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Preface

Proportional hazards models and their extensions (models with time-
dependent covariates, models with time dependent regression coeffi-
cients, models with random coefficients and any mixture of these) can
be used to characterize just about any applied problem to which the
techniques of survival analysis are appropriate. This simple observa-
tion enables us to find an elegant statistical expression for all plausible
practical situations arising in the analysis of survival data. We have
a single unifying framework. In consequence, a solid understanding
of the framework itself offers the statistician the ability to tackle the
thorniest of questions which may arise when dealing with survival data.

The main goal of this text is not to present or review the very sub-
stantial amount of research that has been carried out on proportional
hazards and related models. Rather, the goal is to consider the many
questions which are of interest in a regression analysis of survival data
(prediction, goodness of fit, model construction, inference and inter-
pretation in the presence of misspecified models) from the standpoint
of the proportional hazards and the non-proportional hazards models.

This standpoint is essentially mathematical in that the aim is to
put all of the inferential questions on a firm conceptual footing. How-
ever, unlike the current widely accepted approach based almost entirely
on counting processes, stochastic integrals and the martingale central
limit theorem for multivariate counting processes, we mostly work with
much more classic and better known central limit theorems. In partic-
ular we appeal to theorems dealing with sums of independent but not
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necessarily identically distributed univariate random variables and, of
particular interest, the functional central limit theorem establishing
the Brownian motion limit for standardized univariate sums. Delicate
measure theoretic arguments borrowed from mathematical analysis
can then be wholly avoided. Admittedly, some tricky situations can
still be more readily resolved by making an appeal to the martingale
central limit theorem and it may also be true that the use of mar-
tingale techniques for multivariate counting processes affords greater
generality. Nonetheless, in the author’s view, a very high percentage of
practical problems can be tackled by making an appeal to the arguably
less general but more standard and well known central limit theorems
for univariate sums.

Mathematicians always strive for the greatest generality and, in
the author’s view - at least as far as survival analysis is concerned -
this undertaking has not been without some unfortunate drawbacks.
The measure theoretic underpinning of the counting processes and
martingale approach is quite opaque. The subject is very difficult and
while outstanding efforts have been made across the globe in leading
statistics and biostatistics departments to explain the essential ideas
behind the material, few would claim that students, other than the
small minority already well steeled in mathematical analysis, ever re-
ally fully grasp just what is going on. This is a situation that we
need be concerned about. The author, having taught such courses in
a number of institutions, speculates that even for the most success-
ful students entering research careers and publishing articles in our
leading journals it is not easy for them to do other than reiterate well
rehearsed near inscrutable arguments. Their work, reviewed by their
peers - alumni survivors of similar courses - may clear the publishing
hurdle and achieve technical excellence but somehow, along the way,
creativity is stifled.

In brief, there is a real danger of the subject of survival analy-
sis sustaining itself from within and reluctant to absorb input from
without. The pressure to focus so much attention on the resolution of
mathematical subtleties by non-mathematicians has led us away from
those areas where we have traditionally done well ... abstract modeling
of medical, biological, physical and social phenomena. The technical
demands of those in the area of survival analysis are such that it is
becoming difficult for them to construct or challenge models via con-
siderations other than those pertaining to the correct application of
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an abstruse theory. Those not in the area, a large and diverse pool
of potential contributors, will typically throw up their hands and say
that they are not sufficiently comfortable with survival analysis to
make criticism of substance. A somewhat ambitious goal, or hope, for
this text is to help change this state of affairs.

Work on this book began during the author’s thesis. I would like
to acknowledge the input of Dr Salah Rashid, a visiting surgeon to the
University of Leeds Medical School, for asking a lot of awkward ques-
tions to a, then, very inexperienced statistician. Among these questions
were ‘how much of the variation is explained by the predictors’, ‘why
would you assume that the strength of effect remains the same through
time’ and ‘what is the relative importance of biological measurements
to clinical measurements.’ I believe that I can now attempt an answer
to some of these questions although I fear, taking rather longer than
expected to answer the clinician’s concern - in this case some twenty
odd years - that my good friend Dr Rashid may have moved on to
other questions. Much of my thesis was based on collaborative work
with Dr Rashid and his comments and questions then, and for decades
to follow, provided an invaluable source of food for thought. I share
the debt we all owe to Professor Sir David Cox for his great vision
and scientific imagination, making all of this work possible, but also
a personal debt to Sir David for having so very kindly agreed to be
the external examinor on my own Ph.d thesis and for having patiently
explained issues which, alone, I was unable to resolve.

My career at the Institut National de la Santé et de la Recherche
Médicale in France was made possible thanks to the unfailing support
of Professor Daniel Schwartz, one of the founders of the modern theory
of clinical trials and I thank him warmly for that as well as for nu-
merous discussions on parametric survival models, especially as they
relate to problems in human fertility. A number of Professor Schwartz’s
colleagues, Joseph Lellouch, Denis Hémon, Alfred Spira in particular,
were of great assistance to me in gaining understanding of the role
played by survival analysis in quantitative epidemiology. However, my
good fortune did not end there and I would like to offer my warm ap-
preciation for the support, help and advice offered by Ross Prentice in
inviting me to work at the Fred Hutchinson Cancer Research Center,
Seattle during the late eighties, an opportunity which brought me into
contact with a remarkable number of major contributors to the area of
survival analysis. Among these I would like to express my gratitude to
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Ross himself alongside Norman Breslow, John Crowley, Tom Fleming,
Suresh Moolgavkar, Margaret Pepe and Steve Self, all of whom showed
great generosity and forbearance in discussing general concepts along
with their own ideas on different aspects of survival analysis.

Competing with Seattle as the world’s leader in survival analysis is
the Department of Biostatistics in the Harvard School of Public Health.
I was given the opportunity of spending several months there in 1999
and would like to thank Nan Laird, the then department chair, for that.
Many visits and collaborations followed and, although these were not
in the area of survival analysis, I took advantage of the proximity to
talk to those who have left quite a mark in the field. In particular I
would like to offer my thanks to Victor DeGruttola, Dave Harrington,
Michael Hughes, Steve Lagakos, David Schoenfeld, L.J. Wei, Marvin
Zelen, all of whom, from very demanding schedules, gave time to the
exchange of ideas.

I have been very fortunate in coming into contact with quite a
number of the most creative researchers in this area, so many of whom
have shown such scholarly patience in explaining their own views to a
keen, always enthusiastic but often slow listener. I hesitate to list them
since I will surely miss out some names and then, of course, if I were
to credit all of the writings which have greatly helped me, this preface
would take a good third of the whole book. But let me include a special
mention for Janez Stare and Ronghui Xu who will recognize within
these pages much which stems from our extensive collaborations. And,
as an extension to this special mention, let me thank those colleagues
whose kindness, as well as exceptional talent, helped provide part of
a hard-to-define support structure without which this enduring task
would most likely have been abandoned many years ago. I have in
mind Jacques Bénichou, Claude Chastang (whose colorful view of
statistics as well as life in general is so sorely missed), Michel Cha-
vance, Philippe Flandre, Catherine Hill, Joe Ibrahim, Richard Kay,
John Kent, Susanne May, Thierry Moreau, Loki Natarajan, Fabienne
Pessione, Maja Pohar, Catherine Quantin, Peter Sassieni, Michael
Schemper, Martin Schumacher, Lesley Struthers and Joe Whittaker.
The many students who followed my course on Survival Analysis in
the Department of Mathematics at the University of California at
San Diego, the course upon which the skeleton of this book ended up
being based, are sincerely thanked for their enthusiasm and obstinate
questioning.
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Finally, although the very word statistics, let alone proportional
hazards regression, would leave them quite at a loss, this work owes
its greatest debt to those closest to me - my nearest and dearest - for
a contribution which involved untold patience and tender indulgence.
My warmest gratitude goes to them.

Paris, February 2007.
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Chapter 1

Introduction

1.1 Summary

In keeping with the general pattern of this book each chapter is sum-
marized by a brief description of its contents. This section (Section 1.1)
is the first such summary in this book. Following these summaries is
usually a section headed “Motivation” which describes the key rea-
sons for our interest in the topic. In this Introduction we consider
a number of examples in which the methods of survival analysis, pro-
portional and non-proportional hazards model in particular, have been
used to advantage. We then describe the outline of the book as a whole
and point out some particular areas in which, at the time of writ-
ing, there is no established consensus about the best way of tackling
them.

1.2 Motivation

The use of the methods of survival analysis and the proportional haz-
ards model appear to be ever widening; some recent areas of interest
including unemployment data, lengths of time on and off welfare, for
example, and some unusual applications such as interviewer bias in
sociological surveys. The more classic motivating examples behind
the bulk of theoretical advances made in the area have come from
reliability problems in engineering and, especially, clinical studies in
chronic diseases such as cancer and AIDS. Many of the examples given
in this text come from clinical research. Parallels for these examples
from other disciplines are usually readily transposable. Proportional

1



2 CHAPTER 1. INTRODUCTION

hazards regression is now widely appreciated as a very powerful
technique for the statistical analysis of broad classes of problems.
Novel uses as well as innovatory applications of the basic approach
continue to grow. The following examples represent a small selection
of problems for which the proportional hazards model has been shown
to be useful as an analytic tool.

Randomized clinical trials

Patients, identified as having some chronic illness under study, are
recruited to a clinical trial. A new, proposed, treatment, if effective,
should prolong survival. The idea is that instead of aiming for a “cure”
we aim to improve survival. In cancer research it has been common
practice to equate cure with five years survival without relapse. Such a
quantity may be difficult to estimate if some patients leave the study or
die from unrelated causes during the five year period. Survival meth-
ods address such difficulties. Proportional and non-proportional haz-
ards models enable us to investigate the dependence of survival on
controlled and uncontrolled sources of variation.

Endpoint in randomized clinical trials

In the example described above it could occur that therapy A and
therapy B have the same five year survival rates but different sur-
vival curves. As an illustration consider curative treatments based on
surgery having very high initial risks but, conditional upon having sur-
vived some length of time, a reduced long-term risk. Such differences in
overall survival are important and would be considered relevant when
weighing the relative advantages and disadvantages of any proposed
new treatment. In actual studies patients may be lost to follow-up at
any time. Proportional hazards and non-proportional hazards model-
ing can allow us to correctly use the partial information provided by
such patients.

Studies in epidemiology

A large number of individuals are studied across a relatively wide
distribution of ages. Incidence of some target disease is measured. This
incidence will typically vary with age and, in the majority of cases, the
single most important source of variability in the observed incidence
rates comes from age itself. Cancer is a particularly striking example.
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Here the variable age plays the role of the time variable in a survival
model. Prolonging survival amounts to living to a longer age. How does
incidence relate to risk variables, obvious examples being smoking,
asbestos exposure or other industrial exposures. In practice the amount
of time needed for such prospective studies may be too great and we
may prefer to use a case-control study where, rather than compare
the age distributions for different exposure categories, we compare the
exposure distributions at different ages.

In doing this our purpose is to address some key feature of the con-
ditional distribution of age given covariate information via a study of
the conditional distribution of the covariates given age. The question
arises as to the validity of this and to the efficiency of such a study
design. Additional complications arise when the exposure categories
change for some individuals. At any given age a particular individual
can have a unique and complex exposure history. It would not be pos-
sible to study the relationship between any unique exposure history
and disease outcome without assuming some structure, i.e., the poten-
tial ways in which the different components comprising the exposure
history relate to one another and, more importantly, to outcome. The
way to achieve this is via a statistical model, specifically, in the context
of this work, the proportional hazards regression model.

Clinical studies involving time

Not only can there be problems with patients going off study or being
removed from the study due to causes believed to be unrelated to
the main outcome under study, it is also not unusual for subjects to
enter the study at different times. In chronic diseases such as AIDS
patients may leave the study because they are too sick to continue
participation. Such loss to follow-up may be of a different nature to
that described above and may, of itself, provide information on the
risk of being incident for the outcome. In technical terms we would
described the situation as being one where the censoring mechanism is
not independent of the failure mechanism. In order to avoid potentially
misleading biases it would be necessary to appeal to workable models
to describe this dependence.

The complexity of potential problems can easily grow beyond the
reach of available methods and continues to promote and drive the
interest for further methodological developments. One example, again
from AIDS, where the methods presented here can provide insight,
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concerns the situation where the time frame is lengthy. Patients may
have very involved time-dependent exposure histories to the different
treatments, the class of available treatments themselves having evolved
through time as well as within any given patient.

In prognostic studies, many variables are measured on individu-
als and we would like to know how individually and collectively these
variables influence survival (prognosis). It may be possible to use such
information to stratify future clinical trials, the goal being to increase
precision, or, possibly, to use the information in a context of clinical
patient management. Further complexity arises with correlated data.
For recurrent conditions such as asthma the same patient may be stud-
ied for more than one principal event. Cooperative clinical trial groups
may use many centers to recruit patients, the center effects themselves
not being of any intrinsic interest, but nonetheless contributing a cor-
relation factor for within-center observations. Similar considerations
arise in familial data in which the presence of genetic characteris-
tics may influence the survival probabilities collectively. Proportional
hazards models including random component coefficients, equivalently
non-proportional hazards models, can be used to efficiently analyze
such data structures.

Industrial setting

In an industrial setting we may be interested in the reliability of com-
ponents. How long do they last on average. A useful experiment may
be to put a sample of components on test and end testing after a cer-
tain number of failures. In economics there are many possibilities. How
long does it take for a price index to increase to a certain value, to
regain a previous value or to change by some given amount? In this
and other examples the technical term “failure” may in a more com-
mon everyday sense correspond to success. Depending on the context
we may wish to prolong or reduce the average time it takes to observe
some kind of event. Failure models have been used to study, under
differing circumstances, the average time taken for a welfare recipient
to come off welfare, an event in social terms that we would regard as
a success.

An area of application where the law of large numbers comes
directly into play is that of insurance. The calculus of probability
together with very large object populations enable effective predic-
tion. We may wish to know how demographic and other variables
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influence insurance risk. Further examples arise in car insurance; how
long on average does it take to be involved in a traffic accident and,
more importantly, which variables influence this time. Such informa-
tion will enable the insurer to correctly price policies for different driver
profiles.

Reliability

One of the early applications of survival methods concerns the reli-
ability of components as well as mechanical, electrical, or electronic
systems. Careful modeling can enable us to use various sources of
information to predict the probability of failure before some given
time. Many consumers will have first-hand experience of such mod-
eling whereby it is possible to keep small the number of manufactured
products failing before the expiration of the guarantee while, at the
same time, ensuring that the probability of survival well beyond the
guarantee is not so large as to ultimately impact consumer demand.
It can be of interest to model more than one endpoint, tracing out
the lifetime of a product. The first event may be something minor and
subsequent events of increasing degrees of seriousness, or involving dif-
ferent components, until the product is finally deemed of no further
use. The many different paths through these states which any product
may follow in the course of a lifetime can be very complex. Models can
usefully shed light on this.

Financial analysis

Mathematical techniques of stochastic integration have seen wide
application in recent years in the study of financial products such
as derivatives, futures, and other pricing schemes for certain kinds
of options. An alternative and potentially more flexible approach to
many of these questions is via regression modeling. The increasing
volatility of many of the markets has also given rise to the use of sur-
vival modeling as a tool to identify, among the large-scale borrowers,
large industries, countries and even financial institutions themselves
the ones which are most likely to fail on their repayment schedule.
Modeling techniques can make such analyses more precise, identifying
just which factors are most strongly predictive.



6 CHAPTER 1. INTRODUCTION

1.3 Objectives

Main goal

The purpose of this book is to provide the structure necessary to the
building of a coherent framework in which to view proportional and
non-proportional hazards regression. The essential idea is that of pre-
diction, a feature common to all regression models, but one that some-
times slips from sight amid the wealth of methodological innovations
that has characterized research in this area. Our motivation should
mostly derive from the need to obtain insights into the complex data
sets that can arise in the survival setting, keeping in mind the key
notion that the outcome time, however measured, and its dependence
on other factors, is at the center of our concerns.

The predictive power of any model, in this case the proportional
hazards model, is an area that we pay a lot of attention to. It is nec-
essary to investigate how we can obtain predictions in the absence
of information (often referred to as explanatory variables or covari-
ate information) which relate to survival and, subsequently, obtaining
predictions in the presence of such information. How best such in-
formation can be summarized brings us into the whole area of model
adequacy and model performance. Measures of explained variation and
explained randomness can indicate to what extent our prediction ac-
curacy improves when we include additional covariate information into
any model.

In order to give the reader, new to the area, a feeling as to how
the Cox model fits into the general statistical literature we provide
some discussion of the original paper of Professor Cox in 1972, some of
the background leading up to that seminal paper, and some of the sci-
entific discussion that ensued. The early successes of the model in char-
acterizing and generalizing several classes of statistics are described.

As is true of much of science - statistics is no exception - impor-
tant ideas can be understood on many levels. Some researchers, with
a limited training in even the most basic statistical methods, can still
appreciate the guiding principles behind proportional hazards regres-
sion. Others are mainly interested in some of the deeper inferential
mathematical questions raised by the estimation techniques employed.
Hopefully both kinds of reader will find something in this book to
their taste. The aim of the book is to achieve a good balance, a nec-
essary compromise, between the theoretical and the applied. This will
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necessarily be too theoretical for some potential readers, not theoreti-
cal enough for others. Hopefully the average gap is not too great.

The preliminary chapters aim to fill in many of the basic ideas
from probability and statistics which are needed throughout the text.
These chapters are short and do not therefore cover extensively either
probability or statistics. But any of the key ideas needed throughout
the book can be found in these chapters. The text could therefore
serve as a graduate text for students with a relatively limited back-
ground in either probability or statistics. Advanced measure theory is
not really necessary either in terms of understanding the proportional
hazards model or for gaining insight into applied problems. It is not
emphasized in this book and this is something of a departure from
a number of other available texts which deal with these and related
topics. Proofs of results are clearly of importance, partly to be reas-
sured as to the validity of the techniques we apply, but also in their
own right and of interest to those focusing mostly on the methods. In
order not to interrupt the text with proofs, we give theorems, corol-
laries, and lemmas, but leave the proofs to be gathered together in a
chapter of their own at the end of the text. The interested reader will
find them there in a concise form. Those not interested in the more
formal presentation in terms of theorems and proofs will nonetheless,
it is hoped, find the style helpful in that, by omitting the proofs at the
time of development, the necessary results are organized and brought
out in a sharper focus.

1.4 Controversies

This goal of this book is not to present an undifferentiated, dispassion-
ate review of the literature. The bulk of the discussed methodology
converges around one or two key central notions and these come to-
gether to represent a particular viewpoint. Certain significant areas of
the literature are not covered. As an example, local smoothing of the
baseline hazard, or of the residuals, is not given any space. The same
goes for kernel estimates of the density function or the use of poly-
nomial splines. The view taken here is that, for the great majority of
applications, cumulative quantities do “enough” smoothing. However,
such work is valuable and certainly of interest. An absence of coverage
in this text should not be taken as implying any diminished impor-
tance for such techniques. The choice of how much weight to afford
different topics, including the assignment of a zero weight, is often a
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subjective one - a matter of taste. On other topics, a stronger position
is sometimes adopted and one that can represent something of a depar-
ture from the literature. Relatively little weight is given, for instance,
to the study of frailty models, outside that of goodness of fit. Random
effects models do have use and this is described in the text but for
frailty models, if we are to understand the term “frailty” as meaning a
random effect for an individual (without reapeated measurements), as
opposed to a group (random effects models), then this is just another
way of expressing lack of fit. In other words a proportional hazards
model with a frailty term is equivalent to a non proportional hazards
model. Tests, described in the literature, for heterogeneity of individ-
uals in this context can be wholly misleading. This has been described
in O’Quigley and Stare (2002).

The term “partial likelihood” is an important one in this area. We
use it mostly as a name, or label, for a particular form of a statistic
first introduced by Cox (1972). The concept of partial likelihood as a
general technique of inference in its own right, and for problems other
than inference for the proportional hazards model, has never really
been thoroughly developed. One difficulty with the concept, as out-
lined in Cox (1975), is that, for given problems, the partial likelihood
would not be unique. For general situations then it may not be clear as
to the best way to proceed. For these reasons we do not study partial
likelihood as a tool for inference and the concept is not given partic-
ular weight. This is a departure from several other available texts on
survival analysis.

One important area where there may exist disagreement between
the position of this text and the position taken by a number of workers
in the area is that of explained variation. Considerable confusion on
this topic is prevalent among statisticians and yet the main ideas are
very simple. The origin of the confusion for many was in a paper
of Draper (1984), echoed subsequently by Healy (1984), which was
strongly critical of R2. Several authors (Kvalseth 1985; Scott and Wild
1991; Willett and Singer 1988) followed in the wake of these two papers,
adding further nails, it was argued, to the coffin of explained variation.
However, Draper’s paper was in error. He was certainly the first to
notice this and he wrote a retraction (Draper 1985) - changing entirely
the conclusion of his earlier paper from “R2 is misleading” to “R2 is a
useful indicator” (his italics). By one of those curious twists governing
the survival mechanisms of scientific ideas, few workers in the area, and
apparently none of those building on Draper’s 1984 paper, seem to be
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aware of the retraction. The original contribution is still frequently
quoted and its erroneous conclusions are widely believed to be valid.

Indeed, there is little mystery to the idea of explained variation.
Note that, by virtue of the Chebyshev-Bienaymé inequality, explained
variation directly quantifies predictive ability. In this text we develop a
basic theory of explained variation in order to have a solid foundation
upon which to appeal when we wish to consider the particular case
of explained variation for survival models. In the light of this theory
and the main results concerning inference it is relatively straightfor-
ward to develop suitable measures of explained variation (O’Quigley
and Flandre 1994, O’Quigley and Xu 2001). In this book the aim is
to appeal to elementary concepts, constructing our inferential tech-
niques, if necessary, from scratch. A theory for explained variation in
terms of random variables alone, outside of the context of any model,
is required and we build upon that.

The related topic, explained randomness, in view of its direct con-
nection to likelihood, is also given consideration. In the same way, al-
though leaning on the concepts of entropy rather than the Chebyshev-
Bienaymé inequality, explained randomness also translates predictive
ability. For normal models the population quantities coincide. For non-
normal models, when it might be argued that the variance measure is
less compelling, a case can be made for preferring explained random-
ness over explained variation. We return to these topics later in the
text.

Among the users of statistical models it can be argued that there
are two main schools of thought; the first sees a model as an approxi-
mation to some, infinitely more complex, reality: that is the model is
taken as a more-or-less refined means to achieving some specific end,
usually that of prediction of some quantity of interest. Any model is
then simply judged by its predictive performance. The second school
sees the statistician’s job as tracking down the “true” model that can
be considered to have generated the data. The position taken in this
work is closer to the first than the second. This means that certain
well-studied concepts, such as efficiency, a concept which assumes our
models are correct, are given little attention. The regression parameter
β in our model is typically taken as some sort of average. The model
is then viewed as a working model and not some absolute truth. The
proportional hazards model stipulates that effects, as quantified by β,
do not change through time. In reality the effects must surely change,
hopefully not too much, but absolute constancy of effects is too strong
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an assumption to hold up. The working model enables us to estimate
useful quantities, one of them being average regression effect, the av-
erage taken through time. Interestingly, the usual partial likelihood
estimator in the situation of changing regression effects does not esti-
mate an average effect, as is often believed. Even so, we can estimate
an average effect but we do require an estimator different to that com-
monly used. We return to this in those chapters dealing with inference.

1.5 Data sets

The importance of working through the calculations on actual data
cannot be overemphasized. The reader is encouraged to use their own
or any of the many available data sets though, for example, statlib as
well as simulated data sets corresponding to specific conditions. In the
text we often refer to the Freireich data, described by several authors
including Kalbfleisch and Prentice (1980) and Professor Cox in his
1972 founding paper. These data arose in the context of a balanced
comparison of two treatment groups. We also refer to breast cancer
data which were gathered at the Institut Curie in Paris, France over a
near thirty year period. Finally, another important data set used here
to illustrate many concepts was obtained in the context of a survival
study in gastric cancer carried out at the St James Hospital, Leeds,
U.K. (see for example Rashid et al; 1982). An interesting case of non-
proportional hazards arose in a clinical trial studied by Stablein et al
(1980). The regression effect appeared to change direction during the
study. We refer to this in the text as the Stablein data.

1.6 Use as a graduate text

The text can be used as support for an introductory graduate course
in survival analysis with particular emphasis on proportional and non-
proportional hazards models. The approach to inference is more clas-
sical than often given in such courses, steering mostly away from
the measure-theoretic difficulties associated with multivariate count-
ing processes and stochastic integrals and focusing instead on the more
classical, and well known, results of empirical processes. Brownian
motion and functions of Brownian motion play a central role. Ex-
ercises are provided in order to reinforce the course work. Their aim
is not so much to help develop facility with analytic calculation but
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more to build insight into the important features of models in this set-
ting. Some emphasis then is given to practical work carried out using
a computer. No particular knowledge of any specific software package
is assumed.

1.7 Exercises and class projects

1. For the several examples described in Section 1.2 write down those
features of the data which appear common to all examples. Which
features are distinctive?

2. In Section 1.4 it is claimed that cumulative quantities may do enough
smoothing in practice. How do you understand this idea of “enough
smoothing?” What does a statistician aim to achieve by smoothing.

3. Suppose that the methods of survival analysis were not available
to us. Suggest how we might analyze a randomized clinical trial using
(i) multiple linear regression, (ii) multiple logistic regression.

4. For Exercise 3, describe the shortcomings that we expect to be
associated with either type of analysis. How are these shortcomings
amplified by the presence of increasing censoring, and in what way
do we anticipate the techniques of survival analysis to address these
shortcomings.

5. Consider a long-term survival study in which the outcome of interest
is survival itself and we wish to study any possible dependence of this
upon two other variables, one binary and one continuous. The marginal
distribution of survival is unknown but suspected to be very skew. For
the data at hand there is no censoring, i.e., all the actual survival times
have been observed. Describe at least one possible approach, aside from
those of survival analysis, to analyzing such data. Do you think more
could been obtained from the data using survival techniques? Explain.

6. How would you describe to a nonscientist the purpose of a statistical
model, explaining the issues involved with misspecified models. How
would you describe to a physicist the difference between statistical
models which may be employed in epidemiology and statistical mod-
els that he or she may be using to elaborate theories in quantum
mechanics.



Chapter 2

Background: Probability

2.1 Summary

We review the fundamental tools used to establish the inferential ba-
sis for our models. Results are stated as theorems, lemmas and corol-
laries. Most of the key proofs are provided in Chapter 16 although,
sometimes, when useful to the general development, proofs are given
within the text itself. The main ideas of stochastic processes, in partic-
ular Brownian motion and functions of Brownian motion, are explained
in non-measure-theoretic terms. The background to this, i.e., distrib-
ution theory and large sample results, is recalled. Rank invariance is
an important concept, i.e., the ability to transform some variable, usu-
ally time, via monotonic increasing transformations without having an
impact on inference. These ideas hinge on the theory of order statis-
tics and the basic notions of this theory are recalled. An outline of
the theory of counting processes and martingales is presented without
leaning upon measure-theoretic constructions. The important concepts
of explained variation and explained randomness are outlined in ele-
mentary terms, i.e., only with reference to random variables and, at
least initially, making no explicit appeal to any particular model. This
is important since the concepts are hardly any less fundamental than
a concept such as variance itself. They ought therefore stand alone,
and not require derivation as a particular feature of some model. In
practice, of course, we may need estimate conditional distributions and
making an appeal to a model at this point is quite natural.

13
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2.2 Motivation

The last few decades have seen the topic of survival analysis become
increasingly specialized, having a supporting structure based on large
numbers of theorems and results which appear to have little application
outside of the field. Many recently trained specialists, lacking a good
enough grasp of how the field relates to many others, are left with
little option but to push this specialization yet further. The result is a
field which is becoming largely inaccessible to statisticians from other
areas. A key motivation of this work, and this chapter in particular, is
to put some brakes on this trend by leaning on classical results. Most
of these are well known, others less so, and in this chapter we cover
the main techniques from probability and statistics which we will need.
Results are not simply presented and the aim is to motivate them from
elementary principles known to those with a rudimentary background
in calculus.

2.3 Integration and measure

The reader is assumed to have some elementary knowledge of set theory
and calculus. We do not recall here any of the basic notions concerning
limits, continuity, differentiability, convergence of infinite series, Taylor
series and so on and the rusty reader may want to refer to any of
the many standard calculus texts when necessary. One central result
which is frequently called upon is the mean value theorem. This can be
deduced as an immediate consequence to the following result known
as Rolle’s theorem.

Theorem 2.1 If f(x) is continuously differentiable at all interior points
of the interval [a, b] and f(a) = f(b), then there exists a real number
ξ ∈ (a, b) such that f ′(ξ) = 0.

A simple sketch would back up our intuition that the theorem would be
correct. Simple though the result appears to be, it has many powerful
implications including;

Theorem 2.2 If f(x) is continuously differentiable on the interval
[a, b], then there exists a real number ξ ∈ (a, b) such that

f(b) = f(a) + (b − a)f ′(ξ).
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When f(x) is monotone then ξ is unique. This elementary theorem can
form the basis for approximation theory and series expansions such as
the Edgeworth and Cornish-Fisher (see Section 2.9). For example, a
further immediate corollary to the above theorem obtains by expand-
ing in turn f ′(ξ) about f ′(a) whereby:

Corollary 2.1 If f(x) is at least twice differentiable on the interval
[a, b] then there exists a real number ξ ∈ (a, b) such that

f(b) = f(a) + (b − a)f ′(a) +
(b − a)2

2
f ′′(ξ).

The ξ of the theorems and corollary would not typically be the same
and we can clearly continue the process, resulting in an expansion of
m + 1 terms, the last term being the m th derivative of f(x), eval-
uated at some point ξ ∈ (a, b) and multiplied by (b − a)m/m!. An
understanding of Riemann integrals as limits of sums, definite and in-
definite integrals, is mostly all that is required to follow the text. It is
enough to know that we can often interchange the limiting processes
of integration and differentiation. The precise conditions for this to be
valid are not emphasized. Indeed, we almost entirely avoid the tools
of real analysis. The Lebesgue theory of measure and integration is on
occasion referred to, but a lack of knowledge of this will not hinder
the reader. Likewise we will not dig deeply into the measure-theoretic
aspects of the Riemann-Stieltjes integral apart from the following ex-
tremely useful construction:

Definition 2.1 The Riemann integral of the function f(x) with re-
spect to x, on the interval [a, b], is the limit of a sum

∑
∆if(xi−1),

where ∆i = xi −xi−1 > 0, for an increasing partition of [a, b] in which
max ∆i goes to zero.

The limit is written
∫ b
a f(x)dx and can be seen to be the area under the

curve f(x) between a and b. If b = ∞ then we understand the integral
to exist if the limit exists for any b > 0, the result itself converging
to a limit as b → ∞. Similarly for a = −∞. Now, instead of only
considering small increments in x, i.e., integrating with respect to x,
we can make use of a more general definition. We have:

Definition 2.2 The Riemann-Stieltjes integral of the function f(x)
with respect to g(x) is the limit of a sum

∑
{g(xi) − g(xi−1)}f(xi−1),

for an increasing partition of [a, b] in which, once again, max ∆i goes
to zero.
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The limit is written
∫ b
a f(x)dg(x) and, in the special case where g(x) =

x, reduces to the usual Riemann integral. For functions, necessarily
continuous, whereby g(x) is an antiderivative of, say, h(x) and can be
written g(x) =

∫ x
−∞ h(u)du then the Stieltjes integral coincides with

the Riemann integral
∫

f(x)h(x)dx. On the other hand whenever g(x)
is a step function with a finite or a countable number of discontinuities
then

∫
f(x)dg(x) reduces to a sum, the only contributions arising at

the discontinuities themselves. This is of great importance in statistical
applications where step functions naturally arise as estimators of key
functions. A clear example of a step function of central importance is
the empirical distribution function, Fn(x) (this is discussed in detail
in Chapter 3). We can then write the sample mean x̄ =

∫
udFn(u)

and the population mean µ =
∫

udF (u), highlighting an important
concept, that fluctuations in the sample mean can be considered a
consequence of fluctuations in Fn(x) as an estimate of F (x). Consider
the following theorem, somewhat out of sequence in the text but worth
seeing here for its motivational value. The reader may wish to take a
glance ahead at Sections 2.4 and 3.5.

Theorem 2.3 For every bounded continuous function h(x), if Fn(x)
converges in distribution to F (x), then

∫
h(x)dFn(x) converges in dis-

tribution to
∫

h(x)dF (x).

This is the Helly-Bray theorem. The theorem will also hold (see the
Exercises) when h(x) is unbounded provided that some broad condi-
tions are met. A deep study of Fn(x) as an estimator of F (x) is then
all that is needed to obtain insight into the sample behavior of the
empirical mean, the empirical variance and many other quantities. Of
particular importance for the applications of interest to us here, and
developed, albeit very briefly, in Section 2.12, is the fact that, letting
M(x) = Fn(x) − F (x), then

E

{∫

h(x)dM(x)
}

=
∫

h(x)dF (x) −
∫

h(x)dF (x) = 0, (2.1)

a seemingly somewhat innocuous result until we interchange the order
of integration (expectation, denoted by E being an integral operator)
and, under some very mild conditions on h(x) described in Section
2.12, we obtain a formulation of great generality and into which can
be fit many statistical problems arising in the context of stochastic
processes (see Section 2.12).
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2.4 Random variables and probability measure

The possible outcomes of any experiment are called events where any
event represents some subset of the sample space. The sample space is
the collection of all events, in particular the set of elementary events.
A random variable X is a function from the set of outcomes to the real
line. A probability measure is a function on some subset of the real
line to the interval [0,1]. Kolmogorov (1933) provided axioms which
enable us to identify any measure as being a probability measure.
These axioms appear very reasonable and almost self-evident, apart
from the last, which concerns assigning probability measure to infi-
nite collections of events. There is, in a well defined sense, many more
members in the set of all subsets of any infinite set than in the orig-
inal set itself, an example being the set of all subsets of the positive
integers which has as many members as the real line. This fact would
have hampered the development of probability without the inclusion of
Kolmogorov’s third axiom which, broadly says that the random vari-
able is measurable, or, in other words, that the sample space upon
which the probability function is defined is restricted in such a way
that the probability we associate with the sum of an infinite collection
of mutually exclusive events is the same as the sum of the probabilities
associated with each composing event.

A great deal of modern probability theory is based on measure-
theoretic questions, questions that essentially arise from the applica-
bility or otherwise of Kolmogorov’s third axiom in any given context.
This is an area that is highly technical and relatively inaccessible to
non-mathematicians, or even to mathematicians lacking a firm ground-
ing in real analysis. The influence of measure theory has been strongly
felt in the area of survival analysis over the last 20 or so years and
much modern work is now of a very technical nature. Even so, none of
the main statistical ideas, or any of the needed demonstrations in this
text, require such knowledge. We can therefore largely avoid measure-
theoretic arguments, although some of the key ideas that underpin
important concepts in stochastic processes are touched upon when-
ever necessary. The reader is expected to understand the meaning of
the term random variable on some level.

Observations or outcomes as random variables and, via models, the
probabilities we will associate with them are all part of a theoretical,
and therefore artificial, construction. The hope is that these probabili-
ties will throw light on real applied problems and it is useful to keep in
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mind that, in given contexts, there may be more than one way to set
things up. Conditional expectation is a recurring central topic but can
arise in ways that we did not originally anticipate. We may naturally
think of the conditional expected survival time given that a subject
begins the study under, say, some treatment. It may be less natural
to think of the conditional expectation of the random variable we use
as a treatment indicator given some value of time after the beginning
of treatment. Yet, this latter conditional expectation, as we shall see,
turns out to be the more relevant for many situations.

Convergence for random variables

Simple geometrical constructions (intervals, balls) are all that are nec-
essary to formalize the concept of convergence of a sequence in real and
complex analysis. For random variables there are a number of differ-
ent kinds of convergence, depending upon which aspect of the random
variable we are looking at. Consider any real value Z and the sequence
Un = Z/n. We can easily show that Un → 0 as n → ∞. Now let Un be
defined as before except for values of n that are prime. Whenever n is
a prime number then Un = 1. Even though, as n becomes large, Un is
almost always arbitrarily close to zero, a simple definition of conver-
gence would not be adequate and we need consider more carefully the
sizes of the relevant sets in order to accurately describe this. Now, sup-
pose that Z is a uniform random variable on the interval (0,1). We can
readily calculate the probability that the distance between Un and 0 is
greater than any arbitrarily small positive number ε and this number
goes to zero with n. We have convergence in probability. Nonetheless
there is something slightly erratic about such convergence, large devi-
ations occurring each time that n is prime. When possible, we usually
prefer a stronger type of convergence. If, for all integer values m greater
than n and as n becomes large, we can assert that the probability of
the distance between Um and 0 being greater than some arbitrarily
small positive number goes to zero, then such a mode of convergence
is called strong convergence. This stronger convergence is also called
convergence with probability one or almost sure convergence. Consider
also (n + 3)Un. This random variable will converge almost surely to
the random variable Z. But, also, we can say that the distribution of
loge(n+3)Un, at all point of continuity z, becomes arbitrarily close to
that of a standard exponential distribution. This is called convergence
in distribution. The three modes of convergence are related by:
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Theorem 2.4 Convergence with probability one implies convergence
in probability. Convergence in probability implies convergence in dis-
tribution.

Also, for a sequence that converges in probability, there exists a subse-
quence that converges with probability one. This latter result requires
the tools of measure theory and is not of wide practical applicability
since we may not have any obvious way of identifying such a subse-
quence. In theoretical work it can sometimes be easier to obtain results
for weak rather than strong convergence. However, in practical appli-
cations, we usually need strong (almost sure, “with probability one”)
convergence since this corresponds in a more abstract language to the
important idea that, as our information increases, our inferences be-
comes more precise.

Convergence of functions of random variables

In constructing models and establishing inference for them we will fre-
quently appeal to two other sets of results relating to convergence. The
first of these is that, for a continuous function g(z), if Zn converges in
probability to c, then g(Zn) converges in probability to g(c) and, if Zn

converges in distribution to Z, then g(Zn) converges in distribution to
g(Z). The second set, Slutsky’s theorem (a proof is given in Randles
and Wolf 1979), enables us to combine modes of convergence. In par-
ticular, for modeling purposes, if a convergence in distribution result
holds when the parameters are known, then it will continue to hold
when those same parameters are replaced by consistent estimators.
This has great practical value.

2.5 Distributions and densities

We anticipate that most readers will have some familiarity with the
basic ideas of a distribution function F (t) = Pr (T < t), a density
function f(t) = dF (t)/dt, expectation and conditional expectation,
the moments of a random variable and other basic tools. Nonetheless
we will go over these elementary notions in the context of survival in
the next chapter. We write

E ψ(T ) =
∫

ψ(t)f(t)dt =
∫

ψ(t)dF (t)
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for the expected value of the function ψ(T ). Such an expression leaves
much unsaid, that ψ(t) is a function of t and therefore ψ(T ) itself
random, that the integrals exist, the domain of definition of the func-
tion being left implicit, and that the density f(t) is an anti-derivative
of the cumulative distribution F (t) (in fact, a slightly weaker math-
ematical construct, absolute continuity, is enough but we do not feel
the stronger assumption has any significant cost attached to it). There
is a wealth of solid references for the rusty reader on these topics,
among which Billingsley (1968), Rao (1973), and Serfling (1980) are
particularly outstanding. It is very common to wish to consider some
transformation of a random variable, the simplest situation being that
of a change in origin or scale. The distribution of sums of random
variables arises by extension to the bivariate and multivariate cases.

Theorem 2.5 Suppose that the distribution of X is F (x) and that
F ′(x) = f(x). Suppose that y = φ(x) is a monotonic function of x and
that φ−1(y) = x. Then, if the distribution of Y is G(y) and G′(y) =
g(y),

G(y) = F{φ−1(y)} ; g(y) = f{φ−1(y)}
∣
∣
∣
∣
dφ(x)

dx

∣
∣
∣
∣

−1

x=φ−1(y) .

(2.2)

Theorem 2.6 Let X and Y have joint density f(x, y). Then the den-
sity g(w) of W = X + Y is given by

g(w) =
∫ ∞

−∞
f(x, w − x)dx =

∫ ∞

−∞
f(w − y, y)dy. (2.3)

A result for W = X − Y follows immediately and, in the case of
X and Y being independent, the corresponding expression can also
be written down readily as a product of the two respective densities.
Similar results hold for the product or ratio of random variables (see
Rohatgi 1984, Section 8.4) but, since we have no call for them in this
work, we do not write them down here. An immediate corollary that
can give an angle on small sample behavior of statistics that are written
as sums is;

Corollary 2.2 Let X1 , . . . , Xn be independent, not always identically
distributed, continuous random variables with densities f1(x) to fn(s)
respectively. Let Sn =

∑n
j=1 Xj . Then the density, gn(s), of Sn is given

by

gn(s) =
∫ ∞

−∞
gn−1(s − x)fn(x)dx.
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This result can be used iteratively building up successive solutions
by carrying out the integration. The integration itself will mostly be
not particularly tractable and can be evaluated using numerical rou-
tines. Note the difference between making a large sample statistical
approximation to the sum and that of a numerical approximation to
the integral. The integral expression itself is an exact result.

Normal distribution

A random variable X is taken to be a a normal variate with parameters
µ and σ when we write X ∼ N (µ, σ2). The parameters µ and σ2 are
the mean and variance respectively, so that σ−1(X − µ) ∼ N (0, 1).
The distribution N (0, 1) is called the standard normal. The density of
the standard normal variate, that is, having mean zero and variance
one, is typically denoted φ(x) and the cumulative distribution Φ(x).
The density f(x), for x ∈ (−∞,∞) is given by

f(x) = φ(x) =
1√
2πσ

exp

[

−1
2

(
x − µ

σ

)2
]

.

For stochastic processes described below, Brownian motion relates to
a Gaussian process, that is, it has been standardized, in an analogous
way that the standard normal relates to any other normal distrib-
ution. For the normal distribution, all cumulants greater than 2 are
equal to zero. Simple calculations (Johnson and Kotz, 1970) show that,
for X ∼ N (0, 1), then E(Xr) = (r − 1)(r − 3) . . . 3.1. Thus, all odd
moments are equal to zero and all even moments are expressible in
terms of the variance. The normal distribution is of very great interest
in view of it frequently being the large sample limiting distribution for
sums of random variables. These arise naturally via simple estimating
equations. These topics are looked at in greater detail below.

The multivariate normal can be characterized in various ways. If
and only if all marginal distributions and all conditional distributions
are normal then we have multivariate normality. If and only if all lin-
ear combinations are univariate normal then we have multivariate nor-
mality. It is only necessary to be able to evaluate the standard normal
integral, Φ(x) = 1 −

∫∞
x φ(x)dx, since any other normal distribution,

f(x), can be put in this form via the linear transformation (X −µ)/σ.
Tables, calculator, and computer routines can approximate the numer-
ical integral. Otherwise, it is worth bearing in mind the following;
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Lemma 2.1 Upper and lower bounds for the normal integral can be
obtained from

x

1 + x2
e−x2/2 <

∫ ∞

x
e−u2/2du <

1
x

e−x2/2.

The lemma tells us that we expect 1 − Φ(x) to behave like φ(x)/x as
x increases. The ratio φ(x)/x is known as Mill’s ratio. Approximate
calculations are then possible without the need to resort to sophisti-
cated algorithms, although, in modern statistical analysis, it is now so
commonplace to routinely use computers that the value of the lemma
is rather limited. The normal distribution plays an important role in
view of the central limit theorem described below but also note the in-
teresting theorem of Cramer (1937) whereby, if a finite sum of indepen-
dent random variables is normal, then each variable itself is normal.
Cramer’s theorem might be contrasted with central limit theorems
whereby sums of random variables, under broad conditions, approach
the normal as the sum becomes infinitely large. These limit results are
looked at later. The normal distribution is important since it provides
the basis to Brownian motion and this is the key tool that we will use
for inference throughout this text.

Uniform distribution and the probability integral transform

For the standard uniform distribution in which u ∈ [0, 1], f(u) = 1
and F (u) = u. Uniform distributions on the interval [a, b] correspond
to the density f(u) = 1/(b − a) but much more important is the fact
that for any continuous distribution, G(t), we can say:

Theorem 2.7 For the random variable T, having distribution G(t),
letting U1 = G(T ) and U2 = 1 − G(T ), then both U1 and U2 have a
standard uniform distribution.

This central result, underpinning a substantial body of work on sim-
ulation and re-sampling, is known as the probability integral trans-
form. Whenever we can invert the function G, denoted G−1, then,
from a single uniform variate U we obtain the two variates G−1(U)
and G−1(1 − U) which have the distribution G. The two variates are
of course not independent but, in view of the strong linearity property
of expectation (the expectation of a linear function of random variables
is the same linear function of the expectations), we can often use this
to our advantage to improve precision when simulating. Another inter-
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esting consequence of the probability integral transform is that there
exists a transformation of a variate T , with any given distribution, into
a variate having any other chosen distribution. Specifically, we have:

Corollary 2.3 For any given continuously invertible distribution
function H, and continuous distribution G(t), the variate H−1{G(T )}
has distribution H.

In particular, it is interesting to consider the transformation Φ−1{Gn

(T )} where Gn is the empirical estimate (discussed below) of G. This
transformation, which preserves the ordering, makes the observed dis-
tribution of observations as close to normal as possible. Note that since
the ordering is preserved, use of the transformation makes subsequent
procedures nonparametric in as much as the original distribution of T
has no impact. For the problems of interest to us in survival analysis
we can use this in one of two ways: firstly, to transform the response
variable time in order to eliminate the impact of its distribution and,
secondly, in the context of regression problems, to transform the distri-
bution of regressors as a way to obtain greater robustness by reducing
the impact of outliers.

Exponential distribution and cumulative hazard transformation

The standard exponential distribution is defined on the positive real
line (0,∞). We have, for u ∈ (0,∞), f(u) = exp(−u) and F (u) =
1 − exp(−u). An exponential distribution with mean 1/α and vari-
ance 1/α2 has density f(u) = α exp(−αu) and cumulative distribution
F (u) = 1−exp(−αu). The density of a sum of m independent exponen-
tial variates having mean 1/α, is an Erlang density whereby f(u) =
α(αu)m−1 exp(−αu)/Γ(m) and where Γ(m) =

∫∞
0 exp(−u)um−1du.

The gamma distribution has the same form as the Erlang although,
for the gamma, the parameter m can be any real positive number and
is not restricted to being an integer. An exponential variate U can be
characterized as a power transformation on a Weibull variate in which
F (t) = 1 − exp[(−αt)k]. Finally, we have the important result:

Theorem 2.8 For any continuous positive random variable T , with
distribution function F (t), the variate U =

∫ T
0 f(u)/[1 − F (u)]du has

a standard exponential distribution.

This result is important in survival modeling and we return to it later.
The function f(t)/[1 − F (t)] is known as the hazard function and
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∫ t
0 f(u)/[1 − F (u)]du as the cumulative hazard function. The trans-

formation is called the cumulative hazard transformation.

2.6 Expectation

It is worth saying a word or two more about expectation as a funda-
mental aspect of studies in probability. Indeed it is possible for the
whole theory to be constructed with expectation as a starting point
rather than the now classical axiomatic structure to probability. For a
function of a random variable T , ψ(T ) say, as stated at the beginning
of the previous section, we write, E(ψ(T ) of this function via

E ψ(T ) =
∫

ψ(t)f(t)dt =
∫

ψ(t)dF (t),

where the integrals, viewed as limiting processes, are all assumed to
converge. The normal distribution function for a random variable X
is completely specified by E(X) and E(X2). In more general situa-
tions we can assume a unique correspondence between the moments
of X, E(Xr) , r = 1, 2, . . . , and the distribution functions as long as
these moments all exist. While it is true that the distribution function
determines the moments the converse is not always true. However, it
is almost always true (Stuart and Ord 1994, page 111) and, for all
the distributions of interest to us here, the assumption can be made
without risk. It can then be helpful to view each moment, beginning
with E(X), as providing information about F (x). This information
typically diminishes quickly with increasing r. We can use this idea to
improve inference for small samples when large sample approximations
may not be sufficiently accurate. Moments can be obtained from the
moment generating function, M(t) = E{exp(tX)} since we have:

Lemma 2.2 If
∫

exp(tx)f(x)dx < ∞ then

E(Xr) =
{

∂rM(t)
∂tr

}

t=0

, for all r.

In Section 2.8 we consider the variance function which is also an ex-
pectation and is of particular interest to one of our central goals here,
that of constructing useful measures of the predictive strength of any
model. At the root of the construction lie two important inequali-
ties, the Chebyshev-Bienaymé inequality (described in Section 2.8 and
Jensen’s inequality described below. For this we first need:
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Definition 2.3 The real-valued function w(x) is called “convex” on
some interval I (an infinite set and not just a point) whenever, for
x1, x2 ∈ I and for 0 ≤ λ ≤ 1, we have

w[λx1 + (1 − λ)x2] ≤ λw(x1) + (1 − λ)w(x2).

It is usually sufficient to take convexity to mean that w′(x) and w′′(x)
are greater than or equal to zero at all interior points of I since this is
a consequence of the definition. We have (Jensen’s inequality):

Lemma 2.3 If w is convex on I then, assuming expectations exist on
this interval, w[E(X)] ≤ E[w(X)]. If w is linear in X throughout I,
that is, w′′(x) = 0 when twice differentiable, then equality holds.

For the variance function we see that w(x) = x2 is a convex func-
tion and so the variance is always positive. The further away from the
mean, on average, the observations are to be found, then the greater
the variance. We return to this in Section 2.8. Although very useful,
the moment-generating function, M(t) = E{exp(tX)} has a theoret-
ical weakness in that the integrals may not always converge. It is for
this, mainly theoretical, reason that it is common to study instead
the characteristic function, which has an almost identical definition,
the only difference being the introduction of complex numbers into the
setting. The characteristic function, denoted by φ(t), always exists and
is defined as:

φ(t) = M(it) =
∫ ∞

−∞
exp(itx)dF (x) , i2 = −1.

Note that the contour integral in the complex plane is restricted to
the whole real axis. Analogous to the above lemma concerning the
moment-generating function we have

E(Xr) = (−i)r

{
∂rφ(t)

∂tr

}

t=0

, for all r.

This is important in that it allows us to anticipate the cumulative
generating function which turns out to be of particular importance
in obtaining improved approximations to those provided by assuming
normality. We return to this below in Section 2.9. If we expand the
exponential function then we can write;

φ(t) =
∫ ∞

−∞
exp(itx)dF (x) = exp

{ ∞∑

r=1

κr(it)r/r!

}
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and, identifying κr as the coefficient of (it)r/r! in the expansion of
log φ(t). The function ψ(t) = log φ(t) is called the cumulative generat-
ing function. When this function can be found then the density f(x)
can be defined in terms of it. We have the important relation

f(x) =
1
2π

∫ ∞

−∞
e−itxφ(t)dt , φ(t) =

∫ ∞

−∞
eitxf(x)dx .

It is possible to approximate the density f(x) by working with i.i.d. ob-
servations X1, · · · , Xn and the empirical characteristic function φ(t) =
n−1

∑n
i=1 exp(itxi) which can then be inverted. It is also possible to

approximate the integral using a method of numerical analysis, the
so-called method of steepest descent, to obtain a saddlepoint approx-
imation (Daniels, 1954). We return to this approximation below in
Section 2.9.

2.7 Order statistics and their expectations

The normal distribution and other parametric distributions described
in the next chapter play a major role in survival modeling. However, ro-
bustness of any inferential technique to particular parametric assump-
tions is always a concern. Hopefully, inference is relatively insensitive
to departures from parametric assumptions or is applicable to whole
families of parametric assumptions. The most common way to ensure
this latter property is via the theory of order statistics which we recall
here. Consider the n independent identically distributed (i.i.d.) ran-
dom variables: X1, X2, ... , Xn and a single realization of these that we
can order from the smallest to the largest: X(1) ≤ X(2) ≤ · · · ≤ X(n).
Since the Xi are random, so also are the X(i), and the interesting
question concerns what we can say about the probability structure of
the X(i) on the basis of knowledge of the parent distribution of Xi.
In fact, we can readily obtain many useful results which, although of-
ten cumbersome to write down, are in fact straightforward. Firstly we
have:

Theorem 2.9 Taking P (x) = Pr (X ≤ x) and Fr(x) = Pr (X(r) ≤ x)
then:

Fr(x) =
n∑

i=r

(
n

i

)

P i(x)[1 − P (x)]n−i. (2.4)
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This important result has two immediate and well known corollaries
dealing with the maximum and minimum of a sample of size n.

Corollary 2.4

Fn(x) = Pn(x) , F1(x) = 1 − [1 − P (x)]n (2.5)

In practice, in order to evaluate Fr(x) for other than very small n, we
exploit the equivalence between partial binomial sums and the incom-
plete beta function. Thus, if, for a > 0, b > 0, B(a, b) =

∫ 1
0 ta−1(1 −

t)b−1dt and Iπ(a, b) =
∫ π
0 ta−1(1−t)b−1dt/B(a, b), then putting P (x) =

π, we have that Fr(x) = Iπ(r, n − r + 1). These functions are widely
tabulated and also available via numerical algorithms to a high level
of approximation. An alternative, although less satisfying, approxima-
tion would be to use the DeMoivre-Laplace normal approximation to
the binomial sums. Differentiation of (2.4) provides the density which
can be written as

fr(x) =
1

B(r, n − r + 1)
P r−1(x)[1 − P (x)]n−rp(x). (2.6)

Since we have a relatively straightforward expression for the distrib-
ution function itself, then this expression for the density is not often
needed. It can come in handy in cases where we need to condition and
apply the law of total probability. Expressions for f1(x) and fn(x) are
particularly simple and we have

Corollary 2.5

f1(x) = n[1 − P (x)]n−1p(x) , fn(x) = nPn−1(x)p(x). (2.7)

More generally it is also straightforward to obtain

Theorem 2.10 For any subset of the n order statistics: Xn1, Xn2,
..., Xnk

, 1 ≤ n1 ≤ . . . ≤ nk, the joint distribution f(x1, . . . , x2) is
expressed as

f(x1, . . . , xk) = n!

⎡

⎣
k∏

j=1

p(xj)

⎤

⎦
k∏

j=0

{
[P (xj+1) − P (xj)]nj+1−nj−1

(nj+1 − nj − 1)!

}

(2.8)

in which p(x) = P ′(x). This rather involved expression leads to many
useful results including the following corollaries:
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Corollary 2.6 The joint distribution of X(r) and X(s) is

Frs(x, y) =
n∑

j=s

j∑

i=r

n!
i!(j − i)!(n − j)!

P i(x)

[P (y) − P (x)]j−i[1 − P (y)]n−j .

The joint distribution of X(r) and X(s) is useful in establishing a num-
ber of practical results such as the distribution of the range, the dis-
tribution of the interquartile range and an estimate for the median
among others. Using the result (Section 2.5) for the distribution of a
difference, a simple integration then leads to the following:

Corollary 2.7 Letting Wrs = X(s) − X(r) then: in the special case of
a parent uniform distribution we have

f(wrs) =
1

B(s − r, n − s + r + 1)
ws−r−1

rs (1 − wrs)n−s+r. (2.9)

Taking s = n and r = 1, recalling that B(α, β) = Γ(α)Γ(β)/Γ(α + β)
and that Γ(n) = n!, then we have the distribution of the range for the
uniform.

Corollary 2.8 Letting w = U(n) − U(1) be the range for a random
sample of size n from the standard uniform distribution, then the cu-
mulative distribution is given by

FU (w) = nwn−1 − (n − 1)wn. (2.10)

Straightforward differentiation gives fU (w) = n(n − 1)wn−2(1 − w),
a simple and useful result. For an arbitrary distribution, F (·) we can
either carry out the same kind of calculations from scratch or, mak-
ing use once more of the probability integral transform (see Section
2.4), use the above result for the uniform and transform into arbi-
trary F . Even this is not that straightforward since, for some fixed
interval (w1, w2), corresponding to w = w2 − w1 from the uniform,
the corresponding F−1(w2) − F−1(w1) depends not only on w2 − w1

but on w1 itself. Again we can appeal to the law of total probability,
integrating over all values of w1 from 0 to 1−w. In practice, it may be
good enough to divide the interval (0, 1−w) into a number of equally
spaced points, ten would suffice, and simply take the average. Interval
estimates for any given quantile, defined by P (ξα) = α, follow from
the basic result and we have:
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Corollary 2.9 In the continuous case, for r < s, the pair (X(r) , X(s))
covers ξα with probability given by Iπ(r, n − r + 1) − Iπ(r, n − s + 1).

Theorem 2.11 For the special case in which n1 = 1, n2 = 2, ...
nn = n, then

f(x1, . . . , xn) = n!
n∏

j=1

p(xj). (2.11)

A characterization of order statistics: Markov property

The particularly simple results for the exponential distribution lead
to a very useful and powerful characterization of order statistics. If
Z1 , . . . , Zn are i.i.d. exponential variates with parameter λ, then an
application of Corollary 2.4 shows that the minimum of Z1 to Zn has
itself an exponential distribution with parameter nλ. We can define the
random variable Y1 to be the gap time between 0 and the first obser-
vation, Z(1). The distribution of Y1 (equivalently Z(1)) is exponential
with parameter nλ. Next, we can define Y2 to be the gap Z(2) − Z(1).
In view of the lack of memory property of the exponential distribu-
tion, once Z(1) is observed, the conditional distribution of each of the
remaining (n − 1) variables, given that they are all greater than the
observed time Z(1), remains exponential with parameter λ. The vari-
able Y2 is then the minimum of (n− 1) i.i.d. exponential variates with
parameter λ. The distribution of Y2 is therefore, once again, exponen-
tial, this time with parameter (n − 1)λ. More generally we have the
following lemma:

Lemma 2.4 If Z(1) , . . . , Z(n) are the order statistics from a sample
of size n of standard exponential variates, then, defining Z(0) = 0,

Yi = Z(i) − Z(i−1) , i = 1, . . . , n

are n independent exponential variates in which E(Yi) = 1/(n− i+1).

This elementary result is very important in that it relates the order sta-
tistics directly to sums of simple independent random variables which
are not themselves order statistics. Specifically we can write

Z(r) =
r∑

i=1

{Z(i) − Z(i−1)} =
r∑

i=1

Yi ,

leading to the immediate further lemma:
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Lemma 2.5 For a sample of size n from the standard exponential
distribution and letting αi = 1/(n − i + 1), we have:

E[Z(r)] =
r∑

i=1

E(Yi) =
r∑

i=1

αi , Var [Z(r)] =
r∑

i=1

Var (Yi) =
r∑

i=1

α2
i .

The general flavor of the above result applies more generally than just
to the exponential and, applying the probability integral transform
(Section 2.5), we have:

Lemma 2.6 For an i.i.d. sample of size n from an arbitrary distrib-
ution, G(x), the rth largest order statistic, X(r) can be written

X(r) = G−1{1 − exp(−Y1 − Y2 − · · · − Yr)},

where the Yi are independent exponential variates in which E(Yi) =
1/(n − i + 1).

One immediate conclusion that we can make from the above expres-
sion is that the order statistics from an arbitrary distribution form
a Markov chain. The conditional distribution of X(r+1) given X(1),
X(2), . . . , X(r) depends only on the observed value of X(r) and the dis-
tribution of Yr+1. This conditional distribution is clearly the same as
that for X(r+1) given X(r) alone, hence the Markov property. If needed
we can obtain the joint density, frs, of X(r) and X(s), (1 ≤ r < s ≤ n)
by a simple application of Theorem 2.10. We then write:

frs(x, y) =
n! P r−1(x)p(x)p(y)[P (y) − P (x)]s−r−1[1 − P (y)]n−s

(r − 1)!(s − r − 1)!(n − s)!
.

From this we can immediately deduce the conditional distribution of
X(s) given that X(r) = x as:

fs|r(y|x) =
(n − r)!

(s − r − 1)!(n − s)!
p(y)[P (y) − P (x)]s−r−1[1 − P (y)]n−s

[1 − P (x)]n−r
.

A simple visual inspection of this formula confirms again the Markov
property. Given that X(r) = x we can view the distribution of the
remaining (n− r) order statistics as an ordered sample of size (n− r)
from the conditional distribution P (u|u > x).
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Expected values of order statistics

Given the distribution of any given order statistic we can, at least in
principle, calculate any moments, in particular the mean, by applying
the basic definition. In practice, this may be involved and there may
be no explicit analytic solution. Integrals can be evaluated numerically
but, in the majority of applications, it can be good enough to work
with accurate approximations. The results of the above subsection,
together with some elementary approximation techniques are all that
we need. Denoting the distribution of X as P (x), then the probability
integral transform (Section 2.5) provides that U = P (X) has a uni-
form distribution. The moments of the order statistics from a uniform
distribution are particularly simple so that E{U(r)} = pr = r/(n+1)).
Denoting the inverse transformation by Q = P−1, then

X(r) = P−1{U(r)} = Q{U(r)}.

Next, we can use a Taylor series development of the function X(r)

about the pr so that

X(r) = Q(pr) + {U(r) − pr}Q′(pr) + {U(r) − pr}2Q′′(pr)/2 + · · ·

and, taking expectations, term by term, we have

E{X(r)} ≈ Q(pr) +
prqr

2(n + 2)
Q′′(pr)

+
prqr

(n + 2)2

{
1
3
(qr − pr)Q′′′(pr) +

1
8
prqrQ

′′′′(pr)
}

and

Var {X(r)} =
prqr

2(n + 2)
[Q′(pr)]2 +

prqr

(n + 2)2
{
2(qr−pr)Q′(pr)Q′′(pr)

+prqr

(
Q′(pr)Q′′′(pr)+[Q′′(pr)]2

)}
.

It is straightforward to establish some relationships between the mo-
ments of the order statistics and the moments from the parent distri-
bution. Firstly note that

E

{
n∑

r=1

Xk
(r)

}m

= E

{
n∑

r=1

Xk
r

}m

,

so that, if µ and σ2 are the mean and variance in the parent population,
then

∑n
r=1 µr = nµ and

∑n
r=1 E{X2

(r)} = nE(X2) = n(µ2 + σ2).
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Normal parent distribution

For the case of a normal parent the expected values can be evaluated
precisely for small samples and the approximations themselves are rel-
atively tractable for larger sample sizes. One approach to data analysis
in which it may be desirable to have a marginal normal distribution
in at least one of the variables under study is to replace the observa-
tions by the expectations of the order statistics. These are sometimes
called normal scores, typically denoted by ξrn = E(X(r)) for a ran-
dom sample of size n from a standard normal parent with distribution
function Φ(x) and density φ(x). For a random sample of size n from a
normal distribution with mean µ and variance σ2 we can reduce every-
thing to the standard case since E(X(r)) = µ + ξrnσ. Note that, if n
is odd, then, by symmetry, it is immediately clear that E(X(r)) = 0
for all r that are odd. We can see that E(X(r)) = −E(X(n−r+1)). For
n as small as, say, 5 we can use integration by parts to evaluate ξr5

for different values of r. For example, ξ55 = 5
∫

4Φ3(x)φ2(x)dx which
then simplifies to: ξ55 = 5π−1/2/4 + 15π−3/2 sin−1(1/3)/2 = 1.16296.
Also, ξ45 = 5π−1/2/2 − 15π−3/2 sin−1(1/3) = 0.49502 and ξ35 = 0.
Finally, ξ15 = −1.16296 and ξ25 = −0.49502. For larger sample sizes
in which the integration becomes too fastidious we can appeal to the
above approximations using the fact that

Q′(pr) =
1

φ(Q)
, Q′′(pr) =

Q

φ2(Q)
, Q′′′(pr) =

1 + 2Q2

φ3(Q)
,

Q′′′′(pr) =
Q(7 + 6Q2)

φ4(Q)
.

The above results arise from straightforward differentiation. Analogous
calculations can be used to obtain exact or approximate expressions
for Cov {X(r), X(s)}.

2.8 Entropy and variance

In view of the mathematical equivalence of the density, distribution
function and the hazard, we can be satisfied knowing any one of these
functions for a variable T of interest. In the majority of areas of appli-
cation of statistics, theoretical physics, and, possibly, biophysics being
potential exceptions, we cannot really know much about these func-
tions. Our usual strategy will be to collect data that enables the esti-
mation of one or more of the functions, with any additional plausible
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assumptions about the nature of these functions making this task that
much easier. Paucity of data, or a need to only know the most im-
portant features of a distribution, will often lead us to restricting our
attention to some simple summary measures. The most common sum-
mary measures are those of location and variance. For a measure of
location we usually take the mean µ or the median ξ0.5. They tell us
something about where the most likely values of T occur. An idea of
just how “likely” these “likely” values are, in other words how concen-
trated is the distribution around the location measure, is most often
provided by the variance or the square root of this, the standard de-
viation. The variance σ2 is defined by

σ2 = E{T − E(T )}2 =
∫

(t − µ)2f(t)dt =
∫

(t − µ)2dF (t). (2.12)

An important insight into just why σ2 provides a good measure of
precision, in other terms predictability, is given by:

Theorem 2.12 For every positive constant a

Pr {|T − µ| ≥ aσ } ≤ 1/a2. (2.13)

This famous inequality, known as the Bienaymé-Chebyshev inequality,
underlines the fact that the smaller σ2 the better we can predict. A
lesser used, although equally useful, measure of concentration is the
so-called entropy of the distribution. Apart from a negative sign, this
is also called the information of the distribution which is defined by
V (f, f) where

V (g, h) = E log g(T ) =
∫

log g(t)h(t)dt. (2.14)

The entropy is just −V (g, h). Note that the integral operator E in
E log g(T ) is with respect to the density h(t), this added generality
being needed in the regression context. For univariate study the infor-
mation is simply V (f, f) and would be written V since the arguments
are implicit. Our intuition is good for σ2, since it is clear that the
further away, on average, are the values of T, then the larger will be
σ2. The same is true, although less obvious, for V. As T becomes con-
centrated around its mode (value of t, taken to be unique, at which
f(t) assumes its greatest value), then, since

∫
f(t)dt, the area under

the curve, is fixed at one, f(t) itself becomes larger at and around
the mode. In the limit, as all the information becomes concentrated
at a single point t0, then f(t0), as well as E log f(T ), tends to positive
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infinity. The more spread out are the values of T then the closer to
zero will tend to be E log f(T ). Intermediary values of E log f(T ) then
can be taken to correspond to different degrees of dispersion. Consider
also the following which is true for any number of random variables
and which, for the purposes of illustration, we limit to X1, X2 and X3.
We have

E log f(X1, X2, X3) = E log f(X3|X2, X1) + E log f(X2|X1)
+E log f(X1) ,

so that the total information can be decomposed into sequential or-
thogonal contributions, each adding to the total amount of information
so far. Note also, since we can interchange the Xi, the order in which
the total information is put together has no impact on the final re-
sult. This is of course a desirable property. The information measure,
as an indicator of precision, is well known in communication theory
(Shannon and Weaver 1949) and statistical ecology, but is not so well
known in biostatistics. It is also worth considering the fact that the
most commonly used estimating technique, maximum likelihood, is
best viewed as an empirical version of information. This follows since
the usual log-likelihood divided by the sample size (which can be taken
as a fixed constant) provides a consistent estimate of the information.
Both the variance and the information are of particular interest when
we condition on some other variable Z, possibly a vector. This is the
regression setting where we focus on the impact of explanatory vari-
ables on some response variable of interest. The information gain would
consider the distance between the distribution f(t) and f(t|z). In the
above construction the function g(t) is first equated with f(t) and sub-
sequently to f(t|z), whereas h(t) remains fixed at f(t, z). Note also,
that in this case, the integral is over the space of T and Z. This enables
the construction of a simple and powerful measure of predictability.
The amount by which the variance, or information, changes follow-
ing such conditioning provides a direct quantification of the predictive
strength of Z. We look at this more closely in the following subsection.

Explained randomness and explained variation

Any models we work with are simply tools to enable us to efficiently
construct conditional distributions. Validity of our models is an im-
portant issue, upon which we dwell later, but, for now, let us suppose
our models are good enough to accurately reproduce the conditional
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distributions of T given Z where Z may be a vector. The improvement
in our predictive ability, given Z, can be quantified in view of the above
Bienaymé-Chebyshev inequality and the variance decomposition

Var (T ) = VarE(T |Z) + E Var (T |Z). (2.15)

The total variance, Var (T ), breaks down into two parts, one of which
we can interpret as the signal, VarE(T |Z), and one as the pure noise
E Var (T |Z). The percentage of Var (T ) that is taken up by VarE(T |Z)
is the amount of the total variance that can be explained by Z. This
translates directly the predictive power of Z so that the percentage of
explained variance, is then quite central to efforts at quantifying how
well our models do. We define it as

Ω2 =
VarE(T |Z)

Var (T )
=

Var (T ) − E Var (T |Z)
Var (T )

. (2.16)

The quantity Ω2 in its own right is not well developed in the litera-
ture and we devote Section 3.9 to studying its importance. Following
Draper (1984), there have been a number of challenges to Ω2 as a use-
ful concept (Healy 1984: Kvalseth 1985: Scott and Wild 1991: Willett
and Singer 1988). However Draper’s paper of 1984 was flawed and its
conclusions did not hold up (Draper 1985). As a result, this subsequent
work, having taken Draper’s 1984 paper as its starting point, inherits
the same logical errors.

Explained randomness, as opposed to explained variation, arises
from a less transparent construction. We can use a monotonic trans-
form of the expected information (expectation taken with respect to
the distribution of Z) and, taking D(T ) = exp−2E V {f(t), f(t|Z)}:
D(T |Z) = exp−2E V {f(t|Z), f(t|Z)}, we define the explained ran-
domness ρ2 to be

ρ2 =
D(T ) − D(T |Z)

D(T )
. (2.17)

We interpret ρ2 as the proportion of explained randomness in T at-
tributable to Z. We also have the following important lemma that
could, in its own right, be taken as a reason for studying explained
randomness, but which, in any event, underlines a useful relationship
between explained variation and explained randomness:

Lemma 2.7 If the pair (T, Z) are bivariate normal then Ω2 = ρ2.

The lemma provides further motivation for being interested in ρ2, in
that, for the more familiar classic regression case of a bivariate normal,
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we obtain the same results by considering explained randomness that
we obtain by considering explained variation. For other distributions,
where variance itself may not be the best measure of dispersion, the
concept explained randomness, based on entropy, might be viewed as
having more generality. Our own experience in practical data analysis
suggests that, as far as hierarchical model building or the quantification
of partial or multiple effects is concerned, there does not appear to be
anything to really choose between the two measures. For operational
purposes we can take the two measures to be essentially equivalent,
the use of one rather than the other being more a question of taste
rather than one based on any real advantages or disadvantages.

2.9 Approximations

Approximations to means and variances for functions of T (δ-
method)

Consider some differentiable monotonic function of X, say ψ(X). Our
particular concern often relates to parameter estimates in which case
the random variable X would be some function of the n i.i.d. data
values, say θn as an estimator of the parameter θ. In the cases of
interest, θn converges with probability one to θ and so also does ψ(θn)
to ψ(θ). Although θn may not be unbiased for θ, for large samples, the
sequence E(θn) converges to E(θ) = θ. Similarly E[ψ(θn)] converges
to ψ(θ). The mean value theorem (Section 2.2) enables us to write

φ(θn) = ψ(θ) + (θn − θ)φ′(θ) +
(θn − θ)2

2
ψ′′(ξ) (2.18)

for ξ ∈ (θ ± θn) Rearranging this expression, ignoring the third term
on the right hand side, and taking expectations we obtain

Var {ψ(θn)} ≈ E{ψ(θn) − ψ(θ)}2 ≈ {ψ′(θ)}2Var (θn) ≈ {ψ′(θn)}2Var (θn)

as an approximation to the variance. The approximation, once ob-
tained in any given setting, is best studied on a case-by-case basis. It
is an exact result for linear functions. For these, the second derivative
is equal to zero and, more generally, the smaller the absolute value of
this second derivative, the better we might anticipate the approxima-
tion to be. For θn close to θ the squared term will be small in absolute
value when compared with the linear term, an additional motivation
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to neglecting the third term. For the mean, the second term of Equa-
tion (2.18) is zero when θn is unbiased, otherwise close to zero and,
this time, ignoring this second term, we obtain

E{ψ(θn)} ≈ ψ(θn) +
1
2
Var (θn)ψ′′(θn) (2.19)

as an improvement over the rougher approximation based on the first
term alone of the above expression. Extensions of these expressions
to the case of a consistent estimator ψ(θn) = ψ(θ1n, . . . , θpn) of ψ(θ)
proceeds in the very same way, only this time based on a multivariate
version of Taylor’s theorem. These are:

Var {ψ(θn)} ≈
p∑

j=1

p∑

m≥j

∂ψ(θ)
∂θj

∂ψ(θ)
∂θm

Cov (θjn, θmn) ,

E{ψ(θn)} ≈ ψ(θ1n, . . . , θpn) +
1
2

∑

j

∑

m

∂2ψ(θn)
∂θj∂θm

Cov (θjn, θmn).

When p = 1 then the previous expressions are recovered as special
cases. Again, the result is an exact one in the case where ψ(·) is a
linear combination of the components θj and this helps guide us in
situations where the purpose is that of confidence interval construc-
tion. If, for example, our interest is on ψ and some strictly monotonic
transformation of this, say ψ∗, is either linear or close to linear in the
θj , then it may well pay, in terms of accuracy of interval coverage, to
use the delta-method on ψ∗, obtaining the end points of the confidence
interval for ψ∗ and subsequently inverting these, knowing the relation-
ship between ψ and ψ∗, in order to obtain the interval of interest for ψ.
Since ψ and ψ∗ are related by one-to-one transformations then the cov-
erage properties of an interval for ψ∗ will be identical to those of its
image for ψ. Examples in this book include confidence intervals for the
conditional survivorship function, given covariate information, based
on a proportional hazards model as well as confidence intervals for in-
dices of predictability and multiple coefficients of explained variation.

Cornish-Fisher approximations

In the construction of confidence intervals, the δ-method makes a nor-
mality approximation to the unknown distribution and then replaces
the first two moments by local linearization. A different approach,
while still working with a normal density φ(x) = (2π)−1/2 exp(−x2/2),
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in a way somewhat analogous to the construction of a Taylor series, is
to express the density of interest, f(x), in terms of a linear combina-
tion of φ(x) and derivatives of φ(x). Normal distributions with nonzero
means and variances not equal to one are obtained by the usual simple
linear transformation and, in practical work, the simplest approach is
to standardize the random variable X so that the mean and variance
corresponding to the density f(x) are zero and one, respectively.

The derivatives of φ(x) are well known, arising in many fields of
mathematical physics and numerical approximations. Since φ(x) is
simply a constant multiplying an exponential term it follows imme-
diately that all derivatives of φ(x) are of the form of a polynomial
that multiplies φ(x) itself. These polynomials (apart from an alter-
nating sign coefficient (−1)i) are the Hermite polynomials, Hi(x) , i =
0, 1, . . . , and we have

H0 = 1 , H1 = x , H2 = x2 − 1 , H3 = x3 − 3x , H4 = x4 − 6x2 +3 ,

with H5 and higher terms being calculated by simple differentiation.
The polynomials are of importance in their own right, belonging to the
class of orthogonal polynomials and useful in numerical integration.
Indeed, we have that
∫ ∞

−∞
H2

i (x)φ(x)dx = i! , i = 0, . . . :
∫ ∞

−∞
Hi(x)Hj(x)φ(x)dx=0 , i 	= j.

This orthogonality property is exploited in order for us to obtain ex-
plicit expressions for the coefficients in our expansion. Returning to
our original problem we wish to determine the coefficients ci in the
expansion

f(x) =
∞∑

i=0

ciHi(x)φ(x) (2.20)

and, in order to achieve this we multiply both sides of equation (2.20)
by Hj(x), subsequently integrating to obtain the coefficients

cj =
1
j!

∫ ∞

−∞
f(x)Hj(x)dx. (2.21)

Note that the polynomial Hj(x) is of order j so that the right-hand
side of equation (2.21) is a linear combination of the moments, (up
to the jth), of the random variable X having associated density f(x).
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These can be calculated step-by-step. For many standard densities
several of the lower-order moments have been worked out and are
available. Thus, it is relatively straightforward to approximate some
given density f(x) in terms of a linear combination of φ(x).

The expansion of Equation (2.20) can be used in theoretical investi-
gations as a means to study the impact of ignoring higher-order terms
when we make a normal approximation to the density of X. We will
use the expansion in an attempt to obtain more accurate inference for
proportional hazards models fitted using small samples. Here the large
sample normal assumption may not be sufficiently accurate and the
approximating equation is used to motivate potential improvements
obtained by taking into account moments of higher order than just
the first and second. When dealing with actual data, the performance
of any such adjustments needs to be evaluated on a case-by-case basis.
This is because theoretical moments will have to be replaced by ob-
served moments and the statistical error involved in that can be of the
same order, or greater, than the error involved in the initial normal
approximation. If we know or are able to calculate the moments of the
distribution, then the ci are immediately obtained. When the mean is
zero we can write down the first four terms as

c0 = 1 , c1 = 0 , c2 = (µ2 − 1)/2 , c3 = µ3/6 , c4 = (µ4 − 6µ2 + 3)/24 ,

from which we can write down an expansion in terms of φ(x) as

f(x) = φ(x){1 + (µ2 − 1)H2(x)/2 + µ3H3(x)/6
+(µ4 − 6µ2 + 3)H4(x)/24 + · · · }.

This series is known as the Gram-Charlier series, and stopping the
development at the fourth term corresponds to making corrections for
skewness and kurtosis. In our later development of the properties of
estimators in the proportional hazards model we will see that mak-
ing corrections for skewness can help make inference more accurate,
whereas, at least in that particular application, corrections for kurtosis
appear to have little impact (Chapter 11).

Saddlepoint approximations

A different, although quite closely related, approach to the above uses
saddlepoint approximations. Theoretical and practical work on these
approximations indicate them to be surprisingly accurate for the tails
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of a distribution. We work with the inversion formula for the cumulant
generating function, a function that is defined in the complex plane,
and in this two-dimensional plane, around the point of interest (which
is typically a mean or a parameter estimate) the function looks like a
minimum in one direction and a maximum in an orthogonal direction:
hence the name “saddlepoint.” Referring back to Section 2.6 recall
that we identified κr as the coefficient of (it)r/r! in the expansion of
the cumulant generating function K(t) = log φ(t) where φ(t) is the
characteristic function. We can exploit the relationship between φ(t)
and f(x); that is,

f(x) =
1
2π

∫ ∞

−∞
e−itxφ(t)dt , φ(t) =

∫ ∞

−∞
eitxf(x)dx .

to approximate f(x) by approximating the integral. The numerical
technique that enables this approximation to be carried out is called
the method of steepest descent and is described in Daniels (1954).
The approximation to f(x) is simply denoted as fs(x) and, carrying
through the calculations, we find that

fs(x) =
{

n

2πK ′′(λx)

}1/2

exp[n{K(λx) − xλx}] (2.22)

in which the solution to the differential equation in λ, K ′(λ) = x is
given by λx. Our notation here of x as a realization of some random
variable X is not specifically referring to our usual use of X as the
minimum of survival time T and the censoring time C. It is simply the
variable of interest and that variable, in our context, will be the score
statistic (Chapter 11). For now, we assume the score to be composed of
n contributions so that we view x as a mean based on n observations.
Since, mostly, we are interested in the tails of the distribution, it can
often help to approximate the cumulative distribution directly rather
than make a subsequent appeal to numerical integration. Denoting the
saddlepoint approximation to the cumulative distribution by Fs(x), we
write

Fs(x) = Φ(ux) + φ(ux)(u−1
x + v−1

x ) (2.23)

where φ(x) indicates the standard normal density, Φ(x) =
∫ x
−∞ φ(u)du,

the cumulative normal, ux = [2n{xλx − K(λx)}]1/2sgn(λx), and vx =
λx{nK ′′(λx)}1/2. Since we are only concerned with tail probabilities
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we need not pay attention to what occurs around the mean. If we do
wish to consider Fs(x), evaluated at the mean, the approximation is
slightly modified and the reader is referred to Daniels (1987).

2.10 Stochastic processes

We define a stochastic process to be a collection of random variables
indexed by t ∈ T . We write these as X(t) and take t to be fixed. If the
set T has only a finite or a countably infinite number of elements then
X(t) is referred to as a discrete-time process. We will be most inter-
ested in continuous-time processes. In applications we can standardize
by the greatest value of t in the set T that can be observed, and so
we usually take sup{t : t ∈ T} = 1. We also take inf{t : t ∈ T} = 0.
We will be especially interested in observations on any given process
between 0 and t. We call this the sample path.

Independent increments and stationarity

Consider some partition of (0,1) in which 0 = t0 < t1 < t2 < · · · <
tn = 1. If the set of random variables X(ti) − X(ti−1) i = 1, . . . , n are
independent then the stochastic process X(t) is said to have indepen-
dent increments. Another important property is that of stationarity.
We say that a stochastic process X(t) has stationary increments if
X(s + t)− X(s) has the same distribution for all values of s. Station-
arity indicates, in as much as probabilistic properties are concerned,
that when we look forward, from the point s, a distance t, the only rel-
evant quantity is how far forward t we look. Our starting point itself
is irrelevant. As we progress through time, everything that we have
learned is summarized by the current position. It can also be of value
to consider a process with a slighter weaker property, the so-called
second-order stationarity. Rather than insist on a requirement for the
whole distribution we limit our attention to the first two moments and
the covariance between X(s + t) and X(s) which depends only upon
|t|. Our main focus is on Gaussian processes which, when they have
the property of second-order stationarity, will in consequence be sta-
tionary processes. Also, simple transformations can produce stationary
processes from nonstationary ones, an example being the transforma-
tion of the Brownian bridge into an Ornstein-Uhlenbeck process.
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Gaussian processes

If for every partition of (0,1), 0 = t0 < t1 < t2 < · · · < tn = 1, the set
of random variables X(t1), . . . , X(tn) has a multivariate normal distri-
bution, then the process X(t) is called a Gaussian process. Brownian
motion, described below, can be thought of as simply a standardized
Gaussian process. A Gaussian process being uniquely determined by
the multivariate means and covariances it follows that such a process
will have the property of stationarity if for any pair (s, t : t > s),
Cov {X(s), X(t)} depends only on (t − s). In practical studies we will
often deal with sums indexed by t and the usual central limit theorem
will often underlie the construction of Gaussian processes.

2.11 Brownian motion

Consider a stochastic process X(t) on (0, 1) with the following three
properties:

1. X(0) = 0, i.e., at time t = 0 the starting value of X is fixed at 0.

2. X(t) , t ∈ (0, 1) has independent stationary increments.

3. At each t ∈ (0, 1) the distribution of X(t) is N (0, t).

This simple set of conditions completely describes a uniquely deter-
mined stochastic process called Brownian motion. It is also called the
Wiener process or Wiener measure. It has many important properties
and is of fundamental interest as a limiting process for a large class of
sums of random variables on the interval (0,1). An important property
is described in Theorem 2.13 below. Firstly we make an attempt to
describe just what a single realization of such a process might look
like. Later we will recognize the same process as being the limit of
a sum of independent random contributions. The process is contin-
uous and so, approximating it by any drawing, there cannot be any
gaps. At the same time, in a sense that can be made more mathemati-
cally precise, the process is infinitely jumpy. Nowhere does a derivative
exist. Figure 2.1 illustrates this via a simulated approximation. The
right-hand figure is obtained from the left-hand one by homing in on
the small interval (0.20, 0.21), subtracting off the value observed at
t = 0.20, and rescaling to the interval (0,1). The point we are trying
to make is that the resulting process itself looks like (and indeed is) a
realization of Brownian motion. Theoretically, this could be repeated
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Figure 2.1: Two simulated independent realizations of a Brownian mo-
tion process.

without limit which allows us to understand in some way how infi-
nitely jumpy is the process. In practical examples we can only ever
approximate the process by linearly connecting up adjacent simulated
points.

Theorem 2.13 Conditioning on a given path we have

Pr {X(t + s) > x|X(s) = xs, X(u), 0 ≤ u < s}
= Pr {X(t + s) > x|X(s) = xs.}

So, when looking ahead from time point s to time point t+ s, the pre-
vious history indicating how we arrived at s is not relevant. The only
thing that matters is the point at which we find ourselves at time
point s. This is referred to as the Markov property. The joint density
of X(t1), . . . , X(tn) can be written as

f(x1, x2, . . . , xn) = ft1(x1)ft1−t2(x2 − x1) · · · ftn−tn−1(xn − xn−1)

This follows from the independent stationary increment condition. A
consequence of the above result is that we can readily evaluate the
conditional distribution of X(s) given some future value X(t) (t >
s). Applying the definition for conditional probability we have the
following.

Corollary 2.10 The conditional distribution of X(s) given X(t) (t >
s) is normal with a mean and a variance given by,

E{X(s)|X(t) = w} = ws/t , Var {X(s)|X(t) = w} = s(t − s)/t .
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This result helps provide insight into another useful process, the
Brownian bridge described below. Other important processes arise
as simple transformations of Brownian motion. The most obvious to
consider is where we have a Gaussian process satisfying conditions
(1) and (2) for Brownian motion but where, instead of the variance
increasing linearly, i.e., VarX(t) = t, the variance increases either
too quickly or too slowly so that VarX(t) = φ(t) where φ(·) is some
monotonic increasing function of t. Then we can transform the time
axis using φ(·) to produce a process satisfying all three conditions for
Brownian motion. Consider also the transformation

V (t) = exp(−αt/2)X{exp(αt)}

where X(t) is Brownian motion. This is the Ornstein-Uhlenbeck
process. It is readily seen that:

Corollary 2.11 The process V (t) is a Gaussian process in which
E{V (t)} = 0 and Cov {V (t), V (s)} = exp{−α(t − s)/2}.

Time-transformed Brownian motion

Consider a process, Xψ(t), defined via the following three conditions,
for some continuous ψ such that, ψ(t′) > ψ(t) (t′ > t); (1) Xψ(0) = 0
(2) Xψ(t) , t ∈ (0, 1) has independent stationary increments; (3) at
each t ∈ (0, 1) the distribution of Xψ(t) is N{0, ψ(t)}. The usual
Brownian motion described above is exactly this process when ψ(t) =
t. However, in view of the continuity and monotonicity of ψ, there
exists an inverse function ψ−1 such that ψ−1{ψ(t)} = t. Clearly, we
can transform the process Xψ(t) by multiplying, at each t, by

√
t/ψ(t),

and, defining
√

0/ψ(0) = 0. The resulting process we can call X(t) and
it is readily seen that this process is standard Brownian motion. Thus,
the only crucial assumption in Brownian motion is that of independent
increments. Once we can assert this to be the case, it is only a question
of scale and location to obtain standard Brownian motion.

Brownian bridge

Let W (t) be Brownian motion. We know that W (0) = 0. We also know
that with probability one the process W (t) will return at some point to
the origin. Let’s choose a point, and in particular the point t = 1 and
consider the conditional process W 0(t), defined to be Brownian motion
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Figure 2.2: Two transformations of simulated Brownian motion by
conditioning on W (1). The first has W (1) = 0 (Brownian bridge); the
second has W (1) = 0.5.

conditioned by the fact that W (1) = 0. For small t this process will
look very much like the Brownian motion from which it is derived. As
t goes to one the process is pulled back to the origin since at t = 1 we
have that W 0(1) = 0 and W (t) is continuous. Also W 0(0) = W (0) = 0.
Such a process is called tied down Brownian motion or the Brownian
bridge. Figure 2.2 illustrates a realization of a Brownian bridge and a
realizatin of a Brownian motion constrained to assume a value other
than zero at t = 1. We will see below that realizations of a Brownian
bridge can be viewed as linearly transformed realizations of Brownian
motion itself, and vice versa. From the results of above the section
we can investigate the properties of W 0(t). The process is a Gaussian
process so we only need consider the mean and covariance function for
the process to be completely determined. We have

E{W (s)|W (1) = 0} = 0 for s < t .

This comes immediately from the above result. Next we have:

Theorem 2.14

Cov (W (s), W (t)|W (1) = 0) = s(1 − t). (2.24)

This provides a simple definition of the Brownian bridge as being a
Gaussian process having mean zero and covariance function s(1 −
t) , s < t. An alternative way of constructing the Brownian bridge
is to consider the process defined as

W 0(t) = W (t) − tW (1) , 0 ≤ t ≤ 1.
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Clearly W 0(t) is a Gaussian process. We see that

E{W (0)} = W (0) = E{W (1)} = W (1) = E{W (t)} = 0

so that the only remaining question is the covariance function for the
process to be completely and uniquely determined. The following corol-
lary is all we need.

Corollary 2.12 The covariance function for the process defined as
W 0(t) is,

Cov {W 0(s), W 0(t)} = s(1 − t) s < t.

This is the covariance function for the Brownian bridge developed
above and, by uniqueness, the process is therefore itself the Brown-
ian bridge. Such a covariance function is characteristic of many ob-
served phenomena. The covariance decreases linearly with distance
from s. As for Brownian motion, should the covariance function de-
crease monotonically rather than linearly, then a suitable transforma-
tion of the time scale enables us to write the covariance in this form.
At t = s we recover the usual binomial expression s(1 − s).

Notice that not only can we go from Brownian motion to a Brown-
ian bridge via the simple transformation

W 0(t) = W (t) − tW (1) , 0 ≤ t ≤ 1 ,

but the converse is also true, i.e., we can recover Brownian motion,
X(t), from the Brownian bridge, Z(t), via the transformation

X(t) = (t + 1)Z
(

t

t + 1

)

. (2.25)

To see this, first note that, assuming Z(t) to be a Brownian bridge,
then X(t) is a Gaussian process. It will be completely determined by
its covariance process Cov {X(s), X(t)}. All we then require is the
following lemma:

Lemma 2.8 For the process defined in (2.25), Cov {X(s),X(t)} = s.

The three processes: Brownian motion, the Brownian bridge, and the
Ornstein-Uhlenbeck are then closely related and are those used in the
majority of applications. Two further related processes are also of use
in our particular applications: integrated Brownian motion and re-
flected Brownian motion.
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Integrated Brownian motion

The process Z(t) defined by Z(t) =
∫ t
0 W (u)du, where W (t) is Brown-

ian motion is called integrated Brownian motion. Note that dZ(t)/dt =
W (t) so that, for example, in the context of a model of interest, should
we be able to construct a process converging in distribution to a process
equivalent to Brownian motion, then the integrated process will con-
verge in distribution to a process equivalent to integrated Brownian
motion. We can see (by interchanging limits) that Z(t) can be viewed
as the limit of a sum of Gaussian processes and is therefore Gaussian.
Its nature is completely determined by its mean and covariance func-
tion. We have that

E{Z(t)} = E

{∫ t

0
W (u)du

}

=
∫ t

0
E{W (u)}du = 0. (2.26)

For s < t we have:

Lemma 2.9 The covariance function for Z(s) and Z(t) is

Cov {Z(s), Z(t)} = s2 (t/2 − s/6) . (2.27)

Lemma 2.10 The covariance function for Z(t) and W (t) is

Cov {Z(t), W (t)} = t2/2. (2.28)

For a model in which inference derives from cumulative sums, this
would provide a way of examining how reasonable are the underlying
assumptions if repetitions are available. Repetitions can be obtained
by bootstrap resampling if only a single observed process is available.
Having standardized, a plot of the log-covariance function between the
process and the integrated process against log-time ought be linear
with slope of two and intercept of minus log 2 assuming that model
assumptions hold.

Reflected Brownian motion

Suppose we choose some positive value r and then define the process
Wr(t) as a function of Brownian motion, W (t), in the following way:
If W (t) < r then Wr(t) = W (t). If W (t) ≥ r then Wr(t) = 2r −W (t).
We have:

Lemma 2.11 Wr(t) is a Gaussian process, EWr(t) = 0, Cov{Wr(s),
Wr(t)} = s when s < t.
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Thus, Wr(t) is also Brownian motion. Choosing r to be negative and
defining Wr(t) so that, when W (t) > r then Wr(t) = W (t). If W (t) ≤ r
then Wr(t) = 2r − W (t). accordingly we have the same result. The
process Wr(t) coincides exactly with W (t) until such a time as a bar-
rier is reached. We can imagine this barrier as a mirror, and beyond
the barrier the process Wr(t) is a simple reflection of W (t). The in-
teresting thing is that the resulting process is itself Brownian motion.
One way of conceptualizing the idea is to imagine a large number of
realizations of a completed Brownian motion process sampled indepen-
dently. Imagine then these same realizations with a reflection applied.
Then, whatever the point of reflection, if we consider the two collected
sets of realizations, our overall impression of the behavior of the two
processes will be the same. The value of this construction is to be seen
in situations where, at some point in time, corresponding to some ex-
pected point of reflection under a hypothesis of drift, the drift changes
direction. Under the hypothesis of Brownian motion, both Brownian
motion, and Brownian motion reflected at some point, will look alike
and will obey the same probability laws. Under an alternative hypoth-
esis of drift however (see below), the behaviors will look quite different.
This observation enables a simple construction with which to address
the problem of crossing hazards.

Maximum of a Brownian motion

A useful further result can be immediately obtained from the preced-
ing one dealing with reflected Brownian motion. Suppose that W (t)
is a Brownian motion. We might wish to consider the process M(t) =
supu∈(0,t) W (u), which is the greatest value obtained by the process
W (u) in the interval (0, t). The greatest absolute distance is also of
interest but, by symmetry arguments, this can be obtained immedi-
ately from the distribution of M(t). Another related question, useful
in interim analyzes, is the distribution of W (t) given the maximum
M(t) obtained up until that time point. We have the following:

Lemma 2.12 If W (t) is standard Brownian motion and M(t) the
maximum value attained on the interval (0, t), i.e., M(t) = supu∈(0,t)

W (u), then
Pr {M(t) > a} = 2 Pr {W (t) > a}.

This is a simple and elegant result and enables us to make simultane-
ous inference very readily. Sometimes, when using a Brownian motion
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approximation for a process, we may want to, for example, describe
an approximate confidence interval for the whole process rather than
just a confidence interval at a single point t. In such a case the above
result comes into play immediately. The joint distribution is equally
simple and we make use of the following.

Lemma 2.13 If W (t) is standard Brownian motion and M(t) the
maximum value attained on the interval (0, t), i.e., M(t) = supu∈(0,t)

W (u), then

Pr {W (t) < a − b , M(t) > a} = Pr {W (t) > a + b}.

The conditional distribution Pr {W (t) < a− b |M(t) > a} can then be
derived immediately by using the results of the two lemmas.

Brownian motion with drift

We will see that simple Brownian motion provides a good model for
describing score statistics, or estimating equations, once standardized.
This is because we can visualize these sums as approximating a limiting
process arising from summing increments, for which the expected value
is equal to zero. The setting in which we study such sums is typically
that of evaluating some null hypothesis, often one of some given effect,
H0 : β = β0, but sometimes a less obvious one, in the goodness-of-fit
context, for example, whereby we can have, H0 : β(t) = β̂. Almost
invariably, when we consider a null hypothesis, we have an alternative
in mind, frequently a local or first alternative to the null. For a null
hypothesis of Brownian motion, a natural and immediate alternative
is that of Brownian motion with drift. Consider then the stochastic
process X(t) defined by

X(t) = W (t) + µt

where W (t) is Brownian motion. We can immediately see that
E{X(t)} = µt and Var {X(t)} = t As for Brownian motion Cov {X(s),
X(t)} = s , s < t. Alternatively we can define the process in a way
analagous to our definition for Brownian motion as a process having
the following three properties:

1. X(0) = 0.

2. X(t) , t ∈ (0, 1) has independent stationary increments.

3. At each t ∈ (0, 1), X(t) is N (µt, t).
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Clearly, if X(t) is Brownian motion with drift parameter µ, then the
process X(t) − µt is standard Brownian motion. Also, for the more
common situation in which the mean may change non-linearly with
time, provided the increments are independent, we can always con-
struct a standard Brownian motion by first subtracting the mean at
time t, then transforming the timescale in order to achieve a linearly
increasing variance.

Probability results for Brownian motion

There are a number of well-established and useful results for Brown-
ian motion and related processes. The arcsine law can be helpful in
comparing processes. Defining X+(t) to be the time elapsed from the
origin that the Brownian process remains positive, i.e., sup{t : X(s) >
0 : 0 < s < t} then Pr (X+ < x) = (2/π) sin−1 √x This law can
be helpful in comparing processes and also in examining underlying
hypotheses. For the Brownian bridge the largest distance from the ori-
gin in absolute value has a known distribution given in a theorem of
Kolmogorov:

Pr
{

sup
t

|W0(t)| ≤ α

}

→1−2
∞∑

k=1

(−1)k+1 exp(−2k2α2), α≥0. (2.29)

The sum can be seen to be convergent since this is an alternating
sign series in which the kth term goes to zero. Furthermore, the error
in ignoring all terms higher than the nth is less, in absolute value,
than the size of the (n + 1)th term. Given that the variance of W0(t)
depends on t it is also of interest to study the standardized distribution
B0(t) = W0(t)/

√
t(1 − t). This is, in fact, the Ornstein-Uhlenbeck

process. Simple results for the supremum of this are not possible since
the process becomes unbounded at t = 0 and t = 1. Nonetheless, if
we are prepared to reduce the interval from (0, 1) to (ε1, ε2) where
ε1 > 0 and ε2 < 1 then we have an approximation due to Miller and
Siegmund (1982):

Pr
{

sup
t

|B0(t)| ≥ α

}

≈ 4φ(α)
α

+ φ(α)
(

α − 1
α

)

log
{

ε2(1 − ε1)
ε1(1 − ε2)

}

, (2.30)

where φ(x) denotes the standard normal density. This enables us to
construct confidence intervals for a bridged process with limits them-
selves going to zero at the endpoints. To obtain these we use the fact
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that Pr {W0(t) > α} = Pr {
√

t(1 − t)B0(t) > α}. For most practical
purposes though it is good enough to work with Equation 2.29 and
approximate the infinite sum by curtailing summation for values of k
greater than 2.

2.12 Counting processes and martingales

Although not automatically our first choice for inference, the use of
counting processes and martingales for inference in survival problems
currently dominates this subject area. We will look at inference based
on counting processes and martingales in Section 3.6, for some general
results, and in Chapter 10 for the specific application to the propor-
tional hazards model. In this chapter we aim to provide some under-
standing to the probability structure upon which the theory is based.

Martingales and stochastic integrals

Recalling the discussion of Section 2.3 and that, for a bounded func-
tion H(x) and the empirical distribution function Fn(x), we have, by
virtue of the Helly-Bray theorem, that

∫
H(x)dFn(x) converges in dis-

tribution to
∫

H(x)dF (x). If we define M(x) = Fn(x) − F (x) and
change the order of integration, i.e., move the expectation operator,
E, outside the integral, then

E

{∫

H(x)dM(x)
}

= 0.

This expression is worth dwelling upon. We think of E as being an inte-
gral operator or as defining some property of a random variable, specif-
ically a measure of location. The random variable of relevance is not
immediately apparent but can be seen to be Fn(x), an n−dimensional
function from the observations to the interval [0, 1]. We can suppose,
at least initially, the functions F (x) and H(x) to be fixed and known.
Our conceptual model allows the possibility of being able to obtain
repetitions of the experiment, each time taking n independent obser-
vations. Thus, for some fixed given x, the value of Fn(x) will generally
vary from one experiment to the next. We view x as an argument to
a function, and Fn(x) as being random having a distribution studied
below in Section 3.3. Recalling Section 2.3 on integration, note that
we can rewrite the above equation as:

E lim
max ∆i→0

∑
{M(xi) − M(xi−1)}H(xi−1) = 0, (2.31)
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where ∆i = xi − xi−1 > 0 and where, as described in Section 2.3 the
summation is understood to be over an increasing partition in which
∆i > 0 and max ∆i goes to zero. Now, changing the order of taking
limits, the above expression becomes

lim
max ∆i→0

∑
E{[M(xi) − M(xi−1)]H(xi−1)} = 0, (2.32)

a result which looks simple enough but that has a lot of force when
each of the infinite number of expectations can be readily evaluated.
Let’s view Equation 2.32 in a different light, one that highlights the
sequential and ordered nature of the partition. Rather than focus on
the collection of M(xi) and H(xi), we can focus our attention on the
increments M(xi) − M(xi−1) themselves, the increments being multi-
plied by H(xi−1), and, rather than work with the overall expectation
implied by the operator E, we will set up a sequence of conditional ex-
pectations. Also, for greater clarity, we will omit the term limmax ∆i→0

altogether. We will put it back when it suits us. This lightens the no-
tation and helps to make certain ideas more transparent. Later, we
will equate the effect of adding back in the term limmax ∆i→0 to that of
replacing finite differences by infinitesimal differences. Consider then

U =
∑

{M(xi) − M(xi−1)}H(xi−1) (2.33)

and, unlike the preceding two equations, we are able to greatly re-
lax the requirement that H(x) be a known function or that M(x)
be restricted to being the difference between the empirical distribu-
tion function and the distribution function. By sequential condition-
ing upon F(xi) where F(xi) are increasing sequence of sets denoting
observations on M(x) and H(x), for all values of x less than or equal
to xi, we can derive results of wide applicability. In particular, we can
now take M(x) and H(x) to be stochastic processes. Some restrictions
are still needed for M(x), in particular that the incremental means
and variances exist. We will suppose that

E{M(xi) − M(xi−1)|F(xi−1)} = 0 , (2.34)

in words, when given F(xi−1), the quantity M(xi−1) is fixed and known
and the expected size of the increment is zero. This is not a strong
requirement and only supposes the existence of the mean since, should
the expected size of the increment be other than zero, then we can
subtract this difference to recover the desired property. Furthermore,
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given F(x), the quantity H(x) is fixed. The trick is then to exploit
the device of double expectation whereby for events, A and B, it is
always true that E(A) = EE(A|B). In the context of this expression,
B = F(xi−1), leading to

E(U) =
∑

H(xi−1)E{M(xi) − M(xi−1)|F(xi−1)} = 0 (2.35)

and, under the assumption that the increments are uncorrelated we
have the variance is the sum of the variance of each component to the
sum. Thus

Var(U) =
∑

E{H2(xi−1)[M(xi) − M(xi−1)]2|F(xi−1)}. (2.36)

In order to keep the presentation uncluttered we use a single operator
E in the above expressions, but there are some subtleties that ought
not go unremarked. For instance, in Equation 2.36, the inner expec-
tation is taken with respect to repetitions over all possible outcomes
in which the set F(xi−1) remains unchanged, whereas the outer ex-
pectation is taken with respect to all possible repetitions. In Equation
2.35 the outer expectation, taken with respect to the distribution of
all potential realizations of all the sets F(xi−1), is not written and is
necessarily zero since all of the inner expectations are zero. The anal-
ogous device to double expectation for the variance is not so simple
since Var(Y ) = E Var(Y |Z) + VarE(Y |Z). Applying this we have

Var {M(xi) − M(xi−1)} = E Var{M(xi) − M(xi−1)|F(xi−1)} (2.37)

since Var E{M(xi) − M(xi−1)|F(xi−1)} is equal to zero, this being
the case because each term is itself equal to the constant zero. The
first term also requires a little thought, the outer expectation indi-
cated by E being taken with respect to the distribution of F(xi−1),
i.e., all the conditional distributions M(x) and H(x) where x ≤ xi−1.
The next key point arises through the sequential nesting. These outer
expectations, taken with respect to the distribution of F(xi−1) are the
same as those taken with respect to the distribution of any F(x) for
which x ≥ xi−1. This is an immediate consequence of the fact that
the lower-dimensional distribution results from integrating out all the
additional terms in the higher-dimensional distribution. Thus, if xmax
is the greatest value of x for which observations are made then we can
consider that all of these outer expectations are taken with respect
to F(xmax). Each time that we condition upon F(xi−1) we will treat
H(xi−1) as a fixed constant and so it can be simply squared and moved
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outside the inner expectation. It is still governed by the outer expecta-
tion which, for all elements of the sum, we will take to be with respect
to the distribution of F(xmax). Equation 2.36 then follows.

Making a normal approximation for U , and from the theory of
estimating equations, given any set of observations, that U depends
monotonically on some parameter β, then it is very straightforward
to set up hypothesis tests for β = β0. Many situations, including that
of proportional hazards regression, lead to estimating equations of the
form of U. The above set-up, which is further developed below in a
continuous form, i.e., after having “added in” the term limmax ∆i→0,
applies very broadly. We need the concept of a process, usually indexed
by time t, the conditional means and variances of the increments, given
the accumulated information up until time t.

We have restricted our attention here to the Riemann-Stieltjes de-
finition of the integral. The broader Lebesgue definition allows the
inclusion of subsets of t tolerating serious violations of our conditions
such as conditional means and variances not existing. The conditioning
sets can be also very much more involved. Only in a very small number
of applications has this extra generality been exploited. Given that it
considerably obscures the main ideas to all but those well steeled in
measure theory, it seems preferable to avoid it altogether. Also avoided
here is the martingale central limit theorem. This theorem is much
quoted in the survival analysis context and, again, since there are so
few applications in which the needed large sample normality cannot be
obtained via more standard central limit theorems, a lack of knowledge
of this theorem will not handicap the reader.

Counting processes

The above discussion started off with some consideration of the empir-
ical cumulative distribution function Fn(t) which is discussed in much
more detail in Section 3.5. Let’s consider the function N(t) = {nFn(t) :
0 ≤ t ≤ 1}. We can view this as a stochastic process, indexed by time
t so that, given any t we can consider N(t) to be a random variable
taking values from 0 to n. We include here a restriction that we gen-
erally make which is that time has some upper limit, without loss of
generality, we call this 1. This restriction can easily be avoided but
it implies no practical constraint and is often convenient in practical
applications. We can broaden the definition of N(t) beyond that of
nFn(t) and we have:
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Definition 2.4 A counting process N = {N(t) : 0 ≤ t ≤ 1} is a
stochastic process that can be thought of as counting the occurrences
(as time t proceeds) of certain type of events. We suppose these events
occur singly.

Very often N(t) can be expressed as the sum of n individual counting
processes, Ni(t), each one counting no more than a single event. In
this case Ni(t) is a simple step function, taking the value zero at t = 0
and jumping to the value one at the time of an event. The realizations
of N(t) are integer-valued step functions with jumps of size +1 only.
These functions are right-continuous and N(t) is the (random) number
of events in the time interval [0, t]. We associate with the stochastic
process N(t) an intensity function α(t). The intensity function serves
the purpose of standardizing the increments to have zero mean. In
order to better grasp what is happening here, the reader might look
back to Equation 2.34 and the two sentences following that equation.
The mean is not determined in advance but depends upon Ft− where,
in a continuous framework, Ft− is to Ft what F(xi−1) is to F(xi). In
technical terms:

Definition 2.5 A filtration, Ft, is an increasing right continuous fam-
ily of sub-sigma algebras.

This definition may not be very transparent to those unfamiliar with
the requirement of sigma additivity for probability spaces and there
is no real need to expand on it here. The requirement is a theoreti-
cal one which imposes a mathematical restriction on the size, in an
infinite sense, of the set of subsets of Ft. The restriction guarantees
that the probability we can associate with any infinite sum of disjoint
sets is simply the sum of the probabilities associated with those sets
composing the sum. For our purposes, the only key idea of impor-
tance is that Ft− is a set containing all the accumulated information
(hence “increasing”) on all processes contained in the past up until but
not including the time point t (hence “right continuous”). We write,
α = {α(t) : 0 ≤ t ≤ 1} where

α(t)dt = Pr {N(t) jumps in [ t, t + dt)|Ft−} = E{dN(t)|Ft−},

the equality being understood in an infinitesimal sense, i.e., the func-
tional part of the left-hand side, α(t), is the limit of the right-hand side
divided by dt > 0 as dt goes to zero. In the chapter on survival analysis
we will see that the hazard function, λ(t), expressible as the ratio of the
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density, f(t), to the survivorship function, S(t), i.e., f(t)/S(t), can be
expressed in fundamental terms by first letting Y (t) = I(T ≥ t). Un-
derstanding, once again, the equality sign as described in the previous
sentences but one, we have

λ(t)dt = Pr {N(t) jumps in [ t, t + dt)|Y (t) = 1}= E{dN(t)|Y (t) = 1}.

It is instructive to compare the above definitions of α(t) and λ(t). The
first definition is the more general since, choosing the sets Ft to be
defined from the at-risk function Y (t) when it takes the value one,
enables the first definition to reduce to a definition equivalent to the
second. The difference is an important one in that if we do not provide
a value for I(T ≥ t) then this is a (0, 1) random variable and, in
consequence, α(t) is a (0, λ(t)) random variable. For this particular
case we can express this idea succinctly via the formula

α(t)dt = Y (t)λ(t)dt. (2.38)

Replacing Y (t) by a more general “at risk” indicator variable will allow
for great flexibility, including the ability to obtain a simple expression
for the intensity in the presence of censoring as well as the ability
to take on-board multistate problems where the transitions are not
simply from alive to dead but from, say, state j to state k summarized
via αjk(t)dt = Yjk(t)λjk(t)dt in which Yjk(t) is left continuous and
therefore equal to the limit Yjk(t − ε) as ε > 0 goes to zero through
positive values, an indicator variable taking the value one if the subject
is in state j and available to make a transition to state k at time t− ε
as ε → 0. The hazards λjk(t) are known in advance, i.e., at t = 0
for all t, whereas the αjk(t) are random viewed from time point s
where s < t, with the subtle condition of left continuity which leads to
the notion of “predictability” described below. The idea of sequential
standardization, the repeated subtraction of the mean, that leans on
the evaluation of intensities, can only work when the mean exists. This
requires a further technical property, that of being “adapted.” We say

Definition 2.6 A stochastic process X(t) is said to be adapted to the
filtration Ft if X(t) is a random variable with respect to Ft.

Once again the definition is not particularly transparent to nonprob-
abilists and the reader need not be over-concerned since it will not be
referred to here apart from in connection with the important concept
of a predictable process. The basic idea is that the relevant quantities
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upon which we aim to use the tools of probability modeling should all
be contained in Ft. If any probability statement we wish to construct
concerning X(t) cannot be made using the set Ft but requires the set
Ft+u, where u > 0, then X(t) is not adapted to Ft. In our context
just about all of the stochastic processes that are of interest to us are
adapted and so this need not be a concern. A related property, of great
importance, and which also will hold for all of those processes we focus
attention on, is that of predictability. We have

Definition 2.7 A real-valued stochastic process, H(t), that is left con-
tinuous and adapted to the filtration Ft is called a predictable process.

Since H(t) is adapted to Ft it is a random variable with respect to Ft.
Since the process is left continuous it is also adapted to Ft−. Therefore,
whenever we condition upon Ft−, H(t) is simply a fixed and known
constant. This is the real sense of the term “predictable” and, in prac-
tice, the property is a very useful one. It is frequently encountered in
the probabilistic context upon which a great number of tests are con-
structed. Counting processes can be defined in many different ways and
such a formulation allows for a great deal of flexibility. Suppose for in-
stance that we have events of type 1 and events of type 2, indicated
by N1(t) and N2(t) respectively. Then N(t) = N1(t) + N2(t) counts
the occurrences of events of either type. For this counting process we
have

α(t)dt = P (N(t) jumps in [ t, t + dt)|Ft−),

i.e., the same as P (N1(t) or N2(t) jump in [ t, t + dt)|Ft−) and, if as is
reasonable in the great majority of applications, where, we assume to
be negligible the probability of seeing events occurring simultaneously
compared to seeing them occur singly, then

α(t)dt = E{dN1(t) + dN2(t)|Ft−} = α1(t) + α2(t).

This highlights a nice linearity property of intensities, not shared by
probabilities themselves. For example, if we consider a group of n sub-
jects and n individual counting processes Ni(t), then the intensity
function, α(t), for the occurrence of an event, regardless of individual,
is simply

∑
αi(t). This result does not require independence of the

processes, only that we can consider as negligible the intensities we
might associate with simultaneous events.
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Another counting process of great interest in survival applications
concerns competing risks. Suppose there are two types of event but
that they cannot both be observed. The most common example of
this is right censoring where, once the censoring event has occurred,
it is no longer possible to make observations on Ni(t). This is dis-
cussed more fully in the following chapters and we limit ourselves here
to the observation that Ni(t) depends on more than one variable. In
the absence of further assumptions, we are not able to determine the
intensity function, but if we are prepared to assume that the cen-
soring mechanism is independent of the failure mechanism, i.e., that
Pr (Ti > t|Ci > c) = Pr (Ti > t), then a simple result is available.

Theorem 2.15 Let the counting process, Ni(t), depend on two inde-
pendent and positive random variables, Ti and Ci such that Ni(t) =
I{Ti ≤ t, Ti ≤ Ci}. Let Xi = min(Ti, Ci), Yi(t) = I(Xi ≥ t); then Ni(t)
has intensity process

αi(t)dt = Yi(t)λi(t)dt. (2.39)

The counting process, Ni(t), is one of great interest to us since the
response variable in most studies will be of such a form, i.e., an ob-
servation when the event of interest occurs but an observation that is
only possible when the censoring variable is greater than the failure
variable. Also, when we study a heterogeneous group, our principal
focus in this book, the theorem still holds in a modified form. Thus, if
we can assume that Pr (Ti > t|Ci > c, Z = z) = Pr (Ti > t|Z = z), we
then have:

Theorem 2.16 Let the counting processes, Ni(t), depend on two in-
dependent and positive random variables, Ti and Ci, as well as Z such
that

Ni(t) = I{Ti ≤ t, Ti ≤ Ci, Z = z}. (2.40)

Then the intensity process for Ni(t) can be written as αi(t, z)dt =
Yi(t)λi(t, z)dt.

The assumption needed for Theorem 2.16, known as the conditional
independence assumption, is weaker than that needed for 2.15 in that
the latter theorem contains the former as a special case. Note that the
stochastic processes Yi(t) and αi(t) are left continuous and adapted to
Ft. They are therefore predictable stochastic processes, which means
that, given Ft−, we treat Yi(t), αi(t) and, assuming that Z(t) is pre-
dictable, αi(t, z) as fixed constants.
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2.13 Exercises and class projects

1. Use a simple sketch to informally demonstrate the mean value the-
orem.

2. Newton-Raphson iteration provides sequentially updated estimates
to the solution to the equation f(x0) = 0. At the nth step, we write
xn+1 = xn − f(xn)/f ′(xn) and claim that xn converges (in the ana-
lytical sense) to x0. Use the mean value theorem and, again, a simple
sketch to show this. Intuitively, which conditions will lead to conver-
gence and which ones can lead to failure of the algorithm.

3. Let g(x) take the value 0 for −∞ < x ≤ 0 : 1/2 for 0 < x ≤ 1 ;
1 for 1 < x ≤ 2 : and 0 otherwise. Let f(x) = x2 + 2. Evaluate the
Riemann-Stieltjes integral of f(x) with respect to g(x) over the real
line.

4. Note that
∑n

i=1 i = n(n + 1)/2. Describe a function such that a
Riemann-Stieltjes integral of it is equal to n(n + 1)/2. Viewing inte-
gration an an area under a curve, conclude that this integral converges
to n2 as n becomes large.

5. Suppose that in the Helly-Bray theorem for
∫

h(x)dFn(x), the func-
tion h(x) is unbounded. Break the integral into components over the
real line. For regions where h(x) is bounded the theorem holds. For the
other regions obtain conditions that would lead to the result holding
generally.

6. Prove the probability integral transformation by finding the moment-
generating function of the random variable Y = F (X) where X has
the continuous cumulative distribution function F (x) and a moment-
generating function that exists.

7. If X is a continuous random variable with probability density func-
tion f(x) = 2(1 − x) , 0 < x < 1, find that transformation Y = ψ(X)
such that the random variable Y has the uniform distribution over
(0,2).

8. The order statistics for a random sample of size n from a discrete
distribution are defined as in the continuous case except that now we
have X(1) ≤ X(2) ≤ · · · ≤ X(n). Suppose a random sample of size 5 is
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taken with replacement from the discrete distribution f(x) = 1/6 for
x = 1, 2, . . . , 6. Find the probability mass function of X(1), the smallest
order statistic.

9. Ten points are chosen randomly and independently on the interval
(0,1). Find (a) the probability that the point nearest 1 exceeds 0.8, (b)
the number c such that the probability is 0.4 that the point nearest
zero will exceed c.

10. Find the expected value of the largest order statistic in a random
sample of size 3 from (a) the exponential distribution f(x) = exp(−x)
for x > 0, (b) the standard normal distribution.

11. Find the probability that the range of a random sample of size
n from the population f(x) = 2e−2x for x ≥ 0 does not exceed
the value 4.

12. Approximate the mean and variance of (a) the median of a sample
of size 13 from a normal distribution with mean 2 and variance 9,
(b) the fifth-order statistic of a random sample of size 15 from the
standard exponential distribution.

13. Simulate 100 observations from a uniform distribution. Do the
same for an exponential, Weibull and log-logistic distribution with
different parameters. Next, generate normal and log-normal variates
by summing a small number of uniform variates. Obtain histograms.
Do the same for 5000 observations.

14. Obtain the histogram of 100 Weibull observations. Obtain the his-
togram of the logarithms of these observations. Compare this with the
histogram obtained by the empirical transformation to normality.

15. Suppose that T1, . . . , Tn are n exponential variates with parame-
ter λ. Show that, under repeated sampling, the smallest of these also
has an exponential distribution. Is the same true for the largest ob-
servation? Suppose we are only give the value of the smallest of n
observations from an exponential distribution with parameter λ. How
can this observation be used to estimate λ.
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16. Suppose that Xi i = 1, . . . , n are independent exponential variates
with parameter λ. Determine, via simple calculation, the variance of
min(X1, . . . , Xn).

17. Having some knowledge of the survival distribution governing ob-
servations we are planning to study, how might we determine an inter-
val of time to obtain with high probability a given number of failures?
How should we proceed in the presence of censoring?

18. Derive the Bienaymé-Chebyshev inequality. Describe the advan-
tages and drawbacks of using this inequality to construct confidence
intervals in a general setting.

19. Suppose that the entropy described in Equation 2.14 depends on
a parameter θ and is written Vθ(f, f). Consider Vα(f, f) as a function
of α. Show that this function is maximized when α = θ.

20. Using the device of double expectation derive Equation 2.15. Why
is this breakdown interpreted as one component corresponding to “sig-
nal” and one component corresponding to “noise.”

21. Suppose that θn converges in probability to θ and that the variance
of θn is given by ψ(θ)/n. Using Equation 2.19, find a transformation
of θn for which, at least approximately, the variance does not depend
on θ.

22. Consider a stochastic process X(t) on the interval (2, 7) with the
following properties: (a) X(0) = 2, (b) X(t) , t ∈ (2, 7) has increments
such that (c), for each t ∈ (2, 7) the distribution of X(t) is Weibull with
mean 2+λtγ . Can these increments be independent and stationary?
Can the process be described using the known results of Brownian
motion?

23. For Brownian motion, explain why the conditional distribution of
X(s) given X(t) (t > s) is normal with E{X(s)|X(t) = w} = ws/t
and Var {X(s)|X(t) = w} = s(t − s)/t. Deduce the mean and the
covariance process for the Brownian bridge.

24. The Ornstein-Uhlenbeck process can be thought of as transformed
Brownian motion in which the variance has been standardized. Explain
why this is the case.



62 CHAPTER 2. BACKGROUND: PROBABILITY

25. Reread the subsection headed “Time-transformed Brownian mo-
tion” (Section 2.11) and conclude that the only essential characteristic
underwriting the construction of Brownian motion is that of indepen-
dent increments.

26. Find the value of t ∈ (0, 1) for which the variance of a Brownian
bridge is maximized.

27. Suppose that under H0, X(t) is Brownian motion. Under H1, X(t)
is Brownian motion with drift, having drift parameter 2 as long as
X(t) < 1 and drift parameter minus 2 otherwise. Describe likely paths
for reflected Brownian motion under both H0 and H1. As a class ex-
ercise simulate ten paths under both hypotheses. Comment on the
resulting figures.



Chapter 3

Background: General
inference

3.1 Summary

We review the main theorems providing inference for sums of random
variables. The theorem of de Moivre-Laplace is a well-known special
case of the central limit theorem and helps provide the setting. Our
main interest is on sums which can be considered to be composed
of independent increments. The empirical distribution function Fn(t)
is readily seen to be a consistent estimator for F (t) at all continuity
points of F (t). However, we can also view Fn(t) as a constant number
multiplying a sum of independent Bernoulli variates and this enables
us to construct inference for F (t) on the basis of Fn(t). Such infer-
ence can then be extended to the more general context of estimating
equations. Inference for counting processes and stochastic integrals
is described since this is commonly used in this area and, addition-
ally, shares a number of features with an approach based on empirical
processes. The importance of estimating equations is stressed, in par-
ticular equations based on the method of moments and equations de-
rived from the likelihood. Resampling techniques can also be of great
value for problems in inference. Our final goal is the use of inferential
tools to construct models and so the predictive power of a model is
important. An approach to this question can be made via the idea of
explained variation or that of explained randomness. Both are dealt
with in later chapters. Here, since this does not appears to be well
known, we present an outline of explained variation in general terms,
i.e., without necessarily leaning on any specific model.

63
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3.2 Motivation

The now classical approach to dealing with inference in survival time
problems is via stochastic integrals and martingales. We recall this the-
ory here together with the main results. Our main motivation though
is to show that all of the practical problems we are ever likely to en-
counter can be attacked using very standard techniques, essentially
the central limit theorem and simple variants of it. The statistics that
we will derive can be seen quite easily to fall under the headings de-
scribed below. The statistics described there will have known large
sample distributions. We can then appeal immediately to known re-
sults from Brownian motion and other functions of Brownian motion.
Using this approach to inference is reassuring since (1) the building
blocks are elementary ones, well known to those who have followed
introductory courses on inference (this is not the case, for instance,
for the martingale central limit theorem) and (2) we obtain, as spe-
cial cases, statistics that are currently widely used, the most notable
examples being the partial likelihood score test and weighted log-rank
statistics. However, we will obtain many more statistics, all of which
can be seen to sit in a single solid framework and some of which, given
a particular situation of interest, will suggest themselves as being po-
tentially more suitable than others.

3.3 Limit theorems for sums of random
variables

The majority of statistics of interest that arise in practical applications
are directly or indirectly (e.g., after taking the logarithm to some base)
expressible as sums of random variables. It is therefore of immense
practical value that the distribution theory for such sums can, in a wide
variety of cases, be approximated by normal distributions. Moreover,
we can obtain some idea as to how well the approximation may be
expected to behave. It is also possible to refine the approximation. In
this section we review the main limit theorems applicable to sums of
random variables.

Theorem of De Moivre-Laplace

LetNn =
∑n

i=1 Xi be thenumberof successes inn independentBernoulli
trials Xi, each trial having probability of success equal to p. Then
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{Nn − np}/
√

np(1 − p) → N (0, 1)

where → means convergence in distribution. This is the oldest result
of a central limit type and is the most well known special case of the
more general result, just below, for sums of independent and identically
distributed random variables.

Central limit theorem for i.i.d. variables

LetXi , i = 1, 2, . . .beindependentrandomvariableshavingthesamedis-
tributionF (.).Weassumethat

∫
u2dF (u) < ∞.Letσ2 =

∫
u2dF (u)−µ2

where µ =
∫

udF (u). Let x̄ =
∫

udFn(u) where Fn(t) = n−1
∑n

i=1 I
(Ti ≤ t). Then the central limit theorem states that

σ
√

n(x̄ − µ) → N (0, 1).

Less formally we state that x̄ converges to a normal distribution with
mean µ and variance σ2/n. This result is extremely useful and also
quite general. For example, applying the mean value theorem, then
for g(x̄), where g(x) is a differentiable function of x, we can see, using
the same kind of informal statement, that g(x̄) converges to a normal
distribution with mean g(µ) and variance {g′(µ)}2σ2/n.

Central limit theorem for independent variables

For nonidentically distributed random variables the problem is very
much more involved. This is because of the large number of poten-
tial situations that need be considered. The most succinct solution
appeared as the condition described below. Let Xi , i = 1, 2, . . . be
independent random variables having distributions Fi(.). Let σ2

i =∫
u2dFi(u) < ∞ and µi =

∫
udFi(u). Let B2

n =
∑

σ2
i and define

∫
ε to

be an integral over the real line such that |t − µi| > εBn. Introduce
the following:

Condition 3.1 For each ε > 0,
∑

B−2
n

∫
ε(t − µi)2 → 0 , as n → ∞ If

this condition is satisfied then

nB−1
n (x̄ − n−1

∑
µi) → N (0, 1).

This condition is known as the Lindeberg condition. The statement
is an “only if” statement. Less formally we say that x̄ converges to a
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normal distribution with mean
∑

µi/n and variance B2
n/n2. The con-

dition is simply a way of formulating or expressing mathematically the
need that the sum be composed of independent “relevant” contribu-
tions. If a single term or group of terms dominate the sum such that
the remaining contributions are in some sense negligible, then our in-
tuition may tell us it would not be reasonable to anticipate the central
limit theorem to generally apply. This could happen in various ways,
in particular if there is “too much” information in the tails of the dis-
tributions, i.e., the tails are too heavy or σ2

i diminishes with increasing
i at too fast a rate. It follows from the Lindeberg condition that

B−2
n σ2

n → 0 , Bn → ∞ , as n → ∞.

It can be fairly easily shown that the condition below implies the
Lindeberg condition and provides a more ready way of evaluating
whether or not asymptotic normality obtains.

Condition 3.2 The Lindeberg condition holds if, for k > 2,

B−k
n

∑
κk → 0 as n → ∞.

Central limit theorem for dependent variables

Let Xi , i = 1, 2, . . . be a sequence of random variables having distrib-
utions Fi(.). Let σ2

i =
∫

u2dFi(u) < ∞ and µi =
∫

udFi(u). As before,
let B2

n =
∑

σ2
i . Then, under certain conditions,

nB−1
n

(
x̄ − n−1

∑
µi

)
→ N (0, 1).

As we might guess, the conditions in this case are much more in-
volved and we need to use array notation in order to express the cross
dependencies that are generated. If we take an extreme case we see
immediately why the dependencies have to be carefully considered for,
suppose Xi = αi−1Xi−1 where the αi are nonzero deterministic coeffi-
cients such that

∑n
1 αi → 1, then clearly Xn converges in distribution

to X1 which can be any chosen distribution. In rough terms, there
needs to be enough independence between the variables for the result
to hold. Describing what is meant by “enough” is important in certain
contexts, time series analysis being an example, but, since it is not
needed in this work, we do not spend any time on it here. A special
case of nonidentical distributions, of value in survival analysis, is the
following.
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Central limit theorem for weighted sums of i.i.d. variables

Let Xi , i = 1, 2, . . . be independent random variables having the same
distribution F (.). Let σ2 =

∫
u2dF (u) < ∞ and µ =

∫
udF (u). Let

ai , i = 1, . . . , n, be constants, Sn = n−1/2
∑n

i=1 ai(Xi−µ) and σ2
S(n) =

σ2
∑n

i=1 a2
i /n, then Sn/σS(n) → N (0, 1) where σS(n) = {σ2

S(n)}1/2,
whenever the following condition holds;

Condition 3.3 The coeficients ai are constants and are such that

max |ai|√∑n
j=1 a2

j

→ 0 .

Many statistics arising in nonparametric theory come under this head-
ing, e.g., linear sums of ranks. The condition is a particularly straight-
forward one to verify and leads us to conclude large sample normality
for the great majority of the commonly used rank statistics in non-
parametric theory. A related condition, which is sometimes of more
immediate applicability, can be derived as a consequence of the above
large sample result together with an application of Slutsky’s theorem.
Suppose, as before, that Xi , i = 1, 2, . . . are independent random vari-
ables having the same distribution F (.), that σ2 =

∫
u2dF (u) < ∞,

µ =
∫

udF (u) and that ai , i = 1, . . . , n, are constants. Again, let-
ting Sn = n−1/2

∑n
i=1 ai(Xi − µ) and σ2

S(n) = σ2
∑n

i=1 a2
i /n, then

Sn → N (0, σ2α2) where:

Condition 3.4 The mean of the constant coeficients ai converges and

1
n

n∑

j=1

a2
j → α2 , 0 < α2 < ∞.

The condition is useful in that it will allow us to both conclude nor-
mality for the linear combination Sn and, at the same time, provide us
with a variance for the linear combination. Weighted log-rank statistics
and score statistics under non-proportional hazards models are close
to coming under this heading. The weights in that case are not fixed
in advance but, since the weights are typically bounded and converge
to given quantities, it is relatively straightforward to put in the extra
steps to obtain large sample normality in those cases too.
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3.4 Functional Central Limit Theorem

If we limit our attention to sums of random variables, each of which
is indexed by a value t lying between 0 and 1 (we lose no generality
in practice by fixing an upper limit 1 rather than infinity), we can
obtain many useful results. The important idea here is that of the
order among the random variables indexed by t, since t will be a real
number between 0 and 1. As always the sums of interest will be finite,
sums of quantities evaluated at some finite number of time points on
the interval (0,1), and, we will appeal to known results concerning the
limiting continuous distributions, as the interval is “filled out,” as a
means to approximate the exact, but necessarily complicated, finite
sample distributions. For this reason it is helpful to begin reasoning
in terms of sums, indexed by a finite number of points, and consider
what such sums look like as the number of points increases without
limit.

Sums of i.i.d. variables on interval (0,1)

Imagine a process starting at the origin and making successive dis-
placements Xi, i = 1, . . . n, where the Xi are all independent. For every
k, where 1 ≤ k ≤ n, the total distance travelled from the origin can
be represented by Uk =

∑
i≤k Xi (random walk). The simplest way of

looking at such a process is to consider the interval (0,1) divided into
n equal nonoverlapping intervals each of size 1/n. This can only be
achieved in one way. We make observations Xi, and therefore Ui, at
the points t = i/n , i = 1, . . . , n. The increments Xi are independent.
We have E(Xi) = 0 and Var(Xi) = σ2 < ∞. In consequence we see
that E(Uk) = 0, that E(U2

k ) = kσ2 and, in view of the central limit
theorem, that E(U �

k) → 0 ,∀� odd. We make the process continuous
by linearly interpolating between the points at which Ui , i = 1, . . . , n
is defined. Note that there are much more general developments of
the limiting process than we obtain here (Brownian motion) and that
continuity can be demonstrated as a property of the limiting process.
However, it seems easier to construct the process already having con-
tinuity as a property for finite situations. This avoids technical diffi-
culties and, perhaps more importantly, helps illustrate why and how,
in practice, we can construct processes that will look like Brownian
motion. Indeed, not only will these processes look like Brownian mo-
tion, but their probabilistic behavior, of practical interest to us, can be
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accurately approximated by the known properties of Brownian motion.
Finally, just as in the standardizations of the preceding sections, we
need standardize the variance of our process. This we do by considering
the sum

U∗
k = (σ

√
n)−1Uk = (σ

√
n)−1

∑

i≤k

Xi ,

from which, letting t = k/n, we readily obtain the mean and the
variance of U∗

k as

E(U∗
k ) = (σ

√
n)−1

∑

i≤k

E(Xi) = 0 ; Var (U∗
k ) = (σ

√
n)−2kσ2 = t. (3.1)

Although this and the following section are particularly simple, the
reader should make sure that he or she has a very solid understanding
as to what is taking place. It underscores all the main ideas behind
the methods of inference that are used. An example of such a process
in which σ2 = 1 and n = 30 is shown in Figure 3.1 As for Var (U∗

k ) we
see in the same way that;

Theorem 3.1 For k < m, Cov (U∗
k , U∗

m) = t where t = k/n.

The important thing to note is that the increments are independent,
implying convergence to a Gaussian process. All we then need is the co-
variance process. Figure 3.1 and Figure 3.2 represent approximations
to Brownian motion in view of discreteness and the linear interpo-
lation. The figures indicate two realizations from the above summed
processes, and the reader is encouraged to carry out his or her own such
simulations, an easy exercise, and yet invaluable in terms of building
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Figure 3.1: Two independent simulations of sums of 30 points on in-
terval (0,1).
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Figure 3.2: Two independent simulations of sums of 500 points on
interval (0,1).

good intuition. An inspection of any small part of the curve (take, for
example, the curve between 0.30 and 0.31 where the curve is based on
less than 100 points), might easily be a continuous straight line, noth-
ing at all like the limiting process, Brownian motion. But imagine,
as very often is the case in applications, that we are only concerned
about some simple aspect of the process, for instance, the greatest ab-
solute distance travelled from the origin for the transformed process,
tied down at t = 1. With as few as 30 observations our intuition would
correctly lead us to believe that the distribution of this maximum will
be accurately approximated by the same distribution, evaluated under
the assumption of a Brownian bridge. Of course, such a statement can
be made more technically precise via use, for example, of the law of
the iterated logarithm or the use of Berry-Esseen bounds.

Sums of independent variables on (0,1)

The simple set-up of the previous section, for which the large sample
theory, described above, is well established, can be readily extended
to the non i.i.d. case. Let’s begin by relaxing the assumption that
the variances of the Xi do not depend on i. Suppose that as before
E(Xi) = 0 and let Var(Xi) = σ2

i < ∞. Then clearly the process

U∗
k = (

√
n)−1

∑

i≤k

σ−1
i Xi

will look like the process defined above. In particular, straightforward
manipulation as above shows that E(U∗

k ) = 0 and Cov (U∗
k , U∗

m) = t
where k < m and t = k/n. We allow k to increase at the same rate,
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i.e., k = nt where 0 < t < 1. As n → ∞ the number of possible values
of t, t ∈ (0, 1) also increases without limit to the set of all rationals on
this interval. We can also suppose that as k, n → ∞ ; k < n, such that
k/n = t then σ2

t converges almost everywhere to some function σ2(t).
To this set of rationals we can easily add the irrationals by, fixing t
and, for every given n, choose k to produce the closest rational to t.
We then allow n to increase without bound.

The functional central limit theorem states that the above process
goes to a limit. The limiting process is defined on the real interval.
Choosing any set of points {t1, . . . , tk} , (0 < ti < 1 , i = 1, . . . , k) then
the process U∗

t1 , U
∗
t2 , . . . , U

∗
tk

converges in distribution to the multi-
variate normal. As indicated above the covariance only depends on the
distance between points so that Cov {U∗

s , U∗
t } = s ; s < t. The basic

idea is that the increments, making up the sum U∗(t), get smaller
and smaller as n increases. The increments have expectation equal to
zero unless there is drift. Also, the way in which the increments become
smaller with n is precisely of order

√
n. The variance therefore increases

linearly with time out in the process. In practical applications, it is
only necessary that the increments be independent and that these
increments have a finite variance. It is then straightforward to carry out
a time transformation to obtain the limiting process as an immediate
consequence of the functional central limit theorem. The functional
central limit theorem differs very little in essence to the usual central
limit theorem, from which it derives. The key additional idea is that
of sequential standardization. It is all very simple but, as we shall see,
very powerful.

3.5 Empirical distribution function

The above results can be directly applied to the sample empirical dis-
tribution function Fn(t), defined for a sample of size n (uncensored)
to be the number of observations less than or equal to t divided by n,
i.e., Fn(t) = n−1

∑n
i=1 I(Ti ≤ t). For each t, and we may assume F (t)

to be a continuous function of t, we would hope that Fn(t) converges
to F (t) in probability. This is easy to see but, in fact, we have stronger
results, starting with the Glivenko-Cantelli theorem whereby

Dn = sup
0≤t≤∞

|Fn(t) − F (t)| = sup
0≤t≤∞

|Sn(t) − S(t)|
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converges to zero with probability one and where Sn(t) = 1 − Fn(t).
This is analogous to the law of large numbers and, although important,
is not all that informative. A central limit theorem can tell us much
more and this obtains by noticing how Fn(t) will simulate a process
relating to the Brownian bridge. To see this it suffices to note that
nFn(t), for each value of t, is a sum of independent Bernoulli vari-
ables. Therefore, for each t as n → ∞, we have that

√
n{Fn(t)−F (t)}

converges to normal with mean zero and variance F (t){1− F (t)}. We
have marginal normality. However, we can claim conditional normality
in the same way, since, for each t and s (s < t), nFn(t) given nFn(s),
is also a sum of independent Bernoulli variables. Take k1 and k2 to
be integers (1 < k1 < k2 < n) such that k1/n is the nearest rational
smaller than or equal to s (i.e., k1 = max j ; j ∈ {1, . . . , n, }, j ≤ ns)
and k2/n is the nearest rational smaller than or equal to t. Thus, k1/n
converges with probability one to s, k2/n to t, and k2 − k1 increases
without bound at the same rate as n. We then have:

Theorem 3.2
√

n{Fn(t)−F (t)} is a Gaussian process with mean zero
and covariance given by:

Cov [
√

n{Fn(s)},
√

n{Fn(t)}] = F (s){1 − F (t)}. (3.2)

It follows immediately that, for T uniform, the process
√

n{Fn(t)−t}
(0 ≤ t ≤ 1), converges in distribution to the Brownian bridge. But
note that, whatever the distribution of T , as long as it has a contin-
uous distribution function, monotonic increasing transformations on
T leave the distribution of

√
n{Fn(t) − F (t)} unaltered. This means

that we can use the Brownian bridge for inference quite generally. In
particular, consider results of the Brownian bridge, such as the distrib-
ution of the supremum over the interval (0,1), that do not involve any
particular value of t (and thereby F (t)). These results can be applied
without modification to the process

√
n{Fn(t)−F (t)} whether or not

F (t) is uniform. Among other useful results concerning the empirical
distribution function we have:

Law of iterated logarithm

This law tells us something about the extreme deviations of the
process. The following theorem (Serfling, page 62) provides the rate
with n at which the largest absolute discrepancy between Fn(t) and
F (t) is tending to zero.
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Theorem 3.3 With probability one,

lim
n→∞

√
nDn

(2 log log n)
1
2

= sup{F (t)(1 − F (t))} 1
2 (3.3)

For the most common case in which F (t) is continuous, we know that
sup F (t)(1 − F (t)) is equal to 0.5. As an illustration, for 50 subjects,
we find that Dn is around 0.12. For 50 i.i.d. observations coming from
some known or some hypothesized distribution, if the hypothesis is
correct then we expect to see the greatest discrepancy between the
empirical and the hypothesized distribution to be close to 0.12. Values
far removed from that might then be indicative of either a rare event
or that the assumed distribution is not correct. Other quantities, indi-
cating how close to F (t) we can anticipate Fn(t) to be, are of interest,
one in particular being;

Cn = n

∫ ∞

0
{Fn(t) − F (t)}2f(t)dt.

As for Dn the asymptotic distribution of Cn does not depend upon
F (t). For this case the law of the iterated logarithm is expressed as
follows:

Theorem 3.4 With probability one,

lim
n→∞

Cn

(2 log log n)
1
2

=
1
π2

. (3.4)

For Dn, inference can be based on the maximum of a Brownian bridge.
In the case of Cn inference is less straightforward and is based on the
following lemma;

Lemma 3.1 Letting η =
∑∞

j=1 χ2
j (πj)−2 where the χ2

j are independent
chi-square variates then

lim
n→∞

P (Cn ≤ c) = P (η ≤ c). (3.5)

the results for both Dn and Cn are large sample ones but can nonethe-
less provide guidance when dealing with actual finite samples. Under
assumed models it is usually possible to calculate the theoretical dis-
tribution of some quantity which can also be observed. We are then
able to contrast the two and test the plausibility of given hypotheses.
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3.6 Inference for martingales and stochastic
integrals

The reader might look over Section 2.12 for the probability background
behind martingales. A martingale M = {M(t) : t ≥ 0} is a stochastic
process whose increment over an interval (u, v], given the past up to
and including time u, has expectation zero, i.e., E{M(v)−M(u)|Fu} =
0 for all 0 ≤ u < v < 1. Equation 2.34 provides the essential idea for
the discrete time case. We can rewrite the above defining property of
martingales by taking the time instants u and v to be just before and
just after the time instant t. Letting both v and u tend to t and u play
the role of t−, we can write;

E{dM(t)|Ft−} = 0. (3.6)

Note that this is no more than a formal way of stating that, what-
ever the history Ft may be, given this history, expectations exist. If
these expectations are not themselves equal to zero then we only need
subtract the nonzero means to achieve this end. A counting process
Ni(t) is not of itself a martingale but note, for 0 ≤ u < v ≤ 1, that
E{Ni(v)|Fu} > E{Ni(u)|Fu} and, as above, by taking the time in-
stants u and v to be just before and just after the time instant t,
letting v and u tend to t and u play the role of t−, we have

E{dNi(t)|Ft−} > 0. (3.7)

A stochastic process Ni(t) with the above property is known as a
submartingale. Again, providing expectations are finite, it is only a
matter of subtracting the sequentially calculated means in order to
bring a submartingale under the martingale heading. This idea is made
precise by the theorem of Doob-Meyer.

Doob-Meyer decomposition

For the submartingale Ni(t), having associated intensity process α(t),
we have from Equation 2.38 that E{dN(t)|Ft−} = α(t)dt. If we write
dM(t) = dN(t) − α(t)dt then E{dM(t)|Ft−} = 0. Thus M(t) is a
martingale. For the counting processes of interest to us we will always
be able to integrate α(t) and we define A(t) =

∫ t
0 α(t). We can write

Ni(t) = Mi(t) + Ai(t). (3.8)
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Such a decomposition of a submartingale into the sum of a martingale
and a predictable stochastic process, Ai(t), is an example of a more
general theorem for such decompositions known as the Doob-Meyer
theorem. It can be applied to quite general submartingales, the precise
conditions under which require measure-theoretic arguments. For the
counting processes of interest to us in survival analysis the theorem
always applies. The predictable process Ai(t) is called the compensator
of Ni(t). In simple terms the compensator is used to make the means
zero thereby producing the martingales that our theory needs.

The compensator Ai(t)

A counting process, Ni(t), is simply a random variable indexed by t.
This is the definition of a stochastic process so that Ni(t) is, in partic-
ular, a stochastic process. For the majority of applications in survival
analysis, Ni(t) will count no further than one; at the outset, Ni(0)
takes the value zero and, subsequently, the value one for all times
greater than or equal to that at which the event of interest occurs.
But, generally, Ni(t) may assume many, or all, integer values. Note
that any sum of counting processes can be immediately seen to be a
counting process in its own right. An illustrative example could be the
number of goals scored during a soccer season by some team. Here,
the indexing variable t counts the minutes from the beginning of the
season. The expectation of Ni(t) (which must exist given the physical
constraints of the example) may vary in a complex way with t, cer-
tainly non-decreasing and with long plateau when it is not possible
for a goal to be scored, for instance when no game is being played. At
time t = 0, it might make sense to look forward to any future time t
and to consider the expectation of Ni(t).

As the season unfolds, at each t, depending on how the team per-
forms, we may exceed, possibly greatly, or fall short of, the initial ex-
pectation of Ni(t). As the team’s performance is progressively revealed
to us, the original expectations are of diminishing interest and it is
clearly more useful to consider those conditional expectations in which
we take account of the accumulated history at time point t. Working
this out as we go along, we determine Ai(t) so that Ni(t)−Ai(t), given
all that has happened up to time t, has zero expectation. When αi(s)
is the intensity function for Ni(s), then

Ai(t) =
∫ t

0
αi(s)ds
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and this important result is presented in Theorem 3.5 given immedi-
ately below.

Predictable variation process

Linear statistics of the form U described in Section 3.7, following
standardization, are, not surprisingly, well approximated by standard
normal variates. We will see this below using results for estimating
equations and results for sums of independent, although not necessar-
ily identical, random variables. The martingale central limit theorem
can also be used in this context and, for all of our applications, it is
possible to apply it in a simple form avoiding measure-theoretic argu-
ments. Such an approach would then coincide with standard results
for sums of independent random variables. In order to standardize U
we will require an estimate of the variance as well as the mean. Unlike,
say, Brownian motion or the Ornstein-Uhlenbeck processes mentioned
in the previous chapter, where at time t we have a very simple expres-
sion for the variance, the variance of U can be complex and will clearly
depend on H(x). One way of addressing this question is through the
use of the predictable variation process. We know from the above that:

E{dN(t)|Ft−} = α(t)dt , E{dM(t)|Ft−} = 0.

Conditional upon Ft−, we can view the random variable dN(t) as
a Bernoulli (0,1) having mean α(t)dt and variance given by α(t)dt
{1 − α(t)dt}. In contrast, the random variable dM(t), conditional on
Ft−, has mean zero and the same variance. This follows since, given
Ft−, α(t) is fixed and known. As usual, all the equations are in an
infinitesimal sense, the equal sign indicating a limiting value as dt → 0.
In this sense α2(t)(dt)2 is negligible when compared to α(t)dt since the
ratio of the first to the second goes to zero as t goes to zero. Thus, the
incremental variances are simply the same as the means, i.e., α(t)dt.
This, of course, ties in exactly with the theory for Poisson counting
processes.

Definition 3.1 The predictable variation process of a martingale
M(t), denoted by 〈M〉 = {〈M〉(t) : t ≥ 0} is such that

d〈M〉(t) = E{[dM(t)]2|Ft−} = Var{dM(t)|Ft−}. (3.9)

The use of pointed brackets has become standard notation here and,
indeed, the process is often referred to as the pointed brackets process,
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Note that 〈M〉 is clearly a stochastic process and that the process is
predictable and nondecreasing. It can be thought of as the sum of
conditional variances of the increments of M over small time intervals
partitioning [0, t], each conditional variance being taken given what
has happened up to the beginning of the corresponding interval. We
then have the following important result:

Theorem 3.5 Let Mi(t) = Ni(t) − Ai(t) where Ai(t) =
∫ t
0 αi(s)ds.

Then

〈Mi〉(t) = Ai(t). (3.10)

Corollary 3.1 Define, for all t and i 	= j, the predictable covariation
process, 〈Mi, Mj〉, of two martingales, Mi and Mj, analogously to the
above. Then

〈Mi, Mj〉(t) = 0. (3.11)

The corollary follows readily if, for i 	= j, the counting processes Ni(t)
and Nj(t) can never jump simultaneously. In this case the product
dNi(t)dNj(t) is always equal to zero. Thus, the conditional covariance
between dNi(t) and dNj(t) is −αi(t)dt · αj(t)dt.

Stochastic integrals

The concept of a stochastic integral is very simple; essentially we take
a Riemann-Stieltjes integral, from zero to time point t, of a function
which, at the outset when t = 0 and looking forward, would be ran-
dom. Examples of most immediate interest to us are: N(t) =

∫ t
0 dN(s),

A(t) =
∫ t
0 dA(s) and M(t) =

∫ t
0 dM(s). Of particular value are inte-

grals of the form
∫ t
0 H(s)dM(s) where M(s) is a martingale and H(s)

a predictable function. By predictable we mean that if we know all the
values of H(s) for s less than t then we also know H(t), and this value
is the same as the limit of H(s) as s → t for values of s less than t.

The martingale transform theorem provides a tool for carrying out
inference in the survival context. Many statistics arising in practice will
be of a form U described in the section on estimating equations just
below. For these the following result will find immediate application:

Theorem 3.6 Let M be a martingale and H a predictable stochastic
process. Then M∗ is also a martingale where it is defined by:

M∗(t) =
∫ t

0
H(s)dM(s). (3.12)
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Corollary 3.2 The predictable variation process of the stochastic
process M∗(t) can be written

〈M∗〉(t) =
∫ t

0
H(s)2d〈M〉(s) =

∫ t

0
H2(s)dA(s). (3.13)

There is a considerable theory for stochastic integrals, much of it de-
veloped in the econometric and financial statistical literature. For our
purposes and for all the tests that have been developed in the frame-
work of counting processes for proportional hazards models, the above
theorem and corollary are all that is needed. A very considerable array
of test procedures come directly under this heading. Many modern ap-
proaches to survival analysis lean on the theory of stochastic integrals
in order to carry out inference. The main approaches here are some-
times different, based instead on the main theorem of proportional
hazards regression, Donsker’s theorem, and known results concerning
Brownian motion and functions of Brownian motion. Behind both ap-
proaches are the ideas relating to the limits of sums of conditionally
independent increments. In some situations the resulting statistics that
we use are identical. Chapter 10 deals specifically with inference for
the proportional hazards model based on the ideas described in this
section.

Central limit theorem for martingale processes

The hard part of the work in obtaining a large sample result for sto-
chastic integrals is to find a convergence in probability result for the
variation process 〈M〉(t). If this limit exists then we write it as A(t).
The result can be summarized in a theorem which depends on two
conditions.

Theorem 3.7 Suppose we have the following two conditions:

1. As n increases without bound, 〈M〉(t) converges in probability to
A(t),

2. As n increases, the jumps in M(t) tend to zero.

Then, the martingale M(t) converges to a Gaussian process with mean
zero and variance A(t).



3.6. MARTINGALES AND STOCHASTIC INTEGRALS 79

Added conditions can make it easier to obtain the first one of these
conditions and, as a result, there are a number of slightly different
versions of these two criteria. The multivariate form has the same
structure. In practical situations, we take M(∞) to be N (0, σ2) where
we estimate σ2 by 〈M〉(∞).

Censoring and at-risk functions

The counting process structure does well on an intuitive level in dealing
with the concept of censoring and the concept of being at risk. We will
only observe the actual counts but we can imagine that the probability,
more precisely the intensity when referring to infinitely small time
periods, can change in complex ways through time. In particular, there
may be time periods when, although a key event of interest may occur,
we are unable to observe it because of some censoring phenomenon.
As an example, allow N(t) to count some event of interest and define
Y (t) to take the value zero when t lies in the semi-closed interval (a, b],
(when we are unable to observe the event of interest) and the value
one otherwise. The counting process N∗(t) where,

N∗(t) =
∫ t

0
Y (s)dN(s), (3.14)

counts observable events. If the censoring does not modify the compen-
sator, A(t), of N(t), then N(t) and N∗(t) have the same compensator.
The difference, M∗(t) = N∗(t) − A(t) would typically differ from the
martingale M(t) but would nonetheless still be a martingale in its own
right. In addition, it is easily anticipated how we might go about tack-
ling the much more complex situation in which the censoring would
not be independent of the failure mechanism. Here, the compensators
for N∗(t) and N(t) do not coincide. For this more complex case, we
would need some model, A∗(t), for the compensator of N∗(t) in order
that M∗(t) = N∗(t) − A∗(t) would be a martingale.

The most common and the simplest form of the at-risk indicator
Y (t) is one where it assumes the value one at t = 0, retaining this value
until censored or failed, beyond which time point it assumes the value
zero. When dealing with n individuals, and n counting processes, we
can write N̄(t) =

∑n
i=1 Ni(t) and use the at-risk indicator to denote

the risk set. If Yi(t) refers to individual i, then Ȳ (t) =
∑n

i=1 Yi(t) is
the risk set at time t. The compensator for Ni(t) is αi(t) = Yi(t)λi(t),



80 CHAPTER 3. BACKGROUND: GENERAL INFERENCE

where λi(t) is the hazard for subject i, written simply as λ(t) in the
case of i.i.d. replications. Then, the compensator, Ā(t), for N̄(t) is:

Ā(t) =
∫ t

0
{
∑n

i=1 Yi(s)}λ(s)ds =
∫ t

0
Ȳ (s)λ(s)ds.

The intensity process for N̄(t) is then given by Ȳ (t)λ(t). The multi-
plicative intensity model (Aalen 1978) has as its cornerstone the prod-
uct of the fully observable quantity Ȳ (t) and the hazard rate, λ(t)
which, typically, will involve unknown model parameters. In testing
specific hypotheses we might fix some of these parameters at particu-
lar population values, most often the value zero.

Nonparametric statistics

The multiplicative intensity model just described and first recognized
by Aalen (1978) allows a simple expression, and simple inference, for
a large number of nonparametric statistics that have been used in
survival analysis over the past half century. We return to these when
looking at inference for the proportional hazards model based on count-
ing processes and stochastic integrals in Chapter 10. Martingales are
immediate candidates for forming an estimating equation with which
inference can be made on unknown parameters in the model. In the
next section we provide some general discussion on estimating equa-
tions. For our specific applications, these estimating equations will
almost always present themselves in the form of a martingale.

3.7 Estimating equations

Most researchers, together with a large section of the general public,
even if uncertain as to what the study of statistics entails, will be
familiar with the concept, if not the expression itself, of the type T̄ =
n−1

∑n
i=1 Ti. The statistician may formulate this in somewhat more

abstract terms, stating that; T̄ = n−1
∑n

i=1 Ti is a solution to the
linear estimating equation for the parameter µ, the population mean
of the random variable T , in terms of the n i.i.d. replicates of T. The
estimating equation is simply µ − n−1

∑n
i=1 Ti = 0. This basic idea is

very useful in view of the potential for immediate generalization.
The most useful approach to analyzing data is to postulate plau-

sible models that may approximate some unknown, most likely very
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complex, mechanism generating the observations. These models in-
volve unknown parameters and we use the observations, in conjunc-
tion with an estimating equation, to replace the unknown parameters
by estimates. Deriving “good” estimating equations is a sizeable topic
whose surface we only need to scratch here. We appeal to some general
principles, the most common of which are very briefly recalled below,
and note that, unfortunately, the nice simple form for the estimating
equation for µ just above is more an exception than the rule. Estimat-
ing equations are mostly nonlinear and need to be solved by numerical
algorithms. Nonetheless, an understanding of the linear case is more
helpful than it may at first appear since solutions to the nonlinear
case are achieved by local linearization (called also Newton-Raphson
approximation) in the neighborhood of the solution. A fundamental
result in the theory of estimation is described in the following theo-
rem. Firstly, we define two important functions, L(θ) and I(θ) of the
parameter θ by

L(θ) = f(t1, t2, . . . , tn; θ) ; I(θ) = −∂2 log L(θ)/∂θ2. (3.15)

We refer to L(θ) as the observed likelihood, or simply just the likeli-
hood (note that, for n = 1, the expected log-likelihood is the negative
of the entropy, also called the information). When the observations Ti,
i = 1, . . . , n, are independent and identically distributed then we can
write L(θ) =

∏n
i=1 f(ti; θ) and log L(θ) =

∑n
i=1 log f(ti; θ). We refer to

I(θ) as the information in the sample. Unfortunately the negative of
the entropy is also called the information (the two are of course related,
both quantifying precision is some sense). The risks of confusion are
small given that the contexts are usually distinct. The function I(θ) is
random because it depends on the data and reaches a maximum in the
neighborhood of θ0 since this is where the slope of the log likelihood
is changing the most quickly.

Theorem 3.8 For a statistic T we can write the following;

Var(T ) ≥ {∂ E(T )/∂θ}2/E{I(θ)}.

This inequality is called the Cramer-Rao inequality (Cox and Hinkley
1974, page 254). When T is an unbiased estimate of θ then ∂ E(T )/∂θ =
1 and Var(T ) ≥ 1/E{I(θ)}. The quantity 1/E{I(θ)} is called the
Cramer-Rao bound. Taking the variance as a measure of preciseness
then, given unbiasedness, we prefer the estimator T that has the
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smallest variance. The Cramer-Rao bound provides the best that we
can do in this sense and, below, we see that the maximum likelihood
estimator achieves this for large samples, i.e., the variance of the max-
imum likelihood estimator becomes progressively closer to the bound
as sample size increases without limit.

Basic equations

For a scalar parameter θ0 we will take some function U(θ) that depends
on the observations as well as θ. We then use U(θ) to obtain an estimate
θ̂ of θ0 via an estimating equation of the form

U(θ̂) = 0. (3.16)

This is too general to be of use and so we limit the class of possible
choices of U(·). We require the first two moments of U to exist in which
case, without loss of generality we can say

E U(θ0) = 0, Var U(θ0) = σ2. (3.17)

Two widely used methods for constructing U(θ) are described below.
It is quite common that U be expressible as a sum of independent and
identically distributed contributions, Ui, each having a finite second
moment. An immediate application of the central limit theorem then
provides the large sample normality for U(θ0). For independent but
nonidentically distributed Ui, it is still usually not difficult to verify
the Lindeburg condition and apply the central limit theorem for inde-
pendent sums. Finally, in order for inference for U to carry over to θ̂,
some further weak restrictions on U will be all we need. These require
that U be monotone and continuous in θ and differentiable in some
neighborhood of θ0. This is less restrictive than it sounds. In prac-
tice it means that we can simply apply the mean value theorem (2.2)
whereby:

Corollary 3.3 For any ε > 0, when θ̂ lies in an interval (θ0−ε, θ0+ε)
within which U(θ) is continuously differentiable, then there exists a real
number ξ ∈ (θ0 − ε, θ0 + ε) such that

U(θ̂) = U(θ0) − (θ̂ − θ0)I(ξ).

This expression is useful for the following reasons. A likelihood for θ
will, with increasing sample size, look more and more normal. As a
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consequence, I(ξ) will look more and more like a constant, depending
only on sample size, and not ξ itself. This is useful since ξ is unknown.
We approximate I(ξ) by I(θ̂). We can then express θ̂ in terms of ap-
proximate constants and U(θ̂) whose distribution we can approximate
by a normal distribution.

Finding equations

The guiding principle is always the same, that of replacing unknown
parameters by values that minimize the distance between empirical
(observed) quantities and their theoretical (model-based) equivalents.
The large range of potential choices stem from two central observa-
tions: (1) there can be many different definitions of distance (indeed,
the concept of distance is typically made wider than the usual math-
ematical one which stipulates that the distance between a and b must
be the same as that between b and a) and (2) there may be a number
of competing empirical and theoretical quantities to consider. To make
this more concrete, consider a particular situation in which the mean
is modelled by some parameter θ such that Eθ(T ) is monotone in θ.
Let’s say that the true mean E(T ) corresponds to the value θ = θ0.
Then the mean squared error, variance about a hypothesized Eθ(T ),
let’s say σ2(θ), can be written as

σ2(θ) = E{T − Eθ(T )}2 = E{T − Eθ(T )}2 + {Eθ(T ) − Eθ0(T )}2.

The value of θ that minimizes this expression is clearly θ0. An esti-
mating equation derives from minimizing the empirical equivalent of
σ2(θ). Minimum chi-squared estimates have a similar motivation. The
idea is to bring, in some sense, via our choice of parameter value, the
hypothesized model as close as possible to the data. Were we to index
the distribution F by this parameter, calling this say Fθ(t), we could
re-express the definition for Dn(θ) given earlier as

Dn(θ) = sup
0≤t≤∞

|Fn(t) − Fθ(t)|.

Minimizing Dn(θ) with respect to θ will often provide a good, al-
though not necessarily very tractable, estimating equation. The same
will apply to Cn and related expressions such as the Anderson-Darling
statistic. We will see later that the so-called partial likelihood esti-
mate for the proportional hazards model can be viewed as an estimate
arising from an empirical process. It can also be seen as a method



84 CHAPTER 3. BACKGROUND: GENERAL INFERENCE

of moments estimate and closely relates to the maximum likelihood
estimate. Indeed, these latter two methods of obtaining estimating
equations are those most commonly used and, in particular, the ones
given the closest attention in this work. It is quite common for differ-
ent techniques, and even contending approaches from within the same
technique, to lead to different estimators. It is not always easy to argue
in favor of one over the others.

Other principles can sometimes provide guidance in practice, the
principle of efficiency holding a strong place in this regard. The idea
of efficiency is to minimize the sample size required to achieve any
given precision or, equivalently, to find estimators having the smallest
variance. However, since we are almost always in situations where our
models are only approximately correct, and, on occasion, even quite
far off, it is more useful to focus attention on other qualities of an
estimator. How can it be interpreted when the data are generated by
a mechanism much wider than that assumed by the model? How use-
ful is it to us in our endeavor to build predictive models, even when
the model is, at least to some extent, incorrectly specified. This is the
reality of modeling data and efficiency, as an issue for us to be con-
cerned with, does not take us very far. On the other hand, estimators
that have demonstrably poor efficiency, when model assumptions are
correct, are unlikely to redeem themselves in a broader context and so
it would be a mistake to dismiss efficiency considerations altogether
even though they are rather limited.

Method of moments

This very simple method derives immediately as an application of the
Helly-Bray theorem (Theorem 2.3). The idea is to equate population
moments to empirical ones obtained from the observed sample. Given
that µ =

∫
xdF (x), the above example is a special case since, we

can write µ̄ = x̄ =
∫

xdFn(x). Properties of the estimate can be de-
duced from the well-known properties of Fn(x) as an estimate of F (x)
(see Section 3.5). For the broad exponential class of distributions, the
method of moments estimator, based on the first moment, coincides
with the maximum likelihood estimator recalled below. In the survival
context we will see that the so-called partial likelihood estimator can
be viewed as a method of moments estimator. The main difficulty with
method of moments estimators is that they are not uniquely defined for
any given problem. For example, suppose we wish to aim to estimate
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the rate parameter λ from a series of observations, assumed to have
been generated by a Poisson distribution. We can use either the em-
pirical mean or the empirical variance as an estimate for λ. Typically
they will not be the same. Indeed we can construct an infinite class of
potential estimators as linear combinations of the two.

Maximum likelihood estimation

A minimum chi-square estimator for θ derives by minimizing an ex-
pression of variance. From Section 2.8 it may appear equally natural to
minimize an estimate of the entropy as a function of θ, i.e., maximize
the observed information as a function of θ. We write the information
as V (θ) where

V (θ) = E log f(T ; θ).

Given the observations, T1, . . . , Tn, we replace the unknown function
V (θ) by V̄ (θ) = n−1

∑n
i=1 log f(Ti, θ). The maximization is easily ac-

complished when the parameter or parameter vector θ can only assume
some finite number of discrete values. It is then sufficient to examine
all the cases and select θ such that V̄ (θ) is maximized. For all the
models under consideration here we can assume that V (θ) and V̄ (θ)
are continuous smooth functions of θ. By smooth we mean that the
first two derivatives, at least, exist for all values of θ. This is not at
all a restrictive assumption and models that do not have such differ-
entiability properties can nearly always be replaced by models that
do via useful reparameterization. For instance, there are cases where
a model, defined for all positive real θ, may break down at θ = 0,
the entropy not being differentiable at that point, whereas under the
reparameterization θ = exp(α) for α defined over the whole real line,
the problem disappears.

Two fundamental theorems and three corollaries enable us to ap-
preciate the great utility of the maximum likelihood approach. All that
we need are “suitable regularity conditions.” We return to these im-
mediately below. Assuming these conditions (a valid assumption for
all the models in this book), we have a number of important results
concerning V (θ) and consistent estimates of V (θ).

Theorem 3.9 Viewed as a function of θ, V (θ) satisfies
{

∂V (θ)
∂θ

}

θ=θ0

= E

{
∂ log f(T ; θ)

∂θ

}

θ=θ0

= 0. (3.18)
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Note the switching of the operations, integration and differentiation, in
the above equations. In many texts describing the likelihood method
it is common to only focus on the second part of the equation. It helps
understanding to also keep the first part of the equation in mind since
this will enable us to establish the solid link between the information
measure and likelihood. Having divided by sample size we should view
the log-likelihood as an empirical estimate of V (θ). The law of large
numbers alone would provide us with a convergence result but we can
do better, in terms of fitting in with elementary results for estimating
equations, by assuming some smoothness in V (θ) and a consistent
estimator, V̄ (θ), as functions of θ. More precisely:

Corollary 3.4 Let V̄ (θ) be a consistent estimate of V (θ). Then
{∂V̄ (θ)/∂θ}θ=θ0 converges, with probability one, to zero.

The expression “suitable regularity conditions” is not very transparent,
and for those lacking a good grounding in analysis, or simply a bit
rusty, it might be less than illuminating. We dwell on it for a moment
since it appears frequently in the literature. We require continuity of
the function V (θ), at least for general situations, in order to be able
to claim that as V (θ) approaches V (θ0) then θ approaches θ0. This
is nearly enough, although not quite. Differentiability is a stronger
requirement since we can see that a function that is differentiable at
some point must also be continuous at that same point. The converse
is not so and can be seen immediately in a simple example, y = |x|,
a function that is continuous everywhere but not differentiable at the
origin. We need the differentiability condition in order to obtain the
estimating equation and just a tiny bit more, the tiny bit more not
being easily described but amounting to authorizing the switching of
the processes of integration and differentiation. Such switching has to
take place in order to be able to demonstrate the validity of the above
theorem, and the one just below. All of this is summarized by the
expression “suitable regularity conditions” and the reader need not
worry about them since they will hold in all the practical cases of
interest to us. The main result follows as a further corollary:

Corollary 3.5 Suppose that U(α) = {∂V̄ (θ)/∂θ}θ=α and that, for
sample size n, θ̂n is the solution to the equation U(θ) = 0. Then, if
V̄ (θ) is consistent for V (θ), θ̂n converges with probability one to θ0.

This is almost obvious, and certainly very intuitive, but it provides a
solid foundation to likelihood theory. The result is a strong and useful
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one, requiring only the so-called regularity conditions referred to above
and that V̄ (θ) be consistent for V (θ). Independence of the observations
or that the observations arise from random sampling is not appealed
to or needed. However, when we do have independent and identically
distributed observations then, not only do our operations become very
straightforward, we also can appeal readily to central limit theorems,
initially for the left-hand side of the estimating equation and, then,
by extension, to a smooth function of the estimating equation. The
smooth function of interest is of, course, θ̂n itself.

Corollary 3.6 Suppose that T1, . . . , Tn are independent identically
distributed random variables having density f(t; θ0). Then θ̂n con-
verges with probability one to θ0 where θ̂n is such that U(θ̂n) = 0,
where U(θ) =

∑n
i=1 Ui(θ) and where Ui(α) = {∂log f(Ti; θ)/∂θ}θ=α.

We can say much more about θ̂n. A central limit theorem result ap-
plies immediately to U(θ0) and, via Slutsky’s theorem, we can then
also claim large sample normality for U(θ̂n). By expressing θ̂n as a
smooth (not necessarily explicit) function of U we can also then claim
large sample normality for θ̂n. The fact that U(θ̂n) (having subtracted
off the mean and divided by its standard deviation) will converge in
distribution to a standard normal and that a smooth function of this,
notably θn, will do the same, does not mean that their behavior can be
considered to be equivalent. The result is a large sample one, i.e., as n
tends to infinity, a concept that is not so easy to grasp, and, for finite
samples, behavior will differ. Since U is a linear sum we may expect the
large sample approximation to be more accurate, more quickly, than
for θn itself. Inference is often more accurate if we work directly with
U(θ̂n), exploiting the monotonicity of U(·), and inverting intervals for
U(θ̂n) into intervals for θ̂n. In either case we need some expression
for the variance and this can be obtained from the second important
theorem:

Theorem 3.10 Viewed as a function of θ, V (θ) satisfies:
(

∂V (θ)
∂θ

)2

θ=θ0

=
(
−∂2V (θ)

∂θ2

)

θ=θ0

=E

(
−∂2 log f(T ; θ)

∂θ2

)

θ=θ0

. (3.19)

As in the previous theorem, note the switching of the operations of inte-
gration (expectation) and differentiation. Since E U(θ0)=E{∂log f(T ;
θ)/∂θ}θ=θ0=0, then, from the above theorem, VarU(θ0)=E{∂2log f(T ;
θ)/∂θ2}θ=θ0 . In practical applications we approximate the variance
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expression by replacing θ0 by its maximum likelihood estimate. It is
also interesting to note that the above inequality will usually break
down when the model is incorrectly specified and that, in some sense,
the further away is the assumed model from that which actually gener-
ates the data, then the greater the discrepancy between the two quan-
tities will be. This idea can be exploited to construct goodness-of-fit
tests or to construct more robust estimators.

3.8 Inference using resampling techniques

Bootstrap resampling

The purpose of bootstrap resampling is twofold: (1) to obtain more
accurate inference, in particular more accurate confidence intervals,
than is available via the usual normal approximation, and (2) to fa-
cilitate inference for parameter estimators in complex situations. A
broad discussion including several challenging applications is provided
by Politis (1998). Here we will describe the basic ideas in so far as they
are used for most problems arising in survival analysis. Consider the
empirical distribution function Fn(t) as an estimate for the unknown
distribution function F (t). The observations are T1, T2, ..., Tn. A pa-
rameter of interest, such as the mean, the median, some percentile,
let’s say θ, depends only on F . This dependence can be made more
explicit by writing θ = θ(F ). The core idea of the bootstrap can be
summarized via the simple expression θ̃ = θ(Fn) as an estimator for
θ(F ).

Taking infinitely many i.i.d. samples, each of size n, from F would
provide us with the exact sampling properties of any estimator θ̃ =
θ(Fn). If, instead of taking infinitely many samples, we were to take a
very large number, say B, of samples, each sample again of size n from
F , then this would provide us with accurate approximations to the
sampling properties of θ̃, the errors of the approximations diminishing
to zero as B becomes infinitely large. Since F is not known we are
unable to carry out such a prescription. However, we do have available
our best possible estimator of F (t), the empirical distribution function
Fn(t). The bootstrap idea is to sample from Fn(t), which is known and
available, instead of from F (t) which, apart from theoretical investi-
gations, is typically unknown and unavailable.
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Empirical bootstrap distribution

The conceptual viewpoint of the bootstrap is to condition on the ob-
served T1, ..., Tn and its associated empirical cumulative distribution
function Fn(t), thereafter treating these quantities as though they were
a population of interest, rather than a sample. From this “population”
we can draw samples with replacement, each sample having size n. We
repeat this whole process B times where B is a large number, typi-
cally in the thousands. Each sample is viewed as an i.i.d. sample from
Fn(t). The i th resample of size n can be written T ∗

1i, T
∗
2i, ..., T

∗
ni and

has empirical distribution F ∗i
n (t). For any parameter of interest θ, the

mean, median coefficient of variation for example, it is helpful to re-
mind ourselves of the several quantities of interest, θ(F ), θ(Fn), θ(F ∗i

n )
and FB(θ), the significance of each of these quantities needing a little
explanation. First, θ(F ) is simply the population quantity of interest.
Second, θ(Fn) is this same quantity defined with respect to the empir-
ical distribution of the data T1, ... , Tn. Third, θ(F ∗i

n ) is again the same
quantity defined with respect to the i th empirical distribution of the
resamples T ∗

1i, T
∗
2i, ..., T

∗
ni. Finally, FB(θ) is the bootstrap distribution

of θ(F ∗i
n ), i.e., the empirical distribution of θ(F ∗i

n ) (i = 1, . . . , B).
To keep track of our asymptotic thinking we might note that, as

B → ∞ ,
∫

udFB(u) converges in probability to θ(Fn) and, as n → ∞ ,
θ(Fn) converges in probability to θ(F ). Thus, there is an important
conceptual distinction between FB and the other distribution func-
tions. These latter concern the distribution of the original observations
or resamples of these observations. FB itself deals with the distribu-
tion of θ(F ∗i

n ) (i = 1, . . . , n) and therefore, when our focus of interest
changes from one parameter to another, from say θ1 to θ2 the function
FB will be generally quite different. This is not the case for F , Fn, and
F ∗i

n which are not affected by the particular parameter we are consid-
ering. Empirical quantities with respect to the bootstrap distribution,
FB are evaluated in a way entirely analogous to those evaluated with
respect to Fn. For example,

Var {θ(Fn)} = σ2
B =

∫

u2dFB(u) −
(∫

udFB(u)
)2

, (3.20)

where it is understood that the variance operator, Var() is with respect
to the distribution FB(t). Of greater interest in practice is the fact that
Var {θ(Fn)}, where Var() is with respect to the distribution FB(t)},
can be used as an estimator of Var {θ(Fn)}, where Var(·) is with respect
to the distribution F (t).



90 CHAPTER 3. BACKGROUND: GENERAL INFERENCE

Bootstrap confidence intervals

For the normal distribution the standardized percentiles zα are defined
from Φ(zα) = α. Supposing that Var θ(Fn) = σ2, the variance operator
being taken with respect to F , the scaled percentiles Qα are then given
by Qα = σzα, leading to a normal approximation for a confidence
interval for θ as

I1−α(θ) = {θ(Fn) − Q1−α/2, θ(Fn) − Qα/2} (3.21)

which obtains from a rearrangement of the expression Pr [σzα/2 <
θ(Fn) − θ < σz1−α/2] = 1 − α. Since σ2 is not generally available
we would usually work with σ2

B. Instead of using the normal approx-
imation it is possible to define Qα differently, directly from the ob-
served bootstrap distribution FB. We can define Qα via the equation
FB(Qα) = α. In view of the finiteness of B (and also n) this equation
may not have an exact solution and we will, in practice, take the near-
est point from F−1

B (α) as Qα. The values of Qα/2 and Q1−α/2 are then
inserted into equation (3.21). Such intervals are referred to as boot-
strap “root” intervals. The more common approach to constructing
bootstrap confidence intervals is, however, slightly different and has
something of a Bayesian or fiducial inference flavor to it. We simply
tick off the percentiles, Qα/2 and Q1−α/2 and view the distribution
FB as our best estimate of a distribution for θ. The intervals are then
written as

I1−α(θ) = {θ(Fn) + Qα/2, θ(Fn) + Q1−α/2}. (3.22)

These intervals are called percentile bootstrap confidence intervals.
Whenever the distribution FB is symmetric then the root intervals and
the percentile intervals coincide since Qα/2+Q1−α/2 = 0. In particular,
they coincide if we make a normal approximation.

Accuracy of bootstrap confidence intervals

Using theoretical tools for investigating statistical distributions, the
Edgeworth expansion in particular, it can be shown that the accuracy
of the three types of interval described above is the same. The argu-
ment in favor of the bootstrap is then not compelling, apart from the
fact that they can be constructed in cases where variance estimates
may not be readily available. However, it is possible to improve on
the accuracy of both the root and the percentile intervals. One simple,



3.9. EXPLAINED VARIATION 91

albeit slightly laborious, way to accomplish this is to consider studen-
tized methods. By these we mean, in essence, that the variance in the
“population” Fn is not considered fixed and known for each subsam-
ple but is estimated several, precisely B, times across the B bootstrap
samples.

To get an intuitive feel for this it helps to recall the simple standard
set-up we work with in the comparison of two estimated means, X̄1

and X̄2 where, when the variance σ2 is known we use as test statistic,
(X̄1 − X̄2)/σ, referring the result to standard normal tables. When σ2

is unknown and replaced by its usual empirical estimate s2 then, for
moderate to large samples, we do the same thing. However, for small
samples, in order to improve on the accuracy of inference, we appeal
to the known distribution of (X̄1 − X̄2)/s when the original observa-
tions follow a normal distribution. This distribution was worked out
by Student and is his so-called Student’s t distribution. For the i th
bootstrap sample our estimate of the variance is

Var {θ(F ∗i
n )} = σ2

∗i =
∫

u2dF ∗i
n (u) −

(∫

udF ∗i
n (u)

)2

(3.23)

and we then consider the standardized distribution of the quantity,
θ(F ∗i

n )/σ∗i. The essence of the studentized approach, having thus stan-
dardized, is to use the bootstrap sampling force to focus on the higher-
order questions, those concerning bias and skewness in particular. Hav-
ing, in some sense, spared our bootstrap resources from being dilap-
idated to an extent via estimation of the mean and variance, we can
make real gains in accuracy when applying the resulting distributional
results to the statistic of interest. For most day-to-day situations this is
probably the best approach to take. It is computationally intensive (no
longer a serious objection) but very simple conceptually. An alternative
approach, with the same ultimate end in mind, is not to standardize
the statistic but to make adjustments to the derived bootstrap distri-
bution, the adjustments taking into account any bias and skewness.
These lead to the so-called bias corrected, accelerated intervals (often
written as BCa intervals).

3.9 Explained variation

Although widely known and quoted for linear regression models, the
concept of explained variation does not appear to be have been de-
veloped elsewhere as a concept in its own right, aside from ad hoc
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modifications for specific applications. In this section we present some
general ideas that will be useful later on. The principal objective in
studying the concept of explained variation is to derive suitable tools
that can quantify the predictive value of any given model. Consider
a pair of random variables (T, Z) defined on T × Z. Let F (t), G(z),
F (t|z) and G(z|t) be marginal and conditional distributions respec-
tively. Using the device of double expectation it is almost immediate
to show that

Var(T ) = EZ{VarT (T |Z)} + VarZ{ET (T |Z)} , (3.24)

where the subscripts indicate the order of conditioning. It is com-
mon practice to drop these subscripts, leaving the order in which
expectations and variances are taken to be implicit. We can view
σ2

T (Z) = EZ{VarT (T |Z)} to represent the residual noise, i.e., the av-
erage variance after having taken into account the variable Z. The
greater the dispersion of ET (T |Z) across the distribution of Z, then
the stronger is the signal. We can then call VarZ{ET (T |Z)} the signal.
So that we can write the decomposition as

Var(T ) = residual noise + signal,

the noise not depending on Z for the classical linear model but more
generally needing to be averaged over the distribution of Z. We then
have an obvious definition for Ω2,

Ω2
T (Z) =

signal
signal+residual noise

=
Var(T ) − σ2

T (Z)
Var(T )

(3.25)

as the amount of variation in T explained by conditioning upon Z.
We use the notation Ω2

T (Z) where the subscript indicates the variable
that we are trying to explain, the argument Z then indicating the
variable being used to explain the variability in T. The quantity Ω2

Z(T )
is defined by interchanging the symbols and, interestingly, in the case
of a bivariate normal pair (T, Z) it is easily shown that Ω2

T (Z) and
Ω2

Z(T ) are the same quantity. These definitions make no distributional
assumptions on Z and T and we can deduce the following properties;

Properties of Ω2

1. When there is no reduction in variance by conditioning upon Z
then Var(T ) = E{Var(T |Z)} and Ω2 = 0.
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2. If, given Z = z, T assumes some given value with probability
one, then Var(T |Z) = 0 and Ω2 = 1.

3. Intermediary values of Ω2 provide an ordering of predictive
strength for a normal model directly in terms of symmetric
prediction intervals and for other situations by virtue of the
Chebyshev inequality. The greater the reduction in variance,
i.e., the more of the overall variance that can be explained, then
the greater the predictability. A situation where Ω2 = 0.4 has,
in this precise sense, explained twice as much of the variance
as a situation in which Ω2 = 0.2. This is, of course, a very im-
portant, and quite basic property. It is not shared by a number
of suggested measures of “explained variation” in the literature
in which, not only are we not able to claim that a value of 0.4
represents twice as much explained variance as a value 0.2, but,
for certain proposed coefficients, it is not even clear that the
latter corresponds to lesser predictive power than the former.

As an illustration, take T to be a Bernoulli variate with parameter
0.5, Pr(Z = 1) = 0.5, where E(T |Z = 0) = 0.4 and E(T |Z = 1) =
0.6. We find Ω2 = .04. In this situation a knowledge of Z, although
predictive, tells us relatively little about the probability of seeing a 0 or
a 1 for T. This corresponds to our intuition. If, instead of considering
individual observations on T , we consider groups of 5, the outcomes
now being the successes from 0 to 5, then we find Ω2 = .45. In this
case a knowledge of Z is much more informative and, indeed, as the
group size becomes larger the information conveyed by Z increases,
Ω2 tending to one as groups size becomes large without bound. Thus,
knowing the value of Z does not help much in predicting binary T. We
can do much better in predicting T here when T is binomial having a
range of counts as outcomes.

Empirical estimates of Ω2

In order to evaluate Ω2 in Equation 3.25, apart from Var(T ) we need

E{Var(T |Z)} =
∫

T

∫

Z

{

t −
∫

T
tdF (t|z)

}2

dF (t|z)dG(z). (3.26)

Consistent estimates for Ω2
T (Z) follow if we can consistently estimate

F (t|z) and G(z). Given (ti, zi ; i = 1, . . . , n), (i.i.d.) it is only then
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necessary to replace F (t), G(z) and F (t|z) by the empirical estimates
Fn(t), Gn(z) and Fn(t|z) to obtain an estimate; let’s call it R2. By
virtue of the Helly-Bray theorem R2 will provide a consistent estimate
of Ω2. Note also that a straightforward application of Bayes formula
enables us to use an alternate expression for E{Var(T |Z)} since

E{Var(T |Z)} =
∫

T

∫

Z

{

t −
∫
T ug(z|u)dF (u)
∫
T g(z|u)dF (u)

}2

dG(z|t)dF (t). (3.27)

Consistent estimates for Ω2
T (Z) follow if we can consistently estimate

the conditional distribution G(z|t) and the marginal distribution F (t).
In certain contexts, proportional hazards regression being one of them,
these latter conditional distributions are very much easier to estimate.

Explained variation given a stochastic process Z(t)

The question here is the interpretation of E{Var(T |Z(t))} when Z(t)
is a stochastic process. Recall that, by a stochastic process Z(t), we
indicate a possibly infinite collection of random variables, each indexed
by t. However, T itself can be taken as being random and, in the special
case where the support of T coincides with the set of indices to Z(t)
we can refer to the bivariate pair (T, Z). This follows immediately
by virtue of the existence of the marginal distribution of T and the
conditional distribution of Z given t. The marginal distribution of Z,
obtained by integrating out t can be denoted either by Z or by Z(T ),
the latter notation being conceptually useful in indicating a value from
Z as arising first by selecting a value from T and then, given that T = t,
we observe some value Z(t). The distribution F (t|z) can be understood
via F (t|z) = F (t|z, T > 0).

Rank invariance

Recalling that Var(Z) = E{Var(Z|T )}+Var{E(Z|T )}, we could have
equally well used an alternative definition for the population parameter
of explained variation in which we reverse the roles played by Z and
T. This corresponds to studying the variation in Z at fixed time points
T = t and we write,

Ω2
Z(T ) =

Var(Z) − E{Var(Z|T )}
Var(Z)

=
Var{E(Z|T )}

Var(Z)
. (3.28)

We can make the following observations. The two definitions coincide
for (T, Z) bivariate normal and, for many other models, are likely to
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be close in practice. The idea of “close” can be formalized via an ap-
peal to Berry-Esseen bounds or to bivariate Edgeworth expansions
in given situations. More importantly, there is a qualitative distinc-
tion between the two definitions in that, the first provides an Ω2 that
remains invariant to monotonic transformations on Z, whereas the
second provides an Ω2 that remains invariant to monotonic transfor-
mations on T. The measure of dependency Ω2 then applies to all pairs
(T, ψ(Z)) or (φ(T ), Z), respectively, for all increasing transformations
ψ(·) and φ(·). The above formulation is then more general than that of
the commonly employed Pearson coefficient, which is not invariant to
monotonic transformations on either of the variables. Although, it is
possible to construct a nonparametric product moment, Pearson-type,
estimate of the correlation coefficient using the Fisher-Yates scores
in place of the original observations. This coefficient is invariant to
monotonic transformation on either Z or T .

Multivariate and partial coefficients

For the case in which Z is a vector the extension is obvious and the
basic formula is essentially the same. Thus

Var(T ) = E{Var(T |Z)} + Var{E(T |Z)}

which, apart from the fact that we are now viewing Z as a vector,
has exactly the same form as before. We can write E{Var(T |Z)} as
σ2

T (Z1, . . . , Zp) and, again, refer to this as the residual noise. Adding
variables to the conditioning will reduce the residual noise in a very
well-defined, and useful, way, described below. The signal is then
VarZ{ET (T |Z)} and we define;

Ω2
T (Z1, . . . , Zp) =

Var(T ) − σ2
T (Z1, . . . , Zp)

Var(T )
=

Var{E(T |Z)}
Var(T )

. (3.29)

This is then the multivariate coefficient and, conceptually, the step
up from the simple coefficient is all but immediate. The multivariate
coefficient quantifies the amount of variation that we can explain by
simultaneously taking into account several potential explanatory vari-
ables. A different, although related and equally important problem in
the multivariate setting, is the idea of a partial coefficient. A partial
coefficient quantifies the amount of variability explained after having,
in a well-defined way, taken account of the effects of a third variable



96 CHAPTER 3. BACKGROUND: GENERAL INFERENCE

or, possibly, a vector of variables. Consider then the vector (T, Z1, Z2).
We are interested in a partial measure of strength of association be-
tween T and Z2 after having taken into account any effects of Z1. For
Z1 not random and fixed at some particular value, say Z1 = z1 we
have the classic breakdown:

Var(T |Z1 = z1) = E{Var(T |Z2, Z1 = z1)} + Var{E(T |Z2, Z1 = z1)}.

Clearly this breakdown can be carried out for any other value of Z1

and, indeed, can be undertaken for all values of Z1 over its domain of
definition. Taking expectations with respect to the distribution of Z1

we have

E Var(T |Z1) = EE{Var(T |Z2, Z1)} + E Var{E(T |Z2, Z1)} ,

from which a natural definition of partial explained variation arises as

Ω2
T (Z2|Z1) =

E Var(T |Z1) − EE{Var(T |Z2, Z1)}
E Var(T |Z1)

=
E Var{E(T |Z2, Z1)}

E Var(T |Z1)
.

The variance breakdown is carried out at all possible values of Z1, con-
sidered, thereby, as fixed. In this concrete sense we have taken account
of Z1 in evaluating the variation of T explained by Z2. The coefficient
is described as a partial coefficient. Keep in mind that, as before, all
of this development takes place in terms of random variables alone.
No appeal, so far, is made to any specific model. The expressions hold
generally. For the multivariate normal model the relationship between
partial correlation and multiple correlation is well known. However,
without appealing to any model, we can establish useful results link-
ing partial coefficients to multiple coefficients.

Variance decomposition

Suppose that we have two variables of interest; Z1 and Z2. Considering
at first only Z1 we can write the usual decomposition as

Var(T ) = σ2(Z1) + VarZ1{ET (T |Z1)}

and, from the above result for the partial coefficient, we can further
decompose the noise σ2(Z1) writing in the formula, instead of σ2(Z1),
its decomposition so that

Var(T ) = σ2(Z1, Z2) + EZ1VarZ2{ET (T |Z1, Z2) + VarZ1{ET (T |Z1)}}
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where the new residual noise, σ2(Z1, Z2) is equal to EE{Var(T |Z1, Z2)}.
In words, by introducing a further variable Z2 into the decomposition,
the old signal provided by Z1 alone remains unchanged. The noise is
reduced in such a way that the old noise now equates to the added
signal, provided by Z2 after having already accounted for Z1, together
with a new component that corresponds to the new noise. We can
summarize this by

Var(T ) = new residual noise + added signal + old signal.

We can then continue this process each time we wish to add a further
variable to those that have already been accounted for. Any new con-
tribution is orthogonal in the sense that the previous signals remain
unchanged. Only the residual noise is affected. Furthermore, unless
the signal corresponding to an added variable is exactly zero, then the
amount of explained variance must necessarily increase. For the case
of p variables, Z1, . . . , Zp, straightforward manipulation then leads to

Var(T ) = σ2(Z1, . . . , Zp) + V (Z1, . . . , Zp)

in which

V (Z1, . . . , Zp) = VarZ1{ET (T |Z1)}
+EZ1VarZ2{ET (T |Z1, Z2)}
+EZ1EZ2VarZ3{ET (T |Z1, Z2, Z3)} + · · ·
+EZ1EZ2 · · ·EZpVarZp{ET (T |Z1, . . . , Zp)}. (3.30)

This decomposition provides the main result supporting the usefulness
of the concept of explained variation in multivariate problems. Inter-
pretation is clear. Note, however, that there are several ways in which
the breakdown can be carried out. The interpretation of the equation
is that, once we have accounted for certain variables, then further in-
creases in explained variance can only arise if the residual noise can
be further decomposed into, once again, a new noise component, to-
gether with a new signal provided by information orthogonal to that
we already have.

Multivariate normal case

The special case of the multivariate normal model provides yet further
insight since there turn out to be a number of interesting and useful
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algebraic identities relating the partial and the multiple coefficients.
In particular we have

1 − Ω2
T (Z1, Z2, . . . , Zp) = {1 − Ω2

T (Zp|Z1, . . . , Zp−1)}
×{1 − Ω2

T (Zp−1|Z1, . . . , Zp−2)} × · · ·
×{1 − Ω2

T (Z2|Z1)} × {1 − Ω2
T (Z1)}. (3.31)

In this expression it becomes very clear that the multiple coefficient
must take on values at least as great as those of lower order. It is
also apparent that, if Ω2

T (Z2|Z1) is zero, then Ω2
T (Z2, Z1) = Ω2

T (Z1),
a result which is also true outside the bivariate normal model. For
the linear combination η = β′Z, since F (t|Z = z) and F (t|η = β′z)
are the same, all the needed information is contained in η. Thus, for
multidimensional Z, Ω2

T (Z) = Ω2
T (η), the predictive power of Z being

summarized by η, the actual values assumed by the components of Z
itself having no impact unless they modify η. Although this does not
hold generally, for regression models in which the predictor is of the
form η, a sensible definition for the multivariate coefficient, possibly
easier to manipulate than that provided above, would be to replace the
multidimensional Z by η̂ for some consistent estimate of η and then
proceed as in the bivariate case.

General expression for explained variation

In a bid to obtain suitable measures of explained variation for specific
contexts, proportional hazards being an example, some authors have
focused attention on some specific property of the normal model and
then generalized it. This may or may not produce coefficients of pre-
dictability with good properties and it seems necessary to provide a
more fundamental generalization of the basic definition. If the more
fundamental generalization is successful, then not only should we be
able to recover all the known situations as special cases, it should also
be clear how to proceed when faced with new situations. With this
in mind consider the following definition: take subsets of Z, A(z) and
B(z), where A(z) ⊆ B(z). We then define Ω2 by

1 − Ω2 =
E{E[T − E(T |A(Z))]2}
E{E[T − E(T |B(Z))]2} . (3.32)

The choices A(z) = {z} and B(z) = Z in Equation 3.32, corre-
sponding to the most common case enables Equation 3.32 to reduce to
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Equation 3.25. Other choices can be helpful. For example, it is known,
and indeed has sometimes been advanced as a criticism of Ω2, that the
coefficient depends on restrictions on Z, this being made very clear
via the explicit appearance of B(z) in the above formula. It may also
be of interest to consider other definitions of A(z), allowing for say
grouping (e.g., Cox and Wermuth 1992). Thus, in any given context,
when discussing Ω2, the amount of explained variation, it can be useful
to keep in mind both how it is we are trying to explain the variation
as well as just how much variation there is to explain.

Our reasons for being interested in the more general definition
(3.32) have more to do with difficulties in establishing appropriate
reference sets in the presence of right censoring. This inevitably in-
volves conditioning on the risk sets and a suitable choice of B enables
this to be carried out. Consider a bivariate regression model in which
the special value β = 0 corresponds to absence of association between
T and Z. This will often reduce itself to the equivalent statement that
z ∈ B(z) where B(z) is the whole support of Z. The population value
β0 will often correspond to z ∈ A(z) where A(z) = {z}. We can then
write; as a definition for Ω2

T (Z)

Ω2 =
E{Var(Z(t)|T = t; β = 0)} − E{Var(Z(t)|T = t; β)}

E{Var(Z(t)|T = t; β = 0)} .

which we can rewrite as;

Ω2 = 1 −
∫

Eβ{[Z(t) − Eβ(Z(t)|t)]2|t}dF (t)
∫

Eβ{[Z(t) − E0(Z(t)|t)]2|t}dF (t)
. (3.33)

This expression can be immediately adopted in the regression setting.
Expectations derived from our chosen models and appropriate estima-
tors arise naturally by replacing β by a consistent estimate. We return
to this later in the text.

3.10 Exercises and class projects

1. Suppose that
∑∞

i=1 ai = 1. Also suppose that there exist random
variable Xi such that Xi = aiX1. Show that

∑
Xi, standardized by

mean and variance, would not generally tend to a normal distribution.
Comment.

2. Describe in simple terms what is quantified by the Lindeburg con-
dition.
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3. For a weighted sum of independent identically distributed random
variables, suppose that each variable is standard uniform and the
weights ai are defined as ai = 10i. Will a central limit result hold
and, if not, why not.

4. As a class project, construct graphs based on summing (1) 20 uni-
form random variates, (2) 100 uniform random variates and (3) 10000
uniform random variates. Standardize the x axis to lie between 0 and
1 and the y axis such that the mean is equal to zero and the variance
increases linearly with x. Replicate each graph ten times. What con-
clusions can be drawn from the figures, in particular the influence of
the number of variates summed?

5. Repeat the above class exercise, replacing the uniform distribution
by (1) the log-logistic distribution with different means and variances,
(2) the exponential distribution and (3) the normal distribution. Again
replicate each graph ten times. Comment on your findings.

6. Consider two hypotheses for the sequence of observations;X1, . . . ,Xn

in which µi = E(Xi); H1 : µi = 0 ,∀i, against H1 : µi = b2i for some
b 	= 0. Construct different tests based on Brownian motion that would
enable us to test H0 versus H1. Discuss the relative merits of the
different tests.

7. Simulate 20 values from a standard exponential distribution and
evaluate the greatest absolute distance between Fn(t) and F (t). Repeat
this 1000 times, store the 1000 values of D20, and then plot a histogram
of these values. Add to the histogram the distribution of D20 using the
Brownian bridge approximation.

8. For a sample size of 220, provide an approximate calculation of how
large you would anticipate the greatest discrepancy between Fn(t) and
F (t) to be.

9. Let T1, . . . , Tn be i.i.d. observations from an exponential distribution
with mean θ. Obtain an estimating equation for θ in terms of E(Ti).
Obtain an estimating equation for θ in terms of Var (Ti). Which of the
two equations, if any, would be the most preferable. Give reasons.

10. Consider the following bivariate situation. We have a random
variable, T , which is continuous and a binary variable Z, which take the
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values 0 or 1. Given that T = 0, Pr (Z = 0) = 0.5. Given that Z = 0,
the distribution of T is exponential with mean equal to 1. Given that
Z = 1 the distribution of T is exponential with mean equal to exp(β).
Given n pairs of observations (Ti, Zi) our purpose is to estimate the
parameter β. Considering the values of Z as being fixed, obtain an
estimating equation based on the observations Ti (i = 1, . . . , n). Sec-
ondly, we could view the random aspect of the experiment differently
and now take the observations T1 to Tn as being fixed. Derive the con-
ditional distribution of Z given T = Ti. Use this to obtain a different
estimating equation. Discuss the relative merits and disadvantages of
the two sets of estimating equations.

11. In the next chapter we discuss the idea of right censoring where,
for certain of the observations Ti, the exact value is not known. All
that we can say for sure is that it is greater than some censoring time.
How might the discussion of the previous exercise on the two types of
estimating equations arising from reversing the conditioning variable
have a bearing on this.

12. Consider the pair of independent random variables (Yi, Xi), i =
1, . . . , n. The null hypothesis is that Yi = φ(Xi) + εi where εi is an
error term independent of the pair (Yi, Xi) and where φ(u) is a nonde-
creasing function of u. Describe how you would carry out tests based
on Dn and Cn of Section 3.5.

13. By investigating different classes of functions φ, describe the rel-
ative advantages and disadvantages of tests based upon Cn rather
than Dn.



Chapter 4

Background: Survival
analysis

4.1 Summary

We recall some elementary definitions concerning probability distrib-
utions, putting an emphasis toward one minus the usual cumulative
distribution function, i.e., the survival function. This is also sometimes
called the survivorship function. The closely related hazard function
has, traditionally, been the most popular function around which to
construct models. For multistate models it can be helpful to work
with intensity functions, rather than hazard functions since these al-
low the possibility of moving in and out of states. This is facilitated by
the very important function, Y (t), the “at-risk” indicator. A number
of special parametric cases of proportional hazards models are pre-
sented. The issue of censoring and the different kinds of censoring is
discussed. The “at-risk” indicator Yi(w, t), taking the value one when
the subject i is at risk of making a transition of a certain kind, in-
dicated by w, makes it particularly simple to address more complex
issues in survival such as repeated events, competing risks, and mul-
tistate modelling. We consider some tractable parametric models, the
exponential model in particular.

4.2 Motivation

Survival time T will be a positive random variable, typically right
skewed and with a non-negligible probability of sampling large values,

103
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far above the mean. The fact that an ordering, T1>T2, corresponds to
a solid physical interpretation has led some authors to consider that
time is somehow different from other continuous random variables,
reminiscent of discussion among early twentieth century physicists
about the nature of time “flowing inexorably in and of itself.” These
characteristics are sometimes put forward as a reason for considering
techniques other than the classic techniques of linear regression. From
a purely statistical viewpoint, this reasoning is incorrect. Elementary
transformations fix the skewness problems which, in consequence,
reveal themselves as quite superficial. Nor is there any worthwhile,
statistical, distinction between time and, say, height or weight. The
reason for considering particular techniques, outside of the classical
ones of linear regression, is the presence of censoring. In early work
censoring came to be viewed as a nuisance feature of the data collec-
tion, hampering our efforts to study the main relationships of interest.
A great breakthrough occurred when this feature of the data, the cen-
soring, was modelled by the “at-risk” function. Almost immediately it
became clear that all sorts of much more involved problems; compet-
ing risks, repeated events, correlated outcomes, could all be handled
with almost no extra work. Careful use of the “at-risk” indicator was
all that would be required. At the heart then of survival analysis is
the idea of being at risk for some event of interest taking place in a
short time frame (for theoretical study this short time will be made
arbitrarily small). Transition rates are then very natural quantities
to consider. In epidemiology these ideas have been well rooted for a
half-century where age-dependent rates of disease incidence have been
the main objects under investigation.

4.3 Basic tools

Time and risk

The insurance example in the introduction highlights an obvious, but
important, issue. If driver A, on average, has a higher daily risk than
driver B, then his mean time to be involved in an accident will be
shorter. Conversely, if driver B has a longer mean time to accident,
then he has, on average, a lower daily risk. For many examples we may
tend to have in mind the variable time and how it is affected by other
variables. But we can think equally well in terms of risk over short
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time periods, a viewpoint that we will see generalizes more readily to
be able to deal with complicated situations. The connection between
time and risk is outlined more formally below.

Hazard and related functions

The purpose here is to continue the introduction of preliminary no-
tions and some basic concepts. Before discussing data and estimation
we consider the problem in its most simplified form as that of the
study of the pair of random variables (T, Z), T being the response
variable “survival” of principal interest and Z an associated “explana-
tory” variable. There would be little difficulty in applying the host of
techniques from linear regression to attacking this problem were it not
for the presence of a “censoring” variable C. The particularity of C
is that, when observed, i.e., C = c, we are no longer able to observe
values of T for which T > c. Also, in most cases, when T is observed,
we are no longer able to observe C. Nonetheless an observation on one
tells us something about the other, in particular that it must assume
some greater value.

Although the joint distribution of (T, Z) can be of interest, we are
particularly interested in the conditional distribution of T given Z.
First let us consider T alone. The probability density function of T is
defined as

f(t) = lim
∆t→0+

1
∆t

Pr(t < T < t + ∆t), (4.1)

where lim∆t→0+ means that ∆t goes to 0 only through positive values.
We define as usual F (t) =

∫ t
0 f(u)du. The survivorship function is

written as S(t) = 1−F (t). If we view the density as the unconditional
failure rate, we can define a conditional failure rate as being the same
quantity after having accounted for the fact that the individual has
already survived until the time point t. We call this λ(t) and we define

λ(t) = lim
∆t→0+

1
∆t

Pr(t < T < t + ∆t|T > t). (4.2)

It helps understanding to contrast equation (4.2) and (4.1) and we
can see that λ(t) and f(t) are closely related quantities. In a sense
the function f(t) for all values of t is seen from the standpoint of an
observer sitting at T = 0, whereas, for the function λ(t), the observer
moves along with time looking at the same quantity but viewed from
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the position T = t. Analogous to a density, conditioned by some event,
we can define

λ(t|C > t) = lim
∆t→0+

1
∆t

Pr(t < T < t + ∆t|T > t, C > t). (4.3)

The conditioning event C > t is of great interest since, in practical
investigations, all our observations at time t have necessarily been con-
ditioned by the event. All associated probabilities are also necessarily
conditional. But note that, under an independent censoring mecha-
nism, λ(t|C > t) = λ(t). This result underlies the great importance
of certain assumptions, in this case that of independence between C
and T . The conditional failure rate, λ(t), is also sometimes referred
to as the hazard function, the force of mortality, the instantaneous
failure rate or the age-specific failure rate. If we consider a small in-
terval then λ(t)×∆t closely approximates the probability of failing in
a small interval for those aged t, the approximation improving as ∆t
goes to zero. If units are one year then these are yearly death rates.
The cumulative hazard function is also of interest and this is defined
as Λ(t) =

∫ t
0 λ(u)du. For continuous λ(t), using elementary calculus

we can see that:

λ(t) = f(t)/S(t) , S(t) = exp{−Λ(t)} , f(t) = λ(t) exp{−Λ(t)}.

Although mathematically equivalent, we may prefer to focus atten-
tion on one function rather than another. The survival function, S(t),
is the function displaying most clearly the information the majority
of applied workers are seeking. The hazard function, λ(t), of central
concern in much theoretical work, provides the most telling visual rep-
resentation of time effects. An important function, of theoretical and
practical interest, is the conditional survivorship function,

S(t, u) = Pr(T > t|T > u) = exp{Λ(u) − Λ(t)} , (u < t).

From this it is clear that S(t, u) = S(t)/S(t) and that S(u, u) = 1
so that it is as though the process had been restarted at time t = u.
Other quantities that may be of interest in some particular contexts
are the mean residual lifetime, m(t), and the mean time lived in the
interval [0, t], µ(t), defined as

m(t) = E(T − t|T ≥ t), µ(t) =
∫ t

0
S(u)du. (4.4)
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Like the hazard itself, these functions provide a more direct reflection
on the impact of having survived until time t. The mean residual life-
time provides a very interpretable measure of how much more time we
can expect to survive, given that we have already reached the time-
point t. This can be useful in actuarial applications. The mean time
lived in the interval [0, t] is not so readily interpretable, requiring a lit-
tle more thought (it is not the same as the expected lifetime given that
T < t). It has one strong advantage in that it can be readily estimated
from right censored data in which, without additional assumptions, we
may not even be able to estimate the mean itself. The functions m(t)
and µ(t) are mathematically equivalent to one another as well as the
three described above and, for example, a straightforward integration
by parts shows that m(t) = S−1(t)

∫∞
t S(u)du and that µ(∞) = E(T ).

If needed, it follows that the survivorship function can be expressed in
terms of the mean residual lifetime by

S(t) = m−1(t)m(0) exp
(

−
∫ t

0
m−1(u)du

)

.

We may wish to model directly in terms of m(t), allowing this func-
tion to depend on some vector of parameters θ. If the expression for
m(t) is not too intractable then, using f(t) = −S′(t) and the above
relationship between m(t) and S(t), we can write down a likelihood for
estimation purposes in the situation of independent censoring. An in-
teresting and insightful relationship (see for instance the Kaplan-Meier
estimator) between S(t) and S(t, u) follows from considering some dis-
crete number of time points of interest. Thus, for any partition of the
time axis, 0 = a0 < a1 <, . . . , an = ∞, we see that

S(aj) = S(aj−1)S(aj , aj−1) =
∏

�≤j

S(a�, a�−1).

The implication of this is that the survival function S(t) can always be
viewed as the product of a sequence of conditional survival functions,
S(t, u). Although more cumbersome, a theory could equally well be
constructed for the discrete case whereby f(ti) = Pr(T = ti) and
S(ti) =

∑
�≥i f(t�). We do not explore this here.

Intensity functions and compartment models

Modern treatment of survival analysis tends to focus more on inten-
sity than hazard functions. This leads to great flexibility, enabling, for
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Alive Dead

Figure 4.1: A simple alive/dead transition model.

example, the construction of simple models to address questions in
complex situations such as repeated events (Andersen and Gill 1982).
We believe that both concepts can be useful and we will move back and
forth between them according to the application. Intensity functions
find their setting in the framework of stochastic processes where the
random nature of T is suppressed, t being taken simply as an index to
some stochastic process. The counting process N(t), takes the value 0
at t = 0, remaining at this same value until some time point, say T = u,
at which the event under study occurs and then N(t) = 1 (t ≥ u). We
can then define, in an infinitesimal sense, i.e., the equality only holds
precisely in the limit as dt goes to zero through positive values

Pr{(N(t) − N(t − dt) = 1|Ft−dt)} = α(t)dt (4.5)

where Ft−dt, written as Ft− when we allow dt > 0 to be arbitrarily
close to zero, is the accumulated information, on all processes under
consideration, observed up until time t − dt. The observed set Ft−
is referred to as the history at time t. The set is necessarily non de-
creasing in size as t increases, translating the fact that more is being
observed or becoming known about the process. The Kolmogorov ax-
ioms of probability, in particular sigma additivity, may not hold for
certain noncountable infinite sets. For this reason probabilists take
great care, and use considerable mathematical sophistication, to en-
sure, in broad terms, that the size of the set Ft− does not increase
too quickly with t. The idea is to ensure that we remain within the
Kolmogorov axiomatic framework, in particular that we do not vio-
late sigma additivity. Much of these concerns have spilled over into
the applied statistical literature where they do not have their place.
No difficulties will arise in applications, with the possible exception of
theoretical physics, and the practitioner, unfamiliar with measure the-
ory, ought not be deterred from applying the techniques of stochastic
processes simply because he or she lacks a firm grasp of concepts such
as filtrations. It is hard to imagine an application in which a lack of
understanding of the term “filtration” could have led to error. On the
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other hand, the more accessible notions of history, stochastic process,
and conditioning sets are central and of great importance both to un-
derstanding and to deriving creative structures around which applied
problems can be solved. Viewing t as an index to a stochastic process
rather than simply the realization of a random variable T , and defining
the intensity process α(t) as above, will enable great flexibility and the
possibility to model events dynamically as they unfold.

At risk functions Y (t), Y (w, t) and multistate models

The simplest case we can consider occurs when following a randomly
chosen subject through time. The information in Ft− tells us whether
or not the event has yet occurred and if the subject is still at risk i.e.,
the set Ft− is providing the same information as an observation on the
function Y (t) where we take Y (t) to be left continuous, assuming the
value one until the occurrence of an event, or removal from observation,
at which time it assumes the value zero. If the simple fact of not having
been removed from the study, the event (C > t) is independent of the
event (t < T < t + dt), then conditioning on Y (t) = 1 is the same as
conditioning on T > t. Referring then to Equation (4.2) it is clear that
if Y (t) = 0 then α(t) = 0 and, if Y (t) = 1 then α(t) = λ(t). Putting
these two results together we have

α(t) = Y (t)λ(t). (4.6)

This relation is important in that, under the above condition, referred
to as the independent censoring condition, the link between the inten-
sity function and the hazard function is clear. Note that the intensity
function is random since Y is random when looking forward in time.
Having reached some time point, t say, then α(t) is fixed and known
since the function Y (u), 0 < u < t is known and Y (t) is left continuous.

We call Y (·) the “at risk” function (left continuous specifically so
that at time t the intensity function α(t) is not random). The idea
generalizes readily and in order to cover a wide range of situations
we also allow Y to have an argument w where w takes integer values
counting the possible changes of state. For the ith subject in any study
we will typically define Yi(w, t) to take the value 1 if this subject, at
time t, is at risk of making a transition of type w, and 0 otherwise.
Figure 4.2 summarizes a situation in which there are four states of
interest, an absorbing state, death, and three states from which an
individual is able to make a transition into the death state. Transitions
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Alive in State A Alive in State B Alive in State C

Dead

Figure 4.2: A simple compartment model with an absorbing state.

State 1
No symptoms

State 2
Progression

State 3
Dead

Figure 4.3: A simple compartment model with a single absorbing state.

among the three nondeath states themselves are not allowed. Later we
will consider different ways of modeling such a situation, depending
upon further assumptions we may wish or not wish to make.

In Figure 4.3 there is one absorbing state, the death state, and two
non absorbing states between which an individual can make transi-
tions. We can define w = 1 to indicate transitions from state 1 to state
2, w = 2 to indicate transitions from state 2 to state 1, w = 3 to indi-
cate transitions from state 1 to state 3 and, finally, w = 4 to indicate
transitions from state 2 to state 3. Note that such an enumeration only
deals with whether or not a subject is at risk for making the transi-
tion, the transition probabilities (intensities) themselves could depend
on the path taken to get to the current state. We can then appreciate
why it can be helpful to frame certain questions in terms of compart-
ment models, intensity functions and the risk function. Rather com-
plex situations can be dealt with quite straightforwardly, the figures
illustrating simple cases where we can use the argument w in Yi(w, t)
to indicate, at any t, which kinds of transition any given subject i is
available to make. In Figure 4.4 there are two absorbing states, one of
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State 4State 3

State 2State 1

Figure 4.4: A complex compartment model with two absorbing states.

which can only be reached from state 2. The transition rate between
state 2 and state 4 may or may not depend on the number of times
a subject moves between states 1 and 2. Allowing for transitions be-
tween states greatly adds to the flexibility of any model so that, in
Figure 4.2, although the explanatory variable (state) has three levels,
the model is, in principle, much simpler than that described in Figure
4.3 where the explanatory variable can assume only two states.

At-risk indicator Y (w, t) and repeated events

Some studies have the particularity that an occurrence of the event of
interest does not remove the subject from further observation. Addi-
tional events, of the same or of different types, may happen. An exam-
ple is benign breast disease, potentially followed by malignant disease.
A patient may have several incidences of benign breast disease at dif-
ferent intervals of time. Following any one of these incidences, or even
before such an incidence takes place the subject may become incident
for malignant disease. If our interest is essentially focussed on the in-
cidence of malignant disease then we would treat the time-dependent
history of benign breast disease as a potential explanatory variable for
incidence of malignant disease. However, we may also be interested in
modelling directly the repeated incidence of benign breast disease in
its own right. Clearly a patient can only be at risk of having a third
incident of benign breast disease if she has already suffered two earlier
incidents. We can model the rate of incidence for the j th occurrence
of benign disease as,

αj(t) = Y (j, t)λj(t − tj−1), (4.7)

where t0 = 0 and tj is the observed occurrence of the j th event.
Different options may be considered for modeling λj(t). Usually there
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will be at least one covariate, Z, indicating two distinct prognostic
groups, possibly established on the basis of different treatments. The
model will involve coefficients multiplying Z and thereby quantifying
treatment affect. Allowing these coefficients to also depend upon j
provides the broadest generality and is equivalent to analyzing sepa-
rate studies for each of the occurrences. Stronger modeling, imposing
greater structure, might assume that the coefficients do not depend
upon j, in which case the information provided by a subject having
three incident cases is comparable to that of three independent sub-
jects each providing information on a single incident. So-called mar-
ginal models have been proposed in this context. Here, it would be
as though the subject, after an event, starts the clock from zero and,
aside from covariate information, is deemed to be in the same position
as another subject who has just entered the study without having yet
suffered a single event. A lot of information would appear to be thereby
gained but the set-up seems rather artificial and implausible. Starting
the clock from zero, after each event, is sensible but it is more realistic
to assume that the underlying hazard rates, i.e., those not adjusted
by covariate information, would change with the number of prior inci-
dents. In other words the most sensible model would condition on this
information allowing the baseline hazard rate to change according to
the number of events counted so far.

4.4 Some potential models

Simple exponential

The simple exponential model is fully specified by a single parameter
λ. The hazard function, viewed as a function of time, does not in
fact depend upon time so that λ(t) = λ. By simple calculation we
find that Pr(T > t) = exp(−λt). Note that E(T ) = 1/λ and, indeed,
the exponential model is often parameterized directly in terms of the
mean θ = E(T ) = 1/λ. Also Var(t) = 1/λ2. This model expresses the
physical phenomenon of no aging or wearing out since, by elementary
calculations, we obtain S(t + u, u) = S(t); the probability of surviving
a further t units of time, having already survived until time u, is the
same as that associated with surviving the initial t units of time. The
property is sometimes referred to as the lack of memory property of
the exponential model.
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For practical application the exponential model may suggest it-
self in view of its simplicity or sometimes when the constant hazard
assumption appears realistic. A good example is that of a light bulb
which may only fail following a sudden surge in voltage. The fact that
no such surge has yet occurred may provide no information about the
chances for such a surge to take place in the next given time period. If
T has an exponential distribution with parameter λ then λT has the
so-called standard exponential distribution, i.e., mean and variance are
equal to one.

Recall that for a random variable Y having normal distribution
N (µ, σ2) it is useful to think in terms of a simple linear model Y =
µ+σε, where ε has the standard distribution N (0, 1). As implied above,
scale changes for the exponential model lead to a model still within the
exponential class. However, this is no longer so for location changes so
that, unlike the normal model in which linear transformations lead to
other normal models, a linear formulation for the exponential model is
necessarily less straightforward. It is nonetheless of interest to consider
the closest analogous structure and we can write

Y = log T = α + bW, (4.8)

where W has the standard extreme value density f(w) = exp{w −
exp(w)}. When α = 0 we recover an exponential model for T with
parameter b, values other than zero for α pushing the variable T out of
the restricted exponential class into the broader Weibull class discussed
below.

Proportional hazards exponential

In anticipation of the central topic of this book (that of heterogeneity
among the subjects under study) imagine that we have two groups,
indicated by a binary variable Z = 0 or Z = 1. For Z = 0 the subjects
follow an exponential law with parameter λ0. For Z = 1 the subjects
follow an exponential law with parameter λ1. It is clear that for the
hazard functions there exists real β (= log λ1 − log λ0) such that

λ(t|Z) = λ(t|Z = 0) exp(βZ) = λ0 exp(βZ). (4.9)

The important point to note here is that the ratio of the hazards,
λ(t|Z = 1)/λ(t|Z = 0) does not involve t. It also follows that S(t|Z =
1) = S(t|Z = 0)α where α = exp(β). The survival curves are power
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transformations of one another. This is an appealing parameterization
since, unlike a linear parameterization, whatever the true value of β,
the constraints that we impose upon S(t|Z = 1) and S(t|Z = 0) in
order to be well-defined probabilities, i.e., remaining between 0 and 1,
are always respected. Such a model is called a proportional hazards
model. For three groups we can employ two indicator variables, Z1

and Z2, such that, for group 1 in which the hazard rate is equal to λ0,
Z1 = 0 and Z2 = 0, for group 2, Z1 = 1 and Z2 = 0 whereas for group
3, Z1 = 0 and Z2 = 1. We can then write;

λ(t|Z) = λ0 exp(β1Z1 + β2Z2), (4.10)

where λ0 = λ(t|Z1 = Z2 = 0). It is worthwhile bringing the reader’s
attention to just where the constraints of the model express themselves
here. They concern the hazard rates for all groups, which are assumed
to be constant. Given this constraint there are no further constraints
concerning the relationship between the groups. Suppose, though, that
we were to consider a further group, group 4, defined by Z1 = 1 and
Z2 = 1. In order to add a fourth group without introducing a further
binary coding variable Z3, we introduce the constraint that the hazard
for group 4 is simply expressed in terms of the hazards for groups 2
and 3. Such assumptions are commonly made in routine data analysis
but, nonetheless, ought come under critical scrutiny. We return to this
issue in later chapters. The extension to many groups follows in the
same way. For this we take Z to be a p dimensional vector of indicator
variables and β a vector of parameters having the same dimension as
Z, the product βZ in Equation 4.9 now implying an inner product,
i.e., βZ =

∑p
i=1 βiZi. In this case the proportional hazards exponential

model (4.9) implies that every group follows some simple exponential
law, a consequence being that the survivorship function for any group
can be expressed as a power transformation of any other group. Once
again, it is important to keep in mind just which assumptions are
being made, the potential impact of such assumptions on conclusions,
and techniques for bringing under scrutiny these assumptions. The
proportional hazards constraint then appears as a very natural one in
which we ensure that the probabilities S(t|z) and subsequent estimates
always remain between 0 and 1. A linear shift added to S(t|0) would
not allow for this. We do nonetheless have a linear shift although on a
different, and thereby more appropriate, scale and we can write
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log− log S(t|Z) = log− log S(t|0) +
p∑

i=1

βiZi.

This formulation is the same as the proportional hazards formulation.
Noting that − log S(T |Z = z) is an exponential variate some authors
prefer to write a model down as a linear expression in the transformed
random variable itself with an exponential error term. This then pro-
vides a different link to the more standard linear models we are familiar
with.

Piecewise exponential

The lack of flexibility of the exponential model will often rule it out
as a potential candidate for application. Many other models, only one
or two of which are mentioned here, are more tractable, a property
stemming from the inclusion of at least one additional parameter.
Even so, it is possible to maintain the advantages of the exponen-
tial model’s simplicity while simultaneously gaining in flexibility. One
way to achieve this is to construct a partition of the time axis 0 = a0 <
a1 < . . . < ak = ∞. Within the jth interval (aj−1, aj) , (j = 1, . . . , k)
the hazard function is given by λ(t) = λj . We can imagine that this
may provide quite a satisfactory approximation to a more involved
smoothly changing hazard model in which the hazard function changes
through time. We use S(t) = exp{−Λ(t)} to obtain the survival func-
tion where

Λ(t) =
k∑

j=1

I(t ≥ aj)λj(aj − aj−1)

+
k∑

j=1

I(aj−1 ≤ t < aj)λj(t − aj−1). (4.11)

Properties such as the lack of memory property of the simple exponen-
tial have analogues here by restricting ourselves to remaining within
an interval. Another attractive property of the simple exponential is
that the calculations are straightforward and can be done by hand and,
again, there are ready analogues for the piecewise case. Although the
ready availability of sophisticated computer packages tends to elimi-
nate the need for hand calculation, it is still useful to be able to work
by hand if for no other purposes than those of teaching. Students gain
invaluable insight by doing these kind of calculations the long way.
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Proportional hazards piecewise exponential

In the same way as for the simple exponential model, for two groups,
indicated by a binary variable Z = 0 or Z = 1, each having constant
piecewise rates on the same intervals, it is clear that there exists βj

such that, for t ∈ [aj−1, aj),

λ(t|Z) = λ(t|Z = 0) exp(βjZ) = λ0(t) exp{β(t)Z}, (4.12)

where we now have a function β(t) =
∑k

j=1 βjI(aj−1 ≤ t < aj). This
can be described as a nonproportional hazards model and, if, under a
further restriction that β(t) is a constant function of time, i.e., β1 =
β2 = · · · = βk = β, then, as for the simple exponential model, we have
S(t|Z = 1) = S(t|Z = 0)α where α = exp(β) and, once again, such
a model is called a proportional hazards model. The model can once
more be described in terms of a linear translation on log− log S(t|z).

Weibull model

Another way to generalize the exponential model to a wider class is
to consider a power transformation of the random variable T . For
any positive γ, if the distribution of T γ is exponential with parameter
λ, then the distribution of T itself is said to follow a Weibull model
whereby

f(t) = λγ(λt)γ−1 exp{−(λt)γ}

and S(t) = exp−(λt)γ . The hazard function follows immediately from
this and we see, as expected, that when γ = 1 an exponential model
with parameter λ is recovered. It is of interest to trace out the pos-
sible forms of the hazard function for any given λ. It is monotonic,
increasing for values of γ greater than 1 and decreasing for values less
than 1. This property, if believed to be reflected in some given phys-
ical situation, may suggest the appropriateness of the model for that
same situation. An example might be the time taken to fall over for
a novice roller blade enthusiast - the initial hazard may be high, ini-
tially decreasing somewhat rapidly as learning sets in and thereafter
continuing to decrease to zero, albeit more slowly.

The Weibull model, containing the exponential model as a spe-
cial case, is an obvious candidate structure for framing questions of
the sort - is the hazard decreasing to zero or is it remaining at some
constant level? A null hypothesis would express this as H0 : γ = 1.
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Straightforward integration shows that E(T r) = λ−rΓ(1 + r/γ) where
Γ(·) is the gamma function,

Γ(p) =
∫ ∞

0
up−1e−udu p > 0.

For p integer Γ(p) = (p− 1)! The mean and the variance are λ−1Γ(1+
1/γ) and λ−2Γ(1 + 2/γ)−E2, respectively. The Weibull model can be
motivated from the theory of statistics of extremes. The distribution
coincides with the limiting distribution of the smallest of a collection
of random variables, under broad conditions on the random variables
in question (Kalbfleisch and Prentice 1980, page 48).

Proportional hazards Weibull

Once again, for two groups indicated by a binary variable Z = 0 or
Z = 1, sharing a common γ but different values of λ, then there ex-
ists a β such that λ(t|Z)/λ(t|Z = 0) = exp(βZ). Since, as above,
the right-hand side of the equation does not depend on t, then we
have a proportional hazards model. This situation and the other two
described above are the only common parametric models that come
under the heading proportional hazards models by simply expressing
the logarithm of the location parameter linearly in terms of the co-
variates. The situation for more than two groups follows as before.
Consider however a model such as

λ(t|Z) = λγ(λt)γ−1 exp(βZ), (4.13)

in which Z indicates three groups by assuming the values Z = 1, 2, 3.
Unlike the model just above in which three groups were represented

by two distinct binary covariates, Z1 and Z2, we have only one covari-
ate. In the context of estimation and a given set of data we will almost
invariably achieve greater precision in our estimates when there are less
parameters to estimate. We would then appear to gain by using such a
model. As always though, any such gain comes at a price and the price
here is that we have made much stronger assumptions. We are assum-
ing that the signed “distance” between groups 1 and 2, as measured by
the logarithm of the hazard, is the same as the signed distance between
groups 2 and 3. If this is not the case in reality then we are estimating
some sort of compromise, the exact nature of which is determined by
our estimating equations. In an extreme case in which the distances
are the same but the signs are opposite we might erroneously conclude
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that there is no effect at all. At the risk of being repetitive, it cannot be
stressed too much just how important it is to identify the assumptions
we are making and how they may influence our conclusions. Here the
assumptions concern both the parametric form of the underlying risk
as well as the nature of how the different groups are related. Allowing
a shape parameter γ to be other than one provides a more flexible
model for the underlying risk than that furnished by the simple expo-
nential model. The choice of covariate coding, on the other hand, is
more restrictive than the earlier choice. All of this needs to be studied
in applications. An interesting point is that, for the three group case
defined as above, the “underlying” hazard, λ(t|Z = 0) = λγ(λt)γ−1

does not correspond to the hazard for any of the three groups under
study. It is common in practice to consider a recoding of Z, a simple
one being Z−Z̄, so that the underlying hazard will correspond to some
kind of average across the groups. For the case just outlined, another
simple recoding is to rewrite Z as Z − 2, in which case the underlying
hazard corresponds to the middle group, the other two groups having
hazard rates lower and greater than this, respectively.

Log-minus-log transformation

As a first step to constructing a model for S(t|Z) we may think of
a linear shift, based upon the value of Z, the amount of the shift to
be estimated from data. However, the function S(t|Z) is constrained,
becoming severely restricted for both t = 0 and for large t where it
approaches one and zero respectively. Any model would need accom-
modate these natural constraints. It is usually easiest to do this by
eliminating the constraints themselves during the initial steps of model
construction. Thus, log S(t|Z) = −Λ(t) is a better starting point for
modeling, weakening the hold the constraints have on us. However,
log− log S(t|Z) = log Λ(t) is better still. This is because log Λ(t) can
take any value between −∞ and +∞, whereas Λ(t) itself is constrained
to be positive. The transformation log− log S(t|Z) is widely used and
is called the log-minus-log transformation. The above cases of the ex-
ponential and Weibull proportional hazards models, as already seen,
fall readily under this heading.

Other models

The exponential, piecewise exponential and Weibull models are of par-
ticular interest to us because they are especially simple and of the
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proportional hazards form. Nonetheless there are many other mod-
els which have found use in practical applications. Some are directly
related to the above, such as the extreme value model in which

S(t) = exp
(

− exp
(

t − µ

σ

))

,

since, if T is Weibull, then log T is extreme value with σ = 1/γ
and µ = log λ. These models may also be simple when viewed from
some particular angle. For instance, if M(s) is the moment-generating
function for the extreme value density then we can readily see that
M(s) = Γ(1 + s). A distribution, closely related to the extreme value
distribution (see Johnson and Johnson 1980), and which has found
wide application in actuarial work is the Gompertz where

S(t) = exp
(
βα−1(1 − eαt)

)
.

The hazard rates for these distributions increase with time, and, for
actuarial work, in which time corresponds to age, such a constraint
makes sense for studying disease occurrence or death. The normal dis-
tribution is not a natural candidate in view of the tendency for survival
data to exhibit large skewness, not forgetting that times themselves
are constrained to be positive. The log normal distribution has seen
some use but is most often replaced by the log-logistic, similar in shape
apart from the extreme tails, and much easier to work with. The form
is particularly simple for this model and we have

S(t) = (1 + (αt)γ)−1 .

For two groups, sharing a common γ but different values of α it is
interesting to note that the hazard ratio declines monotonically with
time t to its asymptotic value of one. Such a model may be appropriate
when considering group effects which gradually wane as we move away
from some initial time point.

Parametric proportional hazards models

In principle, for any parametric form, the above providing just a very
few examples, we can make a straightforward extension to two or more
groups via a proportional hazards representation. For example, if the
survivorship functions of two groups are S(t|Z = 1) and S(t|Z = 0)
then we can introduce the parameter α to model one group as a power
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transform of the other. Rewriting α to include Z via α = exp (βZ)
then we have an expression involving the regressors,

log− log S(t|Z) = log− log S(t|Z = 0) + βZ. (4.14)

All parameters, including β, can be estimated using standard tech-
niques, maximum likelihood in particular, the only restriction being
that we require some conditions on the censoring variable C. In prac-
tice, standard techniques are rarely used, most likely as a consequence
of the attractive proposal of Cox (1972) whereby we can estimate β
without having to consider the form of S(t|Z = 1) or S(t|Z = 0). As
attractive as the Cox approach is though, we should not overlook the
fact that, in exchange for generality concerning the possible paramet-
ric forms of functions of interest, such as S(t|Z), making inferences on
these population quantities becomes that much more involved. Para-
metric proportional hazards models may be an area that merits re-
newed interest in applications.

4.5 Censoring

The most important particularity of survival data is the presence of
censoring. Other aspects such as the positivity and skewness of the
main random variable under study, time T , and other complex situ-
ations such as repeated measures or random effects, are not of them-
selves reasons for seeking methods other than linear regression. Using
transformations and paying careful attention to the structure of the er-
ror, linear models are perfectly adequate for dealing with almost any
situation in which censoring does not arise. It is the censoring that
forces us to consider other techniques. Censoring can arise in different
ways.

We typically view the censoring as a nuisance feature of the data,
and not of direct interest in its own right, essentially something that
hinders us from estimating what it is we would like to estimate. In
order for our endeavors to succeed we have to make some assumptions
about the nature of the censoring mechanism. The assumptions may
often be motivated by convenience, in which case it is necessary to
give consideration as to how well grounded the assumptions appear
to be as well as to how robust are the procedures to departures from
any such assumptions. In other cases the assumptions may appear
natural given the physical context of interest, a common case being
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the uniform recruitment into a clinical trial over some predetermined
time interval. When the study closes patients for whom the outcome
of interest has not been observed are censored at study close and until
that point occurs it may be reasonable to assume that patients are
included in the study at a steady rate.

It is helpful to think of a randomly chosen subject being associ-
ated with a pair of random variables (T, C), an observation on one of
the pair impeding observation on the other, while at the same time
indicating that the unobserved member of the pair must be greater
than the observed member. This idea is made more succinct by saying
that only the random variable X = min(T, C) can be fully observed.
Clearly Pr (X > x) = Pr (T > x, C > x) and we describe censoring as
being independent whenever

Pr (X > x) = Pr (T > x, C > x) = Pr (T > x) Pr (C > x). (4.15)

Type I censoring

Such censoring most often occurs in industrial or animal experimenta-
tion. Items or animals are put on test and observed until failure. The
study is stopped at some time T ∗. If any subject does not fail it will
have observed survival time at least equal to T ∗. The censoring times
for all those individuals being censored is then equal to T ∗. Equation
(4.15) is satisfied and so this is a special case of independent censor-
ing, although not very interesting since all subjects, from any random
sample, have the same censoring time.

Type II censoring

The proportion of censoring is determined in advance. So if we wish to
study 100 individuals and observed half of them as failures we deter-
mine the number of failures to be 50. Again all censored observations
have the same value T ∗ although, in this case, this value is not known
in advance. This is another special case of independent censoring.

Type III censoring

In a clinical trial patients enter randomly. A model for entry is often
assumed to be uniform over a fixed study period, anywhere from a few
months to several years but determined in advance. Survival time is the
time from entry until the event of interest. Subjects can be censored
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because (1) the end of the study period is reached, (2) they are lost to
follow-up (3) the subject fails due to something unrelated to the event
of interest. This is called random censoring. So, unlike for Type I or
Type II censoring, for a random sample C1, . . . , Cn, the Ci could all be
distinct.

For a random sample of pairs (Ti, Ci), i = 1, . . . , n, we are only
able to observe Xi = min(Ti, Ci). A fundamental result in this context
was discovered by Tsiatis (1975). The result says that, for such data,
we are unable to estimate the joint distribution of the pair (T, C).
Only the marginal distributions can be estimated under the indepen-
dent censoring assumption, the assumption itself not being testable
from such data. It is common then to make the assumption of inde-
pendent censoring, sometimes referred to as non informative censoring,
by stipulating that

Pr (Xi > x) = Pr (Ti > x, Ci > x) = Pr (Ti > x) Pr (Ci > x). (4.16)

The assumption is strong but not entirely arbitrary. For the example
of the clinical trial with a fixed closing date for recruitment it seems
reasonable to take the length of time from entry up until this date
as not being associated with the mechanism generating the failures.
For loss to follow-up due to an automobile accident or due to leaving
the area, again the assumption may be reasonable, or, at least, a good
first approximation to a much more complex, unknown, and almost
certainly unknowable, reality.

Informative censoring

When censoring is informative, which we can take to be the nega-
tion of non-informative, then it is no longer possible to estimate the
main quantities of interest without explicitly introducing some model
for the censoring. The number of potential models relating C and T
is infinite and, in the absence of special knowledge, it can be helpful
to postulate some simple relationship between the two, the propor-
tional hazards model itself having been used in this context (Koziol
and Green 1976, Slud and Rubinstein 1983). Obvious examples might
be surrogate endpoints in the study of the evolution of AIDS following
treatment, where, for falling CD4 cell counts, below a certain point
patients can be withdrawn from study. Censoring here is clearly infor-
mative. This will be the case whenever the fact of removing a subject,
yet to experience the event of interest, from study implies a change
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in risk. Informative censoring is necessarily more involved than non
informative censoring and we have to resort to more elaborate models
for the censoring itself in order to make progress. If, as might be the
case for a clinical trial where the only form of censoring would be the
termination of the study, we know for each subject, in advance, their
censoring time C, we might then postulate that

log− log S(t) = log− log(S(t|C < t) + βI(C > t).

This would be a proportional hazards model for a dependent censor-
ing mechanism. More generally we would not know C in advance of
making observations on T, but we could write down a similar model
in terms of intensity functions, viewing the censoring indicator as a
predictable stochastic process. For the purposes of estimation we may
require empirical quantities indicating how the risk changes once cen-
soring is observed, and for this we need to be able to compare rates
between those censored at some point and those who are not. Mostly,
once censoring has occurred, it is no longer possible to observe the
main event under study so that, for data of this nature, we are not
able to estimate parameters of interest without further assumptions.
These assumptions are usually that the censoring is independent of
the failure process or that it is conditionally independent given co-
variate values. The paper of Tsiatis (1975) demonstrates this intuitive
observation formally.

Marginal and conditionally independent censoring

When considering many groups, defined by some covariate value Z,
there are essentially two types of independence commonly needed. The
stronger assumption is that of marginal independence in which the
variables T , C, and Z are pairwise independent. The censoring distri-
bution for C is the same for different values of Z. A weaker assumption
that is often made, is that of conditional independence. Here, the pair
(T, C) are independent given Z. In other words, for each possible value
of Z, the pair (T, C) is independent, but the censoring distribution C
can be different for different values of Z.

Finite censoring support

Many mathematical issues simplify immediately when the failure vari-
able T is continuous, as we generally suppose, but that the censoring
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variable is restricted to having support on some finite subset. We can
imagine that censoring times are only allowed to take place on the set
{a0, a1, . . . , ak}. This is not a practical restriction since we can make
the division (aj , aj−1) as fine as we wish. We will frequently need to
consider the empirical distribution function and analogues (Kaplan-
Meier estimate, Nelson-Aalen estimate) in the presence of censoring.
If we adopt this particular censoring set-up of finite censoring support,
then generalization from the empirical distribution function to an ana-
logue incorporating censoring is very straightforward. We consider this
in greater detail when we discuss the estimation of marginal survival.

4.6 Competing risks as a particular type
of censoring

Recalling the “at-risk” indicator function, Yi(w, t), which takes the
value one if, at time t, the i th subject is at risk of making a transition
of type w, and is zero otherwise, we can imagine a simple situation in
which w takes only one of two values. Calling these w = 1 and w = 2,
consider a constraint whereby Yi(1, t) = Yi(2, t). In words, if the ith
subject is at risk of one kind of transition, then he or she is also at risk
of the other kind. If the subject is no longer at risk then this means
that they are not at risk for either kind of transition. Thus, if a subject
suffers an event of type w = 1 then he is no longer considered at risk
of suffering an event of type w = 2, and conversely.

This is the situation of so-called competing risks. As long as the
subject is at risk, then either of the event types can occur. Once one
type of event has occurred, then it is no longer possible to observe an
occurrence of an event of the other type. Such a construction fits in
immediately with the above models for survival involving censoring.
If at time t = t1 an event of type w = 1 takes place, then, as far as
events of type w = 2 are concerned, the subject is simply censored at
t = t1. In Figure 4.5 a subject may be at risk of death from stroke or at
risk from either stroke or cirrhosis of the liver. Once one of the types
of death has occurred, then the other type of event can no longer be
observed. We will assume that the subject is censored at this point,
in as much as our attention focuses on the second type of event, and
the above discussion on the different censoring models applies in the
same way. We will need make some assumptions, most often that of
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Figure 4.5: A situation of competing risks for subjects in states A+B.

independent censoring or that of independent censoring conditional on
covariate information in order to make progress.

4.7 Exercises and class projects

1. Using the definition for λ(t) = f(t)/S(t), show that S(t) =
exp{−Λ(t) and that f(t) = λ(t) exp{−Λ(t).

2. For a Weibull variate with parameters λ and k, derive an expression
for the conditional survivorship function S(t + u, u). How does this
function vary with t for fixed u? With u for fixed t?

3. Use numerical integration to calculate the mean residual lifetime
m(t) and the mean time lived in the interval [0, t], µ(t) for the Weibull
with parameters 2 and 1.5. With parameters 2 and 0.7. Plot these as
functions of time t.

4. Consider two groups each of which follows a Weibull distribution,
i.e., f(t) = λγ(λt)γ−1 exp{−(λt)γ}. For the first group, λ = λ1, γ = γ1.
For the second, λ = λ2, γ = γ2. Under which conditions will this
situations be described by proportional hazards?

5. Undertake a numerical and graphical study of the conditional sur-
vivorship function, S(t + u, u), for the Weibull model, the extreme
value model, the Gompertz model and the log-logistic model. What
conclusions can be drawn from this?

6. Repeat the previous class project, focusing this time on the mean
residual lifetime. Again what conclusions can be drawn from the
graphs.
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7. Consider a disease with three states of gravity (state 1, state 2
and state 3), the severity corresponding to the size of the number.
State 4 corresponds to death and is assumed to follow state 3. New
treatments offer the hope of prolonged survival. The first treatment,
if it is effective, is anticipated to slow down the rate of transition
from state 2 to state 3. Write down a compartmental model and a
survival model, involving a treatment indicator, for this situation. A
second treatment, if effective, is anticipated to slow down all transition
rates. Write down the model for this. Write down the relevant null and
alternative hypotheses for the two situations.

8. Consider a nondegenerative disease with several states; 1, 2, . . . ,
counting the occurrence of these together with a disease state indicat-
ing a progression to something more serious, e.g., benign and malignant
tumors or episodes of mild asthma with the possibility of progression
to a more serious respiratory ailment. Write down possible models for
this and how you might formulate tests of hypotheses of interest under
varying assumptions on the role of the less serious states.

9. Suppose we have data; T1, . . . , Tn, from a Weibull distribution in
which the shape parameter γ is known to be equal to 1.3. Use the
delta-method to find an estimate for the variance of the estimated
median (transform to a standard form).

10. For a proportional hazards Weibull model describe the relationship
between the respective medians.

11. Investigate the function S(t, u) for different parametric models de-
scribed in this chapter. Draw conclusions from the form of this two-
dimensional function and suggest how we might make use of these
properties in order to choose suitable parametric models when faced
with actual data.

12. Consider two possible structures for a parametric proportional haz-
ards model;

log S(t|Z) = log{S[t|E(Z)]} exp(βZ)
log S(t|Z) = log{ES[t|Z]} exp(βZ).

How do the interpretations differ and what difficulties are likely to be
encountered in fitting either of the models?
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13. Consider a clinical trial comparing two treatments in which patients
enter sequentially. Identify situations in which an assumption of an
independent censoring mechanism may seem a little shaky.

14. On the basis of a single data set, fit the exponential, the Weibull,
the Gompertz and the log-normal models. On the basis of each model
estimate the mean survival. On the basis of each model estimate the
90th percentile. What conclusions would you draw from this.

15. Suppose our focus of interest is on the median. Can you write
down a model directly in terms of the median. Would there be any
advantage/drawback to modeling in this way rather than modeling
the hazard and then obtaining the median via transformations of the
hazard function?



Chapter 5

Marginal survival

5.1 Summary

In this chapter we examine in some detail estimates of marginal
survival. Some assumptions on the censoring mechanism are needed in
order to make progress. Attention is paid to the exponential and piece-
wise exponential models. The exponential model, fully characterized
by its mean, can appear over restrictive. However, via the probabil-
ity integral transform and empirical estimates of marginal survival
considered in this chapter, it can be used in more general situations.
The piecewise exponential is seen, in some sense, to lie somewhere
between the simple exponential and the empirical estimate. Particular
attention is paid to empirical processes and how the Kaplan-Meier
estimator, very commonly employed in survival-type problems, can
be seen to be a natural generalization of the empirical distribution
function. In the presence of parametric assumptions it is also straight-
forward to derive suitable estimating equations. The equations for the
exponential model are particularly simple.

5.2 Motivation

Our interest is mostly in the survival function S(t). Later we will
focus on how S(t), written as S(t|Z), depends on covariates Z. Even
though such studies of dependence are more readily structured around
the hazard function λ(t|Z), the most interpretable quantity we often
would like to be able to say something about is the survival function
itself. In order to distinguish the study of the influence of Z on S(t|Z)

129
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from the less ambitious goal of studying S(t), we refer to the former
as conditional survival and the latter as marginal survival.

Since we will almost always have in mind some subset Z from the
set of all possible covariates, and some distribution for this subset, we
should remind ourselves that, although Z has been “integrated out”
of the quantity S(t), the distribution of Z does impact S(t). Different
experimental designs will generally correspond to different S(t). Mar-
ginal survival, S(t), corresponds to two situations: (i) the subjects are
considered as i.i.d. replicates from a single population or (ii) the sub-
jects can be distinct, from many, and potentially an infinite number of
populations, each population being indexed by a value of some covari-
ate Z. It may also be that we have no information on the covariates
Z that might distinguish these populations. In case (ii), S(t) is an av-
erage over these several populations, not necessarily representing any
particular population of interest in itself. It is important to appreciate
that, in the absence of distributional assumptions, and the absence of
observable Z, it is not possible, on the basis of data, to distinguish case
(i) from case (ii). The homogeneous case then corresponds to either
case (i) or case (ii) and it is not generally useful to speculate on which
of the cases we might be dealing with. They are not, in the absence
of observable Z, identifiable from data. We refer to S(t|Z) as the con-
ditional survival function given the covariate Z. This whole area, the
central focus of this work, is studied in the following chapter. First, we
need consider the simpler case of a single homogeneous group.

5.3 Maximum likelihood estimation

The reader may wish to first recall Section 3.7 on estimating equa-
tions in general and maximum likelihood estimation in particular. Let
us suppose that the survival distribution can be completely specified
via some parametric model, the parameter vector being, say, θ. We take
θ to be a scalar in most cases in order to facilitate the presentation.
The higher-dimensional generalization is, in most cases, very straight-
forward. The data will consist of the n pairs (xi, δi) ; i = 1, . . . , n.
We assume an independent censoring mechanism. This leads to the
important theorem:

Theorem 5.1 Under an independent censoring mechanism the log-
likelihood can be written log L(θ) =

∑n
i=1 log Li(θ) where

log Li(θ) = δi log f(xi; θ) + (1 − δi) log S(xi; θ) (5.1)
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This covers the majority of cases in which parametric models are used.
Later, when we focus on conditional survival involving covariates Z,
rather than marginal survival, the same arguments follow through.
In this latter case the common assumption, leading to an analogous
expression for the log-likelihood, is that of conditional independence
of the pair (T, C) given Z.

Estimating equation

The maximum likelihood estimate obtains as the value of θ, denoted
θ̂, which maximizes L(θ) over the parameter space. Such a value also
maximizes log L(θ) (by monotonicity) and, in the usual case where
log L(θ) is a continuous function of θ this value is then the solution
to the estimating equation U(θ) = 0 where; U(θ) = ∂ log L(θ)/∂θ =∑

i ∂ log Li(θ)/∂θ. Next, notice that at the true value of θ, denoted θ0,
we have Var{U(θ0)} = EU2(θ0) = EI(θ0) where

I(θ) =
n∑

i=1

Ii(θ) = −∂2 log L(θ)/∂θ2 = −
n∑

i=1

∂2 log Li(θ)/∂θ2.

As for likelihood in general, some care is needed in thinking about
the meaning of these expressions and the fact that the operators E(·)
and Var(·) are taken with respect to the distribution of the pairs (xi, δi)
but with θ0 fixed. The score equation is U(θ̂) = 0 and the large sample
variance is approximated by Var(θ̂) ≈ 1/I(θ̂). It is usually preferable to
base calculations on I(θ̂) rather than EI(θ̂), the former being, in any
event, a consistent estimate of the latter (after standardizing by 1/n).
The expectation itself would be complicated to evaluate, involving the
distribution of the censoring, and unlikely, in view of the study by
Efron and Hinkley (1978) to be rewarded by more accurate inference.
Newton-Raphson iteration is set up from

θ̂j+1 = θ̂j + I(θ̂j)−1U(θ̂j) , j ≥ 1, (5.2)

where θ̂1 is some starting value, often zero, to the iterative cycle. The
Newton-Raphson formula arises as an immediate application of the
mean value theorem (Equation 2.2). The iteration is brought to a halt
once we achieve some desired level of precision.

Large sample inference can be based on any one of the three tests
based on the likelihood function; the score test, the likelihood ratio test
or the Wald test. For the score test there is no need to estimate the
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unknown parameters. Many well-established tests can be derived in
this way. In exponential families, also the so-called curved exponential
families (Efron 1975), such tests reduce to contrasting some observed
value to its expected value under the model. Good confidence intervals
(see Cox and Hinkley 1974, page 212) can be constructed from “good”
tests. For the exponential family class of distributions the likelihood
ratio forms a uniformly most powerful test and, as such, qualifies as
a “good” test in the sense of Cox and Hinkley. The other tests are
asymptotically equivalent so that confidence intervals based on the
above test procedures will agree as sample size increases. Also we can
use such intervals for other quantities of interest such as the survivor-
ship function which depends on these unknown parameters.

Estimating the survival function

We can estimate the survival function as S(t; θ̂). If Θα provides a
100(1 − α)% confidence region for the vector θ then we can obtain a
100(1−α)% confidence region for S(t; θ) in the following way. For each
t let

S+
α (t; θ̂) = sup

θ∈Θα

S(t; θ) , S−
α (t; θ̂) = inf

θ∈Θα

S(t; θ) , (5.3)

then S+
α (t; θ̂) and S−

α (t; θ̂) form the endpoints of the 100(1 − α)%
confidence interval for S(t; θ). Such a quantity may not be so easy
to calculate in general, simulating from Θα or subdividing the space
being an effective way to approximate the interval. Some situations
nonetheless simplify such as the following example, for scalar θ, based
on the exponential model in which S(t; θ) is monotonic in θ. For such
cases it is only necessary to invert any interval for θ to obtain an
interval with the same coverage properties for S(t; θ).

Exponential survival

For this model we only need estimate a single parameter, λ which will
then determine the whole survival curve. Referring to Equation (5.1)
in which, for δi = 1, the contribution to the likelihood is, f(xi; λ) =
λ exp(−λxi) and, for δi = 0, the contribution is, S(xi; λ) = exp(−λxi).
Equation (5.1) then becomes:

log L(λ) = k log λ − λ
n∑

j=1

xj , (5.4)
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where k =
∑n

i=1 Ni(∞). Differentiating this and equating with zero
we find that λ̂ = k/

∑n
j=1 xj . Differentiating a second time we ob-

tain I(λ) = k/λ2. Note, by conditioning upon the observed number
of failures k, that EI(λ) = I(λ), the observed information coinciding
with the expected Fisher information, a property of exponential fam-
ilies, but which we are not generally able to recover in the presence of
censoring.

An ancillary argument would nonetheless treat k as being fixed and
this is what we will do as a general principle in the presence of censor-
ing, the observed information providing the quantity of interest. Some
discussion of this is given by Efron and Hinkley (1978) and Barndorff
Nielsen and Cox (1999). We can now write down an estimate of the
large sample variance which, interestingly, only depends on the number
of observed failures. Thus, in order to correctly estimate the average,
it is necessary to take into account the total time on study for both
the failures and those observations that result in censoring. On the
other hand, given this estimate of the average, the precision we will
associate with this only depends on the observed number of failures.
This is an important observation and will be made again in the more
general stochastic process framework.

Multivariate setting

In the majority of applications, the parameter θ will be a vector
of dimension p. The notation becomes heavier but otherwise every-
thing is pretty much the same. The estimating equation, U(θ) = 0
then corresponds to a system of p estimating equations and I(θ) is
a p × p symmetric matrix in which the (q, r) th element is given by
−∂2 log L(θ)/∂θq∂θr where θq and θr are elements of the vector θ.
Also, the system of Newton-Raphson iteration can be applied to each
one of the components of θ so that we base our calculations on solving
the set of equations:

θ̂j+1,q = θ̂j,q + I(θ̂j)−1U(θ̂j) , q = 1, . . . , p ; j ≥ 1, (5.5)

where, in this case, θ̂1 is a vector of starting values to the iterative
cycle, again most often zero.

Example 5.1 For the Freireich data we calculate for the 6-MP
group λ̂ = 9/359 = 0.025. For the placebo group we obtain λ̂ =
21/182 = 0.115. Furthermore in the 6-MP group we have Var (λ̂) = 9/
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Figure 5.1: Exponential fitted curves to two-group Freireich data.

(359)2 = 0.000070 whereas for the placebo group we have Var (λ̂) =
21/(182)2 = 0.0006.

The non-parametric empirical estimate (described below) agrees
well with curves based on the exponential model and this is illustrated
in Figure 5.1. Inference can be based on an appeal to the usual large
sample theory. In this particular case, however, we can proceed in a
direct way by recognizing that, for the case of no censoring k = n, the
sample size and

∑n
j=1 Tj is a sum of n independent random variables

each exponential with parameter λ. We can therefore treat n/λ̂ as a
gamma variate with parameters (λ, n). When there is censoring, in
view of the consistency of λ̂, we can take k/λ̂ as a gamma variate with
parameters (λ, k), when k < n. This is not an exact result, since it
hinges on a large sample approximation, but it may provide greater
accuracy than the large sample normal approximation.

In order to be able to use standard tables we can multiply each term
of the sum by 2λ since this then produces a sum of n exponential vari-
ates, each with variance 2. Such a distribution is a gamma (2, n), equiv-
alent to a chi-square distribution with 2n degrees of freedom (Hastings
and Peacock 1975, page 46). Taking the range of values of 2kλ/λ̂ to be
between χα/2 and χ1−α/2 gives a 100(1 − α)% confidence interval for
λ. For the Freireich data we find 95% CI = (0.0115, 0.0439). Once we
have intervals for λ, we immediately have intervals with the same cov-
erage properties for the survivorship function, this being a monotonic
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function of λ. Denoting the upper and lower limits of the 100(1−α)%
confidence interval S+

α (t; λ̂) and S−
α (t; λ̂) respectively, we have:

S+
α (t; λ̂)= exp

{

−
(

λ̂χα/2

2k

)

t

}

, S−
α (t; λ̂)= exp

{

−
(

λ̂χ1−α/2

2k

)

t

}

.

An alternative approximation, based on large sample normality, and
also very simple in form, can be written as:

S+
α (t; λ̂) ≈ exp

{

−
(

λ̂√
k

)

(
√

k − z1−α/2)t

}

, (5.6)

where, this time, the corresponding expression for S−
α (t; λ̂) obtains by

replacing z1−α/2 by zα/2.

Piecewise exponential model

We can achieve considerably greater flexibility than the standard ex-
ponential model by constructing a partition of the time axis 0 = a0 <
a1 < . . . < ak = ∞. Within the jth interval (aj−1, aj) , (j = 1, . . . , k)
the hazard function is given by λ(t) = λj . Using Equations (4.11) and
(5.1) and equating first derivatives to zero we find

λ̂j = kj/
∑

�:x�>aj−1

{(x� − aj−1)I(x� < aj) + (aj − aj−1)I(x� ≥ aj)}.

Differentiating a second time we find I(λ1, ..., λk) to be block diagonal
where the (j, j) th element is given by Ijj = kj/λ2

j . Verify. In view
of the orthogonality of the parameter estimates, we can construct a
100(1−α)% simultaneous confidence interval for λ1, . . . , λk by choosing
a sequence of αj such that 1 −

∏
j(1 − αj) = α. An estimate of the

survivorship function derives from Λ̂(t) in which we define Ŝ(t; Λ̂) =
exp{−Λ̂(t)} and where

Λ̂(t) =
∑

j:aj≤t

λ̂j(aj − aj−1) +
∑

�

λ̂�(t − a�−1)I(a�−1 ≤ t < a�). (5.7)

Confidence intervals for this function can be based on Equation (5.3).
We can view the simple exponential survival model as being at one
extreme of the parametric spectrum, leaning as it does on a single
parameter, the mean. It turns out that we can view the piecewise ex-
ponential model, with a division so fine that only single failures occur
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in any interval, as being at the other end of the parametric spectrum,
i.e., a nonparametric estimate. Such an estimate corresponds to that
obtained from the empirical distribution function. This is discussed
below.

Other parametric models

The exponential and piecewise exponential models hold a special place
in the survival literature for a number of reasons. The models are sim-
ple in form, simple to understand, have a clear physical property that
we can interpret (lack of memory property) and the parameters can
be estimated so easily that analysis based on such models clearly falls
under the heading of desirable procedures as defined by Student; ones
that can be calculated on the back of a railway ticket while awaiting
the train. The piecewise model also allows quite considerable flexibility.

Given these facts, it is hard to justify the use of other parametric
models unless motivated by some compelling physical argument. Cox
(1958) used the Weibull model in analyzing the strengths of wool, but
the model was not just pulled out of the air. Physical considerations
and the fact that the Weibull distribution obtains as the limiting case
of the minimum of a collection of random variables provide a powerful
case in its favor. Another physical case might be the sum of exponential
variates, each having the same parameter, since this can be seen to be a
gamma variate. Generally we may have no good reason to believe some
model over most others is likely to provide a good fit to data. In these
cases, given the generally good performance of empirical estimates, it
may be preferable to base our analyses on these.

5.4 Empirical estimate (no censoring)

Empirical or nonparametric estimates, i.e., those making no model
assumptions, can be most readily understood in the context of some fi-
nite division of the time axis. Theoretical results stem from continuous-
time results, the transition from the discrete to the continuous, as a
consequence of sample size n going to infinity, presenting no conceptual
difficulty. Unlike the discussion on the piecewise exponential model in
which we most often anticipate having very few intervals, rarely more
than three or four, the idea being to pool resources (estimating power)
per interval, while keeping within the bounds of serious model viola-
tion, for empirical estimates we do the opposite.
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We imagine a fine division of the real line in which, given real
data, the vast majority of the intervals are likely to contain no obser-
vations. Consider the time interval to be fixed, divided equally into
k non overlapping intervals (aj−1, aj ], j = 1, . . . , k, the notation “(”
indicating that the interval is open on the left, and “]” closed on the
right, i.e., aj−1 does not belong to the interval but aj does. We have
that Pr(T ≥ aj) = Pr(T > aj) = S(aj) and that Pr(T > aj |T >
aj−1) = S(aj , aj−1). Recall from Section 4.3 that

S(aj) = S(aj−1)S(aj , aj−1) =
∏

�≤j

S(a�, a�−1).

For each t = a�, (� > 0), the empirical estimate of S(t) based on a
sample of size n, and denoted Sn(t), is simply the observed number of
observations that are greater than t. For a random sample of observa-
tions Ti , (i = 1, . . . , n) we use the indicator variable I(·) to describe
whether or not the subject i survives beyond point t, i.e., for t = aj ,

Sn(aj) =
1
n

n∑

i=1

I(Ti > aj) =
j∏

�=1

Sn(a�, a�−1) (5.8)

in which the empirical Sn(a�, a�−1) is defined in an entirely analogous
way to Sn(a�), i.e.,

Sn(a�, a�−1) =
1

n�−1

n∑

i=1

I(Ti > a�) , n� =
n∑

i=1

I(Ti ≥ a�). (5.9)

It is readily seen, and instructive for understanding the Kaplan-Meier
estimate of the next section, that, if no failure is observed in (a�−1, a�]
then Sn(a�, a�−1) = 1, whereas for an observed failure, Sn(a�, a�−1) =
(n�−1−1)/n�−1. The empirical distribution has been well studied and,
in particular, we have:

Lemma 5.1 For any fixed value of t, Sn(t) is asymptotically normal
with mean and variance given by;

E{Sn(t)} = S(t) ; Var {Sn(t)} = F (t)S(t)/n. (5.10)

We should understand the operators E and Var to refer to expectations
over a set of repetitions, the number of repetitions increasing without
bound, and with n and t fixed. As an estimator of S(t), the function
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Sn(t) is then unbiased. The variance, as we might anticipate, is the
variance of a binomial variate with parameters n and S(t). These two
moments, together with a normal approximation of DeMoivre-Laplace
(see Section 3.3) enable the calculation of approximate confidence in-
tervals. The result, which is well known (Glivenko-Cantelli), enables
us to carry out inference for S(t) on the basis of Sn(t) for any given
point t. Very often we will be interested in the whole function Sn(t),
over all values of t and, in this case, it is more helpful to adopt the
view of Sn(t) as a stochastic process. In this regard we have

Theorem 5.2
√

n{Sn(t)−S(t)} is a Gaussian process with mean zero
and covariance given by

Cov [
√

n{Sn(s)},
√

n{Sn(t)}] = F (s){1 − F (t)}. (5.11)

An important consequence of the theorem arises when the distribution
of T is uniform, for, in this case, F (s) = s and all the conditions are
met for the process

√
n{Fn(t)− t} (0 ≤ t ≤ 1) to converge in distribu-

tion to the Brownian bridge. Finally these results apply more generally
than just to the uniform case for, as long as T has a continuous distri-
bution, there exists a unique monotonic transformation from T to the
uniform, such a transformation not impacting

√
n{Fn(t)−F (t)} itself.

In particular this enables us to use the result of Section 2.11 to make
inference for an arbitrary continuous cumulative distribution function,
F (t), whereby, for Wn(t) =

√
n{Fn(t) − F (t)},

Pr
{

sup
t

|Wn(t)|≤D

}

→1−2
∞∑

k=1

(−1)k+1 exp(−2k2D2), D≥0. (5.12)

Most often we are interested in events occurring with small probability
in which case a good approximation obtains by only taking the first
term of the sum, i.e., k = 1. Under this approximation |√n{Fn(t) −
F (t)}| will be greater than about 1.5 less than 5% of the time. This is
a simple and effective working rule.

5.5 Empirical estimate (with censoring)

First, recall the model for finite censoring support, described in Section
4.5. Such a model adds no additional practical restriction but helps
us to avoid much mathematical complexity, leading to a simple and
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useful theorem (Theorem 5.3). The theorem enables us to circum-
vent the difficulty arising from the fact that we are unable to obtain∑n

i=1 I(Ti ≥ aj) as in Equation 5.8. This is because at aj we cannot
ascertain whether or not earlier observed values of Xi (δi = 0), aris-
ing from the pair (Ti, Ci) in which Ci = Xi, are such that Ti > aj .
Since Xi = min(Ti, Ci) we do not observe the actual value of Ti

when Xi = Ci. The trick is to notice in the right hand-side of (5.8)
that we are able to obtain the empirical estimates, Gn(a�, a�−1) for
G(a�, a�−1) = Pr(X ≥ a�|X > a�−1). But, unlike Equation (5.8)

Gn(aj) =
1
n

n∑

i=1

I(Xi ≥ aj) 	=
∏

�≤j

Gn(a�, a�−1). (5.13)

This is because of the non zero masses being associated to the times
at which the censorings occur. Nonetheless, the rest follows through
readily, although, unlike (5.9), we now define n� =

∑n
i=1 I(Xi ≥ a�),

noting that this definition contains (5.9) as a special case when there
is no censoring.

Kaplan-Meier estimate

The distribution of X = min(T, C) is mostly of indirect interest but
turns out to be important in view of the following theorem and corol-
lary.

Theorem 5.3 Under an independent censoring mechanism,

G(a�, a�−1) = S(a�, a�−1). (5.14)

Corollary 5.1 Under an independent censoring mechanism, a consis-
tent estimator of S(t) at t = aj is given by Ŝ(t) =

∏
�≤j Gn(a�, a�−1).

Corollary 5.2 In the absence of censoring Ŝ(t) = Sn(t).

The estimator of the corollary is known as the Kaplan-Meier estimator.
In the light of our particular set-up, notably the use of the independent
censoring mechanism having finite support (Section 4.5), it can be
argued that our estimate is only available at distinct values of t = aj .
But this is not a practical restriction since our finite division can be as
fine as we wish, the restriction amounting to limiting accuracy to some
given number of decimal places. One way or another it is not possible to
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Figure 5.2: Individual Kaplan-Meier survival estimates for two groups.

completely avoid some mathematical fine points, our preference being
to use the mechanism of Section 4.5.

In practice we talk about the Kaplan-Meier estimate at time point
t, the underlying support of C and T rarely being a central concern.
The one exception to this arises when the range of C is less than that
for T . A single sampled Ti which is greater than the greatest value that
can be taken by Ci will necessarily appear as a censored observation.
In this case the observed empirical Kaplan-Meier estimate is never
able to reach zero. The true distribution F (t) cannot be estimated
at values greater than the upper limit for the support of C. This is
intuitively clear. Again, in practice, this ought not be a real concern.
If we have no information on something (in this case a certain upper
region of the survival curve), it is most likely too optimistic to hope
to be able to carry out useful estimation there, unless, of course, we
make additional parametric assumptions, which amount to saying that
information obtained over some range can tell us a lot about what is
taking place elsewhere, and certainly more than just the provision of
bounds on F (t) for t greater than the upper limit of C.

Remarks on the Kaplan-Meier curve

The Kaplan-Meier (1958) product-limit estimator provides a nonpara-
metric estimate for the survival function S(t) under the independent



5.5. EMPIRICAL ESTIMATE (WITH CENSORING) 141

censorship assumption. It is a generalization of the commonly known
empirical distribution function to the case of censoring since, in the
absence of censoring, the two coincide. Expressing the estimate Ŝ(t)
in terms of the fine division (a�, a�−1), � = 1, . . . , N, is conceptu-
ally useful. However, since intervals not containing events produce no
change in Ŝ(t) it is, for the purposes of practical calculation, only nec-
essary to consider evaluation at the distinct observed failure times
t1 < t2 < · · · < tk. All divisions of the time interval (a�, a�−1),
� = 1, . . . , N, for different N , lead to the same estimate Ŝ(t), pro-
vided that the set of observed failure points is contained within the
set {a� ; � = 1, . . . , N}. A minimal division of the time axis arises by
taking the set {a�} to be the same as the set of the distinct observed
failure times. So, for practical purposes aj = tj , j = 1, . . . , k. and the
Kaplan-Meier estimate can be defined as

Ŝ(t) =
∏

j:tj<t

nj − dj

nj
=
∏

j:tj<t

1 − dj

nj
. (5.15)

Note that Ŝ(t) is a left-continuous step function that equals 1 at t = 0
and drops immediately after each failure time tj . The estimate does
not change at censoring times. When a censoring time and a failure
time tj are recorded as equal, the convention is that censoring times
are adjusted an infinitesimal amount to the right so that the censoring
time is considered to be infinitesimally larger that tj . Any subjects
censored at time tj are therefore included in the risk set of size nj , as
are those that fail at tj . This convention is sensible because a subject
censored at time tj almost certainly survives beyond tj . Note also that
when the last observation is a censoring time rather than a failure
time, the KM estimate is taken as being defined only up to this last
observation.

Continuous version of Kaplan-Meier curve

The Kaplan-Meier curve is so useful and so commonly employed that
we reserve the most standard notation for this estimate, i.e., Ŝ(t). For
the majority of applications this is all we need. However, there are
some situations in which it is useful to be able to invert the function
in order to estimate S−1(t). Now, the usual Kaplan-Meier estimate
takes a constant value between adjacent failures, tj−1 and tj and so, in
general, we are unable to invert this function in a unique way. This is



142 CHAPTER 5. MARGINAL SURVIVAL

not a serious concern and any intuitive solution such as taking Ŝ(t) to
be S(tj−1) or S(tj) for all t ∈ (tj−1, tj) would be fine. Rather than this
we suggest a simple linear interpolation. We then define the continuous
(and invertible since strictly decreasing) function S̄(t) to be given by

S̄(t) = Ŝ(tj−1) +
(

t − tj−1

tj − tj−1

){
Ŝ(tj) − Ŝ(tj−1)

}
; t ∈ (tj−1, tj)

.(5.16)

Note that at the distinct failure times tj the two estimates, Ŝ(t) and
S̄(t) coincide. An example of where we make an appeal to S̄(t) is
illustrated in the two-group exponential model where a transformation
to exponentiality for one group is then applied to the other group.

Precision of Kaplan-Meier estimate

Recalling the results of Sections 2.3 and 2.9 we can derive a Taylor
series approximation to a function of random variables wherever the
function of expectation converges in probability to the expectation of
the function. An immediate application leads to the following theorem.

Theorem 5.4 For each t = a�, the estimate Ŝ(t) is asymptotically
normal with mean S(t) and variance:

Var S(a�) ≈ S(a�)2
∑

m≤�

∑

m≤�

dm

nm(nm − dm)
. (5.17)

The above expression for the variance of Ŝ(t) is known as Green-
wood’s formula. Breslow and Crowley (1974) in a detailed large sample
study of the Kaplan-Meier estimator obtained a result asymptotically
equivalent to the Greenwood formula, making a slight correction to
overestimation of the variation in the estimated survival probability.
The formula’s simplicity, however, made it the most commonly used
when computing the variance of the Kaplan-Meier estimate and related
quantities. We also have:

Corollary 5.3 When there is no censoring, the approximation VarŜ(t)
from theorem5.4 reduces to the usual binomial variance estimate Ŝ(t){1−
Ŝ(t)}/n.

The usual use to which we put such variance estimates is in obtaining
approximate confidence intervals. Thus, using the large sample normal-
ity of Ŝ(t), adding and subtracting to this z1−α/2 ( the 1−α/2 quantile
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from the standard normal distribution) multiplied by the square root
of the variance estimate, provides approximate 100(1−α)% confidence
intervals for Ŝ(t). As mentioned before the constraints on Ŝ(t), lying
between 0 and 1, will impact the operating characteristics of such inter-
vals, in particular it may not be realistic, unless sample sizes are large,
to limit attention to symmetric intervals around Ŝ(t). Borgan and
Liestøl (1990) investigate some potential transformations, especially
the log-minus-log transformation discussed in Section 4.4, leading to;

Corollary 5.4 Let w(α) = Var1/2 Ŝ(t)z1−α/2/Ŝ(t) log Ŝ(t). For each
t = a�, a 100(1 − α)% confidence intervals for Ŝ(t) can be approxi-
mated by

{Ŝ(t)exp−w(α), Ŝ(t)exp w(α)} (5.18)

The same arguments which led to Greenwood’s formula also lead to
approximate variance expressions for alternative transformations of
the survivorship function. In particular we have;

Corollary 5.5 For each t = a� the estimate log Ŝ(t) is asymptotically
normal with asymptotic mean log S(t) and variance

Var log S(a�) ≈
∑

m≤�

∑

m≤�

dm

nm(nm − dm)
(5.19)

Corollary 5.6 For each t = a� the estimate log Ŝ(t)/{1 − Ŝ(t)} is
asymptotically normal with asymptotic mean log S(t)/{1 − S(t)} and
variance

Var log
{

S(a�)
1 − S(a�)

}

≈ {1 − S(a�)}−2
∑

m≤�

∑

m≤�

dm

nm(nm − dm)
. (5.20)

Confidence intervals calculated using any of the above results will be
of help in practice. Following some point estimate, obtained from Ŝ(t)
at some given t, these intervals are useful enough to quantify the sta-
tistical precision that we wish to associate with the estimate. All of the
variance estimates involve a comparable degree of complexity of calcu-
lation so that choice is to some extent a question of taste. Nonetheless,
intervals based on the log-minus-log or the logit transformation will be-
have better for smaller samples, and guarantee that the endpoints of
the intervals themselves stay within the interval (0,1). This is not so
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for the Greenwood formula, the main argument in its favor being that
it has been around the longest and is the most well known. For mod-
erate to large sample sizes, and for Ŝ(t) not too close to 0 or 1, all the
intervals will, for practical purposes, coincide.

Kaplan-Meier curve and redistribution to the right algorithm

Another way to look at the KM estimate, which turns out to be con-
ceptually useful and of value to later developments, is to focus on the
increments, or step size, of the function at points where it changes. If we
denote tj+ the time instant immediately after tj , then Ŝ(tj)− Ŝ(tj+)
is the stepsize, or jump, of the KM curve at time tj . From Equation
5.15 we see that

Ŝ(tj+) = Ŝ(tj) ·
nj − dj

nj
,

so the stepsize is Ŝ(tj) ·dj/nj . That is to say, when the total “leftover”
probability mass is Ŝ(tj), each observed failure gets one-njth of it,
where nj =

∑n
i=1 Yi(tj) is the number of subjects at risk at time tj .

In the absence of censoring this corresponds exactly to the way in
which the empirical estimate behaves. When there is censoring, then
one way of looking at a censored observation is to consider that the
mass that would have been associated with it is simply reallocated to
all of those observations still remaining in the risk set (hence the term
“redistribution to the right.”)

Kaplan-Meier estimates of median and mean survival

Since the support of T is only on the positive real line the distributions
we deal with are asymmetrical. In consequence it is more common
to take as summary measures simple functions of different quantiles,
most often the median or interquartile range, rather than the mean
and variance. Nonetheless, the mean is of interest and in special cases,
such as the exponential distribution, relates directly to the median
via a constant scaling factor. Also, of course, there is no compelling
reason not to work with symmetric distributions defined for say log T
and then transform back to T , although this is not very commonly
done. From Section 4.3 we can estimate the expected life time over
some given interval [0, t] as

µ̂(t) =
∫ t

0
Ŝ(u)du, (5.21)
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the mean itself being then estimated by µ̂(∞). However, the theory
comes a little unstuck here since, not only must we restrict the time
scale to be within the range determined by the largest observation,
the empirical distribution itself will not correspond to a probability
distribution whenever F̂ (t) = 1 − Ŝ(t) fails to reach one. In practice
then it makes more sense to consider mean life time µ̂(t) over inter-
vals [0, t], acknowledging that t needs to be kept within the range of
our observations. The following result provides the required inference
for µ̂(t);

Lemma 5.2 For large samples, µ̂(t) can be approximated by a normal
distribution with Eµ̂(t) = µ(t) and

Var µ̂(t) ≈
∑

m≤�

∑

m≤�

{µ̂(t) − µ̂(am)}2dm

nm(nm − dm)
. (5.22)

In view of the consistency of the Kaplan-Meier estimate it is, in prin-
ciple, straightforward to obtain estimates for any desired quantile, or
function of the quantiles, such as the median or interquartile range.
However, again, we can be limited by the observations and, if Ŝ(t),
for the largest observed survival time, is not less than p then we are
not able to obtain point estimates of quantiles corresponding to such
values, although we could obtain interval estimates. We define the pth
quantile ξp to satisfy F (ξp) = p. The Kaplan-Meier function, or indeed
the uncensored empirical distribution function itself, being a step func-
tion, is not invertible. To overcome this, we define the estimate ξ̂p to
be the smallest value of t such that F̂ (ξp) ≥ p. In order to make in-
ferences for ξ̂p we can appeal to some basic results from Section 2.7 to
obtain:

Lemma 5.3 For large samples, ξ̂p approaches a normal distribution
with Eξ̂p = ξp and

Var ξ̂p ≈
∑

m≤�

∑

m≤�

dm(1 − p2)f−2(ξ̂p)
nm(nm − dm)

. (5.23)

It is difficult to use the above result in practice in view of the pres-
ence of the density f(·) in the expression. Smoothing techniques and
the methods of density estimation can be used to make progress here
but our recommendation would be to use a more direct, albeit more
heavy, approach, constructing intervals based on sequences of hypoth-
esis tests. In principle at least the programming of these is straightfor-
ward.
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Nelson-Aalen estimate of survival

An alternative approach to estimating the empirical survival distrib-
ution, adapted to accommodate censoring, and, essentially, equivalent
to the Kaplan-Meier estimate arises from considerations of the basic
formulae in Section 4.3. Recalling that S(t) = exp{−Λ(t)} and that
Λ(t) =

∫ t
0 λ(u)du we can consider empirical estimates of Λ(t). The

integral can be approximated by a Riemann sum so that for t = aj

∑

�≤j

λ(a�)(a� − a�−1) →
∫ aj

0
λ(u)du (5.24)

as a� − a�−1 goes to zero. Now, applying a local linearization to 4.2 we
obtain

λ(a�)(a� − a�−1) ≈ P (a� < T < a�−1|T > a�−1) = 1 − S(a�, a�−1).

Applying theorem5.3and then,first replacingS(a�, a�−1)byG(a�, a�−1),
second replacing G(a�, a�−1) by Gn(a�, a�−1) i.e., d�/n�, we obtain, at
t = aj , Λ̃(aj) =

∑j
�=1 d�/n� as a consistent estimator for Λ(t). The

resulting estimator

S̃(t) = exp{−Λ̃(t)} (5.25)

is called the Nelson-Aalen estimate of survival. Recalling the Taylor
series expansion, exp(x) = 1+x+x2/2!+ · · · , for small values of x we
have exp(−x) = 1 − x + O(x2), the error of the approximation being
strictly less than x2/2 since the series is convergent with alternating
sign. Applying this approximation to S̃(t) we recover the Kaplan-Meier
estimate described above. In fact we can use this idea to obtain:

Lemma 5.4 Under the Breslow-Crowley conditions, |S̃(t)−Ŝ(t)| con-
verges almost surely to zero.

In view of the lemma, large sample results for the Nelson-Aalen es-
timate can be deduced from those already obtained for the Kaplan-
Meier estimate. This is the main reason that there is relatively little
study of the Nelson-Aalen estimate in its own right. We can exploit
the wealth of results for the Kaplan-Meier estimate that are already
available to us. Indeed, in most practical finite sample applications,
the level of agreement is also very high and the use of one estimator
rather than the other is really more a question of taste than any the-
oretical advantage. In some ways the Nelson-Aalen estimate appears
very natural in the survival setting, and it would be nice to see it used
more in practice.
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Model verification using empirical estimate

A natural approach to model assessment, i.e., whether or not some
parametric model appears as a reasonable choice for the observed data,
is to contrast the empirical estimates to those leaning on the model
assumptions, the role of the data being reduced to that of providing
estimates for any unknown parameters. We do not propose tackling
the broad issues of goodness of fit until later but notice that, if the
assumed parametric form is reasonable, then Ŝ(t) and Sk(t) should
broadly agree. For the Weibull model, for example, we know that
S(t) = exp{−(λt)p}. Therefore, a plot, from the Kaplan-Meier, or
Nelson estimate, of log{− log Ŝ(t)} against log t should be linear with
intercept equal to p log λ and slope equal to p. For all the other para-
metric models it is possible to devise similar constructions. A visual
impression of the adequacy of any postulated model is obtained, along-
side the possibility of obtaining simple parameter estimates for the
unknown parameters. Such estimates are typically less efficient than
maximum likelihood estimates so, in a more thorough analysis, we may
wish to use them either as a rough guide or as a first approximation in
some iterative scheme. In practice it is often the case that quite differ-
ent parametric assumptions, unless particularly restrictive like that for
the exponential model, will produce very similar survival curves. Im-
portant differences between competing parametrizations tend to man-
ifest themselves mostly in the tails of the distribution where there may
be few observations. As a goodness of fit tool then these procedures
are not usually very powerful.

Nonparametric exponential analysis

Referring to Section 2.5 and Theorem 2.8, we have the important result
that, for any continuous positive random variable T , with distribution
function F (t), the variate Λ(T ) =

∫ T
0 f(u)/[1 − F (u)]du has a stan-

dard exponential distribution. As a consequence, if we consider the
empirical survivorship function, Ŝ(t), then we can take the observa-
tions − log Ŝ(Xi) as arising from a standard exponential distribution.
All of the simple results that are available to us when data are gen-
erated by an exponential distribution can be used. In particular, if
we wish to compare the means of two distributions, both subject to
censoring, then we can transform one of them to standard exponential
via its empirical survival function, then use this same transformation
on the other group. The simple results for contrasting two censored
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exponential samples can then be applied even though, at least initially,
the data arose from samples generated by some other mechanism.

5.6 Exercises and class projects

1. Write down the estimating equations for a Weibull model based
on maximum likelihood. Write down the estimating equations for a
Weibull model based on the mean and variance.

2. Consider the following observations; 1, 3, 4, 4, 5, 6∗, 6, 7, 9∗, 16
where a ∗ indicates a censored observation. Fit a Weibull model to
these observations based on (i) maximum likelihood, (ii) method of
moments.

3. For the data of the previous question, calculate and plot the sur-
vivorship function. Calculate an approximate 90% confidence interval
for S(4). Do the same for S(7).

4. Describe how you might calculate a simultaneous 90% confidence
interval for S(4) and S(7) together.

5. Compare the variance expression for S(7) with that approximated
by the binomial formula based on Ŝ(7) and 8 failure times.

6. Take 100 bootstrap samples, fit the Weibull model to each one sepa-
rately and estimate S(4) and S(7). Calculate empirical variances based
on the 100 sample estimates. How do these compare with those calcu-
lated on the basis of large sample theory.

7. In the previous question, rather than fit the model, we could calcu-
late empirical estimates of S(4) and S(7). Describe possible difficulties
with this approach.

8. For small samples generated via an exponential distribution with
unknown mean, discuss the relative merits of the different possible
confidence interval approximations for the survival function. Describe
a study you might set up in order to make a recommendation regarding
the “best” confidence interval to work with. How do you understand
“best” in this context.
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9. Simulate 100 uncensored observations from a standard exponential
distribution. Calculate the empirical survival function Sn(t). Choose
two points, s and t and repeat the whole process 100 times obtaining
100 pairs of S100(s) and S100(t). Calculate the empirical covariance
between S100(s) and S100(t). Use different values of s and t to suggest
the validity of Equation 5.2.

10. Explain why the result of Equation 5.12 for Wn(t) =
√

n{Fn(t) −
F (t)}, when F (t) is uniform continues to hold for any other continuous
distribution.

11. Explain the importance of Theorem 5.3 and how it is used in
order to obtain consistent estimates of survival in the presence of an
independent censoring mechanism.

12. Simulate 200 uncensored observations from the log-normal distribu-
tion. Suppose that we had been led to believe that the observations had
been generated from a Weibull law. Carry out graphical procedures to
challenge the validity of the assumption. Repeat the exercise under the
supposition that the observations had been generated via a log-logistic
model.

13. For the 200 observations of the previous question, introduce an
independent censoring mechanism so that approximately half of the
observations are censored. Calculate the logarithm of the Kaplan-Meier
and Nelson-Aalen estimates and plot one against the other. Fit a least
squares line to the plot and comment on the values of the slope.

14. Use the results of Lemma 5.2 to show that µ̂(t) is consistent for
µ(t).

15. Show that when there is no censoring, the Greenwood estimate of
the variance of the Kaplan-Meier estimate reduces to the usual vari-
ance estimate for the empirical distribution function. Conclude from
this that confidence intervals based on the Greenwood estimate of vari-
ance are only valid at a single given time point, t, and would not
provide bounds for the whole Kaplan-Meier curve.

16. Carry out a study on the coverage properties based on Ŝ(t), log Ŝ(t)
and log Ŝ(t)/{1−Ŝ(t)}. Describe what you anticipate to be the relative
merits of the different functions.
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17. Malani (1995) outlined an operationally simple approach for esti-
mating survival in the presence of a dependent censoring mechanism.
The method requires that the dependency be captured via some ex-
planatory variable. Appealing to the redistribution to the right algo-
rithm, each censored observation has its remaining mass redistributed.
However, unlike the simple version of the algorithm, Malani proposes
to only redistribute among subjects in the risk set sharing the same
covariate value as the subject censored at that point. Give an intuitive
explanation as to why this would work.

18. Following the idea of Malani (1995) suppose, in the presence of de-
pendent censoring, we obtained a Nelson-Aalen estimate of survival for
each level of the covariate. Subsequently, appealing to the law of total
probability, we estimate marginal survival by a linear combination of
these several estimates. Comment on such an estimate and contrast it
with that of Malani.

19. Recall that the uncensored Kaplan-Meier estimator, i.e., the usual
empirical estimate, is unbiased. This is no longer generally so for the
Kaplan-Meier estimate. Can you construct a situation in which the
estimate of Equation 5.16 would exhibit less bias than the Kaplan-
Meier estimate?

20. Using data from a cancer registry, show how you could make use
of the piecewise exponential model to obtain conditional survival esti-
mates for S(T > t + s|T > s).



Chapter 6

Regression models
and subject heterogeneity

6.1 Summary

We consider several models that describe survival in the presence of
observable covariates, these covariates measuring subject heterogene-
ity. The most general situation can be described by a model with a pa-
rameter of high, possibly unbounded, dimension. Proportional hazards
models, partially proportional hazards models (O’Quigley and Stare
2002), stratified models or models with frailties or random coefficients
all arise as special cases of this model (O’Quigley and Xu 2000). One
useful parameterization (O’Quigley and Pessione 1991, O’Quigley and
Prentice 1991) can be described as a non proportional hazards model
with intercept. Changepoint models are a particular form of a non
proportional hazards model with intercept (O’Quigley and Natarajan
2004). Any model can be viewed as a special case of the general model,
lying somewhere on a conceptual scale between this general model and
the most parametric extreme, which would be the simple exponential
model. Models can be placed on this scale according to the extent of
model constraints and, for example, a random effects model would lie
strictly between a stratified model and the simple exponential model.
Relative risk models used in epidemiology come under these headings.
For relative risk models the time component is usually taken to be
age and great generalization, e.g., period or cohort analysis is readily
accomplished. Time-dependent covariates, Z(t), in combination with
the at-risk indicator, Y (t), can be used to describe states. Multistate
models in which subjects can move in and out of different states, or
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into an absorbing state such as death, can then be analyzed using the
same methodology.

6.2 Motivation

The presence of subject heterogeneity, summarized by risk factors Z,
known or suspected of being related to S(t), is our central concern.
The previous chapter dealt with the issue of marginal survival, i.e.,
survival ignoring any indicator of heterogeneity and which treats the
data in hand as though the observations came from a single popula-
tion. In Figure 6.1 there are two groups. This can be described by two
distinct Kaplan-Meier curves or, possibly, two independently calcu-
lated fitted parametric curves. If, however, the curves are related, then
each estimate provides information not only about its own population
curve but also about the other group’s population curve. The curve
estimates would not be independent. Exploiting such dependence can
lead to considerable gains in our estimating power. The agreement
between an approach modeling dependence and one ignoring it can
be more or less strong and, in Figure 6.1, agreement is good apart
from observations beyond 150 months where a proportional hazards
assumption may not hold very well. Returning to the simplest case,
we can imagine a compartmental model describing the occurrence of
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Figure 6.1: Kaplan-Meier survival curves and PH model curves for
two groups defined by a binary covariate. Dashed lines represent PH
estimates.



6.3. GENERAL HAZARDS MODEL 153

deaths independently of group status in which all individuals are as-
sumed to have the same hazard rates. As pointed out in the previous
chapter, the main interest then is in the survival function S(t) when
the Z are either unobservable or being ignored. Here we study the
conditional survival function given the covariates Z and we write this
as S(t|Z). In the more complex situations (multicompartment models,
time-dependent Z) it may be difficult, or even impossible, to given an
interpretation to S(t) as an average over conditional distributions, but
the idea of conditioning is still central although we may not take it
beyond that of the probability of a change of state conditional upon
the current state as well as the relevant covariate history which led to
being in that state.

The goal here is to consider models with varying degrees of flexi-
bility applied to the summary of n subjects each with an associated
covariate vector Z of dimension p. The most flexible models will be
able to fully describe any data at hand but, as a price for their flex-
ibility, little reduction in dimension from the n × p data matrix we
begin with. Such models will have small bias in prediction compared
with large sampling errors. The most rigid models can allow for strik-
ing reductions in dimension. Their consequent impact on prediction
will be associated with much smaller sampling errors. However, as a
price for such gains, the biases in prediction can be large. The mod-
els we finally work with will lie between these two extremes. Their
choice then depends on an artful balance between the two conflicting
characteristics.

6.3 General or nonproportional hazards model

In the most straightforward cases we can express the conditional
dependence of survival upon fixed covariates in terms of the hazard
function. A general expression for the hazard function given the value
of the covariate Z is given by:

Alive Dead

Figure 6.2: A simple alive/dead transition model. At time t the only in-
formation being used is whether the subject is dead or alive. Covariate
information (eg. group status) is not used.
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λ(t|Z) = λ0(t) exp{β(t)Z}, (6.1)

where λ(t|·) is the conditional hazard function, λ0(t) the baseline haz-
ard corresponding to Z = 0, and β(t) a time-varying regression ef-
fect. Whenever Z has dimension greater than one we view β(t)Z as
an inner product in which β(t) has the same dimension as Z so that
β(t)Z = β1(t)Z1+, · · · , +βp(t)Zp.

Recalling the discussion of Chapter 5, we are only interested in
situations where observations on Z can be made in the course of any
study. In Equation 6.1 Z is not allowed to depend upon time. If we
also disallow the possibility of continuous covariates, which, in practice,
we can approximate as accurately as we wish via high dimensional Z
together with β(t) of the same dimension, we see that model (6.1)
is completely general and, as such, not really a model. It is instead a
representation, or re-expression, of a very general reality, an expression
that is convenient and which provides a framework to understanding
many of the models described in this chapter. At the cost of losing
the interpretation of a hazard function, we can immediately generalize
(6.1) to

λ(t|Z) = λ0(t) exp{β(t)Z(t)}. (6.2)

As long as we do not view Z(t) as random, i.e., the whole time path of
Z(t) is known at t = 0, then a hazard function interpretation for λ(t|Z)
is maintained. Otherwise we lose the hazard function interpretation,
since this requires knowledge of the whole function at the origin t = 0,
i.e., the function is a deterministic and not a random one. In some ways
this loss is of importance in that the equivalence of the hazard function,
the survival function, and the density function means that we can
easily move from one to another. However, when Z(t) is random, we
can reason in terms of intensity functions and compartmental models,
a structure that enables us to deal with a wide variety of applied
problems. The parameter β(t) is of infinite dimension and therefore
the model would not be useful without some restrictions upon β(t).

6.4 Proportional hazards model

Corresponding to the truth or reality under scrutiny, we can view
Equation (6.2) as being an extreme point on a large scale which cal-
ibrates model complexity. The opposite extreme point on this scale
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might have been the simple exponential model, although we will start
with a restriction that is less extreme, specifically the proportional
hazards model in which β(t) = β so that;

λ(t|Z) = λ0(t) exp{βZ(t)}. (6.3)

Putting restrictions on β(t) can be done in many ways, and the whole
art of statistical modeling, not only for survival data, is in the search
for useful restrictions upon the parameterization of the problem in
hand. Our interpretation of the word “useful” depends very much on
the given particular context.

Just where different models find themselves on the infinite scale
between Equation 6.3 and Equation 6.2 and how they can be ordered
is a very important concept we need master if we are to be successful at
the modeling process, a process which amounts to feeling our way up
this scale (relaxing constraints) or down this scale (adding constraints),
guided by the various techniques at our disposal. From the outset it
is important to understand that the goal is not one of establishing
some unknown hidden truth. We already have this, expressed via the
model described in Equation (6.1). The goal is to find a much smaller,
more restrictive model, which, for practical purposes is close enough or
which is good enough to address those questions that we have in mind;
for example, deciding whether or not there is an effect of treatment on
survival once we have accounted for known prognostic factors which
may not be equally distributed across the groups we are comparing.
For such purposes, no model to date has seen more use than the Cox
regression model.

6.5 The Cox regression model

In tackling the problem of subject heterogeneity, Cox’s (1972) pro-
portional hazards regression model has enjoyed outstanding success,
a success, it could be claimed, matching that of classic multilinear
regression itself. The model has given rise to considerable theoretical
work and continues to provoke methodological advances. Research and
development into the model and the model’s offspring have become so
extensive that we cannot here hope to cover the whole field, even at the
time of writing. We aim nonetheless to highlight what seem to be the
essential ideas and we begin with a recollection of the seminal paper
of D.R. Cox, presented at a meeting of the Royal Statistical Society in
London, England, March 8, 1972.
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Regression models and life tables (D.R. Cox 1972)

After summarizing earlier work on the life table (Kaplan and Meier
1958, Chiang 1968), Professor Cox introduced his, now famous, model
postulating a simplified form for the relationship between the hazard
function λ(t), at time t and the value of an associated fixed covari-
ate Z. As its name suggests, the proportional hazards model assumes
that the hazard functions among subjects with different covariates are
proportional to one another. The hazard function can then be written:

λ(t|Z) = λ0(t) exp{βZ}, (6.4)

where λ0(t) is a fixed “baseline” hazard function, and β is a relative
risk parameter to be estimated. Whenever Z = 0 has a concrete inter-
pretation (which we can always obtain by recoding) then so does the
baseline hazard λ0(t) since, in this case, λ(t|Z = 0) = λ0(t). As men-
tioned just above, when Z is a vector of covariates, then the model is
the same, although with the scalar product βZ interpreted as an inner
product. It is common to replace the expression βZ by β′Z where β
and Z are p × 1 vectors, and a′b denotes the inner product of vectors
a and b. Usually, though, we will not distinguish notationally between
the scalar and the vector inner product since the former is just a special
case of the latter. We write them both as βZ. Again we can interpret
λ0(t) as being the hazard corresponding to the group for which the
vector Z is identically zero.

The model is described as a multiplicative model, i.e., a model in
which factors related to the survival time have a multiplicative effect
on the hazard function. An illustration in which two binary variables
are used to summarize the effects of four groups is shown in Figure
6.3. As pointed out by Cox, the function (βZ) can be replaced by any
function of β and Z, the positivity of exp(·) guaranteeing that, for any
hazard function λ0(t), and any Z, we can always maintain a hazard
function interpretation for λ(t|Z). Indeed it is not necessary to restrict
ourselves to exp(·), and we may wish to work with other functions R(·),
although care is required to ensure that R(·) remains positive over the
range of values of β and Z of interest. Figure 6.3 represents the case
of two binary covariables indicating four distinct groups (in the figure
we take the logarithm of λ(t)) and the important thing to observe is
that the distance between any two groups on this particular scale, i.e.,
in terms of the log-hazards, does not change through time. In view
of the relation between the hazard function and the survival function,
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t

h(t)

Figure 6.3: Proportional hazards with two binary covariates indicating
4 groups. Log-hazard rate written as h(t) = log λ(t).

there is an equivalent form of Equation 6.4 in terms of the survival
function. Defining S0(t) to be the baseline survival function; that is,
the survival function corresponding to S(t|Z = 0), then, for scalar or
vector Z, we have that,

S(t|Z) = {S0(t)}exp(βZ). (6.5)

When the covariate is a single binary variable indicating, for example,
treatment groups, the model simply says that the survival function of
one group is a power transformation of the other, thereby making an
important connection to the class of Lehmann alternatives (Lehmann
1953).

Cox took the view that “parametrization of the dependence on
Z is required so that our conclusions about that dependence are ex-
pressed concisely,” adding that any choice “needs examination in the
light of the data.” “So far as secondary features of the system are con-
cerned ... it is sensible to make a minimum of assumptions.” This view
led to focusing on inference that allowed λ0(t) to remain arbitrary.
The resulting procedures are nonparametric with respect to t in that
inference is invariant to any increasing monotonic transformation of t,
but parametric in as much as concerns Z. For this reason the model is
often referred to as Cox’s semi-parametric model. Let’s keep in mind,
however, that it is the adopted inferential procedures that are semi-
parametric rather than the model itself. Although, of course, use of
the term λ0(t) in the model, in which λ0(t) is not specified, implies
use of procedures that will work for all allowable functions λ0(t).
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Having recalled to the reader how inference could be carried out
following some added assumptions on λ0(t), the most common assump-
tions being that λ0(t) is constant, that λ0(t) is a piecewise constant
function, or that λ0(t) is equal to tγ for some γ, Cox presented his
innovatory likelihood expression for inference, an expression that sub-
sequently became known as a partial likelihood (Cox 1975). We look
more closely at these inferential questions in later chapters. First note
that the quantity λ0(t) does not appear in the expression for partial
likelihood given by

L(β) =
n∏

i=1

{
exp(βZi)∑n

j=1 Yj(Xi) exp(βZj)

}δi

, (6.6)

and, in consequence, λ0(t) can remain arbitrary. Secondly, note that
each term in the product is the conditional probability that at time
Xi of an observed failure, it is precisely individual i who is selected to
fail, given all the individuals at risk and given that one failure would
occur. Taking the logarithm in Equation 6.6 and its derivative with
respect to β, we obtain the score function which, upon setting equal
to zero, can generally be solved without difficulty using the Newton-
Raphson method, to obtain the maximum partial likelihood estimate β̂
of β. We will discuss more deeply the function U(β) under the various
approaches to inference. We can see already that it has the same form
as that encountered in the standard linear regression situation where
the observations are contrasted to some kind of weighted mean. The
exact nature of this mean is described later. Also, even though the
expression

U(β) =
n∑

i=1

δi

{

Zi −
∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}

(6.7)

looks slightly involved, we might hope that the discrepancies between
the Zi and the weighted mean, clearly some kind of residual, would
be uncorrelated, at least for large samples, since the Zi themselves are
uncorrelated.

All of this turns out to be so and makes it relatively easy to carry
out appropriate inference. The simplest and most common approach
to inference is to treat β̂ as asymptotically normally distributed with
mean β and large sample variance I(β̂)−1, where I(β), called the in-
formation in view of the analogy with classical likelihood, is minus the
second derivative of L(β) with respect to β, i.e., letting
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Ii(β)=

∑n
j=1 Yj(Xi)Z2

j exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)
−
{∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}2

, (6.8)

then I(β) =
∑n

i=1 δiIi(β). Inferences can also be based on likelihood
ratio methods. A third possibility, which is sometimes convenient, is
to base tests on the score U(β), which in large samples can be con-
sidered to be normally distributed with mean zero and variance I(β).
Multivariate extensions are completely natural, with the score being a
vector and I an information matrix.

Early applications of the model

The first success of the model was in its use for the two-sample prob-
lem, i.e., testing the null hypothesis of no difference in the underlying
true survival curves for two groups. In this case Cox (1972) showed that
the test statistic U(0)/

√
I(0) is formally identical to a test, later known

under the heading of the log-rank test, obtained by setting up at each
failure point a 2 × 2 contingency table, group against failed/survived,
and combining the many 2 × 2 tables. As in a standard analysis of a
single such contingency table we use the marginal frequencies to ob-
tain estimates of expected rates under the null hypothesis of no effect.
Assuming, as we usually do here, no ties we can obtain a table such
as described in Table 6.1 in which, at time t = Xi the observed failure
occurs in group A and there are nA(t) and nB(t) individuals at risk in
the respective groups.

The observed rates and the expected rates are simply summed
across the distinct failure points, each of which gives rise to its own
contingency table where the margins are obtained from the available
risk sets at that time. From the above, if Zi = 1 when subject i is in
group A and zero otherwise, then elementary calculation gives that,

U(0) =
n∑

i=1

δi{Zi − π(Xi)} , I(0) =
n∑

i=1

δiπ(Xi){1 − π(Xi)}

Time point t = Xi Group A Group B Totals
Number of failures 1 0 1
Number not failing nA(t) − 1 nB(t) nA(t) + nB(t) − 1

Total at risk nA(t) nB(t) nA(t) + nB(t)

Table 6.1: 2× 2 table at failure point t = Xi for group A and group B.
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where π(t) = nA(t)/{nA(t)+nB(t)}. The statistic U then contrasts the
observations with their expectations under the null hypothesis of no
effect. This expectation is simply the probability of choosing, from the
subjects at risk, a subject from group A. The variance expression is the
well-known expression for a Bernoulli variable. Readers interested in a
deeper insight into this test should also consult (Cochran 1954, Mantel
and Haenzel 1959, Mantel 1963, Peto and Peto 1972). As pointed out
by Cox, “whereas the test in the contingency table situation is, at least
in principle, exact, the test here is only asymptotic ...”

However, the real advantage of Cox’s approach was that while con-
tributing significantly toward a deeper understanding of the log-rank
and related tests, it opened up the way for more involved situations;
additional covariates, continuous covariates, random effects and, per-
haps surprisingly, in view of the attribute “proportional hazards,” a
way to tackle problems involving time varying effects or time depen-
dent covariates. Cox illustrated his model via an application to the
now famous Freireich data (Freireich et al. 1963) describing a clinical
trial in leukemia in which a new treatment was compared to a placebo.
Treating the two groups independently and estimating either survivor-
ship function using a Kaplan-Meier curve gave good agreement with
the survivorship estimates derived from the Cox model. Such a result
can also, of course, be anticipated by taking a log(− log) transform
of the Kaplan-Meier estimates and noting that they relate to one an-
other via a simple shift. This shift exhibits only the weakest, if any,
dependence on time itself.

Multivariate applications

Recovering the usual two-group log rank statistic as a special case of
a test based on model (6.4) is reassuring. In fact, exactly the same
approach extends to the several group comparison (Breslow 1972).
More importantly, model (6.4) provides the framework for considering
the multivariate problem from its many angles; global comparisons
of course but also more involved conditional comparisons in which
certain effects are controlled for while others are tested. We look at
this in more detail below under the heading “Modeling multivariate
problems.” The partially proportional hazards model (in particular
the stratified model) were to appear later to Cox’s original work of
1972 and provide great flexibility in addressing regression problems in
a multivariate context.
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Discussion of Professor Cox’s paper

Professor Cox’s paper represented an important step forward in deal-
ing with survival problems for heterogeneous populations and a non-
negligible subset of a whole generation of academic biostatisticians has
spent over a quarter of a century, keeping up and clarifying the many
ideas originally outlined in Cox’s 1972 paper. The discussion contin-
ues but, already, back in 1972 a group drawn from among the most
eminent statisticians of the time, made a collective contribution to
the new developments in a discussion that turned out to be almost as
significant as the paper itself.

The issue which, arguably, gave rise to the most fertile exchanges
concerned the partial likelihood, not yet named as such and referred
to by Cox as a conditional likelihood. Kalbfleisch and Prentice took
issue with Cox’s naming of the likelihood used for inference as a “con-
ditional” likelihood. They pointed out that the likelihood expression
is not obtainable as a quantity proportional to a probability after hav-
ing conditioned on some event. Conditioning was indeed taking place
in the construction of the likelihood expression but in a sequential
manner, a dynamic updating whose inferential home would later be
seen to lie more naturally within the context of stochastic processes,
indexed by time, rather than regular likelihoods, whether marginal or
conditional.

The years following this discussion gave rise to a number of papers
investigating the nature of the “conditional” likelihood proposed in
Cox’s original paper. Given the striking success of the model, together
with the suggested likelihood expression, in reproducing and taking
further a wide range of statistics then in use, most researchers agreed
that Cox’s proposal was correct. They remained uncertain, though, as
to how to justify the likelihood itself. This thinking culminated in sev-
eral major contributions; those of Cox (1975), Prentice and Kalbfleisch
(1975), Aalen (1979) and Andersen and Gill (1982), firmly establish-
ing the likelihood expression of Cox. In our later chapter on inference
we discuss some of the issues raised in those contributions. It turned
out that Cox was correct, not just on the appropriateness of his pro-
posed likelihood expression but also in describing it as a “conditional”
likelihood, this description being the source of all the debate.

Not unlike other major scientific thinkers of the twentieth cen-
tury, Cox showed quite remarkable insight and although his likelihood
derivation may not have been conditional, in the sense of taking as
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observed some single statistic upon which we condition before pro-
ceeding, his likelihood is not only very much a conditional one but
also it conditions in just the right way. Not in the most straightfor-
ward sense whereby all the conditioning is done in one go, but in the
sense of sequentially conditioning through time. Cox’s “conditional”
likelihood is now called a “partial” likelihood although, as an inferen-
tial tool in its own right, i.e., as a tool for inference independent of the
choice of any particular model the partial likelihood is not as useful
a concept as believed by many. We return to this in the chapter on
inference.

Professor Downton of the University of Birmingham and Professor
Peto of the University of Oxford pointed out the connection to rank
test procedures. Although the formulation of Cox allowed the user to
investigate more complex structures, many existing set-ups, framed in
terms of tests based on the ranks, could be obtained directly from the
use of the Cox likelihood. The simplest example was the sign test for
the median. Using permutation arguments, other tests of interest in the
multivariate setting could be obtained, in particular tests analogous to
the Friedman test and the Kruskal-Wallis test. Richard Peto referred
to some of his own work with Julian Peto. Their work demonstrated
the asymptotic efficiency of the log-rank test and that, for the two-
group problem and for Lehmann alternatives, this test was locally most
powerful. Since the log-rank test coincides with a score test based on
Cox’s likelihood, Peto argued that Cox’s method necessarily inherits
the same properties.

Professor Bartholomew of the University of Kent considered a
lognormal model in current use and postulated its extension to the
regression situation by writing down the likelihood. Such an analysis,
being fully parametric, represents an alternative approach since the
structure is not nested in a proportional hazards one. Bartholomew
made an insightful observation that allowing for some dependence of
the explanatory variable Z on t can enable the lognormal model and a
proportional hazards model to better approximate each another. This
is indeed true and allows for a whole development of a class of non
proportional hazards models where Z is a function of time and within
which the proportional hazards model arises as a special case.

Professors Oakes and Breslow discussed the equivalence between a
saturated piecewise exponential model and the proportional hazards
model. By a saturated piecewise exponential model we mean one al-
lowing for constant hazard rates between adjacent failures. The model
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is data dependent in that it does not specify in advance time regions of
constant hazard but will allow these to be determined by the observed
failures. From an inferential standpoint, in particular making use of
likelihood theory, we may expect to run into some difficulties. This
is because the number of parameters of the model (number of con-
stant hazard rates) increases at the same rate as the effective sample
size (number of observed failure times). However, the approach does
nonetheless work, although justification requires the use of techniques
other than standard likelihood. A simple estimate of the hazard rate,
the cumulative hazard rate, and the survivorship function are then
available. When β = 0 the estimate of the cumulative hazard rate
coincides with that of Nelson (1969).

Professor Lindley of University College London writes down the
full likelihood which involves λ0(t) and points out that, since terms
involving λ0(t) do not factor out we cannot justify Cox’s conditional
likelihood. If we take λ0(t) as an unknown nuisance parameter having
some prior distribution, then we can integrate the full likelihood with
respect to this in order to obtain a marginal likelihood (this would be
different to the marginal likelihood of ranks studied later by Kalbfleisch
and Prentice 1973). Lindley argues that the impact of censoring is
greater for the Cox likelihood than for this likelihood which is then to
be preferred. The author of this text confesses to not fully understand-
ing Lindley’s argument and there is some slight confusion there since,
either due to a typo or to a subtlety that escapes me, Lindley calls the
Cox likelihood a “marginal likelihood” and what I am referring to as a
marginal likelihood, an “integrated likelihood.” We do, of course, inte-
grate a full likelihood to obtain a marginal likelihood, but it seems as
though Professor Lindley was making other, finer, distinctions which
are best understood by those in the Bayesian school. His concern on
the impact of censoring is echoed by Mr. P. Glassborow of British Rail
underlining the strength behind the independent censoring assump-
tion, an assumption which would not be reasonable in many practical
cases.

Professor Zelen, a pioneer in the area of regression analysis of sur-
vival data, pointed out important relationships in tests of regression
effect in the proportional hazards model and tests of homogeneity of
the odds ratio in the study of several contingency tables. Dr. John
Gart of the National Cancer Institute also underlined parallels between
contingency table analysis and Cox regression. These ideas were to be
developed extensively in later papers by Ross Prentice and Norman
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Breslow in which the focus switched from classical survival analysis
to studies in epidemiology. The connection to epidemiological applica-
tions was already alluded to in the discussion of the Cox paper by Drs.
Meshalkin and Kagan of the World Health Organization. Finally, al-
gorithms for carrying out an analysis based on the Cox model became
quickly available thanks to two further important contributions to the
discussion of Cox’s paper. Richard Peto obtained accurate approxi-
mations to the likelihood in the presence of ties, obviating the need
for computationally intensive permutation algorithms, and Susannah
Howard showed how to program efficiently by exploiting the nested
property of the risk sets in reversed time.

Historical background to Cox’s paper

Alternative hypotheses to a null which assumes that two probabilities
are equal, such as in Equation (6.5), taking the form of a simple power
transformation, have a long history in statistical modeling. Such alter-
natives which, in the special case where the probabilities in question
are survival functions, are known as Lehmann alternatives (Lehmann
1953). Lehmann alternatives are natural in that, under the restriction
that the power term is positive, always achievable by reparameteriz-
ing the power term to be of an exponential form; then, whatever the
actual parameter estimates, the resulting probability estimates satisfy
the laws of probability. In particular, they remain in the interval (0,1).
Linear expressions for probabilities are less natural although, at least
prior to the discovery of the logistic and Cox models, possibly more
familiar. Feigl and Zelen (1965) postulated a linear regression for the
location parameter, λ0, of an exponential law. In this case the location
parameter and the (constant) hazard coincide so that the model could
be written;

λ(t|Z) = λ0 exp{βZ}. (6.9)

In Feigl and Zelen their model was not written exactly this way, ex-
pressed as λ = α + βZ. However, since λ is constant, the two ex-
pressions are equivalent and highlight the link to Cox’s more general
formulation. Feigl and Zelen only considered the case of uncensored
data. Zippin and Armitage (1966) used a modeling approach, essen-
tially the same as that of Feigl and Zelen, although allowing for the
possibility of censoring. This was achieved by an assumption of inde-
pendence between the censoring mechanism and the failure mechanism
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Figure 6.4: Kaplan-Meier curves and model based curves for Freireich
data. Dashed lines represent model based estimates; exponential model
(left), Cox model (right).

enabling an expression for the full likelihood to be obtained. Further
discussion on these ideas can be found in Myers, Hankey and Mantel
(1973) and Brown (1975). The estimates of the survival function for
the different groups in the Freireich study, based on a simple exponen-
tial model or a Cox model, are shown in Figure 6.4. For these data
the level of agreement between the two approaches appears to be high.
This early work on the exponential model certainly helped anticipate
the more general development of Cox and, for many more straightfor-
ward comparisons, such as the one illustrated by the Freireich data, it
is perhaps unfortunate that the exponential model has been relegated
to a historical role alone and is rarely, if ever, used in current practical
analysis of similar data.

6.6 Modeling multivariate problems

The strength of the Cox model lies in its ability to describe and charac-
terize involved multivariate situations. Crucial issues concern the ade-
quacy of fit of the model, how to make predictions based on the model,
and how strong is the model’s predictive capability. These are consid-
ered in detail later. Here, in the following sections and in the chapter
on inference we consider how the model can be used as a tool to formu-
late questions of interest to us in the multivariate setting. The simplest
case is that of a single binary covariate Z taking the values zero and
one. The zero might indicate a group of patients undergoing a stan-
dard therapy, whereas the group for which Z = 1 could be undergoing
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some experimental therapy. Model 6.4 then indicates the hazard rate
for the standard group to be λ0(t) and for the experimental group to
be λ0(t) exp(β). Testing whether or not the new therapy has any effect
on survival translates as testing the hypothesis H0 : β = 0. If β is less
than zero then the hazard rate for the experimental therapy is less
than that for the standard therapy at all times and is such that the
arithmetic difference between the respective logarithms of the hazards
is of magnitude β. Suppose the problem is slightly more complex and
we have two new experimental therapies. We can write;

λ(t|Z) = λ0(t) exp{β1Z1 + β2Z2}

and obtain Table 6.2. As we shall see the two covariate problem is
very much more complex than the case of a single covariate. Not only
do we need to consider the effect of each individual treatment on the
hazard rate for the standard therapy but we also need to consider the
effect of each treatment in the presence or absence of the other as well
as the combined effect of both treatments together. The particular
model form in which we express any relationships will typically imply
assumptions on those relationships and an important task is to bring
under scrutiny (goodness of fit) the soundess of any assumptions.

It is also worth noting that if we are to assume that a two-
dimensional covariate proportional hazards model hold exactly, then,
integrating over one of the covariates to obtain a one dimensional
model will not result (apart from in very particular circumstances)
in a lower-dimensional proportional hazards model. The lower dimen-
sional model would be in a much more involved non proportional
hazards form. This observation also holds when adding a covariate to
a one-dimensional proportional hazards model, a finding that compels
us, in realistic modeling situations, to only ever consider the model as
an approximation.

By extension the case of several covariates becomes rapidly very
complicated. If, informally, we were to define complexity as the number

Treatment group Z1 Z2 Log of group effect
Standard therapy 0 0 0
Experimental therapy 1 1 0 β1

Experimental therapy 2 0 1 β2

Table 6.2: Effects for two treatment groups
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of things you have to worry about, then we could, even more informally,
state an important theorem.

Theorem 6.1 (Theorem of complexity) The complexity of any
problem grows exponentially with the number of covariates in the
equation.

Obviously such a theorem cannot hold in any precise mathemat-
ical sense without the need to add conditions and restrictions such
that its simple take-home message would be lost. For instance, if each
added covariate was a simple constant multiple of the previous one,
then there would really be no added complexity. But, in some broad
sense, the theorem does hold and to convince ourselves of this we can
return to the case of two covariates. Simple combinatorial arguments
show that the number of possible hypotheses of potential interest is
increasing exponentially. But it is more complex than that. Suppose
we test the hypothesis H0 : β1 = β2 = 0. This translates the clinical
null hypothesis: neither of the experimental therapies impacts survival
against the alternative, H1 : ∃βi 	= 0, i = 1, 2. This is almost, yet not
exactly, the same as simply regrouping the two experimental treat-
ments together and reformulating the problem in terms of a single
binary variable.

Next we might consider testing the null hypothesis H0 : β1 = 0
against the alternative hypothesis H1 : β1 	= 0. Such a test focuses
only on the first experimental treatment, but does not, as we might at
first imagine, lump together both the second experimental treatment
and the standard treatment. This test makes no statement about β2

and so this could indeed take the value zero (in which case the stan-
dard and the second experimental therapy are taken to be the same)
or any other value in which case, detecting a nonzero value for β1

translates as saying that this therapy has an effect different to the
standard regardless of the effect of the second experimental therapy.
Clearly this is different from lumping together the second experimen-
tal therapy with the standard and testing the two together against
the first experimental therapy. In such a case, should the effect of the
first experimental therapy lie somewhere between that of the standard
and the second, then, plausibly, we might fail to detect a nonzero β1

even though there exist real differences between the standard and the
first therapy.

All of this discussion can be repeated, writing β1 in the place of β2.
Already, we can see that there are many angles from which to consider
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an equation such as the above. These angles, or ways of expressing
the scientific question, will impact the way of setting up the statistical
hypotheses. In turn, these impact our inferences.

Another example would be testing the above null hypothesis H0 :
β1 = β2 = 0 against an alternative H1 : 0 < β1 < β2 instead of that
initially considered (i.e., H1 : ∃βi 	= 0, i = 1, 2). The tests, and their
power properties, would not typically be the same. We might consider
recoding the problem, as in Equation 6.10, so that testing H0 : β1 = 0
against H1 : β1 	= 0 corresponds to testing for an effect in either group.
Given this effect we can test H0 : β2 = 0 against H1 : β2 	= 0 which will
answer the question as to whether, given that their exists a treatment
effect, it is the same for both of the experimental treatments:

λ(t|Z) = λ0(t) exp{β1Z1 + (β1 + β2)Z2}
= λ0(t) exp{β1(Z1 + Z2) + β2Z2}. (6.10)

Note that fitting the above models needs no new procedures or software
for example, since both cases come under the standard heading. In the
first equation all we do is write α1 = β1 and α2 = β1 + β2. In the
second we simply redefine the covariates themselves. The equivalence
expressed in the above equation is important. It implies two things.
Firstly, that this previous question concerning differential treatment
effects can be re-expressed in a standard way enabling us to use existing
structures, and computer programs. Secondly, since the effects in our
models express themselves via products of the form βZ, any recoding
of β can be artificially carried out by re-coding Z and vice versa. This
turns out to be an important property and anticipates the fact that a
non proportional hazards model β(t)Z can be re-expressed as a time-
dependent proportional hazards model βZ(t). Hence the very broad
sweep of proportional hazards models.

It is easy to see how the above considerations, applied to a situation
in which we have p > 2 covariates, become very involved. Suppose we
have four ordered levels of some risk factor. We can re-code these
levels using three binary covariates as in Table 6.3; For this model we
can, again, write the hazard function in terms of these binary coding
variables, noting that, as before, there are different ways of expressing
this. In standard form we write

λ(t|Z) = λ0(t) exp{β1Z1 + β2Z2 + β3Z3}

so that the hazard rate for those exposed to the risk factor at level
i, i = 1, . . . , 4, is given by λ0(t) exp(βi) where we take β0 = 0. Our
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Risk factor Z1 Z2 Z3 Log of risk factor effect
Level 1 0 0 0 0
Level 2 1 0 0 β1

Level 3 0 1 0 β2

Level 4 0 0 1 β3

Table 6.3: Coding for four ordered levels of a risk factor.

interest may be more on the incremental nature of the risk as we
increase through the levels of exposure to the risk factor. The above
model can be written equivalently as

λ(t|Z) = λ0(t) exp{β1Z1 + (β1 + β2)Z2 + (β1 + β2 + β3)Z3}
= λ0(t) exp{β1(Z1 + Z2 + Z3) + β2(Z2 + Z3) + β3Z3} (6.11)

so that our interpretation of the βi is in terms of increase in risk.
The coefficient β1 in this formulation corresponds to an overall effect,
common to all levels above the lowest. The coefficient β2 corresponds
to the amount by which the log-hazard rate for the second level differs
from that at the first. Here then, a value of β2 equal to zero does not
mean that there is no effect at level 2, simply that the effect is no
greater than that already quantified at level 1. The same arguments
follow for levels 3 and 4.

Writing the model in these different ways is not changing the basic
model. It changes the interpretation that we can give to the differ-
ent coefficients. The equivalent expression shown in Equation 6.11 for
example means that we can carefully employ combinations of the co-
variates in order to use existing software. But we can also consider the
original coding of the covariates Z. Suppose that, instead of the coding
given in Table (6.3), we use the coding given in Table 6.4. This pro-
vides an equivalent description of the four levels. As we move up the
levels, changing from level i to level i + 1, the log hazard is increased
by βi.

Let’s imagine a situation, taken from Table 6.4, in which β1 = β2 =
β3. Real situations may not give rise to strict equalities but may well
provide good first approximations. The hazards at each level can now
be written very simply as λ0(t) exp(jβ1) for j = 0, 1, 2, 3, and this is
described in Table (6.5). Taking β1 = β, we are then able to write
a model for this situation as; λ(t|Z) = λ0(t) exp(βZ), in which the
covariate Z, describing group level, takes the values 0 to 3. This model
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Risk factor Z1 Z2 Z3 Log of risk factor effect
Level 1 0 0 0 0
Level 2 1 0 0 β1

Level 3 1 1 0 β1 + β2

Level 4 1 1 1 β1 + β2 + β3

Table 6.4: Coding for four ordered levels of a risk factor.

Risk factor Z Log of risk factor effect
Level 1 0 0
Level 2 1 β
Level 3 2 2β
Level 4 3 3β

Table 6.5: Coding for four ordered levels of a risk factor.

has a considerable advantage over the previous one, describing the
same situation of four levels, in that only a single coefficient appears
in the model as opposed to three. We will use our data to estimate
just a single parameter. The gain is clear. The cost, however, is much
less so, and is investigated more thoroughly in the chapters on pre-
diction (explained variation, explained randomness) and goodness of
fit. If the fit is good, i.e., the assumed linearity is reasonable, then we
would certainly prefer the latter model to the former. If we are unsure
we may prefer to make less assumptions and use the extra flexibility
afforded by a model which includes three binary covariates rather than
a single linear covariate. In real data analytic situations we are likely
to find ourselves somewhere between the two, using the tools of fit and
predictability to guide us.

Returning once more to Table 6.4 we can see that the same idea pre-
vails for the βi not all assuming the same values. A situation in which
four ordered levels is described by three binary covariates could be re-
coded so that we only have a single covariate Z, together with a single
coefficient β. Next, suppose that in the model; λ(t|Z) = λ0(t) exp(βZ),
Z not only takes the ordered values, 0, 1, 2 and 3 but also all of those
in between. In a clinical study this might correspond to some prog-
nostic indicator, such as blood pressure or blood cholesterol, recorded
continuously and re-scaled to lie between 0 and 3.
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Including the value of Z, as a continuous covariate, in the model
amounts to making very strong assumptions. It supposes that the log
hazard increases by the same amount for every given increase in Z,
so that the relative risk associated with ∆ = z2 − z1 is the same for
all values of z1 between 0 and 3 − ∆. Let’s make things a little more
involved. Suppose we have the same continuous covariate, this time
let’s call it Z1, together with a single binary covariate Z2 indicating
one of two groups. We can write

λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2).

Such a model supposes that a given change in exposure Z1 results
in a given change in risk, as just described, but that, furthermore,
this resulting change is the same at both levels of the discrete binary
covariate Z2. This may be so but such strong assumptions must be
brought under scrutiny. Given the ready availability of software, it is
not at all uncommon for data analysts to simply “throw in” all of the
variables of interest, both discrete and continuous, without considering
potential transformations or recoding, turn the handle, and then try
to make sense of the resulting coefficient estimates together with their
standard errors. Such an exercise will rarely be fruitful. In this respect
it is preferable to write one’s own computer programs when possible
or to use available software such as the R package, which tends to ac-
company the user through model development. Packages that present
a “complete” one-off black box analysis based on a single model are
unlikely to provide much insight into the nature of the mechanisms
generating the data at hand.

The user is advised to exercise great care when including continu-
ous covariates in a model. We can view a continuous covariate as equiv-
alent to an infinite dimensional vector of indicator variables so that,
in accordance with our informal theorem of complexity, the number
of things we need worry about is effectively infinite. Let us not how-
ever overstate things, and it is of course useful to model continuous
covariates. But be wary. Also consider the model

λ(t|Z) = λ0(t) exp(β1Z + β2Z
2).

If Z is binary then Z2 = Z and there is no purpose to the second
term in the equation. If Z is ordinal or continuous then the effect of
Z is quadratic rather than linear. And, adding yet higher-order terms
enables us, at least in principle, to model other nonlinear functions. In
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practice, in order to carry out the analysis, we would use existing tools
by simply introducing a second variable Z2 defined by Z2 = Z2; an
important observation in that the linear representation of the covariate
can be relaxed with relatively little effort. For example, suppose that
the log-relative risk is expressed via some smooth function ψ(z) of a
continuous covariate z. Writing the model

λ(t|Z) = λ0(t) exp{βψ(Z)}

supposes that we know the functional form of the relative risk, at least
up to the constant multiple β. Then, a power series approximation
to this would allow us to write ψ(Z) =

∑
βjZ

j in which any con-
stant term β0 is absorbed into λ0(t). We then introduce the covariates
Zj = Zj to bring the model into its standard form.

6.7 Partially proportional hazards models

In the case of a single binary variable, model (6.2) and model (6.4)
represent the two extremes of the modeling options open to us. Under
model (6.2) there would be no model constraint and any consequent
estimation techniques would amount to dealing with each level of the
variable independently. Under model (6.4) we make a strong assump-
tion about the nature of the relative hazards, an assumption that al-
lows us to completely share information between the two levels. There
exists an important class of models lying between these extremes and,
in order to describe this class, let us now imagine a more complex sit-
uation; that of three groups, A, B and C, identified by a vector Z of
binary covariates; Z = (Z2, Z3). This is summarized in Table 6.6. We
are mainly interested in a treatment indicator Z1, mindful of the fact
that the groups themselves may have very different survival probabil-
ities. Under model (6.4) we have

λ(t|Z) = λ0(t) exp{β1Z1 + β2Z2 + β3Z3}. (6.12)

Z2 Z3 Log of group effect
Group A 0 0 0
Group B 1 0 β2

Group C 1 1 β2 + β3

Table 6.6: Coding for three groups.
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Our assumptions are becoming stronger in that not only are we mod-
eling the treatment affect via β1 but also the group effects via β2 and
β3. Expressing this problem in complete generality, i.e., in terms of
model (6.2), we write

λ(t|Z) = λ0(t) exp{β1(t)Z1 + β2(t)Z2 + β3(t)Z3}. (6.13)

Unlike the simple case of a single binary variable where our model
choices were between the two extremes of model (6.2) and model (6.4),
as the situation becomes more complex, we have open to us the possi-
bility of a large number of intermediary models. These are models that
make assumptions lying between model (6.2) and model (6.4) and, fol-
lowing O’Quigley and Stare (2002) we call them partially proportional
hazards models. A model in between (6.12) and (6.13) is

λ(t|Z) = λ0(t) exp{β1Z1 + β2(t)Z2 + β3(t)Z3}. (6.14)

This model is of quite some interest in that the strongly modeled part
of the equation concerns Z1, possibly the major focus of our study.
Figure 6.5 illustrates a simple situation. The only way to leave any
state is to die, the probabilities of making this transition varying from
state to state and the rates of transition themselves depending on time.
Below, under the heading time-dependent covariates, we consider the
case where it is possible to move within states. Here it will be possible
to move from a low-risk state to a high-risk state, to move from either
to the death state, but to also, without having made the transition to
the absorbing state, death, to move back from high-risk to low-risk.

Stratified models

Coming under the heading of a partially proportional hazards model
is the class of models known as stratified models. In the same way

Alive in Stratum 1 Alive in Stratum 2 Alive in Stratum 3

Dead

Figure 6.5: A stratified model with transitions only to death state.
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these models can be considered as being situated between the two
extremes of Equation 6.2 and Equation 6.3 and have been discussed
by Kalbfleisch and Prentice (1980) among others. Before outlining why
stratified models are simply partially proportional hazards models we
recall the usual expression for the stratified model as;

λ(t|Z(t), w) = λ0w(t) exp{βZ(t)}, (6.15)

where w takes integer values 1, . . . , m. If the coefficient β were allowed
to depend on each stratum, indicated by w, say β(w), then this would
exactly correspond to a situation in which we consider each stratum
completely independent, i.e., we have independent models for each
stratum. This would be nothing more than w separate, independent,
proportional hazards models. The estimation of β(w) for one model
has no impact on the estimation of β(w) for another. If we take β
to be common to the different strata, which is of course the whole
purpose of the stratified model, then, using data, whatever we learn
about one stratum tell us something about the others. They are no
longer independent of one another. Stratified models are necessarily
broader than (6.3), lying, in the precise sense described below, between
this model and the non proportional hazards model (6.2). To see this,
consider a restricted case of model (6.2) in which we have two binary
covariates Z1(t) and Z2(t). We put the restriction on the coefficient
β2, constrained to be constant in time. The model is then

λ{t|Z1(t), Z2(t)} = λ0(t) exp{β1(t)Z1(t) + β2Z2(t)}, (6.16)

a model clearly lying, in a well-defined way, between models (6.3) and
(6.2). It follows that

λ{t|Z1(t) = 0, Z2(t)} = λ0(t) exp{β2Z2(t)}

and

λ{t|Z1(t) = 1, Z2(t)} = λ∗
0(t) exp{β2Z2(t)},

where λ∗
0(t) = λ0(t)eβ1(t). Recoding the binary Z1(t) to take the val-

ues 1 and 2, and rewriting λ∗
0(t) = λ02(t), λ0(t) = λ01(t) we recover

the stratified PH model (6.15) for Z2(t). The argument is easily seen
to be reversible and readily extended to higher dimensions so we can
conclude an equivalence between the stratified model and the partially
proportional hazards model in which some of the β(t) are constrained
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to be constant. We can exploit this idea in the goodness of fit or the
model construction context. If a PH model holds as a good approx-
imation, then the main effect of Z2 say, quantified by β2, would be
similar over different stratifications of Z1 and remain so when these
stratifications are re-expressed as a PH component to a two covari-
ate model. Otherwise the indication is that β1(t) should be allowed to
depend on t. The predictability of any model is studied later under
the headings of explained variation and explained randomness and it
is of interest to compare the predictability of a stratified model and
an un-stratified one. For instance, we might ask ourselves just how
strong is the predictive strength of Z2 after having accounted for Z1.
Since we can account for the effects of Z1 either by stratification or
by its inclusion in a single PH model we may obtain different results.
Possible discrepancies tell us something about our model choice.

The relation between the hazard function and the survival function
follows as a straightforward extension of (6.5). Specifically, we have

S(t|Z) =
∑

w

φ(w){S0w(t)}exp(βZ), (6.17)

where S0w(t) is the corresponding baseline survival function in stratum
w and φ(w) is the probability of coming from that particular stratum.
This is then slightly more involved than the nonstratified case in which,
for two groups the model expressed the survival function of one group
as a power transformation of the other. Nonetheless the connection
to the class of Lehmann alternatives is still there although somewhat
weaker. For the stratified model, once again the quantity λ0w(t) does
not appear in the expression for the partial likelihood given now by

L(β) =
n∏

i=1

{
exp(βZi)∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

}δi

(6.18)

and, in consequence, once again, λ0w(t) can remain arbitrary. Note
also that each term in the product is the conditional probability that
at time Xi of an observed failure, it is precisely individual i who is
selected to fail, given all the individuals at risk from stratum w and
that one failure from this stratum occurs.

The notation wi(t) indicates the stratum in which the subject i
is found at time t. Although we mostly consider wi(t) which do not
depend on time, i.e., the stratum is fixed at the outset and thereafter
remains the same, it is almost immediate to generalize this idea to time
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dependency and we can anticipate the later section on time-dependent
covariates where the risk indicator Yj{wi(t), t} is not just a function
taking the value one until it drops at some point to zero, but can
change between zero and one with time, as the subject moves from
one stratum to another. For now the function Yj{wi(t), t} will be zero
unless the subject is at risk of failure from stratum wi, i.e., the same
stratum in which the subject i is to be found. Taking the logarithm in
(6.18) and derivative with respect to β, we obtain the score function

U(β) =
n∑

i=1

δi

{

Zi −
∑n

j=1 Yj{wi(Xi), Xi}Zj exp(βZj)
∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

}

, (6.19)

which, upon setting equal to zero, can generally be solved without
difficulty using standard numerical routines, to obtain the maximum
partial likelihood estimate β̂ of β. The parameter β then is assumed
to be common across the different strata.

Inferences about β are made by treating β̂ as asymptotically nor-
mally distributed with mean β and variance I(β̂)−1, where, now, I(β)
is given by I(β) =

∑n
i=1 δiIi(β). In this case each Ii is, as before, ob-

tained as the derivative of each component to the score statistic U(β).
For the stratified score this is

Ii =

∑n
j=1 Yj{wi(Xi), Xi}Z2

j exp(βZj)
∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

−
{∑n

j=1 Yj{wi(Xi), Xi}Zj exp(βZj)
∑n

j=1 Yj{wi(Xi), Xi} exp(βZj)

}2

.

The central notion of the risk set is once more clear from the above
expressions and we most usefully view the score function as contrasting
the observed covariates at each distinct failure time with the means of
those at risk from the same stratum. A further way of looking at the
score function is to see it as having put the individual contributions
on a linear scale. We simply add them up within a stratum and then,
across the strata, it only remains to add up the different sums. Once
again, inferences can also be based on likelihood ratio methods or
on the score U(β), which in large samples can be considered to be
normally distributed with mean zero and variance I(β). Multivariate
extensions follow as before. For the stratified model the only important
distinction impacting the calculation of U(β) and Ii(β) is that the
sums are carried out over each stratum separately and then combined
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at the end. The indicator Yj{wi(Xi)} enables this to be carried out in
a simpler way as indicated by the equation.

Random effects and frailty models

Also coming under the heading of partially proportional hazards model
are the classes of models, which include random effects. When the ef-
fects concern a single individual such models have been given the head-
ing frailty models (Vaupel 1979) since, for an individual identified by w,
we can write λ0w(t) = αwλ0(t) implying a common underlying hazard
λ0(t) adjusted to each individual by a factor, the individual’s frailty,
unrelated to the effects of any other covariates that are quantified by
the regression coefficients. The individual effects are then quantified
by the αw.

Although of some conceptual interest, such models are indistin-
guishable from models with time-dependent regression effects and
therefore, unless there is some compelling reason to believe (in the
absence of frailties) that a proportional hazards model would hold, it
seems more useful to consider departures from proportional hazards
in terms of model (6.2). On the other hand, random effects models,
as commonly described by Equation (6.20) in which the αw identify
a potentially large number of different groups, are interesting and
potentially of use. We express these as

λ(t|Z(t), w) = αwλ0(t) exp{βZ(t)}. (6.20)

These models are also partially parametric in that some effects are al-
lowed not to follow a proportional hazards constraint. However, unlike
the stratified models described above, restrictions are imposed. The
most useful view of a random effects model is to see it as a stratified
model with some structure imposed upon the strata. A random effects
model is usually written

λ(t|Z(t), w) = λ0(t) exp{βZ(t) + w}, (6.21)

in which we take w as having been sampled from some distribution
G(w; θ). Practically there will only be a finite number of distinct values
of w, however large. For any value w we can rewrite λ0(t)ew = λ0w(t)
and recover model (6.15). For the right hand side of this equation,
and as we might understand from (6.15), we suppose w to take the
values 1,2, ... The values on the left-hand side, being generated from
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G(·) would generally not be integers but this is an insignificant no-
tational issue and not one involving concepts. Consider the equation
to hold. It implies that the random effects model is a stratified model
in which added structure is placed on the strata. In view of Equation
6.16 and the arguments following this equation we can view a random
effects model equivalently as in Equation 6.2 where, not only are PH
restrictions imposed on some of the components of β(t), but the time
dependency of the other components is subject to constraints. These
latter contraints, although weaker than imposing constancy of effect,
are all the stronger as the distribution of G(w; θ) is concentrated.

Structure of random effects models

Consider firstly the model of Equation (6.3). Suppose we have one main
variable, possibly a treatment variable of interest, coded by Z1 = 0 for
group A and Z1 = 1 for group B. The second variable, say a center
variable, which may or may not have prognostic importance and for
which we may wish to control for possible imbalance is denoted Z2.
A strong modeling approach would include both binary terms in the
model so that the relationship between the hazard functions is as
described in Figure 6.6. If our main focus is on the effect of treatment,
believed to be comparable from one center to another, even though
the effects of the centers themselves are not absent, it makes sense to
stratify. This means that we do not attempt to model the effects of
the centers but, instead, remove any such potential effects from our

t

h(t)

Figure 6.6: PH model with binary covariates denoting center and treat-
ment groups.



6.7. PARTIALLY PROPORTIONAL HAZARDS MODELS 179

analysis. This is nice in that it allows for rather greater generality
than that illustrated in Figure 6.6. We maintain an assumption of
constant treatment effect but the center effects can be arbitrary. This
is illustrated in Figure 6.7. The illustration makes it clear that, under
the assumption, a weaker one than that implied by Equation 6.3, we
can estimate the treatment effect whilst ignoring center effects. A study
of these figures is important to understanding what takes place when
we impose a random effects model as in Equation (6.21). For many
centers, Figure 6.8, rather than having two curves per center, parallel
but otherwise arbitrary, we have a family of parallel curves. We no

t

h(t)

Figure 6.7: An outline sketch of a stratified PH model. Main variable
in two strata: stratum 1, i.e., center 1 given by dotted line; stratum 2
by continuous line.

t

h(t)

Figure 6.8: An outline sketch of a PH model with centers as random
effects.



180 CHAPTER 6. REGRESSION MODELS

longer are able to say anything about the distance between any given
centers, as we could for the model of Equation 6.3, a so-called fixed
effects model, but the distribution of the distances between centers is
something we aim to quantify. This is summarized by the distribution
G(w; θ) and our inferences are then partly directed at θ.

Random effects models versus stratified models

The stratified model is making weaker assumptions than the random
effects model. This follows since the random effects model is just a
special case of a stratified model in which some structure is imposed
upon the differences between strata. The stratified model not only
leaves any distribution of differences between strata unspecified, but
it also makes no assumption about the form of any given stratum.
Whenever the stratified model is valid, then so also is the random
effects model, the converse not being the case.

It may then be argued that we are making quite a strong assump-
tion when we impose this added structure upon the stratified model.
In exchange we would hope to make non-negligible inferential gains,
i.e., greater precision of our estimates of errors for the parameters of
main interest, the treatment parameters. In practice gains tend to be
small for most situations and give relatively little reward for the ex-
tra effort made. Since any such gains are only obtainable under the
assumption that the chosen random effects model actually generates
the data, actual gains in practice are likely to be yet smaller and, of
course, possibly negative when our additional model assumptions are
incorrect. A situation where gains for the random effects model may
be of importance is one where a non-negligeable subset of the data
include strata containing only a single subject. In such a case simple
stratification would lose information on those subjects. A random ef-
fects model, assuming the approximation to be sufficiently accurate,
enables us to recover such information.

Efficiency of random effects models

Most of our discussion here focuses on different possible representa-
tions of the infinitely complex reality we are hoping to model. Our
purpose in modeling is, ultimately, to draw simple, at least clear-cut,
inferences. The question of inference no longer concerns the general
but rather the specific data set we have at hand. If our main concern
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is on estimating risk functions then the question becomes, to what
extent do we gain by including in our inferential setup the presence
of random effect terms. Since our main objective is estimation and
quantification of regression parameters enabling us to say something
about the risk factors under study, the idea behind the inclusion of
additional random effect terms is to make more precise this estimation
and quantification.

As already argued above the inclusion of individual random effects
(frailties) is of no practical interest and simply amounts to expressing
the idea, albeit in an indirect way, of model inadequacy (O’Quigley
and Stare 2002). We therefore assume that we are dealing with groups,
some of which, but not all, may only include a isolated individual. We
know that a partial likelihood analysis, stratified by group, is estimat-
ing the same regression parameter. Inference is based on the stratified
score statistic. We contrast the observed covariate value with its esti-
mated expectation under the model. Different model assumptions will
impact this estimated expectation and it is here that any efficiency
gains can be made. For a stratified model, these estimated expecta-
tions may be with respect to relatively small risk sets. A random effects
model on the other hand, via the inclusion of a different w per group,
will estimate the relevant expectations over the whole risk set and not
just that relative to the group defined by the covariate value.

Comparisons for the stratified model are made with respect to the
relatively few subjects of the group risk sets. This may lead us to
believe that much information could be recovered were we able to
make the comparison, as does the alternative random effects analysis,
with respect to the whole risk set. Unfortunately this is not quite so
because each contribution to the score statistic involves a difference
between an observation on a covariate and its expectation under the
model and the “noise” in the expectation estimate is of lower order
that the covariate observations themselves. There is not all that much
to be gained by improving the precision of the expectation estimate.

In other words, using the whole of the risk set or just a small sam-
ple from it will provide similar results. This idea of risk set sampling
has been studied in epidemiology and it can be readily seen that the
efficiency of estimates based on risk set samples of size k, rather than
the whole risk set, is of the order

k

k + 1

⎧
⎨

⎩
1 +

n∑

j=1

1
n(n − j + 1)

⎫
⎬

⎭
. (6.22)
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This function increases very slowly to one but, with as few as four sub-
jects on average in each risk set comparison, we have already achieved
80% efficiency. With nine subjects this figure is close to 90%. Real ef-
ficiency will be higher for two reasons: (1) the above assumes that the
estimate based on the full risk set is without error, (2) in our context
we are assuming that each random effect w is observed precisely.

Added to this is the fact that, since the stronger assumptions of
the random effects model must necessarily depart to some degree from
the truth, it is by no means clear that there is much room to make
any kind of significant gains. As an aside, it is of interest to note that,
since we do not gain much by considering the whole of the risk set as
opposed to a small sample from it, the converse must also hold, i.e., we
do not lose very much by working with small samples rather than the
whole of the risk set. In certain studies, there may be great economical
savings made by only using covariate information, in particular when
time dependent, from a subset of the full risk set.

Table 6.7 was taken from O’Quigley and Stare (2002). The table
was constructed from simulated failure times where the random effects
model was taken to be exactly correct. Data were generated from this
model in which the gamma frailty had a mean and variance equal to
one. The regression coefficient of interest was exactly equal to 1.0.
Three situations were considered; 100 strata each of size 5, 250 strata
each of size 2 and 25 strata each of size 20. The take-home message from
the table is that, in these cases for random effects models, not much
is to be gained in terms of efficiency. Any biases appear negligible and
the mean of the point estimates for both random effects and stratified
models, while differing notably from a crude model ignoring model
inadequacy, are effectively indistinguishable. As we would expect there
is a gain for the variance of estimates based on the random effects
model but, even for highly stratified data (100 × 5), any gain is very
small. Indeed for the extreme case of 250 strata, each of size 2, surely
the worst situation for the stratified model, it is difficult to become
enthusiastic over the comparative performance of the random effects
model.

100 × 5 250 × 2 25 × 20
Ignoring effect 0.52 (0.16) 0.51 (0.16) 0.54 (0.16)

Random effect model 1.03 (0.19) 0.99 (0.22) 1.01 (0.17)
Stratified model 1.03 (0.22) 1.02 (0.33) 1.01 (0.18)

Table 6.7: Simulations for three models under different groupings.
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We might conclude that we only require around 80% of the com-
parative sample size needed for estimating relative risk based on the
stratified model. But, such a conclusion, leaning entirely on the as-
sumption that we know not only the class of distributions from which
the random effects come but also the exact value of the population
parameters, suggests, in practice, that the hoped for gain, in this most
hopeful of cases, is more likely to be greater than the 80% indicated
by our calculations. The only real situation that can be clearly disad-
vantageous to the stratified model is one where a non-negligible subset
of the strata are seen to only contain a single observation. For such
cases, and assuming a random effects model to provide an adequate fit,
information from states with a single observation (which would be lost
by a stratified analysis) can be recovered by a random effects analysis.

6.8 Non proportional hazards model
with intercept

Recalling the general model, i.e., the non proportional hazards model
for which there is no restriction on β(t), note that we can re-express
this so that the function β(t) is written as a constant term, the inter-
cept, plus some function of time multiplied by a constant coefficient.
Writing this as

λ(t|Z) = λ0(t) exp{[β0 + θQ(t)]Z}, (6.23)

we can describe the term β0 as the intercept and Q(t) as reflecting
the nature of the time dependency. The coefficient θ will simply scale
this dependency and we may often be interested in testing the par-
ticular value, θ = 0, since this value corresponds to a hypothesis of
proportional hazards. Fixing the function Q(t) to be of some special
functional form allows us to obtain tests of proportionality against al-
ternatives of a particular nature. Linear or quadratic decline in the
log-relative risk, change-point, and crossing hazard situations are all
then easily accommodated by this simple formulation. Tests of good-
ness of fit of the proportional hazards assumption can be then be
constructed which may be optimal for certain kinds of departures.

Although not always needed it can sometimes be helpful to divide
the time axis into r nonoverlapping intervals, B1, . . . , Br in an ordered
sequence beginning at the origin. In a data-driven situation these in-
tervals may be chosen so as to have a comparable number of events in
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each interval or so as not to have too few events in any given interval.
Defined on these intervals is a vector, also of dimension r, of some
known or estimable functions of time, not involving the parameters of
interest, β. This is denoted Q(t) = {Q1(t), . . . , Qr(t)} This model is
then written in the form,

λ(t|Z) = λ0(t) exp{[β + θQ(t)]Z}, (6.24)

where θ is a vector of dimension r. Thus, θQ(t) (here the usual inner
product) has the same dimension as β, i.e., one. In order to investigate
the time dependency of particular covariates in the case of multivariate
Z we would have β of dimension greater than one, in which case Q(t)
and θ are best expressed in matrix notation (O’Quigley and Pessione
1989).

Here, as through most of this text, we concentrate on the univari-
ate case since the added complexity of the multivariate notation does
not bring any added light to the concepts being discussed. Also, for
the majority of the cases of interest, r = 1 and θ becomes a sim-
ple scalar. We will often have in mind some particular form for the
time-dependent regression coefficient Q(t), common examples being a
linear slope (Cox 1972), an exponential slope corresponding to rapidly
declining effects (Gore et al. 1984) or some function related to the
marginal distribution, F (t) (Breslow, Edler and Berger 1984). In prac-
tice we may be able to estimate this function of F (t) with the help
of consistent estimates of F (t) itself, in particular the Kaplan-Meier
estimate. The non proportional hazards model with intercept is of par-
ticular use in questions of goodness of fit of the proportional hazards
model pitted against specific alternatives. These specific alternatives
can be quantified by appropriate forms of the function Q(t). We could
also test a joint null hypothesis H0 : β = θ = 0 corresponding to no
effect, against an alternative H1, either θ or β nonzero. This leads to
a test with the ability to detect non proportional hazards, as well as
proportional hazards departures to the null hypothesis of no effect. We
could also test a null hypothesis H0 : θ = 0 against H1 : θ 	= 0, leaving
β itself unspecified. This would then provide a goodness-of-fit test of
the proportional hazards assumption. We return to these issues later
on when we investigate in greater detail how these models give rise to
simple goodness of fit tests.
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Changepoint models

A simple special case of a non proportional hazards model with an
intercept is that of a changepoint model. O’Quigley and Pessione
(1991), O’Quigley (1994), and O’Quigley and Natarajan (2004) de-
velop such models whereby we take the function Q(t) to be defined
by, Q(t) = I(t ≤ γ) − I(t > γ) with γ an unknown changepoint. This
function Q(t) depends upon γ but otherwise does not depend upon the
unknown regression coefficients and comes under the above heading of
a non proportional hazards model with an intercept. For the purposes
of a particular structure for a goodness of fit test we can choose the
intercept to be equal to some fixed value, often zero (O’Quigley and
Pessione 1991). The model is then

λ(t|Z) = λ0(t) exp{[β + αQ(t)]Z(t)}. (6.25)

The parameter α is simply providing a scaling (possibly of value zero)
to the time dependency as quantified by the function Q(t). The chosen
form of Q(t), itself fixed and not a parameter, determines the way in
which effects change through time; for instance whether they decline
exponentially to zero, whether they decline less rapidly or any other
way in which effects might potentially change through time.

Inference for the changepoint model is not straightforward and in
the series of chapters dealing with approaches to inference one chap-
ter is devoted specifically to changepoint models. Note that were γ to
be known, then inference would come under the usual headings with
no additional difficulty. The changepoint model expressed by Equa-
tion (6.25) deals with the regression effect changing through time and
putting the model under the heading of a non proportional hazards
model. A related, although entirely different model, is one which arises
as a simplification of a proportional model with a continuous covari-
ate and the idea is to replace the continuous covariate by a discrete
classification.

The classification problem itself fall into two categories. If we are
convinced of the presence of effects and simply wish to derive the most
predictive classification into, say, two groups, then the methods using
explained randomness or explained variation will achieve this goal. If,
on the other hand, we wish to test a null hypothesis of absence of effect,
and, in so doing, wish to consider all possible classifications based on a
family of potential cutpoints of the continuous covariate, then special
techniques of inference are required. We return to this in Chapter 12.
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6.9 Time-dependent covariates

In all of the above models we can make a simple change by writing the
covariate Z as Z(t), allowing the covariate to assume different values
at different time points. Our model then becomes

λ(t|Z(t)) = λ0(t) exp{β(t)Z(t)} (6.26)

and allows situations such as those described in Figure 6.9 to be ad-
dressed. As we change states the intensity function changes. This en-
ables us to immediately introduce further refinement into a simple
alive/dead model whereby we can suppose one or more intermediary
states. A subject can move across states thereby allowing prognosis to
improve or to worsen, the rates of these changes themselves depending
upon other factors. The state death is described as an absorbing state
and so we can move into this state but, once there, we cannot move
out of it again.

Mostly we will work with the proportional hazard restriction on
the above model so that

λ(t|Z(t)) = λ0(t) exp{βZ(t)}, (6.27)

Such a simple, albeit very much more sophisticated, model than our
earlier one describes a broad range of realistic situations. We will see
that models with time-dependent covariates do not raise particular
difficulties, either computationally or from the viewpoint of interpre-
tation, when we deal with inference. This will be clear from the main

State 1
No symptoms

State 2
Progression

State 3
Dead

Figure 6.9: Compartment model where ability to move between states
other than death state can be characterized by time dependent indi-
cator covariates Z(t).
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theorem of proportional hazards regression (Section 7.4). The model
simply says that the effect of the covariate remains constant, i.e., the
regression coefficient remains constant, but that the covariate, or state,
can itself change with time. Models with time-dependent covariates can
also be used as a purely artificial construction in order to be able to ex-
press non proportional hazards models in a proportional hazards form.
That is not our main purpose here, however, and we are assuming that
Z(t) does correspond to some real physical measurement which can be
obtained through time.

We can also imagine a slightly more involved situation than the
above. Suppose that the covariate Z remains fixed, but that a sec-
ond covariate, known to influence survival, also needs to be accounted
for. Furthermore this second covariate is time dependent. We could, of
course, simply use the above model extended to the case of two covari-
ates. This is straightforward, apart from the fact that, as previously
underlined by the complexity theorem, care is needed. If, however, we
do not wish to model the effects of this second covariate, either be-
cause it is only of indirect concern or because its effects might be hard
to model, then we could appeal to a stratified model. We write;

λ(t|Z(t), w(t)) = λ0w(t)(t) exp{βZ(t)}, (6.28)

where, as for the non time-dependent case, w(t) takes integer values
1,..., m indicating status. The subject can move in and out of the
m strata as time proceeds. Two examples illustrate this. Consider a
new treatment to reduce the incidence of breast cancer. An important
time-dependent covariate would be the number of previous incidents
of benign disease. In the context of inference, the above model sim-
ply means that, as far as treatment is concerned, the new treatment
and the standard are only ever contrasted within patients having the
same previous history. These contrasts are then summarized in final
estimates and possibly tests. Any patient works her way through the
various states, being unable to return to a previous state. The states
themselves are not modeled. A second example might be a sociologi-
cal study on the incidence of job loss and how it relates to covariates
of main interest such as training, computer skills etc. Here, a strati-
fication variable would be the type of work or industry in which the
individual finds him or herself. Unlike the previous example a subject
can move between states and return to previously occupied states.

Time-dependent covariates describing states can be used in the
same way for transition models in which there is more than one
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State 4State 3

State 2State 1

Figure 6.10: Compartment model with 2 absorbing “death” states.

absorbing “death” state. Many different kinds of situations can be
constructed, these situations being well described by compartment
models with arrows indicating the nature of the transitions that are
possible (Figure 6.10). For compartment models with time-dependent
covariates there is a need for some thought when our interest focuses
on the survival function. The term external covariate is used to de-
scribe any covariate Z(t) such that, at t = 0, for all other t > 0, we
know the value of Z(t). The paths can be described as deterministic.
In the great majority of the problems that we face this is not the case
and a more realistic way of describing the situation is to consider the
covariate path Z(t) to be random. Also open to us as a modeling pos-
sibility, when some covariate Z1(t) is of secondary interest assuming a
finite number of possible states, is to use the at risk function Y (s, t).
This restricts our summations to those subjects in state s as described
above for stratified models.

6.10 Time-dependent covariates
and non proportional hazards models

A non proportional hazard model with a single constant covariate Z
is written

λ(t|Z) = λ0(t) exp{β(t)Z}. (6.29)

The multivariate extension is immediate and, in keeping with our con-
vention of only dealing with the univariate problem whenever possi-
ble, we focus our attention on the simple product β(t)Z at some given
point in time t. If we define β0 = β(0) we can rewrite this product as
β0Z(t) where Z(t) = Zβ(t)/β0. We could take any other time point t′
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and, once again, we observe that we can re-write the product β(t′)Z
as β0Z(t′) where Z(t′) = Zβ(t′)/β0. This equivalence is then true for
any, and all, values of t. Thus, a non proportional hazards model with
a constant covariate can be re-expressed, equivalently, as a simple pro-
portional hazards model with a time-dependent covariate.

It is almost immediate, and perhaps worth carrying out as an ex-
ercise, to show that we can reverse these steps to conclude also that
any model with time dependent covariates can be expressed in an
equivalent form as a non proportional hazards model. In conclusion,
for every non proportional hazards model there exists an equivalent
proportional hazards model with time-dependent covariates. Indeed,
it also clear that this argument can be extended. For, if we have the
model; λ(t|Z) = λ0(t) exp{β(t)Z(t)}, then, via a re-expression of the
model using β0Z

∗(t) where Z∗(t) = Z(t)β(t)/β0, we can construct
a proportional hazards model with a time-dependent regression effect
from a model which began with both time-dependent regression effects
as well as time changing regression coefficient.

This equivalence is a formal one and does not of itself provide any
new angle on model development. It may be exploited nonetheless in
theoretical investigation or used as a means to enable the structuring
of a particular problem. For example, many available softwares, as well
as user written code, will cater for time-dependent covariables. This
facility can then be made use of should we wish to study particular
types of non proportional hazards models.

6.11 Proportional hazards models
in epidemiology

For arbitrary random variables X and Y with joint density f(x, y),
conditional densities g(x|y) and h(y|x), marginal densities v(x) and
w(y), we know that

f(x, y) = g(x|y)w(y) = h(y|x)v(x),

so that, in the context of postulating a model for the pair (X, Y ), we
see that there are two natural potential characterizations. Recalling the
discussion from Section 4.3 note that, for survival studies, our interest
in the binary pair (T, Z), time and covariate, can be seen equivalently
from the viewpoint of the conditional distribution of time given the
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covariate, along with the marginal distribution of the covariate, or from
the viewpoint of the conditional distribution of the covariate given
time, along with the marginal distribution of time. This equivalence
we exploit in setting up inference where, even though the physical
problem concerns time given the covariate, our analysis describes the
distribution of the covariate given time.

In epidemiological studies the variable time T is typically taken to
be age. Calendar time and time elapsed from some origin may also be
used but, mostly, the purpose is to control for age in any comparisons
we wish to make. Usually we will consider rates of incidence of some
disease within small age groups or possibly, via the use of models, for a
large range of values of age. Unlike the relatively artificial construction
of survival analysis which exploits the equivalent ways of expressing
joint distributions, in epidemiological studies our interest naturally
falls on the rates of incidence for different values of Z given fixed
values of age T . It is not then surprising that the estimating equations
we work with turn out to be essentially the same for the two situations.

The main theorem of proportional hazards regression (Section 7.4)
applies more immediately in epidemiology than in survival type stud-
ies. We return to this in the chapter on inference. One important dis-
tinction, although already well catered for by use of our “at risk”
indicator variables, is that for epidemiological studies the subjects in
different risk sets are often distinct subjects. Even so, as we will see,
the form of the equations is the same, and software which allows an
analysis of survival data will also allow an analysis of certain problems
in epidemiology.

For a binary outcome, indicated by Y = 1 or Y = 0, and a binary
risk or exposure factor, Z = 1 or Z = 0, the relative risk is defined as
the ratio of the probabilities P (Y = 1|Z = 1)/P (Y = 1|Z = 0) and
the, related, odds ratio ψ as

ψ =
P (Y = 1|Z = 1)P (Y = 0|Z = 0)
P (Y = 1|Z = 0)P (Y = 0|Z = 1).

In the above and in what follows, in order for the notation not to
become too cluttered, we write Pr (A) = P (A). Under a “rare disease
assumption,” i.e., when P (Y = 0|Z = 0) and P (Y = 0|Z = 1) are close
to 1, then the odds ratio and relative risk approximate one another.
One reason for being interested in the odds ratio, as a measure of the
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impact of different levels of the covariate (risk factor) Z follows from
the easily obtained identity

P (Y =1|Z =1)P (Y =0|Z =0)
P (Y =1|Z =0)P (Y =0|Z =1)

=
P (Z =1|Y =1)P (Z =0|Y =0)
P (Z =1|Y =0)P (Z =0|Y =1)

.

(6.30)

Thus, the impact of different levels of the risk factor Z can equally well
be estimated by studying groups defined on the basis of this same risk
factor and their corresponding incidence rates of Y = 1. This provides
the rationale for the case-control study in which, in order to estimate ψ,
we make our observations on Z over fixed groups of cases and controls
(distribution of Y fixed), rather than the more natural, but practically
difficult if not impossible, approach of making our observations on Y
for a fixed distribution of Z. Assumptions and various subtleties are
involved. The subject is vast and we will not dig too deeply into this.
The points we wish to underline in this section are those that establish
the link between epidemiological modeling and proportional hazards
regression.

Series of 2 × 2 tables

The most elementary presentation of data arising from either a
prospective study (distribution of Z fixed) or a case-control study
(distribution of Y fixed) is in the form of a 2 × 2 contingency table
in which the counts of the number of observations are expressed.
Estimated probabilities, or proportions of interest are readily calcu-
lated. In Table 6.8, a1∗ = a11 + a12, a2∗ = a21 + a22, a∗1 = a11 + a21,
a∗2 = a12 + a22 and a∗∗ = a1∗ + a2∗ = a∗1 + a∗2. For prospective
studies the proportions a11/a∗1 and a12/a∗2 estimate the probabil-
ities of being a case (Y = 1) for both exposure groups while, for
case-control studies, the proportions a11/a1∗ and a21/a2∗ estimate the

Z = 1 Z = 0 totals
Y = 1 a11 a12 a1∗
Y = 0 a21 a22 a2∗
Totals a∗1 a∗2 a∗∗

Table 6.8: Basic 2 × 2 table for cases (Y = 1) and controls (Y = 0).
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probabilities of exhibiting the risk or exposure factor (Z = 1) for both
cases and controls. For both types of studies we can estimate ψ by
the ratio (a11a22)/(a21a12), which is also the numerator of the usual
chi-squared test for equality of the two probabilities. If we reject the
null hypothesis of the equality of the two probabilities we may wish to
say something about how different they are based on the data from the
table. As explained below, under the heading “Logistic regression,”
quantifying the difference between two proportions is not best done
via the most obvious, and simple, arithmetic difference. There is room
for more than one approach, the simple arithmetic difference being
perfectly acceptable when sample sizes are large enough to be able
to use the De Moivre-Laplace approximation (Section 3.3) but, more
generally, the most logical in our context is to express everything in
terms of the odds ratio. We can then exploit the following theorem;

Theorem 6.2 Taking all the marginal totals as fixed, the conditional
distribution of a11 is written

P (a|a1∗, a2∗, a∗1, a∗2)=
(

a1∗
a

)(
a2∗

a∗1 − a

)

ψa

/
∑

u

(
a1∗
u

)(
a2∗

a∗1 − u

)

ψu,

the sum over u being over all integers compatible with the marginal
totals. The conditionality principle appears once more, in this instance
in the form of fixed margins. The appropriateness of such condition-
ing, as in other cases, can be open to discussion. But again, insightful
conditioning has greatly simplified the inferential structure. Following
conditioning of the margins, it is only necessary to study the distri-
bution of any one entry in the 2 × 2 table, the other entries being
then determined. It is usual to study the distribution of a11. A non-
linear estimating equation can be based on a11 − E(a11), expectation
obtained from Theorem 6.2, and from which we can estimate ψ and
associate a variance term with the estimator. The nonlinearity of the
estimating equation, the only approximate normality of the estimator,
and the involved form of variance expressions has led to much work in
the methodological epidemiology literature; improving the approxima-
tions, obtaining greater robustness and so on. However, all of this can
be dealt with in the context of a proportional hazards (conditional
logistic) regression model. Since it would seem more satisfactory to
work with a single structure rather than deal with problems on a case-
by-case basis the recommendation is to work with proportional and
non proportional hazards models. Not only does a model enable us
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Table i Z = 1 Z = 0 Totals
Y = 1 a11(i) a12(i) a1∗(i)
Y = 0 a21(i) a22(i) a2∗(i)
Totals a∗1(i) a∗2(i) a∗∗(i)

Table 6.9: 2 × 2 table for ith age group of cases and controls.

to more succinctly express the several assumptions which we may be
making it offers, more readily, well established ways of investigating
the validity of any such assumptions. In addition the framework for
studying questions such as explained variation, explained randomness
and partial measures of these is clear and requires no new work.

The “rare disease” assumption, allowing the odds ratio and relative
risk to approximate one another, is not necessary in general. However,
the assumption can be made to hold quite easily and is therefore not
restrictive. To do this we construct fine strata, within which the prob-
abilities P (Y = 0|Z = 0) and P (Y = 0|Z = 1) can be taken to be
close to 1. For each stratum, or table, we have a 2 × 2 table as in
Table 6.9, indexed by i. Each table provides an estimate of relative
risk at that stratum level and, assuming that the relative risk itself
does not depend upon this stratum, although the actual probabilities
themselves composing the relative risk definition may themselves de-
pend upon strata, then the problem is putting all these estimates of the
same thing into a single expression. The most common such expression
for this purpose is the Mantel-Haenszel estimate of relative risk.

Mantel-Haenszel estimate of relative risk

The, now famous, Mantel-Haenszel estimate of relative risk was de-
scribed by Mantel and Haenszel (1959) and is particularly simple to
calculate. Referring to the entries of observed counts in Table 6.10,
if we first define for the i th subtable Ri = a11(i)a22(i)/a∗∗(i) and
Si = a12(i)a21(i)/a∗∗(i), then the Mantel-Haenszel summary relative
risk estimate across the tables is given by ψ̂MH =

∑
i Ri/

∑
i Si.

Breslow (1996) makes the following useful observations concerning
ψ̂MH and β̂MH = ψ̂MH . First, E(Ri) = ψiE(Si) where the true odds
ratio in the ith table is given by ψi. When all of these odds ratios co-
incide then ψ̂MH is the solution to the unbiased estimating equation;
R−ψS = 0, where R =

∑
i Ri and S =

∑
i Si. Under an assumption of
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Table i Z = 1 Z = 0 Totals
Y = 1 a11(i) a12(i) a1∗(i)
Y = 0 a21(i) a22(i) a2∗(i)
Totals a∗1(i) a∗2(i) a∗∗(i)

Table i Z = 1 Z = 0 Totals
Y = 1 e11(i) e12(i) e1∗(i)
Y = 0 e21(i) e22(i) e2∗(i)
Totals e∗1(i) e∗2(i) e∗∗(i)

Table 6.10: 2×2 table for ith age group of cases and controls. Left-hand
table: observed counts. Right hand table: expected counts.

binomial sampling, Breslow shows that the variances of the individual
contributions to the estimating equation are such that the quantity
2a2

∗∗(i)Var (Ri − ψSi) can be equated to;

E {[a11(i)a22(i)+ψa12(i)a21(i)] [a11(i) + a22(i) + ψ (a12(i) + a21(i))]} ,

from which, by a simple application of the delta method we can obtain
estimates of the variance of ψ̂MH .

Logistic regression

Without any loss in generality we can express the two probabilities
of interest, P (Y = 1|Z = 1) and P (Y = 1|Z = 0) as simple power
transforms of one another. This follows, since, whatever the true values
of these probabilities, there exists some positive number α such that
P (Y = 1|Z = 1) = P (Y = 1|Z = 0)α. The parameter α is constrained
to be positive in order that the probabilities themselves remain be-
tween 0 and 1. To eliminate any potential dangers that may arise,
particularly in the estimation context where, even though the true
value of α is positive, the estimate itself may not be, a good strategy
is to re-express this parameter as α = exp(β). We then have

log log P (Y = 1|Z = 1) = log log P (Y = 1|Z = 0) + β. (6.31)

The parameter β can then be interpreted as a linear shift in the log-
log transformation of the probabilities, and can take any value between
−∞ and ∞, the inverse transformations being one-to-one and guaran-
teed to lie in the interval (0,1). An alternative model to the above is

logitP (Y = 1|Z = 1) = logitP (Y = 1|Z = 0) + β. (6.32)

where the logit transformation, again one-to-one, is defined by logit θ =
log{θ/(1− θ)}. Although a natural model, the model of Equation 6.31
is not usually preferred to that of Equation 6.32, motivated in an
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analogous way (i.e., avoiding constraints) but having a slight advantage
from the viewpoint of interpretation. This is because the parameter β
is the logarithm of the odds ratio, i.e., β = log ψ.

In the light of the equivalence of the the odds for disease given
the risk factor and the odds for the risk factor given the disease, as
expressed in Equation 6.30, we conclude immediately that, equivalent
to the above model involving β, expressed in Equation 6.32, we have
a model expressing the conditional probability of Z given Y and us-
ing the same β. This highlights an important feature of proportional
hazards modeling whereby we focus attention on the conditional dis-
tribution of the covariates given an event yet, when thinking of the
applied physical problem behind the analysis, we would think more
naturally in terms of the conditional distribution of the event given
the covariates. The essential point is that the unknown regression pa-
rameter, β, of interest to us is the same for either situation so that in
place of Equation (6.32), we can write

logitP (Z = 1|Y = 1) = logitP (Z = 1|Y = 0) + β. (6.33)

Since the groups are indicated by a binary Z, we can exploit this
in order to obtain the more concise notation, now common for such
models, whereby

logitP (Y = 1|Z) = logitP (Y = 1|Z = 0) + βZ. (6.34)

As we have tried, in as much as is possible throughout this text, to
restrict attention to a single explanatory variable, this is once more the
case here. Extension to multiple explanatory variables, or risk factors,
is immediate and, apart from the notation becoming more cumber-
some, there are no other concepts to which to give thought. We write
the model down, as above in Equation (6.34), and use several binary
factors Z (Z now a vector) to describe the different group levels. The
coefficients β (β now a vector) then allow the overall odds ratio to be
modeled or, allows the modeling of partial odds ratios whereby certain
risk factors are included in the model, and our interest focuses on those
remaining after having taken account of those already included. The
above model can also be written in the form

P (Y = 1|Z)
1 − P (Y = 1|Z)

= exp(β0 + βZ) , (6.35)

where β0 = logit P (Y = 1|Z = 0). Maintaining an analogy with the
usual linear model we can interpret β0 as an intercept, simply a func-
tion of the risk for a “baseline” group defined by Z = 0.
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Assigning the value Z = 0 to some group and thereby giving that
group baseline status is, naturally, quite arbitrary and there is nothing
special about the baseline group apart from the fact that we define it
as such. We are at liberty to make other choices and, in all events,
the only quantities of real interest to us are relative ones. In giving
thought to the different modeling possibilities that arise when dealing
with a multivariate Z, the exact same kind of considerations, already
described via several tables in the section on modeling multivariate
problems will guide us (see Section 6.6 and those immediately fol-
lowing it). Rather than repeat or reformulate those ideas again here,
the reader, interested in these aspects of epidemiological modeling, is
advised to go over those earlier sections. Indeed, without a solid under-
standing as to why we choose to work with a particular model rather
than another, and as to what the different models imply concerning the
complex inter-relationships between the underlying probabilities, it is
not really possible to carry out successful modeling in epidemiology.

Stratified and conditional logistic regression

In the above model, and Z being multivariate, we may wish to include
alongside the main factors under study, known risk factors, and par-
ticularly risk factors such as age, or period effects, for which we would
like to control. Often age alone is the strongest factor and its effect
can be such that the associated errors of estimation in quantifying its
impact can drown the effect of weaker risk factors. One possibility in
controlling for such factors, S, it to appeal to the idea of stratification.
This means that analysis is carried out at each level of S and, within
a level, we make the same set of assumptions concerning the principle
factors under study. We write

P (Y = 1|Z, S)
1 − P (Y = 1|Z, S)

= exp(β0 + βZ) , (6.36)

where, in the same way as before, β0 = logit P (Y = 1|Z = 0, S).
The important aspect of a stratified model is that the levels of S only
appear in the left-hand side of the equation.

We might conclude that this is the same model as the previous one
but it is not quite and, in later discussions on inference, we see that it
does impact the way the likelihood is written. In the simpler cases, in
as far as β is concerned, the stratified model is exactly equivalent to a
regular logistic model if we include in the regression function indicator
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variables, of dimension one less than the number of strata. However,
when the number of strata is large, use of the stratified model enables
us to bypass estimation of the stratum-level effects. If these are not
of real interest then this may be useful in that it can result in gains
in estimating efficiency even though the underlying models may be
equivalent. In a rough intuitive sense we are spending the available
estimating power on the estimation of many less parameters, thereby
increasing the precision of each one. This underlines an important
point in that the question of stratification is more to do with inference
than the setting up of the model itself.

This last remark is even more true when we speak of conditional
logistic regression. The model will look almost the same as the un-
conditional one but the process of inference will be quite different.
Suppose we have a large number of strata, very often in this context
defined by age. A full model would be as in Equation (6.35), including
in addition to the risk factor vector Z, a vector parameter of indicator
variables of dimension one less than the number of strata. Within each
age group, for the sake of argument let’s say age group i, we have the
simple logistic model. However, rather than write down the likelihood
in terms of the products P (Y = 1|Z) and P (Y = 0|Z) we consider a
different probability upon which to construct the likelihood, namely
the probability that the event of interest, the outcome or case in other
words, occurred on an individual (in particular the very individual for
whom the event did occur, given that one event occurred among the set
S{i} of the a∗∗(i) cases and controls. Denoting Zi to be the risk factor
for the case, corresponding to the age group i, then this probability is
simply; exp(βZi)/

∑
I[j ∈ S{i}] exp(βZj). The likelihood is then the

product of such terms across the number of different age groups for
which a case was selected. If we carefully define the “at-risk” indi-
cator Y (t) where t now represents age, we can write the conditional
likelihood as

L(β) =
n∏

i=1

{
exp(βZi)∑n

j=1 Yj(Xi) exp(βZj)

}δi

. (6.37)

Here we take the at-risk indicator function to be zero unless, for
the subject j, Xj has the same age, or is among the same age group
as that given by Xi. In this case the at-risk indicator Yj(Xi) takes the
value one. To begin with, we assume that there is only a single case
per age group, that the ages are distinct between age groups, and that,
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for individual i, the indicator δi takes the value one if this individual
is a case. Use of the δi would enable us to include in an analysis sets
of controls for which there was no case. This would be of no value in
the simplest case but, generalizing the ideas along exactly the same
lines as for standard proportional hazards models, we could easily work
with indicators Y (t) taking the value one for all values less than t and
becoming zero if the subject becomes incident or is removed from the
study. A subject is then able to make contributions to the likelihood
at different values of t, i.e., at different ages, and appears therefore in
different sets of controls. Indeed, the use of the risk indicator Y (t) can
be generalized readily to other complex situations.

One example is to allow it to depend on two time variables, for
example, an age and a cohort effect, denoting this as Y (t, u). Com-
parisons are then made between individuals having the same age and
cohort status. Another useful generalization of Y (t) is where individ-
uals go on and off risk, either because they leave the risk set for a
given period or, possibly, because their status cannot be ascertained.
Judicious use of the at-risk indicator Y makes it possible then to
analyze many types of data that, at first glance, would seem quite
intractable. This can be of particular value in longitudinal studies in-
volving time-dependent measurements where, in order to carry out
unmodified analysis we would need, at each observed failure time, the
time dependent covariate values for all subjects at risk. These would
not typically all be available. A solution based on interpolation, assum-
ing that measurements do not behave too erratically, is often employed.
Alternatively we can allow for subjects for whom, at an event time, no
reliable measurement is available, to simply temporarily leave the risk
set, returning later when measurements have been made.

The striking thing to note about the above conditional likelihood
is that it coincides with the expression for the partial likelihood given
earlier in the chapter. This is no real coincidence of course and the main
theorem of proportional hazards regression (Section 7.4), described in
the following chapter, applies equally well here. For this we need one
more concept, described later, and that is the idea of sampling from the
risk set. The difference between the Y (t) in a classical survival study,
where it is equal to one as long as the subject is under study and then
drops to zero, as opposed to the Y (t) in the simple epidemiological
application in which it is zero most of time, taking the value one when
indicating the appropriate age group, is a small one. It can be equated
with having taken a small random sample from a conceptually much
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larger group followed since time (age) is zero. On the basis of the above
conditional likelihood we obtain the estimating equation

U(β) =
n∑

i=1

δi

{

Zi −
∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}

, (6.38)

which we equate to zero in order to estimate β. The equation contrasts
the same quantities written down in Table 6.10 in which the expecta-
tions are taken with respect to the model. The estimating equations are
then essentially the same as those given in Table 6.10 for the Mantel-
Haenszel estimator. Furthermore, taking the second derivative of the
expression for the log-likelihood, we have that I(β) =

∑n
i=1 δiIi(β)

where

Ii(β)=

∑n
j=1Yj(Xi)Z2

j exp(βZj)
∑n

j=1Yj(Xi) exp(βZj)
−
{∑n

j=1Yj(Xi)Zj exp(βZj)
∑n

j=1Yj(Xi) exp(βZj)

}2

, (6.39)

then I(β) =
∑n

i=1 δiIi(β). Inferences can then be carried out on the
basis of these expressions. In fact, once we have established the link
between the applied problem in epidemiology and its description via
a proportional hazards model, we can then appeal to those model-
building techniques (explained variation, explained randomness, good-
ness of fit, conditional survivorship function etc.) which we use for
applications in time to event analysis. In this context the building of
models in epidemiology is no less important, and no less delicate, than
the building of models in clinical research.

6.12 Exercises and class projects

1. One of the early points of discussion on Cox’s 1972 paper was how
to deal with tied data. Look up the Cox paper and write down the
various different ways that Cox and the contributors to the discus-
sion suggested that tied data be handled. Explain the advantages and
disadvantages to each approach.

2. One suggestion for dealing with tied data, not in that discussion, is
to simply break the ties via some random split mechanism. What are
the advantages and drawbacks to such an approach?

3. As an alternative to the proportional hazards model consider the two
models (i) S(t|Z) = S0(t)+βZ, and (ii) logitS(t|Z) = logitS0(t)+βZ.
Discuss the relative advantages and drawbacks of all three models.
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4. Show that the relation; S(t|Z) = {S0(t)}exp(βZ) implies the Cox
model and vice versa.

5. Suppose that we have two groups and that a proportional hazards
model is believed to apply. Suppose also that we know for one of the
groups that the hazard rate is a linear function of time, and equal to
zero at the origin. Given data from such a situation, suggest different
ways in which it can be analyzed and the possible advantages and
disadvantages of the various approaches.

6. Explain in what sense the components of Equation 6.7 and equation
(6.8) can be viewed as an equation for the mean and an equation for
the variance.

7. Using equations (6.7) and (6.8) work out the calculations explicitly
for the two-group case, i.e., the case in which there are n1(t) subjects
at risk from group 1 at time t and n2(t) from group 2.

8. Suppose that we have available software able to analyze a propor-
tional hazards model with a time-dependent covariate Z(t). Suppose
that, for the problem in hand the covariate, Z, does not depend on
time. However, the regression effect β(t) is known to decline as an
exponential function of time. How would you proceed?

9. Suppose we fit a proportional hazards model, using some standard
software, to a continuous covariate Z defined on the interval (1,4). Un-
known to us our model assumption is incorrect and the model applies
exactly to log Z instead. What effect does this have on our parameter
estimate?

10. Consider an experiment in which there are eight levels of treatment.
The levels are ordered. The null hypothesis is that there is no treatment
effect. The alternative is that there exists a non-null effect increasing
with level until it reaches one of the levels, say level j, after which the
remaining levels all have the same effect as level j. How would you test
for this?

11. Write down the joint likelihood for the underlying hazard rate
and the regression parameter β for the two-group case in which we
assume the saturated piecewise exponential model. Use this likelihood
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to recover the partial likelihood estimate for β. Obtain an estimate of
the survivorship function for both groups.

12. For the previous question derive an approximate large sample con-
fidence interval for the estimate of the survivorship function for both
groups in cases: (i) where the parameter β is exactly known, (ii) where
the parameter is replaced by an estimate with approximate large sam-
ple variance σ2.

13. Carry out a large sample simulation for a model with two binary
variables. Each study is balanced with a total of 100 subjects. Choose
β1 = β2 = 1.5 and simulate binary Z1 and Z2 to be uncorrelated.
Show the distribution of β̂1 in two cases: (i) where the model used
includes Z2, (ii) where the model used includes only Z1. Comment on
the distributions, in particular the mean value of β̂1 in either case.
14. In the previous exercise, rather than include in the model Z2, use
Z2 as a variable of stratification. Repeat the simulation in this case for
the stratified model. Comment on your findings.

15. Consider the following regression situation. We have one-dimen-
sional covariates Z, sampled from a density g(z). Given z we have a
proportional hazards model for the hazard rates. Suppose that, in ad-
dition, we are in a position to know exactly the marginal survivorship
function S(t) =

∫
S(t|z)g(z)dz. How can we use this information to

obtain a more precise analysis of data generated under the PH model
with Z randomly sampled from g(z)?

16. Suppose we have two groups defined by the indicator variable Z =
{0, 1}. In this example, unlike the previous in which we know the
marginal survival, we know the survivorship function S0(t) for one
of the groups. How can this information be incorporated into a two-
group comparison in which survival for both groups is described by a
proportional hazards model? Use a likelihood approach.

17. Use known results for the exponential regression model in order
to construct an alternative analysis to that of the previous question
based upon likelihood.

18. A simple test in the two-group case for absence of effects is to
calculate the area between the two empirical survival curves. We can
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evaluate the null distribution by permuting the labels corresponding
to the group assignment indicator Z. Carry out this analysis for the
Freireich data and obtain a p-value. How does this compare with that
obtained from an analysis based on the assumption of an exponential
model and that based on partial likelihood?

19. Carry out a study, i.e., the advantages, drawbacks and potentially
restrictive assumptions, of the test of the previous example. How does
this test compare with the score test based on the proportional hazards
model?

20. Obtain a plot of the likelihood function for the Freireich data. Using
simple numerical integration routines, standardize the area under the
curve to be equal to one.

21. For the previous question, treat the curve as a density. Use the
mean as an estimate of the unknown β. Use the upper and lower 2.5%
percentiles as limits to a 95% confidence interval. Compare these re-
sults with those obtained using large sample theory.

22. Suppose we have six ordered treatment groups indicated by Z =
1, . . . , 6. For all values of Z ≤ � the hazards are the same. For Z > �
the hazards are again the same and either the same as those for Z ≤ �
or all strictly greater than for Z ≤ �. The value of � is not known. How
would you model and set up tests in this situation?

23. Consider an epidemiological application in which workers may be
exposed to some carcinogen during periods in which they work in some
particular environment. When not working in that particular environ-
ment their risk falls back to the same as that for the reference popu-
lation. Describe this situation via a proportional hazards model with
time-dependent effects. How do you suggest modifying such a model if
the risk from exposure rather than falling back to the reference group
once exposure is removed is believed to be cumulative?

24. Write down a conditional logistic model in which we adjust for both
age and cohort effects where cohorts are grouped by intervals of births
from 1930-35, 1936-40, 1940-45, etc. For such a model is it possible
to answer the question: was there a peak in relative risk during the
nineteen sixties?



Chapter 7

Inference: Estimating
equations

7.1 Summary

The results of this chapter and, for the most, all of the succeeding
chapters, are based on an elementary and central theorem. We call
this theorem the main theorem of proportional hazards regression. Its
development is essentially that of O’Quigley (2003) which generalizes
earlier results of Schoenfeld (1980), O’Quigley and Flandre (1994) and
Xu and O’Quigley (2000). The theorem has several immediate corol-
laries and we can use these to write down estimating equations upon
which we can then construct suitable inferential procedures for our
models. While a particular choice of estimating equation can result in
high efficiency when model assumptions are correct or close to being
correct, other equations may be less efficient but still provide estimates
which can be interpreted when model assumptions are incorrect. For
example, when the regression function β(t) might vary with time we
are able to construct an estimating equation, the solution of which
provides an estimate of β, in the case where β(t) is a constant β, and
E{β(T )}, the average effect, in the case where β(t) changes through
time. It is worth underlining that the usual partial likelihood estimate
fails to achieve this.

203
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7.2 Motivation

The earlier chapter on marginal survival is important in its own right
and we lean on the results of that chapter throughout this work. We
need keep in mind the idea of marginal survival for two reasons: (1)
it provides a natural backdrop to the ideas of conditional survival and
(2), together with the conditional distribution of the covariate given
T = t, we are able to consider the joint distribution of covariate and
survival time T. Conditional survival, where we investigate the condi-
tional distribution of survival given different potential covariate con-
figurations, as well as possibly time elapsed, is a central concern. More
generally we are interested in survival distributions corresponding to
transitions from one state to another, conditional on being in some
particular state or of having mapped out some particular covariate
path. The machinery that will enable us to obtain insight into these
conditional distributions is that of proportional hazards regression.

When we consider any data at hand as having arisen from some
experiment the most common framework for characterizing the joint
distribution of the covariate Z and survival T is one where the dis-
tribution of Z is fixed and known, and the conditional survivorship
distribution the subject of our inferential endeavors. In fact, as un-
derlined in the main theorem of proportional hazards regression, just
below, it is more useful to characterize the joint distribution of Z and
T via the conditional distribution of Z given T = t and the marginal
distribution of T . This is one of the reasons why, in the previous chap-
ter, we dealt with the marginal distribution of T. We can construct
estimating equations based on these ideas and from these build simple
tests or make more general inferences.

One of the most intriguing aspects of the Cox model concerns esti-
mation of the regression parameter β while ignoring any precise speci-
fication of λ0(t). Otherwise, under a conditional independent censoring
mechanism and a specified functional form for the underlying hazard
λ0(t), likelihood methods, at least in principle, are straightforward.
But mostly we prefer to relax assumptions concerning λ0(t), possibly
considering it to be entirely unknown, and construct inference for β
that remains invariant to any change in λ0(t). Any such changes can
be made to correspond to monotonic increasing transformations on
T , in which case we can take inference procedures to be rank invari-
ant. This follows since monotonic increasing transformations on the
observed times Xi will not affect the rank ordering.
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7.3 The observations

Our data will consist of the observations (Zi(t), Yi(t), (t ≤ Xi), Xi ; i =
1 . . . n). The Zi are the covariates (possibly time dependent), the Xi =
min(Ti, Ci), the observed survival which is the smallest of the censor-
ing time and the actual survival time and the Yi(t) are time-dependent
indicators taking the value one as long as the ith subject is at risk at
time t and zero otherwise. For the sake of large sample constructions
we make Yi(t) to be left continuous. At some level we will be mak-
ing an assumption of independence, an assumption that can be chal-
lenged via the data themselves, but that is often left unchallenged,
the physical context providing the main guide. Mostly, we think of
independence as existing across the indices i (i = 1, . . . , n), i.e., the
triplets {Zi(t), Yi(t), Xi ; i = 1, . . . , n}. It is helpful to our notational
construction to have:

Definition 7.1 Let Z(t) be a data-based step function of t, everywhere
equal to zero except at the points Xi, i = 1, ..., n, at which the function
takes the value Zi(Xi). We assume that |Zi| is bounded, if not the
definition is readily broadened.

The reason for this definition is to unify notation. Our practical interest
will be on sums of quantities such as Zi(Xi) with i ranging from 1 to
n. Using the Stieltjes integral, we will be able to write such sums as
integrals with respect to an empirical process. In view of the Helly-Bray
theorem (Section 2.3) this makes it easier to gain an intuitive grasp on
the population structure behind the various statistics of interest. Both
T and C are assumed to have supports on some finite interval, the first
of which is denoted T . The time-dependent covariate Z(·) is assumed
to be a left continuous stochastic process and, for notational simplicity,
is taken to be of dimension one whenever possible. Let F (t) = Pr(T <
t), D(t) = Pr (C < t) and H(t) = F (t){1 − D(t)} −

∫ t
0 F (u)dD(u).

For each subject i we observe Xi = min(Ti, Ci), and δi = I(Ti ≤
Ci) so that δi takes the value one if the ith subject corresponds to a
failure and is zero if the subject corresponds to a censored observation.
A more general situation allows a subject to be dynamically censored
in that he or she can move in and out of the risk set. To do this
we define the “at-risk” indicator Yi(t) where Yi(t) = I(Xi ≥ t). The
events on the i th individual are counted by Ni(t) = I{Ti ≤ t, Ti ≤
Ci} and N̄(t) =

∑n
1 Ni(t) counts the number of events before t. It

is also helpful to be able to refer to the total number of observed
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failures k = N̄{sup t : t ∈ T }, and the inverse function N̄−1(·), where
N̄−1(�) = {inf t : t ∈ T , N̄(t) = �}, the smallest time by which a given
number of events � have occurred. Consistent estimators of F (t) and
H(t) are indicated by hats, the examples here being the Kaplan-Meier
estimator for 1 − F (t) and Ĥ(t) = n−1N̄(t).

Some other sums of observations will frequently occur. In order to
obtain an angle on empirical moments under the model, Andersen and
Gill (1982) define

S(r)(β, t) = n−1
n∑

i=1

Yi(t)eβZi(t)Zi(t)r, s(r)(β, t) = ES(r)(β, t),

for r = 0, 1, 2, where the expectations are taken with respect to the
true distribution of (T, C, Z(·)). Define also

V (β, t)=
S(2)(β, t)
S(0)(β, t)

− S(1)(β, t)2

S(0)(β, t)2
, v(β, t)=

s(2)(β, t)
s(0)(β, t)

− s(1)(β, t)2

s(0)(β, t)2
. (7.1)

The Andersen and Gill notation is now classic in this context. Their
notation lends itself more readily to large sample theory based upon
martingales and stochastic integrals. We will frequently keep this no-
tation in mind although our approaches to inference do not appeal to
special central limit theorems (the martingale central limit theorem in
particular) and, as a result, our notation is typically lighter. The re-
quired conditions for the Andersen and Gill theory to apply are sightly
broader although this advantage is more of a theoretical than a prac-
tical one. For their results, as well as ours, the censorship is restricted
in such a way that, for large samples, there remains information on
F in the tails. The conditional means and the conditional variances,
Eβ(t)(Z|t) Vβ(t)(Z|t), introduced immediately below, are related to the
above via V (β, t) ≡ Vβ(Z|t) and S(1)(β, t)/S(0)(β, t) ≡ Eβ(Z|t). In the
counting process framework of Andersen and Gill (1982), we imagine n
as remaining fixed and the asymptotic results obtaining as a result of
asymptotic theory for n-dimensional counting processes, in which we
understand the expectation operator E to be with respect to infinitely
many repetitions of the process. Subsequently we allow n to increase
without bound. For the quantities Eβ(t)(Zk|t) we take the E operator
to be these same quantities when n becomes infinitely large.
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7.4 Main theorem

A simple theorem underpins all of the key results discussed in this book
(testing the presence of regression effect, estimating average regression
effect under non-proportional hazards, quantifying predictability via
the conditional survivorship function as well as via summary indices
such as explained randomness and explained variation, assessing fit,
contrasting competing models etc). In view of all these several appli-
cations the theorem then appears to be quite fundamental and, as such,
it seems appropriate to refer to it as the main theorem of proportional
hazards regression.

We most often view time as providing the set of indices to certain
stochastic processes, so that, for example, we consider Z(t) to be a
random variable having different distributions for different t. Also,
the failure time variable T can be viewed as a non-negative random
variable with distribution F (t) and, whenever the set of indices t to
the stochastic process coincide with the support for T , then not only
can we talk about the random variables Z(t) for which the distribution
corresponds to P (Z ≤ z|T = t) but also marginal quantities such as
the random variable Z(T ) having distribution G(z) = P (Z ≤ z). An
important result concerning the conditional distribution of Z(t) given
T = t follows. First we need the following definitions:

Definition 7.2 The discrete probabilities πi(β(t), t) are given by

πi(β(t), t) =
Yi(t) exp{β(t)Zi(t)}∑n

j=1 Yj(t) exp{β(t)Zj(t)}
. (7.2)

The πi(β(t), t) are easily seen to be bona fide probabilities (for all real
values of β(t)) since πi ≥ 0 and

∑
i πi = 1. Note that this continues to

hold for values of β(t) different to those generating the data, and even
when the model is incorrectly specified. As a consequence, replacing β
by β̂ results in a probability distribution that is still valid but different
to the true one. Means and variances with respect to this distribution
maintain their interpretation as means and variances.

Under the proportional hazards assumption, i.e., the constraint
β(t) = β, the product of the π’s over the observed failure times gives
the partial likelihood (Cox 1972, 1975). When β = 0, πi(0, t) is the
empirical distribution that assigns equal weight to each sample subject
in the risk set. Based on the πi(β(t), t) we have:
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Definition 7.3 Conditional moments of Z with respect to πi(β(t), t)
are given by

Eβ(t)(Z
k|t) =

n∑

i=1

Zk
i (t)πi(β(t), t) , k = 1, 2, . . . , . (7.3)

These two definitions are all that we need in order to set about build-
ing the structures upon which inference is based. This is particularly
so when we are able to assume an independent censoring mechanism,
although the weaker assumption of a conditionally independent cen-
soring mechanism (see Chapter 4) will mostly cause no conceptual dif-
ficulties; simply a slightly more burdensome notation. Another, some-
what natural, definition will also be appealed to on occasion and this
concerns unconditional expectations.

Definition 7.4 Marginal moments of Z with respect to the bivariate
distribution characterized by πi(β(t), t) and F (t) are given by

Eβ(t)(Z
k) =

∫

Eβ(t)(Z
k|t)dF (t) , k = 1, 2, . . . , . (7.4)

Recall that for arbitrary random variables A and B, assuming expec-
tation to be defined, we have the result of double expectation whereby
E(A) = EE(A|B). This is the motivation behind the above definition.
Once again, these expectations are to be interpreted as population
quantities in as much as β(t) and F (t) are taken to be known. They
can also, of course, be viewed as sample-based quantities since n is
finite and the Yi(t) are random until time point t. At the end of the
study the paths of all the Yi(t) are known and we are, to use a common
expression, “conditioning on the data.” The art of inference, and its
understanding, stem, to a great extent, from knowing which aspects
of an experiment to view as random (given that once the experiment
is over there is not really anything truly random). Also which distrib-
utions are relevant and these can change so that, here for example, we
should think carefully about the meaning of the expectation operators
E and E in its particular context. These expectations are still well de-
fined, but with respect to different distributions; when replacing β by
β̂, when replacing F by Fn and F̂ , and when allowing n to go to in-
finity. The quantity φ of the following definition is not of any essential
interest, featuring in the main theorem but disappearing afterwards.
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Definition 7.5 In order to distinguish conditionally independent cen-
soring from independent censoring we define φ(z, t) where

φ(z∗, t) =
∫

P (C ≥ t|z)g(z)dz

P (C ≥ t|z∗) .

Note that when censoring does not depend upon z then φ(z, t) will
depend upon neither z nor t and is, in fact, equal to one. Otherwise,
under a conditionally independent censoring assumption, we can con-
sistently estimate φ(z, t) and we call this φ̂(z, t). The following theorem
is presented in O’Quigley (2003).

Theorem 7.1 Under model (6.2) and assuming β(t) known, the con-
ditional distribution function of Z(t) given T = t is consistently esti-
mated by

P̂{Z(t) ≤ z|T = t} =

∑
zi≤z Yi(t) exp{β(t)zi(t)}φ̂(zi, t)

∑n
j=1 Yj(t) exp{β(t)zj(t)}φ̂(zj , t)

. (7.5)

The theorem, which we refer to as the main theorem of proportional
hazards regression, has many important consequences including:

Corollary 7.1 Under model (6.2) and an independent censorship, as-
suming β(t) known, the conditional distribution function of Z(t) given
T = t is consistently estimated by

P̂ (Z(t) ≤ z|T = t) =
n∑

j=1

πj(β(t), t)I(Zj(t) ≤ z). (7.6)

The observation we would like to make here is that we can fully de-
scribe a random variable indexed by t, i.e., a stochastic process. All of
our inference will follow from this. In essence, we first fix t and then we
fix our attention on the conditional distribution of Z given that T = t
and models which enable us to characterize this distribution. Indeed,
under the broader censoring definition of conditional independence,
common in the survival context, we can still make the same basic ob-
servation. In this case we condition upon something more complex that
just T = t but the actual random outcome that we condition upon is of
less importance than the simple fact that we are able to described sets
of conditional distributions all indexed by t, i.e., a stochastic process
indexed by t. Specifically:
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Corollary 7.2 For a conditionally independent censoring mechanism
we have

P̂ (Z(t) ≤ z|T = t, C > t) =
n∑

j=1

πj(β(t), t)I(Zj(t) ≤ z). (7.7)

Whether we condition on the event T = t or the event (T = t, C > t),
we identify a random variable indexed by t. This is all we need to
construct appropriate stochastic processes (functions of Z(t)) enabling
inference. Again simple applications of Slutsky’s theorem shows that
the result still holds for β(t) replaced by any consistent estimate. In
particular, when the hypothesis of proportionality of risks is correct,
the result holds for the estimate β̂. The following two corollaries follow
immediately from those just above and form the basis to the main tests
we construct. For integer k we have:

Corollary 7.3 Eβ̂(t)(Z
k|t) provides a consistent estimate of Eβ(t)(Zk

(t)|t), under model (6.2). In particular Eβ̂(Zk|t) provides a consistent
estimate of Eβ(Zk(t)|t), under the model expressed by Equation 6.3.

Furthermore, once again working under the model, we consider:

Definition 7.6 Vβ(t)(Z|t) = Eβ(t)(Z2|t) − E2
β(t)(Z|t) .

In practical data analysis the quantity β(t) may be replaced by a value
constrained by some hypothesis or an estimate. The quantity Vβ(t)(Z|t)
can be viewed as a conditional variance which may vary little with t, in
a way analogously to the residual variance in linear regression which,
under classic assumptions, remains constant with different levels of the
independent variable. Since Vβ(t)(Z|t) may change with t, even if not
a lot, it is of interest to consider some average quantity and so we also
introduce:

Definition 7.7 E Vβ(t)(Z) =
∫
Vβ(t)(Z|t)dF (t) .

These sample-based variances relate to population variances via the
following corollary;

Corollary 7.4 Under model (6.3), Var(Z|t) is consistently estimated
by Vβ̂(Z|t). E Var(Z|t) is consistently estimated by E Vβ̂(Z|t). In ad-

dition,
∫
Vβ̂(Z|t)dF̂ (t) is consistent for E Var(Z|t).
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These quantities are all useful in our construction. Interpretation
requires some care. For example, although E Vβ̂(Z|t) is, in some sense,
a marginal quantity, it is not the marginal variance of Z since we have
neglected the variance of Eβ(t)(Z(t)|t) with respect to the distribution
of T. The easiest case to interpret is the one where we have an in-
dependent censoring mechanism (Equation 7.6). However, we do not
need to be very concerned about any interpretation difficulty, arising
for instance in Equation 7.7 where the censoring time appears in the
expression, since, in this or the simpler case, all that matters to us is
that our observations can be considered as arising from some process,
indexed by t and, for this process, we are able, under, as usual, some
model assumptions, to consistently estimate the mean and the vari-
ance of the quantities that we observe. It is also useful to note another
natural relation between Vβ(Z|t) and Eβ(Z|t) since

Vβ(Z|t) = ∂ Eβ(Z|t)/∂β.

This relation is readily verified for fixed β. In the case of time-
dependent β(t) then, at each given value of t, it is again clear that the
same relation holds. The result constitutes one of the building blocks
in the overall inferential construction and, under weak conditions, for
example Z being bounded, then it also follows that

∫

Vβ(Z|t) =
∫

∂ Eβ(Z|t)/∂β = ∂

{∫

Eβ(Z|t)
}

/∂β.

Throughout the rest of this book we will see just why the main theorem
is so fundamental. Essentially all the information we need, for almost
any conceivable statistical goal, arising from considerations of any of
the models considered, is contained in the joint probabilities πi(β(t), t)
of the fundamental definition 7.2. We are often interested, in the mul-
tivariate setting for example, in the evaluation of the effects of some
factor while having controlled for others. This can be immediately ac-
commodated. Specifically, taking Z to be of some dimension greater
than one (β being of the same dimension) and writing ZT = (ZT

1 , ZT
2 )

and ZT
i = (ZT

1i, Z
T
2i) then, summing over the multivariate probabilities,

we have two obvious extensions to Corollaries 7.1 and 7.2.

Corollary 7.5 Under model (6.2) and an independent censorship, as-
suming β(t) known, the conditional distribution function of Z2(t) given
T = t is consistently estimated by
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P̂ (Z2(t) ≤ z|T = t) =
n∑

j=1

πj(β(t), t)I(Z2j(t) ≤ z). (7.8)

The corollary enables component wise inference. We can consider the
components of the vector Zi individually. Also we could study some
functions of the components, usually say a simple linear combination
of the components such as the prognostic index. Note also that:

Corollary 7.6 For a conditionally independent censoring mechanism
we have

P̂ (Z2(t) ≤ z|T = t, C > t) =
n∑

j=1

πj(β(t), t)I(Z2j(t) ≤ z), (7.9)

where in Definition 7.2 for πj(β(t), t) we take β(t)Zj(t) to be an inner
product, which we may prefer to write as β(t)T Zj(t) and where Zj(t)
are the observed values of the vector Z(t) for the jth subject. Also, by
Z2(t) ≤ z we mean that all of the scalar components of Z2(t) are less
than or equal to the corresponding scalar components of z. As for the
corollaries and definitions following Corollaries 7.1 and 7.2 they have
obvious equivalents in the multivariate setting and so we can readily
write down expressions for expectations, variances and covariances as
well as their corresponding estimates.

Moments for stratified models

Firstly we recall from the previous chapter that the stratified model
is simply a partially proportional hazards model in which some of the
components of β(t) remain unspecified while the other components are
constant terms. The definition for the stratified model was

λ(t|Z(t), s) = λ0s(t) exp{β(t)Z(t)},

where s takes integer values 1,. . ., m. In view of the equivalence be-
tween stratified models and partially proportional hazards models de-
scribed in the previous chapter, the main theorem and its corollaries
apply immediately. However, in light of the special importance of strat-
ified models, as proportional hazards models with relaxed assumptions,
it will be helpful to our development to devote a few words to this
case. Analogous to the above definition for πi(β(t), t), and using the,
possibly time-dependent, stratum indicator s(t) we now define these
probabilities via:
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Definition 7.8 For the stratified model, having strata s = 1, . . . , m
the discrete probabilities πi(β(t), t) are now given by

πi(β(t), t) =
Yi{s(t), t} exp{β(t)Zi(t)}∑n

j=1 Yj{s(t), t} exp{β(t)Zj(t)}
. (7.10)

When there is a single stratum then this definition coincides with the
earlier one and, indeed, we use the same πi(β(t), t) for both situations,
since it is only used indirectly and there is no risk of confusion. Under
equation (6.3), i.e. the constraint β(t) = β, the product of the π’s over
the observed failure times gives the so-called stratified partial likeli-
hood (Kalbfleisch and Prentice 1980). The series of above definitions
for the non-stratified model, in particular Definition 7.2, theorems,
corollaries, all carry over in an obvious way to the stratified model and
we do not propose any additional notation. It is usually clear from the
context although it is worth making some remarks. Firstly, we have
no direct interest in the distribution of Z given t (note that this dis-
tribution depends on the distribution of Z given T > 0, a distribution
which corresponds to our design and is quite arbitrary).

We will exploit the main theorem in order to make inferences on
β and, in the stratified case, we would also condition upon the strata
from which transitions can be made. In practice, we contrast the ob-
servations Zi(Xi), made at time point Xi at which an event occurs
(δi = 1) with those subjects at risk of the same event. The “at risk”
indicator, Y (s(t), t), makes this very simple to express. We can use
Y (s(t), t) to single out appropriate groups for comparison. This for-
malizes a standard technique in epidemiology whereby the groups for
comparison may be matched by not just age but by other variables.
Such variables have then been controlled for and eliminated from the
analysis. Their own specific effects can be quite general and we are not
in a position to estimate them. Apparently very complex situations,
such as subjects moving in and out of risk categories, can be easily
modeled by the use of these indicator variables.

Moments for other relative risk models

Instead of Equation 6.2 some authors have suggested a more general
form for the hazard function whereby

λ(t|Z) = λ0(t)R{β(t)Z}, (7.11)
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and where, mostly, β(t) is not time-varying, being equal to some un-
known constant. The most common choices for the function R(r) are
exp(r), in which case we recover the usual model, and 1+r which leads
to the so-called additive model. Since both λ(t|Z) and λ0 are necessar-
ily positive we would generally need constraints on the function R(r).
In practice this can be a little bothersome and is, among several other
good reasons, a cause for favoring the multiplicative risk model exp(r)
over the additive risk model 1 + r. If we replace our earlier definition
for πi(β(t), t) by:

Definition 7.9 The discrete probabilities πi(β(t), t) are given by;

πi(β(t), t) =
Yi(t)R{β(t)Zi(t)}∑n

j=1 Yj(t)R{β(t)Zj(t)}
, (7.12)

then all of the above definitions, theorems, and corollaries have im-
mediate analogues and we do not write them out explicitly. Apart
from one interesting exception, which we look at more closely in the
chapters dealing with inference, there are no particular considerations
we need concern ourselves over if we choose R(r) = 1 + r rather than
R(r) = exp(r). Note also that if we allow the regression functions, β(t),
to depend arbitrarily upon time then, given either model, the other
model exists with a different function of β(t). The only real reason
for preferring one model over another would be due to parsimony; for
example, we might find in some given situation that in the case of the
additive model the regression function β(t) is in fact constant unlike
the multiplicative model where it may depend on time. But other-
wise both functions may depend, at least to some extent, on time and
then the multiplicative model ought be preferred since it is the more
natural. We say the more natural because the positivity constraint is
automatically satisfied.

Transformed covariate models

For some transformation ψ of the covariate we can postulate a model
of the form;

λ(t|Z(t)) = λ0(t) exp{β(t)ψ[Z(t)]}. (7.13)

All of the calculations proceed as above and no real new concept is
involved. Such models can be considered in the case of continuous co-
variates, Z, which may be sufficiently asymmetric, implying very great
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changes of risk at the high or low values, to be unlikely to provide a
satisfactory fit. Taking logarithms, or curbing the more extreme values
via a defined plateau, or some other such transformation will produce
models of potentially wider applicability. Note that this is a different
approach to working with, say,

λ(t|Z(t)) = λ0(t) exp{β(t)Z(t)},

and using the main theorem, in conjunction with estimating equa-
tions described here below and basing inference upon the observations
ψZ(Xi) and their expectations under this model. In this latter case
we employ ψ in the estimating equation as a means to obtain greater
robustness or to reduce sensitivity to large observations. In the former
case the model itself is different and would lead to different estimates
of survival probabilities.

Our discussion so far has turned around the hazard function. How-
ever, it is equally straightforward to work with intensity functions and
these allow for increased generality, especially when tackling complex
time-dependent effects. O’Brien (1978) introduced the logit-rank test
for survival data when investigating the effect of a continuous covariate
on survival time. His purpose was to construct a test that was rank
invariant with respect to both time and the covariate itself. O’Quigley
and Prentice (1991) showed how a broad class of rank invariant proce-
dures can be developed within the framework of proportional hazards
models. The O’Brien logit-rank procedure was a special case of this
class. In these cases we work with intensity rather than hazard func-
tions. Suppose then that λi(t) indicates an intensity function for the
ith subject at time t. A proportional hazards model for this intensity
function can be written

λi(t) = Yi(t)λ0(t) exp{βZi(t)},

where Yi(t) indicates whether or not the ith subject is at risk at time t,
λ0(t) the usual “baseline” hazard function and Zi(t) is a constructed
covariate for the ith subject at time t. Typically, Zi(t) in the estimating
equation is defined as a function of measurements on the ith subject
alone, but it can be defined more generally as Zi(t) = ψi(t,Ft) for
ψ some function of Ft, the collective failure, censoring and covariate
information prior to time t on the entire study group. The examples in
O’Quigley and Prentice (1991) included the rank of the the subject’s
covariate at Xi and transformations on this such as the normal order
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statistics. This represents a departure from most regression situations
because the value used in the estimating equation depends not only
on what has been observed on the particular individual but also upon
what has been observed on other relevant subsets of individuals.

Misspecified models

For multinormal linear regression involving p regressors we can elimi-
nate from consideration some of these and focus our attention on mod-
els involving the remaining regressors strictly less than p. We could
eliminate these by simple integration, thereby obtaining marginal dis-
tributions. Under the usual assumptions of multiple linear regression
the resulting lower dimensional model remains a multinormal one. As
an example, in the simple case of a two dimensional covariate normal
model, both the marginal models involving only one of the two co-
variates are normal models. However, for non-linear models this result
would only be expected to hold under quite unusual circumstances.
Generally, for non-linear models, and specifically proportional hazards
models, the result will not hold so that if the model is assumed true
for a covariate vector of dimension p, then, for any submodel, of di-
mension less that p, the model will not hold exactly. A corollary to
this is that no model of dimension greater that p could exactly follow
a proportional hazards prescription if we claim that the model holds
precisely for some given p covariates.

These observations led some authors to claim that “forgotten”
or “overlooked” variables would inevitably lead to misleading results.
Such a claim implies that all analyses based on proportional hazards
models are misleading and since, to say the least, such a conclusion is
unhelpful we offer a different perspective. This says that all practical
models are only ever approximately correct. In other words, the model
is always making a simplifying assumption, necessarily overlooking
potential effects as well as including others which may impact the pro-
portionality of those key variables of interest. Our task then focuses
on interpreting our estimates when our model cannot be exactly true.
In terms of analysing real data, it makes much more sense to take as
our underlying working assumption that the model is, to a greater or
lesser degree, misspecified.

A model can be misspecified in one of two clear ways; the first is
that the covariate form is not correctly expressed and the second is
that the regression coefficient is not constant through time. An ex-
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ample of the first would be that the true model holds for log Z but
that, not knowing this, we include Z in the model. An example of the
second might have β(t) declining through time rather than remaining
constant.

It has been argued that the careful use of residual techniques can
indicate which kind of model failure may be present. This is not so.
Whenever a poor fit could be due to either cause it is readily seen
that a misspecified covariate form can be represented correctly via a
time-dependent effect. In some sense the two kinds of misspecification
are unidentifiable. We can fix the model by working either with the
covariate form or the regression coefficient β(t). Of course, in certain
cases, a discrete binary covariate describing two groups, for example,
there can only be one cause of model failure - the time dependency of
the regression coefficient. This is because the binary coding imposes
no restriction of itself since all possible codings are equivalent.

The important issue is then the interpretation of an estimate, say
β̂ under a proportional hazards assumption when, in reality, the data
are generated under the broader non-proportional hazards model with
regression coefficient function β(t). This is not a straightforward en-
deavor and the great majority of the currently used procedures, in-
cluding those proposed in the widely distributed R, SAS, STATA
and S-Plus packages, produce estimates which cannot be interpreted
unless there is no censoring. To study this question we first define
µ =

∫
β(t)dF (t), which is an average of β(T ) with respect to the dis-

tribution F (t). It is also of interest to consider the approximation

P̂ (Z(t) ≤ z|T = t, C > t) ≈
n∑

j=1

πj(µ, t)I(Zj(t) ≤ z) (7.14)

and, for the case of a model making the stronger assumption of
an independent censoring mechanism as opposed to a conditionally
independent censoring mechanism given the covariate, we have

P̂ (Z(t) ≤ z|T = t) ≈
n∑

j=1

πj(µ, t)I(Zj(t) ≤ z). (7.15)

For small samples it will be unrealistic to hope to obtain reliable esti-
mates of β(t) for all of t so that, often, we take an estimate of some
summary measure, in particular µ. It is in fact possible to construct
an estimating equation which provides an estimate of µ without es-
timating β(t) (Xu and O’Quigley 1998) and it is very important to
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stress that, unless there is no censoring, the usual estimating equation
which leads to the partial likelihood estimate does not accomplish this.
In fact, the partial likelihood estimate turns out to be equivalent to
obtaining the solution of an estimating equation based on H(t) (see
Section 7.3) and using Ĥ(t) as an estimate whereas, to consistently
estimate µ, it is necessary to work with some consistent estimate of
F (t), in particular the Kaplan-Meier estimate.

Some thought needs be given to the issues arising when our es-
timating equation is based on certain assumptions (in particular, a
proportional hazards assumption), whereas the data themselves can
be considered to have been generated by something broader (in par-
ticular, a non proportional hazards model). To this purpose we firstly
consider a definition that will allow us to anticipate just what is be-
ing estimated when the data are generated by model (6.2) and we are
working with model (6.3). This is contained in the definition for β∗

just below.
Let’s keep in mind the widely held belief that the partial likeli-

hood estimate obtained when using a proportional hazards model in a
situation where the data are generated by a broader model must corre-
spond to some kind of average effect. It does correspond to something
(as always) but nothing very useful and not something we can hope-
fully interpret as an average effect. This is considered in the following
sections. Firstly we need:

Definition 7.10 Let β∗ be the constant value satisfying
∫

T
Eβ∗(Z|t)dF (t) =

∫

T
Eβ(t)(Z|t)dF (t). (7.16)

The definition enables us to make sense out of using estimates
based on (6.3) when the data are in fact generated by (6.2). Since we
can view T as being random, whenever β(t) is not constant, we can
think of having sampled from β(T ). The right-hand side of the above
equation is then a double expectation and β∗, occurring in the left-
hand side of the equation, is the best fitting value under the constraint
that β(t) = β. We can show the existence and uniqueness of solutions
to Equation (7.16) (Xu and O’Quigley 1998). More importantly, β∗ can
be shown to have the following three properties: (i) under model (6.3)
β∗ = β; (ii) under a subclass of the broad class of models known as
the Harrington-Fleming models, we have an exact result in that β∗ =∫
T β(t)dF (t); and (iii) for very general situations we can write that
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β∗ ≈
∫
T β(t)dF (t), an approximation which is in fact very accurate.

Estimates of β∗ are discussed in (Xu and O’Quigley 1998, Xu and
O’Quigley 2000) and, in the light of the foregoing, we can take these
as estimates of µ.

Theorem 7.1 and its corollaries provide the ingredients necessary
to constructing a number of relevant stochastic processes, in partic-
ular functions of Brownian motion. We will be able to construct a
process that will look like simple Brownian motion under the chosen
model and with given parameter values. We can then consider what
this process will look like when, instead of those null values, the data
are generated by a model from the same class but with different para-
meter values. First we consider the estimating equations that can be
readily constructed as a result of the preceding theory.

7.5 The estimating equations

The above setting helps us anticipate the properties of the estimators
we will be using. First, recall our definition of Z(t) as a step function
of t with discontinuities at the points Xi, i = 1, ..., n, at which the
function takes the value Zi(Xi). Next, consider Fn(t), the empirical
marginal distribution function of T . Note that Fn(t) coincides with
the Kaplan-Meier estimate of F (t) in the absence of censoring. When
there is no censoring, a sensible estimating equation (which we will
see also arises as the derivative of a log likelihood, as well as the log
partial likelihood) is

U1(β) =
∫

{Z(t) − Eβ(Z|t)}dFn(t) = 0. (7.17)

The above integral is simply the difference of two sums, the first the
empirical mean without reference to any model and the second the
average of model-based means. It makes intuitive sense as an esti-
mating equation and the only reason for writing the sum in the less
immediate form as an integral is that it helps understand the large
sample theory when Fn(t)

p→ F (t). Each component in the above sum
includes the size of the increment, 1/n, a quantity that can then be
taken outside of the summation (or integral) as a constant factor. Since
the right-hand side of the equation is identically equal to zero, the in-
cremental size 1/n can be canceled, enabling us to rewrite the equation
as
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U2(β) =
∫

{Z(t) − Eβ(Z|t)}dN̄(t) = 0. (7.18)

It is this expression where the integral is taken with respect to in-
crements dN̄(t), rather than with respect to dFn(t) that is the more
classic representation in this context. The expression equates U2(β) in
terms of the counting processes Ni(t). These processes, unlike the em-
pirical distribution function, are available in the presence of censoring.
It is the above equation that is used to define the partial likelihood es-
timator, since, unless the censoring is completely absent, the quantity
U1(β) is not defined.

A natural question would be the following: suppose two observers
were to undertake an experiment to estimate β. A certain percentage
of observations remain unobservable to the first observer as a result of
an independent censoring mechanism but are available to the second
observer. The first observer uses Equation 7.18 to estimate β, whereas
the second observer uses Equation 7.17. Will the two estimates agree?
By “agree” we mean, under large sample theory, will they converge
to the same quantity. We might hope that they would; at least if we
are to be able to usefully interpret estimates obtained from Equation
7.18. Unfortunately though (especially since Equation 7.18 is so widely
used), the estimates do not typically agree. Table 7.1 below indicates
just how severe the disagreement might be. However, the form of U1(β)
remains very much of interest and, before discussing the properties of

Table 7.1: Comparison of β∗,
∫

β(t)dF (t), and the estimates β̃ and β̂PL

β1 β2 t0 % censored β∗ ∫
β(t)dF (t) β̃ β̂PL

1 0 0.1 0% 0.156 0.157 0.155 (0.089) 0.155 (0.089)
17% 0.156 0.157 0.158 (0.099) 0.189 (0.099)
34% 0.156 0.157 0.160 (0.111) 0.239 (0.111)
50% 0.156 0.157 0.148 (0.140) 0.309 (0.130)
67% 0.156 0.157 0.148 (0.186) 0.475 (0.161)
76% 0.156 0.157 0.161 (0.265) 0.654 (0.188)

3 0 0.05 0% 0.721 0.750 0.716 (0.097) 0.716 (0.097)
15% 0.721 0.750 0.720 (0.106) 0.844 (0.107)
30% 0.721 0.750 0.725 (0.117) 1.025 (0.119)
45% 0.721 0.750 0.716 (0.139) 1.294 (0.133)
60% 0.721 0.750 0.716 (0.181) 1.789 (0.168)
67% 0.721 0.750 0.739 (0.255) 2.247 (0.195)
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the above equations let us consider a third estimating equation which
we write as

U3(β) =
∫

{Z(t) − Eβ(Z|t)}dF̂ (t) = 0. (7.19)

Note that, upon defining the stochastic process W (t) = Ŝ(t){
∑n

i=1

Yi(t)}−1 we can rewrite (7.19) in the usual counting process terminol-
ogy as

U3(β) =
∫

W (t){Z(t) − Eβ(Z|t)}dN̄(t) = 0.

For practical calculation note that W (Xi) = F̂ (Xi+)− F̂ (Xi) at each
observed failure time Xi, i.e., the jump in the KM curve. When there
is no censoring, then clearly

U1(β) = U2(β) = U3(β).

More generally U1(β) may not be available and solutions to U2(β) = 0
and U3(β) = 0 do not coincide or converge to the same population
counterparts even under independent censoring. They would only ever
converge to the same quantities under the unrealistic assumption that
the data are exactly generated by a proportional hazards model. As
argued in the previous section we can assume that this never really
holds in practical situations.

Many other possibilities could be used instead of U3(β), ones in
which other consistent estimates of F (t) are used in place of F̂ (t), for
example, the Nelson-Aalen estimator or, indeed, any parametric esti-
mate for marginal survival. If we were to take the route of parametric
estimates of marginal survival, we would need to be a little cautious
since these estimates could also contain information on the parameter
β which is our central focus. However, we could invoke a conditional
argument, i.e., take the marginal survival estimate as fixed and known
at its observed value or argue that the information contained is so weak
that it can be ignored. Although we have not studied any of these we
would anticipate the desirable properties described below to still hold.
Stronger modelling assumptions are also possible (Moeschberger and
Klein 1985, Klein et al. 1990).

Note also that the left-hand side of the equation is a special case of
the weighted scores under the proportional hazards model (Harrington
and Fleming 1982, Lin 1991, Newton and Raftery 1994). However those
weighted scores were not proposed with the non-proportional hazards
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model in mind, and the particular choice of W (·) used here was not
considered in those papers. Indeed other choices for the weights will
lead to estimators closer to the partial likelihood itself, in the sense
that under a non-proportional hazards model and in the presence of
censoring, the broader class of weighted estimates will not converge to
quantities that remain unaffected by an independent censoring mecha-
nism. On the other hand, the estimating equation based on U3 is in the
same spirit as the approximate likelihood of Oakes (1986) for censored
data and the M-estimate of Zhou (1992) for censored linear models.
Hjort (1992) also mentioned the use of the reciprocal of the Kaplan-
Meier estimate of the censoring distribution as weights in parametric
survival models, and these weights are the same as W (·) defined here.
For the random effects model - a special case of this is the stratified
model which, in turn, can be expressed in the form (6.2) - we can see,
even when we know that (6.3) is severely misspecified, that we can still
obtain estimates of meaningful quantities. The average effect resulting
from the estimating equation U3 is clearly of interest.

For the stratified model, Z(Xi) is contrasted with its expecta-
tion Eβ(Z|Xi, s). Here, the inclusion of s is used to indicate that if
Zi belongs to stratum s then the reference risk set for Eβ(Z|Xi, s)
is restricted to members of this same stratum. Note that for time-
dependent s(t) the risk set is dynamic, subjects entering and leaving
the set as they become at risk. The usual estimating equation for strat-
ified models is again of the form U(β) and, for the same reasons as
recalled above and described more fully in Xu and O’Quigley (1998)
we might prefer to use

Us(β) =
∫

{Z(t) − Eβ(Z|t, s)}dF̂ (t) = 0 . (7.20)

Even weaker assumptions (not taking the marginal F (t) to be common
across strata) can be made and, at present, this is a topic that remains
to be studied.

Zeros of estimating equations

Referring back to Section 7.4 we can immediately deduce that the zeros
of the estimating equations provide consistent estimates of β under the
model. Below we consider zeros of the estimating equations when the
model is incorrectly specified. This is important since, in practice, we
can assume this to be the case. Most theoretical developments proceed



7.5. THE ESTIMATING EQUATIONS 223

under the assumptions that the model is correct. We would have that
β̂ where U2(β̂) = 0 is consistent for β. Also β̃ where U3(β̃) = 0 is
consistent for a parameter of interest, namely the average effect. From
the mean value theorem we write

U2(β̂) = U2(β0) + (β̂ − β0)
{

∂U2(β)
∂β

}

β=ξ

,

where ξ lies strictly on the interior of the interval with endpoints
β0 and β̂. Now U2(β̂) = 0 and U ′

2(ξ) =
∑n

i=1 δiVξ(Z|Xi) so that
Var(β̂) ≈ 1/

∑n
i=1 δiVar(Z|Xi). This is the Cramer-Rao bound and

so the estimate is a good one. Although the sums are of variables that
we can take to be independent they are not identically distributed.
Showing large sample normality requires verification of the Lindeburgh
condition but, if awkward, this is not difficult. All the necessary ingre-
dients are then available for inference. However, as our recommended
approach, we adopt a different viewpoint based on the functional cen-
tral limit theorem rather than a central limit theorem for independent
variables. This is outlined in some detail in the following chapter.

Large sample properties of solutions to estimating equations

The reason for considering estimating equations other than (7.18) is
because of large sample properties. Without loss of generality, for any
multivariate categorical situation, a non-proportional hazards model
(Equation 6.2) can be taken to generate the observations. Suppose
that for this more general situation we fit the best available model, in
particular the proportional hazards model (Equation 6.3). In fact, this
is what always takes place when fitting the Cox model to data. It will
be helpful to have the following definition:

Definition 7.11 The average conditional variance A(β) is defined as;

A(β) =
∫ ∞

0

{
Eβ(Z2|t) − E2

β(Z|t)
}

dF (t).

Note that the averaging does not produce the marginal variance for
that we would need to include a further term which measures the
variance of the conditional expectations. Under the conditions on the
censoring of Breslow and Crowley (1974), essentially requiring that, for
each t, as n increases, the information increases at the same rate, then
nW (t) converges in probability to w(t). Under these same conditions,
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recall that the probability limit as n → ∞ of Eβ(Z|t) under model
(6.2) is Eβ(Z|t), that of Eβ(Z2|t) is Eβ(Z2|t) and that of Vβ(Z|t) is
Vβ(Z|t). The population conditional expectation and variance, whether
the model is correct or not, are denoted by E(Z|t) and V (Z|t), respec-
tively. We have an important result due to Struthers and Kalbfleisch
(1986).

Theorem 7.2 Under model 6.2 the estimator β̂, such that U2(β̂) = 0,
converges in probability to the constant βPL, where βPL is the unique
solution to the equation

∫ ∞

0
w−1(t) {E(Z|t) − Eβ(Z|t)} dF (t) = 0, (7.21)

provided that A(βPL) is strictly greater than zero.

Should the data be generated by model (6.3) then βPL = β, but oth-
erwise the value of βPL would depend upon the censoring mechanism
in view of its dependence on w(t). Simulation results below on the
estimation of average effect show a very strong dependence of βPL on
an independent censoring mechanism. Of course, under the unrealistic
assumption that the data are exactly generated by the model, then,
for every value of t, the above integrand is identically zero, thereby
eliminating any effect of w(t). In such situations the partial likelihood
estimator is more efficient and we must anticipate losing efficiency
should we use the estimating equation U3(β) rather than the estimat-
ing equation U2(β).

Viewing the censoring mechanism as a nuisance feature of the data
we might ask the following question: were it possible to remove the
censoring then to which population value do we converge? We would
like an estimating equation that, in the presence of an independent
censoring mechanism, produces an estimate that converges to the same
quantity we would have converged to had there been no censoring. The
above estimating equation (7.19) has this property. This is summarized
in the following theorem of Xu and O’Quigley (1998), which is an
application of Theorem 3.2 in Lin (1991).

Theorem 7.3 Under model 6.2 the estimator β̃, such that U3(β̃) = 0,
converges in probability to the constant β∗, where β∗ is the unique
solution to the equation

∫ ∞

0
{E(Z|t) − Eβ(Z|t)} dF (t) = 0, (7.22)
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provided that A(β∗) is strictly greater than zero.

None of the ingredients in the above equation depends on the cen-
soring mechanism. In consequence the solution itself, β = β∗, is not
influenced by the censoring. Thus the value we estimate in the absence
of censoring, β∗, is the same as the value we estimate when there is
censoring. A visual inspection of equations (7.21) and (7.22) suffices
to reveal why we argue in favor of (7.19) as a more suitable estimat-
ing equation than (7.18) in the presence of non proportional hazard
effects. Furthermore, the solution to (7.19) can be given a strong inter-
pretation in terms of average effects. We return to this in more detail,
but we can already state a compelling argument for the broader inter-
pretability of β∗.

7.6 Consistency and asymptotic normality
of β̃

We have that Eβ(Z|t) = S(1)(β, t)/S(0)(β, t), and that W (t) =
Ŝ(t)/{nS(0)(0, t)}. Under an independent censoring mechanism, s(1)

(β(t), t)/s(0)(β(t), t) = E{Z(t)|T = t}, and s(1)(β, t)/s(0)(β, t) is what
we get when we impose a constant β through time in place of β(t),
both of which do not involve the censoring distribution. In addition
v(t) = v(β(t), t) = Var{Z(t)|T = t}. We take it that nW (t) converges
in probability to a non-negative bounded function w(t) uniformly
in t. Then we have w(t) = S(t)/s(0)(0, t). Using the same essential
approach as that of Andersen and Gill (1982) it is seen, under the
model and an independent censoring mechanism, that the marginal
distribution function of T can be written

F (t) =
∫ t

0
w(t)s(0)(β(t), t)λ0(t)dt. (7.23)

Theorem 7.4 Under the non-proportional hazards model and an in-
dependent censorship the estimator β̃ converges in probability to the
constant β∗, where β∗ is the unique solution to the equation

∫ ∞

0

{
s(1)(β(t), t)
s(0)(β(t), t)

− s(1)(β, t)
s(0)(β, t)

}

dF (t) = 0, (7.24)

provided that
∫∞
0 v(β∗, t)dF (t) > 0.
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It is clear that equation (7.24) does not involve censoring. Neither then
does the solution to the equation, β∗. As a contrast the maximum
partial likelihood estimator β̂PL from the estimating equation U2 = 0
converges to the solution of the equation

∫ ∞

0

{
s(1)(β(t), t)
s(0)(β(t), t)

− s(1)(β, t)
s(0)(β, t)

}

s(0)(β(t), t)λ0(t)dt = 0. (7.25)

This result was obtained by Struthers and Kalbfleisch (1986).
Should the data be generated by the proportional hazards model,
then the solutions of (7.24) and (7.25) are both equal to the true
regression parameter β. In general, however, these solutions will be
different, the solution to (7.25) depending on the unknown censoring
mechanism through the factor s(0)(β(t), t). The simulation results of
Table 7.1 serve to underline this fact in a striking way. The estimate
β̃ can be shown to be asymptotically normal with mean zero and
variance that can be written down. The expression for the variance
is nonetheless complicated and is not reproduced here since it is not
used. Instead we base inference on functions of Brownian motion as
described in the next chapter.

7.7 Interpretation for β∗ as average effect

The solution β∗ to the large sample equivalent to the estimating
equation U3(β), i.e., Equation 7.24 can be viewed as an average re-
gression effect. In the equation s(1)(β(t), t)/s(0)(β(t), t) = E{Z(t)|T =
t}, and s(1)(β∗, t)/s(0)(β∗, t) results when β(t) is restricted to be
a constant; the difference between these two is zero when inte-
grated out with respect to the marginal distribution of failure time.
Suppose, for instance, that β(t) decreases over time, then earlier
on β(t) > β∗ and s(1)(β(t), t)/s(0)(β(t), t) > s(1)(β∗, t)/s(0)(β∗, t);
whereas later we would have the opposite effect whereby β(t) < β∗

and s(1)(β(t), t)/s(0)(β(t), t) < s(1)(β∗, t)/s(0)(β∗, t). We can write,
v(β, t) = ∂/∂β{s(1)(β, t)/s(0)(β, t)} and, applying a first-order Taylor
series approximation to the integrand of (7.24), we have

∫ ∞

0
v(t){β(t) − β∗}dF (t) ≈ 0, (7.26)

where v(t) = v(β(t), t) = Var{Z(t)|T = t}. Therefore
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β∗ ≈
∫∞
0 v(t)β(t)dF (t)
∫∞
0 v(t)dF (t)

(7.27)

is a weighted average of β(t) over time. According to Equation 7.27
more weights are given to those β(t)’s where the marginal distribu-
tion of T is concentrated, which simply means that, on average, we
anticipate there being more individuals subjected to those particular
levels of β(t). The approximation of Equation 7.27 also has an inter-
esting connection with Murphy and Sen (1991), where they show that
if we divide the time domain into disjoint intervals and estimate a
constant β on each interval, in the limit as n → ∞ and the inter-
vals become finer at a certain rate, the resulting β̂(t) estimates β(t)
consistently. In their large sample studies, they used a (deterministic)
piecewise constant parameter β̄(t), which is equivalent to Equation
7.27 restricted to individual intervals. They showed that β̄(t) is the
best approximation to β̂(t), in the sense that the integrated squared
difference

∫
{β̂(t) − β̄(t)}2dt → 0 in probability as n → ∞, at a faster

rate than any other choice of such piecewise constant parameters. In
Equation (7.27) if v(t), the conditional variance of Z(t), changes rela-
tively little with time apart from for large t, when the size of the risk
sets becomes very small, we can make the approximation v(t) ≡ c and
it follows that

β∗ ≈
∫ ∞

0
β(t)dF (t) = E{β(T )}. (7.28)

In practice, v(t) will often be approximately constant, an observation
supported by our own practical experience as well as with simulated
data sets. For a comparison of two groups coded as 0 and 1, the con-
ditional variance is of the form p(1 − p) for some 0 < p < 1, and
this changes relatively little provided that, throughout the study, p
and 1 − p are not too close to zero. The approximate constancy of
this conditional variance is used in the sample size calculation for two-
group comparisons (Kim and Tsiatis 1990). In fact, we only require the
weaker condition that Cov(v(T ), β(T )) = 0 to obtain Equation 7.28,
a constant v(t) being a special case of this. Even when this weaker
condition does not hold exactly,

∫
β(t)dF (t) will still be close to β∗.

Xu and O’Quigley (1998) carried out simulations to study the ap-
proximation of

∫
β(t)dF (t) to β∗. Some of those findings are shown in

Table 7.1 and these are typical of the findings from a wide variety of
other situations. The results are indeed striking. It is also most likely
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true that it is not well known just how strong is the dependence of the
partial likelihood estimator on an independent censoring mechanism
when the data are generated by a non-proportional hazards model.
Since, in practical data analysis, such a situation will almost always
hold, we ought be rather more circumspect about the usual estimators
furnished by standard software.

In the table the data are simulated from a simple two-step time-
varying regression coefficients model, with baseline hazard λ0(t) = 1,
β(t) = β1 when t < t0 and β2 otherwise. The covariate Z is distributed
as Uniform(0,1). At time t0 a certain percentage of subjects at risk are
censored. The value β̂PL is the partial likelihood estimate when we
fit a proportional hazards model to the data. Table 7.1 summarizes
the results of 200 simulations with sample size of 1600. We see that∫

β(t)dF (t) is always close to β∗, for the values of β that we might
see in practice. The most important observation to be made from the
table is the strong dependence of β̂PL on an independent censoring
mechanism, the value to which it converges changing substantially as
censoring increases. The censoring mechanism here was chosen to em-
phasize the difference between β̂PL and β̃, since β̃ puts (asymptoti-
cally) the correct weights on the observations before and after t0. In
other cases the effect of censoring may be weaker. Nonetheless, it is im-
portant to be aware of the behavior of the partial likelihood estimator
under independent censoring and non-proportional hazards and the
subsequent difficulties in interpreting the partial likelihood estimate
in general situations.

The bracketed figures in Table 7.1 give the standard errors of the
estimates from the simulations. From these we can conclude that any
gains in efficiency of the partial likelihood estimate can be very quickly
lost to biases due to censoring. When there is no censoring the esti-
mators are the same. As censoring increases we see differences in the
standard errors of the estimates, the partial likelihood estimate being
more efficient; but we also see differences in the biases. Typically, these
latter differences are at least an order of magnitude greater.

7.8 Exercises and class projects

1. Show that, under an independent censoring mechanism, Ĥ(t), as
defined in Section 7.3, provides a consistent estimate of H(t).
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2. Show that the variance expression, V (β, t), using the Andersen and
Gill notation (see Section 7.3) is the same as Vβ(Z|t) using the nota-
tion of Section 7.4. Explain why Var(Z|t) is consistently estimated by
Vβ̂(Z|t) but that Var(Z|t) is not generally equal to v(β, t).

3. For the general model, suppose that β(t) is linear so that β(t) =
α0 + βt. Show that Eβ(t)(Zk|t) does not depend upon α0.

4. Sketch an outline of a proof that Var(Z|t) is consistently estimated
by Vβ̂(Z|t) and that E Var(Z|t) is consistently estimated by E Vβ̂(Z|t).

5. As for the previous question, indicate why
∫
Vβ̂(Z|t)dF̂ (t) would be

consistent for E Var(Z|t).

6. Show that Vβ(Z|t) = ∂ Eβ(Z|t)/∂β and identify the conditions for
the relationship;

∫
Vβ(Z|t) =

∫
∂ Eβ(Z|t)/∂β = ∂

{∫
Eβ(Z|t)

}
/∂β to

hold.

7. Consider some parametric non proportional hazards model (see
Chapter 4), in which the conditional density of T given Z = z is
expressed as f(t|z). Suppose the marginal distribution of Z is G(z).
Write down estimating equations for the unknown parameters based
on the observations Zi at the failure times Xi.

8. Use some data set to fit the proportional hazards model. Estimate
the parameter β on the basis of estimating equations for the observa-
tions Z2

i rather than Zi. Derive another estimate based on estimating
equations for

√
Zi. Compare the estimates.

9. Write down a set of estimating equations based on the observations,
Zp

i , p > 0 , i = 1, . . . , n. Index the estimate β̂ by p, i.e., β̂(p). For a
given data set, plot β̂(p) as a function of p.

10. Use analytical or heuristic arguments to described the expected be-
havior of β̂(p) as a function of p under (1) data generated under a pro-
portional hazards model, (2) data generated under a non-proportional
hazards model where the effect declines monotonically with time.

11. Consider a proportional hazards model in which we also know that
the marginal survival is governed by a distribution F (t; θ) where θ is
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not known. Suppose that it is relatively straightforward to estimate θ,
by maximum likelihood or by some graphical technique. Following this
we base an estimating equation for the unknown regression coefficient,
β, on U(β|θ̂) =

∫
{Z(t)−Eβ(Z|t)}dF (t; θ̂). Comment on this approach

and on the properties you anticipate it conferring on the estimate β̂.

12. Use the approach of the preceding question on some data set by
(1) approximating the marginal distribution by an exponential distri-
bution, (2) approximating the marginal distribution by a log-normal
distribution.

13. Using again the approach of the previous two questions show that, if
the proportional hazards models is correctly specified then the estimate
β̂ based on F (t; θ) is consistent whether or not the marginal model
F (t; θ) is correctly specified.

14. Supposing that the function β(t) is linear so that β(t) = α0 +
βt. Show how to estimate the function β(t) in this simple case. Note
that we can use this model to base a test of the proportional hazards
assumption via a hypothesis test that H0 : β = 0, α0 	= 0 (Cox 1972).

15. Investigate the assertion that it is not anticipated for v(t), the
conditional variance of Z(t), to change much with time. Use the model-
based estimates of v(t) and different data sets to study this question
informally.

16. In epidemiological studies of breast cancer it has been observed
that the tumor grade is not well modeled on the basis of a propor-
tional hazards assumption. A model allowing a monotonic decline in
the regression coefficient β(t) provides a better fit to observed data.
On the basis of observations some epidemiologists have argued that
the disease is more aggressive (higher grade) in younger women. Can
you think of other explanations for this observed phenomenon?



Chapter 8

Inference: Functions
of Brownian motion

8.1 Summary

Inference based on likelihood and counting processes is treated in the
following two chapters and, here, we outline our recommended ap-
proach to inference based on functions of Brownian motion. Commonly
used tests, in particular those based on partial likelihood, arise as spe-
cial cases. The basic theory is made possible by virtue of the main
theorem and its consequences, described in the previous chapter. The
theory itself requires no particular extra effort and is quite classical, be-
ing based on a simple application of Donsker’s theorem. Rather than
study a relevant process, such as the score process, and show it to
look like Brownian motion, we construct such a process so that, by
construction alone, we can almost immediately claim to have a key
convergence in distribution result. A wide array of tests are possible.
The well-known partial likelihood score test obtains as a special case
and can even find its justification in this approach. Non-proportional
hazards models, partially proportional hazards models, proportional
hazards models with intercept and simple proportional hazards mod-
els all come under the same heading. Graphical representation of the
tests provides a useful additional intuitive tool to inference. Operating
characteristics indicating those situations in which certain tests may
outperform others are discussed.

231
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8.2 Motivation

For linear regression and other classic models it is relatively easy to
break the discussion into one component dealing with the models them-
selves and another dealing with inference. This is less natural for pro-
portional hazards models although, in as far as it is possible, we try to
do this. The reason that this is less natural is that the central inter-
est of the Cox model, and what followed, had to do with inference, in
particular estimation techniques that enable us to leave a part of the
model unspecified.

Cox (1972) developed an approach to inference that, although cor-
rect, was not entirely classical. It remained nonetheless very specific
to the model in that attempts to view the inferential approach as a
general one (Cox 1975), applicable outside of the model introduced
by Cox (1972), were not really successful. To date, whenever the con-
cept of partial likelihood is mentioned, it is all but exclusively tied
to the proportional hazards model. Andersen and Gill (1982), follow-
ing Aalen (1978), took an approach to inference based on counting
processes and stochastic integrals. Their approach required no new
theoretical results. Even so, the application of this theory to the pro-
portional hazards model, was a quite colossal effort. A generation of
students has grappled with this theory and it has to be said that it
is not very easy. Our intuition has improved but the whole area of
survival analysis became, as a result of the very widespread adoption
of the counting process approach, relatively inaccessible.

Our motivation in this chapter is to show how, leaning upon the
results of the previous chapter, we can develop a relatively simple
approach to inference. It may have a less broad sweep than that of the
counting process approach, although it is not easy to come up with
problems that it cannot handle. It is very general. In addition it is
easier to get a sense of regression effects, both numerically and visually
via graphics, using the approach outlined in this chapter. The whole
development presented here is relatively recent and there is scope for
much further research work; comparing tests in different settings, using
the processes to make inferences about the regression function β(t) and
studying more closely the connections between the approaches.
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8.3 Brownian motion approximations

Our first application of the main theorem is in the construction of a
simple test of the null hypothesis, H0 : β = 0. Considering the partial
scores

U(β, t) =
∫ t

0
{Z(s) − Eβ(Z|s)}dN̄(s) (8.1)

we can see that, under the hypothesis, this will be a sum of zero mean
random variables. Under the alternative of some, let’s say positive
value for β, we will be summing random variables with negative means
and these will accumulate leading to useful test statistics. We can work
with any function of the random variable Z, the expectation of the
function being readily estimated by an application of an immediate
generalization of Corollary 7.3. Imagine, for instance, that Z is contin-
uous with some distribution. We can obtain procedures more robust
to the impact of this distribution by, say, transforming Z to a binary
variable, zero when less than some value, one otherwise.

Note that this would be different to simply recoding from the out-
set and fitting a model to binary Z. This is because the probabilities
πi(β(t), t) would not be the same. Generalizations are fairly obvious
and, for simplicity of exposition, we keep mostly to the case of a single
variable Z. All of our calculations lean on the main theorem and its
corollaries. The increments of the process

∫ t
0 Z(s)dN̄(s) at t = Xi have

mean E(Z|Xi) and variance V (Z|Xi). We can view these increments as
being independent (Cox 1975, Andersen and Gill 1982). Thus, only the
existence of the variance is necessary to be able to appeal to the func-
tional central limit theorem. We can then treat our observed process
as though arising from a Brownian motion process. Simple calculations
allow us to also work with the Brownian bridge, integrated Brownian
motion and reflected Brownian motion, processes which will be use-
ful under particular alternatives to the model specified under the null
hypothesis. Consider the process U∗(α, β, u) , (0 < u < 1), in which

U∗
(

α, β,
j

k

)

=
1√
k

∫ tj

0
Vα(Z|s)−1/2dU(β, s) , j = 1, ..., k.

where tj = N̄−1(j). This process is only defined on k equispaced points
of the interval (0,1] but we extend our definition to the whole interval
by simply joining the points together by straight lines. By construction
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Figure 8.1: Two simulated plots of a process with 30 failures under the
hypothesis.

this enables us to claim continuity for the process. More precisely, via
linear interpolation for u in the interval j/k to (j + 1)/k, we write

U∗ (α, β, u) = U∗
(

α, β,
j

k

)

+ {uk − j}
{

U∗
(

α, β,
j + 1

k

)

−U∗
(

α, β,
j

k

)}

.

Under the assumption of no effect, a simulation of two such processes
is shown in Figure 8.1. As the number of failures increases the process
will look more like Brownian motion with zero drift. Should an effect
be present then the process would look different showing evidence of
a drift. The number of contributions to U∗ (α, β, j/k) is k and, as
mentioned below, k can be less that the total number of failures when
these failures provide no further information, i.e., when all the values
of Z in the risk set are the same.

Practical calculation of the process

Note that the integral expression of Equation 8.1 is the usual sum with
which we are familiar, although only summed up as far as time t rather
than over the whole time frame. A more usual form would be;

U(β, t) =
∑

i
{Zi(Xi) − Eβ(Z|Xi)} I(Xi ≤ t). (8.2)

Standard software provides all of the above ingredients or, otherwise,
it is straightforward for the user to derive his or her own routines. Tra-
ditionally one calculates the sum, then its variance and, finally, some
kind of standardized statistic (i.e., we subtract off the mean and divide
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by the square root of the variance). Here we proceed slightly differently
to obtain not only the same result but also many new results. Rather
than standardize at the end of the sum we standardize as we go along.
One consequence of this is that we need to be watchful on the contents
of the risk sets so that the time point at which the risk set becomes
composed of individuals all having the same covariate value (and the
estimated variance is zero) we define this point as t = 1, the end of
our interval. In the multivariate case this point would correspond to
the variable for which we are testing while controlling for others via
use of the estimates of the previous chapter. No information can be
obtained once all the risk set individuals have the same covariate value
and the increments in the process become exactly zero. We could more
formally say that the ratio of an increment, when zero, to the stan-
dard deviation, when zero, is itself zero. Keeping in mind this minor
technical consideration we should also take k, often denoting the total
number of actual failures (assuming that the ties have been split), to
be the total number of failures less any failures taking place beyond
the point at which the risk set only contains individuals having the
same covariate value. Beyond this point the conditional variances are
zero and, although the numerator also becomes zero, we still need to
be clear about how we define 0/0 and about how many actual contri-
butions there are in our final sum. The process is then standardized.
Standarizing at the end, rather than as we go along, leads to the par-
tial likelihood score statistic and we consider this in a sub-section of
Section 8.5. In the same way that the integral Equation 8.1 could be
written in a more familiar way as in Equation 8.2, we can also write;

U∗
(

α, β,
j

k

)

=
∑

i

k−1/2{Zi(Xi) − Eβ(Z|Xi)}Vα(Z|Xi)−1/2I(Xi ≤ t).

(8.3)

The fact that no further information can be obtained from the in-
crements once the risk sets only contain individuals with the same
covariate value is true of course even without sequential standardiza-
tion. Each increment minus the risk set mean necessarily has value
zero. Since we do not, at each time point, divide by the square root
of the variance, we typically pay no attention to this fact. Here, using
sequential standardization, we need take care to ensure that zero di-
vided by zero is assigned a suitable value. The only coherent value is
of course zero itself.
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Large sample theory

As n goes to infinity, under the usual Breslow and Crowley conditions
in which j and k increase at the same rate, i.e., j ≈ kt where 0 < t < 1
and by ≈ we mean that we round up to the nearest integer. Although
only a minor technical detail, we can be even less restrictive, only re-
quiring that the ratio j/k approaches some constant t strictly between
0 and 1. We then have that, for each j (j = 1, . . . , k−1), U∗ (α, β, j/k)
converges in distribution to a Gaussian process with mean zero and
variance equal to t. This follows directly from Donsker’s theorem. Re-
placing β by a consistent estimate leaves asymptotic properties un-
altered for all finite dimensional distributions. This follows as an im-
mediate application of Slutsky’s theorem. The only part that can be
involved mathematically is when we wish to extend the result to the
whole continuous process. For this we need the tightness of the process
(Billingsley 1968) and this follows here when the variance of the process
is estimated consistently and independently of the process itself. This
result we can claim to hold as a direct consequence of Tsiatis (1978).
There are cases, the goodness-of-fit question being an example, where
the numerator and the denominator both involve the same sample-
based estimate β̂ implying a certain degree of dependence. The same
arguments nonetheless hold although, in order to keep track of the
details, a little more effort is needed (O’Quigley 2003).

Some remarks on the notation U∗(α, β, u)

Various aspects of the statistic U∗(α, β, u) will be used to construct
different tests. We choose the * symbol to indicate some kind of stan-
dardization as opposed to the non-standardized U . The variance and
the number of distinct failure time contributions to the sum are used
to carry out the standardization. Added flexibility in test construction
is achieved by using the two parameters, α and β, rather than a single
parameter β. In practice these are replaced by quantities which are
either fixed or estimated under some hypothesis. For goodness-of-fit
procedures, which we consider later, we will only use a single parame-
ter, typically β̂. Goodness-of-fit tests are most usefully viewed as tests
of data driven hypotheses of the form H0 : β = β̂. A test then of a
hypothesis H0 : β = 0 may not seem very different. This is true in
principle. However, for a test of H0 : β = 0, we need keep in mind not
only behavior under the null but also under the alternative. Because
of this it is often advantageous, under a null hypothesis of β = 0, to
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work with α = β̂ and β = 0 in the expression U∗(α, β, u). Under the
null, β̂ remains consistent for the value 0 and, in the light of Slutsky’s
theorem, the large sample distribution of the test statistics will not
be affected. Under the alternative, however, things look different. The
increments of the process

∫ t
0 Z(s)dN̄(s) at t = Xi no longer have mean

E(Z|Xi) and adding them up will indicate departures from the null.
But the denominator is also affected and, in order to keep the variance
estimate not only correct but also as small as we can, it is preferable
to use the value β̂ rather than zero. Nonetheless, even if less powerful,
to use α = 0 is not incorrect and corresponds to what is commonly
done in current practice.

Some properties of U∗(α, β, u)

A very wide range of possible tests can be based upon the statistic
U∗(α, β, u) and we consider a number of these below. Well-known tests
such as the so-called partial likelihood score test obtains as a special
case. First, we need to make some observations on the properties of
U∗(α, β, u) under different values of α, β and u.

Lemma 8.1 The process U∗(α, β, u), for all finite α and β is contin-
uous on [0,1]. Also E U∗(β, β, 0) = 0.

Lemma 8.2 Under model 6.3 E U∗(β̂, β, u) converges in probability
to zero.

Lemma 8.3 Suppose that v < u, then Cov {U∗(β̂, β, v) ; U∗(β̂, β, u)}
converges in probability to v.

Since the increments of the process are asymptotically independent we
can treat U∗(β̂, β, u) (as well as U∗(β, β, u) under some hypothesized
β) as though it were Brownian motion.

Brownian motion in reversed time

The process U∗
−(α, β, u) , (0 < u < 1), derived from U∗(α, β, u) in

which

U∗
−

(

α, β,
j

k

)

=
1√

k − j

∫ 1−tj

1
Vα(Z|s)−1/2dU(β, s) , j = 1, . . . , k,(8.4)
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and where, as at the beginning of this section, tj = N̄−1(j) and the
linear interpolation is the same, will also approximate Brownian mo-
tion under the model. It helps to imagine the process rotated through
180 degrees, the axes held fixed, and then the origin shifted to the last
point U∗(α, β, 1). We can use such a process to construct a simple test
in which effects may be delayed during an initial period.

8.4 Non and partially proportional hazards
models

The Brownian motion approximations of the above section extend im-
mediately to the case of non proportional hazards and partially propor-
tional hazards models. The generalization of Equation 8.1 is natural
and leads to an unstandardized score;

U(β(t), t) =
∫ t

0
{Z(s) − Eβ(t)(Z|s)}dN̄(s), (8.5)

and, as before, under the null hypothesis that β(t) is correctly specified
the function U(β(t), t) will be a sum of zero mean random variables.
The range of possible alternative hypotheses is large and, mostly, we
will not wish to consider anything too complex. Often the alternative
hypothesis will specify an ordering, or a nonzero value, for just one
of the components of a vector β(t). In the exact same way as in the
previous section, all of the calculations lean on the main theorem and
its corollaries. The increments of the process

∫ t
0 Z(s)dN̄(s) at t = Xi

have mean E(Z|Xi) and variance V (Z|Xi). A little bit of extra care is
needed, in practice, in order to maintain the view of the independence
of these increments. When β(t) is known there is no problem but if, as
usually happens, we wish to use estimates, then, for asymptotic theory
to still hold, we require the sample size (number of failures) to become
infinite relative to the dimension of β(t). Thus, if we wish to estimate
the whole function β(t), then some restrictions will be needed because,
full generality implies an infinite dimensional parameter β(t). For the
stratified model and, generally, partially proportional hazards models,
the problem does not arise because we do not estimate β(t).

The sequentially standardized process will now be written U∗(α(t),
β(t), u) , (0 < u < 1), in which

U∗
(

α(t), β(t),
j

k

)

=
1√
k

∫ tj

0
Vα(t)(Z|s)−1/2dU(β(t), s) , j = 1, . . . , k.
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where tj = N̄−1(j). This process can be made to cover the whole in-
terval (0,1] continuously by interpolating in the same way as in the
above section. For this process we reach the same conclusion, i.e., that
as n goes to infinity, under the usual Breslow and Crowley condi-
tions, we have that, for each j (j = 1, . . . , k − 1), U∗ (α(t), β(t), j/k)
converges in distribution to a Gaussian process with mean zero and
variance equal to t where t ≈ j/k. The only potential difficulty is mak-
ing use of Slutsky’s theorem whereby, if we replace α(t) and β(t) by
consistent estimates the result still holds. The issue is that of having
consistent estimates, which for an infinite dimensional unrestricted pa-
rameter we cannot achieve. The solution is simply to either restrict
these functions or to work with the stratified models in which we
do not need to estimate them. The above subsection headed “Some
remarks on the notation” applies equally well here if we replace α
and β by α(t) and β(t). The lemmas of the above section describ-
ing the properties of U∗(α, β, t) apply, once again, when working with
U∗(α(t), β(t), t). Specifically, the process U∗(α(t), β(t), t), for all finite
α(t) and β(t) is continuous on [0,1] and E U∗(β(t), β(t), 0) = 0, un-
der model 6.3 E U∗(β̂(t), β, u) converges in probability to zero and
for v < u, Cov {U∗(β̂(t), β(t), v) ; U∗(β̂(t), β(t), u)} converges in prob-
ability to v. Since the increments of the process are asymptotically
independent we will treat U∗(β̂(t), β(t), t) (as well as U∗(β(t), β(t), t)
under some hypothesized β(t)) as though it were Brownian motion.

8.5 Tests based on functions of Brownian
motion

Several tests of point hypotheses can be constructed based on the the-
ory of the previous section. These tests can also be used to construct
test-based confidence intervals of parameter estimates, obtained as so-
lutions to an estimating equation. Among these tests are the following;

Distance from origin at time t

At time t, under the null hypothesis that β = β0, often a hypothesis of
absence of effect in which case β0 = 0, we have that U∗(β̂, β0, t) can be
approximated by a normal distribution with mean zero and variance t.
A p-value corresponding to the null hypothesis is then obtained from

Pr
{

U∗
(
β̂, β0, t

)
/
√

t > z
}

= 1 − Φ(z).
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This p-value is for a one-sided test in the direction of the alternative
β < β0. For a one-sided alternative in the opposite direction we would
use

Pr
{

U∗
(
β̂, β0, t

)
/
√

t < z
}

= Φ(z)

and, for a two-sided alternative, we would, as usual, consider the ab-
solute value of the test statistic and multiply 1 − Φ(z) by two. Under
the alternative, say β > β0, if we take the first two terms of a Taylor
series expansion of U∗(β̂, β0, t) about β, we can deduce that a good
approximation for this would be Brownian motion with drift. At time t
this is then a good test for absence of effect (Brownian motion) against
a proportional hazards alternative (Brownian motion with drift); good
in the sense that type I error is controlled for and, under these alter-
natives, the test has good power properties.

Under a proportional hazards alternative to the null hypothesis,
U∗(β̂, β0, t) increases in expectation in a way that is very close to
linear so that the further out in time t the more powerful our test
will be. Specifically the ratio U∗

(
β̂, β0, t

)
/
√

t will be approximately

increasing linearly in t in the numerator and as
√

t in the denominator.
Power, therefore, will be maximized by using the whole time interval,
i.e., taking t = 1. Nonetheless, there may be situations in which we
may opt to take a value of t less than one. If we know, for instance, that
under both the null and the alternative we can exclude the possibility
of effects being persistent beyond some time τ say, i.e., the hazard
ratios beyond that point should be one or very close to that, then we
will achieve greater power by taking t to be less than one, specifically
some value around τ . A confidence interval for β0 can be obtained
using normal approximations or by constructing the interval {β̂− , β̂+}
such that for any point b contained in the interval a test of the null
hypothesis is not rejected.

Figure 8.2 illustrates behavior under the alternative for a relatively
large sample. In the first case the situation is that of proportional
hazards, whereas in the second case the regression effect disappears at
some point beyond which the process is approximately parallel to the
time axis. After τ there are no expected gains in the numerator and
so the test based on the distance from origin at time τ will be more
powerful than that at t = 1 since, in this case, t > τ. Usually, τ would
not be known in advance in which case the following test might be a
candidate.
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Figure 8.2: Example of processes under proportional and non-
proportional hazards and very large samples indicating anticipated
large sample behavior.

Maximum distance from origin at time t

In cases where we wish to consider values of t less than one, we may
have knowledge of some τ of interest. Otherwise, we may want to
consider several possible values of τ. Control on type I error will be
lost unless specific account is made of the multiplicity of tests. One
simple way to address this issue is to consider the maximum value
achieved by the process during the interval (0, τ). Again, we can appeal
to known results for some well known functions of Brownian motion.
In particular, approximating U∗(β̂, β0, t) by Brownian motion, we have

Pr
{

max
t∈(0,τ)

U∗
(
β̂, β0, t

)
/
√

t > z

}

= 2 Pr
{

U∗
(
β̂, β0, τ

)
/
√

τ > z
}

.

Under the null and proportional hazards alternatives this test, as op-
posed to the usual score test, would lose power comparable to carrying
out a two-sided rather than a one-sided test. Under non-proportional
hazards alternatives this test can be of use, an extreme example being
crossing hazards where the usual score test may have power close to
zero. As the absolute value of the hazard ratio increases so would the
maximum distance from the origin. This test would be worth consider-
ing if we suspect that any potential effects are unlikely to be persistent
although we may have little idea as to just how long the effect may last.
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Distance from origin with delayed effect

If there is an initial period during which we anticipate, both under the
null and the alternative, there to be no regression effect, then following
the idea above where we take the upper limit of t to be less than one, we
can construct a useful test. We use a Brownian motion in reversed time,
starting at t = 1 and, rather than go all the way backwards to t = 0
we stop short of that at time 1 − τ , having chosen τ such that on the
interval (0, τ) we believe that effects have yet to manifest themselves.
In practice, rather than actually reverse time, we would simply move
the origin to τ and take our process to be U∗(β̂, β0, t) − U∗(β̂, β0, τ).
Again we would anticipate a gain in power since, effectively, in the
same way as above, the expected size of the numerator of the test
statistic is not increasing beyond some point. Rather than divide by a
larger value of t, using the value 1− τ results in a larger test statistic.

Arcsine test

Another possibility is to consider the amount of time the whole process
is positive (or negative). Under the null hypothesis of no effect we
expect, on average, that the process U∗(β̂, β0, t) will be positive for half
of the interval (0, t). Calling ∆(t) the percentage of time the process
is positive on the interval (0, t) we have (see Section 2.11 on Brownian
motion):

Pr
{[

∆(u) : U∗
(
β̂, β0, u

)
> 0
]

> w
}

= 2π−1 sin−1 √w.

This test is particularly easy to carry out but does not appear to be
very powerful. We have not really studied it in any depth and it may
be worthy of further investigation. One reason that may explain a
lack of power is that no distinction is made between situations where
the process is close to the origin or far from the origin. This extra
information, contained in the distance and that is clearly informative
concerning effects, is then ignored.

Area under the curve at time t

The area under the curve of the process U∗(β̂, β0, t) is given by

J(β̂, β0, t) =
∫ t

0
U∗(β̂, β0, u)du



8.5. TESTS BASED ON BROWNIAN MOTION 243

and is itself a stochastic process. Referring back to the chapter describ-
ing the properties of Brownian motion we can conclude immediately
that J(β̂, β0, t) converges in distribution to integrated Brownian mo-
tion, i.e., a Gaussian process with mean zero and covariance process

Cov
{

J(β̂, β0, s) , J(β̂, β0, t)
}

= s2

(
t

2
− s

6

)

(s < t). (8.6)

At time t = 1, rather than base a test on the distance covered by the
process U∗(β̂, β0, t) we can base a test on the area under the curve.
The two are correlated and, if a large distance is covered, we also know
that there will be a large area under the curve. A one sided p-value
corresponding to the null hypothesis is then obtained from

Pr
{√

3J
(
β̂, β0, t

)
/
√

t > z
}

= 1 − Φ(z).

For the other one-sided alternative and for two sided alternatives we
proceed as described just above under the heading “Distance from
origin at time t.”

Under departures from the null which can be exactly described
as proportional hazards alternatives the distance from origin test has
very slightly greater power than the area under the curve test. This
is no longer true when effects decline with time and in many, possi-
bly the majority of practical situations, the area under the curve test
has greater power than the distance from the origin test. This can be
understood intuitively by considering an exaggerated case of declining
effects, a situation in which the effect drops to zero at some time point,
t0. Until that point the process U∗(β̂, 0, u) will approximately increase
as a straight line with fluctuations (Brownian motion with drift) but,
beyond t0, the line will proceed, on average, as though parallel to the
time axis. A test based on the distance from the origin will be impacted
rather more strongly than a test based on the area under the curve and
will therefore show less power. This follows since, for a distance from
the origin test, the numerator, on average, is not increasing, whereas
the denominator is.

For an area under the curve test both the numerator and denom-
inator continue to increase, although, of course, the rate of increase
of the numerator is slower than it would otherwise be if effects were
to be maintained. In both cases the effect, as mirrored by the test,
is being diluted and the gain for the area under the curve test stems
from the fact that this diluting phenomenon is weaker for the area
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under the curve test than for a distance from origin test using t = 1.
An extreme case of non-proportional hazards is one where the effects
change direction at some point such that U∗(β̂, 0, 1) is very close to
zero. A test based on distance from the origin will consequently have
no power against such an alternative, whereas an area under the curve
test can still detect that the null is contradicted by the observations.
This said, for such situations, there are other tests that are mostly to
be preferred to the area under the curve test.

Linear combinations of distance from origin and area under curve

It is also useful to note:

Lemma 8.4 The covariance function of J(β̂, β0, t) and U∗(β̂, β0, t),
converges in probability to t2/2.

This simple result (see also Section 2.11) enables the construction of
a linear combination test. Consider then a class of statistics D(θ, t)
where

D(θ, t) = θU∗(β̂, β0, t) + (1 − θ)J(β̂, β0, t) , 0 ≤ θ ≤ 1,

and the following simple lemma which applied under H0 : β = β0 :

Lemma 8.5 Under H0, D(θ, t) converges in distribution to a normal
law with

E{D(θ, t) = 0} ; Var D(θ, t) = tθ2 +
t3

3
(1 − θ)2 +

t2

2
θ(1 − θ).

The linear combination test will have power against both types of al-
ternative, proportional hazards and non-proportional hazards in which
effects decline in time. It can be considered a compromise test between
these other two, each one arising as special cases when θ = 0 or θ = 1.
The cost of this greater generality is a reduction in power when the
true alternative is a clear one of proportional hazards or one of strong
non-proportional hazards such as an inversion of the regression effect.
The parameter θ would have to be chosen in advance to reflect the
kind of alternative we have in mind. It is also possible to allow our-
selves to be guided by the observations themselves, in which case we
could consider supθ D(θ, t), most commonly supθ D(θ, 1). For this, un-
fortunately, the above lemma is no longer applicable and we need to
appeal to other notions to obtain the correct null distribution.
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Brownian bridge test

Since we are viewing the process U∗(β̂, β0, t) as though it were a real-
ization of a Brownian motion, we can consider some other well-known
functions of Brownian motion. Consider then the bridged process
U∗

0 (β̂, β0, t);

Definition 8.1 The bridged process is defined by the transformation

U∗
0 (β̂, β0, t) = U∗(β̂, β0, t) − tU∗(β̂, β0, 1)

Lemma 8.6 The process U∗
0 (β̂, β0, t) converges in distribution to the

Brownian bridge, in particular, for large samples, E U∗
0 (β̂, β0, t) = 0

and Cov {U∗
0 (β̂, β0, s), U∗

0 (β̂, β0, t)} = s(1 − t).

The Brownian bridge is also called tied-down Brownian motion for the
obvious reason that at t = 0 and t = 1 the process takes the value 0.
Carrying out a test at t = 1 will not then be particularly useful and it
is more useful to consider, as a test statistic, the greatest distance of
the bridged process from the time axis. We can then appeal to:

Lemma 8.7

Pr
{

sup
u

|U∗
0 (β̂, β0, u)| ≥ a

}

≈ 2 exp(−2a2), (8.7)

which follows as a large sample result since

Pr
{

sup
u

|U∗
0 (β̂, β0, u)| ≤ a

}

→ 1 − 2
∞∑

k=1

(−1)k+1 exp(−2k2a2) , a ≥ 0 .

This is an alternating sign series and therefore, if we stop the series
at k = 2 then the error is bounded by 2 exp(−8a2) which for most
values of a that we will be interested in will be small enough to ignore.
For alternatives to the null hypothesis (β = 0) belonging to the pro-
portional hazards class, the Brownian bridge test will be less powerful
than the distance from origin test. It is more useful under alternatives
of a non-proportional hazards nature, in particular an alternative in
which U∗(β̂, β0, 1) is close to zero, a situation we might anticipate when
the hazard functions cross over. Its main use, in our view, is in testing
goodness-of-fit, i.e., a hypothesis test of the form H0 : β = β̂.
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Reflected Brownian motion

An interesting property of Brownian motion described in Chapter 2
was the following. Let W (t) be Brownian motion, choose some positive
value r and define the process Wr(t) in the following way: If W (t) < r
then Wr(t) = W (t). If W (t) ≥ r then Wr(t) = 2r − W (t). It was
shown in Chapter 2 that the reflected process Wr(t) is also Brownian
motion. Choosing r to be negative and defining Wr(t) accordingly
we have the same result. The process Wr(t) coincides exactly with
W (t) until such a time as a barrier is reached. We can imagine this
barrier as a mirror and beyond the barrier the process Wr(t) is a simple
reflection of W (t). So, consider the process U r(β̂, β0, t) defined to be
U∗(β̂, β0, t) if |U∗(β̂, β0, t)| < r and to be equal to 2r − U∗(β̂, β0, t) if
|U∗(β̂, β0, t)| ≥ r.

Lemma 8.8 The process U r(β̂, β0, t) converges in distribution to
Brownian motion, in particular, for large samples, E U r(β̂, β0, t) = 0
and Cov {U r(β̂, β0, s), U r(β̂, β0, t)} = s.

Under proportional hazards there is no obvious role to be played by
U r. However, imagine a non-proportional hazards alternative where
the direction of the effect reverses at some point, the so-called crossing
hazards problem. The statistic U∗(β̂, 0, t) would increase up to some
point and then decrease back to a value close to zero. If we knew this
point, or had some reasons for guessing it in advance, then we could
work with U r(β̂, β0, t) instead of U∗(β̂, β0, t). A judicious choice of the
point of reflection would result in a test statistic that continues to
increase under such an alternative so that a distance from the origin
test might have reasonable power. In practice we may not have any
ideas on a potential point of reflection. We could then consider trying
a whole class of points of reflection and choosing that point which
results in the greatest test statistic. We require different inferential
procedures for this.

A bound for a supremum type test can be derived by applying
the results of Davies (1977, 1987). Under the alternative hypothesis
we could imagine increments of the same sign being added together
until the value r is reached, at which point the sign of the increments
changes. Under the alternative hypothesis the absolute value of the
increments is strictly greater than zero. Under the null, r is not defined
and, following the usual standardization, this set-up fits in with that of
Davies (1977, 1987). We can define γr to be the time point satisfying
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U∗(β̂, β0, γr) = r. A two-sided test can then be based on the statistic
M = supr{|U r(β̂, β0, 1)| : 0 ≤ γr ≤ 1}. Inference can then be based on

Pr {sup |U r(β̂, β0, 1)| > c : 0 ≤ γr ≤ 1} ≤ Φ(−c)

+
exp(−c2/2)

2π

∫ 1

0
{−ρ11(γ)} 1

2 dγ

where Φ denotes the cumulative normal distribution function,

ρ11(γ) = {∂2ρ(φ, γ)/∂φ2}φ=γ

and where ρ(γr, γs) is the autocorrelation function between the
processes U r(β̂, β0, 1) and U s(β̂, β0, 1). In general, the autocorrela-
tion function ρ(φ, γ), needed to evaluate the test statistic is unknown.
However, it can be consistently estimated using bootstrap resampling
methods (O’Quigley and Pessione 1991). For γr and γs taken as fixed,
we can take bootstrap samples from which several pairs of U r(β̂, β0, 1)
and U s(β̂, β0, 1) can be obtained. Using these pairs, an empirical, i.e.,
product moment, correlation coefficient can be calculated. Under the
usual conditions (Efron 1981a,b), the empirical estimate provides a
consistent estimate of the true value. This sampling strategy is fur-
ther investigated in related work by O’Quigley and Natarajan (2004).
A simpler approximation is available by using the results of Davies
(1987) and this has the advantage that the autocorrelation is not
needed. This may be written down as

Pr {sup |U r(β̂, β0, 1)| > M} ≈ Φ(−M) +
Vρ exp(−M2/2)√

8π
, (8.8)

where Vρ =
∑

i |U r(β̂, β0, 1)−U s(β̂, β0, 1)| , the γi, ranging over (L,U),
are the turning points of T (0, β̂; ·) and M is the observed maximum
of T (0, β̂; ·). Turning points only occur at the k distinct failure times
and, to keep the notation consistent with that of the next section, it
suffices to take γi (i = 2, . . . , k) as being located half way between
adjacent failures, γ1 = 0 and γk+1 any value greater than the largest
failure time.

Partial likelihood score test

Some discussion of the concept of partial likelihood is given in the
following chapter. It turns out that the score test using that concept
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coincides with one of those given here if we make the following ap-
proximation. Suppose that we wish to test H0 : β = 0 and instead of
U∗(β̂, 0, t) we choose to work with U∗(0, 0, t). In the light of Slutsky’s
theorem it is readily seen that, for all finite divisions of the interval
(0,1), the large sample null distributions of the two test statistics are
the same. In order to maintain our results for the whole process (filling
out the interval) we need tightness (see Section 8.3) which follows here
when the denominator is estimated consistently and independently of
the numerator. For this we appeal to the main theorem of Tsiatis
(1978). Next, instead of standardizing by V0(Z|Xi) at each Xi we take
a simple average of such quantities, over the observed failures. To see
this, first recall Corollary 7.4 indicating that

∫
Vβ̂(Z|t)dF̂ (t) is consis-

tent for E Var(Z|t). Rather than integrate with respect to F̂ (t) it is
more commonly accepted to integrate with respect to N̄(t). It is also
more common to fix β̂ in Vβ̂(Z|t) at its null value zero. This gives us;

Definition 8.2 The empirical average conditional variance, V̄0 is
defined as

V̄0 =
∫ 1

0
V0(Z|t)dN̄(t)

.
We can choose to include in our test statistics the quantity V̄0 in place
of V0(Z|Xi). In this case the distance from origin test described above,
at t = 1, coincides exactly with the partial likelihood score test. It
may even be used to justify the partial likelihood score test since the
inferential basis for it stands on an arguably more transparent footing
than partial likelihood itself which, to this day, has never really been
given a very clear theoretical setting.

Linearly weighted test statistics

A broad class of test statistics based on the first derivative of the log-
arithm of the partial likelihood consists in linearly weighting the con-
tributions at different time points. Such tests coincide with weighted
log-rank statistics. Before considering those tests it is worth pointing
out that similar classes, and even the exact same tests can be ob-
tained under the heading of Brownian motion tests. The details follow
through in the same way as above and we only consider the basic ideas.
Suppose that instead of U(β, t) given in equation (8.1) we introduce
some time-dependent positive weights, K(t) into the definition and
write
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U(β, t) =
∫ t

0
K(s){Z(s) − Eβ(Z|s)}dN̄(s). (8.9)

As before we can see that, under the hypothesis, this will be a sum of
zero mean random variables. Under the alternative of some, let’s say
positive value for β, we will be summing random variables with nega-
tive means, the means being now weighted by K. Different choices of
K will produce different operating characteristics under the alterna-
tive. It is still the case that the increments of the process

∫ t
0 Z(s)dN̄(s)

at t = Xi have mean E(Z|Xi) and variance V (Z|Xi) and so, as before,
we will be able to treat the observed process, after transformation, as
though arising from a Brownian motion process. All of the tests based
on simple Brownian motion, the Brownian bridge, integrated Brown-
ian motion and reflected Brownian motion will still apply. For this to
work we now base calculations on the process U∗(α, β, u) , (0 < u < 1),
in which

U∗
(

α, β,
j

k

)

=
1√
k

∫ tj

0
K−1/2(s)Vα(Z|s)−1/2dU(β, s) , j = 1, . . . , k,

where tj = N̄−1(j). We extend this definition on the k equispaced
points of the interval (0,1] to the whole interval as before, via linear
interpolation. The same formula still applies. The function K(s) can
be either deterministic or itself a stochastic process. As long as its vari-
ance at time s exists and can be evaluated, or consistently estimated,
then this modification introduces no particular additional complexity.
Choosing K(t) to be the number of subjects at risk at time t produces
a test analogous to the test described by Gehan (1965), whereas the
choice of K(t) = Ŝ(t) produces weights analogous to those of Prentice
(1978).

8.6 Multivariate model

In practice it is the multivariate setting that we are most interested in;
testing for the existence of effects in the presence of related covariates,
or possibly testing the combined effects of several covariates. In this
work we give very little specific attention to the multivariate setting,
not because we do not feel it to be important but because the univari-
ate extensions are almost always rather obvious and the main concepts
come through more clearly in the relatively notationally uncluttered
univariate case. Nonetheless, some thought is on occasion required.
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The main theorem giving a consistent estimate of the distribution of
the covariate at each time point t applies equally well when the co-
variate Z(t) is multi-dimensional. Everything follows through in the
same way and there is no need for additional theorems. Let us recall
definition 7.2

Definition 8.3 The discrete probabilities πi(β(t), t) are given by

πi(β(t), t) =
Yi(t) exp{β(t)Zi(t)}∑n

j=1 Yj(t) exp{β(t)Zj(t)}
.

In the multivariate case the product β(t)Zi(t) becomes a vector or
inner product, a simple linear sum of the components of Zi(t) and
the corresponding components of β(t). Suppose, for simplicity, that
Zi(t) is two dimensional so that Zi(t)T = {Z1i(t), Z2i(t)}. Then the
πi(β(t), t) give our estimate for the joint distribution of {Z1i(t), Z2i(t)}
at time t. As for any multi-dimensional distribution if we wish to con-
sider only the marginal distribution of, say, Z1(t) then we simply sum
the πi(β(t), t) over the variable Z2(t). In practice we work with the
πi(β(t), t), defined to be of the highest dimension that we are inter-
ested in, for the problem in hand, and simply sum over the subsets of
vector Z needed. To be completely concrete let us return to the partial
scores,

U(β, t) =
∫ t

0
{Z(s) − Eβ(Z|s)}dN̄(s), (8.10)

defined previously for the univariate case. Both Z(s) and Eβ(Z|s) are
vectors of the same dimension. So also is U(β, t). The vector U(β, t)
is made up of the component marginal processes any of which we may
be interested in. For each marginal covariate, let’s say Z1, for instance,
we also calculate Eβ(Z1|s) and we can do this either by first working
out the marginal distribution of Z1 or just by summing over the joint
probabilities. The result is the same and it is no doubt easier to work
out all expectations with the respect to the joint distribution. Let us
then write

U(β, Z1, t) =
∫ t

0
{Z1(s) − Eβ(Z1|s)}dN̄(s) (8.11)

where the subscript “1” denotes the first component of the vector.
The interesting thing is that Eβ does not require any such additional
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notation, depending only on the joint πi(β(t), t). As for the univari-
ate case we can work with any function of the random vector Z, the
expectation of the function being readily estimated by an application
of an immediate generalization of Corollary 7.3. Note that the process
we are constructing is not the same one that we would obtain were
we to simply work with only Z1. This is because the πi(β(t), t) involve
a univariate Z in the former case and a multivariate Z in the latter.
The increments of the process

∫ t
0 Z1(s)dN̄(s) at t = Xi have mean

E(Z1|Xi) and variance V (Z1|Xi). As before, these increments can be
taken to be independent (Cox 1975, Andersen and Gill 1982) so that
only the existence of the variance is necessary to be able to appeal to
the functional central limit theorem.

This observed process will also be treated as though arising from
a Brownian motion process. The same calculations as above allow us
to also work with the Brownian bridge, integrated Brownian motion
and reflected Brownian motion. Our development is entirely analo-
gous to that for the univariate case and we consider now the process
U∗(α, β, Z1, u) , (0 < u < 1), in which

U∗
(

α, β, Z1,
j

k

)

=
1√
k

∫ tj

0
Vα(Z|s)−1/2dU(β, Z1, s) , j = 1, . . . , k,

where tj = N̄−1(j). This process is only defined on k equispaced points
of the interval (0,1] and, again, we extend our definition to the whole
interval so that, for u ∈ [j/k, (j +1)/k] we can write U∗ (α, β, Z1, u) as

U∗
(

α, β, Z1,
j

k

)

+ {uk − j}
{

U∗
(

α, β, Z1,
j + 1

k

)

−U∗
(

α, β, Z1,
j

k

)}

.

As n goes to infinity, under the usual Breslow and Crowley conditions,
in which j and k increase at the same rate, i.e., j ≈ kt where 0 <
t < 1 and by the symbol “ ≈” we mean that we round up to the
closest integer. In the same way as for the univariate case we can
be even less restrictive only requiring that the ratio j/k approaches
some constant t strictly between 0 and 1. We then have that, for each
j (j = 1, . . . , k − 1), U∗ (α, β, Z1, j/k) converges in distribution to a
Gaussian process with mean zero and variance equal to t.
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Some further remarks on the notation

The notation U∗ (α, β, Z1, u) is a little heavy but becomes even heavier
if we wish to treat the situation in great generality. The first compo-
nent of Z is Z1 but of course this can be any component. Indeed Z1 can
itself be a vector, some collection of components of Z and, once we see
the basic idea, it is clear what to do even though the notation starts
to become slightly cumbersome. We prefer to leave those difficulties to
the programming stage. Here we are essentially interested in concepts.
As for the notation, U∗(α, β, u), in which there is only one Z and no
need to specify it, the * symbol continues to indicate standardization
by the variance and number of failure points. For the multivariate sit-
uation the two parameters, α and β, are themselves, both vectors. The
parameter α which indexes the variance will be, in practice, the esti-
mated full vector β, i.e., β̂. Note that, as for the process U∗(β̂, β, u) we
use, for the first argument to this function, the unrestricted estimate.
Exactly the same applies here. In the numerator however, under some
hypothesis for β1, say β1 = β10 then, for the increments dU(β, Z1, s),
we would have β1 fixed at β10 and the other components of the vector
β replaced by their restricted estimates, i.e., zeros of the estimating
equations in which β1 = β10.

Some properties of U∗(α, β, Z1, u)

The same rangeofpossible tests asbefore canbebasedonU∗(α, β, Z1, u).
To support this it is worth noting three lemmas analogous to those of
our initial development on the univariate case.

Lemma 8.9 The process U∗(α, β, Z1, u), for all finite α and β is con-
tinuous on [0,1]. Also E U∗(β, β, Z1, 0) = 0.

Lemma 8.10 Under model 6.3 E U∗(β̂, β, Z1, u) converges in proba-
bility to zero.

Lemma 8.11 Suppose that v < u, then Cov {U∗(β̂, β, Z1, v) ; U∗(β̂, β,
Z1, u)} converges in probability to v.

Since the increments of the process are asymptotically independent
we can treat U∗(β̂, β, Z1, u) (as well as U∗(β, β, Z1, u) under some hy-
pothesized β) as though it were Brownian motion.
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Tests in the multivariate setting

When we carry out a test of H0 : β1 = β10 it is important to keep
in mind the alternative hypothesis which is usually H1 : β1 	= β10

together with βj , j 	= 1 unspecified. Such a test can be carried out
using U∗(β̂, β, Z1, u) where, for the second argument β, the component
β1 is replaced by β10 and the other components by estimates with the
constraint that β1 is fixed at β10. Assuming our model is correct, or
a good enough approximation, then we are testing for the effects of
Z1 having “accounted for” the effects of the other covariates. The
somewhat imprecise notion “having accounted for” is made precise in
the context of a model. It is not, of course, the same test as that based
on a model with only Z1 included as a covariate.

Another situation of interest in the multivariate setting is one
where we wish to test simultaneously for more than one effect. This
situation can come under one of two headings. The first, analogous
to an analysis of variance, is where we wish to see if there exists any
effect without being particularly concerned about which component
or components of the vector Z may be causing the effect. As for an
analysis of variance if we reject the global null we would probably wish
to investigate further to determine which of the components appears
to be the cause. The second is where we use, for the sake of argument,
two covariates to represent a single entity, for instance three levels of
treatment. Testing for whether or not treatment has an impact would
require us to simultaneously consider the two covariates defining the
groups. We would then consider, for a two-variable model, Z(t) as a
vector with components Z1(t) and Z2(t), step functions with discon-
tinuities at the points Xi, i = 1, . . . , n, where they take the values
Z1i(Xi) and Z2i(Xi) respectively. For this two dimensional case we
consider the increments in the one-dimensional process U(β, s) where
β′ = (β′

1, β
′
2) and

U(β, t) =
∫ t

0
{β1Z1(s) + β2Z2(s)} dN̄(s)

at t = Xi, having mean β1E(Z1|Xi) + β2E(Z2|Xi) and variance,
β2

1V (Z1|Xi) + β2
2V (Z2|Xi) + 2β1β2Cov (Z1, Z2|Xi). The remaining

steps now follow through just as in the single variable case, β1 and
β2 being replaced by β̂1 and β̂2, respectively, and the conditional ex-
pectations, variances and covariances being replaced using analogous
results to those that we obtained for the single variable case. We can
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then consider a standardized process, analogous to the single variable
case and where U∗(α, β, u) , (0 < u < 1) is defined as in 8.2 but,
instead of 2.13 we have;

U∗
(

α, β,
j

k

)

=
1√
k

∫ tj

0
Vα(β1Z1 + β2Z2|s)−1/2dU(β, s) , j = 1, . . . , k.

(8.12)

In practice, β = (β1, β2) is replaced by consistent estimates or values
under some hypothesis. It should now be clear how to deal with yet
higher dimensions. It would also be possible to consider functions other
than simple ones of the covariate Z. The linear combination β1Z1 +
β2Z2, corresponding to the prognostic index (in practice the βs are
replaced by estimates), appears to be the most appropriate for testing
the combined prognostic effect. However, any other combination would
also be valid, implying, according to the combination that is chosen,
a slightly different direction in the two dimensional space (Z1, Z2) in
which we look. If we are more interested in partial effects, testing for
instance the effect of Z1, after having accounted for the effects of Z2,
then we should consider the standardized process of Z1(t) and any of
the various tests (distance from origin test, area under the curve test
and so on) that we can associate with it.

8.7 Graphical representation of regression
effects

In linear regression, before we carry out any formal analyses, we will
routinely obtain a rough visual idea of the plausibility of there being
nonzero effects, as well as to the possible nature of any nonzero ef-
fects. This is via the usual scattergram. Such graphical information
provides a useful support to our intuition. Although the case of lin-
ear regression is possibly the most transparent, graphical support can
also be valuable for more complex models, notably the proportional
and non-proportional hazards models. We can use the standardized
score process to provide some pointers as to the nature of regression
effects. The impression gained from the “eyeball factor,” although not
enough on its own, can provide a lot of insight. In the most straight-
forward case, we would have a binary Z representing two groups and
the Kaplan-Meier plot, perhaps also including rough standard errors,
is as good a graphical guide as we have. It can nonetheless be given
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Figure 8.3: Kaplan-Meier plot of a 2-group comparison alongside stan-
dardized cumulative score plot suggesting a possibility of a delayed
effect.

a supplement. Also, for more general situations, Kaplan-Meier plots
may not be available or sufficiently reliable, either because of too few
events in some of the subgroups or because of continuous covariates
that we would need make discrete, or some combination of the two.
We examine survival plots on the basis of covariate information in a
later chapter and, for now, we limit attention to plots which tell us
something about the test statistics.

Figure 8.3 illustrates part of an analysis stemming from a study
in leukemia in which two groups were created on the basis of a tumor
marker. There is a suggestion from the Kaplan-Meier plot alone that
the survival probabilities may differ between the groups. The differ-
ence does not achieve statistical significance on the basis of a partial
likelihood score test (which all but coincides with a distance from ori-
gin Brownian motion test) and so we would most likely conclude that
the observed differences are explicable in terms of random variation.
This may be the case. Even so, it is worth plotting the standardized
score process shown in the same figure. A glance at this indicates at
least one other potential explanation.

Until just beyond the halfway point in the study there appears to be
no effect at all. Beyond this the effect may be quite strong, the process
climbing close to linearly (looking like Brownian motion with drift)
for the remainder of the study. Now, a model with a delayed effect,
stipulating that for the first half of the study there is no effect, does in
fact achieve statistical significance at the 5% level. The corresponding
Kaplan-Meier estimates tell the same story although closer scrutiny
of the figure is called for. The observations appear to be compatible
with a population model for the survival curves where, for up until
close to the marginal median, the curves coincide. Beyond this point
the curves may diverge.
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As for any regression situation, or indeed any statistical analysis,
great caution is called for when we retrospectively attempt to explain
the observations. This is the reason we would usually prefer our group
of hypotheses to be well identified in advance. The explanation of the
above data is plausible but can also easily represent some particular
outcome from the set of outcomes that arise when effects are entirely
absent. Usually, any such data driven hypothesis lacks enough weight
on its own to be convincing. Its weight increases whenever backed up
by other external arguments. If, as an example, it is very likely, for
clinical reasons, that the two groups identified by the tumor marker,
would either show no difference at all or, if there should be any differ-
ences, then these would not manifest themselves for some time after
the beginning of observation, then this, in conjunction with the statis-
tical results, would be more compelling. Whatever our final conclusion
it is clear that the graphical representation adds a helpful angle to the
analysis.

In a similar study in leukemia, using a different tumor marker, sur-
vival experience is shown in Figure 8.4. As for the above example, the
usual partial likelihood score test, and the distance from origin test
failed to achieve statistical significance. The two tests gave near iden-
tical results. In contrast to the above example there is some evidence
that there may be early effects, the Kaplan-Meier plots diverging very
noticeably initially, but later coming together and, finally, crossing.
Although there is much less data later on, and more noise in the ob-
servations, it does not seem unreasonable to suspect that there may
be differences between the groups but that these differences are of a
non-proportional hazards nature. If that were so then we anticipate
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Figure 8.4: Kaplan-Meier plot of a two-group comparison together with
standardized cumulative score plot suggesting a possibility of an effect
which fails to maintain its presence throughout the study.
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that an area under the curve test would be more sensitive than a dis-
tance from origin test. However, it turns out that this test also fails
to achieve statistical significance. Other tests could of course be at-
tempted but the cautionary note to the first example here becomes
even more relevant if we continue to try different tests. In practice, in
as much as is possible, we should try to determine in advance the most
appropriate test to use.

Estimating the regression function β(t)

The plots of the standardized score process with time can provide in-
sight into the nature of the regression function β(t). If β(t) = 0 at
all time points t then, as argued in the previous sections, the stan-
dardized score process will look like a sample of Brownian motion. If
we are under the proportional hazards model and β(t) = β0 then the
process will tend to look like Brownian motion with drift, i.e., Brown-
ian motion but, instead of being centered around zero, it is centered
around αt where α would relate linearly to β0. The constant relating
α to β0 would depend mostly on sample size. In any event, for given
data, we can approximate this dependence parameter by a constant for
that data set. The process, under the proportional hazards alternative,
would look approximately linear with some slope.

Next, imagine the following situation. For t < τ, the model coeffi-
cient is given by β−

0 and, for t ≥ τ, the model coefficient becomes β+
0 .

The model is a particularly simple non-proportional hazards model.
Suppose that β+

0 = β−
0 /2. Then, the slope of the standardized score

process for t ≥ τ will be approximately one half that of the slope for
the process when t < τ. The observed process will manifest this and,
having observed two distinct slopes for the standardized score process
we could reparameterize the model whereby we write β−

0 = 2β+
0 = β0.

This is even readily achieved using standard software provided the in-
clusion of time dependent covariates is allowed. In this case we would
write a model with time-dependent effects in an equivalent form of a
model with time-dependent covariates so that

λ(t|Z) = λ0(t) exp[β(t)Z] = λ0(t) exp[β−
0 I(t < τ)Z + β+

0 I(t ≥ τ)Z]
≡ λ0(t) exp[β0Z(t)] = λ0(t) exp[β0{I(t < τ)Z + I(t ≥ τ)Z/2}].

In practical examples the ratio of β+
0 to β−

0 can of course take on
any other value. Using a plot as a visual guide we can map out, at
least as a first approximation, the function β(t) in the simple case just
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described. However, it is clear that the argument extends immediately
to any number of slopes, and not only two, so that an analysis of
the standardized score process can give us a lot of information on the
unknown function β(t). Once we have this function we can consider
the standardized score function for the model β(t) = β̂(t) where β̂(t)
has been obtained in the above way. A visual inspection of a Brownian
bridge process of the transformed standardized score function under
β(t) = β̂(t) can indicate if the fit is adequate.

8.8 Operating characteristics of tests

A thorough study of the size of the tests and how well the large sample
approximations work, at the finite samples we commonly work with,
remains to be carried out. For large samples we know that we will
control correctly for size since the tests all arise as functions of the same
process. This process converges in distribution to Brownian motion and
the probability model for this is known.

Detailed power studies also remain to be carried out. The number
of potential situations is infinitely large and, unlike say the comparison
of proportions where we can do our calculations at some values and
interpolate for those remaining, only broadly categorized cases can
be considered. Nonetheless, it is possible to draw up some general
guidelines indicating which tests make the best choice given the kind
of situation we believe we may be dealing with.

Under a proportional hazards departure to the null hypothesis of
absence of effect the process U∗(β̂, 0, t) will look like Brownian motion
with drift. A distance from origin test, at time t = 1, will have good
power. Any other value of t would make a potential test but, since
the distance from the origin is increasing at a rate of order t and the
standard deviation of U∗(β̂, 0, t) is of order

√
t, we maximize power by

taking the largest possible value of t. Other contending tests are the
partial likelihood score test and U∗(0, 0, t) both of which, on average,
will be very slightly less powerful.

There are situations in which we might anticipate an advantage for
one group in the early part of the study and a long-term advantage for
the other group later in the study. This corresponds to the so-called
crossing hazards problem. Two examples come to mind. The first is
where surgery may be curative but will have an initial greatly increased
hazard associated with the risks of the procedure. Some selection mech-
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anism takes place and those patients who overcome this increased early
hazard can then go on to benefit from the curative properties of the
procedure. Standard tests such as the partial likelihood score test or
the distance from origin test may fail to detect the presence of effects.
It can happen that the process U∗(β̂, 0, t) increases up to a maximum
and then, as the regression effect changes direction, the process declines
and may end up very close to zero. A second, more complex, example
occurs in marrow transplantation studies. The prognostic factor “graft
versus host disease” indicates additional early risk for those patients
suffering from this condition. Later on, however, conditionally upon
having survived that added risk, the graft versus host effect can be
indicating a graft versus leukemia effect, so that those patients have a
better chance of aggressively opposing any residual disease.

For the crossing hazards problem the distance test at time t = 1
will typically have little or no power. A test based on the maximum of
the process U∗(β̂, 0, 1), i.e., supu∈(0,1) U∗(β̂, 0, u) will have good power
against this alternative. Also the maximum of the Brownian bridge,
which will look much the same if U∗(β̂, 0, 1) is close to zero, can be
used to test for this specific alternative. Reflected Brownian motion,
reflected at a point somewhere in the neighborhood of the maximum
will maintain good power against a crossing hazard alternative. Here,
the reversal of the sign, at that point, means that the process continues
to grow. Under the null hypothesis of no effect, reflected Brownian mo-
tion will be the same as Brownian motion and, under the alternative,
if the point of reflection corresponds to a change point in the direction
of regression effect, then it will look like Brownian motion with drift.
In this case then, a test based on distance from the origin at time t = 1
will have good power.

A common, possibly the most commonly encountered, alternative
to the null hypothesis of no effect is that of an effect which declines
with time. If, at some time τ we have reason to believe that the effect
has mostly faded, then it might pay to use a distance from origin test at
time t = τ rather than at t = 1. If we anticipate that effects, whenever
present, are likely to be of the form where they decline through time,
then an area under the curve test at time t = 1 is likely to be more
powerful than a distance from origin test at t = 1. For alternatives
that may be of a proportional hazards nature or may be of a declining
regression effect nature the area under the curve test is still likely to be
the most powerful. Indeed, when the alternative is of a proportional
hazards nature, the area under the curve test loses relatively little



260 CHAPTER 8. FUNCTIONS OF BROWNIAN MOTION

power when compared with the distance from origin test. The area
under the curve test is the recommended test in general situations,
i.e., those where the alternative can be one with a constant regression
effect, a declining regression effect or even an inversion of the regression
effect. It is likely to not perform well when regression effect is delayed
or increases with time. Such cases are quite rare.

8.9 Goodness-of-fit tests

In this book we take the view that there is nothing very special about
goodness-of-fit tests. It is for this reason that the topic is relegated
to the status of a section, following the presentation of tests, rather
than being given the status of a chapter. We place these kind of tests
under the same heading as all of the tests described above. The only
real difference is that, instead of testing a hypothesis of the type H0 :
β = β0, for some β0 given in advance, we test a data driven hypothesis
of the type H0 : β = β̂. We could also view this as studying some
random aspect of the data while conditioning upon the observation β̂.
In this case β̂ would not be known in advance and so, logically, the
goodness-of-fit test follows the usual estimation and testing. This is
what is done routinely.

Recall from the above discussion on operating characteristics that
we do not expect all tests to perform comparably. Performance will
depend on the reality of the situation being faced and, in some cases,
certain tests will have high power while others may have power close
to zero. The same, of course, then holds for a goodness-of-fit test.
Since our estimating techniques will either obtain β̂ as the solution
to U∗(β̂, β0, 1) = 0, or, depending on how we standardize, to some-
thing very close to zero, then a goodness of fit test of the hypothesis
H0 : β = β̂ could be expected to have power zero or power close to
zero if based on the distance from the origin test at time t = 1. We
must look for something else. A good candidate is the Brownian bridge
test. A maximum distance from the origin test would also be worthy
of study. This is because of the type of behavior we might anticipate
under departures from the proportional hazards assumption. The most
common departure we would expect to see would be one where effects
decline through time, in an extreme case perhaps even changing direc-
tion (see example of Stablein et al. below). In such cases we would still
expect, at least for an initial part of the study, the standardized cumu-
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lative score to behave as under a simple departure from the null of no
effects, increasing (or decreasing) steadily. At some point this increase
(or decrease) would either halt or, if effects change direction) make its
way back toward the origin. A test based on the maximum would have
the ability to pick up this kind of behavior. Also, of course, since it is
helpful to make use of the cumulative standardized score process, as a
visual aid, such behavior would be suggested by the graphs.

A first example is given by the well-known Freireich data, presented
in Cox’s famous 1972 paper. These data have been examined in detail
by many authors and the evidence suggests the proportional hazards
approximation to be a very good one. The bridged process is shown in
Figure 8.5 and it can be seen to remain well within the 95% bounds
shown in the same figure. Given this, alongside an absence of behavior
suggesting the presence of any long-term effects which change direc-
tion, i.e., any gradual increase or decrease followed by a plateau or
a reversal in direction (which under the bridge transformation would
look like an increase or decrease followed by a return to the origin),
we can conclude that our chosen model is not unreasonable. A larger
study in breast cancer, carried out at the Curie Institute, indicated,
among other effects, the strong prognostic impact of the variables stage
and grade. For a model with both variables included, a bridged process,
shown in Figure 8.6, tells us that a two-dimensional proportional haz-
ards model for these data does not provide a good fit. However, if we
relax assumptions a little and build a two dimensional model whereby
only the stage is included as a proportional hazards effect, the grade
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Figure 8.5: A bridged standardized cumulative processes for the Freire-
ich data.



262 CHAPTER 8. FUNCTIONS OF BROWNIAN MOTION

S
ta

nd
ar

di
se

d 
sc

or
e

0.0

−4

−2

0

2

4

0.2 0.4 0.6 0.8 1.0 0.0

−4

−2

0

2

4

0.2 0.4 0.6 0.8 time

Figure 8.6: A bridged standardized cumulative processes for the Curie
breast cancer data. Full PH model (left) and partial PH model (right).
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Figure 8.7: A bridged standardized cumulative processes for the Sta-
blein data.

being allowed to exhibit non-proportional hazards behavior, then the
fit is very much improved. In both cases the departure can be judged
significantly different from that we anticipate for data generated under
the fitted model. Even so, given the large sample size, and that the
test statistic is only marginally significant, we may judge the fit good
enough in practice.

We can still work further to improving fit if we wish. Other quan-
tities, described later, will help us here. These are the goodness-of-fit
coefficient and the predictability of the model. A further example is
presented in Figure 8.7. The bridged cumulative process corresponds
to the data of Stablein et al. (1981). The example is interesting since,
in advance of analysis, we might suspect a proportional hazards as-
sumption to fail. There are two groups, surgery and chemotherapy.
Whereas the first presents a greater possibility of cure, it is associated
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with an earlier, higher, hazard rate due to the procedure itself. This
example has been studied by a number of authors and comes under
the classic heading of the crossing hazards problem. The evidence of
a poor fit of a proportional hazards model can be seen almost right
away by an inspection of the figure. A test of the null hypothesis of
absence of effect fails to achieve significance when we assume a propor-
tional hazards model. Yet there is clear evidence of effects, although
the effects are not of a proportional hazards nature.

Finally, the rather limited nature of a goodness-of-fit test should
be underlined. For modest and small samples it is often the case that
even quite severe departures from model assumptions are not easily
detected. For large samples the opposite can occur whereby we are
able to detect departures of an arguably inconsequential nature. This
alone can argue in favor of a graphical type test where we may pay less
attention to, for example, the greatest distance achieved by a process
approximating a Brownian bridge than to the overall impression given
by the curve. Aside from the greatest distance reached, a curve which
crosses several times the time axis indicates a more satisfactory overall
fit than one which drifts away from the origin to only return at the
end of the observation period. In later chapters (those dealing with ex-
plained variation and explained randomness) we consider an approach
to getting around the sample size dependence of goodness-of-fit tests.
The idea is to deal with population quantities that can be estimated.
These provide an index lying between zero and one, a large value in-
dicating a satisfactory fit, a small value an inadequate fit. For small
observed values we may judge it worthwhile to investigate some re-
laxation of the proportional hazards assumption in such a way that a
re-calculated index would be much larger.

8.10 Exercises and class projects

1. Carry out integration in Equation 8.1 and express U(β, t) as a dis-
crete sum. Also write down U∗(α, β, j/k) as a discrete sum.

2. Show that U∗(α, β, u), viewed as a function of u, is continuous in u.

3. Describe the reasons for the construction U∗(α, β, u) having two pa-
rameters, α and β, rather than a construction in which the parametric
dependence is expressed through a single parameter, i.e., α = β.
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4. Using a data set of your own, obtain a 95% confidence interval for
β, (β̂−, β̂+) on the basis of distance from origin tests at time t = 1.

5. For the same data set as in the previous question, calculate 95%
confidence intervals using (i) the arcsine test and (ii) the area under
the curve test.

6. Show how a linearly weighted test can be used to categorize an area
under the curve test. Determine the correct weights for the categoriza-
tion to be valid.

7. Plot VarD(θ, t) as a function of θ and show that at θ = 0 and
θ = 1 the variance expression is in agreement with those for Brownian
motion and integrated Brownian motion.

8. For the Freireich data calculate the p-values for all of the different
tests. For the linear combination test use the values; θ = 0.3, θ = 0.5,
and θ = 0.7. For reflected Brownian motion use the values r = 0.2,
r = 0.8, and r = 1.4. Comment on the results.

9. Using several data sets compare the results for the distance from
origin test at t = 1 and the partial likelihood score test. Compare the
findings. Construct independent or conditionally independent censor-
ing mechanisms that you expect should impact the two tests differ-
ently. On the basis of these findings suggest situations in which it is
preferable to use one test over the other.

10. Under which circumstances would you anticipate that there may
be non-negligible observed differences between the distance from origin
test at time t = 1 and the partial likelihood score test. Under which
circumstances would you anticipate that the two tests would coincide?

11. As a corollary to the previous question, can you construct a situa-
tion in which you would expect the distance from origin at time t = 1
to have greater power than the partial likelihood score test?

12. In the case of two explanatory variables, Z1 and Z2, describe how
you would set up a test to test for (i) an overall effect, (ii) the effect
of Z1 given some specific value of Z2, and (iii) the effect of Z1 given
Z2 but without specifying the value of Z2.
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13. Describe two group situations in which you would anticipate certain
tests performing well and others performing poorly.

14. For the linearly weighted test statistic the choice K(t) being the
number at risk at time t (analogous to Gehan 1965) and the choice
K(t) = Ŝ(t), the marginal survival at time t, lead to tests with different
operating characteristics. How do you anticipate different censoring
mechanism affecting these two tests? If one of the goals in selecting
a suitable test is that any dependence on censoring should diminish
with increasing sample size, then which test would you choose?

15. Simulate survival data for the two-group problem. For one group
the hazard rate is constant and equal to 1. For the other group the
hazard rate is equal to 1.7 and changes to the value 0.3 at time τ in the
study. Take the total sample size to be 100, and for the censoring to be
governed by the same mechanism as survival, so that approximately
there will be 50% censoring. Estimate the power of the various tests
when τ = 0.3, τ = 1.0, and τ = 1.4.

16. Repeat the calculations of the above question with same sizes equal
to 50, 200, and 300. Study also the case when the hazard rate changes
from 1.4 to 0.

17. Simulate survival data for the two-group problem. Again, for one
group, the hazard rate is constant and equal to 1. For the other group,
consider the following situations: (i) the hazard rate is equal to 2.0, (ii)
the hazard rate is equal to 2.0 for t < τ, after which time the hazard
rate drops in value to 1.0. Take τ to be 0.25, 0.75 and 1.0, and sample
size to be 1000 with no censoring. Use graphics to provide a graphical
representation of regression effects.

18. For the simulation of the previous question, estimate β and use
a Brownian bridge process to carry out a test of the null hypothesis
H0 β = β̂, i.e., a goodness-of-fit test. Comment on your findings under
the different situations.

19. For the case of two groups with covariates Z1 and Z2 we could
study a process of Z1 arising from a model in which Z1 occurs on its
own or from a process in which the two variables are included and we
study the marginal process based on Z1. Consider the various tests
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outlined in this chapter and, when applied to the two situations just
described, explain how the interpretation differs.

20. Consider once more the case of two covariates Z1 and Z2 included
in a two-dimensional model. Find an example (either practical or the-
oretical) in which the process for the prognostic score β̂1Z1 + β̂2Z2

increases linearly with time indicative of a good model fit but that
both of the marginal processes for Z1 and Z2 fail tests of fit. How do
you explain this phenomenon?

21. As above, simulate survival data for the two-group problem. For
the first group, the hazard rate is constant and equal to 1. For the
other group, the hazard rate is equal to 2.0 for t < τ, after which time
the hazard rate drops in value to 1.0. Take τ to be 0.25, 0.75 and
1.0, and sample size to be 1000 with no censoring. Fit a proportional
hazards model and use graphics to provide a graphical representation
of regression effects. Show a bridge plot indicating a poor fit. Next,
using the observed process, and the observed relationships between the
slopes describing the effect, redefine a time-dependent β(t). Rework a
bridged process and note the improvement in fit.



Chapter 9

Inference: Likelihood

9.1 Summary

Likelihood solutions for parametric survival models are described.
These are relatively straightforward. The usual likelihood procedures
for inference based on large samples can be applied. It is also possible
to construct inference based on the derivative of the log-likelihood to-
gether with functions of Brownian motion. This approach is then close
to that of the previous chapter. For the fully parametric approach the
exponential model is particularly simple. The partial likelihood can
be viewed in various ways: (1) as one term of a product, the other
term containing little information on the unknown parameter, (2) as
an approximation arising from use of the main theorem (Section 7.4),
(3) as a marginal likelihood of the ranks, and (4) as a profile likeli-
hood. Other techniques leaning on likelihood, such as conditioning on
ancillary statistics as well as Bayesian inference, are highlighted.

9.2 Motivation

For almost any statistical model, use of the likelihood is usually the
chosen method for dealing with inference on unknown parameters.
Bayesian inference, in which prior information is available, can be
viewed as a broadening of the approach and, aside from the prior,
it is again the likelihood function that will be used to estimate pa-
rameters and carry out tests. Maximum likelihood estimates, broadly
speaking, have good properties and, for exponential families, a class
to which our models either belong or are close, we can even claim

267
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some optimality. A useful property of maximum likelihood estimators
of some parameter is that the maximum likelihood estimator of some
monotonic function of the parameter is the same monotonic function
of the maximum likelihood estimator of the parameter itself. Survival
functions themselves come under this heading and so, once we have es-
timated parameters that provide the hazard rate, then we immediately
have estimates of survival. Variance expressions are also obtained quite
easily, either directly or by the approximation techniques commonly
applied. Keeping in mind that our purpose is to make inference on
the unknown regression coefficients, invariant to monotonic increasing
transformations on T, we might also consider lesser used likelihood
approaches such as marginal likelihood and conditional likelihood. It
can be seen that these kind of approaches lead to the so-called partial
likelihood. In practice we will treat the partial likelihood as though
it were any regular likelihood, the justification for this being possible
through several different arguments.

9.3 Likelihood solution for parametric models

For fixed covariates and, in the presence of parametric assumptions
concerning λ0(t), inference can be carried out on the basis of the fol-
lowing theorem that simply extends that of Theorem 5.1. We suppose
that the survival distribution is completely specified via some para-
metric model, the parameter vector being say θ. A subset of θ is a
vector of regression coefficients, β, to the covariates in the model. The
usual working assumption is that of a conditionally independent cen-
soring mechanism, i.e., the pair (T, C) are independent given Z. This
would mean, for instance, that within any covariate grouping, T and
C are independent but that C itself can depend on the covariate. Such
dependence would generally induce a marginal dependency between C
and T .

Theorem 9.1 Under a conditionally independent censoring mecha-
nism the log-likelihood log L(θ) can be written log L(θ)=

∑n
i=1 log Li(θ)

where

log Li(θ) = I(δi = 1) log f(xi|zi; θ) + I(δi = 0) log S(xi|zi; θ). (9.1)

The maximum likelihood estimates obtain as the values of θ, denoted θ̂,
that maximize log L(θ) over the parameter space. For log L(θ) a differ-
entiable function of θ, this value is then the solution to the estimating
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equation U(θ) = 0 where; U(θ) =
∑

i ∂ log Li(θ)/∂θ. Next notice that,
at the true value of θ, i.e., the value which supposedly generates the
observations, denoted θ0, we have Var(U(θ0)) = E U2(θ0) = E I(θ0)
where

I(θ) =
n∑

i=1

Ii(θ) = −∂2 log L(θ)/∂θ2 = −
n∑

i=1

∂2 log Li(θ)/∂θ2.

As for likelihood in general, some care is needed in thinking about the
meaning of these expressions and the fact that the operators E(·) and
Var(·) are taken with respect to the distribution of the pairs (xi, δi)
but with θ0 fixed. The score equation is U(θ̂) = 0 and the large sample
variance is approximated by Var(θ̂) ≈ 1/I(θ̂). Newton-Raphson iter-
ation is set up by a simple application of the mean value theorem so
that

θj+1 = θj + I(θj)−1U(θj) , j ≥ 1, (9.2)

where θ1 is some starting value, often zero, to the iterative cycle. The
iteration is brought to a halt once we achieve some desired level of
precision. Note that likelihood theory would imply that we work with
the expected information (called Fisher information) E{I(θ)} but in
view of Efron and Hinkley (1978) and the practical difficulty of speci-
fying the censoring we usually prefer to work with a quantity allowing
us to consistently estimate the expected information, in particular the
observed information.

Large sample inference can be based on any one of the three tests
described in Chapter 2. For the score test there is no need to carry
out parameter estimation or to maximize some function. Many well
established tests can be derived in this way. In exponential families,
also the so-called curved exponential families (Efron 1975), such tests
reduce to contrasting some observed value to its expected value under
the model. Good confidence intervals (see Cox and Hinkley 1974, page
212) can be constructed from “good” tests. For the exponential fam-
ily class of distributions the likelihood ratio forms a uniformly most
powerful test and, as such, qualifies as a “good” test in the sense of
Cox and Hinkley. The other tests are asymptotically equivalent so that
confidence intervals based on the above test procedures will agree as
sample size increases. Also, we can use such intervals for other quan-
tities of interest such as the survivorship function since this function
depends on these unknown parameters.
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Estimating the survival function for parametric models

We can estimate the survival function as S(t; θ̂). If Θα provides a
100(1 − α)% confidence region for the vector θ, then we can obtain
a 100(1 − α)% confidence region for S(t; θ) in the following way. For
each t let

S+
α (t; θ̂) = sup

θ∈Θα

S(t; θ) , S−
α (t; θ̂) = inf

θ∈Θα

S(t; θ) , (9.3)

then S+
α (t; θ̂) and S−

α (t; θ̂) form the endpoints of the 100(1 − α)%
confidence interval for S(t; θ). Such a quantity may not be so easy
to calculate in general, simulating from Θα or subdividing the space
being an effective way to approximate the interval. Some situations
nonetheless simplify. The most straightforward is where the survival
function is a monotonic function of the one dimensional parameter θ.
As an illustration, the scalar location parameter, θ, for the exponential
model corresponds to the mean. We have that S(t; θ) is monotonic in θ.
For such cases it is only necessary to invert any interval for θ to obtain
an interval with the same coverage properties for S(t; θ). Denoting the
upper limit of the 100(1 − α)% confidence interval for θ as θ+

α and
the lower limit of the 100(1 − α)% confidence interval for θ as θ−α , we
can then write; S+

α (t; θ̂) = S(t; θ−α ) and S−
α (t; θ̂) = S(t; θ+

α ). Note that
these intervals are calculated under the assumption that t is fixed. For
the exponential model, since the whole distribution is defined by θ, the
confidence intervals calculated pointwise at each t also provide confi-
dence bands for the whole distribution. If we wish to obtain confidence
bands, valid for a range of values of t, then more work is needed.

9.4 Likelihood solution for exponential models

As for the case of a single group, an analysis based on the exponential
model is particularly simple. For this reason alone it is of interest
but also (see section below on the non-parametric exponential model)
the results are much more general than is often supposed. We restrict
attention to the two-group case in order to enhance readability. The
two groups are defined by the binary covariate Z taking the value either
zero or one. The extension to higher dimensions is all but immediate.
For the two-group case we will only need to concern ourselves with
two parameters, λ1 and λ2, which, once we have them or consistent
estimates of them, we have the whole survival experience (or estimates
of this) for both groups.
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Expressing the model in proportional hazards form we can write;
λ1 = λ and λ2 = λ exp(β). Referring to Equation 9.1 then, if individ-
ual i corresponds to group 1, his or her contribution to the likelihood
is f(xi; λ) = λ exp(−λxi) when δi = 1, whereas for δi = 0, the con-
tribution is S(xi; λ) = exp(−λxi). If the individual belongs to group
2 the likelihood contribution would be either λ exp(β) exp(−eβλxi) or
exp(−eβλxi) according to whether δi is equal to one or zero. We use
the variable wi = I(zi = 1) to indicate which group the subject is
from. From this we have:

Lemma 9.1 For the 2-sample exponential model, the likelihood satis-
fies;

log L(λ, β) = k log λ + βk2 − λ

⎧
⎨

⎩

n∑

j=1

xj (1 − wj) + eβ
n∑

j=1

xj wj

⎫
⎬

⎭
,

where there are k1 distinct failures in group 1, k2 in group 2, and
k = k1 + k2. Differentiating the log-likelihood with respect to both λ
and β and equating both partial derivatives to zero we readily obtain
an analytic solution to the pair of equations. From this we have:

Lemma 9.2 The maximum likelihood estimates β̂ and λ̂ for the two-
group exponential model are written

β̂ = log
k2∑n

j=1 xj wj
− log

k1∑n
j=1 xj (1 − wj)

; λ̂ =
k1∑n

j=1 xj (1 − wj)
.

It follows immediately that; λ̂1 = λ̂ and that λ̂2 = λ̂ exp(β̂) =
k2/
∑n

j=1 xj wj . In order to carry out tests and construct confidence
intervals we construct the matrix of second derivatives of the log-
likelihood, I(λ, β), obtaining
{
−∂2 log L(λ, β)/∂λ2 −∂2 log L(λ, β)/∂λ∂β

−∂2 log L(λ, β)/∂λ∂β −∂2 log L(λ, β)/∂β2
=

{
k/λ2 eβ∑

j xjwj

eβ∑
j xjwj λeβ∑

j xjwj

.

The advantage of the two parameter case is that the matrix can be
explicitly inverted. We then have:

Lemma 9.3 Let D = λ−1eβ
∑

j xjwj{k − λeβ
∑

j xjwj}. Then, for
the two-group exponential model the inverse of the information matrix
is given by

I−1(λ, β) = D−1

{
λeβ
∑

j xjwj −eβ
∑

j xjwj

−eβ
∑

j xjwj k/λ2
.
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The score test is given by X2
S = U ′(λ̂, 0)I−1(λ̂, 0)U(λ̂). Following some

simple calculations and recalling that exp(−β̂) =
∑n

j=1 xjwj/k2, we
have:

Lemma 9.4 For the two-group exponential model the score test is
given by

X2
S = k−1k1k2 exp(−β̂){1 − exp(β̂)}2.

At first glance the above expression, involving as it does β̂, might ap-
pear to contradict our contention that the score statistic does not re-
quire estimation of the parameter. There is no contradiction although
we consider in the above expression λ to be a nuisance parameter not
specified under the null hypothesis. This parameter value does require
estimation, although still under the null. The regression parameter
itself turns out to have a simple explicit form, and it is this same
term that appears in the score statistic. Typically, for other models,
the maximum likelihood estimate would not have an explicit analytic
form. We do not need estimate it in order to evaluate the score sta-
tistic. On the other hand, both the Wald test and the likelihood ratio
test do require estimation under the alternative. The calculations in
this specific case can be carried out straightforwardly and we also have
a relatively simple, and again explicit solution (i.e., not requiring the
finding of an iterative solution to the likelihood equation) for the like-
lihood ratio test. We have then the following lemma:

Lemma 9.5 For the two-group exponential model the likelihood ratio
test X2

L is given by;

X2
L = 2

(

k2 log
k2∑

j xjwj
+ k1 log

k1∑
j xj(1 − wj)

− k log
k

∑
j xj

)

.

The third of the tests based on the likelihood, the Wald test, is also
straightforward to calculate and we have the corresponding lemma:

Lemma 9.6 For the two-group exponential model, the Wald test is
given by;

X2
W = k−1k1k2 β̂2.

For large samples we anticipate the three different tests to give very
similar results. For smaller samples the Wald test, although the most
commonly used, is generally considered to be the least robust. In par-
ticular, a monotonic transformation of the parameter will, typically,
lead to a different value of the test statistic.
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Exponential analysis of Freireich data

The maximum likelihood estimates of the hazard rates in each group are

λ̂1 = 9/359 = 0.025 , Var(λ̂1) = 9/(359)2 = 0.000070,

λ̂2 = 21/182 = 0.115 , Var(λ̂2) = 21/(182)2 = 0.00063.

We might note that the above results are those that we would have
obtained had we used the exponential model separately in each of the
groups. In this particular case then the model structure has not added
anything or allowed us to achieve any greater precision in our analysis.
The reason is simple. The exponential model only requires a single pa-
rameter. In the above model we have two groups and, allowing these to
be parameterized by two parameters, the rate λ and the multiplicative
factor exp(β), we have a saturated model. The saturated model is en-
tirely equivalent to using two parameters, λ1 and λ2, in each of the two
groups separately. More generally, for exponential models with many
groups or with continuous covariates, or for other models, we will not
usually obtain the same results from separate analyzes than those we
obtain via the model structure. The model structure will, as long as it
is not seriously misspecified, usually lead to inferential gains in terms
of precision of parameter estimates.

Since exp(β̂) = 21/182×359/9 = 4.60 we have that the estimate of
the log relative risk parameter, β̂ is 1.53. We also have that the score
test, X2

S = 17.8, the Wald test X2
W = 14.7 and the likelihood ratio test

X2
L = 16.5. The agreement between the test statistics is good and, in

all cases, the significance level is sufficiently strong to enable us to
conclude in favor of clear evidence of a difference between the groups.

Had there been no censoring then k = n, the sample size, and∑n
j=1 tj corresponds to a sum of n independent random variables

each exponential with parameter λ. We could therefore treat n/λ̂ as
a gamma variate with parameters (λ, n). In view of the consistency of
λ̂, when there is censoring, we can take k/λ̂ as a gamma variate with
parameters (λ, k), when k < n. This is not an exact result, since it
hinges on a large sample approximation, but it may provide greater
accuracy than the large sample normal approximation.

As described earlier, we can make use of standard tables by mul-
tiplying each term of the sum by 2λ. The result of this product is a
sum of n exponential variates in which each component of the sum has
variance equal to 2. This corresponds to a gamma (2, n) distribution
which is also equivalent to a chi-square distribution with 2n degrees of
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freedom. Taking the range of values of 2kλ/λ̂ to be between χα/2 and
χ1−α/2 gives a 100(1−α)% confidence interval for λ. For the Freireich
data we obtained as a 95% CI = (0.0115, 0.0439). On the basis of
intervals for λ, we can obtain intervals for the survivorship function
which is, in this particular case, a monotonic function of λ. The upper
and lower limits of the 100(1−α)% confidence interval are denoted by
S+

α (t; λ̂) and S−
α (t; λ̂) respectively. We write,

[S+
α (t; λ̂), S−

α (t; λ̂)]=

[

exp

{

−
(

λ̂χα/2

2k

)

t

}

, exp

{

−
(

λ̂χ1−α/2

2k

)

t

}]

.

(9.4)

A different approximation was described in Chapter 5 in which

S+
α (t; λ̂) ≈ exp

{

−
(

λ̂√
k

)
(√

k − z1−α/2

)
t

}

, (9.5)

where the corresponding expression for S−
α (t; λ̂) obtains from using

the percentiles, z1−α/2 by zα/2 of the standard normal distribution.
Agreement between these two approximations appears to be very close.
It would be of interest to have a more detailed comparisons between
the approaches.

Non-parametric exponential analysis

For the one sample case we have already seen how, referring to Section
2.5 and Theorem 2.8, we are able to make use of the result that, for
any continuous positive random variable T , with distribution func-
tion F (t), the variate Λ(T ) =

∫ T
0 f(u)/[1 − F (u)]du has a standard

exponential distribution. For the one sample case we can work with
the empirical survival function, Ŝ(t) appealing to the result that the
observations − log Ŝ(Xi) can be taken to have been sampled from a
standard exponential distribution.

In the two-group and, by extension, many group case it will be nec-
essary to transform observations from a group other than that giving
rise to the group estimate, say ŜG(t). To facilitate this, as described in
Chapter 5, we work with the continuous version of the Kaplan-Meier
estimate, S̄(t). Note that a two-group proportional hazards model can
be expressed as; S2(t) = Sα

1 (t) where α = exp(β). Taking logarithms
then enables an analytic expression for β as;

β = log{− log S2(t)} − log{− log S1(t)}. (9.6)
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For the case of three groups, defined by the pair of binary indicator
variables, Z1 and Z2, the model states that S(t|Z1, Z2) = Sα

1 (t) where,
in this more complex set-up, log α = β1Z1 +β2Z2. Here, in exactly the
same way, we obtain analytic expressions for β1 and β2 as the arith-
metic difference between the log-log transformations of the respective
marginal survival curves.

For two independent groups G1 and G2 we can consider two sepa-
rate estimators, Ŝ1(t) and Ŝ2(t). Since we are assuming a proportional
hazards model, we will carry over this restriction to the sample based
estimates whereby Ŝ2(t) = Ŝα

1 (t) and where, as before, α = exp(β). In
view of the above result we have:

Lemma 9.7 A consistent estimator of β obtains from

β̂ =
1

nm

nm∑

i=1

[
log{− log S̄2(Xi)} − log{− log S̄1(Xi)}

]
, (9.7)

where nm =
∑

i I(Xi ≤ m), m� = max{Xi|Xi ∈ G�}, and m =
min(m1, m2).

All of the simple results that are available to us when data are gener-
ated by an exponential distribution can be used. In particular, if we
wish to compare the means of two distributions, both subject to cen-
soring, then we can transform one of them to standard exponential via
its empirical survival function, then use this same transformation on
the other group. The simple results for contrasting two censored ex-
ponential samples can then be applied even though, at least initially,
the data arose from samples generated by some other mechanism.

9.5 Semi-parametric likelihood solution

Recalling that the observed data are the triplets {Zi(t), Yi(t), Xi ; i =
1, . . . , n}, we might view any problem of interest in survival analysis
to be summarized by the joint density of (T, Z), let’s say aθ(t, z). The
marginal covariate distribution for Z is typically fixed by design and
all of our models express some relation for the conditional distribution
of T given Z. We are then able to write that aθ(t, z) = fθ(t|z)g(z).
This is straightforward in the parametric case and corresponds to what
is described above. We limit our attention to fθ(t|z) alone because we
assume that g(z) does not depend on any of the unknown parameters
of interest to us.
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In the log-likelihood expression, g(z) would then appear as a con-
stant and disappear upon differentiation with respect to the model
parameters. Instead of considering fθ(t|z) though, we could also write
aθ(t, z) = hθ(z|t)f(t). The marginal quantity f(t) will typically include
some information on the unknown parameters. This follows as a con-
sequence of our models postulating conditional dependence between
the covariate and survival time, this dependence expressed via fθ(t|z).
Thus, applying the law of total probability, we will, in general, find
some complicated form of dependence between f(t) =

∫
fθ(t|z)g(z)dz

and the unknown parameters. However, we might imagine, or even
postulate, any such dependence to be either very weak or simply non
existent. In place of a full likelihood based upon aθ(t, z) we can work
with just the conditional distributions based only on hθ(z|t).

Constructing likelihoods based on fθ(t|z) or hθ(z|t), rather than the
full density aθ(t, z), can be described as leading to a semi-parametric
solution. This is because any parametric dependence via f(t) or g(z)
is either ignored or deemed not to exist. Furthermore, inference based
on fθ(t|z) is unaffected by monotonic increasing transformations of Z,
and inference based on hθ(z|t) is, in turn, unaffected by monotonic in-
creasing transformations of T . The first is then considered to be rank
invariant with respect to Z, wheras the second is rank invariant with
respect to T . As long as the ranks remain the same, which is the case
for arbitrary monotonic increasing transformations, then inference is
unaffected. This is often felt to be something desirable in survival mod-
eling where we have poor indicators concerning an appropriate choice
for fθ(t|z) and we believe that the essential information is contained
in the observed ranks. Although, for the observations, we are not able
to write down hθ(Zi|Xi)δi (because we do not know h) we can apply
the main theorem (Section 7.4) leading to our best approximation of
this likelihood.

Definition 9.1 The product, L{β(t)}, of the discrete probabilities
πi(β(t), Xi),

πi(β(t), t) =
Yi(t) exp{β(t)Zi(t)}∑n

j=1 Yj(t) exp{β(t)Zj(t)}
,

over the observed failures is called the partial likelihood.
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Conjecture 9.1 The product, L{β(t)}, of the discrete probabilities
πi(β(t), Xi) over the observed failures has the same properties as usual
likelihood.

The conjecture has been shown to hold in many particular cases (Cox
1975, Hill et al. 1990, Andersen et al 1993). Under (6.3), i.e. the con-
straint β(t) = β, the product of the π’s over the observed failure times
gives the likelihood described by Cox (1972, 1975). We return to the
concept “partial likelihood” itself below, but note that in view of the
main theorem (Section 7.4) and our estimating equations it is not in
any sense crucial to the basic construction. The concept is difficult
and, since it is not in any way essential to the development of esti-
mating equations, we do not dwell upon it. For the purposes of this
book, whenever we write the term “partial likelihood” we mean the
above product without implying any deeper ideas relating to how the
product arises. Strictly speaking the partial likelihood has only been
motivated for time-independent β(t), i.e., a constant, but the form is
the same and, in the absence of a better name, it seems appropriate
to refer to all such expressions as those of a partial likelihood.

The result is not of primary interest and we do not need it to justify
our estimating equations. These arise naturally as moment estimators
as a consequence of the main theorem (Section 7.4). The solutions to
these estimating equations have good properties. It is of interest in
as much as it is common to talk about partial likelihood and that we
can take this to be defined as in the conjecture. The actual concept
partial likelihood itself is discussed in the following paragraph. Taking
the logarithm and the derivative with respect to β, we obtain the
estimating function,

U(β) =
n∑

i=1

δi

{

Zi −
∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}

(9.8)

that we refer to as a score function in view of its connection to a
likelihood. The equation, upon setting equal to zero, can generally be
solved without difficulty using the Newton-Raphson method, to obtain
the maximum partial likelihood estimate (MPLE) β̂ of β. To make
inference about β, the simplest and most common approach is to treat
β̂ as asymptotically normally distributed with mean β and variance
I(β̂)−1, where I(β), called the information in view of the analogy with
classical likelihood, is minus the second derivative of L(β) with respect
to β, i.e., letting
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Ii(β)=

∑n
j=1 Yj(Xi)Z2

j exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)
−
{∑n

j=1 Yj(Xi)Zj exp(βZj)
∑n

j=1 Yj(Xi) exp(βZj)

}2

(9.9)

then I(β) =
∑n

i=1 δiIi(β). Inferences can also be based on likelihood
ratio methods. A third possibility that is sometimes convenient, is to
base tests on the score U(β), which in large samples can be considered
to be normally distributed with mean zero and variance I(β). In the
above expressions for U(β) and I(β) we have taken the covariable Z to
not depend upon time. This is simply in order to keep the presentation
uncluttered and, if Z depends on t, then, in all of the above expres-
sions, we would have, for instance, Zj(Xi). Multivariate extensions are
completely natural, with the score being a vector and I an information
matrix. In this setting, i.e., parametric or semi-parametric likelihood,
less emphasis is given to the role played by time and more to the the
individuals themselves, indexed by i. The connections are nonetheless
strong and note for instance that Ii(β) = Vβ(Z|Xi).

Log-rank and associated test procedures

The usual univariate and multivariate likelihood testing procedures
can be applied on the basis of L(β), U(β) and I(β), enabling the
testing of complex hypotheses as well as the construction of interval
estimates. For non-proportional hazards models we simply replace β
by β(t). For stratified models, we calculate L(β), U(β) and I(β) within
each stratum, calling these for the sake of argument; Ls(β), Us(β) and
Is(β) for stratum s. We then sum across the strata.

One encouraging side to inference based on U(β) is that a broad
class of procedures, known as log-rank type tests, are recovered as
special cases. These procedures were developed without any specific
model in mind as a series of two by two tables, drawn up at each
of the failure points. We can do this at each of the observations Xi,
i = 1, . . . , n since for Xi where Ci < Ti, the contribution from the
table will be zero. Table 9.1 summarizes the required information. In
group 1 we observe a total of m1(i) failures. In the simplest cases, and

Dead at time Xi Alive after Xi Totals
Group 1 m1(i) n1(i) − m1(i) n1(i)
Group 2 m2(i) n2(i) − m2(i) n2(i)
Totals m(i) n(i) − m(i) n(i)

Table 9.1: Basic 2 × 2 survival table at time Xi.
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where we split ties for the sake of clarity, m1(i) is a binary random
variable (0,1). The total number of subjects at risk at time Xi is n(i),
this being divided into n1(i) for group 1 and n2(i) for group 2.

Lemma 9.8 Under the null hypothesis of independence between group
indicator and survival status, and disallowing the possibility of ties, the
random variable m1(i) is Bernoulli with mean e1(i) and variance v(i),
where

e1(i) =
m(i)n1(i)

n(i)
; v(i) = m(i)

n1(i)n2(i)
n2(i)

{n(i) − m(i)}
{n(i) − 1} .

In the presence of ties, i.e., allowing for m(i) to be greater than one,
the result for the mean and variance still holds since m1(i) is then a
hypergeometric variable.

Definition 9.2 The weighted log-rank test is based on approximating
{
∑

i

K2
i v(i)

}−1{
∑

i

Ki{m1(i) − e1(i)}
}2

for some positive weights, Ki, by a chi-squared variate on one degree
of freedom.

When there are no ties, the result is of interest in view of:

Lemma 9.9 When Ki = 1 for all i, the log-rank test coincides with
the score test based on U(0) and I(0).

The first obvious generalization of the score test is then weighted score
tests involving the weights, Ki. The choice Ki = 1 corresponds to the
classic log-rank test. The choice Ki = n(i) corresponds to the test pro-
posed by Gehan (1965) and the choice Ki = Ŝ(Xi) corresponds to the
choice proposed by Prentice (1978). Under the null hypothesis, regard-
less of choice of K, for large samples the test statistic will be closely
approximated by a chi-square. Under an alternative closely approxi-
mated by proportional hazards, i.e., effects remain constant in time,
then the choice Ki = 1 will maximize power against local alternatives.
If early effects are greater than later effects, then either of the choices
of Prentice (1978) or Gehan (1965) will, generally, lead to increased
power. The optimal test to choose regarding power depends on the na-
ture of the particular alternative. Choosing the weights of Prentice will
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maximize power when the decline in effect with t mirrors the decline
in S(t) with t. Choosing the Gehan weights maximizes power for a
decline in effect that depends on the censoring and so this is more dif-
ficult to make general recommendations for. Stratified log-rank tests
are obtained by summing the m1(i), the e1(i) and v(i) across strata.
Before such summing all of the calculations are carried out within any
given stratum.

More elaborate log-rank type tests can be written down in much
the same way, enabling tests of homogeneity for several groups, tests
of trends, as well as adjusted tests. Since these are all obtainable as
special cases of a score test based on the model, little additional in-
sight is to be found in detailing these various calculations. They are
straightforward and can be found for example in Hill et al. (1990).

9.6 Other likelihood expressions

The Bayesian view of a multi-parameter likelihood is simply that of a
joint density for the parameters given the observations (having stan-
dardized the function so that the area under the curve is equal to
one). Unless a prior distribution is degenerate, conclusions based on
the Bayesian view and those based on the classic view coincide for
large samples and so, for our discussion here, we take the Bayesian
view since it is more transparent. A full likelihood includes all the
parameters and we can take the maximum likelihood estimates to be
the modes of the multi-parameter density. Other estimators would be
available, the means, medians, for instance, all coinciding for large
samples. That, however, is not so much our concern as that of making
inferences for some of the parameters while, in some sense, accounting
for others.

Conditional likelihood

A conditional likelihood, that we may like to view as a conditional
density, simply fixes some parameters at certain values. An obvious
example is that of a parameter that is a function of some variance, a
quantity which indicates the precision in an estimate of other parame-
ters but tells us nothing about where such parameters may be located.
It has been often argued that it is appropriate to condition on such
quantities. The variance parameter is then taken as fixed and known
and the remaining likelihood is a conditional likelihood.
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Cox (1962) gives an example of two instruments measuring the
same quantity but having very different precision. His argument, which
is entirely persuasive, says that we should use the conditional likelihood
and not the full likelihood that involves the probabilities of having
chosen one or the other instrument. The fact that we may have chosen
the less precise instrument a given rate of the time is neither here
nor there. All that matters are the observations and the particular
instruments from which they arise. Another compelling example arises
in binomial sampling. It is not at all uncommon that we would not
know in advance the exact number n of repetitions of the experiment.
However, we rarely would think of working with a full likelihood in
which the distribution of n is explicitly expressed. Typically, we would
simply use the actual value of n that we observed. This amounts to
working with a conditional likelihood.

Fisher (1934) derived an exact expression for the distribution of
the maximum likelihood estimate for a location or scale parameter
conditional on observed spread in the data. Fisher’s expression is par-
ticularly simple and corresponds to the likelihood function itself stan-
dardized so that the integral with respect to the parameter over the
whole of the parameter space is equal to one. It is quite an extraordi-
nary result in its generality and the fact that it is exact. Mostly we are
happy to use large sample approximations based on central limit theo-
rems for the score statistic and Taylor series approximations applied to
a development around the true value of an unknown parameter. Here
we have an exact result regardless of how small our sample is as long
as we are prepared to accept the argument that it is appropriate to
condition on the observed spread, the so-called “configuration” of the
sample. For a model in which the parameter of interest is a location
parameter the configuration of the sample is simple the set of distances
between the observations and the empirical mean. For a location-scale
family this set consists of these same quantities standardized by the
square root of the variance.

Fisher’s results were extended by Hinkley (1988) to the very broad
class of models coming under the heading of curved exponential family
models (Efron 1984). This extension was carried out for more general
situations by conditioning on the observed information in the sample
(a quantity analogous to the information contained in the set of stan-
dardized residuals). Although no longer an exact result the result turns
out to be very accurate and has been extensively studied by Bandorff-
Nielsen (1988). For the proportional hazards model we can use these
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Figure 9.1: The standardized (i.e., area integrates to one) partial
likelihood function for the proportional hazards model based on the
Freireich data.

results to obtain g(β) as the conditional distribution of the maximum
likelihood estimator via the expression

g(u) =
∏

i
π(u, Xi)

/∫

u

{∏

i
π(u, Xi)

}
du.

In Figure 9.1 we illustrate the function g(u), i.e., the estimated con-
ditional distribution of the maximum likelihood estimator for the
proportional hazards model given the two sample data from Freireich
et al. (1963). It is interesting to compare the findings with those avail-
ability via more standard procedures. Rather than base inference on
the mode of this distribution (i.e., the maximum partial likelihood es-
timate) and the second derivative of the log-likelihood we can consider

β̃ =
∫

u
ug(u)du , v(β) =

∫

u
u2g(u)du −

(∫

u
ug(u)du

)2

,

and base tests, point, and interval estimation on these. Estimators
of this kind have been studied extensively by Pitman (1948) and,
generally, have smaller mean squared error than estimators based on
the mode. Note also, in a way analogous to the calculation of boot-
strap percentile intervals, that we can simply consider the curve g(u)
and tick off areas of size α/2 on the upper and lower halves of the
function to obtain a 100(1 − α)% confidence interval for β. Again,
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analogous to bootstrap percentile intervals, these intervals can pick
up asymmetries and provide more accurate confidence intervals for
small samples than those based on the symmetric large sample nor-
mal approximation. For the Freireich data, agreement between the
approaches is good and that is to be expected since, in this case, the
normal curve is clearly able to give a good approximation to the like-
lihood function.

For higher dimensions the approach can be extended almost im-
mediately, at least conceptually. A potential difficulty arises in the
following way: suppose we are interested in β1 and we have a sec-
ond parameter, β2, in the model. Logically we would just integrate
the two-dimensional density with respect to β2, leaving us with a sin-
gle marginal density for β1. This is straightforward since we have all
that we need to do this, although of course there will usually be no
analytical solution and it will be necessary to appeal to numerical tech-
niques. The difficulty occurs since we could often parameterize a model
differently, say incorporating β2

2 instead of β2 alone. The marginal dis-
tribution for β1, after having integrated out β2, will not generally be
the same as before. Nonetheless, for the proportional hazards model
at least, the parameterization is quite natural and it would suffice to
work with the models as they are usually expressed.

Partial likelihood

Again, starting from a full likelihood, or full density, we can focus in-
terest on some subset, “integrating out” those parameters of indirect
interest. Integrating the full density (likelihood) with respect to those
parameters of secondary interest produces a marginal likelihood. Cox
(1975) develops a particular expression for the full likelihood in which
an important component term is called the partial likelihood. Careful
choices lead to us back to conditional likelihood and marginal likeli-
hood and Cox then describes these as special cases. For a given prob-
lem, Cox provides some guidelines for finding partial likelihoods: (1)
the omitted factors should have distributions depending in an essential
way on nuisance parameters and should contain no information about
the parameters of interest and (2) incidental parameters, in particular
the nuisance parameters, should not occur in the partial likelihood.
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Lemma 9.10 For the proportional hazards model with constant effects,

L(β) =
n∏

i=1

{
exp(βZi)∑n

j=1 Yj(Xi) exp(βZj)

}δi

(9.10)

satisfies the two guidelines provided by Cox (1975).

For this particular case then the term “partial likelihood” applies. We
use the term more generally for likelihoods of this form even though
we may not be able to verify the extent to which the guidelines apply.
Unfortunately, at least when compared to usual likelihood, marginal
and conditional likelihood, or profile likelihood (maximizing out rather
than integrating out nuisance parameters), partial likelihood is a very
difficult concept. For general situations, it is not at all clear how to pro-
ceed. Furthermore, however obtained, such partial likelihoods are un-
likely to be unique. Unlike the more commonly used likelihoods, great
mathematical skill is required and even well steeled statistical mod-
elers, able to obtain likelihood estimates in complex applied settings,
will not generally be able to do the same should they wish to proceed
on the basis of partial likelihood. For counting processes (Andersen
et al. 1993), it requires some six pages (pages 103-109), in order to
formulate an appropriate partial likelihood.

However, none of this impedes our development since the usual
reason for seeking an expression for the likelihood is to be able to take
its logarithm, differentiate it with respect to the unknown parameters
and, equating this to zero, to enable the construction of an estimating
equation. Here we already have, via the main theorem (Section 7.4),
or stochastic integral considerations, appropriate estimating equations.
Thus, and in light of the above mentioned difficulties, we do not put
emphasis on partial likelihood as a concept or as a general statisti-
cal technique. Nonetheless, for the main models we consider here, the
partial likelihood, when calculated, can be seen to coincide with other
kinds of likelihood, derived in different ways, and that the estimating
equation, arising from use of the partial likelihood, can be seen to be
a reasonable estimating equation in its own right, however obtained.
The above expression was first presented in Cox’s (1972) original paper
where it was described as a conditional likelihood.
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Cox’s conditional likelihood

At any time point t there is a maximum of n subjects under study. We
can index the jth subject as having hazard rate λj(Xi) at time point
Xi. In other words we let Yj(t) take the value 1 if an individual is
available to make a transition, zero otherwise. Then, for the j th sub-
ject we have an intensity function αj(t) = Yj(t)λj(t). The n patients
can be viewed as a system. At time point t the system either remains
the same (no failure), changes in a total of n possible ways, in which
a single patient fails or the system may change in a more complicated
way in which there can be more than a single failure.

If we are prepared to assume that at any given point there can
be no more than a single failure, then the system can change in a
maximum of n ways. This defines a simple stochastic process. Notice
that, conditional upon there being a transition, then a straightforward
application of Bayes formula (Chapter 15.6 Johnson and Johnson 1980)
enables us to deduce the probability that the transition is of type j.
This is simply

αj(Xi)∑n
�=1 α�(Xi)

=
Yj(Xi)λj(Xi)∑n
�=1 Y�(Xi)λ�(Xi)

=
exp(βZj)∑n

�=1 Y�(Xi) exp(βZ�)
.

For subjects having either failed or being lost to follow-up before time
t we can still carry out the sum over all n subjects in our evaluation
at time t. This is because of the indicator variable Yj(t) that takes the
value zero for all such subjects, so that their transition probabilities
become zero. The same idea can be expressed via the concept of risk
sets, i.e., those subjects alive and available to make the transition
under study. However, whenever possible, it is preferable to make use
of the indicator variables Yj(t), thereby keeping the sums over n.

Multiplying all the above terms over the observed failure times
produces L(β). In his 1972 paper Cox described this as a conditional
likelihood and suggested it be treated as a regular likelihood for the
purposes of inference. In their contribution to the discussion of Cox’s
paper, Kalbfleisch and Prentice point out that the above likelihood
does not have the usual probabilistic interpretation. If we take times
to be fixed then exp(βZj)/

∑
� Y�(Xi) exp(βZ�) is the probability of

the subject indexed by j failing at Xi and that all other subjects,
regardless of order, occur after Xi. Cox’s deeper study (Cox 1975)
into L(β) led to recognition of L(β) as a partial likelihood and not a
conditional likelihood in the usual sense.
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The flavor of L(β) is nonetheless that of a conditional quantity,
even if the conditioning is done sequentially and not all at once. Cox’s
discovery of L(β), leading to a host of subsequent applications (time-
dependent effects, time-dependent covariates, random effects), repre-
sents one of the most important statistical advances of the twentieth
century. Although it took years of subsequent research in order to
identify the quantity introduced by Cox as the relevant quantity with
which to carry out inference and, although it was argued that Cox’s
likelihood was not a conditional likelihood in the usual sense (where
all of the conditioning is done at once), his likelihood was all the same
the right quantity to work with.

Marginal likelihood of ranks

Kalbfleisch and Prentice (1973) pointed out, that for fixed covariates
Z the partial likelihood coincides with the likelihood, or probability,
of the rank vector occurring as observed, under the model. We then
have an important result;

Theorem 9.2 Under an independent censoring mechanism the prob-
ability of observing the particular order of the failures is given by L(β).

Alternatively we can express the likelihood as a function of the regres-
sion vector β and the underlying failure rate λ0(t). Writing this down
we have:

L(β, λ0(t)) =
n∏

i=1

[
λ0(t)eβZiS0(Xi)exp(βZi)

]δi
[
S0(Xi)exp(βZi)

]1−δi

.

From this we can break the likelihood into two components. We then
have:

Theorem 9.3 L(λ0, β) can be written as the product Lλ(λ0, β)L(β).

This argument is also sometimes given to motivate the idea of partial
likelihood, stating that the full likelihood can be decomposed into a
product of two terms, one of which contains the nuisance parameters
λ0(t) inextricably mixed in with the parameter of interest β and a
term that only depends upon β. This second term is then called the
partial likelihood. Once again, however, any such decomposition is
unlikely to be unique and it is not clear how to express in precise
mathematical terms just what we mean by “inextricably mixed in”
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since this is more of an intuitive notion suggesting that we do not
know how to separate the parameters. Not knowing how to separate the
parameters does not mean that no procedure exists that might be able
to separate them. And, if we were to sharpen the definition by stating,
for example, that within some large class there exists no transformation
or re-parameterization that would separate out the parameters, then
we would be left with the difficulty of verifying this in practice, a task
that would not be feasible.

9.7 Goodness-of-fit of likelihood estimates

The question of goodness-of-fit addresses the appropriateness of the
class of chosen models rather than the properties of estimates based on
any particular technique. In organizing the material in this text an ini-
tial plan was to group together all material relating to goodness-of-fit
in a single chapter. There is an extensive literature on goodness-of-fit
for survival models (see O’Quigley and Xu 1998 for a non-exhaustive
review) and, in this work, rather than bring together the various ideas
in a single chapter, it is preferred to describe some techniques that sit
well with the chosen inferential procedure. This is very clear for infer-
ence based on functions of Brownian motion processes where graphical
illustrations tell us pretty much all we need to know, supplemented if
desired by more formal tests, themselves based on properties of partic-
ular functions of Brownian motion. For inference based more directly
on likelihood it is less clear to identify, in some sense, related goodness-
of-fit techniques. That said, the techniques described here work well
with parametric and semi-parametric models in which the estimating
technique appeals to likelihood.

As already mentioned in the previous chapter we often take the
view that a goodness-of-fit test is simply a test of a particular kind of
hypothesis, notably a data driven hypothesis where certain parame-
ters, under the original specification of the model, have been replaced
by estimates. We then place these kind of tests under the same likeli-
hood heading as the other tests appealing to likelihood. More formally,
instead of testing a hypothesis of the type H0 : β = β0, for some β0 or
set of β0 given in advance, we test a hypothesis of the type H0 : β = β̂.
Referring to the discussion of the previous chapter on operating char-
acteristics, note that we do not expect all tests to perform compara-
bly and a good choice was that based on a process approximating a
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Brownian bridge. The construction was based upon being able to es-
timate the first two moments of the covariate at each failure point Xi.
For parametric models using likelihood the dependence is typically ex-
pressed via the conditional distributions of time given the covariate,
i.e., f(t|z), that is unlike the case based on the main theorem and
the processes described in the previous chapter. However, by applying
Bayes theorem successively we can obtain necessary expectations in
terms of the conditional probabilities of T given Z, i.e., via the use of
f(t|z). Specifically we have:

E(Z|T = t) =
∫

Z

{

z −
∫
Z zf(t|z)dG(z)
∫
Z f(t|z)dG(z)

}{
f(t|z)

∫
Z f(t|z)dG(z)

}

dG(z).

(9.11)

Figure 9.2 shows a bridged process for the Freireich data where the
fitted model is a parametric Weibull model. The very good fit is con-
firmed by inspection of the curve. The only difference between the
likelihood approach in this chapter and the approach of the previous
chapter is in the calculation of the expectations. In one case we lean
upon the main theorem (Section 7.4) and the moments that follow
from it, in the other we work with any parametric model and use
it to obtain the necessary expectations, these expectations now com-
ing via an application of Bayes theorem. In the two-group case with
constant hazard rates and where there is no censoring the above ex-
pression can be simplified. Letting the proportion of the first group
be given by π1, the second by π2 such that (π1 + π2 = 1) and writing
ψ(v) = a(v)/{π1e

−v + a(v)} where a(v) = π2e
β exp(−veβ) then

0.0

−4

− 2

0

2

4

0.2 0.4 0.6 0.8 1.0

Figure 9.2: A bridged standardized cumulative processes for the
Freireich data using expectations based on a Weibull model.
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E {[Z − Eβ(Z|t)]p} = π1

∫ t

0
{−ψ(v)}p e−vdv

+π2

∫ t

0
{1 − ψ(v)} eβ exp(−veβ)dv.

The most immediate departure from proportional hazards would be
one where effects decline through time and, as mentioned before, per-
haps even changing direction (Stablein et al. 1981). The standardized
cumulative score, however the moments are calculated, would, under
such departures, increase (or decrease) steadily until the increase (or
decrease) dies away and the process would proceed on average hori-
zontally or, if effects change direction) make its way back toward the
origin. A test based on the maximum would have the ability to pick
up this kind of behavior. Again, the visual impression given by the cu-
mulative standardized score process can, of itself, suggest the nature
of the departure from proportional hazards. This kind of test is not
focused on parameters in the model other than the regression effect
given by β or possibly β(t). The goal is to consider the proportionality
or lack of such proportionality and, otherwise, how well the overall
model may fit is secondary.

Non-proportional hazards model with intercept

In the review of goodness-of-fit tests for survival models, O’Quigley
and Xu (1998) gave particular consideration to the non proportional
hazards model with intercept described in Chapter 6. Using this model
and the usual likelihood procedures we can test for several specific
departures from proportional hazards. For the sake of simplicity of
exposition we continue to limit attention to the single variable case.
Extension to higher dimensions is immediate. Also we will sometimes
write Z, instead of Z(t), in order for the notation to not become over
cluttered. It can always be replaced by Z(t) without additional con-
cerns. We write

λ(t|Z) = λ0(t) exp{[β + αQ(t)]Z(t)}, (9.12)

where Q(t) is a function of time that does not depend on the para-
meters β and α. Under a null hypothesis that a proportional hazards
model is adequate, i.e., H0 : α = 0 we recover a proportional hazards
model. In the context of sequential group comparisons of survival data,
the above model has been considered by Tsiatis (1982) and Harrington
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et al. (1982). In keeping with the usual notation we denote Eβ,α(Z|t) to
be the expectation taken with respect to the probability distribution
πi(β, α, t), where

πi(β, α, t) =
Yi(t) exp{[β + αQ(t)]Zi(t)}∑n

j=1 Yj(t) exp{[β + αQ(t)]Zj(t)}
. (9.13)

Lemma 9.11 The components of the score vector U(β, α) can be ex-
pressed as

Uβ(β, α) =
n∑

i=1

δi{Zi(Xi) − Eβ,α(Z|Xi)}, (9.14)

Uα(β, α) =
n∑

i=1

δiQ(Xi){Zi(Xi) − Eβ,α(Z|Xi)}. (9.15)

A test would be carried out using any one of the large sample tests
arising from considerations of the likelihood. If we let β̂ be the max-
imum partial likelihood estimate of β under the null hypothesis of
proportional hazards, i.e., H0 : α = 0, then Uβ(β̂, 0) = 0. The score
test statistic arising under H0 is B = Uα(β̂, 0)G−1Uα(β̂, 0), where
G = I22 − I21I

−1
11 I12 and G−1 is the lower right corner element of I−1.

The elements of the information matrix required to carry out the cal-
culation are given below in Lemma 9.12. Under H0, the hypothesis of
proportional hazards, B has asymptotically a χ2 distribution with one
degree of freedom.

Lemma 9.12 Taking k = 1, 2 and � = 1, 2, the components of I are

I(β, α) = −
(

Uββ Uβα

Uαβ Uαα

)

=
(

I11 I12

I21 I22

)

where

Ik�(β, α) =
n∑

i=1

δiQ(Xi)k+�−2{Eβ,α(Z2|Xi) − E2
β,α(Z|Xi)} .

The literature on the goodness-of-fit problem for the Cox model has
considered many formulations that correspond to particular choices
for Q(t). The first of these was given in the founding paper of Cox
(1972). Cox’s suggestion was equivalent to taking Q(t) = t. Defining
Q(t) as a two dimensional vector, Stablein et al. (1981) considered
Q(t) = (t, t2)′, and Brown (1975), Anderson and Senthiselvan (1982),
O’Quigley and Moreau (1984), Moreau et al. (1985), and O’Quigley
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and Pessione (1989) assumed Q(t) to be constant on predetermined
intervals of the time axis, i.e. Q(t) is a step function.

Although in the latter cases there is more than one parameter
associated with Q(t), the computation of the test statistic is similar.
Murphy (1993) studied the size and the power of the test of Moreau
et al. (1985) and found that, although it is consistent against a
wide class of alternatives to proportional hazards, the Moreau test is
nonetheless an omnibus test that is used to greatest advantage when
there is no specific alternative in mind.

We can choose Q(t) to be an unknown function and use the avail-
able data to provide an estimate of this function. For instance, Breslow
et al. (1984) chose Q(t) = Λ(t) and replaced this unknown function
by the Nelson estimator. Because the estimates at time t depend only
on the history of events up to that time, the development of Cox
(1975) and Andersen and Gill (1982) and thus, the usual asymptotic
theory, still applies. Breslow et al. (1984) showed that their choice
Q(t) = Λ(t) has good power against the alternative of crossing haz-
ards. Tsiatis (1982), Harrington et al. (1982), and Harrington and
Fleming (1982) used score processes based on the non-proportional
hazards model with intercept to derive sequential tests. They showed
that after Q(t) has been replaced by its estimate, the score process at
different time points converges in distribution to a multivariate nor-
mal. Harrington and Fleming focus particular interest on the Gρ fam-
ily, where Q(t) = S(t)ρ.

Another special case is described in O’Quigley and Pessione (1991),
O’Quigley and Natarajan (2004) and O’Quigley (1994), where Q(t) =
I(t ≤ γ) − I(t > γ) with γ an unknown change point. When γ is
known the test statistic can be evaluated with no particular difficulty.
For γ unknown, we would maximize over all possible values of γ and
special care is required for the resulting inference to remain valid. We
consider this issue on its own in Chapter 12. O’Quigley and Pessione
(1991) showed that tests using a changepoint model can be powerful
for testing the equality of two survival distributions against the specific
alternative of crossing hazards. Also, such tests suffer only moderate
losses in power, when compared with their optimal counterparts, if the
alternative is one of proportional hazards.

Lin (1991) and Gill and Schumacher (1987) have taken a slightly
different approach to working with the function Q(t) and introduce it
directly into a weighted score. This can be written as
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UQ(β) =
n∑

i=1

δiQ(Xi){Zi(Xi) − E(Z|Xi; β)}, (9.16)

where the only key requirement is that Q(·) be a predictable process
(see Section 3.6) that converges in probability to a non-negative
bounded function uniformly in t. Let β̂Q be the zero of (9.16) and
β̂ be the partial likelihood estimate. Under the assumption that the
proportional hazards model holds and that (Xi, δi, Zi) (i = 1, . . . , n)
are i.i.d. replicates of (X, δ, Z), n1/2(β̂Q − β̂) is asymptotically nor-
mal with zero mean and covariance matrix that can be consistently
estimated. It then follows that a simple test can be based on the
standardized difference between the two estimates. Lin (1991) showed
such a test to be consistent against any model misspecification under
which βQ 	= β, where βQ is the probability limit of β̂Q. In particular,
it can be shown that choosing a monotone weight function for Q(t)
such as F̂ (t), where F̂ (·) is the Kaplan-Meier estimate, is consistent
against monotone departures (e.g., decreasing regression effect) from
the proportional hazards assumption.

9.8 Exercises and class projects

1. Describe why the assumption of marginal independence is a stronger
assumption than that of conditional independence. Describe situations
in which each of these assumptions appears to be reasonable. How is
the likelihood function impacted by the assumptions?

2. Suppose that the censoring mechanism is not independent of the
survival mechanism, in particular suppose that

log Pr (T > x + u|C = u, T > u) = 2 log Pr (T > x + u|T > u).

Write down the likelihood for a parametric model for which the cen-
soring mechanism is governed by this equation. Next, suppose that
we can take the above equation to represent the general form for the
censoring model but that, instead of the constant value 2, it depends
on an unknown parameter, i.e., the number 2 is replace by α. What
kind of data would enable us to estimate the parameter α?

3. As a class project, simulate data with a dependent censoring mech-
anism as above with an unknown parameter α. Investigate the distri-
bution of α̂ via 1000 simulations.
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4. Fit a Weibull proportional hazards model to data including at least
two binary regressors; Z1 and Z2. Calculate a 90% confidence intervals
for the probability that the most unfavorable prognosis among the 4
groups has a survival greater than the marginal median. Calculate a
90% confidence interval that a subject chosen randomly from either
the most unfavorable, or the second most unfavorable, group has a
survival greater than the marginal median.

5. As a generalization of the previous exercise, consider a paramet-
ric model with covariate vector Z of dimension p. The p dimensional
model is considered to provide a good approximation to the underlying
mechanism generating the observations. On the basis of the fitted p
dimensional model, write down an expression for a confidence interval
for the probability of surviving longer than t for a subject in which
Z1, the first component of Z, is equal to z1.

6. For the two-sample exponential model, write down the likelihood
and confirm the maximum likelihood estimates given in Section 9.4.
Calculate the score test, the likelhood ratio test and Wald’s test, and
compare these with the expressions given in Section 9.4. For a data
set with a single binary covariate calculate and compare the three test
statistics.

7. On the basis of data, estimate the unknown regression coefficient, β,
as the expected value of the conditional likelihood (see Section 9.6). Do
this for both an exponential based likelihood and the partial likelihood.
Next, consider the distribution of log β in this context and take an
estimate as exp E(log β). Do you anticipate these two estimators to
agree? Note that the corresponding maximum likelihood estimators
do agree exactly. Comment.

8. Try different weights in the weighted log-rank test and apply these
to a data set. Suppose we decide to use the weight that leads to the
most significant result. Would such an approach maintain control over
Type I error under the null hypothesis of no association? Suggest at
least two ways in which we might improve control over the Type I
error rate.



Chapter 10

Inference: Stochastic
integrals

10.1 Summary

Further to the background theory on counting processes, martingales
and stochastic integrals, outlined in Sections 2.12 and 3.6, we note that
the score statistic arising from the log partial likelihood can be seen to
come under the heading of a stochastic integral. The terms of this inte-
gral are then equated with those elements composing a stochastic inte-
gral and for which we can appeal to known large sample results. In the
case of the multiplicative model, replacing the unknown background
cumulative hazard by the Nelson-Aalen estimate produces the same
result as that obtained from use of the observed information matrix.
This is not the case for the additive model. In this case the variance
estimator using martingale theory is generally to be preferred over the
information based estimator. Considerable flexibility results from the
martingale concept of conditioning on the accumulated history. One
example is that of multistate processes which are easily dealt with. A
second is that of obtaining procedures which are non-parametric with
respect to both time and the covariate (O’Brien 1978, O’Quigley and
Prentice 1991).

10.2 Motivation

Aalen (1978), followed by Andersen and Gill (1982), pioneered the
counting process approach to inference in the context of proportional
hazard models. Writing the score statistic as a stochastic integral, they

295
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showed how a framework for inference can be structured. This frame-
work uses the results from martingale theory described in Sections 2.12
and 3.6. Asymptotic normality and an expression for the large sam-
ple variance are readily obtained. For the multiplicative model this
variance expression is the same as that obtained by working with the
second derivative of the partial likelihood (Cox, 1972). In this chapter
we will see that this is not the case for the additive model and that,
in this case, the variance expression derived from martingale theoretic
considerations is, in general, more stable than that derived on the basis
of the second derivative. Indeed, for a model with an additive risk, the
estimated variance of the score statistic, when viewed as a stochastic
integral, differs from that obtained from the inverse of the information
matrix and has the advantage of always being positive, a property not
shared by the information matrix estimate. They can be seen to be
equivalent asymptotically.

The stochastic integral representation enables us to recover the
great majority of those results we already have from exploiting like-
lihood theory, but it can take us further in different ways. First, the
different kinds of weightings proposed by Prentice (1978), some fixed
ahead in time, some evaluated dynamically, are readily accommodated
within the martingale theory. Also, higher-order moments are easily
derived and allow us to obtain corrected percentiles of the score dis-
tribution through the use of a Cornish-Fisher expansion. This simple
procedure can yield more accurate inference for the score statistic in
small samples. We return to this in the following chapter dealing with
inference in small samples.

10.3 Counting process framework to the model

The reader may first wish to recall the background of counting
processes, martingales and stochastic integrals from Sections 2.12
and 3.6. The greatest generality can be obtained by working with a
multivariate counting process N(t), the n components of which are,
typically, the independent individual counting processes. This is not
always the case, though, and, in particular the individual processes
need not be independent. Large sample theory follows by working
with the multivariate martingale central limit theorem (Rebolledo
1980). This approach has now been widely adopted in making infer-
ences for survival models. It is described in detail in Fleming and
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Harrington (1991) and Andersen et al. (1993). Here, we take a less
general approach working instead with collections of univariate count-
ing processes and appealing to more classic central limit theorems for
sums of independent but not identically distributed random variables.
This leads to a very considerable gain in clarity and the cost of this
gain is very small. For instance all of the main developments of the
proportional hazards model (stratification, inclusion of random effects,
multistate models, repeated events, cure models) can be handled by
working with the usual central limit theorem for independent variables
and verifying the Lindeburg condition rather than working with the
multivariate martingale central limit theorem.

We take Ni(t), i = 1, . . . , n to be n univariate counting processes,
starting off at zero, i.e., N(0) = 0, and making a unit jump at the
distinct failure time point Xi, if I(Ci > Xi) = 1, so that N(t) = 1
for t ≥ Xi. The intensity process αi(t) can be expressed in terms of
the counting process and Ft−, the total accumulated information on
failures, censorings and covariate processes available an instant before
time t, as

αi(t) = lim
∆t→0

(∆t)−1Pr{Ni(t + ∆t) − Ni(t) = 1|Ft−}. (10.1)

Note that the set Ft− in the simplest case corresponds to the infor-
mation that T > t. The form Ft− allows for great generality and
enables us to easily deal with complex situations such as multistate
models, repeated events when subjects move in and out of risk sets,
and particular kinds of conditioning such as the use of covariate ranks.
A proportional hazards model with more general risk for this intensity
function can be written as

αi(t) = Yi(t)λ0(t)R{βZi(t)}, (10.2)

where, as before, Yi(t) is an indicator function taking the value 1
if the ith subject is at risk at time t and 0 otherwise, λ0(t) is the
fixed “baseline” hazard function and β, the parameter, or vector
of parameters, to be estimated. Zi(t) is, as usual, the covariate for
the ith subject at time t and R(r) the relative risk function; equal
to exp(r) for the multiplicative model and 1 + r for the additive
model.
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10.4 Some nonparametric statistics

The inferential background described in Section 3.6 paid particular at-
tention to Aalen’s (1978) multiplicative intensity model. Recall that for
the i.i.d. case, the compensator for Ni(t) is αi(t) = Yi(t)λ(t), where λ(t)
is the hazard rate. The compensator, Ā(t), for N̄(t) =

∑n
i=1 Ni(t) is:

Ā(t) =
∫ t

0
{
∑n

i=1 Yi(s)}λ(s)ds =
∫ t

0
Ȳ (s)λ(s)ds,

from which we see the intensity process for N̄(t) to be Ȳ (t)λ(t). This
simple structure can be used to underpin several nonparametric tests.
Using a martingale as an estimating equation (see Sections 3.6 and 3.7)
we can take N̄(t) as an estimator of its compensator Ā(t). Dividing by
the risk set (assumed to be always greater than zero), we have that,

∫ t

0

dN̄(t)
Ȳ (t)

−
∫ t

0
λ(s)ds

is a martingale and has, in consequence, zero expectation. An estimate
of the cumulative risk Λ̂(t) is given by Λ̂(t) =

∫ t
0 Ȳ (t)−1dN̄(t) which

is the estimator of Nelson-Aalen. Simple nonparametric statistics for
the comparison of two groups can be obtained immediately from this.
If we consider some predictable weighting process (for an explanation
of what we mean by “predictable” see Sections 2.12 and 3.6), W (s),
then define

K(t) =
∫ t

0
W (s)

{
dN̄1(s)
Ȳ1(s)

− dN̄2(s)
Ȳ2(s)

}

(10.3)

where a subscript 1 denotes subjects from group 1 and a 2 from group
2. The choice of the weighting function W (s) can be made by the user
and might be chosen when some particular alternative is in mind. The
properties of different weights were investigated by Prentice (1978).
Referring back to Section 3.6, we can readily claim that K(∞) con-
verges in probability to N (0, σ2). We estimate σ2 by 〈K〉(∞) where

〈K〉(t) =
∫ t

0

{
W (s)
Ȳ1(s)

}2

dN̄1(s) +
∫ t

0

{
W (s)
Ȳ2(s)

}2

dN̄2(s). (10.4)

The choice W (s) = Ȳ1(s)Ȳ2(s)/[Ȳ1(s) + Ȳ1(s)] leads to the log-rank
test statistic and would maintain good power under a proportional
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hazards alternative of a constant group difference as opposed to the
null hypothesis of no group differences. The choice W (s) = Ȳ1(s)Ȳ2(s)
corresponds to the weighting suggested by Gehan (1965) in his gen-
eralization of the Wilcoxon statistic. This test may offer improved
power over the log-rank test in situations where the group differ-
ence declines with time. These weights and therefore the properties
of the test are impacted by the censoring and, in order to obtain a test
free of the impact of censoring, Prentice (1978) suggested the weights,
W (s) = Ŝ1(s)Ŝ2(s). These weights would also offer the potential for
improved power when the regression effect declines with time.

10.5 Stochastic integral representation
of score statistic

The score statistic, based on Cox’s (1975) partial likelihood, can be
written as

U(β) =
n∑

i=1

Ni(Xi){Zi(Xi) − Eβ(Z|Xi)}, (10.5)

where the definition of Eβ(Z|Xi) is the same as in earlier chapters.
Defining Hi(t) = Zi(t) − Eβ(Z|t), we see that Equation (10.5) can be
rewritten as U(β) = U(β,∞) where

U(β, t) =
n∑

i=1

∫ t

0
Hi(s)dNi(s). (10.6)

The martingale approach to inference can be very briefly summarized
as follows: The process Ni(t) counts events on the ith subject, in our
case 0 or 1 and very clearly, for u > 0, E{Ni(s+u)|Fs} ≥ E{Ni(s)|Fs}.
Recall that Fs− denotes the set containing the total information we
have concerning Ni(s) from all time points strictly less than s, so that
E{dNi(s)|Fs−} = Yi(s)λi(s)ds, the infinitesimal probability of the oc-
currence of an event for a Bernoulli variable at time point s. The
Doob-Meyer decomposition theorem whereby we can express the sub-
martingale Ni(s) in terms of a compensator, Ai(s) and a martingale,
Mi(s), enables us to write

Ni(t) = Mi(t) +
∫ t

0
Yi(u)λi(u)du. (10.7)
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Also recall that, if the function Hi(s), at each time point s, contains
no information that is not contained in Fs− and is left continuous
(not a practical constraint), then it is predictable, in other words, at
time points s and beyond, a fixed constant. A stochastic integral of the
above form can then be always made into a martingale via this decom-
position since, if Mi(t) is a martingale and Hi(t) a predictable process,
then the stochastic integral

∫ t
0 Hi(s)dMi(s) will also be a martingale.

Using the known results concerning inference for martingales and sub-
martingales (which can be turned into martingales via the Doob-Meyer
theorem), for large samples, we have in particular that:

Theorem 10.1 The large sample distribution of U(β,∞) is normal,
having first two moments given by

E{U(β,∞)} =
∫ ∞

0

n∑

i=1

E{Yi(s)Hi(s)}λi(s)ds (10.8)

E{U2(β, t)} =
∫ t

0

n∑

i=1

E{Yi(s)H2
i (s)}λi(s)ds. (10.9)

The variance is then Var{U(β,∞)} = E{U2(β,∞)} − E2{U(β,∞)}.
These results are very general and enable us to consider a wide range of
situations. Below we examine the flexibility granted to us by different
possible choices for H. The results can be used to test hypotheses, and
thereby obtain interval estimates for parameters via inversion of tests,
or for point estimation. In order to carry out these prescriptions we
will need replace λi(t) by estimates and we look at this below.

Large sample approximations

Note that at the true value of β, E{Yi(s)Hi(s)} = 0. In order to es-
timate the variance, we replace λi(s)ds by dΛ̂i(s), for any consistent
estimate Λ̂i(t) of the cumulative hazard, in particular the one sug-
gested by Breslow (1972), Aalen (1978), and Andersen and Gill (1982),
expressed via the lemma:

Lemma 10.1 Λi(t) is consistently estimated by Λ̂i(t)=Λ̂0(t)R{β̂zi(t)}
where

Λ̂0(t) =
∫ t

0

dN̄(s)
∑n

i=1 Yi(s)R{β̂Zi(s)}
=

n∑

i=1

I(Ci > Xi)
∑n

j=1 Yj(Xi)R{β̂Zj(Xi)}
,
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the integral simplifying to the sum given on the right-hand side since
dN̄(s) is always zero apart from at values where s is equal to one of the
failure points Xi (Ci > Xi). Using this and defining Wi(t) = Zi(t) for
the multiplicative model, Wi(t) = Zi(t)/(1 + βZi(t)) for the additive
model, we can write:

Lemma 10.2 A consistent estimate of E{U2(β,∞)}is given by

Ê{U2(β,∞)}=
n∑

i=1

n∑

j=1

Ni(Xi)Yj(Xi){Wj(Xi)−Eβ(W |Xi)}2πj(β, Xi),

where the weights obtain from πj(β, t) = Yj(t)R{βZj(t)}/
∑n

�=1 Y�(t)
R{βZ�(t)}.

Noting that
∑n

j=1 Yj(Xi)πj(β, Xi) = 1 ∀i, developing the bracket and
collecting terms, we obtain the more familiar term for this second
moment:

Corollary 10.1

Ê{U2(β,∞)}=
n∑

i=1

n∑

j=1

Ni(Xi)Yj(Xi)
{
W 2

j (Xi)−E2
β(W |Xi)

}
πj(β, Xi).

(10.10)

This estimate coincides with that based on the partial likelihood in-
formation matrix for the multiplicative model (Cox 1972) when we
replace β by β̂. This is not so however for the additive model where
minus the second derivative of the partial log-likelihood with respect
to β equals

n∑

i=1

Ni(Xi)

{
Z2

i (Xi)
(1 + βZi(Xi))2

−
(
∑n

j=1 Yj(Xi)Zj(Xi))2
∑n

j=1 Yj(Xi)(1 + βZj(Xi))2

}

.

Some elementary algebra produces the following lemma;

Lemma 10.3 For the additive model, the information based estimate
gives

Ê{U2(β,∞)} =
n∑

i=1

Ni(Xi)
{
W 2

i (Xi) − E2
β(W |Xi)

}
. (10.11)



302 CHAPTER 10. INFERENCE: STOCHASTIC INTEGRALS

It is instructive to compare the estimates based on equations (10.10)
and (10.11). Assuming the model generating the data is correctly spec-
ified then, under the usual conditions on the censoring, the law of large
numbers indicates that the difference between them will tend to zero.
While the estimate based on Equation 10.10 is always positive in view
of the Cauchy-Schwartz inequality, it should be noted that an estimate
based on (10.11) can be negative in finite samples.

Logit-rank and associated test procedures

The log-rank and associated test procedures described under the
heading of likelihood methods can all be also be obtained under the
counting process heading as weighted stochastic integrals. The only
restriction on the weightings is that they be predictable. The resulting
weighted log-rank type tests are all linear combinations of the compo-
nents to the score statistic. It is, however, possible to consider much
more general classes of tests, as long as predictability is maintained.
This idea motivated the class of tests described by O’Quigley and
Prentice (1991). One of the main purposes was to derive tests both
non-parametric, i.e., rank invariant, to the covariate scale as well as
the time scale.

The tests of O’Quigley and Prentice (1991) derive from the trans-
formed covariate models considered previously. In particular we con-
sider functions ψj(Ft) for the jth subject at time t, i.e., functions that
depend upon all available information at time t and assign thereby the
value ψj(Ft) to the subject j at time t. The score statistic at β = 0
based on the partial likelihood can be written as

U(0) =
n∑

i=1

δi{ψi(FXi) − E0(ψ|Xi)}, (10.12)

where

E0(ψ|Xi) =
n∑

j=1

Yj(Xi)ψj(FXi)/
n∑

j=1

Yj(Xi).

The corresponding observed information matrix at β = 0 is

I(0) =
n∑

i=1

δi

⎛

⎝
n∑

j=1

Yj(Xi)ψ2
j (FXi)/

n∑

j=1

Yj(Xi)

⎞

⎠− E2
0 (ψ|Xi). (10.13)
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A broad class of tests can now be constructed on the basis of choices
for ψj(Ft). O’Brien’s logit-rank test (O’Brien 1978) arises from his
definitions for pii and yii which we can re-express in terms of ψj(Ft).

Definition 10.1 Let pi� be the ranking of the �th subject at time Xi

if at risk, and is zero otherwise. Then

pi� = ψ�(FXi) =
n∑

j=1

I(Zj ≤ Z�)Yj(Xi).

The specification Z�(t) = ψ�(t,Ft) = yi� when t(i−1) < t ≤ t(i) for i = 1
to k and is equal to yk� when t > t(k) where t(0) = 0 and yi� = 0 at
times at which the �th subject is not at risk, leads exactly to O’Brien’s
logit-rank test. In particular, since E(ti) = 0, i = 1, . . . , k, it follows
that this specification gives U(0)=

∑k
i=1 yii . Furthermore we have:

Lemma 10.4 Under the null hypothesis the information can be writ-
ten as

I(0) =
k∑

i=1

ni∑

j=1

n−1
i

{
logit

(
jn−1

i − (2ni)−1
)}2 =

k∑

i=1

vi.

Thus, the standardized logit-rank test is a partial likelihood score test.
An asymptotic standard normal distribution can then be asserted,
under a broad range of censoring distributions, on the basis of mar-
tingale convergence results (e.g. Rebolledo 1980, Andersen and Gill
1982) upon noting that the processes defined in the above are pre-
dictable, as follows since the sample paths for each ψ�(t,Ft) are left
continuous with right-hand limits. Notice that O’Brien’s initial sugges-
tion of basing a test upon

∑k
i=1 pii also obtains as a score test under

the proportional hazards model upon defining ψ�(t,Ft) = pi� when
t(i−1) < t ≤ t(i) for i = 1, . . . , k and is given the value pk� when t > t(k)

and where pi� = 0 at times at which the �th subject is not at risk.
In this case we can use the fact that

∑m
j=1 j = m(m + 1)/2 and that

∑m
j=1 j2 = m(m + 1)(2m + 1)/6 to obtain a simple expression for the

variance of
∑n

i=1 pii as a corollary to the above.

Corollary 10.2

Var

(
k∑

i=1

pii

)

=
k∑

i=1

(4ni + 1)(ni − 1)/12ni.
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Note that the mean of
∑k

i=1 pii under H0 is k/2 so that the following
lemma provides an easily evaluable approximate test.

Lemma 10.5 Under the null hypothesis of absence of association,

36(2
∑k

i=1 pii − k)2
∑k

i=1(4ni + 1)(ni − 1)/ni

has a distribution converging to that of a chi-square on one degree of
freedom.

The two definitions for Z�(t) given above correspond to O’Brien’s orig-
inal suggestions. Many other candidates or classes of candidates are
possible. For instance, we may choose ψ�(t,Ft) not to depend on in-
formation on subjects i 	= �, in which case scores chosen at the start
of the study remain unchanged throughout the study. Tests analogous
to the logit-rank tests would then obtain by simply transforming the
marginal empirical distribution of the Zi to be uniform over (0, 1) or
to have standardized logistic distributions. The use of normal order
statistics in place of the original measurements amounts to a transfor-
mation to normality conditional on the risk sets or unconditionally if
applied only once at the start of the study. Given this interpretation
of the effect of different kinds of rankings, another approach, although
not rank invariant, would be to replace the original xi measurements
by G−1{F̃ (Zi)} where F̃ (·) is some consistent estimate of the cumula-
tive distribution function for Z and G(·) is the cumulative distribution
function we are transforming to, for example, the standard normal. In
the case of stratification of certain covariates Zc and having defined m
classes the extension is straightforward. We would assume that, within
a class, little further information on prognosis is obtainable from the
actual values Zc

i i.e., each class is, in some sense, homogeneous with
respect to survival. Then base tests on the model

λij(t) = Yi(t)λ0j(t) exp{βψi(t,Ft)} ; j = 1, . . . , m

using the usual methods applied to the sum of the log-likelihoods over
strata. In an obvious notation the two versions of the logit-rank test
for stratified data ws and w′

s say become

ws =
m∑

j=1

kj∑

i=1

yiij/

⎛

⎝
m∑

j=1

kj∑

i=1

vij

⎞

⎠

1
2

, w′
s =

36(2
∑m

j=1

∑kj

i=1 piij −
∑m

j=1 kj)2
∑m

j=1

∑kj

i=1(4nij + 1)(nij − 1)/nij

.
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It is of interest to quantify the size of losses in efficiency when us-
ing a scoring system other than that generating the data. This also
enables us to assess the utility of re-ranking the covariate values at
each failure time, in analogy with O’Brien’s original scheme, as op-
posed to the simpler procedure of ranking, or scoring, at the outset
and then treating the covariates as one that is constant with time.
Suppose that the model generating the observations is as above and
we derive a score test for β on the basis of the partial likelihood and
the function ψ∗

i (t,Ft) instead of ψi(t,Ft). We can then use a result
from O’Quigley and Prentice (1991) which extends a basic result of
Lagakos and Schoenfeld (1984).

Theorem 10.2 An expression for asymptotic relative efficiency is
given by

e(ψ, ψ∗)=
(
∫

φ[g{Z(t)}, g∗{Z(t)}]λ0(t)dt)2
∫

φ[g{Z(t)}, g{Z(t)}]λ0(t)dt
∫

φ[g∗{Z(t)}, g∗{Z(t)}]λ0(t)dt
.

In the above expression we assume that, limn→∞ ψ(t,Ft) = g{Z(t)}
and that limn→∞ ψ∗(t,Ft) = g∗{Z(t)}, where g(·) and g∗(·) are con-
tinuous monotonic functions. All of the integrals are over (0,∞) and

φ(a(t), b(t)) = E{Y (t)a(t)b(t)} − E{Y (t)a(t)}E{Y (t)b(t)}/E{Y (t)},

the expectations being taken with respect to the distribution of Ft

and e(ψ, ψ∗) denotes asymptotic relative efficiency. Applying the above
expression for e(ψ, ψ∗), to time-independent covariates, we find that
the asymptotic relative efficiency of the logit-rank procedure to the
simplified logit-rank procedure equals one. The same applies to other
pairs of procedures, the normal-rank and simplified normal rank for
instance. To see this, denote by ξ�m(Z) the score, under some chosen
system and at some time point, given to the �th ranked subject out
of a total of m subjects. At a later time point during which time
there have been a further s combined failures and censorings, then,
under re-ranking, the subject will be given a score between ξ�,m−s(Z)
and ξ�−s,m−s(Z) (inclusive). However, providing �/m → θ(Z) (0 <
θ(Z) < 1) then ξ�m(Z) → g̃(Z) say, the same limit as for ξ�,m−s(Z),
ξ�−s,m−s(Z) and all intermediary values, so that this same limit is
also the expected value of the score asymptotically (O’Quigley and
Prentice 1991). Using normal scores instead of logit scores and vice
versa leads to an asymptotic relative efficiency of 0.97 in the absence
of censoring.
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O’Quigley and Prentice (1991) used three different models in or-
der to gain insight into the relative small sample power properties
of the simplified versions of the logit-rank and normal rank proce-
dures. Three models were used for values of β not too far removed
from the null, concretely for β between 0.0 and 0.8. The first model,
described as model (a), stipulated that Pr(T > t) = exp(−λ(Z)t),
Pr(C > c) = exp(−γλ(Z)t), λ(Z) = exp(βZ) where log Z ∼ N(0, 1)
and γ = 0.3, 1.2, 2.0. Model (b) was the same except that λ(Z) =
exp(β) when Z < 1 and was equal to exp(βZ) otherwise. Model (c)
was the same as model (a) except that λ(Z) = exp(βZ) when Z < 1
and was equal to exp(β) otherwise. The motivation for considering
model (a) was to see what happens when the explanatory variable
is skewly distributed having relatively few high values but ones that
strongly affect survival. Models (b) and (c) are plateau models. For
model (b) the lower values of the covariable are not associated with
survival. Some threshold value needs to be reached beyond which sur-
vival is more or less strongly associated with the explanatory variable
according to the value of β. The threshold was taken to occur at the
median of the explanatory variable. Model (c) is, in some sense, a
mirror image of model (b) such that maximum effect occurs at the
median, beyond which further increases in the explanatory variable
have no additional effect. The probability of censoring, Pr(T > C),
can be calculated as γ/(1 + γ). The total sample size was taken to
be 50, the same as in O’Brien’s power comparisons. The maximum
amount of censoring allowable (γ = 2.0) was 67% so that “effective
sample size” varied between just over 16 and just under 39 (γ = 0.3).

O’Quigley and Prentice (1991) contrasted the logit-rank with the
simplified logit-rank procedure for models (a) and (b). The respective
power curves all but coincide. The same was done for model (c). Once
again the curves are almost indistinguishable. The evidence then indi-
cates that nothing is lost in using the simplified logit-rank procedure
in preference to the one originally suggested by O’Brien. The same
conclusion holds when comparing the normal-rank and the simplified
normal-rank procedures.

Using the data of Example 1. from O’Brien’s paper we obtain a
value of 2.66 as the square root of the score statistic based on the logit-
rank procedure. Apart from the sign, O’Brien obtained a value of 2.68,
the difference being attributable to rounding errors. Our suggested
simplified logit-rank procedure resulted in the value 2.69, confirming,
in this example at least, our conclusions from the previous section.
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Tests based on the normal-rank and simplified normal-rank procedures
produced the values 2.66 and 2.69 respectively, identical in fact, up to
the fourth decimal place, to those obtained above. Given the sample
size of 7, this is not surprising as, for small samples, normal order
statistics and uniform order statistics look very similar.

The second example concerns 335 patients, diagnosed as suffering
from aplastic anemia and treated by allogeneic bone marrow transplan-
tation in Seattle, Washington. At diagnosis the majority of patients
were between 10 and 30 years of age; only six patients were aged over
49. One question concerned the possibility of a trend association be-
tween age at diagnosis and prognosis, but since, under the alterna-
tive hypothesis, it is not obvious what form any trend should take,
it seemed appropriate to apply some of the approaches outlined here.
Two strata were established: less than or equal to twenty years of age
and greater than twenty years of age. Ignoring the strata, the overall
logit-rank score test was equal to 12.48 (to be compared with a chi-
squared variate on one degree of freedom), the simplified logit-rank
was equal to 10.15. The corresponding normal-rank score tests gave
10.58 and 9.25 respectively. The stratified logit-rank and simplified
version produced the values 15.49 and 14.10, whilst for the normal-
rank analogues these figures became 13.46 and 12.96 respectively (all
values again to be compared with a chi-squared variate on one degree
of freedom).

The above examples and the results of the previous section would
suggest little is, in general, to be gained (or lost) by re-ranking at each
failure, whatever scores are to be given to the resulting ranks. To con-
struct a counter example we would need a failure mechanism whose
features were mirrored in the re-ranking process. This could arise for a
certain class of time-dependent relative risk functions characterized by
severe departures from the proportional hazards assumption. To see
this, consider a finite sample where uniform scores are allocated at the
outset and the data generated under a distant alternative with β posi-
tive. The higher scores will tend to fail first leading, under proportional
hazards and a non re-ranking scheme, to a progressive decrease in the
mean score of the remaining survivors, a reduction in variance and an
induced skewness. For non-proportional hazards, whereby log relative-
risk functions increase or decrease throughout the study, providing
there is no change in sign, the same situation prevails. Re-ranking the
covariates then, such that the variance remains the same and skew-
ness is redressed might give an advantage in some situations although,
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apart from some small gains in controlling for size, it is not very clear
which ones.

10.6 Exercises and class projects

1. Make plots of the intensity function αi(t) for (i) Zi(t) a binary
indicator and (ii) Zi(t) sampled from a uniform on (0,6). Do these for
both the multiplicative and additive models. What is the rôle played
by Yi(t)? Take β to be one.

2. Fill in the steps in deriving Equation 10.6 from Equation 10.5. In
Equation 10.5 replace Ni(Xi) by the jump in the Kaplan-Meier curve
at time Xi. Now derive an analogous expression to Equation 10.6 in-
volving the estimated marginal survival F̂ (t).

3. Following from the previous question, suppose that Zi(t) is an in-
dicator variable for groups i; i = 1, 2. For each group we calculate a
Kaplan-Meier curve F̂i(t). In Equation 10.5 we now replace Ni(Xi)
by the jump in the Kaplan-Meier curve of the group from which the
failure occurred. Derive an expression analogous to Equation 10.6.

4. Show that, if model assumptions are correct, then all of the estima-
tors based on solving the above corresponding estimating equations
converge to the same population quantity β. When β is in truth a
function of time, β(t), and the model is only an approximation, dis-
cuss the relative merits of the different estimating equations and the
populations quantities to which their solutions converge.

5. Suppose that Ni(t) counts events on subject i and take values greater
than one but never greater than some upper limit, n say. Show that the
Doob-Meyer decomposition must always apply in this case. Next, let
n be allowed to increase without bound. Under which circumstances
might the Doob-Meyer decomposition break down?

6. Using an actual data set involving two groups (for example the
Freireich data) carry out an analysis finding estimates based on the
three different estimating equations described in questions 2 to 4.
Simulate non-proportional hazards data using a piecewise exponen-
tial model increasing the amount of non-proportionality by increasing
the change in the absolute value of the regression coefficients. Discuss
the results.
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7. Within the counting process framework it is common to allow t
in U(β, t) to be unbounded. It is this feature, alongside a potentially
unbounded covariate, which requires the imposition of conditions on
Ft in order for the relevant probability spaces to be correctly specified,
in particular to not fail Kolmogorov’s axiom of additivity. In our other
approaches to inference we have taken t to have some upper bound,
written, without loss of generality as 1. Discuss the disadvantages,
or advantages, of imposing similar restrictions in this context, i.e.,
working with U(β, 1).

8. Using the technique of double expectation show that, when the
model is correctly specified, E{Yi(s)Hi(s)} = 0.

9. Simulate censored and uncensored observations from the exponen-
tial model with a single continuous covariate. Obtain the covariate
values from three simulated distributions: a uniform, an exponential,
and a log-normal. For each simulation, carry out O’Brien’s test for
the presence of effect. Next, replace the continuous covariate values
by their ranks at the outset. Comment on the similarity between the
test statistics. How do these compare to a test based on the original
covariate left untransformed? Finally, replace the ranks by the normal
order statistics and, again, compare the test statistics. Do this for the
three suggested covariate distributions.

10. Equation 10.10 would seem to be using more information than
Equation 10.11. Is this so? Which of the two equations would seem
to be the more dependable? If the model were seriously misspecified
which of the two equations would be the more useful? Give reasons.

11. Rather than replace a continuous covariate by its ranks we could
simply derive a new covariate being binary and created from the orig-
inal covariate by means of a cut-off. How would you find any such
cut-off? Under which circumstances would an approach based on a
cut-off lead to a more powerful test than an approach based on rank-
ing. Under which situations would the converse be true?



Chapter 11

Inference: Small samples

11.1 Summary

The finite sample distribution of the score statistic is considered more
closely. Since the other test statistics are derived from this, and the re-
gression coefficient itself a monotonic function of the score, it is enough
to restrict attention to the score statistic alone. One direct approach
leads to a simple convolution expression which can be evaluated by in-
terated integrals. It is also possible to make improvements to the large
sample normal approximation via the use of saddlepoint approxima-
tions or Cornish-Fisher expansions. For these we can use the results
of Corollaries 7.3 and 7.4. Corrections to the distribution of the score
statistic can be particularly useful when the distribution of the ex-
planatory variable is asymmetric. Corrections to the distribution of
the score equation have a rather small impact in the case of the fourth
moment but can be of significance in the case of the third moment.
The calculations themselves are uncomplicated and simplify further
in the case of an exponential distribution. Since we can transform an
arbitrary marginal distribution to one of the exponential form, while
preserving the ranks, we can then consider the results for the expo-
nential case to be of broader generality.

11.2 Motivation

The focus of our inferential efforts, regardless of the particular tech-
nique we choose, is mostly the score statistic. For this statistic, based
on the properties of the estimating equation, we can claim large sample

311
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normality. Recall that our underlying probability model is focused on
the distribution of the covariate, or covariate vector, at each time t
given that the subject is still at risk at this time. From this the mean
and the variance of the conditional distribution can be consistently
estimated and this is typically the cornerstone for the basis of any
tests or confidence interval construction. Implicitly we are summariz-
ing these key distributions by their means and variances or, at least,
our best estimates of these means and variances. The fact that it is
the distributions themselves that are of key interest, and not just their
first two moments, suggests that we may be able to improve the ac-
curacy of any inference if we were to take into account higher order
moments. As a consequence of the main theorem it turns out that this
is particularly straightforward, at least for the third moment and rela-
tively uncomplicated for the fourth moment. In fact, corrections based
on the fourth moment seem to have little impact and so only the third
moment might be considered in practice.

We can incorporate information on these higher moments via a
Cornish-Fisher expansion or via the use of a saddlepoint approxima-
tion. Potential improvements over large sample results would need to
be assessed on a case-by-case basis, often via the use of simulation.
Some limited simulations are given in O’Quigley and Benichou (2007)
and suggest that these small sample corrections can lead to more accu-
rate inference, in particular for situations where there is strong group
imbalance. A practical illustration is provided in the context of an ac-
tual study concerning the prognostic impact of certain tumor markers
in gastric cancer. The corrections to the usual large sample theory
appear to provide more accurate inference.

11.3 Additive and multiplicative models

The likelihood for the multiplicative model falls in naturally with
those for exponential families and for this reason we might anticipate
large sample approximations to work well. This is indeed the case al-
though for small samples we may still be able to obtain improvements.
The additive model does not fit naturally into the exponential family
class (Moolgavkar and Venzon 1987) and large sample behavior ap-
proaching normality is attained much more slowly. Here then there is
room for even greater improvements over large sample approximations
when applied to small samples. Distinguishing between the additive
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and the multiplicative models we write the intensity process, αi(t),
as αi(t) = lim∆t→0 (∆t)−1Pr{Ni(t + ∆t) − Ni(t) = 1|Ft−}, and our
models as, αi(t) = Yi(t)λ0(t)R{βZi(t)}, where R(r), the relative risk
function, is equal to exp(r) for the multiplicative model and 1 + r for
the additive model. Recall the expression for the score statistics as,
U(β) = U(β,∞) where Z(t) = Zi(t)I(t = Xi) and where

U(β, t)=
∫ t

0
{Z(s)−Eβ(Z|s)}dN̄(s)=

n∑

i=1

Ni(Xi) {Zi(Xi)−Eβ(Z|Xi)} .

The stochastic integral approach to inference comes from defining
Hi(t) = Zi(t)− Eβ(Z|t), noting that the score equation can be rewrit-
ten as the stochastic integral U(β) = U(β,∞) where U(β, t) =∑n

i=1

∫ t
0 Hi(s)dNi(s). Having claimed normality for the large sample

distribution of U(β,∞) we will consequently limit attention to the
first two moments, E{U(β)} and E{U2(β)}, given, respectively, by
∫ ∞

0

n∑

i=1

E{Yi(s)Hi(s)}λi(s)ds ;
∫ ∞

0

n∑

i=1

E{Yi(s)H2
i (s)}λi(s)ds.

From this we obtain the variance as, Var{U(β)} = E{U2(β)} −
E2{U(β)}. These results are very general and enable us to con-
sider a wide range of situations. The results can be used for point
estimation or to test hypotheses, and thereby obtain interval esti-
mates for parameters via inversion of tests. In order to carry out
these prescriptions we will need replace λi(t) by estimates. We dis-
cuss these below. Before that, in the following section, we consider
again the quantities E{Yi(s)Hi(s)} and E{Yi(s)H2

i (s)}. The above
moments of U require us to consider, for example, E{Yi(s)Hi(s)}.
By the use of double expectation we can see that this is equal to
E{Hi(s)|Yi(s) = 1}Pr {Yi(s) = 1} and so, fixing s according to the
outer integral, our task becomes that of studying the conditional dis-
tribution of Z(t) given (T = t, C > t). This has already been studied
in Chapter 7 in the case of the multiplicative model. For both models
we need to study more closely the distribution P (Z ≤ z|T = t). The
conditional distribution of Z(t) given T = t obtains in the general risk
function case, in the same way as for the multiplicative model, using
the definition:

Definition 11.1 The discrete probabilities πi(β, t) are given by

πi(β, t) =
Yi(t)R{βZi(t)}∑n

j=1 Yj(t)R{βZj(t)}
. (11.1)
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As before, based upon the πi(β, t) we have:

Definition 11.2 Moments of Z with respect to πi(β, t) are given by

Eβ(Zk|t) =
n∑

i=1

Zk
i (t)πi(β, t) , k = 1, 2, . . . , (11.2)

We also need the same definition that we gave in Equation 7.5 in order
to distinguish conditionally independent censoring from independent
censoring, and this was that: φ(z, t) = [Pr (C ≥ t|z)]−1

∫
Pr (C ≥ t|z)

g(z)dz although, in none of the applications in this work, do we need
either use or try to estimate φ(z, t). We manage to work our way
around requiring full generality. The first way in which this can be
accomplished, as already mentioned in Section 7.4, is under the pro-
vision that the censoring does not depend upon z. In this case, φ(z, t)
will depend on neither z nor t and is, in fact, equal to one. Otherwise,
under a conditionally independent censoring assumption, we can con-
sistently estimate φ(z, t) and we call this φ̂(z, t). The main theorem
(Section 7.4), already applied in the case of the multiplicative model,
carries over readily to the additive model.

Theorem 11.1 Under the model and assuming that β is known, the
conditional distribution function of Z(t) given T = t is consistently
estimated by

P̂{Z(t) ≤ z|T = t} =

∑
zi≤z Yi(t)R{βzi(t)}φ̂(zi, t)

∑n
j=1 Yj(t)R{βzj(t)}φ̂(zj , t)

. (11.3)

Corollary 11.1 For a conditionally independent censoring mecha-
nism we have

P̂ (Z(t) ≤ z|T = t, C > t) =
n∑

j=1

πj(β, t)I(Zj(t) ≤ z). (11.4)

Slutsky’s theorem enables us to deduce that the result still holds for β
replaced by any consistent estimate. When the hypothesis of propor-
tionality of risks is correct then the result holds for the estimate β̂. We
also have a further important corollary to Theorem 11.1 which holds
when the model is correctly specified:

Corollary 11.2 For k = 1, 2, . . . , Eβ̂(Zk|t) consistently estimates
Eβ(Zk(t)|t). In particular Eβ̂(Z|t) provides consistent estimates of
Eβ(Z(t)|T = t) and, letting Vβ(Z|t) = Eβ(Z2|t) − E2

β(Z|t), then
Var(Z|t) is consistently estimated by Vβ̂(Z|t).
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As a consequence of Theorem 11.1 we can replace the distribution
function G(z|t) and the density g(z|t) by consistent estimates, say
Ĝ(z|t) and ĝ(z|t) under an assumption of independent censoring. For a
conditionally independent censoring mechanism these conditional dis-
tributions would also be conditioned by C > t as well as T = t. Finally,
it is convenient to subtract off the means, the zero mean distribution
and density estimates denoted by Ĝ0(z|t) and ĝ0(z|t).

11.4 Estimation: First two moments

Inference is based on U(β̂, t) which has been standardized to have
mean zero. Our focus is then on:

U(β, t)=
∫ t

0
{Z(s) − Eβ(Z|s)}dN̄(s)=

n∑

i=1

Ni(Xi) {Zi(Xi)−Eβ(Z|Xi)}

and the approximating formulae we work with, either Cornish-Fisher
expansions or saddlepoint approximations, will require estimation of
the conditional moments of Z. In the case of approximations based
on a constant baseline hazard, i.e., the exponential distribution, we
calculate the third and fourth moments after having subtracted off
the mean and the square root of the variance. In consequence, in or-
der to use these theoretical results in practice, we multiply by this
square root and add on the mean. Note that at the true value of
β, E{Yi(s)Hi(s)} = 0. In order to estimate the variance, we replace
λi(s)ds by dΛ̂i(s), for any consistent estimate Λ̂i(t) of the cumula-
tive hazard, in particular the one suggested by Breslow (1972), Aalen
(1978) and Andersen and Gill (1982). For this we refer to Lemma
10.1 of the previous chapter. Referring again to the previous chapter
we were able to use Lemma 10.1 is order to obtain a consistent esti-
mate of E{U2(β,∞)}. Recall that this estimate coincides with that
based on the partial likelihood information matrix for the multiplica-
tive model (Cox 1972) when we replace β by β̂. For the additive model
this was no longer the case where minus the second derivative of the
partial log-likelihood with respect to β led to Equation 10.11. The es-
timates based on equations (10.10) and (10.11) converge to the same
population counterpart when the model generating the data is cor-
rectly specified. As pointed out in the previous chapter though, while
the estimate based on Equation 10.10 is always positive in view of
the Cauchy-Schwartz inequality, in finite samples, negative estimate
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based on (10.11) can occur. When the sample sizes are small we might
anticipate this behaviour to be all the more acute and, in practice, it
is often associated with difficulties in actually obtaining our estimates
since the numerical algorithms themselves can begin to diverge once
the routine hits any running estimate which is an inadmissible value
according to the model. Transformations and approximations can be
a way to alleviate these problems.

11.5 Edgeworth and saddlepoint
approximations

For the proportional hazards model it is relatively easy to obtain
Edgeworth corrections to the score statistic. For the particular case
of the multiplicative link function the saddlepoint approximation is
also straightforward. In either case we make progress by evaluating
the cumulant generating function K(θ) which is defined as the expec-
tation,

K(θ) = log E(eθZ) = log EE(eθZ |t) = log
∫

E(eθZ |t)dF (t),

the trick of double expectation leading to quantities we can readily
estimate in view of the results of Section 7.4. Furthermore, apply-
ing Corollary 7.3, we have that the difference between E(eθZ |t) and
Eβ̂(eθZ |t) or Eβ(eθZ |t) converges in probability to zero. For the multi-

plicative model we can then use the estimate K̂(θ) where

exp{K̂(θ)} =
∫ {∑

i

∑
j Yj(Xi) exp[(θ + β)Zj ]

∑
i

∑
j Yj(Xi) exp{βZj}

}

dF̂ (t),

leading to the results, after some elementary manipulation, that

K̂ ′(0) =
∫

Eβ(Z|t)dF̂ (t) ; K̂ ′′(0) =
∫

Vβ(Z|t)dF̂ (t).

The following results enable us to obtain the needed terms.

Lemma 11.1 Letting A(θ) = exp{K(θ)} then:
{

∂pA(θ)
∂θp

}

θ=0

=
∫

Eβ(Zp(t)|t)dF̂ (t) (11.5)
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The first two derivatives of A(θ) are well known and widely avail-
able from any software which fits the proportional hazards model. The
third and fourth derivatives are a little fastidious although, nonetheless
straightforward to obtain. Pulling all of these together we have:

Lemma 11.2 The first four derivatives of K(θ) are obtained from:

A′(θ)/A(θ) = K ′(θ),

A′′(θ)/A(θ) = [K ′(θ)]2 + K ′′(θ),

A′′′(θ)/A(θ) = [K ′(θ)]3 + 3K ′(θ)K ′′(θ) + K ′′′(θ),

A(4)/A(θ) = [K ′(θ)]4 + 6[K ′(θ)]2K ′′(θ) + 4K ′(θ)K ′′′(θ)

+ 3[K ′′(θ)]2 + K(4)(θ).

We can use these results in either a saddlepoint approximation or an
Edgeworth approximation allowing us to gain greater accuracy than
that provided by the usual assumption of large sample normality. In
the light of several comparative studies of the relative merits of the
two kinds of approximation we cannot really anticipate obtaining any
clear answer as to which is the best to use. It will depend on the
particular case under study and, typically, there is very little to choose
between the two. The above results can be used in both cases. Once
the particular parameters of a study (total sample size, number of
groups, group imbalance, approximate distribution of the covariates)
are known, then simulations can help answer this question. Simulations
show that real advantages, in particular for the additive model, can
be obtained by making these adjustments. Some preliminary work can
lead to further simplification and, subtracting off the mean allows us to
ignore K ′(θ), which is equal then to zero at θ = 0. Instead of referring
the test statistic to the percentage points Zα of the normal distribution
we use

Lα = Zα+ (Z2
α − 1)E{U3(β̂,∞)}/6 + (Z3

α − 3Zα)
[
E{U4(β̂,∞)}

−3E2{U2(β̂,∞)}
]
/24.

(11.6)

The adjustment can be used either when carrying out a test of a point
hypothesis or when constructing test-based confidence intervals. In the
simulations we can see that the correction, relatively straightforward
to implement, leads to improved control on type I error in a number
of situations.
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11.6 Distribution of estimating equation

The parameter β is estimated by equating to zero the score function,
U(β). Thus, U(β̂) = 0 and the distribution of β̂ can be investigated
via the estimating equation, since

Pr (β̂ < b) = Pr {U(b) < 0}

We can use what we know about U to make statements about β̂. This
only works because U(β) is monotonic in β and the same will continue
to hold in the multivariate setting when considering components of the
vector U . Formulating the probability statement about β̂ in terms of
U is particularly convenient. Two simple illustrations of this are: (1)
Bayesian inference and (2) the exact distribution of a sum of indepen-
dent, not necessarily identically distributed, random variables. If we
have prior information on β, in the form of the density q(β), then we
can write

Pr (β̂ < b) =
∫

Pr {U(b) < 0}q(b)db,

being an expression in terms of total probability rather than the usual
Bayes formula since, instead of a data statistic depending on the model
parameter, we have a direct expression for the parameter estimate. For
the small sample exact distribution of the sum we use the following
lemma:

Lemma 11.3 Let U1 , . . . , Un be independent, not necessarily iden-
tically distributed, continuous random variables with densities p1(x)
to pn(s) respectively. Let Sn =

∑n
j=1 Uj . Then the density, qn(s) =

dQn(s), of Sn is given by

dQn(s) =
∫ ∞

−∞
dQn−1(s − u)dPn(u)du.

We use the above form dQn(s) in order to accommodate the discrete
and the continuous cases in a single expression. The lemma is proved
by recurrence of an elementary convolution result (see for example
Kendall and Stewart, 1977). Following Cox (1975) and Andersen and
Gill (1982) we will take the contributions to the score statistic, U(Xi)
to be independent with different distributions given by Theorem 7.1.
We can then apply the result by letting Ui = Hi(Xi) where the i in-
dices now run over the k, rather than n failure times. The distribution
of U1 is given by G0(X1), of U2 by G0(X2) and we can then construct
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a sequence of equations based on the above expression to finally ob-
tain the distribution Qk(s) of the sum. Any prior information can be
incorporated in this expression in the same way as before.

Higher-order moments

It is possible, in a way similar to that leading to the variance of the
score statistic, to obtain third and fourth moments. We can then use
the estimated cumulative hazard (equation to derive data-based esti-
mates. Since, under the model, we have that E{U(β, t)} = 0 then

E{U3(β,∞)} =
∫ ∞

0

n∑

i=1

E{Yi(s)H3
i (s)}λi(s)ds. (11.7)

We can estimate E{U3(β,∞)} consistently by replacing λi(s)ds and
λi(s1) λj(s2) ds1ds2 by R{β̂Zi(s)}dΛ̂0(s) and R{β̂Zi(s1)}R{β̂Zj(s2)}
dΛ̂0(s1)dΛ̂0(s2) respectively.

E{U4(β,∞)} =
∫ ∞

0

n∑

i=1

E{Yi(s)H4
i (s)}λi(s)ds

+ 6
∫ ∞

0

∫ ∞

0

n∑

i=1

∑

j>i

E{Yi(s1)H2
i (s1)}E{Yj(s2)H2

j (s2)}

× λi(s1)λj(s2)ds1ds2. (11.8)

Again, we can estimate E{U4(β,∞)} consistently by replacing λi(s)ds
and λi(s1) λj(s2)ds1ds2 by R{β̂Zi(s)}dΛ̂0(s) and R{β̂Zi(s1)}
R{β̂Zj(s2)}dΛ̂0(s1)dΛ̂0(s2) respectively. Note that we can replace
E{Yi(s)H2

i (s)}, E{Yi(s)H3
i (s)}, E{Yi(s)H4

i (s)} by observed values at
time of failure or by an average taken over the risk set.

Integral transform of the baseline hazard

Note that for an arbitrary distribution function, F (t), the probability
integral transform tells us that the variable Y = − log{1 − F (T )} has
a standard exponential distribution. In the case of two groups, and
using F̂ in place of F, we can transform a Kaplan-Meier curve into one
approaching a standard exponential for one group and, using the same
transformation, into one approaching an exponential distribution with
parameter exp(β) in the other. For this reason a study of the moment
adjustments for the special case of an exponential distribution can be
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of value since our interest in the baseline hazard itself is only accessory.
The necessary calculations simplify.

Being a special case of the proportional hazards model, an analysis
based on the case of a constant hazard enables us to compare our
estimates with fixed population values. Furthermore, the estimates can
still be useful when the true model is different from the exponential
one. Suppose that we have a binary covariate (0,1) denoting group
membership of which there are π1 in the first group and π2 in the
second (π1 + π2 = 1), survival time is distributed exponentially with
underlying hazard equal to 1 in the first group and eβ in the second
and there is no censoring. Then:

E
{[

Z − Ep
β(Z|t)

]p}
= π1

∫ t

0
{−ψ(v)}p e−vdv

+ π2

∫ t

0
{1 − ψ(v)} eβ exp(−veβ)dv,

where

ψ(v) =
π2e

β exp(−veβ)
π1e−v + π2eβ exp(−veβ)

.

Evaluating the above formula under β = 0, we have:

Corollary 11.3 The second, third, and fourth moments of U are
given by the following where Us is U standardized to have unit vari-
ance:

E{U2(0,∞)} = nπ1π2 ; E{U3
s (0,∞)} = n−1/2(π1 − π2)(π1π2)−1/2

E{U4
s (0,∞)} = n−1(π3

1 + π3
2)(π1π2)−1 + 3n−1(n − 1).

More generally, consider the case of a continuous variable Z with sup-
port I and density f . Furthermore, suppose that survival time is dis-
tributed exponentially with underlying hazard equal to λ0R(βz) with
R(βz) = 1 for β = 0, and that there is no censoring. Then, for β = 0
and p ≥ 2, we have:
∫ ∞

0

n∑

i=1

E{Yi(s)H
p
i (s)}λi(s)ds=

∫

I

[∫ ∞

0
{z−E(Z)}pλ0e

−λ0tdt

]

f(z)dz

and this integral can be readily evaluated so that the right-hand term
becomes:
∫

I
{z − E(Z)}p

(∫ ∞

0
λ0e

−λ0tdt

)

f(z)dz =
∫

I
{z − E(Z)}p f(z)dz

= E{Z − E(Z)}p.
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Therefore, the required terms can easily be evaluated from the cen-
tral moments of Z. Specifically, taking the subscript s to refer to the
standardized variable, we obtain:

Corollary 11.4 The second, third, and fourth moments of U are
given, respectively, by:

E(U2(0,∞)) = nE{Z − E(Z)}2,

E(U3
s (0,∞)) = n−1/2E{Z − E(Z)}3

[
E{Z − E(Z)}2

]−3/2
,

E(U4
s (0,∞)) = n−1E{Z− E(Z)}4

[
E{Z − E(Z)}2

]−2 + 3n−1(n − 1),

where the subscript s refers to the standardized variable. Note that
these results also hold for a discrete variable Z.

Integral transform of the conditional covariate distribution

Consider the case of a continuous covariate Z. A more sure way, albeit
a more onerous one, to correct for asymmetries in the conditional co-
variate distribution, is to, once again, lean on the probability integral
transform. The need to evaluate higher order moments then disap-
pears since, by construction, the odd order moments will be zero and
the fourth very close to its normal counterpart. Denote by Ĝ(z|t) the
estimated conditional distribution of Z given that T = t, C > t, i.e.,

Ĝ(z|t) = P̂ (Z(t) ≤ z|T = t, C > t) =
n∑

j=1

πj(β, t)I(Zj(t) ≤ z). (11.9)

Note that the definition of πj(β, t) restricts the subjects under consid-
eration to those in the risk set at time t. The cumulative distribution
Ĝ(z|t) is restricted by both z and t. We will need to invert this func-
tion, at each point Xi corresponding to a failure. Assuming no ties in
the observations (we will randomly break them if there are any) then,
at each time point Xi, we order the observations Z in the risk set. We
express the order statistics as Z(1) < Z(2) < . . . < Z(ni) where there
are ni subjects in the risk set at time Xi. We define the estimator
G̃(z|Xi) at time t = Xi and for z ∈ (Z(m), Z(m+1)) by

G̃(z|Xi)=Ĝ(Z(m)|Xi)+
z − Z(m)

Z(m+1) − Z(m)

{
Ĝ(Z(m+1)|Xi)−Ĝ(Z(m)|Xi)

}
,

noting that, at the observed values Z(m), m = 1, . . . , ni, the two esti-
mators coincide so that G̃(z|Xi) = Ĝ(z|Xi) for all values of z taken
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in the risk set at time Xi. Otherwise, G̃(z|Xi) linearly interpolates
between adjacent values of the observed order statistics Z(m), m =
1, . . . , ni. Also, we are assuming no ties, in which case, the function
G̃(z|Xi), between the values Z(1) and Z(ni), is a strictly increasing
function and can thereby be inverted. We denote the inverse function
by G̃−1(α), 0 < α < 1.

Our purpose is achieved by using, instead of G̃−1(α) which would
take us back to where we began, the inverse of the cumulative normal
distribution Φ−1(α). We define the transform

Z∗
(m) = Φ−1G̃(Z(m)|Xi), (11.10)

noting that the transform is strictly increasing so that the order of
the covariate observations in the risk set is respected. We are essen-
tially transforming to normality via the observed empirical distribution
of the covariate in the risk set. Under the null hypothesis that β = 0
the cumulative distribution G̃(Z(m)|Xi) is discrete uniform where each
atom of probability has mass 1/ni. Thus, the Z∗

(m), m = 1, . . . , ni will
be close (the degree of closeness increasing with ni) to the expectation
of the mth smallest order statistic from a normal sample of size ni.
The statistic U(β) is then a linear sum of zero mean and symmetric
variables that will be closer to normal than that for the untransformed
sequence. At the same time any information in the covariate is cap-
tured via the ranks of the covariate values among those subjects at
risk and so local power to departures from the null would be model
dependent. Under the null the suggested transformation achieves our
purpose, the mean of U(0) is zero and the distribution of U(0) is
symmetric. Under the alternative, however, we would effectively have
changed our model by the transformation and a choice of model which
coincides with the mechanism generating the selection from the risk
set would maximize power. The above choice would not necessarily
be the most efficient. An expression for the statistical efficiency of us-
ing some particular covariate transformation model when another one
generates the observations is given in O’Quigley and Prentice (1991).

The simplest way to maintain exact control over type I error using
Z∗

(m) = Φ−1G̃(Z(m)|Xi) is to consider, at each observed failure time,
alongside Z∗

(m), its reflection in the origin −Z∗
(m), such values, and

any more extreme in absolute value, arising with the same probability
under the null hypothesis of no effect. A non-parametric test considers
the distribution of the test statistic under all possible configurations
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of the vector of dimension equal to the number of the observed failures
having entries Z∗

(m) or −Z∗
(m).

The number of possibilities grows exponentially so that it is possi-
ble, with even quite small samples, to achieve almost exact control over
type I error. The significance level is simply the number of tests with
more extreme values than those obtained by the configuration that
corresponds to the observed data themselves. This approach would
be very attractive apart from the drawback of the intensity of cal-
culation. With as few as 10 observations per group, in a two-group
case, the number of cases to evaluate is over one million. Finding, say,
the most extreme five percent of these requires comparisons taking us
into the thousands of billions. Approximations are therefore unavoid-
able.

Robinson (1982) developed a simple saddlepoint approximation to
the densities corresponding to paired data. Relabelling the elements
of this sum as yi, i = 1, . . . , 2k, and the null density as ψ(u) then,
following Robinson’s development and regrouping terms, we obtain

ψ(u) =

{
k2

2π
∑

y2
j sech2(λuyj)

} 1
2

exp
(∑

log cosh(λuyj) − λuu
)

,

(11.11)

where
∑

yj tanh(λuyj) = uk. For any values of u, λu is obtained as
a solution to this second equation. In the above expressions all sums
range from 1 to 2k. We can obtain the significance level by numer-
ical integration, in particular via the use of orthogonal polynomials
(Abramowitz and Stegun 1970, Ch. 25). Alternatively we can work
directly with an approximation to the cumulative distribution itself
(Daniels 1987). Both require numerical approximation and the results,
and effort involved, are, for practical purposes, the same.

11.7 Simulation studies

O’Quigley and Benichou (2007) carried out extensive simulations on
the various possible corrections to the score statistic. The conclusion is
that the most effective way of correcting the score statistic is via the use
of an adjustment based on the third conditional moment together with
either a Cornish-Fisher expansion or a saddlepoint approximation. The
impact of the fourth moment appears weak, at least in the cases we
have investigated. An adjustment based on the integral transform of
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the conditional covariate distribution produced essentially the same
effect but involved slightly more work. We considered the distribution
based on the large number of simulations to be the exact distribution.
This was then contrasted with the uncorrected distribution based on
large sample theory and, also, the distribution corrected in particular
by the use of third and fourth moments although, in view of its weak
impact, corrections involving the fourth moment are not reported. Two
situations defined by the nature of the covariate Z (binary or contin-
uous) were investigated. Throughout this section, the focus is on the
score statistic U(∞; 0), often expressed simply as U .

Binary Covariate

For a binary covariate Z(0, 1) defining group membership, data were
generated from an exponential survival model with hazard given by
expβZ, and there was no censoring. For each case, 10,000 replications
were performed. Table 1 in O’Quigley and Benichou (2007) gives theo-
retical values and estimates of the second, third and fourth moments of
the score statistic under H0 (defined by β = 0) and for several values
of n1 and n2, the sample sizes in groups 1 (Z = 0) and 2 (Z = 1). From
the tables we could conclude that the second moment tends to be un-
derestimated for small sample sizes. For instance, the ratio of the mean
variance estimate to the theoretical variance was 0.79 for n1 = n2 = 5
and increased to 0.86 for n1 = n2 = 10, 0.92 for n1 = n2 = 20 and 0.96
for n1 = n2 = 50. This underestimation of the variance of the score
statistic has also been observed by Latta (1981). As for the third and
fourth moments however, results show very good agreement between
theoretical values and estimates, even for very small sample sizes (e.g.
n1 = 5 and n2 = 10). Moreover, values of the third moment show
evidence of skewness for imbalanced groups and small sample sizes
(e.g., E(U3

s ) = −1.83 for n1 = 5 and n2 = 10) and some evidence of
positive or negative kurtosis for small sample sizes (e.g., E(U4

s ) = 2.90
for n1 = 5 and n2 = 10). These findings suggest the possibility of mak-
ing improvements over the normal approximation to the distribution
of the score statistic for small sample sizes.

Table 2 from O’Quigley and Benichou (2007) studies the small-
sample properties of the score test (or logrank test) under H0(β = 0)
and for several values of n1 and n2. For each case, the table gives
the number of replications out of 10,000 for which the standardized
score statistic U/(VarU)1/2 was greater than critical values, corre-
sponding to the right half of the distribution, or lower than critical
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values, corresponding to its left half. The first figure was obtained by
making no correction to the critical value, that is, by using critical
values for the normal distribution that U is assumed to follow, as for
the usual logrank test. The second figure was obtained by correcting
the critical value with the third moment estimate via a Cornish-Fisher
expansion. The table does not show the correction which takes simul-
taneously account of the third and fourth moment since this additional
correction turned out to be small.

For balanced groups, i.e., (n1 = n2), the distribution of the stan-
dardized statistic is symmetric but the test with no correction (usual
logrank test) has levels of significance that are too high. For instance,
for n1 = n2 = 10, we obtained 0.002, 0.015, 0.035, 0.630, 0.116, 0.113,
0.061, 0.033, 0.014 and 0.002 instead of 0.001, 0.010, 0.025, 0.050,
0.100, 0.100, 0.050, 0.025, 0.010 and 0.001 respectively. This feature of
the logrank test was also observed by Latta (1981) who obtained very
similar results with a uniform rather than exponential survival distri-
bution. It is due to the underestimation of the variance of the score
statistic. The correction based on the third moment improved matters
to some extent, but not completely. For instance, for n1 = n2 = 10,
the significance levels were 0.030 and 0.030 as compared to 0.035 and
0.033 with no correction, for a theoretical value of 0.025. Additionally,
taking the fourth moment into account yielded almost no change at all.

For imbalanced groups, (n2 > n1), the distribution of the logrank
statistic is skewed and biased toward the larger sample size. For in-
stance for n1 = 10 and n2 = 50, the significance levels were 0.044 and
0.019 instead of 0.025, and 0.073 and 0.039 instead of 0.050. Again,
similar results were observed by Latta (1981) for uniform survival dis-
tributions. As could be expected, given the skewness of the distribu-
tion, the correction based on the third moment substantially corrected
the asymmetry. For instance, for n1 = 10 and n2 = 50, the signifi-
cance levels were 0.033, and 0.023 and 0.063 and 0.043 for respective
theoretical values of 0.25 (former two) and 0.050 (latter two).

Table 3 from O’Quigley and Benichou (2007) showed results for
data generated with β = log 1.5. The power of the test of β = 0 can be
increased or decreased by the third moment correction depending on
the direction of the imbalance in the sample sizes. Here U was defined
as the difference between observed and expected events in group 2 and
the power was increased by the correction when n2 > n1. As before,
the additional fourth moment correction had very little impact on the
results.
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Continuous Covariate

O’Quigley and Benichou (2007) considered a covariate Z with a sym-
metric distribution, namely a uniform (0,1) distribution. Results were
very similar to those observed with a binary covariate and balanced
groups. We calculated the theoretical values and estimates of the sec-
ond, third, and fourth moments of the score statistic under H0(β = 0)
for several values of the sample size n. As shown above, the expectation
of the kth moment of the score statistic E(Uk) is equal to E(Z−EZ)k,
the central moment of Z. The second moment was underestimated for
small sample sizes. The ratios of the variance estimate to the theoret-
ical variance were 0.71, 0.82, 0.91 and 0.95 for n =10, 20, 50, and 100,
respectively. However, the third moment (equal to 0) and the fourth
moment were estimated quite precisely.

Table 4 of O’Quigley and Benichou (2007) studies the small-sample
properties of the score statistic underH0 : β = 0, andH1 : exp(β) = 1.5.
Results are analogous to those for a binary covariate with balanced
groups. The distribution of the standardized score statistic is symmet-
ric, but because of the underestimation of the variance of U , the test
with no correction has significance levels that are too high. For in-
stance, for n = 10, we obtained 0.002, 0.014, 0.030, 0.062, 0.114, 0.120,
0.064, 0.033, 0.015 and 0.002 instead of 0.001, 0.010, 0.025, 0.050,
0.100, 0.100, 0.05, 0.025, 0.010 and 0.001, respectively. The problem
was partially corrected by taking into account the third moment. For
instance, the significance levels were 0.027 and 0.030 as compared to
0.030 and 0.033 with no correction for a theoretical value of 0.025.
The additional fourth-moment correction had virtually no effect. Re-
sults under H1(exp β = 1.5) were parallel to results under H0. There
was a minor loss of power due to the third-moment correction and the
fourth-moment correction had again virtually no effect at all.

For a covariate Z with a skewed distribution, namely a standard
exponential distribution, the main results were similar. Data were gen-
erated as before. Very similar results were obtained to the case of a
binary covariate with imbalanced groups. Table 5 of O’Quigley and
Benichou (2007) shows an underestimation of the variance of the score
statistic, with ratios of the variance estimate to the theoretical variance
respectively equal to 0.71, 0.83, 0.92 and 0.95 for n = 10, 20, 50 and 100
respectively. However, in contrast with the case of a binary covariate,
the third and fourth moments were also underestimated, severely so for
a small sample size. As for the case of an imbalanced covariate, there
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was a marked asymmetry in the distribution of the score statistic under
H0 (Table 6 from O’Quigley and Benichou (2007)). For instance, for
n = 20, the significance levels were 0.019 and 0.050 instead of 0.025, and
0.043 and 0.079 instead of 0.050. The third moment correction made
the distribution more symmetric and partially got rid of this problem
despite the underestimation of the third moment. For instance, the
significance levels for n = 20 were 0.024 and 0.036 instead of 0.025 and
0.048 and 0.069 instead of 0.050. Again, the fourth moment correction
had virtually no impact which was partly due to the underestimation
in the fourth moment.

In Table 6 of O’Quigley and Benichou it was possible to observe
some loss of power for expβ = 1.5, particularly for a small sample
size, when the third moments correction is applied. These studies indi-
cate that when the covariate Z has a symmetric distribution (whether
discrete or continuous), the third moment correction, while being on
average 0, tends to bring the significance levels of the score test down,
hence closer to the nominal value under H0. When the covariate has a
skewed distribution, the third moment correction reduces the asymme-
try in the distribution of the score statistic under H0. In both cases, the
fourth moment correction has a much weaker impact and, for practical
purposes, can be ignored.

11.8 Example

Rashid et al. (1982) investigated the prognostic influence of the levels
of five different acute phase reactant proteins on survival in gastric can-
cer. The currently recognized most important prognostic factor in the
disease is stage, determined at the time of operation. A staging clas-
sification simpler than the usual TNM one was developed by Rashid
et al. and proved itself to be very predictive of survival. On the basis of
this system, it was possible to strongly discriminate among different
prognostic groups. However, since the staging information was only
available at the time of surgical intervention, it could not be used to
identify the patients with a poorer prognosis for whom intervention
should possibly be avoided. The rationale for the use of the acute
phase reactant protein is that any such information can be used pre-
operatively. A statistical difficulty, however, arises due to the highly
non-normal, in particular highly skewed, distributional behavior ex-
hibited by these protein measurements. It has been noted (Kalbfleisch



328 CHAPTER 11. INFERENCE: SMALL SAMPLES

and Prentice, 1980) that outliers can have an unbounded effect on
estimates and test statistics.

A first approach might be to dichotomize, whereby all the high
values are grouped together, and indeed this is the usual way in which
such data are handled, the notion of “normal” and “raised” levels being
common in the medical literature. Such an approach, however, sacri-
fices information and, given that power may be lacking due to modest
sample sizes, this may not be the best approach. A second approach
(O’Brien 1978, O’Quigley and Prentice 1991) transforms the explana-
tory variables to some familiar scale (uniform or normal order statistics
for example). A third approach, that suggested in this paper, leaves
the covariate scale as observed and makes higher-order corrections to
the score statistic to compensate for the induced lack of normality.
This third approach has an advantage over the second in that the (ar-
bitrary) choice of scaling, necessarily impacting the result, is avoided.
The second approach has an advantage over the third in that infer-
ence is rank invariant, not only with respect to the time variable, but
also with respect to the explanatory variable. The data are taken from
Rashid et al. (1982) where the focus was on the continuously measured
variable C-reactive protein and its impact on prognosis. In the original
study of Rashid et al. (1982), in addition to the well-known prognos-
tic indicators such as stage and tumor histology, there was interest in
the degree to which the pre-operative biological measurements might
on their own indicate prognostic effects. In such studies it is common
to define some kind of cut-off for such measures below which the pa-
tients are considered to be within the normal range, and beyond which
the tumor is suspected of being particularly aggressive. The reason to
consider the original measurements rather than a new variable defined
on the basis of a cut-off is that there may be a gradual worsening of
prognosis rather than any sudden phenomenon in effect.

A two-sided test based on the score statistic produces the value
p = 0.034, in reasonably close agreement with the Wald test (p =
0.042), although sufficiently removed from the likelihood ratio test
(p = 0.066) to suggest that the large sample approximations may be
slightly suspect. Carrying out a third moment correction to the score
statistic, the value p = 0.060 was obtained and increases to p = 0.063
when we apply a fourth moment correction. This is in closer agreement
with the likelihood ratio test and indicates that the uncorrected score
statistic may be slightly underconservative. The values p = 0.06 or
0.07 appear then to more accurately reflect the percentile under the



11.9. FURTHER POINTS 329

null. Whether making a test based decision or using a test as a means
to construct confidence intervals, inference will be more accurate when
the p-value is more accurately obtained. It could be argued of course
that, in this particular case, it would have been more straightforward to
just calculate the likelihood ratio test which seems to be more accurate.
However, in other cases, in which there is lack of agreement between
the likelihood ratio test and the score test, we have no way of knowing
which is the more reliable. Indeed all of the corrections outlined here
could be equally well applied to the likelihood ratio test (via a Taylor
expansion) instead of the score statistic.

11.9 Further points

The most useful tool in assessing which of the several approaches is
likely to deliver the best rewards is that of simulation. It is difficult oth-
erwise because, even when we can show that taking into account higher
moments will reduce the order of error in an estimate, the exact value
of these moments is not typically known. The further error involved in
replacing them by estimates involving error can often lead us back to
an overall order of error no less than we had in the first place. In some
cases we can carry out exact calculation. Even here though caution
is needed since if we need to evaluate integrals numerically, although
there is no statistical error involved, there is a risk of approximation er-
ror. Among the three available tests based on the likelihood; the score
test, likelihood ratio, and the Wald test, the score test is arguably the
most satisfactory. Although all three are asymptotically equivalent,
the Wald test’s sensitivity to parameterization has raised questions as
to its value in general situations. For the remaining two, the score test
(log-rank test) has the advantage of not requiring estimation under the
alternative hypothesis and has nice interpretability in terms of simple
comparisons between observed and expected quantities. Indeed it is
this test, the log-rank test in the case of a discrete covariate, that is by
far the most used. The higher moments are also evaluated very easily,
again not requiring estimation under the alternative hypothesis, and
therefore it is possible to improve the accuracy of inference based on
the score test at little cost. Only tests of the hypothesis H0 : β = 0
have been discusssed. More generally, we may wish to consider testing
H0 : β = β0; β0 	= 0, such a formulation enabling us to construct confi-
dence intervals about non-null values of β. The same arguments apply
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to this case also and, by extension, will lead to intervals with more ac-
curate coverage properties. This contention has yet to be investigated
in simulations which, necessarily, would be rather more involved than
those discussed here.

11.10 Exercises and class projects

1. Use a two-sample data set such as the Freireich data and carry out
a one-sided test at the 5% level. How does the p-value change if we
make the Edgeworth correction given in Equation 11.6.

2. Repeat the above question but this time using a saddlepoint ap-
proximation.

3. Using bootstrap resampling, calculate a 95% confidence interval for
the estimated regression coefficient for the above data by the percentile
method on β̂. Compare this to a 95% confidence interval obtained by
inverting the monotone function U(b) and by determining values of
b for which the estimated Pr {U(b) < 0} ≤ 0.025 and Pr {U(b) >
0} ≤ 0.025.

4. Consider the following two priors on β : (1) Pr (β < −1) = 0.1;
Pr (β > 2) = 0.1; Pr (−1 < β < 2) = 0.8, (2) Pr (β < 0) = 0;
Pr (β > 1) = 0.2; Pr (0 < β < 1) = 0.8. Using these priors repeat the
above confidence interval calculations and comment on the impact of
the priors.

5. In clinical trials and many epidemiological investigations we are of-
ten in a position to know ranges of implausible values of the regression
coefficient. Should we incorporate this knowledge into our inferential
calculations, and if so, how?

6. Either use an existing data set or generate censored data with a
single continuous covariate. Evaluate the empirical distribution of the
covariate at each failure time in the risk set. Use several transforma-
tions of this distribution, e.g., to approximately normal, exponential
or uniform, and take as a test statistic the maximum across all con-
sidered transformations. How would you ensure correct control of type
I error for this test? What are the advantages and drawbacks to this
test?



Chapter 12

Inference: Changepoint
models

12.1 Summary

Changepoint models are considered for three situations in which the
models allow departures from proportional hazards to be approximated
in a simple way. The first situation is a so-called time-covariate qual-
itative interaction (O’Quigley and Pessione 1991) or crossing hazards
problem. The second situation considers a decline in regression effect
that is modeled by a sudden change in effect at some unknown time
point (O’Quigley and Natarajan 2004). The third situation, common
in prognostic modeling, deals with inference when we wish to simplify
a continuous covariate into two classes, above and below some thresh-
old. The results of Davies (1977, 1987) are particularly useful and the
conditions under which these results can be applied are described.

12.2 Motivation

We can lean on the non-proportional hazards model with intercept
(see Section 6.8) in order to express the simplest departure from pro-
portional hazards in a direction of a monotone effect. We choose, for
the function Q(t) in

λ(t|Z) = λ0(t) exp{[β + αQ(t)]Z(t)}, (12.1)

the particularly simple form, Q(t) = I(t ≤ γ) − I(t > γ) for some
value of time γ lying strictly on the interior of an interval (L,U). Such

331
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a simple structure can be of interest in a number of clinical applica-
tions. It can help us to investigate whether or not the effect of some
treatment is only transitory or to what extent an initially measured
prognostic variable maintains its effect throughout the study period. In
studies in childhood acute lymphoblastic leukemia, Sather et al. (1981)
showed the importance of re-evaluation. They demonstrated the very
strong prognostic effect of leukocyte count at diagnosis and how, re-
evaluating 12, 18 and 24 months after achievement of remission, this
effect gradually disappeared. Indeed the Kaplan-Meier survival curves,
conditional upon having survived at least 24 months, were almost in-
distinguishable. These same curves, initially, indicated differences so
strong as to give the lower count group an estimated 70 th percentile
survival beyond 5 years, to be contrasted with the higher count group
of about 18 months. Gore, Pocock and Kerr (1984), in a detailed study
on survival in breast cancer, give a convincing demonstration of the
need, when modeling or establishing prognostic indices, to give con-
sideration as to how strength of effect might depend on time. The
studies of Gore et al. and of Sather et al. have in common substantial
data bases (936 children in the leukemia study and 3922 patients in
the breast cancer study) and very thorough follow-up. In such studies,
complex modeling is not only warranted and useful, it is also feasible.
Many prognostic studies will be much smaller, usually with samples
of 100 or fewer patients, and the power needed to fit complex non-
proportional hazards models may be lacking. In these situations, all
that may reasonably be asked of the data are simpler questions such
as are effects persistent and, if not, then is it possible to have some
idea as to how long effects are maintained.

The simple changepoint model, although only ever a first approxi-
mation to an inevitably more complex reality, can then be used effec-
tively to obtain broad and useful inferences. Effects can even change
direction in certain situations and a change point model allows us to
say for how long, on average, the effects are in one direction, how long
in the opposite direction and at which point in time does the change in
direction take place. Other non-proportional hazards models could ad-
dress such questions but would be more involved from the construction
and interpretation point of view. From these angles the changepoint
model is much simpler. The price, however, for such simplicity is some-
what added complexity concerning the question of inference.
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12.3 Some changepoint models

Anderson and Senthilselvan (1982) studied a non-proportional hazards
model in which, λ(t|Z(t)) = λ0(t) exp (β(t)Z(t)) and where β(t) =
β(1)I(t ≤ γ) + β(2)I(t > γ). Thus β(1) and β(2), the regression coeffi-
cients, quantify the risk before and after the changepoint γ. In their
work they estimated γ from the data and then proceeded as though
γ were fixed and known. This is then relatively straightforward, not
requiring any special inferential considerations, but leads clearly to
procedures that do not adequately control for type 1 error as well
as estimation procedures that underestimate the true error of esti-
mates. This is because the estimates for β(1) and β(2) depend upon
the estimate for the changepoint γ, and no allowance for this variabil-
ity in estimation is being catered for. O’Quigley and Pessione (1991),
O’Quigley (1994), and O’Quigley and Natarajan (2004) took γ as be-
ing unknown and requiring estimation. We can see that under the
definition Q(t) = I(t ≤ γ) − I(t > γ), we can re-express the model of
Anderson and Senthilselven so that β(1) = β +α and β(2) = β−α. The
model then comes under the heading of a non-proportional hazards
model with intercept.

The particular problem of crossing hazards can be investigated us-
ing this model. In this case however, it can be advantageous to impose
further restrictions on the parameterization (O’Quigley and Pessione
1991) and fix, in advance, β = 0. Such a parameterization, imposing
an effect, before and after the changepoint, to be of the same magni-
tude appears very inflexible. Such inflexibility, though, can lead to a
test with good power properties when specifically targeted to detect
departures from the null of no effects in the direction of an alternative
where effects change direction at some point but may be comparable
in size before and after the changepoint.

The case of linear regression in which a continuous independent
(explanatory) variable is dichotomized into two groups has been well
studied. For this situation the null hypothesis is written: H0 : Pr(Y ≤
y|Z ≤ γ) = Pr(Y ≤ y|Z > γ) for all y and γ in the domains of Y
and Z respectively. An alternative hypothesis is structured around a
shift effect so that we write Pr(Y ≤ y|Z ≤ γ) = Pr(Y − µ ≤ y|Z > γ)
for all y and γ in the domains of Y and Z respectively. Inferential
techniques for changepoint models can be used to carry out tests or
to calculate confidence intervals for µ and γ. For proportional hazards
models the closest analogue to a shift model arises from the log− log
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transformation. Consider then some continuous covariate z and the
model,

log λ(t|Z > µ) = log λ(t|Z ≤ µ) + β, (12.2)

that essentially regroups all the survival probabilities for those sub-
jects having a value of z below some threshold γ and relates it to the
marginal survival probability of all other subjects. It is straightforward
to add confounding covariates to the above threshold model.

12.4 Inference when γ is known

For γ fixed and known, the model of Equation 12.1 can be fit in with
the framework of Harrington et al. (1982). We fix β at the value β̂,
the maximum likelihood estimate of β under a proportional hazards
assumption and Q(t) = I(t ≤ γ) − I(t > γ) = Qγ . As before, we have
the score Uα(0, β̂ : Qγ) and the information, Var{Uα(0, β̂ : Qγ)}, which
in practice is replaced by the estimate V̂ar{Uα(0, β̂ : Qγ)}, obtained by
using observed values in the place of expected ones and where λ0(s) ds
is replaced by the Nelson-Aalen estimate of dΛ̂0(t). Tests can then be
carried out by referring the statistic

T (0, β̂ : Qγ) = Uα(0, β̂ : Qγ)/
√

V̂ar{Uα(0, β̂ : Qγ)} (12.3)

to standard normal tables. In the case of a single binary variable
taking the values 0 or 1 to indicate group membership, the calcula-
tions take on a particularly simple form. At the distinct failure times
indexed by i, define n1i, n2i to be the risk set sizes for groups 1
and 2 respectively. Letting ψi = n2i exp(β̂)/{n1i + n2i exp(β̂)} and
vi = δin1iψ

2
i exp(−β̂)/n2i we have:

Lemma 12.1 The variance of Uα(0, β̂ : Qγ) is
∑

i vi and we can
write,

Uα(0, β̂ : Qγ)=
∑

Xi≤γ

δi{I(Zi = 1) − ψi}−
∑

Xi>γ

δi{I(Zi = 1)−ψi}. (12.4)

The test is then quite straightforward and does not bring into play any
non standard techniques. We will in fact rely on the result for when γ
is known to construct a rather more involved, but correct, expression
for the probabilities for the distribution of the test statistic when we
do not specify in advance any particular value for γ. In some sense we
integrate over, or sum out, the possible values that γ can take.
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12.5 Inference when γ is unknown

In real applications the time point, γ, at which the risk coefficients
change in sign and/or magnitude, will not be known. Procedures that
take into account all the possible values that γ might take need to be
considered. A Bayesian approach could put different weights on these
values. The unusual feature of the problem is that, for the specific
value of α studied under the null hypothesis, i.e. α = 0, the parameter
γ is undefined. Davies (1977, 1987) considers hypothesis testing in just
such situations, (namely, where there is a parameter, γ, that enters the
model only under the alternative hypothesis) and studies tests of the
other parameters with γ fixed. A class of tests then exists, each member
of which corresponds to some particular fixed value of γ.

Under the null hypothesis, Davies (1977) shows how the overall
probability we can associate with given outcomes can be evaluated by
considering the limit of Bonferroni type combinations of tests. The
distribution of the maximum of these can then be obtained and this
was the focus of Davies’ attention. He obtained a precise expression for
the asymptotic formula for this distribution under the following three
conditions: (1) for fixed γ, increasing values of the test statistic, T (γ)
imply increasing evidence against the null and in favor of the alterna-
tive, (2) for fixed γ and for large samples the distribution of the test
statistic tends to normality, and (3) the test statistic is a continuous
function of γ with a continuous derivative almost everywhere.

For the problem of concern here, we view γ as being neither known
nor estimable under the null, nor can an appeal be made to large sam-
ple theory. The simplest way to proceed is to make an appeal to the
results of Davies, verifying the three conditions needed for his results
to apply. Firstly, note that for known γ it is easy to formulate the ap-
propriate test based on standard theory using the above results. For a
fixed value of γ lying in the interval between two successive failures, we
are able to calculate this statistic T (γ). The partial likelihood remains
unchanged for values of γ lying between two successive distinct failures
and hence it is sufficient to consider any fixed value of γ in this interval
and in practice we will take the midpoint between adjacent failures.
We will then base our test on the distribution of the statistic M where
M = sup{T (γ) : L ≤ γ ≤ U} and where T (γ) is the appropriate test
statistic when γ is known and [L,U ] is the range of plausible values
for γ over which we wish to focus our attention.
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Lemma 12.2 The test statistic T (0, β̂ : Qγ), defined in Equation
12.3, can be taken to satisfy the three conditions of Davies.

As stated the lemma cannot be exactly correct since the third con-
dition of Davies requires continuity of T (0, β̂ : Qγ), as a function of
γ, with a continuous derivative everywhere. This is not immediate.
However, note the following. The function T (0, β̂ : Qγ) is constant be-
tween failures and so we can fix a finite set of γi of interest: these are
such that γi is located exactly mid-way between the (i− 1)th and the
ith distinct failure time, i = 1, . . . , k − 1. We may view the function
T (0, β̂ : Qγ) as a stochastic process, indexed by γ. The first two con-
ditions require no additional work. As for the third condition, we will
first approximate the process T (0, β̂ : Qγ) that is a step-function in γ

by considering T1(0, β̂ : Qγ) for γ ∈ [γi, γi+1] defined by

T1(0, β̂ : Qγ) = T (0, β̂ : Qγi) +
{

γ − γi

γi+1 − γi

}{
T (0, β̂ : Qγi+1)

− T (0, β̂ : Qγi)
}

It is readily verified that T1(0, β̂ : Qγ) is continuous in γ and is equal to
T (0, β̂ : Qγ�

) when � = i or i+1. By an application of the Weierstrauss
approximation theorem (see for example Bartle 1976, Ch. 4), there
exists a function Tc(0, β̂ : Qγ) that can be made arbitrarily close to
T1(0, β̂ : Qγ) and which is twice differentiable in γ. By arbitrarily close
we mean, for any given ε > 0, supγ |Tc(0, β̂ : Qγ) − T (0, β̂ : Qγ)| < ε.

Clearly, Tc(0, β̂ : Qγ) meets the third condition of Davies. Finally, we
can choose ε to depend upon k such that it converges to zero at a rate
no slower than

√
k. It then follows that Tc(0, β̂ : Qγ) − T (0, β̂ : Qγ)

converges in probability to zero, at each γi, 0 < i < k + 1, from which
(see for example Serfling 1980, Chapter 1) we can conclude that the
large sample distribution of Tc is the same as that for T. The required
derivatives are approximated numerically using only T (0, β̂ : Qγi) i =
1, . . . , k + 1 so that the function Tc is only required in the conceptual
construction and need not be obtained explicitly. Thus, as prescribed
by Davies (1977, 1987), for γ unknown, an appropriate two-sided test
should be based on the statistic M = sup{T (0, β̂ : Qγ) : L ≤ γ ≤ U}
where (L,U) is the range of possible values of γ. In order to calculate
the relevant probabilities we use:
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Lemma 12.3 Taking ρ(φ, γ) to be the auto-correlation function
between T (0, β̂ : Qγ) and T (0, β̂ : Iφ), the distribution of M =
sup T (0, β̂ : Qγ) is approximated by,

Pr {M > c : L ≤ γ ≤ U} ≤ Φ(−c)

+
exp(−c2/2)

2π

∫ U

L
{−ρ11(γ)}−1/2dγ, (12.5)

where Φ denotes the cumulative normal distribution function and where

ρ11(γ) = {∂2ρ(φ, γ)/∂φ2}φ=γ .

For a two-sided test we would consider the distribution of |T (0, β̂ : Qγ)|
rather than that of T (0, β̂ : Qγ). We can do this, once again, for each
fixed value of γ and note that, both T (0, β̂ : Qγ) and −T (0, β̂ : Qγ),
under a two-sided alternative, satisfy the first condition of Davies, the
other two conditions being immediate. In practice we would work with
|T (0, β̂ : Qγ)|, positive values of c in Equation 12.5 and simply multiply
the one-sided p-value by 2. This would be good enough although the
issue of a limiting chi-square distribution and two-sided tests was ex-
plicitly addressed by Davies. We return to this question below. Davies
suggests an approximation in which the auto-correlation function is
not required. This approximation arises from:

Lemma 12.4 The distribution of the statistic T (0, β̂ : Qγ) can be
approximated by:

Pr {sup |T (0, β̂ : Qγ)| > m} ≈ Φ(−m) + (8π)−1/2 Vρ exp(−m2/2),
(12.6)

where Vρ =
∑

i |T (0, β̂ : Qγi) − T (0, β̂ : Qγi−1)| , the γi, ranging over
(L,U), are the turning points of T (0, β̂ : ·) and m is the observed
maximum of T (0, β̂ : ·).

Turning points only occur at the k distinct failure times and, to keep
the notation consistent, it suffices to take γi (i = 1, . . . , k +1) as being
located halfway between adjacent failures, γ1 = 0 and, to take care of
the edge effect, we define γk+1 = 2tk − γk.

In general, the function ρ(φ, γ), needed to evaluate the test statistic
is unknown and the auto-correlation, ρ11, is not known. It can nonethe-
less be consistently estimated using bootstrap resampling methods. For
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φ and γ, taken as fixed, we can take bootstrap samples from which
several pairs of T (0, β̂ : Qγ) and T (0, β̂ : Qφ) can be obtained. Us-
ing these pairs, an empirical, i.e. product moment, correlation coeffi-
cient can be calculated. The bootstrap estimator of ρ(φ, γ) is denoted
by R(φ, γ). Under the usual conditions for convergence of bootstrap
estimates (Efron 1981), our empirical estimate provides a consistent
estimate of the true value.

12.6 Maximum of log-rank type tests

As discussed in Section 9.5 one of the most commonly used and popular
tests based on U(β) is the log-rank test, a test that is in fact one
of a broader family of tests that we call log-rank type tests. These
procedures were developed without any specific model in mind as a
series of two by two tables, drawn up at each of the failure points.
For a changepoint problem we can write down a series of tables for
all cutpoints located between adjacent values of the ordered covariate
Z as in Table 12.1. For every cutpoint γ we can set up the series
of tables, and, for simplicity of notation, we do this at each of the
observations Xi, i = 1, . . . , n. The only non-zero contributions arise at
the actual failures, i.e., values of Xi for which Ci > Ti. We observe a
total of m−

γ (i) failures for subjects having Z ≤ γ and m+
γ (i) failures

for subjects having Z > γ. Following the reasoning of Section 9.5 we
can consider m−

γ (i) to be a binary random variable (0,1). The total
number of subjects at risk at time Xi is n(i), this being divided into
n−

γ (i) for those subjects with a covariate value less than γ and n+
γ (i)

for those with a covariate value greater than γ.

Lemma 12.5 Under the null hypothesis of independence between the
covariate Z and survival, and disallowing the possibility of ties, for
every γ, the random variable m−

γ (i) is Bernoulli with mean e−γ (i) and
variance vγ(i) where:

Dead at time Xi Alive after Xi Totals
Z ≤ γ m−

γ (i) n−
γ (i) − m−

γ (i) n−
γ (i)

Z > γ m+
γ (i) n+

γ (i) − m+
γ (i) n+

γ (i)
Totals m(i) n(i) − m(i) n(i)

Table 12.1: One member of a series of 2 × 2 tables arising from di-
chotomizing the explanatory variable Z into two groups: Z ≤ γ and
Z > γ.
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e−γ (i) =
m(i)n−

γ (i)
n(i)

: vγ(i) = m(i)
n−

γ (i)n+
γ (i)

n2
γ(i)

{n(i) − m(i)}
{n(i) − 1} .

In the presence of ties, i.e., allowing for m(i) to be greater than one, the
result for the mean and variance still holds since m−

γ (i) is then a hyper-
geometric variable (see for example Hill et al. 1990). For some given
set of positive weights, Ki, in particular the usual log-rank weights,
Ki = 1, the test at any given value of γ (see Section 9.5) is:

T (γ) =
{∑

i
K2

i vγ(i)
}−1 {∑

i
Ki{m−

γ (i) − e−γ (i)}
}2

, (12.7)

which, under the null hypothesis, would have a chi-square distribution
on one degree of freedom. Not knowing which value of γ to use we max-
imize over all possible values taking as a test statistic M = supγ T (γ).
Note that in much informal statistical analysis it is very common prac-
tice to use some statistic that is of the form of a maximum, or a collec-
tion of maxima. Often, the investigator will consider several, possibly
a large number of potential relationships, use some simple test such as
the t-test and then eliminate from consideration all those relationships
that fail to achieve some significance level.

More formally this amounts to working with the order statistics
and, as we have already seen, the distribution of the order statistics
can be very different from the parent distribution from which they
come. In micro-array analyses and proteomic studies these questions
have become more sharply focused since the number of tests we may
wish to carry out can be large and the difference between the parent
distribution and the distribution of the larger order statistics can be
great. For maximum type tests then we should explicitly take account
of the maximum order statistic and use the expression given in Lemma
12.3.

12.7 Computational aspects

Several computational issues are discussed in O’Quigley and Pessione
(1991). In order to evaluate the expression given in Lemma 12.3 we
need calculate the auto-correlation function. This can be estimated
via the use of bootstrap techniques and will require the generation of
N bootstrap samples. For each such sample, the Cox parameter β̂ is
estimated and a family of test statistics, T (0, β̂ : Qγ) (indexed by γ)
using Equation 12.3 is computed. The empirical correlation coefficient
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between T (0, β̂ : Qγ) and T (0, β̂ : Qφ) can then be computed using
the N pairs generated by the bootstrap procedure. The k + 1 ordered
changepoints γi (i = 1, . . . , k + 1) are determined before carrying out
bootstrap sampling and remain fixed and independent of any chosen
bootstrap sample.

For a particular bootstrap sample, some of the distinct failures will
most likely not be represented. Nevertheless, in estimating ρ(γi, γj)
by ρ̂(γi, γj), the k + 1 positions are maintained, whether or not the
distinct failure times with which they are associated are represented
in a particular subsample. The term, ρ11(·), the second derivative of
the auto-correlation function needs to be evaluated and a convergent
slope estimate of this derivative is given by r11(γi) = k2{ρ̂(γi+1, γi) +
ρ̂(γi−1, γi)−2}. Note that ρ(φ, γ) remains constant for different values
of φ and γ separated by the same failure points which means that
we need only calculate ρ̂(γi, γj) for γi, arbitrarily located between two
failures. We then define ρ̂(γ̃, γj) = ρ̂(γi, γj) for points γ̃ belonging to a
real line segment containing γi and such that the intervals (γi, γ̃) (γi <
γ̃) or (γ̃, γi) (γi > γ̃) contain no failures. The expression for the test
then becomes

Pr{M > m : γ ∈ (0, t∗)}≤Φ(−m)+(2πk)−1exp(−m2/2)
∑

{−r11(γi)}
1
2 ,

where M = sup |T (0, β̂ : Iγ)|. In carrying out the bootstrap, we con-
sider γi−1, γi and γi+1, generate a new sample for which we can cal-
culate the pairs {T (0, β̂ : Qγi+1), T (0, β̂ : Qγi)} and {T (0, β̂ : Qγi−1),
T (0, β̂ : Qγi)}, repeat the process for the chosen number of bootstrap
samples and, on the basis of this, calculate the relevant empirical cor-
relation coefficients.

To make the derivation clearer, k has been left in the above
formulae. It does, in fact, cancel and does not enter into the cal-
culation in practice. For the two sample problem, a formula sim-
ilar to that of Equation 12.4 enables us to successively calculate
the scores. Denoting the jth bootstrapped score at point γi by
T ∗

j (0, β̂ : Qγi), this can be written T ∗
j (0, β̂ : Qγi) = T ∗

j (0, β̂ :
Qγi+1) − (

∑
k vk)−12δ∗i+1{I(Zi+1 = 1) − ψ∗

i+1}, where δ∗i and ψ∗
i are

the bootstrapped realizations of δi and ψi. If, in a particular bootstrap
sample, the distinct failure point between γi and γi+1 is not repre-
sented, then clearly δ∗i+1 = 0 and T ∗

j (0, β̂ : Qγi) = T ∗
j (0, β̂ : Qγi+1).

For the approximation in which we require the turning points of
T (0, β̂ : Qγ), taking again γi as being located half way between adja-
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cent failures and that T (0, β̂ : Qγ1) gives the standard score test for
a proportional hazards model, we can successively calculate T (0, β̂ :
Qγi) via

T (0, β̂ : Qγi+1) = T (0, β̂ : Qγi) + 2
∑

δi(1 − ψi), (12.8)

the sum being over the possibly tied failures at the distinct failure
time indexed by i. If we call P1 the upper bound for the estimated
probability of the one sided test described just above then, once again
following Davies (1987), we can write down the p-value of a two-sided
test from:

P2 = Pr {supγT (γ) > c2 : L ≤ γ ≤ U} ≈ Pr (χ2
p > c2) +

∫ U

L
ψ(γ)dγ

where T (γ) =
∑p

i=1 Z2
i (γ), the Zi(γ) being standardized normal vari-

ates for each value of γ and where ψ(γ) = E(|η(γ)|)c(p−1)π− 1
2 2−

1
2
p

exp(−c2/2)/Γ(p/2 + 1/2), in which the parameter vector is of dimen-
sion p. The η(γ) are independent normal variates with mean zero and
variances given by the eigenvalues of H(γ) − A(γ)′A(γ) where

Var
(

Z(γ)
∂Z(γ)/∂γ

)

=
(

I A(γ)
A′(γ) H(γ)

)

.

In the particular case of the crossing hazards problem there is only
one covariate and the calculations simplify. In this case p = 1 and the
eigenvalues, λ(γ), are therefore all equal (indeed there is only one of
them) and we can write, E(|η(γ)|) = (2λ(γ))

1
2 Γ(p/2 + 1/2)/Γ(p/2) =

(2λ(γ)/π)
1
2 . Using this simplification in Davies formula we have that

ψ(γ) = exp(−c2/2)π−1λ
1
2 (γ) so that

P2 = Pr {supγT (γ) > c2 : L ≤ γ ≤ U} ≈ Pr (χ2
1 > c2)+Ω∗ exp(−c2/2),

where λ(γi) = k2R{S(γi+1) − S(γi), S(γi+1) − S(γi)} − R2{S(γi+1),
k(S(γi+1) − S(γi))} and Ω∗ = (π)−1k−1

∑
i λ

1
2 (γi). O’Quigley (1994)

studied the approximation that consists in multiplying the one sided
p-value by two with the p-value from the two sided test and concluded
that the two results are so close as to be almost indistinguishable in
practice. The direct two-sided test presents a gain in power but it can
be considered to be negligible. Twice the one-sided p-value is easier to
calculate.
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12.8 Two groups with crossing hazards

For the two-group case we can let n1i and n2i indicate the numbers
of subjects at risk, in groups 1 and 2 respectively, at the time point
Xi. The variable δi is the usual indicator variable taking the value
one should the ith subject leave the study as a result of a failure, and
is zero otherwise. We use the notation r−(γ) to denote the number
of distinct failure times in group 2 taking place at times less than γ,
r+(γ) the number of distinct failure times in this same group taking
place at times greater than γ. Note that the partial log-likelihood, L,
written as Lγ(β), can be decomposed so that we have:

Lemma 12.6 We can express Lγ(β) as the sum of L−
γ (β) and L+

γ (β)
where

L−
γ (β) = r−(γ)β −

∑−

γ
δi log(n1i + n2i e

β) ,

L+
γ (β) =

∑+

γ
δi log(n1i + n2i e

−β) − r+(γ)β,

and where
∑+

γ denotes summation over subjects having a distinct fail-
ure time greater than γ,

∑−
γ summation over subjects having a distinct

failure time less than or equal to γ.

Furthermore if we define ψi = n2i/(n1i+n2i) and v =
∑n

i=1 δin1iψ
2
i /n2i

we have:

Lemma 12.7 The test statistic, T (γ), can be written explicitly as

T (γ) = v−
1
2

(
r−(γ) − r+(γ) −

∑−

γ
δiψi +

∑+

γ
δiψi

)
.

For γ unknown, we calculate, M = sup{T (γ) : L ≤ γ ≤ U} where
(L,U) is the range of possible values of γ. A one sided test can be
based on Pr {sup T (γ) > c : L ≤ γ ≤ U} using Equation 12.6.

Resampling strategies to evaluating p-values

For the two-sample problem it may seem natural to resample from
the two estimated marginal distributions, F̂1(t) and F̂2(t), separately.
Otherwise, we could work with the combined conditional distributions,
F̂ (t, z = 0) and F̂ (t, z = 1), making up the overall marginal distrib-
ution. Either approach is valid from the viewpoint of large sample
bootstrap theory. Following the investigation of Akritas (1986) the
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most satisfactory approach to resampling from censored data is that
outlined by Efron (1981). Here we consider the atoms of the parent
bootstrap distribution to be the pairs of time and censoring indicator.
Even in this case, though, we still need to decide whether to sample
from the groups 1 and 2 separately or whether to use the combined
sample together with a binary variable indicating group membership.
For small sample sizes the higher-order inaccuracies consequent upon
use of the bootstrap would best be handled by working with a single
sample. For larger sample sizes power considerations would tend to
suggest preserving the initial constitution of the groups, resampling
separately. Either approach is valid.

For group 1 the data consists of the n1 pairs of observations (t1i, δ1i)
where t1i is the observed, censored or uncensored, failure time for the
ith patient in this group, δ1i takes the value one for an uncensored
failure time and is zero otherwise. An analogous definition holds for
the n2 pairs of observations (t2i, δ2i) for group 2.

For the mth bootstrap take a sample of size nj (j = 1, 2) from
group j with replacement m = 1, · · · , N . Denote the ith observation
by (t∗jim, δ∗jim),j = 1, 2 : i = 1, · · · , nj . For the mth bootstrap combine
the two samples to obtain a single ranked sample, thereby respecting
the initial proportions as observed. This corresponds to considering
the sample sizes n1 and n2 as being ancillary, and the conditionality
principle would then give us added grounds for the separate sampling
approach. Rather than lean on the asymptotic normality of β̂, an in-
termediary solution would consist in technically carrying out the joint
estimating procedure of Anderson and Senthilselvan on bootstrap sam-
ples, replacing the true sampling distribution of the pair (β̂, γ̂) by its
bootstrap distribution. This would be the most non parametric ap-
proach although, for smaller sample sizes, as for instance with non
parametric estimates of cumulative distributions such as the Kaplan-
Meier estimate, we may anticipate poor efficiency. The procedure is ap-
pealing though because of its simplicity. For the mth bootstrap sample
denote the estimates of β and γ by β̂∗

m and γ̂∗
m. Over the N bootstrap

samples summary estimates could be obtained although, for our pa-
rameterisation, we can exploit an, at first sight, curious phenomenon
(O’Quigley and Pessione 1991) whereby, under H0 : β = 0, the limiting
bootstrap distribution turns out to be bimodal and symmetrically dis-
tributed. This is not a phenomenon attenuated by large sample sizes
and is reflective of the constraints of the particular parameterization
chosen along with the estimation process.
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An idealized representation of this phenomenon is shown in
O’Quigley and Pessione (1991) in which γ is fixed at the median
survival time of the reference group, having baseline hazard from
an exponential distribution. Moving away from the null hypothesis
bimodality is maintained but not symmetry, mass being progressively
transferred in the direction of the alternative hypothesis until such
a point that all the mass is around the alternative, unimodality be-
ing thereby recovered. Since the total mass under the bimodal curve
equals one, a simple test amounts to equating the p-value with the
area under the smallest component of the bimodal pair.

Specifically denote the empirical bootstrap density of β̂ by b∗(β̂)
and let B∗(u) =

∫ u
−∞ b∗(w)dw. Then a test of H0 can be based on α =

min{B∗(0), 1−B∗(0)}. In words, of our nB bootstrap repetitions, there
will be n−

B giving rise to values of β̂ less than zero and n+
B to values

of β̂ greater than zero. Assuming none actually give rise to the value
zero itself, an event of zero probability unconditionally regardless of
H0 and asymptotically of zero probability conditional on the observed
data, then:

α = min(n+
B, n−

B)/nB : nB = n+
B + n−

B. (12.9)

For small values of α the null hypothesis is rejected and we see that
for a two-sided test the significance level is simply 2α. Simulations
(O’Quigley and Pessione 1991) based on an underlying two-stage expo-
nential model for total sample size of 25 and 50 subjects in each group,
and for varying degrees of censoring, indicate the nominal significance
level to be accurately approximated by 2α. Furthermore, under H0 the
null distribution of α, based on 200 simulations, looks to be very close
to the uniform.

The direct bootstrap approach gains in simplicity, although follow-
ing Efron’s recommendations when estimating percentiles, the cost of
this simplicity is to be paid in greatly increased bootstrap simulation.
The same broad phenomenon is observed for changepoints other than
the median, albeit with bimodality becoming less and less marked as
we move away from the median.

Comparison of different procedures

For the purposes of comparison, we call T1 the test based on Lemma
12.3, T2 the test based on Equation 12.6 and T3 the test based on
Equation 12.9. Additional potential competitors are to be found in the
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tests of Fleming et al. (1980), referred to here as T4 and the procedure
of Breslow et al. (1984), referred here to as T5. All tests are two-sided,
i.e., we do not specify which of the two treatment groups will fare
better initially. For T1 and T2 the two sided approximation obtains
upon multiplying the one-sided value by two. As constructed, T3 is
naturally two-sided.

O’Quigley and Pessione (1991) carried out several simulations in
order to compare the different approaches. Since the bootstrap proce-
dure is consistent, then r11(γ) will converge to ρ11(γ). For large samples
this enables us to appeal to the findings of Davies whereby T2 will be
strictly conservative compared with T1. Davies found this loss of power
to be rather small. As shown in O’Quigley and Pessione (1991), the
distribution of the p-value for T3, under the null, is well approximated
by the uniform.

To obtain more idea as to the null behavior of the three procedures,
T1, T2, and T3, 400 simulations were carried out. Data were generated
under a standard exponential distribution and, for the censored case,
the same distribution was used for the censoring mechanism. This
second set of values was generated independently of the first so that the
probability of censoring was equal to 0.5. The results are illustrated in
Table 1 in O’Quigley and Pessione (1991). The main points to emerge
are the following. All three tests appear to adequately control for type
1 error, T3 being consistently closer to the nominal level than either T1

or T2. At times T3 is slightly over conservative and, at small effective
sample sizes, tends to be slightly lower than the nominal level. We
might expect this to reflect itself in power and this is discussed in
the next paragraph. The censored and uncensored cases appear to
behave similarly when making a sample size adjustment for the degree
of censoring.

Moving away from the null hypothesis, the question becomes one
of power. Some alternative hypothesis needs to be borne in mind and
again some general remarks are in order. The alternatives examined
by Breslow et al. (1984), by Fleming et al. (1980) and by Stablein and
Koutrouvelis (1985) lead to strong differences at different time points,
so that even crossing hazards look like alternatives of the Lehmann
type over large portions of the data. These tests can then be valuable
since they can detect different kinds of departures from the null of
no effects. T1, T2 and T3 are well structured to detect possibly small
departures from the null of a crossing hazards nature that may easily
be confused with no effect. Note that the simulations of Breslow et al.



346 CHAPTER 12. INFERENCE: CHANGEPOINT MODELS

(1984) can only address the issue of early crossing hazards since the
standard exponential model and Weibull models they use can only
cross at values of t less than 1. There is a slight error in their statement
at the bottom of page 1055 where, instead of t = 1, should be written
t = 0.25. At this point the reference group only has a slightly greater
than 20% chance of failing before this time.

Three broad situations were considered by O’Quigley and Pessione
(1991): early crossing hazards (25th percentile for the reference group),
median crossing hazards (50th percentile for the reference group) and
late crossing hazards (75th percentile for the reference group). Data
were then generated according to a piecewise exponential model hav-
ing log-relative risks, before and after the change, equal to (−0.2, 0.4),
(0.3,−0.5) and (0.6,−0.6), referred to as models 1, 2, and 3 respec-
tively. The reason for choosing these three models is to examine
the relative merits of the tests in the presence of relatively weak
to moderate effects. Model 3 corresponds exactly to the chosen pa-
rameterization, whereas models 1 and 2 deal with not particularly
strong interactions for which the chosen parameterization only repre-
sents a first approximation. The results are summarized in Table 2 of
O’Quigley and Pessione (1991).

The main points that emerged were the following. Tests T1 and
T2 are more powerful than T4 and T5. The tests T1, T2, and T3 are
particularly impressive for changes occurring around the median and
here their power advantage is far from negligible. In most cases in which
the changepoint is around the median, the simple direct bootstrap test
T3 is more powerful than all the other tests. For model 3, though, its
power does not exceed that of T2 and is slightly less than that of
T1. In other situations T3 performs less well, its power diminishing as
the changepoint moves away from the median. In contrast, T1 and T2

retain comparable power regardless of the location of the changepoint.
As predicted, T2 is systematically, although not by very much, less
powerful than T1. The trade off will, nonetheless, often be worthwhile
given the greater ease with which T2 is calculated.

The sample sizes used and the alternatives chosen are such that
none of the tests are very powerful. The numerical intensity of these
procedures makes it not easy to carry out a thorough study at a large
range of potential sample sizes. It nonetheless is reasonable to assume
that the power advantage of T1, T2, and T3 over T4 and T5 will be
maintained. The context of this power advantage needs to be kept in
mind, that of a weak to moderate effect that changes direction during
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the course of the study. A very early or very late change in direction
of effect may be missed without the help of large samples. Even so,
an inference indicating a consistently positive (or negative) regression
effect, failing to detect a change in direction of this effect, would remain
broadly correct.

Proportional hazards alternatives

For proportional hazards alternatives, the proposed procedures, T1 and
T2, again perform very well, perhaps surprisingly at first glance in view
of the specific parameterization. Clearly some power is lost, this loss
stemming from the second term in Equation 12.5. For such alterna-
tives, the estimated changepoint will be given by γ1 or γk+1, or values
close to these and the absolute value of the relative risk is estimated
consistently.

In contrast the log-rank test, while being optimal in some sense for
proportional hazards, has greatly reduced, if not close to zero, power
for crossing hazard alternatives. In an analogous way, the power of T3

is severely diminished in the presence of proportional hazards. This
was highlighted in simulations of O’Quigley and Pessione (1991) on
the basis of the exponential model described above, the “changepoint”
being fixed at the origin and a log-relative risk after this changepoint
of 0.3, 0.5 and 0.6, respectively. The probability of censoring was 50%
for the reference group leading to average overall censoring varying be-
tween 42% and 46%. As before there were 40 subjects in each group.
For the three cases the power of the log-rank test was 0.15, 0.37 and
0.53 respectively. For tests (T1, T2, and T3), the corresponding powers
were (0.12, 0.10, 0.06), (0.31, 0.28, 0.05) and (0.47, 0.44, 0.05), re-
spectively, based on 400 simulations. Whereas T1 and T2 perform well,
albeit less well than the log-rank test, T3 behaves as it would under
the null hypothesis.

12.9 Illustrations

Some examples of changepoint inference are illustrated for three dif-
ferent situations: (1) a null hypothesis of absence of effect against a
specific alternative of crossing hazards, (2) a null hypothesis of no
effect against a specific alternative of declining regression effect and
(3) a null hypothesis of no effect against a cut-point alternative for the
covariate.
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Examples involving alternatives of crossing hazards

Stablein et al. (1985) studied 90 patients in a trial comparing
chemotherapy with combined chemotherapy and radiation therapy
in the treatment of locally unresectable gastric cancer. Their test was
significant at the 0.01 level. Here, we find that T1, on the basis of
200 bootstrap repetitions, gave a one-sided significance level of 1.28
× 10−3. For T2 the one-sided significance level was 1.68 × 10−3. A
two-sided test, obtained by multiplying these values by two, is thus
highly significant in agreement with the findings of Stablein et al.
(1985). A significance level of 2 × 10−3 was obtained for T3, but this
required 2000 bootstraps. With only 200 bootstraps the value 0 was
obtained indicating a one-sided significance less than 0.005.

The second example, for which the two methods of Breslow et al.
(1984) resulted in p-values 0.018 and 0.035, concerned 35 patients with
ovarian cancer, having either low or high grade tumors. For these data,
the test of Fleming et al. led to a p-value equal to 0.002. On the basis
of T1 and 200 bootstraps we found p = 7.7 × 10−3, T2 resulted in
p = 9.5 × 10−3 and for T3 we found p = 1.45 × 10−1. The third
example, concerning bile-duct cancer is described by both Breslow
et al. (1984) and by Fleming et al. (1980). There is a minor error in the
data presented by Breslow et al., for the second group the observation
257 is missing. We found p = 0.031, 0.038 and 0.035 for T1, T2 and
T3, respectively. These values are very similar to the values obtained
using their suggested approach.

Sanders et al. (1985) investigated factors associated with survival
in 114 children with acute lymphoblastic leukemia. All patients were
treated by allogeneic bone marrow transplant from HLA identical sib-
lings. Associated with this therapy is the risk of developing acute graft
versus host disease (AGVHD), a serious immunological complication
initiated by T lymphocytes in the donor marrow. All patients rou-
tinely receive immunosuppresive therapy, in particular methotrexate,
in an attempt to reduce the incidence of AGVHD. Nonetheless, some
30% will present moderate to severe symptoms of AGVHD after re-
ceiving marrow from an HLA identical sibling. A Kaplan-Meier plot of
two groups, those developing AGVHD and those not (O’Quigley and
Pessione 1989) shows no apparant survival differences, either in the
short (1 year), medium (5 years), or long (beyond 8 years) terms.

Note that although AGVHD can be treated as a time-dependent
covariate, since onset, if at all, is soon after transplant, a more straight-
forward analysis is appropriate. Even so, the visual impression from
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the Kaplan-Meier plot is backed up by a test from the proportional
hazards model (χ2 = 0.28). It may well be, though, that things are
somewhat more complicated than they first appear. Patients who de-
velop AGVHD have an increased incidence of fatal cytomegalovirus
pneumonia; some 36% of the children in the Sander’s study suffered
from this complication of which 80% subsequently died. It is hypothe-
sized though that, conditional on surviving this early period, AGVHD
may turn out to be a long-term negative risk factor, associated with
increased survival probability, since we would anticipate it either be-
ing associated with or indicative of a graft-versus-leukemia effect. The
null hypothesis of no effect is then worth testing against the very
specific alternative of “inversion of the regression effect.” In the con-
text of testing against specific departures from proportional hazards,
O’Quigley and Pessione (1989) have already considered this question
for this same data set. It was necessary in that work to incorporate
external information about the onset distribution of cytomegalovirus
pneumonia. Specifically, the authors took the changepoint as being
fixed and known at 80 days. In general, such information will not be
available. In any event it is worth re-analying the data in the absence
of any such assumption.

We find that supT (γ) = 3.7 and that exp{−(3.7)2/2}
∑

i{−r11

(γi)}
1
2 = 0.018 after having estimated each r11(γi) on the basis of 200

bootstrap samples. The value of 3.7 for T (γ) is attained when γ = 96
days. The null hypothesis is thus rejected at p < 0.05 . The approx-
imation suggested by Davies yields a p-value of 0.064. The simpler
approach using Equation 12.9 led to α ≤ 0.005, i.e., p < 0.01, on the
basis of the same number of bootstrap repetitions, of which all 200
produced estimates of β̂ the same side of zero. We limited ourselves
here to 200 repetitions. In practice, without the support of the other
methods, and following Efron’s (1987) guidelines when estimating a
percentile, it is recommended to use a minimum of 1000 repetitions.

An example involving an alternative of diminishing effect

Risk factors affecting survival in breast cancer were studied in a large
clinical trial at the Institut Curie in Paris, France. Histology grade is
known to be one of the major factors to affect survival rates and in
the Curie study there were data on the histology grade of 3908 breast
cancer patients. This information took the form of five categories of
grade 0, 1, 2, 3, 4 giving information on the cell differentiation of the
tumor.
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For an initial data analysis, the five categories were collapsed into
two groups, defining a binary covariate Z such that, Z = 0 corresponds
to histology grades 0, 1 and 2 and Z = 1 to the others. There were
2336 and 1572 patients in groups Z = 0 and Z = 1, respectively.
As a first step, a proportional hazards model was fit to the data and
the coefficient for Z was significantly different from 0, having a point
estimate β̂ = 0.763. Such a value indicates an estimated relative risk
for the group Z = 1 more than double that for the group Z = 0. The
Kaplan-Meier curves and the survival curves from the proportional
hazards model are superimposed in Figure 12.1. The goodness-of-fit
using the bridged score process described in Chapter 8 is shown in
Figure 12.2 and Figure 12.3 and we would conclude that a changepoint
model provides a significant improvement on the fit over the simple
proportional hazards model.

A formal test based on the Brownian bridge is highly statistically
significant although this is of less interest than the visual impression
of the curve and of the improvement provided by the more elaborate
model. In terms of a test based on the expression given in Lemma
12.3 (leaning on the model Q(t) = I(t ≤ γ) − I(t > γ)) it was pos-
sible to definitely reject the null hypothesis of proportional hazards
(p < 0.001) in favor of the alternative of a changepoint model. The
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Figure 12.1: Kaplan-Meier and changpoint model estimates of the mar-
ginal survival functions for breast cancer patients based on the risk
factor grade.
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Figure 12.2: Breast cancer data: Fit of the model without changepoint.
Parallel lines indicate 95% confidence intervals for the corresponding
Brownian bridge process.
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Figure 12.3: Institut Curie breast cancer data: Fit of a PH model with
changepoint. The improvement in fit when compared with Figures 12.2
is noticeable.

changepoint, γ, itself was estimated at around 70.5 months, whereas
the total study time was over 180 months. Further, the maximum like-
lihood estimate of the coefficient α was α̂ = 0.376 indicating that the
regression coefficient is 1.14 before the changepoint and 0.39 after. This
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implies that the relative risk is much higher earlier on than would be
concluded from a simple proportional hazards analysis and diminishes
with time such that, after about 70 months, the relative risk is a little
less than half of its value during the early months of the study.

Examples involving a cut-point in a continuous covariate

We return to the data from the Curie Institute. Among the many
questions concerning these data is one that has given rise to much
discussion: how is prognosis impacted by the age of the patient at di-
agnosis? While some have argued that younger women tend to show a
more aggressive form of the disease, others have claimed that differen-
tial effects are simply reflecting different patterns of incidence coupled
with time-dependent regression effects. These issues are addressed to
some extent by the previous example. In this example we address the
simpler issue of whether or not we can consider the continuous variable
age, once dichotomized into two groups, as a factor having prognostic
importance. The cut-point of the continuous variable age that maxi-
mized the log-rank test was obtained at age 41 and corresponded to a
p-value less than 10−6. The two groups defined by this cutpoint, i.e.,
those aged less than 41 versus those having an age at diagnosis greater
than 41 years, are significantly different. The Kaplan-Meier estimates
of the survival functions of the groups defined by the estimated cut-
point are represented in Figure 12.5. The estimated coefficient for age
is β̂ = −0.39. Using the methods of explained variation (see Chapter
13) we can construct a plot of R2 as a function of the cut-point. Note
that were we to do this for a linear model the maximum of R2 and the
estimated cut-point based on maximizing the log-likelihood, would co-
incide. Here the residual sum of squares is not constant (as is the case in
ordinary linear regression) and, as a result, the maximum of R2 and the
estimated cut-point do not coincide exactly. Nonetheless they are very
close as can be seen from a visual inspection of Figure 12.4. Lausen and
Schumacher (1996) study the prognostic value of the S-phase fraction
for a sub-population of breast cancer patients treated at the Departe-
ment of Gynecology of the University of Freiburg. The study group is
described in Pfisterer et al. (1995). The end point of interest is time
from the operation to the first of the following events: recurrence,
metastasis, second malignancy or death, i.e. observed recurrence-free
survival. The variable S-phase fraction had an observed range of (13,
230), an empirical mean of 64, and a standard deviation of 44.4.
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Figure 12.4: R2 plot as a function of changepoint in age for Institut
Curie breast cancer data. Likelihood and maxR2 estimates are very
similar in this example.
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Figure 12.5: Survival for breast cancer patients according to whether
age at diagnosis is greater or less than age 41.

Using the standardized log-rank estimator, Lausen and Schumacher
(1996) find a cutpoint in the S-phase fraction at 107. Their approach
required that they ignore a small percentage of the observations, in
this case 10% of possible cut-points corresponding to the highest or
lowest values. They obtained a significance level of p = 0.123. Contal
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and O’Quigley (1999), using the methods described in this chapter, ob-
tained a slightly different cut-point of 55, although this result was also
not significant (p = 0.192) and so the results from the two approaches
are not inconsistent.

Contal and O’Quigley (1999) show that the approach of Lausen
and Schumacher, when only 1% of the data are excluded, produces a
result identical to theirs, also thereby underlining an observation from
Lausen and Schumacher that the choice of the admissible interval can
have an influence on the result. If no correction is made for the fact
that the cut-point was not known and obtained via a maximization
procedure we obtain a p-value of 0.007 which highlights the findings
of Altman et al. (1994) that failure to statistically take account of the
way in which a cut-point is identified can be very misleading.

12.10 Some guidelines in model and test
selection

As a general recommendation, for simple changepoint models, the test
based on the Davies approximation (referred to as T2 and given by
Equation 12.6), could be used. This test has the advantage of being
easy to calculate and of only making light demands on computational
power. Further power can be obtained if required, at the expense of
heavier calculations, via the test T2 obtained by using Lemma 12.3.

The direct bootstrap method, based on Equation 12.9, has the
advantage of great simplicity as well as apparent gains in power for
situations in the changepoint is around the median. The direct boot-
strap method also appears to give more accurate control over type 1
error. Unlike T1 and T2 the test T3 is lacking in power when testing a
null hypothesis of no effect against an alternative in which the effect
is of a proportional hazards nature. O’Quigley and Pessione (1991)
pointed out that T3 makes no use of the observed magnitude of β̂ and
that, in a bid to gain further power, it may be possible to construct
a modified version that would incorporate such information. To the
author’s knowledge no study of this has been carried out.

For the simple qualitative interaction, i.e., crossing hazards, and
the parameterization that fixes β = 0 and Q(t) = I(t ≤ γ)− I(t > γ),
i.e.,

λ(t|Z) = λ0(t) exp{αZ(t)[I(t ≤ γ) − I(t > γ)]}, (12.10)
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constraining the log-relative risk to be of the same magnitude but dif-
ferent sign, is a strong one. Some thought needs to be given as to the
implications of this. We might consider to what extent the proposed
procedures work when models other than that of Equation 12.10 hold.
Suppose that the more general model of Anderson and Senthilselvan
(1982) holds, i.e., β(t) = β1I(t ≤ γ)+β2I(t > γ). For local departures,
still describing covariate-time qualitative interactions, although of dif-
ferent magnitude before and after the changepoint, the simulations of
O’Quigley and Pessione (1991) indicate that the test procedure will
continue to work well.

The issues involved in using one parameter to represent a model in
which two parameters correctly describe the mechanism governing sur-
vival was the subject of an investigation by Gail et al. (1984), further
developed by Struthers and Kalbfleisch (1986) and Xu and O’Quigley
(2000). Within a wide class of possibilities, if β1 and β2 have the same
sign, then the interaction is of a quantitative nature and despite some
loss in power by using a proportional hazards model, testing procedures
will be broadly correct, the single β coefficient being expressible, to a
first approximation, as a weighted sum of β1 and β2.

Xu and O’Quigley (2000) point out that this weighting will be
influenced by the censoring even when the censoring mechanism is
an independent one. Even so, the weights are positive and so it re-
mains true that we have some kind of average, even if dependent on
the censoring. For β1 and β2 having opposite signs we have a qual-
itative interaction and the same idea prevails when using the model
suggested above in place of a proportional hazards one. Thus, we can
give a sensible interpretation to a single β, at the very least for local
alternatives.

For non-local alternatives the estimate of γ, under the constraint
of a single β will be inconsistent (Xu and O’Quigley 2000). The idea
here, though, is not so much one of modeling, in which consistency
may be required, but more to provide a powerful test against a broad
range of local alternative. Once the null hypothesis is rejected we may
very well wish to explore further, and the number of parameters we
would want to employ in this exploration, will depend largely on the
available data.

Type 1 error and power

O’Quigley and Pessione (1991) and O’Quigley and Natarajan (2004)
carried out extensive simulations to study type 1 error and power.
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From 1000 repetitions, each with 100 bootstraps and for a standard
exponential model having 10 subjects in each group, the null hypoth-
esis was rejected 53 times, i.e., p = 0.053, using the direct two sided
test. Multiplying the one sided p-value by one led to p = 0.052. In
order to get a handle on power we firstly define

E{S(γi), S(γj)} = ER{S(γi), S(γj}

and noting the following results:

E{S(γi) − S(γj), S(γi) − S(γj)} = E{S(γi), S(γi)} + E{S(γj), S(γj)}
−2E{S(γi), S(γj)}

E{S(γi), k(S(γi) − S(γj))} = k(E{S(γi), S(γi)} − E{S(γi), S(γj)})

and that for local alternatives E{S(γj), S(γj)} = 1, j = 1, . . . , k + 1.
We then have that λ(γi) = k2(1 − E2{S(γi+1), S(γi)}). Noting

that the difference between −r11(γi) and k2(2 − E{S(γi+1), S(γi)} −
E{S(γi−1), S(γi)}) converges in probability to zero and letting A(c) =
exp(−c2/2)(πk)−1 we have (O’Quigley 1994) that the difference be-
tween the p-values, 2P1 − P2 equals the product kA(c) and

∑

i
(2 − E{S(γi+1), S(γi)} − E{S(γi−1), S(γi)})

1
2

−(1 − E2{S(γi+1), S(γi)})
1
2 ,

a term that is strictly positive, plus a negligible term of order smaller
than 1/k2 whenever the following condition:

E{S(γi+1), S(γi)}(1−E{S(γi+1), S(γi)})<1−E{S(γi−1), S(γi)}
(12.11)

holds for all values of i. The expression is a quadratic form in
E{S(γi+1), S(γi)} and can always seen to be verified whenever E{S
(γi−1), S(γi)} < 0.75. It is very difficult to construct a situation in
which this condition is not met and it could only possibly occur for
very small values of k, certainly no more than ten. Otherwise, with
increasing sample size, E{S(γi−1), S(γi)} will take increasingly larger
values, quickly tending to one. Under the classic and simple heading,
where we put an upper bound on observable survival time, we have
that, for i = kq and 0 < q < 1, that S(γi+1) and S(γi) approach
the same value. The same applies to S(γi−1) and S(γi). Moreover
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since E{S(γi+1), S(γi)} and E{S(γi−1), S(γi)} are close to one, then
the equation approaches zero and in consequence 2P1 − P2 → 0. The
preceding results require that, as sample size n increases, k/n ap-
proaches some constant between 0 and 1 (i.e., the usual requirement
needed to obtain asymptotic results with censored data: see for exam-
ple Breslow and Crowley (1974)). However, even though in the limit
2P1 = P2, we would still anticipate that for large samples 2P1−P2 > 0,
since E{S(γi+1), S(γi)} goes to E{S(γi−1), S(γi)} and since on the left-
hand side of Equation 12.11 we have that E{S(γi+1), S(γi)} < 1, then
the inequality will be maintained.

Table 12.2 is taken from O’Quigley and Natarajan (2004) and
shows results from simulations studying type 1 error and power
according to different types of decline of effect and sample size. The
tests were based on 500 simulations where group 1 is standard expo-
nential and various scenarios allowed for group 2.

It would be worth making a power comparison of the above results,
obtained via the use of a simple changepoint model and those we would
obtain had the exact relative risk form of model been used. Although
this is pure speculation, not backed up by empirical or theoretical
arguments, the author believes that the use of a “correct” model rather
than an under-parameterized, over simplified model, would produce
little in the way of power gains.

Table 12.2: Power estimates for different rates of decline of effect using
simple changepoint model. First row uses test based on lemma 12.3,
the second row the test based on Equation 12.6: 50% independent
censoring: RR = relative risk.

Distribution in second group Number of subjects
n = 20 n = 40 n = 100

H0: Exponential with log RR = 0.7 0.014 0.022 0.046
0.018 0.028 0.066

H0: Exponential with log RR = 1.4 0.016 0.014 0.008
0.024 0.016 0.012

H1: Piecewise exponential: 0.060 0.238 0.608
piecewise log RR = (1.1, 0.9, 0.7, 0.4, 0.0) 0.086 0.252 0.614

H1: Piecewise exponential: 0.112 0.340 0.710
piecewise log RR = (1.6, 1.4, 1.1, 0.7, 0.0) 0.128 0.370 0.722

H1: Piecewise exponential: 0.172 0.506 0.802
piecewise log RR = (2.2, 1.9, 1.6, 1.1, 0.0) 0.204 0.512 0.810
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12.11 Exercises and class projects

1. In the equation for the non-proportional hazards model with inter-
cept fix β = λ0(t) = α = 1 and take Z(t) to be a binary indicator
variable for two groups. For each group evaluate the survival function
when: (i) Q(t) = 0, (ii) Q(t) = −t, (iii) Q(t) = I(t ≤ γ) − I(t > γ)
and where γ is the marginal median. Discuss the similarity between
(ii) and (iii).

2. Describe real situations in which you would anticipate the regression
effect to: (i) remain constant in time, (ii) to decrease in time and
(iii) to increase in time. How would you employ a changepoint model
to address this third question? Using actual data in which regression
effects decline in time, fit a changepoint model. Compare the fit of the
changepoint model to a model imposing constant effects.

3. Explicitly derive the results given by Equation 12.4.

4. Referring to the data of Stablein et al. (1981) carry out a propor-
tional hazards analysis for the two groups followed by a goodness of fit
test. Next, carry out an analysis that allows for an unknown change-
point. Carry out the goodness-of-fit test for this situation. Discuss the
implications of the results in particular taking account of the clinical
context.

5. Explicitly derive the two lemmas given in Section 12.8 for the cross-
ing hazards problem.

6. Simulate data with a continuous covariate and with β = 1.0. Take
the covariate distribution at T > 0 to be: (i) exponential, (ii) log-
normal and (iii) extreme value. Fit a proportional hazards model based
on the assumption that the covariate distribution is uniform. Describe
how the biases in the estimate of β depend on the nature of the un-
derlying distribution of the covariate. Next, use a simple changepoint
model to recode the covariate into two groups. Estimate the corre-
sponding β in this case and investigate how the estimate is influenced
by the underlying covariate distribution. Comment on the simulation
results.



Chapter 13

Explained variation

13.1 Summary

Some suggestions on possible measures of explained variation which
have appeared in the literature are considered. Following this an out-
line of the recommended approach is given. Leaning upon the theory
of explained variation detailed in Chapter 2 and in particular 3.9 we
show how a solid theory of explained variation for proportional and
non-proportional hazards regression can be established. This contrasts
with a substantial body of literature on this topic, almost entirely con-
structed around intuitive improvisations and ad-hoc modifications to
sample based quantities gleaned from classical linear regression. The
main reference here is the paper by O’Quigley and Flandre (1994)
which showed how the Schoenfeld residuals provide the required in-
gredients for the task in hand. The properties of population quantities
and sample based estimates have been studied thoroughly (O’Quigley
and Xu 2001) and these provide the user with the necessary confidence
for their practical use.

13.2 Motivation

Referring back to Chapter 2 and Section 3.9 it is clear that the con-
cept explained variation is a fundamental one, directly quantifying the
notion of predictive ability. This quantification is a consequence of the
Chebyshev inequality. As an example of a practical setting in which
we are motivated to look at this, consider a study of 2174 breast can-
cer patients, followed over a period of 15 years at the Institut Curie

359
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in Paris, France. A large number of potential and known prognostic
factors were recorded. Detailed analyses of these data have been the
subject of a number of communications and we focus here on a lim-
ited analysis on a subset of prognostic factors, identified as having
some prognostic importance. These factors were: (1) age at diagnosis,
(2) histology grade, (3) stage, (4) progesterone receptor status, and (5)
tumor size. In addition to the usual model fitting and diagnostic tools,
it seems desirable to be able to present summary measures estimating
the percentage of explained variation and the relative importance of
the different prognostic factors. We would like to be able to say, for
example, that stage explains some 20% of survival but that, once we
have taken account of progesterone status, age, and grade, then this
figures drops to 5%. Or that adding tumor size to a model in which
the main prognostic factors are already included then the explained
variation increases, say, a negligible amount, specifically from 32% to
33%. Or, given that a suitable variable indicates predictability, then
to what extent do we lose (or gain), in terms of these percentages,
by recoding the continuous prognostic variable, age at diagnosis, into
discrete classes on the basis of cutpoints.

For our situation, in which inference is rank invariant with respect
to monotonic transformations on time, then from Section 3.9, we can
see that this implies evaluation of the explained variation in the co-
variate given time rather than, the apparently more natural, explained
variation of time given the covariate. For normal models the two are
the same anyway and, here, we would anticipate them as being very
close. In addition, we have all that is needed if we prefer to consider
the explained variation of time given the covariates.

It helps to keep in mind the implication of working with the
conditional distribution of the covariate given time rather than the
other way around. It means that explained variation, translated as
predictability as a consequence of Chebyshev’s inequality, refers to
the predictability of the failure ranks. Absence of effect should then
translate as 0% predictability; perfect prediction of the correct order-
ing of the survival ranks should translate as 100%; and intermediate
values are to be interpretable as providing an ordered scale, any point
of which indicates precisely the amount of predictive strength in the
model. These concepts are outlined below.
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13.3 Finding a suitable measure of R2

Some suggestions in the literature

The R2 measure of explained variability, or predictive capability, is
well known under a normal linear model. As pointed out by Korn and
Simon (1990), and in contrast to what is oftentimes taught and writ-
ten, such measures are only indirectly concerned with fit. They are
directly concerned with predictability. For the proportional hazards
model some correlation measures were first suggested by Harrell (1986)
although it turned out that his measures depend heavily on indepen-
dent censoring and can not be easily interpreted. Kent and O’Quigley
(1988) developed a measure based on the Kullback-Leibler information
gain and this could be interpreted as the proportion of randomness in
the observed survival times explained by the covariates.

The principal difficulty in Kent and O’Quigley’s measure was its
complexity of calculation although a very simple approximation was
suggested and appeared to work well. The Kent and O’Quigley mea-
sure was not able to accommodate time-dependent covariates. Xu and
O’Quigley (1999) developed a similar measure based on information
gain, using the conditional distribution of the covariates given the fail-
ure times. The measure accommodates time-dependent covariates, and
is computable using standard softwares for fitting the Cox model. We
consider this measure in the following chapter.

Korn and Simon (1990) suggested a class of potential functionals of
interest, such as the conditional median, and evaluated the explained
variation via an appropriate distance measuring the ratio of average
dispersions with the model to those without a model. Their measures
are not invariant to time transformation, nor could they accommo-
date time-dependent covariates. In this context these disadvantages
are quite severe. Schemper (1990, 1994) introduced the concept of in-
dividual survival curves for each subject, with the model and without
the model. Interpretation is very difficult. As with the Harrell measure,
the Schemper measures depend on censoring, even when the censor-
ing mechanism is completely independent of the failure mechanism.
Schemper and Kaider (1997) proposed to estimate the correlation co-
efficient between failure rankings and the covariates via multiply im-
puting the censored failure times. Although numerically complex, and,
again, not readily affording any clear interpretation, this latter coef-
ficient of Schemper and Kaider shows promise and may be worthy of
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further study. It is possible to remove the dependence on the censoring
and this has been considered by O’Quigley, Flandre and Reiner (1999)
and Schemper and Henderson (2000).

Distance measures

Explained variation is clearly based on a measure of distance. Some
authors have preferred to directly address the question of predictive
ability of any model via classes of distance measures. This is the case
for Harrell (1986), Korn and Simon (1990), Schemper (1990, 1992)
and Graf and Schumacher (1995). Apart from the measure of Harrell,
which relates to measures of information gain described in the following
chapter, all of these measures relate to those described by Schemper.

In this description of the Schemper measures we keep to his nota-
tion (Schemper 1990) in order to facilitate any comparative study the
reader may be interested in carrying out. Schemper defined Sij , in-
terpretable as an “empirical survivorship function” per individual, for
subject i at observed failure time point tj (j = 1, . . . , ki). The quantity
ki will be the total number of failures should individual i correspond
to a failure; otherwise ki is the number of failures occurring prior to
the censoring time of the individual i. Sij = 1 for individual i at all
time points tj for which the individual is still alive, drops to 0.5 at the
point at which the individual fails, and thereafter Sij = 0. Note that
changing the definition of Sij so that it drops to zero rather than 0.5
at the observed failure time will have a negligible impact in practice
and an impact approaching zero as sample size (number of failures)
increases.

Denote further S̄j to be the Kaplan-Meier estimate of survival at
time tj and S̄ij the estimate of survival for individual i at time point tj
derived from the proportional hazards model. Two different measures
of the proportion of variability explained were suggested, V1 and V2

where, for � = 1, 2:

Definition 13.1 Schemper’s proportion of variability explained is

V� = 1 −
∑

k−1
i

∑
|Sij − S̄ij |�

∑
k−1

i

∑
|Sij − S̄j |�

; � = 1, 2. (13.1)

For an exponential model and different relative risks, values of V1 and
V2 were tabulated on the basis of a single large simulation (Schemper
1990). The entries for V2 turned out not to be based on a sum of
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squares, as the above expression and Schemper’s original paper in-
dicate, but in fact on a rather less classical squared sum (Schemper
1994). Thus, the original definition for V2 was considered to be in er-
ror by Schemper (1994) and replaced by an alternative one, say V ∗

2 ,
for when � = 2, replacing

∑
|Sij − S̄ij |� by

∑
(k−1

i

∑
|Sij − S̄ij |)2 in

the numerator and
∑

k−1
i

∑
|Sij − S̄j |� by

∑
(k−1

i

∑
|Sij − S̄j |)2 in

the denominator. There is something unusual, requiring further jus-
tification it would seem, in working with distances defined in terms
of squared sums rather than sums of squares. The merits of such a
definition were not detailed by Schemper (1994) although subsequent
work (O’Quigley, Flandre and Reiner 1999; Schemper and Henderson
2000) suggest the original definition should be retained as the correct
one. In support of this is the interesting observation that, for an expo-
nential model and no censoring, the population equivalents of V1 and
V2 converge to the same quantity.

Schemper’s coefficients can be seen to depend on the unknown in-
dependent censoring mechanism (O’Quigley, Flandre and Reiner 1999,
Schemper and Henderson 2000). This can however be remedied and we
look at this in a later section. The Schemper coefficients are generally
bounded by a number strictly less than one. This is also true in the
uncensored case and, for the cases studied by Schemper (1990), the
population values of V1 and V2 are bounded by 0.5.

Relationship between distance measures

Discussion of the relationships between different coefficients based on
some measure of distance is given in Graf and Schumacher (1995).
A study of the Schemper proposal and its large sample properties
is enough to deduce the properties we would anticipate from closely
associated measures. We return to this in Section 13.10 and point out
here the way in which these coefficients are connected. It is useful
to consider the population equivalents of V1 and V2 and we do this by
considering the probability limits of the numerator and denominator in
definition 13.1. If, for � = 1, 2, the numerator converges in probability
to N� and the denominator to D� then we can study the population
parameter θ� where θ� = 1 − D−1

� N�. We look at this in more detail
in Section 13.10. For now we simply consider the form of N� as this
brings out the relationship between the distance measures.

Korn and Simon (1990) considered squared error to be a particular
kind of loss function and therefore other kinds of loss function, such
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as absolute error, might also be considered. The main development
is around integrated squared error loss. For the numerator in their
expression, let’s call it NKS here, we have

ÑKS =
∫ ∫

S̃(u|z){1 − S̃(u|z)}dudHn(z) . (13.2)

In the absence of censoring, for the population equivalent of V2, we
can construct a theoretical numerator, Ñ2 given by

Ñ2 =
∫ ∫ ∫

{Yt(u) − S̃(u|z)}2dF̃ (u)dF̃ (t|z)dHn(z).

In the uncensored case then the distance measures are closely related.
The differences arise as a result of the weightings. For the Schemper
coefficients these are given in terms of increments in F̃ (t) rather than
increments in t itself. This we deduce from taking the above integral
one step further where we see that:

Ñ2 =
∫ ∫

S̃(u|z){1 − S̃(u|z)}dF̃ (u)dHn(z) , (13.3)

which we can then compare with Equation 13.2. The same conclusion
has also been obtained by Graf and Schumacher (1995). Note that
monotonic transformations of t would typically impact the Korn and
Simon measures, whereas the increments in F̃ (t), and thereby V� it-
self, remain unaffected. Given that inference under the proportional
hazards model has this invariance property, it may be considered a
desirable property of V�. Furthermore, for the broad class proposed by
Korn and Simon (1990), it would be straightforward to extend their
measures by adopting such a modification, in order to accommodate
such a property if deemed necessary.

Recommended approach

The most transparent approach, interpretable in terms of explained
variation, is that described by O’Quigley and Flandre (1994). This
approach, in tune with the general theory of Section 3.9, studies the
explained variation in T given the covariate vector Z, or, in order to
maintain rank invariance, the explained variation of the prognostic in-
dex (Z alone in the univariate case) given T . If we stray from this
we lose interpretability and, although many of the other suggestions
have merit, they can run into all sorts of problems such as unknown
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bounds on the index, negative values, strong dependence on the cen-
soring, even when independent of the failure mechanism and, simply,
no way to interpret them. Thus, a value of 0.03, under one set of
circumstances, may indicate a stronger effect than a value of 0.5, ob-
tained under a different set of circumstances. A more solid approach
can be constructed by keeping the basic theory in mind from Section
3.9. Leaning on that basic theory we can anticipate obtaining indices
with meaningful properties. Even so, it is still important to investigate
any properties deemed desirable, and not automatically inherited by
virtue of Section 3.9.

Our recommended approach is essentially that outlined in O’Quigley
and Flandre (1994). Their motivation came from linear regression
where we denote ri(β̂) to be the fitted residual, i.e., the difference
between the observation and its model based expectation evaluated
under β = β̂. The null residual ri(0) obtains by putting instead β = 0
and this corresponds to replacing all expectations by the overall mean.
Next we calculate the average squared deviation of the observations
from their model based predictions,

∑
r2
i (β)/n, leading to the well

known expression for R2, written as R2(β̂) in order to make explicit
the dependence on β̂, from

R2(β) = 1 −
∑

r2
i (β)

∑
r2
i (0)

. (13.4)

Some additional work was needed in order for the R2 measure of
O’Quigley and Flandre to be consistent in general situations. This is
achieved by weighting things correctly and this is described below. We
discuss all the needed statistical properties for the measure including
obtaining confidence intervals with coverage properties asymptotically
the same as those for the regression coefficient estimate itself. A sum
of squares decomposition, an expression for explained variation and
the relationship between increasing values of the measure and pre-
dictability of the survival ranks all help form the basis for a more
solid interpretation. Via simulations we compare this measure with
some of the measures mentioned above. Those aspects particular to
the multicovariate case are examined more closely and some general
recommendations are given. The measure can also be easily extended
to other relative risk models.
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13.4 An R2 measure based on Schoenfeld
residuals

Recall the Schoenfeld residuals as the discrepancy between the ob-
served value of the covariate, viewed of as having been sampled at
time point Xi and its expected value,

ri(β) = Zi(Xi) − Eβ(Z|Xi), (13.5)

for δi = 1 at each observed failure time Xi. The expectation Eβ(Z|Xi)
is worked out with respect to an exponentially tilted distribution. The
stronger the regression effects the greater the tilting, and the smaller
we might expect, on average, the values r2

i (β) to be when compared
with the residuals under the null model β = 0. Based on these resid-
uals, a measure of explained variation, analogous to the coefficient of
determination for the linear model, can be defined (O’Quigley and
Flandre 1994).

Since the semiparametric model leaves inference invariant under
monotonic increasing transformations of the time axis, and being able
to predict at each failure time which subject is to fail is equivalent to
being able to predict failure rankings of all the failed subjects, it is
sensible to measure the discrepancy between the observed covariate at
a given failure time and its expected value under the model. In the
absence of censoring the quantity

∑n
i=1 r2

i (β̂)/n can be viewed as the
average discrepancy between the observed covariate and its expected
value under the model, whereas

∑n
i=1 r2

i (0)/n can be viewed as the
average discrepancy without a model. This consideration led O’Quigley
and Flandre (1994) to define

R2(β) = 1 −
∑

r2
i (β)

∑
r2
i (0)

(13.6)

This is then a clear analogue to that of R2 for linear regression. That of
itself would not be enough since there may be other possible general-
izations. We need study its properties and show that an interpretation
for the population equivalent in terms of explained variation holds.

Investigating the impact of censoring

The effect of censoring for large samples on R2(β) was studied by
O’Quigley and Flandre (1994) and is so small that it can be ignored in
practice, even for rates of censoring between ninety to ninety nine
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percent. However, if we are to obtain exact asymptotic results, in
which our estimator converges to a quantity unaffected by an in-
dependent censoring mechanism, then we need to do a little extra
work. This work amounts to weighting the squared Schoenfeld residu-
als by the increments of any consistent estimate of the marginal failure
time distribution function F . Therefore, let F̂ be the left-continuous
Kaplan-Meier estimate of F , and define W (t) = Ŝ(t)/

∑n
1 Yi(t) where

Ŝ = 1− F̂ . Then W (t) is a non-negative predictable stochastic process
and, assuming there are no ties, it is straightforward to verify that
W (Xi) = F̂ (Xi+) − F̂ (Xi) at each observed failure time Xi, i.e., the
jump of the Kaplan-Meier curve. In practice, ties, if they exist, are
split randomly. We then define the quantity I(b) for b = 0, β by

I(b) =
n∑

i=1

∫ ∞

0
{Zi(t) − Eb(Z|t)}2dF̂ (t)

or, in the more familiar counting process notation by,

I(b) =
n∑

i=1

∫ ∞

0
W (t){Zi(t) − Eb(Z|t)}2dNi(t) =

n∑

i=1

δiW (Xi)r2
i (b).

(13.7)

These quantities are, as before, averages of squared residuals, under
the null model and under the best fitting model, the only difference
being that the average here is weighted with respect to the increments
dF̂ (t). For large samples we will be able to assert that F̂ (t) will be
close to F (t) and so our average is taken over time. With this in mind
we then appeal to a broadened definition for R2 in which:

R2(β) = 1 −
∑n

i=1 δiW (Xi)r2
i (β)

∑n
i=1 δiW (Xi)r2

i (0)
= 1 − I(β)

I(0)
. (13.8)

The definition given by O’Quigley and Flandre (1994) would be the
same as above if we defined W (t) to be constant and, of course, the two
definitions coincide in the absence of censoring. The motivation for the
introduction of the weight W (t) is to obtain large sample properties
of R2 that are unaffected by an independent censoring mechanism.
Viewing R2 as a function of β turns out to be useful. In practice, we
are mostly interested in R2(β̂) where β̂ is a consistent estimate of β
such as the partial likelihood estimate.
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Population parameter Ω2

The population parameter Ω2(β) of R2(β̂) was given in O’Quigley &
Flandre (1994). R2(β̂) can be considered a semi-parametric estimate of
Ω2(β) in as much as it is unaffected by monotonic increasing transfor-
mations on time (see Section 3.9). We will see that Ω2(β) is unaffected
by an independent censorship mechanism. If in addition Z is time-
invariant, we also see that

Ω2(β) = 1 − E{E[Z − E(Z|A(T ))]2}
E{E[Z − E(Z|B(T )]2} , (13.9)

where A(t) = {t} and B(t) = {u : u ≥ t} so that, in view of equation
(3.32), Ω2(β) has the interpretation of the proportion of explained
variation. This of itself would not be interesting enough and we also
show that this choice of B is a sensible one. In fact, the results for the
above choice, chosen to accommodate sequential conditioning on the
risk sets, are very close to those arising under the definition B(t) = T
(see Table 13.1). Indeed, for practical purposes of interpretability we
can take Ω2(β) to be defined as in the following equation where the
approximation symbol is replaced by an equality symbol, i.e.,

Ω2(β) ≈ Var{E(Z|T )}
Var(Z)

.

O’Quigley and Flandre showed that Ω2(β) depends only relatively
weakly on different covariate distributions, and values of Ω2(β) give a
good reflection of strength of association as measured by β, tending to
1 for high but plausible values of β. The numerical results support the
conjecture that Ω2 increases with the strength of effect, thereby agree-
ing with the third stipulation of Kendall (1975, p. 4) for a measure
of rank correlation. The first two stipulations were that perfect agree-
ment or disagreement should reflect itself in a coefficient of absolute

Table 13.1: Ω2 as a function of β.

covariate∗ c c d c c c d

β 0 0.7 0.7 1.4 2.8 4.2 4.2
B(t) = {u : u ≥ t} 0.0002 0.0990 0.0979 0.2844 0.5887 0.7577 0.8728

B(t) = T 0.0018 0.0998 0.0985 0.2848 0.5889 0.7578 0.8728
∗ Covariate distribution: d – binary, c – uniform. Data are simulated under the

same mechanism as that described below.
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value 1; the third stipulation that for other cases the coefficient should
have absolute value less than 1, and in some acceptable sense increas-
ing values of the coefficient should correspond to increasing agreement
between the ranks. Here we have a squared coefficient, and Kendall’s
stipulations are considered in a broader sense because we are not re-
stricted to the ranks of the covariates in the semiparametric context.
In the next section we will show that Ω2(β) → 1 as |β| → ∞ and that
it increases with the ability to explain survival rankings by the covari-
ates. Before that, we look at a closely related quantity which turns out
to be of use.

Alternative measure R2
E

For mostly theoretical purposes we also consider an alternative defi-
nition to R2, in which we use the expected (with respect to the π’s)
rather than the observed squared residuals. Consider then

J (β, b) =
∫ ∞

0
W (t)

n∑

j=1

πj(β, t){Zj(t) − Eb(Z|t)}2dN̄(t)

=
n∑

i=1

δiW (Xi)Eβ{r2
i (b)|Xi}

and define

R2
E(β) = 1 −

∑n
i=1 δiW (Xi)Eβ{r2

i (β)|Xi}∑n
i=1 δiW (Xi)Eβ{r2

i (0)|Xi}
= 1 − J (β, β)

J (β, 0)
. (13.10)

Our experience indicates that when the proportional hazards model
correctly generates the data, R2

E will be very close in value to R2. In-
deed we will show, under the model, that |R2(β̂) − R2

E(β̂)| converges
to zero in probability. This coefficient is of interest in its own right al-
though our main purpose here is to use it for developing properties of
the next section. It can also be used to construct confidence intervals
for the population quantity Ω2(β), intervals which have, for increasing
sample size, exactly the same coverage properties of those for β̂ itself.
Another angle to understand J (β, b) follows from taking the expecta-
tion of I(b) under the model, using the results for counting processes
(see for example Fleming and Harrington 1991) we have

E{I(b)} =
n∑

i=1

∫ ∞

0
E{W (t)[Zi(t) − Eb(Z|t)]2Yi(t) exp[βZi(t)]}dΛ0(t),
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where Λ0(t) =
∫ t
0 λ0(s)ds. If we replace the unknown Λ0 by the Nelson-

Aalen estimate (Breslow 1972, 1974) and the expectations under the
integral by the observed quantities, then we recover J (β, b) as an es-
timate of E{I(b)}. It is also straightforward to verify that J (β, β) is
the weighted information of the Cox model.

13.5 Finite sample properties of R2 and R2
E

We have the following immediate lemmas:

Lemma 13.1 Viewing R2 as a function of β then: R2(0) = 0 and
R2(β) ≤ 1.

Lemma 13.2 R2(β) is invariant under linear transformations of Z
and monotonically increasing transformations of T.

The following lemma is not a precise result, although we have a precise
equivalent for large samples. It provides some insight into R2, viewed
as a function of β. It also indicates why, apart from theoretical interest,
only R2(β̂) need concern us.

Lemma 13.3 R2(β) as a function of β, reaches its maximum around β̂.

Proofs of the above are similar to those given by O’Quigley and Flandre
(1994). More details are provided in the chapter on proofs. Note that
R2, unlike R2

E and Ω2, cannot be guaranteed to be non-negative. A
negative value for R2 is nonetheless difficult to obtain in practice,
corresponding to the unusual case where the best fitting model, in a
least squares sense, provides a poorer fit than the null model. R2(β̂)
will only be slightly negative in such cases if β̂ is very close to zero.

Lemma 13.4 An approximate sums of squares decomposition holds
for r2

i and holds exactly in the following expression:

Eβ{r2
i (0)|Xi} = Eβ{r2

i (β)|Xi} + {Eβ(Z|Xi) − E0(Z|Xi)}2. (13.1)

Both the approximate and the exact sum of squares decomposition,
outlined in more detail below, are valuable in underlining the great
similarity between proportional hazards models and linear models. Al-
though we do not pursue the idea it would be quite possible to develop
for the proportional hazards model a whole theory for testing and fit
based on sums of squares and analysis of variance type decompositions.
Even F -tests can be constructed, although, at the present time, there
appears to be no obvious advantage to any such alternative approach.
One consequence of the above breakdown is:
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Lemma 13.5 The coefficient R2
E(β) can be reexpressed as:

R2
E(β) =

∑n
i=1 δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}2

∑n
i=1 δiW (Xi)Eβ{r2

i (0)|Xi}
.

The re-expression of R2
E(β) in the lemma is helpful in obtaining the

further lemmas:

Lemma 13.6 As a function of β, 0 ≤ R2
E(β) ≤ 1, and R2

E(0) = 0.

Whereas R2(β) depends on the observations directly, R2
E(β) is a func-

tion of expectations across the observations and although, at least for
correctly specified models, there will be close agreement between the
R2(β̂) and R2

E(β̂) (a result made more precise below), the two co-
efficients behave very differently when viewed as functions of β. In
particular, in contrast to Lemma 13.3, we have:

Lemma 13.7 As |β| → ∞ then R2
E(β) → 1.

We also have:

Lemma 13.8 R2
E(β) is invariant under linear transformations of Z

and monotonically increasing transformations of T .

The proof of the linearity property follows in the same way as for
R2 (O’Quigley and Flandre 1994), and an outline of the proof of
monotonicity is given in the chapter on proofs. The figure helps illus-
trate the contrasting behaviors of the two coefficients, seen as functions
of β. It is clear that R2(β) as a function of β does not increase to 1 as
|β| → ∞, but rather reaches its maximum near β̂. The monotonicity
property of R2

E(β) also has an interesting connection to the literature
on the efficiency of the Cox model, which has also noted that the infor-
mation J (β, β) → 0 as |β| → ∞ (Efron 1977, Oakes 1977, Kalbfleisch
and Prentice 1980 Section 4.7).

13.6 Large sample properties

The most straightforward approach is to define the population para-
meter Ω2(β) as the probability limit of R2

E(β) as n → ∞. We can then
investigate separately how meaningful is Ω2(β), in particular how it
can be viewed as an index of explained variation. We then need to
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show that R2(β̂) converges in probability to Ω2(β0) where β0 is the
“true” value under which the data are generated. Let

S(r)(β, t) = n−1
n∑

i=1

Yi(t)eβZi(t)Zi(t)r, s(r)(β, t) = ES(r)(β, t),

for r = 0, 1, 2, 3, 4. We assume that the Andersen-Gill conditions hold.
First it is straightforward to establish that: Eβ(Z|t) = S(1)(β, t)/S(0)

(β, t). Next we have:

Lemma 13.9 The coefficient J (β, b) can be reexpressed as:

J (β, b)=
∫

W (t)

{
S(2)(β, t)
S(0)(β, t)

− 2
S(1)(β, t)S(1)(b, t)
S(0)(β, t)S(0)(b, t)

+
S(1)(b, t)2

S(0)(b, t)2

}

dN̄(t).

Theorem 13.1 As n → ∞ J (β, b) converges in probability to J(β, b)
where

J(β, b) =
∫

w(t)

{
s(2)(β, t)
s(0)(β, t)

− 2
s(1)(β, t)s(1)(b, t)
s(0)(β, t)s(0)(b, t)

+
s(1)(b, t)2

s(0)(b, t)2

}

s(0)(β, t)λ0(t)dt

and where w(t) = S(t)/s(0)(0, t).

The value to which R2
E(β) converges for large samples, i.e.,

R2
E(β) P→ 1 − J(β, β)

J(β, 0)
, (13.2)

leads to a natural definition for the relevant population parameter via:

Definition 13.2 Let us take

Ω2(β) = 1 − J(β, β)
J(β, 0)

, (13.3)

and, from this, we obtain the important convergence in probability
result:

Theorem 13.2 |R2
E(β) − Ω2(β)| P→ 0. In particular, J (β, β) and

J (β, 0) converge in probability to J(β, β) and J(β, 0), respectively.
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Corollary 13.1 0 ≤ Ω2(β) ≤ 1, Ω2(0) = 0, and as |β| → ∞,
Ω2(β) → 1. Additionally Ω2(β) is invariant under linear transforma-
tions of Z and monotonically increasing transformations of T .

We now show that R2(β̂) and R2
E(β̂) are asymptotically equivalent;

therefore R2(β̂) is consistent for Ω2(β0).

Theorem 13.3 Under the Andersen-Gill conditions, |R2(β̂) − R2
E

(β̂)| P→ 0.

In our own practical experience, when the proportional hazards model
holds, there is very close agreement between the coefficients R2(β̂)
and R2

E(β̂) (see the examples below). When discrepancies arise, this is
indicative of a failure in model assumptions. We also have that:

Corollary 13.2 R2(β̂) consistently estimates Ω2(β0). In particu-
lar, I(β̂) and I(0) consistently estimate J(β0, β0) and J(β0, 0),
respectively.

Theorem 13.4 R2(β̂) and R2
E(β̂) are asymptotically normal.

Monotonicity of Ω2

As strength of association increases so should the measure of correla-
tion or explained variation. We know, from the results of Section 3.9
that Ω2 is quantifying predictability. We can obtain further insights
into this by considering additional properties of Ω2. For instance we
have that increasing strength of association manifests itself via an in-
creasing |β0|, once the covariate scale has been fixed. We have

Theorem 13.5 Ω2(β0) as a function of β0, increases with |β0|.
In fact, we will show below that Ω2 increases with the predictability
of survival rankings, which corresponds to Kendall’s third stipulation
(in the context of the semiparametric Cox regression). Let Zj > Zi

be the covariates for two subjects in the study, and assume β0 > 0
without loss of generality. We can transform all the survival times to
exponentially distributed via the transformation Λ0(·), where Λ0 is
the baseline cumulative hazard function. Such a transformation pre-
serves the ranking of the failures so that Ω2(β0) is unchanged. Then
conditional, on the covariates, a simple calculation shows that

Pr(Ti > Tj) =
exp(β0Zj)

exp(β0Zi) + exp(β0Zj)
,

which increases strictly with β0.
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From the above we see that, given the covariates, as the predictabil-
ity of the survival rankings increases, so does Ω2. Furthermore, as a
result of Theorem 13.5, we can obtain confidence intervals of Ω2(β0)
from those for β0, since Ω2(β0) is an increasing function of |β0|. Only
the absolute value conveys information concerning strength of effect
and we can then simply invert intervals for β0, obtained by the usual
methods, into intervals for Ω2(β0). The coverage properties will then
be the same as those already established for the log relative-risk esti-
mate. Since R2

E(β) is consistent for Ω2(β) for any β then, in practice,
we only need to “plug” the two endpoints of the β-confidence interval
into R2

E . This gives an approximate confidence interval for Ω2(β0). We
have not carried out detailed investigation of the coverage properties
of such intervals, but in the examples below, we see that such “plug-in”
method gives a confidence interval that agrees very well with inference
based on bootstrap resampling.

Independent censoring

Here, we assume that C is independent of T and Z. An important
property is that the population parameter Ω2(β) be not affected by the
censorship. In order to show this, it helps to recall our earlier discussion
on the two roles that time plays in the model. First, Z(·) in general
is a stochastic process with respect to time, meaning that Z(t) is a
random variable at any fixed t and may have different distributions at
different times t. Secondly, the failure time variable T is a non-negative
random variable denoting time. While it is immediate to understand
the distribution of T given the covariates, we have at any fixed time t
two different conditional distributions of Z(t) on T that are of interest
to us. One is conditioning on T ≥ t under the independent censoring
assumption this can be interpreted as given all the subjects that have
survived at least until time t and can be estimated by the empirical
distribution of Z(t) in the risk set at time t.

Another kind of conditional distribution of interest is that of Z(t)
given T = t. Under the assumption that T has a continuous distribu-
tion we usually observe only one failure at a time and it is difficult to
estimate this latter conditional distribution based on a single observa-
tion, or a few in the case of ties. We can, however, obtain a consistent
estimate by leaning on the model and the main theorem of propor-
tional hazards regression of Section 7.4, one of whose corollaries is:
under the model and an independent censorship, the conditional dis-
tribution function of Z(t) given T = t is consistently estimated by
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F̂t(z|t) = P̂ (Z(t) ≤ z|T = t) =
∑

{j:Zj(t)≤z}
πj(β̂, t).

Note that the corollary also applies to multiple dimensional covariates.
As a consequence, we also have that:

Corollary 13.3

s(1)(β, t)
s(0)(β, t)

=Eβ{Z(t)|t}, s(2)(β, t)
s(0)(β, t)

=Eβ{Z(t)2|t}, s(1)(0, t)
s(0)(0, t)

=E0{Z(t)|t}.

Corollary 13.4 The cumulative distribution for T can be expressed as

F (t) =
∫ t

0
w(t)s(0)(β, t)λ0(t)dt.

Lemma 13.10 For b in J(β, b) taking the values β, 0:

J(β, b) =
∫

Eβ{[Z(t) − Eb(Z(t)|t)]2|t}dF (t).

Corollary 13.5 We can now rewrite Ω2(β) as:

Ω2(β) = 1 −
∫

Eβ{[Z(t) − Eβ(Z(t)|t)]2|t}dF (t)
∫

Eβ{[Z(t) − E0(Z(t)|t)]2|t}dF (t)
. (13.4)

We can deduce from the corollary that Ω2(β) does not involve the
censoring distribution. It is therefore unaffected by changes in any in-
dependent censoring mechanism, in particular its removal as a mech-
anism impacting our ability to make observations on T .

13.7 Interpretation

In order to be completely assured before using R2 in practice it is
important to know that R2 is consistent for Ω2, that Ω2(0) = R2(0) =
0, Ω2(∞) = 1, that Ω2 increases as strength of effect increases, and
that Ω2 is unaffected by an independent censoring mechanism. This
enables us to state that an Ω2 of 0.4 translates greater predictability
than an Ω2 of 0.3. We do, however, need one more thing. We would like
to be able to say precisely just what a value such as 0.4 corresponds
to. That is the purpose of this section.
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A sum of squares decomposition

In the definition of R2(β),
∑n

i=1 δiW (Xi)r2
i (β) can be considered as a

residual sum of squares analogous to the linear regression case, while∑n
i=1 δiW (Xi)r2

i (0) is the total sum of squares. Notice that
n∑

i=1

δiW (Xi)r2
i (0)

=
n∑

i=1

δiW (Xi)r2
i (β) +

n∑

i=1

δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}2

+2
n∑

i=1

δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}{Zi(Xi) − Eβ(Z|Xi)}.

The last term in the above is a weighted score and therefore converges
asymptotically to zero. It is this result which will enable us to break
down the total sum of squares into two components: a residual sum
of squares and a regression sum of squares. To make this precise we
introduce the following definition which, immediately, can be seen to
be analogous to those with which we are familiar from ordinary linear
regression.

Definition 13.3 The total, residual, and regression sum of squares
are defined by:

SSreg =
n∑

i=1

δiW (Xi){Eβ̂(Z|Xi) − E0(Z|Xi)}2

SStot =
n∑

i=1

δiW (Xi)r2
i (0), SSres =

n∑

i=1

δiW (Xi)r2
i (β̂).

From this definition we obtain an asymptotic decomposition of the
total sum of squares into the residual sum of squares and the regression
sum of squares, i.e.

Lemma 13.11 Asymptotically, the above three quantities are re-
lated by:

SStot = SSres + SSreg. (13.5)

We can then conclude that R2 is asymptotically equivalent to the ratio
of the regression sum of squares to the total sum of squares. Notice that
for R2

E(β), even with finite samples, we have an exact decomposition
of the sum of the squares. Therefore R2

E can be expressed exactly as
the ratio of a regression sum of squares to the total sum of squares.
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Explained variation

For time-invariant covariates and independent censoring, the coeffi-
cient Ω2(β) has a simple interpretation in terms of explained variation.
In this case, Z(t) ≡ Z and, letting A(t) = {t} and B(t) = {u : u ≥ t}
then we have that:

J(β, β) = E{E[Z − E(Z|A(T ))]2}
J(β, 0) = E{E[Z − E(Z|B(T ))]2}

The first equation is immediate and the second follows since E0(Z|t) =
Eβ(Z|T > t). We can then claim that Ω2 is indeed a measure of
explained variation, the above expressions fitting in precisely with
equation (3.32). It is then clear, and backed up further by the sim-
ulations of Table 13.1, that

Ω2(β) ≈ 1 − E{Var(Z|T )}
Var(Z)

=
Var{E(Z|T )}

Var(Z)
. (13.6)

What is more, there is nothing to stop us defining explained variation
as in the right-hand side of the equation since the marginal distribution
of Z and T can be estimated by the empirical and the Kaplan-Meier
estimator, while the conditional distribution of Z given T = t by the
πi(β̂, t). However, it is not clear that there is any advantage to this
and we recommend that all calculations be done via the Schoenfeld
residuals, evaluated at β = β̂ and β = 0.

The agreement shown in the table between the different ways of
conditioning is rather remarkable. One almost suspects that there may
be an actual equality and that the observed differences are simply due
to rounding errors. But we have not been able to show as much. The
important thing to conclude is that we have a very clear, and precise,
interpretation in terms of explained variation.

Explained variation in T given Z

As just described we can interpret our coefficient as an estimate of the
variation in Z explained by T. In the context of proportional hazards
regression where inference is not impacted by any arbitrary monotonic
increasing transformation on T, then the variances and mean squared
errors of Z given T are the correct quantities to use in order to quantify
predictive strength. This is not immediately intuitive however and it is
frequently argued that what is required is a coefficient built around the
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variances and mean squared errors of T given Z. In response to that
viewpoint, it could be argued that this amounts to wanting to have
your cake and eat it, since by making an appeal to the proportional
hazards model we are implying that we wish to suppress or ignore the
distributional properties of T given Z and that our model (especially
in the light of the main theorem of Section 7.4) only describes the
conditional distribution of Z given T.

However, at very little cost and effort, we can, if we wish, base
our construction on the same quantities we have worked with so far
together with an appeal to Bayes rule. This results in a coefficient with
an interpretation as the explained variation in T given Z. Recall that
for the case of a bivariate normal distribution the two different ways
of defining explained variation result in identical population quantities
Ω2. For other distributions (as is the case here) we nonetheless expect
that agreement will be strong. This has been the case in our practical
experience. We need two quantities: Var(T ) and E Var(T |Z). The first
is readily estimated and often we may wish to estimate it by restricting
the time interval to have some upper limit. As for E Var(T |Z), note
that:

E{Var(T |Z)} =
∫

T

∫

Z

{

t −
∫

T
tdF (t|z)

}2

dF (t|z)dG(z). (13.7)

If there is no censoring then consistent estimates for Ω2
T (Z) are found

by replacing F (t), G(z) and F (t|z) by the empirical estimates Fn(t),
Gn(z) and Fn(t|z) to obtain an estimate, let’s call it R2. By virtue of
the Helly-Bray theorem R2 will provide a consistent estimate of Ω2.
Two major problems arise. The first is that, if the dimension of z is
high or even continuous, then the estimates Fn(t|z) may be too unre-
liable to be of practical use. If we wish to appeal to the proportional
hazards model then any estimate of F (t|z) will necessarily involve the
unspecified λ0(t). Censoring simply adds to the difficulties. However
all of these hurdles are readily overcome by a simple appeal to Bayes
rule whereby we can write:

E{Var(T |Z)} =
∫

T

∫

Z

{

t −
∫
T ug(z|u)dF (u)
∫
T g(z|u)dF (u)

}2

dG(z|t)dF (t). (13.8)

Consistent estimates for Ω2
T (Z) follow if we can consistently estimate

the conditional distribution G(z|t) and the marginal distribution F (t).
For the marginal distribution of F (t) we have of course the Kaplan-
Meier estimate. This makes an assumption of independence between
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the censoring and the failure mechanisms. If we wish to make the
weaker assumption of conditional independence then, rather than use
the Kaplan-Meier estimate, we appeal to the law of total probability
and use a weighted combination of within group Kaplan-Meier esti-
mates. In practice, making this relaxing assumption, has a negligible
impact on the estimates of Ω2. It is simpler then to work with an
independent censoring assumption. The main theorem of Section 7.4
enables us to replace g(z|u), at each failure point u = Xi, by πi(β, Xi)
as a result of the expression for P̂ (Z(t) ≤ z|T = Xi) given by Equa-
tion 7.6. All of the calculations involve the very same quantities used to
construct the coefficient of explained variation in terms of Z given T.
The specificity of the model is made use of via the same appeal to the
main theorem of Section 7.4. For estimation purposes, all of the inte-
grals in Equation 13.8 reduce to simple sums beginning with the outer
integral which, upon replacing F (t) by the stepwise Kaplan-Meier esti-
mate, means that we sum over the observed failure times. The weights
will be the step size of the Kaplan-Meier decrement. The empirical
cumulative distribution of the πi(β, Xi) is also a step function so that,
within the outer sum, we also have an inner sum to approximate the
integral. There is quite clearly more work to do in order to obtain
the coefficient with a direct interpretation as the explained variation
in T given Z and, since the results are anticipated to be very close,
it is a matter for the user to decide just how important that precise
interpretion is.

13.8 Simulation results

It is helpful to recall some simulations comparing the behavior of R2

with some of the measures mentioned earlier. We make use of some of
the results from Table II of Schemper and Stare (1996). In Table 13.2,
data are generated with hazard function λ(t) = exp(−βZ), where
β = 0, log 2, log 4, log 16, log 64, and Z distributed as either uniform
[0,

√
3] (“c”) or dichotomous 0,1 with equal probabilities (“d”). These

two covariate distributions have identical variances and thus allow
comparison of the results for continuous and dichotomous covariates.
Censoring mechanisms are uniform [0, τ ], where τ is chosen to achieve
a certain percentage of censoring.

As in Schemper and Stare (1996), there were 100 simulation for
each entry of the results. In the table, R2 is the measure proposed
here, ρ2 is the measure of dependence based on information gain (Xu
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Table 13.2: A simulated comparison of different measures (n = 5000).
exp(β) % censored Covariate R2 ρ2 ρ2

W ρ2
W,A r2

pr KS
1 0% c 0.000 0.000 0.000 0.000 0.000 0.000

50% c 0.000 0.000 0.000 0.000 0.000 0.000
90% c 0.002 0.002 0.000 0.000 0.000 0.000

2 0% c 0.098 0.102 0.096 0.119 0.092 0.101
50% c 0.101 0.108 0.089 0.122 0.093 0.088
90% c 0.104 0.105 0.103 0.099 0.074 0.015
0% d 0.099 0.102 0.113 0.118 0.096 0.095
50% d 0.105 0.110 0.114 0.121 0.096 0.089
90% d 0.112 0.106 0.125 0.100 0.076 0.016

4 0% c 0.281 0.295 0.304 0.338 0.272 0.231
50% c 0.303 0.334 0.298 0.344 0.274 0.267
90% c 0.325 0.340 0.279 0.342 0.278 0.063

16 0% c 0.586 0.598 0.623 0.664 0.584 0.354
50% c 0.623 0.690 0.622 0.668 0.584 0.564
90% c 0.703 0.723 0.605 0.670 0.585 0.188

64 0% c 0.757 0.758 0.785 0.815 0.754 0.397
50% c 0.790 0.848 0.790 0.815 0.730 0.717
90% c 0.863 0.876 0.763 0.816 0.694 0.321
0% d 0.870 0.681 0.777 0.814 0.707 0.319
50% d 0.873 0.860 0.776 0.815 0.718 0.861
90% d 0.941 0.756 0.795 0.792 0.701 0.135

and O’Quigley 1999). The last four columns are from Schemper and
Stare (1996), where ρ2

W and ρ2
W,A are from Kent and O’Quigley (1988),

the measure r2
pr is from Schemper and Kaider (1997) and ‘KS’ from

Korn and Simon (1990) based on quadratic loss. From Table 13.2 we
see that overall there is mostly good agreement among these particular
coefficients except for KS.

Unlike all the other measures included, the KS measure does not
remain invariant to monotone increasing transformation of time. This
measure is most useful when the time variable provides more informa-
tion than just an ordering. There is noticeably close agreement between
ρ2 and R2 for the majority of the cases. This may have its root in the
fact that both measures are semiparametric and calculated using the
conditional probability π’s. The numerical results for dichotomous co-
variates with high hazard ratio 64 reflects the fact that for discrete
covariates ρ2 is bounded away from one as |β| increases. However, as
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discussed in Xu and O’Quigley (1999) as well as Kent (1983), in prac-
tice ρ2 can usually be interpreted without paying special attention to
the discreteness of the distribution.

There are most likely theoretical grounds for anticipating some
level of agreement among R2, ρ2, ρ2

W and ρ2
W,A. Roughly speaking, R2

has at it base something like a score statistic while the three versions
of ρ2 a likelihood ratio statistic. Large sample agreement for such sta-
tistics has been documented and further exploration may shed light
on this. The values of r2

pr tend to be slightly lower than these four
coefficients, although the strength of association reflected is similar.
The measure r2

pr requires more computation than all the other ones
in the table because of the multiple imputation technique employed.
Some work has been done (Xu and O’Quigley 1999) on establishing the
statistical and interpretative properties of ρ2. Such work remains to
be carried out on the other contenders before they could be proposed
for routine implementation.

13.9 Extensions

Multiple coefficients

Assume a multicovariate proportional hazards model with β and Z(t)
being p× 1 vectors. Under this model, the dependence of the survival
time variable on the covariates is via the prognostic index (Andersen
et al. 1983, Altman and Andersen 1986)

η(t) = β′Z(t).

So we can imagine that each subject in the study is now labelled by
η. The value R2 as a measure of explained variation or, predictive
capability, should evaluate how well the model predicts which individ-
ual or equivalently, its label, is chosen to fail at each observed failure
time. This is equivalent to predicting the failure rankings given the
prognostic indices. When p = 1, Z is equivalent to η, therefore we can
construct the R2 using residuals of the Z’s. But for p > 1, the model
does not distinguish between different vector Z’s as long as the cor-
responding η’s are the same. So instead of residuals of Z, we define
the multiple coefficient using residuals of η. Recall that, in the multi-
variate setting, the main theorem of Section 7.4 provides us with the
estimated joint distribution of the covariate vector Z given time. The
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most useful way of summarizing this vector is via the linear combi-
nation corresponding to the prognostic index. We then proceed very
much as for the univariate setting, making the more general definitions
of the coefficients.

Definition 13.4 For the multivariate case we define I(b) as

I(b) =
n∑

i=1

∫ ∞

0
W (t){ηi(t) − β′Eb(Z|t)}2dNi(t). (13.9)

Definition 13.5 For the multivariate case we define J (β, b) as

J (β, b) =
∫ ∞

0
W (t)

n∑

j=1

πj(β, t){ηj(t) − β′Eb(Z|t)}2dN̄(t). (13.10)

For the univariate case we recover the previous definitions apart from
a constant multiple which will cancel. We then have:

Definition 13.6

R2(β) = 1 − I(β)
I(0)

; R2
E(β) = 1 − J (β, β)

J (β, 0)
. (13.11)

Definition 13.7 In order to describe probability limits we define
J(β, b) to equal

∫

w(t)β′
{

s(2)(β, t)
s(0)(β, t)

− 2
s(1)(β, t) ⊗ s(1)(b, t)
s(0)(β, t)s(0)(b, t)

+
s(1)(b, t)⊗2

s(0)(b, t)2

}

βs(0)(β, t)λ0(t)dt,

where a⊗2 = aa′ and a ⊗ b = ab′ for vectors a and b.

The definition leads to:

Lemma 13.12 Under the Andersen-Gill conditions; letting n → ∞,
we have

Ω2(β) = 1 − J(β, β)
J(β, 0)

, . (13.12)

Notice that although R2(β) and R2
E(β) are not defined for β = 0,

the limits exist and are equal to zero as β → 0. So we can define
R2(0) = R2

E(0) = Ω2(0) = 0. As in the one-dimensional case, we have
the following similar properties:
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Theorem 13.6 |R2
E(β) − Ω2(β)| P→ 0. In particular, J (β, β) and

J (β, 0) converges in probability to J(β, β) and J(β, 0), respectively.

Corollary 13.6 0 ≤ Ω2(β) ≤ 1, Ω2(0) = 0, and as |β| → ∞,
Ω2(β) → 1. Additionally Ω2(β) is invariant under linear transforma-
tions of Z and monotonically increasing transformations of T .

We have that R2(β̂) and R2
E(β̂) are asymptotically equivalent, therefore

R2(β̂) is consistent for Ω2(β0).

Theorem 13.7 Under the Andersen-Gill conditions, |R2(β̂) − R2
E

(β̂)| P→ 0.

In our own practical experience, when the proportional hazards model
holds, there is very close agreement between the coefficients R2(β̂) and
R2

E(β̂) (see the examples below). When discrepancies arise, this would
seem to be indicative of a failure in model assumptions. We can also
see that

Corollary 13.7 R2(β̂) consistently estimates Ω2(β0). In particular,
I(β̂) and I(0) consistently estimate J(β0, β0) and J(β0, 0), respec-
tively.

Theorem 13.8 R2(β̂) and R2
E(β̂) are asymptotically normal.

Lemma 13.13 All three quantities; R2(β), R2
E(β) and Ω2(β) are in-

variant under linear transformations of Z and monotonically increas-
ing transformations of T .

Finally, a sum of squares decomposition can be obtained for both R2

and R2
E , in the same way as in the one-dimensional case.

Partial coefficients

The partial coefficient can be defined via a ratio of multiple coeffi-
cients of different orders. Specifically, and in an obvious change of
notation just for the purposes of this subsection, let R2(Z1, . . . , Zp)
and R2(Z1, . . . , Zq) (q < p) denote the multiple coefficients with
covariates Z1 to Zp and covariates Z1 to Zq, respectively. Note
that R2(Z1, . . . , Zp) is calculated using β̂1, . . . , β̂p estimated when
Z1, . . . , Zp are included in the model, and R2(Z1, . . . , Zq) using
β̂10, . . . , β̂q0 estimated when only Z1, . . . , Zq are included. Define the
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partial coefficient R2(Zq+1, . . . , Zp|Z1, . . . , Zq), the correlation after
having accounted for the effects of Z1 to Zq by

1 − R2(Z1, . . . , Zp) = [1 − R2(Z1, . . . , Zq)][1 − R2(Zq+1, . . . , Zp|Z1, . . . , Zq)].

The above coefficient, motivated by an analagous expression for the
multivariate normal model, makes intuitive sense in that the value of
the partial coefficient increases as the difference between the multiple
coefficients increases, and takes the value zero should this difference
be zero. Partial R2

E and partial Ω2 can be defined in a similar way.
We can also derive the above definition directly. Following the

discussion of multiple coefficients, we can use the prognostic indices
obtained under the model with Z1, . . . , Zp and that with Z1, . . . , Zq.
This would be equivalent to defining 1 − R2(Zq+1, . . . , Zp|Z1, . . . , Zq)
as I(Z1, . . . , Zp)/I(Z1, . . . , Zq), the ratio of the numerators of 1 −
R2(Z1, . . . , Zp) and 1 − R2(Z1, . . . , Zq). However, since the two nu-
merators are on different scales, being inner products of vectors of dif-
ferent dimemsions, their numerical value require standardization. One
natural way to standardize is to divide these numerators by the de-
nominators of 1−R2(Z1, . . . , Zp) and 1−R2(Z1, . . . , Zq), respectively.
This gives the above definition.

Stratified model

The partial coefficients of the previous section enable us to assess the
impact of one or more covariates while adjusting for the effects of
others. This is carried out in the context of the assumed model. It
may sometimes be preferable to make weaker assumptions than the
full model and adjust for the effects of other multilevel covariates by
stratification. Indeed it can be interesting and informative to compare
adjusted R2 measures, the adjustments having been made either via
the model or via stratification. For the stratified model the basic de-
finitions follow through readily. To be precise, we define a stratum
specific residual for stratum s (s = 1, ..., S), where, in the following,
a subscript is in place of i means the ith subject in stratum s. Thus
we have

ri(b; s) = Zis(Xis) − Eb(Z|Xis) (13.13)

where Eb(Z|Xis) is averaged within stratum s over the risk set at time
Xis, and we write

I(b)=
∑

i

∑

s

∫ ∞

0

W (t){Zis(t) − Eb(Z|t)}2dNis(t)=
∑

i

∑

s

δisW (Xis)r2
i (b, s).
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From this we can define

R2(β) = 1 −
∑

i

∑
s δisW (Xis)r2

i (β, s)
∑

i

∑
s δisW (Xis)r2

i (0, s)
= 1 − I(β)

I(0)
. (13.14)

Note that we do not use a stratum specific W (t) and, as before, we
work with an assumption of a common underlying marginal survival
distribution. The validity of this hinges on an independent, rather than
a conditionally independent, censoring mechanism. Under a condition-
ally independent censoring mechanism, a weighted Kaplan-Meier esti-
mate (Murray and Tsiatis, 1996) of the marginal survival distribution
could be used instead. We would not anticipate this having a great
impact on the calculated value of R2(β) but this has yet to be studied.

Other relative risk models

It is straightforward to generalize the R2 measure to other relative risk
models, with the relative risk of forms such as 1 + βz or exp{β(t)z}.
Denote r(t; z) a general form of the relative risk. Assume that the re-
gression parameters involved have been estimated, and define πi(t) =
Yi(t)r̂(t; Zi)/

∑n
j=1 Yj(t)r̂(t; Zj). Then we can similarly define Eβ(Z|t)

and form the residuals, thereby defining an R2 measure similar to
(13.8). In addition, it can be shown that under an independent censor-
ship, the conditional distribution of Z(t) given T = t is consistently
estimated by {πi(t)}i, so properties such as being unaffected by an
independent censorship are maintained.

It is particularly interesting to study the use of such an R2 measure
under the time-varying regression effects model, where the relative risk
is exp{β(t)z}. Different approaches have been proposed to estimate
β(t) (Sleeper and Harrington 1990, Zucker and Karr 1990, Murphy
and Sen 1991, Gray 1992, Hastie and Tibshirani 1993, Verweij and Van
Houwelingen 1995, Sargent 1997 and Gustafson 1998). In this case we
can use R2 to compare the predictability of different covariates as we
do under the proportional hazards model; we can also use it to guide
the choice of the amount of smoothness, or the “effective degrees of
freedom” as it is called by the some of the aforementioned authors, in
estimating β(t). As a brief illustration, suppose that we use the sieves
method which estimates β(t) as a step function, and that we are to
choose between two different partitions of the time axis, perhaps one
finer than the other.
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Denote the two estimates obtained under these two partitions by
β̂1(t) and β̂2(t), the latter corresponding to the finer partition. We can
measure the extra amount of variation explained by fitting β̂2(t) versus
fitting β̂1(t), by

R2
ex = 1 − I(β̂2(·))

I(β̂1(·))
.

This can be thought of as a partial coefficient, if we look at the
“dimension” of β(t) through time. The use of R2

ex in estimating β(t)
has recently been explored in Xu and Adak (2000).

13.10 Theoretical construction for distance
measures

The distance measures described in Section 13.3 were defined em-
pirically with no population model in mind. However, it is quite
straightforward to set up a theoretical structure enabling ready con-
clusions concerning large sample behavior (O’Quigley, Flandre and
Reiner 1999; Schemper and Henderson 2000). The simulation results
of Schemper (1990) are confirmed. Also we will see that the measures
can be expected to have an upper bound less than 1 as hinted at
by Schemper’s empirical investigation and that, for example, in the
uncensored case the measures V1 and V2 estimate the same population
quantity. The theoretical setting makes it clear that, unless further
modification is undertaken, the population equivalents of the distance
measures are affected by censoring, whether or not independent of the
failure mechanism.

Uncensored case

As usual we define the empirical distribution function of survival by
Fn(t), the empirical survival distribution conditional on the covariate z
by Fn(t|z) and the empirical distribution of the covariate z by Hn(z).
Also, we have Sn(t) = 1 − Fn(t) and Sn(t|z) = 1 − Fn(t|z). Finally
the individual observations can be re-expressed via the function Yt(u)
where Yt(u) takes the value 1 when 0 < u < t, the value 0.5 when
u = t and the value 0 otherwise. We keep the definition Yt(u) = 0.5 at
the value u = t in order to facilitate comparison with Schemper’s work
(1990, 1992, 2000). However, as far as large sample theory is concerned,
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we could define this to be either zero or one at u = t without impacting
population quantities.

Referring to Section 13.3, observe that for an observed survival time
t, the function Yt(u) corresponds to the empirical survival function Sij

in which the ith subject fails at time t and the argument u is given
values corresponding to the observed failure times.

Note that the inner and outer sums contain n elements where
n is the number of independently observed survival times. We have
ki = n , ∀i. Things become more transparent when we multiply the
outer sum by n−1 in both numerator and denominator. The weak law
of large numbers then indicates that these quantities converge in prob-
ability to expectations. For the inner sum for example k−1

i

∑
|Sij −

S̄j |� , � = 1, 2 converges in probability, as ki(= n) → ∞, to the mean
absolute (� = 1) or quadratic (� = 2) distance between the marginal
survival curve at point u and a randomly chosen subject’s empiri-
cal curve Yt(u). This mean is calculated over all possible values of
u i.e., with respect to the marginal density of survival. Analogously
k−1

i

∑
|Sij − S̄ij |�, � = 1, 2 converges in probability to a distance be-

tween the conditional survival curves (given the covariate) and Yt(u),
once again over all values of u. The outer sums, multiplied by n−1

also converge to expectations. In the uncensored case inner and outer
expectations are with respect to the same density, that governing sur-
vival. It is then natural to have:

Definition 13.8 The population quantity θ� is expressed via the ratio
of a denominator D� and a numerator N� so that θ� = 1 − D−1

� N�

where we write:

N� =
∫ ∫ ∫

|Yt(u) − S(u|z)|�dF (u)dF (t|z)dH(z), (13.15)

D� =
∫ ∫

|Yt(u) − S(u)|�dF (u)dF (t). (13.16)

The simplest situation in which we can readily see how to obtain a
consistent estimate of θ� arises when z takes a small number of fi-
nite values. For each value, we can consider the corresponding em-
pirical quantities: Fn(t|z), Sn(t|z), Fn(t) and Hn(t) and then, in the
above equation, we can replace the population quantities; F (t), F (t|z)
and H(z) by Fn(t), Fn(t|z) and Hn(z) respectively. We can denote
such an estimate by θ̂� and conclude that it is a consistent estimate
for θ� (O’Quigley, Flandre and Reiner 1999). The consistency follows
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from standard results for weak convergence (see Section 3.3) whereby
Fn(t) → F (t), Fn(t|z) → F (t|z) and Hn(t) → H(t) at all continuity
points t of F (t), F (t|z) and H(t), all arrows indicating convergence in
probability.

The above expressions make no appeal to any model and, as such,
can be considered to be completely non parametric. Not forgetting
that we are still dealing with the uncensored case, we could nonetheless
view Sn(t|z) = 1−Fn(t|z) as stratified estimates under the Cox model,
since, the stratified model has no constraints and the corresponding
survival estimates reduce to the usual empirical ones. This is artificial
but consider the following; the above arguments only require that our
estimates be consistent. If the Cox model is correct then the stratified
model (essentially no model for discrete z) and the usual model both
produce consistent estimates for F (t|z). Thus, if we were to redefine θ̂�

to be as above but with S̃(t|z), the estimate based on the Cox model
(see Chapter 15), in place of Sn(t|z), then the consistency property is
unchanged.

Censored case

For the empirical quantities presented by Schemper (1990, 1992) the
sums were taken over both the observed censored and failure times.
This appears attractive in that as much as the information as possible
is being used. However, as shown by O’Quigley, Flandre and Reiner
(1999), and in an analogous demonstration using counting process no-
tation (Schemper and Henderson 2000), the property of consistency
is lost. To see this we deal separately with the sums of censored ob-
servations and those that are uncensored. The quantities denoted ki

still count the number of terms in the respective sums so that we
can again make a simple appeal to the weak law of large numbers.
The standardized “censored” sum converges to an expectation taken
with respect to the density fU |U<t(u|U < t), the conditional density
of failure time U given that it is less than t. The standardized “uncen-
sored” sum converges to an expectation taken with respect to f(u).
The outer sums concern all observations so that the expectations to
which these standardized sums converge is taken with respect to the
distribution of the minimum of observed survival and censoring times.
The survival distribution for censoring, denoted G(u), though enters
explicitly into the calculations. The denominator converges to the sum
of two terms: an “uncensored” term and a “censored” term which we
can write (O’Quigley, Flandre and Reiner 1999) as:
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∫ ∫

|Yt(u) − S(u)|�f(u)G(t)dudF (t)

+
∫ ∫ t

0
(1 − F (t))−1|Yt(u) − S(u)|�f(u)dudG(t).

The censoring distribution appears explicitly in this expression and any
resulting evaluation would be impacted by this distribution. An expres-
sion for the numerator can also be worked out (O’Quigley, Flandre and
Reiner 1999) and again it involves the unknown censoring mechanism.
It would be nice if the censoring distribution were to factor out leading
to the property we are aiming for but this is not the case.

Convergence in the censored case

Let us define S̃(t) to be the usual Kaplan-Meier estimate and S̃(t|z) to
be the proportional hazards estimate of conditional survival, given z.
If the model correctly generates the observations, then both S̃(t) and
S̃(t|z) converge to their population counterparts, S(t) and S(t|z).

Lemma 13.14 The parameter θ� is consistently estimated by θ̃� where
θ̃� = 1 − D̃−1

� Ñ� and where Ñ� and D̃� are defined by:

Ñ� =
∫ ∫ ∫

|Yt(u) − S̃(u|z)|�dF̃ (u)dF̃ (t|z)dHn(z), (13.17)

D̃� =
∫ ∫

|Yt(u) − S̃(u)|�dF̃ (u)dF̃ (t). (13.18)

Note that although we have taken F̃ to be the Kaplan-Meier estimator
the arguments hold for any other consistent estimator of the true un-
derlying marginal survival curve. Under stronger model assumptions
we can work even with a parametric estimator. We might anticipate
the Nelson estimator of the survivorship function to produce similar
results to those for the Kaplan-Meier estimator. Since |θ̂� − θ̃�| → 0,
it follows that θ̃� is consistent for θ� and that, under independent cen-
soring, unlike V�, it is estimating the same quantity it would have
estimated were it possible to remove the censoring. Attempts to ex-
tract more information from the censorings, in the absence of further,
necessarily strong assumptions, leads to inconsistency if we agree, in
this context to take inconsistency to mean that estimators converge
to population quantities different to those to which they would have
converged were it possible to remove the censoring.
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13.11 Isolation method for bias-reduction

In order to motivate this section we first recall the relationship be-
tween multiple and partial coefficients which holds in the linear case.
When R2(Zq+1, . . . , Zp|Z1, . . . , Zq), is the remaining or partial corre-
lation between the outcome and Zq+1 to Zp after having taken into
account the effects of Z1 to Zq and R2(Z1, . . . , Zp) is the multiple
correlation with all Z1 to Zp in the model, then:

1−R2(Z1, . . . , Zp)=[1−R2(Z1, . . . , Zq)][1−R2(Zq+1, . . . , Zp|Z1, . . . , Zq)]

This expression holds exactly for the linear model and so, whether we
build the multiple correlation by constructing increasingly complex
partial coefficients or we define the partial coefficient by increasingly
simpler multiple coefficients the final answer is the same. Unfortunately
this equation does not hold for other situations which is why there is
more than one way to define partial and multiple correlation.

Our suggestion for the multiple coefficient is to reduce it formally
to a univariate coefficient via use of the prognostic index. We then
defined the partial coefficient via the same expression as the above
equation. In any event, whether exact or as an approximation, we can
use the equation to make the following simple observation. As we add
new variables to the expression for multiple correlation, the value of
multiple R2 will almost certainly increase. Only if the partial correla-
tion for the newly included variable is identically equal to zero will the
multiple coefficient stay the same. Sampling error will inevitably lead
to squared partial correlations more or less removed from zero and, in
turn, for an increasingly biased estimate for the multiple correlation
itself. This bias pulls the coefficient in the direction of one and so,
in practice, estimated coefficients of explained variation can be quite
inflated.

The phenomenon of inflation in the multivariate setting is well
known and there are several suggestions for tackling the bias. The most
well known remedies are the Akaike Information Criterion, the Bayes
Information Criterion, the Schwartz Criterion and Cross-Validation.
None of these remedies does very well. For smaller sample sizes they
will, typically, over adjust and can even lead to negative squared cor-
relations and, for larger samples, they will mostly not make enough of
an adjustment. Apart from Cross-Validation, the scope of these cor-
rections is also very limited and, in the main, is concerned only with
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biases due to the dimension of the explanatory variable in relation to
the sample size.

In the practical setting of model building the dimension of the co-
variate vector is only the most immediate and often the least important
of several factors which result in inflated estimates. There are indeed
many other factors among which: (1) the size of the potential covari-
ate pool from which those used in the model form a subset, (2) the
data based transformations on continuous or ordered covariates (3)
the stepwise algorithms used to make a selection from the covariate
pool, (4) the use of cut-offs to define new derived variables and (5)
the inclusion of some relaxation of model assumptions in the light of
goodness-of-fit procedures. None of these five factors is usually taken
into consideration and yet their impact is far greater than that of the
dimension of the final model, in particular when the model has been
constructed from a very large data base.

A way which addresses all five factors together with the sixth, the
dimension of the covariate vector, is the following. However obtained,
a final model is viewed as having two quite distinct underlying con-
struction components. The first of these - the most important in any
investigator’s eye - is the true strength of effect of the multivariate
relationship, however formulated, and which finds its expression in the
final model. The second component concerns everything involved in
the process which led to writing down that final model. All six of the
above factors and any others we may have overlooked are deemed to
be a part of this second component.

Let’s look a little more closely at this second component. Imag-
ine an investigator who decides to fit a model of dimension five from a
data set with one hundred individuals and twenty measured covariates.
A second investigator is studying a similar problem on one hundred
entirely comparable individuals but this time, instead of twenty covari-
ates to choose from, he has two hundred. A third investigator finds him
or herself in a situation comparable to that of the second investigator
but has results from two separate data sets. It is clear that the bias
here is increasing. It is also difficult to have any idea as to what the
size of this bias might be. None of the usual techniques address this
form of bias. Next, suppose an investigator decides that all the skew
distributions should be subject to log-transformations and, if such a
transformation leads to a more significant result then the transforma-
tion is maintained, otherwise we leave the scaling as it was. He or she
then decides that, for the purposes of interpretation, some continuous
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variables will be broken down into categorical variables. If the effect
across the ordered categories is comparable, as judged by the regres-
sion coefficients, then the p − 1 binary variables describing p groups
are replaced by a single ordinal variable. Note also that, if the spacing
of the effect is not the same, it can be made so by rescaling.

A model for true and overfitted effects

There are almost endless ways of fine tuning any model and, in the
process, as many ways of inflating our idea as to how predictive the
model really is. The kind of transformations just suggested will typi-
cally indicate a more predictive model than is really warranted. They
are also used very frequently by investigators.

We suppose the following model for these two components: the
first being the true strength of effect and the second, everything else
involved in the construction of the model. The covariate vector of in-
terest is Z and, as usual, we would calculate R2(Z), a quantity which
we observe. However, we would really like to calculate the multiple
correlation given the fitting. We write this as R2(Z|F ) where F is not
something we measure, or observe, but is a conceptual quantity indi-
cating the sum total of all the actions taken during the fitting process.
We might consider these actions taken on their own in which case we
would have R2(F ). The observed multiple R2(Z) simultaneously in-
volves, as well as the real effects, the fitting process, an important fact
made explicit by writing, R2(Z) = R2(Z, F ). Note that:

1 − R2(Z, F ) = [1 − R2(F )][1 − R2(Z|F )] (13.19)

There are three quantities in the above expression and only one of
them, R2(Z, F ), can be observed. If we were able to obtain R2(F ) then
the quantity we are really interested in, R2(Z|F ), the true impact of
the covariates having removed those effects due to the fitting, becomes
immediately available from the above equation.

Estimating the overfitted effects

As a first approximation we can suppose that the fitting effects them-
selves are orthogonal to the true effects. By this we mean that the
amount of inflation, as measured by R2(F ), only depends on the fit-
ting procedures and extraneous factors such as sample size etc. As true
effect increases, the population equivalent of R2(Z, F ) will, of course,
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also increase but it would not be unreasonable to suppose that the pure
inflation factor alone, as measured by R2(F ), depends only weakly, if
at all, on any true effect. In particular we will calculate R2(F ) in the
absence of any effect and use this value when there are non-zero effects.
Recalling the main theorem of Section 7.4 we have that, at each ranked
failure time t, the probabilities of choosing individual with covariate
vector Zi(t) obtains from:

πi(β(t), t) =
Yi(t) exp{β(t)Zi(t)}∑n

j=1 Yj(t) exp{β(t)Zj(t)}
. (13.20)

This mechanism is assumed to generate the observations. Suppose that
there is no effect. Then the coefficient vector, β(t) is identically equal
to zero. At each failure time t, letting n(t) =

∑
Yi(t) be the number

of subjects in the risk set then, from Equation 13.20, the probability
that any individual is chosen is simply 1/n(t).

We keep the risk sets fixed, i.e., we condition on the observed
risk sets and, from these we sample individuals, each with probability
1/n(t) at time point t, thereby establishing a simulated data set in
which the true effect is zero. On the basis of these data, the investiga-
tor can proceed to use the same fitting procedures, and strategies, that
he or she has used on the unmodified data. Stepwise searches, trans-
formations, maximizations, eliminations following goodness-of-fit, cat-
egorizations and any other used modeling strategy is replicated on this
same data set. For the resulting multivariate model, corresponds an
R2 coefficient. We write this as R2(F ). The more involved, elaborate
and exhaustive the fitting technique the higher, on average, we antici-
pate R2(F ) to be. Overfitting the data manifests itself directly in the
coefficient R2(F ).

Some further observations on this whole process are worth making.
Firstly, we do not have just a single value of R2(F ). Under a further
replication we would, typically, obtain a different value of R2(F ). Un-
der a large number of replications we would obtain a whole, simulated,
distribution of values of R2(F ). If we denote by u any one of these
replicated values and by H(u) the empirical distribution function of
the replications, then we can take R2(Z|F ) by using Equation 13.19
to be:

R2(Z|F ) =
∫ (

R2(Z, F ) − u

1 − u

)

dH(u). (13.21)
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It can also be interesting to consider the whole distribution of R2(Z|F ),
as induced from H(u), rather than just the mean. Another point to
note is that, by conditioning on the risk sets, we allow the possibility
that in the replications, the same subject could be selected more than
once. This may seem odd if we are interpreting being selected as a fail-
ure (which indeed it is) but this is only a formal procedure, respecting
the probability model which we assume to be generating the obser-
vations. That the same subject could not in practice fail more than
once is something which does not impact our construction and is in
fact required if we do not wish to include complex calculations involv-
ing the censoring mechanism. This is not unlike the bootstrap which
can also involve repetitions which the design itself could not have pro-
duced. Finally, in Equation 13.21 a good approximation would arise
from taking the mean ū across the replications of R2(F ) and writing
R2(Z|F ) ≈ [R2(Z, F ) − ū]/(1 − ū).

Bias reduction

We call the above the isolation method by which the effects of in-
terest are isolated from those which are artificially generated through
the process of model construction. The basic idea is derived from the
chaotization principle developed by Kipnis (1977). Kipnis studied the
tails of the distribution of an R2 type measure and how changes in this
distribution, occurring by the inclusion of additional factors, could be
anticipated by the fitting process alone. His focus was on the signif-
icance level of the multivariate coefficient rather than bias reduction
itself but the central idea is the same. It requires replication under a
model of no association. Kipnis’s idea was to use permutation distri-
butions which could be generated under an assumption of no effect
whereby all permutations would be considered equally likely. For our
particular case, we do not need to carry out any permutation. It is
enough to sample based on the probabilities given by Equation 13.20
in which we fix β(t) at the value zero.

The approach can lead to significant reduction in bias caused by
overfitting, especially when dealing with a large number of covariates.
The method is easy to implement and can be adapted readily to deal
with more complex situations. For example, we may wish to focus
on some factor after having taken account of several factors already
included in the model. Here, in order to generate the relevant distrib-
ution for R2(F ), and referring to the multivariate version of Equation
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13.20, we would fix at zero the coefficient corresponding to the factor
of interest and allow those factors for which we are adjusting to be re-
placed by estimates. These would be constrained estimates in that the
coefficient corresponding to the additional factor of interest is always
fixed at zero. We then use Equation 13.20 with these values in order
to generate the distribution H(u).

13.12 Illustrations from studies in cancer

Study in leukemia

The first example concerns the Freireich (1963) data, which records
the remission times of 42 patients with acute leukemia treated by 6-
mercaptopurine (6-MP) or placebo. The estimate of the regression
coefficient is β̂ = 1.53, and R2(β̂) = 0.386 and R2

E(β̂) = 0.371. The
95% confidence interval for Ω2(β), obtained using the monotonicity
of R2

E(β), i.e., inverting the interval for β, is (0.106, 0.628). On the
basis of 1000 bootstrap samples we find a simple percentile interval as
(0.154, 0.714) using R2, and (0.154, 0.715) using R2

E . The bootstrap
mean is 0.413 for R2 and 0.405 for R2

E , which gives estimated bias
of 0.028 and 0.034, respectively. This suggests that bias correction
may be necessary, and employing Efron’s bias-corrected accelerated
bootstrap (BCa) method we have confidence interval (0.111, 0.631)
using R2, and (0.103, 0.614) using R2

E . We see that these have very
good agreement with one another (suggesting that the proportional
hazards assumption is a reasonable one) as well as the interval obtained
through monotonicity.

In Figure 13.1 we plot the values of R2(β) (dots) and R2
E(β) (cir-

cles) for the Freireich data versus different values of β. The figure
illustrates well the facts that R2(β) reaches a maximum at around
β = 1.5, which is the value of our estimate β̂ and that R2

E(β) increases
with β, approaching 1 as β → ∞. Notice that R2(β) = R2

E(β) occurs
somewhere between β = 1.5 and 1.6, again around our estimate β̂.
This is to be anticipated in view of Theorem 13.7.

The above R2(β̂) can be compared with some of the other sugges-
tions mentioned in the introduction. For the same data the measure
proposed by Kent and O’Quigley (1986) resulted in the value 0.37,
and the measure of explained randomness (Xu and O’Quigley 1999),
described in the following chapter, obtains the value of 0.40. The ex-
plained variation proposals of Schemper (1990), based on empirical
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Figure 13.1: A plot of R2 and R2
E as functions of β given the observa-

tions.

survival functions per subject, resulted in (his notation) V1 = 0.20
and V2 = 0.19 and Schemper’s later correction (1994) resulted in
V2 = 0.29, although all three of the Schemper measures depend heav-
ily on the censoring (O’Quigley et al. 1999, Schemper and Hender-
son 2001). The measure of Schemper and Kaider (1997) resulted in
r2
pr = 0.34. The measure of Korn and Simon (1990), based on quadratic

loss, gave the value 0.32. This measure does not remain invariant to
monotone increasing transformation of time. For these data the value
0.32 drops to 0.29 if the failure times are replaced by the square roots
of the times.

Study in breast cancer

The available data consist of 1504 patients with complete covariate
information, among whom there were 357 recorded deaths. The 5 and
10 year survival rates were 0.83 and 0.70, respectively. Of the five
covariates, age has a range of 23-55 years, with a median of 45 years.
About 6%, 20%, 28%, 27% and 19% of the patients had histology grade
0, 1, 2, 3, and 4, respectively. About 45%, 24%, 23%, 5%, and 2% of
the patients had stage 1, 2, 3, 4, and 5 disease, respectively. Out of the
1504 patients, 1075 (71%) had positive progesterone receptor status.
The maximum tumor size was 170mm, with a median of 30 mm.

In univariate analysis under the proportional hazard model, all
variables are highly significant (Table 13.3). We also calculated the
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Table 13.3: R2 analysis of breast cancer data. Upper part of the table
shows results for univariate analyzes. Lower part shows the nested
multivariate coefficients.

Single covariate β̂ p-value R2

Age -0.24 <0.01 0.005
Histology 0.37 <0.01 0.12

Stage 0.53 <0.01 0.20
Receptor -0.73 <0.01 0.07

Size 0.02 <0.01 0.18

Covariates in multivariate model R2 partial R2

Age 0.01
Age and histology 0.12 0.12
Age, histology, and stage 0.26 0.16
Age, histology, stage, and receptor 0.33 0.09
Age, histology, stage, receptor, and size 0.33 0.01

univariate R2’s, and we see that the predictive powers are quite differ-
ent. Stage and tumor size, as one might expect, have reasonably high
predictability. Histology grade also has predictive power, although this
covariate has been shown to have a non-proportional regression effect.
This might explain the observed discrepancy between R2 and R2

E . So
we fit a simple two-stage model with the regression effect dropping to
zero after a certain change point. When the change point is chosen
at 24 months, R2 from the fitted model turns out to be 0.238, and
R2

E 0.332. On the other hand, age has very weak predictive capability,
though significant. This estimated weak effect could be due to: (1) a
population weak effect, or (2) a suboptimal coding of the covariate.
We investigated this second possibility via two recoded models. The
first, making a strong trend assumption, coded age as 1 (0-33), 2 (34-
40) and 3 (41 and above). The second model, making no assumptions
about trend, used two binary variables to code the three groups. All
three models gave very similar values of R2. In consequence only the
simplest model is retained for subsequent analysis, i.e., the age groups
1-3. In the lower part of Table 13.3, we calculated the multiple R2 for
a set of nested models. It also contains the values of the partial R2

when each additional covariate is added to the existing model. The
partial coefficient for tumor size having accounted for the other four
variables is only 0.006, suggesting that the extra amount of variation
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Figure 13.2: Goodness-of-fit plot for the covariate grade.

in survival explained by the patient’s tumor size is small. Some co-
variates in this dataset are known to have non-proportional regression
effect. Figure 13.2 shows a goodness-of-fit process (see Chapter 8) for
the proportional hazards assumption. Recall that the maximum ab-
solute value exceeding the boundary of 1.36 corresponds to the 0.05
significance level of an underlying Brownian bridge when the model
is correctly specified. The variation in survival times of these breast
cancer patients are mainly explained by three of the five covariates: his-
tology grade, stage, and progesterone receptor status. Xu and Adak
(2001) examined closely the time-varying regression effects of these
three variables using a tree-based approach. The tree method gives
piecewise constant estimated log relative risks. After obtaining a set
of nested trees, as one of the methods for selecting a final tree, they
used the coefficient R2

ex defined above to arrive at a final tree with
two cutpoints at 27 and 46 months. The estimated piecewise-constant
regression effects of the three covariates are reproduced in Table 13.4.

While the R2 from a proportional hazards model with these three
covariates is 0.32, the R2 from the above fitted three piece β(t) model
is 0.51. For the latter R2 the calculation used β̂1(t) ≡ 0 and β̂2(t) =
β̂(t). as given in Table 13.4. The improvement in explained variation
here reflects also an improvement in fit, underlining the relationship
between predictability and goodness-of-fit.
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Table 13.4: β̂(t) (standard error) from Xu and Adak (2001).

Variable t ∈ [0, 27] t ∈ [28, 46] t ∈ [47, 165]
Histology 0.653 (0.125) 0.362(0.094) 0.201 (0.069)

Stage 0.607 (0.094) 0.349(0.089) 0.365 (0.071)
Receptor -0.803 (0.225) -0.708(0.201) -0.293 (0.164)

Study in gastric cancer

In a study on prognostic factors in gastric cancer (Rashid et al., 1982)
certain acute phase reactant proteins were measured pre-operatively.
Five covariates were studied: stage together with the proteins α1-anti
chimotrypsin (ACT), carcino embryonic antigen (CEA), C-reactive
protein (CRP) and α1 glyco-protein (AGP). Surgery is needed in order
to determine the stage of the cancer, a clinical factor known to strongly
influence survival, and one of the purposes of the study was to find out
how well the four protein covariates, available pre-operatively, are able
to explain survival in the absence of information on stage. A logarith-
mic transformation for CEA was found to be necessary. This is also
reflected in a R2 increasing from 0.10 to 0.20 after the transformation.

Table 13.5 shows that each of the five covariates has reasonable
predicting power, with R2 for stage alone to be 0.48. A direct calcula-
tion of sample correlation shows that ACT, CRP and AGP are highly
correlated, which is supported by biological evidence. In addition, fit-
ting the Cox model with all four protein covariates shows that CRP
and AGP are no longer significant in the presence of the other covari-
ates. These two variables can then be dropped from further study. The
value of R2 for a model with ACT and log(CEA) is 0.37; this increases
to 0.54 when stage is also included, and the corresponding partial R2

is equal to 0.27. In conclusion, there is strong prognostic information
in the pre-operative measurements ACT and log(CEA), but this only
partially captures the information contained in stage.

Study in multiple myeloma

A further example is motivated by the increasing number of stud-
ies carried out in cancer research to correlate the outcome with
multi-dimensional molecular and genetic markers. As we see the
predictability by an individual marker is generally low, with the high-
est R2 of 0.08 from plasma cell labelling (PCL) index; in particular,
the Durie-Salmon stage has the smalles R2 of 0.004. When all 13
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Table 13.5: Univariate analysis of gastric cancer data (Rashid et al.
1982).

Covariate β̂ p-value R2

Stage 1.78 <0.01 0.48
ACT 2.26 <0.01 0.29

log(CEA) 0.30 <0.01 0.20
CRP 0.02 <0.01 0.26
AGP 0.70 <0.01 0.14

covariates are included in a multivariate Cox model, only six of them
remain significant (p-value < 0.08), with the multivariate R2 = 0.202.
In particular, the traditional staging system is no longer significantly
predictive of survival given the laboratory measurements. Leaving
out the non-significant variables in a Cox model gives R2 = 0.18. As
an illustration of variable selection using R2, we build hierarchical
models starting with PCL index which has the highest univariate R2.
We then choose the variable among the remaining five that has the
highest partial R2, and so on. The lower part of Table 13.6 gives the
nested models and the corresponding R2’s. The data come from a clin-
ical trial (EST 9486) of multiple myeloma conducted by the Eastern
Coorperative Oncology Group (Oken et al. 1999). The trial enrolled
653 patients to three randomized arms; VBMCP alone, VBMCP with
added HiCy and rIFNα2. No significant survival difference were found
across the three arms. The trial collected laboratory measurements on
patients’ myeloma cells, including measurements from blood or serum:
albumin (1 if ≥ 3g/l, 0 otherwise), β2 microglobin 1 if ≥ 2.7mg/dl,
0 otherwise), creatinine (1 if ≥ 2mg/dl, 0 otherwise), cytoplasmic-
immunoglobin heavy chain IgA and IgG (1 if present, 0 absent),
kappa light chain (1 if present, 0 absent), percent plasma cells (1 if
≥ 0.3%, and hemoglobin (1 if ≥ 10g/dl, 0 otherwise); characteristics
of circulating myeloma cells: plasma cell labelling index (a measure of
plasma cell proliferation, 1 if ≥ 1, 0 otherwise), IL-6 receptor status
(1 if ≥ 270ng/ml, 0 otherwise), and level of C-reative protein (1 if
≥ 2ng/ml, 0 otherwise).

All of the above variables, which were originally continuous, were
dichotomized using previously published threshold values. Here we in-
clude a randomly selected group of 295 patients, on whom a particular
chromosomal abnormality, the possible deletion of the short arm of
chromosome 13 (denoted by 13q-), was measured by flouresecent in-
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Table 13.6: R2 analysis of the Myeloma data. Upper part of the table
shows results for univariate analyzes. Lower part shows the nested
multivariate coefficients.

Single covariate β̂ se(β̂) R2

Creatinine 0.66 0.16 0.05
Plasma 0.43 0.12 0.04

IL-6 0.35 0.14 0.02
C-reactive 0.53 0.17 0.02

a13q 0.22 0.12 0.01
Hemoglobin -0.30 0.13 0.03

Albumin -0.39 0.14 0.03
IgG -0.15 0.12 0.01
IgA 0.16 0.14 0.01

Kappa -0.26 0.12 0.01
Stage -0.18 0.12 0.004

β2 microglobin 0.48 0.13 0.03
PCL index 0.59 0.13 0.08

covariates in multivariate model R2

PLC 0.08
PLC, creatinine 0.11
PLC, creatinine, plasma 0.13
PLC, creatinine, plasma, a13q 0.16
PLC, creatinine, plasma, a13q, β2 mcrglb 0.17
PLC, creatinine, plasma, a13q, β2 mcrglb, IL-6 0.18
All 13 variables 0.20

situ hybridization (FISH) in the laboratory of R. Fonseca at the Mayo
Clinic; the corresponding variable a13q was coded 1 if present, 0 ab-
sent. We also include the traditional Durie-Salmon stage (1 if I or
II, 0 if III) which was routinely used to predict prognosis in multiple
myeloma before the availability of assays to measure genetic and other
molecular abnormalities of the myeloma cells.

Univariate Cox regression analysis indicates that all of the above
13 covariates are more or less associated with patients’ survival times
and most of them are highly significant. Table 13.6 shows the estimated
regression effects and the standard errors, together with the univariate
R2 coefficients. Effects are not very strong. Even when all 13 variables
are included in the analysis we still have an estimated eighty percent of
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the variance remaining unexplained. And the true figure would most
certainly be higher since no accommodation has been made for the
fitting biases.

The same data set was also analyzed by Huang and Harrington
(2002), who proposed a penalized partial likelihood approach to the
handling of high-dimensional covariates in the proportional hazards
regression. The authors pointed out that because there were 270 deaths
among the 295 subjects in this data set, the standard partial likelihood
estimate in a Cox model with all 13 covariates should be reasonably
stable. Even so, in their Table 3 one sees obvious reduction in both
the magnitude of the regression effects and the standard errors of the
penalized partial likelihood estimate, as compared to the unpenalized
estimate. The penalty parameter in their procedure was chosen to
minimize a bootstrap estimated mean squared prediction error of the
prognostic index. Although the R2 measure has been so far defined
in terms of the usual estimates, it would be straightforward to extend
the definition to the penalized partial likelihood estimate. In this case,
it turns out that R2(β̂λ) = 0.198, almost the same as the R2 = 0.202
with the standard partial likelihood estimate.

Value of R2 in applied studies

In two of the above examples effects were quite strong and in the
other two, although clearly present, effects were relatively weak. This
was picked up by the R2 coefficients and the partial coefficients in
particular enable us to decide how practically useful to any prognos-
tic assessment is the inclusion of additional information. Although we
have pointed out that R2 is concerned with prediction and not fit (as
often thought) the issues of fit and prediction are not orthogonal to
one another. They impact one another in important but different ways.
Improving a poor fit will very likely lead to increases in predictive abil-
ity as reflected in R2. A perfect fit (in the sense that the observations
are exactly generated by the supposed model) can correspond to an
R2 taking any value between zero and one. A very high value of R2

can also correspond to a very poor fit. All of that said, in the endeavor
to improve our predictive capability, we need consider, alongside one
another, both fit and R2. The fit can be improved by a relaxation of
model assumptions, such as the use of a stratified model, or by the
introduction of time dependent effects such as the use of changepoint
models. Either way it can be worth looking at the plot indicating the
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quality of the fit and making sure that we are broadly satisfied with
this before presenting our summary R2 indices of prediction.

13.13 Exercises and class projects

1. A number of suggested coefficients of explained variation, adapted
from linear regression, depend on the censoring even when indepen-
dent of the failure mechanism. Why is this a handicap? Mostly the
dependence is such that the higher the censoring the closer to zero
is the adapted coefficient. It might be argued that, as the censoring
increases, our ability to predict declines and, in consequence so ought
a suitable coefficient. Comment on this reasoning.

2. Suppose you are the statistician analyzing the gastric cancer data.
The investigating clinician, who has some rudimentary knowledge of
statistics, wishes to understand just what you mean by saying that
the value of R2 for a model with ACT and log(CEA) is 0.37 and this
increases to 0.54 when stage is also included. On the other hand the
corresponding partial R2 is equal to 0.27. How do you answer this
question.

3. Using the δ-method and the expression, 1−R2(β) =
∑

r2
i (β)/

∑
r2
i

(0), derive an approximate confidence interval for R2(β̂). For the
Freireich data, compare this interval with that obtained in the exam-
ple on the basis of bootstrap sampling. Comment.

4. Repeat the exercise of the previous question, only applying this time
the delta method to log[R2(β̂)/{1−R2(β̂)}]. What advantages, if any,
are there to working with this transformation rather than working with
R2(β̂) directly?

5. In the broadened definition of R2(β) we have

I(b) =
n∑

i=1

∫ ∞

0
{Zi(t) − Eb(Z|t)}2dF̂ (t),

where F̂ (t) is the Kaplan-Meier estimator. Suppose that F (t : θ) is a
parametric model of the marginal survival curve where θ is a parame-
ter, possibly vector-valued. Investigate a definition of I(b) in which,
instead of F̂ (t), we work with F (t : θ̂). What might be the advantages
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and drawbacks of such an approach? From the results we already have
is it possible to deduce properties such as consistency? If so, under
what conditions?

6. For the standard linear model, the coefficient R(β), viewed as a
function of β is maximized when β = β̂ and where β̂ is the usual least
squares estimate. Thus, for the linear case, a consistent estimator of β
obtains by maximizing R2(β). Is this true for the R2(β) defined here for
the proportional hazards model? Investigate supβ R2(β), given data,
as an estimate for β. How does it compare with more commonly used
estimates?

7. For the normal linear model the transformation Z = tanh−1(R)
has two advantages: the first is that E(Z) provides a very close ap-
proximation to tanh−1(Ω), the second is that Var (Z) does not depend
upon Z, and therefore upon Ω, to a high level of approximation. Fur-
thermore Var (Z) ≈ 1/(n− 3) where n is the sample size. Discuss this
transformation in the context of the R2(β) presented in this chapter.
Investigate this more deeply using simulated data.

8. In the previous question, on the basis of simulations, we antici-
pate that Var (Z) ≈ 1/(n − 3) where Z(β) = tanh−1{

√
R2(β)}. We

might conjecture, in the presence of independent censoring, and where
k represents the total number of failures, that Var (Z) ≈ 1/(k − 3).
Use simulated data to investigate this assertion. Present an informal
argument as to why such a result might hold.

9. We know that, as |β| → ∞ then R2
E(β) → 1 and that, as |β| → ∞

then R2(β) → 0. This might at first glance appear puzzling. Explain
just what is taking place. Explain also why, if the model is correct, we
anticipate that R2(β̂) and R2

E(β̂) will closely agree.

10. Consider an arbitrary proportional hazards model, with unknown
cumulative hazard rate Λ0(t), and known regression coefficient vector
β0. For two randomly chosen individuals, the first with covariate vector
given by Zj , the second with covariate vector given by Zi, show that
the probability that the second individual outlasts (survives longer)
than the first is given by

Pr(Ti > Tj) =
exp(β0Zj)

exp(β0Zi) + exp(β0Zj)
.
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Note that this expression does not involve Λ0(t). How does this result
help in the interpretation of R2.

11. Refer back to Section 3.9 in order to construct a coefficient of par-
tially explained variation from first principles. For a given data set
compare this coefficient with that suggested in this chapter based on
use of the multivariate coefficient defined in terms of the prognostic
index. Show how we could derive an alternative definition of multi-
variate explained variation based on lower order partially explained
variation. Comment on the advantages and disadvantages of this.

12. Suppose for some given data we are considering using an additive
risk model or a multiplicative risk model, both of which employ only
constant regression coefficients. Consider how we might use an R2

measure to discriminate between these two models.

13. Using a large data set with a large number of potential risk factors,
construct, on the basis of R2(Z) for some vector Z, as predictive a
model as possible, noting down every step made in the construction
of the model. Now, on the basis of the isolation method, calculate
R2(Z|F ). Compare the sizes of R2(Z) and R2(Z|F ) and comment on
your findings.

14. Generate or use a data set in which only very few observations are
censored and in which the covariate is continuously measured. Carry
out the usual analysis and calculate R2. Next, throw away the small
percentage of censored observations, replace survival time by log T
and calculate the usual squared product moment correlation coefficient
between the covariate and log T. Compare and discuss the results.



Chapter 14

Explained randomness

14.1 Summary

We recall the main ideas concerning information gain and how it can
be used to obtain a measure of dependence. This measure can be in-
terpreted as a measure of explained randomness. We recall the work
of Kent and O’Quigley (1988) in adapting such measures to propor-
tional hazards regression. An alternative to the measure of Kent and
O’Quigley, in which the order of conditioning is reversed, is presented.
This alternative measure (Xu and O’Quigley 2000) fits in more natu-
rally with the inference structure for the proportional hazards model
and, in particular, makes a direct appeal to the main theorem of pro-
portional hazards regression (Section 7.4). Among the several advan-
tages of the Xu and O’Quigley measure is that it readily accommo-
dates time-dependent covariates. Extensions to multiple covariates are
immediate. We also indicate the straightforward extension to partial
coefficients. In practice we expect a measure of explained randomness
and one of explained variation to agree. We take the position that any
purpose to which we may wish to put a coefficient of explained varia-
tion will be, for the most part, equally well addressed by a coefficient
of explained randomness.

14.2 Motivation

As described in Chapter 2 an alternative, and arguably more gen-
eral, approach to explained variation is that of explained randomness.
The details of application for the proportional hazards model are now

407
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well worked out and described here. In practical examples we would
anticipate a high level of agreement between explained variation and
explained randomness and so the reader motivated principally by an
applied problem can then be satisfied with either one of these mea-
sures. As for the motivation behind a measure of explained variation,
we would like, for a measure of explained randomness; invariance to
arbitrary right censoring of the response variable, provided only that
such censoring be conditionally independent of the response variable,
an interpretation as the proportion of explained randomness where ab-
sence of association translates to a zero value for the measure and, as
strength of association increases, the measure should tend to one.

Central to the development of Kent and O’Quigley (1988) was the
family of conditional distributions of the response variable, survival
time T , given the covariate vector Z. However, we appeal instead to
the main theorem of proportional hazards regression, working instead
with the conditional distribution of Z given T . Note that: (1) for a
normal model the resulting measure of explained randomness is unal-
tered by the way in which we do the conditioning; (2) for other models
the results will often be close (Kent 1983); (3) being able to predict
which subject is to fail at any given failure time is equivalent to being
able to predict failure rankings of all the failed subjects; and (4) study-
ing the conditional distribution of Z given T , does in fact correspond
to the way in which inference is carried out in proportional hazards
regression.

In the context of proportional hazards regression and partial likeli-
hood, this approach is the more natural, leading to a second measure of
explained randomness based on information gain. It extends readily to
time-dependent covariates. In practice, for time-invariant covariates,
the two measures will tend to be similar. Calculation of the second
measure turns out to be easily carried out and only requires com-
bining those quantities routinely evaluated in fitting the Cox model.
Inferential procedures for the second measure are more straightfor-
ward than the earlier measure and, a key property in the context of
semi-parametric survival regression, the measure remains unaltered
by monotonically increasing transformations on the time axis. Fur-
thermore, it will be interesting to see that the measure of explained
randomness can be applied to other forms of relative risk.
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14.3 Information gain and explained
randomness

Our regression model for T given the observed value z of Z is expressed
in terms of the conditional density f(t|z). It is, as we know, more
common to express this dependence through the hazard function but,
for our purposes here, it will be helpful to re-express the proportional
hazards model as

f(t|z; β) = λ0(t) exp
{

βz − eβz

∫ t

0
λ0(u)du

}

. (14.1)

As we have seen, the baseline hazard function λ0(t) can be specified to
be of a power form or a constant, in which cases the Weibull and expo-
nential models are recovered (Kalbfleisch and Prentice 1980, Cox and
Oakes 1984). These were the first cases studied by Kent and O’Quigley
(1988). Under the model, when β = 0 there is no association between
T and Z. A population measure of the strength of association, or the
distance between the two models indexed by β = 0 and β = β0, can
be provided by twice the Kullback-Leibler information gain given via

Definition 14.1 The information gain Γ1 is Γ1(β) = 2{I1(β)−I1(0)}
where

I1(θ) =
∫

Z

∫

T
log{f(t|z; θ)}f(t|z; β)dt dG(z).

In the above expression the domains of definition of T and Z are
denoted by T and Z respectively, and G(z) is the marginal distribution
function of Z. Although it is common to refer to the Kullback-Leibler
information as a “distance,” we also can note its lack of symmetry.
Thus I1(θ) is not a distance measure in the usual geometric sense. It
would be relatively straightforward to make the measure symmetric
by inverting, for example, the roles of β and θ and then adding the
measures together, but this is most likely not a particularly fruitful
path to pursue. The lack of symmetry is quite natural, one reason
being that both I(β) and I(0) can be viewed as expectations under
the model with “true” regression parameter β. Another reason is that,
considered as a function of β, the asymmetric I1(θ) is maximized at
θ = β, a quantity that directly reflects the strength of association.
Compared though to the regression coefficient β, an information gain
measure has the advantage of not depending on scale and the simple
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transformation ρ2
1(β) = 1 − exp{−Γ1(β)} produces a coefficient with

useful interpretability properties (Kent 1983, see also Section 2.8). We
then simply define ρ2

1 as the explained randomness via:

Definition 14.2 The explained randomness of T given Z is given by;

ρ2
1(β) = 1 − exp{−Γ1(β)}. (14.2)

The interpretation of ρ2
1(β) as the proportion of randomness explained

by the regression was given by Kent (1983) and outlined in Chapter
2. For normal models and maximum likelihood or least squares es-
timation, ρ2

1(β̂) is the usual coefficient of correlation squared when,
instead of working with f(t|z; β)dt dG(z) we use the observed empiri-
cal distribution of (T, Z). Assuming no censoring, a standard estimate
of information gain will be provided by n−1 times the usual likelihood
ratio statistic. An alternative estimate, having similar statistical prop-
erties, is provided by the fitted information (Kent and O’Quigley 1988)
in which I1(0) and I1(β) are estimated by

Î1(θ) = n−1
n∑

i=1

∫

T
log{f(t|Zi; θ)}f(t|Zi; β̂)dt (14.3)

with θ = 0 and θ = β̂, a consistent estimate of β, respectively. In
the above the marginal distribution of Z has been replaced by its em-
pirical estimate. Kent and O’Quigley (1988) pointed out that, for the
expression based on fitted information, the variable t enters into the ex-
pression as a dummy variable so that the actual values, some of which
we might have not been able to observe in the presence of censoring,
do not affect the calculation beyond their effect on the estimation of
β. We can thus readily apply the concept of information gain to right
censored data.

This observation motivated the development of the measure of de-
pendence for censored survival data (Kent and O’Quigley 1988) in
which the conditional distribution of T is taken to be of the Weibull
form. The resulting integrals can be worked out explicitly (Kent and
O’Quigley 1988, page 528). Thus the required expressions can be eval-
uated leading to an estimate of ρ2

1(β). Nonetheless, the procedure is
not straightforward and inference for the resulting estimate is even
less so (Sections 4 and 5 of Kent and O’Quigley). The approach of
the next section, arising naturally in the context of the main theorem
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of proportional hazards regression (Section 7.4), is more straightfor-
ward. Inference is also more straightforward; in particular, confidence
intervals for ρ2

1(β) can be obtained by inverting those obtained for β.
In addition the new approach extends immediately to time-dependent
covariates and general forms of relative risk.

14.4 Explained randomness in Z given T

Just as for explained variation, it appears that our main concern is
to explain variation, or randomness, in T , having conditioned by Z.
The above approach follows this idea. However, once again in the same
way as for explained variation, in the context of proportional hazards
regression, and the requirement to obtain procedures which remain
rank invariant to monotonic increasing transformations on time, it is
more appropriate to consider the distribution of the variable Z given T,
which brings us immediately under the umbrella of the main theorem
of this book (Section 7.4). We then introduce the following definition;

Definition 14.3 Let the information for Z given T be given by

I2(θ) =
∫

T

∫

Z
log{g(z|t; θ)}g(z|t; β)dzdF (t), (14.4)

where F (t) is the marginal distribution function of T , and g(z|t) is the
conditional density or conditional probability function of Z given T .

This conditional information measure for Z given T turns out to have
many advantages over the more obvious definition. We assume that
the censoring is independent of the failure time and, for the most part,
that there is enough information in the tail of F . It would be straight-
forward (although rather more messy) to make a weaker assumption of
conditional independence, given the covariate, between the censoring
and the failure times. As before we have:

Definition 14.4 The information gain Γ2 is Γ2(β) = 2{I2(β) −
I2(0)}.

Definition 14.5 The explained randomness of Z given T is given by

ρ2
2(β) = 1 − exp{−Γ2(β)}.
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Like the Kent and O’Quigley measure, ρ2
1(β), ρ2

2(β) can be naturally
extended to multiple covariates cases, where g(·|·) would be the joint
conditional density or joint conditional probability function of Z given
T . For the time being we stay with a single covariate in order to keep
notation simple. We can proceed in a semiparametric way by working
with a consistent estimate of F in the presence of censoring, such as
the Kaplan-Meier (1958) estimator. Then an estimate of the informa-
tion gain can be obtained through the main theorem for proportional
hazards regression (Section 7.4). We can estimate the conditional dis-
tribution of Z given T by {πj(β̂, t)}, and the marginal distribution of
T by the Kaplan-Meier estimate. Recall also that W (Xi) is the jump
of the Kaplan-Meier curve at time t = Xi. We then have;

Definition 14.6 The information gain for Z given T is

Γ2(β) = 2
∫

T

∫

Z
log
{

g(z|t; β)
g(z|t; 0)

}

g(z|t; β)dzdF (t). (14.5)

From the above we see that conditioning Z on T , the computation for
estimating the information gain only involves those quantities rou-
tinely calculated in a proportional hazards analysis. This leads to
great simplification when compared with the approach of Kent and
O’Quigley (1988). The same is true for the multivariate case where
β̂Zl would be replaced by the inner product of the vectors.

Lemma 14.1 The information gain, Γ2(β) can be consistently esti-
mated by

Γ̂2(β̂) = 2
k∑

i=1

W (Xi)
n∑

j=1

πj(β̂, Xi) log

{
πj(β̂, Xi)
πj(0, Xi)

}

.

Results indicate that ρ2
1 and ρ2

2 may be anticipated to be close to one
another as well as to some other alternatives used in this context,
although there is no reason one should expect all of them to be ex-
actly the same since we are not dealing with a normal model. There
is also an interesting connection between the approach here and some
other papers in the literature such as McKean and Sievers (1987) and
Rousseeuw and Hubert (1997), in that all of them use the objective
functions that specific procedures minimize (or maximize) to define a
R2-type measure for regression models, the same being true for the
classical least squares regression.
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McKean and Sievers (1987) proposed coefficients of determination
for the least-absolute deviation (LAD) analysis of linear models, using
the sum of absolute deviations, which the LAD minimizes, as function
of the regression parameters under the model and without the model.
Rousseeuw and Hubert (1997) similarly defined coefficients of deter-
mination for the least quantile of squares and least trimmed squares
estimates of linear regression. In our case under the proportional haz-
ards model the estimate of β is obtained via maximizing the partial
likelihood, and the value of the partial likelihood under the model
and without the model is essentially what is used above. Note that in
Lemma 14.1 the expression can be shown by straightforward algebra
to be equal to

Γ̂2(β̂)=2
k∑

i=1

W (Xi)

{

β̂

∑n
1 Yl(Xi)Zle

β̂Zl

∑n
1 Yl(Xi)eβ̂Zl

− log
∑n

1 Yl(Xi)eβ̂Zl

∑n
1 Yl(Xi)

}

.

(14.6)

Whenever there is a finite upper limit τ of our observation time,
intuitively no more information is to be gained beyond τ . Therefore,
we can look at the information gain conditioning on T ≤ τ , i.e.,

Γ2(β) = 2E

{

log
g(Z|T ; β)
g(Z|T ; 0)

∣
∣
∣
∣T ≤ τ

}

.

The above quantity can be consistently estimated by the proposed
estimator divided by

∑k
1 W (Xi). It inevitably depends on the upper

limit τ . This is also true of the measures of Korn and Simon (1990),
and is implicitly true of the explained variation measure of O’Quigley
and Flandre (1994) since the Schoenfeld residuals correspond to the
observed failure times only. Some of the other proposed measures,
including ρ2

1 of Kent and O’Quigley (1988), another example being
that of Schemper and Kaider (1997), do not depend on τ because
they extrapolate beyond the range of the observed data; in particular,
they rely on the assumption of proportional hazards being true for
the whole range of T . The dependence of ρ2

2 on τ , on the other hand,
can be viewed of as appropriate in that we have then conditioned on
the time span actually studied rather than a time span of potential
interest.
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Properties

As for the coefficient R2 for explained variation, we have a number
of important properties that enable us to give a solid interpretation
to the measures ρ2

1 and ρ2
2. The coefficient ρ2

2(β), with information I2

defined above maintains the basic properties that we require of such a
measure of dependence. For properties which hold for both ρ2

1 and ρ2
2

simultaneously, we write simply ρ2. Specifically, we have:

Lemma 14.2 ρ2(0) = 0, and 0 < ρ2(β) < 1 if β 	= 0.

Lemma 14.3 ρ2 is invariant under linear transformations of Z and
is also invariant under monotonically increasing transformations of T.

Definition 14.7 Following Kent and O’Quigley (1988) we can define
the randomness of Z, as a monotonic transformation of the entropy of
Z, whereby, for j assuming the values 1 and 2, D(Z) = exp{−2Ij(0)},
and the residual randomness of Z given T by D(Z|T ) = exp{−2Ij(β)}.
Then

ρ2(β) = {D(Z) − D(Z|T )}/D(Z)

giving ρ2
1 and ρ2

2 an interpretation as the “proportion of the explained
randomness.”

Lemma 14.4 For β a scalar, ρ2(β), as a function of β, increases
with |β|.

An immediate consequence of the lemma is that we can directly infer
confidence intervals for ρ2(β) from those for β. Suppose that a 95%
confidence interval for β is 0 < βL < β < βU , then the interval for
ρ2(β) should be (ρ2(βL), ρ2(βU )). In practice, of course, we do not know
ρ2(·), but, following the consistency results, we can “plug” βL and βU

into ρ̂2(·) = 1−exp{−Γ̂2(·)} to obtain an approximation of ρ2(βL) and
ρ2(βU ). The coverage properties will not be exactly the same but will
be close. Further study can throw more light on this. We can similarly
deal with the case where βL < βU < 0. If instead βL < 0 < βU ,
because ρ2(β) is symmetric about β = 0 we have the invariance to
linear transformation of Z and monotonic increasing transformation
of T , then ρ2 is invariant under linear transformations −Z of Z), 0
so that the larger in absolute value of βL and βU should be plugged
in. This approach is illustrated in an example below. Alternatively we
can always obtain confidence intervals based on asymptotic normality
given by:
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Lemma 14.5 Assuming the Andersen-Gill type conditions, then
Γ̂2(β̂) consistently estimates Γ2(β) and is asymptotically normal.

The proof of the asymptotic normality makes use of the central limit
theorem of Stute (1995) for Kaplan-Meier integrals, of which the defi-
nition of information gain here is a special case. Following Stute (1996)
the variance estimation of the Kaplan-Meier integrals is more compli-
cated in general, and so it is recommended to use resampling tech-
niques to obtain an estimate of the variance.

Boundedness

It is possible for ρ2 to be bounded by a number strictly less than 1 as
β approaches infinity. This can occur when the covariate Z is discrete
and takes on very few levels. Even so, for the most extreme case of
a single binary covariate, the bound is close enough to one for the
phenomenon to be practically ignored. This behavior was also referred
to by Kent (1983). We can illustrate such behavior in the case of an
exponential model where we suppose that λ0 = 1. We drop the index
β in the notation of the hazard, density, and so on. Then λ(t|z) = eβz

and S(t|z) = exp(−eβzt). In particular, S0(t) = f0(t) = e−t. We have

g(z|t) =
eβz{S0(t)}exp(βz)g(z)
∑

z eβz{S0(t)}exp(βz)g(z)

andthejointprobabilityofT andZ isgivenbyf(t, z) = eβz{S0(t)}exp(βz)

g(z). We can write; Γ2(β) = 2
∑

z

∫∞
0 log{g(z|t)/g(z)}f(t, z)dt. and,

after some elementary algebra and a change of variable in the integra-
tion we have:

Lemma 14.6

Γ2(β)

=2
∑

i

g(zi)
∫ ∞

0
e−x log

⎧
⎨

⎩
e−x/

∑

j

g(zj)eβ(zj−zi) exp(−xeβ(zj−zi))

⎫
⎬

⎭
dx .

Here we use the subscripts i and j to distinguish between the two
nested sums over all the atoms of the distribution of Z. Notice that
for j 	= i, zj − zi 	= 0 and the summand indexed by j tends to 0 as
β → ∞. But this is not true with j = i. In particular:
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Lemma 14.7 As β → ∞ we have;

Γ2(β) −→ 2
∑

i

g(zi) log
1

g(zi)
= Γmax.

Note that Γmax of the lemma is finite. This means that the limit of
ρ2(β) would be strictly less than one. For discrete uniform of Kent and
O’Quigley (1988) on three points, Xu and O’Quigley (1999) calculated
that ρ2

max = 0.720 and that ρ2
max = 0.973 for six points. Finally note

that if the distribution of Z is continuous, the sums over z in the above
calculation become integrals. Then as β → ∞, the denominator inside
the log becomes zero, since the integrand is everywhere zero except
for one point. Therefore, Γ(β) → ∞ and ρ2(β) → 1. Secondly, for
discrete covariates as Kent (1983) pointed out, except for very high
values of correlation, ρ2 can usually be interpreted without paying
special attention to the discreteness of the distribution. The numerical
study below also shows that there is not much discrepancy between the
ρ2 discussed here and the original proposal of Kent and O’Quigley’s
(which has the property of tending to 1 as β → ∞). It performs well
in a practical example with a binary covariate. This is detailed in the
examples.

14.5 Approximation of ρ2
1 by ρ2

2

Under certain conditions ρ2
1 = ρ2

2. These conditions are satisfied by a
bivariate normal model (itself not in the proportional hazards class)
and we only expect them to be approximately met in practice. How-
ever, on the basis of this, we anticipate ρ2

1 and ρ2
2, as well as their sam-

ple based estimates to be generally close. If we first define W = β′Z
to be the usual prognostic index, then we have;

Theorem 14.1 If, for each t, E{Z(∂f(t|Z)/∂W ) = 0} then, ρ2
1 = ρ2

2.

The above result would follow if I1(θ) = I2(θ) + K where K is a con-
stant. Suppose then we let dH(z, t; β) = g(z|t; β)dz dF (t) = f(t|z; β)
dt dG(z) then, we can write, I2(θ) =

∫
T
∫
Z log{g(z|t; θ)} dH(z, t; β) and

this integral in turn can be simply expressed as,
∫
T
∫
Z{log f(t|z; θ) +

log g(z) − log f(t; θ)} dH(z, t; β) which simplifies to I(θ) + K1 − B(θ)
where B(θ) =

∫
T
∫
Z log f(t; θ) dH(z, t; β) and K1 =

∫
T
∫
Z log g(z) dH

(z, t; β). Even though H depends upon β, K1 is a constant, depending
only upon the marginal distribution of Z. Now B(θ) = E log f(T ; θ)
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which depends upon the marginal distribution of T. The marginal
distribution of T depends on θ via an expression for total probabil-
ity and the conditional distributions of T given Z. However, writing
f(t) =

∫
f(t|z)g(z)dz, then ∂f(t)/∂θ =

∫
∂f(t|z)/∂w(dw/dθ)g(z)dz,

assuming we can interchange the limiting processes. Thus, ∂f(t)/∂θ =
E{Z(∂f(t|Z)/∂W ) = 0. Under the condition of the theorem, B(θ) =
E log f(T ; θ) = E log f(T ) does not depend upon θ and so can be
written as a constant K2. We then have K = K1 − K2.

The condition indicates, that for each fixed t, the rate of change
of the conditional density with respect to βZ is uncorrelated with the
covariate Z itself. For normal regression this can be verified. More gen-
erally the condition would only be approximately met. It is nonetheless
a reasonable condition and, in practice, it is unlikely that we would
be very far removed from the condition. Formal procedures for inves-
tigating the validity of the condition could also be developed but, at
this point, no such procedures exist.

In view of the above theorem we can view ρ̂2
2 either as an estimator

of the explained randomness in Z given T or as an approximation to
ρ2

1, the explained randomness in the ranks of T given Z. This second
interpretation is the one that corresponds most closely to that required
in the majority of applications. A second theorem leads to further
simplification including an approximation that is very easily obtained.
First we define

Γ̄2(β̂) = 2
n∑

i=1

W (Xi) log

{
πi(β̂, Xi)
πi(0, Xi)

}

. (14.7)

Again, the right-hand side of the above should be divided by
∑n

1 W (Xi)
if it is less than one in the same way as for Γ2(β̂).

14.6 Simple working approximation
of ρ2

1 and ρ2
2

From the above we can view ρ2
2 as a coefficient in its own right quan-

tifying the amount by which the explanatory variables explain the
rankings in survival or, we can view ρ2

2 as an approximation to ρ2
1.

In this section we see that there is a very simple working approxima-
tion for ρ2

2, and thereby ρ2
1, and this approximation is widely available

through the software package SAS. To see this consider:



418 CHAPTER 14. EXPLAINED RANDOMNESS

Theorem 14.2 Assuming the data are generated under the propor-
tional hazards model and that the support for C and T coincides, then
|Γ̄2(β̂) − Γ̂2(β̂)| converges in probability to zero.

This is quite straightforward since:

log πi(β̂, Xi) −
n∑

j=1

πj(β̂, Xi) log πj(β̂, Xi)

= log
Yi(Xi) exp(β̂Zi(Xi))

∑n
l=1 Yl(Xi) exp(β̂Zl(Xi))

−
n∑

j=1

πj(β̂, Xi) log
Yj(Xi) exp(β̂Zj(Xi))

∑n
l=1 Yl(Xi) exp(β̂Zl(Xi))

= Yi(Xi) · β̂Zi(Xi) −
n∑

j=1

πj(β̂, Xi) · Yj(Xi) · β̂Zj(Xi)

= β̂{Zi(Xi) − Eβ̂(Z|Xi)} where Eβ(Z|t) =
n∑

j=1

Yj(t)Zj(t)πj(β, t).

So the arithmetic difference between Γ̄2(β̂) and Γ̂2(β̂) can then be
expressed as, 2β̂

∑n
i=1 W (Xi){Zi(Xi)−Eβ̂(Z|Xi)}, which tends to zero

(Xu and O’Quigley 2000a). Next, if we first define,

Γ̄A(β̂) =
2
k

n∑

i=1

δi log

{
πi(β̂, Xi)
πi(0, Xi)

}

. (14.8)

where k is the total number of failures, then we have the following
corollary.

Corollary 14.1 In the absence of censoring Γ̄A(β̂) = Γ̂2(β̂).

This is immediate since, in the absence of censoring, k = n and
W (Xi) = W (Ti) = 1/n. But, more generally, in the presence of in-
dependent censoring, we can take Γ̄A(β̂) to be a good approximation
to Γ̄(β̂). Both Γ̄A(β̂) and Γ̄2(β̂) represent empirical expectations of the
same quantity, the difference being in how we assign the total proba-
bility mass of one. For most observed censoring patterns, we would not
anticipate seeing much discrepancy between Γ̄A(β̂) and Γ̄2(β̂). Since
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Γ̄A(β̂) is particularly straightforward to evaluate, using a simple trans-
formation of the partial likelihood ratio statistic, we would recommend
it for routine use. In the absence of censoring, note that ρ̂2(β̂), based
upon Γ̄A(β̂), coincides with the correlation measure provided by a SAS
survival analysis book (Allison 1995). When there is censoring how-
ever, the Allison measure uses n in place of k in (14.8), and therefore
will depend upon an independent censoring mechanism regardless of
population effects. In particular it approaches the value zero as the per-
centage of censored observations approaches one. On the other hand,
for all independent censoring mechanisms, ρ̂2(β̂) approaches a popu-
lation equivalent, this equivalent being close to ρ2(β), and therefore
interpretable as a percentage of explained randomness. If the coeffi-
cient R2

SAS is then available from the SAS software package, we can
write;

ρ̂2
2 ≈ 1 − exp

{
n

k
log(1 − R2

SAS)
}

(14.9)

and use this as a simple working approximation to ρ2
2. In the light of

the previous section this would also then be a working approximation
for the coefficient ρ2

1. We might also view the above expression as a cor-
rection for the Allison SAS coefficient which has not adequately taken
account of the censoring. In practice this can make quite an important
difference. As a quick illustration, suppose that we have 100 subjects
on which we observe a total of 30 failures. Suppose that we evaluate
R2

SAS as 0.3, a value which would be indicative of moderate effects. In
fact the true force of the effects are being masked by not correctly ac-
counting for the censoring and, making the correction outlined in the
above formula we find that ρ2

2 is approximated by 0.7, a value which
indicates very strong effects.

Furthermore, if “being close” is not good enough and we insist
upon a consistent estimate of ρ2(β) then this requires little in the way
of extra work. Even so, we can conclude that the measure routinely
provided by the SAS package can be used and given a meaningful in-
terpretation as long as we make the correction given by Equation 14.9.
While not eliminating all of the effects of the censoring on the pop-
ulation parameter, the correction goes sufficiently far to reduce these
effects so that, for the purposes of everyday practical data analysis,
conclusions based on precise measures as opposed to those based on
approximate measures are unlikely to differ very much.
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14.7 Multiple coefficient of explained
randomness

Returning to the definitions given at the beginning of the chapter, for
instance that for I1(θ) where:

I1(θ) =
∫

Z

∫

T
log{f(t|z; θ)}f(t|z; β)dtdG(z),

the extension to the multivariate situation appears immediate. We
keep the same definitions of f(t|z; θ), Γ1(β), and I1(θ) and, finally,
ρ2
1(β) and take z to be vector valued. There is no extra work, at least

conceptually, in obtaining this definition which is then very logical. For
the definitions leading to ρ2

2, the extension is possibly less immediate
but is equally straightforward. Keeping in mind that we can estimate
the conditional distribution of Z given T by {πj(β̂, t)}, and the mar-
ginal distribution of T by the Kaplan-Meier estimate and that W (Xi)
is the jump of the Kaplan-Meier curve at time t = Xi we can then
easily work with the following definition:

Definition 14.8 The information gain for Z given T is

Γ2(β) = 2
∫

T

∫

Z
log
{

g(z|t; β)
g(z|t; 0)

}

g(z|t; β)dzdF (t), (14.10)

which appears the same as the earlier definition, only that now both
z and β are vectors. The distribution g(z|t; β) is a multivariate dis-
tribution and it can be helpful to see this as a transformation to a
one-dimensional scale. In particular, we can still consistently estimate
Γ2(β) by

Γ̂2(β̂) = 2
k∑

i=1

W (Xi)
n∑

j=1

πj(β̂, Xi) log

{
πj(β̂, Xi)
πj(0, Xi)

}

, (14.11)

the only difference from the earlier expression being that, here, both β
and Zi, contained in the expression πj(β̂, Xi) are vectors. Simple and
multiple coefficients, based on Γ2(β), are then quite straightforward.
In practice we often would like to answer questions of the form: What
is the impact of some covariate, or some set of covariates, after having
taken account of the effects of some other set? Such questions can be
addressed by the use of partial coefficients of explained randomness
and these are outlined below. One fairly immediate observation is that
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we can define partial coefficients in terms of simple and multiple coef-
ficients and so there is really no need for any further work on this. The
relationship between partial and multiple coefficients is an exact one
for multi-normal linear models. It is not exact here but is, for practical
purposes, almost certainly good enough.

14.8 Partially explained randomness

Partial measures of explained randomness in T given Z2, after having
already accounted for Z1 can be defined directly following the outline
of Section 2.8. However, it seems more satisfactory to define the partial
coefficients as ratios of multiple coefficients of different orders. Aside
from the multivariate normal model, the two approaches will not lead
to identical results, although we would expect them to be close and
not to disagree in any substantive way when confronted with real data.

In order to better present the ideas it is useful, at least for this
short section, to make a change in notation. Here then, we no longer
indicate the dependence of ρ2 on β by ρ2(β). That notation helps
in the study of the properties of ρ2 as a function of β. Now, we
wish to consider the dependence of ρ2 as function of certain covari-
ates after having accounted for the effects of others. Thus, we write
ρ2(Z1, . . . , Zp) and ρ2(Z1, . . . , Zq) (q < p), the multiple coefficients
for models including covariates Z1 to Zp and covariates Z1 to Zq, re-
spectively. We are then able to express, and define, the partial coeffi-
cient ρ2(Zq+1, . . . , Zp|Z1, . . . , Zq), the explained randomness provided
by Zq+1 to Zp after having accounted for the effects of Z1 to Zq by

1 − ρ2(Z1, . . . , Zp)

= [1 − ρ2(Z1, . . . , Zq)][1 − ρ2(Zq+1, . . . , Zp|Z1, . . . , Zq)].

This is motivated by an analogous formula for the multivariate nor-
mal model and makes intuitive sense in that the value of the partial
coefficient increases as the difference between the multiple coefficients
increases, and takes the value zero should this difference be zero. Since
simple and multivariate coefficients are readily evaluated then so is the
resulting partial coefficient of explained randomness.

We can, however, proceed more directly, corresponding to the orig-
inal suggestion in Kent and O’Quigley (1988). In order to do this we
break down the covariate vector into two components, the one of main
interest and the one we wish to adjust for. We assume then a model
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in which the second set of components is fixed at the value zero and
we maximize over the parameter space for the other set an expression
corresponding to the expected log-likelihood. Next we maximize this
quantity over the whole covariate vector without constraint. Once we
have these quantities we proceed as before by calculating twice the
Kullback-Leibler distance between these two hypotheses. The details
of this approach are described in Kent and O’Quigley (1988) and Xu
and O’Quigley (1999). For routine work it is recommended to proceed
on the basis of the expressions given in the above paragraph. These are
simpler to evaluate, the risk of making a numerical mistake is smaller,
and it is, in any event, helpful to have in mind the values of the mul-
tivariate coefficients even when we only plan to use these indirectly.
A simplification, analogous to that for the ordinary coefficient, can
also be worked out. For cases where there is a finite follow-up time τ ,
procedures similar to those for the ordinary coefficient can be used.

14.9 Isolation method for bias-reduction

The approach to bias reduction for R2 in Section 13.11 can be equally
well applied when we work with a coefficient of explained randomness.
All of the points made in Section 13.11 apply in just the same way here.
We do not repeat them and the reader may wish to go over Section
13.11 simply replacing each occurence of R2 by ρ2. In particular, we
employ an entirely analogous model for overfitted effects. For a given
covariate or covarariate vector Z, we calculate ρ2(Z|F ) where F is as
in Section 13.11, i.e., not something we measure, or observe, but a
conceptual quantity indicating the sum total of all the actions taken
during the fitting process. The observed multiple ρ2(Z) simultaneously
involves, as well as the real effects, the fitting process, and, as in Section
13.11, we write ρ2(Z) = ρ2(Z, F ) and appeal to the expression;

1 − ρ2(Z, F ) = [1 − ρ2(F )][1 − ρ2(Z|F )] (14.12)

Only ρ2(Z, F ), can be directly observed. We obtain a distribution for
ρ2(F ) as described in Section 13.11 and, again, we will label this by
H(·). Finally, we obtain the quantity we want which is ρ2(Z|F ), indi-
cating that we have “accounted” for the fitting effects and this is;

ρ2(Z|F ) =
∫ (

ρ2(Z, F ) − u

1 − u

)

dH(u). (14.13)
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As before, a simple approximation obtains from working with the mean
ū across the replications of ρ2(F ) and writing ρ2(Z|F ) ≈ [ρ2(Z, F ) −
ū]/(1 − ū). If our purpose is to look at one factor after having taken
account of several others then we would fix at zero the coefficient
corresponding to the factor of interest and allow those factors for which
we are adjusting to be replaced by estimates in our replications. These
would be constrained estimates in that the coefficient corresponding
to the additional factor of interest is always fixed at zero. Equation
13.20 is then used with these values in order to generate the relevant
distribution H(u).

14.10 Simulations

The behavior of ρ2
2 was studied by Xu and O’Quigley (1999) via some

simulations, for different strength of dependence, different censoring
mechanism, and different covariate distributions. To compare ρ2

2 with
other similar measures proposed under the Cox regression model, we
also make use of the results from Table II of Schemper and Stare
(1996). As in Schemper and Stare (1996), data are simulated with haz-
ard function λ(t) = exp(−βZ), where β = 0, log 2, log 4, log 16, log 64,
and Z distributed as either uniform [0,

√
3] or dichotomous 0,1 with

equal probabilities. Such choices of covariate distributions result in
identical variance for Z and thus allows comparison of the results for
dichotomous and continuous covariates.

Censoring mechanisms are assumed to be uniform [0, τ ], where τ
is chosen to achieve a certain percentage of censoring. We used 100
simulations for each entry of the results. In Table 14.1 covariate type
“c” stands for “continuous”, and “d” for “dichotomous.” R2 is the
measure of predictive capability proposed by O’Quigley and Flandre
(1994). The last four columns of the table are taken from Schemper and
Stare (1996), where ρ2

W and ρ2
W,A are from Kent and O’Quigley (1988).

The coefficient ρ2
W is their sample based estimate of ρ2

1, and ρ2
W,A

a simpler approximation to ρ2
W . The measure r2

pr is from Schemper
and Kaider (1997) and “KS” from Korn and Simon (1990) based on
quadratic loss. Overall there is mostly good agreement among all the
coefficients except for KS. We suspect there may be theoretical grounds
for anticipating some level of agreement among ρ2

2, R2, ρ2
W , and ρ2

W,A.
Roughly, the three versions of ρ2 based on information gain have at
their bases something like a likelihood ratio statistic whereas that of R2

a score statistic. Large sample agreement for such statistics has been
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Table 14.1: A simulated comparison of different measures (n = 5000).
exp(β) % censored covariate ρ2

2 R2 ρ2
W = ρ2

1 ρ2
W,A r2

pr KS
1 0% c 0.000 0.000 0.000 0.000 0.000 0.000

50% c 0.000 0.000 0.000 0.000 0.000 0.000
90% c 0.002 0.002 0.000 0.000 0.000 0.000

2 0% c 0.102 0.098 0.096 0.119 0.092 0.101
50% c 0.108 0.105 0.089 0.122 0.093 0.088
90% c 0.105 0.104 0.103 0.099 0.074 0.015
0% d 0.102 0.099 0.113 0.118 0.096 0.095
50% d 0.110 0.108 0.114 0.121 0.096 0.089
90% d 0.106 0.108 0.125 0.100 0.076 0.016

4 0% c 0.295 0.281 0.304 0.338 0.272 0.231
50% c 0.334 0.316 0.298 0.344 0.274 0.267
90% c 0.340 0.334 0.279 0.342 0.278 0.063

16 0% c 0.598 0.586 0.623 0.664 0.584 0.354
50% c 0.690 0.644 0.622 0.668 0.584 0.564
90% c 0.723 0.708 0.605 0.670 0.585 0.188

64 0% c 0.758 0.757 0.785 0.815 0.754 0.397
50% c 0.848 0.806 0.790 0.815 0.730 0.717
90% c 0.876 0.864 0.763 0.816 0.694 0.321
0% d 0.681 0.870 0.777 0.814 0.707 0.319
50% d 0.860 0.885 0.776 0.815 0.718 0.861
90% d 0.756 0.937 0.795 0.792 0.701 0.135

documented and further exploration here may shed light on both the
behavior of measures of explained randomness and that of O’Quigley
and Flandre (1994).

The values of r2
pr tend to be slightly lower than these four coef-

ficients, although the strength of association reflected is similar. The
measure r2

pr requires more computation than all the other ones in the
table because of the multiple imputation technique employed. There
is also noticeably close agreement between ρ2

2 and R2 for the majority
of the cases. This may have its root in the fact that both measures
are semi-parametric and essentially based on the conditional distribu-
tion of the covariates given the failure time T . The numerical results
for dichotomous covariates with high hazard ratio 64 also confirm the
theoretical findings where ρ2

2 is shown to be bounded away from one
as β increases, although when there is no censoring ρ2

2 is quite close to
r2
pr in this case.
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Because of the censoring mechanism used in the simulation for the
table, the support for time is taken to be on (0, τ). This is also re-
flected in the gradual although weak impact of τ on ρ2

2. Notice that
the changes are not very large even for 90% censoring, where about
80% of the observations are censored at τ itself. As mentioned before,
the dependence on τ also exists for R2 and KS, although the KS mea-
sure appears to change quite dramatically. The KS measure also does
not remain invariant to monotone increasing transformation of time,
unlike all the other measures included for the comparison as well as the
partial likelihood estimator itself. This measure is most useful when
the time variable provides more information than just an ordering. On
the other hand, less agreement is seen among the last two columns
and the rest of the table. This is because the measure V2 is known
to depend rather heavily on censoring, even when independent of the
failure mechanism and even when there is no finite upper limit τ of
the follow-up time.

Further simulations on these measures were carried out, for dif-
ferent strength of regression effects, different censoring percentages
and different covariate distributions. Again the data were simulated
via hazard functions λ(t) = exp(−βZ). The distributions of Z are
standardized to have the same variances. The censoring mechanism
is uniform [0, τ ]. Table 14.2 contains the results of a large sample
(n = 5000) comparison. The last three columns of the table are from
Xu and O’Quigley (1999), where ρ2

W and ρ2
W,A are defined in Kent and

O’Quigley (1988). The coefficient ρ2
W is their sample based estimate,

and ρ2
W,A a simpler approximation to ρ2

W . The measure denoted R2
SAS

is from Allison (1995), where the partial likelihood ratio statistic is, as
we’ve explained above, incorrectly divided by the sample size n instead
of the number of events k (see Equation 14.9). Note that we would have
as an approximation from Equation 14.9 obtained by rearranging the
terms as;

R2
SAS ≈ 1 − exp

{
k

n
log(1 − ρ2

2)
}

. (14.14)

From the table we see that R2
SAS decreases dramatically with the per-

centage of censoring, which is consistent with our earlier discussion. The
measures ρ2 and ρ2

2 have close agreement, as they are asymptotically
equivalent. The measure ρ2

k appears to be a good approximation to ρ2,
even in the presence of heavy censoring. The measures from Kent and
O’Quigley (1988) also have good agreement with these three measures.
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Table 14.2: A simulated comparison of the measures (n = 5000).

exp(β) % censored covariate R2
SAS ρ2

k ρ2 ρ2
2 ρ2

W ρ2
W,A

2 0% c 0.103 0.103 0.103 0.102 0.096 0.119
50% c 0.053 0.106 0.097 0.108 0.089 0.122
90% c 0.013 0.117 0.107 0.105 0.103 0.099
0% d 0.094 0.094 0.094 0.102 0.113 0.118
50% d 0.060 0.113 0.086 0.110 0.114 0.121
90% d 0.012 0.114 0.116 0.106 0.125 0.100

4 0% c 0.293 0.293 0.293 0.295 0.304 0.338
50% c 0.197 0.351 0.356 0.334 0.298 0.344
90% c 0.048 0.390 0.366 0.340 0.279 0.342

16 0% c 0.603 0.603 0.603 0.598 0.623 0.664
50% c 0.473 0.713 0.679 0.690 0.622 0.668
90% c 0.116 0.725 0.765 0.723 0.605 0.670

64 0% c 0.757 0.757 0.757 0.758 0.785 0.815
50% c 0.641 0.873 0.857 0.848 0.790 0.815
90% c 0.197 0.865 0.886 0.876 0.763 0.816
0% d 0.679 0.679 0.679 0.681 0.777 0.814
50% d 0.633 0.865 0.859 0.860 0.776 0.815
90% d 0.128 0.726 0.742 0.756 0.795 0.792

Next, simulations to evaluate the finite sample (n = 100) behav-
iors of ρ2

n, ρ2
k and ρ2 (Table 14.3) were carried out. Since the difference

among these three measures lies in their ways of handling censorship,
for comparison purposes in the last column of the table we also pro-
vide the value of the measure for the same simulated data without
censoring, ρ2

nc. In the parentheses are the standard errors from the
200 simulations. As can be seen R2

SAS again behaves quite poorly with
increasing censoring. When compared to ρ2

nc, ρ2 is slightly less biased
than ρ2

k, but ρ2
k turns out to have smaller standard errors than ρ2.

The mean squared errors (MSE) was also computed and, although not
shown here, the MSE for ρ2

k is generally slightly smaller than ρ2.

14.11 Illustrations

Consider two examples. The first, as a comparison, is the example
that appeared in Kent and O’Quigley’s paper. The second is the data
of Freireich (1963), so that we can compare the measures with other
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Table 14.3: A simulated comparison of the measures (n = 100).

exp(β) % censored covariate R2
SAS ρ2

k ρ2 ρ2
nc

2 0% c 0.105 0.105 0.105 0.105
50% c 0.059 0.114 0.106 0.097
90% c 0.021 0.173 0.149 0.106
0% d 0.103 0.103 0.103 0.103
50% d 0.065 0.122 0.118 0.106
90% d 0.022 0.180 0.178 0.107

4 0% c 0.288 0.288 0.288 0.288
50% c 0.186 0.337 0.319 0.291
90% c 0.047 0.357 0.349 0.292

16 0% c 0.587 0.587 0.587 0.587
50% c 0.443 0.686 0.662 0.586
90% c 0.118 0.695 0.658 0.591

64 0% c 0.750 0.750 0.750 0.750
50% c 0.616 0.847 0.827 0.743
90% c 0.182 0.857 0.851 0.751
0% d 0.676 0.676 0.676 0.676
50% d 0.627 0.857 0.846 0.673
90% d 0.135 0.750 0.747 0.676

Table 14.4: A comparison of ρ2
1 and ρ2

2.

β D1 D2 D3
ρ2

2 ρ2
1 ρ2

2 ρ2
1 ρ2

2 ρ2
1

1/4 0.039 0.058 0.054 0.055 0.060 0.061
1/2 0.135 0.193 0.172 0.177 0.195 0.208
1 0.367 0.474 0.442 0.430 0.445 0.505
2 0.699 0.770 0.695 0.722 0.704 0.795

similar measures in a well-known practical case of the proportional
hazards model.

The measure of dependence ρ2
1 proposed in Kent and O’Quigley

(1988) was worked out for the Weibull regression model under several
distributions of Z, namely, discrete uniform on D1 = {−1.195,−0.717,
−0.239, 0.239, 0.717, 1.195}, D2 = {-0.707, -0.707, 1.414}, and D3 =
{-1.414, 0.707, 0.707}. All three distributions of Z have expectation 0
and variance 1. Their results along with ρ2

2 are compared in Table 14.4.
From Table 14.4 we see that the ρ2

1 and ρ2
2 values appear to reflect
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similar strength of association between the survival variable and the
covariate. Comparison of D2 and D3 shows that skewness from the
distribution of Z seems to affect ρ2

1 more than ρ2
2. As mentioned earlier,

there is no reason that the two measures should be exactly the same.
Although the upper bound for ρ2

2 was computed to be less than one,
it is not far away from ρ2

1 for all the cases studied here.
The Freireich data described in the original paper (Cox 1972) on

the proportional hazards model gives an example in which there are
two groups and the partial likelihood estimate of log relative risk is
β̂ = 1.65. A visual inspection of the separation afforded by the two
Kaplan-Meier curves, corresponding to the two prognostic groups, is,
of itself, enough to suggest that there are quite important and strong
predictive effects. We estimated ρ2(β) to be 0.34. Kent and O’Quigley’s
ρ2

1 is estimated to be 0.37. The measure R2 of O’Quigley and Flandre
(1994) turns out to be 0.39 for the same data. Here we again see a
good agreement reflecting the strength of dependence.

The measure of Schemper and Kaider (1990) also resulted in a
plausible value, r2

pr = 0.34. The measure of Korn and Simon (1990),
based on quadratic loss, gave the value 0.32. As mentioned earlier, this
measure does not remain invariant to monotone increasing transforma-
tion of time. For these data the value 0.32 drops to 0.29 if the failure
times are replaced by the square roots of the times. We also calculated
the 95% confidence interval for ρ2 by inverting the interval for β and
it turned out to be (0.09, 0.57). The 95% confidence interval for R2

is (0.16, 0.68) in O’Quigley and Flandre (1994), based on a simple
percentile bootstrap calculation, and becomes (0.12, 0.64), an interval
much closer to that obtained here, when using Efron’s bias-corrected
accelerated bootstrap.

The much simpler calculation, based on the modification of the
coefficient introduced by Allison (1995), results in the value 0.42 giving,
as we would expect, quite close agreement. The uncorrected coefficient
of Allison results in the slightly depressed value 0.32 which is not all
that far removed from the others but this is simply due to the fact
that, for these data, only 12 out of the 42 observations were censored.
As the censoring diminishes, the corrected and uncorrected Allison
measures converge and, ultimately, when there is no censoring, they
are identical.

A second example comes from a study of 2174 breast cancer pa-
tients, followed over a period of 15 years at the Institut Curie in Paris,
France. A large number of potential and known prognostic factors were
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recorded. The most important prognostic factor among those antici-
pated as having some prognostic importance was stage. Measuring,
not so indirectly, the evolution of the disease, our intuition tells us
that we would expect to record a high degree of explained randomness
from this covariate. Applying the uncorrected Allison coefficient in the
standard SAS program we find an estimated explained randomness of
12%. This appears rather low given what we know and, indeed, if we
calculate the corrected coefficient, as described above, we then find an
estimated 43% of the randomness in survival explained by stage. This
is relatively high but does correspond much more closely to a figure
we might expect.

14.12 Further extensions

Time-dependent covariates

The main definition can be generalized to accommodate time-dependent
covariates, a natural feature of the proportional hazards model and one
that the Kent and O’Quigley specification was not able to deal with.
For simplicity we still assume the covariates to be of dimension one.
The model of interest is then

λ(t|z(t); β) = λ0(t) exp{βz(t)}.

The covariate Z(t) is generally assumed to be a stochastic process in-
dexed by time, meaning that Z(t) is a random variable at any fixed t
and may have different distributions at different t’s. The conditional
distributions of Z given T, described by the main theorem (Section
7.4), then become those of Z(t) given T ≥ t and those of Z(t) given
T = t, respectively. The first of these can be estimated by the empirical
distribution of Z(t) in the risk set at time t, because conditioning on
T ≥ t just as before, still has the interpretation as given all the subjects
that have survived at least until time t. For the second conditional dis-
tribution, we apply one of the corollaries to the main theorem (Section
7.4). Recalling this we have a similar result to that for time-invariant
covariates:

Theorem 14.3 Under the model of Equation (14.15), the conditional
distribution function of Z(t) given T = t is consistently estimated by

P̂ (Z(t) ≤ z|T = t) =
∑

{j:Zj(t)≤z}
πj(t; β̂),
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where πj(t; β) is modified so that Zj and Zi are replaced by Zj(t) and
Zi(t).

In the case of time-dependent covariates, take:

Definition 14.9

Γ2(β) = 2
∫

E

{

log
g(Z(t)|T = t; β)
g(Z(t)|T = t; 0)

∣
∣
∣
∣T = t; β

}

dF (t).

Although this may not fit the exact definition of a Kullback-Leibler
information gain as we are dealing with a stochastic process here, it
can be verified that ρ2(β) = 1 − exp{−Γ2(β)} maintains the prop-
erties described above and therefore is suitable for use as a measure
of dependence between the survival time and the covariates. In addi-
tion, estimation is essentially unchanged with Zl replaced by Zl(ti).
The ρ2 coefficient is no more involved computationally than is that
for time-invariant covariates. Partial coefficients can also be similarly
defined.

Prentice criteria for surrogate endpoints

An interesting example of time-dependent covariates arises in the study
of surrogate endpoints. These are of interest in clinical trials as a po-
tential way to reduce the overall experimentation time and thereby
accelerate the testing of new, potentially more effective, treatments.
The idea behind the use of surrogate variables lies in defining clinical
endpoints that might equally well reflect therapeutic benefit, occur-
ring, on average, earlier than classical clinical endpoints. The main
requirement is that the surrogate represent, in some sense, a pathway
so that, once we have taken account of the effect of treatment on the
surrogate then little or nothing remains of the treatment effect on sub-
sequent survival. In addition to some biological or clinical rationale,
we also require that the observed value of the surrogate marker at any
given point in time be predictive of ultimate survival time.

Both points have been discussed by Prentice (1989) who proposed
two operational criteria for defining surrogate endpoints in clinical tri-
als. These criteria have been discussed by other authors (Buyse and
Molenberghs, 1998; Lagakos, 1993; Fleming and DeMets, 1996; De
Gruttola et al. 1997, Freeman et al. 1992). and can be evaluated via
regression models and likelihood ratio tests (Lin, Fischl and Schoen-
feld, 1993). Other criteria have also been proposed (Buyse and Molen-
berghs 1998) and the purpose here is not to debate the advantages and
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disadvantages of the different approaches but to focus on a character-
ization of the Prentice criteria which turns out to be useful. Similar
characterizations may exist for other proposals. It is helpful to quan-
tify to what extent the risk changes once the surrogate variable has
been observed and, more importantly, to quantify to what extent the
effect of treatment can be explained by the action of the surrogate. The
regression coefficients themselves are, of course, providing information
on this. Measures of predictability and explained randomness, being
standardized to lie between 0 and 1, and having precise meaning, can
be useful in interpreting the answers to these kind of questions.

The first criterion proposed by Prentice (1989) requires the failure
rate for T be independent of treatment, conditional on the surrogate
variable. This notion is defined by the relation (Prentice, 1989, page
433)

λ{t|Z1(t), Z2(t)} = λ{t|Z1(t)}, (14.15)

where Z1(t) is a binary surrogate variable and Z2(t) is the treatment
indicator, in general, not depending on t, although it can be allowed
to and would enable us to analyze crossover designs for example. This
criterion ensures that a surrogate for T should be able to capture the
dependence of T on treatment.

The second criterion considers a model with only the surrogate
variable and requires that the surrogate response have some prognostic
implication for the true endpoint (Prentice, 1989, pp 434), that is

λ{t|Z1(t)} 	= λ(t) (14.16)

for all t. Conditions (14.15) and (14.16) were proposed as operational
criteria for surrogate endpoints in clinical trials (Prentice, 1989). Recall
that when a covariate Z is unrelated to survival, and the corresponding
regression coefficient is zero, then ρ2(Z) = 0. In the case of a surrogate
endpoint having no effect where there is no gain in information con-
cerning the intensity function by knowing Z1(t), i.e. λ(t; Z1(t)) = λ(t),
then Prentice’s criterion 2, as expressed in equation (14.16) is not sat-
isfied and ρ2(Z1) = 0.

A non zero value for ρ2(Z1) indicates that Prentice’s second cri-
terion is met. Denoting ρ2(Z2|Z1) to be the value of the index with
respect to Z2, after having accounted for the effects of Z1, then, in the
case that Z2 is unrelated to survival, i.e., provides no further informa-
tion on T , once we have adjusted for Z1, we require ρ2(Z2|Z1) = 0.
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In particular, when the surrogate captures all of the treatment
effect, as expressed by (14.15), then Prentice’s first criterion is met
and ρ2(Z2|Z1(t)) = 0. An index of explained randomness ρ2 can then
enable us to re-express the Prentice criteria, equations (14.15) and
(14.16). This alone is of interest, although, in addition, we are able to
interpret ρ2(Z) as providing an ordering in terms of predictive power
and that, for any specific value, say ρ2(Z) = 0.28, the number 0.28
has a concrete interpretation, specifically, as it turns out, in terms of
explained randomness, then such an index can be helpful in situations
where the Prentice criteria are being applied. It is also helpful that
ρ2(Z) be unaltered by (i) an independent censoring mechanism and (ii)
monotonic increasing transformations on time since these are practical
requirements in the setting of a clinical trial.

We can then use ρ2, to re-express the two criteria of Prentice (1989)
for surrogate variables. Moreover the greater is the difference between
λ(t; Z1(t)) and λ(t) then the stronger is the effect of the surrogate
variable. This difference is reflected in the observed value of ρ̂2(β̂1) and
provides a means for discriminating among rival surrogate variables of
potentially different strengths. The most promising surrogate variable
ought provide the largest value of ρ̂2(β̂1).

As an illustration we looked at a study of 219 patients with re-
sected lung carcinoma randomized three weeks after surgery (Decroix
et al. 1984). In this study, time-dependent relapse appears as a strong
surrogate for the grouping variable defined by stage. The staging vari-
able describes a TNM classification between stage I or II and stage
III. These data have been analyzed differently using a two-stage pro-
cedure in order to assess the predictive effects of the surrogate end-
point via survival estimation (Flandre and O’Quigley, 1995). A total
of 157 deaths have been observed and for 126 patients a relapse has
been recorded.

The likelihood ratio test for the first Prentice’s criterion leads to
a p-value of 0.68 which indicates that the staging effect appears to be
largely captured by the surrogate endpoint relapse. The evaluation of
the second Prentice’s criterion leads to a p-value < 0.001 which con-
firms the strong pronostic effect of relapse on the risk of death. There-
fore, in the light of the Prentice criteria, we may consider relapse to
be a valid surrogate for the grouping variable stage. But we can say
more. Under our estimates, and the alternative characterization via
ρ2, we find the partial coefficient estimate corresponding to Prentice’s
first criterion as ρ̂2(β̂1, β̂2) = 0.00024, in broad agreement with the
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likelihood ratio test and implying that when the surrogate variable is
already in the model, inclusion of the staging variable does not in-
crease, significantly, the predictive ability of the model. The predictive
capability of the surrogate endpoint itself is given by ρ̂2(β̂1) = 0.696,
a quantity which, while differing significantly from zero and thereby
addressing Prentice’s second criterion, is sufficiently large to suggest
itself as a potentially powerful surrogate.

The illustration itself is rather artificial since, in a practical context,
one would not anticipate relapse to be anything other than a strong
indicator of subsequent survival. There would be no need to carry out
any tests. It is not easy to come up with good examples in which the
Prentice criteria might directly impact clinical decision making. Their
greatest value is most likely in a retrospective analysis which may help
underline important potential pathways for the disease and for this
information to be used in the planning of further studies. The clarity
of the Prentice criteria is nonetheless very compelling and the use of
a measure of explained randomness can add to this.

The focus is very much on that of a pathway and the identification
of other endpoints which may be used to advantage in the context of
long term clinical trials. Since the work of Prentice and its focus on the
idea of a pathway, an idea which can, at least in principle, be tested on
a single study the concept of a surrogate endpoint has itself evolved.
At least in the statistical setting, it is now more common to shine the
torch away from the idea of a pathway to that of an alternative end-
point. The quest is to find endpoints which could have been assessed
earlier and which are strongly correlated, usually in a multivariate lin-
ear environment, with the main endpoint. For this prescription to be
carried through we would require several pairs of possible endpoints,
hence the call to use meta-analysis as a way to decide on the validity
or not of a surrogate endpoint.

All the same, the characterization of Prentice remains clear, pow-
erful, and contains in two simple expressions the concepts which are
the most important. In this section we see that the framework can be
expanded a little further, at least in the direction of quantification.

General forms of relative risk

The relative risk exp(βz) can sometimes take on other forms, for ex-
ample, 1 + βz for an additive model or exp{β(t)z} for time-varying
regression effect. Denoting r(t; z) for a general form of the relative
risk, recall the form for this more general model as
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λ(t|z) = λ0(t)r(t; z).

The measure ρ2 can be readily extended to this model as follows.
Denote g(z|t) the conditional density or probability function of Z given
T under the true model, and g0(z|t) the same density or probability
function under the null model where the relative risk is r0(t; z). We
then have:

Definition 14.10 Let ρ2 = 1 − exp{−Γ2} where

Γ2 = 2
∫

T

∫

Z
log
{

g(z|t)
g0(z|t)

}

g(z|t)dF (t).

The definition coincides with the original one under a proportional
hazards model. To obtain a sample based estimate of the measure,
analogous we broaden the definition of πj(t) to:

Definition 14.11

πj(t) = Yj(t)r̂(t; Zj)/
n∑

i=1

Yi(t)r̂(t; Zi), (14.17)

and

π0j(t) = Yj(t)r̂0(t; Zj)/
n∑

i=1

Yi(t)r̂0(t; Zi), (14.18)

where r̂ and r̂0 are consistent estimates of r and r0, respectively.

It then follows that πj(t) = πj(t; β̂) and π0j(t) = πj(t; 0) when r(t; z) =
exp(βz). If we replace eβz in the proof of the main theorem by r(t; z),
we see that:

Theorem 14.4 Under the model of equation (14.17), the conditional
distribution function of Z given T is consistently estimated by

P̂ (Z ≤ z|T = t) =
∑

{j:Zj≤z}
πj(t). (14.19)

We then have the following;

Lemma 14.8 We can consistently estimate Γ2 by

Γ̂2 = 2
k∑

i=1

P (ti)
n∑

j=1

πj(ti) log
{

πj(ti)
π0j(ti)

}

.
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The cases with finite follow-up time τ can again be treated as before.
The measure ρ2 defined here maintains the property of lying between
0 and 1, and is equal to zero when T and Z are independent (in which
case g(z|t) = g0(z|t)). The measure is invariant under monotonically
increasing transformations of T , and is invariant under linear transfor-
mations of Z if the relative risk r(t; z) is a function of βz. Randomness
can be similarly defined so that ρ2 still has the interpretation as the
proportion of explained randomness. Boundedness might persist since
this is observed in general for discrete dependent variables (Kent 1983).
Partial coefficients can be obtained immediately and the measure can
be applied to time-dependent covariates.

14.13 Exercises and class projects

1. Consider a question analogous to that of the previous chapter; i.e., a
number of suggested coefficients of explained variation, adapted from
linear regression, depend on the censoring even when independent of
the failure mechanism. Would this still be a handicap for a coefficient of
explained randomness? Recall from that question that the dependence
is typically such that the higher the censoring the closer to zero is the
adapted coefficient. It might be argued that, as the censoring increases,
our ability to predict declines and, in consequence so ought a suitable
coefficient of explained randomness. Comment on this reasoning.

2. Again analogous to that of the previous chapter, suppose you are
the statistician analyzing the gastric cancer data. The investigating
clinician, who has some rudimentary knowledge of statistics, wishes to
understand just what you mean by saying that the value of ρ̂2 for a
model with ACT and log(CEA) is 0.36 and this increases to 0.51 when
stage is also included. On the other hand the corresponding partial ρ̂2

is equal to 0.28. How do you answer this question.

3. Using the δ-method and the expression for Γ̂2(β̂), derive an ap-
proximate confidence interval for Γ̂2(β̂). Use this interval to derive an
interval for ρ̂2

2. Apply the resulting expression to the Freireich data and
then compare this interval with that obtained on the basis of bootstrap
sampling. Comment on your findings.

4. In the estimate Γ̂2(β̂) of Γ2(β) we work with the weights W (Xi)
which play the role of a Kaplan-Meier estimate of the increments dF (t)



436 CHAPTER 14. EXPLAINED RANDOMNESS

at t = Xi. Let F (t : θ) be a parametric model of the marginal survival
curve where θ is a parameter, possibly vector valued. Investigate an
estimator based on dF (Xi : θ̂). What might be the advantages and
drawbacks of such an approach? From the results we already have, is
it possible to deduce properties such as consistency? If so, under what
conditions?

5. We know that for a continuous covariate or a discrete covariate
with an unlimited number of levels that, as |β| → ∞ then ρ2

2(β) → 1.
Let ρ̄2

2(β) = Γ̄2(β). Show that, as |β| → ∞ then ρ̄2(β) → 0. This is
analogous to a result for R2(β) and R2

E(β) and at first glance appears
puzzling. Explain just what is taking place. Explain also why, if the
proportional hazards model is correct, we anticipate that ρ̄2

2(β̂) and
ρ2

2(β̂) to closely agree.

6. The consistency results are obtained under the assumption of an
independent censoring mechanism. It is common in survival analysis
to make the weaker assumption of independence between the failure
and the censoring mechanisms conditional on the covariates Z. Sup-
pose that in a given application, Z takes some finite number of levels.
Derive an estimator of Γ2(β) (and thereby ρ2

2(β)) which remains consis-
tent under the broader censoring mechanism (i.e., that of conditional
independence). Which extra conditions would be needed? Would we
anticipate observing much difference between estimators derived under
the different censoring assumptions?

7. Consider some density f(t, θ0), depending on a single parameter θ0.
Let I(θ) = E{log f(t, θ)}. Show that I(θ), viewed as a function of θ,
is maximized over the range of θ when θ = θ0. Keep in mind that the
expectation operator, E() depends on θ0.

8. Using data with several covariates, calculate simple, multivariate
and partial measures of explained randomness, comparing, in particu-
lar, measures based on ρ2

2 and those based on the approximation given
in Equation 14.9.



Chapter 15

Survival given covariates

15.1 Summary

Breslow (1972, 1974), using an equivalence between the proportional
hazards model and a piecewise exponential regression model, with as
many parameters as there are failure times, derived a simple expression
for conditional survival given covariate information. An expression for
the variance of the Breslow estimate was derived by O’Quigley (1986).
Appealing to Bayes’ rule, O’Quigley and Xu (2000) obtained the ele-
gant expression

S(t|Z ∈ H) =
∫ ∞

t
P (Z ∈ H|u)dF (u)

/∫ ∞

0
P (Z ∈ H|u)dF (u),

from which an estimate of conditional survival, making a direct ap-
peal to the main theorem, follows (Xu and O’Quigley 2000). In most
practical applications the two estimators behave similarly. We prefer
the second in view of its closer association with basic inference. It is
more readily generalized to deal with non-proportional hazards mod-
els, in particular the stratified model and models that include random
effects. Another predictive quantity of interest is Pr (Ti > Tj |Zi, Zj)
which gives the probability for an individual to outlast another given
their respective covariate information. Finally, survival given a non-
independent competing risk or non-independent censoring, is consid-
ered (Flandre and O’Quigley 1994).

437
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15.2 Motivation

We would like to know how marginal survival is impacted by a knowl-
edge of covariate information. In the simplest case, given such infor-
mation, we might ask how much more likely is it that one individual
outlast another. One of the main purposes of survival analysis is to
obtain an estimate of the survivorship function given certain covari-
ate patterns. Although inference for the proportional hazards model
ignores specification of the baseline hazard rate, thereby leaving the
baseline survivorship function as well as conditional survivorship func-
tions undetermined, it is common to carry out further estimation on
these quantities. The provision of such information may help guide
decision making in an applied context.

While it is usually technically difficult to estimate densities and
hazards (some kind of smoothing typically being appealed to), it is
easier to estimate cumulative hazards and distribution (survivorship)
functions. These have already been smoothed, in some sense, via the
summing inherently taking place.

The question we would like to answer is expressed straightforwardly
as the probability of survival time being greater than t given that Z
belongs to some subset H, i.e., Pr(T > t|Z ∈ H). Via Bayes’ rule, this
probability can be immediately expressed in terms of the conditional
distribution of Z at T = t, together with the marginal distribution of
T . An estimate of this conditional distribution is available as a con-
sequence of the main theorem. The marginal distribution of T can
be taken to be the Kaplan-Meier estimate, or some other distribution
should we wish to investigate effects in different contexts. We mostly
limit attention to the case where the covariate Z is assumed to be
time-invariant. The situation becomes more complicated in the pres-
ence of time-dependent covariates because of certain restrictions, for
example, Z(·) should be an external covariate in order for S(t|z) to be
interpretable (Kalbfleisch and Prentice 1980, Keiding and Knuiman
1990, Lin et al. 1994, and Keiding 1995).

15.3 Probability that Ti is greater than Tj

If two individuals are independently sampled from the same distribu-
tion then, by simple symmetry arguments, it is clear that the proba-
bility of the first having a longer survival time than the second is just
0.5. If, instead of sampling from the same distribution, each individ-
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ual is sampled from a distribution determined by the value of their
covariate information, then, the stronger the impact of this covariate
information, the further away from 0.5 will this probability be. When
the covariates do not depend on time then this probability is very
easily evaluated using:

Theorem 15.1 For subjects i and j, having covariate values Zi and
Zj then, under the proportional hazards model we can write

Pr (Ti > Tj |Zi, Zj) =
exp(βZj)

exp(βZi) + exp(βZj)
.

An important observation to make is that the expression does not
involve Λ0(t). If we define ψ(a, b : β) to be exp(βb)/{exp(βb)+exp(βa)}
we then have:

Corollary 15.1 A consistent estimate of Pr (Ti > Tj |Zi, Zj), un-
der the proportional hazards model is given by ψ(Zi, Zj : β̂) and
Var log{ψ/(1 − ψ)} ≈ (Zj − Zi)2Var(β̂).

The approximation in the corollary arises from an immediate applica-
tion of the mean value theorem (delta method). In the theorem and
corollary it is assumed that Zi and Zj are scalars and that the model
involves only a one dimensional covariate. Extension to the multivari-
ate case is again immediate and, instead of β̂Zi in ψ(Zi, Zj : β̂) being
a scalar it can be replaced by the usual inner product (prognostic in-
dex). Suppose that the dimension of β and Z is p and that we use the
notation Zjr to indicate, for subject j, the rth component of Zj . An
application of the delta method gives

Var log{ψ/(1 − ψ)} ≈
p∑

r=1

p∑

s=1

(Zjr − Zir)(Zjs − Zis)Cov (β̂r, β̂s).

The author is not aware of any applied work making use of ψ and
yet it would seem a particularly simple and transparent way in which
to summarize the impact, or predictive strength, of regression effects.
We all know that significance levels alone, directly dependent as they
are on sample sizes (more precisely the amount of uncensored obser-
vations), are not indicative of predictive strength. The two previous
chapters discuss this at length and provide workable indicators of pre-
dictive strength in the explained variation and explained randomness
measures.
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Whereas these measures are being averaged over some covariate
distribution it is also helpful to have specific measures given two partic-
ular covariate configurations. If a patient is told that they have an un-
favorable prognosis in the light of studies on their prognostic variables
it can be helpful to add to that some idea on just how unfavorable.
If ψ(Zi, Zj : β̂) remains close to 0.5, then, regardless of significance
which may be of importance in considering the public health effects
for large groups, an individual might reasonably feel that he or she is
not particularly disadvantaged by such an unfavorable prognosis. All
of the above is very straightforward when dealing with the evaluation
of covariate “points” as given by Zi and Zj .

More generally, as discussed in Section 15.5, we may wish to con-
sider some range within the covariate space in which case we specify,
Pr (Ti > Tj |Zi ∈ Hi, Zj ∈ Hj). To do this in practice we would need
to integrate over the range of points of Zi and Zj , contained in Hi and
Hj respectively, with respect to the densities of Zi and Zj within these
sets.

The connection between the population explained variation Ω2 and
ψ(Zi, Zj : β) would be worthy of further investigation. Xu (1996)
showed that, for fixed values of the covariates, and, regarding both
Ω2 and ψ(Zi, Zj : β) as functions of strength of effect as measured by
β, then these two quantities are monotonic functions of one another.
There is a one-to-one correspondence between them so that, clearly, in
some sense, they are measuring the same phenomenon but on different
scales.

Another potential application of ψ(Zi, Zj : β) is in relative survival
where we take Zj to be a value across some reference group or popu-
lation and Zi to be a value for some group under study, for instance, a
group having recently been treated for some particular chronic disease.
The negative effects of belonging to that group, as opposed to the refer-
ence group, are then directly quantified by ψ. Further developments to
these ideas immediately suggest themselves and, foremost, making use
of time itself. Rather than limit our attention to Pr (Ti > Tj |Zi, Zj) we
can explicitly introduce into this quantity the amount of time elapsed.
We would not only condition on the values of Zi and Zj but also
that both Ti and Tj are greater than t, bring our attention then to
Pr (Ti > Tj |Zi, Zj , Ti > t, Tj > t). The resulting expressions would be
more involved than in Theorem 15.1 but could be worked out. Ap-
plications to cure studies follow since we could conceive of situations
in which this expression diminishes with t, becoming, at some point,
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sufficiently close to the value 0.5 to claim that the treated group no
longer carries a disadvantage as compared to the reference group.

15.4 Estimating conditional survival
given that Z = z

Under the proportional hazards model, the conditional survival prob-
ability S(t|z) = Pr (T > t|Z = z) can be estimated using the develop-
ment of (Breslow 1972, 1974) whereby

Ŝ(t|z) = exp
(
−Λ̂0(t)eβ̂z

)
; Λ̂0(t) =

∑

Xi≤t

δi
∑n

j=1 Yj(Xi)eβ̂Zj

. (15.1)

An expression for the large sample variance of Y = log− log S(t|z) was
obtained by O’Quigley (1986). Symmetric intervals for Y can then be
transformed into more plausible (at least having better coverage prop-
erties according to the arguments of O’Quigley 1986) by simply ap-
plying the exponential function twice. The Breslow estimate concerns
a single point z. It is a natural question to ask what is the survival
probability given that the covariates belong to some subset H. The
set H may denote for example an age group, or a certain range of
continuous measurement, or a combination of those.

In general we assume H to be a subset of the p-dimensional Euclid-
ean space. A natural approach may be to take the above formula, which
applied to a point, and average a set of curves over all points belonging
to the set H of interest. For this we would need some distribution for
the z across the set H. Keiding (1995) has a discussion on expected
survival curves over a historical, or background, population, where
the main approaches are to take an average of the individual survival
curves obtained from the above equation. Following that one might
use the equation to estimate S(t|z) for all z in H, then average over
an estimated distribution of Z. Xu and O’Quigley (2000) adopted a
different starting point in trying to estimate directly the survival prob-
abilities given that Z ∈ H. Apart from being direct, this approach is
the more natural in view of the main theorem of Section 7.4. What
is more, the method can also have application to situations in which
the regression effect varies with time. In the following, for notational
simplicity, we will assume p = 1. Extensions to p > 1 are immediate.
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15.5 Estimating conditional survival
given Z ∈ H

As for almost all of the quantities we have considered it turns out to
be most useful to work with the conditional distribution of Z given
T = t rather than the other way around. Everything is fully specified
by the joint distribution of (T, Z) and we keep in mind that this can be
expressed either as the conditional distribution of T given Z, together
with the marginal distribution of Z or as the conditional distribution of
Z given T, together with the marginal distribution of T. Using Bayes’
formula to rewrite the conditional distribution of T given information
on Z, we have,

S(t|Z ∈ H) =

∫∞
t P (Z ∈ H|u)dF (u)
∫∞
0 P (Z ∈ H|u)dF (u)

. (15.2)

This is a very simple expression and we can see from it how condition-
ing on the covariates modifies the underlying survival distribution. If
H were to be the whole domain of definition of Z, in which case Z
is contained in H with probability one, then the left-hand side of the
equation simply reduces to the marginal distribution of T . This is
nice and, below, we will see that we have something entirely analo-
gous when dealing with sample based estimates whereby, if we are to
consider the whole of the covariate space, then we simply recover the
usual empirical estimate. In particular this is just the Kaplan-Meier
estimate when the increments of the right-hand side of the equation
are those of the Kaplan-Meier function. The main theorem of Section
7.4 implies that P(Z ∈ H|t) can be consistently estimated from:

Lemma 15.1 P̂ (Z ∈ H|t) is consistent for the probability P (Z ∈ H|t)
where;

P̂ (Z ∈ H|t) =
∑

{j:Zj∈H}
πj(β̂, t) =

∑
H Yj(t) exp{β̂Zj}
∑

Yj(t) exp{β̂Zj}
. (15.3)

This striking, and simple, result is the main ingredient needed to obtain
survival function estimates conditional on particular covariate configu-
rations. The rest, essentially the step increments in the Kaplan-Meier
curve are readily available. Unfortunately, a problem that is always
present when dealing with censored data, remains and that is the pos-
sibility that the estimated survival function does not decrease all the
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way to zero. This will happen when the largest observation is not a fail-
ure. To look at this more closely, let F̂ (·) = 1− Ŝ(·) be the left contin-
uous Kaplan-Meier (KM) estimator of F (·). Let 0 = t0 < t1 < ... < tk
be the distinct failure times, and let W (ti) = dF̂ (ti) be the stepsize of
F̂ at ti. If the last observation is a failure, then

Ŝ(t|Z ∈ H) =

∫∞
t P̂ (Z ∈ H|u)dF̂ (u)
∫∞
0 P̂ (Z ∈ H|u)dF̂ (u)

=

∑
ti>t P̂ (Z ∈ H|ti)W (ti)

∑k
i=1 P̂ (Z ∈ H|ti)W (ti)

.

(15.4)

When the last observation is not a failure and
∑k

1 W (ti) < 1, an ap-
plication of the law of total probability indicates that the quantity B1

where B1 = P̂ (Z ∈ H|T > tk)Ŝ(tk) should be added to both the nu-
merator and the denominator in (15.4) This is due to the fact that the
estimated survival distribution is not summing to one. Alternatively,
we could simply reduce the support of the time frame to be less than or
equal to the greatest observed failure. In addition, using the empirical
estimate over all the subjects that are censored after the last observed
failure, we have

P̂ (Z ∈ H|T > tk) =
∑

H Yj(tk+)
∑

Yj(tk+)
, (15.5)

where tk+ denotes the moment right after time tk. Therefore we can
write

Ŝ(t|Z ∈ H)=

∑
ti>t P̂ (Z ∈ H|ti)W (ti) + P̂ (Z ∈ H|T > tk){1 −

∑k
1 W (ti)}

∑k
1 P̂ (Z ∈ H|ti)W (ti) + P̂ (Z ∈ H|T > tk){1 −

∑k
1 W (ti)}

.

The above estimate of the conditional survival function is readily cal-
culated, since each term derives from standard procedures of survival
analysis to fit the Cox model. An attractive aspect of the approach
is that that when H includes all the possible values of z, the esti-
mator simply becomes the Kaplan-Meier estimator of the marginal
survival function. The estimate of the conditional survival probability
P (T > t+u|T > u, Z ∈ H) can also be nicely written in the form of a
simple ratio where the numerator is given by

∑
ti>t+u Ci +B1 and the

denominator by
∑

ti>t Ci +B1 and where Ci = P̂ (Z ∈ H|ti)W (ti). For
the gastric cancer data it is interesting to contrast the survival estimate
based on these calculations for the quantity Pr {T > t|Z1 ∈ (0, 100)},
where Z1 is the tumor marker CEA and the simple Kaplan-Meier esti-
mator based on the subset of the data defined by tumor marker CEA
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Figure 15.1: Kaplan-Meier survival plot and model based plot for sub-
group based on selection of the covariate CEA to lie in interval (0,100).

less than 100. This is shown in Figure 15.1 and there is good agreement
between the model-based estimator of Xu-O’Quigley and the Kaplan-
Meier estimate. This, although not used here as a goodness-of-fit test
in its own right, can be taken to indicate that the model appears rea-
sonable over the specified range of the covariate.

15.6 Estimating the variance of Ŝ(t|Z ∈ H)

In this section we assume that the proportional hazards model holds
with true β = β0. To obtain the asymptotic variance of (15.3) at each
t, we use the approach of Link (1984) and O’Quigley (1986) which
is tractable and can be computed using standard packages for fitting
the Cox regression model. Our experience is that this provides good
estimates when compared with methods such as the bootstrap. There
are two sources of variation in Ŝ(t|Z ∈ H), one caused by the estimate
of conditional probability of survival with given β, the other by the
uncertainty in β̂. Using a first-order Taylor series expansion we have

Ŝ(t|Z ∈ H) = Ŝ(t|Z ∈ H)|β0 + (β̂ − β0)
∂Ŝ(t|Z ∈ H)

∂β

∣
∣
∣β=β̇ , (15.6)

where β̇ lies on the line segment between β0 and β̂. We then need to
bring together some results.
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Lemma 15.2 The quantity {∂Ŝ(t|Z ∈ H)/∂β} |β=β̇ is asymptotically
constant.

Lemma 15.3 The quantity β̂−β0 is asymptotically uncorrelated with
Ŝ(t|Z ∈ H)|β0.

Corollary 15.2 The variance of Ŝ(t|Z ∈ H) is approximated by

Var{Ŝ(t|Z ∈ H)} ≈ Var{Ŝ(t|Z ∈ H)|β0}

+

{
∂Ŝ(t|Z ∈ H)

∂β

∣
∣
∣β=β̇

}2

Var(β̂). (15.7)

The first term in (15.7) gives the variation due to the estimation of the
conditional survival, the second term the variation caused by β̂. We
know how to estimate the asymptotic variance of β̂ under the model.
So all that remains for the second term on the right-hand side of (15.7)
is to calculate the partial derivative of Ŝ(t|Z ∈ H) with respect to β.
For this we have

∂

∂β
Ŝ(t|Z ∈ H) =

(
∑

ti>t Di)(
∑

ti≤t Ci) − (
∑

ti≤t Di)(
∑

ti>t Ci + B1)

(
∑k

i=1 Ci + B1)2
,

(15.8)

where Ci and B1 are the same as above and

Di =
∂

∂β
P̂ (Z ∈ H|ti)W (ti),

with

∂

∂β
P̂ (Z ∈ H|t) = P̂ (Z ∈ H|t){Eβ(Z|t; πH) − Eβ(Z|t; π)},

where

Eβ(Z|t; π) =
∑

Yj(t)Zj exp{β̂Zj}/
∑

Yj(t) exp{β̂Zj},

and

Eβ(Z|t; πH) =
∑

H

Yj(t)Zj exp{β̂Zj}/
∑

H

Yj(t) exp{β̂Zj}.
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The first term on the right-hand side of (15.7) can be estimated
using Greenwood’s formula

V̂ar{Ŝ(t|Z ∈ H)|β0} ≈ Ŝ(t|Z ∈ H)|2β0

⎧
⎨

⎩

∏

ti≤t

(

1 +
q̂i

nip̂i

)

− 1

⎫
⎬

⎭
, (15.9)

where

p̂i = P̂ (T > ti|T > ti−1, Z ∈ H) =
∑k

i+1 Cj + B1
∑k

i Cj + B1

,

q̂i = 1 − p̂i and ni =
∑

Yj(ti). Then each p̂i is a binomial probability
based on a sample of size ni and Ŝ(t|Z ∈ H) =

∏
ti≤t p̂i. The p̂i’s

may be treated as conditionally independent given the ni’s, with β0

fixed. Thus, Greenwood’s formula applies. All the quantities involved
in (15.8) and (15.9) are those routinely calculated in a Cox model
analysis. In addition, we have:

Theorem 15.2 Under the proportional hazards model Ŝ(t|Z ∈ H) is
asymptotically normal.

As a consequence one can use the above estimated variance to con-
struct confidence intervals for S(t|Z ∈ H) at each t.

Xu (1996) derived the asymptotic normality of Ŝ(t|Z ∈ H) under
the proportional hazards model at fixed points t = t∗. Let’s take Qi = 1
if Zi ∈ H, and 0 otherwise and follow, fairly closely, the notational set-
up of Andersen and Gill (1982) from which

S(r)(t) = n−1
∑n

i=1 Yi(t)e
β(t)′Zi(t)Zi(t)

r, s(r)(t) = ES(r)(t),

S(r)(β, t) = n−1
∑n

i=1 Yi(t)e
β′Zi(t)Zi(t)

r, s(r)(β, t) = ES(r)(β, t),

S(H)(β, t) = n−1
∑n

1 QiYi(t)e
βZi , s(H)(β, t) = ES(H)(β, t),

S(H1)(β, t) = n−1
∑n

1 QiYi(t)Zie
βZi , s(H1)(β, t) = ES(H1)(β, t),

for r = 0, 1, 2. Next rewrite

P̂ (Z ∈ H|t) = S(H)(β̂, t)/S(0)(β̂, t) , Eβ(Z|t;πH) = S(H1)(β̂, t)/S(H)(β̂, t).

Using the main theorem of Section 7.4 we have s(H)(β0, t)/s(0)(β0, t) =
P (Z ∈ H|t). Under the usual regularity and continuity conditions (Xu
1996) it can be shown that {∂Ŝ(t∗|Z ∈ H)/∂β} |β=β̇ is asymptotically

constant. Now β̂ − β0 = I−1(β̌)U(β0) where β̌ is on the line segment
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between β̂ and β0, U(β) = ∂ log L(β)/∂β and I(β) = −∂U(β)/∂β.
Combining these we have

√
nŜ(t∗|Z ∈ H) =

√
nŜ(t∗|Z ∈ H)|β0 + I−1(β̌)

√
nU(β0)

∂Ŝ(t∗|Z ∈ H)
∂β

∣
∣
∣β=β̇ .

Andersen and Gill (1982) show that I(β̌) converges in probability to a
well-defined population parameter. In the following theorem Lin and
Wei (1989) showed that U(β0) is asymptotically equivalent to 1/n
times a sum of i.i.d. random variables:

Theorem 15.3
√

nU(β0) is asymptotically equivalent to n−1/2
∑n

1 ωi

(β0), where

ωi(β)=
∫ 1

0

{

Zi −
s(1)(β, t)
s(0)(β, t)

}

dNi(t)−
∫ 1

0

Yi(t)eβZi

{

Zi −
s(1)(β, t)
s(0)(β, t)

}

λ0(t)dt

and Ni(t) = I{Ti ≤ t, Ti ≤ Ci}.

So all that remains to show the asymptotic normality of Ŝ(t∗|Z ∈ H)
is to show that the numerator of Ŝ(t∗|Z ∈ H) |β0 is also asymp-
totically equivalent to 1/n times a sum of n i.i.d. random variables
like the above, since the denominator of it we know is consistent for
P(Z ∈ H). To avoid becoming too cluttered we drop the subscript
of β0 in Ŝ(t∗|Z ∈ H)|β0 . The numerator of Ŝ(t∗|Z ∈ H) is

∫∞
t∗ P̂ (Z ∈

H|t)dF̂ (t). Note that
√

n{
∫∞
t∗ P̂ (Z ∈ H|t)dF̂ (t)−P (Z ∈ H, T > t∗)} =√

n
∫∞
t∗ P (Z ∈ H|t)d{F̂ (t) − F (t)} +

√
n
∫∞
t∗ {P̂ (Z ∈ H|t) − P (Z ∈

H|t)}d{F̂ (t)−F (t)}+
√

n
∫∞
t∗ {P̂ (Z ∈ H|t)−P (Z ∈ H|t)}dF (t). Now√

n{F̂ (t) − F (t)} converges in distribution to a zero-mean Gaussian
process. Therefore, the second term in the above expression is op(1).
The last term is A1 + op(1) where

A1 =
√

n

∫ 1

t∗

{
S(H)(β0, t)
s(0)(β0, t)

− s(H)(β0, t)S(0)(β0, t)
s(0)(β0, t)2

}

dF (t)

= n−1/2
n∑

i=1

∫ 1

t∗

Yi(t)eβ0Zi

s(0)(β0, t)

{

Qi −
s(H)(β0, t)
s(0)(β0, t)

}

dF (t).

As for the first term, we can use Theorem II.5 of Xu (1996), which is a
result of Stute (1995). With φ(t) = 1[t∗,1](t)P (Z ∈ H|t) in the theorem,
the first term is equal to n−1/2

∑n
i=1 νi+

√
nRn, where |Rn| = op(n−1/2)

and ν’s are i.i.d. with mean zero, each being a function of Xi and δi.
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15.7 Relative merits of competing estimators

A thorough study of the relative merits of the different estimators has
yet to be carried out. For any such study the first thing to consider
would be the chosen yardstick with which to evaluate any estimate.
For example, should the whole curve be considered or only some part
of it and should a “distance” measure be an average discrepancy, the
greatest discrepancy over some range or some weighted discrepancy. It
is even very possible that some estimator would outperform another
with respect to one distance measure and perform less well than the
competitor with respect to another distance measure. In addition to
this it is also quite possible for some estimator to maintain an ad-
vantage for certain population situations but to lose this advantage
in other situations. In the light of these remarks it may then appear
difficult to obtain a simple unequivocal finding in favor of one or an-
other estimator. Nonetheless it would be nice to know more and further
work here would be of help. In the meantime it helps to provide us
with some insight by considering various situations which have arisen
when looking at real data sets.

15.8 Illustrations

Rashid et al. (1982) studied a group of gastric cancer patients. The
goal of the study was to determine the prognostic impact of certain
acute phase reactant proteins measured pre-operatively. This biolog-
ical information could then be used in conjunction with clinical in-
formation obtained at the time of surgical intervention to investigate
the relative prognostic impact of the different factors. There were 104
patients and five covariates: stage (degree of invasion), ACT protein
(α1-anti chimotrypsin), CEA (carcino embryonic antigen), CRP (C-
reactive protein), and AGP (alpha glyco protein).

Although it is known that stage has strong predictive capability for
survival, it can only be determined after surgery. Of interest was the
prediction of a patient’s survival based on pre-operative measurements
alone, an assessment of which might be used to help guide clinical de-
cision making. Values of certain covariates such as CEA are very skew
and have a wide range from below 1 to over 900. After a log trans-
formation of CEA, a proportional hazards model with the four pre-
operative covariates included was not rejected by the data. In fitting
such a model, CRP and AGP were found to be insignificant at 0.05
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level in the presence of ACT and logCEA. Therefore only the latter
two were retained for subsequent analysis. The regression coefficients
for ACT and logCEA were calculated to be 1.817 and 0.212, with stan-
dard errors 0.41 and 0.07, respectively. This gives a range of 0.92-4.48
for the estimated prognostic index β′z (Andersen et al. 1983, Altman
and Andersen 1986).

If we divide the patients into three groups, with low, median, and
high risks, according to the prognostic index <2, 2-3 and >3, we can
predict the survival probabilities in each risk group. It was then pos-
sible to estimate the survival curves for these three groups, and these
are were calculated by Xu and O’Quigley (2000). The curves can be
compared with the empirical Kaplan-Meier curves which make no ap-
peal to the model. Agreement is strong. We also chose to define the set
H by all those patients having values of CEA less than 50. This was
not very far from the median value and provided enough observations
for a good empirical Kaplan-Meier estimate. The empirical estimate
and the model based estimates agree closely. For the three prognos-
tic groups, defined on the basis of a division of the prognostic index
from the multivariate model, the empirical Kaplan-Meier estimates,
the Breslow estimates and the Xu and O’Quigley estimates are shown
in Figures 15.2, 15.3 and 15.4. Again agreement is strong among the
three estimators.
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Figure 15.2: Survival probabilities based on prognostic index of lower
0.33 percentile using Kaplan-Meier, Breslow and Xu-O’Quigley esti-
mators.
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Figure 15.3: Survival probabilities based on prognostic index be-
tween 0.33 and 0.66 percentiles using Kaplan-Meier, Breslow and
Xu-O’Quigley estimators.
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Figure 15.4: Survival probabilities based on prognostic index for val-
ues greater than the 0.33 percentile using Kaplan-Meier, Breslow and
Xu-O’Quigley estimators.
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15.9 Generalization under multiplicative
relative risk

The estimator described above is not limited to proportional hazards
models. The formula itself came from a simple application of Bayes’
rule, and the marginal distribution of T can always be estimated by
the Kaplan-Meier estimator or some other estimator if we wish to
use other assumptions. Taking a general form of relative risk r(t; z), so
that λ(t|z) = λ0(t)r(t; z). Assume also that r(t; z) can be estimated by
r̂(t; z), for example, that it has a known functional form and a finite or
infinite dimensional parameter that can be consistently estimated. Spe-
cial cases of r(t; z) are exp(βz), 1+βz, and exp{β(t)z}. Since the main
theorem of Section 7.4 extends readily to other relative risk models it
is straightforward to derive analogous results to those above. We are
still able estimate S(t|Z ∈ H), with P̂ (Z ∈ H|t) =

∑
{j:Zj∈H} πj(t).

This is an important extension of the estimator since we may wish to
directly work with some form of a non-proportional hazards model.

Stratified and random effects models

In studies where there is stratification, in particular, when there are
many strata, the approach can be a relatively simple one to estimate
conditional survivorship as it does not require the estimation of the
baseline hazards. Suppose that V is the stratification variable, and
we are interested in the survival given Z ∈ H. Note P (Z ∈ H|t) =∑

v P (Z ∈ H|t, V = v)P (V = v). We can estimate P (Z ∈ H|t, V = v)
by
∑

{j:Zj∈H} πv
j (β̂, t), where πv

j (β, t) is the conditional probability de-
fined within strata v; and estimate P (V = v) by the empirical distrib-
ution of V . Similarly to the stratified case, (15.3) can also be used to
estimate survival under random effects models arising from clustered,
such as genetic or familial data. The frailty models under such settings
can be written

λij(t) = λ0(t)ωi exp{βzij}, (15.10)

where λij is the hazard function of the jth individual in the ith cluster.
This is the same as a stratified model, except that we do not observe
the values of the “stratification variable” ω; but such values are not
needed in the calculation described above for stratified models. So
the procedure described above can be used to estimate S(t|Z ∈ H). In
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both cases considered here, we need reasonable stratum or cluster sizes
in order to get a good estimate of P (Z ∈ H|t, v) or P (Z ∈ H|t, ω).

Conditional independent censorship

It is also possible to generalize (15.3) to the cases where C and T
are independent given Z. First let us assume that the covariate Z is
discrete with finitely many categories. Then the KM estimate can be
replaced by a weighted Kaplan-Meier (WKM) estimate (Murray and
Tsiatis 1996), which still consistently estimates F (·) under the con-
ditional independent censorship. The WKM estimate calculates the
subgroup KM estimates within each category of the covariate values,
and then weights these subgroup estimates by the empirical distribu-
tion of Z. For the conditional distribution of Z given T = t, from the
proof of the main theorem (Section 7.4);

f(z|T = t) =
eβzS(t|z)g(z)

∫
eβzS(t|z)g(z)dz

. (15.11)

If we estimate S(t|z) by the subgroup KM estimate within the category
of value z, and the marginal g(z) by the empirical probabilities, we
are still able to consistently estimate the conditional distribution of
Z given T = t and thus S(t|Z ∈ H). For other types of covariate
distribution such as continuous covariates, we need to incorporate the
covariates into categories, and Murray and Tsiatis (1996) suggested
guidelines which could be useful in practice.

Sparse data in high dimensions

When data are sparse in high dimensions, i.e., multiple covariates, the
πj(β̂, t)’s used to estimate the conditional distribution of Z given T = t
may encounter some difficulties, because they are like empirical distri-
butions. In fact, they are obtained through the empirical distribution
of Z given T ≥ t. In this case, as seen in the gastric cancer example, we
consider H as the Cartesian product of the range for that component
with (−∞,∞) for the rest components. Of course the actual range of
the covariate vector is reflected in the data itself. However, sometimes
we might specify H as a relatively small “block” in a p-dimensional
space. For example, for the gastric cancer data, we might ask what is
the survival probabilities given that CEA is greater than 10 but less
than 15. In this type of situation there might be so few obseravtions
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in H that quite early on the risk sets may no longer contain any sub-
jects with covariates in H, allowing for {πj(β, t)}j to be a sufficiently
reliable estimate of the conditional distribution of Z given T = t.

In many practical cases one is likely to ask for the conditional
survival probabilities given a range for a single component of the co-
variate vector, while allowing the other components to vary freely We
can proceed as follows. Denote the prognostic index η = β′z. Under
the model two individuals should have the same survival probabilities
as long as η1 = η2. That is, conditioning on Z ∈ H is equivalent to
conditioning on η ∈ β′H, Therefore, S(t|Z ∈ H) = S(t|η ∈ β′H),
where β′H = {β′z|z ∈ H} and should contain potentially more ob-
servations than H does. This way the p-dimensional vector of covari-
ates is reduced to the one-dimensional prognostic index, and the same
number of observations in the risk set is now used to estimate the one-
dimensional conditional distribution of η. Thus Ŝ(t|Z ∈ H) becomes;

Ŝ(t|η ∈ β′H) =

∑
ti>t P̂ (η ∈ β′H|ti)W (ti) + P̂ (η ∈ β′H|T > tk)Ŝ(tk)

∑k
i=1 P̂ (η ∈ β′H|ti)W (ti) + P̂ (η ∈ β′H|T > tk)Ŝ(tk)

,

where P̂ (η ∈ β′H|t) =
∑

{j:ηj∈β̂′H} πj(β̂, t), and

P̂ (η ∈ β′H|T > tk) =
∑

{j:ηj∈β̂′H}

Yj(tk+)/
∑

Yj(tk+).

As before, since one can consistently estimate β, the above expression
still provides a consistent estimate of S(t|Z ∈ H). Note that when z is
a single covariate, z ∈ H is exactly the same as η ∈ βH (unless β = 0 in
which case the covariates have no predictive capability), so the above
is consistent with the one-dimensional case developed earlier. While we
regard the above as one possible approach under high dimensions when
there are not “enough” observations falling into the ranges of covari-
ates of interest, the variance estimation and the asymptotic properties
seem to be more complicated as the estimate of β enters both η and
the set β′H. When there is a need to use the estimate based on β′H,
resampling methods such us bootstrap could be employed for infer-
ential purposes. There are many potential areas for research here in
order to further develop these techniques. Comparative studies would
be of value. These would not be straightforward since comparing com-
peting estimated curves requires considering the whole of the curve.
For instance, at some points in time one estimator may outperform
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another whereas, at a later point, it may be the converse that holds.
Some measure of overall distance such as the maximum or average
discrepancy could be considered.

15.10 Informative censoring

Events that occur through time, alongside the main outcome of inter-
est, may often provide prognostic information on the outcome itself.
These can be viewed as time-dependent covariates and, as before, in
light of the main theorem, it is still straightforward to use such infor-
mation in the expression of the survivorship function. Since, in essence,
we sum, or integrate, future information, it can be necessary to pos-
tulate future paths that the covariate process might take (O’Quigley
and Moreau 1985).

Paths that remain constant are the easiest to interpret and, in
certain cases, the simple fact of having a value tells us that the subject
is still at risk for the event of interest (Kalbfleisch and Prentice 1980).
The use of the main theorem in this context makes things particularly
simple since the relevant probabilities themselves express themselves
in terms of the conditional distribution of the covariate at given time
points. We can make an immediate generalization of Equation 15.2 if
we also wish to condition on the fact that T > s where s < t. We have

S(t|Z ∈ H, T > s) =

∫∞
t P (Z ∈ H|u)dF (u)
∫∞
s P (Z ∈ H|u)dF (u)

,

and, in exactly the same way as before, and assuming that the last
observation is a failure, we replace this expression in practice by its
empirical equivalent

Ŝ(t|Z∈H, T > s)=

∫∞
t P̂ (Z ∈ H|u)dF̂ (u)
∫∞
s P̂ (Z∈H|u)dF̂ (u)

=

∑
ti>t P̂ (Z∈H|ti)W (ti)

∑
ti>s P̂ (Z∈H|ti)W (ti)

.

When the last observation is not a failure and
∑k

1 W (ti) < 1 we can
make a further adjustment for this in the same way as before.

One reason for favoring the Xu-O’Quigley estimate of survival over
the Breslow estimate is the immediate extension to time-dependent
covariates and to time-dependent covariate effects. Keeping in mind
the discussion of Kalbfleisch and Prentice (1980), concerning inter-
nal and external time-dependent covariates, whether or not these
are determined in advance or can be considered as an individual
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process generated through time, we can, at least formally, leaving
aside interpretation questions, apply the above formulae. The inter-
pretation questions are solved by sequentially conditioning on time as
we progress along the time axis and, thereby, the further straightfor-
ward extension which seeks to quantity the probability of the event
T > t, conditioned by T > s where s < t, is particularly useful.

Surrogate endpoints

For certain chronic diseases, a notable example being HIV, workers
have considered the need for procedures that might yield quicker re-
sults. Surrogate endpoints, viewed as time-dependent covariates, can
help in addressing this issue and have received attention in the med-
ical statistical literature (Ellenberg and Hamilton 1989, Wittes et al.
1989, Hillis and Siegel 1989). Herson (1989) wrote that “a surrogate
endpoint is one that an investigator deems as correlated with an end-
point of interest but that can perhaps be measured at lower expense
or at an earlier time than the endpoint of interest.” Prentice (1989)
defined a surrogate endpoint as “a response variable for which a test of
the null hypothesis of no relationship to the treatment groups under
comparison is also a valid test of the corresponding null hypothesis
based on the true endpoint.”

We can view a surrogate endpoint to be a time-dependent response
variable of prognostic value obtained during follow-up, which indicates
an objective progression of disease. In the survival context a surrogate
variable is most often a discrete endpoint indicating, in some way,
disease progression. Flandre and O’Quigley (1996) proposed a two-
stage procedure for survival studies when a surrogate or intermediate
time-dependent response variable is available for some patients. In the
presence of a time-dependent intermediary event we can write

S(t) =
∫ ∞

0
S(t|c)g(c)dc =

∫ t

0
S(t|c < t)g(c)dc +

∫ ∞

t
S(t|c ≥ t)g(c)dc.

If the effect of the occurrence of the intermediary event is to change the
hazard function of death λ(t) from λ1(t) to λ2(t); that is: λ(t) = λ1(t)
if t ≤ C and is equal to λ2(t) otherwise then λ1(t) = λ2(t) when
the intermediary response variable has no influence on survival. When
λ2(t) < λ1(t) or λ2(t) > λ1(t) then the intermediary, or surrogate, re-
sponse variable carries relatively favorable or unfavorable predictions
of survival. Thus the quantity π(t) = λ2(t)/λ1(t) is a measure of the
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effect of the surrogate response on survival. When f1(t) and f2(t) are
the density functions, S1(t) and S2(t) the survivorship functions cor-
responding to the hazard functions λ1(t) and λ2(t) respectively. then
the marginal survival function is

S(t) =

∫ t

0

exp−
[∫ c

0

λ1(u)du +

∫ t

c

λ2(u)du

]

dG(c) + exp

[

−
∫ t

0

λ1(u)du

]

G(t).

In the first stage of a two-stage design, all patients are followed to
the endpoint of primary concern and for some subset of the patients
there will be the surrogate information collected at an intermediate
point during the follow-up. The purpose then of the first stage is to
estimate the relationship between the occurrence of the surrogate re-
sponse variable and the remaining survival time. This information can
then be used in the second stage, at which time, for patients who reach
the surrogate endpoint, follow-up is terminated. Such patients could be
considered as censored under a particular dependent censorship model,
the censoring being, in general “informative.” The Kaplan-Meier es-
timator will not generally be consistent if the survival time and an
informative censoring time are dependent but treated as though they
were independent. Flandre and O’Quigley (1996) proposed a nonpara-
metric estimator of the survival function for data collected in a two-
stage procedure. A nonparametric permutation test for comparing the
survival distributions of two treatments using the two-stage procedure
is also readily derived.

The idea behind a two-stage design in the context of a time-
dependent surrogate endpoint is to reduce the overall duration of the
study. This potential reduction occurs at the second stage, in which
follow-up is terminated on patients for whom the surrogate variable
has been observed. The first stage is used to quantify the strength
of the relationship between occurrence of the surrogate variable and
subsequent survival. It is this information, obtained from the first
stage analysis, that will enable us to make inferences on survival on
the basis of, not only observed failures, but also observed occurrences
of the surrogate. In the context of clinical trials, as pointed out by
Prentice (1989), the surrogate variable must attempt to “capture”
any relationship between the treatment and the true endpoint. We
may wish to formally test the validity of a surrogate variable before
proceeding to the second stage using a standard likelihood ratio test.

In the first stage N1 patients are enrolled and followed to the end-
point of primary concern (e.g., death) or to censorship, as in a classical
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study, and information concerning the surrogate variable is recorded.
Survival time is then either the true survival time or the informative
censoring time. The information available for some patients will con-
sist of both time until the surrogate variable and survival time, while
for others (i.e. those who die or are censored without the occurrence of
the surrogate variable) it consists only of survival time. In the second
stage a new set of patients (N2) is enrolled in the study. For those
patients, the follow-up is completed when the surrogate variable has
been observed. Thus, the information collected consists only of one
time, either the time until the surrogate variable is reached or the sur-
vival time. In some cases the two stages may correspond to separate
and distinct studies; the second stage being the clinical trial of imme-
diate interest while the first stage would be an earlier trial carried out
under similar conditions.

When parametric models for S and G are assumed, then the like-
lihood function can be obtained directly and provides the basis for
inference. The main idea follows that of Lagakos (1976, 1977) who
introduced a stochastic model that utilizes the information on a time-
dependent event (auxiliary variable) that may be related to survival
time. By taking λ0(t) = λ2, where λ0(.) is the hazard function for the
occurrence of the surrogate response, λ1(t) = λ1 and λ2(t) = λ3, the
survival function has the marginal distribution function given by La-
gakos. The Lagakos model itself is a special case of the bivariate model
of Freund (1961), applicable to the lifetimes of certain two-component
systems where a failure of the first or second component alters the
failure rate of the second or first component from β to β′ or (α to α′).
By taking α = λ1(t), α′ = λ2(t) and β = β′ = λ0(t), the Freund model
can be viewed as a special case of the model described above.

Slud and Rubinstein (1983) make simple nonparametric assump-
tions on the joint density of (T, C) and consider the function ρ(t)
defined by,

ρ(t) = lim
δ→ 0

Pr (t < T < t + δ|T > t,C < t)
Pr (t < T < t + δ|T > t,C ≥ t)

.

It is possible to make use of this function in order to derive a nonpara-
metric estimation of S(t) for use with the two-stage procedure with
surrogate endpoints and which accounts for the dependent censoring.
The authors (1983) present a class of nonparametric assumptions on
the conditional distribution of T given C which leads to a consistent
generalization of the Kaplan-Meier survival curve estimator. Individual
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values of ρ(t) > 1 mean that after the censoring the hazard risk of
death for the patient is increased, and thus if we make an assumption
of independence of T and C, the Kaplan-Meier estimator will tend to
overestimate survival. On the other hand, if ρ(t) < 1, the independence
assumption will lead to underestimation of the survival curve. Recall-
ing the usual notation whereby δi = 1 if Ti ≤ Ci and Xi = min(Ti, Ci),
then Xi defines the observed portion of survival time. The Slud and
Rubinstein estimator is given by

Ŝρ(t) = N−1

⎧
⎨

⎩
n(t) +

d(t)−1∑

k=0

Wk

d(t)∏

i=k+1

ni − 1
ni + ρi − 1

⎫
⎬

⎭
, (15.12)

where n(t) =
∑

I(Xi > t), nj =
∑

i I(Xi ≥ Xj), d(t) =
∑

I(δi =
1, Xi ≤ t), ρi = ρ(ti) and Wj is the number of patients censored
between two consecutively ordered failure times Xj and Xj+1. When
ρi = 1 it follows that Ŝρ(t) reduces to the usual Kaplan-Meier esti-
mator. This model is a special case of the nonparametric assumption
presented by Slud and Rubinstein. The focus here is not on the de-
pendence of T and C but on the dependence of T and Cs where Cs

is a dependent censoring indicator, in particular a surrogate endpoint.
The function of interest is

ρs(t) = lim
δ→ 0

Pr (t < T < t + δ|T > t, Cs < t)
Pr (t < T < t + δ|T > t, Cs ≥ t)

.

This function is equivalent to the function π(t) and can be estimated
from data from the first stage. Suppose that the conditional hazard,
λ(t|z), of death at t given Z = z has the form h0(t) exp(βz(t)) where
zi(t) takes the value 0 if ti ≤ ci and value 1 if ti > ci then ρs(t) =
ρs = exp(β). Thus, an estimate of ρs is given by exp(β̂). The estimate
of β using data from the first stage, quantifies the increase in the
risk of death occurring after the surrogate variable has been observed.
The first stage is viewed as a training set of data to learn about the
relationship between the potential surrogate endpoint and the survival
time. The estimator is constructed from the entire sample N (N =
N1 + N2). In the sample N , the ordered failure times Xi for which
δi = 1 are X1 ≤ . . . ≤ Xd, where d is the number of deaths of patients
enrolled either in the first stage or in the second stage. Using the
notation that εi = 1 if Xi > ci and 0 otherwise, the random variable V
defines either the observed survival time or the time to the surrogate
variable. For patients in the second stage, let us denote the number of
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Xi with εi = 1 and δi = 0 between Xj and Xj+1 by Wj . In this way,
Wj denotes the number of individuals from the second stage having
a surrogate response between two consecutive failure times Xj and
Xj+1. Let W

′
j denote either the number of individuals censored in the

first stage or the number of individuals censored without a surrogate
response in the second stage between Xj and Xj+1. Clearly, Wj is
the number of patients censored with “informative censoring” between
two consecutively ordered failure times Xj and Xj+1 while W

′
j is the

number of patients censored with “noninformative censoring” between
two consecutively ordered failure times Xj and Xj+1. Finally nj is the
number of i with Xi ≥ Xj . The product-limit estimator then becomes

Ŝ(t; ρs) = N−1

⎧
⎨

⎩
n(t) +

d(t)−1∑

k=0

Wk

d(t)∏

i=k+1

ni − 1

ni + ρs − 1
+

d(t)−1∑

k=0

W
′

k

d(t)∏

i=k+1

ni − 1

ni

⎫
⎬

⎭
.

Notice that when ρs = 1 (i.e, the occurrence of the surrogate variables
has no influence of survival) then Ŝ(t; ρs) is simply the Kaplan-Meier
estimator. Considering the two-sample case, for example, a controlled
clinical trial where group membership is indicated by a single binary
variable Z, then the survival function, corresponding to z = 0, is de-
noted by S0(t) and the survival function corresponding to z = 1 is
denoted by S1(t). A nonparametric permutation test (Flandre and
O’Quigley 1996) for testing the null hypothesis H0 : S0 = S1 versus
H1 : S0 	= S1 can be easily constructed. The test accounts for the
presence of dependent censoring as described and, since we would not
want to assume that the effect of the surrogate is the same in both
groups, then ρs0 need not be equal to ρs1. A test can be based on the
statistic Y defined by

Y (w; ψ) =
∫ ∞

0
w(t)ψ(Ŝ0(t; ρ̂s0), Ŝ1(t; ρ̂s1))dŜ0(t; ρ̂s0), (15.13)

where ψ(a, b) is some distance function (metric) between a and b at
the point s and w(s) is some positive weighting function, often taken
to be 1 although a variance-stabilizing definition such as w(t)2 =
Ŝ0(t; ρ̂s0)(1 − Ŝ0(t; ρ̂s0)) can be useful in certain applications. The
choice ψ(a, b) = a − b leads to a test with good power against al-
ternatives of stochastic ordering, whereas the choice ψ(a, b) = |a − b|
or ψ(a, b) = (a− b)2, for instance, would provide better power against
crossing hazard alternatives. Large sample theory is simplified by as-
suming that the non-informative censoring distributions are identical
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in both groups and this may require more critical examination in prac-
tical examples. Given data we can observe some value Y = y0 from
which the significance level can be calculated by randomly permuting
the (0, 1) labels corresponding to treatment assignment. For the ith
permutation (i = 1, . . . , np) the test statistic can be calculated, result-
ing in the value yi say. Out of the np permutations suppose that there
are n+ values of yi greater than or equal to y0 and, therefore, np −n+

values of yi less than y0. The significance level for a two-sided test
is then given by 2 min(n+, np − n+)/np. In practice we sample from
the set of all permutations so that np does not correspond to the to-
tal number of possible permutations but, rather, the number actually
used, of which some may even be repeated. This is the same idea that
is used in bootstrap resampling.

15.11 Exercises and class projects

1. For subjects i and j with covariate values Zi and Zj , write down
the probability that the ratio of the survival time for subject i to the
survival time for subject j is greater than 2/3.

2. Calculate an estimate of the above probability for the Freireich data
in which Zi = 1 and Zj = 0. Derive an expression for a 95% confidence
interval for this quantity and use it to derive a confidence interval for
use with the Freireich data.

3. Referring to the paper of Kent and O’Quigley (1988), consider the
approximation suggested in that paper for the coefficient of random-
ness. Use this to motivate the quantity Pr (Ti > Tj |Zi, Zj) as a measure
of dependence analogous to explained variation.

4. Consider some large data set in which there exists two prognostic
groups. Divide the time scale into m non-overlapping intervals, a0 =
0 < a1 < ... < am = ∞. Calculate Pr (Ti > Tj |Zi, Zj , Tj > ak) for all
values of k less than m and use this information to make inferences
about the impact of group effects through time.

5. Write down the likelihood for the piecewise exponential model in
which, between adjacent failure times, the hazard can be any positive
value (Breslow 1972). Find an expression for the cumulative hazard
function and use this to obtain an expression for the survivorship
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function. Although such an estimator can be shown to be consis-
tent (Crowley and Breslow 1974) explain why the usual large sample
likelihood theory would fail to apply.

6. Consider again the two group case. Suppose we are told that the
survival time of a given subject is less that t0. We also know that the
groups are initially balanced. Derive an expression for the probability
that the subject in question belongs to group 1. For the Freireich data,
given that a subject has a survival time less than 15 weeks, estimate the
probability that the subject belongs to the group receiving placebo?

7. Derive an estimator analogous to Equation 15.4 but based on the
Neslon-Aalen estimator for marginal survival. By adding to the mar-
ginal cumulative hazard some arbitrary increasing unbounded function
of time, obtain a simpler expression for the conditional survival esti-
mate.

8. Use the delta method (Section 2.9) to obtain Equation 15.7.

9. Use the results of Andersen and Gill (1982) to conclude that β̂ −β0

is asymptotically uncorrelated with Ŝ(t|Z ∈ H)|β0 .

10. On the basis of a large data set construct some simple prognostic
indices using the most important risk factors. Divide into 3 groups
the data based on the prognostic index and calculate the different sur-
vival estimates for each subgroup. Comment on the different features
of these estimators as observed in this example. How would you inves-
tigate more closely the relative benefits of the different estimators?

11. Show that when Ti and Tj have the same covariate values, then
Pr (Ti > Tj) = 0.5.

12. For the Freireich data calculate the probability that a randomly
chosen subject from the treated group lives longer than a randomly
chosen subject from the control group.

13. Generate a two variate proportional hazards model in which Z1 is
binary andZ2 is uniformon the interval (0, 1).The regression coefficients
β1 and β2 take values (i) 0.5, 0.5; (ii) 0.5, 1.0, and (iii) 1, 2, respectively.
For all three situations, and taking λ0 = 1, calculate and compare the
six survival curves for Z1 = 0, 1 and Z2 = 0.25, 0.50 and 0.75.



Chapter 16

Proofs of theorems,
lemmas and corollaries

In this chapter we provide further details, including many proofs, of
the theorems, lemmas and corollaries that appear throughout the main
text. For the more mathematical reader the proofs are of interest in
their own right and many of these proofs either do not appear else-
where or are not easily accessible. Many of the large sample derivations
lean upon the theory of Andersen and Gill (1982) and were first worked
out by Xu (1996). This chapter will be of use to the less mathematical
reader who is concerned that results be well established and lean on
solid reasoning. He or she, assuming some limited mathematical facil-
ity, will be in a better position to bring under scrutiny any areas of
doubt. Finally, ignoring this chapter altogether will not detract from
the main ideas.

Theorem 2.2, Theorem 2.7 and Corollary 2.9

The importance of the first of these two theorems is difficult to over-
state. All the useful large sample results, for instance, hinge ultimately
on the theorem. An elegant proof of the theorem, together with well
thought out illustrations and some examples, is given in Shenk (1988).
For Theorem 2.7 let T have a continuous and invertible distribution
function F (t) and let U = F (T ). The inverse function is denoted F−1

so that F−1{F (t)} = t. Then P (U < u) = P{F (T ) < u} = P{T <

463
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F−1(u)} = P{T < F−1F (t)} = P{T < t} = F (t) = u. Thus U
has the distribution of a standard uniform. The proof of the corollary
leans upon some straightforward manipulation of elementary events.
An outline is provided in Section 2.5 of David (1981).

Theorem 2.13 and Corollaries 2.10 and 8.12

We have that P {X(t + s) > x|X(s) = xs, X(u), 0 ≤ u < s} =
P {X(t + s) − X(s) > x − xs|X(s) = xs, X(u), 0 ≤ u < s} =
P {X(t + s) − X(s) > x − xs} = P {X(t + s) > x|X(s) = xs}.
Corollary 2.10 follows since, fs|t(x|w) = fs(x)ft−s(w − x)/ft(w) =
const exp {−x2/2s − (w − x)2/2(t − s)} = const exp{−t(x − ws/t)2/
2s(t − s)}. For Corollary 8.12 note that the process V (t) is a Gaussian
process in which E{V (t)} = 0 and Cov {V (t), V (s)} = E{exp (−αt/2)
exp (−αs/2)X(eαt)X(eαs)} This can be written as exp (−α(t + s)/2)×
E{X(eαt)X(eαs)} This is turn is then equal to exp(−α(t+s)/2) exp αt
which is just exp (−α(t − s)/2).

Theorem 2.14 and Corollary 2.12

For the theorem note that, Cov (X(s), X(t)|X(1) = 0)=E(X(s), X(t)|
X(1) = 0). In turn this equals E{E(X(s), X(t)|X(t), X(1) = 0|X(1) =
0)}. This is the same as E{X(t)E(X(s)|X(t))|X(1) = 0} which can be
written as, E{X(t)(s/t)X(t)|X(1) = 0} which is then (s/t)E{X2(t)|
X(1) = 0} so that finally this is (s/t)t(1 − t) = s(1 − t). Corol-
lary 2.12 can be deduced from the theorem via the following simple
steps: Cov {W 0(s), W 0(t)} s < t is given by E{W (s)−sW (1)}{W (t)−
tW (1)} = E{W (s)W (t)−sW (1)W (t)+stW (1)W (1)−tW (1)W (s)} =
s − st + st − st = s(1 − t).

Lemma 2.8

By definition the covariance of X(s) and X(t) is equal to (s+1)(t+1)
which multiplies the quantity Cov (Z(t/(t + 1)), Z(s/(s + 1))). Next,
from the definition of the Brownian bridge, Z(t) = W (t) − tW (1) so
that, expanding the above expression we obtain Cov {W (t/(t + 1)),
W (s/(s + 1))}− t/(t + 1)×Cov {W (1), W (s/(s + 1))}−s/(s + 1)Cov
{W (1), W (t/(t + 1))}+st/((s + 1)(t + 1))×Cov {W (1), W (1)} = s(t+
1) − st − st + st = s.
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Theorem 2.9 and Theorem 3.1

For Theorem 2.9 note that, Cov {Z(s), Z(t)} = E{Z(s)Z(t)}. We
write this as E

∫ s
0 X(y)dy

∫ t
0 X(u)du. Bringing together the two inte-

gral operators we rewrite this as, E
∫ s
0

∫ t
0 X(y)X(u)dydu which is just

∫ s
0

∫ t
0 EX(y)X(u)dydu which we express as

∫ s
0

∫ t
0 min(y, u)dydu and

this is then
∫ s
0

∫ u
0 ydy+

∫ t
u udydu which simplifies to s2(t/2−s/6). Fur-

thermore, for Theorem 3.1, we can calculate Cov (S∗
k , S∗

m) where k < m
directly. We have that Cov (S∗

k , S∗
m) = E(S∗

kS∗
m) − E(S∗

k)E(S∗
m) =

(σ
√

n)−2E{SkSm} = (σ
√

n)−2E{Sk(Sk +
∑

k<i≤m Xi)}. Developing
the bracket gives, (σ

√
n)−2{E(S2

k) + E(Sk)E(
∑

k<i≤m Xi)} which is
equal to (σ

√
n)−2E(S2

k) = (σ
√

n)−2kσ2 = k/n = t.

Theorem 3.2 and 3.6

For the first of these two theorems, note that the marginal and condi-
tional normality of any sequence of

√
n{Fn(ti)−F (ti)}, (0 < t1 < . . . <

tm), for some m, indicates the multivariate normality of
√

n{Fn(ti) −
F (ti)}, (0 < t1 < . . . < tm). Thus

√
n{Fn(t) − F (t)} is a Gaussian

process. It has mean zero and variance F (t){1 − F (t)}. To obtain
the covariance, note first that the indicator variables I(Ti ≤ t) and
I(Tj ≤ s) are independent for all t and s and i 	= j. It only re-
mains to evaluate, for s < t Cov {I(Ti ≤ t), I(Ti ≤ s)} = E{I(Ti ≤
t)I(Ti ≤ s)} − E{I(Ti ≤ t)}E{I(Ti ≤ s)} = F (s) − F (t)F (s) =
F (s){1 − F (t)}. For the second of these two theorems, note that,
E{dM ′(t)|Ft−} = E{H(t)dM(t)|Ft−} = H(t)E{dM(t)|Ft−} = 0. Fur-
thermore, Var{dM ′(t)|Ft−} = Var{H(t)dM(t)|Ft−} = H(t)2Var{dM
(t)|Ft−} = H(t)2d〈M〉(t). Similarly, 〈

∫
HdM,

∫
KdM ′〉(t) =

∫ t
0 H(s)

K(s)d〈M, M ′〉(s).

Theorem 5.1 and Theorem 5.3

There are two possibilities; the observation xi corresponds to a fail-
ure, the observation corresponds to a censoring time. For the first
possibility let dxi be an infinitesimally small interval around this
point. The probability that we can associate with this event is Pr(T ∈
dxi , C > xi) = Pr(T ∈ dxi) × pr(C > xi) i.e. f(xi; θ)dxi × G(xi; θ).
For a censored observation at time xi (δi = 0) we have; Pr(C ∈
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dxi , T > xi) = Pr(C ∈ dxi)×pr(T > xi) i.e. g(xi; θ)dxi ×S(xi; θ). We
can then write the likelihood as; L(θ) =

∏
δi=1 f(xi; θ)dxiG(xi; θ) ×∏

δi=0 g(xi; θ)dxiS(xi; θ) In most cases the further assumption that the
censoring itself does not depend on θ may be reasonable. Taking logs
and ignoring constants we obtain the result. For Theorem 5.3 note that
Pr{Xi ≥ a�|Xi > a�−1} = Pr{Ti ≥ a�|Xi > a�−1} × Pr{Ci ≥ a�|Xi >
a�−1} = Pr{Ti ≥ a�|Ci > a�−1, Ti > a�−1} = Pr{Ti ≥ a�|Ti > a�−1} by
independence.

Theorem 5.4

We have Var (log S(a�) ≈
∑

m≤� Var (log(1 − πm)). This is
∑

m≤�(1 −
πm)−2Var (πm) which we write as

∑
m≤�(1 − πm)−2πm(1 − πm)/nm

where nm corresponds to the number at risk. i.e. the denominator. We
write

∑
m≤� dm/rm(rm − dm) Use log function and a further applica-

tion of delta method to obtain; VarS(a�) ≈ S(a�)2
∑

m≤�

∑
m≤� dm/

rm(rm − dm) An approach not using the delta method follows Green-
wood (1926). Let t0 < t1 < · · · < tk. An estimate of the variance
of the survival probability P of the form P = p1 × p2 × .... × pk,
where each pi is the estimated probability of survival from time ti−1

to time ti, qi = 1 − pi and P is therefore the estimated probabil-
ity of survival from t0 to tk. Assuming that the pi’s are indepen-
dent of one another, we have E(P ) = E(p1) × E(p2) × .... × E(pk),
as well as, E(P 2) = E(p2

1) × E(p2
2) × .... × E(p2

k), and E(p2
i ) =

(Epi)2 + σ2
i , where σ2

i = Var(pi). Then Var(P ) = E(P 2) − {E(P )}2 =
{E(P )}2(

(
1 + σ2

1/(Ep1)2
) (

1 + σ2
2/(Ep2)2

)
· · ·
(
1 + σ2

k/(Epk)2
)
− 1) ≈

{E(P )}2(σ2
1/(Ep1)2 + σ2

2/(Ep2)2 + .... + σ2
k/(Epk)2). Now condition on

E(pi) and the number of observations ni to which pi is applied, then
σ2

i = Epi(1−Epi)/ni. Substituting pi for E(pi), we obtain estimates of
the variance V̂ar(P ) = P 2{

∏k
i=1 (1 + qi/nipi) − 1} ≈ P 2

∑k
i=1 qi/nipi.

Theorem 2.9 and Corollary 2.4

The theorem states that, letting F (x) = P (X ≤ x) and Fr(x) =
P (X(r) ≤ x) then; Fr(x) =

∑n
i=r

(
n
i

)
F i(x)[1 − F (x)]n−i Recall that

the Xi from the parent population with distribution F (x) are i.i.d.
The event that X(r) ≤ x is the event that at least r of the Xi are less
than or equal to x. This is then the sum of the binomial probabilities
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summed over all values of i greater than or equal to r. The first part
of the corollary is clear upon inspection. For the second part note
that

∑n
i=0

(
n
i

)
F i(x)[1− F (x)]n−i = 1 and that

(
n
0

)
F 0(x)[1− F (x)]n =

[1 − F (x)]n.

Theorem 9.2

Suppose k individuals are observed to fail at times ti, ..., tk and
have corresponding explanatory variables zi to zk. Assume times
are ordered. Then the probability, conditional upon the observed
failure times, of obtaining a particular ordering is written Pr (r =
(1), (2), ..., (n)) = Pr (t1 < t2 < t3)=

∫∞
0

∫∞
t1

...
∫∞
tn−1

f(t1|z1)...f(tn|zn)
dtn...dt1 =

∫∞
0

∫∞
t1

...
∫∞
tn−1

∏n
i=1{h0(ti)eβzi exp[−H0(ti)eβzi ]} =

∏n
i=1

{exp(βZi)/
∑n

j=1 Yj(Xi) exp(βZj}δi .

Large sample results for survivorship function

Xu (1996) derives the asymptotic normality of the survival estimate
under the model for fixed t = t∗. Let Qi = 1 if Zi ∈ H, and 0 otherwise.
Using the notation: S(r)(t) = n−1

∑n
i=1 Yi(t)eβ(t)′Zi(t)Zi(t)r, s(r)(t),

ES(r)(t), S(r)(β, t) = n−1
∑n

i=1 Yi(t)eβ′Zi(t)Zi(t)r, s(r)(β, t) = ES(r)

(β, t), S(H)(β, t) = n−1
∑n

1 QiYi(t)eβZi , s(H)(β, t) = ES(H)(β, t), S(H1)

(β, t)=n−1
∑n

1 QiYi(t)Zie
βZi , s(H1)(β, t)=ES(H1)(β, t), for r = 0, 1, 2,

we can rewrite P̂ (Z ∈ H|t)=S(H)(β̂, t)/S(0)(β̂, t), and Eβ(Z|t; πH)=
S(H1)(β̂, t)/S(H)(β̂, t). From the main theorem we have s(H)(β0, t)/s(0)

(β0, t)=P (Z ∈ H|t). So under some elementary regularity and con-
tinuity conditions (Xu 1996) it is easy to show that {∂Ŝ(t∗|Z ∈
H)/∂β} |β=β̇ is asymptotically constant. Now β̂ − β0=I−1(β̌)U(β0)

where β̌ is on the line segment between β̂ and β0, U(β) = ∂ log L(β)/∂β
and I(β) = −∂U(β)/∂β. Combining these results we have

√
nŜ(t∗|Z ∈

H) =
√

nŜ(t∗|Z ∈ H)|β0 + I−1(β̌)
√

nU(β0)∂Ŝ(t∗|Z ∈ H)/∂β|β=β̇. It
is known from for example, Andersen and Gill (1982) that I(β̌) con-
verges in probability to a well-defined population parameter. Lin and
Wei (1989) showed that U(β0) is asymptotically equivalent to 1/n
times a sum of i.i.d. random variables: Lin and Wei (1989) show
that

√
nU(β0) is asymptotically equivalent to n−1/2

∑n
1 ωi(β0), where

ωi(β) =
∫ 1
0 {Zi − s(1)(β, t)/s(0)(β, t)}dNi(t) −

∫ 1
0 Yi(t)eβZi{Zi − s(1)
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(β, t)/s(0)(β, t)} λ0(t)dt and Ni(t) = I{Ti ≤ t, Ti ≤ Ci}. For the
asymptotic normality of Ŝ(t∗|Z ∈ H) it is only necessary to show that
the numerator of Ŝ(t∗|Z ∈ H) |β0 is also asymptotically equivalent to
1/n times a sum of n i.i.d. random variables like the above, since the
denominator of it we know is consistent for P(Z ∈ H). Now, the numer-
ator of Ŝ(t∗|Z ∈ H) is

∫∞
t∗ P̂ (Z ∈ H|t)dF̂ (t). Note that

√
n{
∫∞
t∗ P̂ (Z ∈

H|t)dF̂ (t) − P (Z ∈ H, T > t∗)}=√
n
∫∞
t∗ P (Z ∈ H|t)d{F̂ (t) − F (t)} +√

n
∫∞
t∗ {P̂ (Z ∈ H|t) − P (Z ∈ H|t)}d{F̂ (t) − F (t)} +

√
n
∫∞
t∗ {P̂ (Z ∈

H|t) − P (Z ∈ H|t)}dF (t). Now
√

n{F̂ (t) − F (t)} converges in distri-
bution to a zero-mean Gaussian process. Therefore the second term
on the right hand side of the equation is op(1). The last term is A1 +
op(1) (see also Xu 1996), where A1 =

√
n
∫ 1
t∗{S(H)(β0, t)/s(0)(β0, t)−

s(H)(β0, t)S(0)(β0, t)/s(0)(β0, t)2}dF (t) = n−1/2
∑n

i=1

∫ 1
t∗ Yi(t)eβ0Zi/

s(0)(β0, t){Qi − s(H)(β0, t)/s(0)(β0, t)}dF (t). As for the first term, we
can use a result of Stute (1995). With φ(t) = 1[t∗,1](t)P (Z ∈ H|t) in
the theorem, the first term is equal to n−1/2

∑n
i=1 νi +

√
nRn, where

|Rn| = op(n−1/2) and ν’s are i.i.d. with mean zero, each being a
function of Xi and δi.

Theorem 7.1

Since λ(t|Z(t) = z) = λ0(t) exp{β(t)z}, then f(t|Z(t) = z) = λ0

(t) exp{β(t)z} S(t|Z(t) = z), where S(t|Z(t) = z) is the conditional
survival function. Without loss of generality, we assume that Z(T )
has density function g(z). The proof follows the same way if Z is
discrete. By Bayes’ rule, we can express the conditional density of
Z(t) given T = t as; ft(z|T = t) = f(t|z)g(z)/

∫
f(t|z)g(z)dz =

λ0(t)eβ(t)zS(t|z)g(z)/
∫

λ0(t)eβ(t)zS(t|z)g(z)dz = eβ(t)zh(z|T ≥ t)/∫
eβ(t)zh(z|T ≥ t) where h(z|T ≥ t) is the conditional density of

Z(t) given T ≥ t. From elementary probability calculus, for sets
A and B we have P (A) = P (A|B)P (B)/P (B|A) so that we can
write; h(z|T ≥ t) = f(z|T ≥ t, C ≥ t)P (C ≥ t)/P (C ≥ t|z, T ≥ t)
and, by our conditional independence assumption, the denomina-
tor simplifies so that P (C ≥ t|z, T ≥ t) = P (C ≥ t|z). Now,
by the law of total probability, we have P (C ≥ t) =

∫
P (C ≥

t|z)g(z)dz, where the integral is over the domain of definition of
Z. Next we replace P (Z ≤ z|T ≥ t, C ≥ t) by the consistent
estimate

∑
{Zj(t)≤z} Yj(t)/

∑n
1 Yj(t), which is simply the empirical
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distribution in the risk set, which leads to; P̂{Z(t) ≤ z|T = t} =∑
zi≤z Yi(t) exp{β(t)zi(t)}φ̂(zi, t) /

∑n
j=1 Yj(t) exp{β(t)zj(t)}φ̂(zj , t).

An application of Slutsky’s theorem enable us to claim the result con-
tinues to hold whenever β(t) is replaced by any consistent estimator
β̂(t), in particular the partial likelihood estimator when we assume
the more restricted model holds.

Property (4) of R2 (Xu 1996)

We recall the following proposition of Lin (1991): Assume the model
holds. Let W(t) be a predictable process converging in probability to
a non-negative bounded function uniformly in t. Let β̂W be the so-
lution to the weighted score UW(β) =

∑n
i=1 δiW(Xi)ri(β) = 0. Then

n1/2(β̂W − β) is asymptotically normal with mean 0. Property (4)
can be seen by noting that ∂R2(β)/∂β = 2/I(0)

∑n
i=1 δiW (Xi)ri(β)

Vβ(Z|Xi) is a weighted score, where Vβ(Z|t) = Eβ(Z2|t)−{Eβ(Z|t)}2 =∑n
j=1 Yj(t) Zj(t)2 exp{βZj(t)}/

∑n
j=1 Yj(t) exp{βZj(t)} − (

∑n
j=1 Yj(t)

Zj(t) exp{βZj(t)}/
∑n

j=1 Yj(t) exp{βZj(t)})2 is the conditional vari-
ance of Z(t) with respect to the probability distribution {πi(β, t)}i

for fixed t. Under the model it then follows that ∂R2(β)/∂β|β̂
P→

0. The second derivative is ∂2R2(β)/∂β2 = 2I(0){−
∑n

i=1 δiW (Xi)
Vβ(Z|Xi)2 +

∑n
i=1 δiW (Xi)ri(β)∂/∂βVβ(Z|Xi)}. The second term in

the braces above is again a weighted score and therefore asymptoti-
cally zero at β = β̂. So for large enough n, ∂2R2(β)/∂β2, evaluated
at the point β = β̂ is negative, which indicates that R2(β) reaches its
maximum around β̂.

Property (2) of R2
E (Xu 1996)

Let ψi(β) = E0(Z|Xi)2 − 2E0(Z|Xi)Eβ(Z|Xi). We can then write;
R2

E(β) =
∑n

i=1 δi W (Xi){ψi(β) + E2
β(Z|Xi)} /

∑n
i=1 δiW (Xi)ψi(β) +

δiW (Xi)Eβ(Z2|Xi). With all the observed data fixed, at time Xi,
as β → +∞ πj(β, Xi) → 0 for all j such that zj(Xi) < z

(i)
max,

where z
(i)
max = max{zl(Xi) : Yl(Xi) = 1}. Furthermore Pβ(Z(Xi) =

z
(i)
max) =

∑
{j:zj(Xi)=z

(i)
max}

πj(Xi; β) → 1 so that E2
β(Z|Xi) → [z(i)

max]2

and Eβ(Z2|Xi) → [z(i)
max]2. Again at time Xi, as β → −∞ we
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have similarly E2
β(Z|Xi) → [z(i)

min]
2 and Eβ(Z2|Xi) → [z(i)

min]
2, where

z
(i)
min = min{zl(Xi) : Yl(Xi) = 1}. It is then clear that as |β| → ∞,

R2
E(β) → 1.

Large sample equivalence of R2
e and R2 (Xu 1996)

For showing large sample properties, it helps to make the follow-
ing assumptions which are similar to those in Andersen and Gill
(1982): (A) Finite interval,

∫ 1
0 λ0(t)dt < ∞. (B) Asymptotic stabil-

ity, there exist a neighborhood B of β such that 0 and β0 belong to
the interior of B, and supt∈[0,1] ‖nW (t) − w(t)‖ P→ 0, supt∈[0,1],β∈B

‖S(r)(β, t) − s(r)(β, t)‖ P→ 0, for r = 0, 1, 2, 3, 4, where the arrows
indicate convergence in probability with rate n−1/2. (C) Asymptotic
regularity conditions. All functions in B are uniformly continuous
in t ∈ [0, 1]; s(r)(β, t), r = 0, 1, 2, 3, 4, are continuous functions of
β ∈ B, and are bounded on B × [0, 1]; s(0)(β, t) is bounded away from
zero. The difference between

∑n
i=1 δiW (Xi){r2

i (0) − r2
i (β)} and the

equivalent based on expectations is given by
∑n

i=1 δiW (Xi){r2
i (0) −

r2
i (β)− [Eβ(Z|Xi)−E0(Z|Xi)]2} =

∑n
i=1 δiW (Xi){2Zi(Xi)[Eβ(Z|Xi)−

E0(Z|Xi)]− 2E2
β(Z|Xi) + 2Eβ(Z|Xi)E0(Z|Xi)} = 2

∑n
i=1 δiW (Xi)ri(β)

{Eβ(Z|Xi) − E0(Z|Xi)}. The above is a weighted score. Therefore the
proposition of Lin (1991) indicates that when β = β̂ the difference
between the numerators of R2(β̂) and R2

E(β̂) converges to zero in prob-
ability. Furthermore, the difference between the denominators of R2(β)
and R2

E(β) can be written as
∑n

i=1 δiW (Xi){r2
i (0) − Eβ [r2

i (0)|Xi]} =∑n
i=1 δiW (Xi){Zi(Xi)2 − Eβ(Z2|Xi)} − 2

∑n
i=1 δiW (Xi)E0(Z|Xi){Zi

(Xi) − Eβ(Z|Xi)}. The second term in the above is again asymp-
totically zero at β = β̂ because of the proposition of Lin. The first
term, is equal to

∑n
i=1

∫ 1
0 W (t){Zi(t)2 − S(2)(β, t)/S(0)(β, t)}dNi(t).

This in turn can be expressed as,
∫ 1
0 W (t)

∑n
i=1 Zi(t)2αi(t)dt −

∫ 1
0 W (t)S(2)(β, t)/S(0)(β, t)ᾱ(t)dt +

∑n
i=1

∫ 1
0 W (t)(Zi(t)2 − S(2)(β, t) /

S(0) (β, t))dMi(t) =
∫ 1
0 nW (t)S(2)(β0, t)λ0(t)dt −

∫ 1
0 nW (t)S(2)(β, t)/

S(0)(β, t)S(0)(β0, t) λ0(t)dt + A(1), where αi(t) = Yi(t)λi(t)dt is the
intensity process of Ni(t), Mi(t) = Ni(t) −

∫ t
0 αi(s)ds, and ᾱ(t) =∑n

1 αi(t). The total of the first two term in the last line above is zero
when β = β0, and A(t) =

∑n
i=1

∫ t
0 W (t)(Zi(t)2 − S(2)(β, t) / S(0)(β, t))

dMi(t). Now 〈A(t), A(t)〉 =
∑n

i=1

∫ t
0 W (t)2(Zi(t)2 − S(2)(β, t) / S(0)
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(β, t))2αi(t)dt=
∫ t
0 nW (t)2(S(4)(β0, t)−2S(2)(β0, t)S(2)(β, t)/S(0)(β, t).

+S(2)(β, t)2 / S(0)(β, t)2S(0) (β0, t))λ0(t)dt
P→ 0, under Conditions A,

B and C. So from Inequality (I.2) of Andersen and Gill (1982) which
is an application of Lenglart’s inequality, we have that A(1) P→ 0.
Thus it is again clear that we have a convergence in probability result
for the denominators. We next apply the convergence properties of
transformed sequences (Serfling 1980 Ch. 1.7) to obtain convergence
in probability of R2(β̂) − R2

E(β̂) to 0.

Large sample results for R2 (Xu 1996)

For R2(β̂), a first-order Taylor expansion gives
√

nR2(β̂) =
√

nR2(β0)+√
n(β̂ − β0)∂R2(β)/∂β at β = β̇, where β̇ lies on the line segment

between β0 and β̂. Note that ∂R2(β)/∂β, evaluated at β = β̇
converges to zero. We already have that

√
n(β̂ − β0) is asymp-

totically normal, so the second term on the right hand side of
the equation is asymptotically zero. For the first term, R2(β0) =
1/I(0)

∑n
i=1 δiW (Xi){r2

i (0) −r2
i (β0)}, and we have that I(0) P→

J(β0, 0). For the rest of the proof we show that (A.3) is asymptotically
equivalent to a sum of i.i.d. random variables.

∑n
i=1 δiW (Xi) {r2

i (0)−
r2
i (β0)} =

∑n
i=1 δiW (Xi){E0(Z|Xi)2−2Zi(Xi)[E0(Z|Xi)−Eβ0(Z|Xi)]−

Eβ0(Z|Xi)2} = 2
∑n

i=1 δi W (Xi)Zi(Xi)(S(1)(β0, Xi)/S(0)(β0, Xi) −
S(1)(0, Xi)/S(0) (0, Xi)) +

∫ 1
0 {S(1)(0, t)2/S(0)(0, t)2 − S(1)(β0, t)2/S(0)

(β0, t)2}dF̂ (t). Now
√

n
∑n

i=1 δi W (Xi)Zi(Xi)S(1)(β, Xi)/S(0)(β, Xi)=√
n
∑n

i=1

∫ t
0 W (t)Zi(t)S(1)(β, t)/S(0)(β, t) dNi(t), i.e., the sum of two

quantities which we write as the sum of A1 and A2 where A1 =
n−1/2

∑n
i=1

∫ 1
0 w(t)Zi(t)s(1)(β, t)/s(0)(β, t)dNi(t) and A2 = n−1/2

∑n
i=1∫ 1

0 nW (t)S(1)(β, t)/S(0)(β, t) − w(t)s(1)(β, t)/s(0)(β, t)Zi(t) dNi(t) it-
self in turn the sum of two quantities which we sum A3 and A4. The
expression for the first of these is A3 =

∫ 1
0

√
n(nW (t)S(1)(β, t)/S(0)

(β, t) − w(t)s(1)(β, t)/s(0)(β, t))S(1)(β0, t)λ0(t)dt. Next, this expres-
sion can be seen to be equivalent to the integral,

∫ 1
0

√
n{nW (t) −

w(t)}S(1)(β, t)/S(0) (β, t)S(1)(β0, t)λ0(t)dt+
∫ 1
0

√
n(S(1)(β, t)/S(0)(β, t)−

s(1)(β, t)/s(0)(β, t))w(t)S(1) (β0, t)λ0(t)dt and the second term A4 =∫ 1
0

√
n(nW (t)S(1)(β, t)/ S(0)(β, t)−w(t)s(1) (β, t)/s(0)(β, t))1/n

∑n
i=1

Zi(t)dMi(t) = op(1).
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Large sample normality of R2 and R2
E

We write, A5 =
∫ 1
0

√
n{nW (t)−w(t)}s(1)(β, t)/s(0)(β, t)s(1)(β0, t)λ0(t)

dt=
∫ 1
0

√
n (Ŝ(t)/s(0)(0, t)−S(t)S(0)(0, t)/s(0)(0, t)2)s(1)(β, t)/s(0)(β, t)

s(1)(β0, t)λ0(t)dt+op(1)=n−1/2
∑n

i=1

∫ 1
0 (ξi(t)/s(0)(0, t)−S(t)Yi(t)/s(0)

(0, t)2)s(1)(β, t)/s(0)(β, t)s(1)(β0, t) λ0(t)dt + op(1). The last two
equalities arise from an application of Stute’s (1995) central limit
theorem for Kaplan-Meier integrals. Here the ξ’s are i.i.d., each being
a function of Xi and δi. A6 =

∫ 1
0

√
n(S(1)(β, t)S(0)(β, t)−s(1)(β, t)/s(0)

(β, t))w(t)s(1)(β0, t)λ0(t)dt =
∫ 1
0

√
n(S(1)(β, t)/s(0)(β, t)−s(1)(β, t)S(0)

(β, t)/s(0)(β, t)2)w(t)s(1)(β0, t)λ0(t)dt+op(1)=n−1/2
∑n

i=1

∫ 1
0 Yi(t) exp

{βZi(t)}/s(0)(β, t)(Zi(t) − s(1)(β, t)/s(0)(β, t))w(t)s(1)(β0, t)λ0(t)dt +
op(1). The second last equality is derived in Xu (1996). Note also the
connection to the techniques used in the appendix of Lin and Wei
(1989). Combining A1, A5 and A6, we have that

√
n
∑n

i=1 δiW (Xi)Zi

(Xi)S(1)(β, Xi)/S(0)(β, Xi) = n−1/2
∑n

1 φi(β) + op(1), φi(β) =
∫ 1
0 w(t)

Zi(t)s(1)(β, t)s(0)(β, t)dNi(t) +
∫ 1
0 ((ξi(t)s(0)(0, t) − S(t)Yi(t)s(0)(0, t)2)

s(1)(β, t)s(0)(β, t)). + Yi(t) exp{βZi(t)}s(0)(β, t)(Zi(t) − s(1)(β, t)s(0)

(β, t))w(t))s(1)(β0, t)λ0(t)dt. Now
√

n
∫ 1
0 S(1)(β, t)2S(0) (β, t)2dF̂ (t) =√

n
∫ 1
0 s(1)(β, t)2s(0)(β, t)2dF̂ (t) +

√
n
∫ 1
0 (S(1)(β, t)2S(0)(β, t)2 − s(1)

(β, t)2s(0)(β, t)2)d{F̂ (t) − F (t)} +
√

n
∫ 1
0 (S(1)(β, t)2S(0)(β, t)2 − s(1)

(β, t)2s(0)(β, t)2) dF (t). The first term on the right hand side of
is asymptotically equivalent to a sum of i.i.d. random variables
namely, n−1/2

∑n
1 ζi(β), following Stute (1995). The second term

is op(1). The third term is equal to
√

n
∫ 1
0 (S(1)(β, t)/S(0)(β, t) −

s(1)(β, t)/s(0)(β, t))(S(1)(β, t)/S(0)(β, t) + s(1)(β, t)/s(0)(β, t))dF (t) =√
n
∫ 1
0 (S(1)(β, t)/S(0)(β, t) − s(1)(β, t)/s(0)(β, t))2s(1)(β, t)/s(0)(β, t)

dF (t) + op(1) = n−1/2
∑n

i=1

∫ 1
0 Yi(t) exp{βZi(t)}/s(0)(β, t)(Zi(t) −

s(1)(β, t)/s(0)(β, t))2s(1)(β, t)/s(0)(β, t)dF (t) + op(1). The second last
equality above follows exactly the same way as for A6. So we can see
the asymptotic equivalence to n−1/2

∑n
1 ψi(β), where ψi(β) = ζi(β) +

∫ 1
0 (Yi(t) exp{βZi(t)})/s(0)(β, t)(Zi(t) − s(1)(β, t)/s(0)(β, t))2s(1)(β, t)/

s(0)(β, t)dF (t). Then we have
∑n

i=1 δiW (Xi){r2
i (0) − r2

i (β0)} =
n−1/2

∑n
i=1{2φi(β0) − 2φi(0) + ψi(0) − ψi(β0)} + op(1). Therefore the

asymptotic normality of
√

n{R2(β0) − Ω2(β0)} and thus
√

n{R2(β̂) −
Ω2(β0)} follows from the central limit theorem. The asymptotic nor-
mality of R2

E(β̂) can be shown similarly. A detailed proof can be found
in Xu (1996).
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Monotonicity convergence result (Xu 1996)

The main idea which is used frequently in many of the proofs leans on
the following lemma (the proof of the lemma follows from manipulation
of elementary probability inequalities).

Lemma 16.1 Let β be real-valued. Statistics Tn(β) converge to their
population parameter θ(β) in probability as n → ∞, and Tn(β) in-
creases with β for each fixed sample size n. Then θ(β) is also an in-
creasing function of β.

To see this we take β1 < β2. For arbitrary ε > 0 and δ > 0, there exists
n such that P (|Tn(β1)− θ(β1)| > ε) < δ (1) P (|Tn(β2)− θ(β2)| > ε) <
δ (2). Let A, B be the sets on which (1) and (2) do not hold, respec-
tively, i.e. A = {|Tn(β1) − θ(β1)| ≤ ε}, B = {|Tn(β2) − θ(β2)| ≤ ε}.
Then on A ∩ B, θ(β2) − θ(β1) = θ(β2) − Tn(β2) − {θ(β1) − Tn(β1)} +
Tn(β2)−Tn(β1) ≥ −ε−ε+0 = −2ε. And P (A∩B) = P (A)+P (B)−
P (A ∪ B) ≥ 1 − δ + 1 − δ − 1 = 1 − 2δ > 0 if we choose δ < 1/2. But
θ(β2)− θ(β1) is non-random, and ε > 0 is arbitrary, which shows that
θ(β2) − θ(β1) ≥ 0. For J(β, 0),

∑n
1 δiW (Xi)r2

i (0), which does not in-
volve β, is a consistent estimator. Then according to the lemma, J(β, 0)
is not affected by the change in β. For J(β, 0) − J(β, β), the numer-
ator of Ω2(β),

∑n
1 δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}2 provides a con-

sistent estimate, and ∂/∂β
∑n

i=1 δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}2 =
2
∑n

i=1 δiW (Xi)Vβ(Z|Xi){Eβ(Z|Xi)−E0(Z|Xi)}.(A.8). Vβ(Z|t) is non-
negative and the derivative of Eβ(Z|t) − E0(Z|t) with respect to β is
again Vβ(Z|t), therefore Eβ(Z|t) − E0(Z|t) is an increasing function
of β. So the difference will be ≥ 0 when β > 0 and ≤ 0 when β < 0.
This shows that

∑n
1 δiW (Xi){Eβ(Z|Xi) − E0(Z|Xi)}2 increases with

|β|, and so does J(β, 0) − J(β, β), thus completing the proof.

Lemma 14.4

The proof of the main theorem implies that Γ̂2(β) converges in proba-
bility to Γ2(β) for every β: For the purpose of showing monotonicity of
ρ2(β), in the next theorem, without loss of generality, we may assume
that there is no censoring when computing Γ̂(β), since the population
parameter ρ2(β) is not affected by censorship. Next, take the deriv-
ative of Γ̂2(β) with respect to β, ∂Γ̂2(β)/∂β = 2

∑k
i=1 P (ti)(Ei + β
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Vi −
∑n

1 Yl(ti)Zl exp(βZl)/
∑n

1 Yl(ti) exp(βZl)), where Ei =
∑n

1 Yl(ti)
Zl exp(βZl)/

∑n
1 Yl(ti) exp(βZl), Vi = E2

i − (Ei)2, E2
i =

∑n
1 Yl(ti)Z2

l

exp (βZl)/
∑n

1 Yl(ti) exp(βZl). Vi is the variance of Z under the prob-
ability distribution {πj(β, Xi)}, therefore non-negative.

Large sample results for explained randomness measure

The consistency follows from the consistency of β̂, the main theorem
and the consistency of the Kaplan-Meier estimate. To show the as-
ymptotic normality, note that β̂ − β0 = I−1(β̌)U(β0) where β̌ is on
the line segment between β̂ and β0, U(β) = ∂ log L(β)/∂β, L(β) is
the log partial likelihood, and I(β) = −∂U(β)/∂β. Then

√
nΓ̂2(β̂) =√

nΓ̂2(β0)+I−1(β̌)
√

nU(β0)∂Γ̂2(β)/∂β evaluated at β = β̇. It is known
from for example, Andersen and Gill (1982), that I(β̌) converges in
probability to the expected information under the model, ∂Γ̂2(β)/∂β
then converges in probability to 2

∫
βv(β, t)dF (t). Lin and Wei (1989)

showed that
√

nU(β0) is asymptotically equivalent to n−1/2 times a
sum of i.i.d. random variables:

Theorem 16.1 (Lin and Wei 1989)
√

nU(β0) is asymptotically equiv-
alent to n−1/2

∑n
1 ωi(β0), where ωi(β) =

∫ 1
0 (Zi − s(1)(β, t)/s(0)(β, t))

dNi(t) −
∫ 1
0 Yi(t)eβZi(Zi − s(1)(β, t)/s(0)(β, t))λ0(t)dt and Ni(t) =

I{Ti ≤ t, Ti ≤ Ci}.

So all that remains to show the asymptotic normality of Γ̂2(β̂) is
to show that

√
nΓ̂2(β0) is also asymptotically equivalent to n−1/2

times a sum of n i.i.d. random variables like the above. Let Ψ(t) =
2(βS(1)(β, t)/S(0)(β, t) − log S(0)(β, t)/S(0)(0, t)), and ψ(t) = 2(βs(1)

(β, t)/s(0)(β, t) − log s(0)(β, t)/s(0)(0, t)). Denote F̂ the Kaplan-Meier
estimate of F . Next we write,

√
nΓ̂2(β) =

√
n
∫

Ψ(t)dF̂ (t) =
√

n
∫

ψ(t)
dF̂ (t) +

√
n
∫
{Ψ(t)− ψ(t)}d{F̂ (t)− F (t)}+

√
n
∫
{Ψ(t)− ψ(t)}dF (t).

Now
√

n{F̂ (t) − F (t)} converges in distribution to a zero-mean
Gaussian process. Therefore the second term on the last line is op(1).
We apply the central limit theorem under random censorship of Stute
(1995) to the first term above. We state the version of the theorem
that will apply directly to our cases here.

Theorem 16.2 (Stute 1995) Let Q and H be the distribution func-
tion of C and X = min(T, C), respectively. Define H0(x) = P (X < x,
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δ = 0), H1(x) = P (X < x, δ = 1) and τH = inf{x : H(x) = 1}
≤ ∞. Let ψ : R → R be any bounded measurable function. As-
sume that 1 − F ∼ c(1 − Q)α in a neighborhood of τH , for some
c > 0 and α > 1. Then

∫
ψdF̂ = n−1

∑n
i=1 δiγ0(Xi)ψ(Xi) +

n−1
∑n

i=1(1 − δi)γ1(ψ(·), Xi) − n−1
∑n

i=1 γ2(ψ(·), Xi) + Rn, where
|Rn| = op(n−1/2), γ0(x). In turn we can write this expression as,
exp(

∫ x−
−∞ H0(dy)/1 − H(y)), γ1(ψ(·), x) which can then be expressed

as, 1/(1−H(x))
∫

1{x<w}ψ(w)γ0(w)H1(dw), γ2(ψ(·), x) which is then
written as,

∫ ∫
1{v<x,v<w}ψ(w)γ0(w)/([1 − H(v)]2)H0(dv)H1(dw).

Note, as discussed by Stute (1995), that the boundedness of ψ
and the assumption on the tails of F and Q ensures the conver-
gence rate of n−1/2. More general conditions are also given in Stute
(1995). The last term above is the difference of the following two
terms:

√
n
∫

2β(S(1)(β, t)/S(0)(β, t) − s(1)(β, t)/s(0)(β, t))dF (t) =√
n
∫

2β(S(1)(β, t)/s(0)(β, t) − s(1)(β, t)S(0)(β, t)/s(0)(β, t)2)dF (t) +
op(1) = n−1/2

∑n
i=1

∫
2βYi(t)eβZi/s(0)(β, t)(Zi−s(1)(β, t)/s(0)(β, t))dF

(t)+op(1), and
√

n
∫

2(log S(0)(β, t)/S(0)(0, t)−log s(0)(β, t)/s(0)(0, t))
dF (t) =

√
n
∫

2s(0)(0, t)/s(0)(β, t)(S(0) (β, t)/S(0)(0, t) − s(0)(β, t)/s(0)

(0, t))dF (t) + op(1) =
√

n
∫

2s(0)(0, t)/s(0)(β, t)(S(0) (β, t)/s(0) (0, t) −
s(0)(β, t)S(0)(0, t)/s(0)(0, t)2)dF (t) + op(1) = n−1/2

∑n
i=1

∫
2Yi(t)/

s(0)(β, t)(eβZi −s(0)(β, t)/s(0)(0, t))dF (t)+op(1). Combining the above
we have that

√
nΓ̂2(β0) is equal to n−1/2 times a sum of n i.i.d. ran-

dom variables plus a term of order op(1). The asymptotic normality
of Γ̂2(β̂) thus follows from the central limit theorem.



Bibliography

[1] Aalen, O. (1978) Non-parametric inference for a family of count-
ing processes. Ann. Statist. 6: 701-26.

[2] Aalen O. (1987) Two examples of modelling heterogeneity in
survival analysis. Scand. J. Statist.; 14: 19-25.

[3] Aalen, O. (1989) A linear regression model for the analysis of
life times. Statist. Med.; 8: 907-25.

[4] Aalen, O. (1994) On the analysis of life tables for dependent
observations. Statist. Med.; 13: 2383-4.

[5] Agresti, A. and Min, Y. (2001) On small-sample confidence
intervals for parameters in discrete distributions. Biometrics;
57: 963-71.

[6] Ahn, H. and Loh, W. Y. (1994) Tree-structured proportional
hazards regression modeling. Biometrics; 50: 471-85.

[7] Ahnn, S. and Anderson, S. J. (1995) Sample size determina-
tion for comparing more than two survival distributions. Statist.
Med. 14: 2273-82.

[8] Akazawa, K., Nakamura, T. and Palesch, Y. (1997) Power of
logrank test and Cox regression model in clinical trials with
heterogeneous samples. Statist. Med.; 16: 583-97.

[9] Akritas, M. G. and LaValley, M. P. (1996) Nonparametric in-
ference in factorial designs with censored data. Biometrics; 52
(3): 913-24.

477



478 BIBLIOGRAPHY

[10] Albert, J. M., Ioannidis, J. P., Reichelderfer, P., Conway, B.,
Coombs, R. W., Crane, L., Demasi, R., Dixon, D. O., Flandre,
P., Hughes, M. D., Kalish, L. A., Larntz, K., Lin, D., Marschner,
I. C., Munoz, A., Murray, J., Neaton, J., Pettinelli, C., Rida,
W., Taylor, J. M. and Welles, S. L. (1998) Statistical issues
for HIV surrogate endpoints: point/counterpoint. An NIAID
workshop. Statist. Med.; 17: 2435-62.

[11] Alioum, A. and Commenges, D. (1996) A proportional hazards
model for arbitrarily censored and truncated data. Biometrics;
52: 512-24.

[12] Allison, P. D. (1995) Survival Analysis Using the SAS System,
SAS Institute Inc.

[13] Altman, D. G. and De Stavola, B. L. (1994) Practical problems
in fitting a proportional hazards model to data with updated
measurements of the covariates. Statist. Med.; 13: 301-41.

[14] Andersen, P. K. and Gill, R. D. (1982) Cox’s regression model
for counting processes: a large sample study. Ann. Statist.; 10:
1100-1120.

[15] Andersen, P. K. (1983) Comparing survival distributions via
hazard ratio estimates. Scand. J. Statist.; 10: 77-85.

[16] Andersen, P. K., Christensen, E., Fauerholdt, L. and
Schlichting, P. (1983) Evaluating prognoses based on the pro-
portional hazards model. Scand. J. Statist.; 10: 141-144.

[17] Andersen, P. K. (1991) Survival analysis 1982-1991: the second
decade of the proportional hazards regression model. Stat Med ;
10: 1931-41.

[18] Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993)
Statistical models based on counting processes. Springer-
Verlag. New York.

[19] Andersen, J., Goetghebeur, E. and Ryan, L. (1996) Missing
cause of death information in the analysis of survival data. Sta-
tist. Med.; 15: 2191-201.



BIBLIOGRAPHY 479

[20] Andersen, P. K., Klein, J. P., Knudsen, K. M., Tabanera Y. and
Palacios, R. (1997) Estimation of variance in Cox’s regression
model with shared gamma frailties. Biometrics; 53: 1475-84.

[21] Andersen, P. K., Klein, J. P. and Zhang, M. J. (1999) Testing
for centre effects in multi-centre survival studies: a Monte Carlo
comparison of fixed and random effects tests. Stat Med ; 18:
1489-500.

[22] Andersen, P. K., Esbjerg, S. and Sorensen, T. I. (2000) Multi-
state models for bleeding episodes and mortality in liver cirrho-
sis. Statist. Med.; 19: 587-99.

[23] Andersen, P. K. and Liestol, K. (2003) Attenuation caused by
infrequently updated covariates in survival analysis. Biostatis-
tics; 4: 633-49.

[24] Anderson, J. A. and Senthilselvan, A. (1980) Smooth esti-
mates for the hazard function. J. Roy. Statist. Soc. Ser. B ;
42: 322-327.

[25] Anderson, J. A. and Senthilselvan, A. (1982). A two-step regres-
sion model for hazard functions. Applied Statistics; 31: 44-51.

[26] Anderson, K. M. (1991) A nonproportional hazards Weibull ac-
celerated failure time regression model. Biometrics; 47: 281-8.

[27] Annesi, I., Moreau, T. and Lellouch, J. (1989) Efficiency of
the logistic regression and Cox proportional hazards models in
longitudinal studies. Statist. Med.; 8: 1515-21.

[28] Aranda-Ordaz and Francisco J. (1983) An extension of the
proportional-hazards model for grouped data. Biometrics; 39:
109-117.

[29] Arjas, E. and Liu, L. (1996) Non-parametric Bayesian approach
to hazard regression: a case study with a large number of miss-
ing covariate values. Statist. Med.; 15: 1757-70.

[30] Aydemir, U., Aydemir, S. and Dirschedl, P. (1999) Analysis of
time-dependent covariates in failure time data. Statist. Med.;
18: 2123-34.



480 BIBLIOGRAPHY

[31] Bacchetti, P. and Jewell, N. P. (1991) Nonparametric estima-
tion of the incubation period of AIDS based on a prevalent
cohort with unknown infection times. Biometrics; 47: 947-60.

[32] Bacchetti, P. and Quale, C. (2002) Generalized additive models
with interval-censored data and time-varying covariates: appli-
cation to human immunodeficiency virus infection in hemophil-
iacs. Biometrics; 58: 443-7.

[33] Bagdonavicius, Vilijandas B. and Nikulin, M. S. (1999) Gen-
eralized proportional hazards model based on modified partial
likelihood. Lifetime Data Anal.; 5: 329-350.

[34] Bagdonavicius, Vilijandas and Nikulin, M. S. (2001) On
goodness-of-fit for accelerated life models. C. R. Acad. Sci.
Paris Ser. I Math.; 332: 171-176.

[35] Baltazar-Aban, I. and Pena, E. A. (1995) Properties of hazard-
based residuals and implications in model diagnostics. J. Amer.
Statist. Assoc.; 90: 185-197.

[36] Barlow, W. E. and Sun, W. H. (1989) Bootstrapped confidence
intervals for the Cox model using a linear relative risk form.
Statist. Med.; 8: 927-35.

[37] Barlow, W. E. (1997) Global measures of local influence for pro-
portional hazards regression models. Biometrics; 53: 1157-62.

[38] Barndorff-Nielsen, O. and Cox, D. R. (1994) Inference and As-
ymptotics; Chapman and Hall, London.

[39] Bartle, R. (1976). Elements of Real Analysis. New York: Wiley.

[40] Bartoszynski, R., Brown, B. W., McBride, C. M. and
Thompson, J. R. (1981) Some nonparametric techniques for
estimating the intensity function of a cancer related nonsta-
tionary Poisson process. Ann. Statist.; 9 (5): 1050-1060.

[41] Bebchuk, J. D. and Betensky, R. A. (2000) Multiple imputation
for simple estimation of the hazard function based on interval
censored data. Statist. Med.; 19: 405-19.

[42] Begun, J. M., Hall, W. J., Huang, W. and Wellner, J. A.
(1983) Information and asymptotic efficiency in parametric-
nonparametric models. Ann. Statist.; 11: 432-452.



BIBLIOGRAPHY 481

[43] Begun, J. M. and Reid, N. (1983) Estimating the relative risk
with censored data. J. Amer. Statist. Assoc.; 78: 337-341.

[44] Beirlant, J., Carbonez, A. and van der Meulen, E. (1992) Long
run proportional hazards models of random censorship. J. Sta-
tist. Plann. Inference; 32: 25-44.

[45] Benichou, J. and Gail, M. H. (1990) Estimates of absolute
cause-specific risk in cohort studies. Biometrics; 46: 813-26.

[46] Berridge, D. M. (1996) An application of a marked point process
in pre-clinical medicine. Statist. Med.; 15: 2751-62.

[47] Berry, G., Kitchin, R. M. and Mock, P. A. (1991) A comparison
of two simple hazard ratio estimators based on the logrank test.
Statist. Med.; 10: 749-55.

[48] Berzuini, C. and Clayton, D. (1994) Bayesian analysis of sur-
vival on multiple time scales. Statist. Med.; 13: 823-38.

[49] Betensky, R. A. (1997) Conditional power calculations for early
acceptance of H0 embedded in sequential tests. Statist. Med.;
16: 465-77.

[50] Betensky, R. A. (1998) Multiple imputation for early stopping
of a complex clinical trial. Biometrics; 54: 229-42.

[51] Betensky, R. A., Lindsey, J. C., Ryan, L. M. and Wand, M. P.
(1999) Local EM estimation of the hazard function for interval-
censored data. Biometrics; 55: 238-45.

[52] Betensky, R. A., Lindsey, J. C., Ryan, L. M. and Wand, M. P.
(2002) A local likelihood proportional hazards model for inter-
val censored data. Statist. Med.; 21: 263-75.

[53] Billingsley, P. (1968) Convergence of Probability Measures; New
York. Wiley.

[54] Binder, D. A. (1992) Fitting Cox’s proportional hazards models
from survey data. Biometrika; 79: 139-147.

[55] Bonetti, M. and Gelber, R. D. (2000) A graphical method to
assess treatment-covariate interactions using the Cox model on
subsets of the data. Statist. Med.; 19: 2595-609.



482 BIBLIOGRAPHY

[56] Borgan, O., Goldstein, L. and Langholz, B. (1995) Methods for
the analysis of sampled cohort data in the Cox proportional
hazards model. Ann. Statist.; 23: 1749-1778.

[57] Borgan, O. and Liestol, K. (1990) A note on confidence intervals
and bands for the survival function based on transformations.
Scand. J. Statist. 17: 35-41.

[58] Braekers, R. and Veraverbeke, N. (2003) Testing for the partial
Koziol-Green model with covariates. J. Statist. Plann. Infer-
ence; 115: 181-192.

[59] Breslow, N. (1974) Covariance analysis of censored survival
data. Biometrics 30: 89-99.

[60] Breslow, N. and Crowley, J. (1974) A large sample study of the
life table and product limit estimates under random censorship.
Ann. Statist.; 2: 437-53.

[61] Breslow, N., Edler, L. and Berger, J. (1984) A two-sample cen-
sored data rank test for acceleration. Biometrics 40: 1049-62.

[62] Bretagnolle, J. and Huber-Carol, C. (1988). Effects of Omitting
Covariates in Cox’s Model for Survival Data. Scandinavian J.
of Statist.; 15: 125-138.

[63] Bristol, D. R. (1992) The analysis of failure time data in
crossover studies. Statist. Med.; 11: 975-7.

[64] Broet, P., Moreau, T., Lellouch, J. and Asselain, B. (1999)
Unobserved covariates in the two-sample comparison of sur-
vival times: a maximum efficiency robust test. Statist. Med.;
18: 1791-800.

[65] Broet, P., De Rycke, Y., Tubert-Bitter, P., Lellouch, J.,
Asselain, B. and Moreau, T. (2001) A semiparametric approach
for the two-sample comparison of survival times with long-term
survivors. Biometrics; 57: 844-52.

[66] Brookmeyer, R. and Gail, M. (1987) Biases in prevalent cohorts.
Biometrics; 43: 739-749.

[67] Brown, C. C. (1975) On the use of indicator variables for
studying the time-dependence of parameters in a response-time
model. Biometrics; 31: 863-72.



BIBLIOGRAPHY 483

[68] Bryant, J. and Dignam, J. J. (2004) Semiparametric models for
cumulative incidence functions. Biometrics; 60: 182-90.

[69] Bunday, B. D. (1991) Statistical methods in reliability theory
and practice. Ellis Horwood. New York.

[70] Burr, D. (1994) A comparison of certain bootstrap confidence
intervals in the Cox model. J. Amer. Statist. Assoc.; 89:
1290-1302.

[71] Burr, D. (1994) On inconsistency of Breslow’s estimator as an
estimator of the hazard rate in the Cox model. Biometrics; 50:
1142-5.

[72] Burridge, J. (1981) Empirical Bayes analysis of survival time
data. J. Roy. Statist. Soc. Ser. B ; 43: 65-75.

[73] Buyse, M. (1989) Analysis of clinical trial outcomes: some com-
ments on subgroup analyses. Control Clin Trials; 10 (4 Suppl):
187S-194S.

[74] Buyse, M. and Molenberghs, G. (1998). Criteria for the vali-
dation of surrogate endpoints in randomized experiments. Bio-
metrics; 54: 1014-29.

[75] Bycott, P. W. and Taylor, J. M. (1998) An evaluation of a
measure of the proportion of the treatment effect explained by
a surrogate marker. Control Clin Trials; 19: 555-68.

[76] Cai, J., Zhou, H. and Davis, C. E. (1997) Estimating the mean
hazard ratio parameters for clustered survival data with random
clusters. Statist. Med.; 16: 2009-20.

[77] Cai, T., Wei, L. J. and Wilcox, M. (2000) Semiparametric re-
gression analysis for clustered failure time data. Biometrika;
87: 867-878.

[78] Cai, T., Cheng, S. C. and Wei, L. J. (2002) Semiparametric
mixed-effects models for clustered failure time data. J. Amer.
Statist. Assoc.; 97: 514-522.

[79] Cai, T. and Betensky, R. A. (2003) Hazard regression for
interval-censored data with penalized spline. Biometrics; 59:
570-9.



484 BIBLIOGRAPHY

[80] Campbell, M. K., Donner, A. and Webster, K. M. (1991) Are or-
dinal models useful for classification? Statist. Med.; 10: 383-94.

[81] Carlin, B. P. and Hodges, J. S. (1999) Hierarchical proportional
hazards regression models for highly stratified data. Biometrics;
55: 1162-70.

[82] Carling, K. and Jacobson, T. (1995) Modeling unemployment
duration in a dependent competing risks framework: identifica-
tion and estimation. Lifetime Data Anal.; 1: 111-122.

[83] Carroll, K. J. (2003) On the use and utility of the Weibull
model in the analysis of survival data. Control Clin Trials; 24:
682-701.

[84] Chang, I. S. and Hsiung, C. A. (1994) Information and asymp-
totic efficiency in some generalized proportional hazards models
for counting processes. Ann. Statist.; 22: 1275-1298.

[85] Chang, I. S. and Hsiung, C. A. (1996) An efficient estimator for
proportional hazards models with frailties. Scand. J. Statist.;
23: 13-26.

[86] Chang, M. N. (1996) Exact distribution of the Kaplan-Meier es-
timator under the proportional hazards model. Statist. Probab.
Lett.; 28: 153-157.

[87] Chang, I. S., Hsiung, C. A. and Chuang, Y. (1997) Applications
of a frailty model to sequential survival analysis. Statist. Sinica;
7: 127-138.

[88] Chang, C. C. and Weissfeld, L. A. (1999) Normal approximation
diagnostics for the Cox model. Biometrics; 55: 1114-9.

[89] Chang, I-Shou, Hsiung, C. A. and Wu, S. (2000) Estimation in
a proportional hazard model for semi-Markov counting process.
Statist. Sinica; 10: 1257-1266.

[90] Chen, C. H. and George, S. L. (1985) The bootstrap and iden-
tification of prognostic factors via Cox’s proportional hazards
regression model. Statist. Med.; 4: 39-46.

[91] Chen, C. H. and Wang, P. C. (1991) Diagnostic plots in Cox’s
regression model. Biometrics; 47: 841-50.



BIBLIOGRAPHY 485

[92] Chen, Y. Q. and Wang, M. (2000) Estimating a treatment effect
with the accelerated hazards models. Control Clin Trials; 21:
369-80.

[93] Chen, Y. Q. and Jewell, N. P. (2001) On a general class of semi-
parametric hazards regression models. Biometrika; 88: 687-702.

[94] Chen, P. Y. and Tsiatis, A. A. (2001) Causal inference on the
difference of the restricted mean lifetime between two groups.
Biometrics; 57: 1030-8.

[95] Chen, Y. Q. (2001) Accelerated hazards regression model and
its adequacy for censored survival data. Biometrics; 57: 853-60.

[96] Chen, K., Jin, Z. and Ying, Z. (2002) Semiparametric analysis
of transformation models with censored data. Biometrika; 89:
659-668.

[97] Chen, Y. Q., Rohde, C. A. and Wang, M. C. (2002) Additive
hazards models with latent treatment effectiveness lag time.
Biometrika; 89: 917-931.

[98] Chen, K. (2004) Statistical estimation in the proportional haz-
ards model with risk set sampling. Ann. Statist.; 32: 1513-1532.

[99] Cheng, P. E. and Lin, G. D. (1987) Maximum likelihood estima-
tion of a survival function under the Koziol-Green proportional
hazards model. Statist. Probab. Lett.; 5: 75-80.

[100] Cheng, S. C., Wei, L. J. and Ying, Z. (1997) Predicting sur-
vival probabilities with semiparametric transformation models.
J. Amer. Statist. Assoc.; 92: 227-235.

[101] Cheng, S. C., Fine, J. P. and Wei, L. J. (1998) Prediction of
cumulative incidence function under the proportional hazards
model. Biometrics; 54: 219-228.

[102] Cheung, Y. B., Yip, P. S. and Karlberg, J. P. (2001) Paramet-
ric modelling of neonatal mortality in relation to size at birth.
Statist. Med.; 20: 2455-66.

[103] Chevret, S., Leporrier, M. and Chastang, C. (2000) Measures
of treatment effectiveness on tumour response and survival: a
multi-state model approach. Statist. Med.; 19: 837-48.



486 BIBLIOGRAPHY

[104] Chiang, C. (1968) Introduction to Stochastic Processes in Bio-
statistics; New York. Wiley.

[105] Clayton, D. and Cuzick, J. (1985) Multivariate generalizations
of the proportional hazards model. J. Roy. Statist. Soc. Ser. A;
148: 82-117.

[106] Clayton, D. and Cuzick, J. (1985) The semiparametric Pareto
model for regression analysis of survival times. Proceedings of
the 45th session of the International Statistical Institute, Vol.
4 (Amsterdam, 1985); 51: 175-180.

[107] Clegg, L. X., Cai, J. and Sen, P. K. (1999) A marginal mixed
baseline hazards model for multivariate failure time data. Bio-
metrics; 55: 805-12.

[108] Cnaan, A. and Ryan, L. (1989) Survival analysis in natural
history studies of disease. Statist. Med.; 8: 1255-68.

[109] Cochran, W. G. (1954) Some methods for strengthening the
common chi-square tests. Biometrics 10: 417-58.

[110] Cole, B. F., Gelber, R. D. and Goldhirsch, A. (1993) Cox re-
gression models for quality adjusted survival analysis. Statist.
Med.; 12: 975-87.

[111] Colosimo, E. A. (1997) A note on the stratified proportional
hazards model. Int. J. Math. Stat. Sci.; 6: 201-209.

[112] Colosimo, E. A., Chalita, L. V. and Demetrio, C. G. (2000)
Tests of proportional hazards and proportional odds models
for grouped survival data. Biometrics; 56: 1233-40.

[113] Commenges, D. Andersen, P. K. (1995) Score test of homogene-
ity for survival data. Lifetime data analysis; 1: 145-156.

[114] Commenges, D., Letenneur, L., Joly, P., Alioum, A. and
Dartigues, J. F. (1998) Modelling age-specific risk: application
to dementia. Statist. Med.; 17: 1973-88.

[115] Com-Nougue, C., Rodary, C. and Patte, C. (1993) How to es-
tablish equivalence when data are censored: a randomized trial
of treatments for B non-Hodgkin lymphoma. Statist. Med.; 12:
1353-64.



BIBLIOGRAPHY 487

[116] Congdon, P. (1995) Modelling frailty in area mortality. Statist.
Med.; 14: 1859-74.

[117] Contal, C. and O’Quigley J. (1999) Evaluating the effect of age
on survival in breast cancer using changepoint methods. Comp.
Statist. and Data Analysis, 30, 253-270.

[118] Coste, J., Walter, E., Wasserman, D. and Venot, A. (1997) Op-
timal discriminant analysis for ordinal responses. Stat Med ; 16:
561-9.

[119] Cox, D. R. (1958) Some problems connected with statistical
inference. Ann. Math. Statist. 29, 357-72.

[120] Cox, D. R. (1972) Regression models and life-tables. J. Roy.
Statist. Soc. Ser. B ; 34: 187-220.

[121] Cox, D. R. (1972) Partial likelihood. Biometrika; 62: 269-76.

[122] Cox, D. R. and Hinkley, D. (1974) Theoretical Statistics;
Chapman and Hall; London.

[123] Cox, D. R. and Oakes, D. (1984) Analysis of survival data;
Chapman and Hall; London.

[124] Cox, D. R. and Wermuth, N. (1992) A comment on the coeffi-
cient of determination for binary responses. American Statist.
46; 1-4.

[125] Cox, C. (1995) Location-scale cumulative odds models for or-
dinal data: a generalized non-linear model approach. Statist.
Med.; 14: 1191-203.

[126] Cramer, H. (1937) Random Variables and Probability Distribu-
tions; Cambridge Texts in Mathematics. Cambridge. U.K.

[127] Crowder, M. J., Kimber, A. C., Smith, R. L. and Sweeting,
T. J. (1991) Statistical analysis of reliability data. Chapman &
Hall. London.

[128] Crowley, J., Liu, P. Y. and Voelkel, J. G. (1982) Estimation
of the ratio of hazard functions. Survival analysis (Columbus,
Ohio, 1981); 2: 56-73.



488 BIBLIOGRAPHY

[129] Csorgo, S. (1988) Estimation in the proportional hazards model
of random censorship. Statistics; 19: 437-463.

[130] Csorgo, S. and Faraway, J. J. (1998) The paradoxical nature of
the proportional hazards model of random censorship. Statis-
tics; 31: 67-78.

[131] Cui, J. (1999) Estimating AIDS incidence and jack-knife vari-
ance from a continuous delay distribution and incomplete data.
Statist. Med.; 18: 527-37.

[132] Cui, J. and Becker, N. G. (2000) Estimating HIV incidence
using dates of both HIV and AIDS diagnoses. Statist. Med.;
19: 1165-77.

[133] Cupples, L. A., Gagnon, D. R., Ramaswamy, R. and D’Agostino,
R. B. (1995) Age-adjusted survival curves with application in
the Framingham Study. Statist. Med.; 14: 1731-44.

[134] D’Amico, F. and Rao, B. R. (1983) Exact maximum likelihood
estimates of Cox’s regression parameters based on categorized
factorial data. Biometrical J.; 25: 29-42.

[135] Dabrowska, D. M., Doksum, K. A., Feduska, N. J., Husing,
R. and Neville, P. (1992) Methods for comparing cumulative
hazard functions in a semi-proportional hazard model. Statist.
Med.; 11: 1465-76.

[136] Dabrowska, D. M. (1997) Smoothed Cox regression. Ann. Sta-
tist.; 25: 1510-1540.

[137] Dafni, U. G. and Tsiatis, A. A. (1998) Evaluating surrogate
markers of clinical outcome when measured with error. Bio-
metrics; 54: 1445-62.

[138] Daniels, H. E. (1954) Saddlepoint approximations in statistics.
Ann. Math. Statist.; 25: 631-50.

[139] Daniels, H. E. (1987) Tail probability approximations. Int. Sta-
tist. Rev.; 55: 37-48.

[140] Datta, S., Satten, G. A. and Williamson, John M. (2000)
Consistency and asymptotic normality of estimators in a
proportional hazards model with interval censoring and left
truncation. Ann. Inst. Statist. Math.; 52: 160-172.



BIBLIOGRAPHY 489

[141] Datta, S. and Satten, G. A. (2002) Estimation of integrated
transition hazards and stage occupation probabilities for non-
Markov systems under dependent censoring. Biometrics; 58:
792-802.

[142] David, H. A. and Moeschberger, M. L. (1978) The theory of
competing risks. Macmillan Co.. New York.

[143] Davies, R. B. (1977) Hypothesis testing when a nuisance pa-
rameter is present only under the alternative. Biometrika 64;
247-254.

[144] Davies R. B. (1987) Hypothesis testing when a nuisance pa-
rameter is present only under the alternative. Biometrika 74;
33-43.

[145] Dawson, R. and Lavori, P. W. (2002) Using inverse weight-
ing and predictive inference to estimate the effects of time-
varying treatments on the discrete-time hazard. Statist. Med.;
21: 1641-61; discussion 1663-87.

[146] de Bruijne, M. H., le Cessie, S., Kluin-Nelemans, H. C. and van
Houwelingen, H. C. (2001) On the use of Cox regression in the
presence of an irregularly observed time-dependent covariate.
Statist. Med.; 20: 3817-29.

[147] Dear, K. B. (1994) Iterative generalized least squares for meta-
analysis of survival data at multiple times. Biometrics; 50:
989-1002.

[148] De Gruttola, V., Fleming, T., Lin, D. Y. and Coombs, R.
(1997). Perspective: Validating surrogate markers - are we being
naive? Journal of Infectious Disease 175, 237-46.

[149] Deheuvels, P. (1996) Functional laws for small increments of
empirical processes. Statistica Neerlandica 50, 261-80.

[150] Deheuvels, P. (1997) Strong laws for local quantile processes.
Ann. Probab. 25, 2007-54.

[151] Deheuvels, P. and Einmahl, J. H. J. (2000) Functional limit laws
for the increments of Kaplan-Meier product-limit processes and
applications Ann. Probab. 28, 1301-35.



490 BIBLIOGRAPHY

[152] Dellaportas, P. and Smith, A. F. M. (1993) Bayesian infer-
ence for generalized linear and proportional hazards models via
Gibbs sampling. J. Roy. Statist. Soc. Ser. C ; 42: 443-459.

[153] Desu, M. M. and Raghavarao, D. (2004) Nonparametric sta-
tistical methods for complete and censored data. Chapman &
Hall/CRC, Boca Raton.

[154] Dewanji, A. and Sengupta, D. (2003) Estimation of competing
risks with general missing pattern in failure types. Biometrics;
59: 1063-70.

[155] DiCiccio, T. J. and Romano, J. P. (1988). A review of bootstrap
confidence intervals J. Roy. Statist. Soc. Series B; 50: 338-354.

[156] Dinse, G. E. (1994) A comparison of tumour incidence analyses
applicable in single-sacrifice animal experiments. Stat Med ; 13:
689-708.

[157] DiRienzo, A. G. and Lagakos, S. W. (2001) Effects of model
misspecification on tests of no randomized treatment effect aris-
ing from Cox’s proportional hazards model. J. R. Stat. Soc. Ser.
B.; 63: 745-757.

[158] Dixon, D. O. and Simon, R. (1991) Bayesian subset analysis.
Biometrics; 47: 871-81.

[159] Dobson, A. J. (1988) Proportional hazards models for average
data for groups. Statist. Med.; 7: 613-8.

[160] Dobson, A. and Henderson, R. (2003) Diagnostics for joint lon-
gitudinal and dropout time modeling. Biometrics; 59: 741-51.

[161] Doksum, K. A. and Nabeya, S. (1984) Estimation in propor-
tional hazard and log-linear models. J. Statist. Plann. Infer-
ence; 9: 297-303.

[162] Doksum, K. A. (1987) An extension of partial likelihood meth-
ods for proportional hazard models to general transformation
models. Ann. Statist.; 15: 325-345.

[163] Dpolhkabrowska, D. M. and Doksum, K. A. (1987) Estimates
and confidence intervals for median and mean life in the pro-
portional hazard model. Biometrika; 74: 799-807.



BIBLIOGRAPHY 491

[164] Dpolhkabrowska, D. M. and Doksum, Kjell A. (1988) Estima-
tion and testing in a two-sample generalized odds-rate model.
J. Amer. Statist. Assoc.; 83: 744-749.

[165] Dpolhkabrowska, D. M., Doksum, K. A. and Song, J. (1989)
Graphical comparison of cumulative hazards for two popula-
tions. Biometrika; 76: 763-773.

[166] Draper, N. R. (1984) The Box-Wetz criterion versus R2. J. Roy.
Statist. Soc. Series A; 147: 100-103.

[167] Draper, N. R. (1985) Corrections: The Box-Wetz criterion ver-
sus R2. J. Roy. Statist. Soc. Series A; 148: page 357.

[168] Dubin, J. A., Muller, H. G. and Wang, J. L. (2001) Event his-
tory graphs for censored survival data. Statist. Med.; 20: 2951-
64.

[169] Dunson, D. B. and Baird, D. D. (2002) A proportional hazards
model for incidence and induced remission of disease. Biomet-
rics; 58: 71-78.

[170] Dunson, D. B., Chulada, P. and Arbes, S. J. Jr. (2003) Bayesian
modeling of time-varying and waning exposure effects. Biomet-
rics; 59: 83-91.

[171] Dunson, D. B. and Herring, A. H. (2003) Bayesian inferences
in the Cox model for order-restricted hypotheses. Biometrics;
59: 916-23.

[172] Dunson, D. B. and Chen, Z. (2004) Selecting factors predictive
of heterogeneity in multivariate event time data. Biometrics;
60: 352-8.

[173] Dupuy, J., Grama, I. and Mesbah, M. (2006) Asymptotic theory
for the Cox model with missing time-dependent covariate. Ann.
Statist.; 34: 903-24.

[174] Dupuy, J. and Mesbah, M. (2002) Joint modeling of event
time and nonignorable missing longitudinal data. Lifetime Data
Analysis; 8: 99-115.

[175] Efron, B. (1975) Defining the curvature of a statistical problem.
Ann. Statist.; 3: 1189-1242.



492 BIBLIOGRAPHY

[176] Efron, B. (1981a) Censored data and the bootstrap. J. Amer.
Statist. Assoc. 76: 312-319.

[177] Efron, B. (1981b) Nonparametric estimates of standard error:
the jacknife, the bootstrap and other resampling methods. Bio-
metrika 68: 589-599.

[178] Efron, B. (2002) The two-way proportional hazards model.
J. R. Stat. Soc. Ser. B.; 64: 899-909.

[179] Efron, B. and Hinkley, D. V. (1978) Assessing the accuracy of
the maximum likelihood estimator: Observed versus expected
Fisher information. Biometrika 65: 457-83.

[180] Eide, G. E., Omenaas, E. and Gulsvik, A. (1996) The semi-
proportional hazards model revisited: practical reparametriza-
tions. Statist. Med.; 15: 1771-7.

[181] Elandt-Johnson, R. C. and Johnson, N. L. (1980) Survival Mod-
els and Data Analyis ; New York. Wiley.

[182] Elashoff, M. and Lagakos, S. (1996) HIV treatment strate-
gies utilizing virologic and immunologic markers as criteria
for changing treatments. Statist. Med.; 15: 2425-43; discussion
2455-8.

[183] Esteban, M. D. and Morales, D. (1995) Estimating a survival
function with doubly censored data in a proportional hazard
model. Appl. Stochastic Models Data Anal.; 11: 145-157.

[184] Fan, J., Gijbels, I. and King, M. (1997) Local likelihood and
local partial likelihood in hazard regression. Ann. Statist.; 25:
1661-1690.

[185] Fan, J. and Li, R. (2002) Variable selection for Cox’s propor-
tional hazards model and frailty model. Ann. Statist.; 30: 74-99.

[186] Faraggi, D. and Simon, R. (1996) A simulation study of cross-
validation for selecting an optimal cutpoint in univariate sur-
vival analysis. Statist. Med.; 15: 2203-13.

[187] Faraggi, D. and Simon, R. (1997) Large sample Bayesian infer-
ence on the parameters of the proportional hazard models. Stat
Med ; 16: 2573-85.



BIBLIOGRAPHY 493

[188] Farley, T. M., Ali, M. M. and Slaymaker, E. (2001) Competing
approaches to analysis of failure times with competing risks.
Statist. Med.; 20: 3601-10.

[189] Farrington, C. P. (1996) Interval censored survival data: a gen-
eralized linear modelling approach. Statist. Med.; 15: 283-92.

[190] Farrington, C. P. (2000) Residuals for proportional hazards
models with interval-censored survival data. Biometrics; 56:
473-82.

[191] Faucett, C. L., Schenker, N. and Taylor, J. M. (2002) Survival
analysis using auxiliary variables via multiple imputation, with
application to AIDS clinical trial data. Biometrics; 58: 37-47.

[192] Fay, M. P. (1999) Comparing several score tests for interval
censored data. Statist. Med.; 18: 273-85.

[193] Fay, M. P. and Graubard, B. I. (2001) Small-sample adjust-
ments for Wald-type tests using sandwich estimators. Biomet-
rics; 57: 1198-206.

[194] Feigl, P. and Zelen, M. (1965) Estimation of exponential sur-
vival probabilities with concommitant information. Biometrics
21: 826-38.

[195] Figueiras, A., Domenech-Massons, J. M. and Cadarso, C.
(1998) Regression models: calculating the confidence interval
of effects in the presence of interactions. Statist. Med.; 17:
2099-105.

[196] Fine, J. P. and Gray, R. J. (1999) A proportional hazards model
for the subdistribution of a competing risk. J. Amer. Statist.
Assoc.; 94: 496-509.

[197] Fine, J. P. and Jiang, H. (2000) On association in a copula with
time transformations. Biometrika; 87: 559-571.

[198] Finkelstein, D. M. and Wolfe, R. A. (1985) A semiparametric
model for regression analysis of interval-censored failure time
data. Biometrics; 41: 933-45.

[199] Finkelstein, D. M. (1986) A proportional hazards model for
interval-censored failure time data. Biometrics; 42: 845-854.



494 BIBLIOGRAPHY

[200] Finkelstein, D. M., Moore, D. F. and Schoenfeld, D. A. (1993)
A proportional hazards model for truncated AIDS data. Bio-
metrics; 49: 731-740.

[201] Finkelstein, D. M. and Schoenfeld, D. A. (1994) Analysing sur-
vival in the presence of an auxiliary variable. Stat Med ; 13:
1747-54.

[202] Flandre P. and O’Quigley J. (1995) A two stage design with sur-
rogate endpoints for survival studies. Biometrics; 51: 969-976.

[203] Fleming, T. R. and Harrington, D. P. (1991). Counting Processes
and Survival Analysis., New York: Wiley.

[204] Fleming, T. R. and DeMets D. L. (1996) Surrogate end points in
clinical trials: Are we being misled. Annals of Internal Medicine
125: 605-13.

[205] Ford, I., Norrie, J. and Ahmadi, S. (1995) Model inconsis-
tency illustrated by the Cox proportional hazards model. Sta-
tist. Med.; 14: 735-46.

[206] France, L. A., Lewis, J. A. and Kay, R. (1991) The analy-
sis of failure time data in crossover studies. Statist. Med.; 10:
1099-113.

[207] Frankel, P. and Longmate, J. (2002) Parametric models for ac-
celerated and long-term survival: a comment on proportional
hazards. Statist. Med.; 21: 3279-89.

[208] Fraser, G. E. and Shavlik, D. J. (1999) The estimation of life-
time risk and average age at onset of a disease using a multivari-
ate exponential hazard rate model. Statist. Med.; 18: 397-410.

[209] Freedman L. S., Graubard B. I. and Schatzin A. (1992) Statis-
tical validation of intermediate endpoints for chronic diseases.
Statistics in Med.; 11: 167-78.

[210] Freedman, L. S. and Spiegelhalter, D. J. (1992) Application of
Bayesian statistics to decision making during a clinical trial.
Statist. Med.; 11: 23-35.

[211] Freireich, E. J., Gehan, E., Frei, E., Schroeder, L. R., Wolman,
I. J., Anbari, R., Burgert, E., Mills, S. D., Pinkel, D., Selawry,



BIBLIOGRAPHY 495

O. S., Moon, J. H., Gendel B. R., Spurr, C. L., Storrs, R.,
Haurani, F., Hoogstraten, B. and Lee, S. (1963) The Effect
of 6-Mercaptopurine on the Duration of Steroid-induced Re-
missions in Acute Leukemia: A Model for Evaluation of Other
Potentially Useful Therapy. Blood : 21: 699-716.

[212] Friedman, Michael (1982) Piecewise exponential models for sur-
vival data with covariates. Ann. Statist.; 10: 101-113.

[213] Fusaro, R. E., Nielsen, J. P. and Scheike, T. H. (1993) Marker-
dependent hazard estimation: an application to AIDS. Statist.
Med.; 12: 843-65.

[214] Fusaro, R. E., Bacchetti, P. and Jewell, N. P. (1996) A com-
peting risks analysis of presenting AIDS diagnoses trends. Bio-
metrics; 52: 211-25.

[215] Gail, M. H. (1981) Evaluating serial cancer marker studies in
patients at risk of recurrent disease. Biometrics; 37: 67-78.

[216] Gail, M. H., Wieand, S. and Piantadosi, S. (1984) Biased es-
timates of treatment effect in randomized experiments with
nonlinear regressions and omitted covariates. Biometrika; 71:
431-444.

[217] Galai, N., Simchen, E., Braun, D., Mandel, M. and Zitser-
Gurevich, Y. (2002) Evaluating inter-hospital variability in
mortality rates over time, allowing for time-varying effects. Sta-
tist. Med.; 21: 21-33.

[218] Gehan, E. A. (1965) A generalized two-sample Wilcoxon test
for doubly censored data. Biometrika 52: 650-53.

[219] Gelfand, A. E. and Mallick, B. K. (1995) Bayesian analysis of
proportional hazards models built from monotone functions.
Biometrics; 51: 843-52.

[220] Gelfand, A. E., Ghosh, S. K., Christiansen, C., Soumerai,
S. B. and McLaughlin, Thomas J. (2000) Proportional hazards
models: a latent competing risk approach. J. Roy. Statist. Soc.
Ser. C ; 49: 385-397.



496 BIBLIOGRAPHY

[221] Gentleman, R. and Crowley, J. (1991) Local full likelihood es-
timation for the proportional hazards model. Biometrics; 47:
1283-1296.

[222] Ghosh, D. (2003) Goodness-of-fit methods for additive-risk
models in tumorigenicity experiments. Biometrics; 59: 721-6.

[223] Gilbert, P. B. (2000) Comparison of competing risks failure time
methods and time-independent methods for assessing strain
variations in vaccine protection. Statist. Med.; 19: 3065-86.

[224] Gilbert, P. B., Wei, L. J., Kosorok, M. R. and Clemens, J. D.
(2002) Simultaneous inferences on the contrast of two hazard
functions with censored observations. Biometrics; 58: 773-80.

[225] Gill, R. D. (1980) Censoring and stochastic integrals. Mathemat-
ical Centre Tracts 124, Mathematisch Centrum, Amsterdam.

[226] Gill, R. D. (1986) Understanding Cox’s regression model:
A martingale approach. J. Amer. Statist. Assoc.; 79: 441-447.

[227] Gill, R. D. and Schumacher, M. (1987). A simple test of the
proportional hazards assumption. Biometrika; 74: 289-300.

[228] Giorgi, R., Abrahamowicz, M., Quantin, C., Bolard, P., Esteve,
J., Gouvernet, J. and Faivre, J. (2003) A relative survival
regression model using B-spline functions to model non-
proportional hazards. Statist. Med.; 22: 2767-84.

[229] Goetghebeur, E. and Ryan, L. (2000) Semiparametric regres-
sion analysis of interval-censored data. Biometrics; 56: 1139-44.

[230] Goggins, W. B., Finkelstein, D. M., Schoenfeld, D. A. and
Zaslavsky, A. M. (1998) A Markov chain Monte Carlo EM
algorithm for analyzing interval-censored data under the Cox
proportional hazards model. Biometrics; 54: 1498-507.

[231] Goggins, W. B., Finkelstein, D. M. and Zaslavsky, A. M. (1999)
Applying the Cox proportional hazards model when the change
time of a binary time-varying covariate is interval censored.
Biometrics; 55: 445-451.

[232] Goggins, W. B. and Finkelstein, D. M. (2000) A proportional
hazards model for multivariate interval-censored failure time
data. Biometrics; 56: 940-3.



BIBLIOGRAPHY 497

[233] Gore, S. M., Pocock, S. J. and Kerr, G. R. (1984) Regression
models and nonproportional hazards of the analysis of breast
cancer survival. Applied Statist. 33: 176-196.

[234] Gorfine, M., Hsu, L. and Prentice, R. L. (2004) Nonparametric
correction for covariate measurement error in a stratified Cox
model. Biostatistics; 5: 75-87.

[235] Gorgens, T. (2003) Semiparametric estimation of censored
transformation models. J. Nonparametr. Stat.; 15: 377-393.

[236] Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M.
(1999) Assessment and comparison of prognostic classification
schemes for survival data. Statist. Med.; 18: 2529-45.

[237] Grambsch, P. M., Therneau, T. M. and Fleming, T. R. (1995)
Diagnostic plots to reveal functional form for covariates in mul-
tiplicative intensity models. Biometrics; 51: 1469-82.

[238] Gray, R. J. (1990) Some diagnostic methods for Cox regression
models through hazard smoothing. Biometrics; 46: 93-102.

[239] Gray, R. J. (1992) Flexible methods for analyzing survival data
using splines with application to breast cancer prognosis. J.
American Statist. Assoc.; 87: 942-951.

[240] Gray, R. J. (1994) Spline-based tests in survival analysis. Bio-
metrics; 50: 640-52.

[241] Gray, R. J. (1994) A Bayesian analysis of institutional effects
in a multicenter cancer clinical trial. Biometrics; 50: 244-53.

[242] Gray, R. J. (2000) Estimation of regression parameters and the
hazard function in transformed linear survival models. Biomet-
rics; 56: 571-6.

[243] Greene, T. (2001) A model for a proportional treatment effect
on disease progression. Biometrics; 57: 354-60.

[244] Greenland, S. (2003) Generalized conjugate priors for Bayesian
analysis of risk and survival regressions. Biometrics; 59: 92-9.

[245] Gustafson, P. (1995) A Bayesian analysis of bivariate survival
data from a multicentre cancer clinical trial. Statist. Med.; 14:
2523-35.



498 BIBLIOGRAPHY

[246] Han, Aaron K. (1989) Asymptotic efficiency calculations of the
partial likelihood estimator. J. Econometrics; 41: 237-250.

[247] Hannan, P. J., Shu, X. O., Weisdorf, D. and Goldman, A. (1998)
Analysis of failure times for multiple infections following bone
marrow transplantation: an application of the multiple failure
time proportional hazards model. Statist. Med.; 17: 2371-80.

[248] Hansen, B. E., Thorogood, J., Hermans, J., Ploeg, R. J., Van
Bockel, J. H. and Van Houwelingen, J. C. (1994) Multistate
modelling of liver transplantation data. Stat Med ; 13: 2517-29.

[249] Harrell, F. E., Lee, K. L., Califf, R. M., Pryor, D. B. and Rosati,
R. A. (1984) Regression modelling strategies for improved prog-
nostic prediction. Statist. Med.; 3: 143-52.

[250] Harrell, F. E., Margolis, P. A., Gove, S., Mason, K. E.,
Mulholland, E. K., Lehmann, D., Muhe, L., Gatchalian, S.
and Eichenwald, H. F. (1998) Development of a clinical pre-
diction model for an ordinal outcome: the World Health Or-
ganization Multicentre Study of Clinical Signs and Etiologi-
cal agents of Pneumonia, Sepsis and Meningitis in Young In-
fants. WHO/ARI Young Infant Multicentre Study Group. Sta-
tist. Med.; 17: 909-44.

[251] Harrington, D. P., Fleming, T. R. and Green, S. J. (1982). Pro-
cedures for serial testing in censored survival data. In Institute
of Mathematical Statistics Lecture Notes-Monograph Series:
Survival Analysis, Eds John Crowley and Richard Johnson, 269-
286.

[252] Harrington, D. P. and Fleming, T. R. (1982) A class of rank test
procedures for censored survival data. Biometrika: 553-566.

[253] Hashemi, R. and Commenges, D. (2002) Correction of the
p-value after multiple tests in a Cox proportional hazard model.
Lifetime Data Anal.; 8: 335-348.

[254] Hastie, T. J. and Tibshirani, R. J. (1990) Generalized additive
models. Chapman and Hall Ltd.. London.

[255] Hastie, T. J. and Tibshirani, R. J. (1993) Varying-coefficient
models. J. Roy. Statist. Soc. Ser. B ; 55: 757-796.



BIBLIOGRAPHY 499

[256] Hastings, N. and Peacock, J. (1975) Statistical Distributions;
Butterworth. London.

[257] Hatteville, L., Mahe, C. and Hill, C. (2002) Prediction of the
long-term survival in breast cancer patients according to the
present oncological status. Statist. Med.; 21: 2345-54.

[258] Hauck, W. W., McKee, L. J. and Turner, B. J. (1997) Two-part
survival models applied to administrative data for determining
rate of and predictors for maternal-child transmission of HIV.
Statist. Med.; 16: 1683-94.

[259] He, X. and Fung, W. K. (1999) Method of medians for lifetime
data with Weibull models. Statist. Med.; 18: 1993-2009.

[260] He, W. and Lawless, J. F. (2003) Flexible maximum likelihood
methods for bivariate proportional hazards models. Biometrics;
59: 837-848.

[261] Healy, M. (1984) The use of R2 as a measure of goodness of fit.
J. Roy. Statist. Soc. Series A; 147: 608-09.

[262] Heinze, G. and Schemper, M. (2001) A solution to the problem
of monotone likelihood in Cox regression. Biometrics; 57: 114-9.

[263] Heinzl, H., Kaider, A. and Zlabinger, G. (1996) Assessing inter-
actions of binary time-dependent covariates with time in Cox
proportional hazards regression models using cubic spline func-
tions. Statist. Med.; 15: 2589-601.

[264] Heisey, D. M. and Foong, A. P. (1998) Modelling time-
dependent interaction in a time-varying covariate and its ap-
plication to rejection episodes and kidney transplant failure.
Biometrics; 54: 712-9.

[265] Heller, G. and Simonoff, J. S. (1992) Prediction in censored
survival data: a comparison of the proportional hazards and
linear regression models. Biometrics; 48: 101-15.

[266] Heller, G. (2001) The Cox proportional hazards model with
a partly linear relative risk function. Lifetime Data Anal.; 7:
255-277.



500 BIBLIOGRAPHY

[267] Heller, G. and Venkatraman, E. S. (2004) A nonparametric test
to compare survival distributions with covariate adjustment.
J. R. Stat. Soc. Ser. B.; 66: 719-733.

[268] Hemyari, P. (2000) Robustness of the quartiles of survival time
and survival probability. J Biopharm Stat ; 10: 299-318.

[269] Henderson, R. and Oman, P. (1993) Influence in linear hazard
models. Scand. J. Statist.; 20: 195-212.

[270] Henderson, R. (1995) Problems and prediction in survival-data
analysis. Statist. Med.; 14: 161-84.

[271] Henze, Norbert (1993) A quick omnibus test for the propor-
tional hazards model of random censorship. Statistics; 24:
253-263.

[272] Herndon, J. E. and Harrell, F. E. (1995) The restricted cubic
spline as baseline hazard in the proportional hazards model
with step function time-dependent covariables. Statist. Med.;
14: 2119-29.

[273] Herring, A. H. and Ibrahim, Joseph G. (2001) Likelihood-based
methods for missing covariates in the Cox proportional hazards
model. J. Amer. Statist. Assoc.; 96: 292-302.

[274] Hertz-Picciotto, I. and Rockhill, B. (1997) Validity and effi-
ciency of approximation methods for tied survival times in Cox
regression. Biometrics; 53: 1151-6.

[275] Hess, K. R. (1994) Assessing time-by-covariate interactions in
proportional hazards regression models using cubic spline func-
tions. Statist. Med.; 13: 1045-62.

[276] Hess, K. R. (1995) Graphical methods for assessing violations of
the proportional hazards assumption in Cox regression. Statist.
Med.; 14: 1707-23.

[277] Hess, K. R., Serachitopol, D. M. and Brown, B. W. (1999) Haz-
ard function estimators: a simulation study. Stat Med ; 18: 3075-
88.

[278] Hill, C. (1981) Asymptotic relative efficiency of survival tests
with covariates. Biometrika; 68: 699-702.



BIBLIOGRAPHY 501
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Statistique Appliquée 32: 39-45.

[471] O’Quigley, J. and Schwartz D. (1986) Comparaison de plusieurs
pourcentages lorsque les effectifs théoriques sont faibles. Revue
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