b) is clear. (b) ↔ (c) follows
from Fatou’s lemma.

The next proposition is a version of Lebesgue’s theorem where the con-
dition of the sequence of functions to be bounded in absolute value by an
integrable function is replaced by the condition that the sequence of functions
is uniformly integrable. This is a direct consequence of Vitali’s theorem.

Proposition A.22. Let μ ∈ Mσ(A) and fn, f ∈ L1(μ). If fn →μ
loc f and

the sequence fn, n = 1, 2, ..., is uniformly integrable, then limn→∞
∫
fndμ =∫

fdμ.

The following is a standard transformation technique for the Lebesgue
measure λd; see Bauer (2001).

Theorem A.23. If A,B ⊆ R
d are open sets and f : A → B is a diffeomor-

phism with Jacobian Jf , then for every h : B →m R+∫
B

h(y)λd(dy) =
∫
A

h(f(x))|Jf (x)|λd(dx).

If [a, b] is a finite interval a function f : [a, b] → R is called absolutely
continuous if for every ε there exists a δ > 0 such that

∑n
k=1 |f(dk)−f(ck)| < ε

for every pairwise disjoint open subintervals (ck, dk) with
∑n

k=1(dk − ck) < δ.
f : R → R is called absolutely continuous if f : [a, b] → R is absolutely
continuous on [a, b] for every a < b. For a proof of the following theorem we
refer to Hewitt and Stromberg (1965).

Theorem A.24. The function f : [a, b] → R is absolutely continuous if and
only if there exists a g : [a, b] →m R with

∫
I[a,b](t)|g(t)|λ(dt) < ∞ such that

f(x) − f(a) =
∫
I[a,x](t)g(t)λ(dt) for every a < x ≤ b. The function f is in

this case λ-a.e. differentiable with derivative f ′ that satisfies f ′ = g, λ-a.e.

Now we consider measures on product spaces.

Definition A.25. Let (X ,A) and (Y,B) be measurable spaces. Set A⊗B =
σ{A × B : A ∈ A, B ∈ B}. We call A ⊗ B the product σ-algebra, and
(X × Y,A⊗B) the product space.

Let μ ∈ M(A) and ν ∈ M(B). For every C ∈ A ⊗B the function x �→∫
(IC(x, y)ν(dy) is measurable and

(μ⊗ ν)(C) :=
∫

[
∫

(IC(x, y)ν(dy)]μ(dx), C ∈ A⊗B,

is a measure on A ⊗ B that satisfies (μ ⊗ ν)(A × B) = μ(A)ν(B), A ∈ A,
B ∈ B. The measure μ⊗ ν and is called the product measure of μ and ν.
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Theorem A.26. (Theorem of Fubini) If μ ∈ Mσ(A) and ν ∈ Mσ(B),
then μ⊗ν is the uniquely determined measure on A⊗B with (μ⊗ν)(A×B) =
μ(A)ν(B), A ∈ A, B ∈ B. Moreover, for every h : X × Y →m R+ it holds∫

hd(μ⊗ ν) =
∫

[
∫
h(x, y)ν(dy)]μ(dx) =

∫
[
∫

(h(x, y)μ(dx)]ν(dy). (A.2)

For a proof of the uniqueness we refer to Theorem B on p. 144 in Halmos
(1974). The statement A.2 follows from the standard extension technique; see
Lemma A.6.

Now we formulate the Radon–Nikodym theorem. Let μ, ν ∈ M(A). If
ν(A) = 0 implies μ(A) = 0, A ∈ A, then we say that μ is absolutely continuous
with respect to ν, or ν dominates μ, and write μ 
 ν. If μ 
 ν and ν 
 μ,
then we call μ and ν equivalent and write μ
� ν.

Theorem A.27. (Theorem of Radon–Nikodym) If μ, ν ∈ Mσ(A) and
μ 
 ν, then there is a ν-a.e. uniquely determined f : X →m R+, called the
density of μ with respect to ν, or the ν-density of μ, such that for every A ∈ A

and every h : X →m R+ it holds

μ(A) =
∫

A

f(x)ν(dx) and
∫
hdμ =

∫
hfdν.

The function f is also denoted by dμ/dν and called the Radon–Nikodym
derivative of μ with respect to ν. For a proof of the existence and uniqueness
of dμ/dν we refer to Theorem B, §31, in Halmos (1974). The second statement
follows from the standard extension technique; see Lemma A.6.

Proposition A.28. (Chain Rule) If μ, ν, ρ ∈Mσ(A) and μ
 ν 
 ρ, then

dμ

dρ
=
dμ

dν
× dν

dρ
, ρ-a.e.

Proposition A.29. If (Xi,Ai) are measurable spaces and μi, νi ∈ Mσ(Ai)
with μi 
 νi, i = 1, 2, then

d(μ1 ⊗ μ2)
d(ν1 ⊗ ν2)

(x1, x2) =
dμ1

dν1
(x1)

dμ2

dν2
(x2), ν1 ⊗ ν2-a.e. (x1, x2) ∈ X1 ×X2.

A.3 Topics from Probability Theory

Let (Ω,F,P) be a probability space and X a nonnegative random variable
on it with EX < ∞. Then μ(A) := EIAX, A ∈ F, is a finite measure on
(Ω,F) that is dominated by P, and X = dμ/dP. Let G ⊆ F be a sub-σ-algebra
and denote by μG and P

G the restrictions of μ and P on G, respectively.
Then μG 
 P

G, so that by the Radon–Nikodym theorem there exists a P-a.s.
uniquely determined random variable Z that is G-measurable and satisfies∫
B
XdP =

∫
B
ZdP, B ∈ G. We set E(X|G) := Z.
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Definition A.30. Given a sub-σ-algebra G of F and a nonnegative random
variable X with EX <∞, the conditional expectation of X, given G, is the P-
a.s. uniquely determined G-measurable random variable E(X|G) that satisfies∫
B
XdP =

∫
B

E(X|G)dP for every B ∈ G. If X ≥ 0 and EX = ∞, then
E(X|G) := limN→∞ E(X ∧N |G). If Y : Ω →m R and (EY +) ∧ (EY −) <∞,
then E(Y |G) := E(Y +|G)− E(Y −|G).

Let (X ,A) be a measurable space and X a random variable with values
in X . Let σ(X) be the σ-algebra generated by X. If Y is a random variable
with values in R and E|Y | < ∞, and B is the σ-algebra of Borel sets of R,
then by Lemma A.9 there exists an A-B measurable function g : X →m R

such that E(Y |σ(X)) = g(X). This P◦X−1-a.s. unique function g is called the
regression function of Y with respect to X. It is common to denote g(x) by
E(Y |X = x) and called it the conditional expectation of Y , given X = x.

Below we present some standard properties of the conditional expectation
which follow directly from its definition. For details we refer to Theorem 5.1
in Kallenberg (1997).

Proposition A.31. Suppose that E|X| <∞ and E|Xi| <∞, i = 1, 2. Let G

be a sub-σ-algebra of F. Then the following hold P-a.s.
(a) E (E(X|G)) = EX. (b) E(X|G) ≥ 0 if X ≥ 0. (c) E(a1X1 + a2X2|G) =
a1E(X1|G) + a2E(X2|G). (d) If X2 is G-measurable and E|X1X2| <∞, then
E(X1X2|G) = X2E(X1|G).

Lemma A.32. If the sequence of random variables Xn, n = 1, 2, ..., is uni-
formly integrable, then Zn = E(Xn|G) is also uniformly integrable.

Proof. It follows from Definition A.20 that a sequence of random vari-
ables Yn is uniformly integrable if and only if limn→∞ E|Yn|IBn

= 0 for every
sequence Bn ∈ F with limn→∞ P (Bn) = 0. As Zn is G-measurable we may as-
sume that Bn ∈ G. Then E|Zn|IBn

= E(|E(Xn|G)|)IBn
= E(|E(IBn

Xn|G)|) ≤
E(E(IBn

|Xn||G)) = EIBn
|Xn| → 0, as n→∞.

For a random vector X with E ‖X‖ < ∞ the conditional expectation
E(X|G) is defined componentwise. For a proof of the next lemma we refer to
Dudley (2002), pp. 348–349.

Lemma A.33. (Jensen’s Inequality) Let C be an open and convex subset
of R

m and L : C → R be a convex function. If X is a random vector with
P(X ∈ C) = 1 and E ‖X‖ < ∞, then EX ∈ C and L(EX) ≤ EL(X). If G is
a sub-σ-algebra of F, then P-a.s. E(X|G) ∈ C and L(E(X|G)) ≤ E(L(X)|G)).

Now we formulate Levy’s convergence theorem for martingales in a version
as given by Corollary 6.22 and Theorem 6.23 in Kallenberg (1997).

Theorem A.34. (Convergence Theorem of Levy) Let X be a random
variable defined on (Ω,F,P) that satisfies E|X|p <∞ for some p ≥ 1. Assume
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that F0 ⊆ F1 ⊆ · · · is a nondecreasing sequence of sub-σ-algebras of F. Let
F∞ = σ(∪∞

i=0Fi). Then P-a.s., as n→∞,

E(X|Fn) → E(X|F∞) and E|E(X|Fn)− E(X|F∞)|p → 0.

P(A|G) := E(IA|G) is called the conditional probability of A, given G.
Let X and Y be random variables on the probability space (Ω,F,P) with
values in (X ,A) and (Y,B), respectively. Denote by P(X,Y ) := P◦ (X,Y )−1 ∈
P(A⊗B) the joint distribution of X and Y , and by PX := P ◦X−1 ∈ P(A)
and PY := P ◦ Y −1 ∈ P(B) the distributions of X and Y, respectively. PX

and PY are called the marginal distributions of P(X,Y ). The set function B �→
P(Y ∈ B|X = x) := E(IB(Y )|X = x), beeing the conditional probability
for fixed x, is in general not a measure for every x. The concept of regular
conditional distributions eliminates this difficulty. It is a regular version of
the conditional probability P(Y ∈ B|X = x). The basic tool is the stochastic
kernel.

Definition A.35. For two measurable spaces (X ,A) and (Y,B) a mapping
K : B × X → [0, 1] is called a stochastic kernel if for every B ∈ B the
function x �→ K(B|x) is A-B[0,1] measurable, and for every x ∈ X , it holds
K(·|x) ∈ P(B). In short we write K : B×X →k [0, 1].

Definition A.36. Let X and Y be random variables on the probability space
(Ω,F,P) with values in (X ,A) and (Y,B),respectively. The kernel K : B ×
X →k [0, 1] is called a regular conditional distribution of Y given X if

PX,Y (A×B) =
∫

A

K(B|x)PX(dx), A ∈ A, B ∈ B,

where PX,Y = P◦(X,Y )−1 is the joint distribution of X and Y . We write in
short PX,Y = K⊗ PX , and we denote the marginal distribution of Y by KPX .

For the existence of regular conditional distributions additional assump-
tions on the measurable space (Y,B) have to be made. For a proof of the next
result we refer to Theorem 5.3 in Kallenberg (1997).

Theorem A.37. (Existence of a Regular Conditional Distribution) If
X and Y are random variables with values in (X ,A) and (Y,B), respectively,
and (Y,B) is a Borel space in the sense of Definition A.7, then there exists a
regular conditional distribution K : B×X →k [0, 1] in the sense of Definition
A.36.

The existence of conditional distributions can be established easily, with-
out additional assumptions on the sample spaces, if there exist conditional
densities in the following sense. Suppose that X and Y are random vari-
ables with values in (X ,A) and (Y,B), respectively. Assume that there are
μ ∈ Mσ(A) and ν ∈ Mσ(B) so that PX,Y 
 μ ⊗ ν. Set fX,Y = dPX,Y

dμ⊗ν . It is
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easy to see that PX,Y 
 μ ⊗ ν implies PX 
 μ and PY 
 ν, and the cor-
responding densities are given by fX(x) := dPX

dμ (x) =
∫
f(x, y)ν(dy), x ∈ X ,

and fY (y) := dPY

dμ (y) =
∫
f(x, y)μ(dx), y ∈ Y, which are called the marginal

densities.

Definition A.38. The function

fY |X(y|x) =

{
fX,Y (x,y)
fX(x) if fX(x) > 0,
fY (y) if fX(x) = 0,

is called the conditional density of Y , given X = x. The stochastic kernel
K(B|x) =

∫
B
fY |X(y|x)ν(dy) is called the regular conditional distribution of

Y , given X = x, based on the conditional density.

The fact that K is indeed a stochastic kernel follows from the additivity of
the integral and Theorem A.16.

Let (X ,A), (Y,B), and (Z,C) be measurable spaces, and K : B × X →k

[0, 1] and L : C× (X × Y)→k [0, 1] be stochastic kernels. Set

(L⊗ K)(D|x) =
∫

[
∫
ID(y, z)L(dz|x, y)]K(dy|x), D ∈ B⊗ C.

Proposition A.39. Let K : B×X →k [0, 1] and L : C× (X ×Y) →k [0, 1] be
stochastic kernels, f : X×Y →m R+, and g : X×Y →m Z. Then the following
hold. (a) x �→

∫
f(x, y)K(dy|x) is measurable. (b) M = K(g−1(x, ·)|x) : C ×

X → [0, 1] is a stochastic kernel. (c) L⊗K : (B⊗C)×X → [0, 1] is a stochastic
kernel.

For a proof we refer to Lemma 1.38 in Kallenberg (1997).

The next theorem may be considered as a generalization of Fubini’s theo-
rem to stochastic kernels.

Proposition A.40. (Theorem of Fubini for Kernels) Given a stochastic
kernel K : B×X →k [0, 1] and some μ ∈M(A), the set function

(K⊗ μ)(C) :=
∫

[
∫
IC(x, y)K(dy|x)]μ(dx), C ∈ A⊗B, (A.3)

is a measure on A⊗B with μ(A) = (K⊗ μ)(A× Y), A ∈ A, and it holds for
every h : X × Y →m R+,∫

hd(K⊗ μ) =
∫

[
∫
h(x, y)K(dy|x)]μ(dx). (A.4)

Proof. The fact that K⊗μ is a measure follows from a twofold application
of the monotone convergence theorem; see Theorem A.16. The statement (A.4)
follows from the standard extension technique; see Lemma A.6.

Sometimes it is more convenient to formulate a statement in terms of
random variables.
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Lemma A.41. (Disintegration Lemma) If X and Y are random variables
and there exists a regular conditional distribution K : B × X →k [0, 1] of Y
given X, then for every C ∈ A⊗B and f : X × Y →m R+ it holds

P(X,Y )(C) =
∫

[
∫
IC(x, y)K(dy|x)]PX(dx),

Ef(X,Y ) =
∫

[
∫
f(x, y)K(dy|x)]PX(dx),

E(f(X,Y )|X = x) =
∫
f(x, y)K(dy|x), PX-a.s. x ∈ X .

Let (X , ρ) be a metric space with metric ρ, and denote by B the σ-algebra
of Borel sets in X . Recall Cb, the space of all bounded continuous f : X → R.
We also need the space C0 ⊆ Cb of all continuous functions f with compact
support, which means that the closure of the set {x : f(x) �= 0} is compact.

Definition A.42. Let (X , ρ) be a metric space and P, Pn ∈ P(B). The se-
quence Pn, n = 1, 2, ..., is said to converge weakly to P if

∫
f(x)Pn(dx) →∫

f(x)P (dx) as n→∞ for every f ∈ Cb. In such a case we write Pn ⇒ P.

If X and Xn are random variables defined on (Ω,F,P) and (Ωn,Fn,Pn),
respectively, n = 1, 2, ..., with values in X , then the distributions L(X) =
P ◦ X−1 and L(Xn) = Pn ◦ X−1

n satisfy L(Xn) ⇒ L(X) if and only if
limn→∞ Ef(Xn) = Ef(X) for every f ∈ Cb. Lebesgue’s theorem provides
that the a.s. convergence of random variables implies the weak convergence
of distributions. A subsequence argument and Proposition A.12 give the fol-
lowing statement.

Lemma A.43. Let (X , ρ) be a separable metric space and Z,Z1, Z2, ... be ran-
dom variables defined on the probability space (Ω,F,P) with values in X . Then
Zn →P Z implies L(Zn) ⇒ L(Z), and especially Zn → Z, P-a.s., implies
L(Zn) ⇒ L(Z).

To derive the convergence limn→∞ Ef(Xn) = Ef(X) from L(Xn) ⇒ L(X)
for unbounded continuous functions f one needs the uniform integrability of
f under the distributions of Xn.

Proposition A.44. Let (X , ρ) be a separable metric space and P, Pn ∈
P(B). If Pn ⇒ P , and for a continuous function f : X →m R it holds∫
|f(x)|P (dx) <∞ and

lim sup
N→∞

lim sup
n→∞

∫
|f(x)|I[N,∞)(|f(x)|)Pn(dx) = 0, (A.5)

then limn→∞
∫
f(x)Pn(dx) =

∫
f(x)P (dx).
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Proof. Set gN (x) = −N if f(x) < −N , gN (x) = f(x) if −N ≤ f(x) ≤ N ,
and gN (x) = N if N < f(x). Then

|
∫
f(x)Pn(dx)−

∫
f(x)P (dx) | ≤ |

∫
gN (x)Pn(dx)−

∫
gN (x)P (dx) |

+
∫
|f(x)|I[N,∞)(|f(x)|)P (dx) +

∫
|f(x)|I[N,∞)(|f(x)|)Pn(dx).

For n → ∞ the first term vanishes. Then take N → ∞ to get the statement
from A.5,

∫
|f(x)|P (dx) <∞, and Lebesgue’s theorem; see Theorem A.18.

The next proposition concerns the uniformity of weak convergence on
classes of continuous functions. It is Conclusion 2.7 in Bhattacharya and Rao
(1976).

Proposition A.45. Let (X , ρ) be a separable metric space. Let F be a fam-
ily of continuous functions f : X → R with supf∈F

supx∈X |f(x)| < ∞ and
limδ↓0 supf∈F

supx:ρ(x,x0)≤δ |f(x)− f(x0)| = 0, x0 ∈ X . If P, Pn ∈ P(B) and
Pn ⇒ P , then

lim
n→∞

sup
f∈F

|
∫
f(x)Pn(dx)−

∫
f(x)P (dx) |= 0.

The next statement is Theorem 4.1 in Billingsley (1968).

Lemma A.46. (Lemma of Slutsky) Let (X , ρ) be a separable metric space
and X,Xn, Yn, n = 1, 2, ..., be random variables on (Ω,F,P) with values in
X . If L(Xn) ⇒ L(X) and ρ(Xn, Yn) →P 0, then L(Yn) ⇒ L(X).

It is clear from the definition of weak convergence that for any continuous
mapping h the relation L(Xn) ⇒ L(X) implies L(h(Xn)) ⇒ L(h(X)). The
next theorem provides conditions, weaker than the continuity of h, under
which L(hn(Xn)) ⇒ L(h(X)) follows. This is Theorem 3.27 in Kallenberg
(1997).

Theorem A.47. (Continuous Mapping Theorem) Let X and Y be met-
ric spaces, C ⊆ X be a Borel set, and h, hn : X →m Y, n = 1, 2, ..., so that
hn(xn) → h(x) as xn → x, x ∈ C. If X,Xn, n = 1, 2, ..., are random vari-
ables on (Ω,F,P) with values in X , and X ∈ C, P-a.s., then L(Xn) ⇒ L(X)
implies L(hn(Xn)) ⇒ L(h(X)).

The next theorem characterizes the sequential compactness of sequences
of distributions.

Theorem A.48. (Theorem of Prohorov) Let X be a complete and sepa-
rable metric space and Pn ∈ P(B), n = 1, 2, .... For every subsequence Pnk

there exists a subsequence that converges weakly to some P ∈ P(B) if and
only if the sequence Pn is tight; that is, for every ε > 0 there is a compact set
Kε ⊆ X such that Pn(Kε) ≥ 1− ε for every n.
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For a proof we refer to Chapter 1, Section 6, in Billingsley (1968).

Let ∂A denote the boundary of a set A. A Borel set A is called a P -
continuity set if P (∂A) = 0. Let Cb,P be the space of all bounded measurable
functions for which the set of all discontinuity points has P -measure zero. In
the following theorem the equivalence of conditions (A) through (E) is known
in the literature as the Portmanteau theorem; see Theorem 2.1 in Billingsley
(1968). The equivalence of (F) follows from Theorem 5.2 in Billingsley (1968),
and the equivalence of (G) from Lemma A.5 and the fact that IO is lower
semicontinuous for open sets O.

Theorem A.49. (Portmanteau Theorem) Let X be a metric space, B

the σ-algebra of Borel sets, and P, P1, P2, ... distributions on (X ,B). Then the
following statements are equivalent.

(A) Pn ⇒ P

(B) lim
n→∞

∫
fdPn =

∫
fdP

for every bounded and
uniformly continuous f .

(C) lim sup
n→∞

Pn(A) ≤ P (A) for every closed set A.

(D) lim inf
n→∞

Pn(O) ≥ P (O) for every open set O.

(E) lim
n→∞

Pn(B) = P (B) for every P -continuity set B.

(F ) lim
n→∞

∫
fdPn =

∫
fdP for every f ∈ Cb,P .

(G) lim inf
n→∞

∫
fdPn ≥

∫
fdP

for every lower semicontinuous
f : X → [0,∞].

For several purposes it is convenient to metricize the weak convergence
and to consider the space of all distributions as a new metric space. There are
several ways to introduce such a metric. As it turned out the metric introduced
by and named after Dudley is one of the best tractable metrics. The reason
is that it is a dual norm of a function space. More precisely, for any metric
space X let

‖P −Q‖D = sup |
∫
fdP −

∫
fdQ|, (A.6)

where the supremum is taken over all Lipschitz functions f with Lf ≤ 1
and ‖f‖u ≤ 1, and Lf is from (A.1). ‖P −Q‖D is called the Dudley metric.
The following theorem is established in Dudley (2002), Proposition 11.3.2 and
Theorem 11.3.3.

Theorem A.50. If X is a complete separable metric space and B the σ-
algebra of Borel sets, then ‖P −Q‖D is a metric on P(B), and it holds Pn ⇒
P if and only if ‖Pn − P‖D → 0.

We recall that for any random vector X with values in R
d, ϕX(t) =

E exp{i 〈t,X〉}, t ∈ R
d, is the characteristic function of X.
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Theorem A.51. (Uniqueness and Continuity Theorem for Charac-
teristic Functions) Let U, V,X, and Xn, n = 1, 2, ..., be random vectors on
(Ω,F,P) with values in R

d. Then L(U) = L(V ) if and only if ϕU (t) = ϕV (t)
for every t ∈ R

d, and L(Xn) ⇒ L(X) if and only if limn→∞ ϕXn
(t) = ϕX(t)

for every t ∈ R
d.

For a proof we refer to Theorem 7.6 in Billingsley (1968).

The following Cramér–Wold device states that the weak convergence of the
distributions of random vectors in R

d can be reduced to the weak convergence
of distributions of random variables with values in R.

Criterion A.52 (Cramér–Wold Device) Let X,X1,X2, ... be random vec-
tors on (Ω,F,P) with values in R

d. Then L(Xn) ⇒ L(X) if and only if
L(〈Xn, t〉) ⇒ L(〈Xn, t〉) for every t ∈ R

d.

The proof follows from the continuity theorem for characteristic functions; see
Theorem A.51.

In conclusion we formulate suitable versions of the central limit theorem.

Theorem A.53. (Central Limit Theorem for i.i.d. Random Vectors)
Let X1,X2, ... be i.i.d. random vectors on (Ω,F,P) with values in R

d and
E ‖X1‖2 <∞. Set μ = EX1 and Σ = E(X1 − μ)(X1 − μ)T . Then

L(n−1/2
∑n

i=1
(Xi − μ)) ⇒ N(0, Σ).

The case of d = 1 follows from the subsequent more general theorem. The case
d > 1 can be reduced to the case d = 1 with the help of the Cramér–Wold
device; see Criterion A.52.

Theorem A.54. (Central Limit Theorem for Double Arrays) Let Xn,i,
i = 1, ...,mn, n = 1, 2, ..., be a double array of random variables on (Ω,F,P)
with values in R so that for every n the random variables Xn,1, ...,Xn,mn

are independent with EXn,i = 0, i = 1, ...,mn, and
∑mn

i=1 EX2
n,i = 1. If the

Lindeberg condition, that is,

lim
n→∞

∑mn

i=1
EX2

n,iI(ε,∞)(|Xn,i|) = 0, ε > 0,

is satisfied, then L(
∑mn

i=1 Xn,i) ⇒ N(0, 1).

For a proof we refer to Theorem 4.12 in Kallenberg (1997).
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Appendix:
Common Notation and Distributions

B.1 Common Notation

Euclidean Space

N = {0, 1, 2, ...}
Q rational numbers
R real numbers
C complex numbers
R+= [0,∞)
R�=0 = R\{0}
R = [−∞,∞]
R+ = [0,∞]
R
n Euclidean space

R
n
< = {x : x1 < · · · < xn, x ∈ R

n}
R
n
≤ = {x : x1 ≤ · · · ≤ xn, x ∈ R

n}
R
n
�= = {x : xi �= xj , i < j, x ∈ R

n}
R
n
�=0 = {x : x �= 0, x ∈ R

n}
R
k
∗ = {x : x[k−1] < x[k], x ∈ R

k}
R
k
r p.524

R
k
r,δ p.534

(x1, ..., xn) vector in R
n

(x1, ..., xn)T column vector

x[1] ≤ · · · ≤ x[n] order statistics
Xi,·,X·,·, θ· p.88
1 = (1, ..., 1)T

a ≤ b in R
d componentwise

X × Y product of sets
Xd
i=1Xi product of d sets

Sd−1, S0
d, Sc

d simplex p.6
� finite set
|�| size of �

Sm simplex p.168
R⊕ additive group on R

R⊕n additive group on R
n

R
+
• multiplicative group on R+

Ld p.199
Mr

n×n p.199
On×n p.199
A # B : A−B pos. semidefinite
ΠLk

projection p.444

Measurable Spaces

P(X ) all subsets of X
σ(G) σ-algebra generated by G

Bn : Borel sets in R
n

B = B1

BX Borel sets of metric space X

B+ Borel sets in R+

B Borel sets in R

B+ Borel sets in R+

Bn,< Borel sets in R
n
<

Bn, �= Borel sets in R
n
�=
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Bn, �=0 Borel sets in R
n
�=0

Bk,∗ Borel sets in R
k
∗

F(Δ) p.146
I p.202
(X ,A) measurable space
A⊗ C product-σ-algebra⊗d

i=1 Ai product-σ-algebra

A⊗d d-fold product-σ-algebra⊗d
i=1(Xi,Ai) product space

S : X →m Y measurable mapping
S : X ↔m Y bimeasurable map.
S−1(C) = {x : S(x) ∈ C}
σ(S) σ-algebra generated by S
f ∝ g : f = cg for some c > 0
IA indicator function

Measures and Kernels

λd Lebesgue measure on Bd

λ = λ1

κd counting measure on P(Nd)
κ = κ1

δx delta measure on x
μ p.2
ν p.4
γv p.32
ρv p.39
μ�, μn,� p.243
P, Pθ, Pθ probability
PG

0 , PG
1 p.42

P p.44
Qθ = Pθ ◦ T−1 distribution of T
Q1 � Q2 stochastic semiorder
F, F−1 p.75
L(X) distribution of X
X ∼ P : L(X) = P
L(T |P ) distribution of T under P
Ppe,η p.5
Π prior distribution
Πa,b conjugate prior
Υ p.20
Υn p.22

Π(B|x) posterior distribution
π(θ|x) posterior density
{P0, P1}-a.s. p.34
P1 ∗ P2 convolution of P1 andP2

M(A) measures on A

Mσ(A) σ-finite measures on A

P(A) probabilities on A

Pc(A) atomless probabilities on A

μ
 ν : ν dominates μ
μ
� ν : μ
 ν and ν 
 μ
μ ⊥ ν mutually singular p.34
μ⊗ ν product measure⊗d

i=1 μi product measure
μ⊗d d-fold product measure
P⊗∞
θ0

infinite product measure
μf = μ ◦ f−1 induced measure
P ∗Q convolution
P : A×Δ→k [0, 1] stoch. kernel
D,K, L stochastic kernel
P⊗Π p.17
D⊗ P⊗Π p.130
PΠ p.17
M = PΠ

Numerical Characteristics

a ∨ b = max(a, b)
a ∧ b = min(a, b)
b a p.85
[x] the integer part of x
arg max p.110
arg min p.126
〈x, y〉 = xT y

‖x‖2 = 〈x, x〉
χ2(x) = ‖x‖2
ρΔ metric p.120
ρT metric p.280
v, v∗ p.33
v, Iv(P0, P1) p.36
ms, χ

s(P0, P1) p.36
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vs,Hs(P0, P1) p.36
ws,Ks(P0, P1), I(P0, P1) p.36
kπ,Bπ(P0, P1) p.36
Iv(X||Y ) p.52
I(X||Y ) = Ix ln x(X||Y )
Iv(P0, P1) v-divergence p.35
K(P0, P1) Kullback-Leibler dist.
C(Pθ1 , Pθ2) Chernoff index
Hs(P0, P1) Hellinger integral
Hs(P1, ..., Pm) Hellinger transform
D(P0, P1) Hellinger distance
‖P0 − P1‖ variational distance
‖P0 − P1‖D Dudley metric

I(θ0) Fisher information p.59
Sν(P ) Shannon entropy
Cv(P,P) p.54
τα p.312
E, Eθ, Eθ, EP expectation
EP p.44
Vθ(T1) variance
cov(T1, T2) covariance
Cθ(S, T ) covariance matrix
Cθ(T ) = Cθ(T, T )
E(Y |X) conditional expectation
E(Y |A) conditional expectation
EP (f |A) conditional expectation

Spaces of Functions

H Hilbert space
Lr(Pθ0) p.58
L2,d(μ) p.59
L

0
2,d(P ) p.66

Ld p.138
C(X ) continuous functions

Cb(X ) bounded functions in C(X )
C(k)(O) 367
Cm(Δ,X ) 344
C

(k)
m (O,X ) 367
‖ f ‖u= supx∈X |f(x)|
‖ f ‖p= (

∫
|f |pdμ)1/p

Derivatives

d
dx derivative
∂
∂xi

partial derivative
∇, ∇∇T p.12
D−,D+ p.31
Dα p.10
Jκ Jacobian p.62
ġ(θ) = JTg (θ) p.296

ḟθ = ∇fθ
f̈θ = ∇∇T fθ

L0,1 likelihood ratio p.34
Lθ0,θ likelihood ratio

L̇θ0 L2-derivative at θ0
Λθ = ln fθ

Convergence

Pn ⇒ P weak for distributions
Dn ⇒ D weak for kernels p.117
Mn ⇒M weak for models p.242
fn → f , μ-a.e., almost everywhere
fn → f , P -a.s., almost surely
fn →μ f in measure
fn →μ

loc f locally in measure

Ln,h, Zn, rn,h p.270
{Pn} � {Qn} p.250
{Pn} �� {Qn} p.250
{Pn} � {Qn} p.257
O, o Landau symbols
OPn

, oPn
,oPn

p.360
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Statistical Models

(Ω,F,P) generic probability space
(X ,A, P ) probability space
P family of distributions
(X ,A,P) statistical model
(X ,A, (Pθ)θ∈Δ) statistical model
G Gaussian model p.247
G0 Gaussian model p.268
Mn = (Xn,An, (Pn,θ)θ∈Δn

) p.246
M1,� p.235

M#ε N p.160
M# N ,M∼ N p.160
DN p.159
δ(M1,M2) p.235
d(M1,M2) p.235
Δ(M1,�,M2,�) p.236
D(M1,M2) p.236
δ(M1,�,M2,�) p.235

Special Statistics

X[·],X[i] order statistics
Xn,[·],Xn,[i] order statistics
R,Ri rank statistics
Rn, Rn,i rank statistics
R1(x), ..., Rn(x) rank statistics
Λn log-likelihood
χ2 chi-square statistic

T⊕n p.5
Un(x1, ..., xn) U -statistic∑n

i=1 ci,nan(Rn,i) rank statistic
Sn,NR(θ0) p.475

Qn,NR(τ0, ξ̃n) p.476

Qn,W (τ0, θ̂n) p.476

Decisions, Loss, and Risk

(X ,A) sample space
(D,D) decision space
D : D×X →k [0, 1] decision
D class of all decisions
Δ parameter space
BΔ Borel sets in Δ
Δk

r p.524
Δk

r,δ p.534
γm, κm p.13
* group operation p.200
uγ , vγ , wγ p.204
Aγ p.199
L : Δ×D → R+ loss function
l loss function p.107
B(f, g) p.114
R(θ,D) risk function
r(ρ,D) average risk
r(Π,D) Bayes risk
r(Π,D|x) posterior risk
r(Π, a|x) posterior risk at a ∈ D
bπ(P0, P1) p.97

gα(P0, P1) p.99
mρ(P0, P1) p.152
R0,1 p.90
θ̂n estimator
E the equivariant estimators
E equivariant estimator
P(x) Pitman estimator p.224
Tnat : Tnat(x) = x
ϕT,α level α test
ϕI(T ), ..., ϕIV (T ) p.409
ψI , ..., ψIV standard Gauss tests
ψC,θ0 p.432
H0, HA hypotheses
Δ0, ΔA decomposition of Δ
C(x) p.431
Blcb(x), Blci(x), Buci(x) p.431
ψi selection probability
ϕnat natural selection
PN,cs(μ, σ2, ϕnat) p.524
Pcs(θ, ψ) p.111
γi,N(v) p.593
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B.2 Common Distributions

Discrete Type

B(n, p) : binomial with n ∈ {1, 2, ...} and p ∈ (0, 1).
bn,p(x) : the probability mass function of B(n, p),

bn,p(x) =
(
n

x

)
px(1− p)n−xI{0,1,...,n}(x), x ∈ N.

Ge(p) : geometric with p ∈ (0, 1].
gep(x) : the probability mass function of Ge(p),

gep(x) = p(1− p)x, x ∈ N.

Hg(n,m, v) : hypergeometric with n,m, v ∈ {1, 2, ...} and v ≤ n+m.

hgn,m,v(x) : the probability mass function of Hg(n,m, v),

hgn,m,v(x) =

(
n
x

)(
m
v−x

)
(
n+m
v

) I[0∨(v−m), n∧v](x), x ∈ N.

M(n, p) : multinomial with n ∈ {1, 2, ...} and p ∈ S0
d.

mn,p(x1, ..., xd) : the probability mass function of M(n, p),

mn,p(x1, ..., xd) =
n!∏d

i=1 xi!

∏d

i=1
pxi
i ISn,d

(x), x ∈ N
d, where

Sn,d = {(x1, ..., xn) : x1, ..., xn ∈ {0, 1, ..., n},
∑d

i=1
xi = n}.

• S0
d = {(p1, ..., pd) : p1, ..., pd > 0,

∑d
j=1 pj = 1}.

• L(X1, ...,Xd) = M(n, p) ⇒ L(X1) = B(n, p1).

Nb(k, p) : negative binomial with k ∈ {1, 2, ...} and p ∈ (0, 1].
nbk,p(x) : the probability mass function Nb(k, p),

nbk,p(x) =
(
x+ k − 1
k − 1

)
pk(1− p)x, x ∈ N.

• Nb(1, p) = Ge(p).

Po(λ) : Poisson with λ > 0.
poλ(x) : the probability mass function of Po(λ),

poλ(x) =
λx

x!
exp{−λ}, x ∈ N.
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Continuous Type Standard

Be(α, β) : beta with α, β > 0.
Beα,β : the c.d.f. of Be(α, β).
beα,β : the λ-density of Be(α, β),

beα,β(t) =
Γ (α+ β)
Γ (α)Γ (β)

tα−1(1− t)β−1I(0,1)(t), t ∈ R.

Ca(α, β) : Cauchy with α ∈ R and β > 0.
Caα,β : the c.d.f. of Ca(α, β).
caα,β : the λ-density of Ca(α, β),

caα,β(t) =
1
π

β

β2 + (x− α)2
, t ∈ R.

Di(α1, ..., αd) : Dirichlet with αi > 0, i = 1, ..., d.
Diα1,...,αd

: the c.d.f. of Di(α1, ..., αd).
diα1,...,αd

: the λd−1-density of Di(α1, ..., αd),

diα1,...,αd
(t1, ..., td−1) =

Γ (
∑d

i=1 αi)∏d
i=1 Γ (αi)

∏d

i=1
tαi−1
i ISd−1(t1, ..., td−1),

where td = 1−
∑d−1

i=1
ti, (t1, ..., td−1) ∈ Sd−1.

• Sd−1 = {(t1, ..., td−1) : t1, ..., td−1 > 0,
∑d−1

i=1 ti < 1}.

Ex(β) : exponential with β > 0.
Exβ : the c.d.f. of Ex(β).
exβ : the λ-density of Ex(β),

exβ(t) = β exp{−βt}I(0,∞)(t), t ∈ R.

Ex(θ, β) : shifted exponential with θ ∈ R and β > 0.
Exθ,β : the c.d.f. of Ex(θ, β).
exθ,β : the λ-density of Ex(θ, β),

exθ,β(t) = β exp{−β(t− θ)}I(θ,∞)(t), t ∈ R.

• Ex(0, β) = Ex(β).
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F(n1, n2) : F with n1, n2 ∈ {1, 2, ...} degrees of freedom.
Fn1,n2 : the c.d.f. of F(n1, n2).
fn1,n2 : the λ-density of F(n1, n2),

fn1,n2(t) =
Γ (n1+n2

2 )
Γ (n1

2 )Γ (n2
2 )

(
n1

n2
)n1/2

t(n1/2)−1

(1 + n1
n2
t)(n1+n2)/2

I[0,∞)(t), t ∈ R.

• L(W ) = T(n) ⇒ L(W 2) = F(1, n).
• Y1, Y2 independent, L(Yi) = H(ni) ⇒ L(n2Y1

n1Y2
) = F(n1, n2).

Ga(λ, β) : gamma with λ, β > 0.
Gaλ,β : the c.d.f. of Ga(λ, β).
gaλ,β : the λ-density of Ga(λ, β),

gaλ,β(t) =
βλ

Γ (λ)
tλ−1 exp{−βt}I(0,∞)(t), t ∈ R.

• Ga(n/2, 1/2) = H(n) and Ga(1, β) = Ex(β).

Gi(λ,m) : inverse Gaussian with λ > 0 and m ∈ (0,∞].
Giλ,m : the c.d.f. of Gi(λ,m).
giλ,m : the λ-density of Gi(λ,m),

giλ,m(t) =

√
λ

2πt3
exp{− λ

2m2

(t−m)2

t
}I(0,∞)(t), t ∈ R.

H(n) : chi-square, or χ2, with n ∈ {1, 2, ...} degrees of freedom.
Hn : the c.d.f. of H(n).
hn : the λ-density of H(n),

hn(t) =
1

2n/2Γ (n2 )
t(n/2)−1 exp{− t

2
}I(0,∞)(t), t ∈ R.

• X1, ...,Xn i.i.d., L(Xi) = N(0, 1) ⇒ L(
∑n

i=1 X
2
i ) = H(n).

Ig(λ, β) : inverse gamma with λ, β > 0.
Igλ,β : the c.d.f. of Ig(λ, β).
igλ,β : the λ-density of Ig(λ, β),

igλ,β(t) =
βλ

Γ (λ)
t−λ−1 exp{−β

t
}I(0,∞)(t), t ∈ R.

• L(V ) = Ga(λ, β) ⇒ L(1/V ) = Ig(λ, β).
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Lp(θ) : Laplace, or double exponential, with θ ∈ R.
Lpθ : the c.d.f. of Lp(β).
lpθ : the λ-density of Lp(θ),

lpθ(t) =
1
2

exp{−|t− θ|}, t ∈ R.

Lo(θ) : logistic with θ ∈ R.
Loθ : the c.d.f. of Lo(θ).
loθ : the λ-density of Lo(θ),

loθ(t) =
exp{t− θ}

(1 + exp{t− θ})2 , t ∈ R.

N(μ, σ2) : normal with μ ∈ R and σ2 > 0.
Φμ,σ2 : the c.d.f. of N(μ, σ2), and especially Φ0,1 = Φ.
ϕμ,σ2 : the λ-density of N(μ, σ2), and especially ϕ0,1 = ϕ,

ϕμ,σ2(t) =
1√

2πσ2
exp{−1

2
(
t− μ

σ
)2}, t ∈ R.

N(μ,Σ) : multivariate normal on Bn with μ ∈ R
n and symmetric positiv

definite n× n matrix Σ.
ϕμ,Σ : the λn-density of N(μ,Σ) in R

n,

ϕμ,Σ(t) =
1

(2π)n/2 |Σ|1/2
exp{−1

2
(t− μ)TΣ−1(t− μ)}, t ∈ R

n.

T(n) : t with n ∈ {1, 2, ...} degrees of freedom.
Tn : the c.d.f. of T(n).
tn : the λ-density of T(n),

tn(t) =
Γ (n+1

2 )√
nπΓ (n2 )

(1 +
t2

n
)−(n+1)/2, t ∈ R.

• X,Y indep., L(X) = N(0, 1), L(Y ) = H(n) ⇒ L( X√
Y/n

) = T(n).

U(a, b) : uniform with a < b.
Ua,b : the c.d.f. of U(a, b).
ua,b : the λ-density of U(a, b),

ua,b(t) =
1

b− a
I(a,b)(t), t ∈ R.
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Continuous Type Noncentral

F(n1, n2, δ
2) : noncentral F with n1, n2 ∈ {1, 2, ...} degrees of freedom and

noncentrality δ2 > 0.
Fn1,n2,δ2 : the c.d.f. of F(n1, n2, δ

2).
fn1,n2,δ2 : the λ-density of F(n1, n2, δ

2),

fn1,n2,δ2(t) =
∑∞

k=0
poδ2/2(k)fn1+2k,n2(t), t ∈ R.

• F(n1, n2, 0) = F(n1, n2).
• L(W ) = T(n, μ) ⇒ L(W 2) = F(1, n, μ2).
• Y1, Y2 indep., L(Y1) = H(n1, δ

2), L(Y2) = H(n2, 0) ⇒ L(n2Y1
n1Y2

) =
F(n1, n2, δ

2).

H(n, δ2) : noncentral chi-square, or χ2, with n ∈ {1, 2, ...} degrees of
freedom and noncentrality δ2 > 0.

Hn,δ2 : the c.d.f. of H(n, δ2).
hn,δ2 : the λ-density of H(n, δ2),

hn,δ2(t) =
∑∞

k=0
poδ2/2(k)hn+2k(t), t ∈ R.

• H(n, 0) = H(n).
• X1, ...,Xn i.i.d., L(Xi) = N(μi, 1) ⇒ L(

∑n
i=1 X

2
i ) = H(n,

∑n
i=1 μ

2
i ).

T(n, μ) : noncentral t with n ∈ {1, 2, ...} degrees of freedom and noncen-
trality μ ∈ R.

Tn,μ : the c.d.f. of T(n, μ).
tn,μ : the λ-density of T(n, μ),

tn,μ(t) =
1

2(n+1)/2
√
nπΓ (n2 )

×
∫ ∞

0

y(n−1)/2 exp{−y
2
} exp{−1

2
(t
√
y

n
− μ)2}dy, t ∈ R.

• T(n, 0) = T(n).
• X,Y indep., L(X) = N(μ, 1), L(Y ) = H(n, 0) ⇒ L( X√

Y/n
) = T(n, μ).
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Dieudonné, J. (1974). Elements d’Analyse, Tome II, Chapitres XII à XV, 2e edition,
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Jurečková, J. (1992). Estimation in a linear model based on regression rank scores.
Nonparametric Statistics 1, 197–203.

Jurečková, J. and Sen, P.K. (1996). Robust Statistical Procedures: Asymptotics and
Interrelations. Wiley, New York.

Kailath, T. (1967). The divergence and Bhattacharyya distance in signal selection.
Trans. IEEE COM-15, 52–60.

Kakutani, S. (1948). On equivalence of infinite product measures. Ann. Math. 49,
214–224.

Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New York.
Kallenberg, O. (2002). Foundations of Modern Probability. 2nd edition, Springer,

New York.
Karatzas, I. and Shreve, S.S. (1988). Brownian Motion and Stochastic Calculus.

Springer, New York.
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Fréchet, M., 296
Freedman, D., 359

Ghosh, J.K., VIII, XII, 352, 353, 356,
359, 383

Giani, G., 555, 561
Gibbons, J.D., XIII, 517, 561
Gill, R.D., 327
Giri, N.C., 449, 450
Girshick, M.A., VII, 92, 222, 227
Godambe, V.P., 369
Goel, P.K., 57, 548

Goldsman, D.M., 517, 536, 561–563
Goodman, L., XIII, 516, 528
Gore, A.P., 607
Gupta, S.S., XIII, 516, 526, 527, 536,

540, 542, 544, 546–548, 554–556,
561, 563–565, 571, 577, 579, 581,
582, 587, 607

Gutiérrez-Peña, E., 21

Haberman, S.J., 327
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Fisher information matrix, 59, 172, 184,

273
for location-scale families, 65
for the reduced model, 63
under reparametrization, 62

Fubini’s theorem, 623
for stochastic kernels, 626

gamma distribution, see distribution
Γ -minimax decision, see decision
Gauss–Markov theorem, 305
generalized inverse of a c.d.f., see

quantile fuction
Girshick–Savage theorem, 227
gradient, 615
group of measurable transformations,

198

Haar measure, 199, 216
Hájek–LeCam bound, 284, 285, 393,

487, 596, 598
Hellinger covering property, 333
Hellinger distance, 36, 294
Hellinger integral, 37, 46, 258

and contiguity, 252
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and convergence of binary models,
249

and entire separation, 257
Hellinger transform, 49, 158, 169, 241

and weak convergence of models, 243
hierarchical Bayes approach, 312
hierarchical Bayes model, 57
Hunt–Stein theorem, 219
hyperparameter, 57, 312
hypothesis

alternative, 83, 109, 406
composite, 84
null, 83, 109, 406
simple, 84

identifiable, 3, 204
identification problem, 590
indifference zone, 522
inequality

Hölder, 620
generalized, 620

Jensen, 624
Minkowski, 620
Schwarz, 620

influence function, 468, 470, 600, 604
information functionals, 36
information matrix, see Fisher
invariant

decision, 205
decision problem, 204
loss function, 204
mean, 217
measure, 199
set, 202
statistic, see statistic, invariant
statistical model, 201
test, 206
testing problem, 206, 445

Jacobian, 62, 296, 456, 616
James–Stein estimator, see estimator

Kullback–Leibler, see distance
Kullback–Leibler neighborhood, 354
kurtosis, 457

L2-differentiable, 58
LAN and ULAN condition, 270

binary models, 273

differentiable models, 274
estimation, 390, 393
exponential families, 278
selection, 594
testing, 487

Landau symbols, 360
least favorable configuration, see

selection rule, LFC
least favorable parameter point, 134
least favorable prior, see distribution
least squares, method of, 305
Lebesgue decomposition, 34
Lebesgue’s dominated convergence

theorem, 621
LeCam, first lemma, 254
LeCam, second lemma, 274
LeCam, third lemma

for binary models, 256
under LAN, 275

Lehmann–Scheffé theorem, 302
level α test, see test
Levy’s convergence theorem, 624
LFC, see selection rule
likelihood contrast function, 330
likelihood equation, 334, 374
likelihood function, 329
likelihood ratio, 34, 58, 152, 248, 447

in exponential family, 78, 406
nondecreasing, 78, 92, 93

likelihood ratio test, see test
likelihood ratios

uniformly integrable, 252
Lindeberg condition, 261, 630
linear model, see statistical model
link function, 344
Lipschitz function, 174, 327, 617
log-concave, see distribution
log-likelihood function, 329
loss function, 106

additive, 552, 557
for point selection, 520, 531, 593
for subset selection, 548, 550
invariant, 204, 213
linear, 524, 583
LINEX, 146
multistage selection rules, 579
piecewise linear, 438
squared error, 128, 137, 294, 316
two-stage selection rules, 569
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zero–one, 109, 132, 206, 439, 521, 583
Löwner semiorder of matrices, 63, 159,

296, 387, 440

M -estimator, see estimator
marginal density, 626
marginal distribution, 625
Markov chain, 56
maximal invariant statistic, see statistic
maximum likelihood estimator, see

estimator, MLE
measurable mapping, 618
measurable selection theorem, 618
measurable space, 617
measure

Haar, 199, 216, 450
induced, 620
invariant, 199
permutation invariant, 528
right invariant, 199, 213
sigma-finite (σ-finite), 619

convex support, 21, 336
support, 20

weight, 122
measure space, 619
measures

asymptotically right invariant, 217
domination, 623
equivalent, 623

median, 86
Mill’s ratio, 453
minimax decision, see decision
minimax theorem, 136
minimax value, 134

testing problem, 152, 588
minimum average risk decision, see

decision
MLE, see estimator
MLR, see monotone likelihood ratio
mode, 79
model, see statistical model
moment generating function, 266
monotone convergence theorem, 621
monotone likelihood ratio, 78, 183, 447,

530, 533, 535
multiple decision problem, 108
multiple decision procedures, 516
mutual information, 52

negative binomial distribution, see
distribution

Neyman–Pearson lemma, 91
normal distribution, see distribution
normal equations, 304
nuisance parameter, 398, 417, 420, 604

orbit, 202, 206
order statistic, 81, 156, 462

pairwise sufficiency, 179
parameter of interest, 398, 417, 420, 604
parameter set, 2
partition, 44
PCS, see selection rule
percentile, 75
performance function, 162
permutation invariant

measure, 528
stochastic kernel, 528

Pitman estimator, see estimator
point selection rule, 520
Poisson distribution, see distribution
Portmanteau theorem, 629
posterior distribution, see distribution
power function of a test, 83
power set, 6
precision, 25
preference zone, 522
prior distribution, see distribution
probability mass function, 6
probability of a correct selection, see

selection rule, PCS
probability space, 1
product measure, 622
product of measurable spaces, 622
product sigma algebra, 622
Prohorov’s theorem, 628
projection (orthogonal), 304, 444, 458
Projection lemma, 459
projection matrix, 88, 304
property M, 530

quantile function, 75

Radon–Nikodym theorem, 623
randomization criterion, 161
randomization of a statistical model,

158, 159
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rank statistic, 81, 156, 462
antiranks, 462

ranking and selection, 516
Rao–Blackwell theorem, 301
reduction by invariance, 208
reduction by sufficiency, 188
regression model, see statistical model
regressor, 343
regular conditional distribution, 625
regular sufficiency, 179
reparametrization, 61
risk, 106, 113

average, 122
Bayes, 97, 122, 557
point selection, 520
posterior, 125, 546

binomial distribution, 125
risk function, 106

saddle point, 134
Bayes, 136

sample space, 1
Scheffé’s lemma, 621
score function, 390, 600
selection problem, 110, 517

best population, 110, 517
selection rule

asymptotic efficiency, 600
Bayes, 525, 526
Bayes design, 583
LABP, 595
LAMM, 595
LFC, 524, 534, 564, 565
maximum likelihood, 591
minimum average risk, 525
multistage, 561, 563, 579

adaptive sampling, 563, 582
backward optimization, 574, 580,

585
Bayes, 582
elimination, 563, 566
look-ahead Bayes, 582
loss function, 579
permutation invariant, 578
play-the-winner, 587
sampling rule, 563
stopping rule, 563
terminal decision rule, 563, 566

natural, 208, 535

admissible, 532
Bayes, 532
consistency, 601
minimax, 532
most economical, 534
randomized, 522, 532, 593
uniformly best invariant, 532

P* condition, 522, 524, 554
PCS, 111, 521, 536, 554, 556, 561,

562, 565, 590, 593
permutation invariant, 532, 593
posterior risk, 525
sequential, 561
subset, 547, 556

Bayes, 549
Gupta, 555
inclusion probabilities, 552, 557
minimax, 561
permutation invariant, 551

two-stage, 567, 578
loss function, 569
permutation invariant, 568

semicontinuous, 119
sequential compactness of distributions,

628
skewness, 457
Slutsky’s lemma, 628
standard, 556, 558, 565, 568
standard decision problem, 174
standard distribution, 168, 239
standard extension technique, 618
standard model, 168
statistic, 2

(boundedly) complete, 189
ancillary, 190
Bayes sufficient, 184
Blackwell sufficient, 179
χ2-statistic, 479
equivariant, 202, 207, 222
invariant, 202, 203
linear rank statistic, 466

influence function, 468
regression coefficients, 467
scores, 466

locally Lipschitz, 187
maximal invariant, 202, 203, 222, 445
minimal sufficient, 193
order statistic, 81, 156, 462
pairwise sufficient, 179
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rank statistic, 81, 156, 462
antiranks, 462

regularly sufficient, 179
score statistic, 505
sufficient, 179
U -statistic, 459

statistical decision problem, see decision
problem

statistical model, 2
analysis of variance, 444
binary, 2, 84, 153, 447

Bayes risk, 38
Bayes test, 97
error function, 98
likelihood ratio, 77, 90
sufficient statistic, 181

classification, 112, 209
continuous, 119
ε-deficient, 160, 235
exponential family, see exponential

family
finite, 2, 167
Gaussian, 417, 592
group model, 201
invariant, 201

location, 206, 223
location-scale, 201
permutation, 207
rotation, 207
scale, 229

linear, 305
linear regression, 306
location, 206, 223, 309, 321, 331, 376,

378, 397, 447, 491
location-scale, 65, 447, 605

multivariate, 207
more informative, 160
nonparametric, 212
perfect, 262
permutation invariant, 202
random censorship, 157
randomization, 158
reduced by a statistic, 156
regression, 343

linear and nonlinear, 344
link function, 344

scale, 229
selection, 518, 519

balanced, 518

exponential family, 533
independent populations, 518
standard, 518
unbalanced, 518

standard, 168
standard distribution, 168, 243
stochastically nondecreasing, 76
totally informative, 245

statistical models
Δ-distance, 239
binary, 249, 273

contiguous sequences, 250, 260, 271
double array, 261
entirely separated, 257, 264
more informative, 177
third lemma of LeCam, 256

convergent, 242
deficiency, 235
double array

bounded, 261
infinitesimal, 261
Lindeberg condition, 261

Dudley metric, 174, 240, 629
for independent observations, 259
L2-differentiable, 58

regression coefficients, 273
LAN-condition, 270, 487, 594

central sequence, 270
localized, 270, 486, 489, 495
location-scale, 496
pseudometrics, 237
two-sample case, 471
ULAN-condition, 270, 487, 488, 594
weakly convergent, 242, 282

Stein phenomenon, 319
Stein’s identity, 316
Stein’s theorem, 452
stochastic kernel, 104, 157, 625, 626

DT property, 528
permutation invariant, 528

stochastic kernels
weakly closed, 117
weakly sequentially compact, 117

stochastic process
central, 269

stochastic semiorder, 76
stochastic Taylor expansion, 455
stochastically bounded, 360
stochastically nondecreasing, 76
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subconvex function, 78, 138
substitution rule for integrals, 620
sufficiency, 179

and Hellinger distance, 181
Bayes, 184
Blackwell, 179
in dominated models, 184
in exponential families, 183
pairwise, 179
reduction by sufficiency, 188
regular, 179

sufficient σ-algebra, 179
sufficient statistic, 179

factorization criterion, 182
minimal, 193

superefficiency, 387

test, 83, 406
analysis of variance, 89, 446
ANOVA, see analysis of variance
asymptotic, 450

completely consistent, 450
asymptotic level α test, 474, 486
χ2 goodness of fit test, 507
divergence test, 480
goodness of fit test, 506
LAMM test, 504
LAUMP test, 486
LAUMPU test, 486
likelihood ratio test, 477, 481, 509
Neyman’s smooth test, 506
Neyman’s test, 495
Neyman–Rao test, 475, 505, 508
Rao’s score test, 490, 505
t-test, 497
test of independence, 484
two-sample rank test, 502
two-sample test, 499
two-sample Wilcoxon test, 502
Wald test, 474, 476, 509

asymptotic relative efficiency, 492
asymptotic unbiased level α test, 474,

486
attaining level α, 85
Bayes, 97, 132, 438
Bayes risk, 437
Bayes risk in a binary model, 38
χ2-test, 88, 208, 216, 419, 425, 428

weighted, 440

conditional, 421
efficiency, 453
equivalence test, 407, 489
error of first and second kind, 84
F -test, 89, 446, 483
Fisher’s exact test, 428
Gauss test, 87, 415, 434, 453
hypotheses, 406

boundary, 408
invariant, 206, 445
level α, 85
likelihood ratio test, 90, 481
maximin, 153, 216, 419
Neyman structure, 423
nonrandomized, 83
permutation test, 468
power function, 83
randomized, 83
similar on the boundary, 408, 412
size, 85
t-test, 87, 425, 427

two-sample, 449
two-sample normal, 449
U -test, 87
UMP level α test, 85
UMPU level α test, 407
unbiased level α, 407
uniformly best invariant, 443, 444,

448
uniformly best level α, 85, 92, 94,

407, 411
uniformly best unbiased level α, 407,

409, 413, 424–426
testing problem, 109

Bayes, 437
invariant, 206, 445

tests
asymptotic power, 256
risk set, 99

transformation group, 199
location-scale, 201

ULAN condition, see LAN and ULAN
condition

uniformly integrable, 621
unimodal, 79
U -statistic, 459

Hoeffding decomposition, 461
Wilcoxon–Mann–Whitney, 462
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variational distance, see distance
Vitali’s theorem, 621

weak convergence
of decisions, 117, 283

of distributions, 117, 627, 630

of exponential models, 246

of statistical models, 242

Wiener process, 7
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