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It has been my good fortune to meet and get to know many remarkable
people, mostly statisticians and mathematicians, and to derive much pleasure
and benefit from these contacts. They were teachers, colleagues and students,
and the following pages sketch their careers and our interactions. Also
included are a few persons with whom I had little or no direct contact but
whose ideas had a decisive influence on my work. To provide some coherence,
the account is largely chronological and follows the steps of my own career.

Taken together, these sketches provide a very personal picture of the devel-
opment of statistical theory from the 1930s to the 1970s. It is the period
between two revolutions: that of Fisher, Neyman, and Pearson, which laid
the foundations for the classical statistical theory of that period; and the
second revolution, forty years later, brought about by the advent of the
computer, which turned statistics in new directions.

The present account of this history is a highly selective one, which
emphasizes the persons, institutions, and statistical topics that were close to
my interests. One narrowing effect of this perspective stems from the fact
that my career took place in the United States. As a consequence, the book
focuses on American statisticians and institutions. Only the last two chap-
ters discuss, briefly and very incompletely, developments in some other
countries.

For writing these reminiscences, I did not have to rely entirely on my mem-
ory. There is much published material on many of the persons covered here,
such as biographical sketches in Festschrifts and collected works, and—
unfortunately—obituaries and memorial articles. Of particular value were
the “Conversations,” which are a regular feature of Statistical Science, and
which provide firsthand accounts of the subjects being interviewed. An indis-
pensable source for the Berkeley chapters was Constance Reid’s book,
Neyman—from Life.

In addition, I sent copies of their sections to all living subjects, asking
them for corrections and criticism, and I am most grateful for their helpful
responses. At my request, most of them also sent me pictures of themselves,
which form an important part of the book. Other pictures were provided
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by Steve Stigler (of Raj Bahadur and Jimmie Savage), and David Brillinger
(of John Tukey).

Nearly 20 pictures were put at my disposal by Ingram Olkin from the
extensive collection he has assembled at Stanford; another dozen I owe to the
courtesy of the archives of the Mathematische Forschungsinstitut Oberwolfach,
and still others to the archives of St. Andrews University. An important
source for many pictures was the Berkeley Statistics Department, and four
pictures came from Reid’s book, Neyman—from Life. To all of these I extend
my thanks. For preparing the pictures for publication, the help of Julie and
Tamya Shaffer was invaluable.

I also want to thank Martina Schneider for helpful correspondence con-
cerning the section on van der Waerden; to my editor, John Kimmel, for his
encouragement and support; and to Agnes Herzberg for reviewing the book
for Springer, and for many corrections and suggestions. To Len Shaffer, I am
grateful for his typing of the manuscript from my hard-to-read handwritten
version and for correcting many errors.

To conclude these acknowledgments, I want to express my deep gratitude
to Persi Diaconis and Julie Shaffer, with both of whom I discussed the proj-
ect as it went along, and who gave me advice and criticism when I needed it.
They also read the manuscript after its completion, corrected many errors of
fact, and greatly improved the exposition. To them I owe my greatest debt.
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The crucial event of my early life was the coming to power in 1933 of
the Nazis in Germany. This changed my future in two fundamental ways.
As an immediate consequence, we left Germany (where my family had lived
for many generations), and—after five years in Switzerland and two in
England—I moved to America. On January 1, 1941, I arrived in Berkeley,
California, where I have lived for the last sixty-six years.

The other basic change concerned not where I was going to live but what
profession I was going to follow. My love as a teenager was German litera-
ture and, had we remained in Germany, I would have expected to become a
professor of literature (or perhaps a writer). Since these were not promising
professions outside of Germany, instead I became a mathematician and later
a statistician.

Instrumental in both these changes was my father, who had the foresight to
make the difficult decision to leave Germany quite early and who persuaded
me that mathematics (for which I had shown some affinity) offered much
better prospects than German literature because of its international nature.

From the start, the atmosphere in Berkeley was much more encouraging
than it had been in Switzerland and England, where I had felt like a foreigner
who would never be fully accepted. In Berkeley, on the contrary, I immediately
felt at home. In addition, the way the study of mathematics was organized
was much more congenial to me than it had been in England. Within a year,
it seemed as if an academic career in mathematics was a realistic possibility.

1. Edmund Landau (1877–1938)

My interest in mathematics originated not at school, where the early courses
in the subject seemed boring and my performance was mediocre, but rather
from my reading a book, Der Wettlauf mit der Schildkröte (The Race with the
Tortoise), by Th. Wolff. It was given to me by my uncle Alfred Schuster when
I was thirteen. The title chapter discusses Zeno’s paradox about Achilles and
the tortoise, which claims to prove that the fast runner can never catch up
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with the tortoise, who has been given a start on him. I found this intriguing,
but what really captured my interest was the material on prime numbers.

It presented Euclid’s proof of the infinity of primes and followed it with a
section titled, “The Law of Prime Numbers,” in which the question is posed
of whether they follow some regular pattern. It mentions that the gaps
between prime numbers tend to become larger as the numbers increase, but
also that nevertheless from time to time prime twins continue to appear, such
as (5, 7), (17, 19), and (101, 103). What was particularly fascinating was that
at that time (the book was published in 1929), as is still true today, it was not
known whether there exists an infinite number of prime twins.

If the impulse for mathematics is the desire to bring order into chaos, the
prime numbers provide an ideal prototype because they combine extreme sim-
plicity with behavior that is quite chaotic despite their obviously deterministic
character. Today, we know much about their properties statistically—for
example, they tend to get rarer and we know at what rate—but their local
behavior is still completely unpredictable. To find a pattern in the sequence of
primes became a great interest for me over the next few years, and I spent
much time looking, calculating, and speculating. Two years later, as a high
school sophomore, I was rewarded with what seemed a surprising discovery.
It appeared that for any positive integer a and any prime number p, if you raise
a to the pth power and subtract a, the difference ap – a is always divisible by p.
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On a vacation a few weeks later, it turned out that we were staying at the
same hotel as Matthias Landau, the son of the famous number theorist
Edmund Landau, whose wife had been one of my mother’s closest girlhood
friends. I mentioned my curious result to him, but he did not believe it, and
bet me a chocolate bar that he would disprove it by the end of the day.
He lost the bet but continued his efforts for another two days. He then
decided to write to his father about the matter. The reply came that the result
was well known as Fermat’s little theorem, and that Landau would send
me a proof.

In due time, his letter arrived. One would have expected it to start with an
explanation—that he had heard from his son, etc., etc.—but explanations
were not Landau’s way. “Sehr geehrter Herr Lehmann,” the letter began
(I was sixteen at the time), “all letters denote integers, p a prime number, x/y
means x is a divisor of y,” and after more notation came Theorem 1 and its
proof and then Theorem 2 (Fermat), which was my result, and its proof.
After this, the letter concluded: “With best regards, unbekannterweise [i.e.,
“without our having met”], E. Landau.”

I did not understand one step in the proof, and in my thank-you letter I had
the temerity to ask whether it did not contain a gap. By return mail came a
postcard with his patient reply: “Thank you for your letter! There is no gap in
the proof,” followed by a slight elaboration on the point in question.

Later that year, my father asked me what I wanted to study after complet-
ing high school. The answer was obvious: My passion was German literature,
my dream to become a writer, perhaps another Thomas Mann or Gottfried
Keller. However, my father pointed out that Germany was barred to me (this
was in 1935, two years after the Nazis had taken over Germany, and we were
living in Zürich at the time), and that opportunities for German literature
were extremely limited in Switzerland. He suggested that mathematics, for
which I also seemed to have an affinity, was much more international in char-
acter and would provide much better career possibilities. I was used to taking
directions from him and, without much inner turmoil, agreed to his sugges-
tion. Thus, the crucial decision regarding the work in which I would spend
my life came from the outside, rather than from within me. However, at
this point it seemed a good idea to my father to get Landau’s opinion regard-
ing my aptitude for the subject. Because of my mother’s friendship with
his wife, it was not difficult for my parents to ask Landau to do this as a
personal favor.

Accordingly, the next time he passed through Zürich, Landau came to our
house to have a talk with me. His first words as I opened the door were:
“Machen Sie Ihre Eltern unschädlich!” (Render your parents harmless; get
them out of the way!) Next he asked me for some sheets of paper, as large as
possible (the best I could produce were still not considered satisfactory but
had to do). Then he withdrew with me to my room and told me about some
recent results of a young Hungarian mathematician, Paul Erdös, of whom he
thought very highly.

1. Edmund Landau (1877–1938) 3



As an aside, let me mention that his assessment of Erdös, who at the time
was in his early twenties, turned out to be well founded. Erdös became an
outstanding, highly influential, mathematician with a phenomenal number of
more than 1,5001 wide-ranging publications, many of them written jointly
with others. His collaborators eventually came to more than 450, and it
became a game among mathematicians to establish their “Erdös numbers.”
This number was equal to 1 for anyone who had written a joint paper with
Erdös; it was equal to 2 if one had written a joint paper with someone who
had written a joint paper with Erdös, and so on. I have the proud distinction
(which, however, I share with more than five thousand others) of my Erdös
number being 2, since one of my coauthors is my friend Persi Diaconis, who
once wrote a joint paper with Erdös.

But back to my session with Landau. I recall his hammering home the
point, after showing how Theorem B followed from Theorem A, which he
had not proved (it was too advanced), that of course I had not seen a proof
of Theorem B. After he had worked with me in this way for two hours, he
closeted himself with my parents and apparently recommended that math be
given a try.

Many years later, I found among my mother’s papers a letter from
Landau’s wife, Marianne. She said that she was glad that the interview went
well, and that if Eddy (Landau’s nickname) had given his blessings, my
mother could be assured that it was okay, since she knew how many begin-
ners he had discouraged.

The aftermath of this visit must be seen against the background of
Landau’s situation at the time. In the previous year, a few months after
Hitler’s ascent to power, he one day found the door to his lecture room in
Göttingen blocked by protesting students (reinforced by some Nazi storm
troopers). He asked the leader of the group, Oswald Teichmüller, to come
with him to his office and explain the objections to his lecturing. At the end
of the conversation, Landau requested a summarizing letter that he could use
for official purposes; the next day he resigned his professorship, twenty-four
years after he had first been appointed to it.

Surprisingly, a copy of Teichmüller’s letter, which had long been believed
to be lost, turned up a few years ago. Details are given in Schappacher and
Scholtz (1992). The following is the central paragraph in the translation of
Segal (2003):

It was for me, not about making difficulties for you as a Jew, but solely about
protecting German students in their second semester from being instructed by a
teacher of a completely foreign race precisely in differential and integral calculus. . . .
I dare as little as any other person to doubt your capability for pure international-
mathematical-scientific teaching of suitable students of whatever heritage. However,

4 1. Mathematical Preparation

1 These and the following figures are given in Schechter’s book about Erdös, My Brain
Is Open.



I also know that many academic lectures, especially also differential and integral
calculus, at the same time have educational value and lead the student not only into a
new conceptual world, but also to a different mental viewpoint (geistige einstellung).
Again since the mental viewpoint of an individual depends on his mentality (geist)
which thus should be transformed; this mentality, again, according to fundamental
rules, not only contemporary ones, but already long recognized, depends completely
substantially on the racial composition of an individual; allowing Aryan students to
be educated by a Jewish teacher, for example, ought not in general be recommended.

G.H. Hardy, in his obituary of Landau, wrote: “This enforced retirement
must have been a terrible blow to him: it was quite pathetic to see his delight
when he found himself again in front of a blackboard in Cambridge, and his
sorrow when the opportunity came to an end” (Hardy and Heilbronn, 1938).

It is undoubtedly due to his enforced idleness that I had the privilege of his
coming to our house to give me a lesson (perhaps three or four in all) when-
ever he passed through Zurich. On the second of these visits, he asked me
what I was doing mathematically. When I told him that I was trying to learn
calculus by reading Courant’s book on the subject, he became very con-
cerned. “Courant is a good friend of mine and an excellent mathematician,”
he said, “but he does not understand pedagogy. His book is poison for you;
it will teach you sloppy thinking. If you want to learn calculus, you should
do so from my book.” So I dutifully bought his book, but it was written in
the famous uncompromising Landau style: definition, theorem, proof; theo-
rem, proof; . . .; without giving the reader much help by providing motiva-
tion, intuition, or geometric illustrations. Concerning the latter, Landau once
explained to me that he knew geometry and had even taught it at Göttingen,
but that it had no place in a calculus book since the necessary axiomatic foun-
dation could not be given there. (It is not surprising that Landau’s dry and
formal way of teaching calculus had been unpopular with the students in
Göttingen. Only, of course, it had nothing to do with his Jewishness. Courant
was just as Jewish and his approach to calculus was the opposite of Landau’s:
intuitive and with much help from geometry.)

On his later visits, Landau increased the level of his mathematical dis-
course, and the level of my understanding decreased correspondingly.
After a particularly hesitant “yes” of mine, he broke off. “Mr. Lehmann,”
he said, “I notice that you use three types of yes: a comprehending yes, a
somewhat doubtful yes, and a noncomprehending yes. Of which kind was
this last one?”

Though admired not only for his mathematical achievements but also for
his honesty and integrity, Landau was considered “difficult” and was feared
for his biting wit. I cannot resist giving at least one example of the latter. He
had proved an important inequality that involved a universal constant—in
German, Welt Konstante (world constant). A few years later, another mathe-
matician was able to substantially improve Landau’s result by showing that
it remained valid when the constant was halved. Landau fired off a
terse telegram: “Gratuliere zur Halbweltkonstante!” (Congratulations on the
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half world constant.) The joke lies in the two ways of reading this triple word.
As halb Welt-Konstante, it means half the universal constant, but Halbwelt
(in French demi-monde) indicates shadiness, ill repute. Thus: “Congratulations
on your disreputable constant!”

Another example of Landau’s quirky sense of humor occurs in the pref-
ace to his 1930 book on the foundations of analysis. He mentions there that
the book was written partly for family use, “since—as is well known—my
daughters have been at the university for several semesters, . . .” Well
known? In explanation, Landau gives a reference to volume one (p. v) of his
three-volume work on number theory. The dedication to this book, pub-
lished in 1927, reads: “To my daughters on the day of their high school
graduation.”

What Landau meant to those who knew him best is indicated in a letter of
condolence written to his widow by Hardy2:

I suppose that his reputation stood higher in England than anywhere else in the world.
It was high enough everywhere. Even his enemies could not deny that he was a great
mathematician; but we owed more to him than the rest. And we admired him as a per-
son almost as much as we did as a mathematician. We loved his directness, and his
“100 percent” honesty. All his little eccentricities, his peculiar humour and his indi-
vidual likes and dislikes, were entirely sympathetic to us, and made him a sort of
tradition: the Landau way of writing and the Landau jokes were familiar to all sorts
of people who had never met him. But for those like Littlewood and myself, who
really knew him and owed so much to him, he stood, naturally, for a great deal more,
and we feel that we have lost one of the best friends we ever had.

To me, in the short time I knew him, Landau was unfailingly patient,
considerate, and kind, showing a gentle side which in other, more competi-
tive, circumstances he may not always have wanted seen. The last commu-
nication I received from him, a little more than a year before his death, was
a postcard:

Dear Mr. Lehmann, since around now the conclusions of your graduation examina-
tions are due, I should like to ask you to let me know the results. Although I have no
doubt as to the success, I am curious to hear how well you did and how the report on
mathematics was formulated.

Some time in 1937, my mother was in Berlin and on the occasion paid
Landau a visit. He was separated from his wife (although they were on
friendly terms), without a position, and depressed. He told my mother that
he was having heart trouble but asked her not to tell his wife. Soon after, he
suffered a fatal heart attack. At the age of sixty-one, this dynamic man,
who had always been so full of vitality, died—figuratively and literally—of a
broken heart.
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2. Rolf Noskwith (b. 1919)

After five years in Zurich, my parents and I came to the conclusion that
Switzerland did not offer good prospects to a young German refugee and
that perhaps I should continue my study of mathematics elsewhere. Thus, in
the spring of 1938—as it turned out shortly before his death—we once more
asked Landau for advice. He unhesitatingly recommended Cambridge, with
the stars Hardy and Littlewood and an outstanding group of younger math-
ematicians such as Burkill, Heilbronn, and Ingham, as the best place to get
a first-rate mathematical education. So in the fall of that year, I became a
student of mathematics at Trinity College, Cambridge.

It was a difficult time for me: my English was rudimentary, and the organ-
ization of the mathematical curriculum at Cambridge, with its emphasis on
physics and astronomy (considered applied mathematics), was not well suited
to my interests and abilities. I felt lonely, but was rescued from my isolation
in this new environment by a fellow student, Rolf Noskwith. A son of Polish
immigrants, with a knowledge of German and similar interests to my own,
Rolf soon became a friend. I saw him nearly daily in his room at Trinity, we
worked together, and he helped me better to adjust to English ways.

Two years after entering Trinity, it became clear to me that I could not be
successful there. In the meantime, the war had started in Europe, and the
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threat of a German invasion of England seemed very real. I was not so very
much worried about being hit by a bomb, but under no circumstances did
I want to fall into German hands. So in the summer of 1940, I decided to
leave England and continue my studies in the United States.

For a while, Rolf and I kept in touch through correspondence, but eventu-
ally this petered out. Only much later did I discover what was probably the
main reason for this break. In June 1941, Rolf joined British Intelligence at
Bletchley Park, where in Hut 8 he became a cryptanalyst and was part of the
team that broke Naval Enigma, the code of the German Navy. This super-
secret work was both very demanding and could not be written about, so
correspondence became difficult.

When he left Cambridge, Rolf had already decided not to become a math-
ematician. “When the war ended,” he writes in an account of his work at
Bletchley Park,3 “I could not tear myself away from decoding and spent a
further year working on other ciphers. When I finally left to join the family
business created by my father, I made sure that I could come back if a six
months’ trial did not work out. The option was unnecessary: I am still
involved in the business.”

What Rolf does not say is that over the years he greatly expanded the tex-
tile business that his father had started and made a spectacular success of it.

How do I know this, if our connection ended during the war? About
fifty years later, I received a phone call asking me whether I was the 
E.L. Lehmann who had been a student in Cambridge in the late 1930s. It
turned out to be Rolf, who was in San Francisco on business. My wife, Julie,
and I had reservations at a restaurant for dinner that evening and tickets for
the opera. He was an opera fan; we were able to get another ticket and he
joined us.

Unlike I, who had become bald and grown a beard, Rolf had changed very
little, and in the slightly stooped man of seventy I instantly recognized the
student from half a century before. As a result of this renewed encounter, two
years later when Julie and I were in England, we stayed for two days with him
and his wife, Annette, and had a wonderful time hiking and catching up.
Since then we have kept in contact.

3. Richard Courant (1888–1971)

After having lived in Germany for fifteen years, followed by five years in
Switzerland and two in England, finally—in November 1940—I reached
what was to be my ultimate destination, the United States. It was my inten-
tion to continue studying mathematics (which I had begun in Cambridge),
but at what university? When I left Zürich, Landau had recommended Trinity
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College, Cambridge, where I had studied for two years. Landau was no
longer alive, but his widow had given me a letter of introduction to his
Göttingen colleague, Richard Courant, who was now at New York
University, where he was building up what was eventually to become the
Courant Institute.4

Courant’s name, of course, was very familiar to me, since my exposure to
calculus had been through his book, against which Landau had warned me
so sternly. When I told Courant my problem, he began by asking me whether
I wanted to go to New York or the United States of America. I had no idea
what he meant (only later did I realize that many refugees preferred New
York, where they had relatives and friends and the emotional support of a
large refugee community), but I said that I had no particular interest in New
York. He then suggested Berkeley in California, a place and university I had
never heard of. “It is an up-and-coming university,” he added, “and I think
you will like it.”

Courant knew Berkeley. He had spent the summer of 1939 there as visiting
lecturer, and he was right on both counts. Berkeley was an up-and-coming
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university, in particular its mathematics department would soon become one
of the leading departments in the country, and yes, I did like it—in fact, it was
love at first sight.

Courant, undoubtedly as a result of Marianne Landau’s letter, was very kind
to me. For one of the few days remaining before I started for California, he
invited me to dinner at his house in New Rochelle. The only thing I remember
of that evening was that another guest was a young mathematician, Herbert
Robbins, not much older than myself. At the time, he was working with
Courant on their highly successful book, What Is Mathematics? Later he would
become a statistician, and I had frequent contact with him.

I never saw Courant again after that evening, but his unorthodox recom-
mendation of Berkeley had a determining influence on my life. Berkeley
became home for the rest of my life, and was responsible for a change of pro-
fession, from mathematics to statistics. Courant over the years helped many
others, but I for one owe him a great debt of gratitude.

4. Griffith C. Evans (1887–1973)

Upon arriving in Berkeley on January 2, 1941, my first task was to see about
enrolling at the university as a student of mathematics. Accordingly, I went
to the office of the mathematics department (then on the fourth floor of
Wheeler Hall), where the staff at that time consisted of one half-time secre-
tary, Sarah Hallam, a graduate student who was the receptionist and typed
the chairman’s letters. She told me that the chairman, Professor Evans, was
in his office and could probably see me. Evans was welcoming and friendly
when I introduced myself. The question of my status was quickly settled:
although I did not have a degree, he thought that my two years at Cambridge
were equivalent to an American B.A. degree, and to my amazement
suggested that I start as a graduate student on probation.

What a breath of fresh air! In Cambridge I had been accepted through
connections, as a favor to a high government official who was a friend of my
uncle. Here I brought no letter of introduction, or even a transcript attesting
to my Cambridge courses. Evans took my statements on trust. He did not ask
who my parents were or whom my uncle knew. America was reported to be
the land of opportunity, and now I was experiencing it firsthand. What a
wonderful beginning to my American life.

I am still enormously grateful for the warmth and generosity with which
Evans received me. However, I now see that there was also another reason for
his unexpected behavior. Undoubtedly, at that time it was not easy to attract
good graduate students. Here came this fellow Lehmann with a Swiss high
school education and two years of study at Cambridge—I must have looked
like a good bet.

Evans continued to keep me in mind. After I did well during the first
semester, he lifted my probationary status and I became a regular graduate
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student. A few weeks later, to my great surprise, he offered me a teaching
assistantship. I also had a good chance of a fellowship, which would
have provided the same stipend without any duties. However, without hesita-
tion I accepted Evans’ offer, since it would make me a member of the staff.
It was important for me not to be an outsider but to become part of the
departmental community.

The department of which I so unexpectedly had become a member was still
fairly new.5 In the early 1930s, it had fallen into disrepair. Its faculty was
no longer doing research or keeping up with the rapid development of math-
ematics. The situation had become so damaging that other science depart-
ments were complaining to the administration, and a search committee was
appointed to find a new chairman who would revitalize the department.

The committee selected Griffith C. Evans, then one of America’s leading
mathematicians. He had broad mathematical interests and had made funda-
mental contributions to potential theory and the plateau problem, as well as
to the quite-unrelated area of mathematical economics.6 In 1916, he was the
colloquium lecturer of the American Mathematical Society, and he had just
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been elected to the National Academy of Sciences. Since coming to Berkeley
in 1934, Evans had made many new appointments. He had added three out-
standing mathematicians at the professorial level, and four promising
younger men who between them covered an array of different specialties.

As a result, it was a very attractive and vigorous department that I was now
joining. The atmosphere was bracing, confidence was in the air, and self-
doubt not encouraged. It was assumed that you could do whatever was
required; if you needed help, you could ask for it. A good example of this
attitude was my first introduction to teaching, that fall.

At the time, the mathematics department employed seven teaching assis-
tants, who—despite this title—did not assist faculty members with their
courses but instead taught their own, quite independently. This included both
the examinations and the assignments of grades. We shared a large office in
the basement of Wheeler Hall and also a great luxury: a reader—an elderly,
gruff, and taciturn man who corrected all homework papers.

When Professor Evans informed me of my appointment, he added that my
assignment would be a section of analytic geometry and that the professor in
charge, Professor Sciobereti, would provide me with further details. When
I looked up Professor Sciobereti, he told me the title of the textbook—all
sections were to use the same text—but that was the total amount of coordi-
nation. He also told me that the course would meet Monday, Wednesday,
and Friday at 9:00 a.m. in Room 210 of Wheeler Hall, and then he wished
me good luck. This was all the instruction I received, although I had no expe-
rience with the system. Nor was there any kind of supervision during
the semester.

Toward the end of that first semester of teaching came the Japanese attack
on Pearl Harbor and America’s entry into the war. Soon the army asked
the university to run a training program for meteorology recruits, for which
I became an instructor. But the summer of 1942 brought a bigger change for
me, of which Evans once more was the agent. He expressed to me his belief
that I could be more useful to the war effort if I switched from pure mathe-
matics to either physics or statistics. I greatly respected his judgment and
felt that if possible, I should follow his advice. Physics had been my undoing
at Cambridge and seemed out of the question, but I knew nothing about
statistics, and did not even realize that there was such a subject. I agreed to
give it a try.

For this purpose, Evans told me to see Professor Neyman, a member of the
mathematics department whom I did not know. Neyman seemed pleased to
get a new student, and our meeting resulted in the focus of my studies shift-
ing to statistics. From then on, I had much less contact with Evans, and saw
him mainly on occasions involving the whole department. One event of this
kind has remained in my memory. It showed how modest Evans was despite
his eminence.

When a new building was authorized to house the mathematics and statis-
tics departments, it was decided to name it Evans Hall, and the artist Erle
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Loran was commissioned to paint an official portrait of Evans. (It now hangs
in the mathematics and statistics library on the ground floor of Evans Hall.)
At the dinner celebrating the unveiling of the portrait, after a talk by Charles
Morrey, Evans rose to reply.

His opening sentence was rather startling: “Who was Bacon?” he asked. He
then proceeded to list several Bacons. “Was it Francis Bacon, who wrote the
Novum Organum? No! Or the thirteenth-century philosopher and scientist
Roger Bacon? No! Or perhaps the Irish painter Francis Bacon? No! But who
was the Bacon after whom Bacon Hall [a campus building] is named?” And
with this he sat down.

During the two years of Evans’s tutelage, he became a father figure to me.
His unvarying kindness and concern during a short, but for me crucial, period
profoundly influenced my life, and he has served as an inspiring role model.

5. Raphael Robinson (1911–1995) and 
Julia Bowman Robinson (1919–1985)

In 1941, when I became a student in the Berkeley mathematics department,
some of the older members from the pre-Evans era were still teaching, but
I had relatively little contact with most of them. An exception was John
McDonald, a sweet, rather shy man with a lovely sense of humor. When lec-
turing, he would arrange things so that at the end of the hour he stood close
to the door. This enabled him to slip out after his last sentence without having
to answer any questions. But once, in the last lecture before the final
examination, he did not escape in time. “Will there by any choice questions
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on the exam?” a student called out as McDonald opened the door. “They will
all be choice” was his answer as he disappeared.

McDonald was my graduate adviser and in this capacity too he wasted no
words. At the beginning of each term we went through the same ritual.
I came into his office, having filled out my study list with the courses of my
choice. He would gravely look over the list, put down his pipe in order to sign
it, and wordlessly hand it back to me. I would say, “Thank you, Professor
McDonald,” and that would be the end of our meeting.

In addition to the holdovers from an earlier period were the men whom
Evans had brought in during the six years of his chairmanship. They were
a good mix of three highly regarded senior mathematicians and four
recent Ph.D.’s from a variety of fields. Two of the senior appointments were
Charles Morrey and Hans Lewy, both of whom had obtained results of the
first rank in the area of differential equations. In addition, both were tal-
ented musicians. Morrey was an excellent pianist who sometimes played for
us at parties, but I never heard Lewy play his violin. As a young man, he had
long hesitated on whether to choose music or mathematics as his profession,
and eventually had wound up in Göttingen as a student and collaborator of
Courant.

At first, Lewy was quite unfriendly toward me, the only faculty member
from whom I encountered hostility. Perhaps he was afraid that as a fellow
refugee from Germany I would be an embarrassment to him. Later our rela-
tions improved, although I always found his quickness and his somewhat
aggressive manner intimidating.

Evans’s third senior appointment was much less conventional. Statistics at
that time was essentially unknown as an academic subject, but Evans had
become convinced of its importance and decided to add an outstanding per-
son in this new field to his faculty. After a lengthy search, his choice was the
Polish statistician Jerzy Neyman, then teaching in London, and in 1938 he
persuaded Neyman to come to Berkeley as a professor in the mathematics
department.

He followed this four years later, in 1942, with another unorthodox
appointment, that of the logician Alfred Tarski. Both Neyman and Tarski
were world leaders in their respective fields and over the years built up out-
standing groups in statistics and mathematical foundations, respectively.

These four appointments constituted a remarkable achievement and testi-
fied both to Evans’s vision of a very broadly based department and his abil-
ity to find and attract the very best people. They laid the foundation for a
Berkeley mathematics department that from very inauspicious beginnings
eventually rose to become one of the top departments in the country.

The four younger men whom Evans brought to Berkeley to form a second
generation had all been trained in America. One of them was Dick Lehmer,
a number theorist and early computer enthusiast, whose father had been a
member of the department before him. At that time a nepotism rule was in
force that forbade close relatives from serving in a department at the same
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time. So Lehmer had to wait until his father retired before he could be
appointed. I took a course in number theory from him, and of all my courses
in Berkeley it was the one I enjoyed the most. Number theory, which studies
the properties of the integers, was the subject that had gotten me started in
mathematics and with which Landau had given me a taste of mathematics
on his visits to Zurich. Now for the first time I was provided with a more
systematic introduction to the subject.

A second course I greatly enjoyed was group theory. It was taught by
another of Evans’s young men, the algebraist Alfred Foster, and it turned out
to be very useful to me later. On the other hand, I never took a course from
Tony Morse, a third member of this quartet. His subject was real variables,
for which he had developed a system of his own, with special unconventional
notation. Among the graduate students he attracted a group of enthusiastic
followers, who were instantly recognizable because they adopted his very
pronounced speech mannerisms. It was a kind of cult that did not appeal to
me and I took this basic graduate course in the year 1941–42 from the more
conventional Morrey.

The last member of this younger group was Raphael Robinson. Of the
four, he had both the broadest interests and the greatest depth. When in his
seventies, he gave a talk with the title, “Six Simple Theorems I Have Proved.”
But the theorems were simple only in the sense that Fermat’s Last Theorem
is simple. Each came from a different field of mathematics, and each was
proved in a different decade.7

I took a one-year course in complex variables from him, and he opened my
eyes to the beauty of this subject. This course is memorable to me also for a
number of other reasons. The first concerns a technique that Robinson used
in his teaching. Occasionally, he would stop his lecture to ask a question, and
often the class would respond with silence. He would then sit down and make
it clear that he would not continue with his lecture until we had at least tried
to give an answer. What impressed me was that he stuck to his guns, no mat-
ter how long it took. Eventually, it was always one of us who broke down and
made a stab at a reply.

A second reason for the strong impression the course made on me was a
rather traumatic experience. During the second semester, I was very busy with
my own teaching and with other courses, and I fell behind. A few days before
the final examination, Robinson announced that the (in-class) examination
would consist of an essay on either the gamma or the Riemann-zeta function.
There was not enough time left to catch up with both, and I had to make a
choice. I made the right decision (the gamma function), but I still shudder to
think what might have been the consequences had I chosen incorrectly.

Lastly, the course was memorable because of two fellow students,
Herb Federer (another European refugee) and Julia Bowman. All three of us
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eventually were elected to the National Academy of Sciences (Herb in 1975,
Julia in 1976, and I in 1978), rather remarkable for a class of about ten stu-
dents. Soon after taking that course, Julia married Robinson, and we kept in
loose contact until her death in 1985.

She had a remarkable career, much of it devoted to a problem known as
Hilbert’s Tenth Problem, to the solution of which she made crucial contribu-
tions. “When it came time for me to blow out the candles on my [birthday]
cake,” she recalled, “I always wished, year after year, that the Tenth Problem
would be solved—not that I would solve it, but just that it would be solved.
I felt that I couldn’t bear to die without knowing the answer.”8 Her wish was
fulfilled; the missing piece was provided by a 22-year-old Russian mathe-
matician, Yuri Matijasevich. She wrote to the author: “. . . now I know it is
fine, it is beautiful, it is wonderful.”

“That year when I went to blow out the candles on my cake,” she recalled,
“I stopped in mid-breath, suddenly realizing that the wish I had made for so
many years had actually come true.”

Julia was the first woman mathematician to be elected to the National
Academy (in 1976) and to be nominated for the presidency of the American
Mathematical Society (in 1982). Although she had some doubts about accept-
ing the latter, in the end she “decided that as a woman and a mathematician
I had no alternative but to accept. I have always tried to do everything I could
to encourage talented women to become research mathematicians. I found
service as the president of the society taxing but very, very satisfying.”

Concerning these and other honors and the attention they attracted, she
commented: “All this attention has been gratifying but also embarrassing.
What I really am is a mathematician. Rather than being remembered as the
first woman this or that, I would prefer to be remembered, as a mathemati-
cian should, simply for the theorems I have proved and the problems I have
solved.”

I used my contact with Julia in 1982 to ask her to introduce me to her sister
Constance Reid, the distinguished biographer of both Hilbert and Courant,
and to tell her that I thought Neyman would be a good subject for a third
mathematical biography. Julia agreed to my request but added that she did
not approve of the project. She felt that what mattered was the mathematical
achievement and that the person behind it was irrelevant. The book eventu-
ally came into being, but that is another story (see Section 61.)
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In 1933, the coming to power of the Nazis had led to a radical change in my
life. It caused me to leave Germany and abandon my dream of German lit-
erature, and to take up mathematics instead. Now, in 1942, world events once
more changed my course. As a result of the war, I switched from pure math-
ematics to statistics and thus came under the influence of Jerzy Neyman.

Neyman’s work in the 1930s had made statistics into a mathematical
discipline within which I was able to function and to make reasonable pro-
gress. However, after two years as a graduate student in Neyman’s Statistical
Laboratory, World War II temporarily disrupted my studies. At Neyman’s rec-
ommendation, I was asked to join an operations analysis group that was being
formed to provide scientific and technical advice to some military command.
As a result, I spent the year from August 1944 to August 1945 as an operations
analyst on Guam, studying bombing accuracy. The work turned out to be
rather routine, and did not involve much statistics. However, in a different way
my year on Guam had an important effect on my future. It was the start of my
joint work with Joe Hodges, who later became my principal collaborator.

After returning to Berkeley at the end of the war, I quickly completed my
degree, and then had the good fortune to be appointed to the faculty Neyman
was trying to build. As a result, I was able to stay in Berkeley, which had
begun to feel like home.

6. Jerzy Neyman (1894–1981) and 
Alfred Tarski (1901–1983)

In 1942, as mentioned in Section 4, I moved to Neyman’s statistics program. At
the time I knew nothing about Neyman, and only much later learned his story
and how he had come to Berkeley. He began his statistical career in Poland, but
in the 1930s moved to England. Between 1928 and 1937 (partly in collabora-
tion with Egon Pearson), he founded a new theoretical approach to statistics.

In 1937, he came to the attention of Griffith Evans, who was looking
for someone to develop a statistics program at Berkeley. Evans, impressed by
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Neyman’s work and by reports of some lectures Neyman had recently given in
the United States, decided that he was the best person for the job and offered
him a position in the Berkeley mathematics department. Neyman arrived in
Berkeley in August 1938, and he quickly established a core program of courses
and a small organization consisting of a secretary and several teaching and
research assistants. Within a few months, it officially became the Statistical
Laboratory (the Stat Lab), with Neyman as its director.

In the fall of 1942, my initiation into the new subject began by my taking
the first term of the introductory upper-division course. I did not find the
course very interesting until Neyman introduced an element of considerable
excitement for me personally. Out of the blue, he told me one day that he was
leaving for three weeks and that he wanted me to take over the lectures of
this, my first course of statistics in which I was a student. What made this
assignment particularly scary was that the course did not use a text (in fact,
no text existed at the time). Neyman outlined the material I was to cover, and
then I was on my own. Somehow I muddled through, but was relieved when
Neyman returned and I could revert from my role as instructor back to that
of student.

After completing the first semester of the new program, I was faced with a
basic decision concerning my future. I had agreed to give statistics a try, but
had come to realize that I did not like it. It was lacking the element that had
attracted me to mathematics as a boy: statistics did not possess the beauty
that I had found in the integers and later in other parts of mathematics.
Instead, ad hoc methods were used to solve problems that were messy and
that were based on questionable assumptions that seemed quite arbitrary.
Thus, at the end of 1942 I decided not to continue with statistics but to return
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to pure mathematics. The subject that interested me most was algebra, but
I did not find the department’s algebraist, Alfred Foster, very inspiring.

However, a new possibility had opened up. In the fall of 1942, the great
logician Alfred Tarski had joined the mathematics department and was
scheduled to give an advanced algebra course in the spring semester. I there-
fore asked Tarski whether I could work with him, not in logic but in algebra,
and he agreed to accept me as a student.

Tarski was a Jewish refugee from Poland (though converted to Catholicism)
who had come to New York in 1939 to attend a conference on the unity of
science. He had left three weeks before the German invasion of Poland, and thus
had escaped the fate of his parents, brother and most of his other close relatives,
who were murdered by the Germans. (An exception was his wife, who was not
Jewish, and his two children, who joined him in Berkeley after the war.)

Despite his reputation as one of the world’s greatest logicians, Tarski1 had
difficulty finding a suitable job in America. One reason was that his field of
mathematical logic was not a recognized university discipline. (In this respect, it
was somewhat similar to mathematical statistics.) It was Evans, with his broad
conception of mathematics combined with his aim to attract the highest caliber
of faculty, who came to the rescue and created a position for Tarski in the
Berkeley mathematics department. Tarski remained in Berkeley, where he con-
tinued his groundbreaking research and attracted some outstanding students.
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Neyman and Tarski shared not only a Polish background (and a strong
Polish accent), exceptional ability, and energy, but also enormous ambition.
Both were empire builders.

Neyman, over the decade 1946–1956, managed to parlay the single
appointment of himself as professor of mathematics into a faculty of ten
tenure-track members, more than half his own students but greatly strength-
ened by a number of outstanding appointments from the outside. At the
same time, he pushed relentlessly for ever-greater independence of his group,
with the ultimate goal of an independent department of statistics. Such an
expansion would not have been possible but for the growth of the discipline
of statistics itself, with statistical methods becoming important in more
and more fields of application and the resulting increase in the number of
students requiring instruction in this new methodology.

Tarski too was eager to develop his own fiefdom. As with Neyman, the
motives were a mix of personal ambition and the desire to provide an identity
of its own for his subject, which hovered uneasily between mathematics and
philosophy. He successfully obtained appointments for some of his students
and for others working on his agenda, some in mathematics and some in the
philosophy department. With such a faculty in place, he was able to deal with
an obstacle faced by his students: they had to satisfy the stringent requirements
of one or the other department, which were too specialized for the broad-based
training involving aspects of both disciplines that Tarski considered necessary.

To overcome this problem, Tarski, with the help of a group of like-minded
colleagues, proposed a new doctoral degree in logic and the methodology of
science. The program was approved in 1958, but was listed in the university
catalogue for the first time in 1964, with the faculty group administering it
consisting of five members from the mathematics department, three from
philosophy, and one each from oriental languages and statistics.

The outstanding parallel success of Neyman and Tarski was symbolized
by the fact that at the 1954 International Congress of Mathematicians in
Amsterdam, they were two of the five Americans (out of a total of twenty)
invited to give one-hour lectures. They spoke, respectively, on “Current Problems
of Mathematical Statistics” and “Mathematics and Metamathematics.” It was
an enormous achievement of Evans to have initiated and nurtured two such
outstanding and influential programs. He came close to adding a third but that
one slipped away (see Section 56).

However, these developments lay far in the future when, in December 1942,
I decided to work with Tarski instead of continuing with statistics. That in
the end things turned out differently is due to events that occurred in the few days
after my decision and before I had been able to tell Evans and Neyman about it.

After having done all the teaching of statistics himself, with only temporary
help, Neyman had finally found a young mathematician, Dorothy Bernstein,
who, after having turned him down earlier, accepted a tenure-track appoint-
ment for the year 1942–43. However, after one semester, she realized—just as
I had—that she did not like statistics, and she told Neyman that she did not

20 2. Becoming a Statistician



want to renew her contract. She presumably had planned to leave at the end
of the academic year, but Neyman was furious and preferred that she leave
immediately.

This left Neyman shorthanded in the middle of the academic year and, not
knowing that I too was planning to desert, he asked me whether I wanted to
take over some of her duties: an elementary course in the spring semester that
was just coming up, and the following year the upper-division course I was
then taking. I was to receive a promotion to lecturer and a substantial increase
in salary. There were also overtones—nothing specific, but slight hints—that
this position might develop into a permanent job if things worked out.

The effect Neyman’s offer had on me—that I would be willing to give up the
work that attracted me for a field that I found much less appealing—may seem
surprising. However, it had its cause in my situation at the time. I felt uncon-
nected: without a country, without a language, without a community. And now
Neyman was offering me the chance to become a part of a community (his lab-
oratory), and perhaps even the possibility of Berkeley becoming a permanent
home. Germany was barred to me; neither Switzerland nor England had much
enthusiasm for refugees who would settle and compete for jobs; and here I was
being welcomed, encouraged, and—although I was only a beginning graduate
student who had not yet taken any of his exams—being offered what amounted
to a junior faculty position. It was overwhelming; how could I say no?

Although I did not know it then, I was not the only student facing a choice
between Neyman and Tarski. The same issue arose at about the same time for
my fellow student Julia Robinson. She had taken a course from Neyman in
1939, and two years later he asked for her as a teaching assistant. Clearly he
hoped she would become one of his students. However, her reaction was the
same as that of Dorothy Bernstein and myself: she found statistics “very
messy, not beautiful and clear and true like number theory.”2 Instead, she
obtained her degree (in 1948) under Tarski, and went on to an illustrious
mathematical career (see Section 5).

Julia’s and my choosing between Neyman and Tarski illustrates one aspect
of a rivalry that sprang up between them. They were competing for students
and resources, as well as for the reputation and visibility of their pro-
grams. This competition was undoubtedly one reason why these two Polish-
American colleagues in the mathematics department were not on good terms.
In addition, they were so far apart on the political spectrum—Neyman being
a liberal and Tarski a conservative—that they were referred to as “Poles
apart.” Finally, Tarski must have been aware that Neyman had strongly lob-
bied Evans against his appointment. He argued instead for Antoni Zygmund,
another outstanding but more conventional Polish mathematician then in the
U.S., without however having any effect on Evans’s vision.

After deciding to continue with statistics, I had no further contact with
Tarski. My new career totally absorbed me. That my life’s work turned out to
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be in statistics still seems very surprising even today. It corresponded to no
wish of mine. Three times outside forces intervened and pushed me away
from what I wanted to do. My first choice was German literature, but my
father said to do mathematics. Next, I tried mathematics and enjoyed it, but
Evans said to do something applied. Finally, after trying statistics and find-
ing it unappealing, I wanted to go back to pure mathematics, but Neyman
offered me a job. Friends and family members who have read this account tell
me that I could not have been that passive. However, this is just the way it
happened. And it was not entirely due to my somewhat passive nature, but
also the result of the turbulent times in which these decisions had to be made.
When the whole world is shaken by cataclysmic events such as the Nazi
takeover of Germany and the Second World War, individuals lose some
control of their lives and have to become more adaptable.

7. Jerzy Neyman—the Teacher and Scientist

The conclusion concerning statistics that Dorothy Bernstein, Julia Robinson,
and I had reached so unanimously after our first exposure to the subject
turned out (fortunately) to be premature. What we did not know was that in
its more advanced aspects, statistics had in the preceding decade become
much more mathematical—nor did we know that Neyman was the person
largely responsible for this transformation.
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I found out about the much more congenial nature of this more advanced
work when, in 1942–43, now a full-fledged member of Neyman’s Stat Lab,
I got my first real introduction to the new field to which I had committed
myself. At the same time, I became acquainted with the unusual method
Neyman employed in advanced teaching. He liked to call students to the board,
giving preference to the women in the class (“ladies first”), and would try to get
them to derive the new results under his guidance. It was something of an
ordeal for the hapless victim, a fact of which Neyman seemed oblivious. In fact,
once he told us that he had received a letter concerning this practice that
accused him of sadism. He clearly was at a complete loss—”sadism?”—but
announced that any student feeling this way would be excused from coming to
the board. To the best of my knowledge, no one took him up on this offer.

For me, Neyman had reserved a special role. If the person at the board got
stuck and no one else could find the next step, he would call on me: “Erich
will know since he is from Vienna,” he would say. I never did, perhaps because
I was not from Vienna, as I told him frequently but without success.

This graduate course was largely based on Neyman’s own work (together
with the extensive preparation this required). The choice of material reflected
the fact that in the 1930s he had developed an entirely new approach in which
statistical procedures were obtained as solutions of clearly stated mathemat-
ical problems, and which he considered the only way to treat the subject. The
resulting course thus had a rather narrow focus, but it had the advantage of
presenting unified, logically cohesive account. The work, to my great relief,
was thus much more congenial to me than what I had expected from the more
elementary course of the previous year.

The new point of view that Neyman had developed in the 1930s had come
to him not as a sudden inspiration at a young age but after long preparation
in two different fields (mathematics and applied statistics) and as the result of
a stimulating collaboration. Born to parents of Polish ancestry, Neyman had
grown up in Ukraine but had moved to Poland in 1921 (at age 27) and there
had become associated with the Polish school of mathematics. However,
though his heart was in pure mathematics, statistics (which he had learned
from S.N. Bernstein) was more marketable. After holding statistical positions
in agriculture and meteorology, he obtained university appointments in
Warsaw and Krakow, where he lectured on both statistics and mathematics.

In 1925, the Polish authorities, interested in his statistical work but not
quite sure what to make of it, gave Neyman a fellowship to work in Karl
Pearson’s laboratory in London, then the center of the statistical world. But
he was greatly disappointed by the low mathematical level of the work being
done there and, after receiving an extension of his fellowship, he spent the
second year of it in Paris, drifting back to his first love: mathematics.

He was pulled back into statistics by a letter he received in 1926 from Karl
Pearson’s son, Egon. This letter raised some basic questions concerning the
rationale underlying current statistical methodology that captured Neyman’s
imagination. It resulted in joint work by Neyman and Pearson, much of
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which was carried out by correspondence, and reinforced by occasional visits,
between Neyman in Poland and Pearson in London. The situation became
easier when, on Karl Pearson’s retirement, Egon became head of the
Department of Applied Statistics and was able to offer Neyman a position
in his department. As a result, in 1935 Neyman moved to London with the
position of reader in statistics.

The joint work of the two friends dealt with the testing of hypotheses.
R.A. Fisher had developed a series of tests for a number of important prob-
lems, and he had popularized this new methodology in his enormously
successful book, Statistical Methods for Research Workers (1925). For some-
one with Fisher’s insight, these tests had seemed to be the natural solutions
to the problems in question, and he had presented them without any addi-
tional justification. The problem Pearson had raised in his letter was to find
a rationale for these choices.

The key3 to their solution of the problem was to consider not only the
hypothesis to be tested but also the alternatives that might obtain if it were
not true, and to measure the performance of a test in terms of the kinds of
errors it could commit: rejecting the hypothesis when it is true and accepting
it when it is false. The test would be required to control the probability of
false rejection at a specified value α (typically 5% or 1%, as suggested by
Fisher). Subject to this condition, that test was best (optimum) that mini-
mized the probability of false acceptance. The central result of this theory,
known as the Neyman-Pearson lemma, solved this problem for the case that
both the hypothesis and the class of alternatives consists of a single distribu-
tion. They showed that the optimum test then rejects when the likelihood
ratio, that is, the ratio of the probability density under the alternative to that
under the hypothesis, is sufficiently large. They gave a full exposition of this
approach, together with many applications, in their fundamental 1933 paper,
“On the Problem of the Most Efficient Tests of Statistical Hypotheses.”

Neyman, on his own, went on to extend this new approach of deriving sta-
tistical procedures as optimal solutions to the problem of interval estimation.
The result was his theory of confidence intervals. In his basic 1937 paper on
the subject, he stated his point of view very clearly:

The theoretical aspect of the statistical problem of estimation consists primarily in
putting in precise form certain vague notions mentioned in (i) [a description of the
practical problem of estimation]. It will be noticed that the problem in its practical
aspect is not a mathematical problem, and before attempting any mathematical solu-
tion one must substitute for (i) another problem (ii), having a mathematical sense and
such that, for practical purposes, it may be considered equivalent to (i).

The implementation of this program resulted in what has been called (by some
pejoratively, by others as a compliment) the mathematization of statistics. An
important example was Neyman’s 1934 treatment of survey sampling, which
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for the first time put this methodology on a firm basis and profoundly affected
not only its theory but also its practice.

On a related front, again as an effort of clarification, Neyman proposed a
new philosophy of statistics that reinterprets the aim of statistical analysis.
Instead of the traditional “inductive reasoning” as a way of learning from
observation and experiment, which he considered devoid of meaning, he
suggested that statistics was concerned with “inductive behavior,” that is, with
using the data as a guide to the most appropriate action.4 Wald took up this
idea and carried it a step further by formulating a very general abstract the-
ory of decision-making as a framework for all of statistics. This work also
contributed to making statistics a more mathematical discipline.

By developing its mathematical side, statistics attracted students who took
a more theoretical view of the subject and who often were interested in pur-
suing mathematical issues with no immediate applications. Such work in turn
again contributed to the increasing mathematization of the field.

The papers in which Neyman developed his new approach and which
played such a crucial role in these changes were written between 1928 and
1937. As his work was becoming known, he began to receive invitations to lec-
ture abroad. Particularly significant were a number of lectures in America (at,
among others, Columbia, Princeton, Chicago, Michigan, and Illinois), which
ended in a series of lectures and conferences at the Graduate School of the
U.S. Department of Agriculture, arranged by W. Edwards Deming. They pro-
vided a systematic account of his work on hypothesis testing, estimation, and
sampling, and included not only formal lectures but also lively discussion.

Information about Neyman’s enormously successful Washington perform-
ance reached Griffith Evans, chairman of the Berkeley mathematics depart-
ment, who was looking for someone to develop a statistics program at
Berkeley. As a result, in November 1937, Neyman received a letter in London
from the unknown Evans offering him a position in the mathematics depart-
ment of the University of California. Neyman hesitated between remaining
in England, returning to Poland, or taking the risk of moving (with his wife
and two–year-old son) to a completely unknown environment in California.
One of the attractions of Berkeley for him was that no statistics program
existed there, so he would have a free hand to implement his own ideas.
Nevertheless, it was with considerable trepidation that, after some negotia-
tions, he accepted Evans’s offer.

The decision to move to Berkeley was a crucial event in Neyman’s life and,
some believe, in the history of statistics. The great accomplishment of the
first (European) half of his life was the development of a new paradigm for
statistics. The principal achievement of the second (American) phase was
the creation of an institutional platform for the dissemination of these ideas.
In that effort too, Neyman was highly successful, in a way that would hardly
have been possible had he remained in Europe.
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It led to his development in Berkeley of a statistics department that even-
tually reached a stable size of about twenty faculty members. By the end of
the century, it had graduated more than four hundred Ph.D. students and
produced a flood of influential papers and books. Although, of course, he
required colleagues for this enterprise (of which I became one), the initial
inspiration and energy was his, and for many years the department and its
teaching and research reflected his statistical philosophy.

One important part of this development was the series of Berkeley
Symposia on Mathematical Statistics and Probability, which Neyman organ-
ized at five-year intervals from 1945 to 1970.

During the war, Neyman’s energy and that of his lab were devoted mainly
to work on a military contract, more specifically the application of proba-
bilistic considerations to determine the best strategies in various bombing
situations. Everyone had to pitch in. Briefly (and for the only time in my life),
even I found myself plugging away at a calculator.

However, as soon as the end of the war was in sight, Neyman turned his
full energy back to science and the development of the lab. As a first step, “to
mark the end of the war and to stimulate the return to theoretical research,”
in June 1945 he proposed a Symposium on Mathematical Statistics and
Probability, which took place August 13–18, 1945.

With few exceptions, the speakers came from California, principally from
other campuses of the University of California, because Neyman’s funds were
limited, and some invited speakers had been unable to make it on such short
notice. However, since some money was left over after the August symposium,
Neyman decided to add a sequel, which took place January 27–29, 1946.

In this second session also, most speakers were local. In particular,
Neyman asked me to present a paper. I complied as best I could, but the
resulting paper is not one of which I am very proud. However, he gave me
another assignment from which I derived great pleasure. The two most dis-
tinguished visitors were to be Joe Doob (1910–2004) from the University of
Illinois and Will Feller (1906–1970), then at Cornell—the two outstanding
probabilists in the U.S.—and Neyman asked me to be their driver.

They were in a relaxed mood, and on a memorable drive to Stanford enter-
tained each other and their chauffeur with various games. My favorite was
the discussion of what salary it would take for them to accept a position at
Berkeley. The figure would go up and down with the attractions of the sur-
roundings. When we reached the ocean, south of San Francisco, Feller
became very enthusiastic and was willing to lower his demand substantially.
Not so, said Doob: he would have to raise the salary, since he might be
tempted to swim despite the notorious undercurrents and then might drown.

In a report about the symposium to the provost, Chairman Evans was full
of praise:

I cannot help saying that the symposium was an outstanding success, and that the
success was due to Mr. Neyman’s foresight in seeing its possibility at the time, and to
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his initiative and resourcefulness in planning it. It constitutes a significant page in the
history of the University of California. But what is of even more importance, it was
convincing evidence of the growing importance of the relation of statistics to experi-
mental work in many branches of science and of the service which the Statistical
Laboratory is rendering to the university and to the public. Undoubtedly the demands
on the Laboratory from both of these sources will increase continually.

The report reflects the fact that the symposium included papers not only on
the theory of probability and statistics, but also on applications arising in
such diverse subjects as psychology, astronomy, economics, forestry, meteor-
ology, parasitology, and animal breeding. It also refers to an important activ-
ity of the lab, namely responding to requests from both within and outside
the university for assistance with statistical problems in an ever-widening
variety of fields.

It seems likely that the first symposium was not part of a long-range plan,
but was conceived by Neyman on the spur of the moment, as a single event
of celebration. However, the meeting was so successful, and Neyman enjoyed
so much being host for such a gathering on his own turf, that by 1948 he was
beginning to make plans for a second symposium.

The symposia, in fact, continued at five-year intervals, steadily increasing
in size, so that the fifth symposium in 1965 had a budget of over $125,000,
obtained from multiple sources. In comparison, the budget of the first sym-
posium was $4,000, provided by the university. The proceedings had grown
from a single volume of five hundred pages to a five-volume set with a total
of three thousand pages. The sixth symposium was even larger and turned
out to be the last. The burden of organizing such a mammoth undertaking
had become too onerous for a single department.

The symposia were an enormous achievement for Neyman, a testament to
his imagination, energy, and organizing ability. During the twenty-five years
of their existence, they functioned as the most important international statis-
tics meetings, and put Berkeley on the map as a world center of statistics.

8. Joseph L. Hodges, Jr. (1922–2000)

In the spring of 1944, as the semester (and hence my first graduate statistics
course) was nearing its end, Neyman introduced me to a civilian official from
the Air Force who told me of a new concept, operations analysis groups,
which the 8th Air Force had used with great success in Europe. They consisted
of civilian scientists, engineers, and other experts who worked with the mili-
tary personnel without actually being part of the military. They were thus
free to tackle any problems they felt needed attention without going through
the chain of command. The visitor was in the process of organizing such a
group, and at Neyman’s recommendation asked me to join it. In this capac-
ity, I would become a statistical advisor to some Air Force command at a loca-
tion that could not be divulged. It seemed to me quite unlikely that with my
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one, very theoretical, graduate course I would be of much use, but refusing did
not seem an option. So I agreed to become an operations analyst.

To receive the necessary clearance for secret war work, I received a visit
from two FBI agents. Among other things, they wanted to know whether
I was a Communist or had even “slightly pinkish tendencies.” I had to laugh.
No, I told them, I am not a Communist, but yes, I have some pinkish
tendencies—as does President Roosevelt. They left soon after, and I received
my clearance and was ready for my new job. In preparation, I underwent two
training sessions. The first took place at the Pentagon, where my instructor
was the chemist and statistician Jack Youden, the inventor of an experimen-
tal design known as Youden squares. He began by giving me an important
piece of information: it would be my task to track and analyze bombing
accuracy, along the lines he had pioneered for the 8th Air Force in England.
I read some reports about this work and Jack told me about his experiences.
This gave me at least some idea of what was expected of me.

A month at the Pentagon was followed by three weeks at the Air Force
Academy in Colorado Springs to acquire some basic military skills. Here for
the first time I met the other members of the group. Among them, to my
great surprise and happiness, was Joe Hodges, who had been my best friend
from Berkeley. Also a student of statistics, he had mysteriously disappeared
some weeks earlier, having been asked to keep his assignment a secret. The
chief of the group was a physicist, and the group also contained another
statistics student, George Nicholson from North Carolina; a more senior
mathematician; and a number of engineers and aeronautical specialists—per-
haps a dozen in all. We three statisticians had been given different tasks: Joe
was responsible for statistical problems wherever they might arise, George for
problems related to gunnery, and I for assessing the accuracy of our bombers.

We were now also issued uniforms, but without the usual insignia of rank,
although we were given assimilated ranks that, among other things, deter-
mined our salaries. Mine was the rank of captain, which seemed to me much
too high for a beginning graduate student. A memorable part of our training
was the day we were taken to the shooting range to learn how to use a gun.
This was the first time either Joe or I had held a gun, much less shot with it.
As we were driving to the range, I noticed with some concern that we were
being accompanied by an ambulance. This was perhaps a sensible precaution.
For when, after several hours of practice, we were tested, most of us, far from
hitting the bull’s-eye, missed the target altogether.

At the end of this three-week training session, we boarded a military train,
its destination unknown. As it worked its way through the landscape, we real-
ized that we were going westward, and soon a rumor spread that we were
headed for San Francisco. So we were going to be in the Pacific, rather than
the European, theater of war. From San Francisco we flew to Hawaii, and
only after the plane left Honolulu were we finally told that our destination
was the headquarters of the 20th Air Force on Guam, under the command of
General Curtis LeMay.
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The island had only recently been taken by the American forces, and
nothing was ready for us except the tents that were to be our homes on
Guam. The three statisticians were assigned to the same tent, together with a
somewhat-older engineer. We were given cots to sleep on but had to assemble
them ourselves. I had trouble putting mine together and Joe kindly offered to
help. In the process his arm slipped, hit me in the face, and broke my glasses.
Fortunately, I had brought along a second pair, but they were darkly tinted.
It took three months to get another pair from Berkeley and in the meantime
I was mercilessly teased for my Hollywood look.

Guam was the headquarters of the Pacific Fleet under Admiral Chester
Nimitz. The navy had arrived earlier than we and as a result was much fur-
ther along. In particular, they had a mess hall and an officer’s club long
before we did. We obtained permission to use the facilities of the club, and
one Saturday afternoon our section chief loaded us into a jeep and drove us
to the naval end of the island. On the way home after a few drinks, he decided
to inspect the progress made on building a runway. Once on the runway, he
said, “Let’s see whether we can take off” and pressed the accelerator to the
floorboard. It was beginning to get dark so we could not see very far, and we
had no idea when the unfinished runway would end and be blocked by large
boulders. I think it was the most dangerous moment of my months on Guam.

One other potential danger occurred somewhat later. Quite a number
of Japanese soldiers were still hiding in the dense jungles that covered much
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of Guam. A radio message was intercepted in which the Emperor of Japan
called on these soldiers to stage a suicide attack on our headquarters. As a
consequence, all headquarters personnel were ordered to be armed at all times.
This, however, did not apply to our group, who as civilians were forbidden by
the Hague conventions to carry arms. On the other hand, we were in uniform
and it seemed unlikely that attacking Japanese would pause to inquire about
our status. Eventually, the decision was left to us. A gun would be issued to
anyone wanting it, but we could remain unarmed if that was our preference.
Joe and I, and in fact most of us, remembering our performance in Colorado
Springs, decided against guns, believing that they would pose a greater danger
to our friends than our enemies. In fact, the attack never took place.

The months on Guam were the only time in my life that I had an 8–to-5
job. It involved little statistics but consisted mainly of photo interpretation.

The task assigned to the 20th Air Force was the destruction of Japan’s
aircraft industry through high-level precision bombing. My job was to record
and analyze the results. For this purpose, cameras were installed on the 
B-29’s, which, on each mission, took pictures of the falling bombs, following
them if possible until they struck. Our operations analysis group had been
given a Quonset hut for its work, in which I had a desk and a viewer for
examining the strike photos. At first, I was able to handle the work by myself,
but gradually the size of our force increased and I was provided with addi-
tional staff. Eventually, my bombing accuracy group consisted of ten people,
most of them privates or noncommissioned officers.

The pictures were often unsatisfactory. On a cloudy day they might not
show the ground, the motion of the plane could blur the picture, or the tim-
ing or placement of the camera might be off. Effecting changes required
negotiations with the responsible officers. Because of antiaircraft fire or
weather conditions, the bombs were often not released over the target but at
some other location. To get an idea of where this was, one had to go to the
flight reports. After these difficulties had been resolved as well as possible, it
was necessary to record and file the results and to report them, together with
summary statistics, to the appropriate departments.

This kind of work was not what operations analysis was originally set up for.
Operations analysts were meant to be troubleshooters who would be unfettered
by the military command structure, and in this capacity they had had some
spectacular successes at the 8th Air Force in England. However, the group that
had been organized for the 20th Air Force was ill-suited for this purpose, and
seemed in fact intended for more specific routine assignments. Nevertheless,
I greatly benefited from the original idea. The civilian status and absence of
insignia to indicate rank greatly simplified my work. It made it possible to
negotiate directly with the officer in charge of any program, regardless of his
rank, without having to go through channels or to be excessively deferential.

From our studies and reports, it soon became evident that the accuracy
of the bombing was unsatisfactory, and pictures from later reconnaissance
flights showed that in fact the damage to the targeted factories had been
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relatively slight. The bombing campaign was thus not achieving its mission.
A principal cause of the lack of accuracy was the high altitude at which the
planes were instructed to fly in order to avoid antiaircraft fire. To see how the
situation could be improved, Joe and I were asked to study the likely effects
of lowering the altitude, both on accuracy and on vulnerability of the planes.

Whether our study had any effect I don’t know,5 but LeMay decided on a
completely different approach, quite outside the range we had been studying.
He ordered a surprise attack at a very low altitude for which the Japanese
defenses were not prepared. He also made other changes: the attack came at
night, the targets were industrial areas of Tokyo, and the bombs were incen-
diary. The purpose was to start a conflagration, and to do so required a very
large force: over three hundred B-29’s were used, more than twice the number
employed on any previous attack. LeMay realized that he was taking a great
risk, and he was not sure whether at the end of the mission he would still have
much of an air force. As it turned out, our losses were fairly low.

We did not know about this raid until the next day and then knew little
about the appalling toll in Tokyo of over eighty thousand dead. Even so,
thinking back I am surprised that we were not more disturbed by such an
attack on an urban target. The general attitude was stated brutally by LeMay
in his autobiography: in wartime you worry about your own losses, not those
of the enemy. And how we did worry about our own! After each mission, we
counted the returning planes and tried to learn what had happened to those
that had not returned (they were more often lost to engine failure or other
malfunctioning than to enemy fire) and whether there was still some hope.

The effect of altitude study was the only major joint military report Joe
and I wrote; generally our work took different paths. However, we spent
much of our leisure time together. In particular, we found that we shared a
love of classical music, and on Sundays would often study (and sing) the late
Beethoven quartets, of which somehow we had obtained the scores. Later, Joe
discovered a dynamic and interesting protestant chaplain on the Navy side of
the island, and on Sunday mornings we would borrow our group’s jeep to
attend his services.

In June, a new group of bombers came to the neighboring island of Tinian
to begin training for the release of the first atomic bomb. It is extraordinary
that neither Joe nor I knew anything about these activities until nearly two
months later, after the first bomb had hit Hiroshima. It was an amazingly
well-kept secret. Two weeks later, after the release of the second bomb, Japan
capitulated. The war was over.

Since our group had low priority, I feared it might take weeks for us to get
transportation, and then it would be by a slow troopship. At the same time,
I felt that my obligations were over and that as a civilian who was not even
yet a U.S. citizen, I did not have to wait for orders. So I tried an alternative
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way of making my escape and left my name at the airport, in case a seat
should become available for a flight to San Francisco. And luck was with me.
The next night, around 1:00 a.m., I received a call. If I could be at the airport
within an hour, space on a flight was available. Without any of the required
formalities, I wrote a note to the section chief, asked Joe to turn in my Air
Force gear, and packed my duffel bag. When I got to the airport, I heard
announcements: “Anyone for the United States? Anyone for the U.S.?” I was
told that a plane had been readied to take a group of entertainers back to the
States but that they had gotten so drunk that they were unable to fly.
The plane was needed in San Francisco and was nearly empty. So hop in.
Two days later, I was back in Berkeley.

Joe’s return to the U.S. was more complicated. His commitments required
him to spend another year at the Pentagon working on matters relating to
operations analysis. During his time in Washington, he met, fell in love with,
and got engaged to Teddy Long. She too had commitments in Washington,
and they made it impossible for her to leave when he was ready to do so.
So on his return to Berkeley, he stayed with me and my wife Susanne for the
better part of a year.

Joe obtained his Ph.D. under Neyman in 1949 and in the following two
years found some of the most important results of his career. In a technical
report (with Evelyn Fix), he pioneered nonparametric density estimation.
This report was considered so path-breaking that forty years later Bernard
Silverman, the editor of the International Statistical Review, wanted to pub-
lish it with an appropriate introduction. On a visit to Berkeley, since he did
not know Joe, he asked me to get his consent. I invited both to lunch so that
they would meet personally.

Even more influential was Joe’s solution of a long-standing problem.
Fisher, in the 1930s, had claimed that maximum likelihood estimates (MLEs)
enjoyed the property of asymptotic efficiency—roughly that in large samples
their performance could not be improved. Since then, some of the most out-
standing probabilists and statisticians had tried to prove this statement but
without success. Now Joe produced an extremely simple example in the most
standard situation (estimating the mean of a normal distribution) of a
“superefficient” estimate—that is, one that improved on the efficiency of the
MLE. We finally knew why no one had been able to prove Fisher’s claim:
It was wrong!

Joe felt that the example was too elementary to publish, so it was only
published in 1953 in the Ph.D. thesis of another Berkeley student, Lucien
Le Cam, who brought much additional clarity to the issue. He showed that
the improvement over the MLE could occur only on a small set of parame-
ter values (technically, sets of Lebesgue measure zero), and that estimates
achieving such improvement necessarily had some quite undesirable proper-
ties. Although these superefficient estimates thus were not useful in prac-
tice, Joe’s example changed the landscape and had a profound effect on
asymptotic theory.
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Between 1950 and 1970, Joe and I carried out much collaborative research
and published many joint papers and a book. However, in the mid-1960s he
accepted an appointment to the Berkeley Budget Committee, and this was
followed by a long period of university service (primarily on personnel mat-
ters), which he greatly enjoyed but which left little time for research.

Although our collaboration thus ended, our friendship (which included his
wife Teddy and their five children) continued up to the time of his death in
2000. Outside of my family, the relationship with this highly talented and
kind (although contrarian) colleague and friend was the closest of my life.

9. Evelyn Fix (1904–1965)

Joe Hodges’s coauthor of the fundamental paper on nonparametric density
estimation, Evelyn Fix, died in 1965, more than twenty years before its
publication by Bernard Silverman in the International Statistical Review.
It would have been lovely to have Evelyn participate in the lunch I gave for
Bernard and Joe and have her savor this triumph.

Evelyn was born in Duluth (Minnesota) and received her B.A. and M.A.
degrees from the University of Minnesota in 1924 and 1925, respectively. For
the next fifteen years, she taught mathematics in high school. In 1939, she
attended a summer session in Berkeley, including two courses in statistics from
Neyman. In the process, as Neyman would later say, “she caught the bug.”
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When in 1941 Neyman found himself desperately shorthanded, he recalled
his student from two years earlier, and offered Fix the position of technical
assistant. She knew Griffith Evans, the chair of the Berkeley mathematics
department, who was a friend of her family; statistics seemed an interesting
field; and Neyman a charismatic boss to work for. So, despite the not-very-
promising title (for a woman of thirty-seven), she accepted Neyman’s offer
and quickly became a central figure in the Stat Lab.

Her first big task came in 1942, when Neyman received a contract for
bombing research from the National Defense Research Council. The work
was computationally very intensive; it was carried out on desk calculators
and consumed much time and effort. Evelyn was in charge of the calculations
and presided over a hastily recruited, ragtag group of students (of which
I was one for a short while) and faculty wives. It was a very demanding job
with wartime urgency to get results, and Evelyn was indefatigable.

Her central role became again apparent in 1945 when Neyman suddenly
left for Greece, days before the second part of the symposium he had organ-
ized. Evelyn was the person keeping things running and on schedule and
seeing to the well-being of the guests. By that time, she had been promoted
to lecturer and was teaching various upper division courses.

Evelyn obtained her doctorate in 1948 with a thesis titled, “Distributions
Which Lead to Linear Regression,” supplemented by an earlier report, “The
Effectiveness of Several Types of Incendiary Bombs.” One aspect of her
degree was somewhat awkward for both of us. Since I had received my degree
two years earlier and was then the only regular faculty member in statistics
besides Neyman, I had to administer the German exam to this friend who
had been my supervisor and who was more than ten years older than I.
Fortunately, it was a written examination that was not taken very seriously,
and it passed without too much embarrassment for either of us.

After her work on density estimation, Evelyn continued working with Joe
Hodges, and they published a joint paper on the Wilcoxon test in 1955, as
well as another in 1959 on restricted chi-squared tests, of which I was a third
coauthor. It showed that great gains could be achieved in chi-squared good-
ness-of-fit tests by specifying the alternatives of principal importance. That
paper, which made crucial use of Evelyn’s earlier tables of the noncentral chi-
squared distribution, was a contribution to a Festschrift for Harald Cramér,
an admired friend of the three of us.

Perhaps Fix’s most important paper after her work on nonparametric den-
sity estimation was her 1951 paper with Neyman, “A simple Stochastic
Model of Recovery, Relapse, Death, and Loss of Patients.” Up to that time,
survival analysis had considered only length of life. The Fix-Neyman model
incorporated health (i.e., quality of life) as a second variable.

Her collaboration with Neyman continued when he asked her to join
him for a semester in Bangkok, Thailand, in the fall of 1952. Sponsored
by the Food and Agriculture Organization of the United Nations (FAO),
their assignment was to organize a training center on survey sampling.
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They describe their experiences in a joint paper, “Statistical Adventures in
Thailand” (1954).

After that, Neyman’s principal collaborator (particularly on problems in
astronomy) became Elizabeth Scott, while Evelyn, starting in 1960, collabo-
rated with F.N. David and David Barton on a series of papers on combina-
torial problems arising in statistics. Although the total number of her
publications was small, their quality was high and, taking into account her
many other contributions to the department, she was promoted through the
ranks until she attained the professorship in 1964.

Evelyn did not have the forceful personalities of her women colleagues
Betty Scott and F.N. David. She was self-effacing and sweet-tempered and
uncomplainingly accepted—or more often volunteered for—work from
which others shied away. As a prime example, three courses that, though
important, were outside the mainstream and were stepchildren of the depart-
ment became some of her principal teaching assignments and responsibility.
These were upper-division courses in survey sampling and in descriptive sta-
tistics (the latter required for students taking the actuarial examinations) and
a graduate course in experimental design.

Evelyn’s life changed greatly when at age thirty-seven she followed
Neyman’s call to California and shifted to a new profession. It was a life of
service, punctuated by significant achievements. She died in 1965, shortly
after returning from the banquet of the Fifth Berkeley Symposium, which
she had helped to arrange. In her memory, the department established the
Evelyn Fix prize, which is annually awarded to the most promising doctoral
student in applied statistics.

10. Harold Hotelling (1895–1973)

My return from Guam coincided with the conclusion of the first session of
the Berkeley Symposium in August 1945. The talk that had made the great-
est impression was the opening talk given by Harold Hotelling of Columbia
University on a topic specially requested by Neyman, who five years earlier
had heard a lecture by Hotelling that deeply impressed him. The title of
Hotelling’s earlier talk was, “The Teaching of Statistics,” and it raised a basic
question:

The growing need, demand, and opportunity have confronted the educational system
of the country with a series of problems regarding the teaching of statistics. Should
statistics be taught in the department of agriculture, anthropology, astronomy, biol-
ogy, business, economics, education, engineering, medicine, physics, political science,
psychology, or sociology, or in all these departments? Should its teaching be entrusted
to the department of mathematics, or a separate department of statistics, and in either
of these cases should other departments be prohibited from offering duplicating
courses in statistics, as they are often inclined to do?
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Neyman asked Hotelling to continue this discussion at the symposium,
which he did with a lecture titled, “The Place of Statistics in the University.”
He concluded this talk with the following recommendation:

Organization of the teaching of statistical methods should be centralized and should
provide also for the joint functions of research and advice and service needed by
others in the institution and possibly outside it, regarding the statistical aspects of
their problems of designing experiments and interpreting observations.

Hotelling’s remarks carried great weight not only because they addressed
problems that many in the audience were experiencing, but also because he was
recognized as the outstanding American statistician of the 1930s. He had been
the most important early supporter of Fisher in the U.S., who—it seems on his
own initiative—reviewed the first (1925) edition of Fisher’s Statistical Methods
for the Journal of the American Statistical Society (JASA). His review ended
with the statement that, “The author’s work is of revolutionary importance
and should be far better known in this country.” Hotelling was sufficiently
enthusiastic that he went on to review also the next six editions of the book as
well as the first two editions of Fisher’s The Design of Experiments (1935).

In 1929, when he was on the faculty of the mathematics department at
Stanford University, Hotelling spent six months with Fisher, and then tried to
bring what he had learned to the attention of American statisticians through two
survey papers in JASA: “British Statistics and Statisticians Today,” and “Recent
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Improvements in Statistical Inference.” However, Hotelling not only put consid-
erable effort into introducing Fisher’s work, but he also significantly extended it.

In one of his earliest statistical papers (1929, written jointly with Holbrook
Working), Hotelling obtained confidence bands for regression curves several
years before Neyman developed his theory of confidence sets. His best known
and most influential paper (1931) extended Student’s t-test (in both the one-
and the two-sample cases) from univariate to multivariate distributions. The
resulting test is known as Hotelling’s T2-test. As in the earlier paper, he points
out that the tests can be converted into confidence statements, this time for the
unknown multivariate mean. He also introduces invariance considerations to
simplify determining the null distribution of the test statistic, an idea that
entered the mainstream only much later. He continued his contributions to
multivariate analysis with, among others, two basic papers on principal
components (1933) and canonical correlations (1936).6

A paper pointing in quite a different direction was “Rank Correlation and
Tests of Significance Involving No Assumption of Normality” (joint with
Pabst). Of it, Richard Savage, in his 1953 “Bibliography on Nonparametric
Statistics and Related Topics,” writes, “Papers related to nonparametric prob-
lems were published in the 19th century, but the true beginning of the subject
may be taken as 1936, the year in which Hotelling and Pabst published their
paper on rank correlation.”

Again, invariance considerations are central to the paper, and are used to
motivate the reduction to the ranks of the observations. Since invariance
played an important role in my own work and nonparametrics was one of my
major areas of research, I think of Hotelling as an intellectual godfather,
although our personal contacts were very limited.

In 1931, Hotelling moved from Stanford to the economics department of
Columbia University (he was an eminent economist as well as statistician).
There, he built up an enormously successful statistics program, of which
W. Allen Wallis later said,7 “At the time [i.e., in the 1930s], Hotelling was prac-
tically the only person in the U.S. teaching statistics as we think of it today.”

The depth of Hotelling’s influence can be seen from the fact that the prin-
cipal early Ph.D. programs in statistics, with the exception of Neyman’s at
Berkeley, were all started by persons who had learned modern statistics either
as graduate or postgraduate students from Hotelling. They were Sam Wilks,
who started a statistics program in the Princeton mathematics department
in 1936; Al Bowker and Abe Girshick, the founders in 1948 of the Stanford
statistics department; and W. Allen Wallis, who was instrumental in estab-
lishing a statistics program (in 1949) at the University of Chicago.

These programs, of course, were all preceded by the distinguished statistics
group Hotelling built up at Columbia after he went there in 1931, and which
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included in particular both Abraham Wald and Jack Wolfowitz. He tried to
obtain for his group the status of an independent department of statistics.
However, the Columbia administration resisted this effort, and persisted in
their refusal even in 1946, when Hotelling received an exceptionally attractive
offer from the University of North Carolina at Chapel Hill to start a statis-
tics program there with strong external financial backing. As a result,
Hotelling left Columbia for Chapel Hill, where he quickly built up a strong
department. In the wake of these events, the Columbia administration—
afraid that they would also lose Wald—belatedly set up a department of
mathematical statistics, with Wald as executive officer.

I had little contact with Hotelling during his lifetime, but unexpectedly
found myself in the role of his biographer thirty years after his death. It is a
policy of the National Academy to commemorate its deceased members
through memoirs of their life and work. A few years ago, since no such mem-
oir had been written for Hotelling, I was asked to find a suitable person for
the task. I was unsuccessful and finally decided to write the memoir myself,
in collaboration with the Stanford economist Kenneth Arrow.

11. Three Ph.D. Godfathers

Until 1945, Neyman had run the Stat Lab single-handedly, with the help of
graduate assistants and occasional temporary junior faculty. But in the sum-
mer of 1945, a long-held wish materialized with the arrival of the Chinese
scholar Pao-Lu Hsu (1910–1970) as visiting lecturer for the fall term. The
next term, he was scheduled to teach at Columbia in Hotelling’s group.

Hsu had obtained his Ph.D. under Neyman in London in 1938, and two
years later had returned to China as professor of mathematics at Peking
University. He suffered much during the war years, but continued his
research. After long efforts, Hotelling and Neyman had now succeeded in
bringing him to the U.S. It was Neyman’s hope that after his Columbia term,
Hsu would accept a permanent position at Berkeley.

For me, the most urgent issue after my return from Guam in the summer of
1945 was to find a thesis problem. A possible topic was suggested to me by Hsu
after consultation with Neyman. The problem, surprisingly, was in probability
theory, but had some application to statistics. By December, I had made
enough progress to consider writing up the results obtained thus far. At this
point, however, a citation to related work sent me to additional references, and
after a few days to the realization that my results were already contained in the
work of Russian mathematicians from about fifty years earlier.

Shortly after this collapse of my thesis, Neyman, as an expert in sampling, was
asked to join President Harry S. Truman’s mission to supervise the upcoming
Greek elections. Among the many problems worrying him in the two days before
leaving—and possibly being gone for some months—was that of his unfortunate
student Lehmann, whose plans for completing his degree by the end of the spring
semester were in shambles. So he asked Hsu to give me a new thesis topic.
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Within a few days, Hsu presented me with a new possible topic: applying
methods of Neyman, Scheffé, and himself to some situations for which they had
not been tried before. Hsu then got me started on this line of work. In a letter
of January 24 to Neyman, about which I learned only much later, he wrote: “I
have passed the problem of testing for independence between successive obser-
vations to Erich for his doctoral thesis. Will do all I had done independently, and
then add a new part which I have not done. I hope this scheme will meet with
your approval, so that Erich can look forward to the degree with certainty.”

This was an act of greatest generosity. Hsu made me a present of work he
had planned to do himself and on which he had already obtained some
results. I had hoped to see him on his return to Berkeley after the term at
Columbia. However, this was not to be; in fact I never saw him again.

Hsu announced his decision not to return to Berkeley in the same letter of
January 24 in which he informed Neyman about the arrangements he had
made for my thesis topic. The letter began:

Dear Neyman,
I do not know what to say to you. I act so like a saboteur that you can hardly be

expected to forgive me. The fact is that two-page letter from Hotelling. The letter con-
tained a surprising news about himself—that he is resigning his position at Columbia to
organize a new Department of Mathematical Statistics at the University of North
Carolina, and a surprising invitation to join him, from July 1, at the rank of associate pro-
fessorship and a salary of $5,000. Besides, he wanted me to answer immediately to enable
him to make an announcement at a statistical meeting on January 24. I accepted him.

Accordingly, Hsu spent the next year-and-a-half with Hotelling at Columbia
and North Carolina. Quite unexpectedly, he then returned to his professorship
at Peking University. The reasons for this sudden decision are not clear.
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Patriotism seems to have been one. This was shortly before the Communist vic-
tory and he was looking forward to being part of the new society in his home
country. There were also rumors of a failed marriage proposal. (He in fact never
did marry.) In China, he suffered much during the Cultural Revolution and in
later years from ill health. He died at the young age of 60, after a long illness.

His collected papers, some of them translated from the Chinese, were pub-
lished in 1983, with introductory material by T.W. Anderson, K.L. Chung,
and myself. To quote from this introduction: “Hsu is affectionately remem-
bered by many students and colleagues as a gentle, shy, and modest man who
. . . had a strong influence as a teacher and model of a scientist.”

We should have added that he was warmhearted, generous, and completely
unselfish. I am lucky to be able to count myself as one of his students.

When Neyman left for Greece, he was concerned not only about my thesis
topic but also about who, with himself and Hsu both gone, would supervise my
thesis work. No one in the mathematics department knew any statistics or even
probability theory and would be able to give me guidance. However, it occurred
to him that George Polya at Stanford, although not a statistician, had a very
broad knowledge of mathematics that included probability theory. The breadth
of his interests is indicated by the titles of the four volumes of his collected
papers: 1. Singularities of Analytic Functions; 2. Location of Zeros; 3. Analysis;
and 4. Probability, Combinatorics, Teaching, and Learning Mathematics.

So Neyman asked Polya, who had helped him out on previous occasions,
whether he would take on the supervision of my thesis, and Polya agreed.
Thus it came about that during the spring of 1946, every two weeks I would
drive to Polya’s house, tell him of my progress, and would then be invited to
join him and his Swiss wife, Stella, for tea and cookies.
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At tea we talked not about mathematics or statistics, but rather reminisced
about our common experiences. I found out that before coming to Stanford,
Polya had taught at the Eidgenössische Technische Hochschule (ETH) in Zürich
from 1914 to 1940. Since I was a university student in Zürich from 1936 to 1938,
I might easily have taken courses from him. However, this did not happen
because I was enrolled at the University of Zürich rather than the ETH. It also
turned out that both the Polyas and I had left Europe for the U.S. in 1940 and for
the same reason: the threat of a German invasion, in their case of Switzerland,
in mine of England. We did not want to fall into the hands of the Nazis!

George Polya (1887–1985) was not only an outstanding mathematician but
also an exceptional teacher.8 The year before my sessions with him (although
I did not know this at the time), he had published a book, How to Solve It,
on techniques and strategies for problem solving. It was to become a huge
success, particularly after it came out in paperback. Eventually, it sold over a
million copies and was translated into eighteen languages.

Unfortunately, I did not take advantage of my meetings with this remark-
able man. I was too caught up in the struggles with my thesis, with which
I was not very happy. The problem was too special for my liking, the results
messy, and their derivation fairly routine. But to my surprise, sometime in
April or May Polya declared himself satisfied. When I protested the low
quality of the work, he pointed out that there would be plenty of time to do
better work later on, and that at the moment the important thing for me was
to get my degree. So I wrote up my results in final form and all that remained
was my thesis defense. This, however, presented a difficulty, since Polya was
not a member of the Berkeley faculty and since no one who was seemed suit-
able for this examination. The problem found a very unexpected solution, in
the form of a telegram from Neyman in Greece saying that he was on his way
home. He had been fired for insubordination.

The story is complicated,9 but basically Neyman believed that the election
was rigged and that the mission was not doing anything about it. So he decided
to look into the situation on his own, and when asked to discontinue his inde-
pendent investigation he defied the order. If the government had looked for
someone to participate in a whitewash, they had picked the wrong man.

In any case, the mission no longer wanted his services and as a result,
Neyman was back in Berkeley just in time for my examination. Thus, in early
June I received my doctorate and this event was followed by an appointment
to the faculty.

As a result of all these complications, I had three thesis supervisors. The
problem was given to me by Hsu, most of the work on it was supervised by
Polya, and Neyman presided at the thesis defense. One could hardly have
wished for a more distinguished trio of godparents for one’s career.
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3
Early Collaborators

My first two publications (both appearing in 1947) were written while I was
still a graduate student. However, during the five years after my degree, most
of my research was collaborative. This was not a deliberate policy on my part
but resulted from my delight in being part of a community of congenial col-
leagues with shared interests. In fact, these professional relations transcended
the confines of joint work and became lifelong friendships. I was, of course,
extraordinarily lucky in finding such outstanding collaborators as Henry
Scheffé, Charles Stein, and Joe Hodges.

The crucial role proximity played in promoting these collaborations is
indicated by the fact that no new joint projects developed with either Henry
or Charles after they left Berkeley, Henry after a one-year visit and Charles
after three years due to political causes. On the other hand, Joe remained in
Berkeley and our joint work continued happily for twenty years and ended
only when he switched from research to administration.

After the first five years, I began to do more research on my own, but at
the same time continued collaborative work, after Joe with my friend and
colleague Peter Bickel and still later with my wife, Juliet Shaffer.

In addition to these major collaborations, occasional joint papers with
various coauthors came about fortuitously. Two such coauthors, Herman
Chernoff and Raj Bahadur, are discussed in this chapter. Other, later,
instances resulted from correspondence and conversations with former stu-
dents: Fritz Scholz, Wei-Yin Loh, and Javier Rojo. Not all such efforts
succeeded. On one occasion, David Blackwell and I started to work on a
problem but after a while abandoned it. An attempted project with John
Tukey suffered the same fate.

Joint work has been a crucial ingredient of my professional life. It has
greatly enriched my research and has enabled me to accomplish much more
than I could have done alone. At the same time, it has brought me some
wonderful, deep, and lasting friendships.
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12. Henry Scheffé (1907–1977)

The first time I met Henry Scheffé was in 1946, when he spent a year in
Berkeley with a Guggenheim fellowship, on leave from the College of
Engineering at the University of California–Los Angeles. His name was of
course well known to me, since my thesis had been based partly on his work.
It was exciting now to meet him in person.

Henry was born of German parents living in New York. His father, who
had for many years worked as a baker for the same firm, lost his job during
the Depression and was reduced to selling apples at a street corner. The mem-
ory of this injustice and of his father’s suffering remained with Scheffé
throughout his life.

Henry, who was ten years older than I, had obtained his degree in pure
mathematics with a thesis on differential equations. However, he decided that
the field of mathematical statistics promised more interesting opportunities
for research, and in 1941 went to Princeton to study statistics under Sam
Wilks. After some years of war work at Princeton, he taught statistics for a
year at Syracuse University and from 1946 to 1948 was on the engineering fac-
ulty of UCLA. It was the first of these three years that he spent in Berkeley.

Despite the image of a prize fighter conjured up by his broken nose, Henry
turned out to be a very nonbelligerent, rather shy person with interests in art,
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music, and literature. We quickly took a liking to each other and on long
walks discussed statistical issues as well as literature, music, and the state
of the world. I was impressed by his hatred of prejudice. He once told me
that when he heard an anti-Semitic remark he tried to silence the speaker by
stating that he was Jewish (which was not the case).

His attitude toward religion emerges from a story he told of his daughter
being asked in school about the family’s religious affiliation. He told her that
they were atheists. The next day, she returned with an additional question:
“Yes, but are we Protestant, Catholic, or Jewish atheists?”

One of his best bon mots concerned our two introductory statistics
courses. He explained that the more theoretical course (Stat 1) was for stu-
dents who wanted to understand statistics but were not planning to use it,
while the methods-oriented, cookbook-style course (Stat 2) was suitable for
students who planned to use statistics but did not need to understand it.

Our statistical conversations led us to discuss a unifying concept that tied
together many different situations we had been considering, which we called
completeness. For models possession this property, it turns out that both test-
ing and estimation become particularly simple. The reason, it seems, is that in
such models one can discard all parts of the data that by themselves carry no
information about the unknown parameters (for details, see Lehmann, 1981).

The basic idea was not new; it had been used by various authors in a
number of special cases. However, isolating the basic underlying concept and
formulating it abstractly turned out to be very fruitful, and made possible a
host of new applications. We published a preliminary report in 1947 in the
Proceedings of the National Academy, but a full exploration of the concept
(which we called completeness) took us several years. Eventually, we gave a
comprehensive account in two long papers in 1950 and 1955. Completeness
has become a staple of statistical theory.

By the time Henry left Berkeley at the end of his Guggenheim year, the
outline of the work was clear, and it was possible to elaborate the details by
correspondence and occasional visits back and forth. On the other hand,
Henry was very busy in new positions, first at UCLA and after 1948 at
Columbia. In addition, Henry’s interests were shifting, partly under the influ-
ence of his friend, the applied statistician Cuthbert Daniel. As a result, we did
not start any new projects and our collaboration gradually petered out. It was
not even resumed when in 1953 Henry joined our Berkeley department. In
bringing him to Berkeley, Neyman had hoped that Scheffé, with his strong
interest in applications, would assist him in the administration of the labora-
tory, and Henry’s original appointment was as professor of mathematics and
assistant director of the Statistical Laboratory. However, the arrangement
did not work out—Scheffé was too independent—and the additional title was
dropped after the first year. Henry remained in Berkeley as professor of
mathematics until his retirement, serving as department chair from 1965 to
1968. During his term of office, he had to contend with great unrest on
campus, the result of what became known as the Free-Speech Movement.
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Different groups of both faculty and students in the department had violently
opposite attitudes, and Henry was in the middle, trying to hold the depart-
ment together and to keep the atmosphere pleasant. His fair-mindedness
gained him the respect and affection of all members.

It was due to the prodding of Cuthbert Daniel that Henry wrote what is
probably his best-known paper, “A Method for Judging All Contrasts in the
Analysis of Variance” (1953). Daniel wrote later1 that he takes great pride “in
the fact that [my] copy is inscribed, ‘To the guy who hounded me into this.’
This required listening to long disquisitions throughout more than a year, on
how messy the distribution was, climaxed one evening at 11:30 with, ‘Guess
what, it’s the F-distribution.’” Henry had found a very elegant solution to
what seemed to be a quite intractable problem.

In addition to his research, Scheffé is particularly remembered as the
author of an outstanding book, The Analysis of Variance (1958), written dur-
ing his Berkeley years. The feature that makes this book so special and caused
it to be the standard account of the subject for decades is its combination of
the theoretical and applied points of view. It is rigorous, the formulations are
general, but at the same time it is full of practical insights. Especially note-
worthy in this regard is the last chapter, “The Effects of Departures from the
Underlying Assumptions.”

After his retirement in 1974, Scheffé accepted a three-year appointment to
the mathematics department at Indiana University. In June 1977 he returned
to Berkeley, where he was planning to prepare a second edition of his book.
Unfortunately, he was not able to carry out this project. On July 5, 1977, he
died as a result of a bicycle accident.

Henry Scheffé was my first collaborator, and I found our joint work very
satisfying. It filled a need that had once been touchingly described by
Neyman in an early letter to Pearson. Discussing plans for their continued
collaboration, Neyman wrote, in his still very imperfect English:

Possibly it is no need to work out everything together or even publish things in joint
papers. Only what I would like is to have a sort of companionship in the work. [Emphasis
added.]

This companionship is what I too was seeking, and I was lucky to find it in
Henry and in several later collaborations.

13. Charles Stein (b. 1920)

By the fall of 1947, Henry had left Berkeley and I would again have been
without the hoped-for companionship, if a new faculty member had not just
then joined our group.
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Charles Stein had come to Neyman’s attention through a remarkable paper
(1945) he had written as a graduate student. In it he had solved a problem
that had long been of interest to Neyman. The power of the t-test of the
hypothesis H: θ = 0 for the mean θ of a normal distribution is a function of
θ/σ, where σ2 is the variance of the distribution. It is easily seen that as
σ becomes arbitrarily large, the power against a fixed alternative θ tends to
its value at 0, that is, the significance level α.

Neyman’s first American student, George Dantzig (who later became
famous for his work on the simplex algorithm for linear programming),
proved that in fact no test can exist that for fixed θ and all possible values of
σ has power bounded away from α, regardless how large the sample size. This
is intuitively plausible, since two normal distributions with means 0 and θ,
respectively, and the same very large σ are practically indistinguishable.

In his paper, Stein gave not only a very simple proof of this result, but
showed that fixed power greater than α, independent of σ, against a final
alternative θ, can be attained by a sequential two-stage procedure. An initial
sample is used to estimate σ, and the size of the second sample is determined
by the value of this estimate. The larger the estimate, the larger the sample
size at the second stage, which becomes arbitrarily large as the estimate of
σ does.

Stein’s solution was not only very original but also extremely elegant. It
elicited Neyman’s enthusiasm and resulted in Charles becoming a member of
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our faculty in the fall of 1947. Having just completed his degree at Columbia,
he brought with him not only his great talent but also familiarity with Wald’s
decision theory, the hot topic of the day.

His appointment caused one small problem: our group was growing but
we had not been given any additional space. So Charles was assigned to
share an office with Evelyn Fix (Neyman’s principal assistant during the
war years), Joe Hodges, and me. The office was so small that it barely
accommodated our desks when they were arranged as a square block in the
middle of the room. This forced proximity of four congenial people with
common interests led to many interchanges of ideas and to some joint
papers. In particular, Charles and I wrote four joint papers over the next
two years, dealing with four quite distinct and unconnected problems.
A common feature was that they were all theoretical, concerned with opti-
mality and related issues.

One of the most important ideas that I learned from Charles was not part
of Wald’s decision theory (but had earlier been used by Hotelling in some
special cases). It was that of invariance of a hypothesis testing problem under
some group of transformations and the related property of invariance of
tests of this hypothesis. The principal result arising from these considerations
was the Hunt-Stein theorem, which states that when the group satisfies
certain conditions, there exists a “maximin” test (i.e., that maximizes the min-
imum power over an invariant class of alternatives), which is invariant. It
thus greatly simplifies the usually difficult problem of determining a maximin
test. This is particularly the case if there exists a best invariant test that then
automatically is also maximin. Rather surprisingly, Hunt and Stein did not
publish this important result.

Charles later told me the reason. Since they were unable to prove the result
in full generality (i.e., for all groups), they investigated it for special classes of
groups, and were able to prove it for Abelian groups and for compact groups
(where it is obvious). This was enough to cover the case of analysis of vari-
ance and more generally of the univariate linear hypothesis. However, despite
much effort, they could not prove it for the group of all linear transforma-
tions, which was needed for Hotelling’s T2. Charles found it embarrassing not
to be able to include such a simple case, and decided to delay publication until
he could do so.

Several years later, he found a simple counterexample showing that the
theorem did not hold for all problems invariant under the group in question.
By that time, I was working on my book on hypothesis testing, and Charles
gave me permission to include both the theorem and the counterexample, an
act of great generosity. Thus, it came about that the Hunt-Stein theorem
made its first public appearance when my book came out in 1959.

Of our four joint papers, I shall mention only one: “Most Powerful Tests
of Composite Hypotheses” (1948). As the title indicates, the problem was to
determine a level α test that would maximize the power against a specific
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alternative. Its purpose was to fill a gap in the classical Neyman-Pearson
theory. This theory showed that many standard tests, for example the t-test,
maximize the power among all unbiased tests. (A test is unbiased if its power
against all alternatives is greater or equal to α.) But does this optimum prop-
erty still hold when the restriction to unbiased tests is dropped and all level
α tests are permitted to compete?

We developed some general theory for this problem that naturally sug-
gested itself as an adaptation from decision theory, and followed this by
examining a number of classical testing problems. In some examples, the
standard test retained its optimality against this wider competition; in others
it did not. What was needed for these results was the construction of a “least
favorable” weighted average of distributions in the hypothesis H as close
to the alternative as possible. This least favorable distribution was often
suggested by intuition, and then all went swimmingly.

However, this turned out not to be the case when we came to the most
interesting example, that of the t-test. We conjectured that the least favorable
distribution would concentrate all its probability on a single point, but then
intuition deserted us. We saw no way of determining this point and were quite
frustrated. A few days later, Charles told me that he had solved the problem.
Although not determining the point explicitly, he showed by a careful analy-
sis that for α < 1/2 such a point exists and gives the right test, which is quite
different from the t-test. It has better power in the neighborhood of the
specific alternative for which it was designed but lower power elsewhere. For
α ≥ 1/2, the situation turned out to be much easier, and in that case the t-test
cannot be improved.

In the aftermath of this work, I began to realize that Charles had insight,
power, and intellectual courage that far surpassed mine. Despite this dispar-
ity, he seemed satisfied with our collaboration, and it probably would have
continued if political events at the university (the requirement of a loyalty
oath) had not caused him to leave Berkeley after two years, first for the
University of Chicago and then for Stanford.

The qualities that Charles showed in solving this problem led him later to
deep and influential results. Particularly striking is his discovery of a very
surprising phenomenon, now called Stein estimation.

Suppose that X
_

is the average of several measurements of some unknown
quantity θ (a height, temperature, blood pressure, . . .), and that X

_
has a nor-

mal distribution with mean θ and variance 1. If we want to estimate the
unknown value of θ, the obvious estimate seems to be the average X

_
. This

estimate is not only natural but also possesses various good properties. In
particular, suppose that we measure the loss resulting from the fact that X

_

differs from θ by the square of the error, that is, (X
_

– θ)2 and the resulting risk
by the expectation of this quantity (which is a measure of the accuracy
(or rather inaccuracy) of the estimate 

_
X. Then it is known that there exists

no other estimate that improves on the risk of X
_

uniformly, that is, for all θ.
We say that X

_
is admissible.
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Consider now the case that we wish to estimate s unknown quantities θ1,
. . ., θs on the basis of s means X

_
(1), . . ., X

_
(s), distributed independently with

means θ1, . . ., θs and common variance 1. Since  X
_

(i) is the best estimate of θi
for each i intuition tells us that the set of estimates (X

_
(1), . . ., X

_
(s)) is optimal

for the set (θ1, . . ., θs).
It therefore came as a great shock when Stein (1956) showed that the

performance of this “obviously” right estimator can be improved when s is 3 or
greater and when the overall loss is measured by the average of the individual
losses. And the improved estimator has the strange property that the estimated
value of the ith component θi depends not only on the ith average X

_
(i), but also

on the completely unrelated average measurements of the other θ’s.
When Charles first told me of this result, I rather rudely said, “I don’t

believe it,” to which, somewhat offended, he replied, “But I proved it.” And
so he had. After all efforts of finding a hole in his proof had failed, a large
literature sprung up in which the phenomenon was explored for different loss
functions and in different settings. Eventually, it became clear that in the for-
mulation of the problem stated above, the s component problems, despite
their independence, were linked through the loss function, which combines
the individual losses into a single average. And indeed, it turns out that
although the Stein estimator does better than (X

_
(1), . . ., X

_
(s)) on the average,

its performance for the individual components can be quite unsatisfactory.
Thus, for example, if the X

–
’s are the average test results for s patients sent to

a common laboratory, the Stein estimate would be desirable from the labora-
tory’s point of view, but it would not protect an unusual patient from a very
erroneous assessment.

While Stein’s innovation therefore has some drawbacks in addition to its
advantages, it nevertheless opened up a whole new area of possibilities, which
was explored in a large and very interesting literature. Perhaps the most sur-
prising later discovery relates to the fact that Stein’s improvement is possible
when the number of unknown means is 3 or greater but not when it is 1 or 2.
A distinction between the cases “3 or greater” and “1 or 2” prominently
occurs also in a completely different field, the theory of random walks and
diffusion. In an extraordinary paper in 1971, L.D. Brown showed that there
exists a completely unexpected but in fact quite close connection between
these two theories, by establishing a correspondence between estimators and
diffusion, with the estimators being admissible if and only if the correspon-
ding diffusion is recurrent (see Section 49).

Surprisingly, fairly late in his career, Stein made influential contributions
not only to statistics but also to probability theory, when in 1972 he pub-
lished a completely new approach to the classical problem of obtaining good
approximations and limit theorems for the distribution of sums of dependent
random variables. He developed his method further in his book, Approximate
Computation of Expectations (1986), and it was later expanded by others, for
example in the book, Stein’s Method: Expository Lectures and Applications
(Diaconis and Holmes, eds., 2004).
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This and his other work showed Charles’s outstanding originality. His
writings inspired many later authors to mine the rich veins he had exposed.

14. Hodges–Lehmann I: Parametric Inference

After Charles left in the fall of 1949, another collaboration developed, this
time not with a newcomer but with my friend, tentmate on Guam, and now
officemate, Joe Hodges. He had just completed his Ph.D., with a thesis writ-
ten under Neyman’s supervision, and had then joined the faculty. As a con-
sequence, he was now free to consider other problems, and we began a
collaboration which, in the years 1950 to 1970, resulted in fifteen joint papers
and an elementary text. Later, Joe accepted a number of high-level adminis-
trative positions that left him no time for research. Thus, our collaboration
ended, although our friendship continued.

Our joint work covered two different areas. The early papers (to be
considered in the present section) dealt with problems arising in the then-
standard parametric situation in which the form of the probability distribu-
tion is assumed known (usually normal) but involves some unknown
parameters. Later (see Section 40), our principal interest centered on an
alternative (nonparametric) methodology.
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Our first three papers, one each in 1950, 1951, and 1952, were concerned
with concepts of Wald’s new decision theory—with minimax and Bayes
procedures and their admissibility. Our first paper was motivated by the fact
that Wald’s work, while an imposing abstract edifice, contained practically
no examples. So, piqued by curiosity, we asked ourselves what the minimax
estimator would look like in the simple problem of estimating a binomial
probability p under squared error loss. According to the general theory, the
minimax estimator should be a Bayes solution. Unfortunately, Bayes solu-
tions are difficult to determine explicitly. In fact, the only situation we saw
how to handle was that of a beta prior. In that case, the Bayes solution turned
out to be a linear function aX + b of the binomial variable X. Since a Bayes
estimator is minimax if it has constant risk, we next found that for suitable
a and b the Bayes estimator aX + b has constant risk, and the problem
was solved.

So far we had been lucky, but now our luck deserted us. Our minimax solu-
tion turned out to be a very poor estimator that, despite its minimax prop-
erty and being admissible, on the whole was much inferior to the standard
estimator X/n.

Admissibility of the minimax estimator in the binomial example follows
from the fact that any unique Bayes solution is automatically admissible, that
is, that there then exists no other procedure that is better for all parameter
values. However, minimax procedures often are not Bayes solutions but only
limits of Bayes solutions, and then cannot be guaranteed to be admissible.

So for our next project, Joe and I looked for a different method of proving
the admissibility of such estimators. We found such a method by considering a
certain differential inequality related to the so-called Cramér-Rao inequality.

Our third paper again grew out of our interest in minimax and Bayes
procedures. The latter assumes complete knowledge of the a priori distribu-
tion, a requirement that seemed rarely satisfied in practice. On the other
hand, the minimax procedure corresponds to the prior distribution (or
sequence of distributions) that is least favorable, which may not be at all
close to the investigator’s assessment of the situation. We proposed a com-
promise between these two extremes: namely, to put an upper bound on the
maximum risk so that—even though not minimum—it could not be too
large, and subject to this restriction to minimize the Bayes risk. The result-
ing paper developed a general theory of such “restricted Bayes procedures”
and provided a number of examples.

Of the remaining parametric papers I shall mention only one, “Testing
the Approximate Validity of Statistical Hypotheses” (1955). In the classical
Neyman-Pearson theory, the hypothesis H:θ = θo completely specifies the
value of the parameter being tested. Frequently, it is more reasonable to con-
sider instead the hypothesis H′: ⎢θ − θo⎢ < ∆ for some ∆ > 0. We worked out
a number of examples, the most interesting (and rather complicated) being
the case of a normal mean. The paper did not find much resonance, but the
problem was later revived. It became known as “testing for bio-equivalence,”
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however with the hypothesis and alternatives interchanged so that the
hypothesis being tested was: H′: ⎢θ − θo⎢ > ∆.

In our joint work, Joe and I approached problems from very different
points of view. Mathematicians are often characterized as problem-solvers or
system-builders. In this categorization, Joe was a pure problem-solver. He
seemed to have little interest in the context in which a problem arose, but con-
sidered each problem entirely on its own merits—a hard nut that it was his
job to crack. And he was superb at that task, bringing to it great ingenuity
and intelligence. My own attitude was just the opposite: problems attracted
me because they constituted irritating gaps in our systematic knowledge, and
I was more interested in how the answer increased our understanding than in
the process of solution.

As had been the case in my joint work with Henry and Charles, much of
the work with Joe was also done on walks in which our conversation was not
confined to statistics. A favorite diversion on these occasions was the com-
posing of limericks. One of Joe’s says something about our taste in music,
which at the time appreciated only Bach, Mozart, and Beethoven:

The music of Johannes Brahms
Has strange ineluctable charms
And sometimes it seems
It might lapse into themes
But alas, they are all false alarms

Another time, we challenged each other to produce a limerick on a colleague
named Neustadter. This eventually resulted in the following joint effort:

A student named Siegfried Neustadter
Lost all his pertinent data
He thus could not cram
For his final exam
Which exam was crammed full with errata

Clearly we had fun.
These three collaborations and the lifetime friendships they engendered are

some of the greatest rewards my profession has brought me.

15. Herman Chernoff (b. 1923) and 
Raj Bahadur (1924–1997)

The previous sections of this chapter covered my collaborations with Henry
Scheffé, Charles Stein, and the first phase of my work with Joe Hodges.
These joint investigations with Berkeley colleagues were the result of nearly
daily conversations in our offices or on walks, over an extended period.
This section is motivated by one joint paper each with two colleagues at other
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universities, which came about more or less accidentally by correspondence.
Both Herman Chernoff and Raj Bahadur were outstanding statisticians
whose work I admired and with whom I kept in contact through occasional
encounters at statistical meetings or on brief visits to their departments.

Born and raised in New York, Herman Chernoff obtained his B.S. in
mathematics in 1943 from the City College of New York. Herman’s decision
to become a statistician was strongly influenced by his encounters with two
fundamental papers. The first occurred during his studies at City College,
which included a couple of courses in statistics. At one point, he was assigned
to read the 1933 paper in which Neyman and Pearson developed their theory
of hypothesis testing. Chernoff was blown away. In an interview with Bather,
he said: “It was quite a traumatic experience. It took me a long time to realize
that it was as simple as it seemed to be. It required a complete reorganization
of my brain cells to adapt to it and I was quite profoundly impressed.”

Chernoff did his graduate work at Brown University in applied mathematics
but, as he says, “When I was at Brown, Henry Mann had shown me Wald’s 1939
paper on decision theory and that again was another revelation to me, but it was
easy to absorb after having had contact with the Neyman-Pearson paper.” As a
result, after completing all the requirements for a Ph.D. at Brown except for the
thesis, Chernoff went to Columbia in 1947 to write his thesis under Wald.

Wald suggested a number of possible thesis topics, of which Chernoff
chose an asymptotic version of the Behrens-Fisher problem. This difficult
problem concerns testing the equality of two normal means when the
corresponding (unknown) variances are not necessarily equal. The task was
to find a test that, under the hypothesis, would have a constant probability of
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rejection. Following Wald’s suggestion, Chernoff did not attempt an exact
solution (later work of Linnik proved that a smooth exact solution does not
exist), but instead showed how to construct tests that approximate this ideal
to any given degree of (asymptotic) accuracy.

After completing his degree, Chernoff spent a year-and-a-half at the Cowles
Commission in Chicago, followed by three years in the mathematics depart-
ment of the University of Illinois. In 1951, he moved to the Stanford statistics
department, where I first met him when I spent the year 1951–52 as visitor at
Stanford. He remained at Stanford for twenty-three years, and in 1974 left for
the Massachusetts Institute of Technology to develop a statistics program
there. However, when it became clear to him that his program was not suc-
ceeding, he accepted an offer from Harvard to join their statistics department.

Chernoff’s research spans many different areas. Much of his early work
dealt with sequential problems, and is summarized in his monograph,
Sequential Analysis and Optimal Design. One very unusual paper that
attracted much attention was titled, “The Use of Faces to Represent Points
in k-Dimensional Space Graphically” (1973). The face is determined by up to
eighteen features, each corresponding to one coordinate of the sample point.
Two, for example, are the length and curvature of the mouth (represented by
the arc of a circle), two others the size and separation of the eyes (reported
by ellipses whose eccentricity constitutes a third feature), and still another the
length of the nose (a line segment). The use of such a representation is illus-
trated by a number of examples, one of them a cluster analysis in which faces
are grouped together by their resemblance to each other.

I shall mention only two other of Chernoff’s papers, both of them con-
nected to my own work. One of these (joint with Richard Savage) arose from
a conjecture that Joe Hodges and I had published in 1957. We believed that a
certain nonparametric test (based on normal scores) was asymptotically as
efficient as Student’s t-test against translation alternatives in the normal case
and more efficient for all other distributions. The following year, Chernoff
and Savage not only proved this conjecture but, in their paper, also estab-
lished the asymptotic normality of a large class of rank statistics, a key result
and the basis of much later work.

The other paper in question is a joint paper by Chernoff and myself (1954),
which concerns Karl Pearson’s goodness-of-fit statistic and came about as fol-
lows. It was well known that Pearson’s statistic obtained by grouping the data,
and with unknown parameters obtained by maximizing the likelihood of the
frequencies, has a limiting chi-squared distribution. But what if the original
(ungrouped) observations are available, so that the parameters can be estimated
more efficiency from the original data? I discovered that the limit distribution
then no longer is chi-squared, and had worked out the limit distribution for a
number of examples.

When I mentioned my results to Herman, who was an expert in this kind
of large-sample work, he told me that he too had noticed this phenomenon
and was in fact in the process of writing a paper on it. Although his results
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were more general than mine, he generously offered to make it a joint paper
by the two of us, and the resulting paper appeared in the 1954 volume of the
Annals of Mathematical Statistics.

In recognition of his work, Chernoff was elected to both the National
Academy of Sciences and the American Academy of Arts and Sciences.
He was invited to give both the Fisher and Wald Lectures, and in 1983 a
festschrift was published in his honor, edited by Rizvi, Rustagi, and Siegmund.

My other collaborator, Raj Bahadur, was born and educated in India.
After receiving an M.A. in 1945 from the University of New Delhi, he went
to the University of North Carolina for further graduate study and obtained
his Ph.D. in 1950 with a thesis suggested to him by Hotelling. He then joined
the statistics faculty at the University of Chicago but returned to India in
1956, where for the next five years he held a professorship at the Indian
Statistical Institute. In 1961, he returned permanently to Chicago.

Bahadur’s two most influential contributions are mathematically too complex
to fully explain here. The first, a short note of only four pages (1966), establishes
what is known as the Bahadur representation of quantiles. It represents the sam-
ple quantile as a sum of i.i.d. (identically independently distributed) random
variables plus an error term that tends to 0 as the sample size increases, at a rate
that Bahadur determines. The result exhibits a relation between sample quan-
tiles and order statistics that has proved useful in many applications (see, for
example, section 2.5 in Serfling, 1980).

Another major contribution is the concept and theory of Bahadur effi-
ciency, a comparative (asymptotic) measure of the efficiency of different tests
or estimators. The great advantage of Bahadur’s efficiency measure over the
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earlier measures of Edwin Pitman, Chernoff, and Hodges, and Lehmann is
its much broader applicability, including, for example, the Kolmogorov-
Smirnov and the Wald-Wolfowitz run test. On the other hand, Bahadur’s
measure may not always be as accurate in approximating the actual finite-
sample efficiency as, say, Pitman efficiency.

Still another important line of work was his clarification of the concept of
sufficiency in sequential analysis. A paper that I particularly liked and to
which I have often referred in my own writing is the joint work of Bahadur
and his Chicago colleague Jimmy Savage (1956). It concerns tests of the mean
such as Student’s t-test and shows that if the form of the distribution is
unknown, it is not possible to control the size of such a test. More specifi-
cally, for any given sample size, there exist distributions for which the size of
the test is arbitrarily close to 1. This result provides a warning not to be over-
confident about the well-known asymptotic robustness of the t-test.

My own joint paper (of 1955) with Bahadur came about as part of his
early work on sufficient statistics and subfields. In response to a question
raised by him in a paper of 1954, I made some suggestions; he replied, and
after one or two more letters we wrote up the conclusions we had reached.

A complete list of Bahadur’s publications up to 1993 is provided in a
festschrift for him edited by J.K. Ghosh, S.K. Mitra, K.R. Parthasarathy, and
B.L.S. Prakasa Rao.
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The idyllic situation in which I found myself in the late 1940s—teaching and
research among a group of congenial colleagues—was disrupted in 1949 by a
political event, the requirement of the faculty to sign an anti-Communist
loyalty oath. This led to turmoil and bitterness, which made it difficult to
work. It seemed a good time to leave Berkeley for a while, and to broaden my
horizons through visiting appointments at other universities.

Fortunately, Berkeley was not the only university with a good program in
mathematical statistics. Centers for this new field had been started at Columbia,
Princeton, Stanford, and Chicago, and the Berkeley group had close relations
with all four of them. As a result, I was able to obtain visiting appointments for
the fall of 1950 and the spring of 1951 at Columbia and Princeton, respectively,
and for the following year at Stanford. At the same time, Joe Hodges spent a
year at Chicago.

For the sake of completeness, I should mention that by 1950 another out-
standing program in mathematical statistics had been developed by Harold
Hotelling at the University of North Carolina. After he left Columbia for
Chapel Hill in 1946, he quickly assembled a distinguished faculty that
included, among others, Herb Robbins, Wassily Hoeffding, and R.C. Bose.
However, Berkeley had little contact with this group.

Even with North Carolina included, the above list of early statistics pro-
grams is quite one-sided. In addition, other, actually even earlier, statistical
centers existed that had a more applied or methodological orientation.
Among the most prominent of these were H.L. Rietz’s program at the
University of Iowa, George Snedecor’s at Iowa State, and Harry Carver’s at
the University of Michigan. However, they were on the fringes of my statis-
tical world, and I had no direct interaction with them. An account of their
history is given in a paper by Harshbarger (1976).

4
Mathematical Statistics 
at Other Universities
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16. Abraham Wald (1902–1950)

Nineteen thirty-eight was a banner year for American statistics. It brought
not only Neyman to the United States but also Wald, who in some sense com-
pleted Neyman’s mathematical formulation of statistics.

Unlike Neyman, Wald arrived in America not as a statistician, but as a
geometer and econometrician. He had been schooled at home, not able to go
to the gymnasium, because as a Jew he would not attend school on Saturday.
After graduating from the University of Cluj (Romania), his hometown, he
was, after some difficulties, admitted to the University of Vienna in 1927 to
study mathematics. There he quickly came under the influence of Karl
Menger and became a frequent contributor to Menger’s geometric program.
He also worked on von Mises’ theory of collectives and in particular proved
that it was free of inconsistencies.

Since an academic career was essentially impossible for a man of Wald’s
background, Menger advised him to work also in applied mathematics. In
1933, in pursuit of this possibility, he approached Oskar Morgenstern, then
director of the Austrian Institute for Business Cycle Research. As
Morgenstern writes in his 1951 obituary of Wald in Econometrica, “Like
everyone else I was captivated by his great ability, his gentleness, and the
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extraordinary strength with which he attacked his problems,” and, like
Menger, Morgenstern became not only an admirer but also a lifelong friend.

Wald became an associate in Morgenstern’s institute and, in this capacity,
made important contributions to econometrics, which are described in
Morgenstern’s article. (They also brought him into contact with some statis-
tical issues.) In 1938, he accepted an invitation to join the staff of the Cowles
Commission for Research in Economics in Colorado Springs, and left Vienna
just in time to escape the fate of his family, most of whom were murdered by
the Nazis.

In the fall of 1938, Wald went to Columbia University on a fellowship from
the Carnegie Corporation, and there undertook a year of intensive study of
statistical inference under Hotelling. It is extraordinary that during this first
year with Hotelling, while he still knew little of the details of modern statisti-
cal theory, he conceived of a wholly new unifying approach to statistical infer-
ence, which he published in a long paper in 1939. He stayed at Columbia as a
Carnegie Fellow until 1941, when he became a regular faculty member in the
economics department, rising from assistant professor to professor in 1944.

In the meantime, war had come to the United States. In 1942, a statistical
research group was set up at Columbia, with W. Allen Wallis as director of
research and Hotelling as principal investigator. The group had an outstand-
ing membership, including Jack Wolfowitz, Milton Friedman, Abraham
Wald, Albert Bowker, Jimmie Savage, Abe Girshick, and Fred Mosteller.
It dealt with a great variety of problems.1 One area of special interest was
sampling inspection for quality control of the huge amount of military mate-
rial that was being produced for the services. In this context, the question
arose whether the efficiency of the sampling process could be improved by
using not a fixed sample size but sampling sequentially, that is, by consider-
ing after each observation whether, in light of the information obtained up to
that point, it was worth going on, or whether sampling should be stopped.

The problem was suggested to Wald, who, after some initial reluctance,
agreed to take a look. He soon became convinced that the idea was worth
pursuing, and he grew enthusiastic both about the statistical problems this
involved and the promise the approach held for substantial savings.
Sequential analysis became his principal concern, and for several months he
did little else. The story is told that each morning, Wallis called up Wald to
inquire how he had slept. If Wald had slept well, Wallis’s reaction was, “Too
bad!” because it meant that Wald had not made the progress that he would
have made during hours of sleeplessness.

Despite occasional restful nights, Wald did develop a substantial body of
theory. The centerpiece was a sequential procedure for testing a simple
hypothesis against a simple alternative, the sequential probability ratio test.
It took its clue from the Neyman-Pearson lemma (discussed in Section 7),
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which, for a fixed sample size, found that the best test rejects the hypothesis
when the likelihood ratio is sufficiently large and accepts it in the contrary
case. Wald now proposed to compute the likelihood ratio, say rn, successively
for n = 1, 2, . . . observations, and to continue the process of observation as
long as these ratios took on intermediate values, which strongly supported
neither the hypothesis nor the alternative, that is, as long as they satisfied 
a ≤ rn ≤ b for some specified limits a and b. The process is stopped the first
time the ratio falls outside these limits, and the hypothesis is then accepted or
rejected as rn < a or rn > b. Wald also found formulas for a and b which
approximately yield given error probabilities α and β.

The results of this work were published after the war in a long report in the
Annals of Mathematical Statistics (1945) and in Wald’s book, Sequential
Analysis (1947). In the following year, Wald and Wolfowitz showed how good
Wald’s intuition had been. They proved that among all tests with the given
error probabilities, the sequential probability ratio minimizes the expected
number of observations both under the hypothesis and under the alternative.

As reported in Section 10, in 1946 Hotelling left Columbia and Wald was
appointed executive head of the new Department of Mathematical Statistics.
He immediately appointed his friend and close collaborator Jack Wolfowitz
to the faculty, as well as a recent Princeton Ph.D., Ted Anderson, who shared
his econometric interests. In addition, he made offers to Jerzy Neyman and
Joe Doob, but both decided to remain at the homes they had made for them-
selves. In 1948, Wald did succeed in adding another senior member to his
faculty—Henry Scheffé. It was a stellar group (with which I was to hold a
visiting appointment in the fall of 1950).

The first time I met Wald was in the summer of 1948 on a visit to my friend
and collaborator Henry Scheffé, who had just moved to Columbia. Rather
surprisingly, Henry told me that Wald would like to meet me. The reason, it
turned out, was a short note that I had written while still a graduate student,
and that had been published the previous year. The note pointed out that
typically there is no clear choice for “best” procedure. Instead of making a
specific recommendation, which inevitably is somewhat arbitrary, I suggested
it might sometimes be preferable to present a list of the available possibilities
from which the user could then make a choice. What procedures such a list
should contain is most easily explained by stating the procedures it would not
include: namely any procedure A for which there exists a procedure B that is
uniformly better, that is, better in all circumstances. The list would consist of
all procedures not eliminated by this criterion. (Such a list would later be
called a “complete class.”) I then worked out this list for a particularly sim-
ple class of hypothesis-testing problems.

Wald at that time had resumed work on the general theory of statistical
inference he had outlined in his 1939 paper. He found that my suggestion fit
well into his general framework, and he magically transformed it into a
theorem of great beauty and generality, which became one of the principal
pillars of his decision theory.
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I was to see much more of Wald in the near future, since he spent the year
1948–49 in Berkeley on a sabbatical, during which he hoped to complete his
book on statistical decision theory without the burdens of his Columbia posi-
tion. On visits to his Berkeley home, one was likely to find him in the garden
at a card table he had set up under a tree, working on his manuscript.

A highlight of this visit occurred during the summer of 1949 before his
return to New York, when Charles Stein, Joe Hodges, and I asked him to join
us on a four-day hiking trip in Yosemite National Park. It was a loop trip
of the High Sierra camps: May Lake, Tuolumne Meadows, Vogelsang, and
Glen Aulin. The first day was the most strenuous: a climb of about 6,000 feet
over a twenty–mile distance. As preparation, we had taken a hike on Mount
Tamalpais, but the present climb was more than we had bargained for.

The next day, Charles was not feeling well and we decided not to go on.
Since at that point we were close to the road, Joe and I were commissioned to
hitch a ride down to the valley where our car was parked. We would then
drive up to where Charles and Wald were resting, and return home. Joe and
I, neither of us experienced hitchhikers, had no success, and we decided to try
our luck one at a time. Eventually, a car stopped for me and the two women
in it opened the door for me to get in. At that moment Joe, with his big frame
and height of 6’4”, came lumbering out of the bushes. The women screamed,
slammed the door shut and sped off.

We gave up the effort for the night, which turned out to be lucky. The next
morning Charles was feeling all right, and that day’s hike turned out to be the
most beautiful. In particular, crossing Vogelsang Pass at about 11,000 feet to
the flower-studded meadows below showed us a scene that was unforgettable.

This Yosemite hike also provided an opportunity to get to know Wald,
who had in a sense brought Neyman’s approach to statistics to completion,
and whose book on the subject was being eagerly awaited. Despite his
accomplishments and fame, Wald was completely unpretentious and easy-
going. Much of our conversation was about statistics, but he was also quite
interested in our surroundings. He prided himself on his ability to estimate
distances, heights, and speeds. At the foot of one peak we were about to
climb, he estimated the rise to be 1,500 feet. When we got to the top, he
looked down and proclaimed, “Actually, it was 1,450 feet, so I was pretty
close.”

These four days in spectacular scenery, with three wonderful companions,
live in my memory as one of the high points of my life. Considering how lit-
tle time was left to him, I can only hope that Wald (or Dan, as he permitted
us to call him) enjoyed them as much as we did.

To explain the circumstances of my next, and as it turned out last,
encounter with Wald, I must go back to the fall of 1946, when I was
appointed to the faculty of the Berkeley mathematics department. The
appointment of a department’s own students immediately upon obtaining
their Ph.D.’s violated university policy. Neyman overcame this hurdle by
arguing that he was the only one training students in his new approach to
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statistics, and that he needed them in order to build a cutting-edge statistics
group, for which they constituted the best-qualified candidates. As a result,
he was allowed to retain not only me but also over the next years a number
of his other students. However, we were given to understand that before long
we should spend a year at some other university in order to broaden our
experience.

As a result, I made plans to spend the year 1949–50 at Columbia, where
Wald had offered me a visiting position. But Neyman asked me to postpone
this leave since he himself was going to take a European sabbatical that
spring. I thus was in Berkeley during the academic year 1949–50, which
became known as “the year of the oath.”

The oath in question was a result of the anti-Communist hysteria gripping
the country at the time. The California Legislature was threatening to take
over ensuring the loyalty of university employees, particularly the faculty.
To prevent this, after lengthy negotiations with the president and leaders of
the faculty, the Regents voted to impose an anti-Communist loyalty oath.2

This provoked a much stronger reaction than they had anticipated. The oath
was opposed not only by liberal members of the faculty but also by influen-
tial conservatives, who considered it a threat to tenure.

The great majority of the faculty eventually decided to sign the oath, and this
included Neyman and the rest of our group, with the exception 
of Charles Stein, who resigned and accepted a position at the University of
Chicago. After a year of political turmoil, the thirty-one faculty members who
had refused to sign were dismissed from their positions. They sued for rein-
statement and two years later won their suit in the California Supreme Court.

The bitterness of the debate at endless meetings poisoned the atmosphere
and I was happy at the prospect of spending the next year at Columbia.
However, it then turned out that Sam Wilks was going on leave in the spring
semester, and he suggested that I come to Princeton for that period to take
over some of his teaching. To make the best use of the year, I therefore spent
the fall term at Columbia and the spring term at Princeton.

During the five years since Guam, I had been a member of the Stat Lab, a
small, tightly knit group clustered about Neyman at the center. I enjoyed the
sense of community; at the same time—despite some newcomers and
visitors—the atmosphere was a bit claustrophobic, and I was looking
forward to the change.

The Columbia statistics department was a lively place at that time, with the
faculty consisting of Wald, Wolfowitz, Scheffé, Ted Anderson, and Howard
Levene. Wald’s eagerly waited book on statistical decision theory came out
that fall (and I was happy to be given an inscribed copy). In addition, social
life in the department was active and we were invited to dinners with Wald
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and Wolfowitz and their families. And of course I saw much of Henry Scheffé
and his family.

However, what started out on such a positive note ended in tragedy. As had
been planned for some time, Wald and his wife left for India, where he was to
lecture on his new decision theory. A few weeks later, a rumor began to cir-
culate in the department that an Indian plane had crashed on which the
Walds might have been passengers. After a few days of uncertainty and great
anxiety, the Indian government finally confirmed that the Walds—parents of
two young children whom they had left in New York with relatives—had
been killed in a plane crash on their way to Nepal.

Wald’s death left a great void; within a few years the faculty he had assem-
bled dispersed, and the students who had planned to work with him had to find
new advisers. (In fact, two of them, Alan Birnbaum and Jack Laderman, asked
me to take them on and to provide them with suitable problems. Thus, it came
about that two of my early Ph.D. students got their degrees at Columbia rather
than at Berkeley.) However, the loss was felt not only at Columbia but by the
whole profession. Wald was considered by many as the leader who had pro-
vided the field with a new unifying paradigm and who would on this basis
move the subject into new directions.

What Wald had accomplished in his relatively short life (he was only forty-
eight at the time of his death) is indeed remarkable. He had started a suc-
cessful career in Vienna in geometry and econometrics. When he came to
America in 1938, under the influence of Hotelling he switched to statistics.
And in the short period of twelve years that remained to him, he had changed
the field. He had made a number of seminal contributions, but the one that
brought him fame was the creation of a new framework for statistics.
Up until that time, only problems of testing and estimation had been consid-
ered. Now Wald’s sweeping formulation encompassed any kind of statistical
inference that had a probabilistic basis.

The Institute of Mathematical Statistics (IMS) honored Wald’s memory in a
number of ways. It dedicated the 1952 volume of the Annals to Abraham Wald,

who contributed vitally to the advancement of mathematical statistics through his
broad and fundamental research which will continue to influence the development of
statistical theory and practice, and who will long be remembered as an inspiring and
esteemed teacher and colleague.

The March issue of the 1952 Annals, in addition to this dedication, carried
commemorative articles on Wald by Wolfowitz, Menger, and Tintner,
followed by a list of Wald’s publications.

In 1955, the IMS sponsored a volume, Wald’s Selected Papers in Statistics
and Probability, edited by Anderson, Freeman, Hodges, Lehmann, Mood, and
Stein, with discussion of the papers by the editors. The institute also set up the
program of Wald Lectures, typically two or three talks on the lecturer’s cur-
rent research. These prestigious lectures have been given annually since 1957.
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17. Jacob (Jack) Wolfowitz (1910–1981)

Wald’s best friend and close collaborator was Jack Wolfowitz, whom Wald
met in 1938 when he moved to Columbia to study with Hotelling. They soon
started working together, with their first paper appearing the following year,
and they jointly published thirteen papers in the next decade.3 In 1946,
Wolfowitz became a faculty member at Columbia, but after Wald’s death he
left for Cornell (in 1951).

The first Wald and Wolfowitz papers dealt with nonparametric problems
(the term nonparametric is due to Wolfowitz [1942]), followed by a series on
sequential analysis. This included the 1948 proof of the optimality of the
sequential probability ratio test, a stunning result. Wolfowitz’s interest in
these areas continued even after Wald’s death.

However, Wolfowitz also branched out into many new directions. One of
the most important was large-sample theory. In particular, he developed
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(jointly with Lionel Weiss) his method of maximum probability estimation
summarized in their book, Maximum Probability Estimators and Related
Topics (1974). Beyond statistical inference, Wolfowitz became interested in
information and coding theory, and his work in this area led to his influential
book, Coding Theorems of Information Theory, which went through three edi-
tions (1961, 1964, and 1978).

My first acquaintance with Wolfowitz occurred during my visits to Columbia,
and particularly the semester I spent there in the fall of 1950. From that period,
I recall being invited to sit in on the thesis defense of Wolfowitz’s student Jack
Kiefer (who much later became my Berkeley colleague). I was surprised by the
aggressive manner in which Wolfowitz raised questions and objections, quite
different from what I was used to in Berkeley, and admired the calm and unruf-
fled way in which Kiefer defended himself.

My interaction with Wolfowitz increased considerably after I became edi-
tor of the Annals (in 1953). Crucial for the success of a journal is the choice
of associated editors, who arrange for the refereeing of manuscripts and
eventually make recommendations to the editor regarding their disposition.
One obvious choice for me was my friend and colleague Joe Hodges, with
whom I would be able to discuss any problems that might arise. I also wanted
to appoint Jack Wolfowitz, whose scientific standing was very high but who
had the reputation of being severe in his judgments. Although I was warned
that I would find him difficult to work with, I decided to take the risk, believ-
ing that he would take his responsibilities seriously. And it turned out well.
I got no more complaints concerning the cases he handled than about those
handled by other members of the editorial board.

Jack’s appointment did lead to one unusual incident, however. A problem
editors face is how to handle their own papers. The natural solution is to ask
one of the associate editors to take charge of those situations. In my case it
seemed only fair to ask Jack, as the toughest of the associate editors, to take
on this job. Accordingly, I submitted a paper to him and in due time received
his report. While not enthusiastic, it was mildly favorable and recommended
acceptance of the paper. However, it was impossible not to notice that several
passages in the report had been crossed out, but in such a way that they could
still be read without much effort. In this way, he let me know his true nega-
tive opinion without seeming to be impolite or disloyal. I thought it was a
neat trick, withdrew the paper and published it elsewhere.

My next encounter with Wolfowitz was indirect. In 1970, I was surprised
to learn that he had published a paper, “Reflections on the Future of
Mathematical Statistics” (in a festschrift for S.N. Roy), which prominently
mentioned my 1959 book on hypothesis testing. In it, he took stock of the
enterprise of mathematical statistics as it had developed during the preceding
twenty-five years and evaluated it in terms of two criteria. It should either

(i) meet the needs of science and technology; or
(ii) be interesting when viewed as mathematics per se.
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One section of the paper criticized the Bayes approach not on philosophical
grounds but for violating the second of these criteria. Wolfowitz quoted
Jimmy Savage, who had launched the Bayesian paradigm on its postwar path,
as writing: “There is a lot of exciting work to do that is relatively easy.”
To this, Wolfowitz responded with disdain:

How can any scientific endeavor which is “relatively easy” be “exciting” or hold out
much prospect as a research discipline? . . . According to the Bayesian point of view,
one has only to determine the a priori distribution and then compute the a posteriori
distribution. Can the study of this engage for long the serious efforts of first-rate
minds?

The other principal target of the paper is hypothesis testing, and Wolfowitz
condemns it for both reasons (i) and (ii). Concerning the first, he says that it
poses the wrong problem, since the null hypothesis is never exactly true.
(Another strong supporter of this view was John Tukey.)

Regarding criterion (ii), the subject is examined in the light of my book on
hypothesis testing, because of “the great influence this book has and is bound
to have.” The assessment is very negative: “One comes away,” Wolfowitz
writes, “with a general impression of relatively few deep and difficult
theorems, and of many clever and ingenious examples, mostly involving the
binomial, Poisson, and other distributions of the exponential family. So
many ingenious tests about the latter have been studied, and so few problems
of practical interest solved.”

After impugning my motives in publishing a book, some faults of which I
admitted in the Preface, Wolfowitz concludes:

I agree enthusiastically that this book should have been published and that it is a dis-
tinguished book . . .. But I would consider it a disaster for statistics if this book
should determine the direction of research for any appreciable period of time.

In this paper, Wolfowitz questions not only the work of most of the
authors discussed in the present book, but beyond it the whole discipline of
mathematical statistics. It essentially denies the validity of a statistical theory
as a separate field that uses mathematical tools and language but whose con-
cepts and issues are of interest in their own right, quite apart from the math-
ematical sophistication needed for their investigation. Wolfowitz considered
this paper an important contribution. In fact, when Jack Kiefer planned to
omit it from a volume of selected papers of Wolfowitz he was putting
together, the latter insisted that it be included.

The paper is of interest also in the light it throws on the personality of its
author. Wolfowitz was a complex and conflicted person who seemed uncom-
fortable with himself as well as with others. In the paper, he acknowledges that
he too has contributed to the kind of research the paper chastises. Surprisingly,
he continued to do so after its publication.

His relations with colleagues were complicated further by his extreme polit-
ical views. Like many refugees from Eastern Europe at the time (he came
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from Poland to the United States as a ten-year-old with his parents in 1920),
he was violently anti-Communist and very conservative.

Wolfowitz died in 1981, following a heart attack. During his lifetime he
received many honors, including an honorary doctorate from the Technion in
Haifa, Israel, election to the National Academy of Sciences and the American
Academy of Arts and Sciences, and presidency of the Institute of
Mathematical Statistics. A volume of his selected papers, edited and with a very
useful introduction by Kiefer, and including a bibliography, appeared in 1980,
a year before his death.

18. William Feller (1906–1970)

As mentioned in Section 16, for the spring semester of 1951 I had accepted a
visiting appointment at Princeton. So in late December 1950, I moved from
New York to Princeton, where I was installed in Sam Wilks’ spacious office.
My assignment was to teach one of Wilks’ undergraduate courses, together
with a graduate course on topics of my choice. If my goal for this year was
to broaden my experience, I certainly was achieving it. At Columbia, an
urban university, I had to teach one of my courses in the evening so that it
could be attended by older students who were working during the day.
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Now, at Princeton, the students were treated like children. For the only time
in my life, I had to call roll at the beginning of each lecture and report the
results to the administration.

Since Wilks was in Europe, the only statistical faculty member at Princeton
at the time was John Tukey. However, his position was divided between
Princeton and Bell Laboratories, so he was frequently not available when I
needed help with some unfamiliar situation. Fortunately, assistance was
always available from David Wallace, the head teaching assistant (later pro-
fessor at the University of Chicago). His friendliness and common sense were
of great help throughout the semester. I also received moral support from
another source: the probabilist Will Feller, who a few years earlier had been
my passenger at the first Berkeley symposium.

Feller, who had only recently joined the Princeton mathematics depart-
ment, was a native of Zagreb. After receiving the equivalent of a master’s
degree from the University of Zagreb, he continued his graduate work at
Göttingen, where he came to the attention of Richard Courant, the Director
of the Mathematical Institute. As Constance Reid reports in her Courant
biography:

At the beginning of the term in 1925, [Courant’s assistants] were delighted to discover
that the answers of a new student from Yugoslavia were invariably correct and that
there was no longer any need to solve the problems themselves. They promptly alerted
Courant to the presence of Willy Feller . . .. After Feller was “discovered,” he was an
accepted member of the “in group” which gathered around Courant.

Feller obtained his Ph.D. in 1926, but remained in Göttingen for another
two years before moving to Kiel, where he served as Privatdozent until 1933.
When the Nazis came to power, he lost his job. After a year in Copenhagen,
he spent the next five years at Cramér’s Institute in Stockholm. Of this
period, Cramér recalls4:

In the fall of 1934, our group had the good fortune to receive a new member from
abroad. It was during the bad days of the Nazi regime in Germany, when so many
outstanding scientists were leaving the country. Will Feller, who had been turned out
from the University of Kiel, came to join our group, and stayed on in Stockholm
for five years. He made a great number of Swedish friends, collaborating with econ-
omists and biologists as well as with the members of our probabilistic group. He
had studied in Göttingen and was well initiated in the great traditions of this math-
ematical center. We tried hard to get a permanent position for him in Sweden, but
in those years before the war this was next to impossible, and it was with great
regret that we saw him leave for the United States, where an outstanding career was
awaiting him.

With Courant’s help (who by that time was well established at New York
University), Feller found a position as associate professor at Brown
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University and as the founding executive editor of Mathematical Reviews.
Of his work in the latter position, Doob states, in a memorial article5:

The only current review journal [The Zentralblatt] was then becoming corrupted by
Nazi ideas. Much of the success of Mathematical Reviews has been due to the policies
initiated by Feller.

In 1945, Feller moved to Cornell, and in 1950 to Princeton (with an
additional appointment as permanent visiting professor at the Rockefeller
University), where he remained until his death twenty-five years later. Feller
was a probabilist with little interest in statistics, so I won’t say much about his
work except to mention his famous proof, in 1935, of the necessity of the
Lindeberg conditions (with a slight addition) for the Central Limit Theorem,
the solution of an important problem of long standing. The result was also
obtained at about the same time by Paul Lévy. Although Feller’s version was
the first of the two to appear in print, Lévy had obtained the result slightly
earlier, and Feller, in a further paper two years later, acknowledges it6:

I am happy to note, according to a kind communication from Mr. P. Lévy, that his
paper, although published later, was submitted and presented to the Société
Mathématique de France substantially before mine (October 1934 versus May 1935).

One can imagine the gnashing of teeth that accompanied this expression of
happiness.

To statisticians, Feller is best known for his Introduction to Probability
Theory and Its Applications (Vol. 1, 1950, 1957; Vol. 2, 1966). Many enthusi-
astic reviews of this work have been written. I shall here quote Mark Kac
about volume 17:

[It] is a book with few peers in scientific literature. It is a treatise and a textbook, a
masterpiece of exposition and a credo of methodology, a sweeping panorama of a
subject and a collection of exemplary jewels. No wonder it has appealed to an audi-
ence so wide as to border on the incredible, no wonder that no other book on the sub-
ject, not even Volume 2, can match its luster.

Feller was a man of enormous vitality and boundless enthusiasm. His
friend Joe Doob (in the article quoted above) remembers him

most for his gusto, the pleasure with which he met life, the excitement with which he drew
on his endless fund of anecdotes about life and its absurdities, particularly the absurdities
involving mathematics and mathematicians. To listen to him deliver a mathematics lecture
was a unique experience. No one else could generate in himself as well as in his auditors
so much intense excitement. In losing him, the world of mathematics has lost one of its
strongest personalities as well as one of its strongest researchers.
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When I arrived at Princeton, Feller showed a side not reflected in Doob’s por-
trait: his kindness and thoughtfulness. Realizing my isolation, he proposed
that we meet for lunch once a week, and each week on the appointed day
I would go to his office. There, I always found him lying on his couch—he
claimed to be able to think only in a horizontal position—and we would wan-
der over to the faculty club.

Since Feller knew little about statistics, he would sometimes, at these
lunches, ask me to tell him about some statistical concepts. I recall talking
about sufficiency and the power of tests, but these ideas and their context
seemed quite foreign to him and not very congenial, and these “tutorials”
were not successful.

One very different conversation impressed me greatly. Feller expressed his
deep regret of not being a better mathematician. When I demurred and men-
tioned how much he had accomplished, he brushed me aside. Yes, he said, he
was aware of all that, but it still left him far inferior to Gauss.

However, measured on a less demanding scale, Feller was extraordinarily
successful and his achievements were widely recognized. In 1947, he served as
president of the IMS. He was elected to the three main American academies
(the American and National Academies and the American Philosophical
Society), as well as a foreign member of the Danish and Yugoslav Academies.
In 1969, when he was already terminally ill, he was awarded the National
Medal of Science by President Nixon, which cited him for “original and
definitive contributions to pure and applied mathematics, for making proba-
bility available to users, and for pioneering work in establishing Mathematical
Reviews.”

19. Albert H. Bowker (b. 1919)

The three most modern programs in statistics before the war were those at
Columbia (started by Hotelling in 1931), at Princeton (Wilks in 1936), and at
Berkeley (Neyman in 1938). They were joined shortly after the war by
Stanford, largely at the initiative of W. Allen Wallis (then on the faculty of
the economics department) and with the help of funds from the Office of
Naval Research (ONR). The choice to lead the Stanford program was Al
Bowker, who was known to Wallis from his work as a member of the
Statistical Research Group during the war.

Bowker’s initial appointment was in the mathematics department.
However, the attitude of the department’s chairman, Gabor Szegö, toward
statistics was very different from that of Evans at Berkeley. While Evans
insisted that statistics was part of mathematics and fought a long battle to
keep the program, Szegö’s position is described by Bowker8 as being just the
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opposite: “The mathematics department received me with a certain detach-
ment,” Bowker says. “Although he became a great supporter of statistics,
Gabor Szegö was then chairman of the mathematics department, and
explained to me very nicely that while what I did was very interesting, it wasn’t
mathematics. So we moved rather quickly to a separate department.”

And thus it came about that Al Bowker, formally still a graduate student
at Columbia (although by then his thesis had been completed), in 1948
became chairman of the fledgling statistics department, where he was soon
joined by an earlier student and wartime colleague from Columbia, Abe
Girshick.9

In the summer of 1950, before I left for Columbia and Princeton, the oath
controversy was still unsettled. I was sufficiently worried about the future at
Berkeley that I approached Al Bowker to ask whether there might be a pos-
sibility for me at Stanford. It turned out that at the time an offer was out to
David Blackwell, who was spending the year at Stanford and who had not yet
decided whether to stay there. However, in October Bowker wrote to me at
Columbia that Blackwell had decided to return to Howard University:
“Consequently, we are now in a position to talk turkey with you and I am
writing to inquire about your current thinking.” He went on to review the
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situation at Berkeley, with the conclusion: “My own wild guess is that some
kind of arrangement will be made so that Neyman can stay on and I suppose
that a number of people would stay on with him.”

He then explained, “The real reason of my long digression upon the situa-
tion at Berkeley is that one of my axioms is that you would not be interested
in coming to Stanford if there were a possibility of staying at Berkeley under
circumstances which were honorable and which were congenial from a pro-
fessional point of view.”

The letter concluded with a description of the position and the duties it would
entail. The crucial sentences were: “We feel that our major need at the moment
is an appointment in theory and you are our choice for this appointment. You
are not expected to engage in any applied work.” The last statement clearly was
in answer to a concern I must have expressed.

Since the situation in Berkeley continued to be very uncertain, I raised the
question of whether it might be possible to postpone the decision for a year,
and in the meantime to spend the year 1951–52 at Stanford on a visiting
appointment.

The Stanford department was agreeable to the suggestion, but Bowker
felt that at this point he should get Neyman’s reaction to what was going
on. He told Neyman that during the year, while the oath controversy had
been going on and Neyman had been in Europe, several members of the
Berkeley group had asked about the possibility of jobs at Stanford, and
that now, for the first time, a permanent position was open. He explained
that the circumstances were exceptional and that they would ordinarily
not expect to compete with the Berkeley lab. Neyman’s reply, as Bowker
reported to me, was that “he was delighted to have Stanford make offers to
people on his staff, that he never made any objections or felt personally
insulted when that happened. In fact, he felt rather flattered and his usual
procedure in such cases was to scream like hell to the administration to bet-
ter the conditions of the man in question.” And so it was agreed that
I would spend the 1951–52 academic year at Stanford on continued leave
from Berkeley.

At the end of that year, I had to decide whether to stay at Stanford or
return to Berkeley. By then the loyalty oath had been rescinded and was no
longer an issue. Thus, I was in the wonderful position of making a free choice
between what seemed to me the two best positions in statistics in the country.
In the end, the most important consideration was that after much wandering
Berkeley had become my home and I had a close collaboration and friend-
ship with Joe Hodges. I also preferred a public university to an expensive pri-
vate one where most of the students came from wealthy homes and where it
was said that you could distinguish the faculty from the students by their
clothes: if they were well dressed, they were students.

In making this decision, I did not try to use the Stanford possibility to
increase my Berkeley salary or speed up my promotion. However, I did
take advantage of it to improve my situation at Berkeley in one respect: An
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important activity of the lab was the consulting service that provided help
for faculty members in other departments with their statistical problems.
Neyman handled some of these problems himself; others he passed on to
members of the staff. He considered it one of our obligations to accept
such assignments. Although I recognized the importance of this service
and its appropriateness, my difficulties with applied work persisted and it
made me uncomfortable. Since the Stanford offer had explicitly stated that
no applied work would be required of me, I now asked Neyman for a sim-
ilar dispensation. He agreed, although rather grudgingly. In exchange,
I offered to teach an occasional extra course, but he never took me up on
this offer.

Over the next years, Bowker built up a first-rate department. In 1956, after
Girshick’s early death, the faculty consisted of Arrow, Chernoff, Karlin,
Lieberman, McNemar, Moses, Parzen, and Stein. Several of these were joint
appointments (with economics, psychology, engineering, and public health),
a deliberate policy to give the department, and particularly its teaching, a
broad base within the university.

The department had close contact with the Stat Lab at Berkeley through
the Berkeley–Stanford Colloquium, which was as much a social as a scientific
event. It is still functioning today, more than fifty years later, although at a
somewhat reduced schedule.

For the year 1955–56, toward the end of his chairmanship, Bowker took a
sabbatical leave at Columbia, during which he wrote two papers on multi-
variate analysis. As he wrote later,10

It was a year of stock-taking, and I had to decide whether I saw my future mainly in
statistics or whether I would go into more general administration.

After thinking it over and talking to Fred Terman at Stanford, I decided to return
to Stanford first as his assistant (by now he was Provost of the university) and later,
when it became available, as Graduate Dean . . .. And I made, I guess implicitly, a
decision that I would look for my career in university administration. Although there
was a high element of chance in all of these decisions.

It was a gamble that paid off. For in 1961, Bowker became chancellor of
the City University of New York (CUNY), where he remained for eight
years. During his tenure, he greatly expanded the system, from four senior
colleges and three community colleges to twenty institutions. Perhaps his
best-known and most controversial initiative was the adoption of an open
admissions policy, which offered a place to every high school graduate in
New York. In the interview quoted above, Bowker explains his reasons for
making this change and why it caused such fierce opposition:

The academic excellence of the City College, in particular, was at its height in the
1920s and 1930s. They had more or less a monopoly on the children of the Jewish
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immigrants in New York. After the war, the bright Jewish kids had lots of
opportunities elsewhere, but many people look back on those days as to what City
College ought to be. It just isn’t appropriate to run an elitist institution that is prima-
rily white in the middle of Harlem, in my view anyway.

During his New York period, I never saw Al, although we of course heard
about some of his activities. Then in 1971, very unexpectedly, at least for me,
he came to Berkeley in a new role: he was appointed chancellor of the
Berkeley campus.

As chancellor, he lived (with his wife Rosedith Sitgreaves, also a statistician
and a faculty member, first at Teacher’s College, Columbia University and then
in the School of Education at Stanford University) on campus in University
House. It was the only time in my long Berkeley career that I had a personal
relationship with the chancellor, and it was fun to be invited fairly frequently not
only to university functions but also to birthday parties and other private events.

On the other hand, as a matter of policy Bowker was not involved in the
business of the statistics department. I know of only one exception. At one
point, we got into serious difficulty with our dean. Things had gotten so bad
that he refused to even talk to us. I was delegated by the department to appeal
to Bowker. He agreed to receive me—it was the only time I saw him in his
official capacity—and he intervened and resolved the problem.

One of Bowker’s principal achievements during the nine years of his chan-
cellorship was to institute a major fund-raising campaign to make the cam-
pus less dependent on the vagaries of the state budget. The other—partly due
to him and partly to the changing times—was to restore Berkeley’s reputa-
tion, which had been badly damaged in the 1960s as a result of the Free
Speech Movement, Vietnam protests, and Reagan’s attacks during his 1966
gubernatorial campaign. As Bowker later summed it up:

When I first went there, for example, people from most central valley towns wouldn’t
come to Berkeley, a reaction to student violence and so forth. Now Berkeley is incred-
ibly popular all over the country. Its reputation for violence and protest has changed
to that of a major cultural center and hub of Bay Area politics.

On the whole, the campus was calm during this period. However, there were
occasional protests, sit-ins, and takeovers of administrative offices over local
issues. The following story concerning one such incident (which I did not wit-
ness myself but which made the rounds of the campus) may give some idea
of Bowker’s style:

A delegation of protesters demanded to see the chancellor. He opened the
door that led to his suite of offices, stood in the doorway and asked what they
wanted. They had a list of demands. “Let’s hear them,” Bowker said. The
leader of the delegation read the first demand, and Bowker said, “Nope.” The
second demand: “Nope.” And so on. After he said “nope” to the twelfth and
last demand, he closed the door and went back to his offices. The students
were so perplexed, they did not know what to do and left. Crisis averted.
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Bowker resigned the Berkeley chancellorship in 1979 to become assistant
secretary of education for post-secondary education in the Carter adminis-
tration, but this position soon terminated when President Jimmy Carter was
defeated for reelection. He then worked for a number of years for the
University of Maryland, first as founder of the School of Public Affairs, then
as executive vice president. He returned briefly on a part-time basis to the
City University of New York, and after a remarkable career retired to
Berkeley where he now has an office as emeritus chancellor and emeritus pro-
fessor in the statistics department.

20. W. Allen Wallis (1912–1998)

The person most responsible for initiating a program in mathematical
statistics at Stanford, and for the choice of Bowker to lead the program, was
W. Allen Wallis, then on the faculty of the Stanford economics department.
The careers of Wallis and Bowker, who became lifelong friends, ran along
remarkably similar lines. Both received their statistical training from
Hotelling and, having made early contributions to statistics, spent much of
their careers in university administration and achieved great success in that
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area (Bowker as chancellor in New York and Berkeley, Wallis as chancellor
and then president of the University of Rochester). And both were later
appointed to high office in the federal government (although Bowker served
only briefly).

Wallis worked in statistics mainly from 1942 to the late 1950s, in a wide
range of activities. He contributed a number of papers on statistical method-
ology (the best known perhaps being the Kruskal-Wallis test), principally on
nonparametric subjects, and in 1956 (jointly with Harry Roberts) published
an innovative elementary text that emphasized statistical thinking (in the con-
text of interesting examples) rather than mathematical formulas.

One of Wallis’s most important contributions to the development of the
field of statistics was made during the war, when from 1942 to 1945 he served
as director of research (with Hotelling as principal investigator) of the
Statistical Research Group (SRG). He was asked to take on this position in
the spring of 1942 by Warren Weaver,11 a director of the Rockefeller
Foundation who at the time was the head of the Fire Control Division of the
National Defense Research Committee and a few months later of its succes-
sor, the Applied Mathematics Panel (AMP). This panel, which was basically
in charge of all war-related mathematical research, consisted of Richard
Courant, Griffith Evans, Samuel Wilks, Thornton Fry (of Bell Laboratories),
and three more pure mathematicians (Lawrence Graves, Marston Morse, and
Oswald Veblen).

The group that Weaver, Wallis, and Hotelling assembled included—to list
only names that have been mentioned in earlier sections—Bowker, Girshick,
Hotelling, Mosteller, Wald, Wallis, and Wolfowitz. Most of them were young
and unknown at the time but after the war became leaders of the profession.
Their participation in the work of the SRG for many constituted an impor-
tant part of their statistical training. This is one of the ways in which the SRG
made a major contribution to the postwar development of the field.

The other was through the many problems it solved (contained in 572 reports)
and the new techniques it developed. This proof of the usefulness of statistics
to the war effort greatly enhanced the reputation of the subject after the war.
This greater credibility of a new and somewhat suspect field assisted its devel-
opment in universities, in the government, industry, and many other areas of
application. An offshoot of this work is a volume, Selected Techniques of
Statistical Analysis (edited by Eisenhart et al., 1947), which “discusses a series
of problems that occur frequently in planning, analyzing, or interpreting quan-
titative data.”

An area that received a great deal of attention, and in which the group was
particularly successful, was that of sampling inspection. Concerning this
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work, which included the development of sequential analysis, Warren Weaver
comments (on pp. 88–89 of his autobiography):

Under the auspices of the Applied Mathematics Panel were developed powerful new
statistical techniques which improved the efficiency and lowered the cost of testing
our own war material. In just one such instance, involving improved testing of the
propellant for rockets, the financial saving—not to mention the improvement of the
material—was so great that within a few months it was sufficient to pay the cost of
the total program of the Applied Mathematics Panel throughout the war.

The sampling work also led to a book, Sampling Inspection (edited by
Freeman et al., 1948). The preface explains that it is “intended as a system-
atic account of certain of the best current inspection practices, together with
tables and detailed instructions for carrying out these practices.”

In its totality, the work of the group was a most remarkable achievement
for which Wallis deserves much of the credit.12

After leaving the SRG in 1946, Wallis spent a year at Stanford and then
went to the University of Chicago, where in 1949, jointly with two other
members of the group (Milton Friedman and Jimmy Savage), he founded
what amounted to a statistics department. However, the chancellor, Robert
M. Hutchins, did not permit it to be called a department, and so it was a sta-
tistics group until 1951, when Hutchins resigned and it became an official
department with Wallis as chair. Among the early members were Bill
Kruskal, Raj Bahadur, David Wallace, Murray Rosenblatt, and Leo
Goodman. Wallis resigned as chair in 1956, when he became dean of the
Business School.

One other service to the statistical profession should be mentioned. From
1950 to 1959, Wallis served as the editor of the Journal of the American
Statistical Association (JASA). After leaving Chicago in 1959, he moved
away from statistics. In fact, as president of the American Statistical
Association in 1965, in his presidential address he refers to himself as “a
former statistician.”

Personally, I had little contact with Wallis. However, during the oath
controversy, Joe Hodges spent a year in Chicago and Charles Stein took a
position with Wallis’s group after resigning from Berkeley, but shortly left for
Stanford. I only met Wallis later, and fondly recall a dinner he hosted as
chairman at his house on the occasion of a talk I gave in the department. (On
my later visits to Chicago, Wallis had left and I was the guest of Bill Kruskal
or Steve Stigler. Still later, these contacts with the department led to my
getting an honorary degree from the University of Chicago in 1991.)

Wallis’s later career included twenty years (1962–82) as chancellor and then
president of the University of Rochester, his service from 1982 to 1989 as
Undersecretary of State for Economic Affairs, and other high government
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appointments.13 Surprisingly, his work for the federal government included
one more important contribution to statistics. President Nixon created the
President’s Commission on Federal Statistics and appointed Wallis its chair.
The work of the commission led in 1971 to a two-volume Report on Federal
Statistics, and on its recommendation to the establishment in 1972 of the
Committee on National Statistics.

Allen Wallis died in 1998, and to today’s statistical community his name is
known primarily through the Kruskal-Wallis test. But we should remember
him for the profound and broad-based effect he had on the field of statistics
as director of research of the SRG, founding chair of the Chicago Statistics
Department, longtime editor of JASA, and chair of the Federal Commission
on Statistics.
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The Annals of Mathematical Statistics was founded in 1930 as an outlet for
papers that were too mathematical for the statistics journals of the time.
The first four editors were Harry Carver, Sam Wilks, Ted Anderson, and
myself. At that time, the editor was responsible not only for the contents of
the journal but also for the production and business side. As the size of the
Annals grew to over 1800 pages, this became too much of a burden.
Consequently, in 1964 the editor, Joe Hodges, persuaded the Institute of
Mathematical Statistics (IMS) to split the job and appoint a managing editor,
leaving the editor with responsibility only for the content of the journal.

This change concerned the administrative structure of the Annals.
However, in 1972 the journal underwent a more radical change that
profoundly altered its character. Up to that time, the Annals had published
not only papers in mathematical statistics, but also had been one of the main
outlets for papers in probability theory. Now the editor, Ingram Olkin, felt
that the theory of probability had developed into a subject that deserved its
own journal. He persuaded the IMS to create a new journal, the Annals of
Probability, and at the same time to broaden the scope of the old Annals by
dropping the limiting adjective “mathematical,” so that it would become
more welcoming to applied work. The first of these two endeavors was wholly
successful, the second less so. Despite its new name, the Annals of Statistics
continues to be extremely mathematical. (Since then, both the Annals of
Probability and the Annals of Statistics have split again.)

21. Samuel S. Wilks (1906–1964)

The increasingly mathematical orientation of statistics as a result of R.A.
Fisher’s work in the 1920s and that of Neyman and Pearson in the 1930s
caused difficulties for statistical journals, most of whose readers had little
mathematical background. (It is remarkable that as late as 1936, the editor of
Biometrika, Neyman’s friend and collaborator Egon Pearson, rejected
Neyman’s paper on confidence intervals as too long and too mathematical.)

5
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The principal American journal, the Journal of the American Statistical
Association (JASA), solved the problem by creating a separate journal, the
Annals of Mathematical Statistics, for the more mathematical material. As an
editorial in the first issue (of February 1930) explains:

For some time past it has been evident that the membership of our organization [the
American Statistical Association] is tending to become divided into two groups—those
familiar with advanced mathematics, and those who have not devoted themselves to
this field. The mathematicians are, of course, interested in articles of a type which
are not intelligible to the nonmathematical readers of our journal. The editor of our
journal has, then, found it a puzzling problem to satisfy both classes of readers.

Now a happy solution has appeared. The Association at this time has the pleasure
of presenting to its mathematically inclined members the first issue of the Annals of
Mathematical Statistics, edited by Professor Harry C. Carver of the University of
Michigan.

However, in 1934 the American Statistical Association decided to discon-
tinue its financial support of the new journal. Generously, Carver stepped in
and financed it privately until 1938, when the recently founded IMS took over
financial responsibility and appointed Wilks of Princeton University as edi-
tor. During his twelve years as editor, Wilks transformed the journal from its
modest beginnings to an internationally recognized journal of the first rank.
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Samuel (Sam) S. Wilks, after studying topology with R.L. Moore and
statistics with E.L. Dodd at the University of Texas, obtained his Ph.D. in
statistics under H.L. Rietz at the University of Iowa, with a thesis on a dis-
tributional problem in multivariate analysis. He spent the next two years on
fellowships, first with Hotelling at Columbia and then in England at the
University of London and at Cambridge University. There he got to know
Karl and Egon Pearson, Fisher, and Neyman, and published several more
papers on sampling problems in multivariate analysis.

In 1933, at the end of his fellowship he was appointed to an instructorship
in the mathematics department of Princeton University, and he remained there
for the rest of his life. It seems a surprising appointment, considering the very
theoretical orientation of that department and the very negative attitude most
pure mathematicians then had toward statistics and even probability. We owe
the details of the story to an account by Churchill Eisenhart (1989), a student
of Neyman’s in London and son of Luther Pfahler Eisenhart, the powerful
chairman of the Princeton mathematics department, who at the time in ques-
tion was also dean of the faculty and chairman of the University Committee
on Research.

Like his counterpart Griffith Evans in Berkeley, L.P. Eisenhart (who
worked in differential geometry) had an early interest in statistics. Over the
years this had been kept alive by Hotelling, who had been one of his students
(with a thesis in topology). After Eisenhart became chair of the mathematics
department in 1928, the department in 1931 for the first time offered a course
in probability theory. This was quite unusual at the time and even later.
As Doob (1988) points out:

The basic difference between the roles of mathematical probability in 1946 and 1988
is that the subject is now accepted as mathematics, whereas in 1946, to most mathe-
maticians, mathematical probability was to mathematics as black marketing to mar-
keting . . . . And the fact that probability was intrinsically related to statistics did not
improve either subject’s standing in the eyes of pure mathematicians.

It took unusually broadminded and farsighted mathematicians such as
Evans and Eisenhart to appoint statisticians to their departments.

Wilks was brought to Eisenhart’s attention by Hotelling. Knowing of
Eisenhart’s interest in building a program in mathematical statistics and
probability at Princeton, Hotelling suggested to him that Wilks, with his
training in mathematical statistics and his excellent publication record, was
one of the most promising young men in the field. Stressing the long-term
advantage to Princeton and Wilks’ desperate situation (his fellowship had run
out and, because of the Depression, he had been unable to find a position),
he appealed to Eisenhart to give Wilks a chance. And despite the nearly
unanimous opposition of his faculty, Eisenhart did offer Wilks an
instructorship for the year 1933–34. Wilks remained at Princeton for the rest
of his life, even turning down—to the amazement and outrage of his Texas
family and friends—an offer of the presidency of the University of Texas.
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Since at the time of his appointment some statistics courses were being
offered in the economics department, Wilks did not introduce his own first
courses—one semester undergraduate, one graduate—until 1936. By then,
according to Churchill Eisenhart,

The division of territory between the Department of Mathematics and the
Department of Economics and Social Institutions had been resolved. The latter
would be restricted to instruction in statistical theory and methods pertinent to the
economic and social sciences; and the basic undergraduate course(s) in statistical
theory, and the graduate courses in advanced mathematical statistics would be the
province of the Mathematics Department.

This agreement and Wilks’ promotion to assistant professor in 1936 gave
him a fairly free hand, but Wilks expanded the program only very slowly,
adding a third one-semester upper-division course in 1939. He also did not
try to build up a group; however, he acquired a colleague fortuitously. This
was John Tukey, a topologist in the mathematics department since 1939.
During the war Tukey became involved in statistics, and by 1945 considered
himself a statistician rather than a topologist. Wilks’ program was further
strengthened in 1950 by the appointment of Will Feller, although Feller was
a probabilist with little interest in statistics.

Despite a minimal course program, Wilks was very successful in training a
substantial number of graduate students, who included, among others,
Ted Anderson, George Brown, Will Dixon, David Votaw, Alexander Mood,
and Fred Mosteller. They learned primarily not through courses but by
participating in Wilks’s many statistical activities. This system served a dual
purpose: the students learned to become statisticians, and Wilks obtained the
help he needed.

His activities included a great deal of applied work, both during and after
the war, but I shall discuss only two major projects here.

One of Wilks’s most influential achievements was his editorship of the Annals
of Mathematical Statistics through the crucial period from 1938 to 1949.
He appointed an editorial board of great distinction, consisting of A.T. Craig
and Neyman as coeditors, the other members being Carver, Cramér, Darmois,
Deming, R.A. Fisher, Fry, Hotelling, von Mises, E.S. Pearson, Rietz, and
Shewhart. One is struck both by the international nature of this group and by
the breadth of interests it represents. But he did not—as was done later—put the
board members in charge of refereeing, but kept this crucial editorial process in
his own hands. Some papers he sent out to referees of his choice, others were
refereed in-house by his students and presented by them in his seminar.
Although such a practice would not be considered appropriate today, it was very
convenient and provided a wonderful learning experience for the students. They
were drafted also to help out with other aspects of the Annals. Fred Mosteller,
one of these students, reports in his obituary of Wilks, entitled, “Samuel S.
Wilks: Statesman of Statistics” (The American Statistician, 1964):

Between classes, travels, committee meetings, and long-distance phone calls, one
could rarely catch Wilks doing his own work, but a glimpse of him getting out final

82 5. The Annals



copy for an issue of the Annals may provide some insight. Since the Wilks family
loved to give hospitality, on a typical evening a visiting fireman would have been
encouraged to stay on for yet another train (because Sam had no plans at all for the
evening) and the guest was finally taken to Princeton Junction about 10 p.m. As the
train pulled out, Sam would begin to express uneasiness about the need to get out the
next issue of the Annals. He would wonder whether he shouldn’t spend a few min-
utes on that yet tonight, and conviction would grow in him that he should, indeed.
He supposed that his graduate assistant would not care to join him because the hour
was so late. Surely a half hour or so would do the whole thing. Driving to the office,
he would begin to list dozens of little matters that needed attention. And finally, after
a furious half-night’s work, the packages would be mailed at the Princeton Post
Office around 3 a.m.

When Wilks took over the Annals, it had about 150 individual subscribers
and its four issues ran to a total number of 230 pages. Ten years later, at the
end of his editorship, these numbers had increased to 1,200 subscribers for a
volume of over 600 pages. From a small and somewhat provincial publica-
tion, it had become the foremost, and internationally recognized, journal in
mathematical statistics.

While Wilks’ establishment of the Annals was perhaps the achievement of
his that had the greatest influence, at least one other major project should
also be mentioned. In 1943, Wilks published Mathematical Statistics, the first
modern graduate text in the field. By “modern,” I mean that it centered on
the approach to statistical inference created by the Fisher, Neyman, and
Pearson revolution.

The difference becomes clear by a comparison of Wilks’ text with the
standard American prewar text by Rietz (Wilks’ thesis supervisor), also enti-
tled, Mathematical Statistics. It was published in 1927, with a fifth printing
in 1947. What strikes a reader today about Rietz’s book is the complete
absence of statistical inference. Neither the terms estimation nor hypothesis
testing are mentioned. The statistics being offered, such as correlation and
regression, is basically nineteenth century material. Surprisingly, not even
Pearson’s test for goodness of fit is included.

In contrast, after some preparatory chapters, statistical inference occupies
the entire second part (slightly more than half) of Wilks’ book. It covers
point and interval estimation and the Neyman-Pearson theory of hypothesis
testing, together with their applications to analysis of variance, regression,
and multivariate analysis. As Wilks states in the preface:

Most of the mathematical theory of statistics in its present state has been developed
during the past twenty years. Because of the variety of scientific fields in which
statistical problems have arisen, the original contributions to this branch of applied
mathematics are widely scattered in scientific literature. Most of the theory still exists
only in original form.

To pull these various contributions together and present them in a unified,
coherent account, combined with the necessary mathematical and probabilis-
tic preparation, was a major achievement. The book could well have served
as the standard graduate introduction to the field, but it never got its due.
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This is partly the result of its having been published in wartime, when the
profession had different concerns, and partly that Wilks considered it not suf-
ficiently polished and he published it with a soft cover by a photographic
process rather than regular print. Immediately after the war, competing
books appeared, and its opportunity was gone.

As had been the case with his editing the Annals, in writing this book Wilks
heavily involved some of his graduate and postdoctoral students. He
acknowledges this in the last paragraph of the preface:

Finally, the author wishes to express his indebtedness to Dr. Henry Scheffé, Mr. T.W.
Anderson, and Mr. D.F. Votaw, Jr. for their generous assistance in preparing these
notes. Most of the sections in Chapters X and XI were prepared by these men,
particularly the first two.

Of course they based their writing on his lectures and notes.
These two major projects—editing the Annals and writing a graduate

text—were only a small part of Wilks’s activities, which, besides teaching,
consulting and much influential committee work, also included statistical
research. Much of this was in multivariate analysis (including Wilks’s
lambda-criterion, a multivariate generalization of the F-statistic) and some
early nonparametric work. One of his best-known results was the asymptotic
distribution of the likelihood ratio criterion.

However, Wilks did not give research the prominent place that most
academics do. Ted Anderson, in his obituary of Wilks, reports that Wilks told
him that he thought a mathematician should not go through life concentrating
on research, but should take on broader responsibilities. Anderson adds:
“I think Wilks made a deliberate choice to give up mathematical research in
favor of taking on other duties of import in defense, government, mathematics
generally, natural and social sciences, and education.”

Summing up Wilks’ achievements in the Yearbook of the American
Philosophical Society, 1964, pp. 147–154 (to which Wilks was elected in 1948),
John Tukey writes:

When the totals are entered in the last book of record, it is likely that the largest amount
to Sam Wilks’ credit will be for his work as a committeeman and adviser . . . . He was
the chairman of the committee charged with a scientific report as to why the election
polls of 1948 had not been followed by Thomas E. Dewey’s election to the Presidency.
He was a key member of the committee appointed by the National Academy of
Sciences in the famous ADX-2 battery additive case. It would be hard to find two other
committees which combined political pressures and statistical issues to as great a degree.

My first contact with Wilks occurred in 1946 in his capacity as editor of the
Annals. Shortly after I had submitted my student paper (mentioned in
Section 16) to the Annals, Neyman showed me a letter he had received from
Wilks. It said that Neyman’s student Lehmann had submitted a paper to the
Annals but had omitted acknowledging Neyman’s supervision of the work.
Was that all right? Neyman replied that he had nothing to do with the paper,
and it was published the following year.
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Soon Wilks began sending me papers to referee and in 1948 listed me as
one of about twenty “cooperating” members on the masthead of the
Annals. Then, in 1950, he wrote to say that he was going on leave in the
spring semester of 1951, and asked whether I would like to spend
the semester in Princeton to teach one of his undergraduate courses
together with a graduate course on topics of my choice. As a result, I spent
the semester in Princeton as described in Section 18. During that time I
never saw Wilks, who was already gone when I arrived. In fact, I got to see
something of him only once, when he spent several days in Berkeley dur-
ing the Fourth Berkeley Symposium, only four years before his sudden
death at the age of fifty-eight. I am sorry that I did not get to know him
better. Remarkably modest and self-effacing, yet vigorous and highly effec-
tive, he was dedicated to the profession of statistics and to the service he
was able to render.

22. Wilks’ Successors

When Wilks resigned from the editorship of the Annals in 1949, a new
constitution of the IMS put the editing on a more formal basis, which
relied heavily on a small board of associate editors. They would see to the
refereeing of the papers and then make recommendations to the editor. To
succeed Wilks, the council of the IMS selected Wilks’s student T.W. (Ted)
Anderson (b. 1918). I was pleased when Ted asked me to be one of his
associate editors, the others being Bose, Feller, Girshick, Mood, and
Tukey.

At the end of Ted’s term, at his recommendation, I was asked to succeed
him. Although I had been involved with the Annals, both as referee for
Wilks and associate editor for Anderson, I was reluctant to accept the edi-
torship, since I was quite unfamiliar with the administrative side and also
feared the demands it would make on my time. In those early days, the edi-
tor had to get the manuscripts prepared for the printer, handle galley and
page proofs, and negotiate various publishing details with the printing
company in Baltimore.

However, Neyman strongly encouraged me to accept the job, which would
bring prestige to the lab, and he was willing to give me the substantial sup-
port that Anderson had received from Columbia. This involved reducing my
teaching load to half-time and providing the salary and space for an editorial
assistant, who would take care of the voluminous typing, filing, and marking
of the manuscripts. And so I agreed.

My first task was the selection of a set of associate editors. The four
mathematical statisticians I picked—Blackwell, Hodges, Hoeffding, and
Wolfowitz—are all subjects of this book. The remaining two, Madow and
Mood, represented more applied interests. I had, of course, asked Ted
Anderson to be one of the group, but he had declined. As he explained,
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having been the ultimate decision maker, he did not want to take on a posi-
tion in which he no longer had this authority. After the termination of my
own editorship, I felt quite differently and I served as associate editor under
all but one of the next five editors.

In fact, I found the position of associate editor more congenial than that
of editor. It is the associate editors who do the scientific work of evaluating
the referees’ reports and making recommendations to the editor, which are
only rarely questioned or overruled. In addition, they tend to deal with
papers in their general areas of interest instead of being responsible for
material they know very little about.

And even in the setting of broad policies, the power of the editor is limited.
This is illustrated by a phone call from John Tukey that I received shortly
after assuming the editorship. Is it true, he wanted to know, that I planned
not to accept any Bayesian papers? I reassured him that nothing could be fur-
ther from my mind. “Good,” he said, “because otherwise I would have asked
the council to find a new editor!”

At the end of my fairly uneventful three-year term, the institute asked
whether I would be willing to continue for another term. Since I did not
feel strongly one way or the other about continuing, I asked Neyman
whether he was willing to continue the previous arrangement. He agreed,
so I accepted the appointment for a second term. However, a few weeks
later, perhaps because of financial and other pressures regarding the forth-
coming Third Berkeley Symposium, Neyman reversed himself. Without his
support, I could not continue and had to inform the institute of my inabil-
ity to serve. A great brouhaha ensued; there was even a move to boycott
the third symposium. The details are recounted in Constance Reid’s
Neyman biography (1982). But although I was nonplused by Neyman’s
action and embarrassed at having to renege on my commitment to the
institute, it seemed to me that the issue did not warrant such an uproar and
I did what I could to calm the waters.

The institute appointed the probabilist Ted Harris in my stead, and he was
succeeded by Bill Kruskal, who was followed by Joe Hodges. By then, the
Annals had grown to three times the size of the six hundred pages it had been
when Wilks retired. Joe persuaded the institute that the editor’s workload had
become unmanageable and that the institute should appoint a separate man-
aging editor who would deal with the publishing aspects. From then on, the
job of editor was much less demanding.

23. Ingram Olkin (b. 1924)

One big change was still ahead of the Annals, which occurred in 1972 under
the editorship of Ingram Olkin.

Ingram Olkin obtained his B.S. degree from the City College of New York.
From there he went to Columbia, where in 1949 he took a master’s degree in
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mathematical statistics, and he then followed Hotelling to North Carolina
and received his Ph.D. two years later. His first faculty appointment was at
Michigan State University (from 1951 to 1960), followed by a year as chair of
the statistics department at the University of Minnesota. Finally, in 1961
Olkin moved to Stanford with a joint appointment in statistics and educa-
tion. From 1973 to 1977, he chaired the statistics department.

Olkin has published more than two hundred papers, many of them in
multivariate analysis and, more recently, meta-analysis. In addition, he is the
coauthor of several books. Particularly noteworthy is Inequalities: Theory of
Majorization and Its Applications, coauthored with A.W. Marshall (1979),
which has become a classic and has been translated into Russian. His book
with Hedges, Statistical Methods for Meta-Analysis (1985), has also been very
influential. As the first book-length statistical treatment of meta-analysis—
the methodology for combining findings from repeated studies—it has
become a primary source for this important subject.

However, perhaps Olkin’s greatest impact on the statistical community
has been through some of his editorial activities. As editor of the Annals of
Mathematical Statistics in 1971–72, he realized that probability had
become too big a subject in its own right to be covered by a statistical jour-
nal, and he persuaded the council of the sponsoring society (the IMS) to
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split off an independent Annals of Probability. He also proposed a broad-
ening of the Annals of Mathematical Statistics toward applications by
dropping the adjective “mathematical” from its title, and then became the
first editor of the new Annals of Statistics (1972–1974). In a recent letter to
me, he explained:

The rationale was not only size and growth. There was some tension between
probability and statistics in that the probability authors felt that there was a prefer-
ence for statistical papers in the Annals, and that they had to publish in mathematical
journals, but that they wanted more connection with statistics . . . . So another part of
the motivation to split [besides the fact that the Annals was getting too big] was an
attempt to bring probability more into statistics rather than have them move into the
mathematics camp.

Olkin also played a key role in founding a new journal for IMS, Statistical
Science. Quoting again from his letter, his proposal was for

a general journal that most statisticians could read. This was not to be a journal that
carried much technical material. We had to recognize that there are about 4000 IMS
members and 20,000 ASA [American Statistical Association] members . . . . So part
of the goal was to attract a wider readership. We believed that historical and biogra-
phical articles would be of interest (there was no repository for biography) and also
articles of an intellectual nature.

Statistical Science made its debut in 1986, with Olkin as one of three associ-
ate editors. The new journal admirably realized Ingram’s vision. Particularly,
the series of “conversations” provide living history that would have been lost
otherwise. These interviews (quite a number of them conducted by Ingram)
have been an invaluable source for many sections of this book.

A third journal, which was initiated by Olkin jointly with the educational
statistician Mel Novick, was motivated by his interest in statistical work in
education. It was intended to be, as Ingram wrote, “similar to technometrics,
biometrics, and so on.” The result was the Journal of Educational Statistics,
which began publication in 1976 under the editorship of Mel Novick.

However, as Ingram admits, “This journal has not fully succeeded. We had
lots of good editors and lots of good papers but it is not as popular as I would
like.” To broaden its base, the journal changed its name in 1994 to Journal of
Educational and Behavioral Statistics. In this new incarnation, it was hoped,
the journal might form a bridge between the social and behavioral sciences
and the statistical concepts and methods they require for their work.

Olkin has had an important influence not only on statistical journals but
also on the publication of books in our field. He has been a longtime advisor
to the “Springer Texts in Statistics,” which published my three principal
books (on hypothesis testing, point estimation, and large sample theory).
As statistics editor of the Society for Industrial and Applied Mathematics
(SIAM’s) reprint series, “Classics in Applied Mathematics,” he was instru-
mental in the recent republication of my long-out-of-print elementary text
with Hodges, Basic Concepts of Probability and Statistics.
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Among Ingram’s many honors are the Wilks Medal and the prestigious
Founders Award of the American Statistical Association; a Lifetime
Contribution Award from the American Psychological Association; the
Elizabeth Scott Award from the Committee of Presidents of Statistical
Societies (COPSS); and an honorary doctorate from DeMontford University
(England). He has now been a Stanford colleague and friend for more than
forty years, and he continues to be very active.
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6
The Berkeley Statistics Department I:
Establishment and First Generation

In 1938, Griffith Evans, chair of the Berkeley mathematics department,
brought Jerzy Neyman to Berkeley to develop a statistics program. He pre-
sumably thought of two or three undergraduate courses, and a similar num-
ber of graduate courses taught by Neyman and perhaps one or two younger
people. That things turned out very differently was due to two factors:
Neyman’s ambition and energy, and the explosive development of the field of
statistics in the wake of World War II.

As a result, in the decade from the end of the war in 1945 to 1955, Neyman
was able to assemble a faculty consisting of five professors, two associate
professors, and four assistant professors, augmented by five visitors to teach
an extensive program of courses. At the same time, he achieved a steadily
increasing degree of independence for his laboratory until in 1955 (after
Evans retired as chair) he reached his goal: a separate Department of
Statistics.

A year later, the new department faced a crisis. Dissension developed and
Neyman resigned as chair. His decision came as a great shock to his col-
leagues, but the group weathered the storm thanks to good will on all sides,
and the tactful and wise management of David Blackwell, the new chair.

Although this change made little difference on the surface, it profoundly
affected the way the department was run. It had moved from a one-man
operation—a benevolent dictatorship—to a democracy. The chair had become
the servant of the department rather than being its master. According to gen-
eral university policy, the chair served a nonrenewable term of three to five
years, and gradually most of us took a turn. After Blackwell came Lucien Le
Cam, Henry Scheffé, Elizabeth Scott, and myself.

By the time I became chair in 1973, the faculty had reached a size of
slightly over twenty, and there it has remained since then. So large a
group was justified by the large number of students from all over the
campus who were taking statistics courses and the great number of Ph.D.’s
the department was graduating. The reputation of the department resulting
from the many research papers and books it produced was of course
also helpful.
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24. Neyman’s Struggle

As a result of the rapid growth of statistics after the war, the teaching and
organization of the subject became a pressing issue in many universities. In
the previous chapter, I briefly sketched the difficulties encountered in the
development of four of the major early programs in mathematical statistics,
at Columbia, Princeton, Stanford, and Chicago. This describes in more detail
how it played out in Berkeley.

The Berkeley statistics program started in 1938, when Evans appointed
Neyman as professor of mathematics. Evans considered statistics to be a sub-
discipline of mathematics such as algebra or differential equations that would
be represented by a single professor. During the next three years, Neyman
established a skeleton program of basic courses and a small temporary staff
to assist with the teaching, most of which he did himself. In addition, he
engaged in statistical consulting with faculty members in other departments.
His organization was the Statistical Laboratory (the Lab), of which he was
the director.

Further development of the program was halted by the war, during which
Neyman’s energy and that of his lab were mainly devoted to war work. There
was much coming and going, as temporary staff members, as soon as they
had received some training, left for military duties and had to be replaced.
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During the first part of 1946, Neyman was in Greece, as a member of
President Truman’s mission to supervise the Greek elections (see Section 11),
and the fall semester of that year he planned to spend at Columbia with
Wald. This presented him with a difficulty. He had counted on Hsu to teach
his graduate course while he was gone, but Hsu had accepted Hotelling’s offer
and had left Berkeley. He then tried Polya, but Polya could not free himself
from his Stanford obligations. Having failed with both Hsu and Polya,
Neyman gave up on a senior appointment and fell back on an in-house
solution. I was just completing my Ph.D. and was available. So I was given a
faculty appointment as instructor for 1946–47, with the principal assignment
of teaching Neyman’s graduate course. But there was an additional task. At
this point, I was the only member of the statistics group with a regular fac-
ulty position and was therefore appointed acting director of the Statistical
Laboratory.

The glory of this position was somewhat diminished by the instructions
that accompanied the appointment. I was told that although I had the
authority, I was to take no major steps without first consulting Professor
Evans. A timid instructor, who had graduated only a few weeks earlier, I was
hardly the person who on his own would engage in bold new initiatives, but
in any case, anyone concerned about such a possibility had little reason
to worry, for another reason: The moment Neyman left Berkeley, he began to
bombard me with a stream of instructions:

See to it that Miss Fix and Joe Hodges complete their papers. Please check again the
table of contents [of the symposium proceedings] and take all the manuscripts to
the press with an appropriate covering letter. Oh, before doing this, mention it to
Professor Evans.

Sometimes the letters were minutely detailed:

It would be preferable [on some other publication issue] to have a joint talk between
you, Professor Evans, and Professor Bernstein so that the latter has no doubt that
Professor Evans approves of the idea. The thing would be to talk to Professor Evans
while Professor Bernstein is sitting at his desk.

Neyman’s semester at Columbia led to unexpected repercussions in
Berkeley. It turned out that Wald, the chairman of Columbia’s newly estab-
lished Department of Mathematical Statistics, was eager to gain Neyman as
a colleague and, in January 1947, made a very favorable offer. Neyman, in a
long letter to President Sproul of the University of California, pointed out
some of the great advantages that Columbia offered, but also stated his
attachment to Berkeley and the Statistical Laboratory.

The most important aspects of the offer, in Neyman’s view, were not the
personal advantages such as better salary and retirement benefits, but that
he would be a member of a group of congenial colleagues in a separate sta-
tistics department. Comparing this with the Berkeley situation, he raised
some general issues concerning the relation of statistics and mathematics.
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Similar discussions were to take place during the next years at many
American universities.

In his letter to Sproul, Neyman wrote:

During the recent decades the theory of statistics made tremendous advances and
from the position of not-quite-recognized secondary mathematical subject developed
into a wide independent science having innumerable contacts both with pure mathe-
matics and with various experimental fields. As a result, no single man is able to give
adequate instructions in mathematical statistics . . . .

As far as I can see, the only way in which the instruction and research in statistics
can be brought up to a desirable status is through the organization of an entirely inde-
pendent Department of Statistics, with an adequate staff including several associate
and full professors.

Evans responded with a “Memorandum on Statistics,” in which he stated:

I believe that our present organization of statistics is sound and promises most for the
development of the subject, if personnel and equipment are allowed to increase in
proportion to demand. The pressure for separation from mathematics comes from a
personal bias, wherein there is an overestimation of the administrative position of
chairman.

Evans was undoubtedly correct in attributing Neyman’s drive for an inde-
pendent department partly to “personal bias”—that is, his passion for doing
things his way, with as little interference from others as possible. However,
Evans had been his staunch ally, using whatever power or persuasive ability
he had for Neyman’s support. Thus, the obstacle Evans presented was not so
much practical as symbolic; what was at stake was a matter of principle.
Neyman did not want to have to ask permission for what he wanted to do,
even when he could assume that this permission would be granted.

Next, Evans argued forcefully against a B.A. degree in statistics, since it
would require “practically the whole of the upper division time, and would be
essentially nothing but an undergraduate professional degree.” Interestingly,
for graduate study in statistics he would not insist on a major in mathematics
but would also admit a degree in a substantive field.

At the heart of the disagreement was the question of whether statistics is a
subfield of mathematics or a new and separate discipline. Evans believed that

probability and statistics are essentially one subject. Probability is pure mathematics,
as much so as geometry, or theory of sets, or any branch of mathematics . . . .
Theoretical statistics is a further specialization of the theory of probability . . . . It is
true that theoretical statistics has developed methods which are specialized in a great
extent to it. But this is also true of any branch of mathematics . . . . In fact, every
branch shows the same characteristics—mathematical specialization, mathematical
development and application by means of significant approximations. A division
between mathematics and statistics would be purely artificial.

Neyman did not really want to leave, nor did Evans or Sproul want to lose
him. So a compromise was negotiated. The most important aspect involved a
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split of the budget. It separated research and teaching by assigning research
appointments (even if they involved some teaching) to the budget of the
Statistical Laboratory, which would be submitted by the director of the lab
directly to the university president. On the other hand, instructional activities
remained within the mathematics department. In addition, the agreement
authorized two new appointments, one a position of tenure grade, the other at
the rank of instructor. Neyman referred to this document as the Magna Carta.

If Evans thought this would settle the matter, he was mistaken. A year-
and-a-half later, Neyman used a minor disagreement with Evans and the
appointment of a new dean to reopen the issue:

Dear Dean Davis: This is to request that steps by taken to investigate the desirability
of establishing the present Statistical Laboratory as an entirely independent
Department of Statistics with full responsibility for both instruction and research.

This was followed a few months later by another letter:

Dear Dean Davis: With reference to my letter of December 1948, this is to submit a
new argument in favor of establishing an independent Department of Statistics, and
to outline a tentative plan whereby such a department could be established by sepa-
rating the Statistical Laboratory from the Department of Mathematics.

This request was turned down by Davis, but Neyman kept up the cam-
paign. Going above Davis’s head, he wrote a year later:

Dear President Sproul: You may be aware that since the beginning of my appointment
in this university in 1938 I have advocated the creation of a separate Department of
Statistics . . ..

Shortly before this last letter, a major obstacle to Neyman’s effort had been
removed by the retirement of Evans as chair of the mathematics department
in 1949. His successor, Charles Morrey, did not share Evans’ vision of a
broadly based mathematics department. He may, on the contrary, have felt
that the growth of statistics had come at the expense of pure mathematics
and that his department would be better off without Neyman’s constant
demands for more positions and increased funding. In any case, he recom-
mended that the university recognize the merits of Neyman’s position and
grant his request for a separate department. As a result, a committee was
formed to study the problem.

However, the process was slow, and in January 1953 Neyman wrote, some-
what impatiently:

Dear Chancellor Kerr1: This is to enquire whether or not we can expect in the near
future any action on the report of the committee about the desirability of transforming
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this laboratory into a Department of Statistics, separate from the Department of
Mathematics . . .. I most sincerely hope that a final decision can be made without much
further delay . . ..

Finally, in the summer of 1954, Chancellor Kerr recommended to President
Sproul “that the Mathematical Statistical Laboratory be redesignated the
Department of Statistics as soon as possible in the fiscal year 1954–55.”

A summary of the long history of the issue was prepared for Sproul by an
assistant who, without much enthusiasm, recommended approval of the de
facto independence:

Here, a willful, persistent and distinguished director has succeeded, step by step over
a fifteen year period, against the original wish of his department chairman and dean,
in converting a small “laboratory” or institute into, in terms of numbers of students
taught, an enormously expensive unit; and he then argues that the unit should be
renamed a “department” because no additional expense will be incurred.

One can sympathize with the irritation of administrators at Neyman’s
relentless pursuit of his goal. It is also true that the total of 364 students
enrolled in statistics courses in 1954–55 was rather small for a faculty of
twelve, even if one takes into account the additional responsibility for con-
sulting. On the other hand, the report ignores a crucial element: the develop-
ment of the field of statistics during the fifteen years since Neyman’s arrival
in Berkeley, and what this portended for the future. History has sided with
Neyman. The number of students rose to about 2,500 by 1964 and to twice
that number in another decade. Gradually, most major universities estab-
lished departments of statistics.

Sproul’s final approval of the department came on October 24, 1954.
The struggle to convert a one-man appointment as professor of mathe-

matics into a substantial separate department of statistics did not, of course,
take place in a vacuum. It required the acquisition of a faculty, the associated
office and laboratory space, a corresponding expansion of the course pro-
gram, and, as justification for such an enterprise, an increased enrollment of
students taking these courses. Neyman not only carried out these tasks with
great skill and unflagging energy, but he also expanded the research program
and the resulting financial support for the work of the group. In addition,
through symposia and a new series of publications, he created a national and
international reputation for his laboratory.

The first order of business in building a statistics program at Berkeley was
to assemble a faculty. After my appointment in 1946, the Magna Carta pro-
vided for two additional positions. Neyman filled one of these with Charles
Stein, who had just completed his Ph.D. at Columbia with a highly original
solution of a problem that had long interested Neyman. Charles would also
bring with him first-hand knowledge of Wald’s new decision theory, a natu-
ral development of Neyman’s own work. For the other position, Neyman
obtained the French probabilist Michel Loève, who was to take charge of the
probability side of the program.
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Gradually, over the next seven years, Neyman appointed some more of his
students as they completed their degrees: Edward Barankin (in 1947), Evelyn
Fix and Elizabeth Scott (in 1949), Joe Hodges (in 1951), and Lucien Le Cam
(in 1953). A faculty that has mostly been trained by the founder of the group
faces two dangers: the in-breeding is likely to result in a certain narrowness,
and—in the opposite direction—conflicts may arise as former students
become independent colleagues with ideas of their own.

In the present case, the first of these dangers was mitigated by the very
strong outside appointments Neyman made in addition to those of his own
students. These included not only Stein and Loève, but Scheffé (in 1953), who
had interests and expertise in applications, and Blackwell (in 1955), a spe-
cialist in game theory and dynamic programming. Nevertheless, a certain
narrowness did result. There was a lack of attention to Fisherian and
Bayesian ideas. (No course on Bayesian statistics was introduced until 1969.)
In general, the program reflected the Neyman-Pearson-Wald point of view so
strongly that this approach was sometimes simply referred to as “Berkeley.”

This weakness was at the same time a source of strength. It resulted in a
congenial group that shared a basic point of view and engaged in much col-
laborative work. At one time or another, joint papers were written by
Blackwell and Hodges, Fix and Hodges, Hodges and Le Cam, Lehmann and
Scheffé, and Lehmann and Stein. In addition, long-term collaborations
developed between Hodges and Lehmann and between Neyman and Scott.

Crucial for the development of the program was the question as to who
should have the responsibility—or the right—to teach statistics courses. The
obvious answer was that this was the task of the statisticians. But elementary
statistics courses were being taught in economics, education, forestry, psy-
chology, sociology, and a number of other disciplines. And the instructor was
often the most junior member of the department, who might have little back-
ground in statistics. Despite these shortcomings, the other departments were
very reluctant to give up their courses. For one thing, they argued, they could
motivate their students better by basing the instruction on examples from
their particular subject matter.

In addition, economic issues were involved. The sections of the large lower-
division courses, particularly in economics and psychology, gave employment
as teaching assistants to a substantial number of graduate students, a source
of support not easily relinquished. After lengthy negotiations, Neyman was
able to work out a compromise. The Statistical Laboratory would teach the
lower-division courses but would not object to other departments offering
more advanced courses tailored specifically to the needs of their students. He
also agreed that, at least for a number of years, he would employ qualified
graduate students from other departments as teaching assistants for the
lower-division courses.

When on July 1, 1955, statistics became at last an independent department,
it had a faculty of eleven members: five professors (Blackwell, Lehmann,
Loève, Neyman, Scheffé), two associate professors (Barankin, Hodges), and
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three assistant professors (Fix, Le Cam, Scott), augmented by some visiting
faculty. A substantial course program was in place. The department’s future
seemed assured. However, the following year it was to be shaken by a crisis
that endangered its existence.

25. David Blackwell (b. 1919)

The crisis that quite suddenly descended on the new department in its second
year was the completely unexpected resignation of Neyman as department
chair. It was quite incomprehensible: Why would he take such a radical step?

One precipitating event was a change of deans. Throughout the ten-year
postwar effort to build a statistics group, Neyman had enjoyed the support of
the same dean, with whom he had established a good relationship. Now a
new dean had taken over and had immediately questioned some of Neyman’s
arrangements. Clearly, from now on the sailing would be much rougher.

A second cause had its roots in an incident the year before. A vacancy had
occurred on the statistics faculty, and several of us felt that the candidate
Neyman was proposing as replacement would not meet our principal needs
at the time, and we expressed our disagreement with his choice.
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I believe this opposition to his wishes came as a shock to Neyman. In
principle, he wanted to run the department democratically. He thought this
would be easy, since he expected us to agree with his views. Furthermore, he
undoubtedly felt, rightly, that the department was his creation and that it
was he to whom we owed our appointments. Our opposition to his plans
thus came as a surprise and seemed to him black ingratitude. He once indi-
cated his feelings to me by telling me about a certain bird. If the eggs in its
nest were touched or tampered with, it abandoned the nest. He now was dis-
gusted with a situation in which he encountered interference from both
above and below and, like the bird in his story, considered starting all over
again, perhaps on another campus of the university.

However, another issue that played a role had its roots in his personal
situation. Neyman’s great scientific results, which had made his name, had
been obtained more than twenty years earlier. Since coming to Berkeley,
most of his energy had been consumed by the demands of the new situa-
tion: consulting, war work, the symposia, building a department, and the
constant struggle for funding and space these activities required. As a result,
his research had suffered. He was now sixty-two; if he wanted to return
to major research, this was his opportunity. And so an accommodation
was found.

The university administration granted Neyman an independent laboratory
with him as director. It would be a research organization unconnected with
the instructional activities of the department, but in charge of all research
grants and contracts. This arrangement was not without risk. The research
budget under Neyman’s control was about equal to the department’s budget,
and they supported the same group of students and faculty. The divided
authority provided plenty of opportunity for friction. Many in the profession
thought that the Berkeley department would fall apart (as had been the case
at Columbia after Wald’s death). The credit for this not happening belongs to
the man whom the department now asked to take charge and who agreed
to do so—David Blackwell.

Blackwell’s early career was largely determined by the fact that he was
African-American and the racial attitudes of the time. When as a graduate
student at the University of Illinois he was awarded financial support, it
could only be for research, not for a teaching assistantship. (It is instructive
to compare this with Teichmüller’s letter to Landau on the teaching of
German students by Jews, reported in Section 1.) Asked later2 whether dis-
crimination against blacks had affected his education or his career after the
Ph.D., he explained:
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It never bothered me. I’ll put it that way. It surely shaped my expectations from the
very beginning. It never occurred to me to think about teaching in a major university,
since it wasn’t in my horizon at all.

After getting his Ph.D. in 1941 at the University of Illinois with a thesis on
Markov chains, supervised by Joe Doob, Blackwell spent a postdoctoral year
at the Institute for Advanced Studies in Princeton. He followed this with a
year each on the faculties of two black colleges, first the Southern University
in Baton Rouge, Louisiana, and then Clark College in Atlanta. From there
he went to Howard University in Washington, D.C., of which he wrote later
that “it was the ambition of every black scholar in those days to get a job at
Howard University. That was the best job you could hope for.” He stayed at
Howard for the next ten years, serving as head of the mathematics depart-
ment from 1947 to 1954.

In Washington, Blackwell formed a friendship with Abe Girshick, who was
then working in the Department of Agriculture. Later, they spent some
months together at the Rand Corporation. After Girshick joined Bowker at
Stanford in 1948, Blackwell spent the year 1950–51 as visiting professor at
Stanford. However, he turned down an offer of a permanent position there for
family reasons. Since Berkeley had a black middle class that Stanford lacked,
he decided instead to accept an offer from Neyman. After a visiting year
(1954–55), he became a permanent member of the Berkeley faculty in 1955.

Although he had thus been with us for only two years when Neyman
resigned as department chair, we had all known David for much longer, and
for a number of reasons he seemed the obvious choice to lead the department
in this crucial transition period. He had an easy and comfortable way of deal-
ing with people, including, most importantly, Neyman. As a relative new-
comer, he had the advantage of not having been involved in earlier conflicts.
And of course he had an outstanding scientific reputation.

Among Blackwell’s highly original contributions at the time were a new
proof, under weaker conditions, of a famous equation in sequential analy-
sis due to Wald; his work on the comparison of experiments; the discovery
that an estimator can be improved by conditioning it on a sufficient statis-
tic; and a very influential paper (joint with Arrow and Girshick), “Bayes
and Minimax Solutions of Sequential Decision Problems” (1949), which
initiated the method of backward induction. Later, Blackwell also made
significant contributions to probability theory, game theory, dynamic pro-
gramming, and information theory. One of the contributions, for example,
is the use of game theory as a tool for working on measure theoretic prob-
lems. In 1954, jointly with Girshick, he published a very innovative book,
Theory of Games and Statistical Decisions.

David’s chairmanship from 1957 to 1960 was remarkable not for any great
innovations but (like the absence of barking in the Sherlock Holmes story of
the Hound of the Baskervilles) by what did not happen. There were no fights,

25. David Blackwell (b. 1919) 99



controversies, even friction, but just a smoothly running operation settling
into a new pattern. This success was largely due to David, but Neyman
greatly contributed to it by going out of his way to cooperate. He participated
in the business of the department like any other faculty member, neither
boycotting it nor making any effort to dominate.

One slight inconvenience during Blackwell’s chairmanship was that much
of the time he did not have a home telephone. (The rumor at the time was
that his pregnant wife was bothered by so many calls from colleagues, so he
ripped out the phone. However, David denies this version.) One day, Henry
Scheffé urgently needed to reach David on some departmental matter and
bemoaned the fact that he was unable to call him. But suddenly he bright-
ened. “Oh, but I can,” he exclaimed, “David is in Washington.”

Blackwell’s originality as a mathematician is mirrored in the independence
of his thinking on other subjects. After experiencing the painful process of
denying tenure to persons who for years had been colleagues, he decided that
he would no longer serve on tenure committees; he did not want to play
God. His solution: all appointments should be made at a level that carried
tenure. Another example is his refreshing attitude toward research. “I’m not
interested in doing research and I never have been,” he has said,3 and then
amplified with, “I’m interested in understanding, which is quite a different
thing.”

In recognition of his accomplishments, Blackwell has received a nearly
unprecedented number of honors. He is a member not only of the National
Academy of Sciences and the American Academy of Arts and Sciences, but
also of the American Philosophical Society, the oldest of the American acad-
emies and one that rarely elects mathematicians to its membership. He has
received honorary doctorates from many colleges and universities: Illinois,
Michigan State, Southern Illinois, Carnegie-Mellon, Lesotho, Amherst,
Harvard, Howard, Yale, Warwick, Syracuse, and Southern California. In
addition, he has served as president of the Institute of Mathematical
Statistics, and of the Bernoulli Society for Mathematical Statistics and
Probability, and as vice president of the American Statistical Association, the
International Statistical Institute, and the American Mathematical Society. It
is an amazing record.

David Blackwell has now been my colleague and friend for over fifty years.
We once embarked on a joint paper that, unfortunately, did not materialize,
and we usually drive together to Stanford when the Berkeley–Stanford
Colloquium meets there. I have often dropped by his office just to chat for a
few minutes, to get his views on some topic of common interest or advice on
some problem that was bothering me.

Of nearly the same age, we are now the last survivors of the original Stat
Lab group assembled by Neyman.
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26. Lucien Le Cam (1924–2000)

In contrast to Blackwell, who kept a low profile and tried to avoid conflict
and controversy, his successor as chair, Lucien Le Cam, was flamboyant and
enjoyed making provocative statements to the department, the university
administration, and the statistical community.

As an example, here are some excerpts from a memorandum (of 1958)
to the statistics department regarding a proposal by the probabilist Loève to
strengthen the probability part of a basic introductory course.

The proposed revision seems to arouse such violent opposition that the inarticulate
undersigned feels obligated to communicate his feelings on the subject by the present
memo.

Loève’s proposal seemed at first so innocuous and so gentle that I did not expect
much reaction to it from any side, except possibly that practical people (are statisti-
cians supposed to be practical?) might desire even more emphasis on applicable prob-
ability theory. As of now I consider the differences of opinion arising in our midst are
irreconcilable and due to such basic differences of understanding of what is and what
should be probability theory and how it should be taught that no useful purpose will
be derived by arguing any further in the same direction. Therefore the present memo
will not propose any solutions but only try to generate some heat on controversial
matters.
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Our teaching of Probability and consequently Statistics is hopelessly inadequate.
As far as I can tell, the people who struggle through [our basic courses] do not even
get a knowledge of probability remotely comparable to the knowledge imparted
by J. Dubourdieu in his evening lectures to candidates to the Actuarial examination
in Paris.

In case one should object that Probability Theory per se is not a worthy subject of
study, I shall make my next point: The statisticians who are going to make the head-
lines in the future are not those who can in a twinkling give an analysis of variance
for a Latin Square or a three-way classification. Statistics is basically much more com-
plicated than Probability, would it be only because where the Probabilist has only one
measure to cope with, the statistician has a family of measures. There is of course
plenty to do in statistics without using complicated machinery. It just requires brains.
This last commodity we cannot dispense to the students, but we can give them tools.

If we could give our students a good background in mathematics and probability,
we might be able to teach them more, not less, statistics in a shorter time. Otherwise
we are bound to produce Ph.D.’s in Statistics who cannot even read the statistical
papers of our Symposia, not to mention the sundry applied papers to be found in the
same Symposia.

If this memo seems unreasonable to you, I will gladly restore it to its original strength
and triple the emphasis on the necessity of teaching probability theory as a major part
of our task and not as an undignified accessory to some statistical arguments.

Le Cam, who became the most mathematical of all my statistical colleagues,
had started his career as an applied statistician at the Electricité de France.
A chance meeting with Neyman at a seminar in Paris led to an invitation to
spend the year 1950–51 in Berkeley. There he found a statistical atmosphere
quite different from what he was used to. As he later explained4:

My statistics was of the applied type. At Electricité de France one did not worry about
proofs or such niceties. But at Berkeley everything was full of measure theory and
other fanciful mathematics. I had no formal training in such things, only a superficial
knowledge gathered in odd ways. Whatever I knew of abstract mathematics had been
learned from Bourbaki books. Those I read, carefully at times, having eventually a
“subscription” to them.

At the end of the year, Neyman suggested that Le Cam stay in Berkeley
another year and get his doctorate. So in 1952 he obtained his Ph.D. with a
spectacular thesis, which examines the asymptotic theory of maximum likeli-
hood estimates and, in particular, proves the results on superefficiency men-
tioned in Section 8.

After obtaining his degree (and getting married), he did not return to
France, but became a member of the Berkeley faculty, and continued the
investigations started in this thesis. Particularly noteworthy is his 1960 paper,
“Locally Asymptotically Normal Families of Distributions.” In it, he intro-
duced the LAN families indicated in the title and the fact that such families
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can be closely approximated by families of normal distributions. The LAN
assumption has become the standard setup in much if not most asymptotic
work. The paper also introduced the concept of contiguity of two sequences
of distributions, and the important results concerning contiguity known as
Le Cam’s three lemmas.5

In this paper, Le Cam also states a topic to which he would recur repeat-
edly, his mistrust in the principle of maximum likelihood:

This author is firmly convinced that a recourse to maximum likelihood is justifiable
only when one is dealing with families of distributions that are extremely regular. The
cases in which m.l. estimates are easily obtainable and have been proved to have good
properties are extremely restricted. One of the purposes of this paper is precisely to
deemphasize the role of m.l. estimates. Since, however, the m.l. estimates seem to exert
a quasi-hypnotic attraction, a comparison of the results obtained herein with those
obtainable for m.l. estimates is given below.

Starting in 1966, Le Cam gave a graduate course in asymptotic theory
based largely on his own work. The course was mathematically so advanced
that students would audit it, sometimes more than once, before daring to
take it for credit. It took Le Cam another twenty years before, in 1986, he
published the definitive account of his approach in a massive (740 pages)
book, Asymptotic Methods in Statistical Decision Theory. The difficulty of
the course was shared by the book, which, under the influence of his
Bourbaki background, treated the theory in the greatest possible abstraction
and generality. The situation was summarized perfectly in the concluding
paragraph of a review by Lawrence Brown (in the 1988 volume of JASA):

This is a book for serious study. The mathematically or statistically unprepared reader
or the prepared but casual reader will likely get nothing from it but a headache. But
the prepared and diligent reader will find a gold mine, from which can be distilled an
effective and powerful understanding of statistical asymptotics.

In addition to his principal asymptotic project, Le Cam worked on many
smaller issues, often in collaboration with others. Most of these collaborators
were Berkeley colleagues, visitors, or students. These joint papers reflected
the fact that in his office, the door of which was always open, Le Cam was
visited by a steady stream of callers who wanted to discuss their problems
with him. Beyond these sporadic joint efforts, he was also involved in three
deeper and more long-range collaborations.

The first of these, with the Czech statistician Jaroslav Hajek, was not a col-
laboration in the usual sense. The two authors never wrote a joint paper, and
although Hajek twice spent several months in Berkeley, Le Cam was very
busy both times and the two had only limited contact. However, they worked
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on the same asymptotic problems. Sometimes one would publish a new idea
and the other would develop it further, sometimes the order was the opposite,
and on still other occasions they would publish similar results simultaneously.
As one consequence of this “collaboration” or friendly competition, two
important theorems bear their joint names: the Hajek–Le Cam asymptotic
minimax theorem and the Hajek–Le Cam convolution theorem.

The special relation with Hajek’s work was commemorated by Le Cam in a
paper,6 “Recollection on My Contacts with Jaroslav Hajek,” which concludes:

Hajek and I had precious little chance for collaboration. In spite of that our work,
originating from different considerations, overlapped to a noticeable extent. I clearly
benefited from his ideas, and he used some of mine.

He was a very good friend. I deeply regret his untimely demise. [Hajek died in 1974
at the early age of forty-eight from a longstanding kidney disease.]

A real collaboration was Lucien’s joint work with his student Grace Yang.
It started with a suggestion she made in 1966–67, which Le Cam mentions in
his asymptotics book as having been “most valuable.” In 1988, their work led
to a joint paper in the Annals of Statistics. Most importantly, they collabo-
rated on a book, Asymptotics in Statistics, which came out in 1990. It pre-
sented some of the basic ideas of Le Cam’s theory on a level at which they
were more accessible than in his earlier book.

In 1999, Grace interviewed Le Cam for Statistical Science. After Lucien’s
death in 2000, she wrote a memorial article on him for the Annals of
Statistics, which dedicated its June 2002 issue to his memory.

A third very different collaboration arose from the illness of Le Cam’s
12–year-old daughter, Linda. In 1972, she was diagnosed with osteogenic sar-
coma, a rare and usually fatal disease. After amputation of a leg and removal
of a lung, it became necessary to decide on a follow-up treatment. The stan-
dard treatment of radiation and chemotherapy was tried but nearly killed
Linda. So Lucien contacted Vera Byers, who, with her husband A.S. Levin,
had developed a yet-untried new approach, immunotherapy. It turned out
that Lucien and Linda’s two brothers were suitable donors of white blood
cells, so the treatment was started and proved successful. It saved Linda’s life.

An unexpected consequence of Linda’s treatment is described by Vera
Byers7:

It was only somewhat later that I found out Lucien was a statistician. I was describing
to him what we were doing and he said, “Well, you know, maybe I can help you a bit.”

The upshot was that Le Cam did all the statistical work for the project, which
over a period of several years led to six joint papers.
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In a minor way, I too collaborated with Lucien. In 1974, we wrote a joint
paper for Neyman’s eightieth birthday, in which we tried to highlight
Neyman’s great accomplishments. The paper appeared in the May 1974 issue
of the Annals, which the Institute of Mathematical Statistics dedicated to
Neyman.

Some time after Neyman’s death in 1981, while preparing a memoir on
Neyman for the National Academy of Sciences, I came across two unpub-
lished manuscripts of his that still seemed to be of interest. I asked Lucien to
join me in editing them for a special volume of the Polish journal Probability
and Statistics, to be published to commemorate the one-hundredth anniver-
sary of Neyman’s birthday. We also each wrote a paper for the volume,
Lucien on “Neyman and Stochastic Models” and I on “Neyman’s Statistical
Philosophy.”

It was natural for me to turn to Lucien for this task, not only because he
had done much organizational and editorial work for Neyman, but also
because he was one of the members of our department to whom I felt clos-
est. I would often stop by his office to get help with a technical point or just
for a short chat. We shared an interest in the history of statistics. In this con-
nection, he occasionally asked my advice on some German text while I
required his assistance with French, particularly when studying Laplace.

For Le Cam’s seventieth birthday on November 18, 1994, he received a
festschrift edited by Pollard, Torgersen, and Yang (1997). I contributed a
paper, “Le Cam at Berkeley,” which carried this dedication:

Written in appreciation of the pleasure and many benefits I have received from over
forty years of friendship and collegiality with Lucien Le Cam.

Lucien died in April 2000, after a period of deteriorating health.

27. Elizabeth Scott (1917–1988)

After the chairmanship of first Blackwell and then Le Cam, the burdensome
task of chairing the department continued to rotate among its senior mem-
bers. The next chair (1965–1968) was Henry Scheffé, the subject of Section 12.
His tenure was marked by great unrest on campus, the result of what became
known as the Free Speech Movement.8 Different groups of both faculty and
students had violently opposite attitudes and Henry was in the middle, trying
to hold the department together and to keep the atmosphere pleasant. His
fair-mindedness gained him the respect and affection of all members.

Scheffé’s successor was Elizabeth (Betty) Scott (1968–1973), who had to
deal with a very different kind of problem—the planning for, and eventual
move to, Evans Hall, which, after our many moves, was to serve as permanent
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home to both the mathematics and statistics departments. She handled the
details and decisions that such a project entails with great energy and effi-
ciency, and we were grateful that she did so without involving the rest of us.

Betty had started her career not in statistics but in astronomy, the field in
which she obtained her Ph.D. in 1949. She first became interested in statistics
as a tool for analyzing her data. But while she continued to work in astron-
omy throughout her career, statistical issues gradually began to dominate.
Two reasons caused this change of emphasis.

One was the discrimination in astronomy against women, who, for exam-
ple, were forbidden to use the telescopes at the Mount Wilson Observatory.
There was no hope for a woman to obtain a faculty position in astronomy.
On the other hand, Scott was appointed lecturer in statistics in 1948 (before
even having completed her degree) and steadily advanced in rank, becoming
professor in 1963.

The second reason for the greater involvement with statistics was that she
came under the influence of Jerzy Neyman. She audited an upper-division
course from him in 1938–39, his first year in Berkeley, and, although only an
auditor, turned out to be the best student in the class. As a result, when, the
following year, the university provided Neyman with a research assistant, he
chose Betty. In 1942, she became a member of the staff he recruited for a
contract in bombing research, and for the next three years she was primarily
occupied with war work.
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During the first postwar years, Scott published several papers in astron-
omy and, in 1948, a first joint paper with Neyman, “Consistent Estimates
Based on Partially Consistent Observations.” The paper became famous as
providing the first example to show that in certain circumstances maximum
likelihood estimates were not necessarily consistent.

In 1951, C.D. Shane, the director of the Lick Observatory, approached
Scott about a large-scale project on galaxies for which he needed statistical
help, and she referred him to Neyman. This led to a longtime collaboration,
with Scott providing the bridge from Shane’s data to Neyman’s statistical
concepts. Later, Neyman referred to this collaborative work as one of “three
emotional involvements in research.” The first was his enthusiasm when he
encountered Lebesgue’s theory of integration, the second his seminal work
with Egon Pearson, and the third “Certain problems of astronomy—C.
Donald Shane and E.L. Scott.” Neyman (1970) recalled:

The initiative for cooperation in astronomical studies came from C.D. Shane. Some
years before his first visit to the Statistical Laboratory he embarked on a project
which impressed me by its time scale . . . . [It] was to make a complete photographic
survey of the part of the sky accessible to the telescopes at the Lick Observatory,
to store these photographs and to hope that, half a century later, one of his succes-
sors at the observatory will do the same. Then, the superposition of corresponding
photographs of the two sets would reveal some of the intricacies of the structure of
our galaxy.

The inspection of the plates brought to Shane’s attention certain fancy features of
the distribution of the many images of galaxies visible on the plates . . . . What he
hoped [the statisticians would supply] was some kind of general stochastic model of
the distribution of the galaxies . . . .

Once we [Neyman and Scott] learned a little of the current astrophysics, there
arose a large number of exciting problems which we tried to solve, occasionally
with a degree of success, and for more than a decade, we were deeply involved
in them.

As a result, between 1952 and 1964 there appeared twenty-six papers on
galaxies, most under the joint authorship of Neyman and Scott, and occa-
sionally with Shane or some other astronomer as additional coauthor.

During this period, Neyman and his wife, Olga, separated and Betty
became his constant companion and frequently acted as hostess at dinner
parties at his new house, although she continued to live with her mother at
the other end of town. She was the kind of partner he needed because she
was as strong-willed as he and stood up to him. He submitted much of his
writing to her criticism and this allowed him to be himself, to write as he felt
in the secure knowledge that she would let him know when he stepped over
the line. This sometimes led to noisy arguments (“You can’t do this, Jerry!”),
but in the end he would usually accept her advice.

Although Scott had come to statistics as an aid to her work in astronomy,
her statistical interests gradually broadened in the environment of Neyman’s
laboratory, and she became an accomplished applied statistician. That is, she
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did not study statistical methods for their own sake but rather investigated
subject matter problems in different areas that needed statistics for their res-
olution. In particular, she devoted much effort to three such areas: weather
modification through cloud seeding (with Neyman), the causes of skin
cancer, and inequities in the salaries of academic women.9

The recognition Scott’s work received both nationally and internationally
can be seen from the numerous positions to which she was elected: president
of the Institute of Mathematical Statistics (1977–78) and of the Bernoulli
Society (1983–85), and vice president of the American Association for the
Advancement of Science (1970–71) and of the International Statistical
Institute (1981–83). In addition, she served on many panels of the National
Academy of Sciences and of other scientific organizations.

My own relations with Betty were friendly but never close, since I was not
part of the Neyman–Scott inner circle. Like other members of the depart-
ment, I was a frequent guest at parties at her house or hosted by her at
Neyman’s. Both she and Neyman were enormously generous and treated the
department like family, of which they were the parents. On the other hand,
Betty tended to come down hard on anyone whose actions displeased her,
regardless of whether they were students, faculty, or deans. But I was lucky
and don’t recall her ever taking me to task. Nevertheless, at one point she did
significantly affect my life—it is a story that will be told in the next section.

28. E.L. Lehmann (b. 1917) I: Department Chair

In the spring of 1970, toward the middle of her tenure as chair, Betty Scott
was going to be on leave for a semester and asked me to fill in for her as act-
ing chair. Knowing of my aversion to administration, she told me that this
would involve little work, since she had made all the necessary preparations.
All that remained, she assured me, was to sign documents from time to time.
What she could not know was that this was to be “Cambodian Spring,” dur-
ing which American troops invaded Cambodia. As a result, a few days after
Betty left, the campus exploded. Many students, teaching assistants, and fac-
ulty members went on strike, and our department again was deeply split, with
some members refusing to teach on campus while others wanted it recorded
that they had met their classes in the usual way.

In normal times, the chair acts principally as an agent of the department
in its negotiations with the administration. However, under extraordinary cir-
cumstances such as those prevailing at the time, the chair also serves in the
opposite direction as conduit for instructions from the administration to the
department. In case of conflict, the chair is in the middle and has to follow
his or her best judgment.
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A difficult issue of this kind arose when the administration asked me for
detailed information on how each faculty member and teaching assistant had
met his or her classes. Some members of the department wanted me to honor
this instruction, others to refuse it. Since we had been told that the informa-
tion would be used only for statistical purposes, I decided on an intermediate
course. I provided summary statements that gave the needed statistical infor-
mation but I refused to report the behavior of individuals. I was asked to
appear before a council of deans and was told that I was disobeying orders.
But I stuck to my position that under the university’s claim to use the infor-
mation only for statistical purposes, I was providing them with all that was
needed. Next, I was summoned to a meeting with the vice chancellor and told
that I was one of only three chairs who were not in compliance. He threat-
ened serious consequences for my career, and that was the last I ever heard of
the matter.

However, my service as acting chair during this tumultuous semester did
have other consequences for me. When, two years later, Betty’s term came to
an end, it had become natural for me to succeed her, and I agreed to do so.

In many departments, the position of chair is coveted and often bitterly
fought for by competing candidates. No one on our faculty felt that way.
Most of us did not particularly enjoy administration, but rather considered
it a chore leaving little time for research and teaching, which interested us
much more.

For most purposes, the chair is the servant of the department rather than
its master. That this was the way the position was seen by colleagues was
forcibly brought to my attention on the first day of classes. One of my col-
leagues who was in charge of the introductory course that had an enrollment
of more than one thousand students and that employed a dozen teaching
assistants, came to my office and barked, “I want twelve bodies by 5:00 this
afternoon,” and left. I was stunned. Up to then we had been on friendly
terms, but now he obviously saw me in a different light—as an administrator.
I told him that if my colleagues were now going to treat me in this way,
I would resign immediately. He apologized, explaining that he had not real-
ized how abrupt he had been, and we remained friends.

That colleagues saw (or treated) you differently as department chair was
also seen in a change of my relation with Neyman. He had always called
those of us who were his former students by our first names, while we con-
tinued to address him as Professor Neyman. Now, the first written commu-
nication I received from him about some minor administrative detail was
signed, “Jerry.”

The aspect of chairing the department I disliked the most was the over-
commitment of our resources that it was necessary to make each year. The
administration provided us with a certain number of graduate assistants, but
when at the specified time we sent out our offers of support for incoming
graduate students we knew that not all of them would come to Berkeley. So in
order to fill our slots with good candidates, we had to send out considerably
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more acceptances than were authorized. But what would happen if the
number of acceptances exceeded our allowance? Presumably nothing—the
administration would reprimand us and bail us out. But the practice went so
completely against the way I had been brought up and conducted my per-
sonal life that it caused me much anguish.

Not everyone reacted that way. Each year, the chairs of the physical science
departments (which included mathematics and statistics) met with the dean
and reported on the events of the year. At my first of these meetings, the chair
of one of these departments reported overspending the equipment allowance
by a huge amount. I expected the sky to fall, but the dean’s reaction was quite
mild: “All right,” he said, “we’ll make it up this time, but don’t let it happen
again.” But it did happen again, exactly the same way, the next year, and the
third (my last). I apparently could have saved myself a lot of worry.

On the whole, the three years of my tenure as chair were calm, and my
principal recollections are of festive occasions and memorable visitors.
Perhaps the most outstanding event was the celebration of Neyman’s eight-
ieth birthday. To mark the event, I asked the two statisticians of my genera-
tion whom Neyman admired the most, Herb Robbins and Charles Stein, to
give lectures on their work. They both accepted, and there was enough inter-
est in Neyman and enough publicity to fill the principal auditorium,
Wheeler Hall.

The lectures were followed in the evening by a banquet hosted by
Al Bowker, who was then chancellor at Berkeley. Among the many speeches
and toasts, there was a variation of Neyman’s favorite toast: “To all the
ladies present and some of those absent,” which the speaker changed, per-
haps under the influence of too many drinks, to the memorable, “To all the
ladies absent and some of those present.”

An event planned for the second year of my term to which I was looking for-
ward with great excitement was an extended visit by Andrei N. Kolmogorov,
considered by many to be the greatest living mathematician. Among other sem-
inal contributions, he had proposed the now commonly accepted foundation
for probability theory, and his broad mathematical interests included statistics.
Neyman knew Kolmogorov well and had repeatedly tried to bring him to
Berkeley for a visit, without success. This time, the situation looked very prom-
ising. In fact, the university catalogue for the year 1974–75 lists Kolmogorov
among the visiting faculty. What made me so confident was that some months
before he was due to arrive, Kolmogorov had sent a vanguard in the form of
his young colleague, Igor Zhurbenko, whose assignments were to become flu-
ent in English, get a driver’s license, find suitable housing, and generally pre-
pare the ground. All these preparations went well, but unfortunately at the last
moment Kolmogorov experienced severe health problems (we were later told
that it was a breakdown from overwork) and had to cancel the visit.

Although this was a great disappointment, we had in this year a number of
other stimulating visitors. One was Bob Bohrer, who came on a sabbatical
from the University of Illinois and taught a course in the analysis of variance.
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He was already suffering from the diabetes that later resulted in complete
blindness and years of much suffering, which he bore with admirable grace
and fortitude. He and his wife, Joyce, became lifelong friends, and after his
death I gave the first Bohrer Memorial Lecture (in 1999) at Illinois.

We owed the possibility of another visitor to the generosity of the univer-
sity’s Miller Institute for Basic Research. One of its most helpful programs
provides funds for extended visits by distinguished researchers at other insti-
tutions. During their stay, they are expected to be available for consultations
and to offer a number of public lectures. I asked Fred Mosteller of Harvard
whether he might be interested in such an appointment, and as a result he
spent the year 1974–75 in Berkeley as Miller Professor.

At the time he came to Berkeley, he was studying the effectiveness of social
and medical innovations. His lectures on this subject were fascinating. They
showed that the enthusiasm with which innovative procedures were carried
out (for example, in surgery) were often not matched by their usefulness.
However, it required careful study to arrive at this realization.

One of Fred’s closest collaborators for many years had been John Tukey,
and Fred thought it would be useful if we could arrange for a Tukey visit to
Berkeley. Fortunately, a perfect vehicle existed for this purpose, the
Hitchcock Lectures, which bring distinguished persons to the campus for a
period of three to four weeks, during which time they give a number of lec-
tures. The first Hitchcock Lectures in statistics had been given by R.A. Fisher
in 1936 because he was being considered for a position. The visit had not
been a success, and two years later the position went to Neyman. In contrast,
Tukey’s visit (which was not a job interview) was very enjoyable, and provided
a look at his new work on data analysis. Having both him and Mosteller in
Berkeley was a great boon to our department.

The term for chairing a department was typically three years (although in
some cases it was extended to five), and I was very happy when after three
years I was able to return to full-time teaching and research. In a certain
sense, the end of my term as chair in 1976 marked the end of a period. It had
now been twenty years since statistics had become a separate department,
and some years earlier the department had attained the stable size of about
twenty members, which it still has today. After Blackwell, Le Cam, Scheffé,
and Scott, I was the last chair of my generation. (Some others who would
also have been suitable, for example Hodges and Loève, refused to take on
this job.)

The department continued to flourish under the next generation of
younger chairs, and for many years now Berkeley and Stanford have been
ranked as the two top statistics departments in the United States, with the top
spot sometimes going to one and sometimes the other. The department is
teaching over five thousand students a year and continues to produce Ph.D.’s,
books, and research papers in great numbers. Its development, starting with
Neyman’s appointment as professor of mathematics in 1938 and driven by
his vision and energy, has been a remarkable story.
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29. E.L. Lehmann II: Teaching and Writing

When as a high-school student I was living with my parents in Zürich, my
father was worried about my future. His concern led him to seek assistance
from an unusual source. Without my knowledge, he sent a sample of my
handwriting to the Swiss graphologist Max Pulver, asking for an analysis. As
my mother told me many years later, Pulver’s report consisted of vague gen-
eralities, with one exception: he claimed to have discovered a talent for teach-
ing. Whatever may have been the basis for this conclusion, teaching did
become my profession.

I began as a teaching assistant with courses in remedial algebra (which is
high-school material), analytic geometry, and first-year calculus. Later, I
taught statistics courses at all levels from lower-division introductions to
advanced seminars, and all with enthusiasm, with one proviso: the class had
to be small enough (not to exceed about forty) so that I could get to know the
students individually, or at least to know their names. Lecturing to classes of
hundreds of students, involving no personal contact with most of them, did
not appeal to me, and I was lucky enough to be able to avoid such courses
throughout my career.

Fortunately, we offered a very theoretical introductory course (Stat. 1),
which attracted only thirty to forty students and which I taught regularly (and
for which in the 1960s I wrote a text, jointly with Joe Hodges). The department
generously accepted this as fulfilling my lower-division obligations.

One year, this course netted me a gift. At the last meeting of the semester,
one of the students (who was the quarterback of the football team that
semester), in the name of the class, presented me with a small jeweler’s box.
I opened it and found that it contained a nickel. Not quite knowing what to
make of it, I thanked the class and was about to pocket the coin when a cry
went out, “Don’t put it away, look at it.” The nickel, manufactured by the stu-
dents in an engineering lab, turned out to be two-headed. It memorialized a
favorite example involving such a coin (how many uninterrupted heads
before you should become suspicious?).

Another course led to a different kind of “present.” Once, when correcting
a final as a teaching assistant, I found a blue book containing a five-dollar
bill (worth about fifty dollars in today’s currency), the only time I recall being
offered a bribe. A less-benevolent student action occurred in a graduate
course. A student failing all his courses filed a suit against me and three col-
leagues for $1.5 million, for violating his civil rights. My particular crime was
to have coached other students in the class for the final but to have excluded
him from this preparation. Although the various allegations were entirely a
product of his imagination, and despite the dismissal of the case by one court
after another, he managed (without the benefit of lawyers) to continue
appealing the case to higher courts until one day I received a document from
the U.S. Supreme Court stating that it too had dismissed the suit against me.
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While I eschewed very large courses, I loved the teaching that occurred at
the other end of the spectrum. Working on a one-on-one basis with Ph.D.
students was, for me, the most enjoyable and rewarding aspect of teaching.
At the same time, it was an extension of my research, since these students
would help me explore areas in which I was working at the time.

In addition to classroom instruction and supervision of Ph.D. students,
there exists another form of teaching that I found particularly congenial,
namely the writing of textbooks. Although this may not sound like a very
exciting activity, developing an integrated account of a beautiful body of
work, finding a unifying point of view, searching for the best illustrations and
most useful applications, and striving for the greatest clarity all present
challenges. I enjoyed trying to meet them, and book-writing became a con-
stant companion throughout my professional life and eventually resulted in
five books.

The first, Testing Statistical Hypotheses, was the result of my occasional
early teaching of the first-year graduate course for which no text existed at
the time. The book had a dual purpose. On the one hand I wanted to present
the theory of this branch of statistics as it had been developed by Neyman
and Pearson and augmented by the later ideas of Wald and Stein. But what
gives these theoretical results their interest is that they provide justification
for much of the standard statistical methodology. For this reason, the book
gave a fairly full account of these methods as applications of the general
theory, and it was the combination of these two aspects that constituted the
essence of the volume. The students were introduced to the basic statistical
methods, but not as a bag of clever tricks coming out of the blue but as being
derived systematically from a body of general theory.

The book appeared in 1959 as a volume in the Wiley Publications in
Statistics, where it joined, among others, Wald’s Statistical Decision Functions
and Feller’s Introduction to Probability Theory (both published in 1950),
Doob’s Stochastic Processes and Cochran’s Sampling Techniques (of 1953),
Anderson’s Multivariate Analysis (1958), and Scheffé’s Analysis of Variance
(1959).

After the book was published, I of course wanted to use it as a text for my
own course. However, it was not clear to me how best to do this. It seemed a
waste of time to go through in detail in class what I had labored hard to
express as clearly as possible in print. So I proposed a different scheme: At
each meeting of the class I would outline the next section and then ask the
students to read it carefully and be prepared to discuss any difficulties they
had found at the next meeting. After this discussion, I would assign some
problems. This seemed to me a great way to proceed, but at the end of the
first week a delegation of three members of the class came to my office. They
told me that the book was much too difficult to read on their own, and that
the whole class would drop the course unless I returned to the usual method
of detailed lectures.
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While the experiment was thus a failure, the availability of the book greatly
facilitated teaching the course to a class of diverse backgrounds. It was now
possible to omit some material (for example, the measure theoretic aspects or
some particular application) and to ask interested students to work through
that material on their own.

Once a book is published, it takes on a life of its own. Errors are discov-
ered, reviews appear (not all of them favorable, although rarely as disparag-
ing as that of Wolfowitz mentioned in Section 17), and translations may be
undertaken (in this case into Russian, Japanese, and Polish). A somewhat
unusual development resulted from the more than two hundred problems
given in the book. Many of them dealt with extensions of the theory and
some were quite difficult. In addition, they were not always stated with suffi-
cient precision, and the given hints were sometimes misleading. To correct the
situation, a group of Dutch statisticians went systematically and painstak-
ingly through the whole collection and, in 1984, published the detailed solu-
tions in a book of 310 pages, nearly as long as the text itself.10

When my book on testing first appeared in 1959, twenty-six years after
Neyman and Pearson had put forth their approach (and less than 10 years
after Wald’s book on decision theory), it contained all the theory concerning
hypothesis testing that existed at the time—or at least all of which I was
aware. For this reason, the book served not only as a textbook but also as a
reference work. But, of course, the subject was not standing still. There was
a constant flow of new results and ideas, and gradually the book became out
of date. An updating was called for, and in 1986 I published a second, much-
enlarged edition in which the text had grown from the original 380 to 600
pages. When, fifteen years later, a third edition seemed desirable, I enlisted the
help of a younger coauthor, Joe Romano of the Stanford faculty, and a third
edition by the two of us appeared in 2005, a volume of 780 pages, nearly
twice the length of the original. The principal new material consisted of five
chapters on large-sample theory.

Like the testing book, my second text also had the purpose of meeting
the needs of a particular course. Joe Hodges and I had taken turns teaching
the theoretical introductory course Stat. 1, which we both enjoyed. However,
we did not find any of the existing books suitable as a text. Most of them
were of the “cookbook” variety and devoid of theory. The exception,
Neyman’s First Course in Probability and Statistics (1950), was too compli-
cated and difficult for our audience. In addition, Neyman’s book did not
include many of the topics we wanted to cover, for example, sampling, rank
tests, and point estimation. We therefore decided to write our own version of
a rigorous introduction at the precalculus level. We thought that such a book
would be particularly suitable for liberal arts colleges, where at the time such
courses were being taught by mathematicians rather than statisticians.
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Joe and I found working together on this project very enjoyable. We
debated each section intensely and hammered out the details. Then Joe, hav-
ing better command of English, would go home and take a first stab at
getting things down on paper. But what he showed me the next day often bore
little resemblance to what we had agreed upon. When I confronted him with
this discrepancy, he would explain that it was not his fault: when he had
started writing, his pen had taken over and this is what it had produced.
Sometimes I would accept the new version; at other times I would take it
home to see what my pen would come up with.

At the time I thought that Joe was just being facetious. However, in light
of my own experience with writing since then, I now see that he really meant
what he said. Over and over I have started to write down what I had carefully
planned and thought about, only to find that, as Joe put it, “my pen took
over.” As I would write, new ideas would come rushing in and would divert
me into a different direction. I cannot explain why the act of writing exerts
such a strong influence, but I admit that it is so, and in retrospect apologize
to Joe for not having taken his explanation more seriously.

Eventually, we were able to complete the manuscript, and the book finally
appeared in 1964 under the title, Basic Concepts of Probability and Statistics.
It was quite unconventional in replacing the standard tests by rank tests, and
by including some results on optimal experimental design.

Although the mathematical level of the book was elementary in the sense of
requiring no calculus, its use of mathematics was rather sophisticated and,
together with the theoretical orientation, made it unsuitable for most intro-
ductory courses. We thus did not expect it to become a bestseller. Nevertheless,
for a number of years it did not do badly. It was also translated into Italian,
Danish, and Hebrew, and more recently into Farsi. Unfortunately, the pub-
lisher of Basic Concepts (and of a statistics series I was editing for him) had to
declare bankruptcy. As a result, in 1991 the book went out of print, but it has
recently been republished, with a new preface, by SIAM in its series, “Classics
in Applied Mathematics.”

In 1952, I introduced a course into our curriculum that was to acquaint
our students with the new methodology of nonparametric inference. The
course was intended primarily for students in the master’s program, but it
was also suitable for seniors majoring in statistics. After having taught this
course for a number of years without a suitable text, I began to develop
course notes that eventually grew into my third book, Nonparametrics—
Statistical Methods Based on Ranks. It was published in 1975 in the series
I was editing for Holden-Day, and therefore—like Basic Concepts—went
out of print in 1991 when the company folded. It has now been republished
by Springer.

Unlike my two earlier, theory-oriented, books, Nonparametrics emphasized
methods rather than theory. It thus seemed important to illustrate the meth-
ods with real-life data. Since I was not personally doing any applied work,
I had no examples available, and hence spent a summer in the library looking
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for suitable material. The search turned out more difficult than expected. As
I explained in the preface:

Authors do not publish their data, and when a set of published data is potentially suit-
able, it usually turns out that the sample size is too large or too small, there are too
many or too few ties, the results are too obviously significant or too obviously not, or
that the design or sampling procedure is not what is required to illustrate the particu-
lar point in question.

As a result of this difficulty, the examples I found often came from out-of-
the-way journals such as Psychosomatic Medicine, the International Journal of
Clinical and Experimental Hypnosis, or the American Journal of Physical
Medicine. The publication of these data had a curious consequence. I some-
times came across references to my book in quite unexpected places. On
checking, it turned out that the references were not to some of my text but to
one of these data sets.

These three books were eventually followed by two more, both written at
the urging of my wife, Juliet Shaffer. I shall return to these in Section 59.
However, I was not the only member of the department publishing textbooks.
Early texts at one level or another were written by Blackwell, Brillinger,
Hodges, Loève, Neyman and Scheffé. Perhaps the most influential were the
lower-division introduction, Statistics, by Freedman, Pisani, and Purves
(1978), and the graduate introductory text, Mathematical Statistics, by Bickel
and Doksum. Books such as these have helped to define the subject and to
enhance the reputation of the department from which they emanated.

30. F.N. David (1909–1993)

Berkeley, though a wonderful place in which to live and work, suffered from
one disadvantage: its isolation because of its great distance from the East
Coast and Europe. In the 1950s and 1960s, flying was not as easy and as com-
mon as it is today, and a train from coast to coast took two-and-a-half to
three days. To alleviate the resulting insularity, Neyman arranged frequent vis-
iting positions for a summer session, semester, or year. Among such visiting
faculty were, for example, Cramér, Grenander, Robbins, and Wald.

A different kind of visitor was Neyman’s old student F.N. David, who,
starting in 1970, for a number of years regularly taught a course for us on the
history of statistics.

Florence Nightingale David (who detested her first and middle names and
insisted on being called David) was born in 1909 in Ivington (England) and
received her bachelor’s degree in mathematics in 1931 from Bedford College
for Women. She wanted to become an actuary, but no positions were open to
women. Since she had heard that Karl Pearson had done some actuarial
work, she went to his office on a whim and he agreed to take her on as a grad-
uate student and research assistant. When Pearson retired in 1933, he moved
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to the department of zoology and David went with him. For two years, as she
wrote,11 she had his sole attention.

In the wake of Pearson’s retirement, his department was split between the
Department of Eugenics under Fisher and the Department of Applied
Statistics, of which Pearson’s son Egon was the head. Egon brought Neyman
to University College as a reader, and Neyman took an interest in David and
persuaded her to get her doctorate. (She later claimed that this had been a
waste of twenty pounds, the fee she had to pay for the degree.) Her appoint-
ment as an instructor in Egon Pearson’s department was interrupted during
the war when she worked for various government agencies, but after the war
she returned to University College with a promotion to a readership.

When Egon Pearson retired in 1960, David was the natural person to suc-
ceed him. However, prejudice against women prevented her appointment and
instead an outsider, Maurice Bartlett, was brought in to succeed Pearson.
After seven years, Bartlett left University College for Oxford, and David was
finally offered Egon Pearson’s chair. However, by that time she had commit-
ted herself to take a position at the University of California’s Riverside
campus, and she left for the United States.
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After a year of giving statistics courses at Riverside, she became the head
of a new department of statistics. At the same time, she developed a close
association with the Berkeley statistics department, and in 1969 began to
teach a regular course in Berkeley as visiting professor. She divided her work
between the two campuses, which are several hundred miles apart, by flying
to Berkeley each Thursday evening, teaching a two-hour course on Friday,
and returning to Riverside Sunday night. She had two cars, one at each place,
and eventually also bought a house in Berkeley, together with Evelyn Fix of
the Berkeley statistics department. She retired from Riverside in 1977, but
remained active with work in forestry in Berkeley, work that had started in
1958 when she had come to Berkeley for the summer and had become a con-
sultant to the Forestry Service.

David was a prolific author, with over one hundred papers, and was author
or coauthor of nine books. Her early work was largely computational, result-
ing in her book, Tables of the Correlation Coefficient, computed under the
direction of Karl Pearson, who insisted on twenty–figure accuracy. A strong
interest of hers was combinatoric problems arising in probability theory.
Between 1951 and 1968, she wrote about thirty papers on the subject, some
jointly with Colin Mallows and some with David Barton. Some of this work
was summarized in her book with Barton, Combinatorial Chance, which dealt
with runs, matching, occupancy problems, symmetric functions, and related
problems. Her next book, Symmetric Function and Allied Tables (1966), was
jointly written with Kendall and Barton and continued this combinatorial
line of work.

David also wrote a book in a very different area, the history of probability.
In the preface to Games, Gods, and Gambling (1962), she explains its relation
to the standard work in the field, Todhunter’s History of Probability. “From
the point of view of development of ideas,” she writes, “he does not start
soon enough. He notes the mathematical arguments fairly and with preci-
sion, but this is like embarking on a river when it has become of respectable
size, and paying no attention to the multitude of small streams and tributar-
ies of which it is the united outcome.” Accordingly, the book stresses the early
history and covers the development of probabilistic ideas from antiquity to
De Moivre.

David had hoped to later write a monograph on Laplace, but that did not
happen. This is a great pity, as is the fact that she did not write about the
period she had herself witnessed, that of Karl Pearson, Fisher, Gosset
(Student), Neyman, and Egon Pearson. Her sense of history made her a per-
ceptive observer of the contemporary scene, and the following comments
from her 1989 conversation with Nan Laird in Statistical Science gives a tan-
talizing taste of what she might have told:

I think the period between the 1920s and 1940s was really seminal in statistics and I saw
all the protagonists from a worm’s eye point of view. It’s now been 50 years. I am far
enough away to be able to see the pattern without having to take sides . . ..
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Gosset was an extraordinary man. I think he was really the big influence in statistics
. . .. Most extraordinary person. He asked the questions, there’s no question about
that. He asked the questions and Pearson or Fisher put them into statistical language
and then Neyman came to work with the mathematics. But I think most of it stems
from Gosset. I had enormous respect for him, he was a great man.

Ten years later, when I reread this interview, I became intrigued by her
assessment of Student’s influence, and I investigated it in a 1999 paper
based on Gosset’s correspondence with Fisher and Egon Pearson. It was
fascinating to follow the gradual development of Fisher’s normal
theory tests and of the Neyman-Pearson theory, and Student’s impact was
indeed seminal.

Because of her interest in the history of probability, the Berkeley statis-
tics department in 1970 asked David to give a course in this subject. The
course, which met for two hours on Fridays, was given by her regularly for
a number of years. It was one way to satisfy a statistics requirement and it
soon became very popular, with a steadily increasing enrollment that even-
tually rose to five hundred students. There were two reasons for this pop-
ularity. One was that David was a lively and entertaining lecturer; the
other, which I am afraid was an even more important reason, was that she
demanded very little of the students. She assigned no homework and there
were no exams. The only requirement was the final, an essay written at
home on any topic of some relevance. Toward the end of my term as chair,
I began to hear rumors that a brisk market had developed in essays recy-
cled from previous years. As a result, we decided soon after to discontinue
the course.

David had a forceful personality and you could count on her telling you
what was on her mind. Her style can be illustrated by an incident that, more
than thirty years later, I still vividly remember. As I was standing in our
department’s coffee room, she came up from behind and hit me so hard on
the shoulder that I nearly dropped to my knees. “Dear boy,” she said (that’s
what she always called me), “all you need is a straw between your teeth to be
the perfect hayseed.” I did not live up to her sartorial standards for a depart-
ment chair.

31. Students: From Colin Blyth (b. 1922) 
to Javier Rojo (b. 1951)

The papers and books produced by members of the Berkeley department,
as well as the Berkeley symposia, all contributed to its reputation as an
international center of statistics. However, perhaps no factor played a
greater role in this regard than the almost five hundred Ph.D. students from
all over the world who have graduated from the department since Neyman’s
arrival in 1938.
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Personally, I found working with Ph.D. students very rewarding.
Between the first, Colin Blyth, who obtained his degree in 1950, and the
last, Javier Rojo, who completed his in 1986, I supervised close to
fifty students, although not all of them took their official degrees at
Berkeley. They greatly enriched my research, and several of them became
lifelong friends.

I usually first met these students when they took a course from me, par-
ticularly the main first-year graduate course in theoretical statistics. In the
early years, this course was usually taught by Neyman, who based it largely
on his own work. When he took a leave in 1946, he assigned it to me and,
having just completed my own graduate studies, I closely followed his
script. But when asked to teach it again in 1948, I modernized it by incor-
porating some of Wald’s decision theory and the invariance considerations
I had learned from Charles Stein. One of the students that second time was
Colin Blyth, and what he did in connection with this course profoundly
affected my life and career. A letter he wrote many years later describes
what happened.

I attended your course 260A in testing in the fall of 1948 and wrote up careful
notes. (After each lecture I went home and wrote up the rough notes I’d taken in
class, putting them into readable form, and settling to my own satisfaction any
details omitted or points I hadn’t been clear about in class.) Some time in the spring

120 6. The Berkeley Statistics Department I



of 1949, you saw these notes (I don’t remember how this happened, and can think
of no reason that it might have) and suggested mimeographing them for other stu-
dents. I preferred to attend your course again in the summer of 1949 and put them
in a form more suitable for distribution, and this we did. I wrote them up, you read
them carefully and made numerous suggestions, and after a final revision they went
to the typist.

The notes were mimeographed and sold at cost, first by the Statistical
Laboratory and later by the university’s bookstore. The next year they were
followed by a second set of notes by Colin, prepared in the same way and
based on the other part of my course, which dealt with the theory of estima-
tion. As our students graduated and took up positions at other universities,
they recommended the notes or used them in their courses. As a result, orders
started arriving from other places. In the absence of any other systematic
treatment of this still fairly novel material, the notes gradually became
something of an underground text.

The reception of the testing notes suggested that they satisfied a need
that a fleshed-out book could fill better. Consequently, I began to develop
a full treatment of hypothesis testing, for which the notes served as a
skeleton. However, it took me a decade to complete the project. I wrote
and rewrote, trying to find better ways to explain, to reach greater clarity,
and to include more applications. And even after the manuscript was
essentially in final form, I found it hard to let go. Publication is so final,
and the next issue of the Annals might bring some new results that should
be included.

The push to call a halt to this stalling came from an unexpected source.
Neyman had not been sympathetic to this project. After I taught the the-
ory course for the second time, he realized that I had included much mate-
rial that was not part of his presentation. He became quite upset and told
me that he would not let me teach the course again (and in fact this
embargo lasted until nearly ten years later, when David Blackwell suc-
ceeded Neyman as department chair). But now he said rather gruffly that
I had dawdled over the book long enough and that the time had come for
me to get off the dime. And so in 1959, Testing Statistical Hypotheses was
finally published by Wiley.12

It would have been natural to follow this publication by also converting the
Blyth estimation notes into a book. But such a project did not appeal to me
at the time and had to wait for more than twenty years, until in 1983 I finally
published the companion volume, Theory of Point Estimation.

While he was working on the notes, Colin one day told me that he had
found the solution to an open problem that I had mentioned in class. It was
the fact (stated more precisely in Section 13) that the average X

_
of a number
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of normally distributed measurements is admissible. Blyth’s result not only
closed an important gap in the theory, but his method of proof became one
of the basic ways of attacking such problems and is often referred to as
Blyth’s method.

This work formed the core of Blyth’s thesis, with which he obtained his
Ph.D. in the spring of 1950, thus becoming my first Ph.D. student. He went
on to a distinguished career, first at the University of Illinois and later at
Queen’s University in Kingston, Ontario.

However, he had other interests and talents besides statistics. In 1994, he
published a book, Gaelic Names of Pipe Tunes, which, according to one
review, “achieved very well its purpose of making the Gaelic heritage of
piping more accessible for pipers.” It was the result of spending, as Blyth
once wrote, “hundreds of hours playing the pipes in marching bands, and
marching or hiking to English and Gaelic and German hiking songs.” To
publish it, he set up his own publishing company, Iolair, which, he tells me,
is Gaelic for “golden eagle.”

After many years of little contact, we started corresponding again when, in
the early 1990s, Colin worked on a translation of Heinrich Hoffmann’s 1844
German children’s book, Struwelpeter. He produced not only an enjoyable
verse translation but provided more hopeful endings to the stories, which in
their original versions ended in gruesome consequences of misbehavior.

Struwelpeter was highly successful, and Colin followed it with a translation
of Max and Moritz, the most popular book by the German poet and
humorist Wilhelm Busch. Although many friends argued strongly against
this course, he again made a radical change in the ending. Both these books
were published by Iolair.

Colin and I remained in contact and my wife and I had a most enjoyable
stay with him and his wife, Valerie, when we were invited to give some lectures
at Queen’s University.

After Blyth’s successful degree, supervision of Ph.D. students became a
regular part of my teaching. The nature of the supervision varied greatly
according to the ability of the student. At one extreme, there were students
who found their own problems, worked on them independently, and then one
day presented me with a draft of a thesis, which in some cases contained very
original and important results. In such cases, the term supervisor gives an
entirely wrong picture. At the other end were students who from week to
week had to be given a small piece to work out, so that supervision came
close to dictation. The great majority of theses fell somewhere between these
extremes.

The students also greatly varied in their country of origin. Most were
American, but many came from Asia, particularly India, Taiwan, and Korea;
others came from Europe: Norway, France, and Germany; and still others
came from Israel.

In most cases, the students worked on problems suggested by me, which
typically were part of my own research program. But many, once they had
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completed their degrees, went in entirely different directions. In particular,
although neither I nor most of my Berkeley colleagues supported the
Bayesian approach or even paid much attention to it, quite a number of my
students later became Bayesians.

On a personal basis, the relationships with my students varied greatly from
being purely formal to becoming quite close. Twice I was asked to walk a
bride to the altar, standing in for their (Asian) fathers, who were unable to
come to the U.S. Some of my students became lifelong friends and occasion-
ally, later, collaborators. I wrote joint papers with Wei-Yin Loh and Fritz
Scholz, and for many years collaborated with Peter Bickel, who, after obtain-
ing his degree, became a member of our faculty.

A close relationship also developed with my last student, Javier Rojo. In
1986, he wrote a thesis on L-unbiasedness, a general decision-theoretic con-
cept I had introduced more than thirty years earlier, and which reduced to the
classical concepts of unbiasedness in standard testing and estimation prob-
lems. In his thesis, Javier undertook a thorough investigation of this concept.

After completing his degree, Rojo joined the mathematics department of
the University of Texas at El Paso (UTEP), but continued working with me
during extended visits (often with his family) in each summer from 1988 to
1992. Some of this work resulted in a joint paper, “Invariant Directional
Orderings” (1992), which contributed to the understanding of a topic that
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had long interested me and on which I had published before: the ordering of
random variables and their distributions. It is concerned with the question
of what we mean by saying that a random variable Y is larger than another
variable X, for example that women live longer than men. In 1992, on the
occasion of my seventy-fifth birthday, Javier put together a very nice volume
of reminiscences by many of my former students.

Although other attractive job possibilities opened up, Javier found it diffi-
cult to leave El Paso, where both his and his wife’s families lived in closely
knit, large, extended families. Finally, in 2001 he accepted a very attractive
offer of a professorship at Rice University in Houston.

Soon after his move to Rice, Javier approached me with a very ambitious
plan: a symposium organized jointly by him and Victor Perez-Abreu, direc-
tor of Centro de Investigationes Matemáticas (CIMAT). It would follow the
model of the Berkeley Symposia, but be devoted primarily to the role of opti-
mality, be held every two years, and carry my name. I thought it was a bit too
much and demurred but eventually gave in, partly because I did not believe
that they would really be able to pull it off. But I underestimated the energy
and resourcefulness of these two organizers. The first symposium took place
at CIMAT in Guanajuato (Mexico) on May 23–25, 2002, and was a wonder-
ful occasion. With slightly over eighty participants, it was small enough to
provide a certain intimacy; the level of the talks was high, and the social and
cultural events marvelous. The proceedings of the symposium appeared in
2004 and provide more detail.

As originally planned, the second symposium took place in 2004 at Rice
University, and matched the expectations raised by the first. The proceedings
appeared in 2006. A third symposium took place in 2007 at Rice.

The friendships with Colin Blyth, Javier Rojo, and many other of my stu-
dents have been one of the great pleasures of my life, and has greatly enriched
it in many unexpected and wonderful ways.
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7
The Berkeley Statistics 
Department II: The Second
Generation

The preceding chapter discussed Neyman’s struggle that ended with the
establishment of the statistics department in 1955, and the subsequent devel-
opment of the department up to 1976. It provided an account of the faculty
members hired by Neyman—what might be called the first generation. This
chapter sketches the careers of the four members of the second generation to
whom I was closest.

The account of the department given in these two chapters suffers from a
serious omission. It makes no mention of the department’s role with regard to
probability theory. From the start, Neyman had realized the need for instruction
in advanced probability for his students. Since the mathematics department was
offering no course in the subject, in his third year in Berkeley he added a 
year-long graduate course in advanced probability theory to the statistics
offerings. For a number of years, the course was taught on a hit-or-miss basis,
by a visitor, a member of the mathematics department, or by whomever
Neyman could get a hold of for this task. Finally in 1948, ten years after his
arrival in Berkeley, he was able to appoint an outstanding probabilist to his
faculty. This was Michael Loève (1907–1979), a student of the great French
probabilist Paul Lévy.

The gradual (rather slow) development of a substantial probability pro-
gram to an outstanding probability center within the statistics department
and, more generally, of probability theory as an important separate subject
in the United States, is a story of its own. Since my contact with it was quite
superficial, I have not included an account of it here.

32. Peter J. Bickel (b. 1940)

Since the time I joined Neyman’s Statistical Laboratory in 1942, the members
of the lab (and later the department) have formed the core of my professional
community. In the preceding chapter, I wrote about Neyman and the first
generation after him, the group that was hired by him. In addition to myself,
it included Blackwell, Fix, Hodges, Le Cam, Scheffé, Scott, and Stein. I shall
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now turn to the second generation and begin with Peter Bickel, who over the
years became one of my closest friends and a longtime collaborator.

Bickel came to the Berkeley mathematics department after first studying
physics at Cal Tech. In reminiscences on the occasion of my seventy-fifth
birthday,1 he described his move to statistics:

In 1960, as a graduate student in mathematics, I took Joe Hodges’s senior statistical
inference course. Joe’s brilliant problem-oriented teaching lured me into statistics.
The following year, I took the graduate inference course from E.L. Lehmann, the
system-building partner of Hodges and Lehmann. The generality and power of
Erich’s point of view and the innumerable examples he covered astonished me.

I asked Erich to pose a thesis problem for me.

Peter obtained his degree in 1963 with a thesis on nonparametric methods
in the multivariate case. Recognizing his great talent, the department offered
him a position, and he has been a member of the statistics faculty since then.

He quickly became a prolific researcher. His (so far) close to 150 papers
cover a broad spectrum of problems. His work on robustness led to his
being invited to spend the year 1970–71 in Princeton as one of four principal
investigators in what became known as “the Princeton robustness year.”

1 In an unpublished volume edited by J. Rojo.



Some of the results of this work were published in the multiauthored book,
Robust Estimates of Location (Andrews et al., 1972). Additional material can
be found in a paper by Hampel (1997).

A second area of special interest to Bickel was adaptive estimation, which
was the topic of his Wald Lectures in 1981 and eventually led to a book,
jointly authored with his collaborators Klaassen, Ritov, and Wellner,
Efficient and Adaptive Estimation for Semiparametric Models (1993).

A problem that occupied Bickel throughout much of his research was to
provide more detailed approximations through higher order expansions.
Some of his most important results in this area were obtained in joint work
with van Zwet. Other topics on which he worked were the distribution of
order statistics, inference in restricted parameter spaces, minimax procedures
in various settings, properties of the bootstrap, and more recently hidden
Markov chains. In the later stage of his career he has also become interested
in some applied problems, particularly in the areas of biology, traffic, and
transportation.

Bickel has enjoyed collaborating with others, and has written joint papers
with more than forty coauthors. Some of his principal collaborators were
Yahav, Freedman, Ritov, van Zwet, and myself. Of his joint work with me,
I shall only mention a series of five papers that we jointly wrote between 1973
and 1979 on a concept we called descriptive statistics for nonparametric mod-
els. The idea is most easily explained by the example of measures of location.
For a symmetric distribution it is natural to specify its location by its center
of symmetry, and the problem of how best to estimate this center has been
studied extensively. For example, the Princeton Robustness study referred to
previously considered the properties of sixty-eight different estimators.
However, when the distribution is not symmetric, many different measures of
location might be used to specify the center, such as the mean, the median, or
a symmetrically trimmed mean. Peter and I investigated the conditions such
measures should satisfy, and compared the efficiency with which they could
be estimated. In a similar manner, we treated measures of scale and two other
examples. Further cases were later taken up by others.

Another important form of collaborative research has been Peter’s super-
vision of Ph.D. students. So far, the impressive number of fifty-two students
have taken their degree with him, and the total number of his academic
descendants is over two hundred.

In addition to his research, Peter has been also very active in administra-
tion, both within the department and nationally. After serving as vice chair
of the department during my term as chair, he served as chair from 1976 to
1979, and from 1980 to 1986 was dean of physical sciences. For the next ten
years, he returned to administrative work within the department, first as
director of the Statistical Laboratory, and then for a second term as chair.
In 1998, he was appointed to a three-year term as chair of the Committee on
Applied and Theoretical Sciences and Applications of the National Research
Council (NRC), and in 2000 he took on the even broader responsibility of
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chairing the NRC’s Board on Mathematical Sciences and Applications, a
surprising appointment for a statistician.

In recognition of his work, Peter has received many honors, including election
to the National Academy of Sciences and the Royal Netherlands Academy of
Arts and Sciences, an honorary degree from the Hebrew University of
Jerusalem, and a MacArthur Foundation Fellowship. For his sixty-fifth birth-
day, his student Jianqing Fan organized a conference in Princeton that was
attended by more than 150 friends, colleagues, and students. In addition to the
talks, which have been published in a festschrift, the meeting was highlighted by
a surprise: the Dutch government bestowed on Peter the title of Knight
Commander of the Order of Orange and Nassau.

33. Kjell Doksum (b. 1940)

Three years after Peter, another student of mine joined our faculty. Kjell
Doksum had come to statistics in a rather unusual way. At eighteen, he had left
his native Norway for San Diego to learn from a relative how to become a
fisherman. However, that career proved to be impossible for him when it turned
out that he suffered from violent seasickness. So instead he enrolled at San
Diego State College, majoring in mathematics. There, the statistician Chuck
Bell got him interested in mathematical statistics. After obtaining his bachelor’s



degree in San Diego in 1962 and his master’s in 1963, Kjell transferred to
Berkeley. There, he received his Ph.D. degree two years later, with an outstand-
ing thesis in which he found a very surprising nonparametric optimality prop-
erty of the Wilcoxon test. He followed this with a year of postdoctoral research
in Paris and then joined our faculty as assistant professor in 1966.

Doksum was not my first Norwegian student. He had been preceded by
Arnljot Hoyland, who (together with his wife, Liv) became a close friend, and
whom I visited a number of times in Trondheim. After Kjell and Arnljot, sev-
eral other Norwegian students took their degrees at Berkeley, so that for a
while the majority of chairs of statistics in Norway were held by professors
trained at Berkeley. Kjell kept in close contact with the Norwegian statistical
community, spending the years 1970–71 and 1975–76 in Oslo. In recognition
of his contributions to Norwegian statistics, he was elected to the Royal
Norwegian Society of Sciences and Letters.

After completing his thesis, Kjell continued his work on asymptotic
optimality of nonparametric procedures with a number of additional publi-
cations. As a result of this work, he became interested in nonparametric Bayes
procedures, a field to which he made a number of important contributions,
including in particular his papers “Tailfree and Neutral Random Probabilities
and Their Posterior Distributions” (1974) and “Constant and Robust Bayes
Procedures for Location Based on Partial Information” (1990, joint with Lo).

Kjell also moved into other areas, especially relating to survival analysis
and to transformations. Much of his work was carried out in collaboration
with several different coauthors. In 1976, he published, jointly with Peter
Bickel, a graduate text, Mathematical Statistics: Basic Ideas and Selected
Topics, which soon became the standard text at its level and was translated
into Russian and Chinese. The first volume of a greatly expanded second
edition appeared in 2000, and the second volume is in preparation.

Another collaborative effort of Peter and Kjell, in which they were joined
by Joe Hodges, was to edit a Festschrift for my sixty-fifth birthday. It was a
splendid volume with many outstanding papers close to my interests.

When his wife, Joan Fujimura, a historian of science, accepted a tenure
appointment at the University of Wisconsin, Kjell took early retirement and
joined the Wisconsin statistics department. We miss him.

34. David R. Brillinger (b. 1937)

The other two members of this second generation on the Berkeley statistics
faculty who were close to me are both Canadians. David Brillinger received his
B.A. in mathematics from the University of Toronto, and followed this with
graduate studies at Princeton. Under the supervision of John Tukey, he
obtained his Ph.D. there in 1961. He remained in Princeton for another three
years, both as lecturer in the university’s mathematics department and as a staff
member at Bell Telephone Laboratories. From 1964–69 he was first lecturer,
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then reader, at the London School of Economics. Since 1970, he has been my
colleague at Berkeley, where he served as department chair from 1979 to 1981.

David’s work, published in close to two hundred papers, centers on time
series analysis, a subject he studied with John Tukey at Princeton. He not
only made contributions to the theory of the subject, but also became an
expert in some of its applications. Thus, he devoted his Wald Lectures to
(1983), “Some Statistical Methods for Random Process Data from
Seismology and Neurophysiology,” and his Fisher Lecture (1991), “Nerve
Cell Spike Train Data Analysis: A Progression of Technique.” He served on
the advisory committee for Berkeley’s earthquake engineering research center
(1993–97), and since 1997 he has been a member of the Pacific Earthquake
Engineering Center. From 2003 to 2005, he chaired the advisory committee
of the Berkeley Seismographic Laboratory.

Time series is a subject about which I know very little, and as a result I had
little contact with David’s work. An exception occurred in connection with
David’s 1975 book on time series. It had been very successful and had been
translated into Russian, but after a few years it went out of print. Since I
thought highly of the book, I arranged for my publisher, Fred Murphy of
Holden Day, to reissue an expanded version in 1981.

For my 1983 Festschrift, as a special favor, David wrote an enjoyable
paper close to my interests on a general class of models for which least squares
provides useful estimates. Another paper of his which I greatly admire is his



35. David Freedman (b. 1938) 131

memorial article: “John W. Tukey: His Life and Professional Contributions.”
This forty–page definitive survey of Tukey’s life and work was clearly a labor
of love. It combines a broad perspective and careful scholarship with David’s
personal experience as a student and lifelong friend of Tukey.

Brillinger has been much in demand as editor, and the positions he held
give an indication of the breadth of his interests and expertise. He was editor
of the International Statistical Review from 1987 to 1991, and served in vari-
ous editorial capacities for Statistical Science, the Brazilian Journal of
Probability and Statistics, for Case Studies in Biometry, the Canadian Journal
of Statistics, the Journal of Theoretical Neurobiology, the Journal of Time
Series Analysis, and the magazine Chance.

In addition to this editorial work, Brillinger was elected president of the
Institute of Mathematical Statistics (1994–95) and of the Statistical Society
of Canada (2001–02). In recognition of his work, he received the Gold Medal
of the Statistical Society of Canada and honorary doctorates from the
University of Western Ontario and the University of Waterloo. In 1993 he
was elected to the American Academy of Arts and Sciences. He became a for-
eign member in 2004 of the Norwegian Academy of Science and Letters, and
in 2006 of the Brazilian Academy of Sciences.

35. David Freedman (b. 1938)
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David Freedman, who succeeded Brillinger as department chair, has achieved
great success not only in research but also as consultant and as principal
author of a text that revolutionized the teaching of elementary statistics. Like
Brillinger, Freedman was born in Canada and obtained his Ph.D. at
Princeton. However, his thesis supervisor was not Tukey but the probabilist
Will Feller. After a fellowship year at Imperial College (London), Freedman
joined our faculty in 1961.

Freedman’s research extends into many areas, of which I shall mention
only a few. One of his early contributions was an investigation of the
asymptotic behavior of Bayes estimates. Among other results, he provided a
counterexample to the commonly held belief that as the sample size gets large
the evidence overpowers the initially held beliefs and the Bayes estimate
becomes independent of the prior distribution. He continued his work in this
area, with most of the later papers being joint with Persi Diaconis.

A new challenging area of research arose from Efron’s publication in 1979 of
the bootstrap approach (discussed in Section 40). Freedman became interested in
this new method, and made a number of important contributions to its theory.
Besides this and much other work in mathematical statistics, Freedman’s
research also encompassed a second, quite different and more applied area.
During the last twenty-five years, he has devoted much of his energy to a cri-
tique of statistical work based on observational (rather than experimental) stud-
ies in the social and health sciences. Some of the resulting papers are focused on
a single case. For example, “Econometrics and the Law” (joint with Daggett) is
concerned with the arguments in an antitrust case brought by tomato growers
in which Freedman had appeared as an expert witness for the defense. He criti-
cized the method used to establish damages:

An econometric analysis may seem quite attractive. However, on closer examination
the econometric analysis may turn out to be no more than a series of unsupported
assumptions, even if they are expressed in formidable equations.

Another example is his paper, “As Others See Us: A Case Study in Path
Analysis.” It is a critique of a book by Keith Hope that dealt with the effects
of education on class mobility. Freedman’s assessment is similar to that in the
first example cited:

One problem noticeable to a statistician is that investigators do not pay attention to
the stochastic assumptions behind the models. It does not seem possible to derive
these assumptions from current theory, nor are they easily validated empirically on a
case-by-case basis.

Freedman concludes the paper by stating:

My opinion is that investigators need to think more about the underlying process, and
look more closely at the data, without the distorting prism of conventional (and
largely irrelevant) stochastic models. Estimating nonexistent parameters cannot be
very fruitful. And it must be equally a waste of time to test theories on the basis of
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statistical hypotheses that are rooted neither in prior theory nor in fact, even if the
algorithms are recited in every statistics text without caveat.

Others of Freedman’s papers are more general and include several examples,
but the conclusions are the same. The 1997 paper, “From Association to
Causation via Regression” ends with this admonition:

Can quantitative social scientists infer causality by applying statistical techniques to
correlation matrices?. . . As I read the record, correlation methods have not delivered
the goods. We need to work on measurement, design, theory. Fancier statistics are not
likely to help much.

In a paper with the provocative title, “Statistical Models and Shoe
Leather,” Freedman discusses not only his concern about the misuse of sta-
tistical methods but also examples of successful research, in particular his
favorite success story, Snow’s discovery of the source of the cholera epidemic
of 1853–54. For this purpose, besides assembling a varied collection of
detailed information, Snow identified the source of the water supply for the
houses of all 1422 cholera victims. Freedman concludes:

The force of the argument results from the clarity of the prior reasoning, the bring-
ing together of many different lines of evidence, and the amount of shoe leather Snow
was willing to use to get his data.

Shoe leather! That is Freedman’s alternative to the methodology he was
criticizing: better data, more substantive knowledge and input, and multiple
studies under varying conditions as had been used, for example, in establish-
ing smoking as a major cause of lung cancer and other diseases.

David also practiced what he preached, by providing statistical advice as
consultant or expert witness in more than one hundred cases. In many of his
appearances as expert witness, he testified for the defense of firms or agencies
against claims of employment discrimination or wrongful termination by
showing that the statistical models used to justify the claims were based on
unwarranted assumptions.

An example of this work is his expert testimony for the U.S. Bureau of the
Census. The State of New York had sued to force the Bureau to adjust its
1980 population figures for an undercount. The proposed adjustment was a
regression model. In the resulting trial, a number of statisticians testified for
each side, with Freedman testifying for the defense.

He gave an account of the proceedings and issues in a paper, “Regression
Models for Adjusting the 1980 Census” (jointly written with Navidi), which
appeared, with discussion, as the opening paper of volume 1 (1986) of
Statistical Science. In it, the authors list seven assumptions that underlie the
model on which New York based its claim, and state that

New York’s experts did not make these assumptions explicit, nor did they give any
empirical foundation for them . . . . Granting assumptions (1–7), New York did have
a good way of adjusting the Census. However, no evidence was presented to show
these assumptions were true, and all seemed suspect.
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A university department is, within given boundaries, essentially a self-governing
body that depends for its well-being on the willingness of its members to take
on the necessary administrative duties. As was the case for most of us, David
Freedman did his share of this work, as graduate adviser, vice chair, and for five
years (1981–86) chair of the department.

But perhaps his most significant contribution to the department was his
development, starting in 1968, of a new introductory (lower-division) course
to replace the cookbook course that Scheffé had characterized as being suit-
able for students who would use statistics but had no need to understand it.
The revised course emphasized statistical thinking rather than routine appli-
cation of formulas that had little meaning for the students, and it minimized
the use of mathematical symbols. Centered on interesting examples, it tried
to pique the students’ curiosity and to show the valuable role statistics could
play in real-life situations.

After teaching the course for ten years to large numbers of students, David
published (jointly with his colleagues Bob Pisani and Roger Purves) a text,
Statistics, which was, and still is, phenomenally successful. It is now in its a
fourth (2007) edition.

In 2005, Freedman published another book, Statistical Models—Theory
and Practice. “The contents of the book,” the author states in the preface,
“can fairly be described as what you have to know in order to start reading
empirical papers in the social and health sciences. The emphasis throughout
is on the connection—or lack of connection—between the models and the
phenomena.”

The book explains the standard methodologies of regression and path
models, and illustrates their use on many real examples of both appropriate
and inappropriate applications.

The high standards Freedman advocates for statistical work he also requires
in other areas, for example the qualifications for a Ph.D. Remembering my
own unimpressive thesis, my attitude is more lenient, and related differences of
opinion have occasionally arisen in other personnel decisions. Despite these
disagreements, our relations always have been friendly. We have invited each
other to meals, and on various occasions have given each other support.
I wrote comments for the back covers of some of his books, for example, and
he wrote a strong letter recommending the reissue of one of mine.

Freedman’s work has been honored in various ways. Early in his career, he
received a coveted Sloan Fellowship; in 1991, he was elected to the American
Academy of Arts and Sciences; and in 2003, he received the prestigious John
J. Carty Award for the Advancement of Sciences.



The Stanford statistics department was founded in 1948, ten years after
Neyman started a statistics program in Berkeley but seven years before that
program became an independent department. Since its beginning, the
Stanford department has been a friendly rival—we often compete for the
same students and the same faculty—but also an invaluable source of
strength for our Berkeley group. The rivalry is accentuated by the fact that for
many years now our departments have been ranked as the top two statistics
departments in the country, sometimes in one order, sometimes the other, and
sometimes tied.

The proximity of the two institutions—they are only a little over an hour’s
drive apart—has led to much interaction. This is illustrated by the fact that
eight of the subjects of this book are, or for many years were, members of the
Stanford department: Stein, Bowker, Chernoff, Moses, Efron, Olkin,
Anderson, and Diaconis.

One regular joint program of the two departments has been the Berkeley–
Stanford Colloquium (by some at Stanford called the Stanford–Berkeley
Colloquium), which has now been in existence for over fifty years. It meets
regularly once a semester, alternately at the two institutions, with the guests
providing the speaker. The colloquium talk is preceded by refreshments and
followed by a reception. There are also other occasions at which members of
the two groups get together, such as celebrations of round-number birthdays
and other important milestones.

One result of this continuing contact is much collaborative work. The
series of Diaconis–Freedman papers mentioned in Section 35 is one example.
Joint papers that I wrote with Chernoff, Diaconis, and very recently Arrow
provide another. Of great importance to me has been my five-year collabora-
tion with Joe Romano on the third edition of my testing book.

I have a special tie with Stanford, since in 1951–52 it gave me refuge when
I needed it (see Section 19) and even offered me a permanent position. This
chapter is concerned with three Stanford colleagues who were important to
me in various ways and have not been discussed elsewhere: Abe Girshick,
Lincoln Moses, and Ted Anderson.

8
The Stanford Statistics Department
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36. Meyer Abraham (Abe) Girshick (1908–1955)

A key figure in the development of the Stanford department was Abe
Girshick. As Al Bowker, the founding chair of the department, states1 about
his early conversations with Stanford president Wallace Sterling:

In some ways the turning point was the availability of Abe Girshick to join the depart-
ment. He was then at RAND Corporation. Girshick had a remarkable mind with a
deep interest in theory, but firmly grounded in applications from his government expe-
rience at the Department of Agriculture and wartime work at SRG [Statistical
Research Group].

And in his obituary (joint with Blackwell) of Girshick, he continues:

His intellectual leadership in both the statistics department and projects, and enthusias-
tic interest in scholarly work, were major factors in the growth of statistics at Stanford.
Most of the work produced by the statistics department represents his ideas or spirit.

Abe Girshick was born in Russia and came to the United States at age 15.
In 1934, he took up graduate studies at Columbia, where he worked with
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Hotelling. After leaving Columbia in 1937, he spent the next ten years in
various government positions at the Department of Agriculture, the Census
Bureau, and at the RAND Corporation. In 1948, he joined Al Bowker at
Stanford, and together they led the new department of statistics there.

Much of Girshick’s early work was in multivariate analysis. (A list of his
publications is provided in Blackwell’s and Bowker’s 1955 obituary.)
Outstanding is his 1941 study (with O’Brien and Hunt) of body measure-
ments of 147,000 American children to help manufacturers develop
improved sizing of children’s clothing.

His interests changed as a result of his one-year service during World War II
with the Statistical Research Group at Columbia University. There he met
Wald and was greatly impressed by Wald’s work on sequential analysis and
decision theory. Some of Girshick’s papers resulting from this new interest were
close to my own concerns. This was particularly the case with the fundamental
paper (joint with Arrow and Blackwell), “Bayes and Minimax Solutions of
Sequential Decision Problems” (1949), and the 1951 paper (joint with Savage),
“Bayes and Minimax Estimates for Quadratic Loss Functions.”

Girshick also became interested in the idea of invariance. In my writing,
I had emphasized the importance of this principle for testing and estimation.
Girshick, in his 1954 book with Blackwell, Theory of Games and Statistical
Decisions, provided its first decision theoretic treatment.

I saw much of Abe during my year at Stanford, and two events from that
period stand out in my memory. At social gatherings he frequently told
Jewish stories, which everyone greatly enjoyed and of which he seemed to
have an endless supply. Once he was asked how he could come up with so
many wonderful tales. “Oh,” he said cheerfully, “that’s easy: I get them from
Ausubel’s Treasury of Jewish Humor.”

The other event occurred on the last day of my year at Stanford. As I was
making my goodbyes, Abe, who was the president of the Institute of
Mathematical Statistics, took me aside. It was not official yet, he told me, but Ted
Anderson was retiring as editor of the Annals and the institute was planning to
ask me to succeed him. The story of my editorship is told in Chapter 5, but this
was the big moment. America had truly become for me the land of opportunity.

It was only three years later that Abe Girshick quite unexpectedly died
after a short illness. It is sad that this gifted man, who had so much vitality
and enthusiasm, died at the early age of forty-six.

37. Lincoln Moses (1921–2006)

The connection of Lincoln Moses with Stanford preceded by more than ten
years the founding of the Stanford statistics department by Bowker and
Girshick. It began in 1939, when he was accepted at Stanford as a junior
after two years at a community college. Despite a strong interest in science
and mathematics, he decided to major in social science because, “I thought
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the world doesn’t need more science, it needs more social science.”2 His
decision to become a statistician was the result of a course in advanced psy-
chological statistics he took from Quinn McNemar, who, however, told him,
“there was no way to do it [i.e., become a statistician], really. I would become
a mathematician, or an economist, or a psychologist, and then work in sta-
tistics.” This reflects the fact that at that time statistics did not exist as a pro-
fession, a situation that began to change a few years later, largely as a result
of World War II.

After war service and two years in the federal government, Moses returned
to Stanford in 1947 as a graduate student in mathematics, but he transferred
to statistics when it became a separate department the following year. He
obtained his Ph.D. in 1950 with a thesis in sequential analysis, under the
supervision of Herman Rubin and Abe Girshick. His first academic appoint-
ment was as assistant professor of education at Teacher’s College, Columbia
University, where he remained for three years. But then a position opened up
at Stanford. It was an assistant professorship split between the department of
statistics and the medical school. Although it involved a substantial cut in
pay, Moses accepted the offer, since he was interested in applying statistics to
medical research and because he was not happy with the working conditions
at Teacher’s College.

138 8. The Stanford Statistics Department

2 This and later quotes in this section are taken from Brown and Hollander (1999).



“At that time,” he wrote later, “it was very unusual, although not unknown,
for a medical school to have a statistician.” In fact, the medical profession
had been slow to accept a statistical view of its work. But once Moses was
available, he was found to be so useful that he soon was overwhelmed with
consulting work. As a result, he was gradually able to build up a small
biostatistics group within the medical school and with close relations to the
statistics department.

Moses’s career involved a substantial amount of administrative work. From
1964 to 1968, he served as executive head of the statistics department, and from
1969 to 1975 as dean of the graduate division. For two-and-a-half years
(1978–80), he took leave from Stanford to serve as the first head of the Energy
Information Administration, in charge of statistics for the U.S. Department of
Energy. He later joked that he had expected this position to require only minimal
statistical expertise, that knowledge of the mean and standard deviation would
suffice. What turned out, he claimed, was that the standard deviation really had
not been needed—the mean alone was enough.

This reminds me of another Moses story. In the early 1980s, we served
together on the visiting committee for the Princeton Statistics Department.3

We were staying at the same hotel, and the first morning we had breakfast
together. Lincoln ordered a soft-boiled egg but the waitress apologized. They
weren’t serving boiled eggs this morning, she said, since their egg-cooking
machine was out of order. After she left, Lincoln remarked, “We have one of
those machines at home; we call it a P-O-T.”

At the ensuing committee meeting, we were faced with a more serious prob-
lem than boiled eggs. The administration, discouraged by dissension in the fac-
ulty and low enrollments, was proposing to abolish the Department of Statistics.
By presenting prospects for future improvements in the most favorable light, we
obtained a stay of execution, but at the next meeting of the committee, three
years later, we were informed that the decision would be implemented. Since
then, Princeton has had no statistics department and no coherent program in
the subject. When in the 1990s my wife and I spent two years in Princeton, we
had to drive to Rutgers if we wanted to participate in a statistics seminar.

Moses’s early research was in nonparametric methods and included a
chapter in the 1953 text by Walker and Lev, Statistical Inference, written
while he was Helen Walker’s colleague at Teacher’s College. This twenty-
five–page chapter not only covered the most important nonparametric tests,
but also contained a novelty: a graphical procedure for obtaining nonpara-
metric confidence intervals for the difference of two location parameters
based on the Wilcoxon two-sample test, and the corresponding intervals
(attributed to Tukey) for the paired comparisons case.

A very different contribution was Moses’s work, much of it joint with
Mosteller, stemming from concerns regarding the anesthetic halothane. This

37. Lincoln Moses (1921–2006) 139

3 Such committees provide university administrations with outside evaluations of
their departments.



major study involved many statistical innovations and was eventually pub-
lished as a book (Bunker et al., The National Halothane Study, 1969). Its
surprising finding: that halothane, which was highly suspect at the beginning
of the study, was actually as safe as, or possibly even safer than, the standard
anesthetics with which it was being compared. Lincoln Moses contributed
several chapters to the book.

As an offshoot of this work, Moses wrote two joint papers with Mosteller.
One, “Institutional Differences in Post-Operative Death Rates” (1968),
strongly influenced the way the government ranks hospitals. The other,
“Safety of Anesthetics” (1972), was written for SAGTU (Statistics: Guide to
the Unknown), a collection of essays intended to show a general audience the
usefulness and importance of statistics. This particular paper was given to all
prospective authors of the volume as a guide to the kind of presentation for
which the editors were striving.

Moses continued collaborating with Mosteller on various papers and proj-
ects. One noteworthy effort of theirs was to edit and publish a monograph,
Planning and Analysis of Observational Studies (1983), which its author, Bill
Cochran, had nearly but not quite completed before his death. It has joined
two other books by Cochran, Experimental Designs (1950, jointly written
with Gertrude Cox) and Sampling Techniques (1953), in that author’s distin-
guished series of expositions.4

The Cochran book and the earlier halothane study were only two of many
book projects in which Moses has been involved. More recently, the AIDS
epidemic has been a principal concern of his, which resulted in his coediting
three volumes: AIDS: Sexual Behavior and Intravenous Drug Use (1989) and
AIDS: The Second Decade (1990), both with Turner and Miller, and
Preventing HIV Transmission (1995), with Normand and Vlahov.

Moses also wrote two elementary texts, Elementary Decision Theory, with
Herman Chernoff (1959), which was translated into Russian, Japanese, and
Spanish, and Think and Explain with Statistics (1986), of which he was the
sole author and which unfortunately very soon went out of print.

The totality of these books make clear the three main strands of which
Moses’s distinguished career was composed: statistical issues in public health,
and in public policy, and statistical education.

38. Theodore (Ted) W. Anderson (b. 1918)

Compared with Girshick and Moses, Ted Anderson was a latecomer to
Stanford, which he joined only in 1967. After obtaining his Ph.D. at
Princeton in 1945 with a thesis on multivariate analysis, and a year at the
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Cowles Commission for Research in economics, he took up a faculty position
at Columbia, where he remained until his move to Stanford twenty-one years
later.

His Columbia appointment came about through his meeting Wald at the
Cowles Commission. Since Ted had evinced an interest in economics, Wald
offered him a position in his new department at Columbia, with the expecta-
tion that they would collaborate on econometric problems. But by the time
Ted arrived at Columbia, Wald’s interests had shifted and he was focusing
instead on his development of decision theory. On the other hand, Ted
retained an interest in econometrics throughout his career.

I first met Ted on a visit to Columbia in 1948, and saw much of him dur-
ing the fall semester of 1950, which I spent at Columbia. This was the year
he was appointed editor of the Annals and I was one of his associate editors.
When at his recommendation I succeeded him three years later, the transition
of one editor to another required much collaboration, particularly concern-
ing manuscripts handled by the retiring editor but appearing in issues edited
by his successor. My correspondence with Ted about these and other edito-
rial matters fill a whole folder in my files.

During his Columbia years, Ted and I would see each other once or twice
a year at committee meetings and meetings of the Council of the Institute of
Mathematical Statistics, but our contact became much closer when he moved
to Stanford in 1967 (with a joint appointment in statistics and economics),
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and we thus became neighbors. We discovered that we both subscribed to the
San Francisco Opera and in fact to the same series, and we then made a habit
of meeting (with our wives) for dinner before the opera. On the other hand,
although we never interacted much scientifically since our areas of interest
were very different, we did collaborate on two memorial articles, one in the
introduction to Wald’s Selected Papers (1955), the other on P.L. Hsu in the
Annals of Statistics (1979).

Our careers ran in curiously parallel tracks. We were about the same age
(he was half a year younger), and he obtained his degree a year before I did.
So we got started at about the same time. In 1950, Ted was appointed editor
of the Annals; three years later, at the end of his term, I became his succes-
sor. We published our first (and I believe most successful) books at about the
same time. His An Introduction to Multivariate Statistical Analysis came out
in 1958 (2nd Ed. 1984). I followed with Testing Statistical Hypotheses in 1959
(2nd Ed. 1986). His third edition appeared in 2004; mine came out in 2005.
Ted was elected to the National Academy of Sciences in 1976, I two years
later, and it was he who called to tell me of my election.

Anderson’s scientific work covered many different areas in statistics and
econometrics. Particularly influential were his investigations in multivariate
analysis, the analysis of time series, and structural equations estimation, and
his books on the first two of these subjects. Two of Anderson’s contributions
that have been very influential and are close to my own work are the
Anderson-Darling test for goodness of fit and his 1955 discovery that for
unimodal symmetric densities the probability of a symmetric convex set
decreases as the center of the distribution moves away from the center of the
set. A collection of his more than one hundred papers up to 1985 was pub-
lished in two volumes edited and introduced by George Styan (1990). The
second volume also includes comments on different aspects of Anderson’s
research by experts in the various areas. Earlier (in 1983), on the occasion of
his sixty-fifth birthday, he received a festschrift edited by Karlin, Amemiya,
and Goodman, to which I was one of the contributors.

Ted, although retired, is still active at Stanford, writing, lecturing, traveling—
and going to the opera.
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The classical theories of testing and estimation are based on the assumption
that the underlying distributions are normal or belong to some other para-
metric family. This chapter considers the development of new methodologies
appropriate to models in which the distributions are not so restricted.
Following Wolfowitz (1942), such models are called nonparametric.

For nonparametric models, tests based on ranks (for example the
Wilcoxon or rank correlation tests) were introduced since the levels of these
tests are distribution-free.1 It should, however, be noted that they are not
assumption-free since they still assume that the observations are independ-
ent. They are as vulnerable to deviations from that assumption as their
parametric counterparts.

A nonparametric theory of point estimation was initiated by Hoeffding
(1948). He viewed the problem as that of estimating functionals θ(F) defined
over large classes of distributions F, and developed a theory of unbiased esti-
mators of such functionals—the so-called U-statistics. This formulation (and
the earlier introduction by von Mises of differentiable statistical functionals)
paved the way for Efron’s very general concept of the bootstrap (1979), with
its estimation of functionals θ(F) by the plug-in estimators θ(Fn), and the
approximation of the latter through resampling. The bootstrap methodology
turned out to be widely applicable to previously unmanageable estimation
and testing problems, both parametric and nonparametric.

An approach that is intermediate to the parametric and nonparametric
formulation was initiated by Peter Huber (1964). He suggested as a frequently
more appropriate assumption that the distribution is approximately normal (or
belongs to a neighborhood of some other parametric family), and accordingly
developed a theory of robust inference. Here, robustness meant insensitivity to
small deviations from an ideal parametric model. His theory was developed fur-
ther by Frank Hampel, who introduced measures of the degree of robustness of
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a procedure, most importantly the influence function. This new approach led
to a wealth of new procedures as well as important insights into earlier ones.

39. Edwin J.G. Pitman (1897–1993)

The development of nonparametric testing, as was mentioned in Section 10,
may be considered to have begun in 1936 with the publication of the paper
by Hotelling and Pabst on the rank-correlation test. This was followed by
the proposal of a number of other rank tests, for example Friedman’s 1937
test for randomized blocks. However, this new nonparametric approach did
not really take off until the publication in 1945 of Wilcoxon’s rank tests for
paired (one-sample) and unpaired (two-sample) comparisons.

The first self-contained exposition of nonparametric inference was pro-
vided by the lecture notes of Pitman’s 1947 and 1948 courses at Columbia
and North Carolina. In particular, in these notes he proposed the efficiency
measure called asymptotic relative efficiency (ARE), or Pitman effi-
ciency, which was to play a central role in assessing the value of nonpara-
metric techniques.

Pitman’s notes, although not published, achieved wide distribution and
exerted great influence. Pitman (1982) describes the history of these notes.
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He had been invited to give nonparametric courses at Columbia in 1947 and
at Chapel Hill in 1948, and, he reports:

After the course was finished, with the help of the students, I produced a set of Notes. The
Chapel Hill Notes on nonparametric inference became well known and much in demand.
They were widely circulated and were frequently referred to in the literature. . . .

It was not entirely my fault that the Notes were not published in a more permanent
and more accessible form. Shortly before I left the United States, I was visited by a rep-
resentative of an American publisher, who asked if I had any manuscripts. I said yes,
and told him about the nonparametric notes, but he was not interested. They would
make only a small book,2 and his firm was interested only in big books. Could I expand
the manuscript? No, not much. No deal. Twenty years later, a publisher wanted to print
the Notes, but I refused. I said they had done their work, and were now out of date.

Edwin James George Pitman was born in Melbourne (Australia), where he also
received his education. After a number of brief appointments in New Zealand
and Australia, he was appointed professor of mathematics at the University of
Tasmania in 1926, and he remained there until his retirement in 1962.

Pitman came to statistics in a way that was typical of the times. When in
1925 he applied for the professorship of mathematics at the University of
Tasmania, he was asked whether he had any knowledge of statistics and
would be prepared to teach a course in the subject. He replied, “I cannot
claim to have any special knowledge of the theory of statistics, but, if
appointed, I would be prepared to lecture on this subject in 1927.” He later
commented on this response: “I think the word special could have been
deleted with accuracy, but I was being careful not to exaggerate.”

Pitman used the two-year grace period he had requested to study both
probability and statistics, and soon found himself not only teaching statistics
but also in demand as a statistical consultant. Eventually (beginning in 1936),
he became an important contributor both to the theory of statistics and to
probability theory.

Between 1936 and 1938, he published a series of three seminal papers in
which he developed the theory of permutation tests (introduced earlier by
Fisher) as tests that do not assume the form of the distribution to be known.
Some of his other papers dealt with sufficient statistics, the Cramér-Rao
inequality, and characteristic functions. In 1979, he published a small, elegant
book—really a collection of papers—on various mathematical and concep-
tual aspects of statistical theory, and then of course there were the Columbia
and Chapel Hill lecture notes.

The list of Pitman’s publications is relatively short (twenty-one papers and
the book), due to the heavy load of his teaching (for many years twelve lec-
tures a week on many branches of mathematics) and administration work.
However, they have been very influential. In recognition for his contributions,
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the Statistical Society of Australia in 1978 established the Pitman medal “for
high distinction in statistics.” The first recipient was Pitman himself.

I met Pitman only once, when he visited Berkeley for the Fourth Berkeley
Symposium. However, his ideas played a significant role in my own work. In
addition, Berkeley has a special link with him. His son, the probabilist Jim
Pitman, is a member of our department.

40. Hodges–Lehmann II: Nonparametrics

As discussed in Section 14, my joint work with Joe Hodges at first dealt with
problems in parametric inference and decision theory. However, in the 1950s
we became interested in the new, developing methodology of nonparametric
inference. Our first paper in this area had its origin in a very surprising result
obtained by Pitman concerning the Wilcoxon tests.

These tests enjoyed great popularity due both to their simplicity and their
freedom from the assumption of normality. At the same time, however, users
worried about the resulting loss of power since the two-sample test, for exam-
ple, utilized not the detailed values of the observations but only their relative
order. Pitman’s efficiency was a good way to measure the seriousness of this
loss. As an example, Pitman computed the efficiency of the Wilcoxon to the t-
test when the observations actually are normal, the situation for which the t-
test is optimal. He found this efficiency to be 3/π, about .955. Thus, to
everyone’s surprise, the efficiency loss in this case is quite small. The Wilcoxon
test requires only 5% additional observations to match the power of the t-test.

Since the principal advantage of the Wilcoxon test is its independence of
the assumption of normality, Joe and I wondered what its efficiency to t
would be for nonnormal distributions. We carried out the calculation for a
number of distributions and in each case found the efficiency to be quite
high, in some cases much greater than 1 (i.e., Wilcoxon much more efficient
than t), but in no case much less than 1.

When we started to look into the problem, we realized we had taken it
for granted that the efficiency could be arbitrarily close to 0, but now we were
no longer so sure and decided to look directly for the minimum possible
efficiency. A fairly easy argument showed that the lowest possible efficiency
of the Wilcoxon to the t-test is .864.

The surprising conclusion, therefore, was that on the whole the power of the
Wilcoxon test, rather than being vastly inferior to that of the t-test, was in fact,
if anything, superior to it. We conjectured, but were not able to prove, an even
more one-sided result. A rank test alternative to the Wilcoxon test that was first
proposed by Fisher and Yates in 1938 is the so-called normal scores test. We sur-
mised that its Pitman efficiency relative to the t-test is 1 when the underlying dis-
tribution is normal, and greater than 1 for all other distributions. The conjecture
was proved two years later by Chernoff and Savage. Those results helped to
legitimize statistical procedures using only the rank order of the observations.
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Our next paper in this area was concerned with nonparametric methods
rather than theory. Rank tests for the comparison of two or more treatments
had been suggested by Friedman (1937), Wilcoxon (1946), and others for ran-
domized block designs. Since these tests were based on separate rankings
within each block, observations from different treatments were compared
only with other observations in the same block. We found that such proce-
dures have rather low efficiencies, and proposed a modification that could be
expected to be more efficient.

We suggested removing the block effect by subtracting from all observa-
tions in a given block their mean or median for that block, thus making it
reasonable to compare observations from different blocks. By ranking the
totality of these aligned observations, one obtains what we called aligned
ranks. Tests can then be based on the sums (over all blocks) of the
aligned ranks of the different treatments. The paper discussed both the exact
and the asymptotic distribution of the resulting test statistics, and provided
heuristic arguments suggesting that the Pitman efficiency of these aligned
rank procedures should be as high as those of the Wilcoxon tests. This con-
jecture was confirmed by Mehra and Sarangi (1967).

Of our series of nonparametric papers, the one that attracted the most
attention was a 1963 paper on “Estimates of Location Based on Rank Tests.”
In it, we proposed estimates of a location parameter that would share the
good efficiency properties of the Wilcoxon tests. For this purpose, we devel-
oped a general method of generating estimates from rank tests of location
parameters (later called R-estimators) whose asymptotic efficiency was the
same as the tests from which they were derived. For the particular case of the
one-sample Wilcoxon test of H: θ = 0 based on a sample X1, . . ., Xn of i.i.d.
variables from a distribution symmetric about θ, the R-estimator turned out
to be the median of the averages (Xi + Xj) /2 (i < j). In the literature, this has
become known as the Hodges-Lehmann estimator.

I shall mention only one other paper from our nonparametric period,
which, although dealing primarily with parametric applications, grew out of
our interest in Pitman efficiency. In this 1970 paper, we considered the case in
which the Pitman efficiency is 1, and so does not tell us which of the two tests
being compared is superior and by how much.

The Pitman efficiency is the limit of ratio of the sample sizes required for the
two tests to achieve the same power as the sample sizes tend to infinity. When
that limit is 1, it often turns out that the difference of the sample sizes tends to
a limit, which we called the deficiency of the inferior test to the other. (For
example, if the sample sizes are n and n + 3, respectively, their ratio tends to 1
and their difference to 3.) The calculation of deficiencies is much more delicate
than that of efficiencies, and we carried it out for only a few simple examples. In
particular, we determined the deficiency of the t-test relative to the normal test
that is appropriate when the variance is known. This turned out to be between
1 and 3, depending on the level of the test when that level is between .1 and .01.
Not knowing the variance thus entails the trivial loss of about two observations.
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In addition to our joint work, Joe and I also published a number of non-
parametric papers either alone or with other coauthors. After Joe stopped
doing research to go into administration, I collaborated with Peter Bickel in
the late 1970s on the series of papers mentioned in Section 32. Finally, as
reported in Section 29, I wrote a book on the subject of nonparametric infer-
ence, which was published in 1975 and has recently been reissued by Springer.

41. Wassily Hoeffding (1914–1991)

The Hodges-Lehmann estimator discussed in the preceding section estimated
the center θ of a distribution symmetric about θ. Here the model was really
semiparametric rather than nonparametric, since the distribution is restricted
to be symmetric about a parameter θ. A fully nonparametric treatment of
estimation was initiated by Wassily Hoeffding in 1948.

Hoeffding was born in Finland to Danish parents, who settled in Berlin
when Wassily was 10. In 1933, he entered the Handelshochschule with the
intention of studying economics, but he found the subject too vague. At the
same time he became interested in chance phenomena and came across a
book on the subject, Die Analyse des Zufalls (The Analysis of Chance), by
H.E. Timerding, that fascinated him. As a result, in 1934 he switched to
the University of Berlin to study mathematics. By that time, von Mises, the
leading authority in the field of probability and other areas of applied
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mathematics, had already left Berlin as a result of the Nazi takeover, and
probability and statistics were poorly represented. However, a course in
mathematical statistics was being offered and was based on von Mises’
remarkable text of 1931, Wahrscheinlichkeitsrechnung und ihre Anwendung in
der Statistik und Theoretischen Physik.

In 1940, Hoeffding obtained his Ph.D. with a thesis on correlation, and
he remained in Germany with two part-time assistant jobs until the end of
the war. In 1946, he moved to New York, where he attended lectures by Wald
and Wolfowitz and also by Neyman, who was visiting there at the time. The
following year, he accepted an offer from Hotelling as research associate in
the Statistics Department at Chapel Hill. He remained there for the rest of his
life, interrupting his stay by many travels and visiting appointments despite
suffering from diabetes and other health problems.

The work Hoeffding produced during his career was distinguished by great
depth and originality and spanned a wide range of topics, including tests
of independence, sequential analysis, and the theory of large deviations.
However, I shall here consider only his contributions to nonparametrics.

Hoeffding’s best known and most influential work is his 1948 paper on
U-statistics. The starting point of this investigating was the problem of
estimating certain functionals θ(F) defined over a large nonparametric
class D of distributions F, and in particular to determine their best
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unbiased estimators. Hoeffding solved this problem and called the optimal
estimators U-statistics (U for unbiasedness). The principal results of his
paper concern the asymptotic distributions of these statistics (and some of
their generalizations).

Through a decomposition of U-statistics, he was able to characterize
the situations in which their limit distribution is normal. The great success of
this theory is due partly to its elegance, but primarily to the wealth of its
applications. A book on the subject is Lee (1990).

As an illustration, consider a two-sample situation with distributions F and
G, and the functional

θ (F, G) = P (X < Y),

where X and Y are distributed according to F and G, respectively. If X1, . . .,
Xm and Y1, . . ., Yn are samples from F and G, the best unbiased estimator of
θ is W/mn, where W is the number of pairs (Xi, Yj) satisfying Xi < Yj. W is
the Mann-Whitney form of the Wilcoxon test, and in 1951 I was able to use
Hoeffding’s theory to obtain the asymptotic power of the Wilcoxon test.

A second paper of Hoeffding’s with far-reaching results concerned permu-
tation tests (1952). These tests were introduced by Fisher as distribution-free
randomization versions of normal-theory tests such as the t-test. Comparing
the two tests in a particular example in his book on the design of experi-
ments, Fisher found that the permutation test provided “a result very nearly
equivalent to that obtained using the t-test.” Without his stating so, he
seemed to suggest that the two tests could be expected more generally to give
similar results. In 1952, Hoeffding showed that, at least asymptotically, this is
indeed the case.

More specifically, the two tests can be seen to differ only in the critical
value for the t-statistic, this value being a constant for the t-test and random
for its permutation version. Hoeffding showed that these two values tend to
the same limit, and that asymptotically the two tests have the same power.
These results justify Fisher’s suggestion that the usual t-test could be viewed
as an approximation to its distribution-free permutation version.

The last nonparametric paper of Hoeffding’s that I shall mention dealt
with the topic of optimum nonparametric tests (1951). A theory of optimum
permutation tests had been developed by Stein and me in 1949. Hoeffding
now considered optimum rank tests, more specifically locally most powerful
rank tests, which turned out to be based on linear rank statistics.

My personal contact with Wassily was rather limited. In fact, the only
times I recall meeting him were on the occasions of the second to fifth
Symposia, at each of which he presented a paper. Since he was reserved—
partly perhaps as a result of bad eyesight and hearing—I did not get to know
him well as a person. However, we strongly interacted in our work.

Hoeffding’s early work on correlation provided an important tool for my
1966 paper, “Some Concepts of Dependence.” Also, as mentioned earlier,
my work on the Wilcoxon test utilized his results on U-statistics.
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Conversely, both Wassily’s papers on permutation tests and optimal rank
tests were closely related to an earlier paper by Charles Stein and me on
optimum permutation tests. In addition, he devoted a section of his 1968
paper, “Some Recent Developments in Nonparametric Statistics,” to my
attempts at developing a nonparametric version of the analysis of variance.

Hoeffding’s work was recognized by his election to the American Academy
of Arts and Sciences and to the National Academy. In 1967, he gave the Wald
lectures, on “Recent Results in Parametric Large-Sample Theory,” and in
1969 he served as president of the Institute of Mathematical Statistics (IMS).
A Festschrift in his honor, edited by Chakravarti and with an opening
address by Neyman, was published in 1980. A beautiful record of his achieve-
ments is the volume of his collected works (1994), edited by N.I. Fisher and
P.K. Sen and containing three articles reviewing the principal aspects of his
work. A memoir of his life is provided in Fisher and van Zwet (2005).

42. Bradley Efron (b. 1938)

A problem that confronted many nonparametric procedures was the difficulty
of calculating their small-sample performance. A highly effective and broadly
applicable solution for this problem was proposed in 1979 by Bradley Efron.
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I first met Brad Efron in 1960, when, after graduating in mathematics at
Cal Tech, he considered coming to Berkeley for graduate work in statistics.
He describes this episode and its outcome in Holmes et al. (2003):

I talked to Berkeley and had a very nice interview with two men named Jerzy and
Erich, who were very kind to me, but somehow I wound up at Stanford.

Except for occasional leaves, Brad has been at Stanford since then, as faculty
member and in various administrative positions. He chaired the statistics depart-
ment from 1976 to 1979, 1991 to 1994, and 1996 to 1997, and the Stanford
Advisory Board in the two years 1993–94 and 1996–97. From 1987 to 1990, he
served as associate dean of the humanities and sciences. This is a lot of adminis-
tration for someone who at the same time was extremely active in research.

Efron’s statistical work spans a wide arc. It includes the treatment of very
specific problems in a number of fields such as Shakespeare scholar-
ship, astronomy, and medicine. At the other end of the spectrum are issues of
statistical philosophy and the role of computers in statistics.

However, the core of his research is concerned with theoretical and method-
ological topics, prominent among them exponential families, the empirical
Bayes approach and Stein estimation, and most importantly the bootstrap,
perhaps the most widely used methodological innovation since Fisher’s work
on analysis of variance and covariance.

While Fisher’s methods were based on the assumption of normality, the
bootstrap is particularly useful in (although not restricted to) nonparamet-
ric settings. I shall illustrate the idea of the bootstrap with an example. Let
X1, . . ., Xn be i.i.d. according to an unknown distribution F and let T = T
(X1, . . ., Xn) be some statistic of interest, perhaps the estimator of some
functional of F. We want to estimate the distribution of T,

(*) PF [T (X1, . . ., Xn)] < c

where the subscript F indicates the distribution of the X’s.
A simple and often reasonable estimator of the probability (*) is the 

so-called plug-in estimator. It replaces F by the sample distributionF̂n, which
assigns probability 1/n to each of the observed values x1, . . ., xn of X1, . . .,
Xn. The resulting estimator of the probability (*) is then

(**) PF̂n [T (X1*, . . ., Xn*) < c,

where the subscript F̂n denotes the fact that (**) is the probability that T, eval-
uated for a sample of F̂n, does not exceed c, and where X1*, . . ., Xn* denote a
sample from F̂n.

The formula (**) for the estimator of the distribution of T is easy to write
down, but is prohibitive to calculate except for small n. To see this, recall
that each of the Xi* is capable of taking on the n values x1, . . ., xn, so that the
total number of values of T (X1*, . . ., Xn*) that has to be considered is nn.
To calculate (**), one has to count how many of these nn values are < c. This
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is not practicable. A standard device for evaluating (at least approximately)
probabilities that are too difficult to calculate exactly is simulation. To calcu-
late the probability of an event, one generates a sample from the underlying
distribution and notes the frequency with which the event occurs in the
sample. If the sample is sufficiently large, this frequency will, with high
probability, provide a good approximation to the original probability.

In the present instance, this approximation to the probability (**) constitutes
the second step of the bootstrap process. A number B of samples (Xi1*, . . .,
Xin*), the “bootstrap samples” are drawn from F̂n, and the frequency with which

T (Xil*, . . ., Xin*) < c

provides the desired approximation to the estimator (**).
The two-step procedure illustrated by this example is very flexible and

applicable, with suitable modifications, to many different situations such as
the bias and variance of an estimator, to the calculation of confidence inter-
vals, and so on.

The bootstrap was first proposed, and named, by Efron in a 1979 paper in the
Annals. He followed this by several papers in 1981 and a small monograph in
1982. Several additional papers appeared throughout the next decade, culmi-
nating in Efron’s 1993 book (with Tibshirani), An Introduction to the Bootstrap.
The idea was taken up by others and has resulted in a flood of papers and
several books, treating theoretical as well as applied aspects of the method.

Not surprisingly in view of his accomplishments, Efron has received many
honors. They include a MacArthur Fellowship in 1983, election to the National
Academy in 1985, the Rietz, Wald, and Fisher lectureships, and honorary
degrees from Chicago, Madrid and Oslo. He served as president of the IMS in
1987–88 and of the American Statistical Association (ASA) in 2004. In 2007 he
received the Presidential Medal of Science.

43. Peter J. Huber (b. 1934)

Peter Huber was born in Wohlen, Switzerland, and his unusual abilities
showed up early. Since mathematics, physics, and astronomy were so easy for
him, he realized in high school that he needed different intellectual stimula-
tion. As he wrote in a recent letter: “By chance I discovered that some cler-
gyman had donated his Assyriological books to the cantonal library, and
delving into that was much more fascinating than doing crossword puzzles.”
Early cuneiform astronomical writings remained an interest for him, and
resulted in occasional publications, throughout his life.

After completing high school and a semester at the University of Zürich,
Huber studied mathematics and physics at the Eidgenössische Technische
Hochschule (ETH), the Swiss Federal Institute of Technology, and in 1961
obtained his Ph.D. in topology. The next two years he spent at Berkeley in
our department. How this came about is related to my own story.

43. Peter J. Huber (b. 1934) 153



When in 1959 I spent a sabbatical semester in Zürich, one of my contacts
was Walter Saxer, a mathematician at the ETH specializing in insurance
mathematics and hence with an interest in probability and statistics. We saw
each other socially, and on one such occasion he told me that the ETH had
decided to establish a chair in mathematical statistics and would like to offer
me this position.

Since I had spent five years in Zürich, first in high school and then at the
university, and since I loved the city, it was a tempting thought. On the other
hand, I had found a home in Berkeley after much wandering and had many
friends there. I loved Berkeley too, and leaving it would be difficult.

There was also another factor. In my interview with the president of the
ETH, I had asked him how large a statistics group he envisioned if the pro-
gram turned out to be as successful as he hoped. He replied that in a few
years he might add one junior faculty member. The contrast was stark. In
Berkeley I was a member of a group of about twenty colleagues with similar
interests. In Zürich, on the other hand, I would be rather isolated, and would
alone have to carry the burden of administration and examinations.
Belonging to a community was of great importance to me. Thus, in the end
I decided to remain in Berkeley.

Not long after my return to Berkeley, I received a letter from Saxer saying
that the ETH was thinking of one of its own students for the position. Peter
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Huber had just obtained his degree in topology and had some informal back-
ground in statistics. He would come to Berkeley on a Swiss fellowship to
study the subject more systematically, and one would then see.

Peter stayed in Berkeley for two years, the second on a Miller Fellowship
from the University of California. During the second year, he received an
offer from the ETH of a professorship in statistics. So he had to decide if he
really wanted to make his career in that field.

This was a soul-searching time for him. We had many discussions, but
probably more influential were talks he had with John Tukey (on visits to
Princeton), who himself had moved from topology to statistics. In the
end, statistics won out, and during his two years in Berkeley Huber wrote the
seminal paper (1964) that initiated his robustness theory. After visiting for
a year at Cornell, he took up his position as professor of mathematical sta-
tistics at the ETH in 1964 and remained there—with leaves spent at Cornell,
Princeton, Yale, and Harvard—until 1978. He then moved to Harvard
(1978–88), MIT (1988–1992), and finally to the University of Bayreuth,
where he remained until his retirement in 1999.

Huber’s 1964 paper, “Robust Estimation of a Location Parameter,” was
concerned with the estimation of a location parameter θ on the basis of a
sample from a distribution F (x − θ). This problem had been considered in the
literature under three assumptions: that F is (i) normal; (ii) completely
unknown with mean θ; (iii) symmetric about θ but otherwise unknown.
Huber suggested that a more reasonable assumption often is that (iv) F is
approximately normal, that is, lies in some appropriate neighborhood of the
normal distribution. The aim of the paper was to determine estimators that
perform well over such neighborhoods.

Two classical principles of estimation are least squares and minimum
absolute error, which in the present case reduce to minimizing

Σ (xi − θ)2 and Σ ⎢xi − θ ⎢,

respectively. Huber introduced the more general class of estimators minimizing

Σ ρ (xi − θ)

for any given function ρ. These estimators, which also generalize maximum
likelihood estimators, he called M-estimators. He proved asymptotic normal-
ity of these estimators for convex ρ, and obtained the minimax estimator
within the class of M-estimators.

He then treated the special case in which

t2/2 for ⎢t ⎢ < K
ρ (t) =

K ⎢t ⎢ – K2/2 for ⎢t ⎢ > K,

so that it is quadratic for small ⎢t ⎢ and linear in the tails. For the resulting 
M-estimator, he proved that it is minimax in a neighborhood of the normal
distribution, that is, the class of all distributions of the form
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F = (1 − θ) Φ + θ H

where Φ is the standard normal distribution and H any distribution that is
symmetric about 0.

This startlingly original paper, which contains much else, was reprinted in
Kotz and Johnson volume II (1992), with a substantial introduction by Frank
Hampel. Huber followed up this work with extensions to more general esti-
mation problems, for example in his 1973 paper on robust regression. As a
side issue, this paper brings an important new result on classical least squares
estimation: a necessary and sufficient condition (now known as Huber’s
condition) for the asymptotic normality of the least squares estimators of all
linear functions of the regression coefficients.

In other papers, Huber considered the problem of robust hypothesis test-
ing. A beautiful result in this area generalizes the Neyman-Pearson lemma
(mentioned in Section 7) to the testing of one neighborhood against another
(1965). The minimax procedure for testing a neighborhood of P0 against
one of P1 turns out to be a censored version of the likelihood ratio test for
testing P0 against P1.

A systematic account of robustness theory (including Hampel’s infinitesi-
mal approach, to be considered in the next section) was provided in Huber’s
1981 book, Robust Statistics, which gave the first comprehensive treatment of
this new field that he had initiated.

I shall mention only two other of Huber’s papers. In 1985, he published a
very influential discussion paper on projection pursuit, a body of methods
for finding interesting low-dimensional projections of high-dimensional data.
The paper gives a unified rigorous treatment of what up to then was “a sea
of isolated, seemingly disjoint ideas” (Diaconis, 1985). In his discussion of
the paper, Tukey refers to the process as “Huberizing a field.”

The other paper is nontechnical. A contribution to the Festschrift for Tukey
(Brillinger et al., 1997), it is entitled, “Speculations on the Path of Statistics.”
It provides a review of the nature of the field of statistics, its past, present, and
likely future. It is the kind of paper only someone with a very broad view of
the field as a whole such as Tukey or Huber could have written.

Huber’s great accomplishments and influence were acknowledged in a
festschrift, “Robust Statistics, Data Analysis, and Computer Intensive
Methods” (Rieder, 1996), on the occasion of his sixtieth birthday. The vol-
ume, in addition to papers by friends and colleagues in areas “that Peter
Huber himself had markedly shaped,” also contains a list of his publications.

44. Frank Hampel (b. 1941)

Huber’s work was continued, and developed in new directions, by Frank
Hampel, who in 1968 obtained his Ph.D. in statistics at Berkeley with a thesis
on robust estimation. After completing his degree, he took up a position at
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the University of Zürich, thus becoming a close neighbor of Huber, who was
at the ETH. In 1974, Hampel moved to the ETH, where he joined Huber as
associate professor. Five years later, after Huber left for Harvard, Hampel
took over the responsibility for the statistics group.

About his relationship with Huber, Hampel writes in the Festschrift for
Huber:

Since my arrival at the University of Zurich in 1968, and until his departure from
ETH to Harvard about ten years later, we had a wonderful scientific relationship, and
we managed to keep up our friendship ever since. Our scientific relationship was not
of the usual type; we never wrote a joint paper together, but rather we exchanged our
ideas and results while pursuing our own lines of research which were often closely
parallel, and certainly I was greatly stimulated and motivated in this atmosphere of
deep mutual understanding and pursuit of common scientific aims.

In a recent letter to me, Hampel describes the origin of his interest in
robust inference:

In very early 1965, my then professor in Göttingen, Konrad Jacobs, gave me the
freshly printed 1964 paper of Huber with the remark that it seemed to be a “hot
topic,” and asked me whether I would be interested in doing further research in this
direction.

Hampel says that he was “immediately convinced” and started writing on this
topic. But instead of continuing in Göttingen, he went to Berkeley on a one-year
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exchange scholarship and then decided to stay a second year. By that time, he
writes, he already had an idea, but the solution turned out to be “incredibly
complicated and not suitable for any publication.” But, he continues,

I had already a new idea (qualitative robustness) and managed to stay a third year.
While writing up my theorems on qualitative robustness, I got the idea of the influ-
ence curve. . . .

After you had accepted me as a doctoral student, I busily wrote up my results and
brought them to the typist (in pieces), and every week or so I collected the pieces
and brought them to you (and Peter Bickel). To my surprise, you never uttered any
criticism or other remark, and after a number of weeks the thesis was complete.

Thus this thesis was formally written under my supervision, but in fact I
had essentially no input. My “contribution” consisted of my immediate real-
ization of the importance and maturity of this work, that it was quite beyond
the usual kind of thesis, and that my task was to encourage, smooth the
process, and otherwise stay out of the way.

Hampel’s thesis is highly technical and rich in concepts and results. To give
at least a flavor, I shall consider only one aspect: the assessment of the degree
of robustness of an estimator. Two key measures that he introduces for this
purpose are the breakdown point and the influence function.

The breakdown point of an estimator (foreshadowed by Hodges [1967]),
in one of its finite-sample versions, is the smallest proportion of the n obser-
vations that can cause the estimator to take on arbitrarily large positive or
negative values. Thus, the breakdown point of the sample mean is 1/n, since
even a single sufficiently large observation, with the other observations fixed,
can make the mean arbitrarily large.

As a second example, consider the symmetrically trimmed mean, which
deletes the largest and smallest observation and then averages the remaining
ones. Here a single observation can no longer do unlimited damage since—if
it is sufficiently large—it will be deleted. On the other hand, if there are two
extremely large observations, only one of them will be deleted and the other
can make the estimator arbitrarily large. So the breakdown point is 2/n.

The breakdown point is a rather simple (but global) measure of robustness
and does not play a great role in Hampel’s thesis. (It was later studied sys-
tematically, and its usefulness emphasized by Donoho and Huber [1983]).
More central to Hampel’s approach is the influence function. In fact, Hampel
gave his 1986 book, Robust Statistics, the subtitle The Approach Based on
Influence Functions. Huber (1981) calls it “perhaps the most useful heuristic
tool of robust statistics.”

To define the influence function, consider the estimation of a functional
θ(F) and the associated plug-in estimator θ(F̂n) = T (X1, . . ., Xn). The influ-
ence function measures the effect on θ(F), and hence on θ(F̂n), of a small
contamination at a point x, that is, the behavior of θ(F*) with F* given by

F* = (1 – ε) F + ε δx,
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where δx is the distribution that assigns probability 1 to the point x. Thus, F*
is the distribution of an observation which with probability 1 – ε comes from
F but with small probability ε takes on the value x.

The influence function at x is the rate of change of θ(F*), as a function of
ε at ε = 0, that is, its derivative at ε = 0 (if this derivative exists). It thus meas-
ures the influence on θ(F) of a small proportion of observations at x.
The influence function depends on the contaminating value x, the functional
θ, and the distribution F. It is often denoted by IF (x, θ, F). For the purpose
of robustness, one wants the influence function to be bounded, and its
maximum—called the gross error sensitivity—is then a measure of the
resulting robustness.

The influence function, like the breakdown point, was originally defined in
terms of the functional θ. A “finite sample version,” directly in terms of the
estimator, is also available but will not be discussed here.

The influence function is useful not only as a measure of robustness but
also for calculating the asymptotic variance of θ(F̂n), which under suitable
conditions equals the integral (with respect to F) of the square of the influ-
ence function. These conditions tend to be difficult to check, but once the
value has been obtained it can be checked in other ways.

Robustness was a major focus of Hampel’s early work, including a sys-
tematic exposition in his 1986 book (with Ronchetti, Rousseeuw, and Stahel).
However, he has also worked in other areas such as the effect of long-range
dependence (robustness against violation of the independence assumption)
and particularly foundational issues. He also has done much work in applied
statistics (see, e.g., Hampel [1987]). Completely different interests, also with
some publications, have been ornithology and more recently the study of
orchids. Introductions to his work on some of these topics can be found in
Hampel (1996, 1998).

With their robustness theory, Huber and Hampel provided a new point of
view, created some beautiful theory, and generated a wealth of methods com-
plementing the classical parametric methodology. By focusing on neighbor-
hoods of parametric models, they forged a compromise between parametric
and nonparametric approaches. This work received a strong impetus from
the “Princeton robustness year” (1970–71), which brought together Bickel,
Hampel, Huber, and John Tukey, who had had a major impact on robust esti-
mation (see Section 32). They were joined by a number of other workers in the
area for a year-long seminar on the topic, the results of which were published
in a volume, Robust Estimates of Location (Andrews et al., 1972). The impor-
tance and reach of the robust approach is indicated by books such as Huber
(1981); Hampel et al. (1986); Staudte and Sheather (1990); Rieder (1994); and
Jureckovà and Sen (1996), as well as more specialized monographs.
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10
Foundations I: The Frequentist 
Approach

A key feature of twentieth-century science is the clear understanding of
the role played by mathematical models of real phenomena. One of the first
to fully articulate this was the applied mathematician Richard von Mises,
who constructed such models for a number of disciplines. One of these was
his 1919 model for frequentist probability. An alternative subjective concept
of probability was axiomatized slightly later by Bruno de Finetti and Frank
Ramsey. An axiomatization of probability in purely mathematical terms
without regard to its interpretation was provided by Kolmogorov in 1933.
It has the advantage of being applicable to both the frequentist and the sub-
jective concepts of probability and, unlike those interpretations, is accepted
fairly generally and is noncontroversial.

The frequentist concept of probability that von Mises axiomatized inter-
prets probability as a model of the empirical phenomenon of stable frequency
in a long series of repeated independent random events. This interpretation
goes back to, among others, Bernoulli, Ellis, Cournot, and Venn. After von
Mises, it was championed by Neyman as a foundation for statistical inference.
However, Neyman noted that the long-run stability of a frequency held even
for a series of quite different random events as long as they were independent.
This greatly increased the usefulness of the frequentist approach for statistics.

A second basic issue for Neyman was how to interpret the result of a
statistical investigation. Fisher thought he had solved the century-old problem
of induction with his concepts of likelihood and fiducial probability. Neyman
protested that Fisher’s idea of inductive inference was meaningless and instead
advocated a behavioral philosophy: that the aim of statistics was to provide a
guide to the best action, and to accomplish this by minimizing the probability
of errors.

Adopting Neyman’s approach and utilizing concepts of the theory of
games developed by von Neumann and Morgenstern, Wald established a new
framework for statistics in his 1950 book, Statistical Decision Functions.
Wald’s book provided the basic concepts and results for his decision theory
but was very abstract and contained only a few examples of its application.
The implementation of the theory in many areas of statistics was carried out
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by the next generations of statisticians, particularly by Jack Kiefer, in whose
work the minimax principle played a central role, and by Larry Brown, much
of whose work was concerned with admissibility problems.

45. Richard von Mises (1883–1953)

Richard von Mises was an outstanding applied mathematician and probabilist.
In addition, he made contributions to philosophy and to the literature on the
poet Rainer Maria Rilke.

Von Mises grew up in Vienna and, after graduating from high school with
high distinction in mathematics and Latin, from 1901 to 1906 he studied
mathematics, physics, and mechanical engineering at the Vienna Technical
University. In 1908, he wrote a dissertation on the theory of water wheels,
and the following year was appointed associate professor of applied mathe-
matics at the University of Strassburg, where he remained until the outbreak
of the First World War.

At the beginning of the war, von Mises joined the Flying Corps of the
Austro-Hungarian army (he already had a pilot’s license) but was soon trans-
ferred to act as technical advisor, organizer, and instructor. His lectures on
the theory of flight became the basis for his book, Fluglehre, first published
in 1918 and subsequently going through many editions.
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After the war ended, von Mises could not return to Strassburg, which
had become Strasbourg and part of France. After short faculty appointments
in Frankfurt and Dresden, in 1920 he became founding director of the
Institute of Applied Mathematics in Berlin. The following year, he founded
the Zeitschrift für Angewandte Mathematik und Mechanik, “through which
he exerted a profound and beneficent influence on applied mathematics in
general, in Central Europe in particular.”1

When the Nazis came to power in 1933, von Mises left Germany to accept
the position of professor and director of the Mathematical Institute in
Istanbul, Turkey, and there played a major role in making Istanbul an impor-
tant center of applied mathematics. In 1939, with another war approaching, he
decided to leave Istanbul for a lectureship at Harvard, where he soon became
Gordon McKay Professor of Aerodynamics and Applied Mathematics.
During his Harvard years, von Mises’ interest in probability and statistics was
relegated to the sidelines and his work was concerned mainly with hydro- and
aerodynamics. At the end of the academic year 1952–53, he went into manda-
tory retirement, and he died a few weeks later.

All of von Mises’ work was infused by his view that the task of applied
mathematics is to build mathematical models of some aspects of the real
world, and he may have been the first to clearly treat probability theory in this
way. In 1919, he published an ambitious attempt to build a model for the
basic physical phenomenon underlying frequentist probability: the stability
of the long-run frequency of an outcome in a long sequence of independent
repeated random events—for example, the frequency of heads in a long
sequence of tosses with a coin.

The principal constituents of his model were infinite sequences of trials,
of which he assumed that the frequency of a given outcome tends to a limit.
For the outcomes to be random, he required that the same limit would
obtain given the observations up to this point. Later, investigators found the
model too cumbersome and unconvincing. Another drawback was its nar-
rowness, since it applied only to situations that allowed a large number of
repetitions.

Concerning its statistical applications to probabilities such as the level and
power of tests, and confidence coefficients, it was pointed out by Neyman
that this narrowness could be somewhat alleviated. Although he continued to
interpret these probabilities as long-run frequencies, he noted that they did
not have to refer to repetitions of the same event. In discussing the coverage
probability of confidence intervals in his basic 1937 paper on the subject,
he wrote:

It is not necessary . . . that the problem of estimation should be the same in all
cases. For instance, during a period of time the statistician may deal with a thousand
problems of estimation and in each the parameter θ to be estimated and the probability
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law [of the observations] may be different. . . . [However, if the confidence intervals]
correspond to the same value α,. . . the probability of their resulting in a correct state-
ment will be the same, α. Hence, the frequency of correct statements will approach α.

Neyman broadens the frequentist concept of probability still farther in his
1977 paper, “Frequentist Probability and Frequentist Statistics,” where he
permits not only the situation to change from case to case but also the
value of α. Discussing a sequence of hypothesis tests with levels α1, α2, . . .,
he states,

The relative frequency of first kind errors will be close to the arithmetic mean of [the]
numbers α1, α2,. . . , αn adopted by particular research workers.

That this broader interpretation of frequentist probability makes it much
more useful in applications has been emphasized by Berger (1985).

Von Mises’ axiomatic foundation was superseded by an axiom system
proposed by Kolmogorov (1933) that did not specify the nature of probability.
Instead, it treated probability as an undefined concept satisfying certain
axioms. Nevertheless, von Mises’ modeling effort exerted great influence, par-
ticularly on Kolmogorov, who cited this influence on his own formulation. He
later took von Mises’ ideas as a starting point when he made a renewed attempt
to get a grip on the crucial and difficult concept of randomness.2

A very different fundamental contribution was provided in von Mises’s
1947 paper, “On the Asymptotic Distribution of Differentiable Statistical
Functions.” (Actually, he published an earlier version of this work in 1936 in
the Annales de l’Institut Henri Poincaré, but at that time no notice of it was
taken in the English or American literature.) The paper presents a far-reaching
extension of the Central Limit Theorem (CLT). This theorem, under mild con-
ditions, asserts asymptotic normality for sums of independent (and some
dependent) random variables. Von Mises’ extension explains why so many non-
linear functions of i.i.d. random variables (e.g., the sample median) also are
asymptotically normal. To discuss this extension requires some background.

The distribution of a random variable X can be represented by its cumula-
tive distribution function (cdf)

F(x) = P(X ≤ x).

If X1, . . ., Xn is a sample from F, the natural estimate of the probability F(x)
is the proportion of X ’s that are ≤x, that is, the sample cdf F̂n(x) defined in
Section 42.

Consider now a real-valued function h defined for all distributions F
(subject to some minor exceptions depending on the problem), for example
the parameters θ(F) discussed in Section 41. If F is unknown, the natural
estimate of h(F) is the plug-in estimate h(F̂n) (considered for a special case
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in Section 42). This differs slightly but is asymptotically equivalent to the 
U-statistics in the case considered in Section 41.

If h is a feature of the distribution, for example, a moment, then h(F̂n) is
that feature of Fn and this is not a constant but a random variable. A simple
example of such an h is the expectation

h(F) = EF(X).

Since F̂n assigns probability 1/n to each of the values X1, . . ., Xn, its expecta-
tion is

h(F̂n) = (X1 + . . . + Xn)/n.

Similarly, if h(F) is the median of F, h(F̂n) is the sample median.
The next step, for which von Mises credits the Italian mathematician Vito

Volterra, consists of making a Taylor expansion of h(F̂n) around the true
distribution F0. Von Mises then shows that the asymptotic distribution of
√n[h(F̂n) − h(F0)] is determined by the first nonvanishing term of this expan-
sion. If the first (linear term) is nonzero, the asymptotic distribution is nor-
mal. Von Mises also provides a detailed analysis of the nonnormal
distributions that arise when the second term of the expansion is the first
nonvanishing term. This class includes the distributions of many goodness-
of-fit statistics.3

Von Mises made seminal contributions not only to probability and statistics
but also to many other areas of pure and particularly applied mathematics. In
recognition of the importance of his work, the American Mathematical
Society in 1963 published two volumes of his selected papers. The first vol-
ume contains papers on geometry, mechanics (including work on plasticity,
hydro- and aerodynamics), and analysis. Most of the second volume is
devoted to probability theory and statistics, but it ends with a section titled
“General.” This latter section is largely concerned with von Mises’ scientific
philosophy. However, the last paper is of a very different nature. It is the
introduction to a volume of letters of the poet Rainer Maria Rilke. This
paper is only one of eight entries concerning Rilke listed in von Mises’
bibliography at the end of Volume 2 of his selected papers. An explanatory
paragraph states the following:

Throughout his life, von Mises devoted much time and thought to German literature
and in particular to the study of the life and work of the poet Rainer Maria Rilke
(1875–1926). Von Mises is considered an authority on the “young Rilke.” He also
assembled the largest privately owned collection of the poet’s manuscripts and works,
and of books and papers about Rilke. The collection is now at the Houghton Library
of Harvard University.
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Von Mises was a person of exceptionally broad interests and accomplish-
ments. I very much regret that I never met this remarkable man whose work
I greatly admire and whom I consider a major influence.

46. The Fisher–Neyman Controversy

R.A. Fisher and Jerzy Neyman, the two principal architects of twentieth-
century statistics, argued about many topics, including the analysis of Latin
squares, the Behrens–Fisher problem, fiducial inference, and the concept of
power of a test. However, more basic was their disagreement concerning the
nature of statistics, which is captured by the contrast between Fisher’s
“inductive inference” and Neyman’s “inductive behavior.”

The first signs of the controversy appeared in a mild form in 1934, when
Fisher presented a paper at a meeting of the Royal Statistical Society entitled,
“The Logic of Inductive Inference.” In it, he stated,

The inferences of the classical theory of probability are all deductive in character. . . .
The fact that the concept of probability is adequate for the specification of the nature
and extent of uncertainty in these deductive arguments is no guarantee of its ade-
quacy for reasoning of a genuinely inductive kind. . . . However, a mathematical
quantity of a different kind, which I have termed mathematical likelihood, appears to
take its place as a measure of rational belief when we are reasoning from the sample
to the population.
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In his discussion of the paper, Neyman raises questions concerning this
statement. He argues that the properties of the likelihood are probabilistic
ones, and that “in fact we are calculating the maximum likelihood estimates
not because we believe in some magic properties of this function, but because
there are mathematical proofs of the important properties, easy to explain in
terms of other conceptions of the theory of probability, such as the variance,
etc.” He then proposes that the choice of statistical procedure should be
based on “the conception of frequency of error.”

This idea goes back to his 1933 paper with Pearson on hypothesis testing,
in which they suggested that:

Without hoping to know whether each separate hypothesis is true or false, we may
search for rules to govern our behavior with regard to them, in following which we
insure that, in the long run of experience we shall not too often be wrong.

And in subsequent passages the authors point out that a test constitutes
such a “rule of behavior,” namely by telling us when to reject the hypothesis
and when to accept it.

Neyman developed his behavioristic approach further in a 1938 paper
(in French), in which he introduced the term inductive behavior, or rather its
French counterpart comportement inductif. To explain this concept, he dis-
tinguishes between “knowing” and “believing” (here and below my transla-
tion). But, he claims,

what frequently happens is neither of these two but rather an “assertion.” . . . It is a
voluntary act preceded by certain experiences and some deductive reasoning. . . . As
a result, it seems to me that the term “inductive reasoning” does not correspond to
what is happening, which begins with some assumptions concerning the variables
whose values are observable and ends up with an assertion.

As an example of this argument, Neyman considers the estimation of the
degree λ of radioactivity of some radioactive substance. Suppose the result
of the investigation is a confidence interval

(*) 8.04 < λ < 11.96.

“In examining this conclusion,” he states, “one sees that the sole reason for
the physicist to decide that λ lies between these limits, is that the long run
frequency of the cases in which the [random] confidence intervals (λ, λ̄) cover
the value λ, will approach [the confidence coefficient] α = .95.”

He points out that the conclusion (*) is thus based on a deductive argument.
Neyman’s attack an inductive reasoning and his alternative behavioral

interpretation would likely have remained a philosophical argument of little
interest to the statistical profession, if it had not led to an important innova-
tion, in fact an entirely new framework for statistics, Wald’s statistical deci-
sion theory. I shall discuss this theory in the next section, but note here that
Wald clearly considers himself as Neyman’s follower. In his 1950 book on the
subject, at the end of Chapter 1 Wald discusses some of the “ideas and results
preceding the present developments,” and there states that
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the decision character of the test and estimation procedures has been emphasized by
Neyman, who termed the adoption of a particular . . . procedure “inductive behavior.”

Wald’s decision theory was received by the statistical community with great
enthusiasm. It not only unified the previously quite separate theories of
testing and estimation, but also included many other possibilities that had not
yet been explored. It was a magnificent conception that gave the field a new
identity. But for Fisher it was an abomination—an abstract theory with few
examples, far removed from statistical practice and embracing Neyman’s
behavioristic approach, which Fisher considered completely inappropriate for
work in science.

Earlier, Fisher had been welcomed in America as the great originator of a
new, and immensely useful, statistical methodology. Now he was sidelined
and supplanted by a new champion. He was dismayed at the direction the
field was taking and voiced his strong disapproval in a 1955 paper, “Statistical
Methods and Scientific Induction,” in which he also provided a clear state-
ment of his own position:

Logicians, in introducing the terms “inductive reasoning” and “inductive inference,”
evidently imply that they are speaking of processes of the mind falling to some extent
outside those of which a full account can be given in terms of the traditional deduc-
tive reasoning of formal logic. Deductive reasoning in particular supplies no essential
new knowledge, but merely reveals or unfolds the implications of the axiomatic basis
adopted. . . . It is the function of inductive reasoning to be used, in conjunction with
observational data, to add new elements to our theoretical knowledge. That such a
process existed, and was possible to normal minds, has been understood for centuries;
it is only with the recent development of statistical science that an analytic account can
now be given, about as satisfying and complete, at least, as that given traditionally of
the deductive processes.

He then proceeds to his indictment of Neyman:

When, therefore, Neyman denies the existence of inductive reasoning, he is merely
expressing a verbal preference. For him, “reasoning” means what “deductive reason-
ing” means to others. He does not tell us what in his vocabulary stands for inductive
reasoning, for he does not clearly understand what it is.

Fisher carries his criticism further, without mentioning Neyman by name, in
his 1957 book, Statistical Methods and Scientific Inference, where he writes:

To one brought up in the free intellectual atmosphere of an earlier time, there is some-
thing rather horrifying in the ideological movement represented by the doctrine that
reasoning, properly speaking, cannot be applied to empirical data to lead to infer-
ences valid in the real world.

In the same year, in a paper, “ ‘Inductive Behavior’ as a Basic Concept of
Philosophy of Science,” Neyman explained his strong disagreement with
Fisher’s claims:

Fisher introduces two new measures of our “mental confidence or diffidence.” Thus,
if a scientist inquires why should he reject or accept hypotheses in accordance with the
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calculated value of P, . . ., the unequivocal answer is: because these values of P are the
ultimate measures of beliefs especially designed for the scientist to adjust his attitudes
to. . . . It must be obvious that, with the above essential contents of the inductive
reasoning approach, its use as a basic principle underlying research is unsatisfactory.
The beliefs of particular scientists are a very personal matter and it is useless to
attempt to norm them by any dogmatic formula.

Neyman returned to the issue in a 1961 paper in which he reviews his dis-
pute with Fisher, and states:

After a conscientious effort to find the exact meaning of this term [inductive reason-
ing], I came to the conclusion that, at least in the sense of Fisher, the term is empty,
except perhaps for a dogmatic use of certain measures of “rational belief” such as the
likelihood function and the fiducial probability.

At the center of the dispute are Fisher’s interpretation of likelihood as “a
rational measure of belief” and as an example of inductive reasoning, and
Neyman’s opposing concept of “inductive behavior.” Both of these ideas
have proven enormously useful and have exerted great influence.

That neither of these great originators could appreciate the contribution of
the other is to a large extent due to their very different ways of thinking. Fisher
relied heavily on his intuition and had little interest in formal proofs. This is
illustrated by his geometric derivations of small-sample distributions, which
many readers—not sharing his intuition—found difficult to follow. Neyman,
on the other hand, insisted on the utmost clarity and detailed understanding.
Any argument that did not satisfy this criterion was unacceptable to him.

This dichotomy extended to the way they viewed the world. For example,
Fisher’s daughter Joan Fisher Box (1978), in the biography she wrote of her
father, states:

Having formed a largely intuitive judgment of any man, usually but not always sound,
he was fully committed. A similar loyalty bound him to his country, his church and
his profession. He was a patriot, a political conservative, a member of the Church of
England.

While Fisher was a loyal member of his church,4 Neyman, who was brought
up as a Roman Catholic, soon became deeply suspicious of the church and
an unbeliever. Believing something that could not be proved to be true was
not for him.

As a result of this difference in outlook, neither Fisher nor Neyman was
able (or willing) to see any merits in the other’s point of view. This is a pity
because their two approaches are not as incompatible as they proclaimed.

Despite Neyman’s denial, the outcome of nearly any scientific investiga-
tion has a cognitive aspect: it either confirms one’s expectations or it changes
them. On the other hand, the end of an investigation is always followed by an
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action, if only whether to continue the investigation, to publish the results
obtained so far, and so on. And although Fisher derides any consideration of
consequences or losses, his choice of an estimator is based on the size of the
variance, which is exactly such a measure. (For further discussion of these
issues, see, for example, Bernardo and Smith [1994], Section 2.7.1, entitled:
“Reporting Beliefs as a Decision Problem.”)

Generally, this Fisher–Neyman controversy attracted little attention. This is
partly due to the fact that it was concerned with interpretation rather than
methodology. In addition, it was overshadowed by the much more conse-
quential Bayes–frequentist debate, which will be discussed in Sections 50 to 53.

47. Wald’s Decision Theory

The life and career of Abraham Wald were the subject of Section 16. At the
center of his work was his decision theory, which provided a new foundation
for the field of statistics. Shortly before his untimely death in December 1950,
Wald had the satisfaction of seeing the publication of his book, Statistical
Decision Functions, the definitive account of the subject. This section
describes the main ideas of Wald’s approach, both because it is so central to
Wald’s work and because of its crucial role for the field of statistics. Although
for the sake of simplification I shall omit some of the complications of
Wald’s general formulation, this sketch reflects the principal concepts and
results of decision theory.

As in the classical work of Fisher and Neyman–Pearson, the starting point
is a set X of observations. While Wald’s assumptions are more general, we can
for the sake of simplicity think of X as n real valued observations X1, . . ., Xn.
Continuing in the classical mode, we shall assume that X follows some prob-
ability distribution Pθ depending on an unknown parameter θ = (θ1, . . ., θs).
For example, X might be the number of successes in n binomial trials with
success probability p. The distribution of X is then the binomial distribution
depending on the parameter p. Or X might be a set of n independent meas-
urements X1, . . ., Xn, with each of the X’s having a normal distribution with
mean µ and variance σ2, thus depending on the parameter θ = (µ, σ2).

At this point, classical statistics splits into three branches: point estima-
tion, which tries to pinpoint the unknown parameter θ; confidence sets,
which provides a set in which θ can be stated to lie with a certain guaranteed
probability; and hypothesis testing, where a hypothesis about θ is either
accepted or rejected.

Wald’s crucial step is to replace these three possibilities by a set D of
abstract, completely unspecified decisions d. This includes point estimation,
in which the decisions are the possible values of the parameter θ; confidence
intervals (or more generally sets), with D the set of intervals in which θ can
be asserted to lie; and hypothesis testing, in which D consists of just two
possible decisions d, acceptance or rejection of the hypothesis.

47. Wald’s Decision Theory 169



It is surprising that at this level of generality anything useful can be said.
But it was Wald’s genius to see that it is still possible to make constructive
proposals and obtain important insights.

Within the above framework, it is the statistician’s aim to provide a deci-
sion procedure, that is a rule δ, which to each possible observation x assigns
a decision d = δ(x). It is the task of the theory to determine how such a rule
should be chosen.

For this purpose, it is necessary to introduce one last ingredient: a measure
of performance of a decision rule that will enable us to compare the desir-
ability of different decision rules. Wald’s measure is based on a weight func-
tion W (θ, d) (most later writers prefer the term loss function), which
expresses the loss suffered by making decision d when θ is the true value of
the parameter θ. The loss is zero when d is the correct decision and positive
for an incorrect decision. The performance of a decision rule δ is then meas-
ured by the loss it entails on the average, that is by the expected value of
W (θ,δ(X)), which is a function of θ and is called the risk function of the
decision rule δ.

The risk function generalizes the way point estimates are evaluated in clas-
sical statistics, typically by their expected squared error, an idea that goes
back to Gauss.

Since typically there exists no procedure that minimizes the risk uniformly,
that is, simultaneously for all values of θ, Wald proposed two types of com-
promise procedures. The first of these minimizes the average risk, averaged
with regard to a probability distribution over θ; he calls this an a priori
distribution and the resulting minimizing procedure a Bayes solution.

This language is appropriate because this is exactly how one would proceed
as a Bayesian, that is, if one believed that θ was a random variable with that
particular distribution. Such a Bayesian approach (due to Bayes and Laplace)
was commonly used during the nineteenth century, with the prior distribu-
tion rather arbitrarily chosen to be “noninformative.” In the binomial case,
for example, p would have been assumed to be uniformly distributed on (0, 1).
Both Fisher and Neyman argued strongly against this approach, and were
concerned with building an alternative theory that would be free of this arbi-
trary and unrealistic assumption. (Bayesian inference later had a revival with
different choices and interpretations, which will be discussed in the following
sections.)

Wald explains his own position in the first chapter of his book, Statistical
Decision Functions (1950, p. 16):

In many statistical problems the existence of an a priori distribution cannot be
postulated, and, in those cases where the existence of a prior distribution can be
assumed, it is usually unknown to the experimenter and therefore the Bayes solution
cannot be determined. The main reason for discussing Bayes solutions here is that
they enter into some of the basic results in Chapter 3.

We shall consider these results in a moment.
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For the case that an a priori distribution does not exist or is unknown,
Wald proposes that “a minimax solution seems, in general, to be a reasonable
solution of the decision problem.” Here a procedure δ is minimax if it mini-
mizes the maximum (rather than the average) of the risk.

Bayes solutions and minimax procedures are the subject of the two principal
results of Wald’s theory. The first of these states that under certain assumptions
the class of all Bayes procedures is a complete class.5 They are therefore the
only ones worth considering. Given any procedure that is not Bayes, there
exists a Bayes procedure that is at least as good no matter what the true θ.6

In the wake of Wald’s book, these complete classes were worked out for a
number of cases, but the results were disappointing: the classes were too big
to be of much use in practice.

However, Wald’s complete class theorem made a fundamental contribution
in quite a different context, namely to the debate regarding the Bayesian
point of view. It showed that the Bayesians were right in insisting that statis-
ticians should act as if θ were a random variable with some prior distribution,
and thus led to an important new type of question: if a procedure was
proposed on some other grounds, one now had to ask whether it was a Bayes
solution and if so to which prior it corresponded. The investigator was
then in a position to examine whether these weights or probabilities seemed
reasonable for the situation at hand.

What the complete class theorem of course does not do, and what from a
Bayesian point of view is a primary task, is to determine which prior to use.
Wald’s second principal theorem offers one possible solution to this problem.
This second theorem establishes the existence of a minimax procedure and
characterizes it as the Bayes solution corresponding to a “least favorable dis-
tribution,” that is, the distribution for which the average risk (the Bayes risk)
is the largest possible.

The above is a considerably simplified account of Wald’s theory.
Unfortunately, the book (which also includes sequential experimentation) is
difficult to read. It bristles with assumptions, many of them hard to verify, and
offers few examples or other help to the reader. Wald worked hard to get the
details right, but they are not the important part. What matters is that Wald’s
general formulation gave statistics a new identity. Instead of being a frag-
mented collection of different approaches, it now became the set of models
and problems delineated by Wald’s framework. Although in the intervening
half century additional considerations have emerged, decision theory contin-
ues to hold its place as a framework for both Bayesian and non-Bayesian
statistical theory.7 On the other hand, the expectation that decision theory
would become the dominant mode of statistical investigations was not
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fulfilled. Its very generality and abstraction worked against it, and most
research continues to be carried out within the traditional forms: hypothesis
testing (including multiple tests), point estimation, or estimation by confi-
dence intervals.

48. Jack Carl Kiefer (1924–1981)

In his book on decision theory, Wald had erected an imposing structure, but
at the time of his death this building was still empty. Practically, no examples
of his minimax procedures and complete classes had yet been worked out.

The person mainly responsible for fleshing out the theory and showing its
usefulness for specific situations was Jack Kiefer, a student not of Wald but
of his closest colleague, Jack Wolfowitz.

During my semester at Columbia in 1950, Kiefer was a graduate student and I
was invited to attend his oral examination. What greatly impressed me about this
event was the calm and self-assured way Kiefer stood up to Wolfowitz’s aggressive
and bullying questioning.

When Wolfowitz left Columbia for Cornell (after Wald’s death in 1951),
Kiefer went with him, and he remained on the faculty of the Cornell
mathematics department for the next twenty-eight years. During that time
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I followed his work with great interest but saw little of him except occa-
sionally at meetings (including the fourth, fifth, and sixth Berkeley
Symposia). I much appreciated it when in 1978 he sent me a copy of the
statement he had written on my behalf when he sponsored my election to
the National Academy. (He had been elected three years earlier.)

In 1979, Kiefer accepted an offer from the Berkeley statistics department
and became a close colleague and friend. Sadly, after little more than two
years, he died on August 10, 1981, of heart failure, five days after Neyman’s
death. Jack’s death (in the shower after a vigorous swim) came as a tremen-
dous shock. When a colleague called to tell me that Jack had died, I replied,
“You mean Neyman,” since I had seen Jack the day before in perfectly good
health.

His death was a very great loss for me personally as well as for the department.
As I wrote in an obituary for the university’s In Memoriam volume for 1985,

During his short time, he had established himself as a central figure in the
Department of Statistics. He had for example served as its Vice Chair [and was
expected a year later to become its Chair], and he had become a regular, highly suc-
cessful instructor in a large lower-division course. At the time of his death he was
supervising six Ph.D. students.

That he was successful in large lower-division courses and enjoyed teach-
ing such courses should not have come as a surprise. Successful lecturing to
a group of two hundred or three hundred lower-division students requires a
performance. And Jack was a performer who at one time had considered
going into the theater or becoming a pianist.

Jack had many interests—not only theater and music, but also politics (in
1968 he ran unsuccessfully as a Liberal Party candidate for the New York
State Assembly) and the science and collection of mushrooms. Julie and
I never joined him on his mushroom-hunting excursions, but once or twice
were invited to share in a feast of morels he had found that day.

It is fortunate for our field that of the many paths open to him Jack chose
statistics. He went on to become one of the deepest and mathematically most
powerful statisticians of his generation.

Kiefer, perhaps more than anyone else, fleshed out Wald’s decision theory
by applying it to a great variety of situations. His most extensive and influ-
ential such application was to the new area of optimal experimental design,
which he essentially created in the more than forty papers that he (often
jointly with Wolfowitz and other collaborators) devoted to the subject.

One of the most remarkable of these papers is the first, with the punning
title, “On the Nonrandomized Optimality and Randomized Nonoptimality
of Symmetrical Designs” (1958). In this paper, Kiefer establishes a general
decision theoretic framework for the problem of choosing a design. He then
shows (in a generalization of earlier results of Wald and Ehrenfeld) that
many standard designs have various optimum properties among the class of
nonrandomized designs. Here, by a randomized design he means that the
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design is chosen according to a fixed probability distribution from a given
class of possible designs. He follows these optimality results by proving
that, as the title indicates, surprisingly these results no longer hold when
randomized designs are allowed.

The optimality criteria treated in this first paper (some of them in the
literature, others new) were somewhat arbitrary, but Kiefer and Wolfowitz two
years later were able to show that D – optimality was in fact equivalent to a
minimax criterion (called G -optimality). Although the paper (1960) is quite
short and the proof fairly easy, it must have given the authors great satisfaction.

During a sabbatical year (1958–59) in England, Kiefer presented a paper,
“Optimum Experimental Designs,” to the Royal Statistical Society. It was
mainly a survey of the work done in this area so far but also included some new
results. His presentation was followed by the comments of nine discussants. To
his surprise and dismay, the reaction was nearly uniformly negative. The tone
was set by Tocher, who proposed the traditional vote of thanks and stated:

I think it is now recognized among practical statisticians that statistical decision the-
ory cannot be a complete theory of inference . . . that a new formulation is probably
needed. This attempt to found design theory on similar lines reinforces that viewpoint.

The meeting was chaired by George Barnard, who stated:

Some indication of my major philosophical differences with Dr. Kiefer is given on
p. 273 where the procedures of Box and Wilson are said to be “often not even well
defined rules of operation.” There is a suggestion here that this is a defect; but it
should be pointed out that in the field of practical human activity rules of operation
which are not well-defined may be preferable to the rules which are.

Kiefer had become the victim of a clash between two cultures. The
American decision theoretic point of view focused on the desirability of
clearly stated objectives, precise formulations, and the derivation of optimal
procedures. The British statisticians instead emphasized intuition, practical-
ity, and the unknown multiple uses to which a procedure might be put.

The discussion upset and angered Kiefer, but fortunately it did not discour-
age him. For the next twenty years, he continued his investigations of both
general aspects and particular designs. However, he also applied the decision
theoretic approach to other areas such as sequential analysis, nonparametric
inference, and multivariate hypothesis testing.

One example is the group of his papers concerned with the minimaxity and
admissibility of Hotelling’s T 2 and other multivariate tests. As mentioned in
Section 13, this is a problem in which the Hunt–Stein theorem does not apply
and that therefore has to be considered on its own merits. Giri and Kiefer were
successful in treating local and asymptotic minimaxity. In addition, Giri,
Kiefer, and Stein tackled the much more difficult form of this problem when
the alternatives are restricted to an invariant shell. However, they were able to
solve this problem only for the simplest case (dimension 2, sample size 3).

Another example is provided by Kiefer’s work on nonparametric test-
ing and estimation, particularly of the Kolmogorov-Smirnov type. This
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includes both asymptotic minimax results and the limiting distributions of
the k-sample multivariate analogues of the Kolmogorov-Smirnov tests for
goodness of fit and for the equality of several distributions.

Jack’s great scientific accomplishments were recognized by his giving the
Wald lectures “On Optimum Experimental Designs” in 1962 and his service
as president of the Institute of Mathematical Statistics (IMS) in 1967.
He also was elected to both the American and National Academies. After his
early death in 1981, his memory was honored by conferences in Berkeley and
at Cornell. The second volume of the Proceedings of the Berkeley Conference
in Honor of Jerzy Neyman and Jack Kiefer substitutes for the festschrift Jack
would undoubtedly have received had he lived longer.

The June 1984 issue of the Annals of Statistics was dedicated to his memory.
It contains a list of his publications and writings and articles on his life and
work by his students Jerome Sacks and Lawrence Brown, and a survey of his
work on experimental design by Henry Wynn. These articles, and the bibliog-
raphy, were reprinted in what constitutes his most enduring memorial: the three
volumes of Jack Kiefer’s Collected Works.

49. Lawrence D. Brown (b. 1940)

The description of Kiefer’s decision theoretic work in the preceding section
may give the impression of a deliberate program to provide more substance
to Wald’s theory. However, this would be misleading. Kiefer investigated
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problems because they interested him, and decision theory—particularly the
minimax approach—seemed the best way to formulate them. That this in
turn served to develop and enrich decision theory was, I believe, a conse-
quence rather than a motive. This substantive development of Wald’s theory
was continued in the same spirit by Kiefer’s student Larry Brown. But while
the minimax principle was the main focus for Kiefer, with admissibility
playing a smaller role, the converse was true for Brown.

Lawrence (Larry) Brown, while majoring at Cal Tech in mathematics and
physics, took one statistics course and, he says,8

the subject immediately appealed to me. I suppose that my interest in statistics was
rooted in a desire to use formal mathematics in a pragmatic way.

For his graduate studies, Brown went to Cornell to work with Kiefer.
However, he took his main decision theory course from Peter Huber, who was
spending the year 1963–64 at Cornell after two years in Berkeley.

After completing his Ph.D. in 1964 with a thesis written under Kiefer,
Brown went to London for a year to work with David Cox, and then accepted
a tenure-track position as assistant professor in the Berkeley statistics depart-
ment. There his closest contact was with Lucien Le Cam. In DasGupta
(2005), Larry mentions that he also had a nice relationship with me but that
he did not get to see much of me because of my schedule.

I typically taught and held office hours from 8 to 11 o’clock in the morning,
but apparently a myth developed among the students that I would come to the
office at 3 a.m. As Larry explains in a letter to me: “It’s not hard to understand
how such a story could have arisen and survived. After all, to most grad
students and even to us young faculty 8 in the morning was practically the
middle of the night.”

Unfortunately, Larry remained with us only for a year. He was happy in
Berkeley and we were happy with him, but it was the time of the Vietnam
War and it turned out that Larry’s Los Angeles draft board considered math-
ematics as a deferrable subject but not statistics. It therefore became essential
for him to be in a mathematics rather than a statistics department. So Larry
contacted Jack Kiefer, who arranged a position for him at Cornell, where
statistics was in the mathematics department.

We were really unlucky. This was the second time that we lost an out-
standing member of our faculty for political reasons: first Charles Stein, now
Larry Brown. Both were irreplaceable.

Larry remained at Cornell for nearly thirty years, a stay that was broken up
by five years at Rutgers. In 1994, he left Cornell to accept a position as pro-
fessor of statistics at the Wharton School of the University of Pennsylvania,
where he still is teaching today.

As mentioned earlier, much of Brown’s work was concerned with questions
of admissibility. Of this group of his papers, the most original and influen-
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tial was his 1971 paper, “Admissible Estimators, Recurrent Diffusions, and
Insoluble Boundary Problems.” It grew out of Stein’s result (discussed in
Section 13) that when estimating a number of independent normal means, an
improvement over the standard estimator is possible when the number of
means is three or more, but not when it is one or two. As Brown points out,
a fundamental difference between the cases “three or more” and “one or two”
also occurs in a completely different field, the theory of recurrence in diffu-
sion. Brown discovered a close connection between the statistical question of
admissibility and the probabilistic question of recurrence.

This work is too technical to present here, but to get at least a flavor of the
meaning of recurrence, consider random walks, a discrete analogue of diffu-
sion. A simple example is a walk on the line that starts at the origin and takes
steps of length 1, either to the left or right with constant probabilities p = q
= 1/2. Then it can be shown that with probability 1 the walk will sooner or later
return to the origin (i.e., be recurrent). This result continues to hold for a ran-
dom walk in two dimensions, but is no longer true in dimensions of three or
higher. To find a close connection between this kind of result and Stein esti-
mation was a major achievement.

In addition to this 1971 paper, Brown’s work included admissibility inves-
tigations more generally for inferences about location and scale parameters,
in sequential problems, for Poisson processes, and in some nonparametric
situations. Of his contributions to many other areas, I shall mention only
two. One is his 1986 book, Fundamentals of Statistical Exponential Families
(with Applications in Statistical Decision Theory), which has become the
definitive exposition of this subject.

The other is a recent series of papers (with Cai and DasGupta) that uncov-
ered the surprising fact that the standard confidence intervals for a binomial
probability p do not have the nominal coverage probability even for fairly
large n and for values of p far from 0 or 1. The authors found an explanation
for this phenomenon in the two-term Edgeworth expansion of the coverage
probability. They also used this expansion to compare a number of alterna-
tive intervals, some of which turned out to be considerably more satisfactory.
In the latest of these papers (2003), it is shown that similar results hold for
some other exponential families. This work has important implications
for statistical practice.

In addition to his research papers, Larry has on several occasions written on
today’s role of decision theory. Examples are “Minimaxity More or Less”
(1993) and “Minimax Theory” (1998) (Encyclopedia of Biostatistics); and “An
Essay on Statistical Decision Theory” (2000) and “Decision Theory, Classical”
(2001) (International Encyclopedia of Social and Behavioral Sciences).

He has given the Wald Lectures (1985), served as president of the IMS
(1992–93) and as coeditor of the Annals of Statistics (1995–97). He received
an honorary degree from Purdue University and was elected to the National
Academy of Sciences, and in 2002 he received the Wilks Award of the
American Statistical Association.
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11
Foundations II: Bayesianism 
and Data Analysis

The frequency approach of Neyman and Wald (which built on a formulation
of Fisher [1922]) assumed a statistical model that was only partially known.
The unknown aspect was specified by certain parameters θ, which were
unknown constants. A different approach, later called Bayesian, was devel-
oped by Savage (1954) following earlier work of Ramsey and de Finetti.
It was based on the assumption, justified by axioms of rational behavior, that
θ was a random quantity with a known distribution. The probabilities defin-
ing this distribution were interpreted as being subjective, representing the
investigator’s degree of belief in their possible values. The outcome of the
statistical analysis was to be an action, in accordance with Neyman’s behav-
ioristic approach. This foundation, unlike that of Neyman and Wald, led to
a unique optimal procedure—the Bayes solution.

Implementation of this program, which required the elicitation of the
subjective prior distribution of θ, proved to be quite difficult in practice. As a
result, gradually a modified approach was developed by Berger, Bernardo, and
others that retained the Bayesian paradigm but replaced the subjective prior
by a more convenient (although harder to interpret) reference distribution.
A different modification, called empirical Bayes, was initiated by Robbins.

While the Bayesian approach added a strong assumption, that of a specified
prior distribution, to the model, a movement by Tukey went in the opposite
direction: he argued that much statistical activity should take place without
the use of any models. His exploratory data analysis advocates a first com-
pletely open-minded and unstructured look at the data to see what they
might tell us. More generally, Tukey stressed the primacy of the data, and his
views had a strong effect on the way statisticians perceived their task and the
seriousness with which they took their models.

I had little involvement with these foundational debates. However, to
commemorate the fiftieth anniversary of the Neyman-Pearson theory, I did
write a paper (1985) in which I argued that this theory continued to play
an important role by its position intermediate between that of the more
structured Bayesian formulation and the looser practice of data analysis. The
paper showed how these three different approaches influence each other, and
how each had its part to play.
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50. Leonard J. Savage (1917–1971)

A serious shortcoming of von Mises’ frequency concept of probability is
its inapplicability to the probability of unique events, for example the proba-
bility that there is life on Mars. There exists, however, another concept of
probability that does not suffer from this limitation. It considers probability
as measuring the confidence that a particular individual has in the truth of
a particular proposition.

These two different concepts of probability lead to different approaches to
statistical inference, called respectively frequentist and Bayesian (the latter for
reasons that are explained below). Which of these approaches should be pre-
ferred was subject of a lively debate throughout the nineteenth century, with
the Bayesian version preferred by most authors. The Bayesian approach,
however, was violently opposed as unscientific by both Fisher and Neyman
in the 1920s and 1930s, and as a result fell into disuse. The person bringing it
to life again was Leonard J. Savage, who wrote under that name but preferred
to be called Jimmie.

Jimmie Savage and I were born on the same day, November 20, 1917.
He received his B.S. degree in 1938 in mathematics from the University of
Michigan and was awarded the Rackham Fellowship, a prize given to the
most promising student in the department who was planning to go on to
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graduate work. He remained at the University of Michigan as a graduate stu-
dent and obtained his Ph.D. in 1941 with a thesis in geometry. There followed
a postdoctoral year at the Princeton Institute for Advanced Studies, where he
benefited from his contact with John von Neumann.

By 1942, Jimmie writes in an autobiographical sketch,1 “it became into-
lerable not to be doing something about the war.” After a year of teaching
“calculus and spherical trigonometry to pretty unwilling students,” he came
to the attention of Warren Weaver, who, as chief of the Applied Mathematics
Panel of the National Defense Research Council (NDRC), was largely
responsible for the administration of war-related mathematical and statistical
activities. This led in 1944 to Savage’s joining the Statistical Research Group
(SRG)2 at Columbia under the direction of Harold Hotelling and W. Allen
Wallis. Savage had no background in statistics, but, as he writes, “it would
have been impossible at that time not to have learned something about sta-
tistics, for I was stationed at the Statistical Research Group at Columbia . . .,
which was one of the greatest hotbeds statistics has ever had.” Savage, a fast
learner, quickly made himself useful, and was an important contributor to
two of the books the SRG published after the war.

When his service with the SRG ended, Savage moved to the University of
Chicago, where he worked first in the Institute of Radiobiology and
Biophysics, then in the Department of Mathematics, and finally, beginning in
1949, in the Department of Statistics, which he chaired from 1957 to 1960.
He left Chicago in 1960 for personal reasons for the University of Michigan,
and from there in 1964 went to Yale, where he died seven years later at the age
of fifty-four.

Savage’s interests were broad and he was a superb mathematician. He pub-
lished significant papers in economics, pure mathematics, probability theory,
and statistics. I shall here mention only two papers that I found particularly
interesting.

The first of these is a 1956 joint paper with Bahadur on “The Nonexistence
of Certain Statistical Procedures in Nonparametric Problems.” It resolved an
important open question concerning the testing and estimation of the mean
of an entirely unknown distribution. The paper showed that no useful proce-
dure exists in this situation regardless of how large a sample is taken or even
with a sequential procedure. The same conclusion is shown to hold for other
parameters that can be changed by an arbitrarily large amount through a
very small change in the tail of the distribution.

The second paper, “On rereading R.A. Fisher” (1976), is a wonderful
survey of Fisher’s ideas and results. It is a written version of the Fisher
Lecture that Savage gave in 1970. At the time of Savage’s death, it was
not quite complete, and we must be grateful to John Pratt, who carefully
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edited it and prepared it for publication. The paper is full of insights and
surprising discoveries. The following two passages give at least a flavor of this
superb piece.

Of Fisher’s temperament, Savage writes:

Fisher burnt even more than the rest of us, it seems to me, to be original, right, impor-
tant, famous, and respected. And in enormous measure, he achieved all of that, though
never enough to bring him peace. . . . As in the works of other mathematicians,
research for the fun of it is abundant and beautiful in Fisher’s writings, though he
usually apologizes for it.

In the section, “Just What Did Fisher Do in Statistics?” Savage writes:

It would be more economical to list the few statistical topics in which he displayed
no interest than those in which he did. . . . It stands to reason that he would not
have investigated noncentral distributions, because their raison d’être is the power
function, a concept on which Fisher turned his back. So much the worse for reason:
Fisher was the first to give formulas for the important noncentral distributions,
chi-squared, t, and singly noncentral F.

However, Savage’s most influential publication was not one of his papers
but his 1954 book, The Foundations of Statistics, in which he examined
statistics as the science of making decisions under uncertainty. More specifi-
cally, he treated the problem of what action to take in the presence of uncer-
tainty as to which of a number of states (e.g., possible causes of some medical
symptoms) is the true one. Drawing on work of Ramsey and de Finetti, as
well as von Neumann and Morgenstern, Savage formulated a set of plausible
axioms for rational behavior. The principle of these axioms requires that a
person faced with a choice of actions can establish an order of preference
among them, in particular to be able for any two possible actions to deter-
mine which one he or she would prefer.

Savage then deduces (by a purely mathematical argument) that a rational
person who obeys these axioms has a prior distribution corresponding to
numerical degrees of belief in the various possible states and a loss function,
and acts so as to minimize the expected loss. This degree of belief is the per-
sonal (or subjective) probability the person attaches to the state in question.
Once these prior probabilities (i.e., before any observations are taken) are
determined, the statistical analysis proceeds by updating them in the light of
the observations, and thereby converting them into posterior probabilities.
This is done by means of Bayes’ rule (due to Thomas Bayes, 1701–1761),3 and
is the reason the adherents to this approach are called Bayesians.

As a result of Savage’s book, and his advocacy of the Bayesian approach
in later papers, a Bayesian movement developed that competed with the
established frequentist approach to statistics. The number of Bayesians
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steadily grew, leading to the organization of Bayesian meetings (and the
publication of their proceedings), and eventually to the establishment of
institutions such as a section of the American Statistical Association on
Bayesian Statistical Science, the International Society for Bayesian Analysis,
and the Bayesian Journal. At the same time, variations and modifications of
Savage’s original formulation arose within this emerging Bayesian commu-
nity, particularly regarding the specification of the prior probabilities. Some
of these developments are sketched in the next two sections.

Savage’s importance is that of a great catalyst. He not only brought the
ideas of Ramsey and de Finetti to the attention of the English-speaking
statistical community when the time was ripe for them, but also combined
them with other ingredients into a worldview that was persuasive to many.
His book launched a movement that had a serious impact on both statistical
theory and practice.

Owing to his early death, Savage did not receive many formal honors. He
was awarded a Guggenheim Fellowship in 1951–52, served as president of the
Institute of Mathematical Statistics (IMS) in 1958, and was awarded an hon-
orary degree by the University of Rochester in 1963, but perhaps his greatest
mark of distinction came posthumously. In 1981, ten years after Jimmie’s
death, The Writings of Leonard Jimmie Savage—A Memorial Selection
(Ericson, 1981) was published jointly by the ASA and IMS. The volume of
more than seven hundred pages contains not only most of Savage’s papers,
but also a complete bibliography as well as tributes by W. Allen Wallis, Fred
Mosteller, William and Esther Sleator, and Francis Anscombe, together with
an essay, “L.J. Savage—His Work in Probability and Statistics,” by Dennis
Lindley.

My own direct interaction with Savage was slight. We saw each other at
some of the Berkeley symposia and at statistical meetings, but I did not agree
with his point of view and, since I dislike controversy, avoided serious dis-
cussions with him. What I could not, however, avoid in the long run was
thinking about the issues he had raised. In that sense he exerted a strong
influence on me and many statisticians of my generation.

51. Dennis Lindley (b. 1923)

After Savage’s death, the principal spokesperson for the subjective Bayesian
movement became the British statistician Dennis Lindley. Born and raised in
London, Lindley studied mathematics at Trinity College, Cambridge. His
studies were interrupted by wartime service in the Ministry of Supply. Of this
work, Lindley says4:
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Much practical work was done, but generally speaking, in our section, under the
direction of George Barnard,5 we were just learning statistics. We read all the “big
papers” and slowly began to understand what the subject was about.

The “big papers,” he explains, were “mainly the Neyman-Pearson material
because that was the most mathematical. Then there were papers on proba-
bility, by Cramér and Doob, for example.”

So, like so many statisticians of his and my generation, Lindley slithered
into statistics as a result of World War II. After a brief period at the National
Physics Laboratory (NPL), he went back to Cambridge for a year’s further
study, and then once more to the NPL. Then in 1948 he accepted an offer
from John Wishart of a faculty position at Cambridge.

At Cambridge, Lindley’s aim was to make statistics “a respectable branch
of science” by establishing a system of axioms from which the theories of
Fisher and Neyman-Pearson could be derived. As a result of meeting
W. Allen Wallis, he was invited to spend 1954 in Chicago with Savage, who
was engaged in a similar endeavor. Of his encounter with Savage, Lindley
says (in his conversation quoted above):
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His approach to the axiomatization was far better than mine, but he had the same
idea. Neither of us would have known at the time what was meant by saying we were
Bayesians. What we were doing was justifying the classical techniques. If you read
the preface to the second edition of Savage’s book, he says something about what
a fool he was. We were both fools because we failed completely to recognize the
consequences of what we were doing.

After his year in Chicago, Lindley returned to Cambridge, where he later
became director of the Statistical Laboratory. However, in 1960 he was told
that Cambridge for the first time was going to establish a chair of statistics
but that he would not be appointed to that position.6 As a result, he moved
to Aberystwyth in Wales, “the first of the new wave of statistics chairs that
was created.” In Aberystwyth, he organized a new department, but he left in
1967 to accept the chair of statistics at University College, London. In 1977
(at age fifty-four), he took early retirement, and since then he has been a
freelance statistician and world traveler.

Lindley has written more than one hundred papers, mostly on various
aspects of the Bayesian approach. In 1965, he published a two-volume
account of Bayesian statistics, in which he fleshed out the consequences of
Savage’s approach for statistical inference. Unlike Savage’s book, Lindley’s
version was written as a text and as such was very influential (and was trans-
lated into Japanese). It was followed by two shorter books, Making Decisions
(1971b) and Bayesian Statistics: A Review (1971a), and more recently a less
technical book, Understanding Uncertainty (2006).

Lindley’s enthusiasm for Bayesianism is boundless and leaves no room for
doubt. In a comment on a paper by Efron, “Why Isn’t Everyone a Bayesian?”
(1986), he writes that, “Every statistician would be a Bayesian if he took the
trouble to reads the literature thoroughly and was honest enough to admit that
he might be wrong.” In Smith (1995), he is asked whether he has ever thought
about the fact that inferential debates might be detrimental to the wider image
and impact of statistics, to which he replies: “Yes, it is detrimental, but truth is
more important than image in my view. We have got to get it right and I think
we will. We will all be Bayesians in 2020, and then we can unite the profession.”

Most of us will agree that truth is more important than image, but I don’t
believe it has to be presented quite as confrontationally as Lindley does by
replying to the question of how the Bayesian view could be encouraged:
“Attend funerals” (Statistical Science 10, p. 313).

In the late 1970s and early 1980s, Lindley frequently visited Berkeley, and
despite our disagreement on foundations, we were on friendly terms and I saw
more of him than I had of Savage. The Berkeley invitations came not from the
statistics department, which generally was very unsympathetic to the Bayesian
approach, but from the Department of Industrial Engineering and Operations
Research, more specifically from Richard Barlow, an enthusiastic Bayesian.
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As in the case of Savage, I did not engage in debate with Lindley, with one
exception. The occasion was Lindley’s 1988 Wald Lectures, with the title
“The Present Position in Bayesian Statistics,” which were published in
the 1990 volume of Statistical Science, with discussion. In the preface to his
paper, Lindley writes:

There is no generally accepted name for non-Bayesian statistics. Since Bayes had little
to contribute to Bayesian statistics, it is not inappropriate to refer to Berkeley statis-
tics, since the two ecclesiastics disagreed during their lifetimes, and because the
University of California campus named after the latter has perhaps the best depart-
ment broadly holding to that view.

I was invited to contribute to the discussion of the paper, and I provided
some comments on points on which I differed with Lindley.

Among the honors Lindley has received for his important contributions
are not only the Wald Lectures but also the Royal Statistical Society’s Guy
Medals in Silver and Gold, and a festschrift on the occasion of his seventieth
birthday, edited by Freeman and Smith (1994). The volume of twenty-two
papers opens with a biographical essay by Peter Armitage, and concludes
with a bibliography of 118 entries covering the years up to 1993.

52. James O. Berger (b. 1950)

In contrast to Lindley, who has never wavered in his belief in the inevit-
ability and universal applicability of the subjective Bayesian formulation,
some Bayesians of the next generation found that an objective, less personal,
Bayesian approach tended to be more practicable. As a result, a split developed
between those who subscribed to Lindley’s idealistic and uncompromising
position and others who saw a role for an objective Bayesian approach that
goes back to Laplace in the nineteenth century. Laplace championed the idea
of a noninformative prior representing a state of ignorance. In the twentieth
century, more sophisticated versions of noninformative priors were devel-
oped by the geophysicist Harold Jeffreys (1939) and the physicist Edwin
Jaynes (1983). A leading proponent of an objective Bayesian movement has
been Jim Berger.

James O. Berger was born in 1950 in Minneapolis, and obtained his B.A.,
M.A., and Ph.D. in mathematics from Cornell University in 1971, 1973, and
1974, respectively. He dates his decision to become a statistician to a gradu-
ate course in inference he took from Jack Wolfowitz. As he recalls,7 “That got
me to start thinking about statistics as a career. Wolfowitz was an entertain-
ing lecturer and we heard all sorts of funny things about Bayesians and other
undesirables.”
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Berger wrote his Ph.D. thesis in (frequentist) decision theory under the
supervision of Larry Brown and then was appointed to a faculty position at
Purdue, where he remained for twenty-three years. In 1997, he moved to the
Institute of Statistics and Decision Sciences at Duke University. In addition,
he spearheaded the effort to create the Statistical and Applied Mathematical
Sciences Institute (SAMSI) in Research Triangle Park and became its found-
ing director.

Having started as a frequentist, Berger describes how he became a Bayesian
in the preface to his 1980 book, Statistical Decision Theory. He states:

The original goal I had in writing this book was to find some middle ground
[i.e., between the frequentist and Bayesian approaches]. . . . This original goal seemed
indicated by my philosophical position at the time, which can be described as basically
neutral. I felt that no one approach to decision theory (or statistics) was clearly superior
to the other, and so planned a rather low-key and impartial presentation of the com-
peting ideas. In the course of writing the book, however, I turned into a rabid Bayesian.
There was no single cause for this conversion; just a gradual realization that things
seemed ultimately to make sense only when looked at from the Bayesian viewpoint.

Of Berger’s postconversion Bayesian work, I shall mention three strands,
all part of his desire to cast the Bayesian net as wide as possible.
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In the first place, as mentioned at the beginning of the section, he relinquishes
Lindley’s insistence that Bayesian analysis must be based on subjective priors.
In fact, he states in Wolpert (2004):

By necessity most priors used today are objective rather than subjective; subjective
elicitation is just too hard to be done in even a limited way for more than a few
unknowns in a problem, so the vast majority of unknowns must be handled via objec-
tive Bayesian methods.

Objective priors representing a state of complete ignorance were favored by
Laplace. However, this concept turned out to be more difficult to implement
than might have been expected. A series of papers by Berger and Bernardo (and
others) in the 1980s and 1990s, initiated by Bernardo (1979), developed a more
general concept of “reference priors” as conventional baselines. (For a discus-
sion of this approach, see, for example, Bernardo and Smith [1994], Section 5.4.)
Objective Bayesian analysis continues to be a very active area of research.

A second strand of Berger’s Bayesian enterprise is a “robust Bayesian view-
point,” which he describes (in a 1984 paper with that title) as that “essentially
one should strive for Bayesian behavior which is satisfactory for all prior
distributions which remain plausible after the prior elicitation process has
been terminated.”

The last aspect of Berger’s work I want to mention is his effort to bridge
the separation of the Bayesian and frequentist approaches. In his conversa-
tion with Wolpert, he states, “In the long run, I think that reconciliation is
inevitable as it becomes better understood that good Bayesian and good
frequentist viewpoints are simply two illuminations on what I think are the
central core truths of statistics.” (The same issue of Statistical Science con-
tains a paper by Bayarri and Berger entitled, “The Interplay of Bayesian and
Frequentist Analysis.”)

Berger’s Bayesian work has been very influential and has been acknowl-
edged by many honors. In 1985, he received the Committee of Presidents of
Statistical Societies (COPSS) Award. He was elected (as a foreign member) to
the Spanish Real Academia de Ciencias in 2002, and to the (U.S.) National
Academy of Sciences the following year. In 1995–96, Berger served as presi-
dent of the IMS, and from 1998 to 2000 as editor (joint with Künsch) of the
Annals of Statistics. He also served as president of the International Society
for Bayesian Analysis.

One of Jim’s major works was the previously mentioned 1980 book,
Statistical Decision Theory, and I was pleased with the inscription in the copy
he sent me of the second (1985) edition (now with the title enlarged by the
addition of “and Bayesian Analysis”).8 The inscription reads: “To Erich with
best wishes (and a feeling that we are a lot closer in basic outlooks than our
books might reveal).”
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This raises the question: What is my outlook? Foundational issues have not
been an active interest of mine, so I find it easiest to describe my attitude with
a number of (rather superficial) comments:

1. As a student of Neyman, my starting position was that of a strict
frequentist: probability meant long-run frequency, and any idea of proba-
bility as state of mind was to be dismissed out of hand.

2. Later, I realized that in our personal lives we do have beliefs or feelings
that make some outcomes seem more likely to us than others and which
influence our actions. In particular, we take many risks in the belief that
their probability is very small.

However, it seems to me that the strength of these beliefs tends to be rather
fuzzy, and not sufficiently well defined and stable to assign a definite numer-
ical value to it. If, with considerable effort, such a value is elicited, it is about
as trustworthy as a confession extracted through torture.

3. On the other hand, there are many repetitive situations, for example in
education, industry, and medicine, where substantial past experience does
provide sensible prior distributions. In such situations, frequentists and
Bayesians share a common view.

4. The most important link between the two approaches is the crucial result
of Wald that, roughly speaking, any sensible statistical procedure is a
Bayes procedure corresponding to some (proper or possibly improper)
prior distribution. This result suggests to the frequentist two useful
Bayesian strategies:
i. Bayes solutions as a way of constructing procedures with good fre-

quentist properties. This of course leaves unsettled the choice of prior
suitable for this purpose. The development of reference priors could be
viewed as one possible approach to this problem.

ii. To determine for any proposed procedure whether it is a Bayes solution
and if so, to what prior it corresponds. Answering this question is likely
to produce useful insights.

Thus, over the years my frequentist position has been somewhat contami-
nated by Bayesian ideas and, as Jim Berger has indicated, we may not be as
far apart as our writings suggest.

53. Herbert Robbins (1915–2001)

As mentioned in Section 3, I first met Herb Robbins at Courant’s house in
1940, on my arrival in New York from England. At that time, he was a pure
mathematician working with Courant on their book, What Is Mathematics?
But later, by a curious chain of events, he became a mathematical statistician.
While an officer in the navy during the war, he happened to overhear a con-
versation between two naval officers regarding the number of bombs required
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for their impact to cover most of a target. He found a simple mathematical
(probabilistic) formulation of the problem that he was able to solve, and he
published the results of this investigation in two papers in the 1944 and 1945
volumes of the Annals of Mathematical Statistics. The papers came to the
attention of Harold Hotelling, who in 1946 was moving to the University of
North Carolina, and he offered Robbins a faculty position in his new depart-
ment. Robbins demurred, pointing out that he knew nothing about statistics,
but Hotelling reassured him that he would only be required to teach measure
theory and probability theory.

And what had presumably been Hotelling’s speculation proved successful.
In the stimulating statistical atmosphere of the new department, Robbins
soon became interested in the unfamiliar subject and by 1951 began making
highly imaginative and original discoveries. Of Robbins’s many innovations,
I shall mention only three. Particularly characteristic of his work is a 1952
paper entitled, “Some Aspects of the Sequential Design of Experiments.”

It is concerned with two populations Π1 and Π2 with unknown, different
means µ1 and µ2. We draw a sample X1, X2, . . ., Xn and at each stage have
the choice of drawing from Π1 or Π2. The aim is to draw in such a way that
the expected value of X1 + . . . + Xn is as large as possible. A simple example
would be that of two slot machines with different average payoffs, where
the X’s are the amounts paid out by the machines (in this case most often 0)
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on the successive turns. After having played for a while and having observed
the results, which machine should we play on the next turn? A natural
answer is to play the machine that has done better up to this point, that is,
which has had the bigger average payoff. We shall denote this rule for play-
ing by R.

Unfortunately, the use of Rule R could lead us into trouble. Suppose, for
example, that we have one observation on each machine, and that by chance
the better machine comes up empty while the worse one pays out a positive
amount. Then we would select the worse machine for the next turn and,
regardless of the outcome, its average payoff would be positive, while that of
the better machine would still be zero. For the next turn, Rule R would there-
fore again tell us to play what is in fact the worse machine (although of
course we don’t know this), and so on. We would continue to play the worse
machine, never giving the better one another chance. Similar difficulties can
arise at any stage.

To avoid this problem, Robbins suggests modifying Rule R in a way of
which the following Rule R′ is an example.

Rule R′: Follow Rule R except: on the 10th, on the 100th, on the 1,000th, . . .
turn, play machine 1; on the 20th, the 200th, the 2,000th, . . . turn, play machine
2—regardless of how the two machines have performed up to this point.

What Rule R′ ensures is that eventually each machine gets an opportunity
to show what it can do, regardless of the chance outcomes up to a particular
point. On the other hand, the exceptions to Rule R are sufficiently rare, so as
not to load up the total payoff with too many plays from the inferior
machine. In fact, Robbins shows that with rules such as R′, the payoff will
eventually (i.e., for a sufficiently large number of plays) be arbitrarily close to
what it would have been had only the better machine been used.

These considerations generalize to more than two populations and have
applications to clinical trials for the comparison of two or more treatments.
Various related problems were taken up by Robbins in later investigations.
With this work, he initiated the consideration of sequential allocation. A sec-
ond area that he founded (together with his student Sutton Monro) was that
of stochastic approximation. However, this is rather technical and I shall now
turn to his most influential contribution: a new approach that was startlingly
surprising from a theoretical point of view and that at the same time provided
a highly useful methodology. It was written four years before Stein’s paper on
the estimation of several means (discussed in Section 13), with which it shares
some features. However, its conclusions—though similar in nature—are
much weaker than those obtained later by Stein.

The paper considered a sequence of situations Π1, . . ., Πs, each involving
its own data, say X1, . . ., Xs, which are assumed to be independent, and its
own parameters θ1, . . ., θs. The performance of a decision procedure for the
whole set of s situations is measured by the average of the performance meas-
ures for the s individual situations. Robbins considered two versions of this
problem. The first (1951), which he called a compound decision problem,
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treats the θ’s as unknown constants. (A special case of this problem was
described in Section 13 as the setting for Stein estimation.)

The second formulation of 1956 assumes that the θ’s are themselves ran-
dom quantities governed by some distribution Λ. If Λ were known, this
would be a Bayesian situation and the best rule would be the associated Bayes
procedure. However, Robbins considers the case that Λ is unknown.

In both cases, Robbins shows that the preferred procedure is not, as one
would expect, to make the decision regarding θi on the basis of Xi alone, but
that certain improvements are possible by letting the other (seemingly irrele-
vant) observations influence the decision in a suitable way. To see why this
might be so, we shall consider the second of the two formulations, which
assumes that the θ’s follow some unknown distribution Λ.

Robbins points out that it is then possible to estimate Λ, by using the full
set of data from all s situations. If the estimated distribution is Λ̂, he proposes
to use the Bayes procedure corresponding to Λ̂ and in his 1956 paper calls it
empirical Bayes. For sufficiently large s, this procedure will do nearly as well
as the Bayes procedure itself. Since the decision regarding θi is now based on
Λ̂, and Λ̂ depends on the full set of data (X1, . . ., Xs), it is seen that with this
procedure the decision on θi involves not only Xi but also the other X’s.
Robbins developed the empirical Bayes approach further in succeeding
papers, and it was taken up by many other authors.9

The success of the empirical Bayes approach rests on the assumption of a
probability distribution for the θ’s. That Robbins showed similar kinds of
improvements to be possible in the compound decision problem even without
this assumption seemed very surprising. Yet, in that case, results even
stranger and more startling were obtained by Stein in 1955, leading to the
Stein estimation procedures discussed in Section 13. (Roughly speaking, Stein
showed that his procedure provides an improvement in all cases, while
Robbins obtained an improvement only in most cases.) The understanding of
Stein’s procedures was greatly enhanced when, in a series of papers in the
1970s, Efron and Morris (1973a,b, following Lindley, 1971a) showed how to
interpret them as empirical Bayes procedures.

Empirical Bayes provides an important approach that is intermediate
between frequentist and Bayesian methods.

Having first met Robbins briefly in 1940, I did not see him again for a num-
ber of years. However, unexpectedly, during my Princeton semester in 1950
he invited me to give a series of three lectures at the University of North
Carolina in Chapel Hill. He had the reputation of being difficult, but I found
him and his wife most welcoming and hospitable. Only toward the end of my
stay did I receive a Robbins barb. He opened the third and last of my lectures
by saying: “Well, Professor Lehmann has told us nothing new in his first two
lectures; let’s see whether he has anything new to say today.”
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I cannot resist telling another Robbins story, although I did not witness it
myself. At one point in his career, he was considering an offer from another uni-
versity. The idea was that he would assemble a statistics group with several new
appointments. Negotiations had progressed well, and a meeting with several
deans was organized to discuss some outstanding problems. “But what would
we do with all these people if they became unproductive,” one of the deans
asked. “Oh,” replied Robbins cheerfully, “we could always make them deans.”

After seven enormously productive years in Chapel Hill, Robbins moved to
Columbia in 1953 to take over the chairmanship of the Department of
Mathematical Statistics. In 1958, I saw much of him when he spent a leave
in Berkeley, where he gave courses on recent developments in statistics and on
applications of stochastic processes. In 1974, he came to Berkeley to speak
on the occasion of Neyman’s eightieth birthday.

After that, we had little contact until my wife and I moved for a two-year
period to Princeton in 1995. Since Princeton had no statistics program, we
often attended the statistics seminar at nearby Rutgers University. Rutgers had
a strong statistics department, in which Robbins held a post-retirement posi-
tion. Although in his eighties, he still taught with enthusiasm. He was a superb
lecturer, and I remember an interesting talk he gave on the Secretary Problem.
It is concerned with the choice of a secretary (he framed it as the choice of a
wife) where you successively interview candidates as they become available.
After each interview, you have to make an irrevocable decision to choose or
reject this candidate (no second chance). The problem, to which Robbins had
made several contributions, is when to stop the process. This talk may have
been the last occasion on which I saw him. He died a few years later.

Robbins’s brilliance and the influence of his contributions were recognized
by many honors, including the Rietz, Neyman, and Wald lectures, and mem-
bership in the National Academy of Sciences and the American Academy of
Arts and Sciences. The Institute of Mathematical Statistics, of which he had
served as president in 1965–66, dedicated the April 2003 issue of the Annals
of Statistics to his memory. This issue also contains four essays that give a
good overview of his work:

1. Herbert Robbins and Sequential Analysis (Siegmund)
2. Robbins, Empirical Bayes, and Microarrays (Efron)
3. Compound Decision Theory and Empirical Bayes Methods (Zhang)
4. Stochastic Approximation (Lai)

They are followed by a list of his writings.

54. John W. Tukey (1915–2000)

John Tukey is a towering figure of twentieth-century statistics who made
important contributions to nearly all aspects of the discipline, both theoreti-
cal and applied. His collected works, although still incomplete, comprise
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eight substantial volumes dealing with time series, data analysis, graphics,
analysis of variance, and multiple comparisons. A detailed account of
Tukey’s life and achievements is provided in the December 2002 issue of the
Annals of Statistics (pp. 1535–1680), which also contains a bibliography and
which is dedicated to Tukey’s memory. The issue opens with an article by
David Brillinger on Tukey’s life, prefaced by a statement of the Princeton
physicist John Wheeler:

I believe that the whole country—scientifically, industrially, financially—is better off
because of him and bears evidence of his influence.

John Wilder Tukey, born in New Bedford, Massachusetts, was a prodigy who by
the age of three had taught himself to read. He was schooled at home but did
take some courses at New Bedford High School, where both his parents were
teachers. Before entering Brown University in 1933, Tukey had already studied
calculus and chemistry by reading at the public library. As a result, he was able
to take graduate courses in mathematics at Brown as a sophomore. However, his
major was chemistry, a field in which he graduated after three years.

From Brown, Tukey moved to Princeton for graduate study in chemistry,
but after a year he changed to mathematics. He obtained his Ph.D. in 1939
with an outstanding thesis in topology, which was published as volume 2 of
the Annals of Mathematics Studies. After completing his degree, he was
appointed to the faculty of the Princeton mathematics department.
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In 1941, with war approaching, Tukey joined Princeton University’s Fire
Control Research Office and there came under the influence of Charlie
Winsor. As he writes in the foreword to Volume VI of his collected works:

There I met Charles P. Winsor, who taught me much about statistics not known then
in books or other literature. It was Charlie, and the experience of working on real
data, that converted me to statistics. By the end of late 1945, I was a statistician rather
than a topologist.

After the war, Tukey divided his position between Princeton University
and Bell Laboratories, where he was a member of the technical staff, becom-
ing assistant director of research, communication principles, in 1958 and
associate director of research, information science, in 1961. At the university,
Tukey’s home was the section of mathematical statistics in the mathematics
department. He advanced to professor of mathematics in 1950, and in
1966—when the section became an independent Department of Statistics—
served as its first chair. In 1970, he was succeeded in this position by Geoff
Watson, and he retired in 1985 at the mandatory age of seventy.

In addition to his jobs at Princeton and Bell Labs, Tukey did a great deal of
consulting and much high-level work for the government. The latter includes
his service on the President’s Science Advisory Committee from 1960 to 1965,
and again in 1971–72. A list of these activities is provided in the Tukey
festschrift edited by Brillinger, Fernholz, and Morgenthaler (1997).

This festschrift is only one of his many honors, which include his election
not only to the National and the American Academy, but also to the
American Philosophical Society. Most prestigious of all, in 1973 he received
the National Medal of Science, “for his studies in mathematical and theoret-
ical statistics . . . and for his outstanding contributions to the applications of
statistics to the physical, social, and engineering sciences.” (A more complete
list of his honors can be found in the festschrift.)

I do not remember when I first met John Tukey, but recall that I found
early encounters with him both frustrating and uncomfortable. It was frus-
trating when he talked about what he was working on. I was, of course, inter-
ested. However, his conversation was sprinkled with new technical terms that
he delighted in creating (a partial list of these inventions can be found in
Brillinger, 2002), and unless one interrupted him constantly to ask for their
meaning he was unintelligible, at least to me. The situation got much better
in 1951, when I spent a semester at Princeton and gradually was able to learn
his language. This was also the period when we started playing Ping-Pong, a
game in which we were evenly matched and which we later played often on
his frequent visits to Stanford’s linear accelerator.

What also made me uncomfortable in my early contacts with John was his
attitude toward my own work. He made a distinction between mathematical
and theoretical statistics, and while the difference was not very clear to me, it
was clear that the first was bad and the second good, and that my work fell
into the first category. In particular, he thought optimization, the search for
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the best procedure, was a mistaken goal, while this was exactly the focus of
my early work and of my lecture notes on testing and estimation.

In a 1961 paper, “Statistical and Quantitative Methodology,” Tukey dis-
cusses these issues in some detail. He seems to feel that the basic difference is
one of attitude, of intent. A section entitled, “Mathematical and Scientific
Statistics” (a term he used as an alternative to theoretical statistics) opens
with this statement:

Mathematical statistics was once the knight in armor to save us from the dragon of
ill-used descriptive statistics. This it did. Today it is the home of many respected col-
leagues, whose motivations are basically mathematical rather than scientific. Far less
is heard of scientific statistics (which I like to call theoretical statistics), where the
motivations are basically scientific. Yet the latter field is the more important.

This is considerably more tolerant than the impression he gave in our early
conversations.

Tukey takes up the difference between the two approaches in a later section
of the paper titled, “Mathematicians and Mathematics”:

The danger of mathematics to the outside world in general, and to science in partic-
ular, is simple. Pure mathematics must take its assumptions most seriously, wringing
from them all possible consequences, questioning not at all. Pure mathematics must
value its results in its own terms, with far less attention to the relation of the assump-
tions to the real world than to the aesthetic nature of the results. . . . Yet [this] is just
what science and technology must not do. . . . Science and technology . . . must avail
itself of the aid of mathematics, yet dare not accept its attitudes.

Later, John’s criticism of me abated since my work, especially on nonpara-
metrics, became more methodological. In addition, our personal relations
became much more cordial, particularly after he and his wife, Elizabeth,
spent several weeks in Berkeley as guests of our department while I was
chairing it. This visit came about as a result of Fred Mosteller’s appointment
as a research professor in our department for the year 1974–75.

Tukey had been one of Fred’s closest collaborators for many years, and Fred
thought it would be useful if we could arrange for Tukey to visit Berkeley.
Fortunately, a perfect vehicle existed for this purpose, the Hitchcock Lectures,
which bring distinguished persons to the campus for a period of three to four
weeks, during which time they give a number of lectures. The first Hitchcock
lecturer in statistics was R.A. Fisher in 1936, who had been invited when he was
being considered for a position. The visit had not been a success, and two years
later the position went to Neyman. We now had much better luck with the talks
by Tukey, who lectured on his new work on data analysis. The department
enjoyed his visit and the Tukeys seemed to be having a good time.

My last extended contact with John was during 1995–1997, when my wife
and I spent two years in Princeton at the Educational Testing Service (ETS).
John visited ETS once a week for a consulting session that was open to all,
and then stayed for the rest of the day. From time to time, he also invited me
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for lunch at his club. Unfortunately, Elizabeth Tukey was suffering from
terminal cancer. We saw her only once during our stay, in late 1997 when she
and John joined us for lunch, shortly before her death. Life without her was
hard for John and he died two years later, at age eighty-five.

In the same year, 2000, my colleague Lucien Le Cam also died. The two
were about as far apart in their interests and attitudes about statistics as is
possible. Le Cam constructed his great asymptotic theory at the greatest pos-
sible level of abstraction and generality, writing statistical theory in the
mathematical style of Bourbaki. In contrast, Tukey stressed exploratory data
analysis without any probability or mathematics. Between them they seemed
to define the great sweep of the field. To honor these so extraordinarily dif-
ferent great statisticians, my coauthor Joe Romano and I dedicated the third
edition of my testing book to their memory.

55. Tukey’s Robust Statistics and Exploratory 
Data Analysis

This section considers just two areas of Tukey’s many contributions that are
close to my own interests (a third such area is discussed in Section 57): robust
statistics and data analysis. As is pointed out in the introduction to a book
dealing with these two subjects, Understanding Robust and Exploratory Data
Analysis (Hoaglin, Mosteller and Tukey, 1983), they have a common purpose:

The classical statistical techniques are designed to be the best possible when stringent
assumptions apply. However, experience and further research have forced us to recog-
nize that classical techniques can behave badly when the practical situation departs
from the ideal described by such assumptions. The more recently developed robust
and exploratory methods are broadening the effectiveness of statistical analyses.

Robustness was first investigated by E.S. Pearson (1931) and later by
George Box (1953), who coined the term. The issue then had been robustness
(i.e., insensitivity to assumptions) of the level of a test. The corresponding
problem for point estimation was first taken up by Tukey (1960), who con-
sidered the robustness of the efficiency of estimators. The new viewpoint he
brought to the problem has several aspects:

1. The formulation of the issue in terms of efficiency.
2. The emphasis on robustness against small deviations from the assumed

model.
3. Illustration of the approach by considering mixture distributions of the

form F(x – θ) with

F(x) = (1 − ε) Φ(x) + ε Φ (x/3)

(i.e., contamination, with small probability ε, of a normal distribution
with variance, by gross errors with variance 9.)
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4. The comparison in this contamination model of the efficiency of the mean
with that of trimmed means resulted in a startling finding. That, for exam-
ple, a 6% trimmed mean is at least 96% efficient for all ε while the effi-
ciency of the mean decreases rapidly as ε increases, from 1 at ε = 0 to 70%
at ε = . 1.

By showing the great advantage of robust procedures, the paper was influ-
ential and provided motivation for Huber’s robustness work.

Tukey’s interest in robustness led Geoff Watson, his successor as chair of
the Princeton statistics department, to invite Peter Huber, Frank Hampel,
and Peter Bickel to join Tukey for a year-long seminar on the subject in
1970–71. The project, in which a number of other statisticians also partici-
pated and in which Tukey played a central role, resulted in a book, Robust
Estimates of Location, by Andrews, Bickel, Hampel, Huber, Rogers, and
Tukey, which compared sixty-eight estimates of location, some well known,
others developed during the study. Much other work developed during the
seminar that has not been published is outlined in Hampel (1997). Tukey’s
role can be imagined from a comment by Huber (2002):

In robustness as in every other area he touched, John Tukey produced hundreds of
original ideas, some brilliant, fundamental and lasting, some ephemeral.
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This characterization applies very strongly also to the area of Tukey’s statis-
tical work that perhaps affected the field of statistics most profoundly—data
analysis. This work is contained in his book, Exploratory Data Analysis (1977),
the papers collected in volumes 3 and 4 of Tukey’s Collected Works, a book
with Mosteller, Data Analysis and Regression (1977), and two books edited by
Hoaglin, Mosteller, and Tukey: Understanding Robust and Exploratory Data
Analysis (1983), and Exploring Data Tables, Trends, and Shapes (1985).

In an early (1962) key paper, “The Future of Data Analysis,” Tukey
describes data analysis as including, “among other things: procedures for
analyzing data, techniques for interpreting the results of such procedures,
ways of planning the gathering of data to make its analysis easier, more pre-
cise or more accurate, and all the machinery and results of (mathematical)
statistics which apply to analyzing data.

Of this paper, Huber (1997) writes:

Very few people will have realized at that time (I certainly was not among them) that
Tukey, while ostensibly speaking about his personal predilections, was in fact redefin-
ing statistics.

It was Tukey’s great achievement to emphasize the primacy of the data
and, in an unrelenting campaign, to provide the outlook, and a multitude of
tools, for a more realistic approach. To accommodate the sweep of his defi-
nition of the subject, he distinguished between two aspects of data analysis:
exploratory and confirmatory.

In a paper of 1980, “Methodological Comments Focused on Opportunities,”
he explains the difference by comparing it with a criminal investigation:

In the paradigm of quantitative detection work, exploration involves finding as many
clues as you can, whether or not they point to the right criminal. And confirmation
corresponds to the trial, whose aim . . . is to decide whether the desired degree of
proof has been attained.

Exploration, then, corresponds to: what appears to be going on?; confirmation to:
do we have firm evidence that such and such is happening (has happened)?

Exploration has been rather neglected; confirmation has been rather sanctified.
Neither action is justifiable.

Because of this neglect, Tukey spent much effort on exploratory data
analysis, which resulted in his 1977 book on the subject (with a preliminary
version appearing in 1970–71). In the process, he introduced many new tech-
niques, among them stem and leaf displays, hanging rootograms, and box-
plots, to mention only a few.

The influence of Tukey’s data analysis has been enormous. As Huber said,
through it he redefined statistics.
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As a discipline matures and reaches a critical mass, it begins a process of
taking stock. This process is served by three types of works, which will be dis-
cussed in this chapter: (1) books that may be intended primarily as reference
or as text and that lay out the present state of the field; (2) encyclopedias that
provide a comprehensive view of the totality of its aspects; and (3) histories
that trace the development of the subject.

Three book-length accounts of the state of statistics after the
Fisher/Neyman-Pearson revolution were published in the period 1943 to
1946. At one end was Mathematical Statistics (1943) by Sam Wilks (which
was briefly discussed in Section 21), and at the other end Harald Cramér’s
Mathematical Methods of Statistics (1946). The period was spanned by the
two volumes of Kendall’s Advanced Theory of Statistics, which appeared in
1943 and 1946, respectively.

Of these three works, by far the most successful (at least in the United
States) was Cramér’s. Wilks’ book was a preliminary version that even its
author considered not to be definitive. Kendall’s suffered from the fact that,
as Wald’s review in volume 42 (1947) of Journal of the American Statistical
Association (JASA) states, “the standards maintained [with respect to clarity,
precision, and rigor] are not quite so high, in the opinion of this reviewer, as
would seem desirable in a book on the advanced theory of statistics.” Thus,
Cramér’s lucid, rigorous, and mathematically self-contained treatment
became the standard reference.

The first statistical encyclopedia was the two-volume International
Encyclopedia of Statistics (1978), edited by Kruskal and Tanur. It was in the
main not an original work but, as the editors state, “draws together, expands
and brings up to date the statistics articles of the International Encyclopedia
of the Social Sciences (IESS), edited by David Sills and published in 1968.”

Because of its origin, this two-volume work was too limited to adequately
serve the purpose of a comprehensive encyclopedia of the whole field of
statistics. But such an Encyclopedia of Statistical Sciences was produced by
Kotz and Johnson during the years 1982 to 1988. It consisted of nine volume,
to which were added later a supplementary and three update volumes.
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The coverage of this work was extraordinarily broad; it could be said to
define the field of statistics in its broadest sense.

The third type of work, a history of statistics, had a forerunner in the
two-volume collection, Studies in the History of Statistics and Probability
(1970 and 1977), edited respectively by E.S. Pearson and M. Kendall, and
by M. Kendall and R. Plackett. They were reprints of papers published pre-
viously, particularly in Biometrika, which since 1954 had been publishing
a series of articles under that title. Pearson, Kendall, and Plackett were all
statisticians with a strong interest in the history of the field.

The first integrated account of the history of statistics (from about 1700 to
1900) was Stephen Stigler’s 1986 book, The History of Statistics, with the
subtitle, The Measurement of Uncertainty Before 1900. It was followed by a
two-volume work (1990, 1998) by the Danish statistician Anders Hald, which
covered a more extensive period (roughly from 1650 to 1930). Together,
Hald’s two volumes are more than three times as long as Stigler’s history.
They are more encyclopedic in character than Stigler’s book, which tells a
more compact and unified story.

A lively and more popular account of this history is provided in The
Empire of Chance—How Probability Changed Science and Everyday Life, by
Gigerenzer et al. (1989). It is more selective and stresses somewhat different
topics. As the authors explain: “The empire of chance is too vast for us to
map in its entirety. We aim at a comprehensive, but not an exhaustive tour of
its domain.”

A striking feature of these three types of works—texts or reference books,
encyclopedias, and histories—is that in all three categories two or more
independent efforts arose more or less simultaneously. The books by Wilks,
Kendall, and Cramér, coming from the U.S., England, and Sweden, respec-
tively, were published within a three-year period. The histories by Stigler, the
first volume of Hald, and the book by Gigerenzer and his coauthors
appeared between 1986 and 1990. And even the Kotz–Johnson encyclopedia
had had a forerunner four years earlier.

This near simultaneity shows that the time was ripe for such stock-taking.

56. Harald Cramér (1893–1985)

The Swedish number theorist, actuary, probabilist, and statistician Harald
Cramér obtained his Ph.D. in 1917 with a thesis in analytic number theory
(the subject of Edmund Landau’s life work, with whom Cramér published
an early joint paper), under the guidance of the Swedish mathematician
Gösta Mittag-Leffler. However, he had a falling out with his very powerful
thesis advisor and Mittag-Leffler warned Cramér “that he would see to it that
Cramér could not make a mathematical career in Scandinavia.”1
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As a result, Cramér switched to insurance mathematics and became an
actuary. He worked on collective risk theory and this in turn led him to an
interest in stochastic processes and, more generally, probability theory and
statistics. He made major contributions to all these fields.

One of his most famous results concerns a conjecture stated in a seminal
paper of 1934 by the great French probabilist Paul Lévy. Lévy expressed his
belief that if the sum of two independent random variables, say X and Y, is
normally distributed, then X and Y must also have normal distributions. To
his chagrin, Lévy was unable to prove this result; two years later Cramér
succeeded in doing so.

Cramér was not only an outstanding research mathematician, but also a
wonderful expositor. Particularly influential were his two books, Random
Variables and Probability Distributions (1937) and Mathematical Methods of
Statistics (1946). The latter was written during World War II when Sweden
was very isolated, and concerning it Cramér expressed the hope that it would
be his “entrance card into the new world after the war.”

This hope was fulfilled. The book (more complete and definitive than Wilks’
Mathematical Statistics [1943], discussed in Section 21, which Cramér did not
know because of Sweden’s isolation) quickly established itself as the standard
introduction to the theory of statistical inference developed by Fisher and
Neyman-Pearson. Two of its outstanding features were mathematical rigor and
readability.
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In order for the book to be self-contained, the first 140 pages of the
540–page text were titled “Mathematical Introduction,” mainly an exposition
of measure theory and the Lebesgue integral. This was followed by 180 pages
titled “Random Variables and Probability Distributions,” which provided the
necessary probabilistic tools. This second part began with a discussion of
probability theory as a mathematical model and a set of axioms similar to the
1933 axioms of Kolmogorov for this theory. Finally, Part 3 dealt with statis-
tical inference, both testing and estimation. It included the Neyman-Pearson
theory of hypothesis testing, point estimation, and a careful exposition of
confidence sets and their interpretation.

In the process of writing, Cramér also developed some new results. In par-
ticular, the book introduced what became known as the Cramér-Rao lower
bound.2 (Cramér did not know that this bound had already been obtained by
Fréchet [1943], Darmois [1945], and Rao [1945].)

A more important innovation was the book’s treatment of maximum like-
lihood estimation. A property required of any reasonable estimate is consis-
tency, that it is nearly certain to get arbitrarily close to the true value being
estimated as the number of observations gets large. Consistency of the max-
imum likelihood estimate (MLE) was claimed (but not proved) by Fisher, and
attempts at proofs by various later authors were unsuccessful.

Cramér found a very ingenious and fruitful way of finessing the problem.
The MLE typically is obtained by setting the derivative of the likelihood
equal to 0, i.e., by solving the likelihood equation. The MLE is one solution
of this equation, but there may be others. Under fairly weak conditions,
Cramér proved a result that was slightly weaker than Fisher’s claim, namely
that there exists a consistent solution of the likelihood equation. This turned
out to be the correct result. Examples were later found in which the MLE is
not the consistent solution.

Mathematical Methods of Statistics was such a model of clarity and its expo-
sition so persuasive that today, nearly sixty years later, the book is still in print.

The year following the publication of this text marks the beginning of
Cramér’s long connection with Berkeley. For some time, Neyman and Evans
had been considering the idea of organizing an institute of actuarial science
in the mathematics department. Since they found no suitable American can-
didate, Neyman suggested Cramér, whom he had met at various European
conferences in the 1930s. At Neyman’s invitation, Cramér gave a course on
stochastic processes in the 1947 Berkeley summer session. During this stay,
Neyman appears to have approached him about the possibility of a perma-
nent move to Berkeley as head of a unit of actuarial science within the math-
ematics department similar to Neyman’s own laboratory. On August 4 of that
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year, Neyman followed this up with a letter to Cramér (who had just returned
to Stockholm), expressing his appreciation of Cramér’s lectures and asking:
“Will you kindly let me know whether or not you would consider coming to
Berkeley for good?” He had to wait two months for a reply. “The chief cause
for my delay,” Cramér finally wrote in early October, “is simply that I find it
extremely difficult to make up my mind to give you any definite reply to the
question you put.” Although Cramér emphasized the difficulties such a move
presented for him, Neyman was encouraged, and immediately wrote to the
president of the university concerning “the opportunity to secure the services
of the world’s best specialist in actuarial science.”

A year later (in November 1948), Evans was able to inform Cramér that
“the President of the University has authorized me to discuss with you
the possibility of your coming here as Professor of Mathematics with teach-
ing in the broad field of Mathematics–Statistics–Actuarial Mathematics.” In
a simultaneous letter, Neyman made it clear that the plan was for “an
autonomous unit within the Department of Mathematics, somewhat similar
to the Statistical Laboratory, which would work and develop under your
guidance.” In the meantime, a committee of the mathematics department was
working on a possible structure if such a unit were added, and in January
1949 recommended the organization of a mathematical center consisting of
three departments: mathematics, statistics, and actuarial science.

Cramér was still hesitating. On January 17, he sent separate letters to
Evans and Neyman, explaining his difficulty in coming to a decision and
responding to the department’s invitation to spend the fall term of 1950 in
Berkeley before deciding.

To Evans, describing his situation in Stockholm as one that could hardly
be bettered, he wrote:

I find it extremely difficult to make up my mind what to say. There are so many
conflicting emotions involved in the question. . . . I am very glad that you indicated
the possibility that I might come again and visit you for a limited time, before making
a final decision.

To Neyman he was more open:

Besides the reasons I give in my letter to Professor Evans, there are also the family
reasons. Our children are grown up, but may still want there [sic] parents now and
then, and should we leave the country permanently, we should like to have them do
the same.

You will not be surprised by what I write about my position here, which is certainly
a very good one. As a matter of fact, if it were not for the political uncertainty, and
the risk that sooner or later, we may lose our freedom,3 I do not think I should give
serious consideration to a proposal to go away permanently. As it is, I do consider it
very seriously—but I hesitate.
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While preparations for a 1950 visit were proceeding, a new event forced the
decision. In October 1949, the rectorship of the University of Stockholm had
fallen vacant and Cramér was being considered for the position, which cor-
responds to that of an American university president. Should he be elected,
Cramér wrote, he felt bound to accept, and in this case even a Berkeley visit
for only one term would no longer be possible. On January 3, 1950, Neyman
had to admit defeat:

Dear Harald, Please accept my heartiest congratulations on your election to the
Rectorship of the University of Stockholm. We are all very disappointed that you will
not be with us for keeps. . . .

At Neyman’s urging, Cramér did pay a short visit to Berkeley in September
1950, after attending the Mathematical Congress in Cambridge, Massachusetts.
In addition to two lectures, a conference regarding an actuarial program was
arranged for interested faculty members and some representatives of insurance
companies, but it did not lead to any specific proposals.

After having served as rector for several years, Cramér was able to take a
leave and come to Berkeley for the fall semester of 1953. This time he taught
a course on statistical studies of risk, as well as a seminar in probability.

During Cramér’s various stays in Berkeley, I saw a lot of him and his wife,
Marta, and became very friendly with them. On his 1953 visit, he expressed
an interest in seeing his old friend George Polya. It so happened that an uncle
of mine in Carmel was on vacation and had put his roomy house at my dis-
posal. Taking advantage of this opportunity, I suggested that the Cramérs
and the Polyas spend a weekend in Carmel with me and my family, and this
turned out to be a very successful venture.

An incident during Cramér’s visit vividly illustrated the different social sta-
tus of a professor in Europe and in the U.S. Shopping for food at our neigh-
borhood market, I ran into Marta Cramér. She was shocked. Never, never, in
Sweden, she explained, would a professor do the shopping himself.

Cramér returned to Berkeley one last time in 1983. Two years earlier,
Neyman had died, on August 5, 1981, and our colleague Jack Kiefer five
days later. The department organized a Berkeley conference in honor of
Jerzy Neyman and Jack Kiefer from June 20 to July 1, 1983. The meeting
began with the dedication of our seminar room on the tenth floor of Evans
Hall to Neyman. The opening address at this ceremony was given by the
ninety–year-old Cramér. Since his wife had died in 1973 and he was no
longer able to travel alone, he was accompanied by his son Kim. He was
frail and both his hearing and his eyesight were failing. Traveling such a
distance must have been quite an ordeal for him. That he agreed to under-
take it was a token of his friendship with Neyman and with the Berkeley
statistics community.

Cramér received many honors. A mark of great distinction was his
appointment, after eight years as rector of the University of Stockholm, as
chancellor of the Swedish university system. He was elected to the Academies
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of Science of all four Scandinavian countries, as well as that of Spain and the
American Academy of Arts and Sciences. In 1972, he received the Guy
Medal in Gold of the Royal Statistical Society. Among his honorary doctor-
ates were those of Edinburgh, Calcutta, and Paris. In 1994, his Collected
Works were published in two handsome volumes by Springer, with an
account of his life by Gunnar Blum.

57. Samuel Kotz (b. 1930)

Sam Kotz was born and raised in Harbin, China, and after completing high
school studied electrical engineering at the Harbin Institute for Technology.
In 1949 he emigrated to Israel, and for two years served in the Israeli Air
Force, mainly as an instructor of mathematics. He then enrolled at the
Hebrew University in Jerusalem, where he obtained his M.A. in mathematics
in 1956.

After receiving his master’s degree, Kotz took a job with the Israeli
Meteorological Service and there developed an interest in statistics. A chance
encounter with Jack Wolfowitz resulted in his being offered a scholarship to
Cornell, where he got his Ph.D. in 1960 with a thesis on information theory.
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In 1962, he accepted a position in Chapel Hill, and there met Norman
Johnson, who became his lifelong collaborator.4 The next stop was the
University of Toronto, and then in 1967 Temple University in Philadelphia.
Kotz remained at Temple for twelve years and in 1979 moved to the
University of Maryland, from which he retired in 1997. Since then, he has
been Senior Research Scholar at George Washington University.

Kotz has written a large number of scientific papers and several books, but
I shall discuss only three of his projects, all of them important reference
works that he originated and coedited with Norman Johnson.

The first, Distributions in Statistics, appeared in four volumes between
1969 and 1972 that dealt respectively with discrete distributions, continuous
univariate distributions (two volumes), and multivariate distributions. For
each distribution covered, this work discussed, among other topics, its his-
tory, moments, properties, tables, and approximations. The volumes proved
to be extremely successful, and as a result a second, much-enlarged, edition
appeared in the 1990s (with some additional authors).

While my connection with this work on distributions was only that
of an appreciative user, I was heavily involved with the second of these
Kotz–Johnson projects, the Encyclopedia of Statistical Sciences. From the
start I was very enthusiastic about the idea, and Sam gave me many oppor-
tunities to participate. He invited me to write a number of entries: on point
estimation, Hodges–Lehmann estimators, the Neyman–Pearson lemma and
its applications, unbiasedness, and group families. He also encouraged me to
suggest entries and possible authors for them.

One of these suggestions had some unexpected consequences. It seemed to
me that an encyclopedia of statistical sciences should have an entry on sta-
tistics, and I suggested a number of possible authors for such an article. After
some time, Sam wrote back that all the prospects had turned him down and
urged me to write the article myself. I thought that I was too mathematical
and that my interests and experience weren’t sufficiently broad, but I agreed
to give it a try.

As I reread this twenty–page article now, twenty years later, it sounds to me
much more like Tukey or Mosteller than Lehmann. The paper is divided into
sections on data interpretation and data acquisition, and these two sections
are subdivided, respectively, into

● statistical methodology, exploration vs. verification, the Bayesian
approach, and the Bayesian frequency controversy; and

● measuring single units, assessing population characteristics, data from
experiments, serial data, and designing experiments.

My involvement with the encyclopedia did not end with its completion. To
mark this event, Sam organized a celebration at the University of Maryland,
attended by dignitaries from the university and from John Wiley, which had
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published the nine volumes. Sam invited me to give the principal talk. It gave
me an opportunity to point out the importance of the work, not only as an
indispensable reference work but also as providing a definition of the field of
statistics in all its many different aspects: its concepts, results, methods, appli-
cations to many areas, its most significant contributors, and its institutions.

Another such opportunity arose when (in collaboration with my friend and
Stanford colleague Persi Diaconis) I wrote a review of the Encyclopedia for
Mathematical Reviews. There we again stressed the breadth of its coverage:

It includes not only theoretical and applied statistics and probability theory and their
foundations, but also substantial references to fields such as programming (dynamic,
linear and nonlinear), operations research, game theory, information and coding
theory, pattern recognition—in fact, any discipline containing a major stochastic ele-
ment. The Encyclopedia is particularly strong also in its coverage of the application of
stochastic theory to the substantive fields in which it plays a role, such as agriculture,
economics, history, linguistics, psychology, and so on.

In addition to ours, the Encyclopedia also received a much-more-detailed
review in JASA (1989, volume 84, pp. 830–834). Since no one reviewer could
do justice to an encyclopedia covering so many different areas, the review was
written by a team of sixteen authors, who wrote: “Our consensus is that the
editors have done a magnificent job of transmitting statistical knowledge to
the men (and women) who will come after them.”

That such a gigantic undertaking was conceived, organized, and carried
out successfully by just two coeditors in chief (with a five-member advisory
board but with only one associate editor, Campbell Read) seems to me
remarkable. An account, “The Making of the Encyclopedia,” is provided by
Kotz and Johnson (1987).

The vitality of the work is indicated by the recent publication of a second
edition comprising sixteen volumes. Although I am listed as a member of
the editorial board of this new edition and had no official connection with
the first, I was this time completely out of the loop and my contribution was
negligible.

Even after this enormous achievement, Kotz and Johnson did not rest on
their laurels. In the 1990s they embarked on a new project (although of a
smaller scale): the reprinting of seminal papers in statistics, each with a sub-
stantial new introduction. It resulted in the three-volume work, Breakthroughs
in Statistics. I was pleased to be asked to write the introductions to two of my
all-time-favorite papers: The 1933 Neyman-Pearson paper in which they for-
mulated their theory of optimal tests, and Student’s fundamental 1908 paper,
which started the modern small-sample theory of hypothesis testing.

In recognition of his great contributions to statistics, Sam Kotz received
three honorary degrees: from Harbin Institute of Technology, the University
of Athens, and Bowling Green State University. A festschrift in his honor,
Advances in the Theory and Practice of Statistics, edited by Johnson and
Balakrishnan, was published in 1997.
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58. Stephen M. Stigler (b. 1941)

Steve Stigler, one of our Berkeley Ph.D. students, obtained his degree in 1967
with a thesis on linear functions of order statistics, under the supervision of
Lucien Le Cam. For the next twelve years, he was a faculty member in the
statistics department of the University of Wisconsin. In 1979 he moved to the
University of Chicago, where he served as chair of the statistics department
from 1986 to 1992, and again since 2005.

Stigler continued working in mathematical statistics, but starting in 1973
developed a new research interest that eventually came to dominate. He explains
how this came about (in response to a question of mine) in a recent letter:

During the year 1973–74, I was working on some order statistics papers and in looking
into the library I came across a remarkable paper that Percy Daniell had published in the
American Journal of Mathematics in 1920, “Observations Weighted According to Error.”
There he used the calculus of variations to derive the optimum weighting functions, and
he found various results I had not seen before a 1955 paper by Jung. Digging further,
I encountered relevant works of Simon Newcombe, and Laplace. . . . There were publi-
cations that came from that and I guess I had “caught the bug.” With a Guggenheim
Fellowship (1976–77) and a year at the Center [for Advanced Study in the Behavioral
Sciences] (1978–79), I pushed further and began what would be my 1986 book.

208 12. Statistics Comes of Age



I kept up some mathematical work, but the historical work became more central.
I don’t know that there was a single “cause”; mostly the freedom to follow developing
interests. I had been a history minor5 and taken a course in history of mathematics
then from Ken May.

And so came about Stigler’s 1986 book, The History of Statistics (The
Measurement of Uncertainty Before 1900), the first integrated account of the
history of our field. The writing of such a book, of course, involves the obvi-
ous tasks: collecting facts, searching in archives, deciphering letters, detecting
errors, and so on. But Stigler’s book was more than a dry recital of facts.
What made it particularly attractive was that it had a plot, a story line that
connects the facts and captures the reader’s interest. Stigler achieved this
by dividing the book into three parts, somewhat similar to the three acts of
a play. They present, respectively, a first great success, subsequent compli-
cations and failure, and in the last act overcoming these obstacles to reach a
triumphant conclusion.

The first part describes the development of a methodology for analyzing
observations in astronomy and geodesy, and ends with what Stigler calls the
Gauss-Laplace synthesis,

which brought together two well-developed lines—one the combination of observations
through the aggregation of linearized equations of condition, the other the use of math-
ematical probability to assess uncertainty and make inferences—into a coherent whole.

However, as Stigler points out, these methods “remained confined to the
narrow disciplines that spawned them.”

The second part of the book is concerned with the effort, principally of
Adolphe Quetelet and Wilhelm Lexis, to extend this methodology to the
social sciences. Stigler explains why this attempt failed. The details of their
work and the reasons for its failure are too complex to recount here but
the upshot was “that neither Quetelet [n]or Lexis had much long-lasting
influence, and today they are of interest mainly to historians.”

After this somewhat discouraging interlude, the third and last part of
Stigler’s book treats the breakthrough brought about by the development of
the concepts of correlation and regression, principally by Galton, Edgeworth,
Karl Pearson, and finally Yule.

If the method of least squares and the normal linear model were motivated
by the needs of astronomy and geodesy, and the efforts of Quetelet and Lexis
by their desire to extend this approach to the social sciences, it was biology
(and particularly the study of heredity) that was the starting point for Galton
and for a development that ends with Yule’s showing how to apply regression
combined with the method of least squares to the social sciences.6
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It is this progression from the use of least squares and the normal distri-
bution in the physical sciences to the unsuccessful attempts to extend the
method to the social sciences, the addition of the new concepts of correlation
and regression stemming from work in biology, and finally the combination
of these ideas to provide a successful approach in the social sciences, that
constitutes the story line for Stigler’s book. It holds the reader’s attention
and provides a compass for the presentation of a great amount of factual
information.

Both before and after the publication of his history, Stigler wrote many
papers on historical subjects. In revised versions (and with the addition of a
previously unpublished paper on Karl Pearson), most of them were collected
in his 1999 book, Statistics on the Table. At the same time he continued his
statistical work, particularly in the area of robust estimation.

I have, of course, known Steve since the 1960s, when he was a graduate
student in our department. Later, he was chair of the University of Chicago
statistics department when (in 1991) the university gave me an honorary
degree. I feel sure that he was the driving force behind this award. One source
of continued contact was our shared interest in the history of statistics; he
has been an invaluable resource for my occasional historical writing.

In addition to his work as statistician and historian of science, Stigler has
also provided much administrative service to the profession. He has served
as theory and methods editor of JASA, as president of the Institute of
Mathematical Statistics (IMS) and of the International Statistical Institute
(ISI), as member of the board of the Social Science Research Council, and
for the last twenty years as member of the board of trustees of the Center for
Advanced Study in the Behavioral Sciences. In 2005, he was elected to the
American Philosophical Society.
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By the early 1970s, my friend Joe Hodges had gone into administration, and
our longtime collaboration had come to an end. I continued to do research,
but other projects came to the fore and research became less dominant. In
fact, I too temporarily became ensnared by administrative duties when in
1973 I agreed to take my turn at chairing the department. Since this involves
responsibility for the professional well-being of a large number of people
(students, teaching assistants, faculty, and staff), it is a fairly demanding job.

Nearly at the same time, in the summer of 1973, an event occurred that
was to profoundly change my life. It was the arrival of a sabbatical visitor
from Kansas, the psychologist Juliet Shaffer, who wanted to use the year to
improve her knowledge of statistics. Four years later she became my wife, and
for the last thirty wonderful years we have been lovers, friends, colleagues,
and collaborators.

A third event that started at that time but came to fruition only the fol-
lowing year was a direct consequence of my becoming chair. This enabled me
to bring to Berkeley for a year Fred Mosteller, a remarkable statistician
whom up to then I had only known by reputation. The friendship that devel-
oped during his Berkeley year later resulted in my collaborating with him on
the second and third editions of the volume of essays known as SAGTU—
Statistics: Guide to the Unknown.

A very different project started a few years later when Constance Reid
agreed to my suggestion that she write a biography of Neyman. Since she was
not a statistician, she asked me to help her with some of the more technical
issues, particularly with the letters Pearson had received from Neyman
during the years of their collaboration. Although unfortunately only a few of
Pearson’s letters to Neyman have survived, nevertheless the surviving corre-
spondence provides a vivid day-to-day account of their joint work.

Finally, the 1970s led to a friendship with the magician, mathematician,
and statistician Persi Diaconis, when in 1974 he joined the Stanford statistics
department. It has resulted in a continuing exchange of ideas, joint efforts
in common causes, and mutual support, all of which have greatly enriched
my life.
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59. Juliet P. Shaffer (b. 1932)

In the summer of 1973, I received a letter from a psychology professor at the
University of Kansas. She wanted to use a sabbatical, she wrote, to improve
her knowledge of statistics, and to this end was planning to spend the upcom-
ing year in Berkeley. Her stay would be supported by a fellowship that
required her to have a sponsor. Would I be willing to serve in this capacity?

She added that she knew I was very busy and promised me that she would
not take up much of my time. It is a promise she did not keep because four
years later we were married.

Juliet (Julie) Popper Shaffer was born and raised in Brooklyn. At Midwood
High School, she managed, through special arrangements, to take the full
four-year mathematics curriculum, although at the time it was intended for
boys only. She also joined the math club, the only girl in her class to do so.
After graduating from Midwood, she turned down a scholarship from
Cornell in order to go to Swarthmore.1

At Swarthmore, she started out as a chemistry major, switched to pre-med,
and finally ended up as a psychology major with a minor in mathematics and
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philosophy. She did her graduate study in psychology at Stanford, where she
obtained her Ph.D. with a thesis titled “Social and Personality Correlates of
Children’s Estimates of Height.” On the way she took a number of statistics
courses, not only those offered by McNemar in the psychology department,
but also courses by Lincoln Moses, Al Bowker, and other members of the
statistics faculty.

After receiving her degree, Julie spent a postdoctoral year at Indiana
University working with William Estes, and then accepted a tenure-track
appointment in psychology at the University of Kansas, where she remained
for twenty years, rising to the rank of professor. At Kansas, she taught
courses in both general and mathematical psychology, and in addition taught
most of the statistics courses offered by her department.

When she moved to Berkeley, enrollment in psychology was low and psy-
chology departments did little hiring. However, Julie obtained visiting appoint-
ments to teach statistics, during 1975–76 at the University of California at Davis
and the following year in our department. The very mathematical orientation of
the Berkeley department was a drawback for her, but at the same time her exten-
sive applied experience provided the department an opportunity to strengthen
its applied side.

In fact, as one of her courses, she started a statistical consulting service,
staffed by the graduate students taking the course. During the ten years that
she was in charge of this course, the service provided statistical advice
to about two thousand clients, mostly—but not exclusively—from within
the university. To head this service, Julie was appointed lecturer in 1977 and
senior lecturer in 1981, a position in which she remained until her retirement
in 1994.

Shortly after her retirement, Julie was offered a position as principal
research scientist and coordinating director of the Large Scale Assessment
Group at ETS (Educational Testing Service) in Princeton. So we spent the
years 1995 to 1997 in Princeton.

Julie’s research up to 1970 was in psychology, and during the next decade
she still published occasional papers in that field. But starting in her last years
at Kansas, the focus of her work moved to statistics, and in particular to con-
tingency tables, analysis of variance, and multiple comparisons. Eventually
her research centered on the last of these subjects and she became one of the
leaders in that field.

The central problem of multiple comparisons, particularly multiple
testing, is easy to describe. Suppose s independent tests are performed at
level α (say .05), for example tests of the effectiveness of s possible treat-
ments of some medical condition, and suppose that one of them turns out
highly significant. Can we then with reasonable confidence contend that
this particular hypothesis is false? We could obviously do so if we had
tested just this one hypothesis. However, the situation changes radically if
we take account of the fact that we are testing not just that one treatment
but, independently, s of them. Even if none of them has any beneficial
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effect, the probability that at least one of them (and hence the most signif-
icant one) will give a significant result is 1 minus the probability of no false
rejections and hence

(*) P(at least one false rejection) = 1 – (1 – α)s.

As s becomes large, (1 – α)s tends to zero and the probability of at least one
false rejection to 1. If s = 50, for example, (*) = .92.

The question of how to handle this problem of multiplicity is difficult, but
if it is ignored we are duped into many false rejections. What clearly is needed
is an approach that does not treat each of the s hypotheses separately but
considers them jointly as a set (the technical term is family).

The problem, despite its practical importance and theoretical interest, was
long ignored. The first person to study it systematically was John Tukey,
who in 1953 produced a book-length manuscript entitled, The Problem of
Multiple Comparisons. However, he did not publish it but only distributed it
in mimeographed form to a limited audience. It was finally published in 1994
in volume 8 of Tukey’s Collected Works.

In this manuscript, Tukey formulated the concept of family, proposed various
measures of error control for families, suggested procedures with satisfactory
error control, and so on. Partly as a result of his work, the importance of
the subject was gradually realized, and eventually led to a flood of publications.
The first published book on the topic was Miller’s Simultaneous Statistical
Inference (1966). More recent monographs are Multiple Comparison Procedures
(Hochberg and Tamhane, 1987) and Resampling Based Multiple Testing
(Westfall and Young, 1993), and by now many others.

Shaffer’s first papers in this area appeared in the early 1970s. They were
followed by two joint papers with me in 1977 and 1979. Perhaps her (so far)
two most importance contributions had their origin in a question she was
asked by a Kansas colleague. As she explains (Robinson, 2005):

He had carried out a perception experiment with three conditions. Multiple compar-
ison methods indicated that the smallest and largest were significantly different, but
the middle one was not significantly different from either of the others. He found that
conclusion unpleasant, since if the first and third were really different, the middle one
obviously had to be different from at least one of them. Thinking about this issue
made me wonder whether an additional criterion in evaluating multiple comparison
procedures, aside from error rate and power, should be the interpretability of the con-
clusions reached by using them. This resulted after some time in a paper sketching
out these ideas and some evidence related to them (1981). Although I did not continue
that line of research, the ideas on possible patterns of differences were useful in
suggesting some improvements on the Holm (1979) sequentially rejective multiple
comparison procedure (Shaffer, 1986).

These improvements turned out to be substantial, but their full usefulness
was limited by the difficulty of their implementation. This difficulty was
largely overcome in recent papers by Rasmussen (1991, 1993), Westfall (1997),
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and Donoghue (2004), who provided additional theory, some helpful heuris-
tics, and efficient algorithms.

Shaffer also initiated work on another aspect of multiple testing. When
testing the null hypothesis that a parameter is zero, in case of rejection one
frequently also makes the determination whether it is positive or negative. In
doing so, one runs the risk of a directional error (also called type III error),
that is, of deciding that the effect is positive when in fact it is negative or vice
versa. In a 1980 paper, Shaffer showed the unexpected result that taking these
additional errors into account can boost the error rate beyond the nominal
level α. She also found conditions under which this cannot happen. A defin-
itive solution proved quite difficult, and her paper sparked a substantial
literature.

Julie’s more than twenty papers on multiple comparisons include not only
theoretical and methodological contributions, but also frequently cited exposi-
tory papers, in particular a review paper in the Annual Review of Psychology for
1995 and the article “Simultaneous Testing” in volume 8 of the Encyclopedia of
Statistical Sciences. A more recent (somewhat more specialized) paper was a
survey of “Optimality Results in Multiple Hypothesis Testing” (2004).

Her remarkable career took Julie from psychology to applied statistics, to
quite theoretical work in multiple comparisons, to applications of statistics
to education and more recently to genomics. She has served in various editorial
positions, including that of editor of the Journal of Educational Statistics
(1986–1989), and at present is associate editor of The American Statistician. In
addition, she has served as a member of many panels and committees, includ-
ing the visiting committee to the Harvard statistics department (1993–1999),
and chair of the American Statistical Association (ASA) representatives to
sections of the American Association for the Advancement of Science (1996–
2002). Since 1996, she has been a member of the Defense Advisory Committee
on Military Personnel Testing of the U.S. Department of Defense.

Julie Shaffer’s work has been recognized by election to fellowship in both
ASA and American Psychological Association (APS) and to membership in
the International Statistical Institute (ISI). In 2004, she received the F.N. David
award from the Committee of Presidents of Statistical Societies (COPSS).

My own work was strongly influenced by Julie in a number of ways. Fairly
early, she rekindled my interest in multiple comparisons. It is a subject on
which I had worked in the 1950s but which I then abandoned in favor of non-
parametrics. She also exerted a strong continuing influence through her criti-
cally reading my writing (as I did hers), which resulted in many improvements.
But her greatest impact on my work was to provide the impetus for two books
that without her I would not have written.

The first of these had its origin many years earlier in Colin Blyth’s lecture
notes. After I had converted the notes on hypothesis testing into a book (in
1959), it would have been natural to do the same with the estimation notes.
However, that project did not appeal to me, since I did not find the theory,
much of it based on squared error loss, very persuasive. Now Julie gradually
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convinced me that there was a need for such a book, and so in 1983 I
published, Theory of Point Estimation as a companion to my testing book.

At about that time, Julie also persuaded me to launch another, very differ-
ent, project. She had noticed a serious problem with our applied graduate
courses such as analysis of variance, contingency tables, and multivariate
analysis. Many of these courses involved a substantial amount of asymptotics.
Since most of the students did not have the background in probability needed
for this work, these courses tended to spend two or three weeks introducing the
necessary probability tools. However, the ideas were too different, and the time
period too short, to provide a real understanding of this material. Confronted
with Julie’s repeated expressions of concern, I told her that I saw a way out. It
would be possible, I believed, to teach the needed large-sample theory at a fairly
elementary mathematical level (in fact requiring only basic calculus) by pre-
senting the concepts, results, and applications, but omitting the proofs of some
of the basic theorems. It would be somewhat like taking an aerial tramway to
a mountaintop rather than making the climb under your own power. You miss
part of the experience but you can still fully appreciate the view.

Our discussions led to my giving this approach a try, and so from 1980 to
my retirement in 1988 I taught a course (in alternate years) in large-sample
theory with minimal prerequisites. It drew students from our program but
also from other departments such as economics, sociology, education, the
engineering sciences, and so on. The enrollment was never large (between ten
and twenty students), but the reactions were very positive, some students
telling me that the course had made material accessible to them that they
thought would forever be out of their reach.

With Julie’s encouragement and support, after retiring I expanded the notes
I had distributed to the students in the course into a book, which was essentially
completed by 1995 when we moved to Princeton. There the authorities at ETS
asked me to give lectures based on the still-unpublished book. When preparing
these lectures (one every two weeks), I often found it possible to make improve-
ments and during our two-year stay at ETS I completely rewrote the manuscript.

I have often been asked about the dynamics of marriage to a colleague
(a situation that is less rare today than it used to be). For us it has worked out
wonderfully well. It has enabled us to appreciate each other’s work instead of
being excluded from this important area of our lives. In addition, we have
been able to be of great help to each other, through discussions, suggestions,
and criticism. And of course we have had the pleasure of occasional joint
papers. All in all, it has greatly enriched our relationship.

60. Frederick Mosteller (1916–2006)

A wonderful resource for scientists at the University of California since 1955
has been the Miller Institute for Basic Research in Science. One of the bene-
fits it offers is a year (since 1988 only a semester) to devote to research, free
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of all teaching and administrative obligations. I was lucky enough to be given
such a Miller year in 1962–63 and again in 1972–73. Between those two years,
I served on the advisory board of the Miller Institute from 1966 to 1969.

In addition to funding such local leaves, the institute also provides depart-
ments with the opportunity to bring visiting faculty to Berkeley under simi-
larly attractive conditions. When I became department chair in 1973, it
occurred to me that this might be a means for our department to get to know
an outstanding statistician who to my knowledge had never been to Berkeley,
one of the few prominent statisticians who had not participated in any of the
Berkeley Symposia. The person in question was Frederick Mosteller of
Harvard, and at some meeting that we both attended I mentioned the possi-
bility of a Miller appointment to him. After looking into his various projects
and commitments, Fred agreed to come to Berkeley as Miller Professor for
the academic year 1974–75.

At the time, Fred was editing two books: Costs, Risks and Benefits of
Surgeries (with Bunker and Barnes), and Statistics and Public Policy (with
Fairley). During his year in Berkeley, he gave several fascinating lectures on
some of his own contributions to these volumes, particularly on the problem
of assessing the effectiveness of medical innovations and of large-scale social
action programs.
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The first of these two books was reviewed by Hiatt,2 who describes it as

a remarkable book the import [of which] has been far reaching. . . . As Fred Mosteller
has done so often in his extraordinary career, he and his colleagues in this book
identify some crucial problems, describe how they have come to pass, add insights
concerning their complexity and possible solutions, and end with a series of con-
structive proposals. Surely the book is in part responsible for the fact that today the
proposals are accepted in large measure and widely followed.

It is not possible here to discuss all of the more than sixty books that Fred
has authored or edited (often jointly with others). I have already mentioned
(in Section 55) some of his joint books with Tukey (four in all, three of them
with David Hoaglin as third coauthor or editor) on various aspects of data
analysis. Concerning his collaboration with Tukey, Fred once told me that
just like I, he too often did not know some of the terms John was using in
their discussions. In such cases, he would stop John in midsentence to ask for
an explanation. Of course, he could do this more easily than I because they
had known each other since Fred’s student days at Princeton.3

Fred’s work with Lincoln Moses (and others) on the National Halothane
Study (1969) was mentioned in Section 37. It is summarized in the essay,
“Safety of Anesthetics” by Moses and Mosteller in Tanur et al. (1972). In this
investigation, Fred had to deal with the problem of cross-classified data.
The work led to the Ph.D. theses of two of Fred’s students, Yvonne Bishop
and Stephen Fienberg, and eventually a major book on the subject. About
Mosteller’s part in this book, Steve Fienberg (2006) writes:

He organized a group of us to write a book around the recent developments in cate-
gorical data analysis. . . . This project ultimately produced Discrete Multivariate
Analysis—Theory and Practice [1975]. He was the guiding light behind the project and
our constant editor and sometimes contributor, but in typical fashion he insisted that
only Yvonne Bishop, Paul Holland, and I be listed as “authors.” Ultimately, he agreed
to let us acknowledge his efforts by listing him as a “collaborator” on the title page.

While in the Halothane study the substantive problem was primary and then
led to the development of some needed methodology, the reverse was the case
with another project that resulted in the book with David Wallace Inference and
Disputed Authorship (1964, 1986). As the authors explain in the preface:

We apply a 200–year-old mathematical theorem to a 175–year-old historical problem
more to advance statistics than history. . . . For us the question of whether Hamilton
or Madison wrote the disputed Federalist papers has served as a laboratory and
demonstration problem for developing and comparing statistical methods.

To emphasize this intention, the second edition bore the new title, Applied
Bayesian and Classical Inference: The Case of the Federalist Papers.
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The books on surgical and social innovations, the Halothane study, and
the Federalist papers illustrate Fred’s scientific work. Equally important is
another area of his activities, his work as an educator. He believes that an
understanding of the ideas of probability theory and statistics is important
for people in all walks of life, and he has put much effort into making these
ideas as widely available as possible.

An early project of this kind was his 1961 text (with Rourke and Thomas),
Probability and Statistical Applications. Requiring only two years of high
school algebra and no calculus, the book was intended as a high school text,
with the aim of engendering

first, an understanding of the kinds of regularity that occur amid random fluctua-
tions; second, experience in associating probabilistic mathematical models with phe-
nomena in the real world; third, skill in using these mathematical models to interpret
such phenomena and in predicting, with appropriate measures of uncertainty, the
outcomes of related experiments; and fourth, some insight into statistical inference,
both classical and Bayesian.

Fred used a version of this book as text for his 1960–61 television course,
“Continental Classroom.” Although the course was intended primarily for
college and university students taking the course for credit, it was also used by
some high schools and was enjoyed by many members of the general public.
Fred reports (Mosteller, 1962) that “it has been estimated that during a week
about 1.2 × 106 different people viewed the lessons.”

In a strange way, I became involved with another of Fred’s projects; how-
ever, it was not directly through Fred, whom I did not know at the time, but
through Bill Kruskal at Chicago. One day in 1971, Bill, who some years ear-
lier had spent a year at Berkeley, called me in my capacity as editor of the
series in probability and statistics for the publishing house Holden-Day. The
manuscript he wanted to talk about was a collection of essays put together
by a joint committee of the ASA and the National Council of Teachers of
Mathematics (Fred Mosteller, chair; Judith Tanur, editor), which was intended
to show a general public the usefulness of statistics. Each essay was concerned
with a particular application, and the cases came from a wide variety of fields.

Kruskal mentioned that the manuscript had been offered to the principal
publishers of statistics books but that none had been interested. The book
sounded very promising to me, and the publisher agreed. After seeing the
manuscript, we quickly came to terms and Statistics: Guide to the Unknown
(SAGTU) appeared in 1972 under the Holden-Day imprint.

The book was a great success and after a few years it was time to think of
a new edition. It seemed to me that a deficiency of the volume, particularly
for teaching purposes, was the absence of problems. I therefore suggested that
I organize a set of problems for each of the essays, and I then carried out this
project with the help of some of my graduate students. I also proposed to
Fred that two new essays by him, based on the talks he had given in Berkeley
during his Miller year on surgical and social innovations, would make perfect
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additions to the volume, and he agreed to provide them. With these additions,
the second edition came out in 1978.

While these changes were, I believe, helpful, another idea of mine turned
out to be very unsuccessful. I thought there would be a market for smaller
(and hence less expensive) books with essays in only one area that would be
suitable as supplementary material for statistics courses in that area, so we
published three booklets of a little over one hundred pages, each containing
a subset of about a dozen essays in, respectively, business and economics, the
biological and health sciences, and political and social issues. However, they
were a failure. The market I had foreseen just was not there.

In the mid-1980s, Fred felt it was time for a third edition of SAGTU.
Sixteen years had elapsed since the original publication and some of the
essays had begun to show their age. They needed to be retired or at least
updated, and authors had to be found to cover a number of topics of current
interest. Fred asked me to work with him on this revision. Thus, for a number
of years I visited him every few months for this purpose. These Harvard
trips usually included my giving a seminar talk either in the statistics or
biostatistics department, and having an enjoyable dinner with Fred and his
wife, Virginia.

It was interesting to watch Fred in action and to meet some of the mem-
bers of his group, the people who assisted him in the research, computing,
and writing on the several projects he was handling at any given time. The
much-changed third edition came out in 1989.

Fred’s great achievements derived from a combination of three abilities: he
was a superb applied statistician and data analyst who was able to spot
important problems and was willing to tackle them; he was an outstanding
and dedicated teacher and communicator; and finally, he was a masterful
organizer, leader, and manager.

As a result of this last capacity, he was much in demand as an administrator.
Particularly noteworthy is his administrative work at Harvard, where in the
course of his career he chaired four different departments.

Fred’s connection with Harvard began in 1946 when, after obtaining his
Ph.D. under Wilks and Tukey at Princeton, he was appointed lecturer in the
newly formed Department of Social Relations. He was promoted to associate
professor in 1948 and to professor of mathematical statistics in 1951. In
1953–54, he served as acting chair of the department.

In 1957, Harvard established the Department of Statistics, and Fred served
as its chair from 1957 to 1969 and again from 1975 to 1977. He followed this
by chairing the Department of Biostatistics from 1977 to 1981, and then in
1981 was asked instead to chair the Department of Health Policy and
Management, which was facing some difficulties. Of his accomplishments in
chairing these different departments, one stands out as particularly unusual.
In 1977, he managed to bring to the Department of Biostatistics (in
joint appointments with the Sidney Farber Cancer Center) Marvin Zelen,
together with most of the group Zelen had built up at the State University of
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New York at Buffalo, thus enriching the department by ten new faculty
members. Two additional members of the group joined the following year.

Recognition of Fred’s distinction and leadership abilities has led to his
becoming president of the Psychometric Society (1957), ASA (1967), IMS
(1974), and the International Statistical Institute (1992). From 1975 to 1981,
he served on the board of directors of the American Association for the
Advancement of Science (AAAS), and in 1980 he served as its president. In
addition, from 1964 to 1985 he was a member of the board of directors of
the Russell Sage Foundation. His effectiveness and influence in these last two
positions is described in Fienberg et al. (1990, pp. 54–57).

Fred has received many honors. He has been elected to the three principal
American academies: the National Academy of Sciences, the American
Academy of Arts and Sciences, and the American Philosophical Society. He has
received honorary degrees from the University of Chicago and from Carnegie
Mellon, Yale, Wesleyan, and Harvard. In addition, some of his friends and
colleagues have published a book about him: A Statistical Model: Frederick
Mosteller’s Contributions to Statistics, Science, and Public Policy (Fienberg et al.,
1990). It contains a biographical essay by Tukey, a bibliography, and six chap-
ters on Fred’s various contributions. A volume of Selected Papers of Frederick
Mosteller (Fienberg and Hoaglin, eds.) was published in 2006.

61. Constance Reid (b. 1918)

In 1976, I was reading with great interest the recently published biography
of Richard Courant, the mathematician who had been responsible for my
coming to Berkeley. Its author was Constance Reid, the sister of my former
fellow student Julia Robinson. It seemed to me that Mrs. Reid, who had also
written a biography of the great mathematician David Hilbert, would be
an ideal person to write a biography of Neyman. Since I did not know
her, I asked Julia to inquire whether her sister might be interested in such a
project. Julia replied that she (Julia) was strongly opposed to the idea. She
believed that mathematicians should be remembered through their work, and
that their lives had no relevance and should remain private. Nevertheless,
she agreed to forward my suggestion. However, the answer was negative—
Mrs. Reid did not want to write another mathematical biography.

A few months later, I received a phone call from Constance saying that she
might be interested after all, although she was thinking of an article rather
than a book. But she would need some cooperation from Neyman. Just
what would be involved? She thought two meetings of one to two hours each
would suffice.

So I went to see Neyman, the books on Hilbert and Courant under my
arm, and told him of the project. “It’s a free country,” he barked. Although
he had often expressed his lack of interest in the past and that only the future
concerned him, I was startled by the violence of his reaction. I told him that
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we had no interest in proceeding if he objected. At this, he became more
conciliatory and asked what would be expected of him. I repeated what
Constance required and he relented. “I always enjoy talking to young ladies,”
he said. “All right.”

As it turned out, he enjoyed their conversations so much that for the next
year he and Constance met every Saturday morning, followed the session
with lunch, and then reconvened in the afternoon. Thus, the book was based
on an extensive oral record as well as many documents, including the crucial
correspondence with Egon Pearson from the 1920s and early 1930s. She had
obtained this correspondence by going to London to see Pearson and
persuading him to copy the letters and let her use them for her work. When,
after a year’s preparation, she finally told Neyman that the time had come for
her to start writing and that they would have to discontinue their Saturday
meetings, he was very disappointed.

Since Constance had no background in statistics, she asked Neyman
whether he would object to her showing the Neyman–Pearson letters to me.
His reaction was the same as when I first approached him about the project,
“It’s a free country,” to which he added, “No objection.”

It was a great thrill for me to see these letters, which made it possible to
follow, step by step, the gradual development of what was to become the
basic theory of hypothesis testing, and the respective contributions made by
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the two authors. And as I read, a clear picture emerged: during the early years
of their collaboration, Pearson was the leader and originator, who explained
to Neyman what he was doing and where the work was leading him.
Neyman, to whom all this was quite new, frequently misunderstood, and his
principal contribution at this stage was to force Pearson to greater clarity,
and to help with working out a variety of examples.

This early work resulted in a joint 1928 paper of one hundred pages setting
forth the likelihood ratio method of test construction, with many applica-
tions. This method, which Pearson had proposed to Neyman at the beginning
of their collaboration, seemed to give the right results, and Pearson felt that
it provided the general answer he had been looking for.

But Neyman was not satisfied. He wanted not just an intuitively plausible
method but a formulation that was logically convincing. The tables had now
turned, with Neyman taking the lead and Pearson having to be persuaded.
Pearson himself, in an account of this part of the work, confirmed that “my
part was to help shaping the material; sharpening the arguments; standardiz-
ing the notation and terminology; working on the illustrative examples; and
deciding on the best forms for the diagrams.” The resulting paper appeared
in 1933, and for the first time provided a logical basis for hypothesis testing.
The optimality approach that it initiated was to become a central theme of
mathematical statistics.

More details of this fascinating story are given in Constance Reid’s book,
which appeared in 1982 to very favorable reviews. It gives a lively picture of
Neyman, which Constance considered a portrait rather than a biography,
and to which she gave the title Neyman—from Life. Neyman himself did not
see the book. He died of heart failure in 1981.

Before the Hilbert, Courant, and Neyman trilogy, Constance had written
a number of other books, including the very successful From Zero to
Infinity—What Makes Numbers Interesting (1955, 1968, 1992). She followed
the three biographies with two more, one in 1993 on E.T. Bell, the author of
Men of Mathematics, and one on her sister Julia (1996).

The last of these had a forerunner in a biographical essay written during
the last month of Julia’s life. In view of Julia’s opposition to such biographi-
cal writing, this publication is somewhat of a surprise. That she finally agreed
to it was due to the fact that, as reported in Section 5, she had become a
public figure and a role model.

The book, Julia—A Life in Mathematics, includes several articles on her
work by mathematicians, one of them by Yuri Matijasevich, who had com-
pleted her proof of the Robinson conjecture regarding Hilbert’s Tenth
Problem (see Section 5). However, the core of the book is Constance Reid’s
essay, “The Autobiography of Julia Robinson.” How can an autobiography
be written by someone else? Constance explains in the preface:

I could never write about Julia without writing more intimately than she or I would wish,
and it took me a while to come up with the solution of writing her “autobiography.”
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What I wrote would then be entirely what she would want to have written about her
own life. I would be writing in her spirit, not my own. . . .

When I started to write, she was back in the hospital. Although she was hopeful of
a second remission [from leukemia], she was also realistic about her chances. Every
few days I read aloud to her what I had written—which was based on an interview we
had had on June 30. She listened attentively and amended or deleted as appropriate,
sometimes just a word. She heard and approved all that I wrote. . . . She died on July
30, 1985, at the age of 65.

The book is a moving testament to a wonderful person and great mathe-
matician and provides an insightful picture of a mathematician’s life. It caps
Constance Reid’s remarkable career. Although she never studied mathematics
beyond elementary algebra and plane geometry—no analytic geometry, no
calculus—she was able to write successfully about mathematicians and their
work. In the process, she got to know and become friends with many mathe-
maticians and acquired much knowledge about various aspects of mathematics.
As a result, she was one of the subjects in the collection of portraits,
Mathematical People (Albers and Alexanderson, 1985). She had become a pre-
eminent mathematical writer and a member of the mathematical community.

62. Persi Diaconis (b. 1945)

Of the many people who are the subjects of this book, Persi Diaconis is
undoubtedly the one with the most unusual career path. He ran away from
home at age fourteen and spent the next ten years on the road as a practicing
magician. He had been interested in magic tricks since he was five, had
learned to perform some tricks, and at school joined the magic club. He spent
much time at the magic store and became known in the magic community.
He explains what happened next4:

When I was 14, America’s greatest magician was a man named Dai Vernon. We met
at a magician’s cafeteria and he invited me to go on the road with him as sort of
an assistant, and I jumped at the chance. I just went off. I didn’t tell my parents;
I just left.

Two years later, Vernon settled on the West Coast and Diaconis continued
on his own.

When at twenty-four he decided to go back to school, he graduated from
high school in a strange way, of which he gives the following account (in De
Groot, 1986):

I came back to New York and kept getting mail as if I had graduated. Letters from the
army saying, “Dear Graduate, perhaps you would be interested in . . . And I had won
some scholarships—a Merit Scholarship and some others. And I thought, “Gee, this
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is funny. I didn’t even graduate from high school and there are all these opportunities
that I cannot take.” But I kept getting these letters, so then I went into school and
I said, “Did I somehow graduate?” This is a giant New York City high school, George
Washington, and the assistant principal said, “Oh, Diaconis. Yeah, the teachers got
together and decided it would not do you any good to cause you trouble, and they just
decided to give you grades and graduate you.”

Thus, Diaconis was able to go to college. He went to night school at the
City College of New York, and graduated in two-and-a-half years. For his
choice of a graduate program, he had two aims. He wanted to study mathe-
matics and he wanted to go to Harvard. However, these two goals were at
odds with each other, since no one from City College had gotten into math-
ematics at Harvard. So he applied instead to the Harvard statistics depart-
ment, where he was accepted. He had originally thought that he might be able
to transfer to mathematics after a semester, but it turned out that he liked
statistics, so he became a statistician.

Three years after entering the program, he obtained his Ph.D. in 1974
with a thesis, written without supervision, on a problem that he had found
interesting: the distribution of leading digits in various arithmetic sequences.
After getting his degree, he accepted a position at the Stanford statistics
department, where he remained until 1987, with an interruption of two visit-
ing years at Harvard. From 1987 to 1996, he served on the mathematics fac-
ulty at Harvard and, after two years at Cornell, in 1998 returned to Stanford

62. Persi Diaconis (b. 1945) 225



with a joint appointment in mathematics and statistics. He continues to be
very active in this position today.

The mixture of appointments and interests in mathematics and statistics
throughout his career raises a question that he answers in his 1986 interview
with Morris De Groot: “What am I?”:

I am a statistician. That’s my training and my interest, and that’s the language that
I speak and the way I think.

Despite the implicit disclaimer, mathematics was and continues to also be
central to Persi’s work and thought, not only as an indispensable tool but also
for its own interest and beauty. He has in fact written a number of papers in
pure mathematics. And the mathematical community has accepted him as
one of their own, as can be seen from his selection as Hedrick Lecturer (1989)
of the Mathematical Association of America, as Gibbs Lecturer (1997) of
the American Mathematical Society, and as plenary speaker at the
International Congress of Mathematics in 1998.

Besides statistics and mathematics, magic continues to be a theme in Persi’s
life. He has close friends in the magic community and over the years he has
built up one of the world’s greatest private library in magic. In addition,
aspects having their origin in his magic experience continue to show up both
in his research and his teaching. At present, for example, he, together with his
frequent collaborator Ron Graham, are close to completing a book, From
Magic to Mathematics and Back.

The paper that in 1991 brought Persi to the front page of the New York
Times grew out of his experience as a magician. It was concerned with the
question: How many shuffles does it take to get a new deck of cards close to
random order, that is, so that each of the 52! orders is equally likely? He
showed in a joint paper with Bayer (1992) that the first five shuffles don’t get
you very far, but that then there is a sudden considerable improvement, and
that by the end of seven shuffles one is fairly close to randomness.

This “cutoff” phenomenon of a sudden drop after a certain number of
steps was also found in some other situations and led to what is one of my
favorites among Persi’s papers, “The Cutoff Phenomenon in Finite Markov
Chains” (1996). It surveys instances in which the cutoff phenomenon does
and does not occur, and explores the underlying cause.

A few years before the shuffle paper, Persi had been on the front page of the
New York Times with a 1989 paper (with Fred Mosteller) on coincidences. We
all have experienced coincidences that are truly astounding and seem to defy
explanation. So a scientific study of this phenomenon is of great general inter-
est. The principal findings of the Diaconis-Mosteller paper are summarized in
the abstract:

Once we set aside coincidences having apparent causes, four principles account
for large numbers of remaining coincidences: hidden cause; psychology, including
memory and perception; multiplicity of end points, including the counting of “close”
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or nearly alike events as if they were identical; and the law of truly large numbers,
which says that when enormous numbers of events and people and their interactions
cumulate over time, almost any outrageous event is bound to occur.

This work on coincidences is an ongoing project, with a book planned for
the near future.

Many of Persi’s papers are concerned with issues relating to his philosoph-
ical position—the fact that he is a subjective Bayesian in the sense of Savage
and De Finetti. An important part of this work is a long series of papers with
David Freedman on the consistency of Bayes estimates. One of the basic prop-
erties of these estimates, supported by various theoretical results, is that their
asymptotic behavior is independent of the prior distribution, and that they are
guided to the correct value by the data as the sample size increases. It there-
fore came as a shock when in 1963 Freedman (as mentioned in Section 35)
provided an example in which this is not the case. In continuing work
(summarized in 1986 and 1997), Diaconis and Freedman have explored the
circumstances under which Bayes estimates are or are not consistent.

Of Diaconis’ nearly two hundred publications, I shall mention only one
other, which is particularly close to my own interests. It is a joint paper with
his wife Susan Holmes, “Gray Codes for Randomization Procedures” (1994),
and deals with the following one-sample testing problem:

Let Z1, . . ., Zn be a sample from a distribution F (z – θ), with F continu-
ous and symmetric about the origin. To test the hypothesis H: θ = 0, we can
apply the randomization t-test, which has an exact level independent of F.
When N is large, calculation of the critical value becomes prohibitive, and
one resorts to an approximation. One such approximation is the critical value
of the t-distribution, another that of the normal distribution. The authors
investigate which of the two gives the better approximation. They show that
this depends on the values of Z1, . . ., Zn, and find that the answer to the
question is provided by the second term of an asymptotic expansion.

I first met Persi when he was a graduate student at Harvard and I a mem-
ber of the visiting committee assessing the state of the Harvard statistics
department. Since getting his Ph.D., he has throughout much of his career
been my Stanford neighbor and friend. During his years on the Harvard fac-
ulty (1981–82, 1985–86, and 1987 to 1997), I would often stay with him at his
bachelor quarters near Harvard Square when visiting Cambridge to work
with Fred Mosteller.

Over the years, we have been engaged in various formal and informal col-
laborative efforts. In particular, we wrote a joint chapter for Fred Mosteller’s
1990 Festschrift on Fred’s contributions to Mathematical Statistics. We also
wrote a review of the Encyclopedia of Statistical Sciences for Math Reviews
(although for some unknown reason the review appeared under my name
only). We serve as each other’s experts: he when I need information about
some mathematical issues, I by translating or summarizing early German
material on magic. We also share an interest in the history of statistics and
often discuss historical issues. In addition, Persi is my window on the current
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statistical scene. Since my retirement nearly twenty years ago I am out of the
loop, but Persi knows everything and everybody and keeps me informed.

For years now we have had an ongoing conversation on the state of the
field and where it is going. Although we are on opposite sides of the Bayes-
frequentist divide, we see eye-to-eye on the basic issue of the value of theory.
With the great complexity of many of the statistical problems now at
the forefront, theory is often replaced by haphazard consideration of many
ad hoc proposals, and this change of attitude has been accompanied by a
general denigration of theory. Persi and I have accumulated much material
for a paper, “In Praise of Theory,” which we hope eventually to publish.

Persi has become the poster boy for statistics. Recently, when the Swiss
newspaper Neue Züricher Zeitung wanted to publish an article about the field
of statistics, they flew a reporter to Stanford to interview him. He is in con-
stant demand as a lecturer by many different groups, and he has honorary
degrees from the universities of Chicago, Toulouse, and Uppsala. In 1982, he
received a MacArthur Fellowship, one of only three or four statisticians to
have been given this “genius award.” His not really having finished high
school does not seem to have hurt his career too badly.
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One drawback of the personal approach taken in this book is its exclusively
American perspective. The people who were my colleagues at Berkeley and
Stanford, whom I encountered at meetings, with whom I served on committees,
with very few exceptions lived and worked in the United States. Had I lived in
England, I would have written instead about Maurice Bartlett, George Barnard,
Henry Daniels, Maurice Kendall, and other British colleagues. Similarly, the
organization with which I was involved was the Institute of Mathematical
Statistics and the journal in which I published and for which I acted in various
editorial capacities was the Annals. Had I lived in England, I would have more
likely been involved with the Royal Statistical Society and its journals.

As a result, this book gives the unfortunate impression that work in statistics
was only being carried out in America. The intention of this chapter and the
next is to dispel this impression and broaden the perspective. These chapters
are more fragmentary, but at least give an indication of the work in some
other countries. England holds a special place in the history of statistics.
After the early probabilistic and statistical work by such outstanding conti-
nental mathematicians as Jacob Bernoulli, Gauss, Laplace and Poisson, the
principal center of activity moved to England. It was there that Galton,
Edgeworth, Yule, and Karl Pearson developed what gradually became a
separate discipline, its first institutional manifestation being Pearson’s
Department of Applied Statistics at University College, London.

Their work prepared the ground for the new statistical methodology devel-
oped by R.A. Fisher, which he accompanied with a wealth of new theoreti-
cal concepts and results. And this in turn was followed by the work of Egon
Pearson (Karl Pearson’s son) and Jerzy Neyman, who moved from Poland to
London in 1934. Thus, England was the cradle of what today constitutes
classical statistics.

This British dominance ended when in 1938 Neyman and Wald left Europe
for the United States and founded statistical centers at Berkeley and
Columbia, respectively, and with the outbreak of the Second World War,
which saw a greatly heightened level of activity in both England and the U.S.
This chapter reflects my principal encounters with British statistics.
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63. R.A. Fisher (1890–1962)

The basic statistical methodology that today is still being used the world over
was created by Ronald Aylmer Fisher in the 1920s and 1930s. But although
it was at the core of my own work, it took me a long time to realize Fisher’s
crucial influence; it was not part of my statistical education. In fact Neyman,
who taught the statistics courses I took at Berkeley, rarely mentioned Fisher’s
name. That was partly due to the fact that Neyman emphasized theory rather
than methodology, and partly to the great animosity that had developed
between the two men. It took many years before I appreciated Fisher’s
achievements. For example, my 1959 book on hypothesis testing only fleet-
ingly refers to Fisher’s fundamental paper of 1922, although the book is
based on the paradigm Fisher established in the paper, because at the time
I was not aware of this fact.

The new formulation that Fisher presented in that paper was motivated by
what he saw as the purpose of statistics:

Briefly, and in its most concrete form, the object of statistical methods is the reduction
of data. A quantity of data, which usually by its mere bulk is incapable of entering
the mind, is to be replaced by relatively few quantities which shall adequately
represent the whole, or which, in other words, shall contain as much as possible,
ideally the whole, of the relevant information contained in the original data.
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In the next paragraph, Fisher states how this aim is to be achieved:

The object is accomplished by constructing a hypothetical infinite population, of
which the actual data are regarded as constituting a random sample. The law of dis-
tribution of this hypothetical population is specified by relatively few parameters, which
are sufficient to describe it exhaustively in respect to all qualities under discussion.
[Emphasis added.]

Here, Fisher defines a new paradigm that has become the framework for
much of statistics as we know it today, namely as the science of inference in
parametric models. (Even the use of the term parameter in this context is new.)

The paper contains an astonishing number of other new concepts, many of
them flowing from his idea of statistics as data reduction with no or little loss
of information. They include sufficiency, the amount of information con-
tained in a data set, the concepts of consistency and efficiency, and finally
maximum likelihood as an efficient method of estimation.

The paper is remarkable not only for its originality, the breadth of its
vision and its enormous influence; it is also surprising for seemingly having
come out of the blue, with Fisher’s previous publications giving no indication
of what was to come. The origins of the paper have been investigated in a
recent paper by Stigler (2005), in which he also emphasizes its enormous
importance for the development of the field.

Stigler characterizes Fisher’s paper as an astonishing work, which
“announces and sketches out a new science of statistics, with new definitions,
a new conceptual framework and enough hard mathematical analysis to con-
firm the potential and richness of this new structure.” Fisher’s paper, he
writes, “was to become a watershed for twentieth century mathematical
statistics for most of the last three-quarters of the twentieth century.”

How could it have taken me so long to discover the significance of such a
fundamental work?

The data-reduction point of view of Fisher’s 1922 paper led to important
further developments which he presented in 1934 under the uninformative
title, “Two New Properties of Mathematical Likelihood.” In the first part, he
investigates the circumstances under which there exists a single sufficient
statistic for a one-parameter family of distributions, and shows that the only
families for which this is the case are those later called exponential families.
These families (in their later more general multivariate form) were central to
my testing and estimation books.

The second part of the paper deals with estimation in the presence of
ancillary statistics, that is, statistics whose distribution is independent of the
unknown parameters. (It is a subject on which I later wrote a paper, joint with
my former student Fritz Scholz). Fisher’s 1934 paper was the beginning of work
by Fisher and others on the problem of conditional inference. Basically, this is
the question of what is the proper frame of reference for frequentist inference.

In estimating the probability of surviving an operation, for example,
should we consider the class of all patients having undergone this surgery, or
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only the patients of similar age and state of health, and so on. On the one
hand, the cases should be relevant to the case at hand; on the other, the group
should not be so small that accurate estimation becomes impossible.
Conditional inference, including in particular Fisher’s later concept of rele-
vant subsets, became the subject of a new chapter in the second edition of my
testing book.

I learned of some of Fisher’s other results as a student, but through
Neyman’s eyes, not those of Fisher. Thus Neyman taught the distributions of
the t- and F-statistics, but he derived them not by Fisher’s geometric argu-
ments but analytically through transformation of variables. Learning about
Jacobians and acquiring facility with this technique later stood me in good
stead, although at the time it was rather painful.

Neyman’s graduate course also included certain aspects of Fisher’s analy-
sis of variance and regression analysis, although again not from Fisher’s
point of view but rather in terms of the Gauss-Markov theorem and of
hypothesis testing in general linear models. Trying later to read Fisher’s treat-
ment of the subject, I found it hard to penetrate. That others too found it dif-
ficult is illustrated by a 1987 paper by Speed, “What Is An Analysis of
Variance?” which is followed by the comments of eleven discussants, no two
of whom quite agree on its meaning.

Surprisingly, Fisher, who based his new methodology on the concept of
parametric models, also initiated ideas that were forerunners of the later
development of an alternative nonparametric approach. The most important
of these were (in modern terminology) randomization models and the related
possibility of distribution-free permutation tests. An optimum theory of such
permutation tests was later worked out by Charles Stein and me (1949); ran-
domization models play a central role in my nonparametric book of 1975.

Another nonparametric innovation was provided in the 1938 volume of
Statistical Tables by Fisher and Yates, which included tables for the use of
what is now called the Normal Scores test. In their introduction to these
tables, the authors explain:

It is often necessary to draw statistical conclusions from data giving the order of
a number of magnitudes, without the knowledge of their quantitative values. . . . Not
infrequently, also, an experimenter who possesses quantitative values may suspect that
the metric used is unsuitable to the comparisons he wishes to make, and prefer to draw
conclusions only from the order of the magnitudes observed.

From this and other comments, it is clear that Fisher considered the nor-
mal theory t-test as primary for day-to-day use, and its permutation and rank
versions as modifications needed in special circumstances. All the more
impressive that he originated these two nonparametric alternative approaches
to the problem.

It is impossible even to sketch here all of Fisher’s new ideas, but I shall
mention one other area of his work, with which I struggled for a long time
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without much success. It is fiducial inference, which Fisher considered a
crucial element of the structure he was building. I had the same difficulty
with it that others have found: a sudden switch, midstream, from considering
the parameters as constants to treating them as random variables. The unsuc-
cessful efforts of others with this issue is illustrated in Fisher’s correspon-
dence with the French probabilist Maurice Fréchet and with John Tukey
(published in Bennett, 1990).

Fisher’s life and work are well documented. First of all there is the biogra-
phy by his daughter Joan Fisher Box, R.A. Fisher: The Life of a Scientist
(1978). A window is also provided by the two volumes of his correspondence
edited by J.H. Bennett. And then there is the work itself. Fisher’s papers are
collected in five magnificent volumes. They comprise both the statistical
papers and those on genetics. (Fisher was a great geneticist as well as statisti-
cian, an aspect that I am neglecting in this account.)

In addition to the papers, there are Fisher’s books. He wrote three
books on statistics that were enormously influential: Statistical Methods for
Research Workers, The Design of Experiments, and Statistical Methods and
Scientific Inference, first published in 1925, 1935, and 1956, respectively.
Their extraordinary impact and durability can be judged by the fact that they
are still in print today, in a single volume combining the latest editions of the
three works.

Finally, there exists a great deal of secondary literature, including the
volume, R.A. Fisher: An Appreciation (Fienberg and Hinkley, 1980). Perhaps
the best overview is provided by Jimmy Savage in his (posthumous) paper,
“On Rereading R.A. Fisher” (1976).

Savage explains the motivation for his essay by Fisher’s influence on his
statistical education. The present section is similarly motivated, because my
first statistical education as a student of Neyman was supplemented by the
later influence of Fisher’s ideas. The nature of these two phases of my edu-
cation was very different. Neyman’s work is characterized by extraordinary
clarity. He presents his results by stating the assumptions they require, fol-
lowed by the theorem and its proof and some illustrations. The work
throughout is theoretical and highly mathematical.

In Fisher’s writings, the assumptions are often omitted, the theorem not
precise, the proof absent. The mathematical aspects are minimized. In conse-
quence, his claims are often correct in essence but their limitations not noted.
Fisher is concerned with the big picture, not with what he would consider
mathematical nitpicking.

In his books, a new topic is usually introduced through a data set and an
indication of its context, so that the motivation is applied rather than theo-
retical. As Savage points out, “Mathematics is ruthlessly omitted from
Fisher’s didactic works, ‘Statistical Methods for Research Workers’ and ‘The
Design of Experiments,’ ” and about Fisher’s style Savage writes that, “He
has a tendency to be aphoristic and cryptic.”
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As a result, I and many others have found his books and papers difficult
and often frustrating, yet in the end have found the effort to be well worth it
and to provide many rewards.

During the 1990s, I became interested in the history of statistics and found
occasions to write about some aspects of Fisher’s work. The first such
instance was the surprising selection of me as the Fisher Lecturer for 1988—
surprising in view of the hostility between Neyman and Fisher and my close
association with Neyman.

My selection was accompanied by a request for a topic half a year before
the lecture. Without giving it much thought I expected that it would be inter-
esting to study Fisher’s attitude on modeling, and I chose model specification
as my topic. A few weeks later, I started the project by consulting the excel-
lent index to Fisher’s Collected Papers. To my surprise (and dismay), I found
no entry under “model” and only one entry for “specification,” namely to his
1922 paper in which he states that the specification (of the model) is “entirely
a matter for the practical statisticians.” Despite this discouraging statement,
Fisher offers some comments on the subject in the paper, so it was not a
complete blank.

On the other hand, I found very interesting material from Neyman on
modeling (including the unpublished manuscript of a talk). The unlooked-
for consequence was that my Fisher lecture had very little to say about Fisher
but a lot about the ideas of his great antagonist Neyman.

The antagonism that over the years had developed between Neyman and
Fisher, the two principal architects of classical statistics, resulted in more seri-
ous consequences than an awkwardness for my Fisher lecture. It tended to
accentuate their differences and obscure the fact that Neyman’s work (in col-
laboration with Pearson) was basically a continuation of Fisher’s. Although
the philosophical differences between Fisher and Neyman were profound,
this had little effect on statistical practice. On the whole, their two approaches
complement rather than contradict each other. Fisher denied the usefulness
of the Neyman-Pearson concept of the power of a test, while Neyman and
Pearson ignored the importance of conditioning and thus choosing the most
appropriate reference for their frequency calculations.

What has been emphasized by many authors is the difference between the
calculation of p-values and the use of a predetermined significance level α,
the former attributed to Fisher and the latter to Neyman and Pearson.
However, in practice most users combine the two by calculating a p-value and
then rejecting or accepting the hypothesis as the p-value is below or above α.
This is in fact Fisher’s own frequent practice. In 1993, I presented an account
along these lines in an expository paper, “The Fisher, Neyman-Pearson
Theories of Testing Hypotheses: One Theory or Two?”

The third of my Fisher papers was motivated by the statement of F.N.
David mentioned in Section 30: “Gosset was really the big influence in
statistics.” It seemed to me that it would be interesting to investigate this
claim, and I did so in a 1999 paper, “ ‘Student’ and Small-Sample Theory.”
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Gosset’s influence on Fisher can be traced through their correspondence,
although—as in the case of the Neyman-Pearson correspondence—mainly
the letters of one of the authors (in this case Gosset’s) have been preserved.
However, they, together with Fisher’s comments on some of the letters, pro-
vide a detailed picture that I summarized in my paper. They show Gosset’s
great influence on Fisher’s distributional research; as David says, he (Gosset)
asked the questions. But Fisher, of course, did much more than put them into
statistical language: he found the answers.

I encountered Fisher in person only once. In 1947, Neyman took me (then
a newly minted faculty member) with him to a meeting of the International
Statistical Institute (ISI) in Washington. At one point, as I was standing next
to Neyman, Fisher passed us and brusquely asked Neyman why I was not
wearing a name tag. Neyman replied that I was not a member of the ISI.
“Then he should not be at the meeting,” Fisher said and walked on.

64. Egon S. Pearson (1895–1980) I: Collaboration 
and Friendship with Neyman (1894–1981)
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The Neyman–Pearson theory of hypothesis testing about which I learned as
a student and which is the basis of much of my work has been discussed in
Sections 7 and 61. However, the creators of this theory were not only collab-
orators, but over the twelve years of their joint work they also became close
personal friends. This section is concerned with the more personal side of this
story, which can be pieced together from Pearson’s 1966 article, “The
Neyman-Pearson Story” and from Constance Reid’s conversations with both
authors reported in her book, Neyman—from Life.

The partnership united two men of strikingly different appearance, back-
ground, and personality. They first met in 1924, when Neyman, a Russian-
born Pole, came to Karl Pearson’s Department of Applied Statistics for a
year of postdoctoral study. Egon Pearson, Karl Pearson’s son, was a junior
lecturer in the department, with duties somewhat like those of a teaching
assistant.

At the time, Neyman’s written English was full of mistakes, and he spoke
with a strong accent (which he never lost). He led a Bohemian lifestyle and
often had to borrow money to tide him over to the next paycheck. Egon
describes the impression he made on the occasion of a concert they attended
together (Reid, p. 61):

Jerzy got up from his seat, clapped his hands and shouted, “Bravo!” He looked so
foreign with the little moustache and the pince-nez. People looked around. I was
embarrassed, but I didn’t take it against him.

In contrast, Egon was a member of the British establishment. The son of
the distinguished and powerful Karl Pearson, he had been educated at
Winchester, one of the great English public (i.e., private) schools. While
Neyman was excitable and impetuous, Egon was reserved and disciplined.

Not much is known about the contact between Neyman and Egon Pearson
during Neyman’s stay at Karl Pearson’s department, but one incident
(recounted in Reid, pp. 56–57) stands out.

Neyman had brought with him some reprints of papers he had written,
two in French, the others in Polish with French and German summaries. Karl
Pearson read them and said he would publish one of the papers but that it
contained an error. The statement in question claimed that the mean and
variance are independent for only one of the Pearson curves, namely the
normal. As Neyman recalled to Constance Reid:

And at that time it seemed that Karl Pearson did not understand the difference
between independence and lack of correlation. He was talking to me in this room with
the desks. People whom I hardly knew. It was the first weeks essentially. And I tried
with my inadequate English to explain to him.

Pearson angrily said, “That may be true in Poland, Mr. Neyman, but it is
not true here!” and stalked out. Neyman also left and stayed away from the
laboratory for over a week. He was very worried. Would Pearson even let him
continue in the department? In this quandary, Neyman turned to another
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junior member of the staff (J.D. Irwin), who explained the issue to Egon, and
Egon was able to convince his father.

And Reid adds: “After the incident with the professor, Neyman felt that
there was a change in Egon Pearson’s attitude toward him.”

The year 1925–26 was difficult not only for Neyman but also for Egon. He
began to realize that the work of R.A. Fisher (culminating in his 1925 book)
required a rethinking of the current philosophy of inference, but that this
would set him at odds with his father, who “was not able or never saw the
need to” make such a shift. In a posthumously published (1990) account of
his relations with Karl Pearson, he commented,

I knew how much I owed to those years of apprenticeship, when I realized the breadth
of his vision and received the stimulus of his lectures. But the time had come when it
was necessary for me to go through the painful process of experiencing growing
doubts in my earlier belief in parental infallibility.

For assistance with his concerns, on May 5, 1926, Egon wrote to Gosset,
who in 1908, under the pseudonym “Student” had initiated the development
of small-sample theory. In his letter, he raised the question:

Could one find some principle appealing to intuition which would guide one in choosing
between tests?

Gosset’s reply1 a week later contained the spark that ignited a revolution in
statistical theory. He suggested that when faced with an unlikely result one
would be inclined to consider the hypothesis not to be true if there exists “an
alternative hypothesis which will explain the sample with a more reasonable
probability.”

Egon found the suggestion persuasive and it led him to think of the two
kinds of error, and of likelihood ratio tests as a solution to his problem.
However, he felt that his mathematics was not adequate for dealing with the
precise formulation and the implications of these ideas.

He was looking for someone with stronger mathematical background and
ability, and perhaps also for moral support in his effort to make himself inde-
pendent from his father, of whom he stood in awe and who had dominated
him for so long. In any case, it seemed to him that “Neyman was the right
man.” Sometime in late spring, he invited Neyman to spend a weekend at a
Pearson family cottage. It may have been then, toward the end of Neyman’s
stay in London, Egon writes, that,

I spoke to him about a very general statistical problem which I had for some time been
puzzling around. I suggested that if he was interested we might collaborate in going
further with the investigation.
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Neyman’s year in London had not been a particularly happy one. He was
lonely (his wife Olga, a painter, was spending the year in Paris), his inade-
quate English made communication difficult, and he was greatly disap-
pointed in the mathematical level of Karl Pearson’s department. He had
therefore decided to spend his second year in Paris to work in pure mathe-
matics under Lebesgue and Borel. He might have been lost to statistics if he
had not toward the end of 1926, after half a year of silence, received a letter
from Egon.

Included with the letter were several pages of notes on the ideas about
hypothesis testing on which Egon had been working. Although the letter has
not survived, it seems clear from Neyman’s response that it must have
renewed the suggestion of collaborating on these problems.

Neyman responded enthusiastically and thus started the Neyman–Pearson
collaboration, carried out mainly by correspondence with Neyman, first in
Paris, then in Poland, and through occasional visits back and forth and some
joint holidays. Its principal results were the joint papers of 1928 and 1933,
which were briefly discussed in Section 59.

The year 1933 brought not only the crucial second Neyman–Pearson paper
but also the retirement of Karl Pearson. Egon was appointed to succeed him
as head of the Department of Applied Statistics (while Karl Pearson’s other
position as director of the Galton Laboratory went to Fisher). As a result,
the following year Egon was able to bring Neyman into his department.
However, their great work had been done and his new duties left Egon much
less time for research. As he wrote in his 1966 account of their collaboration:

I think that by 1934 we had found the answers that satisfied us to most of the tractable
problems, . . . our joint work continued in London, . . . but the curtain had come
down on that particular episode.

Neyman and Pearson’s joint work in London resulted in 1936 in the first
volume of a new journal they were founding, Statistical Research Memoirs,
which contained two Neyman–Pearson papers and a number of others by
students and coworkers. In the same year, Karl Pearson died at the age of
seventy-nine. Although retired, he had edited the journal Biometrika
(founded in 1901) up to the time of his death. The trustees appointed Egon
to succeed him. Karl Pearson had not been sympathetic to the work of
Neyman and Pearson (one of the principal reasons for their starting their
own journal). Now a new attitude could be expected.

At the time, Neyman, working separately from Egon, was completing a
long paper setting forth his theory of confidence intervals, and naturally sub-
mitted it to Biometrika. It must have come as a tremendous shock when
Egon, after some back and forth, finally decided—very apologetically—to
reject it as too long and too mathematical.

Even in retrospect, the decision is hard to understand. The two friends
had worked together for ten years. Their points of view had always been
somewhat different, but they had managed to make compromises and find
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common ground. If the paper was too long and too mathematical, Egon
surely could have suggested some modifications that would have made it
acceptable.

One factor that seems likely to have motivated this rejection was the recent
death of Karl Pearson. This was one of his son’s first big editorial decisions
and it seems understandable that at this moment he did not want to publish
a major paper that his father would never have accepted.

While this seems a natural explanation, another factor might have affected
this difficult decision: the realization that Neyman’s optimality approach,
which Egon had somewhat reluctantly shared during their collaboration, was
basically not congenial to him, and that “this episode” had come to an end.

Despite this divergence, the two remained friends, and when in 1938 Neyman
left London for California they stayed in touch. Unlike Egon, Neyman did not
want to abandon their collaboration. He pressed for continued joint work
on the Statistical Research memoirs and on a book they had planned, on
“Whither Mathematical Statistics?” but Egon demurred. He explained that he
was too burdened with administrative work that did not leave him “with the
energy to do any joint work.” After seeing Egon in 1950 on a visit to England,
Neyman finally realized that the “old resonance” between them seemed to be
lacking (Reid, p. 223).

A collection of the joint papers of Neyman and Pearson was published in
1966, together with two separate volumes of selected papers by each of the
two authors (in 1966 and 1967). They provide a record of great achievements.
A festschrift for Neyman, edited by F.N. David, was published in 1966.
The volume opened with a paper by E.S. Pearson, “The Neyman–Pearson
Story: 1926–34,” with Egon’s account of their collaboration. The concluding
paragraph lets in a rare ray of emotion:

Sorting out the papers and letters which had been stored away, I can recapture some
of the intellectual thrill of that time; the exhilaration which goes with the belief that
one is chipping away along the fringe of the unknown. What value is or will be placed
on our joint work suddenly seems relatively unimportant. It is the experience within
oneself and the joint friendship which have really mattered in life. In this respect, at
least, how extraordinarily lucky it was that I decided to launch some of my unsolved
puzzles on that rather language-tied research Fellow in the summer of 1926!

Neyman, on his part, briefly commented on their collaboration in a paper,
“Frequentist Probability and Frequentist Statistics” (1977). He sent a copy to
Egon, who immediately replied2:

Dear Jurek, I received your letter of 24th with your Synthèse paper, and was so
delighted that I have started devouring it, although only received about five hours
ago! Shall I briefly tell you why? Will comment in detail shortly, but this is a quick
reaction. There is a tale or fable about us.
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From 1926–36 we were working together in excited cooperation. My clumsily
defined ideas, sharpened by your mathematical formulation, and we went on and on
together, until by about 1936–37 we had solved between us what seemed the basic
problems, and so found a statistical philosophy. But the time came when to find new
mountains to scale, you were forced to tackle more and more mathematically complex
problems—tests of “Type” A1 or B2, etc., etc., and I began to lose interest because
I was always aiming at attacking types of problems with probability tools which
seemed to get fairly simply into gear with the way which the human reason worked.
And “types” Ax, By, etc., etc., seemed to me stepping out of this field.

The passage makes it clear that Pearson not only initiated their joint effort
but also terminated it. The collaboration between two such different partners
with very different goals must not have been easy, and we must be grateful
that it held together as long as it did.

65. Egon S. Pearson II: Other Work

Egon Pearson was a major figure in British statistics, quite apart from his
work with Neyman. He served as head of his department from 1934 until his
retirement in 1960, and as managing editor of Biometrika from 1936 to 1966.
In both of these capacities, he exerted great influence. His bibliography
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(Bartlett, 1981) comprises 135 entries dealing with a great variety of subjects.
I shall here consider mainly his work on robustness and on the history of
statistics.

Pearson’s interest in robustness began as the result of a comment in
Gosset’s letter to him of May 11, 1926:

I am more troubled really [this refers to Pearson’s question of how to choose a test
discussed in the preceding section] by the assumption of normality and have tried
from time to time to see what happens with other population distributions.

Pearson (1990, p. 100) describes his response in his recollections:

I very readily seized on the idea of developing a systematic attack on the problem,
using what could be termed experimental sampling [i.e., simulation]. Even with the
help of Tippett’s tables of random sampling numbers (published in 1927), this explo-
ration was inevitably slow and patchy. . . .

A first report on it appeared in Biometrika 20, 356–360 (1928). . . . By June 1929 I
had already accumulated enough evidence to convince me that certain tests involving
the ratio of two estimates of variance (using what Fisher called the test statistic z)
were much more sensitive to non-normality than others.

While he was working on this problem, Pearson was asked by the journal
Nature to review the second edition of Fisher’s Statistical Methods. Mindful
of his findings, Pearson—in an otherwise favorable review—commented on
the fact that Fisher rarely drew much attention to, and often even didn’t
mention, that many of his tests were based on the assumption of normality.
In particular, he pointed out that

the tests, for example, connected with the analysis of variance [by this he meant tests
concerning variances] are far more dependent on normality than those involving
Student’s z (or t) distribution is almost certain, but no clear indication of the need for
caution in their application is given to the worker. It would seem wiser in the long run,
even in a textbook, to admit the incompleteness of theory in this direction, rather
than risk giving the reader the impression that the solution of all his problems has
been achieved.

Fisher was furious and drafted an apparently highly intemperate response.
In the end he did not send it and it has not survived. That Fisher withdrew
his letter was due to the good offices of Gosset, who was a close friend
of both Fisher and the Pearsons. After some negotiations, Gosset himself
published a response in Nature that had everyone’s approval.

Fisher could not let the matter go without stating his own point of view. In
a letter to Nature under the title, “Statistics and Biological Research”
(reprinted in his collected papers), he affirmed his conviction:

On the practical side there is little enough room for anxiety, especially among
biologists, who are used to checking the adequacy of their methods by control exper-
iments. . . . I have never known difficulty to arise in biological work from imperfect
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normality of the variation, even though I have examined the data for this particular
cause of difficulty.

However, Pearson did not let Fisher have the last word. He concludes the
correspondence with a reply (Nature, October 19, 1926) in which he gives
examples of published data that are far from normal and points out that
Fisher’s personal experience is not universally applicable:

It is not questioned that in a very wide field of biological work the normal distribu-
tion is adequate. Those who work within its bounds are fortunate but they should
admit the possibility that others may meet in practice cases of distinctly non-normal
variation; and therefore wish to know more precisely at what point the criteria based
on means, standard deviations, and correlation coefficients fail to be distributed in
sampling according to “normal theory,” and to understand a little more clearly the
nature of the consequences of the inefficiency introduced by using these “statistics.”

Surprisingly, Pearson does not return to his most important point, the
extreme sensitivity to non-normality of the F-test for variances. There was con-
siderable further work confirming Pearson’s conclusion, both empirical and
theoretical, by Pearson himself, by Gayen and Geary, and particularly by Box
(1953). However, as far as I know, Fisher never acknowledged this difficulty.

Among Pearson’s most important contributions is his work on the history
of statistics, much of it directed toward the preservation of his father’s legacy.
His first major effort in this direction consisted of two long articles entitled,
“Karl Pearson—An Appreciation of Some Aspects of His Life and Work.”
They were published in Biometrika in 1936 and 1937 following Karl Pearson’s
death in 1936, and were then republished as a book of 170 pages in 1938.

In the preface to the book, Egon Pearson explains his intention:

It is in no sense a life of Karl Pearson; to deal adequately with so large a subject would
need far more time than the two seven-week vacations which have been all that I could
give to it. Besides, I am fully conscious of the difficulties which a son must face in
attempting to write the life of his father. Nevertheless it was important, while memo-
ries were fresh and records easy to trace, that some account of facts should be put
down on paper. . . . In the task of collecting and recording I had certain advantages;
as one of the “three rampaging urchins [Egon and his two sisters] of my mother’s
Biometric Lay, I could recall at first hand something of that spirit which inspired the
founders of the Biometric School in the early years of the century, and much later, as
a member for twelve years of my father’s Department of Applied Statistics, I had
ample opportunity to study his aims and methods. Let this be my reason for writing.

To this work, in 1948 Egon added a volume, Karl Pearson’s Early Statistical
Papers, and his last publication (in 1978, at age 83) consisted of an edition of
his father’s 1921–1933 lectures, The History of Statistics in the 17th and 18th

Centuries.
A year after Karl Pearson’s death, Egon was saddened by the death of the

universally beloved William Sealy Gosset (1876–1937), who had greatly
influenced Egon’s work. Egon wrote an extensive appreciation, “William
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Sealy Gosset: “Student” as a Statistician,” for the 1939 volume of Biometrika.
Of his own relation with Gosset, he wrote:

My real understanding of Gosset as a statistician began, as no doubt for many others,
when I joined that wide circle of his scientific correspondents. . . . In looking back
through this correspondence I realize more clearly now than I could ever have done at
the time what its value to me has been, and I can see how many of his ideas scattered
through these letters have since almost unconsciously become part of my own out-
look. I think this must be true also in the case of other persons with whom he corre-
sponded, so that one can say that the last thirty years’ progress in the theory and
practice of mathematical statistics owe far more to “Student” than could be realized
by a mere study of his published papers.

Of great value are the extracts from some of Gosset’s letters provided at
the end of the paper. Later, Egon edited and published some of Gosset’s cor-
respondence with Karl Pearson and with Fisher as number XX (1968) of the
Biometrika “Studies in the History of Probability and Statistics.” It was a
series Egon had started to publish in 1955 with a paper by F.N. David. From
the beginning, it had been his hope to eventually reissue those contributions
by various authors in a single volume. This hope was realized in 1970 with the
issue of Studies in the History of Statistics and Probability, volume 1, edited
by Egon Pearson and Maurice Kendall. The editors admitted that the “arti-
cles are clearly no substitute for a unified historical appreciation, but . . .,
together, we believe, they give a very fair idea of the whole domain.” A sec-
ond volume, edited by Kendall and Plackett, appeared in 1977 with many of
the articles from journals other than Biometrika.

A last historical work under Pearson’s name was published posthumously
in 1990. Based on notes by Pearson, it was edited by Plackett and Barnard
under the title: Student: A Statistical Biography of William Sealy Gosset.
Pearson had planned this to be his magnum opus and at various times had
given it the working titles, “The Growth of Modern Mathematical
Statistics—The Part Played by Student,” and “All This—and Student Too.”
The book published ten years after his death has chapters on Gosset, Karl
Pearson, Ronald Fisher, and Egon Pearson, and it is full of valuable personal
information.

In their introduction, the editors provide the following assessment of
Pearson’s own place in history, in which they also mention some aspects of
his work not discussed here:

Egon Sharpe Pearson has a secure place in any account of statistical methodology
during the 20th Century. Between 1925 and 1938, his collaboration with Jerzy Neyman
established the Neyman–Pearson theory of testing hypotheses. The continuing impor-
tance of this feature of statistical inference owes much to his interests in the connec-
tion between theory and practice, which are also shown by his work on editing
statistical tables. His enthusiasm for the use of quality control in industry led to the
Royal Statistical Society forming an Industrial and Agricultural Research Section in
1933, and greatly assisted the introduction of control charts in wartime. He was
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Managing Editor of Biometrika from 1936–1966, in which role the subject was
immeasurably helped by his conscientious editing and kindly advice to contributing
authors. His many honors attest to the esteem in which he was widely held.

The introduction continues with his work as “an outstanding historian of
statistics.” Surprisingly, it does not mention his important robustness work.

I met Egon Pearson briefly twice. On a visit to London in the 1950s, he
invited me to his office, and reminisced about his collaboration with Neyman.
He mentioned how intense and passionate about work Neyman was, and that
when he came to London in 1934, Neyman was greatly disappointed to find
that Egon had gotten married and therefore was not always available.

The second time I saw Pearson was at a party at Betty Scott’s house the
only time Pearson visited Berkeley, in the 1960s. One member of our depart-
ment—it may have been Evelyn Fix—proposed a toast that she concluded
with: “We love you, Professor Pearson,” to which he replied rather dryly:
“How is that possible? You only just met me.”

66. David Cox (b. 1924)

When Egon Pearson retired from the editorship of Biometrika in 1966, his
successor was David Cox, then professor of statistics at Imperial College,
London. Cox remained as editor for the next twenty-five years. At the time,
he must have seemed the natural choice in view of his broad knowledge of
both probability theory and statistics and his great productivity, which by
now has resulted in over 300 publications in many different areas and which
is still continuing. I shall comment on only two of these areas.

Cox’s most famous paper is entitled, “Regression Models and Life Tables”
(1972). It formulates (and shows how to analyze) a model for failure time
data involving a number of secondary (explanatory) variables, which has
become known as Cox’s Proportional Hazard Model. To explain the term
hazard in this context, suppose that the lifetime X of a unit has probability
density p(x) and cumulative distribution function F(x) = P (X ≤ x). Then
the hazard function, given by p(x)/[1 – F(x)], is the conditional density of
the lifetime given that the unit has survived to time x. This way of specifying
the distribution of X is particularly useful for survival data. Cox’s model
assumes a simple but fairly general form for the hazard function.

Cox, after describing the genesis of the model in Reid (1994), continues:

Then the question was how to actually do the statistical analysis. I wrote down the full
likelihood function and was horrified at it because it’s got exponentials of integrals of
products of all sorts of things, unknown functions and so forth. I was stuck for quite
a long time—I would think the best part of five years or maybe even longer. Then sud-
denly I thought that the obvious thing to do was to concentrate on that part of the
likelihood that actually gave you the information about the regression coefficients that
you were interested in. It was absolutely obvious how to do that, and so just write
down the answer.
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The paper has been reprinted in volume 2 of Breakthroughs in Statistics
(Kotz and Johnson) with an introduction by Ross Prentice. As Prentice states:
“Within a few years of publication, this procedure became a data analytic
standard in a number of application areas, most notably in the biomedical
sciences. The procedure has also stimulated considerable related method-
ological development.”

In generalization of the simplification described in the passage from Cox
quoted above, in 1975 Cox developed a general theory of partial likelihood
that can often be used to simplify inferences concerning the parameters of
interest in the presence of other parameters.

A very different influential paper, “Some Problems Connected with
Statistical Inference” (1958), discusses a number of general issues, including
in particular the desirability of conditioning in order to confine the inference
to situations relevant to that at hand. Cox discusses the problem both in a
Neyman–Pearson setting and from a Fisherian point of view. He makes the
latter very persuasive by the following example.

Suppose an observation X is drawn either from a normal distribution with
mean θ and variance σ1

2 or from a normal distribution with mean θ and vari-
ance σ2

2, with a probability of 1⁄2 for each. It is assumed that σ1
2 and σ2

2

are known and that σ1
2 is much larger than σ2

2. Cox considers the problem of
testing the hypothesis H:θ = 0, but for simplicity let us here consider instead
the problem of estimating θ. Our estimator is X and the question is how to
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report its variance, that is, the accuracy of X. Unconditionally, this variance is
(σ1

2 + σ2
2)/2, but suppose we know that X was drawn from the population with

variance σ1
2. Then, for most purposes, the large σ1

2 would seem to be the more
relevant value. The fact that we might have drawn X from the population with
smaller variance (but did not do so) should not provide much comfort.

An important and influential part of Cox’s work consists of the fifteen
books he wrote, many of them with collaborators. Most of the books are
fairly short, typically 200 to 250 pages, and they cover many different subjects
of probability theory and statistics. They are not textbooks. Instead, as Cox
explains3:

If you’ve thought about a subject a considerable time and feel you have something to
say about it that isn’t in the literature, it is entirely sensible to write it down as a book
of some sort.

Some of his statistical books in this vein are:

The Statistical Analysis of Series of Events (1966, with Lewis)
The Analysis of Binary Data (1970)
Analysis of Survival Data (1984, with Oakes)
Inference and Asymptotics (1994, with Barndorff-Nielsen)
Multivariate Dependencies (1996, with Wermuth)

My favorite of Cox’s books actually is a textbook of about five hundred
pages, Theoretical Statistics (1974, with David Hinkley). It is a broadly based
introduction to statistical theory, which emphasizes “general concepts rather
than mathematical rigour or detailed properties of particular techniques.”
The book covers parametric and nonparametric tests, point and interval esti-
mation, asymptotic theory, Bayesian methods, and decision theory. It is very
reader-friendly and, after more than thirty years, still very useful. Somewhat
similar in outlook is his much shorter 2006 book, Principles of Statistical
Inference.

My own relations with David Cox got off to a bad start. While I was editor
of the Annals, he submitted a paper (jointly with Wally Smith) on a proba-
bilistic subject that I knew nothing about. The associate editor judged the
paper to be basically flawed and, following his recommendation, I rejected it.
Later it turned out that the objections raised by the associate editor were
unfounded. It was a very unfortunate discouragement of an author at the
beginning of his career, but David, when much later I apologized, claimed to
have forgotten the incident and in any case seems to have forgiven me.

David taught in Berkeley during the summer of 1956 and presented papers
at the fourth and sixth Berkeley Symposia of 1960 and 1970, respectively, and
at the second Lehmann Symposium in 2004. In the other direction, I lectured
in London twice in the 1950s during European sabbaticals. But of all my

246 14. England

3 Quoted from Reid (1994), p. 451.



encounters with David, the incident that stands out most occurred in 1985,
when I accompanied my wife to a psychometric conference in Cambridge.
David spent an afternoon with us, in the course of which he showed us
around the Cambridge Statistical Laboratory. Everyone in the laboratory
who passed us turned to David and said “congratulations.” After several of
these felicitations, we asked him for their cause. He waved us off: “Oh, it’s
nothing,” he said. But as the congratulations kept coming, we insisted. He
blushed deeply and admitted that he had just been knighted.

David Cox’s knighthood was only the most conspicuous of an unprece-
dented array of honors he has received. They include Fellow of the Royal
Society (FRS) and foreign membership in the Royal Danish Academy, the
Indian National Academy, and the three principal American academies. He
has served as president of the Bernoulli Society, the Royal Statistical Society,
and the International Statistical Institute, and from 1988 to 1994 held the
position of Warden of Nuffield College, Oxford.

David received the Guy Medal in Gold of the Royal Statistical Society, and
the Gold Medal for Cancer Research from Sloan-Kettering. Up to now, he
has received twenty honorary doctorates. In 1991, a Festschrift was pub-
lished, Statistical Theory and Modelling: In Honor of Sir David Cox, FRS,
edited by Hinkley, Reid, and Snell. A second, edited by Davison, Dodge, and
Wermuth, Celebrating Statistics, was brought out for his eightieth birthday.
Last year saw the publication of two volumes of his collected papers, with
comments by Cox.

It has been a truly remarkable career.
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15
Contacts Abroad

The statistical theory and methods that Fisher and Neyman–Pearson
developed in England during the 1920s and 1930s, spread after World War II
not only to the United States but also to many other countries around the
world. In this process, Berkeley played a significant role.

On the one hand, the Berkeley Symposia in Statistics and Probability,
which took place at five-year intervals from 1945 to 1970 were the most
important international meetings of the period. Although the talks were by
invitation only, Neyman’s broad contacts ensured substantial international
participation. In the long run, even more influential were the large number of
graduate students from many different countries who received their training
in the new statistics at Berkeley.

There tended to be a pattern to their flow. One or two early students from
some country liked their Berkeley experience and recommended it to others.
After receiving their degrees, some of them stayed in the U.S. But more
important were the others who went back to take up positions in their home
countries. They eventually established their own graduate programs, so that
after a while it was no longer necessary for students from that country to
study abroad. The flow of these students then receded, to be replaced by a
wave from some other country. Later, these contacts resulted in occasional
invitations of some of us to the home countries of our students. On these
visits, we gave lectures, were entertained, and were shown some of the sights.

This chapter considers some aspects of this development, and my involve-
ment with it, for the five countries with which I had the most contact:
Switzerland, India, China, Israel, and the Netherlands.

67. Bartel L. van der Waerden (1903–1996)

In 1956, I was eligible for my first sabbatical year and decided to spend it
in Zürich the beautiful and culturally rich city in which I had lived during
my high school and first university years. A drawback of Zürich was that
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neither of its two academic institutions, the university or the Eidgenössische
Technische Hochschule (ETH), had a program in statistics.

I knew that there was one person in Zürich who had a strong interest and
considerable knowledge about the subject, namely the great algebraist Bartel
L. van der Waerden. About him there was, however, a concern. Doubts had
been raised regarding the fact that van der Waerden, although of Dutch
origin and nationality, had remained as professor in Leipzig (Germany)
throughout the Nazi period. The Dutch had held it strongly against him. If
he had been a Nazi sympathizer, I wanted nothing to do with him.

For advice, I turned to my thesis advisor and friend George Polya at
Stanford, who knew about such things. Polya assured me that I need have no
qualms. van der Waerden was perhaps somewhat naïve, but he surely had
done nothing reprehensible; I could associate with him in good conscience.

Accordingly, soon after my arrival in Zürich I looked up van der Waerden,
and it turned out that he was delighted to see me. He was just reading a proof
of a book he had written on mathematical statistics and he had a question to
which he hoped I might have the answer. He knew that Student’s t-test was
uniformly most powerful among unbiased tests, but assumed that it was in
fact uniformly most powerful among all tests and had stated so in the book.
Did I know a proof?
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This was the problem Charles Stein and I had considered in our 1948 paper
(see Section 13), and we had shown the conjecture to be false. I had come just
in time for a correction to be included in the book.

Statistics was only a sideline for van der Waerden. As he told me, he had
been drawn into the subject through requests by scientific colleagues in
Leipzig for help with their statistical problems. To answer their questions, he
had taught himself by reading Fisher. Later he also wrote a few papers on the
subject. However, they were not comparable in importance to his seminal
contributions in several areas of pure mathematics. He was known to me
at the time principally for his path-breaking book, Modern Algebra, of
which Saunders MacLane wrote in 1997 that “it is, in my view, the most influ-
ential text in algebra of the twentieth century.”

His statistical book was also excellent, although less influential. It was
roughly comparable to Cramér’s text, but different in a number of significant
ways. On the one hand, it omitted the theories of measure and integration.
On the other, since it was written ten years later it was able to include more
recent developments, in particular, for example, nonparametric tests such as
the Wilcoxon and van der Waerden’s own X-test (which is asymptotically
equivalent to the normal scores test). A strong feature of the book is the
examples, which are taken from real situations. I liked the book so much that
I arranged for two Berkeley graduate students to do a translation, which
appeared in 1968.

Of van der Waerden’s other books I shall only mention his two-volume
Science Awakening, the first volume a history of Greek mathematics and its pre-
cursors (1954), and the second entitled, The Birth of Astronomy (1974). Written
from a broad perspective—mathematical, historical, and philosophical—
they are a pleasure to read. These books are only a small part of van der
Waerden’s extensive and influential body of work on the history of mathe-
matics and astronomy.

After the war, van der Waerden returned to Holland to accept an earlier
offer from the University of Utrecht. However, the government refused to
approve the appointment because of his having remained in Germany during
the whole Nazi period. He briefly worked for Shell and then accepted an offer
from the City University of Amsterdam, which at first was privately funded.
Three years later, he moved to a better position at the University of Zürich,
where he remained until his retirement in 1973.

During my year in Zürich, I saw a lot of van der Waerden, usually for
afternoon coffee at his house, where I also met his wife, Camilla. At one of
these meetings, in the spring of 1956, he told me about the mathematical con-
ference center Oberwolfach in the Black Forest, and of the upcoming statis-
tics conference there, which he was planning to attend. He suggested that
I accompany him and also give a talk.

My first reaction was very negative. For me, Germany at that time was the
country that had killed six million Jews, including some of my relatives, and
that had driven me out. I did not want to become involved with German
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statistical activities. But van der Waerden was persuasive, and eventually I did
go with him. I decided to give my talk in German, which turned out to be
unexpectedly difficult. Although German was my mother tongue, I did not
know any of the technical terms that I had learned in Berkeley.

During the meeting, I was able to set aside my feelings and to relate to the
people I met as individuals who presumably were no better or worse than
citizens of other countries. However, later I continued to feel that as one
who had escaped the horror, I had an obligation to those who had not been
so lucky, not to pretend that nothing had happened. Reconciliation was up to
the next generation. I resolved not to again participate in professional activ-
ities in Germany. On the other hand, I was always happy to welcome indi-
vidual German visitors to our department in Berkeley, and developed good
relations with several of them.

This first Swiss sabbatical had been so pleasant and productive that I
decided to return for another half-sabbatical in the fall term of 1959. Again
I saw much of van der Waerden, who also invited me to give a talk at the
Zürich Mathematical Colloquium. Another Zürich friend was Walter Saxer,
who was a specialist in insurance mathematics at the ETH. It was he who
conveyed to me the offer of a chair in mathematical statistics at the ETH,
reported in Section 43.

The van der Waerden I knew in Zürich was a very modest person—one
would never have guessed his importance both as a mathematician and as a
historian of mathematics, and I was not fully aware of them. My relation
with him was primarily through his interest in statistics. His being the sole
representative of that field in Zürich changed in the 1960s, when first Peter
Huber and later also Frank Hampel took up positions in Zürich.

68. C.R. Rao (b. 1920)

India experienced an early development in statistics due to the work of a
remarkable leader, Prasanta Chandra Mahalanobis (1893–1972). This is not
the place to write about his achievements,1 except to mention that in 1931 he
founded the Indian Statistical Institute, to which he attracted, among many
others, R.C. Bose, S.N. Roy, and C.R. Rao, all three of whom became out-
standing statisticians. He also founded the journal Sankhya (in 1933) and
edited it until his death. (Henry Scheffé and I published our two papers on
completeness and minimal sufficient statistics in Sankhya.)

The person who did the most to continue Mahalanobis’s work as a leader
of statistics in India was Calyampudi Radhakrishna Rao. After receiving a
master’s degree in mathematics in 1940 from Andhra University, he was
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advised that job opportunities were better in statistics and got another
master’s degree, this time in statistics, from Calcutta University in 1943, and
accepted a job at the Indian Statistical Institute. In 1946, he went to Cambridge
by invitation to work at the University Museum of Archeology and Ethnology
on a project using statistical methodology developed at the institute. During his
two-year stay in Cambridge, he also worked under R.A. Fisher and obtained a
Ph.D. from Cambridge University. On return from Cambridge, he joined the
faculty of the institute in 1948, where he became professor in 1949, director of
research and training in 1964, and—after Mahalanobis’s death—secretary and
director of the institute in 1972. In 1979, Rao took mandatory retirement from
the institute and moved to the United States, first to the University of
Pittsburgh (1979–1988) and then to Pennsylvania State University, where—
although retired—he continues to be active.

Rao’s bibliography (Bera, 2003) contains more than 450 items. I shall here
discuss only a few of his papers and books that have been of particular rele-
vance to me.

One of his earliest papers, “Information and Accuracy Attainable in the
Estimation of Statistical Parameters” (1945), was remarkable in containing
three major ideas:

i. The first is an inequality that provides a nonasymptotic lower bound for
the variance of an unbiased estimate. The inequality, now called the
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Cramér–Rao inequality, was discovered independently by Fréchet
(1943), Rao (1945), and Cramér (1946).2 It has become a staple of math-
ematical statistics and has been extended in many different ways by Rao
himself and by others. As an application, Hodges and I (1951) found that
the inequality provides a powerful tool for proving admissibility of esti-
mators. More recently, applications of Cramér–Rao inequality have been
found in quantum physics, signal processing, and in proving some limit
laws in probability.

The independent discovery of the inequality by Fréchet in France, Rao
in India, and Cramér in Sweden suggests that the time was ripe for it.
This is supported by Rao’s own account of how he came to the result (De
Groot, 1987; Bera, 2003). After he had lectured on Fisher’s asymptotic
version of the inequality, a student in the class asked, “Why don’t you
prove it for finite samples?” and within 24 hours Rao did just that.

ii. The 1945 paper contained a second important result also relating to
unbiased estimation. Rao showed that if T is a sufficient statistic and
δ an unbiased estimator of, say, g(θ), then the conditional expectation
E(δ ⎢T) of δ given T is also an unbiased estimator of g(θ) and its variance
is less than that of δ unless δ is a function of T.

A corollary is the very useful fact that an unbiased estimate can be
improved by taking its expectation given a sufficient statistic. This
process has been called Rao–Blackwellization by Berkson (1955) and the
theorem itself the Rao–Blackwell theorem by Lehmann and Scheffé
(1950). The reason for the addition of Blackwell’s name is that he
obtained the same results (independently) in 1947.

iii. The results (i) and (ii) were in the spirit of the time and soon found many
generalizations and applications. This was not the case for Rao’s third
contribution in this paper, which introduced ideas from differential
geometry into statistics, including the concepts of metric, distance, and
measure now associated with his name. This work was before its time and
came into its own only in the 1980s.

A second important paper by Rao (with which I was much concerned in
my expository work) is of an asymptotic nature and deals with testing rather
than estimation. It added a new general method of testing to the likelihood
ratio test of Neyman and Pearson (1928) and the Wald test (1943): what is
now known as the Rao score test (1948). These three tests are sometimes
referred to as “the holy trinity.”

For the case of a simple hypothesis H: θ = θ0 concerning a real-valued para-
meter θ, against the alternatives θ > θ0, Rao’s test rejects when the derivative
of the logarithm of the likelihood evaluated at θ0 is sufficiently large. In many
situations the three tests are asymptotically equivalent, but for finite samples
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they can vary widely. Each has its advantages and drawbacks. These are
discussed in large-sample books such as Sen and Singer (1993) and Lehmann
(1999), and also in Lehmann and Romano (2005).

Rao’s papers of 1945 and 1948 have each been reprinted in Breakthroughs
in Statistics (Kotz and Johnson), the 1945 paper in volume 1 with an intro-
duction by Pathak, and that of 1948 in volume 3 introduced by Sen.

In the early 1960s, Rao returned to problems of estimation but with two
important differences. For one, he was now concerned with large-sample
properties such as first- and second-order efficiency. In addition, he was
considering estimation not as point estimation in the classical sense of cal-
culating a single value coming close to an unknown parameter being “esti-
mated,” but (following Fisher) as a process of data condensation that tries
to “preserve an estimate as a substitute for the whole sample for possible
future use” (Rao, 1962). In the discussion of this paper, Rao states, “With
such a criterion, estimation need not be confined to what are called point
estimates.”

In view of this interpretation, he defined efficiency of an estimator not in
the traditional way in terms of asymptotic variance, but rather in terms of its
closeness to the derivative of the log likelihood. He then proved the superi-
ority of the maximum likelihood estimator from this point of view.

Although Rao repeatedly stated his position clearly, it was misunderstood
and his definitions were criticized as irrelevant to the (traditional) purpose
of estimation. In the controversy that followed, the discussants talked
past each other until Efron, in a 1982 paper, “Maximum Likelihood and
Decision Theory,” gave a comprehensive comparative account of the two
approaches.

Rao wrote papers in many other areas of statistics, especially in combina-
torial experimental designs known as orthogonal arrays, which are widely
used in industrial experimentation, but I shall now turn to some of his more
than a dozen books. The most influential of these was probably a text titled,
Linear Statistical Inference and Its Applications. Despite its title,3 which sug-
gests a somewhat limited coverage, it is really a very general introduction to
statistical inference covering both estimation and testing, exact theory for
finite samples, and large-sample theory. An unusual feature of the book is
that its mathematical preparation consists not only of a chapter on measure
theoretic probability but also a chapter of nearly eighty pages on various
aspects of linear algebra and vector spaces, including some of Rao’s own
work on generalized inverses of matrices. The level of mathematical rigor is
high throughout, as is the book’s readability.

A quite different book written by Rao in conjunction with the Russian math-
ematicians Kagan and Linnik deals with a very special topic indicated by its
title, Characterization Problems in Mathematical Statistics (Kagan et al., 1973),
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that is, with properties that uniquely characterize probability distributions and
certain other statistical structures. Rao’s interest in such problems began when
he was a student, and in fact he wrote a master’s thesis on the subject. Later, he
published papers on properties characterizing the normal distribution, the
Poisson distribution, the gamma distribution, certain linear structures, and so
on. The book provides a comprehensive treatment of such results and the
methods for obtaining them. It is the source that I consult when faced with
problems in this area.

A third and again very different book with the title Statistics and Truth is
the written version of three lectures given by Rao in memory of the great
Indian mathematician Ramanujan.4 It is a wide-ranging, nontechnical
overview of the history, nature, and usefulness of statistics. The first chapter
discusses the fundamental concept of randomness and the great change from
a deterministic to an indeterministic worldview in the latter half of the nine-
teenth century. This is followed in Chapter 2 by a consideration of the various
ways in which statistics extracts information from data. Finally, Chapter 3,
after discussing the usefulness of statistics, illustrates how this comes about
in eighteen very different, but all interesting, examples. The book offers an
attractive introduction to statistics for the general reader, and I greatly appre-
ciated it when Rao sent me an inscribed copy.

Of Rao’s remaining books, I shall only mention that the following four,
related to the broad subject of linear models, reflect his interest and contri-
butions to the algebraic side of statistics:

Generalized Inverses of Matrices and Their Applications (with Mitra, 1971)
Estimation of Variance Components and Its Applications (with Kleffe, 1988)
Linear Models: Least Squares and Alternatives (with Toutenberg, 1995)
Choquet-Deny Type Functional Equations with Applications to Stochastic

Models (with Shanbhag, 1994)

Rao’s great success and influence as an administrator, researcher, exposi-
tor, and teacher has led to his receiving a large number of honors. They
include presenting the Wald Lectures (1975), “Estimation of Parameters in
Linear Models,” and a Festschrift, Statistics and Probability: Essays in Honor
of C.R. Rao (Kallianpur, Krishnaiah, and Ghosh, Eds 1982). He has received
thirty honorary degrees. He is a Fellow of the UK Royal Society (FRS) and
a member of several national academies, including the (American)
National Academy of Sciences. He has served as president of the Institute of
Mathematical Statistics, International Biometric Society, and International
Statistical Institute, and the list goes on. Particularly prestigious awards were the
(U.S.) President’s National Medal of Science and the second highest civilian
award of Padma Vibhushan by the government of India.
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I first met Rao when he taught in the Berkeley summer session of 1954. In
1960, he attended the fourth Berkeley Symposium and in 1970 the sixth.
During the 1960s, we had some correspondence concerning my many Indian
Ph.D. students, quite a number of whom took up positions in the U.S. rather
than returning to India. Rao seemed to hold me responsible, and from time
to time would scold me for it.

More important perhaps than our direct contact was the interaction in our
work. In particular, for example, several of my early papers grew out of Rao’s
paper of 1945, and at the time of writing this section I am in fact also working
on a paper that has its origin in Rao’s work in the 1960s on efficiency.

69. Zhongguo Zheng (b. 1938)

My contact with India was primarily through my close to twenty Indian
Ph.D. students. The ties that connected me to the statistics community of the
People’s Republic of China were due mainly to my relations with two Chinese
statisticians. To begin with, as mentioned in Section 11, the great Chinese
scholar P.L. Hsu had been instrumental in helping me to get my Ph.D. when
he spent the fall term of 1945 in Berkeley. Unfortunately, I never saw him
again. After a year-and-a-half with Hotelling, he returned to China, where he
died in 1970.
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When years later American statisticians learned of his death, the Annals of
Statistics commissioned several memorial articles: an article on his life by
Anderson, Chung, and Lehmann; and one each on Hsu’s work on inference
(Lehmann), multivariate analysis (Anderson), and probability (Chung).5

They appeared in the 1979 volume of the Annals.
The same year brought me a new, very different, contact with China. In

December 1979, a Chinese visitor arrived for a two-year stay in our depart-
ment. He was Zhongguo Zheng, a forty-one–year-old lecturer at Peking
University who came to Berkeley to learn about modern developments in
statistics and probability. He had been trained in Beijing: six years as an
undergraduate (the standard time at Peking University) and four years as a
graduate student. He completed his studies in 1965 with a thesis on random
walks but without a degree—the university at that time did not grant
doctoral degrees.

Those were the turbulent days of the Cultural Revolution, and for the next
seven years Zheng was sent to the countryside to do physical work. During
that time, as he wrote in a recent letter, “no teaching, no research work, no
study.” He then returned to the university to teach but, as he writes,

The student’s level was quite low. Also, the university had stopped to order any
English journals. So, for a very long period, we had no chance to do research. That is
the reason why for a very long time after graduation I did not write any papers.

Zhongguo made up for this later. Since 1985, he has published more than
one hundred papers—mainly, but not exclusively, in Chinese journals—on a
great variety of statistical topics, particularly in the area of estimation. Most
of them are theoretical—recently, for example, in graph theory—but there
are also occasional papers dealing with specific applied problems.

Since I was Zhongguo’s sponsor for his stay in Berkeley, we invited him to
dinner soon after his arrival. We were astonished to learn that this flight to
the U.S. had been the first time he had been on a plane, and that he had never
used a fork and knife (fortunately we had chopsticks). But he quickly
adjusted to American ways. We saw him frequently during his two years in
Berkeley, and we became friends.

Some years later, Zhongguo’s visit had an unexpected and thrilling conse-
quence for us: he arranged that my wife and I were invited for a two-week
visit to China in September 1986 as guests of the University of Peking and
the Chinese Academy of Sciences. We would stay at the guest house of the
University, and both Julie and I would give a series of lectures for students
and faculty of the two institutions.

We were told that translators would not be required; the students could
understand English if it was spoken sufficiently slowly. Despite this warning,
the discussion after my first lecture showed that I had spoken much too fast.
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As a result, I adjusted my pace, wrote everything on the blackboard, and
asked faculty members to intervene when help was needed. The same lan-
guage difficulty caused the introduction at Julie’s first lecture of Juliet Shaffer
as “Professor Scheffé.”

On the other hand, the student guides on our various sightseeing tours had
fairly good command of English. They provided not only much understand-
able information, but also were able (and willing) to engage in interesting and
unexpectedly frank conversation.

Sightseeing generally does not much appeal to me, but the many wonders
in and around Beijing easily overcame this lack of enthusiasm. There were
splendors everywhere: palaces, temples, sculptures, and parks. It was a culture
of incredible richness and antiquity about which, despite some preparation,
we knew very little and which left us with a feeling of unreality, of being in a
dream or fairy tale.

And there was the devastating contrast between this magnificence and the
struggling everyday lives of our hosts. These two weeks became such an
extraordinary experience because as colleagues we saw the working condi-
tions at the university and were generously invited into homes where we met
spouses and children. At that time, conditions in Beijing were much more
primitive than they are today. In one apartment, we were proudly shown a
telephone. Our host told us that it was a rarity but of course, he added as an
afterthought, it is not connected.

Our sponsor who was responsible for our arrangements was Zhongguo,
who was now an associate professor at the University of Peking. I brought
him a copy of the second edition of my testing book, which had just
appeared but had not yet reached China. He insisted on in turn giving me his
copy of the first (pirated) edition printed in China. He inscribed it for me:
“To the author of the book with best wishes.”

A few days after our arrival, Zhongguo invited us for dinner at his home,
an apartment consisting of two bedrooms but no living room. He lived there
with his wife and two daughters, and it also served as his workplace since
the university did not provide faculty members with offices. His desk stood in
the larger bedroom but for the occasion had been pushed into a corner to
make room for a card table seating four people. The fourth seat was for
another guest, not for Zhongguo’s wife, who was too busy to join us. In a tiny
kitchen space, on two burners fed by bottled gas, she prepared a feast for us,
with course following course, sixteen in all. It was a wonderful meal but we
missed her company.

We were also invited to a more formal dinner by the head of the Academy
Institute of Systems Science (which included statistics). He and his wife lived
in a larger apartment in a brand-new apartment building that was considered
state of the art but had no hot water. Again, the meal was very elaborate, but
this time it was prepared with the help of a servant. In the traditional Chinese
manner, our host heaped delicacies onto our plates. One dish of which he
gave both Julie and me a large portion, we could not identify. Since no one
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at the table knew the English word, our hostess got up to look it up in a
dictionary. She came back, beaming: “Earthworms!”

Our contact with Zhongguo has continued over the years. In 1987, he spent
another three-and-a-half months in Berkeley, and in 2000 he and his wife
stayed with us for a week as tourists. They were on their way to visit their
older daughter, who had settled in the U.S. Most recently, a project on which
Zhongguo had worked for some time came to fruition. In 2004, his transla-
tion of my estimation book (second edition, with Casella) was published by
China Statistics Press.

70. Joseph (Yossi) A. Yahav (b. 1935)

Between 1949 and 1971, nine statistics students from Israel obtained a Ph.D.
at Berkeley, and most of them then returned to Israel to take up positions in
their home country. Four of these students, Joe Putter (in 1953), Henry
Konijn (in 1954), Shulamith Gross (in 1966), and Dan Anbar (in 1971), wrote
their theses with me, but the one to whom I eventually became closest was
Yossi Yahav, who had worked with Blackwell and who obtained his degree in
1963 with a thesis on optimal stopping.
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Yahav remained in Berkeley for another two years as acting assistant
professor and then took up the position of head of the Department of
Statistics at Tel Aviv University. After ten years, he moved to the Hebrew
University of Jerusalem, where in addition to being a faculty member he held
a number of administrative positions: dean of the Faculty of Social Sciences
(1980–84), head of the Department of Statistics (1986–88) and Department
of Agricultural Economics (1988–90), and vice president for administration
and finance (1992–94). Throughout much of his appointment at the Hebrew
University, his position was split, with half the time at the Department of
Statistics and the other half at the Department of Agricultural Economics
(located at Rehovot).

In 1994, he accepted an appointment by the Israeli government as the gov-
ernment statistician and head of the Central Bureau of Statistics. This officer
advises the government on all of its statistical activities. The bureau includes
a Department of Macro Economics, which does all the statistical work
related to the preparation of the budget and its consequences. It is also in
charge of the census, and in fact Yahav’s first year in this position was almost
completely devoted to the census that took place in November 1995.

Despite this extensive administrative work, Yahav throughout the 1960s
and 1970s published a substantial number of papers on a variety of subjects,
among them dynamic programming, sequential analysis, estimating the size
of a population, and subset selection.

Yahav’s achievements are particularly impressive in view of his many
health problems, including a bout with Hodgkin’s lymphoma, which was suc-
cessfully treated by Henry Kaplan at Stanford.

His friendship and joint work with Peter Bickel brought Yossi frequently
to Berkeley. He held visiting faculty positions in our department in 1969–70
and again in 1984–86. For many years, he spent part of each summer in
Berkeley on one of Bickel’s grants or contracts.

The close contact of the Israeli statistics community, but most particularly
of Yossi, with the Berkeley statistics department led to two happy develop-
ments in 1988: an honorary degree for Peter Bickel from Hebrew University,
and earlier in the year an invitation for Julie and me to visit Israel as guests
of the Hebrew University, to each give a series of lectures in Jerusalem and
Tel Aviv. We presented lectures and gave consultations, met old friends and
new colleagues, and attended dinner parties. From this perspective, this was
a familiar world, somewhat more elaborate but not all that different from
such a visit in the United States.

But then there was the incredible experience of Israel. If our stay in Beijing
had seemed like a fairy tale, this trip gave a sense of place and reality to sto-
ries that had long been in our imagination. Whenever we had free time, Yossi
took us on excursions. One day, for example, he drove us to Masada, the
fortress in which the Zealots held out against a Roman siege for several years
and committed suicide when the Romans completed a ramp to storm this
seemingly impenetrable mountain stronghold. And then there was Jerusalem
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itself, the Western Wall, the Dome of the Rock, and so on, but I must keep
this from becoming a travelogue.

The impressions from this visit were so powerful that two years later
we decided to go again. As before, Yossi was our wonderful host, and this
time we lectured not only in Jerusalem and Tel Aviv but also in Haifa. This
gave us an opportunity to see some of northern Israel, including an excursion
to the Sea of Galilee, Nazareth, and up to the Syrian border.

Experiencing life in Israel gave us a new feeling for the meaning of a Jewish
state, in which Jewish traditions reigned rather than Christian ones. We also
gained a better understanding of the geopolitical situation of the country.
Driving to the borders with Jordan in the east and Syria in the north made it
clear how close these neighbors are—something that is hard to realize when
one is used to the great American distances.

I shall conclude this section on a lighter note by recounting a quip of Yossi’s
when he attended a talk by Dennis Lindley in Barlow’s Bayesian seminar in
the Department of Industrial Relations (see Section 51). Lindley had solved a
problem assuming a certain prior but was not satisfied with the solution. He
therefore proposed to change the prior. Yossi, mindful of Lindley’s insistence
on the true (personal) prior being obtained through a searching process of
introspection, called out: “Wouldn’t it be easier to change the data?”

71. Willem (Bill) R. van Zwet (b. 1934)

A systematic development of mathematical statistics in Holland is due mainly
to David van Dantzig (1900–1959).6 Before World War II, he had been a pure
mathematician who obtained his degree in topological algebra under van der
Waerden. After the war, he changed fields and worked in probability theory
and statistics. He is perhaps best remembered today for his theory of collec-
tive marks and for two papers entitled, “Statistical Priesthood,” which were
attacks on Savage’s subjective approach to probability and on Fisher’s fiducial
probability, respectively.

To facilitate a unified approach to both mathematical and statistical
research, and their applications, in 1946 van Dantzig (jointly with van der
Corput and Koksma) founded the Mathematical Centre in Amsterdam. (I was
later to give lectures at the Centre on a number of visits to the Netherlands.)
Van Dantzig spent a semester in Berkeley in 1950; however, I was teaching on
the East Coast at that time and I never met him. Nor did I meet his successor,
Jan Hemelrijk, who greatly expanded the activities of the Centre.

While I did not meet either van Dantzig or Hemelrijk, over the years
I developed close contact with Hemelrijk’s student Bill van Zwet, who
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between 1967 and 1993 spent parts of many summers in Berkeley. During
most of that time, he was supported by grants or contracts of Peter Bickel,
of whom he became a close friend and frequent collaborator. In addition, he
was in Berkeley in 1997 on a Miller professorship. From 1990 to 1998, he
spent much time at the University of North Carolina as William Newman
Professor.

Van Zwet obtained his master’s degree with van Dantzig, and his Ph.D. (in
1964) with Hemelrijk with a thesis, Convex Transformations of Random
Variables. Since then, he has published on a wide variety of statistical subjects,
both theoretical and applied. Particularly noteworthy are his many papers on
asymptotic expansions, which require very delicate analysis. More recently, his
work has included asymptotic investigations of resampling, on which he gave
the Wald Lectures in 1992, and of inference in contact processes.

In addition to his research, van Zwet has been very active in administra-
tion, both at the University of Leiden, where he was a member of the faculty
from 1965 until his retirement in 1999, and internationally. At Leiden, he
served as chair of the Department of Applied Mathematics from 1974 to
1978 and as dean of the Faculty of Mathematics and Natural Sciences in
1982–83.

He played a prominent role in the Institute of Mathematical Statistics,
serving as editor from 1986 to 1988, the first time the Annals were edited from
outside the United States, and as president in 1991–92. Perhaps even more
important was van Zwet’s work with the International Statistical Institute,
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for which he chaired the Organizing Committee of the Centenary session
(1981–85) and the Program Committee (1989–93), and for which he served as
president from 1989 to 1993.

Van Zwet was also heavily involved with the founding of the Bernoulli
Society, for which he served as editor-in-chief (2000–2003) and as president
(1987–89). Finally, it was his initiative that ultimately led to the creation of
Eurandom, a European Institute of Statistics, which got off the ground in
1997. Van Zwet was its scientific director for the first three years.

Van Zwet’s many honors include an honorary degree from Charles
University in Prague, membership in the Royal Netherlands Academy of
Sciences, the Médaille de la Ville de Paris, and Knighthood in the Order of
the Netherlands’ Lion.

I, of course, knew van Zwet from his many visits to Berkeley. In addition,
I had the great pleasure of his company when in 1997 he stayed with Julie and
me for several weeks during his tenure as Miller Professor. In the evenings,
after dinner, we used to discuss the problems of the world over a glass of gen-
ever, a supply of which he had brought from the Netherlands. However, this
was more than ten years after he had brought about an amazing event, which
was one of the highlights of my life. Extracts from a diary that I kept during
that momentous occasion are given in the next section.

72. Van Zwet’s Gift

The letter came without warning. “Dear Sir,” it said,

The University at Leiden—the oldest in the Netherlands—was opened on the 8th of
February 1575. Each year on the 8th of February a sober ceremony will take place to
celebrate the foundation of the university, during which sometimes a doctorate
honoris causa is conferred.

In 1985 the university will celebrate her 410th anniversary and because of this
anniversary celebration it has been decided to confer four doctorates honoris causa to
scientists whose research has greatly contributed to the development of teaching and
research at Leiden University.

I have the honour and pleasure to inform you that, on the recommendation of the
Council of the Faculty of Sciences, the Board of Faculty Deans of Leiden University
has decided to confer upon you an honorary doctorate in sciences, in recognition of
your distinguished services to scholarship and society. Dr. W.R. van Zwet, professor
of mathematical statistics in this university, will be the sponsor.

I congratulate you on the university’s recognition of your distinction and at the same
time I express the hope that you will be willing to accept the proposed honorary degree.

The letter was signed A.A.H. Kassenaar, rector magnificus.
When I passed the letter over to Julie, she smiled. She had known about it

for months, but had kept her promise of secrecy. The Dutch authorities had
consulted her (via a colleague in our department) to make sure that there was
no Nazi taint in my German background. Had I perhaps, even for a short
while, been a member of the Hitler-Jugend?
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I was bowled over—never had I expected to receive such an honor from so
distinguished a European university. Later I learned some of its history. The
town of Leiden had been besieged for five months by the Spanish Army. When
in October 1574, relief finally came, William the Silent offered Leiden the choice
between remission of some of its taxes or a university. Realizing that the former
would be only temporary, they opted for a university. It was the first in the coun-
try (followed by Groningen in 1614, Amsterdam in 1632, and Utrecht in 1636),
and it soon attracted many famous scholars (including Descartes). Some of its
development is sketched by Will and Ariel Durant in volume 7 of the Story of
Civilization, in which they state, “By 1640, Leiden was the most renowned seat
of learning in Europe.” It still considers itself superior to the other Dutch uni-
versities, and until fairly recently salaries for professors at Leiden were twenty-
five percent higher than those of other Dutch professors.

And so in February 1985, we left for a midwinter trip to Leiden. The
following are excerpts from my Leiden diary:

Monday, February 4:

At the university, Bill [Bill van Zwet, the moving force behind this event] showed us
the ceremonial room where doctoral examinations are held. It is the “senaatskamer,”
a very formal affair with painted portraits of famous professors and a portrait of the
founder of the university, William the Silent. Then we saw the “sweat-room” next
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door, where students are supposed to wait for the results. If successful, you sign your
name on the wall. The walls are thus filled with signatures and messages—graffiti of
the centuries—up to the top, which can be reached only by means of a high ladder
that rests in a corner. Next came the auditorium, in which newly appointed professors
give their inaugural lectures. It contains two lecterns: a high one for full professors,
and one lower down for new appointees of associate rank.

Then the assistant Pedel brought the scrolls for the honorary degree, of which Bill
had to sign the original. The sponsor of the psychiatrist Rutter was also there to sign
his scroll and I committed a faux pas by asking him whether this was the first hon-
orary degree he had sponsored. He looked at me as if I had fallen from the sky, and
said this was an honor which with great luck one could achieve once in one’s life.
Leiden is very sparing with its degrees.

Tuesday, February 5:

The next morning, I felt just awful: nauseous, achy, with a fever. There was no way in
which I could make it to the afternoon’s events: a mini-statistical meeting at which
four Dutch statisticians were to talk about work of theirs that was related to mine.
I was very unhappy, both because the speakers and the audience would be disappointed
if I did not show up, and for my own sake. Bill managed to scare up a university
doctor, who came to the hotel, examined me (when he put the stethoscope to my stom-
ach, he complained it was hurting his ears), and pronounced it to be a virus which
would probably require three days to run its course. To enable me to attend the after-
noon meeting, he prescribed anti-nausea pills and painkillers. After the medications
took effect, I felt I might be able to make it, and I was ready when Bill picked me up.

The meeting was labeled, “Eredoctorat E.L. Lehmann,” and notifications had been
sent to the various Dutch statistical centers—this was in line with Bill’s idea that this
honorary degree would raise the visibility of statistics in the Netherlands. The
announced purpose was to present some lectures that were related to “het werk von
Lehmann.” Afterwards, there was to be an informal reception to provide an opportunity
to “met de Heer and Mevrouw Lehmann Kennis te maken.” Poor Julie—throughout the
week she had to give up her identity and answer to “Mevrouw Lehmann.”

Thursday, February 7:

Not having eaten any solid food since Monday night, I thought I had better try some
breakfast. We were joined by Professor Wevers, a theologian from Toronto and one of
the other three honorees, who told us a nice story. Two of his sons are musicians and
one of them, a composer, recently dedicated a symphony to his father, which is to have
its first performance next month—a somewhat mixed blessing, since Wevers does not
enjoy anything later than Mozart. However, his other musician son reassured him:
“You can tell that he really wrote it for you, Dad, because he wrote it in a key!”

After breakfast, we walked to the tailor, Mr. Sloos, a block away to see whether we
could rent some tails. Mr. Sloos, tall, with a beautifully groomed blond beard and
wearing a gray morning coat, is the picture of sartorial splendor. He wonderfully
combines the proverbial scraping and bowing of the obsequious tailor with the
slightly amused disdain of an elegant man for a klutz like me. I was reprimanded for
coming so late—”the day before the ceremony, most of the tuxedoes and tails have
already been rented out, lots of people want them tomorrow.” Eventually, he conde-
scended to take my measurements and assured me all would be ready the next day.
“Don’t forget,” he reminded me, “you will need black shoes and socks.” I assured him
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I had what was needed. “But the socks must be black,” he insisted. He obviously had
visions of my disgracing his outfit by wearing blue or brown socks. The charge for
jacket, vest, pants, semi-soft shift, and white tie was forty dollars. (What a waste of
money, was Bill’s comment.)

This is perhaps the time to talk about the background of this degree, because behind
all the pomp and circumstance lie two years of hard-fought struggles, both within the
department and between departments. Roughly, each department is given a chance at
such a degree every 25 years; they must then unite behind a single candidate with whom
they can do battle against other competing departments. Mathematicians had lost out
on the past three occasions, so the last honorary degree in mathematics had been
awarded in 1884 (to the mathematician Stieltjes, born in Leiden although teaching in
Paris, and well known for the Stieltjes integral and the Stieltjes moment problem).

This time, there were apparently two factions. The majority of the department are
geometers who understandably wanted a pure mathematician. Bill wanted a statisti-
cian, partly because he thought it would be good for statistics. He may also have
believed that a statistical candidate would have a better chance. I could have told the
mathematicians that theirs was a lost cause, since Bill is extremely clever and a superb
fighter. He made me somewhat more palatable to the mathematicians by describing
my work as contributing to the “mathematization of statistics.”

Once I became their candidate, the mathematicians apparently rallied behind me—
perhaps any mathematician was better than none! This attitude showed itself at a
wonderful dinner partly given for us by the mathematics department, one of the high
points of the week, and in particular by the very gracious speech by the department
chairman Jaap Murre. He emphasized that it did not matter whether a person was
pure or applied, or what their specialty was, the only important thing was quality, and
he went on to explain that I was now one of theirs. Later in the evening, he told me
that next time I came to visit Leiden he would—thank God!—no longer be chairman.
However, he would insist as a personal privilege that we come to his house for dinner
and a long conversation.

The dinner, which ended past midnight after lasting for over five hours, was one of
the high points of the week. (The other two were the Tuesday scientific meeting and
the actual conferment of the degree on Friday.) I only wish I had not been recovering
from stomach flu so I could have better enjoyed the wonderful food.

Friday, February 8:

After last night’s dinner, I could not even think of breakfast, but went down with Julie
to have some tea. We were joined by Pierre Pescatore, the candidate of the law school,
who told us about his triple career as diplomat, academic, and one of the seven
Justices of the European Community. From what was said about him later, I gather
that he is the person largely responsible for the theoretical underpinning of the
European Court.

At two o’clock, a university car came to pick us up for the 410th birthday party of the
University of Leiden. For the ceremony, I was supposed to wear a cap, gown and hood
from Berkeley. When I had tried to rent a hood in Berkeley, the university store had had
difficulty finding one (they of course prefer to sell them, but I doubted that I would ever
need it again). I told them that in that case I would wear my wife’s, who got her degree
from Stanford. (Julie really does own hers.) This threat produced one quite rapidly.

In the car, we were joined by the van Zwets and by Jaap Fabius, a former Berkeley
student who had recently succeeded Bill as dean. We were taken to the side entrance of
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Pieterskerk, Leiden’s main church, built in the 14th Century over a period of 30 years
by Rotger of Cologne, who was also the architect of the Cologne cathedral. It was
filled with flowers, a student orchestra and chorus, and a large audience. Bill, Jaap, and
I went to the robing area to put on our finery. Here I finally met Professor Kassenaar,
the jovial Rector of the university, who welcomed me back from the grave. I also had
the opportunity to have a brief talk with Michael Rutter, the only one of the honorees
I had not yet met. He is a London professor of psychiatry known for his work on
autism, and he completely outshone the rest of us with his scarlet Oxford robe.

Shortly after 2:30, the Master of Ceremonies raised a silver scepter, and the Rector; the
orator (the Leiden professor van Rood, who was to give a talk on “the molecular basis
of recognition”); the ere-doctores and their promoters; the deans; and the faculty (in the
order printed in the program) followed in solemn procession through the church to their
assigned seats. The four of us and our sponsors sat in the first row, with Julie, Bill’s wife
Lucy, and the other wives directly behind us (which was good for Julie’s picture-taking).

The ceremony began, wonderfully, with music from Bach’s Cantata No. 71, “Gott
ist mein König.” Then van Rood ascended the pulpit to deliver his speech, about
which there had been some controversy. Bill had tried to persuade the administration
to have the talk given in English, as the now-universal language of science, but had
been rebuffed. He felt that the insistence on a 45–minute speech in Dutch indicated a
provincial attitude that did not bode well for the future of the university. As a com-
promise, we found on our seats, together with the program, an English summary of
the talk. But despite this help, and although it is fairly easy to read Dutch, we could
not understand a word of van Rood’s talk.

The four of us were then motioned to chairs behind a small table on a podium fac-
ing the audience, and the deans took up their stations on our right. The order was
determined by the age of the faculties, so Wevers stepped up first. His theological
sponsor addressed him in Dutch, extolling his virtues and accomplishments, and
ended with the official Latin citation. The dean of the theological faculty then pinned
on the doctoral cape; the Rector, by a formal address, made the conferment official;
and then it was Pescatore’s turn. Although his native language is French, his sponsor
addressed him in English, explaining that it was now the universal language of scholars,
exactly the point made by Bill.

After Pescatore, I came next. Bill’s address, of course, was also in English. The Latin
summary at the end (which coincides with the text on the scroll) was rather amusing,
since it was full of statistical terms translated for the occasion, such as “methodi sine
parametro” (nonparametrics) and “asymptotica secundi ordinis” (second order asymp-
totics). There had been much discussion of the correct Dutch pronunciation of Latin.
Bill had worked on this with his older son, who was taking Latin in high school, and
was later told by several classical scholars that his Latin had been the best.

Next, Dean Fabius pinned the cape on me, and after the Rector’s official benedic-
tion I was a Dr. h.c. from Leiden. After Rutter had also been doctored, Wevers
thanked the university on behalf of all of us in a brief speech in Dutch, which the uni-
versity had requested from him. Finally, we went back to our original seats, from
where we were treated to a beautiful performance of “La Fuite en Egypte,” by Berlioz.

After the ceremony, everybody congratulated everybody else, and then we were
shepherded, with wives and sponsors, toward more picture-taking by the press and,
without my realizing it, were formed into a receiving line. I had managed to grab a
glass of Genever (my favorite drink in Holland) from a tray that was being
passed around, and now had a hard time shaking hands with an unending stream of
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well-wishers, keeping my precariously perched cap from sliding down with each ener-
getic handshake, and holding on to my drink. The people who were filing by were the
Rectors of other Dutch universities wearing beautiful ornamental chains; and statis-
ticians from Amsterdam, Utrecht and further away. There were applied statisticians
from agriculture, economics, and psychology, most of whom I did not know. The
British Ambassador and the Ambassador of Luxembourg, who were there for Rutter
and Pescatore, introduced themselves and briefly talked to me. The American
Embassy was less forthcoming. A somewhat scruffy individual shook my hand, said,
“Congratulations. Representing the American Embassy,” and disappeared. I won-
dered whether they had sent one of the Embassy chauffeurs.

Eventually, the formal part of the reception was over and we could talk with
friends, but soon we were told that the official car was waiting to take us back. By the
time we got to the hotel, it was past five, and Bill was to pick us up at 6:45 for the last
event, the annual dinner for the Leiden faculty and their spouses, organized by the
Faculty Club. Bill had tried to avoid this dinner, but was firmly told that we, and he,
were expected to be there. This was the occasion for which tails had been prescribed,
and the putting on of these clothes was the main task remaining. I did not get very
far before realizing that either Mr. Sloos had overestimated me after all or that he had
forgotten something—there were no cufflinks. Fortunately, there was still time to call
Bill and ask him to bring a pair, so disaster was averted.

The dinner for about 300 people was anticlimactic. Too many courses were inter-
spersed with entertainment in Dutch, which was lost on us. During a break after
dinner, before another round of entertainment, we left early—although after 11. The
next morning, when Bill took us to the airport, even he admitted to being a bit tired.
It had been a big week, but for me a once-in-a-lifetime, wonderful experience.
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When as a twenty-two-year-old I arrived in the United States, I knew no one
and was isolated and rootless. As a Nazi refugee, I had lost my country, my
language, and my friends. What I most longed for is indicated by the title of
an early draft of this book, “In Search of Community,” a community to
which I could belong.

It has been my wonderfully good fortune over the years to find two such
communities. On the personal side it has been my family: my wife, Julie, my
children and stepchildren and their spouses, their children and spouses, and
even a great-granddaughter.

Professionally, I became a member of another community, that of the stat-
isticians among whom I worked and who became my friends: my teachers,
colleagues, and students. To describe this, my statistical community, has been
the aim of this book.

Afterword
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