

Lecture Notes in Computer Science 5079
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

María Alpuente Germán Vidal (Eds.)

Static Analysis

15th International Symposium, SAS 2008
Valencia, Spain, July 16-18, 2008
Proceedings

13

Volume Editors

María Alpuente
Germán Vidal
Technical University of Valencia, DSIC
Camino de Vera S/N, 46022 Valencia, Spain
E-mail: {alpuente, gvidal}@dsic.upv.es

Library of Congress Control Number: 2008928275

CR Subject Classification (1998): D.3, F.3.1-2, I.2.2, F.4.2, B.8.1, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69163-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69163-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12277155 06/3180 5 4 3 2 1 0

Preface

Static analysis is a research area aimed at developing principles and tools for
verification, certification, semantics-based manipulation, and high-performance
implementation of programming languages and systems. The series of Static
Analysis symposia has served as the primary venue for presentation and discus-
sion of theoretical, practical, and application advances in the area.

This volume contains the papers accepted for presentation at the 15th Interna-
tional Static Analysis Symposium (SAS 2008), which was held July 16–18, 2008, in
Valencia, Spain. The previous SAS conferences were held in Kongens Lyngby, Den-
mark (2007), Seoul, South Korea (2006), London, UK (2005), Verona, Italy (2004),
San Diego, USA (2003), Madrid, Spain (2002), Paris, France (2001), Santa Bar-
bara, USA (2000), Venice, Italy (1999), Pisa, Italy (1998), Paris, France (1997),
Aachen, Germany (1996), Glasgow, UK (1995), and Namur, Belgium (1994).

In response to the call for papers, 63 contributions were submitted from 26 dif-
ferent countries. The Program Committee selected 22 papers, basing this choice
on their scientific quality, originality, and relevance to the symposium. Each pa-
per was reviewed by at least three Program Committee members or external ref-
erees. In addition to the contributed papers, this volume includes contributions by
two outstanding invited speakers: Roberto Giacobazzi (Università degli Studi di
Verona) and Ben Liblit (University of Wisconsin-Madison). The resulting volume
offers the reader a complete landscape of the research in this area.

SAS 2008 was held concurrently with LOPSTR 2008, International Sympo-
sium on Logic–Based Program Synthesis and Transformation; PPDP 2008, ACM
SIGPLAN International Conference on Principles and Practice of Declarative
Programming; and the SAS affiliated workshop PLID 2008, 4th International
Workshop on Programming Language Interference and Dependence.

On behalf of the Program Committee, we would like to express our gratitude
to all the authors who submitted papers and all external referees for their careful
work in the reviewing process. The Program Chairs would like to thank in partic-
ular Alicia Villanueva (SAS Organizing Chair), Christophe Joubert (PPDP Or-
ganizing Chair), Josep Silva (LOPSTR Organizing Chair), and all the members
of the Organization Committee who worked with enthusiasm in order to make
this event possible. We are also grateful to Andrei Voronkov for making Easy-
Chair available to us. Finally, we gratefully acknowledge the institutions that
sponsored this event: Departamento de Sistemas Informáticos y Computación,
EAPLS, ERCIM, Generalitat Valenciana, MEC (Feder) TIN2007-30509-E, and
Universidad Politécnica de Valencia.

July 2008 Maŕıa Alpuente
Germán Vidal

Organization

Program Chairs

Maŕıa Alpuente Technical University of Valencia, Spain
Germán Vidal Technical University of Valencia, Spain

Program Committee

Elvira Albert Complutense University of Madrid, Spain
Roberto Bagnara University of Parma, Italy
Maurice Bruynooghe Katholieke Universiteit Leuven, Belgium
Radhia Cousot CNRS/École Polytechnique, France
Javier Esparza Technical University of Munich, Germany
Sandro Etalle University of Twente, The Netherlands
Moreno Falaschi University of Siena, Italy
Stephen Fink IBM T.J. Watson Research Center, New York, USA
John Gallagher Roskilde University, Denmark
Maŕıa del Mar Gallardo University of Málaga, Spain
Chris Hankin Imperial College, UK
Manuel Hermenegildo Technical University of Madrid, Spain
Julia Lawall University of Copenhagen, Denmark
Alexey Loginov IBM T.J. Watson Research Center, New York, USA
Hanne Riis Nielson Technical University of Denmark, Denmark
David Schmidt Kansas State University, USA
Harald Sondergaard University of Melbourne, Australia
Tachio Terauchi Tohoku University, Japan
Ji Wang National Lab. for Parallel and Distributed

Processing, China

Steering Committee

Patrick Cousot École Normale Supérieure, France
Gilberto Filé Università di Padova, Italy
David Schmidt Kansas State University, USA

Organizing Committee

Beatriz Alarcón, Gustavo Arroyo, Antonio Bella, Santiago Escobar, Vicent Es-
truch, Marco Feliu, César Ferri, Salvador Lucas, Raúl Gutiérrez, José Hernández,
José Iborra,Christophe Joubert, Alexei Lescaylle,MarisaLlorens,Rafael Navarro,
Pedro Ojeda, Javier Oliver, Maŕıa José Ramı́rez, Daniel Romero, Josep Silva, Sal-
vador Tamarit, Alicia Villanueva (Chair).

VIII Organization

External Reviewers

Gianluca Amato
Puri Arenas
Demis Ballis
Maria Garcia de la Banda
Andrea Baruzzo
Joerg Bauer
Hubert Baumeister
Ralph Becket
Thomas Bolander
Rafael Caballero
Manuel Carro
Swarat Chaudhuri
Henning Christiansen
Robert Clariso
Michael Codish
Agostino Cortesi
Bart Demoen
Jérôme Feret
Maurizio Gabbrielli
Han Gao
Samir Genaim
Roberto Giacobazzi
Miguel Gomez-Zamalloa
Rene Rydhof Hansen
Jerry den Hartog
John Hatcliff
Fritz Henglein
Gerda Janssens
Bertrand Jeannet
Hugo Jonker
Stefan Kiefer
Herbert Kuchen
Vitaly Lagoon
Tal Lev-Ami
Pedro Lopez-Garcia
Michael Luttenberger
Damiano Macedonio
Angelika Mader
Julio Mariño
Matthieu Martel
Damien Masse’
Laurent Mauborgne

Guillaume Melquiond
Mario Mendez-Lojo
Maria Chiara Meo
Pedro Merino
Sebastian Nanz
Christoffer Rosenkilde Nielsen
Albert Nymeyer
Ricardo Peña
Quan Phan
David Pichardie
Henrik Pilegaard
Ernesto Pimentel
Christian Probst
Femke van Raamsdonk
Xavier Rival
Enric Rodriguez
Gwen Salaun
Sriram Sankaranarayanan
Peter Schachte
Tom Schrijvers
Stefan Schwoon
Helmut Seidl
Axel Simon
Stefano Soffia
Fred Spiessens
Fausto Spoto
Manu Sridharan
Peter Stuckey
Sriraman Tallam
Schrijvers Tom
Wim Vanhoof
Martin Vechev
Sven Verdoolaege
Vesal Vojdani
Pierre Wolper
Fan Yang
Hirotoshi Yasuoka
Ender Yuksel
Alessandro Zaccagnini
Enea Zaffanella
Damiano Zanardini

Table of Contents

Invited Papers

Transforming Abstract Interpretations by Abstract Interpretation: New
Challenges in Language-Based Security . 1

Roberto Giacobazzi and Isabella Mastroeni

Reflections on the Role of Static Analysis in Cooperative Bug
Isolation . 18

Ben Liblit

Contributed Papers

Relational Analysis of Correlation . 32
Jörg Bauer, Flemming Nielson, Hanne Riis Nielson, and
Henrik Pilegaard

Convex Hull of Arithmetic Automata . 47
Jérôme Leroux

Pointer Analysis, Conditional Soundness, and Proving the Absence of
Errors . 62

Christopher L. Conway, Dennis Dams, Kedar S. Namjoshi, and
Clark Barrett

Protocol Inference Using Static Path Profiles . 78
Murali Krishna Ramanathan, Koushik Sen, Ananth Grama, and
Suresh Jagannathan

Solving Multiple Dataflow Queries Using WPDSs . 93
Akash Lal and Thomas Reps

Field Flow Sensitive Pointer and Escape Analysis for Java Using Heap
Array SSA . 110

Prakash Prabhu and Priti Shankar

Typing Linear Constraints for Moding CLP(R) Programs 128
Salvatore Ruggieri and Fred Mesnard

On Polymorphic Recursion, Type Systems, and Abstract
Interpretation . 144

Marco Comini, Ferruccio Damiani, and Samuel Vrech

Modal Abstractions of Concurrent Behaviour . 159
Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson

X Table of Contents

Hiding Software Watermarks in Loop Structures . 174
Mila Dalla Preda, Roberto Giacobazzi, and Enrico Visentini

Inferring Min and Max Invariants Using Max-Plus Polyhedra 189
Xavier Allamigeon, Stéphane Gaubert, and Éric Goubault

Conflict Analysis of Programs with Procedures, Dynamic Thread
Creation, and Monitors . 205

Peter Lammich and Markus Müller-Olm

Automatic Inference of Upper Bounds for Recurrence Relations in Cost
Analysis . 221

Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla

SLR: Path-Sensitive Analysis through Infeasible-Path Detection and
Syntactic Language Refinement . 238

Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivančić,
Ou Wei, and Aarti Gupta

Flow Analysis, Linearity, and PTIME . 255
David Van Horn and Harry G. Mairson

Quantum Entanglement Analysis Based on Abstract Interpretation 270
Simon Perdrix

Language Strength Reduction . 283
Nicholas Kidd, Akash Lal, and Thomas Reps

Analysing All Polynomial Equations in Z2w . 299
Helmut Seidl, Andrea Flexeder, and Michael Petter

Splitting the Control Flow with Boolean Flags . 315
Axel Simon

Reasoning about Control Flow in the Presence of Transient Faults 332
Frances Perry and David Walker

A Calculational Approach to Control-Flow Analysis by Abstract
Interpretation . 347

Jan Midtgaard and Thomas Jensen

Heap Decomposition for Concurrent Shape Analysis 363
Roman Manevich, Tal Lev-Ami, Mooly Sagiv,
Ganesan Ramalingam, and Josh Berdine

Author Index . 379

Transforming Abstract Interpretations by

Abstract Interpretation

New Challenges in Language-Based Security

Roberto Giacobazzi and Isabella Mastroeni

Dipartimento di Informatica - Università di Verona - Verona, Italy
{roberto.giacobazzi,isabella.mastroeni}@univr.it

Abstract. In this paper we exploit abstract interpretation for trans-
forming abstract domains and semantics. The driving force in both trans-
formations is making domains and semantics, i.e. abstract interpretations
themselves, complete, namely precise, for some given observation. We
prove that a common geometric pattern is shared by all these transfor-
mations, both at the domain and semantic level. This pattern is based
on the notion residuated closures, which in our case can be viewed as an
instance of abstract interpretation. We consider these operations in the
context of language-based security, and show how domain and seman-
tic transformations model security policies and attackers, opening new
perspectives in the model of information flow in programming languages.

1 Introduction

Abstract interpretation [6] is not only a theory for the approximation of the
semantics of dynamic systems, but also a way of thinking information and com-
putation. From this point of view a program can be seen as an abstraction trans-
former, generalising Dijkstra’s predicate transformer semantics, by considering
abstractions as the objects of the computation: The way a program transforms
abstractions tells us a lot about the way information flows and is manipulated
during the computation. Abstract non-interference [13] is an example of this
use of abstract interpretation, capturing precisely the intuition that in order to
understand who can attack the code and what information flows, we have to
consider programs as abstraction transformers, attackers as abstract interpreta-
tions, and secrets as data properties, which are abstractions again. This view lets
out new possibilities for abstract interpretation use, e.g. in security, code design
and obfuscation, as well as posing problems concerning the methods according
to which these transformations are studied. Even if clearly previewed in the
early stages of abstract interpretation [8], this approach to the use of abstract
interpretation is still relatively unexplored.

In this paper we show that the standard theory of abstract interpretation,
based on the so called adjoint-framework of Galois connections, can be directly
applied to reason about operators that transform abstract domains and seman-
tics, yet providing new formal methodologies for the systematic design of abstract

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R. Giacobazzi and I. Mastroeni

domain refinements and program transformations (in our case program deforma-
tions). We first show that most domain transformers can be viewed as suitable
problems of completeness w.r.t. some given semantic feature of the considered
programming language. This observation has indeed an intuitive justification:
The goal of refining a domain is always that of improving its precision with re-
spect to some basic semantic operation (e.g., arithmetic operations, unification
in logic programs, data structure operations in simple and higher-order types,
and temporal operators in model checking). Analogously, simplifying domains
corresponds to the dual operation of reducing precision with respect to analogous
semantic operations. We show that most well known domain transformers can be
interpreted in this way and that the relation between refinement and simplifica-
tion on domains is indeed an instance of the same abstract interpretation frame-
work lifted to higher types, i.e. where the objects of abstraction/concretization
are abstract domains or semantics rather then computational objects.

Residuated closures [2,22] provide the in-
stance of Galois connections on closure op-
erators, i.e. on abstract domains. We prove
that standard refinement/simplification (also
called shell/core) and expansion/compression
are residuated closures on abstract domains. Shell

Core

Compressor

Expander
+

+

+

-

-

-
In particular it is always possible to derive an operation which reduces a given
domain by considering either the right (+) or left (−) adjoint of a domain refine-
ment. We show that the meaning of these transformations are deeply different:
while the left adjoint of a refinement is always a simplification which keeps
completeness (core), the right one moves towards maximal incompleteness by
reducing the domain (compression). Similarly we can always refine a domain
by considering the same adjoints of a domain simplification. In this case the
left adjoint always moves towards maximal incompleteness by refining the do-
main (expander) while the right one refines the domain yet keeping completeness
(shell), as depicted above. We prove that this construction can be generalised to
arbitrary semantic transformers, which in view of [10] may correspond to code
transformations, where instead of transforming domains we transform semantics.
The result is a unique geometric interpretation of abstract domain and semantic
transformers where both notions can be systematically derived by considering
standard abstract interpretation methods. We apply these transformations to
the case of language-based security, by modelling security policies and attackers
as suitable abstract domain and semantic transformations.

2 Abstract Domains Individually and Collectively

We consider standard abstract domain definition as formalised in [6] and [8] in
terms of Galois connections. It is well known that this is a restriction for ab-
stract interpretation because relevant abstractions do not form Galois connec-
tions and Galois connections are not expressive enough for modelling dynamic
fix-point approximation [9]. Formally, if 〈C ,≤,�,⊥,∨,∧〉 is a complete lattice,

Transforming Abstract Interpretations by Abstract Interpretation 3

monotone functions α : C m−→A and γ : A m−→C form an adjunction or a Ga-
lois connection if for any x ∈ C and y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y). α
[resp. γ] is the left- [right-]adjoint to γ [α] and it is additive [co-additive], i.e.
it preserves lub’s [glb] of all subsets of the domain (emptyset included). The
right adjoint of a function α is α+ def= λx .

∨{
y
∣
∣α(y) ≤ x

}
. Conversely the left

adjoint of γ is γ− def= λx .
∧{

y
∣
∣x ≤ γ(y)

}
[8]. Abstract domains can be also

equivalently formalized as closure operators on the concrete domain. An upper
[lower] closure operator ρ : P−→P on a poset P is monotone, idempotent,
and extensive: ∀x ∈ P . x ≤P ρ(x) [reductive: ∀x ∈ P . x ≥P ρ(x)]. Closures
are uniquely determined by their fix-points ρ(C). The set of all upper [lower]
closure operators on P is denoted by uco(P) [lco(P)]. The lattice of abstract
domains of C , is therefore isomorphic to uco(C), (cf. [6, Section 7] and [8, Sec-
tion 8]). Recall that if C is a complete lattice, then 〈uco(C),�,�,�, λx .�, id〉
is a complete lattice [24], where id def= λx .x and for every ρ, η ∈ uco(C), ρ � η
iff ∀y ∈ C . ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C). A1 is more precise than A2 (i.e., A2 is
an abstraction of A1) iff A1 � A2 in uco(C). Given X ⊆ C , the least abstract
domain containing X is the least closure including X as fix-points, which is the
Moore-closure M(X) def= {

∧
S | S ⊆ X }. Precision of an abstract interpretation

typically relies upon the structure of the abstract domain [19]. Depending on
where we compare the concrete and the abstract computations we obtain two
different notions of completeness. If we compare the results in the abstract do-
main, we obtain what is called backward completeness (B), while, if we compare
the results in the concrete domain we obtain the so called forward completeness
(F) [8,19,15]. Formally, if f : C m−→C and ρ ∈ uco(C), then ρ is B-complete
if ρ ◦ f ◦ ρ = ρ ◦ f , while it is F -complete if ρ ◦ f ◦ ρ = f ◦ ρ. The problem of
making abstract domains B-complete has been solved in [19] and later gener-
alised to F -completeness in [15]. In a more general setting let f : C1−→C2 and
ρ ∈ uco(C2) and η ∈ uco(C1). 〈ρ, η〉 is a pair of B[F]-complete abstractions
for f if ρ ◦ f = ρ ◦ f ◦ η [f ◦ η = ρ ◦ f ◦ η]. A pair of domain transformers has
been associated with any completeness problem [11,16], which are respectively
a domain refinement and simplification. In [19] and [15], a constructive char-
acterization of the most abstract refinement, called complete shell , and of the
most concrete simplification, called complete core, of any domain, making it F
or B-complete, for a given continuous function f , is given as a solution of simple
domain equations given by the following basic operators:

RF
f

def= λX .M(f (X)) RB
f

def= λX .M(
⋃

y∈X max(f −1(↓y)))
CF

f
def= λX .

{
y ∈ L

∣
∣ f (y) ⊆ X

}
CB

f
def= λX .

{
y ∈ L

∣
∣max(f −1(↓y)) ⊆ X

}

Let � ∈ {F ,B}. In [19] the authors proved that the most concrete β � ρ such
that 〈β, η〉 is �-complete and the most abstract β � η such that 〈ρ, β〉 is �-
complete are respectively the �-complete core and �-complete shell, which are:
C�,η
f (ρ) def= ρ � C �

f (η) and R�,ρ
f (η) def= η � R�

f (ρ). When η = ρ, then the fix-point
iteration on abstract domains of the above functionR�

f (ρ) = gfp(λX . ρ �R�
f (X))

is called the absolute �-complete shell . By construction if f is additive then

4 R. Giacobazzi and I. Mastroeni

RB
f = RF

f + (analogously CB
f = CF

f +) [15]. This means that when we have to solve
a problem of B-completeness for an additive function then we can equivalently
solve the corresponding F -completeness problem for the right adjoint function.

Completeness can be used for modelling non-interference in language-based
security [14,1]. Abstract non-interference (ANI) [13] is a natural weakening of
non-interference by abstract interpretation. Let η, ρ ∈ uco(VL) and φ ∈ uco(VH),
where VL and VH are the domains of public (L) and private (H) variables. η and
ρ characterise the attacker to the policy. A policy characterises a weakening of
the information that can flow. We consider φ ∈ uco(VH), which states what, of
the private data, can indeed flow to the output observation, the so called declas-
sification of φ. In the following if P is a program �P� denotes its denotational
semantics. A program P satisfies declassified ANI if ∀h1, h2 ∈ VH, ∀l1, l2 ∈ VL:

η(l1) = η(l2) ∧ φ(h1) = φ(h2) ⇒ ρ(�P�(h1, η(l1))L) = ρ(�P�(h2, η(l2))L).

This notion says that, whenever the attacker is able to analyze the input prop-
erty η and the ρ property of the output, then it can observe nothing more
than the property φ of private input. Clearly, transforming abstractions corre-
sponds here to transform attackers and policies. If Hρ(〈x H, x L〉) def= 〈VH, ρ(x L)〉,
Hφ

η (〈x H, x L〉) def= 〈φ(x H), η(x L)〉, �P�η
def= λx . �P�(x H, η(x L)) and the weakest liberal

precondition semantics is wlpP
η

def= λX .
{
〈h, η(l)〉

∣
∣ �P�(〈h, η(l)〉) ⊆ X

}
[5], then

the equivalent B- and F -completeness equations modelling ANI above, with at-
tacker η and ρ, and declassified by the partitioning abstraction1 φ are [14]:

Hρ ◦�P�η ◦Hφ
η = Hρ ◦ �P� ⇐⇒ Hφ

η ◦wlpP
η ◦Hρ = wlpP

η ◦Hρ (1)

3 The Geometry of Abstract Domain Transformers

The notion of abstract domain refinement and simplification has been introduced
in [11,16] as a generalisation of most well-known operations for transforming ab-
stract domains, e.g., those introduced in [8]. In this section we consider these
notions as instances of a more general pattern where abstract domain trans-
formers have the same structures of abstract domains. For the sake of sim-
plicity we consider unary functions only, even if all the following results can
be easily generalized to generic n-ary functions (e.g., see [16] for examples). If
τ, η : uco(C)−→uco(C), following [16], we distinguish between domain refine-
ments which concretise domains, i.e. X ⊆ τ(X), and domain simplifications
which simplify domains, i.e. η(X) ⊆ X . Monotone refinements and simplifica-
tions can be associated with closure operators: If τ [η] is a monotone refine-
ment [simplification] then λX . gfp(λY . X � τ(Y)) [λX . lfp(λY . X � η(Y))] is
the corresponding idempotent refinement [simplification] [7]. Therefore, mono-
tone refinements τ and simplifications η may have the same structure of ab-
stract domains, as closure operators on uco(C), resp. τ ∈ lco(uco(C)) and
1 An abstraction of a complete Boolean concrete domain C is partitioning if it is a
complete Boolean sub-semilattice of C .

Transforming Abstract Interpretations by Abstract Interpretation 5

η ∈ uco(uco(C)). This observation will be the basis in order to lift standard
abstract interpretation in higher types, i.e. from a theory for approximating
computational objects, such as semantics, to a theory for abstract domain trans-
formers. In this sense, standard Cousot and Cousot’s Galois connection based
abstract interpretation theory is perfectly adequate to develop also a theory of
abstract domain transformers providing these transformations with the same
calculational design techniques which are known for standard abstract interpre-
tation [4]. In particular, Janowitz [2,22], characterised the structure of residuated
(adjoint) closure operators by the following basic result.

Theorem 1 ([22]). Let 〈η, η+〉 and 〈η−, η〉 be pairs of adjoint operators on C .

(1) η ∈ uco(C) ⇔ η+ ∈ lco(C) ⇔
{
η ◦η+ = η+

η+ ◦η = η

(2) η ∈ uco(C) ⇔ η− ∈ lco(C) ⇔
{
η ◦η− = η
η− ◦η = η−

Stated in terms of refinements, this result says that any (either right or left)
adjoint of a refinement [simplification] is a simplification [refinement]. This means
that for any refinement [simplification] we may have two possible simplifications
[refinements] corresponding to either right or left adjoint, when they exist. Let
τ ∈ lco(C) be a domain refinement. By Th. 1, if τ− exists then τ−(τ(X)) = τ(X)
and τ(τ−(X)) = τ−(X). This means that τ− is a simplification such that both τ
and τ− have the same sets of fix-points, namely τ− reduces any abstract domain
X until the reduced domain Y satisfies τ(Y) = Y . Due to the analogy with
completeness, in this case we call τ− the core of τ and τ the shell of τ−.

Proposition 2. Let τ ∈ lco(C) and η ∈ uco(C). If 〈τ−, τ〉 and 〈η, η+〉 are
pairs of adjoint functions then we have τ− = λX .

∧
{τ(Y)|τ(Y) ≤ X } and

η+ = λX .
∨
{η(Y)|X ≤ η(Y)}.

The interpretation of the second point of Th. 1 for refinements, i.e, of the right
adjoint of a refinement τ , when it exists, is quite different. By Th. 1, we have that
if τ+ exists then τ+(τ(X)) = τ+(X) and τ(τ+(X)) = τ(X). In this case τ+(X) is
not a fix-point of τ . Instead, it returns the most abstract domain whose precision
can be lifted to that of X by refinement. τ+ reduces any abstract domain X such
that τ(X) = X towards the most abstract domain Y such that τ(Y) = X . We
call τ+ the compressor of τ and τ the expander of τ+.

Proposition 3. Let τ ∈ lco(C) and η ∈ uco(C). If 〈τ, τ+〉 and 〈η−, η〉 are
pairs of adjoint functions then we have τ+ = λX .

∨
{Y |τ(Y) = τ(X)} and

η− = λX .
∧
{Y |η(X) = η(Y)}.

3.1 Shell vs. Core

Not all domain transformers admit adjoints, because not all closure are either
additive or co-additive functions. However adjointness can be weakened by con-
sidering only those properties that make a transformer reversible, either as a

6 R. Giacobazzi and I. Mastroeni

pair shell-core or expander-compressor. In the following we describe the prop-
erties of invertible refinements since the properties of invertible simplifications
can be derived by duality as shown above. By Prop. 2, the relation between
the shell τ and the core τ− is characterized by the fact that τ−(X) isolates
the most concrete domain which is contained in X and which is a fix-point
of τ : τ−(X) =

∧{
τ (Y)

∣
∣X ≤ τ (Y)

}
. While τ− ◦ τ = τ always holds for any

τ ∈ lco(C), the key property which characterizes the pair shell-core, τ ◦τ− = τ−,
holds iff 〈τ−, τ 〉 is a pair of adjoint functions.

Theorem 4. Let τ ∈ lco(C). τ ◦τ− = τ− holds iff τ is co-additive.

This means that the relation between shell and core just holds in the standard
adjoint framework. An example of the core/shell is in F -completeness, where
CF
f is a F -completeness core for f iff CF

f (X) � Y ⇔ X � RF
f (Y) [15].

3.2 Expander vs. Compressor

The notion of domain compression was introduced in [11,16] and later developed
for the case of disjunctive completion λX .

�
(X), making a domain a complete

join-subsemilattice of the concrete domain (viz. an additive closure), and reduced
product , which is the glb in uco(C), resp. in [17] and [3]. In view of Janowitz’s
results we review the theory of domain compression in [18], where the notion
of uniform closure was introduced. f : C −→C is join-uniform [18] if for all
Y ⊆ C , (∃x̄ ∈ Y . ∀y ∈ Y . f (y) = f (x̄)) ⇒ (∃x̄ ∈ Y . f (

∨
Y) = f (x̄)). Meet-

uniformity is defined dually. By Prop. 3, the relation between the expander
τ and its compressor τ+ is characterized by the fact that τ+(X) is the most
abstract domain which allows us to reconstruct τ(X) by refinement: τ+(X) =⊔{

Y
∣
∣ τ(X) = τ(Y)

}
. While τ+ ◦τ = τ+ always holds for any τ ∈ lco(C), the

key property which characterizes the pair expander/compressor, is τ ◦ τ+ = τ
and it holds iff τ is join-uniform. Join-uniformity captures precisely the intuitive
insight of the pair expander/compressor. If τ is join-uniform, and x ∈ C , then
there always exists a (unique) element

∨
Z , such that τ(

∨
Z) = τ(x) where

Z = {y ∈ C | τ(x) = τ(y)}. As observed in [18], τ+ may fail monotonicity.
In [18] the authors proved that τ+ is monotone on a lifted order induced by τ .
Let τ : C m−→C , the lifted order ≤τ⊆ C × C is defined as follows: x ≤τ y ⇔
(τ(x) ≤ τ(y)) ∧ (τ(x) = τ(y) ⇒ x ≤ y). ≤τ is such that ≤⇒≤τ . Next
theorem strengthen [18, Th. 5.10]2 proving the equivalence between reversibility
and adjointness in ≤τ for any refinement.

Theorem 5. Let τ ∈ lco(L) and τ+ = λx .
∨{

y
∣
∣ τ(y) = τ(x)

}
. The following

facts are equivalent:

1. τ ◦τ+ = τ ;
2. τ is join-uniform on ≤;
3. τ is additive on ≤τ and the right adjoint of τ on ≤τ is τ+.

2 In [18, Th. 5.10] the authors proved only that 1. ⇔ 2. ⇒ 3.

Transforming Abstract Interpretations by Abstract Interpretation 7

The relation between join-uniformity and meet-uniformity is preserved by the
relation of adjointness.

Proposition 6. Let τ ∈ lco(L) be a join-uniform operator on ≤. Then we have
τ+(x) =

∨
{y|τ(x) = τ(y)} is meet-uniform on ≤.

Unfortunately, the inverse implication of Prop. 6 does not hold in general.

Example 7. In the picture on the right, we provide an

example where the map τ+ (denoted with dashed arrows)

is meet-uniform, while τ is not join-uniform. Indeed, note

that τ+ = λX .�, which is clearly meet-uniform, while τ

is not join-uniform since, for instance, τ (x) = τ (y) �= �,

but τ (x ∨ y) = τ (�) = �.

x y

τ

τ
+

Examples of join-uniform refinements include disjunctive completion and
reduced product , where the corresponding compressors are the disjunctive base
[17] and complementation [3]. Both are compressors associated with complete-
ness refinements, the first being F -completeness w.r.t. disjunction and the
second being B-completeness w.r.t. conjunction, i.e. F -completeness w.r.t. im-
plication [21,20]. The problem of studying whether a generic completeness re-
finement admits a compressor has been investigated with the aim of finding a
characterization of all the functions f such that the corresponding complete-
ness refinement has the compressor. The only known characterisation is in [12],
for the case of F -completeness. In this case the authors provide an algorith-
mic construction which is based on the the notion of f -reducible element, i.e.
those elements that can be generated by others by means of the function f or by
Moore closure. If all the f -irreducible elements form an abstract domain, then
this is called the complete base and the compressor locally (i.e., for the particular
abstract domain to which we apply the algorithm) exists.

+

+

+

-

-

-

Core:
Minimal complete
simplification

Shell:
Minimal complete

refinement

Expander:
Maximal incomplete

refinement

Compressor:
Maximal incomplete

simplification

Rf

Cf Ef

Kf

Fig. 1. Basic abstract domain transformers

3.3 Transforming Abstractions for Transforming Policies

By transforming abstractions in abstract non interference (Eq. 1), we transform
the corresponding non-interference policy. In particular, if we transform the input
abstraction we transform the declassification policy, while when we transform the
output abstraction we transform the attacker policy [14]. Let us see the meaning
of the shell/core and expander/compressor transformations in these cases.

8 R. Giacobazzi and I. Mastroeni

Shell: The Maximal Released Information by an Attacker. The shell
minimally refines the domain Hφ

η in order to satisfy Eq. 1 [14]. When the equa-
tion does not hold, it means that the given attacker is able to disclose more infor-
mation than what is modelled by φ about the private input. In non-interference,
disclosing means observing variations in the ρ abstraction of the output due to
input variations not modelled by φ. In other words, there are at least two private
inputs h1 and h2 with the same property φ which generate a different ρ property
in output. Therefore in order to characterise the closest declassification policy
satisfied by the program, namely the maximal information disclosed by the at-
tacker, we have to refine the policy φ, and in particular we have to distinguish
by φ the values h1 and h2, above. This is what the shell does, by modelling the
minimal amount of distinguishable values that the attacker is able to observe.
We denote by RHρ

�P�(Hφ
η) this transformation.

Example 8. Consider the program fragment: P def
= l := l ∗ h2, with l : L and h : H.

We want to find the shell in order to make the input/outpur pair of abstract domains
〈H,HPar〉, where Par def

= {Z, 2Z + 1, 2Z, ∅}, complete for �P�. Let H def
= Hid

id .

RHPar
�P� (H) = H �

({
〈Z, Z〉, 〈Z, 2Z〉 ∪ 〈2Z, 2Z + 1〉, 〈2Z + 1, 2Z + 1〉,
〈2Z + 1, 2Z〉, ∅

})

Note that 〈2Z, 2Z + 1〉, 〈2Z, l〉 ∈ RHPar
�P� (H) for each l ∈ 2Z + 1. For instance, in this

case HPar(�P�(RHPar
�P� (H)(〈2, 3〉))) = HPar(�P�(〈2Z, 3〉)) = 〈Z, 2Z〉 = HPar(�P�(〈2, 3〉)).

Core: The Most Powerful Attacker for a Declassification Policy. The
core minimally transform the domain Hρ in order to satisfy Eq. 1 [14]. Exactly
as before, when the equation does not hold, it means that the attacker, observing
ρ, is able to disclose more information than what is modelled by φ about the
private input. In this case we simplify the model of the attacker. If there are at
least two private inputs h1 and h2 having the same property φ which generate
a different ρ property in output, then we decide to simplify the attacker making
the corresponding output values indistinguishable. The core of Hρ collapses all
the outputs generated by private inputs with a different φ property. In this way,
we are able to characterize, given a declassification policy φ, the most power-
ful attacker, weaker than ρ, which is harmless, namely unable to disclose any

information about φ of private data. We denote by CH
φ
η

�P�(Hρ) this tranformation.

Example 9. Let the program P def
= while h �= 0 do l := 2l ; h := 0 endw, with l : L and

h : H. CH
�P�(Hid) = {〈Z,L〉 | ∀l ∈ VL . l ∈ L ⇔ 2l ∈ L} makes 〈H,Hid 〉 complete for

�P�. It is easy to show that CH
�P�(Hid) is the abstract domain

�(
{n{2}N | n ∈ 2Z + 1}

)
,

where {2}N def
= {2k | k ∈ N}. Then CH

�P�(Hid)(�P�(H(〈3, 5〉))) = CH
�P�(Hid)(�P�(Z, 5)) =

CH
�P�(Hid)(〈Z, {5, 10}〉) = 〈Z, 5{2}N〉, CH

�P�(Hid)(�P�(〈3, 5〉)) = CH
�P�(Hid)(〈Z, {10}〉) =

〈Z, 5{2}N〉.

Expander. Let us consider the left adjoint of the core. In this case we look
for the more concrete attacker, which adjoints the same harmless one. This is
interpreted by saying that the expander provides the inferior limit to the range

Transforming Abstract Interpretations by Abstract Interpretation 9

of all the attacks making a given policy insecure. In other words it provides the
most successful attack for the given policy.

Example 10. Consider the program fragment P def
= l := 2h. We can easily show that the

most powerful harmless attacker is the one that cannot distinguish even numbers, i.e.,
�
({2Z, {1}, {3}, . . .}). Suppose now that the inital observer of the program in output

observes ρ = {Z, 2Z � {0}, {0}, 2Z + 1, ∅}. Then we obtain that the most powerful

harmless attacker which is more abstract than ρ is Par. At this point the compressor

provides the most concrete abstraction, whose core is exactly Par. We can show that

this abstraction is
�
({2Z + 1, {0}, {2}, {4}, . . . , }). We can interpret this abstraction as

the most powerful malicious attacker, namely the one that is able to exploit as much as

possible the failure of the non-interference policy, since it can disclose the exact value

of h. Any more abstract domain, has to confuse some even numbers, for instance it can

confuse 0 with 2, which means that it cannot distinguish when h = 0 and h = 1.

Compressor. Finally, let us consider the right adjoint of the completeness shell.
In this case we look for the most abstract declassification policy which cannot
capture what is indeed released by the attacker observing the program. Also in
this case, we interpret this abstraction as a superior limit to the range of all the
policies which are inadequate to protect a program from an attacker.

Example 11. Consider the program P def
= if h = 0 then l := 0 else l := |l |(h/|h|),

where |x | is the absolute value of x . Let the declassification policy φ = {Z,≥ 0, < 0, ∅}.
The wlpP is {l = 0 �→ h = 0, l > 0 �→ h > 0, l < 0 �→ h < 0} hence, the information

released is φ′ = {Z,≥ 0, �= 0,≤ 0, > 0, 0, < 0, ∅}. If we compute the compressor then

we obtain φ′′ = λX . Z, which means that every policy between φ′ and φ′′ is not able

to protect the program.

4 The Geometry of Completeness Semantic Transformers

In this section, we introduce a completely symmetric construction for semantic
transformers. The problem is: Can we (minimally) transform the semantics in
order to satisfy completeness? The transformation is made in two steps: first we
induce completeness, and then we force monotonicity by using standard results
on function transformers in [7], since in some cases, the completeness transfor-
mation may generate not monotone functions. Recall that any function can be
transformed to the closest (from below and from above) monotone function by
considering the following basic transformers [7]:

M↓ def= λf . λx .
∧{

f (y)
∣
∣ y ≥ x

}
M↑ def= λf . λx .

∨{
f (y)

∣
∣ y ≤ x

}

Before introducing these transformers we have to understand what we mean by
minimally transforming semantics. As usual we consider a lattice of functions
where maps are point-wise ordered: f � g iff ∀x ∈ C . f (x) ≤ g(x). Hence, a
minimal transformation of f finds the closest function, by reducing or increasing
the images of f , wrt. a given property we want to hold for f (in this context,
completeness). In abstract interpretation this corresponds to find the closest

10 R. Giacobazzi and I. Mastroeni

(viz., least abstraction or concretisation) of the semantics such that completeness
holds for a given pair of abstractions. In the following, for simplicity, we consider
the case of forward completeness.

4.1 Transforming Semantics for Inducing Forward Completeness

Moving Upwards. Let us consider first the case of increasing a given function
f : C m−→C in order to induce completeness with respect to two fixed abstrac-
tions η, ρ ∈ uco(C). We first observe that such a minimal transformation exists,
namely the set {h : C m−→C | f � h, ρ ◦ h ◦ η = h ◦ η} has the minimal element.
The following result proves that we can always minimally increase a given mono-
tone function f in order to induce completeness.

Theorem 12. The set
{

f : C m−→C
∣
∣ρ ◦ f ◦ η = f ◦ η

}
is an upper closure op-

erator on 〈C m−→C ,�〉.

For any f ∈ C m−→C and η, ρ ∈ uco(C) define

F↑
η,ρ

def= λf .λx .
{
ρ ◦ f (x) if x ∈ η(C)
f (x) otherwise

Lemma 13. Let f : C m−→C. Then

F↑
η,ρ(f) =

�{
h : C −→C

∣
∣ f � h, ρ ◦ h ◦ η = h ◦ η

}
.

The function F↑
η,ρ(f) is not the one we look for since it may lack monotonicity.

Next example shows that F↑
η,ρ(f) may not be monotone for some f : C m−→C .

Example 14. Consider the pictures on the right. The

(purple) circled points are those in ρ and the (green) ar-

rows in the picture (a) represent f . The (purple) arrows

in the picture (b) are those of the map obtained from f
by applying F↑ which is clearly not monotone.

f f*

(a) (b)

The lack of monotonicity is due to the fact that, in order to minimally trans-
form f , only the images of the elements in η are modified, leaving unchanged
the images of all the other elements. Indeed monotonicity fails when we check
it between the new image of one element in η and one outside. We need there-
fore to apply the transformer M↑ for finding the best monotone transforma-
tion of f which is complete for the pair of abstractions η, ρ ∈ uco(C). Define
F↑

η,ρ
def= λf . M↑ ◦F↑

η,ρ(f).

Theorem 15. Let f : C m−→C.

F↑
η,ρ(f) =

�{
h : C m−→C

∣
∣ f � h, ρ ◦ h ◦ η = h ◦ η

}
.

Transforming Abstract Interpretations by Abstract Interpretation 11

Moving Downwards. We consider the maximal approximation from below of a
given f : C m−→C , making it complete This exists unique under some hypothesis.

Theorem 16. The set {f : C m−→C | ρ ◦ f ◦ η = f ◦ η} is a lower closure oper-
ator on 〈C m−→C ,�〉 iff ρ is additive.

For any f : C m−→C and additive closure ρ ∈ uco(C), define:

F↓
η,ρ

def= λf .λx .
{
ρ+ ◦ f (x) if x ∈ η(C)
f (x) otherwise

Lemma 17. Let f : C m−→C, then

F↓
η,ρ(f) =

⊔{
h : C −→C

∣
∣ f � h, ρ ◦ h ◦ η = h ◦ η

}

Example 18. Consider the pictures on the

right. The (purple) circled points are those

in ρ and the (green) arrows on picture (a)
are those of f . The (purple) arrows on the

picture (b) are those of the map obtained

from f by means of F↓, and this map is

clearly not monotone.

f f*

(a) (b)

Again, the lack of monotonicity is due to the fact that, in sake of minimality, the
transformers changes the image by f of only some elements, those of η. Again
we apply the transformer M↓ for finding the best monotone transformation of f .
Next theorem shows that it is not necessary a fix-point transformation since the
monotone transformer does not change the completeness of functions obtained
by F↓. Define F↓

η,ρ
def= λf . M↓ ◦F↓(f).

Theorem 19. Let f : C m−→C, then

F↓
η,ρ(f) =

⊔{
h : C m−→C

∣
∣ f � h, ρ ◦ h ◦ η = h ◦ η

}
.

Next result tells us that the completeness transformers, moving in opposite di-
rections in the lattice of functions, are indeed adjoint transformers whenever
both exist, namely when the output abstraction ρ is additive, i.e.

�
(ρ) = ρ.

Theorem 20. If ρ ∈ uco(C) is additive then (F↑
η,ρ)

+ = F↓
η,ρ.

4.2 Transforming Semantics for Inducing Forward Incompleteness

Consider the two F -completeness transformers for making functions complete
for a given pair of domains, η on the input and ρ on the output. We proved
that F↑

η,ρ ∈ uco(C m−→C) and F↓
η,ρ ∈ lco(C m−→C). We prove that their adjoint

12 R. Giacobazzi and I. Mastroeni

functions increase incompleteness. Given a function f , we look for the most dis-
tant function with the same complete transformation as f . In particular, when
we consider F↑

η,ρ, we look for the smallest function with the same transforma-
tion complete transformation as f which surely includes the maximal amount
of incompleteness. A dual reasoning can be done for the other transformation
following Janowitz’s results.

+

+

+

-

-

-

F
↑

F
↓

O
↓

O
↑

Minimal complete
transformation

from above

Minimal complete
transformation

from below

Maximal incomplete
transformation

from below

Maximal incomplete
transformation

from above

Fig. 2. Basic semantic transformers

Moving Upwards. The corresponding right adjoint, when it exists (see Sec. 3),
of F↓

η,ρ is O↑
η,ρ(f) def=

⊔
{g : C m−→C | F↓

η,ρ(g) = F↓
η,ρ(f)}. Being F↓

η,ρ the compo-
sition of two function transformations, we study first the adjoint operation as-
sociated with F↓: O↑

η,ρ(f) def=
⊔
{g : C −→C | F↓

η,ρ(g) = F↓
η,ρ(f)} and then prove

that we can always apply the monotonicity transformer afterwards. As observed
in Sect. 3, this adjoint operator may not always exist. Moreover, in the previous
section we also observed that F↓ may not always exist. Next theorem tells us that
the incompleteness transformer exists when ρ+ is join-uniform, which implicitly
says that ρ+ exists, namely that we also need ρ additive.

Theorem 21. The transformer O↑
η,ρ(f) ∈ uco(C −→C) iff ρ+ exists and it is

join-uniform. In this case

O↑
η,ρ(f)(x) =

{
(ρ+)+(f (x)) =

∨{
y
∣
∣ρ+(y) = ρ+(f (x))

}
if x ∈ η

f (x) otherwise

Note that, also in this case, the transformer does not change all the elements,
but only those in η. This implies that, also in this case, the function obtained by
applying O↑ is not necessarily monotone, even if applied to a monotone function.

Example 22. Consider η = ρ. In picture
(a) the (purple) circled points are those
in ρ (and in ρ+) and the (blue) arrows
corresponds to the function f . In picture
(b) we have represented with (green) cir-
cled points the closure (ρ+)+ (which is an
uco on the lifted order). We note that the
transformation induced by O↑ represented
with a dotted line, is non monotone.

f

ρ
+

ρ

f (ρ+)+

(a) (b)

By applying M↓ we obtain the monotone one represented with a dashed line.

Transforming Abstract Interpretations by Abstract Interpretation 13

The example above shows that by applying the transformer M↓ we still obtain
a monotone incomplete function. Next result proves that the transformer M↓

does not change the class of complete functions, hence we can always make the
monotonicity transformation if necessary, without having to reapply O↑.

Theorem 23. If f : C m−→C then F↓
η,ρ ◦ M↓ ◦ O↑

η,ρ(f) = F↓
η,ρ and O↑

η,ρ(f) �
M↓ ◦O↑

η,ρ(f).

At this point, we have that O↑ is the adjoint of a transformer inducing complete-
ness, hence intuitively it induces incompleteness. Clearly, we wonder if there are
complete functions which are fix-point of O↑. Next theorem proves that O↑ does
not always transform a complete function into an incomplete one. This is the
case when no incomplete functions are available.

Theorem 24. If f : C m−→C then O↑
η,ρ(f) is complete iff for each x ∈ C we

have
{

y
∣
∣ρ+(y) = ρ◦ f ◦η(x)

}
= {f ◦η(x)}.

In Fig. 3 (a) we show an example where the condition above holds also for
non-trivial functions and closures where η = ρ. In the picture the closure is
represented with (purple) circled points and the map with (green) arrows. This
is a non-trivial complete function which is a fix-point of the transformer. In Fig. 3

f

(a)

x

z

ρ

ρ
+

x

z

(ρ+)+

(b) (c)

Fig. 3. Incompleteness transformations examples

(b) and (c) we show a case where a complete function is indeed transformed in
an incomplete one by the transformer. Again, in Fig. 3 (b) the closure ρ (and
ρ+) is represented with (purple) circled points and the function f , for which the
domain is complete, is represented with (blue) arrows. O↑

η,ρ(f) is in Fig. 3 (c).

Moving Downwards. We close our construction of semantic transformers by
characterising an incompleteness transformer associated with the left-adjoint
of F↑

η,ρ, in the sense of expansion: O↓
η,ρ(f) =

�
{g : C m−→C | F↑

η,ρ(g) = F↑
η,ρ(f)}

when it exists (see Sect. 3). As in the previous case, we study the following trans-
formation first O↓

η,ρ(f) def=
�
{g : C −→C | F↑

η,ρ(g) = F↑
η,ρ(f)}. While F↑

η,ρ always
exists, O↓

η,ρ may not always exist. Next theorem proves that the incompleteness
transformer exists when ρ− exists, namely when ρ is meet-uniform.

14 R. Giacobazzi and I. Mastroeni

Theorem 25. O↓
η,ρ(f) ∈ lco(C −→C) iff ρ is meet-uniform. In this case

O↓
η,ρ(f)(x) =

{
ρ−(f (x)) =

∧{
y
∣
∣ρ(y) = ρ(f (x))

}
if x ∈ η

f (x) otherwise

Exactly as it happens in all previous cases, the transformer does not change all
the elements, but only those in η. This implies that the function obtained by O↓

may not be monotone, even if we start with a monotone function f .

Example 26. Consider the pictures on the

right, where η = ρ. Here we have an exam-

ple of transformation which returns a non

monotone function. We see in picture (b),

the closure ρ− denoted with (green) cir-

cled points. The transformed map is the

one represented in picture (b) with (red)

dashed lines. Note that M↑(O↓
η,ρ(f)) = f .

f

ρ

f

ρ
−

(a) (b)

Theorem 27.
If f : C m−→C then F↑

η,ρ ◦M↑ ◦O↓
η,ρ(f) = F↑

η,ρ and O↓
η,ρ(f) � M↑ ◦O↓

η,ρ(f).

Also in this case, we consider the case when this trasformation induces incom-
pleteness. Namely, we wonder when ρ◦O↓

η,ρ(f)◦η �= O↓
η,ρ(f)◦η.

Theorem 28. If f : C m−→C then O↓
η,ρ(f) is complete iff for each x ∈ C we

have
{

y
∣
∣ρ(y) = ρ◦ f ◦η(x)

}
= {f ◦η(x)}.

An example of complete function which is left unchanged by O↓ is the same
shown before for O↑ (Fig. 3 (a)). Next example shows, instead, a case where a
complete function is indeed transformed into an incomplete one by O↓.

Example 29. Consider the pictures on the

right where η = ρ. Again the closure is

represented with (purple) circled points. In

the picture (a) we have the original func-

tion f , for which the domain is complete,

as we can simply verify. In (b) we have the

function that we obtain by applying the

transformer O↓ to f .

f

x y

f

x y

(a) (b)

4.3 Transforming Semantics for Transforming Program Security

Transforming functions corresponds to transform semantics [10]. In the following
we consider the meaning of transformed semantics in language-based security.

Inducing Completeness. Assume η be disjunctive, i.e.
�

(η) = η. We consider
F↑
Hφ

η ,Hρ
(wlpP

η) and F↓
Hφ

η ,Hρ
(wlpP

η), where Hφ+

η = λ〈X H,X L〉. 〈φ+(X H), η+(X L)〉.

Transforming Abstract Interpretations by Abstract Interpretation 15

The transformations above, show that whenever we have wlpP
η (X) = 〈H , η(L)〉,

and X ∈ Hρ then F↑
Hφ

η ,Hρ
(wlpP

η)(X) = 〈φ(H), η(L)〉 by idempotence of η, and

F↓
Hφ

η ,Hρ
(wlpP

η)(X) = 〈φ+(H), η(L)〉 by Th. 1(1). This result tells us that, while
by using the core we can transform the output observation ρ for characterizing
attackers, we cannot transform the input observation η.

Example 30. Let P def
= while (h > 0) do (h := h − 1; l := h) endw. Suppose the

attacker can observe the identity. The wlp is {l = 0 �→ h ≥ 0, l �= 0 �→ h = 0}. This
program is insecure for the policy φ = λx . Z, which says that nothing has to flow. The

secure semantic transformation is F↑
Hφ

id ,Hid
(wlpP

id): {l = 0 �→ h ∈ Z, l �= 0 �→ h ∈ Z}
which, for example, is the semantics of the transformed program P ′ def

= l1 := l ;P ; l := l1.

Inducing Incompleteness. Let us consider the incompleteness transformers
O↑

Hφ
η ,Hρ

(wlpP
η) and O↓

Hφ
η ,Hρ

(wlpP
η) where, when the necessary conditions on η

and φ hold, Hφ++

η (X) = 〈φ++(X H), η++(X L)〉 and Hφ−

η (X) = 〈φ−(X H), η−(X L)〉.
The problem is that the completeness equation with φ holds if φ is partitioning
[1]. This is a problem since it implies that φ is not meet-uniform and φ+ cannot
be join-uniform. Hence we don’t have an optimal transformation of wlpP

η but
rather only maximal incomplete transformations. This is interpreted by noting
that a semantic transformer corresponds to an active attacker that wants to
exploit its activity for disclosing more private information. A program that does
not reveal to an active attacker more than what is revealed to a passive one is
called robust [23]. Therefore there is no best active attacker that can extract all
about private data. An attacker can only decide what it wants to disclose and
consequently actively transform the code.

Example 31. Let P def
= h := h mod 2; if h = 0 then l := 0 else l := 1 and ρ = η = id,

φ = Par. wlpP
id is {l = 0 �→ h ∈ 2Z, l = 1 �→ h ∈ 2Z+1} namely we disclose parity of h.

Suppose the attacker wants to distinguish in addition if h is 0 or not. Then we consider

the partitioning closure σ
def
=

�
({{0}, 2Z � {0}, 2Z + 1}). For what we said above, we

don’t have a best transformation allowing to observe 0, hence the attacker has to choose

to disclose weaker information about h, for example {0, 2} instead of 0. We can consider

the semantics: {l = 0 �→ h ∈ {0, 2}, l = 1 �→ h ∈ 2Z+1} approximating O↓
Hσ

id ,Hid
(wlpP

id)

which, for example, is the semantics of if h ≤ 2 ∨ h mod 2 = 1 then P else l := 2

5 Discussion

We proved that standard abstract interpretation methods, based on Galois con-
nections, can provide an adequate model for reasoning about transformations of
both abstract domains and semantics. While the abstract domain side is more
traditional in static program analysis, in particular in the field of abstraction
design, the semantic side is completely new. In this paper we proved that a
completely symmetric construction holds for both semantic and domain trans-
formers, sharing the same geometric structure which is based on the lifting of

16 R. Giacobazzi and I. Mastroeni

Galois connections higher order, from the objects of computation to the space
of abstract domains and predicate transformers. This shows that abstract in-
terpretation, as originally developed in [6], may have a universal validity not
only for approximating semantics but also on reasoning about its own meth-
ods. The key aspect in this construction is completeness, which is the driving
force for transforming domains and semantics to achieve a given precision de-
gree. We used language-based security as an application ground for interpreting
our transformations, but the validity of these results are general. For instance
possible applications of the basic semantic transformers for achieving maximal
incompleteness are in code obfuscation. In this case an obfuscated program fight-
ing against an attacker which performs static analysis driven reverse engineering
can be viewed as the maximal incomplete transformation of the program with
respect to the abstractions used by the analyser. Similarly minimal complete
transformations can be used in abstract model checking for isolating temporal
sub-logics which are complete for a given abstract system to analyse.

Acknowledgements. Part of the material developed in this paper was conceived
with Francesco Ranzato and Elisa Quintarelli. We are grateful to the endless
discussions we had together during the last decade, discussions that helped us
in better understanding the beauty of abstract interpretation theory.

References

1. Banerjee, A., Giacobazzi, R., Mastroeni, I.: What you lose is what you leak: In-
formation leakage in declassifivation policies. In: Proc. of the 23th Internat. Symp.
on Mathematical Foundations of Programming Semantics MFPS 2007. ENTCS,
vol. 1514. Elsevier, Amsterdam (2007)

2. Blyth, T.S., Janowitz, M.F.: Residuation theory. Pergamon Press, Oxford (1972)

3. Cortesi, A., Filé, G., Giacobazzi, R., Palamidessi, C., Ranzato, F.: Complemen-
tation in abstract interpretation. ACM Trans. Program. Lang. Syst. 19(1), 7–47
(1997)

4. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam (1999)

5. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
Conf. Record of the 4th ACM Symp. on Principles of Programming Languages
(POPL 1977), pp. 238–252. ACM Press, New York (1977)

7. Cousot, P., Cousot, R.: A constructive characterization of the lattices of all retrac-
tions, preclosure, quasi-closure and closure operators on a complete lattice. Portug.
Math. 38(2), 185–198 (1979)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc.
of Conf. Record of the 6th ACM Symp. on Principles of Programming Languages
(POPL 1979), pp. 269–282. ACM Press, New York (1979)

Transforming Abstract Interpretations by Abstract Interpretation 17

9. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation (invited paper). In: Bruynooghe, M., Wirs-
ing, M. (eds.) Proc. of the 4th Internat. Symp. on Programming Language Imple-
mentation and Logic Programming (PLILP 1992). LNCS, vol. 631, pp. 269–295.
Springer, Heidelberg (1992)

10. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: Proc. of Conf. Record of the Twentyninth Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pp.
178–190. ACM Press, New York (2002)

11. Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design.
ACM Comput. Surv. 28(2), 333–336 (1996)

12. Giacobazzi, R., Mastroeni, I.: Domain compression for complete abstractions. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 146–160. Springer, Heidelberg (2002)

13. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In: Proc. of the 31st Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL
2004), pp. 186–197. ACM-Press, New York (2004)

14. Giacobazzi, R., Mastroeni, I.: Adjoining declassification and attack models by ab-
stract interpretation. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 295–310.
Springer, Heidelberg (2005)

15. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples and refinements
in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp.
356–373. Springer, Heidelberg (2001)

16. Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In:
Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS,
vol. 1256, pp. 771–781. Springer, Heidelberg (1997)

17. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpreta-
tion. Sci. Comput. Program 32(1-3), 177–210 (1998)

18. Giacobazzi, R., Ranzato, F.: Uniform closures: order-theoretically reconstruct-
ing logic program semantics and abstract domain refinements. Inform. and Com-
put. 145(2), 153–190 (1998)

19. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. of the ACM. 47(2), 361–416 (2000)

20. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract domains condensing.
ACM Transactions on Computational Logic (ACM-TOCL) 6(1), 33–60 (2005)

21. Giacobazzi, R., Scozzari, F.: A logical model for relational abstract domains. ACM
Trans. Program. Lang. Syst. 20(5), 1067–1109 (1998)

22. Janowitz, M.F.: Residuated closure operators. Portug. Math. 26(2), 221–252 (1967)
23. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. on

selected ares in communications 21(1), 5–19 (2003)
24. Ward, M.: The closure operators of a lattice. Ann. Math. 43(2), 191–196 (1942)

Reflections on the Role of Static Analysis
in Cooperative Bug Isolation�

Ben Liblit

Computer Sciences Department
University of Wisconsin–Madison

liblit@cs.wisc.edu

Abstract. Cooperative Bug Isolation (CBI) is a feedback-directed approach to
improving software quality. Developers provide instrumented applications to the
general public, and then use statistical methods to mine returned data for informa-
tion about the root causes of failure. Thus, users and developers form a feedback
loop of continuous software improvement. Given CBI’s focus on statistical meth-
ods and dynamic data collection, it is not clear how static program analysis can
most profitably be employed. We discuss current uses of static analysis during
CBI instrumentation and failure modeling. We propose novel ways in which static
analysis could be applied at various points along the CBI feedback loop, from
fairly concrete low-level optimization opportunities to hybrid failure-modeling
approaches that may cut across current static/dynamic/statistical boundaries.

1 Introduction

A complete Cooperative Bug Isolation (CBI) system constitutes a feedback loop be-
tween developers and users. Developers provide software to users, and users respond
with data about that software’s behavior in the deployed environment. Developers then
use this data to improve the software in future releases, guided largely by sophisticated
statistical models of program misbehavior. The goal is not to produce perfect first re-
leases, but rather to improve software continuously over time guided by the needs of
real user communities [1]. It is non-obvious how formal static analysis should interact
with CBI’s dynamic/statistical approach to software quality. This paper explores how
static analysis is currently used within CBI, and how it could most beneficially be used
in the future.

1.1 Overview of Cooperative Bug Isolation

We start with a conceptual overview of CBI’s feedback loop in Fig. 1. The process be-
gins at the top left, with program source and a small set of configuration choices (made
by the developer) that will steer a CBI instrumenting compiler. Configuration choices

� Supported in part by AFOSR Grant FA9550-07-1-0210 and NSF Grants CCF-0621487, CCF-
0701957, and CNS-0720565. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of
AFOSR, NSF, or other institutions.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 18–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

mailto:liblit@cs.wisc.edu

Reflections on the Role of Static Analysis 19

Fig. 1. Conceptual overview of Cooperative Bug Isolation system

are simple and few in number, while program source is absolutely free of any man-
ual, CBI-specific annotation. This minimizes the up-front cost to developers wishing to
adopt CBI.

The boxed tool chain at the top center of Fig. 1 represents a CBI instrumenting com-
piler. This appears to the developer to be a standard compiler augmented with a few
additional high-level configuration options, and therefore is easily incorporated into ex-
isting build environments. Internally, CBI-instrumented compilation consists of three
distinct steps: (1) insertion of unconditional instrumentation; (2) transformation of in-
strumentation to be sampled instead of unconditional; and (3) native compilation to
binaries ready for distribution. The third step is treated as a black box: we accept what-
ever the native compiler gives us. But each of the first two steps represents a key point
at which static analysis could be used to good effect. We review unconditional instru-
mentation in Sect. 2, with a discussion of the ways in which static analysis is currently
used and could potentially be used in the future. Section 3 recaps the sampling trans-
formation, and again considers the current and potential roles for static analysis.

Instrumented compilation yields executable binaries (both applications and shared
libraries) capable of monitoring and reporting aspects of their own behavior at run time.
We make this instrumented software available to the general public: the “diverse user
community” in the lower right of Fig. 1. Each run of an instrumented program produces
one feedback report with information about run time behaviors instrumented during
compilation. Each feedback report also includes a binary label marking that run as

20 B. Liblit

good (successful) or bad (failed). The challenges at this stage largely fall under the
broad umbrella of “computer systems”: transmitting feedback data over the network,
warehousing it in databases, keeping user data secure throughout its lifetime, and so on.
Static program analysis plays no role here.

As runs accumulate, certain trends emerge. If we put all successful runs in one pile
and all failed runs in another, we can look for instrumented behaviors that vary between
the two piles. In particular, we can direct developers’ attention toward suspicious run
time behaviors that are strongly associated with failure. Absolute assignment of blame
(“the program crashes if and only if x is negative on line 140”) is impossible due to
the many sources of uncertainty in our feedback data. Instead, we have developed a
variety of statistical debugging techniques to identify informative trends in the differ-
ence between successful and failed runs. Statistical debugging is another key point in
the feedback loop where static program analysis can play a major role, although many
open questions remain. In Sect. 4 we review selected statistical debugging models de-
veloped both by my collaborators and by others. We consider the relatively limited use
of static program analysis in statistical debugging work thus far, and suggest future
directions in which program analysis could play a more prominent role.

Certain recurring challenges span all of the contexts in which we consider adding
static analysis to CBI. Section 5 vents some steam about problems that have put many
attractive static analyses out of CBI’s reach. For the stout-hearted reader who is not so
offended as to discard the paper following this rant, Sect. 6 concludes.

2 Unconditional Instrumentation

The first step in compiling an application for use with CBI is to inject extra monitoring
code at selected program points of interest. We call this code unconditional instrumen-
tation to contrast it with the sampled instrumentation that results from later transforma-
tions (see Sect. 3). Unconditional instrumentation casts a broad net across the program,
adding code to record a wide variety of run time behaviors that could potentially be of
interest later when tracking down a bug. This is not the place to be stingy: we regularly
add many hundreds of thousands of monitoring points to medium-sized programs.

Obviously we do not expect the programmer to insert this code by hand. Rather,
the developer selects among a small collection of broad instrumentation schemes. Each
scheme matches specific fragments of program syntax at specific locations in code. We
call such matches instrumentation sites. For example, the branches scheme places one
instrumentation site at each if statement, while the returns scheme creates one site at
each function call. Possible behaviors at each site are strictly partitioned into a small
set of predicates on program state. For example, a branch site tests two predicates:
the if condition is either true or false. We create one global predicate counter for
each predicate, which records how often that predicate was true during a run. When
execution reaches the location of an instrumentation site, a single observation is made:
exactly one of the predicates at the site must be true, and the injected code makes this
determination and increments the corresponding predicate counter. The feedback report
for an entire run, then, consists primarily of the final counter values for all predicates.

Reflections on the Role of Static Analysis 21

sampler-cc is our CBI instrumenting compiler for C. It is not the only instrumen-
tor that has been created [2,3,4], but it is the most mature and widely-used.
sampler-cc currently offers seven instrumentation schemes; developers may acti-
vate as many or as few as desired [5]. Some schemes, such as the branches scheme,
are quite broad-based and stand a decent chance of detecting something of interest
for a wide variety of coding mistakes. Other schemes are more specialized, such as
the g-object-unref scheme which focuses on reference count mismanagement bugs in a
specific widely-used open source library. Specialized schemes are less likely to trigger
for any given bug, but if they do correlate strongly with failure, the guidance they offer
the developer is more specific and therefore more useful. We generally recommend a
mixture of broad-spectrum and narrowly-focused schemes.

2.1 Static Analysis as Currently Used

sampler-cc performs almost no interesting static analysis during the unconditional
instrumentation stage. This is a somewhat embarrassing admission. Unconditional in-
strumentation relies on the popular CIL C front end for parsing, type checking, and
name resolution [6], and arguably that constitutes program analysis of a sort. But be-
yond these standard front-end tasks, initial instrumentation is essentially a matter of lo-
cal pattern-matching against syntactic structures (e.g., finding every conditional branch)
and insertion of appropriate monitoring code (e.g., to count how often the branch con-
dition is true versus false). We rarely look at more than one small abstract syntax tree
fragment at a time.

The one exception is a relatively recent feature that drops instrumentation sites that
examine the values of uninitialized variables. The motivation is not that looking at
such values is dangerous or forbidden. After all, this is C: everything is dangerous, and
nothing is forbidden. Rather, we find that developers cannot easily make sense of in-
strumented predicates that involve uninitialized variables. Therefore, considering such
predicates when hunting for bugs is not ultimately useful, even if some may be strong
failure predictors. So sampler-cc uses an intraprocedural forward dataflow analysis
to identify and avoid definitely-uninitialized variables.

2.2 Static Analysis Potential

Historically, we have claimed that deep analysis of buggy C programs is foolhardy. How
many static analyses give truthful results for C programs that overrun buffers or read
uninitialized memory? In a world of wild pointers and corrupted heaps, what points-to
analysis can possibly be trusted? The execution semantics of such programs are very
different from the formal semantics assumed by most analyses, which means that static
analyses can no longer offer guarantees across all possible runs.

Furthermore, many of the facts that static analysis could offer are much easier to
derive empirically by examination of dynamic feedback reports. Ernst’s Daikon work
shows that empirical invariant discovery can be quite effective [7]. Why try to prove
that z must always be zero on line 490 when we can simply check whether it was ever
observed to be nonzero across a hundred thousand user runs? Of course the later does

22 B. Liblit

not provide any guarantees, but given the loose semantics of buggy C programs, it’s not
clear that any static analysis could offer guarantees either.

However, this may be prematurely dismissive. Static analysis could go a long way
toward streamlining instrumentation by eliminating redundancy. A static proof that one
predicate implies another means that the later need not be monitored at run time. For
example:

1 const int result = fetch();
2 if (result) ...

The returns instrumentation scheme will check whether result is negative, zero,
or positive on line 1. The branches scheme will check whether the conditional on line
2 is true or false. Is later redundant with respect to the former? Probably. If we as-
sume that no other thread can change result between lines 1 and 2 (including by
storing across a corrupted pointer), then instrumenting the branch is redundant. Should
we make this assumption? Arguably, yes. It may cause us to miss certain bugs if we
are wrong. But CBI never promised perfection. Reducing the instrumentation load by
eliminating redundant or invariant predicates would have several benefits:

1. Less instrumentation means less code, for a smaller executable footprint on instal-
lation media, hard drives, and memory.

2. If sampling (discussed below) is not changed, then less instrumentation means more
streamlined code and therefore better performance.

3. Conversely, if run time performance is held at a constant level, then less time wasted
on uninteresting instrumentation sites allows more intensive sampling of other code
that may be more informative.

4. Although statistical analysis of feedback reports can discover likely invariants and
redundancies in observed data, this is not free. Advanced statistical debugging al-
gorithms can have difficulty scaling up to massive datasets, and eliminating junk in-
strumentation earlier leaves the statistical methods with smaller problems to solve.

3 From Unconditional Instrumentation to Sampling

Here we detail CBI’s instrumentation sampling transformation, which sacrifices feed-
back completeness for privacy and performance. We review static analyses currently
used during the sampling transformation, and consider possible deeper analyses that
could be employed in the future.

3.1 The CBI Sampling Transformation

Complete monitoring of all instrumentation predicates may be impractical or undesir-
able for reasons of performance or user privacy. We have developed a generic instru-
mentation sampling transformation to address these concerns [8]. CBI’s sampling trans-
formation is a statistically rigorous variant on a performance profiling transformation
developed by Arnold and Ryder [9]. The sampling transformation reduces instrumenta-
tion overhead while maintaining a very strict statistical fairness guarantee: the behaviors

Reflections on the Role of Static Analysis 23

observed and tallied in site counters represent a sparse but statistically unbiased random
sample with respect to the complete (but unobserved) dynamic behavior of the program.
This fairness guarantee is necessary to ensure that the statistical debugging algorithms
to be applied later have a sound mathematical footing.

At run time, each thread in an instrumented application maintains a countdown that
represents the number of instrumentation opportunities that should be skipped before the
next observation is taken. The countdown is set randomly using a geometric distribution,
which is mathematically equivalent to counting how many times a tail-biased coin comes
up tails before the next head is seen. A geometric distribution with mean 100 corresponds
to counting tails while tossing a coin that has a 1/100 chance of coming up heads. This
countdown yields a statistically fair random sample of about 1/100 of complete program
behavior, as though the biased coin were being tossed at each instrumentation site.

The sampling transformation leverages this countdown by avoiding most instrumen-
tation until an observation is imminent. The transformation begins by splitting each
function’s control flow graph into a collection of single-entry acyclic subgraphs. Doing
this optimally is NP-hard [10], but placing acyclic subgraph entry points at loop back
edges and the tops of functions works well in practice. An acyclic graph contains only
a finite number of paths, each of which is of finite length. Therefore, there is a finite
maximum number of instrumentation sites that could be crossed along any single exe-
cution through each acyclic subgraph. We call this maximum instrumentation site count
the threshold weight of a given subgraph.

An instrumenting compiler now clones each acyclic subgraph. In the fast clone, we re-
place each instrumentation site with a simple decrement of the global next-sample count-
down. In the slow clone, we decrement the countdown and check whether it has reached
zero. If the countdown is zero, then we make a single observation at the current instru-
mentation site and reset the counter to a new geometrically-distributed random num-
ber. Entry into the fast and slow clones is guarded by a conditional branch that checks
whether the global countdown is below the subgraph’s threshold weight. If the countdown
is larger than this threshold, then the decrements cannot possibly drive it to zero on this
pass through the subgraph, and so the branch selects the fast clone. If the countdown is
smaller than the threshold, then a sample might be imminent, and the instrumented slow
clone is selected instead. If sampling is sparse (1/100 or 1/1000 is typical), then execution
will usually proceed in the fast clone of each subgraph, switching to the slow clone only
occasionally when a sampled observation is about to be made. In this way we improve
performance by exploiting periods between samples as the fast, common case.

Figure 2 shows an example of an acyclic control flow subgraph after cloning and
the insertion of the countdown threshold check. This subgraph has a threshold of four,
because there is one path through the subgraph that crosses four instrumentation sites.

3.2 Static Analysis as Currently Used

Some static analyses are implied by the description of the sampling transformation
given above. We require control flow graphs for each function, with loop back edges
identified. The threshold weight of each single-entry acyclic subgraph is computed in
a simple bottom-up pass. While this all constitutes analysis, it has nothing beyond the
basics that any reasonable compiler would provide.

24 B. Liblit

�������	

���������	

����
��

��
��

���
��

��
��

�

����
��

��
��

��

���������	

���
��

��
��

�

��

����
��

��
��

��

� �
�� ��> 4 ?

true

��������������
false

��������������

���
��

��
��

�

�������	

���������	

����
��

��
��

�������	��������

���
��

��
��

�

����
��

��
��

�������	��������

��

�������	��������

���������	

���
��

��
��

�

��

����
��

��
��

�������	��������

��

�������	��������

���
��

��
��

�

Fig. 2. Example of instrumented code layout. The slow clone is on the left; double-outlined nodes
contain countdown decrements and instrumentation site code. The fast clone is on the right;
dotted-outline nodes contain only countdown decrements. Single-outlined nodes contain no in-
strumentation sites.

Several other minor optimizations can be applied within each acyclic subgraph or
instrumented function. For example, we add a static branch prediction hints to advise
the native code generator that most threshold checks will choose the fast clone. Acyclic
subgraphs containing zero or one instrumentation site require no cloning or threshold
check at all. The global next-sample countdown is cached in a local variable while an
instrumented function executes; this helps the native compiler coalesce decrements into
fast register operations for a significant performance boost.

The only analysis that spans procedure boundaries is our identification of weight-
less functions. We define a weightless function as one that contains no instrumentation
sites and that only calls other weightless functions. Weightless functions allow several
optimizations in global countdown management, so we identify these using a fix-point
computation over the call graph with conservative treatment of calls across pointers or
that leave the current compilation unit. (A points-to analysis is offered as an option
for resolving indirect calls. However, this is considered experimental and not recom-
mended for production use due to its insufficiently-conservative treatment of separate
compilation.)

3.3 Static Analysis Potential

Optimization of sampled instrumentation is primitive, with only very modest attempts
to analyze beyond the boundary of a single function or a single acyclic subgraph. One

Reflections on the Role of Static Analysis 25

could certainly do better, such as by optimizing across procedure boundaries or by
restructuring the fast clones for even greater speed. We propose two analysis-driven
optimizations in detail as examples of the sort of improvements that could be made.

Bounded-Weight Function Analysis. With the exception of weightless functions, we
currently treat each called function as a black box that might contain arbitrarily-many
instrumentation sites. Thus, the next-sample countdown may change arbitrarily across
any non-weightless function call. This requires splitting acyclic subgraphs at function
calls, which in turn makes the subgraphs smaller. Smaller acyclic subgraphs require
more frequent threshold checks, harming performance.

Suppose instead we were to identify a maximum threshold weight for an entire func-
tion. For some functions this may not be bounded, but for many (especially small, loop-
free leaf functions) a finite bound will exist. This information can be exploited by the
caller to compute its own acyclic subgraph thresholds, since a call to a function with
threshold weight n can only reduce the next-sample countdown by at most n from the
perspective of the caller. Weightless functions are simply a special case of the more
general class of bounded-weight functions.

Path Balancing. When the fast clone consists of simple, straight-line code, a native
compiler may be able to coalesce multiple countdown decrements into a single larger
adjustment. For example, gcc performs this optimization provided that the countdown
is cached in a local variable per Sect. 3.2. However, decrement coalescing cannot extend
across branches, because the multiple forward paths may contain different numbers of
instrumentation sites and therefore require different net adjustments to the countdown.

Path balancing generalizes decrement coalescing to arbitrary acyclic subgraphs. The
key is to ensure that all forward paths through an acyclic subgraph cross the same
number of instrumentation sites. Imbalances occur at branches. When a control flow
graph node has multiple successor paths with different weights, extra “dummy” sites
are added to the start of those successor paths that have fewer “real” sites than their
siblings, thereby creating balance. When all branches in a subgraph are balanced, the
entire subgraph is balanced as well.

Figure 3a gives an example of an acyclic subgraph before balancing. Nodes with
instrumentation sites have dotted outlines. Notes are lettered for ease of reference, and
the number in each node gives the maximum weight of all paths forward from that node.
The entire subgraph has threshold weight 2 but individual paths cross 0 (abe), 1 (adh),
or 2 (abcfg, abcfh) sites. Branch nodes a, b, and f may require balancing. Branch a does
have imbalanced successors: one dummy site must be added on the ad edge. Branch b
is also imbalanced: two dummy sites must be added on the be edge. Branch f is already
balanced: both successors already have matching weights.

Figure 3b shows the same acyclic subgraph after balancing. Three unlettered dummy
sites have been added. The threshold weight for the entire subgraph (2) is now the exact
number of sites crossed on each of the four paths through the subgraph starting from
entry node a.

Balancing is not an optimization in and of itself. Rather, it actually adds instrumenta-
tion in the form of dummy sites. However, once a site is balanced, we can optimize the
code as follows. Just before the first node of the fast clone, decrement the next-sample

26 B. Liblit

������ !a : 2

�����
��

��
�

���
��

��
��

��
��

��
�

������ !b : 2

��

		��
��

��
��

c : 2

��

������ !d : 1

��

������ !e : 0 ������ !f : 1

�� 				
		

		
		

g : 1 h : 1

(a) Before balancing

������ !a : 2

�����
��

��
�

��
��

��

���
��

��
�

������ !b : 2

��

		��
��

��
��

c : 2

��

������ !d : 1

��

������ !e : 0 ������ !f : 1

�� 				
		

		
		

g : 1 h : 1

(b) After balancing

Fig. 3. Example of path balancing

countdown by the threshold weight of the entire subgraph (for example, “countdown
-= 2” just before node a in Fig. 3b). This decrement accounts for exactly the number
of unary decrements that would have occurred in this subgraph. Elsewhere in the fast
clone, wherever a real or dummy instrumentation site would have appeared, do nothing.
The decrements have already been accounted for and there is no other work to do.

The slow clone must decrement and check the countdown at each instrumentation
site as before, because on the slow clone we do need to know exactly when a site should
be sampled. Furthermore, even dummy sites must decrement the countdown and reset
it if it reaches zero. This requirement ensures that both the fast and slow clones behave
the same with respect to counting down to the next sample, at the expense of making
the slow clone even slower. Also, adding dummy instrumentation sites means that the
countdown will need to be reset more often, so a slow random number generator will
be more of a liability here.

In total, path balancing makes the fast clone faster and the slow clone slower. The
idea for the path balancing algorithm arose in discussions between the author and Cor-
mac Flanagan, but has not yet been implemented or evaluated. We offer it here as an
example of leveraging the regular structure of sampled instrumentation code using an
intraprocedural analysis of quite modest complexity.

4 Statistical Debugging

Some instrumented behaviors may always occur or may never occur; these are invari-
ants in practice (and possibly in theory). Most behaviors vary from run to run. If vari-
ation in some instrumented predicate correlates with failure of runs, then we call that

Reflections on the Role of Static Analysis 27

predicate a bug predictor. The correlation may be imperfect: nondeterministic bugs can
allow apparent success even in runs that ought to have failed. Sparse sampling means
that even a completely deterministic failure predictor will not be observed on most runs
where it does occur. For this reason, we must look for broad statistical trends in program
(mis)behavior across large numbers of runs. A single run tells us virtually nothing, but
because the sampling transformation is statistically unbiased, trends over many runs
can guide developers to the root causes of recurrent problems.

Statistical debugging refers to the task of finding bug-predictive behaviors among the
feedback data collected from large numbers of instrumented runs. Members of the ma-
chine learning community have expressed considerable interest in this problem, which
can be seen as an unusual example of feature selection (finding bad behaviors) or clus-
tering (grouping failures by the bug that caused them). Statistical models considered,
either by me and my collaborators or by completely independent groups, include reg-
ularized logistic regression [8,11], probability density function comparison [12], like-
lihood ratio testing [13,14], iterative bipartite graph voting [15,16] three-valued logic
[17] support vector machines [18], random forests [18], Delta Latent Dirichlet Alloca-
tion [19], and quite possibly others of which I am shamefully unaware. We refrain from
reviewing the details of any of these algorithms here; the interested reader may read
the original papers, perhaps with a statistics textbook or colleague nearby for guidance.
The approaches vary in their ability to deal with multiple bugs, non-deterministic fail-
ures, sparsely sampled data, extremely large datasets, and other qualities. Most share
a similar structure of analysis output: a ranked list of instrumented program behaviors
that have been identified as bug predictors. Such a list can be presented to a developer
to guide further triage, diagnosis, and remediation.

Given the messy, incomplete nature of sampled feedback data, one might think that
formal static program analysis has little to contribute to statistical debugging. This is
incorrect. Some of CBI’s most interesting statistical analysis work takes place at this
late stage, after the core statistical models have been built and used to identify bug
predictors. Indeed, the analysis methods used here far outstrip those found in CBI in-
strumenting compilers, both in terms of their current sophistication and in their future
potential.

4.1 Static Analysis as Currently Used

When hunting down a bug, a ranked list of bug predictors is a good start but it is not
the complete story. Developers must still understand why the highlighted misbehaviors
can lead to failure, and this is not always easy. Several static program analyses have
been used to place bug predictors back into the context of the source program and help
developers understand how they relate to failure.

One common goal is to stitch isolated bug-predictive program points together into
extended failure paths. Developers can then walk through a doomed run (or an approx-
imate reconstruction thereof) step by step to see where things fell apart. My own early
attempts at this [20] have been bested by subsequent work by Lal et al. [21]. Lal’s ap-
proach uses weighted pushdown systems, a powerful generic formalism for expressing
context-sensitive interprocedural dataflow analyses [22,23]. Propelled by this engine,
Lal’s analysis reconstructs paths that proceed from program entry through high-ranked

28 B. Liblit

bug predictors to a point of failure. Paths obey feasibility constraints imposed by any of
a variety of dataflow analyses. Jiang and Su build partial faulty-path segments using an
efficient control-flow graph traversal with backtracking [18]. The search is a static anal-
ysis, but is heuristically guided by using CBI feedback data to guess likely execution
paths at branches.

Static analysis also plays a role in comparing the quality of ranked bug predictor
lists. Cleve and Zeller [24] propose a quantitative approach that measures the distance
between the code blamed by some tool and the actual location of the bug. Distances are
measured in the program dependence graph (PDG), following a model by Renieris and
Reiss [25]. This metric is intended to simulate an idealized programmer who first ex-
amines code blamed by the tool, then proceeds outward across PDG edges until the true
flaw is found. Numerous other researches (myself included) have adopted this PDG-
distance metric metric, even though there is no experimental evidence to support the
idea that real programmers behave in this manner. Furthermore, the very notion of find-
ing the true flaw is ill-defined when the bug is a sin of omission. A forgotten conditional
branch, for example, corresponds to a PDG node that should have been present but is
not. How can we measure the distance to a node that is not there? Better models of
developer behavior are needed, and unfortunately modeling humans is well outside the
domain of static program analysis.

4.2 Static Analysis Potential

In each of the examples given above, static analyses were not being applied in iso-
lation. Rather, they were used in conjunction with statistical models built from dy-
namic data. Static and dynamic/statistical approaches have complementary strengths
and weaknesses. A static analysis may provide strong guarantees (modulo loose C se-
mantics) for a limited set of questions, while dynamic/statistical information can pro-
vide best-estimate guesses for nearly any question, but never with absolute certainty. If
we combine the two carefully, we may achieve the best of both worlds.

Dynamic data can be used as a hypothesis generator to drive deep static analyses.
Nimmer and Ernst’s fusion of Daikon and ESC/Java is a classic instance of this style
of dynamic-to-static feedback [26]. In the CBI context, bug predictors identified in dy-
namic data could suggest initial conditions on program state that warrant closer static
inspection. If failures are common when p is null on line 94, let static analysis explore
the antecedent causes or subsequent implications of that condition. Conditioned slicing,
for example, may be appropriate for pursuing such leads [27], if it can be made to work
for C programs of realistic size and complexity.

Useful information can also flow from the static world to the dynamic/statistical
world. We suggested earlier that static analyses could prove some instrumentation re-
dundant, and therefore removable. A related idea would be to use static analysis to
reconstruct some of the data omitted by sparse sampling. To take one very simple
example, any observation at a given instrumentation site reveals that the control-flow
dominators of that site must also have been executed, even if sparse sampling caused
this fact to be omitted from the raw feedback data. Deeper static analysis could infer
missing information about data values as well as control flow. Recovering missing data
effectively increases the sampling rate, resulting in a less noisy dataset for statistical

Reflections on the Role of Static Analysis 29

Table 1. Applications in CBI’s public deployment, illustrating the infeasibility of whole-program
analysis. The count of plug-ins provided includes only those that are part of the main application
distribution. Any number of additional plug-ins could be provided by third parties.

Application Lines of Code Shared Libraries Used Plug-Ins Provided

Evolution 441,644 107 45
GIMP 854,530 50 188
GNOME Panel 69,164 82 0
Gnumeric 351,461 85 36
Nautilus 137,394 89 0
Pidgin 387,962 56 56
Rhythmbox 133,281 95 12
SPIM & XSPIM 28,139 4 & 18 (not extensible)

modeling. Several key questions remain unanswered about this idea. It is not clear that
available model checkers and theorem provers can scale up to the problem sizes that
arise from this sort of analysis. (Indeed, our own preliminary exploration suggests that
they do not.) Additionally, missing-data reconstruction introduces bias, as not all miss-
ing data is equally easy to infer from available evidence. Whether this bias fouls the
results of statistical models, and how it can be compensated for, remain unknown.

Lastly and most speculatively, perhaps richer statistical models could draw simulta-
neously from both static and dynamic sources of information, instead of merely feeding
one into the other. Statistical relational learning describes a broad class of methods for
building statistical models over domains with rich internal structure [28]. Programs have
rich internal structure, and research on static program analysis offers myriad strategies
for extracting that structure. Exposing that static structure in a way that allows princi-
pled integration with dynamic feedback data may allow tremendous advances in pro-
gram understanding and debugging. I will be the first to admit that I do not know how
to do this . . . yet. But I intend to find out.

5 A Closing Rant on Analysis Robustness

Invited papers should stir things up a bit. In case this paper has not already done so, I
will now indulge in a closing rant likely to agitate (if not offend) many readers.

One practical difficulty in using static analyses with CBI is that many implementa-
tions of interesting static analyses don’t actually work. They worked at one time, on a
few small examples sufficient to write a paper. But give them tens of thousands of lines
of real C code and many analysis implementations simply fall apart. The more interest-
ing the analysis in theory, the more brittle its implementation tends to be in practice.

One common and brittle assumption is that whole-program analysis works for main-
stream applications. In my subjective experience, it does not. Even if sheer code size
were not a problem, I do not have a single real application of interest where all code is
available at compilation/analysis time. Table 1 summarizes applications now in CBI’s
public deployment. Observe that every application uses numerous shared libraries, and

30 B. Liblit

that all but one (SPIM/XSPIM) can be extended at run time through plug-ins. Thus, the
idea that whole-program analysis can see all application code is simply a myth.

Even among the code that is present for analysis, real world software is not al-
ways pretty. I am no C apologist, and I look forward to C’s eventual replacement by
stricter languages that are more amenable to analysis. Until that happens, I need analy-
ses that handle the full, horrific glory that is C: pointer casting, threads, stack-unwinding
longjmp, dynamic code loading . . . the whole terrifying bag of C tricks. This is the
language as it is used in the real world, and this is the language that a static analysis
must handle if it is to be used with CBI in the near term.

6 Conclusion

Cooperative Bug Isolation operates in an messy world of unsafe languages, corrupted
heaps, non-deterministic failures, and incomplete data. Faced with such obstacles, I
rarely achieve or even seek software perfection. Rather, I describe my research as try-
ing to make software suck less. In this ugly domain, even the findings of a “sound” static
analysis may not be entirely trustworthy. Historically, CBI has shied away from deep
static analysis in favor of brute-force data collection and statistical modeling. However,
static analyses can play an important role if applied wisely. Analysis can make instru-
mentation more selective and efficient before deployment, and can augment statistical
modeling in numerous ways after feedback data arrives. I believe that the most powerful
approaches will carefully combine static, dynamic, and statistical methods to leverage
the unique strengths of each. If we can do that, then perhaps even software perfection
is not to much to hope for.

References

1. Liblit, B.:Cooperative Bug Isolation (Winning Thesis of the 2005 ACM Doctoral Dissertation
Competition). LNCS, vol. 4440. Springer, Heidelberg (2007)

2. Driscoll, E., Cooksey, G.: CBI++. CS706 class project, University of Wisconsin–Madison
(December 2006)

3. Hunter, J., Kolpin, G., Saeed, U.: CBI instrumentation for Java bytecode. CS706 class
project, University of Wisconsin–Madison (December 2005)

4. Kolpin, G.: Jikes CBI implementation details. Independent study project, University of
Wisconsin–Madison (May 2006)

5. Liblit, B.: Guide to the bug isolation sampler (January 2008),
http://www.cs.wisc.edu/cbi/developers/guide/

6. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools for
analysis and transformation of C programs. In: Horspool, R.N. (ed.) CC 2002 and ETAPS
2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

7. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.:
The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1-
3), 35–45 (2007)

8. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program sampling.
In: PLDI, pp. 141–154. ACM, New York (2003)

9. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code. In: PLDI,
pp. 168–179 (2001)

http://www.cs.wisc.edu/cbi/developers/guide/

Reflections on the Role of Static Analysis 31

10. Hirzel, M., Chilimbi, T.: Bursty tracing: A framework for low-overhead temporal profiling
(November 24, 2001)

11. Zheng, A.X., Jordan, M.I., Liblit, B., Aiken, A.: Statistical debugging of sampled programs.
In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) NIPS, MIT Press, Cambridge (2003)

12. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: SOBER: statistical model-based bug local-
ization. In: Wermelinger, M., Gall, H. (eds.) ESEC/SIGSOFT FSE, pp. 286–295. ACM, New
York (2005)

13. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-localization
technique. In: Redmiles, D.F., Ellman, T., Zisman, A. (eds.) ASE, pp. 273–282. ACM, New
York (2005)

14. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation.
In: Sarkar, V., Hall, M.W. (eds.) PLDI, pp. 15–26. ACM, New York (2005)

15. Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A.: Statistical debugging: simultane-
ous identification of multiple bugs. In: Cohen, W.W., Moore, A. (eds.) ICML. ACM Interna-
tional Conference Proceeding Series, vol. 148, pp. 1105–1112. ACM, New York (2006)

16. Wassel, H.M.G.H.: An enhanced bi-clustering algorithm for automatic multiple software bug
isolation. Master’s thesis, Alexandria University, Egypt (September 2007)

17. Arumuga Nainar, P., Chen, T., Rosin, J., Liblit, B.: Statistical debugging using compound
Boolean predicates. In: Rosenblum, D.S., Elbaum, S.G. (eds.) ISSTA, pp. 5–15. ACM, New
York (2007)

18. Jiang, L., Su, Z.: Context-aware statistical debugging: from bug predictors to faulty control
flow paths. In: Stirewalt, R.E.K., Egyed, A., Fischer, B. (eds.) ASE, pp. 184–193. ACM, New
York (2007)

19. Andrzejewski, D., Mulhern, A., Liblit, B., Zhu, X.: Statistical debugging using latent topic
models. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron,
A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 6–17. Springer, Heidelberg (2007)

20. Liblit, B., Aiken, A.: Building a better backtrace: Techniques for postmortem program anal-
ysis. Technical Report CSD-02-1203, University of California, Berkeley (October 2002)

21. Lal, A., Lim, J., Polishchuk, M., Liblit, B.: Path optimization in programs and its application
to debugging. In: Sestoft, P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 246–
263. Springer, Heidelberg (2006)

22. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their appli-
cation to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2), 206–263 (2005)

23. Lal, A., Reps, T.W., Balakrishnan, G.: Extended weighted pushdown systems. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448. Springer, Heidelberg
(2005)

24. Cleve, H., Zeller, A.: Locating causes of program failures. In: Roman, G.C., Griswold, W.G.,
Nuseibeh, B. (eds.) ICSE, pp. 342–351. ACM, New York (2005)

25. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE, pp. 30–
39. IEEE Computer Society, Los Alamitos (2003)

26. Nimmer, J.W., Ernst, M.D.: Static verification of dynamically detected program invariants:
Integrating Daikon and ESC/Java. Electr. Notes Theor. Comput. Sci. 55(2) (2001)

27. Canfora, G., Cimitile, A., Lucia, A.D.: Conditioned program slicing. Information & Software
Technology 40(11-12), 595–607 (1998)

28. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation
and Machine Learning). MIT Press, Cambridge (2007)

Relational Analysis of Correlation�

Jörg Bauer1, Flemming Nielson2, Hanne Riis Nielson2, and Henrik Pilegaard2

1 Institut für Informatik, Technische Universität München, Germany
2 DTU Informatics, Technical University of Denmark

Kongens Lyngby, Denmark
joba@model.in.tum.de, {nielson,riis,hepi}@imm.dtu.dk

Abstract. In service-oriented computing, correlations are used to deter-
mine links between service providers and users. A correlation contains
values for some variables received in a communication. Subsequent mes-
sages will only be received when they match the values of the correlation.
Correlations allow for the implementation of sessions, local shared mem-
ory, gradually provided input, or input provided in arbitrary order – thus
presenting a challenge to static analysis.

In this work, we present a static analysis in relational form of correla-
tions. It is defined in terms of a fragment of the process calculus COWS
that itself builds on the Fusion Calculus. The analysis is implemented
and practical experiments allow us to automatically establish properties
of the flow of information between services.

1 Introduction

Process calculi have proved their usefulness in describing and analysing dis-
tributed systems. It is therefore natural that they are also applied to model
and analyse services made available over loosely coupled networks. Correlation
has been identified as a useful feature to model services and hence appears in
emerging service-oriented process calculi [6,7].

Correlation is an idea that stems from executable business process languages
such as BPEL. In the presence of multiple concurrent instances of the same
service, messages sent from a user to the provider must be delivered to the
correct instance of the service. This is achieved by associating specific, already
available data in the messages to maintain a unique reference to a specific service
instance. For example, such data may be derived from personal information like
a social security number.

Technically, in process calculi, correlation may be realised by the decoupling
of name binding and input actions in combination with pattern matching in
input prefixes. Decoupling was first formulated in the Fusion Calculus [15], where
inputs are not binders. Rather, a scope construct (x)P is the only binder binding
x in P . The effect of a communication inside P may then be to fuse x with
another name, e.g., y. The names x and y will then be considered identical. The
scope of the subsequent substitution of y for x will then be all of P . This allows
� This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 32–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relational Analysis of Correlation 33

to model local, shared state, which is essential for correlations. As argued in [4],
this decoupling is impossible to encode naturally in the π-calculus.

Based on these considerations we have delineated the Calculus for Web Ser-
vices, CWS. It is mainly a fragment of the Calculus of Orchestration of Web
Services (COWS, [7]) developed in the EU project SENSORIA. In contrast to the
Fusion Calculus (or D-Fusion developed in [4]), COWS is clearly service-centred
and focuses on, among others, correlation. In CWS, however, we discard some
of the technicalities associated with session management.

The goal of this work is not the design of a new language but the development
of a relational analysis for correlation. The insights gained here should be easily
transferable to any other correlation-based language for services.

Contribution. The study of process calculi is a challenging avenue for the de-
velopment and application of static analysis. Such analyses often tend to fall
between two extremes: rather simple 0-CFA analyses (e.g., [3]) expressing only
rudimentary properties, or extremely powerful relational and polyhedral analy-
ses (e.g., [17,5]). The latter technology seems to be mastered by only a few, and
hence might not obtain widespread use, and furthermore seems to require that
the calculus in question be presented in a non-trivial normalised form in order
to aid the analysis thereby making it a major effort to apply the techniques. To
be specific, the work of [17] on developing relational and polyhedral analyses for
the π-calculus depends heavily on the PhD thesis of [16] that develops the non-
trivial normalised form used. We therefore consider it an important achievement
of our work that we populate the middle ground between the two extremes –
this approach was used successfully in [9] dealing with the π-calculus. Here we
apply this approach to develop a relational static analysis for correlation, which
is a challenging and highly relevant aspect of process calculi for service-oriented
computing. To the best of our knowledge [2], we are the first to develop a static
analysis for a descendant of the Fusion Calculus.

Outline. In Section 2, we shall introduce the CWS calculus and illustrate it
by giving an example of an accident service. In Section 3, we develop a static
analysis in relational form for CWS. Before we report on our implementation
and experimental results, we establish the correctness of our analysis expressed
by two major theorems, subject reduction and adequacy. It is noteworthy that
our subject reduction result does not claim that analysability is preserved under
reduction, but rather that a stronger notion of “analysability of all permitted
instances” is preserved under reduction. This provides a new insight in the de-
velopment of static analyses of process calculi. Section 5 reports on related work
and Section 6 concludes.

2 Calculus for Web Services

Table 1 defines the syntactic domains and the syntax of CWS, the Calculus for
Web Services. We have three syntactic domains, names, variables, and labels.

34 J. Bauer et al.

Table 1. Syntax of CWS and its syntactic domains. Service invocation, request pro-
cessing, as well as the variable scope are decorated with labels, � ∈ Lab. An overline
denotes tuples, for instance, x̄ denotes tuples of variables.

s ::= Services

u • u′!v̄� (invoke)
| g (input-guarded choice)
| s | s (parallel composition)
| (n)s (name binding box)
| [x]�s (variable scope)
| ∗s (replication)

g ::= (input-guarded choice)
0 (nil)

| p • o?v̄�.s (request processing)
| g + g (choice)

Name Domain Symbols
Variables Var x, y
Names Name n, m
Partners Name p, p′

Operations Name o, o′

Name ∪ Var u, v
Labels Lab �

While the latter merely serve as pointers into the syntax guiding the analysis
specification of Section 3, names denote computational values and variables are
used to bind names. In the sequel we assume that services are consistently la-
belled: two equally labelled actions are either both inputs – they coincide on
partner, operation, and on the input length – or both outputs – they coincide
on the output length.

The computational entities of CWS are called services. In contrast to, e.g.,
the π-calculus, communication endpoints in CWS are pairs p • o of a partner
and an operation modeling several services available at the same site. Commu-
nication endpoints at reception sites are statically determined, because a service
is supposed to know itself. In contrast, received partner and operation names
may be used for subsequent service invocation. Additionally, CWS has output –
rendered asynchronous by the missing continuation after the service invocation
– input actions, input-guarded choice, parallel composition, name binding, vari-
able scope declaration, and replication; each with the expected meaning. Names
in input prefixes are used for pattern matching.

Variable binding and global scope are defined similarly to the Fusion Calculus
and differently from π-like calculi: Variables are not bound at input actions, the
only variable binder is the scope construct [x]�s. If variable x occurs in an input
action a, at which name n may be received, then the scope of the induced
substitution, [x �→ n], is the whole of s; not just the continuation of a.

2.1 An Accident Service

Our running example is given in Table 2. It describes an arbitrary number of cars
(1-3) that have subscribed to an accident service (4-10). Each car is equipped
with a GPS device tracking its position. In case an on-board sensor detects any
abnormal behaviour, the alarm operation of the service centre is invoked (1) by

Relational Analysis of Correlation 35

Table 2. An accident service

∗(self) ∗(gps) ∗(sid) ps • oalarm!〈acc, self, sid〉1 (1)
| (self • oconfirm?〈sid〉2.ps • oconfirm!〈ok, self, sid〉3 + (2)

self • oconfirm?〈sid〉4.ps • oconfirm!〈ko, gps, sid〉5) (3)
∗[xinfo]

6 [xid]
7 [xreply]

8 [xsid]
9 ps • oalarm?〈acc, xid, xsid〉10. (4)

xid • oconfirm!〈xsid〉11 (5)
| ps • oconfirm?〈xreply, xinfo, xsid〉12. (6)

ps • oSos!〈xreply, xinfo, xsid〉13 (7)
| ps • oSos?〈ko, xinfo, xsid〉14. (8)

pamb • oSos!〈xinfo, xsid〉15 (9)
| ps • oSos?〈ok, xinfo, xsid〉16.0 (10)

sending an accident message with the identity self of the driver and the nonce sid,
which prevents malign session interference. The centre processes this request (4)
and asks for confirmation (5), whereupon the alarm is either revoked (ok,2) or
confirmed (ko,3) by the driver. The driver identity is attached to the revocation
message, while the current GPS position is attached to the confirmation message.
Then the centre processes the answer and invokes another internal service (6,7).
Depending on the driver’s answer either an ambulance is called and informed
about the location of the accident (8,9), or a false alarm is detected (10).

Note that there may be many cars around having a number of false alarms
involving different locations. Due to the safety-critical nature of this example,
the service centre must be able to handle many of these service calls concurrently
without mixing up information from different sessions. In particular, we would
like to guarantee (and shall indeed show) that:

1. The ambulance is not called, when an ok was received.
2. Messages sent to the ambulance always contain GPS information. Note, that

the validity of this property is not obvious, since xinfo may be bound to both
driver identities and positions at run-time.

3. If several cars employ the accident service at once, then only the positions
of the ones confirming the accident are reported to the ambulance.

2.2 Labelled Transition System for CWS

To define the semantics of CWS we employ a notion of structural congruence
defined as the least congruence that incorporates the axioms of Table 3, con-
tains disciplined α-renaming of names1, and asserts that choice and parallel are
associative, commutative, and have 0 as neutral element. We do not allow the ex-
trusion of variable scopes. Rather, [Binder4] allows the binding boxes of names
to migrate freely in and out of variable scopes. Substitutions, σ, are mappings

1 For disciplined α-renaming, we identify each name with its defining syntactic oc-
currence, its canonical name, thus partitioning the name space into finitely many
equivalence classes rendering canonical names stable under evaluation.

36 J. Bauer et al.

Table 3. An excerpt of the CWS structural congruence rules. For a given service
expression s, fn(s) denotes the set of free names.

∗0 ≡ 0 [Repl1]
∗s ≡ s | ∗s [Repl2]

(n)0 ≡ 0 [Binder1]
(n)(m)s ≡ (m)(n)s [Binder2]

s1 | (n)s2 ≡ (n)(s1 | s2) if n �∈ fn(s1) [Binder3]
[x](n)s ≡ (n)[x]s [Binder4]

with domain Var → Name. The application of a substitution, [x �→ n], to a
service s is written s · [x �→ n] and replaces free occurrences of x in s by n.
The disjoint union of two substitutions σ1 and σ2 is written σ1 � σ2 and the
substitution with empty domain is written ∅. A tuple ū of names and variables
is matched against a tuple n̄ of names as follows (yielding a substitution):

M(x, n) = x �→ n M(n, n) = ∅ M(u1, n1) = σ1 M(ū2, n̄2) = σ2

M((u1, ū2), (n1, n̄2)) = σ1 � σ2

The semantics of CWS (Table 4) is given as a labelled transition system using
transition labels α:

α ::= (p • o) � n̄� | (p • o) � ū� | p • o�σ�ū�i n̄�o

Transition labels (p • o) � n̄� and (p • o) � ū� result from applying rules for
invocation and reception of names, respectively, that is, rules [Inv] and [Rec].
They can engage in a communication ([Com]) giving rise to a transition label
p•o�σ�ū�in̄�o , where σ is the resulting substitution. Note that the only transition
labels being observable are those of the form p•o�∅�ū�in̄�o . We use d(α) to denote
the set of names and variables occurring in α; if α = p • o�σ�ū�i n̄�o then d(α)
contains only the names and variables in the domain and codomain of σ.

At top level, the semantics is only defined for closed services, that is, no free
variables may occur when a computation step is applied. Deeper in the inference
tree there may of course be free occurrences of variables. A substitution [x �→ n]
is only applied, when the enclosing scope of x is met ([Delsub]). This ensures
that the effect of a communication is visible globally within a scope and allows
to model shared memory of a session instance. Services can proceed normally
under name bindings or variable scopes, unless the enclosing entity is mentioned
by the transition label ([Name] and [Scope]). Note that for an output to occur
all variables in it must have been substituted by names earlier ([Inv]).

Comparison with COWS. CWS lacks the orchestration constructs (kill and pro-
tect) found in COWS, because we focus on correlation rather than on orches-
tration. The semantics of CWS and COWS are comparable up to rule [Com]:
Let two different communications both yield a valid match. While our rule picks
non-deterministically from the set of choices, the COWS semantics [7] imposes a
constraint, noc, selecting the match that gives rise to the smallest substitution.

Relational Analysis of Correlation 37

Table 4. CWS operational semantics

[Inv] p • o!n̄�
(p•o)�n̄�

 0 [Rec] p • o?ū�.s
(p•o)�ū�

 s

[Choice]
g1

α

 s

g1 + g2
α

 s

[Delsub]
s

p•o�σ�[x �→n]	ū�in̄�o

 s′

[x]�s
p•o�σ	ū�i n̄�o

 s′ · [x �→ n]

[Name]
s

α

 s′ n �∈ d(α)

(n)s
α

 (n)s′

[Scope]
s

α

 s′ x �∈ d(α)

[x]s
α

 [x]s′

[Com]
s1

(p•o)�ū�i

 s′

1 s2
(p•o)�n̄�o

 s′
2 M(ū, n̄) = σ

s1 | s2
p•o�σ	ū�i n̄�o

 s′
1 | s′

2

[Par]
s1

α

 s′
1

s1 | s2
α

 s′

1 | s2

[Cong]
s ≡ s1 s1

α

 s2 s2 ≡ s′

s
α

 s′

In case of equally long substitutions, the choice is random. In [7], this feature is
used to distinguish (less instantiated) service definitions from (more instantiated)
service instances. However, we omit this feature from our semantics, because it
is not analysed, and our analysis would still produce a valid over-approximation
if we used it. In order to prevent malign session interferences we adapt what is
considered good style in communication protocols, where one relies on the use
of nonces or shared secrets (or indeed shared keys) to ensure that sessions do
not interfere. Finally, note that it is indeed possible to implement the Fusion-like
scoping by using explicit environments in the semantics – however, as anywhere
else, we decided to follow COWS as closely as possible.

3 A Relational Analysis for CWS

In this section, we develop a relational static analysis [10] for CWS: For each
program label � – invocation, processing, and variable scope – we compute sets of
tuples of names to which the variables that are in scope at �may be bound at run-
time. Tracking sets of tuples makes the analysis relational, while an independent
analysis would track tuples of sets and loose track of which variables are bound
at the same time.

Auxiliary Information. A label environment, L, is defined as a mapping

L : Lab → (Var × Lab)∗

38 J. Bauer et al.

Table 5. Label environment Lx̄[[s]] and flow information F [[s]]

Lχ̄[[0]] = []
Lχ̄[[u • u′!v̄�]] = [� �→ χ̄]

Lχ̄[[p • o?ū�.s]] = Lχ̄[[s]] � [� �→ χ̄]
Lχ̄[[(n)s]] = Lχ̄[[s]]
Lχ̄[[∗s]] = Lχ̄[[s]]

Lχ̄[[[x]
�s]] = Lχ̄x� [[s]] � [� �→ χ̄]

Lχ̄[[s1 | s2]] = Lχ̄[[s1]] � Lχ̄[[s2]]
Lχ̄[[s1 + s2]] = Lχ̄[[s1]] � Lχ̄[[s2]]

F [[0]] = ([], ∅)
F [[u • u′!v̄�]] = ([], {�})

F [[p • o?ū�.s]] = let (F, E) = F [[s]]
in (F � [� �→ E], {�})

F [[(n)s]] = F [[s]]
F [[∗s]] = F [[s]]

F [[[x]�s]] = let (F, E) = F [[s]]
in (F � [� �→ E], {�})

F [[s1 | s2]] = F [[s1 + s2]]
= let (F1, E1) = F [[s1]]

(F2, E2) = F [[s2]]
in (F1 � F2, E1 ∪ E2)

that to each label � associates a sequence χ̄ ∈ (Var×Lab)∗ of pairs of variables
and labels that have been introduced before this point in the process; the label
indicates the exact scope where the variable was introduced. Formally, we shall
take L = Lε[[s]], where Lχ̄ is defined in Table 5. Here we write � for joining two
mappings with disjoint domains and [] for the mapping with empty domain. The
notation χ̄1χ̄2 stands for the concatenation of χ̄1 and χ̄2. Furthermore, we write
x#L.� for the label, at which x at position � was defined, taking into account
that the most recently introduced definition of x is the rightmost:

x#〈x�1
1 , . . . , x

�k

k 〉 = �t, if t = max{i | xi = x}

This notion is only defined, when x is among the xi, which will always be the
case, when we use it.

Flow of control in a service s is represented a flow mapping F that to each label
� associates the set of labels that will become visible once the action labelled �
has been executed; thus

F : Lab ↪→ P(Lab)

Function F in Table 5 computes the flow mapping, F, together with the set E
of visible labels of a service s, where (F,E) = F [[s]]. When applying F and L to
labels, we shall write L.� and F.� instead of L(�) and F(�).

Example 1. Label environment computed from the running example in Table 2:

L.1 = L.2 = L.3 = L.4 = L.5 = L.6 = ε L.7 = 〈(xinfo , 6)〉
L.8 = 〈(xinfo , 6), (xid, 7)〉 L.9 = 〈(xinfo, 6), (xid, 7), (xreply, 8)〉
L.10 = L.11 = · · · = L.16 = 〈(xinfo, 6), (xid, 7), (xreply, 8), (xsid, 9)〉

In the sequel, we shall often write pairs like (xinfo, 6) using superscript as in x6
info.

Two examples of flow information are F.9 = {10, 12, 14, 16} and F.10 = {11}.
Finally, the set of visible labels for the running example is {1, 2, 4, 6}. ��

Relational Analysis of Correlation 39

Analysis Domain. The abstract environments R̂ of the analysis will, given a label
�, return a set of sequences. Each element of such a sequence can either be a
name or the undefined symbol ⊥. The latter denotes cases, where a variable has
not been assigned a value yet. This helps to track gradually provided inputs.
The length of these sequences will equal that of L.�. We will thus determine the
potential values of the variables at the point determined by � and take:

R̂ : Lab → P(Name∗⊥)

where Name⊥ = Name∪{⊥}.2 We shall use w to denote elements of Name⊥.
If R̂.� = ∅ it means that the program point � is not reachable; if R̂.� = {ε} then
also L.� = ε and it means that no variable has been introduced at that program
point.

The potential values of a variable x at the label � are computed by Πx@L.�(w̄),
where w̄ has the same length as L.� and x occurs in L.�. In cases with more than
one occurrence of x in L.� we select the rightmost, i.e., the most recently declared
one. Formally:

Πx@L.�(w̄) = wt

where w̄ = 〈w1, . . . , wk〉, L.� = 〈x�1
1 , . . . , x

�k

k 〉, and t = max{i | xi = x}. Note,
that the result may be ⊥. The operation is trivially extended to names, n:
Πn@L.�(w̄) = n Also, it is extended to sequences, ū, of variables and names, as
in Πū@L.�(w̄), and to sets, R, of such sequences, i.e., Πū@L.�(R). The abstract
communication cache

K̂ ⊆ Name×Name×Name∗

records the tuples of names that potentially are communicated over the channels.
Elements of the domain are triples representing a partner, an operation, and the
tuple of names communicated. In K̂, we keep track of names only, there is no ⊥
involved.

Analysis Specification. The judgements of the analysis have the form

R̂, K̂ L,F s

where L, F, R̂, and K̂ are as above. Intuitively, the judgements defined in Table 6
determine whether a given pair (R̂, K̂) is a valid analysis result. The computation
of such a pair is described in Section 4.2.

The first five rules are recursive cases. The rule [RInv] deals with invocations.
It looks up the available bindings of the involved variables in R̂ and records the
resulting tuples in the abstract communication cache, K̂. Since the lookup may
yield undefined values, we need to intersect with Name∗.

Rule [RScope] extends all variable bindings available at scope definition �
with a single ⊥ and passes the information on to the program points following
�. This reflects that a newly introduced variable is not yet bound.
2 Again, all the names tracked in the analysis are canonical.

40 J. Bauer et al.

Table 6. Specification of the analysis judgement R̂, K̂ �L,F s

[RNil] R̂, K̂ �L,F 0 [RRep]
R̂, K̂ �L,F s

R̂, K̂ �L,F ∗s
[RName]

R̂, K̂ �L,F s

R̂, K̂ �L,F (n)s

[RPar]
R̂, K̂ �L,F s1 R̂, K̂ �L,F s2

R̂, K̂ �L,F s1 | s2
[RChoice]

R̂, K̂ �L,F s1 R̂, K̂ �L,F s2

R̂, K̂ �L,F s1 + s2

[RInv] R̂, K̂ �L,F u • u′!v̄� if Πuu′v̄@L.�(R̂.�) ∩ Name∗ ⊆ K̂

[RScope]
R̂, K̂ �L,F s

R̂, K̂ �L,F [x]�s
if ∀�′ ∈ F.� : R̂.� × {⊥} ⊆ R̂.�′

[RRec]
X �= ∅ ⇒ R̂, K̂ �L,F s

R̂, K̂ �L,F p • o?ū�.s
if

∀�′ ∈ F.� : X ⊆ R̂.�′

∀x ∈ {ū} ∀�x ∈ (F.(x#L.�)) : Yx ⊆ R̂.�x

where X = {w̄ ∈ R̂.� | Πpoū@L.�(w̄) ∈ K̂}
and Yx = {w̄n ∈ Name∗

⊥ | w̄ ∈ R̂.(x#L.�) ∧
∃w̄′ ∈ Name∗

⊥ : Πpoū@L.�(w̄nw̄′) ∈ K̂ }

Finally, the rule [RRec] describes two different flows. First, it ensures that
all possible bindings at � that may lead to a communicated tuple will indeed
flow to the subsequent visible labels (expressed in the set X); only if this set
is non-empty is it possible to perform the input, hence the test X �= ∅ is a
reachability condition for the continuation s. Second, for each variable x of the
input pattern, we record in the set Yx which names may be bound to x by any
communication that matches this input pattern. This information flows to the
labels just after the scope at which x was introduced (denoted by F.(x#L.�)).

In addition to the satisfaction of the analysis judgement, we require some
initialisation information, stating that ε is available at all globally visible labels:

Definition 1. Let s be a service, (F,E) = F [[s]] its flow information, and L =
Lε[[s]] its label environment. A pair (R̂, K̂) is an acceptable analysis estimate for
s, if and only if R̂, K̂ L,F s and ε ∈ R̂.� for all � ∈ E.

Example 2. An acceptable analysis estimate – and in fact the least, that is, most
precise one – of the running example of Table 2 comprises:

K̂ = { 〈ps, oalarm, acc, self, sid〉, 〈ps, oconfirm, ok, self, sid〉,
〈ps, oconfirm, ko, gps, sid〉, 〈self, oconfirm, sid〉, 〈ps, oSos, ok, self, sid〉,
〈ps, oSos, ko, gps, sid〉, 〈pamb, oSos, gps, sid〉 }

Regarding the abstract environments, we state only R̂.13 and R̂.15 explicitly,
because they are most relevant with respect to the properties we are interested in.
Recall that both L.13 and L.15 amount to 〈(xinfo, 6), (xid, 7), (xreply, 8), (xsid, 9)〉.

R̂.13 = {〈self, self, ok, sid〉, 〈self,⊥, ok, sid〉, 〈gps, self, ko, sid〉, 〈gps,⊥, ko, sid〉}
R̂.15 = {〈gps, self, ko, sid〉, 〈gps, self,⊥, sid〉, 〈gps,⊥, ko, sid〉, 〈gps,⊥,⊥, sid〉}

Relational Analysis of Correlation 41

Reconsider the three properties stated in Section 2.1. Property 1 states that the
ambulance is not called, when an ok was received. The ambulance is called at
label 15. In the analysis result, we can see that the value of xreply (the third
position in the tuples) cannot be ok proving property 1. Note that at label 13,
ok may still occur.

Property 2 requires that an ambulance is only called with location informa-
tion. It is shown by inspecting K̂, which over-approximates all messages sent: All
message involving pamb in K̂ contain gps only.

Property 3 is not so easy to show for the analysis as is. We are able to establish
it, if we unfold the definition of cars a finite number of times, though. The
analysis will then show, that malign interferences are prevented by the session
id sid. The formal result justifying our reasoning about properties in this example
is stated in Theorem 2 below. ��

4 Properties of the Analysis

In this section, we establish the formal correctness of our analysis. We start by
defining a correctness predicate, which states the analysability of all permitted
substitutions of an analysable service, and show that its validity is preserved
under observable computation steps. This constitutes our subject reduction re-
sult (Theorem 1). It is shown in [1] that mere analysability is not preserved
under reduction. Theorem 2 states that all actually sent messages and all po-
tential variable bindings are correctly recorded in the analysis. We conclude this
section by reporting on experiments using the implementation of our analysis.
The feasibility of this implementation relies on the Moore family property of the
set of all acceptable analyses guaranteeing the existence of least (most precise)
solutions (Theorem 3).

4.1 Correctness

In the following we assume an arbitrary but fixed given program s	, as well as
its flow information F = F [[s]], its label and its visible labels (L,E) = Lε[[s]].
Moreover, we define the notion E(s) of the exposed actions of a service s, which
is a set of input and output prefixes, such that E(u • u′!v̄�) = {u • u′!v̄�}, E(p •
o?v̄�.s) = {p • o?v̄�.s}, E(∗s) = E((n)s) = E([x]s) = E(s), E(0) = ∅, E(s1 | s2) =
E(s1+s2) = E(s1)∪E(s2). Finally, we define an extended version of substitution.
Let s = p • o?v̄�.s′ or s = u • u′!ū� and let w̄ ∈ R̂.� where L.� = 〈x1, . . . , xk〉 and
w̄ = 〈w1, . . . , wk〉. Then we define

s[w̄/L.�] = (. . . (s · [xk �→ wk]) · . . .) · [x1 �→ w1]

where s · [x �→ ⊥] = s.
Intuitively, the correctness predicate of Definition 2 holds of a service s ob-

tained by semantic reduction from s	, if all exposed actions s′ of s have a coun-
terpart s′′ in s	, such that s′′ is correctly analysed and such that s′′ is congruent

42 J. Bauer et al.

to s′ when instantiating it with information computed by the analysis. In other
words, the correctness predicate describes the analysability of permitted substi-
tution instances.

Definition 2 (Correctness Predicate). A service s satisfies the correctness
predicate with respect to s	, written R̂, K̂ |=s� s if and only if (1-4) hold.

1. R̂, K̂ L,F s	

2. ∀� ∈ E : ε ∈ R̂.�
3. For all p • o?ū�.s′ ∈ E(s) there exists a subexpression p • o?v̄�.s′′ of s	 s.t.

– R̂, K̂ L,F p • o?v̄�.s′′ and
– ∃w̄ ∈ R̂.� : p • o?ū�.s′ ≡ p • o?v̄�.s′′[w̄/L.�]

4. For all v • v′!v̄� ∈ E(s) there exists a subexpression u • u′!ū� of s	 s.t.
– R̂, K̂ L,F u • u′!ū� and
– ∃w̄ ∈ R̂.� : v • v′!v̄� ≡ u • u′!ū�[w̄/L.�]

Lemma 1 states some obvious compositionality properties of the correctness
predicate. The proof is straightforward from Definition 2.

Lemma 1 (Compositionality). Let s, s1, s2 be services, x a variable and n a
name. It holds:

– R̂, K̂ |=s� s1 | s2 if and only if R̂, K̂ |=s� s1 and R̂, K̂ |=s� s2.
– R̂, K̂ |=s� s1 + s2 if and only if R̂, K̂ |=s� s1 and R̂, K̂ |=s� s2.
– R̂, K̂ |=s� (n)s if and only if R̂, K̂ |=s� s.
– R̂, K̂ |=s� [x]�s if and only if R̂, K̂ |=s� s.

Moreover, if s1 ≡ s2 then R̂, K̂ |=s� s1 if and only if R̂, K̂ |=s� s2.

We are now able to state our subject reduction result. Note that the correctness
predicate is only preserved at top-level, that is, when talking about observable
computation steps. A computation step is observable, when the substitution
of the transition label is empty, that is, when all substitutions induced by a
communication have happened.

Theorem 1 (Subject Reduction). Let s1 and s2 be services. If R̂, K̂ |=s� s1

and s1
p•o	∅�ū�i n̄�o

 s2 then R̂, K̂ |=s� s2.

The proof uses Lemma 1 and is given in [1]. It requires an even stronger induc-
tion hypothesis than provided by the correctness predicate, because we have to
deal with all possible transition labels, in particular with transition labels car-
rying non-empty substitutions. The stronger induction hypothesis then makes a
connection between these substitutions and the analysis result.

The following theorem constitutes the adequacy of our analysis and is proven
in [1]. It states that every communication triggering an observed substitution
and the substitution itself are in fact recorded in the analysis information.

Theorem 2 (Adequacy). If (R̂, K̂) is an acceptable analysis of s	 and if

s	 →∗ s
p•o	∅�ū�o n̄�i

 s′ then 〈pon̄〉 ∈ K̂ and n̄ ∈ Πū@L.�i(R̂.�i).

Relational Analysis of Correlation 43

4.2 Implementation

The basis of our implementation relies on the following Moore family result. It
ensures the existence and the uniqueness of a least acceptable analysis result.
Its proof is obvious from the syntax directed analysis specification.

Theorem 3 (Moore Family). For any service s the set of acceptable analysis
estimates under L,F constitutes a Moore family, i.e.,

∀A ⊆ {R̂, K̂ | R̂, K̂ L,F s} : �A ∈ {R̂, K̂ | R̂, K̂ L,F s}.

If we, by a change of perspective, view the analysis specification as logical for-
mulas and acceptable results as models of these formulas, then the Moore family
result turns into a model intersection property ensuring a least model corre-
sponding to the least acceptable analysis result.

We have implemented a fully functional prototype in Standard ML generating
clauses that lie within the Alternation-free Least Fixed Point (ALFP) fragment
of first order logic. Least models of such formulas always exist and can be com-
puted efficiently by, e.g., the Succinct Solver [13,11].

Example 3. The input communication of line (6) of Table 2 gives rise to the
following clause:

∀xinfo, xid, xreply, xsid :

R̂.12(xinfo, xid, xreply, xsid) ∧ K̂(ps, oconfirm, xreply, xinfo, xsid) ⇒
[R̂.13(xinfo, xid, xreply, xsid) ∧ φ ∧ ψ]

This specifies the flow into R̂.13: All variable bindings available at R̂.12 leading
to a tuple that may be communicated flow to the continuation at line (7). This
corresponds to the X set in rule [RRec]. Formula φ in the clause above corre-
sponds to the Yx set and is left out for brevity. Formula ψ in the clause above
corresponds to line (7) of the example representing the analysis of an output
according to [RInv] and specifying a flow into K̂

ψ = ∀xinfo, xid, xreply, xsid :

R̂.13(xinfo, xid, xreply, xsid) ∧ xsid �= ⊥ ∧ xinfo �= ⊥ ∧ xreply �= ⊥ ⇒
K̂(ps, oSos, xreply, xinfo, xsid)

��

Complexity. Three quantities determine the complexity of solving the derived
ALFP clause:

– the number n of names used in the program,
– the maximal nesting depth of variables, bounded by m = max�∈Lab|L.�|, and
– the maximal length of any sent message, bounded by k = maxu•u′!ū∈s|ū|.

44 J. Bauer et al.

The size of the logical universe is bounded by n, while m and n decide the
maximal arity of relations. Furthermore, the maximal nesting depth is decided by
m, which, by Proposition 1 of [12], results in a complexity bound of O(n3+k+m).
This is exponential in the worst case, which is only realised by pathological
service specifications, s, where the number of sequenced inputs (m) and/or the
arity of sent messages (k) are linear in the size (n) of s. For realistic CWS

services, the complexity will be polynomially bound by constants m and k. For
the accident service the solution was found in less than a second.

5 Related Work

The separation of scope and binding occurrence of a variable is originally due to
Parrow and Victor, who used it to model locally shared memory in the Fusion
Calculus [15]. In contrast to CWS, there is only one syntactic category, names,
rendering input and output symmetric, i.e., input and output designation can
be exchanged while yielding the same fusion.

In [4], the calculus D-Fusion is proposed. It extends the Fusion Calculus with
another binder similar to restriction in π-calculus. It retains the symmetry of
actions, in fact, it does not even distinguish input and output at all. Apart from
this symmetry, D-Fusion is quite close to CWS. However, we prefer to consider
CWS as a subset of the COWS [7] calculus, because the latter is more focused
on correlations and their use in service-oriented computing.

COWS retains a variant of separation of input and name binding in order
to faithfully model correlation. In contrast to Fusion and D-Fusion, inputs and
outputs are clearly distinguished, in particular by using two syntactic categories,
names and variables, where only substitutions of names for variables are possible.
COWS also features pattern matching in input prefixes facilitating correlations.
While we, too, embrace these concepts we discard some of the technicalities asso-
ciated with session management and do not consider the fault and compensation
facilities provided by COWS.

To the best of our knowledge [2] the present static analysis is the first static
analysis, which is not a type system, developed for the Fusion Calculus or its
descendants. Also, it seems to be the first static analysis of correlation. Our
analysis is relational in form, which has previously been investigated in the sim-
pler context of the π-calculus [9] based on a reaction semantics. The present
development retains the simplicity of the former, even in the context of a more
complicated calculus with a labelled structural operational semantics, and tes-
tifies to the flexibility of the Flow Logic specification style [14]. In contrast, pre-
vious relational approaches [17,5], fashioned within the framework of Abstract
Interpretation, have relied on highly customised syntax and semantics and are
not easily extended beyond the original context of the π-calculus.

In the context of COWS, Lapadula et. al. use type systems in order to enforce
distribution policy annotations [8]. For this approach to work the user has to
annotate each piece of data with a region of maximal dissemination (a set of ser-
vice principals). Static inference combined with a typed semantics, performing

Relational Analysis of Correlation 45

appropriate run-time checks, then ensures that the policy is never violated. In
contrast, our approach relies neither on user-provided annotations, nor dynamic
type-checking. It is fully static and automatically computes a very precise esti-
mate of the data-sets that may reach every single program point. The specified
information is very general; hence a region based policy can easily be tested
against the computed result. In [8], the complexity of the type system is not
discussed, but the general tendency is that checking is polynomial, whereas in-
ference is exponential. In the case of the Succinct Solver, however, there is no
complexity gap between checking and inference [13] – both are polynomial for
non-pathological specifications.

6 Conclusion

In this paper we have delineated the process calculus CWS for implementing
correlation based services in order to focus on the essentials of correlation, e.g.,
separation of binding and input and pattern matching. We expect that our anal-
ysis of CWS transfers easily to other correlation based process calculi. CWS is
formulated in a form resembling COWS but lacking its orchestration constructs.
In future extensions, we aim at adding these features.

We developed a relational analysis for the CWS process calculus and showed
its usefulness for ensuring that service invocations do not interfere in malign
ways. We have based our work on a recent relational analysis developed for the
π-calculus [9] thereby supporting the claim that the Flow Logic framework facil-
itates transferring analysis insights between languages (being programming lan-
guages or process calculi). While more powerful approaches to relational analysis
exist, in particular the work of polyhedral analysis of certain π-processes [17,5],
they are substantially harder to transfer to other language because they rely on a
special “normal form” for processes established a priori (in case of the π-calculus
in the PhD-thesis of [16]).

Despite the guidance offered by the Flow Logic framework and the relational
analysis developed for the π-calculus in [9], correlations, i.e., the separation of
scope from binding, have presented profound obstacles that we have managed to
solve. A key ingredient is the use of ⊥ to denote the “presence” of a variable that
has not yet received its value; this technique is being used in rather deep ways
to ensure the semantic correctness of the analysis. The correctness result follows
the approach pioneered in [9] in making use of a subject reduction result where
“analysability” is not preserved under reduction, whereas the more complex
notion of “analysability of all permitted substitution instances” is.

References

1. Bauer, J., Nielson, F., Nielson, H.R., Pilegaard, H.: Relational analysis of correla-
tion. Technical report, Technical University of Munich (2008)

2. Victor, B.: Personal communication (October 2007)

46 J. Bauer et al.

3. Bodei, C., Degano, P., Nielson, F., Nielson, H.R.: Static analysis for the π-calculus
with applications to security. Information and Computation 168, 68–92 (2001)

4. Boreale, M., Buscemi, M.G., Montanari, U.: D-fusion: A distinctive fusion calcu-
lus. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 296–310. Springer,
Heidelberg (2004)

5. Feret, J.: Dependency analysis of mobile systems. In: Le Métayer, D. (ed.) ESOP
2002 and ETAPS 2002. LNCS, vol. 2305, pp. 314–330. Springer, Heidelberg (2002)

6. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

7. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, Springer, Heidelberg (2007)

8. Lapadula, A., Pugliese, R., Tiezzi, F.: Regulating data exchange in service oriented
applications. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp.
223–239. Springer, Heidelberg (2007)

9. Nielson, F., Nielson, H.R., Bauer, J., Nielsen, C.R., Pilegaard, H.: Relational anal-
ysis for delivery of services. In: Trustworthy Global Computing (to appear, 2007)

10. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

11. Nielson, F., Nielson, H.R., Sun, H., Buchholtz, M., Hansen, R.R., Pilegaard, H.,
Seidl, H.: The succinct solver suite. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 251–265. Springer, Heidelberg (2004)

12. Nielson, F., Seidl, H.: Control-flow analysis in cubic time. In: Sands, D. (ed.) ESOP
2001 and ETAPS 2001. LNCS, vol. 2028, pp. 252–268. Springer, Heidelberg (2001)

13. Nielson, F., Seidl, H., Nielson, H.R.: A succinct solver for ALFP. Nord. J. Com-
put. 9(4), 335–372 (2002)

14. Nielson, H.R., Nielson, F.: Flow Logic: a multi-paradigmatic approach to static
analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

15. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile
processes. In: LICS, pp. 176–185 (1998)

16. Turner, D.N.: The Polymorphic Pi-calulus: Theory and Implementation. PhD the-
sis, University of Edinburgh (1996)

17. Venet, A.: Automatic determination of communication topologies in mobile sys-
tems. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 152–167. Springer, Heidel-
berg (1998)

Convex Hull of Arithmetic Automata

Jérôme Leroux

LaBRI, Université de Bordeaux, CNRS
Domaine Universitaire, 351, cours de la Libération,

33405 Talence, France
leroux@labri.fr

Abstract. Arithmetic automata recognize infinite words of digits de-
noting decompositions of real and integer vectors. These automata are
known expressive and efficient enough to represent the whole set of so-
lutions of complex linear constraints combining both integral and real
variables. In this paper, the closed convex hull of arithmetic automata is
proved rational polyhedral. Moreover an algorithm computing the linear
constraints defining these convex set is provided. Such an algorithm is
useful for effectively extracting geometrical properties of the whole set of
solutions of complex constraints symbolically represented by arithmetic
automata.

1 Introduction

The most significant digit first decomposition provides a natural way to associate
finite words of digits to any integer. Naturally, such a decomposition can be
extended to real values just by considering infinite words rather than finite
ones. Intuitively, an infinite word denotes the potentially infinite decimal part of
a real number. Last but not least, the most significant digit first decomposition
can be extended to real vectors just by interleaving the decomposition of each
component into a single infinite word.

Arithmetic automata are Muller automata that recognize infinite words of
most significant digit first decompositions of real vectors in a fixed basis of de-
composition r ≥ 2 (for instance r = 2 and r = 10 are two classical basis of
decomposition). Sets symbolically representable by arithmetic automata in ba-
sis r are logically characterized [BRW98] as the sets definable in the first order
theory FO (R,Z,+,≤, Xr) where Xr is an additional predicate depending on the
basis of decomposition r. In practice, arithmetic automata are usually used for
the first order additive theory FO (R,Z,+,≤) where Xr is discarded. In fact this
theory allows to express complex linear constraints combining both integral and
real variables that can be represented by particular Muller automata called de-
terministic weak Buchi automata [BJW05]. This subclass of Muller automata has
interesting algorithmic properties. In fact, compared to the general class, deter-
ministic weak Buchi automata can be minimized (for the number of states) into
a unique canonical form with roughly the same algorithm used for automata rec-
ognizing finite words. In particular, these arithmetic automata are well adapted

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 47–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 J. Leroux

to symbolically represent sets definable in FO (R,Z,+,≤) obtained after many
operations (boolean combinations, quantifications). In fact, since the obtained
arithmetic automata only depends on the represented set and not on the po-
tentially long sequence of operations used to compute this set, we avoid unduly
complicated arithmetic automata. Intuitively, the automaton minimization algo-
rithm performs like a simplification procedure for FO (R,Z,+,≤). In particular
arithmetic automata are adapted to the symbolic model checking approach com-
puting inductively reachability sets of systems manipulating counters [BLP06]
and/or clocks [BH06]. In practice algorithms for effectively computing an arith-
metic automaton encoding the solutions of formulas in FO (R,Z,+,≤) have been
recently successfully implemented in tools Lash and Lira [BDEK07]. Unfortu-
nately, interesting qualitative properties are difficult to extract from arithmetic
automata. Actually, operations that can be performed on the arithmetic au-
tomata computed by tools Lash and Lira are limited to the universality and
the emptiness checking (when the set symbolically represented is not empty these
tools can also compute a real vector in this set).

Extracting geometrical properties from an arithmetic automaton representing
a set X ⊆ Rm is a complex problem even if X is definable in FO (R,Z,+,≤). Let
us recall related works to this problem. Using a Karr based algorithm [Kar76],
the affine hull of X has been proved efficiently computable in polynomial time
[Ler04] (even if this result is limited to the special case X ⊆ Nm, it can be
easily extended to any arithmetic automata). When X = Zm ∩ C where C is
a rational polyhedral convex set (intuitively when X is equal to the integral
solutions of linear constraint systems), it has been proved in [Lat04] that we can
effectively compute in exponential time a rational polyhedral convex set C′ such
that X = Zm ∩ C′. Note that this worst case complexity in theory is not a real
problem in practice since the algorithm presented in [Lat04] performs well on
automata with more than 100 000 states. In [Lug04] this result was extended
to sets X = F + L where F is a finite set of integral vectors and L is a linear
set. In [FL05], closed convex hulls of sets X ⊆ Zm represented by arithmetic
automata are proved rational polyhedral and effectively computable in exponen-
tial time. Note that compared to [Lat04], it is not clear that this result can be
turn into an efficient algorithm. More recently [Ler05], we provided an algorithm
for effectively computing in polynomial time a formula in the Presburger the-
ory FO (Z,+,≤) when X ⊆ Zn is Presburger-definable. This algorithm has been
successfully implemented in TaPAS [LP08] (The Talence Presburger Arithmetic
Suite) and it can be applied on any arithmetic automata encoding a set X ⊆ Zm

with more than 100 000 states. Actually, the tool decides if an input arithmetic
automaton denotes a Presburger-definable set and in this case it returns a for-
mula denoting this set.

In this paper we prove that the closed convex hulls of sets symbolically rep-
resented by arithmetic automata are rational polyhedral and effectively com-
putable in exponential time in the worst case. Note that whereas the closed
convex hull of a set definable in FO (R,Z,+,≤) can be easily proved rational
polyhedral (thanks to quantification eliminations), it is difficult to prove that

Convex Hull of Arithmetic Automata 49

the closed convex hulls of arithmetic automata are rational polyhedral. We also
provide an algorithm for computing this set. Our algorithm is based on the re-
duction of the closed convex hull computation to data-flow analysis problems.
Note that widening operator is usually used in order to speed up the iterative
computation of solutions of such a problem. However, the use of widening op-
erators may lead to loss of precision in the analysis. Our algorithm is based on
acceleration in convex data-flow analysis [LS07b, LS07a]. Recall that accelera-
tion consists to compute the exact effect of some control-flow cycles in order to
speed up the Kleene fix-point iteration.

Outline of the paper : In section 2 the most significant digit first decomposition
is extended to any real vector and we introduce the arithmetic automata. In
section 3 we provide the closed convex hull computation reduction to (1) a
data-flow analysis problem and (2) the computation of the closed convex hull
of arithmetic automata representing only decimal values and having a trivial
accepting condition. In section 4 we provide an algorithm for computing the
closed convex hull of such an arithmetic automaton. Finally in section 5 we
prove that the data-flow analysis problem introduced by the reduction can be
solved precisely with an accelerated Kleene fix-point iteration algorithm. Due to
space limitations, most proofs are only sketched in this paper. A long version of
the paper with detailed proofs can be obtained from the author.

2 Arithmetic Automata

This section introduces arithmetic automata (see Fig. 1). These automata recog-
nize infinite words of digits denoting most significant digit first decompositions
of real and integer vectors.

As usual, we respectively denote by Z, Q and R the sets of integers, ratio-
nals and real numbers and we denote by N,Q+,R+ the restrictions of Z,Q,R
to the non-negatives. The components of an m-dim vector x are denoted by
x[1], . . . , x[m].

We first provide some definitions about regular sets of infinite words. We
denote by Σ a non-empty finite set called an alphabet. An infinite word w over
Σ is a function w ∈ N → Σ defined over N\{0} and a finite word σ over Σ is
a function σ ∈ N → Σ defined over a set {1, . . . , k} where k ∈ N is called the
length of σ and denoted by |σ|. In this paper, a finite word over Σ is denoted
by σ with some subscript indices and an infinite word over Σ is denoted by w.
As usual Σ∗ and Σω respectively denote the set of finite words and the set of
infinite words over Σ. The concatenation of two finite words σ1, σ2 ∈ Σ∗ and the
concatenation of a finite word σ ∈ Σ∗ with an infinite word w ∈ Σω are denoted
by σ1σ2 and σw. A graph labelled by Σ is a tuple G = (Q,Σ, T) where Q is a
non empty finite set of states and T ⊆ Q×Σ×Q is a set of transitions. A finite
path π in a graph G is a finite word π = t1 . . . tk of k ≥ 0 transitions ti ∈ T such
that there exists a sequence q0, . . . , qk ∈ Q and a sequence a1, . . . , ak ∈ Σ such
that ti = (qi−1, ai, qi) for any 1 ≤ i ≤ k. The finite word σ = a1 . . . ak is called
the label of π and such a path π is also denoted by q0

σ−→ qk or just q0 → qk. We

50 J. Leroux

also say that π is a path starting from q0 and terminating in qk. When q0 = qk
and k ≥ 1, the path π is called a cycle on q0. Such a cycle is said simple if the
states q0, . . . , qk−1 are distinct. Given an integer m ≥ 1, a graph G is called an
m-graph if m divides the length of any cycle in G. An infinite path θ is an infinite
word of transitions such that any prefixes πk = θ(1) . . . θ(k) is a finite path. The
unique infinite word w ∈ Σω such that σk = w(1) . . . w(k) is the label of the
finite path πk for any k ∈ N is called the label of θ. We say that θ is starting
from q0 if q0 is the unique state such that any prefix of θ is starting from q0. In
the sequel, a finite path is denoted by π and an infinite path is denoted by θ. The
set of infinite paths starting from q0 is naturally denoted with the capital letter
ΘG(q0). The set F of states q ∈ Q such that there exists an infinite number of
prefix of θ terminating in q is called the set of states visited infinitely often by
θ. Such a path is denoted by q0

w−→ F or just q0 → F . A Muller automaton A
is a tuple A = (Q,Σ, T,Q0,F) where (Q,Σ, T) is a graph, Q0 ⊆ Q is the initial
condition and F ⊆ P(Q) is the accepting condition. The language L(A) ⊆ Σω

recognized by a Muller automaton A is the set of infinite words w ∈ Σω such
that there exists an infinite path q0

w−→ F with q0 ∈ Q0 and F ∈ F.
Now, we introduce the most significant digit first decomposition of real vectors.

In the sequel m ≥ 1 is an integer called the dimension, r ≥ 2 is an integer
called the basis of decomposition, Σr = {0, . . . , r − 1} is called the alphabet of
r-digits, and Sr = {0, r − 1} is called the alphabet of sign r-digits. The most
significant r-digit first decomposition provides a natural way to associate to any
real vector x ∈ Rm a tuple (s, σ, w) ∈ Sm

r × (Σm
r)∗ ×Σω

r . Intuitively (s, σ) and
w are respectively associated to an integer vector z ∈ Zm and a decimal vector

9

8
0

1

1

1

3

02

10

0

5
1

-2

-1
0

1

4

0
6

0

7

1
1

0

0

0

*

01

a
*

b

0
0

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8

Fig. 1. On the left, the rational polyhedral convex set C = {x ∈ R2 | 3x[1] > x[2] ∧
x[2] ≥ 0} in gray and the set X = Z2 ∩ C of integers depicted by black bullets. On the
center, an arithmetic automaton symbolically representing X in basis 2. On the right,
the closed convex hull of X equals to cl ◦ conv(X) = {x ∈ R2 | 3x[1] ≥ x[2]+ 1∧x[2] ≥
0 ∧ x[1] ≥ 1} represented in gray.

Convex Hull of Arithmetic Automata 51

d ∈ [0, 1]m satisfying x = z + d. Moreover, s[i] = 0 corresponds to z[i] ≥ 0 and
s[i] = r−1 corresponds to z[i] < 0. More formally, a most significant r-digit first
decomposition of a real vector x ∈ Rm is a tuple (s, σ, w) ∈ Sm

r × (Σm
r)∗ ×Σω

r

such that for any 1 ≤ i ≤ m, we have:

x[i] = r
|σ|
m

s(i)
1− r

+

|σ|
m −1∑

j=0

rjσ(mj + i) +
+∞∑

j=0

w(mj + i)
rj+1

The previous equality is divided in two parts by introducing the functions λr,m ∈
Σω

r → [−1, 0]m and γr,m ∈ Sm
r × (Σm

r)∗ → Zm defined for any 1 ≤ i ≤ m by the
following equalities. Note the sign in front of the definition of λr,m. This sign
simplifies the presentation of this paper and it is motivated in the sequel.

−λr,m(w)[i] =
+∞∑

j=0

w(mj + i)
rj+1

γr,m(s, σ)[i] = r
|σ|
m

s(i)
1− r

+

|σ|
m −1∑

j=0

rjσ(mj + i)

Definition 2.1 ([BRW98]). An arithmetic automaton A in basis r and in
dimension m is a Muller automaton over the alphabet Σr ∪ {�} that recognizes
a language L ⊆ Sm

r � (Σm
r)∗ � Σω

r . The following set X ⊆ Rm is called the set
symbolically represented by A:

X = {γr,m(s, σ) − λr,m(w) | s � σ � w ∈ L}

Example 2.2. The arithmetic automaton depicted in Fig. 1 symbolically repre-
sents X = {x ∈ N2 | 3x[1] > x[2]}. This automaton has been obtained automat-
ically from the tool Lash through the tool-suite TaPAS[LP08].

We observe that Real Vector Automata (RVA) and Number Decision Diagrams
(NDD) [BRW98] are particular classes of arithmetic automata. In fact, RVA and
NDD are arithmetic automata A that symbolically represent sets X included
respectively in Rm and Zm and such that the accepted languages L(A) satisfy:

L(A) ={s � σ � w | γr,m(s, σ) − λr,m(w) ∈ X} if A is a RVA
L(A) ={s � σ � 0ω | γr,m(s, σ) ∈ X} if A is a NDD

Since in general a NDD is not a RVA and conversely a RVA is not a NDD, we
consider arithmetic automata in order to solve the closed convex hull
computation uniformly for these two classes. Note that simple (even if com-
putationally expensive) automata transformations show that sets symbolically
representable by arithmetic automata in basis r are exactly the sets symboli-
cally representable by RVA in basis r. In particular [BRW98], sets symbolically
representable by arithmetic automata in basis r are exactly the sets definable
in FO (R,Z,+,≤, Xr) where Xr ⊆ R3 is a basis dependant predicate defined

52 J. Leroux

in [BRW98]. This characterization shows that arithmetic automata can symbol-
ically represent sets of solutions of complex linear constraints combining both
integral and real values. Recall that the construction of arithmetic automata from
formulae in FO (R,Z,+,≤, Xr) is effective and tools Lash and Lira [BDEK07]
implement efficient algorithms for the restricted logic FO (R,Z,+,≤). The pred-
icate Xr is discarded in these tools in order to obtain arithmetic automata that
are deterministic weak Buchi automata [BJW05]. In fact these automata have
interesting algorithmic properties (minimization and deterministic form).

3 Reduction to Data-Flow Analysis Problems

In this section we reduce the computation of the closed convex hull of sets
symbolically represented by arithmetic automata to data-flow analysis problems.

We first recall some general notions about complete lattices. Recall that a
complete lattice is any partially ordered set (A,�) such that every subset X ⊆ A
has a least upper bound

⊔
X and a greatest lower bound

�
X . The supremum⊔

A and the infimum
�
A are respectively denoted by � and ⊥. A function

f ∈ A → A is monotonic if f(x) � f(y) for all x � y in A. For any complete
lattice (A,�) and any set Q, we also denote by � the partial order on Q → A
defined as the point-wise extension of �, i.e. f � g iff f(q) � g(q) for all q ∈ Q.
The partially ordered set (Q→ A,�) is also a complete lattice, with lub

⊔
and

glb
�

satisfying (
⊔
F)(s) =

⊔
{f(s) | f ∈ F} and (

�
F)(s) =

�
{f(s) | f ∈ F}

for any subset F ⊆ Q→ A.
Now, we recall notions about the complete lattice of closed convex sets. A

function f ∈ Rn → Rm is said linear if there exists a sequence (Mi,j)i,j of
reals indexed by 1 ≤ i ≤ m and 1 ≤ j ≤ n and a sequence (vi)i of reals
indexed by 1 ≤ i ≤ m such that f(x)[i] =

∑n
j=1 Mi,jx[j] + vi for any x ∈ Rn

and for any 1 ≤ i ≤ m. When the coefficients (Mi,j)i,j and (vi)i are rational,
the linear function f is said rational. The function f ′ ∈ Rm → Rn defined by
f ′(x)[i] =

∑n
j=1 Mi,jx[j] for any x ∈ Rn and for any 1 ≤ i ≤ m is called the

uniform form of f . A set R ⊆ Rm is said closed if the limit of any convergent
sequence of vectors in R is in R. Recall that any set X ⊆ Rm is included in
a minimal for the inclusion closed set. This closed set is called the topological
closure of X and it is denoted by cl(X). Let us recall some notions about convex
sets (for more details, see [Sch87]). A convex combination of k ≥ 1 vectors
x1, . . . , xk ∈ Rm is a vector x such that there exists r1, . . . , rk ∈ R+ satisfying
r1 + · · · + rk = 1 and x = r1x1 + · · · + rkxk. A set C ⊆ Rm is said convex
if any convex combination of vectors in C is in C. Recall that any X ⊆ Rm

is included in a minimal for the inclusion convex set. This convex set is called
the convex hull of X and it is denoted by conv(X). A convex set C ⊆ Rm is
said rational polyhedral if there exists a rational linear function f ∈ Rm → Rn

such that C is the set of vectors x ∈ Rm such that
∧n

i=1 f(x)[i] ≤ 0. Recall that
cl(conv(X)) = conv(cl(X)), cl(f(X)) = f(cl(X)) and conv(f(X)) = f(conv(X))
for any X ⊆ Rm and for any linear function f ∈ Rm → Rn. The class of
closed convex subsets of Rm is written Cm. We denote by � the inclusion partial

Convex Hull of Arithmetic Automata 53

order on Cm. Observe that (Cm,�) is a complete lattice, with lub
⊔

and glb
�

satisfying
⊔

C = cl ◦ conv(
⋃

C) and
�

C =
⋂

C for any subset C ⊆ Cm.

Example 3.1. Let X = Z2 ∩C where C is the convex set C = {x ∈ R2 | 3x[1] >
x[2] ∧ x[2] ≥ 0} (see Fig. 1). Observe that cl ◦ conv(X) = {x ∈ R2 | 3x[1] ≥
x[2] + 1 ∧ x[2] ≥ 0 ∧ x[1] ≥ 1} is strictly included in C.

In the previous section, we introduced two functions λr,m and γr,m. Intuitively
these functions “compute” respectively decimal vectors associated to infinite
words and integer vectors associated to finite words equipped with sign vectors.
We now introduce two functions Λr,m,σ and Γr,m,σ that “partially compute”
the same vectors than λr,m and γr,m. More formally, let us consider the unique
sequences (Λr,m,σ)σ∈Σ∗

r
and (Γr,m,σ)σ∈Σ∗

r
of linear functions Λr,m,σ, Γr,m,σ ∈

Rm → Rm inverse of each other and satisfying Λr,m,σ1σ2 = Λr,m,σ1 ◦ Λr,m,σ2 ,
Γr,m,σ1σ2 = Γr,m,σ2 ◦Γr,m,σ1 for any σ1, σ2 ∈ Σ∗

r , such that Λr,m,ε and Γr,m,ε are
the identity function and such that Λr,m,a and Γr,m,a with a ∈ Σr satisfy the
following equalities where x ∈ Rm:

Λr,m,a(x) = (
x[m]− a

r
, x[1], . . . , x[m− 1])

Γr,m,a(x) = (x[2], . . . , x[m], rx[1] + a)

We first prove the following two equalities (1) and (2) that explain the link
between the notations λr,m and γr,m and their capital forms Λr,m,σ and Γr,m,σ.
Observe that Λr,m,a(λr,m(w)) = λr,m(aw) for any a ∈ Σr and for any w ∈ Σω

r .
An immediate induction over the length of σ ∈ Σ∗

r provides equality (1). Note
also that Γr,m,a1...am(x) = rx + (a1, . . . , am) for any a1, . . . , am ∈ Σr. Thus an
immediate induction provides equality (2).

λr,m(σw) = Λr,m,σ(λr,m(w)) ∀σ ∈ Σ∗
r ∀w ∈ Σω

r (1)

γr,m(s, σ) = Γr,m,σ(
s

1− r
) ∀σ ∈ (Σm

r)∗ ∀s ∈ Sm
r (2)

We now reduce the computation of the closed convex hull C of a set X ⊆ Rm

represented by an arithmetic automaton A = (Q,Σ, T,Q0,F) in basis r to data-
flow analysis problems. We can assume w.l.o.g that (Q,Σ, T) is a m-graph. As
the language recognized by A is included in Sm

r � (Σm
r)∗ � Σω

r , the set of states
can be partitioned into sets depending intuitively on the number of occurrences
|σ|	 of the � symbol in a word σ ∈ Σ∗. More formally, we consider the set QS

of states reading signs, the set QI reading integers, and the set QD reading
decimals defined by:

QS = {q ∈ Q | ∃(q0, σ, F) ∈ Q0 ×Σ∗ × F |σ|	 = 0 ∧ q0
σ−→ q → F}

QI = {q ∈ Q | ∃(q0, σ, F) ∈ Q0 ×Σ∗ × F |σ|	 = 1 ∧ q0
σ−→ q → F}

QD = {q ∈ Q | ∃(q0, σ, F) ∈ Q0 ×Σ∗ × F |σ|	 = 2 ∧ q0
σ−→ q → F}

54 J. Leroux

We also consider the m-graphs GS , GI and GD obtained by restricting G re-
spectively to the states QS, QI and QD and formally defined by:

GS = (QS , Σr, TS) with TS = T ∩ (Qs ×Σr ×QS)
GI = (QI , Σr, TI) with TI = T ∩ (QI ×Σr ×QI)
GD = (QD, Σr, TD) with TD = T ∩ (QD ×Σr ×QD)

Example 3.2. QS = {−2,−1, 0}, QI = {1, . . . , 9} and QD = {a, b} in Fig. 1.

The closed convex hull C = cl ◦ conv(X) is obtained from the valuations CI ∈
QI → Cm and CD ∈ QD → Cm defined by CI = cl ◦ conv(XI) and CD =
cl ◦ conv(XD) where XI and XD are given by:

XI(qI) = {Γr,m,σ(
s

1 − r
) | s ∈ Sm

r σ ∈ Σ∗
r ∃q0 ∈ Q0 q0

s	σ−−→ qI}

XD(qD) = {λr,m(w) | w ∈ Σω
r ∃F ∈ F qD

w−→ F}

In fact from the definition of arithmetic automata we get:

C =
⊔

(qI ,qD)∈QI ×QD
(qI ,	,qD)∈T

CI(qI)− CD(qD)

We now provide data-flow analysis problems whose CI and CD are solu-
tions. Observe that m-graphs naturally denote control-flow graphs. Before asso-
ciating semantics to m-graph transitions, we first show that CI and CD are
some fix-point solutions. As cl ◦ conv and Γr,m,a are commutative, from the
inclusion Γr,m,a(XI(q1)) ⊆ XI(q2) we deduce that CI satisfies the relation
Γr,m,a(CI(q1)) � CI(q2) for any transition (q2, a, q2) ∈ TI . Symmetrically, as
cl ◦ conv and Λr,m,a are commutative, from the inclusion Λr,m,a(XD(q2)) ⊆
XD(q1), we deduce that Λr,m,a(CD(q2)) � CD(q1) for any transition (q1, a, q2) ∈
TD. Intuitively CI and CD are two fix-point solutions of different systems. More
formally, we associate two distinct semantics to a transition t = (q1, a, q2) of
a m-graph G = (Q,Σr, T) by considering the monotonic functions ΛG,m,t and
ΓG,m,t over the complete lattice (Q→ Cm,�) defined for any C ∈ Q→ Cm and
for any q ∈ Q by the following equalities:

ΛG,m,t(C)(q) =

{
Λr,m,a(C(q2)) if q = q1

C(q) if q �= q1

ΓG,m,t(C)(q) =

{
Γr,m,a(C(q1)) if q = q2

C(q) if q �= q2

Observe that CD is a fix-point solution of the data-flow problem ΛGD,m,t(CD) �
CD for any transition t ∈ TD and CI is a fix-point solution of the data-flow
problem ΓGI ,m,t(CI) � CI for any transition t ∈ TI . In the next sections 3.1
and 3.2 we show that CD and CI can be characterized by these two data-flow
analysis problems.

Convex Hull of Arithmetic Automata 55

3.1 Reduction for CD

The computation of CD is reduced to a data-flow analysis problem for the m-
graph GD equipped with the semantics (ΛGD,m,t)t∈TD .

Given an infinite path θ labelled by w, we denote by λr,m(θ) the vector
λr,m(w). Given a m-graph G labelled by Σr, we denote by ΛG,m, the valuation
cl ◦ conv(λr,m(ΘG)) (recall that ΘG(q) denotes the set of infinite paths starting
from q). This notation is motivated by the following Proposition 3.3.

Proposition 3.3. The valuation ΛG,m is the unique minimal valuation C ∈
Q → Cm such that ΛG,m,t(C) � C for any transition t ∈ T and such that
C(q) �= ∅ for any state q ∈ Q satisfying ΘG(q) �= ∅.
The following Proposition 3.4 provides the reduction.

Proposition 3.4. CD = ΛGD,m

Proof. We have previously proved that ΛGD,m,t(CD) � CD for any transition
t ∈ TD. Moreover, as CD(qD) �= ∅ for any qD ∈ QD, we deduce the relation
ΛGD,m � CD by minimality of ΛGD,m. For the other relation, just observe that
XD ⊆ λr,m(ΘGD) and apply cl ◦ conv. ��

3.2 Reduction for CI

The computation of CI is reduced to data-flow analysis problems for the m-
graphs GS and GI respectively equipped with the semantics (ΓGS,m,t)t∈TS and
(ΓGI ,m,t)t∈TI .

Given a m-graph G = (Q,Σr, T) and an initial valuation C0 ∈ Q → Cm, it
is well-known from Knaster-Tarski’s theorem that there exists a unique minimal
valuation C ∈ Q→ Cm such that C0 � C and ΓG,m,t(C) � C for any t ∈ T . We
denote by ΓG,m(C0) this unique valuation.

Symmetrically to the definitions of CI and CD we also consider the valuation
CS ∈ QS → Cm defined by CS = cl ◦ conv(XS) where XS is given by:

XS(qS) = {Γr,m,s(0, . . . , 0) | s ∈ S∗
r ∃q0 ∈ Q0 q0

s−→ qS}
The reduction comes from the following Proposition 3.5 where CS,0 ∈ QS →

Cm and CI,0 ∈ QI → Cm are the following two initial valuations:

CS,0(qS) =

{
∅ if qS �∈ Q0

{(0, . . . , 0)} if qS ∈ Q0

CI,0(qI) =
1

1− r

⊔

qS∈QS
(qS ,	,qI)∈T

CS(qS)

Proposition 3.5. CS = ΓGS ,m(CS,0) and CI = ΓGI ,m(CI,0).

Proof. First observe that XS ⊆ ΓGS ,m(CS,0) and XI ⊆ ΓGI ,m(CI,0). Thus CS �
ΓGS,m(CS,0) and CI � ΓGI ,m(CI,0) by applying cl ◦ conv. Finally, as Γr,m,a and

56 J. Leroux

cl ◦ conv are commutative, we deduce that ΓGS ,m,t(CS) � CS for any t ∈ TS

and ΓGI ,m,t(CI) � CI for any t ∈ TI . The minimality of ΓGS ,m(CS,0) and
ΓGI ,m(CI,0) provide ΓGS,m(CS,0) � CS and ΓGI ,m(CI,0) � CI . ��

4 Infinite Paths Convex Hulls

In this section G = (Q,Σr, T) is a m-graph. We prove that ΛG,m(q) is equal
to the convex hull of a finite set of rational vectors. Moreover, we provide an
algorithm for computing the minimal sets Λ0

G,m(q) ⊆ Qm for every q ∈ Q such
that ΛG,m = conv(Λ0

G,m) in exponential time in the worst case.
A fry-pan θ in a graph G is an infinite path θ = t1 . . . ti(ti+1 . . . tk)ω where

0 ≤ i < k and where t1 = (q0 → q1), . . . tk = (qk−1 → qk) are transitions such
that qk = qi. A fry-pan is said simple if q0, . . . , qk−1 are distinct states. The
finite set of simple fry-pans starting from q is denoted by ΘS

G(q). As expected,
we are going to prove that ΛG,m = conv(λr,m(ΘS

G)) and λr,m(ΘS
G(q)) ⊆ Qm.

We first prove that λr,m(θ) is rational for any fry-pan θ. Given σ ∈ Σ+
r , the

following Lemma 4.1 shows that λr,m(σω) is the unique solution of the rational
linear system Λr,m,σ(x) = x. In particular λr,m(σω) is a rational vector. From
equality (1) given in page 53, we deduce that the vector λr,m(θ) is rational for
any fry-pan θ.

Lemma 4.1. λr,m(σω) is the unique fix-point of Λr,m,σ for any σ ∈ Σ+
r .

The following Proposition 4.2 (see the graphical support given in Fig. 2) is used in
the sequel for effectively computingΛG,m thanks to a fix-point iteration algorithm.

Proposition 4.2. Let t = (q, a, q′) be a transition and let θ′ be a simple fry-pan
starting from q′ such that the fry-pan tθ′ is not simple. In this case there exists a
minimal non-empty prefix π of tθ′ terminating in q. Moreover the fry-pan θ such
that tθ′ = πθ and the fry-pan πω are simple and such that Λr,m,a(λr,m(θ′)) ∈
conv({λr,m(θ), λr,m(πω)}).

q′ q q′ q q′ q q′ q

θ′ t π θ

q′ q q′ q q′ q q′ q

Fig. 2. A graphical support for Proposition 4.2 where θ′ denotes a simple fry-pan
starting from a state q′ and t = (q, a, q′) is a transition such that the fry-pan tθ′ is not
simple. That means the state q is visited by θ′. Note that q is visited either once or
infinitely often. These two situations are depicted respectively on the top line and the
bottom line of the tabular.

Convex Hull of Arithmetic Automata 57

Proof. As tθ′ is not simple whereas θ′ is simple we deduce that there exists
a decomposition of tθ′ into πθ where π is the minimal non-empty prefix of tθ′

terminating in q. Let π be the non empty path with the minimal length. Observe
that π is a simple cycle and thus πω is a simple fry-pan. Moreover, as θ is a suffix
of the simple fry-pan θ′, we also deduce that θ is a simple fry-pan. Observe that
λr,m(tθ′) = λr,m(πθ). Moreover, as π is a cycle in a m-graph we deduce that m
divides its length. Denoting by σ the label of π, we deduce that σ ∈ (Σm

r)+.
Now, observe that Λr,m,σ(x) = (1 − r−

|σ|
m)λr,m(σω) + r−

|σ|
m x for any x ∈ Rm.

We deduce that Λr,m,a(λr,m(θ′)) = (1 − r−
|σ|
m)λr,m(πω) + r−

|σ|
m λr,m(θ). Thus

Λr,m,a(λr,m(θ′)) ∈ conv({λr,m(θ), λr,m(πω)}). ��

From the previous Proposition 4.2 we deduce the following Proposition 4.3.

Proposition 4.3. We have ΛG,m = conv(λr,m(ΘS
G)).

We deduce that there exists a minimal finite set Λ0
G,m(q) ⊆ Qm such that

ΛG,m = conv(Λ0
G,m). Note that an exhaustive computation of the whole set

ΘS
G(q) provides the set Λ0

G,m(q) by removing vectors that are convex combina-
tion of others. The efficiency of such an algorithm can be greatly improved by
computing inductively subsets Θ(q) ⊆ ΘS

G(q) and get rid of any fry-pan θ ∈ Θ(q)
as soon as it becomes a convex combination of other fry-pans in Θ(q)\{θ}. The
algorithm Cycle is based on this idea.

Corollary 4.4. The algorithm Cycle(G,m) terminates by iterating the main
while loop at most |T ||Q| times and it returns Λ0

G,m.

1 Cycle(G = (Q,Σr, T) be a m−graph, m ∈ N\{0})
2 for each state q ∈ Q
3 if ΘS

G(q) �= ∅
4 let θ ∈ ΘS

G(q)
5 let Θ(q) ← {θ}
6 else
7 let Θ(q) ← ∅
8 while there exists t = (q, a, q′) ∈ T and θ′ ∈ Θ(q′)
9 such that Λr,m,a(λr,m(θ′)) �∈ conv(λr,m(Θ(q)))

10 if tθ′ is simple
11 let Θ(q) ← Θ(q) ∪ {tθ′}
12 else
13 let π be the minimal strict prefix of tθ′ terminating in q
14 let θ be such that tθ′ = πθ
15 let Θ(q) ← Θ(q) ∪ {θ, πω}
16 while there exists θ0 ∈ Θ(q)
17 such that conv(λr,m(Θ(q))) = conv(λr,m(Θ(q)\{θ0}))
18 let Θ(q) ← Θ(q)\{θ0}
19 return λr,m(Θ) //Λ0

G,m

58 J. Leroux

5 Fix-Point Computation

In this section we prove that the minimal post-fix-point ΓG,m(C0) is effectively ra-
tional polyhedral for anym-graphG = (Q,Σr, T) and for any rational polyhedral
initial valuationC0 ∈ Q→ Cm. We deduce that the closed convex hull of sets sym-
bolically represented by arithmetic automata are effectively rational polyhedral.

Example 5.1. Let m = 1 and G = ({q}, Σr, {t}) where t = (q, r − 1, q) and
C0(q) = {0}. Observe that the sequence (Ci)i∈N where Ci+1 = Ci � ΓG,m,t(Ci)
satisfies Ci(q) = {x ∈ R | 0 ≤ x ≤ ri − 1}.
Recall that a Kleene iteration algorithm applied on the computation of
ΓG,m(C0) consists in computing the beginning of the sequence (Ci)i∈N defined by
the induction Ci+1 = Ci

⊔
t∈T ΓG,m,t(Ci) until an integer i such that Ci+1 = Ci

is discovered. Then the algorithm terminates and it returns Ci. In fact, in this
case we have Ci = ΓG,m(C0). However, as proved by the previous Example 5.1
the Kleene iteration does not terminate in general. Nevertheless we are going to
compute ΓG,m(C0) by a Kleene iteration such that each Ci is safely enlarged into
a C′

i satisfying Ci � C′
i � ΓG,m(C0). This enlargement follows the acceleration

framework introduced in [LS07b, LS07a] that roughly consists to compute the
precise effect of iterating some cycles. This framework motivate the introduction
of the monotonic function ΓW

G,m defined over the complete lattice (Q → Cm,�)
for any C ∈ Q→ Cm and for any q ∈ Q by the following equality:

ΓW
G,m(C)(q) =

⊔

q
σ−→q

Γr,m,σ(C(q))

The following Proposition 5.2 shows that ΓW
G,m(C) is effectively computable

from C and the function ΛG,m introduced in section 3. In this proposition, Gq

denotes the graph G reduced to the strongly connected components of q.

Proposition 5.2. For any C ∈ Q→ Cm, and for any q ∈ Q, we have:

ΓW
G,m(C)(q) = C(q) + R+(C(q)− ΛGq,m(q))

We now prove that the enlargement is sufficient to enforce the convergence of a
Kleene iteration.

Table 1. The values of CI,0 and CI = ΓGI ,2(CI,0)

q CI,0(q) ΓGI ,2(CI,0)(q)

1 {(0, 0)} R+(1, 3)
2 ∅ (1, 1) + R+(3, 2)
3 ∅ R+(3, 2)
4 ∅ (1, 0) + R+(3, 2)
5 ∅ (0, 1) + R+(1, 3)
6 ∅ (2, 1) + R+(3, 2)
7 ∅ (0, 2) + R+(1, 3)
8 ∅ conv({(1, 0), (1, 2)}) + R+(1, 0) + R+(1, 3)
9 ∅ (0, 1) + R+(0, 1) + R+(3, 2)

Convex Hull of Arithmetic Automata 59

Proposition 5.3. Let C0 � C′
0 � C1 � C′

1 � . . . be the sequence defined by the
induction Ci+1 = C′

i

⊔
t∈T ΓG,m,t(C′

i) and C′
i = ΓW

G,m(Ci). There exists i < |Q|
satisfying Ci+1 = Ci. Moreover, for such an integer i we have Ci = ΓG,m(C0).

Proof. Observe that Ci � C′
i � ΓG,m(C0) for any i ∈ N. Thus, if there exists

i ∈ N such that Ci+1 = Ci we deduce that Ci = ΓG,m(C0). Finally, in order to
get the equality C|Q| = C|Q|−1, just observe by induction over i that we have
following equality for any q2 ∈ Q:

C′
i(q2) =

⊔

q0
σ1−→q1

σ−→q1
σ2−→q2

|σ1|+|σ2|≤i

ΓG,m,σ1σσ2 (C0(q1))

��

Example 5.4. Let us consider the 2-graphGI obtained from the 2-graph depicted
in the center of Fig. 1 and restricted to the set of states QI = {1, . . . , 9}. Let
us also consider the function CI,0 ∈ QI → C2 defined by CI,0(1) = {(0, 0)} and
CI,0(q) = ∅ for q ∈ {2, . . . , 9}. Computing inductively the sequence C0 � C′

0 �
C1 � C′

1 � . . . defined in Proposition 5.3 from C0 = CI,0 shows that C6 = C5.
Moreover, this computation provides the value of CI = ΓGI ,2(CI,0) (see Table 1).

1 FixPoint(G = (Q,Σr, T) a m−graph, m ∈ N\{0}, C0 ∈ Q→ Cm)
2 let C ← C0

3 while there exists t ∈ T such that ΓG,m,t(C) �� C
4 C ← ΓW

G,m(C)
5 let C ← C �

⊔
t∈T ΓG,m,t(C)

6 return C

Corollary 5.5. The algorithm FixPoint(G,m,C0) terminates by iterating the
main while loop at most |Q|−1 times. Moreover, the algorithm returns ΓG,m(C0).

From Propositions 3.4 and 3.5 and corollaries 4.4 and 5.5 we get:

Theorem 5.6. The closed convex hull of sets symbolically represented by arith-
metic automata are rational polyhedral and computable in exponential time.

Example 5.7. We follow notations introduced in Examples 3.1, 3.2 and 5.4. Ob-
serve that CI(8)−CD(a) = conv({(1, 0), (1, 2)})+ R+(1, 0)+ R+(1, 3) is exactly
the closed convex hull of X = {x ∈ N2 | 3x[1] > x[2]}.

6 Conclusion

We have proved that the closed convex hull of sets symbolically represented by
arithmetic automata are rational polyhedral. Our approach is based on acceler-
ation in convex data-flow analysis. It provides a simple algorithm for computing

60 J. Leroux

this set. Compare to [Lat04] (1) our algorithm has the same worst case expo-
nential time complexity, (2) it is not limited to sets of the form Zm ∩ C where
C is a rational polyhedral convex set, (3) it can be applied to any set defin-
able in FO (R,Z,+,≤, Xr), (4) it can be easily implemented, and (5) it is not
restricted to the most significant digit first decomposition. This last advantage
directly comes from the class of arithmetic automata we consider. In fact, since
the arithmetic automata can be non deterministic, our algorithm can be applied
to least significant digit first arithmetic automata just by flipping the direc-
tion of the transitions. Finally, from a practical point of view, as the arithmetic
automata representing sets in the restricted logic FO (R,Z,+,≤) (where Xr is
discarded) have a very particular structure, we are confident that the exponen-
tial time complexity algorithm can be applied on automata with many states
like the one presented in [Lat04]. The algorithm will be implemented in TaPAS

[LP08] (The Talence Presburger Arithmetic Suite) as soon as possible.

References

[BDEK07] Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: Lira: Handling constraints
of linear arithmetics over the integers and the reals. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Hei-
delberg (2007)

[BH06] Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer,
Heidelberg (2006)

[BJW05] Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure
for linear arithmetic over the integers and reals. ACM Trans. Comput.
Log. 6(3), 614–633 (2005)

[BLP06] Bardin, S., Leroux, J., Point, G.: Fast extended release. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg
(2006)

[BRW98] Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and
integer arithmetic automata (extended abstract). In: Larsen, K.G., Skyum,
S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 152–163. Springer,
Heidelberg (1998)

[FL05] Finkel, A., Leroux, J.: The convex hull of a regular set of integer vec-
tors is polyhedral and effectively computable. Information Processing Let-
ter 96(1), 30–35 (2005)

[Kar76] Karr, M.: Affine relationships among variables of a program. Acta Infor-
matica 6, 133–151 (1976)

[Lat04] Latour, L.: From automata to formulas: Convex integer polyhedra. In: 19th
IEEE Symposium on Logic in Computer Science (LICS 2004), Turku, Fin-
land, July 14-17, 2004, pp. 120–129. IEEE Computer Society, Los Alamitos
(2004)

[Ler04] Leroux, J.: The affine hull of a binary automaton is computable in poly-
nomial time. In: Verification of Infinite State Systems, 5th International
Workshop, INFINITY 2003, Marseille, France, September 2, 2003, vol. 98,
pp. 89–104. Elsevier, Amsterdam (2003)

Convex Hull of Arithmetic Automata 61

[Ler05] Leroux, J.: A polynomial time presburger criterion and synthesis for num-
ber decision diagrams. In: 20th IEEE Symposium on Logic in Computer
Science (LICS 2005), Chicago, IL, USA, June 26-29, 2005, pp. 147–156.
IEEE Computer Society, Los Alamitos (2005)

[LP08] Leroux, J., Point, G.: TaPAS: The Talence Presburger Arithmetic Suite
(submited, 2008)

[LS07a] Leroux, J., Sutre, G.: Accelerated data-flow analysis. In: Riis Nielson, H.,
Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, Springer, Heidelberg (2007)

[LS07b] Leroux, J., Sutre, G.: Acceleration in convex data-flow analysis. In: Arvind,
V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 520–531.
Springer, Heidelberg (2007)

[Lug04] Lugiez, D.: From automata to semilinear sets: A logical solution for sets
L(C, P). In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA
2004. D. Lugiez, vol. 3317, pp. 321–322. Springer, Heidelberg (2005)

[Sch87] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and
Sons, New York (1987)

Pointer Analysis, Conditional Soundness,

and Proving the Absence of Errors

Christopher L. Conway1, Dennis Dams2, Kedar S. Namjoshi2,
and Clark Barrett1

1 New York University, Dept. of Computer Science
{cconway,barrett}@cs.nyu.edu

2 Bell Laboratories, Alcatel-Lucent
{dennis,kedar}@research.bell-labs.com

Abstract. It is well known that the use of points-to information can
substantially improve the accuracy of a static program analysis. Com-
monly used algorithms for computing points-to information are known
to be sound only for memory-safe programs. Thus, it appears problem-
atic to utilize points-to information to verify the memory safety property
without giving up soundness. We show that a sound combination is pos-
sible, even if the points-to information is computed separately and only
conditionally sound. This result is based on a refined statement of the
soundness conditions of points-to analyses and a general mechanism for
composing conditionally sound analyses.

1 Introduction

It is well known that information about pointer relationships is essential for
effective analysis and optimization of C programs [2,18]. Such information can
be provided by a variety of algorithms that compute an approximation of the
points-to relations of a program (e.g., [3,12,27]). For variables x and y, x points to
y if there is some execution of the program such that the value of x is either the
address of y or, if x and y are aggregate objects (such as arrays or structures),
the value of an element of x is an address within the extent of y.

A (may) points-to analysis is sound if the relation it computes over-approx-
imates the true points-to relation of the program. Typical analysis algorithms
are known to be sound only for “well-behaved” programs, i.e., programs with
behavior that is well-defined by the C standard [22]. For instance, typical points-
to analysis algorithms consider the points-to sets of pointer values x and x+1 to
be the same. This is justified if x+1 does not “overflow” the bounds of the object
pointed to by x. However, if the expression does overflow (i.e., the program is
not “well-behaved”), the object pointed to by x+1 is undefined.

In extending the Orion static analyzer [11] to verify memory safety, we found
that performing the analysis without access to points-to information resulted
in an overwhelming number of false alarms. In principle, a single, combined
analysis can be defined that computes memory safety and points-to information
simultaneously. Since the memory safety information being computed in one

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 62–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Pointer Analysis, Conditional Soundness, and Proving 63

“half” is available to the points-to “half,” the points-to information is kept sound
even for ill-behaved executions. Conversely, the memory safety component has
access to up-to-date points-to information, enabling a higher precision analysis.

However, such a fine-grained combination of analyses may not be scalable. We
would like to treat existing scalable points-to analyses as plug-in components.
Moreover, one may wish to perform the memory safety analysis in a “bottom-
up” fashion, computing a general summary for each function on any possible
input—in this case, separately computed points-to information helps limit the
possible values of pointer parameters and global variables.

These considerations lead to the central questions addressed in this paper: Is
it possible to obtain a sound combination of independent points-to and memory
safety analyses, especially as the first obtains sound results assuming memory
safety? More generally, under what conditions can conditionally sound analyses
be combined? What guarantees can be made for the combination?

This paper makes several contributions:

– We formalize the notion of conditional soundness, show how to compose
conditionally sound analyses, and derive the conditional soundness guaran-
tee of the composition. Although we describe conditional soundness in the
specific context of points-to analysis and a particular kind of memory safety,
we believe our framework can be used to refine the soundness results of a
variety of static analyses, e.g., analyses that are sound assuming sequen-
tial consistency or numerical analyses that are sound assuming the absence
of integer overflows. Conditional soundness can be formulated in terms of
the (unconditional) preservation of a class of temporal safety properties us-
ing Cousot and Cousot’s power construction [7,8,9]. Our formulation, while
more specialized, is simpler (e.g., it is state-based rather than path-based)
and captures the behavior of several interesting analyses more directly.

– We show that a set of points-to analyses similar to and sharing the soundness
properties of commonly-used flow-sensitive and insensitive analyses—such
as those of Emami, Ghiya, and Hendren [16]; Wilson and Lam [28]; Ander-
sen [3]; Steensgaard [27]; and Das [12]—provide results that are sound for
any memory-safe execution of a program. This statement is both stronger
and more precise than the traditional statement that such analyses are sound
for “well-behaved” programs.

– This more precise characterization of a points-to analysis, along with the
combination theorem for conditional analyses, shows that the combination
of an independent points-to analysis with a memory safety analysis is con-
ditionally sound. The soundness result guarantees that the absence of errors
can be proved. Conversely, for a program with memory errors, at least one
representative error—but not necessarily all errors—along any unsafe exe-
cution will be detected.

Motivating Example. Figure 1(a) is an example of a program which is not
well-behaved: there is an off-by-one error at label L1 and an off-by-one-thousand
error at label L3 when c is not 0. Assume that the functions ok and bad are
analyzed in a bottom-up fashion, without reference to the actual parameters

64 C.L. Conway et al.

int A[4], c;

void bad(int *p, int x, int y) {
L0: c = 0;
L1: p[4] = x;
L2: if(c!=0) {
L3: A[1003] = y;
L4: }
}

void ok(int *q, int n) {
L5: q[0] = n;
}

void main() {
ok(A,0);
bad(A,1,0);

}
(a)

V = {A, c, p, x, y, t1, t2}

Γ (v) =

{
4, if v = A

1, otherwise

�0

�1

�2

�3

�4

c := 0

t1 := p + 4
*t1 := x

[c �= 0]

[c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

(b)

Fig. 1. An unsafe C program

supplied in main. Without any points-to information regarding q, the only safe
assumption is that the expression q[0] at label L5 can alias any location in
memory—a conservative memory safety analysis would be forced to assume that
the behavior of the program is undefined from this point on. But this is not
the case: the function ok is memory-safe so long as q points to an array of at
least one element. Points-to information is necessary to obtain a precise memory
safety analysis.

A typical points-to analysis (e.g., Andersen’s [3]) will determine that p and q
both point to A and not to c, n, x, or y. Using points-to information, a memory
safety analysis can (correctly) infer that q[0] is an in-bounds location at L5 and,
thus, the execution of ok is well-defined. Further, it can (correctly) detect that
p[4] is out-of-bounds at L1 and emit a useful error report.

In many implementations p[4] will alias c at L1—so that c is set to 1, making
L3 reachable—but p will not point to c according to the points-to relation. Since
c is initialized to 0 in bad and—according to the points-to relation—no expres-
sion aliasing c is subsequently assigned to, the analysis is likely to (incorrectly)
infer that the error at L3 is unreachable. Thus, it may seem that relying on the
points-to relation will lead a static analyzer to miss real errors. Note, though,
that the reachability of the error at L3 is due solely to the unsafe assignment
at L1: the points-to relation can be relied upon up to the first occurrence of a
memory safety error.

This line of reasoning is not specific to the example: as we will show, it applies
to any conditionally sound analysis, enabling such an analysis to detect at least
one error along any erroneous execution.
Note: Full proofs of all theorems in this paper are given in a technical report [5].

Pointer Analysis, Conditional Soundness, and Proving 65

2 Program Analysis and Conditional Soundness

To present program analysis in a formal setting, we use the framework of ab-
stract interpretation [6]. A full syntax of program statements is given in the
next section. For now, we are concerned only with the relationship between con-
crete and abstract interpretations. We omit any discussion of techniques (such
as widening and extrapolation) which serve to make program analyses finite and
computable—we are concerned solely with issues of soundness.

Let C be a distinguished set of concrete states. A domain (D, γ) is a pair,
where D is a set of abstract states and γ : D → 2C is a concretization function.
When the meaning is clear, we overload D to refer both to a domain and to its
underlying set of states and use γD to refer to the concretization function. We
lift γD to sets of states: γD(D′) =

⋃
d∈D′ γD(d), where D′ ⊆ D. We say a set

D′ ⊆ D over-approximates C′ ⊆ C iff γD(D′) ⊇ C′.
We define the soundness of a program interpretation in terms of a collecting

semantics. Given a (concrete or abstract) domain D, we will define a semantic
operator �·� which maps a program P to a set �P� ⊆ D of reachable states. The
semantics �P� is defined inductively in terms of semantic interpretations over
D: a set I[P] ⊆ D of initial states and a transfer function F[P] : D → 2D. We
lift F[P] to sets of states: F[P](D′) =

⋃
d∈D′ F[P](d), where D′ ⊆ D.

An analysis A is represented as a tuple (D, I,F), where D is a domain and I
and F are semantic interpretations over D. We use DA, IA, and FA to denote
the constituents of an analysis A and γA to denote the concretization function
of the domain DA.

Definition 1. Let A = (D, I,F) be an analysis. The k-reachability predicate
Rk

A[P] for a program P w.r.t. A holds if a state is reachable in A in exactly k
steps. We define Rk

A[P] inductively as a subset of D:

R0
A[P] = I[P] Rk

A[P] = F[P](Rk−1
A [P]), k > 0

The semantics �·�A w.r.t. A maps a program P to a subset of D, the reachable
states in P w.r.t. A:

�P�A =
⋃

k≥0

Rk
A[P]

To judge the soundness of an analysis, we need a concrete semantics against
which it can be compared. The concrete domain DC is given by the pair (C, γC),
where γC is the trivial concretization function: γC(c) = {c}. We assume that
a concrete analysis C = (DC , IC ,FC) is given. The concrete analysis uniquely
defines a concrete semantics �·�C .

Definition 2. An analysis A is sound iff for every program P, �P�A over-
approximates �P�C (i.e., γA(�P�A) ⊇ �P�C).

Conditional Soundness. So far, we have defined a style of analysis which is
unconditionally sound, mirroring the traditional approach to abstract interpre-
tation. However, as we have noted, points-to analysis is sound only under certain

66 C.L. Conway et al.

assumptions about the behavior of the program analyzed. To address this, we
introduce the notion of conditional soundness with respect to a predicate θ. An
analysis will be θ-sound if it over-approximates the concrete states of a program
that are reachable via only θ-states. We first define a semantics restricted to θ.

Definition 3. Let A = (D, I,F) be an analysis and θ a predicate on D (we view
the predicate θ, equivalently, as a subset of D). The θ-restricted k-reachability
predicate Rk

A↓θ [P] for program P w.r.t. A holds if a state is reachable in A in
exactly k steps via only θ states. Rk

A↓θ [P] is defined inductively:

R0
A↓θ [P] = I[P] Rk

A↓θ [P] = F[P](θ ∩Rk−1
A ↓θ [P]), k > 0

The θ-restricted semantics �·�A↓θ w.r.t. A maps a program P to a subset of D,
the θ-reachable states in P w.r.t. A:

�P�A↓θ=
⋃

k≥0

Rk
A↓θ [P]

Note that Rk
A↓θ [P] may include non-θ states—neither I[P] nor the range of F[P]

are restricted to θ—but those states will not yield successors in Rk+1
A ↓θ [P]. The

θ-restricted semantics give us a lower bound for the approximation of a θ-sound
analysis.

Definition 4. Let A be an analysis and θ a predicate on C. A is θ-sound iff
for every program P, �P�A over-approximates �P�C↓θ.

Note that an unconditionally sound analysis is also θ-sound for any θ. More
generally, any θ-sound analysis is also ϕ-sound, for any ϕ stronger than θ.

This notion of conditional soundness does not just give us a more precise
statement of the behavior of certain analyses—it provides us with a sufficient
condition to show an analysis proves the absence of error states.

Theorem 1. Let P be a program and A a θ-sound analysis. If there are no
reachable non-θ states in P w.r.t. A, then there are no reachable concrete non-θ
states in P (i.e., if γA(�P�A) ⊆ θ, then �P�C ⊆ θ)).

In Section 4, we will show that points-to analysis is SafeDeref-sound, where
SafeDeref is a predicate that captures memory safety.

Parameterized Analysis. Having defined a precise notion of conditional
soundness, we now consider how the results of a θ-sound analysis can be used
to refine a second analysis. Suppose that A is an analysis and we have already
computed the set of reachable states �P�A. We may wish to use the information
present in �P�A to refine a second analysis over a different domain B. For ex-
ample, we could use the reduced product construction [7] to form a new domain
over a subset of DA × B including only those states (a, b) where a is in �P�A
and the states a and b “agree” (e.g., γA(a) ∩ γB(d) �= ∅).

Pointer Analysis, Conditional Soundness, and Proving 67

Traditional methods for combining analyses take a “white box” approach—
e.g., Cousot and Cousot [7] assume that the state transformers are available and
can be combined in a mechanical way; Lerner et al. [24] assume that analyses
can be run in parallel, one step at a time. In contrast, we will assume that any
prior analysis is a black box: we have access to its result (in the form of a set of
reachable abstract states), its domain (which allows us to interpret the result),
and some (possibly conditional) soundness guarantee. This naturally models the
use of off-the-shelf program analyses to provide refinement advice.

We will define such a refinement in terms of a parameterized analysis which
produces a new, refined analysis from the results of a prior analysis. An analysis
generator G̃ is a tuple (D,E, Ĩ , F̃) where: D and E are domains (the input and
output domains, respectively) and Ĩ and F̃ are parameterized interpretations
mapping a set of states D′ ⊆ D to semantic interpretations Ĩ 〈D′〉 and F̃〈D′〉
over E. We denote by G̃〈D′〉 the analysis over E defined by the parameterized
interpretations on input D′: G̃〈D′〉 = (E, Ĩ 〈D′〉, F̃ 〈D′〉). As one might expect,
the soundness of G̃〈D′〉 depends on the input D′.

Definition 5. An analysis generator G̃ with input domain D is sound iff for
every set of states D′ ⊆ D, G̃〈D′〉 is θ-sound with θ = γD(D′).

Given an analysis generator, it is natural to consider the analysis formed by
composing the generator with an analysis over its input domain. If A is an
analysis and G̃ is an analysis generator with input domain DA (i.e., the input
domain of G̃ is the underlying domain of A), the composed analysis G̃ ◦ A is
defined by providing the result of A as a parameter to G̃ (i.e., G̃ ◦A = G̃〈�P�A〉).
An important property of the composed analysis is preservation of soundness.

Theorem 2. If G̃ is sound and A is θ-sound, then the composed analysis G̃ ◦A
is θ-sound.

In the remainder of this paper, we will apply Theorem 2 to the problem of
verifying memory safety using points-to information. In Section 3, we define the
concrete semantics for a little language that captures the pointer semantics of
C. In Section 4, we define a memory safety property SafeDeref and a set of
SafeDeref-sound points-to analyses similar to the points-to analyses found in
the literature. In Section 5, we define a memory safety analysis parameterized
by points-to information. These, together with Theorem 2, allow us to prove the
absence of memory safety errors.

Note that since the points-to analysis is SafeDeref-sound, we could in the-
ory use it to prove the absence of memory safety errors. However, the points-to
domain does not track memory safety information with adequate precision to
detect errors without an impractical number of false alarms. The value of The-
orem 2 is that it allows for the definition of a specialized memory safety anal-
ysis which uses the points-to analysis to increase its precision while remaining
SafeDeref-sound.

68 C.L. Conway et al.

n ∈ Z x, y ∈ Vars

L ∈ Lvals ::= x | *x
E ∈ Exprs ::= L | n | x⊕ y | x � y | &x
S ∈ Stmts ::= L := E | [E]

Fig. 2. Grammar for a minimal C-like language

3 Concrete Semantics

To make precise statements about program analyses requires a concrete pro-
gram semantics. We will define the semantics of the little language presented
in Fig. 2. The language eliminates all but those features of C that are es-
sential to the question at hand. The semantics of the language is chosen to
model the requirements of ANSI/ISO C [22] without making implementation-
specific assumptions. Undefined or implementation-defined behaviors are mod-
eled with explicit nondeterminism. Note that an ANSI/ISO-compliant C com-
piler is free to implement undefined behaviors in a specific, deterministic manner.
By modeling undefined behaviors using non-determinism, the soundness state-
ments made about each analysis apply to any standard-compliant compilation
strategy.

The most important features of C that we exclude here are fixed-size integer
types, narrowing casts, dynamic memory allocation, and functions.1 We also
ignore the “strict aliasing” rule [22, §6.5]. Each of these can be handled, at the
cost of a higher degree of complexity in our definitions.

The syntactic classes of variables, lvalues, expressions, and statements, are
defined in Fig. 2. We use n to represent an integer constant and x and y to rep-
resent arbitrary variables. We use ⊕ to represent an arbitrary binary arithmetic
operator and � to represent a relational operator. Pointer operations include
arithmetic, indirection (*), and address-of (&). Statements include assignments
and tests ([E], where E is an expression).

Variables in our language are viewed as arrays of memory cells. Each cell may
hold either an unbounded integer or a pointer value. The only type information
present is the allocated size of each variable—the “type system” merely maps
variables to their sizes and provides no safety guarantees.

A program P is a tuple (V , Γ,L,S, τ, en), where: V ⊆ Vars is a finite set of
program variables ; Γ : V → N is a typing environment mapping variables to
their allocated sizes; L is a finite set of program points ; S ⊆ Stmts is a finite set
of program statements whose variables are from V ; τ ⊆ L×S×L is a transition

1 The omission of dynamic allocation in the discussion of points-to analysis and mem-
ory safety may seem an over-simplification. However, it is not essential to our pur-
pose here. Points-to analyses typically handle dynamic allocation by treating each
allocation site as if it were the static declaration of a global array of unknown size.

Pointer Analysis, Conditional Soundness, and Proving 69

relation; and en ∈ L is a distinguished entry point. In the following, we assume
a fixed program P = (V , Γ,L,S, τ, en).

Example 1. Figure 1(b) gives a fragment of the program representation for the
code in Fig. 1(a), corresponding to the function bad . We have introduced tem-
poraries t1 and t2 in order to simplify expression evaluation and compressed
multiple statements onto a single transition when they represent a single state-
ment in the source program.

In order to reason about points-to and memory safety analyses, we need a mem-
ory model on which to base the concrete semantics. The unit of memory allo-
cation is a home in the set H. Each home h represents a contiguous block of
memory cells, e.g., a statically declared array. A location h[i] represents the cell
at integer offset i in home h. The set of locations with homes from H is de-
noted L. The function size : H → N maps a home to its allocated size. When
0 ≤ i < size(h), location h[i] is in bounds; otherwise it is out of bounds. Memory
locations contain values from the set Vals = Z ∪ L. A memory state is a partial
function m : L → Vals. The set of all memory states is denoted M. The set of
concrete states C is the set of pairs (p,m) where p ∈ L represents the program
position and m is a memory state.

An allocation for V is an injective function home : V → H such that
size(home(x)) = Γ (x) for all x ∈ V . Given such an allocation, the lvalue of
x ∈ V is lval(x) = home(x)[0]. We write m(x) for m(lval(x)) and m[x �→ v] for
m[lval(x) �→ v], where m is a memory state. We say a location h[i] is within a
variable x if h = home(x) and h[i] is in bounds.

Figure 3 defines the concrete interpretations E and post of, respectively, ex-
pressions and statements. We present here only the most interesting cases.
Complete definitions are given in a technical report [5]. Note that both E and
post result in sets of, respectively, values and concrete states—the set-based
semantics is needed as undefined operations may have a nondeterministic result.
E returns the distinguished value ⊥ in the case where an expression is not just
ill-defined, but erroneous (e.g., reading an out-of-bounds memory location)—in
this case the next state can have any memory state at any program point.

We now define the concrete interpretation of a program.

Definition 6. The concrete semantics �P�C of a program P = (V , Γ,L,S, τ, en)
is defined by the analysis C = (DC , IC ,FC), where

IC [P] = {(en,m) | ∀l ∈ L. m(l) is not a location}

FC [P](p,m) =
⋃

(p,S,p′)∈τ

post(m, p′, S)

Example 2. Figure 4(a) gives a subset of the reachable concrete states of the
program in Fig. 1(b). At �0, p is A[0] (the base address of the array A), x is 1,
and y is 0. At �1, due to the assignment to out-of-bounds location A[4], the next
state is undefined: every program point is reachable with any memory state.

70 C.L. Conway et al.

E(m, x) =

{
Z, if m(x) is undefined

{m(x)}, otherwise

E(m, *x) =

⎧
⎪⎨

⎪⎩

⊥, if m(x) is undefined, not a location, or out of bounds

Z if m(m(x)) is undefined

{m(m(x))}, otherwise

post(m, p, x := E) =

{
L × M, if E(m,E) = ⊥
{(p, m[x �→ v]) | v ∈ E(m,E)}, otherwise

post(m, p, *x := E) =

⎧
⎨

⎩

L × M, if m(x) is undefined, not a location, or out of bounds;
or if E(m,E) = ⊥

{(p, m[m(x) �→ v]) | v ∈ E(m, E)}, otherwise.

Fig. 3. The concrete interpretation

4 Pointer Analysis

The goal of pointer analysis is to compute an over-approximate points-to set for
each variable in the program, i.e., the set of homes “into” which a variable may
point in some reachable state.

A points-to state is a relation between variables. We denote the set of points-to
states by Pts. When it is convenient, we treat a points-to state also as a relation
between variables and memory locations: for points-to state pts , variables x, y,
and location h[i], we say (x, h[i]) is in pts when (x, y) is in pts and h[i] is within
y (i.e., h[i] is in bounds and h = home(y)). We write pts(x) for the points-to
set of the variable x in pts , i.e., the set of variables y (alt. locations l) such that
(x, y) (alt. (x, l)) is in pts .

The concretization function γPts takes a points-to state to the set of concrete
states where at most its points-to relationships hold. Say that variable x points
to y in memory state m if there exist locations l1, l2 such that l1 is within x, l2 is
within y, and m(l1) = l2. Then m is in γPts(pts) iff for all x, y such that x points
to y in m, the pair (x, y) is in pts . Note that there may be other pairs in pts as
well—the points-to relation is over-approximate. Note also that only in-bounds
location values must agree with the points-to state; out-of-bounds locations are
unconstrained.

Figure 5 defines the interpretations EPts and postPts for a selection of, respec-
tively, expressions and statements in the points-to domain. (Complete definitions
are given in a technical report [5].) The interpretations are chosen to match those
used by common points-to analyses. A key feature is the treatment of the indi-
rection operator *, which assumes that its argument is within bounds. Without
this assumption, the interpretation would have to use the “top” points-to state
(i.e., all pairs of variables) for the result of any indirect assignment.

We lift Pts to the set L × Pts in the natural way.

Pointer Analysis, Conditional Soundness, and Proving 71

�0 : {(p, A[0]), (x, 1), (y, 0)}

�1 : {(p, A[0]), (x, 1), (y, 0), (c, 0)}

.

c := 0

t1 := p + 4
*t1 := x

(a)

�0 : {(p, A)}

�1 : {(p, A)}

�2 : {(p, A), (t1, A)}

�3 : {(p, A), (t1, A)} �4 : {(p, A), (t1, A)}

�4 : {(p, A), (t1, A), (t2, A)}

c := 0

t1 := p + 4
*t1 := x

[c �= 0] [c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

(b)

Fig. 4. Concrete and points-to semantics for the program in Fig. 1(b)

EPts(pts , x) = pts(x)

EPts(pts , *x) = {z ∈ V | ∃y ∈ V : pts(x, y) ∧ pts(y, z)}

postPts(pts , x := E) = pts ∪ {(x, y) | y ∈ EPts(pts , E)}

postPts(pts , *x := E) =
⋃

(x,y)∈pts

postPts(pts , y := E)

Fig. 5. Abstract interpretation over points-to states

Definition 7. A flow- and path-sensitive points-to analysis Pts is given by the
tuple (Pts, IPts ,FPts), where

IPts [P] = {(en, ∅)}

FPts [P](p, pts) =
⋃

(p,S,p′)∈τ

(p′,postPts(pts , S))

Example 3. Figure 4(b) shows a subset of the reachable points-to states for the
program in Fig. 1(b). At �0, p points to A. The transition from �1 to �2 causes
t1 to point to A as well. The presence of an out-of-bounds array access has
no effect on the points-to state: the analysis assumes that evaluating *t1 is
safe.

Definition 8. Let SafeDeref be the predicate that holds in a concrete state
(p,m) if, for every transition (p, S, p′) in τ where S includes an expression of
the form *x, m(x) is an in-bounds location.

72 C.L. Conway et al.

Theorem 3. The points-to analysis Pts is SafeDeref-sound.

We can extract more traditional flow-sensitive, global, and flow-insensitive
pointer analyses from �P�Pts as follows.

– A flow-sensitive, program-point-sensitive (path-insensitive) analysis is de-
rived by assigning to each program point p the least points-to state (by
subset inclusion) pts� such that, if (p, pts) is in �P�Pts , then pts ⊆ pts�.

– A flow-sensitive, global (program-point-insensitive) analysis is derived by
assigning to every program point the least points-to state (by subset inclu-
sion) pts� such that, if (p, pts) is in �P�Pts for any program point p, then
pts ⊆ pts�.

– A flow-insensitive analysis is derived by replacing τ in Definition 7 with the
relation τ �, where the edge (p, S, q) is in τ � whenever some edge (t, S, u) is in
τ , for any program points t and u. Intuitively, if a statement occurs anywhere
in the program, then it may occur between any two program points—the
interpretation ignores the control-flow structure of the program.

– Flow-insensitive, program-point-sensitive and flow-insensitive, global combi-
nations can be defined as above, substituting the flow-insensitive semantics
for �P�Pts .

Theorem 4. Each of the flow-, path-, and program-point-sensitive and insensi-
tive variations of the points-to analysis is SafeDeref-sound.

Note 1. The flow-sensitive, program-point-sensitive analysis yields a points-to
relation similar to that of Emami et al. [16]. The flow-insensitive, global anal-
ysis procedure yields a points-to relation similar to that of Andersen [3]. The
Steensgaard [27] and Das [12] relations add additional approximation to the
global relation. We claim (but do not prove formally here) that these procedures
approximate �P�Pts and, thus, are at least SafeDeref-sound.

By the definition of conditional soundness, it is possible some condition θ
weaker than SafeDeref exists such that some or all of the above analyses are
θ-sound. It is our belief that this is not the case: no realistic points-to analysis
is θ-sound for any θ weaker than SafeDeref. A proof of this proposition is
beyond the scope of this paper.

In summary, we have shown that a set of points-to analyses which share
the assumptions of widely used analyses from the literature are sound for all
memory-safe executions. This claim is both stronger and more precise than any
correctness claims the authors have encountered: our points-to analyses (and,
by extension, those cited above) compute a relation which is conservative not
only for “well-behaved” (i.e., memory-safe) programs, but for all well-behaved
executions, even the well-behaved executions of ill-behaved programs

We have shown that, if we can prove the absence of non-SafeDeref states in
�P�C , the points-to analyses we have defined above will be sound. It remains to
describe an analysis parameterized by points-to information which can perform
a precise memory safety analysis.

Pointer Analysis, Conditional Soundness, and Proving 73

5 Checking Memory Safety

We wish to define an analysis procedure that will soundly prove the absence of
non-SafeDeref states in the concrete program. Note that the only attributes
of a location value that are relevant to the property SafeDeref are its offset
and the size of its home; if we can precisely track these attributes, we can ignore
the home component of a location (i.e., which variable it is within) so long as
we have access to over-approximate points-to information.

Note 2. In our description of the analysis, we will omit the merging, widen-
ing, and covering operations necessary to make the reachability computation
tractable. In our implementation of a memory safety analysis in Orion, we
constrain integer values and pointer offsets using a relational abstract domain
(e.g., convex polyhedra [10]) and use merging and widening to efficiently over-
approximate the semantics given below.

Our analysis will track abstract values from the set V̂als . An abstract value
is either an integer or an abstract location, a pair (i, n) representing a location
at offset i in a home of size n. Each abstract value v̂ represents a set of concrete
values, according to the abstraction function α : Vals → V̂als . For integer values,
α is the identity (i.e., α(n) = n); for concrete location values, α preserves the
offset and size (i.e., α(h[i]) = (i, size(h))). An abstract location (i, n) is in bounds
if it represents only in bounds concrete locations (i.e., 0 ≤ i < n); otherwise it
is out of bounds. An abstract memory state is a partial function b : L → V̂als .
We denote by B the set of abstract memory states.

The concretization function γB : B → 2C takes an abstract memory state b to
the set of concrete memories abstracted by b. A concrete memory m is in γB(b)
iff for all l either m(l) and b(l) are both undefined or α(m(l)) = b(l).

Figure 6 defines the interpretations EB and postB for a selection of, respec-
tively, expressions and statements with respect to B. (Complete definitions are
given in a technical report [5].) Note that the interpretations rely on points-
to information. In the limiting case, where no points-to information is avail-
able (i.e., the points-to relation includes all pairs), the expression *x can take
the value of any location abstracted by b(x). As in the concrete interpretation
EB returns the value ⊥ in the case where expression evaluation is (potentially)
erroneous.

We lift B to the domain L ×B in the natural way.

Definition 9. The analysis generator B̃ maps a set of points-to states Q to the
memory safety analysis B̃〈Q〉 defined by the parameterized interpretations

ĨB〈Q〉[P] = {(en, b) | ∀l ∈ L : b(l) is undefined}

F̃B〈Q〉[P](p, b) =
⋃

(p,S,p′)∈τ

⋃

(p,pts)∈Q

postB(b, pts , p′, S)

Theorem 5. The analysis generator B̃ is sound.

74 C.L. Conway et al.

EB(b, pts, x) =

(
Z, if b(x) is undefined

{b(x)}, otherwise

EB(b, pts, *x) =

8><>:
⊥, if b(x) is undefined, not a location, or out of boundsdVals, if b(l) is undefined for some l in pts(x), where α(l) = b(x)

{b(l) | pts(x, l), α(l) = b(x)}, otherwise

postB(b, pts, p, x := E) =

(
L × B, if EB(b, pts, E) = ⊥
{(p, b[x �→ v̂]) | v̂ ∈ EB(b, pts, E)], otherwise

postB(b, pts, p, *x := E) =

8>><>>:
L × B, if b(x) is undefined, not a location, or out

of bounds; or if EB(b, pts, E) = ⊥
{(p, b[l �→ v̂]) | pts(x, l), α(l) = b(x), v̂ ∈ EB(b, pts, E)},

otherwise

Fig. 6. Abstract interpretation over B

Corollary 1. If a points-to analysis Q is SafeDeref-sound, the composed
memory safety analysis B̃ ◦ Q is SafeDeref-sound.

Combining Corollary 1 with Theorems 3 and 4, we can compose B̃ with any of
the points-to analyses described in Section 4 and the resulting analysis will be
SafeDeref-sound. Recall from Theorem 1 that SafeDeref-soundness guar-
antees the detection of error states. If any non-SafeDeref state exists in �P�C ,
then a non-SafeDeref state is represented by the composed semantics; if only
SafeDeref states are reachable in the composed analysis then no concrete
non-SafeDeref state is reachable—the absence of error states can be proved.

6 Related Work

Methods for combining analyses have been described in the abstract interpre-
tation community, starting with Cousot and Cousot [7]. The focus has been on
exploiting mutual refinement to achieve the most precise combined analyses, as
in Gulwani and Tiwari [19] and Cousot et al. [9]. The power domain of Cousot
and Cousot [7, §10.2] provides a general model for analyses with conditional
semantics. We believe our notion of conditional soundness provides a simpler
model which captures the behavior of a variety of interesting analyses.

Pointer analysis for C programs has been an active area of research for
decades [21,16,28,3,27,17,12,20,23]. The correctness arguments for points-to algo-
rithms are typically stated informally—each of the analyses has been developed
for the purpose of program transformation and understanding, not for use in
a sound verification tool. Although Hind [21] proposes the use of pointer anal-
ysis in verification, the authors are not aware of any prior work that formally
addresses the soundness of verification using points-to information.

Pointer Analysis, Conditional Soundness, and Proving 75

Adams et al. [1] explored the use of Das’ algorithm to prune the search
space for a typestate checker and to generate initial predicates for a software
model checker. In both cases, the use of the points-to information is essentially
heuristic—the correctness of the overall approach does not depend on the points-
to analysis being sound.

Dor, Rodeh, and Sagiv [15] describe a variation on traditional points-to anal-
yses intended to improve precision for a sound, inter-procedural memory safety
verifier. A proof of soundness is given in Dor’s thesis [14]. However, the proof is
not explicit about the obligations of the points-to analysis. We provide a more
general framework for reasoning about verification using conditionally sound
information.

Bruns and Chandra [4] provide a formal model for reasoning about pointer
analysis based on transition systems. The focus of their work is primarily com-
plexity and precision, rather than soundness.

Dhurjati, Kowshik, and Adve [13] define a program transformation which pre-
serves the soundness of a flow-insensitive, equality-based points-to analysis (e.g.,
those of Steensgaard [27] and Lattner [23]) even for programs with memory safety
errors. The use of an equality-based analysis is necessary to achieve an efficient
implementation, but it limits the use of the technique in applications where a
more precise analysis may be necessary, e.g., in verification. The soundness re-
sults we describe here are equally applicable to flow-sensitive, flow-insensitive,
equality-based and subset-based pointer analyses.

Our abstraction for memory safety analysis is very similar to the formal mod-
els used in CCured [26] and CSSV [15]. Miné [25] describes a combined analy-
sis for embedded control systems which incorporates points-to information. His
analysis makes implementation-specific (i.e., unsound in general) assumptions
about the layout of memory.

7 Conclusion

This work grew out of a simple, but puzzling question: is it possible to utilize the
results of an analysis (points-to) whose soundness is dependent on a property
(memory-safety) in a sound analysis for the same property? There seemed to be
a circularity that could make a sound combination impossible.

Studying this question, we were led to a more precise statement of the sound-
ness properties of points-to analysis and to the definition of conditional sound-
ness. The final result shows that the combination is sound enough to correctly
prove the absence of errors, although it may not be strong enough to point out
every possible error.

We have concentrated here on points-to and memory safety analysis, but our
conditional soundness framework is by no means restricted to these domains. For
example, some static analyses are sound only assuming sequential consistency,
that integer overflow does not occur, or that the program is free of floating point
exceptions. The soundness claims of such analyses could be refined using the
methods we have described in this paper.

76 C.L. Conway et al.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0341685. Additional support was
provided by NSF Grant No. 0644299.

References

1. Adams, S., Ball, T., Das, M., Lerner, S., Rajamani, S.K., Seigle, M., Weimer, W.:
Speeding up dataflow analysis using flow-insensitive pointer analysis. In: Static
Analysis Symposium, Madrid, Spain, pp. 230–246 (September 2002)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1988)

3. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (May 1994)

4. Bruns, G., Chandra, S.: Searching for points-to analysis. In: Foundations of Soft-
ware Engineering, Charleston, South Carolina, pp. 61–70 (November 2002)

5. Conway, C.L., Dams, D., Namjoshi, K.S., Barrett, C.: Points-to analysis, condi-
tional soundness, and proving the absence of errors. Technical Report TR2008-910,
New York University, Dept. of Computer Science (2008)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, Los Angeles, California, pp. 238–252 (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Principles of Programming Languages, San Antonio, Texas, pp. 269–282 (1979)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTRÉE analyzer. In: European Symposium on Programming, Edinburgh,
Scotland, pp. 21–30 (April 2005)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
Combination of abstractions in the ASTRÉE static analyzer. In: Asian Computing
Science Conference (ASIAN), Tokyo, Japan (December 2006)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages, Tucson, Arizona (January
1978)

11. Dams, D., Namjoshi, K.S.: Orion: Building blocks for program analyzers. In: Formal
Methods for Components and Objects, Amsterdam, The Netherlands (November
2005)

12. Das, M.: Unification-based pointer analysis with directional assignments. In: Pro-
gramming Language Design and Implementation, Vancouver, British Columbia,
pp. 35–46 (2000)

13. Dhurjati, D., Kowshik, S., Adve, V.: SAFECode: enforcing alias analysis for weakly
typed languages. In: Programming Language Design and Implementation, Ottawa,
Canada, pp. 144–157 (June 2006)

14. Dor, N.: Automatic Verification of Program Cleanness. PhD thesis, Tel Aviv Uni-
versity (December 2003)

15. Dor, N., Rodeh, M., Sagiv, M.: CSSV: towards a realistic tool for statically detect-
ing all buffer overflows in C. In: Programming Language Design and Implementa-
tion, San Diego, California, pp. 155–167 (July 2003)

16. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Programming Language Design
and Implementation, pp. 242–256 (June 1994)

Pointer Analysis, Conditional Soundness, and Proving 77

17. Foster, J.S., Fähndrich, M., Aiken, A.: Flow-insensitive points-to analysis with term
and set constraints. Technical Report UCB/CSD-97-964, University of California,
Berkeley (August 1997)

18. Ghiya, R., Lavery, D.M., Sehr, D.C.: On the importance of points-to analysis and
other memory disambiguation methods for C programs. In: Programming Lan-
guage Design and Implementation, Snowbird, Utah, pp. 47–58 (June 2001)

19. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Programming Lan-
guage Design and Implementation, Ottawa, Canada (June 2006)

20. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: Programming Lan-
guage Design and Implementation, Snowbird, Utah, pp. 24–34 (June 2001)

21. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: Program Anal-
ysis for Software Tools and Engineering, Snowbird, Utah (June 2001)

22. ISO Standard - Programming Languages - C, ISO/IEC 9899:1999 (December 1999)
23. Lattner, C.: Macroscopic Data Structure Analysis and Optimization. PhD thesis,

University of Illinois at Urbana-Champaign (May 2005)
24. Lerner, S., Grove, D., Chambers, C.: Composing dataflow analyses and transfor-

mations. In: Principles of Programming Languages, Portland, Oregon, pp. 270–282
(2002)

25. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Languages, Compilers, and Tools for Embedded Sys-
tems, Ottawa, Canada (2006)

26. Necula, G.C., McPeak, S., Weimer, W.: CCured: type-safe retrofitting of legacy
code. In: Principles of Programming Languages, Portland, Oregon, pp. 128–139
(January 2002)

27. Steensgaard, B.: Points-to analysis in almost linear time. In: Principles of Pro-
gramming Languages, St. Petersburg Beach, Florida, pp. 32–41 (January 1996)

28. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C pro-
grams. In: Programming Language Design and Implementation, San Diego, Cali-
fornia, pp. 1–12 (June 1995)

Protocol Inference Using Static Path Profiles

Murali Krishna Ramanathan1, Koushik Sen2,
Ananth Grama1, and Suresh Jagannathan1

1 Department of Computer Science, Purdue University
{rmk,ayg,suresh}@cs.purdue.edu

2 Electrical Engineering and Computer Science,
University of California, Berkeley

ksen@eecs.berkeley.edu

Abstract. Specification inference tools typically mine commonalities
among states at relevant program points. For example, to infer the in-
variants that must hold at all calls to a procedure p requires examining
the state abstractions found at all call-sites to p. Unfortunately, existing
approaches to building these abstractions require being able to explore
all paths (either static or dynamic) to all of p’s call-sites to derive spec-
ifications with any measure of confidence. Because programs that have
complex control-flow structure may induce a large number of paths, naive
path exploration is impractical.

In this paper, we propose a new specification inference technique that
allows us to efficiently explore statically all paths to a program point.
Our approach builds static path profiles, profile information constructed
by a static analysis that accumulates predicates valid along different
paths to a program point. To make our technique tractable, we employ
a summarization scheme to merge predicates at join points based on
the frequency with which they occur on different paths. For example,
predicates present on a majority of static paths to all call-sites of any
procedure p forms the pre-condition of p.

We have implemented a tool, marga, based on static path profiling.
Qualitative analysis of the specifications inferred by marga indicates
that it is more accurate than existing static mining techniques, can be
used to derive useful specification even for APIs that occur infrequently
(statically) in the program, and is robust against imprecision that may
arise from examination of infeasible or infrequently occurring dynamic
paths. A comparison of the specifications generated using marga with a
dynamic specification inference engine based on cute, an automatic unit
test generation tool, indicates that marga generates comparably precise
specifications with smaller cost.

1 Introduction

The importance of clearly defined specifications to software development, main-
tenance, and testing is well-understood. Model-checking [5,14,26], type sys-
tems [7,9,10], typestate interpretation [17,13] and related static analyses [26]

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 78–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Protocol Inference Using Static Path Profiles 79

are valuable only when proper specifications are available. The absence of spec-
ifications can also lead to improper reuse of program components and weaken
the effectiveness of testing mechanisms[11,12,22].

In some cases, specifications are relatively easy to express (e.g., procedure p
must always be called after data structure d is initialized), or are well-documented
(e.g., a call to socket must be present before a call to bind and the return value
of socket must be checked for erroneous conditions). In many cases, however,
specifications are unknown, and even when available, are often informal.

To remedy this issue, there has been much recent interest in devising tech-
niques that automatically extract program properties by mining program be-
havior. The effectiveness of mining critically depends on a sufficient number of
use cases that can be examined. For example, if we are interested in inferring
the pre-conditions that must hold prior to a call to a procedure p, we benefit by
examining multiple calls to p. The more calls analyzed, the greater the likelihood
we can effectively distinguish between predicates present at these calls that are
truly part of p’s specification from those that, although present, are nonetheless
irrelevant. In general, the confidence in a mined pre-condition is significantly
higher if it is observed in 90,000 out of 100,000 occurrences, compared to when
it is observed in 9 out of 10 occurrences, even though the underlying percentage
of occurrences are the same [15].

With a sufficient number of test cases, dynamic mining techniques can gen-
erate execution traces which contain a potentially large number of calls to p.
Unfortunately, the cost to generate these traces may be high if we wish to ensure
that these traces define a comprehensive enumeration of all possible executions
of the program [11,12,22]. On the other hand, static techniques can only rely on
static properties to identify call points; for example, if a call to p occurs at m
different static program points in the source, only the predicates present at those
m points can be mined. On the benchmarks used in our study, we observed that
on an average, 80-85% of the procedures in these benchmarks are not invoked
more than five times statically.

Furthermore, existing static techniques do not take into account the number of
paths leading to different call-sites of the same procedure. Consider a predicate π
that occurs at one call-site c1, but which is absent at another call-site c2 of the same
procedure p. Static inference techniques would naturally deduce that π is not part
of p’s pre-condition. However, the number of paths leading to c1 may significantly
be greater than c2 (e.g., c2 may be part of an infrequently occurring error-inducing
path). Indeed, it may be precisely the absence of π at c2 that leads to an error.

The underlying premise of our work is that we can effectively apply the ben-
efits of a dynamic analysis (i.e., generating a desired quantity of data for the
purposes of mining) to a static specification mining algorithm. However, explor-
ing all paths and generating the traces associated with each path statically has
two significant disadvantages: (a) there are an exponential number of paths that
would need to be examined, and (b) if only a subset of all paths are explored,
then this approach has the same disadvantage of incompleteness common to any
dynamic mining strategy.

80 M.K. Ramanathan et al.

Our main contribution in this paper is the development of an intelligent com-
prehensive path enumeration and summarization scheme that does not lead to
exponential time and space costs. This goal is achievable because we are inter-
ested in deriving properties that are not path specific, but merely valid over a
majority of the paths examined.

We define an inter-procedural, path-based static analysis that collects a set
of program predicates that define potential pre-conditions to procedure calls. If
procedure p has pre-condition π, it means that that all the predicates comprising
π should hold before any call to p. These predicates can encode control flow
(e.g., a call to bind must be preceded by a call to socket) as well as dataflow
properties (e.g., the return value of socket is always validated before a call to
bind). To compute pre-conditions, we analyze the predicates present along each
control flow edge in the program’s control-flow graph. At any join point j, where
multiple paths merge, we keep track of the number of paths, nj , leading to the
join point and the number of times a predicate π is valid on these nj paths.
This information, which we refer to as a static path profile, is transferred to
outgoing edges, and the process repeated until all control flow edges are traced.
We use procedure summaries to make the approach scalable for inter-procedural
analysis. To compute the pre-conditions of a procedure p, we take the cumulative
sets of predicates associated with its different call-sites and their associated path
profiles to derive the required specifications.

We have implemented a tool, marga, for computing path profiles for C pro-
grams. Note that an essential assumption underlying our approach is that the
probability of occurrence of a dynamic path is likely to be equal to that of a static
path. Clearly, such an assumption need not hold in general. Static paths may
be infeasible, i.e., not be traversable under any dynamic execution. Similarly, a
path that occurs frequently statically may occur infrequently dynamically be-
cause there may be stringent runtime conditions that dictate when the path can
be traversed that are not captured by a static analysis. Conversely, a path that
occurs frequently dynamically (e.g. the back edge of a long-lived loop) may occur
infrequently statically. Fortunately, for the purposes of specification inference, we
demonstrate that static path profiling is robust against inaccuracies introduced
by failing to recognize (statically) infeasible, or infrequently occurring static and
dynamic paths.

To support this claim, we have also implemented a dynamic specification
inference engine that mines comprehensive dynamic executions of the program
generated by cute [22], an automatic test generation tool. A comparison of the
specifications inferred by marga and the dynamic inference engine reveals that
infeasibility of program paths (or lack of correlation between probabilities of
static vs. dynamic paths) has little impact on the quality of the specifications
generated.

Bugs in programs present another challenge to specification inference since
they may invalidate correct predicates from a specification or introduce incor-
rect ones. Test generation tools can help identify commonly occurring bugs since
such bugs by definition must occur on many dynamic paths. Because these bugs

Protocol Inference Using Static Path Profiles 81

can be fixed, we assume programs are mostly free of errors. Bugs that are found
on infrequently occurring dynamic paths are not always captured by unit testing.
However, the paths on which these bugs occur must therefore necessarily corre-
spond to profiled static paths with small weights. Consequently, the influence of
these bugs on derived specifications is small.

Our experimental results using marga show that the analysis (a) can effectively
infer specifications even for procedures with a small number of statically apparent
call-sites; (b) exhibits fewer false negatives compared to static specification infer-
ence techniques that do not take path profiles into consideration, and (c) displays
precision closer to that of an exhaustive dynamic path exploration technique.

2 Motivation

Dynamic specification inference techniques suffer from the problem of under
approximation i.e., a set of predicates Θu = {π1, π2, . . . πn} is declared to hold
before a call to procedure p even when only a subset of the predicates found in
Θu are valid elements of p’s pre-condition set; this is possible because not all
possible paths to the call may have been examined, and these unexamined paths
may invalidate the inclusion of some of the πi in Θu.

Similarly, static specification inference techniques suffer from the problem of
over approximation, i.e., a set of predicates Θo is considered to hold before a call
to procedure p, even though other predicates (not present in Θo) should also be
included; this is possible because a particular predicate that cannot be proven
to hold along a certain path may result in its omission from Θo, even if that
path is infeasible (e.g., the path follows a branch that could never be taken) or
erroneous.

We elaborate on these points using the example shown in Figure 1. Before
every call to procedure p, there are certain predicates that hold. For example, in
Figure 1(a), there are two call-sites to p. There are two paths, labeled 1 and 2 ,
to one of the call-sites; on path 1 , predicate π1 holds and on path 2 , predicates
π1 and π2 hold. There are three paths leading to the other call-site to p (the
call-site on the right of Figure 1(a)); these paths are labeled 3, 4 and 5 , with
predicates π1 and π2 valid on paths 3 and 4 , and π2 valid on path 5 . In a
dynamic analysis scheme, if the paths 2, 3 and 4 are the only ones traversed,
we may erroneously conclude that both π1 and π2 hold always before a call
to procedure p. Note that this case is difficult to distinguish from the scenario

5
4

321

π1 π2π1,π2

π1,π2π1,π2

pp

(a)
Under Approximation

4
53

21

π1,π2
π1,π2

π1,π2
π1,π2π1,π2

p p

(b)
Correct Pre-conditions

5
4

321

π1,π2

π1,π2
π1,π2 π1,π2 π1

pp

(c)
Over Approximation

Fig. 1. An example illustrating under- and over-approximation of predicates

82 M.K. Ramanathan et al.

399 add listen addr(ServerOptions *options, char *addr, u short port)
. . .

403 if (options->num ports == 0)
404 options->ports[options->num ports++] = SSH DEFAULT PORT;

. . .
407 if (port == 0)
408 for (i = 0; i < options->num ports; i++)
409 add one listen addr(options, addr, options->ports[i]);
410 else
411 add one listen addr(options, addr, port);

Fig. 2. Motivating Example for over-approximation from openssh-4.2p1

illustrated in Figure 1(b) where π1 and π2 indeed form the precondition for p.
Ensuring that the paths 1 and 5 in Figure 1(a) are traversed depends upon the
comprehensiveness of the test suite.

The problem of over approximation is illustrated in Figure 1(c). Here, there
is one infeasible path (path 5) to a call-site of p. A typical static analysis would
conclude that one call to p (through paths 1 and 2) has a set of predicates that
include π1 and π2. Because of the absence of π2 on the infeasible path 5 , the
analysis would conclude that the other call to p (accessed through paths 3, 4
and 5) does not include π1 and π2. Thus, given only two (static) calls to p, no
statistically meaningful determination of p’s pre-conditions can be made.

We provide further motivation for over approximation using a real-world ex-
ample – statically deriving a specification for the bind system call in the Linux
socket library. Part of the documented specification is that the address (second
parameter to bind) corresponds to a specific address family (e.g., AF UNIX,
AF INET). There are eight call-sites of bind in openssh-4.2p1 of which all
paths to five of the call-sites satisfy this specification. However, as shown in
Figure 2, there exists a path to one of the call-sites where the address fam-
ily is not set (add one listen addr is not invoked). This happens when both
port and options->num ports are 0. This path is infeasible since both port
and options->num ports cannot be 0 simultaneously (line 404). Nevertheless,
without the assistance of a theorem prover, static mining implementations must
conservatively conclude that this is indeed a feasible path, and thus would be
unable to conclude that the address family must be set prior to the call to bind .
Using static path profiles, on the other hand, we will correctly weight the like-
lihood of this path occuring, and will not take into serious consideration the
absence of the assignment to the address family.

3 Deriving Specifications

A simple technique to derive specifications is to trace each path in the program
and then infer the set of valid pre-conditions from the traced paths. Consider
the example shown in Figure 3(a). There are seven paths on total to a call-site

Protocol Inference Using Static Path Profiles 83

π

ππ

p

(a) Full Path Exploration

(2,0,1)(2,2,1)

(2,0,1)

(2,2,1)

(1,1,0) (1,0,0) (1,0,0)

(7,0,5)

π

π

π

p

(b) Static Path Profiles

Fig. 3. Illustrative example. Rectangles indicate predicates, circles indicate call-sites.
Empty rectangles/circles indicate arbitrary predicates/procedure calls.

of some procedure p. If every path is traced statically, it is clear that among five
out of the seven paths, the predicate π holds and is a precondition for p with
confidence 71.42%. Although this scheme is simple, the cost associated with
tracing each path is exponential in the number of edges in the program.

The key insight to our approach is that obtaining aggregate information asso-
ciated with multiple paths is sufficient for generating interesting pre-conditions.
Knowing the specific paths in which π holds is uninteresting from the perspective
of specification inference. A static path profile is the cumulative information of
predicates that hold across all possible paths to a specific call-site.

Path information is collected by examining the program’s control-flow graph.
Each node v in the CFG is annotated as a three tuple (nv,mv, qv) for every
predicate π under consideration, where the definition of the tuple components
is as follows:

– nv is the total number of paths leading to v,

– mv =
{
nv, if predicate π holds at v
0 otherwise

– qv = Σu max (mu, qu) where u ∈ predecessor(v) in the CFG.

At any given node, we can derive the number of paths any predicate π holds
by observing the three-tuple (nv,mv, qv) associated with the predicate π at that
node. The number of predicates examined at a node is directly proportional to
the number of variables. Intuitively, qv specifies the number of paths through
v in which the predicate is valid. If a predicate π is valid on some number of
incoming paths upto node v, but in addition also happens to be asserted at v, it
is clear π holds on all paths through v (mv = nv). The nodes downstream from
v decide the number of paths on which π holds using qv and mv. If the number
of paths for which π holds is i, then i = max (mv, qv); the fact that predicate π
holds on i paths is denoted as πi.

For example, consider the annotated graph counterpart of Figure 3(a) in
Figure 3(b) associated with predicate π. Let one of the two nodes annotated

84 M.K. Ramanathan et al.

(2,0,1) be v. This annotation denotes the fact that there are two possible
paths to node v, predicate π is not explicitly valid at v, and the total number of
paths on which π is valid is one (written π1).

Loops pose complications for building path profiles because they represent a
potentially infinite set of executions. To make our approach tractable, we perform
a simple fixpoint calculation to compute the path profile for back-edges in loops.
Initially, we assume the back-edge does not contribute to the profile weights of
any path found within the loop. In subsequent iterations of the analysis, the back
edge on the loop contributes exactly once to the profile weights, albeit with the
predicates being derived propagated through the back edge multiple times. Since
the computation of the tuple is monotonic (since qv computes the maximum of
the profiles of its predecessors which is bounded by the number of paths in the
loop body that include the back-edge), the analysis is guaranteed to converge.

The annotation marking mechanism must also take into account nodes in
the control-flow graph that represent call-sites (e.g., the node labeled p). Path
profiles distinguish between incoming and outgoing annotations. The incoming
annotation in p’s case is (7,0,5) . Incoming annotations are used to generate
preconditions for p. Thus, to infer the pre-condition for p requires no inspection
of p’s body. In this case, π5 holds true at node p, i.e., five paths of the total
set of paths have π to be true. Outgoing annotations (not shown in the figure),
on the other hand, capture path profile summary information. The summary
information for some procedure p gives the number of paths within p for which
the predicate holds upon exit from p, which in turn is given by the annotation
at p’s return node. Summary information is used to define incoming annotations
for other call-sites downstream in the graph. We elaborate on this point in the
next section.

4 marga : Implementation Details

We have implemented a tool name marga based on the above approach. It
takes as input the program source and a user-defined confidence threshold for
determining when a predicate should form part of a pre-condition, and produces
as output pre-conditions (i.e., a set of predicates) for every procedure. These
pre-conditions indicate the conditions that must hold prior to any call of the
associated procedure.

We first generate the control-flow graph for each procedure using
Codesurfer [3]. The resulting graph is processed using the algorithm given in
Figure 4. The number of paths to each node in the graph is first computed.
Subsequently, the q value for the node is computed for each predicate by consid-
ering all its parent nodes. If the node is a call-site, then the procedure summary
associated with that call is also added to the set of predicates that will flow
into other adjacent nodes in the graph. The procedure summary is the summary
of predicate information along with the total number of paths and the number
of paths for which each predicate holds at the return node of the procedure.
This process is repeated until a convergent path profile for the loop back-edge is

Protocol Inference Using Static Path Profiles 85

procedure Buildpredicates

� Input: G(V,E) , directed, acyclic CFG of α ; V is topologically sorted;

� Output: Annotated Graph G

� Auxiliary Information:

predicates (u): predicates generated at u; flow (u): set of predicates valid at u;

precond (u): set of predicates that are used for generating preconditions associated with procedure at u;

callsite(u): true if u is a callsite; return(u): true if u is the return node from procedure α;

1 iterate ← true

2 while iterate do

3 iterate ← false

4 for each node u = 1 to |V|
5 oldflow ← flow (u)

6 for all predecessors v of u

7 nu ← nu + nv

8 flow (u) ← flow (u) ∪ predicates (v)

9 for each predicate π in flow (v)

10 qu(π) ← qu(π) + max (mv(π), qv(π))

11 mu(π) ← 0

12 flow (u) ← flow (u) ∪ predicates (u)

13 for each predicate π in data predicate (u)

14 mu(π) ← nu

15 if callsite(u) is true then

16 precond(u) ← flow(u)

17 flow(u) ← flow(u) ∪ proc summary [func (u)]

18 if return(u) is true then

19 proc summary [α] ← flow (u)

20 if oldflow �= flow (u) then iterate ← true

Fig. 4. Algorithm for building predicates

procedure Getpreconditions

� Input: α: a procedure in the program;
C = {c1, c2, ...cn} is the set of call sites of α;
β = user-defined threshold for generating preconditions

� Output:set of preconditions for α
1 for each node ci

2 for each predicate π in precond (ci)
3 qt(π) ← qt(π) + qci

(π)
3 nt(π) ← nt(π) + nci
4 flow t ← flow t ∪ precond (ci)
5 for each predicate π in flow t
6 if qt

nt
> β

7 preconditions[α] ← preconditions[α] ∪ {π}

Fig. 5. Generate preconditions

computed.Yet another fix point iteration is performed to ensure that depen-
dencies crossing procedure boundaries (as given by the procedure summary and
return) are completely captured.

At the end of the fixed point calculation, the algorithm shown in Figure 5
is executed to obtain the pre-conditions associated with each procedure in the
program. To generate the pre-condition for a procedure p, each call-site of p is
considered. The predicates that can be used in computing the preconditions from
each of these call-sites is extracted and the total number of paths in which the
predicate holds (qt) across all call-sites is computed. Similarly, the total number
of paths to all call-sites (nt) is also calculated. If the ratio of the number of

86 M.K. Ramanathan et al.

Table 1. Benchmark Information

Source Version LOC CFG Procedure Avg. paths Total Analysis
nodes count to call-sites Specifications time (s)

zebra 0.95a 183K 145K 3342 4721.64 1323 555

apache 2.2.3 273K 102K 2079 7281.30 676 561

openssh 4.2p1 68K 88K 1281 7175.75 619 501

osip2 3.0.1 24K 34K 666 4028.32 158 104

procmail 3.22 9K 16K 298 33696.15 120 297

buddy 2.4 10K 10K 173 5653.23 133 140

paths on which a predicate holds compared to the total number of paths at all
call-sites is greater than β, a user-defined threshold, the predicate is added to
the pre-condition for p.

5 Experiments

We validate the idea of using static path profiles on selected benchmark sources
to demonstrate scalability and effectiveness. We extract pre-conditions for six
sources: apache , buddy , zebra , openssh , osip2 , and procmail . Specific de-
tails about these benchmarks are provided in Table 1. The size of the benchmarks
varies from 9K to 273KLOC. Since default configurations are used to compile
these sources, we believe that the number of control flow nodes represents a
more reliable indicator of effective source size than lines of code. The number
of control flow nodes ranges from 10K to 143K. We also present the number of
user-defined procedures examined in the table.

We have implemented our tool in C++ and have performed our experiments
on a Linux 2.6.11.10 (Gentoo release 3.3.4-r1) system running on an Intel(R)
Pentium(R) 4 CPU machine operating at 3.00GHz, with 1GB memory. The
time taken for performing the analysis is presented in Table 1.

5.1 Quantitative Assessment

We derive pre-conditions containing three different types of predicates – assign-
ment, comparison and precedence. As their names suggest, assignment predicates
reflect the assignment of values (or results of procedure calls) to variables; com-
parison predicates include six kinds of logical comparison operations (>, <, �=,
=, ≥ and ≤) between variables and/or constants; a precedence predicate is an or-
dered sequence of procedures whose calls must precede the call to the procedure
being examined. The total number of pre-conditions generated for procedures,
where the predicates are valid on at least 70% of the paths is given in Table 1.
The size distribution (number of predicates within a pre-condition) for the gen-
erated pre-conditions is given in Figure 6. Among the generated pre-conditions,
the size of the predicate set is less than two for a majority of the procedures.
For example, observe that approximately 97% of the procedures in apache have

Protocol Inference Using Static Path Profiles 87

>=4
3
2
1
0

 0%

 20%

 40%

 60%

 80%

 100%

zebraprocmailpostgresqlosipopensshbuddyapache

Pe
rc

en
ta

ge
 o

f
fu

nc
tio

ns

Benchmarks

Fig. 6. Predicate distributions

<=2
 3−5
 6−10
 11−15
 >15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

zebraprocmailosipopensshbuddyapache

N
or

m
al

iz
ed

 p
re

co
nd

iti
on

s

Benchmarks

Fig. 7. Comparison with non-profile based inference

fewer than two predicates in their pre-conditions. The predicate size distribution
display a similar pattern for different types of predicates.

We experimentally compare our approach with a non-profile based inference
mechanism that does not leverage path profiles [21]. Briefly, the comparison
metric is an analysis that requires a predicate to be satisfied along all paths to a
call-site in order to be a valid candidate for inclusion as part of a procedure call’s
pre-condition. After accumulating the predicates at each call-site, we declare a
predicate as a pre-condition, if the predicate is valid in at least the user-defined
threshold percentage of call-sites. We use the same user-defined threshold (70%)
in deriving the predicates, i.e., if a predicate is valid in seven out of 10 call-sites,
we declare the predicate as a pre-condition in the non-profile based inference
scheme. In the path-profiling approach, we declare a predicate to be a pre-
condition if it is valid in 70% of the paths to call-sites of the procedure.

88 M.K. Ramanathan et al.

Figure 7 presents the percentage of pre-conditions derived by non-profile based
specification inference as compared to those derived using static path profiling.
For example, for procedures with three to five call-sites in zebra , the former
discovers roughly only half the predicates discovered by the path profile analysis.
As expected, for procedures with fewer than three call-sites, the non-profile based
inference scheme is not able to derive any pre-conditions. For example, in the
case of openssh , no pre-condition is derived for procedures that have fewer than
three statically apparent call-sites.

We also observe that in many cases, the set of pre-conditions generated with
the non-profile based inference is a proper subset of the pre-conditions generated
using the static path profiling approach. This is consistent with our expectation
that typical static analyzes can lead to over approximation by eliminating valid
predicates from pre-conditions. In some cases, however, such as osip or zebra ,
this hypothesis does not hold. Path profiling weights predicates based on the
number of paths on which they hold across all call-sites. Consider a predicate
π which occurs on k paths at n call-sites to procedure p. Suppose that paths
are not evenly distributed among these n call-sites. If on m call-sites, π occurs
on all paths, and m is greater than the threshold cutoff, the non-profile based
inference will record π as a valid pre-condition. However, if the number of paths
that flow into these m call-sites is much less than k, then the path profile analysis
will nonetheless not include π as part of p’s pre-conditions. In other words, a
predicate that does not hold on a majority of paths may still hold on the paths
to a majority of call-sites. Path profiling thus provides finer control over both
the inclusion and exclusion of predicates than non-profile based inference.

5.2 Qualitative Assessment

We want to identify the impact of infeasible paths and approximations intro-
duced by static path weights in the program on the quality of the specifications
inferred. To do so, we compare our approach with a dynamic inference mecha-
nism. Rather than using an existing test-suite to generate dynamic traces, we
use cute, an automatic test generation tool, that provides extended coverage
of the program, and thus helps reduce the possibility of under-approximation
(compared to other dynamic analysis systems) as described in Section 2.

The test generation process initially runs with some random input and collects
constraints {C1, ..., Ck−1, Ck} symbolically along the execution. To explore a pre-
viously unexplored path, a new input is generated that satisfies the constraints
{C1, ...Ck−1,¬Ck}. If this path was explored earlier, then the set of constraints
{C1, ...¬Ck−1} is used to explore a different path. This process repeats until all
paths in the program are explored. There are several issues that must be handled
by the input generation process. Most importantly, when it becomes difficult to
reason with symbolic constraints, concrete values from the program execution
replace symbols to ensure progress of the test input generation process. We refer
the reader to [22] for a more detailed description.

We track the predicates along different execution paths of the program and
for each call to a procedure, group the set of predicates that precede it from the

Protocol Inference Using Static Path Profiles 89

 total number of procedures
 dynamic inference
 non−profile based inference
 static profile based inference

 0

 5

 10

 15

 20

F3F2F1

N
um

be
r

of
 p

ro
ce

du
re

s

Number of call−sites

Fig. 8. Correctness of different inference schemes

start of the execution. Thus, across multiple executions, we would generate many
such groups of predicates. To generate the precondition for the procedure, we
apply frequent item-set mining [6]. The frequently occurring predicates across
all the groups form the precondition.

We performed our comparison on buddy , an open source package that im-
plements operations over Binary Decision Diagrams (BDD). We ran cute for
a bounded number of iterations (1000), which took approximately 30 minutes,
and in that process collected specifications for 24 procedures. Of these 24 pro-
cedures, only two procedures(F1) had more than 10 call-sites, three procedures
(F2) had call-sites between five and 10 and the remaining 19 procedures(F3) had
less than five call-sites. Using existing documentation, and manual inspection,
we computed a reference specification for each of these procedures.

Figure 8presents the results associatedwith our qualitative analysis.We applied
three different schemes, (a) dynamic inference (b) non-profile based inference, and
(c) path-profile based inference on this benchmark. For the set of two procedures
in F1, all techniques provide similar precision and were able to detect precondi-
tions correctly for one procedure. Under-approximation confounds the precision of
dynamic inference for the set of three procedures in F2. The analysis for the pro-
cedures in F3 is more interesting. Because of the lack of frequency of call-sites for
the procedures in this set, non-profile based static inference is ineffective in pro-
ducing specifications with any degree of confidence. In contrast, path-profile based
inference correctly identified the correct specification for 17 of the 19 procedures.
Surprisingly, under-approximation still poses a problem even for a comprehensive
test generation tool like cute; it failed to correctly generate specifications for 7 of
the procedures that were successfully analyzed using static path profiling.

6 Related Work

Many interesting static mining approaches exist for specification inference.
Kremenek et al. [16] develop a inference mechanism based on using factor graphs.

90 M.K. Ramanathan et al.

Even though, many useful specifications were generated, the approach requires
either machine learning or user specifications to generate initial annotation prob-
abilities, employs naming conventions for improving accuracy and is domain-
specific. Ramanathan et al. [21] present an annotation-free approach to infer
data flow specifications using frequent item-set mining and control flow spec-
ifications (precedence relations [20]) using sequence mining. This approach is
path-sensitive, but does not take static path profiles into account: if a predicate
does not hold at a majority of call-sites to a procedure, it is not included as
part of the procedure’s pre-condition. Shoham e al. [23] propose an approach
for client-side mining of temporal API specifications based on static analysis.
Li and Zhou present PR-Miner [18], a tool that relies on mining to identify
frequently occurring program patterns. As this approach is not path-sensitive,
spurious specifications can be generated even if a predicate holds in at least
one path leading to a majority of call sites. Mandelin et al. [19] present a tech-
nique for synthesizing jungloid code fragments automatically based on the input
and output types that describe the code and is useful for reusing existing code.
An automatic specification mining technique that uses information about ex-
ceptions to identify temporal safety rules is presented in [25]. Because none
of the above techniques performs mining on generated paths, the confidence
in the derived specifications is statistically low. Due to the ability of our ap-
proach to simulate dynamic behavior and succinctly maintain data that covers
all possible program paths, we are able to derive useful specifications with high
confidence.

Ball and Larus [4] propose an approach for efficient path profiling. In their
approach, dynamic runs of a program are profiled to gather information about
different path executions. Recently, Vaswani et al. [24], present a scheme to
identify a subset of interesting paths and use a compact numbering scheme
using arithmetic coding techniques. Our approach is motivated by the algorithm
presented by Ball and Larus [4] and is applied statically.

Ammons et al. [1] perform specification mining by summarizing frequent inter-
action patterns as state machines that capture temporal and data dependencies
when interacting with API’s or abstract data types. An approach to debug de-
rived specifications using concept analysis is subsequently proposed by Ammons
et al. in [2]. Daikon [8] is a tool for dynamically detecting invariants in a program.
Yang et al. [27] present a technique for automatically inferring temporal proper-
ties by exploring event traces across versions of a program. All these approaches
critically rely on test input providing comprehensive coverage. Our approach is
independent of test inputs and covers all possible program paths.

Acknowledgements

This work is supported in part by the National Science Foundation under grant
CNS-509387. We also like to thank the anonymous reviewers for their construc-
tive feedback.

Protocol Inference Using Static Path Profiles 91

References

1. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proceedings of POPL
2002, pp. 4–16 (2002)

2. Ammons, G., Mandelin, D., Bodik, R., Larus, J.: Debugging temporal specifications
with concept analysis. In: Proceedings of PLDI 2003, pp. 182–195 (2003)

3. Anderson, P., Reps, T., Teitelbaum, T.: Design and implementation of a fine-
grained software inspection tool. IEEE Trans. on Software Engineering 29(8), 721–
733 (2003)

4. Ball, T., Larus, J.: Efficient path profiling. In: MICRO-29 (December 1996)

5. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of in-
terfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122. Springer,
Heidelberg (2001)

6. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: Mafia: A performance
study of mining maximal frequent itemsets. In: FIMI 2003 (2003)

7. Chin, B., Markstrum, S., Millstein, T.: Semantic type qualifiers. In: Proceedings
of PLDI 2005, pp. 85–95 (2005)

8. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely
program invariants to support program evolution. IEEE TSE 27(2), 1–25 (2001)

9. Foster, J., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings
of PLDI 2002 (2002)

10. Furr, M., Foster, J.: Checking type safety of foreign function calls. In: Proceedings
of PLDI 2005 (2005)

11. Godefroid, P.: Compositional dynamic test generation. In: POPL 2007, pp. 47–54
(2007)

12. Godefroid, P., Klarslund, N., Sen, K.: Dart: Directed automated random testing.
In: Proceedings of PLDI 2005, Chicago, Il, pp. 213–223 (2005)

13. Henzinger, T., Jhala, R., Majumdar, R.: Permissive interfaces. SIGSOFT Softw.
Eng. Notes 30(5), 31–40 (2005)

14. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2004)

15. Kapadia, A.S., Chan, W., Moye, L.A.: Mathematical Statistics With Applications.
CRC, Boca Raton (2005)

16. Kremenek, T., Twohey, P., Back, G., Ng, A., Engler, D.: From uncertainty to belief:
Inferring the specification within. In: Proceedings of OSDI 2006 (2006)

17. Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking for data struc-
ture consistency. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, Springer,
Heidelberg (2005)

18. Li, Z., Zhou, Y.: Pr-miner: Automatically extracting implicit programming rules
and detecting violations in large software code. In: Proceedings of ESEC-FSE 2005
(September 2005)

19. Mandelin, D., Xu, L., Bodik, R., Kimelman, D.: Jungloid mining: Helping to nav-
igate the api jungle. In: Proceedings of PLDI 2005, pp. 48–61 (2005)

20. Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of func-
tion precedence protocols. In: Proceedings of ICSE 2007 (May 2007)

21. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference
using predicate mining. In: Proceedings of PLDI 2007, pp. 123–134 (2007)

22. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for c. In:
Proceedings of ESEC-FSE, pp. 263–272 (2005)

92 M.K. Ramanathan et al.

23. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using
automata-based abstractions. In: ISSTA 2007: International Symposium on Soft-
ware Testing and Analysis, pp. 174–184 (July 2007)

24. Vaswani, K., Nori, A.V., Chilimbi, T.M.: Preferential path profiling: compactly
numbering interesting paths. In: Proceedings of POPL 2007, Nice, France (January
2007)

25. Weimer, W., Necula, G.: Mining temporal specifications for error detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005)

26. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Pro-
ceedings of POPL 2005 (2005)

27. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: Mining temporal
api rules from imperfect traces. In: Proceedings of ICSE 2006 (May 2006)

Solving Multiple Dataflow Queries Using

WPDSs

Akash Lal1 and Thomas Reps1,2

1 University of Wisconsin, Madison, Wisconsin, USA
{akash,reps}@cs.wisc.edu

2 GrammaTech, Inc., Ithaca, NY, USA

Abstract. A dataflow query asks for the set of reachable (abstract)
states, given a starting set of states. In this paper, we show how to
optimize multiple queries on the same program (each with a different
starting set of states) for better overall running time. After a preprocess-
ing phase, we obtain an asymptotic improvement in answering dataflow
queries. We use weighted pushdown systems as the abstract model of
a program. Our techniques are interprocedural. They are general, yet
provide an impressive speedup. We applied our algorithm to three very
different applications, one based on finding affine relations using linear
algebra, and others for model checking Boolean programs, and obtained
1.5-fold to 7-fold speedups.

1 Introduction

Dataflow analysis is concerned with approximating program behavior. A
dataflow query asks for the set of (abstract) program states (forward or
backward) reachable from a given starting set of states, where a state is a
(program location, data store) pair. One common application of (forward)
dataflow analysis is to pose a single dataflow query from the initial state in which
program execution starts. This produces an over-approximation of all program
states that may arise during its execution. However, in certain situations, multi-
ple dataflow queries need to be posed on the same program, each with a different
starting set of states.

One such need arises in the analysis of concurrent programs, in the method
presented in [13], which tracks program evolution for a bounded number of con-
text switches. Here, a concurrent program consists of a set of threads that com-
municate via shared memory. For a thread t of interest, the environment (con-
sisting of the other threads) is only given control a fixed number of times. Each
time, the environment can change the state of shared memory, thus affecting the
execution of thread t. The analysis of such programs requires multiple dataflow
queries to be posed on t. Whenever the environment changes the state of shared
memory, a new query is posed on t, starting from this state

Multiple queries are also useful for program understanding, e.g., to find out
the net effect of executing from one statement to another (to find dependences

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 93–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 A. Lal and T. Reps

between them). Finding a loop summary for each loop is another example. Our
applications (§5) are based on these examples.

Answering multiple queries on the same program independently from each
other usually involves repeated work. In this paper, we do preprocessing to com-
pute certain basic facts about the program that can be reused each time a new
dataflow query is posed. This improves the running time needed for answering
multiple dataflow queries on the same program.

At the intraprocedural level, this work is inspired by our previous result [9],
where we showed how to use Tarjan’s path sequence algorithm [23], which com-
putes regular expressions to represent a set of paths in a graph, to obtain a faster
algorithm for answering a single dataflow query. In this paper, we show that the
information computed by Tarjan’s algorithm is also useful to avoid having to
repeat fixpoint computations for answering multiple queries.

At the interprocedural level, a set of program paths can no longer be captured
with a regular expression (the set may be a context-free language). We develop
new techniques to address this complication: we show what preprocessing can be
done to avoid recomputation across procedure boundaries, and how to isolate the
intraprocedural computation to be able to use our intraprocedural algorithm.

Overall, with our techniques, the preprocessing is quite efficient, usually faster
than solving two dataflow queries. After preprocessing, we obtain asymptotic
improvements in answering each dataflow query (for programs whose control
structure is mostly reducible), and only require iteration to a fixpoint when
the starting set of states is infinite (i.e., in other cases, we do not need to go
around program loops or recursive procedures). Our experiments show that this
approach is advantageous even if as few as two queries need to be answered.

Our approach applies to any dataflow-analysis problem in which one has a do-
main of distributive dataflow-transfer functions closed under composition [7,22].
Some examples can be found in [12,17,18]. This paper mainly presents the work
using the framework of weighted pushdown systems (WPDSs) [18], which gener-
alize previous work on interprocedural analysis frameworks [8,16,22]. For details
on how variants of the technique can be incorporated in solvers that work over
control-flow graphs (ICFGs) see [10].

The contributions of this paper can be summarized as follows:

– We show how information computed by Tarjan’s path sequence algorithm
can be used to obtain asymptotic improvements in answering multiple in-
traprocedural queries (§3).

– We give a new WPDS reachability algorithm for answering interprocedural
queries that carries over the above asymptotic improvements (§4).

– We sketch variants of the technique that allow the ideas to be applied in
other standard dataflow-analysis frameworks (§4).

– We applied our techniques to three applications (§5), and measured 1.5-fold
to 7-fold speedups over previous techniques, including optimized ones [9].

The rest of the paper is organized as follows: §2 gives background on WPDSs.
§3 presents our algorithm for the intraprocedural case, and §4 generalizes it to

Solving Multiple Dataflow Queries Using WPDSs 95

the interprocedural case (WPDSs). §5 reports experimental results. §6 discusses
related work. Proofs and other details can be found in [10].

2 Program Model

Definition 1. A pushdown system is a triple P = (P, Γ,Δ) where P is the set
of states or control locations, Γ is the set of stack symbols and Δ ⊆ P×Γ×P×Γ ∗

is the set of pushdown rules. A configuration of P is a pair 〈p, u〉 where p ∈ P
and u ∈ Γ ∗. A rule r ∈ Δ is written as 〈p, γ〉 ↪→ 〈p′, u〉 where p, p′ ∈ P , γ ∈ Γ
and u ∈ Γ ∗. These rules define a transition relation ⇒ on configurations of P
as follows: If r = 〈p, γ〉 ↪→ 〈p′, u〉 then 〈p, γu′〉 ⇒ 〈p′, uu′〉 for all u′ ∈ Γ ∗. The
reflexive transitive closure of ⇒ is denoted by ⇒∗.

Without loss of generality, we restrict PDS rules to have at most two stack sym-
bols on the right-hand side [21]. The standard approach for modeling program
control flow with a PDS is as follows: P = {p}, Γ corresponds to program loca-
tions, and Δ corresponds to transitions in the interprocedural control-flow graph
(ICFG)1: A CFG edge u→ v is modeled by a PDS rule 〈p, u〉 ↪→ 〈p, v〉; A call to
procedure g at location l that returns to r as 〈p, l〉 ↪→ 〈p, genter r〉; and a return
from procedure g as 〈p, gexit〉 ↪→ 〈p, ε〉. In such an encoding, a PDS configura-
tion 〈p, γ1 γ2 · · · γn〉 stores the value of the program counter γ1 and the stack of
return addresses for unfinished calls as γ2, γ3, · · · , γn (in order).

A weighted PDS is obtained by supplementing a PDS with a weight domain
that is a bounded idempotent semiring [2,18]. Such semirings are capable of
encoding a number of abstractions [17]. WPDSs can encode the IFDS framework
[16], and other dataflow analyses; see [9,18] for more details.

Definition 2. A bounded idempotent semiring (or “weight domain”) is a
tuple (D,⊕,⊗, 0, 1), where D is a set of weights, 0, 1 ∈ D, and ⊕ (combine)
and ⊗ (extend) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
4. In the partial order � defined by ∀a, b ∈ D, a � b iff a⊕ b = a, there are no

infinite descending chains.

One may think of weights as dataflow transformers, extend as transformer com-
position, combine as meet, 0 as the transformer for an infeasible path, and 1 as
the identity transformer.

The height H of a weight domain is defined to be the length of the longest
descending chain in the semiring (if it exists). In this paper, we assume the
1 An ICFG is a set of CFGs, one for each procedure, with additional edges going from
a call-site to the entry node of the callee and from its exit node to the return site.

96 A. Lal and T. Reps

n1

n3

n4

w2

n6

n7

n5

n2

bar()

bar()

proc foo proc bar

w1

w3

w4

(1) 〈p, n1〉 ↪→ 〈p, n2〉 w2

(2) 〈p, n1〉 ↪→ 〈p, n4〉 w1

(3) 〈p, n2〉 ↪→ 〈p, n6 n3〉 1
(4) 〈p, n3〉 ↪→ 〈p, n4〉 w3

(5) 〈p, n4〉 ↪→ 〈p, n6 n5〉 1
(6) 〈p, n6〉 ↪→ 〈p, n7〉 w4

(7) 〈p, n7〉 ↪→ 〈p, ε〉 1

Fig. 1. A program with two procedures and its corresponding WPDS. Procedure calls
are represented using dashed arrows.

height to be finite for ease of discussing complexity results. (For cases when the
height is unbounded, the value H in the complexity results can be interpreted as
the length of the longest descending chain that occurs while solving a particular
problem instance, which is always bounded.)

Definition 3. A weighted pushdown system is a triple W = (P ,S, f) where
P = (P, Γ,Δ) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring and f : Δ→ D is a map that assigns a weight to each pushdown rule.

Let σ = [r1, . . . , rk] ∈ Δ∗ be a sequence of rules. We define v(σ) def= f(r1)⊗ . . .⊗
f(rk). Moreover, if for two configurations c and c′ of P , σ is a rule sequence that
transforms c to c′, we say c⇒σ c′.

Definition 4. Let W = (P ,S, f) be a WPDS, where P = (P, Γ,Δ), and let
S, T ⊆ P × Γ ∗ be sets of configurations. The interprocedural meet-over-all-
paths (IMOP) value IMOP(S, T) is defined as

⊕
{v(σ) | s⇒σ t, s ∈ S, t ∈ T }.

The IMOP value is the net transformation that occurs when going from one set
of configurations to another. We write IMOP(s, t) for IMOP({s}, {t}).

Fig. 1 shows how a program can be encoded using a WPDS. Each ICFG edge
e is encoded as a PDS rule whose weight is the dataflow transformer for e. More
details on encoding programs as WPDSs can be found in [18,17].

Model Semantics. In WPDSs, program states are represented using weighted
configurations, which are configuration-weight pairs. The pair (c, w) describes
the control state of the program as the PDS stack c, and the data state of the
program using the weight w. A set of program states is represented by a function
β : P × Γ ∗ → D, standing for the set {(c, β(c)) | c ∈ P × Γ ∗}. The set of all
forward-reachable states starting from β is the set poststar(β) = {(c′,⊕c{β(c)⊗
IMOP(c, c′)}) | c′ ∈ P × Γ ∗}. In this case, we say that configuration c′ can be
reached with weight poststar(β)(c′) (which is 0 if c′ is not reachable).

For example, the initial state of the program in Fig. 1 is (〈p, n1〉, 1) and its
reachable states include (〈p, n6 n3〉, w2) and (〈p, n6 n5〉, w1 ⊕ (w2 ⊗ w4 ⊗ w3)).

Solving Multiple Dataflow Queries Using WPDSs 97

3 Solving Multiple Intraprocedural Queries

Our interprocedural algorithm (§4) will need to solve multiple intraprocedural
queries. Thus, we address the latter case first. A directed graph is a special
case of a PDS (no call or return rules). When a weight domain is paired with
a directed graph, we obtain a model for intraprocedural analysis. To simplify
the discussion of intraprocedural algorithms, we specialize some definitions to
weighted graphs.

Definition 5. A weighted graph G is a tuple (V,E, λ), where (V,E) is a di-
rected graph, and λ : E → D is a function that labels each edge with a weight.

For vertices v1, v2 ∈ V , a path σ is defined as a sequence of edges that connect v1
to v2, in the standard way. In such a case, we say v1 ⇒σ v2. The weight of a path
σ = [e1, e2, · · · , en], written as λ(σ), is defined to be λ(e1)⊗λ(e2)⊗ · · · ⊗ λ(en).
For sets of vertices S, T ⊆ V , the meet-over-all-paths (MOP) value is defined as
the combine of weights of all paths that lead from a vertex in S to a vertex in
T : MOP(S, T) =

⊕
{λ(σ) | s ⇒σ t, s ∈ S, t ∈ T }. When S = {s} and T = {t}

are singleton sets, we write MOP[s, t] as a shorthand for MOP(S, T).
Program states are vertex-weight pairs (vertices replace PDS configurations).

Computing reachable states reduces to solving the following query:

Definition 6. Given a weighted graph G, and a set of vertices S ⊆ V with a
weight assignment μ : S → D, the IntraQ-query is to compute the weights
IntraQG(S, μ)(v) =

⊕
s∈S{μ(s)⊗MOP[s, v]} for each v ∈ V .

IntraQG(S, μ) is the set of reachable states starting from {(s, μ(s)) | s ∈ S}.
We drop the subscript G in IntraQ when it is obvious from the context.

When the graph G is fixed, we can preprocess it to quickly answer subsequent
queries. We now present three different algorithms for solving this query, where
each of them trades off preprocessing time against time required to solve a query.

Alg1: The first algorithm is the standard way of solving such queries using
no preprocessing. It is a saturation algorithm: each vertex v has a weight l(v).
Initially, l(s) = μ(s) for s ∈ S, and 0 for other vertices. Next, the rules l(v) :=
l(v) ⊕ (l(u) ⊗ λ(u, v)) for each edge (u, v) are used to update the weights until
a fixpoint is reached. Then l(v) is the required value for IntraQ(S, μ)(v). This
requires time Os(|E|H), where H is the height of the weight domain, and the
notation Os(.) denotes the asymptotic number of semiring operations. (Because
we consider weights as black boxes, the algorithms in this paper seek to minimize
the number of semiring operations.)

The disadvantage of this method, which our other algorithms address, is that
it requires a fixpoint computation to be performed; this is reflected in the cost
by the dependence on the height H of the weight domain, which can be large.

Alg2: The second algorithm does the obvious preprocessing. It precomputes
the values MOP[v1, v2] for each v1, v2 ∈ V by solving IntraQ({v1}, (v1 �→ 1))
for each v1 using Alg1. Thus, preprocessing time is Os(|V ||E|H). Once these

98 A. Lal and T. Reps

MOP values are available, IntraQ(S, μ)(v) can be solved from its definition in
time Os(|S|). Thus, IntraQ(S, μ) can be solved in time Os(|S||V |), which is
independent of H. This may seem like the most efficient approach, but we show
next that one can do better.

Consider the graph in Fig. 2. Suppose that S = {v2, v3}, μ(v2) = w2, and
μ(v3) = w3. Then Alg2 would require approximately 2|V | semiring operations
because it considers v2 and v3 separately from each other. However, notice that
vertex v4 dominates all other vertices with respect to v2 and v3, i.e., any path
in the graph starting at v2 or v3 must pass through v4 before reaching vertices
v5 to vk (and vertex v1 is unreachable). Based on this observation, we can prove
that IntraQ(S, μ)(vi) = IntraQ(S, μ)(v4)⊗MOP[v4, vi] for vi ∈ {v5, · · · , vk}
Therefore, we only need to compute IntraQ(S, μ)(v4) and other values can
follow from this value using just one operation. This method would only require,
approximately, |V | number of operations.

v1

v2 v3

v4

v5

v6

vk

Fig. 2. A graph

This observation can be generalized to say that the weight
on a vertex should be computed before the weights on ver-
tices dominated by it are computed. This has been already
captured nicely by Tarjan’s algorithm [23] to solve path prob-
lems on graphs. However, it has only been used in the con-
text of solving a single query, which we generalize to multiple
queries. First, we summarize the essential details of Tarjan’s
algorithm.

Definition 7. A path expression is a regular expression
over the edges of a graph defined using the following gram-
mar: r := ∅ | ε | e | r1.r2 | r1∪r2 | r∗ where e is an edge in the
graph. A path expression r is said to represent the set of paths

in the language L(r) of r when interpreted as a regular expression. Furthermore,
a path expression is said to be of type (u, v) if all paths in L(r) go from vertex u
to vertex v.

For example, for the graph in Fig. 2, the expression ((e12.e24 ∪ e13.e34).e45),
where eij is the edge (vi, vj), denotes the set of all paths from v1 to v5, and is
of type (v1, v5).

We extend λ to path expressions as follows: λ(∅) = 0, λ(ε) = 1, λ(r1.r2) =
λ(r1)⊗λ(r2), λ(r1 ∪ r2) = λ(r1)⊕λ(r2), and λ(r∗) = λ(r)∗. Here, we define the
weight w∗ as the infinite combine 1⊕w⊕(w⊗w)⊕(w⊗w⊗w)⊕ ..., which exists
because of Defn. 2(item 4). One can show that w∗ = (1 ⊕ w)H, and calculate it
using repeated squaring in time Os(logH). Consequently, the following lemma
holds. (We define |r| to be the length of the expression.)

Lemma 1. For a path expression r and λ defined as above, λ(r) =
⊕
{λ(σ) |

σ ∈ L(r)}. Moreover, it can be calculated in time Os(|r| logH).

Tarjan’s algorithm is based on computing path expressions to represent the set
of paths between each pair of vertices. However, instead of computing a separate
path expression for each pair of vertices, it computes a path sequence, which is
a more concise way of representing all paths in a graph.

Solving Multiple Dataflow Queries Using WPDSs 99

Definition 8. A path sequence of a directed graph G = (V,E) is a sequence
(r1, u1, v1), (r2, u2, v2), · · · (rk, uk, vk), where ui, vi ∈ V , ri is a path expression
of type (ui, vi) such that for any nonempty path σ in G, there is a sequence of
indices 1 ≤ i1 < i2 < · · · < il ≤ k and a partition of σ into nonempty paths
σ = σ1σ2 · · ·σl and σj ∈ L(rij) for all 1 ≤ j ≤ l.

1: // initialize
2: for all v ∈ V do
3: r[s, v] := ∅

4: end for
5: r[s, s] := ε

6: // solve
7: for i = 1 to k do
8: r[s, vi] := r[s, vi] ∪

(r[s, ui].ri)

9: end for

1: // initialize
2: for all v ∈ V do
3: MOP[s, v] := 0

4: end for
5: MOP[s, s] := 1

6: // solve
7: for i = 1 to k do
8: MOP[s, vi]:=MOP[s, vi]

⊕(MOP[s, ui] ⊗ λ(ri))

9: end for
(a) (b)

Fig. 3. Computing MOP values using the path sequence
{(ri, ui, vi)}k

i=1

Fig. 3(a) is an algo-
rithm that uses a path
sequence to create path
expressions r[s, v] that
represent the set of all
paths from s to v, for
each v ∈ V and a
fixed s ∈ V [23]. Us-
ing Lemma 1, we get
MOP[s, v] = λ(r[s, v]).
Equivalently, the path ex-
pressions can be evalu-
ated first and then put to-
gether to get the MOP
weights, as shown in Fig. 3(b).

Tarjan’s algorithm computes a path sequence for a graph in time
O(|E| log |V | + δ), where δ is a term that denotes the irreducibility factor of
the graph. For reducible graphs, δ = 0 and, in general, δ is bounded by |V |3. Be-
cause the graphs we work with come from CFGs of procedures, they are mostly
reducible and the δ term can be ignored (which is confirmed by our experi-
ments). Evaluating all path expressions takes time Os((|E| log |V | + δ) logH).
After that, given a vertex s, solving for MOP[s, v] for all vertices v requires time
Os(|E| log |V |+ δ), which is almost linear in the size of the graph. We ignore δ
in the rest of the paper.
Alg3: Suppose that we wish to solve IntraQ(S, μ) on G = (V,E, λ). We
construct a new graph G′ = (V ′, E′, λ′) by adding a new vertex to G: for some
v0 �∈ V , V ′ = V ∪ {v0}, E′ = E ∪ {(v0, s) | s ∈ S}, λ′ = λ ∪ {[(v0, s) �→ μ(s)] |
s ∈ S}. Then MOPG′ [v0, v] = IntraQG(S, μ)(v). Thus, we need to compute
MOP values on G′. This trick is similar to the standard one of reducing a multi-
source reachability problem to a single-source reducibility problem. The following
observation shows that a path sequence for G′ can be computed from that of G:

Lemma 2. If ps is a path sequence of G, then by concatenating the sequence
{(v0, s, (v0, s)) | s ∈ S} (with any arbitrary order chosen to enumerate vertices
in S) in front of ps, one obtains a path sequence for G′.

The preprocessing step of Alg3 computes a path sequence for G and evalu-
ates the weight of each of its path expressions. Then to solve each query, Alg3

uses the path sequence for G′, constructed using Lemma 2, as input to the
algorithm in Fig. 3(b). This gives us the required weights IntraQG(S, μ)(v)
as MOPG′ [v0, v]. Alg3 requires Os(|E| log |V | logH) preprocessing time and

100 A. Lal and T. Reps

Os(|S| + |E| log |V |) time to solve each query. This is much better than Alg2

because for CFGs, |E| is usually O(|V |). We used Alg3 in our experiments.

4 Solving Multiple Queries on WPDSs

For graphs, the number of vertices is finite, but for WPDSs, the number of
configurations may be infinite (when the program is recursive), or very large
(exponential in the number of procedures when not recursive). For this reason,
sets of weighted configurations (or program states) are represented symbolically
using weighted automata [18].

Definition 9. A weighted automaton A is a finite-state automaton where each
transition is additionally labeled with a weight. The weight of a path in the au-
tomaton is obtained by taking an extend of the weights on the transitions in the
path in the backward direction. The automaton is said to accept a configuration
〈p, u〉 with weight w, denoted by A(〈p, u〉), if w is the combine of weights of all
accepting paths for u starting from state p in A (w = 0 if u is not accepted).
The set of states of A is assumed to contain P , the set of PDS states.

A weighted automaton A represents the set of states R(A) = {(c,A(c)) | A(c) �=
0}. An important result is that the set poststar(R(A)) (as defined in §2) can
also be represented by a weighted automaton [18]. For brevity, we call such
an automaton poststar(A). Our goal is to preprocess a given WPDS so that
poststar(A) can be computed quickly for any given A.

An example is shown in Fig. 4(a). Note how the weight for a configuration
〈p, n7 n3〉 is represented in a compositional way in the automaton. Procedure
bar is analyzed independently of its calling context, resulting in weight w4 for
transition (p, n7, q). The weight w2 at the call site n3 to bar is captured on the
transition (q, n3, acc), resulting in a total weight of w4⊗w2 for 〈p, n7 n3〉. We will
use the fact that procedures are analyzed independently of their calling context
(also customary in most summary-based interprocedural analyses) in our favor.
(As we shall see later, this implies that weights have to be propagated from a
procedure to its callers, but not to procedures that it calls.)

Fix W = ((P, Γ,Δ),S, f) to be a WPDS. Fix Astart to be the input query
automaton, for which we want to compute poststar(Astart). To simplify the dis-
cussion, assume that W was created from a program as described in §2, and
P = {p} is a singleton set (our implementation handles any WPDS, however).

Preprocessing. (i) First, we compute a summary for each procedure. (For a
procedure starting at node e, it is defined as IMOP(〈p, e〉, 〈p, ε〉)). Using these
summaries, we construct a weighted graph for each procedure from its CFG:
the call edges (from call site to return site) are replaced with a summary of
the called procedure. For γ ∈ Γ , let Prγ be the procedure that contains γ, Gγ

be the weighted graph for Prγ , eγ its unique entry node, and xγ its unique
exit node. (Note that MOPGγ [eγ , xγ] also equals the summary for Prγ .) Next,
for each weighted graph G of a procedure, we compute: (ii) its path sequence

Solving Multiple Dataflow Queries Using WPDSs 101

p

q

acc

n1, 1 n2, w2
n3, w2w4 n4, w1⊕w2w4w3
n5, (w1⊕w2w4w3) w4

n6, 1
n7, w4

n3, w2

n5, w1⊕w2w4w3

p

q

acc

n2, w0 n3, w0w4
n4, w0w4w3
n5, w0w4w3w4

n6, 1
n7, w4

n3,w0

n5, w0w4w3

(a) (b) (c)

(d) (e) (f)

p q acc
n6, wa

n3, wb

n5, wc

p q
n6, wa

n3, wb

n3, wbwaw4

p q acc
n6, wa

n3, wb

n3, wbwaw4

n

n4, wbwaw4w3

p q acc
n6, wa

n3, wb

n3, wbwaw4

n4, wbwaw4w3

p q acc
n5, wc

n5, wcwaw4

n5, wc

n5, wcwaw4 ⊕
wbwaw4w3w4

qbar

n6, 1
n7, w4

n7, waw4

n5, wbwaw4w3

p q acc
n5, wc

n5, wcwaw4 ⊕
wbwaw4w3w4

n7, waw4

Fig. 4. Various automata related to the WPDS of Fig. 1. In all the weighted automata,
juxtaposition of weights denotes their extend, acc is the accepting state, and parallel
transitions have sometimes been collapsed into a single edge. Labels on transitions
are (stack symbol, weight) pairs. (a) An automaton for poststar({(〈p, n1〉, 1)}). (b) An
automaton for poststar({(〈p, n2〉, w0)}). (c) Automaton Astart. (d) Automaton Apop

obtained after running the pop-phase.(e) Automaton Aint created while running the
growth phase on Apop. (f) The final result of running the growth phase on Apop.

(preprocessing for Alg3) and (iii) values MOPG[γ, xγ] and MOPG[eγ , γ] for
each node γ of the procedure.

The procedure summaries can be computed using standard algorithms, af-
ter which the path sequences can be constructed using Tarjan’s algorithm. This
would be an acceptable solution, but we can do better. We use our techniques
from [9] to compute both of these at the same time. Briefly, the call-return edge
in the CFG of a procedure is labeled with a variable whose value stands for the
(as yet uncomputed) summary of the called procedure. Then the procedure sum-
mary is represented using a path expression (from entry node to return node)
computed from its path sequence. This expression will have variables standing
for summaries of called procedures. This gives rise to a set of equations whose
solution solves for all summaries. In [9], we showed that this technique provides
up to 5 times speedup over standard algorithms for computing procedure sum-
maries, and we obtain a path sequence as a by-product. The path sequences can
then be used to quickly compute the required MOP values for (iii) [23].

ICFG-version. Before describing how our algorithm works with weighted au-
tomata, we briefly describe how it would work with ICFGs (after preprocessing).
(Full details are in [10].) Suppose that we are given a set R of node-weight pairs

102 A. Lal and T. Reps

〈p, γ1 γ2 γ3 · · · γn〉 ⇒σ1 〈p, γ2 γ3 · · · γk+1 γk+2 · · · γn〉
⇒σ2 〈p, γ3 · · · γk+1 γk+2 · · · γn〉
⇒∗ · · ·
⇒σk 〈p, γk+1 γk+2 · · · γn〉
⇒σk+1 〈p, u1 u2 · · ·uj γk+2 · · · γn〉

Fig. 5. A path in the PDS’s transition relation; ui ∈ Γ, j ≥ 1, k ≤ n, σh ∈ Δ∗

(starting states), where the nodes may be from multiple procedures, and we want
to calculate the reachable set of node-weight pairs.

One challenge is to isolate the intraprocedural work. An IntraQ query on a
set S = {s1, · · · , sk} can also be solved by making a separate query for each si

and taking a combine of the results, but this is far less efficient than making a
single query on S. Thus, we want to minimize the number of IntraQ queries
made for each procedure. For example, for the program in Fig. 1, suppose R =
{(n6, wa), (n4, wb)}. Then the pair (n6, wa) can produce the pairs (n3, wa ⊗w4)
and (n5, wa ⊗ w4) inside foo, when bar returns. We would then like to make
just one IntraQ query on foo with S = {n3, n4, n5} (and appropriate weights),
instead of making a query with just n4 first, and then realizing that the procedure
has to be explored again from n3 and n5.

The algorithm proceeds in two phases. The first phase moves across procedure
boundaries: if (n,w) ∈ R then we propagate this weight to the callers of Prn. We
add (r, w⊗MOPGn [n, xn]) to R for each return site r of calls to Prn (if the pair
(r, w′) was already present in R, then change w′ to w′ ⊕ (w ⊗MOPGn [n, xn])).
This continues until saturation. The use of (precomputed) MOP[n, xn] weights
allow us to quickly jump from a procedure to its callers.

The second phase is intraprocedural. If (n1, w1), · · · , (nk, wk) ∈ R and the
ni are from the same procedure, run IntraQ({n1, · · · , nk}, [ni �→ wi]) to get
weights on all other nodes in the procedure. This is repeated for all procedures.
The resulting node-weight pairs represent all reachable states.

The extension of these ideas to WPDSs have two complications: First, config-
urations add constraints on how weights get propagated to callers. For example,
starting at configuration 〈p, γ1γ2〉 constrains weight propagation to γ2 when Prγ1

returns (and not to its other return sites). Second, the number of configurations
may be infinite, forcing us to use automata-based symbolic representations.

The above ICFG version only required at most one IntraQ query per pro-
cedure, which is ideal. The general version for WPDSs requires slightly more
queries: at most |Q| queries per procedure, where Q is the set of states of Astart.

WPDS-version. Consider a path σ ∈ Δ∗ in the transition relation of a PDS
that starts from a configuration 〈p, γ1γ2 · · · γn〉. It can always be decomposed as
σ = σ1σ2 · · ·σkσk+1 (see Fig. 5), such that 〈p, γi〉 ⇒σi 〈p, ε〉 for 1 ≤ i ≤ k and
〈p, γk+1〉 ⇒σk+1 〈p, u1u2 · · ·uj〉 (or σk+1 is empty when k = n). In other words,
σi, i ≤ k is the rule sequence whose net effect is to pop off γi without looking at
the stack below it, and σk+1 is the rule sequence that does not look below γk+1

but can replace it and add more symbols on top of the stack. We call the part

Solving Multiple Dataflow Queries Using WPDSs 103

where symbols are popped (σ1, · · · , σk) the pop phase and the part where the
stack grows (σk+1), the growth phase.

This property holds because PDS rules can only look at the top of the stack.
For σ to touch γ2, it must first pop off γ1. When it does pop it off, this prefix
would be σ1 (and repeat inductively). If it does not pop off γ1, then σ is already
in the growth phase.

We compute poststar(Astart) by separating these two phases: First, we com-
pute Apop that accepts all configurations reachable after the pop phase. Next, we
start from Apop and build Afinal that accepts all configurations reachable after
the growth phase. The former part is similar to the first phase of the ICFG-
version of the algorithm, and the latter will correspond to the intraprocedural
part (similar to the second phase of the ICFG-version). A running example is
shown in Fig. 4(c)− (f).

Terminology. (i) A transition t with weight w is added to a weighted au-
tomaton A as follows: if t does not exist in A, then insert it with weight w. If
it exists in A with weight w′, then change its weight to w′ ⊕ w. (ii) We say
that A accepts a configuration c with weight at least w if A(c) � w (Defn. 2,
item 4). Note that all configurations are accepted with weight at least 0. (iii)
The pop and growth phases are saturation procedures. They convert input A to
output A′ by adding transitions to A until a fixpoint is reached; the fixpoint is
the desired output A′. Consequently, for all c, A′(c) � A(c), and thus for all c,
Afinal(c) � Apop(c) � Astart(c).

Pop Phase. Let wγ be the weight with which γ can be popped, i.e., wγ =
IMOP(〈p, γ〉, 〈p, ε〉) = MOPGγ [γ, xγ], which has been precomputed. We perform
saturation on Astart: if it accepts a configuration 〈p, γ γ′ u〉, for any u ∈ Γ ∗, with
weight w, we make it accept 〈p, γ′ u〉 with weight at least w ⊗ wγ , and repeat
until a fixpoint is reached. This is done as follows: if (p, γ, q1) and (q1, γ′, q2) are
transitions in the automaton with weight w1 and w2, respectively, then add the
transition (p, γ′, q2) with weight w2 ⊗ w1 ⊗ wγ to the automaton. This process
terminates because the number of new transitions added is bounded by |T |, where
T is the set of transitions of Astart. (This is because a transition (q1, γ, q2) in
Astart can cause at most a single transition (p, γ, q2) to be added toApop.) Defn. 2
(item 4) ensures that weights on them can change at most H times. Moreover,
the running time is bounded by Os(|T |H). Fig. 4(d) shows an example: Astart

accepts 〈p, n6n3〉 with weight wb ⊗wa, the weight with which n6 can be popped
is w4, and Apop accepts 〈p, n3〉 with weight wb ⊗ wa ⊗ w4.

Growth Phase. For the growth phase, we need to consider all configu-
rations reachable from the top symbols of currently accepted configurations,
i.e., if 〈p, γ u〉, u ∈ Γ ∗, is accepted by Apop with weight w, and 〈p, γ〉 ⇒∗

〈p, u′〉, u′ ∈ Γ+ then 〈p, u′ u〉 should be accepted by Afinal with weight at least
w⊗ IMOP(〈p, γ〉, 〈p, u′〉). Now we make use of the observation that called proce-
dures are analyzed independently of their calling context, and reduce this phase

104 A. Lal and T. Reps

to an intraprocedural one. For instance, see Fig. 4(b)—the weight w0 need not
be propagated to transitions involving nodes from bar.

The growth phase proceeds in two parts. The first part constructs au-
tomaton Aint such that if Apop accepted configuration 〈p, γ u〉 with weight
w and 〈p, γ〉 ⇒∗ 〈p, γ′〉 then Aint accepts 〈p, γ′ u〉 with weight at least
w ⊗ IMOP(〈p, γ〉, 〈p, γ′〉). This part requires running IntraQ queries.

For the first part, note that if 〈p, γ〉 ⇒∗ 〈p, γ′〉, then γ′ must be from the
same procedure as γ (otherwise, the stack length would be different). Then
IMOP(〈p, γ〉, 〈p, γ′〉) = MOPGγ [γ, γ′]. Hence, it suffices to do the following: if
(p, γ, q) is a transition with weight w in Apop then add transitions (p, γ′, q) to it,
for each γ′ in the same procedure as γ, with weight w⊗MOPGγ [γ, γ′]. This may
add transitions with weight 0 if γ′ is not reachable from γ, but such transitions
can be removed without changing the meaning of a weighted automaton.

The above process can be optimized. Instead of looking at each transition in
isolation, we handle them in bulk. For a state q of Apop, and a procedure Pr,
let SPr

q be the set of nodes s in Pr such that (p, s, q) is a transition in Apop. Let
μPr

q be such that μPr

q (s) is the weight on (p, s, q). Then add transition (p, s′, q)
with weight IntraQ(SPr

q , μPr

q)(s′). It is easy to see that this imitates the above
process, but is more efficient. This results in automaton Aint. The running time
is bounded by that required to answer |Q||Proc| number of IntraQ queries,
where Q is the set of states of Apop (same as those of Astart), and |Proc| is the
number of procedures in the program.

An example is shown in Fig. 4(e): the algorithm invokes IntraQbar

({n6}, [n6 �→ wa]) to add transitions between p and q. Next, it invokes
IntraQfoo({n3, n5}, [n3 �→ wb ⊗ wa ⊗ w4, n5 �→ wc ⊗ wa ⊗ w4]) to add tran-
sitions between p and acc.

The second part of the growth phase adds transitions to accept configurations
of called procedures. For each procedure Pr, add a new state qPr to Aint, and let
Called(Pr) be false initially. Now repeat the following: if (p, γ, q) is a transition
with weight w1 and 〈p, γ〉 ↪→ 〈p, c r〉 is a WPDS rule with weight w2, then (i) if
Called(Prc) is false, then set it to true and add transitions (p, γ′, qPrc

) with
weight MOPPrc [c, γ

′], for each node γ′ in Prc; (ii) add transition (qPrc , r, q)
with weight w1 ⊗ w2.

The intuition here is that with σ = 〈p, γ〉 ↪→ 〈p, c r〉, 〈p, γ u〉 ⇒σ 〈p, c r u〉 for
any u ∈ Γ ∗. Addition of transitions (p, c, qPrc

) and (qPrc
, r, q) ensures that the

latter configuration is accepted (with appropriate weights). Next, c can reach
node γ′ in the same procedure with weight MOPPrc [c, γ′], for which the tran-
sitions (p, γ′, qPrc

) are added. Note that the weight at the call site (w1 ⊗ w2)
gets stored on the transition (qPrc

, r, q). Thus, Prc is analyzed independently of
this weight and the weights on transitions (p, γ′, qPrc), for each γ′ in Prc, are
independent of the input query.

This process terminates because only a finite number of states are added. The
trick of bounding the number of states is common in reachability algorithms for
PDSs [18,21]. The running time is bounded by Os(|Ret||Q|)+O(|Γ |), where Ret

Solving Multiple Dataflow Queries Using WPDSs 105

is the set of return sites in the program. This running time is subsumed by that
of the first part. Fig. 4(f) shows an example.

Complexity. First, we discuss the complexity of solving a query after prepro-
cessing has been completed. Let Q be the set of states of Astart, and T the set
of its transitions. The pop phase has running time Os(|T |H). The growth phase,
when using Alg3 for IntraQ queries, has running time Os(|Q||Proc||E| log |V |),
where |Proc| is the number of procedures in the program, and |E| and |V | are
the average number of nodes per procedure. This gives a total worst-case run-
ning time of Os(|T |H+ |Q||Proc||E| log |V |). The number of nodes per procedure
usually remains constant even as program size increases. Treating log |V | as a
constant, and writing |E||Proc| as |Δ| (the number of WPDS rules), we get a
total complexity of Os(|T |H + |Q||Δ|). This is asymptotically better than the
complexity of previous algorithms [18,9], which is Os(|T |H+(|Q|+ |Proc|)|Δ|H)
in each case. Note the reduced dependence on H for our algorithm (hence less
fixpoint computation around loops and recursion).

If the initial set of configurations is finite (i.e., automaton Astart does not
have any cycles), the running time of the pop phase can be bounded by Os(|T |),
resulting in a total running time (after preprocessing) that is completely inde-
pendent of the height of the weight domain (which is not true for any other
WPDS reachability algorithm).

The complexity for preprocessing is dominated by the step that computes
procedure summaries (and path sequences as a by-product). This just requires
a single dataflow query, whose complexity is Os(|Proc||Δ|H) [9]. Using path
sequences to compute the other preprocessing information is fairly quick.

5 Experiments

We refer to the implementation of the algorithm in this paper as SWPDS
(Summary-WPDS). We compare against saturation-based [18] and optimized
[9] approaches for solving WPDS queries, of which we pick the better running
time and refer to it as OWPDS (Old-WPDS).

We carried out experiments on WPDSs obtained from three different applica-
tions. The first application is affine-relation analysis (ARA) of x86 programs [1].
A WPDS is produced from the x86 program using the weight domain for ARA
described in [12]. The goal is to discover affine relationships (linear equalities)
between machine registers.

The first experiment is to find out loop invariants (where loops are discovered
by Bourdoncle’s decomposition technique [3]). For outermost loops in a pro-
cedure, a loop summary is obtained as the weight IMOP(〈p, head〉, 〈p, head〉),
where head is the head of the loop. This can be calculated by computing
A = poststar({(〈p, head〉, 1)}), and A(〈p, head〉). Loop invariants can be cal-
culated easily from these summaries. These invariants give the conditions that
hold at the head of the loop and are re-established after each iteration of
the loop. We use common Windows executables, including code for the called

106 A. Lal and T. Reps

Table 1. ARA experiments. The speedup is reported for SWPDS versus OWPDS2.

Time (s) Constant Registers Other Invariants

Prog Insts Procs Loops OWPDS OWPDS2 Setup SWPDS Speedup 0 1-3 4-6 7-8 0 1 2 ≥ 3

latex 63711 609 280 168 5.7 28 4.3 1.3 53 44 152 31 124 125 31 0
attrib 103473 964 537 290 8.3 46 5.1 1.7 97 114 271 55 227 254 56 0
ftp 130352 1271 634 731 13.5 26 8.7 1.6 130 126 320 58 290 280 64 0
notepad 167430 1609 749 597 12.1 43 8.2 1.5 162 156 369 62 325 336 87 1
cmd 192579 1783 869 3415 24.1 64 18.0 1.3 256 156 391 66 431 355 80 3

Table 2. Experiments on Boolean programs: (i) Forward and backward reachability
from the set of configurations n Ret∗. The node n was chosen randomly, and running
times, reported in seconds, were averaged across 5 queries. The speedup is reported per
query, ignoring the setup time. (ii) Simulated CBMC queries. The speedup reported
takes the setup time into account.

Forward Reach. Backward Reach. CBMC

Prog Nodes Procs Setup SWPDS OWPDS Speedup SWPDS OWPDS Speedup SWPDS OWPDS Speedup

bugs5 36971 291 11.9 4.2 18.4 4.4 1.4 8.4 5.8 98 183 1.7
unified-serial 38234 291 15.4 5.3 24.5 4.7 1.7 12.1 7.1 129 238 1.6
slam 7161 97 3.5 2.7 14.2 5.3 0.4 2.1 6.0 87 115 1.3
iscsiprt1 4803 82 0.6 0.27 0.84 3.1 0.06 0.36 6.0 6.3 12 1.7
ufloppy13 5679 64 1.5 0.6 2.0 3.1 0.07 0.7 10.3 12 20 1.5

libraries, and ran the experiments on a 3.2 GHz P4 processor with 3.3GB RAM
running Windows XP.

A conventional way to solve these queries would be to compute the procedure
summaries, plug them at the call-sites and then solve each loop as an intrapro-
cedural problem. We call this technique OWPDS2. It uses Alg1 to solve each
loop. Tab. 1 reports the following timings: the time taken to answer each query
independently (OWPDS); the time taken by OWPDS2 (after procedure sum-
maries have been computed); the preprocessing time for SWPDS (Setup); and
the time taken to answer all queries using SWPDS, after preprocessing. We make
two comparisons: (SWPDS+Setup) versus OWPDS, for which we are about 17
times faster (not shown in the table), and SWPDS versus OWPDS2, for which
we are 1.5 times faster. We do not take the setup times into account in the second
comparison because SWPDS preprocessing only computes procedure summaries
(other preprocessing is unnecessary for this application).

Tab. 1 also shows a distribution of the obtained loop invariants. Loop invari-
ants that indicate that a register remains unchanged after each loop iteration
(even though it may get modified inside the loop) are reported separately from
other kinds of invariants. The last eight columns show the number of loops that
have a certain number of constant registers or affine invariants. For example, in
latex, 53 loops do not have any constant registers, and 31 loops have 2 linearly
independent invariants. These invariants can be beneficial to other analysis (e.g.,
they identify loop-induction variables).

The second application is Boolean program verification using Moped [21].
Boolean programs are converted to WPDSs, and dataflow analysis is used for
proving properties of the program. In our experiments, the Boolean programs

Solving Multiple Dataflow Queries Using WPDSs 107

were obtained as a result of predicate abstraction. The following experiments
were run on a 3GHz P4 processor with 2GB RAM running Linux, and the
results are reported in Tab. 2.

We ran queries starting from the set of configurations (nRet∗), where n is a
program node and Ret is the set of return-site nodes. Such queries are useful
for finding out the net effect in going from one program statement to another
(for finding dependencies between the two). After the setup time, SWPDS was
4 times than OWPDS on forward reachability queries, and 7 times faster on
backward reachability (our algorithm for solving backward reachability is given
in [10]). This experiment also shows that two dataflow queries are enough to
recover the SWPDS preprocessing time.

The third application (also based on Moped, running on the same Linux plat-
form), considers context-bounded model checking (CBMC) [13], which aims to
find all reachable states of a concurrent program under a bound on the number of
context switches. Because we lack a front-end to abstract concurrent programs,
we performed simulated experiments on sequential programs. We assume that
the global variables of the program are shared with an environment that can
randomly change their value, and the environment itself does not possess any lo-
cal state. We ran one branch of CBMC along which control is transferred to the
environment 5 times. Essentially, this requires the following: for random global
states g1, · · · , g5, if A0 describes the initial configuration of the (sequential) pro-
gram, then compute A1 = poststar(A0) and Ai+1 = poststar(Modify(Ai, gi))
for i = 1 to 5. Here, Modify(A, g) is an automaton that represents the same
set of states as A, but with the shared state changed to g. Because the result
of running poststar is a bigger automaton than the original one, we report the
total time taken to run all the queries. The average speedup was 1.6 times.

The varying amount of speedups in the different applications seems to be
related to the size of S in IntraQ(S, μ) queries. For the ARA experiments, |S|
was always 1 (maximum speedup over OWPDS); for the second application, S
was usually the set of return sites in a procedure; for CBMC, S consisted of all
nodes in a procedure (least amount of speedup). Worst-case complexity does not
predict this effect; this is an observation about measured behavior.

6 Related Work

The goal of incremental program analysis [4,14,11,20,5] is to reuse as much in-
formation as possible from previous fixpoint computations to calculate a new
fixpoint when a small change is made to the program. Our work has aspects
that resemble incremental computing in that we avoid recomputing the same
information in response to changes in the query. However, we have a single pre-
processing step to compute summaries and path sequences; this information is
used by multiple dataflow queries, but there is no additional information tab-
ulated during one query for use by a later query. This is because we do not
look into the weights (and avoid caching computations over them), and base our
optimizations only on the program control structure.

108 A. Lal and T. Reps

Another closely related category of work is that on demand-driven dataflow
analysis [6,15,19]. There the focus is to do only as much work as is required to
solve a query, and not redo it in a subsequent query. However, these techniques
assume a particular form for the weights, and do look inside them (to work with
exploded CFGs). We make fewer assumptions about the weights. These tech-
niques would not be applicable to the weight domain we considered in our first
application or be able to work with BDDs, as required by the other applications.

Technically, the most closely related piece of work is our previous work on
speeding up a single dataflow query [9] called FWPDS. It used Tarjan’s algo-
rithm at the intraprocedural level to compute regular expressions for solving
MOP values, and combined it with techniques like incremental computation of
regular expressions to extend it for interprocedural analysis. In this paper, we
use Tarjan’s algorithm to compute path sequences. We combine it with a new
WPDS reachability algorithm that shows how to summarize and reuse informa-
tion at the interprocedural level. Moreover, FWPDS required the starting set of
configurations to be in hand before it built the graphs on which it ran Tarjan’s
algorithm and may build different graphs for different queries, preventing it from
sharing information between them. SWPDS outperforms FWPDS (included as
OWPDS in §5).

References

1. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, Springer, Heidelberg (2004)

2. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL (2003)

3. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: FMPA
(1993)

4. Cai, J., Paige, R.: Program derivation by fixed point computation. SCP 11(3)
(1989)

5. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms
for inter-procedural analysis of safety properties. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)

6. Duesterwald, E., Gupta, R., Soffa, M.L.: Demand-driven computation of interpro-
cedural data flow. In: POPL (1995)

7. Graham, S., Wegman, M.: A fast and usually linear algorithm for global flow
analysis. J. ACM 23(1) (1976)

8. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Pfahler, P.,
Kastens, U. (eds.) CC 1992. LNCS, vol. 641, Springer, Heidelberg (1992)

9. Lal, A., Reps, T.: Improving pushdown system model checking. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

10. Lal, A., Reps, T.: Solving multiple dataflow queries using WPDSs. Technical Re-
port 1632, University of Wisconsin-Madison (March 2008)

11. Liu, Y.A., Stoller, S.D., Teitelbaum, T.: Static caching for incremental computa-
tion. TOPLAS 20(3) (1998)

12. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. In: Sagiv, M. (ed.)
ESOP 2005. LNCS, vol. 3444, Springer, Heidelberg (2005)

Solving Multiple Dataflow Queries Using WPDSs 109

13. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, Springer,
Heidelberg (2005)

14. Ramalingam, G., Reps, T.W.: A categorized bibliography on incremental compu-
tation. In: POPL (1993)

15. Reps, T.: Solving demand versions of interprocedural analysis problems. In: Fritz-
son, P.A. (ed.) CC 1994. LNCS, vol. 786, Springer, Heidelberg (1994)

16. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL (1995)

17. Reps, T., Lal, A., Kidd, N.: Program analysis using weighted pushdown systems. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, Springer, Heidelberg
(2007)

18. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. In: SCP, vol. 58 (2005)

19. Sagiv, S., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167(1&2) (1996)

20. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled logic programs.
In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, Springer, Heidelberg (2003)

21. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of
Munich, Munich, Germany (July 2002)

22. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, Prentice-Hall, Englewood Cliffs
(1981)

23. Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM 28(3), 594–614
(1981)

Field Flow Sensitive Pointer and Escape Analysis

for Java Using Heap Array SSA

Prakash Prabhu and Priti Shankar

Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore 560012, India

Abstract. Context sensitive pointer analyses based on Whaley and
Lam’s bddbddb system have been shown to scale to large Java programs.
We provide a technique to incorporate flow sensitivity for Java fields
into one such analysis and obtain an escape analysis based on it. First,
we express an intraprocedural field flow sensitive analysis, using Fink et
al.’s Heap Array SSA form in Datalog. We then extend this analysis in-
terprocedurally by introducing two new φ functions for Heap Array SSA
Form and adding deduction rules corresponding to them. Adding a few
more rules gives us an escape analysis. We describe two types of field flow
sensitivity: partial (PFFS) and full (FFFS), the former without strong
updates to fields and the latter with strong updates. We compare these
analyses with two different (field flow insensitive) versions of Whaley-
Lam analysis: one of which is flow sensitive for locals (FS) and the other,
flow insensitive for locals (FIS). We have implemented this analysis on
the bddbddb system while using the SOOT open source framework as a
front end. We have run our analysis on a set of 15 Java programs. Our
experimental results show that the time taken by our field flow sensitive
analyses is comparable to that of the field flow insensitive versions while
doing much better in some cases. Our PFFS analysis achieves average
reductions of about 23% and 30% in the size of the points-to sets at
load and store statements respectively and discovers 71% more “caller-
captured” objects than FIS.

1 Introduction

A pointer analysis attempts to statically determine whether two variables may
point to the same storage location at runtime. Many compiler optimizations like
loop invariant code motion, parallelization and so on require precise pointer in-
formation in order to be effective. A precise pointer analysis can also obviate the
need for a separate escape analysis. Of the various aspects of a pointer analysis
for Java that affect its precision and scalability, two important ones are context
sensitivity and flow sensitivity. A context sensitive analysis does not allow in-
formation from multiple calling contexts to interfere with each other. Although
in the worst case, it can lead to exponential analysis times, context sensitivity
is important, especially in case of programs with short and frequently invoked

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 110–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Field Flow Sensitive Pointer and Escape Analysis 111

methods. A flow sensitive analysis takes control flow into account while deter-
mining points to relations at various program points. An analysis could be flow
sensitive for just scalars or for object fields too. Since it can avoid generation of
spurious points to relations via non-existent control flow paths, flow sensitivity
is important for precision of a pointer analysis. One of the most scalable context
sensitive pointer analysis for Java is due to Whaley and Lam [1], based on the
bddbddb system. However, it is flow sensitive just for locals and not for object
fields. The analysis of Fink et al. [2], based on the Heap Array SSA form [2], is
flow sensitive for both locals and fields. However, it is intraprocedural and con-
text insensitive. In this work, we develop an analysis similar to that of Fink et
al., extend it interprocedurally and integrate it into the context sensitive frame-
work of Whaley and Lam. The contributions of this paper can be summarized
as follows:

– We formulate two variants of a field flow sensitive analysis using the Heap
Array SSA Form in Datalog: partial field flow sensitive analysis (PFFS) and
full field flow sensitive analysis (FFFS). Section 2 gives an overview of the
Heap Array SSA form and describes our formulation of intraprocedural field
flow sensitive analysis in Datalog.

– We extend the Heap Array SSA form interprocedurally by introduction of
two new φ functions: the invocation φ and the return φ function and use
it to enhance PFFS and FFFS to work across methods. Section 3 describes
these φ functions.

– We then incorporate interprocedural field flow sensitivity into the Whaley-
Lam context sensitive analysis and derive an escape analysis based on this.
This makes PFFS and FFFS both field flow and context sensitive. Both these
analyses are described in Section 4.

– We experimentally study the effects of field flow sensitivity on the timing and
precision of a context sensitive pointer and escape analysis. We do this by
comparing PFFS and FFFS with two versions of the Whaley-Lam analysis
[1]: one of which is flow sensitive for locals (FS) and the other flow insensitive
for locals (FIS). Section 5 describes the implementation and gives the results.

2 Intraprocedural Field Flow Sensitivity

2.1 Heap Array SSA and Field Flow Sensitivity

A flow sensitive pointer analysis is costly both in terms of time and space since it
has to compute and maintain a separate points-to graph at every program point.
One way to reduce the cost is to use the SSA Form [3] for pointer analysis. But
translating a program into SSA itself may require pointer analysis, due to the
presence of pointer variables in the original program. Hasti and Horwitz [4] give
an algorithm for performing flow sensitive analysis using SSA for C, while safely
factoring the effect of pointers on the SSA translation. In case of Java, the use of
fields gives rise to the same issues as the use of pointer variables in C. However,
the normal SSA translation as applied to scalar variables does not give precise

112 P. Prabhu and P. Shankar

public A foo()
{

S1: u = new A(); // O1
S2: v = new A(); // O2
S3: u.f = v;

. . .
S4: y = helper(u);
S5: return y;

}
10

public A helper(A x)
{

S6: r = new A(); // O3
S7: ret = x.f;
S8: ret.f = r;
S9: return ret;

}

public void bar()
{

S10: n = new A(); // O4
S11: m = new A(); // O5
S12: o = new A(); // O6
S13: n.f = m;

. . .
S14: p = helper(n);
S15: q = n;
S16: n.f = o; 10

. . .
S17: n.f = m;
S18: if (. . .) {
S19: q.f = o;
S20: q = m;

}
}

Fig. 1. Example to illustrate Field Flow Sensitivity

results for Java fields. Consider the program in Figure 1 and the scalar SSA form
of the bar() method, shown in Figure 2. It can be inferred from the points-to
graph (Figure 3) that q at S15 points to O4 while at S20 it points to O5 (a
scalar flow sensitive result), based on the SSA subscripts. However, we cannot
infer from this graph that n.f points to O5 at S13 while at S16 it points to O6
(a field flow insensitive result). This is because no distinction is made between
the different instances of an object field (f in this case) at different program
points. A field flow sensitive analysis is one which makes a distinction between
field instances at different program points and is more precise than a field flow
insensitive analysis.

A field flow sensitive analysis can be obtained by using an extended form of
SSA, to handle object fields, called Heap Array SSA. Heap Array SSA is an
application of the Array SSA Form [5], initially developed for arrays in C, to
Java fields. In the Array SSA form, a new instance of an array is created every
time one of its elements is defined. Since the new instance of the array has the
correct value of only the element that was just defined, a function called the
define-φ (dφ) is inserted immediately after the assignment to the array element.
The dφ collects the newly defined values with the values of unmodified elements,
available immediately before the assignment, into a new array instance.

The Array SSA form also carries over the control-φ (cφ) function from the
scalar SSA, inserted exactly at the same location (iterated dominance frontier)
as done for scalar SSA. The cφ merges the values of different instances of an array
computed along distinct control paths. Heap Array SSA [2] applies the Array
SSA form to Java objects. Accesses to an object field f are modeled by defining a
one-dimensional heap array Hf . This heap array represents all instances of the
field f that exists on the heap. Heap arrays are indexed by object references. A
load of p.f is modeled as read of element Hf [p] and the store of q.f is modeled

Field Flow Sensitive Pointer and Escape Analysis 113

public void bar()
{

n0 = new A(); // O4
m0 = new A(); // O5
o0 = new A(); // O6
n1 = n0;

S13: n1.f = m0;
. . .

p0 = helper(n1);
S15: q0 = n1; 10

n2 = n1;
S16: n2.f = o0;

. . .
n3 = n2;
n3.f = m0;
if (. . .) {

q1 = q0;
S19: q1.f = o0;
S20: q2 = m0;

} 20

q3 = mφ(q0, q2);
}

Fig. 2. Scalar SSA form
of the bar() method

O6

m0

n0

o0

n1

f

q0

n2

n3

q1

q3

p0

O4

O5

q2

f

O3

f

Fig. 3. Points to Graph for Scalar SSA Form of bar()

H
f
6

O6

O5

n0

m0

o0

p0

O3

r0

W

W

q1

S

q2

q0

O4 O4

O4

O4

O4

O4

O4

O7

O5

O5

H
f
1

H
f
0

H
f
3

H
f
2

H
f
4

H
f
5

S

s/w
w

O4

H
f
7

O5O4

Fig. 4. Points to Relations using Heap Array SSA for bar()

as a write of element Hf [q]. Figure 5 shows the Heap Array SSA form for the
program seen earlier. The mφ function is the traditional φ function used for
scalars [3]. Converting a Java program into Heap Array SSA form and running a
flow insensitive analysis algorithm on it generates a flow sensitive pointer analysis
result for both fields and locals.

2.2 Field Flow Sensitive Analysis as Logic Programs

Pointer analysis can naturally be expressed in a logic programming language [6]
like Datalog. The Java statements that affect the points-to relations are given as
input relations to the logic program while the points-to relation is the output gen-
erated by the analysis. There is one input relation to represent every type of state-
ment in a Java program. Every source statement in the Java program is encoded
as a unique tuple (row) in the corresponding input relation. The transfer functions
are represented as deduction rules. Whaley and Lam have developed bddbddb, a
scalable system for solving Datalog programs and implemented a context sensi-
tive version of Anderson’s pointer analysis [7] on it. We apply Anderson’s analysis

114 P. Prabhu and P. Shankar

public A foo()
{

u0 = new A(); // O1
v0 = new A(); // O2

Hf
8 [u0] = v0;

. . .
y0 = helper(u0);
Hf

9 = rφ(Hf
12{e2}, H

f
8);

return y0;
} 10

public A helper(A x)
{

Hf
10 = iφ(Hf

0{e1}, H
h
8{e2});

r0 = new A(); // O3

ret0 = Hf
10[x];

Hf
11[ret0] = r0;

Hf
12 = dφ(Hf

11, H
f
10);

return ret0;
}

public void bar()
{

n0 = new A(); // O4
m0 = new A(); // O5
o0 = new A(); // O6

S13: Hf
0 [n0] = m0;
. . .

p0 = helper(n0);
Hf

1 = rφ(Hf
12{e1}, H

f
0);

q0 = n0; 10

S16: Hf
2 [n0] = o0;

Hf
3 = dφ(Hf

2 , Hf
1);

. . .
Hf

4 [n0] = m0;
Hf

5 = dφ(Hf
4 , Hf

3);
if (. . .) {

S19: Hf
6 [q0] = o0;

Hf
7 = dφ(Hf

6 , Hf
5);

q1 = m0;
} 20

q2 = mφ(q1, q0);
Hf

8 = cφ(Hf
7 , Hf

5);
}

Fig. 5. Heap Array SSA Form for the program in Figure 1

over the Heap Array SSA form of a Java program to obtain a field flow sensitive
analysis. The precision of the resulting analysis is as good as any field flow sensi-
tive analysis that is based on points-to graphs [8][9]. The main advantage of using
Heap Array SSA is that it obviates the need to maintain a separate points-to graph
at every program point and thereby effecting a more scalable analysis.

We formulate two variants of this analysis in Datalog: partial field flow sensi-
tive analysis (PFFS) and full field flow sensitive analysis (FFFS). All heap objects
are abstracted by their allocation sites. Two points-to sets, vPtsTo and hPtsTo,
are associated with scalar variables and heap array elements (heap arrays them-
selves are indexed by objects) respectively. These sets hold the objects pointed
to by them. At the end of analysis, vPtsTo and hPtsTo together give a field flow
sensitive points-to result. We use Whaley and Lam’s notation for logic programs
[1]. V and H represent the domain of scalars and heap objects (object numbers)
respectively. F is the domain of all fields. The numeric subscripts inserted by the
Heap Array SSA transformation are represented from N, the set of natural num-
bers. The relations used in our analysis have an attribute to accommodate the SSA
numbers of the heap arrays. For local variables, the SSA subscripts are a part of
the variable name itself. Table 1 lists for every input relation, the tuple representa-
tion of a particular source statement. For an output relation, it specifies the tuple
representation for a particular element of the derived points-to set.The first four
deduction rules of the analysis capture the effect of new, assign, load and store
statements and are very similar to the rules for the non-SSA form, the only differ-
ence being the SSA numbers for heap arrays:

Field Flow Sensitive Pointer and Escape Analysis 115

vP tsTo(v1, h) : − new(v1, h) (1)
vP tsTo(v1, h) : − assign(v1, v2), vP tsTo(v2, h) (2)

vP tsTo(v1, h2) : − load(v1, f, s0, vb), vP tsTo(vb, h1),
hP tsTo(f, s0, h1, h2) (3)

hPtsTo(f, s0, h1, h2) : − store(v1, f, s0, vb), vP tsTo(vb, h1),
vP tsTo(v1, h2) (4)

The semantics of the rules are as follows :

– Rule (1) for new v1 = new h(): Creates the initial points-to relation for
the scalar variables.

– Rule (2) for assign v1 = v2: Updates the points-to set for v1 based on the
inclusion property: points− to(v2) ⊆ points− to(v1).

– Rule (3) for load v1 = Hf
s0

[vb]: Updates the points-to set for v1 using the
points-to set of Hf

s0
[h1] for every object h1 that is pointed to by the index

variable vb of the Heap array instance Hf
sf

.
– Rule (4) for store Hf

s0
[vb] = v1: Acts similar to rule (3), the data flow

being in the opposite direction in this case.

The next two rules correspond to the cφ and the mφ statement:

hPtsTo(f, s0, h1, h2) : − cphi(f, s0, s1), hP tsTo(f, s1, h1, h2) (5)
vP tsTo(v0, h) : − mphi(v0, v1), vP tsTo(v1, h) (6)

The semantics of these rules are:

– Rule (5) for cφ: Hf
s0

= cφ(Hf
s1
, Hf

s2
, ..., Hf

sn
): The cφ statement is rep-

resented as a set of tuples (f, s0, si) ∀i such that 1 ≤ i ≤ n in the cphi
relation since all the arguments of cφ are symmetric with respect to the lhs
heap array instance. The effect of the rule (5) is to merge the points-to sets
corresponding to all valid object indices of its arguments into the rhs heap
array instance.

– Rule (6) for mφ: 1 v0 = mφ(v1, ..., vn) Performs the merge of points-to
sets for scalars.

To complete the analysis, we need to add rules corresponding to the dφ state-
ment. Based on the type of rules for modeling dφ, we distinguish two types of
field flow sensitivity:

Partial Field Flow Sensitivity (PFFS). We define a partial field flow sen-
sitive analysis as one that performs only weak updates to heap array elements.
To obtain PFFS, the rules required to model dφ statement are simple and are
1 In the implementation, this rule is replaced by rule (2) for assigns, since a mφ can
be modeled as a set of assignment statements.

116 P. Prabhu and P. Shankar

Table 1. Relations used in the Field Flow Sensitive Analysis

Source Statement/ Tuple(s) Relations Type
Pointer Semantics Representation

v1 = new h() (v1, h) new(v: V, h: H) input

v1 = v2 (v1, v2) assign(v1: V, v2: V) input

v2 = Hf
s0 [v1] (v2, f, s0, v1) load(v: V, f : F, s: N, b: V) input

Hf
s0 [v1] = v2 (v2, f, s0, v1) store(v: V, f : F, s: N, b: V) input

Hf
s0 = dφ(Hf

s1 , Hf
s2) (f, s0, s1, s2) dphi(f : F, s0: N, s1: N, s2: N) input

Hf
s0 = cφ(Hf

s1 , ..., Hf
sn
) (f, s0, si) ∀i such cphi(f : F, s0: N, s1: N) input
that 1 ≤ i ≤ n

v0 = mφ(v1, ..., vn) (v0, vi) ∀i such mphi(v0: V, v1: V) input
that 1 ≤ i ≤ n

v0 → h (v0, h) vP tsTo(v : V, h: H) output

Hf
s0 [h1] → h2 (f, s0, h1, h2) hPtsTo(f : F, s0: N, h1: H, h2: H) output

similar to that for the cφ statement. Without strong updates, useful information
can still be obtained since the points-to relation of heap arrays that appear at
a later point in the control flow do not interfere with the points-to relations
of the heap array at the current program point. The rules for achieving PFFS
are:

hPtsTo(f, s0, h1, h2) : − dphi(f, s0, s1,−), hP tsTo(f, s1, h1, h2) (7)
hPtsTo(f, s0, h1, h2) : − dphi(f, s0,−, s2), hP tsTo(f, s2, h1, h2) (8)

The semantics of these rules are:

– Rules (7) and (8) for dφ: Hf
s0

= dφ(Hf
s1
, Hf

s2
): Merge the points-to sets

corresponding to all the heap array indices of both the argument heap arrays
Hf

s1
and Hf

s2
and gather them into the lhs heap array instance Hf

s0
. As no

pointed object is ever evicted (killed) from a heap array at a store, only a
weak update to fields is done.

Full Field Flow Sensitivity (FFFS). We define a fully field flow sensitive
analysis as one that performs strong updates to heap array elements. Hence,
FFFS is more precise than PFFS. However, a strong update can be applied at
a store statement vb.f = v2 only under two conditions:

1. vb points to a single abstract heap object that represents only one concrete
object at runtime.

2. The method in which the abstract object is allocated should not be a part
any loop or recursive call chain.2

2 This is because we do not have any information about the predicate conditions for
loops/recursive method invocations and have to conservatively infer that an object
can be allocated more than once, preventing the application of a strong update.

Field Flow Sensitive Pointer and Escape Analysis 117

One way to model the dφ statement to allow for strong updates is by the
following rules:

hPtsTo(f, s0, h1, h2) : − dphi(f, s0, s1,−), hP tsTo(f, s1, h1, h2) (9)
hPtsTo(f, s0, h1, h2) : − store(−, f, s1, vb), nonsingular(vb),

dphi(f, s0, s1, s2), hP tsTo(f, s2, h1, h2),
hP tsTo(f, s1, h1,−) (10)

hPtsTo(f, s0, h1, h2) : − mayBeInLoop(h1), dphi(f, s0, s1, s2),
hP tsTo(f, s2, h1, h2), hP tsTo(f, s1, h1,−) (11)

hPtsTo(f, s0, h1, h2) : − dphi(f, s0, s1, s2), hP tsTo(f, s2, h1, h2),
!commonIndex(f, s1, s2, h1) (12)

nonsingular(v1) : − vP tsTo(v1, h1), vP tsTo(v1, h2), h1! = h2 (13)

The semantics of these rules are:
Rules (9), (10), (11), (12) and (13) for dφ: Hf

s0
= dφ(Hf

s1
, Hf

s2
) : Whenever

a dφ statement is encountered, the points-to sets for lhs heap array instance Hf
s0

is constructed from its arguments Hf
s1

and Hf
s2

as follows:

– All the points-to sets for object indices of Hf
s1

are carried over to Hf
s0

. The
ordering of the arguments for the dφ is important here: The heap array in-
stance Hf

s1
corresponds to the one that is defined in the store statement

immediately before this dφ statement. Rule (9), which performs the deriva-
tion of Hf

s0
from Hf

s1
, depends on this ordering to work.

– The points-to sets from Hf
s2

, for object indices common to Hf
s1

and Hf
s2

,
are conditionally carried over to Hf

s0
using rules (10) and (11). These rules

represent the negation of the conditions required to satisfy a strong update
(kill) for a store statement. The nonsingular relation determines whether a
variable may point to more than one heap object and is derived using rule
(13). When the base variable vb of the store statement is in the nonsingular
relation, the points-to sets from Hf

s2
go into Hf

s0
, using rule (10). The may-

BeInLoop relation, on the other hand, is an input relation, which represents
all the allocation sites which may be executed more than once. The heap
objects abstracted at these sites may not represent a single runtime object.
We compute this input relation using a control flow analysis provided by
SOOT. Whenever a target heap object h1 of a store is in the mayBeInLoop
relation, the points-to sets from Hf

s2
go into Hf

s0
, using rule (11).

– The points-to sets from Hf
s2

, for object indices not common to Hf
s1

and Hf
s2

,
are carried over to Hf

s0
using rule (12). The computation of the common

indices itself requires a pointer analysis due its inherent recursive nature.
– Strong Updates and Non stratified logic programs: Consider, for a

moment, the following rule as a replacement for (12):

hPtsTo(f, s0, h1, h2) : − dphi(f, s0, s1, s2), hP tsTo(f, s2, h1, h2),
!hPtsTo(f, s1, h1,−)

118 P. Prabhu and P. Shankar

This rule uses recursion with negation on hPtsTo relation to compute itself.
This rule would result in a non-stratified Datalog program, which is currently
not supported by bddbddb. The way bddbddb evaluates Datalog programs is
by constructing a predicate dependency graph (PDG), where each node rep-
resents a relation and an edge a → b exists if a is the head relation of a
rule which has b as a subgoal relation. Also, an edge is labeled as nega-
tive if the subgoal relation has a negation in the rule. The PDG is then
divided into different strongly connected components (SCC) and the rela-
tions within each SCC are wholly computed by doing a fixed point iteration
over the rules representing the edges within the SCC. The whole program
is then evaluated in the topological ordering of these SCCs. A Datalog pro-
gram becomes non-stratified if there exists a SCC with a negative edge. In
this case, there is a cycle from hPtsTo to itself. XSB [10], a system which
supports non-stratified programs using well-founded semantics,3 operates at
the tuple level and is not as scalable as bddbddb which operates on complete
relations by representing them as BDDs and using efficient BDD operations.
Our approach here is to pre-compute the commonIndex relation, which rep-
resents an over-approximation of the set of common object indices for the
two argument heap arrays Hf

s2
and Hf

s1
of the dφ and get a stratified Data-

log program. The commonIndex relation is pre-computed using a field flow
insensitive analysis pass, PFFS, in our case:

commonIndex(f, s1, s2, h1) : − dphi(f,−, s1, s2), hP tsTo(f, s1, h1,−),
hP tsTo(f, s2, h1,−) (14)

Consider the points-to relations obtained by the field flow sensitive analysis
for the bar() method as seen in Figure 4. The edges labeled w (weak) are the
additional edges inferred by PFFS which FFFS does not infer. Both FFFS and
PFFS infer the s (strong) edges. Both the analyses infer that at S13, n.f points
to O5 (n0 → O4 and Hf

0 [O4] → O5) while at S16, n.f points to O6 (n0 → O4
and Hf

2 [O4] → O6), which is a field flow sensitive result. However, if there was
a reference to n.f after S16, PFFS would infer that n.f may point to either O5
or O6 (due to the w edge: Hf

3 [O4] → O6) while FFFS would say that n.f may
point to only O6 (the single s edge: Hf

3 [O4] → O6).

3 Interprocedural Field Flow Sensitivity: iφ and rφ

To obtain field flow sensitivity in the presence of method calls, we have to take
into account: (a) Effects of field updates made by a called method visible to the
caller at the point of return (b) Flow of correct object field values into a called
method depending on the invocation site from where it is called. We introduce
two new φ functions to extend the Heap Array SSA Form interprocedurally: (a)
The invocation φ function, iφ (b) The return φ function, rφ.

3 It provides a form of 3-valued evaluation for logic programs.

Field Flow Sensitive Pointer and Escape Analysis 119

The iφ function models the flow of values into a method corresponding to
the invocation site from where it is called. It selects the exact points-to set that
exists at the invocation site (at the point of call), on the basis of the invocation
edge in the call graph. This is in contrast with the cφ function which merges the
points-to sets flowing via different control flow paths. The iφ function has the
following form:

Hf
sin

= iφ(Hf
s1
{e1}, Hf

s2
{e2}, ..., Hf

sn
{en})

where Hf
s1
, Hf

s2
, ..., Hf

sn
are the heap array instances that dominate4 the point

of call and e1, e2, ..., en are the corresponding invocation edges in the call graph.
The rφ function models the merge of the points-to sets of the heap array that

existed before the call and the points-to set of the heap arrays that were mod-
ified by the call. The updated heap array after the call models the effect of all
the methods transitively called in the call chain. It has the following form:

Hf
sr

= rφ(Hf
s1
{e1}, Hf

s2
{e2}, ..., Hf

sn
{en}, Hf

slocal
)

The presence of more than one edge in the rφ function is due to virtual method
invocations. Hf

si
, ∀i such that 1 ≤ i ≤ n is the dominating heap array instance

that is in effect at the end of the called method, with corresponding invocation
edge ei. Thus, for every possible concrete method that can be called at the call
site, rφ collects the heap array instances for the field f that dominate the end of
the called method and merges the points-to sets into Hf

sr
. Those objects whose

field f has not been modified get their points-to sets into Hf
sr

from Hf
slocal

, the
heap array instance for f that dominates the immediate program point before
the call site in the calling method.

The iφ’s are placed at the entry point of a method. Only those heap arrays
that are used or modified in the current method and all the methods it calls
transitively require an iφ at the entry point. Similarly, an rφ is required only for
those heap arrays which are modified transitively by a method call. The list of
heap arrays for which rφ and iφ are required can be determined while performing
a single traversal (in reverse topological order of nodes of the call graph) on the
interprocedural control flow graph of the program. For the example in Figure 5,
an iφ is placed for f in the helper() while rφ’s are placed after calls to helper()
in foo() and bar(). The lhs heap arrays of these φ functions are also renamed as
a part of Cytron’s SSA renaming step [3].

Although the previous step would have determined the placement of the iφ and
rφ, still we have to determine their arguments and rename the heap array instances
used in the arguments. This is achieved by plugging in the heap array instances
that dominate the point of call and those that dominate the callee’s exit points into
the arguments of iφ and rφ respectively. For the example in Figure 5, the argu-
ments of the iφ in helper() method areHf

0 andHf
8 , the heap arrays that dominate

4 By definition of the dominates relation [3], there is only one dominating heap array
instance at any program point for every field in the Heap Array SSA form.

120 P. Prabhu and P. Shankar

Table 2. Additional Relations for Interprocedural Field Flow and Context Sensitivity

Source Statement/ Tuple(s) Relation Type
Pointer Semantics Representation

An invocation i from (c1, i, c2, m) IEc(c1: C, i: I, c2: C, input
context c1 to m in context c2 m: M)

Hf
sin

= iφ(Hf
s1{e1}, ..., Hf

sn
{en}) (f, sin, si, ei) ∀i iphi(f : F, sin: Z, si: Z, input

such that 1 ≤ i ≤ n ei: I)

Hf
sr

= rφ(Hf
s1{e1}, ..., Hf

sn
{en}, (f, sr, sl, si, ei) ∀i rphi(f : F, sr: Z, sl: Z, input

Hf
sl
) such that 1 ≤ i ≤ n si: Z, ei : I)

In context c1, v1 → h (c1, v1, h) vP tsTo(c: C, v : V, h: H) output

In context c1, Hf
s0 [h1] → h2 (c1, f, s0, h1, h2) hPtsTo(c: C, f : F, sf : N, output

h1: H, h2: H)

the points, in bar() and foo() respectively, at which helper() is called. Similarly the
argument of the rφ’s for f is Hf

12, the dominating heap array instance in helper()
at the point of return. The overall placement of the phi functions (mφ, dφ, cφ, iφ
and rφ) and their renaming are performed in the following order:

1. Place dφ, cφ and mφ functions using dominance frontiers as in [3]
2. Place the rφ and iφ functions.
3. Apply Cytron’s Algorithm [3] to rename the Heap Array Instances (results

of dφ, cφ, rφ, iφ and arguments of dφ and cφ) and local variables (results
and arguments of mφ).

4. Use the dominating heap array instances at exit points of methods and call
sites to plug in the arguments for rφ and iφ.

4 Combined Field Flow and Context Sensitivity

4.1 Pointer Analysis

Using the iφ and rφ functions, we incorporate interprocedural field flow sensitiv-
ity into the Whaley-Lam context sensitive analysis [1] algorithm. We describe
only those relations (Table 2) and rules that pertain to the iφ and rφ state-
ments. The rest of the relations and rules are context sensitive extensions of
those mentioned in Section 2.2 and those for parameter and return value bind-
ings, invocation edge representations [1]. I is the domain of invocation edges, M
represents all the methods and C is the domain of context numbers. Two main
relations new to this analysis are iphi and rphi, while vPtsTo and hPtsTo now
have an additional attribute for context numbers. The IEc relation represents
context sensitive invocation edges, computed using SOOT ’s pre-computed call
graph and context numbering scheme of Whaley and Lam [1]. In this scheme,

Field Flow Sensitive Pointer and Escape Analysis 121

every method is assigned a unique context number for every distinct calling
context.5 The deduction rules and their semantics are as follows:

hPtsTo(c2, f, si, h1, h2) : − iphi(f, si, s1, i), IEc(c1, i, c2,−),
hP tsTo(c1, f, s1, h1, h2). (15)

hPtsTo(c1, f, sr, h1, h2) : − rphi(f, sr,−, si, i), IEc(c1, i, c2,−),
hP tsTo(c2, f, si, h1, h2). (16)

hPtsTo(c1, f, sr, h1, h2) : − rphi(f, sr, sl,−, i), IEc(c1, i,−,−),
hP tsTo(c1, f, sl, h1, h2). (17)

– Rule (15) for iφ: This rule models the effect of the iφ. When there is
a change in context from c1 to c2 due to an invocation i, the heap array
instance for a field f in context c2 (the lhs of the iφ with SSA number si)
inherits its points-to set from the heap array instance in c1 before the call
was made (argument s1 corresponding to the invocation edge i in the iφ
statement). The presence of IEc makes sure that points-to set of multiple
calling contexts don’t interfere with each other.

– Rules (16) and (17) for rφ: These rules are similar to Rules (7) and (8)
that model the effect of dφ statement in PFFS. Rule (16) makes sure that
the points-to sets of the heap array instance (si in context c2) from a virtual
method invocation (invocation edge i) are merged into that of lhs heap array
instance (sr) in context c1. Rule (17) ensures that the lhs heap array instance
gets the points-to sets from the local heap array instance that dominates the
call site (sl in context c1).

For the only iφ in our example, Hf
10 in helper() inherits its points to sets from Hf

0

along edge e1 (called from bar()) and from Hf
8 along edge e2 (called from foo())

in separate contexts. Hence ret0 points to O5 and O2 in two distinct contexts
and consequently, y0 and p0 point to O2 and O5 respectively.

4.2 Escape Analysis for Methods

Escape Analysis [8][9] is a compiler analysis technique which identifies objects
that are local to a particular method. For such objects, the compiler can perform
stack-allocation, which helps to speed up programs by lessening the burden on
the garbage collector. Escape analysis works by determining whether an object
may escape a method and if an object does not escape a method (“captured”),
it can be allocated on the method’s stack frame. Adding a few more relations
(Table 3) and rules to the analysis of Section 4.1 gives an escape analysis. We
encode the heap array instances that dominate the exit points of methods in

5 For eg, if a call to method helper() by method bar() is represented by an invocation
edge e1 in the call graph, and bar() is in a calling context with context number c1

while helper() is in a context numbered c2, this invocation would be represented by
the tuple IEc(c1, e1, c2, helper).

122 P. Prabhu and P. Shankar

Table 3. Additional Relations for Escape Analysis

Relation Type Tuple Semantics

dominatingHA(m: M, f : F, s: Z) input Heap Array Instance s for field f dominates exits of method m

formal(m : M, z : Z, v : V) input Formal parameter z of method m is represented by variable v

threadParam(v: V) input v is passed as parameter to a thread

callEdge(m1: M, m2: M) input A call edge m1 → m2 exists in the call graph

allocated(h: H, m: M) input Object h allocated within m

classNode(c: V, h: H) input Class c is given a heap number h

escapes(h: H, m: M) output Object h escapes m, h need not be allocated within m

aEscapes(h: H, m: M) output Object h, allocated within m, escapes m

captured(h: H, m: M) output Object h, allocated within m, does not escape m

callerCaptured(h: H, m: M) output Object h, allocated within m, escapes m,
but does not escape an immediate caller of m

a relation (dominatingHA) and every class is uniquely numbered in the heap
objects’ domain.

escapes(h2,m) : − dominatingHA(m, f, s0), classNode(−, h1),
hP tsTo(−, f, s0, h1, h2) (18)

escapes(h,m) : − vP tsTo(−, v, h), formal(m,−, v). (19)

escapes(h,m) : − return(m, v), vP tsTo(−, v, h). (20)
escapes(h,−) : − threadParam(v), vP tsTo(−, v, h). (21)
escapes(h2,m) : − escapes(h1,m), hP tsTo(−, f, s0, h1, h2),

dominatingHA(m, f, s0). (22)
aEscapes(h,m) : − escapes(h,m), allocated(h,m). (23)
captured(h,m) : − !aEscapes(h,m), allocated(h,m). (24)

callerCaptured(h,m1) : − !escapes(h,m1), aEscapes(h,m2),
callEdge(m1,m2). (25)

The semantics of these rules are as follows :

– Rules (18) to (21) : Direct Escape: These rules determine the objects
that directly escape a method m: objects whose reference is stored in a
static class variable (Rule 18), objects representing the parameters (Rule 19),
objects returned from a method (Rule 20) and thread objects and objects
passed to thread methods (Rule 21)

– Rules (22) to (25): Indirect Escape, Capture and Caller Capture:
Rules (22)-(24) compute the indirectly escaping objects, ie, those reachable
via a sequence of object references from a directly escaped object. The re-
maining objects are ‘captured ’, ie, those that are inaccessible outside their
method of allocation. Finally, Rule (25) computes the caller-captured ob-
jects, which escape their method of allocation but are captured within a
caller method. Such caller-captured objects can be stack allocated in the
caller’s stack.

Field Flow Sensitive Pointer and Escape Analysis 123

Name Description Byte
codes

jip Java Interactive Profiler 210K
umldot UML Diagram Creator 142K
jython Python Interpreter 295K
jsch Implementation of SSH 282K
java cup Parser Generator 152K
jlex Lexical Analyzer Generator 91K

check Checker for JVM 46K
jess Java Expert Shell 13K
cst Hashing Implementation 32K
si Small Interpreter 24K
compress Modified Lampel-Ziv method 21K
raytrace Ray tracer 65K
db Memory Resident Database 13K
anagram Anagram Generator 9K
mtrt A variant of raytrace 1K

Fig. 6. Benchmark Programs used Fig. 7. Time of Analysis

5 Experimental Results

We have implemented both PFFS and FFFS on the bddbddb system, using SOOT
as the front end to generate Heap Array SSA and the input relations. We ran
our analyses on some of the popular Java programs from SourceForge and SPEC
JVM 98 benchmark suite (Figure 6). All the programs were run in whole program
mode in with a precomputed call graph in SOOT.6 The analyses were done on 4
CPU 3.20 GHz Intel Pentium IV PC with 2 GB of RAM running Ubuntu Linux.

We compare our analyses with two field flow insensitive versions of the
Whaley-Lam analysis [1]: one of which is flow sensitive for locals (FS) and the
other flow insensitive for locals (FIS). The Whaley-Lam analysis is context sen-
sitive. The FS analysis uses the scalar SSA form to obtain flow sensitivity for
locals while FIS does not make use of SSA. The comparisons are based on: (a)
Time of analysis (b) Precision in terms of size of points-to sets at load/store
statements (c) Number of objects found to be captured in the escape analysis.
Figure 7 shows the relative time taken for the four analyses, normalized with
respect to FIS. Figure 8 shows the average number of objects pointed to by an
object field x.f at a load y = x.f (which we call the loadPts set), again as a
factor of FIS. This is computed based on the vPtsTo relation for x at the load
and the hPtsTo relation for objects pointed to by x. The average number of
objects pointed to by a scalar variable x at a store x.f = y (the storePts set),
inferred by each analysis is shown in Figure 9.

The time taken by the field flow sensitive versions are comparable to FS and
FIS for most programs, while doing much better in some cases. Also, for two

6 Although we use a precomputed call graph here, this analysis can be combined with
a on-the-fly call graph construction using the techniques employed in [1].

124 P. Prabhu and P. Shankar

Fig. 8. Average Size of loadPts set Fig. 9. Average Size of storePts set

programs, jip and umldot, the JVM ran out of memory while running FIS and
FS. In terms of precision, both PFFS and FFFS reduce the size of loadPts set
to about 23% of the size computed by FIS, averaged over all programs. The size
of the storePts set is reduced to about 30% of the size computed by FIS.

Three observations can be made from these plots: Firstly, these results il-
lustrate the importance of field flow sensitivity in a context sensitive analysis,
especially in programs written in a object oriented programming language like
Java where short and frequently invoked methods are the common case [11]. A
field flow sensitive analysis takes advantage of longer interprocedural program
paths that have been identified as distinct from each other by a context sen-
sitive analysis. In the absence of field flow sensitivity, even though a context
sensitive analysis identifies longer distinct interprocedural paths, the points-to
sets of object fields at various points along the path are merged. Secondly, pro-
grams for which the size of loadPts as computed by PFFS is less than 10% as
that computed by FIS, the analysis time for PFFS is also much less than FIS.
Hence field flow sensitivity not only helps in getting a precise pointer analysis
result, but also helps in reducing analysis times to some extent, by avoiding
the computation of spurious points-to relations (hPtsTo) across methods. Fi-
nally, as is evident from the size of loadPts and storePts computed by FFFS
and PFFS, there is very little gain in precision by using FFFS as compared to
PFFS. This counter-intuitive result can be explained by the following observa-
tion: In the absence of (a) support for non stratified queries and (b) an accurate
model of the heap, the conditions for strong updates (all of which are required
for correctness) are very strong and their scope is limited to only a few field
assignments that always update a single runtime object and that too at most
once. Although the developers of bddbddb did not find the need for non stratified
queries for program analysis,7 the use of Heap array SSA to perform aggressive
strong updates does illustrate an instance where non stratified queries are of

7 We quote, from [12]: “In our experience designing Datalog programs for program
analysis, we have yet to find a need for non-stratifiable queries”.

Field Flow Sensitive Pointer and Escape Analysis 125

Fig. 10. No. of captured objects Fig. 11. No. of recaptured objects

importance to a program analysis. In addition, an accurate model of the heap
can greatly help in improving precision. A shape analysis builds better abstrac-
tions of structure of the heap and enables strong updates much more freely than
is currently possible. One of the most popular shape analysis algorithms [13] is
based on three-valued logic and to formulate this analysis in the logic program-
ming paradigm, we might need to adopt a different kind of semantics like the
well founded semantics, as done in XSB [10], which also handles non-stratified
queries.

The captured relation sizes are shown in Figure 10. This relation computes
the captured state of an object with respect to its method of allocation. As seen
from the graph, the number of objects captured in their method of allocation
is almost the same for the field flow sensitive and insensitive versions. This is
surprising given that PFFS/FFFS have an extra level of precision and hence
should have discovered more captured objects. Figure 11 compares the number
of caller-captured objects (ie, objects that escape their method of allocation,
but are caught in their immediate caller) discovered by the four analyses. PFFS
improved the number of caller-captured objects by an average of about 71%
compared to FIS (again there was not much gain in using FFFS over PFFS). Such
caller-captured objects can be stack allocated in the calling method’s stack. This
is beneficial when coupled with partial specialization of Java methods [14]. Since
the computation of caller-captured objects takes into account the flow sensitivity
of field assignments across two methods, PFFS gives a better caller-captured set
than captured, especially in the presence of context sensitivity. This is because
an object that escapes its method of allocation can be captured in more than
one of its callers (each in a separate calling context) and an interprocedural
field flow sensitive analysis with its dominating heap array information can help
in discovering such objects better than a field flow insensitive analysis with no
control flow and dominance information.

126 P. Prabhu and P. Shankar

6 Related Work

Our work is inspired by Whaley and Lam’s work on context sensitive analy-
sis [1] and work by Fink et al. [2] on Heap Array SSA. Whaley and Lam also
specify a thread escape analysis while we have used the pointer analysis re-
sults to infer a method escape analysis. One of the earliest context-insensitive
and flow-insensitive pointer analysis was due to Anderson [7] which is inclusion
based, solved using subset constraints. The analysis of Emami et al [15], formu-
lated for C, is both context and flow sensitive. It computes both may and must
pointer relations and context sensitivity is handled by regarding every path in
the call graph as a separate context (cloning). Our analysis is a may pointer
analysis while for context sensitivity the cloned paths are represented by BDDs
using bddbddb. Reps describes techniques for performing interprocedural analy-
sis using logic databases and gives the relation between context-free reachability,
logic programs and constraint based analyses [6]. All program analysis problems
whose logic programs are chain programs are equivalent to a context-free reacha-
bility problem. Sridharan and Bodik express a context sensitive, flow insensitive
pointer analysis for Java as a context-free reachability (CFL) problem [16]. We
could not use CFL due to the presence of logic program rules which were not
chain rules, for eg, that for dphi function rule that adds the field flow sensitivity.

Milanova et al [17] propose object sensitivity as a substitute for context sen-
sitivity using call strings. Object names are used, instead of context numbers,
to distinguish the pointer analysis results of a method which can be invoked on
them. Object names represent an abstraction of a sequence of object allocation
sites on which methods can be invoked. Their analysis is flow insensitive. The
field flow sensitive portion of our analysis could be used with object sensitivity
instead of context sensitivity. Whaley and Rinard’s escape analysis [8], similar
to Choi et al’s analysis [9], maintains a points-to escape graph at every point in
the program and hence is fully field flow sensitive. However, complete context
and field flow sensitivity is maintained only for objects that do not escape a
method. The pointer information for objects that escape a method are merged.

7 Conclusions

In this paper, we presented two variants of a field flow sensitive analysis for
Java using the Heap Array SSA Form in Datalog. We have extended the Heap
Array SSA form interprocedurally to obtain field flow sensitivity in the presence
of context sensitivity and derived an escape analysis based on this. We have
implemented our analysis using SOOT and bddbddb. Our results indicate that
partial field flow sensitivity obtains significant improvements in the precision of
a context sensitive analysis and helps to identify more captured objects at higher
levels in the call chain. Strong updates do not seem to lead to any further gain
in precision in current system. The running times of our analysis are comparable
to a field flow insensitive analysis, while in some cases running much faster than
the latter.

Field Flow Sensitive Pointer and Escape Analysis 127

Acknowledgments

We thank John Whaley for the bddbddb system and clarifying some of our doubts
regarding his paper. We thank the people at McGill for the SOOT framework.

References

1. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Programming language design and implementation,
pp. 131–144 (2004)

2. Fink, S.J., Knobe, K., Sarkar, V.: Unified analysis of array and object references
in strongly typed languages. In: Static Analysis Symposium, pp. 155–174 (2000)

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

4. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-
insensitive pointer analysis. In: Programming language design and implementation,
pp. 97–105 (1998)

5. Knobe, K., Sarkar, V.: Array SSA form and its use in parallelization. In: Sympo-
sium on Principles of Programming Languages, pp. 107–120 (1998)

6. Reps, T.W.: Program analysis via graph reachability. In: International Logic Pro-
gramming Symposium, pp. 5–19 (1997)

7. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (May 1994)

8. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: Object-oriented programming, systems, languages, and applications, pp.
187–206 (1999)

9. Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape analysis
for Java. In: Object-oriented programming, systems, languages, and applications,
pp. 1–19 (1999)

10. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine.
In: International conference on Management of data, pp. 442–453 (1994)

11. Budimlic, Z., Kennedy, K.: Optimizing Java: theory and practice. Concurrency:
Practice and Experience 9(6), 445–463 (1997)

12. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog and binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780,
Springer, Heidelberg (2005)

13. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3–valued logic. In:
Symposium on Principles of Programming Languages, pp. 105–118 (1999)

14. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst. 25(4), 452–499 (2003)

15. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Programming language design and
implementation, pp. 242–256 (1994)

16. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: Programming language design and implementation, pp. 387–400 (2006)

17. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to and side-effect analyses for Java. In: International Symposium on Soft-
ware testing and analysis, pp. 1–11 (2002)

Typing Linear Constraints

for Moding CLP(R) Programs

Salvatore Ruggieri1 and Fred Mesnard2

1 Dipartimento di Informatica, Università di Pisa, Italy
ruggieri@di.unipi.it

2 Iremia, Université de la Réunion, France
frederic.mesnard@univ-reunion.fr

Abstract. We present a type system for linear constraints over reals and
its use in mode analysis of CLP programs. The type system is designed
to reason about the properties of definiteness, lower and upper bounds
of variables of a linear constraint. Two proof procedures are presented
for checking validity of type assertions. The first one considers lower and
upper bound types, and it relies on solving homogeneous linear program-
ming problems. The second procedure, which deals with definiteness as
well, relies on computing the Minkowski’s form of a parameterized poly-
hedron. The two procedures are sound and complete. We extend the
approach to deal with strict inequalities and disequalities. Type asser-
tions are at the basis of moding constraint logic programs. We extend
the notion of well-moding from pure logic programming to CLP(R).

Keywords: linear constraints, polyhedra, constraint logic programming,
well-moding, definiteness.

1 Introduction

Modes in logic programming allow the user to specify the input-output be-
haviour of predicate arguments [1]. Modern constraint logic programming lan-
guages adopt moding both as program annotation and as a tool for compiler
optimizations, program transformations and termination analysis. As an exam-
ple, consider the MORTGAGE program over CLP(R).

(m1) mortgage(P,T,R,B) ←
T = 0,
B = P.

(m2) mortgage(P,T,R,B) ←
T >= 1,
NP = P + P * 0.05 - R,
NT = T - 1,
mortgage(NP,NT,R,B).

The query ← mortgage(100, 5, 20, B) is intended to calculate the balance
of a mortgage of 100 units after giving back 20 units per year for a period
of 5 years. The answer provides an exact value (i.e., a real number) for the
required balance, namely B = 17.12. Using the moding terminology, we say
that given definite values for principal, time and repayment, in every answer we

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 128–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Typing Linear Constraints for Moding CLP(R) Programs 129

obtain a definite value for the balance. However, this is only one mode we can
query the program above. The query ← 3 <= T, T <= 5, mortgage(100, T,
20, B) is intended to calculate the balance at the end of the third, fourth and
fifth year. Principal and repayment are now definite, whilst time is (upper and
lower) bounded. Again, for every answer we will get a definite value for balance.
Intuitively, this mode is more general than the previous one, since definiteness
of time has been replaced by boundedness. Finally, consider the query ← 0 <=
B, B <= 10, 15 <= R, R <= 20, mortgage(P, 5, R, B), which is intended
to calculate the principal one could be granted such that by repaying from 15 to
20 units per year, after 5 years the balance yield is up to 10 units. The answer
is now P=0.78*B+4.33*R, which is not definite, but, since B and R are bounded,
it is (upper and lower) bounded. This mode is not comparable to the previous
ones, since we now provide a definite value for time and a range for balance and
repayment, and we wish to compute a range for the principal of the answer.
These examples give only a few hints about the flexibility of the constraint
logic programming scheme, even if compared to pure logic programming, where
definiteness of variables corresponds to groundness, but upper and lower bounds
have no direct equivalent.

In this paper, we concentrate on constraint languages with linear constraints
over reals and rationals, as in CLP(R) [11], ECLiPSe, Sictus Prolog, SWI Pro-
log, and many others. We present a type system for linear constraints, where
types model definiteness, upper and lower bounds of variables. Type assertions
are introduced in order to derive types implied by a constraint and a set of typed
variables. Validity of type assertions is thoroughly investigated by devising two
proof procedures. The first one considers lower and upper bound types, and it
relies on solving homogeneous linear programming problems. The second proce-
dure, which deals with definiteness as well, relies on computing the Minkowski’s
form of a parameterized polyhedron. The two procedures are sound and com-
plete. Moreover, the approach is extended to deal with constraints containing
strict inequalities and disequalities. Type assertions are at the basis of moding
CLP(R) programs. We extend the notion of well-moding from pure logic pro-
gramming to CLP(R), showing useful properties in support of static analysis.

Preliminaries. We adhere to standard notation for linear algebra [16], linear
programming [15] and (constraint) logic programming [1,10].

Linear Algebra. Small capital letters (a, b, . . .) denote column vectors, while
capital letters (A, B, . . .) denote matrices. 0 and 1 are column vectors with
all elements equal to 0 and 1 respectively. ai denotes the ith element in a, and
row(A, i) the row vector consisting of the ith row of A. aT denotes the transposed
vector of a. cT x denotes the inner product of the transposed vector cT and x.
Σv is the sum of all the elements in v. Ax ≤ b denotes a system of linear
inequalities (or, a linear system) over the variables in x. We assume that the
dimensions of vectors and matrices in inner products and linear systems are
of the appropriate size. The solution set of points that satisfy a formula/linear

130 S. Ruggieri and F. Mesnard

system ψ over Rn is defined as Sol(ψ) = {x ∈ Rn | ψ(x)}. A polyhedron is the
solution set of a linear system, namely Sol(Ax ≤ b).

Linear Programming. A linear programming problem consists of determining
max{cTx | Ax ≤ b}, if it exists. The problem is infeasible when {x | Ax ≤
b} = ∅. If feasible, but {cTx | Ax ≤ b} has no upper bound, the problem is
unbounded, and we write max{cTx | Ax ≤ b} = ∞. Otherwise, it is bounded.
We write max{cTx | Ax ≤ b} ∈ R when the problem is feasible and bounded.
We extend the notation to a closed set of points S by writing max{cT x | x ∈ S}.

Constraint Logic Programming. The CLP Scheme defines a family of lan-
guages, CLP(C), that are parametric in the constraint domain C. We are in-
terested here in constraint domains over reals, such as CLP(R) [11]. All re-
sults apply to rationals as well. A primitive linear constraint is an expression
a1 · x1 + . . . an · xn) a0, where) is in {≤,=,≥}, a1, . . . , an are constants in
R and x1, . . . , xn are variables. We will use the inner product form by rewrit-
ing it as cT x) α. A linear constraint c is a sequence of primitive constraints,
whose interpretation is their conjunction. A constraint logic program is a finite
set of clauses of the form A← c, B1 , . . . , Bn , where A is an atom, c a linear
constraint, and B1 , . . . , Bn (n ≥ 0) a sequence of atoms. We assume that atoms
are in flat form, namely an atom is p(x1, . . . , xn) where p is a predicate of arity n
and x1, . . . , xn are (not necessarily distinct) variables. A query ← c, B1 , . . . , Bn

consists of a linear constraint and a sequence of atoms.

2 Bound Types for Linear Constraints

2.1 Syntax and Semantics

We introduce a static typing for variables in linear constraints. The set of types
BT is defined first.

Definition 1 (types). A type is an element of BT = {�,�,�,�, !}.

The intuitive meaning of a type is to label variables occurring in a constraint
on the basis of the values that they can assume in the set of solutions of the
constraint. ! is intended to type variables that show at most one single value in
every solution, a property known as definiteness; � is intended to type variables
that assume a range of values (hence, lower and upper bounds exist); � (resp.,
�) is intended for variables that have a lower bound (resp., an upper bound);
and finally, � is to be used when no upper or lower bound can be stated.

Let us introduce syntactic means to assert the type of variables.

Definition 2 (types assertions). An atomic type declaration (atd, for short)
is an expression x : τ , where x is a variable and τ ∈ BT . We define vars(x :
τ) = {x}, and say that x is typed as τ . A type declaration is a sequence of atd’s
d1, . . . , dn, with n ≥ 0. We define vars(d1, . . . , dn) = ∪ i=1..nvars(di).

A type assertion is an expression d1 c→ d2, where d1,d2 are type declara-
tions and c is a linear constraint.

Typing Linear Constraints for Moding CLP(R) Programs 131

Type declarations type variables. Such a typing is used in type assertions as an
hypothesis (at the left of) or as a conclusion (at the right of →). Intuitively,
the type assertion d1 c→ d2 states that given the type declaration d1, the
type declaration d2 holds under the linear constraint c.

Example 1. The type assertion z :! y− x ≤ z, y+ x ≤ z,−y− 2x ≤ 5− z→ y :
�, x : � intuitively states that if z has a fixed value then the set of solutions of
the involved constraint is such that y has an upper bound and x has a lower
bound. The figure below (left) shows graphically the set of solutions for z = 1.

-3

-2

-1

 0

 1

 2

-3 -2 -1 0 1 2 3

y

x

z = 1

y - x ≤ z
y + x ≤ z

-y - 2x ≤ 5 - z

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

y

x

z = 1

y - x ≤ z
y + x ≤ z

z ≤ y

The type assertion z :! y − x ≤ z, y + x ≤ z, z ≤ y→ y :!, x :! states that
if z has a fixed value then either the set of solutions of the involved constraint
is empty or both x and y assume a unique value in it. The figure above (right)
shows graphically the set of solutions for z = 1.

For a type declaration d, we write d|x (resp., d|τ) to denote the subsequence of
d consisting only of atd’s typing variables in x (resp., as τ). The intuition on
the meaning of type assertions is formalized by the next definition.

Definition 3 (semantics). We associate to an atd d = x : τ a formula φ(d)
over fresh variables υ(d), called parameters, as follows:

φ(x :!) = x = a υ(x :!) = {a}
φ(x : �) = a ≤ x ∧ x ≤ b υ(x : �) = {a, b}

φ(x : �) = a ≤ x υ(x : �) = {a}
φ(x : �) = x ≤ b υ(x : �) = {b}
φ(x : �) = true υ(x : �) = ∅.

φ and υ extend to type declarations as follows:

φ(d1, . . . , dn) = ∧ i=1..nφ(di) υ(d1, . . . , dn) = ∪ i=1..nυ(di).

A type assertion d1 c→ d2 is valid if for v = vars(c) ∪ vars(d1) ∪ vars(d2),
the following formula is true in the domain of reals:

∀υ(d1)∃υ(d2)∀v.(φ(d1) ∧ c)→ φ(d2). (1)

132 S. Ruggieri and F. Mesnard

Example 2. For the type assertion z :! y − x ≤ z, y + x ≤ z, z ≤ y→ y :!, x :!,
the formula to be shown is:

∀a ∃b, c ∀x, y, z. (z = a ∧ y − x ≤ z ∧ y + x ≤ z ∧ z ≤ y)→ (y = b ∧ x = c).

The set of variables is fixed to v = vars(c) ∪ vars(d1) ∪ vars(d2) in order to
take into account variables that appear in d1 or d2 but not in c, e.g. in the
(valid) type assertion x : � true→ x : �.

A natural ordering over types is induced by the semantics above. For instance,
it is readily checked that d c→ x :! implies d c→ x : � for any d, c and x.
Similar implications lead to define an order ≥t over types.

Definition 4. The ≥t partial order over BT is defined as the reflexive and
transitive closure of the following relation → :

�
↗ ↘

! → � �
↘ ↗

�

We write τ >t μ when τ ≥t μ and τ �= μ. We define lub(∅) = � and for n > 0:

lub({τ1, . . . , τn}) = min{τ | τ ≥t τi, i = 1..n}.

Next, the ≥t relation is extended to type declarations.

Definition 5. We write d1 ≥t d2 if for every x : τ in d2 there exists x : μ in
d1 such that μ ≥t τ .

Using the notation ≥t, the intuition behind the ordering can be formalized by a
monotonicity lemma. Also, transitivity is readily checked.

Lemma 1 (monotonicity). Assume that d1 c→ d2 is valid. If d′
1 ≥t d1,

d2 ≥t d′
2 and R |= c′ → c for a linear constraint c′, then d′

1 c′ → d′
2 is valid.

Normal forms for type declarations are introduced by assigning to each variable
the least upper bound of its types. When the least upper bound is �, the type
assignment provides no actual information and then it can be discarded. Normal
forms are unique modulo reordering of atd’s.

Definition 6. We define nf (d) as any type declaration d′ such that x : τ is in
d′ iff τ = lub({μ | x : μ is in d }) and τ �= �.

Example 3. Notice that x : � ≥t x : �, x : � holds, while x : �, x : � ≥t x : �
does not hold. Actually, ≥t does not capture semantic implication. We have to
move to normal forms to conclude that nf (x : �, x : �) = x : � ≥t x : �.

Normal forms precisely characterize validity when it only depends on type dec-
larations, i.e. for the constraint true.

Typing Linear Constraints for Moding CLP(R) Programs 133

Lemma 2. d1 true→ d2 is valid iff nf (d1) ≥t nf (d2).

2.2 Checking Type Assertions: First Intuitions

In principle, formulas as in (1) can be checked by real quantifier elimination
methods [6], which trace back to Tarski’s decision procedure for first order for-
mula over real polynomials. However, while quantifier elimination represents a
direct solution to the checking problem and it allows for generalizing to the
non-linear case, we observe that formulas in (1) represent a quite restricted
class. We will be looking for a specialized and efficient approach to check them.
In addition, we are interested in the problem of inferring the largest (w.r.t.
the ≥t order) d′ such that d c→ d′ is valid, given d and c. Our approach
switches from the logical view of constraints-as-formulas to a geometric view of
constraints-as-polyhedra. Consider a linear constraint c and a type declaration d.
We observe that c can be equivalently represented as a linear system of inequal-
ities Acv ≤ bc where v = vars(c) ∪ vars(d). The set of solutions of c coincides
then with the polyhedron represented by Acv ≤ bc, which we call the geometric
representation of c. Analogously, the linear constraint φ(d) can be represented
as Adv ≤ Bdad, where ad is the symbolic vector of parameters in υ(d). The
resulting system φ(d) ∧ c is a parameterized system of linear inequalities P ,
where variables in υ(d) play the role of parameters:

(
Ac

Ad

)

v ≤
(

bc

0

)

+
(

0
Bd

)

ad (2)

The notion of parameterized polyhedra models the solutions of parameterized
linear systems.

Definition 7 (Parameterized polyhedron). A parameterized polyhedron is
a collection of polyhedra defined by fixing the value for parameters in a parame-
terized system of linear inequalities: Sol(Ax ≤ b+Ba,u) = {x | Ax ≤ b+Bu}.

Sol() is now a binary function. In addition to a system of parameterized linear
inequalities, an assignment to parameters is required.

Example 4. Let d be z :! and c be y − x ≤ z, y + x ≤ z,−y − 2x ≤ 5 − z. We
have that φ(d) is z = a, and then the parameterized system for φ(d) ∧ c is:

⎛

⎜
⎜
⎜
⎜
⎝

-1 1 -1
1 1 -1
-2 -1 1
0 0 1
0 0 -1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎝
x
y
z

⎞

⎠ ≤

⎛

⎜
⎜
⎜
⎜
⎝

0
0
5
0
0

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
1
-1

⎞

⎟
⎟
⎟
⎟
⎠
a

Under this interpretation, validity of d c→ x : τ has an intuitive geometric
interpretation. Assume that x = vi. d c→ x : τ is valid iff for every u ∈
R|υ(d)|, the set of solution points Su = Sol(P ,u) either is empty or:

134 S. Ruggieri and F. Mesnard

– if τ = ! then max{vi | v ∈ Su} = min{vi | v ∈ Su} ∈ R, namely x assumes
a single value;

– if τ = � then max{vi | v ∈ Su} ∈ R and min{vi | v ∈ Su} ∈ R namely
both an upper and a lower bound exist for x;

– if τ = � then min{vi | v ∈ Su} ∈ R, namely a lower bound exists for x;
– if τ = � then max{vi | v ∈ Su} ∈ R, namely an upper bound exists for x;
– if τ = � then we have nothing to show.

Unfortunately, this procedure is not effective, since there are infinitely many
Su to be checked. In the next two subsections, we will develop approaches for
turning the intuitions above into effective and efficient procedures.

2.3 Checking Type Assertions: An LP Approach

In this section we develop an inference algorithm which does not explicitly take
into account parameters. We will be able to reason on type assertions over BT \
{!}. First of all, let us consider the case of unsatisfiable constraints.

Lemma 3. Consider the parameterized polyhedron P in (2). There exists a pa-
rameter instance u such that Sol(P ,u) �= ∅ iff Sol(Acv ≤ bc) �= ∅.

As a consequence, if Sol(Acv ≤ bc) = ∅ (i.e., c is an unsatisfiable constraint)
then there is no chance to obtain a non-empty polyhedron by some instantiation
of the parameters in φ(d). In this case, we can infer assertions of the form
d c→ x :!, for every variable x. From now on, we will concentrate then on
satisfiable constraints. As it will be recalled later on, a non-empty polyhedron
Sol(Ax ≤ b) can be decomposed into the vectorial sum of its characteristic
cone Sol(Ax ≤ 0) with a polytope, a polyhedra bounded along every dimension.
Therefore, the existence of an upper/lower bound for a linear function over a
polyhedron depends only on its characteristic cone. It is immediate to observe
that for every parameter instance u, the polyhedra Sol(P ,u) share the same
characteristic cone. As a consequence, proving the existence of an upper bound is
independent from the parameter instance, and it relies only on the homogeneous
version of P , which is not anymore parameterized.

Lemma 4. Consider the parameterized polyhedron P in (2). Let H be its ho-
mogeneous version: Acv ≤ 0, Adv ≤ 0, and assume that Sol(Acv ≤ bc) �= ∅.

We have that max{cTv | v ∈ Sol(H)} = 0 iff for every parameter instance
u, Sol(P ,u) = ∅ or max{cTv | v ∈ Sol(P ,u)} ∈ R.

When c is always 0 except for the ith position where it is 1, we have cT v = vi.
Lemma 4 solves then the problem of deciding whether d c→ vi : �, without
having to take into account parameters. By reasoning similarly for types � and
�, we can state an effective procedure, called LPCheck and summarized in
Fig. 1, which outputs type declarations in normal form without any trivial atd.

Example 5. The homogeneous version of the parameterized linear system in Ex-
ample 4 and its graphical representation are the following:

Typing Linear Constraints for Moding CLP(R) Programs 135

Input: a type assertion d1, a linear constraint c and a sequence of variables x.

Step 0 Define v = vars(c), n = nf (d1), d = n|v.
Step 1 Let Acv ≤ bc be the geometric representation of c, and Adv ≤ Bdad the

geometric representation of φ(d).
Step 2 If Sol(Acv ≤ bc) = ∅ Then for every x in x, output “x :!”

Else
Step 3 for every x in x \ v and x : τ in n, output “x : τ”;
Step 4 for every x in x ∩ v:

(a) Let M = max{x | Acv ≤ 0,Adv ≤ 0} and m = max{−x | Acv ≤ 0, Adv ≤
0}.

(b) Output “x : �” if M = 0 and m = 0;
(c) Output “x : �” if M = ∞ and m = 0;
(d) Output “x : �” if M = 0 and m = ∞.

Fig. 1. LPCheck procedure

⎛

⎜
⎜
⎜
⎜
⎝

-1 1 -1
1 1 -1
-2 -1 1
0 0 1
0 0 -1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎝
x
y
z

⎞

⎠ ≤

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

-3

-2

-1

 0

 1

 2

-3 -2 -1 0 1 2 3

y

x

z = 0

y - x ≤ 0
y + x ≤ 0

-y - 2x ≤ 0

It is readily checked that x has a lower bound and y has an upper bound.

Soundness and a relative form of completeness of procedure LPCheck follow.

Theorem 1 (LPCheck - soundness and completeness). Let d1 be a type
declaration and c a linear constraint. If the sequence d2 is provided as output
by LPCheck, the type assertion d1 c→ d2 is valid. Conversely, assume that
d1 c→ d2 is valid, and that c is unsatisfiable or no variable in vars(c) is typed
as ! in d2. Then there exists a sequence d provided as output by LPCheck such
that d ≥t nf (d2).

The LPCheck procedure is not tied to any underlying linear programming
solver. By adopting a polynomial time algorithm [15,16], we can conclude that
LPCheck has a polynomial time complexity. Due to the approach that we will
follow later on for dealing with parameters, we present here an instantiation of
LPCheck which consists of directly computing the generating matrix and the
vertex matrix of polyhedra. This is an alternative representation of polyhedra,
known as the explicit representation or the Minkowski’s form [16, Section 8.9].

Theorem 2 (Minkowski’s decomposition theorem for polyhedra). There
exists an effective procedure that given Ax ≤ b decides whether or not the

136 S. Ruggieri and F. Mesnard

polyhedron Sol(Ax ≤ b) is empty and, if not, it yields a generating matrix
R and a vertex matrix V such that:

Sol(Ax ≤ b) = {x | x = Rλ,λ ≥ 0 }+ {x | x = Vγ,γ ≥ 0, Σγ = 1 },

and Sol(Ax ≤ 0) = {x | x = Rλ,λ ≥ 0 }.

A column of R is called a ray: for any x0 ∈ Sol(Ax ≤ b) and ray r, it turns
out that rλ + x0 ∈ Sol(Ax ≤ b) for every λ ≥ 0. A column of V is called a
vertex. The set ConvexHull(V) = {x | x = Vγ,γ ≥ 0, Σγ = 1 }, where V is
a matrix or a finite set of vectors, is the convex hull of the vertices, namely the
smallest convex set which contains all vertices. An efficient procedure to extract
minimal R and V is the double description method, also known as the Motzkin-
Chernikova-Le Verge algorithm [3,17]. Turning on the LPCheck procedure, the
satisfiability test at Step 2 is performed as part of the construction of the
explicit representation of the polyhedron. The maximization problems at Step
4 (a) can easily be solved directly on the explicit representation.

Lemma 5. Consider a characteristic cone Sol(Ax ≤ 0), and let R be its gen-
erating matrix. We have that max{cT x | Ax ≤ 0} = 0 iff cT R ≤ 0.

Since in our context c is always zero except for the ith element, which is 1 or −1,
we can conclude that a variable vi (the ith variable in v) is bounded from above
by 0 (resp., bounded from below by 0) iff all values in row(R, i) are non-positive
(resp., non-negative).

Example 6. The Minkowski’s form of the homogeneous system in Example 5 is:
⎛

⎝
1 1
-2 -1
0 0

⎞

⎠
(
λ1

λ2

)

, λ1 ≥ 0, λ2 ≥ 0

Intuitively, the two columns in the generating matrix R correspond to vectors
lying on the two borders of the cone in the graph of Example 5. Using Lemma 5,
it is readily checked that when c is one of (−1, 0, 0), (0, 1, 0), (0, 0, 1) or (0, 0,−1)
then cT R ≤ 0, i.e. x is bounded from below, y from above, and z from both.

2.4 Checking Type Assertions: A Parameterized Approach

In this section, we reason on the parameterized system in (2) by adopting an
approach that explicitly considers parameters [14], and which is an extension
of the Minkowski’s decomposition theorem. However, the complexity of the ap-
proach in presence of k parameters is polynomially proportional (by a k3 factor)
to its complexity in absence of parameters. For this reason, we first ask our-
selves whether we can build on the results of the last subsection. The LPCheck

procedure is sound, and it is also complete except for the ! type. Thus, we are
restricted with checking assertions of the form d c→ x :!. Under this context,
are all typings in d necessary?

Typing Linear Constraints for Moding CLP(R) Programs 137

Example 7. Consider x : � z = x, z− y = 2, z+ y = 0→ x :!, y :!, z :!. Starting
from the involved constraint, by Gaussian elimination, we derive: x = z, y = z−2,
2z = 2 and then z = 1, y = −1, x = 1. Hence the type assertion is valid.

Notice that we made no use of x : � in proving validity of the type assertion.
This fact can be generalized, in order to get rid of unnecessary parameters.

Theorem 3 (Definiteness). d c→ x :! is valid iff d|! c→ x :! is valid.

Let us consider now an example which illustrates the Fourier-Motzkin elimina-
tion method for linear inequalities applied in presence of parameters.

Example 8. Consider the constraint c defined as y + x ≤ z, y − x ≤ z, z ≤
y, 0 ≤ z, w ≤ z, and the type declaration z :!. We start by isolating variable y in
φ(z :!) ∧ c, as shown at (a) in the figure below.

y ≤ z − x

y ≤ z + x

z ≤ y

0 ≤ z

w ≤ z

z = a

(a)

z ≤ y ≤ min{z − x, z + x}
x = 0

0 ≤ z

w ≤ z

z = a

(b)

y = a

x = 0
w ≤ a

z = a

0 ≤ a

(c)

Bounds for variable y can then be summarized as: (∗) z ≤ y ≤ min{z−x, z+x}.
Moreover, the bounds e1 ≤ e2 are implied for e1 expression bounding y from
below in (∗), and e2 bounding y from above in (∗). Actually, the original set
of linear inequalities over y is equivalent to z ≤ y ≤ min{z − x, z + x} plus
such bounds. The new inequality set is reported at (b) in the figure above. By
replacing backward x = 0 and z = a, we end up with the final system at (c) in the
figure above, where no further elimination is possible. The final system is feasible
when the condition 0 ≤ a holds. In this system, we have x = 0, y = a, z = a.
Moreover, w ≤ a can be rewritten as: w = −λ1 + a for some λ1 ≥ 0. Put in a
geometrical form, the solution set of φ(z :!) ∧ c is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x, y, z, w) |

⎛

⎜
⎜
⎝

x
y
z
w

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0
0
0
−1

⎞

⎟
⎟
⎠
(
λ1

)
+

⎛

⎜
⎜
⎝

0
a
a
a

⎞

⎟
⎟
⎠

for every λ1 ≥ 0, when a ≥ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Summarizing, the values of x, y and z are univocally determined once the pa-
rameter a has been fixed and the system is feasible. Under the same hypotheses,
the value of w is bounded from above (by a), but it is not definite. With our
notation, z :! c→ x :!, y :!, z :!, w : � is valid.

The final form reached at the end of the example resembles the Minkowski’s form
for polyhedra, but with a parameterized vector appearing in the vertex matrix.

138 S. Ruggieri and F. Mesnard

Input: a type assertion d1, a linear constraint c and a sequence of variables x.

Step 0 Define v = vars(c), n = nf (d1), d = n|!.
Step 1 Let Acv ≤ b be the geometric representation of c, and Adv ≤ Bdad the

geometric representation of φ(d).

Step 1 For the parametric polyhedron

(
Ac

Ad

)

v ≤
(

bc

0

)

+

(
0

Bd

)

a, build the gen-

erating matrix R and the sequence (va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck)
Step 2 For every x : τ as output from LPCheck

Step 3 If τ �= � or x �∈ v Then output “x : τ”;
Step 4 Else let i such that x = vi:

(a) Output “x :!” if row(R, i) = 0 and for 1 ≤ m < n ≤ k, va(m)i = va(n)i
over Cma ≤ cm, Cna ≤ cn;

(b) Output “x : �” otherwise.

Fig. 2. POLYCheck procedure

The generalization of the Minkowski’s theorem to parameterized polyhedra is
provided in [14] and implemented in the polylib library [13].

Theorem 4 (Minkowski’s theorem for parameterized polyhedra). Ev-
ery parameterized polyhedron can be expressed by a generating matrix R and
finitely many pairs (va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck) where, for i = 1..k,
va(i) is a vector parametric in a and Sol(Cia ≤ ci) �= ∅, as follows:

Sol(Ax ≤ b + Ba,u) = {x |x = Rλ,λ ≥ 0 }+
ConvexHull({vu(i) | i = 1..k,Ciu ≤ ci }),

and Sol(Ax ≤ 0) = {x | x = Rλ,λ ≥ 0 }.

The vertex matrix is now replaced by a set of pairs where the first element is a
parameterized vertex and the second one is its validity domain. For a parameter
instance u, the vertex matrix is built from the (instantiated) vertices whose
validity domain includes u. The special case k = 0 models empty parameterized
polyhedra, which are empty for any instance of the parameters. Now that we
have an explicit form for parameterized polyhedra, we need a procedure to test
whether a variable is definite for every parameter instance. First, we introduce
a notion to test whether two expressions are equal over a polyhedron.

Definition 8. We say that cT
1 x + α1 = cT

2 x + α2 over Ax ≤ b if for every
x0 ∈ Sol(Ax ≤ b), cT

1 x0 + α1 = cT
2 x0 + α2.

Given the Minkowski’s form, equality can be checked as follows.

Lemma 6. cT
1 x + α1 = cT

2 x + α2 over Ax ≤ b iff (c1 α1) = (c2 α2) or
Sol(Ax ≤ b) = ∅ or, called R and V the generating and vertex matrices of
Ax ≤ b, (c1 − c2)T R = 0 and (c1 − c2)T V = (α2 − α1)1T .

Notice that checking (c1 α1) = (c2 α2) is not strictly necessary, but if we
interpret the three conditions in the lemma from a computational point of view,

Typing Linear Constraints for Moding CLP(R) Programs 139

the first one provides a very fast test. The next result states that definiteness of
a variable x over a parameterized polyhedron amounts to showing that no pair
of vertices is such that their projections over x differ for any parameter instance
in the non-empty intersection of their domains.

Lemma 7. Consider the Minkowski’s form of a non-empty parameterized poly-
hedron as in Theorem 4. Every Su = {cTx | x ∈ Sol(Ax ≤ b+Ba,u)} is empty
or a singleton iff cT R = 0 and for 1 ≤ m < n ≤ k, cTva(m) = cTva(n) over
Cma ≤ cm,Cna ≤ cn.

Example 9. Consider a parameterized polyhedron over parameters (a b) and
variables (x y) with generating matrix 0, and with pairs of vertices and domains:

(
(
a
b

)

, b ≥ a ≥ 0) (
(
a
a

)

, a ≥ b ≥ 0) (
(

a
a+ b

)

, a ≥ 0 ∧ b ≥ 0).

Let us reason about definiteness of variables x and y by using Lemma 7. x
is definite, since a = a over any polyhedron. Consider now y. For the first two

vertices, we have b �= a, or, in vectorial notation, (0 1)
(
a
b

)

+α1 �= (1 0)
(
a
b

)

+

α2 where α1 = α2 = 0. Since the intersection of the two domains, namely
a = b ≥ 0, is not empty, by Lemma 6 we proceed by computing its generating
and vertex matrices. The vertex matrix is 0, so we simply have:

Sol(a = b ≥ 0) = {(a, b) |
(
a
b

)

=
(

1
1

)
(
λ1

)
, λ1 ≥ 0},

and we have to test: (
(
0 1
)
−
(
1 0
)
)
(

1
1

)

=
(
0
)
, where (0) is (α2 − α1)1T .

Therefore, a and b are equal over a = b ≥ 0. Consider now the first and the
third vertex. Since b �= a + b , we compute, as before, the Minkowski’s form of
the intersection of their domains:

Sol(b ≥ a ≥ 0) = {(a, b) |
(
a
b

)

=
(

1 0
1 1

)(
λ1

λ2

)

, λ1 ≥ 0, λ2 ≥ 0}.

Then we test: (
(
0 1
)
−
(
1 1
)
)
(

1 0
1 1

)

=
(
−1 0

)
, which differs from the expected

(
0 0
)

= (α2 − α1)1T for α2 = α1 = 0. Summarizing, by Lemma 6, b and a+ b
are not equal over b ≥ a ≥ 0, and then, by Lemma 7, y is not definite.

Lemmas 6 and 7 provide us with a checking procedure for definiteness. The over-
all procedure, called POLYCheck, is shown in Fig. 2. POLYCheck terminates
and is sound and complete for inferring validity of type assertions.

Theorem 5 (POLYCheck - soundness and completeness). Let d1 be a
type declaration and c a linear constraint. If the sequence d2 is provided as output
by POLYCheck, the type assertion d1 c→ d2 is valid. Conversely, assume
that d1 c→ d2 is valid. Then there exists a sequence d provided as output by
POLYCheck such that d ≥t nf (d2).

140 S. Ruggieri and F. Mesnard

2.5 Extensions to Strict Inequalities and to Disequalities

So far, we considered equality and non-strict inequality primitive constraints. A
generalized linear constraint admits primitive constraint over the operators <,
> (strict inequalities) and �= (disequalities). Without any loss of generality, we
write a generalized constraint as c ∧

∧m
i=1 ei �= αi, where c is a linear constraint

and for i = 1..m, ei �= αi is a disequality. We now extend type assertions to admit
generalized constraints. The next result shows that validity of type assertions
for a satisfiable generalized constraint can be reduced to validity of the type
assertions over the linear constraint obtained by removing the disequalities in it.

Theorem 6. Let g = c ∧
∧m

i=1 ei �= αi be a satisfiable generalized linear con-
straint. d1 g→ d2 is valid iff d1 c→ d2 is valid.

Checking satisfiability of g is easily accomplished when computing the explicit
form of polyhedra. By independence of negative constraints [12], it reduces to
show that Sol(Acv ≤ bc) �= ∅ and that every hyperplane ei = αi does not
include the polyhedron Sol(Acv ≤ bc), i.e., by Definition 8 that ei = αi over
Acv ≤ bc is false. Lemma 6 provides us with a procedure to check it.

3 Moding CLP Programs

Modes for pure logic programs assign to every predicate argument an input-
output behavior. Input means that the predicate argument is ground on calls.
Output means that it is ground on answers. As discussed in the introduction,
groundness (i.e., definiteness) is restrictive in the CLP context. Based on types,
we can extend the notion of moding to upper and/or lower bounds as well.

Definition 9 (moding). A mode for a n-ary predicate p is a function dp from
{1, . . . , n} to BT × BT . We write dp as p(τ1 × μ1, . . . , τn × μn), where dp(i) =
(τi, μi) for i = 1..n.

A mode for a CLP(R) program P is a set of modes, one for each predicate in
P . For an atom p(x), we write p(x : τ ×μ) to denote that x is the collection of
variables occurring in the atom, and p(τ × μ) is the mode of p.

By fixing a predicate argument mode to !×! or to �×! we get back to the logic
programming input-output behavior, respectively denoted by + and −. Several
notions of moding have been proposed [1]. We consider here well-moding by
extending it to CLP(R) programs.

Definition 10 (well-moding). Let P be a CLP(R) program. A clause p0(x0 :
μ0 × τn+1)← c, p1(x1 : τ1 ×μ1), . . . , pn(xn : τn ×μn) in P is well-moded if for
i = 1..n+ 1, the type assertion x0 : μ0, . . . ,xi−1 : μi−1 c→ xi : τi is valid. P
is well-moded if every clause in it is well-moded.

Example 10. The MORTGAGE program is well-moded with moding mortgage(!×!,
�×!, !×!, �×!), which models the first two queries in the introduction. For

Typing Linear Constraints for Moding CLP(R) Programs 141

clause (m1) we have to show: P :!, T : �, R :! T = 0, B = P → P :!, T :!, R :!,
B :! which is immediate. For clause (m2), called c the constraint T >= 1, NP =
P + P * 0.05 - R, NT = T - 1, we have to show: P :!, T : �, R :! c→ NP :!,
NT : �, R :! and P :!, T : �, R :!, NP :!, NT :!, B :! c→ P :!, T :!, R :!, B :! which
are both readily checked. Analogously, MORTGAGE is well-moded with the moding
mortgage(� × �, �×!, �×�, �×�), which models the third query in the
introduction.

We recall that the operational semantics of CLP consists of a transition system
from states to states. A state is a pair 〈Q‖c〉 where Q is a query and c is a
constraint, called the constraint store. Initial states are of the form 〈Q‖true〉.
Final states (if any) are of the form 〈ε‖c〉, where ε is the empty query. Well-
moding extends to states 〈Q‖c′〉 by considering the program clause p← c′, Q,
where p is a fresh 0-ary predicate.

Definition 11. A state 〈 ← c, p1(x1 : τ1 × μ1), . . . , pn(xn : τn × μn)‖ c′〉, with
n ≥ 0, is well-moded if for i = 1..n the type assertion x1 : μ1, . . . ,xi−1 : μi−1
(c ∧ c′)→ xi : τi is valid. A query Q is well-moded if the state 〈Q‖ true〉 is
well-moded.

Widely studied properties of well-moding in logic programming include per-
sistency along derivations, call pattern characterization and computed answer
characterization. They are at the basis of several program analysis, transfor-
mation and optimization techniques. The next result shows that the mentioned
properties hold for the proposed extension of well-moding to CLP(R). By a
left-derivation we mean a derivation via the leftmost selection rule.

Theorem 7. Let P be a well-moded CLP(R) program and Q = ← c, p1(x1 :
τ1 × μ1), . . . , pn(xn : τn × μn) a well-moded query.

[persistency] Every state selected in a left-derivation of P and Q is well-moded.
[call patterns] For every state of the form 〈 ← q(x : τ × μ), R‖ c′〉 selected in

a left-derivation of P and Q, c′ → x : τ is valid.
[answers] For every final state 〈 ← ε‖ c′〉, c′ → x1 : μ1, . . . ,xn : μn is valid.

Based on these properties, we provide next two examples of the kind of analyses
that well-moding allows for.

Example 11. The two queries from the introduction ← mortgage(100, 5, 20,
B) and ← 3 <= T, T <= 5, mortgage(100, T, 20, B) are well-moded with
the moding mortgage(!×!, �×!, !×!, �×!). By Theorem 7, we conclude def-
initeness of balance in the answer constraint store. The third query from the
introduction ← 0 <= B, B <= 10, 15 <= R, R <= 20, mortgage(P, 5, R,
B) is well-moded with the moding mortgage(�×�, �×!, �×�, �×�). By
Theorem 7, we conclude boundedness of principal in the answer constraint store.

Example 12. The full version of the MORTGAGE program takes the interest rate
as a further predicate argument.

142 S. Ruggieri and F. Mesnard

(n1) mortgage(P,T,I,R,B) ←
T = 0,
B = P.

(n2) mortgage(P,T,I,R,B) ←
T >= 1,
NP = P + P * I - R,
NT = T - 1,
mortgage(NP,NT,I,R,B).

However, this leads to a non-linear constraint appearing in clause (n2). How
can we reason on it? We exploit the call pattern characterization property of
well-moding by factoring out the P * I term.

(n2′) mortgage(P,T,I,R,B) ←
T >= 1,
NP = P + M - R,
NT = T - 1,
mult(P, I, M),
mortgage(NP,NT,I,R,B).

(mu) mult(P,I,M) ←
P * I = M.

Consider now as if the predicate mult is a built-in of the system, and the
input-output properties of Theorem 7 are guaranteed for the mode mult(!×!,
!×!, �×!). The rest of the program, namely clauses (n1) and (n2′), is readily
checked to be well-moded with moding mortgage(!×!, �×!, !×!, !×!, �×!).
Therefore, for every call to mult the first and the second arguments are definite,
and then the non-linear constraint P * I = M becomes linear at run-time.

4 Related Work and Conclusions

A class of formulas, called parametric queries, is investigated in [9]. It includes
formulas ∃a∀v c→ x) a, where) ∈ {≤,=,≥}, or, with our notation, type
assertions of the form c→ x : τ . The approach switches from the problem of
checking max{cT v | Acv ≤ bc} ≤ a to its dual form max{0 | yT Ac = c, a =
yT bc + q,y ≥ 0, q ≥ 0} = 0, namely on checking feasibility of yT Ac = c, a =
yT bc + q,y ≥ 0, q ≥ 0. However, as soon as general type assertions d1 c→ d2

are considered, switching to the dual form yields a non-linear problem.
The maximization of a linear function over a parameterized polyhedra is the

subject of (multi)parametric linear programming. The solution of the problem
can be expressed as a piecewise linear function [7] of the parameters. Therefore,
an approach alternative to the extraction of the Minkowski’s form is to compute
(for each variable to be typed) the max andmin functions of a parameteric linear
problem and then to compare them on each pair of breaks they are defined on.

Definiteness analysis for CLP(R) has been investigated in [2,4,5,8] using ab-
stract interpretation. Compared to well-moding, those approaches infer boolean
expressions relating definiteness of predicate arguments. E.g., an inferred x→ y
for p(x, y) states that if x is definite when p(x, y) is called then y is definite when
it is resolved. However, the mentioned approaches restrict to consider equality
constraints only, hence cannot be complete as the type assertion framework.

Summarizing the contribution of the paper, we have introduced a type system
for (generalized) linear constraints over the reals that is able to reason about

Typing Linear Constraints for Moding CLP(R) Programs 143

upper bounds, lower bounds and definiteness properties of variables. The prob-
lem of checking validity of type assertions has been investigated and solved by
proposing two specialized decision procedures. Type assertions are the basic tool
for extending well-moding from logic programming to CLP(R). We implemented
the checking procedure for well-moding, including LPCheck and POLYCheck,
in standard C++, relying on the polylib library [13] for the calculation of the
Minkowski’s form of (parameterized) polyhedra (sources and extended technical
report at http://www.di.unipi.it/∼ruggieri/software). Although a com-
prehensive assessment over larger programs has to be pursued, our preliminary
tests provide us with confidence on the efficiency of the approach in practice.

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, Englewood Cliffs
(1997)

2. Baker, N., Søndegaard, H.: Definiteness analysis for CLP(R). In: Gupta, G., et al.
(eds.) Australian Computer Science Conference, pp. 321–332 (1993)

3. Chernikova, N.V.: An algorithm for finding the general formula for non-negative
solutions of systems of linear inequalities. U.S.S.R. Computational Mathematics
and Mathematical Physics 5, 228–233 (1965)

4. Codish, M., Genaim, S., Søndegaard, H., Stuckey, P.: Higher-precision groundness
analysis. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 135–149. Springer,
Heidelberg (2001)

5. de la Banda, M.G., Hermenegildo, M., Bruynooghe, M., Dumortier, V., Janssens,
G., Simoens, W.: Global analysis of constraint logic programs. ACM Transactions
on Programming Languages and Systems 18(5), 564–614 (1996)

6. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–248. Springer, Berlin (1998)

7. Gal, T.: Postoptimal Analyses, Parametric Programming, and Related Topics, 2nd
edn., de Gruyter, Berlin, Germany (1995)

8. Howe, J.M., King, A.: Abstracting numeric constraints with boolean functions.
Information Processing Letters 75(1-2), 17–23 (2000)

9. Huynh, T., Joskowicz, L., Lassez, C., Lassez, J.-L.: Practical tools for reasoning
about linear constraints. Fundamenta Informaticae 15(3-4), 357–380 (1991)

10. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programming 19, 20, 503–581 (1994)

11. Jaffar, J., Michaylov, S., Stuckey, P., Yap, R.: The CLP(R) language and system.
ACM Transactions on Programming Languages and Systems 14(3), 339–395 (1992)

12. Lassez, J.-L., McAllon, K.: A canonical form for generalized linear constraints.
Journal of Symbolic Computation 13(1), 1–24 (1992)

13. Loechner, V.: Polylib: a library for manipulating parameterized polyhedra, Version
5.22.3 (2007), http://icps.u-strasbg.fr/polylib/

14. Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. Interna-
tional Journal of Parallel Programming 25, 525–549 (1997)

15. Murty, K.G.: Linear Programming. John Wiley & Sons, Chichester (1983)
16. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, Chich-

ester (1986)
17. Le Verge, H.: A note on Chernikova’s algorithm. Technical Report 635, IRISA,

Campus Universitaire de Beaulieu, Rennes, France (1992)

http://icps.u-strasbg.fr/polylib/

On Polymorphic Recursion, Type Systems, and

Abstract Interpretation

Marco Comini1, Ferruccio Damiani2, and Samuel Vrech1

1 Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze, 206; I-33100 Udine, Italy

2 Dipartimento di Informatica, Università di Torino
Corso Svizzera, 185; I-10149 Torino, Italy

Abstract. The problem of typing polymorphic recursion (i.e., recursive
function definitions rec {x = e} where different occurrences of x in e are
used with different types) has been investigated both by people working
on type systems and by people working on abstract interpretation.

Recently, Gori and Levi have developed a family of abstract inter-
preters that are able to type all the ML typable recursive definitions and
interesting examples of polymorphic recursion. The problem of finding
type systems corresponding to their abstract interpreters was open (such
systems would lie between the let-free fragments of the ML and of the
Milner-Mycroft systems).

In this paper we exploit the notion of principal typing to: (i) provide
a complete stratification of (let-free) Milner-Mycroft typability, and (ii)
solve the problem of finding type systems corresponding to the type ab-
stract interpreters proposed by Gori and Levi.

Keywords: Principal Typing, Type Inference Algorithm.

1 Introduction

The Hindley-Milner system (a.k.a. the ML type system) [3], which is the core of
the type systems of functional programming languages like SML, OCaml, and
Haskell, is only able to infer types for monomorphic recursion1. The problem
of inferring types for polymorphic recursion2 [13,16] has been studied both by
people working on type systems [8,12] (see also [1,5,10,11,18]) and by people
working on abstract interpretation [6,7,14,15].

Building on results by Cousot [2], Gori and Levi [6,7] have developed a family
of type abstract interpreters that are able to type all the ML typable recursive
definitions and interesting examples of polymorphic recursion.

As pointed out in [6,7], the problem of finding a type system corresponding to
the type abstract interpreter was open. Such type systems would lie between the
1 I.e., recursive function definitions rec {x = e} where all the occurrences of x in e are
used with exactly the same type inferred for e.

2 I.e., recursive function definitions rec {x = e} where different occurrences of x in e
are used with different types that specialize the type inferred for e.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 144–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Polymorphic Recursion, Type Systems, and Abstract Interpretation 145

Curry-Hindley system (a.k.a. the system of simple types) [9], which is the let-free
fragment of the ML type system, and the let-free fragment of the Milner-Mycroft
system [16]. Previous work of the second author [5] proposes a technique for ex-
tending a type system enjoying decidable typability and principal typings [10,19]
by adding a decidable rule for typing rec-expressions.

In this paper we exploit the technique of [5] to: (1) Develop a family of de-
cidable type systems that lie between the Curry-Hindley type system and (the
let-free fragment of) the Milner-Mycroft type system and provide a complete
stratification of (let-free) Milner-Mycroft typability; and (2) Solve the problem
of finding type systems corresponding to the type abstract interpreters proposed
by Gori and Levi [6,7], thus providing a precise characterization of the expressive
power of these type abstract interpreters.

Organization of the Paper. Section 2 introduces a core functional program-
ming language (which can be considered the kernel of languages like SML,
OCaml, and Haskell) together with other basic definitions that will be used
in the rest of the paper. Section 3 develops a family of decidable type systems
that provide a complete stratification of (let-free) Milner-Mycroft typability. Sec-
tion 4 briefly illustrates the Gori-Levi family of type abstract interpreters [6,7]
and Section 5 presents a family of type systems that corresponds to these ab-
stract interpreters.

2 Preliminary Definitions

Program Expressions, ranged over by e, are defined as e ::= x | c | λ x.e | e1e2 |
rec {x = e}, where x ranges over program variables (in PV) and c over constants.
Free and bound occurrences of a variable in an expression are defined as usual.
The (finite) set of the free variables of an expression e is denoted by FV(e).

The set of constants includes the booleans (ranged over by �), the integer
numbers (ranged over by ι), the constructors for pairs (pair) and lists (nil and
cons), some logical and arithmetic operators, and the functions for decomposing
pairs (fst and snd) and lists (null, hd and tl).

We have omitted conditionals from the syntax of expressions since, for typing
purposes, the expression “if e0 then e1 else e2” can be considered as syntactic
sugar for the application “ifc e0 e1 e2”, where ifc is a constant of suitable type.

The set of simple types (T0), ranged over by u, is defined as u ::= bool | int |
α | u1 → u2 | u1 × u2 | u list. We have type variables (ranged over by α), arrow
types, and a selection of ground types and parametric data-types. The ground
types are bool (the type of booleans) and int (the type of integers). The other
types are pair types and list types. The constructor → is right associative and
the constructors × and list bind more tightly than →.

We assume a countable set TV of type variables. A substitution s is a function
from type variables to simple types which is the identity on all but a finite number
of type variables. The domain of a substitution s is the set of variables Dom(s) def=
{α | s(α) �= α}. Substitutions will be denoted by [α1←u1, . . . , αn←un] (n ≥ 0);

146 M. Comini, F. Damiani, and S. Vrech

the empty substitution will be denoted by []. The application of a substitution
s to a simple type u, denoted by s(u), is defined as usual. The composition of
two substitutions s1 and s2 is the substitution, denoted by s1 · s2, such that
s1 · s2(α) def= s1(s2(α)), for all type variables α. We say that s is more general
than s′, written s ≤ s′, if there is a substitution s′′ such that s′ = s′′ · s.

A type environment E is a set {x1 : ρ1, . . . , xn : ρn} of type assumptions for
program variables such that every variable xi (1 ≤ i ≤ n) can occur at most
once in E. The expression Dom(E) denotes the domain of E, which is the set
{x1, . . . , xn}. Given a set of program variablesX , the expression E|X denotes the
restriction of E to X , which is the environment {x : ρ ∈ E | x ∈ X}. Given two
environments E1 and E2, we write E1 ⊕E2 to denote the environment E1 ∪E2

under the assumption that x : ρ1 ∈ E1 and x : ρ2 ∈ E2 imply ρ1 = ρ2. We write
E, x : ρ as short for E ∪ {x : ρ} under the assumption that x �∈ Dom(E). The
application of a substitution s to an environment E, denoted by s(E), is defined
as usual.

Definition 1 (Simple type environments). A simple type environment U is
an environment {x1 : u1, . . . , xn : un} of simple type assumptions for variables.

According to Wells [19], in a given type system , “a typing t for a typable term
e is the collection of all the information other than e which appears in the final
judgement of a proof derivation showing that e is typable”. In this paper we are
interested in typings of the shape 〈U ; u〉, where U is a simple type environment
and u is a simple type. The following definitions are fairly standard (note that
the relation ≤spc is reflexive and transitive).

Definition 2 (Typing specialization relation ≤spc). A typing 〈U ; u〉 can
be specialized to 〈U ′; u′〉 (notation 〈U ; u〉 ≤spc 〈U ′; u′〉) if s(U) = U ′ and
s(u) = u′, for some substitution s. We will write 〈U ; u〉 =spc 〈U ′; u′〉 to mean
that both 〈U ; u〉 ≤spc 〈U ′; u′〉 and 〈U ′; u′〉 ≤spc 〈U ; u〉 hold.

Definition 3 (Principal typings). Let be a type system with judgements of
the shape e : t. A typing t is principal for a term e if e : t, and if e : t′

implies t ≤spc t′. We say that system has the principal typing property to
mean that every typable term has a principal typing.

3 A Stratification of (let-free) Milner-Mycroft Typability

In this section we obtain a complete stratification of (let-free) Milner-Mycroft
typability by applying the technique of [5] to the Curry-Hindley system [9].

3.1 System �0: Typing the rec-Free Fragment of the Language

The first step of the technique prescribes to take a type system that satisfies the
following requirements (parameterized over the actual shape of the typing and
of the typing specialization relation).

On Polymorphic Recursion, Type Systems, and Abstract Interpretation 147

(Spc) � e : t
� e : t′

where t ≤spc t′
(Con) � c : 〈∅; u〉

where u = type(c)
(Var) � x : 〈{x : u}; u〉

where u ∈ T0

(App)
� e1 : 〈U1; u0 → u〉 � e2 : 〈U2; u0〉

� e1 e2 : 〈U1 ⊕ U2; u〉

(Abs)
� e : 〈U,x : u0; u〉

� λ x.e : 〈U ; u0 → u〉
where x ∈ FV(e)

(AbsVac)
� e : 〈U ; u〉

� λx.e : 〈U ; u0 → u〉
where x �∈ FV(e) and u0 ∈ T0

Fig. 1. Typing rules for the rec-free fragment of the language (system �0)

c type(c) c type(c) c type(c)
� bool not bool → bool fst α1 × α2 → α1

ι int and, or bool × bool → bool snd α1 × α2 → α2

pair α1 → α2 → (α1 × α2) +, −, ∗ int × int → int null α list → bool
nil α list =, < int × int → bool hd α list → α
cons α → α list → α list ifc bool → α → α → α tl α list → α list

Fig. 2. Types for constants

– It has typing judgements of the shape e : t, where the typing t contains
assumptions for exactly the variables in FV(e).

– It has the principal typing property (see Definition 3).
– It is decidable to establish whether a pair t1 can be specialized to a pair t2

(i.e., whether t1 ≤spc t2 holds).
– There is an algorithm that for every term e decides whether e is typable

and, if so, returns a principal typing for e.

System 0 in Fig. 1, which is just a reformulation of the system of simple
types [9], satisfies the above requirements.

Rule (Spc), which is the only non-structural rule, allows to specialize (in the
sense of Definition 2) the typing inferred for an expression. The rule for typing
constants, (Con), uses the function type (tabulated in Fig. 2) which specifies
a type for each constant. Note that, by rule (Spc), it is possible to assign to a
constant c all the specializations of the typing 〈∅; type(c)〉.

Since 0 e : 〈U ; u〉 implies Dom(U) = FV(e), we have two rules for typing
an abstraction λx.e, (Abs) and (AbsVac), corresponding to the two cases x ∈
FV(e) and x �∈ FV(e).

3.2 System �P
0 : Typing Polymorphic Recursive Definitions

The second step of the technique prescribes to extend system 0 with a typing
rule that allows to assign to rec {x = e} any typing t that can be assigned to
e by assuming the typing t itself for x. This requires to introduce the notion of
typing environment.

Definition 4 (Typing environments). A typing environment D is an en-
vironment {x1 : t1, . . . , xn : tn} of typing assumptions for variables such that

148 M. Comini, F. Damiani, and S. Vrech

(Spc)
D � e : t

D � e : t′

where t ≤spc t′

(Con) D � c : 〈∅; u〉
where u = type(c)

(Var) D � x : 〈{x : u}; u〉
where u ∈ T0 and x �∈ Dom(D)

(Abs)
D � e : 〈U, x : u0; u〉

D � λx.e : 〈U ; u0 → u〉
where x �∈ D

(AbsVac)
D � e : 〈U ; u〉

D � λx.e : 〈U ; u0 → u〉
where x �∈ FV(e), u0 ∈ T0, and x �∈ D

(App)
D � e1 : 〈U1; u0 → u〉 D � e2 : 〈U2; u0〉

D � e1 e2 : 〈U1 ⊕ U2; u〉

(Rec-P)
D, x : 〈U ; u〉 � e : 〈U ; u〉
D � rec {x = e} : 〈U ; u〉

where Dom(U) = FVD(rec {x = e}) and x �∈ D

(Var-P) D, x : t � x : t

Fig. 3. Typing rules of system �P
0

Dom(D) ∩ VR(D) = ∅, where VR(D) def= ∪x:〈U ; u〉∈D Dom(U) is the set of vari-
ables occurring in the range of D.

Every typing t occurring in D is implicitly universally quantified over all type
variables occurring in t.3

The typing rules of system P
0 (where “P” stands for “polymorphic”) are given

in Fig. 3. The judgement D P
0 e : 〈U ; u〉 means “e is P

0 -typable in D with
typing 〈U ; u〉”, where D is a typing environment specifying typing assumptions
for variables that may or may not occur free in e, and
〈U ; u〉 is the typing inferred for e, where U is a simple type environment

containing the type assumptions for the free variables of e which are not in
Dom(D), and u is a simple type.

Let D be a typing environment, “x �∈ D” is short for “x �∈ Dom(D)∪VR(D)”
and FVD(e) def= (FV(e)−Dom(D))∪VR(D|FV(e)) is the set of the free variables
of the expression e in D. In any valid judgement D P

0 e : 〈U ; u〉 it holds that
Dom(D) ∩Dom(U) = ∅ and Dom(U) = FVD(e).

Rules (Spc), (Con), (Var), (Abs), (AbsVac), and (App) are just the rules of
system 0 (in Fig. 1) modified by adding the typing environment D on the left of
the typing judgements and, when necessary, side conditions (like “x �∈ Dom(D)”
in rule (Var)) to ensure that Dom(D) ∩Dom(U) = ∅.

Rule (Rec-P) allows to assign to a recursive definition rec {x = e} any typing
t that can be assigned to e by assuming the typing t for x. Note that the combined
use of rules (Var-P) and (Spc) allows to assign different specializations ti =
〈Ui; ui〉 (1 ≤ i ≤ n) of t = 〈U ; u〉 to different occurrences of x in e, provided
that ⊕1≤i≤nUi is defined.

The following theorem (taken from [5]) shows that system P
0 has the same

expressive power as the Milner-Mycroft system [16]. This implies that typability
in system P

0 is undecidable (as is in the Milner-Mycroft system [8,12]).

3 To emphasize this fact we might have used assumptions of the shape ∀−→α .t where −→α
is the sequence of all the type variables occurring in t.

On Polymorphic Recursion, Type Systems, and Abstract Interpretation 149

Theorem 5 ([5]). Let e be a closed expression. Then ∅ P
0 e : 〈∅; u〉 if and only

if ∅ e : u is Milner-Mycroft derivable.

3.3 Systems �k
0 (k ≥ 1): A Family of Decidable Restrictions of �P

0

The third step of the technique prescribes to introduce a family of decidable
restrictions of rule (Rec-P). This requires to introduce the notion of principal-
in-D typing, which adapts the notion of principal typing (see Definition 3) to
deal with the typing environment D.

Definition 6 (Principal-in-D typings). Let be a system with judgements
of the shape D e : t. A typing t is principal-in-D for a term e if D e : t,
and if D e : t′ implies t ≤spc t

′. We say that system has the principal-in-D
typing property to mean that every typable term has a principal-in-D typing.

For every finite set of variables X = {x1, . . . , xn} (n ≥ 0) let TX
def= {〈U ; u〉 |

〈U ; u〉 is typing such that Dom(U) = X}, and BX
def= {〈{x1 : α1, . . . , xn :

αn}; α〉 | the type variables α1, . . . , αn, α are all distinct} ⊆ TX . The typing
specialization relation ≤spc (see Definition 2) is a preorder over TX and, for all
typings b ∈ BX and t ∈ TX , b ≤spc t. Moreover for every subset SX of TX ,

Min≤spc(SX) def= {t ∈ SX | t ≤spc t
′ for all t′ ∈ SX}

is the (possibly empty) set of the ≤spc-minimum elements of SX .
The following proposition holds.

Proposition 7. Let be a system with judgements of the shape D e : t. A
typing t is a principal-in-D typing for a term e if and only if t ∈ Min≤spc({t′ |
D e : t′}).

For every k ≥ 1, let k
0 be the system obtained from P

0 by replacing rule
(Rec-P) with the rule:

(Rec-k)
D,x : t0 e : t1 · · · D,x : tk−1 e : tk

D rec {x = e} : tk
where

x �∈ D, t0 ∈ BFVD(rec {x=e}),
(∀i ∈ {1, . . . , k}) ti ∈ Min≤spc({t | D,x : ti−1 e : t}), tk−1 = tk

(3.1)

(note that D k
0 e : t implies D k+1

0 e : t). According to Proposition 7, in
rule (Rec-k), the requirement (3.1) is equivalent to (for all i ∈ {1, . . . , k}) ti
is a principal-in-(D,x : ti−1) typing for e. Therefore, as pointed out in [5], the
checking of a purported k

0 derivation requires the ability to decide whether a
typing is principal-in-D. Note that requirement (3.1) is crucial. In fact, removing
it would make rule (Rec-k) equivalent to rule (Rec-P) for all k ≥ 2.

For all k ≥ 1, system k
0 has the principal-in-D typing property and k

0-
typability is decidable — see the explanations before Theorem 10.

150 M. Comini, F. Damiani, and S. Vrech

An Inference Algorithm for �k
0 (k ≥ 1). A unification problem P is a set

of equalities between simple types. A solution to P (unifier) is an idempotent
substitution s such that s(u1) = s(u2) for all (u1 = u2) ∈ P . A Most General
Unifier is a solution minimal w.r.t. ≤ (and thus all Most General Unifiers are
equivalent up to renaming of type variables). We will write MGU(P) for the set
of all the most general unifiers for P and mgu(P) for any element of MGU(P).

The inference algorithm makes use of an algorithm for checking whether the
≤spc relation (see Definition 2) holds and of the standard algorithm for finding
a most general solution to a unification problem. Note that the first algorithm
is a particular case of the latter.

The inference algorithm is presented by defining (for all k ≥ 1) a function
PTk

0 which, for every expression e and environment D, returns a set of typings
PTk

0(D, e) such that PTk
0(D, e) = Min≤spc({t | D k

0 e : t}).

Definition 8 (Inductive characterization of the set of principal-in-D
typings for e w.r.t. k

0). For every expression e and environment D, the set
PTk

0(D, e) is defined by structural induction on e.
e = x If x : 〈U ; u〉 ∈ D and the substitution s is a renaming of −→α = FTV(U)∪

FTV(u) with fresh type variables, then 〈s(U); s(u)〉 ∈ PTk
0(D,x).

If x �∈ Dom(D) and α is a type variable, then 〈{x : α}; α〉 ∈ PTk
0(D,x).

e = c If type(c) = u, then 〈∅; u〉 ∈ PTk
0(D, c).

e = λ x.e0 If 〈U ; u0〉 ∈ PTk
0(D, e0), then

– If x �∈ FV(e0) and α is a fresh type variable, then 〈U ; α → u0〉 ∈
PTk

0(D,λx.e0).
– If x ∈ FV(e0) and U = U ′, x : u, then 〈U ′; u→ u0〉 ∈ PTk

0(D,λx.e0).
e = e0e1 If 〈U0; u0〉 ∈ PTk

0(D, e0), then
– If u0 = α (a type variable), α1 and α2 are fresh type variables, 〈U1; u1〉 ∈

PTk
0(D, e1) is renamed apart, and s ∈ MGU({u1 = α1, α = α1 → α2}∪

{u′ = u′′ | x : u′ ∈ U0 and x : u′′ ∈ U1}, then 〈s(U0) ⊕ s(U1); s(α2)〉 ∈
PTk

0(D, e0e1).
– If u0 = u2 → u, the pair 〈U1; u1〉 ∈ PTk

0(D, e1) is renamed apart, and
s ∈ MGU({u1 = u2} ∪ {u′ = u′′ | x : u′ ∈ U0 and x : u′′ ∈ U1}), then
〈s(U0)⊕ s(U1); s(u)〉 ∈ PTk

0(D, e0e1).
e = rec {x = e0} If h ∈ {1, . . . , k}, t0 ∈ BFVD(e), t1 ∈ PTk

0((D,x : t0), e0),
. . ., th ∈ PTk

0((D,x : th−1), e0), t1 �≤spc t0, . . . th−1 �≤spc th−2, and th ≤spc

th−1, then th−1 ∈ PTk
0(D, e).

For every k ≥ 1, expression e, and typing environment D, the set PTk
0(D, e)

is an equivalence class of typings modulo renaming of the type variables in a
typing. The following proposition holds.

Proposition 9. For every k ≥ 1, expression e and environment D, if 〈U ; u〉 ∈
PTk

0(D, e), then

1. Dom(U) = FVD(e), and
2. 〈U ′; u′〉 ∈ PTk

0(D, e) if and only if there is a bijection s : TV → TV such
that s(U) = U ′ and s(u) = u′.

On Polymorphic Recursion, Type Systems, and Abstract Interpretation 151

Indeed Definition 8 specifies a sound, complete, and terminating inference algo-
rithm: to perform type inference on e w.r.t. D simply follow the definition of
PTk

0(D, e), choosing fresh type variables and using the unification and ≤spc-
checking algorithms as necessary.

Theorem 10 (Soundness and completeness of PTk
0 for k

0). For every
k ≥ 1, expression e, and environment D:

If t ∈ PTk
0(D, e), then D k

0 e : t.
If D k

0 e : t′, then t ≤spc t
′ for some t ∈ PTk

0(D, e).

Corollary 11. For every k ≥ 1, expression e, and environment D:
PTk

0(D, e) = Min≤spc({t | D k
0 e : t}).

Comparison with System �P
0 . The relation between system k

0 and system
 P

0 is stated by the following theorems. Roughly speaking, the first says that
when rule (Rec-k) works at all, it works as well as rule (Rec-P) does, and
the second says that the family of systems k

0 (k ≥ 1) provides a complete
stratification of P

0 -typability.

Theorem 12. For every k ≥ 1:
If D k

0 e : t, then D P
0 e : t.

If e is k
0-typable in D and D P

0 e : t, then D k
0 e : t.

Theorem 13. If D P
0 e : t, then there exists k ≥ 1 such that D k

0 e : t.

Note that Theorem 10 (which implies that, for all k ≥ 1, system k
0 has the

principal-in-D typing property), Theorem 13, and Theorem 12.2, imply that
system P

0 has the principal-in-D typing property.

Comparison with the ML Type System. For all k ≥ 1, system k
0 is able

to type recursive definitions that are not ML-typable. The examples for k = 1
are not particularly interesting: the prototypical term is the always divergent
function rec {x = xx}, that has principal-in-∅ typing 〈∅; α〉). Instead, with k = 2
it is already possible to type many interesting examples of polymorphic recursion.
Consider for instance the OCaml program (taken from [17])

type ’a seq = EMPTY | SEQ of ’a * (’a * ’a) seq ;;

let rec size s = match s with
EMPTY -> 0

| SEQ(x,ps) -> 1 + 2 * (size ps) ;;

where ’a seq is a polymorphic sequence type (a sequence is either empty or
made of an element paired with a sequence of pairs of elements) and size is a
function that returns the number of elements contained in a sequence. Although
OCaml allows the definition of the ’a seq recursive data-type, the ML type sys-
tem (and, therefore, OCaml) is not able to type the function size. Instead, for all
k ≥ 2, rule (Rec-k) is able to assign the principal-in-∅ pair <{},’a seq -> int>
to the function size.

152 M. Comini, F. Damiani, and S. Vrech

The following example shows that, for all k ≥ 1, system k
0 is not able to type

all the ML-typable recursive definitions.

Example 14. The ML-typable term rec {f = λ g y.if false then y else g (f g y)} is
not 2

0-typable but 3
0-typable with principal-in-∅ typing 〈∅; (α→ α) → α→ α〉.

The ML-typable term rec {f = λ g h1 y.if false then y else g (f g h1 (f h1 g y))} is
not 3

0-typable but 4
0-typable with principal-in-∅ typing 〈∅; (α → α) → (α →

α) → α→ α〉. In general, for all m ≥ 0, the ML-typable term

rec {f = λ g h1 h2 · · ·hm y. if false then y else
g (f g h1 h2 · · ·hm (f h1 g h2 · · · hm (· · · (f h1 · · · hm−1 g y) · · ·))}

is not m+2
0 -typable but m+3

0 -typable with principal-in-∅ typing

〈∅; (α→ α) → (α→ α) → · · · → (α→ α)
︸ ︷︷ ︸

m+1

→ α→ α〉.

3.4 Systems �k,ML
0 (k ≥ 1): Recovering ML-Typability

The fourth step of the technique allows to extend system k
0 (for any given

k ≥ 1) to type not k
0-typable expressions that can be typed by a given decid-

able restriction of P
0 , while preserving decidable typability and principal-in-D

typings.
We say that a typing rule for recursive definitions (Rec-?) is P

0 -suitable to
mean that the system ?

0 obtained from P
0 by replacing rule (Rec-P) with rule

(Rec-?):

1. is a restriction of system P
0 (i.e., D ?

0 e : 〈U ; u〉 implies D P
0 e : 〈U ; u〉),

2. has the principal-in-D typing property, and
3. there is an algorithm that, given a typing environment D and a term e,

returns a principal-in-D typing for e.

Theorems 10 and 12 guarantee that, for all k ≥ 1, adding to system k
0 a P

0 -
suitable rule (Rec-?) with an additional side condition ensuring that the rule
can be applied only if rule (Rec-k) is not applicable, results in a system, denoted
by k,?

0 , with both decidable typability and principal-in-D typing property.
So, to extend system k

0 to type all the ML typable recursive definitions, we
have just to add to system k

0 a P
0 -suitable rule which (without the additional

side condition) is at least as expressive as the rule for monomorphic recursions.
The simplest way of doing this would be to add (a version, modified to fit into
system k

0 , of) the ML rule itself:

(Rec-ML)
D e : 〈U, x : u; u〉

D rec {x = e} : 〈U ; u〉 where x �∈ D

and to restrict it with the additional side condition:

and there are no t0, t1, · · · , tk such that:
t0 ∈ BFVD(rec {x=e}),
(for all i ∈ {1, . . . , k}) ti ∈ Min≤spc({t | D, x : ti−1 � e : t}), and tk−1 = tk

On Polymorphic Recursion, Type Systems, and Abstract Interpretation 153

(2) H � x ⇒ H(x)
where x ∈ PV

(5)

H � e1 ⇒ (u1, s1) H � e2 ⇒ (u2, s2)
s = mgu

`
{u1 = f1 → f2, u2 = f1} ∪ eqs(s1) ∪ eqs(s2)

´
H � e1e2 ⇒ (s(f2), s)

(6)
H[x ← (f1, ε)] � e ⇒ (u, s) u1 = s(f1)

H � (λx.e) ⇒ ((u1 → u), s)
(7)

H � rec{x = e} ⇒n
TP

(un, sn)
H � rec{x = e} ⇒n+1

TP
(un+1, sn+1)

(un, sn) = (un+1, sn+1)

H � rec{x = e} ⇒ (un, sn)

(8) H � rec{x = e} ⇒0
TP

(α, ε)
with α ∈ TV fresh

(9)

H � rec{x = e} ⇒n−1
TP

(u1, s1)

H � rec{x = e}(u1, s1) ⇒TP (u2, s2)

H � rec{x = e} ⇒n
TP

(u2, s2)

(10)
H[x ← (u, s)] � e ⇒ (u1, s1)

H � rec{x = e}(u, s) ⇒TP (u1, s1)
(1) H � c ⇒ (type(c), ε)

Fig. 4. Rules of the Gori-Levi type abstract interpreter �GL

which ensures that the rule can be applied only when rule (Rec-k) is not appli-
cable. Let k,ML

0 denote the resulting system.
A sound and complete inference algorithm for system k,ML

0 (PTk,ML

0) can be
obtained from the inference algorithm PTk

0 , given in Definition 8, by adding the
following sub-clause to the clause for rec-expression.

Otherwise, if 〈U, x : u; u′〉 ∈ PTk
0(D, e0), and s ∈ MGU({u = u′}),

then s(〈U ; u〉) ∈ PTk
0(D, e).

Theorem 15 (Soundness and completeness of PTk,ML
0 w.r.t. k,ML

0).
For every k ≥ 1, expression e, and environment D:
(Soundness) If t ∈ PTk,ML

0 (D, e), then D k,ML

0 e : t.
(Completeness) If D k,ML

0 e : t′, then t ≤spc t
′ for some t ∈ PTk,ML

0 (D, e).

Corollary 16. For every k ≥ 1, expression e, and environment D:
PTk

0(D, e) = Min≤spc({t | D k,ML

0 e : t}).

4 The Gori-Levi Type Abstract Interpreter Revisited

In this section we briefly recall the type abstract interpreter of Gori and Levi [6,7].
The syntax of the small ML-like language used in the present paper is slightly dif-
ferent from the one in [6,7]. Namely, our language uses the rec-notation instead of
the μ-notation, uses booleans instead of integers in the test of conditionals, and
has more constants. In order to simplify the presentation of the correspondence re-
sult (see Section 5.2) we reformulate in the following the type abstract interpreter
by using the language syntax and the notations we used so far.

The abstract semantics (or abstract typing) of an expression e is the type
u ∈ T0 of the expression e together with a substitution s ∈ TV → T0 repre-
senting a constraint on the type variables. It is computed w.r.t. a given abstract

154 M. Comini, F. Damiani, and S. Vrech

(11)
H � rec{x = e} ⇒k

wid (u, s)
H � rec{x = e} ⇒ (u, s)

(12)

H � rec{x = e} ⇒k−1
TP

(u1, s1)

H � rec{x = e}(u1, s1) ⇒TP (u2, s2)
(u1, s1) = (u2, s2)

H � rec{x = e} ⇒k
wid (u1, s1)

(13)

H � rec{x = e} ⇒k−1
TP

(u1, s1) H � rec{x = e}(u1, s1) ⇒TP (u2, s2)

(u1, s1) �= (u2, s2) s = mgu({s2(u1) = u2} ∪ eqs(s2))

H � rec{x = e} ⇒k
wid (s(u1), s)

Fig. 5. Rules of the Gori-Levi decidable type abstract interpreter �k,ML

GL

environment H , which is a partial function mapping program variables PV to
abstract typings (T0 × (TV → T0)). The intuition is that the substitution
s ∈ TV → T0 collects all the constraints generated on the type variables of H
while inferring the type u for the expression e.

Gori and Levi obtained systematically the rules of a non-effective type abstract
interpreter �GL by abstracting the concrete semantics on the type domain PV →
(T0×(TV → T0)). These rules are (modulo the change ofnotation) those in Fig. 4.
Rule numbers correspond exactly to those in [6,7]. Note that, rule (3) (for integer
additions) and rule (4) (for conditionals) aremissing because they are encompassed
by the use of the function type for typing constants in rule (1) — see the discussion
in Section 3.1. The operation eqs (used in rule (5)) is defined as eqs([α1←u1, . . . ,

αn←un]) def= {α1 = u1, . . . , αn = un}, the operation mgu returns a most general
unifier, and H [x←ρ] (used in rules (6) and (10)) is a destructive update.

As this interpreter is possibly non-effective, because the type domain is not
Nötherian, Gori and Levi [6,7] replace rule (7) with the rules (11), (12), (13) of
Fig. 5 (that arises from a family of widening operators as k varies) yielding the
effective type abstract interpreter �k,ML

GL
.

5 The Type Systems Corresponding to �GL and �k,ML
GL

In this section we solve the open problem [6,7] of finding type systems corre-
sponding to the �GL and �k,ML

GL
type abstract interpreters.

As stated in [6,7], the type systems corresponding to the abstract inter-
preters �GL and �k,ML

GL
would lie between the Curry-Hindley and Milner-Mycroft

type systems. In Section 5.1 we will define (less powerful) variants of systems
 k,ML

0 / P

0 , that we will call k,ML

GL
/ GL, by requiring that all the occurrences

of x in e are used with the same type. In Section 5.2 we will prove that sys-
tems k,ML

GL
/ GL are equivalent to the �k,ML

GL
/�GL abstract interpreters. I.e., we

will prove that the type abstract interpreter �GL infers a type to a recursive
function definition rec {x = e} by requiring that all the occurrences of x in e
are used with a same type (as in the Curry-Hindley type system) that special-
izes (as in the Milner-Mycroft type system) the type inferred for e. This result
disproves the misconception that in the type system corresponding to the ab-
stract interpreters �k,ML

GL
/�GL “the different function applications of a recursive

On Polymorphic Recursion, Type Systems, and Abstract Interpretation 155

function can lead to different (but compatible) instantiation of the recursive func-
tion type” ([7], page 142). Namely, our result shows that two different instan-
tiations are compatible if and only if they are the same. Finally, in Section 5.3,
we provide a simpler type system that has the same expressive power of the
non-effective abstract interpreter �GL.

Example 17. The non ML-typable term (taken from [2] — see also [7], page 140)

rec { f = λ f1 g n x.if n = 0 then g x
else f f1 (λ y.(λh.g (h y))) (n− 1) x f1 }

(which defines the function F such that F f1 g n x = g

n times
︷ ︸︸ ︷
(f1 · · · (f1 x) · · ·)) is typed

by �GL (and, for k ≥ 3, also by �k,ML

GL
) with type u = (α → α) → (α → β) →

int → α → β. The function f is recursively called with the specialized type
(α → α) → (α → (α → α) → β) → int → α → (α → α) → β (obtained from u
by substituting β with (α → α) → β). The typing 〈∅; u〉 is principal-in-∅ w.r.t.
 P

0 (and, for k ≥ 3, also w.r.t. k,ML

0).
The non ML-typable term rec {g = λx y.(g (λ z.x) (λ z.y))+(g (λ z.y) (λ z.x))}

is P

0 -typable and, for k ≥ 2, also k,ML

0 -typable with principal-in-∅ typing
〈∅; α→ β → int〉 (the function g is recursively called with the typings 〈∅; (α′ →
α) → (β′ → β) → int〉 and 〈∅; (β′ → β) → (α′ → α) → int〉). However, the �GL

and, for k ≥ 2, the �k,ML

GL
type abstract interpreters assign to the term the type

α→ α→ int.

5.1 Systems �GL, �k
GL, and �k,ML

GL

Given a typing environment D and an expression e, the set FVGL

D (e) def= FV(e)∪
VR(D|FV(e)) is the set of the free variables of e and of the free variables of e
in D (note that FVGL

D (e) = FV(e) ∪ FVD(e)). The rules of system GL are
obtained by those of system P

0 (in Fig. 3) by replacing the rules (Var-P) and
(Rec-P) with the following three rules:

(Var-GL) D, x : 〈U ; u〉 � x : 〈U, x : u; u〉

(Rec-GL)
D, x : 〈U ; u〉 � e : 〈U, x : u′; u〉

D � rec {x = e} : 〈U ; u〉
where Dom(U) = FVGL

D (rec {x = e})
and x �∈ D

(RecVac-GL)
D, x : 〈U ; u〉 � e : 〈U ; u〉
D � rec {x = e} : 〈U ; u〉

where Dom(U) = FVGL

D (rec {x = e}),
x �∈ D, and x �∈ FV(e)

Note that the combined use of rules (Var-GL) and (App) ensures that, in the
premise of rule (Rec-GL), the body e of the recursive definition rec {x = e}
is typed by assigning the same simple type u′ to all the occurrences of x. Rule
(RecVac-GL) is needed to type vacuous recursive definitions (i.e., expressions
rec {x = e} where x �∈ FV(e)).

System GL can be seen as derived from system 0 (in Section 3.1) by adapting
the second step (see Section 3.2) of the technique illustrated in Section 3. We

156 M. Comini, F. Damiani, and S. Vrech

now adapt the third (see Section 3.3) and the fourth (see Section 3.4) steps to
system GL, obtaining two new type systems that we will call k

GL
and k,ML

GL
,

respectively.

Adapting the Third Step. For every k ≥ 1, let k
GL

be the system obtained
from GL by replacing rule (Rec-GL) with the rule:

(Rec-GL-k)
D, x : 〈U0; u0〉 � e : 〈U1, x : u′

1; u1〉 · · · D, x : 〈Uk−1; uk−1〉 � e : 〈Uk, x : u′
k; uk〉

D � rec {x = e} : 〈Uk; uk〉
where x �∈ D,

〈U0; u0〉 ∈ BFVGL

D
(rec{x=e}),

(∀i ∈ {1, . . . , k}) 〈Ui, x : u′
i; ui〉 ∈ Min≤spc({t | D, x : 〈Ui−1; ui−1〉 � e : t}),

〈Uk−1; uk−1〉 = 〈Uk; uk〉

Adapting the Fourth Step. For every k ≥ 1, let k,ML

GL
the system obtained

from k
GL

by adding the rule:

(Rec-GL-ML)
D � e : 〈U,x : u; u〉

D � rec {x = e} : 〈U ; u〉

where x �∈ D and there are no 〈Ui; ui〉 (1 ≤ i ≤ k) such that:
〈U0; u0〉 ∈ BFVGL

D
(rec{x=e}),

(∀i ∈ {1, . . . , k}) 〈Ui, x : u′
i; ui〉 ∈ Min≤spc({t | D, x : 〈Ui−1; ui−1〉 � e : t}),

〈Uk−1; uk−1〉 = 〈Uk; uk〉

5.2 Soundness and Completeness of �k,ML
GL /�GL w.r.t. �k,ML

GL /�GL

It is not possible to give a pointwise straightforward correspondence between
the structure of the proof tree in system k,ML

GL
/ GL and the steps of abstract

interpreter �k,ML

GL
/�GL because of the way environments are built. However when

�k,ML

GL
/�GL terminates we reach an abstract typing which is isomorphic w.r.t.

the corresponding typing in k,ML

GL
/ GL.

In order to express explicitly the isomorphism between the abstract typing
computed by �k,ML

GL
/�GL and the typing in k,ML

GL
/ GL, we need to introduce

some preliminary notations. Let Dom(H) denote the domain of the partial func-
tion H . Given H , we write H1, H2 as the projection functions (given H , if
x ∈ Dom(H) and H(x) = (u, s), then H1(x) = u and H2(x) = s). Also we
define Range(H) = {FTV(u) | H1(x) = u, x ∈ Dom(H)} as the range of H .

We can now define the equivalence relations ≈H and state the correspondence
results between �k,ML

GL
/�GL and k,ML

GL
/ GL.

Definition 18. Let H be an abstract environment, 〈U ; u〉 a typing, and (u, s)
an abstract typing. We write 〈U ; u〉 ≈H (u′, s) to mean that:
u = u′, Dom(s) ⊆ Range(H |Dom(U)), and (forall x : u′′ ∈ U) s(H1(x)) = u′′.

Definition 19. Let e be an expression, D a typing environment, and H an
abstract environment. We write D ∼= H to mean that: Dom(D) ⊆ Dom(H) and
(for all x ∈ Dom(D)) x : t ∈ D if and only if t ≈H H(x).

On Polymorphic Recursion, Type Systems, and Abstract Interpretation 157

Theorem 20 (Soundness and completeness of �k,ML
GL w.r.t. k,ML

GL). Let
D be a typing environment and H be an abstract environment with D ∼= H, then
for every k ≥ 1 and expression e:
(Soundness) If H �k

GL
e ⇒ (u, s), then D k,ML

GL
e : t, with t ≈H (u, s) and

t ∈ Min≤spc({t′ | D k,ML

GL
e : t′}).

(Completeness) If D k,ML

GL
e : t, then H �k

GL
e⇒ (u, s), with t′ ≈H (u, s) for

some t′ ∈ Min≤spc({t′′ | D k,ML

GL
e : t′′}).

Theorem 21 (Soundness and completeness of �GL w.r.t. GL). Let D
be a typing environment, H be an abstract environment with D ∼= H, then for
every expression e:
(Soundness) If H �GL e ⇒ (u, s), then D GL e : t, with t ≈H (u, s) and
t ∈ Min≤spc({t′ | D GL e : t′}) .
(Completeness) If D GL e : t, then H �GL e ⇒ (u, s) with t′ ≈H (u, s) for
some t′ ∈ Min≤spc({t′′ | D GL e : t′′}).

5.3 System �′
GL: A Simpler Characterization of �GL

Let ′
GL

be the system obtained from system 0 in Fig. 1 by removing rule (Spc)
and adding the following rules:

(Spc
′)

� e : 〈U ; u〉
� e : 〈U ; s(u)〉 where Dom(s) = FTV(u)− FTV(U)

(Rec-GL
′)

� e : 〈U, x : s(u); u〉
� rec {x = e} : 〈U ; u〉

where Dom(s) = FTV(u)− FTV(U)

(RecVac-GL
′)

� e : 〈U ; u〉
� rec {x = e} : 〈U ; u〉

where x �∈ FV(e)

Note that rule (Spc
′) is a restriction of rule (Spc) (rule (Spc) is admissible).

The following theorem shows that system ′
GL

has the same expressive power as
system GL and, therefore, of the non-effective type abstract interpreter �GL.

Theorem 22. ′
GL

e : 〈U ; u〉 if and only if ∅ GL e : 〈U ; u〉.

6 Conclusions and Future Work

The stratification of (let-free) Milner-Mycroft typability, given in Section 3, is an
adaptation of the results in [5] to the case without intersection types. Note that
Theorem 13 and Example 14 are completely new (the analogue of Theorem 13
does not hold in presence of intersection types). We plan to extend the type
systems (and the results) in Section 3 to deal with let-expressions by exploiting
a general technique (developed in [4]) for extending a type system (without rules
for let-expressions) enjoying the principal typing property with a typing rule for
let-expressions. The characterization of the expressive power of the type abstract
interpreters of [6,7], given in Section 5, has been obtained by exploiting the notion
of principal typing (which is at the basis of the technique of [5]). We believe
that the notion of principal typing might be useful in other investigations on

158 M. Comini, F. Damiani, and S. Vrech

the relations between program analyses specified via type systems and program
analyses specified via abstract interpretation. We don’t know whether typability
in the type system corresponding to the non-effective abstract interpreter �GL

(i.e., typability in systems GL and ′
GL

) is decidable.

References

1. Coppo, M.: An extended polymorphic type system. In: Dembinski, P. (ed.) MFCS
1980. LNCS, vol. 88, pp. 194–204. Springer, Heidelberg (1980)

2. Cousot, P.: Types as abstract interpretations. In: POPL 1997, pp. 316–331. ACM,
New York (1997)

3. Damas, L.M.M., Milner, R.: Principal type schemas for functional programs. In:
POPL 1982, pp. 207–212. ACM, New York (1982)

4. Damiani, F.: Rank 2 intersection types for local definitions and conditional expres-
sions. ACM Trans. Prog. Lang. Syst. 25(4), 401–451 (2003)

5. Damiani, F.: Rank 2 Intersection for Recursive Definitions. Fundam. Inform. 77(4),
451–488 (2007); (Special Issue on TLCA 2005)

6. Gori, R., Levi, G.: An experiment in type inference and verification by abstract
interpretation. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 225–239.
Springer, Heidelberg (2002)

7. Gori, R., Levi, G.: Properties of a type abstract interpreter. In: Zuck, L.D., Attie,
P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp.
132–145. Springer, Heidelberg (2002)

8. Henglein, F.: Type inference with polymorphic recursion. ACM
Trans. Prog. Lang. Syst. 15(2), 253–289 (1993)

9. Hindley, R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer
Science, vol. 42. Cambridge University Press, London (1997)

10. Jim, T.: What are principal typings and what are they good for?. In: POPL 1996,
pp. 42–53. ACM, New York (1996)

11. Kfoury, A.J., Pericas-Geertsen, S.M.: Type inference for recursive definitions. In:
LICS 1999, pp. 119–128. IEEE, Los Alamitos (1999)

12. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: Type reconstruction in the presence of
polymorphic recursion. ACM Trans. Prog. Lang. Syst. 15(2), 290–311 (1993)

13. Meertens, L.: Incremental polymorphic type checking in B. In: POPL 1983, pp.
265–275. ACM, New York (1983)

14. Monsuez, B.: Polymorphic typing by abstract interpretation. Theoretical Computer
Science 652, 217–228 (1992)

15. Monsuez, B.: Polymorphic types and widening operators. In: Cousot, P., Filé, G.,
Falaschi, M., Rauzy, A. (eds.) WSA 1993. LNCS, vol. 724, pp. 224–281. Springer,
Heidelberg (1993)

16. Mycroft, A.: Polymorphic type schemes and recursive definitions. In: Paul, M.,
Robinet, B. (eds.) Programming 1984. LNCS, vol. 167, pp. 217–228. Springer,
Heidelberg (1984)

17. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-
bridge (1998)

18. Terauchi, T., Aiken, A.: On typability for polymorphic recursive rank-2 intersection
types. In: LICS 2006, pp. 111–122. IEEE, Los Alamitos (2006)

19. Wells, J.B.: The essence of principal typings. In: Widmayer, P., Triguero, F.,
Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS,
vol. 2380, pp. 913–925. Springer, Heidelberg (2002)

Modal Abstractions of Concurrent Behaviour

Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson

Informatics and Mathematical Modelling
Technical University of Denmark
{nanz,nielson,riis}@imm.dtu.dk

Abstract. We present a novel algorithm for the automatic construc-
tion of modal transition systems as abstractions of concurrent processes.
Modal transition systems are recognised as valuable abstractions for
model checking because they allow for the deduction of safety as well
as liveness properties. However, the issue of effectively creating these
abstractions from specification languages such as process algebras is a
missing link that prevents their more widespread usage for model check-
ing of concurrent systems. Our algorithm is based on static analysis
and uses a lattice of intervals to express simultaneous over- and under-
approximations to the set of process actions available in a particular
state. We obtain an abstraction that is 3-valued in both states and tran-
sitions and that naturally integrates with model checking approaches for
modal transition systems.

1 Introduction

Property-preserving abstractions are the topic of intensive research in model
checking, as they provide successful techniques for fighting the state-explosion
problem. For example, conventional state transition systems can be abstracted
by overapproximation, i.e. by adding more transition paths [3], but then vali-
dation is limited to safety properties. Modal transition systems [11] use instead
two kinds of transition relations, one representing necessary behaviour (“must”)
and the other possible behaviour (“may”), while the absence of any transition
describes behaviour that cannot possibly occur. Using modal transition systems
as abstractions therefore allows for the deduction of both safety and liveness
properties.

The benefits of using modal abstractions seem to apply in particular to the
verification of concurrent systems, as these are frequently infinite-state (thus re-
quiring abstraction) and their correctness statement is often given by a mix of
safety and liveness properties. However, the recently suggested practical tech-
niques for automatic generation of modal abstractions [7,8] mainly apply to
classical programming languages, and not to process algebras, one of the most
widely used specification formalisms for concurrent systems. Having such an
abstraction method would, for example, enable abstraction-based verification
frameworks for protocol analysis, where a large community is working with pro-
cess algebraic specifications.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 159–173, 2008.
© Springer-Verlag Berlin Heidelberg 2008

160 S. Nanz, F. Nielson, and H.R. Nielson

In this paper, we develop an algorithm for constructing modal transition sys-
tems as abstractions of processes specified in Milner’s Calculus of Communicat-
ing Systems (CCS) [12]. We choose CCS as the basis of the description of our
algorithm because, as a seminal process calculus, it allows us to focus on the
essentials of our technique, and thus may facilitate the technique’s adaption to
more expressive formalisms such as the π-calculus [13] and other concurrent lan-
guages. Our approach is rooted in a radical generalisation of Monotone Frame-
works [15], which have been used in classical data flow analysis and comprise a
transfer function

transfer �(E) = (E \ kill �) ∪ gen�

yielding the analysis information that holds at the next program point, provided
that the information E holds for the current program point �, and where kill � is
the information invalidated, and gen� the new information created at �. While
the classical analyses require an imperative program’s control flow graph as an
input, our algorithm constructs a concurrent system’s abstract control flow graph
besides the associated analysis information. We use intervals to simultaneously
over- and under-approximate the multiplicity of the actions which can execute
in a certain abstract state, and can hence describe the control flow by a modal
transition system. The coarseness of this abstraction can be controlled by a
parameter of our algorithm.

Related Work. In recent years, the importance of modal transition systems and
related approaches has been emphasised in the context of program analysis and
model checking [5,2,9]. In particular, a number of abstraction-based verifica-
tion frameworks have been developed in this context, where abstractions are
described in general abstract interpretation terms [5,18] or using predicate ab-
straction [7,8]. The method in [8] is so far the only one accompanied with an
implementation. In contrast to these works, we consider the abstraction of pro-
cess calculi, and our technique is based on Monotone Frameworks. We also im-
prove on the expressivity of our own related approach at analysing network
behaviour [14,17], where we have considered over-approximations only.

The remainder of this paper is organised as follows. In Section 2 we recapitu-
late the syntax and operational semantics of CCS. Sections 3 and 4 outline the
Monotone Framework which is the key to the algorithmic construction of modal
abstractions in Section 5. We conclude in Section 6.

2 Communicating Systems

In this section we give a brief review of the syntax and operational semantics of
Milner’s Calculus of Communicating Systems (CCS) [12].

2.1 Syntax

The syntax of CCS processes P ∈ Proc and actions α is given by the following
definition, where we presuppose that names x can be drawn from some infinite
set.

Modal Abstractions of Concurrent Behaviour 161

Table 1. Reaction semantics P →�̃ Q

τ �.P + Q →� P (x�1 .P1 + Q1) | (x�2 .P2 + Q2) →�2�1 P1 | P2

P →�̃ Q

P | P ′ →�̃ Q | P ′

P →�̃ P ′

new x P →�̃ new x P ′

P ′ →�̃ Q′

P →�̃ Q
if P ≡ P ′ and Q′ ≡ Q

P ::= new xP | P1 | P2 | Σi∈Iα
�i

i .Pi | A
α ::= x | x | τ

Here new xP introduces a new name x with scope P . Parallel composition is
modelled using the construct P1 | P2 whereas choice is expressed using summa-
tions of the form Σi∈Iα

�i

i .Pi where I is a finite index set. If I = ∅ we write 0 for
the process. Sums are guarded and in the case of binary sums they are written
α�1

1 .P1 +α�2
2 .P2. Actions α are annotated with labels � ∈ Lab serving as pointers

into the process; they will be used in the analysis to be presented shortly but
have no semantic significance. Complementary actions take the form x and x
where x is a name; internal actions are denoted by τ . We shall be interested in
programs of the form

let A1 � P1; · · · ;Ak � Pk in P0

where the processes named A1, . . . , Ak(∈ PN) are mutually recursively defined
and may be used in the main process P0 as well as in the process bodies
P1, . . . , Pk.

Example. 1 We introduce a simple running example to illustrate the technical
developments throughout the paper. Consider the following program:

let S � a1.r2.S; Q � a3.(r4.Q + τ5.r6.Q + τ5.Q) in S | Q | Q

The process S models a semaphore which allows for two actions acquire and
release, and then starts over. The processQ tries to acquire the lock and may then
do one of three actions before recursing: release the lock immediately; perform
an internal action and release the lock; and, perform an internal action but not
release the lock.

2.2 Operational Semantics

Following Chapter 4 of [13], we equip the calculus with a reaction semantics and
a structural congruence. The reaction relation P →�̃ Q is specified in Table 1
and expresses that the process P may evolve in one step into the process Q;
we have annotated the arrow with the labels �̃ of the actions involved as this
will prove useful when expressing the correctness of the analysis. Note that we
use �̃ to denote both single labels � and label pairs �2�1. The reaction relation
naturally extends to programs in that only the main process can evolve.

162 S. Nanz, F. Nielson, and H.R. Nielson

Table 2. Axioms generating the structural congruence P ≡ Q

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P

new x 0 ≡ 0 new x new y P ≡ new y new x P

new x (P | Q) ≡ P | new x Q if x /∈ fn(P) A ≡ P if A � P

The structural congruence P ≡ Q is defined as the least congruence generated
from the axioms of Table 2. Here, fn(P) denotes the set of free names of a process
P . To make it possible to interpret the analysis result, we require additionally
that processes are congruent if they can be obtained from each other by disci-
plined alpha-renaming; this merely amounts to requiring that each name x has
a canonical name /x0 that is preserved by alpha-renaming.

Example. 2 Using the formal semantics we can express steps of the evolution of
the main process S | Q | Q of Example 1 as follows:

S | Q | Q →1 3 r2.S | (r4.Q + τ5.r6.Q + τ5.Q) | Q →5 r2.S | r6.Q | Q

The notion of canonical names is lifted to actions so /α0 will be the canonical
action corresponding to α. A program is consistently labelled if all occurrences
of actions α�

1 and α�
2 with the same label � have the same canonical action, that

is /α10 = /α20. A program is uniquely labelled if all occurrences of actions have
distinct labels; clearly, a uniquely labelled program is consistently labelled.

Example. 3 The program of Example 1 is consistently but not uniquely labelled.

It is easy to see that the property of being consistently labelled is invariant under
the structural congruence and that it is preserved by the reaction semantics; this
does not hold for the property of being uniquely labelled. In the following we
shall assume to have consistently labelled programs; clearly, such labellings can
easily be automatically obtained.

3 Exposed Actions

This section introduces the notion of exposed actions which is used to abstractly
represent process configurations. An exposed action is an action that may par-
ticipate in the next reaction step. For example, the main process S | Q | Q
of Example 1 has one occurrence of a1 and two occurrences of a3 as exposed
actions. In general, a process may contain many, and because of recursion, even
infinitely many, occurrences of the same action (all identified by the same label)
and several of them may be ready to participate in the next reaction.

To capture this we use extended multisets M ∈ M where

M = Lab → N ∪ {∞}

Modal Abstractions of Concurrent Behaviour 163

Table 3. Exposed actions

E [[new x P]]env = E [[P]]env
E [[P | Q]]env = E [[P]]env +M E [[Q]]env

E [[Σi∈Iα
�i
i .Pi]]env = ΣM i∈I⊥M [�i �→ 1]
E [[A]]env = env(A)

E�[[P]] = E [[P]]envE

where FE(env) = [A1 �→ E [[P1]]env, . . . , Ak �→ E [[Pk]]env]
and env⊥M

= [A1 �→ ⊥M , . . . , Ak �→ ⊥M]

and envE =
⊔

j≥0F
j
E(env⊥M

)

and the idea is that M(�) records the number of occurrences of the label �; there
may be a finite number in which case M(�) ∈ N or an infinite number so that
M(�) = ∞. We say that a label � is in the domain of M , written � ∈ dom(M),
if M(�) �= 0. We shall equip the set M with a partial ordering ≤M defined by:

M ≤M M ′ iff ∀� : M(�) ≤M ′(�) ∨ M ′(�) = ∞

The domain (M,≤M) is a complete lattice with bottom element ⊥M = λ�. 0
and top element �M = λ�.∞, and in addition to least upper and greatest lower
bound operators, we shall need the operation +M, which is an extension of
ordinary integer addition with the rule that addition of ∞ yields again ∞.

The exposed actions of a process can be computed by an abstraction function

E	 : Proc → M.

To motivate the definition let us consider the sum of two processes α�1
1 .P1 +

α�2
2 .P2. Here both of the actions α1 and α2 are ready to interact but none of

those of P1 and P2 are so we shall take:

E	[[α�1
1 .P1 + α�2

2 .P2]] = ⊥M[�1 �→ 1] +M ⊥M[�2 �→ 1]

If the two labels happened to be equal, the overall count would become 2 since
we have used pointwise addition +M. The rule for parallel composition can be
motivated similarly.

To handle the general case we shall introduce the function

E : Proc → (PN → M) → M

that as an additional parameter takes an environment holding the required in-
formation for the process names. The function is defined in Table 3 for arbitrary
processes; in the case of sums it generalises the clauses shown above. The clause
for the new xP construct simply ignores the introduction of the new name and
thereby its scope. For process names we simply consult the environment env.

This yields the functional FE : (PN → M) → (PN → M) shown in Ta-
ble 3. Since the operations involved in its definition are all monotonic we have

164 S. Nanz, F. Nielson, and H.R. Nielson

a monotonic functional defined on a complete lattice and Tarski’s fixed point
theorem ensures that it has a least fixed point which is denoted envE in Table 3.
Since all processes are finite it follows that FE is continuous and hence that the
Kleene formulation of the least fixed point is permissible. We can now define the
function E	 simply as E	[[P]] = E [[P]]envE .

Example. 4 For the running example of Example 1 we have:

E	[[S | Q | Q]] = ⊥M[1 �→ 1, 3 �→ 2]

We may consider another process R � (a3.0 + τ5.r4.0) | R to illustrate that also
an infinite number of actions can be exposed:

E	[[S | R]] = ⊥M[1 �→ 1, 3 �→ ∞, 5 �→ ∞]

We can show that the exposed actions are invariant under the structural con-
gruence and that they correctly capture the actions that may be involved in the
first reaction step:

Lemma 1. If P ≡ Q then E	[[P]] = E	[[Q]], and if P →�̃ Q then �̃ ∈ dom(E	[[P]]).

The implementation of the function E	 is not completely trivial since the lattice
(M,≤M) has infinite ascending chains that might lead to nontermination because
of recursion. We can however show that a suitable combination of a k-fold and a
2k-fold iteration (k being the number of recursive processes) suffices to calculate
the analysis result [17].

4 Monotone Frameworks

The abstraction function E	 calculates the information about exposed actions
for initial processes. This information changes as the process evolves: once an
action has executed, some new actions may become exposed and some may cease
to be exposed. For example, in process S of Example 1 the action a1 is initially
exposed but, once executed, it will no longer be exposed (we say that it is killed)
and instead the action r2 becomes exposed (we say that it is generated).

In this section, we present auxiliary functions allowing us to approximate this
evolution of exposed actions during process execution. While the set of exposed
actions computed by E	 is always precise, this is not the case for generated and
killed actions. For example, when executing the action τ5 of Q, we cannot be sure
whether r6 or a3 becomes exposed. Our approach will be to have the auxiliary
functions give both an over- and an under-approximation of the multiplicities of
exposed actions, and therefore we use interval lattices as an abstract domain.

4.1 Interval Lattices

We are interested in lifting the domain N ∪ {∞} of the mapping M ∈ M to
a more approximative domain: while saying earlier that a label � is exposed

Modal Abstractions of Concurrent Behaviour 165

M(�) = k times in a process, we now want to express that � is exposed at least
i times and at most j times, and the idea will be to use a new mapping N with
N(�) = [i, j]. The following lattice provides the appropriate domain.

The elements of the lattice (I,≤I) of intervals over N ∪ {∞} are

I = {⊥I} ∪ {[i, j] : i ≤ j, i, j ∈ N ∪ {∞}}

where ⊥I denotes the empty interval. The partial ordering ≤I is defined as

I1 ≤I I2 iff infI(I2) ≤ infI(I1) ∧ supI(I1) ≤ supI(I2)

where the supremum and infimum operators on intervals are given by:

infI(I) =
{
i if I = [i, j]
∞ if I = ⊥I

supI(I) =
{
j if I = [i, j]
0 if I = ⊥I

Indeed, (I,≤I) is then a complete lattice with least element ⊥I and top element
�I = [0,∞], and its least upper bound operator is given by

I1 �I I2 =
{
⊥I if I1 = I2 = ⊥I

[inf(infI(I1), infI(I2)), sup(supI(I1), supI(I2))] otherwise.

Interval Arithmetic. We would like to define arithmetic operations on elements
of the lattice (I,≤I) in order to enable us to add (and subtract) abstract mul-
tiplicities of exposed actions in a similar way as we did for M. For this let us
consider for a moment an interval I to be given by a subset I ⊆ N ∪ {∞} with
the property that whenever i and j are in I and i ≤ k ≤ j then k is in I. An
operation �I on intervals can then be defined pointwise

I �I J = {i � j : i ∈ I, j ∈ J} ∩ (N ∪ {∞})

where we take i + ∞ = ∞ and i − ∞ = −∞ for i ∈ N ∪ {∞}. It is easy to
establish that, for non-empty intervals, the basic operations addition +I and
subtraction −I of interval arithmetic are equivalently expressed by:

[i1, i2] +I [j1, j2] = [i1 + j1, i2 + j2]
[i1, i2]−I [j1, j2] = [i1 − j2, i2 − j1] ∩ (N ∪ {∞})

Note that the neutral element of addition is given by 0I = [0, 0], i.e. I+I0I = I,
whereas the empty interval ⊥I is an annihilator, i.e. I+I⊥I = ⊥I. Adapting this
definition of interval arithmetic to the case where intervals are formally elements
of I is straightforward.

Lemma 2. The operations +I and −I enjoy the following properties:

(1) +I and −I are monotonic in both arguments.
(2) +I is associative and commutative, and for −I we have that infI(J) ≤

supI(I) implies (I −I J) +I K ≤I (I +I K)−I J .

166 S. Nanz, F. Nielson, and H.R. Nielson

Approximative Multisets. Coming back to our original goal of representing over-
and under-approximations of the multiplicity of labels, we can now lift I to

N = Lab → I.

Motivated by our application, we call a set N ∈ N an approximative multiset.
Using pointwise lifting of the interval domain ordering, the domain (N,≤N) is
again a complete lattice. In particular, the least element ⊥N is given by λ�.⊥I

and the largest element �N by λ�. [0,∞]. The neutral element of addition is
0N = λ�.0I and the results of Lemma 2 hold analogously.

The relationship of N with the lattice of extended multisets M = Lab →
N ∪ {∞} can be made explicit using the operation � . � defined by

�M�(�) = [M(�), M(�)]

and it is easy to show that this operation preserves addition, i.e. �M +M N� =
�M�+N �N�, and is non-strict since �⊥M� = 0N.

4.2 Generated and Killed Actions

We shall now introduce two functions G	 and K	 approximating generated and
killed actions. The relevant information will be an element of

T = Lab → N (= Lab → (Lab → I))

and (T,≤T) is a complete lattice using pointwise lifting of the ordering of N.
The idea is that G	[[P]](�) and K	[[P]](�) produce approximative multisets of the
actions which are newly exposed and no longer exposed, respectively, when the
action labelled � executes. In the end we would like to obtain a transfer function
of the kind we have hinted at in Section 1, where generated and killed actions
will play the role of the gen� and kill � components.

To motivate the definition let us consider prefixing as expressed in the process
α�.P . Clearly, once α� has been executed it will no longer be exposed whereas
the actions of E	[[P]] will become exposed. Thus a first suggestion might be to
take G	[[α�.P]](�) = �E	[[P]]�, where we note that we need to lift E	[[P]] from M
to N; likewise, we might take K	[[α�.P]](�) = 0N[� �→ [1, 1]] to express that we
decrease the count of � by (at least and at most) 1.

However, in the actual definitions in Table 4 and Table 5 we have to cater for
the case where the same label may occur several times in a process (as when �
is used inside P), and thus have to take the least upper bound with G	[[P]] and
K	[[P]] to ensure that they correctly combine the information available about �.
For killed actions it is also worth pointing out that the set N in the clause for
summations in Table 5 actually equals �E	[[Σi∈Iα

�i

i .Pi]]� reflecting that all the
exposed actions of the summation are indeed killed once one of them has been
selected for the reaction step. The functions

G	 : Proc → T K	 : Proc → T

are defined using auxiliary functions G and K, following the same pattern and
reasoning for well-definedness used when defining E	.

Modal Abstractions of Concurrent Behaviour 167

Table 4. Approximative multisets of actions generated

G[[new x P]]env = G[[P]]env

G[[P | Q]]env = G[[P]]env �T G[[Q]]env

G[[Σi∈Iα
�i
i .Pi]]env =

⊔
T i∈I

(⊥T [�i �→ N] �T G[[Pi]]env)

where N = E�[[Pi]]!
G[[A]]env = env(A)

G�[[P]] = G[[P]]envG

where FG(env) = [A1 �→ G[[P1]]env, · · · , Ak �→ G[[Pk]]env]
and env⊥T

= [A1 �→ ⊥T , · · · , Ak �→ ⊥T]

and envG =
⊔

j≥0 F
j
G(env⊥T

)

Example. 5 Continuing Example 1, the generated and killed actions for the main
process S | Q | Q calculate to:

� G�[[S | Q | Q]](�) K�[[S | Q | Q]](�)

1 0N [2 �→ [1, 1]] 0N [1 �→ [1, 1]]
2 0N [1 �→ [1, 1]] 0N [2 �→ [1, 1]]
3 0N [4 �→ [1, 1], 5 �→ [2, 2]] 0N [3 �→ [1, 1]]
4 0N [3 �→ [1, 1]] 0N [4 �→ [1, 1], 5 �→ [2, 2]]
5 0N [3 �→ [0, 1], 6 �→ [0, 1]] 0N [4 �→ [1, 1], 5 �→ [2, 2]]
6 0N [3 �→ [1, 1]] 0N [6 �→ [1, 1]]

The next result shows that the information calculated by G	 and K	 is invari-
ant under the structural congruence and that it potentially decreases with the
evolution of the process:

Lemma 3. The functions G	 and K	 enjoy the following properties:
(1) If P ≡ Q then G	[[P]] = G	[[Q]], and if P →�̃ Q then G	[[Q]] ≤T G	[[P]].
(2) If P ≡ Q then K	[[P]] = K	[[Q]], and if P →�̃ Q then K	[[Q]] ≤T K	[[P]].

Finally, the following central result states that generated and killed actions can
be combined in order to provide safe approximations to the exposed actions of
the resulting process of a reaction:

Theorem 4. If P →�̃ Q then �E	[[Q]]� ≤N (�E	[[P]]�−NK	[[P]](�̃))+N G	[[P]](�̃).

4.3 The Transfer Function

Theorem 4 enables us to adapt the generic transfer function of Section 1 to our
setting

transferP0,�̃(E) = (E −N K	[[P0]](�̃)) +N G	[[P0]](�̃),

where E is the the approximative multiset of exposed actions available at a
particular program point, which in turn is identified by the actions �̃ that may
be executed. Note that the transfer function can be precomputed as it relies
only on the initial program P0, and the following corollary confirms that in this
manner it still provides a safe approximation similar to the one in Theorem 4.

168 S. Nanz, F. Nielson, and H.R. Nielson

Table 5. Approximative multisets of actions killed

K[[new x P]]env = K[[P]]env

K[[P | Q]]env = K[[P]]env �T K[[Q]]env

K[[Σi∈Iα�i
i .Pi]]env =

⊔
T i∈I

(⊥T [�i �→ N] �T K[[Pi]]env)

where N = +N j∈I0N [�j �→ [1, 1]]

K[[A]]env = env(A)

K�[[P]] = K[[P]]envK

where FK(env) = [A1 �→ K[[P1]]env, · · · , Ak �→ K[[Pk]]env]
and env⊥T

= [A1 �→ ⊥T , · · · , Ak �→ ⊥T]

and envK =
⊔

j≥0F
j
K(env⊥T

)

Corollary 5. Consider the program let A1 � P1; · · · ;Ak � Pk in P0 and assume
P0 →∗ P →�̃ Q. Then �E	[[Q]]� ≤N transferP0,�̃(�E	[[P]]�).

Proof. This is an immediate consequence of Theorem 4, Lemmas 2, and 3. ��

Example. 6 Following up on Examples 2, 4, and 5, we have S | Q | Q →∗
r2.S | r6.Q | Q→2 6 S | Q | Q and

 E�[[r
2.S | r6.Q | Q]]! = 0N [2 �→ [1, 1], 3 �→ [1, 1], 6 �→ [1, 1]]

K�[[S | Q | Q]](2 6) = 0N [2 �→ [1, 1], 6 �→ [1, 1]]
G�[[S | Q | Q]](2 6) = 0N [1 �→ [1, 1], 3 �→ [1, 1]]

and hence we can confirm Corollary 5 for this example:

 E�[[S | Q | Q]]! ≤N transferP0,2 6(E�[[r
2.S | r6.Q | Q]]!) = 0N [1 �→ [1, 1], 3 �→ [2, 2]]

5 Constructing Modal Abstractions

Given a program let A1 � P1; · · · ;Ak � Pk in P0 we shall now construct a finite
abstraction that faithfully reflects the potentially infinite transition system of the
program. Since we are interested in being able to derive both safety and liveness
properties from the abstraction, we use modal transition systems [11] which offer
this expressiveness through the use of two transition relations, one representing
an over- and the other an under-approximation of process behaviour.

5.1 Modal Transition Systems

Following Larsen and Thomsen [11], we assume a global set of actions Act . A
modal transition system (MTS) is a triple (Q,−→, ���) where Q is a set of states,
−→⊆ Q×Act×Q is a transition relation representing required transitions, called
must, and ��� ⊆ Q × Act × Q is a transition relation representing permissible
transitions, called may. We require that all necessary behaviour is permissible,
i.e. that −→ ⊆ ��� holds.

Modal Abstractions of Concurrent Behaviour 169

We intend to use modal transition systems as abstractions of process be-
haviour. First we define abstract representations of process configurations.

Definition 6 (Representation). We say that an approximative multiset E ∈
N represents a process P , written P � E, iff �E	[[P]]� ≤N E.

A modal abstraction is a 5-tuple (Q,−→, ���, q0,E) where (Q,−→, ���) is a finite
modal transition system, q0 ∈ Q is an initial state, and E : Q → N is a mapping
which associates every state q ∈ Q with an approximative multiset E[q] ∈ N.

In the context of a modal abstraction, we thus may say that a state q rep-
resents a process P to mean that P � E[q]. Note that the set Act mentioned
above is a set of labels �̃ in our case. The next definition formalises when a
modal abstraction correctly describes the permissible and necessary behaviour
of a process P0.

Definition 7 (Faithfulness). A modal abstraction (Q,−→, ���, q0,E) is called
faithful for P0 if the initial state represents P0, i.e. P0 �E[q0], and the following
conditions hold for all processes P and states q ∈ Q with P0 →∗ P and P �E[q]:

(1) if P →�̃ Q then there exists a state q′ ∈ Q such that Q� E[q′] and q ����̃ q
′

(2) if q −→�̃ q
′ then there exists a process Q such that Q� E[q′] and P →�̃ Q

Reasoning about Modal Abstractions. The modal abstraction suggested by Def-
inition 7 is 3-valued in the following sense: the presence of a must edge implies
the presence of concrete behaviour; the absence of any edge implies its absence;
and, the presence of a sole may edge does not allow for conclusive decisions. It is
thus natural to use the machinery of 3-valued logic [10,16] during the algorithmic
construction and for reasoning.

In 3-valued approaches the classical set of truth values is extended with a
value 1/2 for expressing uncertainty, i.e. B3 = {0, 1/2, 1} under the partial order
≤3 induced by 0 ≤3 1/2 ≤3 1. Various modal logics, e.g. CTL in [18], have been
adapted for 3-valued reasoning about modal transition systems. In these ap-
proaches, states are labelled with 3-valued predicates, similar to classical Kripke
structures. We can integrate our approach with these developments by using the
function LE instead of the labelling function for predicates, in order to express
whether a label � is necessarily, possibly, or not exposed in E:

LE(�) =

⎧
⎨

⎩

1 if E(�) = [m,n] and m,n > 0
1/2 if E(�) = [0, n] and n > 0
0 if E(�) = [0, 0]

In ongoing work we show that Action Computation Tree Logic (ACTL) [6], a
version of CTL suitable for reasoning about labelled transition systems, can be
used to reason about modal abstractions, in a manner similar to our work in the
context of (over-approximating) abstractions [14].

170 S. Nanz, F. Nielson, and H.R. Nielson

Table 6. The worklist algorithm for constructing the modal abstraction

1 Q := {q0};E[q0] := E�[[P0]]!;W := {q0}; −→ := ∅; ��� := ∅;
2 while W �= ∅ do
3 select qs from W; W := W \ {qs};
4 for each (�̃, b) ∈ enabled(E[qs]) do
5 let E = transferP0,�̃(E[qs]) in

6 if there exists q ∈ Q with H(E[q]) = H(E) then qt := q
7 else select qt from outside Q; Q := Q ∪ {qt}; E[qt] := E; W := W ∪ {qt} fi;
8 if ¬(E ≤N E[qt]) then E[qt] := E[qt]∇N E; W := W ∪ {qt} fi;
9 ��� := (��� \ {qs ����̃ q : q ∈ Q}) ∪ {qs ����̃ qt};
10 −→ := (−→ \ {qs −→�̃ q : q ∈ Q}) ∪ {qs −→�̃ qt : b = 1}

5.2 The Worklist Algorithm

We now introduce a worklist algorithm, based on the function transfer of Sec-
tion 4.3, that produces a faithful modal abstraction for any input process P . The
main data structures of the algorithm are: a set Q of the states introduced so
far; a table E that specifies for each q ∈ Q the associated approximative multiset
E[q] ∈ N; a worklist W ⊆ Q of states that have yet to be processed; and two sets
−→ and ��� defining the current must and may transitions.

Function enabled. The algorithm makes use of an auxiliary function enabled(E)
to compute enabled actions. An action is called enabled if it is exposed and can
execute. This means that we have to take into account that single labels � can
execute only if they label a τ -action, and label pairs �1�2 only if the associated
actions can synchronise.

The function enabled(E) is constructed as an over-approximation but allows
us to recover precise results in some cases. To achieve this, enabled(E) pairs an
enabled action �̃ with a truth value b ≥3 1/2 to express that �̃ is necessarily
enabled in all processes represented by E (then b = 1), or that it may possibly
be enabled (b = 1/2). The computation of enabled follows the pattern used for
E	 and is omitted for space reasons; we just state the main result:

Lemma 8. Suppose enabled was computed for P0 and P0 →∗ P .

(1) If P →�̃ Q then (�̃, b) ∈ enabled(�E	[[P]]�) with b ≥3 1/2.
(2) If (�̃, 1) ∈ enabled(�E	[[P]]�) then there exists a process Q such that P →�̃ Q.

Worklist Algorithm. The overall algorithm has the form displayed in Table 6.
Several initialisations are performed in line 1. Line 2 contains the classical loop
inspecting the contents of the worklist. A source state qs is selected and removed
from the worklist in line 3 and the set of (definite and potential) interactions is
constructed using the function call enabled(E[qs]) in line 4.

For each pair (�̃, b) ∈ enabled(E[qs]) the procedure call transferP0,�̃(E[qs]) of
line 5 will return an approximative multiset E describing the denotation of the
target state. Lines 6-10 are concerned with finding an appropriate target state

Modal Abstractions of Concurrent Behaviour 171

"#$%&'()q0
1,3

 "#$%&'()q1

5

*+,-

2,4

�� "#$%&'()q2./01
2,6

��

q E[q]
q0 0N [1 �→ [1, 1], 3 �→ [2,∞]]
q1 0N [2 �→ [1, 1], 3 �→ [1,∞], 4 �→ [1, 1], 5 �→ [2, 2]]
q2 0N [2 �→ [1, 1], 3 �→ [1,∞], 6 �→ [0, 1]]

Fig. 1. The modal abstraction for the program of Example 1

qt and connect it from qs by updating the transition relations. In line 6 we
first decide, using a granularity function H , which we will further discuss below,
whether one of the existing states can be reused. If this is not possible, a fresh
state will be created (line 7).

In line 8 it is checked whether the description E[qt] includes the required
information E and if not, it is updated and the state is put on the worklist for
future processing. The widening operator ∇N makes sure to combine the old
and the new extended multisets in such a way that termination of the overall
algorithm is ensured. We shall return to the definition of ∇N shortly.

The transition relations are updated in lines 9 and 10. In all cases, a may edge
between qs and qt is added. But only if b = 1, i.e. if we are sure that there is
a corresponding concrete behaviour due to Lemma 8 (2), we add a must edge.
In both cases, old transitions labelled �̃ from qs will be removed, which ensures
that we get a modal transition system where no two transitions out of a state
have the same label.

Widening Operator. The widening operator ∇N : N ×N → N used in line 8 of
Table 6 to combine approximative multisets is defined by:

i1∇ i2 =

⎧
⎨

⎩

i1 if i2 ≤ i1
i2 if i1 = 0 ∧ i2 > 0
∞ otherwise

(N1∇N N2)(�) =
{
⊥I if N1(�) = N2(�) = ⊥I and otherwise
[inf(infIN1(�), infIN2(�)), (supIN1(�))∇ (supIN2(�))]

It will ensure that the chain of values taken by E[qt] in line 8 always stabilises
after a finite number of steps. We refer to [4,15] for a formal definition of widening
and merely establish the correctness of our choice.

Fact 9. ∇N is a widening operator, in particular N1 �N N2 ≤N N1∇NN2.

Granularity Function. We return to the choice of a granularity function H : N →
H to be used in line 6 of Table 6. The function H abstracts N by mapping it into
some space H, hence reducing the size of the state space, or making it finite in
the first place. We are interested in the granularity function being finitary, i.e.
mapping into a finite subset Hfin ⊆ H for all finite sets of labels Labfin ⊆ Lab as
they arise from any concrete program. This ensures termination:

172 S. Nanz, F. Nielson, and H.R. Nielson

Theorem 10. If the granularity function H is finitary, then the algorithm of
Table 6 always terminates.

As an example, consider the following family of granularity functions Hi,j , where
i, j ∈ N ∪ {∞} and i ≤ j (all Hi,j are finitary):

Hi,j(E) = {(�, [m,n]) : E(�) = [m,n], i ≤ m, n ≤ j}
∪ {(�, [m,∞]) : E(�) = [m,n], i ≤ m, n > j}
∪ {(�, [0, n]) : E(�) = [m,n], i > m, n ≤ j}
∪ {(�, [0,∞]) : E(�) = [m,n], i > m, n > j}

For instance, H1,1 focuses on lower and upper bounds being either 0 or 1, thus
abstracting from the actual counts. In this way, E[� �→ [1, 2]] and E[� �→ [2,∞]]
would both be represented by the same state, while E[� �→ [0, 2]] would not.

Example. 7 For the program of Example 1 and granularity function H1,1, the
worklist algorithm produces the modal abstraction shown in Figure 1 (for all
must edges, the parallel may edges are omitted). Note that the may edge origi-
nating from q2 describes that after executing τ5 we cannot be sure whether the
lock is released using the synchronisation of the actions r2 and r6, or whether
the process is stuck. This is indeed as we would expect.

Correctness. The following result states the correctness of the modal abstraction
produced by the worklist algorithm with respect to Definition 7.

Theorem 11. Suppose that the algorithm of Table 6 terminates and produces a
modal abstraction A for an input process P0. Then A is faithful for P0.

Implementation. We have implemented our algorithm in OCaml, and have used it
to test its performance on a scalable specification of the synchronisation behaviour
in the Ingemarsson-Tang-Wong (ITW) protocol [1], a multi-party version of the
Diffie-Hellman key agreement protocol. While a presentation of the full example is
beyond the scope of this paper, our experimental results suggest practicability of
our method, although the prototype implementation uses an explicit, rather than
symbolic, encoding of the graph of the modal abstraction. We can also deduce a
simple property for the ITW protocol, namely that all synchronisations are forced,
since an H1,1-abstraction contains only must edges. In order to be able to check
more complex modal properties, we plan to add tool support for (symbolic) model
checking of a suitable modal logic (see Section 5.1) in future work.

6 Conclusion

We have shown how to design a static analysis using interval approximations
of exposed actions in order to construct modal abstractions of concurrent pro-
cesses given as terms of a process algebra. A main motivation for this work is
the planned integration of our method with model checking, hence obtaining a
complete abstraction-based verification framework. It would also be interesting

Modal Abstractions of Concurrent Behaviour 173

to investigate the use of a relational abstraction, e.g. using polyhedra instead
of intervals, in order to increase precision by preserving dependencies between
label counts.

References

1. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

2. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999)

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Principles of Programming Languages (POPL 1979), pp. 269–282. ACM Press,
New York (1979)

5. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems 19(2), 253–291 (1997)

6. De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

7. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

8. Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 212–
226. Springer, Heidelberg (2006)

9. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation
for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001 and ETAPS
2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

10. Kleene, S.C.: Introduction to Metamathematics. Biblioteca Mathematica, vol. 1.
North-Holland, Amsterdam (1952)

11. Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science
(LICS 1988), pp. 203–210. IEEE Computer Society, Los Alamitos (1988)

12. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

13. Milner, R.: Communicating and Mobile Systems: The pi-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

14. Nanz, S., Nielson, F., Nielson, H.R.: Topology-dependent abstractions of broadcast
networks. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR. LNCS, vol. 4703, pp.
226–240. Springer, Heidelberg (2007)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

16. Nielson, F., Nielson, H.R., Sagiv, M.: Kleene’s logic with equality. Information
Processing Letters 80, 131–137 (2001)

17. Nielson, H.R., Nielson, F.: A monotone framework for CCS. Computer Languages,
Systems & Structures (under revision) (2006)

18. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and
3-valued abstraction-refinement. ACM Transactions on Computational Logic 9(1)
(2007)

Hiding Software Watermarks in Loop Structures

Mila Dalla Preda, Roberto Giacobazzi, and Enrico Visentini

Dipartimento di Informatica, Università di Verona
Strada Le Grazie, 15 – 37134 Verona (Italy)

{mila.dallapreda,roberto.giacobazzi,enrico.visentini}@univr.it

Abstract. In this paper we propose a software watermarking technique based on
the fact that different semantic instances might be abstracted in the same syntac-
tic object. Our idea is to hide the watermark in a particular semantic instance and
to distribute the corresponding syntactic construct. The extraction process uses
a secret key in order to recover the information loss and reconstruct the water-
mark. In particular, we focus on loops and we base the embedding and extraction
algorithm on the semantic understanding of loop-unrolling.

1 Introduction

Nowadays software piracy, i.e., the illegal reuse of proprietary code, is a key concern
for software developers. Code obfuscation, whose aim is to obstruct code decipher-
ment, represents a preventive tool against software piracy: attackers cannot steal what
they do not understand [7,8]. Once an attacker goes beyond this defense, software wa-
termarking allows the owner of the violated code to prove the ownership of the pirated
copies [5,6,14,15]. Software watermarking is a technique for embedding a signature,
i.e., an identifier reliably representing the owner, in a program. This allows software de-
velopers to prove their ownership by extracting their signature from the pirated copies.
A good watermark has to be resilient to distortive attacks and not easy to remove [6].

Most of the existing watermarking techniques target a program feature which can as-
sume many configurations, but hide the watermark in just one of them. Consider, for ex-
ample, the watermarking technique [17] that modifies the register allocation: although
there are many allocations that suit the program data flow, only one is designated to be
the signature and thereby used in the marked program. The same idea applies in [14],
where a distinctive permutation of basic blocks is selected among the many possible
ones. Both [14] and [17] are static techniques, because they affect only the layout of
programs. Notice that a statically watermarked program exhibits only the watermark
configuration and rules out all the other ones: this may help, rather than hinder, attack-
ers, not to mention the ease of subverting layout while preserving functionality.

Dynamic watermarking techniques exploit configurations that programs assume at
runtime, thus allowing many candidate configurations to coexist in the same program.
For instance, the path-based technique [4] targets the runtime branching behavior of
programs: a program executes different paths on different inputs, but only the spe-
cial input provides the path that outlines the signature. Likewise, the threading tech-
nique [16] yields multi-thread programs in which different configurations arise from
how race conditions between threads are resolved; once again, a special input provides

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 174–188, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hiding Software Watermarks in Loop Structures 175

Fig. 1. Watermarking loops with loop-based watermarks

the configuration associated to the signature. Such dynamic techniques are not trivial to
thwart: both branching and threading behaviors are tied to functionality, hence their dis-
tortion may result in a distortion of functionality. The coexistence of watermarked and
unwatermarked configurations within the same program also characterizes the abstract
watermarking technique [13]. Here a configuration is a parametric abstract domain say-
ing whether a watermark variable w, which is assigned twice and computed through
the Horner scheme, is constant or not. Observe that the main point is not the use of the
Horner scheme but the fact that w is constant only in the domain parametrized by a key,
while other domains consider w to have stochastic behavior [13].

The idea. Contrary to [13], loops are the basic block of the dynamic watermarking
technique we propose in this paper. A loop is a programming construct in which a piece
of code, called the loop body, is executed repeatedly, thus giving rise to sequences of
iterations. In the proposed technique, any subsequence of such sequences is a candidate
watermarking configuration. The aim is to embed, in one of the subsequences, a loop-
based watermark, i.e., a watermark that is itself computed iteratively. This is done by
enriching the loop body with additional code that yields the signature only within the
watermarking subsequence – otherwise it does not produce significant results. Consider
for example the program s := 0; for i := n to 50 do s := s+ i od, which performs 50
iterations if n = 1. Let the Beast Software Corporation have signature 666, computed
in 2 iterations by W := 53; for i := 17 to 18 do W := W + i2 od. To watermark
the former program, Beast moves both W := 53 and W := W + i2 in the body of
the original loop, thus obtaining program s := 0; for i := n to 50 do Pi od, in which
Pi � [W := s−83; s := s+i; W :=W +i2]. Expression s−83 evaluates precisely to
53 only when n = 1 and i = 17: these are the key values for detecting the watermarking
subsequence, which spans two iterations out of 50 (those at i = 17 and i = 18). At
extraction time such a subsequence is made syntactically independent from the native
loop: s := 0; for i := n to 16 do Pi od; Pi; Pi+1; for i := 19 to 100 do Pi od.
What is useless for the computation of the signature is then sliced away [19]: s := 0;
for i := n to 16 do s := s+i od; W := s−83; W :=W+i2; W :=W+(i+1)2. Here,
when n = 1,W outputs 666. The tool we have used to make the subsequence crop out is
loop-unrolling [2], a loop transformation that writes out iterations into sequential code,
thereby making loop behavior at each iteration syntactically analyzable. As we show in
Fig. 1, loop-unrolling is the core of both the embedding and extraction algorithms.

176 M. Dalla Preda, R. Giacobazzi, and E. Visentini

In a native loop L performing N iterations on input I , we can embed a loop-based
watermarkW requiringNW ≤ N iterations of a code fragmentMW , called stegomark.
By design,MW has to get the correct initialization only when it is evaluated in a specific
native iteration Δ, called promoter. We designate Δ by unrolling L entirely. We estab-
lish the dependence that bindsMW to Δ through program slicing [19]. Then we fold L
and we insert MW in its body, thus obtaining LW . For an attacker now unrolling LW is
not of help in determining Δ anymore, because MW appears in every iteration. More-
over, if LW is contained in program PW , any loop L′ in PW that includes a fragment
of code M ′ matching the structure of MW may potentially carry a watermark as well
(although L′ �= LW is highly unlikely to yield a reliable signature). Thus, to retrieve
the signature, for each L′ we have to: (i) perform a partial unrolling which exposes, if
possible, only the subsequence of NW iterations starting fromΔ; (ii) slice PW using as
criterion the code of M ′ included in the last iteration of the subsequence; (iii) run the
slice on input I and collect the result in the set S of candidate signatures. Finally we
have only to identify the signature among the elements of S. Observe that the proposed
scheme allows the embedding of any kind of loop-based watermarks. In the specific wa-
termarking technique we describe in Sec. 5, the iterative construction of the signature
is provided by the evaluation of a polynomial through the Horner scheme as in [13].
We specify programs and their semantics following the syntax and semantics of the
simple imperative language described in [12]. Syntactic program transformations, like
loop-unrolling and code insertion, are related to their semantic counterpart following
the abstract interpretation-based framework of Cousot and Cousot [12].

2 Preliminaries

Notation. Let ℘(X) denote the powerset of a set X , namely the set of all subsets
of X : ℘(X) � {Y | Y ⊆ X}. A poset is a set X endowed with a partial ordering
≤X , denoted 〈X,≤X〉. Let ⊥X denote, when it exists, the minimum of poset X , i.e.,
∀x ∈ X. ⊥X ≤X x. An element a is an upper bound of X if ∀x ∈ X. x ≤X a. The
minimum of the set of upper bounds ofX , when it exists, is called the least upper bound
(lub) of X and it is denoted as

∨
X . A function f : X → Y from poset X to poset Y

is surjective when ∀y ∈ Y. ∃x ∈ X. f(x) = y. It is ⊥X-strict when f(⊥X) = ⊥Y . It
is monotonic if ∀x, x′ ∈ X. x ≤X x′ =⇒ f(x) ≤Y f(x′). It is additive if it preserves
the lub of every S ⊆ X , i.e., f(

∨
X S) =

∨
Y f(S), where f(S) � {f(x) | x ∈ S}.

Let f : X → X be an additive function. A fixpoint of f is an element x ∈ X such that
f(x) = x. The least fixpoint lfp≤X f is the minimum among the fixpoints of f in X .

Abstract Interpretation. In abstract interpretation, any description of program behav-
ior is obtained as an approximation (abstraction) of the most detailed (concrete) pro-
gram specification available, which is usually a formal semantics [10,11]. Both concrete
semantics and abstract behavior are computed on posets: hence there are a concrete
poset 〈C,≤C〉 and an abstract poset 〈A,≤A〉, whose orderings qualitatively model
relative precision between elements. When an abstraction map α : C → A and a con-
cretization map γ : A → C interrelate the two domains by forming an adjunction,
i.e., ∀c ∈ C, a ∈ A. α(c) ≤A a ⇐⇒ c ≤C γ(a), we have a Galois connection, de-

noted C −→←−
α

γ
A. In particular, if α is surjective, we have a Galois insertion, denoted

Hiding Software Watermarks in Loop Structures 177

Program Syntax
Integers n ∈ Z
Variables Y ∈ X
Arith. Exps E ∈ E,
E ::= n | Y | E1@ E2

Bool. Exps B ∈ B,
B ::= E1 � E2 |B1@ B2 |¬B|tt|ff

Actions A ∈ A,
A ::= B | Y := E | Y := ?

Symbols s ∈ S
Labels L ∈ L � N × N × S
Commands C ∈ C,
C ::= L: A → L

′;
Programs P ∈ P � ℘(C)

Program Semantics
A(n)ρ � n

A(Y)ρ � ρ(Y)

A(E1@ E2)ρ � A(E1)ρ @ A(E2)ρ

B(tt)ρ � tt
B(ff)ρ � ff
B(¬B)ρ � ¬B(B)ρ
B(E1 � E2)ρ � A(E1)ρ � A(E2)ρ

B(B1@ B2)ρ � B(B1)ρ @ B(B2)ρ

S(B)ρ � {ρ′ | B(B)ρ′ = tt ∧ ρ′ = ρ}

S(Y := E)ρ � {ρ[Y := A(E)ρ]}
S(Y := ?)ρ � {ρ′ | ∃z ∈ Z. ρ′ = ρ[Y := z]}

Program Abstractions
act(L: A → L

′;) � A

lab(L: A → L
′;) � L

lab(P) �
S

C∈P
{lab(C)}

suc(L: A → L′;) � L′

suc(P) �
S

C∈P
{suc(C)}

var(E) � {Y ∈ X | Y is in E}

var(B) � {Y ∈ X | Y is in B}

var(Y := E) � {Y} ∪ var(E)
var(Y := ?) � {Y}

var(C) � var(act(C))
var(P) �

S
C∈P

var(C)

Fig. 2. Syntactic and semantic program constructs

C →−→←−
α

γ
A; it can be proved that we always have a Galois insertion whenever α, γ are

monotonic, c ≤C γ(α(c)) and α(γ(a)) = a. Given a Galois connection C −→←−
α

γ
A, a

concrete function f : C → C and an abstract function f � : A→ A, we say that f � is a
correct approximation of f in A if α ◦ f ≤A f � ◦ α. We let fA � α ◦ f ◦ γ denote the
best correct approximation of f on A. When the correctness condition is strengthened
to equality, i.e., when α ◦ f = f � ◦ α, the abstract function f � is a complete approxi-
mation of f on A. When α is ⊥C-strict and additive and f � is complete wrt. f and A,
then α(lfp≤C f) = lfp≤A f �, i.e., no loss of information is accumulated in the abstract
computation through f � [1,9]. Then a fixpoint transfer can be made from C to A.

Programming Language. We consider the imperative language introduced in [12] (see
Fig. 2). Any command C has the form L:A→ L′;, meaning that C is referred to through
label L, performs action A and in turn refers to commands with label L′. A can be either
a deterministic (Y := E) or random assignment (Y := ?), or a boolean test evaluation.
A label or entrypoint L � ims consists of an index i ∈ N, a memory value m ∈ N
and a symbol s from an alphabet S: whenever i,m > 0, we have that C is the m-
th copy of a native command C at entrypoint 00s and C is also member of the i-th
unrolled loop (see Sect. 4). A program P is a possibly infinite set of commands 1 whose
execution starts at entrypoints in L(P) ⊆ lab(P). Program variables in P take their
values in an environment ρ ∈ E(P), which is a mapping from var(P) = dom [ρ] to
Z ∪ {�}, where � �∈ Z is the undefined value. When the domain of ρ is not relevant,
we can write ρ ∈ E. As shown in Fig. 2, we use functions A(E) : E(P) → Z ∪ {�}
and B(B) : E(P) → {tt, ff,�} to evaluate arithmetic (E) or boolean (B) expressions
of P; evaluation propagates � from subexpressions to superexpressions. We also use
function S(A) : E(P) → ℘(E(P)), which evaluates action A by returning the set of
environments A generates when executed. A state s = 〈ρ, C〉 pairs an environment ρ ∈
E(P) with a command C ∈ P. The set of states resulting from the execution of C in ρ is
S(〈ρ, C〉) � {〈ρ′, C′〉 | C′ ∈ P∧ρ′ ∈ S(act(C))ρ∧suc(C) = lab(C′)}; relation S models

1 Here we follow [12] and consider programs as possibly infinite sequences of commands.

178 M. Dalla Preda, R. Giacobazzi, and E. Visentini

the transition between states. From the set L(P) ⊆ lab(P) of the initial entrypoints of
P, we can define the set I(P) � {〈ρ, C〉 | ρ ∈ E(P) ∧ C ∈ P ∧ lab(C) ∈ L(P)} of
the initial states of P. Trace semantics S(P) � lfp⊆ F(P) is the least fixpoint of an
operator F(P)T � I(P) ∪ {σss′ | σs ∈ T ∧ s′ ∈ S(s)}. Each finite partial trace
σ ∈ S(P) ⊆ D records a finite partial execution of P. We let D be the set of the finite
partial traces of all programs and σj be the (j + 1)-th state of σ. A set T ∈ ℘(D)
of traces can be abstracted by collecting only the commands executed along the traces
[12]. Thus �(T) � {C | ∃σ ∈ T . ∃j ∈ [0, |σ|). ∃ρ ∈ E. σj = 〈ρ, C〉} induces a Galois

insertion 〈℘(D),⊆〉 →−→←−
�

S 〈P/≡,�〉 which interprets programs as an abstraction of

their (trace) semantics. In the abstract domain of programs, P and Q collapse (P ≡ Q)
iff S(P) = S(Q) up to semantic equivalences between actions (for instance, Y := 6
is semantically equivalent to Y := 2 × 3). The syntactic refinement P � Q holds iff
S(P) ⊆ S(Q) up to semantic equivalences between actions.

Principle of Program Transformation. Any syntactic program transformer �, altering
the code of P and returning new program P′, induces a corresponding semantic trans-
former t turning S(P) into S(P′) [12]. If we let t(T) � {t(σ) | σ ∈ T }, then t induces

a Galois connection 〈℘(D),⊆〉 −→←−
t

γt 〈℘(D),⊆〉, where t acts as an abstraction. By

composing the two Galois connection introduced so far, we can derive a similar notion

about �, i.e., 〈P/≡,�〉 −→←−
�

γ� 〈P/≡,�〉 [12]. This kind of composition allows us to de-

rive � as the best correct approximation of semantic transformer t, i.e., � � � ◦ t ◦ S. In
particular, when the transformation is decidable, we have � ≡ � ◦ t ◦ S. The systematic
design of � from t takes advantage of fixpoint transfers [12]. In the following we con-
sider only decidable transformations, such as loop-unrolling and assignment-insertion.
Hence, we derive � � lfp��t in fixpoint form by combining � ≡ � ◦ t ◦ S with the
following equivalence: � ◦ t ◦ S = � ◦ t ◦ lfp⊆ F = � ◦ lfp⊆ Ft ≡ lfp��t. Notice
that the first equality follows by definition of S; the other ones hold only if operators
Ft : ℘(D) → ℘(D) and �t : P/≡ → P/≡ are designed to fit the requirements of

the fixpoint transfers applied within Galois connections 〈℘(D),⊆〉 −→←−
t

γt 〈℘(D),⊆〉

and 〈℘(D),⊆〉 →−→←−
�

S 〈P/≡,�〉 respectively. The correctness of � is formalized through

some observational abstraction αO such that 〈℘(D),⊆〉 −→←−
αO

γO 〈DO,�O〉. Trans-

former � is correct wrt. αO if and only if for every program P ∈ P, αO(S(P)) =
αO(t(S(P))) [12].

3 Assignment-Insertion

Let us define in the framework described above the transformation of assignment-
insertion that we exploit for the embedding of MW . Suppose we wish to insert, at
entrypoint J ∈ lab(P), an assignment W := E; we use J, J′. . . to denote labels targeted
for insertion and L, L′. . . to denote other labels. Syntactically, the solution is straightfor-
ward (see Fig. 3): we modify in P every command referring to J so that now it refers
to a new J �∈ lab(P), then we insert in P a new command C � J: W := E → J;,

Hiding Software Watermarks in Loop Structures 179

// Original program P

00e Z := 0;
00f X := 0;

// Native for-loop F

00g ¬(X < I0) → end;
00g X < I0 → 00h;
00h Y := Fib(X+ I1);
00v Z := Z+ Y× Y;
00i X := X+ 1 → 00g;

// Watermarked program P
′

00e Z := 0;
00f X := 0;

// for-loop F
′

00g ¬(X < I0) → end;
00g X < I0 → 00h;
00h Y := Fib(X+ I1);

→ 00v W := (215− Y)× 259;
00v Z := Z+ Y× Y;

→ 00i W := 14× W+ 245760;
00i X := X+ 1 → 00g;

Assignment-insertion turns P into P
′. Then P

′

yields program Q provided that its for-loop F′

is unrolled with u = 〈1, 3〉 and � = 〈5, 2〉.
The entrypoint of each program is 00e. The new
assignments carry the watermark of signature
s = 120736. To extract s, we need to run on
P
′ the algorithm described in Sec. 5. The algo-

rithm computes Q and try to detect a candidate
assignment (). The copies (�) of that assign-
ment are discarded. In resulting program Q

′ it de-
termines (→ ◦) backward-slicing criterion C and
computes slicing S. On the key input, the com-
mands in S yield signature s embedded in P

′.

// Program Q

// generated at extraction time
00e Z := 0;

S 00f X := 0;
// unrolled for-loop F1 (u1 = 1)

S 10g ¬(X < I0 − 5) → 20g;
S 10g X < I0 − 5 → 10h;

10h Y := Fib(X+ I1);
10v W := (215− Y)× 259;
10v Z := Z+ Y× Y;
10i W := 14× W+ 245760;

S 10i X := X+ 1 → 10g;
// unrolled for-loop F2 (u2 = 3)

S 20g ¬(X < I0 − 4) → 00g;
S 20g X < I0 − 4 → 20h;
S 20h Y := Fib(X+ I1);

	 S 20v W := (215− Y)× 259;
20v Z := Z+ Y× Y;

◦ S 20i W := 14× W+ 245760;
20i tt;
21g tt;
21h Y := Fib((X+ 1) + I1);

� 21v W := (215− Y)× 259;
21v Z := Z+ Y× Y;

◦ S 21i W := 14× W+ 245760;
21i tt;
22g tt;
22h Y := Fib((X+ 2) + I1);

� 22v W := (215− Y)× 259;
22v Z := Z+ Y× Y;

→ ◦ S 22i W := 14× W+ 245760;
S 22i X := X+ 3 → 20g;

// for-loop F of program P
′

00g [...]

Fig. 3. Three programs

obtaining P′. In case W ∈ var(P), however, S(P′) may differ a lot from S(P), as the
new value of W may alter deeply the evaluations of subsequent boolean conditions and
control flow of P. To prevent these major changes, we might restore the value of W
before W is used again. Alternatively, we just exploit a variable W that is either fresh
wrt. P, namely W �∈ var(P), or dead wrt. entrypoint J targeted for the insertion, i.e.,
commands executed after the reaching of J must not define or use W any longer. Under
this hypothesis, 〈ρ0, L: A0 → J;〉〈ρ1, J: A1 → L′;〉 ∈ S(P) can be transformed into
〈ϕ0, L: A0 → J;〉〈ϕ1, C〉〈ϕ′

1, J: A1 → L′;〉 ∈ S(P′). We let ϕ0, ϕ1 be ρ0, ρ1 enriched
with W �→ � in case W is fresh. On the other side, we let ϕ′

1 � ρ1 ⊕ {W �→ A(E)ρ1},
meaning that W has to belong to dom [ϕ′

1] and has to take value A(E)ρ1. We say that ϕ′
1

is an enhancement of ρ1. In general, given ρ ∈ E, its enhancement ρ⊕ω � (ρ \ω)∪ω

180 M. Dalla Preda, R. Giacobazzi, and E. Visentini

tin(ε〈ρ,C〉) � tin(〈ρ,C〉, {WJ ← � | WJ ∈ W ∧ WJ �∈ dom [ρ]})

tin(σ′〈ρ′
, C

′〉〈ρ,C〉) � let σ〈ρ, C〉 = tin(σ′〈ρ′
, C

′〉) in σ〈ρ, C〉tin(〈ρ, C〉, ρ restricted to domain W)

tin(〈ρ,C〉, ω) � let ϕ = ρ ⊕ ω in match tin(C) with

J: WJ := EJ → L
′;C′ �−→ 〈ϕ, J: WJ := EJ → L

′;〉〈ϕ[WJ := A(EJ)ω], C′〉

C
′ �−→ 〈ϕ, C

′〉

tin(J: A → J
′;) � J: WJ := EJ → J;J: A → J

′; tin(L: A → J
′;) � L: A → J

′;

tin(J: A → L
′;) � J: WJ := EJ → J;J: A → L

′; tin(L: A → L
′;) � L: A → L

′;

Fig. 4. Semantic assignment-insertion

augments ρ with the mappings in ω ∈ E, overwriting A(W)ρ with A(W)ω in case there
is a clash on W. Due to the triviality of the trace transformation, observational abstrac-
tion αin

O for assignment-insertion needs only to discard the inserted states and return the
resulting sequence, expunged from environments:

αin
O(σ) � λj. αin

O(σj) αin
O(ims: A→ L′;) � ims: A→ L′;

αin
O(〈ρ, C〉) � αin

O(C) αin
O(ims: A→ L′;) � ε .

Semantic transformation tin for assignment-insertion, shown in Fig. 4, scans the traces
of P state by state, performing different insertions. Each time it finds entrypoint J, it
inserts correspondent assignment WJ := EJ. We have that each J is a target label in P,
each WJ is a variable from a set W and each EJ is such that var(EJ) ⊆ var(P)∪W . The
algorithm also enhances the environments of the trace, replacing each ρ with ρ⊕ω. To
this purpose, it maintains a special environmentω which changes dynamically from state
to state. At the beginning, it tracks only the fresh variables inW , mapping each one to �.
In the following, after a state has been transformed, it tracks all variables inW , deriving
their values from the (enhanced) environment of the transformed state. Since each WJ ∈
W is dead at entrypoint J, the enhancement of ρ influence neither the evaluation of
arithmetic and boolean expressions, nor the control flow, as desired. We can formally
prove this fact by taking advantage of αin

O .

Proposition 1. Let P be a program and σ ∈ S(P). Then tin(σ) is a trace and αin
O(tin(σ))

= αin
O(σ). Furthermore � ◦ (tin ◦ F) = �in ◦ �.

The fixpoint transfer inside the proposition allows us to derive from tin a syntactic algo-
rithm �in for assignment-insertion. We express it as follows:

INITin(P) � {C′ | ∃C ∈ P. lab(C) ∈ L(P) ∧ C′ is in tin(C)}
NEXTin(P)(Q) � {C′ | ∃C ∈ P. ∃D ∈ Q. C′ is in tin(C)∧

lab(C) = ims ∧ (suc(D) = ims ∨ suc(D) = ims)}
ITERin(P)(Q) � let Q′ = Q ∪ NEXTin(P)(Q) in if Q′ = Q then Q′ else ITERin(P)(Q′) fi.

Hiding Software Watermarks in Loop Structures 181

4 Loop-Unrolling

The easiest looping constructs to unroll are for-loops. Program P of Fig. 3 includes a
for-loop F. This loop, on input 〈I0, I1〉, sums in Z the squares of the numbers which, in
the Fibonacci sequence, have indexes from I0 to I0 +I1−1: if e.g. I0 = 4 and I1 = 3,
then Z finally evaluates to 32+52+82 = 98. Whenever a program P includes a for-loop
F, we write F ∈ fors(P). More formally, F ∈ fors(P) iff F ⊆ P and F � {G, Ḡ, I}∪H. The
couple of commands G � g:X < Ė→ h; and Ḡ � g:¬(X < Ė) → p;, with g �= h and
g �= p, implements a branching named guard. As F always starts with the evaluation of
its guard, we have L(F) = {g}, lab(F)∩ lab(P\F) = ∅ and suc(P\F)∩ lab(F) ⊆ {g}.
The guard is satisfied as long as X ∈ X is less2 than Ė ∈ E. If the guard is not satisfied,
the for-loop ends transferring the control flow at entrypoint p �∈ lab(F). Otherwise, the
execution goes on through H, a set of commands named body, and eventually through an
increment command I � i: X := X + Ë → g;, with i �= g and i = h ∨ i ∈ suc(H);
notice that I makes the control flow return to the guard again. We formally define H as
the collection of all the commands of P that are reachable from G without going through
I, i.e., H � lfp⊆ flow(P), where flow(P)(Q) � {C ∈ P \ {I} | lab(C) = suc(G) ∨ ∃C′ ∈
Q. lab(C) = suc(C′)}. We require g, i �∈ lab(H). We expect both X and the variables in
Ė and Ë not to be assigned inside H. We require X not to be used in Ė or Ë.

Finite partial trace 〈ρ, G〉η〈ρ′, I〉 ∈ S(F) is an iteration of for-loop F, where η ∈
S(H); if H = ∅ then η = ε. A maximal trace σ ∈ S(F) is a sequence of terminating
iterations3 followed by a state with command Ḡ. Along the trace, the values of Ė and Ë
do not change, while the value of X, though constant throughout each iteration, increases
by Ë from one iteration to another. Thus, if ρ is an environment in a state of σ ∈ S(F),
we can predict how many increments X still has to undergo, i.e., the number of the
iterations from ρ till the end of σ. Let ė � A(Ė)ρ, ë � A(Ë)ρ and x � A(X)ρ. We

just need to define αF : E(F) → N such that αF(ρ) �
⌊

(ė−x)+(ë−1)
ë

⌋
if ė ≥ x and

αF(ρ) � 0 otherwise. We let ι be the total number of iterations of σ.
Along σ ∈ S(F) iterations are naturally unfolded, i.e., they come sequentially one

after another. In �({σ}) they fold because any command C ∈ F, although occurring in
many different iterations, always appears with the same entrypoint lab(C). In the pro-
posed watermarking technique, folding has to be neutralized at embedding/extraction
time. Loop-unrolling [2] is good at this task because it changes labels in the following
way: given the so-called unrolling factor u ∈ N, it makes all and only the occurrences
of C at iterations k (mod u) have the same label (with 0 ≤ k < ι), thus partitioning the
iterations of σ into u classes. Only iterations from the same class fold together. So the
code of the unrolled loop is u times longer than F and each of its iterations sequentially
executes the task of u native iterations. Consider for instance for-loop F′ ∈ fors(P′)
in Fig. 3, which has a command C with entrypoint 00h. Clearly C appears in every iter-
ation of any σ ∈ S(F′). Now let σ = σ′σ′′, where σ′ encompasses the first 0 ≤ ι1 ≤ ι
iterations and σ′′ the last ι2 = ι − ι1 ones. To unroll σ′′ with factor u2 = 3, we scan

2 For short, we ignore similar kinds of for-loops, which use >, ≤ or ≥ as comparison operator.
3 An iteration also might not conclude: this occurs when the execution of F gets trapped inside

some non-terminating loops possibly included in H. In such a case none of the partial traces of
S(F) can be recognized as a maximal trace which fully outlines the entire execution.

182 M. Dalla Preda, R. Giacobazzi, and E. Visentini

Y := ?[(X+m×Ë)/X] � Y := ?

Y := E[(X+m×Ë)/X] � Y := E[(X+m×Ë)/X]

B1 @ B2[(X+m×Ë)/X] � B1[(X+m×Ë)/X] @ B2[(X+m×Ë)/X]

¬B[(X+m×Ë)/X] � ¬B[(X+m×Ë)/X]

tt/ff[(X+m×Ë)/X] � tt/ff

E1 @ E2[(X+m×Ë)/X] � E1[(X+m×Ë)/X] @ E2[(X+m×Ë)/X]

n[(X+m×Ë)/X] � n

Y[(X+m×Ë)/X] � Y (Y �= X)

X[(X+m×Ë)/X] � X+ m × Ë (m �= 0)

X[(X+0×Ë)/X] � X

I(i, C) �

8>>><>>>:
i + 1 if i < I ∧ (C = Ḡ

∨ (C �∈ F ∧ suc(C) = 00g))

0 if i = I ∧ C = Ḡ

i otherwise

M(m, i, I) �
(

m + 1 if m ∈ [0, ui − 1)

0 if m = ui − 1

M(m, i, C) � m if C �= I

tlu(ε〈ρ,C〉) � let i = if C ∈ F then 1 else 0 in tlu(〈ρ,C〉, 0, i) fi

tlu(σ′〈ρ′
, C

′〉〈ρ,C〉) � let σ〈ρ, L: A → ims;〉 = tlu(σ′〈ρ′
, C

′〉) in σ〈ρ, L: A → ims;〉tlu(〈ρ, C〉, m, i)

tlu(〈ρ,C〉, m, i) � V(ρ[X := A(X)ρ − mA(Ë)ρ], tlu(C, m, i))

tlu(00s: A → 00s′;, m, i) � let 〈m′
, i

′〉 = 〈M(m, i, 00s: A → 00s′;), I(i, 00s: A → 00s′;)〉 in

let 〈L, L′〉 = 〈ims, i
′
m

′
s
′〉 in let B = X < Ė− (
i + ui − 1) × Ë in match C with

Ḡ �−→ if m > 0 then L: ff → L; else if i = 0 then L: ¬B → L
′;

else L: ¬B → i
′
m

′
g; tlu(Ḡ, m′

, i
′) fi

G �−→ if m > 0 then L: tt → L
′; else if i = 0 then L: B → L

′;

else let i
′′ = I(i, Ḡ) in L: B → L

′; L: ¬B → i
′′
m

′
g; tlu(G, m′

, i
′′) fi

I �−→ if m = ui − 1 then L: act(C)[(X+m×Ë)/X] → L
′; else L: tt → L

′; fi

�−→ L: act(C)[(X+m×Ë)/X] → L
′;

V(ρ,ls) � match ls with

L: B → L
′; L

′: ¬B → L
′′; ls′ �−→ if B(B)ρ then 〈ρ, L: B → L

′;〉 else 〈ρ, L
′: ¬B → L

′′;〉V(ρ,ls′) fi

C ls′ �−→ 〈ρ,C〉V(ρ,ls′)

ε �−→ ε

Fig. 5. Semantic loop-unrolling

the iterations of σ′′ by triplets; for each triplet, we set the memory value of lab(C) to
0 in the first iteration, 1 in the second iteration and to 2 in the third iteration. If we
fold the new trace, we obtain for-loop F2 of program Q in Fig. 3: here three copies of
C coexists at entrypoints 20h, 21h and 22h. Similarly, by unrolling σ′ with the trivial
factor u1 = 1, we get for-loop F1 of Q, in which the only one copy of C is located at
10h. All the copies of C have the same symbol h. As index value, they use a number
identifying the unrolled loop which they are member of. The fact that the code of the
unrolled loops actually implements tuples of native iterations is essential to the pro-
posed watermarking technique. We hide signatures in iterations, which are semantic
objects. However, the embedder and the extractor are automatic tools that cannot deal
with semantics. But they can deal with code. Thus if we define loop-unrolling as a se-
mantic transformation and then we abstract it to a syntactic transformation [12], we can

Hiding Software Watermarks in Loop Structures 183

safely rely on loop-unrolling to both embed and extract signatures. In our last example
we unrolled σ = σ′σ′′ using u1 only for σ′. To attain this, we kept on unrolling σ only
while X < Ė − (�1 + u1 − 1) × Ë was true, where we let �1 = ι2. This approach was
supported by the following proposition. Define � ∈ [0, ι] to be the lessening factor. Let
g(u, �) � �+u−1 and B̂ � X < Ė− g(u, �)× Ë. Let ρ ∈ E(F) be an environment in σ.

Proposition 2. B(B̂)ρ = ff if and only if 0 ≤ αF(ρ) ≤ g(u, �), i.e., B̂ gets false in σ at
the last but g(u, �) iteration. Moreover �(ι−�)/u�u− u < ι− g(u, �) ≤ �(ι−�)/u�u.

So the unrolling of σ with u1, �1 involved just the first �(ι−�1)/u1�u1 iterations. This did
not keep us from unrolling unprocessed iterations with new factors u2 = 3 and �2 = 0.

As we know, loop-unrolling affects labels. Consider again for-loop F2 in Fig. 3:
in iterations k (mod u2) each 00s was replaced with 2ms, where m � k mod u2 is
the memory value. But loop-unrolling affects actions as well: each iteration of F2, for
instance, stemmed from the merger of u2 = 3 subsequent native iterations. The process
was as follows. Guards and increments were replaced by tt in every iteration of σ′′,
except for iterations 0 (mod u2), where B̂2 = I0 − 4 was used as the new guard, and
for iterations (u2− 1) (mod u2), where act(I)[(X+(u2−1)×Ë)/X] – see Fig. 5 – was used
as the new increment. In iterations k (mod u2), any other act(C) was replaced with
act(C)[(X+m×Ë)/X], and every environment ρ was updated to ρ[X := A(X)ρ−mA(Ë)ρ].
After �(ι−�2)/u2�u2 iterations of σ, B̂2 becomes false; thus here a new state with com-
mand 20g: ¬B̂2 → 00g; was inserted. Such new states are discarded by observational
abstraction αlu

O for loop-unrolling which, for any other state 〈ρ, C〉, gets rid of C and
reverses the update of ρ using the memory value inside lab(C):

αlu
O(T) � {αlu

O(σ) | σ ∈ T } αlu
O(σ) � λj. αlu

O(σj)

αlu
O(〈ρ, ims: A→ ims′;〉) � if (s = s′) ε else ρ[X := A(X)ρ+mA(Ë)ρ] fi .

Semantic transformation tlu for loop-unrolling, shown in Fig. 5, scans a trace in S(P)
and unrolls any subtrace σ ∈ S(F), using factors from vectors u = 〈u1, . . . , uI〉 and
� = 〈�1, . . . , �I〉. For each ui ≥ 1, �i ≥ 0 it produces unrolled for-loop Fi. Native
iterations left unprocessed in the rear of σ belong to F = F0, where the equality holds
since u0 � 1 and �0 � 0. Index i, initially set to 0, is ruled by function I, which
increases it just at the beginning of σ and after the insertion of each new state. When
the unrolling is over, I reverts i to 0. While unrolling is performed (i > 0), B̂i has to be
checked and inserted every ui iterations of σ. The count is kept through memory value
m controlled by function M. The check is performed by validation function V, and it
occurs whenever m = 0 and tlu is about to transform a guard state. In particular, if B̂i

evaluates to false, the additional state is inserted and then unrolling goes on using the
next factors, if any, provided that there are still native iterations to unroll.

Proposition 3. Let P be a program and σ ∈ S(P). Then tlu(σ) is a trace and αlu
O(tlu(σ))

= αlu
O(σ). Furthermore � ◦ (tlu ◦ F) = �lu ◦ �.

tlu turns a trace σ ∈ S(F) into an αlu
O-equivalent trace σ′ ∈ S(F1 ∪ . . . ∪ FI ∪ F),

notwithstanding σ is a subtrace inside a trace of P. Thanks to the fixpoint transfer, we
get the algorithm yielding P′ � P∪ F1 ∪ . . .∪ FI from P ⊇ F. We express it as follows:

184 M. Dalla Preda, R. Giacobazzi, and E. Visentini

INITlu
(P) � {C′ | ∃C ∈ P. lab(C) ∈ L(P) ∧ C′ is in tlu(C, 0, if C ∈ F then 1 else 0 fi)}

NEXTlu
(P)(Q) � {C′ | ∃C ∈ P. ∃L: A → i

′
m

′s′; ∈ Q. lab(C) = 00s′ ∧ C′ is in tlu(C, m′
, i

′
)}

ITERlu
(P)(Q) � let Q′ = Q ∪ NEXTlu

(P)(Q) in if Q′ = Q then Q′ else ITERlu
(P)(Q′) fi .

5 Software Watermarking by Loop-Unrolling

In the watermarking technique we propose here, a signature is a natural number s, which
is computed iteratively in watermark variable W by mean of the following stegomark:
W := a; for X := 0 to n − 1 do W := ξ × W + b; od. This stegomark implements
the Horner technique for the evaluation at x = ξ of n-degree polynomial Pn(x) �
axn + b

∑n−1
j=0 x

j . Hence we have s = Pn(ξ). Let us consider an example: signature
s = 120736, obtained as the evaluation at x = 14 of the 3-degree polynomial P3(x) =
−199948x3 + 245760x2 + 245760x + 245760, can be computed by the following
stegomark: W :=−199948; for X := 0 to 2 do W := 14×W+245760; od. The degree of
Pn is precisely the number n of iterations performed by the for-loop in the stegomark.
The stegomark is going to be embedded in a for-loop F ∈ fors(P) performing, on
some input I, at least n iterations. Thus n can range from 1 to the maximum number
of iterations F can perform when P is executed. Reasonably we assume that for any
for-loop F ∈ fors(P) there exists an input I such that F performs at least one iteration
on I. Thus any for-loop can be targeted for embedding. Likely, we expect that in any
program which is complex enough to be worth protection there is at least a for-loop
where to embed the stegomark. This because, in such programs, large amounts of data
aggregate in data structures, like e.g. arrays, that need for-loops to be manipulated.

Given s and n > 0, we would like Pn(ξ) = aξn + b
∑n−1

j=0 ξ
j = s. We thereby

let a � s
ξn − b

ξn

∑n−1
j=0 ξ

j . We ask for ξ, b and a to be whole numbers, so that s can
be safely evaluated through the stegomark. First, we require ξn to be a divisor of s.
In our example we have s = 120736 = 25 · 73 · 11 and n = 3, so ξ = 14 is one
possible choice. Next, we require b to be a nonzero multiple of ξn, namely b �= 0 and
b = ξn+n′

z, where n′ ∈ N and z ∈ Z are random numbers. In our example we set
b = 143+11 · 15 = 245760. As watermarked program Q in Fig. 3 shows, ξ and b are not
obfuscated. Moreover, by design, it is known that b is a multiple of ξn. If n′ was fixed
by design, e.g. n′ � 0, then n could be easily retrieved – by just subtracting n′ to the
number q of times ξ divides b. This would be unpleasant because n is part of the secret
watermarking key. By letting n′ be selected randomly, what it is known to an attacker
is that 0 < n ≤ q: the greater is n′, the larger is the range of n. Programming languages
do not allow numbers to exceed a prefixed maximum MAX. If parameters ξ and b are
too big, we may compute them using ad-hoc functions fed with smaller values; this also
increases the stealth of such parameters.

Embedding. In order to inlay the stegomark computing s in P, we run the embedding
algorithm shown in Fig. 6. The algorithm looks for a for-loop F that, on a given input
I, performs at least n iterations. If the guard of F includes variables that are initialized
randomly, the number of iterations on I may not be fixed. Therefore we let ι be the
minimum number of iterations of F on I, and we require ι ≥ n. Furthermore, stegomark

Hiding Software Watermarks in Loop Structures 185

funct embed (P, I, W, n, ξ, a, b)
P′ ← P; F ← fors(P);
while F �= ∅ ∧ P′ = P do
F ← next(F); (by def. F � {Ḡ, G, I} ∪ H)
F ← F \ {F};
ι ← min # iterations of F when P is run on I;
if (ι ≥ n ∧ W is dead wrt. the guard of F)

u ← 〈ι〉; � ← 〈0〉;
Q ← �

lu(P; F,u, �);
if (there exists C ∈ Q such that

C = L: A → L′;
L = 1δs with s �= i ∧ δ ∈ [0, ι − n]
A = Y := E with Y ∈ var(Q) ∧ E ∈ E
L′ = 1δv with v ∈ lab(F))
S ← slice(Q, C);
y ← value of Y when S is run on I;
r0 ← a random number in Z \ {y};
r1 ← a random number in Z;

let f(Y) � r1 − a

r0 − y
(Y− y) + a;

w ← a label from lab(H ∪ {I}) that
is reached after v in the CFG of P;

θ0 ← 〈v, W, f(Y)〉;
θ1 ← 〈w, W, ξ × W+ b〉;
P′ ← �

in(P; θ0, θ1); fi fi od
return 〈P′, 〈I, δ, n〉〉;

funct extract(P′, 〈I, δ, n〉)
S ← ∅;
for each F ∈ fors(P′) do

ι ← # iterations of F when P′ is run on I;
if (ι ≥ n)

u ← 〈1, n〉;
� ← 〈ι − δ, ι − δ − n〉;
Q ← �

lu(P′; F,u, �);
for each L: A → L′; ∈ Q such that
L = 20s with s ∈ S
A = W := E with W ∈ var(Q) \ var(E)

∧ E ∈ E
L′ = 20s′ with s ∈ S

do
Q′ ← Q \ {C ∈ Q |

∃m > 0. lab(C) = 2ms};
R ←{L′′: A′ → L′′′; ∈ Q′ |

L′′ = 2[n − 1]s′′ with s′′ ∈ S
A′ = W := E′ with W ∈ var(E)

∧′ E ∈ E
L′′′ = 2[n − 1]s′′′ with s′′′ ∈ S}

if (R is a singleton with element C)
S ← slice(Q′, C);
w ← value of W when S is run on I;
S ← S ∪ {w}; fi od fi od

return S ;

Fig. 6. Embedding and extraction algorithms

variable W must be dead during the execution of F. If such a for-loop does not exists
in P, the algorithm fails and returns P and the empty key. Otherwise, it gets from F
an unrolled for-loop F1 which syntactically displays all the ι iterations as sequential
code: actually, any command C′ ∈ F1 derived from iteration m ∈ [0, ι) is such that
∃s ∈ S. lab(C′) = 1ms; here we also say that C′ is at offset m. Next, the algorithm
looks for a command C at offset δ ∈ [0, ι−n) such that act(C) = Y := E. If it succeeds,
it computes actual value y of Y on input I, using backward-slicing with criterion C.
Then it lets first-degree polynomial f(Y) to model the line passing through points (y, a)
and (r0, r1) in the Cartesian coordinate system; in such a way, one possible dependence
between y and parameter a of the stegomark is established. Finally, the algorithm comes
back to subject program P, and it inserts W := f(Y) at entrypoint lab(C) and W := ξ×W+b
somewhere below, inside the body of F. In such a way, it obtains marked program P′

which it returns together with key 〈I, δ, n〉. Note that we can guarantee f(Y) = a only at
offset δ. If Y denotes stochastic behavior, i.e., it changes its own value from one iteration
to another, the knowledge of δ becomes essential at extraction time to get the correct
initialization of W. This improves reliability and stealth of the watermark. The iteration
at offset δ is the promoter of the signature recovery, and δ measures its displacement in
the sequence of the ι iterations.

186 M. Dalla Preda, R. Giacobazzi, and E. Visentini

As shown in Fig. 3, the embedding phase basically consists in a pair of assignment
insertions. To inlay in P our signature s = P3(14) = 120736, we want the for-loop
to perform at least n = 3 iterations, so we let I0 � 8, obtaining ι = 8. Furthermore,
by fixing I1 � 13 and f � λY. (215 − Y) × 259, we ensure that, at entry point v of
the iteration at offset δ = 3, we have y = Fib(X + I1) = Fib(3 + 13) = 987 and
f(987) = −199948 = a. Thus, once we have chosen label w ≡ i as target entry point
for the second assignment, we insert W := f(Y) at v and W := 14× W + 245760 at w.

Extraction. To extract our signature s from marked program P′, we need to deliver
P′ and key κ = 〈I, δ, n〉 to the algorithm described in Fig. 6. From each for-loop
F in P′ performing on input I a number ι ≥ n of iterations, the algorithm tries to
gain a set of candidate signatures; the final result of the extraction is a union set S
collecting altogether the candidate signatures coming from each set. To gain a set of
candidate signatures from F, the algorithm unrolls F into F1 ∪ F2 ∪ F. The unrolling
is instrumented so as to make unfold, within the body of F2, only the n iterations at
offsets from δ to δ + n − 1. The iterations at lesser or greater offsets are left folded
in F1 and F respectively. Iteration at δ, now denoting offset 0 within the body of F2, is
potentially a promoter. In particular, any of its assignment W := E not defining W in terms
of itself may be the initializer of the stegomark. Given such an assignment command C,
the algorithm removes its copies at nonzero offsets within F2. Next, at offset n − 1, it
looks for a unique assignment C′ redefining W it terms of itself, and it applies backward-
slicing using C′ as criterion. The result is a program S which on input I first provides
an initialization to W, then updates it n times, thus computing candidate signature w.
In particular, if W is the watermark variable, then w = s. Once identified s among the
candidates in S, one has only to prove it to be his/her signature, as discussed above.

We now exploit the algorithm to extract signature s = 120736 from watermarked
program P′ of Fig. 3. Recall that in our running example the key κ is 〈〈I0, I1〉, δ, n〉 =
〈〈8, 13〉, 3, 3〉 and ι = 8. After the unrolling of F ⊆ P′, we get program Q shown in
Fig. 3. The promoter always covers entry points 20s, with s ∈ S. Here both variable
Y and variable W might initialize the stegomark. However, only W at entry point 22i is
able to update itself. After the slicing, we get a program S ⊆ Q which, on input 〈8, 13〉,
sets X to 3, Y to Fib(3 + 13) = 987 and W to (215− 987)× 259 = −199948 = a; just
before terminating, S updates n = 3 times W, finally getting w = 120736 = s.

6 Discussion

In this paper we exploit the semantics of for-loops to hide watermarks. Loop iterations
are described extensionally by traces of execution in which iterations come one after an-
other. When abstracted to code, they collapse into a unique loop body. Thus embedding
the stegomark in the loop body means embedding it in every iteration. Our idea is to set
up the stegomark so that only one iteration, the promoter, can provide the correct ini-
tialization for the computation of the signature. The choice and the localization of the
promoter take place automatically thanks to loop-unrolling, used as a transformation
which abstract iterations from trace to code without making them collapse. We think
that our watermarking technique may be extended to other programming constructs
which, like for-loops, provide code reuse, such as recursive functions and objects.

Hiding Software Watermarks in Loop Structures 187

Signature s must reliably identify the author of the watermarked program. To this
end, the author can let s be the product of a set of prime numbers. If some factors of s
are large enough, its factorization is computationally unfeasible, yet the author is able to
produce it. False positives may be obtained at extraction time, both in the case of marked
and unmarked loops. However, it is unlikely that their factorization is computationally
unfeasible and yet known by a malicious claimer. If the extraction of the signature s
results in a overflow runtime error then, as suggested in [13], s can be replaced with an
equivalent set of smaller signatures obtained through the Chinese remainder theorem.

Watermarked programs can include more than one signature. However, they do not
record which signature was inserted first, and which ones were inserted later through ad-
ditive attacks. Unfortunately, our watermarking technique does not provide any means
to register temporal precedence of signatures. To the best of our knowledge, vulnerabil-
ity to additive attacks is a common drawback to all the exiting watermarking
techniques [5,4]. This key problem might be solved if the insertion of the signature
coincided with a not reversible semantics-preserving program evolution [3]: in such a
case the order of insertion of signatures would become relevant, especially if later evo-
lutions were strictly dependent on earlier ones. As in the field of code obfuscation [7],
nontrivial semantics-preserving program transformations are likely to be systematically
derived only from semantics-based frameworks. Consequently, we suppose that a better
exploitation of the gap between semantics and syntax may be of help in the design of
watermarking techniques that can withstand additive attacks.

Typical loop transformations [2], such as loop-reversal, loop-unrolling and
loop-blocking, might distort the syntactic structure of the marked loop and obstruct
the extraction of the signature; however, they are applicable only when the number of
iterations can be ultimately quantified; thus a countermeasure is to embed the water-
mark in a for-loop not enjoying this property, e.g. a for-loop that updates an array
of arbitrary length. To avoid that the inserted assigments are declared useless for the
output, we must introduce fake dependencies between the output and W, for example by
using opaque predicates which require hard program analyses to be removed [8]. In-
deed our technique does not provide innovative contribution to the age-old problem of
the resilience of watermarks. Anyway we think that semantics-based approaches may
help us understand to which extent watermarks can be tied to the very core of programs.

As suggested by Fig. 1, our watermarking technique seems to resemble the DNA
transcription step in protein biosynthesis. During transcription, information coded in a
DNA stretch is extracted and recoded in a complementary RNA molecule. In partic-
ular, DNA unwinds and produces a small open stretch containing a promoter, which
is a regulatory region providing an entry point for transcription. The transcribed RNA
molecule can be partitioned in exons/introns, i.e., subregions carrying useful/useless in-
formation. Through splicing, every intron in RNA is discarded to keep only exons. Now,
notice that the marked loop can be seen as the folded DNA: at extraction time, partially
unrolling the marked loop corresponds to partially unwinding DNA and producing a
stretch; the iteration targeted by δ is the promoter; slicing and the other minor removals
correspond to RNA splicing. The idea of inserting proprietary information in a DNA
molecule has been initially explored in [18]. Surely, our technique is not applicable to
DNA. However, this comparison could provide intriguing insights for further research.

188 M. Dalla Preda, R. Giacobazzi, and E. Visentini

References

1. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment. J. ACM 33(4),
724–767 (1986)

2. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance
computing. ACM Comput. Surv. 26(4), 345–420 (1994)

3. Cohen, F.B.: Operating system protection through program evolution. Comput. Secur. 12(6),
565–584 (1993)

4. Collberg, C., Carter, E., Debray, S., Huntwork, A., Kececioglu, J., Linn, C., Stepp, M.: Dy-
namic path-based software watermarking. SIGPLAN Not 39(6), 107–118 (2004)

5. Collberg, C., Thomborson, C.: Software watermarking: Models and dynamic embeddings.
In: Principles of Programming Languages 1999, POPL 1999, San Antonio, TX (January
1999)

6. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation – tools for
software protection. Technical Report TR00-03, University of Arizona (February 10, 2000)

7. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech-
nical Report 148, University of Auckland (July 1997)

8. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and stealthy opaque
constructs. In: Principles of Programming Languages 1998, San Diego, CA (1998)

9. Cousot, P.: Constructive Design of a Hierarchy of Semantics of a Transition System by Ab-
stract Interpretation. Theoretical Computer Science 277(1-2), 47–103 (2002)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Los Angeles, California, pp. 238–252. ACM Press, New York (1977)

11. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Conference
Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Antonio, Texas, pp. 269–282. ACM Press, New York (1979)

12. Cousot, P., Cousot, R.: Systematic Design of Program Transformation Frameworks by Ab-
stract Interpretation. In: Conference Record of the 19th ACM Symposium on Principles of
Programming Languages, pp. 178–190. ACM Press, New York (2002)

13. Cousot, P., Cousot, R.: An abstract interpretation-based framework for software watermark-
ing. In: Conference Record of the 31st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Venice, Italy, ACM Press, New York (2004)

14. Davidson, R.L., Myhrvold, N.: Method and systems for generating and auditing a signature
for a computer program. US patent 5.559.884, Assignee: Microsoft Corporation (1996)

15. Moskowitz, S.A., Cooperman, M.: Method for stega-cipher protection of computer code. US
patent 5.745.569, Assignee: The Dice Company (1996)

16. Nagra, J., Thomborson, C.D.: Threading software watermarks. In: Fridrich, J. (ed.) IH 2004.
LNCS, vol. 3200, pp. 208–223. Springer, Heidelberg (2004)

17. Qu, G., Potkonjak, M.: Hiding signatures in graph coloring solutions. In: Pfitzmann, A. (ed.)
IH 1999. LNCS, vol. 1768, pp. 348–367. Springer, Heidelberg (2000)

18. Shimanovsky, B., Feng, J., Potkonjak, M.: Hiding data in Dna. In: Revised Papers from
the 5th International Workshop on Information Hiding, London, UK. Springer, Heidelberg
(2003)

19. Weiser, M.: Program slicing. In: ICSE 1981: Proceedings of the 5th international conference
on Software engineering, Piscataway, NJ, USA, pp. 439–449. IEEE Press, Los Alamitos
(1981)

Inferring Min and Max Invariants Using

Max-Plus Polyhedra

Xavier Allamigeon1,3, Stéphane Gaubert2, and Éric Goubault3

1 EADS Innovation Works, SE/CS – Suresnes, France
2 INRIA Saclay and CMAP, École Polytechnique, France

3 CEA, LIST MeASI – Gif-sur-Yvette, France
firstname.lastname@{eads.net,inria.fr,cea.fr}

Abstract. We introduce a new numerical abstract domain able to infer
min and max invariants over the program variables, based on max-plus
polyhedra. Our abstraction is more precise than octagons, and allows to
express non-convex properties without any disjunctive representations.
We have defined sound abstract operators, evaluated their complexity,
and implemented them in a static analyzer. It is able to automatically
compute precise properties on numerical and memory manipulating pro-
grams such as algorithms on strings and arrays.

1 Introduction

We present a new abstract domain that generalizes zones [1] and octagons [2]
(i.e. invariants of the form xi − xj ≥ cij and ±xi ± xj ≥ c′ij respectively),
while expressing a certain amount of disjunctive properties. Abstract values
are max-plus polyhedra, and allow to infer relations of the form max(λ0, x1 +
λ1, . . . , xn + λn) ≤ max(μ0, x1 + μ1, . . . , xn + μn) and min(λ′0, x1 + λ′1, . . . , xn +
λ′n) ≤ min(μ′

0, x1 +μ′
1, . . . , xn +μ′

n) over program variables x1, . . . , xn, with con-
stants λi, μi in R ∪ {−∞} and λ′i, μ

′
i in R ∪ {+∞}. For instance, the constraint

max(x, y) = max(−∞, z) = z, which forms a particular max-plus polyhedron,
encodes both x − z ≤ 0 and y − z ≤ 0 (zone information), and “either x or y is
z” (disjunctive information). Intuitively, max-plus polyhedra are the analogues
of “classical” closed convex polyhedra in the max-plus algebra, which is the set
R ∪ {−∞} endowed with max as additive and + as multiplicative laws.

Max-plus polyhedra encode disjunctive information, the worst-case complex-
ity of some abstract operators may be important, although relatively similar to
the case of classical polyhedra (see Theorem 1), but this disjunctive information
is treated entirely semantically, and is thus fairly efficient for notoriously diffi-
cult problems in static analysis, such as proving that sorting algorithms indeed
do sort (see Sect. 4). It is in the best of our knowledge the first domain whose
elements describe connected but non convex sets, without having to resort to
complex heuristics for building (partial) disjunctive completions.

We will use a motivating example throughout this article, which is a possible
implementation of the function memcpywhich copies exactly the first n characters
of the string buffer src to dst:

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 189–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

190 X. Allamigeon, S. Gaubert, and É. Goubault

1: int i := 0;
2: unsigned int n, p, q;
3: string dst[p], src[q];
4: assert p >= n && q >= n;

5: while i <= n-1 do
6: dst[i] := src[i];
7: i := i+1;
8: done;

In string analysis, precise invariants over the length of the strings are needed
to ensure the absence of string buffer overflows (see [3,4]). Without any infor-
mation on n, no non-disjunctive string analysis is able to determine any precise
invariant about the resulting length of the string len dst (for instance, using
classical polyhedra, we only get len dst ≥ 0). Indeed, two cases have to be
distinguished: (i) either n is strictly smaller than the source length len src, so
that only non-null characters are copied into dst, hence len dst ≥ n, (ii) or
n ≥ len src and the null terminal character of src will be copied into dst,
thus len dst = len src. With our non-disjunctive analysis, we are able to
infer automatically the invariant min(len src, n) = min(len dst, n), which ex-
actly encodes the disjunction of the two cases. Besides, even with a disjunctive
analysis (for example using trace partitioning [5]), it would be very complex
to automatically determine the disjunction of the cases (i) and (ii), because it
intrinsically relies on semantic information on strings.

Contents. Max-plus polyhedra are not new (see “Related Work” below) but
have not been used yet in static analysis by abstract interpretation, and have
been introduced for entirely different reasons: Section 2 is an introduction to
the required results in the field. As for classical polyhedra, max-plus polyhedra
can be presented both as a system of inequalities (constraints), or by a set
of vertices and rays (generators), see Sections 2.2 and 2.3. But the underlying
algorithms are quite different because of the structure of the max-plus algebra.
For instance, unlike in classical algebra, systems of equality constraints and of
inequality constraints are equivalent in Rmax. In particular, the resulting abstract
domains (max-plus analogues of Karr’s [6] and Cousot-Halbwachs’ [7]) have the
same complexity. Theorem 1 is new: it gives an upper bound on the complexity
of the resolution of a linear equation in the max-plus algebra, which is the
cornerstone of the algorithm allowing to convert representations by (in)equalities
to system of generators, and vice versa. We then prove in Sect. 2.4 that max-plus
polyhedra subsume intervals and zones.

The abstraction and its semantics for a simple imperative language in terms
of max-plus polyhedra are given in Section 3. It is able to infer both max and
min invariants, and contains the abstract domain of octagons. We discuss lin-
earization methods (in the sense of [2]) in Section 3.3 for abstracting in a precise
manner non-linear max-plus expressions and assignments. We end up by describ-
ing some practical applications of this static analysis on strings and arrays, in
Section 4. We also give a set of benchmarks based on the current implementation
we made of the method.

Related Work. The max-plus analogues of convex sets were introduced by K.
Zimmermann [8], who established an analogue of the separation theorem. Max-
plus convex cones have been studied in idempotent analysis, after the work of

Inferring Min and Max Invariants Using Max-Plus Polyhedra 191

Maslov [9]. They also arise in the analysis of discrete event systems [10,11].
They have appeared recently in relation with tropical geometry and phyloge-
netic analysis [12]. See [13,12,14,15,16,17,18] for more background and recent
developments.

Related work in abstract interpretation [19] include work on zones [1],
octagons [2], (classical) polyhedra [7], disjunctive analysis [5,20,21]. An appli-
cation of semirings (such as max-plus) has been made to static analysis by ab-
stract interpretation in [22], although with different techniques and for different
applications (timing behavior).

2 Max-Plus Polyhedra

2.1 The Max-Plus Semiring

The max-plus semiring Rmax is defined as the set R ∪ {−∞}, equipped with
the addition x ⊕ y := max(x, y) and the multiplication x ⊗ y := x + y. The
additive law ⊕ is associative, commutative, and has a zero element � := −∞.
The multiplicative law ⊗ is associative with a unit element � := 0. Besides, the
zero element � is absorbing, i.e. for any x ∈ Rmax, �⊗x = x⊗� = �. The semiring
Rmax differs from a ring in that the elements are not necessarily invertible w.r.t
the addition. An order 2 can be defined on Rmax by x 2 y ⇔ x ⊕ y = y. It
coincides with the usual order on R ∪ {−∞}.

The n-fold Cartesian product Rn
max may be thought of as a space of vectors, or

as an affine space of points. It can be endowed with the component-wise addition:
if u,v are two vectors in Rn

max, u⊕v denotes the vector whose ith component is
the sum ui ⊕ vi of the ith components of u and v. Similarly, the multiplication
λu of the vector u by a scalar λ ∈ Rmax is the vector of components λ⊗ ui.

Matrix operations are defined as well, by using max-plus addition and mul-
tiplication in the classical operations on matrices. Finally, given two subsets S1

and S2 of Rn
max, the max-plus Minkowski sum S1 ⊕ S2 is defined as the set

{x⊕ y | (x,y) ∈ S1 × S2}.

2.2 Definition of Max-Plus Polyhedra Using Systems of Generators

Max-plus Convex Sets and Cones. A vector x ∈ Rn
max is a max-plus linear

combination of the vectors v1, . . . ,vp ∈ Rn
max if x = α1v1 ⊕ · · · ⊕ αpvp for some

scalars α1, . . . , αp ∈ Rmax. The point x is a max-plus convex combination of the
points v1, . . . ,vp if it can be written in the previous form, with the additional
requirement that α1 ⊕ · · · ⊕ αp = �. In the sequel, all max-plus convex or linear
combinations will concern finite families.

A subset of Rn
max is a max-plus cone if it contains all the max-plus linear

combinations of its elements. Such cones may be thought of as the analogues
of vector spaces or modules when the field or ring of scalars is replaced by the
max-plus semiring. Hence, they have been studied under the names of idempotent
spaces in [9] or semimodules in [13]. In the max-plus setting, positivity constraints

192 X. Allamigeon, S. Gaubert, and É. Goubault

u1

v1

u2

v2

u3

v3

z

Fig. 1. The three kinds of generic max-plus
segments in R2

max

v1

v2

v3

v4

Fig. 2. A max-plus polyhedron in R2
max

(the black border of the shape is included)

are implicit, since any scalar α ∈ Rmax satisfies α 3 �. For this reason, max-plus
cones share many of the properties of classical convex cones.

If W is a subset of Rn
max, we denote by cone(W) the max-plus cone generated

by W , which consists of the max-plus linear combinations of the elements of
W . A max-plus cone is finitely generated if it can be written as cone(W) for
some finite subset W of Rn

max. In particular, a max-plus cone generated by a
(non-zero) vector is a ray. Such a vector is a representative of the ray that it
generates.

Similarly, a subset of Rn
max is a max-plus convex set if it contains all the max-

plus convex combinations of its elements. In general, max-plus convex sets are
not convex in the classical sense. We denote by co(V) the max-plus convex hull
of V , which consists of the max-plus convex combinations of the elements of V .
A set of the form co(V) for some finite set V is a max-plus polytope.

Max-plus Polyhedra. Polyhedra can be classically defined in two ways, either in
terms of constraints (intersections of finitely many affine half-spaces), or in terms
of vertices and rays (Minkowski sums of a polytope and of a finitely generated
cone). The Minkowski-Weyl theorem proves both definitions equivalent. For the
moment, let us adopt the second approach, and define a max-plus polyhedron
to be a set of the form P = co(V) ⊕ cone(W), where V,W are finite subsets of
Rn

max. The sets V and W constitute a system of generators of P .
Figure 2 depicts an unbounded max-plus polyhedron in R2

max. The reader
may check on the figure that this is a max-plus convex set, because it contains
any segment joining two of its points (see Fig. 1 for the three kinds of max-plus
segments in R2

max).

Representing Max-plus Polyhedra by Max-plus Cones. We can represent max-
plus polyhedra of Rn

max as projections of finitely generated max-plus convex
cones of Rn+1

max, by taking “homogeneous coordinates”, as in the classical case.
Formally, if P = co(V)⊕cone(W), where V,W are finite subsets of Rn

max, let Z
denote the subset of Rn+1

max consisting of the vectors of the form (v, �) with v ∈ V

Inferring Min and Max Invariants Using Max-Plus Polyhedra 193

or (w, �) with w ∈ W , and consider the max-plus convex cone C := cone(Z). It
is easily seen that P = {x ∈ Rn

max | (x, �) ∈ C} . Conversely, let Z ′ denote any
finite subset of Rn+1

max such that C = cone(Z ′). After multiplying (in the max-
plus sense) every element of Z ′ by a non-� scalar, we may assume that the last
coordinate of every element of Z ′ is either � or �. Then, it can be checked that
P = co(V ′)⊕cone(W ′) where V ′ = {v | (v, �) ∈ Z ′} and W ′ = {v | (v, �) ∈ Z ′}.
This is a special case of the general correspondence between max-plus convex
sets and max-plus cones which is discussed in [18].

Hence, representing max-plus polyhedra reduces to representing finitely gen-
erated max-plus cones. In the sequel, we will suppose that the representation of a
max-plus polyhedron of Rn

max by generators is a finite system G of generators of
the associated max-plus cone of Rn+1

max. This avoids the distinction between ver-
tices and ray representatives which may sometimes complicate the formalism,
without loss of generality.

Membership to a Finitely Generated Max-plus Cone. Let G denote a set of
p vectors of Rn+1

max. Testing whether a vector x is in cone(G) is equivalent to
determine whether the system of equations Gy = x admits a solution. We use
here the same notation, G for the matrix the columns of which are the elements
of the generating set. The equation Gy = x may not have a solution, but the
inequality Gy 2 x always does. Besides, if it is interpreted in the completion of
the max-plus semiring, it admits a maximal solution, denoted by G\x and given
by the following residuation formula: (G\x)j := min1≤i≤n+1(xi−Gij), with the
convention −∞+∞ = +∞. If G has no column identically −∞, G \ x belongs
to Rp

max for all x ∈ Rn+1
max . It follows that Gy = x has a solution y ∈ Rp

max if
and only if G(G \ x) = x, a test which can be done in O(np) operations. More
details can be found in [17].

Minimal Systems of Generators. The representation of P by a system of genera-
tors is not unique, but as for classical polyhedra, there is a minimal representation,
involving sets of vectors having certain extremality properties in the associated
cone C. A vector w is an extreme generator of a max-plus cone C if w ∈ C, and w
cannot be written as the max-plus sum of two vectors of C that are both different
from it. Then, the set of scalars multiples of w is an extreme ray of C. It is known
that a finitely generated max-plus cone is generated by its extreme rays. It follows
that C has a non redundant generating family, which is unique up to a normaliza-
tion of its elements, obtained by selecting one representative in each extreme ray
of C. This family forms a minimal representation of P by generators. The reader
can refer to [18,17] for recent accounts and refinements of this result.

To compute the extreme rays of C, we start from any generating system G,
assuming that it contains no proportional vectors, and we eliminate any vector
of the family which is a max-plus linear combination of the other ones (see the
previous paragraph). If G consists of p generators, this can be done in O(n×p2)
operations. Some additional algorithmic information can be found in [17].

As in the classical case, we can find max-plus polyhedra of R2
max with an

arbitrarily large number of extreme points.

194 X. Allamigeon, S. Gaubert, and É. Goubault

2.3 Definition of Max-Plus Polyhedra by Systems of Constraints

An important similarity of max-plus polyhedra with classical ones is that they
can be equivalently defined as the solutions of systems of constraints. Each con-
straint consists of an inequality of the form ax ⊕ b 3 cx ⊕ d, where x ∈ Rn

max,
a, c ∈ R1×n

max and b, d ∈ Rmax.
However, in Rn

max, systems of equality and inequality constraints are equiva-
lent. Indeed, any inequality can be written as an equality since y 3 z ⇔ y = y⊕z.
As a consequence, systems of inequality and equality constraints have the same
expressiveness, and in particular, inferring invariants involving equality con-
straints is as difficult as inferring inequality invariants. We chose to use here
systems of equality constraints.

Solutions of a System of Constraints. The solutions of a homogeneous system
of equations Ax = Bx, were first studied in [23]. In particular, the following
proposition was proven (see also [10]):

Proposition 1. The solutions of the homogeneous system Ax = Bx of Rn
max,

where A,B ∈ Rs×n
max, form a finitely generated max-plus cone.

More generally, a non-homogeneous system Ax⊕b = Cx⊕d can be associated
to the homogeneous system

(
A b

)
z =

(
C d

)
z of Rn+1

max . Then, the solutions
of the former are given by the first n coordinates of the solutions z verifying
zn+1 = � of the latter. Using the equivalence between max-plus polyhedra and
cones established in Sect. 2.2, the following statement holds:

Corollary 1. The solutions of the system of equations Ax⊕b = Cx⊕d, where
A,B ∈ Rs×n

max and b,d ∈ Rs
max, form a max-plus polyhedron of Rn

max.

In particular, a representation of the solution polyhedron can be obtained by
computing a minimal system of generators of the cone of solutions of

(
A b

)
z =(

C d
)
z. This is why we only consider homogeneous systems Ez = Fz in Rn+1

max

for the rest of the section.
First, let us consider the case in which the system of constraints is reduced

to one equation ez = fz, where e, f ∈ R1×(n+1)
max . We denote by (εi)1≤i≤n+1 the

max-plus analogue of a canonical basis in Rn+1
max, i.e. εii = � and εij = � for j �= i.

It can be shown that the vectors (fjεi)⊕ (eiε
j), where ei 3 fi and ej 2 fj , form

a generating system of the solution cone.
The general case of a system of s equations can be solved by induction on s,

following the method by elimination proposed in [23]:

– when s = 0, there is no constraint, so that the family εi form a generating
system of the solution.

– if s ≥ 1, let E′z = F ′z be the system of equations formed by the (s−1) first
equations, and ez = fz the last equation of Ez = Fz. If G′ = (g1, . . . ,gp)
is a system of generators of E′z = F ′z, then we have Ez = Fz if and only
if there exists y ∈ Rp

max such that (eG′)y = (fG′)y and z = G′y (G′ being
seen as a matrix whose columns are the gi). The equation (eG′)y = (fG′)y

Inferring Min and Max Invariants Using Max-Plus Polyhedra 195

of Rp
max can be solved using the method given above. If H = (h1, . . . ,hq) is a

generating system of its solutions, the vectors G′h1, . . . , G′hq form a system
of generators of the solutions of Ez = Fz.

Theorem 1. A minimal system of generators of the solutions of the s equations
Ez = Fz in Rn+1

max can be computed in O(n× s× c4n+1,s) operations, where cn+1,s

is the maximal number of generators of the set of solutions of a system of s
equations in Rn+1

max.

As a consequence, the solving algorithm is polynomial in the maximal number
of the generators which may arise. In comparison, the cost of Chernikova’s al-
gorithm [24], which allows to convert the representation of a classical convex
polyhedron by inequalities into an equivalent representation by generators, is
quadratic in the number of generators, when it is executed on hypercubes of
Rn. However, it seems that the problem of solving max-plus (in)equalities is
intrinsically more complex, as even an inequality ex 3 fx of Rn

max generates a
quadratic number of generators in n, while this number is linear in the clas-
sical case. Moreover, most implementations of the domain of classical convex
polyhedra now involve efficient tests based on the number of inequalities satu-
rated by the computed generators, in order to eliminate redundant ones (see,
for instance, [25]). In contrast, no such properties relative to the saturation of
max-plus inequalities are yet proven.

Bounding the maximal number of generators cn+1,s is an interesting combi-
natorial problem. An exponential bound is given in [26], where it is shown that
cn+1,s ≤ s×

(
n2/3 + n+ 1

)s, but the optimal bound is not known. Future work
could focus on the comparison of cn+1,s with its classical analogue for convex
polyhedra, which is in O(sn). But for now, all we can say is that the solution of
a system can be computed in O(s2 × n8s+1) operations.

Example 1. With n = 2, let us consider the system of two equations x1⊕1 = x1

and x2 ⊕ 1 = x2. It corresponds to the system x1 ≥ 1 and x2 ≥ 1. The
associated homogeneous system is z1 ⊕ 1z3 = z1 and z2 ⊕ 1z3 = z2. Solv-
ing the first equation yields a generating family G consisting of the vectors
g1 = [1;−∞; 0], g2 = [−∞; 0;−∞], g3 = [0;−∞;−∞]. Multiplying the left
and the right members of the second equation by the matrix G yields the
equation 1y1 ⊕ y2 = y2, whose generating family H consists of the vectors
h1 = [−∞; 0;−∞], h2 = [−∞;−∞; 0], and h3 = [0; 1;−∞]. The vectors Gh1,
Gh2, and Gh3 form the family ([−∞; 0;−∞] , [0;−∞;−∞] , [1; 1; 0]), which is
obviously minimal. It represents a max-plus polyhedron with one vertex [1; 1],
and two rays with representatives [0;−∞] and [−∞; 0].

From Systems of Generators to Systems of Constraints. A system of generators
can be converted to a system of constraints describing the same max-plus poly-
hedron. Given a max-plus polyhedron P provided with a system of generators
G, the set P⊥ of constraints ax ⊕ b = cx ⊕ d verified by the polyhedron P is a
cone of (R1×n

max × Rmax)2 (each constraint ax ⊕ b = cx ⊕ d being represented by
the pair ((a, b), (c, d))). Moreover, it can be shown that a constraint is verified

196 X. Allamigeon, S. Gaubert, and É. Goubault

by the polyhedron if and only if it is verified by all its generators. Hence, we
have P⊥ = {((a, b), (c, d)) ∈ (R1×n

max × Rmax)2 | ∀i.
(
a b
)
gi =

(
c d
)
gi}, i.e.

P⊥ =
{

((a, b), (c, d)) ∈ (R1×n
max × Rmax)2 | tG

(
ta
b

)

= tG

(
tc
d

)}

,

where t· is the matrix transposition operator.
As a consequence, a minimal system of generators of the cone P⊥ can be

computed by using the algorithm presented in the previous paragraph, with a
complexity in O(p×n× c42n+2,p). Then, the system of constraints formed by the
generators of the cone P⊥ can be shown to be a representation of the max-plus
polyhedron P under the form of constraints. As for generators, we are interested
in manipulating minimal representations by systems of constraints. Here, the
computed constraints form a minimal generating family of the cone P⊥, which
is a good point. However, it may not be a minimal system of constraints, i.e.
some constraints are possibly redundant. This is basically due to the fact that the
cone P⊥ represents a set of equations closed by symmetry, reflexivity, and transi-
tivity. Extracting a minimal system of constraints would have a major drawback:
it would be very costly since we would have to compare corresponding max-plus
polyhedra, hence to convert many systems of constraints to generators (see the
definition of the abstract partial order in Sect. 3.1). Moreover, in our experimen-
tations (see Sect. 4), the size taken by systems of constraints is negligible, this
is why minimal generating families of the cone P⊥ are satisfactory.

2.4 Max-Plus Polyhedra and Zones

Interval and zone constraints are obviously particular forms of max-plus systems
of constraints described in Sect. 2.3.

We next show that a representation by intervals and zones can be extracted
from a system of generators of a max-plus polyhedron. Recall that if A ∈ R

n×p

max ,
the residuated matrix [27] A/A is given by (A/A)ij = min1≤k≤p Aik −Ajk (with
−∞+∞ = +∞). Observe that if G is a minimal system of generators of Rn+1

max ,
and if G (seen as a matrix) does not have a row consisting only of −∞ entries,
then G/G ∈ R(n+1)×(n+1)

max . Using the fact that cone(G/G) (i.e. the cone gener-
ated by the column of G/G) is the least sublattice containing cone(G) [28], we
deduce the following theorem:

Theorem 2. The cone cone(G/G) coincides with the zone of Rn
max defined by:

∀i, j ∈ {1, . . . , n}, xi − xj ≥ (G/G)ij ,

∀i ∈ {1, . . . , n}, (G/G)i,n+1 ≤ xi ≤ −(G/G)n+1,i .

Moreover, if G has no row consisting only of −∞ entries, then the smallest zone
containing the cone(G) is given by cone(G/G).

During the reduction to zones, the rows of G consisting only of −∞ entries
can be simply not considered, since they correspond to coordinates xi constant
equal to −∞. Hence, Th. 2 provides an effective algorithm to convert max-plus
polyhedra to zones.

Inferring Min and Max Invariants Using Max-Plus Polyhedra 197

3 Abstract Semantics

Let us consider a set Var of n distinct variables xi. Our abstraction consists
in representing sets of environments σ : Var → R by max-plus polyhedra P of
R2n

max, i.e. either by minimal systems G of generators of R2n+1
max , or by systems

S of max-plus equality constraints Ax ⊕ b = Cx ⊕ d of R2n
max.

1 Intuitively, the
n first dimensions of the polyhedra represent the variables xi, while the n last
ones represent their opposite −xi. The concretization of max-plus polyhedra is
defined equivalently according to their representation:

γ(P) := {σ | (σ(x1), . . . , σ(xn),−σ(x1), . . . ,−σ(xn), �) ∈ cone(G))} ,

or γ(P) :=
{

σ | A(σ(x1), . . . , σ(xn),−σ(x1), . . . ,−σ(xn))⊕ b
= C(σ(x1), . . . , σ(xn),−σ(x1), . . . ,−σ(xn))⊕ d

}

.

As mentioned in Sect. 1, this allows to infer invariants of the form max(λ0, x1 +
λ1, . . . , xn + λn) ≤ max(μ0, x1 + μ1, . . . , xn + μn) and min(λ′0, x1 + λ′1, . . . , xn +
λ′n) ≤ min(μ′

0, x1 + μ′
1, . . . , xn + μ′

n).2

3.1 Order-Theoretic Operators

Partial Order. An abstract partial order can be defined on max-plus polyhedra
by comparing systems of generators. Given two max-plus polyhedra P and Q
represented by the systems of generators G and H respectively, we have P � Q
if and only if for any g ∈ G, g ∈ cone(H) (or equivalently, H(H \ g) = g).
Hence, the concretization γ can be shown to be monotonic. The complexity of the
evaluation ofG � H is O(n×p×q), p and q being the cardinality of the familiesG
andH . Note that we can define equivalently� by using a representation ofQ by a
system of constraints Ax⊕b = Cx⊕d, and testing whether

(
A b

)
g =

(
D d

)
g

for any g in G. Then, the operation has a complexity in O(n× p× t), where t is
the number of constraints in the system of Q.

Joining Max-plus Polyhedra. Given two systems of generators G and H , an
abstract join operator � can be defined as the minimal system G of generators
extracted from the family G ∪H . If p and q are the cardinality of the families
G and H , the union can be performed in O(n× (p+ q)2). It can be shown to be
a sound join operator, and even the best possible one.

Intersection. By duality, an abstract intersection operator can be naturally de-
fined on two polyhedra by concatenating the systems of constraints representing
the polyhedra. Equivalently, we can define the intersection operator when one
polyhedron is represented by a minimal system G of generators while the other is
1 Each system S is represented by a minimal generating family of the cone P ⊥.
2 The latter are computed under the form max(−λ′

0,−x1 − λ′
1, . . . ,−xn − λ′

n) ≥
max(−μ′

0,−x1−μ′
1, . . . ,−xn−μ′

n). In fact, the abstract domain is able to infer more
general invariants of the form max(λ0, x1+λ1, . . . , xn+λn,−x1−λ′

1, . . . ,−xn−λ′
n) ≤

max(μ0, x1 + μ1, . . . , xn + μn,−x1 − μ′
1, . . . ,−xn − μ′

n).

198 X. Allamigeon, S. Gaubert, and É. Goubault

represented by a system of constraints Ax⊕b = Cx⊕d. Indeed, it can be shown
that solving the homogeneous system of constraints

((
A b

)
G
)
z =

((
C d

)
G
)
z

by replacing the family εi by the gi in the initial step, exactly yields a minimal
system of generators of the intersection. In that case, the complexity of the in-
tersection is O(t× p× c4p,t), where p is the cardinality of G and t the number of
constraints of the system Ax⊕ b = Cx⊕ d.

The intersection operator allows to handle conditional program statements of
the form ±x ≤ k or ±x ≤ ±y+ k. Other conditions can be either ignored (which
is sound), or handled using a linearization (see Sect. 3.3).

Widening. If n ≥ 2, infinite ascending chains of max-plus polyhedra of Rn
max

can be built. As a result, a widening operator is defined to enforce convergence.
It follows the initial definition of the widening over classical convex polyhe-
dra [7]. Formally, if two max-plus polyhedra P and Q are respectively rep-
resented by a system of constraints and a minimal system G of generators,
the max-plus polyhedron P ∇Q is defined as the system of constraints formed
by the constraints ax ⊕ b = cx ⊕ d of P which are also verified by Q, i.e.
∀g ∈ G.

(
a b
)
g =

(
c d
)
g.

As for the widening defined in [7], the result of the widening depends on
the system of constraints chosen to represent the max-plus polyhedra. In [29],
the definition of the widening over classical convex polyhedra was improved to
overcome this problem, by adding to the result the constraints of Q which are
equivalent to some constraints of P . They can be discovered either by checking
whether they can replace a constraint of P without changing the represented
polyhedron, or by considerations on the saturation of some linear inequalities
by generators [30]. In max-plus algebra, the former method is particularly costly
since it requires to convert some systems of constraints to generators. More-
over, we do not have yet any proof that the latter approach could be applied,
because the equivalence between inequalities and equalities in the max-plus al-
gebra makes the problem harder. For that reason, the actual definition of the
widening operator is not fully satisfactory. Nevertheless, the experimentations
are very encouraging since the widening allows to exactly infer the expected
invariant for each of our examples (see Sect. 4).

Reduction. A system of octagonal constraints (i.e. of the form ±xi ± xj ≥ cij)
can be extracted from any representation by generators using Sect. 2.4. These
constraints can be then refined using the closure algorithm of octagons [2]. The
resulting octagon can be seen as a max-plus polyhedron over the variables ±xi.
Intersecting it with the initial max-plus polyhedron yields a smaller abstract
element w.r.t �, but which represents the same set of concrete states. This
defines a reduction operator, which allows our representation to be more precise
than the abstract domain of octagons. Intuitively, the reduction operator enables
a communication between the variables xi and −xi. Note that, as for octagons,
the convergence property of the widening operator may not hold if the reduction
operator is applied to widened max-plus polyhedra.

Inferring Min and Max Invariants Using Max-Plus Polyhedra 199

3.2 Assignments

Max-plus Assignments. A max-plus assignment is an assignment of the form
xi ←

(
⊕n

j=1mjxj

)
⊕mn+1, for some 1 ≤ i ≤ n, and m1, . . . ,mn,mn+1 ∈ Rmax.

In particular, max-plus assignments include operations xi ← mn+1 and xi ←
xj +mj (where + is the classical addition). The abstract operator for max-plus
assignments consists in multiplying a minimal system of generators by a matrix
M corresponding to the assignment: M coincides with the max-plus identity
matrix, except that its ith row is replaced by m1 . . . mn+1 . It then remains to
extract a minimal system of generators from the result. This operator can be
shown to be sound. Its cost is O(n × (n2 + p2)). It can be easily generalized to
handle parallel max-plus assignments, without changing the complexity. Thus,
program assignments of the form x ← k and x ← ±y + k are implemented as
parallel max-plus assignments on the dimensions of variables x and −x.

Non-deterministic Assignments. A non-deterministic assignment xi ← ? can be
handled by adding a representative h of the ray formed by the ith axis (e.g.
hi = � and hj = �) to a minimal system of generators, and then extracting a
new minimal system from the resulting family. This defines a sound operator,
whose cost is in O(n× p2) (p being the size of the initial system of generators).

Some assignments which do not belong to the classes previously discussed can
be linearized (see Sect. 3.3). Other can be soundly treated as non-deterministic.

3.3 Linearization

In this section, we indicate how to interpret general linear assignments (as in
classical linear algebra), i.e. non-linear max-plus expressions. For sake of sim-
plicity, the description is restricted to max-plus polyhedra of Rn

max, which infer
information on the positive variables x1, . . . , xn. A generalization to the full ab-
straction including the opposites −x1, . . . ,−xn is straightforward.

Suppose the variables x1, . . . , xn, at some control point of a program, belong to
a max-plus polyhedron P = co(V)⊕cone(W). If V = (vi)i and W = (wj)j , then

for any k, xk =
(⊕p

i=1 αivi
k

)
⊕
(⊕q

j=1 βjw
j
k

)
, with

⊕p
i=1 αi = �. In particular,

αi 2 � for i ∈ {1, . . . , p}. More than that, we have αi = � for some i ∈ {1, . . . , p},
hence

⊕p
i=1 αivi

k 3 minp
i=1 vi

k. Hence, we can write equivalently: xk = v0
k ⊕⊕p

i=1 αivi
k ⊕
⊕q

j=1 βjw
j
k, with

⊕p
i=1 αi = � and v0

j = minp
i=1 vi

j .

Sum. Consider now the assignment xn+1 ← xk + xl (+ is here the standard
addition, i.e. the multiplication in the max-plus algebra), where xn+1 is a newly
introduced variable (up to assigning xn+1 to a variable xm later, and removing
the (n+ 1)-th dimension). We then have:

xn+1 = v0
kv

0
l ⊕

p⊕

i=1

αi

(
vi

kv
0
l ⊕ v0

kv
i
l

)
⊕

q⊕

j=1

βj

(
wj

kv
0
l ⊕ v0

kw
j
l

)
⊕N ,

which can be recognized as the sum of the first-order Taylor expansion (or lin-
earization) of the function (x, y) �→ xy (in the max-plus algebra), and a non-
linear residual term N .

200 X. Allamigeon, S. Gaubert, and É. Goubault

Let us define some new generators: v′0 =
(
v0,v0

kv
0
l

)
, v′i = (vi,vi

kv
0
l ⊕ v0

kv
i
l)

for i = 1, . . . , p, and w′i = (wi,wi
kv

0
l ⊕ v0

kw
i
l) for i = 1, . . . , q. Besides, we

add up a vertex, abstracting the first part of the non-linear term N : vp+1 =
[�; . . . ; �;

⊕p
i,j=1 vi

kv
j
l], and if q > 0, a ray abstracting the second part of the

non-linear term N : wq+1 = [�; . . . ; �; �]. The returned system of generators
represents a sound approximation of the assignment on the initial polyhedron.3

Multiplication by a Constant. We interpret now the assignment xn+1 ← a× xk

where a is a constant. We suppose a ≥ 0.4 Then we have xn+1 = a × v0
k ⊕⊕p

i=1(a×αi)(a×vi
k)⊕

⊕q
j=1(a×βj)(a×wj

k),. Except in the trivial case a = 1,
we cannot abstract very precisely this expression. Our only choice is to introduce
a new vertex vp+1 = [�; . . . ; �;

⊕p
i=1 a× vi

k ⊕
⊕q

j=1 a×wj
k].

Comparison with Linearization in Octagons. Ordinarily, only x ← ±y + [a, b],
x ← [a, b], or x ← ±x + [a, b] are interpreted exactly on octagons [2]. We claim
that given z ← [a, b] encoded as a max-plus polyhedron, x ← ±y + z, x ← z, and
x ← ±x+z are interpreted with our linearization, exactly as an octagon would do.
We also claim that linearization of assignments in the style of [31] for octagons
encoded as max-plus polyhedra is in general as precise or less precise than our
linearization on these max-plus polyhedra. This will be developed elsewhere.

4 Examples and Benchmarks

The abstraction defined in Sect. 3 has been implemented in an analyzer of 3 500
lines of OCaml. Our prototype only manipulates systems of generators, except
in the widening steps for which conversions to constraints are needed. It has
been evaluated on various programs described below.5 Table 1 indicates the
number of lines and variables of each program, the time the analyzer needs to
compute invariants, and the number of generators the resulting invariants have.
For each example, the memory consumption is negligible (at worst 9 Mb for
oddeven9).

String and Array Manipulation. Our analyzer is able to infer precise invariants
on the advanced string manipulating functions memcpy and strncpy. The latter
copies at most n characters from src into dst. In particular, if the length of
src is smaller that n, the remainder of dst is filled with null characters. For
both programs, the expected final invariant min(len src, n) = min(len dst, n)
is successfully discovered by our analyzer.

The program partd is a decrementing initialization program which fills an
array with a value c, from the index q to p + 1. Some array analyzes [32,33]
allow to infer the loop invariant c(i + 1, q), which means that the array t con-
tains the value c between the indexes i + 1 and q (both included). However,

3 Albeit not detailed here, the case p = 1 can be handled in a more precise manner.
4 The case xn+1 ← a × xk with a ≤ 0 rewrites into −xn+1 = (−a)× xk with −a ≥ 0.
5 Source codes are available at http://www.lix.polytechnique.fr/∼allamige.

http://www.lix.polytechnique.fr/~allamige

Inferring Min and Max Invariants Using Max-Plus Polyhedra 201

Table 1. Analysis benchmarks on a 3 GHz Pentium with 4 Gb RAM

Program # lines # var. # time (s) # gen.
memcpy 9 6 2.37 7
strncpy 19 7 9.82 8
parti 8 3 0.008 3
partd 7 3 0.008 3
partd2 10 4 0.084 4
partd3 14 5 0.272 5
partd4 17 6 0.73 6
partd5 20 7 2.15 7
partd6 22 8 6.98 8
partd7 25 9 10.98 9
partd8 28 10 28.35 10
partd9 31 11 40.95 11
partd10 34 12 68.94 12

Program # lines # var. # time (s) # gen.
partd11 37 13 129.86 13
partd12 40 14 196.32 14
partd13 43 15 335.62 15
partd14 46 16 420.03 16
partd15 49 17 672.49 17
bubble3 21 7 0.016 6
oddeven3 28 7 0.012 8
oddeven4 39 9 0.06 16
oddeven5 70 11 1.13 32
oddeven6 86 13 7.76 64
oddeven7 102 15 34.42 116
oddeven8 118 17 178.42 196
oddeven9 214 19 25939.76 512

without prior information on the order of p and q, the final invariant on i with
classical convex polyhedra is only i ≤ p∧i ≤ q. Our analyzer is able to discover
the relations i = min(p, q), which is the most precise invariant. Similarly, each
program partdk corresponds to a sequence of k partial initializations. For each,
our analyzer infers the expected invariant expressing that i is the minimum of
the k + 1 indexes. An incrementing version of partd, parti, is also successfully
analyzed.

For these examples, the widening steps (which require conversions from gen-
erators to constraints) are by far the more time consuming steps.

Sorting Algorithms. Consider now an implementation of bubble sort. We com-
pletely unfold the loop and specialize it to an array of three elements [x, y, z].
The resulting sorted array is supposed to be [i, j, k]. Our analyzer proves in
particular that i and k are respectively the smallest and biggest elements of the
three initial ones, without resorting to a heavy disjunctive analysis. In order to
prove more, i.e. about j (we “only” get j ≥ i and j ≤ k, and j is less than
the maximum of any pair of entries in the input array), we would need mixed
constraints with min and max (see Section 5).

Last but not least, consider the odd-even sort [34] on 2k elements. Here we
start with an array of four elements [i, j, k, l], the resulting sorted array should
be [x, y, z, t]. We find automatically in particular that x and t are the min-
imum and the maximum of i, j, k, and l. In fact, the max-plus constraints
that are generated are quite dense. This sorting algorithm is probably of worst-
case complexity for our analysis. Programs oddeveni (for i = 3 to 9) are odd-
even sorting algorithms for i elements. The analyzer proves that the last (resp.
first) element of the resulting array is the maximum (resp. minimum) of the
inputs. The exponentially growing complexity of the analysis is mainly due to
the intersection operations (corresponding to the conditional statements). Nev-
ertheless, one should realize that the returned invariant could only be proven
before our domain by a disjunctive version of at least a zone analyzer; but
for oddeven9 for instance, which consists of a sequence of 40 independent if

202 X. Allamigeon, S. Gaubert, and É. Goubault

blocks, a full partition into the potential 240 ∼ 1012 paths would have to be
used to discover the same invariant, which is intractable both in time and
memory.

5 Conclusion and Future Work

In this article, we described the first few applications of max-plus algebra to
static analysis. Many improvements are yet to be discovered. Among these are
improvements of the widening operator, to be applicable directly on a repre-
sentation with generators and not on a constraint form, which would allow to
compute invariants only by using the generator form for the whole analysis.

Existing memory manipulation analyzes could take advantage of our abstrac-
tion. For instance, it could be directly integrated in non-disjunctive array pred-
icate abstractions (e.g. [33]), and help to automatically discover preconditions
on C library functions [35] without disjunction. Moreover, when analyzing sort-
ing algorithms, in order to prove that the resulting array is correctly ordered
(and not infer information over its first and last elements only), one would need
min-max-plus [36] invariants, generalizing our max-plus and min-plus invariants.

Last but not least, in order to deal with the intrinsic complexity of the full
max-plus polyhedra, it is natural to think of generalizations of templates [37] to
max-plus algebra. This is left for future work.

References

1. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, Springer, Heidelberg
(2001)

2. Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001, pp. 310–319.
IEEE Computer Society Press, Los Alamitos (2001)

3. Dor, N., Rodeh, M., Sagiv, M.: Cssv: towards a realistic tool for statically detecting
all buffer overflows in C. In: PLDI 2003, ACM Press, New York (2003)

4. Allamigeon, X., Godard, W., Hymans, C.: Static Analysis of String Manipulations
in Critical Embedded C Programs. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
Springer, Heidelberg (2006)

5. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM
TOPLAS 29(5) (2007)

6. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6 (1976)
7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: POPL 1978, Tucson, Arizona, USA. ACM Press, New York (1978)
8. Zimmermann, K.: A general separation theorem in extremal algebras. Ekonom.-

Mat. Obzor. 13(2), 179–201 (1977)
9. Litvinov, G., Maslov, V., Shpiz, G.: Idempotent functional analysis: an algebraical

approach. Math. Notes 69(5), 696–729 (2001); Also eprint arXiv:math.FA/0009128
10. Gaubert, S., Plus, M.: Methods and applications of (max,+) linear algebra. In:

Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, Springer, Heidel-
berg (1997)

Inferring Min and Max Invariants Using Max-Plus Polyhedra 203

11. Cohen, G., Gaubert, S., Quadrat, J.P.: Max-plus algebra and system theory: where
we are and where to go now. Annual Reviews in Control 23, 207–219 (1999)

12. Develin, M., Sturmfels, B.: Tropical convexity. Doc. Math. 9, 1–27 (2004)
13. Cohen, G., Gaubert, S., Quadrat, J.P.: Duality and separation theorem in idem-

potent semimodules. Linear Algebra and Appl. 379, 395–422 (2004)
14. Joswig, M.: Tropical halfspaces. In: Combinatorial and computational geometry.

Math. Sci. Res. Inst. Publ., vol. 52. Cambridge Univ. Press, Cambridge (2005)
15. Cohen, G., Gaubert, S., Quadrat, J.P., Singer, I.: Max-plus convex sets and func-

tions. In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Math-
ematical Physics. Contemporary Mathematics, vol. 377, pp. 105–129. AMS (2005)

16. Gaubert, S., Katz, R.: Max-plus convex geometry. In: Schmidt, R.A. (ed.)
RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 192–206. Springer, Heidelberg (2006)

17. Butkovič, P., Schneider, H., Sergeev, S.: Generators, extremals and bases of max
cones. Linear Algebra Appl. 421, 394–406 (2007)

18. Gaubert, S., Katz, R.: The Minkowski theorem for max-plus convex sets. Linear
Algebra and Appl. 421, 356–369 (2006)

19. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
Los Angeles, California. ACM Press, New York (1977)

20. Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
3–17. Springer, Heidelberg (2006)

21. Giacobazzi, R., Ranzato, F.: Compositional Optimization of Disjunctive Abstract
Interpretations. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, Springer,
Heidelberg (1996)

22. Sotin, P., Cachera, D., Jensen, T.: Quantitative static analysis over semirings:
analysing cache behaviour for java card. In: QAPL 2006. ENTCS, vol. 1380, Else-
vier, Amsterdam (2006)

23. Butkovič, P., Hegedüs, G.: An elimination method for finding all solutions of the
system of linear equations over an extremal algebra. Ekonomicko-matematicky Ob-
zor. 20(2), 203–215 (1984)

24. Chernikova, N.V.: Algorithm for discovering the set of all solutions of a linear
programming problem. U.S.S.R. Computational Mathematics and Mathematical
Physics 8(6), 282–293 (1968)

25. Le Verge, H.: A note on Chernikova’s algorithm (1992)
26. Gaubert, S., Katz, R.: External and internal representation of max-plus polyhedra.

Privately circuled draft (2008)
27. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity.

Wiley, Chichester (1992)
28. Cohen, G., Gaubert, S., Quadrat, J.P.: Regular matrices in max-plus algebra

(preprint, 2008)
29. Halbwachs, N.: Détermination Automatique de Relations Linéaires Vérifiées par

les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université sci-
entifique et médicale de Grenoble, Grenoble, France (March 1979)

30. Halbwachs, N., Proy, Y., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11(2) (August 1997)

31. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2005)

32. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. SIGPLAN Not. 40(1) (2005)

204 X. Allamigeon, S. Gaubert, and É. Goubault

33. Allamigeon, X.: Non-disjunctive Numerical Domain for Array Predicate Abstrac-
tion. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 163–177.
Springer, Heidelberg (2008)

34. Batcher, K.: Sorting networks and their applications. In: Proceedings of the AFIPS
Spring Joint Computer Conference 32, pp. 307–314 (1968)

35. Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo, F.,
Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905. Springer, Heidelberg
(2008)

36. Gaubert, S., Gunawardena, J.: The duality theorem for min-max functions. C. R.
Acad. Sci. Paris. 326 (Série I), 43–48 (1998)

37. Sankaranarayanan, S., Sipma, H., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, Springer, Heidelberg (2005)

Conflict Analysis of Programs with Procedures,

Dynamic Thread Creation, and Monitors

Peter Lammich and Markus Müller-Olm

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

peter.lammich@uni-muenster.de, mmo@math.uni-muenster.de

Abstract. We study conflict detection for programs with procedures,
dynamic thread creation and a fixed finite set of (reentrant) monitors.
We show that deciding the existence of a conflict is NP-complete for our
model (that abstracts guarded branching by nondeterministic choice)
and present a fixpoint-based complete conflict detection algorithm. Our
algorithm needs worst-case exponential time in the number of monitors,
but is linear in the program size.

1 Introduction

As programming languages with explicit support for parallelism, such as Java,
have become popular, the interest in analysis of parallel programs has increased
in recent years. A particular problem of parallel programs are conflict situations,
where a program is simultaneously in two states that should exclude each other.
An example is a data race, where a memory location is simultaneously accessed
by two threads, at least one of the accesses being a write access. Particular
challenges for analyzing conflicts in a language like Java are dynamic creation
of an unlimited number of threads, synchronization via reentrant monitors, and
indirect referencing of monitors by their association to objects. It’s unrealistic to
design an interprocedural analysis that meets all these challenges and is precise.
Therefore, this paper concentrates on the first two challenges. More specifically,
we develop an analysis that decides the reachability of a conflict situation in
(nondeterministic) programs with recursive procedure calls, dynamic thread cre-
ation and synchronization via a fixed finite set of reentrant monitors that are
statically bound to procedures. We also show this problem to be NP-complete.

Many papers on precise program analysis, e.g. [4,13,16], model concurrency
via parbegin/parend blocks or parallel procedure calls or assume a fixed set
of threads. However, thread-creation cannot be simulated by parbegin/parend
for programs with procedures [2]. Precise analysis for programs with thread-
creation is treated e.g. in [2,11]. All the papers mentioned above completely
abstract away synchronization. Due to a well-known result of Ramalingam [15],
context- and synchronization-sensitive analysis is undecidable. However, Rama-
lingam considered rendezvous style synchronization which is more powerful than
synchronization via monitors studied in this paper. The undecidability border

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 205–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

206 P. Lammich and M. Müller-Olm

for various properties and synchronization primitives in models with a fixed set
of threads is studied more closely in [7]. An interesting approach to address the
indirect referencing of monitors extends shape analysis techniques to a concur-
rent scenario (e.g. [17]). However, this approach does not come with a precision
theorem but assesses precision empirically.

The work that comes closest to our goals is by Kahlon et al. [8,6]. They study
analyses for a fixed set of threads communicating via (statically referenced)
locks, where each thread is modeled by a pushdown system (which corresponds
to programs with recursive procedures). In their model, threads can execute
lock/unlock statements for a fixed finite set of locks in a nested fashion, i.e.
each thread can only release the lock it acquired last and that was not yet
released. Without this nestedness constraint data race detection is undecidable
[8,7]. Moreover, locks are not reentrant in their model, i.e. a thread may not
reacquire a lock that it possesses already1. In contrast, our model uses reentrant
monitors (i.e. ,,synchronized”-blocks). Monitors correspond to a structured use
of nested locks. A monitor can be interpreted as a lock that is acquired upon
entering a synchronized block and released when leaving the synchronized block.
While synchronized blocks start and end in the same procedure, the lock and
unlock statements in [8,6] can occur anywhere in the program. However, since
languages like Java also use synchronized blocks, we believe this restriction being
rather harmless.

Our contributions beyond the work of [8] are as follows: We handle thread
creation instead of assuming a fixed set of threads; we handle reentrant moni-
tors instead of non-reentrant nested locks; and we use fixpoint based instead of
automata based techniques. The running time of our algorithm depends only
linearly from the program size, independently of the number of threads ac-
tually created. In contrast, the running time of the algorithm of [8] grows at
least quadratically with the (statically fixed) number of threads. Moreover, we
show conflict analysis to be NP-complete for our model, where NP-hardness also
transfers to models with a fixed set of threads including the one of Kahlon et al.,
which justifies the exponential dependency of the running time of the analysis
algorithms from the number of monitors.

This paper is organized as follows: In Section 2 the program model and its se-
mantics is defined. In Section 3, we define an alternative operational semantics
that captures only particular schedules, called restricted executions. We show
that any reachable configuration is also reachable by a restricted execution. In
Section 4, we characterize restricted executions by a constraint system. In Sec-
tion 5, we interpret this constraint system over an abstract domain, obtaining a
fixpoint based conflict analysis algorithm needing exponential time in the num-
ber of monitors and linear time in the program size. As part of the abstract
domain, we use the concept of acquisition histories [8], adapted to reentrant
monitors and to a fixpoint based analysis context. Additionally, we show that
the conflict analysis problem is NP-complete . Finally, in Section 6, we give a

1 One can simulate reentrant locks by non-reentrant ones, but at the cost of a worst-
case exponential blowup of the program size

Conflict Analysis of Programs with Procedures 207

conclusion and an outlook to further research. Due to the lack of space, most of
the proofs are deferred to an accompanying technical report [9].

2 Program Model

Flowgraphs. We describe programs by nondeterministic interprocedural flow-
graphs with monitors. A program Π = (P,M, (Gp,m(p))p∈P) consists of a finite
set P of procedure names with main ∈ P and a finite set M of monitor names.
Each procedure p ∈ P, is associated with a flowgraph Gp, describing the body
of the procedure, and a set of monitors m(p) ⊆ M describing the monitors the
procedure synchronizes on, i.e. the monitors in m(p) are acquired upon entering
p and released upon returning from p. A flowgraph Gp = (Np,Ep, ep, rp) consists
of a finite set Np of control nodes, a set Ep ⊆ Np×LEdge×Np of labeled edges, and
distinguished entry and return nodes ep, rp ∈ Np. Edges are labeled with either
base, call, or spawn labels: LEdge = {base} ∪ {call p | p ∈ P} ∪ {spawn p | p ∈ P}.
Intuitively, base edges model basic instructions. We leave there structure unspec-
ified as we will define conflicting situations on the basis of the control state of the
program rather than by the executed instructions. Call edges model (potentially
recursive) procedure calls and spawn edges model thread creation. As usual, we
assume Np ∩Np′ = ∅ for p �= p′ ∈ P and define N :=

⋃
p∈P Np and E :=

⋃
p∈P Ep.

We call a procedure p ∈ P initial, if it is the main procedure (p = main) or a pro-
cedure started by a spawn edge (∃u, v.(u, spawn p, v) ∈ E). In order to avoid the
(unrealistic) possibility that a thread can allocate monitors in the moment it is
created, we assume that initial procedures do not synchronize on any monitors.
Otherwise, the analysis problem would be more complex (PSPACE-hard). For
the rest of this paper, we assume a fixed program Π = (P,M, (Gp,m(p))p∈P).

e

r

 call x

x : {}

x

x t

 call x

x : {}

xe

xr x

0

0

0

1

1

1

1

Fig. 1. Starter procedure

In order to simplify the definition of restricted ex-
ecutions in Section 3, we agree on some further
conventions: For each initial procedure p we have
ep �= rp and there is a procedure q such that Ep =
{(ep, call q, rp)}, eq �= rq, and Eq ∩ {(u, l, rq) | u ∈
Nq ∧ l ∈ LEdge} = ∅, i.e. the return node of q is
isolated. These syntactic restrictions guarantee that
the execution of any thread starts with a call to a
procedure that will never return. However, they do
not limit the expressiveness of our model, since we
can always rewrite a program to one with the same
set of conflicts that satisfies these restrictions, e.g. by introducing starter proce-
dures x0 and x1 for every initial procedure x as illustrated in Fig. 1 and replacing
spawn x by spawn x0, as well as main by main0. Note that reaching control node
tx models termination of a thread: Arrived there, it holds no monitors and cannot
make any steps.

The flowgraph depicted in Fig. 2 is used as a running example throughout this
paper. Its main procedure is a0. For better readability, the x0 and x1 procedures
(for x ∈ {a, p, r}) as well as the base edge labels are not shown. First of all, let

208 P. Lammich and M. Müller-Olm

us illustrate some effects our analysis has to cope with. Consider nodes 5 and 9.
In order to reach 5, we have to call p and then pass through t and in order to
reach 9, we have to call q and then pass through s. If one thread calls p first, it
is in monitor m1, and no other thread can pass through s any more. Vice versa,
if q is called first, no other thread can pass through t any more. Hence nodes 5
and 9 are not simultaneously reachable, although the sets of monitors held at 5,

Fig. 2. Example flowgraph with main = a0

{m1}, and 9, {m2}, are
disjoint. We will use
the concept of acqui-
sition histories [8] to
handle this effect. Now
consider nodes 3 and
C. They are simulta-
neously reachable, be-
cause procedure q can
create a thread start-
ing with r0, and after
q has returned to node
3, the new thread can
pass through procedure
t and reach node C. This illustrates that a thread survives the procedure it is
created in. In order to cope with this, we need complex procedure summaries.
Finally, consider nodes 8 and C. They are not simultaneously reachable, as the
thread starting at r0 cannot pass through procedure t until the initial thread
has released monitor m2. However, if we had no thread creation, but two initial
threads of type main and r, the nodes 8 and C would be simultaneously reach-
able. This illustrates that conflicts in our model with thread creation cannot
(easily) be reduced to models with a fixed set of initial threads (as covered by
Kahlon et al. [8,6]).

Operational Semantics. We use the following multiset and list notations: mset(R)
is the set of multisets of elements from R, ∅ is the empty multiset, {x} is the
multiset containing x once and R1 �R2 is the union of the multisets R1 and R2.
The ambiguity between set and multiset notation is resolved from the context.
R∗ is the set of lists of elements from R, ε is the empty list, [e1, . . . , ek] is the
list of elements e1, . . . , ek, and w1w2 is the concatenation of the lists w1 and w2.

The operational semantics is described as a labeled transition system ·−→ ⊆
Conf × LLE × Conf, where Conf := {〈s, c〉 | s ∈ N∗, c ∈ mset(N∗), cons({s} � c)}
is the set of monitor consistent program configurations and LLE := {lx|l ∈ L ∧
x ∈ {L,E}} with L := LEdge ∪ {ret} is the set of transition labels. A program
configuration 〈s, c〉 ∈ Conf is a pair of a local thread’s configuration s and a
multiset c of environment threads’ configurations. A thread’s configuration is
modeled as a stack of control nodes, the top element being the current control
node and the elements deeper in the stack being stored return addresses. We
model stacks as lists with the top of the stack being the first element of the
list. For a control node u ∈ Np, we define m(u) := m(p). For a stack s ∈ N∗ we

Conflict Analysis of Programs with Procedures 209

define m(s) :=
⋃

n∈s m(n), for c ∈ mset(N∗), we define m(c) =
⋃

s∈c m(s) and for
〈s, c〉 ∈ Conf we define m(〈s, c〉) := m({s}� c). A multiset of stacks c ∈ mset(N∗)
is monitor consistent, if no two threads are inside the same monitor. This is
expressed by the predicate cons(c) :⇔ �s1, s2, ce. c = {s1} � {s2} � ce ∧m(s1) ∩
m(s2) �= ∅. Transitions are labeled with the edge that induced the transition or
with the ret label for a procedure return. Additionally, we record whether the
transition was made on the local thread (·L) or on some environment thread
(·E). This distinction is needed when characterizing certain sets of executions by
a constraint system in order to distinguish the monitors used by the environment
threads from the monitors used by the local thread. We define ·−→ to be the
least set satisfying the following rules:

[base] (u, base, v) ∈ E : 〈[u]r, c〉baseL

−→〈[v]r, c〉
[call] (u, call q, v) ∈ E : 〈[u]r, c〉(call q)L

−→ 〈[eq, v]r, c〉 if m(q) ∩m(c) = ∅
[ret] q ∈ P : 〈[rq]r, c〉 retL−→〈r, c〉
[spawn] (u, spawn q, v) ∈ E : 〈[u]r, c〉(spawn q)L

−→ 〈[v]r, {[eq]} � c〉
[env] 〈s, {r} � c〉 lE−→〈s, {r′} � c′〉 if 〈r, {s} � c〉 lL−→〈r′, {s} � c′〉

The [base], [call], and [spawn]-rules model the behavior of the corresponding
edges. Returning from procedures is modeled by the [ret]-rule. Note that there is
no flowgraph edge corresponding to a return step. Finally, the [env]-rule defines
the environment steps.

We overload ·−→ with its reflexive transitive closure (〈s, c〉 w−→〈s′, c′〉 with
w ∈ LLE

∗) and write ∗−→ for the execution of an arbitrary path. For x ∈ {L,E}
and w = [l1, . . . , ln] ∈ L∗ we define wx := [lx1 , . . . , l

x
n] and write c

w−→c′ as a

shorthand notation for 〈ε, c〉 wE

−→〈ε, c′〉. As the empty stack cannot make any
steps and holds no monitors, it does not influence the execution. Thus c l−→c′

simply is a transition without explicit local thread. Our semantics preserves
monitor consistency of the configurations as the monitor side condition in the
[call]-rule ensures that a thread can only enter a procedure if no other thread is
inside a monitor the procedure synchronizes on.

The monitors used by a path are the monitors of all procedures that are called
on steps of this path: For l ∈ L, we define m(l) := m(p) if l = call p and m(l) = ∅
otherwise. We overload this definition for sequences of labels (m(w) :=

⋃
l∈w m(l)

for w ∈ L∗). For sequences with L/E-labeling w ∈ LLE
∗, we define mL(w) to be

the set of monitors used by local steps and mE(w) to be the set of monitors used
by environment steps.

Reachability of a Conflict. For a multiset C = {U1, . . . , Un} ∈ mset(2N) of
sets of nodes and a multiset of stacks c ∈ mset(N∗), we define atC(c) if and
only if c = ce �

⊎
i=1...n{[ui]ri} for some ce ∈ mset(N∗), (ri ∈ N∗)i=1...n, and

(ui ∈ Ui)i=1...n, i.e. for each i, c contains an own thread with current control
node in Ui. We also define atC(〈s, c〉) :⇔ atC({s} � c). The conflict analysis

210 P. Lammich and M. Müller-Olm

problem for two sets of control nodes U, V ⊆ N is to decide the question: Is there
an execution {[emain]} ∗−→c with at{U,V }(c)? The reachability problem for a single
set U is to decide: Is there an execution {[emain]} ∗−→c with at{U}(c)?

Example 1. In the following example executions, we abbreviate call p by p and
spawn p by +p. Fig. 3a illustrates an execution of the flowgraph from Fig. 2. The
execution starts with a single thread at the entry point of a0. It calls procedures
a1, a, and then passes through procedure q. On its way, it spawns two other
threads p0 and r0. Their steps are interleaved with the initial thread’s ones. This
execution can be formally described as 〈ea0 , ∅〉

w−→c′ with transition labels w =
[a1

L, aL,+p0
L, qL, p1

E,+r0L, r1
E, rE, baseL, retL, tE, pE, retE] and end configuration

c′ = 〈[3, ta, ra0], {[C, tr, rr0], [4, tp, rp0]}〉. Note that this execution witnesses the
conflict between nodes 3 and C mentioned above.

a
a1 a q+p

0 +r
0

p
1[e]

0

r1 r

base ret

t

p

ret
[e]

0

[3,t ,r]a 0

[C,t ,r]r r0

[4,t ,r]p p0

0
[e]a

p

r

a1 a q+p
0

+r
0

p1

r

base ret

t

p

ret

0
[e]a

[e]
0r

[e]
0

p

r1

a)

b)

a[3,t ,r]a 0

[C,t ,r]r r0

[4,t ,r]p p0

Fig. 3. Sample execution and corresponding restricted execution

3 Restricted Schedules

In this section we define a restricted operational semantics that only allows a
subset of the executions of the original semantics, but preserves the set of reach-
able configurations, and thus the reachable conflicts. The restricted semantics
is better suited for characterization by a constraint system than the original
semantics (cf. Section 4).

While in an execution of the original semantics, context switches may occur
after each step, the restricted semantics only allows context switches after a
thread’s last step and before procedure calls that do not return for the rest of
the execution. Due to the syntactic convention that assures that the execution of
any thread starts with a non-returning call, an atomically scheduled sequence,
called a macrostep, consists of an initial procedure call, followed by a same-
level path. A same-level path is a path with balanced calls and returns, i.e. its
execution starts and ends at the same stack level, and does not fall below the
initial stack level at any point. We define the transition relation of the restricted

Conflict Analysis of Programs with Procedures 211

semantics ·=⇒ ⊆ Conf ×MStep× Conf with MStep := {([call p]w̄)x | p ∈ P, w̄ ∈
L∗, x ∈ {L,E}} as the least set satisfying the following rules:

[macro] 〈s, c〉([call p]w̄)L

=⇒ 〈[v]r′, c′〉 if 〈s, c〉(call p)L

−→ 〈[ep]r′, c〉 ∧ 〈[ep], c〉
w̄L

−→〈[v], c′〉
[env] 〈s, {r} � c〉 lE=⇒〈s, {r′} � c′〉 if 〈r, {s} � c〉 lL=⇒〈r′, {s} � c′〉

The [macro]-rule captures the intuition of a macrostep of the local thread as
described above and the [env]-rule infers the environment steps. Note that a

same-level execution is written as 〈[u], c〉 w̄L

−→〈[v], c′〉. As monitors are reentrant,

it also implies the executions 〈[u]r′, c〉 w̄L

−→〈[v]r′, c′〉 for any stack r′, s.t. 〈[u]r′, c〉
is monitor consistent. We extend ·=⇒ to its reflexive transitive closure, write ∗=⇒
for the execution of an arbitrary path, and define c w=⇒c′ := 〈ε, c〉 wE

=⇒〈ε, c′〉. Note
that a transition is then labeled by a sequence of macrosteps w = [lx1

1 , . . . , lxn
n] ∈

MStep∗ with x1, . . . , xn ∈ {L,E} where each macrostep li ∈ MStep (1 ≤ i ≤ n)
is labeled as either a local (lLi) or an environment (lEi) step.

As macrosteps always start with a call that does not return for the rest of the
execution, the set of allocated monitors does not decrease during an execution:

Theorem 2. An execution 〈s, c〉 w=⇒〈s′, c′〉 implies m(〈s, c〉) ⊆ m(〈s′, c′〉).

Starting with an initial procedure, the sets of configurations reachable by exe-
cutions of the original semantics and of the restricted semantics are the same:

Theorem 3. Let p ∈ P be an initial procedure. A configuration can be reached
from p by an execution of the original semantics if and only if it can be reached
by an execution of the restricted semantics. Formally: {[ep]} ∗−→c′ ⇔ {[ep]} ∗=⇒c′.

Example 4. Fig. 3b illustrates a restricted execution that reaches the same con-

figuration c′ as the execution from Fig. 3a. It is described as 〈ea0 , ∅〉
w′

=⇒c′ with
w′ = [[a1]L, [a,+p0, q,+r0, base, ret]L, [r1]E, [r, t, ret]E, [p1]E, [p]E].

Monitor Consistent Interleaving. For a single macrostep l = [call p]w̄, we define
ent(l) := m(p) and pass(l) = m(w̄), i.e. the monitors that are entered and never
exited by a macrostep and the monitors that are passed (entered and exited
again), respectively. We inductively define the monitor consistent interleaving
operator ⊗ : MStep∗ ×MStep∗ → MStep∗ by ε⊗w = w ⊗ ε = {w} and [l1]w1 ⊗
[l2]w2 :=

⋃
i=1,2{[li]w | w ∈ wi ⊗ [l3−i]w3−i ∧ ent(li) ∩m([l3−iw3−i]) = ∅}. Note

that the ⊗-operator is not aware of the L/E-labeling of its operands, it just copies
the labeling to the result. Monitor consistent interleaving is a restriction of the
usual interleaving to those interleavings where no monitor is used by one path if
it has been entered by the other path. For example, in the flowgraph of Fig. 2, we
have [[r, t, ret]E] ⊗ [[q]L] = {[[r, t, ret]E, [q]L]}. Note that the macrostep sequence
[[q]L, [r, t, ret]E] is not a monitor consistent interleaving, as q enters monitor m2

that inhibits execution of the macrostep [r, t, ret]E. We show that the ⊗-operator
captures the behavior of our interleaving semantics:

212 P. Lammich and M. Müller-Olm

Theorem 5. For configurations 〈s, c1 � c2〉, 〈s′, c′〉 ∈ Conf and a macrostep path
w ∈ MStep∗, we have 〈s, c1 � c2〉 w=⇒〈s′, c′〉 if and only if there exist w1, w2 ∈
MStep∗ withw ∈ w1⊗wE

2 and c′1, c
′
2 ∈ mset(N∗) with c′ = c′1�c′2, 〈s, c1〉

w1=⇒〈s′, c′1〉,
c2

w2=⇒c′2, m(〈s, c1〉) ∩m(c2) = ∅, m(〈s, c1〉) ∩m(w2) = ∅, and m(c2) ∩m(w1) = ∅.

Intuitively, this theorem states that we can split an execution by the threads in its
starting configuration into interleavable executions, and, vice versa, can combine
interleavable executions into one execution. Note that the interleaving operator
⊗ only ensures that monitors allocated by one execution do not interfere with
the monitors used by the other execution, but is not aware of the monitors of
the start configurations. Hence, the last three conditions in this theorem ensure
that the resulting combined configuration is monitor consistent and that the
monitors of the start configuration of one execution do not interfere with the
monitors used by the other execution.

Example 6. Consider the executions 〈[7], ∅〉 [s]L

=⇒〈[D, 9], ∅〉 and {[4]} [t]E

=⇒{[E, 5]} of
the flowgraph in Fig. 2. Although w := [[s]L, [t]E] ∈ [[s]L] ⊗ [[t]E], there is no
execution 〈[7], [4]〉 w=⇒〈[D, 9], {[E, 5]}〉, as m({4}) ∩m([[s]L]) = {m1} �= ∅.

4 Constraint Systems

In this section we develop a constraint system based characterization of restricted
executions starting at a single control node. For a procedure p ∈ P, we want to
represent all executions starting with a call of p and reaching some configuration
〈s, c〉. However, we omit the initial procedure call in order to make the execution
independent from the monitors held at the call site. The representation of such
an execution, called a reaching triple, is a triple of the first macrostep’s same-level
path, the remaining macrosteps, and the reached configuration:

Rop[p] := {(w̄, w, 〈s, c〉) | ∃ũ, c̃. 〈[ep], ∅〉
w̄L

−→〈[ũ], c̃〉 w−→〈s, c〉}

The procedure summary information Sop[u] is collected for each control node
u in a forwards manner; thus the actual summary for procedure p is Sop[rp].
It contains triples of a same-level path w̄ from the procedure’s entry node to
u, a macrostep path w of the threads spawned during the execution of the
same-level path and the configuration c reached by those threads: Sop[u] :=

{(w̄, w, 〈ε, c〉) | ∃c̃. 〈[ep], ∅〉
w̄L

−→〈[u], c̃〉 ∧ 〈ε, c̃〉 w−→〈ε, c〉}. Note that an artificial
ε-component is included in the entries of Sop[u] in order to have entries of the
same form in Sop and Rop. Thus we have Rop[p], Sop[u] ⊆ D for D := L∗ ×
MStep∗×Conf. This allows us to handle these sets more uniformly. The last two
elements of a procedure-summary triple collect information about steps that
may be executed after the procedure has returned. This accounts for the fact
that spawned threads survive the procedure they where created in. Note how
restricted schedules reduce the complexity here: If we would collect arbitrarily
scheduled executions, we would have to interleave a prefix of the steps of the

Conflict Analysis of Programs with Procedures 213

created threads with the same-level path and record the suffix in the second
component. This would complicate the constraint system and also the monitor
consistent interleaving operator.

Both, the reaching and the same-level information have a closure property,
that results from the fact that the empty path is always executable. Formally,
Rop[p], Sop[u] ∈ LR ⊆ 2D with LR := {X | ∀(w̄, w, 〈s, c〉) ∈ X. ∃s̃, c̃. (w̄, ε, 〈s̃, c̃〉) ∈
X}. This closure property is important for the abstraction done later, as it allows
us to ignore steps that are not necessary to reach the conflict. Moreover, we have
Sop[u] ∈ LS ⊆ LR for LS := {X ∈ LR | ∀(w̄, w, 〈s, c〉) ∈ X. s = ε}. Both LR and
LS ordered by set inclusion are complete sub-lattices of (2D,⊆).

Example 7. The executions 〈[7], ∅〉 w̄L
1−→〈[9], ∅〉, 〈[1], ∅〉+p0

L

−→〈[2], {[ep0]}〉, and {[ep0]}
w2=⇒{[5, tp, rp0]} with w̄1 := [s, ret] and w2 := [[p1]E, [p, t, ret]E] of the flowgraph
from Fig. 2 give rise to the reaching triples Tr1 := (w̄1, ε, 〈[9], ∅〉) ∈ Rop[q] and
Tr2 := ([+p0], w2, 〈ε, {[5, tp, rp0]}〉) ∈ Sop[2]. Moreover, as {[ep0]}

ε=⇒{[ep0]} is
also a valid execution, we have ([+p0], ε, 〈ε, {[ep0]}〉) ∈ Sop[2], witnessing the
closure property.

We characterize Rop and Sop as the least solution of the following system of
inequations (constraint system), where the variables (R[p])p∈P range over LR

and (S[u])u∈N range over LS .

[REMPTY] u ∈ Np : R[p] ⊇ S[u]|¬m(p) ∗ {(ε, ε, 〈[u], ∅〉)}
[RCALL] (u, call q, v) ∈ Ep : R[p] ⊇ S[u]|¬m(p) ∗ ((u, call q, v);R[q])
[SEMPTY] p ∈ P : S[ep] ⊇ {ε, ε, 〈ε, ∅〉}
[SBASE] (u, base, v) ∈ Ep : S[v] ⊇ S[u] ∗ base
[SCALL] (u, call q, v) ∈ Ep : S[v] ⊇ S[u] ∗ call q ∗ S[rq] ∗ ret
[SSPAWN] (u, spawn q, v) ∈ Ep : S[v] ⊇ S[u] ∗ spawn q ∗ env(R[q])

Here l is an abbreviation of {([l], ε, 〈ε, ∅〉)} for l ∈ {base, call q, ret, spawn q}. The
operator ·|¬M : LS → LS is defined by X |¬M := X∩{(w̄, w, 〈s, c〉) | mE(w)∩M =
∅}. The operators (u, call q, v); · : LR → LR, env(·) : LR → LS , and ∗ : LS ×LR →
LR are the natural extensions to sets of the following definitions:

(u, call q, v); (w̄, w, 〈s, c〉) := {(ε, ε, 〈[u], ∅〉)}∪
{(ε, [([call q]w̄)L]w, 〈s[v], c〉)}|¬m(v)

env(w̄, w, 〈s, c〉) := (ε, w!E, 〈ε, {s} � c〉)
(w̄1, w1, 〈ε, c1〉) ∗ (w̄2, w2, 〈s2, c2〉) := {(w̄1w̄2, w, 〈s2, c1 � c2〉) | w ∈ w1 ⊗ w2}

Here, the expression w!E is defined as the relabeling of all steps in w to environ-
ment steps. It is straightforward to see that the operators are well-defined w.r.t.
their specified signatures and that they are monotonic. Moreover, it is easy to
see that X ∗ Y ∈ LS for X,Y ∈ LS . Therefore, we can use ∗ also as an operator
of type LS × LS → LS as done in the constraints for S.

Now we explain the constraints and operators: The main work is done by the
∗-operator which is generalized concatenation. It concatenates the same-level
components of its operands, interleaves the macrostep components, and joins

214 P. Lammich and M. Müller-Olm

the reached configurations. A reaching triple in R[p] is constructed by regard-
ing a same-level path to some node u ∈ Np, represented by a summary triple
from S[u].2 We distinguish the cases whether the local thread stays at node u
([REMPTY]) or whether it performs further macrosteps ([RCALL]). In the for-
mer case, we append the triple (ε, ε, {[u], ∅}). This sets the stack reached by
the local thread to [u]. As we are not going to return from procedure p any
more, we have to filter out triples that use monitors of procedure p in steps from
spawned threads (environment steps). This is done by the ·|¬m(p)-operation. Note
that these monitors may be used in local steps, as prepending the call renders
the subsequent uses to be reentering. In the latter case, we find a call edge of
the form (u, call q, v), as macrosteps always start with a procedure call. The
(u, call q, v);R[q]-operation constructs a macrostep path from a reaching triple
in R[q], by adding the call edge and filtering out triples whose monitors con-
flict with the monitors m(v) held at the call site. Note that we also include a
triple for the empty path in the result of the (u, call q, v); ·-operator, in order
to make it preserve the closure property. The [SEMPTY]-constraint accounts
for the empty path from the beginning of a procedure and the [SBASE]- and
[SCALL]-constraints propagate information over base and call edges respectively.
The [SSPAWN]-constraint describes the effect of a spawn edge. The steps of the
spawned thread are constructed from the R[q]-information. From the point of
view of the thread executing the spawn edge, they are environment steps. The
env-operation does the necessary L/E-relabeling. Note that the same-level com-
ponents of triples in R[q] are always empty, because due to our conventions a
spawned procedure begins with a non-returning call. Hence, the env-operator ig-
nores the same-level path component of its operand. By the well-known Knaster-
Tarski fixpoint theorem the above constraint system has a least solution. In the
following, R and S refer to the components of the least solution.

Theorem 8 (Correctness). The least solution (R,S) is equal to the opera-
tional characterization, i.e. R[p] = Rop[p] and S[u] = Sop[u] for p ∈ P, u ∈ N.

5 Abstractions

In this section, we develop an abstract interpretation of the constraint system
over a finite domain that allows us to do conflict analysis by effective fixpoint
computation. First, we briefly recall the concept of acquisition histories and
describe our abstract domain and the abstract operators. We then analyze the
running time of the resulting algorithm and show that the conflict detection
problem is NP-complete.

Acquisition Histories. The concept of acquisition histories was introduced by
Kahlon, Ivancic, and Gupta [8,6] to decide the interleavability of executions
allocating locks in a well-nested fashion, but can also be applied to our reentrant

2 Re-using the procedure summary information to describe initial segments of paths
is a common technique to save redundant constraints.

Conflict Analysis of Programs with Procedures 215

monitors. The idea of acquisition histories is that two executions w1 and w2 are
interleavable if and only if there is no conflicting pair of monitors m1,m2, that is
w1 enters m1 and then uses m2 and, vice versa, w2 enters m2 and then uses m1.
We define the set of acquisition histories by H := {h : M → 2M | ∀m. h(m) =
∅ ∨ m ∈ h(m)}. Intuitively, an acquisition history maps all monitors m that
are entered during an execution to the set of all monitors that are used after
or in the same step as entering m. Hence we can define interleavability of two
acquisition histories as h1 ∗ h2 :⇔ �m1,m2. m2 ∈ h1(m1) ∧ m1 ∈ h2(m2).
In order to construct the acquisition history of a path backwards, we define
the operator ·; · : 2M × 2M × H → H, that prepends a macrostep to an
acquisition history: ((Me,Mp);h)(m) := if m ∈ Me then Me ∪ Mp else h(m).
Intuitively, Me is the set of monitors entered by the prepended macrostep and
Mp is the set of monitors used in the whole path, including the prepended
step. We define the acquisition history of a macrostep path by: αah(ε) := λm.∅
and αah([l]w) := (ent(l), pass(l) ∪ m(w));αah(w). We define a pointwise subset
ordering on acquisition histories by h 2 h′ :⇔ ∀m. h(m) ⊆ h′(m). Obviously,
this is an ordering and we have h 2 h′∧h′ ∗h2 ⇒ h∗h2, i.e. a smaller acquisition
history is interleavable with everything a bigger one is. The following theorem
states that acquisition histories can be used to decide whether two paths are
interleavable. It can be proven along the lines of [8].

Theorem 9. For macrostep paths w1, w2 ∈ MStep∗ we have w1⊗w2 �= ∅ if and
only if αah(w1) ∗ αah(w2).

Abstract Domain. Let U, V ⊆ N be the two sets defining the conflict of interest.
For a reaching triple, we record up to four abstract values from the set D� :=
D�

0 ∪ D�
1 ∪ D�

2, where D�
0 := 2M, D�

1 := C1 × (2M)3 ×H with C1 := {{U}, {V }},
and D�

2 := (2M)3. While entries from D�
0 are recorded for every reaching triple,

entries from D�
1 are recorded only for triples reaching one of the given sets U or

V as specified by the first component, and entries from D�
2 are recorded only for

triples reaching a conflict. More specifically, the recorded information is specified
by the abstraction functions (αi : D → 2D	

i)i=0,1,2:

α0(w̄, w, 〈s, c〉) := {m(w̄)}
α1(w̄, w, 〈s, c〉) := {(C,m(w̄),mL(w),mE(w), αah(w)) | C ∈ C1, atC(〈s, c〉)}
α2(w̄, w, 〈s, c〉) := {(m(w̄),mL(w),mE(w)) | at{U,V }(〈s, c〉)}

For X ⊆ D, we define αi(X) :=
⋃
{αi(x) | x ∈ X}. In order to treat entries

from D�
0,D

�
1,D

�
2 uniformly, we sometimes identify entries M ∈ D�

0 with the tuple
(∅,M, ∅, ∅,−) and entries (M̄,ML,ME) ∈ D�

2 with ({U, V }, M̄ ,ML,ME,−) and
define C := C1 ∪ {∅, {U, V }}. The symbol − is a substitute for an acquisition
history and we define (Me,Mp);− := − and agree that − 2 −. Note that we
never compare acquisition histories with −.

On D� we define an ordering ≤ by (C, M̄,ML,ME, h) ≤ (C′, M̄ ′,M ′
L,M

′
E, h

′)
if and only if C = C′, M̄ ⊆ M̄ ′, ML ⊆ M ′

L, ME ⊆ M ′
E, and h 2 h′. Intuitively,

d < d′ means that d reaches the same set C ∈ C of interesting nodes as d′,

216 P. Lammich and M. Müller-Olm

but with weaker monitor requirements. Thus d′ can be substituted by d in any
context, and it is sufficient to collect the minimal elements when abstracting a set
of reaching triples. Therefore we work with antichains. Formally, for an ordered
set (X,≤) we write (ac(X),�) for the complete lattice of antichains of X , i.e.
ac(X) := {M ⊆ X | ∀m,m′ ∈ M. ¬m < m′} and M � M ′ :⇔ ∀m ∈ M.∃m′ ∈
M ′. m ≤ m′. For an arbitrary set M ⊆ X , we write M ac for the antichain
reduction of M , i.e. the set of minimal elements of M . Note that ·ac distributes
over union and for X ⊆ ac(X), the supremum of X is

⊔
X = (

⋃
X)ac. Now we

define our abstract domain by L� := ac(D�) and our abstraction α : LR → L� by
α(X) = (α0(X) ∪ α1(X) ∪ α2(X))ac. The abstraction α distributes over union,
i.e. α(

⋃
X) =

⊔
{α(X) | X ∈ X} for all X ⊆ LR. Hence it is the lower adjoint of

a Galois connection [12].

Example 10. Consider the reaching triples Tr1 and Tr2 introduced in Example 7.
For U := {5} and V := {9}, we have α({Tr1}) = {{m1}}∪{Tr�1} with α1(Tr1) =
{({V }, {m1}, ∅, ∅, λm.∅)} =: {Tr�1} and α({Tr2}) = {∅} ∪ {Tr�2} with α1(Tr2) =
{({U}, ∅, ∅, {m1,m2}, (m1 �→ {m1,m2}))} =: {Tr�2}.
The X ∗ Y -operation combines two reaching triples t1 := (w̄1, w1, 〈ε, c1〉) ∈
X and t2 := (w̄2, w2, 〈s, c2〉) ∈ Y . The reached configuration of the resulting
triples is 〈s, c1 � c2〉. For C ∈ C, there are four cases for atC(〈s, c1 � c2〉). Either
atC(c1), or atC(c2), or C = {U, V } and at{U}(c1) ∧ at{V }(〈s, c2〉) or at{V }(c1) ∧
at{U}(〈s, c2〉). In the first case the interesting nodes are all reached by t1. We then
consider the triple t̃ := (w̄2, ε, 〈s̃, c̃〉) ∈ Y that exists due to the closure property
of LR. We have α(t1 ∗ t̃) = α(w̄1w̄2, w1, 〈s̃, c1 � c̃〉) � α(t1 ∗ t2). Thus for the
abstraction of the result, we have to only consider α(t1 ∗ t̃), which has the same
acquisition history as t1. Analogously, in the second case we only need to consider
interleavings of the form t̃ ∗ t2 for some t̃ = (w̄1, ε, 〈ε, c̃〉) ∈ X . In the last two
cases, the abstractions of both t1 and t2 contain the acquisition histories of w1

and w2, respectively. These can be used to check whether an interleaving exists.
The abstraction of the resulting triples is then in D�

2 (i.e. reaching a conflict)
and thus contains no acquisition history. The operator ∗� : L�×L� → L� captures
the ideas described above and is defined as the natural extension to antichains
of the following definition: (C1, M̄1,ML1,ME1, h1) ∗� (C2, M̄2,ML2,ME2, h2) :=
{(Ci, M̄1∪ M̄2,MLi,MEi, hi) | i = 1, 2}ac�{({U, V }, M̄1∪ M̄2,ML1∪ML2,ME1∪
ME2,−) | Ci = {U} ∧ C3−i = {V } ∧ h1 ∗ h2 ∧ i = 1, 2}ac. The definitions of
the other abstract operators are straightforward (extended to antichains where
necessary):

X |�¬M := X ∩ {(·, ·, ·,ME, ·) ∈ D� |ME ∩M = ∅}
env�((C, M̄ ,ML,ME, h)) := {(C, ∅, ∅,ML ∪ME, h)}
(u, call q, v);� (C, M̄ ,ML,ME, h) := α(ε, ε, 〈[u], ∅〉)�

{(C, ∅,m(q) ∪ M̄ ∪ML,ME, (m(q), M̄ ∪ML ∪ME);h) | C �= ∅}|�¬m(v)

Example 11. We show how our analysis utilizes acquisition histories to prevent
detection of a spurious conflict between nodes 5 and 9 in the flowgraph of Fig. 2.

Conflict Analysis of Programs with Procedures 217

So let us assume U := {5} and V := {9}. The combination of the paths to U
and V is done by the [RCALL]-constraint for the edge (2, call q, 3). We consider
the reaching triples Tr�1 ∈ R�[q] and Tr�2 ∈ S�[2] from Example 10. We have
Tr�2 = ({U}, ∅, ∅, {m1,m2}, (m1 �→ {m1,m2})) ∈ S�[2]|�¬m(2) as m(2) = ∅ and

from Tr�1 we get ({V }, ∅, {m1,m2}, ∅, (m2 �→ {m1,m2})) ∈ (2, call q, 3);� R�[q].
However, the acquisition histories h1 := (m1 �→ {m1,m2}) and h2 := (m2 �→
{m1,m2}) are not interleavable (¬h1 ∗ h2) because of the conflicting pair of
monitors m1,m2 (i.e. m2 ∈ h1(m1) and m1 ∈ h2(m2)). Therefore, these two
entries are not combined by the ∗�-operator.

Lemma 12. The abstract operators mirror the corresponding concrete operators
precisely, i.e. for XR ∈ LR and XS ∈ LS the following holds:

α(XS |¬M) = α(XS)|�¬M α((u, call q, v);XR) = (u, call q, v);� α(XR)
α(env(XR)) = env�(α(XR)) α(XS ∗XR) = α(XS) ∗� α(XR)

The proof for the ∗-operator follows the ideas described above and is omitted here
due to the limited space. The proofs for the other operators are straightforward.

Theorem 13. Let (R�,S�) be the least solution of the constraint system in-
terpreted over the abstract domain L� using the abstract operators and replac-
ing the constants by their abstractions. It exactly matches the least solution
(R,S) of the concrete constraint system, i.e. ∀p ∈ P. α(R[p]) = R�[p] and
∀u ∈ N. α(S[u]) = S�[u]. It can be computed in time O((|N|+ |E|) · 2poly(|M|)).

Theorem 13 follows from Lemma 12 by standard results of abstract interpreta-
tion, see, e.g. [3,5].

Corollary 14. Conflict analysis can be done in time O((|N| + |E|) · 2poly(|M|)),
i.e. linear in the program size and exponential in the number of monitors.

Proof. From Theorems 3, 8, 13, the definitions of Rop and α, and the convention
that the main-procedure starts with a non-returning call, it is straightforward to
show that ∃c. {[emain]} ∗−→c ∧ at{U,V }(c) if and only if R�[emain] ∩ D�

2 �= ∅. Thus,
an algorithm for conflict analysis can compute the least solution of the abstract
constraint system and check whether R�[emain] contains an entry from D�

2. ��

Theorem 15. Deciding whether a given flowgraph has a conflict is NP-complete.

Proof. We sketch the NP-hardness direction here, that justifies the exponential
running time of our algorithm. We show NP-hardness of the reachability problem
for a single control node (that can obviously be reduced to conflict detection)
by a reduction from 3SAT. For a formula in conjunctive normal form (CNF)∧

1≤i≤n

∨
1≤j≤3 lij with lij ∈ {x1, x̄1, ..., xm, x̄m}, we construct the following pro-

gram3 with the procedures main, p1, ..., pm+1,c and monitors x1, x̄1, ..., xm, x̄m:

3 The translation of this textual representation to our model is straightforward.

218 P. Lammich and M. Müller-Olm

proc main {call p1}
proc pi /* 1 ≤ i ≤ m */ {

{sync (xi) {call pi+1}} OR {sync (x̄i) {call pi+1}} }
proc pm+1 {spawn c; loop forever}
proc c {

{sync (l11){skip}} OR {sync (l12){skip}} OR {sync (l13){skip}};
...

{sync (ln1){skip}} OR {sync (ln2){skip}} OR {sync (ln3){skip}};
u: // Control node that is checked to be reachable }

The statement sync (m) { ... } denotes a block synchronized on monitor m
and OR denotes nondeterministic choice. Intuitively, the procedures p1 to pm

guess the values of the variables, where sync (xi) corresponds to setting xi

to false, and vice versa, sync (x̄i) corresponds to setting xi to true. Finally,
procedure q checks whether the clauses are satisfied. Control node u is reachable
if and only if the formula is satisfiable.

This construction exploits dynamic thread creation and uses a procedure that
cannot terminate. One can do similar constructions for the simultaneous reacha-
bility of two control nodes in a setting with two fixed threads where all procedures
eventually terminate. Thus conflict analysis is also NP-hard for models like the
one used in [8]. However, for the model of [8] reachability of a single program
point is decidable in polynomial time which highlights the inherent complexity
of thread creation.

6 Conclusion

In this paper we studied conflict analysis for a program model with procedure
calls, dynamic thread creation and synchronization via reentrant monitors. We
showed that conflict analysis is NP-complete. We then used the concept of
restricted schedules to come to grips with the arbitrary interleaving between
threads. We showed that every reachable configuration is also reachable by an
execution with a restricted schedule. We developed a constraint system based
characterization of restricted executions, and used abstract interpretation to de-
rive an algorithm for conflict checking that is linear in the program size and
exponential only in the number of monitors.

We have developed a formal proof of a similar approach to conflict analysis [10]
in Isabelle/HOL [14]. The formalization of the flowgraphs, operational seman-
tics, restricted schedules and acquisition histories are the same as in this paper.
The constraint systems follow similar ideas but the abstract constraint systems
there are justified directly w.r.t. to the operational semantics instead of using
abstract interpretation. Moreover, the height of the abstract domain quadrati-
cally depends on the number of procedures. The NP-completeness result has not
been formalized in Isabelle/HOL.

Further research required on this topic includes the following: Our algo-
rithm is exponential in the number of monitors. However, for real programs, the

Conflict Analysis of Programs with Procedures 219

nesting depth of monitors is usually significantly smaller than their number.
There is strong evidence that this observation can be exploited to design a more
efficient analysis. A similar effect was also described in [8] for a model with a
fixed set of threads. Furthermore, our algorithm is only able to check for con-
flicts — while this is an important practical problem, there are other interesting
problems like bitvector analysis or high-level data races [1], which may be tack-
led by generalizing our approach. In order to apply our algorithm to languages
with dynamic referencing of monitors (like Java), a preceeding pointer analy-
sis is required. The combination of our analysis with such analyses has to be
investigated.

Acknowledgment. We thank Ahmed Bouajjani, Javier Esparza, Nicholas Kidd,
Thomas Reps, Helmut Seidl, Bernhard Steffen, Dejvuth Suwimonteerabuth, and
Tayssir Touili for interesting discussions, and the anonymous referees for very
helpful comments.

References

1. Artho, C., Havelund, K., Biere, A.: High-level data races. In: Isáıas, P.T., Sedes,
F., Augusto, J.C., Ultes-Nitsche, U. (eds.) NDDL/VVEIS, 2003-08-21, pp. 82–93.
ICEIS Press (2003) ISBN:972-09916-2-6

2. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, Springer, Heidelberg (2005)

3. Cousot, P.: Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Electronic Notes in Theoretical Computer Science 6
(1997), www.elsevier.nl/locate/entcs/volume6.html

4. Esparza, J., Podelski, A.: Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In: Proc. of POPL 2000, pp. 1–11. Springer, Heidelberg (2000)

5. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. Journal of the ACM 47(2), 361–416 (2000)

6. Kahlon, V., Gupta, A.: An automata-theoretic approach for model checking threads
for LTL properties. In: Proc. of LICS 2006, pp. 101–110. IEEE Computer Society,
Los Alamitos (2006)

7. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: POPL,
pp. 303–314 (2007)

8. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

9. Lammich, P., Müller-Olm, M.: Conflict analysis of programs with procedures, dy-
namic thread creation, and monitors. Technical Report,
http://cs.uni-muenster.de/u/mmo/pubs/

10. Lammich, P., Müller-Olm, M.: Formalization of conflict analysis of programs with
procedures, thread creation, and monitors. In: Klein, G., Nipkow, T., Paulson, L.
(eds.) The Archive of Formal Proofs (December 2007), http://afp.sourceforge.
net/entries/Program-Conflict-Analysis.shtml (Formal proof development)

11. Lammich, P., Müller-Olm, M.: Precise fixpoint-based analysis of programs with
thread-creation. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR. LNCS,
vol. 4703, pp. 287–302. Springer, Heidelberg (2007)

www.elsevier.nl/locate/entcs/volume6.html
http://cs.uni-muenster.de/u/mmo/pubs/
http://afp.sourceforge.net/entries/Program-Conflict-Analysis.shtml
http://afp.sourceforge.net/entries/Program-Conflict-Analysis.shtml

220 P. Lammich and M. Müller-Olm

12. Melton, A., Schmidt, D.A., Strecker, G.E.: Galois connections and computer science
applications. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Cat-
egory Theory and Computer Programming. LNCS, vol. 240, pp. 299–312. Springer,
Heidelberg (1986)

13. Müller-Olm, M.: Precise interprocedural dependence analysis of parallel programs.
Theor. Comput. Sci. 311(1-3), 325–388 (2004)

14. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

15. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. TOPLAS 22(2), 416–430 (2000)

16. Seidl, H., Steffen, B.: Constraint-Based Inter-Procedural Analysis of Parallel Pro-
grams. Nordic Journal of Computing (NJC) 7(4), 375–400 (2000)

17. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued
logic. ACM SIGPLAN Notices 36(3), 27–40 (2001)

Automatic Inference of Upper Bounds for

Recurrence Relations in Cost Analysis

Elvira Albert1, Puri Arenas1, Samir Genaim2, and Germán Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. The classical approach to automatic cost analysis consists of
two phases. Given a program and some measure of cost, we first pro-
duce recurrence relations (RRs) which capture the cost of our program
in terms of the size of its input data. Second, we convert such RRs into
closed form (i.e., without recurrences). Whereas the first phase has re-
ceived considerable attention, with a number of cost analyses available
for a variety of programming languages, the second phase has received
comparatively little attention. In this paper we first study the features
of RRs generated by automatic cost analysis and discuss why existing
computer algebra systems are not appropriate for automatically obtain-
ing closed form solutions nor upper bounds of them. Then we present,
to our knowledge, the first practical framework for the fully automatic
generation of reasonably accurate upper bounds of RRs originating from
cost analysis of a wide range of programs. It is based on the inference of
ranking functions and loop invariants and on partial evaluation.

1 Introduction

The aim of cost analysis is to obtain static information about the execution cost
of programs w.r.t. some cost measure. Cost analysis has a large application field,
which includes resource certification [11,4,16,9], whereby code consumers can
reject code which is not guaranteed to run within the resources available. The
resources considered include processor cycles, memory usage, or billable events,
e.g., the number of text messages or bytes sent on a mobile network.

A well-known approach to automatic cost analysis, which dates back to the
seminal work of [25], consists of two phases. In the first phase, given a program
and some cost measure, we produce a set of equations which captures the cost of
our program in terms of the size of its input data. Such equations are generated
by converting the iteration constructs of the program (loops and recursion) into
recurrences and by inferring size relations which approximate how the size of
arguments varies. This set of equations can be regarded as recurrence relations
(RRs for short). Equivalently, it can be regarded as time bound programs [22].
The aim of the second phase is to obtain a non-recursive representation of the
equations, known as closed form. In most cases, it is not possible to find an exact
solution and the closed form corresponds to an upper bound.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 221–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 E. Albert et al.

There are a number of cost analyses available which are based on this ap-
proach and which can handle a range of programming languages, including
functional [7,18,22,23,24,25], logic [12,20], and imperative [1,3]. While in all such
analyses the first phase is studied in detail, the second phase has received com-
paratively less attention. Basically, there are three different approaches for the
second phase. One approach, which is conceptually linked viewing equations as
time bound programs, was proposed in [18] and advocated in [22]. It is based on
existing source-to-source transformations which convert recursive programs into
non-recursive ones. The second approach consists in building restricted recur-
rence solvers using standard mathematical techniques, as in [12,25]. The third
approach consists in relying on existing computer algebra systems (CASs for
short) such as MathematicaR©, MAXIMA, MAPLE, etc., as in [3,7,23,24].

The problem with the three approaches above is that they assume a rather
limited form of equations which does not cover the essential features of equa-
tions actually generated by automatic cost analysis. In the rest of the paper,
we will concentrate on viewing equations as recurrence relations and will use
the term Cost Relation (CR for short) to refer to the relations produced by
automatic cost analysis. In our own experience with [3], we have detected that
existing CASs are, in most cases, not capable of handling CRs. We argue that
automatically converting CRs into the format accepted by CASs is unfeasible.
Furthermore, even in those cases where CASs can be used, the solutions ob-
tained are so complicated that they become useless for most practical purposes.
An altogether different approach to cost analysis is based on type systems with
resource annotations which does not use equations. Thus, it does not need to
obtain closed forms, but it is typically restricted to linear bounds [16]. The need
for improved mechanisms for obtaining upper bounds was already pointed out in
Hickey and Cohen [14]. A relevant work in this direction is PURRS [5], which has
been the first system to provide, in a fully automatic way, non-asymptotic upper
and lower bounds for a wide class of recurrences. Unfortunately, and unlike our
proposal, it also requires CRs to be deterministic. Marion et. al. [19,8] use a
kind of polynomial ranking functions, but the approach is limited to polynomial
bounds and can only handle a rather restricted form of CRs.

We believe that the lack of automatic tools for the above second phase is a
major reason for the diminished use of automatic cost analysis. In this paper we
study the features of CRs and discuss why existing CASs are not appropriate
for automatically bounding them. Furthermore, we present, to our knowledge,
the first practical framework for the fully automatic inference of reasonably
accurate upper bounds for CRs originating from a wide range of programs. To do
this, we apply semantic-based transformation and analysis techniques, including
inference of ranking functions, loop invariants and the use of partial evaluation.

1.1 Motivating Example

Example 1. Consider the Java code in Fig. 1. It uses a class List for (non sorted)
linked lists of integers. Method del receives an input list without repetitions l,

Automatic Inference of Upper Bounds for Recurrence Relations 223

void del(List l, int p, int a[], int la, int b[], int lb){
while (l!=null) {

if (l.data<p) {
la=rm vec(l.data, a, la);

} else {
lb=rm vec(l.data, b, lb);

}
l=l.next;

}
}
int rm vec(int e, int a[], int la){

int i=0;
while (i<la && a[i]<e) i++;
for (int j=i; j<la−1; j++) a[j]=a[j+1];
return la−1;

}

(1) Del(l, a, la, b, lb)=1+C (l, a, la, b, lb)
{b≥lb, lb≥0 ,a≥la, la≥0 , l≥0}

(2) C (l, a, la, b, lb)=2 {a≥la, b≥lb, b≥0 , a≥0 , l=0}
(3) C (l, a, la, b, lb)=

25+D(a, la, 0)+E(la, j)+C (l′, a, la−1 , b, lb)
{a≥0 ,a≥la, b≥lb, j≥0 , b≥0 , l>l′, l>0}

(4) C (l, a, la, b, lb)=
24+D(b, lb, 0)+E(lb, j)+C (l′, a, la, b, lb−1)
{b≥0 , b≥lb, a≥la, j≥0 , a≥0 , l>l′, l>0}

(5) D(a, la, i)=3 {i≥la, a≥la, i≥0}
(6) D(a, la, i)=8 {i<la, a≥la, i≥0}
(7) D(a, la, i)=10+D(a, la, i+1) {i<la, a≥la, i≥0}
(8) E(la, j)=5 {j≥la−1 , j≥0}
(9) E(la, j)=15+E(la, j+1) {j<la−1 , j≥0}

Fig. 1. Java Code and the Result of Cost Analysis

an integer value p (the pivot), two sorted arrays of integers a and b, and two
integers la and lb which indicate, respectively, the number of positions occupied
in a and b. The array a (resp. b) is expected to contain values which are smaller
than the pivot p (resp. greater or equal). Under the assumption that all values
in l are contained in either a or b, the method del removes all values in l from
the corresponding arrays. The auxiliary method rm vec removes a given value e
from an array a of length la and returns its new length, la−1.

We have applied the cost analysis in [3] on this program in order to approx-
imate the cost of executing the method del in terms of the number of executed
bytecode instructions. For this, we first compile the program to bytecode and
then analyze the resulting bytecode. Fig. 1 (right) presents the results of analy-
sis, after performing partial evaluation, as we will explain in Sec. 6, and inlining
equality constraints (e.g., inlining equality lb′=lb−1 is done by replacing the
occurrences of lb′ by lb−1). In the analysis results, the data structures in the
program are abstracted to their sizes: l represents the maximal path-length [15]
of the corresponding dynamic structure, which in this case corresponds to the
length of the list, a and b are the lengths of the corresponding arrays, and la and
lb are the integer values of the corresponding variables. There are nine equations
which define the relation Del, which corresponds to the cost of the method del,
and three auxiliary recursive relations, C, D, and E. Each of them corresponds
to a loop (C: while loop in del; D: while loop in rm vec; and E: for loop in rm vec).
Each equation is annotated with a set of constraints which capture size relations
between the values of variables in the left hand side (lhs) and those in the right
hand side (rhs). In addition, size relations may contain applicability conditions
(i.e., guards) by providing constraints which only affect variables in the lhs. Let
us explain the equations for D . Eqs. (5) and (6) are base cases which corre-
spond to the exits from the loop when i≥la and a[i]≥e, respectively. Note that
the condition a[i]≥e does not appear in the size relation of Eq. (6) nor (7). This
is because the array a has been abstracted to its length. Thus, the value in a[i]
is no longer observable. For our cost measure , we count 3 bytecode instructions
in Eq. (5) and 8 in Eq. (6). The cost of executing an iteration of the loop is

224 E. Albert et al.

captured by Eq. (7), where the condition i<la must be satisfied and variable i
is increased by one at each recursive call. �

1.2 Cost Relations vs. Recurrence Relations

CRs differ from standard RRs in the following ways:

(a) Non-determinism. In contrast to RRs, CRs are possibly non-deterministic:
equations for the same relation are not required to be mutually exclusive. Even if
the programming language is deterministic, size abstractions introduce a loss of
precision: some guards which make the original program deterministic may not
be observable when using the size of arguments instead of their actual values. In
Ex. 1, this happens between Eqs. (3) and (4) and also between (6) and (7).
(b) Inexact size relations. CRs may have size relations which contain constraints
(not equalities). When dealing with realistic programming languages which con-
tain non-linear data structures, such as trees, it is often the case that size analysis
does not produce exact results. E.g., analysis may infer that the size of a data
structure strictly decreases from one iteration to another, but it may be unable
to provide the precise reduction. This happens in Ex. 1 in Eqs. (3) and (4).
(c) Multiple arguments. CRs usually depend on several arguments that may
increase (variable i in Eq. (7)) or decrease (variable l in Eq. (2)) at each iteration.
In fact, the number of times that a relation is executed can be a combination of
several of its arguments. E.g., relation E is executed la−j−1 times.

Point (a) was detected already in [25], where an explicit when operator is added
to the RR language to introduce non-determinism, but no complete method for
handling it is provided. Point (b) is another source of non-determinism. As a
result, CRs do not define functions, but rather relations. Given a relation C
and input values v, there may exist multiple results for C(v). Sometimes it is
possible to automatically convert relations with several arguments into relations
with only one. However, in contrast to our approach, it is restricted to very
simple cases such as when the CR only count constant cost expressions.

Existing methods for solving RRs are insufficient to bound CRs since they
do not cover points (a), (b), and (c) above. On the other hand, CASs can solve
complex recurrences (e.g., coefficients to function calls can be polynomials) which
our framework cannot handle. However, this additional power is not needed in
cost analysis, since such recurrences do not occur as the result of cost analysis.

An obvious way of obtaining upper bounds in non-deterministic CRs would
be to introduce a maximization operator. Unfortunately, such operator is not
supported by existing CAS. Adding it is far from trivial, since computing the
maximum when the equations are not mutually exclusive requires taking into
account multiple possibilities, which results in a highly combinatorial problem.
Another possibility is to convert CRs into RRs. For this, we need to remove
equations from CRs as well as sometimes to replace inexact size relations by
exact ones while preserving the worst-case solution. However, this is not possible
in general. E.g., in Fig. 1, the maximum cost is obtained when the execution
interleaves Eqs. (3) and (4), and therefore we cannot remove either of them.

Automatic Inference of Upper Bounds for Recurrence Relations 225

2 Cost Relations: Evaluation and Upper Bounds

Let us introduce some notation. We use x, y, z, possibly subscripted, to denote
variables which range over integers (Z), v, w denote integer values, a, b natural
numbers (N) and q rational numbers (Q). We denote by Q+ (resp. R+) the set of
non-negative rational (resp. real) numbers. We use t to denote a sequence of en-
tities t1, . . ., tn, for some n>0. We sometimes apply set operations on sequences.
Given x, an assignment for x is a sequence v (denoted by [x/v]). Given any entity
t, t[x/v] stands for the result of replacing in t each occurrence of xi by vi. We use
vars(t) to refer to the set of variables occurring in t. A linear expression has the
form q0+q1x1+ · · ·+qnxn. A linear constraint has the form l1 op l2 where l1 and
l2 are linear expressions and op ∈ {=,≤, <,>,≥}. A size relation ϕ is a set of
linear constraints (interpreted as a conjunction). The operator ∃̄x.ϕ eliminates
from ϕ all variables except for x. We write ϕ1 |= ϕ2 to indicate that ϕ1 implies
ϕ2. The following definition presents our notion of basic cost expression.

Definition 1 (basic cost expression). Basic cost expressions are of the form:
exp::=a|nat(l)|exp+exp|exp∗exp|expa|loga(exp)|aexp|max(S)|expa |exp−a,where
a≥1, l is a linear expression, S is a non empty set of cost expressions, nat:Z→Q+

is defined as nat(v)= max({v, 0}), and exp satisfies that for any assignment v for
vars(exp) we have that exp[vars(exp)/v] ∈ R+.

Basic cost expressions are symbolic expressions which indicate the resources we
accumulate and are the non-recursive building blocks for defining cost relations.
They enjoy two crucial properties: (1) by definition, they are always evaluated
to non negative values; (2) replacing a sub-expression nat(l) by nat(l’) such that
l′≥l, results in an upper bound of the original expression.

A cost relation C of arity n is a subset of Zn ∗ R+. This means that for a
single tuple v of integers there can be multiple solutions in C(v). We use C
and D to refer to cost relations. Cost analysis of a program usually produces
multiple, interconnected, cost relations. We refer to such sets of cost relations as
cost relation systems (CRSs for short), which we formally define below.

Definition 2 (Cost Relation System). A cost relation system S is a set of
equations of the form 〈C(x)=exp+

∑k
i=0 Di(yi), ϕ〉 with k≥0, where C and all

Di are cost relations, all variables x and yi are distinct variables; exp is a basic
cost expression; and ϕ is a size relation between x̄ and x̄∪vars(exp)∪ȳi.

In contrast to standard definitions of RRs, the variables which occur in the rhs
of the equations in CRSs do not need to be related to those in the lhs by equality
constraints. Other constraints such as ≤ and < can also be used. We denote by
rel(S) the set of cost relations which are defined in S. Also, def (S, C) denotes
the subset of the equations in S whose lhs is of the form C(x). W.l.o.g. we
assume that all equations in def (S, C) have the same variable names in the lhs.
We assume that any CRS S is self-contained in the sense that all cost relations
which appear in the rhs of an equation in S must be in rel(S).

226 E. Albert et al.

(9) E(2,1) 5

(8) E(2,0) 15

(5) D(10,2,2)

(7) D(10,2,1) 10

3

(5) D(20,2,2) 3

(7) D(20,2,1) 10

10(7) D(20,2,0)

5(9) E(2,1)

(8) E(2,0) 15

24(4) C(2,10,1,20,2)

(2) C(0,10,0,20,1) 25(9) E(1,0)

(5) D(10,1,1) 3

(7) D(10,1,0) 10

(3) C(1,10,1,20,1) 25

(6) D(20,2,0) 8 (8) E(2,1) 5 (2) C(0,10,1,20,2) 2

(4) C(3,10,2,20,2) 24

1(1) Del(3,10,2,20,2)1

(3) C(3,10,2,20,2) 25

(1) Del(3,10,2,20,2)

(7) D(10,2,0) 10

Fig. 2. Two Evaluation Trees for Del(3, 10, 2, 20, 2)

We now provide a semantics for CRSs. Given a CRS S, a call is of the form
C(v), where C∈rel(S) and v are integer values. Calls are evaluated in two phases.
In the first phase, we build an evaluation tree for the call. In the second phase we
obtain a value in R+ by adding up the constants which appear in the nodes of the
evaluation tree. We make evaluation trees explicit since, as discussed below, our
approximation techniques are based on reasoning about the number of nodes and
the values in the nodes in such evaluation trees. Evaluation trees are obtained by
repeatedly expanding nodes which contain calls to relations. Each expansion is
performed w.r.t an appropriate instantiation of a rhs of an applicable equation.
If all leaves in the tree contain basic cost expressions then there is no node left
to expand and the process terminates. We will represent evaluation trees using
nested terms of the form node(Call,Local Cost ,Children), where Local Cost is a
constant in R+ and Children is a sequence of evaluation trees.

Definition 3 (evaluation tree). Given a CRS S and a call C(v), a tree node
(C(v), e, 〈T1, . . . , Tk〉) is an evaluation tree for C(v) in S, denoted Tree(C(v), S)
if: 1) there is a renamed apart equation 〈C(x)=exp+

∑k
i=0 Di(yi), ϕ〉 ∈ S s.t.

ϕ′ is satisfiable in Z, with ϕ′=ϕ[x/v], and 2) there exist assignments w, vi for
vars(exp), yi respectively s.t. ϕ′[vars(exp)/w, yi/vi] is satisfiable in Z, and 3)
e=exp[vars(exp)/w], Ti is an evaluation tree Tree(Di(vi),S) with i = 0, . . . , k.

In step 1 we look for an equation E which is applicable for solving C(v). Note
that there may be several equations which are applicable. In step 2 we look
for assignments for the variables in the rhs of E which satisfy the size rela-
tions associated to E . This a non-deterministic step as there may be (infinitely
many) different assignments which satisfy all size relations. Finally, in step 3 we
apply the assignment to exp and continue recursively evaluating the calls. We
use Trees(C(v),S) to denote the set of all evaluation trees for C(v). We define
Answers(C(v),S)={Sum(T) | T∈Trees(C(v),S)}, where Sum(T) traverses all
nodes in T and computes the sum of the cost expressions in them.

Example 2. Fig. 2 shows two possible evaluation trees for Del(3, 10, 2, 20, 2).
The tree on the left has maximal cost, whereas the one on the right has minimal
cost. A node in either tree contains a call (left box) and its local cost (right box)
and it is linked by arrows to its children. We annotate calls with a number in

Automatic Inference of Upper Bounds for Recurrence Relations 227

(2)C (l, a, la, b, lb)= 2

{a≥la, b≥lb, b≥0 , a≥0 , l=0}
(3)C (l, a, la, b, lb)=

38+15*nat(la-j-1)+10*nat(la) +C (l′, a, la−1 , b, lb)

{a≥0 , a≥la, b≥lb, j≥0 , b≥0 , l>l′, l>0}
(4)C (l, a, la, b, lb)=

37+15*nat(lb-j-1)+10*nat(lb) +C (l′, a, la, b, lb−1)

{b≥0 , b≥lb, a≥la, j≥0 ,a≥0 , l>l′, l>0}

(3) C(3,10,2,20,2)
 38+15*nat(2−0−1)+
 10*nat(2)=73

(4) C(2,10,1,20,2) 37+15*nat(2−0−1)+
 10*nat(2)=72

(3) C(1,10,1,20,1) 38+15*nat(1−0−1)+
 10*nat(1)=48

(2) C(0,10,0,20,1) 2

Fig. 3. Self-Contained CR for relation C and a corresponding evaluation tree

parenthesis to indicate the equation which was selected for evaluating such call.
Note that, in the recursive call to C in Eqs. (3) and (4), we are allowed to pick
any value l′ s.t. l′<l. In the tree on the left we always assign l′=l−1. This is what
happens in actual executions of the program. In the tree on the right we assign
l′=l−3 in the recursive call to C. The latter results in a minimal approximation,
however, it does not correspond to any actual execution. This is a side effect of
using safe approximations in static analysis: information is correct in the sense
that at least one of the evaluation trees must correspond to the actual cost, but
there may be other trees with different cost. In fact, there are an infinite number
of evaluation trees for our example call, as step 2 can provide an infinite number
of assignments to variable j which are compatible with the constraint j≥0 in
Eqs. (3) and (4). This shows that approaches like [13] based on evaluation of
CRSs are not of general applicability. Nevertheless, it is possible to find an upper
bound for this call since though the number of trees is infinite, infinitely many
of them produce equivalent results. �

2.1 Closed Form Upper Bounds for Cost Relations

Let C be a relation over Zn∗R+. A function U :Zn→R+ is an upper bound of C iff
∀v∈Zn, ∀a∈Answers(C(v),S), U(v)≥a. We use C+ to refer to an upper bound of
C. A function f :Zn→R+ is in closed form if it is defined as f(x)=exp, with exp a
basic cost expression s.t. vars(exp)⊆x. An important feature of CRSs, inherited
from RRs, is their compositionality, which allows computing upper bounds of
CRSs by concentrating on one relation at a time. I.e., given a cost equation
for C(x) which calls D(y), we can replace the call to D(y) by D+(y). The
resulting relation is trivially an upper bound of the original one. E.g., suppose
that we have the following upper bounds: E+(la, j)=5+15∗nat(la−j−1) and
D+(a, la, i)=8+10∗nat(la−i). Replacing the calls to D and E in equations (3)
and (4) by D+ and E+ results in the CRS shown in Fig. 3.

The compositionality principle only results in an effective mechanism if all
recursions are direct (i.e., all cycles are of length one). In that case we can start
by computing upper bounds for cost relations which do not depend on any other
relations, which we refer to as standalone cost relations and continue by replacing

228 E. Albert et al.

the computed upper bounds on the equations which call such relations. In the
following, we formalize our method by assuming standalone cost relations and
in Sec. 6 we provide a mechanism for obtaining direct recursion automatically.

Existing approaches to compute upper bounds and asymptotic complexity of
RRs, usually applied by hand, are based on reasoning about evaluation trees
in terms of their size, depth, number of nodes, etc. They typically consider two
categories of nodes: (1) internal nodes, which correspond to applying recursive
equations, and (2) leaves of the tree(s), which correspond to the application of a
base (non-recursive) case. The central idea then is to count (or obtain an upper
bound on) the number of leaves and the number of internal nodes in the tree
separately and then multiply each of these by an upper bound on the cost of the
base case and of a recursive step, respectively. For instance, in the evaluation
tree in Fig. 3 for the standalone cost relation C, there are three internal nodes
and one leaf. The values in the internal nodes, once performed the evaluation
of the expressions are 73, 72, and 48, therefore 73 is the worst case. In the case
of leaves, the only value is 2. Therefore, the tightest upper bound we can find
using this approximation is 3×73+1∗2=221 ≥ 73+72+48+2=193.

We now extend the approximation scheme mentioned above in order to con-
sider all possible evaluation trees which may exist for a call. In the following,
we use |S| to denote the cardinality of a set S. Also, given an evaluation tree
T , leaf (T) denotes the set of leaves of T (i.e., those without children) and
internal(T) denotes the set of internal nodes (all nodes but the leaves) of T .

Proposition 1 (node-count upper bound). Let C be a cost relation and let
C+(x) = internal+(x) ∗ costr+(x)+ leaf +(x) ∗costnr+(x), where internal+(x),
costr+(x), leaf +(x) and costnr+(x) are closed form functions defined on Zn→R+.
Then, C+ is an upper bound of C if for all v∈Zn and for all T∈Trees(C(v),S), it
holds: (1) internal+(v) ≥ |internal(T)| and leaf +(v) ≥ |leaf (T)|; (2) costr+(v)
is an upper bound of {e | node(, e,)∈internal(T)} and (3) costnr+(v) is an upper
bound of {e | node(, e,)∈leaf (T)}.

3 Upper Bounds on the Number of Nodes

In this section we present an automatic mechanism to obtain safe internal+(x)
and leaf +(x) functions which are valid for any assignment for x. The basic idea
is to first obtain upper bounds b and h+(x) on, respectively, the branching factor
and height (the distance from the root to the deepest leaf) of all corresponding
evaluation trees, and then use the number of internal nodes and leaves of a
complete tree with such branching factor and height as an upper bound. Then,

leaf +(x) = bh+(x) internal+(x) =

{
h+(x) b=1

bh+(x)−1
b−1 b≥2

For a cost relation C, the branching factor b in any evaluation tree for a
call C(v) is limited by the maximum number of recursive calls which occur in a
single equation for C. We now propose a way to compute an upper bound for

Automatic Inference of Upper Bounds for Recurrence Relations 229

the height, h+. Given an evaluation tree T∈Trees(C(v),S) for a cost relation C,
consecutive nodes in any branch of T represent consecutive recursive calls which
occur during the evaluation of C(v). Therefore, bounding the height of a tree
may be reduced to bounding consecutive recursive calls. The notion of loop in a
cost relation, which we introduce below, is used to model consecutive calls.

Definition 4. Let E=〈C(x)=exp+
∑k

i=1 C(yi), ϕ〉 be an equation for a cost re-
lation C. Then, Loops(E)={〈C(x)→C(ȳi), ϕ′〉 | ϕ′=∃̄x̄∪ȳi.ϕ, i=1· · ·k} is the set
of loops induced by E. Similarly, Loops(C) = ∪E∈def (S,C)Loops(E).

Example 3. Eqs. (3) and (4) in Fig. 3 induce the following two loops:

(3)〈C (l ,a, la, b, lb)→C (l ′, a, la ′, b, lb),ϕ′
1={a≥0, a≥la, b≥lb, b≥0, l>l′, l>0, la′=la−1}〉

(4)〈C (l ,a, la, b, lb)→C (l ′, a, la, b, lb′),ϕ′
2={b≥0, b≥lb, a≥la, a≥0, l>l′, l>0, lb′=lb−1}〉

Bounding the number of consecutive recursive calls is extensively used in the con-
text of termination analysis. It is usually done by proving that there is a function
f from the loop’s arguments to a well-founded partial order which decreases in
any two consecutive calls and which guarantees the absence of infinite traces,
and thus termination. These functions are usually called ranking functions. We
propose to use the ranking function to generate a h+ function. In practice, we
use [21] to generate functions which are defined as follows: a function f :Zn �→Z is
a ranking function for a loop 〈C(x̄)→C(ȳ), ϕ〉 if ϕ|=f(x̄)>f(ȳ) and ϕ|=f(x̄)≥0.

Example 4. The function fC(l , a, la, b, lb)=l is a ranking function for C in the
cost relation in Fig. 3. Note that ϕ′

1 and ϕ′
2 in the above loops of C contain

the constraints {l>l′, l>0} which is enough to guarantee that fC is decreas-
ing and well-founded. The height of the evaluation tree for C(3, 10, 2, 20, 2) is
precisely predicted by fC(3, 10, 2, 20, 2)=3. Ranking functions may involve sev-
eral arguments, e.g., fD(a, la, i)=la−i is a ranking function for 〈D(a, la, i) →
D(a, la, i ′), {i ′=i+1 , i<la, a≥la, i≥0}〉 which comes from Eq. (7). �

Observe that the use of global ranking functions allows bounding the number
of iterations of possibly non-deterministic CRSs with multiple arguments (see
Sec. 1.2). In order to be able to define h+ in terms of the ranking function, one
thing to fix is that the ranking function might return a negative value when is
applied to values which correspond to base cases (leaves of the tree). Therefore,
we define h+(x)=nat(fC(x)). Function nat guarantees that negative values are
lifted to 0 and, therefore, they provide a correct approximation for the height of
evaluation trees with a single node. Even though the ranking function provides
an upper bound for the height of the corresponding trees, in some cases we can
further refine it and obtain a tighter upper bound. For example, if the difference
between the value of the ranking function in each two consecutive calls is larger
than a constant δ>1, then /nat(fC(x̄)

δ)0 is a tighter upper bound. A more inter-
esting case, if each loop 〈C(x)→C(y), ϕ〉 ∈ Loops(C) satisfies ϕ|=fC(x)≥k∗fC(y)
where k>1, then the height of the tree is bounded by /logk(nat(fC(v)+1))0.

230 E. Albert et al.

4 Estimating the Cost Per Node

Consider the evaluation tree in Fig. 3. Note that all expressions in the nodes are
instances of the expressions which appear in the corresponding equations. Thus,
computing costr+(x) and costnr+(x) can be done by first finding an upper bound
of such expressions and then combining them through a max operator. We first
compute invariants for the values that the expression variables can take w.r.t.
the initial values, and use them to derive upper bounds for such expressions.

4.1 Invariants

Computing an invariant (in terms of linear constraints) that holds in all calling
contexts (contexts for short) to a relation C between the arguments at the initial
call and at each call during the evaluation can be done by using Loops(C). Intu-
itively, if we know that a linear constraint ψ holds between the arguments of the
initial call C(x0) and those of a recursive call C(x), denoted 〈C(x0)�C(x), ψ〉,
and we have a loop 〈C(x)→C(y), ϕ〉∈Loops(C), then we can apply the loop one
more step and get the new calling context 〈C(x0)�C(y), ∃̄x0∪y.ψ∧ϕ〉.

Definition 5 (loop invariants). For a relation C, let T be an operator defined:

T (X) =

{

〈C(x0)�C(y), ψ′〉
∣
∣
∣
∣
〈C(x0)�C(x), ψ〉∈X, 〈C(x)→C(y), ϕ〉∈Loops(C),
ψ′=∃̄x0∪y.ψ∧ϕ

}

which derives a set of contexts, from a given context X, by applying all loops, then
the loop invariants I is lfp∪i≥0T i(I0) where I0 = {〈C(x0)�C(x), {x0=x}〉}.

Example 5. Let us compute I for the loops in Sec. 3. The initial context is
I1=〈C (x̄0)�C (x̄), {l=l0 , a=a0 , la=la0 , b=b0 , lb=lb0}〉 where x̄0=〈l0, a0, la0, b0, lb0〉
and x̄=〈l, a, la, b, lb〉. In the first iteration we compute T 0({I1}) which by defi-
nition is {I1}. In the second iteration we compute T 1({I1}) which results in

I2=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0 , l0>0}〉
I3=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0 , b=b0 , lb=lb0−1 , l0>0}〉

where I2 and I3 correspond to applying respectively the first loop and second
loops on I1. The underlined constraints are the modifications due to the appli-
cation of the loop. Note that in I2 the variable la0 decreases by one, and in I3
lb0 decreases by one. The third iteration T 2({I1}), i.e. T ({I2, I3}), results in

I4=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0−2 , b=b0 , lb=lb0 , l0>0}〉
I5=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0−1 , l0>0}〉
I6=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0 , b=b0 , lb=lb0−2 , l0>0}〉
I7=〈C (x̄0)�C (x̄),{l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0−1 , l0>0}〉

where I4 and I5 originate from applying the loops to I2, and I6 and I7 from
applying the loops to I3. The modifications on the constraints reflect that, when
applying a loop, either we decrease la or lb. After three iterations, the invariant
I includes I1 · · · I7. More iterations will add more contexts that further modify
the value of la or lb. Therefore, the invariant I grows indefinitely in this case. �

Automatic Inference of Upper Bounds for Recurrence Relations 231

In practice, we approximate I using abstract interpretation over, for instance, the
domain of convex polyhedra [10], whereby we obtain the invariant Ψ=〈C(x0) �

C(x), {l≤l0 , a=a0 , la≤la0 , b=b0 , lb≤lb0 }〉.

4.2 Upper Bounds on Cost Expressions

Once invariants are available, finding upper bounds of cost expressions can be
done by maximizing their nat parts independently. This is possible due to the
monotonicity property of cost expressions. Consider, for example, the expres-
sion nat(la−j−1) which appears in equation (3) of Fig. 3. We want to infer an
upper bound of the values that it can be evaluated to in terms of the input
values 〈l0, a0, la0, b0, lb0〉. We have inferred, in Sec. 4.1, that whenever we call
C the invariant Ψ holds, from which we can see that the maximum value that
la can take is la0. In addition, from the local size relations ϕ of equation (3)
we know that j≥0. Since la−j−1 takes its maximal value when la is maximal
and j is minimal, the expression la0−1 is an upper bound for la−j−1 . This can
be done automatically using linear constraints tools [6]. Given a cost equation
〈C(x)=exp+

∑k
i=0 C(yi), ϕ〉 and an invariant 〈C(x0)�C(x), Ψ〉, the function

below computes an upper bound for exp by maximizing its nat components.

1: function ub exp(exp,x0,ϕ,Ψ)
2: mexp=exp
3: for all nat(f)∈exp do
4: Ψ ′=∃̄x0, r.(ϕ∧Ψ∧(r=f)) // r is a fresh variable
5: if ∃f ′ s.t. vars(f ′)⊆x0 and Ψ ′|=r≤f ′ then mexp=mexp[nat(f)/nat(f ′)]
6: else return ∞
7: return mexp

This function computes an upper bound f ′ for each expression f which occurs
inside a nat operator and then replaces in exp all such f expressions with their
corresponding upper bounds (line 5). If it cannot find an upper bound, the
method returns ∞ (line 6). The ub exp function is complete in the sense that if
Ψ and ϕ imply that there is an upper bound for a given nat(f), then we can find
one by syntactically looking on Ψ ′ (line 4).

Example 6. Applying ub exp to exp3 and exp4 of Eqs. (3) and (4) in Fig. 3 w.r.t.
the invariant we have computed in Sec. 4.1 results in mexp3=38+15∗nat(la0−1)
+10∗nat(la0) and mexp4=37+15∗nat(lb0−1) + 10∗nat(lb0). �

Theorem 1. Let S=S1∪S2 be a cost relation where S1 and S2 are respec-
tively the sets of non-recursive and recursive equations for C, and let I=〈C(x0)
�C(x), Ψ〉 be a loop invariant for C; Ei={ub exp(exp, x0, ϕ, Ψ) | 〈C(x) = exp+
∑k

j=0 C(yj), ϕ〉∈Si}; costnr+(x0)=max(E1) and costr+(x0)=max(E2). Then
for any call C(v) and for all T ∈ Trees(C(v),S): (1) ∀node(, e,)∈internal(T)
we have costr+(v)≥e; and (2) ∀node(, e,)∈leaf (T) we have costnr+(v)≥e.

Example 7. At this point we have all the pieces in order to compute an upper
bound for the CRS depicted in Fig. 1 as described in Prop. 1. We start by
computing upper bounds for E and D as they are cost relations:

232 E. Albert et al.

Ranking Function costnr+ costr+ Upper Bound
E(la0, j0) nat(la0−j0−1) 5 15 5+15∗nat(la0−j0−1)

D(a0, la0, i0) nat(la0−i0) 8 10 8+10∗nat(la0−i0)

These upper bounds can then be substituted in the equations (3) and (4) which
results in the cost relation for C depicted in Fig. 3. We have already computed
a ranking function for C in Ex. 4 and costnr+ and costr+ in Ex. 6, which
are then combined into C+(l0, a0, la0, b0, lb0)=2+nat(l0)∗max({mexp3, mexp4}).
Reasoning similarly, for Del we get the upper bound shown in Table 1. �

5 Improving Accuracy in Divide and Conquer Programs

For some CRSs, we can obtain a more accurate upper bound by approximating
the cost of levels instead of approximating the cost of nodes, as indicated by
Prop. 1. Given an evaluation tree T , we denote by Sum Level(T, i) the sum of
the values of all nodes in T which are at depth i, i.e., at distance i from the root.

Proposition 2 (level-count upper bound). Let C be a cost relation and let
C+ be a function defined as: C+(x)=l+(x) ∗costl+(x), where l+(x) and costl+(x)
are closed form functions defined on Zn→R+. Then, C+ is an upper bound of C
if for all v∈Zn and T∈Trees(C(v),S), it holds: (1) l+(v) ≥ depth(T) + 1; and
(2) ∀i∈{0, . . . , depth(T)} we have that costl+(v) ≥ Sum Level(T, i).

The function l+ can simply be defined as l+(x)=nat(fC(x))+1 (see Sec. 3).
Finding an accurate costl+ function is not easy in general, which makes Prop. 2
not as widely applicable as Prop. 1. However, evaluation trees for divide and
conquer programs satisfy that Sum Level(T, k)≥Sum Level(T, k+1), i.e., the cost
per level does not increase from one level to another. In that case, we can take the
cost of the root node as an upper bound of costl+(x). A sufficient condition for a
cost relation falling into the divide and conquer class is that each cost expression
that is contributed by an equation is greater than or equal to the sum of the
cost expressions contributed by the corresponding immediate recursive calls.
This check is implemented in our prototype using [6].

Consider a CRS with the two equations 〈C(n)=0, {n≤ 0}〉 and 〈C(n) =
nat(n)+C(n1)+C(n2), ϕ〉 where ϕ={n>0, n1+n2+1≤n, n≥2∗n1, n≥2∗n2, n1≥0,
n2≥0}. It corresponds to a divide and conquer problem such as merge-sort. In
order to prove that Sum Level does not increase, it is enough to check that,
in the second equation, n is greater than or equal to the sum of the expres-
sions that immediately result from the calls C(n1) and C(n2), which are n1 and
n2 respectively. This can be done by simply checking that ϕ|=n≥n1+n2. Then,
costl+(x)=max{0, nat(x)}=nat(x). Thus, given that l+(x)=/log2(nat(x)+1)0+1,
we obtain the upper bound nat(x)∗(/log2(nat(x)+1)0+1). Note that by using the
node-count approach we would obtain nat(x)∗(2nat(x)−1) as upper bound.

6 Direct Recursion Using Partial Evaluation

Automatically generated CRSs often contain recursions which are not direct,
i.e., cycles involve more than one function. E.g., the actual CRS obtained for

Automatic Inference of Upper Bounds for Recurrence Relations 233

the program in Fig. 1 by the analysis in [3] differs from that shown in the right
hand side of Fig. 1 in that, instead of Eqs. (8) and (9), the “for” loop results in:

(8’) E (la, j)=5+F (la, j , j ′, la ′) {j ′=j , la ′=la−1 , j ′≥0}
(9’) F (la, j , j ′, la ′)=H (j ′, la ′) {j ′≥la ′}
(10) F (la, j , j ′, la ′)=G(la, j , j ′, la ′) {j ′<la ′}
(11) H (j ′, la ′)=0 {}
(12) G(la, j , j ′, la ′)=10+E (la, j+1) {j<la−1 , j≥0 , la−la ′=1 , j ′=j}

Now, E captures the cost of the loop condition “j<la−1” (5 cost units) plus the
cost of its continuation, captured by F . Eq. (9’) corresponds to the exit of the
loop (it calls H , Eq. (11), which has 0 cost). Eq. (10) captures the cost of one
iteration by calling G, Eq. (12), which accumulates 10 units and returns to E.

In this section we present an automatic transformation of CRSs into directly
recursive form. The transformation is based on partial evaluation (PE) [17] and
it is performed by replacing calls to intermediate relations by their definitions
using unfolding. The first step in the transformation is to find a binding time
classification (or BTC for short) which declares which relations are residual, i.e.,
they have to remain in the CRS. The remaining relations are considered unfold-
able, i.e., they are eliminated. For computing BTCs, we associate to each CRS S
a call graph, denoted G(S), which is the directed graph obtained from S by tak-
ing rel(S) as the set of nodes and by including an arc (C,D) iff D appears in the
rhs of an equation for C. The following definition provides sufficient conditions
on a BTC which guarantee that we obtain a directly recursive CRS.

Definition 6. Let G(S) be the call graph of S and let SCC be its strongly con-
nected components. A BTC btc for S is directly recursive if for all S∈SCC the
following conditions hold: (1) if s1, s2∈S and s1, s2∈btc, then s1=s2; and (2) if
S has a cycle, then there exists s∈S such that s∈btc.

Condition 1 ensures that all recursions in the transformed CRS are direct, as
there is only one residual relation per SCC. Condition 2 guarantees that the
unfolding process terminates, as there is a residual relation per cycle. A directly
recursive BTC for the above example is btc={E}. In our implementation we only
include in the BTC the covering point (i.e., a node which is part of all cycles) of
SCCs which contain cycles, but no node is included for SCCs without cycles. This
way of computing BTCs, in addition to ensuring direct recursion, also eliminates
all relations which are not part of cycles (such as H in our example).

We now define unfolding in the context of CRSs. Such unfolding is guided by
a BTC and at each step it combines both cost expressions and size relations.

Definition 7 (unfolding). Given a CRS S, a call C(x0) s.t. C∈rel(S), a size
relation ϕx0 over x0, and a BTC btc for S, a pair 〈E,ϕ〉 is an unfolding for
C(x0) and ϕx0 in S w.r.t. btc, denoted Unfold(〈C(x0), ϕx0〉,S, btc)�〈E,ϕ〉, if
either of the following conditions hold:
(res) C∈btc∧ϕ�=true∧〈E,ϕ〉=〈C(x0), ϕx0〉;
(unf) (C �∈btc∨ϕ=true)∧〈E,ϕ〉= 〈(exp+e1 + . . .+ ek), ϕ′ ∧

i=1..k

ϕi〉

where 〈C(x)=exp+
∑k

i=1 Di(yi), ϕC〉 is a renamed apart equation in S s.t. ϕ′ =
ϕx0∧ϕC [x/x0] is satisfiable in Z and ∀1≤i≤k Unfold(〈Di(yi), ϕ′〉,S, btc)�〈ei, ϕi〉.

234 E. Albert et al.

The first case, (res), is required for termination. When we call a relation C which
is marked as residual, we simply return the initial call C(x0) and size relation
ϕx0 , as long as the current size relation ϕx0 is not the initial one (true). The
latter condition is added in order to force the initial unfolding step for relations
marked as residual. In all subsequent calls to Unfold different from the initial
one, the size relation is different from true. The second case (unf) corresponds
to continuing the unfolding process. Note that step 1 is non-deterministic, since
often cost relations contain several equations. Since expressions are transitively
unfolded, step 2 may also provide multiple solutions. Also, if the final size relation
ϕ is unsatisfiable, we simply do not regard 〈E,ϕ〉 as a valid unfolding.

Example 8. Given the initial call 〈E(la, j), true〉, we obtain an unfolding by per-
forming the following steps, denoted by e

� where e is the selected equation:
〈E (la, j), true〉(8

′)
� 〈5+F (la, j , j ′, la ′), {j ′=j , la ′=la−1 , j ′≥0}〉(10)�

〈5+G(la, j , j ′, la ′), {j ′=j , la ′=la−1 , j ′≥0 , j ′<la ′}〉(12)� 〈15+E (la, j ′′), {j<la−1 , j≥0}〉
The call E(la, j ′′) is not further unfolded as E belongs to btc and ϕ�=true. �

From each result of unfolding we can build a residual equation. Given the unfold-
ing Unfold(〈C(x0), ϕx0〉,S, btc)�〈E,ϕ〉 its corresponding residual equation is
〈C(x0)=E,ϕ〉. As customary in PE, a partial evaluation of C is obtained by col-
lecting all residual equations for the call 〈C(x0), true〉. The PE of 〈E(la, j), true〉
results in Eqs. (8) and (9) of Fig. 1. Eq. (9) is obtained from the unfolding steps
depicted in Ex. 8 and Eq. (8) from unfolding w.r.t. Eqs. (8’), (9’), and (11).

Correctness of PE ensures that the solutions of CRSs are preserved. Regarding
completeness, we can obtain direct recursion if all SCCs in the call graph have
covering point(s). Importantly, structured loops (for, while, etc.) and recursive
patterns found in most programs result in CRSs that satisfy this property. In
addition, before applying PE, we check that the CRS terminates [2] with respect
to the initial query, otherwise we might compromise non-termination and thus
lead to incorrect upper bounds. We believe this check is not required when CRSs
are generated from imperative programs.

7 Experiments in Cost Analysis of Java Bytecode

A prototype implementation in Ciao Prolog, which uses PPL [6] for manipulating
linear constraints, is available at http://www.cliplab.org/Systems/PUBS. We
have performed a series of experiments which are shown in Table 1. We have used
CRSs automatically generated by the cost analyzer of Java bytecode described
in [3] using two cost measures: heap consumption for those marked with “∗”, and
the number of executed bytecode instructions for the rest. The benchmarks are
presented in increasing complexity order and grouped by asymptotic class. Those
marked with M were solved using MathematicaR© by [3] but after significant
human intervention. The marks a, b and c after the name indicate, respectively,
if the CRS is non-deterministic, has inexact size relations and multiple arguments
(Sec. 1.2). Column #eq shows the number of equations before PE (in brackets

Automatic Inference of Upper Bounds for Recurrence Relations 235

Table 1. Experiments on Cost Analysis of Java Bytecode

Benchmark #eq T #c
eq Tpe Tub Rat. Upper Bound

Polynomial∗ abc 23 (3) 13 346 (70) 174 649 2.4 216

DivByTwo ab 9 (3) 3 323 (68) 166 596 2.4 8log2(nat(2x−1)+1)+14

FactorialM 8 (2) 4 314 (66) 165 590 2.4 9nat(x)+4

ArrayRevM a 9 (3) 4 305 (64) 165 579 2.4 14nat(x)+12

ConcatM ac 14 (5) 13 296 (62) 158 538 2.4 11nat(x)+11nat(y)+25

IncrM ac 28 (5) 29 282 (58) 155 490 2.3 19nat(x+1)+9

ListRevM abc 9 (3) 4 254 (54) 144 415 2.2 13nat(x)+8
MergeList abc 21 (4) 18 245 (52) 138 406 2.2 29nat(x+y)+26
Power 8 (2) 3 223 (48) 125 371 2.2 10nat(x)+4
Cons∗ ab 22 (2) 6 214 (46) 123 359 2.3 22nat(x−1)+24

EvenDigits abc 18 (5) 9 191 (44) 115 322 2.3 nat(x)(8log2(nat(2x−3)+1)+24)+9nat(x)+9

ListInter abc 37 (9) 59 173 (40) 110 298 2.4 nat(x)(10nat(y)+43)+21
SelectOrd ac 19 (6) 27 136 (32) 86 198 2.1 nat(x−2)(17nat(x−2)+34)+9
FactSum a 17 (5) 8 117 (27) 76 173 2.1 nat(x+1)(9nat(x)+16)+6
Delete abc 33 (9) 125 100 (23) 71 165 2.4 3+nat(l)max(38+15nat(la−1)+10nat(la),

37+15nat(lb−1)+10nat(lb))
MatMultM ac 19 (7) 23 67 (15) 27 40 1.0 nat(y)(nat(x)(27nat(x))+10)+17

Hanoi 9 (2) 4 48 (8) 23 17 0.8 20(2nat(x))-17

FibonacciM 8 (2) 5 39 (6) 20 13 0.8 18(2nat(x−1))-13

BST∗ ab 31 (4) 26 31 (4) 19 7 0.9 96(2nat(x))-49

after PE). Note that PE greatly reduces #eq in all benchmarks. Column T shows
the total runtime in milliseconds. The experiments have been performed on an
Intel Core 2 Duo 1.86GHz with 2GB of RAM, running Linux.

The next four columns aim at demonstrating the scalability of our approach.
To do so, we connect the CRSs for the different benchmarks by introducing a
call from each CRS to the one appearing immediately below it in the table. Such
call is always introduced in a recursive equation. Column #c

eq shows the number
of equations we want to solve in each case (in brackets after PE). Reading this
column bottom-up, we can see that BST has the same number of equations as
the original one and that, progressively, each benchmark adds its own number
of equations to #c

eq. Thus, in the first row we have a CRS with all the equations
connected, i.e., we compute an upper bound of CRS with at least 19 nested loops
and 346 equations. The total runtime is split into Tpe and Tub, where Tpe is
the time of PE and it shows that even though PE is a global transformation,
its time efficiency is linear with the number of equations. Our system solves 346
equations in 823ms. Column Rat. shows the total time per equation. The ra-
tio is small for benchmarks with few equations, and for reasonably large CRSs
(from Delete upwards) it almost has no variation (2.1–2.4 ms/eq). The small
increase is due to the fact that the equations count more complex expressions
as we connect more benchmarks. This demonstrates that our approach is totally
scalable, even if the implementation is preliminary. The upper bound expres-
sions get considerably large when the benchmarks are composed together. We
are currently implementing standard techniques for simplification of arithmetic
expressions.

236 E. Albert et al.

Acknowledgments. This work was funded in part by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-15905 MOBIUS project, by the Spanish Ministry of Ed-
ucation (MEC) under the TIN-2005-09207 MERIT project, and the Madrid Re-
gional Government under the S-0505/TIC/0407 PROMESAS project. S. Genaim
was supported by a Juan de la Cierva Fellowship awarded by MEC.

References

1. Adachi, A., Kasai, T., Moriya, E.: A theoretical study of the time analysis of
programs. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 201–207. Springer,
Heidelberg (1979)

2. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termina-
tion Analysis of Java Bytecode. In: Proc. of FMOODS. LNCS, Springer, Heidelberg
(to appear, 2008)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, Springer,
Heidelberg (2007)

4. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile Resource
Guarantees for Smart Devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet,
J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, Springer, Heidelberg
(2005)

5. Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E.: PURRS: Towards com-
puter algebra support for fully automatic worst-case complexity analysis. Technical
report, arXiv:cs/0512056 (2005), http://arxiv.org/

6. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhe-
dra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, Springer, Heidelberg (2002)

7. Benzinger, R.: Automated higher-order complexity analysis. In: TCS, vol. 318(1-2)
(2004)

8. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretations and small space
bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, Springer, Heidelberg (2005)

9. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.: Enforcing resource
bounds via static verification of dynamic checks. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444, Springer, Heidelberg (2005)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

11. Crary, K., Weirich, S.: Resource bound certification. In: POPL (2000)
12. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. TOPLAS 15(5) (1993)
13. Gómez, G., Liu, Y.A.: Automatic time-bound analysis for a higher-order language.

In: PEPM, ACM Press, New York (2002)
14. Hickey, T., Cohen, J.: Automating program analysis. J. ACM 35(1) (1988)
15. Hill, P.M., Payet, E., Spoto, F.: Path-length analysis of object-oriented programs.

In: Proc. EAAI, Elsevier, Amsterdam (2006)
16. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-

tional programs. In: POPL (2003)
17. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program

Generation. Prentice Hall, New York (1993)
18. Le Metayer, D.: ACE: An Automatic Complexity Evaluator. TOPLAS 10(2) (1988)

http://arxiv.org/

Automatic Inference of Upper Bounds for Recurrence Relations 237

19. Marion, J.-Y., Péchoux, R.: Resource analysis by sup-interpretation. In: Hagiya,
M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Heidelberg (2006)

20. Navas, J., Mera, E., López-Garćıa, P., Hermenegildo, M.: User-definable resource
bounds analysis for logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, Springer, Heidelberg (2007)

21. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
Springer, Heidelberg (2004)

22. Rosendahl, M.: Automatic Complexity Analysis. In: FPCA, ACM Press, New York
(1989)

23. Sands, D.: A näıve time analysis and its theory of cost equivalence. Journal of
Logic and Computation 5(4) (1995)

24. Wadler, P.: Strictness analysis aids time analysis. In: POPL (1988)
25. Wegbreit, B.: Mechanical Program Analysis. Comm. of the ACM 18(9) (1975)

SLR: Path-Sensitive Analysis through

Infeasible-Path Detection and Syntactic
Language Refinement

Gogul Balakrishnan1, Sriram Sankaranarayanan1, Franjo Ivančić1,
Ou Wei2, and Aarti Gupta1

1 NEC Laboratories America, Princeton, NJ, USA
2 University of Toronto

{bgogul,srirams,ivancic,agupta}@nec-labs.com,
owei@cs.toronto.edu

Abstract. We present a technique for detecting semantically infeasible
paths in programs using abstract interpretation. Our technique uses a
sequence of path-insensitive forward and backward runs of an abstract
interpreter to infer paths in the control flow graph that cannot be exer-
cised in concrete executions of the program.

We then present a syntactic language refinement (SLR) technique
that automatically excludes semantically infeasible paths from a program
during static analysis. SLR allows us to iteratively prove more properties.
Specifically, our technique simulates the effect of a path-sensitive analysis
by performing syntactic language refinement over an underlying path-
insensitive static analyzer. Finally, we present experimental results to
quantify the impact of our technique on an abstract interpreter for C
programs.

1 Introduction

Static analysis techniques compute over-approximations of the reachable states
for a given program. The theory of abstract interpretation is used to com-
pute such an over-approximation as a fixpoint in a suitably chosen abstract
domain [5,6]. The degree of approximation as well as the scalability can be
traded-off through a judicious choice of an abstract domain. However, the pres-
ence of approximations can cause the analysis to report false positives. Such false
positives can be avoided, in part, using techniques such as path-sensitive analy-
sis, disjunctive completion, and various forms of refinements [1,7,8,11,13,17,22].

In practice, many syntactic paths in the control-flow graph (CFG) representa-
tion of the program are semantically infeasible, i.e, they may not be traversed by
any execution of the program. Reasoning about the infeasibility of such paths is
a key factor in performing accurate static analyses for checking properties such
as correct API usage, absence of null-pointer dereferences and uninitialized use
of variables, memory leaks, and so on. Our previous experience with building
path-sensitive abstract interpreters [22] also indicates that the benefit of added

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 238–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 239

0: if (x > 0)
1: f := 1;
2: else
3: f := 0;
4: y := x;
5: if (f > 0)
6: ASSERT(y >= 0);

n0

n1 : f := 1 n2 : f := 0

n3 : y := x

n4 : y ≥ 0?

n5

x > 0 x ≤ 0

f > 0 f ≤ 0

Fig. 1. An example program (left) along with its CFG representation (right). (Node
numbers do not correspond to line numbers.)

path sensitivity to static analysis seems to lie mostly in the identification and
elimination of semantically infeasible paths.

This paper presents two main contributions. We present a technique based
on path-insensitive abstract interpretation to infer semantically infeasible paths
in the CFG. Secondly, we use a syntactic language refinement scheme for path-
sensitive analysis by iteratively removing infeasible paths from the CFG.

Our technique for inferring semantically infeasible paths performs a sequence
of many forward and backward runs using a path-insensitive abstract interpreter.
We first present infeasibility theorems that use the results of forward/backward
fixpoints obtained starting from different initial conditions to characterize paths
in the CFG that are semantically infeasible. We then present techniques that
enumerate infeasible paths using propositional SAT solvers without repeating
previously enumerated paths.

The infeasible paths detected by our technique are excluded from the CFG
using syntactic language refinement. Starting with the syntactic language de-
fined by the set of all syntactically valid CFG paths, we remove semantically
infeasible paths from the syntactic language to obtain refinement of the original
language. Using a path-insensitive analysis over the refined syntactic language
effectively incorporates partial path-sensitivity into the analysis, enabling us to
prove properties that are beyond the reach of path-insensitive analyses.

Example 1. The program in Fig. 1 depicts a commonly occurring situation in
static analysis. Abstract interpretation using the polyhedral abstract domain is
unable to prove the property since it loses the correlation between f and x by
computing a join at node n3. On the other hand, our techniques allow us to
prove using path-insensitive analysis that any semantically feasible path from
node n0 to node n4 cannot pass through node n2. Syntactic language refinement
removes this path from the CFG, and performs a new path-insensitive analysis
on the remaining paths in the CFG. Such an analysis maintains the correlation
between x and f at node n3 and successfully proves the property.

The F-Soft tool checks C programs for invalid pointer accesses, buffer overflows,
memory leaks, incorrect usage of APIs, and arbitrary safety properties specified
by a user [14]. We use the techniques described in the paper to improve the

240 G. Balakrishnan et al.

path-insensitive analysis used inside the F-Soft tool to obtain the effects of
path-sensitive analysis. The resulting analyzer proves more properties with a
reasonable resource overhead.

Related Work. Path-sensitive analyses help minimize the impact of the join op-
eration at the merge points in the program. A completely path-sensitive analysis
is forbiddingly expensive. Many heuristic schemes achieve partial path-sensitive
solutions that selectively join or separate the contributions due to different paths
using logical disjunctions [8,9,10,13,17,22]. While path-sensitive analysis tech-
niques modify the analysis algorithm, it is possible to achieve path-sensitivity
by modifying the abstract domain using powerset extensions [1,16]. Finally,
refinement-based techniques can modify the analysis algorithm or the domain it-
self on demand, based on the failure to prove a property. Gulavani and Rajamani
iteratively refine the analysis algorithm by modifying analysis parameters such as
widening delays and using weakest preconditions inside a powerset domain [11].
Cousot, Ganty, and Raskin present a fixpoint-based refinement technique that
refines an initial Moore-closed abstract domain by adding predicates based on
preconditions computed in the concrete domain [7].

Our technique for detecting infeasible paths relies on repeated forward and
backward fixpoints. Similar ideas on using path-insensitive analyses to reason
about specific program paths have appeared in the context of abstract debugging
and semantic slicing [4,20], which help to interactively zero-in on bugs in code
by generating invariants, intermediate assertions, and weakest preconditions.

The use of infeasible paths to refine data-flow analysis has been considered pre-
viously by Bodik et al. [3]. However, our approach is more general in many ways:
(a) we use abstract interpretation in a systematic manner to handle loops, con-
ditions, procedures, and so on without sacrificing soundness, (b) the underlying
analysis used to detect infeasible paths in our approach is itself path-insensitive,
which makes it possible to apply our approach on a whole-program basis without
requiring much overhead or depth cutoffs.

Ngo and Tan [19] use simple syntactic heuristics to detect infeasible paths
in programs that are used in test generation. Surprisingly, their approach seems
to detect many infeasible paths using relatively simplistic methods. Such
lightweight approaches can also be used as a starting point for syntactic lan-
guage refinement.

2 Preliminaries

Throughout this paper, we consider single-procedure (while) programs over in-
teger variables. Our results also extend to programs with many procedures and
complex datatypes. We use control-flow graphs (CFG) to represent programs. A
CFG is a tuple 〈N,E, V, μ, n0, ϕ0〉, where N is a set of nodes, E ⊆ N × N is a
set of edges, n0 ∈ N is an initial location, V is a set of integer-valued program
variables, and ϕ0 specifies an initial condition over V that holds at the start of
the execution. Each edge e ∈ E is labeled by a condition or an update μ(e).

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 241

A state of the program is a map s : V → Z, specifying the value of each
variable. Let Σ be the universe of all valuations to variables in V . A program is
assumed to start from the initial location n0 and a state s ∈ [[ϕ0]].

The semantics of an edge e ∈ E is given by the (concrete) strongest post-
condition post(e, S) and the (concrete) weakest precondition (backward post-
condition) pre(e, S) for sets S ⊆ Σ. The operator post : E × 2Σ → 2Σ yields
the smallest set of states reachable upon executing an edge from a given set of
states S, while the pre : E× 2Σ → 2Σ yields the largest set T such that t ∈ T iff
post(e, {t}) ⊆ S. The pre operator is also the post for the “reverse” semantics
for the edge e.

A flow-sensitive concrete map η : N → 2Σ associates a set of states with each
node in the CFG. We denote η1 ⊆ η2 iff ∀n ∈ N, η1(n) ⊆ η2(n).

Forward Propagation.1 The forward-propagation operator F takes a concrete
map η : N → 2Σ and returns a new concrete map η′ : N → 2Σ such that

η′(m) =
{⋃

�→m∈E post(�→ m, η(�)) if m �= n0

η(m) ∪
⋃

�→m∈E post(�→ m, η(�)) m = n0

A map η is inductive iff (a) η(n0) ⊇ [[ϕ0]] and (b) η ⊇ F(η). In other words, if η
is inductive, it is also a post fixpoint of F. Since F is a monotone operator, the
least fixpoint always exists due to Tarski’s theorem.

Given a CFG, a property consists of a pair 〈n, ϕ〉 where n ∈ N is a node,
and ϕ is a first-order assertion representing a set of states. Associated with each
property 〈n, ϕ〉, the CFG has a node nE ∈ N and an edge (n → nE) ∈ E
with condition ϕE , where ϕE is ¬ϕ. The pair 〈nE , ϕE〉 is referred to as the
error configuration for property 〈n, ϕ〉. A property 〈n, ϕ〉 is verified if the error
configuration 〈nE , ϕE〉 is unreachable, i.e., if η(nE) = ∅ for an inductive map η.

The least fixpoint of a monotone operator F can be computed using Tarski it-
eration. Starting from the initial map η0, such that η0(n0) = [[ϕ0]] and η0(m) = ∅
for all m �= n0, we iteratively compute ηi+1 = F(ηi) until a fixpoint is reached.
Unfortunately, this process is computationally infeasible, especially if the pro-
gram is infinite state.

To analyze programs tractably, abstract interpretation is used to compute
post fixpoints efficiently. An abstract domain consists of a lattice 〈L,�,�,�〉,
along with the abstraction map α : 2Σ → L and the concretization map γ :
L→ 2Σ. Each abstract object a ∈ L is associated with a set of states γ(a) ⊆ Σ.
The maps α and γ together provide a Galois Connection between the concrete
lattice 2Σ and the abstract lattice L. The abstract counterparts for the union
(∪) and intersection (∩) are the lattice join (�) and lattice meet (�) operators,
respectively. Finally, the concrete post-conditions and concrete preconditions
have the abstract counterparts postL and preL in the abstract lattice L. A flow-
sensitive abstract map η� : N → L associates each node n ∈ N to an abstract
object η�(n) ∈ L. As before, η�

1 � η�
2 iff ∀n ∈ N, η�

1(n) � η�
2(n).

1 Our presentation assumes that the initial node n0 may have predecessors.

242 G. Balakrishnan et al.

The forward propagation operator F can be generalized to a monotone oper-
ator FL : η� �→ η�′ in the lattice L such that:

η�′(m) =
{⊔

�→m∈E postL(�→ m, η�(�)) if m �= n0

η�(m) �
⊔

�→m∈E postL(�→ m, η�(�)) m = n0

For a given program, abstract interpretation starts with the initial map η�
0, where

η�
0(n0) = α([[ϕ0]]) and η�

0(m) = ⊥ for all m �= n0. The process converges to a
fixpoint η�

F in L if η�
i+1 � η�

i . Furthermore, its concretization γ ◦ η�
F is inductive

(post fixpoint) on the concrete lattice. In practice, widening heuristics enforce
convergence of the iteration in lattices that do not satisfy the ascending chain
condition.

Backward Propagation. An alternative to verifying a property with error con-
figuration 〈nE, ϕE〉 is backward propagation using the backward propagation
operator B, which takes a map η : N → 2Σ and returns a new map η′ : N → 2Σ :

η′(�) =
{
η(�)

⋃
�→m∈E pre(�→ m, η(m)) if � = nE⋃

�→m∈E pre(�→ m, η(m)) otherwise

For an error configuration 〈nE , ϕE〉, we compute the least fixpoint of B starting
with the initial map η0 such that η0(nE) = [[ϕE]] and η0(m) = ∅ for all m �= nE .
A map η is a post fixpoint of the operator B, if B(η) ⊆ η. The property can be
verified if η(n0) ∩ [[ϕ0]] = ∅, which establishes that it is not possible to reach an
error state in [[ϕE]] at node nE from a state in [[ϕ0]] at the initial node n0.

Analogous to forward propagation, one may compute a backward (post) fix-
point map η�

B in an abstract domain L by extending the operator B to the lattice
L using the precondition map preL to yield BL. The fixpoint map η�

B computed
using BL can be used to verify properties.

3 Infeasible-Path Detection

We now characterize infeasible paths in the program using abstract interpreta-
tion. Rather than focus on individual paths (of which there may be infinitely
many), our results characterize sets of infeasible paths, succinctly. For the re-
mainder of the section, we assume a given abstract domain 〈L,�,�,�〉 (or even
a combination of many abstract domains) that defines the forward operator
FL and the backward operator BL. These operators transform initial maps η�

F0

(η�
B0

) into post fixpoints η�
F (η�

B) using abstract forward (backward) propaga-
tion. The fixpoint maps η�

F and η�
B are concretized to yield maps ηF = γ ◦ η�

F

and ηB = γ ◦ η�
B , respectively. Therefore, we present our results in the concrete

domain based on concretized fixpoint maps ηF and ηB.
Consider a node n ∈ N and a set [[ϕ]]. We define a basic primitive called

state-set projection that projects 〈n, ϕ〉 onto another node m ∈ N in the CFG
as follows: (a) We compute the forward fixpoint map ηF and the backward

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 243

fixpoint map ηB starting from the following initial map:

η
〈n,ϕ〉
0 (�) =

{
[[ϕ]], � = n
⊥, otherwise

(b) The set ηF (m) is a forward projection and ηB(m) is a backward projection
of 〈n, ϕ〉 onto m.

Definition 1 (State-set Projection). A forward projection of the pair 〈n, ϕ〉
onto a node m, denoted (〈n, ϕ〉 L

↪→ m) is the set ηF (m), where ηF is a forward
(post) fixpoint map starting from the initial map η

〈n,ϕ〉
0 .

Similarly, a backward projection of the pair 〈n, ϕ〉 back onto m, denoted

(m
L←↩ 〈n, ϕ〉) is the set ηB(m), where ηB is the backward fixpoint starting from

the initial map η〈n,ϕ〉
0 .

Forward and backward state-set projections are not unique. They vary, depend-
ing on the specific abstract interpretation scheme used to compute them. The
projection of a node n onto itself yields the assertion true.

Lemma 1. Let ϕF : 〈n, ϕ〉 L
↪→ m and ϕB : m

L←↩ 〈n, ϕ〉 denote the forward
and backward projections, respectively, of the pair 〈n, ϕ〉 onto m. The following
hold for state-set projections:

(1) If an execution starting from a state s ∈ [[ϕ]] at node n reaches node m with
state t, then t ∈ [[ϕF]].

(2) If an execution starting from node m with state t reaches node n with state
s ∈ [[ϕ]] then t ∈ [[ϕB]].

3.1 Infeasibility-Type Theorems

The state-set projections computed using forward and backward propagation
can be used to detect semantically infeasible paths in a CFG. Let n1, . . . , nk

be a subset of nodes in the CFG, n0 be the initial node and nk+1 be some
target node of interest. We wish to find if an execution may reach nk+1 starting
from n0, while passing through each of the nodes n1, . . . , nk, possibly more than
once and in an arbitrary order. Let Π(n0, . . . , nk+1) denote the set of all such
syntactically valid paths in the CFG.

Let ϕi : 〈ni, true〉 L
↪→ nk+1, i ∈ [0, k + 1], denote the forward state-set projec-

tions from 〈ni, true〉 onto the final node nk+1. Similarly, let ψi : n0
L←↩ 〈ni, true〉,

i ∈ [0, k + 1], denote the backward projections from 〈ni, true〉 onto node n0.

Theorem 1 (Infeasibility-type theorem). The paths in Π(n0, . . . , nk+1)
are all semantically infeasible if either

1. ϕ0 ∧ ϕ1 ∧ · · · ∧ ϕk ∧ ϕk+1 ≡ ∅, or
2. ψ0 ∧ ψ1 ∧ · · · ∧ ψk ∧ ψk+1 ≡ ∅.

244 G. Balakrishnan et al.

Proof. The proof uses facts about the forward and backward state-set projec-
tions. From Lem. 1, we conclude that any path that reaches nk+1 starting from
〈ni, true〉 must do so with a state that satisfies ϕi. As a result, consider a path
that traverses all of n0, . . . , nk to reach nk+1. The state at node nk+1 must si-
multaneously satisfy ϕ0, ϕ1, . . . , ϕk. Since the conjunction of these assertions is
empty, we conclude that no such path may exist.

A similar reasoning applies to backward projection from node ni to node n0

using the assertions ψ0, . . . , ψk+1.

It is also possible to formulate other infeasibility-type theorems that are sim-
ilar to Thm. 1 using state-set projection. Let ηF be the forward fixpoint map

computed starting from 〈n0, ϕ0〉. Let ψi : n0
L←↩ 〈ni, ηF (ni)〉 be the state-set

projection of the set ηF (ni) from node ni onto node n0.

Lemma 2. If ψ1 ∧ . . . ∧ ψk ∧ ψk+1 ≡ ∅ then there is no semantically valid
path from node n0 to node nk+1 that passes through all of n1, . . . , nk.

A similar result can be stated for a pair of nodes using the forward and the
backward fixpoint maps. Let 〈nE , ϕE〉 be an error configuration of interest, ηF

be the forward (post) fixpoint map computed starting from 〈n0, ϕ0〉 and ηB be
the backward (post) fixpoint map computed starting from 〈nE , ϕE〉.

Lemma 3. Any error trace that leads to a state in the error configuration
〈nE , ϕE〉 cannot visit node n′ if ηF (n′) ∧ ηB(n′) ≡ ∅.

Example 2. Consider the example program shown in Fig. 1. We wish to prove
the infeasibility of any path that simultaneously visits n0, n2 and n4. Using
state-set projections, we obtain

ψ2 : n0
L←↩ 〈n2, true〉 = {x | x ≤ 0}

ψ4 : n0
L←↩ 〈n4, true〉 = {x | x > 0}

Since ψ2 and ψ4 are disjoint, it is not possible for an execution of the CFG to
visit simultaneously the nodes n0, n2 and n4. Likewise, a semantically valid path

cannot visit n2 and n4 simultaneously, since ϕ2 : 〈n2, true〉 L
↪→ n4 ≡ ∅.

3.2 Infeasible-Path Enumeration

Thus far, we can detect if all the program paths in Π(n0, . . . , nk+1) are seman-
tically infeasible for a given set n1, . . . , nk, nk+1. We now consider the problem
of enumerating such sets using the results derived in the previous sections. Let
N = {n0, n1, . . . , nm} denote the set of all nodes in the CFG. In order to apply
infeasibility-type theorems such as Thm. 1 and Lem. 2, we compute m+1 state-
set projections ψ0, . . . , ψm corresponding to the nodes n0, . . . , nm, respectively.
Furthermore, to test the subset {ni1 , . . . , nik

} ⊆ N , we test the conjunction
ψi1 ∧· · ·∧ψik

for satisfiability. Therefore, to enumerate all such subsets, we need
to enumerate all index sets I ⊆ {1, . . . ,m} such that

∧
i∈I ψi ≡ false . For each

such set I, the corresponding subset of N characterizes the infeasible paths.

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 245

Definition 2 (Infeasible & Saturated Index Set). Given assertions ϕ1,
. . ., ϕm, an index set I ⊆ {1, . . . ,m} is said to be infeasible iff

∧
j∈I ϕj ≡ false.

Likewise, an infeasible index set I is said to be saturated iff no proper subset is
itself infeasible.

Note that each infeasible set is an unsatisfiable core of the assertion ϕ1∧· · ·∧ϕm.
Each saturated infeasible set is a minimal unsatisfiable core w.r.t set inclusion.
Given assertions ϕ1, . . . , ϕm, we wish to enumerate all saturated infeasible index
sets. To solve this problem, we provide a generic method using a SAT solver to
aid in the enumeration. This method may be improved by encoding the graph
structure as a part of the SAT problem to enumerate continuous segments in
the CFG. We also present domain-specific techniques for directly enumerating
all the cores without using SAT solvers.

Generic Enumeration Technique. Assume an oracle O to determine if a con-
junctive theory formula ψI :

∧
i∈I ψi is satisfiable. Given O, if ψI is unsatisfiable

we may extract a minimal unsatisfiable core set J ⊆ I as follows: (1) set J = I,
(2) for some j ∈ J , if ψJ−{j} is unsatisfiable, J := J − {j}, and (3) repeat step
2 until no more conjuncts need to be considered. Alternatively, O may itself be
able to provide a minimal core.

Our procedure maintains a family of subsets I ⊆ 2{1,...,m} that have not (yet)
been checked for feasibility. Starting from I = 2{1,...,m}, we carry out steps (a)
and (b), below, until I = ∅:

(a) Pick an untested subset J ∈ I.
(b) Check the satisfiability of ψJ :

∧
j∈J ϕj .

If ψJ is satisfiable, then remove all subsets of J from I: I′ = I− {K | K ⊆
J}. If ψJ is unsatisfiable, compute a minimal core set C ⊆ J . Remove all
supersets of C: I′ = I− {I|I ⊇ C}. Also, output C as an infeasible set.

Symbolic enumeration using SAT. In practice, the set I may be too large to
maintain explicitly. It is therefore convenient to encode it succinctly in a SAT
formula. We introduce Boolean selector variables y1, . . . , ym, where yi denotes
the presence of the assertion ϕi in the theory formula. The set I is represented
succinctly by a Boolean formula F over the selector variables. The initial formula
F0 is set to true. At each step, we may eliminate all supersets of a set J by adding
the new clause

∨
j∈J ¬yj . Fig. 2 shows the procedure to enumerate all infeasible

indices using SAT solvers and elimination of unsatisfiable cores.

Graph-based enumeration using SAT. To further improve the enumeration pro-
cedure, we note that many subsets I ⊆ N may not lead to any syntactically
valid paths through the CFG that visit all nodes in I. Such subsets need not
be considered. Nodes ni and nj are said to conflict if there is no syntactic path
starting from n0 that visits both ni and nj . Let C ⊆ N × N denote the set of
all conflicting node pairs. We exclude conflicting nodes or their supersets from
the enumeration process by adding the clause ¬yi ∨ ¬yj for each conflict pair
(ni, nj) ∈ C. However, in spite of adding the conflict information, syntactically
meaningless subsets may still be enumerated by our technique.

246 G. Balakrishnan et al.

1: proc GenericSATEnumerateCore(ϕ1 , . . . , ϕm)
2: F := true .
3: Add all syntactic constraints to F.
4: while (F is satisfiable) do
5: 〈y1, . . . , ym〉 := satisfying assignment to F,
6: Let ψ ≡

∧
yi:true ϕi.

7: if ψ is theory satisfiable then
8: F := F ∧

∨
yi:false

yi.
9: else
10: Let J be the unsat core set for ψ.
11: Output J as an infeasible set.
12: F := F ∧

∨
j∈J ¬yj .

13: end if
14: end while
15: end proc

Fig. 2. SAT-based enumeration modulo theory to enumerate infeasible index sets

Example 3. Consider the CFG skeleton in Fig. 1, disregarding the actual oper-
ations in its nodes and edges. We suppose that all paths between nodes n0 and
n5 are found to be infeasible: i.e., {0, 5} is an infeasible index set. Clearly, due
to the structure of the CFG, there is now no need to check the satisfiability of
the index set {0, 3}, since all paths to node n5 have to pass through node n3.
However, this information is not available to the SAT solver, which generates
the candidate index set {0, 3}.
.

To avoid such paths, we restrict the SAT solver to enumerate continuous seg-
ments in the CFG.

Definition 3 (Continuous Segment). A subset I ⊆ N is a continuous seg-
ment iff for each ni ∈ I, some successor of ni (if ni has any successors) and
some predecessor (if ni has any predecessors) belong to I.

An infeasible index set I is syntactically meaningful iff there exists a contin-
uous segment C such that I ⊆ C. Therefore, it suffices to restrict our SAT
solver to enumerate all feasible continuous segments C in the CFG. The un-
satisfiable core set for any such segment is also a syntactically meaningful set.
Secondly, if a continuous segment C is shown to be semantically infeasible by a
subset I, we are not interested in other infeasible subsets I ′ that show C to be
infeasible.

Let p1, . . . , pm be the indices of predecessors of a node ni (m ≥ 1), and
s1, . . . , sr denote the successors indices (r ≥ 1). We encode continuous segments
by adding the following constraints, corresponding to each node ni in the CFG:

– Forward: If m > 0, add ¬yi ∨ yp1 ∨ yp2 ∨ . . . ∨ ypm .
– Backward: If r > 0, add ¬yi ∨ ys1 ∨ ys2 ∨ . . . ∨ ysr .

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 247

The total size of these constraints is linear in the size of the CFG (number
of nodes, number of edges). Fig. 2 is modified to add the continuous segment
constraints to F, in addition to the conflicts.

Example 4. Again considering the CFG skeleton from Fig. 1, if the index set
{0, 5} is found for the unsatisfiable core of the continuous segment C : {0, . . . , 5},
the additional clause ¬y0 ∨ ¬y5 will prevent any future consideration of this
segment. The index set {0, 3} will not be considered, because, n3 is also part of
the continuous segment C which has already been shown to be infeasible.

Utilizing SMT and MAX-SAT Techniques. In principle, a tighter integration
of the propositional and theory part can be obtained by enumerating all min-
imal unsatisfiable cores of an SMT (Satisfiability Modulo Theories) formula
Ψm : ∧m

i=0((¬yi ∨ ϕi) ∧ (yi ∨ ¬ϕi)), along with other propositional clauses over
y1, y2, . . . , ym arising from conflict pairs and syntactic graph-based constraints
discussed earlier.

The problem of finding all minimal unsatisfiable cores is related to the prob-
lem of finding all maximal satisfiable solutions2 [2,15]. This duality has been ex-
ploited to use procedures for finding maximal satisfiable solutions (MAX-SAT)
for generating all minimal unsatisfiable cores. This could lead to improved per-
formance, since checking satisfiability is usually considered easier in practice
than checking unsatisfiability.
Enumerating Unsatisfiable Cores Directly. In some domains, it is possible to
directly enumerate all the unsatisfiable cores of the conjunction ϕ1 ∧ ϕ2 ∧ · · · ∧
ϕm. Each unsatisfiable core directly yields infeasible index sets. The advantage
of this enumeration method is that it avoids considering index sets for which
the corresponding conjunctions is theory satisfiable. Secondly, the properties of
the underlying abstract domain can be exploited for efficient enumeration. The
disadvantage is that the same infeasible index sets may be repeatedly obtained
for different unsatisfiable cores.

As a case in point, we consider the interval domain. The concretizations of
interval domain objects are conjunctions of the form xi ∈ [li, ui]. Let ϕ1, . . . , ϕm

be the result of the state projections carried out using interval analysis. We
assume that each ϕi is satisfiable. Let ϕi be the assertion

∧
j xj ∈ [lij , uij],

wherein each lij ≤ uij . The lack of relational information in the interval domain
restricts each unsatisfiable core to be of size at most 2:

Lemma 4. Any unsatisfiable core in
∧

i ϕi involves exactly two conjuncts: lij ≤
xj ≤ uij in ϕi and lkj ≤ xj ≤ ukj such that [lij , uij] ∩ [lkj , ukj] = ∅.

As a result, it is more efficient to enumerate infeasible paths using domain-
specific reasoning for the interval domain. Direct enumeration of unsatisfiable
cores is possible in other domains also. For instance, we may enumerate all the
negative cycles for the octagon domain, or all dual polyhedral vertices in the
polyhedral domain.
2 Specifically, the set of all minimal unsatisfiable cores, also called MUS-es, is equiv-
alent to the set of all irreducible hitting sets of all MCS-es, where each MCS is the
complement of a maximal satisfiable solution.

248 G. Balakrishnan et al.

1: if (x < 0)
2: x := 1;
3: y := 1;
4: else
5: x := 2;
6: y := 3;
7: if(y = 2)
8: x := x - 2;
9: ASSERT(x >= 0);

n0

n1 : x := 1, y := 1 n2 : x := 2, y := 3

n3

n4 : x := x − 2

n5 : x ≥ 0?

x < 0 x ≥ 0

y = 2

y �= 2

Fig. 3. An example program (left) along with its CFG representation (right). (Node
numbers do not correspond to line numbers.)

4 Path-Sensitive Analysis

In this section, we describe how information about infeasible paths discovered
in §3 can be used to improve the accuracy of a path-insensitive analysis.

Example 5. Consider the program shown in Fig. 3. Clearly, the assertion at line
9 in the program is never violated. However, neither a forward propagation nor
a backward propagation using the interval domain is able to prove the assertion
in node n5. A SAT-based infeasible path enumeration using the interval domain
enumerates the sets {n2, n4} and {n1, n4} as infeasible.

Syntactic Language Refinement (SLR). Let Π : 〈N,E, μ, n0, ϕ0〉 be a CFG with
a property 〈n, false〉 to be established. The syntactic language of Π consists of all
the edge sequences e1, . . . , em that may be visited along some walk through the
CFG starting from n0. In effect, we treatΠ as an automaton over the alphabet E,
wherein each edge ei accepts the alphabet symbol ei. Let LΠ denote the language
of all edge sequences accepted by CFG Π , represented as a deterministic finite
automaton.

The results of the previous section allow us to infer sets I : {n1, . . . , nk} ⊆ N
such that no semantically valid path from node n0 to node n may pass through
all the nodes of the set I. For each set I, we remove all the (semantically invalid)
paths in the set Π(I ∪ {n0, n}) from the syntactic language of the CFG:

L′
Π = LΠ − {π|π is a path from n0 to n, passing through all nodes in I}

︸ ︷︷ ︸
LI

Since the sets LΠ and LI are regular, LΠ′ = LΠ − LI is also regular. The
refinement procedure continues to hold even if LΠ is context free, which happens
in the presence of function calls and returns in the CFG.

Let Π ′ be the automaton recognizing LΠ′ . The automaton Π ′ can be viewed
as a CFG once more by associating actions (conditions and assignments) with its

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 249

n1

n2

n3

n4 n5

n6

n7

n8

n9

e1

e2

e3 e4

e5 e6

e7

e8

e9

e10

e11

(a)

n1

n2

n3

n4 n5

na
6 nb

6

na
7 nb

7

n8

n9

e1

e2

e3 e4

e5 e6

e7
e7

e8

e9

e10

e10e11

(b)

Fig. 4. Path-sensitivity can be simulated by syntactic language refinement: (a) original
CFG, (b) paths visiting nodes {n4, n8} are found infeasible and removed

edges. Each edge labeled with the alphabet ei is provided the action μ(ei) from
the original CFG Π . Since LΠ′ ⊆ LΠ , Π ′ encodes a smaller set of syntactically
valid paths. Therefore, abstract interpretation onΠ ′ may result in a more precise
fixpoint.

Example 6. Consider the CFG skeleton Π in Fig. 4(a). Suppose nodes {n4, n8}
were found to be infeasible. The refined CFG Π ′ is shown in Fig. 4(b). The
edges and the nodes are labeled to show the correspondences between the two
CFGs. Notice that it is no longer possible to visit the shaded nodes in the same
syntactic path.

A path sensitive static analysis might be able to obtain the same effect by not
using join at node n6, and partially merging two disjuncts at node n7. Borrowing
the terminology from our previous work the CFG Π ′ is an elaboration of the CFG
Π [22], or from the terminology of Mauborgne et al., a trace partitioning [13,17],
that keeps the trace visiting node n4 separate from the other traces. However,
our prior knowledge of the infeasibility of {n4, n8} enables us to automatically
rule out the edge na

7 → n8.

From the discussion above, it is evident that syntactic language refinement can be
cast in the framework of related schemes such as elaborations or trace-partitions.
However, the key difference is that our scheme always uses the infeasible CFG
paths as a partitioning heuristic. The heuristic used in the elaboration or trace-
partitioning may be unable to guess the right partitions required to detect the
infeasible paths in practice.

Example 7. Returning to the example in Fig. 3, we find that the paths from
n0 � n5, traversing the nodes I0 : {n1, n4} and I1 : {n2, n4} are semantically
infeasible. Therefore, we may remove such paths from the CFG using syntactic
language refinement. The resulting CFG Π ′ is simply the original CFG with the
node n4 removed. A path-insensitive analysis over Π ′ proves the property.

250 G. Balakrishnan et al.

1: proc VerifyProperty(〈n, ϕ〉)
2: I := N
3: Let 〈nE , ϕE〉 be the error configuration for property 〈n, ϕ〉
4: while (I �= ∅) do
5: Let ηF be the forward fixpoint computed starting from 〈n0, ϕ0〉
6: Let ηB be the backward fixpoint computed starting from 〈nE , ϕE〉
7: I := ∅
8: for all conditional branches � → m ∈ E do
9: if (ηF (m) � ηB(m) ≡ false) then
10: Let I := I ∪ {n ∈ N | n is control dependent on � → m}.
11: end if
12: end for
13: Remove the nodes in I from the CFG
14: if ηF (n) ≡ false then
15: return PROVED.
16: end if
17: end while
18: return NOT PROVED.
19: end proc

Fig. 5. Using infeasible-path detection to improve path-insensitive analysis

In theory, it is possible to first remove infeasible path segments using abstract
interpretation, perform a language refinement, and subsequently, analyze the
refined CFG. In practice, however, we observe that most infeasible paths involve
no more than two intermediate nodes. Furthermore, the size of the refined CFG
after a set I has been removed can be a factor 2|I| larger.

Application. We now present a simple version of the SLR scheme using Lem. 3
that removes at most one intermediate node w.r.t a given property. Secondly,
we repeatedly refine the CFG at each stage by using the improved abstract
interpretation result on the original CFG. Finally, thanks to the form of Lem. 3,
each application of the scheme requires just two fixpoint computations, one in
the forward direction and the other in the backward.

Fig. 5 shows an iterative syntactic language refinement scheme. Each step in-
volves a forward fixpoint from the initial node and a backward fixpoint computed
from the property node. First, infeasible pairs of nodes are then determined us-
ing Lem. 3, and the paths involving such pairs are pruned from the CFG. Since
paths are removed from the CFG, subsequent iterations can produce stronger
fixpoints, and therefore, detect more infeasible intermediate nodes. The language
refinement is repeated until the property is verified, or no new nodes are detected
as infeasible in consecutive iterations.

Example 8. VerifyProperty proves the assertion in the example shown in Fig. 3.
During the first iteration, the condition at line 8 of VerifyProperty holds for the
edge n0 → n2. Consequently, node n2 will be removed before the next forward
fixpoint computation. Hence, interval analysis will be able to determine that
edge n3 → n4 is infeasible, and therefore, the property 〈n5, x ≥ 0〉 is verified.

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 251

5 Experiments

We have implemented the SLR technique inside the F-Soft C program ver-
ifier [14] to check array, pointer, and C string usage. The analyzer is context
sensitive, by using call strings to track contexts. Our abstract interpreter sup-
ports a combination of different numerical domains, including constant folding,
interval, octagon [18], polyhedron [12] and the symbolic range domains [21]. The
experiments were run on a Linux machine with two Xeon 2.8GHz processors and
4GB of memory.

Infeasible-Path Enumeration. We implemented the algorithm in Fig. 2 using the
octagon abstract domain as a proof-of-concept. Tab. 1 shows the performance
of the infeasible-path enumerator over a set of small but complex functions
written in C [23]. As an optimization, we modified the algorithm to enumerate
infeasible sets solely involving conditional branches. The running time of the
algorithm is a function of the number of conditional branches and the number
of variables in the program. Surprisingly, computing fixpoints accounts for the
majority of the running time. Not surprisingly, almost all saturated infeasible
sets involved exactly two edges. With the additional optimizations described
here and a variable-packing heuristic, we hope to scale this technique to larger
functions.

Syntactic Language Refinement. We implemented the VerifyProperty algorithm
on top of our existing abstract interpreter. Given a program, we first run a series
of path-insensitive analyses. Properties thus proved are sliced away from the
CFG. The resulting simplified CFG is fed into our analysis. Our analysis is run
twice: first, using the interval domain, and then using the octagon domain on the
sliced CFG from the interval analysis instantiation. Tab. 2 shows the performance
of our tool chain on a collection of industrial as well as open source projects. For
each program, we show the number of proofs obtained and the time taken by
the base analysis as well as the additional proofs along with the overhead of the
SLR technique using the intervals and the octagon domains successively. For our
set of examples, the SLR technique obtains 15% more proofs over and above the
base analysis. However, it involves a significant time overhead of roughly 15% for
the interval domain and 75% for the octagon domain. A preliminary comparison

Table 1. Number of saturated infeasible sets from SAT-based enumeration

Time (s)
Prog. LOC #Vars #Branches FixPoint Enum #Inf.Sets

ex1 35 7 13 0.07 0.01 3
ex2 40 6 15 0.08 0.02 10
ex3 79 9 36 1.46 0.12 6
ex4 85 71 41 2160.67 6.12 0
ex5 94 12 40 2.85 3.60 38
ex6 102 38 27 51.76 0.15 2
ex7 115 2 31 0.06 0.02 28

252 G. Balakrishnan et al.

Table 2. Performance of the tool flow using SLR. (Hi: mobile software application
modules, Li: Linux device drivers, Mi: a network protocol implementation modules.)

Base analysis Additional Proofs with SLR
Simplified Intervals Octagons

Code LOC Proofs Time (s) Proofs Time (s) Proofs Time (s)

H1 2282 7/14 28.08 0/7 0.5 0/7 8.77
H2 3319 33/49 355.85 0/16 7.04 0/16 102.24
H3 2668 23/37 52.49 0/14 1.25 0/14 14.17
L4 4626 12/31 10.21 0/19 5.07 0/19 9.1
M5 5095 67/265 69.62 35/198 84.99 28/163 217.44
L6 5346 6/20 3.62 0/14 1.53 0/14 7.59
L7 5599 5/146 681.48 0/141 198.26 0/141 239.39
M8 6142 109/314 86.85 1/205 173.74 98/204 2008.07
L9 6326 119/135 70.88 0/16 2.74 0/16 8.18
M10 6645 93/385 244.57 25/292 390.15 70/267 990.11
M11 7541 162/442 262.94 77/280 361.08 49/203 1069.1
M12 10206 285/745 1479.29 30/460 1584.45 154/430 6681.36
M13 11803 325/786 1089.86 121/461 859.36 99/340 5710.56
L14 13162 38/114 289.9 34/76 130.98 0/42 263.86
M15 14665 313/606 117.96 163/293 112.19 10/130 204.16
M17 26758 1904/1918 2208.85 0/14 0.95 0/14 8.89
M18 47213 4173/4218 16880.00 21/45 4.07 0/24 20.51

Total 7674/10225 507/2551 508/2044

Table 3. Comparison of SLR with path-sensitive analysis using CFG elaborations [22].
(#T: total time with two outlying data points removed, #P: additional proofs.)

CFG SLR
Base Elaborations [22] Cont. Insens. Cont. Sens.

#Progs Tot. Proofs #T #P #T #P #T #P #T

48 403 178 2.47 +45 76.42 +44 27 +79 36

with our previous work suggests that this overhead is quite competitive with
related techniques for performing path-sensitive analysis [22].

Tab. 3 shows a direct comparison of our implementation with a partially path-
sensitive analysis implemented using CFG elaborations [22]. The comparison is
carried out over a collection of small example programs [23] written in the C
language. These programs range from 20-400 lines of code, and are designed to
evaluate the handling of loops, aliasing, dynamic allocation, type-casts, string li-
brary functions and other sources of complexities in practical programs. Because
the latter implementation is context-insensitive, we compare against a context-
insensitive version of our technique as well. CFG elaboration technique achieves
45 extra proofs with 50x time overhead. Our context-insensitive implementation
proves roughly as many properties as CFG elaborations with a much smaller
overhead (roughly 10x for context-insensitive and 20x for context-sensitive). Our

SLR: Path-Sensitive Analysis through Infeasible-Path Detection 253

implementation proved quite a few properties that could not be established by
elaborations and vice versa. Not surprisingly, added context-sensitivity to our
technique renders it vastly superior.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
STTT 9(3-4), 413–414 (2007)

2. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: PADL (2005)

3. Bodik, R., Gupta, R., Soffa, M.L.: Refining data flow information using infeasible
paths. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 361–377. Springer,
Heidelberg (1997)

4. Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI
1993, pp. 46–55. ACM Press, New York (1993)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: Proc.
Principles of Programming Languages (POPL) (1977)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: Formal Descriptions of Programming Concepts, North-Holland,
Amsterdam (1978)

7. Cousot, P., Ganty, P., Raskin, J.-F.: Fixpoint-guided abstraction refinements. In:
Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 333–348. Springer,
Heidelberg (2007)

8. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in poly-
nomial time. In: PLDI, pp. 57–68. ACM Press, New York (2002)

9. Dhurjati, D., Das, M., Yang, Y.: Path-sensitive dataflow analysis with iterative
refinement. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 425–442. Springer,
Heidelberg (2006)

10. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, Springer, Heidelberg (2005)

11. Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract
interpretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS
2006. LNCS, vol. 3920, pp. 474–488. Springer, Heidelberg (2006)

12. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in Sys. Design 11(2), 157–185 (1997)

13. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning
using control flow. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, Springer, Heidel-
berg (1998)

14. Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M.K., Kahlon, V., Wang, C., Yang,
Z.: Model checking C programs using f-soft. In: ICCD, pp. 297–308 (2005)

15. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. of Automated Reasoning 40(1), 133 (2008)

16. Manevich, R., Sagiv, S., Ramalingam, G., Field, J.: Partially disjunctive heap
abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279.
Springer, Heidelberg (2004)

17. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, Springer, Heidelberg
(2005)

254 G. Balakrishnan et al.

18. Miné, A.: The octagon abstract domain. In: Working Conf. on Reverse Eng. (2001)
19. Ngo, M.N., Tan, H.B.K.: Detecting large number of infeasible paths through recog-

nizing their patterns. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, Springer,
Heidelberg (2007)

20. Rival, X.: Understanding the origin of alarms in ASTRÉE. In: Hankin, C., Siveroni,
I. (eds.) SAS 2005. LNCS, vol. 3672, Springer, Heidelberg (2005)

21. Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis using symbolic
ranges. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 366–
383. Springer, Heidelberg (2007)

22. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
3–17. Springer, Heidelberg (2006)

23. Sankaranarayanan, S.: NECLA static analysis benchmarks (2007),
http://www.nec-labs.com/∼fsoft

http://www.nec-labs.com/~fsoft

Flow Analysis, Linearity, and PTIME

David Van Horn and Harry G. Mairson

Department of Computer Science
Brandeis University

Waltham, Massachusetts 02454
{dvanhorn,mairson}@cs.brandeis.edu

Abstract. Flow analysis is a ubiquitous and much-studied component
of compiler technology—and its variations abound. Amongst the most
well known is Shivers’ 0CFA; however, the best known algorithm for
0CFA requires time cubic in the size of the analyzed program and is
unlikely to be improved. Consequently, several analyses have been de-
signed to approximate 0CFA by trading precision for faster computation.
Henglein’s simple closure analysis, for example, forfeits the notion of di-
rectionality in flows and enjoys an “almost linear” time algorithm. But
in making trade-offs between precision and complexity, what has been
given up and what has been gained? Where do these analyses differ and
where do they coincide?

We identify a core language—the linear λ-calculus—where 0CFA, sim-
ple closure analysis, and many other known approximations or restric-
tions to 0CFA are rendered identical. Moreover, for this core language,
analysis corresponds with (instrumented) evaluation. Because analysis
faithfully captures evaluation, and because the linear λ-calculus is com-
plete for ptime, we derive ptime-completeness results for all of these
analyses.

1 Introduction

Flow analysis [1,2,3,4] is concerned with providing sound approximations to the
question of “does a given value flow into a given program point during evalu-
ation?” The most approximate analysis will always answer yes, which takes no
resources to compute—and is of little use. On the other hand, the most precise
analysis will answer yes if and only if the given value flows into the program point
during evaluation, which is useful, albeit uncomputable. In mediating between
these extremes, every static analysis necessarily gives up valuable information for
the sake of computing an answer within bounded resources. Designing a static
analyzer, therefore, requires making trade-offs between precision and complexity.
But what exactly is the analytic relationship between forfeited information and
resource usage for any given design decision? In other words:

What are the computationally potent ingredients in a static analysis?

The best known algorithms to compute Shivers’ 0CFA [5], a canonical flow
analysis for higher-order programs, are cubic in the size of the program, and there

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 255–269, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 D. Van Horn and H.G. Mairson

is strong evidence to suggest that in general, this cannot be improved [6]. Nonethe-
less, information can be given up in the service of quickly computing a necessarily
less precise analysis, avoiding the “cubic bottleneck.” For example, by forfeiting
0CFA’s notion of directionality, algorithms for Henglein’s simple closure analysis
run in near linear time [7]. Similarly, by explicitly bounding the number of passes
the analyzer is allowed over the program, as in Ashley and Dybvig’s sub-0CFA
[8], we can recover running times that are linear in the size of the program. But
the question remains: Can we do better? For example, is it possible to compute
these less precise analyses in logarithmic space? We show that without profound
combinatorial breakthroughs (ptime = logspace), the answer is no. Simple clo-
sure analysis, sub-0CFA, and other analyses that approximate or restrict 0CFA,
require—and are therefore, like 0CFA [9], complete for—polynomial time.

What is flow analysis? Flow analysis is the ubiquitous static analysis of higher-
order programs. As Heintze and McAllester remark, some form of flow analysis is
used in most forms of analysis for higher-order languages [10]. It answers funda-
mental questions such as what values can a given subexpression possibly evaluate
to at run-time? Each subexpression is identified with a unique superscripted la-
bel �, which serves to index that program point. The result of a flow analysis is a
cache Ĉ that maps program points (and variables) to sets of values. These analy-
ses are conservative in the following sense: if v is in Ĉ(�), then the subexpression
label � may evaluate to v when the program is run (likewise, if v is in Ĉ(x), x may
be bound to v when the program is run). But if v is not in Ĉ(�), we know that e
cannot evaluate to v and conversely if e evaluates to v, v must be in Ĉ(�).

For thepurposesof this paper andall of the analyses consideredherein, values are
(possibly open) λ-abstractions. During evaluation, functional values are denoted
with closures—a λ-abstraction together with an environment that closes it. Values
considered in the analysis approximate run-time denotations in the sense that if a
subexpression labeled � evaluates to the closure 〈λx.e, ρ〉, then λx.e is in Ĉ(�).

The acceptability of a flow analysis is often specified as a set of (in)equations
on program fragments. The most naive way to compute a satisfying analysis is
to initialize the cache with the flow sets being empty. Successive passes are then
made over the program, monotonically updating the cache as needed, until the
least fixed point is reached. The more approximate the analysis, the faster this
algorithm converges on a fixed point. The key to a fruitful analysis, then, is “to
accelerate the analysis without losing too much information” [8].

One way to realize the computational potency of a static analysis is to sub-
vert this loss of information, making the analysis an exact computational tool.
Proving lower bounds on the expressiveness of an analysis becomes an exercise
in hacking, armed with this newfound tool. Clearly the more approximate the
analysis, the less there is to work with, computationally speaking, and the more
we have to do to undermine the approximation. But a fundamental technique al-
lows us to understand expressivity in static analysis: linearity. This paper serves
to demonstrate that linearity renders a number of the most approximate flow
analyses both equivalent and exact.

Flow Analysis, Linearity, and PTIME 257

Linearity and approximation in static analysis: Linearity, the Curry-Howard
programming counterpart of linear logic [11], plays an important role in under-
standing static analyses. The reason is straightforward: because static analysis
has to be tractable, it typically approximates normalization, instead of simu-
lating it, because running the program may take too long. For example, in the
analysis of simple types—surely a kind of static analysis—the approximation is
that all occurrences of a bound variable must have the same type (as a conse-
quence, perfectly good programs are rejected). A comparable but not identical
thing happens in the case of type inference for ML and bounded-rank intersec-
tion types—but note that when the program is linear, there is no approximation,
and type inference becomes evaluation under another name.

In the case of flow analysis, similarly, a cache is computed in the course of an
approximate evaluation, which is only an approximation because each evaluation
of an abstraction body causes the same piece of the cache to be (monotonically)
updated. Again, if the term is linear, then there is only one evaluation of the
abstraction body, and the flow analysis becomes synonymous with normalization.

Organization of this paper: The next section introduces 0CFA in order to pro-
vide intuitions and a point of reference for comparisons with subsequent analyses.
Section 3 specifies and provides an algorithm for computing Henglein’s simple
closure analysis. Section 4 develops a correspondence between evaluation and
analysis for linear programs. We show that when the program is linear, normal-
ization and analysis are synonymous. As a consequence the normal form of a
program can be read back from the analysis. We then show in Section 5 how to
simulate circuits, the canonical ptime-hard problem, using linear terms. This
establishes the ptime-hardness of the analysis. Finally, we discuss other mono-
variant flow analyses and sketch why these analyses remain complete for ptime

and provide conclusions and perspective.

2 Shivers’ 0CFA

As a starting point, we consider Shivers’ 0CFA [5,3].1

The Language: A countably infinite set of labels, which include variable names,
is assumed. The syntax of the language is given by the following grammar:

Exp e ::= t� expressions (or labeled terms)
Term t ::= x | e e | λx.e terms (or unlabeled expressions)

All of the syntactic categories are implicitly understood to be restricted to the
finite set of terms, labels, variables, etc. that occur in the program of interest—
the program being analyzed. The set of labels, which includes variable names, in
1 It should be noted that Shivers’ original zeroth-order control-flow analysis (0CFA)
was developed for a core CPS-Scheme language, whereas the analysis considered
here is in direct-style. Sestoft independently developed a similar flow analysis in his
work on globalization [2,12]. See [4,13] for details.

258 D. Van Horn and H.G. Mairson

a program fragment is denoted lab(e). As a convention, programs are assumed
to have distinct bound variable names.

The result of 0CFA is an abstract cache thatmaps eachprogrampoint (i.e., label)
to a setofλ-abstractionswhichpotentially flow into this programpoint at run-time:

Ĉ ∈ Lab → P(Term) abstract caches

Caches are extended using the notation Ĉ[� �→ s], and we write Ĉ[� �→+ s] to
mean Ĉ[� �→ (s∪ Ĉ(�))]. It is convenient to sometimes think of caches as mutable
tables (as we do in the algorithm below), so we abuse syntax, letting this notation
mean both functional extension and destructive update. It should be clear from
context which is implied.
The Analysis: We present the specification of the analysis here in the style of
Nielson et al. [14]. Each subexpression is identified with a unique superscripted
label �, which marks that program point; Ĉ(�) stores all possible values flowing
to point �. An acceptable flow analysis for an expression e is written Ĉ |= e:

Ĉ |= x� iff Ĉ(x) ⊆ Ĉ(�)

Ĉ |= (λx.e)� iff λx.e ∈ Ĉ(�)

Ĉ |= (t�11 t�22)� iff Ĉ |= t�11 ∧ Ĉ |= t�22 ∧ ∀λx.t�00 ∈ Ĉ(�1) :

Ĉ |= t�00 ∧ Ĉ(�2) ⊆ Ĉ(x) ∧ Ĉ(�0) ⊆ Ĉ(�)

The |= relation needs to be coinductively defined since verifying a judgment
Ĉ |= e may obligate verification of Ĉ |= e′ which in turn may require verification
of Ĉ |= e. The above specification of acceptability, when read as a table, defines a
functional, which is monotonic, has a fixed point, and |= is defined coinductively
as the greatest fixed point of this functional.2

Writing Ĉ |= t� means “the abstract cache Ĉ contains all the flow information
for program fragment t at program point �.” The goal is to determine the least
cache solving these constraints to obtain the most precise analysis. Caches are
partially ordered with respect to the program of interest:

Ĉ � Ĉ′ iff ∀� : Ĉ(�) ⊆ Ĉ′(�).

Since we are concerned only with the least cache (the most precise analysis) we
refer to this as the cache, or synonymously, the analysis.

The Algorithm: These constraints can be thought of as an abstract evaluator—
Ĉ |= t� simply means evaluate t�, which serves only to update an (initially empty)
cache.

A�x�� = Ĉ[� �→+ Ĉ(x)]
A�(λx.e)�� = Ĉ[� �→ {λx.e}]
A�(t�11 t�22)�� = A�t�11 �; A�t�22 �;

for each λx.t�00 in Ĉ(�1) do
Ĉ[x �→+ Ĉ(�2)]; A�t�00 �; Ĉ[� �→+ Ĉ(�0)]

2 See [14] for a thorough discussion of coinduction in specifying static analyses.

Flow Analysis, Linearity, and PTIME 259

The abstract evaluator A�·� is iterated until the finite cache reaches a fixed
point.3 Since the cache size is polynomial in the program size, so is the running
time, as the cache is monotonic—we put values in, but never take them out.
Thus the analysis and any decision problems answered by the analysis are clearly
computable within polynomial time.

An Example: Consider the following program, which we will return to discuss
further in subsequent analyses:

((λf.((f1f2)3(λy.y4)5)6)7(λx.x8)9)10

The 0CFA is given by the following cache:

Ĉ(1) = {λx} Ĉ(6) = {λx, λy}
Ĉ(2) = {λx} Ĉ(7) = {λf}
Ĉ(3) = {λx, λy} Ĉ(8) = {λx, λy}
Ĉ(4) = {λy} Ĉ(9) = {λx}
Ĉ(5) = {λy} Ĉ(10) = {λx, λy}

Ĉ(f) = {λx}
Ĉ(x) = {λx, λy}
Ĉ(y) = {λy}

where we write λx as shorthand for λx.x8, etc.

3 Henglein’s Simple Closure Analysis

Simple closure analysis follows from an observation by Henglein some 15 years
ago: he noted that the standard flow analysis can be computed in dramatically
less time by changing the specification of flow constraints to use equality rather
than containment [7]. The analysis bears a strong resemblance to simple typing:
analysis can be performed by emitting a system of equality constraints and then
solving them using unification, which can be computed in almost linear time
with a union-find datastructure.

Consider a program with both (f x) and (f y) as subexpressions. Under
0CFA, whatever flows into x and y will also flow into the formal parameter of
all abstractions flowing into f , but it is not necessarily true that whatever flows
into x also flows into y and vice versa. However, under simple closure analysis,
this is the case. For this reason, flows in simple closure analysis are said to be
bidirectional.

The Analysis:

Ĉ |= x� iff Ĉ(x) = Ĉ(�)

Ĉ |= (λx.e)� iff λx.e ∈ Ĉ(�)

Ĉ |= (t�11 t�22)� iff Ĉ |= t�11 ∧ Ĉ |= t�22 ∧ ∀λx.t�00 ∈ Ĉ(�1) :

Ĉ |= t�00 ∧ Ĉ(�2) = Ĉ(x) ∧ Ĉ(�0) = Ĉ(�)
3 A single iteration of A�e� may in turn make a recursive call A�e� with no change
in the cache, so care must be taken to avoid looping. This amounts to appealing
to the coinductive hypothesis Ĉ |= e in verifying Ĉ |= e. However, we consider this
inessential detail, and it can safely be ignored for the purposes of obtaining our main
results in which this behavior is never triggered.

260 D. Van Horn and H.G. Mairson

The Algorithm: We write Ĉ[�↔ �′] to mean Ĉ[� �→+ Ĉ(�′)][�′ �→+ Ĉ(�)].

A�x�� = Ĉ[�↔ x]
A�(λx.e)�� = Ĉ[� �→+ {λx.e}]
A�(t�11 t

�2
2)�� = A�t�11 �; A�t�22 �;

for each λx.t�00 in Ĉ(�1) do
Ĉ[x↔ �2]; A�t�00 �; Ĉ[�↔ �0]

The abstract evaluator A�·� is iterated until a fixed point is reached.4 By similar
reasoning to that given for 0CFA, simple closure analysis is clearly computable
within polynomial time.

An Example: Recall the example program of the previous section:

((λf.((f1f2)3(λy.y4)5)6)7(λx.x8)9)10

Notice that λx.x is applied to itself and then to λy.y, so x will be bound
to both λx.x and λy.y, which induces an equality between these two terms.
Consequently, wherever 0CFA gives a flow set of {λx} or {λy}, simple closure
analysis will give {λx, λy}. The simple closure analysis is given by the following
cache (new flows are underlined):

Ĉ(1) = {λx, λy} Ĉ(6) = {λx, λy}
Ĉ(2) = {λx, λy} Ĉ(7) = {λf}
Ĉ(3) = {λx, λy} Ĉ(8) = {λx, λy}
Ĉ(4) = {λy, λx} Ĉ(9) = {λx, λy}
Ĉ(5) = {λy, λx} Ĉ(10) = {λx, λy}

Ĉ(f) = {λx, λy}
Ĉ(x) = {λx, λy}
Ĉ(y) = {λy, λx}

4 Linearity and Normalization

In this section, we show that when the program is linear—every bound variable
occurs exactly once—analysis and normalization are synonymous.

First, consider an evaluator for our language, E�·�:

E�·� : Exp → Env ⇀ 〈Term,Env〉

E�x��[x �→ c] = c
E�(λx.e)��ρ = 〈λx.e, ρ〉
E�(e1 e2)��ρ = let 〈λx.e0, ρ′〉 = E�e1�ρ� fv(e1) in

let c = E�e2�ρ� fv(e2) in
E�e0�ρ

′[x �→ c]

We use ρ to range over environments, Env = Var ⇀ 〈Term,Env〉, and let c
range over closures, each comprising a term and an environment that closes the
4 The fine print of footnote 3 applies as well.

Flow Analysis, Linearity, and PTIME 261

term. The function lab(·) is extended to closures and environments by taking the
union of all labels in the closure or in the range of the environment, respectively.

Notice that the evaluator “tightens” the environment in the case of an appli-
cation, thus maintaining throughout evaluation that the domain of the environ-
ment is exactly the set of free variables in the expression. When evaluating a
variable occurrence, there is only one mapping in the environment: the binding
for this variable. Likewise, when constructing a closure, the environment does
not need to be restricted: it already is.

In a linear program, each mapping in the environment corresponds to the
single occurrence of a bound variable. So when evaluating an application, this
tightening splits the environment ρ into (ρ1, ρ2), where ρ1 closes the operator,
ρ2 closes the operand, and dom(ρ1) ∩ dom(ρ2) = ∅.

Definition 1. Environment ρ linearly closes t (or 〈t, ρ〉 is a linear closure) iff
t is linear, ρ closes t, and for all x ∈ dom(ρ), x occurs exactly once (free) in t,
ρ(x) is a linear closure, and for all y ∈ dom(ρ), x does not occur (free or bound)
in ρ(y). The size of a linear closure 〈t, ρ〉 is defined as:

|t, ρ| = |t|+ |ρ|
|x| = 1

|(λx.t�)| = 1 + |t|
|(t�11 t�22)| = 1 + |t1|+ |t2|

|[x1 �→ c1, . . . , xn �→ cn]| = n+
∑

i

|ci|

The following lemma states that evaluation of a linear closure cannot produce a
larger value. This is the environment-based analog to the easy observation that
β-reduction strictly decreases the size of a linear term.

Lemma 1. If ρ linearly closes t and E�t��ρ = c, then |c| ≤ |t, ρ|.

Proof. Straightforward by induction on |t, ρ|, reasoning by case analysis on t.
Observe that the size strictly decreases in the application and variable case, and
remains the same in the abstraction case. ��

Definition 2. A cache Ĉ respects 〈t, ρ〉 (written Ĉ t, ρ) when,

1. ρ linearly closes t,
2. ∀x ∈ dom(ρ).ρ(x) = 〈t′, ρ′〉 ⇒ Ĉ(x) = {t′} and Ĉ t′, ρ′, and
3. ∀� ∈ lab(t) \ fv(t), Ĉ(�) = ∅.

Clearly, ∅ t, ∅ when t is closed and linear, i.e. t is a linear program.
Assume that the imperative algorithm A�·� of Section 3 is written in the

obvious “cache-passing” functional style.

Theorem 1. If Ĉ t, ρ, Ĉ(�) = ∅, � /∈ lab(t, ρ), E�t��ρ = 〈t′, ρ′〉, and A�t��Ĉ =
Ĉ′, then Ĉ′(�) = {t′}, Ĉ′ t′, ρ′, and Ĉ′ |= t�.

262 D. Van Horn and H.G. Mairson

An important consequence is noted in Corollary 1.

Proof. By induction on |t, ρ|, reasoning by case analysis on t.

– Case t ≡ x.
Since Ĉ x, ρ and ρ linearly closes x, thus ρ = [x �→ 〈t′, ρ′〉] and ρ′ linearly
closes t′. By definition,

E�x��ρ = 〈t′, ρ′〉, and

A�x��Ĉ = Ĉ[x↔ �].

Again since Ĉ x, ρ, Ĉ(x) = {t′}, with which the assumption Ĉ(�) = ∅
implies

Ĉ[x↔ �](x) = Ĉ[x↔ �](�) = {t′},

and therefore Ĉ[x ↔ �] |= x�. It remains to show that Ĉ[x ↔ �] t′, ρ′. By
definition, Ĉ t′, ρ′. Since x and � do not occur in t′, ρ′ by linearity and
assumption, respectively, it follows that Ĉ[x �→ �] t′, ρ′ and the case holds.

– Case t ≡ λx.e0.
By definition,

E�(λx.e0)��ρ = 〈λx.e0, ρ〉,
A�(λx.e0)��Ĉ = Ĉ[� �→+ {λx.e0}],

and by assumption Ĉ(�) = ∅, so Ĉ[� �→+ {λx.e0}](�) = {λx.e0} and therefore
Ĉ[� �→+ {λx.e0}] |= (λx.e0)�. By assumptions � /∈ lab(λx.e0, ρ) and Ĉ
λx.e0, ρ, it follows that Ĉ[� �→+ {λx.e0}] λx.e0, ρ and the case holds.

– Case t ≡ t�11 t�22 . Let

E�t1�ρ� fv(t�11) = 〈v1, ρ1〉 = 〈λx.t�00 , ρ1〉,
E�t2�ρ� fv(t�22) = 〈v2, ρ2〉,

A�t1�Ĉ = Ĉ1, and

A�t2�Ĉ = Ĉ2.

Clearly, for i ∈ {1, 2}, Ĉ ti, ρ� fv(ti) and

1 +
∑

i

|t�i

i , ρ� fv(t�i

i)| = |(t�11 t�22), ρ|.

By induction, for i ∈ {1, 2} : Ĉi(�i) = {vi}, Ĉi 〈vi, ρi〉, and Ĉi |= t�i

i . From
this, it is straightforward to observe that Ĉ1 = Ĉ ∪ Ĉ′

1 and Ĉ2 = Ĉ ∪ Ĉ′
2

where Ĉ′
1 and Ĉ′

2 are disjoint. So let Ĉ3 = (Ĉ1 ∪ Ĉ2)[x↔ �2]. It is clear that
Ĉ3 |= t�i

i . Furthermore,

Ĉ3 t0, ρ1[x �→ 〈v2, ρ2〉],
Ĉ3(�0) = ∅, and

�0 /∈ lab(t0, ρ1[x �→ 〈v2, ρ2〉]).

Flow Analysis, Linearity, and PTIME 263

By Lemma 1, |vi, ρi| ≤ |ti, ρ� fv(ti)|, therefore

|t0, ρ1[x �→ 〈v2, ρ2〉]| < |(t�11 t�22)|.

Let

E�t�00 �ρ1[x �→ 〈v2, ρ2〉] = 〈v′, ρ′〉,
A�t�00 �Ĉ3 = Ĉ4,

and by induction, Ĉ4(�0) = {v′}, Ĉ4 v′, ρ′, and Ĉ4 |= v′. Finally, observe
that Ĉ4[� ↔ �0](�) = Ĉ4[� ↔ �0](�0) = {v′}, Ĉ4[� ↔ �0] v′, ρ′, and Ĉ4[� ↔
�0] |= (t�11 t�22)�, so the case holds.

��

We can now establish the correspondence between analysis and evaluation.

Corollary 1. If Ĉ is the simple closure analysis of a linear program t�, then
E�t��∅ = 〈v, ρ′〉 where Ĉ(�) = {v} and Ĉ v, ρ′.

By a simple replaying of the proof substituting the containment constraints of
0CFA for the equality constraints of simple closure analysis, it is clear that the
same correspondence can be established, and therefore 0CFA and simple closure
analysis are identical for linear programs.

Corollary 2. If e is a linear program, then Ĉ is the simple closure analysis of
e iff Ĉ is the 0CFA of e.

Discussion: Returning to our earlier question of the computationally potent
ingredients in a static analysis, we can now see that when the term is linear,
whether flows are directional and bidirectional is irrelevant. For these terms,
simple closure analysis, 0CFA, and evaluation are equivalent. And, as we will
see, when an analysis is exact for linear terms, the analysis will have a ptime-
hardness bound.

5 Lower Bounds for Flow Analysis

There are at least two fundamental ways to reduce the complexity of analysis.
One is to compute more approximate answers, the other is to analyze a syntac-
tically restricted language.

We use linearity as the key ingredient in proving lower bounds on analysis.
This shows not only that simple closure analysis and other flow analyses are
ptime-complete, but the result is rather robust in the face of analysis design
based on syntactic restrictions. This is because we are able to prove the lower
bound via a highly restricted programming language—the linear λ-calculus. So
long as the subject language of an analysis includes the linear λ-calculus, and is
exact for this subset, the analysis must be at least ptime-hard.

The decision problem answered by flow analysis, described colloquially in
Section 1, is formulated as follows:

264 D. Van Horn and H.G. Mairson

Flow Analysis Problem: Given a closed expression e, a term v, and label �,
is v ∈ Ĉ(�) in the analysis of e?

Theorem 2. If analysis corresponds to evaluation on linear terms, the analysis
is ptime-hard.

The proof is by reduction from the canonical ptime-complete problem [15]:

Circuit Value Problem: Given a Boolean circuit C of n inputs and one out-
put, and truth values x = x1, . . . , xn, is x accepted by C?

An instance of the circuit value problem can be compiled, using only logarith-
mic space, into an instance of the flow analysis problem following the construc-
tion in [9]. Briefly, the circuit and its inputs are compiled into a linear λ-term,
which simulates C on x via evaluation—it normalizes to true if C accepts x and
false otherwise. But since the analysis faithfully captures evaluation of linear
terms, and our encoding is linear, the circuit can be simulated by flow analysis.

The encodings work like this: tt is the identity on pairs, and ff is the swap.
Boolean values are either 〈tt ,ff 〉 or 〈ff , tt〉, where the first component is the
“real” value, and the second component is the complement.

tt ≡ λp.let 〈x, y〉 = p in 〈x, y〉 True ≡ 〈tt ,ff 〉
ff ≡ λp.let 〈x, y〉 = p in 〈y, x〉 False ≡ 〈ff , tt〉

The simplest connective is Not , which is an inversion on pairs, like ff . A linear
copy connective is defined as:

Copy ≡ λb.let 〈u, v〉 = b in 〈u〈tt ,ff 〉, v〈ff , tt〉〉.

The coding is easily explained: suppose b is True, then u is identity and v twists;
so we get the pair 〈True,True〉. Suppose b is False, then u twists and v is identity;
we get 〈False ,False〉.

The And connective is defined as:

And ≡ λb1.λb2.
let 〈u1, v1〉 = b1 in
let 〈u2, v2〉 = b2 in
let 〈p1, p2〉 = u1〈u2,ff 〉 in
let 〈q1, q2〉 = v1〈tt , v2〉 in
〈p1, q1 ◦ p2 ◦ q2 ◦ ff 〉.

Conjunction works by computing pairs 〈p1, p2〉 and 〈q1, q2〉. The former is the
usual conjuction on the first components of the Booleans b1, b2: u1〈u2,ff 〉 can be
read as “if u1 then u2, otherwise false (ff).” The latter is (exploiting deMorgan
duality) the disjunction of the complement components of the Booleans: v1〈tt , v2〉
is read as “if v1 (i.e. if not u1) then true (tt), otherwise v2 (i.e. not u2).” The result
of the computation is equal to 〈p1, q1〉, but this leaves p2, q2 unused, which would
violate linearity. However, there is symmetry to this garbage, which allows for its
disposal. Notice that, while we do not know whether p2 is tt or ff and similarly

Flow Analysis, Linearity, and PTIME 265

for q2, we do know that one of them is tt while the other is ff . Composing the two
together, we are guaranteed that p2◦q2 = ff . Composing this again with another
twist (ff) results in the identity function p2 ◦ q2 ◦ff = tt . Finally, composing this
with q1 is just equal to q1, so 〈p1, q1 ◦ p2 ◦ q2 ◦ff 〉 = 〈p1, q1〉, which is the desired
result, but the symmetric garbage has been annihilated, maintaining linearity.

This hacking, with its self-annihilating garbage, is an improvement over that
given in [16] and allows Boolean computation without K-redexes, making the
lower bound stronger, but also preserving all flows. In addition, it is the best
way to do circuit computation in multiplicative linear logic, and is how you
compute similarly in non-affine typed λ-calculus.

We know from Corollary 1 that normalization and analysis of linear programs
are synonymous, and our encoding of circuits will faithfully simulate a given
circuit on its inputs, evaluating to true iff the circuit accepts its inputs. But it
does not immediately follow that the circuit value problem can be reduced to the
flow analysis problem. Let ||C,x|| be the encoding of the circuit and its inputs.
It is tempting to think the instance of the flow analysis problem could be stated:

is True in Ĉ(�) in the analysis of ||C,x||�?

The problem with this is there may be many syntactic instances of “True.” Since
the flow analysis problem must ask about a particular one, this reduction will
not work. The fix is to use a context which expects a boolean expression and
induces a particular flow (that can be asked about in the flow analysis problem)
iff that expression evaluates to a true value [9].

Corollary 3. Simple closure analysis is ptime-complete.

6 Other Monovariant Analyses

In this section, we survey some of the existing monovariant analyses that either
approximate or restrict 0CFA to obtain faster analysis times. In each case, we
sketch why these analyses are complete for ptime.

6.1 Ashley and Dybvig’s Sub-0CFA

In [8], Ashley and Dybvig develop a general framework for specifying and com-
puting flow analyses, which can be instantiated to obtain 0CFA or Jagannathan
and Weeks’ polynomial 1CFA [17], for example. They also develop a class of
instantiations of their framework dubbed sub-0CFA that is faster to compute,
but less accurate than 0CFA.

This analysis works by explicitly bounding the number of times the cache can
be updated for any given program point. After this threshold has been crossed,
the cache is updated with a distinguished unknown value that represents all
possible λ-abstractions in the program. Bounding the number of updates to the
cache for any given location effectively bounds the number of passes over the
program an analyzer must make, producing an analysis that is O(n) in the size

266 D. Van Horn and H.G. Mairson

of the program. Empirically, Ashley and Dybvig observe that setting the bound
to 1 yields an inexpensive analysis with no significant difference in enabling
optimizations with respect to 0CFA.

The idea is the cache gets updated once (n times in general) before giving up
and saying all λ-abstractions flow out of this point. But for a linear term, the
cache is only updated at most once for each program point. Thus we conclude
even when the sub-0CFA bound is 1, the problem is ptime-complete.

As Ashley and Dybvig note, for any given program, there exists an analysis
in the sub-0CFA class that is identical to 0CFA (namely by setting n to the
number of passes 0CFA makes over the given program). We can further clarify
this relationship by noting that for all linear programs, all analyses in the sub-
0CFA class are identical to 0CFA (and thus simple closure analysis).

6.2 Subtransitive 0CFA

Heintze and McAllester [6] have shown that the “cubic bottleneck” of computing
full 0CFA—that is, computing all the flows in a program—cannot be avoided in
general without combinatorial breakthroughs: the problem is 2npda-hard, for
which the “the cubic time decision procedure [. . .] has not been improved since
its discovery in 1968.”

Given the unlikeliness of improving the situation in general, Heintze and
McAllester [10] identify several simpler flow questions (including the decision
problem discussed in the paper, which is the simplest; answers to any of the
other questions imply an answer to this problem). They give algorithms for sim-
ply typed terms that answer these restricted flow problems, which under certain
conditions, compute in less than cubic time.

Their analysis is linear with respect to a program’s graph, which in turn, is
bounded by the size of the program’s type. Thus, bounding the size of a pro-
gram’s type results in a linear bound on the running times of these algorithms.
If this type bound is removed, though, it is clear that even these simplified flow
problems (and their bidirectional-flow analogs), are complete for ptime: observe
that every linear term is simply typable, however in our lower bound construc-
tion, the type size is proportional to the size of the circuit being simulated. As
they point out, when type size is not bounded, the flow graph may be exponen-
tially larger than the program, in which case the standard cubic algorithm is
preferred.

Independently, Mossin [18] developed a type-based analysis that, under the
assumption of a constant bound on the size of a program’s type, can answer
restricted flow questions such as single source/use in linear time with respect
to the size of the explicitly typed program. But again, removing this imposed
bound results in ptime-completeness.

As Hankin et al. [19] point out: both Heintze and McAllester’s and Mossin’s
algorithms operate on type structure (or structure isomorphic to type structure),
but with either implicit or explicit η-expansion. For simply typed terms, this can
result in an exponential blow-up in type size. It is not surprising then, that given

Flow Analysis, Linearity, and PTIME 267

a much richer graph structure, the analysis can be computed quickly. In this light,
recent results on 0CFA of η-expanded, simply typed programs can be seen as
an improvement of the subtransitive flow analysis since it works equally well for
languages with first-class control and can be performed with only a fixed number
of pointers into the program structure, i.e. it is computable in logspace (and
in other words, ptime = logspace up to η) [9].

7 Conclusions and Perspective

When an analysis is exact, it will be possible to establish a correspondence with
evaluation. The richer the language for which analysis is exact, the harder it will
be to compute the analysis. As an example in the extreme, Mossin [20] developed
a flow analysis that is exact for simply typed terms. The computational resources
that may be expended to compute this analysis are ipso facto not bounded by any
elementary recursive function [21]. However, most flow analyses do not approach
this kind of expressivity. By way of comparison, 0CFA only captures ptime, and
yet researchers have still expending a great deal of effort deriving approximations
to 0CFA that are faster to compute. But as we have shown for a number of them,
they all coincide on linear terms, and so they too capture ptime.

We should be clear about what is being said, and not said. There is a con-
siderable difference in practice between linear algorithms (nominally considered
efficient) and cubic algorithms (still feasible, but taxing for large inputs), even
though both are polynomial-time. ptime-completeness does not distinguish the
two. But if a sub-polynomial (e.g., logspace) algorithm was found for this
sort of flow analysis, it would depend on (or lead to) things we do not know
(logspace = ptime). Likewise, were a parallel implementation of this flow
analysis to run in logarithmic time (i.e., nc), we would consequently be able
to parallelize every polynomial time algorithm similarly.

A fundamental question we need to be able to answer is this: what can be de-
duced about a long-running program with a time-bounded analyzer? When we
statically analyze exponential-time programs with a polynomial-time method,
there should be a analytic bound on what we can learn at compile-time: a theo-
rem delineating how exponential time is being viewed through the compressed,
myopic lens of polynomial time computation.

For example, a theorem due to Statman [21] says this: let P be a property of
simply-typed λ-terms that we would like to detect by static analysis, where P is
invariant under reduction (normalization), and is computable in elementary time
(polynomial, or exponential, or doubly-exponential, or. . .). Then P is a trivial
property: for any type τ , P is satisfied by all or none of the programs of type τ .
Henglein and Mairson [22] have complemented these results, showing that if a
property is invariant under β-reduction for a class of programs that can encode
all Turing Machines solving problems of complexity class f using reductions
from complexity class g, then any superset is either f-complete or trivial. Simple
typability has this property for linear and linear affine λ-terms [16,22], and these
terms are sufficient to code all polynomial-time Turing Machines.

268 D. Van Horn and H.G. Mairson

We would like to prove some analogs of these theorems, with or without the
typing condition, but weakening the condition of “invariant under reduction”
to some approximation analogous to the approximations of flow analysis, as
described above. We are motivated as well by yardsticks such as Shannon’s
theorem from information theory [23]: specify a bandwidth for communication
and an error rate, and Shannon’s results give bounds on the channel capacity. We
too have essential measures: the time complexity of our analysis, the asymptotic
differential between that bound and the time bound of the program we are
analyzing. There ought to be a fundamental result about what information can
be yielded as a function of that differential. At one end, if the program and
analyzer take the same time, the analyzer can just run the program to find out
everything. At the other end, if the analyzer does no work (or a constant amount
of work), nothing can be learned. Analytically speaking, what is in between?

Acknowledgments. We are grateful to Olin Shivers and Matt Might for a long,
fruitful, and ongoing dialogue on flow analysis. We thank the anonymous re-
viewers for insightful comments. The first author also thanks the researchers of
the Northeastern University Programming Research Lab for the hospitality and
engaging discussions had as a visiting lecturer over the last year.

References

1. Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Pro-
ceedings of the 8th Colloquium on Automata, Languages and Programming, Lon-
don, UK, pp. 114–128. Springer, Heidelberg (1981)

2. Sestoft, P.: Replacing function parameters by global variables. Master’s thesis,
DIKU, University of Copenhagen, Denmark, Master’s thesis no. 254 (1988)

3. Shivers, O.: Control-Flow Analysis of Higher-Order Languages, or Taming Lambda.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Report CMU-CS-91-145 (1991)

4. Midtgaard, J.: Control-flow analysis of functional programs. Technical Report
BRICS RS-07-18, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark (2007)

5. Shivers, O.: Control flow analysis in Scheme. In: PLDI 1988: Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language design and Imple-
mentation, pp. 164–174. ACM, New York (1988)

6. Heintze, N., McAllester, D.: On the cubic bottleneck in subtyping and flow analysis.
In: LICS 1997: Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, Washington, DC, USA, p. 342. IEEE Computer Society, Los
Alamitos (1997)

7. Henglein, F.: Simple closure analysis. DIKU Semantics Report D-193 (1992)

8. Ashley, J.M., Dybvig, R.K.: A practical and flexible flow analysis for higher-order
languages. ACM Trans. Program. Lang. Syst. 20(4), 845–868 (1998)

9. Van Horn, D., Mairson, H.G.: Relating complexity and precision in control flow
analysis. In: Proceedings of the 2007 ACM SIGPLAN International Conference on
Functional Programming, pp. 85–96. ACM Press, New York (2007)

Flow Analysis, Linearity, and PTIME 269

10. Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis. In:
PLDI 1997: Proceedings of the ACM SIGPLAN 1997 conference on Programming
language design and implementation, pp. 261–272. ACM, New York (1997)

11. Girard, J.Y.: Linear logic: its syntax and semantics. In: Proceedings of the work-
shop on Advances in linear logic. Cambridge University Press, Cambridge (1995)

12. Sestoft, P.: Replacing function parameters by global variables. In: FPCA 1989:
Proceedings of the fourth international conference on Functional programming lan-
guages and computer architecture, pp. 39–53. ACM, New York (1989)

13. Mossin, C.: Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU,
University of Copenhagen (1997)

14. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

15. Ladner, R.E.: The circuit value problem is log space complete for P . SIGACT
News 7(1), 18–20 (1975)

16. Mairson, H.G.: Linear lambda calculus and PTIME-completeness. Journal of Func-
tional Programming 14(6), 623–633 (2004)

17. Jagannathan, S., Weeks, S.: A unified treatment of flow analysis in higher-order
languages. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 393–407. ACM Press, New York (1995)

18. Mossin, C.: Higher-order value flow graphs. Nordic J. of Computing 5(3), 214–234
(1998)

19. Hankin, C., Nagarajan, R., Sampath, P.: Flow analysis: games and nets. In:
The essence of computation: complexity, analysis, transformation, pp. 135–156.
Springer, New York (2002)

20. Mossin, C.: Exact flow analysis. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS,
vol. 1302, pp. 250–264. Springer, Heidelberg (1997)

21. Statman, R.: The typed λ-calculus is not elementary recursive. Theor. Comput.
Sci. 9, 73–81 (1979)

22. Henglein, F., Mairson, H.G.: The complexity of type inference for higher-order
lambda calculi. In: POPL 1991: Proceedings of the 18th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 119–130. ACM, New
York (1991)

23. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948)

Quantum Entanglement Analysis Based on

Abstract Interpretation

Simon Perdrix

Oxford University Computing Laboratory
simon.perdrix@comlab.ox.ac.uk

Abstract. Entanglement is a non local property of quantum states
which has no classical counterpart and plays a decisive role in quantum
information theory. Several protocols, like the teleportation, are based
on quantum entangled states. Moreover, any quantum algorithm which
does not create entanglement can be efficiently simulated on a classical
computer. The exact role of the entanglement is nevertheless not well un-
derstood. Since an exact analysis of entanglement evolution induces an
exponential slowdown, we consider approximative analysis based on the
framework of abstract interpretation. In this paper, a concrete quantum
semantics based on superoperators is associated with a simple quantum
programming language. The representation of entanglement, i.e. the de-
sign of the abstract domain is a key issue. A representation of entangle-
ment as a partition of the memory is chosen. An abstract semantics is
introduced, and the soundness of the approximation is proven.

1 Introduction

Quantum entanglement is a non local property of quantum mechanics. The en-
tanglement reflects the ability of a quantum system composed of several sub-
systems, to be in a state which cannot be decomposed into the states of the
subsystems. Entanglement is one of the properties of quantum mechanics which
caused Einstein and others to dislike the theory. In 1935, Einstein, Podolsky,
and Rosen formulated the EPR paradox [7].

On the other hand, quantum mechanics has been highly successful in produc-
ing correct experimental predictions, and the strong correlations associated with
the phenomenon of quantum entanglement have been observed indeed [2].

Entanglement leads to correlations between subsystems that can be exploited
in information theory (e.g., teleportation scheme [3]). The entanglement plays
also a decisive, but not yet well-understood, role in quantum computation, since
any quantum algorithm can be efficiently simulated on a classical computer when
the quantum memory is not entangled during all the computation. As a conse-
quence, interesting quantum algorithms, like Shor’s algorithm for factorisation
[19], exploit this phenomenon.

In order to know what is the amount of entanglement of a quantum state,
several measures of entanglement have been introduced (see for instance [13]).
Recent works consist in characterising, in the framework of the one-way quantum

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 270–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quantum Entanglement Analysis Based on Abstract Interpretation 271

computation [20], the amount of entanglement necessary for a universal model
of quantum computation. Notice that all these techniques consist in analysing
the entanglement of a given state, starting with its mathematical description.

In this paper, the entanglement evolution during the computation is analysed.
The description of quantum evolutions is done via a simple quantum program-
ming language. The development of such quantum programming languages is
recent, see [17,8] for a survey on this topic.

An exact analysis of entanglement evolution induces an exponential slowdown
of the computation. Model checking techniques have been introduced [9] includ-
ing entanglement. Exponential slowdown of such analysis is avoided by reducing
the domain to stabiliser states (i.e. a subset of quantum states that can be ef-
ficiently simulated on a classical computer). As a consequence, any quantum
program that cannot be efficiently simulated on a classical computer cannot be
analysed.

Prost and Zerrari [16] have recently introduced a logical entanglement analysis
for functional languages. This logical framework allows analysis of higher-order
functions, but does not provide any static analysis for the quantum programs
without annotation. Moreover, only pure quantum states are considered.

In this paper, we introduce a novel approach of entanglement analysis based
on the framework of abstract interpretation [5]. A concrete quantum seman-
tics based on superoperators is associated with a simple quantum programming
language. The representation of entanglement, i.e. the design of the abstract
domain is a key issue. A representation of entanglement as a partition of the
memory is chosen. An abstract semantics is introduced, and the soundness of
the approximation is proved.

2 Basic Notions and Entanglement

2.1 Quantum Computing

We briefly recall the basic definitions of quantum computing; please refer to
Nielsen and Chuang [13] for a complete introduction to the subject.

The state of a quantum system can be described by a density matrix, i.e. a
self adjoint1 positive-semidefinite2 complex matrix of trace3 less than one. The
set of density matrices of dimension n is Dn ⊆ Cn×n.

The basic unit of information in quantum computation is a quantum bit or
qubit. The state of a single qubit is described by a 2× 2 density matrix ρ ∈ D2.
The state of a register composed of n qubits is a 2n × 2n density matrix. If two
registers A and B are in states ρA ∈ D2n and ρB ∈ D2m , the composed system
A,B is in state ρA ⊗ ρB ∈ D2n+m .

The basic operations on quantum states are unitary operations and measure-
ments. A unitary operation maps an n-qubit state to an n-qubit state, and is

1 M is self adjoint (or Hermitian) if and only if M† = M .
2 M is positive-semidefinite if all the eigenvalues of M are non-negative.
3 The trace of M (tr(M)) is the sum of the diagonal elements of M .

272 S. Perdrix

given by a 2n × 2n-unitary matrix4. If a system in state ρ evolves according to
a unitary transformation U , the resulting density matrix is UρU †. The parallel
composition of two unitary transformations UA, UB is UA ⊗ UB.

The following unitary transformations form an approximative universal family
of unitary transformations, i.e. any unitary transformation can be approximated
by composing the unitary transformations of the family [13].

H =
1√
2

(
1 1
1 −1

)

, T =
(

1 0
0 eiπ/4

)

, CNot =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

A measurement is described by a family of projectors {Px, x ∈ X} satisfying
P2

i = Pi, PiPj = 0 if i �= j, and
∑

x∈X Px = I. A computational basis measure-
ment is {Pk, 0 ≤ k < 2n}, where Pk has 0 entries everywhere except one 1 at
row k, column k. The parallel composition of two measurements {Px, x ∈ X},
{P′

y, y ∈ Y } is {Px ⊗ P′
y, (x, y) ∈ X × Y }.

According to a probabilistic interpretation, a measurement according to
{Px, x ∈ X} of a state ρ produces the classical outcome x ∈ X with proba-
bility tr(PxρPx) and transforms ρ into 1

tr(PxρPx)PxρPx.
Density matrices is a useful formalism for representing probability distribu-

tions of quantum states, since the state ρ of a system which is in state ρ1 (resp.
ρ2) with probability p1 (resp. p2) is ρ = p1ρ1 + p2ρ2. As a consequence, a mea-
surement according to {Px, x ∈ X} transforms ρ into

∑
x∈X PxρPx.

Notice that the sequential compositions of two measurements (or of a mea-
surement and a unitary transformation) is no more a measurement nor a unitary
transformation, but a superoperator, i.e. a trace-decreasing5 completely positive6

linear map. Any quantum evolution can be described by a superoperator.
The ability to initialise any qubit in a given state ρ0, to apply any unitary

transformation from a universal family, and to perform a computational mea-
surement are enough for simulating any superoperator.

2.2 Entanglement

Quantum entanglement is a non local property which has no classical counter-
part. Intuitively, a quantum state of a system composed of several subsystems is
4 U is unitary if and only if U†U = UU† = I.
5 F is trace decreasing iff tr(F (ρ)) ≤ tr(ρ) for any ρ in the domain of F . Notice
that superoperators are sometimes defined as trace-perserving maps, however trace-
decreasing is more suitable in a semantical context, see [18] for details.

6 F is positive if F (ρ) is positive-semidefinite for any positive ρ in the domain of F .
F is completely positive if Ik ⊗ F is positive for any k, where Ik : Ck×k → Ck×k is
the identity map.

Quantum Entanglement Analysis Based on Abstract Interpretation 273

entangled if it cannot be decomposed into the state of its subsystems. A quantum
state which is not entangled is called separable.

More precisely, for a given finite set of qubits Q, let n = |Q|. For a given
partition A,B of Q, and a given ρ ∈ D2n , ρ is biseparable according to A,B (or
(A,B)-separable for short) if and only if there exist K, pk ≥ 0, ρA

k and ρB
k such

that
ρ =

∑

k∈K

pkρ
A
k ⊗ ρB

k

ρ is entangled according to the partition A,B if and only if ρ is not (A,B)-
separable.

Notice that biseparability provides a very partial information about the en-
tanglement of a quantum state, for instance for a 3-qubit state ρ, which is
({1}, {2, 3})-separable, qubit 2 and qubit 3 may be entangled or not.

One way to generalise the biseparability is to consider that a quantum state
is π-separable – where π = {Qj, j ∈ J} is a partition of Q – if and only if there
exist K, pk ≥ 0, and ρ

Qj

k such that

ρ =
∑

k∈K

pk

⎛

⎝
⊗

j∈J

ρ
Qj

k

⎞

⎠

Notice that the structure of quantum entanglement presents some interesting
and non trivial properties. For instance there exist some 3-qubit states ρ such
that ρ is bi-separable for any bi-partition of the 3 qubits, but not fully separa-
ble i.e., separable according to the partition {{1}, {2}, {3}}. As a consequence,
for a given quantum state, there is not necessary a best representation of its
entanglement.

2.3 Standard and Diagonal Basis

For a given state ρ ∈ DQ and a given qubit q ∈ Q, if ρ is ({q}, Q\{q})-separable,
then q is separated from the rest of the memory. Moreover, such a qubit may
be a basis state in the standard basis (s) or the diagonal basis (d), meaning
that the state of this qubit can be seen as a ’classical state’ according to the
corresponding basis.

More formally, a qubit q of ρ is in the standard basis if there exists p0, p1 ≥ 0,
and ρ0, ρ1 ∈ DQ\{q} such that ρ = p0P0 ⊗ ρ0 + p1P1 ⊗ ρ1. Equivalently, q is
in the standard basis if and only if P(q)

0 ρP(q)
1 = P(q)

1 ρP(q)
0 = 0, where P(q)

k =
P{q}

k ⊗ IQ\{q} meaning that Pk is applied on qubit q. A qubit q is in the diagonal
basis in ρ if and only if q is in the standard basis in H(q)ρH(q), where H(q) =
H{q} ⊗ IQ\{q}.

Notice that some states, like the maximally mixed 1-qubit state 1
2 (P0 + P1)

are in both standard and diagonal basis, while others are neither in standard
nor diagonal basis like the 1-qubit state THP0HT .

We introduce a function β : DQ → BQ, where BQ = Q → {s,d,�,⊥}, such
that β(ρ) describes which qubits of ρ are in the standard or diagonal basis:

274 S. Perdrix

Definition 1. For any finite Q, let β : DQ → BQ such that for any ρ ∈ DQ,
and any q ∈ Q,

β(ρ)q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if q is in both standard and diagonal basis in ρ

s if q is in the standard and not in the diagonal basis in ρ

d if q is in the diagonal and not in the standard basis in ρ

� otherwise

3 A Quantum Programming Language

Several quantum programming languages have been introduced recently. For a
complete overview see [8]. We use an imperative quantum programming language
introduced in [15], the syntax is similar to the language introduced by Abramsky
[1]. For the sake of simplicity and in order to focus on entanglement analysis, the
memory is supposed to be fixed and finite. Moreover, the memory is supposed to
be composed of qubits only, whereas hybrid memories composed of classical and
quantum parts are often considered. However, contrary to the quantum circuit
or quantum Turing machine frameworks, the absence of classical memory does
not avoid the classical control of the quantum computation since classically-
controlled conditional structures are allowed (see section 3.1.)

Definition 2 (Syntax). For a given finite set of symbols q ∈ Q, a program is
a pair 〈C,Q〉 where C is a command defined as follows:

C ::= skip
| C1;C2

| if q then C1 else C2

| while q do C
| H(q)
| T(q)
| CNot(q, q)

Example 1. Quantum entanglement between two qubits q2 and q3 can be created
for instance by applying H and CNot on an appropriate state. Such an entangled
state can then be used to teleporte the state of a third qubit q1. The protocol of
teleportation [3] can be described as 〈teleportation, {q1, q2, q3}〉, where

teleportation : H(q2);
CNot(q2, q3);
CNot(q1, q2);
H(q1);
if q1 then

if q2 then skip else σx(q3)
else

if q2 then σz(q3) else σy(q3)

The semantics of this program is given in example 2.

Quantum Entanglement Analysis Based on Abstract Interpretation 275

3.1 Concrete Semantics

Several domains for quantum computation have been introduced [1,12,14].
Among them, the domain of superoperators over density matrices, introduced
by Selinger [18] turns out to be one of the most adapted to quantum semantics.
Thus, we introduce a denotational semantics following the work of Selinger.

For a finite set of variables Q = {q0, . . . , qn}, let DQ = D2|Q| . Q is a set of
qubits, the state of Q is a density operator in DQ.

Definition 3 (Löwner partial order). For matrices M and N in Cn×n, M �
N if N −M is positive-semidefinite.

In [18], Selinger proved that the poset (DQ,�) is a complete partial order with 0
as its least element. Moreover the poset of superoperators over DQ is a complete
partial order as well, with 0 as least element and where the partial order �′ is
defined as F �′ G ⇐⇒ ∀k ≥ 0, ∀ρ ∈ Dk2|Q| , (Ik ⊗ F)(ρ) � (Ik ⊗G)(ρ), where
Ik : Dk → Dk is the identity map. Notice that these complete partial orders are
not lattices (see [18].)

We are now ready to introduce the concrete denotational semantics which
associates with any program 〈C,Q〉, a superoperator �C� : DQ → DQ.

Definition 4 (Denotational semantics).

�skip� = I

�C1;C2� = �C2� ◦ �C1�

�U(q)� = λρ.UqρU
†
q

�CNot(q1, q2)� = λρ.CNotq1,q2ρCNot
†
q1,q2

�if q then C1 else C2 � = λρ.
(
�C1�(Ptrue

q ρPtrue
q) + �C2�(Pfalse

q ρPfalse
q)

)

�while q do C � = lfp
(
λf.λρ.

(
f ◦ �C�(Ptrue

q ρPtrue
q) + Pfalse

q ρPfalse
q

))

=
∑

n∈N
(FPfalse ◦ (�C� ◦ FPtrue)n)

where Pfalse =
(

1 0
0 0

)

and Ptrue =
(

0 0
0 1

)

, FM = λρ.MρM †, and Mq = M{q} ⊗

IQ\{q} (and CNotq1,q2 = CNot{q1,q2}⊗ IQ\{q1,q2}) meaning that M is applied on
qubit q. We refer the reader to an extended version of this paper for the technical
explanations on continuity and convergence.

In the absence of classical memory, the classical control is encoded into the
conditional structure if q then C1 else C2 such that the qubit q is first mea-
sured according to the computational basis. If the first projector is applied, then
the classical outcome is interpreted as true and the command C1 is applied.
Otherwise, the second projector is applied, and the command C2 is performed.

276 S. Perdrix

According to the encoding of probabilistic evolutions in the formalism of density
matrices, the overall evolution is the sum of the possible evolutions (see section
2.1.) The classical control appears in the loop while q do C as well.

As a consequence of the classical control, non unitary transformations can be
implemented:

�if q then q else σx(q) � : D{q} → D{q} = λρ.Ptrue

�while q do H(q) � : D{q} → D{q} = λρ.Pfalse

Notice that the matrices Ptrue and Pfalse, used in definition 4 for describing the
computational measurement {Ptrue,Pfalse} can also be used as density matrices
for describing a quantum state as above.

Moreover, notice that all the ingredients for approximating any superoperators
can be encoded into the language: the ability to initialise any qubit in a given
state (for instance Ptrue or Pfalse); an approximative universal family of unitary
transformation {H,T,CNot, σx, σy , σz}; and the computational measurement of
a qubit q with if q then skip else skip .

Example 2. The program 〈teleportation, {q1, q2, q3}〉 described in example 1 re-
alises the teleportation from q1 to q3, when the qubits q2 and q3 are both ini-
tialised in state Ptrue: for any ρ ∈ D2,

�teleportation�(ρ⊗ Ptrue ⊗ Ptrue) =

⎛

⎝1
4

∑

k,l∈{true,false}
Pk ⊗ Pl

⎞

⎠⊗ ρ

4 Entanglement Analysis

What is the role of the entanglement in quantum information theory? How
does the entanglement evolve during a quantum computation? We consider the
problem of analysing the entanglement evolution on a classical computer, since
no large scale quantum computer is available at the moment. Entanglement
analysis using a quantum computer is left to further investigations7.

In the absence of quantum computer, an obvious solution consists in sim-
ulating the quantum computation on a classical computer. Unfortunately, the
classical memory required for the simulation is exponentially large in the size of
the quantum memory of the program simulated. Moreover, the problem SEP of
deciding whether a given quantum state ρ is biseparable or not is NP Hard8 [10].
7 Notice that this is not clear that the use of a quantum computer avoids the use of the
classical computer since there is no way to measure the entanglement of a quantum
state without transforming the state.

8 For pure quantum states (i.e. tr(ρ2) = tr(ρ)), a linear algorithm have been
introduced [11] to solve the sub-problem of finding biseparability of the form
({q0, . . . , qk}, {qk+1, . . . , qn}) – thus sensitive to the ordering of the qubits in the
register. Notice that this algorithm is linear in the size of the input which is a den-
sity matrix, thus the algorithm is exponential in the number of qubits.

Quantum Entanglement Analysis Based on Abstract Interpretation 277

Furthermore, the input of the problem SEP is a density matrix, which size is
exponential in the number of qubits. As a consequence, the solution of a classical
simulation is not suitable for an efficient entanglement analysis.

To tackle this problem, a solution consists in reducing the size of the quantum
state space by considering a subspace of possible states, such that there exist
algorithms to decide whether a state of the subspace is entangled or not in a
polynomial time in the number of qubits. This solution has been developed in
[9], by considering stabiliser states only. However, this solution, which may be
suitable for some quantum protocols, is questionable for analysing quantum algo-
rithms since all the quantum programs on which such an entanglement analysis
can be driven are also efficiently simulable on a classical computer.

In this paper, we introduce a novel approach which consists in approximating
the entanglement evolution of the quantum memory. This solution is based on
the framework of abstract interpretation introduced by Cousot and Cousot [5].
Since a classical domain for driving a sound and complete analysis of entangle-
ment is exponentially large in the number n of qubits, we consider an abstract
domain of size n and we introduce an abstract semantics which leads to a sound
approximation of the entanglement evolution during the computation.

4.1 Abstract Semantics

The entanglement of a quantum state can be represented as a partition of the
qubits of the state (see section 2.2), thus a natural abstract domain is a domain
composed of partitions. Moreover, for a given state ρ, one can add a flag for each
qubit q, indicating whether the state of this qubit is in the standard basis s or
in the diagonal basis d (see section 2.3).

Definition 5 (Abstract Domain). For a finite set of variables Q, let AQ =
BQ × ΠQ be an abstract domain, where BQ = Q → {s,d,�,⊥} and ΠQ is the
set of partitions of Q:

ΠQ = {π ⊆ ℘(Q) \ {∅} |
⋃

X∈π

X = Q and (∀X,Y ∈ π, X ∩ Y = ∅ or X = Y)}

The abstract domain A is ordered as follows. First, let ({s,d,�,⊥},≤) be a
poset, where ≤ is defined as: ⊥ ≤ s ≤ � and ⊥ ≤ d ≤ �. (BQ,≤) is a poset,
where ≤ is defined pointwise. Moreover, for any π1, π2 ∈ ΠQ, let π1 ≤ π2 if π1

rafines π2, i.e. for every block X ∈ π1 there exists a block Y ∈ π2 such that
X ⊆ Y . Finally, for any (b1, π), (b2, π2) ∈ AQ, (b1, π) ≤ (b2, π2) if b1 ≤ b2 and
π1 ≤ π2.

Proposition 1. For any finite set Q, (AQ,≤) is a complete partial order, with
⊥ = (λq.⊥, {{q}, q ∈ Q}) as least element.

Proof. Every chain has a supremum since Q is finite. ��

Basic operations of meet and join are defined on AQ. It turns out that contrary
to DQ, 〈AQ,∨,∧,⊥, (λq.�, {Q})〉 is a lattice.

278 S. Perdrix

A removal operation on partitions is introduced as follows: for a given partition
π = {Qi, i ∈ I}, let π \ q = {Qi \ {q}, i ∈ I} ∪ {{q}}. Moreover, for any pair of
qubits q1, q2 ∈ Q, let [q1, q2] = {{q | q ∈ Q \ {q1, q2}}, {q1, q2}}.

Finally, for any b ∈ BQ, any q0, q ∈ Q, any k ∈ {s,d,�,⊥}, let

bq0 �→k
q =

{
k if q = q0

bq otherwise

We are now ready to define the abstract semantics of the language:

Definition 6 (Denotational abstract semantics). For any program 〈C,Q〉,
let �C�� : AQ → AQ be defined as follows: For any (b, π) ∈ AQ,

�skip��(b, π) = (b, π)

�C1;C2�
�(b, π) = �C2�

� ◦ �C1�
�(b, π)

�σ(q)��(b, π) = (b, π)

�H(q)��(b, π) = (bq �→d, π) if bq = s
= (bq �→s, π) if bq = d
= (b, π) otherwise

�T(q)��(b, π) = (bq �→�, π) if bq = d
= (bq �→s, π) if bq = ⊥
= (b, π) otherwise

�CNot(q1, q2)��(b, π) = (b, π) if bq1 = s or bq2 = d
= (bq1 �→s, π) if bq1 = ⊥ and bq2 > ⊥
= (bq2 �→d, π) if bq1 > ⊥ and bq2 = ⊥
= (bq1 �→s,q2 �→d, π) if bq1 = ⊥ and bq2 = ⊥
= (bq1,q2 �→�, π ∨ [q1, q2]) otherwise

�if q then C1 else C2 ��(b, π) =
(
�C1�

�(bq �→s, π \ q) ∨ �C2�
�(bq �→s, π \ q)

)

�while q do C ��(b, π) = lfp
(
λf.λπ.

(
f ◦ �C��(bq �→s,π\ q) ∨ (bq �→s, π \ q)

))

=
∨

n∈N

(
F �

q ◦ (�C�� ◦ F �
q)n
)

where F �
q = λ(b, π).(bq �→s, π \ q).

Intuitively, quantum operations act on entanglement as follows:

– A 1-qubit measurement makes the measured qubit separable from the rest
of the memory. Moreover, the state of the measured qubit is in the standard
basis.

– A 1-qubit unitary transformation does not modify entanglement. Any Pauli
operator σ ∈ {σx, σy , σz} preserves the standard and the diagonal basis of

Quantum Entanglement Analysis Based on Abstract Interpretation 279

the qubits. Hadamard H transforms a state of the standard basis into a
state of the diagonal basis and vice-versa. Finally the phase T preserves the
standard basis but not the diagonal basis.

– The 2-qubit unitary transformation CNot, applied on q1 and q2 may cre-
ate entanglement between the qubits or not. It turns out that if q1 is in
the standard basis, or q2 is in the diagonal basis, then no entanglement is
created and the basis of q1 and q2 are preserved. Otherwise, since a sound
approximation is desired, CNot is abstracted into an operation which creates
entanglement.

Remark 1. Notice that the space needed to store a partition of n elements is
O(n). Moreover, meet, join and removal and can be done in either constant or
linear time.

Example 3. The abstract semantics of the teleportation (see example 1) is
�teleportation�� : A{q1,q2,q3} → A{q1,q2,q3} = λ(b, π).(bq1,q2 �→s,q3 �→�,⊥). Thus,
for any 3-qubit state, the state of the memory after the teleportation is fully
separable.

Assume that a fourth qubit q4 is entangled with q1 before the teleporta-
tion, whereas q2 and q3 are in the state Ptrue. So that, the state of the mem-
ory before the teleportation is [q1, q4]-separable. The abstract semantics of
〈teleportation, {q1, q2, q3, q4}〉 is such that

�teleportation��(b, [q1, q4]) = (bq1,q2 �→s,q3 �→�, [q3, q4])

Thus the abstract semantics predicts that q3 is entangled with q4 at the end
of the teleportation, even if q3 never interacts with q4.

Example 4. Consider the program 〈trap, {q1, q2}〉, where

trap = CNot(q1, q2); CNot(q1, q2)

Since CNot is self-inverse, �trap� : D{q1,q2} → D{q1,q2} = λρ.ρ. For instance,
�trap�(1

2 (P true + P false)⊗ P true) = 1
2 (P true + P false)⊗ P true.

However, if bq1 = d and bq2 = s then

�trap��(b, {{q1}, {q2}}) = (bq1 �→�,q1 �→�, {{q1, q2}})

Thus, according to the abstract semantics, at the end of the computation, q1
and q2 are entangled.

4.2 Soundness

Example 4 points out that the abstract semantics is an approximation, so it may
differ from the entanglement evolution of the concrete semantics. However, in
this section, we prove the soundness of the abstract interpretation (theorem 1).

280 S. Perdrix

First, we define a function β : DQ → BQ such that β(ρ) describes which
qubits of ρ are in the standard or diagonal basis:

Definition 7. For any finite Q, let β : DQ → BQ such that for any ρ ∈ DQ,
and any q ∈ Q,

β(ρ)q =

⎧
⎪⎨

⎪⎩

s if P true
q ρP false

q = P false
q ρP true

q = 0

d if (P true
q + P false

q)ρ(P true
q − P false

q) = (P true
q − P false

q)ρ(P true
q + P false

q) = 0

� otherwise

A natural soundness relation is then:

Definition 8 (Soundness relation). For any finite set Q, let σ ∈ ℘(DQ,AQ)
be the soundness relation:

σ = {(ρ, (b, π)) | ρ is π-separable and β(ρ) ≤ b}

The approximation relation is nothing but the partial order ≤: (b, π) is a more
precise approximation than (b′, π′) if (b, π) ≤ (b′, π′). Notice that the abstract
soundness assumption is satisfied: if ρ is π-separable and π ≤ π′ then ρ is π′-
separable. So, (ρ, a) ∈ σ and (ρ, a) ≤ (ρ′, a′) imply (ρ′, a′) ∈ σ.

However, the best approximation is not ensured. Indeed, there exist some 3-
qubit states [6,4] which are separable according to any of the 3 bipartitions of
their qubits {a, b, c} but which are not {{a}, {b}, {c}}-separable. Thus, the best
approximation does not exist.

However, the soundness relation σ satisfies the following lemma:

Lemma 1. For any finite set Q, any ρ1, ρ2 ∈ DQ, and any a1, a2 ∈ AQ,

(ρ1, a1), (ρ2, a2) ∈ σ =⇒ (ρ1 + ρ2, π1 ∨ π2) ∈ σ

Moreover, the abstract semantics is monotonic according to the approximation
relation:

Lemma 2. For any command C, �C�� is ≤-monotonic: for any π1, π2 ∈ AQ,

π1 ≤ π2 =⇒ �C��(π1) ≤ �C��(π2)

Proof. The proof is by induction on C.

Theorem 1 (Soundness). For any program 〈C,Q〉, any ρ ∈ DQ, and any
a ∈ AQ,

(ρ, a) ∈ σ =⇒ (�C�(ρ), �C��(a)) ∈ σ

Proof. The proof is by induction on C.

In other words, if ρ is π-separable and β(ρ) ≤ b, then �C�(ρ) is π′-separable and
β(�C�(ρ)) ≤ b′, where (b′, π′) = �C��(b, π).

Quantum Entanglement Analysis Based on Abstract Interpretation 281

5 Conclusion and Perspectives

In this paper, we have introduced the first quantum entanglement analysis based
on abstract interpretation. Since a classical domain for driving a sound and com-
plete analysis of entanglement is exponentially large in the number of qubits, an
abstract domain based on partitions has been introduced. Moreover, since the con-
crete domain of superoperators is not a lattice, no Galois connection can be es-
tablished between concrete and abstract domains. However, despite the absence
of best abstraction, the soundness of the entanglement analysis has been proved.

The abstract domain is not only composed of partitions of the memory, but
also of descriptions of the qubits which are in a basis state according to the stan-
dard or diagonal basis. Thanks to this additional information, the entanglement
analysis is more subtle than an analysis of interactions: the CNot transforma-
tion is not an entangling operation if the first qubit is in the standard basis or
if the second qubit is in the diagonal basis.

A perspective, in order to reach a more precise entanglement analysis, is to
introduce a more concrete abstract domain, adding for instance a third basis,
since it is known that there are three mutually unbiased basis for each qubit.

A simple quantum imperative language is considered in this paper. This
language is expressive enough to encode any quantum evolution. However, a
perspective is to develop such abstract interpretation in a more general setting
allowing high-order functions, representation of classical variables, or unbounded
quantum memory. The objective is also to provide a practical tool for analysing
entanglement evolution of more sophisticated programs, like Shor’s algorithm
for factorisation [19].

Another perspective is to consider that a quantum computer is available for
driving the entanglement analysis. Notice that such an analysis of entanglement
evolution is not trivial, even if a quantum computer is available, since a tomogra-
phy [21] is required to know the entanglement of the quantum memory state9.

Acknowledgements

The author would like to thank Philippe Jorrand for stimulating and insightful
discussions, Samson Abramsky, Pablo Arrighi, Renan Fargetton, and Frédéric
Prost for fruitful comments. The author is supported by EC STREP FP6-033763
Foundational Structures for Quantum Information and Computation (QICS.)

References

1. Abramsky, S.: A Cook’s tour of a simple quantum programming language. In: 3rd
International Symposium on Domain Theory, Xi’an, China (May 2004)

2. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories
via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

9 It mainly means that in order to obtain an approximation of the quantum memory
entanglement, several copies of the memory state are consumed.

282 S. Perdrix

3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

4. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.:
Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 53–85
(1999)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

6. Eggeling, T., Werner, R.F.: Separability properties of tripartite states with uuu
-symmetry. Phys. Rev. A 63(0421111) (2001)

7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of re-
ality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

8. Gay, S.J.: Quantum programming languages: Survey and bibliography. Mathemat-
ical Structures in Computer Science 16(4) (2006)

9. Gay, S.J., Rajagopal, A.K., Papanikolaou, N.: Qmc: A model qmc: A model checker
for quantum systems. arxiv:0704.3705 (2007)

10. Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quan-
tum entanglement. In: Proceedings of the 35-th ACM Symposium on Theory of
Computing, p. 10. ACM Press, New York (2003)

11. Jorrand, P., Mhalla, M.: Separability of pure n-qubit states: two characterizations.
IJFCS 14(5), 797–814 (2003)

12. Kashefi, E.: Quantum domain theory - definitions and applications. In: Proceedings
of Computability and Complexity in Analysis (CCA 2003) (2003)

13. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press, New York (2000)

14. Perdrix, S.: Formal models of quantum computation: resources, abstract machines
and measurement-based quantum computation (in french). PhD thesis, Institut
National Polytechnique de Grenoble (2006)

15. Perdrix, S.: A hierarchy of quantum semantics. In: The Proceedings of the 3rd
International Workshop on Development of Computational Models (to appear,
2007)

16. Prost, F., Zerrari, C.: A logical analysis of entanglement and separability in quan-
tum higher-order functions. arXiv.org:0801.0649 (2008)

17. Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y.,
Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg
(2004)

18. Selinger, P.: Towards a quantum programming language. Mathematical Structures
in Computer Science 14(4), 527–586 (2004)

19. Shor, P.: Algorithms for quantum computation: Discrete logarithms and factoring.
In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos
(1994)

20. Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for
measurement–based quantum computation (2006)

21. White, A.G., Gilchrist, A., Pryde, G.J., O’Brien, J.L., Bremner, M.J., Langford,
N.K.: Measuring two-qubit gates. J. Opt. Soc. Am. B 24(2), 172–183 (2007)

Language Strength Reduction�

Nicholas Kidd1, Akash Lal1,		, and Thomas Reps1,2

1 University of Wisconsin, Madison, WI, USA
{kidd,akash,reps}@cs.wisc.edu

2 GrammaTech, Inc., Ithaca, NY, USA

Abstract. This paper concerns methods to check for atomic-set seri-
alizability violations in concurrent Java programs. The straightforward
way to encode a reentrant lock is to model it with a context-free lan-
guage to track the number of successive lock acquisitions. We present
a construction that replaces the context-free language that describes a
reentrant lock by a regular language that describes a non-reentrant lock.
We call this replacement language strength reduction. Language strength
reduction produces an average speedup (geometric mean) of 3.4. More-
over, for 2 programs that previously exhausted available space, the tool
is now able to run to completion.

1 Introduction

Vaziri et al. [1] define an atomic set as a set of memory locations that share
a consistency property, and a unit-of-work as a code fragment that preserves
the consistency property. They specify eleven forbidden data-access patterns on
atomic sets; and show that an atomic-set serializability violation occurs iff one
of the data-access patterns is observed during a unit-of-work.

Empire [2] is a static violation1 detector for Java. Empire abstracts a concur-
rent Java program into a program written in the Empire Modeling Language
(EML). An EML program consists of a finite set of processes, a finite set of
global variables, and a finite set of locks. Each process consists of a set of (re-
cursive) functions with the standard control operators. As in Java, an EML lock
is reentrant, i.e., it can be acquired multiple times by the process that owns
the lock, but it also must be successively released the same number of times.
An EML lock is acquired and released by entering and exiting, respectively, a
function that is synchronized on the lock. (Java synchronized blocks are mod-
eled as inlined anonymous function invocations in EML.) EML provides a unit
block that denotes a unit-of-work. The unit blocks are allowed to be nested. An
example EML process is given in Fig. 1.

An execution trace of an EML process is described by a string of actions, where
an action corresponds to reading (writing) a variable, acquiring (releasing) a lock,

� Supported by NSF under grants CCF-0540955 and CCF-0524051.
�� Supported by a Microsoft Research Fellowship.
1 For this paper, the term “violation” means “atomic-set serializability violation”.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 283–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 N. Kidd, A. Lal, and T. Reps

1 l o ck : l ;
2 var : v ;
3

4 p roc e s s P0 {
5 synchron ized (l) ge t { read v ; }
6

7 synchron ized (l) s e t { wri te v ; }
8

9 synchron ized (l) testAndSet {
10 get () ;
11 i f (∗)
12 s e t () ;
13 }
14

15 main {
16 unit {
17 testAndSet ()
18 }
19 }
20 }

Fig. 1. Example program that makes use of reentrant locking

or entering (exiting) a unit block. The set of all execution traces of an EML
process is described by a context-free language (CFL) of actions. Similarly, the
set of all behaviors of an EML lock is described by a CFL. Finally, the set of all
interleaved execution traces of an EML program is described by the intersection
of a set S of CFLs—one for each EML process and one for each EML lock.
Intersection ensures that the mutual-exclusion property of locks is obeyed.

Violation detection is performed by determining the emptiness of the inter-
section of the set S, augmented with a regular language Ldata that defines a
data-access pattern. Determining the emptiness of the intersection of two or
more CFLs is undecidable. This issue is addressed by translating the EML pro-
gram, along with Ldata, into a communicating pushdown system (CPDS) [3,4],
for which a semi-decision procedure is implemented in the CPDS model checker
[4]. The semi-decision procedure over-approximates each CFL by a regular lan-
guage and then checks whether the intersection of the regular languages is empty
(which is decidable). If the intersection is empty or it contains a valid string in
each of the original CFLs, then the model checker terminates. Otherwise, the
process is repeated using a tighter regular over-approximation of each CFL.

If a language is known to be regular (e.g., Ldata), then the CPDS model
checker can be directed to treat it as such (determining if a CFL is regular is
also undecidable). This has two key advantages:

1. Precision increases because the model checker uses the exact language.
2. Cost decreases because the model checker avoids approximating a CFL.

This paper presents a generic technique that we use to reduce the number of
CFLs necessary to model an EML program. It is based on the observation that
the CFL for an EML lock can be replaced by a regular language because the
EML lock’s acquisitions and releases are synchronized with function calls and
returns. We call the process of replacing a CFL by a regular language language

Language Strength Reduction 285

strength reduction. For an EML program with m processes and n locks, applying
language strength reduction allows the program to be described by m CFLs and
n regular languages, versus m+ n CFLs.

Contributions. The observation that pushdown automata are closed under
intersection when the stacks are synchronized was formalized in the work of
Alur and Madhusudan [5,6]. They defined nested-word languages, which make
stack operations explicit in the words of the language, and nested-word au-
tomata (NWA), which accept such languages. They showed that these lan-
guages are closed under intersection. However, their result does not apply in our
setting.

In our setting, a CPDS consists of a set of extended weighted pushdown sys-
tems (EWPDSs) [7]. EWPDSs are a generic formalism for modeling recursive
programs (cf. §3.1). They are able to model more powerful program abstractions
than the pushdown automata used in [5,6]. (EWPDSs can model infinite-state
data abstractions, as opposed to pushdown automata, which can only model
finite-state data abstractions.) EWPDSs allow one to compute meet-over-all-
valid-paths (MOVP) values for the abstraction, which goes beyond the capa-
bilities of the approach proposed by Alur and Madhusudan. The MOVP values
capture the set of behaviors of the program modeled by the EWPDS.

Our approach is similar in spirit to [6]. We use an NWA A to model the
locking behavior of an EML process. We define the nested-word language of an
EWPDS (cf. §4.1) by associating a nested-word with every path of the EWPDS.
This makes its stack operations explicit. We give a generic construction that
combines A with an EWPDS E to produce another EWPDS EA whose nested-
word language is the intersection of the nested-word languages of E and A.
Computing the MOVP value over EA captures the set of all behaviors of the
program modeled by E that respect the locking behaviors described by A.

The key to language strength reduction is distinguishing between the lock
acquisitions and releases that change the owner of a lock l and those that do
not. We show how to achieve this using the NWA A. We then transfer this ability
to the EWPDS E for an EML process via the construction of EA. This enables
us to perform language strength reduction for the lock l (cf. §5).

Our work makes the following contributions:

– We define the notion of the nested-word language of an EWPDS (§4.1). We
give a construction to combine an NWA A with an EWPDS E to produce
another EWPDS EA (§4.2). This generalizes previous results, and permits
verification to be performed using a broader class of abstract domains (see
Defn. 2).

– We show how the construction allows one to perform language strength re-
duction (§5).

– We analyzed 5 programs from the concurrency testing benchmark suite by
Eytani et al. [8]. Our technique obtained an average speedup of 3.4 on 3
of the programs. Moreover, for the 2 programs that previously exhausted
available space, the tool is now able to run to completion.

286 N. Kidd, A. Lal, and T. Reps

S → U
M → ε | M M | (M)
U → M | M U | (U

(a)

S → Uo

Mo → ε | Mo Mo | (o Mn)o
Uo → Mo | Mo Uo | (o Un

Mn → ε | Mn Mn | (n Mn)n
Un → Mn | Mn Un | (n Un

(b)

S → (o)o S | (o | ε

(c)

Fig. 2. (a) Grammar for the CFL of a reentrant lock. (b) Grammar that distinguishes
between outermost and nested parentheses. (c) Grammar for the regular language of a
non-reentrant lock.

The remainder of the paper is organized as follows: §2 provides an overview.
§3 presents definitions and examples. §4 presents the nested-word language of
an EWPDS and the construction that combines an NWA with an EWPDS. §5
presents the language-strength-reduction transformation. §6 describes our ex-
periments. §7 discusses related work.

2 Overview

Consider the EML process in Fig. 1. Let “(” and “)” denote entering and exiting
a synchronized(l) function, “[” and “]” denote entering and exiting a unit
block, and Rv and Wv denote reading and writing to the variable v, respectively.
The program path

Path 1: main → testAndSet → get → set → testAndSet→ main

can be described by the wordwpath = “[((Rv)(Wv))]”. Removing all symbols that
do not model a change in the state of the lock l produces the word wl = “(()())”.
In general, due to recursion, the language that describes the set of possible
program behaviors with respect to l is a partially-balanced matched-parenthesis
language, whose grammar is shown in Fig. 2(a).

For Path 1, there are two distinct types of lock acquisitions: ownership-
changing acquisitions (OC) and non-ownership-changing acquisitions (nOC).
The dual also holds for lock releases. With respect to wl, these two distinct types
correspond to outermost parentheses, denoted by “(o)o”, and nested parenthe-
ses, denoted by “(n)n”, respectively. Using this notation, wl can be rewritten
as “(o(n)n(n)n)o”. Fig. 2(b) extends this to the language level by distinguishing
between the outermost and nested parentheses of Fig. 2(a).

Observation 1. With respect to the executions of an EML program, only the
OC lock acquisitions and releases enforce mutual exclusion. For a program trace,
projecting out the nOC lock acquisitions and releases does not change the set of
instructions that are guarded by locks.

Projecting out the nested parentheses for wl results in “(o)o”. Performing the
projection on the grammar in Fig. 2(b) results in a regular language whose
grammar is shown in Fig. 2(c).

Language Strength Reduction 287

This paper presents a technique that allows us to use the simpler language in
Fig. 2(c) in place of the language in Fig. 2(a). We call this replacement language
strength reduction. Language strength reduction provides the precision and cost
benefits highlighted by items 1 and 2 of §1.

Language strength reduction relies on the ability to distinguish between the
OC and nOC lock acquisitions of an EML process. In §3.3, we show how this
distinction can be captured by an NWA. Having defined the language of Fig. 2(b)
via an NWA A, we combine it with the EWPDS E that represents an EML
process. This results in another EWPDS EA on which we then project out all
nOC lock acquisitions and releases—the end result being that each EML lock is
modeled by the regular language shown in Fig. 2(c) in the CPDS model checker.
Using the simpler language of Fig. 2(c) leads to the speedups reported in §6.

The goal of language strength reduction is to model reentrant locks with
non-reentrant locks without sacrificing soundness or precision. This problem can
be tackled by either source-code modification or by manipulating the program
model. In our model checker’s tool chain, a CPDS is produced from a concurrent
Java program, and thus we followed the approach of modifying the EWPDSs
that make up the generated CPDS. A benefit of this approach is that we have
developed generic techniques that apply to a declarative specification of the set
of locks. That is, given the set of lock names, the techniques we present perform
language strength reduction automatically.

3 Definitions and Examples

3.1 Extended Weighted Pushdown Systems

Definition 1. A pushdown system (PDS) is a triple P = (P, Γ,Δ), where P
is a finite set of states, Γ is a finite set of stack symbols, and Δ ⊆ P×Γ×P×Γ ∗

is a finite set of rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and
u ∈ Γ ∗. A rule r ∈ Δ is written as 〈p, γ〉 ↪→ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ ,
and u ∈ Γ ∗. These rules define a transition relation ⇒ on configurations of P
as follows: if r = 〈p, γ〉 ↪→ 〈p′, u′〉, then 〈p, γu〉 ⇒ 〈p′, u′u〉 for all u ∈ Γ ∗. The
reflexive transitive closure of ⇒ is denoted by ⇒∗.

Without loss of generality, we restrict PDS rules to have at most two stack
symbols on the right-hand side [9]. A rule r = 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ ∗, is called
a push, step, or pop rule if |u| = 2, |u| = 1, or |u| = 0, respectively.

A PDS naturally models a program’s control flow. The standard approach is as
follows: P contains a single state p, Γ corresponds to the nodes of the program’s
interprocedural control flow graph (ICFG), and Δ corresponds to edges of the
program’s ICFG (see Fig. 3). We denote the entry point of a program’s main
function by emain, and let cinit = 〈p, emain〉. A run of P is a rule sequence ρ =
[r1, . . . , rj] that transforms cinit into some other configuration c.2 We denote the

2 It is not necessary to restrict the definition of a run to start from the initial config-
uration. However, this simplifies the discussion.

288 N. Kidd, A. Lal, and T. Reps

Rule Control flow modeled

〈p, n1〉 ↪→ 〈p, n2〉 Intraprocedural edge n1 → n2

〈p, nc〉 ↪→ 〈p, ef rc〉 Call to f , with entry ef , from nc that returns to rc

〈p, xf 〉 ↪→ 〈p, ε〉 Return from f at exit xf

Fig. 3. The encoding of an ICFG’s edges as PDS rules

set of all runs of P by Runs(P), which represents the set of all interprocedurally-
valid paths in the program.

An extended weighted pushdown system (EWPDS) is obtained by augmenting
a PDS with a weight domain [10,3] and a set of merging functions [7]. Weights
encode the effect that each statement (or PDS rule) has on the data state of
the program. Merging functions are used to fuse the local state of the calling
procedure as it existed just before the call with the global state produced by the
called procedure.

Definition 2. A weight domain is a tuple (D,⊕,⊗, 0, 1), where D is a set
whose elements are called weights, 0, 1 ∈ D, and ⊕ (the combine operation)
and ⊗ (the extend operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent (i.e., for all a ∈ D, a ⊕ a = a). (D,⊗) is a monoid with the
neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
4. In the partial order � defined by ∀a, b ∈ D, a � b iff a⊕ b = a, there are no

infinite descending chains.

Example: The Prefix Weight Domain for CPDSs [3]. For a CFL L over
finite alphabet Σ, the prefix abstraction precisely models each word w ∈ L whose
length is less than a bound k. If |w| ≥ k, then w is approximated by the regular
language w|kΣ∗, where w|k denotes the prefix of w of length k. Because there
are only a finite number of words and prefixes whose lengths are less than or
equal to k, the prefix abstraction produces a regular approximation of L.

For two words w1 = a1 . . . ai and w2 = b1 . . . bj, let w1 &'k w2 be the word
(a1 . . . aib1 . . . bj)|k. We extend &'k to finite sets in the obvious way. For a finite
alphabet Σ and bound k, let D be the powerset of

⋃
0≤i≤k Σ

i. The prefix weight
domain is defined as S|k = (D,∪, &'k, ∅, {ε}).

Definition 3. A function m : D×D → D is a merging function with respect
to a weight domain (D,⊕,⊗, 0, 1) if it satisfies the following properties:

1. Strictness. For all a ∈ D, m(0, a) = m(a, 0) = 0.
2. Distributivity. The function distributes over ⊕. For all a, b, c ∈ D,

m(a⊕ b, c) = m(a, c)⊕m(b, c) and m(a, b⊕ c) = m(a, b)⊕m(a, c)

Language Strength Reduction 289

Rules Weight dconst

1 〈p, emain〉 ↪→ 〈p, n16〉 1

2 〈p, n16〉 ↪→ 〈p, n17〉 { [}
3 〈p, n17〉 ↪→ 〈p, etestAndSet n18〉 { (} {) }
4 〈p, etestAndSet〉 ↪→ 〈p, n10〉 1

5 〈p, n10〉 ↪→ 〈p, eget n11〉 { (} {) }
6 〈p, eget〉 ↪→ 〈p, xget〉 {Rv}
7 〈p, xget〉 ↪→ 〈p, ε〉 1

Rules Weight dconst

8 〈p, n11〉 ↪→ 〈p, n12〉 1

9 〈p, n12〉 ↪→ 〈p, eset xtestAndSet〉 { (} {) }
10 〈p, eset〉 ↪→ 〈p, xset〉 {Wv}
11 〈p, xset〉 ↪→ 〈p, ε〉 1

12 〈p, xtestAndSet〉 ↪→ 〈p, ε〉 1

13 〈p, n18〉 ↪→ 〈p, xmain〉 {] }
14 〈p, xmain〉 ↪→ 〈p, ε〉 1

15 〈p, n11〉 ↪→ 〈p, xtestAndSet〉 1

Fig. 4. EWPDS rules that encode EML process P0 from Fig. 1 (subscripts correspond
to the line numbers). Only the constant weight dconst is shown for the merging functions.

Example: The Prefix Merging Functions of Empire. The prefix merging
functions used by Empire are of the form λd1.λd2.d1⊗d2⊗dconst, where dconst is
either 1 for invoking non-synchronized functions, or {) } for invoking a function
that is synchronized on a lock l. Note that placing the close-parenthesis symbol,
corresponding to the release of a lock, inside of a merge function accurately
reflects the behavior of returning from a synchronized function.

Definition 4. Let M be the set of all merging functions on weight domain S,
and let Δ2 denote the set of push rules of a PDS P. An extended weighted
pushdown system is a quadruple E = (P ,S, f, g) where P = (P, Γ,Δ) is a
PDS, S = (D,⊕,⊗, 0, 1) is a weight domain, f : Δ → D is a map that assigns
a weight to each rule of P, and g : Δ2 →M assigns a merging function to each
rule in Δ2.

Example: An EWPDS for an EML process. For an EML process π, an
EWPDS E〈π〉 is generated using the schema from Fig. 3, the prefix weight do-
main, and the prefix merging functions. Fig. 4 presents the rules that encode
process P0 from Fig. 1.

Run of an EWPDS. A run of an EWPDS E is simply a run of its underly-
ing PDS. We denote the set of all runs of E by Runs(E), and the set of runs
ending in configuration c as Runs(E , c). Using f and g, we can associate a
value to a run ρ, denoted by val(ρ). To do so, we define the helper functions
val[r], build, and flatten. The function val[r](z, S) takes a weight and a weight-
rule stack, and returns a weight and weight-rule stack:

val[r](z, S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(z ⊗ f(r), S) if r = 〈p, γ〉 ↪→ 〈p′, γ′〉
(1, (z, r)||S) if r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉
(g(rc)(zc, f(rc)⊗ z ⊗ f(r)), S′) if r = 〈p, γ〉 ↪→ 〈p′, ε〉

and S = (zc, rc)||S′

(z ⊗ f(r), S) if r=〈p, γ〉 ↪→ 〈〉p′, ε and S=∅

290 N. Kidd, A. Lal, and T. Reps

The function build(ρ) maps a run to a weight and weight-rule stack as follows:

build([]) = (1, ∅)
build([r1, . . . , rj]) = val[rj](build([r1, . . . , rj−1]))

The function flatten(z, S) “flattens” a weight and weight-rule stack by using the
extend (⊗) operation:

flatten(z, ∅) = z
flatten(z, (zc, rc)||S′) = flatten(zc ⊗ f(rc)⊗ z, S′)

Given these definitions, val(ρ) = flatten(build(ρ)).

Example: Valuation of Path 1. Using the EWPDS rules of Fig. 4, and for a
prefix bound k > 10, one can verify that val([r1, . . . , r14]) = { [((Rv))(Wv))] },
which is the set containing only the word given in §2 for Path 1.

Definition 5. For EWPDS E and a set of configurations C, the meet-over-all-
valid-paths value MOVPE(C) is defined as

⊕
{val(ρ) | ρ ∈ Runs(E , c), c ∈ C}.

The MOVP value captures the net effect of all paths leading to a set of config-
urations. An algorithm for computing MOVP is given in [7].

Example: MOVP for EML process P0 from Fig. 1. Let E〈P0〉 be the
EWPDS for process P0 with rules given in Fig. 4. For a prefix bound k > 10,
MOVPE〈P0〉(〈p, xmain〉) = { [((Rv)(Wv))] , [((Rv))] }. The first string describes
the path that follows the true branch of the if statement at line 11 in Fig. 1,
and the second string describes the path that follows the false branch. Because
process P0 has only two valid paths and k > 10, the MOVP weight precisely de-
scribes the behavior of process P0. However, if k was instead the value 8, then the
result of the same MOVP computation would be { [((Rv)(Wv)Σ∗ , [((Rv))] }.
Note that the first string has been approximated by an infinite set of strings.

3.2 Communicating Pushdown System

A CPDS consists of a set of EWPDSs E1, . . . , En, where each EWPDS Ei uses the
prefix weight domain and merging functions, and a set of target configurations
C1, . . . , Cn. The CPDS model checker computes: S =

⋂
1≤i≤n MOVPEi(Ci). The

set S is the intersection of the prefix abstractions for each CFL that is modeled
by an EWPDS. If S = ∅, then so is the intersection of the CFLs. Otherwise, let
w be the shortest word in S. If |w| = k, then k is incremented and the process
repeats. Otherwise, w represents a concrete execution of the EML program that
reaches the target configurations.

3.3 Nested Word Automata

Alur et al. [6] define a nested word to be a pair (w, v), where w is a word a1 . . . ak

over a finite alphabet and v, the nesting relation, is a subset of {1, 2, . . . , k} ×

Language Strength Reduction 291

({1, 2, . . . , k}∪ {∞}). The nesting relation denotes a set of properly nested hier-
archical edges of a nested word. For a valid nesting relation, v(i, j) implies i < j,
and for all i′, j′ such that v(i′, j′) holds and i < i′, then either j < i′ or j′ < j.
Given v, i is a call position if v(i, j) holds for some j, a return position if v(k, i)
holds for some k, and an internal position otherwise.

A set of nested words is regular if it can be modeled by a nested-word au-
tomaton (NWA) [6]. An NWA A is a tuple (Q,Σ, q0, δ, F), where Q is a fi-
nite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is a set of final states, and δ is a transition relation that consists of three
components:

– δc ⊆ Q×Σ ×Q defines the transition relation for call positions.
– δi ⊆ Q×Σ ×Q defines the transition relation for internal positions.
– δr ⊆ Q×Q×Σ ×Q defines the transition relation for return positions.

Starting from q0, an NWA A reads a nested word nw = (w, v) from left to right,
and performs transitions (possibly non-deterministically) according to the input
symbol and the nesting relation. That is, if A is in state q when reading input
symbol σ at position i in w, then if i is a call or internal position, A makes a
transition to q′ using (q, σ, q′) ∈ δc or (q, σ, q′) ∈ δi, respectively. Otherwise, i is
a return position and v(j, i) holds for some j. Let qc be the state A was in just
before the transition it made on the jth symbol; then A uses (q, qc, σ, q′) ∈ δr
to make a transition to q′. If, after reading nw, A is in a state q ∈ F , then A
accepts nw [6].

We use L(A) to denote the nested-word language that A accepts, and L(A, q)
to denote the nested-word language such that for each nested word nw ∈ L(A, q),
A is left in state q after reading nw. We extend this notion to sets of states in
the obvious way. Thus, L(A) = L(A,F).

Table 1. An NWA template for the locking be-
havior of an EML process

δc δr δi
(q, esync,
) (
, qc, xsync, qc) (q, σ, q)

(q, e, q) (q, q, x, q)

An NWA Template for
Lock Behavior. For an EML
lock l and process π with set
of functions Sync synchronized
on l and set of functions Fun
not synchronized on l, the lock-
ing behavior of π on l is de-
fined by an NWA A〈π〉 =
(Q,Σ, q0, δ, F), where Q = {
,�}, Σ is the set of control locations of π, q0 = �,
F = Q, and δ is defined in Tab. 1. (The transitions in Tab. 1 are instantiated for
all q ∈ Q, esync ∈ {ef | f ∈ Sync}, e ∈ {ef | f ∈ Fun}, xsync ∈ {xf | f ∈ Sync},
x ∈ {xf | f ∈ Fun}, and σ ∈ (Σ − {esync, xsync, e, x}).)
A〈π〉 consists of two states: locked (
) and unlocked (�). The entry to and exit

from a function f are denoted by ef and xf, respectively. When an l-synchronized
function is called, A〈π〉 makes a transition to the locked state via the transitions
(q, esync,
). When returning from a function, the state of the caller is restored.

292 N. Kidd, A. Lal, and T. Reps

For example, the transitions (
, qc, xsync, qc) ensure that A〈π〉 goes to state qc
of the caller.

Template Usage. For EML process P0 from Fig. 1, let E〈P0〉 be the EWPDS
that models P0 with the rules shown in Fig. 4, and let A〈P0〉 be the NWA that re-
sults from instantiating the above template with P0. With respect to the locking
behavior of P0, E〈P0〉 cannot distinguish between OC and nOC lock acquisitions
and releases, while A〈P0〉 is able to do so via its state space. The transitions
(�, esync,
) and (
, esync,
) in δc are the OC and nOC lock acquisitions, re-
spectively; and transitions (
,
, esync,
) and (
,�, esync,�) in δr are the nOC
and OC lock releases, respectively.

We show how to combine E〈P0〉 and A〈P0〉 in §4 to construct another EWPDS
EA〈P0〉, such that EA〈P0〉 contains the same behaviors as E〈P0〉, but is able to
distinguish between the OC and nOC lock acquisitions and releases. Once such
a distinction can be made, we leverage Observation 1 to remove all nOC lock
acquisitions and releases from EA〈P0〉. This makes it possible to model an EML
lock with the trivial language shown in Fig. 2(c).

4 Combining an NWA with an EWPDS

We first define the notion of the nested-word language of an EWPDS, which
establishes a relationship between the NWA and EWPDS formalisms. Addition-
ally, it allows us to formally reason about the construction of §4.2 that combines
an NWA with an EWPDS.

4.1 The Nested-Word Language of an EWPDS

The nested-word language of an EWPDS E = (P ,S, f, g), denoted by L(E), is
defined in terms of the set of runs of E . Intuitively, if (w, v) is a nested word in
L(E), w consists of the sequence of left-hand-side stack symbols γ1 . . . γj for a
run [r1, . . . , rj] of Runs(E), and v encodes the matching calls and returns. We
additionally require that the valuation of the run not be equal to the weight
zero, i.e., val(ρ) �= 0. This notion is formalized by defining the function post,
which maps a run of E to a nested word. The function post is defined recursively
in terms of the helper function post [r](w, v).

For a nested word nw = (w, v) and rule r ∈ Δ, post [r](w, v) is defined as
follows:

post [r](w, v) =
⎧
⎪⎪⎨

⎪⎪⎩

(wγ, v) if r = 〈p, γ〉 ↪→ 〈p′, γ′〉
(wγ, (v − {〈i,∞〉}) ∪ {〈i, |wγ|〉}) if r = 〈p, γ〉 ↪→ 〈p′, ε〉,

i = max({j | 〈j,∞〉 ∈ v})
(wγ, v ∪ {〈|wγ|,∞〉}) if r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉

Language Strength Reduction 293

Using post [r], we define the function post([r1 . . . rj])3 as follows:

post([]) = (ε, ∅)
post([r1, . . . , rj]) = post [rj](post([r1, . . . , rj−1]))

Definition 6. For an EWPDS E, the nested-word language L(E) is defined as
L(E) = {post(ρ) | ρ ∈ Runs(E) ∧ val(ρ) �= 0}.

We will sometimes wish to further restrict L(E) by an acceptance criterion, which
we call ϕ-acceptance.

Definition 7. The ϕ-accepted nested-word language for an EWPDS E and
function ϕ : D → B is defined as Lϕ(E) = {post(ρ) | ρ ∈ Runs(E) ∧ val(ρ) �=
0 ∧ ϕ(val(ρ))}.

4.2 Construction

The construction that combines an EWPDS E with an NWA A produces another
EWPDS EA. The weight domain of EA models the transition relation of A in
addition to the original weight domain of E . This is accomplished via a relational
weight domain.

Definition 8. A weighted relation on a set G, with weight domain S =
(D,⊕,⊗, 0, 1), is a function from (G×G) to D. The composition of two weighted
relations R1 and R2 is defined as (R1;R2)(g1, g3) = ⊕{w1⊗w2 | ∃g2 ∈ G : w1 =
R1(g1, g2), w2 = R2(g2, g3)}. The union of the two weighted relations is defined
as (R1∪R2)(g1, g2) = R1(g1, g2)⊕R2(g1, g2). The identity relation is the function
that maps each pair (g, g) to 1 and others to 0. The reflexive transitive closure
is defined in terms of these operations, as usual. If R is a weighted relation and
R(g1, g2) = z, then we write g1

z−→ g2 ∈ R.

Definition 9. If S is a weight domain with set of weights D and G is
a finite set, then the relational weight domain on (G,S) is defined as
(2G×G→D,∪, ; , ∅, id): weights are weighted relations on G, combine is union,
extend is weighted relational composition (“;”), 0 is the empty relation, and 1 is
the weighted identity relation on (G,S).

This weight domain can be encoded symbolically using techniques such as alge-
braic decision diagrams [11].

The weight domain of EA will be a relational weight domain on (G,S), where
G encodes the state space of A, and S is the weight domain of E . Intuitively,
for a run ρ of EA, the valuation val(ρ) in EA is a weighted relation R such
that if q1

z−→ q2 ∈ R, then (i) the valuation val(ρ) in E must be equal to
z, and (ii) starting from state q1, A can make a transition to state q2 on the
nested word post(ρ). We now introduce some notation needed to show how this
is accomplished by the construction.
3 post [r](nw) is not always defined because of max; and thus neither is post. However,
for a run of a PDS from the initial configuration, both will always be defined.

294 N. Kidd, A. Lal, and T. Reps

First, for an NWA A = (Q,Σ, q0, δ, F), we define Σε = Σ∪{ε}. The relational
weight domain of EA is over the finite set Q×Σε. The pairing of Q with Σε is
used below to properly model the return relation δr of A. We denote an element
(q, σ) of this set by qσ, but omit σ when σ = ε.

Second, we define the restriction of δi to σ, denoted by δ|σi , to be the relation
with (q1, q2) ∈ δ

|σ
i iff (q1, σ, q2) ∈ δi. Note that by representing (q1, q2) as (qε

1, q
ε
2),

δ
|σ
i can be embedded into (Q×Σε)× (Q×Σε) using only states in which q ∈ Q

is paired with ε (i.e., qε). Henceforth, we abuse notation and use δ|σi to mean the
version that is embedded in (Q × Σε) × (Q × Σε). We define δ|σc similarly. δ|σi
and δ

|σ
c will be the relational part of the weights that annotate step and push

rules in EA. By restricting δi (δc) to σ, a run of EA enforces that E and A are
kept in lock step (see Construction 1).

Third, we define the function expand(σ), which takes as input a symbol σ ∈ Σ
and generates the relation {(qε, qσ) | q ∈ Q}. This is used to pass the return
location to EA’s merging functions, which is needed for properly modeling the
return relation δr of A.

Fourth, we define δ̂ so that (qσ
r , qc, q) ∈ δ̂ iff (qr, qc, σ, q) ∈ δr. Notice that δ̂

combines the input symbol σ used in δr with the return state. This is used by
EA’s merging functions to receive the return location passed via expand.

Construction 1. The combination of an EWPDS E = (P ,S, f, g) and an
NWA A = (Q,Σ, q0, δ, F) is modeled by an EWPDS EA that has the same
underlying PDS as E , but with a new weight domain and new assignments of
weights and merging functions to rules: EA = (PA,SA, fA, gA), where PA = P ,
SA = (DA,⊕A,⊗A, 0A, 1A) is the relational weight domain on the set Q × Σε

and weight domain S, and fA and gA are defined as follows:

1. For step rule r = 〈p, n1〉 ↪→ 〈p′, n2〉 ∈ Δ, fA(r) = {q1
f(r)−−−→ q2 | (q1, q2) ∈

δ
|n1
i }.

2. For push rule r = 〈p, nc〉 ↪→ 〈p′, e rc〉 ∈ Δ, fA(r) = {q1
f(r)−−−→ q2 | (q1, q2) ∈

δ
|nc
c } and

gA(r)(wc, wx) =
⎧
⎨

⎩
q1

z−→ q2 | ∃a, b :

⎛

⎝
q1

z1−−→ a ∈ wc

∧ a
z2−−→ b ∈ (fA(r) ⊗ wx)

∧ δ̂(b, a, q2)

⎞

⎠ , z = g(r)(z1, z2)

⎫
⎬

⎭

3. For pop rule r = 〈p, x〉 ↪→ 〈p′, ε〉 ∈ Δ, fA(r) = {q f(r)−−−→ qx | (q, qx) ∈
expand(x)}.

The properties of Construction 1 are that (i) EA’s nested-word language is
the intersection of those of E and A, and (ii) the behaviors of EA (summarized by
its MOVP values) are those of E restricted by A. Formally, these are captured
by Thm. 1 and Cor. 1.

Language Strength Reduction 295

Theorem 1. An NWA A combined with an EWPDS E results in an EWPDS
EA such that Lϕ(EA) = L(A,Q)∩L(E), where for a run ρ of EA with z = val(ρ),
ϕ(z) = ∃q ∈ Q : q0

y−→ q ∈ z, and y �= 0.

Proof. See [12].

Corollary 1. An NWA A combined with an EWPDS E results in an EWPDS
EA such that MOVPEA(C) =

⊕
{val(ρ) | ρ ∈ Runs(E , c), c ∈ C, post(ρ) ∈

L(A,Q)}.

Complexity of EA versus E. The complexity of computing MOVP on an
EWPDS is proportional to the height of the weight domain, which is defined to
be the length of the longest descending chain in the domain.4 If H is the height
of the weight domain of E , then the height of the weight domain of EA is H |Q|2,
where Q is the set of states of A. Because E and EA have the same PDS, the
complexity of computing MOVP on EA only increases by a factor of |Q|2.

5 Language Strength Reduction for the Empire Tool

Thm. 1 and Cor. 1 show that the EWPDS EA created by Construction 1 is able to
model both E and A simultaneously (for nested words in their intersection). This
capability allowed us to use language strength reduction to improve the Empire
tool’s performance. To make the discussion clear, we focus on EML process P0
from Fig. 1. The first three steps are as follows:

1. E〈P0〉 is generated using the original Empire translation. Recall that the
weight domain of E〈P0〉 is the prefix weight domain.

2. Let Locks be the set of locks of the EML program. For each lock l ∈ Locks, an
NWA Al〈P0〉 is generated using the NWA template from §3.3. Define A〈P0〉
to be

⋂
l∈LocksAl〈P0〉. The state space Q of A〈P0〉 is equal to 2|Locks|. That

is, each q ∈ Q represents a set of locks that are held. Note that in Fig. 1,
there is only one lock l, and thus A〈P0〉 = Al〈P0〉, and Q = {�,
}.

3. EA〈P0〉 is generated from E〈P0〉 and A〈P0〉 using Construction 1. The NWA
template from §3.3 is instantiated for A〈P0〉, and thus L(A〈P0〉) = L(E〈P0〉).
Hence, EA〈P0〉 contains the same behaviors as E〈P0〉. Additionally, due of
Thm. 1, EA〈P0〉 is able to distinguish between OC and nOC lock acquisitions
and releases in the same manner as A〈P0〉.

From Fig. 2(a) to Fig. 2(b) The weight domain of EA〈P0〉 is a relational
weight domain over Q and the prefix weight domain of E〈P0〉. In E〈P0〉, the rule
r = 〈p, n12〉 ↪→ 〈p, eset xtestAndSet〉 is annotated with the weight { (}. In EA〈P0〉,
r is annotated with the weight
4 EWPDSs can also be used when the height is unbounded, provided there are no
infinite descending chains. To simplify the discussion of complexity, we assume the
height to be finite.

296 N. Kidd, A. Lal, and T. Reps

Table 2. For Path 1 of EA〈P0〉, a prefix bound of 7, and ρ = [r1, . . . , r14] from Fig. 4,
cols. (a) and (b) present val(ρ)(�,�) before and after distinguishing between OC and
nOC lock acquisitions and releases, respectively. Col. (c) presents val(ρ)(�,�) after
removing all nOC lock acquisitions and releases from EA〈P0〉. Note that for cols. (a)
and (b), the valuation is an approximation, whereas col. (c) is able to describe Path 1
exactly within the given prefix bound.

(a) (b) (c)

[((Rv)(WvΣ∗ [(o(nRv)n(nWvΣ∗ [(oRvWv)o]

R = {� { (}−−−−→
,
 { (}−−−−→
}
Observe that the state space of A〈P0〉 is encoded in the weight, and that R(�,
)
denotes an OC lock acquisition, and R(
,
) denotes an nOC lock acquisition.
This is represented in R by annotating the two open-parenthesis symbols with
the open and nested subscripts, respectively:

R = {� { (o }−−−−→
,
 { (n }−−−−−→
}

In other words, we perform the following transformation: For a weighted rela-
tion R, if R(�,
) = { (}, then R(�,
) = { (o }; and if R(
,
) = { (}, then
R(
,
) = { (n }. Performing this transformation, and its dual for lock releases,
on the weight of each rule and merging function induces a homomorphism, with
respect to lock acquisitions and releases, from Fig. 2(a) to Fig. 2(b), on the
language computed by MOVP(EA〈P0〉). This is illustrated by the weighted val-
uations for Path 1 in Tab. 2, columns (a) and (b).

From Fig. 2(b) to Fig. 2(c). Once EA〈P0〉 is able to distinguish between OC
and nOC lock acquisitions and releases, we leverage Observation 1 to remove
all nOC lock acquisitions and releases. For a weighted relation R, if R(
,
) =
{ (n }, then we set R(
,
) = 1. Performing this transformation, and its dual
for lock releases, induces a homomorphism on the language from Fig. 2(b) to
Fig. 2(c). This is exemplified by the weighted valuation of Path 1 in Tab. 2,
columns (b) and (c). Note that the valuation shown in column (c) is not an
approximation like those in columns (a) and (b). This is because the string that
describes Path 1 is shorter after performing language strength reduction.

Removing nested parentheses that denote nOC acquisitions and releases guar-
antees that all lock acquisitions and releases modeled by E are OC. Thus, all
EML locks can now be modeled in the CPDS by the trivial language shown in
Fig. 2(c). Because the open and close-parenthesis symbols for nOC acquisitions
and releases have been removed, a path in an EML process that uses reentrant
locking can now be described by a shorter string. This can be seen in Tab. 2.
In fact, there is now no cost to model a successive synchronized call, including
recursive synchronized functions. Thus, in some cases, the CPDS model checker
can find the same counterexample using a smaller bound k.

Language Strength Reduction 297

0 10 20 30 40 50 60 70 430 440 450 460 470

Time (s)

1-Shop

1-BuggyProgram

1-BufWriter

1-BubbleSort

2-AllocationVector

B
en

ch
m

ar
k

LSR
Orig

Fig. 5. Execution time for the CPDS model checker with the original encoding (Orig)
and after language strength reduction (LSR)

6 Experiments

We implemented Construction 1 and the transformations from §5 in the Empire
tool. Five Java benchmark programs from the concurrency-testing benchmark by
Eytani et al. [8] were analyzed. All experiments were run on a dual-core 3 GHz Pen-
tium Xeon processor with 16 GB of memory. The machine ran a Windows XP Pro-
fessional x64 Edition host OS, and an Ubuntu guest OS configured with the 32-bit
Linux kernel 2.6.22. Ubuntu ran on top of VMware Server 1.0.4. A virtual machine
was required because the CPDS model checker is only 32-bit Linux compatible.

Each benchmark was analyzed with the original encoding (Orig) and then
again after applying language strength reduction (LSR). The analysis times are
shown in Fig. 5. The Y-axis of Fig. 5 gives the benchmark names, with each name
being preceded by the number of locks in the EML program (e.g., “BufWriter”
uses 1 lock). For benchmark programs “AllocationVector”, “BubbleSort”, and
“BuggyProgram”, the average speedup (geometric mean) is 3.4. In addition,
analysis of the benchmark programs “BufWriter” and “Shop” exhausted all re-
sources in the original version of Empire, whereas the analysis ran to completion
after performing language strength reduction.

7 Related Work

Alur and Madhusudan [5,6] introduced the concept of an NWA. For programverifi-
cation, they showed that a property specification and a programcan be modeled by
NWAs,and thatverification canbe solvedby taking their intersection.Ourworkex-
tends this result to property checking where the program is specified by an EWPDS
and the property by an NWA. Because EWPDSs allow programs to be abstracted
using more than just predicate-abstraction domains (i.e., abstract programs canbe
more than just Boolean programs), our work has broadened the class of program
abstractions for which one can use an NWA as the property specification.

Chaudhuri and Alur [13] instrument a C program with an NWA that defines a
property specification. This approach diffuses the NWA throughout the program
proper. Our approach combines the NWA with an EWPDS, but keeps the NWA

298 N. Kidd, A. Lal, and T. Reps

separated by modeling it using weights. This is beneficial for reporting error-
paths back to a user when model checking a C program because the internals of
the NWA are not exposed in the error-path. Additionally, by keeping the NWA
separated in the weight domain, one can use symbolic encoding of weights [9]
for handling the potentially exponential size of the NWA.

Kahlon et al. [14,15] analyze concurrent recursive programs that use nested
locking, where nested locking means that all locks are released in the opposite
order in which they are acquired. Their locks, however, are not reentrant and are
not syntactically scoped. If one enforces syntactically scoped locks, then one can
apply our techniques for language strength reduction to model a program with
reentrant locks using only non-reentrant locks. This would produce a model to
which their model-checking algorithm could be applied.

References

1. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. In: POPL (2006)

2. Kidd, N., Reps, T., Dolby, J., Vaziri, M.: Static detection of atomic-set serializ-
ability violations. Technical Report TR-1623, Univ. of Wisconsin (October 2007)

3. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL (2003)

4. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying concurrent
message-passing C programs with recursive calls. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 334–349. Springer,
Heidelberg (2006)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC (2004)
6. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: H. Ibarra, O.,

Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, Springer, Heidelberg (2006)
7. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In:

Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidel-
berg (2005)

8. Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Towards a framework and a bench-
mark for testing tools for multi-threaded programs. Conc. and Comp.: Prac. and
Exp. 19(3) (2007)

9. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TUM (2002)
10. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. In: SCP (2005)
11. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,

Somenzi, F.: Algebraic decision diagrams and their applications. In: CAD (1993)
12. Kidd, N., Lal, A., Reps, T.: Advanced queries for property checking. Technical

Report TR-1621, Univ. of Wisconsin (October 2007)
13. Chaudhuri, S., Alur, R.: Instrumenting C programs with nested word monitors. In:

Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595. Springer, Heidel-
berg (2007)

14. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating
via locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
Springer, Heidelberg (2005)

15. Kahlon, V., Yang, Y., Sankaranarayan, S., Gupta, A.: Fast and accurate static
data-race detection for concurrent programs. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)

Analysing All Polynomial Equations in Z2w

Helmut Seidl, Andrea Flexeder, and Michael Petter

Technische Universität München,
Boltzmannstrasse 3, 85748 Garching, Germany

{seidl,flexeder,petter}@cs.tum.edu,
http://www2.cs.tum.edu/˜{seidl,flexeder,petter}

Abstract. In this paper, we present methods for checking and inferring all valid
polynomial relations in Z2w . In contrast to the infinite field Q, Z2w is finite and
hence allows for finitely many polynomial functions only. In this paper we show,
that checking the validity of a polynomial invariant over Z2w is, though decid-
able, only PSPACE-complete. Apart from the impracticable algorithm for the
theoretical upper bound, we present a feasible algorithm for verifying polyno-
mial invariants over Z2w which runs in polynomial time if the number of program
variables is bounded by a constant. In this case, we also obtain a polynomial-time
algorithm for inferring all polynomial relations. In general, our approach provides
us with a feasible algorithm to infer all polynomial invariants up to a low degree.

1 Introduction

In reasoning about termination of programs, the crucial aspect is the knowledge about
program invariants. Therefore, it is not surprising that the field of checking and finding
of program invariants has been quite active, recently.

Many analyses interpret the values of variables regarding the field Q. Modern com-
puter architectures, on the other hand, provide arithmetic operations modulo suitable
powers of 2. It is well-known that there are equalities valid modulo 2w, which do not
hold in general. The polynomial 231x(x + 1), for example, constantly evaluates to 0
modulo 232 but may show non-zero values over Q. Accordingly, an analysis based on
Q will systematically miss a whole class of potential program invariants.

1 int b = ?;
2 int c = 1 << 31, y = 0, x = 0;
3 while(y-b!= 0){
4 x = c*x*x + (c+1)*x + 1;
5 y = x*x + y;
6 }

Fig. 1. Computing the square power sum on 32bit machines

Example 1. As an example, consider the program from figure 1. This program repeat-
edly increases the value of program variable x in line 4 by 1 – if arithmetic is modulo
232. Therefore, the program powersum() computes a square sum. Thus, at program
line 6 the polynomial invariant 2 · x3 + 3 · x2 + x− 6 · y = 0 holds modulo 232 — but
not over the field Q.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 299–314, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www2.cs.tum.edu

300 H. Seidl, A. Flexeder, M. Petter

An exact analysis of the example program should take into account the structure of
polynomials over the domain Z232 : The right hand side in the assignment in line 4 of
the example can be rewritten as 231x(x+1)+x+1 where the first summand 231x(x+1)
is equivalent to the zero polynomial over Z232 . Such polynomials are called vanishing.
Singmaster [17] investigates the special structure of univariate vanishing polynomials
over Zm and provides necessary and sufficient conditions for a polynomial to vanish
over Zm. Hungerbühler and Specker extend this result to multivariate polynomials and
introduce a canonical form for polynomials in quotient rings [3]. Shekhar et.al. present
an algorithm to compute this canonical representation over the quotient ring Z2w [16].
A minimal Gröbner base characterising all vanishing polynomials in arbitrary quotient
rings is given by Wienand in [18]. In contrast to the infinite field Q, the ring Z2w is
finite. Therefore, there are just finitely many distinct k-ary polynomial functions. In
fact, it will turn out that we can restrict ourselves to polynomials in k variables up to a
total degree 1.5(w+k). Due to this upper bound on the total degrees of the polynomials
of interest, the problem of checking or inferring of polynomials over Z2w becomes an
analysis problem over finite domains only and therefore trivially is computable. Hence,
the key issue is to provide tight upper complexity bounds as well as algorithms which
also show decent behaviour on practical examples.

In this paper, we first consider the problem of checking whether a given polynomial
relation is valid at a given program point. While being decidable over Q, we show that
this problem becomes PSPACE-complete over Z2w . Furthermore, we present a practi-
cal algorithm for this problem which is based on effective precise weakest precondition
computation. In case that the number of variables is bounded by a (small) constant, this
algorithm even runs in polynomial time.

Secondly, we consider the problem of inferring all polynomial relations which are
valid at a given program point. This problem, though not known to be computable in
Q, turns out to be computable in exponential time over Z2w . Again, we present an
algorithm for inferring all polynomial invariants of a given shape, whose runtime turns
out to be polynomial given that the number of variables is bounded by a constant. Both
algorithms have been implemented, and we report on preliminary experiments.

Related Work

The pioneer in the area of finding polynomial relations was Karr [4] who inferred the va-
lidity of polynomial relations of degree at most 1 (i.e., affine relations) over programs
using affine assignments and tests only. An algorithm for checking validity of poly-
nomial relations over programs using polynomial assignments is provided by Müller-
Olm and Seidl [7] and was extended later to deal with disequality guards as well [9].
Their approach is based on effective weakest precondition computations where con-
junctions of polynomial relations are described by polynomial ideals. Termination of
a fixpoint computation in Q thus is guaranteed by Hilbert’s base theorem. In [9], the
authors also observe that their method for checking the validity of polynomial rela-
tions can be used to construct an algorithm for inferring all polynomial invariants up
to a fixed degree. In [13,14] Rodriguez-Carbonell et al. pick up the idea of describ-
ing invariants by polynomial ideals and propose a forward propagating analysis, based
on a constraint system over these ideals. As infinite descending chains of polynomial

Analysing All Polynomial Equations in Z2w 301

ideals cannot be avoided in Q when merging execution paths [8, Example 1], they
provide special cases or widening techniques to infer polynomial identities. Sankara-
narayanan et al. also investigate polynomial invariants[15]. They propose to use poly-
nomial templates to capture the effect of assignments in their analysis. These templates
describe parametric polynomial properties. When determining the generic parameters
via Gröbner bases, certain inductive invariants can be inferred. In contrast to the former
approaches, Colon [2] provides an interprocedural forward analysis for polynomial
programs. This analysis is based on ideals of polynomial transition invariants. In or-
der to deal with infinite descending chains, Colon abstracts ideals with pseudo-ideals,
which essentially are vector spaces of polynomials up to a given degree. The applica-
tion of weakest precondition computations to interprocedural analysis of polynomial
relations over Q is discussed in [8]. An exact (even interprocedural) analysis of affine
relations for programs using affine assignments over the domain Zm is provided in
[10,11].

This paper is organised as follows. In Section 2 we specify the concrete semantics
for the program class that is inspected by our analysis by means of control flow graphs.
Section 3 gives a detailed description of the characteristics of polynomials in Z2w . In
Section 4, we first provide the complexity class for the general case of verifying poly-
nomial invariants in Z2w . We then specify our abstraction for the concrete semantics
with the help of polynomial ideals. In Section 5 we present our specific concrete rep-
resentation of polynomial ideals in Z2w . We show how they contribute in the case of
constantly many program variables to a better runtime complexity than the theoretical
worst case in Section 4. We then illustrate in Section 6, how to extend this procedure
to infer valid invariants up to a fixed degree and thus for inferring all valid relations.
Section 7 finally summarises our results.

2 Fixpoint Semantics

In this section we introduce the programs to be analysed together with the concrete
semantics our polynomial analysis is based on. Basically, we emanate from the same
concrete semantics as in [9].

The vector of variables x = (x1, . . . ,xk) from the set of program variables X =
{x1, . . . ,xk} can take values in the ring Z2w . A program state, which assigns values to
variables, can be modelled by a k-dimensional vector x = (x1, . . . , xk) ∈ Zk

2w , where
xi is the value assigned to variable xi.

We assume that the basic statements in the considered program class are either
polynomial assignments of the form xj := p or non-deterministic assignments of
the form xj :=? where xj ∈ X or polynomial disequality guards of the form p �=
0 where p ∈ Z2w [X]. Recalling, that finding polynomial invariants in presence of
equality guards turns out to be indecidable, we keep to non-deterministic branching
instead. Non-deterministic assignments xj :=? represent a safe abstraction of state-
ments our analysis cannot handle precisely, e.g. non-polynomial expressions or user
input.

Let Lab denote the set of basic statements and polynomial disequality guards. A
polynomial program is given by a non-deterministic control flow graph, consisting of:

302 H. Seidl, A. Flexeder, M. Petter

• program points N ,
• a set of edges E ⊆ N ×N ,
• a mappingA : E → Lab from edges to statements or polynomial disequality guards
• a special start point st ∈ N .
The program executions reaching a given program point are characterised by a con-

straint system, for which our analysis provides a precise abstract interpretation. A pro-
gram execution r (also called run) is a finite sequence r ≡ r1; . . . ; rm where each ri
is a basic statement or disequality guard. Runs denotes the set of runs, which can be
characterised as the smallest solution of a system of subset constraints on run sets R,
reaching the target program point t.

[R1] R(t) ⊇ {ε}
[R2] R(u) ⊇ fe(R(v)) , if e = (u, v) ∈ E

Constraint [R1] expresses, that the set of runs reaching program point twhen starting
from t contains the empty run, denoted by “ε”. By [R2], a run starting from u is obtained
by considering an outgoing edge e = (u, v) and concatenating a run corresponding to
e with a run starting from v, where fe(R) = {r; t | r ∈ R(e) ∧ t ∈ R}. If edge e is
annotated by A(e) ≡ p �= 0 or A(e) ≡ xj := p, it gives rise to a single execution:
R(e) = {A(e)}. The effect of an edge e annotated by xj :=? is captured by collecting
all constant assignments:

R(e) = {xj := c | c ∈ Z2w}

Each run induces a partial transformation of the underlying program state x ∈ Zk
2w .

In the case of a disequality guard p �= 0 this results in a partial identity function:

dom([[p �= 0]]) = {x ∈ Zk
2w | p(x) �= 0}

A polynomial assignment xj := p causes the transformation with dom([[xj := p]]) =
Zk

2w and
[[xj := p]]x = (x1, . . . , xj−1, p(x), xj+1, . . . , xk)

Extending these definitions to runs, we obtain: [[ε]] = Id, where Id is the identity
function and [[r; rrest]] = [[rrest]] ◦ [[r]] where “◦” denotes composition of partial func-
tions. The partial transformation f = [[r]] induced by a run r can always be represented
by polynomials q0, . . . , qk ∈ Z2w [X] such that dom(f) = {x ∈ Zk

2w | q0(x) �= 0} and
f(x) = (q1(x), . . . , qk(x)) for every x ∈ dom(f). For the identity transformation in-
duced by the empty path ε the polynomials 1,x1, . . . ,xk would hold. Transformations
induced by polynomial assignments or guards can thus be represented in this manner
and are closed under composition, similarly to [9].

3 The Ring of Polynomials in Z2w

In order to develop an analysis inferring all polynomial relations modulo m = 2w, we
fix a bit width w ≥ 2 of our numbers in the following. For X = {x1, . . . ,xk}, let
Z2w [X] denote the ring of all polynomials with coefficients in Z2w . Each polynomial
p can be written as a sum of terms, i.e., have the form p =

∑
δ cδ · x

δ1
1 . . .xδk

k , with

Analysing All Polynomial Equations in Z2w 303

its degree δ ∈ Nk, c ∈ Z2w and x ∈ X. We call xδ1
1 . . .xδk

k a monomial of total
degree

∑
δi and cδ its coefficient. We agree on the terms for each polynomial to be

sorted lexicographically on the string of degrees in the variables from X . Then each
polynomial p has a head term (respectively head coefficient or head monomial), that
leads the trailing terms.

Recall that the coefficient ring Z2w is not a field. More precisely, only all odd ele-
ments are invertible while every even element is a zero divisor. Thus, e.g., 2 · 2w−1 ≡ 0
in Z2w . Useful facts about this ring can be found in [10] or basic text books on commu-
tative ring theory, as [5].

Similarly to the case of fields [10], the set of polynomials p ∈ Z2w [X] which evaluate
to 0 for a given subset X ⊆ Zk

2w , is closed under addition and multiplication with
arbitrary polynomials. A non-empty subset I of a ring with this property is also called
an ideal. Thus, our program analysis maintains for every program point an ideal of
polynomials.

Recall that the ring Z2w is a principal ideal ring meaning that every ideal I ⊆ Z2w

can be represented as the set I = {z · a | z ∈ Z2w} of all multiples of a single ring
element a. Thus by Hilbert’s basis theorem, every ideal I ⊆ Z2w [X] can be represented
as the set of all linear combinations of a finite set G = {g1, . . . , gn} ⊆ Z2w [X], i.e.,
I = {p1g1 + . . . + pngn | pi ∈ Z2w [X]}. In this case, we also refer to G as the set of
generators of I and denote this by I = 〈G〉.

Assume p, p′ ∈ G are polynomials which share the same monomial t in their head-
term, i.e., are of the form: p = a ·2e ·s · t+prest and p′ = a′ ·2e′ · t+p′rest with e ≥ e′,
some monomial s and odd a, a′ ∈ Z2w . In this case, we say that p is reducible by p′.
More generally, we call p reducible by a set R of polynomials if p is reducible w.r.t.
some p′ ∈ R. If p is reducible by the polynomial p′, p can be reduced to the polynomial
q = a′ · p− a · 2e−e′ · s · p′. If q = 0, p is a multiple of p′ and thus redundant in every
set G of generators containing p′, i.e., 〈G\{p}〉 = 〈G〉. If q �= 0, we can replace the
polynomial p in G with the (simpler) polynomial q, i.e., the set G generates the same
ideal as the set G′ = (G\{p}) ∪ {q}.

Starting from a set G of generators, we can successively apply reduction to eventu-
ally arrive at a reduced set Ḡ generating the same ideal as G. Here, we call the set Ḡ
reduced iff no polynomial p ∈ Ḡ is reducible w.r.t. Ḡ\{p}.

Lemma 1. Assume that p ∈ Z2w [X] and G ⊆ Z2w [X] is a finite reduced set of polyno-
mials. Then a reduced set Ḡ ⊆ Z2w [X] can be constructed with 〈{p} ∪G〉 = 〈Ḡ〉. The
algorithm runs in time O(k · r2) if r is the number of different exponents of monomials
occurring during reduction, and k the number of program variables.

Proof. A single reduction of a polynomial by a set of reduced polynomials is carried out
by as many subtractions (each of cost k) as a polynomial has monomials. This number is
bounded by the number of different exponents r occuring during the reduction. Adding
p to G is carried out by reducing potentially |G| ≤ r many polynomials. �

Here, the total degree of a monomial xr1
1 . . .xrk

k is d = r1 + . . . + rk, and the total
degree of a polynomial is the total degree of its head monomial. Thus, the number r of
possibly occurring different exponents of monomials is bounded by:

304 H. Seidl, A. Flexeder, M. Petter

Proposition 1. The number of different exponents of monomials is given by

r ≤
(
d+ k
k

)

≤ min((d+ 1)k , (k + 1)d)

Note that the upper complexity bound is a crude worst-case estimation only. The practi-
cal run-time might be much smaller if the occurring polynomials are short, i.e., contain
only few monomials.

Now assume that the ideal I is generated from a set G of generators and p is a
polynomial. If p can be reduced (perhaps in several steps) to the 0 polynomial by means
of the polynomials in G, then p ∈ I . The reverse, however, is only true for particularly
saturated sets of generators such as Gröbner bases [1].

In the case of polynomials over a field, the constant zero polynomial is the only
polynomial which evaluates to 0 for all vectors x ∈ Zk

2w . This is no longer the case
for the polynomial ring Z2w [X]. Let Iv ⊆ Z2w [X] denote the ideal of all polynomials
p with p(x) = 0 for all x ∈ Zk

2w . The elements of Iv are also called vanishing poly-
nomials. Only recently, a precise characterisation of the ideal Iv has been provided by
Hungerbühler and Specker [3], which is recalled briefly, here. The first observation is
that whenever 2e divides r! = r(r−1) . . . 1, then 2e also divides (x+r−1)·. . .·(x+1)·x
for all x. Let ν2(y) denote the maximal exponent e such that 2e divides y. Thus, e.g.,
ν2(1!) = 0, ν2(2!) = ν2(3!) = 1 and ν2(2s!) = 2s − 1 for all s ≥ 1. In particular,
ν2(r!) ≥ w for r ≥ w + log(w) + 1. Since 1.5w + 1 ≥ w + log(w) + 1, this implies
that ν2(r!) ≥ 2

3r − 1.
Now consider the polynomial pr(xi) = xi · (xi +1) · . . . · (xi + r−1) . Then 2ν2(r!)

divides the value pr(z) for every z. Thus we obtain the following family G(k, w) of
vanishing polynomials:

2a · pr1(x1) · . . . · prk
(xk)

where a ≥ 0, and a+ ν2(r1!) + . . .+ ν2(rk!) ≥ w.

Example 2. Take Z22 as domain. Then p = x4 + 2x3 + 3x2 + 2x = x(x + 1)(x +
2)(x + 3) = p4(x). Since ν2(4!) = 3 ≥ 2, p(x) is a vanishing polynomial. �

Note that Wienand [18] proves that the set G(k, w) is not only contained in Iv but that
Iv is in fact generated by G(k, w).

Two polynomials p, p′ ∈ Z2w [X] are semantically equivalent if they define the same
function Zk

2w → Z2w , i.e., if p − p′ ∈ Iv . We observe that for every polynomial in
Z2w [X], we can effectively find a semantically equivalent polynomial of small total
degree. We have:

Lemma 2. Every polynomial p ∈ Z2w [X] in k variables is semantically equivalent to
a polynomial p′ ∈ Z2w [X] of degree less than 1.5(w + k).

Proof. Let p′ denote a polynomial of minimal total degree r and minimal number of
monomials of total degree r which is semantically equivalent to p. Assume for a con-
tradiction that r ≥ 1.5(w + k) and t is a monomial in p′ of maximal total degree.

Analysing All Polynomial Equations in Z2w 305

Then t can be written as t = a · xr1
1 . . .xrk

k where w.l.o.g. all ri ≥ 1. Then ν2(rj !) ≥
2
3rj − 1 for all j. Consequently, the sum of these values is at least

∑

j

(
2
3
rj − 1) =

2
3

∑

j

(rj − 1.5) =
2
3
(1.5(w + k)− 1.5k) = w

Therefore, the polynomial q = pr1(x1) · . . . · prk
(xk) is vanishing. Note that the

polynomial q has exactly one monomial of maximal total degree. We conclude that
p′′ = p′ − a · q is a polynomial which is still semantically equivalent to p. Moreover
the total degree of p′′ is not larger than the total degree of p′ and if the respective
total degrees are equal, then p′′ has less monomials of maximal total degree – thus
contradicting our assumption. �

Example 3. Consider the polynomials p = x4 + 3x and p′ = 2x3 + x2 + x over Z22 .
Subtracting p′ from p results in q = p− p′ = x4 + 2x3 + 3x2 + 2x ∈ Iv . Thus, p and
p′ are equivalent. �

In [16], Shekhar et al. prove that a polynomial p is vanishing iff p can be reduced to 0 by
means of the polynomials inG(k, w). In the worst case, this takesO((d+1)k) reduction
steps if d is the total degree of p. As each of these reductions involvesO((d+1)k) many
different monomials in the worst case, checking a polynomial for vanishing by means
of reduction costs O((d + 1)2k). Here, we sketch an alternative method. It consists in
evaluating the polynomial for a finite set of selected arguments. The latter technique is
based on the following observation.

Lemma 3. A polynomial p ∈ Z2w [{x}] of degree d is semantically equivalent to the
zero polynomial, i.e., ∀x ∈ Z2w .p(x) = 0 iff p(h) = 0 for h = 0, 1, . . . , d.

Proof. “⇒” is trivial.
“⇐” by induction on degree d:
case d = 0: If the degree is zero, the polynomial is just described by a constant function
p(x) ≡ c. This polynomial is only zero for any h, if the constant value c is zero.
Therefore p ≡ 0 and the assertion follows.
case d > 0: Let p(h) = 0 for h = 0, . . . , d. We consider the polynomial q of degree
d − 1 with q(x) = p(x + 1)− p(x) that has q(h′) = 0 at least for h′ = 0, . . . , d − 1.
By induction hypothesis, q(x) = 0 for all x ∈ Z2w . Thus, p(x) and p(x + 1) are
semantically equivalent. Since p(0) = 0, then also p(1) = 0 and thus, by induction,
p(x) = 0 for all x ∈ Z2w , and the assertion follows. �

Lemma 3 shows that an arbitrary polynomial p is vanishing iff it vanishes for suitably
many argument vectors. Substituting in a polynomial p of degree d all k different vari-
ables by d + 1 values each indicates that p /∈ Iv, if it does not evaluate to zero each
time. Otherwise p ∈ Iv . As evaluating p can be done in |p|, we conclude:

Corollary 1. Assume p ∈ Z2w [X] is a polynomial where each variable has a maximal
degree in p bounded by d. Then p ∈ Iv can be tested in time O((d+ 1)k · |p|). �

306 H. Seidl, A. Flexeder, M. Petter

4 Verifying Polynomial Relations in Z2w

Similarly to [9] we denote a polynomial relation over the vector space Zk
2w as an equa-

tion p = 0 for some p ∈ Z2w [X], which is representable by p alone. The vector y ∈ Zk
2w

satisfies the polynomial relation p iff p(y) = 0. The polynomial relation p is valid at a
program point v iff p is satisfied by [[r]]x for every run r of the program from program
start st to v and every vector x ∈ Zk

2w . In [6], Rüthing and Müller-Olm prove that decid-
ing whether a polynomial relation over Q is valid at a program point v of a polynomial
program is at least PSPACE-hard. Their lower-bound construction is based on a reduc-
tion of the language universality problem of non-deterministic finite automata and uses
only the values 0 and 1. Therefore, literally the same construction also shows that valid-
ity of a polynomial relation over Z2w is also PSPACE-hard. Regarding an upper bound,
we construct a Turing machine which non-deterministically computes a counterexam-
ple for the validity of a polynomial relation p. This counterexample can be found by
simulating the original program on vectors over Z2w representing the program state.
The representation of such a program state can be done in polynomial space in Z2w .
The Turing machine accepts if it reaches program point v with a state x ∈ Zk

2w which
does not satisfy p. Thus, we have a PSPACE-algorithm for dis-proving the validity of
polynomial relations. Since the complexity class PSPACE is closed under complemen-
tation, we obtain:

Theorem 1. Checking validity of polynomial invariants over Z2w is PSPACE
-complete. �

This is bad news for a general algorithm for the verification of polynomial invariants
over Z2w . The theoretical algorithm providing the upper bound in theorem 1 is not suit-
able for practical application. Therefore, we subsequently present an algorithm which
has reasonable runtime behaviour at least for meaningful examples. In particular, it has
polynomial complexity — given that the number of program variables is bounded by a
constant.

This algorithm is based on the effective computation of weakest preconditions. Fol-
lowing [9], we characterise the weakest precondition of the validity of a relation pt at
program point t by means of a constraint system on ideals of polynomials.

In order to construct this constraint system, we rely on the weakest precondition
transformers [[s]]� for tests, single assignments, or non-deterministic assignments:

[[p �= 0]]� q = {p · q}
[[xj := p]]� q = {q[p/xj]}
[[xj :=?]]� q = {q[h/xj] | h = 0, . . . , d}

where d is the maximal degree of xj in q. The transformers for assignments and dis-
equality tests are the same which, e.g., have been used in [9]. Only for non-deterministic
assignments xj :=?, extra considerations are necessary. The treatment of non-
deterministic assignments in [9] for Q consists in collecting all coefficient polynomials
pi not containing xj in the sum q =

∑
i≥0 pi · xi

j . This idea does no longer work over
Z2w . Consider, e.g., p = 231x2

1x2 + 231x1x2. Equating every x1-coefficient with zero
would lead to the polynomial 231x2 = 0 — which is not the weakest precondition, as

Analysing All Polynomial Equations in Z2w 307

p = 0 is trivially valid. The correctness of the new definition of [[xj :=?]]� for Z2w on
the other hand, follows from lemma 3.

The weakest precondition transformers [[s]]� for polynomials can be extended to
transformers of ideals. Assume that the ideal I is given through the set G of generators.
Then:

[[s]]� I = 〈
⋃
{[[s]]� g | g ∈ G}〉

Note that [[s]]� q is vanishing whenever q is already vanishing. Therefore,

[[s]]�(Iv) ⊆ Iv

for all s. Using the extended transformers, we put up the constraint system R�
pt

to
represent the precondition for the validity of a polynomial pt at program point t:

[R1]� R�
pt

(t) ⊇ 〈{pt}〉
[R2]� R�

pt
(u) ⊇ [[s]]�(R�

pt
(v)) , if e = (u, v) ∈ E ∧A(e) ≡ s

For all program points, we may safely assume that all vanishing polynomials are valid.
Therefore, we may consider the given constraint system over ideals I subsuming Iv ,
i.e., with Iv ⊆ I . This implies that we only consider ideals I where p ∈ I whenever
p′ ∈ I for every polynomial p′ which is semantically equivalent to p. Note that the set
of ideals subsuming Iv (ordered by the subset relation ‘⊆”) forms a complete lattice.
Since all transformers [[s]]� are monotonic, this system has a unique least solution.
Since all transformers [[s]]� transform Iv into (subsets of) Iv and distribute over sums
of ideals, the least solution of the constraint system precisely characterises the weakest
preconditions for the validity of pt at program point t in a similar way as in [9]. We
have:

Lemma 4. Assume that R�
pt

(u), with u a program point, denotes the least solution of
the constraint system R�

pt
. Then the polynomial relation pt ∈ Z2w [X] is valid at the

target node t iff R�
pt

(st) ⊆ Iv . �

5 Computing with Ideals over Z2w [X]

In order to check the validity of the polynomial relation pt at program point t, we must
find succinct representations for the ideals occurring during fixpoint iteration which
allow us first, to decide when the fixpoint computation can be terminated and secondly,
to decide whether the ideal for the program start consists of vanishing polynomials only.

The basic idea consists in representing ideals through finite sets G of generators. In
order to keep the set G small, we explicitly collect only polynomials not in Iv . Thus, G
represents the ideal 〈G〉v = 〈G〉 ⊕ Iv = {g + g0 | g ∈ 〈G〉, g0 ∈ Iv}.

Keeping the representation of vanishing polynomials implicit is crucial, since the
number of necessary vanishing polynomials inG(k, w) is exponential in k. By lemma 2,
only polynomials up to degree 1.5(w+ k) need to be chosen. By successively applying
reduction, we may assume that G is reduced and consists of polynomials which cannot
be (further) reduced by polynomials in G(k, w) only. Let us call such sets of generators
normal-reduced. Then by the characterisation of [16], 〈G〉v ⊆ Iv iff G = ∅.

308 H. Seidl, A. Flexeder, M. Petter

Example 4. Consider the polynomials p = x5+x4+2x2+3x and p̄ = 6x5+7x3+2x
over Z23 . In order to build a normal-reduced set of generators G, 〈G〉v = 〈{p, p̄}〉v,
we begin with a first round, reducing p and p̄ with the vanishing polynomial pv =
x4+2x3+3x2+2x: p′ = p+(7x+1)pv = 7x3+3x2+5x and p̄′ = p̄+(2x+4)pv =
5x3 + 2x. Next, p′ can be reduced by p̄′, leading to p′′ = p′ + 5p̄′ = 3x2 + 7x. p̄′ and
p′′ are nonreducible with respect to each other and Iv . Then 〈{, p′′, p̄′}〉v = 〈{p, p̄}〉v
where the set {p′′, p̄′} is normal-reduced. �

Concerning the computation of the fixpoint for R�
pt

, consider an edge e = (u, v) in
the control-flow graph of the program labelled with s = A(e). Each time when a new
polynomial p is added to the ideal R�

pt
(v) associated with program point v which is not

known to be contained in R�
pt

(v), all polynomials in [[s]]�p must be added to the ideal
R�

pt
(u) at program u. The key issue for detecting termination of the fixpoint algorithm

therefore is to check whether a polynomial p is contained in the ideal R�
pt

(u). Assume
that the ideal R�

pt
(u) is represented by the normal-reduced set G of generators. Clearly,

the polynomial p is contained in 〈G〉v = R�
pt

(u) whenever p can be reduced by G ∪
G(k, w) to the 0 polynomial. The reverse, however, need not necessarily hold.

Exact ideal membership based on Gröbner bases requires to extend the set G with
S-polynomials [1]. However, for generating all S-polynomials, virtually all pairs of gen-
erators must be taken into account. This applies also to the vanishing polynomials. The
number of vanishing polynomials in G(k, w) of degree O(w + k), however, is still ex-
ponential in k and also may comprise polynomials with many monomials. This implies
that any algorithm based on exhaustive generation of S-polynomials cannot provide de-
cent mean- or best case complexity at least in some useful cases. Therefore, we have
abandoned the generation of S-polynomials altogether, and hence also exact testing of
ideal membership.

Instead of ideals themselves, we therefore work with the complete lattice D of
normal-reduced subsets of polynomials in Z2w [X]. The ordering on the lattice D is
defined by G1 � G2 iff every element g ∈ G1 can be reduced to 0 w.r.t. G2 ∪G(k, w).
The least element w.r.t. this ordering is ∅. Thus by definition,G1 � G2 implies 〈G1〉v ⊆
〈G2〉v, and 〈G〉v = Iv iff G = ∅. In order to guarantee the termination of the modified
fixpoint computation, we rely on the following observation:

Lemma 5. Consider a strictly increasing chain:

∅ G1 . . . Gh

of normal-reduced generator systems over Z2w [X]. Then the maximal length h of this
chain is bounded by w · r with r as the number of head monomials occurring in anyGi.

Proof. For each Gi consider the set Hi, which denotes the set of terms t = 2s ·
xr1

1 . . .xrk

k for which a · t (a invertible) is the head term of a polynomial in Gi. Then
for every i, Hi contains a term t which has not yet occurred in anyHj , j < i. The value
h thus is bounded by the cardinality of H1 ∪ . . . ∪Hh, which is bounded by w · r. �

Analysing All Polynomial Equations in Z2w 309

In case that we are given an upper bound d for the total degree of polynomials in lemma
5, then by prop. 1, the height h is bounded by h ≤ w · r ≤ w · (d + 1)k and thus is
exponential in k only.

The representation of ideals through normal-reduced sets of generators allows us
to compute normal-reduced sets of generators for the least solution of the constraint
system R�

pt
. We obtain:

Theorem 2. Checking the validity of a polynomial invariant in a polynomial program
with N nodes and k variables over Z2w can be performed in time O(N · k · w2 · r3)
where r is the number of monomials occurring during fixpoint iteration.

Proof. Verification of a polynomial invariant pt at a program point t is done via fix-
point iteration on sets of generators. Considering a set G[u] of generators representing
the ideal R�

pt
(u) of preconditions at program point u, we know from lemma 5, that

an increasing chain of normal-reduced generator systems is bounded by w · r. Each
time, that the addition of a polynomial p leads to an increase of G[u], the evaluation of
[[s]]�(p) is triggered for each edge (u, v) labelled with s. Each precondition transformer
creates only one precondition polynomial, except for the nondeterministic assignment.
Essentially, each [[xj :=?]]� causes d+ 1 (d the maximal degree of xj) polynomials to
be added to the set of generators at the source u of the corresponding control flow edge.
Since the degree d of any variable xj in an occurring generator polynomial is bounded
by 1.5(w+1), we conclude that the total number of increases for the set G[u] of gener-
ators for program point u along the control flow edge (u, v) amounts to O(w2 · r). As
we can estimate the complexity of a complete reduction by O(k · r2) with the help of
lemma 1, we find that the amount of work induced by a single control flow edge there-
fore is bounded by O(k · w2 · r3). This provides us with the upper complexity bound
stated in this theorem. �

Assume that the maximal degree of a polynomial occurring in an assignment of the
input program has degree 2. Then the maximal total degree d of any monomial occurring
during fixpoint iteration is bounded by 1.5(w + k) + 3w + 2 = 4.5w + 1.5k + 2. By
prop. 1, the number r of monomials in the complexity estimation of theorem 2 is thus
bounded by (4.5w+k+3)k. From that, we deduce that our algorithm runs in polynomial
time – at least in case of constantly many variables. Of course, for three variables and
w = 25, the number r of possibly occurring monomials is already beyond 27·4 = 228

— which is far beyond what one might expect to be practical.
We implemented our approach and evaluated it on selected benchmark programs,

similar to the ones from [12]. We considered the series of programs power-i which
compute sums of (i− 1)-th powers, i.e., the value x =

∑
y yi−1. In the case i = 6, for

example, the invariant 12x− 2y6 − 6y5 − 5y4 +y2 could be verified for the end point
of the program. Additionally, we considered programs geo-i for computing variants
of the geometrical sum. An overview with verified invariants is shown in table 1. All
these invariants could be verified instantly on a contemporary desktop computer with
2.4 GHz and 2GB of main memory.

310 H. Seidl, A. Flexeder, M. Petter

Table 1. Test programs and verified invariants in w = 32

Name Computation verified invariant
power-1 x1 =

∑K
k=0 1 x2 =

∑K
k=0 1 x1 = x2

power-2 x1 =
∑K

k=0 k x2 =
∑K

k=0 1 2x1 = x2
2 + x2

power-3 x1 =
∑K

k=0 k2 x2 =
∑K

k=0 1 6x1 = 2x3
2 + 3x2

2 + x2

power-4 x1 =
∑K

k=0 k3 x2 =
∑K

k=0 1 4x1 = x4
2 + 2x3

2 + x2
2

power-5 x1 =
∑K

k=0 k4 x2 =
∑K

k=0 1 30x1 = 6x5
2 − 15x4

2 − 10x3
2 + x2

power-6 x1 =
∑K

k=0 k5 x2 =
∑K

k=0 1 12x1 = 2x6
2 − 6x5

2 − 5x4
2 + x2

2

geo-1 x1 = (x3 − 1)
∑K

k=0 xk
3 x2 = xK−1

3 x1 = x2 + 1

geo-2 x1 =
∑K

k=0 xk
3 x2 = xK−1

3 x1 · (x3 − 1) = x2x3 − 1

geo-3 x1 =
∑K

k=0 x4 · xk
3 x2 = xK−1

3 x1 · (x3 − 1) = x4x3x2 − x4

6 Inferring Polynomial Relations over Z2w

Still, no algorithm is known which, for a given polynomial program, infers all valid
polynomial relations over Q. In [9] it is shown, however, that at least all polynomial
relations up to a maximal total degree can be computed. For the finite ring Z2w , on the
other hand, we know from lemma 2 that every polynomial has an equivalent polynomial
of total degree at most 1.5(w+ k). Therefore over Z2w , any algorithm which computes
all polynomial invariants up to a given total degree is sufficient to compute all valid
polynomial invariants.

For a comparison, we remark that, since Z2w is finite, the collecting semantics of a
polynomial program of length N is finite and computable by ordinary fixpoint iteration
in time N · 2O(wk). Given the set X ⊆ Zk

2w of states possibly reaching a program point
v, we can determine all polynomials p of total degree at most 1.5(w+k) with p(x) = 0
for all x ∈ X by solving an appropriate linear system of |X | ≤ 2wk equations for the
coefficients of p. For every program point u, this can be done in time 2O(wk). Here,
our goal is to improve on this trivial (and intractable) upper bound. Our contribution is
to remove the w in the exponent and to provide an algorithm whose runtime, though
exponential in k in the worst case, may still be much faster on meaningful examples.

For constructing this algorithm, we are geared to the approach from [9]. This means
that we fix a template for the form of polynomials that we want to infer. Such a template
is given by a set M of monomials m = xr1

1 . . .xrk

k with r1 + . . . + rk ≤ 1.5(w + k).
Note that for small maximal total degree d the cardinality of M is bounded by (k+ 1)d

while without restriction on d, the cardinality is bounded by an exponential in k (see
prop. 1). Given the set M , we introduce a set AM = {am | m ∈ M} of auxiliary
fresh variables am for the coefficients of the monomials m in a possible invariant. The
template polynomial pM for M then is given by pM =

∑
m∈M am ·m.

Example 5. Consider the program variables x1 and x2. Then the template polynomial
for the set of all monomials of total degree at most 2 is given by: a1x2

1 + a2x2
2 +

a3x1x2 + a4x1 + a5x2 + a0. �

Analysing All Polynomial Equations in Z2w 311

With the help of the verification algorithm from section 4, we can compute the weakest
precondition for a given template polynomial pm. Since during fixpoint computation,
no substitutions of the generic parameters am are involved, each polynomial p in any
occurring set of generators is always of the form p =

∑
m∈M am · qm for polynomials

qm ∈ Z2w [X]. In particular, this holds for the set of generators computed by the fixpoint
algorithm for the ideal at the start point st of the program. We have:

Lemma 6. Assume that G is a set of generators of the ideal R�
pt

(st) for the template
polynomial pM at program point t. Then for any am ∈ Z2w ,m ∈ M , the poly-
nomial

∑
m∈M amm is valid at program point t iff for all g ∈ G, the polynomial

g[am/am]m∈M is a vanishing polynomial. �

It remains to determine the values am,m ∈M for which all polynomials g in a finite set
G are vanishing. First assume that the polynomials in G may contain variables from X.
Assume w.l.o.g. that it is xk which occurs in some polynomial in G where the maximal
degree of xk in polynomials of G is bounded by d. Then we construct a set G′ by:

G′ = {g[j/xk] | g ∈ G, j = 0, . . . , d}

The set G′ consists of polynomials g′ which contain variables from X\{xk} only.
Moreover by lemma 3, g[am/am]m∈M is vanishing for all g ∈ G iff g′[am/am]m∈M

is vanishing for all g′ ∈ G′. Repeating this procedure, we successively may remove all
variables from X to eventually arrive at a set Ḡ of polynomials without variables from
X. This means each g ∈ Ḡ is of the form g =

∑
m∈M am · cm for cm ∈ Z2w . There-

fore, we can apply the methods from [11] for linear systems of equations over Z2w

(now with variables from AM) to determine a set of generators for the Z2w -module of
solutions. Thus, we obtain the following result:

Theorem 3. Assume p is a polynomial program of length N with k variables over the
ring Z2w . Further assume that M is a subset of monomials of total degree bounded by
1.5(w + k). Then all valid polynomial invariants

∑
m∈M cmm with cm ∈ Z2w can be

computed in time O(N · k · w2(r0r)3) where r0 is the cardinality of M and r is the
maximal number of monomials occurring during fixpoint iteration.

Proof. Generator sets of polynomials over M and X are always composed of poly-
nomials p of the form p =

∑
m∈M am · xd1

1 . . .xdk

k . Thus, the number of occurring
different monomials is bounded by r0 · r. Therefore, the maximal length of a strictly
increasing chain of normal-reduced sets of generators is bounded by w · r0 · r. As the
number of monomials in a polynomial is bounded by r0 · r, the costs for updating
a normal-reduced set of generators with a single polynomial is now O(k · (r0 · r)2).
Again, we have to account 1.5(w+1) for the number of polynomials which can be pro-
duced by weakest precondition transformers in a single step. Altogether, we therefore
have costs O(w ·wr0r · k(r0r)2) which are incured at each of the control flow edges of
the program to be analysed. �

Finding all valid polynomial invariants means to compute the precondition for a tem-
plate with all monomials up to degree d = 1.5(w+k). We thus obtain (1.5(w+k)+1)k

312 H. Seidl, A. Flexeder, M. Petter

as an upper bound for the number r0 of monomials to be considered in the postcondi-
tion. For input programs where the maximal degree of polynomials in assignments or
disequalities is bounded by 2, the number r of occurring monomials can be bounded
by (4.5w + k + 3)k. Summarising, we find that all polynomial invariants which are
valid at a given program point can be inferred by an algorithm whose runtime is only
exponential in k. This means that this algorithm is polynomial whenever the number of
variables is bounded by a constant.

Example 6. Consider the program geo-1 next
to this paragraph which computes the geometri-
cal sum. At program end, we obtain the invariant
x−y+1 = 0 as expected. Beyond that, we ob-
tain the additional invariant 231y + 231x = 0
which is valid over Z232 only. This invariant ex-
presses that x and y are either both odd or both
even at a specific program state. �

1 int count = ?;
2 int x = 1, y = z;
3 while (count != 0){
4 count = count - 1;
5 x = x*z + 1;
6 y = z*y;
7 }
8 x = x*(z-1);

We used a prototypical implementation of the presented approach for conducting a test
series whose results on our 2,4 GHz 2 GB machine are shown in table 2. The algorithm
quickly terminates when inferring all invariants up to degree i for sums of powers of
degree i− 1 for i = 1, 2 and 3 and also for the two variants of geometrical sums. Inter-
estingly, it failed to terminate within reasonable time bounds for i = 4. In those cases
when terminating, it inferred the invariants known from the analysis of polynomial rela-
tions over Q — and quite a few extra non-trivial invariants which could not be inferred
before. It remains a challenge for future work to improve on our methods so that also
more complicated programs such as e.g. power-4 can be analysed precisely.

Table 2. Test programs and inferred invariants in w = 32

Name inferred polynomial time space
power-1 x0 − x1 0.065 sec 51 MB
power-2 x2

1 − 2x0 + x1 0.195 sec 63 MB
power-3 2x3

1 − 3x2
1 − x1 − 6x0,

230x2
1 − 231x0 + 230x1,

3·229x0x1+15·227x2
1−5·228x0+15·227x1,

3 · 228x2
0 − 25 · 126x0x1 − 77 · 224x2

1 − 25 ·
225x0 − 77 · 224x1,
21·224x3

1+191·223x2
1+65·224x0+149·223x1,

−19 ·226x3
0+224x2

0x1−235 ·222x0x2
1−191 ·

223x0x1+57 ·225x2
1 −27 ·226x0+37 ·225x1

1.115 sec 89 MB

power-4 n.a. >24 h > 1 GB
geo-1 x0 − x1 − 1,

231x1 + 231x2 0.064 sec 48 MB
geo-2 231x1x2 + 231x2 , 231x1 + 231x2,

228x2
1+230x1x2−7 ·228x2

2−3 ·229x2+231,
x0x2 − x1x2 − x0 + 1 0.636 sec 65 MB

geo-3 23 polynomials . . . 2.064 sec 96 MB

Analysing All Polynomial Equations in Z2w 313

7 Conclusion

We have shown that verifying polynomial program invariants over Z2w is PSPACE-
complete. By that, we have provided a clarification of the complexity of another analysis
problem in the taxonomy of [6]. Beyond the theoretical algorithm for the upper bound,
we have provided a realistic method by means of normal-reduced generator sets. In
case of constantly many variables, this algorithm runs in polynomial time. Indeed, our
prototypical implementation was amazingly fast on all tested examples.

We extended the method for checking invariants to a method for inferring polynomial
invariants of bounded degree — which in case of the ring Z2w also allows to infer all
polynomial invariants. Beyond the vanishing polynomials, the algorithm finds further
invariants over Z2w , which would not be valid over the field Q and thus cannot be
detected by any analyser over Q. While still being polynomial for constantly many
variables, our method turned out to be decently efficient only for small numbers of
variables and low degree invariants. It remains for future work to improve on the method
for inferring invariants in order to deal with larger numbers of variables and moderate
degrees at least for certain meaningful examples.

References

1. Becker, T., Weispfenning, V.: Gröbner Bases – a computational approach to commutative
algebra. Springer, New York (1993)

2. Colon, M.: Polynomial approximations of the relational semantics of imperative programs.
Science of Computer Programming 64, 76–96 (2007)

3. Hungerbühler, N., Specker, E.: A generalization of the smarandache function to several vari-
ables. Integers: Electronic Journal Combinatorial Number Theory 6 (2006)

4. Karr, M.: Affine Relationships Among Variables of a Program. Acta Informatica 6, 133–151
(1976)

5. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989)
6. Müller-Olm, M., Rüthing, O.: On the complexity of constant propagation. In: Sands, D. (ed.)

ESOP 2001 and ETAPS 2001. LNCS, vol. 2028, Springer, Heidelberg (2001)
7. Müller-Olm, M., Seidl, H.: Polynomial Constants are Decidable. In: Hermenegildo, M.V.,

Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)
8. Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally analyzing polynomial identities.

In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 50–67. Springer,
Heidelberg (2006)

9. Müller-Olm, M., Seidl, H.: Computing Polynomial Program Invariants. Information Process-
ing Letters (IPL) 91(5), 233–244 (2004)

10. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444. Springer, Heidelberg (2005)

11. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 29(5) (2007)

12. Petter, M.: Berechnung von polynomiellen Invarianten. Master’s thesis, Technische Univer-
sität München, München (2004)

13. Rodrı́guez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic gen-
eration of polynomial invariants. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148,
Springer, Heidelberg (2004)

314 H. Seidl, A. Flexeder, M. Petter

14. Rodrı́guez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invariants of
bounded degree using abstract interpretation. Science of Computer Programming 64, 54–75
(2007)

15. Sankaranarayanan, S., Henry, Z.M., Sipma, B.: Non-linear loop invariant generation using
gröbner bases. In: ACM SIGPLAN Principles of Programming Languages (POPL) (2004)

16. Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S.: Equivalence verification of polynomial
datapaths with fixed-size bit-vectors using finite ring algebra. In: International Conference on
Computer-Aided Design (ICCAD), pp. 291–296 (2005)

17. Singmaster, D.: On polynomial functions (mod m). Journal of Number Theory 6, 345–352
(1974)

18. Wienand, O.: The Groebner basis of the ideal of vanishing polynomials. Journal of Symbolic
Computation (JSC) (to appear, 2007); Preprint in arxiv math.AC/0801.1177

Splitting the Control Flow with Boolean Flags

Axel Simon

DI, École Normale Supérieure, rue d’Ulm, 75230 Paris cedex 05, France�

Axel.Simon@ens.fr

Abstract. Tools for proving the absence of run-time errors often deploy
a numeric domain that approximates the possible values of a variable us-
ing linear inequalities. These abstractions are adequate since the correct
program state is often convex. For instance, if the upper and lower bound
of an index lie within the bounds of an array, then so do all the indices
inbetween. In certain cases, for example when analysing a division oper-
ation, the correct program state is not convex. In this case correctness
can be shown by splitting the control flow path, that is, by partitioning
the set of execution traces which is normally implemented by analysing
a path several times. We show that adding a Boolean flag to the numeric
domain has the same effect. The paper discusses prerequisites, limitations
and presents an improved points-to analysis using Boolean flags.

1 Introduction

With better expressiveness and scalability, static analysis is increasingly used to
prove the absence of run-time errors of certain types of C software [3,7]. A classic
approach of approximating the state at a particular point in the program are
convex spaces described by a finite conjunction of linear inequalities (a polyhe-
dron [8]). For example, an array access a[i] in C is within bounds if the inferred
set of inequalities at that program point imply a space where i ≥ 0 and i ≤ s−1
where s is the size of the array. In certain cases, a single convex approximation
to the possible state space is not precise enough. A notorious example is a guard
against a division by zero, as implemented by the following C fragment:

int r=MAX_INT;
if (d!=0) r=v/d;

The test d �= 0 must be implemented by intersecting the current state, say P ,
with d > 0 and d < 0, resulting in P+ = P ∩[[d > 0]] and P− = P ∩[[d < 0]] where
[[c]] denotes the sub-space of the Euclidean space that satisfies the constraint c.
The state with which the division operation is analysed is approximated by
P ′ = P+ � P−, where � is the join of the lattice, implemented by calculating
the closure of the convex hull of the two polyhedra. However, the convex hull
� This work was supported by the INRIA project “Abstraction” of CNRS and ENS.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 315–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

316 A. Simon

re-introduces the state P �{d = 0} for which the division r=v/d is erroneous. In
fact, it turns out that P ′ = P whenever P+ and P− are non-empty.

The Astrée analyser verifies [7] the above example by partitioning the set of
execution traces, that is, by executing the division instructions twice, first with
P−, then with P+. The question when to partition the traces into two sets and
when to rejoin the separate trace sets is guided by heuristics and by manual
annotations [14]. Thus, the Astrée analyser is designed with the ambition to
choose the correct split and joint points in order to prove the program correct.1

The Static Driver Verifier (SDV) [3] verifies the API usage of device drivers by
converting their C source into a program with only Boolean variables [5] whose
correctness is then checked against a pre-defined set of rules using a model
checker [4]. In case a rule cannot be proved or disproved, a new predicate is
synthesised, thereby splitting the set of traces in the concrete program with the
aim to improve the precision of the abstraction with respect to the property of
interest. Thus, SDV iteratively splits the control flow path and re-analyses the
source until the rules can be proved. Both approaches explicitly partition the
set of traces or, semantically equivalent, perform a program transformation that
splits the control flow path into two. The cost of the analysis thus depends on
the choice of the split and join points. In this work we propose to use polyhedral
analysis but implement the split of a control flow path by adding a Boolean flag
to the domain. Although the cost of adding such a flag might be higher than
analysing the code twice, an additional flag is very cheap if the two states are
identical. This allows our method to be used opportunistically, that is, Boolean
flags may be introduced by default when it is not know if two states need to be
separated later. Furthermore, our approach is appealing due to its simplicity.

The motivation of our work stems from the need to improve points-to in-
formation during a polyhedral value-range analysis. By using Boolean flags to
indicate if an l-value is part of a points-to set, it is possible to infer that e.g. the
error flag returned from a function is set whenever a pointer is NULL. Points-to
information presents a good example where the re-analysis of code with every
possible set of points-to information can be more expensive than adding flags.

Adding a Boolean flag may result in a loss of precision, especially when used
with weakly relational domain such as Octagons [15] or TVPI polyhedra [22].
To summarise, this paper makes the following contributions:

– We show that, under certain prerequisites, adding a Boolean flag is equivalent
to analyzing a control flow path twice.

– We discuss the way Boolean flags can be used in the context of general
polyhedra and weakly relational domains such as the TVPI domain.

– We show how points-to analysis and numeric analysis can be combined us-
ing Boolean flags, thereby improving precision without explicit propagation
between the two domains.

1 Astrée can also partition the set of traces by the value of variables. In this case,
joining the partitions is automatic, e.g. when the variable goes out of scope. Our
proposal can be used for both applications but is more amenable to the latter task.

Splitting the Control Flow with Boolean Flags 317

1

5

1 5 8

x

x

1

2

1

5

1 5 8

x

x

1

2

1

5

1 5 8

x

x

1

2

PP

P'

1

5

1 5 8

x

x

1

2

1 2P

P'1 2P'

❶ ❷

❸ ❹

Fig. 1. Example to show that Z-polyhedra are not closed under intersection. Integral
points are shown as crosses and the half-spaces [[x ≤ 4]] and [[x ≥ 6]] are indicated by
vertical lines with arrows pointing towards the feasible space.

The paper is organised as follows. The next section gives a definition of the
polyhedral domain before Sec. 3 discusses the separation of states using Boolean
flags. Section 4 demonstrates practical applications and Section 5 concludes.

2 An Introduction to Convex Polyhedra

This section introduces some basic notation and properties of polyhedra, putting
particular emphasis on the set of integral points contained in a polyhedron.

A polyhedral analysis expresses numeric constraints over the set of abstract
variables X . For the sake of this section, let x denote the vector of all variables in
X , thereby imposing an order on X . Let Lin denote the set of linear expressions
of the form a ·x where a ∈ Z|X | and let Ineq denote the set of linear inequalities
a · x ≤ c where c ∈ Z. Let e.g. 6x3 ≤ x1 + 5 abbreviate 〈−1, 0, 6, 0, . . .0〉 · x ≤ 5
and let e.g. x2 = 7 abbreviate the two opposing inequalities x2 ≤ 7 and x2 ≥ 7,
the latter being an abbreviation of −x2 ≤ −7. For simplicity, we assume that
the analysis only infers integral properties and we use the notation e1 < e2 to
abbreviate e1 ≤ e2 − 1. Each inequality a · x ≤ c ∈ Ineq induces a half-space
[[a·x ≤ c]] = {x ∈ Q|X | | a·x ≤ c}. A set of inequalities I ⊆ Ineq induces a closed,
convex space [[I]] =

⋂
ι∈I [[ι]]. Define Poly = {[[I]] | I ∈ Ineq ∧ |I| ∈ N} to be the

set of all closed, convex polyhedra. Let P1, P2 ∈ Poly , then P1 � P2 iff P1 ⊆ P2

and define P1 �P2 as P1 ∩P2 which can be implemented by joining the two sets
of inequalities that describe P1 and P2. Furthermore define P1 � P2 to be the
smallest polyhedron P such that P1 � P and P2 � P , that is P1 � P2 =

⋂
{P ∈

Poly | P1 � P ∧ P2 � P}. This operation corresponds to the topological closure
of the convex hull of P1 and P2. Since the number of inequalities |I| defining a

318 A. Simon

P ∈ Poly is finite by definition, the lattice of convex polyhedra 〈Poly ,�,�,�〉
is incomplete as neither the join nor meet of an arbitrary number of polyhedra
is necessarily a polyhedron. Thus, in order to ensure that a fixpoint calculation
always terminates on elements of Poly a widening operator is required [8].

In the context of storing Boolean flags in a polyhedral domain, it is inter-
esting to equate polyhedra that contain the same set of integral points. These
equivalence classes define the lattice of Z-polyhedra 〈Poly≡Z

,�Z,�Z,�Z〉. Each
equivalence class can be represented by its smallest polyhedron, namely a Z-
polyhedron which is characterised by the fact that all its vertices, that is, all
points that are not a convex combination of other points, have integral co-
ordinates. In this case it is possible to set �Z = � and �Z = �. However,
the meet operation � is not closed for Z-polyhedra. In order to illustrate this,
consider Fig. 1. The state space P ∈ Poly≡Z over x1, x2 in the first graph is
transformed by evaluating the conditional x2 �= 5 which is implemented by cal-
culating P ′ = (P � [[x ≤ 4]]) � (P � [[x ≥ 6]]). Observe that the input P as well
as the two half-spaces [[x ≤ 4]] and [[x ≥ 6]] are Z-polyhedra. The second graph
shows the two intermediate results P1 = P � [[x ≤ 4]] and P2 = P � [[x ≥ 6]]
which both have two non-integral vertices. As a consequence, the join of P1 and
P2, shown as third graph, has non-integral vertices as well and is therefore not
a Z-polyhedron. However, if the intermediate results were shrunk around the
contained integral point sets, as done in the fourth graph, all vertices of the
intermediate results would be integral and the join would be a Z-polyhedron,
too. However, for general, n-dimensional polyhedra, the number of inequalities
necessary to represent a Z-polyhedron can grow exponentially with respect to a
polyhedron over Q that contains the same integral points [17, Chap. 23]. Thus,
no efficient algorithm exists to implement the �-operation on Z-polyhedra. For
the weakly relational domain of TVPI polyhedra where each inequality takes
on the form ax + by ≤ c where a, b, c ∈ Z, reducing the polyhedron to a Z-
polyhedron is still NP-complete [13], however, a polynominal algorithm exists
for calculating the Z-polyhedron for any given planar polyhedron [11] on which
an efficient approximation of Z-TVPI polyhedra can be built. Interestingly, for
the Octagon domain [15], an efficient algorithm exists [2].

The next section re-examines the introductory example and illustrates its
analysis in the context of using a single convex polyhedron.

3 Principles of Boolean Flags in Polyhedra

Reconsider the evaluation of the following code fragment, given the state P :

int r=MAX_INT;
if (d!=0) r=v/d;

Suppose this block of code is executed with a value of [−9, 9] for d. Rather than
analysing the division twice, once with positive values of d, once with negative
values of d, Fig. 2 shows how the states P+ and P− can be stored in a single

Splitting the Control Flow with Boolean Flags 319

0

1

-9

f

d-5 -1 0 1 5 9

P

P -

+

d=0

Fig. 2. Using a Boolean flag to perform control flow splitting. Feasible integral points
are indicated by crosses, the dashed line indicating the polyhedron [[d = 0]].

state without introducing an integral point where d = 0. Specifically, the figure
shows the state (P− � [[f = 0]]) � (P+ � [[f = 1]]) which collapses to the empty
Z-polyhedron when intersected with d = 0, where [[d = 0]] is the state for which
the division is erroneous. The prerequisites for merging two states without loss is
that both states are represented by polytopes (polyhedra in which all variables
are bounded) and that techniques for integral tightening are present. This is
formalised in the following proposition:

Proposition 1. Let P0, P1 ∈ Poly, let P = (P0 � [[f = 0]]) � (P1 � [[f = 1]]) and
P ′

i = P � [[f = i]] for i = 0, 1. Then Pi � [[f = i]] ∩ Zn = P ′
i ∩ Zn for all i = 0, 1.

Proof. Without loss of generality, assume i = 0. Suppose that X is arranged as
〈x1, . . . xn−1, f〉 = x which we abbreviate as 〈x̄|f〉 = x. We consider two cases:

“soundness”: Let 〈ā|f〉 ∈ P0�[[f = 0]]∩Zn. Then 〈ā|f〉 ∈ P by the definition
of �. Since f = 0 in 〈ā|f〉 it follows that 〈ā|f〉 ∈ P�[[f = 0]] and thus 〈ā|f〉 ∈
P ′

0. We chose the vector such that 〈ā|f〉 ∈ Zn and hence 〈ā|f〉 ∈ P ′
0 ∩ Zn.

“completeness”: Let 〈ā|f〉 ∈ P ′
0 ∩ Zn. Then 〈ā|f〉 ∈ P � [[f = 0]] and hence

f = 0. For the sake of a contradiction, suppose that 〈ā|0〉 /∈ P0. Since
P ∈ Poly is convex, 〈ā|0〉 = λ〈ā1|f1〉 + (1 − λ)〈ā2|f2〉 for some 0 ≤ λ ≤ 1.
Observe that the join P = (P0 � [[f = 0]]) � (P1 � [[f = 1]]) is defined as an
intersection of all states P̂ such that (Pi � [[f = i]]) � P̂ for i = 0, 1; this
holds in particular for P̂ = [[f ≥ 0]] and for P̂ = [[f ≤ 1]]. Thus, 0 ≤ f ≤ 1
for all 〈ā|f〉 ∈ P . Hence, 0 ≤ f1 ≤ 1 and 0 ≤ f2 ≤ 1 must hold. Given the
constraints 0 = λf1 + (1 − λ)f2 and ā = λā1 + (1 − λ)ā2, either f1 = 0 or
f2 = 0 so that one vector, say 〈ā1|f1〉, must lie in P0, which implies λ = 1.
In particular with ā = λā1 + (1 − λ)ā2 and ā2 ∈ Zn−1 having only finite
coefficients, ā = ā1 follows, which contradicts our assumption of 〈ā|0〉 /∈ P0.

Equivalently, Poly over X ∪ {f} is isomorphic to Poly{0,1} over X , a reduced
cardinal power domain [6, Sect. 10.2] and thus equivalent to a partitioning. We
briefly comment on the requirements that P0, P1 must be polytopes and integral.

3.1 Boolean Flags and Unbounded Polyhedra

With respect to the first requirement, namely that the state space described by
the polyhedron must be bounded, Fig. 3 shows that a precision loss occurs for

320 A. Simon

0

1

-9

f

d-5 -1 0 1 5

P

P -

+

d=0

10

Fig. 3. Adding a Boolean flag to an unbounded polyhedra results in a loss of precision

unbounded polyhedra. Specifically, taking convex combinations of points in the
state P+ = [[{d ≥ 1, f = 1}]] and those in P− = [[{−9 ≤ d ≤ −1, f = 0}]] leads
to the grey state. Even though the line [[{f = 0, d > −1}]] is not part of the grey
state, the polyhedral join P+�P− approximates this state with sets of non-strict
inequalities, thereby including the line. Hence, the definition of � automatically
closes the resulting space and thereby introduces points 〈ā, f〉 ∈ P+�P− where
f = 0, even though 〈ā, 0〉 /∈ P+. As a result the intersection with [[d = 0]]
contains 〈0, 0〉 ∈ Z2 and the verification of the division operation fails. Note that
allowing strict inequalities a · x < c to describe open facets [1] is not sufficient
to define the convex space

⋂
{S | P+ ⊆ S ∧ P− ⊆ S} as the lower bound on f

is closed for −9 ≤ d ≤ −1 and open for d > −1.
The imprecise handling of unbounded polyhedra is generally not a problem

in verifiers that perform a forward reachability analysis as program variables
are usually finite and wrap when they exceed their limit. Flagging wrapping as
erroneous [7] or making wrapping explicit [21] effectively restricts the range of a
variable. Thus, states in a forward analysis are usually bounded. Polyhedra have
also been used to infer an input-output relationship of a function, thereby achiev-
ing a context-sensitive analysis by instantiating this input-output behaviour at
various call sites [10]. In this application the inputs are generally unbounded and
a Boolean flag does not distinguish any differences between states. However, even
in this application it might be possible to restrict the range of input variables
to the maximum range that the concrete program variable may take on, thereby
ensuring that input-output relationships are inferred using polytopes.

3.2 Integrality of the Solution Space

A second prerequisite for distinguishing two states within a single polyhedron is
that the polyhedron is reduced to the contained Z-polyhedron upon each inter-
section. Tightening a polyhedron to a Z-polyhedron is an exponential operation
which can be observed by translating a Boolean function f over n variables to a
Z-polyhedron over Zn by calculating the convex hull of all Boolean vectors (using
0,1 for false and true) for which f is true. For example, Fig. 4 shows how common
Boolean functions over two variables are represented as planar polyhedra. An
argument similar to Prop. 1 is possible to show that joining all n-ary vectors for
which f is true leads to a polyhedron that expresses f exactly. The integral meet
operation �Z therefore becomes a decision procedure for satisfiability of n-ary

Splitting the Control Flow with Boolean Flags 321

0

1

0 1 x

y
x y

0

1

0 1 x

y
x y

0

1

0 1 x

y
x y

0

1

0 1 x

y
x y

Fig. 4. Boolean functions can be expressed exactly in the polyhedral domain when
satisfiable assignments of variables are modelled as vertices in the polyhedron

Boolean formulae. Hence, Octagons [15] together with the complete algorithm
for �Z presented in [2] provides an efficient decision procedure for 2-SAT.

While calculating a full Z-polyhedron from a given polyhedron with rational
intersection points is expensive, a cheap approximation often suffices in practice.
For instance, the abstract transfer function of the division operation will add
the constraint d = 0 to the state space shown in Fig. 2 with the result that
possible values of f lie in [0.1, 0.9]. Rounding the bounds to the nearest feasible
integral value yields the empty interval [1, 0] which indicates an unreachable
state, thereby proving that a division by zero cannot happen.

3.3 Using Boolean Flags in Common Polyhedral Domains

In this section we briefly discuss the applicability of our approach to three poly-
hedral domains: general convex polyhedra, TVPI polyhedra and Octagons.

General convex polyhedra [8] over Qn can be defined by sets of inequalities of
the form a1x1 + . . . anxn ≤ c where a1, . . . an, c ∈ Z. The major hindrance for a
widespread use is the complexity of the join operation P1�P2 which is commonly
implemented by converting the set of inequalities describing P1 and P2 into the
vertex, ray and line representation which is usually exponential in the number of
inequalities, even for simple polyhedra. This intermediate representation can be
avoided by using projection to calculate the convex hull [20]. However, we are not
aware of any efficient methods to approximate the calculation of a Z-polyhedron
from a rational polyhedron. One simple step is to calculate the common divisor
of the coefficients d = gcd(a1, . . . an) and to tighten each inequality to a1

d x1 +
. . . an

d xn ≤ � c
d�. Rounding the constant down looses no integral solutions and

thus constitutes a simple integral tightening [16].
The TVPI domain [22] is a weakly relational domain in that it only tracks

relationships of the form axi +bxj ≤ c where a, b, c ∈ Z and xi, xj ∈ X . The idea
is to repeatedly calculate resultants, that is, to combine any two inequalities
ax + by ≤ cxy and dy + ez ≤ cyz where sgn(b) = −sgn(d) to a new inequal-
ity fx + gz ≤ cxz and to add this inequality to the set unless it is redundant.
Once no more non-redundant inequalities can be generated, the system is called
closed. On a closed system, the join � and inclusion test � on the n-dimensional
TVPI polyhedron can be implemented by performing a much simpler opera-
tion on O(n2) planar polyhedra. Specifically, the planar algorithms are run on

322 A. Simon

0

1

-9

f

d-5 -1 0 1 5 9

P

P -

+

d=0

Fig. 5. The shown state is the octahedral approximation of the state in Fig. 2

the inequalities that only contain xi, xj , for each pair of variables xi, xj ∈ X .
Each planar operation runs in at most O(m logm) where m is the number of
inequalities, thus providing an efficient domain. Furthermore, integral tightening
is possible by calculating the Z-polyhedron for each projection in O(m log |A|)
where A is the largest coefficients in any of the inequalities [11]. However, after
applying this algorithm to the projection xi, xj , it is possible to calculate new re-
sultants by combining the new inequalities with other inequalities containing xi

or xj which may create rational intersection points in other, already tightened,
projections. In fact, calculating a Z-TVPI polyhedron cannot be done efficiently,
as the problem is NP-complete [13]. However, performing integral tightening once
after each closure is an efficient approximation to a Z-TVPI polyhedron.

Since the TVPI domain has to approximate every inequality with more than
two variables, the ability to separate states within the same TVPI polyhedron
using a Boolean flag is somewhat limited. In fact, a Boolean flag f in the TVPI
domain can only state that the range of a program variable is different. For
instance, the TVPI domain is able to express the polyhedron in Fig. 2 and
thereby prove the introductory example correct. It is beyond the TVPI domain
to state how the linear relationship between two variables change between two
states. This is discussed in Sect. 5 where we also suggest a partial solution.

The third domain we consider is the Octagon domain. This domain pre-dates
the TVPI domain and is based on similar ideas [15]. The Octagon domain can
express inequalities of the form ±xi ± xj ≤ c where c ∈ Q or c ∈ Z. A variant of
the Floyd-Warshall shortest paths algorithm is used to calculate a closed system.
As above, calculating the join and the inclusion check is implemented for each
xi, xj variable pair and is as simple as calculating the maximum and performing
a comparison on the constants, respectively. Recently, it was shown how the
closure algorithm can be modified to obtain a Z-Octagon [2]. However, due to
the restriction on the coefficients of the Octagon domain to +1 and −1, adding
a Boolean flag cannot generally separate two ranges within a single Octagon.
Specifically, a Boolean flag can only express the change of another variable by
one or minus one, any other change is approximated. Figure 5 shows the state
space P+�P− of the introductory example when approximated with the Octagon
domain. Given that the state space can only be delimited by inequalities with
unit coefficients, the approximation includes the points 〈d, f〉 = 〈0, 0〉 and 〈0, 1〉
and hence cannot show that d �= 0. Thus, in the context of the Octagon domain,
splitting the set of traces along a control flow path can only be attained by

Splitting the Control Flow with Boolean Flags 323

re-evaluating the path several times [14], an approach that is abundant in the
Astrée analyser [7] whose principal relational domain is the Octagon domain.

4 Applications of Control Flow Path Splitting

In the remainder of the paper we present various applications where Boolean flags
are a valuable alternative to a repeated analysis. We commence with an example
on pointer analysis before discussing Boolean flags in string buffer analysis [19].

4.1 Refining Points-To Analysis

The verification of C code often hinges on the ability to analyse pointer op-
erations precisely. A cheap approach to dealing with pointers is to run a flow-
insensitive points-to analysis [12] up front and assume that in each pointer access
all memory regions in the points-to set of that pointer are accessed. A more ac-
curate approach is to perform a flow-sensitive points-to analysis alongside the
fixpoint computation on the numeric domain. To this end, define the points-
to domain Pts = X → P(A) which maps each abstract variable x ∈ X to a
set of abstract addresses {a1, . . . ak} ∈ P(A) where each abstract address ai

represents the address of a global, automatic or one or more heap-allocated
memory regions. The analysis now calculates a fixpoint over the product do-
main 〈P,A〉 ∈ Poly × Pts . This flow-sensitive analysis allows points-to sets to
be refined through conditionals and, in particular, it can track if a pointer is
NULL.

In order to define the semantics of points-to sets, we define ρ : A → P(N)
to map an abstract address to concrete addresses. Using this map makes it
possible to model variables in functions that are currently not executed as well
as summarised heap regions that are represented with a single abstract variable.
The possible values of a concrete variable p when modelled by xp are defined as

γp(〈P,A〉) := {v + p | v ∈ P (xp) ∧ p ∈ ρ(a) ∧ a ∈ A(xp)},

where P (xp) denotes the set of integral values that the variable xp can take
on in P ∈ Poly . In order to state that a pointer may be NULL or is simply a
pure value, we introduce the special abstract address null with ρ(null) = {0}.
As an example, consider the variable p that is represented by xp ∈ X with
P (xp) = [0, 1] and A(xp) = {null, a1, a2}. Assuming that the abstract addresses
map to the addresses ρ(a1) = {0x4000} and ρ(a2) = {0x4004}, the program
variable p can take on the values 0, 1, 0x4000, 0x4001, 0x4004 and 0x4005.

Operations on the product domain 〈P,A〉 ∈ Poly × Pts have to evaluate the
information in both domains and update them accordingly. For instance, the
expression p+q-r, where p is represented by xp ∈ X and so on for q and r,
has different values, depending on the points-to sets A(xp), A(xq) and A(xr).
For instance, if {a} = A(xq) and {a} = A(xr) then q-r represents a pointer

324 A. Simon

difference, its value is xp + xq − xr and its points-to set is A(xp). However, if
|A(xr)| ≥ 2 a severe loss of precision occurs: Suppose A(xr) = A(xq) = {a1, a2}
then it is not clear that the pointers contain the same abstract address and it has
to be assumed that a1 ∈ A(xr), a2 ∈ A(xq) is possible. A sound approximation is
to return the points-to set {null} and [0, 232−1] for the value of the expression.

Applying the Abstraction. In order to illustrate the weakness of the above
abstraction, consider the following call to the function f that may assign to p:

char *p;
int r;
r = f(&p);
/* other statments here */
if (r) printf("value:�%s", p);

The return value of f indicates whether setting p was successful; if it was, the
value is printed. The function f itself is implemented as follows:

int f(char** pp) {
if (rand()) return 0; /* error */
pp = "Success."; return 1; / success */

}

Since the value of p is not initialised, the corresponding variable xp has the
points-to set A(xp) = {null} and takes on the range [0, 232−1], assuming p is a
32-bit variable. In case the random number generator returns zero, the pointer is
set to the address of the string buffer "Success." with an offset of zero. Hence,
at the end of f, the value of xp is zero and its points-to set is A(xp) = {as} where
as denotes the address of the string. By returning a different value for each case,
the range of the variable xp is [0, 232 − 1] whenever r = 0 and [0, 0] whenever
r = 1. Thus, testing the return flag in the caller will restrict the offset xp of
the pointer to zero before printf is called. However, the points-to set remains
unchanged and thus, the analysis will warn that p might be NULL.

This example can readily be verified by partitioning the set of traces at the if
statement in the function f such that P (xp) = [0, 232 − 1] and A(xp) = {null}
in one set of traces and P (xp) = [0, 0] and A(xp) = {as} in the other. However,
it is also possible to use a Boolean flag fs

p to indicate if xp contains the address
as. In particular, the analysis will infer that fs

p is equal to r. Tracking a single
equality constraint in addition to the polyhedron of the above analysis is likely
to be cheaper than analysing a potentially long sequence of statements twice.

A Revised Abstraction. In order to track the contents of points-to sets in the
numeric part of the domain, we use a revised points-to domainA : X → P(A×X)
that is fixed such that A(xp) = {〈a1, f

p
1 〉, . . . 〈ak, f

p
k 〉} where the set {a1, . . . ak}

contains all abstract addresses that may be stored in xp and where xp itself
holds the offset or value of p. Suppose the variable xp corresponds to the ith

Splitting the Control Flow with Boolean Flags 325

dimension of the polyhedron P ∈ Poly and 〈fp
1 , . . . f

p
k 〉 correspond to the next k

dimensions, then the value of p is defined as follows:

γp(P) := {v + fp
1 p1 + . . . fp

kpk | 〈. . . xi−1, v, f
p
1 , . . . f

p
k , xi+k+1, . . .〉 ∈ P ∩ Zn

∧ {〈a1, f
p
1 〉, . . . 〈ak, f

p
k 〉} = A(xp)

∧ pi ∈ ρ(ai), i = 1 . . . k}

The above concretisation interprets the Boolean variables in the domain as mul-
tiplier for the addresses with which they are associated with. Thus, a NULL
pointer is characterised by all flags being zero in the polyhedron and an explicit
null tag in A is not necessary anymore. The above interpretation simplifies the
evaluation of linear expressions: Consider calculating e=p+q-r and suppose that
A(xp) = {〈a1, f

p
1 〉, . . . 〈ak, f

p
k 〉} and similarly for xq , xr and xe. Then the result

is calculated by updating the polyhedral variables xe, f
e
1 , . . . f

e
k of e as follows:

xe = xp + xq − xr

fe
1 = fp

1 + f q
1 − f r

1...
...

fe
k = fp

k + f q
k − f r

k

Thus, rather than matching certain common patterns for pointer subtraction
and pointer offset expressions, the Boolean flags can be added component-wise.
Since this makes it possible to add several Boolean flags together, the value of
a particular fe

i might not be in [0, 1]. As a consequence, an access through the
pointer e with offset xe in state P has to be checked as follows:

– P � [[{0 ≤ fe
1 ≤ 1, . . . 0 ≤ fe

k ≤ 1}]]: e contains each l-value at most once.
– P � [[fe

1 + . . .+ fe
k ≤ 1]]: e contains at most one l-value.

– P � [[fe
1 + . . .+ fe

k ≥ 1]]: e is not NULL.

The semantic function for the pointer access is then executed k times, once
for each target ai and state P � [[{fe

i = 1}]] where i = 1, . . . k.
Evaluating a conditional a op b where op ∈ {<,≤,=, �=,≥, >} has to take the

points-to sets of the expressions a and b into account. Suppose that the points-
to sets of a and b are given by A(xa) = {〈a1, f

a
1 〉, . . . , 〈ak, f

a
k 〉} and A(xb) =

{〈a1, f
b
1〉, . . . , 〈ak, f

b
k〉} and that no more than one flag is set in each expression.

The semantics of a op b in the state P can then be calculated by considering
different combinations of flags fa

1 , . . . f
a
k and flags f b

1 , . . . f
b
k. For instance, for all

states P ′ = P�[[{fa
1 = f b

1 = 0, . . . fa
i−1 = f b

i−1 = 0, fa
i = f b

i = 1, fa
i+1 = f b

i+1 = 0,
. . . fa

k = f b
k = 0}]], the comparison can be evaluated as P ′ � [[a op b]] since the

addresses that are implicitly present in each side of the condition are the same
(unless |ρ(ai)| > 1, which indicates that ai summarises several addresses). All
combinations in which the flag set for a is different to that from b indicate
that different pointers are compared which can be flagged as erroneous. In case
a pointer is compared with a value, the address contained in the pointer has
to be made explicit by adding a range of possible addresses to the expression.
Possible addresses of variables are typically [4096, 232 − 1] on a 32-bit machine,

326 A. Simon

since no variable can be stored in the first page of memory. Thus, given the test
p==NULL and a points-to set of p of A(xp) = {〈a, f〉}, the input state P can be
transformed to P1 � P2 where P1 = P � [[{f = 1, xp + [4096, 232 − 1] = 0}]] and
P2 = P � [[{f = 0, xp = 0}]]. Here, P1 is empty if the pointer p has a zero offset,
in which case P1 � P2 � [[{f = 0}]], that is, p has an empty points-to set.

This concludes the presentation of the abstract semantics in the context of
points-to sets that are guarded by Boolean flags. We now present a practical
problem in which refined points-to information is key to a successful verification.

4.2 Boolean Flags and String Buffer Analysis

Consider the task of advancing a pointer s by executing the loop while(*s) s++.
Suppose s points to a string buffer whose length is given by the first element with
value 0. For ease of presentation, we augment and expand the loop as follows:

char s[11] = "the�string";
int i = 0;
while (true) {

c = s[i];
if (c==0) break;
i = i+1;

};

The task is to check that the string buffer s is only accessed within bounds.
In order to simplify the presentation, we define the polyhedral operations and
discuss the stability of the fixpoint. To this end, let n ∈ X represent the index of
the first zero in s, i.e. the position of the ASCII character nul . We decorate the
control flow graph of the above loop with polyhedra P,Q,R, S, T, U as follows:

c==0i=0 i=i+1+

yes

noP Q

S

TR
c=s[i]

U

The initial values of the program variables is described by P = [[{i = 0, n = 10}]].
The join of P and the back edge that is decorated by U ∈ Poly is defined as
Q = P � U . To verify that the array access s[i] is within bounds, we compute
Q′ = Q � [[{0 ≤ i ≤ 10}]] and issue a warning if Q �� Q′. We use the projection
operator ∃xi(P) = {〈x1, . . . xi−1, v, xi+1, . . . xn〉 | 〈x1, . . . xn〉 ∈ P, v ∈ Q} to
remove all information on xi. The following definition of R is explained below:

R = (∃c(Q) � {i < n, 1 ≤ c ≤ 255})
� (∃c(Q) � {i = n, c = 0})
� (∃c(Q) � {i > n, 0 ≤ c ≤ 255})

We assume that no information is tracked about the contents of the array,
except for the nul character at position n. The above definition of R therefore

Splitting the Control Flow with Boolean Flags 327

255

1

1 10

255

1

1 10

255

1

1 10

c c c

i i i

2 2 2

5 5 5

constituents of R T

c 1

R

Fig. 6. The fixpoint of the state spaces after accessing the buffer

defines the read character c in terms of the value of the pointer offset i in Q and
restricts c to the desired range. Specifically, the value of c is restricted to [1, 255]
if i < n, it is set to 0 if i = n and to [0, 255] if i > n. The last three equations
that comprise the system are given by the following definitions:

S = R � [[c = 0]]
T = (R � [[c < 0]]) � (R � [[c > 0]])
U = {〈x1, . . . i+ 1, . . . xn〉 | 〈x1, . . . i, . . . xn〉 ∈ T }

The test c!=0 is implemented by joining the two state spaces R� [[c < 0]] and
R � [[c > 0]]. Note that R � [[c < 0]] = ∅ as the definition of R confines c to the
range [0, 255]. Figure 6 shows the state space R at the fixpoint. Specifically, the
first graph shows the contribution of the first and second equation, the second
graph shows the join of both states. The third graph shows the calculation of T
in that R is intersected with c > 0 ≡ c ≥ 1. The intersection reduces the upper
bound of i to less than 10 and integral tightening ensures that i ≤ 9 before i is
incremented by one to define U . Since U � Q, a fixpoint has been reached.

Observe that the character c acts as a Boolean flag, even though in the non-
zero state c takes on many values. Specifically, c distinguishes the state where
i < n and i = n. Furthermore, all equations that act as guards in the definition
of R have coefficients in {1,−1}. Thus, this Boolean behaviour can be exploited
by splitting the control flow according to the value of c which makes it possible to
prove that the access s[i] is within bounds using the weaker Octagon domain.

4.3 Accessing Several String Buffers

The last section demonstrated that, within the domain of polyhedra, an invariant
such as p < n (the access position lies in front of nul position) can be recovered
through the relational information in the domain merely by intersection with the
loop invariant c �= 0 (the read character is not nul) which acts like a Boolean
flag. This section demonstrates how string buffer analysis suffers from precision
loss when no relational information exists between the polyhedral domain and
the points-to domain. In particular, the following example demonstrates that
the fixpoint is missed if the pointer may point to two different strings.

328 A. Simon

5

255

1

1 10

255

1

1 10

255

1

1

cc c

uu u

22 2

5 5

accessing vaccessing s accessing both

10

ou
t-

of
-b

ou
nd

s

ou
t-

of
-b

ou
nd

s

ou
t-

of
-b

ou
nd

s

88 8

Fig. 7. Finding the nul position in more than one buffer at a time is impossible
without stating that a points-to set changes from a certain iteration onwards

char s[10] = "Spain";
char v[10] = "Valencia";
char* u = v;
if (rand()) u = s;
char *p = u;
while (*u) u++;
printf("length�is�%i\n", (u-p));

The shown code sets the pointer u to either point to the string "Spain" or
to "Valencia", depending on a random number. A backup of u is stored in p
before u is advanced to the nul position in the string buffer. The last statement
prints the length of the accessed string by calculating the pointer difference u-p.

Let u ∈ X denote the offset of u and let av and as denote the abstract
addresses of the variables v and s, respectively. Thus, when using a normal flow-
sensitive points-to analysis, the points-to set of u can be described as A(u) =
{av, as}. In this case, analysing the read access *u in the loop condition has to
assume that both string buffers might be accessed which can be implemented
by evaluating the semantic equation of R in Sect. 4.2 twice, once with the nul

position of s and once with that of v and joining the result. Let c ∈ X denotes the
value of the read character. The value of c with respect to the access position u is
shown in Fig. 7. While the analysis can infer that c may be zero as soon as u ≥ 5
(from the first graph), the analysis correctly infers that the loop may continue
to increment u since the nul position in v at index 8 has not been reached yet.
However, once this index is reached, the value of c resulting from accessing s can
either be zero or non-zero, as the access lies past the first known nul position.
Hence, c > 0 and the analysis assumes that the loop can continue to iterate,
leading to the state in the third graph. In the next iteration the analysis will
emit a waring that the loop will access both buffers past their bound.

The example can readily be verified using the revised points-to abstraction
presented in Sect. 4.1 such thatA(u) = {〈as, fs〉, 〈av, fv〉}. The statements before
the loop ensure that 0 ≤ fv ≤ 1, fs = −fv. The semantics of the access *u is
calculated by evaluating the equation for R firstly with Q � [[{fs = 1}]] and
s and secondly with Q � [[{fv = 1}]] and v. Analysing the loop twice, once

Splitting the Control Flow with Boolean Flags 329

with fs = 1 and once with fv = 1 will implicitly restrict the access to one of
the string buffers, thereby inferring that the loop terminates with u = 5 and
u = 8, respectively. Alternatively, the loop may be analysed once. In this case
the analysis infers a linear relationship between the pointer offset and fv in that
u ≥ 6 implies fv = 1 and fs = 0. Thus, in the next evaluations of the loop,
calculating Q� [[fs = 1]] before evaluating the access to the buffer as will restrict
u to values smaller than 5. Hence, termination of the loop is inferred when
u = 5, fs = 1 or u = 8, fv = 1: The states are S = [[{c = 0, 3f − u = 5, u ≥ 5}]]
and R = [[{c+255u−765fv ≤ 1275, c ≤ 255, 5c+u ≥ 5, 8c+u−3fv ≥ 5, u ≥ 0}]].

5 Discussion and Conclusion

The last section demonstrated how Boolean flags help to refine the abstract se-
mantics of pointer accesses, yielding a more precise abstraction. From Sect. 3
it follows that adding a Boolean flag is equivalent to analysing those parts of
a program twice for which the Boolean flag can take on both values. Thus, the
natural question to ask is which approach is cheaper. In order to get an initial
answer to this question, we implemented the semantics of the above loop us-
ing both techniques. As numeric domain, we used general polyhedra [20] as the
loop invariant requires three variables and is therefore beyond the reach of the
TVPI domain [22]. Interestingly, inferring the given invariant does not require
any integral tightening techniques as the three guards i < n, i = n and i > n in
the semantic equation defining R discard rational solutions since i < n merely
abbreviates i ≤ n− 1. For comparable results, neither widening nor any approx-
imation of the convex hull was applied. Since the analysis of the loop does not
take very long, we calculated the fixpoint one million times in order to get more
accurate results. Nevertheless, any variation in the implementation can have an
immense effect on the given numbers, such that they have to be taken with a
grain of salt. Analysing the loop twice, once for s, once for v, requires 7.7μs per
two fixpoint calculations. Analysing the loop once using a Boolean flag requires
5.6μs for one fixpoint calculation. Interestingly, if both strings are of length 8,
the analysis speeds up to 4.8μs as the state contains more equalities that can
be factored out. While our experiment suggests that using flags is preferable,
their exponential cost may grind an analyser to a halt. For example, using the
character c to distinguish states quickly leads to inequalities with very large co-
efficients. Integral tightening as implementable in the TVPI domain could help
to reduce the size of coefficients. However, the TVPI domain is too weak to ver-
ify the example above. One way of making TVPI polyhedra more expressive is
to track linear inequalities over more than two variables symbolically. Such in-
equalities would take on the role of propagation rules in the context of Constraint
Handling Rules [9]. Reconsider the first example on string buffers where c = 0
implies that p < n. In case n is not constant, but may take on a range of values,
the termination of the loop in Sect. 4.2 cannot be proved since three variables
are necessary to express the invariant [18]. Instead of re-analyzing the code for
1 ≤ c ≤ 255 and c = 0 it is possible to track the implication c = 0 ⇒ p < n and

330 A. Simon

automatically insert the inequality p < n whenever the interval of c is restricted
to [0, 0]. Future work will asses if this trick can also be applied to Boolean flags.

In conclusion, we proposed to use Boolean flags to separate states in a single
convex polyhedron as an alternative to partitioning the set of traces by re-
analysing code. We demonstrated their use in applications such as points-to
analysis where Boolean flags can be superior to analysing code twice.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: Not Necessarily Closed Convex Polyhedra
and the Double Description Method. FAC 17(2), 222–257 (2005)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: An Improved Tight Closure Algorithm for
Integer Octagonal Constraints (2008)

3. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S., Ustuner, A.: Thorough Static Analysis of Device Drivers.
In: European Systems Conference, pp. 73–85. ACM, New York (2006)

4. Ball, T., Rajamani, S.K.: Bebop: A Symbolic Model Checker for Boolean Programs.
In: SPIN Workshop on Model Checking and Software Verification, London, UK,
pp. 113–130. Springer, Heidelberg (2000)

5. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties of
Interfaces. In: SPIN Workshop on Model Checking of Software, New York, NY,
USA, pp. 103–122. Springer, Heidelberg (2001)

6. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Principles of Programming Languages, pp. 269–282 (1979)

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
The ASTRÉE Analyzer. In: European Symposium on Programming, Edinburgh,
Scotland, pp. 21–30. Springer, Heidelberg (2005)

8. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Constraints among Vari-
ables of a Program. In: Principles of Programming Languages, Tucson, Arizona,
pp. 84–97. ACM Press, New York (1978)

9. Frühwirth, T.: Theory and Practice of Constraint Handling Rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3), 95–138
(1998)

10. Gopan, D., Reps, T.W.: Low-Level Library Analysis and Summarization. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 68–81. Springer,
Heidelberg (2007)

11. Harvey, W.: Computing Two-Dimensional Integer Hulls. SIAM Journal on Com-
puting 28(6), 2285–2299 (1999)

12. Heintze, N., Tardieu, O.: Ultra-fast Aliasing Analysis using CLA: A Million Lines
of C Code in a Second. In: Programming Language Design and Implementation,
pp. 254–263 (2001)

13. Lagarias, J.C.: The Computational Complexity of Simultaneous Diophantine Ap-
proximation Problems. SIAM Journal on Computing 14(1), 196–209 (1985)

14. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.
Springer, Heidelberg (2005)

15. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19, 31–100 (2006)

Splitting the Control Flow with Boolean Flags 331

16. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM 8, 102–114 (1992)

17. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons
(1998)

18. Simon, A.: Value-Range Analysis of C Programs. Springer (to appear, 2008)
19. Simon, A., King, A.: Analyzing String Buffers in C. In: Kirchner, H., Ringeissen,

C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 365–379. Springer, Heidelberg (2002)
20. Simon, A., King, A.: Exploiting Sparsity in Polyhedral Analysis. In: Hankin, C.,

Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg
(2005)

21. Simon, A., King, A.: Taming the Wrapping of Integer Arithmetic. In: Riis Nielson,
H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 121–136. Springer, Heidelberg
(2007)

22. Simon, A., King, A., Howe, J.M.: Two Variables per Linear Inequality as an Ab-
stract Domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89.
Springer, Heidelberg (2003)

Reasoning about Control Flow in the

Presence of Transient Faults�

Frances Perry and David Walker

Princeton University
{frances,dpw}@cs.princeton.edu

Abstract. A transient fault is a temporary, one-time event that causes
a change in state or erroneous signal transfer in a digital circuit. These
faults do not cause permanent damage, but when they strike conven-
tional processors, they may result in incorrect program execution. While
detecting and correcting faults in first-order data may be accomplished
relatively easily by adding redundancy, protecting against faults during
control flow transfers is substantially more difficult. This paper analyzes
the problem of maintaining the control-flow integrity of a program in
the face of transient faults from a formal theoretical perspective. More
specifically, we augment the operational semantics of an idealized as-
sembly language with additional rules that model erroneous control-flow
transfers. Next, we explain a strategy for detecting control-flow errors
based on previous work by Oh [10] and Reis [15]. In order to reason
about the correctness of the strategy relative to our fault model, we de-
velop a new assembly-level type system designed to guarantee that any
control flow transfer to an incorrect block will be caught before control
leaves that block. The key technical result of the paper is a rigorous proof
of this fundamental control-flow property for well-typed programs.

1 Introduction

In recent decades, microprocessor performance has been increasing exponentially,
due in large part to smaller and faster transistors. While such transistors yield
performance enhancements, their lower threshold voltages and tighter noise mar-
gins make them less reliable [3,9,17], rendering processors that use them more
susceptible to transient faults. These faults do not cause permanent damage, but
may result in incorrect program execution by altering signal transfers or stored
values. While transient faults are currently rare, they have caused significant
failures in server farms at companies including AOL and eBay [4] and in su-
percomputers such as those at Los Alamos Labs [8]. More importantly, current
hardware manufacturing trends suggest the problem of transient faults will grow
substantially in the future [6].
� This research is funded in part by NSF award CNS-0627650 and a Microsoft graduate
fellowship. We would like to thanks Andrew Appel, David August, George Reis and
Neil Vachharajani for many enlightening discussions on transient faults, harware
mechanisms and fault tolerance.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 332–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reasoning about Control Flow in the Presence of Transient Faults 333

In order to counter the threat of transient faults, researchers from industry
and academia have been searching for solutions to the reliability problem in both
hardware and software. Broadly speaking, with sufficient hardware resources,
hardware-only solutions are more efficient for a single, fixed reliability policy, but
software-only solutions are more flexible and less costly. In terms of flexibility,
software-only solutions may be deployed immediately on current hardware that
already exists in the field, simply by recompiling the application in question. In
terms of cost-effectiveness, recent studies have shown that software techniques for
fault tolerance often add approximately 35% overhead [15] to the computation
with no additional hardware cost, whereas a standard double- or triple- modular
redundancy technique will add 100% or 200% to the hardware cost, with some
additional performance overhead for communication between replicas. Hence,
depending upon where a given application sits in the cost-performance-reliability
trade-off space, software, hardware or some mix of the two may be the preferred
solution.

Unfortunately, devising software solutions to the problem of transient faults,
and making sure they are correct, is an extremely difficult task. Just as the many
possible interleavings of threads make it difficult to reason about the properties
of concurrent programs, the many possible scenarios in which transient faults
can arise make it difficult to reason about the properties of faulty programs.
Moreover, just as conventional testing is often an ineffective way to uncover
bugs in concurrent programs, testing is likely to be an ineffective way to uncover
reliability errors in possibly faulty programs.

Faced with these challenges, we and other researchers at Princeton have re-
cently begun to develop type-theoretic techniques for reasoning about software
in the presence of transient faults. In our first effort [18], we devised a lambda
calculus called λzap to serve as a highly idealized model for unreliable compu-
tations. The operational semantics of the calculus specify that any value may
suddenly be corrupted during execution. However, programs are able to repli-
cate computations and use atomic voting operations to check replicas against
one another to detect and recover from transient faults. A type system for λzap

guarantees that any well-typed program is fault tolerant. In our second piece
of work [11], we studied fault tolerance in the more realistic setting of assem-
bly language with specialized hardware instructions to aid detection of faults.
Once again we devised a type system (this time called TALFT) and rigorously
proved that it guarantees a strong fault tolerance property for all well-typed
programs. From a theoretical perspective, these type systems codify formal rea-
soning techniques that allow programmers to prove strong reliability properties
of their programs. Equally importantly, from a practical perspective, these type
systems can be implemented and used to check the correctness of compiler out-
puts. Using a type checker to verify these reliability properties, where possible, is
vastly superior to conventional testing as the type checker gives perfect coverage
relative to the fault model whereas any test suite will be highly incomplete.

Despite the progress made to date, this prior work skirts the issue of how to
reason about code that not only incurs faults to first-order data, but also may

334 F. Perry and D. Walker

go wrong during a control flow transfer. The faulty lambda calculus λzap avoids
the issue altogether by assuming the existence of high-level atomic operations to
simultaneously check for errors, recover and jump to a new control flow point.
The fault-tolerant typed assembly language TALFT admits the possibility of
faults to the program counter, but requires a highly specialized instruction set
and additional hardware state to detect those faults.

Surprisingly, however, researchers [10,15,5] have developed techniques for de-
tecting certain classes of control-flow errors entirely in software. These tech-
niques do not catch all control-flow errors, but empirical evidence suggests they
can improve system reliability substantially. However, many theoretical questions
remain. In particular, is it possible to characterize the effectiveness of these tech-
niques analytically as opposed empirically? In other words, can we prove that
such techniques are sound with respect to an interesting and non-trivial, though
incomplete, fault model? One of the key benefits of such an analysis is that
it would guarantee an important fragment of the problem has been thoroughly
solved and thereby free researchers to study auxiliary instrumentation techniques
that address the remaining incompleteness. Perhaps more importantly, the for-
mal fault model would define an important hardware/software interface: The
software has been proven to handle faults that lie within the model; future
hardware designers need only provide mechanisms to catch those faults that lie
outside the model. While this latter point may appear of little importance since
TALFT already demonstrates how to design a sound hybrid hardware-software
protection system, the key difference is that such results would show how to
shift a substantial portion of the control-flow checking burden from the hard-
ware to software. This may lead to much simpler hardware designs as well as
the opportunity to trade performance for reliability at compile time as opposed
to hardware design time.

In this paper we attack these theoretical questions following a similar strat-
egy to our earlier work. First, we define an incomplete, yet simple, elegant and
non-trivial control-flow fault model — one in which faults can cause jump in-
structions and conditional branches to transfer control to the beginning of any
program block. Next, we develop a type system that guarantees a strong fault
tolerance property relative to this fault model. We have proven our type system
is sound and also have demonstrated that it is sufficiently expressive that we can
compile classic while programs into well-typed programs in the language. Due
to space limitations, this extended abstract only describes selected elements of
our assembly language and its type system. Further details may be found in an
accompanying technical report [12] and in our online proofs [13].

2 Informal Overview

When a transient fault causes the actual sequence of control flow blocks visited
by a program to deviate from the expected sequence, we say a control-flow
error has occurred. In this paper, control-flow errors arise when a fault effects
either (1) the target address of a jump instruction, (2) the target address of a

Reasoning about Control Flow in the Presence of Transient Faults 335

conditional jump instruction, or (3) the boolean condition of a conditional jump
instruction. Such faults may occur immediately prior to attempting the control-
flow transfer or at any other time during the computation. However, whenever
a control-flow operation is executed, we assume control is either transferred to
the beginning of some block or to an illegal instruction, which is immediately
detected by the hardware. We currently do not consider the possibility that a
fault causes a control flow transfer to a legal instruction in the middle of a block.
(For a discussion on alleviating this restriction, see Section 6.) In addition, we
adhere to the standard Single Event Upset model [14,16], which states that only
one fault may occur during an execution, though faulty values may be copied,
propagated and used in any way an ordinary value may be used.

In order to ensure that control flow transfers do not go wrong, compiled code
computes a replica of the intended control-flow destination prior to the control-
flow transfer and moves the intended destination into a designated register. We
refer to this register as the intentions register ri. This intentions register is part
of the global “calling convention” for fault-tolerant control flow transfers. We fix
the register so that all jump targets know where to find the intended destination,
even when there has been a control-flow fault.

As an example, to jump to address L2, one might use the following code
sequence. In this code, we leave ellipsis in between instructions to emphasize our
system allows flexible scheduling of instructions — ordinary instructions may be
interleaved with the instructions used to guarantee fault tolerance.

L1: ...; movi ri, L2; ...; movi r2, L2; ...; jmp r2

Since the intentions register ri plays a special role in the protocol for detecting
control-flow errors, we will need to type check the move instruction that loads
this register in a special way. To designate the move as special, we henceforth
write it intend L2 rather than movi ri, L2 as in the following example code.

L1: ...; intend L2; ...; movi r2, L2; ...; jmp r2

If the intentions register has been set properly prior to all jump instructions,
the jump targets are able to catch control flow errors. To be specific, all jump
targets should be instrumented with the following code.

Lk: movi r2, Lk; ...; sub r2, r2, ri; ...; brnz r2, Lrecover; ...

Here, the current block address Lk is loaded into register r2 and then compared
with the contents of ri and if there is any difference, control is transferred to
Lrecover, an address containing recovery code.1 Once again, since the branch
to the recovery code plays a special role in the fault-tolerance protocol, we give
it the special syntax recovernz r2. Thus, our detection code will henceforth be
written as follows.

L2: movi r2, L2; ...; sub r2, r2, ri; ...; recovernz r2; ...

As an example of how a transient fault might be caught using our protocol,
suppose register r2 is corrupted just prior to attempting to execute the jump to
1 Since recovery is a secondary issue to detection, we do not consider it in this paper.

336 F. Perry and D. Walker

L2 in block L1. If the corrupted value is not a valid code address, then a hardware
fault will be triggered. Otherwise, upon arrival at some erroneous control flow
block, say L3, the intended destination L2 remains safely untouched in register
ri, though, unnervingly, all other program invariants may be disrupted. The
target code compares the contents of ri (i.e., L2) with L3, which it loaded into
r2 after arriving at the current block. It detects a difference and jumps to the
recovery code.

One must also consider what happens if faults strike at different times or in
different places. If ri is corrupted, it appears as though there was a fault because
ri differs from the current block label (assuming the fault occurs prior to the
subtraction). Unable to tell the difference between a fault in the intentions reg-
ister and a fault in the control-flow transfer itself, we jump to recovery code. A
number of other scenarios must also be analyzed — in order to have confidence in
the solution, one must do so in a principled, disciplined fashion. It is important
to observe that similar, but subtly different code sequences do not adequately
protect against faults. In particular, optimizations like copy propagation, com-
mon subexpression elimination and some code motion transformations, are no
longer semantics-preserving in the context of transient faults.

For example, the code motion transformation illustrated below shifts the move
from a target block into the jumping block and creates a vulnerability.

L1: ...; movi r2, L2; intend L2; movi r3, L2; jmp r2
Lk: sub r3, r3, ri; recovernz r3; ...

Above, a fault to r2 causes a control-flow error, but testing r3 against ri at the
recovernz instruction will not help detect the fault.

The protocol for handling conditional branches is slightly more involved than
the case for jumps, but follows a similar pattern. We begin by assuming that the
the jump target is held in registers r3 and r3’ and the condition for the jump is
held in registers r4 and r4’. These register pairs must be independent replicas
of one another. In other words, in the absence of faults, they should contain the
same value, and moreover, a fault to one should have no impact on the value of
the other. Given this assumption (which will be verified by our type system), the
following code sequence sets up a conditional branch, which may fall through to
L2 or may jump to the target in r3. It also uses a conditional move cmovz r4’,
ri, r3’, which moves the contents of r3’ into ri if r4’ is zero, and otherwise
does nothing.2

L1: ...; intend L2; cmovz r4’, ri, r3’; brz r4, r3

Again, to notate the special role of ri and simplify the presentation, we will
henceforth write the conditional move cmovz r4’, ri, r3’ as intendz r4’,
r3’. Intuitively, the intend instruction unconditionally sets the intentions reg-
ister, whereas the intendz instruction conditionally sets the intentions register.

2 Many architectures including the IA-32 following the Pentium Pro, the Sparc V-9
and the IA-64 have conditional moves. Other architectures can use a conditional
branch and a move instruction instead, but this branch will not be protected.

Reasoning about Control Flow in the Presence of Transient Faults 337

colors c ::= G | B | O
colored values v ::= c n

code memory C ::= · | C,
 → b

registers r ::= ri | r1 | . . . | rn

register file R ::= · | R, r → v

history h ::=
1, . . . ,
n

instructions i ::= movi rd v

| sub rd rs rs

| intend rt

| intendz rz rt

| recovernz rz

blocks b ::= i; b | jmp rt | brz rz rt

states Σ ::= (C, h, R, b)
final states F ::= Σ | recover(h) | hwerror(h)

Fig. 1. Machine State Syntax

Summary. By creating duplicate copies of intended control flow targets, it is
possible to check that control has arrived at the proper location. In the fol-
lowing sections, we make the machine’s operational semantics and fault model
precise and develop a sound type system strong enough to verify that the “good”
instruction sequences we have discussed in this section are indeed fault tolerant.

3 The Control-Flow Machine

For clarity and elegance, we will work with a minimal assembly instruction set
involving move (movi), subtraction (sub), jump (jmp) and conditional branch
if zero (brz) instructions as well as the special macros intend, intendz and
recovernz. Instruction operands include constant values v and registers r. In
the previous section, values were unannotated, but from this point forward we
annotate every value with a color c where c is either G (green), B (blue) or O
(orange). These colors have no operational significance, but they play a special
role in the type system and proof of correctness. The only kind of value is
an integer. In general, meta-variable n ranges over integers, but we use meta-
variable � to emphasize that an integer will be used as an address.

Instructions are grouped together in code blocks b that are always terminated
by either a jump or a conditional branch instruction. Code memory C is a
partial map from addresses to valid code blocks b. Addresses are ordered, and
the notation �+ 1 refers to the address of the block following the block at �. If a
block at � ends with a conditional branch, �+ 1 must inhabit the domain of C.

The register file R is a mapping from registers to the colored values they
contain. The registers include the intentions register ri and a number of general-
purpose registers r1 through rn. We use the notation R(r) to denote the contents
of r in R. We use the notation R[r �→ v] to denote a new register file R′ created
by updating R so it maps r to v. When we wish to refer to the unannotated
integer n as opposed to the colored value c n in a register r in R, we use the
notation Rval(r). Similarly, Rcol(r) refers to the color annotating the value in r.

An ordinary abstract machine state Σ is a tuple containing code C, history
h, register file R and code block to be executed b. The history h is a sequence
of labels. It records the code blocks visited during the current execution. In

338 F. Perry and D. Walker

Static Expressions
exp kinds κ ::= κint | κhist

exp contexts Δ ::= · | Δ, x : κ
exps e ::= x | n | e − e

| e?e : e
substitutions S ::= · | S, e/x

Context Typing
heap typing Ψ ::= · | Ψ, � → τ
reg file types Γ ::= · | Γ, r → t
history typing σ ::= ε | x | σ ◦ e

Types
stage description ρ ::= check | ok

| go | goz
basic types τ ::= int | ρ | ∀[Δ](Γ, σ)
value types t ::= 〈c, τ, e〉
type option τ opt ::= τ | undef

ZapTags
zap tag Z ::= · | c | CF

Fig. 2. Typing Syntax

addition to ordinary abstract machine states, “final states” F include two special
states. The state recover(h) represents a state in which a transient fault has
occurred and has been caught. The labels in history h were visited during the
execution. The state hwerror(h) represents a state in which a transient fault
causes transition to an invalid address. Figure 1 summarizes the syntax of the
assembly language and machine states.

3.1 Dynamic Semantics

We model the dynamic semantics of the assembly language using a small step
operational semantics. In general, the single step operational judgments have
the form Σ −→k F where k, which is either zero or one, records the number of
faults that occur during the step.

The most interesting rules in the system are the rules modeling faults. The
primary rule (zap-reg) arbitrarily corrupts the value in a single register, though
the color tag (which has no operational significance) remains unchanged.

R(r) = c n

(C, h,R, b) −→1 (C, h,R[r �→ c n′], b)
(zap-reg)

The rule above may fire at any time, just as a transient fault may occur at
any point. In particular, it may fire just prior to execution of a jump (jmp rt) or
a branch (brz rz rt), corrupting the jump target in register rt.

For uniformity in our fault model, we also consider errors in execution of the
recovernz rz instruction. These rules, as well at the rules for normal instruction
execution, are provided in the technical report [12].

4 Typing

The overall design of the type system is based on two nonstandard concepts: (1)
Classifying the reliability properties of values, and (2) Using abstract types to
make sure that the fault tolerance protocol proceeds in the correct order, with no

Reasoning about Control Flow in the Presence of Transient Faults 339

steps omitted or inappropriate steps inserted. The following paragraphs explain
the main intuitions behind each concept.

Classifying the Reliability Properties of Values. Since faults occur completely
unpredictably and at run time, it is not possible for the type system to know
which values have incurred faults or to track the propagation of presumed faulty
values precisely. Consequently, as is usual, the type system will have to approx-
imate these properties somehow. It does so by assigning each value a color and
ensuring that values with the same color have related reliability properties.

Most values either belong to the green group or to the blue group. These
two groups have the property that they are independent and redundant. In other
words, a fault in a green value can never percolate to a blue value and vice
versa. Consequently, when corresponding green and blue values are compared,
at least one of them must be correct, even when a fault has occurred. This
mutual independence property is ensured by a series of simple checks in the type
system that guarantee that green values are not used to construct blue values
and vice versa.

But what if a control-flow fault has occurred? In that case, almost all program
invariants are invalidated, including any properties of either blue or green val-
ues. However, orange values are manipulated in such a way as to preserve their
properties in just this situation.

There are two general mechanisms by which one can guarantee orange values
maintain their expected properties in the face of a control-flow fault. The first
mechanism is to ensure that the orange value in question is not live across the
control-flow transfer: If the value has been constructed in the current block
and does not depend upon values in previous blocks, a control-flow error will
not influence its properties. The second mechanism involves ensuring that every
possible control-flow transfer maintains the invariant in question. If the invariant
is true across every control-flow transfer, then it is true no matter where control
winds up. This second mechanism is used to classify the contents of ri as orange
across every control-flow transfer. Just as the type system isolates green values
from blue and blue from green, orange is also isolated from the other two. Again,
the purpose is to avoid having a fault in one color influence the others.

While values are classified using colors, entire machine states are classified us-
ing a related concept called zap tags. Intuitively, each zap tag specifies which col-
ors may no longer be trusted. For example, if zap tag Z is empty (written “·”),
then there have been no faults during the computation, and all values, no matter
what their color, satisfy the standard invariants associated with their compile-
time type. On the other hand, if Z is a color c, then values with color c may have
been corrupted, but other values will be correct. The final zap tag CF classifies
machine states after a control-flow error has occurred. In this case, we know noth-
ing about green or blue values, but the properties of orange values remain valid.
The table below summarizes the properties that hold under each zap tag while in
block �. A value is trusted if it satisfies standard canonical forms properties (e.g., a
value with code type is actually a pointer to valid code). The table says a value is
untrusted when the standard canonical forms properties do not necessarily hold.

340 F. Perry and D. Walker

Zap Tag G values B values O values � is the intended destination
· trusted trusted trusted yes

G untrusted trusted trusted yes

B trusted untrusted trusted yes

O trusted trusted untrusted yes

CF untrusted untrusted trusted no

A zap tag Z is a subtype of another Z ′, written Z ≤ Z ′, when the values
in machine states classified by Z are more trusted than the values in machine
states classified by Z ′. Hence the empty zap tag is a subtype of all other zap
tags, and both B and G zap tags are a subtype of CF .

Typing Protocol Stages. The instructions in each block can be thought of as
being divided into three distinct stages – the checking code, the block body, and
the exit code. Each of these stages has its own distinct invariants. The type of
intentions register ri encodes the current stage and ensures that the stages occur
in the correct order. It also guarantees no part of the protocol can be omitted
or any inappropriate instruction added. These stages may be summarized as
follows.

1. The checking code compares the intended target with the current location
to determine if there has been a control flow fault.

2. In the block body, we already know the control flow correctly transferred
to this block. At the end of this sequence, there is some green register that
holds the target label for the next control flow transfer and some blue register
that holds the duplicate copy of this label. In the absence of faults, these
two values are equal.

3. The exit code sequence sets the intended target and transfers control to the
new block.

The following subsections elucidate some of the technical ideas behind these in-
tuitions. The complete definitions are described more thoroughly in our technical
report [12].

4.1 Value Typing

The type of a value is a triple 〈c, τ, e〉. The color c is assigned according to the
intuitions expressed in the previous subsection. The basic type τ is either an
integer type (int), a code type (∀[Δ](Γ, σ)), or a special type ρ that indicates
the state of the fault tolerance protocol. The static expression e describes the
value in more detail. These static expressions are used by the expression typing
rules to require that blue and green computations compute identical results in
the absence of faults. The expressions include variables x, integers n, subtraction
e1−e2 and conditional expressions e1?e2 : e3 which equal e2 when e1 is non-zero
and e3 when e1 is zero. The judgment Δ e : κ holds when all free variables in
e are contained in the context Δ. The judgments Δ e1 = e2 and Δ e1 �= e2

Reasoning about Control Flow in the Presence of Transient Faults 341

hold when the relation holds for all substitutions of the variables in Δ. The
judgment Δ S : Δ′ holds when S provides substitutions for all variables in Δ′,
and the substituted expressions are well-formed in Δ.

The value typing judgment has the form Δ;Ψ Z v : t. Here, Δ contains
expression variables free in t and the heap type Ψ maps integer addresses to
basic types. The zap tag Z characterizes the current state of the machine as
explained earlier. Z is always the empty tag when a user checks a program at
compile time. It only takes on other values at run time for the purposes of the
proof of preservation.

The central rule expresses the fact that if a value n has basic type τ , is equal
to e and annotated with color c then it can always be given the type 〈c, τ, e〉.
However, if the zap tag Z is a color c, then all values c n can also be typed using
any basic type and any well-formed expression. Another key rule expresses the
fact that when the zap tag is CF , green and blue values can be given any type.
In particular green values may be given blue types and vice versa.

The type system also uses a subtyping judgment with the form Δ t ≤ t′.
As an example, this judgment allows type 〈c, τ, e〉 to be a subtype of 〈c, int , e′〉
whenever Δ e = e′.

4.2 Instruction and Block Typing

Figure 3 presents several rules from the key judgments for checking program
code. The first judgment has the form Δ;Ψ ;Γ i : Γ ′. As before, Δ contains
free expression variables and Ψ types heap addresses. Γ acts as the precondition
for the instruction, mapping registers to types required prior to execution of the
instruction. Γ ′ acts as the post condition for the instruction, mapping registers
to types guaranteed after execution of the instruction.

The simplest instruction to type check is the movi rd c n instruction. It up-
dates the type of the destination register rd to be 〈c, int , n〉. The subtraction
instruction sub rd ra rb requires that the values being subtracted are integers.
Notice it also requires the integers arguments have the same color as the result
– this restriction prevents faults in values with one color to influence another.
Neither rule places any restrictions on the type of ri, so they can occur during
any stage of a block.

Though intend rt is operationally the same as movi ri rt, its typing rule
requires that the intentions register ri has basic type ok. This restriction guar-
antees any new intend will occur after the checking code has been completed.
Notice also that the intention register is marked blue – in contrast, the address
used as the real jump target will be marked green. Finally, the type of ri is
updated to reflect the new static expression and the new stage go.

A sequence of instructions is typed using the block typing judgment, which
has the form Δ;Ψ ;Γ ;σ; ei; τ opt b. In addition to Δ, Ψ , and Γ , the block typing
judgment is parametrized by a sequence σ, an expression ei, and a type option
τ opt. The sequence σ contains a list of expressions that describe the locations
in the current history h. The expression ei describes the intended target when
the transfer occurred to the current label �. If control flow correctly transferred

342 F. Perry and D. Walker

Δ;Ψ ;Γ � i : Γ ′

rd �= ri

Δ;Ψ ;Γ � movi rd c n : Γ [rd �→ 〈c, int, n〉]
(movi-t)

rd �= ri Γ (ra) = 〈c, int , ea〉 Γ (rb) = 〈c, int , eb〉

Δ;Ψ ;Γ � sub rd ra rb : Γ [rd �→ 〈c, int, ea − eb〉]
(sub-t)

Γ (ri) = 〈ci, ok, ei〉 Γ (rt) = 〈B ,∀[Δt](Γt, σt), et〉

Δ;Ψ ;Γ � intend rt : Γ [ri �→ 〈B, go, et〉]
(intend-t)

Δ;Ψ ;Γ ;σ; ei; τ opt � b

Δ;Ψ ;Γ � i : Γ ′ Δ;Ψ ;Γ ′; σ; ei; τ opt � b

Δ;Ψ ;Γ ;σ; ei; τ opt � i; b
(sequence-t)

Γ (ri) = 〈O , check, xi〉 Γ (rz) = 〈O , int , ez〉 Δ, x : κint � ez = e� − xi

Δ � Γ/ri/rz wf Δ � σ wf Δ � e� : κint

Γ ′ = Γ [rz �→ 〈O , int , 0〉][ri �→ 〈B , ok, e�〉] Δ;Ψ ;Γ ′;σ ◦ e�; e�; τ opt � b

(Δ, x : κint);Ψ ;Γ ;σ ◦ e�;xi; τ opt � recovernz rz; b
(recovernz-t)

Γ (ri) = 〈B , go, e′t〉 Γ (rt) = 〈G,∀[Δt](Γt, σt), et〉 Δ � et = e′t
∃St . Δ � St : Δt Δ � Γ [ri �→ 〈O , check, e′t〉] ≤ St(Γt) Δ � σ ◦ e� ◦ et = St(σt)

Δ;Ψ ;Γ ;σ ◦ e�; ei; t � jmp rt

(jmp-t)

Fig. 3. Selected Instruction Typing Rules and Block Typing Rules

to �, then Δ ei = �. The option type τ opt contains the type of the label �+ 1
if such a label exists. It is used when a branch falls through to the subsequent
block to determine the type of that block. Three example rules are shown in
Figure 3.

The first rule, sequence-t, is used when the first instruction in a block is one of
the basic instructions described previously. The second rule for checking blocks
illustrates how to check the recovernz instruction. At run time, control only
proceeds past this point in the block if xi (describing ri) is equal to the expression
e� (describing the current location), so the remainder of the block is typed by
substituting e� for xi. The types of ri and rz are updated to reflect the deletion
of xi. Judgment Δ Γ/ri/rz wf and Δ σ wf hold when all expression variables
used in the types of registers other than ri and rz , as well as in the expressions
in σ, are all contained in Δ. Since none of these pieces of state contain xi, they
do not need to be modified.

The rule jmp-t requires that ri has type 〈B , go, e′t〉 specifying that the intention
must already have been set before the jump. Also, the actual jump target in
rt has a code type and is described by an expression et that is equal to e′t.
This enforces that in the absence of faults, the duplicate target is equal to the
target. The target label precondition contains a set of expression variables Δt

Reasoning about Control Flow in the Presence of Transient Faults 343

and requires a register file described by Γt and a history described by σt. There is
some substitution St for the variables in Δt so that the current register file type
and sequence are subtypes of those required by the target. The jmp rt instruction
recolors the blue intention register to be orange when control is transferred to a
new block. At first, this seems to contradict the rule that faults to a value of one
color should never corrupt values of other colors. However, because the target
block doesn’t place any restrictions on the expression describing ri, the variable
xi that describes the value can be instantiated with the value itself. Because of
this, a blue value that is not trusted can become a trusted orange value during
a control flow transfer, continuing to leave only the blue values untrusted.

5 Formal Properties

We have proven a number of properties of our type system including variants
of the standard Progress, Preservation and Type Safety theorems. Our most
important result is a Fault Tolerance theorem, which we sketch briefly below.
The full proofs appear in the online appendix [13].

In order to explain the theorem, we require a couple of additional concepts.
First, we say a machine state Σ is well-formed (written Z Σ) when all code
and state are well-typed relative to the zap tag Z. Second, we say a faulty
machine state Σf simulates a fault-free state Σ under color c (written Σf

c∼ Σ)
whenever the two states are identical modulo values colored c. In other words,
values colored c may be completely different from one another, but otherwise
the two states are identical.

The judgment Σ =⇒h
k F states that machine state Σ executes through

a sequence of blocks h to reach state F while incurring k faulty transitions.
So if Σ = (C, h1, R, b), then F is either (C, (h1, h), R′, b′), hwerror(h1, h), or
recover(h1, h).

We say a program is fault-tolerant if any execution of the program with a
single fault behaves in one of four possible ways with regards to the original,
non-faulty computation: (1) The faulty computation visits the same sequence of
blocks as the original, and the final faulty state simulates the original result state
under some color c. (2) The faulty computation attempts to transfer control to an
invalid address outside the domain of code memory and triggers a hardware fault.
Prior to the occurrence of the hardware fault, the faulty computation visited the
same blocks as the original computation. (3) A fault affecting the intentions
register or checking code cause the faulty computation to conservatively detect
a fault in software and jump to recovery code. (4) The faulty computation veers
off course to a block that does not match the corresponding block in the original
computation. In this case, the checking code in the invalid block catches the
error and transfers control to the recovery code.

Theorem 1 (Fault Tolerance). If Σ and Σ =⇒h
0 Σ

′ then at least one of
the following cases applies and all derivations Σ =⇒hf

1 F where length(hf) ≤
length(h) fit one of these cases:

344 F. Perry and D. Walker

1. Σ =⇒h
1 Σ

′
f and ∃c . Σ′

f
c∼ Σ′

2. Σ =⇒hf

1 hwerror(h′, hf) and hf is a prefix of h

3. Σ =⇒hf

1 recover(h′, hf) and hf is a prefix of h

4. Σ =⇒hf

1 recover(h′, hf) and hf = (h1, l
′) and h = (h1, l, h2)

6 Related Work, Future Work, and Conclusions

Related Work. As mentioned in the introduction, this research follows previous
work on λzap [18] and TALFT [11]. However, neither λzap nor TALFT provided
software mechanisms for guaranteeing control-flow integrity. Recently, Elsman [7]
has shown how to extend λzap so that the atomic voting operations can be
broken down into a series of conditional statements. However, again, there is no
treatment of control-flow.

Perhaps the most closely related work to the current paper is CFI, a provably-
sound technique for enforcing control-flow integrity in a security context [1,2].
The goal of CFI is to guarantee that machine code obeys a predefined “control-
flow policy” that constrains the sequence of blocks control can move through. The
key distinction between CFI and our own work is the threat model. CFI attackers
can modify arbitrary amounts of machine state in arbitrary ways. but cannot
touch three reserved registers during the execution of certain code sequences.

Our work builds upon many past research efforts in fault tolerance, partic-
ularly those that deal with control-flow checking. For example, Oh et al. [10]
developed a pure software control-flow checking scheme (CFCSS) wherein each
control transfer generates a run-time signature that is validated by error check-
ing code generated by the compiler for every block. The SWIFT system [15],
another software-only fault tolerance system, also uses signature checking very
much like that in the current paper. The distinguishing feature of our research is
not the control-flow checking procedure itself, but the type system we designed to
verify the code and our proof that well-typed programs are indeed fault tolerant.
These previous efforts did not rigorously specify the properties they intended to
enforce nor did they prove their techniques actually enforce them.

Future Work. We acknowledge that the fault model used in this paper is sim-
plistic. By assuming hardware support to catch control transfers into the middle
of blocks, we avoid dealing with many interesting and likely situations. This
assumption is required because stating intentions involves resetting ri, so an in-
correct transfer into a block before the intend rt instruction may not be caught.

A sequence of existing work on software-only solutions [10,15,5] handles in-
creasing classes of erroneous transfers. By ensuring that the intentions register
is a function of the entire control-flow path, not just the current block, they can
detect most jumps into the middle of blocks. For example, SWIFT [15] keeps an
”approximate program counter” which contains the current block. Before each

Reasoning about Control Flow in the Presence of Transient Faults 345

control-flow transfer, the current block and the intended target block are xored
together and put in a designated ”transition register”. At the beginning of each
block, the transition register is xored with the approximate program counter to
give the new approximation. (A correct transfer from block A to block B will
result in a new approximate program counter of A⊗ (A⊗B), which is equal to
B.) Though these solutions are an improvement, there are still situations (such
as jumping back two instructions within a block) that they cannot handle.

The classification scheme of values and reliability properties from this paper
does not transfer directly to these more complex solutions, but we believe we
can develop a similar classification to capture the necessary invariants. In doing
so, the Fault Tolerance Theorem becomes more difficult to state and prove due
to the increase of possible scenarios a single fault may cause. (For example, a
fault may cause control to transfer from the middle of one block to the middle
of a second block. This second block may transfer control to a third block before
the error is finally detected.) In essence, the current work and proof strategy are
an important building block for reasoning about more complex solutions.

Conclusions. Future processors will become more susceptible to transient faults,
and reasoning about the correctness of software running on faulty hardware is
an extremely difficult task, particularly when faults may affect program control
flow. In this paper, we defined a simple abstract machine that exhibits control-
flow faults and we analyzed the correctness of a software protocol for detecting
them. Our analysis proceeded through the definition of a type system that guar-
antees programs are reliable relative to a simple fault model. We have rigorously
proven strong reliability properties for our type system and believe this is the
first successful attempt at reasoning rigorously about software mechanisms for
controlling control flow faults.

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity: Princi-
ples, implementations, and applications. In: ACM Conference on Computer and
Communications Security (November 2005)

2. Abadi, M., Budiu, M.: A theory of secure control flow. In: International Conference
on Formal Engineering Methods (November 2005)

3. Baumann, R.C.: Soft errors in advanced semiconductor devices-part I: the three
radiation sources. IEEE Transactions on Device and Materials Reliability 1(1),
17–22 (2001)

4. Baumann, R.C.: Soft errors in commercial semiconductor technology: Overview
and scaling trends. In: IEEE 2002 Reliability Physics Tutorial Notes, Reliability
Fundamentals, pp. 121 01.1–121 01.14 (April 2002)

5. Borin, E., Wang, C., Wu, Y., Araujo, G.: Software-based transparent and com-
prehensive control-flow error detection. In: CGO 2006: Proceedings of the Interna-
tional Symposium on Code Generation and Optimization, Washington, DC, USA,
pp. 333–345. IEEE Computer Society Press, Los Alamitos (2006)

6. Borkar, S.: Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation. In: IEEE Micro., vol. 25, pp. 10–16 (De-
cember 2005)

346 F. Perry and D. Walker

7. Elsman, M.: Fault-tolerant voting in a simply-typed lambda calculus. Technical
Report ITU-TR-2007-99, IT University of Copenhagen, Rued Langgaards Vej 7,
DK-2300 Copenhagen S, Denmark (June 2007)

8. Michalak, S.E., Harris, K.W., Hengartner, N.W., Takala, B.E., Wender, S.A.: Pre-
dicting the number of fatal soft errors in Los Alamos National Labratory’s ASC
Q computer. IEEE Transactions on Device and Materials Reliability 5(3), 329–335
(2005)

9. O’Gorman, T.J., Ross, J.M., Taber, A.H., Ziegler, J.F., Muhlfeld, H.P., Montrose,
I.C.J., Curtis, H.W., Walsh, J.L.: Field testing for cosmic ray soft errors in semi-
conductor memories. IBM Journal of Research and Development, 41–49 (January
1996)

10. Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-flow checking by software signa-
tures. In: IEEE Transactions on Reliability, vol. 51, pp. 111–122 (March 2002)

11. Perry, F., Mackey, L., Reis, G.A., Ligatti, J., August, D.I., Walker, D.: Fault-
tolerant typed assembly language. In: International Symposium on Programming
Language Design and Implementation (PLDI) (June 2007)

12. Perry, F., Walker, D.: Reasoning about control flow in the presence of transient
faults. Technical Report TR-799-07, Princeton University (2007)

13. Perry, F., Walker, D.: Reasoning about control flow in the presence of tran-
sient faults - online proof appendix (2007), Web site: http://www.cs.princeton.
edu/sip/projects/zap/tal cf/

14. Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous mul-
tithreading. In: Proceedings of the 27th Annual International Symposium on Com-
puter Architecture, pp. 25–36. ACM Press, New York (2000)

15. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: Soft-
ware implemented fault tolerance. In: Proceedings of the 3rd International Sym-
posium on Code Generation and Optimization (March 2005)

16. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee,
S.S.: Design and evaluation of hybrid fault-detection systems. In: Proceedings of
the 32th Annual International Symposium on Computer Architecture, pp. 148–159
(June 2005)

17. Shivakumar, P., Kistler, M., Keckler, S.W., Burger, D., Alvisi, L.: Modeling the
effect of technology trends on the soft error rate of combinational logic. In: Proceed-
ings of the 2002 International Conference on Dependable Systems and Networks,
pp. 389–399 (June 2002)

18. Walker, D., Mackey, L., Ligatti, J., Reis, G., August, D.I.: Static typing for a faulty
lambda calculus. In: ACM International Conference on Functional Programming,
Portland, Oregon (September 2006)

http://www.cs.princeton.edu/sip/projects/zap/tal_cf/
http://www.cs.princeton.edu/sip/projects/zap/tal_cf/

A Calculational Approach to Control-Flow
Analysis by Abstract Interpretation

Jan Midtgaard1 and Thomas Jensen2

1 INRIA Rennes - Bretagne Atlantique
2 CNRS

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{jan.midtgaard,thomas.jensen}@irisa.fr

Abstract. We present a derivation of a control-flow analysis by ab-
stract interpretation. Our starting point is a transition system seman-
tics defined as an abstract machine for a small functional language in
continuation-passing style. We obtain a Galois connection for abstract-
ing the machine states by composing Galois connections, most notable an
independent-attribute Galois connection on machine states and a Galois
connection induced by a closure operator associated with a constituent-
parts relation on environments. We calculate abstract transfer functions
by applying the state abstraction to the collecting semantics, resulting
in a novel characterization of demand-driven 0-CFA.

1 Introduction

Over twenty-five years ago Jones [16] statically approximated the flow of
lambda-expressions. Since then control-flow analysis (CFA) has been the subject
of immense research [2, 31, 30, 25]. Ten years ago Nielson and Nielson designed
a co-inductive collecting semantics for control-flow analysis and at the same
time asked [25, p.1]: How does one exploit Galois connections and widenings to
systematically coarsen [control-flow analysis]?”

In this paper we take the first steps towards answering that question, by ex-
pressing a control-flow analysis as the composition of several well-known Galois
connections, thereby spelling out the approximations taking place. Our approach
thus follows Cousot’s programme of calculational abstract interpretation [6] in
which an abstract interpretation is calculated by systematically applying ab-
straction functions to a formal programming language semantics.

We develop our approach in the setting of CFA for functional languages.
A substantial amount of work concerned with abstract interpretation of func-
tional languages is based on denotational semantics [19] in which source-level
functions are modelled with mathematical functions [29]. However, as CFA is
concerned with operational information about source-level functions we believe
that a denotational starting point is inadequate for a calculational derivation of
control-flow analysis by abstract interpretation. Instead, we have chosen to base
our derivation on an operational semantics in the form of an abstract machine
(a transition system) in which source-level functions are modelled with closures
which are pairs of expressions and environments. Closures were originally sug-
gested by Landin to model functions in the SECD machine [20] and have since
become a standard implementation method for functional languages [1].

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 347–362, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

348 J. Midtgaard and T. Jensen

℘(SExp × Env)

α×
��

collecting semantics (Figure 4)

℘(SExp)× ℘(Env)

γ×

��

α⊗
��

intermediate transfer function (Figure 5)

℘(SExp)× Env

γ⊗

��

demand-driven 0-CFA (Figure 6)

Fig. 1. The big picture

The aim of a functional CFA is to determine which functions are bound to
which variables during execution. This information is found in the environments
during the execution of the program. Accordingly, an essential part of the ab-
straction technique that we propose is to express appropriate Galois connections
for extracting the approximate environment components of a machine state. En-
vironments are recursive structures that themselves may contain closures which
in turn contain environments. A crucial step in the derivation is the definition
of an upper closure operator on environments that induce an appropriate Ga-
lois connection. Figure 1 summarizes the two steps of the abstraction. From a
reachable-states collecting semantics of the CE machine [14], defined in Section 5,
we first abstract the machine components as independent attributes. Next we
abstract the pair of sets by an environment abstraction based on the notion of
constituent relation of Milner and Tofte [23]. These and other Galois connections
for abstracting values are defined in Section 6. The composition of these Galois
connections yields an abstraction function that is again applied to the trans-
fer function to calculate a demand-driven 0-CFA. The calculations are given in
Section 7. The contributions of the paper are as follows.

– We start from a well-known operational semantics, instead of instrumenting
a collecting semantics.

– We apply Cousot-style abstract interpretation to CFA: reachable states of a
transition system systematically abstracted through Galois connections.

– We explain the approximations of a CFA by spelling it out as the composition
of several well-known Galois connections.

– We characterize demand-driven 0-CFA as a simple independent attribute
abstraction of a reachable states semantics.

– Finally, we calculate the analysis rather than postulating it and verifying it
a posteriori.

An implementation of the derived analysis and an example is briefly explained
in Section 8. Section 9 compares the analysis to related work. Section 10 con-
cludes and lists future work which notably consists in calculating a flow-sensitive
CFA by using alternative Galois connections to approximate machine states. We
assume the reader is familiar with operational semantics, continuation-passing
style (CPS), control-flow analysis, complete lattices, and fixed points. The fol-
lowing sections provides a concise summary of well-known facts about abstract
interpretation that will be used in the paper.

A Calculational Approach to Control-Flow Analysis 349

2 A Short Introduction to Abstract Interpretation

We recall a number of properties related to complete lattices, Galois connections,
and closure operators. The section consists of known material from the research
literature [8, 9,11,7, 13]. Readers familiar with the material can skip to the next
section.

2.1 Galois Connections etc.

The powerset of a set S is written ℘(S). The powerset ℘(S) ordered by set inclu-
sion is a complete lattice 〈℘(S);⊆, ∅, S, ∪ , ∩ 〉. A Galois connection between two
posets 〈D1;⊆1〉 and 〈D2;⊆2〉 (the concrete and the abstract domain) is a pair of
maps α : D1 → D2 (the abstraction map) and γ : D2 → D1 (the concretisation
map) such that ∀c ∈ D1 : ∀a ∈ D2 : α(c) ⊆2 a ⇐⇒ c ⊆1 γ(a). Equivalently
α is monotone, γ is monotone, γ ◦ α is extensive (∀c ∈ D1 : c ⊆1 γ ◦ α(c)),
and α ◦ γ is reductive (∀a ∈ D2 : α ◦ γ(a) ⊆2 a). Galois connections are type-
set as 〈D1;⊆1〉 −−−→←−−−

α

γ
〈D2;⊆2〉. When the domains are apparent from the con-

text we use the lighter notation D1 −−−→←−−−
α

γ
D2. Now let 〈D1;⊆1,⊥1,�1, ∪ 1, ∩ 1〉

and 〈D2;⊆2,⊥2,�2, ∪ 2, ∩ 2〉 be complete lattices. Given a Galois connection
D1 −−−→←−−−

α

γ
D2 then α is a complete join-morphism (CJM) (α(∪ 1X) = ∪ 2 α(X) =

∪ 2{α(x) | x ∈ X}) (and γ is a complete meet-morphism). Given a complete
join-morphism α and γ(y) = ∪ 1{x ∈ D1 | α(x) ⊆2 y} then they form a Galois
connection.

Example 1 (Identity abstraction). Two identity functions 1D = λx. x form a

Galois connection on a poset 〈D;⊆〉 −−−−→←−−−−
1D

1D
〈D;⊆〉.

Example 2 (Elementwise abstraction). Let an elementwise operator @ : C → A
be given. Define α@(P) = {@(p) | p ∈ P} and γ@(Q) = {p | @(p) ∈ Q}. Then
℘(C) −−−−→←−−−−

α@

γ@
℘(A).

Example 3 (Pointwise abstraction of a set of functions). Assume an abstraction

〈℘(D2);⊆, ∅,D2, ∪ , ∩ 〉 −−−→←−−−
α2

γ2 〈D�
2;⊆

�
2,⊥

�
2,�

�
2, ∪

�
2, ∩

�
2〉

and let
αΠ(F) = λx. α2({f(x) | x ∈ D1 ∧ f ∈ F})
γΠ(Φ) = {f ∈ D1 → D2 | ∀x : f(x) ∈ γ2(Φ(x))}

Then 〈℘(D1 →D2);⊆, ∅,D1 →D2, ∪ , ∩ 〉 −−−−→←−−−−
αΠ

γΠ 〈D1 → D�
2;

.
⊆

�

2,
.

⊥
�

2,
.

�
�

2,
.
∪ �

2,
.
∩ �

2〉
where we have used the pointwise notation A

.
r B ⇐⇒ ∀x.A(x) r B(x) and

.
c = λ . c for relations and constants.

Cousot and Cousot [11, Sect.3] describe the pointwise abstraction as the com-
position of three abstractions.

One can abstract a set of pairs into a pair of sets, in turn performing an at-
tribute independent abstraction [18], as relational information between the com-
ponents of the individual pairs is lost.

350 J. Midtgaard and T. Jensen

Example 4 (Abstraction of a binary relation by a pair of sets). Let

α×(r) = 〈π1(r), π2(r)〉 γ×(〈X, Y 〉) = X × Y

where π1(r) = {x | ∃y : 〈x, y〉 ∈ r}, π2(r) = {y | ∃x : 〈x, y〉 ∈ r}, and let
⊆×= ⊆ × ⊆, ⊥× = 〈∅, ∅〉, �× = 〈D1, D2〉, ∪× = ∪ × ∪ , and ∩× = ∩ × ∩ .
Then

〈℘(D1 ×D2);⊆, ∅,D1 ×D2, ∪ , ∩ 〉 −−−−→←−−−−
α×

γ× 〈℘(D1)×℘(D2);⊆×,⊥×,�×, ∪×, ∩×〉

An upper closure operator is a map ρ : D → D on a poset 〈D;⊆〉 that is extensive
(∀x ∈ D : x ⊆ ρ(x)), monotone (∀x, x′ ∈ D : x ⊆ x′ =⇒ ρ(x) ⊆ ρ(x′)), and
idempotent (∀x ∈ D : ρ(x) = ρ(ρ(x))). A closure operator ρ on a poset 〈D;⊆〉
induces a Galois connection: 〈D;⊆〉 −−−−→←−−−−

ρ

1D
〈ρ(D);⊆〉 . Finally the image of a

complete lattice 〈D;⊆,⊥,�, ∪ , ∩ 〉 by a closure operator ρ is itself a complete
lattice 〈ρ(D);⊆, ρ(⊥), ρ(�), λX. ρ(∪ X), ∩ 〉.

2.2 Composition of Galois Connections

Galois connections enjoy a number of properties regarding composition. One can
abstract a pair of sets by abstracting its components.

Example 5 (Abstraction of a pair of sets by an abstract pair). Assuming two
Galois connections 〈℘(D1);⊆, ∅,D1, ∪ , ∩ 〉 −−−→←−−−

α1

γ1 〈D�
1;⊆

�
1,⊥

�
1,�

�
1, ∪

�
1, ∩

�
1〉 and

〈℘(D2);⊆, ∅,D2, ∪ , ∩ 〉 −−−→←−−−
α2

γ2 〈D�
2;⊆

�
2,⊥

�
2,�

�
2, ∪

�
2, ∩

�
2〉, define

α⊗(〈X, Y 〉) = 〈α1(X), α2(Y)〉 γ⊗(〈x, y〉) = 〈γ1(x), γ2(y)〉

where ⊆⊗= ⊆�
1 × ⊆�

2, ⊥⊗ = 〈⊥�
1, ⊥

�
2〉, �⊗ = 〈��

1, �
�
2〉, ∪⊗ = ∪ �

1 × ∪ �
2, and

∩⊗ = ∩ �
1 × ∩ �

2. Then

〈℘(D1)× ℘(D2);⊆×,⊥×,�×, ∪×, ∩×〉 −−−−→←−−−−
α⊗

γ⊗ 〈D�
1 ×D�

2;⊆⊗,⊥⊗,�⊗, ∪⊗, ∩⊗〉

Most importantly Galois connections compose sequentially.

Lemma 1 (Compositional abstraction). Given two Galois connections betw-
een complete lattices 〈D0;⊆0,⊥0,�0, ∪ 0, ∩ 0〉 −−−→←−−−

α1

γ1 〈D1;⊆1,⊥1,�1, ∪ 1, ∩ 1〉
and 〈D1;⊆1,⊥1,�1, ∪ 1, ∩ 1〉 −−−→←−−−

α2

γ2 〈D2;⊆2,⊥2,�2, ∪ 2, ∩ 2〉, then

〈D0;⊆0,⊥0,�0, ∪ 0, ∩ 0〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈D2;⊆2,⊥2,�2, ∪ 2, ∩ 2〉

3 Language

As our source language we take CPS expressions characterized by the grammar
in Figure 2 [12]. The grammar distinguishes between serious expressions, denot-
ing expressions whose evaluation may diverge, and trivial expressions, denoting

A Calculational Approach to Control-Flow Analysis 351

p ::= λk. e (CPS programs)

e ::= t0 t1 c | c t (serious CPS expressions)

t ::= x | v | λx, k. e (trivial CPS expressions)

c ::= λv. e | k (continuation expressions)

Fig. 2. BNF of CPS language

expressions whose evaluation will terminate. We further distinguish three differ-
ent forms of variables: source variables x, continuation variables k, and formal
continuation parameters v, each drawn from disjoint countable sets of variables
X , K , and V , respectively. We let Var denote the disjoint union of the three
Var = X ∪ V ∪ K . When apparent from the context we will also use x as a
generic meta-variable x ∈ Var .

For brevity we write λx, k. e for λx. λk. e. Furthermore we let SExp, TExp,
and CExp denote the domain of serious expressions SExp = L(e), the domain
of trivial expressions TExp = L(t), and the domain of continuation expressions
CExp = L(c), respectively. 1 Slightly misusing notation we will furthermore use
e, t, and c (with subscripts and primes) as meta-variables to denote a serious
expression, a trivial expression, and a continuation expression, respectively. Their
use will be apparent from the context. The language is Turing-complete, in that
it is sufficient to express a CPS-version of the Ω-combinator (λx. x x λy. y y):
λk0. (λx, k1. x x k1) (λy, k2. y y k2) k0.

4 Semantics

Our starting point semantics will be the CE machine of Flanagan et al. [14]. As
opposed to Flanagan et al. we consider only unary functions in the CPS lan-
guage. Furthermore, our starting-point grammar is a slightly refactored version
of the grammar given by Flanagan et al., and the machine description has been
refactored accordingly. As a consequence the number of machine transitions is
thus cut down to two.

The values and environments of the machine are given in Figure 3a. Values
can be either closures, continuation closures, or a special stop value that signals
a machine halt. We let Val denote the set of values Val = L(w) and we let Env
denote the set of environments Env = L(r). The environments in Env constitute
partial functions, with • being the partial function nowhere defined. We use w
and r (with subscripts and primes) as meta-variables to denote a machine value
and a machine environment, respectively. Again their use will be apparent from
the context. In the spirit of the original CE machines helper function μ, we
formulate two helper functions μt and μc in Figure 3b for evaluating trivial
expressions and continuation expressions, respectively.

A machine state is a pair consisting of a serious expression and an environ-
ment. The transition relation of the machine is given in Figure 3c. The initial

1 Using the L(N) notation for the language generated by the non-terminal N .

352 J. Midtgaard and T. Jensen

w ::= [λx, k. e, r] | [λv. e, r] | stop (values)

r ::= • | r [x �→ w] (environments)

(a) Values and environments

μt : TExp × Env ⇀ Val
μt (x, r) = r(x)
μt (v, r) = r(v)

μt (λx, k. e, r) = [λx, k. e, r]

μc : CExp × Env ⇀ Val
μc(k, r) = r(k)

μc(λv. e, r) = [λv. e, r]

(b) Helper functions

〈t0 t1 c, r〉 −→ 〈e, r ′[x �→ w][k �→ wc]〉
where [λx, k. e, r ′] = μt (t0, r)

w = μt (t1, r)
wc = μc(c, r)

〈c t, r〉 −→ 〈e, r ′[v �→ w]〉
where [λv. e, r ′] = μc(c, r)

w = μt (t, r)

(c) Transition relation

eval(λk. e) = w iff

〈e, •[k �→ [λvr. kr vr, •[kr �→ stop]]]〉 −→∗ 〈kr vr, •[kr �→ stop][vr �→ w]〉

(d) Machine evaluation

Fig. 3. The CE abstract machine

state of the machine binds the initial continuation variable k to a special contin-
uation closure containing a stop value. When applied, the special continuation
closure will first bind the final result to a special variable vr, and afterwards at-
tempt to apply the stop value (the latter indicating a final state). The machine
evaluates CPS programs by repeatedly transitioning from state to state until it
is either stuck or in a final state.

5 Collecting Semantics

As traditional we consider the reachable states of the transition system as our
collecting semantics [5, 10].

Iλk. e = {〈e, •[k �→ [λvr. kr vr, •[kr �→ stop]]]〉} (initial state)

Fλk. e : ℘(SExp × Env) → ℘(SExp × Env)

Fλk. e(S) = Iλk. e ∪{s | ∃s ′ ∈ S : s ′ −→ s} (strongest post-condition)

The reachable states semantics is now given as the limit
⋃

n≥0 Fn
λk. e(∅). Due to

the notational overhead we shall refrain from subscripting with the program at
hand from here onwards.

A Calculational Approach to Control-Flow Analysis 353

μ℘
t : TExp × ℘(Env) → ℘(Val)

μ℘
t (x, R) = {r(x) | r ∈ R}

μ℘
t (v, R) = {r(v) | r ∈ R}

μ℘
t (λx, k. e, R) = {[λx, k. e, r] | r ∈ R}

μ℘
c : CExp × ℘(Env) → ℘(Val)

μ℘
c (k,R) = {r(k) | r ∈ R}

μ℘
c (λv. e,R) = {[λv. e, r] | r ∈ R}

(a) Collecting helper functions

Fc : ℘(SExp × Env) → ℘(SExp × Env)
Fc(S) = Iλk. e

∪{〈e ′, r ′[x �→ w][k ′ �→ wc]〉 | ∃〈t0 t1 c, r〉 ∈ S :

[λx, k ′. e ′, r ′] ∈ μ℘
t (t0, {r})

∧ w ∈ μ℘
t (t1, {r})

∧ wc ∈ μ℘
c (c, {r})}

∪ {〈e ′, r ′[v �→ w]〉 | ∃〈c t, r〉 ∈ S :

[λv. e ′, r ′] ∈ μ℘
c (c, {r})

∧ w ∈ μ℘
t (t, {r})}

(b) Transition function

Fig. 4. Reachable states collecting semantics

We give an equivalent formulation of the collecting semantics in Figure 4
with helper functions extended to operate on sets of environments. A simple
case analysis reveals that μ℘

t and μ℘
c are monotone in their second argument.

By another case analysis one can establish two equivalences between the helper
functions ∀t,R : ∀r ∈ R : {w | w = μt (t, r)} = μ℘

t (t, {r}) and ∀c,R : ∀r ∈ R :
{w | w = μc(c, r)} = μ℘

c (c, {r}). A final case analysis establishes the equivalence
of the two: ∀S : 〈e, r〉 ∈ F(S) ⇐⇒ 〈e, r〉 ∈ Fc(S).

6 Abstracting the Collecting Semantics

With the collecting semantics in place we are now in position to abstract it. We
describe the abstractions for values, environments, and machine states in turn.

6.1 Abstraction of Values

Values are abstracted using the elementwise abstraction of Example 2. First, the
grammar of abstract values reads as follows.

w � ::= [λx, k. e] | [λv. e] | stop (abstract values)

We let Val � = L(w �) denote the domain of abstract values. Secondly, we define
an elementwise operator mapping a concrete value to its abstract counterpart.

354 J. Midtgaard and T. Jensen

The operator abstracts away the captured environment component of closure
values.

@ : Val → Val �

@([λx, k. e, r]) = [λx, k. e]
@([λv. e, r]) = [λv. e]

@(stop) = stop

6.2 Abstraction of Environments

In order to perform environment extension (binding) we need to concretize an en-
vironment component from an abstract closure. Unfortunately a straight-forward
pointwise extension of the above value abstraction will not suffice: concretization
of an abstract closure would return top representing any environment compo-
nent. We therefore prefix the pointwise environment abstraction by an abstrac-
tion based on a closure operator to ensure that any captured environment in a
set of environments belongs to the set itself. We will use a constituent relation
formulated by Milner and Tofte [23] to express the closure operator.

For a tuple (x1, . . . , xn) each entry xi is a constituent of the tuple. For a
partial function [x1 �→ w1 . . . xn �→ wn], each wi is a constituent of the function.2
We write x 6 y if y is a constituent of x. We denote by 6∗ the reflexive transitive
closure of the constituent relation.3 We can now formulate an appropriate closure
operator which induces the first Galois connection.

Definition 1 (Closure operator).

ρ : ℘(Env) → ℘(Env)

ρ(R) = {r ′ ∈ Env | ∃r ∈ R : r 6∗ r ′}

Intuitively, given a set of environments, the closure operator returns a larger
set containing all the “enclosed” environments of its argument. For the set of
environments in the reachable states semantics the closure operator acts as an
identity function, since the set is already closed.

Lemma 2 (ρ is an upper closure operator).
ρ is extensive, monotone, and idempotent.

Proof. The proofs for extensiveness and monotonicity are straightforward. Idem-
potency follows from extensiveness and transitivity of the 6∗ relation.

Example 6 (Applying ρ). We apply ρ to the singleton environment {•[k �→
[λvr. kr vr, •[kr �→ stop]]]} originating from the initial state Iλk. e . Besides the
element itself, •[kr �→ stop] is also a constituent environment. Hence

ρ({•[k �→ [λvr . kr vr, •[kr �→ stop]]]}) = {•[kr �→ stop],
•[k �→ [λvr . kr vr, •[kr �→ stop]]]}

2 Milner and Tofte [23] define the constituent relation on finite maps, whereas we
define it for partial functions.

3 Milner and Tofte [23] instead introduce constituent sequences.

A Calculational Approach to Control-Flow Analysis 355

Next we apply the pointwise abstraction from Example 3, based on the value
abstraction of Section 6.1.

ρ(℘(Env)) −−−−→←−−−−
αΠ

γΠ

Env � where Env � = Var → ℘(Val �)

Strictly speaking this Galois connection applies to the complete lattice ℘(Env),
whereas in this case we have a specialized complete lattice ρ(℘(Env)). As the lat-
ter is a subset of the former, the definition of αΠ still applies. As for the existing
definition of γΠ its image ℘(Env) does not agree with ρ(℘(Env)). However since
αΠ is a CJM it uniquely determines a specialized γΠ . We leave a direct definition
of γΠ unspecified. With this in mind, we compose the two Galois connections

and get another Galois connection: ℘(Env) −−−−−−→←−−−−−−
ρ

1℘(Env)
ρ(℘(Env)) −−−−→←−−−−

αΠ

γΠ

Env �.

6.3 Abstraction of Machine States

As outlined in Figure 1 the abstraction of machine states is staged in two. We
first abstract the independent attributes of the reachable states using Example 4.
Next we abstract the pair of sets using Example 5 on the environment abstraction
from Section 6.2. The first component, i.e., the set of reachable expressions, is
not abstracted, hence instantiated with the identity abstraction.

As traditional [9,10,11] we consider the reduced product of both the abstract
domains, i.e., all abstract pairs with an empty expression set or an empty ab-
stract environment implicitly represent bottom.

7 Calculating the Analysis

We calculate an abstract transition function using a traditional recipe [10], by
applying the independent attributes abstraction to the transition function from
the collecting semantics. The following lemma determines the result as the best
abstraction. It furthermore states the strategy for the calculation of a new transi-
tion function when read directionally from left to right. The resulting F× appears
in Figure 5.

Lemma 3 (Transition function as best abstraction)

∀S : α×(Fc(γ×(S))) = F×(S)

Proof Let S = 〈E , R〉 be given. Since α× is a complete join morphism, it dis-
tributes onto the three sets in Fc ’s definition. We consider the case of the last
of the three sets:

α×({〈e ′, r ′[v �→ w]〉 | ∃〈c t, r〉 ∈ γ×(〈E , R〉) :
[λv. e ′, r ′] ∈ μ℘

c (c, {r})
∧ w ∈ μ℘

t (t, {r})})
= α×(

⋃

〈c t, r〉 ∈ γ×(〈E , R〉)
[λv. e′, r ′]∈μ℘

c (c,{r})
w ∈μ℘

t (t,{r})

{〈e ′, r ′[v �→ w]〉})
(formulate as join)

356 J. Midtgaard and T. Jensen

=
⋃

×
〈c t, r〉 ∈ γ×(〈E , R〉)

[λv. e′, r ′]∈μ℘
c (c,{r})

w ∈μ℘
t (t,{r})

α×({〈e ′, r ′[v �→ w]〉})
(α× a CJM)

using the definitions of α× and γ× we arrive at the last set of F×’s definition. ��

Next we abstract the pair of sets by an abstract pair again following a recipe.
We first calculate abstract helper functions μ�

t and μ�
c. By construction they

satisfy the following lemma. Furthermore the lemma states the strategy for the
calculations when read directionally from left to right. The calculations proceed
by case analysis.

Lemma 4 (Equivalence of helper functions)

∀t,R : α@(μ℘
t (t,R)) = μ�

t(t, αΠ(R)) ∧ ∀c,R : α@(μ℘
c (c,R)) = μ�

c(c, αΠ(R))

Another case analysis reveals that μ�
t and μ�

c are monotone in their second ar-
gument. By a third case analysis one can prove the following lemma concerning
applying helper functions to “closed” environments.

Lemma 5 (Helper functions on closed environments)

∀t,R,w : w ∈ μ℘
t (t, ρ(R)) =⇒ {r | w 6∗ r} ⊆ ρ(R)

∀c,R,w : w ∈ μ℘
c (c, ρ(R)) =⇒ {r | w 6∗ r} ⊆ ρ(R)

Finally we need a lemma formulating abstraction of an extended environment
in terms of the abstraction of its subparts.

Lemma 6 (Abstraction of environment extension)

∀v,w,R : {r | w 6∗ r} ⊆ ρ(R)

=⇒ αΠ ◦ ρ({r [v �→ w] | r ∈ ρ(R)})
.
⊆ αΠ ◦ ρ(R)[v �→ α@({w})]�

For a given program λk. e:

F× : ℘(SExp)× ℘(Env) → ℘(SExp)× ℘(Env)
F×(〈E , R〉) = 〈{e}, {•[k �→ [λvr. kr vr, •[kr �→ stop]]]}〉

∪×
⋃

×
t0 t1 c ∈ E r ∈ R

[λx,k′. e′, r′] ∈ μ
℘
t (t0,{r})

w ∈ μ
℘
t (t1,{r})

wc ∈ μ℘
c (c,{r})

〈{e ′}, {r ′[x �→ w][k ′ �→ wc]}〉

∪×
⋃

×
c t ∈ E r ∈ R

[λv. e′, r′] ∈ μ℘
c (c,{r})

w ∈ μ
℘
t (t,{r})

〈{e ′}, {r ′[v �→ w]}〉

Fig. 5. Independent attributes transition function

A Calculational Approach to Control-Flow Analysis 357

where we have used the shorthand notation R�[v �→ {. . .}]� = R�
.
∪

.

∅[v �→ {. . .}].
We omit the proof due to lack of space.

We are now in position to calculate the abstract transition function. By con-
struction, the abstract transition function satisfies the following lemma. Again,
when read directionally from left to right, the lemma states the strategy for the
calculation. The resulting analysis appears in Figure 6.

Lemma 7. ∀S : α⊗(F×(S)) ⊆⊗ F �(α⊗(S))

Proof. Let S = 〈E , R〉 be given. Again α⊗ is a complete join morphism and
hence distributes onto the three sets from F×’s definition. We consider the case
of the last of the three sets. First observe

r ∈ R ∧ [λv. e ′, r ′] ∈ μ℘
c (c, {r}) ∧ w ∈ μ℘

t (t, {r})
=⇒ r ∈ ρ(R) ∧ [λv. e ′, r ′] ∈ μ℘

c (c, {r}) ∧ w ∈ μ℘
t (t, {r}) (ρ extensive)

=⇒ [λv. e ′, r ′] ∈ μ℘
c (c, ρ(R)) ∧ w ∈ μ℘

t (t, ρ(R)) (μ℘
c , μ℘

t monotone)

=⇒ r ′ ∈ ρ(R) ∧ [λv. e ′, r ′] ∈ μ℘
c (c, ρ(R)) ∧ w ∈ μ℘

t (t, ρ(R)) (by Lemma 5)

=⇒ r ′ ∈ ρ(R) ∧ α@({[λv. e ′, r ′]}) ⊆ α@(μ℘
c (c, ρ(R))) ∧ w ∈ μ℘

t (t, ρ(R))
(α@ monotone)

⇐⇒ r ′ ∈ ρ(R) ∧ [λv. e ′] ∈ α@(μ℘
c (c, ρ(R))) ∧ w ∈ μ℘

t (t, ρ(R)) (def. of α@)

⇐⇒ r ′ ∈ ρ(R) ∧ [λv. e ′] ∈ μ�
c(c, αΠ ◦ ρ(R)) ∧ w ∈ μ℘

t (t, ρ(R)) (by Lemma 4)

Secondly observe if w ∈ μ℘
t (t, ρ(R)) then

α⊗(
⋃

×
r ′∈ρ(R)

〈{e ′}, {r ′[v �→ w]}〉)

= α⊗(〈{e ′}, {r ′[v �→ w] | r ′ ∈ ρ(R)}〉) (def. ∪×)

= 〈{e ′}, αΠ ◦ ρ({r ′[v �→ w] | r ′ ∈ ρ(R)})〉 (def. α⊗)

⊆⊗ 〈{e ′}, αΠ ◦ ρ(R)[v �→ α@({w})]�〉 (by Lemma 5, 6)

Thirdly observe
⋃

⊗
w∈μ℘

t (t,ρ(R))

〈{e ′}, αΠ ◦ ρ(R)[v �→ α@({w})]�〉

= 〈{e ′},
.⋃

w∈μ℘
t (t,ρ(R))

αΠ ◦ ρ(R)[v �→ α@({w})]�〉 (def. ∪⊗)

= 〈{e ′}, αΠ ◦ ρ(R)
.
∪

.⋃

w∈μ℘
t (t,ρ(R))

.

∅[v �→ α@({w})]〉 (def. −[−]
)

= 〈{e ′}, αΠ ◦ ρ(R)[v �→
⋃

w∈μ℘
t (t,ρ(R))

α@({w})]�〉
(def.

.
∪)

= 〈{e ′}, αΠ ◦ ρ(R)[v �→ α@(μ℘
t (t, ρ(R)))]�〉 (α@ a CJM)

= 〈{e ′}, αΠ ◦ ρ(R)[v �→ μ�
t (t, αΠ ◦ ρ(R))]�〉 (by Lemma 4)

358 J. Midtgaard and T. Jensen

Hence
α⊗(

⋃

×
c t ∈E r ∈R

[λv. e′, r ′]∈μ℘
c (c,{r})

w ∈μ℘
t (t,{r})

〈{e ′}, {r ′[v �→ w]}〉)

⊆⊗ α⊗(
⋃

×
c t ∈E r ′ ∈ ρ(R)

[λv. e′]∈μ	
c(c,αΠ ◦ρ(R))

w ∈μ℘
t (t,ρ(R))

〈{e ′}, {r ′[v �→ w]}〉)
(first obs.)

=
⋃

⊗
c t ∈E

[λv. e′]∈μ	
c(c,αΠ ◦ρ(R))

w ∈μ℘
t (t,ρ(R))

α⊗(
⋃

×
r ′ ∈ ρ(R)

〈{e ′}, {r ′[v �→ w]}〉)
(α⊗ a CJM)

⊆⊗
⋃

⊗
c t ∈E

[λv. e′]∈μ	
c(c,αΠ ◦ρ(R))

w ∈μ℘
t (t,ρ(R))

〈{e ′}, αΠ ◦ ρ(R)[v �→ α@({w})]�〉
(second obs.)

=
⋃

⊗
c t ∈E

[λv. e′]∈μ	
c(c,αΠ ◦ρ(R))

〈{e ′}, αΠ ◦ ρ(R)[v �→ μ�
t(t, αΠ ◦ ρ(R))]�〉

(third obs.)

Since α⊗(S) = 〈E , αΠ ◦ ρ(R)〉 we define the third set of F � as this set (with R�

for αΠ ◦ ρ(R)). By construction α⊗(F×(S)) ⊆⊗ F �(α⊗(S)) holds. ��

This result in turn enables us to prove the following (standard) theorem stating
the correctness of the analysis [8].

Theorem 1 (Fixed-point transfer theorem). α⊗ ◦ α×(lfp Fc) ⊆ lfpF �

The resulting analysis in Figure 6 is striking. By an independent attribute ab-
straction of a standard collecting semantics, we have encountered a demand-
driven CFA. Demand-driven CFA has been discovered independently [2, 3, 15],
and is usually presented as an extension (or improvement) to 0-CFA. Our re-
sult on the other hand explains it as a natural abstraction of a reachable states
collection semantics.

Expressing a semantics for a CPS language as a transition system lends it-
self to abstract interpretation as originally expressed by Cousot [5]. Since all
intermediate results in CPS are already named, i.e., bound to an identifier, a
control-flow analysis merely becomes a question of computing an abstract envi-
ronment. As both the continuations and closures live in the environment there is
no need for an explicit stack, as it lives as a chain of closures in the environment.
We have found no need to introduce new concepts such as labels or caches [4,27].

8 Implementation and Example

We have implemented a prototype of the derived analysis in OCaml.4 The core
of the algorithm constitutes 60 lines of source code. To illustrate the 0-CFA
4 Available at http://www.brics.dk/∼jmi/Midtgaard-Jensen:SAS08/

http://www.brics.dk/~jmi/Midtgaard-Jensen:SAS08/

A Calculational Approach to Control-Flow Analysis 359

μ

t : TExp × Env
 → ℘(Val
)

μ

t (x,R
) = R
(x)

μ

t (v,R
) = R
(v)

μ

t (λx, k. e,R
) = {[λx, k. e]}

μ

c : CExp × Env
 → ℘(Val
)

μ

c(k,R
) = R
(k)

μ

c(λv. e,R
) = {[λv. e]}

(a) Abstract helper functions
For a given program λk. e:

F
 : ℘(SExp)× Env
 → ℘(SExp)× Env

F
(〈E
, R
〉) = 〈{e},
.

∅[kr �→ {stop}, k �→ {[λvr. kr vr]}]
〉

∪⊗
⋃

⊗
t0 t1 c ∈ E	

[λx,k′. e′] ∈ μ
	
t (t0,R)

〈{e ′}, R
[x �→ μ

t (t1,R

), k ′ �→ μ

c(c,R
)]
〉

∪⊗
⋃

⊗
c t ∈ E	

[λv. e′] ∈ μ	
c(c,R)

〈{e ′}, R
[v �→ μ

t (t,R

)]
〉

(b) Abstract transition function

Fig. 6. Demand-driven 0-CFA

kr �→ {stop}
k0, k2, k5 �→ {[λvr . kr vr]}
k6 �→ {[λv4. v4 (λy, k5. k5 y) k2], [λvr. kr vr]}

f �→ {[λx, k6. k6 x]}
y �→ {[λy, k5. k5 y]}
x, v4, vr �→ {[λx, k6. k6 x], [λy, k5. k5 y]}

Fig. 7. Inferred abstract environment

nature of the analysis we recall an example from Nielson, Nielson, and Han-
kin’s textbook [26]: let f = (fn x => x) in f f (fn y => y). The expres-
sion λk0. (λf, k2. f f (λv4. v4 (λy, k5. k5 y) k2)) (λx, k6. k6 x) k0 is a CPS version of
the same example. After 8 iterations the analysis reaches a fixed point deter-
mining that all serious expressions of the example are reachable. The inferred
abstract environment is given in Figure 7. Just as the textbook 0-CFA the de-
rived analysis merges all bindings to x, which affects the final answer vr, and
results in the overly approximate answer of two abstract closures.

9 Related Work

The only existing demand-driven 0-CFA for a CPS language that we are aware of
is that of Ayers [2], who used Galois connections to express the correctness of 0-
CFA for a CPS language. After formally proving his 0-CFA correct he suggests
a number of improvements. One of these is use-maps, the idea of which is to
only re-analyse parts of the program where recent additions will have an effect
on the fixed-point computation. A later refinement of use-maps incorporates

360 J. Midtgaard and T. Jensen

reachability, resulting in an algorithm which will only re-analyse reachable parts
of the program where recent additions will have an effect. Ayers’s work differs
from our result in that: (a) it does not use an off-the-shelf starting point,5 (b)
it does not use off-the-shelf Galois connections, and (c) reachability is added
afterwards as an extension (but not formally proved, e.g., expressed with Galois
connections).

Cousot and Cousot have championed the calculational approach to program
analysis for three decades [8, 9, 10, 11, 6]. Cousot has provided a comprehensive
set of lecture notes [6], in which he calculates various abstract interpreters for a
simple imperative language. Nevertheless, the calculational approach to control-
flow analysis of functional programs has received little attention so far.

Shivers [31, 32, 22] has long argued that basing a CFA on a CPS language
simplifies matters as it captures all control flow in one unifying construct. In
his thesis [32] he developed control-flow analyses for Scheme including (control
and state) side effects. Shivers [32] did not consider demand-driven analysis,
nor formulate correctness using Galois connections. Initially the development
was based on an instrumented denotational semantics, however the more recent
work with Might is based on instrumented abstract machines [22]. In contrast
we have developed an analysis starting from a well-known and non-instrumented
abstract machine.

Sabry and Felleisen [28] have formulated interpreters and corresponding pro-
gram analysers for languages in direct style and CPS to compare formally their
output when run on equivalent input. Their analyses are formulated as inference
rules, and as such an analysis may diverge when implemented directly. They
therefore detect loops in the analyser and return top when encountering one. In
contrast our calculated analysis needs no such ad-hoc modifications. For a further
discussion of related work we refer to a recent survey by the first author [21].

10 Conclusion and Further Work

To the best of our knowledge we have given the first calculated 0-CFA deriva-
tion. The calculations reveal a strikingly simple derivation of a demand-driven
0-CFA, a variant which has been discovered independently. Our derivation spells
out the approximation by expressing it as a combination of several known Galois
connections, thereby capturing the essence of the CFA approximation as an inde-
pendent attributes abstraction. We have derived the analysis from the reachable
states of a well-known abstract machine without resorting to instrumentation.

Cousot and Cousot [11] have pointed out several alternative abstractions to
sets of pairs, one of which is a pointwise coding. When applied to the states of the
CE machine the abstraction may be the key to calculating a flow-sensitive CFA.
We plan to investigate such a calculation. A natural next step is to consider
the calculation of the context-sensitive k-CFA hierarchy. Finally it would be
interesting to investigate whether proof assistants can aid in the calculation of
future analyses.

5 Though to be fair, our starting point, the CE machine in Flanagan et al. [14], and
Ayers’s thesis are both from 1993.

A Calculational Approach to Control-Flow Analysis 361

Acknowledgements. The authors thank Tiphaine Turpin, Mads Sig Ager, Tristan
Le Gall, David Pichardie, and the anonymous referees for their comments on this
paper.

References

[1] Appel, A.W.: Compiling with Continuations. Cambridge University Press, New
York (1992)

[2] Ayers, A.E.: Abstract Analysis and Optimization of Scheme. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts (September 1993)

[3] Biswas, S.K.: A demand-driven set-based analysis. In: Jones (ed.) [17], pp. 372–
385.

[4] Bondorf, A.: Automatic autoprojection of higher-order recursive equations. Sci-
ence of Computer Programming 17(1-3), 3–34 (1991)

[5] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, Jones (eds.)
[24], ch. 10, pp. 303–342.

[6] Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy,
M., Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam (1999)

[7] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science 277(1–2), 47–103 (2002)

[8] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Sethi,
R. (ed.) Proceedings of the Fourth Annual ACM Symposium on Principles of
Programming Languages, Los Angeles, California, pp. 238–252 (January 1977)

[9] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Rosen, B.K. (ed.) Proceedings of the Sixth Annual ACM Symposium on Principles
of Programming Languages, San Antonio, Texas, pp. 269–282 (January 1979)

[10] Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

[11] Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages), invited paper. In: Bal, H. (ed.) Proceedings
of the Fifth IEEE International Conference on Computer Languages, Toulouse,
France, pp. 95–112 (May 1994)

[12] Danvy, O., Dzafic, B., Pfenning, F.: On proving syntactic properties of CPS pro-
grams. In: Third International Workshop on Higher-Order Operational Techniques
in Semantics, Paris, France. Electronic Notes in Theoretical Computer Science,
vol. 26, pp. 19–31 (September 1999)

[13] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

[14] Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Wall, D.W. (ed.) Proceedings of the ACM SIGPLAN 1993 Con-
ference on Programming Languages Design and Implementation, Albuquerque,
New Mexico, pp. 237–247 (June 1993)

[15] Gasser, K.L.S., Nielson, F., Nielson, H.R.: Systematic realisation of control flow
analyses for CML. In: Tofte, M. (ed.) Proceedings of the 1997 ACM SIGPLAN
International Conference on Functional Programming, Amsterdam, The Nether-
lands, pp. 38–51 (June 1997)

[16] Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Pro-
ceedings of the 8th Colloquium on Automata, Languages and Programming, Lon-
don, UK, pp. 114–128 (1981)

362 J. Midtgaard and T. Jensen

[17] Jones, N.D. (ed.): Proceedings of the Twenty-Fourth Annual ACM Symposium
on Principles of Programming Languages, Paris, France (January 1997)

[18] Jones, N.D., Muchnick, S.S.: Complexity of flow analysis, inductive assertion syn-
thesis and a language due to Dijkstra. In: Muchnick, Jones (eds.) [24], pp. 380–393.

[19] Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for pro-
gram analysis. In: Handbook of logic in computer science, vol. 4, pp. 527–636.
Oxford University Press, Oxford (1995)

[20] Landin, P.J.: The mechanical evaluation of expressions. The Computer Jour-
nal 6(4), 308–320 (1964)

[21] Midtgaard, J.: Control-flow analysis of functional programs. Technical Report
BRICS RS-07-18, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark (December 2007)

[22] Might, M., Shivers, O.: Improving flow analyses via ΓCFA: abstract garbage
collection and counting. In: Lawall, J. (ed.) Proceedings of the Eleventh ACM
SIGPLAN International Conference on Functional Programming (ICFP 2006),
Portland, Oregon, pp. 13–25 (September 2006)

[23] Milner, R., Tofte, M.: Co-induction in relational semantics. Theoretical Computer
Science 87(1), 209–220 (1991)

[24] Muchnick, S.S., Jones, N.D. (eds.): Program Flow Analysis: Theory and Applica-
tions. Prentice-Hall, Englewood Cliffs (1981)

[25] Nielson, F., Nielson, H.R.: Infinitary control flow analysis: a collecting semantics
for closure analysis. In: Jones (ed.) [17], pp. 332–345

[26] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

[27] Palsberg, J.: Closure analysis in constraint form. ACM Transactions on Program-
ming Languages and Systems 17(1), 47–62 (1995)

[28] Sabry, A., Felleisen, M.: Is continuation-passing useful for data flow analysis? In:
Sarkar, V. (ed.) Proceedings of the ACM SIGPLAN 1994 Conference on Program-
ming Languages Design and Implementation, Orlando, Florida, pp. 1–12 (June
1994)

[29] Schmidt, D.A.: Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon, Inc. (1986)

[30] Sestoft, P.: Replacing function parameters by global variables. Master’s thesis,
DIKU, Computer Science Department, University of Copenhagen, Copenhagen,
Denmark (October 1988)

[31] Shivers, O.: Control-flow analysis in Scheme. In: Schwartz, M.D. (ed.) Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Languages Design and
Implementation, Atlanta, Georgia, pp. 164–174 (June 1988)

[32] Shivers, O.: Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, Technical Report CMU-CS-91-145 (May 1991)

Heap Decomposition for Concurrent Shape Analysis

R. Manevich1,	, T. Lev-Ami1,		, M. Sagiv1, G. Ramalingam2,
and J. Berdine3

1 Tel Aviv University
{rumster,msagiv,tla}@post.tau.ac.il

2 Microsoft Research India
grama@microsoft.com

3 Microsoft Research Cambridge
jjb@microsoft.com

Abstract. We demonstrate shape analyses that can achieve a state space reduc-
tion exponential in the number of threads compared to the state-of-the-art analy-
ses, while retaining sufficient precision to verify sophisticated properties such as
linearizability. The key idea is to abstract the global heap by decomposing it into
(not necessarily disjoint) subheaps, abstracting away some correlations between
them. These new shape analyses are instances of an analysis framework based on
heap decomposition. This framework allows rapid prototyping of complex static
analyses by providing efficient abstract transformers given user-specified decom-
position schemes. Initial experiments confirm the value of heap decomposition in
scaling concurrent shape analyses.

1 Introduction

The problem of verifying concurrent programs that manipulate heap-allocated data
structures is challenging: it requires considering arbitrarily interleaved threads manipu-
lating unbounded data structures. Both heap-allocated data structures and concurrency
can introduce state explosion. Their combination only makes matters worse. This paper
develops new static analysis algorithms that address the state space explosion problem
in a systematic and generic way. The result of these analyses can be used to automati-
cally establish interesting properties of concurrent heap-manipulating programs such as
the absence of null dereferences, the absence of memory leaks, the preservation of data
structure invariants, and linearizability [7].

The Intuition. Typical programs manipulate a large number of (instances of) data
structures (possibly nested within other data structures). Each individual data structure
can usually be in one of several different states (even in an abstract representation). This
can lead to a combinatorial explosion in the number of distinct abstract states that can
arise during abstract interpretation.

The essential idea we pursue is that of decomposing the heap into multiple subheaps
and abstracting away some correlations between the subheaps. Decomposition allows
reusing subheaps that were decomposed from different heaps, thus representing a set of

� This research was partially supported by the Clore Fellowship Programme.
�� Supported by an Adams Fellowship through the Israel Academy of Sciences and Humanities.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 363–377, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

364 R. Manevich et al.

heaps more compactly (and more abstractly). For example, consider a program main-
taining k disjoint lists. A powerset-based shape analysis such as the one in [14] uses
a lattice whose height is exponential in k. An abstraction that ignores the correlations
between the k lists reduces the lattice height to be linear in k, leading to exponentially
faster analysis. (The savings come from not maintaining the correlations between dif-
ferent states of the different lists, which we observe are often irrelevant for a specific
property of interest.) Similar situations arise in the kind of multithreaded programs dis-
cussed earlier, where the size of the state space is a function of the number of threads
rather than the number of data structures. In this paper, we allow decomposing the heap
into non-disjoint (i.e., overlapping) subheaps, which is important for handling programs
with fine-grained concurrency (where different threads can simultaneously access the
same objects) in a thread-modular way.

Fine-Grained Concurrency. Fine-grained concurrent heap-manipulating programs al-
low multiple threads to use the same data structure simultaneously. They trade the sim-
plicity of the single-thread-owning-a-data-structure model, which is at the heart of the
coarse-grained concurrency approach, to achieve a higher degree of concurrency. How-
ever, the additional performance comes with a price: these programs are notoriously
hard to develop and prove correct, even when the manipulated data structures are singly-
linked lists (see, e.g., [3]).

It is hard to employ thread-modular approaches that exploit locking [5] to ana-
lyze fine-grained concurrent programs because they have intentional (benign) data-
races. Thus, state-of-the-art shape analyses capable of verifying intricate properties of
fine-grained concurrent heap-manipulating programs, e.g., linearizability (explained in
Sec. 3), track all correlations between the states of all the threads [1]. This makes these
analyses hard to scale. For example, the shape analysis in [1] handles at most 3 threads.

It is interesting to observe, however, that it is often the case that although proving
properties of these programs requires tracking sophisticated correlations between every
thread and the part of the heap that it manipulates, the correlations between the states of
different threads is often irrelevant. Intuitively, this is because fine-grained concurrent
programs are often written in a way which attempts to ensure the correct operation
of every thread regardless of the actions taken by other threads. This programming
paradigm makes these programs an ideal match with our approach explained below.

The Conceptual Framework. To permit the use of heap decomposition in several
settings, we first present it as a parametric abstraction that can be tuned by the analysis
designer in three ways:

Decomposition: Specify along what lines a concrete heap should be decomposed
into (possibly overlapping) subheaps. One of the strengths of the specification mech-
anism is that the decomposition of a heap depends on its properties. This allows us,
for example, to decompose the state of a concurrent program based on the association
between threads and data-structures in that state, which is usually not known a priori.

Subheap abstraction: Create a bounded abstract heap representation from concrete
subheaps (which are unbounded). Subheap abstractions can be obtained from existing
whole-heap abstractions that satisfy certain properties.

Combiner Sets: The framework is parametric with respect to transformers. Com-
puting sound and precise transformers for statements is quite challenging with a heap
decomposition. Transforming each subheap independently can end up being very

Heap Decomposition for Concurrent Shape Analysis 365

imprecise (or potentially incorrect, if not done carefully), especially when subheaps
overlap. At the other extreme, combining subheaps together into a full heap prior to
transforming it can be very inefficient and defeats the purpose of using heap decom-
position. Achieving the desired precision and efficiency, without compromising sound-
ness, can be tricky. Our framework allows the analysis designer to specify only which
subheaps should be combined together for a given transformer, called combiner sets.
The framework automatically generates a corresponding sound transformer, letting the
analysis designer easily explore alternatives without worrying about soundness.

HeDec. We implemented our conceptual framework for the family of canonical ab-
stractions [14] in a system called HeDec (for Heap Decomposition), which is publicly
available. This implementation retains the parametricity of the conceptual framework,
which allows analysis designers to rapidly prototype different shape analysis algorithms
by defining heap decomposition schemes.

Instances of the Framework. We have used our framework to develop several shape
analyses, including the following, and have implemented these analyses in HeDec.

(a) A shape analysis for sequential programs manipulating singly-linked lists that
abstracts away the correlations between disjoint lists . The resultant shape analysis al-
gorithm emulates the algorithm of [9], with some interpretative overhead. Unlike the
tedious proof of soundness of [9], the soundness of this instance immediately follows
from the soundness of the underlying subheap abstraction.

(b) A new shape analysis for sequential programs manipulating singly-linked lists
and trees by abstracting away the correlations between segments which do not contain
an element pointed-to by a variable. We confirmed that it is precise enough to prove
memory safety and preservation of data-structure invariants. This is encouraging for
scaling shape analysis for programs with densely connected heaps.

(c) A shape analysis for fine-grained concurrent programs with a bounded number
of threads which is precise enough to prove memory safety and preservation of data-
structure invariants. Here, we obtain exponential speed-up in terms of time and space,
in comparison to similar whole-heap analysis without decomposition. Our algorithm
goes beyond [5] by supporting fine-grained concurrency and handling programs with
intentional data races.

(d) A shape analysis algorithm for concurrent programs with a bounded number of
threads that manipulate singly-linked lists, which proves linearizability. The resultant
algorithm is exponentially faster than the one in [1], being polynomial in the number
of threads. Our initial empirical results confirm that our algorithm is able to prove lin-
earizability with 20 threads, ten times more than in [1].

Main Results. The contributions of this paper can be summarized as follows:
1. We present a generic analysis framework (in an abstract interpretation setting) for

exploiting state decomposition effectively. The main technical contributions are in
introducing a family of sound abstract transformers that admit flexibly exploring
the efficiency/precision spectrum.

2. We propose scalable analyses for several interesting problems involving coarse-
grained as well as fine-grained concurrency, including proving linearizability.
These algorithms scale much better (e.g., polynomially) over the number of threads
than the previous algorithms for these problems.

366 R. Manevich et al.

3. The implementation of the framework for canonical abstraction is publicly avail-
able, together with the above mentioned analyses, as well as other benchmarks,
which show the benefit of the approach.

Outline of the Paper. In Sec. 2, we demonstrate heap decomposition for fine-grained
concurrent programs. In Sec. 3, we describe an analysis based on heap decomposition
for proving linearizability of non-blocking data structures. In Sec. 4 we present the
technical details of our abstract domain and its transformers. In Sec. 5 we report on our
experiments with HeDec. In Sec. 6, we discuss related work, and in Sec. 7, we conclude
the paper.

An accompanying technical report [10] contains proofs and further details.

2 Heap Decomposition for Fine-Grained Concurrency

In this section, we develop decomposition schemes for performing shape analysis of
fine-grained concurrent programs and show that HeDec can be used to automatically
obtain shape analysis implementations that are precise enough to prove the desired
properties of programs (the absence of null pointer dereferences, absence of memory
leaks, and data structure invariants) while scaling up to a large number of threads. The
material in this section is presented informally, deferring formal definitions and techni-
cal details to Sec. 4.

2.1 Decomposing Non-blocking Implementations

A Running Example. Fig. 1 shows a simple running example of a non-blocking stack
implementation from [15]. Producers push elements onto the stack by allocating an
element, copying the current global pointer to the top of the stack, connecting the new
element to that copied top, and then using CAS (Compare And Swap) to atomically
check that the top of the stack has not changed and replace it with the new element.
Consumers pop elements from the stack by copying the current global pointer to top
and recording its next element and then using CAS to atomically check that the top

#define EMPTY -1
typedef int data type;
typedef struct node t {

data type d;
struct node t *n

} Node;
typedef struct stack t {

struct node t *Top;
} Stack;

[1] void push(Stack *S, data type v){
[2] Node *x = alloc(sizeof(Node));
[3] x->d = v;
[4] do {
[5] Node *t = S->Top;
[6] x->n = t;
[7] } while (!CAS(&S->Top,t,x));
[8] }

[9] data type pop(Stack *S){
[10] do {
[11] Node *t = S->Top;
[12] if (t == NULL)
[13] return EMPTY;
[14] Node *s = t->n;
[15] data type r = t->d;
[16] } while (!CAS(&S->Top,t,s));
[17] return r;
[18] }

Fig. 1. A non-blocking stack implementation

Heap Decomposition for Concurrent Shape Analysis 367

of the stack has not changed and replace it with the new top, i.e., the recorded next
element. In both cases, a failed CAS results in a restart.

The goal here is to prove the absence of null pointer dereferences, absence of mem-
ory leaks, and the preservation of data structure invariants, i.e., that stack points to an
acyclic list.

Concrete Execution. Fig. 2(a) shows an example of two states occurring in the non-
blocking implementation shown in Fig. 1; for now ignore the corr annotations (which is
used by the linearizability analysis in the next section). The figure shows two consumer
threads and two producer threads. Both cons1 and prod1 can succeed with the CAS
if they are the next threads to be scheduled. Concrete states are depicted by graphs.
To avoid clutter the data field is not shown. Hexagonal nodes denote thread objects
and square nodes denote list elements. The program label of every thread is written
inside the hexagon. Edges from text labels to nodes correspond to global pointers (Top).
Labeled edges from thread nodes to list nodes denote thread-local pointer variables (t
and x). Edges between list nodes, labeled by n correspond to the next field of the list.

Exponential State Space. There are several sources of exponential explosion in the
state space exploration of the stack algorithm. The first one is the correlation between
the program locations of the different threads. The second source is the next pointers of
the just allocated elements. The stack can grow after the next pointer has already been
set, but before the CAS, thus the next pointers of the different producers can point to
all possible stack elements and have all possible aliasing between each other. The third
source of state-space explosion is the recorded next pointer of the consumer threads.
Note that the state space explosion occurs even if the list has a bounded number of ele-
ments. This is a general problem when maintaining correlations between the properties
of different threads. Exponential blow-ups also occur in sequential programs because
of aliasing. However, for the purpose of our analysis, these correlations are unimportant
and tracking them is pointless and only reduces the efficiency of the analysis.

Heap Decomposition Abstraction. We reduce the size of the state space by decompos-
ing the heap into a set (or tuple) of subheaps and abstractly interpreting the program
over the subheaps.

For each subheap to be used in the decomposition, a user of HeDec specifies the part
of the heap it should include. This is done by defining a location selection predicate,
which specifies the subset of the nodes in the state for which abstract properties (such as
aliasing, heap-reachability, etc.) are maintained. For each location selection predicate,
the program state is projected onto the nodes satisfying that predicate, thus obtaining a
substate of the original state. We refer to the domain of substates pertaining to a location
selection predicate pt as the subdomain of pt.

The Decomposition Scheme. For the purpose of our analysis, we define for each thread
t the location selection predicate pt[t] that holds for: (a) the thread object of t, (b) the
objects pointed-to by its local variables (t and x), and (c) the objects pointed-to by the
global variables (Top). In addition, we define the location selection predicate Globals,
which holds for the objects reachable from global variables.

Fig. 2(b) shows the result of applying the decomposition scheme explained above
to the states in Fig. 2(a). Notice that different location selection predicates may

368 R. Manevich et al.

Top

n

x

n
x t

st

t

n

n

prod1

cons1

prod2

pc=7

cons2

pc=6

pc=14

pc=16

t

S1

Top

n

x

n
x t

st

t

n

n

prod2

cons2

prod1

pc=7

cons1

pc=6

pc=14

pc=16

t

S2

pt[prod1] pt[prod2] pt[cons1] pt[cons2] Globals

Top

x

t

n

prod1

pc=7

Top

n

x

t

prod2

pc=6

Top cons1

pc=14t

Top

t

s

n

cons2

pc=16
Top

n

n

M1 M2 M3 M4
Top

n

x

t

prod1

pc=6

Top

x

t

n

prod2

pc=7

Top

t

s

n

cons1

pc=16

Top cons2

pc=14t

M5 M6 M7 M8 M9

(a) (b)

Fig. 2. (a) Two concrete states in the non-blocking stack implementation shown in Fig. 1; and (b)
The decomposed states abstracting the full states in (a). The names of the sub-domains appear
above the substates.

occasionally overlap. For example, in the decomposition explained above, the objects
reachable from the global variables appear in each subheap.

Intuitively, the meaning of a substate M , decomposed by a location selection predi-
cate p(v), is the set of all full states that contain M and any disjoint substate M ′, such
that the objects in M satisfy p(v) and the objects in M ′ do not satisfy p(v). A sequence
of sets of substates {M1,M5}×{M2,M6}×{M3,M7}×{M4,M8}×{M9} represents
the set of full states obtained by choosing one structure from each subdomain and inter-
secting their meanings. For example, composing the substates {M1,M2,M3,M4,M9}
together yields S1 and composing the substates {M5,M6,M7,M8,M9} together yields
S2. The loss of precision by the abstraction can be observed by the fact that other com-
positions, such as {M1, M6, M7, M8, M9} yield full states other than S1 and S2.

State Space Savings. In general, for n threads, if the set of objects reachable from a
thread is bounded, then the number of substates resulting from the reachability-based
decomposition is linear in n (even though the number of full states generated by the
program is exponential in n). Although we do not show the state space reduction in
the figures, one can imagine how running the program with n threads generates states
similar to the ones in Fig. 2(a). By permuting the thread ids between producers threads
and between consumer threads, we obtain an exponential number of full states that are
all reachable by the program execution. Decomposing these states results in a number
of substates that is linear in n.

Heap Decomposition for Concurrent Shape Analysis 369

Transformers. HeDec is guaranteed to be sound, in the sense that when the analysis
terminates all reachable concrete states are represented by some abstract state.

While the abstraction ignores correlations between substates, transforming substates
in isolation using an “independent-attribute” style of analysis [13] leads to debilitating
loss of precision. For example, the analysis executes the statement 6: x->n=t where
thread prod1 is scheduled. Substate M3 does not contain information about the local
variables of thread prod1. Therefore,M3 also represents a state Sbad in which the local
variables t and x of thread prod1 point to the first cell and to the last cell of the list,
respectively. Thus, a conservative transformer of 6: x->n=t must emit a warning
about a possible creation of a cyclic list.

To avoid this kind of loss of precision, a user of HeDec can specify which substates,
obtained from different location selection predicates, should be (temporarily) com-
posed by the transformer. This is done in terms of combiner sets, which are subsets of
node selection predicates. In this example, for the transformer of 6: x->n=t, we can
specify the combiner sets {pt[prod1], pt[prod2]}, {pt[prod1], pt[cons1]}, {pt[prod1],
pt[cons2]}, and {pt[prod1], pt[Globals]}. Then, the generated transformer composes,
separately, the substates {M1,M5} with each of the sets of substates {M2,M6}, {M3,
M7}, {M4,M8}, and {M9}. For the substates composed with M5 (which is the only
substate in the prod1-subdomain that can execute 6: x->n=t) the transformer up-
dates the n field appropriately, avoiding the false alarm. Finally, the transformer de-
composes the substates again into each one of the subdomains. The resulting abstract
substates are the same as in Fig. 2, except that M5 has an n-link between the object
pointed-to by t and the object pointed-to by x and its program counter is 7.

This example shows how, by combining a small number (linear in the number of
location selection predicates, in this case) of substates decomposed by different pred-
icates, the transformer is able to increase precision without incurring an unreasonable
time/space blow-up.

A Methodology for Combiner Sets. We now briefly discuss the issue of choosing
combiner sets for a transformer (which is done by the analysis designer in our frame-
work). Every transformer can be thought of as having a frame as well as a footprint.
The frame identifies the part of a program state that is completely irrelevant to the
transformer. Thus, it contains no information that is either used or modified by the trans-
former. The footprint is the complement and contains adequate information to perform
the transformer as precisely as possible.

A straightforward approach for computing the footprint of an operation affecting
several subdomains is combining all the affected subdomains. Unfortunately, this ap-
proach might be too expensive. We apply a more efficient approach, which according
to our experience is precise enough. Specifically, for each operation we choose a set of
core subdomains which contain the heap objects and variables that participate in the op-
eration. We compute the core footprint by combining the core subdomains (in practice,
there are usually no more than two). We then independently combine the core footprint
with the other affected subdomains. For example, the core subdomains for a statement
of the form “x->f = g”, where x of thread t is a local variable and g is a global vari-
able, are the subdomains containing thread t and the subdomain of the global variable
g. The affected subdomains are any subdomains which may alias these variables.

Conditional branches pose an interesting puzzle. Note that because the condition
essentially filters states it can affect all subdomains. Thus, for a conditional

370 R. Manevich et al.

“if (x == g)”, we identify the core subdomains to be the ones containing (the
nodes pointed-to by) x and g. However, we will independently combine them with
all other subdomains.

3 Using Decomposition to Prove Linearizability

Linearizability [7] is one of the main correctness criteria for implementations of concur-
rent data structures. Informally, a concurrent data structure is said to be linearizable if
the concurrent execution of a set of operations on it is equivalent to some sequential ex-
ecution of the same operations, in which the global order between non-overlapping op-
erations is preserved. The equivalence is based on comparing the arguments and results
of operations (responses). The permitted behavior of the concurrent object is defined
in terms of a specification of the desired behavior of the object in a sequential setting.
Linearizability is a widely-used concept, and there are numerous non-automatic proofs
of linearizability for concurrent objects.

Verifying linearizability is challenging because it requires correlating any concurrent
execution with a corresponding permitted sequential execution. Verifying linearizabil-
ity for concurrent dynamically allocated linked data structures is particularly challeng-
ing, because it requires correlating executions that may manipulate memory states of
unbounded size. Interestingly, proving linearizability does not require directly prov-
ing safety properties such as preservation of data structure invariants. Instead, one can
first prove that the sequential implementation satisfies the required safety properties
and then prove that the concurrent implementation is linearizable, thereby, satisfies the
safety property. Finally, linearizability of complex systems can be shown by separately
proving the linearizability of each of the individual data structure implementations.

Intuitively, we verify linearizability by representing, in the concrete state, both the
state of the concurrent program and the state of the reference sequential program. Each
element entered into the data structure is correlated at linearization points with the
matching object from the sequential execution. This works well under abstraction when
the differences between the heaps of the sequential and concurrent implementations are
bounded. The details are described in [1].

In order to guarantee that the shape analysis scales-up in the number of threads, in
HeDec we have defined a decomposition scheme that abstracts away the correlations
between the threads (as in Sec. 2). Also, there is no need to track reachability from
program variables. Instead, the subheap abstraction tracks elements whose values in the
sequential and the concurrent implementations are correlated.

3.1 A Decomposition Scheme for Linearizability Analysis

In HeDec, we have defined such a decomposition scheme by decomposing the heap
into n+1 components where n is the number of threads: (i) For each thread the objects
pointed-to by local variables of the thread and objects pointed-to by global variables.
This captures the relationships between local pointer variables and global pointer vari-
ables. Each subheap abstracts away the values of the local variables of the other threads.
(ii) A separate subheap with the objects pointed-to by global variables and the part of
the heap already correlated with the sequential execution. Here, the values of the local

Heap Decomposition for Concurrent Shape Analysis 371

prod1 prod2 cons1 cons2 corr

Top

x

t

n

prod1

pc=7

corr

Top

n

x

t

prod2

pc=6

corr

corr

Top cons1

pc=14tcorr

Top

t

s

n

cons2

pc=16

corr

corr corr

Top

n

n

n

corr

corr

corr corr

K1 K2 K3 K4 K5

Fig. 3. The decomposed states abstracting the full state S1 in Fig. 2(a). The names of the sub-
domains appear above each substate.

variables of all the threads are abstracted away. We call this the corr subdomain as it
represents the correlated elements. Fig. 3 shows the effect of applying this decomposi-
tion to the full state S1 in Fig. 2(a).

Intuitively, this decomposition is appropriate for verifying linearizability for the pro-
gram in Fig. 1 because of the following. The list consisting of correlated objects changes
locally when a thread executes a successful CAS operation. In fact, successful CAS op-
erations are the linearization points for this program. Precisely interpreting these op-
erations (CAS(&S->Top,t,x) and CAS(&S->Top,t,s)) in the analysis requires
tracking correlations between local and global variables, which we do in the subheap
we decompose for each thread.

The subheap captured by the corr subdomain is important only during successful
CAS operations, which is when a (non-correlated) node allocated by a thread is passed
into the list. Maintaining the subheap of the corr subdomain for each thread is wasteful,
and thus we separate these correlations into different subdomains.

The important thing to notice is that all the exponential explosion in the state space
that is due to the number of threads in the full heap is eliminated by this decomposition.
The number of possible subheaps of each thread becomes independent of the number
of threads in the system (for more than two threads).

Transformers. The combiner sets used in the transformers of the analysis are the ap-
plication of the methodology described in Sec. 2.1 to this decomposition scheme. For
example, copying a global variable into a local variable does not require decomposition
as the executing thread has all the needed information. Copying a local variable into a
global variable combines the subdomain of the executing thread with each of the other
subdomains. Other operations that change the global state such as changes to pointer
fields and performing CAS operations behave the same. Dereferencing a pointer re-
quires composing the subdomain for the current thread and the corr subdomain as the
information on the next element of the stack is not available in the thread’s subdomain.

4 The Heap Decomposition Abstraction

In this section, we formally define our new parametric heap abstraction and a family of
sound abstract transformers.

372 R. Manevich et al.

4.1 Heap Decomposition as a Cartesian Product of Subheaps

We first define the (parameterized) abstract domain of decomposed heaps. (See the
technical report [10] for an illustration of the concepts defined below.)

Let (Σ,2,⊗) be a semilattice, where elements of Σ represent (total and partial)
states, 2 is a partial ordering on Σ capturing the “is a substate of” relation, and ⊗ is
the join operation with respect to 2 (which composes substates together). We extend
⊗ to sets of states as follows. Let X1 ⊆ Σ and X2 ⊆ Σ. We define X1 ⊗ X2 =
{σ1 ⊗ σ2 | σ1 ∈ X1, σ2 ∈ X2}. For purposes of abstraction, we shall also make use of
the information ordering defined by σ � σ′ iff σ′ 2 σ.

Let (P(Σ),�) denote the powerset domain of Σ with the Hoare ordering: i.e., for
every X,Y ⊆ Σ, we write X � Y iff ∀x ∈ X : ∃y ∈ Y : x � y.

A substate extraction function is a function η : Σ → Σ that satisfies η(σ) 2 σ.
Assume we have a sequence of k substate extraction functions η1 to ηk . We use the
k-fold product P(Σ)k = P(Σ) × · · · × P(Σ) as our domain of abstract states. The
abstraction function α : P(Σ) → P(Σ)k is defined by:

α(S) = (η̂1(S), . . . , η̂k(S)) (1)

where η̂i is the pointwise extension of ηi defined by:

η̂i(S) = {ηi(σ) | σ ∈ S} (2)

We define the meaning, or concretization, of a tuple I1, . . . , Ik ∈ P(Σ)k by

γ(I1, . . . , Ik) = I1 ⊗ · · · ⊗ Ik. (3)

Example 1. Let S denote the set of states {S1, S2} shown in Fig. 2(a). For any thread
t, we define the predicate pt[t] to be true for: (a) the thread object of t, (b) the objects
pointed-to by its local variables (t and x), and (c) the objects pointed-to by the global
variables (Top). In addition, we define the location selection predicate Globals, which
holds for the objects reachable from global variables. Given any predicate p, the substate
extraction function δp maps a state σ to the substate consisting only of the locations
satisfying p. We define η1 to be δpt[prod1], η2 to be δpt[prod2], η3 to be δpt[cons1], η4 to
be δpt[cons2], and η5 to be δGlobals. Now, η1(S1) = M1, η2(S1) = M2, η3(S1) = M3,
η4(S1) = M4, and η5(S1) = M9.

4.2 Abstract Transformers

We now turn our attention to the more challenging aspect of decomposition: computing
sound abstract transformers.

The semantics of a program statement is given by a function τ : Σ → P(Σ). We
make the standard assumption that the transformer is monotonic in the information
order, i.e., if σ1 � σ2 then τ(σ1) � τ(σ2). We extend this function pointwise to τ :
P(Σ) → P(Σ), by defining τ(S) =

⋃
{τ(σ) | σ ∈ S}. (Note that the extended

transformer is monotone in the information order as well.) For purposes of abstract
interpretation, we need to define a corresponding sound abstract transformer onP(Σ)k.
Given an input value I = (I1, . . . , Ik), the abstract transformer needs to compute the
output value O = (O1, . . . , Ok).

Heap Decomposition for Concurrent Shape Analysis 373

A straightforward sound transformer is the pointwise transformer τpw defined as
follows:

τpw(I1, . . . , Ik) = (η̂1(τ(I1)), . . . , η̂k(τ(Ik))). (4)

Example 2. While the pointwise transformer is simple and efficient, it can lead to im-
precise results when the transformer has to update a substate that does not have all the
relevant information. Recall the example from Sec. 2, and consider the substate M3.
Substate M3 does not contain information about the local variables of other threads.
Therefore, M3 also represents a state Sbad in which the local variables t and x of
thread prod1 point to the first cell and to the last cell of the list, respectively. Thus, a
conservative transformer of 6: x->n=t, when prod1 serves as the scheduled thread,
must emit a warning about a possible creation of a cyclic list. As explained in Sec. 2, we
can avoid this imprecision by composing substateM3 with other substates (M1) to pro-
duce a more precise substate that can be transformed without making such worst-case
assumptions. This motivates the following definitions.

A combiner set is a set R ⊆ {1, . . . , k} identifying a set of subheap domains. We
define the partial concretization function γR, which combines the information from the
specified set of subdomainsR = {j1, . . . , jm}, as follows:

γR(I1, . . . , Ik) =
⊗

r∈R

Ir = Ij1 ⊗ Ij2 · · · ⊗ Ijm . (5)

One-Level Composition. We define the partial transformer τ1[R, i], which computes
the substate corresponding to the i-th subdomain using the subdomains identified by R,
by

τ1[R, i](I) = η̂i(τ(γR(I))). (6)

We use the term one-level transformer to indicate that combining (or composing) infor-
mation from a set of subdomains (identified by R above) occurs in one step.

We define a one-level transformer specification TS to be a tuple (TS1, . . . ,TSk)
where each TSi ⊆ {1, . . . , k}. We define the transformer τ1[TS] by

τ1[TS](I) = (τ1[TS1, 1](I), . . . , τ1[TSk, k](I)). (7)

Theorem 1. For any one-level transformer specification TS , the transformer τ1[TS] is
sound. That is, for every input value I ∈ P(Σ)k: τ(γ(I)) � γ(τ1[TS](I)).

Two-Level Composition. We now present a generalization of the above definition. As
motivation for this generalization, consider a situation where we want to compute an
output value Oj by combining the input values from a set of subdomains R1 or by
combining the input values from a set of subdomains R2 (but we are unable to say
which of these combinations to use statically). We could, of course, combine the input
values from the set of subdomains R1 ∪ R2, but this could be expensive. Instead, we
can utilize the two combinations independently of each other by using

(η̂j(τ(γR1 (I)))) � (η̂j(τ(γR2 (I))))

374 R. Manevich et al.

as the desired output value. We call transformers derived in this fashion two-level trans-
formers, as the use of the meet operation � constitutes a second stage of combining
(composing) information.

Let Y be a set of combiner sets. We define the partial transformer τ2[Y, i], which
computes the substate corresponding to the i-th subdomain using the combiner sets in
Y independently, as follows:

τ2[Y, i](I) =
R∈Y

τ1[R, i](I) (8)

We define a two-level transformer specification TS to be a tuple (TS1, . . . ,TSk)
where each TSi ⊆ P({1, . . . , k}). We define the transformer τ2[TS] by

τ2[TS](I) = (τ2[TS1, 1](I), . . . , τ2[TSk, k](I)). (9)

(Note that the computation of the above transformer involves a partial concretization for
every R in every TSi. In practice, different TSi and TSj may have common elements,
and it is sufficient for the transformer implementation to do the corresponding partial
concretization just once.)

Theorem 2. For any two-level transformer specification TS , the transformer τ2[TS] is
sound. That is, for every input value I ∈ P(Σ)k: τ(γ(I)) � γ(τ2[TS](I)).

5 Empirical Results

We implemented the HeDec system in Java on top of the TVLA system [8]. HeDec
allows analysis designers to rapidly prototype different shape analysis algorithms by
defining heap decomposition schemes. HeDec, however, is not a panacea — the de-
signer needs to carefully select suitable heap decompositions. Nevertheless, HeDec re-
lieves the designer from the task of developing and implementing the static analysis
algorithms, including the transformers.

Fig. 4 compares the results of our decomposition-based analysis with a full heap
analysis.1

Concurrent Benchmarks. We use the analysis of [1] as the underlying shape analysis.
Both analyses successfully prove linearizability and absence of null dereferences

for the three concurrent programs. For a given number of threads, t, the table shows
the time and the number of states resulting in the analysis of t threads invoking an
arbitrary sequence of operations on a single instance of the analyzed concurrent data
structure. Stack is the non-blocking stack example of Sec. 2.1. TLQ is the two-lock
queue implementation described in [12]. NBQ is a non-blocking queue implementation
from [4]. 2

Note that while [1] can analyze at most 3 threads, our approach, on the other hand,
runs for 15 threads or more. Furthermore, [1] runs out of memory when analyzing 3
threads manipulating a non-blocking-queue.

1 All benchmarks except NBQ were run on a 2.4 GHz E6600 Core 2 Duo processor with 2 GB
of memory running Linux.

2 This benchmark was run on a 2.66 GHz Quad Xeon with 16 GB of memory running Windows
XP 64 bit.

Heap Decomposition for Concurrent Shape Analysis 375

Full Heap Decomposition
Example # of threads # of states secs. # of substates secs.
Stack 2 3,424 3 1,608 7

3 10,6296 71 4,103 13
4 MemOut - 7,728 22

20 - - 212,048 3,421
TLQ 3 8,783 12 8,911 30

5 44,285 35 23,585 90
8 MemOut - 58,796 307

15 - - 202,555 2,122
NBQ 2 39,583 69 20,646 263

3 MemOut - 57,065 694
15 - - 2,017,280 1 day

Full Heap Decomposition
Example # of states secs. # of substates secs.
6-list-prepend 17,496 16 557 5
6-list-join 37,689 40 1,282 6
4-tree-insert 43,031 44 5,316 29

(a) (b)

Fig. 4. Empirical results for: (a) concurrent benchmarks, and (b) sequential benchmarks

Sequential Benchmarks. Both analyses successfully prove absence of null derefer-
ences, absence of memory leaks, and data structure invariants for the following sequen-
tial benchmarks: 6-list-prepend adds elements, non-deterministically, into one of
6 lists; 6-list-join joins 6 lists into one list; and 4-tree-insert inserts nodes,
non-deterministically, into one of 4 binary search trees.

6 Related Work

The framework of Cartesian abstraction via state decomposition we have presented is
relevant to a number of previous lines of work.

Heterogeneous Abstractions. Yahav and Ramalingam [19] defined a notion of het-
erogeneous abstractions. There, Cartesian abstractions are used as a way to achieve
decomposition (or separation, in the terminology of that paper). One contribution of
this paper is to show that that previous analysis is based on a (simple form of) Carte-
sian abstraction. On the other hand, in that work, heterogeneity was used only within
a single structure (to abstract the substructure of interest differently from its context),
where our framework supports different abstractions for different factors of the product,
yielding heterogeneity across different structures. Furthermore, while [19] relies on the
point-wise transformer, we introduce a generalized family of transformers that allow
(de)composition when transformers are applied. This generalization allows specifying
more precise transformers, and gives us dynamic separation/decomposition.

Region-based Heap Analyses. Like [19], [6] also decomposes heap abstractions to in-
dependently analyze different parts of the heap. There the analysis/verification problem
is itself decomposed into a set of problem instances, and the heap abstraction is special-
ized for each instance and consists of one subheap for the part of the heap relevant to
the instance, and a coarser abstraction of the remaining part of the heap, e.g. a points-
to graph. In contrast, we simultaneously maintain abstractions of different parts of the
heap and also consider the interaction between these parts. (E.g., our decomposition
dynamically changes as components get connected and disconnected.)

Partially Disjunctive Heap Abstraction. Manevich et al. [11] describe a heap abstrac-
tion based on merging sets of graphs with the same set of nodes into one (approximate)

376 R. Manevich et al.

graph. The abstraction in this paper is based on decomposing a graph into a set of sub-
graphs. The abstraction in [11] is orthogonal to the one in this paper.

Handling Concurrency for an Unbounded Number of Threads. In [2], we use thread
quantification to analyze programs with an unbounded number of threads. Thread quan-
tification can be thought of as an unbounded variant of a particular decomposition strat-
egy, which we use to abstract away correlations between local variables of different
threads. In the thread quantification analysis, we report that using an additional heap de-
composition abstraction in order to abstract away correlations between values of some
local variables and global variables effects drastic state-space savings. This made the
analysis feasible in the example of proving linearizability of a non-blocking queue im-
plementation.

Proving Linearizability of Data Structures. Shape analysis of concurrent programs with
unbounded dynamic allocation have been investigated. The analysis in [18] addresses
an unbounded number of threads by losing distinctions that cannot be made based on
thread-independent information. This analysis has been extended to verify linearization
[1] of programs with a bounded number of threads. Here we use the decomposition
abstraction to define an analysis that can be exponentially faster than that in [1].

Manual linearizability proofs using rely-guarantee have been given in [17], and
using a manual translation to automata followed by an interactive proof in PVS in [2].
Recently, [16] automatically verifies linearizability from manual specifications in a
combination of rely-guarantee and separation logic, using the proof technique of [1].

7 Conclusions

We present systematic and generic techniques for scaling up shape analyses using heap
decomposition, implemented in the HeDec system. A user of HeDec can quickly proto-
type a shape analysis by: (a) defining any heap decomposition she believes is appropri-
ate for the class of programs and properties of interest, and (b) supplying for every type
of program statement any (possibly empty) combiner set she believes supplies the right
balance between efficiency and precision. HeDec then automatically generates a sound
analysis.

Acknowledgements. We thank Noam Rinetzky, Greta Yorsh, Byron Cook, and
Thomas Ball for supplying us with helpful comments on early drafts of the paper. We
thank Daphna Amit for explaining and helping us use her linearizability analysis and
commenting on earlier drafts of this paper.

References

1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

2. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simulation.
Electr. Notes Theor. Comput. Sci. 137(2), 93–110 (2005)

Heap Decomposition for Concurrent Shape Analysis 377

3. Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin, P.A., Moir, M.,
Shavit, N., Steele Jr., G.L.: DCAS is not a silver bullet for nonblocking algorithm design. In:
SPAA, pp. 216–224 (2004)

4. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free
queue algorithm. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi, K., Rubio, F. (eds.)
FORTE 2004. LNCS, vol. 3236, pp. 97–114. Springer, Heidelberg (2004)

5. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In: PLDI, pp.
266–277 (2007)

6. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: POPL, pp.
310–323 (2005)

7. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
TOPLAS 12(3), 463–492 (1990)

8. Lev-Ami, T., Sagiv, M.: TVLA: A framework for implementing static analyses. In: Palsberg,
J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg (2000)

9. Manevich, R., Berdine, J., Cook, B., Ramalingam, G., Sagiv, M.: Shape analysis by graph
decomposition. In: TACAS, pp. 3–18 (2007)

10. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decomposition for
concurrent shape analysis. Technical Report TR-2008-01-85453, Tel Aviv University (Jan-
uary 2008), http://www.cs.tau.ac.il/∼rumster/TR-2007-11-85453.pdf

11. Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially disjunctive heap abstraction. In:
Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279. Springer, Heidelberg (2004)

12. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: PODC, pp. 267–275 (1996)

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg
(1999)

14. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans-
actions on Programming Languages and Systems 24(3), 217–298 (2002)

15. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report RJ 5118,
IBM Almaden Research Center (April 1986)

16. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. draft (2008)
17. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent

linearisable objects. In: PPOPP, pp. 129–136 (2006)
18. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued logic.

ACM SIGPLAN Notices 36(3), 27–40 (2001)
19. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and heterogeneous

abstractions. In: PLDI, pp. 25–34 (2004)

http://www.cs.tau.ac.il/~rumster/TR-2007-11-85453.pdf

Author Index

Albert, Elvira 221
Allamigeon, Xavier 189
Arenas, Puri 221

Balakrishnan, Gogul 238
Barrett, Clark 62
Bauer, Jörg 32
Berdine, Josh 363

Comini, Marco 144
Conway, Christopher L. 62

Dalla Preda, Mila 174
Damiani, Ferruccio 144
Dams, Dennis 62

Flexeder, Andrea 299

Gaubert, Stéphane 189
Genaim, Samir 221
Giacobazzi, Roberto 1, 174
Goubault, Éric 189
Grama, Ananth 78
Gupta, Aarti 238

Ivančić, Franjo 238

Jagannathan, Suresh 78
Jensen, Thomas 347

Kidd, Nicholas 283

Lal, Akash 93, 283
Lammich, Peter 205
Leroux, Jérôme 47
Lev-Ami, Tal 363
Liblit, Ben 18

Mairson, Harry G. 255
Manevich, Roman 363
Mastroeni, Isabella 1
Mesnard, Fred 128
Midtgaard, Jan 347
Müller-Olm, Markus 205

Namjoshi, Kedar S. 62
Nanz, Sebastian 159
Nielson, Flemming 32, 159

Perdrix, Simon 270
Perry, Frances 332
Petter, Michael 299
Pilegaard, Henrik 32
Prabhu, Prakash 110
Puebla, Germán 221

Ramalingam, Ganesan 363
Ramanathan, Murali Krishna 78
Reps, Thomas 93, 283
Riis Nielson, Hanne 32, 159
Ruggieri, Salvatore 128

Sagiv, Mooly 363
Sankaranarayanan, Sriram 238
Seidl, Helmut 299
Sen, Koushik 78
Shankar, Priti 110
Simon, Axel 315

Van Horn, David 255
Visentini, Enrico 174
Vrech, Samuel 144

Walker, David 332
Wei, Ou 238

	Title Page
	Preface
	Organization
	Table of Contents
	Transforming Abstract Interpretations by Abstract Interpretation
	Introduction
	Abstract Domains Individually and Collectively
	The Geometry of Abstract Domain Transformers
	Shell vs. Core
	Expander vs. Compressor
	Transforming Abstractions for Transforming Policies

	The Geometry of Completeness Semantic Transformers
	Transforming Semantics for Inducing Forward Completeness
	Transforming Semantics for Inducing Forward Incompleteness
	Transforming Semantics for Transforming Program Security

	Discussion
	References

	Reflections on the Role of Static Analysis in Cooperative Bug Isolation
	Introduction
	Overview of Cooperative Bug Isolation

	Unconditional Instrumentation
	Static Analysis as Currently Used
	Static Analysis Potential

	From Unconditional Instrumentation to Sampling
	The CBI Sampling Transformation
	Static Analysis as Currently Used
	Static Analysis Potential

	Statistical Debugging
	Static Analysis as Currently Used
	Static Analysis Potential

	A Closing Rant on Analysis Robustness
	Conclusion
	References

	Relational Analysis of Correlation
	Introduction
	Calculus for Web Services
	An Accident Service
	Labelled Transition System for CWS

	A Relational Analysis for CWS
	Properties of the Analysis
	Correctness
	Implementation

	Related Work
	Conclusion
	References

	Convex Hull of Arithmetic Automata
	Introduction
	Arithmetic Automata
	Reduction to Data-Flow Analysis Problems
	Reduction for C_{D}
	Reduction for C_{I}

	Infinite Paths Convex Hulls
	Fix-Point Computation
	Conclusion
	References

	Pointer Analysis, Conditional Soundness, and Proving the Absence of Errors
	Introduction
	Program Analysis and Conditional Soundness
	Concrete Semantics
	PointerAnalysis
	Checking Memory Safety
	Related Work
	Conclusion
	References

	Protocol Inference Using Static Path Profiles
	Introduction
	Motivation
	Deriving Specifications
	{\sc marga} : Implementation Details
	Experiments
	Quantitative Assessment
	Qualitative Assessment

	Related Work
	References

	Solving Multiple Dataflow Queries Using WPDSs
	Introduction
	Program Model
	Solving Multiple Intraprocedural Queries
	Solving Multiple Queries on WPDSs
	Experiments
	Related Work
	References

	Field Flow Sensitive Pointer and Escape Analysis for Java Using Heap Array SSA
	Introduction
	Intraprocedural Field Flow Sensitivity
	Heap Array SSA and Field Flow Sensitivity
	Field Flow Sensitive Analysis as Logic Programs

	Interprocedural Field Flow Sensitivity: $ i\phi and r\phi$
	Combined Field Flow and Context Sensitivity
	Pointer Analysis
	Escape Analysis for Methods

	Experimental Results
	Related Work
	Conclusions
	References

	Typing Linear Constraints for Moding CLP$\mathcal {(R)}$ Programs
	Introduction
	Bound Types for Linear Constraints
	Syntax and Semantics
	Checking Type Assertions: First Intuitions
	Checking Type Assertions: An LP Approach
	Checking Type Assertions: A Parameterized Approach
	Extensions to Strict Inequalities and to Disequalities

	Moding CLP Programs
	Related Work and Conclusions
	References

	On Polymorphic Recursion, Type Systems, and Abstract Interpretation
	Introduction
	Preliminary Definitions
	A Stratification of (\sf {let}-free) Milner-Mycroft Typability
	System \DerIorecFREE: Typing the \REC-Free Fragment of the Language
	System \DerIrecPo: Typing Polymorphic Recursive Definitions
	Systems \DerIrecPopar{k} ($k\ge 1$): A Family of Decidable Restrictions of \DerIrecPo
	Systems \DerIrecPomlpar{k} ($k\ge 1$): Recovering ML-Typability

	The Gori-Levi Type Abstract Interpreter Revisited
	The Type Systems Corresponding to \SysPGL and \SyskMLGL
	Systems \DerGL, \DerkGL{k}, and \DerGLrecmlpar{k}
	Soundness and Completeness of \SyskMLGL/\SysPGL \wrt\ \DerGLrecmlpar{k}/\DerGL
	System \DerGLanother: A Simpler Characterization of \SysPGL

	Conclusions and Future Work
	References

	Modal Abstractions of Concurrent Behaviour
	Introduction
	Communicating Systems
	Syntax
	Operational Semantics

	Exposed Actions
	Monotone Frameworks
	Interval Lattices
	Generated and Killed Actions
	The Transfer Function

	Constructing Modal Abstractions
	Modal Transition Systems
	The Worklist Algorithm

	Conclusion
	References

	Hiding Software Watermarks in Loop Structures
	Introduction
	Preliminaries
	Assignment-Insertion
	Loop-Unrolling
	Software Watermarking by Loop-Unrolling
	Discussion
	References

	Inferring Min and Max Invariants Using Max-Plus Polyhedra
	Introduction
	Max-PlusPolyhedra
	The Max-Plus Semiring
	Definition of Max-Plus Polyhedra Using Systems of Generators
	Definition of Max-Plus Polyhedra by Systems of Constraints
	Max-Plus Polyhedra and Zones

	Abstract Semantics
	Order-Theoretic Operators
	Assignments
	Linearization

	Examples and Benchmarks
	Conclusion and Future Work
	References

	Conflict Analysis of Programs with Procedures, Dynamic Thread Creation, and Monitors
	Introduction
	Program Model
	Restricted Schedules
	ConstraintSystems
	Abstractions
	Conclusion
	References

	Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis
	Introduction
	Motivating Example
	Cost Relations vs. Recurrence Relations

	Cost Relations: Evaluation and Upper Bounds
	Closed Form Upper Bounds for Cost Relations

	Upper Bounds on the Number of Nodes
	Estimating the Cost Per Node
	Invariants
	Upper Bounds on Cost Expressions

	Improving Accuracy in Divide and Conquer Programs
	Direct Recursion Using Partial Evaluation
	Experiments in Cost Analysis of Java Bytecode
	References

	SLR: Path-Sensitive Analysis through Infeasible-Path Detection and Syntactic Language Refinement
	Introduction
	Preliminaries
	Infeasible-Path Detection
	Infeasibility-Type Theorems
	Infeasible-Path Enumeration

	Path-Sensitive Analysis
	Experiments
	References

	Flow Analysis, Linearity, and PTIME
	Introduction
	Shivers’ 0CFA
	Henglein’s Simple Closure Analysis
	Linearity and Normalization
	Lower Bounds for Flow Analysis
	Other Monovariant Analyses
	Ashley and Dybvig’s Sub-0CFA
	Subtransitive 0CFA

	Conclusions and Perspective
	References

	Quantum Entanglement Analysis Based on Abstract Interpretation
	Introduction
	Basic Notions and Entanglement
	Quantum Computing
	Entanglement
	Standard and Diagonal Basis

	A Quantum Programming Language
	Concrete Semantics

	Entanglement Analysis
	Abstract Semantics
	Soundness

	Conclusion and Perspectives
	References

	Language Strength Reduction
	Introduction
	Overview
	Definitions and Examples
	Extended Weighted Pushdown Systems
	Communicating Pushdown System
	Nested Word Automata

	Combining an NWA with an EWPDS
	The Nested-Word Language of an EWPDS
	Construction

	Language Strength Reduction for the Empire Tool
	Experiments
	Related Work
	References

	Analysing All Polynomial Equations in $\mathbb {Z} _{2^{w}}$
	Introduction
	Fixpoint Semantics
	The Ring of Polynomials in $\mathbb {Z} _{2^{w}}$
	Verifying Polynomial Relations in Verifying Polynomial Relations in Verifying Polynomial Relations in $\mathbb {Z} _{2^{w}}$
	Computing with Ideals over Computing with Ideals over $\mathbb {Z} _{2^{w}}$ [X]
	Inferring Polynomial Relations over $\mathbb {Z} _{2^{w}}$
	Conclusion
	References

	Splitting the Control Flow with Boolean Flags
	Introduction
	An Introduction to Convex Polyhedra
	Principles of Boolean Flags in Polyhedra
	Boolean Flags and Unbounded Polyhedra
	Integrality of the Solution Space
	Using Boolean Flags in Common Polyhedral Domains

	Applications of Control Flow Path Splitting
	Refining Points-To Analysis
	Boolean Flags and String Buffer Analysis
	Accessing Several String Buffers

	Discussion and Conclusion
	References

	Reasoning about Control Flow in the Presence of Transient Faults
	Introduction
	InformalOverview
	The Control-Flow Machine
	Dynamic Semantics

	Typing
	Value Typing
	Instruction and Block Typing

	Formal Properties
	Related Work, Future Work, and Conclusions
	References

	A Calculational Approach to Control-Flow Analysis by Abstract Interpretation
	Introduction
	A Short Introduction to Abstract Interpretation
	Galois Connections etc.
	Composition of Galois Connections

	Language
	Semantics
	Collecting Semantics
	Abstracting the Collecting Semantics
	Abstraction of Values
	Abstraction of Environments
	Abstraction of Machine States

	Calculating the Analysis
	Implementation and Example
	Related Work
	Conclusion and Further Work
	References

	Heap Decomposition for Concurrent Shape Analysis
	Introduction
	Heap Decomposition for Fine-Grained Concurrency
	Decomposing Non-blocking Implementations

	Using Decomposition to Prove Linearizability
	A Decomposition Scheme for Linearizability Analysis

	The Heap Decomposition Abstraction
	Heap Decomposition as a Cartesian Product of Subheaps
	Abstract Transformers

	Empirical Results
	Related Work
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

