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Frühwirth-Schnatter: Finite Mixture and Markov Switching Models
Ghosh/Ramamoorthi: Bayesian Nonparametrics
Glaz/Naus/Wallenstein: Scan Statistics
Good: Permutation Tests: Parametric and Bootstrap Tests of Hypotheses, 3rd edition
Gouriéroux: ARCH Models and Financial Applications
Gu: Smoothing Spline ANOVA Models
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Preface

Stochastic differential equations model stochastic evolution as time evolves.
These models have a variety of applications in many disciplines and emerge
naturally in the study of many phenomena. Examples of these applications
are physics (see, e.g., [176] for a review), astronomy [202], mechanics [147],
economics [26], mathematical finance [115], geology [69], genetic analysis (see,
e.g., [110], [132], and [155]), ecology [111], cognitive psychology (see, e.g., [102],
and [221]), neurology [109], biology [194], biomedical sciences [20], epidemiol-
ogy [17], political analysis and social processes [55], and many other fields of
science and engineering. Although stochastic differential equations are quite
popular models in the above-mentioned disciplines, there is a lot of mathemat-
ics behind them that is usually not trivial and for which details are not known
to practitioners or experts of other fields. In order to make this book useful
to a wider audience, we decided to keep the mathematical level of the book
sufficiently low and often rely on heuristic arguments to stress the underlying
ideas of the concepts introduced rather than insist on technical details. Math-
ematically oriented readers may find this approach inconvenient, but detailed
references are always given in the text.

As the title of the book mentions, the aim of the book is twofold. The first
is to recall the theory and implement methods for the simulation of paths of
stochastic processes {Xt, t ≥ 0} solutions to stochastic differential equations
(SDEs). In this respect, the title of the book is too ambitious in the sense
that only SDEs with Gaussian noise are considered (i.e., processes for which
the writing dXt = S(Xt)dt + σ(Xt)dWt has a meaning in the Itô sense).
This part of the book contains a review of well-established results and their
implementations in the R language, but also some fairly recent results on
simulation.

The second part of the book is dedicated to the review of some methods
of estimation for these classes of stochastic processes. While there is a well-
established theory on estimation for continuous-time observations from these
processes [149], the literature about discrete-time observations is dispersed
(though vaste) in several journals. Of course, real data (e.g., from finance [47],
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[88]) always lead to dealing with discrete-time observations {Xti
, i = 1, . . . , n},

and many of the results from the continuous-time case do not hold or cannot
be applied (for example, the likelihood of the observations is almost always
unavailable in explicit form). It should be noted that only the observations are
discrete whilst the underlying model is continuous; hence most of the standard
theory on discrete-time Markov processes does not hold as well.

Different schemes of observations can be considered depending on the na-
ture of the data, and the estimation part of the problem is not necessarily
the same for the different schemes. One case, which is considered “natural,”
is the fixed-∆ scheme, in which the time step between two subsequent ob-
servations Xti and Xti+∆n is fixed; i.e., ∆n = ∆ (or is bounded away from
zero) and independent from n. In this case, the process is observed on the
time interval [0, T = n∆] and the asymptotics considered as n → ∞ (large-
sample asymptotics). The underlying model might be ergodic or stationary
and possibly homogeneous. For such a scheme, the time step ∆ might have
some influence on estimators because, for example, the transition density of
the process is usually not known in explicit form and has to be approximated
via simulations. This is the most difficult case to handle.

Another scheme is the “high frequency” scheme, in which the observational
step size ∆n decreases with n and two cases are possible: the time interval is
fixed, say [0, T = n∆n], or n∆n increases as well. In the first case, neither ho-
mogeneity nor erogidicy are needed, but consistent estimators are not always
available. On the contrary, in the “rapidly increasing experimental design,”
when ∆n → 0 and n∆n → ∞ but n∆2

n → 0, consistent estimators can be
obtained along with some distributional results.

Other interesting schemes of partially observed processes, missing at ran-
dom [75], thresholded processes (see, e.g., [116], [118]), observations with er-
rors (quantized or interval data, see, e.g., [66], [67], [97]), or large sample and
“small diffusion” asymptotics have also recently appeared in the literature
(see, e.g., [222], [217]). This book covers essentially the parametric estimation
under the large-sample asymptotics scheme (n∆n → ∞) with either fixed
∆n = ∆ or ∆n → 0 with n∆k

n → 0 for some k ≥ 2. The final chapter con-
tains a miscellaneous selection of results, including nonparametric estimation,
model selection, and change-point problems.

This book is intended for practitioners and is not a theoretical book, so
this second part just recalls briefly the main results and the ideas behind the
methods and implements several of them in the R language. A selection of
the results has necessarily been made. This part of the book also shows the
difference between the theory of estimation for discrete-time observations and
the actual performance of such estimators once implemented. Further, the
effect of approximation schemes on estimators is investigated throughout the
text. Theoretical results are recalled as “Facts” and regularity conditions as
“Assumptions” and numbered by chapter in the text.
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So what is this book about?

This book is about ready to be used, R-efficient code for simulation schemes of
stochastic differential equations and some related estimation methods based
on discrete sampled observations from such models. We hope that the code
presented here and the updated survey on the subject might be of help for
practitioners, postgraduate and PhD students, and researchers in the field
who might want to implement new methods and ideas using R as a statistical
environment.

What this book is not about

This book is not intended to be a theoretical book or an exhaustive collection
of all the statistical methods available for discretely observed diffusion pro-
cesses. This book might be thought of as a companion book to some advanced
theoretical publication (already available or forthcoming) on the subject. Al-
though this book is not even a textbook, some previous drafts of it have been
used with success in mathematical finance classes for the numerical simulation
and empirical analysis of financial time series.

What comes with the book

All the algorithms presented in the book are written in pure R code but,
because of the speed needed in real-world applications, we have rewritten
some of the R code in the C language and assembled everything in a package
called sde freely available on CRAN, the Comprehensive R Archive Network.
R and C functions have the same end-user interface; hence all the code of the
examples in the book will run smoothly regardless of the underlying coding
language. A minimal knowledge of the R environment at the introductory level
is assumed, although brief recalls to the main R concepts, limited to what is
relevant to this text, are given at the end of the book. Some crucial aspects
of implementation are discussed in the main body of the book to make them
more effective.

What is missing?

This book essentially covers one-dimensional diffusion processes driven by the
Wiener process. Today’s literature is vast and wider than this choice. In partic-
ular, it focuses also on multidimensional diffusion processes and stochastic dif-
ferential equations driven by Lévy processes. To keep the book self-contained
and at an introductory level and to preserve some homogeneity within the
text, we decided to restrict the field. This also allows simple and easy-to-
understand R code to be written for each of the techniques presented.
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Notation

Var : the variance operator

E : the expected value operator

N(µ, σ2) : the Gaussian law with mean µ and variance σ2

χ2
d : chi-squared distribution with d degrees of freedom

td : Student t distribution with d degrees of freedom

Iν(x) : modified Bessel function of the first kind of order ν

R : the real line

N : the set of natural numbers 1, 2, . . .
d→ : convergence in distribution
p→ : convergence in probability

a.s.→ : almost sure convergence

B(R) : Borel σ-algebra on R

χA,1A : indicator function of the set A

x ∧ y : min(x, y)

x ∨ y : max(x, y)

(f(x))+ : max(f(x), 0)

Φ(z) : cumulative distribution function of standard Gaussian law

[x] : integer part of x

<X,X>t, [X,X]t : quadratic variation process associated to Xt

Vt(X) : simple variation of process X

∝ : proportional to



XVIII Notation

fvi
(v1, v2, . . . , vn) : ∂

∂vi
f(v1, v2, . . . , vn)

fvi,vj
(v1, v2, . . . , vn) : ∂2

∂vivj
f(v1, v2, . . . , vn), etc.

∂θf(v1, v2, . . . , vn; θ) : ∂
∂θf(v1, v2, . . . , vn; θ)

∂k
θ f(v1, v2, . . . , vn; θ) : ∂k

∂θk f(v1, v2, . . . , vn; θ)

Πn(A) : partition of the interval A = [a, b] in n subintervals of [a = x0, x1),
[x1, x2), . . . , [xn−1, xn = b]

||Πn|| : maxj |xj+1 − xj |

C2
0 (R) : space of functions with compact support and continuous derivatives

up to order 2

L2([0, T ]) : space of functions from [0, T ] → R endowed by the L2 norm

||f ||2 : the L2 norm of f

Wt : Brownian motion or Wiener process

i.i.d. : independent and identically distributed

AIC : Akaike information criterion

CIR : Cox-Ingersoll-Ross

CRAN : the Comprehensive R Archive Network

CKLS : Chan-Karolyi-Longstaff-Sanders

EA : exact algorithm

GMM : generalized method of moments

MCMC : Markov chain Monte Carlo

MISE : mean integrated square error
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Stochastic Processes and Stochastic
Differential Equations

This chapter reviews basic material on stochastic processes and statistics as
well as stochastic calculus, mostly borrowed from [170], [130], and [193]. It
also covers basic notions on simulation of commonly used stochastic processes
such as random walks and Brownian motion and also recalls some Monte Carlo
concepts. Even if the reader is assumed to be familiar with these basic notions,
we will present them here in order to introduce the notation we will use
throughout the text. We will limit our attention mainly to one-dimensional,
real random variables and stochastic processes. We also restrict our attention
to parametric models with multidimensional parameters.

1.1 Elements of probability and random variables

A probability space is a triple (Ω,A, P ) whereΩ is the sample space of possible
outcomes of a random experiment; A is a σ-algebra: i.e., A is a collection of
sets such that i) the empty set ∅ is in A; ii) if A ∈ A, then the complementary
set Ā ∈ A; iii) if A1, A2, . . . ∈ A, then

∞⋃
i=1

Ai ∈ A .

P is a probability measure on (Ω,A). In practice, A forms the collection
of events for which a probability can be assigned. Given a probability space
(Ω,A, P ), a random variable X is defined as a measurable function from Ω to
R,

X : Ω 7→ R .

In the above, the term measurable intuitively means that it is always possible
to calculate probabilities related to the random variable X. More precisely,
denote by B(R) the Borel σ-algebra on R (i.e., the σ-algebra generated by
the open sets of R) and let X−1 be the inverse function of X. Then, X is
measurable if

S.M. Iacus, Simulation and Inference for Stochastic Differential Equations,
doi: 10.1007/978-0-387-75839-8 1, © Springer Science+Business Media, LLC 2008



2 1 Stochastic Processes and Stochastic Differential Equations

∀A ∈ B(R), ∃B ∈ A : X−1(A) = B;

i.e., such that it is always possible to measure the set of values assumed by X
using the probability measure P on the original space Ω,

P (X ∈ A) = P ({ω ∈ Ω : X(ω) ∈ A}) = P ({ω ∈ Ω : ω ∈ X−1(A)}) = P (B),

for A ∈ B(R) and B ∈ A.

Distribution and density function

The function F (x) = P (X ≤ x) = P (X(ω) ∈ (−∞, x]) is called the
cumulative distribution function: it is a nondecreasing function such that
limx→−∞ F (x) = 0, limx→+∞ F (x) = 1, and F is right continuous. If F is
absolutely continuous, its derivative f(x) is called a density function, which is
a Lebesgue integrable nonnegative function whose integral over the real line
is equal to one. Loosely speaking, if F (x) is the probability that the random
variable X takes values less than or equal to x, the quantity f(x)dx can be
thought of as the probability that the random variable takes values in the in-
finitesimal interval [x, x+ dx). If the random variable takes only a countable
set of values, then it is said to be discrete and its density at point x is defined
as P (X = x). In the continuous case, P (X = x) = 0 always.

Independence

Two random variables X and Y are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for any two sets A and B in R.

1.1.1 Mean, variance, and moments

The mean (or expected value) of a continuous random variable X with distri-
bution function F is defined as

EX =
∫

Ω

X(ω)dP (ω) =
∫

R
xdF (x)

provided that the integral is finite. If X has a density, then EX =
∫

R xf(x)dx
and the integral is the standard Riemann integral; otherwise integrals in dP or
dF should be thought of as integrals in the abstract sense. If Ω is countable,
the expected value is defined as

EX =
∑
ω∈Ω

X(ω)P (ω)

or, equivalently, when X is a discrete random variable, the expected value
reduces to EX =

∑
x∈I xP (X = x), where I is the set of possible values of

X. The variance is defined as
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VarX = E (X − EX)2 =
∫

Ω

(X(ω)− EX)2dP (ω) ,

and the kth moment is defined as

EXk =
∫

Ω

Xk(ω)dP (ω) .

In general, for any measurable function g(·), Eg(X) is defined as

Eg(X) =
∫

Ω

g(X(ω))dP (ω) ,

provided that the integral is finite.

Types of convergence

Let {Fn}n∈N be a sequence of distribution functions for the sequence of ran-
dom variables {Xn}n∈N. Assume that

lim
n→∞

Fn(x) = F (x)

for all x ∈ R such that F (·) is continuous in x, where F is the distribution
function of some random variableX. Then, the sequenceXn is said to converge
in distribution to the random variable X, and this is denoted by Xn

d→ X.
This only means that the distributions Fn of the random variables converge to
another distribution F , but nothing is said about the random variables itself.
So this convergence is only about the probabilistic behavior of the random
variables on some intervals (−∞, x], x ∈ R.

A sequence of random variables Xn is said to converge in probability to a
random variable X if, for any ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

This is denoted by Xn
p→ X and it is a pointwise convergence of the proba-

bilities. This convergence implies the convergence in distribution. Sometimes
we use the notation

p− lim
n→∞

|Xn −X| = 0

for the convergence in probability. A stronger type of convergence is defined
as the probability of the limit in the sense P (limn→∞Xn = X) = 1 or, more
precisely,

P ({ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}) = 1.

When this happens, Xn is said to converge to X almost surely and is denoted
by Xn

a.s.→ X. Almost sure convergence implies convergence in probability.
A sequence of random variables Xn is said to converge in the rth mean to

a random variable X if
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lim
n→∞

E|Xn −X|r = 0, r ≥ 1.

The convergence in the r-th mean implies the convergence in probability
thanks to Chebyshev’s inequality, and if Xn converges to X in the rth mean,
then it also converges in the sth mean for all r > s ≥ 1. Mean square conver-
gence is a particular case of interest and corresponds to the case r = 2. This
type of convergence will be used in Section 1.9 to define the Itô integral.

1.1.2 Change of measure and Radon-Nikodým derivative

In some situations, for example in mathematical finance, it is necessary to
reassign the probabilities to the events in Ω, switching from a measure P to
another one P̃ . This is done with the help of a random variable, say Z, which
reweights the elements in Ω. This change of measure should be done set-by-set
instead of ω-by-ω (see, e.g., [209]) as

P̃ (A) =
∫

A

Z(ω)dP (ω) , (1.1)

where Z is assumed to be almost surely nonnegative and such that EZ = 1.
The new P̃ is then a true probability measure and, for any nonnegative random
variable X, the equality

ẼX = E(XZ)

holds, where ẼX =
∫

Ω
X(ω)dP̃ (ω). Two measures P and P̃ are said to be

equivalent if they assign probability 0 to the same sets. The previous change of
measure from P to P̃ trivially guarantee that the two measures are equivalent
when Z is strictly positive. Another way to read the change of measure in
(1.1) is to say that Z is the Radon-Nikodým derivative of P̃ with respect to
P . Indeed, a formal differentiation of (1.1) allows us to write

Z =
dP̃
dP

. (1.2)

Fact 1.1 (Theorem 1.6.7 [209]) Let P and P̃ be two equivalent measures
on (Ω,A). Then, there exists a random variable Z, almost surely positive,
such that EZ = 1 and

P̃ (A) =
∫

A

Z(ω)dP (ω)

for every A ∈ A.

The Radon-Nikodým derivative is an essential requirement in statistics
because Z plays the role of the likelihood ratio in the inference for diffusion
processes.
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1.2 Random number generation

Every book on simulation points the attention of the reader to the quality of
random number generators. This is of course one central point in simulation
studies. R developers and R users are in fact quite careful in the implementa-
tions and use of random number generators. We will not go into details, but
we just warn the reader about the possibilities available in R and what is used
in the examples in this book.

The random number generator can be specified in R via the RNGkind
function. The default generator of uniform pseudo random numbers is the
Mersenne-Twister and is the one used throughout the book. Other methods
available as of this writing are Wichmann-Hill, Marsaglia-Multicarry, Super-
Duper, and two versions of Knuth-TAOCP random number generators. The
user can implement and provide his own method as well. Specifically, for
the normal random number generators, available methods are Kinderman-
Ramage, Buggy Kinderman-Ramage, Ahrens-Dieter, Box-Muller, and the de-
fault Inversion method, as explained in [229]. For this case as well, the user
can provide her own algorithm. For other than normal variates, R implements
quite advanced pseudo random number generators. For each of these, the
reader has to look at the manual page of the corresponding r* functions (e.g.,
rgamma, rt, rbeta, etc.).

For reproducibility of all the numerical results in the book we chose to use
a fixed initialization seed before any listing of R code. We use everywhere the
function set.seed(123), and the reader should do the same if she wants to
obtain the same results.

1.3 The Monte Carlo method

Suppose we are given a random variable X and are interested in the evaluation
of Eg(X) where g(·) is some known function. If we are able to draw n pseudo
random numbers x1, . . . , xn from the distribution of X, then we can think
about approximating Eg(X) with the sample mean of the g(xi),

Eg(X) ' 1
n

n∑
i=1

g(xi) = ḡn . (1.3)

The expression (1.3) is not just symbolic but holds true in the sense of the law
of large numbers whenever E|g(X)| <∞. Moreover, the central limit theorem
guarantees that

ḡn
d→ N

(
Eg(X),

1
n

Var(g(X))
)
,

where N(m, s2) denotes the distribution of the Gaussian random variable with
expected value m and variance s2. In the end, the number we estimate with
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simulations will have a deviation from the true expected value Eg(X) of order
1/
√
n. Given that P (|Z| < 1.96) ' 0.95, Z ∼ N(0, 1), one can construct an

interval for the estimate ḡn of the form(
Eg(X)− 1.96

σ√
n
,Eg(X) + 1.96

σ√
n

)
,

with σ =
√

Varg(X), which is interpreted that the Monte Carlo estimate of
Eg(X) above is included in the interval above 95% of the time. The confidence
interval depends on Varg(X), and usually this quantity has to be estimated
through the sample as well. Indeed, one can estimate it as the sample variance
of Monte Carlo replications as

σ̂2 =
1

n− 1

n∑
i=1

(g(xi)− ḡn)2

and use the following 95% level Monte Carlo confidence interval1 for Eg(X):(
ḡn − 1.96

σ̂√
n
, ḡn + 1.96

σ̂√
n

)
.

The quantity σ̂/
√
n is called the standard error. The standard error is itself a

random quantity and thus subject to variability; hence one should interpret
this value as a “qualitative” measure of accuracy.

One more remark is that the rate of convergence
√
n is not particularly

fast but at least is independent of the smoothness of g(·). Moreover, if we need
to increase the quality of our approximation, we just need to draw additional
samples2 instead of rerunning the whole simulation.

About Monte Carlo intervals length

In some cases, Monte Carlo intervals are not very informative if the variance
of Y = g(X) is too large. The next example, taken from [156], is one such
case. Let Y = g(X) = eβX with X ∼ N(0, 1), and assume we are interested in
Eg(X) with β = 5. The analytical value can be calculated as eβ2/2 = 268337.3,
and the true standard deviation σ =

√
e2β2 − eβ2 = 72004899337, quite a big

number with respect to the mean of Y . Suppose we want to estimate EY
via the Monte Carlo method using 100000 replications and construct 95%
confidence intervals using the true standard deviation σ and the estimated
standard error. The following R code does the job.
1 Again, this means that the interval covers the true value 95% of the time.
2 A warning note: Of course one should take care of the seed of the random number

generator to avoid duplicated samples. If we have already run n replications and
we want to add n′ new samples, we cannot simply rerun the algorithm for a length
of n′ with the same original seed because in this case we are just replicating the
first n′ samples among the n original ones, hence inducing bias without increasing
accuracy.



1.3 The Monte Carlo method 7

> # ex1 .01.R
> set.seed (123)
> n <- 1000000
> beta <-5
> x <- rnorm(n)
> y <- exp(beta*x)
>
> # true value of E(Y)
> exp(beta^2/2)
[1] 268337.3
> # MC estimation of E(Y)
> mc.mean <- mean(y)
> mc.mean
[1] 199659.2
> mc.sd <- sd(y)
> true.sd <- sqrt(exp(2*beta ^2) - exp(beta ^2))
>
> # MC conf. interval based on true sigma
> mc.mean - true.sd*1.96/sqrt(n)
[1] -140929943
> mc.mean + true.sd*1.96/sqrt(n)
[1] 141329262
>
> # MC conf. interval based on estimated sigma
> mc.mean - mc.sd*1.96/sqrt(n)
[1] 94515.51
> mc.mean + mc.sd*1.96/sqrt(n)
[1] 304802.9
>
> plot (1:n,cumsum(y)/(1:n),type="l",axes=F,xlab="n",
+ ylab=expression(hat(g)[n]),ylim=c(0 ,350000))
> axis(1,seq(0,n,length =5))
> axis(2,seq (0 ,350000 , length =6))
> abline(h=268337.3) # true value
> abline(h=mc.mean -mc.sd*1.96/sqrt(n),lty=3) # MC conf interval
> abline(h=mc.mean+mc.sd*1.96/sqrt(n),lty=3)
> abline(h=mc.mean ,lty =2) # MC estimate
> box()

Running this code in R, we obtain the two intervals

(−140929943; 141329262) using σ

and
(94515.51; 304802.9) using σ̂

with an estimated value of Eg(X), ĝn = 199659.2. As one can see, the confi-
dence interval based on σ contains the true value of Eg(X) but is too large
and hence meaningless. The confidence interval based on σ̂ is smaller but
still large. The first effect is due to the big variance of g(X), while the sec-
ond is due to the fact that the sample variance underestimates the true one
(σ̂ = 53644741). The reason is that, in this particular case, the state of asymp-
totic normality after n = 1000000 replications is not yet reached (the reader
is invited to look at this with a plot(density(y))) and thus the estimator σ̂
is not necessarily an unbiased estimator of the true σ. Looking at Figure 1.1
one can expect that the Monte Carlo confidence interval for smaller values of
n (the reader can try with n = 100000) does not even contain the true value.
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ĝ n

0 250000 500000 750000 1000000

0
70

00
0

21
00

00
35

00
00

Fig. 1.1. The very slow convergence of the Monte Carlo estimate associated with
a target true value with too high variability (see Section 1.3). The solid line is
the target value, dotted lines are upper and lower limits of the Monte Carlo 95%
confidence interval, and the dashed line is the estimated value ĝn.

1.4 Variance reduction techniques

The example in the last section gives evidence that in order to have less vari-
ability in Monte Carlo methods and hence use a smaller number of replications
in simulations, one needs to try to reduce variability with some workaround.
There are several methods of variance reduction for Monte Carlo estimators.
We review here just the ones that can be applied in our context, but inter-
esting reviews on methods for other classes of problems and processes can be
found, for example, in [156] and [125]. Here we just show the basic ideas, while
applications to stochastic differential equations are postponed to Section 2.15.
We do not include the treatment of sequences with low discrepancy3 because
this is beyond the scope of this book.

3 Discrepancy is a measure of goodness of fit for uniform random variates in high
dimensions. Low-discrepancy sequences are such that numerical integration on
this grid of points allows for a direct variance reduction. The reader can refer to
the review paper [153].



1.4 Variance reduction techniques 9

1.4.1 Preferential sampling

The idea of this method is to express Eg(X) in a different form in order to
reduce its variance. Let f(·) be the density of X; thus

Eg(X) =
∫

R
g(x)f(x)dx.

Introduce now another strictly positive density h(·). Then,

Eg(X) =
∫

R

g(x)f(x)
h(x)

h(x)dx

and

Eg(X) = E
(
g(Y )f(Y )
h(Y )

)
= Eg̃(Y ) ,

with Y a random variable with density h(·), and denote g̃(·) = g(·)f(·)/h(·).
If we are able to determine an h(·) such that Varg̃(Y ) < Varg(X), then we
have reached our goal. But let us calculate Varg̃(Y ),

Varg̃(Y ) = Eg̃(Y )2 − (Eg̃(Y ))2 =
∫

R

g2(x)f2(x)
h(x)

dx− (Eg(X))2 .

If g() is strictly positive, by choosing h(x) = g(x)f(x)/Eg(X), we obtain
Varg̃(Y ) = 0, which is nice only in theory because, of course, we don’t know
Eg(X). But the expression of h(x) suggests a way to obtain a useful approxi-
mation: just take h̃(x) = |g(x)f(x)| (or something close to it), then normalize
it by the value of its integral, and use

h(x) =
h̃(x)∫

R h̃(x)dx
.

Of course this is simple to say and hard to solve in specific problems, as inte-
gration should be done analytically and not using the Monte Carlo technique
again. Moreover, the choice of h(·) changes from case to case. We show an
example, again taken from [156], which is quite interesting and is a standard
application of the method in finance. Suppose we want to calculate Eg(X) with
g(x) = max(0,K − eβx) = (K − eβx)+, K and β constants, and X ∼ N(0, 1).
This is the price of a put option in the Black and Scholes framework [36, 162],
and the explicit solution, which is known, reads as

E
(
K − eβX

)
+

= KΦ

(
log(K)
β

)
− e

1
2 β2

Φ

(
log(K)
β

− β

)
,

where Φ is the cumulative distribution function of the standard Gaussian
law; i.e., Φ(x) = P (Z < z) with Z ∼ N(0, 1). The true value, in the case
K = β = 1, is Eg(X) = 0.2384217. Let’s see what happens in Monte Carlo
simulations.
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> # ex1 .02.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
> x <- rnorm(n)
> y <- sapply(x, function(x) max(0,K-exp(beta*x)))
>
> # the true value
> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta -beta)
[1] 0.2384217
>
> t.test(y[1:100]) # first 100 simulations

One Sample t-test

data: y[1:100]
t = 7.701 , df = 99, p-value = 1.043e-11
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.1526982 0.2586975

sample estimates:
mean of x
0.2056978

> t.test(y[1:1000]) # first 1000 simulations

One Sample t-test

data: y[1:1000]
t = 24.8772 , df = 999, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2131347 0.2496388

sample estimates:
mean of x
0.2313868

> t.test(y) # all simulation results

One Sample t-test

data: y
t = 80.3557 , df = 9999, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2326121 0.2442446

sample estimates:
mean of x
0.2384284

Results of simulations are reported in Table 1.1 (a). Note that on the
algorithm we have used the function sapply instead of the (apparently) more
natural (but wrong) line of code
y <- max(0, K-exp(beta*x))

as this will only return one value, actually the maximum value among 0 and all
the yi = K − eβ∗xi . This is one place where, vector-wise functions need to be
used in the correct order. Note also the use of t.test, which actually performs
both estimation and construction of the confidence intervals for Y = Eg(X).

We now try to rewrite Eg(X) as Eg′(Y ) (where g′ is a function different
from g) in order to reduce its variance. Indeed, Eg(X) can be rewritten as



1.4 Variance reduction techniques 11

Table 1.1. Evaluation of the price of a put option with the Monte Carlo method.
The true value is 0.2384217, with (b) and without (a) applying the variance reduction
technique of Section 1.4.1.

n ĝn 95% conf. interval

100 0.206 (0.153 ; 0.259)
1000 0.231 (0.213 ; 0.250)
10000 0.238 (0.232 ; 0.244)

n ĝn 95% conf. interval

100 0.234 (0.222 ; 0.245)
1000 0.236 (0.233 ; 0.240)
10000 0.238 (0.237 ; 0.239)

(a) (b)

∫
R

(1− eβx)+
β|x|

β|x|e
− 1

2 x2

√
2π

dx,

setting K = 1 and noticing that ex − 1 ' x for x close to 0. By the change of
variable x =

√
y for x > 0 and x = −√y for x < 0, the integral above can be

rewritten as ∫ ∞

0

(
1− eβ

√
y
)
+

+
(
1− e−β

√
y
)
+√

2π
√
y

e−
1
2 y

2
dy,

from which we remark that f(y) = λe−λy, with λ = 1
2 , is the density of the

exponential distribution. Therefore,

Eg(X) = E


(
1− eβ

√
Y
)

+
+
(
1− e−β

√
Y
)

+√
2π
√
Y


can be evaluated as the expected value of a function of the exponential random
variable Y . The following algorithm executes the calculation, and results are
reported in Table 1.1 (b), from which the reduction in variance is quite evident.
> # ex1 .03.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
>
> x <- rexp(n,rate =0.5)
> h <- function(x) (max(0,1-exp(beta*sqrt(x))) +
+ max(0,1-exp(-beta*sqrt(x))))/sqrt(2*pi*x)
> y <- sapply(x, h)
>
> # the true value
> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta -beta)
[1] 0.2384217
>
> t.test(y[1:100]) # first 100 simulations
> t.test(y[1:1000]) # first 1000 simulations
> t.test(y) # all simulation results
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1.4.2 Control variables

The very simple case of variance reduction via control variables is as follows.
Suppose that we want to calculate Eg(X). If we can rewrite it in the form

Eg(X) = E(g(X)− h(X)) + Eh(X) ,

where Eh(X) can be calculated explicitly and g(X)− h(X) has variance less
than g(X), then by estimating E(g(X)− h(X)) via the Monte Carlo method,
we obtain a reduction in variance.

Call-put parity example

Continuing with the example of the previous section, consider the price of a
call option

c(X) = E
(
eβX −K

)
+
.

It is easy to show that c(X) − p(X) = e
1
2 β2 −K, where p is the price of the

put option. Hence we can write c(X) = p(X) + e
1
2 β2 − K. It is also known

(see, e.g., [154]) that the variance of p(X) is less than the variance of c(X).
Thus we obtained an estimator of c(X) with reduced bias. The exact formula
for c(X) is also known and reads as

E
(
eβX −K

)
+

= e
1
2 β2

Φ

(
β − log(K)

β

)
−KΦ

(
− log(K)

β

)
.

The following R code shows this empirically, and the results are reported in
Table 1.2.
> # ex1 .04.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
>
> x <- rnorm(n)
> y <- sapply(x, function(x) max(0,exp(beta*x)-K))
>
> # the true value
> exp(beta^2/2)*pnorm(beta -log(K)/beta)-K*pnorm(-log(K)/beta)
>
> t.test(y[1:100]) # first 100 simulations
> t.test(y[1:1000]) # first 1000 simulations
> t.test(y) # all simulation results
>
> set.seed (123)
> x <- rexp(n,rate =0.5)
> h <- function(x) (max(0,1-exp(beta*sqrt(x))) +
+ max(0,1-exp(-beta*sqrt(x))))/sqrt(2*pi*x)
> y <- sapply(x, h)
>
> # variance reduction
> # CALL = PUT + e^{0.5*beta ^2} - K
> z <- y +exp (0.5*beta ^2) - K
>
> t.test(z[1:100]) # first 100 simulations
> t.test(z[1:1000]) # first 1000 simulations
> t.test(z) # all simulation results
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Table 1.2. Evaluation of the price of a call option with the Monte Carlo method.
The true value is 0.887143 with (b) and without (a) applying the variance reduction
technique of Section 1.4.2.

n ĝn 95% conf. interval

100 0.858 (0.542 ; 1.174)
1000 0.903 (0.780 ; 1.026)
10000 0.885 (0.844 ; 0.925)

n ĝn 95% conf. interval

100 0.882 (0.871 ; 0.894)
1000 0.885 (0.881 ; 0.889)
10000 0.887 (0.886 ; 0.888)

(a) (b)

Table 1.3. Evaluation of the price of a put option with the Monte Carlo method.
The true value is 0.2384217 with (b) and without (a) applying the variance reduction
technique of Section 1.4.3.

n ĝn 95% conf. interval

100 0.206 (0.153 ; 0.259)
1000 0.231 (0.213 ; 0.250)
10000 0.238 (0.232 ; 0.244)

n ĝn 95% conf. interval

100 0.226 (0.202 ; 0.250)
1000 0.235 (0.226 ; 0.242)
10000 0.238 (0.235 ; 0.240)

(a) (b)

1.4.3 Antithetic sampling

The idea of antithetic sampling can be applied when it is possible to find
transformations of X that leave its measure unchanged (for example, if X is
Gaussian, then −X is Gaussian as well). Suppose that we want to calculate

I =
∫ 1

0

g(x)dx = Eg(X) ,

withX ∼ U(0, 1). The transformation x 7→ 1−x leaves the measure unchanged
(i.e., 1−X ∼ U(0, 1)), and I can be rewritten as

I =
1
2

∫ 1

0

(g(x)+g(1−x))dx =
1
2

E(g(X)+g(1−X)) =
1
2

E(g(X)+g(h(X))) .

Therefore, we have a variance reduction if

Var
(

1
2

(g(X) + g(h(X)))
)
< Var

(
1
2
g(X)

)
,

which is equivalent to saying that Cov(g(X), g(h(X))) < 0. If h(x) is a
monotonic function of x (as in the example above), this is always the case. This
way of proceeding has the effect of reducing the variance but also increasing
the accuracy of the calculation of the mean.4 Going back to the example of
4 It does not correct higher-order moment estimation, though.



14 1 Stochastic Processes and Stochastic Differential Equations

the calculation of the price of a put option, one should calculate it using X
and −X and then averaging as follows:
> # ex1 .05.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
> x <- rnorm(n)
> y1 <- sapply(x, function(x) max(0,K-exp(beta*x)))
> y2 <- sapply(-x, function(x) max(0,K-exp(beta*x)))
>
> y <- (y1+y2)/2
> # the true value
> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta -beta)
>
> t.test(y[1:100]) # first 100 simulations
> t.test(y[1:1000]) # first 1000 simulations
> t.test(y) # all simulation results

The results are reported in Table 1.3. Notice that we have applied this method
to the naive Monte Carlo estimator and not the one built on the exponential
distribution Y , as in that case −Y is no longer an exponential distribution.

1.5 Generalities of stochastic processes

Let (ω,A, P ) a probability space. A real valued stochastic process is a family
of random variables {Xγ , γ ∈ Γ} defined on Ω × Γ taking values in R. Thus,
the random variables of the family (measurable for every γ ∈ Γ ) are functions
of the form

X(γ, ω) : Γ ×Ω 7→ R .

For Γ = N, we have a discrete-time process, and for Γ ⊂ R we have a
continuous-time process. We are mainly interested in continuous-time pro-
cesses with Γ = [0,∞), and we always think of [0,∞) as the time axis. We
will denote a continuous-time stochastic process as X = {Xt, t ≥ 0}. Some-
times, to avoid multiple subscripts, we will also adopt the usual notation
X(t) to denote Xt. For a fixed value of ω, say ω̄, {X(t, ω̄), t ≥ 0} (respectively
{X(n, ω̄), n ∈ N} for the discrete case) is called the path or trajectory of
the process and represents one possible evolution of the process. For a fixed
t, say t̄, the set of values {X(t̄, ω), ω ∈ Ω} (respectively {X(n̄, ω), ω ∈ Ω})
represents the set of possible states of the process at time t̄ (respectively n).

1.5.1 Filtrations

Consider the probability space (Ω,A, P ). A filtration {Ft, t ≥ 0} is an in-
creasing family of sub-σ-algebras of A indexed by t ≥ 0; i.e., for each
s, t ≥ 0 such that s < t, we have Fs ⊂ Ft with F0 = {Ω, ∅}. To each
process {X(t), t ≥ 0} and for each t, we can associate a σ-algebra denoted by
Ft = σ(X(s); 0 ≤ s ≤ t), which is the σ-algebra generated by the process X
up to time t; i.e., the smallest σ-algebra of A that makes X(s, ω) measurable
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for every 0 ≤ s ≤ t. This σ-algebra is the smallest set of subsets of Ω that
makes it possible to assign probabilities to all the events related to the process
X up to time t.

Given a stochastic process {Xt, t ≥ 0} and a filtration {Ft, t ≥ 0} (not
necessarily the one generated by X), the process X is said to be adapted to
{Ft, t ≥ 0} if for every t ≥ 0, X(t) is Ft-measurable.

1.5.2 Simple and quadratic variation of a process

The notion of total variation or first order variation of a process V (X) is
linked to the differentiability of its paths. Let Πn = Πn([0, t]) = {0 = t0 <
t1 < · · · < ti < · · · < tn = t} be any partition of the interval [0, t] into n
intervals and denote by

||Πn|| = max
j=0,...,n−1

(tj+1 − tj)

the maximum step size of the partition Πn, i.e. the mesh of the partition. The
variation of X is defined as

Vt(X) = p− lim
||Πn||→0

n−1∑
k=0

|X(tk+1)−X(tk)| .

If X is differentiable, then Vt(X) =
∫ t

0
|X ′(u)|du. If Vt(X) < ∞, then X is

said to be of bounded variation on [0, t]. If this is true for all t ≥ 0, then X is
said to have bounded variation. The quadratic variation [X,X]t at time t of
a process X is defined as

[X,X]t = p− lim
||Πn||→0

n−1∑
k=0

|X(tk+1)−X(tk)|2.

The limit exists for stochastic processes with continuous paths. In this case,
the notation <X,X>t is usually adopted. The quadratic variation can also
be introduced as

<X,X>t= p− lim
n→∞

2n∑
k=1

(
Xt∧k/2n −Xt∧(k−1)/2n

)2
,

where a ∧ b = min(a, b). The second definition will be used in Chapter 3.
If a process X is differentiable, then it has quadratic variation equal to zero.
Moreover, total and quadratic variation are related by the following inequality

n−1∑
k=0

|X(tk+1)−X(tk)| ≥

n−1∑
k=0

|X(tk+1)−X(tk)|2

max
Πn

|X(tk+1)−X(tk)|
.

Therefore, if X is continuous and has finite quadratic variation, then its total
variation is necessarily infinite. Note that Vt(X) and [X,X]t are stochastic
processes as well.
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1.5.3 Moments, covariance, and increments of stochastic processes

The expected value and variance of a stochastic process are defined as

EXt =
∫

Ω

X(t, ω)dP (ω), t ∈ [0, T ],

and
VarXt = E(Xt − EXt)2, t ∈ [0, T ].

The kth moment of Xt, k ≥ 1, is defined, for all t ∈ [0, T ], as EXk
t . These

quantities are well-defined when the corresponding integrals are finite. The
covariance function of the process for two time values s and t is defined as

Cov(Xs, Xt) = E {(Xs − EXs)(Xt − EXt)} .

The quantity Xt−Xs is called the increment of the process from s to t, s < t.
These quantities are useful in the description of stochastic processes that

are usually introduced to model evolution subject to some stochastic shocks.
There are different ways to introduce processes based on the characteristics
one wants to model. A couple of the most commonly used approaches are the
modeling of increments and/or the choice of the covariance function.

1.5.4 Conditional expectation

The conditional probability of A given B is defined as P (A|B) = P (A ∩
B)/P (B) for P (B) > 0. In the same way, it is possible to introduce the
conditional distribution of a random variable X with respect to the event B
as

FX(x|B) =
P (X ≤ x ∩B)

P (B)
, x ∈ R,

and the expectation with respect to this conditional distribution is naturally
introduced as (see [163] for a similar treatise)

E[X|B] =
E(X1B)
P (B)

,

where 1B is the indicator function of the set B, which means 1B(ω) = 1
if ω ∈ B and 0 otherwise. For discrete random variables, the conditional
expectation takes the form

E[X|B] =
∑

i

xi
P ({ω : X(ω) = xi} ∩B)

P (B)
=
∑

i

xiP (X = xi|B) .

For continuous random variables with density fX , we have

E[X|B] =
1

P (B)

∫
R
x1B(x)fX(x)dx =

1
P (B)

∫
B

xfX(x)dx.
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Consider now a discrete random variable Y that takes distinct values in the
sets Ai (i.e., Ai = Ai(ω) = {ω : Y (ω) = yi}, i = 1, 2, . . .), and assume that
all P (Ai) are positive. Let E|X| <∞. Then a new random variable Z can be
defined as follows:

Z(ω) = E[X|Y ](ω) = E[X|Ai(ω)] = E[X|Y (ω) = yi], ω ∈ Ai .

For each fixed ω ∈ Ai the conditional expectation E[X|Y ] coincides with
E[X|Ai], but, as a whole, it is a random variable itself because it depends on
the events generated by Y .

If instead of a single element Ai we consider a complete σ-algebra of events
(for example, the one generated by the generic random variable Y ), we arrive
at the general definition of conditional expectation: letX be a random variable
such that E|X| <∞.

A random variable Z is called the conditional expectation ofX with respect
to the σ-algebra F if:

i) Z is F-measurable and
ii) Z is such that E(Z1A) = E(X1A) for every A ∈ F .

The conditional expectation is unique and will be denoted as Z = E[X|F ].
With this notation, the equivalence above can be written as

E( E[X|F ]1A ) = E(X1A) for every A ∈ F . (1.4)

As we noted, the conditional expectation is a random variable, and the equal-
ity is only true up to null-measure sets. Among the properties of the con-
ditional expectation, we note only the following. Let X, X1, X2 be random
variables and a, b two constants. Then,

E[a ·X1 + b ·X2|F ] = a · E[X1|F ] + b · E[X2|F ],
E[X|F0] = EX,

if F0 = {Ω, ∅}. Moreover, if Y is F-measurable, then

E[Y ·X|F ] = Y · E[X|F ],

and choosing X = 1, it follows that

E[Y |F ] = Y.

Finally, choosing A = Ω in (1.4), it follows that

E {E[X|F ]} = EX.

If X is independent of F , it follows that E[X|F ] = EX and, in particular, if
X and Y are independent, we have E[X|Y ] = E[X|σ(Y )] = EX, where σ(Y )
is the σ-algebra generated by the random variable Y .
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1.5.5 Martingales

Given a probability space (ω,F , P ) and a filtration {Ft, t ≥ 0} on F , a mar-
tingale is a stochastic process {Xt, t ≥ 0} such that E|Xt| < ∞ for all t ≥ 0,
it is adapted to a filtration {Ft, t ≥ 0}, and for each 0 ≤ s ≤ t <∞, it holds
true that

E[Xt|Fs] = Xs,

i.e., Xs is the best predictor of Xt given Fs. If in the definition above the
equality “=” is replaced by “≥”, the process is called submartingale, and if
it is replaced by “≤”, it is called supermartingale. From the properties of the
expected value operator it follows that if X is a martingale, then

EXs = (by definition of martingale) = E{E[Xt|Fs] }
= (by measurability of Xt w.r.t. Fs) = EXt,

which means that martingales have a constant mean for all t ≥ 0.

1.6 Brownian motion

The very basic ingredient of a model describing stochastic evolution is the
so-called Brownian motion or Wiener process.5 There are several alternative
ways to characterize and define the Wiener process W = {W (t), t ≥ 0}, and
one is the following: it is a Gaussian process with continuous paths and with
independent increments such that W (0) = 0 with probability 1, EW (t) = 0,
and Var(W (t)−W (s)) = t− s for all 0 ≤ s ≤ t. In practice, what is relevant
for our purposes is that W (t) −W (s) ∼ N(0, t − s), for 0 ≤ s ≤ t and that
on any two disjoint intervals, say (t1, t2), (t3, t4) with t1 ≤ t2 ≤ t3 ≤ t4, the
increments W (t2)−W (t1) and W (t4)−W (t3) are independent.

Simulation of the trajectory of the Brownian motion

Given a fixed time increment ∆t > 0, one can easily simulate a trajectory of
the Wiener process in the time interval [0, T ]. Indeed, for W∆t it holds true
that

W (∆t) = W (∆t)−W (0) ∼ N(0,∆t) ∼
√
∆t ·N(0, 1),

and the same is also true for any other increment W (t+∆t)−W (t); i.e.,

W (t+∆t)−W (t) ∼ N(0,∆t) ∼
√
∆t ·N(0, 1) .

5 This process was named in honor of the botanist Robert Brown. In 1827, Brown
described the chaotic motion of a grain of pollen suspended on the water and
repeatedly hit by water molecules, a motion well-modeled with Brownian motion.
Louis Bachelier in 1900, and independently Albert Einstein, studied the details
from the mathematical point of view. The Brownian motion is also a Wiener
process (i.e., a continuous-time Gaussian process with independent increments).
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Fig. 1.2. A simulated path of the Wiener process.

Thus, we can simulate one such path as follows. Divide the interval [0, T ] into
a grid such as 0 = t1 < t2 < · · · < tN−1 < tN = T with ti+1 − ti = ∆t. Set
i = 1 and W (0) = W (t1) = 0 and iterate the following algorithm.

1. Generate a (new) random number z from the standard Gaussian distri-
bution.

2. i = i+ 1.
3. Set W (ti) = W (ti−1) + z ·

√
∆t.

4. If i ≤ N , iterate from step 1.

This method of simulation is valid only on the points of the grid, but in
between any two points ti and ti+1 the trajectory is usually approximated by
linear interpolation. The algorithm above can be easily translated into some
R code as follows.
> # ex1 .06.R
> set.seed (123)
> N <- 100 # number of end -points of the grid including T
> T <- 1 # length of the interval [0,T] in time units
> Delta <- T/N # time increment
> W <- numeric(N+1) # initialization of the vector W
> t <- seq(0,T, length=N+1)
> for(i in 2:(N+1))
+ W[i] <- W[i-1] + rnorm (1) * sqrt(Delta)
> plot(t,W, type="l", main="Wiener process" , ylim=c(-1,1))
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Interpolation between the points of the trajectory of W has been performed
graphically by specifying the type="l" parameter in the plot6 function (see
Figure 1.2). But the code above might be considered as highly inefficient by
R purists, as it implements an iteration using a for statement when this is
not needed at all. In this simple case, the whole trajectory can be simulated
in one line of R code as follows.
W <- c(0,cumsum( sqrt(Delta) * rnorm(N)))

due to the fact that the algorithm is just simulating a random walk with
Gaussian increments of size

√
∆t · N(0, 1). The reader can check that the

two algorithms produce exactly the same trajectory by setting the seed of the
random number generator to the same value by setting it with set.seed(123)
(or any other value) before running each of the two R scripts.

Trajectories of Brownian motion can be obtained via other characteriza-
tions of the process. We review them just for completeness and to show some
programming techniques.

1.6.1 Brownian motion as the limit of a random walk

One characterization of the Brownian motion says that it can be seen as the
limit of a random walk in the following sense. Given a sequence of independent
and identically distributed random variables X1, X2, . . . , Xn, taking only two
values +1 and −1 with equal probability and considering the partial sum,

Sn = X1 +X2 + · · ·+Xn .

Then, as n→∞,

P

(
S[nt]√
n
< x

)
→ P (W (t) < x) ,

where [x] is the integer part of the real number x. Please note that this result
is a refinement of the central limit theorem that, in our case, asserts that
Sn/

√
n → N(0, 1). The following R code gives a graphical representation of

how many random variables X1, X2, . . . , Xn, we need to generate in order to
obtain a good approximation.
> # ex1 .07.R
> set.seed (123)
> n <- 10 # far from the CLT
> T <- 1
> t <- seq(0,T,length =100)
> S <- cumsum (2*(runif(n)>0.5) -1)
> W <- sapply(t, function(x) ifelse(n*x>0,S[n*x],0))
> W <- as.numeric(W)/sqrt(n)

6 One should notice that we have set ylim=c(-1,1) in the plot command. The
interval (−1, +1) is the 1-σ interval for the position of the Wiener process at time
t = 1; i.e., one should expect to find at least 68% of all possible realizations of the
Wiener process up to time t = 1, so this vertical axis limit specification allows us
to have, with high probability, a display of the whole trajectory of W .
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Fig. 1.3. Path of the Wiener process as the limit of a random walk; continuous line
n = 10, dashed line n = 100, dotted line n = 1000.

> plot(t,W,type="l",ylim=c(-1,1))
> n <- 100 # closer to the CLT
> S <- cumsum (2*(runif(n)>0.5) -1)
> W <- sapply(t, function(x) ifelse(n*x>0,S[n*x],0))
> W <- as.numeric(W)/sqrt(n)
> lines(t,W,lty=2)
> n <- 1000 # quite close to the limit
> S <- cumsum (2*(runif(n)>0.5) -1)
> W <- sapply(t, function(x) ifelse(n*x>0,S[n*x],0))
> W <- as.numeric(W)/sqrt(n)
> lines(t,W,lty=3)

In the above, we have first simulated a sequence of random variates Xi

taking values +1 and −1 with equal probability via the uniform distribution.
The R command runif(n) generates n random numbers from the uniform
distribution in (0, 1), and runif(n)>0.5 transforms these into a sequence of
zeros and ones (actually FALSE and TRUE). Now, if x is either 0 or 1, the
function 2 ∗ x − 1 maps 0 to −1 and 1 to 1. Thus, we now have a sequence
of n equally distributed random numbers −1 and 1 and cumsum calculates Sn

for us. Figure 1.3 shows the results of the approximation for n = 10, n = 100,
and n = 1000.
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1.6.2 Brownian motion as L2[0, T ] expansion

Another characterization of the Wiener process quite useful in conjunction
with empirical processes in statistics is the Karhunen-Loève expansion of W .
The Karhunen-Loève expansion is a powerful tool that is nothing but an
L2([0, T ]) expansion of random processes in terms of a sequence of independent
random variables and coefficients. This is particularly useful for continuous-
time processes that are a collection of uncountably many random variables
(such as the Wiener process which is indeed a collection of uncountably many
Gaussian variables). The Karhunen-Loève expansion is in fact a series of only
countably many terms and is useful for representing a process on some fixed
interval [0, T ]. We recall that L2([0, T ]), or simply L2, is the space of functions
from [0, T ] to R defined as

L2 = {f : [0, T ] → R : ||f ||2 <∞} ,

where

||f ||2 =

(∫ T

0

|f(t)|2dt

) 1
2

.

Let us denote by X(t) the trajectory of random process X(t, ω) for a given ω.
The Wiener process W (t) has trajectories belonging to L2([0, T ]) for almost
all ω’s, and the Karhunen-Loève expansion for it takes the form

W (t) = W (t, ω) =
∞∑

i=0

Zi(ω)φi(t), 0 ≤ t ≤ T ,

with

φi(t) =
2
√

2T
(2i+ 1)π

sin
(

(2i+ 1)πt
2T

)
.

The functions φi form a basis of orthogonal functions and Zi a sequence of
i.i.d. Gaussian random variables.
> # ex1 .08.R
> set.seed (123)
> phi <- function(i,t,T){
+ (2*sqrt(2*T))/((2*i+1)*pi) * sin (((2*i+1)*pi*t)/(2*T))
+ }
> T <- 1
> N <- 100
> t <- seq(0,T,length=N+1)
> W <- numeric(N+1)
> n <- 10
> Z <- rnorm(n)
> for(i in 2:(N+1))
+ W[i] <- sum(Z*sapply (1:n, function(x) phi(x,t[i],T)))
> plot(t,W,type="l",ylim=c(-1,1))
> n <- 50
> Z <- rnorm(n)
> for(i in 2:(N+1))
+ W[i] <- sum(Z*sapply (1:n, function(x) phi(x,t[i],T)))
> lines(t,W,lty=2)
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Fig. 1.4. Karhunen-Loève approximation of the path of the Wiener process with
n = 10 (continuous line), n = 50 (dashed line), and n = 100 (dotted line) terms in
the expansion.

> n <- 100
> Z <- rnorm(n)
> for(i in 2:(N+1))
+ W[i] <- sum(Z*sapply (1:n, function(x) phi(x,t[i],T)))
> lines(t,W,lty=3)

In Figure 1.4, three different approximations of the Wiener path based on
Karhunen-Loève expansion are presented. The higher the number of terms,
the better the approximation. Other L2 methods, based on fractal theory and
iterated function systems, have recently been introduced (see, e.g., [117]).

Which method to choose?

When one needs only to simulate the position of the Brownian motion at one
fixed time point (which is quite common in finance in the evaluation of the
payoff of contingent claims with a fixed exercise time), then the first method
should be used, as it is accurate enough. The two other methods, in particular
the last one, are useful if one needs more information and in particular if one
needs information on the whole path of W (again in finance, for example in
the evaluation of the payoff of Asian and barrier options, but also in physics
when one needs the complete evolution of a system). The Karhunen-Loève
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expansion is of course more expensive in terms of CPU time, and its reliabil-
ity also depends in principle on the reliability of the implementation of the
trigonometric functions. But the Karhunen-Loève expansion method is also
quite powerful for simulating paths of processes without independent incre-
ments or functionals of the Brownian motion (when the L2 expansions are
known). This is particularly useful in goodness of fit testing problems (see,
e.g, [208]).

1.6.3 Brownian motion paths are nowhere differentiable

The Brownian motion has infinite simple variation (i.e., Vt(W ) = ∞) and
covariance function Cov(W (s),W (t)) = t∧s, where s∧t = min(s, t). Its paths
are continuous but nowhere differentiable. To graphically view the weirdness
of the trajectory of the Brownian motion and understand why it is nowhere
differentiable, we can do the following experiment borrowed from [142]. We
simulate the increments of the Brownian motion in two subsequent time points
lagged by a time ∆t, say W (0.5) and W (0.5+∆t), and we let ∆t→ 0. Figure
1.5 shows the explosive behavior of lim∆t→0 |W (0.5 + ∆t) −W (0.5)|/∆t →
+∞. This happens because of the independence of the increments of the
Brownian motion and also, more importantly, because the increments W (t+
∆t)−W (t) behave like

√
∆t instead of ∆t. Thus, in the limit one can expect

lim
∆t→0

|B(t+∆t)−B(t)|
∆t

' lim
∆t→0

|
√
∆t|
∆t

= +∞ .

The next listing graphically proves this behavior. Notice that we choose the
log scale for the y axis.
> # ex1 .09.R
> set.seed (123)
> phi <- function(i,t,T){
+ (2*sqrt(2*T))/((2*i+1)*pi) * sin (((2*i+1)*pi*t)/(2*T))
+ }
> n <- 100
> Z <- rnorm(n)
> Delta <- seq(1e-7, 1e-2,length =30)
> W <- sum(Z*sapply (1:n, function(x) phi(x,0.5,T)))
> for(i in Delta)
+ Wh <- sum(Z*sapply (1:n, function(x) phi(x ,0.5+i,T)))
> inc.ratio <- abs(Wh -W)/Delta
> plot(Delta ,inc.ratio ,type="l",log="y",xlab=expression(Delta*t),
+ ylab=expression(abs(W(0.5+ Delta*t)-W(0.5))/Delta*t))
> max(inc.ratio ,na.rm=T)
[1] 701496.4

The nice property of the Brownian motion is that its quadratic variation is
finite. In particular, we have that [W,W ]t = t for all t ≥ 0.

1.7 Geometric Brownian motion

A process used quite often in finance to model the dynamics of some asset is
the so-called geometric Brownian motion. This process has the property of
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Fig. 1.5. Graphical evidence that the trajectory of the Brownian motion is nondiffer-
entiable. The plot shows the behavior of lim∆t→0 |W (0.5+∆t)−W (0.5)|/∆t → +∞.

having independent multiplicative increments and is defined as a function of
the standard Brownian motion

S(t) = x exp
{(

r − σ2

2

)
t+ σW (t)

}
, t > 0, (1.5)

with S(0) = x, x ∈ R is the initial value σ > 0 (interpreted as the volatility),
and r (interpreted as the interest rate) two constants. It has been introduced
in finance in [172]. One implementation to simulate a path of the geometric
Brownian motion can be based on previous algorithms. Assuming that W con-
tains a trajectory of W and t is the vector containing all the time points, a
path can be drawn (see Figure 1.6) as follows.
> # ex1 .10.R
> set.seed (123)
> r <- 1
> sigma <- 0.5
> x <- 10
> N <- 100 # number of end points of the grid including T
> T <- 1 # length of the interval [0,T] in time units
> Delta <- T/N # time increment
> W <- numeric(N+1) # initialization of the vector W
> t <- seq(0,T, length=N+1)
> for(i in 2:(N+1))
+ W[i] <- W[i-1] + rnorm (1) * sqrt(Delta)
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Fig. 1.6. A trajectory of the geometric Brownian motion obtained from the simu-
lation of the path of the Wiener process.

> S <- x * exp((r-sigma^2/2)*t + sigma*W)
> plot(t,S,type="l",main="geometric Brownian motion")

An equivalent way of simulating a trajectory of the geometric Brownian
motion is by simulating the increments of S. Indeed,

S(t+∆t) = S(t)e
(

r−σ2
2

)
(t+∆t−t)+σ(W (t+∆t)−W (t))

, (1.6)

which simplifies to

S(t+∆t) = S(t) exp
{(

r − σ2

2

)
∆t+ σ

√
∆tZ

}
(1.7)

with Z ∼ N(0, 1). Formula (1.6), which we will derive formally later, is a par-
ticular case of the generalized geometric Brownian motion, which is a process
starting from x at time s whose dynamic is

Zs,x(t) = x exp
{(

r − σ2

2

)
(t− s) + σ(W (t)−W (s))

}
, t ≥ s . (1.8)

Of course, Z0,S(0)(t) = S(t). In the same manner, we can consider the trans-
lated Brownian motion. Given a Brownian motion W (t), we define a new
process
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W0,x(t) = x+W (t)

with x a constant. Then W0,x(t) is a Brownian motion starting from x instead
of 0. If we further want this to happen at some fixed time t0 instead of at
time 0, we need to translate the process further by W (t0). Thus,

Wt0,x(t) = x+W (t)−W (t0), t ≥ t0 , (1.9)

is a Brownian motion starting at x at time t0. More precisely, this is the process
Wt0,x = {W (t), t0 ≤ t ≤ T |W (t0) = x} and, of course, W0,W (0)(t) = W (t).
By the properties of the Brownian motion, Wt0,x(t) is equal in distribution to
x+W (t− t0), and one way to simulate it is to simulate a standard Brownian
motion, add the constant x, and then translate the time. The code in Listing
1.1 constructs such a trajectory.

1.8 Brownian bridge

Another useful and interesting manipulation of the Wiener process is the so-
called Brownian bridge, which is a Brownian motion starting at x at time t0
and passing through some point y at time T , T > t0. It is defined as

WT,y
t0,x(t) = x+W (t− t0)−

t− t0
T − t0

· (W (T − t0)− y + x) . (1.10)

More precisely, this is the process {W (t), t0 ≤ t ≤ T |W (t0) = x,W (T ) = y}.
This process is easily simulated using the simulated trajectory of the Wiener
process.
> # ex1 .11.R
> set.seed (123)
> N <- 100 # number of end points of the grid including T
> T <- 1 # length of the interval [0,T] in time units
> Delta <- T/N # time increment
> W <- numeric(N+1) # initialization of the vector W
> t <- seq(0,T, length=N+1)
> for(i in 2:(N+1))
+ W[i] <- W[i-1] + rnorm (1) * sqrt(Delta)
> x <- 0
> y <- -1
> BB <- x + W - t/T * (W[N+1] - y +x)
> plot(t,BB ,type="l")
> abline(h=-1, lty =3)

Figure 1.7 shows a simulated path of the Brownian bridge starting from
x = 0 at time 0 and ending in y = −1 at time T . To conclude this section,
we provide few functions to generate paths of the Wiener and other related
processes. The functions, called BM, GBM, and BBridge, return an invisible7

object of class ts (i.e., a regular time series object of the R language).
7 Invisible objects returned by R functions are copies of the object that can be

assigned to some other objects without being printed on the R console; i.e., BM()
prints nothing on the console, assigning X <- BM(), typing X prints the whole
simulated path on the R console, plot(X) plots the path on the graphic device,
etc.
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Fig. 1.7. A simulated trajectory of the Brownian bridge starting at x at time 0 and
terminating its run at y = −1 at time T .

Listings 1.1, 1.2, and 1.3 construct respectively a trajectory of Wt0,x =
{W (t), t0 ≤ t ≤ T |W (t0) = x}, WT,y

t0,x(t) = {W (t), t0 ≤ t ≤ T |W (t0) =
x,W (T ) = y}, and the geometric Brownian motion. The functions BM, GBM,
and BBridge are contained in the package sde. As the next listing shows,
their use is very intuitive.
> # ex1 .12.R
> require(sde)
>
> set.seed (123)
> plot(BM())
> plot(GBM(1,1,sqrt (0.5)))
> plot(BBridge (0,-1))

We will refine these functions in Chapter 2.

BM <- function(x=0, t0=0, T=1, N=100){
if(T<= t0) stop("wrong times")
dt <- (T-t0)/N
t <- seq(t0,T, length=N+1)
X <- ts(cumsum(c(x,rnorm(N)*sqrt(dt))), start=t0, deltat=dt)
return(invisible(X))

}

Listing 1.1. Simulation Ws,x(t) = {W (t), t ≥ s|W (s) = x}.
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BBridge <- function(x=0, y=0, t0=0, T=1, N=100){
if(T<= t0) stop("wrong times")
dt <- (T-t0)/N
t <- seq(t0, T, length=N+1)
X <- c(0,cumsum( rnorm(N)*sqrt(dt)))
BB <- x + X - (t-t0)/(T-t0)*(X[N+1]-y+x)
X <- ts(BB , start=t0 ,deltat=dt)
return(invisible(X))

}

Listing 1.2. Simulation of the Brownian bridge. W T,y
t0,x(t) = {W (t), t0 ≤ t ≤

T |W (t0) = x, W (T ) = y}.

# x = starting point at time 0
# r = interest rate
# sigma = square root of the volatility
GBM <- function(x, r=0, sigma , T=1, N=100){

tmp <- BM(T=T,N=N)
S <- x * exp((r-sigma^2/2)*time(tmp) + sigma* as.numeric(tmp))
X <- ts(S, start=0,deltat =1/N)
return(invisible(X))

}

Listing 1.3. Simulation of the geometric Brownian motion.

1.9 Stochastic integrals and stochastic differential
equations

Stochastic integrals and in particular Itô integrals are naturally introduced to
correctly define a stochastic differential equation. We first present the heuris-
tics behind the notion of stochastic differential equations with a classical ex-
ample from mathematical finance. Let us suppose we have the quantity S(t),
t ≥ 0, which represents the value of an asset at time t. Consider now the
variation ∆S = S(t+∆t)− S(t) of S in a small time interval [t, t+∆t). The
returns of the asset for which S is the dynamics are defined as the ratio ∆S/S.
We can model the returns as

∆S

S
= deterministic contribution + stochastic contribution.

The deterministic contribution might be assumed to be linked to the interest
rate of non risky activities and thus proportional to time with some constant
rate µ, thus

deterministic contribution = µ∆t

(we will see later that µ can be made a function of either t or S(t)). The
stochastic contribution is assumed to be related to the variation of some source
of noise and to the natural variability of the market (the volatility). We denote
by ∆X = X(t+∆t)−X(t) the variation of the noisy process (i.e., the shocks)
and make it proportional to the market volatility σ; thus
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stochastic contribution = σ∆X

(σ can also be made a function of t and/or S). The natural hypothesis is to
assume Gaussian behavior of the noise (i.e., ∆X ∼ N(0, 1)) which implies
the assumption of X being the Wiener process if the shocks are, in addition,
supposed to be independent. Finally, we have

∆S

S
= µ∆t+ σ∆W.

Now, the evil temptation is to consider the difference equation above for in-
finitesimal time intervals (i.e., for ∆t → 0) in order to obtain a (stochastic)
differential equation of the form

S′(t)
S(t)

= µ+ σW ′(t), namely S′(t) = µS(t) + σS(t)W ′(t) ,

which we can also write in differential form as

dS(t) = µS(t)dt+ σS(t)dW (t) . (1.11)

The preceding equation is an example of a stochastic differential equation, but
unfortunately this expression has no mathematical meaning, as we already
mentioned that the variation of the Wiener process dW (t) is not finite and
the Wiener process has continuous but nowhere differentiable paths. To make
sense of (1.11), we switch to its integral form

S(t) = S(0) + µ

∫ t

0

S(u)du+ σ

∫ t

0

S(u)dW (u) . (1.12)

Equation (1.12) introduces the stochastic integral

I(X) =
∫ T

0

X(u)dW (u)

with respect to the Brownian motion. The definition of I(X) is quite easy for
simple (i.e., piecewise constant) processes X, but it requires more attention
for generic processes. Even if we can’t go into the details of the construction of
the stochastic integral (the reader can refer to [170] or [130]), we will outline
the basic steps in order to understand what I(X) really means and find a way
to simulate it. Given a generic integrand f : [0, T ] × Ω → R, I(f) is defined
as the limit of the sequence of the integrals I(f (n)), where f (n), called simple
processes, are defined as

f (n)(t, ω) = f (tj , ω) , tj ≤ t < tj+1,

with tj ∈ Πn([0, 1]) and such that Πn → 0 as n→∞. It is easy to show that
f (n) converges to f in quadratic mean. Then I

(
f (n)

)
is defined as



1.9 Stochastic integrals and stochastic differential equations 31

Fig. 1.8. The simple (piecewise constant) process f (5)(t) approximating f(t) =
sin(t) + εt used to construct Itô integrals. Note that f (n)(t) is defined as right
continuous.

I
(
f (n)

)
=

n−1∑
j=0

f (n) (tj) {W (tj+1)−W (tj)}

=
n−1∑
j=0

f (tj) {W (tj+1)−W (tj)} .

(1.13)

Equation (1.13) does not converge in the usual sense, as W does not have
finite variation. On the contrary, if we consider the mean square convergence,
the limit exists. Indeed, for every n, we have that

E
{
I
(
f (n)

)}2

=
n−1∑
j=0

E (f (tj))
2 (tj+1 − tj) ,

from which it follows that I
(
f (n)

)
→ I(f) in quadratic mean, the limit being

unique. Figure 1.8 is a representation of the simple process f (5)(t) approx-
imating the target f(t) = sin(t) + εt (with εt a Gaussian noise). From the
crude construction depicted above, few important things emerge as essential
in the definition of I(f). First of all, it is required that f be a process adapted
to the natural filtration of the Wiener process; i.e., f is Ft-measurable for

t

f(t
)=

si
n(

t)
+

ε t
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every t. This is required in (1.13) in order to have a well-defined process and
is the reason why, in the Itô sums of (1.13), the function is calculated at the
beginning of the interval [tj , tj+1) instead of in the middle.8 Moreover, the
behavior of the integrand process needs to compensate for the weirdness of
the path of the Brownian motion. This second fact implies the technical con-
dition E

∫ t

0
X2(u)du < ∞. Figure 1.8 has been generated with the following

lines of R code, which we report only for completeness.
> # ex1 .13.R
> set.seed (123)
> n <- 5
> N <- n*10
> t <- seq(0, 2*pi, length=N+1)
> f <- sin(t)+ rnorm(N+1)
> plot(t, f, type="l", axes=F,
+ ylab=expression(f(t)== sin(t)+ epsilon[t]))
> idx <- seq(1, N+1, length=n+1)
> axis(1,t[idx], c(sprintf("%3.2f", t[idx[1:n]]),
+ expression (2*pi)))
> axis (2)
> box()
> for(i in 1:n){
+ lines( c(t[idx[i]],t[idx[i+1]]), c(f[idx[i]],f[idx[i]]) )
+ points( t[idx[i]], f[idx[i]] ,pch =19)
+ }
> text(t[idx [3]]+.5 ,f[idx [2]]+.5 , expression(I(f^{(5)})))

1.9.1 Properties of the stochastic integral and Itô processes

Let {X(t), 0 ≤ t ≤ T} be a stochastic process adapted to the filtration gen-
erated by the Brownian motion and such that

∫ T

0
E(X(s)2)ds < +∞. The

stochastic integral of X is defined as

It(X) =
∫ t

0

XsdWs = lim
||Πn||→0

n−1∑
i=0

X(ti)(W (ti+1)−W (ti)) ,

where the convergence is in the quadratic mean and ti ∈ Πn. We will show
in Section 1.13.1 how to simulate an Itô integral, but we summarize here,
without proof, some nice properties of the Itô integral we will use at a later
stage.

• If X is Itô integrable, then

E

(∫ T

0

X(s)dW (s)

)
= 0

and

8 This alternative construction of the stochastic integral actually exists and leads
to the Stratonovich stochastic integral, which unfortunately does not share the
same properties of the Itô integral. In particular, it is not a martingale.
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Var

(∫ T

0

X(s)dW (s)

)
=
∫ T

0

EX2(t)dt
(
Itô isometry

)
.

• If X and Y are two Itô integrable processes and a and b two constants,
then (linearity)∫ T

0

(aX(t) + bY (t))dW (t) = a

∫ T

0

X(t)dW (t) + b

∫ T

0

Y (t)dW (t).

• It follows from the linearity property above that∫ T

0

adW (t) = a

∫ T

0

dW (t) = aW (T ).

• As we will show later in Section 1.11, it can be proved that∫ T

0

W (t)dW (t) =
1
2
W 2(T )− 1

2
T. (1.14)

• The process M(t) = M(0) +
∫ t

0
X(s)dW (s) is a martingale with M(0) a

constant.

An Itô process {Xt, 0 ≤ t ≤ T} is a stochastic process that can be written in
the form

Xt = X0 +
∫ t

0

g(s)ds+
∫ t

0

h(s)dWs.

where g(t, ω) and h(t, ω) are two adapted and progressively measurable ran-
dom functions such that

P

{∫ T

0

|g(t, ω)|dt <∞

}
= 1 and P

{∫ T

0

h(t, ω)2dt <∞

}
= 1.

1.10 Diffusion processes

The class of processes that is considered in this book is that of diffusion process
solutions to stochastic differential equations of the form

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t) (1.15)

with some initial condition X(0). As usual, (1.15) is interpreted in the Itô
sense; i.e.,

X(t) = X(0) +
∫ T

0

b(u,X(u))du+
∫ T

0

σ(u,X(u))dW (u). (1.16)



34 1 Stochastic Processes and Stochastic Differential Equations

The initial condition can be random or not. If random, say X(0) = Z, it
should be independent of the σ-algebra generated by W and satisfy the con-
dition E|Z|2 <∞. The two deterministic functions b(·, ·) and σ2(·, ·) are called
respectively the drift and the diffusion coefficients of the stochastic differen-
tial equation (1.15). All over the text, even when not mentioned, they are
supposed to be measurable and such that

P

{∫ T

0

sup
|x|≤R

(|b(t, x)|+ σ2(t, x))dt <∞

}
= 1

for all T,R ∈ [0,∞) because (1.16) is an Itô process.

Assumption 1.1 (Global Lipschitz) For all x, y ∈ R and t ∈ [0, T ], there
exists a constant K < +∞ such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| < K|x− y| . (L)

Assumption 1.2 (Linear growth) For all x, y ∈ R and t ∈ [0, T ], there
exists a constant C < +∞ such that

|b(t, x)|+ |σ(t, x)| < C(1 + |x|) . (G)

The linear growth condition controls the behaviour of the solution so that Xt

does not explode in a finite time.

Fact 1.2 (Existence and uniqueness, Theorem 5.2.1 [170]) Under As-
sumptions 1.1 and 1.2, the stochastic differential equation (1.15) has a unique,
continuous, and adapted strong solution such that

E

{∫ T

0

|Xt|2dt

}
<∞ .

We call such a process X a diffusion process. The result above states that
the solution X is of strong type. This essentially implies the pathwise unique-
ness of the result. It is also possible to obtain weak solutions under different
assumptions. In many cases in statistics, conditions for weak solutions are
enough because they imply that any two weak solutions X(1) and X(2) are
not necessarily pathwise identical, while their distributions are, and this is
enough for likelihood inference. Of course, strong solutions, are also weak
solutions but the contrary is not necessarily true.

The major part of this book will focus on the homogeneous version of the
stochastic differential equation (1.15) with nonrandom initial condition, say
X(0) = x. To keep the notation simpler, we will use the following notation
throughout the text:

Xt = x+
∫ t

0

b(Xu)du+
∫ t

0

σ(Xu)dWu (1.17)
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and
dXt = b(Xt)dt+ σ(Xt)dWt . (1.18)

The conditions above might be too restrictive in some cases, such as (see, e.g.,
[149])

dXt = −θX3
t dt+ σdWt. (1.19)

In many cases, local versions of the same conditions are enough.

Assumption 1.3 (Local Lipschitz) For any N < ∞, |x|, |y| ≤ N , there
exists a constant LN > 0 such that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ LN |x− y|

and
2xb(x) + σ2(x) ≤ B(1 + x2) . (1.20)

Indeed, these conditions are satisfied in (1.19). For the class of ergodic diffusion
processes that will be discussed later, it is usually true that xb(x) < 0. Hence
(1.20) is just a condition on the growth of the diffusion coefficient.

Assumption 1.4 Let b(·) be locally bounded, σ2(·) continuous, and positive,
and for some A the following condition holds:

xb(x) + σ2(x) ≤ A(1 + x2) . (B)

Fact 1.3 (See [73]) Under Assumption 1.4, the stochastic differential equa-
tion (1.17) has a unique weak solution.

For a discussion about strong and weak solutions, the reader can consider
references [150], [219], [130], and [149].

1.10.1 Ergodicity

Diffusion processes possess the Markov property and may or may not be
ergodic. The ergodic property implies that, for any measurable function h(·),
the following result holds with probability 1:

1
T

∫ T

0

h(Xt)dt→
∫ +∞

−∞
h(x)π(x)dx = Eh(ξ),

where π(·) is called the invariant or stationary density of the diffusion pro-
cess and ξ is some random variable with π(·) as density. Diffusion processes
have the nice property that the stationary distribution, when it exists, can
be expressed in terms of the scale measure and the speed measure,9 defined
respectively as

s(x) = exp
{
−2
∫ x

x0

b(y)
σ2(y)

dy
}

(1.21)

9 Sometimes they are both termed “measure” or “density.”
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and
m(x) =

1
σ2(x)s(x)

. (1.22)

In particular, the density of the invariant distribution π(·) is proportional, up
to a normalizing constant, to the speed measure m(·); i.e.,

π(x) =
m(x)
M

, (1.23)

where M =
∫
m(x)dx.

Assumption 1.5 Let (l, r), with −∞ ≤ l ≤ r ≤ +∞, be the state space of
the diffusion process X solution to (1.18), and assume that∫ r

l

m(x)dx <∞ .

Let x∗ be an arbitrary point in the state space of X such that∫ r

x∗
s(x)dx =

∫ x∗

l

s(x)dx = ∞ .

If one or both of the integrals above are finite, the corresponding boundary is
assumed to be instantaneously reflecting.

Under Assumption 1.5, the process X is ergodic and has an invariant distri-
bution function.

1.10.2 Markovianity

From the Markovian property of the diffusion, it is also possible to define the
transition density from value x at time s to value y at time t by p(t, y|s, x)
or, when convenient, as p(t− s, y|x). For parametric models, we will later use
the notation p(t, y|s, x; θ) or pθ(t, y|s, x) and p(t − s, y|x; θ) or pθ(t − s, y|x),
respectively. The transition density satisfies the Kolmogorov forward equation

∂

∂t
p(t, y|s, x) = − ∂

∂y
(b(y)p(t, y|s, x)) +

1
2
∂2

∂y2
(σ2(y)p(t, y|s, x)) (1.24)

and Kolmogorov backward equation

− ∂

∂s
p(t, y|s, x) = b(x)

∂

∂x
p(t, y|s, x) +

1
2
σ2(x)

∂2

∂x2
p(t, y|s, x); (1.25)

see, e.g, [170]. Letting t → −∞ in the Kolmogorov forward equation (1.24),
it is possible to obtain

d2

dx2
(σ2(x)π(x)) = 2

d
dx

(b(x)π(x)) , (1.26)
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where π(x) is the stationary density. Equation (1.26) establishes a relationship
between the drift b(·), the diffusion coefficient σ(·), and the invariant density
π(·). Hence, in principle, given either of the two, one can obtain the third. For
example, by integrating (1.26), we obtain (see, e.g., [19])

b(x) =
1

2π(x)
d
dx

(σ2(x)π(x)),

and integrating again, one gets (see, e.g., [3])

σ2(x) =
2

π(x)

∫ x

0

b(u)π(u)du .

All these facts and relationships will be useful for both the simulation algo-
rithms and in the chapters on parametric and nonparametric inference that
follow.

1.10.3 Quadratic variation

It can be seen [170] that the quadratic variation of a diffusion process solution
to (1.15) is given by

<X,X>t=
∫ t

0

σ2(u,Xu)du . (1.27)

1.10.4 Infinitesimal generator of a diffusion process

Given a diffusion process X solution to dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x,
a differential operator L of the form

(Lf)(x) =
σ2(x)

2
f ′′(x) + b(x)f ′(x) (1.28)

with f two times differentiable is called the infinitesimal generator of the
diffusion process X.

1.10.5 How to obtain a martingale from a diffusion process

If Z is a process defined as

Z(t) = f(Xt)−
∫ t

0

(Lf)(Xs)ds ,

where X is a diffusion process and f(·) ∈ C2
0 (R), then Z is a martingale with

respect to the Brownian motion. Moreover, we have that

Ef(Xt) = f(x) + E
(∫ t

0

(Lf)(Xs)ds
)
.
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1.11 Itô formula

An important tool of stochastic calculus that is also useful in simulations is
the Itô formula. This formula can be seen as the stochastic version of a Taylor
expansion of f(X) stopped at the second order, where X is a diffusion process.
Itô’s lemma says that if f(t, x) is a twice differentiable function on both t and
x, then

f(t,Xt) = f(0, X0) +
∫ t

0

ft(u,Xu)du+
∫ t

0

fx(u,Xu)dXu

+
1
2

∫ t

0

fxx(u,Xu)(dXu)2,

where

∂f(t, x)
∂t

= ft(t, x),
∂f(t, x)
∂x

= fx(t, x),
∂2f(t, x)
∂x2

= fxx(t, x),

or, in differential form,

df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1
2
fxx(t,Xt)(dXt)2.

If Xt is the Brownian motion, this simplifies to the following

f(t,Wt) = f(0, 0) +
∫ t

0

(
ft(u,Wu) +

1
2
fxx(u,Wu)

)
du+

∫ t

0

fx(u,Wu)dWu

or, in differential form,

df(t,Wt) =
(
ft(t,Wt) +

1
2
fxx(t,Wt)

)
dt+ fx(t,Wt)dWt.

As an example, consider the function f(t, x) = f(x) = x2. The Itô formula
applied to f(Wt) then leads to

W 2
t = 02 +

∫ t

0

2WsdWs +
1
2

∫ t

0

2ds,

and therefore ∫ t

0

WsdWs =
1
2
W 2

t −
1
2
t

as already mentioned (see formula (1.14)).

1.11.1 Orders of differentials in the Itô formula

Despite the apparent simplicity of the Itô formula, terms such as (dXt)2 are
not easy to derive in many concrete cases without some additional knowledge
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about the stochastic integral. In particular, from the point of view of appli-
cation of the Itô formula, one should keep in mind that (dt · dWt) and (dt)2

are of order O(dt), which means that after developing the term (dXt)2, all
terms in the formula for which the differential part is either (dt ·dWt) or (dt)2

can be disregarded. Moreover, terms of order (dWt)2 behave like dt for the
properties of the Brownian motion. Hence, the differential part (dWt)2 can be
replaced everywhere simply by dt.

1.11.2 Linear stochastic differential equations

Direct application of the Itô formula helps in finding out the solution of
stochastic differential equations. Consider the stochastic differential equation

dXt = b1(t)Xtdt+ σ1(t)XtdWt . (1.29)

This equation is called a stochastic differential equation with multiplicative
noise. Choosing f(t, x) = log x, one obtains

Xt = X0 exp
{∫ t

0

(
b1(s)−

1
2
σ1(s)

)
ds+

∫ t

0

σ1(s)dWs

}
. (1.30)

Consider now the nonhomogeneous version of equation (1.29)

dXt = (b1(t)Xt + b2(t))dt+ (σ1(t)Xt + σ2(t))dWt, (1.31)

and let Yt be as in (1.30) with Y0 = 1. Then the solution of (1.31) is

Xt = Yt

(
X0 +

∫ t

0

(b2(s)− σ1(s)σ2(s))Y −1
s ds+

∫ t

0

σ2(s)Y −1
s dWs

)
.

A simple derivation of this fact can be found in [163] Section 3.3.3. It is clear
that geometric Brownian motion is a particular case of (1.29) with constant
coefficients b1(t) = µ and σ1(t) = σ.

1.11.3 Derivation of the SDE for the geometric Brownian motion

It is now easy to derive the stochastic differential equation for the geometric
Brownian motion,

St = S0 exp
{(

r − σ2

2

)
t+ σWt

}
, t > 0, (1.32)

by choosing

f(t, x) = S0 exp
{(

r − σ2

2

)
t+ σx

}
.

Thus, f(t,Wt) = St and
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ft(t, x) =
(
r − σ2

2

)
f(t, x) fx(t, x) = σf(t, x) fxx(t, x) = σ2f(t, x).

Hence

dSt = df(t,Wt)

=
(
ft(t,Wt) +

1
2
fxx(t,Wt)

)
dt+ fx(t,Wt)dW (t)

=
((

r − σ2

2

)
St +

1
2
σ2St

)
dt+ σStdWt

= rStdt+ σStdWt,

(1.33)

which justifies (1.11).

1.11.4 The Lamperti transform

There is one particular application of the Itô formula that is of interest in
many of the simulation and estimation methods we are going to describe in
the next chapters (for example, this transform has been used in [85], [207],
and [6]). Suppose we have the stochastic differential equation

dXt = b(t,Xt)dt+ σ(Xt)dWt,

where the diffusion coefficient depends only on the state variable. Such a
stochastic differential equation can always be transformed into one with a
unitary diffusion coefficient by applying the Lamperti transform,

Yt = F (Xt) =
∫ Xt

z

1
σ(u)

du . (1.34)

Here z is any arbitrary value in the state space of X. Indeed, the process Yt

solves the stochastic differential equation

dYt = bY (t, Yt)dt+ dWt,

where

bY (t, y) =
b(t, F−1(y))
σ(F−1(y))

− 1
2
σx(F−1(y)),

which we can also write as

dYt =
(
b(t,Xt)
σ(Xt)

− 1
2
σx(Xt)

)
dt+ dWt . (1.35)

To obtain the result one, should use the Itô formula with

f(t, x) =
∫ x

z

1
σ(u)

du, ft(t, x) = 0, fx(t, x) =
1

σ(x)
, fxx(t, x) = −σx(x)

σ2(x)
.
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Therefore

df(t, x) = 0 · dt+ fx(t,Xt)dXt +
1
2
fxx(t,Xt)(dXt)2

=
b(t,Xt)dt+ σ(Xt)dWt

σ(Xt)
− 1

2
σx(t,Xt)
σ2(Xt)

(b(t,Xt)dt+ σ(Xt)dWt)2

=
b(t,Xt)
σ(Xt)

dt+ dWt −
1
2
σx(t,Xt)
σ2(Xt)

×
(
b(t,Xt)(dt)2 + 2 · b(t,Xt)σ(Xt)dt · dWt + σ2(x)(dWt)2

)
.

Now recall that terms (dt)2 and (dt · dWt) can be discarded and (dWt)2

replaced by dt. Hence the result is obtained.

1.12 Girsanov’s theorem and likelihood ratio for
diffusion processes

Girsanov’s theorem is a change-of-measure theorem for stochastic processes.
In inference for diffusion processes, this is used to obtain the likelihood ratio
on which likelihood inference is based. There are different versions of this
theorem, and here we will give one useful in statistics for diffusion processes
[149]. Consider the three stochastic differential equations

dXt = b1(Xt)dt+ σ(Xt)dWt, X
(1)
0 , 0 ≤ t ≤ T,

dXt = b2(Xt)dt+ σ(Xt)dWt, X
(2)
0 , 0 ≤ t ≤ T,

dXt = σ(Xt)dWt, X0, 0 ≤ t ≤ T,

and denote by P1, P2, and P the three probability measures induced by the
solutions of the three equations.

Fact 1.4 (see, e.g., [159] or [124]) Assume that the coefficients satisfy As-
sumptions 1.1 and 1.2 or Assumption 1.4 or any other set of conditions that
guarantee the existence of the solution of each stochastic differential equation.
Assume further that the initial values are either random variables with densi-
ties f1(·), f2(·), and f(·) with the same common support or nonrandom and
equal to the same constant. Then the three measures P1, P2, and P are all
equivalent and the corresponding Radon-Nikodým derivatives are

dP1

dP
(X) =

f1(X0)
f(X0)

exp

{∫ T

0

b1(Xs)
σ2(Xs)

dXs −
1
2

∫ T

0

b21(Xs)
σ2(Xs)

ds

}
(1.36)

and
dP2

dP1
(X) =

f2(X0)
f1(X0)

exp

{∫ T

0

b2(Xs)− b1(Xs)
σ2(Xs)

dXs

− 1
2

∫ T

0

b22(Xs)− b21(Xs)
σ2(Xs)

ds

}
.

(1.37)
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A version of (1.36) for parametric families P1 = P1(θ) with b1(x) = b1(x; θ)
is usually adopted as the likelihood ratio to find maximum likelihood estima-
tors. To understand why (1.37) (or (1.36)) can be assimilated to a likelihood,
consider the following example inspired by the one by M. Keller-Ressel and T.
Steiner.10 Suppose we have a standard Brownian motion Wt on [0, 1] rescaled
by a constant σ,

Xt = σWt,

and the same rescaled Brownian motion with drift

Yt = νt+ σWt, 0 ≤ t ≤ 1,

with ν < 0 and σ > 0. We apply Girsanov’s formula (1.37) to weight the
trajectories of the process Yt, and in our case b1(x) = ν for the process Yt,
b2(x) = 0 for Xt, and σ(x) = σ. We have that

dP2

dP1
(Y ) = exp

{∫ 1

0

0− ν

σ2
dYs −

1
2

∫ 1

0

02 − ν2

σ2
dt
}

= exp
{
−ν
σ2

∫ 1

0

(νds+ σdWs) +
1
2
ν2

σ2

}
= exp

{
−
(ν
σ

)2

+
−ν
σ
W1 +

1
2
ν2

σ2

}
= exp

{
−νW1

σ
− 1

2

(ν
σ

)2
}
.

The previous weights depend on the final value ofW1. Of course, the lower and
more negative W1 is, the higher is the likelihood that an observed trajectory
Y really comes from the model Yt because ν < 0. The following code simulates
30 paths of Xt and Yt with ν = −0.7 and σ = 0.5 and calculates the weights
using Girsanov’s formula. Finally, it plots the paths of Yt and the same paths
with a color proportional to the weights: the darker trajectories are more likely
to come from the true model Yt. The result is shown in Figure 1.9.
> # ex1 .14.R
> set.seed (123)
> par("mar"=c(3,2,1,1))
> par(mfrow=c(2 ,1))
> npaths <- 30
> N <- 1000
> sigma <- 0.5
> nu <- -0.7
> X <- sde.sim(drift=expression (0),sigma=expression (0.5) ,
+ pred=F, N=N,M=npaths)
> Y <- X + nu*time(X)
> girsanov <- exp (0.25 * (-nu/sigma*X[N,] - 0.5*(nu/sigma )^2))
> girsanov <- (girsanov - min(girsanov )) / diff(range(girsanov ))
> col.girsanov <- gray(girsanov)
> matplot(time(X),Y,type="l",lty=1, col="black",xlab="t")
> matplot(time(X),Y,type="l",lty=1,col=col.girsanov ,xlab="t")

In the preceding R code, the weights are rescaled a bit to enhance visual
contrast and are further normalized to one.
10 See Wikipedia at http://commons.wikimedia.org/wiki/Image:Girsanov.png.

http://commons.wikimedia.org/wiki/Image:Girsanov.png
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Fig. 1.9. Simulated paths of Brownian motion with drift (top panel) and the same
paths (bottom panel) colored using Girsanov’s weights. The darker trajectories are
more likely to come from the model of Brownian motion with drift.

1.13 Some parametric families of stochastic processes

In this section, we present some of the well-known and widely used stochastic
process solutions to the general stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt (1.38)

with a quick review of their main properties. When possible, we will describe
each process in terms of its first moments and covariance function, in terms of
the stationary density π(x) (1.23), and in terms of its conditional distribution
(p(t−s, y|x; θ) or pθ(t−s, y|x)) of Xt given some previous state of the process
Xs = xs. In some cases, it will be simpler to express the stationary density
π(x) of a diffusion in terms of the scale measure s(·) (1.21) and the speed
measure m(·) (1.22) of the diffusion.

1.13.1 Ornstein-Uhlenbeck or Vasicek process

The Ornstein-Uhlenbeck [224] or Vasicek [225] process is the unique solution
to the following stochastic differential equation
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dXt = (θ1 − θ2Xt)dt+ θ3dWt, X0 = x0, (1.39)

with θ3 ∈ R+ and θ1, θ2 ∈ R. The model (θ1 = 0) was originally proposed by
Ornstein and Uhlenbeck [224] in the context of physics and then generalized
by Vasicek [225] to model interest rates. For θ2 > 0, this is a mean reverting
process, which means that the process tends to oscillate around some equilib-
rium state. Another interesting property of the Ornstein-Uhlenbeck process is
that, contrary to the Brownian motion, it is a process with finite variance for
all t ≥ 0. Another parametrization of the Ornstein-Uhlenbeck process more
common in finance modeling is

dXt = θ(µ−Xt)dt+ σdWt, X0 = x0, (1.40)

where σ is interpreted as the volatility, µ is the long-run equilibrium value
of the process, and θ is the speed of reversion. As an application of the Itô
lemma, we can show the explicit solution of (1.39) by choosing f(t, x) = xeθ2t.
Indeed,

ft(t, x) = θ2f(t, x), fx(t, x) = eθ2t, fxx(t, x) = 0 .

Therefore,

Xte
θ2t = f(t,Xt) = f(0, X0) +

∫ t

0

θ2Xue
θ2udu+

∫ t

0

eθ2udXu

= x0 +
∫ t

0

θ2Xue
θ2udu+

∫ t

0

eθ2u {(θ1 − θ2Xu)du+ θ3dWu}

= x0 +
θ1
θ2

(
eθ2t − 1

)
+ θ3

∫ t

0

eθ2udWu,

from which we obtain

Xt =
θ1
θ2

+
(
x0 −

θ1
θ2

)
e−θ2t + θ3

∫ t

0

e−θ2(t−u)dWu

or, in the second parametrization,

Xt = µ+ (x0 − µ)e−θt + σ

∫ t

0

e−θ(t−u)dWu.

The invariant law

For θ2 > 0, the process is also ergodic, and its invariant law is the Gaussian
density with mean θ1/θ2 and variance θ23/2θ2,

Xt ∼ N

(
θ1
θ2
,
θ23
2θ2

)
.



1.13 Some parametric families of stochastic processes 45

The covariance function is Cov(Xt, Xs) = θ23e
−θ2|t−s|/2θ2. Sometimes it is

convenient to rewrite the process as the scaled time-transformed Wiener pro-
cess

Xt =
θ1
θ2

+
θ3e

−θ2t

√
2θ2

W
(
e2θ2t

)
.

This relationship comes directly from the properties of the Brownian motion.

The conditional law

For any t ≥ 0, the Ornstein-Uhlenbeck process has a Gaussian transition (or
conditional) density pθ(t,Xt|X0 = x0); i.e., the density of the distribution of
Xt given X0 = x0, with mean and variance respectively

m(t, x) = Eθ(Xt|X0 = x0) =
θ1
θ2

+
(
x0 −

θ1
θ2

)
e−θ2t (1.41)

and

v(t, x) = Varθ(Xt|X0 = x0) =
θ23
(
1− e−2θ2t

)
2θ2

. (1.42)

The conditional covariance function is

Cov(Xs, Xt|X0 = x0) =
θ23
2θ2

e−θ2(s+t)
(
e2θ2(s∧t) − 1

)
,

and its scaled time-transformed Wiener representation is

Xt =
θ1
θ2

+
(
x0 −

θ1
θ2

)
e−θ2t +

θ3√
2θ2

W
(
e2θ2t − 1

)
e−θ2t .

Example of simulation of the stochastic integral

It can be seen that for θ1 = 0 the trajectory of Xt is essentially a nega-
tive exponential perturbed by the stochastic integral. One way of simulating
trajectories of the Ornstein-Uhlenbeck process is indeed via the simulation
of the stochastic integral. As promised in Section 1.9, we now show how to
simulate a stochastic integral, but the next chapter will cover other different
(and preferred) ways to simulate paths from the Ornstein-Uhlenbeck process
and others. The following script, given without further comments, essentially
simulates Itô sums. The result is shown in Figure 1.10.
> # ex1 .15.R
> W <- BM()
> t <- time(W)
> N <- length(t)
> x <- 10
> theta <- 5
> sigma <- 3.5
> X <- numeric(N)
> X[1] <- x
> ito.sum <- c(0, sapply (2:N, function(x) {
+ exp(-theta*(t[x]-t[x -1])) * (W[x]-W[x-1])} ) )
> X <- sapply (1:N, function(x) {X[1]*exp(-theta*t[x]) +
+ sum(ito.sum [1:x])} )
> X <- ts(X,start=start(W), deltat=deltat(W))
> plot(X,main="Ornstein -Uhlenbeck process")
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Fig. 1.10. Simulated path of the Ornstein-Uhlenbeck process dXt = −θXt + σdWt

with X(0) = 10, θ = 5, and σ = 3.5.

1.13.2 The Black-Scholes-Merton or geometric Brownian motion
model

We have already presented the derivation of the geometric Brownian motion
in Section 1.7, so here we just recall the basic facts. This process is sometimes
called the Black-Scholes-Merton model after its introduction in the finance
context to model asset prices (see [36], [162]). The process is the solution to
the stochastic differential equation

dXt = θ1Xtdt+ θ2XtdWt, X0 = x0,

with θ2 > 0. The parameter θ1 is interpreted as the constant interest rate and
θ2 as the volatility of risky activities. The explicit solution is

Xt = x0e
(θ1− 1

2 θ2
2)t+θ2Wt .

The conditional density function is log-normal with the mean and variance of
its logarithm transform (i.e., the log-mean and log-variance) given by

µ = log(x0) +
(
θ1 −

1
2
θ22

)
t, σ2 = θ22t, (1.43)
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with mean and variance

m(t, x0) = eµ+ 1
2 σ2

= x0e
θ1t, (1.44)

v(t, x0) = e2µ+σ2
(
eσ2

− 1
)

= x2
0e

2θ1t
(
eθ2

2t − 1
)
. (1.45)

Hence

pθ(t, y|x0) =
1

yσ
√

2π
exp

{
− (log y − µ)2

2σ2

}
=

1
yθ2

√
2πt

exp
{
−

(log y − (log x0 + (θ1 − 1
2θ

2
2)t))

2

2θ22t

}
.

1.13.3 The Cox-Ingersoll-Ross model

Another interesting family of parametric models is that of the Cox-Ingersoll-
Ross process. This model was introduced by Feller as a model for population
growth (see [82] and [83]) and became quite popular in finance after Cox,
Ingersoll, and Ross proposed it to model short-term interest rates [59]. It was
recently adopted to model nitrous oxide emission from soil by Pedersen in
[181] and to model the evolutionary rate variation across sites in molecular
evolution (see [157]). The CIR process is the solution to the stochastic differ-
ential equation

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, X0 = x0 > 0 , (1.46)

sometimes parametrized as

dXt = θ(β −Xt)dt+ σ
√
XtdWt, X0 = x0 > 0 , (1.47)

where θ1, θ2, θ3 ∈ R+. If 2θ1 > θ23, the process is strictly positive otherwise it
is nonnegative, which means that it can reach the state 0. Of course, the last
case is not admitted in finance when the CIR process is used to model interest
rates. The stochastic differential equation (1.46) has the explicit solution

Xt =
(
X0 −

θ1
θ2

)
e−θ2t + θ3e

−θ2t

∫ t

0

eθ2u
√
XudWu .

The conditional distribution

Under the hypothesis 2θ1 > θ23, the process is also stationary. Moreover, the
conditional transition density exists in explicit form. The process Yt = 2cXt,
with c = 2θ2/(θ23(1− e−θ2t)), has a conditional distribution Yt|Y0 = y0, which
follows the law of the noncentral chi-squared distribution with ν = 4θ1/θ23
degrees of freedom and noncentrality parameter y0e−θ2t. The transition den-
sity of the original process (i.e., the distribution of Xt|X0 = x0) can be easily
obtained from the distribution of Yt|Y0 = y0, and the result is
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pθ(t, y|x0) = ce−(u+v)
(u
v

)q/2

Iq(2
√
uv) , (1.48)

with u = cx0e
−θ2t, v = cy, q = 2θ1/θ23 − 1, where Iq(·) is the modified Bessel

function of the first kind of order q (see, e.g., [1])

Iq(x) =
∞∑

k=0

(x
2

)2k+q 1
k!Γ (k + q + 1)

, x ∈ R,

and Γ (·) is the gamma function (i.e., Γ (z) =
∫∞
0
xz−1e−xdx, z ∈ R+). These

derivations can be found, for example, in [82].

Behavior of the conditional distribution

From the point of view of likelihood inference, it should be noted that even if
the non-central chi-squared distribution is a special yet well-known probability
distribution, its actual computation is not an easy task. Indeed, as t → 0,
both u and v explode, which means that when the distribution has to be
calculated for very large arguments, it implies the evaluation of the chi-squared
distribution in the right tail. The contrary is also true. If t → ∞, u → 0,
and u → 2θ2x/θ23, when the left tail of the distribution is interested in the
calculations (see, e.g., [72]). Being that the chi-squared distribution is based on
the modified Bessel function of the first kind Iq(·), the problem is essentially
in the evaluation of Iq(·) for very small and large arguments. We will discuss
the numerical implementation of the CIR density later in Section 2.3.2.

For the Cox-Ingersoll-Ross process, the mean of the conditional density is
that of the Ornstein-Uhlenbeck process

m(t, x0) =
θ1
θ2

+
(
x0 −

θ1
θ2

)
e−θ2t, (1.49)

and the variance is

v(t, x0) = x0
θ23(e

−θ2t − e−2θ2t)
θ2

+
θ1θ

2
3(1− e−2θ2t)

2θ22
. (1.50)

The covariance function is given by

Cov(Xs, Xt) = x0
θ23
θ2

(
e−θ2t − e−θ2(s+t)

)
+
θ1θ

2
3

2θ22

(
e−θ2(t−s) − e−θ2(t+s)

)
.

The stationary law

The stationary distribution of the CIR process is a Gamma law with shape
parameter 2θ1/θ23 and scale parameter θ23/2θ2. Hence the stationary law has
mean equal to θ1

θ2
and variance θ1θ23/(2θ

2
2). The covariance function in the

stationary case is given by

Cov(Xs, Xt) =
θ1θ

2
3

2θ22
e−θ2(t−s) .
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1.13.4 The CKLS family of models

The Chan-Karolyi-Longstaff-Sanders (CKLS) family of models (see [49]) is
a class of parametric stochastic differential equations widely used in many
finance applications, in particular to model interest rates or asset prices. The
CKLS process solves the stochastic differential equation

dXt = (θ1 + θ2Xt)dt+ θ3X
θ4
t dWt . (1.51)

This CKLS model is a further extension of the Cox-Ingersoll-Ross model and
hence embeds all previous models. Table 1.4 presents some cases. The CKLS
model does not admit an explicit transition density unless θ1 = 0 or θ4 = 1

2 .
It takes values in (0,+∞) if θ1, θ2 > 0, and θ4 > 1

2 . In all cases, θ3 is assumed
to be positive.

1.13.5 The modified CIR and hyperbolic processes

Another example of an application of the Lamperti transform (see, e.g., [56])
is the modified Cox-Ingersoll-Ross process solution to

dXt = −θ1Xtdt+ θ2

√
1 +X2

t dWt (1.52)

with θ1 + θ22/2 > 0 (this is needed to make the process positive recurrent).
This process has a stationary distribution whose density π(·) is proportional
to

π(x) ∝ 1
(1 + x2)1+θ1/θ2

2
.

Setting ν = 1 + 2θ1/θ22, then Xt ∼ t(ν)/
√
ν, where t is the Student t distri-

bution with ν degrees of freedom. Applying the Lamperti transform

F (x) =
∫ x

0

1
θ2
√

1 + u2
du =

arcsinh(x)
θ2

=
1
θ 2

log
(
x+

√
1 + x2

)

Table 1.4. The family of CKLS process and its embedded elements under different
parametric specifications. In all cases, θ3 > 0.

θ1 θ2 θ4 mean reverting see

Merton any 0 0 no [162]
Vasicek or Ornstein-Uhlenbeck any any 0 yes [225]
CIR or Square Root process any any 1/2 yes [59]
Dothan 0 0 1 no [71]
Geometric BM or B&S 0 any 1 yes [36]
Brennan and Schwartz any any 1 yes [42]
CIR VR 0 0 3/2 no [58]
CEV 0 any any yes [57]
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to (1.52), we have that Yt = F (Xt) satisfies the stochastic differential equation

dF (Xt) = −(θ1/θ2 + θ2/2)
Xt√

1 +X2
t

dt+ dWt, (1.53)

which we can rewrite in terms of the Yt process as

dYt = −(θ1/θ2 + θ2/2) tanh(θ2Yt) + dWt (1.54)

with Y0 = F (X0).

1.13.6 The hyperbolic processes

A process X satisfying

dXt = − θXt√
1 +X2

t

dt+ dWt (1.55)

with θ > 0 is called the hyperbolic process. It is a special case of the general
hyperbolic diffusion introduced in [21] and solution of

dXt =
σ2

2

[
β − γ

Xt√
δ2 + (Xt − µ)2

]
dt+ σdWt.

Its invariant density is

π(x) =

√
γ2 − β2

2γδK1(δ
√
γ2 − β2)

exp {−γ
√
δ2 + (x− µ)2 + β(x− µ)} ,

where Kν(x) is the modified Bessel function of second kind of index ν (see,
e.g., [1]). The parameters γ > 0 and 0 ≤ |β| < γ determine the shape of
the distribution, and δ ≥ 0, and µ are, respectively, the scale and location
parameters of the distribution. This process was used to model log-returns of
assets prices in stock markets in [77] and [32]. A further generalization of the
hyperbolic process (1.55) is the solution to the stochastic differential equation

dXt = − αXt√
1 +X2

t

dt+
β +X2

t

1 +X2
t

dWt (1.56)

with X0 = 0, α > 0, and β ≥ 1. This process, introduced in [161], is also
ergodic.

1.13.7 The nonlinear mean reversion Aı̈t-Sahalia model

This model satisfies the nonlinear stochastic differential equation

dXt = (α−1X
−1
t + α0 + α1Xt + α2X

2
t )dt+ β1X

ρ
t dWt . (1.57)
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In general, there are no exact distributional results although, as explained
in Chapter 3, approximate transition densities can be obtained via Hermite
polynomial expansion. This model was proposed by Aı̈t-Sahalia to model in-
terest rates in [7], [8]. The same author [4] proposed a further generalization
that includes more structure in the diffusion coefficient. The second model is
of the form

dXt = (α−1X
−1
t + α0 + α1Xt + α2X

2
t )dt+

√
β0 + β1Xt + β2X

β3
t dWt .

Some natural constraints on the parameters are needed in order to have a
meaningful specification of the model. Moreover, Markovianity is granted only
under additional constraints. The next table summarizes relations between
coefficients. For the proof of these facts, see the Appendix in [4].

condition when
β0 ≥ 0 always
β1 > 0 β0 = 0 and β3 > 1
β1 > 0 0 < β3 < 1 or β2 = 0
β2 > 0 β0 = 0 and 0 < β3 < 1
β2 > 0 β3 > 1 or β1 = 0
β3 > 1 β2 > 0
α2 ≤ 0 and α1 < 0 α2 = 0, α−1 > 0, and 2α−1 ≥ β0 ≥ 0
α2 ≤ 0 and α1 < 0 α3 = 0, α0 > 0, β0 = 0, β3 > 1, and 2α0 ≥ β1 > 0

It is clear that the CKLS model is just a particular case of the Aı̈t-Sahalia
model.

1.13.8 Double-well potential

This model is interesting because of the fact that its density has a bimodal
shape. The process satisfies the stochastic differential equation

dXt = (Xt −X3
t )dt+ dWt .

This model is challenging in the sense that the standard Euler approximation
that we discuss in Section 2.1 could not be expected to work due to the high
nonlinearity of the stochastic differential equation and high non-Gaussianity
of its finite-dimensional distributions.

1.13.9 The Jacobi diffusion process

The Jacobi diffusion process is the solution to the stochastic differential equa-
tion

dXt = −θ
(
Xt −

1
2

)
dt+

√
θXt(1−Xt)dWt (1.58)

for θ > 0. It has an invariant distribution that is uniform on (0, 1). The
peculiar thing is that, given any twice differentiable distribution function F ,
the transformed diffusion Yt = F−1(Xt) has an invariant density π(·) that is
the density of F ; i.e., π = F ′.



52 1 Stochastic Processes and Stochastic Differential Equations

1.13.10 Ahn and Gao model or inverse of Feller’s square root
model

A further generalization in the direction of nonlinear and mean reversion is
the model proposed in [2], which is a suitable transformation of the Cox-
Ingersoll-Ross model. The process is the solution to the stochastic differential
equation

dXt = Xt(θ1 − (θ33 − θ1θ2)Xt)dt+ θ3X
3
2
t dWt .

The conditional distribution of this process is related to that of the Cox-
Ingersoll-Ross model as

pθ(t, y|x0) =
1
y2
pCIR

θ

(
t,

1
y

∣∣∣∣ 1
x0

)
,

where pCIR
θ is the conditional density (1.48).

1.13.11 Radial Ornstein-Uhlenbeck process

The radial Ornstein-Uhlenbeck process is the solution to the stochastic differ-
ential equation

dXt = (θX−1
t −Xt)dt+ dWt

for θ > 0. This model is a special case of (1.57) but still interesting because
some distributional results are known. In particular, the conditional distribu-
tion has the explicit form

pθ(t, y|x0) =

(
y
x

)θ √
xye−y2+(θ+ 1

2 )t

sinh(t)
exp

{
−x

2 + y2

e2t − 1

}
Iθ− 1

2

(
xy

sinh(t)

)
,

where Iν is the modified Bessel function of order ν.

1.13.12 Pearson diffusions

A class that further generalizes the Ornstein-Uhlenbeck and Cox-Ingersoll-
Ross processes is the class of Pearson diffusion. This class of models and their
statistical properties have been analyzed in [89], and its name is due to the
fact that, when a stationary solution exists for this model, its invariant den-
sity belongs to the Pearson system [177]. The Pearson system allows for a big
variety of distributions which can take positive and/or negative values, and
can be bounded, symmetric or skewed, and heavy or light tailed. In particu-
lar, the type IV Pearson distribution is a kind of skewed t distribution that
seems to fit financial time series particularly well. Pearson diffusions have also
been studied just from the probabilistic point of view in [34] and [230]. Using
the parametrization in [89], these diffusions solve the stochastic differential
equation



1.13 Some parametric families of stochastic processes 53

dXt = −θ(Xt − µ)dt+
√

2θ(aX2
t + bXt + c)dWt (1.59)

with θ > 0 and a, b, and c such that the diffusion coefficient is well-defined
(i.e., the square root can be extracted) for all the values of the state space
of Xt. Pearson diffusions are characterized as having a mean reverting linear
drift and a squared diffusion coefficient that is a second-order polynomial of
the state of the process. A further nice property of these models is that they
are closed under translation and scale transformations: if Xt is an ergodic
Pearson diffusion then also X̃t = γXt + δ is a Pearson diffusion satisfying the
stochastic differential equation (1.59) with parameters ã = a, b̃ = bγ − 2aδ,
c̃ = cγ2 − bγδ + aδ2, θ̃ = θ and µ̃ = γµ + δ. The parameter γ may also be
negative, and in that case the state space of X̃t will change its sign. The scale
and the speed measures of these processes have the forms

s(x) = exp
{∫ x

x0

u− µ

au2 + bu+ c
du
}

and
m(x) =

1
2θs(x)(ax2 + bx+ c)

,

where x0 is some value such that ax2
0 + bx0 + c > 0. Let (l, r) be an interval

such that for x ∈ (l, r) we have ax2 + bx + c > 0. As seen before, a unique
ergodic invariant distribution with values in (l, r) exists only if

∫ r

x0
s(x)dx =

∞,
∫ x0

l
s(x)dx = ∞, and M =

∫ r

l
m(x)dx < ∞. In this case, the invariant

distribution has density m(x)/M . The relation between this and the Pearson
family of distributions is that m(x) solves the following differential equation
that characterizes the system of Pearson distributions:

dm(x)
dx

= − (2a+ 1)x− µ+ b

ax2 + bx+ c
m(x) .

Some interesting cases are included in this family.11 In particular:

1. When the diffusion coefficient σ2(x) = 2θ, we recover the Ornstein-
Uhlenbeck process.

2. For σ2(x) = 2θx and 0 < µ ≤ 1, we obtain the Cox-Ingersoll-Ross process
(under some additional reflecting conditions), and if µ > 1 the invariant
distribution is a Gamma law with scale parameter 1 and shape parameter
µ.

3. For a > 0 and σ2(x) = 2θa(x2 + 1), the invariant distribution always
exists on the real line, and for µ = 0 the invariant distribution is a scaled
t distribution with ν = 1 + a−1 degrees of freedom and scale parameter
ν−

1
2 , while for µ 6= 0 the distribution is a form of skewed t distribution

that is called Pearson type IV distribution.

11 For an extensive description of all cases, refer to [89].
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4. For a > 0, µ > 0, and σ2(x) = 2θax2, the distribution is defined on
the positive half line and it is an inverse Gamma distribution with shape
parameter 1 + a−1 and scale parameter a/µ.

5. For a > 0, µ ≥ a, and σ2(x) = 2θax(x + 1), the invariant distribution is
the scaled F distribution with 2µ/a and 2/a + 2 degrees of freedom and
scale parameter µ/(1 + a). For 0 < µ < 1, some reflecting conditions on
the boundaries are also needed.

6. If a < 0 and µ > 0 are such that min(µ, 1−µ) ≥ −a and σ2(x) = 2θax(x−
1), the invariant distribution exists on the interval (0, 1) and is a Beta
distribution with parameters −µ/a and (µ − 1)/a. The Jacobi diffusion
solution to (1.58) is a particular case of this class of Pearson diffusion,
which is in fact called the general Jacobi diffusion. If F (x) = ex/(1 + ex)
is the logistic distribution, the transformed process Yt = F−1(Xt) with
F−1(y) = log(y/(1−y)) has an invariant density, which is the generalized
logistic distribution [22],

π(x) =
eαx

(1 + ex)α+βB(α, β)
,

with α = (µ− 1)/a, β = µ/a, and B(·, ·) the Beta function.

When the second moment of the distribution exists, then the autocorrelation
function takes the form

Cor(Xs, Xs+t) = e−θt .

Moments E|Xt|k exist if and only if a < (k − 1)−1. Hence, if a ≤ 0, all the
moments exist, while for a > 0 only the moments up to order k < a−1 + 1
exist. If E(X2n

t ) <∞, then the moments satisfy the recurrent formula

E(Xn
t ) = a−1

n

{
bnE(Xn−1

n ) + cnE(Xn−2
t )

}
,

where an = n(1 − (n − 1)a)θ, bn = n(µ + (n − 1)b)θ, cn = n(n − 1)cθ for
n = 0, 1, 2, . . . with initial conditions E(X0

t ) = 1 and E(Xt) = µ (see again
[89]). Finally, for these processes, it is possible to derive the eigenfunction
of the infinitesimal operator of the diffusions that are useful to construct
estimating functions, as will be explained in Section 3.5.6.

1.13.13 Another classification of linear stochastic systems

In the social sciences, the quantity of interest is often the stationary distribu-
tion of the stochastic process that describes the equilibrium of some dynamics.
In most of the cases (see, e.g., [23], [54]), the diffusion coefficient is chosen to
model some kind of variability related to the state of the process. For these
disciplines, the interest is in the shape of the stationary distributions and
the statistical indexes related to them (mean, mode, etc.). The stochastic dif-
ferential equations used to model social processes [55] usually have a linear
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drift of the form b(x) = r(θ − x) with r > 0. For this reason, the models
are called linear feedback models. The diffusion coefficient σ2(x) may be con-
stant, linearly depending on x, or of polynomial type, leading, respectively, to
Gaussian, Gamma, or Beta stationary distributions.12 Of course, all of these
models fall into one or more of the previous classes, but we collect some of
their properties in the following.

Type N model

For this model, we have:

drift coefficient: b(x) = r(θ − x), r > 0.

diffusion coefficient: σ2(x) = ε, ε > 0.

s.d.e.: dXt = r(θ −Xt)dt+
√
εdWt.

stationary density: π(x) =
1

2πδ
exp

{
− (x− θ)2

2δ

}
, δ =

ε

r
.

statistics: mean, mode = θ, variance = δ.

Type G model

For this model, we have:

drift coefficient: b(x) = r(θ − x), r > 0.

diffusion coefficient: σ2(x) = εx, ε > 0.

s.d.e.: dXt = r(θ −Xt)dt+
√
εXtdWt.

stationary density: π(x) =
(x
δ

)−1+ θ
δ e−

x
δ

Γ
(

θ
δ

) , δ =
ε

r
.

statistics: mean = θ, mode = θ − δ, variance = δθ.

Type B model

For this model, we have:

12 These correspond to the following Pearson family of distributions: Gamma = type
III, Beta = type I, and Gaussian = limit of type I, III, IV, V, or VI.
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drift coefficient: b(x) = r(θ − x), r > 0.

diffusion coefficient: σ2(x) = εx(1− x), ε > 0.

s.d.e.: dXt = r(θ −Xt)dt+
√
εXt(1−Xt)dWt.

stationary density: π(x) =
Γ
(

1
δ

)
Γ
(

θ
δ

)
Γ
(

1−θ
δ

)x−1+ θ
δ (1− x)−1+ 1−θ

δ , δ =
ε

r
.

statistics: mean = θ, mode =
θ − δ

1− 2δ
, variance =

θ(1− θ)
1 + δ

.

The Type B model is used as a model of political polarization, where Xt is
the political persuasion of a subject. The persuasion is measured on the hy-
pothetical axis of conviction, say Xt = 0 “liberal” and Xt = 1 “conservative”.
The choice of σ(x) in this model is motivated by the fact that people who hold
extreme views are much less subject to random fluctuations than those near
the center. The drift explains the move toward the average persuasion of the
whole population. The ratio δ controls the extent of polarization. If µ is the
mean and σ2 is the variance, the model can be reparametrized accordingly
and δ = σ2/(µ(1− µ)− σ2).

1.13.14 One epidemic model

The mathematical theory of epidemiology [17] contains many types of models,
both deterministic and stochastic which have been adapted and expanded in
the social sciences [23]. We just mention here a simple epidemic model. Let Xt

be the fraction of a population that has an infectious disease at time t. If the
disease does not confer immunity (e.g., gonorrhea), then the rate of change
usually follows the nonstochastic differential equation

dxt = axt(1− xt)dt− bxtdt+ c(1− xt)dt ,

where a > 0 is the rate of person-to-person transmission, b > 0 is the rate of
recovery (or forgetting), and c > 0 is the rate of transmission from an external
source. The transformation of the deterministic model into a stochastic one
motivates the choice of the diffusion coefficient as in Type B models. Therefore,
the corresponding stochastic differential equation is

dXt = µ(Xt)dt+ σ(Xt)dWt ,

where
µ(x) = ax(1− x)− bx+ c(1− x) ,

σ2(x) = εx(1− x), ε > 0 .

In this case, the density of the stationary distribution takes the form
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π(x) =
M

x(1− x)
exp

{∫ x

0

(
a

ε
− b

ε(1− u)
+

c

εu

)
du
}
,

where M is the normalizing constant over the state space [0, 1]. This dis-
tribution may be bimodal depending on the number of real solutions to
d±
√
d2 − (ε− c)/a, where d = (a−b−c+2ε)/2a. When there are two positive

real solutions, the smaller is the epidemic threshold and the larger is the size
of the epidemic. This is a model of stochastic threshold when 0 < c < ε. The
epidemic is unlikely to happen if the model (the number of infected people
in the population) stays below the lowest mode. When the model is above it
the epidemic size is around the second mode. When c > ε (high infection rate
from external sources), the epidemic is guaranteed.

1.13.15 The stochastic cusp catastrophe model

Contrary to what the name suggests, the catastrophe theory has little or
nothing to do with disasters [187] but more with the classification of nonde-
generate singularities (minima, maxima, saddle points) and also degenerate
singularities (e.g., when the second derivative vanishes). From the dynamical
systems point of view, the dynamics of a catastrophe model is usually written
in terms of a potential function: the system behaves as though it moves toward
the point of lowest potential. If V (x) denotes the potential, the dynamics is
then dx/dt = −∂V/∂x. The corresponding stochastic differential equation is
of the form

dXt = −∂V
∂x

(Xt)dt+
√
εdWt

with stationary density given by

π(x) = Me
V (x)

ε ,

with M the normalizing constant. Singularities of the deterministic system
are the solutions of ∂V/∂x = 0, and the equilibrium of the system is stable or
unstable according to whether ∂2V/∂x2 is positive or negative, while catas-
trophe points are those values of x for which ∂2V/∂x2 = 0. The potential V
is usually approximated via polynomials. The “cusp” or Zeeman model [232]
considers a third-order polynomial dx/dt = −(a1 +a2x+a3x

2 +a4x
3), which

is usually parametrized in the so-called standard form

dXt = r(α+ β(Xt − λ)− (Xt − λ)3)dt+
√
εdWt

where α and β are called the normal and splitting factors respectively. The
stationary density has the form

π(x) = M exp
{
α(x− λ) + 1

2β(x− λ)2 − 1
4 (x− λ)4

δ

}
, δ =

ε

r
.

The four parameters (α, β, λ, δ) characterize the cusp density via Cardan’s
discriminant C = 27α2 − 4β3. In particular, according to Zeeman’s terminol-
ogy:
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• Asymmetry α: If C < 0, the cusp density is bimodal and α is the relative
height of the two modes. If C > 0, the cusp density is unimodal and α
measures the skewness.

• Bifurcation β: If C < 0, then β determines the separation of the two modes;
if C > 0, then β measures the kurtosis.

• Location λ : The cusp catastrophe points are located at x = λ with α = 0
and β = 0. Moving λ shifts the cusp density horizontally on the x axis
without changing the shape.

• Dispersion δ: The parameter determines the variation about the two modes
of a bimodal cusp density like the variance does in the Gaussian law, but
it is not a scale parameter.

1.13.16 Exponential families of diffusions

Exponential families of diffusion processes have been introduced in [216] and
are solutions to the stochastic differential equation

dXt =
p∑

i=1

βibi(Xt)dt+ λv(Xt)dWt ,

with λ > 0, and v(·) > 0, and bi(·) functions such that a unique weak solution
exists. These models are not exponential families of stochastic processes in the
sense of [146]. By using the reparametrization θi = βi/λ

2, and the functions

Ti(x) = 2
∫ x

x0

bi(y)
v2(y)

dy

for some x0 in the state space of X, the scale measure has the following
representation

s(x) = exp

{
−

p∑
i=1

θiTi(x)

}
and the speed measure is

m(x) = v(x)−2 exp

{
p∑

i=1

θiTi(x)

}
.

If we denote by φ(θ) the normalizing constant

φ(θ) =
∫
m(x)dx ,

the invariant distribution of this class of models takes the canonical form of
an exponential family, i.e.

π(x) = exp

{
p∑

i=1

θiTi(x)− 2 log v(x)− φ(θ)

}
.

These models are ergodic (and hence the invariant density π(x) exists) under
proper conditions on the parameter θi, i = 1, . . . , p (see [216] for details).
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1.13.17 Generalized inverse gaussian diffusions

The exponential family of diffusions also encompasses some peculiar interest-
ing models like the generalized inverse Gaussian diffusions which are solutions
to the stochastic differential equation

dXt = (β1X
2α−1
t − β2X

2α
t + β3X

2(α−1)
t )dt+ λXα

t dWt, X0 > 0 .

With the reparametrization θi = 2βiλ
−2, i = 1, 2, 3, the scale measure takes

the form
s(x) = x−θ1 exp

(
θ2x+ θ3x

−1
)
, x > 0

and the speed measure is

m(x) = xθ1−2α exp
(
−θ2x− θ3x

−1
)
.

The invariant density, under suitable conditions on the parameters, takes the
form of the generalized inverse Gaussian distribution introduced in [98] (see
as well [129] for an extensive statistical analysis).
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Numerical Methods for SDE

This chapter covers basic and new material on the subject of simulation of
solutions of stochastic differential equations. The chapter reviews results from
the well-known reference [142] but also covers new results such as, but not
only, exact sampling (see [29]). Other related references mentioned in this
chapter are, for example, [156] and [125].

There are two main objectives in the simulation of the trajectory of a
process solution of a stochastic differential equation: either interest is in the
whole trajectory or in the expected value of some functional of the process
(moments, distributions, etc) which usually are not available in explicit ana-
lytical form. Variance reduction techniques for stochastic differential equations
can be borrowed from standard variance reduction techniques of the Monte
Carlo method (see Section 1.4) and clearly only apply when interest is in the
functionals of the process.

Simulation methods are usually based on discrete approximations of the
continuous solution to a stochastic differential equation. The methods of ap-
proximation are classified according to their different properties. Mainly two
criteria of optimality are used in the literature: the strong and the weak (orders
of) convergence.

Strong order of convergence

A time-discretized approximation Yδ of a continuous-time process Y , with δ
the maximum time increment of the discretization, is said to be of general
strong order of convergence γ to Y if for any fixed time horizon T it holds
true that

E|Yδ(T )− Y (T )| ≤ Cδγ , ∀ δ < δ0 ,

with δ0 > 0 and C a constant not depending on δ. This kind of criterion is sim-
ilar to the one used in the approximation of the trajectories of nonstochastic
dynamical systems.

S.M. Iacus, Simulation and Inference for Stochastic Differential Equations,
doi: 10.1007/978-0-387-75839-8 2, © Springer Science+Business Media, LLC 2008
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Weak order of convergence

Along with the strong convergence, the weak convergence can be defined. Yδ

is said to converge weakly of order β to Y if for any fixed horizon T and any
2(β + 1) continuous differentiable function g of polynomial growth, it holds
true that

|Eg(Y (T ))− Eg(Yδ(T ))| ≤ Cδβ , ∀ δ < δ0 ,

with δ0 > 0 and C a constant not depending on δ.
Schemes of approximation of some order that strongly converge usually

have a higher order of weak convergence. This is the case with the Euler
scheme, which is strongly convergent of order γ = 1

2 and weakly convergent
of order β = 1 (under some smoothness conditions on the coefficients of the
stochastic differential equation). While the schemes have their own order of
convergence, it is usually the case that, for some actual specifications of the
stochastic differential equations, they behave better.

2.1 Euler approximation

One of the most used schemes of approximation is the Euler method, orig-
inally used to generate solutions to deterministic differential equations. We
implicitly used this method in Chapter 1 several times. The idea is the follow-
ing: given an Itô process {Xt, 0 ≤ t ≤ T} solution of the stochastic differential
equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

with initial deterministic value Xt0 = X0 and the discretization ΠN =
ΠN ([0, T ]) of the interval [0, T ], 0 = t0 < t1 < · · · < tN = T . The Euler
approximation of X is a continuous stochastic process Y satisfying the itera-
tive scheme

Yi+1 = Yi + b(ti, Yi)(ti+1 − ti) + σ(ti, Yi)(Wi+1 −Wi), (2.1)

for i = 0, 1, . . . , N − 1, with Y0 = X0. We have simplified the notation setting
Y (ti) = Yi and W (ti) = Wi. Usually the time increment ∆t = ti+1 − ti is
taken to be constant (i.e., ∆t = 1/N). In between any two time points ti
and ti+1, the process can be defined differently. One natural approach is to
consider linear interpolation so that Y (t) is defined as

Y (t) = Yi +
t− ti

ti+1 − ti
(Yi+1 − Yi), t ∈ [ti, ti+1) .

From (2.1), one can see that to simulate the process Y one only needs to
simulate the increment of the Wiener process, and we already know how to
do this from Chapter 1. As mentioned, the Euler scheme has order γ = 1

2 of
strong convergence.
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2.1.1 A note on code vectorization

Consider for example the Ornstein-Uhlenbeck process (see Section 1.13.1) so-
lution of

dXt = (θ1 − θ2Xt)dt+ θ3dWt .

For this process, b(t, x) = (θ1 − θ2x) and σ(t, x) = θ3. Suppose we fix an
initial value X0 = x and the set of parameters (θ1, θ2, θ3) = (0, 5, 3.5). The
following algorithm can be used to simulate the trajectory of the process using
the Euler algorithm instead of the simulation of the stochastic integral as in
Section 1.13.1:
> # ex 2.01.R
> set.seed (123)
> N <- 100
> T <- 1
> x <- 10
> theta <- c(0, 5, 3.5)
> Dt <- 1/N
> Y <- numeric(N+1)
> Y[1] <- x
> Z <- rnorm(N)
> for(i in 1:N)
+ Y[i+1] <- Y[i] + (theta [1] - theta [2]*Y[i])*Dt + theta [3]*sqrt(Dt)*Z[i]
> Y <- ts(Y,start=0, deltat =1/N)
> plot(Y)

At first glance, this algorithm appears not to be efficient from the R point of
view. We can try to optimize this code by replacing the for loop with some
*apply function. Indeed, noticing that

Y (2) = Y (1)(1− θ2∆t) + θ3 ∗
√
∆tZ(1)

and

Y (3) = Y (2)(1− θ2∆t) + θ3
√
∆tZ(2)

= {Y (1)(1− θ2∆t) + θ3
√
∆tZ(1)}(1− θ2∆t) + θ3

√
∆tZ(2)

= Y (1)(1− θ2∆t)2 + θ3
√
∆tZ(1)(1− θ2∆t) + θ3

√
∆tZ(2)

by iterative substitution, we get the general formula for the kth step of the
Euler scheme for the Ornstein-Uhlenbeck process,

Y (k) = Y (1) · (1− θ2∆t)k−1 +
k−1∑
j=1

(θ3 ∗
√
∆t ∗ Z(j)) ∗ (1− θ2∆t)(k−j−1),

which leads to the following algorithm that uses linear algebra instead of for
loops.
> # ex 2.02.R
> set.seed (123)
> theta <- c(0, 5, 3.5)
> N <- 100
> T <- 1
> x <- 10
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> Z <- rnorm(N)
> Dt <- 1/N
> A <- theta [3]*sqrt(Dt)*Z
> P <- (1-theta [2]*Dt )^(0:(N-1))
> X0 <- x
> X <- sapply (2:(N+1), function(x) X0*(1-theta [2]*Dt)^(x-1) +
+ A[1:(x-1)] %*% P[(x -1):1])
> Y <- ts(c(X0,X),start=0, deltat =1/N)
> plot(Y)

But, this one-line code is not at all better than the one implying the for
loop. In fact, it is even worse, as it implies more calculations than needed.
To show this, we embed the two codes into two functions OU, and OU.vec, to
measure their performance in terms of CPU time.1

> # ex 2.03.R
> OU <- function(a,b, x, N=1000){
+ Y <- numeric(N+1)
+ Y[1] <- x
+ Z <- rnorm(N)
+ Dt <- 1/N
+ for(i in 1:N)
+ Y[i+1] <- Y[i] - a*Y[i]*Dt + b*sqrt(Dt)*Z[i]
+ invisible(Y)
+ }

> OU.vec <- function(a, b, x, N=1000){
+ Dt <- 1/N
+ Z <- rnorm(N)
+ A <- b*sqrt(Dt)*Z
+ P <- (1-a*Dt )^(0:(N-1))
+ X0 <- x
+ X <- c(X0 , sapply (2:(N+1),
+ function(x) X0*(1-a*Dt)^(x-1) +
+ sum(A[1:(x-1)] * P[(x -1):1])))
+ invisible(X)
+ }

Using the system.time function, we test the two implementations
> set.seed (123)
> system.time(OU(10 ,5 ,3.5))
[1] 0.037 0.001 0.044 0.000 0.000

> set.seed (123)
> system.time(OU.vec (10 ,5 ,3.5))
[1] 0.198 0.024 0.261 0.000 0.000

which shows that the vectorized version is much slower than the naive one. The
moral of this example is that for loops in R should be replaced by vectorized
code only if the number of calculations does not increase, as the case above
shows. Vectorization can really reduce simulation/estimation time, but only
under the conditions above. As vectorization can become a nightmare for the
average R programmer, the reader has been warned.

To convince the reader that it is worth using vectorized code when it is
appropriate, we report without comments the example from Chapter 1 for
generating paths of Brownian motion with two levels of optimization in the R
code.

1 Times may vary on the reader’s machine.
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# ex 2.04.R
> BM.1 <- function(N=10000){ # brutal code
+ W <- NULL
+ for(i in 2:(N+1))
+ W <- c(W, rnorm (1) / sqrt(N))
+ }

> BM.2 <- function(N=10000){ # smarter
+ W <- numeric(N+1)
+ Z <- rnorm(N)
+ for(i in 2:(N+1))
+ W[i] <- W[i-1] + Z[i-1] / sqrt(N)
+ }

> BM.vec <- function(N=10000) # awesome !
+ W <- c(0,cumsum(rnorm(N)/sqrt(N)))

> set.seed (123)
> system.time(BM .1())
[1] 1.354 1.708 3.856 0.000 0.000

> set.seed (123)
> system.time(BM .2())
[1] 0.281 0.011 0.347 0.000 0.000

> set.seed (123)
> system.time(BM.vec ())
[1] 0.008 0.001 0.010 0.000 0.000

2.2 Milstein scheme

The Milstein scheme2 [164] makes use of Itô’s lemma to increase the accuracy
of the approximation by adding the second-order term. Denoting by σx the
partial derivative of σ(t, x) with respect to x, the Milstein approximation looks
like

Yi+1 =Yi + b(ti, Yi)(ti+1 − ti) + σ(ti, Yi)(Wi+1 −Wi)

+
1
2
σ(ti, Yi)σx(ti, Yi)

{
(Wi+1 −Wi)2 − (ti+1 − ti)

} (2.2)

or, in more symbolic form,

Yi+1 = Yi + b∆t+ σ∆Wt +
1
2
σσx

{
(∆Wt)2 −∆t

}
.

This scheme has strong and weak orders of convergence equal to one. Let us
consider once again the Ornstein-Uhlenbeck process solution of (1.39). For
this process, b(t, x) = θ1 − θ2 · x and σ(t, x) = θ3, and thus σx(t, x) = 0 and
the Euler and Milstein schemes coincide. This is one case in which the Euler
scheme is of strong order of convergence γ = 1.
2 Actually, Milstein proposed two schemes of approximation. The one presented

in this section corresponds to the one most commonly known as the “Milstein
scheme” and has the simplest form. Another Milstein scheme of higher-order
approximation, will be presented later in this chapter.
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The geometric Brownian motion

A more interesting case is that of geometric Brownian motion, presented in
Section 1.7, solving the stochastic differential equation

dXt = θ1Xtdt+ θ2XtdWt.

For this process, b(t, x) = θ1 · x, σ(t, x) = θ2 · x, and σx(t, x) = θ2. The Euler
discretization for this process looks like

Y E
i+1 = Y E

i (1 + θ1 ·∆t) + θ2Y
E
i ∆Wt,

and the Milstein scheme reads

Y M
i+1 = Y M

i + θ1 · Y M
i ∆t+ θ2Y

M
i ∆Wt +

1
2
θ22Y

M
i

{
(∆Wt)2 −∆t

}
= Y M

i

(
1 +

(
θ1 −

1
2
θ22

)
∆t

)
+ θ2Y

M
i ∆Wt +

1
2
θ22Y

M
i (∆Wt)2.

Recall that ∆Wt ∼
√
∆tZ with Z ∼ N(0, 1). Thus

Y E
i+1 = Y E

i (1 + θ1 ·∆t+ θ2
√
∆tZ)

and

Y M
i+1 = Y M

i

(
1 +

(
θ1 −

1
2
θ22

)
∆t

)
+ θ2Y

M
i

√
∆tZ +

1
2
θ22Y

M
i ∆tZ2

= Y M
i

(
1 +

(
θ1 +

1
2
θ22(Z

2 − 1)
)
∆t+ θ2

√
∆tZ

)
.

Looking at the exact solution in (1.7), the Milstein scheme makes the expan-
sion exact up to order O(∆t). Indeed, formal Taylor expansion leads to

Xt+∆t = Xt exp
{(

θ1 −
θ22
2

)
∆t+ θ2

√
∆tZ

}
= Xt

{
1 +

(
θ1 −

θ22
2

)
∆t+ θ2

√
∆tZ +

1
2
θ22∆tZ

2 +O(∆t)
}

= Y M
i+1.

2.3 Relationship between Milstein and Euler schemes

Following [125], we now show a result on transformations of stochastic dif-
ferential equations and the two schemes of approximation. Given the generic
stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (2.3)
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the Milstein scheme for it is

∆X = Xi+1 −Xi =
(
b(ti, Xi)−

1
2
σ(ti, Xi)σx(ti, Xi)

)
∆t

+ σ(ti, Xi)
√
∆tZ +

1
2
σ(ti, Xi)σx(ti, Xi)∆tZ2

(2.4)

with Z ∼ N(0, 1). Consider now the transformation y = F (x) and its inverse
x = G(y). Then (2.3) becomes by Itô’s lemma

dYt =
(
F ′(Xt)b(t,Xt) +

1
2
F ′′(Xt)σ2(t,Xt)

)
dt+ F ′(Xt)σ(t,Xt)dWt (2.5)

with Yt = F (Xt). Now choose F as the Lamperti transform (1.34) so that

F ′(x) =
1

σ(t, x)
, F ′′(x) = −σx(t, x)

σ2(t, x)
.

We know from (1.35) that (2.5) becomes

dYt =
(
b(t,Xt)
σ(t,Xt)

− 1
2
σ2

x(t,Xt)
)

dt+ dWt .

We remark again that the Lamperti transform is such that the multiplicative
factor in front of the Wiener process no longer depends on the state of the
process. Thus the Euler scheme for Yt = F (Xt) reads

∆Y =
(
b(ti, Xi)
σ(ti, Xi)

− 1
2
σx(ti, Xi)

)
∆t+

√
∆tZ .

The next step is to calculate the Taylor expansion of the inverse transforma-
tion in order to obtain some comparable expression.

G(Yi +∆Y ) = G(Yi) +G′(Yi)∆Y +
1
2
G′′(Yi)(∆Yi)2 +O

(
∆Y 3

)
.

Notice that
G′(y) =

d
dy
F−1(y) =

1
F ′(G(y))

= σ(t, G(y))

and
G′′(y) = G′(y)σx(t, G(y)) = σ(t, G(y))σx(t, G(y)),

which finally leads to

G(Yi +∆Y )−G(Yi) =
(
b(ti, Xi)−

1
2
σ(ti, Xi)σx(ti, Xi)

)
∆t

+ σ(ti, Xi)
√
∆tZ +

1
2
σ(ti, Xi)σx(ti, Xi)∆tZ2

+O
(
∆t

3
2

)
.
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Thus the Milstein scheme on the original process (2.4) and the Euler scheme
on the transformed process are equal up to and including the order ∆t. So, in
principle, whenever possible, one should use the Euler scheme on the trans-
formed process.

In general, if F (not necessarily the Lamperti transformation) eliminates
the interactions between the state of the process and the increments of the
Wiener process, this transformation method is probably always welcome be-
cause it reduces instability in the simulation process. A detailed account on
this matter can be found in [70]. We now show a couple of applications of the
transformation method just presented.

2.3.1 Transform of the geometric Brownian motion

The first example is on the geometric Brownian motion. If we use F (x) =
log(x), then from (1.32) and Itô’s lemma, we obtain

d logXt =
(
θ1 −

1
2
θ22

)
dt+ θ2dWt.

Thus the Euler scheme for the transformed process is

∆ logX =
(
θ1 −

1
2
θ22

)
∆t+ θ2

√
∆tZ .

Now, using the Taylor expansion on the inverse transform G(y) = xy, we get
the Milstein scheme.

2.3.2 Transform of the Cox-Ingersoll-Ross process

One more interesting application of the Lamperti transform concerns the Cox-
Ingersoll-Ross process introduced in Section 1.13.3. The dynamics of the pro-
cess is

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, (2.6)

and the Milstein scheme for it reads as

∆X =
(

(θ1 − θ2Xi)−
1
4
θ23

)
∆t+ θ3

√
Xi

√
∆tZ +

1
4
θ23∆tZ

2. (2.7)

Now, using the transformation y =
√
x, we obtain the transformed stochastic

differential equation

dYt =
1

2Yt

(
(θ1 − θ2Y

2
t )− 1

4
θ23

)
dt+

1
2
θ3dWt ,

for which the Euler scheme is
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∆Y =
1

2Yi

(
(θ1 − θ2Y

2
i )− 1

4
θ23

)
∆t+

1
2
θ3
√
∆tZ .

Since G(y) = x2, we obtain

G(Yi +∆Y )−G(Yi) = (Yi +∆Y )2 − Y 2
i = (∆Y )2 + 2Yi∆Y

=
1
4
θ23∆tZ

2 +O(∆t2)

+
(

(θ1 − θ2Y
2
i )− 1

4
θ23

)
∆t+ Yiθ3

√
∆tZ ,

which is exactly (2.7) given that Yi =
√
Xi.

2.4 Implementation of Euler and Milstein schemes:
the sde.sim function

We now show generic implementations of both the Euler and Milstein schemes.
sde.sim <- function(t0=0, T=1, X0=1, N=100, delta ,

drift , sigma , sigma.x,
method=c("euler","milstein")){

if(missing(drift) )
stop("please specify at least the drift coefficient of the SDE")

if(missing(sigma ))
sigma <- expression (1)

if(!is.expression(drift) | !is.expression(sigma ))
stop("coefficients must be expressions in `t' and `x'")

method <- match.arg(method)
needs.sx <- FALSE

if(method =="milstein") needs.sx <- TRUE

if(needs.sx & missing(sigma.x)){
cat("sigma.x not provided , attempting symbolic derivation .\n")
sigma.x <- D(sigma ,"x")

}

d1 <- function(t,x) eval(drift)
s1 <- function(t,x) eval(sigma)
sx <- function(t,x) eval(sigma.x)

if(t0 <0 | T<0)
stop("please use positive times!")

if(missing(delta )){
t <- seq(t0,T, length=N+1)

} else {
t <- c(t0,t0+cumsum(rep(delta ,N)))
T <- t[N+1]
warning("T set to =",T,"\n")

}

Z <- rnorm(N)
X <- numeric(N+1)
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Dt <- (T-t0)/N
sDt <- sqrt(Dt)
X[1] <- X0

if(method =="euler"){
for(i in 2:(N+1))

X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +
s1(t[i-1],X[i-1])*sDt*Z[i-1]

}
if(method =="milstein"){
for(i in 2:(N+1)){
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +

s1(t[i-1],X[i-1])*sDt*Z[i-1] +
0.5*s1(t[i-1],X[i-1])* sx(t[i-1],X[i-1]) *
(Dt*Z[i-1]^2-Dt)

}
}
X <- ts(X,start=t0 ,deltat=Dt)
invisible(X)

}

The sde.sim function above can be used to simulate paths of solutions
to generic stochastic differential equations. The function can simulate trajec-
tories with either the “euler” or “milstein” scheme. The function accepts
the two coefficients drift and sigma and eventually the partial derivative
of the diffusion coefficient sigma.x for the Milstein scheme. If sigma.x is
not provided by the user, the function tries to provide one itself using the R
function D. Coefficients must be objects of class expression with arguments
named t and x, respectively, interpreted as time and space (i.e., the state of
the process). If the diffusion coefficient sigma is not specified, it is assumed
to be unitary (i.e., identically equal to one). The user can specify the ini-
tial value X0 (defaulted to 1), the interval [t0, T ] (defaulted to [0, 1]), the ∆
step delta, and the number N of values of the process to be generated. The
function always returns a ts (time series) object of length N + 1; i.e., the
initial value X0 and the N new simulated values of the trajectory. If ∆ is not
specified, ∆ = (T − t0)/N . If ∆ is specified, then N new observations are gen-
erated at time increments of ∆ and the time horizon is adjusted accordingly
as T = ∆ ·N . We have added the opportunity to specify the ∆ step directly
because this will be relevant in Chapter 3.

2.4.1 Example of use

The following examples use the sde.sim function for some of the processes
introduced earlier. The reader doesn’t need to write the code for the sde.sim
function because it is included in the CRAN package called sde. Moreover, this
function is going to evolve during this chapter as new methods are introduced.

The Ornstein-Uhlenbeck process

dXt = (θ1 − θ2Xt)dt+ θ3dWt, X0 = 10 ,

with (θ1, θ2, θ3) = (0, 5, 3.5).
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> # ex 2.05.R
> # Ornstein - Uhlenbeck process
> require(sde)
[1] TRUE
> set.seed (123)
> d <- expression (-5 * x)
> s <- expression (3.5)
> sde.sim(X0=10, drift=d, sigma=s) -> X
sigma.x not provided , attempting symbolic derivation.
> plot(X,main="Ornstein -Uhlenbeck")

The Cox-Ingersoll-Ross process

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, X0 = 10 ,

with (θ1, θ2, θ3) = (6, 3, 2).
> # ex 2.06.R
> # Cox -Ingersoll -Ross (CIR -1)
> set.seed (123)
> d <- expression( 6-3*x )
> s <- expression( 2*sqrt(x) )
> sde.sim(X0=10, drift=d, sigma=s) -> X
sigma.x not provided , attempting symbolic derivation.
> plot(X,main="Cox -Ingersoll -Ross")

The Cox-Ingersoll-Ross process with Milstein scheme

We need the partial derivative with respect to variable x of the coefficient
σ(·, ·),

σx(t, x) =
∂

∂x
2
√
x =

1√
x
.

Therefore,
> # ex 2.07.R
> # Cox -Ingersoll -Ross (CIR -2)
> d <- expression( 6-3*x )
> s <- expression( 2*sqrt(x) )
> s.x <- expression( 1/sqrt(x) )
> set.seed (123)
> sde.sim(X0=10, drift=d, sigma=s, sigma.x=s.x,
+ method="milstein") -> X
> plot(X,main="Cox -Ingersoll -Ross")

The Cox-Ingersoll-Ross process with Euler scheme on the transformed
process Yt =

√
Xt

dYt =
1

2Yt

(
θ1 − θ2Y

2
t −

1
4
θ23

)
dt+

1
2
θ3dWt, Y0 =

√
10 ,

with (θ1, θ2, θ3) = (6, 3, 2).
> # ex 2.08.R
> # Cox -Ingersoll -Ross (CIR -3)
> set.seed (123)
> d <- expression( (6-3*x^2 - 1)/(2*x) )
> s <- expression( 1 )
> sde.sim(X0=sqrt (10), drift=d, sigma=s) -> Y
> plot(Y^2,main="Cox -Ingersoll -Ross")

The reader can verify that the Milstein scheme CIR-2 returns the same path
as CIR-3 but on a different scale (i.e., Y 2 = X).
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The geometric Brownian motion process

dXt = θ1Xtdt+ θ2XtdWt, X0 = 10 ,

with (θ1, θ2) =
(
1, 1

2

)
.

> # ex 2.09.R
> # geometric Brownian Motion
> set.seed (123)
> d <- expression( x )
> s <- expression( 0.5*x )
> sde.sim(X0=10, drift=d, sigma=s) -> X
> plot(X,main="geometric Brownian Motion")

2.5 The constant elasticity of variance process and
strange paths

The constant elasticity of variance (CEV) process introduced in finance in
option pricing (see [201] and [25]) is another particular member of the CKLS
family of models (see Section 1.13.4) and is the solution of the stochastic
differential equation

dXt = µXtdt+ σXγ
t dWt, γ ≥ 0 . (2.8)

This process is quite useful in modeling a skewed implied volatility. In particu-
lar, for γ < 1, the skewness is negative, and for γ > 1 the skewness is positive.
For γ = 1, the CEV process is a particular version of the geometric Brow-
nian motion. Even if this process is assumed to be positive, the discretized
version of it can reach negative values. To understand why this could happen
and what to do with the paths that cross zero, one should go back to the
theoretical properties of the process. For example, in [38] it is shown that for
γ < 1

2 there is a positive probability for this process to be absorbed in zero.
Hence, if in one simulation the path crosses the zero line, one should stop the
simulation and consider this path as actually absorbed in 0.

2.6 Predictor-corrector method

Both schemes of discretization consider the coefficients b and σ as not varying
during the time interval ∆t, which is of course untrue for a generic stochastic
differential equation, as b and σ can depend on both the time t and the state
of the process Xt. One way to recover the varying nature of these coefficients
is to average their values in some way. Since the coefficients depend on Xt and
we are simulating Xt, the method we present here just tries to approximate
the states of the process first. This method is of weak convergence order
1. The predictor-corrector algorithm is as follows. First consider the simple
approximation (the predictor)
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Ỹi+1 = Yi + b(ti, Yi)∆t+ σ(ti, Yi)
√
∆tZ.

Then choose two weighting coefficients α and η in [0, 1], and calculate the
corrector as

Yi+1 = Yi +
(
αb̃(ti+1, Ỹi+1) + (1− α)b̃(ti, Yi)

)
∆t

+
(
ησ(ti+1, Ỹi+1) + (1− η)σ(ti, Yi)

)√
∆tZ

with
b̃(ti, Yi) = b(ti, Yi)− ησ(ti, Yi)σx(t, Yi) .

The next code shows an implementation of the predictor-corrector method.
With a (small) loss of efficiency, the new sde.sim function can replace the old
one. Note that the predictor-corrector method falls back to the standard Euler
method for α = η = 0. The function by default implements the predictor-
corrector method with α = η = 1

2 . We only report here the modification to
previous code. As usual, the complete version of sde.sim can be found in the
sde package.
sde.sim <- function(t0=0, T=1, X0=1, N=100, delta ,

drift , sigma , sigma.x,
method=c("euler","milstein"),
alpha =0.5, eta=0.5, pred.corr=T){

# (...)

if(pred.corr==F){
alpha <- 0
eta <- 0
sigma.x <- NULL

}

# (...)

if(method =="milstein" | (method =="euler" & pred.corr==T))
needs.sx <- TRUE

d1.t <- function(t,x) d1(t,x) - eta * s1(t,x) * sx(t,x)

if(method =="euler"){
for(i in 2:(N+1)){

Y[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +
s1(t[i-1],X[i-1])*sDt*Z[i-1]

if(pred.corr==T)
X[i] <- X[i-1] + (alpha*d1.t(t[i],Y[i]) +

(1-alpha)* d1.t(t[i],X[i -1]))*Dt +
(eta * s1(t[i],Y[i]) +
(1-eta)*s1(t[i-1],Y[i-1]))*sDt*Z[i-1]

else
X[i] <- Y[i]

}
}

# (...)
}

There are different predictor-corrector methods available that can be ap-
plied to discretization schemes of order greater than 1. The reader should
look, for example, at Section 5.3 in [142].
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2.7 Strong convergence for Euler and Milstein schemes

To show in practice how strong convergence takes place in discretization
schemes, we reproduce here nice empirical evidence from [125]. The objec-
tive of this section is to show how the Milstein scheme outperforms the Euler
scheme in convergence in the simple case of geometric Brownian motion. As
already mentioned, the theory says that convergence is in the limit of the
discretization step as ∆t→ 0. This experiment proceeds as follows:

1. We first simulate trajectories of the Brownian motion with an increased
level of refinement (i.e., with a decreasing value of ∆t). This is done iter-
atively using the Brownian bridge.

2. We then construct the trajectory of the geometric Brownian motion with
both Euler and Milstein schemes using the path of the Wiener process
available.

3. We then compare the values of the process X at time T in the two cases.

Figure 2.1 is the result of step 1, and we now explain the rationale behind it.
On the top-left corner is depicted the trajectory of a Brownian bridge starting
from 1 at time t0 = 0 and ending at 1 at time T = 1 using N = 2 intervals,
and indeed we have three points of the trajectory at times 0, 1

2 , and 1. The
top-right picture has been generated using two Brownian bridges. The first
Brownian bridge starts at 1 at time 0 and ends at B( 1

2 ) at time t = 1
2 . The

second Brownian bridge starts at B( 1
2 ) at time t = 1

2 and ends up at 1 at time
1. This trajectory has five points at times 0, 1

4 , 1
2 , 3

4 , 1. In the next step, the
procedure is iterated splitting each interval [0, 1

4 ], . . . , [ 34 , 1] into two parts up
to the final bottom-right picture, consisting of 214 +1 points of the trajectory
of the Wiener process. The figure is generated with the following code, which
we show because this dyadic algorithm is also a constructive way of building
a process with continuous but nowhere differentiable path (i.e., the Wiener
process).
> # ex 2.10.R
> set.seed (123)
> W <- vector (14,mode="list")
> W[[1]] <- BBridge (1,1,0,1,N=2)
>
> for(i in 1:13){
+ cat(paste(i,"\n"))
+ n <- length(W[[i]])
+ t <- time(W[[i]])
+ w <- as.numeric(W[[i]])
+ tmp <- w[1]
+ for(j in 1:(n-1)){
+ tmp.BB <- BBridge(w[j],w[j+1],t[j],t[j+1],N=2)
+ tmp <- c(tmp , as.numeric(tmp.BB [2:3]))
+ }
+ W[[i+1]] <- ts(tmp ,start=0,deltat =1/(2^(i+1)))
+ }
> min.w <- min(unlist(W)) -0.5
> max.w <- max(unlist(W))+0.5
> opar <- par(no.readonly = TRUE)
> par(mfrow=c(7,2),mar=c(3,0,0,0))
> for(i in 1:14){
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Fig. 2.1. A simulated path of the Wiener process for increased levels of discretiza-
tion, N being the number of subintervals of [0,1].

+ plot(W[[i]], ylim=c(min.w, max.w),axes=F)
+ if(i==1)
+ axis(1,c(0 ,0.5 ,1))
+ if(i==2)
+ axis(1,c(0 ,0.25 ,0.5 ,0.75 ,1))
+ if(i>2)
+ axis(1,c(0 ,0.1 ,0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1))
+ text (0.5 ,2.2 , sprintf("N = %d" ,2^i))
+ }
> par(opar)

In the R code above, we make use of the BBridge function of the sde
package (see also Listing 1.2).

The next step is to simulate the trajectory of the geometric Brownian
motion using both the Euler and Milstein schemes and calculate the value
X(T ) with the two schemes. The following script does the calculations and
plots both values against the true value X(T ) for the given Wiener process
path (i.e., the Wiener process ending in 1 at time 1, which is a sort of Brownian
bridge) X(1) = exp{θ1 − 1

2θ
2
2}. We have chosen θ1 = 1 and θ2 = 1

2 .

> # ex 2.11.R
> S0 <- 1
> theta <- c(1, 0.5)
> euler <- NULL
> milstein <- NULL
> for(i in 1:14){
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Fig. 2.2. Speed of convergence of Euler and Milstein schemes (Euler = solid line,
Milstein = dashed line) to the true value (dotted line) as a function of the discretiza-
tion step ∆t = 1/N .

+ n <- length(W[[i]])
+ Dt <- 1/n
+ sDt <- sqrt(Dt)
+ E <- numeric(n)
+ E[1] <- S0
+ M <- numeric(n)
+ M[1] <- S0
+ for(j in 2:n){
+ Z <- W[[i]][j]-W[[i]][j-1]
+ E[j] <- E[j-1] * (1 + theta [1] * Dt + theta [2] * Z)
+ M[j] <- M[j-1] * (1 + (theta [1] - 0.5* theta [2]^2) * Dt +
+ theta [2] * Z + 0.5 * theta [2]^2 * Z^2)
+ }
+ cat(paste(E[n],M[n],"\n"))
+ euler <- c(euler , E[n])
+ milstein <- c(milstein , M[n])
+ }

> plot (1:14,euler ,type="l",main="Milstein vs Euler",
+ xlab=expression(log [2](N)), ylab="S(T)")
> lines (1:14 , milstein ,lty=2)
> abline(h=exp(theta [1] -0.5*theta [2]^2) , lty=3)

Figure 2.2 shows the speed of convergence of both schemes (Euler = solid
line, Milstein = dashed line) to the true value (dotted line) as a function of
∆t = 1/N .
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2.8 KPS method of strong order γ = 1.5

By adding more terms to the Itô-Taylor expansion, one can achieve a strong
order γ higher than 1 (for a detailed review and implementation, see [142]).
In particular, the following scheme3 (see, e.g., [143]) has strong order γ = 1.5:

Yi+1 = Yi + b∆t+ σ∆Wt +
1
2
σσx

{
(∆Wt)2 −∆t

}
+ σbx∆Ut +

1
2

{
bbx +

1
2
σ2bxx

}
∆t2

+
{
bσx +

1
2
σ2σxx

}
{∆Wt∆t−∆Ut}

+
1
2
σ(σσx)x

{
1
3
(∆Wt)2 −∆t

}
∆Wt ,

where

∆Ut =
∫ ti+1

t0

∫ s

ti

dWuds

is a Gaussian random variable with zero mean and variance 1
3∆t

3 and such
that E(∆Ut∆Wt) = 1

2∆t
2. All the pairs (∆Wt,∆Ut) are mutually independent

for all ti’s. To implement this scheme, additional partial derivatives of the
drift and diffusion coefficient are required and the algorithm in sde.sim that
generates Gaussian variates must be changed to allow for bivariate Gaussian
variates for the pairs (∆Wt,∆Ut). With this aim, we use the function mvrnorm
in the MASS package, which implements the algorithm described in [195].

Note that the Euler scheme is not of strong order γ = 1.5 for the Ornstein-
Uhlenbeck process, as there is the additional term σbx∆Ut in the expansion.
The next code implements the strong order scheme above and, as usual, we
just report the additional part of the sde.sim function.

sde.sim <- function(t0=0, T=1, X0=1, N=100, delta ,
drift , sigma , drift.x, sigma.x, drift.xx, sigma.xx,
method=c("euler","milstein","KPS"),
alpha =0.5, eta=0.5, pred.corr=T){

# (...)

if(method == "KPS") {
needs.sx <- TRUE
needs.dx <- TRUE
needs.sxx <- TRUE
needs.dxx <- TRUE

}

# (...)

if(method =="euler")
X <- sde.sim.euler(X0 , t0 , Dt , N, d1 , s1 , s1.x, alpha , eta , pred.corr)

3 We name this scheme KPS after the authors who proposed it.
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if(method =="milstein")
X <- sde.sim.milstein(X0 , t0 , Dt , N, d1 , s1 , s1.x)

if(method =="KPS"){
require(MASS)
Sigma <- matrix(c(Dt , 0.5*Dt^2, 0.5*Dt^2, 1/3*Dt^3),2,2)
tmp <- mvrnorm(N, c(0,0), Sigma)
Z <- tmp[,1]
U <- tmp[,2]
X <- sde.sim.KPS(X0 , t0 , Dt , N, d1 , d1.x, d1.xx ,

s1 , s1.x, s1.xx, Z, U)
}

# (...)

}

Listing 2.1. Simulation of paths of processes governed by stochastic differential
equations.

In the code of Listing 2.1, we have separated into three functions the
different schemes of simulation: sde.sim.euler, sde.sim.milstein, and
sde.sim.KPS. The reason for this approach is twofold. On the one hand, the
sde.sim became just an interface for different schemes, hence allowing even
for generalization toward the implementation of new schemes. On the other
hand, separating functions allows for an implementation in C code to speed
up the execution (this will be appreciated in Monte Carlo experiments). The
R code corresponding to the functions above can be found in Listings 2.2, 2.3,
and 2.4. Of their C counterparts we only present the Milstein scheme, in List-
ing 2.5, while the complete source code can be found as part of the R package
sde available through the CRAN repository. The C code will be called in R
using the following lines.
sde.sim.milstein <- function(X0 , t0 , Dt , N, d1 , s1 , s1.x){

return( .Call("sde_sim_milstein", X0, t0 , Dt , as.integer(N), d1 ,
s1 , s1.x, .GlobalEnv) )

}

What is interesting from the reading of C code is the use of the feval()
function. This function, defined in Listing 2.6, evaluates an R function directly
from the C code and uses the result in the internal loops, speeding up the whole
simulation scheme. We found that these C routines are about two times faster
than their R counterparts but no more. Indeed, we are paying the cost of
flexibility by allowing the sde.sim function to accept any sort of specification
of drift and diffusion coefficients. Of course, for intensive simulation studies
on a specific model, writing the complete code in C might be worth trying.

sde.sim.euler <- function(X0, t0, Dt, N, d1 , s1 , s1.x,
alpha , eta , pred.corr){

X <- numeric(N+1)
Y <- numeric(N+1)
sDt <- sqrt(Dt)
Z <- rnorm(N, sd=sDt)
X[1] <- X0
Y[1] <- X0
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d1.t <- function(t,x) d1(t,x) - eta * s1(t,x) * s1.x(t,x)

if(pred.corr==TRUE){
for(i in 2:(N+1)){

Y[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt + s1(t[i-1],X[i-1])*Z[i-1]
X[i] <- X[i-1] + (alpha*d1.t(t[i],Y[i]) +

(1-alpha)* d1.t(t[i],X[i -1]))*Dt +
(eta * s1(t[i],Y[i]) +
(1-eta)*s1(t[i-1],Y[i-1]))*Z[i-1]

}
} else {
for(i in 2:(N+1))
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt + s1(t[i-1],X[i-1])*Z[i-1]

}
return(X)

}

Listing 2.2. R code for Euler simulation scheme.

sde.sim.milstein <- function(X0 , t0, Dt, N, d1 , s1 , s1.x){
X <- numeric(N+1)
Y <- numeric(N+1)
sDt <- sqrt(Dt)
Z <- rnorm(N, sd=sDt)

X[1] <- X0
Y[1] <- X0

for(i in 2:(N+1)){
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +

s1(t[i-1],X[i-1])*Z[i-1] +
0.5*s1(t[i-1],X[i-1])* s1.x(t[i-1],X[i-1]) *
(Z[i-1]^2 -Dt)

}
return(X)

}

Listing 2.3. R code for Milstein simulation scheme.

sde.sim.KPS <- function(X0, t0 , Dt , N, d1, d1.x, d1.xx ,
s1 , s1.x, s1.xx , Z, U){

X <- numeric(N+1)
Y <- numeric(N+1)
Dt <- (T-t0)/N
sDt <- sqrt(Dt)
X[1] <- X0
Y[1] <- X0

for(i in 2:(N+1)){
D1 <- d1(t[i-1],X[i-1])
D1.x <- d1.x(t[i-1],X[i-1])
D1.xx <- d1.xx(t[i-1],X[i-1])
S1 <- s1(t[i-1],X[i-1])
S1.x <- s1.x(t[i-1],X[i-1])
S1.xx <- s1.xx(t[i-1],X[i-1])

X[i] <- X[i-1] + D1 * Dt + S1 * Z[i-1] +
0.5 * S1 * S1.x * (Z[i-1]^2-Dt) +

S1 * D1.x * U[i-1] +
0.5 * (D1 * D1.x + 0.5 * S1^2 * D1.xx) * Dt^2 +
(D1 * S1.x + 0.5 * S1^2 * S1.xx) * (Z[i-1] * Dt - U[i-1]) +
0.5 * S1 * (S1.x^2 + S1*S1.xx) * (1/3*Z[i-1]^2 - Dt) * Z[i-1]

}
return(X)
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}

Listing 2.4. R code for KPS simulation scheme.

SEXP sde_sim_milstein(SEXP x0 , SEXP t0 , SEXP delta , SEXP N,
SEXP d, SEXP s, SEXP sx , SEXP rho)

{
double T, DELTA;
double sdt , Z, tmp , D, S, Sx;
int i, n;
SEXP X;

if(!isNumeric(x0)) error("`x0 ' must be numeric");
if(!isNumeric(t0)) error("`t0 ' must be numeric");
if(!isNumeric(delta)) error("`delta ' must be numeric");
if(!isInteger(N)) error("`N' must be integer");
if(!isFunction(d)) error("`d' must be a function");
if(!isFunction(s)) error("`s' must be a function");
if(!isFunction(sx)) error("`sx ' must be a function");
if(!isEnvironment(rho)) error("`rho ' must be an environment");

PROTECT(x0 = AS_NUMERIC(x0));
PROTECT(delta = AS_NUMERIC(delta ));
PROTECT(t0 = AS_NUMERIC(t0));
PROTECT(N = AS_INTEGER(N));

T = *NUMERIC_POINTER(t0);
n = *INTEGER_POINTER(N);
DELTA = *NUMERIC_POINTER(delta);

PROTECT(X = NEW_NUMERIC(n+1));
REAL(X)[0] = *NUMERIC_POINTER(x0);
sdt = sqrt(DELTA );

GetRNGstate ();
for(i=1; i<= n+1; i++){
Z = rnorm(0,sdt);
T = T + DELTA;
tmp = REAL(X)[i-1];
D = feval(T,tmp ,d,rho);
S = feval(T,tmp ,s,rho);
Sx = feval(T,tmp ,sx ,rho);
REAL(X)[i] = tmp + D*DELTA + S*Z + 0.5*S*Sx*(Z*Z-DELTA );

}
PutRNGstate ();

UNPROTECT (5);
return(X);

}

Listing 2.5. C code for Milstein simulation scheme.

/*
t : time variable
x : space variable
f : a SEXP to a R function
rho : the environment `f' is going to be evaluated

on return: the value of f(t,x)
*/
double feval(double t, double x, SEXP f, SEXP rho)
{
double val= 0.0;
SEXP R_fcall , tpar , xpar;
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PROTECT(tpar = allocVector(REALSXP , 1));
PROTECT(xpar = allocVector(REALSXP , 1));
REAL(tpar )[0] = t;
REAL(xpar )[0] = x;

PROTECT(R_fcall = allocList (3));
SETCAR(R_fcall , f);
SET_TYPEOF(R_fcall , LANGSXP );
SETCADR(R_fcall , tpar);
SETCADDR(R_fcall , xpar);

val = *NUMERIC_POINTER(eval(R_fcall , rho ));
UNPROTECT (3);
return(val);

}

Listing 2.6. C code for the feval function, which allows for the calculation of R
functions directly in the C code.

2.9 Second Milstein scheme

In [164], Milstein proposed both (2.2) and the approximation

Yi+1 = Yi +
(
b− 1

2
σσx

)
∆t+ σZ

√
∆t+

1
2
σσx∆tZ

2

+∆t
3
2

(
1
2
bσx +

1
2
bxσ +

1
4
σ2σxx

)
Z

+∆t2
(

1
2
bbx +

1
4
bxxσ

2

)
.

(2.9)

This method has weak second-order convergence in contrast to the weak first-
order convergence of the Euler scheme. This method requires partial (first
and second) derivatives of both drift and diffusion coefficients. Listing 2.7
contains the code corresponding to the approximation (2.9). The function
sde.sim needs to be modified as follows.

if(method == "KPS" | method == "milstein2") { # added "milstein2 " method
needs.sx <- TRUE
needs.dx <- TRUE
needs.sxx <- TRUE
needs.dxx <- TRUE

}

# (...)

if(method =="milstein2") # added a call to the sde.sim.milstein2
X <- sde.sim.milstein2(X0, t0 , Dt , N, d1, d1.x, d1.xx , s1 , s1.x, s1.xx)

sde.sim.milstein2 <- function(X0, t0 , Dt , N, d1, d1.x, d1.xx ,
s1 , s1.x, s1.xx){

X <- numeric(N+1)
Y <- numeric(N+1)
sDt <- sqrt(Dt)



82 2 Numerical Methods for SDE

Z <- rnorm(N, sd=sDt)
X[1] <- X0
Y[1] <- X0

for(i in 2:(N+1)){
X[i] <- X[i-1] + d1(t[i-1],X[i-1])*Dt +

s1(t[i-1],X[i-1])*Z[i-1] +
0.5*s1(t[i-1],X[i-1])* s1.x(t[i-1],X[i-1]) *(Z[i-1]^2-Dt) +

Dt^(3/2)*(0.5*d1(t[i-1],X[i-1])*s1.x(t[i-1],X[i-1]) +
0.5*d1.x(t[i-1],X[i-1])*s1(t[i-1],X[i-1])+
0.25*s1(t[i-1],X[i -1])^2 * s1.xx(t[i-1],X[i -1]))*Z[i-1] +
Dt^2*(0.5* d1(t[i-1],X[i-1])*d1.x(t[i-1],X[i -1])+
0.25*d1.xx(t[i-1],X[i-1])*s1(t[i-1],X[i -1])^2)

}
return(X)

}

Listing 2.7. R code for the second Milstein simulation scheme.

2.10 Drawing from the transition density

All the methods presented so far are based on the discretized version of the
stochastic differential equation. In the case where a transition density of Xt

given some previous value Xs, s < t, is known in explicit form, direct simu-
lation from this can be done. Unfortunately, the transition density is known
for very few processes, and these cases are the ones for which exact likelihood
inference can be done, as will be discussed in Chapter 3. In these fortunate
cases, the algorithm for simulating processes is very easy to implement. We
suppose that a random number generator is available for the transition den-
sity for the process pθ(∆, y|x) = Pr(Xt+∆ ∈ dy|Xt = x). If this generator is
not available one can always use one of the standard methods to draw from
known densities, such as the rejection method. We are not going to discuss
this approach here and assume this random number generator exists in the
form of an R function that accepts the number n of pseudo random numbers
to draw, a vector of length n of values x (this will play the role of the Xt’s),
the time lags Dt, and a vector of parameters theta. The fact that we allow for
n random numbers to be generated will be useful whenever one wants to sim-
ulate multiple trajectories of the same process in a way we discuss at the end
of the chapter. The next function generates a complete path of a stochastic
process for which the random number generator rcdist is known. We assume
that the corresponding model is parametrized through a vector of parameters
theta.
sde.sim.cdist <- function(X0=1, t0=0, Dt=0.1, N, rcdist=NULL , theta=NULL){

X <- numeric(N+1)
X[1] <- X0
for(i in 2:(N+1)){
X[i] <- rcdist(1, Dt , X[i-1], theta)

}
ts(X, start=t0, deltat=Dt)

}
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The function sde.sim.cdist just iterates calls to the random number gen-
erator rcdist, assigning to X[i] the pseudo random number generated from
the law of Xt+∆t|Xt = X[i-1]. We now write the random number generators
for the processes for which the conditional distribution is known.

2.10.1 The Ornstein-Uhlenbeck or Vasicek process

Recall that the Ornstein-Uhlenbeck or Vasicek process solution to

dXt = (θ1 − θ2Xt)dt+ θ3dWt, X0 = x0,

has a known Gaussian transition density pθ(∆, y|Xt = x) with mean and
variance as in (1.41) and (1.42), respectively. Hence we can just make use of
the rnorm function to build our random number generator.
rcOU <- function(n=1, t, x0 , theta ){

Ex <- theta [1]/theta [2]+(x0 -theta [1]/theta [2])*exp(-theta [2]*t)
Vx <- theta [3]^2*sqrt((1-exp(-2*theta [2]*t))/(2*theta [2]))
rnorm(n, mean=Ex , sd = sqrt(Vx))

}

The functions [rpdq]cOU in the sde package provide interfaces to random
number generation, cumulative distribution function, density function, and
quantile calculations, respectively, for the conditional law of the Ornstein-
Uhlenbeck process. Similarly, the functions [rpdq]sOU provide the same func-
tionalities for the stationary law of the process.

2.10.2 The Black and Scholes process

The Black and Scholes or geometric Brownian motion process solution of

dXt = θ1Xtdt+ θ2XtdWt

has a log-normal transition density pθ(∆, y|x), where the log-mean and log-
variance are given in (1.43). The following code implements the random num-
ber generator from the conditional law.
rcBS <- function(n=1, Dt, x0, theta){

lmean <- log(x0) + (theta [1] -0.5*theta [2]^2)*Dt
lsd <- sqrt(Dt)*theta [2]
rlnorm(n, meanlog = lmean , sdlog = lsd)

}

The package sde provides the functions [rpdq]cBS for random number
generation, cumulative distribution function, density function, and quantile
calculations of the conditional law of Xt+∆|Xt.

2.10.3 The CIR process

The conditional density of Xt+∆|Xt = x for the Cox-Ingersoll-Ross process
solution of
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dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt

is a noncentral chi-squared distribution (see Section 1.13.3). In particular,
we have shown in (1.48) that pθ(∆, y|x) can be rewritten in terms of the
transition density of Yt = 2cXt, which has a chi-squared distribution with
ν = 4θ1/θ23 degrees of freedom and noncentrality parameter Yse

−θ2t, where
c = 2θ2/(θ23(1− e−θ2t)). So we just need to simulate a value of y from Yt|Ys =
2cxs and return y/(2c). The following code does the job.
rcCIR <- function(n=1, Dt , x0 , theta){

c <- 2*theta [2]/((1-exp(-theta [2]*t))*theta [3]^2)
ncp <- 2*c*x0*exp(-theta [2]*Dt)
df <- 4*theta [1]/theta [3]^2
rchisq(n, df=df, ncp=ncp)/(2*c)

}

Also, for the Cox-Ingersoll-Ross process, the package sde provides the func-
tions [rpdq]cCIR and [rpdq]sCIR for random number generation, cumulative
distribution function, density function, and quantile calculations, respectively,
for the conditional and stationary laws.

2.10.4 Drawing from one model of the previous classes

Given that for the Cox-Ingersoll-Ross, Ornstein-Uhlenbeck, and geometric
Brownian motion processes the transition densities are known in explicit form,
we can add a more flexible interface in sde.sim to simulate these models. In
fact, we add the switch model, which can be one between “OU,” “BS,” and
“CIR” (with the obvious meanings) and a vector of parameter theta. So, for
example,
sde.sim(model="CIR", theta=c(3,2,1))

simulates a path of the Cox-Ingersoll-Ross process solution of dXt = (3 −
2Xt)dt +

√
XtdWt with initial value X0 = 1 (the default value in sde.sim).

Below we show the relevant code change to the sde.sim function.
sde.sim <- function (t0 = 0, T = 1, X0 = 1, N = 100, delta , drift , sigma ,

drift.x, sigma.x, drift.xx , sigma.xx , drift.t, method = c("euler",
"milstein", "KPS", "milstein2", "cdist"),

alpha = 0.5, eta = 0.5, pred.corr = T, rcdist = NULL , theta = NULL ,
model = c("CIR", "VAS", "OU", "BS"))

{
method <- match.arg(method)
if(!missing(model )){
model <- match.arg(model)
method <- "model"

}

if (missing(drift )){
if (method == "cdist" || !missing(model ))
drift <- expression(NULL)

else
stop("please specify al least the drift coefficient of the SDE")

}

# (...)
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if(method == "model"){
if(is.null(theta ))

stop("please provide a vector of parameters for the model")
if(model == "CIR")

X <- sde.sim.cdist(X0, t0, Dt, N, rcCIR , theta)
if(model == "OU")

X <- sde.sim.cdist(X0, t0, Dt, N, rcOU , theta)
if(model == "BS")

X <- sde.sim.cdist(X0, t0, Dt, N, rcBS , theta)
}

# (...)
}

2.11 Local linearization method

The local linearization method consists in approximating locally the drift
of the stochastic differential equation with a linear function. The main idea
behind this technique is that a linear approximation is better than the simple
constant approximation made by the Euler method (see, e.g., [24], [13]). The
method has been proposed in the context of stochastic differential equations
by Ozaki and developed by him and his co-authors (see [173], [174], [175],
[204], [206], [207]).

2.11.1 The Ozaki method

The first approach we present is the Ozaki method, and it works for homo-
geneous stochastic differential equations. Consider the stochastic differential
equation

dXt = b(Xt)dt+ σdWt , (2.10)

where σ is supposed to be constant. The construction of the method starts
from the corresponding deterministic dynamical system

dxt

dt
= b(xt) ,

where xt has to be a smooth function of t in the sense that it is two times
differentiable with respect to t. Then, with a little abuse of notation, we have

d2xt

dt2
= bx(xt)

dxt

dt
.

Suppose now that bx(x) is constant in the interval [t, t + ∆t), and hence
by iterated integration of both sides of the equation above, first from t to
u ∈ [t, t+∆t) and then from t to t+∆t, we obtain the difference equation

xt+∆t = xt +
b(xt)
bx(xt)

(
ebx(xt)∆t − 1

)
. (2.11)
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Now we translate the result above back to the stochastic dynamical system in
(2.10). So, suppose b(x) is approximated by the linear function Ktx, where Kt

is constant in the interval4 [t, t+∆t). The solution to the stochastic differential
equation is

Xt+∆t = Xte
Kt∆t + σ

∫ t+∆t

t

eKt(t+∆t−u)dWu .

Now what remains to be done is to determine the constant Kt. The main
assumption is that the conditional expectation of Xt+∆t given Xt,

E(Xt+∆t|Xt) = Xte
Kt∆t,

coincides with the state of the linearized dynamical system (2.11) at time
t+∆t, which means that we ask for the following equality to hold:

Xte
Kt∆t = Xt +

b(Xt)
bx(Xt)

(
ebx(Xt)∆t − 1

)
.

From the above, we obtain the constant Kt very easily:

Kt =
1
∆t

log
(

1 +
b(Xt)

Xtbx(Xt)

(
ebx(Xt)∆t − 1

))
.

Notice that Kt depends on t only through the state of the process Xt = x.
Hence we denote this constant by Kx to make the notation more consistent
throughout the book. Given that the stochastic integral is a Gaussian random
variable, it is clear that the transition density for Xt+∆t given Xt is Gaussian
as well. In particular, we have that Xt+∆t|Xt = x ∼ N(Ex, Vx), where

Ex = x+
b(x)
bx(x)

(
ebx(x)∆t − 1

)
, (2.12)

Vx = σ2 e
2Kx∆t − 1

2Kx
, (2.13)

with

Kx =
1
∆t

log
(

1 +
b(x)
xbx(x)

(
ebx(x)∆t − 1

))
.

So it is possible to use the method of drawing from the conditional law to
simulate the increments of the process as in Section 2.10, simulating X[i+1]
according to N(Ex, Vx), where x = X[i]. It is easy to implement this simula-
tion scheme, and it is presented in Listing 2.8. The function sde.sim.ozaki
will be called by sde.sim when method is equal to “ozaki.” This function
assumes that the diffusion coefficient is a constant and that the drift function
depends only on the state variable x. These assumptions are checked inside
the sde.sim interface as follows.
4 Hence the name “local linearization method.”
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if (method == "ozaki"){
vd <- all.vars(drift)
vs <- all.vars(sigma)
if(length(vd)!=1 || length(vs)>0)

stop("drift must depend on `x' and volatility must be constant")
if(( length(vd) == 1) && (vd != "x"))

stop("drift must depend on `x'")
X <- sde.sim.ozaki(X0, t0, Dt, N, d1 , d1.x, s1)

}

Please note that a constant drift is not admissible since Kx and hence Vx are
not well defined.

"sde.sim.ozaki" <-
function(X0, t0, Dt, N, d1 , d1.x, s1){

X <- numeric(N+1)
B <- function(x) d1(1,x)
Bx <- function(x) d1.x(1,x)
S <- s1(1,1)
X[1] <- X0
for(i in 2:(N+1)){
x <- X[i-1]
Kx <- log(1+B(x)*(exp(Bx(x)*Dt)-1)/(x*Bx(x)))/Dt
Ex <- x + B(x)/Bx(x)*(exp(Bx(x)*Dt)-1)
Vx <- S^2 * (exp(2*Kx*Dt) -1)/(2*Kx)
X[i] <- rnorm(1, mean=Ex , sd=sqrt(Vx))

}
X

}

Listing 2.8. R code for the Ozaki simulation scheme.

Of course, the Ozaki method coincides with the Euler method if the drift is
linear. The reader can try the following lines of code.
> # ex 2.12.R
> set.seed (123)
> X <- sde.sim(drift=expression (-3*x), method="ozaki")
> set.seed (123)
> Y <- sde.sim(drift=expression (-3*x))
> plot(X)
> lines(as.numeric(time(Y)), Y, col="red")

2.11.2 The Shoji-Ozaki method

An extension of the previous method to the more general case in which the
drift is allowed to depend on the time variable also and the diffusion coefficient
can vary is the Shoji-Ozaki method (see [204], [205], and [206]). Consider the
stochastic differential equation

dXt = b(t,Xt)dt+ σ(Xt)dWt ,

where b is two times continuously differentiable in x and continuously differen-
tiable in t and σ is continuously differentiable in x. We already know that it is
always possible to transform this equation into one with a constant diffusion
coefficient using the Lamperti transform of Section 1.11.4. So one can start
by considering the nonhomogeneous stochastic differential equation



88 2 Numerical Methods for SDE

dXt = b(t,Xt)dt+ σdWt ,

which is different from (2.10) in that the drift function also depends on variable
t. Now the local linearization method is developed by studying the behavior
of b locally. We skip all the details, which can be found in the original works
[207] and [206], but the main point is that the equation above is approximated
locally on [s, s+∆s) with

dXt = (LsXt + tMs +Ns)dt+ σdWt, t ≥ s,

where

Ls = bx(s,Xs), Ms =
σ2

2
bxx(s,Xs) + bt(s,Xs) ,

Ns = b(s,Xs)−Xsbx(s,Xs)− sMs .

The next step is to consider the transformed process Yt = e−LstXt, which has
the explicit solution

Yt = Ys +
∫ t

s

(Msu+Ns)e−Lsudu+ σ

∫ t

s

e−LsudWu,

from which the discretization of Xt can be easily obtained and reads as

Xs+∆s = A(Xs)Xs +B(Xs)Z,

where

A(Xs) = 1 +
b(s,Xs)
XsLs

(
eLs∆s − 1

)
+

Ms

XsL2
s

(
eLs∆s − 1− Ls∆s

)
, (2.14)

B(Xs) = σ

√
e2Ls∆s − 1

2Ls
, (2.15)

and Z ∼ N(0, 1). From the above, it follows that

Xs+∆s|Xs = x ∼ N(A(x)x,B2(x)) .

This method is also quite easy to implement and is just a modification of
the previous method. For the sake of simplicity, we will call this the “shoji”
method to distinguish it in the R code. The only difference with respect to all
previous methods is that we also need to specify the partial derivative of the
drift coefficient with respect to variable t. This will be an argument of sde.sim
called drift.t and eventually calculated using R symbolic differentiation. We
skip the corresponding code and present just Listing 2.9, which implements
the simulation part.

sde.sim.shoji <- function(X0, t0, Dt, N, d1 , d1.x, d1.xx, d1.t, s1){
X <- numeric(N+1)
S <- s1(1,1)
X[1] <- X0
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for(i in 2:(N+1)){
x <- X[i-1]
Lx <- d1.x(Dt ,x)
Mx <- S^2 * d1.xx(Dt,x)/2 + d1.t(Dt ,x)
Ex <- (x + d1(Dt,x)*(exp(Lx*Dt)-1)/Lx +

Mx*(exp(Lx*Dt) -1 -Lx*Dt)/Lx^2)
Vx <- S^2*(exp(2*Lx*Dt)-1)/(2*Lx)
X[i] <- rnorm(1, mean=Ex , sd=sqrt(Vx))

}
X

}

Listing 2.9. R code for the Shoji-Ozaki simulation scheme.

Please note that in this case as well, a drift function not depending on x is
not admissible since A(Xs) is not well-defined. One more thing to note is that
the Ozaki, Shoji-Ozaki, and Euler methods draw increments from a Gaussian
law with mean Ex and variance Vx that in the case of the Euler scheme are
Ex = x+ b(x, t)dt and Vx = V = σ2dt. For the Euler method, the variance Vx

is independent from the previous state of the processXt = x, and this property
is inherited from the independence of the increments of the Brownian motion.
On the contrary, Vx for the Ozaki and Shoji-Ozaki methods depend on the
previous state of the process and differ from the value of the constants Kx

and Lx, respectively. Even in the linear case, the Shoji-Ozaki method performs
differently from the Euler and Ozaki methods. The difference is in the fact that
the Shoji-Ozaki method also takes into account the stochastic behavior of the
discretization because of the Itô formula. Of course, in the linear homogeneous
case the Euler, Shoji-Ozaki, and Ozaki methods coincide. One added value in
using the Shoji-Ozaki method over the Ozaki and Euler methods is that it is
more stable if the time ∆ is large. In fact, not surprisingly, the Euler scheme
tends to explode in non-linear cases when ∆ is large enough. The following
example shows some empirical evidence of this fact. We simulate the solution
of dXt = (5− 11Xt + 6X2

t −X3
t )dt+ dWt, X0 = 5 for ∆ = 0.1 and ∆ = 0.25.

For small values of ∆, all three methods gave similar results, but this is not the
case for ∆ = 0.25, as can be seen in Figure 2.3, produced with the following
code.
> # ex 2.13.R
> bX <- expression ((5 - 11 * x + 6 * x^2 - x^3))
> x0 <- 5
> DT <- 0.1
> par(mfrow=c(2 ,3))
> set.seed (123)
> X <- sde.sim(drift=bX , delta=DT ,X0=x0)
> plot(X,main="Euler")
> set.seed (123)
> Y <- sde.sim(drift=bX , method="ozaki",delta=DT,X0=x0)
> plot(Y,main="Ozaki")
> set.seed (123)
> Z <- sde.sim(drift=bX , method="shoji",delta=DT,X0=x0)
> plot(Z,main="Shoji -Ozaki")
>
> DT <- 0.25
> set.seed (123)
> X <- sde.sim(drift=bX , delta=DT ,X0=x0)
> plot(X, main="Euler")
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Fig. 2.3. Different performance of the Euler, Ozaki, and Shoji-Ozaki methods for
different values of ∆ (top: 0.1; bottom: 0.25). The Euler scheme explodes for high
values of ∆.

> set.seed (123)
> Y <- sde.sim(drift=bX , method="ozaki",delta=DT,X0=x0)
> plot(Y,main="Ozaki")
> set.seed (123)
> Z <- sde.sim(drift=bX , method="shoji",delta=DT,X0=x0)
> plot(Z,main="Shoji -Ozaki")

Further properties of the method

As for the properties of this method, the authors show that the Shoji-Ozaki
discretization performs well in terms of one-step-ahead error in mean abso-
lute and mean square values. In particular, the mean absolute one-step-ahead
error is of order O(∆t2) and the mean square one-step-ahead error is of order
O(∆t3) as ∆t → 0. These errors are measured in terms of the distance be-
tween the true trajectory and the approximated trajectory. In particular, the
mean square error attains the optimum rate in the sense of Rümelin [198].

Nonconstant diffusion coefficient

If the original stochastic differential equation Xt does not have a constant
diffusion coefficient, it is always possible to apply the Lamperti transform of
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Section 1.11.4 to obtain a new process Yt that has a unitary diffusion coeffi-
cient. So one can simulate the path of Yt = F (Xt) and then use the inverse
transform F−1 to get Xt’s path. So, for example, following [207], consider the
stochastic differential equation

dXt = (α0 + α1Xt + α2X
2
t + α3X

3
t )dt+ σXγ

t dWt ,

where (α0 = 6, α1 = −11, α2 = 6, α3 = −1, γ = 0.5, σ = 1). The transforma-
tion

F (x) =
1
σ

∫ x

0

1
uγ

du =
1
σ

x1−γ

1− γ

and its inverse
F−1(y) = (σy(1− γ))

1
1−γ

can be used to apply the Shoji-Ozaki method to the stochastic differential
equation above. The drift function of process Yt is then

by(t, x) =
b(t, x)
σxγ

− γσ

2
xγ−1,

which has to be calculated in F−1(y). For the particular choice of σ and γ,
we have that F−1(y) = (y/2)2. Hence the process Yt satisfies

dYt =
23− 11Y 2

t + 3
2Y

4
t − 1

24Y
6
t

2Yt
dt+ dWt, Y0 = 2

√
X0 .

Once we have the trajectory of Yt, we can get a trajectory of Xt by means
of the transformation Xt = (Yt/2)2. The following lines of code show how to
proceed.
> # ex 2.14.R
> bY <- expression( (23-11*x^2+1.5*x^4-(x^6)/(2^4))/(2*x) )
> bX <- expression( (6-11*x+6*x^2-x^3) )
> sX <- expression( sqrt(x) )
>
> set.seed (123)
> X <- sde.sim(drift=bX , sigma=sX)
> plot(X)
> set.seed (123)
> Y <- sde.sim(drift=bY , X0 = 2, method="shoji")
> plot((Y/2)^2)

2.12 Exact sampling

Very recently there appeared a new proposal for an exact sampling algorithm
that, when feasible, is also easy to implement (see [27] and [29]). This method
is a rejection sampling algorithm (see, e.g., [227], [68]) for diffusion processes.
The rejection sampling algorithm for finite-dimensional random variables is
as follows. Suppose f and g are two densities with respect to some measure
in Rd and such that f(x) ≤ εg(x) for some ε > 0. If one wants to simulate
pseudorandom numbers from f and knows how to simulate from g, then one
can use the following algorithm:
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1. Sample y from g, y ∼ g.
2. Sample u from the uniform law, u ∼ U(0, 1).
3. If u < εf(y)/g(y), retain y; otherwise iterate from 1.

Then y will be f -distributed. This algorithm needs some modifications if it
is to be applied to continuous-time processes such as diffusions because in
principle there is the need to generate a whole continuous path of the diffusion5

before accepting/rejecting it and not just a simple number. Luckily, such an
exact sampling algorithm relies on the fact that the rejection rule can be
made equivalent to the realization of some event related to point processes
and hence simpler to handle. We skip here all the details, but these and
other considerations constitute the core of the algorithm proposed in [27].
The algorithm is given for a diffusion with unit diffusion coefficient

dXt = b(Xt)dt+ dWt, 0 ≤ t ≤ T, X0 = x . (2.16)

Again, if this is not the case, the Lamperti transform in Section 1.11.4 can be
used. From now on, we discuss the algorithm for the exact simulation of the
random variable X∆ for some ∆ > 0 and initial value X0 = x. We assume that
b(·) satisfies the usual conditions for the existence of the stochastic differential
equation (2.16) and also the following assumption.

Assumption 2.1

(i) The derivative bx of b exists.
(ii) There exist k1 and k2 such that k1 ≤ 1

2b
2(x)+ 1

2bx(x) ≤ k2 for any x ∈ R.

Let us denote φ(x) = 1
2b

2(x) + 1
2bx(x) − k1. A further requirement is that

0 ≤ φ(x) ≤ M for any x ∈ R, with M = (k2 − k1), which implies also that
∆ ≤ 1/M for identifiability. Now set

A(z) =
∫ z

0

b(u)du

and

h(z) = exp
{
A(z)− (z − x)2

2∆

}
, K =

∫ ∞

−∞
h(u)du .

The function h̃(x) = h(x)/K is a density function on R whenever K < ∞.
The algorithm requires the ability to generate6 pseudo random numbers from
the density h̃. We present here a version of the exact algorithm (EA) in the
simplified form as described in [56].

1. Simulate Y∆ = y according to distribution h̃.

5 The ratio f(y)/g(y) of the algorithm should be a likelihood ratio in the case of a
diffusion, as given by the Girsanov theorem.

6 In this case, it is possible to draw from h using a reject sampling algorithm with
Gaussian proposals.
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2. Simulate τ = k from the Poisson distribution with intensity λ = ∆M .
3. Draw (Ti, Vi) = (ti, vi) according to U [(0,∆)× (0,M)], i = 1, . . . , k.
4. Generate a Brownian bridge starting at x at time 0 and ending in y at

time ∆ at time instants ti; i.e., generate Yti
= yi, i = 1, . . . , k.

5. Compute the indicator function

I =
k∏

i=1

1{φ(yi)≤vi}.

6. If I = 1, the trajectory (x, Yt1 = y1, . . . , Ytk
= yk, Y∆ = y) is accepted

and Y∆ is an exact draw of X∆. Otherwise, restart from step 1.

Two approaches are possible if one wants to simulate a process up to
an arbitrary time T : either set ∆ = T or set ∆ = T/N and iterate the
algorithm N times. As in [56], we suggest keeping only the last value of X∆

and simulating the next one X2∆ (conditionally on X∆ = y) up to the final
time T . The advantage of this approach is that we get a path of the process
on a regular grid, which makes this path compatible with the other schemes
presented in this book. The EA algorithm is implemented in Listing 2.10, and
the relevant changes to the sde.sim function are given below.
sde.sim <- function (t0 = 0, T = 1, X0 = 1, N = 100, delta , drift , sigma ,

drift.x, sigma.x, drift.xx , sigma.xx , drift.t, method = c("euler",
"milstein", "KPS", "milstein2", "cdist","ozaki","shoji","EA"),

alpha = 0.5, eta = 0.5, pred.corr = T, rcdist = NULL , theta = NULL ,
model = c("CIR", "VAS", "OU", "BS"),
k1 , k2 , phi , max.psi = 1000, rh , A){

# (...)

if(method == "ozaki" || method == "shoji" || method == "EA")
needs.dx <- TRUE

# (...)

if (method == "EA")
X <- sde.sim.ea(X0 , t0 , Dt , N, d1, d1.x, k1, k2, phi , max.psi , rh, A)

# (...)
}

Remarks on the method

The hypothesis of boundedness of φ can be too restrictive, and some relax-
ation is possible as described in [27] with some modifications of the algorithm
(known as EA2 and EA3 schemes, in contrast with the EA1 algorithm of
Listing 2.10).

It is important to mention that the probability of the event I = 1 in
the algorithm above, which is the probability of accepting a simulated path,
exponentially decreases to zero as ∆ → 0 and is at least e−1, which justifies
using this rejection algorithm from the point of view of efficiency.
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One more important remark is that approximation schemes usually affect
the statistical procedures in Monte Carlo experiments. On the contrary, the
EA method does not influence the estimators (see [27]).

"sde.sim.ea" <-
function(X0, t0, Dt, N, d1 , d1.x, k1 , k2 , phi , psi , max.psi , rh, A){

psi <- function(x) 0.5*d1(1,x)^2 + 0.5*d1.x(1,x)

if(missing(k1)){
cat("k1 missing , trying numerical minimization ...")
k1 <- optimize(psi , c(0, max.psi))$obj
cat(sprintf("(k1 =%5.3f)\n",k1))

}
if(missing(k2)){
cat("k2 missing , trying numerical maximization ...")
k2 <- optimize(psi , c(0, max.psi),max=TRUE)$obj
cat(sprintf("(k2 =%5.3f)\n",k2))

}

if(missing(phi))
phi <- function(x) 0.5*d1(1,x) + 0.5*d1.x(1,x) - k1

else
phi <- function(x) eval(phi)

M <- k2-k1
if(M==0)
stop("`k1 ' = `k2 ' probably due to numerical maximization")

if(Dt >1/M)
stop(sprintf("discretization step greater than 1/(k2_k1)"))

if(missing(A))
A <- function(x) integrate(d1 , 0, x)

if(missing(rh)){
rh <- function (){
h <- function(x) exp(A(x) - x^2/(2*Dt))
f <- function(x) h(x)/dnorm(x,sqrt(Dt))
maxF <- optimize(f,c(-3*Dt , 3*Dt),max=TRUE)$obj
while (1){
y <- rnorm (1)
if( runif (1) < f(y)/maxF )
return(y)

}
}

}

x0 <- X0
X <- numeric(N)
X[1] <- X0
rej <- 0
j <- 1
while(j <= N){
y <- x0+rh()
k <- rpois(1,M*Dt)
if(k>0){
t <- runif(k)*Dt
v <- runif(k)*M
idx <- order(t)
t <- c(0, t[idx], Dt)
v <- v[idx]

DT <- t[2:(k+2)] - t[1:(k+1)]
W <- c(0,cumsum(sqrt(DT) * rnorm(k+1)))
Y <- x0 + W -(W[k+2] -y+x0)*t/Dt
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if( prod(phi(Y[2:(k+1)]) <= v) == 1){
j <- j+1
x0 <- Y[k+2]
X[j] <- Y[k+2]

} else {
rej <- rej +1

}
}

}
cat(sprintf("rejection rate: %5.3f\n",rej/(N+rej )))
X

}

Listing 2.10. R code for the EA1 simulation algorithm.

Periodic drift example (SINE process)

Consider the following example from [27]. We have a process satisfying the
stochastic differential equation

dξt = sin(ξt)dt+ dWt, ξ0 = 0 . (2.17)

The drift b(x) = sin(x) satisfies the usual hypotheses, and is differentiable
and such that

−1
2

= k1 ≤
1
2
b(u)2 +

1
2
bx(u) =

1
2

sin(u)2 +
1
2

cos(u) ≤ k2 =
5
8
;

hence M = k2−k1 = 9/8 and A(u) = 1−cos(u). The following code simulates
an exact path of the SINE process.
> # ex 2.15.R
> set.seed (123)
> d <- expression(sin(x))
> d.x <- expression(cos(x))
> A <- function(x) 1-cos(x)
> sde.sim(method="EA", delta =1/20, X0=0, N=500, drift=d,
+ drift.x = d.x, A=A) -> X
k1 missing , trying numerical minimization ...(k1= -0.500)
k2 missing , trying numerical maximization ...(k2 =0.625)
rejection rate: 0.215
> plot(X, main="Periodic drift")

A more complicated example: the hyperbolic process

Another example taken from [56] is the following. Consider the modified Cox-
Ingersoll-Ross process (see Section 1.13.6) solution to

dXt = −θ1Xtdt+ θ2

√
1 +X2

t dWt

with θ1 + θ22/2 > 0. Using the Lamperti transform, we get the new process
Yt = F (Xt), which satisfies the stochastic differential equation

dYt = −(θ1/θ2 + θ2/2) tanh(θ2Yt)dt+ dWt
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2
(b(x)2 + bx(x)).

with Y0 = F (X0) (see Section 1.13.6 for details). Choose θ1 = 6 and θ2 = 2.
In this case,

1
2
(b2(x) + bx(x)) =

−8 + 16(sinh(2x))2

2(cosh(2x))2
,

and it is easy to show that

−4 = k1 ≤
1
2
(b(x)2 + bx(x)) ≤ k2 = 8

(see also Figure 2.4) and

A(x) =
∫ x

0

−4 tanh(2u)du = −2 log(cosh(2x)).

Hence M = k2−k1 = 12, 0 ≤ φ(x) ≤ 1/M , and the constant K =
∫

R e
A(x)− x2

2T

can be found numerically.
Once we have simulated a path of Yt using the exact algorithm, we can ob-

tain a trajectory of Xt using the inverse of F ; i.e., Xt = F−1(Yt) = sinh(θ2Yt).
The next R code performs the simulation, and both the original and the trans-
formed paths of the process are shown in Figure 2.5.
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Fig. 2.5. Simulation of the process Yt solution of (1.54) and its transformed version
Xt = sinh(2Yt) using the EA1 algorithm.

> # ex 2.16.R
> set.seed (123)
> d <- expression (-4*tanh(2*x))
> d.x <- expression (-(4 * (2/cosh(2 * x)^2)))
> A <- function(x) -(0.5+6/4)*log(cosh(2*x))
> X0 <- rt(1, df=4)/2
> F <- function(x) log(x + sqrt (1+x^2))/2
> Y0 <- F(X0)
> sde.sim(method="EA", delta =1/20, X0=Y0, N=500, drift=d,
+ drift.x=d.x, A=A, k1=-4,k2=8) -> Y
rejection rate: 0.474
> X <- sinh(Y)
> ts(cbind(X,Y),start=0,delta=1/20) -> XY
> plot(XY ,main="Original scale X vs transformed Y")

The Cox-Ingersoll-Ross and Ornstein-Uhlenbeck processes and EA algorithm

Consider the Cox-Ingersoll-Ross process

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, X0 = 10 ,

for which the Lamperti transform

F (x) =
∫ x

0

1
θ3
√
u

du =
2
√
x

θ3
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gives Yt = F (Xt), satisfying

dYt =
4θ1 − θ23
2θ23Yt

dt− θ2
2
Ytdt+ dWt .

The transformed drift b(x) = 4θ1−θ2
3

2θ2
3x

− θ2
2 x is not bounded in zero from above

or below and hence the EA algorithm is not applicable to this process. The
same situation occurs for the Ornstein-Uhlenbeck process of equation (1.39).

2.13 Simulation of diffusion bridges

As we will see in the next chapter, exact likelihood inference for discretely
observed diffusion processes is not always possible because the likelihood is
not available in many cases. Section 3.3.2 describes the simulated likelihood
method, which consists in estimating the transition density between two con-
secutive observations using the Monte Carlo approach. In this situation, the
ability to simulate paths between two observations is essential. To this end
an MCMC-algorithm was proposed in [196], and the exact method of Section
2.12 can also be applied. A new simple method that applies to ergodic dif-
fusion processes has recently been introduced in [37]. This method relies on
the time-reversibility property of the ergodic diffusion process and essentially
consists in the simulation of two paths of a diffusion process, one moving for-
ward in time and another one moving backward in time. If the two trajectories
intersect, then the combined path is a realization of the bridge. Let (l, r) with
−∞ ≤ l ≤ r ≤ +∞ be the state space of the diffusion process X solution to

dXt = b(Xt)dt+ σ(Xt)dWt

and take a and b as two points in the state space of X. A solution of the
previous equation in the interval [t1, t2] such thatXt1 = a andXt2 = b is called
a (t1, x1, t2, x2)-diffusion bridge. Time reversibility of an ergodic diffusion is
assured by a mild set of conditions (see, e.g., [135]).

Let m(x) and s(x) be, respectively, the speed measure (1.22) and the scale
measure (1.21) of the diffusion X. Under Assumption 1.5, we know that the
diffusion X is also ergodic with invariant density proportional to the speed
measure up to a normalizing constant. Our interest is in the simulation of
a (0, a, 1, b)-diffusion bridge. Let W 1 and W 2 be two independent Wiener
processes and define X1 and X2 as solutions to

dXi
t = b(Xi

t)dt+ σ(Xi
t)dW

i
t

with X1
0 = a and X2

0 = b.

Fact 2.1 (Theorem 1 in [37]) Let τ = inf{0 ≤ t ≤ 1|X1
t = X2

1−t}, where
the inf over the empty set is taken to be ∞. Define
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Zt =

{
X1

t if 0 ≤ t ≤ τ,

X2
1−t if τ < t ≤ 1.

Then, the distribution of {Zt}0≤t≤1 conditional on the event {τ ≤ 1} is equal
to the conditional distribution of {Xt}0≤t≤1 given X0 = a and X1 = b; i.e.,
Z is a (0, a, 1, b)-diffusion bridge.

2.13.1 The algorithm

We now assume that our interest is in the simulation of a (0, a,∆, b)-diffusion
bridge; i.e., a bridge on the generic interval [0,∆]. The algorithm consists in
simulating two independent diffusion processes X1 and X2 using one of the
previous methods (e.g., the Euler or Milstein scheme) on the time interval
[0,∆] with discretization step δ = ∆/N and applying a rejection sampling
procedure. Let Y 1

iδ and Y 2
iδ, i = 0, 1, . . . , N , be independent simulations of X1

andX2. If either Y 1
iδ ≥ Y 2

(N−i)δ and Y 1
(i+1)δ ≤ Y 2

(N−(i+1))δ or Y 1
iδ ≤ Y 2

(N−i)δ and
Y 1

(i+1)δ ≥ Y 2
(N−(i+1))δ, a crossing has been realized. Hence, let ν = min{i ∈

(1, . . . , N)|Y 1
iδ ≤ Y 2

(N−i)δ} if Y 1
0 ≥ Y 2

∆ and ν = min{i ∈ (1, . . . , N)|Y 1
iδ ≥

Y 2
(N−i)δ} if Y 1

0 ≤ Y 2
∆, and define

Biδ =

{
Y 1

iδ for i = 0, 1, . . . , ν − 1,
Y 2

(N−i)δ for i = ν, . . . , N.

Then B is a simulation of a (0, a,∆, b)-diffusion bridge. If no crossing hap-
pened, start again by simulating Y 1

iδ and Y 2
iδ and iterate until a crossing of

the two trajectories is realized.
The nice feature of this method is that this algorithm produces trajectories

with the same order (weak or strong) of approximation as the method used
to simulate Y 1 and Y 2.

As for the exact algorithm, it is also interesting to evaluate the rejection
rate of the method. The rejection probability (i.e., the probability of no cross-
ings) depends on the drift and diffusion coefficients as well as the points a and
b and the length of the time interval ∆. Simulation experiments (see [37]) show
that if a and b are not too distant and ∆ is relatively small, which usually
occurs in inference for discretely observed diffusion processes, the rejection
rate is acceptable. Usually, when the exact algorithm is feasible, it is more
efficient. The nice property of the present approach is that the algorithm is
relatively simple and works for the class of generic time-homogeneous ergodic
diffusion processes.7

The following code illustrates how to implement the algorithm above. Al-
though a DBridge function exists in the sde package which we discuss later,

7 We recall again that version 3 of the exact sampling algorithm exists, which does
not require bounds on the coefficients but is mathematically more involved [28].
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Fig. 2.6. A simulated path of a diffusion bridge (continuous line). The bridge is
obtained by merging two paths of diffusion processes (dotted and dashed lines) at
the first crossing.

we present the algorithm in an intuitive version in what follows. The following
code creates two trajectories, Y1 and Y2, the first starting at a = 1.7 and the
second starting at b = 0.5.
> # ex2 .17.R
> drift <- expression ((3-x))
> sigma <- expression (1.2*sqrt(x))
> a <- 1.7
> b <- 0.5
> set.seed (123)
> Y1 <- sde.sim(X0=a, drift=drift , sigma=sigma , T=1, delta =0.01)
> Y2 <- sde.sim(X0=b, drift=drift , sigma=sigma , T=1, delta =0.01)
> Y3 <- ts(rev(Y2), start=start(Y2), end=end(Y2),deltat=deltat(Y2))

The second trajectory is then time-reversed into Y3.
> id1 <- Inf
> if(Y1[1]>=Y3 [1]){
+ if(!all(Y1 >Y3))
+ min(which(Y1 <= Y3))-1 -> id1
+ } else {
+ if(!all(Y1 <Y3))
+ min(which(Y1 >= Y3))-1 -> id1
+ }
> if(id1 ==0 || id1== length(Y1)) id1 <- Inf
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The code then calculates the index id1 of the first crossing time of the two
trajectories and merges Y1 and Y3 appropriately if this time (the time of
crossing) is finite.
> par(mfrow=c(2 ,1))
> plot(Y1 , ylim=c(min(Y1,Y2), max(Y1,Y2)),col="green",lty=2)
> lines(Y3,col="blue",lty=3)
>
> if(id1==Inf ){
+ cat("no crossing")
+ } else {
+ plot(Y1 , ylim=c(min(Y1 ,Y2), max(Y1 ,Y2)),col="green",lty =2)
+ lines(Y3 ,col="blue",lty =3)
+ B <- ts(c(Y1[1: id1], Y3[-(1:id1)]), start=start(Y1),end=end(Y1),
+ frequency=frequency(Y1))
+ lines(B,col="red",lwd =2)
+ }

Figure 2.6 shows the trajectory of Y1 and Y3 (top) and the simulated
path of the diffusion bridge (bottom). The following code uses the DBridge
function as an interface to the algorithm above. The function has the following
interface similar to BBridge for the simulation of the Brownian bridge:
DBridge(x = 0, y = 0, t0 = 0, T = 1, delta , drift , sigma , ...)

The variable arguments ... are passed directly to the sde.sim function, which
is called internally. This allows selection of any simulation scheme for the
diffusion, the default being the default of the sde.sim function. The code for
DBridge simulates a (t0, x, T, y)-diffusion bridge. The next code provides an
example of how it is used and the output is given in Figure 2.7.
> # ex2 .17.R (cont .)
> d <- expression ((3-x))
> s <- expression (1.2*sqrt(x))
> par(mar=c(3,3,1,1))
> par(mfrow=c(2 ,1))
> set.seed (123)
> X <- DBridge(x=1.7,y=0.5, delta =0.01 , drift=d, sigma=s)
> plot(X)
> X <- DBridge(x=1,y=5, delta =0.01 , drift=d, sigma=s)

no crossing , trying again ...
> plot(X)

2.14 Numerical considerations about the Euler scheme

Consider for example the geometric Brownian motion Xt in (1.5). If X0 > 0,
this process is always positive, being an exponential functional of the Brownian
motion. The application of the Euler approximation can lead to unexpected
results. Indeed, the Euler scheme for Xt reads as

Yi+1 = Yi(1 + θ1 ·∆t+ θ2
√
∆tZ),

and if ∆t is too small, it can happen in one or more simulations that a pseudo
random number Z is drawn from the Gaussian distribution such that
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Fig. 2.7. Two simulated paths of diffusion bridges (t1, x1, t2, x2) using the DBridge

function for the stochastic differential equation dXt = (3 − Xt)dt + 1.2
√

XtdWt:
(0, 1.7, 1, 0.5) (top) and (0, 1, 1, 5) (bottom).

Z < −1 + θ1∆t

θ2
√
∆t

and therefore Yi+1 takes negative values. In this case, this is not the same
phenomenon of absorption as in the CEV process of Section 2.5 but just a
matter of the approximation method used. In fact, the Euler scheme is guar-
anteed to converge to the mathematical description of the geometric Brownian
motion, but simulation by simulation we cannot expect this result to happen
every time. An empirical proof of the fact that this is not an absorption phe-
nomenon is that false “absorption” does not occur on the transformed process
logXt.

2.15 Variance reduction techniques

We now adapt the general concepts in Section 1.4 to the framework of stochas-
tic differential equations. In this framework, interest is in the evaluation of the
expected value of some functional ψ of the trajectory of the process solution of
some stochastic differential equation. Let us denote by Z this expected value,
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Z = ψ({Xt, 0 ≤ t ≤ T}) = ψ(X) ,

with X the solution to the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x . (2.18)

The Monte Carlo estimator of EZ is built as follows. Let Y j
i = Y j(ti), j =

1, . . . , N , i = 1, . . . , n, be the value of the approximating process Y j at time
ti for the jth simulated path of the process X. Then, the estimator has the
form

µ̂N =
1
N

N∑
j=1

ψ(Y j) .

For example, if we are interested in the expected value of XT (i.e., EZ =
Eψ(X) = EXT ), the Monte Carlo estimator reads as

µ̂N =
1
N

N∑
j=1

Y j
n .

From the general Monte Carlo results, we know that µ̂N is unbiased and has
a variance equal to Varψ(Yn)/N , and we also know that the length of the
confidence intervals shrinks to 0 at speed N− 1

2 . Once again, if the process
itself has large a variance, the confidence interval might be too big to be used
to assess the quality of the estimator and hence the need for variance reduction
techniques.

2.15.1 Control variables

From Section 1.4.2, we know that in order to reduce the variance of EZ, one
possibility is to apply the control variable technique. In particular, we need
to rewrite EZ as E(Z−Y )+E(Y ), for which EY can be calculated explicitly.
For obvious reasons, this is easy to implement when EY = 0. When dealing
with stochastic differential equations, a good hint is clearly to build such
a random variable Y on top of Brownian motion. Indeed, we know that if
(H(t), 0 ≤ t ≤ T ) is an Itô integrable process, then

E

(∫ T

0

H(s)dW (s)

)
= 0 .

Thus, in principle, the role of Y might be taken by a properly chosen stochastic
integral. In fact, there is a general result that allows us to rewrite any square-
integrable random variable, adapted to the natural filtration of the Brownian
motion, in terms of its expected value and a stochastic integral of some process
H. This theorem, called the predicted representation theorem (see [130] or
[193]), is rather general, but unfortunately the explicit formula for the process
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H is quite difficult to find in general. In [167], one formula based on Malliavin
calculus is provided, but it is hard to implement. In general, each case study
might provide different ways to obtain control variables. A result descending
from the Feynman-Kac theorem relates the construction of such a process to
the solution of a partial differential equation. Theorem 5.4.2 in [156] assumes
that u(t, x) is a function of class C1,2 with bounded derivatives in x and
solution of {(

∂u
∂t + Lu

)
(t, x) = f(x)

u(T, x) = g(x),

where L is the infinitesimal generator (see (1.28)) of the diffusion process
solution of (2.18). Setting

Z = g(XT )−
∫ T

0

f(Xs)ds

and

Y =
∫ T

0

∂u

∂x
(s,Xs)σ(Xs)dWs,

then
EZ = Z − Y.

This theorem is the key to finding the control variable that are interests us.
But still the expression of Y involves partial derivatives of the function u,
and hence in practice the approach is to find an approximation ū of u that is
simple to handle and put it in the expression of Y . There are a lot of heuristics
behind the application of this method in concrete cases, and we show one from
[134]. Suppose we want to calculate the average price of a call option,

EZ = E

(
e−rT

(
1
T

∫ T

0

Sudu−K

)
+

)
, (2.19)

where S is the geometric Brownian motion in (1.5). If σ ' 0.5, r ' 1, and
T ' 1, then the integral

1
T

∫ T

0

Sudu

is “close” to

exp

{
1
T

∫ T

0

log(Su)du

}
.

Hence, we can set
Y = e−rT

(
eZ −K

)
+

and

Z =
1
T

∫ T

0

log(S(s))ds
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and use Y as the control variable. Moreover, Z is easy to simulate, as it is
essentially a Gaussian random variable. This approach successfully reduces
the variance of the Monte Carlo estimator. (Details on how (2.19) is related
to the previous theorem can be found in Section 5.2.6 of [156].) Here we don’t
give R code for this case (although it is quite easy to implement). as this
example is quite peculiar.

2.16 Summary of the function sde.sim

The package sde further generalizes the function sde.sim. In particular, it
is possible to generate M independent trajectories of the same process with
one single call of the function by just specifying a value for M (which is 1
by default). For M>=2, the function sde.sim returns an object of class mts
“multi-dimensional time series.” This is quite convenient in order to avoid
loops in the case of Monte Carlo replications. The function sde.sim has a
rather flexible interface, which matches the following definition:

sde.sim(t0 = 0, T = 1, X0 = 1, N = 100, delta, drift, sigma,
drift.x, sigma.x, drift.xx, sigma.xx, drift.t,
method = c("euler", "milstein", "KPS", "milstein2", "cdist",
"ozaki","shoji","EA"), alpha = 0.5, eta = 0.5, pred.corr = T,
rcdist = NULL, theta = NULL,
model = c("CIR", "VAS", "OU", "BS"),
k1, k2, phi, max.psi = 1000, rh, A, M=1)

A complete description of all of the parameters can be found on the manual
page of the sde package in the Appendix B of this book. Here we mention
that this interface allows us to simulate a stochastic differential equation by
specifying the drift and the diffusion coefficient and a simulation scheme, or by
specifying a model among them that admits well-known distributional results,
by specifying a conditional distribution density. The following code shows an
example of such flexibility.
> # ex2 .18.R
> # Ornstein - Uhlenbeck process
> set.seed (123)
> d <- expression (-5 * x)
> s <- expression (3.5)
> sde.sim(X0=10, drift=d, sigma=s) -> X
> plot(X,main="Ornstein -Uhlenbeck")
>
> # Multiple trajectories of the O-U process
> set.seed (123)
> sde.sim(X0=10, drift=d, sigma=s, M=3) -> X
> plot(X,main="Multiple trajectories of O-U")
>
> # Cox -Ingersoll -Ross process
> # dXt = (6-3*Xt)*dt + 2*sqrt(Xt)*dWt
> set.seed (123)
> d <- expression( 6-3*x )
> s <- expression( 2*sqrt(x) )
> sde.sim(X0=10, drift=d, sigma=s) -> X
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> plot(X,main="Cox -Ingersoll -Ross")
>
> # Cox -Ingersoll -Ross using the conditional distribution "rcCIR"
>
> set.seed (123)
> sde.sim(X0=10, theta=c(6, 3, 2), rcdist=rcCIR , method="cdist") -> X
> plot(X, main="Cox -Ingersoll -Ross")
>
> set.seed (123)
> sde.sim(X0=10, theta=c(6, 3, 2), model="CIR") -> X
> plot(X, main="Cox -Ingersoll -Ross")

2.17 Tips and tricks on simulation

We conclude briefly with some general remarks and things to remember before
starting Monte Carlo analysis based on simulated paths of the processes seen
so far. In general, it is recommended to apply the Lamperti transform8 to elim-
inate the dependency of the diffusion coefficient from the state of the process
during simulation. We have seen that many methods rely on this transforma-
tion without loss of generality (e.g., Ozaki, Shoji, Exact Algorithm). Also, the
Euler and Milstein methods may benefit from this preliminary transformation.

If the conditional distribution of the process is known, which is rarely the
case, then a simulation method based on this should be used. For example,
the simulation of the Cox-Ingersoll-Ross process should be done in this way
because simulations based on the discretization of the corresponding stochas-
tic differential equation may lead to unwanted results such as negative values
of the process.

In principle, if time is not a major constraint and the model satisfies the
right conditions on the drift (which we saw are not satisfied by the Cox-
Ingersoll-Ross process), then the exact algorithm must be used. It is worth
mentioning that code more efficient than what we present here can be written
so time efficiency of EA is not necessarily a concern. This will probably be
done in the next version of the sde package, and hence this comment only
applies to the current implementation.

We also mention that when there is no need to simulate the path of the
process on a regular grid of points ti = i∆/T , i = 0, 1, . . . , N , N∆ = T like we
did, then the EA algorithm is even faster. In fact, in our approach, we generate
different points in between the time instants ti and ti+1 but then keep just the
last one and iterate this simulation N times. On the contrary, the algorithm
can be used to simulate the path up to time T . In this case, the algorithm
generates a random grid of points and simulated values of the process, and
then Brownian bridges can be used between the points of the random grid.
Of course, the way we use the EA algorithm avoids any dependency of the
simulation scheme from the estimation part, as we will note in the following
chapters.
8 Of course, when the transform is well-defined and can be obtained in explicit

analytic form and not by numerical integration.



2.17 Tips and tricks on simulation 107

When the interest is in the simulation of diffusion bridges, the algorithm
presented in Section 2.13 is a good candidate.

The Ozaki and Shoji-Ozaki methods can be good ways of simulating a path
when other methods do not apply (which is the case for unbounded nonlinear
drift functions).

If the grid of points is relatively small, we have seen that most discretiza-
tion methods perform equally well but the Euler method can still be unstable
in some particular situations: see the counterexample on the geometric Brow-
nian motion process in Section 2.5. Then a higher order of the approximation
is always welcome.

Antithetic sampling and variance reduction techniques might be used when
functionals of the processes are of interest. Unfortunately, the control variable
approach is always an ad hoc art.



3

Parametric Estimation

In this chapter we consider parametric estimation problems for diffusion pro-
cesses sampled at discrete times. We can imagine different schemes of obser-
vation:

• Large sample scheme: In this scheme, the time ∆ between two consecu-
tive observations is fixed and the number of observations n increases. In
this case, the window of observation [0, n∆ = T ] also increases with n. In
this framework, which is considered the most natural, additional assump-
tions on the underlying continuous model are required such as stationarity
and/or ergodicity.

• High-frequency scheme: In this case, ∆ = ∆n goes to zero as n increases,
and the window of observation [0, n∆n = T ] is fixed. Neither stationarity
nor ergodicity is needed.

• Rapidly increasing design: ∆n shrinks to zero as n grows, but the window
of observation [0, n∆n] also increases with n; i.e., n∆n →∞. In this case,
stationarity or ergodicity is needed. Further, the mesh ∆n should go to
zero at a prescribed rate n∆k

n → 0, k ≥ 2. For high values of k, this is not
a severe constraint because this means that ∆n goes to zero but slowly.

Interesting reviews on this subject can be found, for example, in [213], [30],
[212] and [128]. A vast collection of results, the majority of which we tried to
cover here, can be found in the monograph [192]. Before going into the details
of each approach, we need to discuss the underlying continuous model.

The underlying continuous model

Consider the one-dimensional, time-homogeneous stochastic differential equa-
tion

dXt = b(Xt, θ)dt+ σ(Xt, θ)dWt, (3.1)

where θ ∈ Θ ⊂ Rp is the multidimensional parameter and θ0 is the true
parameter to be estimated. The functions b : R × Θ → R and σ : R × Θ →

S.M. Iacus, Simulation and Inference for Stochastic Differential Equations,
doi: 10.1007/978-0-387-75839-8 3, © Springer Science+Business Media, LLC 2008
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(0,∞) are known and such that the solution of (3.1) exists.1 The state space of
the process is denoted by I = (l, r), and −∞ ≤ l < r ≤ +∞ is an open set and
the same for all θ. Moreover, for any θ ∈ Θ and any random variable ξ with
support in I, equation (3.1) has a unique strong solution for X0 = ξ. When
ergodicity is required, additional assumptions to guarantee the existence of
the invariant distribution πθ(·) should be imposed. In this case, the solution
of (3.1) with X0 = ξ ∼ πθ is strictly stationary and ergodic. We have seen
different sets of sufficient conditions (more can be found in [130], [131], or
[165]), and when πθ(·) exists it has the form

πθ(x) =
1

M(θ)σ2(x, θ)s(x, θ)
, (3.2)

where

s(x, θ) = exp
{
−2
∫ x

x0

b(y, θ)
σ2(y, θ)

dy
}

for some x0 ∈ I and M(θ) the normalizing constant. As seen in Section 1.13,
the function s is called the scale measure and m(x) = πθ(x) ·M(θ) is called
the speed measure. The distribution of X with X0 ∼ πθ is denoted by Pθ, and
under Pθ, Xt ∼ πθ for all t. We further denote by pθ(t, ·|x) the conditional
density (or transition density) ofXt givenX0 = x. AsX is time-homogeneous,
pθ(t, ·|x) is just the density of Xs+t conditional on Xs = x for all t ≥ 0. In
some cases, we will use the notation p(t, ·|x, θ). As already mentioned, the
transition probabilities in most of the cases are not known in explicit analytic
form. On the contrary, the invariant density is easier to obtain (up to the
normalizing constant). We now reintroduce the infinitesimal generator (see
also Section 1.10) of the diffusion X in the multidimensional parametric case.
The operator Lθ defined as

Lθf(x, θ) = b(x, θ)fx(x, θ) +
1
2
σ2(x, θ)fxx(x, θ) (3.3)

is called the infinitesimal generator of the diffusion. Here f(·) is a twice-
continuous differentiable function f : R× Θ → R, where fx(·) and fxx(·) are
the first and second partial derivatives of f(·) with respect to argument x (see
[197] for more details).

In the continuous case, it is quite straightforward to estimate the param-
eters efficiently. In particular, θ (at least the subset of parameters concerning
the diffusion part of (3.1)) can be calculated rather than estimated from the
quadratic variation of the process (see (1.27)) since, for all t ≥ 0,

<X,X>t= lim
n→∞

2n∑
k=1

(
Xt∧k/2n −Xt∧(k−1)/2n

)2 =
∫ t

0

σ2(Xs, θ)ds

1 Any other equivalent set of assumptions, as the ones presented in Chapter 1, are
equally good.
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as n → ∞ in probability under Pθ. The rest of the parameters present only
in the drift part of (3.1) can be estimated using the maximum likelihood
approach. Indeed, once the diffusion coefficient is known, which we just say is
always true in principle (i.e., σ(x, θ) = σ(x)) the likelihood function of X is
given by

LT (θ) = exp

(∫ T

0

b(Xs, θ)
σ2(Xs)

dXs −
1
2

∫ T

0

b2(Xs, θ)
σ2(Xs)

ds

)
. (3.4)

Therefore θ can be estimated by maximizing LT (θ). Please note that LT (θ) is
just the Radon-Nikodým derivative appearing in (1.36). A comprehensive set
of results for this model (for both parametric and nonparametric statistical
problems) can be found in [149] (and in [148] for small diffusion asymptotics).

The discrete-time observations

We assume that the process is observed at discrete times ti = i∆i, i =
0, 1, . . . , n, and T = n∆n. In some cases, the sampling rate has to be con-
stant ∆i = ∆ or such that maxi∆i < ∆ for some fixed ∆; in other cases, ∆n

varies and it is assumed that n∆k
n → 0 for some power k ≥ 2. The asymptotics

is considered as n → ∞, which is equivalent to T → ∞. In the following, we
will denote Xti = Xi∆i just by Xi to simplify the writing. We further denote
by Fn = σ{Xti

, i ≤ n} the σ-field generated by the first n observations with
F0 the trivial σ-field. The discrete counterpart of LT (θ) we are interested in,
conditional on X0, is given by

Ln(θ) =
n∏

i=1

pθ (∆,Xi|Xi−1) pθ(X0) , (3.5)

which can be derived using the Markov property of X (see, e.g., [14]). We
denote by `n(θ) = logLn(θ) the log-likelihood function

`n(θ) = logLn(θ) =
n∑

i=1

`i(θ) + log(pθ(X0))

=
n∑

i=1

log pθ (∆,Xi|Xi−1) + log(pθ(X0)) .

(3.6)

Usually pθ(X0) is not known unless the process is assumed to be in a stationary
regime but, even in this case, it is not always easy to determine pθ(X0). If
the number of observations increases with time, one can assume that the
relative weight of pθ(X0) in the whole likelihood Ln(θ) decreases, so we will
assume that pθ(X0) = 1 from now on without mentioning it any further. In
the following, we will use a dot “ ˙ ” or multiple dots “¨” for single or multiple
times differentiation with respect to the vector θ and ∂θi

f for ∂
∂θi
f and ∂k

θi
f for
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∂k

∂θk
i

f to keep formulas compact but still understandable. When the transition
density is differentiable, we can define the score (vector) function

˙̀
n(θ) =

n∑
i=1

˙̀
i(θ) =

n∑
i=1

 ∂θ1`i(θ)
...

∂θp
`i(θ)

 (3.7)

and the Fisher information matrix for θ,

in(θ) =
n∑

i=1

Eθ{ ˙̀
i(θ) ˙̀

i(θ)T } , (3.8)

where “T” denotes the transposition operator. Since pθ(t, ·|x) is usually not
known explicitly, so are Ln(θ) and all the derived quantities. There are dif-
ferent ways to deal with this problem and we will show some options in what
follows. Still, there are quite important models for which the transition den-
sity is known in explicit form. Hence we start with exact likelihood inference
for these models.

3.1 Exact likelihood inference

As mentioned, maximum likelihood estimation on the true likelihood of the
process is a rare case. In [35], [189], [190], and [62], sufficient conditions for
the consistency and asymptotic normality of these maximum likelihood esti-
mators are given. In particular, in [62] consistency and asymptotic normality
are proved, irrespective of the size of ∆, which seems a good property in ap-
plications. The reader might want to read the original references or consider
Section 3.3 in [192] as a starting point. We are not going to give the com-
plete set of conditions here (which hold also for multidimensional diffusion
processes). Still, we present a smaller set of hypotheses that are the basic
set used by many methods. These assumptions mimic the ones presented in
Chapter 1 but are adapted to the parametric framework.

Assumption 3.1 (Linear growth assumption) There exists a constant
K independent of θ such that, for all x,

|b(x, θ)|+ |σ(x, θ)| ≤ K(1 + |x|) .

Assumption 3.2 (Global Lipschitz assumption) There exists a constant
K independent of θ such that

|b(x, θ)− b(y, θ)|+ |σ(x, θ)− σ(y, θ)| ≤ K|x− y| .

Assumption 3.3 (Positiveness of diffusion coefficient)

inf
x
σ2(x, θ) > 0 .
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Assumption 3.4 (Bounded moments) For all k > 0, all moments of or-
der k of the diffusion process exist and are such that

sup
t

E|Xt|k <∞ .

Assumption 3.5 (Smoothness of the coefficients) The two coefficients
b and σ and their derivatives in θ (eventually up to order 3) are smooth in x
and of polynomial growth order in x uniformly on θ.

The last assumption is usually specified in a different manner for different
methods, as we will show. This set of assumptions is also completed by tech-
nical conditions to ensure the proper rate of convergence and the existence of
Fisher information of the experiment. When the parameters in the drift and
diffusion coefficients are separated, the rate of convergence is always faster for
the parameter in the diffusion coefficient, and a two-step approach to find esti-
mators is possible as in [231]. Usually the rate of convergence for the diffusion
part is

√
n and, under the condition n∆3

n → 0, the estimator for the param-
eters in the drift has rate of convergence

√
n∆n (in some cases, n∆2

n → 0 is
required).

We now present some code for direct calculation of the estimators or nu-
merical maximization using the mle function from the package stats4 (which
is included in all recent distributions of R), which is just an interface to one of
the optimizers available in R. This interface is worth using because its output
is more digestible to statisticians. For example, the estimated variance of the
estimators is provided by inverting the Hessian matrix at the optimum, and
approximated confidence intervals for the estimates can be obtained. The mle
optimizes the negative log-likelihood and needs named arguments. It is also
quite flexible in that it allows one to obtain maximum likelihood estimators
of a subset of the parameters conditioned on the fact that the complimentary
set of parameters has been fixed.

Please note that in the code that follows we specify some initial values
for θ using the option start of the mle function. This is of course necessary
any time an optimizer is used. We will return to this aspect later. Another
interesting fact is that mle allows for box-constrained optimization. In the
examples below we will use the option method = ’’L-BFGS-B’’ to specify
the box-constrained optimization method and lower to specify a vector of
lower bounds in which the algorithm searches for a solution. The parameter
lower also accepts -Inf (which is the default for a non constrained search),
and the analogue parameter upper accepts +Inf (again the default; hence we
don’t need to specify it).

3.1.1 The Ornstein-Uhlenbeck or Vasicek model

We already introduced the Vasicek or Ornstein-Uhlenbeck model in Section
1.13.1. This process solves the stochastic differential equation
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dXt = (θ1 − θ2Xt)dt+ θ3dWt, X0 = x0 , (3.9)

with θ1, θ2 ∈ R, θ3 ∈ R+ and it is ergodic for θ2 > 0. We have also shown
its exact conditional and stationary densities. In particular, the conditional
density pθ(t, ·|x) is the density of a Gaussian law with mean and variance
respectively

m(t, x) = Eθ(Xt|X0 = x) =
θ1
θ2

+
(
x0 −

θ1
θ2

)
e−θ2t (3.10)

and

v(t, x) = Varθ(Xt|X0 = x) =
θ23
(
1− e−2θ2t

)
2θ2

. (3.11)

The following code, easy to implement, takes care of maximum likelihood
estimation of the Vasicek model. The function OU.lik needs as input the
three parameters and assumes that sample observations of the process are
available in the current R workspace in the ts object X. The function then
calls the dcOU function, which evaluates the conditional density of the process.
In principle, dcOU, which is a vectorized function, also accepts different ∆’s,
but in practice our ∆ will be considered fixed because we are using a ts
object.2

dcOU <- function(x, t, x0 , theta , log = FALSE){
Ex <- theta [1]/theta [2]+(x0 -theta [1]/theta [2])*exp(-theta [2]*t)
Vx <- theta [3]^2*(1-exp(-2*theta [2]*t))/(2*theta [2])
dnorm(x, mean=Ex , sd = sqrt(Vx), log=log)

}
OU.lik <- function(theta1 , theta2 , theta3 ){

n <- length(X)
dt <- deltat(X)
-sum(dcOU(X[2:n], dt, X[1:(n-1)], c(theta1 ,theta2 ,theta3), log=TRUE))

}

The dcOU is part of the sde package and is one of the [dpqr]cOU functions
related to the conditional density of the Ornstein-Uhlenbeck process. We simu-
late a solution of dXt = (3−Xt)dt+2dWt and try to estimate the parameters.
For this example, the vector of parameters is θ = c(θ1, θ2, θ3) = (3, 1, 2).
> # ex3 .01.R
> require(stats4)
> require(sde)
> set.seed (123)
> X <- sde.sim(model="OU", theta=c(3,1,2), N=1000, delta =1)
> mle(OU.lik , start=list(theta1=1, theta2 =0.5, theta3 =1),
+ method="L-BFGS -B", lower=c(-Inf ,0 ,0)) -> fit
> summary(fit)
Maximum likelihood estimation

Call:
mle(minuslogl = OU.lik , start = list(theta1 = 1, theta2 = 0.5,

theta3 = 1), method = "L-BFGS -B", lower = c(-Inf , 0, 0))

Coefficients:

2 It could be that in the future the package sde will evolve in this direction, adopting
the zoo class of objects.
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Fig. 3.1. Profile likelihood for the three parameters of the Vasicek process.

Estimate Std. Error
theta1 3.355322 0.28159504
theta2 1.106107 0.09010627
theta3 2.052815 0.07624441

-2 log L: 3366.389

At this point, it seems reasonable to extract and plot the profile likelihood
for each of the parameters (see Figure 3.1) and get the confidence intervals
and the variance-covariance matrix as follows.
> # ex3 .01.R (cont .)
> prof <- profile(fit)
> par(mfrow=c(1 ,3))
> plot(prof)
> par(mfrow=c(1 ,1))
> vcov(fit)

theta1 theta2 theta3
theta1 0.07929576 0.024620718 0.016634557
theta2 0.02462072 0.008119141 0.005485549
theta3 0.01663456 0.005485549 0.005813209
> confint(fit)
Profiling ...

2.5 % 97.5 %
theta1 2.8449242 3.961076
theta2 0.9433407 1.300659
theta3 1.9147160 2.216142
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What happens if the asymptotics is not realized?

As we have seen, the likelihood inference has been quite successful, but let us
look at the next example.
> # ex3 .01.R (cont .)
> set.seed (123)
> X <- sde.sim(model="OU", theta=c(3,1,2), N=1000, delta =1e-3)
> mle(OU.lik , start=list(theta1=1, theta2 =0.5, theta3 =1),
+ method="L-BFGS -B", lower=c(-Inf ,0 ,0)) -> fit2
> summary(fit2)
Maximum likelihood estimation

Call:
mle(minuslogl = OU.lik , start = list(theta1 = 1, theta2 = 0.5,

theta3 = 1), method = "L-BFGS -B", lower = c(-Inf , 0, 0))

Coefficients:
Estimate Std. Error

theta1 13.303899 6.78851336
theta2 5.411345 3.08469142
theta3 1.984735 0.04448513

-2 log L: -2704.316

In this case, the likelihood inference fails (apart from the diffusion coeffi-
cient). The reason for this is that the assumption n∆n → ∞ does not (rea-
sonably) hold for the second case for which N * delta is equal to 1. Please
note that there is no difference in the estimation part but only on the data
used to make the inference. This is where many methods may fail to work in
practice because the data do not conform to the assumptions. We will return
to this point later in the book.

Some particular model specifications

Two particular cases are interesting for the Ornstein-Uhlenbeck model. If θ1 =
0, then the stochastic differential equation becomes dXt = −θ2Xtdt+ θ3dWt

and the only parameters of interest are θ2 and θ3. In this case, if the sampling
rate ∆ is fixed, the maximum likelihood estimator of θ2 is available in explicit
form and takes the form

θ̂2,n = − 1
∆

log


n∑

i=1

Xi−1Xi

n∑
i=1

X2
i−1

 , (3.12)

which is defined only if
∑n

i=1Xi−1Xi > 0. This estimator is consistent and
asymptotically Gaussian (see, e.g., [180]). The maximum likelihood estimator
of θ23 is given by

θ̂23,n =
2θ̂2,n

n(1− e−2∆θ̂2,n)

∑
i=1

(
Xi −Xi−1e

−∆θ̂2,n

)2

, (3.13)
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where θ̂2,n is from (3.12). Now we compare the explicit maximum likelihood
estimators with the ones obtained numerically. We choose θ2 = 3 and θ3 = 2.
We will fix the parameter θ1 = 0 in the likelihood when we optimize using
mle. The maximum likelihood estimators can be found numerically using the
following code.
> # ex3 .02.R
> set.seed (123)
> X <- sde.sim(model="OU", theta=c(0,3,2), N=1000, delta =1)
> mle(OU.lik , start=list(theta2 =1.5, theta3 =1), fixed=list(theta1 =0),
+ method="L-BFGS -B", lower=c(0,0)) -> fit
> summary(fit)
Maximum likelihood estimation

Coefficients:
Estimate Std. Error

theta2 3.889088 1.5438246
theta3 2.254119 0.4487823

-2 log L: 2411.654
>

Explicit estimators give
> # ex3 .02.R (cont .)
> n <- length(X)
> tmp.sum <- sum(X[1:(n-1)]*X[2:n])
> dt <- deltat(X)
> theta2.hat <- ifelse(tmp.sum >0, -log(tmp.sum/sum(X[1:(n -1)]^2))/dt ,NA)
> theta2.hat
[1] 3.888998
> theta3sq.hat <- 2*theta2.hat/((n-1)*(1-exp(-2*dt*theta2.hat))) *
+ sum((X[2:n]-X[1:(n-1)]*exp(-dt*theta2.hat ))^2)
> sqrt(theta3sq.hat)
[1] 2.254092

The results are consistent but in this case, mle is worth using because, as
said before, one can obtain the variance and covariace matrix and confidence
intervals numerically. Next is the model with a unitary diffusion coefficient.
> # ex3 .02.R (cont .)
> set.seed (123)
> X <- sde.sim(model="OU", theta=c(0,3,1), N=1000, delta =1)
> mle(OU.lik , start=list(theta2 =1.5) ,
+ method="L-BFGS -B", lower=c(0), fixed=c(theta1=0, theta3 =1)) -> fit
> summary(fit)
Maximum likelihood estimation

Coefficients:
Estimate Std. Error

theta2 3.077711 0.1360534

-2 log L: 1026.040

3.1.2 The Black and Scholes or geometric Brownian motion model

The Black and Scholes, or geometric Brownian motion model solves the
stochastic differential equation

dXt = θ1Xtdt+ θ2XtdWt, X0 = x0, θ1 ∈ R, θ2 ∈ R+ .
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The conditional density function pθ(t, ·|x) is log-normal with mean and vari-
ance

m(t, x) = xeθ1t, v(t, x) = x2e2θ1t
(
eθ2

2t − 1
)
.

Therefore

pθ(t, y|x) =
1

θ2y
√

2πt
exp

{
−

(log y − (log x+ (θ1 − 1
2θ

2
2)t))

2

2θ22t

}
.

R has the [dqpr]lnorm functions to evaluate the density, the quantiles, and
the cumulative distribution or generate pseudo random numbers from the log-
normal distribution. So in this case the code is quite easy to implement (see
formula (1.43) for the details). The package sde contains the set of functions
[dqpr]lBS.
dcBS <- function(x, t, x0 , theta , log = TRUE){

ml <- log(x0) + (theta [1]- theta [2]^2/2)*t
sl <- sqrt(t)*theta [2]
lik <- dlnorm(x, meanlog = ml , sdlog = sl , log=TRUE)

if(!log)
lik <- exp(lik)

lik
}
BS.lik <- function(theta ,sigma) {
n <- length(X)
dt <- deltat(X)
-sum(dcBS(x=X[2:n], t=dt, x0=X[1:(n-1)], theta=c(theta ,sigma),
log=TRUE))

}

We can easily optimize that:
> # ex3 .03.R
> set.seed (123)
> X <- sde.sim(model="BS", theta=c(.5,.2), delta =0.01)
> mle(BS.lik , start=list(theta1=1, theta2 =1),
+ method="L-BFGS -B", lower=c(0.01 ,0.01)) -> fit
> coef(fit)

theta1 theta2
0.6773086 0.1816525
> length(X)*deltat(X)
[1] 1.01
>
> set.seed (123)
> X <- sde.sim(model="BS", theta=c(.5,.2), N=1000, delta =0.01)
> mle(BS.lik , start=list(theta1=1, theta2 =1),
+ method="L-BFGS -B", lower=c(0.01 ,0.01)) -> fit
> coef(fit)

theta1 theta2
0.5319061 0.1982440
> length(X)*deltat(X)
[1] 10.01
>
> set.seed (123)
> X <- sde.sim(model="BS", theta=c(.5,.2), N=5000, delta =0.01)
> mle(BS.lik , start=list(theta1=1, theta2 =1),
+ method="L-BFGS -B", lower=c(0.01 ,0.01)) -> fit
> coef(fit)

theta1 theta2
0.4986410 0.1988985
> length(X)*deltat(X)
[1] 50.01
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In the example above, we have shown empirically that the convergence of the
MLE to the true value actually happens as N increases.

3.1.3 The Cox-Ingersoll-Ross model

Another interesting process is the Cox-Ingersoll-Ross model [59] solution to
the stochastic differential equation

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt, X0 = x0 > 0 , (3.14)

where θ1, θ2, θ3 ∈ R+. If 2θ1 > θ23, the process is strictly positive; otherwise it is
only nonnegative. Under this configuration of the parameters, the conditional
density pθ(t, ·|x) follows a non-central χ2 distribution,

pθ(t, y|x) = ce−u−v
(u
v

)q/2

Iq(2
√
uv), x, y ∈ R+ ,

where
c =

2θ2
θ23(1− e−θ2t)

, q =
2θ1
θ23

− 1 ,

u = cxe−θ2t, v = cy .

Here Iq(·) is the modified Bessel function of the first kind of order q (see, e.g.,
[1]),

Iq(x) =
∞∑

k=0

(x
2

)2k+q 1
k!Γ (k + q + 1)

, x ∈ R,

where Γ (·) is the Gamma function, Γ (z) =
∫∞
0
xz−1e−xdx, z ∈ R+.

We have already seen in (1.48) that the conditional density pθ(t, y|x0) can
also be written in terms of Bessel functions. R provides different versions of
Bessel functions, and what we need here is the besselI function. To avoid
the explosion of the Bessel function Iq(·), it is worth using the exponentially
rescaled version, which R provides. besselI(x,q) can return either Iq(x) or
e−xIq(x), but unfortunately, for large values of x and q, the current imple-
mentation in R overflows. The same applies to the non-central chi-squared
distribution under some circumstances even though its code is a bit more ro-
bust. This might be a problem when the conditional density is used to evaluate
the likelihood on true data because we have mentioned that for a realistic set
of values of the triplet (θ, β, σ) and sampling rate ∆, we usually obtain that
the argument of the Bessel function gets larger (see Section 1.13.3). Hence a
remedy must be found in such cases. The following code calculates the expo-
nentially rescaled Bessel function using asymptotic expansion.3 (see [1])
expBes <- function(x,nu){
mu <- 4*nu^2
A1 <- 1

3 Thanks to Diethelm Wuertz for suggesting this approach.
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A2 <- A1 * (mu- 1) / (1 * (8*x))
A3 <- A2 * (mu- 9) / (2 * (8*x))
A4 <- A3 * (mu- 25) / (3 * (8*x))
A5 <- A4 * (mu- 49) / (4 * (8*x))
A6 <- A5 * (mu- 81) / (5 * (8*x))
A7 <- A6 * (mu -121) / (6 * (8*x))
1/sqrt(2*pi*x) * (A1 - A2 + A3 - A4 + A5 - A6 + A7)

}

The function expBes will be used internally in the sde package instead
of besselI for the evaluation of the conditional density on true data (the
likelihood of the process) for the reasons explained. This version of the ex-
ponentially rescaled Bessel function is even about ten times faster than the
implementation that uses the noncentral chi-squared distribution. Again for
reasons of potential numerical overflow, we show two versions of the code that
calculates the log-likelihood of a CIR process. If we proceed as in the previous
examples, we need `i(θ) in the form

`i(θ) = log c− (u+ v) +
q

2
log
(u
v

)
+ log Iq(2

√
uv).

If we use the exponentially rescaled Bessel function, what we have is

log
(
e−xIq(x)

)
= log Iq(x)− x,

and we are going to use this trick in the following code for the CIR.lik
function.
dcCIR <- function(x, t, x0 , theta , log = FALSE){

c <- 2*theta [2]/((1-exp(-theta [2]*t))*theta [3]^2)
ncp <- 2*c*x0*exp(-theta [2]*t)
df <- 4*theta [1]/theta [3]^2
u <- c*x0*exp(-theta [2]*t)
v <- c*x
q <- 2*theta [1]/theta [3]^2 -1
lik <- (log(c) - (u+v) + q/2 * log(v/u) + log(expBes( 2*sqrt(u*v), q))
+ 2*sqrt(u*v))

if(!log)
lik <- exp(lik)

lik
}

CIR.lik <- function(theta1 ,theta2 ,theta3) {
n <- length(X)
dt <- deltat(X)
-sum(dcCIR(x=X[2:n], t=dt , x0=X[1:(n-1)], theta=c(theta1 ,theta2 ,theta3),

log=TRUE))
}

Next comes the inefficient version of the same likelihood based on the
chi-squared distribution.
# inefficient version based on noncentral chi ^2 density
dcCIR2 <-function (x, t, x0 , theta , log = FALSE)
{

c <- 2*theta [2]/((1-exp(-theta [2]*t))*theta [3]^2)
ncp <- 2*c*x0*exp(-theta [2]*t)
df <- 4*theta [1]/theta [3]^2
lik <- (dchisq (2 * x * c, df = df , ncp = ncp , log = TRUE)
+ log(2*c))



3.1 Exact likelihood inference 121

if(!log)
lik <- exp(lik)

lik
}
CIR.lik2 <- function(theta1 ,theta2 ,theta3) {
n <- length(X)
dt <- deltat(X)
-sum(dcCIR2(x=X[2:n], t=dt, x0=X[1:(n-1)], theta=c(theta1 ,theta2 ,theta3),

log=TRUE))
}

The following example shows the difference in speed of the two methods,
provided that they work with almost the same numerical accuracy, although
the Bessel version might be more stable under some circumstances. The reader
might want to refer to the references [168], [182], [169] and [72] for extended
discussions on the topic.
> # ex3 .04.R
> set.seed (123)
> X <- sde.sim(X0=.1, model="CIR", theta=c(.2, 0.06, 0.15) ,
+ N=2500, delta =0.1)
> # ex3 .04.R
> system.time(L1 <-CIR.lik (.1 ,.1 ,.1))
[1] 0.006 0.006 0.013 0.000 0.000
> print(L1, digits =12)
[1] -2122.73613963
> system.time(L2 <- CIR.lik2 (.1 ,.1 ,.1))
[1] 0.160 0.003 0.192 0.000 0.000
> print(L2, digits =12)
[1] -2122.73612612

There might be cases in which one of the two ways of calculating the
conditional distribution does not work because the approximation tends to
explode. The following is an example in which the chi-square approximation
fails, but the contrary might be true as well for other sets of parameters.
> # ex3 .04.R (cont .)
> mle(CIR.lik , start=list(theta1 =.1, theta2 =.1, theta3 =.3),
+ method="L-BFGS -B",lower=c(0.001 ,0.001 ,0.001) , upper=c(1,1,1)) -> fit
> fit
Coefficients:

theta1 theta2 theta3
0.19490172 0.06096784 0.14848362
> mle(CIR.lik2 , start=list(theta1 =.1, theta2 =.1, theta3 =.3),
+ method="L-BFGS -B",lower=c(0.001 ,0.001 ,0.001) , upper=c(1,1,1)) -> fit
Error in optim(start , f, method = method , hessian = TRUE , ...) :

L-BFGS -B needs finite of 'fn'

The Cox-Ingersoll-Ross conditional density can also be approximated using
the Poisson mixing-Gamma characterization of a density (see, e.g., [68]),
which is an infinite sum of Gamma functions weighted by Poisson weights
(see, e.g., formula (9) in [233]). This is just the law of Feller’s Poisson-driven
Gamma process introduced in [84] with a fractional parameter. In [233], the
reader can find a simulation study for small samples concerning the use of
this approximation. Although this approximation appears to work well in the
presence of high volatility, the likelihood might easily diverge in other cases.
Other asymptotic expansions related to Bessel functions can be found in [178]
and [171].
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3.2 Pseudo-likelihood methods

Another way of obtaining estimators is to use some approximation scheme.
These approximation schemes do not approximate the transition density di-
rectly but the path of the process in such a way that the discretized version
of the process has a likelihood that is usable.

3.2.1 Euler method

Consider a process solution of the general stochastic differential equation

dXt = b(Xt, θ)dt+ σ(Xt, θ)dWt .

If the coefficients of the stochastic differential equation above are constant over
small intervals [t, t+∆t), then the Euler scheme produces the discretization

Xt+∆t −Xt = b(Xt, θ)∆t+ σ(Xt, θ)(Wt+∆t −Wt),

and the increments Xt+∆t −Xt are then independent Gaussian random vari-
ables with mean b(Xt, θ)∆t and variance σ2(Xt, θ)∆t. Therefore the transition
density of the process can be written as

pθ(t, y|x) =
1√

2πtσ2(x, θ)
exp

{
−1

2
(y − x− b(x, θ)t)2

tσ2(x, θ)

}
. (3.15)

This approximation is good if ∆t is very small; otherwise some bias is intro-
duced. Moreover, if the parameters in the vector θ are different for the drift
and the diffusion parts, some reasonable results can be obtained. So we assume
now that σ(x, θ) = σ > 0 is constant and that all the other parameters are in
the drift coefficient b(x, θ); i.e., σ is not one of the parameters in θ. We further
suppose that the discretization step is constant and that Assumptions 3.3 and
3.4 hold. Moreover, we need to control the growth of the drift coefficient as
follows,

Assumption 3.6 (Polynomial growth condition) There exist L > 0 and
m > 0 (independent of θ) such that |b(x, θ)| ≤ L(1 + |x|m), θ ∈ Θ.

Then the log-likelihood of the discretized process is

`n(θ) = −1
2

{
n∑

i=1

(Xi −Xi−1 − b(Xi−1, θ)∆)2

σ2∆
+ n log(2πσ2∆)

}
.

The equation above is also called the locally Gaussian approximation. Given
that σ2 is constant, the maximization of the log-likelihood is equivalent to the
maximization of the function

n∑
i=1

(Xi −Xi−1)b(Xi−1, θ)−
∆

2

n∑
i=1

b2(Xi−1, θ) . (3.16)
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Under the additional assumption n∆3
n → 0, the maximum likelihood estimator

built on the pseudo-likelihood above is consistent and asymptotically normal
[231]. In [231], the result is proved to hold for a diffusion coefficient that can
also depend on the space variable and for a multidimensional diffusion process.
In that case, a preliminary estimator of the diffusion coefficient is needed to
estimate θ further. When θ has been estimated, an update of the estimator
of the diffusion coefficient can be obtained. Further, [231] and [86] (for the
one-dimensional case) showed that a consistent estimator of σ2 is

σ̂2 =
1
n∆

n∑
i=1

(Xi −Xi−1)2. (3.17)

This algorithm is quite easy to implement. We start by writing the code for
the function (3.16) to be maximized.
dcEuler <- function(x, t, x0, theta , drift ){
dd <- drift(x0, theta)
(x-x0)*dd - 0.5*t*dd^2

}
Euler.lik <- function(theta ,beta){

n <- length(X)
dt <- deltat(X)
-sum(dcEuler(X[2:n], dt , X[1:(n-1)], c(theta ,beta), mydrift ))

}

Then we simulate a path for the Vasicek process with parameters (θ =
5, β = 3, σ = 2), we construct a drift function to pass as b in (3.16), and we
maximize Euler’s pseudo-likelihood with respect to θ and β and calculate the
estimator of σ2.
> # ex3 .05.R
> set.seed (123)
> X <- sde.sim(model="OU", theta =c(5,3,2), N=2500)
> mle(Euler.lik , start=list(theta1 =1.5, theta2 =1),
+ method="L-BFGS -B", lower=c(0,0)) -> fit
>
> summary(fit)
Maximum likelihood estimation
Coefficients:

Estimate Std. Error
theta1 16.47255 3.768991
theta2 8.59521 1.953179

-2 log L: -19.59694
> sqrt(mean((X[2: length(X)] - X[1:( length(X) -1)])^2)/deltat(X))
[1] 1.977273
>
> X <- sde.sim(model="OU", theta =c(5,3,2), delta =0.1, N=2500)
> mle(Euler.lik , start=list(theta1 =1.5, theta2 =1),
+ method="L-BFGS -B", lower=c(0,0)) -> fit
>
> summary(fit)
Maximum likelihood estimation
Coefficients:

Estimate Std. Error
theta1 4.440512 0.14397788
theta2 2.704831 0.07886108

-2 log L: -1176.404
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> sqrt(mean((X[2: length(X)] - X[1:( length(X) -1)])^2)/deltat(X))
[1] 1.865060

As can be seen, the impact of the ∆ is not negligible in the Euler ap-
proximation. We can now compare these estimates with the exact maximum
likelihood estimators optimizing the OU.lik true likelihood of Section 3.1.1
> # ex3 .05.R (cont .)
> mle(OU.lik , start=list(theta1 =1.5, theta2=1, theta3 =1),
+ method="L-BFGS -B", lower=c(0,0,0)) -> fit2
> summary(fit2)
Maximum likelihood estimation
Coefficients:

Estimate Std. Error
theta1 5.177466 0.33307169
theta2 3.153729 0.18748140
theta3 2.013842 0.03312004

-2 log L: 4091.324

from which it seems that the estimates are comparable. The higher variability
of the true maximum likelihood estimators is due to the fact that we jointly
estimate three parameters. The package sde implements the complete Euler
approximated likelihood as in Listing 3.1, which allows specification of both
drift and diffusion coefficients as functions of the initial point x0, time t0, and
parameter vector θ.

dcEuler <- function(x, t, x0 , t0 , theta , d, s, log=FALSE ){
dnorm(x, mean = x0 - d(t0 , x0 , theta)*t, sd= sqrt(t)*s(t0 ,x0 ,theta),

log=log)
}

Listing 3.1. Euler conditional likelihood.

The effect of ∆ on the Euler approximation

It is worth noting that this kind of approach must, in general, be used only as
a last resort method if ∆ does not shrink to zero. If ∆ is not small, the esti-
mates include bias even for the very simple Ornstein-Uhlenbeck model. Indeed,
consider the Vasicek process. For this model, both Euler’s pseudo transition
density and the true transition density are Gaussian. From equations (3.10)
and (3.11), we have that

m(∆,x) = xe−θ2∆ +
θ1
θ2

(
1− e−θ2∆

)
, v(∆,x) =

θ23
(
1− e−2θ2∆

)
2θ2

,

and for the Euler approximation we have

mEuler(∆,x) = x(1− θ2∆) + θ1∆ , vEuler(∆,x) = θ23∆ ,

but mEuler and vEuler coincide with the true values only if ∆ → 0. Another
example of inappropriate use of the Euler scheme is taken from [160]. Consider
the geometric Brownian motion
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dXt = θ1Xtdt+ θ2XtdWt .

We already know from Section 1.13.2 that this process has log-normal incre-
ments, but the Euler scheme assumes zero-mean Gaussian increments with
variance θ22∆. From the Euler discretization, it emerges that maximum likeli-
hood estimators of θ1 and θ2 are

θ̂1,n =
1
n∆

n∑
i=1

(
Xi

Xi−1
− 1
)
, θ̂22,n =

1
n∆

n∑
i=1

(
Xi

Xi−1
− 1− θ̂21,n∆

)2

.

For fixed and not negligible ∆, the following asymptotics are true as n→∞:

θ̂1,n
P→ 1
∆

(
eθ1∆ − 1

)
6= θ1, θ̂2,n

P→ 1
∆
e2θ1∆

(
eθ2

2∆ − 1
)
6= θ2.

So the estimators are not event consistent. One natural fix to this problem
is to modify the sampling scheme a bit so that ∆n also shrinks to 0, for ex-
ample, with n∆n = T fixed. Phillips [184] termed the limit of this sampling
scheme the “continuous data recording” to distinguish it from inference on
true “continuous-time observations.” In this case, the author proved consis-
tency for the estimator θ̂1,n and non consistency of θ̂2,n (see also [183]). In
the case above, other consistent estimators for θ1 exist when ∆ do not shrink;
for example (see again [160]),

θ̃1,n =
1
∆

log(1 + θ̂1,n), θ̃′1,n =
1
n∆

log(Xn/X0) +
1
2
θ̂22,n.

The considerations above are, for example, motivations for other refinements
in the sampling scheme like the one presented in Section 3.3.1.

3.2.2 Elerian method

Elerian [76] proposed to use the transition density derived from the Milstein
scheme (see Section 2.2)

Xt+dt = Xt + b(t,Xt)dt+ σ(t,Xt)(Wt+dt −Wt)

+
1
2
σ(t,Xt)σx(t,Xt)((Wt+dt −Wt)2 − dt) .

When the process has constant volatility or at least σx ' 0, the transition
density proposed by Elerian reduces to the transition density of the Euler
scheme in Section 3.2.1. Elerian transition density looks like the one presented
in the following result.

Fact 3.1 (Theorem 2.1 in [76]) Suppose that the usual conditions for the
existence of a unique solution of the stochastic differential equation dXt =
b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0, are satisfied. Introduce the notation
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Af(t, x) = σ(t, x)
∂

∂x
f(t, x)

and
b∗(t, x) = b(t, x)− 1

2
σ(t, x)σx(t, x) .

Suppose that the following set of additional conditions on the coefficients b
and σ hold true for all t, s in [0, T ] and all x in R:

|b∗(t, x)|+ |Ab(t, x)| ≤ K(1 + |x|), |σ(t, x)|+ |Aσ(t, x)| ≤ K(1 + |x|),

|A2σ(t, x)| ≤ K(1 + |x|),

and
|g(t, x)− g(s, x)| ≤ K(1 + |x|)|s− t| 12 , (3.18)

where condition (3.18) on the generic function g(·, ·) is assumed to hold for
b∗(·, ·), σ(·, ·), and Aσ(·, ·). In all the inequalities above, K is a (generic)
constant not dependent on the discretization step. Then, the transition density
of the Milstein scheme can be written as

pElerian(t, y|x) =
z−

1
2 cosh(

√
Cz)

|A|
√

2π
e−

C+z
2 ,

where

A =
σ(x)σx(x)t

2
, B = − σ(x)

2σx(x)
+ x+ b(x)t−A ,

z =
y −B

A
, C =

1
σ2

x(x)t
.

The approximation is valid if σx 6= 0 and z > 0.

For the implementation, it is usually better to use the exponential version
of cosh(x) = (ex + e−x)/2.

dcElerian <- function(x, t, x0 , t0 , theta , d, s, sx , log=FALSE){
A <- s(t0, x0, theta)*sx(t0, x0, theta)*t/2
B <- -s(t0 , x0 ,theta)/(2*sx(t0 , x0 ,theta )) + x0 + d(t0 , x0 , theta)*t - A
z <- (x-B)/A
C <- 1/((s(t0, x0,theta )^2)*t)
lik <- (exp(-(C+z)/2) *(exp(sqrt(C*z)) +
exp(-sqrt(C*z)))/(2 * sqrt(z) * abs(A) * sqrt(2*pi)))

if(log)
lik <- log(lik)

lik
}

Listing 3.2. Elerian conditional likelihood.

One thing worth mentioning is that this transition density is not Gaussian
or symmetric. Listing 3.2 implements this approximate conditional likelihood.
dcElerian needs as input three functions d, s, and sx (respectively b(t, x; θ),
σ(t, x; θ), and σx(t, x; θ)), and all must be functions of the initial point x
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and the parameter vector theta. Here and in the following, we explicitly
require d, s, etc., to be true R functions and not expressions and we further
require to specify all the derivatives. This is done to increase the speed of
execution of the code. In fact, if we use R expressions and further calculate
all the necessary partial derivatives as in sde.sim, the code will slow down
because this conditional density has to be called several times to obtain the
likelihood and then again for different values of the parameter theta during
the optimization step.

3.2.3 Local linearization methods

We saw in Section 2.11 that another approach to approximate the solution
of a stochastic differential equation is to use a local linearization method. We
discussed the Ozaki method for homogeneous stochastic differential equations
and the Shoji-Ozaki method for the non-homogeneous case. The functions
dcOzaki and dcShoji return the value of the transition density pθ(t0+t, x|x0).
Even if the Ozaki method is for a homogeneous diffusion process with constant
volatility,

dXt = b(Xt)dt+ σdWt,

the drift and diffusion coefficients must be specified as functions of t, x and
theta. We just recall that the transition density for the Ozaki method is
Gaussian with mean Ex and variance Vx as in equations (2.12) and (2.13)
respectively.

dcOzaki <- function(x, t, x0 , t0 , theta , d, dx , s, log=FALSE ){
Lx <- dx(t0 ,x0,theta)
Kx <- log(1+d(t0,x0 ,theta)*(exp(Lx*t)-1)/(x0*Lx))/t
Ex <- x0 + d(t0 ,x0,theta)/Lx*(exp(Lx*t)-1)
Vx <- s(t0,x0 ,theta )^2 * (exp(2*Kx*t) -1)/(2*Kx)
dnorm(x, mean=Ex , sd=sqrt(Vx),log=log)

}

Listing 3.3. Ozaki conditional likelihood.

For the Shoji-Ozaki method, the transition density is Gaussian with mean
Ex = A(x) and variance Vx = B(x), where A(x) and B(x) are defined in
(2.14) and (2.15), respectively. So both conditional likelihoods can be easily
implemented as in Listings 3.3 and 3.4.

dcShoji <- function(x, t, x0 , t0 , theta , d, dx , dxx , dt , s, log=FALSE){
Lx <- dx(t0 ,x0,theta)
Mx <- s(t0,x0 ,theta )^2 * dxx(t0 ,x0,theta)/2 + dt(t0 ,x0,theta)
Ex <- (x0 + d(t0,x0 ,theta)*(exp(Lx*t)-1)/Lx +

Mx*(exp(Lx*t) -1 -Lx*t)/Lx^2)
Vx <- s(t0,x0 ,theta )^2*(exp(2*Lx*t)-1)/(2*Lx)
dnorm(x, mean=Ex , sd=sqrt(Vx),log=log)

}

Listing 3.4. Shoji-Ozaki conditional likelihood.
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3.2.4 Comparison of pseudo-likelihoods

We have already mentioned that the Euler scheme and hence the Euler con-
ditional likelihood have good performance when the time interval ∆ is small
and the process is well-behaved. It is difficult to make a generic comparison
of these approximated likelihood methods without relying on some particu-
lar model. So, at present we are not trying to summarize the result but just
show an application of these methods to one sample path. The reader might
want to read the original papers of the authors who proposed the methods
to understand which case better fits his need. As a motivating example we,
consider the following Cox-Ingersoll-Ross process

dXt = (0.5− 0.2Xt)dt+
√

0.05XtdWt .

In the notation of Section 1.13.3, the true parameter is the vector (θ1, θ2, θ3) =
(0.5, 0.2,

√
0.05). We perform approximate maximum likelihood estimation us-

ing some of the methods introduced so far. We also compare the profile like-
lihoods for θ2 given the true values of θ1 and θ3 in order to show the speed
of convergence of the approximated likelihood to the true likelihood, which is
known for this model. For this model, we need to make explicit the quantities

b(t, x) = θ1 − θ2x, bx(t, x) = −θ2, bxx(t, x) = bt(t, x) = 0,

σ(x) = θ3
√
x, σx(x) =

θ3
2
√
x
, σxx(t, x) = − θ3

4x
3
2
.

To make use of the Ozaki and Shoji-Ozaki methods, we need to transform a
process into one with constant volatility using the transform

F (Xt) =
1
θ3

∫ Xt

0

1√
u

du =
2
√
Xt

θ3
, F−1(y) =

(
θ3y

2

)2

.

The transformed process Yt = F (Xt) satisfies a stochastic differential equation
with unitary diffusion coefficient and drift function bY defined as follows

bY (t, x) =
θ1 − θ2x

θ3
√
x

− θ3
4
√
x
.

We rewrite bY at point F−1(y) as

bY (t, F−1(y)) =
4θ1 − θ23

2θ23y
− θ2

2
y;

hence Yt is the solution of dYt = bY (t, F−1(Yt))dt+dWt with initial condition
Y0 = F (X0). We also need the first and second partial derivatives of bY with
respect to y,

∂

∂y
bY = −θ2

2
− 4 θ1 − θ23

2y2θ23
,

∂2

∂y2
bY =

4 θ1 − θ23
y3θ23

.
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The next code prepares the approximated likelihood functions, and in order
to compare them with the true likelihood of the process, we need to adjust
the Ozaki and Shoji-Ozaki likelihoods by the Jacobian of the transform; i.e.,
the transition density of Xt|Xs can be obtained from that of Yt = 2

√
Xt/θ3,

multiplying py by the Jacobian 1/(θ3
√
X) so

log pX(t, x|x0; θ) = log pY (t, F (x)|F (x0); θ)−
1
2

log(θ3
√
x).

# ex3 .06.R
require(sde)

d <- function(t,x,theta) theta [1]-theta [2] * x
dx <- function(t,x,theta) -theta [2]
dxx <- function(t,x,theta) 0
dt <- function(t,x,theta) 0
s <- function(t,x,theta) theta [3]*sqrt(x)
sx <- function(t,x,theta) theta [3]/(2*sqrt(x))
sxx <- function(t,x,theta) -theta [3]/(4*x^1.5)

d2 <- function(t,x,theta ){
(4*theta [1]- theta [3]^2)/(2*x*theta [3]^2) -theta [2]*x/2 }

d2x <- function(t,x,theta ){
-theta [2]/2 - (4*theta [1]- theta [3]^2)/(2*x^2*theta [3]^2)}

d2xx <- function(t,x,theta) (4*theta [1]- theta [3]^2)/(x^3*theta [3]^2)
d2t <- function(t,x,theta) 0
s2 <- function(t,x,theta) 1
s2x <- function(t,x,theta) 0
s2xx <- function(t,x,theta) 0

Euler.LIK <- function(theta) {
sum(dcEuler(X[2:n], t[2:n], X[1:(n-1)], t[1:(n-1)],

c(0.5, theta , sqrt (0.05)) , d,s, TRUE),na.rm=TRUE)
}

Elerian.LIK <- function(theta) {
sum(dcElerian(W[2:n], t[2:n], W[1:(n-1)], t[1:(n-1)],
c(0.5, theta , sqrt (0.05)) , d2, s2, s2x , TRUE)
-0.5*log(X[2:n]*0.05),na.rm=TRUE)

}

Ozaki.LIK <- function(theta) {
sum(dcOzaki(W[2:n], t[2:n], W[1:(n-1)], t[1:(n-1)],

c(0.5, theta , sqrt (0.05)) , d2, d2x , s2 , TRUE)
-0.5*log(X[2:n]*0.05),na.rm=TRUE)

}

Shoji.LIK <- function(theta) {
sum(dcShoji(W[2:n], t[2:n], W[1:(n-1)], t[1:(n-1)],
c(0.5, theta , sqrt (0.05)) , d2, d2x ,d2xx , d2t , s2 , TRUE)
-0.5*log(X[2:n]*0.05),na.rm=TRUE)

}

True.LIK <- function(theta) {
sum(dcCIR(X[2:n], deltat(X), X[1:(n-1)],
c(0.5, theta , sqrt (0.05)) , TRUE),na.rm=TRUE)

}

pTrue <- function(x) True.LIK(x)
pEuler <- function(x) Euler.LIK(x)
pElerian <- function(x) Elerian.LIK(x)
pOzaki <- function(x) Ozaki.LIK(x)
pShoji <- function(x) Shoji.LIK(x)
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Notice that in the code above, to make the Elerian method work in this
example, we used the transformed process. This implies that the Euler and
Elerian methods do not differ too much. The user might want to test the bad
performance in this example when the Elerian method is applied to the origi-
nal process. In general, this applies to several other methods and Durham and
Gallant [74] suggest that the Lamperti transform (1.34) always be applied to
the original process. This rule seems to be worth using in both simulation
and estimation applications. What follows now is the approximation experi-
ment. We simulate one long trajectory of the Cox-Ingersoll-Ross process with
parameters (θ1, θ2, θ3) = (0.5, 0.2,

√
0.05). More precisely, we set N equal to

500000 and ∆ = 0.001 and then resample the trajectory for different values
of ∆ to show the convergence of approximations to the true likelihood. To
resample the trajectory, we use the function window. We compare the true
likelihood against the Euler, Elerian, Ozaki and Shoji-Ozaki (just “Shoji” in
the plot and table) methods for fixed values of θ1 = 0.5 and θ3 =

√
0.05 as

a function of θ2. We also optimize these profile likelihoods as functions of θ2
because what really matters in practice is the behavior of the approximating
likelihoods in a neighborhood of the true value of the parameter. To optimize
the likelihoods, we use the function optimize directly instead of mle.
# ex3 .06.R (cont)
set.seed (123)
X1 <- sde.sim(model="CIR", theta=c(0.5, 0.2, sqrt (0.05)) ,
X0=2,delta =.001, N=500000)

xx <- seq (0.001 ,0.4 , length =50)

par(mfrow=c(2 ,2))
est <- NULL
for(dt in c(4, 2,1 ,.5)){
X <- window(X1 , deltat=dt)
W <- 2*sqrt(X)/sqrt (0.05)
t <- as.numeric(time(X))
n <- length(X)
cat(sprintf("number of observations: %d, Delta =%3.2f\n",n,dt))
dEuler <- sapply(xx , pEuler)
dTrue <- sapply(xx , pTrue)
dElerian <- sapply(xx, pElerian)
dOzaki <- sapply(xx , pOzaki)
dShoji <- sapply(xx , pShoji)

mx <- max(c(dTrue ,dEuler ,dShoji ,dOzaki ,dElerian ,na.rm=TRUE))
mn <- min(c(dTrue ,dEuler ,dShoji ,dOzaki ,dElerian ,na.rm=TRUE))

matplot(xx,cbind(dTrue ,dEuler ,dOzaki ,dShoji ,dElerian),type="l",
ylim=c(mn ,mx),xlab="",ylab="approx",
main=sprintf("N=%d, Delta =%3.2f",n,dt),lty=1:5,col =1:5)

legend (.15 ,0.6*(mx+mn), lty=1:5,col=1:5,
legend=c("True", "Euler", "Ozaki", "Shoji","Elerian"))

tmp <- c(n, dt, optimize(pTrue , c(0.01 ,.4) , max=T)$max ,
optimize(pEuler , c(0,.4),max=T)$max ,
optimize(pElerian , c(0,1),max=T)$max ,
optimize(pOzaki , c(0,.4),max=T)$max ,
optimize(pShoji , c(0,.4),max=T)$max)

est <- rbind(est , tmp)
}
dimnames(est )[[2]] <- c("N","Delta","True","Euler",
"Elerian", "Ozaki", "Shoji")
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dimnames(est )[[1]] <- 1:4
print(est)
par(mfrow=c(1 ,1))

The result of the approximation as a function of ∆ can be inspected graph-
ically in Figure 3.2, generated using the matplot command. Table 3.1 presents
different estimated values of θ2 for different values of∆ and for all the methods
considered.

Table 3.1. Different estimates of the parameter θ2 for a simulated path of the
Cox-Ingersoll-Ross model of parameters (θ1, θ2, θ3) = (0.5, 0.2,

√
0.05) and maxi-

mum likelihood estimates on the true likelihood (True) and several approximation
methods for different values of the discretization step ∆.

N ∆ True Euler Elerian Ozaki Shoji

126 4.0 0.2074 0.1944 0.1929 0.1954 0.1945
251 2.0 0.1931 0.1926 0.1916 0.1930 0.1925
501 1.0 0.1925 0.1926 0.1922 0.1929 0.1926

1001 0.5 0.1922 0.1922 0.1920 0.1924 0.1922

3.3 Approximated likelihood methods

In this section, we present methods that differ from the previous in that they
do not try to approximate the paths of a diffusion but instead provide direct
approximation of the likelihood.

3.3.1 Kessler method

Kessler [137] proposed to use a higher-order Itô-Taylor expansion to approx-
imate the mean and variance of the conditional density. We cannot go into
details, but roughly speaking the Itô-Taylor expansion is the expansion

Eθ(φ(Xi)|Fi−1) = φ(Xi−1) +∆nLθφ(Xi−1) +
1
2
∆2

nL2
θφ(Xi−1) + · · · , (3.19)

where Lθ is the infinitesimal generator of the diffusion and φ(x) the appropri-
ate function (see, e.g., [107]). This approximation is valid for n→∞, ∆n → 0,
n∆n → ∞ and n∆2

n → 0; i.e., under the so-called “rapidly increasing exper-
imental design” (see, e.g., [190]). Other additional hypotheses apart from
the one needed for ergodicity are that infx,θ σ

2(x, θ) > 0, the process Xt has
finite moments of all order, and the diffusion and drift coefficients and their
derivatives (up to order 2) in x are three times continuously differentiable in θ
and of polynomial growth. These assumptions, corresponding to Assumptions
3.1 to 3.5, can be found in detail in Section 2 of [137], and the main result
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Fig. 3.2. Different approximations of the true likelihood (black, solid line) for differ-
ent values of the discretization step ∆. For small values of ∆, most methods converge
to the true likelihood, and this example is no exception.
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on approximation is contained in Lemmas 1 and 2 of its Section 3. The final
approximation results in a conditional Gaussian density with parameters Ex

and Vx as follows:

Ex =x+ b(t, x)dt+
(
b(t, x)bx(t, x) +

1
2
σ2(t, x)bxx(t, x)

)
(dt)2

2
,

Vx =x2 +
(
2b(t, x)x+ σ2(t, x)

)
dt+

{
2b(t, x)(bx(x)x+ b(t, x)

+ σ(t, x)σx(t, x)) + σ2(t, x)(bxx(t, x)x+ 2bx(t, x) + σ2
x(t, x)

+ σ(t, x)σxx(t, x))
}

(dt)2

2
− E2

x .

For some trajectories, Vx might be negative for some values of θ or x, and
hence we return NA in our code of Listing 3.5.
dcKessler <- function(x, t, x0 , t0 , theta , d, dx , dxx , s, sx , sxx ,

log=FALSE ){
Ex <- (x0 + d(t0,x0 ,theta)*t + (d(t0,x0 ,theta)*dx(t0,x0 ,theta )+

(s(t0 ,x0 ,theta )^2 * dxx(t0 ,x0 ,theta))/2)*(t^2)/2)
Vx <- (x0^2 +(2*d(t0,x0 ,theta)*x0 + s(t0,x0 ,theta )^2)*t +
(2*d(t0 ,x0,theta)*(dx(t0,x0 ,theta)*x0+d(t0,x0 ,theta )+
s(t0 ,x0,theta)*sx(t0 ,x0,theta ))+ s(t0 ,x0,theta )^2*(dxx(t0 ,x0,theta)*x0
+ 2*dx(t0,x0 ,theta) + sx(t0 ,x0,theta )^2 +
s(t0 ,x0,theta)*sxx(t0,x0 ,theta )))*(t^2)/2 - Ex)

if(Vx < 0) return(NA)
dnorm(x, mean = Ex , sd=sqrt(Vx),log=log)

}

Listing 3.5. Kessler conditional likelihood.

In the framework consider by Kessler, the following result holds for the
maximum likelihood estimator.

Fact 3.2 (Theorem 1 in [137]) Suppose hypotheses A1 to A4 and A5[2]
in [137] are satisfied. If θ = (θ1, θ2) ∈ Θ, Θ a compact subset of R2,
b(x, θ) = b(x, θ1), and σ(x, θ) = σ(x, θ2), then the maximum likelihood esti-
mators obtained on the conditional likelihood above are consistent and asymp-
totically normal; i.e.,(√

n∆n(θ̂1,n − θ1,0)√
n(θ̂2,n − θ2,0)

)
d→ N (0,K0)

with

K0 =


(∫ (∂θ1b(x,θ1,0)

σ(x,θ2,0)

)2

π0(dx)
)−1

0

0 2
(∫ (∂θ2σ(x,θ2,0)

σ2(x,θ2,0)

)2

π0(dx)
)−1

 ,
where θ1,0 and θ2,0 are the true values of the parameter and π0(·) is the density
with respect to the Lebesgue measure of the invariant density of the diffusion
process.
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To ease the notation, we denoted by ∂θ the partial derivatives of the coef-
ficients b and σ with respect to the parameters of interest. The nice feature of
this method is that it is possible to obtain approximated confidence intervals
for the estimates of the parameters thanks to the distributional results above.
Of course, the K0 above depends on the invariant density π0(·) and the eval-
uation of the integrals. For some processes, this can be explicitly calculated;
otherwise numerical integration is required using the fact that the invariant
density π0(·) is an explicit function of the drift and diffusion coefficients, as
formula (3.2) shows. We leave this “ad hoc” analysis to the reader, but for
rough numerical approximated confidence intervals one can rely on the usual
mle output given that asymptotic normality is provided by the result above.

3.3.2 Simulated likelihood method

The simulated likelihood method was proposed independently by Pedersen
[180] and Santa-Clara [200]. The idea is relatively simple but smart. Let
pθ(∆, y|x) be the true transition density of Xt+∆ at point y given Xt = x.
When the time step ∆ is too large, we have seen that the Euler approxima-
tion usually gives a poor estimate of pθ(∆, y|x). The idea is then to consider
a smaller δ << ∆, for example δ = ∆/N for N large enough, and then use
the Chapman-Kolmogorov equation as follows:

pθ(∆, y|x) =
∫
pθ(δ, y|z)pθ(∆− δ, z|x)dz = Ez{pθ(δ, y|z)|∆− δ} ,

which means that pθ(∆, y|x) is seen as the expected value over all possible
transitions of the process from time t+ (∆− δ) to t+∆, taking into account
that the process was in x at time t. To realize this program, it is necessary
to simulate trajectories of the process X from t to t + (∆ − δ) using the
Euler scheme, which is assumed to be valid because δ has been chosen small
enough. If the Euler scheme is involved, then pθ(∆− δ, z|x) is nothing but the
Euler transition density, which is Gaussian. So it is necessary to simulate M
trajectories of the process in order to estimate pθ(∆, y|x) by the Monte Carlo
method. Let φθ(δ, y|z) be the Euler transition density of equation (3.15). To
calculate an estimate of pθ(∆, y|x), we need to simulateM trajectories starting
at X0 = x using Euler method with time step δ up to time ∆− δ. We denote
the last value of the mth trajectory as zm, m = 1, . . . ,M . Finally, we obtain
the Monte Carlo estimate as

p̂
(N,M)
θ (∆,Xt+∆|x) =

1
M

M∑
i=1

φθ(δ,Xt+∆|zi).

In principle, by increasing the number of simulated trajectories M , one can
obtain any degree of accuracy in the estimation provided that the process is
regular enough and δ is also small enough so that all the conditions for the
Euler approximation are satisfied. In [180], it was proved that
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p̂
(N,M)
θ (∆,Xt+∆|x) → pθ(∆,Xt+∆|x) for N →∞,M →∞.

In [112], it is possible to find some comments on the performance of this
method as a function of N and M . Usually, a large number of simulations M
are needed, and N may vary from 5 to 10 for reasonable estimates. A typical
variance reduction technique can be used here to reduce the computational
burden. Indeed, in generating the M trajectories, once the Gaussian pseudo
random numbers are generated, the same sequence can be used after a sign
change to generate a symmetric trajectory (we discussed this approach in
Section 1.4.3). Calculating the approximation of the whole likelihood is a
really intensive computational task because for each couple of observations
M trajectories of length N are needed. If this approximation has to be used
as a function of the parameters θ in order to get maximum likelihood estimates
of the parameters, this task may require a huge amount of time. A discussion
about an efficient approach to simulated maximum likelihood estimation can
be found in [74] and in many recent papers on the subject. In Listing 3.6, we
present the very basic implementation in R via the function dcSim. The sde
package contains a function with the same name written in C in order to give
reasonable computational times.

dcSim <- function(x0 ,x, t, d, s, theta , M=10000 , N=5){
delta <- t/N
N <- N-1
x1 <- numeric(N)
x2 <- numeric(N)
w <- numeric(M)
for(j in seq(1,M,by=2)){
z <- rnorm(N-1)
x1[1] <- x0
x2[1] <- x0
for(i in 2:N){
x1[i] <- x1[i-1] + d(0,x1[i-1],theta)*delta +

s(0, x1[i-1], theta)*sqrt(delta)*z[i-1]
x2[i] <- x2[i-1] + d(0,x2[i-1],theta)*delta -

s(0, x2[i-1], theta)*sqrt(delta)*z[i-1]
}

w[j] <- x1[N]
w[j+1] <- x2[N]

}
mean(dcEuler(x,delta ,w,0,theta ,drift ,sigma), na.rm=TRUE)

}

Listing 3.6. Simulated conditional likelihood.

The next example and Figure 3.3 show that the approximation of the
likelihood depends heavily on the number of subintervals N . The next code
calculates the conditional density by simulation for the Cox-Ingersoll-Ross
model dXt = θ1(θ2 − x)dt+ θ3

√
XtdWt with θ = (2, 0.02, 0.15). We know the

target conditional density, which we generate using the function dcCIR.4 This
density is highly skewed, so it is a good target to check against.
> # ex3 .07.R

4 Recall the different parametrization of the CIR model in the function dcCIR.
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Fig. 3.3. Simulated conditional density pθ(∆ = 0.5, y|x = 0.8) for the Cox-Ingersoll-
Ross model. As the number of subintervals N increases from 2 to 10, the approxi-
mation gets better (M = 50000). The true conditional density is marked as a solid
line and the approximation for N = 10 with dots.

> d1 <- function(t,x,theta) theta [1]*(theta[2]-x)
> s1 <- function(t,x,theta) theta [3]*sqrt(x)
> from <- 0.08
> x <- seq(0,0.2, length =100)
> sle10 <- NULL
> sle2 <- NULL
> sle5 <- NULL
> true <- NULL
> set.seed (123)
> for(to in x){
+ sle2 <- c(sle2 , dcSim(from , to , 0.5, d1 , s1 , theta=c(2 ,0.02 ,0.15) ,
+ M=50000 ,N=2))
+ sle5 <- c(sle5 , dcSim(from , to , 0.5, d1 , s1 , theta=c(2 ,0.02 ,0.15) ,
+ M=50000 ,N=5))
+ sle10 <- c(sle10 , dcSim(from , to , 0.5, d1 , s1 , theta=c(2 ,0.02 ,0.15) ,
+ M=50000 ,N=10))
+ true <- c(true , dcCIR(to , 0.5, from , c(2*0.02 ,2 ,0.15)))
+ }
> par(mar=c(5,5,1,1))
> plot(x, true , type="l", ylab="conditional density")
> lines(x, sle2 , lty =4)
> lines(x, sle5 , lty =2)
> lines(x, sle10 , lty=3)
> legend (0.15,20 , legend=c("exact","N=2", "N=5", "N=10"), lty=c(1,2,4,3))
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Fig. 3.4. Exact, Euler (dashed line), and simulated (dotted line) likelihoods of
simulated data from an Ornstein-Uhlenbeck process. In this case, M = 10000 and
N = 5.

To compute the whole log-likelihood, the package sde provides a function
called SIMloglik. This function has a simple interface that requires the data,
the vector or parameters, the drift and diffusion coefficients, and then the pa-
rameters M and N as in the dcSim function. We compare the exact likelihood,
the Euler likelihood, and the simulated likelihood in the next code. Figure 3.4
shows the actual performance.
> # ex3 .08.R
> set.seed (123)
> d <- expression (-1*x)
> s <- expression (2)
> sde.sim(drift=d, sigma=s,N=50, delta =0.01) -> X
> S <- function(t, x, theta) sqrt(theta [2])
> B <- function(t, x, theta) -theta [1]*x
>
> true.loglik <- function(theta) {
+ DELTA <- deltat(X)
+ lik <- 0
+ for(i in 2: length(X))
+ lik <- lik + dnorm(X[i], mean=X[i-1]*exp(-theta [1]*DELTA),
+ sd = sqrt((1-exp(-2*theta [1]*DELTA))*theta [2]/(2*theta [1])), TRUE)
+ lik
+ }
>
> xx <- seq(-10,10, length =20)
> sapply(xx , function(x) true.loglik(c(x ,4))) -> py
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> sapply(xx , function(x) EULERloglik(X,c(x,4),B,S)) -> pz
> sapply(xx , function(x) SIMloglik(X,c(x,4),B,S,M=10000 ,N=5)) -> pw
> par(mar=c(5,5,1,1))
> plot(xx ,py, type="l", xlab=expression(beta), ylab="log -likelihood")
> lines(xx, pz, lty=2)
> lines(xx, pw, lty=3)

As mentioned, this method is computationally demanding and, if possible,
other approaches are preferable to perform likelihood inference for discrete
diffusions. To conclude, we mention that a relevant variant of this method
is the importance sampler, which is well-described in [74]. Further, links be-
tween MCMC analysis and simulated likelihood methods can be found in [78].
Finally, another importance sampler based on the exact algorithm of Section
2.12 can be found in [27] and [29]. We do not discuss these approaches here.

3.3.3 Hermite polynomials expansion of the likelihood

Another way of approximating the transition density of a diffusion is to expand
it in a way similar to the i.i.d. case. The analogy is the following (see [6]).
Consider a standardized sum of random variables to which the central limit
theorem (CLT) applies. For large sample sizes n, by the CLT one can use the
limiting distribution N(0, 1), but if the sample size is not large, one should
expand the limiting distribution (for example, by Edgeworth expansion) to
increase the accuracy of the approximation. The idea proposed by Aı̈t-Sahalia
(see [8] and [6]) is to use such an approach to approximate the unknown
transition density of a diffusion and treat the asymptotics as ∆→ 0 in parallel
to the one as n→∞ in the i.i.d. case.

The standard method in the i.i.d. case was originally introduced by Cramér
[60]. Let p(z) be the target density to expand around the standard normal
N(0, 1). With this method, the expansion converges rapidly when the target
density is almost normal or, more precisely, when its tails are sufficiently
thin in the sense that exp(z2/2)p′(z)2 must be integrable. In some cases,
as in many diffusion models in finance, the Gaussian assumption is not an
option. For example, if the process X is a geometric Brownian motion (see
Section 1.7), the right tail of the corresponding log-normal density p(z) is
too large to converge, as it is of order z−1 exp(− log2(z)) as z → +∞ (see,
e.g., [6]). Furthermore, for any N(0, ν) with ν > 2, the expansion diverges. In
his papers [8] and [6], Aı̈t-Sahalia proposed to proceed differently: instead of
attempting a direct expansion on p(z), the density is first transformed into
something that is close to the normal and then this transformed density is
expanded using Hermite polynomials. To this end, the original process X is
first transformed into another process, whose transition density is as expected.
We now present here the Aı̈t-Sahalia method. A simple exposition can be
found in [188], but the reader should refer to the original papers [8] and [6]
for more detailed analysis. Given that Hermite polynomials are needed in this
setup, we introduce them here.
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Hermite polynomials

Hermite polynomials Hj(z) are defined as

Hj(z) = e
z2
2

dj

dzj
e−

z2
2 , j ≥ 0 . (3.20)

This is not the “usual” definition of Hermite polynomials. Indeed, they are
usually defined (see, e.g., [1], Chapter 22) as

Hprob
j (z) = (−1)ne

z2
2

dj

dzj
e−

z2
2 , j ≥ 0 ,

in probability or as

Hphys
j (z) = (−1)nez2 dj

dzj
e−z2

, j ≥ 0 ,

in physics, and Hphys
j (z) =

√
2jHprob

j (
√

2z). Of course, Hprob
j (z) is preferred

in probability because it can be expressed in terms of the density function
φ(z) = e−z2/2/

√
2π of the standard Gaussian law. Definition (3.20) is more

convenient for the development we are about to introduce because it simplifies
the notation.

To make the method quite general and useful in financial applications, Aı̈t-
Sahalia introduces different sets of conditions on the coefficients b and σ of the
stochastic differential equations. In particular, growth conditions at infinity
are replaced by assumptions on the sign of the drift near the boundaries.
Furthermore, the class of processes is not restricted to stationary diffusions
only. Let DX be the domain of the diffusion X. The following two cases are
considered: DX = (−∞,+∞) and DX = (0,+∞). This second case is relevant
in financial market models of interest rates or asset prices, where usually b
and/or σ violate the linear growth condition near the boundaries or σ is
defined in such a way that limx→0+ σ(x, θ) = 0.

Assumption 3.7 (Smoothness of the coefficients) The functions b(x, θ)
and σ(x, θ) are infinitely differentiable in x and three times continuously dif-
ferentiable in θ for all x ∈ DX and θ ∈ Θ.

Assumption 3.8 (Nondegeneracy) Two cases may happen:

1. If DX = (−∞,+∞), then ∃ c : σ(x, θ) > c > 0 for all x ∈ DX and θ ∈ Θ.
2. If DX = (0,+∞), then σ(x, θ) is nondegenerate in DX ; i.e., for each

ξ > 0, ∃ cξ : σ(x, θ) ≥ cξ > 0 for all x ∈ [ξ,+∞] and θ ∈ Θ. If in addition
limx→0+ σ(x, θ) = 0, then ∃ ξ0 > 0, ω > 0, ρ ≥ 0 : σ(x, θ) ≥ ωxρ for all
0 < x ≤ ξ0 and θ ∈ Θ.

The first step consists in transforming the original process X into a new
one Y = F (X), where Y satisfies
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dYt = µY (Yt, θ)dt+ dWt. (3.21)

We have already encountered the Lamperti transform

F (γ) =
∫ γ du

σ(u, θ)
,

in Section 2.12 (recall that the constant of integration is irrelevant). Moreover,
under Assumption 3.8, σ > 0 on DX , and then F is an increasing function
and invertible for all θ ∈ Θ. By the Itô formula, we obtain

µY (y, θ) =
b(F−1(y), θ)
σ(F−1(y), θ)

− 1
2
σx(F−1(y), θ) . (3.22)

If DX = (x, x̄), then F maps it to DY = (y, ȳ), where y = limx→x+ F (x) and
ȳ = limx→x̄− F (x). To keep the notation simple, the parameter space Θ is
chosen in such a way that DY is independent of θ ∈ Θ.

The next hypothesis is crucial to control the behavior of the transformed
(and original) diffusion near the boundaries. It is rather technical in its aspect
and hence before stating it we explain its intuitive meaning. This assumption
is formulated in terms of the coefficient µY of Y but clearly it also forces
conditions on the original coefficients b and σ of X. Assumption 3.9 restricts
the growth of µY to be at most linear near the boundary of DY when it has
the wrong sign (i.e., positive sign near ȳ and negative sign near y). If µY has
the right sign near the boundaries, mean reversion occurs and the diffusion is
pulled back away from the boundaries. Under this hypothesis, the diffusion Y
cannot explode to +∞ in a finite time, but in some cases the boundary 0 is
attainable. We denote by TY = inf{t ≥ 0 : Tt 6∈ DY } the first exit time of Y
from DY .

Assumption 3.9 (Boundary behavior) For all θ ∈ Θ, µY and its deriva-
tives with respect to y and θ have at most polynomial growth near the
boundaries and limy→y+ or ȳ− λY (y, θ) < +∞ with λY (y, θ) = −(µ2

Y (y, θ) +
∂µY (y, θ)/∂y)/2.

1. Left boundary: If y = 0, then ∃ ε0, κ, α : ∀ 0 < y ≤ ε0 and θ ∈
Θ,µY (y, θ) ≥ κy−α, where either α > 1 and κ > 0 or α = 1 and κ ≥ 1. If
y = −∞, then ∃E0 > 0,K > 0 : ∀ y ≤ −E0 and θ ∈ Θ,µY (y, θ) ≥ Ky.

2. Right boundary: If ȳ = +∞, then ∃E0 > 0,K > 0 : ∀ y ≥ E0 and
θ ∈ Θ,µY (y, θ) ≤ Ky. If ȳ = 0, then ∃ ε0, κ, α : ∀ 0 > y ≥ −ε0 and
θ ∈ Θ,µY (y, θ) ≤ −κ|y|−α, where either α > 1 and κ > 0 or α = 1 and
κ ≥ 1/2.

The next result from [6] summarizes the intuition above.

Fact 3.3 (Proposition 1 in [6]) Under Assumptions 3.7, 3.8, and 3.9, the
stochastic differential equation (3.21) admits a weak solution {Yt : t ≥ 0},
unique in probability law, for every distribution of its initial value Y0. The
boundaries of DY are unattainable in the sense that P (TY = +∞) = 1.
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Finally, we have the following.

Fact 3.4 (Proposition 2 in [6]) Under Assumptions 3.7, 3.8, and 3.9, Y
admits a transition density pY (∆, y|y0, θ) that is continuously differentiable
in ∆ > 0, infinitely differentiable in y ∈ DY and y0 ∈ DY , and three times
continuously differentiable in θ ∈ Θ.

Proposition 2 in [6] also ensures the good behavior of pY and its first
derivative with respect to y so that the forthcoming expansion of pY converges.
Moreover, as a corollary, the same result holds for the process X. Still, one
further step is necessary to make pY more suitable for the Hermite expansion:
for a given ∆ > 0, θ ∈ Θ, and y ∈ R, we introduce the pseudo-normalized
increment of Y as

Z = ∆−1/2(Y − y0) .

Let pY (∆, y|y0, θ) denote the transition density of Yt+∆|Yt = y0 and define
the density function of Z as

pZ(∆, z|y0, θ) = ∆1/2pY (∆,∆1/2z + y0|y0, θ) . (3.23)

Then
pY (∆, y|y0, θ) = ∆−1/2pZ(∆,∆−1/2(y − y0)|y0, θ) (3.24)

and
pX(∆,x|x0, θ) = σ(x, θ)−1pY (∆,F (x)|F (x0), θ) . (3.25)

The subsequent step consists in the approximation of the transition density
for the process Zt. This approximation is based on the Hermite expansion of
pZ(∆, z|y0, θ) for fixed ∆, y0, and θ,

p
(J)
Z (∆, z|y0, θ) = φ(z)

J∑
j=0

η
(j)
Z (∆, z|y0, θ)Hj(z) . (3.26)

The coefficients η(j)
Z are defined as5

η
(j)
Z (∆|y0, θ) =

1
j!

∫ +∞

−∞
Hj(z)pZ(∆, z|y0, θ)dz (3.27)

and can be expressed in terms of the moments of the diffusion, as will be
shown later on. As in (3.24) and (3.25), we can define p(J)

Y from p
(J)
Z and p(J)

X

from p
(J)
Y as

p
(J)
Y (∆, y|y0, θ) = ∆−1/2p

(J)
Z (∆,∆−1/2(y − y0)|y0, θ) (3.28)

and
p
(J)
X (∆,x|x0, θ) = σ(x, θ)−1p

(J)
Y (∆,F (x)|F (x0), θ) . (3.29)

The next result proves that the expansion (3.29) converges to (3.25) uniformly
as J →∞.
5 Given that Hj(z)/

√
j! are orthonormal in L2(φ).
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Fact 3.5 (Theorem 1 in [6]) Under Assumptions 3.7, 3.8, and 3.9, there
exists ∆̄ > 0 such that, for every ∆ ∈ (0, ∆̄), θ ∈ Θ, and (x, x0) ∈ D2

X , as
J →∞,

p
(J)
X (∆,x|x0, θ) −→ pX(∆,x|x0, θ). (3.30)

In addition, the convergence is uniform in θ and x0 over compact subsets of
DX . If σ(x, θ) > c > 0 on DX , then the convergence is uniform in x on
all DX . If DX = (0,+∞) and limx→0+ σ(x, θ) = 0, then the convergence is
uniform in x in each interval of the form [ε,+∞), ε > 0.

Two more points still remain open: Could we actually calculate the η(j)
Z ?

And, given the approximated sequence of p(J)
X ’s, does the maximum likelihood

estimator, say θ̂(J), possess good properties, and how is it related to the
nonexplicitly calculable true maximum likelihood estimator of θ?

Explicit expression of the approximation

In the very beginning of this section, we mentioned that this expansion is
based on the moments of the process. To be more precise, the coefficients η(J)

Z

can be expressed in terms of the moments of the conditional distribution of
the process by using (3.27) and (3.24); i.e.,

η
(j)
Z (∆|y0, θ) =

1
j!

∫ +∞

−∞
Hj(z)pZ(∆, z|y0, θ)dz

=
1
j!

∫ +∞

−∞
Hj(∆−1/2(y − y0))pY (∆, y|y0, θ)dy

=
1
j!

Eθ

(
Hj(∆−1/2(Yt+∆ − y0))|Yt = y0

)
.

(3.31)

But, for a smooth function g, Aı̈t-Sahalia proved the Taylor expansion

Eθ (g(Yt+∆)|Yt = y0) =
n∑

i=1

(Li
θg)(y0)

∆i

i!
+ remainder,

where Lθ is the infinitesimal generator of the diffusion Y (see, e.g., (3.3)) and
(Lθg) looks like

(Lθg)(y0) = µY (y0, θ)g′(y0) +
1
2
g′′(y0)

because Y has a unit diffusion coefficient. The notation (Li
θg) means that the

generator is applied recursively i times (e.g., L0
θg = g, L1

θg = µY g
′ + 1

2g
′′,

L2
θg = µY µ

′
Y g

′+µ2
Y g

′′+µY g
(3) + 1

2µ
′′
Y g

′+µ′Y g
′′+ 1

4g
(4), etc.) and g(k) means

the kth derivative of g. The remainder in the Taylor expansion above vanishes
as n increases if g is regular (for example if g has at most exponential growth).
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Aı̈t-Sahalia’s idea is to first fix J and then choose Hj as g and fix n in such
a way that the Taylor expansion has terms up to the order of at most ∆J/2.
Usually (see [126] and [6]) a number of Hermite polynomials up to J = 6
is enough because this method converges quite fast. Numerical experiments
in [126] provide evidence of a very accurate approximation of the likelihood
also for J = 3, at least in the cases of the Vasicek, CIR, and Black-Scholes
processes. Hence we will adopt the value of J = 6 in the following and in
the implementation. This implies also that up to six derivatives of the drift
function µY must be calculated or passed to the R function. What follows
is now the explicit expression of the Taylor approximations of the η

(j)
Z we

will use in the implementation. Apart from η
(0)
Z = 1, these are quite lengthy

expression but still in closed form [126].

η
(1)
Z = − µY ∆

1/2 − (2µY µ
′
Y + µ′′Y )∆3/2/4

− (4µY (µ′Y )2 + 4µ2
Y µ

′′
Y + 6µ′Y µ

′′
Y + 4µY µ

(3)
Y + µ

(4)
Y )∆5/2/24,

η
(2)
Z = (µ2

Y + µ′Y )∆/2 + (6µ2
Y µ

′
Y + 4(µ′Y )2 + 7µY µ

′′
Y + 2µ(3)

Y )∆2/12

+ (28µ2
Y (µ′)2 + 28µ2

Y µ
(3)
Y + 16(µ′Y )3 + 16µ3

Y µ
′′
Y + 88µY µ

′
Y µ

′′
Y

+ 21(µ′′Y )2 + 32µ′Y µ
(3)
Y + 16µY µ

(4)
Y + 3µ(5)

Y )∆3/96,

η
(3)
Z = − (µ3

Y + 3µY µ
′
Y + µ′′Y )∆3/2/6− (12µ3

Y µ
′
Y + 28µY (µ′Y )2

+ 22µ2
Y µ

′′
Y + 24µ′Y µ

′′
Y + 14µY µ

(3)
Y + 3µ(4)

Y )∆5/2/48,

η
(4)
Z = (µ4

Y + 6µ2
Y µ

′
Y + 3(µ′Y )2 + 4µY µ

′′
Y + µ

(3)
Y )∆2/24

+ (20µ4
Y µ

′
Y + 50µ3

Y µ
′′
Y + 100µ2

Y (µ′Y )2 + 50µ2
Y µ

(3)
Y + 23µY µ

(4)
Y

+ 180µY µ
′
Y µ

′′
Y + 40(µ′Y )3 + 34(µ′′Y )2 + 52µ′Y µ

(3)
Y + 4µ(5)

Y )∆3/240,

η
(5)
Z = − (µ5

Y + 10µ3
Y µ

′
Y + 15µY (µ′Y )2 + 10µ2

Y µ
′′
Y

+ 10µ′Y µ
′′
Y + 5µY µ

(3)
Y + µ

(4)
Y )∆5/2/120,

η
(6)
Z = (µ6

Y + 15µ4
Y µ

′
Y + 15(µ′Y )3 + 20µ3

Y µ
′′
Y + 15µY µ

(3)
Y + 45µ2

Y (µ′Y )2

+ 10(µ′′Y )2 + 15µ2
Y µ

(3)
Y + 60µY µ

′
Y µ

′′
Y + 6µY µ

(4)
Y + µ

(5)
Y )∆3/720.

We need to specialize the Hermite polynomials to the case j = 0, 1, . . . , 6 as
well: H0(z) = 1, H1(z) = −z, H2(z) = −1 + z2, H3(z) = 3z − z3, H4(z) =
3− 6z2 + z4, H5(z) = −15z + 10z3 − z5, H6(z) = −15 + 45z2 − 15z4 + z6.
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Implementation of the Hermite polynomial expansion approximation

To implement this scheme in our setup we need to isolate all the quantities in a
more convenient way. So, given our discrete observations X0, X1, . . . , Xi, from
the process X we are interested in writing down the approximation of p(J)

X in
terms of ∆, Xi, Xi−1, and θ; i.e., pX(∆,Xi|Xi−1, θ). To get a notation consis-
tent with the previous sections, we set p̃θ(∆,Xi, Xi−1) = pX(∆,Xi|Xi−1, θ).
Making use of (3.29), we can write it as

p̃θ(∆,Xi, Xi−1) =
∆−1/2

σ(Xi, θ)
p
(J)
Z (∆,∆−1/2(F (Xi)− F (Xi−1))|F (Xi−1), θ),

and the whole approximated likelihood will look like the product of i of the
approximation above. Recall further that p(J)

Z is based on the η(j)
Z ’s, which

in turn require the calculation of the drift of the transformed process µY

and its derivatives up to order 6. Finally, µY (see (3.22)) depends on the
drift and diffusion coefficients of X but also on the inverse function of F . In
principle, to implement this algorithm, we need at least the Xi’s, b, and σ,
and then F , F−1, and the η(j)

Z ’s can be calculated using R code. In practice,
such an algorithm will imply too much R code just to build all the quantities.
Numerical derivatives of these quantities will also be too inefficient from the
point of view of speed and accuracy, and thus we assume for simplicity that
F , µY , and all its derivatives µ(k), k = 1, . . . , 6 are passed in explicit form to
the code as a list of functions. Further, although an implementation in pure R
code is straightforward, we prefer to go directly to the C level to obtain a faster
algorithm. The function HPloglik in Listing 3.7 accepts as input a ts object
X, a vector of parameters theta, a list M containing µY and µ(k), k = 1, . . . , 6,
the transform function F, and the diffusion coefficient s. By default, it returns
the log-likelihood. To obtain the one-step conditional density, it is sufficient to
pass it (e.g., the vector X[1,2]). All the functions are assumed to have three
arguments t, x, and theta, in this order, where t and x are real numbers and
theta a vector. The next section shows an application of this function.

HPloglik <- function (X, theta , M, F, s, log = TRUE)

Listing 3.7. Aı̈t-Sahalia’s Hermite polynomial approximation of the likelihood.

Seeing the quality of the approximation

We now show a concrete application of this method. We consider the Ornstein-
Uhlenbeck process dXt = −βXtdt + σdWt, where θ = (β, σ2) and DX =
(−∞,+∞). For this process we know that the transition density from Xt to
Xt+∆ is the Gaussian law with mean Xte

−2β∆ and variance (1−e−2β∆)σ2/2β.
For this simple case F (x) = x/σ and µY (y, θ) = −βy. The next code sets up
the parameters for the HPloglik function and generates a trajectory of the
process.
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> # ex3 .09.R
>
> set.seed (123)
> d <- expression (-1*x)
> s <- expression (2)
> sde.sim(drift=d, sigma=s) -> X
sigma.x not provided , attempting symbolic derivation.
>
> M0 <- function(t, x, theta) -theta [1]*x
> M1 <- function(t, x, theta) -theta [1]
> M2 <- function(t, x, theta) 0
> M3 <- function(t, x, theta) 0
> M4 <- function(t, x, theta) 0
> M5 <- function(t, x, theta) 0
> M6 <- function(t, x, theta) 0
> mu <- list(M0 , M1 , M2 , M3 , M4 , M5 , M6)
>
> F <- function(t, x, theta) x/sqrt(theta [2])
> S <- function(t, x, theta) sqrt(theta [2])
> B <- function(t, x, theta) -theta [1]*x
>
> true.loglik <- function(theta) {
+ DELTA <- deltat(X)
+ lik <- 0
+ for(i in 2: length(X))
+ lik <- lik + dnorm(X[i], mean=X[i-1]*exp(-theta [1]*DELTA),
+ sd = sqrt((1-exp(-2*theta [1]*DELTA))*theta [2]/(2*theta [1])), TRUE)
+ lik
+ }

Then the true, the Euler, and the approximated log-likelihood functions
for X are evaluated for β ∈ (−3,+3) and σ2 = 4. The graph of the true
(dotted line), approximated (solid line), and Euler likelihoods (dashed line)
of β (solid line) are plotted against one another in Figure 3.5.
> # ex3 .09.R (cont)
> xx <- seq(-3,3,length =100)
> sapply(xx , function(x) HPloglik(X,c(x,4),mu ,F,S)) -> px
> sapply(xx , function(x) true.loglik(c(x ,4))) -> py
> sapply(xx , function(x) EULERloglik(X,c(x,4),B,S)) -> pz
>
> plot(xx ,px,type="l",xlab=expression(beta),ylab="log -likelihood") # approx
> lines(xx,py , lty =3) # true
> lines(xx,pz , lty =2) # Euler

How does one interpret the quality of the approximation from Figure 3.5?
From the statistical perspective, what is more important is that the inference
made on the approximation is the best possible. Figure 3.5 shows that, at least
in this example, the approximated maximum likelihood estimator built on
p̃Euler

θ will be more distant from the true value β = 1 than the one calculated
on the Hermite polynomial approximation p̃θ. The next section will clarifies
the situation a bit .

Behavior of the approximated maximum likelihood estimator

The other question that remains unsolved is whether the maximum likelihood
estimator θ̂(J)

n obtained on the approximated likelihood p̃θ possesses good
properties and, for example, if it converges to the true maximum likelihood
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Fig. 3.5. True likelihood (dotted line) versus Hermite expansion approximation
(solid line) and Euler approximation (dashed line). The Hermite expansion approx-
imation graphically coincides with the true likelihood, so the dotted line is not
visible.

estimator θ̂n calculated on the true (but usually unknown) likelihood of the
process. In [6], it is shown that θ̂(J)

n converges to θ̂n as J → ∞. Moreover,
as the sample size increases (n → ∞), it is always possible to find a Jn such
that θ̂(Jn)

n converges to the true parameter, say θ0. To obtain this result, first
some identification conditions must be assumed in addition to Assumptions
3.7, 3.8, and 3.9. We denote `i(θ) = log pθ(∆,Xi∆|X(i−1)∆) and use one “ ˙ ”
or multiple dots to indicate differentiation one or multiple times with respect
to θ. The score vector is then denoted by `n(θ) =

∑n
i=1

˙̀
i(θ). From Fact 3.4

and its corollary, we know that up to three derivatives in θ exist, so we can
define the following quantities:

in(θ) =
n∑

i=1

Eθ{ ˙̀
i(θ) ˙̀

i(θ)T }, Hn(θ) = −
n∑

i=1

῭
i(θ) ,

In(θ) = diag{in(θ)}, Tn(θ) = −
n∑

i=1

...
` i(θ) .

(3.32)

Assumption 3.10 (Identifiability) The true value θ0 belongs to Θ, In(θ)
is invertible, and I−1

n (θ) −→ 0 and n → ∞ almost surely and uniformly in
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θ ∈ Θ. Moreover, Rn(θ, θ̃) = I
−1/2
n Tn(θ̃)I−1/2

n (θ) is uniformly bounded in
probability for all θ̃ in a I1/2

n (θ)-neighborhood of θ.

If X is stationary and [In(θ)]kk < ∞ for all k (and uniformly in θ), then
the convergence I−1

n (θ) −→ 0 is guaranteed. Proposition 3 in [6] gives results
on the asymptotic distribution of the θ̂n and θ̂

(J)
n under different situations.

We refer the reader to the original paper for the details, but what is interesting
to us is that this result specializes to the following one when X is a stationary
diffusion:

n1/2(θ̂n − θ0)
d−→ N(0, i(θ0)−1) . (3.33)

In this case, the true maximum likelihood estimator is also efficient in the
Fisher-Rao sense because i(θ0)−1 is indeed the smallest possible asymptotic
variance among that of all consistent and asymptotically normal estimators of
θ0. This property is shared by θ̂(J)

n due to the approximation results mentioned
above.

MLE estimation for the Ornstein-Uhlenbeck process

Consider again the Ornstein-Uhlenbeck process satisfying the stochastic dif-
ferential equation dXt = −βXtdt+σdWt. In the stationary case (i.e., β > 0),
result (3.33) specializes to

√
n

((
β̂n

σ̂2
n

)
−
(
β
σ2

))
d−→ N

((
0
0

)
, V (θ)

)
,

where

V (θ) =

 e2β∆−1
∆2

σ2(e2β∆−1−2β∆)
β∆2

σ2(e2β∆−1−2β∆)
β∆2

σ4((e2β∆−1)2+2β2∆2(e2β∆+1)+4β∆(e2β∆−1))
β2∆2(e2β∆−1)

 .

(3.34)
In the explosive case β < 0, the limit is no longer normal (this is in fact the
LAMN case of Proposition 3 in [6]) and the convergence rate is different for
β̂n and σ̂2

n. The result is

e−(n+1)β∆∆

e−2β∆ − 1
(β̂n − β) d−→ C ,

√
n(σ̂2

n − σ2) d−→ N(0, 2σ4) ,

where C is the standard Cauchy distribution; i.e., its density is f(x) = 1/(π(1+
x2)).

We first consider the joint estimation of β and σ2 on the same trajectory of
the process X of the previous section. We optimize the negative log-likelihood
and we look at the estimates using the mle function.
> # ex3 .09.R (cont)
> HP.negloglik <- function(BETA=3, SIGMA2 =2)
+ -HPloglik(X,c(BETA ,SIGMA2),mu ,F,S)
> true.negloglik <- function(BETA=3, SIGMA2 =2)
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+ -true.loglik(c(BETA ,SIGMA2 ))
> euler.negloglik <- function(BETA=3, SIGMA2 =2)
+ -EULERloglik(X,c(BETA ,SIGMA2),B,S)
>
> mle(true.negloglik ,lower=c(0,0), method="L-BFGS -B") -> fit.true
> mle(HP.negloglik ,lower=c(0,0), method="L-BFGS -B") -> fit.approx
> mle(euler.negloglik ,lower=c(0,0), method="L-BFGS -B") -> fit.euler
>
> # we look at the estimates
> coef(fit.true)

BETA SIGMA2
0.4521549 3.3106872
> coef(fit.approx)

BETA SIGMA2
0.4521552 3.3106872
> coef(fit.euler)

BETA SIGMA2
0.4511489 3.2957707

For this sample, the joint estimation of β and σ2 is not particularly good.
The function mle returns an R object with much useful information. We can,
for example, obtain the value of the negative log-likelihood at the estimates
> # ex3 .09.R (cont)
> logLik(fit.true)
'log Lik.' 28.73278 (df=2)
> logLik(fit.approx)
'log Lik.' 28.73278 (df=2)
> logLik(fit.euler)
'log Lik.' 28.73278 (df=2)

and the approximate variance and covariance matrix obtained by inverting
the Hessian matrix at the optimum.
> # ex3 .09.R (cont)
> vcov(fit.true)

BETA SIGMA2
BETA 2.9874758 0.0987569
SIGMA2 0.0987569 0.2224775
> vcov(fit.approx)

BETA SIGMA2
BETA 2.98748109 0.09875703
SIGMA2 0.09875703 0.22247752
> vcov(fit.euler)

BETA SIGMA2
BETA 2.960589e+00 1.011108e-06
SIGMA2 1.011108e-06 2.172431e-01

Remember that the asymptotic variance (optimal) of the maximum likeli-
hood estimator can be calculated from (3.34).
> # ex3 .09.R (cont)
> beta <- 1
> sigma <- 2
> DELTA <- deltat(X)
> vbeta <- (exp(2*beta*DELTA )-1)/DELTA ^2
> cv.bsigma <- sigma ^2*(exp(2*beta*DELTA)-1-2*beta*DELTA)/(beta*DELTA ^2)
> vsigma <- sigma^4 *((exp(2*beta*DELTA ) -1)^2+
+ 2*beta^2*DELTA ^2*(exp(2*beta*DELTA )+1)+
+ 4*beta*DELTA*(exp(2*beta*DELTA )-1))/(beta^2*DELTA^2*
+ (exp(2*beta*DELTA )-1))
> matrix(c(vbeta , cv.bsigma , cv.bsigma , vsigma ),2,2)

[,1] [,2]
[1,] 202.013400 8.053601
[2,] 8.053601 12832.321070
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From the Hessian matrix, we obtain (for example, for the true maximum
likelihood estimator) the following.
> # ex3 .09.R (cont)
> vcov(fit.true)*100 # the sample size

BETA SIGMA2
BETA 298.74758 9.87569
SIGMA2 9.87569 22.24775

Remember that mle is also useful if we want to find maximum likelihood
estimators of a subset of the parameters. For example, suppose we know that
σ2 = 4. Then we can use mle to obtain just the estimate of β specifying the
fixed option as follows.
> # ex3 .09.R (cont)
> mle(true.negloglik ,lower=c(0,0), fixed=list(SIGMA2 =4),
+ method="L-BFGS -B") -> fit.true
> mle(HP.negloglik ,lower=c(0,0), fixed=list(SIGMA2 =4),
+ method="L-BFGS -B") -> fit.approx
> mle(euler.negloglik ,lower=c(0,0),fixed=list(SIGMA2 =4),
+ method="L-BFGS -B") -> fit.euler
> coef(fit.true)

BETA SIGMA2
0.757828 4.000000
> coef(fit.approx)

BETA SIGMA2
0.7578287 4.0000000
> coef(fit.euler)

BETA SIGMA2
0.4511337 4.0000000
>
> vcov(fit.true)

BETA
BETA 3.552964
> vcov(fit.approx)

BETA
BETA 3.552975
> vcov(fit.euler)

BETA
BETA 3.593197

Further examples

We have seen a detailed analysis for the Ornstein-Uhlenbeck process. In this
section, we present a few other models for which the expansion is available.

The complete Ornstein-Uhlenbeck model

This model is described by the stochastic differential equation

dXt = θ1(θ2 −Xt)dt+ θ3dWt.

As before, F (x) = x/θ3 and the transformed drift is µY (y; θ) = θ1θ2/θ3−θ1y.
Nothing else changes; hence only µ′ = −θ1 survives, all the other derivatives
being zero.
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The Black-Scholes-Merton model

This model is described by the stochastic differential equation

dXt = θ1Xtdt+ θ2XtdWt .

For this model, F (x) = (log x)/θ2 and µY (y, θ) = θ1/θ2 − θ2/2. Therefore, all
derivatives of µY are zero.

The Cox-Ingersoll-Ross model

This model is described by the stochastic differential equation

dXt = θ1(θ2 −Xt)dt+ θ3
√
XtdWt .

In this case, F (x) = (2
√
x)/θ3 and µY (y; θ) = (4θ1θ2 − θ23)/(2θ

2
3y) − θ1y/2.

So, we have the following derivatives for µY :

µ′(y, θ) = −θ1
2
− 4θ1θ2 − θ23

2y2θ23
, µ(2)(y, θ) =

4θ1θ2 − θ23
y3θ23

,

µ(3)(y, θ) = −3(4θ1θ2 − θ23)
y4θ23

, µ(4)(y, θ) =
12(4θ1θ2 − θ23)

y5θ23
,

µ(5)(y, θ) = −60(4θ1θ2 − θ23)
y6θ23

, µ(6)(y, θ) =
360(4θ1θ2 − θ23)

y7θ23
.

CKLS model

The model described in Section 1.13.4 is the solution to the stochastic differ-
ential equation

dXt = θ1(θ2 −Xt)dt+ θ3X
θ4
t dWt .

It is distributed on (0,+∞) if θ1, θ2 > 0 and θ4 > 1
2 . If θ4 = 1/2, this is

the Cox-Ingersoll-Ross model. CKLS does not admit a closed-form transition
density if θ2 6= 0 (see [57]), so in this case the Hermite polynomial expansion
is interesting. If θ4 > 1, then

F (x) =
x1−θ4

θ3(θ4 − 1)

and

µY (y; θ) =
θ4

2(θ4 − 1)y
− θ1(θ4− 1)y+ θ1θ2θ

1/(θ4−1)
3 (θ4− 1)θ4/(θ4−1)yθ4/(θ4−1) .

For 1
2 < θ4 < 1, the transformation is F (x) = x1−θ4/{θ3(1−θ4)} and µY (y; θ)

is similar.
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Aı̈t-Sahalia model

This model (see Section 1.13.7) satisfies the nonlinear equation

dXt = (θ−1X
−1
t + θ0 + θ1Xt + θ2X

2
t )dt+ θ3X

θ4
t dWt .

For θ4 = 3
2 , we have that F (x) = 2/(θ3

√
x) and (see [8])

µY (y; θ) =
3
2 − 2 θ2

θ2
3

y
− θ1y

2
− θ0θ

2
3y

3

8
− θ−1θ

4
3y

5

32
.

Double-well potential

This process satisfies the stochastic differential equation

dXt = (Xt −X3
t )dt+ dWt

and is interesting in that its transition density is bimodal, which means highly
non-Gaussian. The expansion of this model is simple in that it has unit dif-
fusion. Therefore, F (x) = x, µY is just the drift, and all the derivatives are
quite easy to obtain.

Ahn and Gao model

This model (see Section 1.13.10) is the transformation of the Cox-Ingersoll-
Ross model

dXt = Xt(θ1 − (θ33 − θ1θ2)Xt)dt+ θ3X
3
2
t dWt,

and the conditional distribution of this process can be obtained as

pθ(t, y|x0) =
1
y2
pCIR

θ (t, 1/y|1/x0) ,

where pCIR
θ is the transition density of the Cox-Ingersoll-Ross model. A direct

expansion of the transition density of the Ahn-Gao model is equally possible.
In such a case, the transformed process has the same drift µY (y; θ) as the CIR
model, but the transformation is now F (x) = 2/(θ3

√
x). We do not rewrite

the quantities here.

A generic approach

We have seen that exact specification of the derivatives up to order six are
needed in order to evaluate the Hermite expansion. We now write some generic
code that the reader might find interesting that essentially leaves to R the task
of obtaining the derivatives. This is not costless from the numerical viewpoint.
As an example, we consider again the Cox-Ingersoll-Ross model for which we
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have already derived in the above the explicit derivatives of the drift µY . We
recall that we use the parametrization

dXt = θ1(θ2 −Xt)dt+ θ3
√
XtdWt , F (x) = (2

√
x)/θ3 ,

and
µY (y; θ) = (4θ1θ2 − θ23)/(2θ

2
3y)− θ1y/2 .

The following code explicitly defines the derivatives of µY and calculates the
Hermite polynomial expansion.
> # ex3 .10.R
>
> F <- function(t, x, theta) 2*sqrt(x)/theta [3]
> S <- function(t, x, theta) theta [3]*sqrt(x)
>
> M0 <- function(t, x, theta)
+ (4*theta [1]*theta [2]-theta [3]^2)/(2*x*theta [3]^2) - 0.5*theta [1]*x
> M1 <- function(t, x, theta)
+ -0.5*theta [1] -(4*theta [1]*theta [2]-theta [3]^2)/(2*x^2*theta [3]^2)
> M2 <- function(t, x, theta)
+ (4*theta [1]*theta [2]-theta [3]^2)/(x^3*theta [3]^2)
> M3 <- function(t, x, theta)
+ -3*(4*theta [1]*theta[2]- theta [3]^2)/(x^4*theta [3]^2)
> M4 <- function(t, x, theta)
+ 12*(4*theta [1]*theta[2]- theta [3]^2)/(x^5*theta [3]^2)
> M5 <- function(t, x, theta)
+ -60*(4*theta [1]*theta [2]-theta [3]^2)/(x^6*theta [3]^2)
> M6 <- function(t, x, theta)
+ 360*(4*theta [1]*theta [2]-theta [3]^2)/(x^7*theta [3]^2)
> mu1 <- list(M0, M1, M2, M3, M4, M5, M6)

The next code prepares the vector mu2, which is created using the R func-
tion D. We start from the expression for µY

m0 <- expression ((4*theta1*theta2 -theta3 ^2)/(2*x*theta3 ^2) -0.5*theta1*x)

because we need to apply symbolic derivatives and then need to create func-
tions of the triplet (t,x,theta), where theta is the vector of the parameters.
We need to remap the parameters theta1, theta2, and theta3 appearing in
m0 to the vector theta[1:3]. This remapping is done in the wrapper function
HPloglik2.
> # ex3 .10.R (cont)
> # we now ask R to calculate derivatives
> m0 <- expression ((4*theta1*theta2 -theta3 ^2)/(2*x*theta3 ^2) -0.5*theta1*x)
>
> params <- all.vars(m0)
> params <- params[-which(params =="x")]
> np <- length(params)
>
> # we construct derivatives by iteration
> for(i in 1:6){
+ esp <- get(sprintf("m%d",i-1))
+ assign(sprintf("m%d",i), D(esp , "x"))
+ }
>
> mu2 <- vector(7, mode="list")
> # `mu2 ' must be a list of functions in (t,x,theta)
> mu2 [[1]] <- function(t,x,theta) eval(m0)
> mu2 [[2]] <- function(t,x,theta) eval(m1)
> mu2 [[3]] <- function(t,x,theta) eval(m2)
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> mu2 [[4]] <- function(t,x,theta) eval(m3)
> mu2 [[5]] <- function(t,x,theta) eval(m4)
> mu2 [[6]] <- function(t,x,theta) eval(m5)
> mu2 [[7]] <- function(t,x,theta) eval(m6)
>
> # we need to remap theta [1:3] into (theta1 ,theta2 ,theta3)
> # hence we write a wrapper function that calls HPloglik
> # in the correct way
> HPloglik2 <- function(X, theta , mu, F, S){
+ sapply (1:np , function(x) assign(params[x], theta[x], .GlobalEnv ))
+ HPloglik(X, theta , mu2 , F, S)
+ }

We now show that the exact derivatives and the R symbolic deriva-
tives gave the same approximation (as it should be), but providing explicit
derivatives speeds up the code by 30 times. To this end, we first simu-
late a trajectory from the CIR model using the sde.sim function. Please
note that model CIR in the sde.sim function assumes the parametrization
dXt = (α−κXt)dt+σdWt which means that (α, κ, σ) in this parametrization
corresponds to (θ1 = κ, θ2 = α/κ, θ3 = σ), which we used to build mu1 and
mu2. We simulate from the CIR with (α = 0.2, κ = 0.4, σ = 0.15) and plot the
density of α conditionally on κ = 0.4 and σ = 0.15.
> # ex3 .10.R (cont)
> set.seed (123)
> X <- sde.sim(X0=1, model="CIR", theta=c(.2, .4, .15), delta =1e-3,N=100)
>
> xx <- seq(0,4,length =100)
> a <- system.time(sapply(xx, function(x) HPloglik(X, c(.4,x/.4,.15),
+ mu1 , F, S))-> px1)
> b <- system.time(sapply(xx, function(x) HPloglik2(X, c(.4,x/.4,.15),
+ mu2 , F, S))-> px2)
>
> # should be zero
> sum(abs(px1 -px2))
[1] 0
>
> b/a

user system elapsed
31.23019 34.33333 31.29146

The next listing constructs the true and the approximated likelihoods and
calculates maximum likelihood estimators for α.
> # ex3 .10.R (cont)
> # true CIR log - likelihood
> CIR.lik <- function(alpha ,kappa ,sigma) {
+ n <- length(X)
+ dt <- deltat(X)
+ sum(dcCIR(x=X[2:n], Dt=dt , x0=X[1:(n-1)], theta=c(alpha ,kappa ,sigma),
+ log=TRUE))
+ }
>
> CIR.negloglik <- function(ALPHA=1, KAPPA=1, SIGMA =1)
+ -CIR.lik(ALPHA ,KAPPA ,SIGMA)
>
> HP.negloglik <- function(THETA1=1, THETA2=1, THETA3 =1)
+ -HPloglik(X,c(THETA1 ,THETA2 ,THETA3),mu1 ,F,S)
>
> mle(HP.negloglik ,lower=c(0.01 ,0.01 ,0.01) ,
+ fixed=list(THETA1 =.4, THETA3 =.15) , method="L-BFGS -B") -> fit.approx
> THETA <- coef(fit.approx)
> THETA
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THETA1 THETA2 THETA3
0.4000000 0.2147702 0.1500000
> # alpha = theta1*theta2
> cat(sprintf("alpha =%f\n",THETA [1]*THETA [2]))
alpha =0.085908
>
>
> mle(CIR.negloglik ,lower=c(0.01 ,0.01 ,0.01) ,
+ fixed=list(KAPPA =.4,SIGMA =.15), method="L-BFGS -B") -> fit.CIR
> PAR <- coef(fit.CIR)
> PAR

ALPHA KAPPA SIGMA
0.0859112 0.4000000 0.1500000

The maximum likelihood estimators on the true and the approximated
likelihoods are quite close, even though the estimates are far from the true
value. Figure 3.6, obtained with the R code that follows, shows the true and
approximated log-likelihoods and their point of maximum.
> xx <- seq (0.0858 ,0.086 , length =100)
> sapply(xx , function(x) HPloglik(X, c(.4,x/.4,.15), mu1 , F, S))-> px1
> sapply(xx , function(x) CIR.lik(x,.4,.15))-> px3
> par(mar=c(5,5,1,1))
> plot(xx ,px1 ,type="l",xlab=expression(alpha),ylab="log -likelihood")
> lines(xx,px3 ,lty =2)
> abline(v=PAR[1],lty=3)
> abline(v=prod(THETA [1:2]) , lty=3)

To conclude this section, we recall that the code based on HPloglik2 is
quite generic and requires only the specification of µY as an expression in the
object m0. To understand why evaluation of symbolic derivatives generated by
R is so slow, one should look inside the generated objects. For example, µ(3),
which corresponds to m3, contains
> m3
(4 * theta1 * theta2 - theta3 ^2) * (2 * theta3 ^2) * (2 * (2 *

theta3 ^2 * (2 * theta3 ^2)))/((2 * x * theta3 ^2)^2)^2 - (4 *
theta1 * theta2 - theta3 ^2) * (2 * theta3 ^2) * (2 * (2 *
theta3 ^2 * (2 * x * theta3 ^2))) * (2 * (2 * (2 * theta3 ^2 *
(2 * x * theta3 ^2)) * ((2 * x * theta3 ^2)^2)))/(((2 * x *
theta3 ^2)^2)^2)^2

which evaluates exactly to

µ(3)(y, θ) = −3(4θ1θ2 − θ23)
y4θ23

.

Indeed,
> # ex3 .10.R (cont)
> theta <- c(.2, .4, .15)
> sapply (1:3, function(x) assign(params[x], theta[x], .GlobalEnv ))
[1] 0.20 0.40 0.15
> mu1 [[4]]
function(t, x, theta)
-3*(4*theta [1]*theta [2]-theta [3]^2)/(x^4*theta [3]^2)

> mu2 [[4]]
function(t,x,theta) eval(m3)
> mu1 [[4]](0 ,1 , theta)
[1] -39.66667
> mu2 [[4]](0 ,1 , theta)
[1] -39.66667
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Fig. 3.6. True likelihood (solid line) against Hermite polynomial approximation
(dashed line) for θ2 ∈ (0, 4) and (θ1, θ3) = (0.4, 0.15) on some simulated data for the
CIR model with parameters (θ1, θ2, θ3) = (0.4, 0.2, 0.15).

3.4 Bayesian estimation

In this section, we just mention the idea behind the Bayesian approach. In the
general Bayesian paradigm, a Bayesian estimator of a parameter θ is obtained
as the expected value of the posterior probability distribution of θ,

p(θ|xobs) =
Ln(θ)p(θ)∫
Ln(θ)p(θ)dθ

,

where p(θ) is a prior distribution for θ and xobs denotes the discrete-time
observations from the diffusion process (see, e.g., [100]). When the likelihood
Ln(θ) is known in explicit form, different results are available (see, e.g., [192]),
but we already know that is quite a rare case. Recently a new stream of results
based on Markov chain Monte Carlo (MCMC) algorithms have been proposed
(see [80], [78], and [196]).

The MCMC technique may require an entire new book (see, e.g., [11]);
hence we limit ourselves to mentioning the basic idea without touching on
the details. This presentation follows [128]. The main idea behind MCMC
algorithms is to sample θ from a convenient approximation of the posterior
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distribution p(θ|xobs). Let xi−1 and xi be two consecutive observations and
let xi,k = (ti−1 + kδN ) be the N unobservable values between xi−1 and xi

with k = 1, . . . , N , δN = ∆/(N + 1), and N a given integer. Set xi,0 = xi−1

and xi,N+1 = xi and further introduce the set of unobserved data points
x̃ = {x̃1, . . . , x̃n} with x̃i = (xi,1, . . . , xi,N}. For δN small enough, the tran-
sition density pθ(δN , xi,k|xi−1,k) can be obtained by simulation as in Section
3.3.2. Note that this is another case where the exact algorithm in Section
2.12 or the method of simulation of diffusion bridges in section 2.13 is par-
ticularly handy. The intermediate points x̃ are regarded as missing values in
the bayesian approach, the marginal distribution p(θ, x̃|xobs) is used to obtain
p(θ|xobs), and the problem is reduced to sampling some θ’s from p(θ, x̃|xobs)
and averaging the values. The MCMC method is based on the construction
of a Markov chain (x̃j , θj) for j = 1, 2, . . ., whose limiting distribution is
p(θ, x̃|xobs). This is also called the Gibbs sampler and proceeds as follows.
The jth iteration is conducted in two steps:

(S1) sample x̃j from p(x̃|xobs, θj−1).
(S2) sample θj from p(θ|xobs, x̃j).

The Markov chain is started by sampling θ0 from the prior distribution p(θ),
and x̃0 can be taken as the linear interpolation of the observed points xi’s.
The final Bayes estimator is computed as

θ̂ =
1

J − J0

J∑
j=J0

θj ,

where J0 is some burn-in time of the Markov chain and J is the total number of
replications. But steps (S1) and (S2) are based on two unknown distributions,
and hence some different route is taken to circumvent the issue. This is the
Metropolis-Hastings algorithm combined with a Gaussian approximation. By
the Markov property of the diffusion process, it follows that

p(x̃|xobs, θ) =
n∏

i=1

p(x̃i|xi−1, xi, θ)

and the approximation

p(x̃i|xi−1, xi, θ) ≈ pN (x̃i|xi−1, xi, θ)

is reasonable, with

pN (x̃i|xi−1, xi, θ) ∝ pN (x̃i, xi−1, xi, θ) =
N∏

k=0

pN (δN , xi,k, xi,k+1|θ),

where ∝ means proportionality. In general, the normalizing constant cannot
be found. Hence the Metropolis-Hastings algorithm is used to sample from
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pN (x̃i|xi−1, xi, θ) on the basis of pN (x̃i, xi−1, xi|θ) given some proposal dis-
tribution q1(·|x̃j−1) (usually a Gaussian). This replaces step (S1). Similarly,
taking some proposal distribution q2(·|θj−1) for θ (for example, the prior p(θ)),
step (S2) is replaced by the Metropolis-Hastings step. This method is obvi-
ously computationally demanding, and convergence of the Markov chain is
to be checked empirically case by case. Many variants of this method have
been proposed so far along with others such as the particle filters approach
(or sequential Monte Carlo sampling). The reader may want to investigate
further.

3.5 Estimating functions

Estimating functions (see [106] for a complete reference on the subject) are
functions, say Fn, that take as arguments both the parameters θ ∈ Θ and
the observed data Xobs with values in R. An estimator is obtained as the
solution in θ of the equation Fn(Xobs, θ) = 0. What drives the estimating
function is of course the score function, leading to the maximum likelihood
estimator. We work in a large sample setup and hence need to ask a few prop-
erties of these functions: they should be asymptotically unbiased and capable
of discriminating between different values of θ (identifiability condition); i.e.,
EFn(Xobs, θ) = 0 if and only if θ = θ0 (see also [215] for results on asymptotic
theory). Estimating functions should be developed ad hoc for each observa-
tional model, and there might exist different kinds of them. We review some
relevant cases.

3.5.1 Simple estimating functions

The class of simple estimating functions (see, e.g., [138]) is made of estimating
functions based on the marginal or joint distribution of the process in some
ways. These estimating functions are mainly of two forms,

Fn(θ) =
n∑

i=1

f(Xi, θ) (type I) (3.35)

or

Fn(θ) =
n∑

i=1

f(Xi−1, Xi, θ) (type II). (3.36)

The function f(x, θ) or f(y, x, θ) can take different aspects, such as f =
∂θ log πθ (i.e., the score function based on the invariant measure), fj(x, θ) =
xj − EθX

j
0 , j = 1, . . . , p (i.e., based on the moment generating function), or

any other suitable function on Xi∆. For simple estimating functions,6 the
6 The denominations “type I” and “type II” are only used in this book to make the

treatment as easy as possible. There is currently no standard way of discriminating
the two kinds of estimating functions in the literature.
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identifiability conditions are

Eθ0f(X0, θ) = 0 if and only if θ = θ0 (type I)

and
Eθ0f(X0, X∆, θ) = 0 if and only if θ = θ0 (type II).

Estimating functions of type II contain the relevant case of the score function.
Indeed, for discretely observed diffusion processes, the score function is

Sn(θ) = ∂θ logLn(θ) =
n∑

i=1

∂θ log pθ(∆,Xi−1|Xi).

For this model, Sn(θ) depends on the data through the terms Xi−1 and Xi,
and hence

f(y, x, θ) = ∂θ log pθ(∆, y|x).

When the transition density is known, the solution of Fn(θ) = 0 is the maxi-
mum likelihood estimator. As we will see below, least squares estimators lead
to estimating functions of type II. Among estimating functions of type I, the
class

Fn(θ) =
n∑

i=1

{
b(Xi, θ)h′(Xi) +

1
2
σ2(Xi, θ)h′′(Xi)

}
(3.37)

occupies a central role, where h(·) is a twice continuously differentiable func-
tion. This estimating function is in fact built on the infinitesimal generator
of the diffusion; i.e., f(x, θ) = Lθh(x), f : Θ × R → Rp, where Lθ is as in
(3.3). It was first introduced in [104] in the construction of the generalized
method of moments. For a wide class of processes, the analytic solution of
Fn(θ) = 0 leads to estimators in explicit form, which makes this approach
computationally faster then solving Fn(θ) = 0 numerically , as we will see in
several examples below. Under quite general conditions (see Theorem 3.1 in
[138]), the resulting estimators are also consistent and asymptotically Gaus-
sian. We will describe a very general implementation of estimating functions
such as (3.37) in Section 3.5.2.

Simple estimating functions for the Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process solution to

dXt = −θXtdt+ dWt

starting at x0 at time t0 = 0. We know that the transition density pθ(∆, y|x)
is Gaussian with parameters

Eθ(Xi|Xi−1 = x) = xe−θ∆ , Varθ(Xi|Xi−1) =
1− e−2θ∆

2θ
.
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Least squares estimator

As in any Gaussian case, the estimator of θ can be found by minimizing the
quadratic distance

Kn(θ) =
n∑

i=1

(
Xi − e−θ∆Xi−1

)2
either via least squares or minimum contrast estimation. The simple estimat-
ing function corresponding to this example, derived from ∂

∂θKn(θ), is

Fn(θ) =
n∑

i=1

Xi−1

(
Xi − e−θ∆Xi−1

)
, (3.38)

and the estimator θ̂ is obtained as the value of θ that solves Fn(θ) = 0. In this
case, f(y, x, θ) = x(y − e−θ∆x) and the estimating function is of type II as
in (3.36). Easy calculations show that the resulting estimator has the explicit
form

θ̂n = − 1
∆

log


n∑

i=1

Xi−1Xi

n∑
i=1

X2
i−1

 , (3.39)

and this estimator exists only if
∑n

i=1Xi−1Xi > 0. It can be shown that the
estimating function Fn(θ) above is also a martingale estimating function (see
Section 3.5.4) and the estimator is consistent.

Kessler’s estimator

If θ > 0, the process is ergodic and it is also possible to show asymptotic
normality. If we choose h(x) = x2 in (3.37), we obtain Kessler’s estimator (see
[138]) from

Fn(θ) =
n∑

i=1

(
2θX2

i−1 − 1
)
.

Kessler’s estimator is optimal in the sense that it has the lowest asymptotic
variance v∗0 ,

v∗0 = 2θ20
1 + e2θ0∆

1− e2θ0∆
,

in the class of all estimators derived from estimating functions of the form
(3.35). The estimator has the simple explicit form

θ̃ =
n

2
n∑

i=1

X2
i−1

. (3.40)
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Maximum likelihood estimator

For this model there is also available the maximum likelihood estimator θ̄,
which is the solution in θ of the equation

1

2 (−1 + e2 ∆ θ)2 θ

{
1 + 2x2 θ + 2∆θ + e4 ∆ θ

(
1− 2 y2 θ

)
− 4 e3 ∆ θ x y θ (−1 +∆θ)− 4 e∆ θ x y θ (1 +∆θ)

+ 2 e2 ∆ θ

(
−1−∆θ + x2 θ (−1 + 2∆θ)

+ y2 θ (1 + 2∆θ)
)}

= 0,

(3.41)

which is the score function. We will now implement the three estimators for
this model to show their empirical behavior. We will use the function sde.sim
to simulate the trajectory of the process and test the three estimators over
simulated paths. The experiment is as follows7: we simulate 1000 paths of
lengths n = 200, n = 500, and n = 1000 from the Ornstein-Uhlenbeck process
with parameter θ0 = 1. We will use ∆ steps of amplitude 0.4, 1.0, and 5.0.
For each trajectory, we calculate the three estimators K.est, LS.est, and
MLE.est. Average values of the estimators and their standard deviations are
reported in Table 3.2. One note for the maximum likelihood estimator is that
instead of using the uniroot function to solve (3.41), our MLE.est uses optim
to minimize the negative log-likelihood. For numerical efficiency, we optimize
−
∑

i log pθ(∆,xi+1|xi) instead of − log(
∏

i pθ(∆,xi+1|xi)). We will discuss in
detail the use of R command optim in Section 3.5.2.
# ex3 .11.R
K.est <- function(x) {

n.obs <- length(x)
n.obs/(2*(sum(x^2)))

}

LS.est <- function(x) {
n <- length(x) -1
k.sum <- sum(x[1:n]*x[2:(n+1)])
dt <- deltat(x)
ifelse(k.sum >0, -log(k.sum/sum(x[1:n]^2))/dt , NA)

}

MLE.est <- function(y, lower=0, upper=Inf){
n <- length(y) - 1
Dt <- deltat(y)
Y <- y[2:(n+1)]
g <- function(theta){
ss <- sqrt((1-exp(-2*Dt*theta ))/(2*theta ))
X <- y[1:n]*exp(-theta*Dt)
lik <- dnorm(Y,mean=X,sd=ss)
-sum(log(lik))

}
tmp <- try(optim(runif(1), g, method="L-BFGS -B", lower=lower ,

upper=upper)$par)

7 We try to replicate the experiment in [138]; see Table 1 there.



3.5 Estimating functions 161

if(class(tmp )=="try -error") tmp <- NA
tmp

}

The reader should note that in MLE.est we have limited the search for the
minimum of the negative log-likelihood in the interval [0,+∞) because we
know that θ0 is in that interval. In practical applications (i.e., with real data),
one should first plot the likelihood function of the observed data to decide
where to search for the extremal points or use some other adaptive approach.

As for Kessler’s estimator, instead of using only the observations from X0

to Xn−1 (see (3.40)), the routine K.est uses all the observations up to Xn. In
this way, no information is lost in finite (yet big) samples as in our experiment.
The function LS.est returns NA if

∑n
i=1Xi−1Xi ≤ 0.

Table 3.2. Empirical comparison of the simple estimating function estimator θ̂ in
(3.39), Kessler’s estimator θ̃ in (3.40), and the MLE estimator for the Ornstein-
Uhlenbeck process (see the text). Average values over K = 1000 replications and
standard deviation for different values of ∆ and different number of observations n
are given. The true θ0 = 1, and v∗0 is the best asymptotic variance for estimators in
the class of simple estimating functions of the type (3.35). For the θ̂ estimator and
n = 1000, valid cases (i.e.,

∑n
i=1 Xi−1Xi > 0) are 543, 553, and 578 for ∆ = 0.4,

1.0, and 5.0, respectively.

∆ n
√

v∗0/n θ̂ θ̃ θ̄

0.4 200 1.03 1.03 1.04
0.16 (0.20) (0.17) (0.16)

500 1.01 1.01 1.02
0.10 (0.19) (0.12) (0.11)

1000 0.66 1.01 1.01
0.07 (0.23) (0.10) (0.10)

1.0 200 1.01 1.01 1.01
0.11 (0.13) (0.10) (0.10)

500 1.00 1.01 1.01
0.07 (0.12) (0.07) (0.07)

1000 0.74 1.01 1.01
0.05 (0.24) (0.06) (0.06)

5.0 200 1.00 1.01 1.01
0.10 (0.09) (0.07) (0.07)

500 1.00 1.01 1.01
0.06 (0.08) (0.05) (0.05)

1000 0.79 1.00 1.00
0.04 (0.21) (0.04) (0.04)

The next code calculates the results reported in Table 3.2. We run K=1000
replications of the Ornstein-Uhlenbeck process for δ = 0.1 < ∆ and resample
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it for∆ = 0.4,∆ = 1.0, and∆ = 0.5. This allows for finer simulations.8 In each
replication, we generate 5.0/0.1 · 1000 = 50000 observations in order to have
a trajectory long enough to extract n = 200, 500, and 1000 observations for
every value of∆. We collect the estimates in three matrices, kessler, mle, and
simple with nine columns each. Columns 1 to 3 are for estimates in the case of
∆ = 0.4 and n = 200, 500, and 1000, columns 4 to 6 for ∆ = 1.0 and different
values of n, and the remaining columns for ∆ = 5.0. One thing worth noting
in the following R code is the way we subsample the trajectories: the object X
contains the whole trajectory generated for δ = 0.1. The Delta varies in the R
loop in the set c(0.4,1,5). To pick up the times corresponding to the desired
∆ step, we use the window function.9 For example, window(X,deltat=0.4)
will subsample the time series X for the specified ∆ = 0.4.
# ex3 .11.R (cont)
theta0 <- 1
d <- expression( -1*x )
s <- expression( 1 )
K <- 1000 # 1000 MC replications

set.seed (123)
kessler <- matrix(NA,K,9)
mle <- matrix(NA,K,9)
simple <- matrix(NA ,K,9)

x0 <- rnorm(K,sd=sqrt(1/(2*theta0 )))
sde.sim(X0=x0 , drift=d, sigma=s, N=50000 , delta =0.1, M=K)->X

for(k in 1:K){
cat(".")
m <- 0
for(Delta in c(0.4 ,1 ,5)){
m <- m+1
j <- 0
for(n in c(200 ,500 ,1000)){
j <- j+1
X.win <- window(X[,k], start=0, end=n*Delta , deltat=Delta)
kessler[k,m+3*(j-1)] <- K.est(X.win)
simple[k,m+3*(j-1)] <- LS.est(X.win)
mle[k,m+3*(j-1)] <- MLE.est(X.win)

}
}
cat(sprintf(" %3.3d / %3.3d completed\n",k,K))

}

The next code is used to obtain average values of the estimators, their
standard deviations, the theoretical values of v∗0 , and the number of valid
cases for the LS.est estimator.
# ex3 .11.R (cont)
S1 <- apply(simple ,2,function(x) mean(x,na.rm=T))
K1 <- apply(kessler ,2,function(x) mean(x,na.rm=T))
M1 <- apply(mle ,2,function(x) mean(x,na.rm=T))
A <- cbind(S1 ,K1 ,M1)
matrix(as.numeric(sprintf("%3.2f",A)),9,3)

8 It is always desirable to simulate trajectories with a δ smaller than the ∆ needed
to test the estimators.

9 Please note that up to version 2.1.1 of R, a bug prevented the use of window with
noninteger values of deltat.
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S2 <- apply(simple ,2,function(x) sd(x,na.rm=T))
K2 <- apply(kessler ,2,function(x) sd(x,na.rm=T))
M2 <- apply(mle ,2,function(x) sd(x,na.rm=T))
B <- cbind(S2 ,K2 ,M2)
matrix(as.numeric(sprintf("%3.2f",B)),9,3)

Delta <- c(0.4 ,1,5)
v0 <- 2*theta0 ^2 * (1+ exp(-2*theta0*Delta))/(1-

exp(-2*theta0*Delta ))

sprintf("%3.2f",sqrt(v0[1]/c(200 ,500 ,1000)))
sprintf("%3.2f",sqrt(v0[2]/c(200 ,500 ,1000)))
sprintf("%3.2f",sqrt(v0[3]/c(200 ,500 ,1000)))

# valid cases for the LS estimator
apply(simple , 2, function(x) length(which(!is.na(x))))

Simple estimating function for the Cox-Ingersoll-Ross process

We introduced this process in Section 2.3.2 solution of the stochastic differ-
ential equation

dXt = (α+ θXt)dt+ σ
√
XtdWt ,

α > 0, θ < 0 and σ > 0. Assume σ is known, and choose h(x) = (x, x2)t as in
[138] in the estimating function (3.37). Then, solving for Fn(θ) = 0 yields the
two explicit estimators for α and θ

α̃n =

(
n∑

i=1

Xi−1

)2

2

(
n

n∑
i=1

X2
i−1 −

(
n∑

i=1

Xi−1

)2
) ,

θ̃n =
−n

n∑
i=1

Xi−1

2

(
n

n∑
i=1

X2
i−1 −

(
n∑

i=1

Xi−1

)2
) ,

(3.42)

which can be easily implemented as follows.
> # ex3 .11.R (cont)
> # CIR -Model
> # theta = -1
> # alpha = 10
> # sigma = 1
> # x0 = 10
> set.seed (123);
> d <- expression (10 - x)
> s <- expression(sqrt(x))
> x0 <- 10
> sde.sim(X0=x0 ,drift=d, sigma=s,N=1000, delta =0.1) -> X
>
> # estimator for alpha
> (sum(X)^2)/(2*(length(X)*sum(X^2)-sum(X)^2))
[1] 11.52346
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>
> # estimator for theta
> (-length(X)*sum(X))/(2*(length(X)*sum(X^2)-sum(X)^2))
[1] -1.136781

Linear case

In the linear case, as for Ornstein-Uhlenbeck or CIR processes, some general
results are available. In particular, if the parameter to be estimated is only in
the drift and b(θ, x) = θ · b(x) and σ(θ, x) = σ(x), for any10 function h in the
estimating function (3.37), the solution of Fn(θ) = 0 leads to the following
explicit form of the estimator

θ̃ = −1
2

n∑
i=1

σ2(Xi−1)h′′(Xi−1)

n∑
i=1

b(Xi−1)h′(Xi−1)
.

3.5.2 Algorithm 1 for simple estimating functions

We now describe the algorithm that can be used to estimate parameters us-
ing the generic estimating functions of type I (3.35) and type II (3.36). The
algorithm is quite flexible in that the user can choose any way to describe the
parametric model; i.e., use any name for the parameters and the algorithm
will figure out the dimension on the parametric space. The user is asked to
specify as input to the command simple.ef the observed data X and the
function f as parameter f, which has to be an R list of expressions defined
in terms of variables x and y and of course the parameters. If both x and
y appear in the definition of f , then f is interpreted as a function of both;
i.e., the algorithm solves the problem Fn = 0 for (3.36). If only x appears in
the definition, then the solution is searched for an estimating function of type
(3.35). Variable x cannot be omitted, and variables must be specified strictly
with names ‘x’ and ‘y’ .

To solve Fn(θ) = 0, we use the box-constrained optimization facility optim
with method ‘L-BFGS-B’. This is a box-constrained minimization algorithm.
Thus, to find the zeros of Fn(θ), we minimize |Fn(θ)|2 and we square |Fn(θ)|
to penalize the extremes more. If the identifiability condition holds, this leads
to the true zero of Fn(θ). Most of the following code is dedicated to extracting
the parameter names from variables x and y into two vectors f.pars (the pa-
rameters) and f.vars (the two variables x and y). This code is also optimized
for speed in the sense that all the internal functions are written to accept and
return vector objects, avoiding R loops. At first, the code extracts parameter
names from the coefficients using the all.vars command and checks if at

10 Actually, h(x) = x cannot be used because hypothesis A5 in [138] is not satisfied.
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least variable ‘x’ has been specified; if it is missing, the command returns an
error.

Then function f is transformed from an R expression to an R function
and this function now depends on both x and y and all the parameters. This
generalization makes the code quite general in accepting parameters. All eval-
uation is done in a new environment e1, which lives only inside command
simple.ef to avoid any interference with the current R workspace. The func-
tion Fn = (F 1

n , F
2
n , . . . , F

p
n) is coded as Fn and has the same dimension p as the

parameter space and function f . The optimizer calls function Gn(θ), which is
in fact Gn(θ) =

∑p
i=1 |F i

n(θ)|2.
simple.ef <- function(X, f, guess , lower , upper){

if(!is.ts(X))
stop("Please provide a `ts ' object")

n.f <- length(f)
f.vars <- NULL
for(i in 1:n.f)
f.vars <- c(f.vars ,all.vars(f[[i]]))

f.vars <- unique(f.vars)
n.vars <- length(f.vars)
match("x", f.vars) -> idx.x
match("y", f.vars) -> idx.y
has.x <- !is.na(idx.x)
has.y <- !is.na(idx.y)
if(!has.x){
if(!has.y)
stop("Variables `x' and `y' both missing")

else
stop("Variable `x' missing")

}
idx <- c(idx.x, idx.y)
idx <- as.integer(na.omit(idx))
f.pars <- f.vars [(1:n.vars)[-idx]]
n.pars <- length(f.pars)
f.vars <- f.vars[idx]

if(!is.list(f) | (n.f!=n.pars) |
!all(unlist(lapply(f,mode ))=="expression"))

stop("`f' must be a list of expressions of length equal to the \
dimension of the parameter space")

new.env() -> e1

f1 <- vector(n.f, mode="list")
for(i in 1:n.f){
f1[[i]] <- function(j) {
val <- eval(f[[j]],e1)
if(length(val) != lx)
val <- rep(val , lx)

val
}

}

X.data <- NA
Y.data <- NA
n.obs <- length(X)
if(has.y)
Y.data <- X[2:n.obs]

if(has.x){
if(has.y)
X.data <- X[1:(n.obs -1)]
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else
X.data <- X[1:n.obs]

}
assign("x",X.data , e1)
assign("y",Y.data , e1)
lx <- length(X.data)

Fn <- function(theta ){
for(i in 1:n.pars)
assign(f.pars[i], theta[i], e1)

val <- numeric(n.f)
for(i in 1:n.f){
ff1 <- f1[[i]](i)
val[i] <- sum(ff1)

}
return(val)

}

Gn <- function(theta) sum(abs(Fn(theta ))^2)

if(missing(guess ))
start <- runif(n.pars)

else
start <- guess

if(missing(lower ))
lower <- rep(-Inf , n.pars)

if(missing(upper ))
upper <- rep(Inf , n.pars)

st <- start
names(st) <- f.pars
cat("\nInitial values for the optimization algorithm ")
if(missing(guess ))
cat("(random )\n")

else
cat("\n")

print(st)
cat("\nOptimization constraints\n")
ct <- as.matrix(cbind(lower , upper ))
rownames(ct) <- f.pars
colnames(ct) <- c("lower", "upper")
print(ct)

cat("\nRunning optimizer ...\n")
mn <- optim(start , Gn , method="L-BFGS -B", lower=lower , upper=upper)
names(mn$par) <- f.pars

estimate <- mn$par
fn <- Fn(mn$par)

return( list(estimate=estimate , Fn=fn) )
}

Listing 3.8. Simple estimating function, Algorithm 1.

The use of this function is quite easy, as the following code shows.
> # ex3 .12.R
> set.seed (123);
> d <- expression (-1 * x)
> s <- expression (1)
> x0 <- rnorm(1,sd=sqrt(1/2))
> sde.sim(X0=x0 ,drift=d, sigma=s,N=2500, delta =0.1) -> X
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>
> # Kessler 's estimator revisited
> f <- list(expression (2*theta*x^2-1))
> simple.ef(X, f, lower=0, upper=Inf)

Running optimizer ...
$estimate

theta
1.122539

> K.est(X)
[1] 1.122539
>
> # Least Squares estimator revisited
> f <- list(expression(x*(y-x*exp(-0.1*theta ))))
> simple.ef(X, f, lower=0, upper=Inf)

Running optimizer ...
$estimate

theta
1.100543

> LS.est(X)
[1] 1.100543
>
> # MLE estimator revisited , f is based on
> # the score function of the process
> f <-list(expression ((1 + 2 * (x^2) * theta + 2 * 0.1 * theta +
+ exp(4 * 0.1 * theta) * (1 - 2 * (y^2) * theta)
+ - 4 * exp(3 * 0.1 * theta) * x * y * theta * (-1 + 0.1 * theta)
+ - 4 * exp(theta * 0.1) * x * y * theta * (1 + theta * 0.1)
+ + 2 * exp(2 * 0.1 * theta) * (-1 - 0.1 * theta + (x^2) * theta *
+ (-1 + 2 * 0.1 * theta) + (y^2) * theta * (1 + 2 *
+ 0.1 * theta )))/((2 * (-1 + exp(2 * 0.1 * theta ))^2) * theta )))
>
> simple.ef(X, f, lower=0, upper=Inf)

Running optimizer ...
$estimate

theta
1.119500

> MLE.est(X)
[1] 1.119500

3.5.3 Algorithm 2 for simple estimating functions

This second algorithm solves the problem for estimating functions of type
I in the particular case of equation (3.37). The user is allowed to specify
the full model in terms of drift and diffusion parameters and is asked to
specify the function h(·). It eventually calculates first and second derivatives
of the function h(·) in equation (3.37). It is also possible to specify lower
and upper bounds of the parameter space. The only requirement is that the
user specify the space variable x as ‘x’ in the coefficients. As before, the
function h(·) is expected to be a list of R expressions, one for each parameter
to be estimated, and we use a constrained optimization approach as before.
Most of the following code is dedicated to extracting the parameter names
from the coefficients of the stochastic differential equation and to preparing
the functions (drift, diffusion, h(·) and its derivatives) to be passed to the



168 3 Parametric Estimation

optimizer. Variable ‘x’ will be interpreted as variable x in b(x, θ), σ(x, θ), and
h(x). If derivatives of function h(·) are missing, then symbolic differentiation is
attempted as in the sde.sim function. Option hessian=TRUE in the function
deriv is used to get second-order derivatives.
simple.ef2 <- function(X, drift , sigma , h, h.x, h.xx ,

guess , lower , upper){

if(!is.ts(X))
stop("Please provide a `ts ' object")

if(!is.expression(drift) | !is.expression(sigma ))
stop("Coefficients `drift ' and `sigma ' must be expressions")

d.vars <- all.vars(drift)
s.vars <- all.vars(sigma)
match("x", d.vars) -> d.has.x
match("x", s.vars) -> s.has.x
par.vars <- unique(c(d.vars , s.vars))
n.vars <- length(par.vars)
match("x", par.vars) -> idx
if(is.na(idx))
stop("One variable should be named `x'")

par.vars <- par.vars[c(idx ,(1:n.vars)[-idx ])]
n.h <- length(h)
if(!is.list(h) | (n.h!=n.vars -1) |

!all(unlist(lapply(h,mode ))=="expression"))
stop("`h' must be a list of expressions of length equal to the \

dimension of the parameter space")

new.env() -> e1

self.hx <- FALSE
if(missing(h.x)){
cat("h.x not provided , attempting symbolic derivation .\n")
h.x <- vector(n.h, mode="list")
for(i in 1:n.h)
h.x[[i]] <- deriv(h[[i]],"x")

self.hx <- TRUE
}

self.hxx <- FALSE
if(missing(h.xx)){
cat("h.xx not provided , attempting symbolic derivation .\n")
h.xx <- vector(n.h, mode="list")
for(i in 1:n.h)
h.xx[[i]] <- deriv(h[[i]],"x",hessian=TRUE)

self.hxx <- TRUE
}

h1.x <- vector(n.h, mode="list")
for(i in 1:n.h){
h1.x[[i]] <- function(x,j) {
lx <- length(x)
assign("x",x, e1)
val <- eval(h.x[[j]],e1)
if(self.hx)
val <- as.numeric(attr(val ,"gradient"))

if(length(val) != lx)
val <- rep(val , lx)

val
}

}
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h1.xx <- vector(n.h, mode="list")
for(i in 1:n.h){
h1.xx[[i]] <- function(x,j) {
lx <- length(x)
assign("x",x, e1)
val <- eval(h.xx[[j]],e1)
if(self.hxx)
val <- as.numeric(attr(val ,"hessian")[1,1 ,1])

if(length(val) != lx)
val <- rep(val , lx)

val
}

}

Dd <- deriv(d, par.vars)
Ds <- deriv(s, par.vars)

D1 <- function(x){
assign("x",x, e1)
val <- as.numeric(eval(Dd ,e1))
if(is.na(d.has.x))
val <- rep(val , length(x))

val
}

S1 <- function(x){
assign("x",x, e1)
val <- as.numeric(eval(Ds ,e1))
if(is.na(s.has.x))
val <- rep(val , length(x))

val
}

Fn <- function(theta ){
for(i in 2:n.vars)
assign(par.vars[i], theta[i-1],e1)

dd1 <- D1(X)
ss1 <- S1(X)
val <- numeric(n.h)
for(i in 1:n.h){
hh1.x <- h1.x[[i]](X,i)
hh1.xx <- h1.xx[[i]](X,i)
val[i] <- sum(dd1*hh1.x + 0.5*(ss1 ^2)*hh1.xx)

}
return(val)

}

Gn <- function(theta) sum(abs(Fn(theta ))^2)

if(missing(guess ))
start <- runif(n.vars -1)

else
start <- guess

if(missing(lower ))
lower <- rep(-Inf , n.vars -1)

if(missing(upper ))
upper <- rep(Inf , n.vars -1)

st <- start
names(st) <- par.vars[-1]
cat("\nInitial values for the optimization algorithm ")
if(missing(guess ))
cat("(random )\n")
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else
cat("\n")

print(st)
cat("\nOptimization constraints\n")
ct <- as.matrix(cbind(lower , upper ))
rownames(ct) <- par.vars[-1]
colnames(ct) <- c("lower", "upper")
print(ct)

cat("\nRunning optimizer ...\n")
mn <- optim(start , Gn , method="L-BFGS -B", lower=lower , upper=upper)
names(mn$par) <- par.vars[-1]

estimate <- mn$par
fn <- Fn(mn$par)

return( list(estimate=estimate , Fn=fn) )
}

Listing 3.9. Simple estimating function, Algorithm 2.

We now show examples using this function and we suggest that the reader
study the code a bit on its own.

Example 3.1 (Ornstein-Uhlenbeck). As before, we compare the performance
of estimators for this process. Recall that Kessler’s estimator K.est should
coincide numerically with the estimator in (3.37) choosing h(x) = x2. In the
following, some output has been dropped.
> # ex3 .12.R (cont)

> set.seed (123);
> d <- expression (-1 * x)
> s <- expression (1)
> x0 <- rnorm(1,sd=sqrt(1/2))
> sde.sim(X0=x0 ,drift=d, sigma=s,N=1500, delta =0.1) -> X
> d <- expression(-theta* x)
> s <- expression (1)
> h <- list(expression(x^2))
> simple.ef2(X, d, s, h, lower=0, upper=Inf)

Running optimizer ...
$estimate

theta
1.141632

> K.est(X)
[1] 1.141632
> MLE.est(X)
[1] 1.138554
> LS.est(X)
[1] 1.128546

As can be seen Kessler’s explicit estimator and the one obtained via con-
strained optimization match. We have specified as input h as a list of ex-
pressions of length 1. We also specified the lower and upper bounds for the
parameter θ, which we decided to call theta.

Example 3.2 (Cox-Ingersoll-Ross model: the linear case). For this bidimen-
sional case, we have already mentioned and calculated the explicit estima-
tors in (3.42). These estimators are the solution of Fn = 0 in (3.37) with



3.5 Estimating functions 171

h = (x, x2)t. We will specify h(·) as a list of length 2 and we will also specify
different bounds for the α and θ. Please note that in the next code we use
generic names for the parameters.
> # ex3 .12.R (cont)

> set.seed (123);
> d <- expression (10 - x)
> s <- expression(sqrt(x))
> x0 <- 10
> sde.sim(X0=x0 ,drift=d, sigma=s,N=1500, delta =0.1) -> X
> d <- expression(alpha +theta* x)
> s <- expression(sqrt(x))
> h <- list(expression(x),expression(x^2))
> simple.ef2(X, d, s, h, lower=c(0,-Inf), upper=c(Inf ,0))

Running optimizer ...
$estimate

alpha theta
11.613569 -1.144988

> # explicit estimator for alpha
> (sum(X)^2)/(2*(length(X)*sum(X^2)-sum(X)^2))
[1] 11.61357

> # explicit estimator for theta
> (-length(X)*sum(X))/(2*(length(X)*sum(X^2)-sum(X)^2))
[1] -1.144988

Example 3.3 (Cox-Ingersoll-Ross model: the nonlinear case). An interesting
estimation problem for a nonlinear model is derived from finance, and it is
a generalization of the previous CIR model. The process is a solution of the
stochastic differential equation

dXt = (α+ θXt)dt+ σXγ
t dWt ,

α > 0, θ < 0, σ > 0, and γ ∈ [0, 1]. Assume as in [138] α = 10, θ = −1, and
σ = 1, and we want to estimate γ when the true parameter is γ0 = 1

2 . We use
h(x) = x2.
> # ex3 .12.R (cont)

> set.seed (123);
> d <- expression (10 - x)
> s <- expression(sqrt(x))
> x0 <- 10
> sde.sim(X0=x0 ,drift=d, sigma=s,N=1500, delta =0.1) -> X
> d <- expression (10- x)
> s <- expression(x^gamma)
> h <- list(expression(x^2))
> simple.ef2(X, d, s, h, lower=0, upper =1)

Running optimizer ...
$estimate

gamma
0.5315879

Limits of an optimizer

It is well-known that the optimizer in high dimensions can lead to local mini-
ma/maxima instead of a global one. Even solutions provided by robust algo-
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rithms, such as the one used in simple.ef, depend on the initial point used
to start the search. The command simple.ef allows us to specify an initial
point in Θ used to start the search via the parameter guess; otherwise it
chooses at random. We show an example of such use in the case of estimation
of the three-dimensional parameter (α, θ, γ) for the previous model.
> # ex3 .13.R

> set.seed (123)
> d <- expression (10 - x)
> s <- expression(sqrt(x))
> x0 <- 10
> sde.sim(X0=x0 ,drift=d, sigma=s,N=1500, delta =0.1) -> X
> d <- expression(alpha + theta*x)
> s <- expression(x^gamma)
> h <- list(expression(x), expression(x^2), expression(x^2))
> simple.ef2(X, d, s, h, lower=c(0,-Inf ,0), upper=c(Inf ,0 ,1))

Running optimizer ...
$estimate

alpha theta gamma
1.1449879 -0.1128850 0.0000000

> # user defined guess
> simple.ef2(X, d, s, h, lower=c(0,-Inf ,0), upper=c(Inf ,0,1),
+ guess=c(1,-.9,.7))

Running optimizer ...
$estimate

alpha theta gamma
9.3275921 -0.9195144 0.4525340

> # another guess
> simple.ef2(X, d, s, h, lower=c(0,-Inf ,0), upper=c(Inf ,0,1),
+ guess=c(1, -1.2,.3))

Running optimizer ...
$estimate

alpha theta gamma
11.0891507 -1.0929864 0.4886947

To conclude, as has already been noted elsewhere (see, e.g., [231]), in high
dimensions one should start by solving simpler problems in lower dimensions
to estimate the initial guess of the parameters and then attack the global prob-
lem and, as usual in optimization, play around with different initial starting
points by doing some sensitivity analysis.

3.5.4 Martingale estimating functions

We denote by Gn(θ) estimating functions that are also martingales with re-
spect to the σ-field Fn; i.e., E(Gn(θ)|Fn−1) = Gn−1(θ). There exist several
types of martingale estimating functions. There are good reasons to use this
type of estimating function such as that the score function is a martingale
and that a huge amount of machinery for martingales is already available. An
estimating function is said to be unbiased if E(G(θ)) = 0. This property is also
called Fisher consistency. The more general form of a martingale estimating
function is
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Gn(θ) =
n∑

i=1

g(∆,Xi−1, Xi; θ) (3.43)

with

g(∆,x, y; θ) =
N∑

j=1

aj(∆,x; θ)hj(∆,x, y; θ) , (3.44)

where hj(∆,x, y; θ), j = 1, . . . , N , are given real-valued functions satisfying∫ r

l

hj(∆,x, y; θ)pθ(∆, y|x)dy = 0

for all ∆ > 0, x ∈ (l, r), and θ ∈ Θ. The functions aj(·) are called weights
(or instruments in econometrics) and can be chosen in an optimal way with
functions hj(·) in hand using the theory of optimal estimating functions that
we are not going to treat (see [106], [121], [122]). Martingale estimating func-
tions have been studied in [31], [32], [214], [140], [138], [33], and [120], [48] and
[139] contain comparative simulation studies.

3.5.5 Polynomial martingale estimating functions

Another form of estimating function leading to explicit estimators are poly-
nomial estimating functions. In particular, linear and quadratic estimating
functions will be treated here. They rely on the knowledge of the first con-
ditional moments instead of the whole transition density. When conditional
moments are not known, they can be estimated using the Monte Carlo ap-
proach, and this task, though computationally intensive, is simpler than the
estimation of the whole transition density. When conditional moments are
known, the estimators are also consistent. In general, this type of estimating
function provides estimators that are very robust to model misspecification,
as shown for example in [31].

Linear estimating functions

A simple type of estimating function that can be used when the parameter
θ is only in the drift coefficient is the linear estimating function obtained for
N = 1 with

h1(∆,x, y; θ) = y −Hθ(∆|x) ,

where
Hθ(∆|x) = Eθ(X∆|X0 = x) =

∫ r

l

ypθ(∆, y|x)dy .

They were studied for diffusion models in [31] and derived as an approximation
to the continuous-time likelihood function. In some models (e.g. the Ornstein-
Uhlenbeck model), the conditional expectation H(∆,x; θ) is known. If it isn’t,
one needs to estimate it using a Monte Carlo method. One of the martingale
estimating functions proposed in [31] has the particular form
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Gn(θ) =
n∑

i=1

∂θb(Xi−1, θ)
σ2(Xi−1, θ)

{Xi − Eθ(Xi|Xi−1)} . (3.45)

This estimating function is derived as an approximation to the optimal es-
timating function11 and it also arises in the problem of approximating the
continuous score function in [211]. These martingale linear estimating func-
tions are particular cases of the simple estimating functions (3.36) of type
II when Θ is one-dimensional, so the same R command simple.ef can be
used. Also notice again that in the Ornstein-Uhlenbeck example, when the
conditional moments are known in explicit form, the least squares estimator
in (3.39) is indeed obtained via a martingale estimating function (3.38), which
is just a particular case of (3.43).

Quadratic estimating functions

If the parameter θ belongs to the diffusion coefficient, then the linear es-
timating function might be too “simple” for the task. Thus a second term
h2(∆,x, y; θ) has to be used. This function takes the form

h2(∆,x, y; θ) = h1(∆,x, y; θ)2 − Φθ(∆|x) ,

where

Φθ(∆|x) = Varθ(X∆|X0 = x) =
∫ r

l

h1(∆,x; θ)2pθ(∆, y|x)dy .

Example 3.4 (Mean-reverting diffusion). Consider the mean-reverting diffu-
sion

dXt = −β(Xt − α)dt+ τ
√
XtdWt, β, τ > 0 .

For this model
Hθ(∆|x) = xe−βt + α

(
1− e−βt

)
and

Φ(∆|x, α, β, τ) =
τ2

β

((
1
2
α− x

)
e−2β − (α− x)e−β +

1
2
α

)
.

Monte Carlo evaluation of conditional moments

When the conditional mean and variance are not known, they can be esti-
mated as follows. Fix one value of θ and simulate numerically M independent
trajectories {Xj

δi, i = 1, . . . ,K}, where δ = ∆/K with K sufficiently large.
Then reasonable estimators are

Hθ(∆|x) =
1
M

M∑
j=1

Xj
Kδ

11 We don’t treat this class of estimating functions here, but the reader can refer to
[106].
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and

Φθ(∆|x) =
1
M

M∑
j=1

(
Xj

Kδ

)2

− (Hθ(∆|x))2 .

Polynomial estimating functions

One can generalize quadratic estimating functions using the functions

hj(∆,x, y; θ) = φj(y; θ)−Πθ
∆(φj(θ))(x),

where the function φj(y) = yj and Πθ
∆ is the transition operator such that

Πθ
∆(u)(x) = Eθ(u(X)|X0 = x) .

Polynomial estimating functions have been studied in [179] and [136].

linear.mart.ef <- function(X, drift , sigma , a1 , a2 , guess ,
lower , upper , c.mean , c.var){

if(!is.ts(X))
stop("Please provide a `ts ' object")

N <- 1
if(missing(a1))
stop("`a1 ' is missing")

if(!missing(a2)){
if(length(a1) != length(a2))
stop("`a1 ' and `a2 ' not of the same dimension")

N <- 2
}

if(!is.expression(a1))
stop("`a1 ' must be a vector of expressions")

if(N==2)
if(!is.expression(a2))
stop("`a2 ' must be a vector of expressions")

if(!is.expression(drift) | !is.expression(sigma ))
stop("Coefficients `drift ' and `sigma ' must be expressions")

if(!is.expression(c.mean))
stop("Conditional mean must be an expression")

if(!is.expression(c.var))
stop("Conditional variance must be an expression")

d.vars <- all.vars(drift)
s.vars <- all.vars(sigma)
match("x", d.vars) -> d.has.x
match("x", s.vars) -> s.has.x
par.vars <- unique(c(d.vars , s.vars))
n.vars <- length(par.vars)
match("x", par.vars) -> idx
if(is.na(idx))
stop("One variable should be named `x'")

par.vars <- par.vars[c(idx ,(1:n.vars)[-idx ])]
n.pars <- n.vars - 1

# We check the list of expressions needed for the weights a(x,theta)
# each a_i(x,theta) must be a vector of expressions of the same
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# dimension of the parameter space
a.vars <- all.vars(a1)
if(N==2)
a.vars <- c(a.vars , all.vars(a2))

a.vars <- unique(a.vars)
n.a.vars <- length(a.vars)
match("x", a.vars) -> a.idx
a.has.x <- !is.na(a.idx)
a.idx <- as.integer(na.omit(a.idx))
a.pars <- a.vars [(1:n.a.vars)[-a.idx]]
n.a.pars <- length(a.pars)

if(n.pars != length(a1))
stop("weight functions `a' must have the same dimension of the\
parameter space")

new.env() -> e1
# when missing c.mean and c.var need to be estimated
# via MC methods. Easy.

F.XT <- function (){
val <- eval(c.mean ,e1)
if(length(val) != lx)
val <- rep(val , lx)

val
}

PHI.XT <- function (){
val <- eval(c.var ,e1)
if(length(val) != lx)
val <- rep(val , lx)

val
}

# vectorized version of a: A[i,j,] = a_{ij }()
A <- function () {
val <- array(0, c(N, n.pars , lx))
for(k in 1:n.pars){
val[1,k,] <- eval(a1[k],e1)
if(N==2)
val[2,k,] <- eval(a2[k],e1)

}
val

}

n.obs <- length(X)
Y.data <- X[2:n.obs]
X.data <- X[1:(n.obs -1)]

assign("x",X.data , e1)
assign("y",Y.data , e1)
lx <- length(X.data)

Fn <- function(theta ){
for(i in 2:n.vars){
assign(par.vars[i], theta[i-1],e1)
assign(par.vars[i], theta[i-1], .GlobalEnv)

}

aa <- A() # this contains the weights

H1 <- Y.data - F.XT()
H2 <- H1^2 - PHI.XT()
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val <- 0
for(i in 1:n.pars)
val <- val + sum(aa[1,i,]*H1)

if(N==2)
for(i in 1:n.pars)
val <- val + sum(aa[2,i,]*H2)

return(val)
}

Gn <- function(theta) sum(abs(Fn(theta ))^2)

if(missing(guess ))
start <- runif(n.vars -1)

else
start <- guess

if(missing(lower ))
lower <- rep(-Inf , n.vars -1)

if(missing(upper ))
upper <- rep(Inf , n.vars -1)

st <- start
names(st) <- par.vars[-1]
cat("\nInitial values for the optimization algorithm ")
if(missing(guess ))
cat("(random )\n")

else
cat("\n")

print(st)
cat("\nOptimization constraints\n")
ct <- as.matrix(cbind(lower , upper ))
rownames(ct) <- par.vars[-1]
colnames(ct) <- c("lower", "upper")
print(ct)

cat("\nRunning optimizer ...\n")
mn <- optim(start , Gn , method="L-BFGS -B", lower=lower , upper=upper)
names(mn$par) <- par.vars[-1]

estimate <- mn$par
fn <- Fn(mn$par)

return( list(estimate=estimate , Fn=fn) )
}

Listing 3.10. Polynomial estimating function.

> # ex3 .14.R

> set.seed (123)
> d <- expression (-1 * x)
> s <- expression (1)
> x0 <- rnorm(1,sd=sqrt(1/2))
> sde.sim(X0=x0 ,drift=d, sigma=s,N=1000, delta =0.1) -> X
> d <- expression(-theta * x)

> linear.mart.ef(X, d, s, a1=expression(-x), lower=0, upper=Inf ,
+ c.mean=expression(x*exp(-theta*0.1)),
+ c.var=expression ((1-exp(-2*theta*0.1))/(2*theta )))

Running optimizer ...
$estimate

theta
1.144589
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> # the linear mart. e.f. coincides with the
> # least square estimator
> LS.est(X)
[1] 1.144589

3.5.6 Estimating functions based on eigenfunctions

Another way to build estimating functions for diffusions was introduced in
[140] and is based on the infinitesimal generator of the diffusion Lθ in (3.3).
A twice-differentiable function φ(x; θ) is called an eigenfunction of Lθ if it
satisfies

Lθφ(x; θ) = −λ(θ)φ(x; θ) ,

where λ(θ) is a nonnegative real number called the eigenvalue, corresponding
to φ(x; θ). Under weak regularity conditions (see [140]), it holds true that

Πθ
∆(φ(θ))(x) = Eθ(φ(X∆; θ)|X0 = x) = e−λ(θ)∆φ(x; θ) .

Thus, a martingale estimating function of the form (3.43) can be defined using

hj(∆,x, y; θ) = φj(y; θ)− e−λj(θ)∆φj(x; θ) ,

where φ1(·; θ), . . . , φN (·; θ) are the eigenfunctions for Lθ with eigenvalues
λ1(θ), . . . , λN (θ). This method is quite general for one-dimensional diffusions
but multidimensional processed eigenvalues are not necessarily real values.

Example 3.5 (Cox-Ingersoll-Ross). For the Cox-Ingersoll-Ross model, the ei-
genfunctions are the Laguerre polynomials. Hence the resulting martingale
estimating function in this case is another polynomial estimating function.

Example 3.6 (Ornstein-Uhlenbeck on the finite interval). As in [140], consider
the one-dimensional diffusion with drift b(x, θ) = −θ tan(x) and σ(x, θ) = 1
defined on (−π/2,+π/2). For θ ≥ 1

2 , the process is ergodic. The eigenfunctions
in this case are φj(x; θ) = Cθ

j (sin(x)) and eigenvalues j(θ+j/2) for j = 0, 1, . . .,
where Cθ

j are the Gegenbauer polynomials of order j. Considering only the
first eigenfunction, one obtains

Gn(θ) =
n∑

i=1

sin(Xi−1)
{

sin(Xi)− e−(θ+ 1
2 ) sin(Xi−1)

}
, (3.46)

which clearly has an explicit solution of Gn(θ) = 0. This estimating func-
tion is also an approximation of the optimal estimating function when using
h(x, y, θ) = sin(y)− e−(θ+0.5) sin(x).

Example 3.7 (The Pearson diffusions). For the Pearson diffusion solution to
(1.59), when the process has all finite moments up to order N , the eigenfunc-
tions are just the first N eigenpolynomials. The asymptotic properties and
optimality for this class of processes have been studied in [89].
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More examples with discussion can be found in Section 3 of [30], but it
is clear that previous algorithms for martingale estimating functions can be
applied in this framework as well.

3.5.7 Estimating functions based on transform functions

Recently, in [133] a new method of creating estimating functions was proposed
that does not need the explicit knowledge of conditional moments or distri-
butions. This method relies on the Wagner-Platen expansion (see [141]) of a
suitable transformation U of the original process. The authors prove that for
affine diffusion and power transform function U(x) = xλ, explicit solutions
of the estimating functions can be found. Even if the calculations are easy
to deal with, the formulas might be too lengthy and do not fit the purposes
of this text; hence we direct the reader to the cited reference. One last thing
worth mentioning is that this approach works well in high dimensions and
also for nonergodic and (time)-inhomogeneous diffusions.

Which one to choose?

As seen from the previous material, there is no general method that can be ap-
plied to any kind of model without ad hoc adaptation to the specific situation
(parameters in the drift and/or the diffusion part, high dimension, nonergodic
case, etc.), so we prefer to show at least a selection of approaches. We mention
without going into detail that, for example, combinations of estimating func-
tions when the dimension of the parameter space is high proved to be quite
effective (see, e.g., [33], where the authors propose to use a simple estimating
function of type I for the parameters in the drift and a martingale estimating
function for the diffusion part). A good account on estimating functions and
their statistical properties can also be found in [30].

3.6 Discretization of continuous-time estimators

We mentioned at the beginning of this chapter that for continuous-time ob-
servations standard likelihood estimation can be done using the Girsanov
theorem directly. In very early works on inference for stochastic differential
equations from discrete observations, one approach was to consider discretized
versions of continuous-time estimators (see, e.g., [151], [142]). This approach
usually involves the discretization of stochastic integrals. Recently, in [52] and
[53], performance results of these estimates were considered in comparison
with estimates obtained from exact and approximated likelihood methods.
Although we do not suggest this approach as a generic approach to obtain
good estimates, for some specific models for which the hypotheses of other
approximate methods do not hold, these estimates are still of some interest.
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Table 3.3. Integrals Ij in maximum likelihood estimators of k and θ (see the text).

Model I1 I2 I3 I4 I5

CIR

∫ T

0

dXs

Xs

∫ T

0

dXs

∫ T

0

ds

Xs

∫ T

0

Xsds

∫ T

0

ds

GBM

∫ T

0

dXs

X2
s

∫ T

0

dXs

Xs

∫ T

0

ds

X2
s

∫ T

0

ds

∫ T

0

ds

Xs

We discuss here an application for a couple of models just to show some details
of the implementations. Consider the model

dXt = k(θ −Xt)dt+ σXβ
t dWt .

Usually, σ is estimated using the quadratic variation estimator (3.17),

σ̂2 =
1
n∆

n∑
i=1

(Xi −Xi−1)2,

or (see, e.g., [186], [206]) by

σ̂2 =
1
n∆

n∑
i=1

(Xi −Xi−1)2

X2β
i−1

,

and β is assumed to be specified by the researcher. We consider here β = 1,
which gives geometric Brownian motion, and β = 1

2 , which gives the Cox-
Ingersoll-Ross model. Direct maximization of the continuous likelihood (3.4)
gives (see, e.g., [159] or [149]) the continuous-time estimators

k̂ =
I1I5 − I2I3
I3I4 − I2

5

, θ =
I1I4 − I2I5
I1I5 − I2I3

,

where Ij are (eventually stochastic) integrals. Table 3.3, taken from [53], gives
the actual form of the Ij . Usually, the nonstochastic integrals are evaluated
using one of the following methods:

∫ T

0

f(Xs)ds =



∆
n∑

i=i

f(Xi−1), Cauchy formula;

∆
n∑

i=1

f(Xi−1) + f(Xi)
2

, trapezoidal;

∆
n−1∑
i=1

f(Xi−1) + 4f(Xi) + f(Xi+1)
3

, Simpson.

In the first case, the approximation error is of order O(∆), in the second case
it is O(∆2), and in the latter, it is O(∆4). Usually, the trapezoidal rule is
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Table 3.4. Discretized versions of the integrals Ij in Table 3.3.

Model I1 I2

CIR log
Xn

X0
+

σ2

2
I3 Xn −X0

GBM σ2I5 −
(

1

Xn
− 1

X0

)
log

Xn

X0
+

σ2

2
n∆

Model I3 I4 I5

CIR ∆

n∑
i=1

X−1
i−1 + X−1

i

2
∆

n∑
i=1

Xi+1 + Xi

2
n∆

GBM ∆

n∑
i=1

X−2
i−1 + X−2

i

2
n∆ ∆

n∑
i=1

X−1
i−1 + X−1

i

2

considered a good compromise between numerical efficiency and ease of im-
plementation. When concerned with stochastic integrals, first the Itô formula
is used to eliminate the stochastic integral and then one of the approximation
formulas above is applied to the resulting terms. Rarely, the following direct
approximation is considered:∫ T

0

f(Xs)dXs =
n∑

i=1

f(Xi−1)(Xi −Xi−1) .

For the processes considered in this section, the discretized integrals take the
form in Table 3.4. We implement in the next code only the algorithm for the
Cox-Ingersoll-Ross case and run a small simulation study to test the perfor-
mance of the estimators for a given σ and when σ has to be estimated using
the quadratic variation estimator. The next experiment consists of a 1000
Monte Carlo replications in which a Cox-Ingersoll-Ross model is simulated
with the initial value sampled from the stationary law of the process (rsCIR)
and then the integrals I1 to I5 are calculated appropriately following Table
3.4. As I1 depends on σ, we compute two estimators for k and θ, one time
using the value of σ = 0.15 (the true value) and one other time using the
quadratic variation estimator. At the end, we calculate both the average and
standard deviation of the estimates over the 1000 simulations. The time hori-
zon T is set to 100, the time increment ∆ is chosen as 0.01, and hence a total
of N = T/∆ observations are available for the estimation.
> # ex3 .15.R

> k <- NULL
> theta <- NULL
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> k1 <- NULL
> theta1 <- NULL
> sigma.hat <- NULL
> sigma <- 0.15
> pars <- c(0.5, 0.2, sigma)
> n.sim <- 1000
> Delta <- 0.01
> set.seed (123)
> x0 <- rsCIR(n.sim , pars)
> T <- 100
>
> for(i in 1:n.sim){
+ X <- sde.sim(X0=x0[i], model="CIR", theta=pars , N=T/Delta , delta=Delta)
+
+ n <- length(X)
+
+ # CIR
+ I3 <- Delta * sum(1/X[1:(n-1)] + 1/X[2:n])/2
+ I1 <- log(X[n]/X[1]) + 0.5*sigma^2 * I3
+ I2 <- X[n] - X[1]
+ I4 <- Delta * sum(X[1:(n-1)] + X[2:n])/2
+ I5 <- n*Delta
+
+ k <- c(k, (I1*I5 -I2*I3)/(I3*I4 -I5^2))
+ theta <- c(theta , (I1*I4 -I2*I5)/(I1*I5 -I2*I3))
+ sigma.est <- sqrt(sum((X[2:n]-X[1:(n -1)])^2/X[1:(n -1)])/(n*Delta))
+ sigma.hat <- c(sigma.hat , sigma.est)
+
+ I1 <- log(X[n]/X[1]) + 0.5*sigma.est^2 * I3
+ k1 <- c(k1 , (I1*I5 -I2*I3)/(I3*I4 -I5^2))
+ theta1 <- c(theta1 , (I1*I4 -I2*I5)/(I1*I5 -I2*I3))
+
+ }
> cat(sprintf("kappa =%f, theta =%f, sigma =%f : kappa1 =%f, theta1 =%f\n",
+ mean(k*theta), mean(k), mean(sigma.hat), mean(k1*theta1), mean(k1)))
kappa =0.524426 , theta =0.211023 , sigma =0.150207 : kappa1 =0.524789 ,
theta1 =0.211176

> cat(sprintf("SD: kappa =%f, theta =%f, sigma =%f : kappa1 =%f, theta1 =%f\n",
+ sd(k*theta), sd(k), sd(sigma.hat), sd(k1*theta1), sd(k1)))
SD: kappa =0.075822 , theta =0.033268 , sigma =0.001058 : kappa1 =0.075948 ,
theta1 =0.033317

> cat(sprintf("kappa =%f, theta =%f, sigma =%f\n", pars[1], pars[2], pars [3]))
kappa =0.500000 , theta =0.200000 , sigma =0.150000

From the above, it emerges that there is no substantial difference in terms
of precision of the estimates if σ is estimated using the quadratic variation
estimator. The reader might want to verify that these results are highly de-
pendent on the discretization step. Indeed, more bias in the estimates of k
and θ emerges as ∆ increases. For extensive accounts of similar simulation
studies, see [53] and [52].

3.7 Generalized method of moments

The generalized method of moments (GMM) dates back to 1982 (see [103]). It
is a generalization of the method of moments that is based on the matching of
theoretical moments and sample moments. Let Xi be the stationary sequence
and θ the m× 1 vector of parameters characterizing the stationary law of the
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Xi’s. Let ui = u(Xi; θ) be an r × 1-valued function, r ≥ m, such that

E{ui} = µ, ∀ i,

and
Cov(ui, ui+j) = E{(ui − µ)(ui+j − µ)T } = Sj , ∀ i, j,

and define S−j = Cov(ui, ui−j). It is assumed that the following moment
condition (or orthogonality condition) holds if θ0 is the true value of the
parameter θ:

E{u(Xi; θ)} = 0 only if θ = θ0 . (3.47)

Usually, the function u(θ) is the difference between the exact kth moment and
Xk

i for some powers k. Let

gn(θ) =
1
n

n∑
i=1

u(Xi; θ)

be the sample counterpart of condition (3.47). We expect that E{gn(θ0)} = 0.
It is assumed further that the strong law of large numbers holds; i.e.,

gn(θ) a.s.→ E{u(Xi; θ)}

uniformly in θ. The main point is that moments and, in general, the structure
of the function u(·) should be known for each model12 (see also [92] and [90]).
If the dimension m of θ and the number of conditions r defined by u match,
there is one single solution to the problem, but in general there might be more
moment conditions than parameters to estimate (r ≥ m), i.e., the model is
overidentified. The optimization problem is transformed as

θ̂ = arg min
θ
Q(θ) = arg min

θ
gn(θ)TWgn(θ),

where W is a given positive definite matrix of weights. A particular choice of
W is S−1, where

S = E{uuT }

is the long-run covariance matrix. This choice of W guarantees the small-
est asymptotic covariance matrix of the GMM estimator. The matrix S is
estimated from the data as follows. Let

Ŝj =
1
n

n∑
i=j+1

uiu
T
i−j , j = 0, 1, . . . , `,

where ` is the maximum lag chosen a priori.13 Then, the estimate is
12 Unless some nonparametric approach such as SNP by Gallant and Tauchen [91]

is used to calculate the moments numerically in place of exact formulas. See also
http://www.econ.duke.edu/~get/snp.html.

13 This is not actually a trivial choice (see [166]), but we do not discuss it here.

http://www.econ.duke.edu/~get/snp.html
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Ŝ = Ŝ0 +
∑̀
j=1

wj(Ŝj + ŜT
j ) . (3.48)

The set of weights wj are such that Ŝ is a positive definite matrix. If the wj ’s
are all equal to one, all lags are considered to contribute equally. One usual
choice is the Bartlet weights, defined as

wj = 1− j

`+ 1
.

Several authors (see, e.g., [166]) have shown that the choice of the weights is
not really an issue, so we do not present other alternatives here. The interested
reader may find more details on the estimation of S in Section 3.5.3 of [101].

3.7.1 The GMM algorithm

Hansen [103] proposed a two-step procedure.

Step 1: Set W = I with I the identity matrix, and solve the nonlinear
least squares problem

θ̂(1) = arg min
θ
gn(θ)gn(θ)T .

Step 2: Compute
ûi = u

(
xi; θ̂(1)

)
,

estimate Sj as

Ŝj =
1
n

n∑
i=j+1

ûiû
T
i−j , j = 0, 1, . . . , `,

and then calculate Ŝ as in (3.48). Now set W = Ŝ−1 and estimate a new
value for θ as follows:

θ̂(2) = arg min
θ
gn(θ)TWgn(θ) .

Step 2 can be iterated until, at the k + 1st step, one obtains θ̂(k+1) ' θ̂(k).
The GMM estimators are asymptotically normal with asymptotic variance
V/n = (DS−1D)−1/n, where D is the gradient of gn evaluated at θ0. The
asymptotic variance can of course be estimated by the sample counterpart of
V and D calculated at θ̂. Under additional regularity conditions, the estimator
is also consistent (see [103]).

Further, it is also possible to construct a χ2 test to verify if the model
is overidentified. Indeed, under the null hypothesis H0 : E{ui(θ)} = 0, the
following statistic J is such that
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J = gn(θ̂)Wgn(θ̂) ∼ χ2
r−m .

There exists a nice link between likelihood inference, estimating functions,
and the generalized method of moments (see, e.g., [48]). By choosing u as the
score function,

u(Xi; θ) =
∂

∂θ
log pθ(t,Xi;Xi−1) ,

the GMM estimator is just the maximum likelihood estimator, and the limit-
ing variance V takes the usual form.

For diffusion processes observed at discrete times, the moment conditions
have to be replaced by conditional moment conditions,

E{ui(θ0)|Fi} = 0 ,

provided that they exist in explicit form or otherwise are obtained with the
simulated moment method as proposed in [51].

3.7.2 GMM, stochastic differential equations, and Euler method

One application that increased the popularity of GMM in inference for
stochastic differential equations was the paper [49], where the famous CKLS
model for the interest rate was proposed for the first time

dXt = (α+ βXt)dt+ σXγ
t dWt . (3.49)

At least in the case γ = 1
2 (i.e., the Cox-Ingersoll-Ross model), the first two

conditional moments exist in explicit form (see formulas (1.49) and (1.50)).
The usual approach in econometrics (see [43], [41], [40]) is to discretize the
stochastic differential equation above in a way that is easy to treat but not
the exact (or the best) discretization of equation (3.49),

Xi+1 −Xi = (α+ βXi)∆+ εi+1 . (3.50)

It is then assumed that, for the discretized model, the following are true:

E{εi+1|Fi} = 0, E{ε2i+1|Fi} = ∆σ2X2γ
i , E{εiεj |Fi} = 0 .

Hence E(Xi+1|Fi) = Xi + (α + βXi)∆ and Xi+1 − E(Xi+1|Fi) = εi+1. The
function u(·) for the moment condition is consequently constructed as

ui(θ) =


Xi+1 − E(Xi+1|Fi)

Xi(Xi+1 − E(Xi+1|Fi))
Var(Xi+1|Fi)− (Xi+1 − E(Xi+1|Fi))2

Xi{Var(Xi+1|Fi)− (Xi+1 − E(Xi+1|Fi))2}

 ,
and the function gn(θ) is then
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gn(θ) =
1
n

n∑
i=1

ui(θ) .

Unfortunately, conditional moments of the continuous-time model (3.49) and
conditional moments of the discretization (3.50) do not coincide. Hence, in
this case, using conditional moments may lead to inconsistent estimates. In
particular (see, e.g., [48], [5]), let us denote by αρ, βρ, σρ, and γρ the true
parameters of (3.50) and by α, β, σ, and γ the true parameters of (3.49).
Easy calculations show that if we check the moment condition (3.47) for the
first two elements in u (i.e., E(εi+1) = 0 and E(Xiεi+1) = 0), we obtain

αρ =
α

β∆

(
eβ∆ − 1

)
and βρ =

eβ∆ − 1
∆

.

Therefore, the GMM estimator is a consistent estimator of αρ and βρ and
not α and β. Similar results hold for σρ and γρ. We have already noticed
similar facts in Section 3.2.1, and of course αρ and βρ are nearly equal to
their continuous-time counterparts α and β as ∆ → 0. Many other solutions
have been proposed so far such as moment approximation of specific model
discretizations (as in [48]), the simulated method of moments [51], the effi-
cient method of moments (see [93]), and indirect inference [99], but we do not
discuss these methods here. Conversely, we present an example of implemen-
tation in which we compare exact maximum likelihood and GMM estimators.
We make use of the gmm function in the package sde. The interface of gmm is
similar to that of simple.ef, with the only difference that this function needs
the u(·) function specified as u <- function(x,y,theta), where theta is a
vector and the dimension of theta is specified via the parameter dim or ob-
tained by the function from the length of the guess vector of initial values.
An application of gmm is the easiest way to show how it functions. In order
to obtain reasonable working GMM estimates, we need to have stationary
observations from the CIR process and small ∆. Hence we simulate a path of
the CIR process of length 500000 with ∆ = 0.001 with stationary initial value
x0. Then, we retain only the second half of the trajectory and subsample it
further with ∆ = 0.01. In the end, we are left with 5000 observations.
> # ex3 .16.R
> alpha <- 0.5
> beta <- 0.2
> sigma <- sqrt (0.05)
> true <- c(alpha , beta , sigma)
> names(true) <- c("alpha", "beta", "sigma")
>
> set.seed (123)
> x0 <- rsCIR(1,theta=true)
> sde.sim(X0=x0 ,model="CIR",theta=true ,N=500000 , delta =0.001) -> X
> X <- window(X, deltat =0.1)
> DELTA = deltat(X)
> n <- length(X)
> X <- window(X, start=n*DELTA*0.5)
> plot(X)
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For the Cox-Ingersoll-Ross model, we know that

E{Xi+1|Xi = y} =
θ1
θ2

+
(
y − θ1

θ2

)
e−θ2∆ ,

Var{Xi+1|Xi = y} = y
θ23(e

−θ2∆ − e−2θ2∆)
θ2

+
θ1θ

2
3(1− e−2θ2∆)

2θ22
,

where (α, β, σ) = (θ1, θ2, θ3). Then, we can easily construct the function ui(θ)
= u(x,y,theta) as the code below shows.
> # ex3 .16.R (cont)
> u <- function(x, y, theta , DELTA ){
+ c.mean <- theta [1]/theta [2] + (y-theta [1]/theta [2])*exp(-theta [2]*DELTA)
+ c.var <- ((y*theta [3]^2 *
+ (exp(-theta [2]*DELTA)-exp(-2*theta [2]*DELTA ))/theta [2] +
+ +theta [1]*theta [3]^2*(1-exp(-2*theta [2]*DELTA ))/(2*theta [2]^2)))
+ cbind(x-c.mean ,y*(x-c.mean), c.var -(x-c.mean)^2, y*(c.var -(x-c.mean )^2))
+ }

Further, we estimate the parameters using the true maximum likelihood
approach, and we pass these estimates to the gmm function.
> # ex3 .16.R (cont)
> CIR.lik <- function(theta1 ,theta2 ,theta3) {
+ n <- length(X)
+ dt <- deltat(X)
+ -sum(dcCIR(x=X[2:n], Dt=dt , x0=X[1:(n-1)],
+ theta=c(theta1 ,theta2 ,theta3), log=TRUE))
+ }
>
> fit <- mle(CIR.lik , start=list(theta1 =.1, theta2 =.1, theta3 =.3),
+ method="L-BFGS -B",lower=c(0.001 ,0.001 ,0.001) , upper=c(1,1,1))
> # maximum likelihood estimates
> coef(fit)

theta1 theta2 theta3
0.5232152 0.2096333 0.2273695
>
> gmm(X,u, guess=as.numeric(coef(fit)), lower=c(0,0,0), upper=c(1,1,1))

Dimension of parameter space set to 3
Initial values for the optimization algorithm
[1] 0.5232152 0.2096333 0.2273695

Optimization constraints
lower upper

theta1 0 1
theta2 0 1
theta3 0 1

Running optimizer ...

First stage estimates:
theta1 theta2 theta3

0.5232972 0.2094014 0.1631663

Starting second stage ...
theta1 theta2 theta3 Q1 |theta1 -theta2|

0.5299241256 0.2127399561 0.1623548320 0.0005173358 0.0107770245
$par

theta1 theta2 theta3
0.5299241 0.2127400 0.1623548

$val
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[1] 0.0005173358

$hessian
theta1 theta2 theta3

theta1 7.002527 -14.16295 -22.52342
theta2 -14.162946 33.48923 63.42024
theta3 -22.523415 63.42024 493.56295

> true
alpha beta sigma

0.5000000 0.2000000 0.2236068

The initial guess value was good enough, but the reader may want to try
other starting points in the parameter space or change the tolerances tol1
and/or tol2 to see how unstable the optimization step might be. As usual,
reducing the number of parameters to be estimated increases the probability
that the optimizer will find a good solution. In the code below, we only impose
the first two moment conditions, which are enough to obtain estimates of θ1
and θ2.
> # ex3 .16.R (cont)
> u2 <- function(x, y, theta , DELTA){
+ c.mean <- theta [1]/theta [2] + (y-theta [1]/theta [2])*exp(-theta [2]*DELTA)
+ cbind(x-c.mean ,y*(x-c.mean))
+ }
>
> set.seed (123)
> gmm(X, u2 , dim=2, lower=c(0,0), upper=c(1 ,1))

Initial values for the optimization algorithm (random)
[1] 0.2875775 0.7883051

Optimization constraints
lower upper

theta1 0 1
theta2 0 1

Running optimizer ...

First stage estimates:
theta1 theta2

0.5178472 0.2073139

Starting second stage ...
theta1 theta2 Q1 |theta1 -theta2|

5.076414e-01 2.034049e-01 2.567041e-13 1.411470e-02
$par

theta1 theta2
0.5076414 0.2034049

$val
[1] 2.567041e-13

$hessian
theta1 theta2

theta1 5.85667 -11.54539
theta2 -11.54539 26.07322

> true
alpha beta sigma

0.5000000 0.2000000 0.2236068

Listing 3.11 contains the code of the gmm function used above.
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gmm <- function(X, u, dim , guess , lower , upper ,maxiter =30,
tol1=1e-3,tol2=1e-3){

if(!is.ts(X))
stop("Please provide a `ts ' object")

DELTA = deltat(X)
n <- length(X)

if(!missing(guess )){
if(length(guess )>0){
dim <- length(guess)
cat(sprintf("\nDimension of parameter space set to %d", dim))

}
}

if(missing(dim))
stop("Please specify dimension of parameter space")

H <-function(theta)
apply(u(X[2:n], X[1:(n-1)], theta , DELTA), 2, mean)

Q <-function(theta) sum(H(theta )^2)

S <- function(j, theta)
( (t(u(X[(j+2):n],X[(j+1):(n-1)], theta , DELTA )) %*%

u(X[2:(n-j)],X[1:(n-j-1)], theta , DELTA))/n )

ell <- n-2
w <- 1-(1:ell)/(ell +1) # Bartlet weights

cat("\nInitial values for the optimization algorithm ")
if(missing(guess )){

guess <- runif(dim)
cat("(random )\n")

} else {
cat("\n")

}
print(guess)

if(missing(lower ))
lower <- rep(-Inf , dim)

if(missing(upper ))
upper <- rep(Inf , dim)

cat("\nOptimization constraints\n")
ct <- as.matrix(cbind(lower , upper ))

rownames(ct) <- paste("theta" ,1:dim ,sep="")
colnames(ct) <- c("lower", "upper")
print(ct)
cat("\nRunning optimizer ...\n")

theta1 <- optim(guess ,Q,method="L-BFGS -B",
upper=upper , lower=lower)$par

for(i in 1:dim){
names(theta1 )[i] <- sprintf("theta%d",i)

}
cat("\nFirst stage estimates :\n")
print(theta1)

cat("\nStarting second stage ...\n")
goOn <- TRUE
iter <- 0
while(goOn){
iter <- iter + 1
S.hat <- S(0, theta1)
for(i in 1:ell)
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S.hat = S.hat + w[i]*(S(i,theta1 )+t(S(i,theta1 )))
W <- solve(S.hat)
Q1 <-function(theta) H(theta) %*% W %*% H(theta)
fit <- optim(theta1 ,Q1,method="L-BFGS -B", upper=upper ,

lower=lower , hessian=TRUE)
theta2 <- fit$par
val <- fit$value
hes <- fit$hessian
out <- c(theta2 , val , sum(abs(theta1 -theta2 )))
names(out) <- c(names(theta1),"Q1","|theta1 -theta2|")
print(out)
names(theta2) <- names(theta1)
if(sum(abs(theta1 -theta2))<tol1 || val <tol2 || iter >maxiter)
goOn <- FALSE

theta1 <- theta2
}

list(par=theta1 , val=val , hessian=hes)
}

Listing 3.11. Generalized method of moments.

3.8 What about multidimensional diffusion processes?

As mentioned in the early pages of this text, we do not deal with the multi-
dimensional case. In general, methods based on simulation work equally well
for the multidimensional case. These include the simulated likelihood method
and the MCMC approach. Estimating functions and the generalized method
of moments also have variants for the multidimensional case. Finally, Hermite
polynomial expansion is available for multidimensional diffusion processes.
For all the above mentioned methods, the references cited in this book also
contain the multidimensional result. The reader is invited to read them as a
starting point.



4

Miscellaneous Topics

We now review some inference problems that do not directly relate to the
parametric estimation methods presented in the previous chapter even though
part of the results already presented will be useful here. We will describe
the problem of model identification via Akaike’s information criterion, the
problem of nonparametric estimation for diffusion processes, and a change-
point problem for the volatility of a diffusion process.

4.1 Model identification via Akaike’s information
criterion

Consider a diffusion process solution to the stochastic differential equation

dXt = b(Xt, α)dt+ σ(Xt, β)dWt (4.1)

with some initial condition X0 = x0, where the parameter θ = (α, β) is such
that θ ∈ Θα×Θβ = Θ, Θα ⊂ Rp, Θβ ⊂ Rq, and Θ convex. As usual, b(·, ·) and
σ(·, ·) are two known (up to α and β) regular functions such that a solution
of (4.1) exists. The process Xt is also assumed to be ergodic for every θ with
invariant distribution πθ(·). Observations are assumed to be equally spaced
and such that the discretization step ∆n shrinks as the number of observations
increases: ∆n → 0, n∆n = T → ∞ under the rapidly increasing design; i.e.,
n∆2

n → 0 as n→∞. The aim is to try to identify the underlying continuous
model on the basis of discrete observations using an information criterion that
is a function of the dimension of the parameter space [223]. The Akaike infor-
mation criterion (AIC) [9], [10] dates back to 1973 and is constructed in such
a way that it searches the best model embedded in a wider class of models. It
is a likelihood-based method that, roughly speaking, is defined as minus twice
the log-likelihood plus twice the dimension of the parameter space. So it is
based on the idea that an overspecified model (high dimension of parameter
space = too many parameters in the stochastic differential equation) is less

S.M. Iacus, Simulation and Inference for Stochastic Differential Equations,
doi: 10.1007/978-0-387-75839-8 4, © Springer Science+Business Media, LLC 2008
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valuable than a correctly specified one. Given a class of competing models, the
best model is the one that minimizes the AIC criterion. The main assump-
tion is that the true model is currently included among the competing ones;
otherwise there is a misspecification problem (see, e.g., [220], [144], [145] for
other generalized information criteria). Let `n(θ) be the log-likelihood of the
process. Then the AIC statistic is defined as

AIC = −2`n
(
θ̂(ML)

n

)
+ 2 dim(Θ),

where θ̂(ML)
n is the true maximum likelihood estimator. Since, as we have seen,

there are only a few models for which the explicit expression of `n(θ) is known,
in most of the cases one of the approximated likelihood methods presented
in Chapter 3 is needed. The solution proposed in [223] is to consider the
approximated log-likelihood function due to Dacunha-Castelle and Florens-
Zmirou [62],

un(θ) =
n∑

k=1

u(∆n, Xi−1, Xi, θ) , (4.2)

where

u(t, x, y, θ) = −1
2

log(2πt)− log σ(y, β)− S2(x, y, β)
2t

+H(x, y, θ) + tg̃(x, y, θ) ,

with
S(x, y, β) =

∫ y

x

du
σ(u, β)

,

H(x, y, θ) =
∫ y

x

B(u, θ)
σ(u, β)

du ,

g̃(x, y, θ) = −1
2

{
C(x, θ) + C(y, θ) +

1
3
B(x, θ)B(y, θ)

}
,

C(x, θ) =
1
2
B2(x, θ) +

1
2
Bx(x, θ)σ(x, β) ,

B(x, θ) =
b(x, α)
σ(x, β)

− 1
2
σx(x, β) .

Moreover, the following contrast function is defined in order to obtain an
asymptotically efficient estimator to plug into the AIC statistic:

gn(θ) =
n∑

k=1

g(∆n, Xi−1, Xi, θ) ,

where

g(t, x, y, θ) = −1
2

log(2πt)− log σ(x, β)− (y − x− tb(x, α))2

2tσ2(x, β)
.

The minimum contrast estimator is then defined as
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θ̂(C)
n = arg sup

θ
gn(θ).

Further, define the functions

s(x, β) =
∫ x

0

du
σ(u, β)

,

B̃(x, θ) = B(s−1(x, β), θ),

h̃(x, θ) = B̃2(x, θ) + B̃x(x, θ),

and denote by θ0 = (α0, β0) the true value of the parameter θ. We now
introduce the set of assumptions that should be verified by the model in order
to obtain the good properties for the AIC statistic.

Assumption 4.1 The coefficients are such that

(i) equation (4.1) has a unique strong solution on [0, T ];
(ii) infx,β σ

2(x, β) > 0;
(iii) X is ergodic for every θ with invariant law µθ and all moments of µθ

are finite;
(iv) for all m ≥ 0 and for all θ, supt Eθ|Xt|m <∞; and
(v) for every θ, b(x, α) and σ(x, β) are twice continuously differentiable with

respect to x and the derivatives are of polynomial growth in x uniformly
in θ;

(vi) b(x, α) and σ(x, β) and all their partial derivatives with respect to x up
to order 2 are three times differentiable with respect to θ for all x and
are of polynomial growth in x, uniformly in θ.

Assumption 4.2 The function h̃(·) is such that

(i) h̃(x, θ) = O(|x|2) as x→∞;
(ii) supθ supx |h̃3(x, θ)| ≤M <∞;
(iii) there exists γ > 0 such that for every θ and j = 1, 2, |B̃j(x, θ)| =

O(|B̃(x, θ)|γ) as |x| → ∞.

Assumption 4.3 Almost surely with respect to πθ(·) and for all x, b(x, α) =
b(x, α0) implies α = α0 and σ(x, β) = σ(x, β0) implies β = β0.

These assumptions imply the existence of a good estimator and the validity of
the approximation of the log-likelihood function (see [137] and [62]), but they
also imply that the estimator θ̂(C)

n is asymptotically efficient [223] and that
the following version of the AIC, which will be used in practice, converges to
the true AIC statistic (based on the true likelihood and calculated at the true
maximum likelihood estimator):

AIC = −2un

(
θ̂(C)

n

)
+ 2 dim(Θ) . (4.3)
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The same result holds true if θ̂(C)
n is replaced by the approximated maximum

likelihood estimator, say θ̂(AML)
n , obtained by direct maximization of (4.2),

AIC = −2un

(
θ̂(AML)

n

)
+ 2 dim(Θ) .

In most of the cases, though, the estimator θ̂(C)
n is easier to obtain numerically

than θ̂(AML)
n because gn is simpler than un. Conversely, it is not a good idea

to use gn instead of un to build the AIC statistic because the simple Gaussian
contrast is in general too rough an approximation of the conditional density
as we discussed in Chapter 3. Numerical evidence about the discrepancy of
gn and un from the true likelihood was shown in [223]. In principle, any other
good approximation of the likelihood can be used in (4.3) and, as suggested
by the authors of this method, a good candidate is the Aı̈t-Sahalia method
based on Hermite polynomial expansion discussed in Section 3.3.3.

The package sde contains the sdeAIC function which evaluates the AIC
statistics but also estimates the underlying model using the function gn(·).
The code of the sdeAIC function is given in Listing 4.1. Notice that with
optim we minimize −gn(·) instead of maximizing gn(·). The function needs
a specification of the model and the data X. The model is specified giving
the functions b(·, ·) and σ(·, ·) as functions of theta and x, where theta is
a vector of the parameters. The minimum setup to use this function is the
specification of b(·, ·), σ(·, ·), and their derivatives or, as an alternative to
explicit derivatives, the functions B and B.x (respectively B(·, ·) and Bx(·, ·)).
The functions H and S, if missing, are evaluated numerically. This is the easiest
way to specify all the ingredients to evaluate the AIC statistics according
to previous theory. The following example clarifies the use of the sdeAIC
function. The following code calculates AIC after estimation of parameters of
the process

dXt = −(Xt − 10)dt+ 2
√
XtdWt, X0 = 10 .

Please note that the functions passed to sdeAIC should be able to accept
vectors and return vectors to speed up the execution of the code. The reader
should check the definition of b.x.
> # ex4 .01.R
> set.seed (123)
>
> dri <- expression (-(x-10))
> dif <- expression (2*sqrt(x))
> sde.sim(X0=10, drift=dri , sigma=dif ,N=1000, delta =0.1) -> X
>
> b <- function(x,theta) -theta [1]*(x-theta [2])
> b.x <- function(x,theta) -theta [1]+0*x
>
> s <- function(x,theta) theta [3]*sqrt(x)
> s.x <- function(x,theta) theta [3]/(2*sqrt(x))
> s.xx <- function(x,theta) -theta [3]/(4*x^1.5)
>
> # we let sdeAIC calculate the estimates and the AIC statistics
> sdeAIC(X, NULL , b, s, b.x, s.x, s.xx, guess=c(1,1,1),
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+ lower=rep(1e-3,3), method="L-BFGS -B")
estimating the model ...
[1] 1.123802 9.171913 0.847953
AIC value:
[1] 3364.784

We now run a Monte Carlo experiment that is borrowed from [223]. We sim-
ulate 15 trajectories from the same process as before,

dXt = −(Xt − 10)dt+ 2
√
XtdWt ,

with initial value X0 = 10. We use n = 1000 and ∆ = 0.1. We test the
performance of the AIC statistics for the three competing models

dXt = −α1(Xt − α2)dt+ β
√
XtdWt (true model),

dXt = −α1(Xt − α2)dt+
√
β1 + β2XtdWt (competing model 1),

dXt = −α1(Xt − α2)dt+ (β1 + β2Xt)β3dWt (competing model 2),

Then, at each replication, we let the sdeAIC function estimate the parame-
ters of each model and calculate the corresponding AIC statistics. After the
replications, we count how many times the true model has been selected using
AIC. Some of the output has been skipped.
> # ex4 .02.R
> set.seed (123)
> n.sim <- 15
> aic <-matrix(, n.sim , 3)
> for(i in 1:n.sim){
+ dri <- expression (-(x -10))
+ dif <- expression (2*sqrt(x))
+ sde.sim(X0=10,drift=dri , sigma=dif ,N=1000 , delta =0.1) -> X
+
+ b <- function(x,theta) -theta [1]*(x-theta [2])
+ b.x <- function(x,theta) -theta [1]+0*x
+
+ s <- function(x,theta) theta [3]*sqrt(x)
+ s.x <- function(x,theta) theta [3]/(2*sqrt(x))
+ s.xx <- function(x,theta) -theta [3]/(4*x^1.5)
+ aic[i,1] <- sdeAIC(X, NULL , b, s, b.x, s.x, s.xx , guess=c(1,1,1),
+ lower=rep(1e-3,3), method="L-BFGS -B")
+
+ s <- function(x,theta) sqrt(theta [3]*+theta [4]*x)
+ s.x <- function(x,theta) theta [4]/(2*sqrt(theta [3]+ theta [4]*x))
+ s.xx <- function(x,theta) -theta [4]^2/(4*(theta [3]+ theta [4]*x)^1.5)
+ aic[i,2] <- sdeAIC(X, NULL , b, s, b.x, s.x, s.xx , guess=c(1,1,1,1),
+ lower=rep(1e-3,4), method="L-BFGS -B")
+
+ s <- function(x,theta) (theta [3]+ theta [4]*x)^ theta [5]
+ s.x <- function(x,theta)
+ theta [4]*theta [5]*(theta [3]+ theta [4]*x)^( -1+ theta [5])
+ s.xx <- function(x,theta)
+ (theta [4]^2*theta [5]*(theta [5] -1)*(theta [3]+ theta [4]*x)^( -2+ theta [5]))
+ aic[i,3] <- sdeAIC(X, NULL , b, s, b.x, s.x, s.xx , guess=c(1,1,1,1,1),
+ lower=rep(1e-3,5), method="L-BFGS -B")
+ }

Now the matrix aic contains three columns (one for each model) and 15 rows
(one for each replication). Each element of the matrix aic is one of the AIC
statistics.



196 4 Miscellaneous Topics

> print(aic)
[,1] [,2] [,3]

[1,] 3364.784 3365.884 3449.916
[2,] 7539.537 7540.566 7299.706
[3,] 2706.390 2708.315 2743.830
[4,] 1650.316 1652.973 1677.536
[5,] 1858.206 1861.913 1859.676
[6,] 3160.675 3161.724 3184.985
[7,] 3807.816 3809.665 3886.972
[8,] 15163.537 15164.077 14947.754
[9,] 3024.119 3028.236 3076.922

[10,] 23573.548 23582.335 27507.025
[11,] 32712.191 32723.685 36261.744
[12,] 1953.586 1957.112 1912.955
[13,] 1432.877 1436.096 1451.208
[14,] 12802.626 12802.338 12457.432
[15,] 6113.929 6114.784 6243.610
> table(apply(aic ,1,function(x) which(x==min(x))))

1 3
11 4

For the last table command, it emerges that the first model has been
selected 11 times over 15. The original simulation study was made on a rea-
sonable number of replications and for different values of ∆n. Here we just
wanted to show that the AIC criterion is reasonably good even if, trajectory
to trajectory, it may select the wrong model.

sdeAIC <- function(X, theta , b, s, b.x, s.x, s.xx ,
B, B.x, H, S, guess , ...){

n <- length(X)
DELTA <- deltat(X)

if(missing(theta) || is.null(theta )){
if(missing(guess ))
stop("cannot estimate the model. \

Specify initial guess values for theta")
g <- function(theta ,X,drift ,sigma){

sum(log(sigma(X[-n],theta) +
(diff(X)-DELTA*drift(X[-n],theta ))^2/
(2*DELTA*sigma(X[-n],theta )^2)))

}
cat("estimating the model ...\n")
est <- optim(guess ,g,drift=b,sigma=s,X=X ,...)
theta <- est$par
print(theta)

}

if(missing(B))
B <- function(x,theta) b(x,theta)/s(x,theta) - 0.5*s.x(x,theta)

if(missing(B.x) &&
!( missing(b.x) || missing(s.x) || missing(s.xx))){

B.x <- function(x,theta) (b.x(x,theta)/s(x,theta)
- b(x,theta)*s.x(x,theta)/(s(x,theta )^2)
-0.5*s.xx(x,theta ))

} else {
stop("error")

}

C1 <- function(x) (B(x,theta )^2)/3 + 0.5*B.x(x,theta)*s(x,theta)
g <- function(x,y) -0.5*(C1(x)+C1(y)+B(x,theta)*B(y,theta)/3)
h <- function(x) B(x,theta)/s(x,theta)
if(missing(H))
H <- function(x,y) integrate(h, x, y)$value

s1 <- function(x) 1/s(x,theta)
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if(missing(S))
S <- function(x,y) integrate(s1, x, y)$value

u <- function(x,y,theta) (-0.5*log(2*pi*DELTA) - log(s(y,theta ))
- S(x,y)^2/(2*DELTA) + H(x,y) + DELTA*g(x,y))

cat("AIC value:\n")
-2*sum(u(X[1:(n-1)],X[2:n],theta )) + 2*length(theta)

}

Listing 4.1. Akaike’s information criterion for diffusion processes.

4.2 Nonparametric estimation

When there is no specific reason to specify a parametric form for either the
diffusion or the drift coefficient or both, nonparametric methods help in the
identification of the diffusion model. In this section, we review, without going
too much into details, some nonparametric techniques that are easy to use in-
side R. The main inference problems are related to invariant density function
estimation and/or drift and diffusion coefficients. Nice reviews on the sub-
ject can be found in [218], [81], and [128]. Justification of the nonparametric
approach to inference for diffusion processes can also be found in [4], which
contains an extensive analysis of how poorly standard parametric models for
the interest rate fit actual historical data. In finance, misspecification of the
underlying interest rate model can lead to serious pricing and hedging errors1

(see, e.g., [46]). Let us consider the ergodic diffusion process X solution to

dXt = b(Xt)dt+ σ(Xt)dWt,

where b(·) and σ(·) satisfy the usual assumptions of regularity and Assumption
1.5 holds true. Our primary interest is now the invariant density π(x). As in the
i.i.d. case, a simple kernel type estimator can be used. Let K be a nonnegative
function such that ∫

K(u)du = 1

and K is bounded and twice continuously differentiable on R. K and its
derivatives are supposed to be in L2(R). Such a function K is called a kernel
of order r > 1 if there exists an integer r such that∫ +∞

−∞
xiK(x)dx = 0, i = 1, . . . , r − 1,

and ∫ +∞

−∞
xrK(x)dx 6= 0,

∫ +∞

−∞
|x|r|K(x)|dx <∞ .

We assume K to be of order 2 and we further define
1 In this section, we do not focus on generic functionals of the diffusion process.
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Kh(u) =
1
h
K
(u
h

)
and notice that

lim
h→∞

Kh(u) = δ(u) ,

where δ is the Dirac delta.

4.2.1 Stationary density estimation

The estimator

π̂n(x) =
1
nhn

n∑
i=1

K

(
x−Xi

hn

)
=

1
n

n∑
i=1

Khn(x−Xi) (4.4)

is the kernel estimator of π(x) and will be used in this framework. Usually
the Gaussian kernel

K(u) =
1√
2π

exp
(
−1

2
u2

)
is used, but any other reasonable kernel can be considered without loss in the
optimality results (see, e.g., [79] and [210]). The more critical choice is known
to be the bandwidth hn. The bandwidth hn is a shrinking sequence with n;
i.e., hn → 0 as n→∞. For general m-dimensional densities, the bandwidth is
usually chosen according to Scott’s rule [203], which assumes hn to be propor-
tional to d ·n−

1
m+4 , where d is the standard deviation of the time series (in our

case m = 1). This seems to be the standard choice in econometrics according
to [218]. In [3], the choice of the bandwidth is hn = cnn

−1/4.5, where cn is
c times the standard deviation of the data divided by log(n) and c is chosen
to minimize the mean integrated square error (MISE) of the estimator of the
density. Other approaches to bandwidth selection are available, such as the
cross-validation strategy [199]. An extensive guide on the bandwidth selection
problem can be found in [105]. Under the assumption limn→∞ nh4.5 = 0 and
mild regularity conditions (see [3] and [192]), the stationary density estimator
π̂n behaves as in the i.i.d. setting. In particular, we have√

nhn (π̂n(x)− π(x)) d→ N (0, Vx),

where

Vx = π(x)
∫ +∞

−∞
K2(u)du.

Moreover, for x1 6= x2, the estimators π̂n(x1) and π̂n(x2) are asymptotically
independent. This approach does not require ∆n → 0. The next listing simu-
lates a Cox-Ingersoll-Ross model,

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt ,
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with θ = (6, 2, 1), and estimates the corresponding stationary density of the
CIR model, which can be obtained using the dsCIR function of the sde pack-
age. R implements many different kernel functions K with several automatic
bandwidth selection criteria via the density function. For didactic purposes,
we show how to construct a kernel function in a vectorized form and then we
plot the true stationary density against the estimated one.
> # ex4 .03.R
> set.seed (123)
> theta <- c(6,2,1)
> X <- sde.sim(X0=rsCIR(1, theta),model="CIR",theta=theta ,N=1000 , delta =1)
> f <-function(x) dsCIR(x, theta)

We now choose the bandwidth according to Scott’s rule.
> h <- length(X)^(-1/5)*sd(X)
> K <-function(x) exp(-0.5*x^2)/sqrt(2*pi)
> p <-function(x) sapply(x, function(x) mean(K((x-X)/h)))/h

Then we plot the true density, our version of the kernel estimator and R’s
implementation of kernel estimators. The last two commands return the same
result.
> curve(f,0,8)
> curve(p,0,8, col="red", add=TRUE ,lty =2)
> lines(density(X,bw=h),col="green",lty=3)
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Fig. 4.1. Implementation of the kernel estimator for the stationary distribution of
the CIR model.
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Fig. 4.2. Effect of the bandwidth hn and the mesh ∆n on the kernel estimator.

Figure 4.1 shows the good performance of the simple kernel estimator, for
π(x). Even if in principle the approach does not require ∆n = 1, empirically
it can be seen that the quality of the estimates is less accurate for values of
∆n < 1. The next example shows such an effect.
> # ex4 .03.R (cont)
> set.seed (123)
> X <- sde.sim(X0=rsCIR(1,theta),model="CIR",theta=theta ,N=1000, delta =0.01)
> h <- length(X)^(-1/5)*sd(X)
> curve(f,0,8,ylim=c(0 ,0.7))
> curve(p,0,8, col="red", add=TRUE ,lty =2)

This is not really an issue if the observations are not collected in a very
high frequency scheme or if the sample size is relatively high, but still it is
always good to play with the bandwidth a bit to figure out what the under-
lying unknown stationary density looks like. In many cases, nonparametric
density (or regression) estimation is a preliminary (explorative data) analysis
that helps in finding a possible parametric model for the data when no prior
information on the model that generates the data is not available. Just to
show that the previous effect shown by Figure 4.2 is not due to the simulation
part of the code, the user can run the following example for the same ∆n with
an increased number of observations; e.g., n = 15000. The corresponding plot
of the estimated density will look like Figure 4.1.
> # ex4 .03.R (cont)
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> set.seed (123)
> X <- sde.sim(X0 = rsCIR(1,theta), model = "CIR", theta = theta ,
+ N = 15000, delta = 0.01)
> h <- length(X)^(-1/5)*sd(X)
> curve(f,0,8,ylim=c(0 ,0.7))
> curve(p,0,8, col="red", add=TRUE ,lty =2)

4.2.2 Local-time and stationary density estimators

A relationship between hn and ∆n was established in [18]. The result is given
in terms of local-time estimation also for nonstationary processes. In this case,
the local-time estimator generalizes the stationary density estimator. The re-
sult in [18] is given for general càdlàg processes2 Xt. Here, we consider only
diffusion processes without jumps, and hence the local time is defined as

LX(T, x) = lim
ε→0

1
ε

∫ T

0

1[x,x+ε)(Xs)d<X,X>s, (4.5)

where <X,X>s is the quadratic variation process and x is the state space of
the process. The local time is intuitively the amount of time a process sojourns
in a neighborhood of x between time 0 and T . We know from Chapter 3 that,
for continuous diffusion processes, d<X,X>t= σ2(Xt)dt. From this it follows
that the local time can be transformed into the so-called chronological local
time (see, e.g., [39], [185]), defined as

L̄X(T, x) =
1

σ2(x)
LX(T, x) . (4.6)

The difference between LX and L̄X is that the local time in (4.5) is the amount
of time expressed in time units of the quadratic variation process, while the
chronological local time in (4.6) is expressed in terms of real time units, which
is the time we deal with in estimation. The relationship in (4.6) is interesting
because it is related to the occupation measure of the process X,

ηT
A =

∫ T

0

1A(Xs)ds =
∫

A

L̄X(T, x)dx .

Therefore, L̄X(T, x) is a version of the Radon-Nikodým derivative of this
measure. Moreover, from the preceding formula, we have that

<X,X>t=
∫ +∞

−∞
LX(t, x)dx ,

which closes the circle.

2 A càdlàg process is a process such that its trajectories are continuous to the right
with left limit.
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Fact 4.1 ([87] and [18]) If hn → 0 and n→∞ with fixed T = T̄ in such a
way that

1
hn

√
∆n log

1
∆n

= o(1),

then
ˆ̄LX(T, x) =

∆n

hn

n∑
i=1

K

(
Xi − x

hn

)
a.s.→ L̄X(T, x) .

The result above shows the limiting quantity is a random object, which is not
what happens in standard kernel density estimation, and this is not surprising.
The relation with kernel density estimation is given in the next result.

Fact 4.2 ([18]) If hn → 0, T = n∆n →∞ as n→∞ such that

T

hn

√
∆n log

1
∆n

= o(1) .

Then

ˆ̄LX(T, x)
T

=
ˆ̄LX(T, x)
n∆n

=
1
nhn

n∑
i=1

K

(
Xi − x

hn

)
= π̂n(x) a.s.→ π(x) .

Notice that ˆ̄LX(T, x)/T is also an estimator of the expected local time.

4.2.3 Estimation of diffusion and drift coefficients

We saw in Section 1.13 that the drift and diffusion coefficients are related to
the stationary density π via the forward and backward Kolmogorov equations.
In particular, from the Kolmogorov forward equation (1.26), by subsequent
integrations, it is possible to derive the following relationship: [19]

σ2(x) =
2

π(x)

∫ x

0

b(u)π(u)du .

Given as the estimator the kernel estimator (4.4) of π, if b(·) is known or has
a parametric form for which consistent estimators for the parameters exist, it
is possible to use the estimator

σ̂2
n(x) =

2
π̂n(x)

∫ x

0

b(u)π̂n(u)du ,

where b(x) can eventually be replaced by b(x; θ̂n) if it has the parametric form
b = b(x; θ), where θ̂n is a

√
n-consistent estimator of θ.
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Assumption 4.4

lim
x→0

σ(x)π(x) = 0 or lim
x→∞

σ(x)π(x) = 0

and

lim
x→0

∣∣∣∣ σ(x)
2b(x)− σ(x)σx(x)

∣∣∣∣ <∞ or lim
x→∞

∣∣∣∣ σ(x)
2b(x)− σ(x)σx(x)

∣∣∣∣ <∞ .

The conditions in Assumption 4.4 imply geometric ergodicity [104], which in
turn implies the following mixing condition on the observed data (see, e.g.,
[191] and [3]).

Assumption 4.5 The observed data Xi, i = 1, . . . , n, is a strictly stationary
β-mixing sequence satisfying kδβk → 0 and k →∞ for some δ > 1.

Assumption 4.6 As n→∞ and hn → 0, we have√
nh2r+1

n → 0 and nhn →∞ and nh3
n →∞ ,

where r is the order of the kernel K.

Fact 4.3 ([3]) Suppose Assumptions 4.5 and 4.6 hold true and σ2(x) > 0.
Assume that the drift b(x) is known (or b(x; θ) unknown up to a finite-
dimensional parameter θ) and σ(x) is differentiable with continuous deriva-
tives on (0,∞) of order greater than or equal to 2. Then√

nhn

(
σ̂2

n(x)− σ2(x)
) d→ N (0, Vx) ,

where

Vx =
σ4(x)
π(x)

∫ +∞

−∞
K2(u)du .

Moreover, a consistent estimator of Vx is given by

V̂x =

(
σ̂2

n(x)
)2

π̂n(x)

∫ +∞

−∞
K2(u)du,

and for any two values x 6= y the estimates σ̂2
n(x) and σ̂2

n(y) are independent.

The result above is interesting in real-life applications only when the drift
b(x) has at least a parametric form b(x) = b(x; θ), but it is hardly reasonable to
assume that σ(x) is unknown and b(x) is completely known. On the contrary,
one can imagine as in [3] or [218] that the process is, for example, mean
reverting and hence assume a model such as

dXt = θ1(θ2 −Xt)dt+ σ(Xt)dWt

with b(x; θ) = θ1(θ2 − x). Therefore, it is possible to consistently estimate
θ = (θ1, θ2), use the kernel estimator π̂n(x), and finally estimate the diffusion
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coefficient with σ̂2
n(x). But in all other cases in which such simple forms for

the drift are not available, it is possible to estimate the diffusion coefficient
directly without information on the drift b or by nonparametric estimation of
the drift. This approach requires a high-frequency asymptotic. We start with
the Florens-Zmirou [87] estimator

σ̂2
n(x) =

n−1∑
i=0

K
(

x−Xi

hn

)
(Xi+1 −Xi)

2

∆n

n−1∑
i=0

K
(

x−Xi

hn

) . (4.7)

In the original paper, K is the uniform kernel. Then Jiang and Knight [127]
extended the Florens-Zmirou results to the Gaussian kernel, and finally Bandi
and Phillips [18] completed the theory by extending the results to general sta-
tionary processes and general kernels. Many other works have considered the
problem of diffusion coefficient estimation by different techniques, including
wavelet methods, nearest neighbor, simulated annealing, adaptive estimation,
etc. We cannot discuss all these approaches, but the reader might want to con-
sider at least the following references as a starting point: [44], [94], [95],[96],
[45], [108], [123]. The Florens-Zmirou estimator (4.7), and its variations, re-
quire ∆n → 0 at some proper rate in order to have consistency and asymptotic
normality. In the same way, a nonparametric drift estimator can be obtained
as follows:

b̂n(x) =

n−1∑
i=0

K
(

x−Xi

hn

)
(Xi+1 −Xi)

∆n

n−1∑
i=0

K
(

x−Xi

hn

) . (4.8)

In Stanton’s approach [218], the two estimators are nothing but Nadaraya-
Watson kernel regression estimators of the following conditional expectations

b(x) = lim
t→0

1
t
E{Xt − x|X0 = x} ,

σ2(x) = lim
t→0

1
t
E{(Xt − x)2|X0 = x} .

In this approach, b(x) and σ2(x) are seen as instantaneous conditional means
and variances of the process when X0 = x. The two quantities can be rewrit-
ten, for fixed ∆n, as

b(x) =
1
∆n

E{Xi+1 −Xi|Xi = x}+
o(∆n)
∆n

,

σ2(x) =
1
∆n

E{(Xi+1 −Xi)2|Xi = x}+
o(∆n)
∆n

.

(4.9)

From these expressions and given the estimator π̂n, the two estimators (4.7)
and (4.8) are readily obtained. The discretizations above are obtained using
the Itô-Taylor expansion (3.19),
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E{φ(Xi+1)|Fi} = φ(Xi) +∆nLφ(Xi) +
1
2
∆2

nL2φ(Xi) + · · · ,

where L is the infinitesimal generator of the diffusion and φ(x) an appropriate
function (see, e.g., [107]). Contrary to what we saw in Chapter 3, in this
case the unknowns are the coefficients b(·) and σ(·), and the function φ(·) is
chosen in order to obtain estimators of them. The Itô-Taylor expansion can
be rewritten as

Lφ(Xi) =
1
∆n

E{φ(Xi+1)− φ(Xi)|Fi} −
1
2
∆nL2φ(Xi)−

1
6
∆2

nL3φ(Xi) + · · · .

At first order, we have

Lφ(Xi) =
1
∆n

E{φ(Xi+1)− φ(Xi)|Fi}+O(∆n) .

From the definition of Lφ(x) = φx(x)b(x) + 1
2φxx(x)σ2(x), we have that,

choosing
φ1(x) = x, φ2(x) = (x−Xi)2,

we obtain
Lφ1(Xi)b(Xi) , Lφ2(Xi) = σ2(Xi),

from which (4.9) follows. But the Itô-Taylor expansion approach allows for
further refinements in the approximation. If we consider a time step of 2∆n

and perform the expansion up to order 2, after simple calculations we obtain

Lφ(Xi) =
1

2∆n

(
4E{φ(Xi+1)−φ(Xi)|Fi}−E{φ(Xi+2)−φ(Xi)|Fi}

)
+O(∆2

n) ,

from which we derive as second-order approximations for b(·) and σ2(·)

b(x) =
1

2∆n

(
4E{Xi+1 −Xi|Xi = x} − E{Xi+2 −Xi|Xi = x}

)
+O(∆2

n) ,

σ2(x) =
1

2∆n

(
4E{(Xi+1 −Xi)2|Xi = x} − E{(Xi+2 −Xi)2|Xi = x}

)
+O(∆2

n),

and similarly, using third-order approximations, we derive

b(x) =
1

6∆n

(
18E{Xi+1 −Xi|Xi = x} − 9E{Xi+2 −Xi|Xi = x}

+ 2E{Xi+3 −Xi|Xi = x}
)

+O(∆3
n) ,

σ2(x) =
1

6∆n

(
18E{(Xi+1 −Xi)2|Xi = x} − 9E{(Xi+2 −Xi)2|Xi = x}

+ 2E{(Xi+3 −Xi)2|Xi = x}
)

+O(∆3
n)
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and kernel estimators for E{(Xi+j − Xi)k|Xi = x} can be used. More fre-
quently, E{(Xi+j −Xi)2|Xi = x} are replaced by the conditional variance of
Xi+j without changing the order of the approximation. Therefore, we have

σ2(x) =
1
∆n

Var{Xi+1|Xi = x}+O(∆n),

σ2(x) =
1

2∆n

(
4Var{Xi+1|Xi = x} −Var{Xi+2|Xi = x}

)
+O(∆2

n),

σ2(x) =
1

6∆n

(
18Var{Xi+1|Xi = x} − 9Var{Xi+2|Xi = x}

+ 2Var{Xi+3|Xi = x}
)

+O(∆3
n).

The code in Listing 4.2 implements the nonparametric estimation of drift
and diffusion coefficients using the estimators (4.8) and (4.7), respectively,
and also an optimized version of the stationary density estimator (4.4). It
makes use of the functions ksdrift, ksdiff, and ksdens in package sde.
These functions are self-explanatory and are coded to be compatible with the
standard functions density and ksmooth in the base R package. In particular,
ksdens returns an object of class density, and the two other functions return
a list of x and y coordinates that can be printed on the graphic device using the
functions plot, lines, or points as for the output of density and ksmooth.
The bandwidth is calculated using Scott’s rule.
> # ex4 .04.R
> set.seed (123)
> theta <- c(6,2,1)
> X <- sde.sim(X0 = rsCIR(1, theta), model="CIR", theta = theta ,
+ N = 1000, delta = 0.1)
>
> f <-function(x) dsCIR(x, theta)
> b <- function(x) theta [1]- theta [2]*x
> sigma <- function(x) theta [3]*sqrt(x)
>
> minX <- min(X)
> maxX <- max(X)
>
> par(mfrow=c(2 ,1))
> curve(b,minX ,maxX ,main="drift coefficient")
> lines(ksdrift(X),lty=3,col="red",lwd =2)
>
> curve(sigma ,minX , maxX ,main="diffusion coefficient")
> lines(ksdiff(X),lty=3,col="red",lwd=2)

Figure 4.3 shows the performance of the nonparametric estimators of the
drift and diffusion coefficients for the Cox-Ingersoll-Ross model simulated in
the previous listing.

ksdrift <- function(x,bw ,n=512){
len <- length(x)
xval <- seq(min(x), max(x), length=n)
if(missing(bw))
bw <- len^(-1/5)*sd(x)
y <- sapply(xval , function(xval) {
tmp <- dnorm(xval , x[1:(len -1)], bw)
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Fig. 4.3. Nonparametric estimators of the drift and diffusion coefficients for the
CIR process.

sum(tmp * diff(x)) / (deltat(x) * sum(tmp ))})
invisible(list(x=xval , y=y))

}

ksdiff <- function(x,bw ,n=512){
len <- length(x)
xval <- seq(min(x), max(x), length=n)
if(missing(bw))
bw <- len^(-1/5)*sd(x)
y <- sapply(xval , function(xval) {
tmp <- dnorm(xval , x[1:(len -1)], bw)
sum(tmp * as.numeric(diff(x))^2) / (deltat(x) * sum(tmp ))})
invisible(list(x=xval , y=sqrt(y)))

}

ksdens <- function(x,bw ,n=512){
len <- length(x)
if(missing(bw))
bw <- len^(-1/5)*sd(x)

invisible(density(x,bw=bw ,n=n))
}

Listing 4.2. Nonparametric estimator for the drift and diffusion coefficients and
the stationary density of a diffusion.
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4.3 Change-point estimation

Change-point estimation consists in the identification of the instant in which
a change occurs in the parameter of some model. There are several approaches
to the solution of this problem, and here we consider a least squares solution
(see, e.g., [15], [119], [50]), but other approaches, such as maximum likelihood
change-point estimation, are also possible (see, e.g., [61], [16]). We assume we
have a diffusion process3 solution to

dXt = b(Xt)dt+ θσ(Xt)dWt , (4.10)

where b(·) and σ(·) are known functions and θ ∈ Θ ⊂ R is the parameter of
interest. As in [64], given discrete observations from (4.10) on [0, T = n∆n],
we want to identify retrospectively if and when a change in value of the pa-
rameter θ occurred and estimate consistently the parameter before and after
the change point. The asymptotics is ∆n → 0 as n→∞ and n∆n = T fixed.4

For simplicity, we assume that the change occurs at instant k0, which is one of
the integers in 1, . . . , n. This is a problem of volatility change-point estimation
that frequently occurs in finance applications. We assume that θ = θ1 before
the time change and θ = θ2 after the time change with θ1 < θ2 (but this does
not matter in the final results).

In order to obtain a simple least squares estimator, we use Euler approxi-
mation. So, from now on, we assume all the hypotheses necessary to have the
Euler approximation in place. Namely, we can write the Euler scheme as

Xi+1 = Xi + b(Xi)∆n + θσ(Xi)(Wi+1 −Wi)

and introduce the standardized residuals

Zi =
(Xi+1 −Xi)− b(Xi)∆n√

∆nσ(Xi)
= θ

(Wi+1 −Wi)√
∆n

.

The Zi’s are i.i.d. Gaussian random variables. The change-point estimator is
obtained as

k̂0 = arg min
k

(
min
θ1,θ2

{
k∑

i=1

(Z2
i − θ21)

2 +
n∑

i=k+1

(Z2
i − θ22)

2

})
(4.11)

with , k = 2, . . . , n − 1. We denote by [x] the integer part of the real x,
and sometimes we write k0 = [nτ0] and k = [nτ ], τ, τ0 ∈ (0, 1) to indicate the
change point in the continuous timescale. Define the partial sums

3 For continuous-time observations this problem was studied in [152]. A bayesian
approach for discrete-time observations can be found in [158].

4 For ergodic diffusion processes and n∆n = T → ∞, under additional mild regu-
larity conditions, the results mentioned here are still valid.
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Sn =
n∑

i=1

Z2
i , Sk =

k∑
i=1

Z2
i , Sn−k =

n∑
i=k+1

Z2
i ,

and denote by θ̄21 and θ̄22 the initial least squares estimators of θ21 and θ22 for
any given value of k in (4.11),

θ̄21 =
Sk

k
=

1
k

k∑
i=1

Z2
i

and

θ̄22 =
Sn−k

n− k
=

1
n− k

n∑
i=k+1

Z2
i .

These estimators will be refined once a consistent estimator of k0 is obtained.
Denote by U2

k the quantity

U2
k =

k∑
i=1

(Z2
i − θ̄21)

2 +
n∑

i=k+1

(Z2
i − θ̄22)

2.

Then, k̂0 is defined as
k̂0 = arg min

k
U2

k .

To study the asymptotic properties of U2
k , it is better to rewrite it as

U2
k =

n∑
i=1

(Z2
i − Z̄n)2 − nV 2

k ,

where

Z̄n =
1
n

n∑
i=1

Z2
i

and

Vk =
(
k(n− k)

n2

) 1
2 (
θ̄22 − θ̄21

)
=

SnDk√
k(n− k)

with
Dk =

k

n
− Sk

Sn
.

This representation of U2
k is obtained by lengthy but straightforward alge-

bra, and it is rather useful because minimization of U2
k is equivalent to the

maximization of Vk and hence of Dk. So it is easier to consider the following
estimator of k0

k̂0 = arg max
k
|Dk| = arg max

k
(k(n− k))

1
2 |Vk| . (4.12)
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As a side remark, it can be noted that, for fixed k (and under suitable hy-
potheses), Dk is also an approximate likelihood ratio statistic for testing the
null hypothesis of no change in volatility (see, e.g., [119]). Once k̂0 has been
obtained, the following estimators of the parameters θ1 and θ2 can be used:

θ̂21 =
Sk̂0

k̂0

, (4.13)

θ̂22 =
Sn−k̂0

n− k̂0

. (4.14)

Next results provide consistency of k̂0, θ̂21, and θ̂22 as well as their asymptotic
distributions.

Fact 4.4 ([64]) Under H0: θ1 = θ2 = 1, we have that√
n

2
|Dk|

d→ |W 0(τ)|, (4.15)

where {W 0(τ), 0 ≤ τ ≤ 1} is a Brownian bridge.

The asymptotic result above is useful to test if a change point doesn’t
exist. In particular, it is possible to obtain the asymptotic critical values for
the distribution of the statistic by means of the same arguments used in [61],
but we do not go into these details here.

Fact 4.5 ([64]) The estimator τ̂0 = k̂0
n satisfies

|τ̂0 − τ0| = n−1/2(θ22 − θ21)
−1Op(

√
log n) . (4.16)

Moreover, for any β ∈ (0, 1/2),

nβ(τ̂0 − τ0)
p→ 0 .

Finally,

τ̂0 − τ0 = Op

(
1

n(θ22 − θ21)2

)
. (4.17)

It is also interesting to know the asymptotic distribution of τ̂0 for small
discrepancies between θ1 and θ2. The case ϑn = θ22 − θ21 equal to a constant is
less interesting because when ϑn is large the estimate of k0 is quite precise.

Assumption 4.7 ϑn → 0 in such a way that
√

nϑn√
log n

→∞.

Assumption 4.7 and Fact 4.5 imply the consistency of τ̂0.

Fact 4.6 ([64]) Under Assumption 4.7, for ∆n → 0 as n→∞, we have that

nϑ2
n(τ̂0 − τ0)
2(θ̃2n)2

d→ arg max
v

{
W(v)− |v|

2

}
, (4.18)
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where W(u) is a two-sided Brownian motion,

W(u) =

{
W1(−u), u < 0
W2(u), u ≥ 0

, (4.19)

with W1 and W2 two independent Brownian motions and θ̃2n a consistent es-
timator for θ21 or θ22.

Finally we have the asymptotic distributions for the estimators θ̂21, θ̂
2
2,

defined in (4.13) and (4.14). We denote by θ0 the common limiting value of
θ1 and θ2.

Fact 4.7 ([64]) Under Assumption 4.7, we have that

√
n

(
θ̂21 − θ21
θ̂22 − θ22

)
d→ N (0, Σ) , (4.20)

where

Σ =
(

2τ−1
0 θ40 0
0 2(1− τ0)−1θ40

)
. (4.21)

We show an example of implementation. We assume we have the Cox-
Ingersoll-Ross model

dXt = (6− 2Xt)dt+ θ
√
XtdWt ,

where θ = θ1 = 1 for t < τ0 = 0.6 and θ = θ2 for t ≥ τ0 and t ∈ (0, 1). We test
the estimator outside the asymptotics for small n and fixed T . We simulate
two paths X1 and X2 of the CIR process, one in [0, τ0] and the other in [τ0, 1],
under the condition X2(τ0) = X1(τ0), and we collate the two into one single
trajectory. We resample the trajectory to ∆n = 0.01, which will give n = 100
observations.
> # ex4 .05.R
> tau0 <- 0.6
> k0 <- ceiling (1000*tau0)
> set.seed (123)
> X1 <- sde.sim(X0=1, N=2*k0, t0=0, T=tau0 , model="CIR", theta=c(6,2,1))
> X2 <- sde.sim(X0=X1[2*k0+1], N=2*(1000 -k0), t0=tau0 ,
+ T=1, model="CIR", theta=c(6,2,3))
>
> Y <- ts(c(X1,X2[-1]), start=0, deltat=deltat(X1))
> X <- window(Y,deltat =0.01)
> DELTA <- deltat(X)
> n <- length(X)

Now we construct the residuals Zi and the statistic D in order to identify
k0.
> # ex4 .05.R (cont)
> mu <- function(x) 6-2*x
> sigma <- function(x) sqrt(x)
> Z <- (diff(X) - mu(X[1:(n-1)])*DELTA)/(sqrt(DELTA)*sigma(X[1:(n -1)]))
>
> tau <- seq(0,1, length=length(Z))



212 4 Miscellaneous Topics

> k <- ceiling(n*tau)
>
> Sn <- cumsum(Z^2)
> S <- sum(Z^2)
> D <- abs ((2:n)/n - Sn/S)
>
> k0 <- which(D==max(D))
> tau[k0]
[1] 0.5959596
> sqrt(Sn[k0]/k0)
[1] 0.8559207
> sqrt((S-Sn[k0])/(n-k0))
[1] 3.038949

The estimated value τ̂ = 0.59 is likely close to the real value τ0 = 0.6, and
the two values of the volatility are estimated as θ̂1 = 0.85 and θ̂2 = 3.04. The
next code plots the graph of the trajectory and the statistic |Dk|. The result
is given in Figure 4.4.
> # ex4 .05.R (cont)
> par(mar=c(3,3,1,1))
> par(mfrow=c(2 ,1))
> plot(X)
> abline(v=tau0 ,col="red",lty=3)
> plot(tau ,D,type="l")
> abline(v=tau[k0],col="blue")
> abline(v=tau0 ,col="red",lty=3)

4.3.1 Estimation of the change point with unknown drift

When both b(x) and σ2(x) are unknown, it is necessary to assume that at least
σ(x) is constant, and hence we consider the stochastic differential equation

dXt = b(Xt)dt+ θdWt . (4.22)

Then b(x) can be estimated nonparametrically with b̂n(x) from (4.8), and the
residuals Zi are estimated as

Ẑi =
Xi+1 −Xi√

∆n

− b̂n(Xi)
√
∆n .

In this case, we can use the following contrast to identify the change point:

k̃0 = arg min
k


k∑

i=1

(
Ẑ2

i −
Ŝk

k

)2

+
n∑

i=k+1

(
Ẑ2

i −
Ŝn−k

n− k

)2
 , (4.23)

where

Ŝk =
k∑

i=1

Ẑ2
i and Ŝn−k =

n∑
i=k+1

Ẑ2
i .

We obtain the new statistic

V̂k =
(
k(n− k)

n2

) 1
2
(
Ŝn−k

n− k
− Ŝk

k

)
=

ŜnD̂k√
k(n− k)

,
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Fig. 4.4. Top: the simulated CIR process changes volatility at time τ0 = 0.6.
Bottom: the shape of statistic |Dk|.

where

D̂k =
k

n
− Ŝk

Ŝn

and the change point is identified as the solution to

k̂0 = arg max
k
|D̂k| .

Consistency and distributional results mentioned in the previous section hold
(see [64]).

cpoint <- function(x, mu , sigma){
DELTA <- deltat(x)
n <- length(x)
Z <- NULL
if(!missing(mu) && !missing(sigma )){
Z <- (diff(x) - mu(x[1:(n -1)])*DELTA)/(sqrt(DELTA)*sigma(x[1:(n -1)]))

} else {
bw <- n^(-1/5) * sd(x)

y <- sapply(x[1:(n-1)], function(xval) {
tmp <- dnorm(xval , x[1:(n - 1)], bw)
sum(tmp * diff(x))/(DELTA * sum(tmp))

})
Z <- diff(x)/sqrt(DELTA) - y*sqrt(DELTA)

}
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Sn <- cumsum(Z^2)
S <- sum(Z^2)
D <- abs ((2:n)/n - Sn/S)
k0 <- which(D==max(D))
return(list(k0=k0 , tau0=time(x)[k0],

theta1=sqrt(Sn[k0]/k0), theta2=sqrt((S-Sn[k0])/(n-k0))))
}

Listing 4.3. Change-point estimator of the volatility of a diffusion process.

The package sde contains the function cpoint, whose code is shown in
Listing 4.3. It is very simple to use it requires the data and the two drift
and diffusion coefficients. If the drift coefficient is missing, it is estimated
nonparametrically. An example of the function’s application follows.
> # ex4 .06.R
> tau0 <- 0.6
> k0 <- ceiling (1000*tau0)
> set.seed (123)
> X1 <- sde.sim(X0=1, N=2*k0, t0=0, T=tau0 , model="CIR", theta=c(6,2,1))
> X2 <- sde.sim(X0=X1[2*k0+1], N=2*(1000 -k0), t0=tau0 ,
+ T=1, model="CIR", theta=c(6,2,3))
>
> Y <- ts(c(X1,X2[-1]), start=0, deltat=deltat(X1))
> X <- window(Y,deltat =0.01)
> DELTA <- deltat(X)
> n <- length(X)
>
> mu <- function(x) 6-2*x
> sigma <- function(x) sqrt(x)
>
> cpoint(X,mu ,sigma)
$k0
[1] 60

$tau0
[1] 0.59

$theta1
[1] 0.8559207

$theta2
[1] 3.038949

>
> # nonparametric estimation of the drift
> cpoint(X)
$k0
[1] 60

$tau0
[1] 0.59

$theta1
[1] 1.011887

$theta2
[1] 2.930061
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4.3.2 A famous example

We analyze the DWJ dataset, which contains the weekly closings of the Dow-
Jones industrial average in the period July 1971–August 1974. These data
were proposed by Hsu [113, 114, 228] and used by many other authors to test
change-point estimators. There are 162 data, and the main evidence found
by several authors is that a change in the variance occurred around k = 88,
which corresponds to the third week of March 1973. Instead of working on
the values, we transform the data into returns as usual, S(ti) = (X(ti) −
X(ti−1))/X(ti−1), i = 1, . . . , n, with X the series of Dow-Jones closings and
S the returns. We assume the drift coefficient to be unknown.

Fig. 4.5. Change-point analysis of the Dow-Jones weekly closings.

> # ex4 .07.R
> data(DWJ)
> ret <- diff(DWJ)/DWJ[-length(DWJ)]
> par(mfrow=c(2 ,1))
> par(mar=c(3,3,2,1))
> plot(DWJ ,main="Dow -Jones closings",ylab="",type="p")
> plot(ret ,main="Dow -Jones returns",ylab="",type="p")
> cp <- cpoint(ret)
> cp
$k0
[1] 88
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$tau0
[1] 1972.808

$theta1
[1] 0.1097246

$theta2
[1] 0.2022780
> abline(v=cp$tau0 ,lty =3)

Looking at Figure 4.5, it emerges that another change point may be
present. So we reanalyze the first part of the series to spot the second change
point.
> # ex4 .05.R (cont)
> cp <- cpoint(window(ret ,end=cp$tau0))
> cp
$k0
[1] 23

$tau0
[1] 1971.558

$theta1
[1] 0.1372465

$theta2
[1] 0.0944348
> abline(v=cp$tau0 ,lty =3)

Both change points correspond to important shocks in the U.S. market: the
first one seems to be related to the announcement of the broken gold/dollar
link, and the second one is in relation to the Watergate scandal.



Appendix A: A Brief Excursus into R

This appendix is not intended to be a guide to the R language because it
focuses only on special aspects of the language that are used throughout the
book. The reader is invited to read the brief R manual called “An Introduction
to R” that comes with every installed version of R and use as reference both
[63] for a primer on the R language and [226] for a more advanced guide on R
programming. The reader might find it useful to read these notes when he or
she encounters problems with the R code presented in the main body of the
book.

A.1 Typing into the R console

R is mainly an interactive language with a simple command-line interface. This
means that the user needs to type most of the commands with limited or no
support from the graphical user interface (GUI). All the commands are given
as inputs to R after the prompt > and are analyzed by the R parser after the
user presses the “return”/“enter” key (or a newline character is encountered
in the case of a script file).
> cat("Hello World!")
Hello World!

R inputs can be multiline; hence, if the R parser thinks that the user did
not complete some command (because of unbalanced parentheses or quotation
marks), on the next line a + symbol will appear instead of a prompt.
> cat("Hello World!"
+

This can be quite frustrating for novice users, so it is better to know how
to exit from this impasse. Depending on the implementation of R usually
pressing CTRL+C or ESC on the keyboard helps. Otherwise, for GUI versions of
R, pushing the “stop” button of the R console will exit the parser. Of course,
another solution is to complete the command.
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> cat("Hello World!"
+ )
Hello World!

Everything in R is an object, and objects live in a workspace. The main
workspace can be saved and loaded in R with the save.image and load com-
mands, respectively. When exiting from the R console (e.g., with q()), the
user is asked whether to save the workspace. If the user responds yes”, the
workspace is saved in the current directory as a hidden (on some operating sys-
tems) file named .RData and reloaded the next time R is started. Workspace
or R objects can be saved and loaded with load and save commands, and
almost all R GUIs have functionalities for these. The reader is invited to use
the help command to retrieve information on how to use each R command.
R documentation can be accessed in essentially two ways:
> help(load)

or
> ?load

For some special operators, the user should specify the argument like this:
?"for", ?"+", etc. There is more information on the help page for help (i.e.,
help()). If the help page for a topic contains examples of uses, the user can run
them using example(topic); for example, help(plot) and example(plot)
run the examples for the plot function.

Usually R graphics are displayed on a device that corresponds to a window
for a GUI version of R (for example, under MS-Windows, X11, or Mac OS
X). Otherwise a Postscript file Rplots.ps is generated in the current working
directory. Sometimes, in interactive uses of R, it is useful to set
> par(ask=TRUE)

so that R will ask for a confirmation before drawing a new plot. The call
par(ask=FALSE) restores the original behavior.

A.2 Assignments

Many functions in R operate vector wisely on vectors of different nature. Nev-
ertheless, as will be discussed later, the reader should not think of R vectors
as usual linear algebra vectors. Indeed, R vectors are just indexed sequences
of objects of the same type; for example, numbers, labels, functions, etc. The
following command creates a scalar in R.
> x <- 4

<- is an operator that literally, behaves as “assign the right-hand side to
the left-hand side,” and the following is equivalent.1

> 4 -> x

1 The user is discouraged from using “=” for assignments.
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Now x is a new object in the workspace, and it has been created as a vector
of length 1 containing the real2 number 4. To see what is inside an R object,
usually typing its name in the console will help; otherwise print(object)
might be another option. In our case,
> x
[1] 4

and the first [1] is indicating that the first element of x is 4. The following
command creates a more interesting vector y containing the numbers 2, 7, 4,
and 1 concatenated in a single object using the function c().
> y <- c(2,7,4,1)
> y
[1] 2 4 7 1

The command ls() shows the current content of the workspace.
> ls()
[1] "x" "y"

We mentioned that R vectors are not equivalent to the vectors of linear
algebra. Consider the example
> x*y
[1] 8 28 16 4

which seems a natural answer since x is scalar. But consider the following
> y*y
[1] 4 49 16 1

This is the term-by-term product of the elements in y (i.e., yi · yi). If y was a
vector of linear algebra, then one should expect two possible cases only, y · yT

or yT ·y, where “T” is the transposition operator and we still did not mention
whether y is a column or a row vector. To clarify what is R behavior, one
should consider the following equivalent command.
> y^2
[1] 4 49 16 1
> log(y)
[1] 0.6931472 1.9459101 1.3862944 0.0000000

From this example, it is clear that R is applying the function f(z) = z2

(or f(z) = log(z)) to each element of the vector y. One way to think of this is
in terms of statistical models and corresponding data analysis. If one has to
model a response variable Y in terms of some covariates X1, . . . , Xk with a
model function f , say Y ∼ f(X1, . . . , Xk), and corresponding data come as n
observations (Yi, Xi1, . . . , Xik), i = 1, . . . , n, one wants to apply the model f
to each observation i and fit it accordingly.

2 In R, there is no distinction between single- and double-precision real numbers
as in other languages. All objects of class real are stored and treated as double-
precision real numbers internally.
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A.3 R vectors and linear algebra

To use linear algebra on vectors and matrices, one should use the linear algebra
operator %*% as follows
> t(y) %*% y

[,1]
[1,] 70

and
> z <- y %*% t(y)
> z

[,1] [,2] [,3] [,4]
[1,] 4 14 8 2
[2,] 14 49 28 7
[3,] 8 28 16 4
[4,] 2 7 4 1

Conventionally, R vectors are considered as column vectors, and implicitly
the product
> y %*% y

is treated as
> t(y) %*% y

Of course, t() is the transposition operator in R. Unless defined as a matrix
with dimension 1× k of k × 1, R vectors are always printed horizontally. For
example,
> -1:30
[1] -1 0 1 2 3 4 5 6 7 8 9 10

[13] 11 12 13 14 15 16 17 18 19 20 21 22
[25] 23 24 25 26 27 28 29 30

creates a vector using the sequence of numbers from −1 to 30 with step 1.
Matrices can be created using the matrix command as follows.
> a <- matrix (1:30 , 5,6)
> a

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 6 11 16 21 26
[2,] 2 7 12 17 22 27
[3,] 3 8 13 18 23 28
[4,] 4 9 14 19 24 29
[5,] 5 10 15 20 25 30

In the code above, a matrix of five rows and six columns is created and
filled with the numbers from 1 to 30. The matrix is filled columnwise using
the elements of the vector 1:30. If the input vector is not long enough, its
elements are recycled as in the following example.3

> b <- matrix(LETTERS , 5, 6)
> b

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] "A" "F" "K" "P" "U" "Z"
[2,] "B" "G" "L" "Q" "V" "A"
[3,] "C" "H" "M" "R" "W" "B"
[4,] "D" "I" "N" "S" "X" "C"
[5,] "E" "J" "O" "T" "Y" "D"

3 A warning message has been suppressed.
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LETTERS is a predefined vector of the 26 capital letters of the English alphabet.
The reader may want to explore different uses of the command matrix, looking
at the corresponding help page. Two things are worth mentioning at this point.
The first is that the argument “recycling” is a standard feature of many R
functions, and the reader is invited to keep this in mind. The second is the
way R represents matrices which helps in understanding how flexible R is in
subsetting objects. We give some examples of subsetting of matrices without
comments.
> a[1,] # extract 1st column
[1] 1 6 11 16 21 26
> a[1:2 ,3] # extracts a submatrix
[1] 11 12
> a[1:2 ,3:4]

[,1] [,2]
[1,] 11 16
[2,] 12 17
> a[,4] # extract the 4th column
[1] 16 17 18 19 20
> a[c(1,3),] # a submatrix of noncontiguous elements

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 6 11 16 21 26
[2,] 3 8 13 18 23 28

In the code above, we used the symbol #, which indicates a comment in
the spirit of what REM does for BASIC, c for FORTRAN, etc. All characters
following the # symbol are ignored by the R parser.

A.4 Subsetting

As already mentioned, subsetting is an important feature of the language and
widely used in many R programs, including the one contained in this book.
Subsetting is strictly related to the ability to create indexes programmatically.
We have seen one way of creating sequences like the following code.
> x <- 3:8
> x
[1] -3 -2 -1 0 1 2 3 4 5 6 7 8

The more general way of doing this is the command seq (sequence). Con-
sider the following
> seq(-3,6,2)
[1] -3 -1 1 3 5
> seq(-3,-1,.33)
[1] -3.00 -2.67 -2.34 -2.01 -1.68 -1.35 -1.02

In this code, we have created two sequences using different steps (2 and
0.33, respectively), but one should specify the total length of a sequence as
follows.
> seq(-3, 1, length =10)
[1] -3.0000000 -2.5555556 -2.1111111 -1.6666667 -1.2222222
[6] -0.7777778 -0.3333333 0.1111111 0.5555556 1.0000000
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Although this way of creating sequences is useful, for subsetting we need
something different. The main command in this direction is which, which
works on logical expressions. For example, let
> x <- -3:8
> x
[1] -3 -2 -1 0 1 2 3 4 5 6 7 8

If we want to know which elements of x are strictly less than 2, we will
use
> which(x<2)
[1] 1 2 3 4 5

or, for the elements greater than or equal to −1 or strictly greater than 5, we
will write
> which((x >= -1) & (x < 5))
[1] 3 4 5 6 7 8

Here “&” is the logical operator and. The or logical operator is “|”. For ex-
ample,
> which((x < -2) | (x > 1)) -> z
> z
[1] 1 6 7 8 9 10 11 12

returns the indexes of the elements of x such that x is strictly less than 2 or
greater than 1. But what we really want is to extract such elements from x;
i.e., we want to do subsetting.
> x[z]
[1] -3 2 3 4 5 6 7 8

The command which just returns the index of the logical elements equal to
TRUE in a vector. R logical vectors can contain the symbols TRUE and FALSE
(which are not equivalent to the numbers 1 and 0 as in other programming
languages). For example,
> x < 3.2
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

[10] FALSE FALSE FALSE

is the vector of “TRUE/FALSE” above, which is the result of applying the func-
tion is < 3.2 element by element to vector x. One such logical vector which
returns the following.
> which(x < 3.2)
[1] 1 2 3 4 5 6 7

A.5 Different types of objects

In the R language it is also possible to initialize object without specifying the
initial value.
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> matrix (,2,3)
[,1] [,2] [,3]

[1,] NA NA NA
[2,] NA NA NA

The matrix above is filled with missing values and represented by the symbol
NA, literally Not Available. Many R functions are able to treat missing values
automatically, but at this stage we only mention that a few special symbols
in the R language are sealed in the sense that they cannot be redefined by
the user. Indeed, one can decide to redefine all other R objects by overriding
their definitions. The only limitations are naming conventions of the language
itself. Object names are usually a sequence of letters and numbers but may
also include special characters such as the dot “.” or the underscore “ ”.
Nevertheless, object names cannot start with a digit. This means that x2,
.x2, or x.2 are admissible names but 2x is not. Objects whose name starts
with a dot are usually masked by a simple use of the ls() command. The few
names of objects that are sealed are the following.

FALSE TRUE Inf NA NaN NULL
break else for function if in next repeat while

Of course, it is common sense not to redefine functions such as c(), ls(), etc.
All objects belong to some classes, such as the following basic ones:

• character : alphanumeric string of characters;
• numeric : real numbers, internally stored as double-precision floating-point

numbers;
• integer : integer numbers, eventually with sign;
• logical : objects that take only values TRUE or FALSE;
• complex : complex numbers with real and imaginary parts;
• function : functions of named or variable number of arguments;
• expression : true mathematical expressions to be evaluated.

Objects of these classes can be organized differently in vectors, matrices, and
arrays or lists and environments. Vectors, matrices, arrays and objects of
class list are also indexable but not objects of class environment. Still,
it is possible to subset the environment using the key-value convention, re-
trieving objects in an environment by name and obtaining the corresponding
value. While vectors, matrices, and arrays contain elements of the same class,
lists and environments are containers of different objects. For example, the R
workspace is itself an environment called the “global environment.”
> .GlobalEnv
<environment: R_GlobalEnv >

Vectors can be created in essentially two ways: by “initialization” or “fill-
ing” (or assignment). We have already used both approaches, so the following
two lines of R code are given without comment, being self-explanatory.
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> x <- 1:3
> x
[1] 1 2 3
> x <- numeric (3)
> x
[1] 0 0 0
> x <- vector(3, mode="numeric")
> x
[1] 0 0 0

The option mode can be any of the classes above and eventually many
others, but at least one mode has to be specified: try vector(3). Objects
of class list, along with environment, are heavily used in the R language
because they can contain exhaustive descriptions of, for example, models,
data, etc. The following code creates a few objects of different types and
collects them into a list.
> myCmp <- complex(real =1:10 , imaginary =-1:9)
> myCmp # recycling is taking place
[1] 1-1i 2+0i 3+1i 4+2i 5+3i 6+4i 7+5i 8+6i
[9] 9+7i 10+8i 1+9i

> myStr <- c("up", "down")
> myLog <- c(TRUE , TRUE , FALSE , FALSE , FALSE)
> myMat <- matrix(1, 4, 2)
> myExpr <- c(expression(sin(x)), expression(cos(2*x)))

There are two ways of doing this:
> myList1 <- list(CPLX = myCmp , LAB = myStr , BOOL = myLog ,
+ MAT = myMat , EXPR = myExpr)
> myList2 <- list(myCmp , myStr , myLog , myMat , myExpr)

myList1 and myList2 are almost the same object, but the difference is that
elements of myList1 can be accessed by names (CPLX, LAB, etc.) but elements
of myList2 only by index.
> myList1
$CPLX
[1] 1-1i 2+0i 3+1i 4+2i 5+3i 6+4i 7+5i 8+6i
[9] 9+7i 10+8i 1+9i

$LAB
[1] "up" "down"

$BOOL
[1] TRUE TRUE FALSE FALSE FALSE

$MAT
[,1] [,2]

[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 1 1

$EXPR
expression(sin(x), cos(2 * x))

but
> myList2
[[1]]
[1] 1-1i 2+0i 3+1i 4+2i 5+3i 6+4i 7+5i 8+6i
[9] 9+7i 10+8i 1+9i
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[[2]]
[1] "up" "down"

[[3]]
[1] TRUE TRUE FALSE FALSE FALSE

[[4]]
[,1] [,2]

[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 1 1

[[5]]
expression(sin(x), cos(2 * x))

So, for myList1, to access the second element of the container, we can use
both
> myList1$LAB
[1] "up" "down"
> myList1["LAB"] # key -value access to the element of a list
$LAB
[1] "up" "down"
> myList1 [2]
$LAB
[1] "up" "down"

but for myList2 only myList2[2]. The operator $ has a special meaning in
R, and we will use it frequently to access elements of lists or environments.
We should also mention that if one wants direct access to the elements of, say,
the LAB element of myList1, one should use the subsetting operator [[. We
give an example of this without comment.
> myList1$LAB[1]
[1] "up"
> myList1 [[2]][1]
[1] "up"
> myList1 [["LAB"]] # Note: [[ is different from [ below
[1] "up" "down"
> myList1["LAB"]
$LAB
[1] "up" "down"

One useful command to inspect the nature of the object is str, “structure”;
for example,
> str(myList1)
List of 5
$ CPLX: cplx [1:11] 1-1i 2+0i 3+1i ...
$ LAB : chr [1:2] "up" "down"
$ BOOL: logi [1:5] TRUE TRUE FALSE FALSE FALSE
$ MAT : num [1:4, 1:2] 1 1 1 1 1 1 1 1
$ EXPR: expression(sin(x), cos(2 * x))

We will discuss the peculiarity of environment objects after discussing a bit
of objects of class function.

A.6 Expressions and functions

Mathematical expressions in R are objects of class expression. R expressions
are intended to be evaluated and can be manipulated symbolically until the



226 Appendix A: A brief excursus into R

evaluation is needed. R has a limited set of primitive mathematical functions
along with a table of derivatives for them. They can also be plotted using
a LATEX style visualization on graphs. R expressions must be constructed
as such. For example, cos(x) is not interpreted as an expression by R but
expression(cos(x)) is
> ex <- expression(cos(x))
> str(ex)

expression(cos(x))

and can be evaluated using the eval function
> eval(ex)
Error in eval(expr , envir , enclos) : object "x" not found
> x <- 2
> eval(ex)
[1] -0.4161468

From the example above, it is clear that in order to evaluate an expression
everything needed for the evaluation should be available. Expressions can be
differentiated, but the result is not immediately clear for the average R user.
> dx <- deriv(ex,"x")
> dx
expression ({

.value <- cos(x)

.grad <- array(0, c(length (.value), 1), list(NULL , c("x")))

.grad[, "x"] <- -sin(x)
attr(.value , "gradient") <- .grad
.value

})
> eval(dx)
[1] -0.4161468
attr(,"gradient")

x
[1,] -0.9092974

We discuss manipulation and differentiation of R expressions in the body
of the book, particularly in Chapter 2. R commands are objects of class
function, and functions can have a fixed or variable number of arguments.4

Writing a function in R is as easy as the following.
> f <- function(x=1,y){
+ if(y != 0)
+ x/y
+ else
+ stop("are you joking?")
+ }

f is constructed using the special R command function as a function of two
arguments x and y. The first argument has a default value x set equal to 1.
The body of the function is enclosed within “{” and “}”. All arguments must
be named, and the order of the arguments matters only in calls in which the
argument names are not used.
> f(1,2)
[1] 0.5
> f(y=2,x=1)

4 We do not treat this second case.
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[1] 0.5
> f(y=2)
[1] 0.5
> f(y=0)
Error in f(y = 0) : are you joking?
> f(0)
Error in f(0) : argument "y" is not specified and has no default value

R expressions can be transformed into R functions as follows.
> ez <- expression(cos(z))
> fz <- function(z) eval(ez)
> fz(1)
[1] 0.5403023

Notice that, in the case above, the variable z is taken from the arguments
passed to the function and not from the global environment.
> eval(ez)
Error in eval(expr , envir , enclos) : object "z" not found
> z <- 2
> eval(ez)
[1] -0.4161468
> fz(1)
[1] 0.5403023
> fz(2)
[1] -0.4161468

A.7 Loops and vectorization

Even if we cannot go into the details of the object-oriented nature of the R
language, the reader should know some basic principles on how the R language
works. In the function f above, a call to f(x,y) implies that copies of the
objects x and y are passed to the function instead of just their pointers (i.e.,
memory addresses). This means that function calls usually generate memory
copies that in iterative procedures might lead to inefficiency, in particular in
cases where the objects are large in size. One should think that operators such
as + are indeed functions: a+b should be interpreted as +(a,b), where +(,) is
just an R function. This is why, in the R language, loops are “slow” compared
with some other widely used languages, and the best programming practice
is to use vectorization instead.

A for loop in R is a construct defined as

for(index in some set){ execute these commands }

The following for loop, which executes the task of summing the first 10000
integer numbers
> s <- 0
> for(i in 1:10000){
+ s <- s + i
+ }
> s
[1] 50005000

is not as efficient as



228 Appendix A: A brief excursus into R

> sum (1:10000)
[1] 50005000

The apparently innocuous line s <- s + i takes a copy of s and i, passes
them to the function +, gets the result, and copies it back onto s. If one thinks
that this is iterated 10000 times, it is clear why such a for loop is not effi-
cient. The line sum(1:10000) is instead a call to some quite efficient internal,
primitive R function. Many R functions are vectorized; furthermore, not many
algorithms require a true iterative scheme and can instead be vectorized. We
discuss this in detail in Chapter 1.

Vectorization of functions is made easy by a series of *apply functions.
For example, the sapply function applies some R function to each element of
a vector and returns a vector of the same length as the original.
> x <- 1:3
> sapply(x, log) # this is equivalent to log(x)
[1] 0.0000000 0.6931472 1.0986123

Other examples are the functions apply and lapply. The first one operates
along a specified dimension of an array, and the second one iterates the element
of the list.
> a <- matrix(rep(1:5 ,6),5 ,6)
> a

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 1 1 1 1 1
[2,] 2 2 2 2 2 2
[3,] 3 3 3 3 3 3
[4,] 4 4 4 4 4 4
[5,] 5 5 5 5 5 5
> apply(a, 1, sum) # applies `sum ' iterating on the rows of a
[1] 6 12 18 24 30
> apply(a, 2, sum) # applies `sum ' iterating on the columns of a
[1] 15 15 15 15 15 15

We further discuss vectorization for the functions introduced in the book
when appropriate.

A.8 Environments

The only exceptions in the base R language of objects that are not copied
in function calls are objects of class environment for which only the address
is passed. An environment is created using the command new.env(). Once
created, the user can store objects in it. The following listing creates an envi-
ronment e1 and stores objects in it. To show that the R workspace is just a
particular environment, the command ls() is used on e1.
> rm(list=ls()) # removes everything from the workspace
> ls()
character (0)
> e1 <- new.env() # creates a new environment
> e1$a <- 10 # an object a is created in e1 and initialized with 10
> e1$a
[1] 10
> ls() # the R workspace contains only e1. Where is a?
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[1] "e1"
> ls(e1) # here it is!
[1] "a"
> assign("b", 3, env=e1) # equivalent to e1$b <- 3
> ls()
[1] "e1"
> ls(e1)
[1] "a" "b"

Environments are useful in different scopes. In particular, we have seen
that evaluation of R expressions needs to find objects in environments (either
the global or the function environment in the examples above). It is possible
to specify directly in eval the environment in which to work or to assign a
predetermined environment to functions. With this approach, one is always
sure about what is really evaluated and that objects created in some envi-
ronment do not interfere with (override) objects in other environments. The
following listing is an example of such an implementation.
> a+b
Error: object "a" not found
> eval(a+b)
Error in eval(a + b) : object "a" not found
> eval(expression(a+b), envir=e1)
[1] 13
> e1
<environment: 0x1c8df40 > # this number may be different for the reader
> str(e1)
length 2 <environment >

The following is an example of a function that operates in a separate
environment.
> rm(list=ls())
> e2 <- new.env()
> e2
<environment: 0x1feecec > # this might be different for the reader
> e2$a <- 1
> new.f <- function(u) u+a
> new.f
function(u) u+a
> environment(new.f)
<environment: R_GlobalEnv >
> new.f(5)
Error in new.f(5) : object "a" not found
> environment(new.f) <- e2
> new.f
function(u) u+a
<environment: 0x1feecec >
> new.f(5)
[1] 6

Manipulation of objects in environments is particularly useful in Chapter
3.

A.9 Time series objects

There are different ways to handle time series data in R. In the base R system,
there is a class named ts, which is suitable for unidimensional or multidimen-
sional time series where time instants are assumed to be equally spaced. Many
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other classes for storing data of time series type are provided by additional
packages such as its, tseries, and zoo. They can handle irregularly spaced
time series even with abstract indexing instead of time. In this book, we mainly
work with the base ts objects, so we briefly describe their structure.

These objects assume the time variable is regularly spaced; hence, to ini-
tialize such objects, one needs to specify the starting date, the time increment
δ or the frequency (i.e., the reciprocal of δ), or the ending date (in the latter
case, the values of the time series are eventually recycled). In the next ex-
ample, we generate a vector of pseudo random numbers5 from the Gaussian
distribution, cumulate them, and create a ts object with them. We use dif-
ferent values for the frequency parameter to show how dates are handled in
the simplest way (more sophisticated options exist to treat dates).
> set.seed (123)
> z <- cumsum(rnorm (10))
> x <- ts(z, start =1980)
> x
Time Series:
Start = 1980
End = 1989
Frequency = 1
[1] -0.5604756 -0.7906531 0.7680552 0.8385636 0.9678513
[6] 2.6829163 3.1438325 1.8787713 1.1919184 0.7462564

> x <- ts(z, start =1980, frequency =4)
> x

Qtr1 Qtr2 Qtr3 Qtr4
1980 -0.5604756 -0.7906531 0.7680552 0.8385636
1981 0.9678513 2.6829163 3.1438325 1.8787713
1982 1.1919184 0.7462564
> x <- ts(z, start =1980, frequency =12)
> x

Jan Feb Mar Apr
1980 -0.5604756 -0.7906531 0.7680552 0.8385636

May Jun Jul Aug
1980 0.9678513 2.6829163 3.1438325 1.8787713

Sep Oct
1980 1.1919184 0.7462564

Once a ts object is created, several methods and accessor functions are
available in the base R system to handle, analyze, and modify their structure.
We give a brief example below.
> time(x)

Jan Feb Mar Apr May Jun
1980 1980.000 1980.083 1980.167 1980.250 1980.333 1980.417

Jul Aug Sep Oct
1980 1980.500 1980.583 1980.667 1980.750
> deltat(x)
[1] 0.08333333
> frequency(x)
[1] 12
> start(x)
[1] 1980 1
> end(x)
[1] 1980 10

Finally, what matters to the subject of this book is the ability to resample
data from a ts object. This is particularly relevant in estimation methods
5 We discuss briefly R’s pseudo random number generators in Section 1.2.
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that imply a simulation step. The relevant function is window, of which we
show some applications below.
> window(x, end=c(1980 ,6))

Jan Feb Mar Apr
1980 -0.5604756 -0.7906531 0.7680552 0.8385636

May Jun
1980 0.9678513 2.6829163
> window(x, freq =4)

Qtr1 Qtr2 Qtr3 Qtr4
1980 -0.5604756 0.8385636 3.1438325 0.7462564

In Chapter 3, we mainly work by resampling the time series using the
time step between observations. The following example is more specific to
the subject of inference for discretely observed diffusion processes and is also
discussed in Chapter 3.
> set.seed (132)
> z <- cumsum(rnorm (100))
> x <- ts(z, deltat =0.1)
> x
Time Series:
Start = c(1, 1)
End = c(10, 10)
Frequency = 10

[1] 0.474111397 -0.080833369 -0.090790662 0.976202446
[5] 0.263974326 -0.056693942 -1.294612588 -2.379483005
[9] -1.510482696 0.805597503 1.120447528 -0.150929590

[13] 0.411930315 -0.047739687 0.762566467 1.667115120

(...) # some output has been eliminated

[93] 11.699791682 10.796491623 9.914504234 10.106141068
[97] 10.614473960 11.270690115 10.763255231 10.252251090

> window(x, deltat =0.4)
Time Series:
Start = 1
End = 10.6
Frequency = 2.5
[1] 0.4741114 0.2639743 -1.5104827 0.4119303 0.4583497
[6] 0.3119781 0.2396707 1.4266107 3.4782968 0.6377071

[11] 3.4589132 2.2149872 4.2695622 5.9369322 4.6732305
[16] 4.4013621 8.4027980 7.7126426 7.5110659 8.1040908
[21] 7.9757358 10.6676656 10.3474873 11.6997917 10.6144740

A.10 R Scripts

Quite frequently a Monte Carlo study can take some time to execute. In this
case, the obvious way to proceed is to leave the computer alone to work on
some R simulation code. These programs are just ASCII files, usually but
not necessarily with the extension .R, that contain several lines of code to
be executed by R. During an interactive session, one might want to use the
command source("myScript.R"), where myScript.R is an ASCII file in the
current working directory, to execute the R code in the script. Under Unix-like
shells or the MS-DOS command line, it is possible to use the commands
R CMD BATCH myScript.R
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for Unix-like shells and
Rcmd BATCH myScript.R

for the MS-DOS command line. In this case, R will produce the corresponding
output of the script in a file with the extension changed into .Rout.

A.11 Miscellanea

To save all the output of an interactive session, it is possible to use the com-
mand sink as follows.
> sink("output.txt") # opens the file
# you do your analysis. All the output goes into output.txt
> sink() # closes the file

In parallel, it is possible to save and reload the list of commands typed
during an interactive session using save.history and load.history.

The current working directory can be changed or located using setwd and
getwd commands. Under some systems and when this concept applies, the
default starting working directory is the current working directory of the user
(for example, in a Unix shell). The content of a directory can be seen using
dir.

Finally, most of the GUIs have capabilities for installing and loading pack-
ages, and these are easily accessible from the menus of the GUI but sys-
tem dependent, so we don’t discuss them here. We just mention that several
*.packages functions (download, install, etc.) exist and can be used di-
rectly from the R console.

Installed R packages can be loaded into R using library(package) (e.g.,
library(sde)) and the main (index) help page for each package can be ac-
cessed by
> library(help=package)
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This appendix contains the documentation pages of the sde package available
on CRAN (Comprehensive R Archive Network) (http://CRAN.R-Project.
org). To install the sde package on your version of R, type the following line
in the R console.
> install.packages("sde")

If you don’t have enough privileges to install software on your machine or ac-
count, you will need the help of your system administrator. Once the package
has been installed, you can actually use it by loading the code with
> library(sde)

A short list of help topics, corresponding to most of the commands in the
package, is available by typing
> library(help=sde)

The examples presented in this book are contained in text files named
exY.ZZ.R, where Y is the chapter in which example ZZ is contained. These
files can be found in the directory called book inside the installed version of
the sde package; i.e., they are accessible with
> setwd(file.path(. libPaths ()[1] ,"sde","book"))
> dir()
[1] "ch1.R" "ch2.R" "ch3.R" "ch4.R" "ex1 .01.R" "ex1 .02.R"
[7] "ex1 .03.R" "ex1 .04.R" "ex1 .05.R" "ex1 .06.R" "ex1 .07.R" "ex1 .08.R"

[13] "ex1 .09.R" "ex1 .10.R" "ex1 .11.R" "ex1 .12.R" "ex1 .13.R" "ex1 .14.R"
[19] "ex1 .15.R" "ex2 .01.R" "ex2 .02.R" "ex2 .03.R" "ex2 .04.R" "ex2 .05.R"
[25] "ex2 .06.R" "ex2 .07.R" "ex2 .08.R" "ex2 .09.R" "ex2 .10.R" "ex2 .11.R"
[31] "ex2 .12.R" "ex2 .13.R" "ex2 .14.R" "ex2 .15.R" "ex2 .16.R" "ex2 .17.R"
[37] "ex2 .18.R" "ex3 .01.R" "ex3 .02.R" "ex3 .03.R" "ex3 .04.R" "ex3 .05.R"
[43] "ex3 .06.R" "ex3 .07.R" "ex3 .08.R" "ex4 .01.R" "ex4 .02.R" "ex4 .03.R"
[49] "ex4 .04.R" "ex4 .05.R" "ex4 .06.R" "ex4 .07.R"

and executed via, for example, the source command
> source("ex1.01R")

although we suggest opening each file in a text editor and copying and pasting
the code line-by-line into the R console to get immediate feedback.

http://CRAN.R-Project.org
http://CRAN.R-Project.org
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BM Brownian motion, Brownian bridge, and geo-
metric Brownian motion simulators

Description

Brownian motion, Brownian bridge, and geometric Brownian motion sim-
ulators.

Usage

BBridge(x=0, y=0, t0=0, T=1, N=100)
BM(x=0, t0=0, T=1, N=100)
GBM(x=1, r=0, sigma=1, T=1, N=100)

Arguments

x initial value of the process at time t0.
y terminal value of the process at time T.
t0 initial time.
r the interest rate of the GBM.
sigma the volatility of the GBM.
T final time.
N number of intervals in which to split [t0,T].

Details

These functions return an invisible ts object containing a trajectory of
the process calculated on a grid of N+1 equidistant points between t0
and T; i.e., t[i] = t0 + (T-t0)*i/N, i in 0:N. t0=0 for the geometric
Brownian motion.
The function BBridge returns a trajectory of the Brownian bridge starting
at x at time t0 and ending at y at time T; i.e.,

{B(t), t0 ≤ t ≤ T |B(t0) = x,B(T ) = y}.

The function BM returns a trajectory of the translated Brownian motion
B(t), t ≥ 0|B(t0) = x; i.e., x + B(t − t0) for t >= t0. The standard
Brownian motion is obtained choosing x=0 and t0=0 (the default values).
The function GBM returns a trajectory of the geometric Brownian motion
starting at x at time t0=0; i.e., the process

S(t) = x exp{(r − σ2/2)t+ σB(t)}.
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Value

X an invisible ts object

Examples

plot(BM())

plot(BBridge())

plot(GBM())

cpoint Volatility change-point estimator for diffusion
processes

Description

Volatility change-point estimator for diffusion processes based on least
squares.

Usage

cpoint(x, mu, sigma)

Arguments

x a ts object.
mu a function of x describing the drift coefficient.
sigma a function of x describing the diffusion coefficient.

Details

The function returns a list of elements containing the discrete k0 and
continuous tau0 change-point instant, the estimated volatilities before
(theta1) and after (theta2) the time change. The model is assumed to
be of the form

dXt = b(Xt)dt+ θσ(Xt)dWt

where theta = theta1 for t<=tau0 and theta = theta2 otherwise.
If the drift coefficient is unknown, the model

dXt = b(Xt)dt+ θdWt

is considered and b is estimated nonparametrically.

Value

X a list
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Examples

tau0 <- 0.6

k0 <- ceiling(1000*tau0)

set.seed(123)

X1 <- sde.sim(X0=1, N=2*k0, t0=0, T=tau0, model="CIR",

theta=c(6,2,1))

X2 <- sde.sim(X0=X1[2*k0+1], N=2*(1000-k0), t0=tau0,

T=1, model="CIR", theta=c(6,2,3))

Y <- ts(c(X1,X2[-1]), start=0, deltat=deltat(X1))

X <- window(Y,deltat=0.01)

DELTA <- deltat(X)

n <- length(X)

mu <- function(x) 6-2*x

sigma <- function(x) sqrt(x)

cp <- cpoint(X,mu,sigma)

cp

plot(X)

abline(v=tau0,lty=3)

abline(v=cp$tau0,col="red")

# nonparametric estimation

cpoint(X)

DBridge Simulation of diffusion bridge

Description

Simulation of diffusion bridge.

Usage

DBridge(x=0, y=0, t0=0, T=1, delta, drift, sigma, ...)

Arguments

x initial value of the process at time t0.
y terminal value of the process at time T.
t0 initial time.
delta time step of the simulation.
drift drift coefficient: an expression of two variables t and x.
sigma diffusion coefficient: an expression of two variables t and

x.
T final time.
... passed to the sde.sim function.
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Details

The function returns a trajectory of the diffusion bridge starting at x at
time t0 and ending at y at time T.
The function uses the sde.sim function to simulate the paths internally.
Refer to the sde.sim documentation for further information about the
argument “...”

Value

X an invisible ts object

Examples

d <- expression((3-x))

s <- expression(1.2*sqrt(x))

par(mar=c(3,3,1,1))

par(mfrow=c(2,1))

set.seed(123)

X <- DBridge(x=1.7,y=0.5, delta=0.01, drift=d, sigma=s)

plot(X)

X <- DBridge(x=1,y=5, delta=0.01, drift=d, sigma=s)

plot(X)

dcElerian Approximated conditional law of a diffusion pro-
cess by Elerian’s method

Description

Approximated conditional densities for X(t)|X(t0) = x0 of a diffusion
process.

Usage

dcElerian(x, t, x0, t0, theta, d, s, sx, log=FALSE)

Arguments

x vector of quantiles.
t lag or time.
x0 the value of the process at time t0; see details.
t0 initial time.
theta parameter of the process; see details.
log logical; if TRUE, probabilities p are given as log(p).
d drift coefficient as a function; see details.
s diffusion coefficient as a function; see details.
sx partial derivative w.r.t. x of the diffusion coefficient; see

details.
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Details

This function returns the value of the conditional density of X(t)|X(t0) =
x0 at point x.
All the functions d, s, and sx must be functions of t, x, and theta.

Value

x a numeric vector

dcEuler Approximated conditional law of a diffusion pro-
cess

Description

Approximated conditional densities for X(t)|X(t0) = x0 of a diffusion
process.

Usage

dcEuler(x, t, x0, t0, theta, d, s, log=FALSE)

Arguments

x vector of quantiles.
t lag or time.
x0 the value of the process at time t0; see details.
t0 initial time.
theta parameter of the process; see details.
log logical; if TRUE, probabilities p are given as log(p).
d drift coefficient as a function; see details.
s diffusion coefficient as a function; see details.

Details

This function returns the value of the conditional density of X(t)|X(t0) =
x0 at point x.
The functions d and s must be functions of t, x, and theta.

Value

x a numeric vector

dcKessler Approximated conditional law of a diffusion pro-
cess by Kessler’s method
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Description

Approximated conditional densities for X(t)|X(t0) = x0 of a diffusion
process.

Usage

dcKessler(x, t, x0, t0, theta, d, dx, dxx, s, sx, sxx,
log=FALSE)

Arguments

x vector of quantiles.
t lag or time.
x0 the value of the process at time t0; see details.
t0 initial time.
theta parameter of the process; see details.
log logical; if TRUE, probabilities p are given as log(p).
d drift coefficient as a function; see details.
dx partial derivative w.r.t. x of the drift coefficient; see de-

tails.
dxx second partial derivative wrt x^2 of the drift coefficient;

see details.
s diffusion coefficient as a function; see details.
sx partial derivative w.r.t. x of the diffusion coefficient; see

details.
sxx second partial derivative w.r.t. x^2 of the diffusion co-

efficient; see details.

Details

This function returns the value of the conditional density of X(t)|X(t0) =
x0 at point x.
All the functions d, dx, dxx, dt, s, sx, and sxx must be functions of t, x,
and theta.

Value

x a numeric vector

dcOzaki Approximated conditional law of a diffusion pro-
cess by Ozaki’s method



240 Appendix B: The sde Package

Description

Approximated conditional densities for X(t)|X(t0) = x0 of a diffusion
process.

Usage

dcOzaki(x, t, x0, t0, theta, d, dx, s, log=FALSE)

Arguments

x vector of quantiles.
t lag or time.
x0 the value of the process at time t0; see details.
t0 initial time.
theta parameter of the process; see details.
log logical; if TRUE, probabilities p are given as log(p).
d drift coefficient as a function; see details.
dx partial derivative w.r.t. x of the drift coefficient; see de-

tails.
s diffusion coefficient as a function; see details.

Details

This function returns the value of the conditional density of X(t)|X(t0) =
x0 at point x.
All the functions d, dx, and s must be functions of t, x, and theta.

Value

x a numeric vector

dcShoji Approximated conditional law of a diffusion pro-
cess by the Shoji-Ozaki method

Description

Approximated conditional densities for X(t)|X(t0) = x0 of a diffusion
process.

Usage

dcShoji(x, t, x0, t0, theta, d, dx, dxx, dt, s, log=FALSE)
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Arguments

x vector of quantiles.
t lag or time.
x0 the value of the process at time t0; see details.
t0 initial time.
theta parameter of the process; see details.
log logical; if TRUE, probabilities p are given as log(p).
d drift coefficient as a function; see details.
dx partial derivative w.r.t. x of the drift coefficient; see de-

tails.
dxx second partial derivative w.r.t. x^2 of the drift coeffi-

cient; see details.
dt partial derivative w.r.t. t of the drift coefficient; see de-

tails.
s diffusion coefficient as a function; see details.

Details

This function returns the value of the conditional density of X(t)|X(t0) =
x0 at point x.
All the functions d, dx, dxx, dt, and s must be functions of t, x, and
theta.

Value

x a numeric vector

dcSim Pedersen’s simulated transition density

Description

Simulated transition density X(t)|X(t0) = x0X(t) — X(t0) = x0 of a
diffusion process based on Pedersen’s method.

Usage

dcSim(x0, x, t, d, s, theta, M=10000, N=10, log=FALSE)
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Arguments

x0 the value of the process at time 0.
x value in which to evaluate the conditional density.
t lag or time.
theta parameter of the process; see details.
log logical; if TRUE, probabilities p are given as log(p).
d drift coefficient as a function; see details.
s diffusion coefficient as a function; see details.
N number of subintervals; see details.
M number of Monte Carlo simulations, which should be an

even number; see details.

Details

This function returns the value of the conditional density of X(t)|X(0) =
x0 at point x.
The functions d and s, must be functions of t, x, and theta.

Value

x a numeric vector

Examples

## Not run:

d1 <- function(t,x,theta) theta[1]*(theta[2]-x)

s1 <- function(t,x,theta) theta[3]*sqrt(x)

from <- 0.08

x <- seq(0,0.2, length=100)

sle10 <- NULL

sle2 <- NULL

sle5 <- NULL

true <- NULL

set.seed(123)

for(to in x){

sle2 <- c(sle2, dcSim(from, to, 0.5, d1, s1,

theta=c(2,0.02,0.15), M=50000,N=2))

sle5 <- c(sle5, dcSim(from, to, 0.5, d1, s1,

theta=c(2,0.02,0.15), M=50000,N=5))

sle10 <- c(sle10, dcSim(from, to, 0.5, d1, s1,

theta=c(2,0.02,0.15), M=50000,N=10))

true <- c(true, dcCIR(to, 0.5, from, c(2*0.02,2,0.15)))

}
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par(mar=c(5,5,1,1))

plot(x, true, type="l", ylab="conditional density")

lines(x, sle2, lty=4)

lines(x, sle5, lty=2)

lines(x, sle10, lty=3)

legend(0.15,20, legend=c("exact","N=2", "N=5", "N=10"),

lty=c(1,2,4,3))

## End(Not run)

DWJ Weekly closings of the Dow-Jones industrial av-
erage

Description

This dataset contains the weekly closings of the Dow-Jones industrial
average in the period July 1971–August 1974. These data were proposed to
test change-point estimators. There are 162 data, and the main evidence
found by several authors is that a change in the variance occurred around
the third week of March 1973.

Usage

data(DWJ)

Examples

data(DWJ)

ret <- diff(DWJ)/DWJ[-length(DWJ)]

par(mfrow=c(2,1))

par(mar=c(3,3,2,1))

plot(DWJ,main="Dow-Jones closings",ylab="",type="p")

plot(ret,main="Dow-Jones returns",ylab="",type="p")

cp <- cpoint(ret)

cp

abline(v=cp$tau0,lty=3)

cp <- cpoint(window(ret,end=cp$tau0))

cp

abline(v=cp$tau0,lty=3)

EULERloglik Euler approximation of the likelihood
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Description

Euler approximation of the likelihood of a process solution of a stochastic
differential equation. These functions are useful to calculate approximated
maximum likelihood estimators when the transition density of the process
is not known.

Usage

EULERloglik(X, theta, d, s, log = TRUE)

Arguments

X a ts object containing a sample path of an sde.
theta vector of parameters.
d,s drift and diffusion coefficients; see details.
log logical; if TRUE, the log-likelihood is returned.

Details

The function EULERloglik returns the Euler approximation of the log-
likelihood. The functions s and d are the drift and diffusion coefficients
with arguments (t,x,theta).

Value

x a number

Examples

set.seed(123)

d <- expression(-1*x)

s <- expression(2)

sde.sim(drift=d, sigma=s) -> X

S <- function(t, x, theta) sqrt(theta[2])

B <- function(t, x, theta) -theta[1]*x

true.loglik <- function(theta){

DELTA <- deltat(X)

lik <- 0

for(i in 2:length(X))

lik <- lik + dnorm(X[i], mean=X[i-1]*exp(-theta[1]*DELTA),

sd = sqrt((1-exp(-2*theta[1]*DELTA))*

theta[2]/(2*theta[1])),TRUE)

lik
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}

xx <- seq(-3,3,length=100)

sapply(xx, function(x) true.loglik(c(x,4))) -> py

sapply(xx, function(x) EULERloglik(X,c(x,4),B,S)) -> pz

# true likelihood

plot(xx,py,type="l",xlab=expression(beta),ylab="log-likelihood")

lines(xx,pz, lty=2) # Euler

gmm Generalized method of moments estimator

Description

Implementation of the estimator of the generalized method of moments
by Hansen.

Usage

gmm(X, u, dim, guess, lower, upper, maxiter=30, tol1=1e-3,
tol2=1e-3)

Arguments

X a ts object containing a sample path of an sde.
u a function of x, y, and theta and DELTA; see details.
dim dimension of parameter space; see details.
guess initial value of the parameters; see details.
lower lower bounds for the parameters; see details.
upper upper bounds for the parameters; see details.
tol1 tolerance for parameters; see details.
tol2 tolerance for Q1; see details.
maxiter maximum number of iterations at the second stage; see

details.

Details

The function gmm minimizes at the first stage the function Q(theta) =
t(Gn(theta)) * Gn(theta) with respect to theta, where Gn(theta)
= mean(u(X[i+1], X[i], theta)). Then a matrix of weights W is ob-
tained by inverting an estimate of the long-run covariance and the
quadratic function Q1(theta) = t(Gn(theta)) * W * Gn(theta) with
starting value theta1 (the solution at the first stage). The second stage
is iterated until the first of these conditions verifies: (1) that the number
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of iterations reaches maxiter; (2) that the Euclidean distance between
theta1 and theta2 < tol1; (3) that Q1 < tol2.
The function u must be a function of (u,y,theta,DELTA) and should
return a vector of the same length as the dimension of the parameter
space. The sanity checks are left to the user.

Value

x a list with parameter estimates, the value of Q1 at the
minimum, and the Hessian

Examples

## Not run:

alpha <- 0.5

beta <- 0.2

sigma <- sqrt(0.05)

true <- c(alpha, beta, sigma)

names(true) <- c("alpha", "beta", "sigma")

x0 <- rsCIR(1,theta=true)

set.seed(123)

sde.sim(X0=x0,model="CIR",theta=true,N=500000,delta=0.001) -> X

X <- window(X, deltat=0.1)

DELTA = deltat(X)

n <- length(X)

X <- window(X, start=n*DELTA*0.5)

plot(X)

u <- function(x, y, theta, DELTA){

c.mean <- theta[1]/theta[2] +

(y-theta[1]/theta[2])*exp(-theta[2]*DELTA)

c.var <- ((y*theta[3]^2 *

(exp(-theta[2]*DELTA)-exp(-2*theta[2]*DELTA))/theta[2] +

theta[1]*theta[3]^2*

(1-exp(-2*theta[2]*DELTA))/(2*theta[2]^2)))

cbind(x-c.mean,y*(x-c.mean), c.var-(x-c.mean)^2,

y*(c.var-(x-c.mean)^2))

}

CIR.lik <- function(theta1,theta2,theta3) {

n <- length(X)

dt <- deltat(X)

-sum(dcCIR(x=X[2:n], Dt=dt, x0=X[1:(n-1)],

theta=c(theta1,theta2,theta3), log=TRUE))

}
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fit <- mle(CIR.lik, start=list(theta1=.1, theta2=.1,theta3=.3),

method="L-BFGS-B",lower=c(0.001,0.001,0.001), upper=c(1,1,1))

# maximum likelihood estimates

coef(fit)

gmm(X,u, guess=as.numeric(coef(fit)), lower=c(0,0,0),

upper=c(1,1,1))

true

## End(Not run)

HPloglik Aı̈t-Sahalia Hermite polynomial expansion ap-
proximation of the likelihood

Description

Aı̈t-Sahalia Hermite polynomial expansion and Euler approximation of
the likelihood of a process solution of a stochastic differential equation.
These functions are useful to calculate approximated maximum likelihood
estimators when the transition density of the process is not known.

Usage

HPloglik(X, theta, M, F, s, log=TRUE)

Arguments

X a ts object containing a sample path of an sde.
theta vector of parameters.
M list of derivatives; see details.
F the transform function; see details.
s drift and diffusion coefficient; see details.
log logical; if TRUE, the log-likelihood is returned.

Details

The function HPloglik returns the Hermite polynomial approximation of
the likelihood of a diffusion process transformed to have a unitary diffusion
coefficient. The function F is the transform function, and s is the original
diffusion coefficient. The list of functions M contains the transformed drift
in M[[1]] and the subsequent six derivatives in x of M[[1]]. The functions
F, s, and M have arguments (t,x,theta).

Value

x a number
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Examples

set.seed(123)

d <- expression(-1*x)

s <- expression(2)

sde.sim(drift=d, sigma=s) -> X

M0 <- function(t, x, theta) -theta[1]*x

M1 <- function(t, x, theta) -theta[1]

M2 <- function(t, x, theta) 0

M3 <- function(t, x, theta) 0

M4 <- function(t, x, theta) 0

M5 <- function(t, x, theta) 0

M6 <- function(t, x, theta) 0

mu <- list(M0, M1, M2, M3, M4, M5, M6)

F <- function(t, x, theta) x/sqrt(theta[2])

S <- function(t, x, theta) sqrt(theta[2])

true.loglik <- function(theta) {

DELTA <- deltat(X)

lik <- 0

for(i in 2:length(X))

lik <- lik + dnorm(X[i], mean=X[i-1]*exp(-theta[1]*DELTA),

sd = sqrt((1-exp(-2*theta[1]*DELTA))*theta[2]/

(2*theta[1])),TRUE)

lik

}

xx <- seq(-3,3,length=100)

sapply(xx, function(x) HPloglik(X,c(x,4),mu,F,S)) -> px

sapply(xx, function(x) true.loglik(c(x,4))) -> py

plot(xx,px,type="l",xlab=expression(beta),ylab="log-likelihood")

lines(xx,py, lty=3) # true

ksmooth Nonparametric invariant density, drift, and dif-
fusion coefficient estimation

Description

Implementation of simple Nadaraya-Watson nonparametric estimation of
drift and diffusion coefficient, and plain kernel density estimation of the
invariant density for a one-dimensional diffusion process.
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Usage

ksdrift(x, bw, n = 512)
ksdiff(x, bw, n = 512)
ksdens(x, bw, n = 512)

Arguments

x a ts object.
bw bandwidth.
n number of points in which to calculate the estimates.

Details

These functions return the nonparametric estimate of the drift or diffusion
coefficients for data x using the Nadaraya-Watson estimator for diffusion
processes.
ksdens returns the density estimates of the invariant density.
If not provided, the bandwidth bw is calculated using Scott’s rule (i.e., bw
= len^(-1/5)*sd(x)) where len=length(x) is the number of observed
points of the diffusion path.

Value

val an invisible list of x and y coordinates and an object of
class density in the case of invariant density estimation

Examples

set.seed(123)

theta <- c(6,2,1)

X <- sde.sim(X0 = rsCIR(1, theta), model="CIR", theta=theta,

N=1000,delta=0.1)

b <- function(x)

theta[1]-theta[2]*x

sigma <- function(x)

theta[3]*sqrt(x)

minX <- min(X)

maxX <- max(X)

par(mfrow=c(3,1))

curve(b,minX,maxX)

lines(ksdrift(X),lty=3)
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curve(sigma,minX, maxX)

lines(ksdiff(X),lty=3)

f <-function(x) dsCIR(x, theta)

curve(f,minX,maxX)

lines(ksdens(X),lty=3)

linear.mart.ef Linear martingale estimating function

Description

Apply a linear martingale estimating function to find estimates of the
parameters of a process solution of a stochastic differential equation.

Usage

linear.mart.ef(X, drift, sigma, a1, a2, guess, lower, upper,
c.mean, c.var)

Arguments

X a ts object containing a sample path of an sde.
drift an expression for the drift coefficient; see details.
sigma an expression for the diffusion coefficient; see details.
a1, a2 weights or instruments.
c.mean expressions for the conditional mean.
c.var expressions for the conditional variance.
guess initial value of the parameters; see details.
lower lower bounds for the parameters; see details.
upper upper bounds for the parameters; see details.

Details

The function linear.mart.ef minimizes a linear martingale estimating
function that is a particular case of the polynomial martingale estimating
functions.

Value

x a vector of estimates
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Examples

set.seed(123)

d <- expression(-1 * x)

s <- expression(1)

x0 <- rnorm(1,sd=sqrt(1/2))

sde.sim(X0=x0,drift=d, sigma=s,N=1000,delta=0.1) -> X

d <- expression(-theta * x)

linear.mart.ef(X, d, s, a1=expression(-x), lower=0, upper=Inf,

c.mean=expression(x*exp(-theta*0.1)),

c.var=expression((1-exp(-2*theta*0.1))/(2*theta)))

rcBS Black-Scholes-Merton or geometric Brownian
motion process conditional law

Description

Density, distribution function, quantile function, and random generation
for the conditional law X(t)|X(0) = x0 of the Black-Scholes-Merton pro-
cess also known as the geometric Brownian motion process.

Usage

dcBS(x, Dt, x0, theta, log = FALSE)
pcBS(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
qcBS(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
rcBS(n=1, Dt, x0, theta)

Arguments

x vector of quantiles.
p vector of probabilities.
Dt lag or time.
x0 the value of the process at time t; see details.
theta parameter of the Black-Scholes-Merton process; see de-

tails.
n number of random numbers to generate from the con-

ditional distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x];

otherwise, P[X > x].
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Details

This function returns quantities related to the conditional law of the pro-
cess solution of

dXt = θ1Xtdt+ θ2XtdWt.

Constraints: θ3 > 0.

Value

x a numeric vector

Examples

rcBS(n=1, Dt=0.1, x0=1, theta=c(2,1))

rcCIR Conditional law of the Cox-Ingersoll-Ross pro-
cess

Description

Density, distribution function, quantile function and random generation
for the conditional law X(t + Dt)|X(t) = x0 of the Cox-Ingersoll-Ross
process.

Usage

dcCIR(x, Dt, x0, theta, log = FALSE)
pcCIR(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
qcCIR(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
rcCIR(n=1, Dt, x0, theta)

Arguments

x vector of quantiles.
p vector of probabilities.
Dt lag or time.
x0 the value of the process at time t; see details.
theta parameter of the Ornstein-Uhlenbeck process; see de-

tails.
n number of random numbers to generate from the con-

ditional distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x];

otherwise P[X > x].
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Details

This function returns quantities related to the conditional law of the pro-
cess solution of

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt.

Constraints: 2θ1 > θ23, all θ positive.

Value

x a numeric vector

Examples

rcCIR(n=1, Dt=0.1, x0=1, theta=c(6,2,2))

rcOU Ornstein-Uhlenbeck or Vasicek process condi-
tional law

Description

Density, distribution function, quantile function, and random generation
for the conditional law X(t + Dt)|X(t) = x0 of the Ornstein-Uhlenbeck
process, also known as the Vasicek process.

Usage

dcOU(x, Dt, x0, theta, log = FALSE)
pcOU(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
qcOU(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE)
rcOU(n=1, Dt, x0, theta)

Arguments

x vector of quantiles.
p vector of probabilities.
Dt lag or time.
x0 the value of the process at time t; see details.
theta parameter of the Ornstein-Uhlenbeck process; see de-

tails.
n number of random numbers to generate from the con-

ditional distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x];

otherwise P[X > x].
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Details

This function returns quantities related to the conditional law of the pro-
cess solution of

dXt = (θ1 − θ2Xt)dt+ θ3dWt.

Constraints: θ2 > 0, θ3 > 0.
Please note that the process is stationary only if θ2 > 0.

Value

x a numeric vector

Examples

rcOU(n=1, Dt=0.1, x0=1, theta=c(0,2,1))

rsCIR Cox-Ingersoll-Ross process stationary law

Description

Density, distribution function, quantile function, and random generation
of the stationary law for the Cox-Ingersoll-Ross process.

Usage

dsCIR(x, theta, log = FALSE)
psCIR(x, theta, lower.tail = TRUE, log.p = FALSE)
qsCIR(p, theta, lower.tail = TRUE, log.p = FALSE)
rsCIR(n=1, theta)

Arguments

x vector of quantiles.
p vector of probabilities.
theta parameter of the Cox-Ingersoll-Ross process; see details.
n number of random numbers to generate from the con-

ditional distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x];

otherwise P[X > x].
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Details

This function returns quantities related to the stationary law of the pro-
cess solution of

dXt = (θ1 − θ2Xt)dt+ θ3
√
XtdWt.

Constraints: 2θ1 > θ23, all θ positive.

Value

x a numeric vector

Examples

rsCIR(n=1, theta=c(6,2,1))

rsOU Ornstein-Uhlenbeck or Vasicek process station-
ary law

Description

Density, distribution function, quantile function, and random generation
for the stationary law of the Ornstein-Uhlenbeck process also known as
the Vasicek process.

Usage

dsOU(x, theta, log = FALSE)
psOU(x, theta, lower.tail = TRUE, log.p = FALSE)
qsOU(p, theta, lower.tail = TRUE, log.p = FALSE)
rsOU(n=1, theta)

Arguments

x vector of quantiles.
p vector of probabilities.
theta parameter of the Ornstein-Uhlenbeck process; see de-

tails.
n number of random numbers to generate from the con-

ditional distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x];

otherwise P[X > x].
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Details

This function returns quantities related to the stationary law of the pro-
cess solution of

dXt = (θ1 − θ2Xt)dt+ θ3dWt.

Contraints: theta2 > 0, θ3 > 0.
Please note that the process is stationary only if θ2 > 0.

Value

x a numeric vector

Examples

rsOU(n=1, theta=c(0,2,1))

sde.sim Simulation of stochastic differential equation

Description

Generic interface to different methods of simulation of solutions to stochas-
tic differential equations.

Usage

sde.sim(t0 = 0, T = 1, X0 = 1, N = 100, delta, drift, sigma,
drift.x, sigma.x, drift.xx, sigma.xx, drift.t,
method = c("euler", "milstein", "KPS", "milstein2",
"cdist","ozaki","shoji","EA"),
alpha = 0.5, eta = 0.5, pred.corr = T, rcdist = NULL,
theta = NULL, model = c("CIR", "VAS", "OU", "BS"),
k1, k2, phi, max.psi = 1000, rh, A, M=1)

Arguments

t0 time origin.
T horizon of simulation.
X0 initial value of the process.
N number of simulation steps.
M number of trajectories.
delta time step of the simulation.
drift drift coefficient: an expression of two variables t and x.
sigma diffusion coefficient: an expression of two variables t and

x.
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drift.x partial derivative of the drift coefficient w.r.t. x: a func-
tion of two variables t and x.

sigma.x partial derivative of the diffusion coefficient w.r.t. x: a
function of two variables t and x.

drift.xx second partial derivative of the drift coefficient w.r.t. x:
a function of two variables t and x.

sigma.xx second partial derivative of the diffusion coefficient w.r.t.
x: a function of two variables t and x.

drift.t partial derivative of the drift coefficient w.r.t. t: a func-
tion of two variables t and x.

method method of simulation; see details.
alpha weight alpha of the predictor-corrector scheme.
eta weight eta of the predictor-corrector scheme.
pred.corr boolean: whether to apply the predictor-correct adjust-

ment; see details.
rcdist a function that is a random number generator from the

conditional distribution of the process; see details.
theta vector of parameters for cdist; see details.
model model from which to simulate; see details.
k1 lower bound for psi(x); see details.
k2 upper bound for psi(x); see details.
phi the function psi(x) - k1.
max.psi upper value of the support of psi to search for its max-

imum.
rh the rejection function; see details.
A A(x) is the integral of the drift between 0 and x.

Details

The function returns a ts object of length N+1; i.e., X0 and the new N
simulated values if M=1. For M>1, an mts (multidimensional ts object) is
returned, which means that M independent trajectories are simulated. If
the initial value X0 is not of the length M, the values are recycled in order to
have an initial vector of the correct length. If delta is not specified, then
delta = (T-t0)/N. If delta is specified, then N values of the solution of
the sde are generated and the time horizon T is adjusted to be N * delta.
The function psi is psi(x) = 0.5*drift(x)^2 + 0.5*drift.x(x).
If any of drift.x, drift.xx, drift.t, sigma.x, and sigma.xx are not
specified, then numerical derivation is attempted when needed.
If sigma is not specified, it is assumed to be the constant function 1.
The method of simulation can be one among: euler, KPS, milstein,
milstein2, cdist, EA, ozaki, and shoji. No assumption on the coef-
ficients or on cdist is checked: the user is responsible for using the right
method for the process object of simulation.
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The model is one among: CIR: Cox-Ingersoll-Ross, VAS: Vasicek, OU
Ornstein-Uhlenbeck, BS: Black and Scholes. No assumption on the co-
efficient theta is checked: the user is responsible for using the right ones.
If the method is cdist, then the process is simulated according to its
known conditional distribution. The random generator rcdist must be
a function of n, the number of random numbers; dt, the time lag; x, the
value of the process at time t - dt; and the vector of parameters theta.
For the exact algorithm method EA: if missing k1 and k2 as well as A, rh
and phi are calculated numerically by the function.

Value

x returns an invisible ts object

Examples

# Ornstein-Uhlenbeck process

set.seed(123)

d <- expression(-5 * x)

s <- expression(3.5)

sde.sim(X0=10,drift=d, sigma=s) -> X

plot(X,main="Ornstein-Uhlenbeck")

# Multiple trajectories of the O-U process

set.seed(123)

sde.sim(X0=10,drift=d, sigma=s, M=3) -> X

plot(X,main="Multiple trajectories of O-U")

# Cox-Ingersoll-Ross process

# dXt = (6-3*Xt)*dt + 2*sqrt(Xt)*dWt

set.seed(123)

d <- expression( 6-3*x )

s <- expression( 2*sqrt(x) )

sde.sim(X0=10,drift=d, sigma=s) -> X

plot(X,main="Cox-Ingersoll-Ross")

# Cox-Ingersoll-Ross using the conditional distribution "rcCIR"

set.seed(123)

sde.sim(X0=10, theta=c(6, 3, 2), rcdist=rcCIR,

method="cdist") -> X

plot(X, main="Cox-Ingersoll-Ross")

set.seed(123)

sde.sim(X0=10, theta=c(6, 3, 2), model="CIR") -> X

plot(X, main="Cox-Ingersoll-Ross")
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# Exact simulation

set.seed(123)

d <- expression(sin(x))

d.x <- expression(cos(x))

A <- function(x) 1-cos(x)

sde.sim(method="EA", delta=1/20, X0=0, N=500,

drift=d, drift.x = d.x, A=A) -> X

plot(X, main="Periodic drift")

sdeAIC Akaike’s information criterion for diffusion
processes

Description

Implementation of the AIC statistics for diffusion processes.

Usage

sdeAIC(X, theta, b, s, b.x, s.x, s.xx, B, B.x, H, S, guess,
...)

Arguments

X a ts object containing a sample path of an sde.
theta a vector or estimates of the parameters.
b drift coefficient of the model as a function of x and

theta.
s diffusion coefficient of the model as a function of x and

theta.
b.x partial derivative of b as a function of x and theta.
s.x partial derivative of s as a function of x and theta.
s.xx second-order partial derivative of s as a function of x

and theta.
B initial value of the parameters; see details.
B.x partial derivative of B as a function of x and theta.
H function of (x,y), the integral of B/s; optional.
S function of (x,y), the integral of 1/s; optional.
guess initial value for the parameters to be estimated; op-

tional.
... passed to the optim function; optional.
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Details

The sdeAIC evaluates the AIC statistics for diffusion processes using
Dacunha-Castelle and Florens-Zmirou approximations of the likelihood.
The parameter theta is supposed to be the value of the true MLE esti-
mator or the minimum contrast estimator of the parameters in the model.
If missing or NULL and guess is specified, theta is estimated using the
minimum contrast estimator derived from the locally Gaussian approxi-
mation of the density. If both theta and guess are missing, nothing can
be calculated.
If missing, B is calculated as b/s - 0.5*s.x provided that s.x is not
missing.
If missing, B.x is calculated as b.x/s - b*s.x/(s^2)-0.5*s.xx, pro-
vided that b.x, s.x, and s.xx are not missing.
If missing, both H and S are evaluated numerically.

Value

x the value of the AIC statistics

Examples

set.seed(123)

# true model generating data

dri <- expression(-(x-10))

dif <- expression(2*sqrt(x))

sde.sim(X0=10,drift=dri, sigma=dif,N=1000,delta=0.1) -> X

# we test the true model against two competing models

b <- function(x,theta) -theta[1]*(x-theta[2])

b.x <- function(x,theta) -theta[1]+0*x

s <- function(x,theta) theta[3]*sqrt(x)

s.x <- function(x,theta) theta[3]/(2*sqrt(x))

s.xx <- function(x,theta) -theta[3]/(4*x^1.5)

# AIC for the true model

sdeAIC(X, NULL, b, s, b.x, s.x, s.xx, guess=c(1,1,1),

lower=rep(1e-3,3), method="L-BFGS-B")

s <- function(x,theta) sqrt(theta[3]*+theta[4]*x)

s.x <- function(x,theta) theta[4]/(2*sqrt(theta[3]+theta[4]*x))

s.xx <- function(x,theta) -theta[4]^2/(4*(theta[3]+theta[4]*x)^1.5)

# AIC for competing model 1

sdeAIC(X, NULL, b, s, b.x, s.x, s.xx, guess=c(1,1,1,1),

lower=rep(1e-3,4), method="L-BFGS-B")

s <- function(x,theta) (theta[3]+theta[4]*x)^theta[5]
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s.x <- function(x,theta)

theta[4]*theta[5]*(theta[3]+theta[4]*x)^(-1+theta[5])

s.xx <- function(x,theta) (theta[4]^2*theta[5]*(theta[5]-1)

*(theta[3]+theta[4]*x)^(-2+theta[5]))

# AIC for competing model 2

sdeAIC(X, NULL, b, s, b.x, s.x, s.xx, guess=c(1,1,1,1,1),

lower=rep(1e-3,5), method="L-BFGS-B")

SIMloglik Pedersen’s approximation of the likelihood

Description

Pedersen’s approximation of the likelihood of a process solution of a
stochastic differential equation. This function is useful to calculate ap-
proximated maximum likelihood estimators when the transition density
of the process is not known. It is computationally intensive.

Usage

SIMloglik(X, theta, d, s, M=10000, N=2, log=TRUE)

Arguments

X a ts object containing a sample path of an sde.
theta vector of parameters.
d,s drift and diffusion coefficients; see details.
log logical; if TRUE, the log-likelihood is returned.
N number of subintervals; see details.
M number of Monte Carlo simulations, which should be an

even number; see details.

Details

The function SIMloglik returns the simulated log-likelihood obtained by
Pedersen’s method. The functions s and d are the drift and diffusion
coefficients with arguments (t,x,theta).

Value

x a number
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Examples

## Not run:

set.seed(123)

d <- expression(-1*x)

s <- expression(2)

sde.sim(drift=d, sigma=s,N=50,delta=0.01) -> X

S <- function(t, x, theta) sqrt(theta[2])

B <- function(t, x, theta) -theta[1]*x

true.loglik <- function(theta) {

DELTA <- deltat(X)

lik <- 0

for(i in 2:length(X))

lik <- lik + dnorm(X[i], mean=X[i-1]*exp(-theta[1]*DELTA),

sd = sqrt((1-exp(-2*theta[1]*DELTA))*

theta[2]/(2*theta[1])),TRUE)

lik

}

xx <- seq(-10,10,length=20)

sapply(xx, function(x) true.loglik(c(x,4))) -> py

sapply(xx, function(x) EULERloglik(X,c(x,4),B,S)) -> pz

sapply(xx, function(x) SIMloglik(X,c(x,4),B,S,M=10000,N=5)) -> pw

plot(xx,py,type="l",xlab=expression(beta),

ylab="log-likelihood",ylim=c(0,15)) # true

lines(xx,pz, lty=2) # Euler

lines(xx,pw, lty=3) # Simulated

## End(Not run)

simple.ef Simple estimating functions of types I and II

Description

Apply a simple estimating function to find estimates of the parameters of
a process solution of a stochastic differential equation.

Usage

simple.ef(X, f, guess, lower, upper)

Arguments

X a ts object containing a sample path of an sde.
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f a list of expressions of x and/or y and the parameters
to be estimated; see details.

guess initial value of the parameters; see details.
lower lower bounds for the parameters; see details.
upper upper bounds for the parameters; see details.

Details

The function simple.ef minimizes a simple estimating function of the
form sum i f i(x,y;theta) = 0 or sum i f i(x;theta) as a function
of theta. The index i varies in 1:length(theta).
The list f is a list of expressions in x or (x,y).

Value

x a vector of estimates

Examples

set.seed(123);

# Kessler's estimator for O-H process

K.est <- function(x) {

n.obs <- length(x)

n.obs/(2*(sum(x^2)))

}

# Least squares estimators for the O-H process

LS.est <- function(x) {

n <- length(x) -1

k.sum <- sum(x[1:n]*x[2:(n+1)])

dt <- deltat(x)

ifelse(k.sum>0, -log(k.sum/sum(x[1:n]^2))/dt, NA)

}

d <- expression(-1 * x)

s <- expression(1)

x0 <- rnorm(1,sd=sqrt(1/2))

sde.sim(X0=x0,drift=d, sigma=s,N=2500,delta=0.1) -> X

# Kessler's estimator as estimating function

f <- list(expression(2*theta*x^2-1))

simple.ef(X, f, lower=0, upper=Inf)

K.est(X)

# Least Squares estimator as estimating function

f <- list(expression(x*(y-x*exp(-0.1*theta))))

simple.ef(X, f, lower=0, upper=Inf)

LS.est(X)
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simple.ef2 Simple estimating function based on the in-
finitesimal generator a the diffusion process

Description

Apply a simple estimating function based on the infinitesimal generator
of a diffusion to find estimates of the parameters of a process solution of
that particular stochastic differential equation.

Usage

simple.ef2(X, drift, sigma, h, h.x, h.xx, guess, lower,
upper)

Arguments

X a ts object containing a sample path of an sde.
drift an expression for the drift coefficient; see details.
sigma an expression for the diffusion coefficient; see details.
h an expression of x and the parameters to be estimated;

see details.
h.x an expression of x containing the first derivative of h;

see details.
h.xx an expression of x containing the second derivative of

h; see details.
guess initial value of the parameters; see details.
lower lower bounds for the parameters; see details.
upper upper bounds for the parameters; see details.

Details

The function simple.ef2 minimizes the simple estimating function of
the form sum i f i(x;theta) = 0, where f is the result of applying the
infinitesimal generator of the diffusion to the function h. This involves the
drift and diffusion coefficients plus the first two derivatives of h. If not
provided by the user, the derivatives are calculated by the function.

Value

x a vector of estimates
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Examples

set.seed(123)

d <- expression(10 - x)

s <- expression(sqrt(x))

x0 <- 10

sde.sim(X0=x0,drift=d, sigma=s,N=1500,delta=0.1) -> X

# rather difficult problem unless a good initial guess is given

d <- expression(alpha + theta*x)

s <- expression(x^gamma)

h <- list(expression(x), expression(x^2), expression(x^2))

simple.ef2(X, d, s, h, lower=c(0,-Inf,0), upper=c(Inf,0,1))
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198. Rümelin, W. (1983) Numerical treatment of stochastic differential equations,
SIAM J. Numerical Anal., 57, 75–96.
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