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Preface

This textbook is intended for use by students of physics, physical chemistry, and theoretical
chemistry. The reader is presumed to have a basic knowledge of atomic and quantum physics
at the level provided, for example, by the first few chapters in our book The Physics of Atoms
and Quanta. The student of physics will find here material which should be included in the
basic education of every physicist. This book should furthermore allow students to acquire
an appreciation of the breadth and variety within the field of molecular physics and its future
as a fascinating area of research.

For the student of chemistry, the concepts introduced in this book will provide a theoretical
framework for his or her field of study. With the help of these concepts, it is at least in
principle possible to reduce the enormous body of empirical chemical knowledge to a few
fundamental rules: those of quantum mechanics. In addition, modern physical methods whose
fundamentals are introduced here are becoming increasingly important in chemistry and now
represent indispensable tools for the chemist. As examples, we might mention the structural
analysis of complex organic compounds, spectroscopic investigation of very rapid reaction
processes or, as a practical application, the remote detection of pollutants in the air.

The present textbook concerns itself with two inseparably connected themes: chemical
bonding and the physical properties of molecules. Both have become understandable through
quantum mechanics, which had its first successes in the elucidation of atomic structure. While
the question of chemical bonding is mainly connected with the ground state of the electrons
and its energy as a function of the internuclear separation of the bonded atoms, an explanation
of other physical properties of molecules generally requires consideration of excited states.
These can refer both to the electronic motions and to those of the nuclei.

The theoretical investigation of these themes thus requires the methods of quantum me-
chanics, and their experimental study is based on spectroscopic methods, in which electro-
magnetic waves over a wide spectral range serve as probes. In this way, it becomes possible
to obtain information on the structure of a molecule, on its electronic wavefunctions and on
its rotations and vibrations. We include here the theoretical and experimental determination
of binding energies and the energies of excited states. In the theoretical treatment, we shall
meet not only concepts familiar from atomic physics, but also quite new ones, among them
the Hartree-Fock approximation, the Born-Oppenheimer approximation, and the use of sym-
metry properties in group theory. These ideas likewise form the basis of the quantum theory
of solids, which is thus intimately connected to molecular physics.

In spite of the central importance held by the combination of molecular physics and
quantum chemistry, there previously has been no textbook with the aim we have set for
the present one. That fact, along with the extremely positive reception of our introductory
text The Physics of Atoms and Quanta by students, teachers and reviewers, has stimulated
us to write this book. We have based it on lecture courses given over the past years at the
University of Stuttgart. We have again taken pains to present the material in a clear and
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Preface

understandable form and in a systematic order, treating problems from both an experimental
and from a theoretical point of view and illustrating the close connection between theory
and experiment.

Anyone who has been concerned with molecular physics and quantum chemistry will
know that we are dealing here with practically limitless fields of study. An important, indeed
central task for us was therefore the choice of the material to be treated. In making this
choice, we have tried to emphasise the basic and typical aspects wherever possible. We
hope to have succeeded in providing an overview of this important and fascinating area of
research, which will allow the student to gain access to deeper aspects through study of the
published literature. For those who wish to delve deeper into the great variety of research
topics, we have provided a list of literature sources at the end of the book. There, the reader
will also find literature in the area of reaction dynamics, which is presently experiencing a
period of rapid development, but could not be included in this book for reasons of internal
consistency. In addition, we give some glimpses into rather new developments such as
research on photosynthesis, the physics of supramolecular functional units, and molecular
microelectronics.

The book is thus intended to continue to fulfil a dual purpose: on the one hand to give
an introduction to the well-established fundamentals of the field of molecular physics, and,
on the other, to lead the reader to the newest developments in research.

This text is a translation of the second German edition of Molekiilphysik and Quanten-
chemie. We wish to thank Prof. W.D. Brewer for the excellent translation and the most
valuable suggestions he made for the improvement of the book.

We thank our colleagues and those students who have made a number of useful sug-
gestions for improvements. In particular, we should like to thank here all those colleagues
who have helped to improve the book by providing figures containing their recent research
results. The reader is specifically referred to the corresponding literature citations given in
the figure captions. We should also mention that this text makes reference to our previous
book, The Physics of Atoms and Quanta, which is always cited in this book as 1.

Last but not least we wish to thank Springer-Verlag, and in particular Dr. H.J. Kélsch
and C.-D. Bachem for their always excellent cooperation.

Stuttgart, January 1995 H. Haken and H.C. Wolf
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1. Introduction

1.1 What is a Molecule?

When two or more atoms combine to form a new unit, that new particle is termed a molecule.
The name is derived from the Latin word molecula, meaning “small mass”. A molecule is the
smallest unit of a chemical compound which still exhibits all its properties, just as we have
seen the atom to be the smallest unit of a chemical element. A molecule may be decomposed
by chemical means into its component parts, i.e. into atoms. The great variety of materials
found in the world of matter is a result of the enormous variety of possible combinations in
which molecules may be constructed out of the relatively few types of atoms in the Periodic
Table of elements.

The simplest molecules are diatomic and homonuclear; that is, they are made up of two
atoms of the same type, such as Hy, N,, or O,. In these cases, one should imagine the
electron distribution as shown in Fig. 1.1 (upper part): there are electrons which belong
equally to both atoms, and they form the chemical bond. The next simplest group is that
of diatomic molecules containing two different atoms, so-called heteroauciear molecules,
such as LiF, HCI, or CuO; see Fig. 1.1 (lower part). In these molecules, in addition to
chemical bonding by shared electrons, which is termed homopolar or covalent bonding,
another bonding mechanism is important: heteropolar or ionic bonding.

Fig.1.1. Electron distributions
in the small molecules Hj, Cls,
and HCI, shown schematically.
The nuclear separations are 0.74
A in Hy, 1.27 A in HC, and
1.99 A in Cl,



1. Introduction

Fig. 1.2. The potential energy £
for NaCl and Na*Cl1~ as a func-
tion of their internuclear dis-
tance R, in the gas phase

We shall explain some of the basic concepts of molecular physics at this point by using
as an example the molecule NaCl (in the gas phase). Figure 1.2 shows the potential energy
of the system sodium + chlorine as a function of the distance between the atomic nuclei. At
large internuclear distances, the interaction between a neutral sodium and a chlorine atom is
quite weak and the potential energy of the interaction is thus nearly zero; a slight attractive
interaction can, however, be caused by the weak mutual polarisation of the electronic charge
clouds. If we bring the neutral atoms close together, at a distance of ca. 0.6 nm a repulsive
interaction occurs. This fact can be used to define the size of the atoms, as discussed in more
detail in I. (We denote the book The Physics of Atoms and Quanta, by H. Haken and H.C.
Wolf, as I. We assume knowledge of the atomic physics treated in that book and will refer
to it repeatedly in the following.)

At an internuclear distance of 1.2 nm, however, the state in which an electron from the
sodium atom passes onto the chlorine atom becomes more energetically favored, and the
system Na*/Cl~ is thus formed by charge transfer. When the distance is further decreased,
the effective interaction potential becomes practically the same as the attractive Coulomb
potential between the two ions. An equilibrium state is finally reached at a distance of
0.25 nm, due to the competition between this attractive potential and the repulsion of the
nuclei and the closed electronic shells of the ions; the repulsion dominates at still smaller
distances. This equilibrium distance, together with the electron distribution corresponding to
it, determine the size of the molecule.

Continuing through molecules containing several atoms, such as H,O (water), NH; (am-
monia), or CsHs (benzene), with 3, 4, or 12 atoms, respectively, we come to large molecules
such as chlorophyll or crown ethers, and finally to macromolecules and polymers such
as polyacetylene, which contain many thousands of atoms and whose dimensions are no
longer measured in nanometers, but instead may be nearly in the micrometer range. Finally,
biomolecules such as the giant molecules of deoxyribosenucleic acids (DNA), which are re-
sponsible for carrying genetic information (see Sect. 20.6), or molecular functional units such
as the protein complex of the reaction centre for bacterial photosynthesis (cf. the schematic
representation in Fig. 1.3), are also objects of study in molecular physics. These molecules
will be treated in later sections of this book, in particular in Chap. 20.



1.2 Goals and Methods

The last example already belongs among the supramolecular structures, giant molecules
or functional units, whose significance for biological processes has become increasingly clear
over the past years. When molecules of the same type, or even different molecules, group
together to make still larger units, they form molecular clusters and finally solids.

1.2 Goals and Methods

Why does the molecule H; exist, but not (under normal conditions) the molecule H3? Why
1s NHj tetrahedral, but benzene planar? What forces hold molecules together?

Fig. 1.3. The reaction centre for
bacterial photosynthesis as a
molecular functional unit. This
schematic drawing shows the
photoactive molecules, which
are embedded in a larger pro-
tein unit. The latter is in turn
embedded in a cell membrane.
Light absorption by the central
chlorophyll dimer is the first
step in the charge separation
which sets off the chemical pro-
cesses of photosynthesis. This
topic will be treated further in
Sect. 20.7. The picture, based
on the X-ray structure analy-
sis by Deisenhofer, Huber, and
Michel (Nobel prize 1988), is
taken from the newspaper “Die
Zeit”



1. Introduction

How large are molecules, and what electrical and magnetic properties do they have? Why
does the optical spectrum of a molecule have orders of magnitude more spectral lines than
that of an atom? These are some of the questions which can be answered more or less simply
when we begin to treat the physics of molecules.

The goal of molecular physics is to learn about and to understand the structure, the
chemical bonding, and the physical properties of molecules in all their variety. From this
basis, one would then like to derive an understanding of the function, the reactions, and the
effects of molecules in physical, chemical, and biological systems.

The incomparably greater variety of molecules as compared to atoms has as a consequence
that one cannot obtain a basic understanding of all the other molecules by considering the
simplest one, as is possible in atomic physics beginning with hydrogen. In the physical
investigation of molecules, spectroscopic methods play a special role, as they do in atomic
physics as well. However, many more spectroscopic methods are required, in particular
because in molecules, unlike atoms, there are more internal degrees of freedom such as
rotations and vibrations. In the following, it will become clear just how varied and numerous
are the methods of investigation which are used in molecular physics.

We shall see the importance of microwave and infra-red spectroscopies, and how fine
details of molecular structure can be uncovered with the techniques of magnetic resonance
spectroscopy of electrons and nuclei. We will, however, also gain access to the wide experi-
ence on which chemical methods are based, the various calculational techniques of quantum
chemistry, and a great variety of experimental methods, beginning with structure determina-
tion using X-ray or neutron scattering, mass spectrometry, and photoelectron spectroscopy.

The goal of quantum chemistry is to make available the tools with which the electron
distribution in molecules, their chemical bonding, and their excited states may be calculated.
Its boundary with molecular physics can of course not be defined sharply.

1.3 Historical Remarks

The first precise ideas about molecules resulted from the observation of quantitative rela-
tionships in chemical processes. The concept of the molecule was introduced in 1811 by the
Italian physicist Avogadro in connection with the hypothesis which bears his name, according
to which equal volumes of different ideal gases at the same temperature and pressure contain
equal numbers of atoms or molecules. This allowed a simple explanation of the law of con-
stant and multiple proportions for the weights and volumes of gaseous reactants in chemical
reactions. These laws and hypotheses are likewise found at the beginning of atomic physics;
they are treated in Sect. 1.2 of I and will not be repeated here.

The investigation of the behaviour of gases as a function of pressure, volume, and tem-
perature in the course of the 19th century led to the kinetic theory of gases, a theoretical
model in which molecules, as real particles, permit the explanation of the properties of gases
and, in a wider sense, of matter in general. On this basis, Loschmidt in the year 1865 made
the first calculations of the size of molecules, which within his error limits are still valid
today.

In the second half of the 19th century, many chemists (we mention here only Kékulé,
the discoverer of the structure of benzene) made the attempt to obtain information about the
atomic and geometric structure of molecules using data from chemical reactions. With the
advent of modern atomic and quantum physics in the 20th century, an effort has also been
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made to gain an exact understanding of chemical bonding. Following the pioneering work
of Kossel on heteropolar and of Lewis and Langmuir on homopolar bonding (1915-1920),
Hund, Heitler, London and others after 1927 laid the foundations of a quantitative quantum
theory of chemical bonding, and thus of quantum chemistry. Since then, a multitude of
researchers have contributed to the increasing degree of refinement of these theoretical ideas
in numerous research papers.

The various instrumental and experimental advances which have allowed an increasingly
detailed analysis of the physical properties of countless molecules will be treated in those
chapters of this book which deal with the respective methods. It can be most readily verified
that such experimental methods tell us much about molecular structure — to be sure indirectly,
but yet precisely — if we can view the molecules themselves. Using the methods of X-ray
scattering and interference, this becomes possible with high accuracy when sufficiently large,
periodically recurring units can be simultaneously investigated, i.e. with single crystals. An
example is discussed in the next chapter in connection with the determination of the sizes
of molecules; see Fig. 2.2. With the modern techniques of transmission electron microscopy
(Fig. 1.4), and in particular using the recently-developed scanning tunnel microscope (Fig.
1.5), it is now possible to obtain images of individual molecules. The existence of molecules
and an understanding of their physical properties have long ceased to be simply hypotheses:
instead, they are established experimental results and form the basis for our understanding
of many structures and processes not only in chemistry, but also in many other fields such
as biology, materials science, and technology.

Fig.1.4. An electron micro-
scope image of hexadecachloro
copper phthalocyanine mole-
cules. The molecules form a
thin, oriented layer on an al-
kali halide crystal which serves
as substrate. The image was
made with a high-resolution
500kV transmission electron
microscope and was processed
using special image-enhance-
ment methods. The central cop-
per atoms and the 16 periph-
eral chlorine atoms may be most
clearly recognised. (This picture
was kindly provided by Prof. N.
Uyeda of Kyoto University)
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Fig.1.5S. An image of benzene
molecules made with a scanning
tunnel microscope. The benzene
was evaporated onto a Rhenium
(111) surface together with CO
molecules, which serve to an-
chor the larger molecules and
are themselves nearly invisi-
ble. As a result of the sub-
strate-molecule interaction, we
see in the picture partially lo-
calised states which make the
benzene molecules appear to
have a reduced (threefold) sym-
metry; what is seen are thus
not the individual C atoms, but
rather molecular orbitals. (From
H. Ohtani, R.J. Wilson, S. Chi-
ang, and C.M. Mate, Phys. Rev.
Lett. 60, 2398 (1988); picture
provided by R.J. Wilson)

1.4 The Significance of Molecular Physics
and Quantum Chemistry for Other Fields

Molecular physics and quantum chemistry provide the connecting link between our knowl-
edge of atomic structure and our efforts to gain a comprehension of the physical and biolog-
ical world. They form the basis for a deeper understanding of chemical phenomena and for
knowledge of the countless known and possible molecules, their physical properties and their
interactions. They lead us to an understanding of microscopic forces and bonding structures,
of the electrical, magnetic, and mechanical properties of crystals and other materials used
in science and technology. They provide us with the fundamentals needed to understand the
biological world: growth, reproduction, and perception; metabolic processes, photosynthesis
in plants, and all of the basic processes of organic life. In short, all living things become
comprehensible only if we understand the molecular structures which underlie them, the
molecules which are actively and passively involved in life-processes, together with their
functions and their interactions.

Small molecules such as H, or HCI are particularly suitable as examples to introduce
important principles, theoretical treatments and experimental methods. These small molecules
will therefore assume an important place in this book, due to their relative simplicity and
clarity. In the following chapters, we shall learn about a number of methods and concepts
using as examples small molecules in the gas phase. In the process, however, we must not
forget how varied, and correspondingly complex, the world of molecules as a whole is.
To a greater degree than in atomic physics, we will have to consider the multiplicity of
phenomena in our material world, the details and not just the basic principles, in order to
gain an understanding of molecular physics. The next chapters aim to give an idea of this
multiplicity of detail.
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In the foreground of our considerations will be the individual molecule: isolated molecules
in a gas. In contrast to atoms, molecules have internal degrees of freedom involving motions
of the component atomic nuclei, which give rise to rotations and to vibrations. We shall
discover spectroscopy to be the most important method for elucidating molecular structure,
just as in atomic physics; but in the case of molecules, the microwave and infra-red regions
of the spectrum, where rotational and vibrational excitations are found, will occupy much
more of our attention.

The interactions of molecules with each other and with other types of molecules finally
will lead us to the physics of fluids, to solid state physics, and to the physical and structural
fundamentals of biology. In this book, we shall restrict the treatment of those fields to the
basic knowledge which is required for understanding the molecules themselves. Conversely,
we shall learn a much greater amount about methods and results which are essential for an
understanding of phenomena in the above fields. Our goal, here as in I, will be to begin
with observations and experimental results, and from them, to work out the basic principles
of molecular physics and quantum chemistry. This book thus does not intend to provide
specialised knowledge directly, but rather to smooth the way for the reader to gain access to
the enormous body of technical literature.



2. Mechanical Properties of Molecules,
Their Size and Mass

Only in recent years and in particularly favorable cases has it become possible to directly
generate images of molecules. In order to determine their sizes, masses, and shapes, there
are however numerous less direct but older and simpler methods which date back even to
the field of classical physics. Such methods are the subject of the following sections.

2.1 Molecular Sizes

If by the “size” of a molecule we mean the spatial extent of its electronic shells, rather
than the internuclear distances of its component atoms, then we can start from rather simple
considerations in order to determine the size of a small molecule containing only a few
atoms. Following Avogadro, we know that 1 mole of an ideal gas at standard conditions
occupies a volume of 22.4 - 1073 m?® and contains N molecules, where Ny is Avogadro’s
number, 6.02205 - 10?2 mol~!. When we condense the gas to a liquid or a solid, its volume
will decrease by a factor of about 1000. If we now assume that the molecules just touch each
other in the condensed phase, then from the above data we calculate the order of magnitude
of the molecular radii to be 1071 m, i.e. 0.1 nm or 1 A. In a similar manner, starting with
the density ¢ of a liquid, we can calculate the volume occupied by its individual molecules
if we assume that they are spherically close-packed or if we know the packing, i.e. their
spatial arrangement.

Additional, more precise methods for determining molecular sizes based on macroscopic
measurements are the same as those which we have already met in atomic physics. We shall
repeat them only briefly here:

~ From determinations of the p¥ isotherms of real gases and using Van der Waals’ equation
of state for the pressure p and the volume V:

(p + %)(V — b)=RT, @.1)

(where T is the absolute temperature, R the ideal gas constant, and p and V refer to one
mole), we can obtain numerical values for the quantity b, the covolume. In the framework
of the kinetic theory of gases, it is equal to 4 times the actual volume of the molecules.
Van der Waals’ equation of state must be used instead of the ideal gas equation when
the interactions between the particles (a/V?) and their finite volumes (b) are taken into
account. Table 2.1 contains measured values of b and the molecular diameters calculated
from them for several gases.

— From measurements of so-called transport properties such as diffusion (transport of mass),
viscosity (transport of momentum), or thermal conductivity (transport of energy), one

Table 2.1. Measured values for
the covolume 5 in Van der
Waals’ equation of state (2.1),
in units of liter mol~!, and the
molecular diameters d in A cal-
culated from them, for several
gas molecules. After Barrow

Molecule b d

H; 0.0266 2.76
H,0 0.0237 2.66
NH3 0.0371 3.09
CH4 0.0428 324
(6)) 0.0318 2.93
N> 0.0391 3.14
CcoO 0.0399 3.16
CO, 0.0427 3.24
C¢Hg 0.155 4.50
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Table2.2. Diameter d (in A)
of some small molecules de-
rived from gas-kinetic interac-
tion cross sections

Molecule d

H, 23
02 3.0
CO, 34
CaHg 3.8

obtains the mean free path / of molecules in the gas and from it, their diameters, in the
following way:
For the viscosity or internal friction of a gas, we have

1 _
n= gel\/; 2.2)

(o = density, v2 = mean squared velocity of the molecules). We know that the molecules
do not have a single velocity, but instead obey the Maxwell-Boltzmann distribution.
With the equation:

1 —
= — 1)2
p 39
for the gas pressure p, (2.2) can be modified in terms of directly measurable quantities.
Substituting, we obtain

3
I=n )= 2.3)
pe

Thus, by determining the pressure, density, and viscosity of a gas, we can calculate its
mean free path.

— Another method makes use of the thermal conductivity. For the thermal conductivity A,
we find:

1 Cy, =
A= -N-LIyv? 2.4
37 Na

(N is the number density of the molecules, Cy is the molar heat capacity at constant
volume, and N4 is Avogadro’s number).

We see that a low thermal conductivity is typical of gases with molecules of large mass,
since then v? is small at a given temperature.

From the mean free path /, we obtain the interaction cross section and thus the size of
the molecules, as indicated in Sect. 2.4 of I. We find:

1
T V2nNd?’

(where N is again the number density of the molecules and d is their diameter assuming a
circular cross section). Some data obtained in this manner are collected in Table 2.2.

For N, (nitrogen) under standard conditions, it is found that N = 2.7 - 103 m™3, [ =
0.6-10~7 m, and from this the diameter of the molecules is d = 3.8 - 10~ m. For the mean
time between two collisions of the molecules, we find, using

! 2.5)

r\/% =1, the value T=12.10"1%,

All of the methods mentioned treat the molecule in the simplest approximation as a sphere.
To determine the true form and shape of molecules, more sophisticated physical methods are
needed.

Methods involving interference of scattered X-rays or electron beams, which were also
mentioned in I, permit the determination of the molecular spacing in solids, and therefore
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of the molecular sizes including an anisotropy of the molecules, i.e. when they deviate
from spherical shapes. See I, Sect. 2.4, for further details. For these methods, one also needs
single crystal samples or at least solids having a certain degree of long-range order. When the
molecules are in a disordered environment, for example in a liquid or a glass, one may obtain
less clear interference patterns due to short-range order present in the glass or the liquid.
Short-range order means that particular intermolecular distances occur with especially high
probabilities.

The distances between atoms within a molecule, i.e. between the component atoms of
the molecule, can be determined through interference of electron beams diffracted by the
molecules. For this purpose, the intensity distribution in the electron diffraction pattern must
be measured. Making the assumptions that each atom within the molecule acts as an inde-
pendent scattering centre, and that the phase differences in the scattered radiation depend
only on the interatomic distances, one can derive values for the characteristic internuclear
separations in molecules, as illustrated in Fig. 2.1.

If one wishes to measure the precise electron density distribution of a molecule, and
thereby obtain more information from X-ray interference patterns of single crystals besides
just the crystal structure and the distances between the molecular centres of gravity, then the
relative intensities of the interference maxima must be precisely measured. The scattering of
X-rays by a crystal is essentially determined by the three-dimensional charge distribution of
its electrons, which can be reconstructed from the measured intensities of the interference
patterns using Fourier synthesis. One thus obtains maps of the electron density distribution
in molecules, such as the one shown in Fig. 2.2. Electrons directed at the crystal are also
scattered by the electronic shells of its component atoms or molecules and can likewise
be used to obtain electron density maps. Electron diffraction is, to be sure, applicable only
to thin film samples, owing to the shallow penetration depth (“information depth”) of the
electron beams.

The case of neutron diffraction is quite different. Since neutrons are scattered primarily by
nuclei and, when present, by magnetic moments, neutron diffraction can be used to determine

Fig.2.1. Radial distribution
functions D describing the elec-
tron density as a function of
the bond length R between
atomic nuclei in the molecules
PH(CH3); and PH,;CHj, ob-
tained from electron diffraction
patterns. The maxima in the dis-
tribution functions can be corre-
lated with the internuclear dis-
tances indicated. [After Bartell,
J. Chem. Phys. 32, 832 (1960)]
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Fig. 2.2. Cross sections through
the molecular plane of naptha-
lene (left) and anthracene. The
contour lines representing the
electron density are drawn at
a spacing of 1/2 electron per
A3; the outermost, dashed line
just corresponds to this unit.
(After J.M. Robertson, Organic
Crystals and Molecules, Cornell
University Press (1953))

Fig.2.3. (a) A transmission
electron microscope image of
a thin Cgp crystal in the (111)
direction. The spatial resolv-
ing power of the apparatus
was 0.17 nm. The picture was
taken using the HREM (high
resolution electron microscopy)
method and a special image pro-
cessing technique. (b) For com-
parison: the calculated image
from a crystal having a thick-
ness corresponding to 2 unit
cells (4.9 nm). (From S. Wang
and P.R. Busek, Chem. Phys.
Lett. 182, (1991), with the kind
permission of the authors)

directly the structure of the nuclear framework of a molecule. The electronic structure can,
in contrast, be investigated only to a limited extent by using neutrons.

A microscopic image of molecules can be obtained with the electron microscope. The
spatial resolution of transmission electron microscopes has become so high in recent decades
that structures in the range of 1 to 2 A can be imaged. An example is shown in Fig. 1.4, Chap.
1. A further example is given in Fig. 2.3, which shows an image of a thin fullerene (Cg)
crystal taken with a high-resolution transmission electron microscope. The nearly spherical
Cso molecules can be readily recognised (see also Fig. 4.18) in their densely-packed ar-
rangement. Although imaging of molecules using the field emission microscope (see Fig.
2.14 in I) has as yet attained no great practical significance, the scanning tunnel microscope
(STM), developed in the years following 1982, promises to become an important tool for
the identification, imaging, and perhaps even for the electrical manipulation of individual
molecules.

Since the introduction of the STM by Binnig and Rohrer in 1982 and its further devel-
opment, it has become possible to obtain detailed images of surfaces at atomic or molecular
resolution. In the original, simplest version, employing a constant tunnelling current, the
STM functions are indicated schematically in Fig. 2.4.

A probe electrode having an extremely thin point is brought so close to a conducting
surface that a low operating voltage (mV to V) gives rise to a measurable current between
the probe and the surface without a direct contact; the current is due to the tunnel effect
(cf. 1, Sect. 23.3). This so-called tunnel current depends very strongly on the distance from
the probe to the surface. The probe is now scanned over the surface, varying its distance z
with the aid of a feedback circuit in such a way as to keep the tunnel current constant. An
image of the surface is then obtained by plotting the distance z as a function of the surface
coordinates x and y. This is shown schematically in the lower part of Fig. 2.4. With this type
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of microscope, it is also possible to image individual molecules adsorbed onto a surface. An
example at molecular resolution is shown in Fig. 1.5.

A further development of the STM is the force microscope. Here, the quantity directly
measured is not the tunnel current, but rather the force between the probe and the substrate
surface; it can thus be used even with insulating substrates. With the aid of such scanning
microscopes, the structures of molecules and their arrangements on surfaces can be made
visible. The recrystallisation of molecules on surfaces can also be followed as a function of
time. An additional example of a molecular image made with the STM is shown in Fig. 2.5.

A quite different method of determining the sizes of molecules can be applied to molecular
layers. Long-chain hydrocarbon molecules which carry a water-soluble (hydrophilic) group
at one end, while the opposite end is hydrophobic, can spread out to form monomolecular
layers on a water surface. This was first shown by the housewife Agnes Pockels in 1891.

Fig.2.4. A schematic represen-
tation of a scanning tunnel mi-
croscope. The tunnel current It
between the surface being im-
aged and the probe electrode,
which has the form of an ex-
tremely thin point, is plotted as
a function of the surface spatial
coordinates x,y using the dis-
tance z of the probe from the
surface

Fig.2.5. (a) An STM picture of
napthalene molecules on a Pt
(111) substrate. (b) A schematic
representation of the orienta-
tion of napthalene molecules
on the Pt (111) surface. [From
V.M. Hallmark, S. Chiang, J.K.
Brown, and Ch. W¢ll, Phys.
Rev. Lett. 66, 48 (1991). A re-
view was given by J. From-
mer, Angew. Chem. 104, 1325
(1992)]



14

2. Mechanical Properties of Molecules, Their Size and Mass

Fig. 2.6. Schematic representa-
tion of the arrangement of fatty
acid molecules on an aque-
ous surface. The water mole-
cules are indicated by (O, hy-
drophilic oxygen or hydroxyl
groups by ©, and hydrophobic
carbon atoms or CH; groups by
. More information is given
in Sect. 20.7

The technique was developed further by Lord Rayleigh, whom she informed of it, and later
in particular by Langmuir. He was able to show that the molecules can be compressed up
to a well-defined smallest distance on the water surface, so that they touch each other in
equilibrium. From the molecular mass and density, one can then determine the number of
molecules per unit surface area. From this, a numerical value for the cross-sectional area of
the molecules can be calculated. This method can of course be applied only to molecules
having a very special structure. Details are given in Fig. 2.6.

We should mention here that these monomolecular layers, so-called Langmuir-Blodgett
films, have been the subject of considerable renewed interest in recent years. They can, for
example, be transferred from the water onto substrates, and several layers can be placed
one atop the other. Thus, the behaviour and interactions between individual molecules in
structures of low dimensionality or at precisely defined distances and relative positions from
one another can be studied. These layers are also used as models for biological membranes.
It is a goal of present-day research to build artificial molecular functional units from such
ordered layers; cf. Sect. 20.7.

The methods discussed above yield rather precise values for the sizes of molecules in
a relatively simple manner. As we shall see in later chapters, there is a whole series of
spectroscopic techniques with which one can obtain considerably more detailed knowledge
about the structure of a molecule, the spatial arrangement and extent of its components, its
nuclear framework, and the effective radius of its electronic shells.

In any case, when speaking of “size”, we must define the physical property which we are
considering. This is illustrated in Fig. 2.7. If, for example, we wish to determine the size of
a molecule by measuring collision cross sections, we can define either the distance of closest
approach of the collision partners, dr, or else the distance dy at which the electronic shells of
the collision partners detectably overlap, or finally the distance dy;, at which the interaction
energy E takes on its minimum value, to be the molecular size. In this process, we must keep
in mind that molecules are not “hard”, but rather are more or less strongly deformed during
the collision, as is indicated in Fig. 2.7 in defining the distance dr. T stands for temperature,
since the molecules have a mean energy kT in the collisions. The electronic wavefunctions
are also not sharply bounded. It should therefore not be surprising that the measured values
of molecular size differ according to the method of measurement; for example, for the H;
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molecule, we find the numerical values (in A) 2.47 from the viscosity, 2.81 from the Van
der Waals equation, and R, = 0.74 A from spectroscopic data for the equilibrium distance of
the centres of gravity of the two H nuclei in H,.

2.2 The Shapes of Molecules

Molecules are spherical only in rare cases. In order to investigate their spatial structures, one
has to determine both the arrangement of their nuclear frameworks and also the distributions
and extensions of their electronic shells. This is illustrated further in Fig. 2.8 by two simple
examples.

Fig. 2.7. Defining the “size” of
a molecule: one can distinguish
between dy, the distance at
which two colliding molecules
detectably touch; dr, the closest
distance of approach which is
attained in collisions at a ki-
netic energy kT; and dmin, the
distance which corresponds to a
minimum in the interaction po-
tential. Here, we mean the in-
teraction potential between two
neutral molecules, not to be
confused with the intramolec-
ular potential. The interaction
typically follows an R~¢ law for
the attractive part and R~'2 for
the repulsive part

Fig.2.8. As a rule, molecular
contours deviate from a spher-
ical form. For example, here
we show the molecules O, and
H,0. In addition to the bond
lengths and the bond angles, the
spatial extension of the molecu-
lar electronic shells is an impor-
tant measurable quantity
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The nuclear framework, i.e. the bond lengths of the atomic nuclei which make up the
molecule and their relative orientations to one another, can be determined very precisely.
Aside from X-ray, electron and neutron diffraction, spectroscopic methods such as infra-
red absorption spectroscopy and nuclear magnetic resonance (NMR) are required for this
determination; they will be treated in detail later in this book.

We list some small molecules here as examples:

diatomic, homonuclear

diatomic, heteronuclear
triatomic, symmetric—linear

triatomic, bent

tetratomic, symmetric pyramidal

pentatomic, tetrahedral

polyatomic hydrocarbons,
paraffines

aromatics

biological macromolecules

H,
16)
0))
HCl
CO,

H,O

NH3

CHy4

CoHe
ethane

CgHg
benzene

DNA

T
|
T

o=o
0Qo

double helix
105106 atoms

bond length 0.74 A
bond length 2.66 A
bond length 1.20 A
bond length 1.28 A
bond length 1.15A

bond length 0.97 A
£105°

NH bond length 1.01 A

CH bond length 1.09 A

C—C bond length 1.55 A
C—H bond length 1.09 A
L(H-C) = 109.5°
£(HCH) = 111.5°

C-H bond length 1.08 A
C-C bond length 1.39 A

200 A long

The precision with which these data can be derived from an analysis of electron and
X-ray diffraction on ordered structures is very great. Internuclear distances can be quoted
with certainty to a precision of £0.01 A and angles to £1°. As we mentioned above, the
boundaries of the electronic shells of molecules are not precisely defined, since the electron
density falls off continuously with increasing distance from the nuclei; however, surfaces
of constant electron density (contour surfaces) can be defined, and thus regions of minimal
electron density can be located, upon which precise bond length determinations can be based.
If surfaces of constant spatial electron density are cut by a plane, their intersections with
the plane (of the drawing) yield electron density contour lines. Adding the structure of the
nuclear framework, when it is known, produces pictures of molecules like that shown in

Fig. 2.9.
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2.3 Molecular Masses

The mass of a molecule, like that of an atom, can be most readily determined by weighing
it. One mole of a substance, i.e. 22.4 | of gas under standard conditions of temperature and
pressure, contains Ny = 6.022 - 10** molecules. From the mass of a mole, one can therefore
determine the mass of a molecule by dividing by the number of molecules, i.e. Avogadro’s
number.

A particularly important method of determining molecular masses is mass spectroscopy,
making use of the deflection of beams of charged molecules by electric and magnetic fields.
The basic principles of this method are described in I, Sect. 3.2. In atomic physics, mass
spectroscopy is used for the precise determination of atomic masses and for the investigation
of isotopic mixtures; in molecular physics, it can be used in addition for analysis and for
the determination of molecular structures. Electron bombardment can be employed to de-
compose many molecules into fragments. By investigating the nature of the fragments using
mass spectroscopy, one can obtain information on the structure of the original molecule by
attempting to reconstruct it from the fragments, like a puzzle. An example is shown in Fig.
2.10.

Other methods are especially important in the case of biological macromolecules. For
example, from the radial distribution of molecules in an ultracentrifuge, one can determine
their masses. When the size of the molecules becomes comparable to the wavelength of
scattered light, the angular distribution of the light intensity gives information on the shape
and size of the scatterers and thus indirectly on their masses. Light scattering is caused by

Fig. 2.9. An electron density di-
agram of the nickel phthalocya-
nine molecule. As in Fig. 2.2,
the H atoms are not visible,
since they are poorly detected
by X-ray diffraction methods
compared to atoms with higher
electron densities. The contour
lines represent the electron den-
sity. Their interval corresponds
to a density difference of one
electron per A2, and the dashed
lines represent an absolute den-
sity of 1 electron per A2. The
lines around the central Ni atom
have a contour interval corre-
sponding to 5 electrons per A2,
After Robertson
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Fig.2.10. A schematic drawing
of a mass spectrometer, which
functions by means of electro-
magnetic deflection of ionised
molecular fragments. As an ex-
ample, the mass spectrum of the
butane molecule is shown in the
inset. Maxima corresponding to
fragments of masses between 5
and 58 can be recognised; we
will not discuss their detailed in-
terpretation here. After Barrow

Fig.2.11. Light which is scat-
tered from different parts of
larger molecules can interfere,
leading to an intensity distribu-
tion of the scattered light which
differs from that for Rayleigh
scattering. From it, information
on the size and shape of the
scattering molecules can be ob-
tained. This method is not very
specific, but is experimentally
relatively simple

different parts of the molecule and these different scattered rays can interfere, giving rise
to an angular distribution of the scattered radiation which no longer corresponds to simple
Rayleigh scattering. The principle is illustrated in Fig. 2.11.

Using the methods which are referred to as small-angle X-ray and neutron scattering
(SAXS, SANS), a measurement or at least an estimate of the spatial extent of larger molecules
is often possible.

In the case of macromolecules, the methods mentioned above can fail for several reasons,
in particular when it is desired to investigate the shape, size, and mass of the molecules in
their natural environment, i.e. frequently in the liquid phase. On the one hand, the size and
shape of the molecules can change with changing surroundings; on the other, the methods are
based to some extent on isolating the molecules from their environment. In these cases, other
methods can be applied, such as osmosis through membranes, the equilibrium or velocity
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distribution of sedimentation in the gravitational field of the Earth or in the centrifugal field
of an ultracentrifuge, the transport of molecules under the influence of an electric field in
paper or in a gel, called electrophoresis, or filtration through micropores. These methods,
which are applied also to biologically active molecules, will not be discussed in detail here.

2.4 Momentum, Specific Heat, Kinetic Energy

The momentum and kinetic energy of molecules were derived in the 19th century by applying
the atomic hypothesis to thermodynamic properties of gases.
The mean kinetic energy of molecules in a gas is given by the expression

Eyin = g?, (2.6)

where 12 is again the mean squared velocity of the molecules in the gas, and m is their mass.
For the pressure p we have, from elementary thermodynamics,

2

p= ‘?;NEkin Q2.7
(N = particles/unit volume).

Because of the equation of state of an ideal gas,

pV =nRT, 2.8)
where n is the number of moles of the gas, V its volume, R the gas constant, and T the
absolute temperature, it then follows for the individual molecules that

— 3

Eyin = EkT' (2.9)
with k = R/Na = Boltzmann constant; and since the number of degrees of freedom of
translational motion is 3, for the energy per degree of freedom f we find:

—= 1

Eyinf = EkT' (2.10)
For the total energy of a mole of particles, we then have

— 3

Emole = ERT (2.11)

and for the specific heat at constant volume

dE 3
Cy=-— =R .
V=Ar ~ 2 2.12)
and at constant pressure

5
C,=Cv+R=3R.

With monoatomic gases, these values are in fact found in measurements; for molecular
gases, higher values are measured. This is due to the fact that molecules, in contrast to atoms,
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Fig.2.12. The temperature de-
pendence of the specific heat of
a gas. The curve corresponds
approximately to the hydrogen
molecule, Hy. With decreasing
temperature, the degrees of free-
dom of vibrations and rotations
are “frozen in” in two steps

have additional degrees of freedom, which are associated with rotational and vibrational
motions, and that these motions also contribute to the specific heat. The rotational degrees of
freedom each contribute %kT to Cy. In general, a molecule has three rotational degrees of
freedom corresponding to rotations around the three principal body axes, i.e. the axes of the
ellipsoid of the moment of inertia. In the case of a linear molecule, all the mass points lie
on a line, and the moment of inertia around the corresponding axis vanishes; there are then
only two rotational degrees of freedom. We thus find for the specific heat of di- or triatomic
molecules, respectively, initially ignoring quantum effects, the following formulas:

5 7
CV=ER or 3R; CP=§R or 4R. (2.13)

In addition, internal vibrations can be excited in a molecule. They contribute one degree of
freedom for a diatomic molecule, three for a triatomic molecule, and 3n — 6 for a molecule
with n atoms. The number of these degrees of freedom and thus of the normal modes
(cf. Chap. 10) can be calculated in the following way: each atom contributes three degrees of
freedom of motion; for n atoms, there are 3n degrees of freedom. Three of these correspond
to the translational motion of the centre of gravity of the whole molecule and three to
rotations. A molecule containing n atoms thus has 3n — 6 vibrational degrees of freedom.
This formula is valid for n > 3. In a diatomic molecule, owing to its two rotational degrees
of freedom, there is exactly one vibrational degree of freedom.

The mean thermal energy per degree of freedom is twice as large as for translation
and rotation, since in the case of vibrations, both kinetic and potential energy must be
taken into account. The specific heats of polyatomic molecules are correspondingly larger at
temperatures at which the vibrations can be thermally excited.

In all these considerations, it must be remembered that the vibrational and rotational
states in molecules are quantised. The energy quanta have different magnitudes, depending
on the molecular structure, and are generally smaller for rotations than for vibrations. They
can be thermally excited only when the thermal energy kT is sufficiently large in comparison
to the quantum energy Av. One thus observes a temperature-dependent specific heat Cy or
C,, for molecules, as indicated schematically in Fig. 2.12. At very low temperatures, only the
translational degrees of freedom contribute to the specific heat and one measures the value
Cy = %R. With increasing temperature, the additional degrees of freedom of the rotation
are excited, and at still higher temperatures, those of molecular vibrations also contribute to
the measured Cy. One can thus draw conclusions about the number and state of motion of
the atoms in a molecule even from measurements of its specific heat.

1 i 1

10 100 1000 10000
T(K) —




3. Molecules in Electric and Magnetic Fields

Macroscopic materials properties such as the dielectric constant ¢ and the permeability
are determined by the electric and magnetic characteristics of the basic building blocks of
matter. We show in Sects. 3.1 through 3.4 how the electric properties of molecules can be
investigated by measuring ¢ and the index of refraction, n. Sections 3.5 through 3.8 give the
corresponding information about magnetic moments and polarisabilities from determinations
of the magnetic susceptibility.

3.1 Dielectric Properties

Molecules are in general electrically neutral. However, they can possess an electric dipole
moment p (and other, higher moments such as a quadrupole moment), and their electrical
polarisability is generally anisotropic. In this section, we will show how information about
the electrical characteristics of molecules can be obtained from measurements of macroscopic
materials properties, particularly in the presence of electric fields. The most readily accessible
quantity here is the dielectric constant ¢; it is most simply determined by measuring the
capacitance of a condensor with and without a dielectric consisting of the material under
study. The ratio of the two measured values is the dielectric constant. The present section
concerns itself with the definition of the dielectric constant and with its explanation on a
molecular basis.

For the quantitative description of electric fields, we require two concepts from electro-
magnetic theory:

— The electric field strength E. It is derived from the force which acts on a test charge in
an electric field.

— The electric displacement D. 1t is defined by the surface influence charge density produced
on a sample in a field.

In a medium with the dielectric constant ¢, the displacement D,, is given by

D,, = ¢ecegE 3.1
with
A
o = 8.85- 1071225

(The notation &, is also used, where r stands for ‘relative’, instead of the quantity denoted
above by ¢; the product £, is then called ¢.)
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p=qd

Fig. 3.1. The electric dipole mo-
ment of two charges +g and
—q at a distance d is equal to
p = qd, its direction points from
the negative towards the posi-
tive charge

The dimensionless dielectric constant ¢ is a scalar quantity in isotropic materials and a
tensor in anisotropic materials. € is always larger than 1 in matter. In dielectric materials,
the numerical value of € is only slightly greater than 1 and is nearly independent of the
temperature. In paraelectric materials, £ can be much greater than 1 and decreases with
increasing temperature. As we shall see in the following, paraelectric materials consist of
molecules which have permanent electric dipole moments. In dielectric materials, the dipole
moment is induced by an applied electric field.

Some values of ¢ for dielectric and paraelectric materials are given in Table 3.1.

Table 3.1. Numerical values of & (under standard conditions). The materials in the left column are
dielectric, the others are paraelectric

He 1.00007 H,0 78.54 LiF 9.27
H; 1.00027 Ethanol 24.30 AgBr 31.1
N, 1.00058 Benzene 2.27 NH4Cl 6.96

In addition, the electric polarisation P is also defined by means of the equation
P=D,—-D or D,=¢cE+P, 3.2)

where D,, is the displacement in the material and D that in vacuum.

P measures the contribution of the material to the electric displacement and has the
dimensions and the intuitive meaning of an electric dipole moment per unit volume.

From (3.1) and (3.2), it follows that

P = (¢ — 1)eoE = x&E . 3.3)

The quantity ¢ — 1 is also referred to as the dielectric susceptibility x.
The polarisation can be explained on a molecular basis. It is the sum of the dipole
moments p of the N molecules in the volume V. We thus have

1 N
P=VZpi=p’N, (3.4)
i=1

where p’ denotes the contribution which, averaged over space, each molecular dipole moment
makes to the polarisation P. In the case of complete alignment of all the dipole moments
parallel to the field, we find P = Np. In (3.4), it should be considered that the number density
N (number of molecules per unit volume) depends on Avogadro’s number N, (number of
molecules in a mole of substance) through the equation N = Na(¢/M), where o is the
density and M the molar mass of the substance. Thus, according to (3.3) and (3.4), a relation
exists between the macroscopic quantity measured, e, and the molecular property dipole
moment p.

We refer to an electric dipole moment of a molecule when the centres of charge of its
positive and negative charges do not coincide. For example, two point charges +q and —q
at a distance d (Fig. 3.1) have the dipole moment

p=gqd [Asm]. (3.5)

The vector of the dipole moment points from the negative to the positive charge. In addition
to the unit [Asm], the unit Debye (D) is also used, with 1D = 3.336 - 1073 Asm. Two
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elementary charges at a distance of 1 A = 107! m have a dipole moment of 1.6-1072° As m
= 4.8 D. This is the order of magnitude of molecular dipole moments. Molecules with finite
dipole moments are called polar. Polar molecules such as HCl or NaCl have a permanent
dipole moment p, which in the case of predominantly ionic bonding can even be calculated
quite accurately as the product of charge times bond length. The dipole moment of HCI is
1.08 D and that of H,O is 1.85 D. We shall discuss polar molecules in more detail in Sect.
3.3; however, we first treat nonpolar molecules in the following Sect. 3.2.

3.2 Nonpolar Molecules

Symmetric molecules such as H,, O,, N,, or CCly are nonpolar, i.e. they have no permanent
dipole moments which remain even when E = 0. They can, however, have an induced dipole
moment in a field E # 0. For this dipole moment p;, 4, induced by polarisation in the external
field, we have:

DPind = ®Eioc , a = polarisability , (3.6)
E,,. = field strength at the molecule . '

The polarisability « is a measure of the ease of displacement of the positive charge relative
to the negative charge in the molecule, and is thus an important molecular property. The
resulting polarisation is called the displacement polarisation. 1t is useful to distinguish two
cases:

— When the induced dipole moment results from a displacement of the electronic clouds
relative to the positive nuclear charges, we speak of an electronic polarisation;

— When, in contrast, a displacement of massive positive ions relative to massive negative
ions occurs, we speak of ionic polarisation.

The polarisability « is thus the sum of an electronic and an ionic contribution, & = oe; + jon.

When we refer to the polarisability «, then strictly speaking we mean the polarisability
averaged over all directions in the molecule, @. In reality, for all molecules excepting those
having spherical symmetry, o depends on the direction of the effective field E relative to
the molecular axes; « is thus a tensor. If the anisotropy of the polarisability is known, it
can be used to draw conclusions about the structure of the molecule. The anisotropy can
be measured using polarised light, by aligning the molecules and measuring the dielectric
constant ¢ in the direction of the molecular axis. This type of alignment can be produced,
for example, by an applied electric field. The double refraction exhibited by some gases and
liquids in an applied electric field, referred to as the electro-optical Kerr effect, is based on
this kind of alignment. Another possibility for aligning the molecules and measuring their
polarisabilities in different molecular directions is to insert them into a crystal lattice. A
typical result, e.g. for the CO molecule, is oy /eg = 5.3 - 1072*cm? along the molecular axis
and ) /g = 1.8 - 107%* cm® perpendicular to the axis.

In strong electric fields, as found for example in laser beams, there are in addition to
the linear term in (3.6) also nonlinear terms which must be considered; they are propor-
tional to the second, third, or higher powers of Ej,. In practice, the most important term
is the quadratic one, proportional to EZ . The coefficient 8 in the term BE?, is called the
hyperpolarisability.
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The dimensions of « are, from (3.6), [Asm? V~!]. The dimensions of o, defined as the
quotient « /gy, are simpler: they are those of a volume. For molecules having axial symmetry,
it is sufficient to determine two values of the polarisability, perpendicular and parallel to the
molecular axis. The (electronic) polarisability is an indication of how strongly the electron
distribution in the molecule is deformed by an applied electric field. When the molecule
contains heavy atoms in which some of the electrons are farther apart from their nuclei, then
the electron distribution is less rigidly connected to the nuclei and the electronic polarisability
is correspondingly large.

Some numerical values for the polarisabilities of simple molecules are given in Table
3.2

Table 3.2. Polarisabilities /g, in 1071%m3

a/ep al/go @) /&0
H, 0.79 0.61 0.85
Oy 1.60
Clp 3.2 6.6
CeHg 10.3 6.7 12.8
H,0 1.44
CCly 10.5

In gases at moderate pressures, the molecules do not mutually influence each other. The
total polarisation P of the observed volume can thus be calculated using (3.4), as the sum
of the polarisations of all the molecules within the volume. We then find the following
expression for the polarisation resulting from the induced moments of molecules having a
number density N, assuming complete alignment of their moments by the applied field:

P = Np;,g = NaEj, . 3.7
With
Nao
N=—— 3.7
i (3.7a)

(0 = density, M = molecular mass),

we obtain for the displacement polarisation

N
pP= ﬁgaE. 3.8)

In the case of dilute gases, the local field Ej, at the position of each molecule is naturally
equal to the applied field E.
From (3.8) and (3.3), it follows that

Nao
e=14+—«. 3.9
Meg (3.9)
We thus obtain the polarisability o of the molecules by measuring the dielectric constant &.

In a dielectric of greater density, one has to take into account the fact that the local
field Ejo. is not equal to the applied field E. In the neighbourhood of a molecule under
consideration, there are other molecules whose charge distributions give a contribution to
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the local field. This must be allowed for in computations; cf. Fig. 3.2. For the local field, we
have:

E), =E+N£ , (3.10)
€0
where here, N refers not to the particle number density, but rather to the depolarizing factor.
The depolarizing factor defined above depends on the shape of the sample and can be
calculated for a given shape.
Following Lorentz, the field inside a spherical cavity in a dielectric can be calculated
using a depolarizing factor N = 1/3, and thus

1P
E,=E+ -——. (3.11)
380
Then, from (3.7), we have
P PM 1P
= —=——=q|E+=-=—] . 3.12
Pind N NAQ a( + 380) ( )

Using (3.3), we eliminate E from (3.12) to yield

PM P 1P\ P(£+2)a
Nao  \eoe—=1)  3& /) 3s—1)

and we obtain:

e—1M 1 N4z
— ==-—a =Py, . 3.13
et20 3 M G.13)

This is the Clausius-Mosotti equation. It defines the molar polarisation Py, and connects
the macroscopic measurable quantities &, M, and o with the molecular quantity .

So far, we have considered only the polarisation in a static E field. We now make some
remarks concerning the behaviour of molecules in an alternating field; in particular, the
electric field in a light beam is relevant. The applied electric field oscillates at the frequency
v and would reverse the polarisation of matter in the field at that frequency. In general, this
succeeds for the displacement polarisation up to frequencies corresponding to the infra-red
range, and the contribution of the polarisability to the polarisation remains constant. At higher
frequencies, it is necessary to distinguish between the electronic and the ionic polarisations.
For the latter, the time required to reverse the polarisation is typically about equal to the
period of a molecular vibration. The ionic contribution to the displacement polarisation
therefore vanishes when the frequency of the light increases from the infra-red to the visible
range, i.6. when it becomes greater than the important molecular vibration frequencies. The
nuclei in the molecules, and their charge distributions, have too much inertia to follow the
rapidly reversing field of the polarizing light beam at higher frequencies. At the frequencies
of visible light, only the less massive electrons can follow the alternating field, leading to
reversal of the polarisation; thus only the electronic part of the displacement polarisation
contributes at these frequencies.

From the Maxwell relation i = n? (1 = permeability constant, n = index of refraction),
considering that for many molecules, 1 ~ 1 and therefore n = /e, it follows from (3.13)
that the Lorentz-Lorenz equation:

Fig.3.2. The definition of the
local field Ejpc: in a dielec-
tric medium, the applied field
E is augmented by the field
resulting from the induced sur-
face charges. This Lorentz field,
assuming a spherical cavity, is
equal to P/3gg
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n—1M 1 N.B =R

220 e AB = Rmol (3.14)
holds. Ry is the molar refraction. The optical polarisability 8 (not to be confused with the
hyperpolarisability introduced above!) is the polarisability at the frequencies of visible or
ultraviolet light. It differs, as explained above, from the static polarisability o, and depends
on the frequency of the light. This frequency dependence is called dispersion. An example:
the index of refraction, n, of water at 20° C has the value 1.340 for A = 434nm and
n = 1.331 for A = 656 nm.

3.3 Polar Molecules

The displacement polarisation which we have discussed so far, and the values of ¢ and P to
which it gives rise, are only slightly or not at all dependent on the temperature. In contrast,
there are many materials in which ¢ and P decrease strongly with increasing temperature. The
explanation depends on the concept of orientation polarisation, which is to be distinguished
from displacement polarisation. While the latter as discussed above is induced by an applied
electric field, an orientation polarisation occurs in materials whose molecules have permanent
electric dipole moments, p, (Debye, 1912). Such molecules are termed polar, and materials
containing them are called paraelectric. The orientation polarisation is based on the alignment
of permanent dipoles by an applied electric field. It should be mentioned that the permanent
dipole moments are usually much larger than induced moments; some numerical values are
given in Table 3.3.

For comparison, we can calculate the induced dipole moment p,,4 in a field E = 103
V/em, using a polarisability o ' = 10724cm?, typical of nonpolar molecules, i.e. agy = 1074
As m?/V; we find p;,q = a&E = 1073 Asm, i.e. 3 orders of magnitude smaller than the
typical permanent dipole moments as shown in Table 3.3.

Table 3.3. Permanent dipole moments py in 10730 Asm (1 D =3.3356 - 1073 Asm)

HF 6.0 H; 0
HCI 3.44 H;O 6.17
HBr 2.64 CH3;OH 5.71
CO 0.4 KF 244
CO, 0 KCl 34.7
NH3 4.97 KBr 35.1
Ce¢Hg 0

A glance at Table 3.3 shows that the measurement of molecular permanent dipole mo-
ments can allow the determination of important structural data: while for the CO, molecule,
one observes a zero dipole moment and thus concludes that the molecule is linear, O-C-0O,
the nonvanishing dipole moment of the water molecule indicates a bent structure for H,O.

Thus, the displacement polarisation [see (3.7)]

(3.15)

Py = Z‘I/’ind
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is independent of or only slightly dependent on the temperature, and at least in part follows
an applied ac field up to very high frequencies (those of UV light!) owing to the small inertia
of the displaced electrons; it thus makes a contribution to the index of refraction n.

In contrast, the orientation polarisation

Py = ;VP—E = Np;, (3.16)
is dependent on the temperature (and on the frequency of the applied field). The alignment
of the permanent dipoles p,, in an electric field E is the result of a competition between
the orientation energy W, = —p,, - E, which tends to produce a complete alignment of the
dipoles parallel to the field, and the thermal energy Wy, =~ kT, which tends to randomise
the directions of the dipoles in the applied field. As a result of this competition, each dipole
contributes only p ' < p to the total polarisation, averaged over time.

Due to this competition, an equilbrium is reached which nearly corresponds to a Boltz-
mann distribution. The calculation (Langevin, 1900) gives the following result for the mean
value of cos 6 at higher temperatures, kT >> p, - E = pE cosf, where 6 is the angle be-
tween the directions of p and E and the interaction between the dipoles themselves can be
neglected:

2
PpE PE
cosf = —— and P,=N—. 3.17
3T o 3kT G17
This is known as Curie’s law; it was first derived in this form for temperature dependent
paramagnetism. It states that the orientation polarisation is proportional to the reciprocal of
the absolute temperature.

(A less approximate calculation for the mean value of p yields the equation

- PE
I = O=plL{—
P D cos p (kT)

with the Langevin function

At room temperature, kT &~ 5- 1072 Ws and the orientation energy W, of the dipoles in
a field of E = 10° V/cm is about 1072* Ws. The condition pE/kT <« 1 is thus fulfilled
and the function L can be expanded in a series which is terminated after the first term. This
yields p ' = p?E/3kT, the so-called high-temperature approximation.)

Now that we know the contribution of permanent dipoles to the polarisation, we should
like to calculate the dielectric constant of a dilute system (with e —1 « 1), by adding together
the displacement polarisation and the orientation polarisation to give an overall polarisation.
We refer to (3.3), (3.9) and (3.17) and obtain

2
p
=1+N P_1=1 . :
£ + (a+3eokT) + x 3.18)

When the interaction of the dipoles among themselves can no longer be neglected, i.e.

especially in condensed phases, then instead of the Clausius-Mosotti equation, the Debye
equation holds:
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Fig.3.3. Molar polarisation of
some gases as a function of
the temperature, for the de-
termination of dipole moments
and polarisabilities from mea-
surements of the dielectric con-
stant ¢

e—1M 1 P
=N 22 ) = Py 3.19
e+20  3e A(‘” 3kT> Mol .19

Experimentally, o and p, are determined from a measurement of ¢ as a function of the
temperature. When the molar polarisation Py is plotted against 1/7, from (3.18) one finds
a straight line. Its slope yields p and its intercept gives «. For nonpolar molecules, the slope
is zero. Figure 3.3 shows some experimental data. For gases, one finds (¢ —1) = 1...10-1073;
for liquid water at room temperature, £=81.

The orientation polarisation is produced against the inertial mass of the whole molecule
and thus, already at lower frequencies than for the displacement polarisation, it cannot follow
a rapidly-changing ac field. This is because not only must the outer electrons move with the
field relative to the atomic cores, or the atomic cores relative to one another within the
molecule, but rather the whole molecule has to reorient at the frequency of the applied ac
field. Assuming that a typical time for molecular rotation in a liquid is about 10712 s, then
the molecules can no longer follow the field reversals at frequencies above about 10! s=! (in
the microwave range). The Debye equation (3.19) is then replaced by the Clausius-Mosotti
equation (3.13).
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3.4 Index of Refraction, Dispersion

In ac fields at high frequencies, for example in a light beam, one usually measures the index
of refraction n instead of the dielectric constant €. According to Maxwell, they are related
by n = Jem (u = permeability); for u = 1, we have n = \/e.

The frequency dependence of ¢ or of n reflects the different contributions to the po-
larisation, the displacement and the orientation. In the frequency range of visible light, as
mentioned above, only the electronic displacement polarisation is present.

The frequency dependence of ¢ or of n in the optical range, called the dispersion, can be
calculated to a good approximation using a simple model in which the molecules are treated
as damped harmonic oscillators having an eigenfrequency wp, a mass m, and a damping
constant y. The displacement x of the oscillator from its zero point, multiplied by the
elementary charge e, then represents the dipole moment of the molecule. The E-field of the
light oscillates with the circular frequency w. We then obtain the oscillator equation:

mi + yx + mwix = eEoe™" . (3.20)

A stationary solution of this equation is

x(t) = Xel' 3.21)
with
eE 0
X = ) (3.22)

m(wi — w?) +iyw

This complex expression can be rewritten as the sum of a real and an imaginary part:

em(w} — w?) ) eyw
X = - 3.23
(mZ(w% —_ w2)2 + yzwz lmZ(wg — w2)2 + y2w2 ( )
or
X=X-iXx". (3.249)

A corresponding solution holds for the dipole moment p = ex (charge e and separation x)
and thus, according to (3.9) and (3.7a),
14 My Nex 3.25

€= —a = -, .

&9 ) Eo ( )

e=¢' —1e", (3.26)
i.e. we obtain a complex dielectric constant, where ¢ ' and ¢ ” are given by the real and the
imaginary parts of the parenthesis in (3.23), respectively.

The real and imaginary parts of ¢ are related to one another by the so-called Kramers-
Kronig relations. Losses (absorption, € ”) and refraction (dispersion, € ’) thus are connected.
There exists for example no loss-free material with a large dispersion. Since ¢ is complex,
the Maxwell relation requires the index of refraction also to be complex; we obtain:

n=+e’'—ie" =n+ik.

The real quantities n and k are shown in Fig. 3.4.

Fig.3.4. Real and imaginary
parts of the index of refraction
due to the displacement polari-
sation in the neighbourhood of
a resonance, for a damped os-
cillator
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Fig.3.5. Schematic representa-
tion of the frequency depen-
dence of the dielectric con-
stant ¢ for a paraelectric sub-
stance. The contributions to the
susceptibility of the orientation
polarisation and the ionic and
electronic displacement polari-
sations at zero frequency are de-
noted by xor(0), Xion(0), and
Xe1(0), resp. They thus give the
static value of the dielectric con-
stant. Only one resonance fre-
quency has been assumed for
the ionic and the electronic po-
larisations, respectively

As can be seen, this model may be extended almost intact to give a quantum-mechanical
description; then each molecule must be described by a whole set of oscillators. Which of
these oscillators is active at a given excitation frequency depends on whether its frequency
is near to the corresponding eigenfrequency.

The dielectric constant ¢ is the sum of contributions from the displacement polarisation
and the orientation polarisation. The following relation holds:

€ =14 Xel + Xion + Xor »

where x,r denotes the contribution of the orientation polarisation to the susceptibility, etc.
This contribution is often denoted as xgi, (for dipolar). The frequency dependence of this
contribution is not described by a calculation similar to that given above for ¢ and xjon;
instead, it must be treated as a relaxation process. xor decreases with increasing frequency,
because a certain time is required for the reorientation of the molecular dipoles in the ac field:
the relaxation time. In Fig. 3.5, the overall frequency dependence of ¢ is shown schematically.
Measured values of the dielectric constant ¢ and the absorption coefficient k in the low
frequency range are shown in Fig. 3.6 for a particular molecule, namely water, H,O. In this
frequency range, the orientation polarisation is dominant.

Starting with the static value & = 81, which hardly changes up to a frequency of about 10'°
Hz, we pass through frequencies where first the molecular vibrations and then the electronic
clouds can no longer follow the excitation field, giving finally » = 1.33, corresponding to ¢
= 1.76, for visible light.

As we have seen, the quantity ¢ is complex and strongly dependent on the measurement
frequency in certain ranges. For this reason, many different experimental methods, in addi-
tion to simple capacity measurements in a condensor, must be applied to determine it over a
wide frequency range. Other methods use for example the index of refraction of electromag-
netic waves, absorption and reflection in all spectral ranges, or the polarisation of scattered
radiation.
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3.5 The Anisotropy of the Polarisability

To complete the discussion of the behaviour of molecules in an electric field, we should men-
tion the fact that up to now, we have for simplicity’s sake practically ignored anisotropies.
Only spherically symmetrical molecules such as for example CCly have an isotropic polar-
isability, i.e. one which has the same value for all angles between the electric field and the
molecular axes. In general, as mentioned in Sect. 3.2, the polarisability of a molecule is
anisotropic; this means that the quantities ¢ and n vary depending upon the orientation of the
molecule relative to a measuring field — for example, the direction of polarisation of a light
beam. From a knowledge of the anisotropy of the polarisability, one can thus obtain infor-
mation about the shape of the molecules. In gases and liquids, the rapid molecular motions
cause an averaging over all possible orientations of the molecules relative to the E-vector of
the light. If one wishes to measure the anisotropy directly, the molecules must be oriented,
for example by substituting them into a molecular crystal. The measured dielectric constants
¢ of such crystals may then show a strong anisotropy.

Another possibility is the electro-optical Kerr effect, discovered in 1875. This term is
applied to the observation that many molecular substances exhibit double refraction in strong
electric fields. This comes about in the following way: in an electric field, the molecules tend
to align themselves in such a manner that their dipole moments are parallel to the field. If
the molecules are anisotropic with respect to «, the relation between o and ¢ or the index of
refraction n gives rise to a difference between n for light with its electric field vector parallel
to the direction of the applied field and for light whose electric field oscillates perpendicular
to the applied field.

A further important consequence of anisotropic polarisability is the depolarisation of
light scattered by molecules due to an anisotropy or to motion of the molecules. To illustrate
this point, Fig. 3.7 shows the angular distribution of scattered radiation from a spherically
symmetric molecule for unpolarised and for polarised incident light. This is the angular
distribution of a Hertzian dipole oscillator. If the molecule is no longer spherically symmetric,
or if it moves during the scattering process, deviations from this angular distribution occur.
Polarised incident light is depolarised more strongly as the electronic shells of the scattering
molecule become more asymmetric; very long or very flat molecules exhibit a high degree

Fig. 3.6. Frequency dependence
of the dielectric constant ¢ and
the absorption coefficient k for
water. In the relatively low fre-
quency range shown here, the
dispersion is dominated by the
orientation polarisation. With
increasing frequency, the water
dipoles can no longer follow the
oscillating field
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Fig. 3.7. Rayleigh scattering de-
pends in a characteristic way on
the scattering angle 6. The dia-
gram shows the spatial distribu-
tion (in the plane) of the light in-
tensity scattered by an isotropic,
spherical sample. The full curve
holds for unpolarised light, the
dashed curve is for polarised in-
cident light. This angular distri-
bution diagram is for a spher-
ically symmetric molecule. It
may also change when the scat-
tering particles move; thus, one
can investigate motional pro-
cesses of molecules or of func-
tional groups in molecules by
measuring the anisotropy of
Rayleigh scattering

of depolarisation. Thus, one can obtain more information about the structure and motions of
molecules.

Finally, we mention here the optical activity of some organic molecules. This refers to
the difference in their indices of refraction for left and right circularly polarised light, i.e.
circular dichroism. It is caused by the asymmetric arrangement of the atoms in the molecule.
Particularly in the case of large molecules, one can learn something about the asymmetry of
the electron density in the molecule from this effect.

3.6 Molecules in Magnetic Fields,
Basic Concepts and Definitions

The macroscopic magnetic properties of matter are measured collectively by determining the
materials constant p, the permeability. The following relation holds:

magnetic flux density B,, in matter

= ) 3.27
magnetic flux density B without matter 3.27)

A derived quantity is the magnetic polarisation, which is a measure of the contribution due
to the matter in the sample:

J=B, —B=(u—DuH (3.28)
(H is the magnetic field strength).
J can be defined by the expression
magnetic moment M
J=1o (3.29)

Volume

Wo is the so-called magnetic field constant or permeability constant of vacuum, with the
numerical value 1o = 1.256 - 107% VsA~'m~!, which is defined by the proportionality of
the flux density to the magnetic field strength, B = uoH in vacuum, or

B, = puoH (3.30)
in matter.

In addition, the magnetic susceptibility

k=u—1 (3.31)

is used; p and « are dimensionless number quantities.
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Materials with k < 0, < 1 are called diamagnetic. In such materials, the atoms
or molecules have no permanent magnetic moments. Materials with « > 0, > 1 are
paramagnetic; here, the atoms or molecules have permanent moments, which can be oriented
by an applied magnetic field.

The magnetic susceptibility of a sample can be determined by measuring, for example,
the force it experiences in an inhomogeneous magnetic field (Faraday balance, Fig. 3.8); or
alternatively by measuring the inductance of a coil in which the sample has been placed. A
modern method for paramagnetic materials is electron spin resonance (ESR), which will be
treated in Chap. 19. Some values of the susceptibility are shown in Table 3.4.

Table 3.4. Magnetic susceptibilities at room temperature

Diamagnetic Materials Paramagnetic Materials

H, —0.002-107° 0, 1.86 1076
H,0 -9.0-107° 0, liquid 3620 - 10~
NaCl  —13.9.107° Dy2(S04)3-8H,0 6320003 - 106
Cu —7.4.107° Al 21.2-1076
Bi —153.107¢ Cutt 264 - 1076

The macroscopic materials properties i and « can be explained, measured, and calcu-
lated in terms of the microscopic properties of the molecules involved, just like the electrical
quantity £ and in an analogous manner. Conversely, from a measurement of the macroscopic
quantities, the magnetic properties of the molecules can be derived. This will be demon-
strated in the following. An understanding of these materials properties is important for
understanding molecular structure and for chemistry.

A para- or diamagnetic object having a volume V experiences a magnetic polarisation
or magnetisation in a magnetic field B, given by the following expression:

J=(u-DB. (3.32)

Fig. 3.8. A magnetic balance or
Faraday balance. An inhomo-
geneous magnetic field exerts
an attractive force on a para-
magnetic sample and a repulsive
force on a diamagnetic sample.
Magnetic susceptibilties can be
determined in such an apparatus
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It thus acquires a magnetic moment M parallel to the direction of the applied field; this
moment per unit volume is given by

_ oM
~

In a molecular picture, the moment M is interpreted as the sum of the time-averaged contri-
butions m ' from the n molecules, i.e.

J (3.33)

J=M0m/% = pom'N. (3.34)

From (3.32) and (3.34) it follows for m ' that:

, J B(u—1)
m = = . (3.35)
uoN woN
We now define a molecular property, the magnetic polarisability §:
’
-1
p=C_ _ K _ X (3.36)

B twoN — poN’

This is reasonable, since experimentally, (4 is a materials constant independent of B.

In condensed matter, the applied magnetic flux density may differ from the flux density
which acts at the site of a molecule within the sample. This has to be taken into account
appropriately.

B has the dimensions [Am*/Vs], and the product By has the dimensions [m®]. From
a measurement of the susceptibility «, one thus obtains using (3.31), (3.35), and (3.36) the
molecular quantity S.

3.7 Diamagnetic Molecules

The electronic shells of most molecules possess no permanent magnetic moments. They
have an even number of electrons whose angular momenta add to zero; they thus lack
magnetic moments and are diamagnetic. Like all materials, however, these molecules acquire
an induced magnetic moment m;,q4 in an applied magnetic field B, which, according to Lenz’s
rule, is opposed to the inducing field, i.e. is negative. This diamagnetic contribution to the
magnetisation has only a slight temperature dependence. From (3.35) we find

B(u—1)
Mming = (ZT, (3.37)
and
m ;nd
= —. 3.38
p B (3.38)

As a numerical example, we consider the diamagnetic hydrogen molecule, Hy, for which a
determination of u yields

A 4
o = —3-107%m®, g =—3.107%0 2
Vs
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In a laboratory field B = 1 Vs/m?, the induced magnetic moment of each molecule is then
equal to

A 4
mi,=—3-10" —\2— -1 Vs/m? = =3 100Am?.

This numerical value is small compared to the Bohr magneton, ug = 9.27 - 10724Am?.

The values of induced magnetic moments are always much less than the Bohr magneton
B, the unit of atomic magnetism, and thus are small compared to the permanent magnetic
moments of atoms or molecules.

The magnetic polarisability of non-spherically symmetrical molecules is in general
anisotropic. For example, in the benzene molecule the measured values perpendicular and
parallel to the plane of the molecule are

por=—152-107°m’ and pofy = —62-107'm’.

The anisotropy is in this case intuitively understandable: the m-electrons can react to an
inducing magnetic field more easily in the plane of the molecule than perpendicular to
it, producing a current loop in the plane. The anisotropy of the magnetic polarisability in
benzene or in other molecules with aromatic ring systems is an important indication of the
delocalisation of the m-electrons along chains of conjugated double bonds (see also Sect.
18.3). Diamagnetism is indeed based upon the production of molecular eddy currents by
a change in the external magnetic flux. The diamagnetic susceptibility is therefore greater
when the electronic mobility along closed loops perpendicular to the applied magnetic field
is larger.

3.8 Paramagnetic Molecules

As already mentioned, there are also molecules with permanent magnetic dipole moments.
Examples are molecules of the gases O, and S; (cf. Sect. 13.3). Their electronic ground
states are triplet states having total spins of § = 1. Also in this class are the so-called
radicals, i.e. molecules with unpaired electronic spins (S = 1/2), or organic molecules in
metastable triplet states (S = 1) (cf. Fig. 15.1). A consideration of how the paramagnetism
of a molecule results from its spin and orbital functions will be given in later chapters of
this book.

For paramagnetic molecules, one observes in contrast to diamagnetic substances large
and positive values of the permeability, which increase with decreasing temperature. Experi-
mentally, a proportionality to 1/T is usually observed. This paramagnetic behaviour can be
understood in a quite analagous manner to the orientation polarisation in electric fields: it
results from a competition between the aligning tendency of the applied field B, with its
orientational energy Wo; = m,, - B, and the thermal motions of the molecules, whose energy
Wi = kT tends towards a randomisation of the molecular orientation.

Without an applied field, the directions of the permanent moments m, are randomly
distributed, and the vector sum of the moments is, as a time and spatial average, equal to
zero as a result of the thermal motions of the molecules. In an applied field, a preferred
direction is defined and each molecular moment makes a contribution to the time-averaged
magnetisation M.
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The contribution m* of an individual molecule with a permanent moment m, to the
macroscopic moment M can be written as

m* = xmy , (3.39)

where the index p is used here to indicate that permanent magnetic moments are meant. The
factor x, which is in general small, can be readily calculated by analogy to the procedure used
for the electronic orientation polarisation in Sect. 3.3. In sufficiently dilute systems, in which
the interactions between the molecules may be neglected, we find as a good approximation

N lm, - B,
T3 kT

Making use of the relations (3.35), (3.36), (3.39), and (3.40), we find after simple rearrange-
ments the paramagnetic contribution to the magnetic polarisation:

(3.40)

Sm*  1mluNB
0 = =

= 3.41
J=u 7 3 kT (3.41)
and
lmgMoN
= — . 3.42
“E3TT (3-42)

This is Curie’s Law, which describes the temperature dependence of paramagnetism.
Using (3.41) and (3.36) we obtain the following relation:

my = y/B3KT, (3.43)

which in turn allows us to calculate the permanent moment of a paramagnetic molecule by
making use of the magnetic polarisability 8 obtained from (3.36). For O,, the measured
value

Am*

=55.1072%—
B Vs

at T = 300 K leads, using (3.43), to
my = 2.58 - 107 Am?

for the magnetic moment. This value is of the order of magnitude of the Bohr magneton up.
Other magnetic moments determined in this manner are, for example, 1.70 - 10~23Am? for
the NO molecule and 4.92 - 10723 Am? for the iron ion Fet++.

The overall susceptibility of a substance is given by the sum of the diamagnetic contri-
bution and the paramagnetic contribution, when the latter is present.

We thus have

U = Wdia + Upara

m? 3.44
=1+N</3dia+uo p). (3.44)

3kT

The quantities Bgi, and m,, are found by plotting the measured values of x or p against 1/T,
as we have already seen in the case of the electrical properties of matter in Sect. 3.3.
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There are many molecules which are diamagnetic in their ground states but which have
paramagnetic electronically excited states. Particularly important and interesting are the triplet
states of many organic molecules. We shall have more to say on this topic, especially in Sect.
15.3 and in Chap. 19.

At low temperatures, in certain materials, a preferred parallel or antiparallel ordering
of the spins and thus of the magnetic moments of the molecules is observed even in the
absence of an applied magnetic field, i.e. spontaneously. This is termed ferromagnetism or
antiferromagnetism. In the case of molecular substances, the latter is more common; i.e. the
paramagnetic molecules order at low temperatures with their spins in pairs having antiparallel
orientation.

In the chapters up to now, we have met with a number of the most important basic
quantities for molecular physics, mainly from the experimental point of view. We now tumn
in the following four chapters to the theory of chemical bonding. Chapters 4 and 5 are of
general interest, while Chaps. 6 and 7 contain more extended theoretical approaches and may
be skipped over in a first reading of this book.



4. Introduction to the Theory
of Chemical Bonding

In this chapter, we begin by reviewing the most important concepts of quantum mechanics
and then discuss the difference between heteropolar and homopolar bonding. In the following
sections, we treat the hydrogen molecule-ion and the hydrogen molecule, using the latter to
illustrate various important theoretical methods. Finally, we turn to the topic of hybridisation,
which is particularly significant for the carbon compounds.

4.1 A Brief Review of Quantum Mechanics

Classical physics failed to explain even the structure of the atom. Consider, for example,
the hydrogen atom, in which one electron orbits around the nucleus. The (charged) elec-
tron behaves as an oscillating dipole and would, according to classical electrodynamics,
continuously radiate away energy, so that it must fall into the nucleus after a short time.
Furthermore, the appearance of discrete spectra is unexplainable. Particular difficulties occur
in the attempt to explain chemical bonding; we will treat this topic in more detail in the
next section. Molecular physics can clearly not get along without quantum mechanics. We
therefore start with a brief review of the basic concepts of quantum mechanics, keeping the
hydrogen atom in mind as a concrete example. For a more thorough treatment, we refer the
reader to I, Chaps. 9 and 10.

We assume the atomic nucleus to be infinitely massive, so that we need consider only
the electron’s degrees of freedom. Its energy is given by

E = Eyn + Epot s (4'1)

where the kinetic energy may be written as
m
Eyin = =0 ; 42)

my 1s here the mass of the electron, and v is its velocity. In order to arrive at the correct start-
ing point for a quantum-mechanical treatment, we replace the velocity v by the canonically
conjugate variable p, the momentum, according to:

moyv =p, 4.3)
so that we can write the kinetic energy in the form

1,
Exin = —p" . 4.4)
2m0

The potential energy can be given as a position-dependent potential:
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Epot = V() (4.5)
where r = (x, y, z). The energy expression (4.1) can then be written as a Hamilton function
1
H=—p*+V({@). 4.6)
2m0

This expression is the starting point for the quantisation. According to Jordan’s rule we must
replace the momentum p by a momentum operator:

h o ho n o
==, =TT =TT, 4.7
Pr=T%x P idy P=77%; @7
or, in vector notation,
h
p= TV . 4.8)
The Hamilton function (4.6) thus becomes the Hamiltonian operator:
1 (h_\*
H=— |-V} +V@®. 4.9)
2mgy \ 1

If we calculate the square of the nabla operator, we obtain the Laplace operator V2, defined
by:

, 8*

- 4= 4.10
ax? + dy? + 972 “.10)
We can then finally write the Hamiltonian operator in the form
hZ
H=——V24+V({). 4.11)
2m0

Using this operator, we can formulate the time-dependent Schrédinger equation, which con-
tains a time- and position-dependent wavefunction ¥ (r, t):

Hy(r,t) = ih%w(r, 1. 4.12)

In many cases, the Hamiltonian is itself not explicitly time-dependent. In such a case, one
can simplify the time-dependent Schrédinger equation (4.12) by making the substitution

Y(r,t) =exp (—hiEt) v, (4.13)

ie. by separating out a time-dependent exponential function and leaving the position-
dependent function ¥ (r). Inserting (4.13) into (4.12), differentiating with respect to time and
dividing out the exponential function which occurs in (4.13), we obtain the time-independent
Schrodinger equation:

Hy =Evy . (4.14)

In solving either (4.12) or (4.14), we must take into account the boundary conditions for
¥, which depend on the position vector r. In general, they state that ¥ vanishes when r
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goes to infinity. As can be quite generally shown, the Schrédinger equation (4.14), together
with the boundary conditions, yields a set of so-called eigenvalues E, and corresponding
eigenfunctions yr,, where v is an index denoting the quantum numbers. Therefore, in place
of (4.14), we could write

Hy, = Ey, . 4.15)

According to the basic postulate of quantum mechanics, the values obtained as the result
of a measurement are just those which occur as eigenvalues in (4.15). In measurements
of quantities other than the total energy, different values may result from each individual
measurement. In this case, the theory can in general predict only expectation values, e.g. for
position, momentum, kinetic or potential energy. These expectation values are defined by

X = /1//*(r, Dxy (@, 0)dVv , (4.16)

D, =/.1//*(r, Hp Y, )dv , 4.17)
h2

Eyin = / Yr(r, 1) (——Vz) Y, ndv, (4.18)
2m0

Epot =/1/f*(r, HVOy @, ndv. (4.19)

The quantities p,, X, ... have now become operators in (4.16)—(4.19). We can use them to

construct expressions for additional operators, e.g. for the angular momentum operator, using
the relation

L=[rp],

or, applying (4.8),

h
L= [r, —,Vj| . (4.20)
1
We now consider the hydrogen atom, or, more generally, an atom having the nuclear charge
Z and containing only one electron. It is not our intention here to develop the quantum
mechanics of the hydrogen atom in detail; this is done in I, Chap. 10. Instead, we wish only
to remind the reader of some basic results. In the case of the hydrogen atom, the Hamiltonian
is given explicitly by
h? 1 Zé
H=——V2_ " 4.21
2my 4rey 1 ( )
Since the Hamiltonian depends only on the radius but not on the angles in a spherical polar
coordinate system, it is useful to transform (4.21) to spherical polar coordinates using

r—>r6,¢. 4.22)
As may be shown, the wavefunction can then be written in the form

Vnim (r) = Ry P (cos 0) e™? (4.23)
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Fig.4.1. Representation of the
angular momentum functions
for an s-state (spherically sym-
metric) and the p-functions
(real representation)

where the indices n | m refer to quantum numbers: n is the principal quantum number, [ the
angular momentum quantum number, and m the magnetic quantum number. The wavefunc-
tion thus can be separated into a radial part R, which depends only on r, and an angular part
P"e™®_ The energy is found to be
2,4
E, —— "2102 e iz ' (4.24)
2h*(4meg)? n

It thus depends only on the principal quantum number n, which can take on the values
1,2,3.... This characterises the bound states of the atom.

In the following, the angular dependence of i is mainly of interest. We therefore remind
the reader of the simpler angular momentum states, cf. Fig. 4.1. For [ = 0, there is one state,
which does not depend on angles, i.e. it has spherical symmetry.

We denote the angle-dependent factor in (4.23) by:
Fim(®,$) = P"(cos@) e™ (4.25)

For I = 0, 1, we obtain the following expressions for Fj ,:

1
1=0 Foo= ——— 4.26
0.0 T (4.26)
3 3
I=1 Flo=4—cosf=,->% 4.27)
4r Tr
3 . 3 x+
Flai=%,—sinfe®=x [Z 12 4.28)
8 8v r

where, in the last term of these equations, we have expressed the angular dependence by
using Cartesian coordinates x, y, z. The radial function R, ; which occurs in (4.23) has the
explicit form
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Ruy = Nuge ™ r' LEH Quur) | (4.29)
where N is a normalisation factor, defined in such a way that:
o0
/ R*ridr=1. (4.30)
0
The constant k, is given by the expression:
4
oy = ";"Zé . 4.31)
nh°4meg
The function Lﬁl:ll is defined as a derivative of the Laguerre polynomials L,4,, according
to
LA (@) = d**! Ly /do™™ (4.32)

whereby the Laguerre polynomials themselves can be calculated using a differentiation for-
mula:

Lo+1(0) = e?d"™(e™20")/do"™ ! . (4.33)

In the simplest case, n = 1, | = 0, we obtain

Li(@)=—-0+1 (4.34)
and thus
Ll =dLi/do=—1, (4.35)

so that R; ¢ is given by
Rio=Ne™" . (4.36)

Some examples are shown in Fig. 4.2.

4.2 Heteropolar and Homopolar Bonding

A theory of chemical bonding must be able to explain why it is possible for certain atoms to
form a particular molecule, and it must be able to calculate the binding energy of the mol-
ecules formed. Before the development of quantum mechanics, one special type of bonding
— heteropolar bonding — seemed to be ecasily explainable, but the other type — homopolar
bonding — could not be understood at all. An example of heteropolar bonding (heteropo-
lar = differently charged) is provided by the common salt molecule, NaCl (cf. Fig. 1.2).
The formation of its bond can be imagined to take place in two steps: first, an electron is
transferred from the Na atom to the Cl atom. The now positively-charged Na* ion attracts
the negatively-charged Cl~ ion and vice versa, owing to the Coulomb force, which thus is
responsible for the bonding. Considered more carefully, this explanation is only apparently
complete, since it gives no theoretical justification for the electron transfer from Na to Cl.
The theoretical basis for this transfer was given only by the quantum theory, according to
which it is energetically more favorable for the electron to leave the open shell of the Na
atom and to pass to the Cl atom, completing its outermost shell. Thus, to properly explain
even heteropolar bonding, we require quantum mechanics.
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Fig.4.2. (a) The radial part
of the wavefunctions R(p =
2kr) = R(r) (4.29) of the H-
atom is plotted against the di-
mensionless coordinate o. The
indices (1,0), (2,1),... on the
curves correspond to (n,/),
where n is the principal quan-
tum number and [ the angular
momentum quantum number.
(b) The corresponding proba-
bility amplitudes in the radial
dimension, i.e. 471921?(9), are
plotted against the dimension-
less coordinate o
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The question of the explanation of homopolar bonding was even more difficult. How, for
example, could a hydrogen molecule, H,, be formed from two neutral H atoms? Here, the
quantum theory provided a genuine breakthrough. Its basically new idea can be discussed by
using as an example the H; hydrogen molecule-ion, which corresponds to neutral H; from
which an electron has been removed. The remaining electron must hold the two protons
together. According to quantum mechanics, it can do this (pictorially speaking) by jumping
back and forth between the two nuclei, staying for a while near one proton and then for a
while near the other. Its probability of occupying the space between the two protons is thus
increased; it profits from the Coulomb attraction to both nuclei and can thus compensate
for the repulsive Coulomb force between the protons, as long as they do not approach each
other too closely. We shall show in Sect. 4.3 that this picture can be precisely defined by
calculating the wavefunctions of H. We will see there how the wave nature of the electron
plays a decisive role. The wavefunctions which describe the electron’s occupation of the
space near the one proton or the other interfere constructively with each other, increasing the
probability of finding the electron between the two protons and giving rise to a bonding state.
A similar picture is found for the hydrogen molecule, H; (cf. Fig. 1.1). It is interesting that
destructive interference is also possible — the occupation probability is then reduced and even
becomes zero along the plane of symmetry between the two nuclei — and an antibonding
state is produced, which releases the bound H atoms.

Let us now turn to the quantum mechanical calculation.

4.3 The Hydrogen Molecule-Ion, H;

In this section, we start to develop the quantum theory of chemical bonding. The simplest
case of chemical bonding is that of the hydrogen molecule-ion, H;. This molecule can be
observed as a bound state in a gas discharge in hydrogen atmosphere; in such a discharge,
electrons are removed from the hydrogen molecules. The binding energy of HJ, identical
to its dissociation energy, has been found to be 2.65 eV. Here, we are dealing with two
hydrogen nuclei, i.e. protons, but only one electron. The two nuclei are distinguished by
using the indices @ and b (cf. Fig. 4.3). If they are separated by a very large distance, we
can readily imagine that the electron is localised near either the one nucleus or near the
other. Its wavefunction is then just like that of the ground state of the hydrogen atom. In the
following, we denote the distance of the electron to nucleus a or to nucleus b as r, or 7,
respectively. If we call the wavefunction of the hydrogen ground state belonging to nucleus
a ¢, it must obey the Schrodinger equation

2 2
(—h—Vz ‘ ) $alra) = E $a(ra) (4.37)

2my. dregr,

H,

and a corresponding equation holds for the wavefunction ¢, with the energies EC and E}
being equal:

E0=E)=E°. (4.38)

If we now let the two nuclei approach one another, then the electron, which was originally
near nucleus a, for example, will respond to the attractive Coulomb force of nucleus b.

IS

@

ab @
b

Fig.4.3. Overview sketch of
the hydrogen molecule-ion. The
two nuclei (protons) are denoted
as a and b, and their separation
as Ryp. rq and rp, give the dis-
tance of the electron to nucleus
a or nucleus b, respectively
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Fig.4.4. The hydrogen mole-
cule-ion: the potential energy
V of the electron due to the
Coulomb attraction to the two
nuclei a und b is plotted against
the x-coordinate. The dashed
curves show the potential en-
ergy of the electron in the field
of one nucleus, a or b. The solid
curve is the total potential en-
ergy. The binding energy E° of
the electron in the field of a sin-
gle nucleus is also indicated

Correspondingly, an electron which was originally near nucleus b will now respond to the
Coulomb attraction of nucleus a. We therefore need to write a Schrodinger equation which
contains the Coulomb potentials of both nuclei (Fig. 4.4). Furthermore, in order to calculate
the total energy, we need to take into account the Coulomb repulsion of the nuclei. If we
denote the nuclear separation by R, then this additional energy is equal to e? /4wy Rup.

Since this additional term does not affect the energy of the electron, it simply results
in a shift of the energy eigenvalues by a constant amount. We shall initially leave off this
constant, and add it back in at the end of the calculation.

These considerations lead us to the Schrédinger equation

2 2 2
(—h—vz— - : )w=Ew,

2my dregr, 4dmegry

(4.39)

in which the wavefunction ¢ and the energy E must still be calculated.

We now make an approximate determination of the wavefunction . To this end, we
make use of an idea borrowed from perturbation theory in the presence of degenerate levels.
The electron could, in principle, be found near nucleus a or nucleus b (cf. Fig. 4.5), and
would have the same energy in either case; compare (4.37) and (4.38). These two states,
¢, and ¢, are thus degenerate in energy. Now, however, the other nucleus also affects the
electron and perturbs its energy levels; we can expect that this would lift the degeneracy of
the two states. Exactly as in perturbation theory with degeneracy, we take as a trial solution
to (4.39) a linear combination of the form:

Y =c1¢a + 205 ,

where the two coefficients ¢; and ¢, are still to be determined. To calculate them, we proceed
in the usual manner: we first insert the trial function (4.40) into (4.39) and obtain

(4.40)

hz ez 62
—5 =V - - C1¢q
2mO 4ﬂ£0ra 477807‘1,
H,
no_, &2 &2
“mg Y - =E : 4.41
" 2mo dreory,  4meor, c2¢p (€160 + c26) (4.41)

Hy
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In the two large parentheses in (4.41), we have collected the terms in such a way that the
operator H, acts on ¢, and the operator H, on ¢,. We can now refer to (4.37) and the
corresponding equation for ¢ to simplify these expressions, by putting for example E’¢,
in place of H,¢, and correspondingly for Hyp¢y.

If we now bring the right-hand side of (4.41) to the left, we obtain

2 2
E'— E— cipa+ | EC— E— cap =0. (4.42)
——— 4megry T 4 eor,
AE A

Although ¢, and ¢, are functions of the position coordinates, the coefficients ¢, and ¢, are
assumed to be position-independent. In order to find a position-independent equation for the
¢’s, we multiply (4.42) by ¢} or ¢;, as accustomed from perturbation theory, and integrate
over the electronic coordinates. In the following, we assume that the functions ¢, and ¢, are
real, which is the case for the ground state wavefunction of hydrogen. We have to keep in
mind that the functions ¢, and ¢ are not orthogonal, i.e. that the integral

/ GapdV =S (4.43)

is not equal to zero. If we multiply (4.42) by ¢, and then integrate over electronic coordinates,
we obtain expressions which have the form of matrix elements, namely the integrals:

2
/d)a(ra) (— ° )¢a(ra)dV =C, (4.44)
471'807‘1,
e2
/¢a(ra) (—4 >¢b(rb)dV =D, (4.45)
&G,

which we denote by the letters C and D. The meaning of the first integral becomes imme-
diately apparent if we recall that —e@? is the charge density of the electron; (4.44) is then
nothing other than the Coulomb interaction energy between the electronic charge density and
the nuclear charge e (compare Fig. 4.6). In the integral (4.45), in contrast, instead of the
electronic charge density, the expression —e¢,¢;, occurs. This means that the electron in a
sense spends part of its time in state ¢, and the rest in state ¢, or in other words, that there
is an exchange between the two states. The product ¢,¢; is therefore called the exchange
density and integrals in which such products are found are termed exchange integrals (cf.
Fig. 4.7). These integrals express an effect which is specific to quantum theory. If we had

Fig. 4.5. (Upper part) The wave-
function ¢, of the electron when
it is localised in the field of nu-
cleus a, and the corresponding
wavefunction ¢ of the electron
near nucleus b. (Lower part)
When the internuclear spacing
between a and b is decreased,
the two wavefunctions ¢, and
¢p begin to overlap in the cen-
tral region
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Fig.4.6. An intuitive picture of
the integral (4.44), which gives
the Coulomb interaction energy
of an electron cloud having the
probability distribution ¢?2 in the
Coulomb field of a nucleus. The
charge density distribution ¢Z‘
(shaded region) is plotted along
with the potential energy (solid
curve) of a point charge in the
Coulomb field of nucleus . In
calculating the integral, at each
point in space the value of ¢2
is multiplied by the value of
—e? /4megry at the same point,
and the products are then inte-
grated over all space

multiplied (4.42) by ¢ instead of ¢, and integrated, we would have found expressions quite
similar to (4.44) and (4.45), with only a permutation of the indices a and b. Since, however,
the problem is completely symmetric with respect to these indices, the new integrals would
have the same values as the original ones.

Collecting all the terms obtained through multiplying by ¢, and integrating, we find that
(4.42) has become the following equation:

(AE+C)e; +(AES+ D), =0, (4.46)

and correspondingly after multiplication of (4.42) by ¢;, and integration, we obtain the equa-
tion:

(AE S+ D)yci+ (AE+C)c; =0. (4.47)

These are two simple algebraic equations for the unknown coefficients ¢; and c¢;. In order that
the equations have a non-trivial solution, the determinant of their coefficients must vanish,
ie.

(AE+CY? —(AE S+ D?=0. (4.48)

This is a quadratic equation for the energy shift AE, which in the present case can be solved
quite simply by bringing the second term in (4.48) to the right-hand side and taking the

square root of both sides:
(AE+C)=+(AE S+ D). (4.49)

The two possible signs, %, occur because of taking the square root. Inserting (4.49) into
(4.46) or (4.47), we obtain immediately for the upper sign

) =—C =—cC. (4.50)
In this case, the total wavefunction is given by
¥ =c(@a — ) . (4.51)
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The constant ¢ is fixed by the normalisation of the total wavefunction 1. The corresponding
wavefunction is represented in Fig. 4.8. If we take the lower sign in (4.49), we obtain
¢2 = ¢} = c for the coefficients and thus for the total wavefunction:

¥ =c(@a + ) -

(compare Fig. 4.9). Using (4.49), we can calculate the energies corresponding to (4.51) and
(4.52), setting E = E — AE.
The antisymmetric wavefunction has the electronic energy

(4.52)

C-D
E=E° .
+ T—3 (4.53a)
and the symmetric wavefunction corresponds to the energy
C+D
E=E"4+——. 4.53b
+3 s ( )

As can be seen by considering Figs. 4.6 and 4.7, the quantities S, C, and D depend on the
internuclear distance, whereby 0 < S < 1 and C, D < 0. If the nuclei are allowed to approach
one another, the electronic energy splits into two terms according to (5.53a) and (5.53b).
In order to decide whether bonding occurs via the electron, we must still add the Coulomb
repulsion energy between the protons, e?/4m ey Ry, to (5.53a) or (5.53b). Furthermore, we
must compare the energy at a finite internuclear separation R,;, with that at infinite separation,
where C and D are zero. We thus have to examine

Fig.4.7. An intuitive picture
of the meaning of the integral
(4.45). The three functions ¢,,
¢p, and —e? /4w egry, which oc-
cur in the integral are plot-
ted. The integral contains the
product of these three func-
tions, which is non-zero only
where the two wavefunctions ¢,
and ¢p overlap; this is the re-
gion shaded heavily in the fig-
ure. The integral is obtained
by taking the functional values
of ¢a, ¢p, and —e? /4megry, at
each point in space, multiplying
them, and then integrating this
product over all space

Fig.4.8. The antisymmetric
wavefunction {_ is formed by
taking the difference of ¢, and
¢p. Its occupation probability
can be seen to vanish in the
plane of symmetry between the
two nuclei
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Fig.4.9. The symmetric wave-
function ¥4+ is formed by
adding the wavefunctions ¢,
and ¢p. Due to the overlap be-
tween ¢, and ¢, the occupa-
tion probability in the region
between the two nuclei is in-
creased

Eypane = S22 € 4.54)
binding = 73S T AmeoR,, @.

As shown by numerical calculation, the overlap integral S hardly changes the result, so that
we can leave it out of our further discussion.

Let us first consider the behaviour of C as a function of the internuclear distance R,;.
If Ry is large compared to the spatial extent of the wavefunction ¢, (or ¢), then C is
practically equal to the potential energy Ep, of a point charge in the potential of the other
nucleus, i.e. equal to —e?/4megR,,. For large distances R,p, C and the last term in (4.54)
thus compensate each other. However, for small distances R, — 0, the last term in (4.54)
becomes infinite, while C approaches a (negative) finite value. This can be seen directly from
(4.44), since for R;, — 0, the distance r, becomes equal to r;, and (4.44) then becomes the
same as the expectation value of the potential energy in the hydrogen atom, which as is well
known is finite. The sum C + €2 /4w ey R, is thus positive and there is no bond formation.

The final decisive factor in the question of bond formation is thus D (4.45), which
contains the exchange density. For R,;, — 0, ¢, and ¢, become identical, so that D and C
are the same and D cannot compensate the effect of e?/4megR,y. If Ry, is now allowed to
increase, then both e?/4megR,;, and D, which have opposite signs, decrease in magnitude.
A numerical calculation shows that in a certain region, Epinging becomes negative (cf. Fig.
4.10). The corresponding state is termed a bonding state. Conversely, no bonding occurs in
the state (4.51); it represents a non-bonding or “antibonding” state.

As must be clear from our discussion, the bonding effect is based entirely upon the
occurrence of the exchange density ¢,¢, in D. The bonding of the hydrogen molecule-ion is
thus a typically quantum-mechanical phenomenon. Nevertheless, one can form an intuitive
picture of the bonding and non-bonding effects.

W+ = ¢a+ (pb

As may be seen from Fig. 4.9, the occupation probability of the electron in the region
between the two nuclei in the bonding state is relatively high. It can thus profit from the
Coulomb attraction of both nuclei, lowering the potential energy of the whole system. In
the non-bonding state (Fig. 4.8), the occupation probability for the electron between the two
nuclei is low; in the centre, it is in fact zero. This means that the electron is affected by the
attractive force of practically one nucleus only.

For the decrease in energy of the hydrogen molecule-ion as compared to the hydrogen
atom, the above calculation gives the result 1.7 eV; the experimental value is 2.65 eV. Our
trial wavefunction thus indeed gives a bound state, but it is weakly bound compared to what
is found experimentally. An improvement in first order can be obtained by using the trial
wavefunction

Vv=c (e—ara/ao + e—arb/ao) ,
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where ag is the first Bohr radius and « is a variational parameter. In the energy minimum,
it is found that o = 1.24, i.e. the effective Bohr radius ay/a is reduced. The result of
this reduction is that the electron cloud perpendicular to the bonding axis is more strongly
concentrated in the region between the nuclei; the Coulomb interaction between the electron

and the nuclei is thus intensified. This interpretation is supported by the precise numerical
solution of (4.39).

4.4 The Hydrogen Molecule, H,

4.4.1 The Variational Principle

We now turn to the problem of chemical bonding when more than one electron participates in
bond formation. However, before we consider in detail the simplest example, i.e. the hydrogen
molecule Hy, we make some preliminary remarks which are of fundamental importance for
other problems in quantum mechanics, also.

We shall often encounter the task of solving a Schrodinger equation

HY = EW (4.55)

which will frequently turn out not to be possible in closed form. In addition to the method
of perturbation theory, which we have already discussed, there is a fundamentally different
and very important approach based on the variational principle. In order to explain it, we
suppose the Schrodinger equation (4.55) to have been multiplied by ¥* and integrated over
all of the coordinates on which ¥ depends. We then obtain

_ [¥*HWAV,...dV,
T [erwdV,...dv,

(4.56)

Here, n is the number of electrons, while d Vi, j=1,...,nis a volume element referring
to the j-th electron for the integration over its coordinates.

Fig.4.10. The energy E of the
hydrogen molecule-ion includ-
ing the mutual Coulomb repul-
sion of the nuclei. The energy
curves are plotted against the
internuclear separation R, for
the bonding and the antibonding
states
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Fig.4.11. An overview sketch
of the hydrogen molecule. The
two nuclei are denoted by the
indices a and b, the two elec-
trons by 1 and 2. The internu-
clear, interelectronic, and elec-
tron-nuclear distances with their
respective notations are shown
in the figure

Since the Hamiltonian H is the operator belonging to the total energy of the system,
expression (4.56) is just the expectation value of the total energy, which in the present case
is identical with the energy eigenvalue of the Schrodinger equation. What would happen,
though, if for ¥ we used some arbitrary wavefunction instead of a solution of the Schrédinger
equation? Then (4.56) still has the dimensions of an energy, but it is not necessarily equal
to the correct eigenvalue of the Schrodinger equation which we are seeking. Applying math-
ematics, one can at this point prove an extremely important relation: if we in fact do not
use a true eigenfunction of the ground state of the system for ¥, but rather some other
wavefunction, then its corresponding energy expectation value will always be larger than
the eigenvalue of a solution to (4.55). In this sense, we can give a criterion for how well we
have approached the true eigenfunction: the lower the calculated expectation value (4.56),
the better the trial wavefunction used to obtain it.

We shall use this criterion repeatedly later on. Now, however, we want to set out to
determine the wavefunctions and the energy of the hydrogen molecule in the ground state,
at least approximately. In choosing a suitable approximate wavefunction, our physical intu-
ition will play an essential role. Depending on which aspects of the physical problem are
emphasised, we will arrive at different approaches, which are known by the names of their
original authors: the Heitler-London and the Hund-Mullikan-Bloch methods. In addition to
these approaches, we will meet up with improvements such as the so-called covalent-ionic
resonance (Sect. 4.4.3), and also a wavefunction which includes all the others described
as special cases, and thus opens the way to a first general treatment of the many-electron
problem in molecules (Sect. 4.4.5).

4.4.2 The Heitler-London Method

The two atomic nuclei (protons) are distinguished by the indices a and b, and the two
electrons by the indices 1 and 2. Due to the fact that the Coulomb force acts between all four
particles, we need to introduce the corresponding distances, which are defined in Fig. 4.11.
In order to write down the Hamiltonian, we recall the energy balance from classical physics.
We are dealing with the kinetic energies of electron 1 and electron 2, and with the various
contributions to the Coulomb interaction energy. We first translate the classical expression
for the kinetic energy into quantum-mechanical terms! If p; and p, are the momenta of
electrons 1 and 2, then the (classical) kinetic energy is given by

1 1
Exin = —p* + —p?. 4.57
kin 2m0P1 + 2m0P2 ( )

We now need to convert p; and p, to quantum-mechanical operators using the rule (4.7); in
the process, we must add the indices 1 and 2 to the spatial coordinates. We thus obtain

X X _h D @58)
Px1 = P ox; Py1 = i y Pzl = i 92, ) .
h o ho h o
Pxo2=—7—, py2 =TT, Pp=T7—, (459)
1 0x, 10y, 1022

or, using the nabla operator,
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h h

For the kinetic energy operator, we then obtain

h? h?
Hyin = _2_mov§ - 2—mOv§ ) 4.61)

The square of the nabla operator can once again be expressed as the Laplace operator:

2 2 2

vie 00 (4.62)
oxiy Oy 0z]

and correspondingly for the index 2. Adding the various contributions to the Coulomb inter-
action energy to the kinetic energy operator (4.61), we obtain for the Hamiltonian

2 2 2 2
L S A - S
2my ! 47T8()ra1 2my ! 471'80)"172
H] HZ
2 2 2 2

- - + . 4.63
47(80rb1 47T8()ra2 + 47T80Rab 47‘[807‘12 ( )

We again assume that the nuclei are infinitely massive. Our task is now to solve the
Schrédinger equation

HW(rl,r2)=EW(r1,r2) (464)

with the Hamiltonian (4.63). If the nuclei were infinitely far apart, it would be sufficient to
consider them separately, i.e. to solve the equations

K2 &2

(—E—V%_ )¢a(rl) = Eopa(r1) , (4.65)
my A egra,
K2 &2

( ‘”2_V§ - )¢b(rz) = Eyp(r2) . (4.66)
mo 471'80?‘1,2

However, we are dealing here with a two-electron problem; accordingly, we must take the
Pauli exclusion principle into account, i.e. we have to consider the fact that electrons have
a spin. If the two hydrogen atoms did not influence each other, we could immediately write
down the overall wavefunction using the wavefunctions ¢, and ¢, which occur in (4.65)
and (4.66). As we can see by insertion into a Schrodinger equation with H = H, + H,, a
solution would be:

Ga(r)p(r2) . (4.67)

In order to take the existence of spin into account, we have to multiply this trial solution
by appropriate spin functions. The reader who is not familiar with the spin formalism should
not be disturbed at this point, as we need only a few properties of the spin functions and will
then be able to dispense with them completely during the further course of the calculation.

We denote the function referring to an electron with spin ‘up’ by «. (This type of spin
wavefunction was denoted in I, Sect. 14.2.2 as ¢;.) If we are dealing with electron 1, we
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call the wavefunction «(1). If both electrons have their spins in the same direction (“up”),
then our wavefunction becomes

Ga(r))gp(r)a()a(2) . (4.68)

This function, however, does not obey the Pauli principle, which states in its mathematical
formulation that a wavefunction must be antisymmetric in all the coordinates of the electrons
(i.e. spatial and spin coordinates). In other words, when we exchange the indices 1 with the
indices 2 everywhere, the wavefunction must change its sign. The wavefunction (4.68) does
not have this property; however, the following wavefunction does have it:

¥ = ¢a(ro)a(1)gp(r2)a(2) — ¢q(r2)a(2)ep(ri)a(l) . (4.69)
If we factor out the spin functions «(1) and «(2), the wavefunction assumes the simple form
¥ = a(Da?2) [Pa(r)dp(r2) — Pa(r2)dp(r1)] . (4.70)

I8

i.e. it is the product of a spin function and a spatial wavefunction. (In quantum mechanics,
wavefunctions which are symmetric with respect to exchange of the electronic spatial co-
ordinates are termed gerade, abbreviated “g”, from the German for “even”; antisymmetric
wavefunctions are denoted by a “u”, for ungerade = “odd”.)

Looking forward to an important general approach for representing many-electron wave-
functions, we write (4.69) in a still different form. It may be represented as a determinant:

D= Ga(r)a(l)  ga(r)a(2)
dp(rpa(l)  ¢p(r)a?)| -

If we calculate this determinant following the usual rule

4.71)

D = product of the main diagonal
— product of the secondary diagonal,

then we obtain just the expression (4.69). The determinant has a clearly apparent structure:
the rows refer to the states a and b, and the columns refer to the numbers 1 and 2 of the
two electrons.

Although (4.70) refers to two electrons whose spins are parallel and directed upwards, we
can also construct wavefunctions for electrons with parallel spins which point downwards.
We denote the spin function of a single electron whose spin is in the downwards state by S;
then the total wavefunction becomes

v =B, . (4.72)

For completeness, we also give the third wavefunction, belonging to the substate of the
“triplet” state in which the spins are parallel. This state has its z-component of the total spin
equal to zero, and is given by

1
¥ =—[a(D)B2)+a)()] ¥, . (4.73)
ﬁ[ p B(D] ¥,
As the following calculation shows, the wavefunction ¥ does not belong to the state which
is lowest in energy, since its spins are parallel. We need to find a wavefunction whose spins,
in contrast, are antiparallel, i.e. one in which the one electron is described by a “spin up”
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function a and the other by a “spin down” function 8. Here, expanding on (4.68), there are
a number of possibilities. One of them is:

Ga(r)pp(r)a(HB2) . 4.74)

Other functions can be found by starting with (4.74) and exchanging the coordinates r;
and r, or the arguments of @ or 8, i.e. 1 and 2, or by exchanging everything at the same
time. None of these combinations is antisymmetric as it stands. We therefore will attempt
to find a combination of (4.74) with some of these other possible trial functions which is
antisymmetric and which can be written as the product of a spin part and a spatial part,
similarly to (4.70). This is in fact possible, as one discovers after some trial and error, and
leads to the wavefunction

¥ = [¢a(r)dp(r2) + da(r2) @ (r1)] [(DB2) — (2)B(1)] . (4.75)

Yy

The spin function is clearly antisymmetric here, while the spatial function ¥, is symmetric.
If we exchange the spatial and spin coordinates of the two electrons simultaneously, this
overall wavefunction changes sign: it is antisymmetric, in agreement with the Pauli exclusion
principle.

The spin functions were here only a means of establishing the required symmetry of the
total wavefunction. Since, however, no operators occur in the Hamiltonian of the Schrodinger
equation (4.64) which act in any way upon the electronic spins, we can treat the spin functions
just as a number when inserting (4.70) and (4.75) into that equation, and can divide them
out from both sides. The resulting equation contains only the spatial functions ¥, or ¥,.
This means that in the approximation to which we are calculating here, the interaction of the
spins with one another (the spin-spin interactions) and of the spins with the spatial functions
(spin-orbit interactions) are not taken into account. From now on, we concern ourselves only
with the functions ¥, and ¥, and compute the energy expectation values belonging to these
wavefunctions.

Following the basic idea of Heitler and London, we take these wavefunctions ¥, and ¥,
as trial solutions of the Schrodinger equation with the Hamiltonian (4.63), which contains all
the Coulomb interactions between the electrons and the protons, and imagine that we can then
approximate the exact energy by applying (4.56). We thus have the task of calculating the
energy eigenvalues for these wavefunctions. This calculation is not difficult, but it requires
some patience.

As a first effort towards the calculation of the eigenvalues, we consider the normalisation
integral which occurs in the denominator of (4.56). It has the form:

/ ¥ (r1, r2) > dVid Vs

=/ (@ (r1)dp(r2) £ @ (r2) b (r)]*
(@ (r)Pp(r2) £ Gp(r2)@a(r)1 dVridV, . (4.76)

After multiplying out all the terms (and assuming that ¢, and ¢, are real), we obtain
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/¢§dv1f¢;j—dv2+/¢2dv2/¢§dvl

i/d’a(ﬁ)d’b(”l) dV1/¢a(7‘2)¢b(7‘2) dV,

if¢a(r2)¢b(r2)dV2/¢a(r1)¢b(r1)dVl . 4.77)

As a result of the normalisation of the wavefunctions ¢, and ¢, the first two expressions
can be reduced to:

/¢Z‘ dvi =/¢§ dvy=1, (4.78)

while the remaining two expressions are squares of the overlap integral

/¢a(r1)¢b(r1) dv =S. 4.79)

We can thus write the normalisation integral (4.76) in the simple form
21+ 5% . (4.80)

In evaluating the numerator of the energy expectation value (4.56), we encounter, anal-
ogously to (4.77), altogether four expressions, which occur in pairs of equivalent terms.
We begin with the expression

e? e? &2 &2
H + H, — _
//¢a(r1)¢b(r2) { 1+ 47!60)’1,1 47!8()7’(12 + 47T8()Rab + 471'607‘12 }
*Pa(ri)p(r2) dVidV; . (4.81)
Since the Hamiltonian H; in (4.81) acts only on ¢,, we can use the fact that ¢, obeys the

Schrodinger equation (4.65) in our further calculations. Applying the same considerations to
H,, we can simplify (4.81) to the form:

f Ba(r1)* dp(r2)?

&2 e? &2 &2

-{2Eqg — - dvidv, . 4.82
{ 0 dmeorp 4naoraz+4nsoRab+4neor12} 1er2 ( )

—— N e’ N—— — — e —
1)) 2) 3) 4) 5)
For what follows, it is useful to examine the meaning of the terms in (4.82) individually.

1) Owing to the normalisation of the wavefunctions ¢, and ¢, the expression

/ / ba (1)’ @5 (r2)*2Eo dVid V5
reduces to
2E, , (4.83)

i.e. the energy of the two hydrogen atoms at infinite distance from each other.
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2) The expression

2
f Ba(r1)? (— ‘ ) dVi=C <0 (4.84)

A egrp

represents the Coulomb interaction energy of nucleus b with electron 1 in state a.
3) The integral

2
/ B (r2)? (— y ° ) dVy=C <0 4.85)
TTEG a2

is the Coulomb interaction energy of electron 2 in state b in the field of nucleus a. From the
symmetry of the problem, it follows that the two integrals 2) and 3) are equal.
4) Owing to the normalisation of the wavefunctions ¢, and ¢, the expression

2
[ ¢a(rl)2¢b(r2)2‘e— avidv,

47!80 Rab
reduces to
2

L (4.86)

47‘[80 Rab
This is the Coulomb repulsion energy of the two nuclei.

5) The integral

2 ) €
/ @a(r1) " @p(r2) 7 dvidV, = Eg (4.87)
TTEG 12

represents the repulsive Coulomb interaction energy of the two electrons.
Adding up the contributions (4.83) through (4.87) we obtain a contribution to the energy
expectation value of (4.81) (which we abbreviate as 12")
~ e2
E=2Ey4+2C+Epi+——. (4.88)
4megRyp

This is, however, still not the final result, since on inserting the wavefunctions ¥, or ¥, into
the expression (4.56) for the energy eigenvalue, we also obtain exchange terms of the form

+ / S5 (r)Ba (P, . Y (r)ba(r) AVid Vs | 4.89)

where the expression in curly brackets, {...}, is the same as in (4.81). Explicitly written out,
(4.89) thus becomes

+ / Dp(r1)Pa(r2)@a(r1)dp(r2)

62 e2 62 e2

-{2E, — — avidv, . 4.90
{ 0 dregryy 4megry + 4meg R,y + 47rsor12} 19r2 ( )

——’ —_—— [ —— —— ——
1) 2) 3) 4) 5)

The various terms have the following forms and meanings:
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1) The expression

f &b (r1)@a(r2) (£2E0)@a(r))¢s (r2) dV1d V2

reduces on applying the definition (4.79) of the overlap integral S to
+2E,S?. (4.91)

This is the energy of the two separated hydrogen atoms multiplied by the square of the
overlap integral S.
2) The exchange integral

2

:E/¢a(rz)¢b(rz) de/¢b(r1) (— ) $a(r1) dVy (4.92)

47'[807‘1,1

N D

is the product of the overlap integral S and the one-electron exchange integral D [compare
(4.45)].
3) The exchange integral

2
+ ff ¢b<r1>¢a<rz)(— ‘ )¢a<r1)¢b(rz>dv1dvz

4 EoTa2
reduces in exact analogy with (4.92) to

+SD . (4.93)

4) The exchange integral

2

i‘/ &y (r)@a(r2) (dﬁ) Ga(r))pp(r2) dVidV

reduces directly to

2
2 e

, 4.94
4megRap ( )
i.e. to the square of the overlap integral S multiplied by the Coulomb interaction energy
between the two nuclei.

5) The exchange integral

2
+ / f B (12) = bu )00(12) dVid Y = e (4.95)

represents the Coulomb interaction energy between the two electrons, but computed using
not the normal charge density, but rather the exchange density. This integral is therefore
referred to as the Coulomb-exchange interaction.

The total contribution of (4.91-4.95), which we abbreviate as E, is then given by

2

E=+42E)S*+2DS+ Ecg + —_§? . (4.96)
4meg R,y
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We now recall our original task, which was to compute the numerator of (4.56), using the
wavefunctions ¥, and ¥,. If we multiply all the functions within ¥, or ¥,, respectively, by
each other, then we obtain (as already pointed out) contributions of the type (4.81) twice,
and contributions of the type (4.89) twice. Finally, we have to divide the whole thing by
the normalisation integral. We then obtain for the total energy of the hydrogen molecule the
following expression:

E+E

Eeu = sz ¥ 2dvidv, ’

(4.97)

where the upper or lower sign applies in the energies E and E, according to whether the
wavefunction ¥, or ¥, was used:

2C+ Er; 2DS+ Ecg &2
E,=2E , 4.98
8 ot Tr e 1+ 82 4meoRap (4.98)
2C + ERI 2DS + ECE 62
E,=2E - . 4.99
u U =57 T aneRy (4.99)

In order to determine whether or not chemical bonding occurs, we must test whether Eg or
E, is lower than the energy of the two infinitely separated H atoms, given by 2E,. Various
effects are in competition here, as we can see on closer examination of the individual terms
in e.g. (4.98). Thus, C, the potential energy of an electron in the Coulomb field of the
opposite proton, is negative [cf. (4.84)], while the Coulomb interaction energy between the
two electrons, Egj, is positive. Furthermore, the last term in (4.98), which describes the
Coulomb repulsion of the protons for each other, is also positive. In addition, there are the
typically quantum-mechanical effects represented by the exchange interactions, which can
be summarised in

K =2DS + Ecg . (4.100)

While DS is negative, the Coulomb-exchange interaction between the electrons, Ecg, is
found to be positive. Whether or not chemical bonding finally comes about thus depends on
the numerical values of the individual integrals.

It is not our purpose here to deal with the numerical evaluation of the integrals in detail.
This evaluation reveals that the overall contribution of the exchange integrals (4.100) is
negative; this makes the energy corresponding to the even (g) wavefunction lower than that
of the odd (u) wavefunction. Furthermore, for the even wavefunction ¥, the nett effect of
the various Coulomb interactions is to yield an energy lower than that of two free hydrogen
atoms. This state is therefore referred to as the bonding state. The lowering of the energy
is — in addition to the effects of exchange (4.100) — due to the fact that the electrons can
both occupy the region between the two nuclei simultaneously and thus can profit from the
attractive Coulomb potential of both protons, in such a way as to compensate the repulsive
potential between the electrons themselves and between the nuclei. This is similar to the case
of Hj discussed earlier. The energy lowering depends on the distance between the nuclei; an
energy minimum is found for a particular internuclear distance (Fig. 4.12). As can be seen
in the figure, the odd wavefunction ¥, does not lead to an energy lowering; for this reason,
the corresponding state is called the antibonding (or non-bonding) state.

The dissociation energy, which is equal to the difference between the minimum energy
at the equilibrium nuclear distance (bond length) and the energy at a distance R, = o0,
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Fig.4.12. The binding energy
of the hydrogen molecule as a
function of the internuclear dis-
tance Rgyp, taking the repulsive
Coulomb interaction of the nu-
clei into account. (Lower curve)
The electron spins are antiparal-
lel. (Upper curve) The electron
spins are parallel
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is found from a calculation based on the wavefunction given above to be 3.14 eV. The
observed binding energy, which is equal to the dissociation energy, is, in contrast, 4.48 eV;
however, it should be remembered that the nuclei themselves make a contribution through
their kinetic energy. If this contribution, which was neglected in our calculation where we
assumed the nuclear masses to be infinite, is subtracted, we arrive at a binding energy of
4.75 eV. We see that there is still a considerable difference between the calculated and the
measured binding energies. This means that the wavefunctions of the Heitler-London model
are still a very rough approximation. Although they show us that the bonding in the hydrogen
molecule can be understood theoretically, they can give only a rough approach to the form
of the true wavefunctions. In order to improve the wavefunctions, some additional effects
must be taken into account; we shall discuss here one of the most typical, which is called
covalent-ionic resonance.

4.4.3 Covalent-Ionic Resonance

In the previous section, we used as a wavefunction for the two electrons in the hydrogen mol-
ecule one in which the first electron spends its time for the most part near one nucleus, while
the second electron is near the opposite nucleus. In this case, which is termed “covalent”,
the wavefunction has the form

Yeov = N[@a (r1)dp (r2) + ¢ (r2))dp(r1)] (4.101)

where N is a normalisation factor.
It is of course possible, at least with a certain probability, that both electrons are on one
of the hydrogen atoms; the wavefunction is then of the form:

ba(r)pa(r) . (4.102)

Since the two nuclei are equivalent, both electrons could just as well be near nucleus b,
which would correspond to the wavefunction

Gp(r1)Pp(r2) . (4.103)

The functions (4.102) and (4.103) describe states in which there is a negatively charged
hydrogen ion present. They are therefore referred to as “ionic” states. The states represented
by (4.102) and (4.103) are energetically degenerate, and so we must form a linear combination
to obtain the overall wavefunction. We do this in a symmetric form:
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Wion = N'[¢a(r))Pa(r2) + #p(r1)es(r2)] , (4.104)

so that (4.104) has the same symmetry as (4.101). Now we must expect that nature does
not choose exclusively the wavefunction (4.101) nor the wavefunction (4.104), since the
electrons repel each other to some extent but can also be near the same nucleus some of
the time. Both situations are possible, and thus according to the basic rules of quantum
mechanics, the most realistic wavefunction should be constructed as a linear combination of
the two possible states, (4.101) and (4.104):

¥ =Wy + ¢ ¥on » (4.105)

where the constant c¢ represents a variable parameter, which must be adjusted so as to
minimise the energy expectation value belonging to the wavefunction (4.105).

4.4.4 The Hund-Mullikan-Bloch Theory of Bonding in Hydrogen

Along with the Heitler-London method, which we have described above, a second method
is often used in molecular physics; in general, it does not give such good results for the
total binding energy as the Heitler-London method, but it does allow the spatial probability
distribution of the electrons to be more closely delineated. This is particularly important for
spectroscopic investigations of molecules, since in such work, usually only one electronic
state undergoes a change and it is just this change which one wishes to describe theoretically.

In this method, one at first ignores the fact that two electrons are present. Instead, we
consider the motion of a single electron in the field of the two nuclei or, in other words, we
begin with the solution of the hydrogen molecule-ion problem. We examined this solution
in Sect. 4.3; it has the form:

Ye(r) = N[a(r) + ¢p ()] . (4.106)

The idea is now to place both of the electrons of the hydrogen molecule into the state (4.106).
To solve the Schrddinger equation with the Hamiltonian (4.63) for the two electrons, we
therefore take as trial wavefunction

Y (R, Ry) = Yg(r1) ¥y (r2) - spin function , 4.107)

where R and R; include both the spatial coordinates r; and r, and the spin coordinates. We
shall concentrate our attention here on the case of antiparallel spins, so that the spin function
is antisymmetric and has the form

1
V2
The total wavefunction (4.107) is clearly antisymmetric with respect to the spatial and spin
coordinates of the electrons. Using the trial function (4.107), the expectation value of the
total energy can again be computed. It is found to be higher in energy than that of the
Heitler-London method, i.e. not as realistic. The method we have just described is called
the LCAO method, for Linear Combination of Atomic Orbitals. Such a linear combination,
e.g. (4.106), represents the wavefunction of a single electron in a molecule and is therefore
termed a Molecular Orbital (MO).

This method can be extended to more complex molecules, as we shall see later. However,

it requires some modifications for many molecules, and we shall treat the most important
and most characteristic of them in this book.

spin function =

[@a(DBER) —ax()p)] . (4.108)
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Fig.4.13. A visualisation of the
substitution (4.112)

4.4.5 Comparison of the Wavefunctions

In later chapters, we will be concerned with finding suitable trial wavefunctions for molecules
containing more than two electrons. We therefore now compare the different trial functions
for the hydrogen molecule in its ground state with the electronic spins antiparallel. For the
sake of clarity, we leave off the normalisation factor of the functions ¥, on the right-hand side
of the following equations, since we are interested only in the structure of the wavefunctions.
The trial functions are then given by:

Heitler-London

Yy = [@a(Dp(2) + da(2)p(1)] (4.109)
Heitler-London + ionic
Vg = [0a(1)p(2) + Pa(2)Pp(1)] + c[Pa(1)Pa(2) + dp(1)p(2)] (4.110)
Hund-Mullikan-Bloch
Yy = [¢a(1) + ¢ ()] [9a(2) + Pp(2)] . 4.111)
0, ¢, +doy
—
X t X
al al b

We will now show that all these trial functions, (4.109-4.111), are special cases of a more
general wavefunction, which we construct in this section. In the process, we mix into the
wavefunction which originally referred to atom a a portion of the wavefunction from atom
b and vice versa for the wavefunction originally referring to atom b. We thus make the
substitution (see Fig. 4.13):

$a = ¢a +doy , @ —> ¢ +doa (4.112)

where d is a constant coefficient, with d < 1.
We thereby define a new wavefunction according to

We(1,2) = [Ba(1) + ddp(D)] [$5(2) + da(2)]
+[$a(2) + ddp()] [#5(1) + dga (D] . (4.113)

This can be transformed by a simple calculation into:

We(1,2) = (1 + d*)[¢a(1)$5(2) + ¢a(2)5(1)]
+ 2d[¢a(1)$a(2) + ¢p(1)¢5(2)] . (4.114)

If we now set d = 0, then we obtain the Heitler-London trial wavefunction, (4.109). On
the other hand, d = 1 yields the Hund-Mullikan-Bloch trial function, (4.111). If we factor
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out (1 4 d?) from the right-hand side of (4.114) and put it into the common normalisation
constant, a comparison between (4.114) and (4.110) gives the result

2d
14+ d?

In other words, the trial function (4.110), which contained an improvement to the original
Heitler-London function through the addition of an ionic part, is also included as a special
case in (4.113). The trial function (4.113) can be improved still further by including the
wavefunctions of excited atomic states in the linear combination of (4.112). These consider-
ations show us a first, important way towards formulating the wavefunctions for molecules
with many electrons.

=cC.

(4.115)

4.5 Hybridisation

An important case which is of particular interest for organic chemistry is that of Aybridisation.
In considering it, we also for the first time deal with atoms containing more than one
electron. In forming molecules, the electrons in the inner, closed atomic shells are not strongly
influenced; chemical bonding occurs via the outer electrons (valence electrons), which are
more weakly bound to their atomic nuclei. In the carbon atom, two of the six electrons are
in the 1s orbital, two in the 2s orbital, and two are distributed among the three orbitals 2p,,
2py, and 2p,. The I degeneracy of the n=2 shell, which was found to hold in the hydrogen
atom, is lifted here. However, the 4 eV energy splitting between the 25 and 2p states is not
very large, and there is in fact an excited state of the carbon atom in which an electron from
the 2s state has made a transition into the 2p state. In this case, the states 2s, 2p,, 2 Py, and
2p, each contain one electron. Let us now consider these singly-occupied states carefully
while we allow external forces to act on an electron by bringing a hydrogen atom close to
the carbon atom. These external forces can, so to speak, compensate the energy difference
which still remains between the 2s and the 2p states, making them practically degenerate in
energy.

As we know from perturbation theory in the presence of degeneracy, in such a case we
have to take linear combinations of the old functions, which were degenerate. For example,
instead of the 2s- and 2 p-functions, we construct two new functions having the form:

Vi =Ys + V),
1/f—=1[’s_1/fpx-

Linear combinations of this type can shift the centre of gravity of the electronic charge
clouds relative to that of the s-function (see Fig. 4.14). Exactly this phenomenon occurs in
hybridisation.

Let us consider several types of hybridisation, beginning with the most well-known case,
that of methane, CHy4, where the carbon atom is surrounded by four hydrogen atoms. Exper-
imentally, it is known that the carbon atom sits at the centre of a tetrahedron with the four
hydrogen atoms at its vertices (Fig. 4.15). Interestingly, the four degenerate wavefunctions
of the n=2 shell in the carbon atom can be used to form four linear combinations whose
centres of gravity are shifted precisely towards the four vertices of a tetrahedron. If we
remember that the wavefunctions of the p states have the form f(r)x, f(r)y, and f(r)z,

(4.116)

Fig.4.14. The shape of the
wavefunctions in the case of
diagonal hybridisation. The s-
function ¢ (dashed curve) and
the p-function ¢, (dot-dashed
curve) as well as the function
which results from their super-
position (solid curve) are plotted
against the distance from the nu-
cleus. The figure clearly shows
how the centre of gravity of the
wavefunctions shifts to the right
on superposing the two func-
tions ¢ and ¢,
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Fig.4.15. (Left) The electron
density distribution of the four
orbitals in tetrahedrally hy-
bridised carbon. (Right) An ex-
ploded view of the hybrid or-
bitals

then it becomes clear that the following linear combinations produce the shifts in the charge
centres of gravity described above (tetrahedral configuration):

Vi =3(Ws + ¥p, +Vp, +¥p,) ,
Vo= 3(¥s +¥p, = Vp, —¥p,) »
V3= 35 = Yp, +¥p, = Vp)
Ve = (Y5 — ‘//px - ‘/’p_v + '/’pz) :

These wavefunctions are mutually orthogonal in the quantum-mechanical sense, as one can
readily verify by inserting the v; for j = 1,...,4 into [ V(") Yx(r)dV and using the
orthogonality of the ¥;, ¥, ¥p,, and ¥, functions. This type of orthogonality is not to be
confused with orthogonality of the spatial orientation! Using these new linear combinations,
(4.117), we can “tune” the electrons of the carbon atom to the tetrahedral environment.
Each one of the four wavefunctions in (4.117) can now form a chemical bond with the
corresponding hydrogen atom (Fig. 4.15).

4.117)

Taking as an example the direction of vertex 1, we denote the carbon hybrid wavefunction
Yy in (4.117) more precisely as ¥, and that of the hydrogen atom at this vertex as ¥y;.
Similarly to the case of the hydrogen molecule, we now generate a wavefunction for each of
the two electrons involved in the bond formation; these take the following form, according
to the LCAO prescription:

Y = v () + ey (r) (4.118)

Owing to the difference between the carbon atom and the hydrogen atom, the constant
coefficient ¢ will always be #* 1 (in contrast to the hydrogen molecule), and it must be
determined by applying the variational method.

In the present case, we have oriented our considerations to the experimental finding that
the four hydrogen atoms are located at the vertices of a tetrahedron. One could now be
tempted to ask the question as to whether the wavefunctions (4.117) are initially present and
the hydrogen atoms then locate themselves at the vertices of the tetrahedron thus defined, or
conversely the hydrogen atoms first move to the vertices of a tetrahedron and thereby cause
the carbon wavefunctions to generate corresponding hybrid orbitals. From the quantum-
mechanical point of view, such speculations are pointless. The positions of the hydrogen
atoms and the orientation of the hybrid wavefunctions are mutually consistent. The overall
configuration is adopted by the CHs molecule in such a way as to minimise the total energy.
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The tetrahedral hybridisation just discussed, i.e. an arrangement of the wavefunctions
resulting in tetrahedral symmetry, is not the only type of hybridisation possible for the
carbon atom. We have already mentioned a second type, diagonal hybridisation, which is
expressed in the wavefunctions (4.116) (see Fig. 4.14).

For carbon, still a third type of hybridisation is possible, the trigonal configuration, in
which the s-, p,-, and p,-wavefunctions hybridise as suitable linear combinations to yield
hybrid orbitals in three preferred directions within a plane. In order to give the reader an
impression of how such hybrid orbitals are written, we show them explicitly (Fig. 4.16):

Y1 = W +V2¢,,) ,
V2 = VIWs + ViV, — V1)
Vs = V1 — V3V, — ViV,

These wavefunctions are also mutually orthogonal in the quantum-mechanical sense.

Clearly, in generating these three hybrid wavefunctions, no use is made of the fourth
original carbon wavefunction, 2p,. It plays an additional role in bonding, as we shall see
directly. We consider the case of ethene, C;H,. Here, two carbon atoms take on the trigonal
configuration. The hydrogen-carbon bonds are again formed by wavefunctions of the type
given in (4.118), where for yc; we insert, e.g. ¥, from (4.119). One carbon-carbon bond is
formed by the first of these wavefunctions, with each carbon atom contributing one electron.
However, the electrons occupying the p,-orbitals are still left over. These remaining atomic
orbitals form linear combinations, in analogy to the hydrogen molecule in the Hund-Mullikan-
Bloch model, giving rise to an additional carbon-carbon bond. We thus have a case of double
bond formation between the two carbon atoms (Fig. 4.17). This configuration is referred to
as sp? or trigonal hybridisation.

(4.119)

Fig. 4.16. (Left) The density dis-
tribution of the three orbitals in
the case of trigonal hybridisa-
tion of carbon. (Right) An ex-
ploded view of the orbitals

Fig.4.17. The electron density
distribution of the hybrid or-
bitals of the carbon atom in
ethene, CyHy. (Left) The two
carbon atoms are located at the
two opposite nodes, and each
takes on a trigonal configuration
together with the correspond-
ing hydrogen atoms. (Right)
The perpendicularly-oriented p,
functions of the two carbon
atoms form an additional car-
bon-carbon bond
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Fig.4.18. The structure of the
Ce¢o molecule, “Buckminster-
Fullerene”, discovered in a mol-
ecular beam. [After H.W. Kroto,
J.R. Heath, S.C. O’Brien, R.F.
Curl, and RE. Smalley, Na-
ture 318, 162 (1985)]. It can
also be produced by vapouris-
ing graphite in a helium atmo-
sphere. [See W. Kritschmer, K.
Fostiropoulos, and D.R. Hoff-
mann, Chem. Phys. Lett. 170,
167 (1990)]

An especially elegant example of trigonal hybridisation is provided by the “Buckminster-
Fullerene” molecule, Cgy, known for short as “fullerene”, which was discovered in 1985.
This molecule has attracted considerable attention because of its properties, which are quite
unusual in a variety of ways. It consists of 12 pentagonal and 20 hexagonal units, i.e.
altogether 32 rings, and has the shape of a soccer ball with a diameter of roughly 7 A;
see Fig. 4.18. As in benzene, the p-orbitals which extend outside the spherical surface
of the molecule are not localised and their electrons can move as m-electrons throughout
the molecule. Cgp can form various compounds, such as CgHgo. In addition to Cgp, other
molecules of the C, structure have been identified, with n varying from 32 up to several
hundred. These molecules can also act as cages, in which other atoms can be trapped, or
in which different C,, molecules can be enclosed in a multiple-shell structure, like Russian
dolls.
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A First Overview

In this chapter, we cover the fundamentals and theoretical approaches which we will need for
— among other things — determining the wavefunctions and the energies of the m-electrons
in benzene. A second example will be the ethene molecule.

5.1 Fundamental Concepts

Symmetries and symmetry operations play a still more important role in molecular physics
than they do in the quantum theory of atoms. In the present section, we will cast an initial
glance at this topic, and will then directly apply some of the knowledge we have gained. In
Chap. 6, we shall again treat the subject of symmetries and symmetry operations systemati-
cally and in more detail.

In molecular physics, it is generally important to know the geometry of the molecule of
interest from experimental studies before attempting a theoretical treatment. We will have
the task of calculating the wavefunctions, or also the possible vibrational motions of the
nuclei, taking this observed symmetry into account. We can draw on the example of the
benzene molecule as a starting point for our considerations (Fig. 5.1a). It is planar and has
the shape of an equilateral hexagon, i.e. if we rotate the molecule through an angle of 60°
about an axis perpendicular to its plane, it remains unchanged. Another example is provided
by H,O, which remains unchanged if it is rotated through an angle of 180° about an axis
perpendicular to its plane (see Fig. 5.2). NH; is symmetric with respect to rotations of 120°
(Fig. 5.3). The ICI; ion is planar and is unchanged by a rotation of 90° (Fig. 5.4), while all
linear molecules, such as HCN (Fig. 5.5), are symmetric with respect to a rotation about the
common internuclear axis through any arbitrary angle ¢.

Making use of these examples, we discuss more precisely just what is meant by symmetry
and symmetry operations. For this purpose, we first carry out a little thought experiment:
we imagine that in H,O, the initially quite identical hydrogen nuclei are distinguishable, and

Fig. 5.1a—c. Benzene, CsHg. (a)
structure formula; (b) charge
density of the o-electrons; (c)
charge density of the 7 -electrons
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then we rotate the water molecule in such a way that the two protons exchange places. We
then make the protons again indistinguishable. After the rotation of the molecule, one can
thus no longer see that it had been rotated at all. In the course of such a rotation through
an angle ¢, the coordinates of the individual atoms in the molecule are of course changed.
Using the standard notation for molecules, we denote the rotation as C. In order to specify
the angle ¢ through which the rotation took place, we can put it as an index on C: Cy. We
shall use that notation occasionally in this section. However, it is more usual to choose the
index as the number n, which tells us how many times a rotation must be repeated until
the original state is again restored; in other words, n¢ =2m. For example, if ¢ =60° (or in
radians, ¢ =m/3), we find n=6. In the benzene molecule, the rotational symmetry can thus
be described as Cs.

We now consider the effect of a rotation on the Cartesian coordinates. They can be written
compactly in terms of the position vector

x
r=<y) . 5.1
Z

A rotation through the angle ¢ corresponds to a new position vector 7. The relation between
r and 7 is then given by:

F = Cyr, (5.2)

where Cy means: carry out a rotation of r through the angle ¢. As we know from elementary
mathematics, the primed and unprimed coordinate systems are related by the equations:

x'=xcos¢ + ysing ,

y = —xsing + ycos¢ , (5.3)
!

=z.

In order to keep the notation simple, in the following we will leave off the angle ¢ or the
number n as index to C:

Cy— C. (5.4)

Since the distance from the origin remains constant in a rotation, we can immediately write
down the relation

cri=r?=r?, (5.5)
i.e. we could also write
rr=r. (5.6)

The rotation operation can now be applied to the coordinates of any particle we wish; not
only to the protons in hydrogen, but also to, e.g. the electron in a hydrogen atom. The
application of the rotation operator C to the wavefunctions v (r) of the hydrogen atom then
means simply that we rotate the coordinates 7, i.e. the following relation holds:

Cym) =y(Cn=y@). (5.7

Let us consider how the wavefunctions transform under the rotation C according to (5.7).
We begin with the 1s-function of hydrogen, which has the form
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Y(@r) = Ne7/n (5.8)

(cf. Fig. 4.1), where N is a normalisation constant. According to the definition (5.7), and
taking the relation (5.6) into account, we obtain

Cy@)=Ne/™ =Ne /", (5.9)

Under rotation, the wavefunction of the hydrogen atom in the ls-state thus remains un-
changed, or in other words, it is invariant with respect to a rotation C.

Let us see as a preparation for future use how the p functions transform; they can be
represented using either real or complex functions. Starting with the real representation, we
associate the wavefunction

Yy, = xf(r) (5.10)

with a “dumbbell” lying along the x-direction (compare Fig. 4.1). The function f(r), which
depends only on the radius r, can be written in the form

f(r)=Ne™n | (5.11)

but any distance-dependent function, e.g. the radial functions for larger values of the principal
quantum number, would also meet the requirements of which we make use in the following.
The other two dumbbells are given by

Yp, = yf(r) (5.12)

and

Yp, =2f(r) . (5.13)

Consider now what happens when we let the rotation operator C for a rotation about the
z-axis act on these wavefunctions according to the general definition (5.7). We obtain:

Cyp, = x'f(r') = cospxf(r) +sindyf (r) = cos ¢y, +singy, ,
Cyp, =y f(r') = —singxf (r) + cospyf(r) = —sindy,, +cosoy,, , (5.14)
prz = 1‘[,Pz N

In (5.14), the first step (from left to right) was carried out according to (5.7), the second
according to (5.3), and for the third, we made use of the definitions (5.10) and (5.12).
Application of the rotation operation C thus transforms the wavefunctions ¥, , ¥,,, and ¥,
among themselves. This already shows us the tip of the iceberg of a general truth which
we shall meet again in a much more general context. We note in this connection that the
p-functions of the hydrogen atom just referred to all belong to the same energy. As we shall
show generally later on, wavefunctions which belong to the same energy are transformed
into linear combinations of the same set of wavefunctions by symmetry operations. The
question will also arise as to whether there are not simple cases where a wavefunction is
transformed into itself on application of a symmetry operation. This in fact is true in the
present case, if instead of the real representation of the p-state wavefunctions we use certain
linear combinations of them. These are complex and are eigenfunctions of the operator for
the z-component of angular momentum. They are given by

Vi =1, £iy, = N@x tiy) e/, (5.15)
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where N is again a normalisation constant. The form x iy can be treated as a complex
variable in the complex plane, and we introduce the usual polar coordinates for it:

x+iy=re® . (5.16)
Then (5.15) becomes
Yy = Nre7/meti® (5.17)

In the complex plane, a rotation through an angle ¢y means that the original angle ¢ is to
be replaced by ¢ + ¢¢. We thus obtain

Cppe'® = ei@tov (5.18)

and therefore

Co¥e =Py, (5.19)
and, correspondingly,
Cop¥— = y_ . (5.20)

The relations (5.19) and (5.20) naturally mean that the application of the rotation' operator
leaves the functions v, and v¥_ unchanged aside from a constant factor e or e~i%.

5.2 Application to Benzene:
the w-Electron Wavefunctions by the Hiickel Method

As is known experimentally, the benzene molecule, C¢Hg, is planar: the H atoms lie in the
same plane as the C atoms, which are joined to form a hexagonal ring (cf. Fig. 5.1a). If we
look at a particular carbon atom, we find that it has a trigonal arrangement for the bonds
to the two neighbouring C atoms and the H atom which extends outside the ring. Just as
in ethene (see Sect. 4.4), we see that each carbon atom has one p, orbital, containing one
electron, left over after forming the trigonal hybrid orbitals. All such p, orbitals in the 6
different carbon atoms are energetically equivalent; an electron could, in principle, occupy
any one of these states. Let us now recall the basic approach of the LCAO method, i.e.
the method of linear combinations of atomic orbitals (cf. Sect. 4.4.4). It requires us first to
search for the wavefunction of each single electron in the field of all the atomic cores, i.e.
here in the field of all 6 carbon atoms. In principle we are dealing here with a generalisation
of the hydrogen molecule problem; however, an electron can now be spread over six atoms
instead of over two.

We suppose that all the orbitals of the carbon atoms which lie in the molecular plane, i.e.
the 1s orbitals and the hybrid orbitals made up of the 2s, 2p,, and 2 p, atomic orbitals, have
been filled with electrons of lower energies. These hybrid orbitals in benzene are referred to as
o orbitals (Fig. 5.1b). (We shall have more to say about the notation for orbitals in Chap. 13.)
Similarly to the case of ethene, some electronic wavefunctions remain: those derived from
the 2p, states; they extend outwards perpendicular to the molecular plane and are localised
on the individual carbon atoms. We can assume that the electrons which the carbon atoms
contain in these orbitals move independently of each other in the fields of the carbon atomic
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cores, including the already-occupied o orbitals. We will justify this assumption in detail
later on; for the moment, we have the task of determining the wavefunction of an electron
in a field which is symmetric with respect to rotations of 60° about an axis perpendicular to
the molecular plane. We apply the Hund-Mullikan-Bloch method just as in the case of the
hydrogen molecule: we represent the wavefunction we are seeking as a linear combination
of wavefunctions located on the carbon atoms, more precisely the 2p, wavefunctions. The
molecular orbitals which result are called 7 orbitals. In order to make use of our symmetry
considerations, we first investigate the behaviour of such a function belonging to the carbon
atom with index j. According to Fig. 5.6, we can represent this function as

¢;(r) =¢(r—R)), (5.21)

where for concreteness we will keep in mind a representation of the function (5.13). When
we carry out a rotation through an angle of 60° (see Fig. 5.7), we obtain the result

Cej(r) = ¢;(Cer) = ¢(Cer —R;) , (5.22)

where we have used the definition (5.21). As a result of the symmetry of the problem, the
vector R;, which points from the centre of the molecule towards the nucleus of carbon atom
J, can be interpreted as a rotated vector which was produced from the vector R;_; by a
rotation through 60° (Fig. 5.7):

CsRi_1 =R; . (5.23)
Then instead of (5.22), we can write

Co¢j(r) = ¢(Cer — CeR; 1) . (5.24)
Next, we can factor out the operator Cs from the parenthesis in (5.24), yielding:

Ce9j(r) = ¢[Cs(r —R;_1)] . (5.25)

Now, the z-direction is not influenced at all by a rotation about the z-axis, and furthermore
the distance r — R;_; remains unchanged by a rotation. Therefore, (5.25) is equivalent to:

Ceopj(r) =d(r—R;_1) . (5.26)

Thus, with the aid of some mathematical reformulations, we have obtained the result that a
p,-wavefunction on one carbon atom is transformed by a 60° rotation of the molecule into
the corresponding wavefunction on an adjacent carbon atom:

Copj(r) = ¢j—1(r) . 5.27)

Following these elementary preparations, we shall now see how useful symmetry consid-
erations can be in molecular physics. To this end, we consider the wavefunction ¥ (r) of
an electron which moves throughout the whole molecule in its potential field, as mentioned
above. The corresponding Schrédinger equation is given by:

Hr)y @) =Ey@, (5.28)

where the Hamiltonian H contains the kinetic energy of the electron and its potential energy
in the molecular potential field. A rotation through 60° leaves this Hamiltonian unchanged,
i.e. we obtain the relation

Fig.5.6. The p, function ¢ (r) is
transformed into ¢ (r — R;) by
a translation through the vector

R;

Ruawﬁz \
Rs“ﬁf R

Fig.5.7. On rotation through
60° (small arrows), the vectors
R; are transformed into one an-
other
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CHry=HF)=H@). (5.29)
Now, we apply the rotation operation C to both sides of (5.28), yielding:

CHnYy(r)=ECy(r). (5.30)
Using (5.29), the operation C on the left side of (5.30) acts only on the wavefunction:

Hr)Cy(r)=ECy(r). (5.31)

If we compare the left sides of (5.30) and (5.31) and remember that they remain valid for
any arbitrary wavefunction v (r), we can by subtraction obtain an operator equation:

CH-HC=0. (5.32)

The rotation operator C and the Hamiltonian H thus commute. This is another way of
expressing the fact that the Hamiltonian is invariant under the rotation C. It follows from
(5.31) that if ¥ (r) is a solution of the Schrédinger equation, then so is Cy/(r).

We now assume for the moment that only a single wavefunction belongs to the energy
E, i.e. that the energy level is not degenerate. In such a case, when two apparently different
wavefunctions belong to the same energy, then there is a contradiction unless the two wave-
functions are in fact identical aside from a multiplicative constant which we will call A; we
thus obtain the relation:

Cy@r) =ry(r). (5.33)

Mathematically, one can show that in general, a relation like (5.33) always holds under
rotation operations. This is related to the fact that for rotations, there always exists a number
M such that an M-fold application of the rotation operation transforms the wavefunction
back into itself. Formally, this means that

cM=1. (5.34)

We now use relation (5.33) to determine the coefficients of the LCAO wavefunction in a
simple way. We represent ¥ as a linear combination of the atomic wavefunctions ¢; according
to

Y(r) =cio1 + 202+ ... + cstds - (5.35)
Inserting (5.35) into (5.33), we obtain
1Ch1(r) + c2Ca(r) + ... + c6Cos(r)
= Ac191() + 22(r) + ... + codps(r)] .

However, as we have just seen, the application of a rotation to the wavefunction ¢;, produces
simply an exchange of the index j of the “base” carbon atom. Using this fact, (5.36) is
changed into

(5.36)

C1Ps(r) + c21(r) + ... + csps(r) = Alc11(r) + ... + cops ()] . (5.37)

Since here the individual wavefunctions ¢; are linearly independent of each other, (5.37) can
be valid only if the coefficients of the same functions ¢; on the left and the right sides of
the equation are equal. This leads immediately to the relations
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¢ =Acs
¢y =Acy
ey =hcy | (5.38)
Ce¢ =)\.C5 )

To solve them, we take the trial solution
¢ = Meo (5.39)

where ¢ is a normalisation constant. If we apply the rotation operation in the case of benzene
six times, the molecule is returned to its original state; from this, it follows that

=1 (5.40)
According to the calculational rules for complex numbers, (5.40) has the solution

A= k6 (5.41)
with & an integer which must be chosen according to:

k=0,1,2,...,5
or

k=0,£1,£2,43. (5.42)

We now insert the result (5.39) together with (5.41) and (5.42) into (5.35) and obtain the
explicit form which the wavefunction must take, namely:

6
¥ =coy il (5.43)
=

This is the wavefunction of the w-electrons of benzene (compare Fig. 5.1c). We have thus
succeeded in solving the Schrédinger equation without having to catry out any calculations
involving the Hamiltonian operator. Symmetry alone was sufficient to fix the coefficients
uniquely, leaving only the normalisation constant ¢, to be determined.

5.3 The Hiickel Method Once Again.
The Energy of the m-Electrons

As we know, the carbon atom has two electrons in the 1s shell (“core electrons”) and in
addition 4 electrons in the n =2 shell. These four electrons participate in bonding to other
atoms and are therefore called valence electrons. We have seen that a distinction is made in the
bonding of carbon in the benzene molecule between o - and 7 -electrons. The wavefunctions
of the o-electrons are located in the plane of the molecule, while the m-electrons, which
originate with the p, atomic orbitals, are oriented perpendicularly to the molecular plane; it
is for them a nodal plane.
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We select one of these m-electrons and assume that it moves in the combined potential
of the nuclei, the o and core electrons, and the other m-electrons. The direct interaction
of the electrons with each other is thus replaced by an effective potential. As we shall see
later, and should already know from atomic physics (cf. I), such a procedure can be justified
in the framework of the Hartree-Fock approximation. The Hamiltonian which refers to the
m-electrons is then

2

" h
Hisel = 37 [~2_mov;’; + V(ru)] : (5.44)
“w

where the sum over u runs from 1-6, enumerating the six m-electrons of the carbon atoms.
Equation (5.44) clearly contains a sum of Hamiltonians, each one of which refers to a single
electron. Therefore, the Schrodinger equation belonging to (5.44) can be solved by finding
the wavefunctions of the individual electrons as solutions to the Schrédinger equation

2
[—h—vz + V(r)] V) =Ey(). (5.45)
2m0

The potential in (5.45) can be decomposed into two parts:
V) = Va®) + V(@) (5.46)

of which one part, V,(r), is due to the nuclei and the other part, V5(r), to the o- and
m-electrons. Following the prescription of the Hund-Mullikan-Bloch method, we represent
the wavefunction of a single electron as a linear combination of atomic wavefunctions, in
this case the carbon 2p, wavefunctions, as follows:

N
Y=Y cj$;(r). (5.47)
=1

The coefficients c; are still unknown and can be determined with the aid of the variational
principle, according to which the left-hand side of
[v*Hy dV —E
[y dv

is to be minimised by a suitable choice of the coefficients. Inserting (5.47) into the numerator
of (5.48), we obtain

(5.48)

> ey / ¢rHgydV (5.49)
i I
H,

i’

where we will use the abbreviation Hj; in what follows. In the same way, we find the
denominator of (5.48):

Zc;c,-,-/¢;¢,-,dv . (5.50)
i .
S

JJ

The energy on the right-hand side of (5.48) is a function of the coefficients, so that we can
write
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E =E(ci, ¢}, 2,65, ...) . (5.51)

A necessary condition for obtaining a minimum in E is that the derivatives with respect to
the coefficients c; and ¢} vanish:

9E _JE

dcj ac;

=0. (5.52)

For computational reasons, it is more practical to multiply equation (5.48) on both sides by
the denominator and consider the resulting expression,

*
ZC;CJ'/ . Hjj/ = EZCjCj/ . Sjj, . (553)
ir i’
We now differentiate this equation with respect to the coefficients ¢}, obtaining

J' J'

We have already set the derivatives of E with respect to ¢; equal to zero in (5.54), using
(5.52). Equation (5.54) is a system of equations for the coefficients ¢; which we can write
explicitly in the form

(Hu — SuE)er + (Hi — SpE)eo+ ... +(Hivn—SiwE)en =0,
(Hy — S$51E)ey + (Hyp — SpE)ey + oo +(Han—S8E)en =0, (5.55)
(Hy1 — SmiE)e1 + (Hyy — Sv2E)ea + ... + (Hyy — SyvE)ey =0
Since this is a system of homogeneous equations, the determinant of its coefficients,
Hy — ESi Hi; —ES;;... Hixn—ESn
: : : =0, (5.56)

Hyy — ESwmi Hy; — ESy>... Hyny — ESyy

must vanish, if we wish to obtain a nontrivial solution. This is clearly not a very simple
problem, since we are already dealing with a 6 - 6 determinant.

Using symmetry considerations, however, one can solve this problem very simply! In
the previous section, we saw that the coefficients are known [compare (5.43)]. It is therefore
unnecessary to solve the determinant equation (5.56); instead, we can substitute the known
coefficients directly into the system (5.55). In this way, we can determine the energy E for
the general system (5.55) explicitly. In order to emphasise the essentials, we assume the
following simplifications:

Sip=1 8§p=0 j#J

. (5.57)
Hjj = A, H; i = H;j. =B, otherwise =0 .

These conditions are equivalent to neglecting the overlap between the wavefunctions and
considering interaction energies only within one atom and with next-neighbour atoms. We
now insert the simplifications (5.57) and the form of the coefficients ¢; [from (5.43)],
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Fig.5.8. The term diagram for
the w-electrons of benzene

Fig.5.9. The states occupied
by the m-electrons of benzene.
[Note that E(—k) = E (k)]

cj = coe?™ kIS (5.58)
into, e.g. the first line of (5.55), thus obtaining

kIS (A _ EY) 4 2Ti2K/6R | mick/Sp (5.59)
which can be immediately resolved into the form

E = A+ B(6 4720 (5.60)

All the other lines of (5.55) give the same result. Using the real representation, (5.60) can
be written as

2k
E=A+2Bcos (%) (5.61)
In this equation, & takes on the values prescribed by (5.42), i.e.
k=0,%1,£2,43. (5.62)
Taking into account the fact that the exchange integral B is negative,
B <0, (5.63)

we obtain the term diagram shown in Fig. 5.8 for the m-electrons of benzene. It can be
filled with the carbon electrons, starting from the lowest energy level and taking the Pauli
exclusion principle into account. The energies shown in Fig. 5.9 are then obtained.

k=2 ——

k=-1 -H— -H—- k=1

-H— k=0

The use of symmetry considerations brought a considerable simplification compared to
traditional theoretical methods in this case. We were able to determine the coefficients ex-
plicitly beforehand, without having to solve the system of equations (5.55). In particular, we
did not need to calculate the determinant (5.56) and find its eigenvalues explicitly, which
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otherwise would have been necessary. Furthermore, our calculation using the Hiickel method
has the advantage that we can also treat excited states according to the term diagram of Fig.
5.8, since their energies are already known from (5.60).

5.4 Slater Determinants

Let us return to the solution of the many-electron problem, for example in the case of
benzene. Here, we make use of two pieces of knowledge which we had gained previously: if
the Hamiltonian consists of a sum of operators, then — generalising the method used for the
hydrogen molecule — the wavefunction of all the electrons may be written as a product of the
wavefunctions of individual electrons. In doing this, it is important to take the spin of each
electron into account using the spin functions « (spin up) and B (spin down). In order that
the overall wavefunction be antisymmetric in the spatial and the spin coordinates as required
by the Pauli exclusion principle, we use a determinant for the ground state wavefunction,
generalising the approach given by (4.71). In this determinant, the counting index of the
electrons is the row index and the quantum number of the state occupied by the electron is
the column index. The determinant thus has the form:

virDa(l)  irDBA)  Ya@rpa(l) dar)pd). ..

Yir)a2) Yi(r)BQR). ..
w(,2,...,6) = _ e

Y1re)a(6) Yi(rs)B(6) ...

This expression is called a Slater determinant. Clearly, writing down such determinants is
tedious; they are therefore often abbreviated in the form:

w(1,2,...,6) =¥, ¥y, Y2, ¥a. .. Ws, Ul (5.65)

where the arguments of i refer to the electrons and the indices of the wavefunctions ¥ to
the individual states, and we assume that each wavefunction is occupied by two electrons
having antiparallel spins. Equation (5.65) thus yields the determinant (5.64) if we make the
following replacements

Y = Yia, %j - Y8, (5.66)

and use the convention that a bar over the wavefunction refers to an electron with its spin
down.

5.5 The Ethene Wavefunctions. Parity

As an additional example of the power of symmetry considerations, we treat the ethene
molecule (Fig. 5.10). This molecule evidently has a centre of inversion symmetry at the
midpoint of the line joining the two C atoms; i.e. if we reverse the signs of all the coordinates,
x,y,Zz becoming —x, —y, —z, then the entire molecule remains unchanged. If we subject
the wavefunction v of a single electron to this mirror operation, and again assume that the

Hw . .H
H/C—C\H

Fig. 5.10. Ethene
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Fig. 5.11. The definitions of R

Fig. 5.12. The term diagram of

wavefunctions are nondegenerate, we obtain ¥ () = A2y (r). This means that A can take on
only the values +1 or —1. We then find

Y(=r) =%y (@), (5.67)

or, as one also says, ¥ has even parity (upper sign) or odd parity (lower sign).

The wavefunctions of the individual w-electrons are taken, as in the hydrogen molecule-
ion, to be linear combinations of the 2p, wavefunctions of the two carbon atoms (cf. Fig.
5.11):

$1(r)=¢r—R), ¢@) =90r—Ry),

V() = c191(r) + c2¢2(r) . (5.68)
For the atomic wavefunctions, we have the symmetry properties

$1(=1) = —¢o(r) (5.69)
and

(1) = =1 (), (5.70)
as one can readily see by making use of the explicit representation of ¢:

¢=Nze/n (5.71)
Inserting (5.68) into (5.67) and making use of the properties (5.69) and (5.70), we obtain

c191(=1) + 282(—1) = —c1a(r) — 201 (r) = £1¢1(r) £ 202(r) . (5.72)

Comparing the coefficients of the same wavefunctions on the left and right-hand sides of
(5.72), we find the relations

1 == . (5.73)

With this relation, we can substitute in the linear equation (5.54) for the coefficients, just as
we did in the case of benzene; now, however, we have to deal with only two coefficients.
In complete analogy to the calculation for benzene, we obtain

E=A%B, (5.74)
where

B<0. (5.75)
We can see that ¢; = ¢, leads to a bonding state and ¢; = —c; to an antibonding state. The

term diagram which results is given in Fig. 5.12.
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5.6 Summary

In Chaps. 4 and 5, using concrete examples we have demonstrated some fundamental con-
cepts required for the (at least approximate) calculation of the electronic wavefunctions of
molecules, i.e. the molecular orbitals. We can summarise the basic ideas as follows:

1) The wavefunction of all the electrons of a molecule is approximated as a product or a
determinant containing the wavefunctions of the individual electrons.

2) The individual wavefunction (molecular orbital) is constructed as a linear combination
from atomic wavefunctions (LCAO method).

3) The coefficients of the LCAO wavefunctions are determined by using symmetry consid-
erations, giving a considerable reduction in the computational effort required.

Clearly, some important questions are raised by the points 1) — 3):

1) Why is it allowable to use the approximation 1)? This question leads us to the Hartree-
Fock method and its extensions, which we treat in Chap. 7.

2) and 3) How can we generalise the symmetry considerations? We take up this question in
Chap. 6, where we treat molecular symmetries in a quite general way.

In Chaps. 6 and 7, the reader will thus gain a detailed introduction to the modern electron
theory of molecules, which will allow him or her to delve into the scientific literature dealing
with this subject.



6. Symmetries and Symmetry Operations.
A Systematic Approach*

This chapter provides a systematic approach to the application of group theory for the determi-
nation of molecular wavefunctions. We treat molecular point groups, the effect of symmetry
operators on wavefunctions, and then the basic concepts of the theory of group representa-
tions. The method is demonstrated using the explicit example of the H,O molecule.

6.1 Fundamentals

In the preceding chapter, we saw how we could determine the m-electron orbitals of benzene
in an especially elegant way by making use of the rotational symmetry of the molecule.
In this chapter, we shall deal systematically with symmetries and symmetry operations,
keeping concrete examples of molecules in mind. The symmetry properties of a molecule
are characterised by the possible symmetry operations, e.g. rotations. In the course of such
a symmetry operation, every point in space is transformed into another point, keeping the
lengths of all distances constant. The object before and after the operation is indistinguishable.

As a first example, we choose the NH3 molecule, which can be described as a trigonal
pyramid (Fig. 6.1). The three hydrogen atoms are located at the vertices of the equilateral
basal triangle, and the nitrogen atom is directly above the centroid of the triangle. If the
molecule is rotated about an axis passing through the N atom and the centroid, by an angle
of 120° in the positive sense (i.e. counterclockwise as seen from above), then the H atoms
exchange their places in the following manner: H; — H;, H; — Hj, and H; — Hj (cf.
Fig. 6.2). The N atom maintains its position. The state attained after each such rotation is
indistinguishable from the original state, since the H atoms are all equivalent. In the course of
these operations, neither lengths nor angles within the molecule are changed; the operations
can therefore be considered to be symmetry operations. Analogous considerations hold for
the reflection operations sketched in Fig. 6.3. The mirror planes are perpendicular to the basal
triangle of the molecule and each one contains a bisector of the triangle. Thus, a reflection
in the o) plane exchanges the atoms H, and Hj, while H; and N remain unchanged.

Symmetry operations are not to be confused with so-called symmetry elements. In the
above example of the NH3 molecule, the symmetry operation C; tells us how to carry out a
rotation through 120°. The set of all points which do not change their spatial positions during
this symmetry operation form the symmetry element “axis of rotation”, which is likewise
denoted by Cs. In the case of the reflections in o1, 0,, and o3, the symmetry element is the
respective mirror plane. A symmetry element is defined as the set of all points on which the
symmetry operation is carried out. In the case of elementary or non-composite symmetry
operations (Table 6.1), the symmetry element is equivalent to the set of all points which

HE3) H(2)

H(1)

Fig.6.1. The NHj3; molecule.
The numbers 1, 2, and 3 are
used to denote the positions of
the hydrogen atoms

3 2
72NN [}
1 2 3 1
~_
Fig. 6.2. The effect of the sym-

metry operation Cj, i.e. a rota-
tion of 120° about a vertical axis
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Fig. 6.3. The effects of the sym-
metry operations o1, 03, and
o3, i.e. of the reflections illus-
trated

g =

remain fixed in space when the symmetry operation is carried out. If at least one point remains
invariant in the course of an operation (for higher symmetries: one line or one plane), the
operation is referred to as a point symmetry operation. An example is inversion, i, in which
the origin of the coordinate system forms the symmetry element and a coordinate vector r is
transformed into —r. Furthermore, it is useful for mathematical reasons to define the identity
E formally as a symmetry operation. In this operation, all points of a three-dimensional
object remain unchanged. In the case of polymers with a regular chain conformation or
of crystal lattices, two additional symmetry operations can occur, which depend on the
periodicity of the molecular chain or the lattice: the screw operation (translation + rotation),
and the translation-reflection operation. Table 6.1 lists first the four simple point symmetry
operations: the identity E, reflection o, rotation C, and inversion i; and then the combined
point symmetry operations: improper rotation S, translation-reflection @, and the screw
operation C,, with their corresponding symmetry elements.

We can gain an intuitive understanding of the individual symmetry operations by con-
sidering an equilateral triangle as in Figs. 6.2 through 6.4. The symmetry operations result
here in a permutation of the vertex numbers as shown in the figures. We will show with a
few examples how a concatenation of two symmetry operations produces a new symmetry
operation, which in the case of Fig. 6.4 can in fact be expressed through an operation that was
already defined. Looking at Fig. 6.4a, we first carry out the reflection o, and then the rotation
C3. The final product of this composite operation, shown on the right in the figure, could
also have been obtained by reflecting the original triangle through the symmetry element o
(Fig. 6.4b). We thus see that the relation C30, = o, holds (note that the operations on the
left-hand side of this equation are to be read from right to left!). Now, what will happen
if we reverse the order of the reflection and the rotation, i.e. first rotate and then reflect, as
shown in Fig. 6.5a? The resulting triangle could also be obtained by a reflection through the
o3 plane (Fig. 6.5b). We thus obtain the operator relation 6,C3 = o3. Comparing the result
of Fig. 6.4a with that of Fig. 6.5a, we can see that the results of a combined rotation and
reflection depend on the order in which the operations are performed.

In other words, symmetry operations do not commute, at least in the present case. Quite
generally, one can show that the product of two rotations again is equivalent to a rotation,



6.1 Fundamentals

83

Table 6.1. Elementary and composite symmetry operations with the corre-
sponding symmetry elements

Symbol

Symmetry operation

Symmetry element

E
Cn
(o2

i

Sn

al

“Identity operation”
Rotation through 27 /n
Reflection

Inversion (reflection at
an inversion centre

Rotation through 27 /n
followed by reflection
(Improper rotation)

Translation-reflection
(translation followed by
a reflection)

Screw operation
(Translation followed by
a rotation through 2 /n)

Identity
n-fold axis of rotation
Mirror plane

Centre of inversion

symmetry

n-fold axis of rotary
reflection symmetry

Translation-reflection plane

Screw axis

while the product of a reflection followed by a rotation, or a rotation followed by a reflection,
is equivalent to a reflection. Two successive reflections can be replaced by a rotation. We
can summarise these results in a group operation table, as shown in Table 6.2.

Table 6.2. The multiplication table for the symmetry group C3,. A multipli-
cation BA leads to the new elements listed in the table

Operation A

C3y E Cs C 32 o] o) 03
Operation B E E Cs C g o1 07 03
Cs Cs c2 E o3 o1 02
c? c3 E Cs 02 o3 o1
s o] lop) a3 E Cs C :%
o) o 03 s C :% E Cs
a3 a3 a1 a2 C 3 C § E

We have thus arrived at the concept of a group. A group consists of a set of elementary
operations with the following properties: concatenating two operations A and B yields a new
operation, which likewise belongs to the group, according to A B = C. The set of symmetry
operations contains an identity operation E which is defined so that EA = AE = A.
Every operation A has an inverse operation A~!, with A A~! = E. It can then be shown
that A= A = E also holds. For the operations A, B, and C, an associative law is valid:

(AB)C =A(BOC).
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Fig. 6.4. (a) Effect of the sym-
metry operation oy followed by
Cj3. (b) The same effect as in (a)
is produced by o}

Fig. 6.5. (a) The effects of the
symmetry operations C3; fol-
lowed by o7. (b) The same ef-
fect as in (a) is produced by o3

Fig.6.6. The symmetry ele-
ments of the point group Cjs,.
The molecule chloromethane
(CH3Cl) is shown as an exam-
ple

When the operations all mutually commute, i.e. A B = B A for all A and B in the group,
the group is called Abelian. Using the group table, it is easy to verify that the symmetry
operations E, Cj, Cg, 01, 02, and o3 form a group. Following a notation convention which
we will discuss in detail below, this group is called Cj,. From the symmetry operations
of a molecule which form a group, we can often choose certain operations which among
themselves fulfill the conditions for forming a group; these symmetry operations are placed
in a subgroup of the original group. The multiplication table in Table 6.2 shows that the
operations E, C3, and C? form a subgroup of C3,. In addition to NH;, another example of
a molecule with the point group Cs, is chloromethane. It is shown in Fig. 6.6, together with
the symmetry elements of the group Cj,.

6.2 Molecular Point Groups

For the classification of the molecular point groups, we use the notation introduced by
Schonflies. (Another notation, preferred by crystallographers, is that due to Hermann-
Mauguin.) In the following section, we have collected all the point groups of molecules.
We begin with molecules which allow the smallest possible number of symmetry operations
in addition to the identity operation which is a member of all point groups. We then consider
molecules with higher degrees of symmetry. Some examples are given in Fig. 6.7.
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Molecules without an axis of rotational symmetry belong to the point groups

Cli
Csl

C,‘i

This point group contains, aside from the identity E, no additional symmetry elements.
example: NHFCI.

The only symmetry element is a mirror plane. Example: NOCI (in Fig. 6.7, first row,
left).

The only symmetry element is the centre of inversion symmetry, i. Example: CIBrHC-
CHCIBr in the trans-conformation.

All the other point groups refer to molecules with axes of rotational symmetry (rotation
groups).

Cp:

Molecules with an n-fold rotational axis (n # 1) as their only symmetry element.
Examples: H,O, (C,) and Cl3C-CHj (C3). Linear molecules without a centre of in-
version symmetry belong to the rotation group C; they in addition possess an infinite
number of mirror planes which intersect in the molecular axis (Co).

Molecules which have as their only symmetry element an axis of rotational-reflection
symmetry of even order (n = 2m, beginning with m = 2). (For an example, see Fig.
6.7.) The point group S, contains only the inversion i and the identity operation E;
therefore, S, = C;.

Molecules with a rotational axis of order n > 1 (Cy; = Cs) and a (horizontal) mirror
plane perpendicular to it. (The term “horizontal” results from the convention that the
rotation axis is taken to be vertical.) The 2n symmetry operations follow from those
of the rotation group C, and its combination with the reflection oy; S, = o), C,,. If
n is an even integer, the molecule contains a centre of inversion symmetry due to
S, = i. Example: butadiene in the planar trans conformation, C»;. These molecules
are invariant under the following elementary symmetry operations: identity operation
E; rotation by 180° about an axis perpendicular to the plane of the image and passing
through the centre of gravity of the molecule; reflection in the plane perpendicular to
that axis and containing all the atoms of the molecule; and finally inversion about the
centre of gravity of the molecule, which is also a centre of inversion symmetry.
Molecules with a rotational axis and n mirror plane(s), all of which contain the ro-
tational axis. The mirror plane is “vertical”, since it contains the axis of rotation; it
is denoted as o,. In the case n > 2, the symmetry operation C, creates additional
equivalent, vertical mirror planes. The symmetry operations of the point group C,,
are the rotations about the n-fold axis of rotation and the n reflections in the mirror
planes. If n is an even integer, a distinction is made between two different types of
mirror planes: every second mirror plane is denoted as o,, while the planes between
are called o4 (for dihedral). Examples: H,CCl; (C2,), NH; (C3,). The group Cooy
contains linear molecules without a mirror plane perpendicular to the molecular axis
(for example OCS); the symmetry operations are: infinitely many rotations about this
axis, and just as many reflections in planes containing the molecular axis.

Molecules with an n-fold rotational axis (C,,n > 2) and a twofold rotational axis
perpendicular to the principal axis. An example of D3 is H3C-CHj, if the CH3 groups
are staggered relative to each other by an angle which must not be a multiple of 7 /3.

: This point group contains, in addition to the symmetry elements of the point group D,

a plane o}, perpendicular to the principal axis (i.e. horizontal). Combining the rotation
operations of the rotation group D, with the reflections ¢}, yields n improper rotations
S, (Sp = 04, Cy) and n reflections o, (0, = C,0}) in addition to the operations of D,.
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Fig. 6.7a,b. Some examples of
point groups. (a) Ist row, left:
NOCI, point group Cs; centre:
CIBrHC-CHCIBr in the trans
conformation, point group Cj;
right: HyO,, point group C,.
2nd row, left: Cl3C—-CHs, point
group Cj3; centre: point group
S4; right: butadiene in the pla-
nar trans conformation, point
group Cap. (b) Ist row, left:
H,CCl,, point group Cy,; cen-
tre: H3C—CH3, side view; right:
ditto, but viewed along the C-C
molecular axis. The CH3z groups
make an angle which is not a
multiple of 7/3; point group
Ds. 2nd row, left: HyC-CH,,
point group Dap; centre and
right: as in the 1st row centre,
but the CH3 groups make an
angle of m/3, i.e. the hydrogen
atoms of one methyl group fit in
the gaps between hydrogens of
the other group

If n is even, the n mirror planes are divided into n/2 o, planes (containing a C, axis
perpendicular to the principal axis) and n/2 o, planes (containing the angle bisectors
between two C, axes perpendicular to the principal axis). Here, when n is even, a
centre of inversion symmetry is again present, due to S; = i.

: This point group contains, in addition to the symmetry operations of the group D,, n

reflections o, in planes containing the C, axis and bisecting the angles between two
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neighbouring C, axes. The combination C,04 = 0,Ca = $2,(C2 — C,,) produces n
additional improper rotations S, (k = 1,3, ...,2n—1). This point group has a centre
of inversion symmetry when n is an odd number. An example for the point group D3y
is H;C—CHj3;, when the H atoms of the two CHj groups are offset into the gaps of the

opposing group.

We now consider molecules which have more than one symmetry axis of more than
twofold symmetry. The most important of these point groups are those which are derived
from the equilateral tetrahedron and the regular octahedron (Fig. 6.8). Their pure rotation
groups — that is the groups of operations which consist only of rotations about symmetry
axes — are denoted by T and O. The symmetry group of the regular octahedron is at the
same time that of a cube, since the latter has the same symmetry elements. In addition, a
regular octahedron can be inscribed within a cube in such a manner that the sides and the
vertices of the cube are equivalent with respect to the octahedron. O is thus the pure rotation
group of a cube. An equilateral tetrahedron can also be inscribed within a cube. The vertices
of the cube are now, however, no longer equivalent (four of the cube’s vertices are now also
vertices of the tetrahedron). The equilateral tetrahedron thus has a lower symmetry than that
of a cube; T must be a subgroup of O. Figure 6.9 shows the axes of rotation belonging to
the groups T and O.

T: The symmetry elements are the 4 threefold and the 3 twofold axes of the regular
tetrahedron, which permit 12 rotational symmetry operations. The 4 C3 axes of this
rotation group pass through the centroid and one vertex each of the tetrahedron. The
C, axes pass through the midpoints of opposite edges of the tetrahedron.

O: The 3 fourfold, the 4 threefold, and the 6 twofold rotational axes form the symmetry
elements of the rotation group of the regular octahedron and allow 24 rotational sym-
metry operations. The Cy4 axes pass through opposite vertices, the C; axes through the
centroids of opposite faces, and the C, axes through the midpoints of opposite edges
of the octahedron.

T;: The full symmetry group of the equilateral tetrahedron consists of the rotational ele-
ments of the group T as well as 6 reflections in the o4 mirror plane and 6 fourfold
axes of improper rotation, Ss. The molecules CHy, P4, CCly, and a number of complex
ions with tetrahedral symmetry belong to this point group.

Op: Adding all 9 mirror planes of the cube to the pure rotation group O, we obtain
the important group O,. Examples of this symmetry are the molecule SFg, the ion
(PtClG)z_, and numerous octahedral coordination compounds. The mirror planes 3oy
and 60, which belong to the group O, give rise to the additional symmetry operations
654, 856, and i.

6.3 The Effect of Symmetry Operations on Wavefunctions

In Sect. 5.2, we showed using the example of benzene how a rotation of the coordinate
system causes a transformation of the wavefunctions. We now want to expand on what we
learned there in two ways:

1) We generalise to the case of arbitrary symmetry operations, not just rotations.
2) The wavefunctions may refer not only to a single electron, but to several.

Fig. 6.8. Upper part: An equi-
lateral tetrahedron inscribed in
a cube; Lower part: A regular
octahedron in a cube

Fig. 6.9. Examples of the ro-
tational axes of the equilateral
tetrahedron (rotation group T)
(Upper part) and of the regular
ocathedron (rotation group O)
(Lower part)
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In order to study the effects of symmetry operations on wavefunctions, let us assume
that the set of mutually degenerate wavefunctions

UL, W, ..., ¥y 6.1

all belong to a particular energy eigenvalue of a Schrodinger equation.

We first consider just one single symmetry operation, which we denote by A. Since
the Hamiltonian is supposed to be invariant with respect to the transformation A, it must
commute with A. However, this means that not only ¥, but also A applied to ¥ is an
eigenfunction of the Schrddinger equation belonging to the same energy as the set (6.1)
[compare (5.29-32)]. Since (6.1) were supposed to be the only wavefunctions belonging to
this energy, it must necessarily be possible to represent A¥; as a linear combination of these
wavefunctions, having the form:

M
AV =) ainWy . (6.2)
m=1

The coefficients a;,, in this equation are constants, while the wavefunctions naturally depend
upon the electronic coordinates. A relation of the form (6.2) holds not only for ¥7, but also
for any wavefunction in the set (6.1), so that we obtain

M
AW =" ajnW . (6.3)
m=1

Here, the coefficients a;, depend on the one hand on the index of the wavefunction which
occurs on the left, but on the other hand also on the indices of the wavefunctions ¥, on
the right. In this sense, we can say that the effect of the operator A on ¥ corresponds to
the multiplication of the vector (6.1), which is then to be written as a column vector, by a
matrix [a;n,]:

A = [ajn] . (6.4)

The identity operation, which leaves the vector (6.1) unchanged, is denoted by E.

Let us now see what happens if we let first the operator A and then the operator B act on
¥;. We thus investigate the effect of the product BA when it is applied to the wavefunction
¥;, whereby in analogy to (6.3) we may assume that

M
BY; =) bin¥n (6.5)
m=1

holds.
We first insert the right side of (6.3) into BAY; = B(AY;), obtaining

M
BAY; = B(A¥)) =B (Za,-mwm) : (6.6)
m=1

However, since B has nothing to do with the coefficients, but rather acts only on the wave-
function ¥ which follows them, we can write for the right-hand side of (6.6):

M
Y aimB W 6.7)
m=1
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and then use (6.5):

M M
Zajm melwl . (6.8)
m=1 =1

The two summations over [ and m can be exchanged, so that we finally obtain instead of
(6.6) the following equation:

M
BAY; =" ( ajmbm,) 7 (6.9)
=1 m=1

—_—
L‘j]

M

Application of the product BA to ¥; thus yields again a linear combination of the ¥;, with
however new coefficients c;;. We can therefore associate a matrix C with the operator product
BA,

BA > [cy]=C, (6.10)

where according to (6.9), the coefficients c;; are related to the coefficients a;,, and by, through
the equation

M
=Y Gjmbm - 6.11)
m=1

This is simply the product rule for the matrices A’ = [a;], B’ = [bn] and C’ = [cj;], with
A’B’ = C'. We thus recognise the fundamental concept that the operators A, B, ... can be
represented by matrices, including the rule for matrix multiplication, but with the operator
product BA corresponding to the matrix product A’B’, that is in reversed order.

Let us now see what the inverse of A does. We first write the expression

M
ATTAY(r) = A7 (Z ajmw,,,) (6.12)
m=1

and use as a trial function for A~!¥,, on the right-hand side of (6.12) the following expres-
sion:

M

AT =) futr (6.13)

=1

Going through the following straightforward steps

M
Vi(r) =) amA7'W (6.14)

M

M= il= 1
M=

M
am ) fu¥i (6.13)
1 I=1

ajmfmlqll (616)

I=1

3
i
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we obtain
M
> apm S =813 (6.17)
m=1

or, if we collect a;,, and f,y; into matrices A’ = [a;,,] and F’ = [ f,;], we get the equivalent
matrix equation

AF =E . (6.18)
However, this means that F’ is none other than the inverse of the matrix A”:
F=A""1. (6.19)

The operator A~! is thus associated to the matrix A’~!

Let us summarise: as we saw in Sect. 6.1, the symmetry operations which we denoted
as A, B,C,... form a group. Each application of a group element A,... to the set of
wavefunctions is associated with a matrix A’, ..., which transforms the wavefunctions among
themselves. The product of two group elements corresponds to a matrix product according
to the rule

BA — A'R, (6.20)

whereby one has to take care that the order of the corresponding matrices is reversed relative
to that of the operators in the product. The inverse of the operation A, i.e. A~!, corresponds
to the inverse of the matrix A/, i.e. A’~!'. Furthermore, the identity operation E naturally
corresponds to the unit matrix E’. Finally, as we know from linear algebra, matrices obey
an associative law, e.g. (A’B’)C’ = A'(B'C’). We thus can see that all of the properties
of the original group of operations A, B, C are to be found in the corresponding matrices
A',B’,C’,.... The matrices A’, B/, C’, ... themselves form a group; this group of matrices
is referred to as a representation of the (abstract) group with the elements A, B, C, ... .

6.4 Similarity Transformations and Reduction of Matrices

We now recall a bit of knowledge which we acquired when considering rotations: we saw
that a real representation of the wavefunctions exists such that rotations transform the p-
functions into linear combinations [cf. (5.14)], and a complex representation, where rotations
simply cause the wavefunctions to be multiplied by a constant factor [cf. (5.19)]. This leads
us to the general question as to whether we cannot find a basis set of wavefunctions in
the present more complicated case which keeps the number of wavefunctions involved in a
transformation A to a minimum. This question will lead us into a few basic mathematical
considerations. As the reader will soon see, we are looking for a similarity transformation.
We consider the matrix C’, which possesses an inverse and whose indices k and j run
just through the set of indices 1, ..., M of the wavefunctions. We introduce a new set of
wavefunctions x; according to

M
Xe= Y _(C ¥ . (6.21)

Jj=1
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The inversion of (6.21) is naturally
M
W= Chx- (6.22)
k=1
We now apply the symmetry operation A to )i, leading in a simple manner to
M M M
Axe=) (C AW = (€ ) aimPn (6.23)
1=1 I=1 m=1

Now, we express ¥, on the right-hand side of (6.23) again in terms of y; according to
(6.22):

M M M
Axp = Z(C/_l)kz Zalm Zcijj . (6.24)
=1 m=1 j=1

Rearranging the sums leads to

M M M
Axk=)_ {Z(C’-‘)u Zazmcm,} X - (6.25)
=1 m=1

j=1

by i

In this equation, we have introduced the abbreviation by;, defined by:

M M
b= (C™u D amem; - (6.26)
1=1 m=1

The reader who is familiar with matrix algebra will recognise that the right-hand side of
(6.26) contains simply a product of matrices. If we collect the elements of by; into a matrix
A’, we can rewrite (6.26) in the form

A =ClA'C . 6.27)

In the language of matrix algebra, the matrix A’ is obtained from A’ by means of a similarity
transformation. The group properties remain unaffected by this transformation: if we multiply
out the individual elements in (6.27), the products from C'~!C’ just yield unity. Now from
mathematics, we know that a similarity transformation can change a matrix A’ into a simpler
form, in which only the elements along the main diagonal and nearby, in the shape of square
arrays, are nonzero; cf. Fig. 6.10. This form is called the “Jordan normal form” or “block
form”. If the powers of A’ remain finite, i.e. if A™,n — oo are all finite, then A’ can even
be diagonalised. One could be tempted to believe that we can always take the matrix A’ to
be diagonal.

Unfortunately, a difficulty arises at this point, when namely the general correspondence
A— CTIAC = A

. (6.28)
B—C™'B'C'=8

holds. Then, in the case of group elements which do not commute, it can happen that
we cannot choose C’ in such a way that all the matrices A’, B’, ... are simultaneously
diagonalised.

Fig.6.10. The typical structure
of a reduced matrix (block
form). Outside the boxes, all the
matrix elements are zero
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Now there is an important branch of mathematics dealing with the theory of group
representations, in which it is shown that a minimal representation of A’, B',... can be
obtained by applying the similarity transformation (6.28). What does such a representation
mean? It means that one can choose the basis set of the wavefunctions x; in such a way that
on application of all the symmetry operations of the group, only a certain subset of the x
are transformed into each other. In other words, the basis of the x; can be decomposed into
components. These components naturally have, in general, a much simpler behaviour under
transformations than the original ¥;. And now comes what is perhaps the most wonderful idea
to arise out of the combination of group theory with quantum mechanics: we had assumed
a certain basis set ¥; or xi in our considerations; but the transformation properties of the
xx do not depend at all any more on the concrete quantum-mechanical problem at hand, but
rather only on the underlying symmetry group.

Thus, instead of finding the wavefunctions directly as solutions to the Schrodinger equa-
tion, which can be very complicated, it will offen suffice to use group theory to determine
what transformation behaviour the basis vectors have in their representations. We can then
require this symmetry behaviour of the wavefunctions, just as we did in the case of ethene
or of benzene (see Chap. 5). In those cases, we could determine the coefficients for the
construction of ¢ from atomic wavefunctions uniquely. In the general case, this will not
always be possible, but in any event, the number of unknown coefficients can be drastically
reduced by using the group properties. The transformation behaviour of basis functions under
particular symmetry groups is tabulated in the literature. Treating this topic in detail here
would by far overreach the framework of this book; it would become an encyclopedic listing,
which would not permit any useful physical insights. For this reason, we shall treat only a
few such symmetry properties and their notation as examples.

6.5 Fundamentals of the Theory of Group Representations

6.5.1 The Concept of the Class

For later application, let us learn some fundamental concepts from the theory of group
representations. The number of elements in a group is called its order and is often denoted
by the letter 4. Thus, & = 4 for the group C;, and h = 6 for C3,. Two elements A, B of a
group are called conjugate to one another if there exists an element C such that

B=C"'AC (6.29)

holds. If we represent the group operations by matrices, then (6.29) simply denotes a similar-
ity transformation; one thus speaks of a similarity transformation also in the case of abstract
group relations such as (6.29). If we multiply (6.29) from the left by C and from the right
by C~!, we obtain

A=CBC™!, (6.30)

which means just that the conjugate relationship is reciprocal. A class is then defined as
the set of all the elements of the group which are conjugate to each other. In order to
find out which elements belong to the same class, we have to investigate the similarity
transformations. Taking as an example the group Cj,, we first choose the element E and go
through all the transformations C, obtaining
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E'EE=E, 6.31)
CIEC, = E, (6.32)

and corresponding relations, in each of which E appears on the right-hand side, since E
multiplied by any element of the group yields that same element. It follows from these
relations that E is in a class by itself. Taking as a second example o,,, we look for elements
in the same class as o,. We take

E~Yo,E) =0, , (6.33)

which follows immediately from the properties of E. In order to verify the next example in
the equation

C;lo,C3 = Cylo) = Clo) =0, (6.34)

we look at the group table of the group Cj, (Table 6.2) and immediately obtain the result in
the left-hand side of the equations (6.34). Since C33 = E, where we can write the left side
as C3C3, we find C; = C2. Finally, we look again at the group table, and can verify the
last equation in (6.34). In a similar manner, we obtain the results

€ oCH =0, (6.35)
av_l(avav) =0y, (6.36)
o/ o0 =al, (6.37)
o/ o0l =al . (6.38)

Clearly, the elements o,, 0, and o, belong to the same class. If we begin with o, instead
of 0,, we can arrive at o, by inverting C3 and from there to the other class member o,
One can easily convince oneself that such operations never lead outside the class itself. In
a similar way, we can show that C3 and CZ belong to a class. The order of this class is the
number of its elements; the class containing o0y, o, and o, thus has the order 3, while the
order of the class to which C5; and C32 belong is 2.

6.5.2 The Character of a Representation

A central tool in the theory of group representations is the “character”. As we have seen,
each element of a group can be associated with a matrix. The term character denotes the
trace, or in other words the sum of the diagonal elements, of this matrix.

For the matrix

an  an
Al=lay an -1, (6.39)
e Y akk
we thus have

k
Character of A’ = Trace(A') = Za;, ) (6.40)
=1

Let us see how the character of a representation, which initially may very well be reducible,
can be determined. We take as an example the N,H, molecule, whose geometric structure is
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/H
N=N
H/

Fig. 6.11. N,H;

Fig. 6.12. The effect of the sym-
metry operations o, C3, and i on
the NoH; molecule. The arrows
marked ‘u’ and ‘d’ refer to ‘up’
and ‘down’

Table 6.3. Group multiplication
table

Cop E C, o i

E E C, o i

C, C, E i o
o fog i E C;
i i o C, E

H
N N/,

/bR

Fig.6.13. The distances AR
and AR; in NoH,

shown in Fig. 6.11. One can readily convince oneself that the symmetry operations of the
group C,;, leave this molecule invariant. These are the following operations (cf. Fig. 6.12):
the identity operation E, rotation by 180° about an axis which is perpendicular to the plane
of the figure and passes through the centre of gravity of the molecule, reflection in a plane
perpendicular to this axis and containing the atoms of the molecule, and finally inversion
through the centre of gravity, which is simultaneously a centre of inversion symmetry. The
group table is given in Table 6.3.

We now seek a particular representation by considering the lengths of the N-H bonds
in the various positions of the molecule, denoting them as AR, and AR, (compare Fig.
6.13). This example also makes it clear that the objects which are operated upon by the
symmetry operations may be not only wavefunctions [cf. (6.1)], but also geometric forms.
The identity operation E changes nothing in the molecule, so that we immediately obtain
the representation

E ARy _(1 0 AR,
AR ) T \0 1 AR, | -
On rotation about an axis perpendicular to the plane of the figure through the midpoint of
the N-N bond, AR is transformed to AR; and AR, to AR;. We thus obtain

o (AR _ (0 1 AR,
VAR, ) T \1 0 AR, | -

The molecule is invariant under a reflection in a plane which is identical to the plane of Fig.
6.13. For this operation, we find

(6.41)

(6.42)

AR\ _ (1 0\ (AR
a,,<AR2)_(O 1) (ARZ) | (6.43)
Finally we find for the inversion:
(AR _ (0 1 ARy
l(ARl) = (1 o) (ARz) ' (6.44)
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The matrices which occur in (6.41-44) are those special ones which we were seeking, for
which we can immediately give the sum of the diagonal elements as the respective characters.
We thus arrive at Table 6.4.

As we shall show later, the representation given by the matrices in Table 6.4 is reducible.
Mathematically, it is possible to find the irreducible representations systematically and to de-
scribe them in character tables. It is found that not only one set of matrices can represent
a given group of symmetry operations, but rather that the representation can be realised in
various ways, i.e. using various sets of matrices. These different possibilities for represen-
tations are formally distinguished by using indexed Greek letters, e.g. I, I3, etc. We thus
obtain the following character table (Table 6.5):

Table 6.5. Character table for Cyp,

Cop E Cy oy i
Prelim. Name

n 1 1 1 1
Ip) 1 -1 -1 1
I3 1 1 -1 -1
I 1 -1 1 -1

In the upper left-hand corner of this table is the symbol for the symmetry group, in the
present case C,;. To the right in the same row are the symbols for the group operations,
1.e. the identity operation E, rotation about a twofold symmetry axis C,, reflection in a
horizontal plane o}, and inversion i. The next row contains the characters belonging to the
representation I'; and corresponding to the respective group elements. The following rows
contain the characters for the representations I3, .. ..

Now, how large is the number of irreducible representations of a group? It is, as can
be proven mathematically, equal to the number of classes in the group. If we choose a
particular irreducible representation, then the character of all the operations is the same
within the same class. This can be readily understood, since the elements within a class
differ only by similarity transformations from one another; however, the trace of a matrix
is unchanged by a similarity transformation, i.e. the characters remain the same. As can be
shown for the group C,;, each of the 4 elements forms a class by itself; there are thus 4
classes, each of which contains a single element.

Table 6.6. Character table for C3, Table 6.7. Character table for C3,

Cyw E C3 €} o, o o Ciy E 2C3 3oy
n 1 1 1 1 1 1 n 1 1 1
n 1 1 1 -1 -1 - n 1 1 -1
2 -1 -1 0 0 0 r3 2 -1 0

Let us consider a further example, the character table for the point group Cs,. It is given
in Table 6.6. As we saw above, C; and C32 form a class by themselves, and likewise o, o/,
and ¢”,,. This naturally means, considering what was said above about characters and classes,
that the characters of C§ for all representations I, I, I3 are the same as those of C3, as we

95
Table 6.4
Cop Character
e ()
@ =) o
0 =)

. 0 1

i =(] ) ©

At the left in the first column are
the symmetry operations, fol-
lowed by their matrix represen-
tations; in the second column,
the corresponding characters are
listed
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can see from the character Table 6.6. The same is true of 0,, 0, and ¢”,,. For this reason,
Table 6.6 contains redundant information; it can be condensed into the more compact form
of Table 6.7.

In this latter table, the numbers 2 and 3 in front of C; and o, indicate how many
operations there are in the respective class. We note that E and i are always each in a class
by themselves.

At this point, we need an additional concept, the dimension of an irreducible representa-
tion. This is the dimensionality of the matrices in the representation. Since the character of
E is just the number of elements in the main diagonal and thus is equal to the dimension
of the corresponding irreducible representation, we can see that the character of E gives the
dimension of the representation. In the literature, following a convention introduced by Mul-
likan, somewhat different character tables are often used, as shown in the following example
(Table 6.8) for the group Cs,.

Table 6.8. Complete character table for C3,

Cyy E 2C; 30, Operation

A1 1 1 z x? +y?%, 72
A1 1 -1 R,
E 2 -1 0 (x,y)(Re,Ry) (x2 =y xy)(xz, y2)

The first row begins with C3,, and all of the group operations are familiar, as is the
block of characters which is listed below them; what is new is the notation A, A;, E for
the irreducible representations. The E which appears here as a symbol for an irreducible
representation is not to be confused with the E which occurs in the first row and denotes
a symmetry operation of the group. The letters A and E denote a particular behaviour with
respect to symmetry, which we will discuss below. The fifth column, containing z, R,
indicates which coordinates [here (z) or (R;)] exhibit the particular symmetry behaviour
denoted by the A, ... beginning the same row. It is thus made clear that, for example, the z
coordinate in a Cartesian coordinate system is invariant with respect to the operations of Aj,
i.e. the matrix of the transformation reduces to a 1, which is then identical to the character of
the representation of the particular symmetry operation. In the last row, x and y thus serve
as a basis. Finally, in the last column of Table 6.8, those basis elements are given which can
be formed from the squares or from quadratic or bilinear expressions using x, y and z.

6.5.3 The Notation for Irreducible Representations

Let us now explain the reason for the change of notation from I" to A, Aj, etc. The purpose
of this change is to show by means of the symbol for a particular representation whether it
is one- or multidimensional and which special symmetry properties it has. The letters A and
B refer to one-dimensional irreducible representations, with A reserved for representations
which are symmetric with respect to rotations about the principal axis and B for those
which are antisymmetric. The character of the symmetric representation is +1 and that of the
antisymmetric representation is —1. The letters E and T denote two- or three- dimensional
representations. The indices g and u are added to A or B when the representation is even
(g) or odd (u) with respect to inversion. A prime or double prime is added to the symbol
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to denote symmetric or antisymmetric behaviour with respect to reflection in the horizontal
mirror plane. The indices 1 and 2 are added to A or B when the corresponding representation
is symmetric (1) or antisymmetric (2) with respect to the C axis, with the C, axis being
perpendicular to the principal axis, or, if C, is not present, to a vertical mirror plane. The
indices 1 and 2 on E and F are complicated and will not be discussed here. This notation
is summarised in Table 6.9.

Table 6.9. Notation for irreducible representations

Dimension of the  Characters under the operation Symbols
representation
E C, i on C; or oy
1 1 A
1 - B
2 2 E
3 3 T
1 Ag By E; T,y
-1 AyBLEW T,
A'B
_1 A// B//
A1 By
-1 Aj By

* Cy-axis perpendicular to the principal axis

In order to give the reader an example of the use of this new notation A, etc., we give
here the character table for the group Cy;, (Table 6.10):

Table 6.10. Character table for Cyy,

Con E Cy i oy,

Ag 11 1 1 R x2, ¥, 22, xy
Bg 1 -1 1 =1  R«(Ry xz,yz2

Ay 1 1 -1 -1 z

By 1 -1 -1 1 x,y

6.5.4 The Reduction of a Representation

An important question is naturally that of how we can reduce or decompose a representation
and how we know which irreducible representations are contained in it. The characters help
us to answer this question. If, for example, we consider the matrix A shown in Fig. 6.10, we
can on the one hand find its character by taking the sum of its diagonal elements. On the other
hand, this matrix contains the matrices of the individual irreducible representations, which
have their own group characters, and we can see at once that the character of the reducible
representation must be equal to the sum of the characters of the irreducible representations
which it contains. This is naturally true of each element in the group to which the matrices
correspond.
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Table 6.11. Decomposition of
the characters of a reducible
representation

E G i op

Ag 1 1 11
B, 1 -1 -1 1
Sum

Ag+By 2 0 0 2

A(R)
A(R)
B(R)

Fig. 6.14. An example of the re-
duction of a matrix with two ir-
reducible representations

Let us consider the characters which occur in the example of the symmetry operations
relating to the lengths AR;, AR; in the N;H; molecule. These characters, according to Table
6.4, are given by 2,0,0, and 2. The question is now: How can we relate these characters to
those of the irreducible representations which are given in Table 6.5? This means that for
each group operation, E, C,, i, and oy, a suitable sum of the characters of the representations
must be found. We thus arrive at Table 6.11, i.e. precisely the desired combination (2,0,0,2).

As is shown by group theory, and as we shall demonstrate in the following, the de-
composition is unique. In addition to finding by trial and error which combinations of the
individual irreducible representations lead to the given reducible representation, one can also
proceed systematically. As we just pointed out, the character of the reducible representations
for each group element is equal to the sum of the characters of the irreducible representations
contained in them. This can be expressed by the following formula:

X(R) = Zn,-x,-ue) . (6.45)

Here, x is the character of the in general reducible representation which corresponds to the
group operation R, where R can be any one of the symmetry operations. On the right-hand
side, a sum is taken over the various irreducible representations which are distinguished
by an index i, whereby n; is the number of equivalent irreducible representations, i.e. the
number of equivalent blocks in the matrix (see Fig. 6.14).

Equation (6.45) has a certain formal similarity to relations from quantum mechanics,
where for example an arbitrary wavefunction ¥ can be decomposed into a linear combination
of wavefunctions ;. In fact, an orthogonality relation of the form

1
- ; X (R)Xi(R) = & (6.46)

holds here also; the sum is to be carried out over all of the symmetry operations R. To
be sure, we cannot derive relation (6.46) here. In complete analogy to quantum mechanics,
employing (6.45) and (6.46), we can however show how often an irreducible representation
i is contained in the reducible representation. To this end, we multiply (6.45) by x; and sum
over the individual group elements. We thus obtain:

1
n= XRj Xi(R)x(R) . (6.47)

We saw above that the characters of the irreducible representations are the same when
they refer to the different elements of a group belonging to the same class. For this reason,
it is sufficient to sum over only those elements which belong to different classes, taking into
account how many elements are in each class. We thus arrive at the formula

1
n= ; Nx(R)xi(R) . (6.48)

Here, the summation is to be carried out over the classes. The meaning of the various
quantities in (6.48) is summarised in Table 6.12.

We again consider as an example the group C,, (Table 6.10) and look at the representation
I;, which has the characters 2,0,0,2. The order of the group is & = 4. Applying formula
(6.48), we obtain the following relations:
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na,=31-2-1+1-0-141-0-1+1-2.-1)=1 (6.49)
E o) i on
and
nt=%{1'2'1+1'0'(—1)+1'0-1+[1'2'(—1)]}=0, (6.50)
as can readily be seen. In a corresponding manner, we find
na, =0 6.51)
ng,=1. (6.52)

We thus obtain the result that the representation I can be decomposed into the representa-
tions A, and B,. We can take an additional important step: our goal is, finally, to construct
electronic wavefunctions (or molecular vibrational functions) which correspond to irreducible
representations. These then give the minimal set of functions which are mutually degenerate,
i.e. which belong to the same energy.

Table 6.12. The meaning of the quantities occurring in (6.48)

n;: Number of times that the i-th irreducible repre-
sentation occurs in the reducible representation

h Order of the group

0: Class of the group

N Number of operations in the class Q

R: Group operation

x(R): Character of R in the reducible representation
xi (R): Character of R in the irreducible representation

6.6 Summary

The method which we have applied in this chapter can be summarised as follows:

Many molecules exhibit symmetries. Under a symmetry operation, the molecule is left
unchanged. The symmetry operations form a group, in which the product of two operations
is given by the group table. If the symmetry operations are applied to a set of mutually
degenerate wavefunctions, these functions undergo a linear transformation among themselves.
The transformation coefficients form a matrix, and the group of the symmetry operations can
be represented by matrices. By a suitable choice of the basis of the wavefunctions, the
matrices can be brought into a simple (block) form: this corresponds to decomposing the
representation into its irreducible representations. The characters (traces of each matrix) are
a valuable aid to finding the irreducible representations.

If we wish to apply this method to the exact (or more often, approximate) electronic
wavefunctions for a particular molecule, the following essentials are sufficient: we need
calculate only those wavefunctions which belong to a particular irreducible representation of
the symmetry group of the molecule under consideration. Then, ¢.g. in the LCAO method, we
can determine exactly the unknown coefficients or at least reduce their number drastically.
We shall demonstrate this using the example of the H,O molecule.
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6.7 An Example: The H,O Molecule

In this section, we want to derive the one-electron wavefunctions of the H;O molecule. We
use the molecular orbital method, where the orbitals v are represented as linear combinations
of atomic wavefunctions ¢;:

v=>"c;. (6.53)
7

The coefficients c; are to be determined with the aid of the variational method which we
have already used in Sect. 5.3; we remind the reader of the formula

[v*HydV g
—f rudv Min! . (6.54)

If we insert (6.53) into (6.54) and assume the atomic orbitals to be practically orthogonal to
each other, we obtain a result with which we are already familiar:

D (Hij — Eadij) ¥ =0. (6.55)
J

As we know, this is a set of homogeneous linear equations, which has a nontrivial solution
only when the determinant of the coefficients is zero. This condition fixes a set of eigenvalues
which are identical to the energy values E, as well as the corresponding wavefunctions.

We now make use of the basic ideas of Sect. 5.2, where we saw that the coefficients c;
could be entirely or partially determined by using group-theoretical considerations, without
the need to solve the generally complicated equations (6.55). As a concrete example, we
consider the water molecule, H,O. Our goal is to determine the molecular orbitals v in such
a way that they correspond to the irreducible representations of the symmetry operations of
the molecule, in this case H,O. To this end, we undertake the following steps:

1) We determine the symmetry group of the molecule.

2) We choose the atomic orbitals from which the molecular orbitals are to be constructed
according to (6.53).

3) The atomic orbitals are used as a basis set, from which a representation of the symmetry
group is generated. The details of this process will become clear in the following.

4) The representation obtained in step 3) is then decomposed into its irreducible represen-
tations. We thus obtain the possible linear combinations of atomic orbitals which can be
used to form the molecular orbitals.

The H,O molecule is shown in Fig. 6.15, which also indicates its various symmetry
elements. The molecule clearly may be placed into a Cartesian coordinate system in such
a way that the H atoms lie in the plane spanned by the x- and z-axes. The xz-plane is a
symmetry plane (mirror plane), on which the reflection symmetry operation o, can be carried
out. The yz-plane, perpendicular to the xz-plane, is likewise a plane of symmetry on which
the operation denoted by o, is performed. An additional symmetry element is the z-axis,
around which a twofold rotation, transforming the H atoms into one another, can be carried
out. All together, these symmetry operations yield the symmetry group Cy,. Its multiplication
table is given as Table 6.13.
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The following properties can readily be derived from this multiplication table: the group
is a commutative group (Abelian group), i.e. each pair of elements A and B obeys a mul-
tiplication rule AB = BA. From this property it follows immediately that each element is
in a class by itself, and since there are 4 elements, there must be 4 classes. These 4 classes
correspond to 4 irreducible representations which are all inequivalent. It can then be seen
that each irreducible representation is one dimensional. The corresponding character table,
which can be derived using mathematical methods, is shown by Table 6.14.

Table 6.13. Group multiplication ta-
ble for Cy, Table 6.14. Character table for C5,

Coy E C; oy o Cyn E C oy o!

E E ¢ o o A 1 1 1 1z x2,y2, 2
Cy C; E o) oy Ay 1 1 -1 -1 R, xy
oy oy o, E C, By 1 -1 1 -1 xRy xz
o, o, oy C E B, 1 -1 -1 1 y,Re ¥z

We now have to consider which atomic orbitals we will choose as a basis. Since the
hydrogen atoms are in their ground states before forming chemical bonds to the oxygen, and
since it requires a considerable excitation energy to raise them to the first excited state with
principal quantum number n = 2, it seems reasonable to use 1s orbitals for the wavefunctions
which are contributed by the hydrogen atoms. In the case of the oxygen atom, the 1s functions
form a closed shell, which practically does not participate in bond formation. For this reason,
we use the wavefunctions of the next shell; these are the 25 and 2p orbitals. We then have
the following wavefunctions as a basis set of atomic orbitals ¢;: s1, 52, 25, 2p,, 2 Py, and 2p,
(compare Fig. 6.16). (More precisely, we should write here e.g. ¢, instead of s, etc.) We
now wish to decompose the matrices of the representation according to the basis set of these
five wavefunctions. As the calculation shows, however, it suffices to consider separately the
wavefunctions s; and s,, which come from the two hydrogen atoms, and those which come
from the oxygen atom, i.e. 25, 2p,, 2p,, and 2p,. It may thus be shown that the matrices of
the representation can be decomposed into blocks corresponding to H and O (cf. Fig. 6.17).

Let us look at the behaviour of the wavefunctions of the hydrogen atoms more closely.
They form a basis s, 5. These functions, as we have already seen in the case of the hydrogen

Fig. 6.15. H,O with its symme-
try elements
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Fig. 6.16. Basis wavefunctions
for HyO (schematic drawing).
Upper row: the ls functions
from the two hydrogen atoms 1
and 2; middle and lower rows:
the 2s and 2p functions of the
oxygen atom

Fig. 6.17. Matrix representation
for the basis set (6.16). The
functions belonging to H and to
O are each transformed among
themselves

Table 6.15. The characters of
the representation given in (6.56)

Cy E C o, o,
2HIs) 2 0 0 2

molecule, are localised near the protons and otherwise correspond to the s functions of
hydrogen (compare Sect. 4.3). We can examine just how these functions transform under the
symmetry operations. For example, the operation E transforms s; and s, into themselves.
On reflection in the o, plane, in contrast, the two hydrogen atoms exchange places and
thus the two wavefunctions s, and s, are transformed into one another. If we apply similar
considerations to all the other symmetry operations, we readily obtain the relations

E()=09) ) e()=(V) ()
w(3)=(To) () = ()= (%)

from which the matrices of the reducible representation can be read off. Taking the traces of
these matrices, we obtain the characters, which are collected in Table 6.15.

As in the previous section, we decompose the reducible representation that occurs in
(6.56) into irreducible representations; this can be done in two ways: one is to use the
formula (6.47) with which we met previously,

(6.56)

1
n = E;x(k)x,-(k); (6.57)

and the other is by means of direct comparison with the character table. We shall leave
both methods as an exercise to the reader, since the procedure was covered in detail in the
previous section, and simply give the results in Table 6.16.
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It thus becomes clear that the reducible representation in (6.56) decomposes into the
irreducible representations Ay and B;.

We must now deal with the problem of how to transform the set of matrices belonging
to a reducible representation explicitly into the set of matrices belonging to the irreducible
representation. We recall that in Sect. 6.4 we found that a matrix could be transformed
into block form by carrying out a similarity transformation. This, however, means simply
transforming to a new basis. The transformation from the basis of the reducible representation
to the basis of the irreducible representation is naturally a complicated problem in the general
case; fortunately there exists a procedure for generating an irreducible representation from a
given basis. For this purpose, a so-called projection operator P; is used. Intuitively speaking,
this operator projects the basis of the reducible representation onto a basis of the irreducible
representation. The derivation of the following formula goes beyond the framework of this
book; we therefore simply state it and show how it can be applied by giving an example.
The formula is:

P = % D> xi(RHR. (6.58)
R

51

Here, P; is the projection operator, which projects the original basis, in the present

case, onto a new basis belonging to the irreducible representation denoted by the index i.
How this “works” we shall see directly. The symbol 4 again denotes the order of the group, R
are the group operations, x; is the character belonging to the i-th representation of the group
operation R~!, and R is the (in general reducible) representation matrix which corresponds
to the group operation R. Let us first consider the irreducible representation A;; the index
i in (6.58) thus refers to “representation A;”. For R we insert the operations E, Cs, o, and
o,, we use the characters given in Table 6.14, and we denote the matrices belonging to
E,C5, 0y, and 0, as E, C,, Gy, and 6, respectively; then we obtain

Py=11-E+1.C+1:6,+1-6.). (6.59)

If we now put the matrices given in (6.56) into this expression, we find

N 10 01 0 1 10
1%—2[L<01)+L(10)+L<10>+L<01)], 6.60)

ie.
1/1 1
PA1—§<1 1) . 6.61)
In a similar manner, for the irreducible representation B, we obtain the result
PR | PP DS N B
&=Zp_q_%+d=5 1) (6.62)

What do the results (6.61) or (6.62) mean in terms of the basis? To answer this question, we

apply P,, to the original basis (::] ); this yields the result:
2

S1 _l 1 1 S1 _1 s1+ 52
Pa (Sz)_2<1 1) (Sz)_2 si+s2/) (6.63)

Table 6.16. The characters of
A1 and B and their sums,
which yield the characters of
2H(1s)

sz E C2 Oy 0;
Ay 1 1 1
By 1 -1 -1 1
2H(ls)= 2 0 2
Al + B,
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No matter which wavefunction we start with, i.e. with s; or with s,, we always obtain the
projection onto a certain linear combination, namely s; + s,. If, on the other hand, we apply
Pg,, then the plus sign in (6.63) becomes a minus sign:

51 _l 1 -1 S1 __l S1 — 8
e ()2 (0 ) ()= () 650

From this we can see that the basis wavefunctions for the irreducible representations A; and
B, are given by

1
Ar: Y= 5(51 +5),
(6.65)

1
By: Y= E(sl —52) .

One can, in addition, show that the projection operators belonging to A, or Bj yield zero,
1.e. (6.65) are in fact the basis functions for the irreducible representations belonging to the
group C;, which are generated by the basis functions s; and s;. The result (6.65) should
naturally not be at all new or surprising to us: recalling the hydrogen molecule-ion, for which
quite similar symmetry considerations hold, we remember that there, too, we found these
two wavefunctions, the symmetric and the antisymmetric function. However, there it was
accomplished without using group theory, but rather by solving directly the equations for
the coefficients.

We now turn to the somewhat more complicated case of the basis wavefunctions for the
oxygen atom. Here, as we remember, the basis consists of the functions 2s,2p,, 2p,, and
2p,. We thus initially have a 4-dimensional reducible representation. Let us consider the
effect of the symmetry operations individually; we again assume that the oxygen atom is
located at the origin of a Cartesian coordinate system. Application of the identity operation
E naturally yields the unit matrix. Considering the application of a rotation by 180° about
the z-axis, we must take into account the fact that such a rotation changes the signs of
the functions p, and p,, while the s function and the p, function are left unchanged. A
reflection through the o, plane changes the sign of the p, function, but leaves all the other
wavefunctions unchanged. Using these facts, we can immediately write down the matrices
of the representation. We summarise them in the formulas (6.66):

2s 1000 2s
E 2pe | _ 0100 2py
2py | T 0010 2py )’
2p, 0001 2p,
2s 1 0 00 2s
G 2py _ 0—-1 00 2px
2py 0 0-10 2py |’
2p, 0 0 01 2p, 6.66
2s 1 000 2s (6.66)
o 2p, | 0—-100 2px
v 2py | 0 010 2py |
2p, 0 001 2p,
2s 10 00 2s
o 2py _ 01 00 2px
v 2p, 00-10 2p,
2p, 00 01 2p,
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It is now an easy matter to set up the character table for the reducible representations
given in (6.66) and, e.g. by trial and error, to find the irreducible representations contained in
this reducible representation. Or we can use (6.57) as we did before, which can again be left
as an exercise to the reader. The result is found to be the decomposition of the representation
(6.66) into the representations 24 + B; + B,. Application of the projection operator (6.58)
allows us to find the basis which belongs to each irreducible representation. We thus obtain
the following schematic result:

A :2s,2p,,
Az L,
By:2p,,
B, :2p, .

(6.67)

The empty space following A, indicates that there is no wavefunction which can be con-
structed from the original basis and which transforms according to the symmetry operations
in the representation A;.

Let us summarise our results concerning the new basis functions of the molecular orbitals
using both the hydrogen and the oxygen wavefunctions; these are set out in Table 6.17.

From the original 6 atomic orbitals, a basis of 6 new molecular orbitals has been con-
structed.

What can we now expect from group theory, and what are its limitations? In Table 6.17,
we have collected wavefunctions which have the same symmetry properties. Thus in the case
of the irreducible representation By, only the wavefunction belonging to the state 2 p, has the
corresponding symmetry properties (Fig. 6.18). In the case of the irreducible representation
B,, the two wavefunctions 2p, and v, have, in contrast, the same symmetry behaviour (Fig.
6.19). The advantage is now found in the fact that in choosing the wavefunctions which are to
be used as basis functions in formula (6.53), we need consider only those functions belonging
to the same irreducible representation. For example, for B; the entire molecular orbital ¥

Table 6.17. The basis functions
for the irreducible representa-
tions

O Orbitals H Orbitals
A1 2s,2p, Y1 = 3(s1 +52)

By 2py
By 2px Y2 = (51 — 52)

Fig.6.18. The 2p, function of
oxygen, which belongs to the
representation Bj

Fig. 6.19. The function 2p, of
the oxygen atom which belongs
to the representation B, forms
a bonding state together with
the > function of the hydro-
gens. (For the antibonding state
cf. Fig. 6.21)
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Fig. 6.20. The atomic functions
of oxygen which belong to the
representation A; (above) and
those of the hydrogen atoms
(below left) yield the wavefunc-
tion shown at the lower right as
a bonding function. The func-
tion 2p, does not play a ma-
jor role here. (For the anti-
bonding state cf. Fig. 6.21. The
2p, wavefunction, which has no
great influence, is not shown
there)

is reduced to the wavefunction which comes from the oxygen 2p, state, i.e. ¥ = ¢y, .
This is quite clearly a non-bonding orbital. For the representation B,, we must however
use a linear combination of the wavefunctions 2p, and v, i.e. ¥ = c1(2py) + c295. If
we insert this wavefunction into the extremal condition (6.54), we obtain two equations for
the unknown coefficients ¢; and c,. Setting the determinant of the coefficients equal to zero
then yields two energy eigenvalues. Here, one state is bonding and the other is antibonding.
For the irreducible representation A,, we have no basis functions, while for A; there are
three wavefunctions which are to be used (Fig. 6.20). The wavefunction for the molecular
orbital then takes on the form ¢ = ¢;(2s) + c2(2py) + c3y¥;. In this case, there are three
wavefunctions with three energy eigenvalues which are obtained from the solution of the
secular equation. The result is shown in Fig. 6.20 for the bonding state.

A schematic overview of the wavefunctions obtained for H,O is given in Fig. 6.21.
A qualitative energy term diagram, as found from the solution of the secular determinant,
is reproduced in Fig. 6.22. We begin with the lowest energy values: there are clearly two
bonding orbitals (symmetry A;, B, which are occupied by four electrons in total. Then (in the
centre of the diagram) there are two nonbonding states (of symmetry A; and B;) which are
likewise occupied by four electrons; these come from the 2p, and 2p, orbitals of the oxygen
atom. Finally, there are the antibonding states (symmetry B, A;) which remain unoccupied.-
We leave it as an exercise to the reader to find the wavefunctions of the ammonia molecule
in a similar manner.
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Fig.6.21. An overview of the
H;0 wavefunctions found in
this section. Their arrangement
here corresponds to the energy-
level diagram Fig. 6.22

Fig. 6.22. The energy term scheme
of H,O



7. The Multi-Electron Problem
in Molecular Physics and Quantum Chemistry

In this chapter, we shall meet up with some approaches to treating the multi- or many-
electron problem in molecular physics and quantum chemistry. Among them are the Slater
determinant approach and the Hartree-Fock equations to which it leads, which we will discuss
for both closed and open electronic shells. An important concept is the correlation energy
between electrons, and we will introduce several general methods for dealing with it.

7.1 Overview and Formulation of the Problem

7.1.1 The Hamiltonian and the Schréodinger Equation

In the following sections, we continue what was begun in Chaps. 4 and 5, where we already
introduced some important methods using simple molecules as examples. Here, we deal
with approaches to finding the electronic wavefunctions of molecules in general, including
complex molecules. In the general case, N electrons with the coordinates r;, j =1,..., N
move in the Coulomb field of the M nuclei with coordinates Rx, K = 1, ..., M and nuclear
charge numbers Zg, and are also coupled to each other via the Coulomb interactions. The
nuclei are taken to be fixed at their equilibrium positions Rg, which they possess in the
molecule under consideration. For an electron with the coordinate r;, we thus find an overall
potential given by:

Vi) =Y Vk@), (7.1)
K

where the individual contributions consist of the Coulomb interaction energies between the
electron j and the nucleus K:

ZK€2

Vg (rj) = (7.2)

T ameolRx — 1|
The Hamiltonian for the electron with index j then contains the operators for the kinetic
energy and the potential energy, i.e. it is given by:

. h
Hr)=H()=—5—VI+ V(). (7.3)
2m0
(In a more exact treatment, the spin-orbit interaction would also have to be taken into account,
but we shall neglect it here.) Between the electron with index j and an electron with index
[ there is in addition a Coulomb interaction, whose potential energy is given by:
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&
Wj=—-—-. (7.4)
4meglr; —r|
The interaction energy of all the electrons may then be written as:
1 &
Hp=-) ———— . (7.5)
=9 ; dmeylr; —r|

The factor 1/2 guarantees that the Coulomb interactions between each pair of electrons are
not counted twice in the sum, since the indices j and / run over all electrons independently
of one another, the only limitation being that an electron does not interact with itself, i.e.
J#L

After these preparatory definitions, we are ready to write down the Hamiltonian of the
overall system; it has the form:

H =

N
H(j)+ Hin - (7.6)

Jj=1

The Schrdodinger equation is then
H‘I’("},...,"N)=EW(I‘1,...,"N), (77)

where the wavefunction ¥ depends on all the electronic coordinates. Although the Hamilto-
nian H does not explicitly contain the electron spins, it is still important that the wavefunc-
tion ¥ also be a function of the spin coordinates, so that we can take the Pauli exclusion
principle into account in a suitable manner, as we have already seen in Sect. 4.4. While
it is in fact possible to solve the one-electron Schrddinger equation corresponding to the
Hamiltonian (7.3) by using suitable approximations or numerical methods, the solution of
the many-electron problem described by (7.6) and (7.7) presents considerable difficulties,
since the electrons interact with each other. Even when there are only two electrons moving
in a predetermined potential field (7.1), the problem cannot be solved exactly. We must
therefore search for suitable approximate approaches; this process can be aided by applying
our physical intuition.

7.1.2 Slater Determinants and Energy Expectation Values

One such approximate method can be found in the form of the Slater determinant, which we
have already introduced in Sect. 4.4. Each individual electron is described by a wavefunction
Y; these are distinguished by their quantum numbers, denoted as g. In addition, an electron
can be in either a spin-up state « or in a spin-down state 8. The electron with index j thus
can occupy states of the type

Ya(ra()) (7.8)
or
Yo (rj)BQ) . (7.9)

For the following considerations, it is expedient to introduce a uniform notation for the
wavefunctions with spin up or with spin down. We call them s,, and adopt the convention:
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S = (7.10)
s-ip=4.
The index m = 1/2 clearly refers to spin up and the index m = —1/2 to spin down electrons.
We can now combine (7.8) and (7.9) into the form
xk() =Yg @)sm(j) - (7.11)

We have abbreviated the functions on the right-hand side of (7.11) as the wavefunction
xx(j); here, k is a quantum number which includes the quantum numbers g and m:

k= (q,m). (7.12)

In order to avoid an overly complicated notation for our method, we let the index k take
on the successive values 1, ..., N. This scheme is quite sufficient to allow us to distinguish
the different quantum states, and by a suitable renumbering it can be related to (7.12); we
will not concern ourselves here with the details of this purely formal correspondence. Using
the wavefunction yx;, we can write the Slater determinant in a simple way:

xi(D) ... xn(1)
. x1(2) ... xn(Q)

VN1
Xi(N) ... xw(N)

As we have already seen in some examples in Sect. 4.4, the Slater determinant takes the
Coulomb interaction of the electrons among themselves into account in a summary manner.
We will now prove this in general. To this end, we first formulate the expectation value for
the energy using the Hamiltonian (7.6) and the determinant (7.13):

w = (7.13)

E=</W*HWdV1,...,dVN>, (7.14)

where the angular brackets refer to the spin functions. The evaluation of the integrals on the
right-hand side of (7.14) is a tedious matter, and we relegate it to Appendix Al. Here, it
suffices to give the final result:

E=Y) Hu+ 5 Ve — Vewwn) - (7.15)
k

k&'

In this expression, the symbol

Hix = </ xe H@r) Xde> (7.16)

represents the expectation value of the Hamiltonian (7.3) for a single electron in the quantum
state k. The angular brackets imply an expectation value with respect to the spin functions,
as already noted, while the integral over dV refers to the spatial coordinates of the electrons.
Because we have assumed product wavefunctions (7.11) and owing to (7.12), (7.16) can be
simplified to

Hy, = /w;(r)H(r) Y, dV . (7.16a)
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We have already met the quantities Vip 4 and Vi 4x as special cases in previous sections.

Vi ke = <// Xk(l)xk/(2) | |Xk(1)Xk’(2)dVIdV2> (7.17)

represents the interaction of the charge density of electron (1) in state £ with the charge
density of electron (2) in state £’. This is a Coulomb interaction energy, which has an
obvious classical interpretation. On the other hand, we also obtain the expression

Viw kx = <// Xk(l)xk/(2) | |Xk’(1)Xk(2)dVIdV2> ; (7.18)

which, generalising our earlier results, can be termed the Coulomb exchange interaction
energy.

Equation (7.15) is the most important result of this chapter. As we know from Sect.
4.4, a variational principle holds in quantum mechanics, and it states that the energy E,
which is calculated approximately in (7.15), is always greater than or at most equal to the
exact energy. The attempt to minimise this energy E by making a suitable choice of the
wavefunctions v, leads to the so-called Hartree-Fock equations, which we shall present
below for various important special cases. In solving these Hartree-Fock equations, we will
arrive at the “self-consistent field” (SCF) method.

7.2 The Hartree-Fock Equation.
The Self-Consistent Field (SCF) Method

Depending on how the individual electronic states are filled with electrons having parallel or
antiparallel spins, (7.15) takes on various explicit forms. We will find different expressions
for closed shells and open shells. Then, in Sects. 7.5 through 7.7, we explore the limits of
the Hartree-Fock method described here, and try to show what approaches must be taken
in order to improve the technique. As the reader will see, an extensive field remains to
be explored, including the rational application of high-speed computers to the problem of
calculating energy expectation values and wavefunctions.

As a first step, we attempt to simplify the expressions V in (7.17) and (7.18), recalling the
assumption of product wavefunctions in (7.8) and (7.9). Inserting these into (7.17), we can
split the right side into an integral over the spatial functions and a matrix element referring
to the spin functions:

Viw ke = qu’,qq’ ($m (DS (1)) {Smr ()5 (2))

where

Vg ag = / Yy (r) vy (r2) Ya(r) ¥y (r2)dVidV, . (7.19)

dmeglry — |

Since the spin functions are normalised, we find immediately that
(SmSm) = 1. (7.20)

For the exchange interaction, we obtain:
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ka’.k’k = qu’.q’q <sm(1)sm’(1)) (Sm(Z)Sm'(Z)) s

where
2
* * €
Vg q'q =/1//q (’1)qu("2)qu/("1)%(’2)dVldvz . (7.21)
But now we have
{SmSm') # 0 only when m =m’ . (7.22)

The exchange interaction thus operates only between electrons having the same spins.

7.3 The Hartree-Fock Method for a Closed Shell

In this section, as we have already said, we shall investigate some special cases of the energy
expression (7.15), and in the process introduce the Hartree-Fock method. We first consider
the problem of so-called closed shells. In this case we are dealing with electronic levels
characterised by quantum numbers ¢ which are filled with pairs of electrons having their
spins antiparallel. There are thus N /2 electrons with spin up and N/2 electrons with spin
down. Let us take a closer look at the terms in (7.15) keeping this aspect in mind: the energy
expression (7.16) now occurs twice with the same quantum numbers g, since it refers once
to the spin up and once to the spin down electrons. Instead of the sum over all quantum
numbers k, we can therefore replace the first sum in (7.15) by quantum numbers over ¢ if we
multiply the sum by a factor of 2. The Coulomb interaction (7.19) refers to both electronic
spin directions, so the double sum Y ,,, in (7.15) requires a factor of 4. In the case of
the exchange interaction (7.21), which enters (7.15) with a negative sign, the spin quantum
numbers belonging to k and &’ are the same, so that once for “spin up” and once for “spin
down” results in a factor of just 2. It should thus be clear that for the case of a closed shell,
expression (7.15) reduces to:

E=2) Hy+) @Verar = Yag.aq) (7.23)
q qq’

Equation (7.23) can be used as the starting point of a variational calculation, for which we
normalise it, taking into account the condition that the individual electronic wavefunctions
be normalised. We need not explicitly apply the condition that they are mutually orthogonal,
since it can be shown that the wavefunctions can always be chosen to be orthogonal within
the determinant. This follows from the fact that columns or rows can be added together
without changing the value of the determinant; using the Schmidt orthogonalisation scheme,
it can be seen that the wavefunctions can always chosen to be mutually orthogonal as long
as they were linearly independent to begin with. We thus require:

(W* |H| W) = Min.! (7.24)

and take as a supplementary condition:

/w;wqdv=1, g=1,...,N, (7.25)
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from which the normalisation of the overall wavefunction naturally follows:
(T |\w)y=1. (7.26)

Variation with respect to a wavefunction v/, means that we formally differentiate the right-
hand side of the energy expression (7.23) with respect to 1, and drop the integration over
the corresponding electronic coordinates. Applying this method, we immediately obtain the
relation

H(Dyy () +2 Zf [y 17 dVy ¥, (1)
-

47[8()7'12

2
N e
- ;/ %r(%%(%m dVa ¥y (1) = g49,(1) , (7.27)

where the ¢, are Lagrange multipliers which take into account the supplementary condition
(7.25).

The resulting equation for ¥, can be interpreted as a kind of Schrodinger equation.
The first term in (7.27) represents the operators for the kinetic and potential energy of the
wavefunction ¥, in the field of the fixed atomic nuclei. The second term can be interpreted
in a simple way if we remind ourselves that

elyy ()P (7.28)

is the charge density of electron (2) in the state ¢’. The sum then clearly represents the
Coulomb interaction energy of electron (1) in the field of the charge densities (7.28). This
term can be understood in terms of classical physics. Important and new, in contrast, is the
third term in expression (7.27), which describes the Coulomb exchange interaction. Here,
electron (1) is in wavefunction v, and experiences the exchange density of electron (2); the
latter is given by the expression

ey (Y, (2) . (7.29)

From the physical meaning of the terms on the right-hand side of (7.27) which we have just
discussed, it follows that the parameter €, can be seen as the energy of an electron in the
quantum state g. The set of equations (7.27) are distinguished from the usual Schrédinger
equation in that they contain non-linear expressions in Vg, ¥ .

These equations (7.27) can be solved by an approach which is referred to as the “self-
consistent field” method. The first step is to assume that the wavefunctions v, are already
known, at least approximately. In the next step, these assumed wavefunctions are inserted
into the expressions for the charge density (7.28) and the exchange density (7.29), while the
wavefunctions which follow A and which occur behind the integrals are taken as still to be
determined. The set of equations (7.27), which has thus been linearised, is then solved for
the ¥, and the resulting wavefunctions are reinserted into the charge and exchange densities
(7.28) and (7.29), giving improved starting values for a new iteration. This procedure is
continued until, at least in principle, the wavefunctions obtained are practically identical to
those assumed in the previous step. The method thus leads to an internally consistent set of
wavefunctions, as is implied by the name “self-consistent field” method.
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7.4 The Unrestricted SCF Method for Open Shells

If closed shells are present, as was assumed in the previous section, then in the Hartree-
Fock approach the individual electronic states are each occupied by two electrons having
antiparallel spins. In the case of open shells, the electronic states which refer to the orbital
motion of the electrons and which correspond to a pair of electrons with spin up and spin
down may be different states. The Slater determinant then takes on the following form [using
the notation of (5.65)]:

U=V Ym¥ Vs Vel s (7.30)

where the functions ¥/, ... ¥ refer to electrons having spin up, and the functions ¥, ...
Y yen to electrons with spin down. In the following, we shall also allow wavefunctions
belonging to different spin directions to have the same dependence on the spatial coordinates.
We therefore allow the case that some of the orbital quantum numbers of the group M+1, .. .,
M + N are identical to some of those of the group 1, ..., M. Since the spins of these two
groups are different, the determinant (7.30) does not vanish. The normalisation factor of the
determinant is given by:

(M + N2 (7.31)

By a proper choice of the s, the expectation value of the energy of the molecular
Hamiltonian is to be minimised. We assume that the wavefunctions in (7.30) are mutually
orthogonal. This expectation value can then be obtained directly from (7.15) by a speciali-
sation analogous to Sect. 7.2, so that we simply give the result here. It is

M+N 1 M+N M+N

E=(WHWY) =Y Hjj + 5 DY Vi
=1 =1 j=1

M+N M+N
j_ji) (7.32)

1 M M
_§<Z;Z;Wj,ji+ Z Z Vi
1= J=

i=M+1 j=M+1

1 —spins —spins

Let us consider the different terms in (7.32). The H;; in the first sum are defined by (7.16a).
We remember that they refer to the energy expectation value for a single electron in the state
J» where the energy consists of the kinetic energy of the electron and its potential energy
in the field of the nuclei. In the following double sum, the quantities V;;;; represent the
Coulomb interaction energies between the charge densities of the electrons in states i and j.
This interaction includes both electrons of like spin and those of opposite spin. The next two
sums are expressions for the exchange interaction, which acts only between electrons having
the same spin direction. When we vary the energy E in (7.32) by varying a wavefunction
¥; or ¥;, keeping the normalisation condition (7.25) in mind, we obtain the corresponding
Hartree-Fock equations.
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Fig.7.1. The excitation of an
electron from the state m into
the state n, accompanied by a
spin flip

7.5 The Restricted SCF Method for Open Shells

In the preceding section, we met the so-called unrestricted open-shell SCF method. There,
the wavefunctions for the many-electron problem were taken to have the form of Slater
determinants, which are easy to deal with. However, this type of wavefunction is not nec-
essarily an eigenfunction of the total spin. We will now introduce a formulation for the
wavefunctions which is already an eigenfunction of the total spin operator. This approach is
threfore called the “restricted open-shell method”. We shall treat triplet wavefunctions; the
approach is principally due to Roothaan. We assume that one electron from a filled shell,
where the electronic states each contain one spin-up and one spin-down electron, is taken
from a state m and put into the state n, and that its spin is flipped in this process (see Fig.
7.1). A wavefunction thus results in which the z-component of the total spin is equal to
—1-h. We write this wavefunction as _3¥?”. The indices m and n indicate that the electron
was excited from the state m into the state n. The number 3 at the upper left means that
the wavefunction belongs to a triplet state, and the lower-left index —1 indicates that the

z-component of the total spin has the quantum number S, = —1. This wavefunction can be
written as a determinant in the abbreviated form
=W YV Ul (7.33)

where the normalisation factor is still to be included. In order to go from this state to one
where the z-component of the total spin is S; = 0, we need only use the ladder operator for
the z-component of the total spin; it is given by:

Sy =Y [ox(j) +ioy ()] . (1.34)

J

In this equation, o, and o, are the usual Pauli spin matrices, and the arguments (j) enu-
merate the electrons which are acted upon by the spin operators. An elementary but tedious
calculation then gives (leaving out the normalisation factor) the wavefunction

om = ViV YV VWl — [V1¥ 1 Y YV} (7.35)

which belongs to the total spin § = 1. If we apply the raising operator for the z-component
of the spin a second time, we obtain the wavefunction

W= VY YV Ym Yl (7.36)

As we already have seen in the unrestricted open-shell model, we can calculate the energy
in a relatively simple manner. We obtain the following expression:

g £ 8
E=2) Hu+Y ) @Vau—Vaw
k=1

k=1 I=1
closed shell
+Hmm + Hnn + an.mn - an.nm
open shell
8 8
+ Y CVimim = Vemm) + I 2Vinsn — Vinmt) (7.37)
k=1 k=1

closed — open shell interaction
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which reflects the interaction energies within the closed shell, the interaction energy between
the two electrons in the now effectively open shell, and the interaction energy between the
two shells. The quantities which occur in (7.37) are the same as in the preceding section.
By variation of the energy E with respect to the individual wavefunctions, the Hartree-
Fock equations can again be derived. As was shown by the examples in Sects. 7.2-7.4, the
energy eigenvalues calculated using Slater determinants can be interpreted in a quite simple
manner. This should, however, not obscure the fact that we are dealing here only with an
approximation.

7.6 Correlation Energies

The Hartree-Fock method, which begins with the Slater determinants, is the most widely-used
computational technique in atomic and molecular physics. It allows the exact calculation of
the interaction effects between the electrons and the nuclei, and the approximate calculation
of the overall interaction effects of the electrons among themselves. As one can readily see,
the energy would be reduced even further by allowing the electrons to avoid each other
spatially, not only in a global way by applying the Pauli exclusion principle, which requires
the probability density for two electrons having the same spin at the same point in space
to vanish. Electrons with antiparallel spins also have a Coulomb repulsion and will try to
avoid each other in order to reduce the total energy. Compared to the Hartree-Fock energy,
in which the Pauli principle has been taken into account via the Slater determinants, there
remains an additional energy reduction which would occur in an exact calculation and which
results from taking correlations into account, i.e. the tendency towards mutual avoidance by
the electrons. The definition of the correlation energy is thus

Correlation energy = exact nonrelativistic energy — Hartree-Fock energy.

7.7 Koopman’s Theorem

Once the electronic wavefunctions and the corresponding energies have been calculated for
a molecule with a closed-shell configuration using the SCF method, the ionisation of the
molecule can also be treated, at least approximately. This is done by applying Koopman’s
theorem, which might better be called Koopman’s approximation. It states the following:
ionisation, consisting of the removal of an electron from a molecule with closed shells, can
be represented as the removal of an electron from a given self-consistent field orbital, leaving
the other electrons unaffected. This is, in general, a good approximation, although it neglects
the following effects:

1) the reorganisation energy of the electrons in the ion;
2) the difference between the correlation energy of the neutral molecule and that of the ion.

The second point is clear, since the correlation energy is generally neglected in the Hartree-
Fock method. The first point is due to the fact that the charge distribution of the electrons
gives rise to an effective potential for each particular electron. If an electron is then removed,
this effective potential is naturally altered. Koopman’s theorem thus states that, in general,
the alteration is small.
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7.8 Configuration Interactions

As we mentioned above, the Hartree-Fock method leaves an important effect out of consid-
eration, by not taking into account the correlations between the electrons. For this reason,
other methods have been developed which can treat electron correlations, at least partially.
We begin with a single Slater determinant:

1
Yiioky = ﬁl)(kl ) X, (r2) - Xy PV (7.38)

where we want to assume, in contrast to the Hartree-Fock method, that the wavefunctions
xx are already known. The indices k naturally denote the quantum numbers of the individual
electrons. For simplicity, we represent these quantum numbers by a single symbol, which
however places no limitation on the method. Since the wavefunctions ¥ remain the same
(except perhaps for a factor of —1) when we permute the indices k;, we can assume that the
quantum numbers k are already ordered in some particular fashion, e.g. in the sequence

ki <ky...<kn. (7.39)

If the wavefunctions x, of the individual electrons form a complete set in the mathe-
matical sense, then the determinants (7.38) also form a complete set for each antisymmetric
wavefunction ¥ of N electrons. This means that we can represent any arbitrary wavefunction
V¥, even in a many-electron problem, as a linear combination of determinants like (7.38). If
we take as a trial function

v o= Z Crity.ky Py oy s (7.40)

ky<ka<...ky

then the wavefunction we are seeking can be determined by finding the coefficients Cy, ,....
In principle, the method for solving the many-electron problem is no different from that for a
single-electron problem, where we can represent the wavefunction we are seeking as a linear
combination of known wavefunctions; the only difference is that the combinations of indices
become somewhat more complicated. We insert (7.40) into the Schrédinger equation:

HW =Ew, (7.41)

where H is the Hamiltonian for the kinetic energy of the electrons and their potential energies
in the field of the nuclei and of the other electrons [cf. (7.6)]. We add primes to the indices
k in (7.40), multiply the equation thus obtained by ¥ , . integrate over all the electronic
coordinates, and take the expectation value with respect to the spin variables. We thus obtain
expressions of the type:

</l1/,; ..... wH ,chdvl...va>, (7.42)

where the angular brackets represent the calculation of the expectation value with respect to
the spin variables. The evaluation of (7.42) is given in Appendix Al for the special case that
the set of quantum numbers ki, ..., k}, is the same as the set ky, ..., ky. It is not difficult
to generalise this result to the case (7.42), so that we simply give the final answer here:
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N

E E Hiw Chyokt ok
, 1% i
j=1 K

N
+ E E Vk,-k,k;k}’.’ckl...k,f...kl’.’...kN =ECh ky - (7.43)
ij=1 k,’kl’.’

The quantities Hyy and Vi are generalisations of those previously defined in (7.16-18),
Le.

—#2
Hw=/Wm{ﬁfﬂHmﬁWVMWMww (7.44)

The angular brackets indicate the orthogonality relations between the spin wavefunctions
Sk, Sp» which denote spin up (s; = &) or spin down (sy = B). Viw 11~ describes the Coulomb
interaction energy between the electrons:

2

e
Vir vigm = * * [
Kk Kk /ka (ro)vy (r2)47r£0r12 (7.45)

Y (r) Y (r2) dVid Va (selsir) (s lser)

The sums on kj’. and k] run over all the quantum numbers in (7.43). In order to keep the
notation in agreement with (7.40), we, however, must introduce the following convention:
the coefficients C in (7.40) are defined only for quantum numbers which fulfill the condition

(7.39). We stipulate that:

1) Coefficients occurring in (7.43) vanish if two or more of the quantum numbers indicated
by their indices are identical.

2) If the rule (7.39) is broken, the indices of the coefficients will be reordered in such a
way that it is restored to validity. Depending on whether the permutation is even or odd,
the sign can change.

Equations (7.43) are a system of linear, homogeneous equations which can be solved numet-
ically using modern techniques with a digital computer, as long as the number of coefficients
has a limit and is not allowed to become infinite. This method is often combined with the
LCAO approach. In that case, the matrix elements Hy and Vi p» are evaluated by set-
ting the electronic wavefunctions ¥ equal to linear combinations of atomic orbitals ¢; with
free coefficients. These coefficients can then be fixed in a first step, e.g. by solving the
Hartree-Fock equations. The matrix elements Hy, and Vi g~ can then be given as partic-
ular linear combinations of integrals over atomic orbitals ¢;. For the numerical solution of
the many-electron problem using a supercomputer, the following steps are thus necessary:

1) Evaluation of integrals of the type

fﬁH@dv,

. e (7.46)

f¢j (De; (2)4__¢j”(1)¢j”’ 2)dvidv; .
T &2

The latter integrals are referred to as multiple-centre integrals.

2) Solution of the linear equations, i.e. calculation of the coefficients Cy, 4, and the cor-

responding energy eigenvalues.
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7.9 The Second Quantisation*

The results of the preceding section can be formulated in a much more elegant fashion by
using the so-called second quantisation. As we have already seen in I, the photon field can
be quantised by establishing a correspondence between each light wave with a particular
wavevector k (and a given polarisation direction) and a harmonic oscillator which describes
the energy of the wave. The energy expression can be written in harmonic form and thus
gives rise to a Hamiltonian H;, which can be expressed in terms of creation and annihilation
operators b,j', by for the light quanta: H, = ), hwkb;’bk. Starting with classical waves, we
can thus describe the creation and annihilation of light quanta, or photons. The operators
b, by obey the following commutation relations:

bibE —bi b =0, (7.47)
biby —by by =0, (7.48)
b bl — b by = e (7.49)

Now, however, we know that electrons also have a wave character, which is reflected in
the Schrodinger equation. If we quantise this electron-wave field, we arrive at the particle
character of the electrons. Just as in the quantisation of the photon field, where the creation
and annihilation operators describe the creation or annihilation of light quanta, they here
describe the creation or annihilation of electrons. Denoting the electronic state by its quantum
numbers, e.g. k or j, we postulate the following commutation relations:

afaf +afaf =0, (7.50)
ax bj +ajar =0, (7.51)
a;j aj +ajaf = . (7.52)

These differ from the relations for photons in that there is a (+)-sign in the middle, which is
due to the fact that, in contrast to photons (bosons), two electrons (fermions) cannot be in
the same quantum state. Equation (7.50) fulfills this requirement; if j = k, then it follows
from (7.50) that

aiaf =0. (7.53)

That is, if we try to create two electrons in the same state, this double creation, no matter
which state we apply it to, always yields zero. The other commutation relations with the (+)
signs then follow from self-consistency requirements which we cannot treat in detail here.
The method is now applied as follows: the Schrodinger equation

HY =FEVY (7.54)
has the following form in the second quantisation:

H=Y afagiH;+1 ) afat acaViu, (7.55)
ij ijkl
where the matrix elements are given by (7.44) and (7.45). The expression (7.55) has the

advantage that it holds for any number of electrons. If one is treating a particular problem
in which a certain number N of electrons is present, then the Schrédinger equation can
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be solved, at least in principle, by constructing ¥ as a linear combination of all possible
functions in which precisely N electrons occur. We denote the vacuum state as Po; it is
characterised by the relation

aj®p=0. (7.56)

Then a state having N electrons with the quantum numbers ki ...ky can be built up by
N-fold application of the creation operator to the state ®:

Wiy = Gt .. a5 Do . (7.57)

The complete trial wavefunction is then given by a linear combination of the functions
defined in (7.57),

W =" Coin i a3 .. at, o . (7.58)

The coefficients in this equation are still unknown quantities, which must be determined
through, e.g. a minimisation of the expectation value of E. The trial function (7.58) may
contain completely unrestricted sums over the individual quantum numbers k. If two quantum
numbers are the same, the wavefunction (7.58) vanishes by construction, due to (7.53).
Furthermore, if sets of quantum numbers are identical, then by reordering the operators a™
they can be brought into a special form, e.g. in agreement with (7.39), whereby depending on
whether the permutation is even or odd, the sign remains unchanged or is reversed. As can be
seen by comparing the method of 2nd quantisation with that described in Sect. 7.8, the two
are equivalent, but the 2nd quantisation is more elegant, because the resulting equations can
be very simply found by substituting (7.58) into (7.54). Also, it is clear from the beginning
which quantum numbers are to be used. In addition, the 2nd quantisation permits some novel
approaches to the explicit solution of the problem.

7.10 Résumé of the Results of Chapters 4-7

In Chaps. 4-7, we have gained an overview of the methods available for determining the
electronic wavefunctions in molecules and their energy eigenvalues. Chapter 4 was devoted in
particular to the LCAO method, i.e. the construction of molecular orbitals for a single electron
by taking linear combinations of atomic orbitals; as an illustration, we treated there the simple
molecules Hy and H,. Furthermore, the hybridisation of the wavefunctions of carbon was
introduced there. Chapter 5 presented a first insight into the way in which the calculation
of the coefficients in the LCAO method can be simplified or eliminated by making use of
the symmetry properties of the molecule; this was demonstrated for benzene and ethene. In
Chap. 6, we then made a systematic survey of symmetries and symmetry operations as well
as of the basic concepts and methods of the theory of group representations. These methods
were then applied in detail to the wavefunctions of the H,O molecule. As we saw, it is
possible to reduce considerably the number of equations required for the LCAO approach by
making use of symmetry. Finally, Chap. 7 introduced a series of methods for dealing with
the many-electron problem. Simple approaches are based on the Slater determinant and the
Hartree-Fock method which is associated with it. In order to take electron correlations into
account, linear combinations of Slater determinants must be employed. An equivalent, but
more elegant method is found in the 2nd quantisation, which we also treated briefly.

In the following Chaps. 8-10, we now turn to the experimental results obtained on small,
simple molecules.



8. Overview of Molecular Spectroscopy Techniques

Spectroscopy using electromagnetic radiation in all wavelength regions, in the radiofrequency
range, with microwaves, in the infra-red, in the visible spectral region and in the ultraviolet
region, extending out to the spectral region of extremely short-wavelength gamma radiation,
is the most important source of experimental information for molecular physics. In this and
the following chapters, we shall deal with this topic. The experimental methods associated
with these spectroscopies will be described in more detail where necessary. In this chapter,
in Sects. 8.1 and 8.2, we first give the classification of the spectroscopic methods according
to the spectral region studied, as required to obtain the desired information. This will serve as
an introduction to the following Chaps. 9—14. In Sect. 8.3, we then indicate some additional
methods, namely laser spectroscopy, photoelectron spectroscopy, and magnetic resonance,
which are treated in the later Chaps. 15, 18, and 19.

8.1 Spectral Regions

Here, we first want to give a summary of the various spectral regions in the electromagnetic
spectrum. See also Fig. 8.1.

Micro- Far Near
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log(vHz)|5 |6 |7 [8 |9 |10 [11 |12 |13 [14 |15 |16 [17 |18 [19 |20 |21

A 3km 3m 30cm 3mm  0.03mm 300nm 3nm 3pm
7.

Beginning with the smallest energies, the spectral regions can be classified and charac-
terised; we note that the boundaries between the regions are, however, not sharply defined.
They were determined in the past by the different methods and instrumentation available for
the production, transmission, and detection of the radiation, as well as by convention.

— In the region of radiofrequencies, i.e. in the range from a few kHz up to several 100 MHz,
we find the nuclear resonance transitions.

— The term microwaves refers to electromagnetic waves in the range from about 1 to
100 GHz. This is the region of electron spin resonance spectroscopy, but also that of
rotational spectroscopy, especially on small molecules in the gas phase. The upper end
of this range already overlaps with the spectral region of the far infra-red.

Fig.8.1. The spectrum of elec-
tromagnetic radiation from the
radiofrequency range up to
gamma radiation, in units of fre-
quency and of wavelength. The
visible region is shaded
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— The infra-red spectral region extends from the upper part of the microwave range to
the beginning of the visible region, at a wavelength near 800 nm. The long wavelength
part, the far infra-red region (A = 0.1-1 mm) is applicable to the excitation of rotational
spectra, while the short wavelength end (the near infra-red, A = 107>-10"! mm) is
the region where the characteristic vibrational spectra of molecules are observed: the
so-called rotational-vibrational spectra.

— Electronic transitions of the valence electrons begin already in the infra-red; however, they
lie mostly in the visible and the UV spectral regions. Here, the band spectra of molecules
in the proper sense are observed, i.e. spectra consisting of electronic transitions with
superimposed rotational and vibrational transitions.

— Beyond the short wavelength end of the ultraviolet region, and overlapping with it, is the
X-ray region and then the region of y-radiation. With radiation of such high quantum
energies, transitions and states of the inner electrons, i.e. those in inner shells, can be
investigated, especially by photoelectron spectroscopy.

In the different spectral regions, and also in the various scientific disciplines, a variety of
units for measuring the frequencies and the wavelengths of the radiation are in conventional
use, in part for practical reasons and in part for historical ones. Some important conversion
formulas for units which measure energy are the following:

1 em™! =29.979 GHz = 1.2398 - 10™* eV 8.1
kceal

1 =0.349 cm™! . 8.2
kmol cm (8.2)

Measuring energies in [cm™!] or in [s~!] is a widespread and convenient practice, but strictly
speaking, it is incorrect. The unit ¥, or wavenumber, is defined by the relation

1
v____=B_energy

A ¢ he

For the unit of frequency, we have

[em™']. (8.3)

_ ¢ _ energy 1
v_k——h [s77]. (8.4)

Energy may also be expressed in terms of hw, that is by (h/27)2m v.

8.2 An Overview of Optical Spectroscopy Methods

We can, to a good approximation, express the total excitation energy E of a molecule as the
sum of the above-mentioned individual excitations, in particular as the sum of the partial
excitations of the rotational, the vibrational, and the electronic levels. We thus have

E=Eqg+Epw+ En ., 8.5)

where el, vib, and rot refer to electronic, vibrational, and rotational excitations, respectively.

Figure 8.2 illustrates the vibrational and rotational levels in two different electronic
excitation states of a molecule, I and II, and the possible transitions between them. According
to this diagram, one can distinguish between three types of optical spectra, as follows:
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Rotational spectra are transitions between the rotational levels of a given vibrational
level in a particular electronic state. Only the rotational quantum number changes in
these transitions; we denote it by J. These spectra lie in the region of microwaves or in
the far infra-red. They are treated in the following Chap. 9. They consist typically of a
large number of closely spaced, nearly equidistant spectral lines. Rotational spectra may
also be observed by means of Raman spectroscopy; see Chap. 12.
Rotational-vibrational spectra consist of transitions from the rotational levels of a par-
ticular vibrational state to the rotational levels of another vibrational state in the same
electronic term. The electronic excitation state thus remains the same. The quantum num-
bers J and v change; v characterises the quantised vibrational levels. These spectra lie
in the infra-red spectral region. Rotational-vibrational spectra are treated in Chap. 10.
They consist of a number of “bands”, i.e. groups of closely-spaced lines, the so-called
band lines. These spectra can also be observed with Raman spectroscopy, as well as with
infra-red spectroscopy.

Electronic spectra consist of transitions between the rotational levels of the various vibra-
tional levels of one electronic state and the rotational and vibrational levels of a different
electronic state. This is termed a band system. It contains all the vibrational bands of the
electronic transition being observed, each one with its rotational structure. In general, all
three quantum numbers change in these transitions, i.e. J, v, and those which characterise
the electronic state. The spectra lie in the near infra-red, the visible, or the ultraviolet
regions. Electronic transitions in molecules are treated in Chap. 13. The band systems of
all the allowed electronic transitions of a molecule together make up the band spectrum
proper of the molecule.

Fig.8.2.  Vibrational levels
(quantum numbers v) and rota-
tional levels (Quantum numbers
J) of two electronic excitation
states of a molecule, denoted by
I and II. The three arrows refer
(from left to right) to transitions
in the rotational, the rotational-
vibrational, and in the electronic
spectra of the molecule
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Fig.8.3. An overview of the
spectral positions of the absorp-
tion spectra of a small mole-
cule. The numerical values are
approximately correct for HCI

In molecular spectroscopy, it is generally accepted practice when referring to transitions
between two terms to list first the energetically higher-lying term, then the lower one. The
direction of the transition, i.e. absorption or emission, can be denoted by an arrow between
the two term symbols. If the various terms in a series are not numbered, then one frequently
denotes the upper term with a prime, e.g. J' or v/, and the lower term with a double prime,
e.g. J" orv”.

The spectral lines in molecular spectra, i.e. transitions between two terms, may be de-
scribed in the following manner:

Vhe = Ey — Ej+ Eyy — Evip + Ejy — Epy  [Joule] (8.6)
= AEq + AEy, + AE,y , .

where el, vib, and rot again refer to the electronic, vibrational, and rotational energies. In
general, the following relation holds:

AEel > AEvib > AErot . (87)

For rotational spectra, we have AE, = AE,;, = 0; only the rotational term changes in the
transitions, i.e.

Vhe = El, — EI., . (8.8)

Rotational-vibrational spectra correspond to transitions with AEe = 0; the transitions take
place between the terms of vibration and rotation. We then have:

Vhe = E\’/lb - \ll/ib -+ El - El/’:)t . (89)

rot

A rotational-vibrational band is the total of all the band lines A Ex which belong to a partic-
ular term transition A Ej,. If the electronic energy also changes, then all three terms in (8.6)
change in the transition and the band system of the corresponding electronic transition AE,
is obtained. It contains all the vibrational bands (A E.j,) with their characteristic rotational
structures. The terminology band spectrum of a molecule (in the wider sense) refers to the
band systems of all the possible electronic transitions.

The positions of the three types of spectra within the electromagnetic spectrum are indi-
cated for a small molecule in Fig. 8.3.

Rotational - Electronic
Rotational bands vibrational bands bands
T LT
E ! L visible
| [ ] i om—
I L1 i | | I I
1mm 100pum 10pm um 1000 &

In molecular spectroscopy, it is usual to employ the following notation for the terms E/hc
(measured in wavenumbers):

For rotational terms

=F({J); (8.10)

for vibrational terms



8.3 Other Experimental Methods

127

Ein(v)

=G(J)); (8.11)
hc
and for electronic terms
EaQ) _ gar (8.12)
hc

The overall term of a molecule can thus be written as
Eo/hc=T =T+ G)+ F@,J). (8.13)
Spectral lines can then be denoted by:

T=AT" + AG + AF [cm™!]. (8.14)

8.3 Other Experimental Methods

We should mention at this point that there are other methods of investigation in addition
to rotational, vibrational, and electronic spectroscopies, which also give us insights into the
structure and dynamics of molecules.

Laser spectroscopy permits the study of molecules with a spectral resolution which was
completely unattainable in earlier times. It also makes possible the time resolution of mole-
cular spectra down to the femtosecond range, and thus allows the study of the dynamics of
molecular states and processes. Important additional information is gained from photoelec-
tron spectra, in particular with respect to the analysis of the energy states of inner electrons.
More about these two topics will be presented in Chap. 15.

Magnetic resonance of nuclei and electrons gives particularly detailed structural infor-
mation, which cannot be obtained with other spectroscopic methods. These techniques will
be treated in Chaps. 18 and 19.
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The rotational energies of molecules are quantised: that is, they can be changed only through
the absorption or emission of energy quanta. Rotational spectroscopy permits the measure-
ment of these energy levels; from them one obtains information about the structure and
bonding of the molecules. The essential concepts can be explained and understood using the
simplest molecules as examples, i.e. the diatomic molecules. Sects. 9.1-3 are devoted to this
task. The multiplicity of possible rotations in larger molecules can be only briefly touched
upon in this book; we do this in Sect. 9.5.

9.1 Microwave Spectroscopy

The rotational spectra of molecules are observed almost exclusively as absorption spectra,
because the spontaneous emission probability is very small as a result of the low transition
energies; see also Chap. 16 and Sect. 5.2.3 in L. The rotational spectra lie in the microwave
region of the electromagnetic spectrum, so that one requires a far infra-red (Fourier) spec-
trometer or a microwave spectrometer to observe them.

In a microwave spectrometer, the source of radiation is often a klystron. Since klystrons
can, however, be tuned over only a narrow spectral region, tunable oscillators such as the
backwards-wave generator (also called a carcinotron) are sometimes preferable. These are
travelling-wave tubes in which the oscillation frequency (in the GHz range) can be tuned
by 50% or more through variation of the electrical operating conditions. Another tunable
generator is the so-called magnetron. Detection of the microwaves is usually performed
using a microwave diode. Owing to the small absorption coefficients and to the necessity to
work at low (sample) gas pressures and thus avoid pressure broadening of the spectral lines as
much as possible, the longest possible absorption paths are employed (in the range of several
metres). For quantum energies larger than ca. 10 cm™!, infra-red Fourier spectrometers can
be used to measure rotational spectra.

To improve the detection sensitivity and for a more exact frequency determination, one
normally employs an effect-modulation technique. This means that the energy levels under
investigation are modulated in such a way that the intensity of absorption and thus of the
observed signals are also modulated. With this technique, the signal/noise ratio and thereby
the precision of the measurement can be improved; this can be achieved in microwave
spectroscopy by allowing an oscillating electric field to act on the sample molecules: The
field creates a periodic oscillating Stark effect that modulates the signal. The modulation is
carried out with field strengths of typically 100 Vem™ and at frequencies between 50 Hz and
100 Hz, and is referred to as Stark modulation. In the detection section of the spectrometer,
only the modulated signals are amplified and detected. This allows background and noise
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Fig.9.1. The rotational spec-
trum of HCI in the gas phase;
absorption spectrum. The mini-
ma in transmission correspond
to maxima in the absorption

components to be separated from the radiation which is to be measured. The resonance
between the radiation and the level being studied is thus periodically switched on and off. In
this manner, the frequency of the microwave radiation and thus of the rotational transitions
can be determined with an accuracy of better than 107°.

Corresponding to the selection rules for the interaction of molecules with electromagnetic
radiation, only molecules with permanent electric dipole moments permit the observation of
rotational spectra. This selection rule for electric dipole radiation can be intuitively under-
stood: a polar molecule which is rotating appears to have a time-dependent dipole moment
to a stationary observer. The rotation of such molecules is therefore active with respect to
optical absorption, meaning that the rotation leads to the absorption of electromagnetic ra-
diation when the frequencies match. For homonuclear diatomic molecules such as Hj, Ny,
or Oy, this does not apply, because they have no permanent dipole moments; they thus
exhibit no rotational spectra. The same is true of all larger molecules without a permanent
dipole moment, for example CCls — unless the rotation leads to a distortion and thereby to
a rotationally-induced dipole moment, or unless the molecule is at the same time subject to
an asymmetric vibration and thus has an induced dipole moment which can be acted on by
the oscillating electric field of the radiation.

9.2 Diatomic Molecules

9.2.1 The Spectrum of the Rigid Rotor (Dumbbell Model)

Figure 9.1 shows as an example of a typical rotational spectrum of a diatomic molecule the
spectrum of HCI. Figure 9.2 shows a schematic illustration of the rotation spectrum of another
linear symmetric top molecule with a smaller line spacing, together with the coresponding
energy term scheme, which we shall now derive. The spectrum consists of a large number
of nearly equidistant lines with a characteristic temperature-dependent intensity distribution.
This spectrum can be understood as the spectrum of a rigid rotor, i.e. the spectrum of a
system in which the two atoms are rigidly attached to one another. This so-called Dumbell
Model is the simplest model for the rotation of a diatomic molecule. In classical mechanics,
the rotational energy of such a rotor can be calculated according to the equation

Ewi=100®  [Joule], 9.1)

where @ is the moment of inertia about an axis of rotation perpendicular to the line joining
the two masses m, m,, and w is the angular velocity of the rotation; cf. Fig. 9.3.
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The moment of inertia @ of this dumbbell relative to its centre of gravity S is equal to

© = m R} + myR; = m,;R*, 9.2)

where R; and R, are the distances of the masses m; and m; from S and R = R; + R,. The
mass m;, is called the reduced mass and is given by:
mymj
m; =

=" 9.3
my + my ©-3)

The angular momentum (along an axis perpendicular to the molecular symmetry axis) is
equal to

L = 6w, (9.4)

where L is the symbol for angular momentum and |L| or simply L stands for its magnitude.
We first make an estimate. Taking as a trial formula for the quantisation of the angular
momentum:

ILl=nh (n=0,1,2,...) 9.5)
we obtain from (9.4) the smallest possible value of the rotational frequency w = 2w v:
L h 9.6)
Wpe1] = — = —m— .
=T e T mR

If, for example, we insert the atomic masses of H and Cl, and their internuclear distance in
the HCI molecule, known from gas-kinetic measurements to have the value R = 1.28 10710
nm, we find

Fig.9.2. The energy-level
scheme for the rotation of a
diatomic molecule (linear sym-
metric top) and its transmission
spectrum. The energy is plot-
ted in the upper part of the
figure, increasing with increas-
ing J; the lower part shows the
transmission spectrum. The se-
lection rule for optical transi-
tions is AJ = =1; the inten-
sity distribution in the spectrum
is explained in the text. The first
few lines in the spectrum are so
weak that they are not visible on
the scale of this figure

Fig.9.3. The rotation of a di-
atomic molecule about its centre
of gravity. In the case of a non-
rigid rotor (lower part of the fig-
ure), the two atoms can oscillate
relative to one another with the
force constant k of the chemical
bond
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Vnet = 6.28 - 10! Hz, or A = 0.47mm .

This rotational frequency, calculated in a semi-classical fashion, is very close to the smallest
absorption frequency measured in the rotational spectrum of HCIl, which has the value

Vimin obs = 6.25 - 10" Hz, or A = 0.48mm .

This simple calculation indeed gives the order of magnitude of the frequency to a surprising
degree of accuracy, but it is nevertheless too simple, if one wishes to understand the entire
rotational spectrum. For the energy states of the rotor, we in fact find from (9.1) and (9.4):

L2
Erot = % . (97)
With L = nh, this becomes
n2h?
E. = ETR 9.8)

This expression does not give a satisfactory result when compared with experiment, if it is
assumed that the lines in the rotational spectrum are due to transitions between neighbouring
quantum levels. Instead, the problem must be treated quantum mechanically from the be-
ginning by solving the time-independent Schrodinger equation for the rotation. The orbital
angular momentum L of a particle of mass m, orbiting at a distance R from the origin can
be calculated in just the same way as that of the electron in the hydrogen atom; we can
therefore make use of the computation of the angular-momentum eigenfunctions for the H
atom (compare I, Sect. 10.2, and Chap. 11 in this book). For a rigid rotor, we thus obtain
the energy eigenvalues:

h2
E. = 55 nn+1), 9.9
i.e. instead of (9.5), we must introduce a different quantisation condition
L] = hy/n(n+1) . (9.10)

In the case of rotation, it is usual to denote the quantum number by J instead of by n;
thus for the rotational levels of the rigid rotor, we obtain the following expression in place
of (9.8):

h2
E = 0 JWJ+1) [Joule] J=012,..). 9.11)

Introducing term values F(J), which in spectroscopy are usually given in the units cm™!,

we divide (9.11) by hc and obtain:
Erot —1

F(J) = e =BJWJ+1) [cm 9.12)
with the so-called rotational constant B,
h
[em™']. 9.13)

~ 8n2¢cO
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This constant is a characteristic value which can be extracted from the measured rotational
spectrum. It is inversely porportional to the moment of inertia of the molecule; its determina-
tion therefore yields basic information about the structure of the molecule being investigated.

Each of the rotational eigenvalues (9.11) and (9.12) has its characteristic angular-
momentum eigenfunction, whose squares give the probability that the angles ©# and ¢ have
values in the range d2 = sin®*d®*d¢. These are the same as those we met in I on solving
the Schrddinger equation for the hydrogen atom (cf. Chap. 10 in I). Each eigenfunction with
the quantum number J is associated with 2J + 1 functions having the “magnetic” quantum
number M = J, J —1,...—J; i.e. each state characterised by J is (2J + 1)-fold degenerate,
so long as no additional interaction is present which would lift the degeneracy.

The quantum number M is a measure of the components of angular momentum relative
to a quantisation axis, which is defined for example by an applied electric field. In that case
— see the Stark effect — the degeneracy with respect to M is lifted except with respect to the
sign of M.

Summarising the results for the rigid rotor, we have

— a quantisation of angular momentum,
IL|=vJ(J+Dn

with the quantised z-component L, = Mh,
— energy eigenvalues E;s = BhcJ(J + 1)
— with the rotational constant defined in (9.13),

h -1
=8 Ml
The energy difference between two energy levels whose quantum numbers J differ by 1,
that is the rotational quantum E(J 4 1) — E(J), increases with increasing J. This means
that the rotational energy increases with J for a constant internuclear distance, and we thus
obtain a term scheme like the one shown in Figs. 9.2 and 9.4.

J E, Parity
6 42B +
5 30B -
4 20B +
3 12B -
2 T 6B +
1 2B —
0 —t 0 +

0 4B 8B 12B

HEEEN

Fig.9.4. Energy levels for the
rotation of a rigid diatomic mol-
ecule, with parities as indicated.
The selection rule AJ = 1
yields the spectrum consisting
of equidistant lines, as shown
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Table 9.1. Rotational constants
of some diatomic molecules

TH,* 2B =121.6 cm™!
IH35¢) 20.79
12¢l6g 3.84
'HBr 14.9
k3501 0.257

* The rotational spectrum of Hy
is not directly observable; cf.
Chap. 12

We now introduce the selection rules for optical transitions (electric dipole radiation),
AJ = =x1 (and AM = 0, 1, with different polarisations referred to as o and 7 transitions),
and find the following expression for the quantum energy of the lines in the rotational
spectrum corresponding to a transition between a level with the quantum number J and one
with J + 1; that is, from (9.12), we find that the term difference F,,; — F; is given by the
condition

hv=E; . —E;. 9.14)
For the wavenumbers of the rotational lines we then obtain
Vg =2BUJ +1)  [em™']. (9.15)

We thus calculate, as observed, a spectrum having equidistant lines with a spacing equal to
2B, from which one can derive the rotational constant B; cf. Figs. 9.2 and 9.4. Since the
moment of inertia of the molecule is in the denominator of B, heavier molecules have their
spectra at longer wavelengths with a smaller energy spacing between the lines than lighter
molecules with smaller moments of inertia.

Some examples for spectroscopically determined rotational constants are given in Table
9.1.

From the B values, as we have shown above, the internuclear distance R of the centres
of gravity of the two atoms in the molecule can be determined. For 'H*>Cl, we obtain the
equilibrium internuclear distance by using the numerical value for B given in Table 9.1:

¥e)
R.=/— =1287-10""m
me

(the index e here stands for “equilibrium”).

9.2.2 Intensities

The intensities of the lines (cf. Fig. 9.2) are given by the degree of degeneracy of the terms
F; for different values of J, by the thermal occupation probabilities of the rotational levels,
and by the selection rules, taking the quantum-mechanical transition moments to be constant.
As we mentioned above, each level with the quantum number J is (2J + 1)-fold degenerate
with respect to the magnetic quantum number M. The degree of degeneracy is thus 2J + 1.
The statistical weight of the states corresponds to this value, as long as the degeneracy is not
lifted. The selection rules follow from the symmetry of the wavefunctions on application of
time-dependent perturbation theory; cf. Chap. 16 in I and Chap. 16 in this book.

The two important selection rules which we have already used above can be understood
in an intuitive picture:

— only polar molecules, i.e. molecules with a permanent electric dipole moment, have a
rotational spectrum which can be observed in optical spectroscopy;

— transitions with AJ = =1 are optically allowed, i.e. transitions in which the angular
momentum of the molecule changes by #. This angular-momentum difference corresponds
to the angular momentum of the optical quantum which is taken up on absorption or given
off on emission, so that conservation of angular momentum is obeyed.
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Finally, in order to understand completely the intensity distribution in the spectrum, we need
to know which initial states for absorption are occupied at the absolute temperature T of
the measurements. The thermal energy at room temperature corresponds to about 1/40 eV or
200 cm™!; it is thus in general much larger than the rotational constant B which gives the
spacing of the lowest rotational terms. In thermal equilibrium at room temperature, many
rotational levels are therefore occupied. Quantitatively, the occupation probability N, of a
level with rotational quantum number J is given by:

N
Ny _ & e~ EI=E/KT _ (0] 4 1) ¢~ BhJU+D/AT 9.16)
NO 8o Degeneracy Thermal occupation

In this expression, g; and g, are the statistical weights of the states with the corresponding
quantum numbers, and are equal to the degree of degeneracy 2J + 1, with go = 1. The
intensity ratio of the lines in the absorption spectrum is proportional to the ratio of the
occupation probabilities N; and Ny. All together, we thus find from (9.16) an intensity
profile like that shown in Figs. 9.1 and 9.2. For small values of J, the intensity of the lines
increases with increasing J due to the increasing statistical weights; for larger values of J,
the decrease of the exponential function in (9.16) dominates. Between these two extremes
there is an intensity maximum. By differentiation of (9.16), we can readily show that the
value of the quantum number at the maximum, Jy,y, is given by:

[ kT 1
Joax = -, 9.17
max 2h¢B 2 ©.17)

where Jmax is the integer which lies closest to the numerical value calculated from (9.17).
The position of the most intense transition is given only approximately by (9.16), because
the intensity distribution depends not only on the occupation probabilities alone, but also on
the squares of the transition moments, which are calculated from the initial and final state
wavefunctions and thus also depend on the quantum number J. A complete rotational spec-
trum, as shown in Fig. 9.1, cannot in general be registered with a single spectral apparatus,
owing to the broad range of frequencies involved. Matching the spectral data of different
devices with respect to intensities is not always a simple procedure. The intensity ratios of
the absorption lines corresponding to different J values are therefore best determined from
a rotational-vibrational spectrum; see Sect. 10.4.

9.2.3 The Non-Rigid Rotor

When rotational spectra are analyzed with a high precision, it becomes apparent that the ab-
sorption lines are not exactly equidistant; instead, their spacing becomes smaller and smaller
as the quantum number J increases. To understand this, one has to assume that the inter-
nuclear distance of the atoms in the molecule changes with changing rotational quantum
number J. It increases with increasing rotational energy, i.e. with increasing values of J,
due to a centrifugal distortion of the molecule. The moment of inertia becomes larger as a
result of this distortion. We thus must abandon the rigid rotor model in favor of the non-rigid
rotor, in which the two nuclei are attached to one another by a bond with an elastic force
constant k. This fact becomes particularly important for the analysis of rotational spectra in
which molecular vibrations are also involved, so-called rotational-vibrational spectra. If the
molecule is not only rotating, but also vibrating, the deviations from the rigid rotor model
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depend on the type and the frequency of the vibrations and are often much stronger than in
the case of purely rotational motion.

But first we consider only the rotation of a diatomic molecule, that is the model of the
rotating non-rigid dumbbell. For a quantitative description, one must assume that the rotor
is not rigid, and that an elastic bond exists between the two atoms, having a force constant &
(cf. Fig. 9.3). A rotation, or rather the centrifugal force that it generates, produces a stretching
of the molecule. Classically, we can calculate the new internuclear distance R to be:

m;Rw* = k(R —R,) , (9.18)

where R. denotes the equilibrium internuclear distance in the molecule at rest, and w is the
circular frequency of the rotation.

We thus have an equilibrium between the centrifugal force, which tends to stretch the
molecule, and the elastic bonding force between the atoms. Qualitatively, it can be seen that
a stretching increases the distance between the two masses m; and m; and thus the moment
of inertia; this reduces B and the energy values E; are lowered. The quantitative calculation
follows from (9.18):

mRw*  mlR'0’  (Ow)?

AR=R—R. = = = . 9.19
¢ k km:R3 ~ km,R3 ©19
From this, we find
L? L?
R—R=——>—, 9.20
*" km.R® ~ km.R? ©:20
in which we have replaced R by R. as a result of
AR AR
R*=(R.+ AR’ =R 1+ +...], <1. 9.21)
R, R.

For the total energy,

Ext = L lk(R R.)?
rot—zerez 7 €

this model calculation based on classical physics then leads by a few simple steps to:

L? L4
= 2m:R? ~ 2km2RS

Eror 9.22)

If we now make the transition from classical mechanics to quantum mechanics and replace
L? by J(J + 1)h?, as usual, we finally obtain for the rotational energy:

hZ 4
Eg=——JJ+1 - J2(J + 1)? Joul 9.23
iy J+1 2knZRE J+1 [Joule] (9.23)
and for the rotational terms:
E
FN)="2=BJUJ+1)-DJ*U+1)?* [m], (9.24)

he
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where we have introduced a centrifugal stretching constant D defined by (9.23) in a way
analogous to the definition of B. This constant D is much smaller than B; it follows from
(9.23) that

h3

D=——7—— 1.
inko?Ree ]

(9.25)
Insertion of numerical values into (9.25) and comparison with (9.13) yields approximately
1073 to 10~ for the relative magnitude D/B. The stretching term DJ2(J + 1)2 in (9.23)
is thus nearly negligible as long as J is small, but it may become important for large J. A
measurement of D combined with (9.25) yields the force constant &k of the bond and from
it, the frequency

1 [k
v=— [—
2\ m,

1 k

T=—|—

-1
s or
[s™] 2nc\ m;

[cm™!] (9.26)

of the valence oscillation along the direction of a line joining the two nuclei in the molecule,
as we shall show in Sects. 10.2 and 10.3. There, we will also discuss more precise methods
of studying these vibrations.

The term scheme of the non-rigid rotor can be found from that of the rigid rotor by
shifting the terms as illustrated in Fig. 9.5. The spectrum is then slightly modified, as is also
indicated schematically in the figure. The frequencies of the lines in the rotational spectrum

of the non-rigid rotor may be found from (9.23) by applying the selection rule AJ = +1
for a radiative transition:
Vo =FUJ+1)=FWJ)=2B(J +1)—4D(J + 1)?

[em™']. 9.27)

Fig.9.5. The energy levels and
the spectrum of a non-rigid ro-
tor compared to a rigid rotor.
A value D = 1073 B has been
assumed for the stretching con-
stant D. The levels of the rigid
rotor, which are equidistant with
a spacing of 2B, are shifted
towards lower energies in the
non-rigid rotor, and the shift in-
creases with increasing J. This
effect is exaggerated in the fig-
ure
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The selection rules remain unchanged, since the symmetries of the rotational states are not
changed by the elastic force of the bond.

As an example we give the numerical values for the simple case of HCIl. From Table
9.1, we find for this molecule, assuming that it is a rigid rotor, 2B = 20.79 cm™!. For the
non-rigid rotor, the correction term is found to be 4D = 0.0016 cm™!; see Table 9.2.

Table 9.2. A comparison between experimental and calculated
values for the positions of the rotational absorption lines of
HCI, in em~! [from (9.24) and (9.27) with 2B = 20.79 cm™!
and 4D = 0.00016 cm™!]

J—>J+1 Experimental Calculated for

rigid  non-rigid rotor
0-1 20.79 20.79 20.79
3-4 83.03 83.16 83.06
6-7 145.03 145.53 144.98
9-10 206.38 207.90 206.30

Table 9.2 compares the measured and calculated spectral line positions for the HCI
molecule using the quoted values of the constants.

9.3 Isotope Effects

The extreme precision with which molecular moments of inertia can be determined with ro-
tational spectroscopy by measuring B leads to an important application. From the line shifts,
the masses of isotopes can be determined by investigating molecules containing different iso-
topes of the same elements. From the line intensities, the relative abundances of the isotopes
can also be found. Since the moment of inertia is inversely proportional to the rotational
constant B, molecules containing heavy isotopes have rotational lines corresponding to lower
quantum energies and smaller line spacings. Naturally, the isotope effect is particularly large
in the case of hydrogen. The rotational constant 2B of light hydrogen, H,, is 121.52 cm™!;
for heavy hydrogen, D, or 2H,, it is found experimentally to be 2B = 60.86 cm™!, i.e. nearly
exactly half as large due to the doubled mass and the resulting doubling of the moment of
inertia. By the way, we can also see from this result that the internuclear distance in the
H, molecule is hardly changed when the heavier isotopes are present. In other molecules,
the differences are smaller. For example, for the '2CO molecule, 2B is found to be 3.842
cm™!, and for the 3CO molecule containing the heavy isotope of carbon, 2B is equal to
3.673 cm™!. Figure 9.6 shows as an example the differences in the rotational spectra of CO
containing the isotopes 2C and *C.

In polyatomic molecules, the internuclear distances of the various atoms in the molecule
can also be determined from the isotope effect. As an example, we consider here the linear
molecule carbon oxysulphide, OCS. As we have already mentioned, a measurement of the
rotational constant B of a linear molecule allows the determination of the moment of inertia
perpendicular to the symmetry axis, but this quantity alone does not permit the calculation
of both bond lengths from the central C atom to the O and S atoms. By carrying out
measurements on molecules substituted with different isotopes, such as for example CO32S
and CO*S, one can, however, determine the individual CO and CS bond lengths from the
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moments of inertia, assuming that the CS bond length does not change on changing the
isotopic composition of the molecule. This is shown in the following.
We define the molecular centre of gravity by the equation
moRo +mcRc = mgRs (9.28)

where Ro, Rc and Rg are the distances of the O, C, and S atoms from the centre of gravity
(see Fig. 9.7); then the moment of inertia is found to be

® = moR3 + mcR% + mgR? . (9.29)
In addition, for the distances we have
Ro = RCO + RC and Rs = RCS — RC , (930)

where Rco and Rcg are the internuclear distances of the O and S atoms from the central C
atom (bond lengths).
Inserting (9.30) into (9.28) yields

MRc = msRcs —moRco , 9.31)

where M = mo + m¢ + mg is the total mass.

Now we insert (9.30) into (9.29) and obtain

© =mo(Rco + Rc)? + mcRE + mg(Res — Re)? 9.32)
= MRZ + 2Rc(moRco — msRes) +moR%, + msR2 . '

Using (9.31), we finally find the following expression for the moment of inertia:
(moRco — msRcs)?
M

For molecules containing various isotopes, one finds different ® values as a result of the
differing masses.

©® =moREy + msR:g —

(9.33)

Fig.9.6. The isotope effect on
the rotational terms and the cor-
responding rotational spectrum
of the CO molecule. The rota-
tional constant B of the heav-
ier molecule is smaller than that
of 12CO, and therefore the lines
from 13CO (dashed) are shifted
to lower energies. The shift is
exaggerated in this drawing

m m

s

m.
FRet— Rg —
Fig.9.7. The carbon oxysul-
phide molecule, OCS, indicat-
ing the definitions of the masses
and the distances of the O, C,

and S atoms from their common
centre of gravity

[+
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Fig.9.8. The Stark splitting of
the rotational terms J =0, 1, 2,
shown schematically. The Stark
effect is the same for the posi-
tive and the negative signs of
the quantum number M. The
Stark shift is given by AE =
—p?E?/6hB for the state with
J=0

Equation (9.33) connects a measurable quantity, the moment of inertia &, with two
unknown quantities, the bond lengths Rco and Rcs. If one wishes to determine these bond
lengths, then it is necessary to measure the moments of inertia @ of two molecules with
different isotopic compositions; one then obtains two measured quantities @, and @, and
two unknowns, the bond lengths which are to be determined. In this way, the bond lengths
Rco = 1.16 A and Rcs = 1.56 A were found by substituting sulphur isotopes of relative
atomic masses 32 and 34 into the OCS molecule.

9.4 The Stark Effect

The modification of the quantum energy of spectral lines or the splitting of energy levels
by a static electric field is known to us from atomic physics under the name Stark effect. In
molecular physics, a static electric field leads to a lifting of the (2J + 1)-fold degeneracy of
the rotational levels, since different states belonging to the same J but with different values
of the M quantum number have differing probability distributions for their charge densities
relative to the molecular symmetry axes, and thus correspond to different polarisations by
an electric field. For diatomic molecules, the energy shift can be written as:

p2E2

B

where the direction of the E field now gives the quantisation axis for the M quantisation.

In (9.34), p is the electric dipole moment of the molecule and E is the electric field
strength; f(J, M?) is an abbreviation for an expression depending on the quantum numbers J
and M, in which M enters only quadratically. One thus obtains a splitting into (J+1) sublevels,
as shown in Fig. 9.8. As in atomic physics, the selection rule for optical transitions allows
transitions with AM = 0, so-called 7 transitions, as well as transitions with AM = =1,
the o transitions. Furthermore, the usual selection rule for electric dipole radiation holds,
1.e. AJ = £1. We will not concern ourselves here with the computation of the function
f(J, M?). The splitting is very small; typical values of Av/v lie between 10~ and 1073 at
an electric field strength of 10> V/cm.

AE; =2 f(J, M),

(9.34)

J M
0
1

1+ 1+

~N
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The Stark effect is important because it can be used relatively easily as an aid to the
measurement of rotational spectra. One simply adds a central electrode to the microwave
cavity in which the gas being studied absorbs microwave radiation, and uses it to apply the
required static electric field. The energy terms to be measured can then be shifted or, if an
alternating field is applied, they can be modulated at the frequency of the applied field. Some
important applications of the Stark effect in molecular physics are:

— the determination of the quantum number J from the splitting pattern of individual
rotational lines according to (9.34);

— the determination of molecular electric dipole moments p from the magnitude of the
splitting or the term shifts in the applied field. This is an important method for measuring
the dipole moments of molecules. It complements the usual method of measuring the
dielectric constant ¢ to determine dipole moments, as discussed in Sect. 3.3;

— the Stark effect is essential for experimental rotational spectroscopy because it can be
employed for effect modulation with a corresponding improvement in signal/noise ratio
and precision in the measurement of rotational absorption spectra.

9.5 Polyatomic Molecules

In order to describe the rotation of a polyatomic molecule we require, as we know from
classical mechanics, three principal elements of the inertial tensor, ®,, ©p and O¢ in the
general case, with respect to the three principal axes A, B and C. These are three mutually
perpendicular directions about which the moment of inertia takes on maximal or minimal
values. If the molecule has a symmetry axis, then it is one of the principal axes of the inertial
tensor. Figure 9.9 shows some of the important types of small polyatomic molecules.

Fig.9.9. Important molecular
structural types of small poly-
atomic molecules. From left to
right and from ftop to bottom:
linear symmetric top, asymmet-
ric top, symmetric top [distorted
tetrahedron (example: CH3Cl)],
spherical top, tetrahedral (exam-
ple: CCly), and octahedral (ex-
ample: SF¢)
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We denote the molecule-fixed coordinate system by x, y, z; then the kinetic energy of
rotation of such a molecule is given by:
2
p 5 U
20, 20, 20,

Eyin = (9.35)
where L,, Ly, and L, are the components of angular momentum along the corresponding
principal axes.

In order to calculate the rotational levels of a polyatomic molecule, the various axes and
moments of inertia must be taken into account. In the general case, the so-called asymmetric
top molecule, all of the principal elements of the inertial tensor are different from each
other; an example is the H,O molecule. The solution of the Schrédinger equation for such a
molecule yields (2J + 1) different eigenvalues and eigenfunctions for each J value. There is,
however, no general formula for such molecules, and each one must be analyzed individually.
There is no preferred symmetry axis, and therefore none of the principal angular momentum
components L., Ly or L, is quantised. We shall treat this problem in more detail in Sect.
11.2. This general case of the asymmetric top will therefore not be discussed further at this
point.

A simpler case is that of the symmetric top molecule. This term refers to a molecule in
which two of the principal elements of the inertial tensor are the same, for symmetry reasons.
Examples are NH;, CH3Cl, and C¢Hg. The solution of the Schrodinger equation in this case
again yields a quantised total angular momentum according to

Ll =t/TJ +1), J=0,1,2.... (9.36)

There is now a special symmetry direction within the molecule owing to the charge distri-
bution. If we take the x-axis to be the direction whose moment of inertia is different from
the other two, then x is this special direction, and a second quantisation condition holds for
the component of the total angular momentum along the x-axis of the molecule:

L, =K -h. 9.37)

The quantum number K introduced here can take on the values 0, 1, ..., £J. It refers to
the molecular axis, while the quantum number M introduced earlier refers to an externally
determined quantisation axis (e.g. by an applied field).

We thus now have a second quantisation condition for the angular momentum relative to
the x-axis; cf. also Sect. 11.2. The energy of the rotational levels is then given by:

Ewt = BheJ(J + 1) + ChcK? with

h A1 1
B=—t _ C=—(—-—). 9.
snico, d 872c (@X @,) 0-38)

The (2J + 1)-fold degeneracy is thus lifted. However, for K # 0, the two-fold £|K|
degeneracy remains, since K enters (9.38) quadratically. This means that the rotational
energy is the same for +K and —K, since these two states differ only in the sense of
their rotation. We can make further distinctions between

— cigar-shaped molecules with @, < @, = @, (prolate spheroids). An example is CH;Cl,
where x is the direction of the axis of 3-fold symmetry between the Cl and the C atoms.
In this case, C < 0 and the levels are shifted to smaller energies with increasing K ;
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— pincushion-shaped molecules, with ®, > @, = O, (oblate spheroids). An example is
the benzene molecule; here, C > 0 and the levels are shifted to higher energies with
increasing K values.

Alltogether, the spectrum of a symmetric top molecule is quite similar to that of a diatomic
(or, more generally, of a linear) molecule, since the different K groups only contribute a
parallel shift of the whole term scheme. As an example, Fig. 9.10 shows a portion of the
rotational spectrum of CH;F. The selection rules AJ = +1 and AK = 0 apply here.

For the intensities, the degree of degeneracy of the rotational levels is important. Cor-
responding to the quantum numbers J and K, and since K enters the energy expression
quadratically, all the levels (except for K = 0) are doubly degenerate. In addition, the con-
dition for the orientation of the angular momentum with respect to an externally determined
quantisation axis, denoted by the quantum number M, must be considered; see Sect. 9.2.1.
This quantum number is to be sure not required for the calculation of the rotational energy,
for example using (9.38), but it is needed to characterise other properties of the states, e.g.
their symmetries and degrees of degeneracy.

In the case of a linear symmetric top, with K = 0, each level has a (2J + 1)-fold
degeneracy with respect to M (cf. Sect. 9.2.1). In the spherical top, in contrast, there is in
addition to the (2J 4-1)-fold degeneracy with respect to an external quantisation axis a further
(2J 4 1)-fold degeneracy with respect to the orientation of the angular momentum relative
to one of the molecular axes. Each level belonging to a particular J is thus (2J + 1)2-fold
degenerate. In molecules with still lower symmetry, the degeneracy is still more complicated.
As we already discussed in Sect. 9.3, the M degeneracy can be lifted by an externally applied
electric field (Stark effect), up to a two-fold degeneracy related to the sign of M.

It naturally holds equally well for polyatomic molecules that the approximation of a
rigid molecular framework is only roughly applicable. In reality, distortions of the molecule
due to rotations, and more especially to vibrations, must be taken into account. This can be
done, as in the case of a dumbbell molecule, by introducing correction terms. In addition
to the correction term which was already discussed for the rigid dumbbell rotor, there is a
correction term proportional to K2 for the symmetric top molecule.

Those molecules with tetrahedral symmetry occupy a special place among polyatomic
molecules, e.g. CHs and CCly (spherical top). In this case, all three moments of inertia
with respect to the x-, y- and z-axes are equal for symmetry reasons, and the permanent

Fig. 9.10. A portion of the rota-
tional spectrum of the symmet-
ric top molecule CH3F, shown
schematically. The states char-
acterised by the quantum num-
ber J (upper part) are split fur-
ther according to the quantum
number K (lower part). After
Banwell
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Fig.9.11. Bond lengths in pm
and angles in the planar mole-
cule pyridine, derived from ro-
tational spectra. After Labhart

electric dipole moment p is zero. These molecules therefore have no infra-red active rotational
spectra. We mention here in advance that they are also inactive in Raman spectroscopy, since
their polarisabilities are isotropic; more on this subject follows in Chap. 12.

At the conclusion of this section on molecular rotations, we should mention that a ro-
tation about the cylinder axis of linear molecules (including polyatomic linear molecules),
i.e. streched linear symetric tops, has not been taken into consideration so far. The reason
is that the moment of inertia about this axis is practically equal to zero, owing to the dis-
tribution of mass in the molecule. The rotational constant B is therefore extremely large,
larger than the binding energy of the molecule, and this rotation is practically unobservable
spectroscopically. The quantum number K is zero.

The great precision with which one can obtain structural data even for somewhat larger
molecules is illustrated in Fig. 9.11, using as an example the pyridine molecule. All of the
internuclear distances and the bond angles in molecules which are not too large can be
determined precisely using spectroscopic methods.
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In contrast to atoms, molecules have internal degrees of freedom: their vibrational states
can be excited, for example. The spectroscopy of these vibrations yields information on the
structure and the bonding of the molecules. Here, as for molecular rotations, the fundamentals
are best studied in diatomic molecules; this includes the coupling between vibrations and
rotations (Sects. 10.1-10.4). Following an overview of the extensive field of vibrations of
larger molecules in Sect. 10.5, we treat applications of molecular vibrations to radiation
sources and lasers in Sects. 10.6-10.8.

10.1 Infra-red Spectroscopy

Within molecules, the atoms can undergo vibrations around their equilibrium positions, where
they are located in the electronic ground state which we have considered up to now. These
vibrations can appear in the optical spectra of the molecules; their frequencies lie in the infra-
red spectral region. The measurement of spectra in the infra-red is at present carried out either
with the aid of a grating spectralphotometer or, increasingly, using Fourier spectrometers.
Light sources in the infra-red are thermal radiation sources such as the Nernst rod or the
so-called Globar; the latter is a rod of SiC, which is heated to about 1500 K by means of
an electric current. In the far infra-red region, gas plasma sources are superior; for example,
the plasma in a mercury or xenon high-pressure lamp can be used.

For the detection of infra-red radiation, thermal detectors such as bolometers or the
Golay cell, which is based on the heating of a volume of gas by absorbed IR radiation, may
be employed. However, the most sensitive radiation receivers are special photoconductive
detectors sensitised to the infra-red range, and photodiodes made of suitable semiconductor
materials which can be tailored to the desired wavelength range, sensitivity, response time,
and other parameters. Vibrational spectra are usually investigated in the form of absorption
spectra; the transition probabilities for spontaneous emission from excited vibrational states
are very small, so that vibrational spectroscopy in emission is hardly practicable. Another
method for the study of vibrational spectra is Raman spectroscopy, which we shall treat in
Chap. 12.

One can readily understand why molecular vibrations lie in the infra-red spectral region;
this can be shown by a simple estimate for the HCl molecule. We assume that in this
molecule, the H" and CI~ ions are bound together at their equilibrium distance R. by
electrostatic attraction according to Coulomb’s law. If we increase the bond length to R, we
create a restoring force Fr which is given by:

Fr =—k(R—R,) . (10.1)
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The index e stands here for “equilibrium”.
The force constant k£ can be calculated in this model: assuming a pure Coulomb force,
we find

_dF _ 2¢

=— = 10.2
dr  4meR? (1.2

Inserting the measured equilibrium bond length R, = 1.28-107!° m, we find k = 220 Nm~'.
The eigenfrequency in this mass—and—spring model is given by

w=2Ty = /i s7!, (10.3)
me

with m, = reduced mass.

This is the classical oscillator frequency.
Inserting the numerical values, we find

v=or=585-10°Hz and A=512pum.
2
The measured values for HCl, ¥ = 516 Nm~! and A = 3.5 um, are of the same order of
magnitude as those resulting from our greatly simplified model. We can conclude from this
that the basic assumptions of the model are correct, but that we must refine it further.
At this point we give some typical numerical values for the force constants of different
types of chemical bonds:

Covalent bonds, as in H,: 5-10° Nm™!
Double bonds, as in O: 12- 10> Nm™!
Triple bonds, as in Nj: 20-10°> Nm™!
Tonic bonds, as in NaCl: 1-10* Nm™!.

10.2 Diatomic Molecules: Harmonic Approximation

We first consider again the vibrations of the simplest molecules, i.e. the diatomics. The
vibrational spectrum of a diatomic molecule consists, when it is observed at low spectral
resolution, of one line in the infra-red at the frequency v, and a series of “harmonics”
with strongly decreasing intensities at the frequencies 2v, 3v, 4v, ..., as shown in Fig. 10.1,
taking the CO molecule as an example. Here, v is the frequency of the stretching vibration
of the molecule. In this mode of vibration, the internuclear distance in the molecule changes
periodically with the period of oscillation. If the resolution is sufficiently increased, it is
seen that each of these lines has a characteristic substructure; they consist of a manifold
of nearly equidistant lines. Figure 10.2 shows this structure, also for the case of CO. It is
very similar to the rotational spectra treated in Chap. 9 and arises from the fact that the
vibrating molecules also rotate, and that vibration and rotation are coupled. Such spectra
are therefore called rotational-vibrational spectra or band spectra, since the lines occur in
groups which form a “band”. There are no vibrational spectra of free molecules without
rotational structure. However, the structure does not appear when the spectral resolution is



10.2 Diatomic Molecules: Harmonic Approximation

147

insufficient or when, as in the condensed phases, interactions with other molecules of the
same or different types broaden the lines to such an extent that inhomogeneously broadened
vibrational bands without resolved rotational structure result.

We at first leave rotational structure out of the discussion and consider only the vibrations.
We calculate the energy levels of the vibrations of a diatomic molecule initially using the
dumbbell model as introduced above, in terms of a harmonic oscillator with a force constant
k along the line connecting the two nuclei in the molecule. We thus approximate the potential
V of the bond as a parabolic potential with

k 2

V= 3 (R =Ry, (10.4)
where R is the deviation from the equilibrium distance R.. The quantum-mechanical calcu-
lation yields the following energy levels (see Sect. 9.4 in I):

Eg=ho@w+1), v=01,2,...  [Joule]. (10.5)

In this equation, w is the classical oscillator frequency as in (10.3). The lowest energy (for
v = 0) is the zero—point energy (Eip)o = hw/2.

If we now use terms, measured in cm™!, instead of the energy levels, we have to divide
the levels Eyp in (10.5) by Ac. In molecular spectroscopy, it is also usual to denote these
vibrational terms by G, and to write

Evib
hc

G, = =w, (v+1) [cm™']. (10.6)

Fig. 10.1. The vibrational spec-
trum of CO in the gas phase.
The fundamental vibration is at
2143 em™!, and the first har-
monic is at 4260 cm~!; mea-
sured with a poor spectral reso-

lution. After Banwell

Fig.10.2. The fundamental vi-
bration of the CO molecule,
measured at a high spectral
resolution. Left and right of the
centre at v = 2143.28 cm™! are
the P and R branches. Evalu-
ation according to (10.30-32)
yields ve = 2169.7 em™ L x, =
0.0061, Be = 1.924 cm™!, and
@ = 0.0091 cm™!
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The vibrational constant introduced here, which is often used in molecular spectroscopy, is
defined by

_ha)
" he

and is the wavenumber corresponding to the classical frequency, as calculated from (10.3).

In the following, we will not use this notation in terms of w,, in order to avoid confusion
with the use of w as a circular frequency; instead, we will use only the symbol v for
the measured energies, when they are quoted in wavenumbers. The eigenfrequency of the
harmonic oscillator, as in (10.5), will be denoted correspondingly by v, and the wavenumber

@, =7, (10.7)

by Ve.
A new quantum number v has also been introduced in (10.5); it measures the quantisation
of the vibrations. With increasing quantum number v = 2,3, ..., vibrational states with

higher and higher energies are reached. For v = 0, we find from (10.5) the zero-point energy
(Eyip)o = hw/2, which is not understandable in classical terms. Its existence results from
the uncertainty relation for position and momentum (cf. I, Sect. 7.3). Even in the lowest
vibrational level (v = 0), the vibrational energy is thus not equal to zero, but instead it has
the value w/2. The vibration frequency @ = 27 v, can again be calculated as

o= [— s . (10.8)

Here, it is important to note that the vibration frequency depends on the reduced mass of the
molecule. In molecules containing atoms of very different masses, m; > m,, m, is not very
different from m,. This can be understood intuitively, since in such a molecule, practically
only the lighter mass m; is in motion, oscillating as if against a solid wall consisting of the
greater mass m.

The energy levels in a parabolic potential according to (10.5), and the corresponding
occupation probabilities |¢?| of the oscillator, are shown in Fig. 10.3. From the figure it
also becomes clear that for large vibrational quantum numbers, the occupation probabilities
calculated from quantum mechanics become similar to those calculated classically. If we state
in advance that the selection rule for optical transitions requires that the vibrational quantum
number change by one unit, i.e. Av = =£1, then we may expect a spectrum consisting of
only a single line, owing to the fact that the energy levels are equidistant, with the quantum
energy E,,; — E, = hv, or the wavenumber 7, (cm™!).

As a general selection rule for the appearance of vibrational spectra, we find as for
rotational spectra that the vibration of the molecule must be accompanied by an electric
dipole moment, which changes in the corresponding transition. This is the selection rule for
electric dipole radiation.

In the case that atoms of the same type oscillate relative to one another, for example
in a homonuclear diatomic molecule such as Hy, N;, or O,, no dipole moment is present
and there is no change in a dipole moment. In such molecules, vibrational or rotational—
vibrational transitions are forbidden in the optical spectra. Their vibrational frequencies are
therefore termed “optically inactive”.

Nevertheless, these frequencies can be observed. On the one hand, in the discussion
of the Raman effect in Chaps. 12 and 17, we shall see that they occur in Raman spectra
owing to a change in the polarisability accompanying the vibrations. On the other hand, the
frequencies can also be observed directly in the infra-red spectra — to be sure, with intensities
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reduced by several orders of magnitude — because the dipole-free molecules usually have
electric moments of higher orders. The path length in the absorbing gas must then be made
accordingly long, since the corresponding transitions show considerably reduced transition
probabilities.

10.3 Diatomic Molecules. The Anharmonic Oscillator

In reality, the potential curve of a diatomic molecule is not parabolic, as we assumed in
the previous section. The true potential must be asymmetric with respect to the equilibrium
distance R., as one can readily see. A reduction of the internuclear distance relative to R,
leads namely to an increase in the repulsion between the two atoms, since the attractive
Coulomb potential is superposed with a repulsive potential of shorter range, which prevents
the two atoms from penetrating each other and produces a stable equilibrium distance (see
Fig. 1.2). The potential curve thus becomes steeper for R < R.. On the other hand, an
increase of the internuclear distance leads to a weakening of the chemical bond and finally
to dissociation. In this range, i.e. for R > R., the potential curve becomes flatter. A more
realistic potential curve than that of a harmonic oscillator is shown in Fig. 10.4, again using
HCI as an example.

An often-used empirical approach which agrees well with experience is the so-called
Morse potential:

V = D[l — e ®R=RI2 (10.9)

Here, D, is the dissociation energy and a is a quantity which is characteristic of the molecule
under consideration:

a=(m/2D)"*w,  [em™'].

Fig. 10.3. A potential curve for
the harmonic oscillator, with
energy levels and occupation
probabilities [, (R — Re) [2. Af-
ter Hellwege
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Fig. 10.4. The Morse potential
curve for the HCl molecule. A
harmonic potential is drawn in
as a dashed curve for compar-
ison. The dissociation energy
from the potential minimum is
called D,

It depends on the reduced mass and the harmonic oscillator frequency.

The parameter a in the Morse potential thus contains the wavenumber corresponding to
a harmonic oscillator, as well as the dissociation energy and the reduced mass, all quantities
specific to the molecule.

In the neighbourhood of the minimum in the potential curve, the deviations of the Morse
potential from a harmonic (parabolic) potential are in fact small, and the harmonic oscillator
is a good approximation in this region. For R = R, V = 0, and for R — oo, V is equal to
D,. At small internuclear distances, R — 0, the approximate potential of (10.9) is no longer
valid.

At large deviations, R > R., the Schrédinger equation must be solved using the Morse
potential for the potential energy, if one wishes to calculate the anharmonic oscillator. This
is possible in closed form.

In this way, we arrive at the energy terms of the anharmonic oscillator; cf. Fig. 10.5. To
a good approximation, they are given by:

E, =hw.(v + §) — Xchw(v + §) (10.10)
or
Gy =Te(v+3) — xeTe(v + 7).

In fact, one often uses a generalisation of (10.10) for the evaluation of experimental data; it
contains further terms with higher powers of (v + 3), in particular the term +ychw, (v + 1)*.

We note that here the symbol w, is used for the circular frequency 27 v, and it should
not be confused with the constant w, as frequently used in molecular spectroscopy; compare
(10.6) and (10.7).

In (10.10), w. = 2w, is thus the value of the frequency of vibration, which we shall
soon define more precisely, and x. is the so-called anharmonicity constant, which is defined
by the expression

_ hwe
T 4D,

Xe (10.11)

The constant x. is always positive and is usually of order 0.01.
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Strictly speaking, still higher terms should be included in (10.10), as we mentioned above;
they contain higher powers of (v + %). These are, however, very small corrections and will
be neglected in the following.

The meaning of w. can be seen from a comparison of (10.10) with the terms of the
harmonic oscillator, (10.5). We can rewrite (10.10) in the form:

E, =hw(v+ D[] —xe(v + D] (10.12)

and see by comparing with (10.5) that we need to replace the vibration frequency w in (10.5)
by

Wy = we[l — xe(v + 1)] (10.13)

when we make the transition from the harmonic to the anharmonic oscillator. In the an-
harmonic oscillator, the vibration frequency as in (10.3) decreases with increasing quantum
number v. In the hypothetical (because of the zero—point oscillation) case E, = 0, i.e.

v = —1/2, when the molecule would be in a state of no vibration and at rest, we would
have

w=w. (10.14)

The vibration freqeuncy w. of the harmonic oscillator is thus a purely theoretical quantity,
which is equal to the hypothetical vibration frequency of the anharmonic oscillator without
zero-point oscillations. The index e means “equilibrium” here, too.

The highest vibration frequency in reality is that at v = 0; it is equal to:

Xe
Wy=0 = We (1 - E) . (10.15)
Equation (10.10) thus describes the increasingly closer approach of the energy levels with
increasing quantum number v, in agreement with the experimental evidence. The highest
discrete bound level is at the energy D.. Above D, there are only continuum states, and the
molecule is dissociated. This region is called the dissociation-limit continuum.

Fig. 10.5. The energy levels of
an anharmonic oscillator. The
three arrows correspond to the
fundamental frequency and the
first two harmonics in the vibra-
tional spectrum. One can readily
recognise the increase of the av-
erage internuclear distance with
increasing quantum number v
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The average internuclear distance of an anharmonic oscillator increases with increasing
vibrational quantum number v, in contrast to the case of the harmonic oscillator, due to the
asymmetric potential curve. This is clear from Figs. 10.5 and 10.6. This change in internuclear
distance is also the cause of thermal expansion in solid materials: at higher temperatures the
molecular oscillators are on the average in vibrational states with higher quantum numbers
v, 1.e. with larger intermolecular distances R.

As Fig. 10.5 illustrates schematically, it is necessary in quoting the dissociation energy
to distinguish whether it is measured from the minimum of the potential curve or from the
lowest term, with v = 0. We shall denote these two quantities by the symbols D, and D,.
The values for the H, molecule can be read off from the experimental curve in Fig. 10.6.

We give a few numerical examples for clarification: in the ' H*3CI molecule, the wavenum-
ber of the stretch vibration is found to be ¥ = 2900 cm~! and x, = 0.0174. Using (10.10),
we calculate from this D, = 5.3 eV. This quantity should be larger than the measured dis-
sociation energy Dy by an amount equal to the zero-point energy, here 0.2 eV; compare
Fig. 10.5. The experimental value is Dy = 4.43 ¢V. The agreement is thus not very good.
The total number of discrete vibrational levels between the zero point energy and the energy
value Dy gives the largest possible quantum number vp,y, with

hwe[ (Umax + %) — Xe(Umax + %)2] = D, (10.16)

yielding vmax = 22, as compared to 14 if a harmonic oscillator were assumed, i.e. if x. = 0.
Table 10.1 contains some further examples of measured values for diatomic molecules.

Table 10.1. Fundamental vibrational constants, force constants k, and
dissociation energies Dy of some diatomic molecules. After Engelke

Molecule 7 [em™!] k [Nm™!] Dy
(v=0—> v=1 trans.) [kcal/mol]
H, 4159.2 5.2.10% 104
D, 2990.3 5.3 104
HF 3958.4 8.8 135
HCl 2885.6 438 103
HBr 2559.3 3.8 87
HI 2230.0 29 71
Cco 21433 18.7 257
NO 1876.0 15.5 150
F, 892.0 45 38
Cl, 556.9 3.2 58
Br, 321.0 24 46
L 2314 1.7 36
0, 1556.3 11.4 119
N, 2330.7 226 227
Li, 246.3 1.3 26
Na, 157.8 1.7 18
NaCl 378.0 1.2 98
KCl 278.0 0.8 101

Since the experimentally determined dissociation energy of a molecule, Dy, measures the
energy difference between the dissociation limit and the zero-point energy of the molecule,
the dissociation energies of molecules with different isotopic compositions should differ
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by an amount equal to the difference in the zero-point energies, if — as is true to a good
approximation — the energy of the chemical bonds depends only weakly or indetectably on
the isotopic mass.

In this connection, the measured values for the hydrogen molecule are interesting. The
numerical value for the dissociation energy of heavy hydrogen, H, or D, is 4.55 ¢V and
is therefore 0.077 eV or 621 cm™! larger than that for the light isotope 'H,. This difference
is close to the difference of the zero-point energies:

o('Hy) — i9CHy) ,

where V) refers to the quantum energy of the valence vibration of the hydrogen molecule. The
measured values for the lowest vibrational transition, i.e. for the transition v =0 — v = 1,
are 4159 cm~! for 'H, and 2990 ¢cm™! for 2H,. The difference of the zero-point energies
is thus equal to half the difference of the vibrational quantum energies, here 584 cm™!,
and is close to the value 621 cm™! quoted above. This agreement can in fact be taken as
experimental proof for the existence of zero-point oscillations if the assumption is made that
the dissociation energy resulting from the potential curve, D, is the same for light and heavy
hydrogen. In the case of heavy hydrogen, an amount of energy D, which is larger by the
difference of the zero-point energies must be applied in order to reach the dissociation limit,
if the lowest possible ground state of the molecules lies at an energy which is (1/2)hv, above
the minimum of the potential curves.

A modemn method for separating molecules with different isotopic compositions is based
on this difference in dissociation energies of isotopically different molecules due to their
different zero-point energies. The molecules to be separated are irradiated with intense light
from a laser whose quantum energy has been chosen to be sufficiently high to cause disso-
ciation of one type of molecule in the isotopic mixture, but not the other(s).

Fig. 10.6. The vibrational levels
of the Hy molecule and the po-
tential curve which results from
them. The dashed curve is the
corresponding Morse potential.
The continuum region above the
dissociation energy is shaded.
After Herzberg
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Table 10.2. Vibrational transi-
tions for 'H33Cl, as described
by (10.18) with 7, = v - 2988.9
[1—0.0174(v + 1)] em™!

v v

01 v = 2885.9 cm™!
0—2 vy = 5668.0 cm™!
03 V3 = 8347.0 cm™!
04 V4 = 10923.5 cm~!

From the energy terms we can derive the absorption spectrum of an anharmonic oscillator
by applying the selection rules. The selection rule Av = £1 for the harmonic oscillator must
be modified somewhat in the case of the anharmonic oscillator; in addition to the singly-
excited vibrations, harmonics can also be produced with a reduced transition probability. We
have

Av =41, £2, £3 ..., (10.17)

where the relative intensities are roughly in the ratios 1: xe : x2:x2 ... .

Since x. is a small number [cf. the values in Table 10.1, from which x. may be calculated
using (10.11)], the intensities decrease rapidly in the order shown. These are the “harmonics”
which were mentioned earlier; compare also Fig. 10.1. The anharmonicity of the molecular
vibrations is thus responsible for their occurrence.

The quantum energies of the transitions with Av = +1 are now no longer the same
for all values of v, i.e. between all the vibrational terms in the potential curve; instead,
they decrease with increasing v. In the harmonic approximation, the vibrational spectrum
(without harmonics) contained only a single line V., but with an anharmonic potential, we
obtain a series of lines of decreasing intensity, in agreement with observations; it more or
less converges for very large v.

The transitions from the ground state with v = 0 are by far the most important, since
— as will be explained below — the higher vibrational levels are hardly occupied in thermal
equilibrium and therefore play no significant role as initial states for absorption processes.

The energy of the most intense vibrational line from v =0 to v =1 is, from (10.10),

AE = Ev:l - Ev=0
and for the wavenumber, we find by substitution

- AE
Vyeo = % = UUe[l - x.(v+1)] (10.18)

and therefore

— AE
Vieo = = V(1 — 2x) . (10.19)
he

The absorption transitions with Av = 2 and Av = 3, which we have called “harmonics”,
are correspondingly given by:

Vaco = 2Ve(1 — 3x¢)
and
V30 = 3Ve(1 —4xe) .

A numerical example is given in Table 10.2.

Still higher harmonics have such small transition probabilities that they cannot be ob-
served, in general.

The numerical value for the first vibrational transition, V| = v}, thus differs from the
quantity V. which we introduced above for the harmonic oscillator. For Hj, one finds for
example v, = 4159.2 cm™!, and from it the calculated quantity U, = 4395 cm~! with x, =
0.0168.

In the following, we use numbers as indices on the frequency v or the wavenumber ¥ only
to distinguish different vibrations of a molecule; this is necessary in polyatomic molecules,
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which have more than one type of vibration. Transitions between different quantum numbers
v” and v’ of a vibration will be denoted by a parenthesis, e.g. V(v', v”). The symbol v,
will be used in the anharmonic oscillator (as already mentioned) for the calculated quantity
obtained from the application of (10.19) to the observed vibrational transitions; it cannot be
measured directly.

The occupation of the energy levels E, having different vibrational quantum numbers v
is, in thermal equilibrium, proportional to the Boltzmann factor e ~£+/*¥7 and thus depends on
the temperature. Since room temperature corresponds to 200 cm™! as calculated from kT / hc,
the occupation factor for HCl molecules, with a vibrational quantum energy of 2886 cm™!, is
very small at this temperature. Therefore, most HC] molecules at room temperature will be
in the ground state, with v = 0. For this reason, the absorption spectrum consists for the most
part only of the transition from v = 0 to v = 1. It is usual to denote this transition by 1 <« 0,
i.e. to write the higher level first. In order to observe the absorption transitions from levels
with higher vibrational quantum numbers v, it is necessary either to raise the temperature
of the molecules or to excite them into a higher quantum state directly by irradiation with
light or by a chemical reaction. In this case, one can often also observe emission transitions
between states having higher quantum numbers. However, thermal equilibrium is for the
most part quickly reestablished via radiationless processes.

10.4 Rotational-Vibrational Spectra of Diatomic Molecules.
The Rotating Oscillator
and the Rotational Structure of the Bands

Vibrational spectra of molecules have, as we mentioned in Sect. 10.1, a clear-cut rotational
structure, i.e. they consist of bands with many individual lines at a spacing of the order of
a few cm™!, when the spectrum from the gas phase is analyzed with a sufficient spectral
resolution. This rotational structure is based on the fact that a rotational transition occurs
at the same time as the vibrational transition. Now that we have studied the (hypothetical)
non-rotating oscillator in Sect. 10.3 — it represents a relatively good approximation when the
spectral resolution is not very high — we will take up the rotating oscillator in this section.
It corresponds to the real behaviour of molecules in the gas phase. We will again explain the
basic facts using a diatomic molecule as an example. A typical spectrum, that of the HBr
molecule, is shown in Fig. 10.7.

The coupling of the vibrational and rotational motions in a molecule can be understood
in terms of classical physics. If, however, we first ignore this coupling and consider the
excitation of a diatomic molecule in the first approximation to be simply the sum of the
excitation of a harmonic oscillator and of a rigid rotor, then in the simplest case we obtain
the energy levels

E(, J) = Eyip(v) + Era(J)

i (10.20)
=hoW+ 1)+ BheJ(J +1)

with the selection rules Av = +1 and AJ = 1.

In the rotational-vibrational spectrum, transitions are naturally also allowed in which only
the rotational quantum number changes, Av = 0, AJ = %1. These are the pure rotational
transitions treated in Chap. 9. In contrast, in most cases (e.g. HBr, see Fig. 10.7) vibrational
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Fig. 10.7. A band in the rotation-
al-vibrational spectrum of the
HBr molecule, showing the
term scheme and the transitions.
The origin of the band is de-
noted by vg. A Q branch is not
allowed here

transitions without a change in the rotational quantum number, Av = 1, AJ = 0, are not
allowed; that is, usually a change in the vibrational state must be accompanied by a change
in the rotational state. We shall not derive the reason for this here.

However, this fact can be understood in an intuitive manner: a vibrational transition
corresponds to a sudden change of the bond length. The classical analogy is an ice skater
who changes his rotational velocity by extending or retracting his arms while performing a
pirouette. One can imagine a change in the rotational state of a molecule during a vibrational
transition in just this manner — the selection rule AJ = 0 is valid only when the angular
momentum of the molecule is parallel to its cylinder axis.

These rotational and vibrational terms are illustrated schematically in Fig. 10.8 for a
Morse potential. The corresponding transitions are shown in Fig. 10.7 for a portion of a
typical rotational-vibrational spectrum. One observes different “branches” in the spectrum
of a vibrational transition (v -+ 1) < v, i.e. in a band. In the simplified case of a harmonic
oscillator, these are
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— the P branch, with AJ = —1. Taking J”" = J' — 1, we have V = Vo — 2B(J' + 1),
where Vi denotes the pure vibrational transition without rotation. Then the lines of the
P branch have vV < vy, and the line spacings relative to Vi are 2B, 4B, ... as in
the spectrum of a rigid rotor;,

— the R branch, with AJ = +1. Taking J' = J"+ 1, we find V = V1o +2B(J" + 1), i.e.
V > Vi, and the line spacings relative to V| are likewise 2B, 4B, .. .;

— 1in some cases also a Q branch, with AJ = 0. If the rotational constant B is the same
for both the vibrational levels which are involved in the transition, the Q branch (when
it is allowed) consists of a single line at vy, the so-called band origin; otherwise, it

contains a series of closely-spaced lines. In many cases, depending on symmetry, for
example HBr (Fig. 10.7), the Q branch is not allowed.

The line spacings in the rotational-vibrational spectrum again yield the rotational constant
B, as we have already seen in Chap. 9 for pure rotational spectra. This constant can thus
be determined by infra-red absorption without resorting to microwave spectroscopy. The
line intensities within the various branches are, in the first instance, determined by the
occupation numbers of the rotational levels; cf. Sect. 9.3. Again, we remind the reader that
the rotational quanta are usually very small compared to the thermal energy kT and therefore
a Boltzmann distribution according to their degrees of degeneracy can be expected for the
occupations of the rotational levels. On the other hand, in an absorption transition from
the v = 0 to the v = 1 state, the upper vibrational level with its rotational sublevels is
nearly unoccupied in thermal equilibrium owing to the large magnitude of the vibrational
energy quanta. The thermal energy kT at room temperature corresponds to about 200 cm™!,
as mentioned above, while typical vibrational quanta are of the order of 1000 cm™!. The
Boltzmann factor Ni/N = e~4£/*T s thus much less than 1. The intensities in the absorption
spectrum are then determined by the degeneracy factors, which increase with increasing J,
and by the decreasing thermal occupation probabilities of the initial-state rotational levels of
the v = 0 state with increasing J. The same is true of the transitions to v = 2, v = 3, etc.
in the case of the anharmonic oscillator.

Fig. 10.8. Rotational-vibrational
levels in the electronic ground
state and in an excited elec-
tronic state. Only the lowest-
lying rotational and vibrational
terms are drawn. Transitions be-
tween the levels in the elec-
tronic ground state give rise to
the rotational-vibrational spec-
trum. Transitions between the
levels of different electronic
states contribute to the elec-
tronic band spectrum; see Chap.
14
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When the rotational-vibrational spectrum is measured at a sufficiently high spectral reso-
lution, one finds that the lines within the branches are not exactly equidistant. The spacings
become smaller with increasing distance from the origin at v, ¢. This is due to the coupling
between vibrations and rotations. The two motions are in fact not mutually independent; one
cannot simply add the energies of the vibrational and rotational transitions, but instead must
take the interaction of the two types of nuclear motion into account by introducing into the
energy or term values mixed terms depending on both v and J.

As we have already seen, the vibrations of a molecule take place on a much faster time
scale than its rotations. During a single rotation, a molecule vibrates several thousand times.
The rotor therefore sees an internuclear distance (R) which is averaged over many vibrations.
In the case of the anharmonic oscillator, the average internuclear distance (R) increases with
increasing quantum number, v, i.e. with increasing vibrational excitation (see Sect. 10.3).
The moment of inertia then also increases and the rotational constant B becomes smaller. In
addition to the rotational stretching of the molecule which we have already treated in Sect.
10.3, there is thus a vibrational stretching.

This leads to the following relation for the time-averaged moment of inertia:

(B@+1) > (OW) > 6., (10.21)

where O, is the moment of inertia at the equilibrium bond length R.. Correspondingly, the
rotational constant B becomes dependent on the vibrational state v, so that we should write
B, to be more precise. Then B, for v > 0 is smaller than the rotational constant B, for the
ground state with v = 0.

This behaviour is described by the formula

B, =B, —a(v+ %) (+ terms of higher order) [em™']. (10.22)

Here, B. means the rotational constant in the hypothetical state without vibrations, and «
is a molecule-specific positive number, with @ <« B.. Due to the zero-point energy, from
(10.22) we find for the quantity By in the vibrational state with quantum number v = 0:

By = B. — % _ (10.23)

In the same way, the stretching of the molecule by centrifugal force depends in the an-
harmonic oscillator on the vibrational quantum number v. The stretching constant D, in the
equilibrium state without vibrations, which was introduced in (9.24) and (9.25), thus becomes

D, =D+ B(v+ ';‘) s (10.24)

with a correction factor 8 « D.. The rotational energy terms are thus changed by the
vibrations. We note here that the factor 8 should not be confused with other quantities
denoted by B, for example in Sects. 3.2 and 3.5.1.

Taking into account the anharmonicity, i.e. using a Morse potential, and considering
(10.22) and (10.23), we now obtain an expression for the rotational energy which has been
improved as compared to (10.21):

Ey; =hwe(v+ 3) — xehwe(v + 1)? + heB, J(J + 1)

—heD,J*(J +1)2 (10.25)

and for the terms, measured in the unit cm~!,
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T,; =Gy + Fyy
=V + 1) —xTew+ D7+ BJJ + 1) = DI + P (10.26)
=Ve(v + 3) — xVe(v + $)* + BeJ(J + 1) — DJ[J(J + D
—JJ+ D+ - BT +DP+3). (10.27)

In these expressions, we have omitted correction terms of the form (v + %)" with powers
n > 2. A spectrum containing the “corrections” according to (10.26) and (10.27) and a term
scheme which leaves them out for simplicity are shown in Fig. 10.7. When 8 « «, the last
term in (10.25), and correspondingly in (10.26) and (10.27), can be neglected in general.

The rotational-vibrational spectrum corresponds to transitions between the terms E, ; or
T,.;. The condition for it to be observable is again that the molecule be polar. Then for the
observed transitions we have

v

i[E(v’, JY—EQ@",J")], withthe convention V>, (10.28)
Leaving out the stretching terms in (10.25), we find

V=70 — V") — xeVe[(V + 1) = (0" + 1))
+ByJ'(J'+1)=ByJ"(J"+1). (10.29)

the selection rules for electric dipole radiation are given by:
AJ = +£1, Av=0,£1,£2...,

where for the harmonic oscillator, Av > 1 is not allowed and x, = 0. For Av = 0, we obtain
the pure rotational spectrum in a vibrational state with the quantum number v’ = v”.
Owing to the selection rule AJ = %1, there are two branches in the rotational-vibrational
spectrum. The P branch refers, as above, to the series of transitions with AJ = —1, and the
R branch to the series with AJ = +1.
The spectral lines in the P branch (J' = J, J” = J + 1) have the wavenumbers

Tp =0, 0") — 2By (J + 1) — (By — By)J(J + 1) (10.30)
and those in the R branch (J' = J + 1, J” = J) are given by
V=V, v")+2By(J+1)— (By — B,)(J + 1D(J +2). (10.31)

The spectral lines of a band in the P branch therefore lie on the long-wavelength side of the
pure vibrational line v(v’, v”), the so-called zero line, which itself cannot be observed, while
those in the R branch are on its short-wavelength side. The lines are no longer equidistant,
due to the last terms in (10.30) and (10.31). The lines in the P branch move further apart
with increasing J, while those in the R branch converge. This makes the structure of the
spectrum in Fig. 10.7 understandable.

The zero line, V(v’, v”), corresponds to the transition with AJ = 0, which is usually
forbidden; it is the purely vibrational transition. It can thus not be observed directly, for the
most part.

For this line (i.e. for the Q branch, when it is observable), we find

P, V") = (Ve — xeVe) (V) — V") — xVe (V% — V7). (10.32)
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The first term in (10.32) yields the wavenumbers of the fundamental vibration and the
harmonics Av > 1, which occur because of anharmonicity, as multiples of the wavenumber
(Ve — XxeVe). The second, much smaller term causes the harmonics to move closer together;
compare Fig. 10.5. The wavenumbers of the purely vibrational lines have to be derived from
the rotational-vibrational spectrum by applying (10.30) and (10.31).

Experimentally, one can then determine three quantities which are characteristic of the
molecule under investigation: the pure vibration with the wavenumber v(v’, v”), and the
two rotational constants B, and B, (and from them, B. and «). This is accomplished by
measuring as many lines as possible in the spectrum and then finding the best fit to equations
(10.30) and (10.31). As an example, we give the data derived from the spectrum of the CO
molecule:

Be=1924cm™", x.=00061, 7.=21692cm™", o =0.0091cm™';

see also Fig. 10.2.

As a further example of the analysis of the spectra, we give some experimental data for
HCI. In this case, for the vibrational frequency with harmonics, the following values were
measured:

7(1 « 0) = V(1 —2x.) =2885.9cm™! ,

(2 « 0) = 2Ve(1 — 3x.) = 5668.0cm™" |
(3 « 0) = 3Ve(1 — 4x.) = 8347.0cm™" .

From these data, we calculate x, = 0.017.
From the measured values

By = B, — % =10440cm™'  and

3
B, = B, — 7“ =10.137cm™" |

it follows that B, = 10.591cm™! and o = 0.303cm™'. The eigenfrequency V. is found to
be 2989 cm~!.

From B, and B., the internuclear distance R can furthermore be determined, as shown
in Sect. 9.2; and from V., the force constant and the vibrational frequency v, of the molecule
can be derived. In this case, one obtains Ry = 1.2838-10~% cm for the internuclear distance
in the v = O state, and the calculated quantity R, = 1.2746 - 1071 m in the hypothetical
state without zero-point oscillation. The force constant k is found to be 4.8 - 10> Nm™!, and
the period of vibration Ty = v = (¢v.) ! = 1.17- 1074 s,

These are the measured data which infra-red spectroscopy gives us for the investigation
of diatomic molecules. From the force constants and the anharmonicities, one can determine
the shape of the potential curve and from it, can reach conclusions about chemical bonding
in the molecule.

Strictly speaking, some additional influences on the energies of the levels and the transi-
tions should be taken into account: the effect of the centrifugal stretching on the rotational
constant B, its effect in turn on the vibrational potential, and the Coriolis coupling. These
effects can, however, often be neglected at attainable spectral resolutions. We leave their
treatment to the specialised literature.
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10.5 The Vibrational Spectra of Polyatomic Molecules

Although diatomic molecules have only one vibrational degree of freedom and can oscillate
only in the direction parallel to their bonding axes — hence the name valence or stretching
vibration — molecules with more than two atoms have several vibrational degrees of freedom.
In addition to stretching vibrations, they can undergo vibrations in which the bonding angles
change: so-called bending vibrations. In order to describe their behaviour, we use the concept
of normal modes of vibration, which we shall discuss in the following. However, we will
need to make only minor extensions of our previous considerations in order to understand
the vibrational spectra of polyatomic molecules.

The vibrations of a system of elastically coupled point masses can be described in terms
of a superposition of the allowed normal modes of the system, as one learns from classical
mechanics. The simplest case is that of two identical pendulums coupled by a spring. For
this system, we find two normal modes with frequencies v; and v,, the symmetric and the
antisymmetric vibrations (Fig. 10.9), and these normal modes can be observed as spectral
lines of the system by Fourier analysis of its motions. Spectroscopy does exactly this: the
frequency analysis of a time-dependent behaviour.

\ / | i\

\ \

\
\ \ [ \

The normal modes are defined as motions in which all the point masses of the system
move with the same frequency and with a fixed phase relation. The motion of the whole
system is a pure harmonic oscillation. One normal mode can be excited without exciting any
others, i.e. they can be completely decoupled from each other, as long as the amplitudes are
kept small and nonlinearities are thus avoided.

The number f of the normal modes of a system is equal to the number of its degrees
of freedom, which are not already occupied by other forms of motion. A system of N point
masses initially has 3N degrees of freedom. If the masses are coupled together to form a
molecule, then there are 3 degrees of freedom for the translational motion (motions of the
centre of gravity of the whole molecule) and 3 degrees of freedom for rotations (only 2 in the
case of a linear molecule, because the rotation about the cylinder axis does not contribute);
we thus have for the internal motions of the molecule

f=3N-6 (10.33)

as the number of degrees of freedom, or, for a linear molecule, f = 3N — 5.

In the case of a diatomic molecule, we find f = 3-2 — 5 = 1; there is only one
normal mode, namely the stretching vibration. For a linear triatomic molecule, we have
f =9 -5 =4. As an example, we consider the linear CO, molecule. Here, the vibrations
can be described as the superpositions of the four normal modes sketched in Fig. 10.10, with
the eigenfrequencies v, v,, and v3. Just these vibrations are in fact observed. The vibrational
patterns are shown in Fig. 10.10. One of the vibrations, the bending mode, is doubly degen-
erate and is therefore to be counted twice, since the bending can occur within the plane of the

Fig.10.9. The fundamental os-
cillations of two coupled pen-
dulums: symmetric and anti-
symmetric oscillations (normal
modes)
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Fig.10.10. The normal modes
of the CO, and H0 mole-
cules. The following wavenum-
bers correspond to the vibra-
tions: CO,  ¥;: 1337em™); 7y:
667cm™!; v3: 2349 cm~!. H,0
T1: 3657cm™}; 70 1595em™!;
T3: 3756 cm™!
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figure or perpendicular to it. The relative frequencies of these vibrations can be estimated:
the highest frequency, corresponding to V3 = 2349 cm™!, is that of the asymmetric stretching
vibration, because it stretches the “springs” most strongly. The symmetric stretching vibra-
tion has a wavenumber of V; = 1337 cm™!, and the bending mode has ¥, = 667 cm™!. In
general, the frequencies of stretching modes are higher than those of bending modes.

However, for the CO; molecule we can readily see that not all the vibrational modes can
be observed in infra-red absorption, i.e. not all are infra-red active. For infra-red activity, a
periodic change of the electric dipole moment is required, as we have seen. The symmetric
CO; molecule has no electric dipole moment in its equilibrium state. When it oscillates
in the symmetric stretching mode v, its symmetry is maintained and no dipole moment
is produced. In contrast, the asymmetric stretching mode v; and the bending mode v, are
infra-red active. The dipole moment which is induced in the v, mode is perpendicular to that
induced in the v3 mode and thus also perpendicular to the cylinder axis of the molecule, so
the corresponding rotational-vibrational bands are referred to as the perpendicular band (for
v,) and the parallel band (for vs3).

As an example of a nonlinear triatomic molecule, Fig. 10.10 also shows the normal modes
of the water molecule, H,O. Here, again, the frequency of the bending mode v, is lower
than those of the two other vibrational modes, in which the force constants are more strongly
loaded. In the normal modes v, and v, the axis of two-fold symmetry through the centre
of the molecule is maintained; both modes are thus referred to as symmetric, in contrast to
the v; mode. One can readily see by examining Fig. 10.10 that the dipole moment of the
H,0 molecule changes periodically in all three normal mode of vibration; they are thus all
infra-red active. Due to the presence of these molecules in the air, the H,O and CO, lines are
observed in every infra-red spectrum, unless the optical path of the infra-red spectrometer is
evacuated.

An additional example of an experimentally observed spectrum is given by Fig. 10.11,
which shows a portion of the infra-red spectrum of the HCN molecule. One can see the two
rotational-vibrational bands belonging to the two normal mode vibrations v, and vs, as well
as a harmonic band at 2v,. The selection rules are again Av = *1 and AJ = +1 for the
stretching vibrations of linear molecules, but AJ = +1 and AJ = 0 for the bending mode
vibrations of linear molecules and for the vibrational bands of symmetric top molecules, such
as CH3I, NH3, or C6H6.

One can also readily understand that no change in the rotational state of the molecule
occurs along with the normal vibrational modes just mentioned. We thus observe allowed
transitions in which only the vibrational quantum number v changes, i.e. the spectrum con-
tains not only the P and R branches, but also the (narrow) Q branch. The Q branch in a
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rotational-vibrational spectrum, as mentioned in Sect. 10.4, refers to all of the transitions
between two vibrational states v’ and v” in which the rotational quantum number J remains
unchanged. If the spacing of the rotational levels were the same in both vibrational states,
this would be a single line. In fact, the rotational constants B, and B,-, and therefore the
rotational level spacings, differ somewhat from each other; for this reason, the Q branch
consists of a number of closely-spaced lines. Figure 10.12 shows the rotational-vibrational

Fig.10.11. A portion of the
rotational-vibrational spectrum
of the HCN molecule. The vy
vibration is a bending mode.
Since it is a so-called per-
pendicular band, P, Q and R
branches are allowed. For the
2v, harmonic band and the par-
allel band v3 (stretching mode),
only the P and R branches are
allowed for reasons of symme-
try. After Steinfeld

Fig.10.12. A portion of the
rotational-vibrational spectrum
of CO,. Upper part: The band
of the bending mode, V,; Lower
part: the band of the asymmet-
ric stretching mode, V3 as ex-
amples for the differing selec-
tion rules: in the upper spec-
trum, there are P, Q and R
branches; in the lower spec-
trum, the Q branch is forbid-
den. The quantum numbers J
for the rotational levels are not
given here. In Sect. 12.4, we ex-
plain that, due to the inversion
symmetry of the CO; molecule
and the nuclear spin / = 0 of
the O atom, every second rota-
tional level is suppressed. The
line spacing is therefore 4B in-
stead of the usual 2B. If the in-
version symmetry is destro?/ed
by substituting one of the 1°0
atoms by a heavier 180 iso-
tope (i.e. in the molecule 90—
C—'SO), one observes that the
spacing of the rotational lines is
halved
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Fig.10.13. A section of the
rotational-vibrational spectrum
of the CH3I molecule. Besides
the fundamental vibrations V; to
Vs, the following combinations
occur: at 1770cm™! (276 and
Ty+73), at 2130cm™! (V24-7g),
at 2320cm™! (Us + Vg), and at
2480cm™! (27,)

band of the bending mode (v; = 667 cm™!) of CO, as an example of a band with a Q branch,
in contrast to the stretching mode (V3 = 2349 cm™!), where the Q branch, with AJ = 0, is
forbidden.

In the case of the symmetric top molecules, the quantum number K also becomes impor-
tant; see Sects. 9.7 and 11.2. The selection rules, which we give here without derivation, are
AK = 0 for parallel bands and AK = %1 for perpendicular bands. These selection rules can
also be understood intuitively: for vibrations parallel to the molecular axis, the projection of
the angular momentum on this axis does not change during a vibration, i.e. AK = 0.

Of course, every vibrational transition is surrounded by its accompanying rotational tran-
sitions, i.e. the whole band spectrum, as can be clearly seen in Figs. 10.11 and 10.12. Natu-
rally, polyatomic molecules can also exhibit anharmonicity; accordingly, as in the diatomic
molecules, one observes harmonics at 2v, 3v, etc. with strongly decreasing intensities. In
addition, the deviation from purely harmonic behaviour leads to combined vibrations, such
as v; + v2, v; — vz, or 2v; + v;. Some examples in the case of the CH;I molecule are
shown in Fig. 10.13. In molecules with several normal mode vibrations, it can happen that
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one normal mode has nearly the same frequency as a harmonic or a combined vibration of
other normal modes. Such a Fermi resonance can lead to an apparent strong increase in the
intensity of the affected harmonic band or the band of the combined vibration.

Molecules containing more nuclei have larger numbers of normal mode vibrations. In
order to resolve and classify them, one requires symmetry considerations, which we shall not
treat further here; however, see Chaps. 5 and 6. Figure 10.14 shows the normal modes of the
benzene molecule; they include vibrations which are not infra-red active. We shall return to
this question and to the possibility of nevertheless observing them in Chap. 12, which deals
with the Raman effect. If one does not take care to observe isolated molecules, i.e. at a high
dilution in the gas phase, and to use a high spectral resolution, then only a single, unresolved
line is observed for each vibrational transition instead of the rotational-vibrational bands with
their well-defined structure; this is equally true in the case of polyatomic molecules as for
diatomics. It is especially the case for molecules in the condensed phases.

Fig. 10.14. The normal modes
of the benzene molecule, C¢Hg.
In the case of degenerate vibra-
tional modes, only one compo-
nent is shown. After Herzberg
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10.6 Applications of Vibrational Spectroscopy

From a precise analysis of their vibrational spectra, one can obtain important data concerning
the structure and bonding in molecules. The spectra can allow bonding angles and bond
lengths, force constants and the potential curve for bonding to be calculated with high
precision. For polyatomic molecules, infra-red spectroscopy is therefore an important method
for structural analysis. In analytical chemistry, infra-red spectroscopy is furthermore a useful
aid to the identification of molecules or of molecular fragments. The frequencies at which
particular molecular subunits absorb in the infra-red are characteristic of those units. Even
with unresolved rotational structure, i.e. in the condensed phases, the presence of particular
molecular subunits in a sample can be determined by the detection of these characteristic
frequencies. Table 10.3 gives typical numerical values for the quantum energies of some
important vibrations.

Table 10.3. Wavenumber values of
some typical subunit vibrations

C - H stretch 2850 — 3000 cm™!
C — H bend 1350 — 1460 cm™!
C — C stretch 700 — 1250 cm™!
C = C stretch 1600 — 1700 cm™!

When two groups that would have similar vibration frequencies if they were measured
individually, are present in a molecule, then resonance between their vibrations can occur,
with a resulting frequency shift similar to that seen in the Fermi resonances; cf. Sect. 10.5. A
well-known example is the case of the carbonyl group C = O with v = 1715 cm™!, and the
C = C double bond with v = 1650 cm™'. In the ketene radical, C = C = O, where these two
frequencies should be observed, one instead finds the wavenumbers 2100 and 1100 cm™!;
the values are thus strongly shifted from those which would be observed for the isolated
molecular subunits.
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