Bernd Moller
Uwe Reuter

Uncertainty
rorecasting in
Engineering

@ Springer



Bernd Moller - Uwe Reuter

Uncertainty Forecasting in Engineering



Bernd Moller - Uwe Reuter

Uncertainty Forecasting
in Engineering

With 101 Figures and 15 Tables

@ Springer



Universititsprofessor Dr.-Ing. habil. Bernd Moller

Technische Universitat Dresden
Fakultdt Bauingenieurwesen
Institut fiir Statik und Dynamik der Tragwerke

01062 Dresden
Germany

bernd.moeller@tu-dresden.de

Dr.-Ing. Uwe Reuter

Technische Universitat Dresden
Fakultat Bauingenieurwesen
Institut fiir Statik und Dynamik der Tragwerke

01062 Dresden
Germany

uwe.reuter@tu-dresden.de

Library of Congress Control Number: 2007930551

ISBN 978-3-540-37173-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Digital data supplied by the author
Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig
Cover: Frido Steinen-Broo, eStudio Calamar, Spain

Printed on acid-free paper 68/3180/YL-543210



Preface

Forecasting is fascinating. Who wouldn’t like to cast a glimpse into the future?
Far removed from metaphysics, mathematical methods such as time-lapse
techniques, time series or artificial neural netwoks offer a rational means of
achieving this. A precondition for the latter is the availability of a sequence
of observed values from the past whose temporal classification permits the
deduction of attributes necessary for forecasting purposes.

The subject matter of this book is uncertain forecasting using time series
and neural networks based on uncertain observed data. ‘Uncertain’ data im-
plies information exhibiting inaccuracy, uncertainty and questionability. The
uncertainty of individual observations is modeled in this book by fuzziness.
Sequences of uncertain observations hence constitute fuzzy time series. By
means of new discretization techniques for uncertain data it is now possible
to correctly and completely retain data uncertainty in forecasting work. The
book presents numerical methods which permit successful forecasting not only
in engineering but also in many other fields such as environmental science or
economics, assuming of course that a suitable sequence of observed data is
available. By taking account of data uncertainty, the indiscriminate reduction
of uncertain observations to real numbers is avoided. The larger information
content described by uncertainty is retained, and compared with real data,
provides a deeper insight into causal relationships. This in turn has practical
consequences as far as the fullfilment of technical requirements in engineering
applications is concerned.

The book is aimed at engineers as well as professionals working in related
fields. For readers with a basic engineering training, a knowledge of classi-
cal time series analysis and random processes would be helpful. The book is
structured in such a way, however, that the reader will find no difficulty in
working through the material without any special prior knowledge.

The book is mainly based on research work funded by the German Re-
search Foundation (DFG), whose financial support the authors gratefully ac-
knowledge. We also express our thanks to Dr Ian Westwood (PhD, Civil En-
gineering) for translating Sect. 1 and Sects. 3 to 5. Finally, we wish to thank
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the publishers ‘Springer-Verlag’ for their receptiveness regarding the subject

matter, their valuable support during the development of the manuscript, and
the final printing of the book.

Dresden, April 2007 Bernd Moller Uwe Reuter
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Introduction

1.1 Application of Time Series for Forecasting in
Engineering

In engineering as well as in other fields such as the natural sciences, environ-
mental science or economics, many processes exist for which ordered sequences
of observed values are available. Examples of the latter include the settlement
of a bridge measured at specific points in time, traffic loads on roads, snow
depths measured over many years, the height of wheat stalks, the diameter
of tree trunks or the production output in industry. The observed values, i.e.
settlements, traffic loads, snow depths etc., exist for a past observation period.
Under certain conditions these constitute a time series.

A time series is a temporally ordered sequence of observed values. Precisely
one observed value is assigned to each discrete observation time 7 € T, where
T represents a set of equidistant points in time. The set of observation time
points 7 =1, 2, ..., N is referred to as the observation period.

In classical time series analysis the observed values are real-valued num-
bers or natural numbers, i.e. variables to which a precise numerical value is
assigned.

Time series comprised of precise observed values are shown in Figs. 1.1,
1.2 and 1.3.

Forecasting of the future progression of time series containing precise ob-
served values and hence forecasting of the process described by the observed
values is the subject matter of classical time series analysis [6, 8, 60]. A forecast
is possible due to the fact that particular dependencies may be deduced from
the significant sequence of the observed values. In order to identify dependen-
cies and laws within a time series, two methods are applied in classical time
series analysis: descriptive time series analysis and stochastic models. In de-
scriptive time series analysis descriptive models are used to identify attributes
such as trends, seasonal variations or cyclic fluctuations. An important de-
scriptive model is the component model. Stochastic models on the other hand
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Fig. 1.1. Time series of the number of vehicles crossing the bridge ‘Blaues Wunder’
in Dresden [Source: Dresden Dept. of Road Construction and Public Works]
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Fig. 1.2. Time series of the discount rate of the ‘Deutsche Bundesbank’ [Source:
‘Deutsche Bundesbank’ |
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Fig. 1.3. Time series of the number of building approvals in Saxony [Source: Saxony
State Office of Statistics]
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assume stochastic properties, and treat the time series as the realization of a
stochastic process.

If the observed values represent measured values, it is often not possible
to assign precise numerical values to the observed data; they then possess
data uncertainty. Data uncertainty in engineering practice is mainly due to
inaccuracies in measurements, incomplete sets of observations or difficulties
in performing measurements, e.g. due to local conditions. The occurrence of
data uncertainty also depends on the particular observation scale adopted, i.e.
whether a process is described on the microscale, mesoscale or macroscale. For
example, although it is theoretically possible to precisely state the commence-
ment of material damage on the microscale, the commencement of damage on
the macroscale may be only diagnosed uncertain. Because the observation
scale cannot always be chosen arbitrarily, however, the associated uncertainty
must be accepted.

Measurement inaccuracy results among other things from the limited pre-
cision of a measuring device or from read errors. Geometric data in particular
cannot be measured accurately in certain cases. Examples of this include water
level measurements on a moving water surface, the thickness of a structural
element with a very rough surface or the transport of bed material in a river.
The stipulation of some sort of average value, however, means that important
information may be lost.

Incomplete sets of observations signalize an information deficit due for ex-
ample to gaps in a series of measurements resulting from the malfunctioning
of measuring devices, irregularities in the reading of measurements or inade-
quate planning of the measurement regime. The measurement of parameters
within a medium or construction is often extremely difficult. The corrosion
behavior of steel reinforcement or the position of steel reinforcement in an RC
structural element, for example, cannot be measured with absolute certainty.
The same applies to crack formation in concrete elements or the quantity of
water transported through a flow cross-section.

Sequences of observations may also consist of linguistic estimates. Ex-
amples of this include a description of concrete flaking on bridges (see Fig.
1.4), a description of the degree of discoloration of a surface or the extent of
cloud cover. Linguistic estimates are a priori imprecise, as they express the
subjective opinion of an expert. On the other hand, time series of linguistic
observations do in fact open up new fields of application in forecasting.

TG -
2 - > z 2
b = = s )
< oo e o)
= 2 g - =
1991 1994 1997 2000 2003 T

Fig. 1.4. Time series comprised of linguistic estimates of concrete flaking
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Fig. 1.5 shows a comparison between a time series comprised of precise
observed values and a time series consisting of uncertain observed values. The
uncertainty in this case is described by an interval. This is a very simple uncer-
tainty model. In this book the more informative uncertainty models fuzziness
and fuzzy randomness are used to describe imprecise data, i.e. uncertain data.
An overview of these uncertainty models is given in the following section (Sect.
1.2). New forms of representation of these uncertainty models suitable for time
series analysis are derived in Sect. 2.

birth rate

Iﬂowr?eullhﬂ

Fig. 1.5. Time series containing precise data versus time series containing uncertain
data

By means of the introduced uncertainty models it is possible extend the
methods of classical time series analysis in such a way as to permit the fore-
casting of future uncertain results under due consideration of data uncertainty.
By this means it is possible to dispense with the artificial idealization of real
data, the forecasting of which may lead to unrealistic results. The decision
as to whether the methods of classical time series analysis or the extended
methods presented in this book should be applied depends on the particular
problem in question and the existing data base.

The subject matter of this book concerns time series comprised of impre-
cise, i.e. uncertain, observed values. This implies that an individual observed
value may be uncertain. By this means it is possible to realistically model the
observed values in important practical cases. Because the forecasted values
are also uncertain, forecasts are obtained with higher predictive capability.

Three methods are described in the book for forecasting time series com-
prised of uncertain observed values:

e the fuzzy component model (Sect. 3.2) as an extension of descriptive meth-
ods,

e the fuzzy random process as an extension of stochastic models (Sect. 4.2)
and
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e artificial neural networks for uncertain data as an extension of artificial
neural networks for real-valued data (Sect. 4.3)

1.2 Data Uncertainty and Fuzzy Time Series

If it is not possible to assign a precise numerical value to an observed value,
the observed value in question possesses uncertainty. How can this uncertainty
be described mathematically?

A variety of methods exist for classifying and distinguishing uncertainty.
Decisive in this respect are the causes of uncertainty. If the cause is purely
random, the uncertainty is referred to as aleatoric uncertainty. This is de-
scribed with the aid of conventional and highly-developed stochastic models.
If the uncertainty is a result of objective and subjective factors, it is then
referred as epistemic uncertainty. Models for describing epistemic uncertainty
include, among others, fuzziness and intervals. If it is necessary to take ac-
count of both aleatoric and epistemic effects, uncertainty is accounted for by
the model fuzzy randomness.

In the case of time series the uncertainty of the individual observed values
as well as the interpretation of a sequence of uncertain observed values are of
interest.

The uncertainty of a single observed value is always epistemic. The uncer-
tain observed value is thus modeled as a fuzzy variable, as illustrated in Fig.
1.6. The major causes of this type of uncertainty have already been outlined
in Sect. 1.1.

w(z) A
1 4
T membership
function
0 f f >
Ty, Ly, z

Fig. 1.6. Fuzzy variable

The fuzzy variable Z may take on values in the interval [zg;; o). The
values are assessed between zero and unity by means of a membership function
uz(z). This assessment reflects the subjective and objective causes of the
existing uncertainty, and may be used to describe the uncertain observed
value. Fuzzy variables contain intervals and real numbers as special cases, as
illustrated in Fig.1.7.
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w.(z) A w(z) A
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| | |
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Ty, Ty z Ty = Ty z
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Fig. 1.7. Interval and real-valued number as special cases of a fuzzy variable &

Modeling of the individual observed values as fuzzy variables results in
so-called fuzzy time series, as shown by way of example in Fig. 1.8. Starting
from the uncertain observed values, the aim is to forecast future uncertain
values. For this purpose the dependencies existing in the sequence of uncertain
observed values are analyzed and modeled.

T A

I I I I I I I I I I »
T T T T T T T T T »

1 2 3 ... ook ... N-2 N-1 N N+1 N+2 N+3 T

elapsed time period future time period

Fig. 1.8. Time series containing fuzzy variables

Modeling as a fuzzy random process. Forecasts are possible if it may
be assumed that the fuzzy time series may be modeled with the aid of a
fuzzy random process. A fuzzy random process is defined as a family of fuzzy
random variables X .

Fuzzy random variables, as introduced in Sect. 2.2, belong to the uncer-
tainty model fuzzy randomness. A time series of fuzzy data may be viewed
as a random realization of a fuzzy random process. The realizations of this
process are uncertain and thus referred to as fuzzy variables.

Only one sequence of uncertain observed values is available for determin-
ing the underlying fuzzy random process. Methods for specifying the fuzzy
random process in any given case are developed in Sect. 3.5. A knowledge of
this process is a precondition for the forecast. The required forecasting meth-
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ods are formulated in Sect. 4.2. By means of a new incremental discretization
of the fuzzy variables and fuzzy random variables the uncertainty is fully re-
tained in the forecast. The uncertainty is also not artificially increased. This
incremental representation is absolutely necessary for a direct description as
well as for modeling and forecasting purposes. ‘direct’ implies that the se-
quence of the fuzzy variables is retained during the description, modeling and
forecasting phases. No form of defuzzification or refuzzification is undertaken.

Modeling using Artificial Neural Networks. As an alternative to fuzzy
random processes, methods for modeling and forecasting fuzzy time series
using Artificial Neural Networks are developed in Sect. 3.6 and Sect. 4.3, re-
spectively. The conventional multilayer perceptrons associated with the latter
are extended in such a way that they may be applied to time series for fuzzy
variables. A precondition for this extension is again the new incremental dis-
cretization mentioned in the foregoing. An Artificial Neural Network is first
trained in an optimization process. Training is carried out on the basis of
the particular fuzzy time series concerned. Different forecasting strategies are
developed for forecasting purposes.

The use of Artificial Neural Networks does not require an explicit deter-
mination of the underlying fuzzy random process.

1.3 Examples of Fuzzy Time Series

The practical relevance of fuzzy time series is demonstrated by the following
two examples. Further examples are given in Sect. 5.

The total global ozone change between 1965 and 2000 is shown in Fig. 1.9.
The time series from 1980 onwards reflects the uncertainty of the measured
data. The reason for this uncertainty is due to inaccuracies in measurements.
The uncertainty is hence epistemic in nature and may be modeled by fuzziness.

(=]

VAN
N/

Qzone change (%)
R

— Average change A
[ Uncertainty range

A
I

1 ] ] | ] ] | |
1965 1970 1975 1980 1985 1990 1995 2000
Year

Fig. 1.9. Uncertain time series of total global ozone change [69]
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The second example (Fig. 1.10) concerns measurements of the earth pres-
sure acting on a wall. Several closely arranged pressure transducers are in-
stalled on the wall. The measured values differ from one pressure transducer to
the next. The different observed values signalize uncertainty. Instead of com-
puting an average value, this uncertainty is taken into consideration. Fuzzy
variables are constructed for the measured values at each point in time. Fig.
1.10 shows a cut-out segment of the obtained fuzzy time series. The complete
time series begins with measurements made in 1999.

5. A [KPA]
36 4 q 4 <] 444444(](]4(]4
4q. .q4d )
444‘4 44(] 444444 44 a4
sl 4.44"«4 ‘ 444444444-< ¢ 444 q4-,
e 2006 2007

Fig. 1.10. Uncertain time series of earth pressure measurements (cut-out segment)
[14]

Fuzzy time series analogous to those presented in the above examples are
frequently encountered in engineering and environmental science. These share
the common feature of measurable observed values. Forecasting of the latter
is possible using the forecasting strategies developed in Sect. 4. If the forecasts
of measurable observed values are combined with a computational model, it is
also possible to forecast non-measurable observed values such as the damage
state of a structure. Model-based forecasting strategies for this purpose are
developed and demonstrated by way of examples in Sect. 5.



2

Mathematical Description of Uncertain Data

In this chapter fuzzy variables and fuzzy random variables for the mathe-
matical description of uncertain data are introduced and new forms of their
numerical representation especially suitable for uncertainty forecasting are de-
veloped. The mathematical description of uncertain data is limited to these
basic concepts, which are essential for forecasting by means of fuzzy random
processes and artificial neural networks Fuzzy set theory forms the mathe-
matical basis for fuzzy variables. Several introductory books exist which deal
with fuzzy set theory, see e.g. [5, 11, 36, 71]. Fuzzy random variables couple
the uncertainty models of fuzziness and randomness. The underlying princi-
ples of this theory are presented in [5, 27, 28, 36, 44, 53, 66]. The numerical
representation is based on the new [,r,-discretization and is a prerequisite
for the exact numerical reproduction of the uncertain values of a time series.

2.1 Fuzzy Variables

Definition 2.1. A fuzzy variable & is defined as an uncertain subset of the
fundamental set X.

z = {z, pz(z) |z € X} (2.1)

.

The uncertainty is assessed by the membership function uz(x). A fuzzy vari-
able # and its membership function uz(x) are shown in Fig. 2.1.

Definition 2.2. A normalized membership function pz(z) is defined as fol-
lows:

0

/N

pi(z) <1 YzelR (2.2)

Iz, z, with pz(z) =1V xe [z,z,]. (2.3)

*
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Ho(z) A

|
I »

T T T 2l »
x

T, T,

T

Fig. 2.1. Fuzzy variable # and its membership function uz(z)

A fuzzy variable T is referred to as convex if its membership function pz(x)
monotonically decreases on each side of the maximum value, i.e. if

pwz(x2) = min [pz(x1); pz(rs)] VYar,za,23 € R with o <zy <2z (2.4)

applies.
The membership function may be continuous or discrete. Piecewise con-
tinuous membership functions are dealt with in the following.

Definition 2.3. A convez fuzzy variable T is referred to as a fuzzy number
if its membership function pz(x) is piecewise continuous and if it has the
functional value pz(x) = 1 at precisely one of the x values with x = x; = x,
according to Eq. (2.5).

z; =minfz € R| pz(x) = 1] (2.5)
and z, = max[zeR | pz(z) = 1]

In the case x; < x, the fuzzy variable T constitutes a fuzzy interval. The point
x; is referred to as the peak point of the fuzzy variable. .

In order to describe a fuzzy number Z; or a fuzzy interval Z; the so-called
LR fuzzy number or the LR fuzzy interval may be used (see amongst others
[5, 11, 36, 71]). The membership function of an LR fuzzy number or LR fuzzy
interval is described by an L(-)-function and an R(-)-function. If the functions
L(-) and R(-) fulfill the following four conditions:

and R(-) are piecewise continuous from the left (
and R(-) are monotonically non-increasing (
0)=R(0)=1 (
Ly)=0and R(z2) =0, Vy>landVz>1. (

the membership function pz(z) of a fuzzy variable & may be formulated ac-
cording to Eq. (2.10).
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L (%) ifz <a
puz(x) = 1 ife;, <z <z +s (2.10)
R(%) ifx >z +s

The variable x; constitutes the peak point. The variables a, b and s = x, — x;
are parameters of the membership function as shown in Fig. 2.2.

(z) A peak point
1 4

f t 1 t >
oy Z Z T, T

a=0r

Fig. 2.2. LR-representation of a fuzzy variable &

In the special case a = 0 or b = 0 the left or right boundary functions L(-)
and R(-) are defined by Eq. (2.11) and Eq. (2.12), respectively.

L(ml_x> —0 ifz < (2.11)

a
R(W) —0 ifz>a+s (2.12)

Under the implicit convention that the boundary functions L(-) and R(-) are
known, the common abridged notation Z; = (z4=01; Z1; Tr; Ta=0r)Lr 1S used
for describing a fuzzy interval Z;. In order to describe a fuzzy number Z, with
2, = x; the abridged notation Tz = (Xa=01; Z1; Ta=0+)LR 18 used.

2.1.1 Classical and Incremental Discretization of Fuzzy Variables
a-Discretization of Fuzzy Variables

For all « € (0,1] closed finite intervals [za; Zqr] may be extracted from a
convex fuzzy variable £. The boundaries x,; and x,, of the intervals are given
by Egs. (2.13) and (2.14), respectively.

Ty = min[z € R| pz(z) = o (2.13)
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Tor = max[z € R| pz(x) = o] (2.14)
These intervals are referred to as a-level sets X . The set
Sz ={x e R|pz(x) > 0} (2.15)

of a fuzzy variable z is referred to as the support. The support Sz of a fuzzy
variable Z is referred to as an a-level set X, with @ = 0 notwithstanding Egs.
(2.13) and (2.14). The interval boundaries z,; and x,, of the a-level set X,
are then given by Egs. (2.16) and (2.17).

Tal = 'hn}ro [min [x eR|pz(x) > o/]] for a=0 (2.16)
— 3 _ / _
Tar = a,h_)H}rO [max [z € R|pz(z) > a']] for a=0 (2.17)

For different a-level sets of the same fuzzy variable = the following holds:
Xo, € Xo, VYay,0,€[0;1] with «a; < ag. (2.18)

Thus a convex fuzzy variable £ may be characterized by a family of a-level
sets X, according to Eq. (2.19).

7 = (Xo = [Tar, Tar] | a € [0,1]) (2.19)

If the number of a-level sets is denoted by n, then for ¢ = 1,2,...,n — 1 the
following holds provided that n > 2:

0 < (677 < Q41 < 1 (220)
ar=0 and a, =1 (2.21)
Xorss € Xa, - (2.22)

Example 2.4. A convex fuzzy variable & characterized by n = 4 «a-level sets
X, is shown in Fig. 2.3. -

lara-Discretization of Fuzzy Variables

The a-level sets X, are now considered separately for ¢ = 1,2,...,n — 1 and
L =n.

Fori =1,2,...,n—1 each a-level set X,, of a convex fuzzy variable & may
be specified as the union of the a-level set X and the set X* according
to Eq. (2.23).

Qi1

Xo, = Xay VXS, Vag,aip1 €[0;1] with o < gy (2.23)

The set X is defined by two closed finite intervals [2q,11; Ta,ir] and [Za,ri;
Tq,rr]. The interval boundaries of the set X% are given by Egs. (2.24) and
(2.25).
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_o-level set

XQ\
ZAN—

:
‘
i
|

i

|

i

i

i

i

i
t
Z,

X,
‘ . ‘ >
L1 Loyt Loyt Loyt Loyr Logr Loy Loyr Z
1 2 3 4 4 3 2 1
Fig. 2.3. a-discretization of a fuzzy variable
Toyll = Tay,l and  To,r = Tagl (2.24)
Tagrl = Tayoyr  a0d  Zopr = Tagr (2.25)

With the aid of these definitions the interval boundaries of the a-level set X,
may be expressed by the following equations.

Tasl = Tagyql — A:Z?ml with Afra,,l = Zoylr — Tayll (226)

i

Tayr = Tayr + Aa,r With  Azg,r = ZTa,rr — Tagr (2.27)

The terms Az, and Az,,, are referred to as lorq-increments and permit
the l,ry-discretization of a fuzzy variable.

For i = n the following equations hold, whereby the term Ax,,; is assigned
to the peak point z;.

Tyl = Ao, with Az, =x (2.28)

n

Tap,r = Ta,l + AZa,,r with Az, , =z, — 2y (2.29)

The a-level sets must fulfill Eq. (2.18). For this reason the [, r,-increments of
a convex fuzzy variable  must be non-negative according to Egs. (2.30) and
(2.31). The requirement of non-negativity must not be fulfilled at the peak
point.

Azg=20fori=1,2,..,n—1 (2.30)

Az, 2 0fori=1,2,..,n (2.31)

By way of Egs. (2.26) to (2.31) the l,r,-discretization is introduced. Fig. 2.4
illustrates the [,r,-discretization of a fuzzy variable & for n = 4.
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() A peak point

\
T, AI“I/ T,

oyl Loyt Loyt

ayl Lo

Fig. 2.4. [,ro-discretization of a fuzzy variable

The [,r,-discretization permits an alternative, discrete representation of
a fuzzy variable Z in the form of a column matrix according to Eq. (2.32),

whereby the terms Ax,, Az, ..., Axs, are abridged notations of the [,7,-
increments Axq,1, ATayls -y AZayr-
[ Axall ] [ A.l?l ]
Az, Axo
- JAY S Az,
= L 2.32
X A,I:anr Axn_l,_l ( )
Axagr Ax?nfl
| A-rozlr ] | Az

Remark 2.5. If it is necessary to add a subscript to a fuzzy variable Z, e.g.
Z;, the following notation is adopted.

Azq,1(7) Az1(j)
o I S (233)
Az, r(4) Azon(7)

*

With the introduction of the [,r,-increments Az, and Az,,, the enhance-
ment of the classical L R-representation of a fuzzy variable x follows. Provided
that Eqs. (2.20) to (2.22) hold, the membership function pz(x) of a convex
fuzzy variable Z may then be expressed by Eq. (2.34).
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( Ta; 41— T .
i+1
Loy i (TQ,LL> (@i — i) Faq f Tay ST <Tag

1 ifry<z<z+s
pz(2) = 3 (2.34)

T—Tq

i+1" . _ . L3
Rai,i+1 (TM) (@ip1 — ai) + o if Tajpr < TS Tayr

0 else

\

The gradient of the membership function between the a-levels «; and a;11
(i = 1,2,..,n — 1) is determined by the left and right boundary functions
Lq, ... (-) and Ry, ., (+). The boundary functions L, ,,, () and Ry, ,, (-) must
likewise comply with the conditions given by Egs. (2.6) to (2.9).

Example 2.6. The [,r,-discretization of a fuzzy variable £ and the enhanced
LR-representation according to Eq. (2.34) are demonstrated by way of the
fuzzy number shown in Fig. 2.5.

1:”!,:11.22
z,,=11.4

z,,=11.55

10.0 10.4 10.6 10.8 11. 22 11.4 11 55 z
Fig. 2.5. Exemplary fuzzy number &

The corresponding left and right boundary functions Lq, ,,, (+) and Ry, ., (+)
are given in Table 2.1.

Table 2.1. Left and right boundary functions La, ,,,(-) and Ra, ., (*)

[V

Lag,(y) =1~ Roz,(2) = }1 — zl

Laz,s (y) 1- R&2,3 (z) =3 §(Z + 1)
La, , (y) =(y— 1) Ra, , () =1-2

with y = —ci+1t=® with z = S fei1r

Azail Aa:ai,.
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The membership function pz(z) according to Eq. (2.34) is obtained by
insertion of the l4r,-increments Ax,;; and Az,,, and the interval boundaries
ZTq, and x4, given in Fig. 2.5. .

The [,ry-discretization of a fuzzy variable & presented in this section forms
the basis for the numerical methods developed for analyzing and forecasting
of fuzzy time series.

2.1.2 Incremental Fuzzy Arithmetic

In the context of the analysis and forecasting of fuzzy time series a new fuzzy
arithmetic based on the [,r,-increments is required. For this purpose it is
presupposed that all fuzzy variables are given in [, r,-increment representation
according Eq. (2.32). The following operators are introduced.

Definition 2.7. The l,rq-multiplication of a real-valued [2n, 2n] matriz A by
a fuzzy variable T represented by n «-level sets and 2n l,rqo-increments is
defined by the operator ® according to Eq. (2.85).

AQi=7 (2.35)

The arithmetic operation constitutes the matrixz product according to FEq.
(2.36) and results in the loro-increments Az; (j = 1,2, ..., 2n) of the fuzzy
result variable Z.

a1,1 ar2 ... Aa12n-1 a1,2n Az Az
a21 a2 ... A22n-1 a2 2n Az Azy
= : (2.36)
G2n—1,1 A2n—1,2 - - - G2n—1,2n—1 G2n—1,2n Axop_q Azop_1
a2n,1 asn,2 ... A2p2n—1 a2n,2n Aoy, Azoy,
*

Remark 2.8. Real-valued [2n, 2n] matrices are processed e.g. by the param-
eter specification of fuzzy ARMA processes, see Sect. 3.5.5. -

The fact that the fuzzy result variable Z must comply with Eq. (2.18) means
that Eq. (2.37) must be satisfied for j =1,2,...n—1,n+1,...,2n.

AZ]' = aj71A1'1 + ...+ ajvgnA:in =0 (237)

The requirement of non-negativity must not be fulfilled for j = n, i.e. at the
peak point Az, = Az, 1 = Za,,i-

Remark 2.9. If Eq. (2.37) is not fulfilled, the fuzzy result variable Z is un-
derstood to be a fuzzy variable in the improper sense. Fuzzy variables in the
improper sense are only permitted as intermediate results of arithmetic oper-
ations. .
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In the special case that the matrix A is a diagonal matrix with identical
elements the l,r,-multiplication by a fuzzy variable Z is defined in a simplified
form by Eq. (2.38).

Ai=|:" 1 |0F=qi (2.38)
0---a

Furthermore, special fuzzy addition and subtraction operators are required.

Definition 2.10. The symbols @ and © represent the l,rq-addition and l,rq-
subtraction of the fuzzy variables T and § according to Eq. (2.39).

i=i®j and =307 (2.39)

The fuzzy result variable Z must also comply with Eq. (2.18). The correspond-
ing conditions are given by Eq. (2.40), whereby the upper operators are applied
for the lorq-addition and the lower for the l,rq-subtraction. The requirement
of non-negativity must likewise be fulfilled except at the peak point.

Az = Az; £ Ay; 20 for i=1,2, ...,n—1,n+1, .., 2n (2.40)

Az, = Ax; + Ay, for i=n (2.41)
*

Thus the interval boundaries [zq,1; Za,;r] Of the fuzzy variable Z are obtained
for each a-level a; successively according to Egs. (2.42) and (2.43),

Zail = Zai+1l - Al’ail $ Ayall (2‘42)

with 24,1 = Za,1 Yo, and

Ra;r = Ragpar + Aqf'air + Ayair (243)
with Za,r = Za,l T Axanr + Ayanr

Remark 2.11. If Egs. (2.40) and (2.41) are not fulfilled, the fuzzy result
variable Z is understood to be a fuzzy variable in the improper sense (compare
remark 2.9), which is only permitted as the intermediate results of arithmetic
operations. .

Applying the l,rq-addition and I,7,-subtraction given by Eq. (2.39), the as-
signed L R-representation of the fuzzy result variable Z depends on the func-
tions Lq, ,,,(-) and Ry, ., (-) of the summed fuzzy variables Z and g. If the
types of the functions L, ,,,(-) and Rq, ,,,(-) of the fuzzy variables & and ¢



18 2 Mathematical Description of Uncertain Data

are identical for each a-level oy, the same functions are obtained for the en-
hanced L R-representation of the fuzzy result variable. In the case of different
types the functions L. o, ,,,(-) and R. o, ,,(-) of the fuzzy result variable Z
are obtained according to Egs. (2.44) and (2.45), respectively.

—1
Leaiin() = (A2aulzh, () & Ayaulih, ,,()) (2.44)

-1
Reain() = (Ao Boh, () £ Ayar Byh, () (245)

Taking into consideration the priority rule (® precedes @), it is possible to
combine the introduced operators according to Eq. (2.46).

P=AQI®..0..®..®BOj (2.46)

The arithmetic operations are carried out separately with the [,r,-increments
of each a-level. The usual calculation rules for real-valued numbers thereby
hold, in particular the compliance with calculation hierarchy. Only the final
laro-increments Az; must be non-negative, whereas negative intermediate
results arising from the application of the associative law are permitted. Such
intermediate fuzzy variables are regarded as fuzzy variables in the improper
sense according to remark 2.9 and remark 2.11.

Az; 20 fori=1,2, ...om—1,n+1, ..., 2n (2.47)

The requirement according to Eq. (2.47) also represents a boundary condition
for the description and modeling of fuzzy time series.

Remark 2.12. As an abbreviated notation of a sum of fuzzy variables &1 @

To @ ... ® Ty, the l,ro-summation operator according to Eq. (2.48) is intro-
duced.

k
@I ®.05, =P, (2.48)

j=1

2.1.3 Subtraction of Fuzzy Variables

The introduced [,r,-subtraction according to Eq. (2.39) is now compared
with the HUKUHARA difference presented in [20] as well as the subtraction
according the extension principle (see [5, 36, 71]), and the different properties
are discussed.

Definition 2.13. According to [20] the HUKUHARA difference 2 ©p § be-
tween two fuzzy variables T and § is defined as the solution Z of the equation
JBZ =2
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IOpy=2y®z=1=.
The HUKUHARA difference is not defined if the subtrahend § is character-

ized by a higher degree of uncertainty (e.g. a wider support) than the minuend
T. .

If the HUKUHARA difference exists, the [,r,-subtraction yields the same
results as the HUKUHARA difference. Both of the arithmetic operations
result in fuzzy variables Z characterized by a lower uncertainty than the min-
uend. This type of subtraction differs from the substraction according the
extension principle (see [5, 36, 71]).

The extension principle represents an alternative mathematical basis for a
mapping Z = f(Z, g, ...) of the fuzzy variables Z, ¢, ... onto Z.

Definition 2.14. The fuzzy result variable Z = f(Z, g, ...) according the ex-
tension principle is determined by

z={z, pz(2) |z = f(z, y, ...); 2€Z; (z,y, ...) eX xY x ..} (2.49)
with the fundamental sets X, Y, ..., Z and the membership function

Supminz:f(m,y,..‘)[,u’fc(x% ,UJgj(y), ] if 3z= f(xv Y, )
pz(2) = (2.50)
0 otherwise

The mapping function f(-) in the foregoing may be arbitrary. .

Applying the extension principle to the substraction, the interval boundaries
[Zai; Zar] Of the a-level sets Z,, of the fuzzy result variable Z = Z minus g are
given by Egs. (2.51) and (2.52), respectively.

Zal = Tal — Yal V ae€ [0, ].] (251)
Zar = Tar + Yar — 2y ¥ a€]0,1] (2.52)

The subtraction according the extension principle thus leads to a higher de-
gree of uncertainty of the fuzzy result variable Z. Unlike the [,r,-subtraction,
the [,rq-addition according to Eq. (2.39) and the addition according to the
extension principle yield the same fuzzy result variable.

The basic distinction between the [, r,-subtraction and the HUKUHARA
difference lies in the treatment of differences, i.e. which subtrahend possesses
a higher degree of uncertainty (e.g. a wider support) than the minuend. In this
case the HUKUHARA difference is not defined, whereas the [, r,-subtraction
yields fuzzy result variables with negative [, ry-increments, i.e. fuzzy variables
in the improper sense, which are permitted as intermediate results. In the
context of fuzzy time series, however, only the final fuzzy result variables of a
sequence of arithmetic operations must be fuzzy variables in the proper sense.
This is a basic condition for the analysis and forecasting of fuzzy time series.

The following two examples illustrate the different kinds of subtraction of
fuzzy variables.



20 2 Mathematical Description of Uncertain Data

Example 2.15. The first example demonstrates the fundamental distinction
between the [,r,-subtraction, the HUKUHARA difference, and the subtrac-
tion according the extension principle. For a given minuend & = (2.7;3;4) g
and a given subtrahend 7 = (1.4;1.5;2.3).r the different subtractions are
illustrated in Fig. 2.6. The extension principle yields a fuzzy result variable
Z with a higher degree of uncertainty, whereas the [,r,-subtraction and the
HUKUHARA difference lead to a lower degree of uncertainty.

e THE)
1 T 1 7

0 - Co 0 pe -
273 43 141523 y
| extension principle HUKUHARA difference Ir,-subtraction |
HE(Z) ul LA—~ LA—
1115 131517 2 1315 1.7

Fig. 2.6. Comparison of [,7,-subtraction, HUKUHARA difference, and subtraction
according the extension principle — Example 2.15

Example 2.16. The second example illustrates the case in which the subtra-
hend possesses a higher degree of uncertainty than the minuend. The minuend
Z = (2.7;3;4) LR, the subtrahend § = (0.5;1.5;2.3) .z and the different sub-
tractions are shown in Fig. 2.7. The subtraction according the extension prin-
ciple increases the degree of uncertainty of the fuzzy result variable, whereas
the HUKUHARA difference is not defined in this case. The [,r,-subtraction
yields a fuzzy result variable in the improper sense, i.e. for the chosen [,7,-
discretization with n = 2 a-levels the [, 7,-increment Azx,,; becomes negative.
Metaphorically speaking, the l,7,-increment Ax,,; ‘snaps through’.
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—
=
—
<

0 — > 0L — >
2.73 4 z 05 1.5 23 y
| extension principle HUKUHARA difference [,r-subtraction |
not defined fuzzy variable in
the improper sense
pi(2)
1 z
0
0.2 1.5 33 =z 1.51.72.2 z

Fig. 2.7. Comparison of [,7,-subtraction, HUKUHARA difference, and subtraction
according the extension principle — Example 2.16

*

Moreover, the generalized HUKUHARA difference presented in [20] differs
from the [,ry-subtraction. The generalized HUKUHARA difference yields
an approximate solution, e.g. a real-valued number, if the subtrahend is
more uncertain than the minuend. From this it follows that the generalized
HUKUHARA difference is not applicable in equations such as (2.53), whereas
the l,ry-subtraction may in fact be used.

(zeg)®y=272 (2.53)

Remark 2.17. The concept of a best possible difference (accordingly the gen-
eralized HUKUHARA difference) may be applied to transform a fuzzy variable
in the improper sense into a fuzzy variable in the proper sense. The best pos-
sible approximation Z is given by Egs. (2.54) to (2.56). The following holds
fori=1,2,...n—1and j=1,2,....n:
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Aéan,l = Azanl (254)
0 if Az, <0
0 if Azg, =0 Azp < X AZ,,
Ao = bRt =08 Z ol = zz:Jrl el (2.55)
n—1
ZAzat Z Aéasl if Aza,l 0 A EAZO%[ = Z AZA’aSl
=1 s=i+1 =1 s=i+1
0 if Az, <0
f Az 20 A SAza, < A2
0 1 Zasr = T agr
Aéa]'r = ’ t= ] s=j+1 (256)
ZAzatr DA%, if Azgr 20 A ZAZQW > Y A%,
t=j s=j+1 t=j s=j+1
*

2.1.4 Distance between Fuzzy Variables

The modeling and forecasting of fuzzy time series requires a definition of the
distance dp(Z;¢) between two fuzzy variables & and g.

Definition 2.18. According to the metrics introduced in [24], the distance
dp(Z;7) between the fuzzy variables T and § is defined as the integral over the
HAUSDORFF distance dg (-;-) between the a-level sets X, and Y, of T and
g, as given by Eq. (2.57).

1
de XaiYa) (2.57)
0

According to [21], the HAUSDORFF distance dy (Xo; Yo) between two non-
empty closed finite a-level sets X ;Yo S R is defined by Eq. (2.58).

dy (Xo;Ys) = max{ sup inf dg (z;y); sup inf dg (:L',y)} (2.58)

zeX o YEYa YeEY, zeXa

The term dg(x;y) represents the EUCLIDean distance between two real-
valued variables x,y € R according to Eq. (2.59).

dp (z;y) = |z —y| = V(z —y)? (2.59)

Example 2.19. This is illustrated by a calculation of the distance dg(Z;7)
between the fuzzy variables Z and g, as shown in Fig. 2.8.
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|Y

Fig. 2.8. Distance dr(Z;3) between the fuzzy variables & and g

The HAUSDORFF distance dg (Xo—0; Ya=o) between the a-level sets Xn—o
and Y, —¢ of the support of both fuzzy variables & and 3 is given by Eq. (2.60).

di (Xaz0;Ya—o) =max{dg (z =1,y =2);dg(x =3;y =6)} (2.60)
=max{1;3} =3

The HAUSDORFF distance for the a-level o = 1 is obviously dy(Xa=1;
Y,=1) = 2. Integration of the HAUSDORFF distance dy (X,; Y, ) over all a-
levels yields the distance dp(Z;§) between the fuzzy variables & and ¢. In this
case the integration according to Eq. (2.57) may be reduced to a computation
of the surface area of a trapezium according to Eq. (2.61). The result is also
depicted in Fig. 2.8.

1
dr (%) = de Xos V) (2.61)
0

_ dH (X(x=0aYo¢=0) + dH (Xa=1;Ya=1) —92.5
2 )

2.1.5 Fuzzy Functions

Definitions and basic terms relating to fuzzy functions have been introduced
and enhanced by various authors, e.g. [3, 11, 36]. The definition of a fuzzy
function according to [36] is presented in the following. Given are:

- the fundamental sets X € R and Y € R,

- the set F(X) of all fuzzy variables Z on the fundamental set X,

- the set F(Y) of all fuzzy variables § on the fundamental set Y.

Definition 2.20. The mapping of F(Y) onto F(X) that assigns precisely one
Z € F(X) to each g € F(Y) is referred to as a fuzzy function denoted by
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Z(g) : F(Y) » F(X). (2.62)
.

For each § € F(Y) the fuzzy function 2(y) yields the fuzzy result Z; = Z(7)
with Z; € F(X). This represents the mapping of the fuzzy variables § € F(Y)
onto the fuzzy variables z; € F(X).

According to [,7,-discretization, a fuzzy function

z = f(7) (2.63)

may be formulated in an incremental manner. The following thus holds for
the [,rq-increments in the general case:

Azx; = f; (Ap, Ayg, ..., Aya,)  for j=1,2,....2n. (2.64)

The deterministic functions f;(-) are classical functions which are referred to
as trajectories.

Taking the general incremental notation according to Eq. (2.64) as a basis,
the following special cases are introduced:

o the [ rq-increments Ax; only depend on the associated [,r,-increments
Ay;

Az; = f; (Qy;) for j=1,2,...2n (2.65)
o the deterministic functions f;(-) are the same for each l,r,-increment Az;
Azx; = f (A, Aya, ..., Aya,)  for j=1,2,..,2n (2.66)

o the [ rq-increments Azx; only depend on the associated [,r,-increments
Ayj, and the deterministic functions f;(-) are the same for each lyro-
increment Ax;

Az; = f(Ay;) for j=1,2,...2n. (2.67)

A further special case is when the fuzzy function f(§) yields the result z = f(4)
(with z € R) for each § € F(Y). For this case, in which the fuzzy function
yields real-valued results, the notation of Eq. (2.63) reduces to the notation
of Eq. (2.68) as follows.

z = f(9) (2.68)

The deterministic function f(-) then maps the l,7-increments Ay; onto the
result variable x according to Eq. (2.69).

x = f (Ayla AyZa cey AyZn) (269)

The special case according to Eq. (2.67) finds application for defining the
fuzzy activation functions of the artificial neural networks for fuzzy variables
presented in Sect. 3.6 whereas the special case according to Eq. (2.68) is used
for defining the fuzzy probability distribution functions presented in Sect. 2.2.
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Example 2.21. In the following example an [, r,-discretization is chosen with
n = 2 a-level sets. Given are the diagonal matrices:

a;1r 0 0 O biu 0 0 O
P S S AP R B
0 0 0 aw 0 0 O baa
For the fuzzy function
F=fH)=A0j@B (2.71)

the loro-increments Az; of the fuzzy result & are then obtained according to
Eq. (2.72).

AIj = Qjj Ay] + bjj for ,] = 1327-"7271 (272)

*

2.2 Fuzzy Random Variables

The representation of fuzzy random variables X developed in this book is
based on the definition of fuzzy random variables according to [27, 28|, see
also [36]. The space of the random elementary events {2 is now introduced.
A fuzzy realization X(w) = Z is assigned to each elementary event w € 2,
whereby each fuzzy realization X(w) = # is an element of the set F(R) of all
convex fuzzy variables on R. Accordingly, a fuzzy random variable may be
defined as follows.

Definition 2.22. A fuzzy random variable X is defined by the mapping
X: 2 - F(R) (2.73)
with X(w) = # € F(R)
and we 2.
*

Each fuzzy realization X(w) = Z is defined as a convex, normalized fuzzy set,
whose membership function pz(z) = pg(,)(2) has to fulfill the requirements
formulated in Subsection l,r,-Discretization of Fuzzy Variables on p. 12.

Example 2.23. Fig. 2.9 shows five fuzzy realizations X(w) of a fuzzy random
variable X.
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MX(;)(LE)‘ weN

x

Fig. 2.9. Convex fuzzy realizations X(w) of a fuzzy random variable X, e.g. as a
result of uncertain measurements
-

Definition 2.24. A fuzzy random variable X is referred to as a discrete fuzzy
random variable if it possesses only finite or at most countable infinite differ-
ent realizations Ty, Ta, ..., Tm. This means that each possible realization of a
discrete fuzzy random variable X may be assigned to a natural number bijec-
tively (unique and reversible). .

Definition 2.25. A fuzzy random variable X is referred to as a continuous
fuzzy random variable if it possesses uncountable realizations. This means that
each list 1, Ta, T3, ... of possible realizations of a continuous fuzzy random
variable X is incomplete. .

2.2.1 Classical and Incremental Discretization of Fuzzy Random
Variables

a-Discretization of Fuzzy Random Variables

Under the assumption of convex fuzzy realizations X(w) = Z, a fuzzy random
variable X may be characterized by a family of random a-level sets X,
according to Eq. (2.74).

X = (Xo = [Xat, Xar] | € [0,1]) (2.74)

In other words, closed finite random intervals [X,;; X4 ] are obtained, i.e. the
interval boundaries X,; : 2 — R and X, : 2 — R are real-valued random
variables. The realizations X,;(w) and X, (w) are assigned to each elementary
event w € {2. The random variables X,; and X, are defined by Egs. (2.75)
and (2.76), respectively, for a € (0,1]. For a = 1 the random variable X,; is
referred to as a random peak point.

Xoi(w) = min [x €R| g, (@) = a] (2.75)
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Xor(w) = max [ac €R| g, (@) = a] (2.76)

The support of a fuzzy random variable X is given by the random set SX(-)
according to Eq. (2.77).

Sx(w) = {m € R| g (o (@) > o} (2.77)

The support S)”((-) of a fuzzy random variable X is also referred to as a random
a-level set X, with o = 0. The associated interval boundaries X,; and X,
are defined by Eqgs. (2.78) and (2.79), respectively.

X (w) = lim0 [min [m € R | g (z) > O/H for a=0 (2.78)

a'—+

1 : / _
Xar(w) = O/h_)n}LO [max [m €R| g,y (@) > o H for a=0 (2.79)
The random intervals [X4;; X4 ] and the random membership function 1% (z)

of a fuzzy random variable X are illustrated in Fig. 2.10, which also shows
assumed probability distribution functions of the random variables X,; and
Xar-

Fig. 2.10. Random a-level sets X, and random membership function /,LX(_)(x) of a

fuzzy random variable X

According to Eqgs. (2.75) to (2.79), a fuzzy random variable X may be
represented by its real-valued random interval boundaries X,; and X, with
a € [0;1]. The realizations of the random variables X,; and X,, represent
the boundaries of classical intervals. The totality of these intervals constitutes
the a-level sets X, of a convex fuzzy variable Z. According to Eq. (2.73),
the convex fuzzy variable Z is thus a realization of the fuzzy random variable
X. Bach convex realization # of a fuzzy random variable X must fulfill the
requirement according to Eq. (2.80).
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Xo, € Xo;, Voy,ap€ [O, 1] with «; < oy (280)

The requirement according to Eq. (2.80) implies that the a-level sets of a
realization Z are linked interactively. The random intervals [X,;; Xor] of a
fuzzy random variable X are thus mutually dependent. The dependencies are
referred to as interaction. The interaction is taken into consideration with the
aid of the [,r,-discretization of the fuzzy random variables.

lara-Discretization of Fuzzy Random Variables

The concept of [, r,-discretization of fuzzy variables may be extended to fuzzy
random variables.

A requirement for each random a-level set X, of a fuzzy random variable
X is that X, may be represented as the union of the contained random a-level
set X and the random set X} according to Eq. (2.81).

Qi1

Xai =X U le Vai,aiﬂ € (O; 1] with o; < (e 79N (2.81)

Qi1

The random set XZ is defined by two disjoint random intervals [Xq,11; Xa,ir]
and [Xa,ri; Xa,rr] With real-valued random boundaries according to Egs.
(2.82) and (2.83), respectively.

Xaill = Xocil and Xoéilr = Xai+1l (282)

Xam =X and  Xa.rr = Xar (2.83)

QG417

The random o-level set X,, is thus characterized by the random interval
boundaries X,,; and X,,, according Egs. (2.84) and (2.85), respectively.

Xaf,l = Xai+1l - AXa,;l with AXail = Xa,;lr - Xaill (284)

Xoir = Xaparr + Aoy with AXapr = Xaur — Xaw (2.85)

In this definition the terms AX,,; and AX,,,, are correlated random variables
and are referred to as random [l,7r,-increments of the fuzzy random vari-
able X. Egs. (2.82) to (2.85) hold for ¢ = 1,2,...,n — 1, whereas for i = n,
Eqgs. (2.84) and (2.85) are replaced by Egs. (2.86) and (2.87). The counter n
specifies the number of a-levels.

Xanl = AXanl with Qy = 1 (286)

Xapr = Xa, 1 + AXq,r with a, =1 (2.87)

Recapitulating, the l,ro-discretization of a fuzzy random variable X is given
by Eq. (2.88) with ¢ =1,2,...,n for n > 2.
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X = (Xai = [Xai+1l - AXail;Xai+1T + AXOMT'] |ai € [07 1); (288)
Xai = [Xaiﬁxail + AXociT] |ai =1 )

The l4ro-discretization permits an alternative, discrete representation of a
fuzzy random variable X in the form of a random column matrix given by Eq.
(2.89), whereby the real-valued random variables AX;, AXj, ..., AXy, are

abridged notations of the random [, ry-increments AX,,1, AXayi, ooy AXayr-
[ AX,p0 ] [ AX; ]
AX i AX,
S AXat | AX,
X = AXo o | T | A% (2.89)
AXQQ’I" AXanl
| AXCHT _ | AX2n

The random [,7,-increments of the fuzzy random variable X must fulfill the
requirements according to Eq. (2.90) and Eq. (2.91) in order to fulfill Eq.
(2.80).

AXo ;=0 for i=1,2,...,n—1 (2.90)

AXy;r =20 for i=1,2,...,n (2.91)

For ¢ = n the random [,r,-increment AX,,, ; is assigned to the random peak
point X, ;. The requirement of non-negativity must not be fulfilled at the
random peak point.

The random [, 7,-increments AX,,,; and AX,,, of a fuzzy random variable
X are illustrated schematically in Fig. 2.11.

Fig. 2.11. Random [474-increments of a fuzzy random variable X
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2.2.2 Fuzzy Probability Distribution Functions of Fuzzy Random
Variables

A fuzzy random variable X according to Eq. (2.73) may be described with
the aid of fuzzy probability distribution functions. Different forms of fuzzy
probability distribution functions have already been developed, see e.g. [36,
66]. Two forms of fuzzy probability distribution functions based on different
probability measures for fuzzy random variables are presented in the following.

The first form is based on the fuzzy probability measure introduced in [36]
and is referred to as the fuzzy probability distribution function form I. The
fuzzy probability distribution function form I may be obtained by statistical
evaluation of a concrete sample comprised of fuzzy elements. This approach,
however, does not permit the precise reproduction of the underlying sample
elements (e.g. by Monte Carlo simulation). The fuzzy probability distribution
function form I may be advantageously applied, amongst others, in structural
analysis [36, 38], in the Fuzzy Stochastic Finite Element Method (FSFEM) [35,
62] and in the safety assessment of structures [39, 63]. The fuzzy probability
distribution function form I is not applicable for the analysis and forecasting
of fuzzy time series.

The second form represents a new type of fuzzy probability distribution
function and permits the precise reproduction of samples comprised of fuzzy
elements. This is referred to as the fuzzy probability distribution function form
II, which is especially suitable for the analysis of fuzzy time series [41]. Form
II is based on the [,r,-discretization of fuzzy random variables introduced in
Sect. 2.2.

Fuzzy Probability Distribution Function Form I (FPDF I)

The definition of the fuzzy probability distribution function form I Fy () is
based on the fuzzy probability P(A). Only one-dimensional fuzzy random vari-

ables are considered here. Multi-variate fuzzy random variables are introduced
in [36].

Definition 2.26. The fuzzy probability P(A) is defined according to [36] as
the set of all probabilities P(X € A) with the membership values u(P(X € A)),
which take into account all states of occurrence of X € A. The set A thereby
represents a deterministic set in the EUKLIDean space R. .

Remark 2.27. The fuzzy probability space belonging to the fuzzy probability
P(A) including the concept of measurability for fuzzy random variables is
described in detail in [36] and is not discussed in this application-oriented

book. .

In order to determine the fuzzy probability P(A) the fuzzy random variable
X is represented as family of random a-level sets X, according to Eq. (2.92).
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X = (Xo = [Xat, Xar] | a € [0,1]) (2.92)

The random a-level sets X,, are closed finite intervals [Xq;; Xor] for each a-
level, and the elements of X, are elements of A with a certain probability. This
probability is referred to as the fuzzy probability P(A) of A, and is defined
as follows by Eq. (2.93).

P(A) = (Pa(A) = [Pu(A); Par(A)]| e [0; 1]) (2.93)

The bounds P,;(A) and P,.(A) of the a-level sets P,(A) are given by Eqgs.
(2.94) and (2.95), respectively.

Po(A) = P(Xa C A) (2.94)

Por(A) = P(Xo 0 A # Q) (2.95)

The fuzzy probability distribution function form I Fx(x) of the fuzzy random
variable X is then defined as the fuzzy probability P(A) with A = {t|t <
z; x,t € R}. Fig(x) thus represents a fuzzy function with the fuzzy functional
values Fg(z) defined by Eq. (2.96).

Fy(2) = (Fa(x) = [Fai(x); Far(2)] e € [05 1]) (2.96)
with Fy(z) = P (Xor < x|z € R)

and Fy.(z) = P(Xy <z|zeR)

According to Eq. (2.96) the empirical fuzzy probability distribution function
form I may be obtained for a given sample comprised of fuzzy data.

Definition 2.28. For a given sample comprised of s fuzzy variables Ty, T2,

..., Ts the empirical fuzzy probability distribution function form I Fs(x) 18
defined by Eq. (2.97).

Fy(@) = (Ful@) = [Fa(@); Far(@)] o€ [0; 1]) (2.97)
with Fu(z) = é S Iy (e ()
k=1

N 1
and Far(ﬂf) = ; Z I(fﬂfg,,z] (IO{T’(k))
k=1

The function I_y, 41(-) is the indicator function according to Eq. (2.98), and
Zai(k) and xq-(k) are the interval boundaries of the a-level set X, (k) of the
kth sample element Ty,.
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1if ze(—w,z]
Io(2) = (29%)
0if z¢ (—o0,z]

*
Example 2.29. For the exemplary sample of s = 4 fuzzy variables shown in

Fig. 2.12 the empirical fuzzy probability distribution function form I Fy(z) is
computed according to Eq. (2.97).

1

> 0 - >

T T, =2 z,,=1,=8 =
s, () e, ()
1 1

0 ¥ I } } + +— 0 + + } »

T, =3 z, =z, =6 T z, =4 z, =z, =7 T

Fig. 2.12. Exemplary sample of fuzzy variables

The result is illustrated in Fig. 2.13. The empirical fuzzy probability distri-

bution function form I Fy(z) is computed by separate analysis of the interval
boundaries of the a-level sets of the fuzzy variables. As no account is taken of
interaction between the different a-level sets, reproduction of the underlying
fuzzy sample elements is not possible. -

Fig. 2.13. Empirical fuzzy probability distribution function form I F4(:v) of the
exemplary sample

Hence the empirical fuzzy probability distribution function form I F(z)
does not yield a one to one description of the realizations of a fuzzy random
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variable X. The reproduction of underlying empirical sample elements is only
possible for specific samples. The modeling of fuzzy time series, however, re-
quires a one to one description of the realizations of fuzzy random variables
X. An suitable solution is presented in the next section.

For the numerical treatment of fuzzy random variables X the fuzzy proba-
bility distribution function form I Fx(a:) may be advantageously represented
by means of fuzzy bunch parameters. For this purpose the so-called originals
of fuzzy random variables are introduced.

Definition 2.30. The realization x of a real-valued random variable X as well
as the fuzzy realization & of a fuzzy random variable X may be assigned to an
elementary event w € §2. If the x are contained in T, i.e. x € T for all elemen-
tary events w € {2, then the x constitute an original X; of X. The original X,
is referred to as completely contained in X. Fach real-valued random variable
X that is completely contained in X thus possesses the property of an original
X;. From this it follows that the fuzzy random variable X may also be defined
as a fuzzy set of all possible originals X; contained in X. Thus X may be
represented by the assessed bunch of their originals, which may be specified by
means of fuzzy bunch parameters §.

X = X(3) (2.99)

The bunch of originals may be assessed with the aid of fuzzy bunch parameters
$. Bach vector of fuzzy bunch parameters s; € § with the membership value
p(s;) definitely determines one original with X; = X(s;). A fuzzy random

variable X may thus be defined as a family of the originals X; € X with
w(X;) = w(X(s;)) = nls;)-

X = X(3) = (X, = X(s;) [ n(X;) = puls;) ¥V s;€3)  (2100)

The originals X; represent real-valued random variables for which the real-
valued probability distribution functions FX(§]-7 x) exist. Using these real-
valued probability distribution functions Fx(s;, =) the fuzzy probability dis-
tribution function form I Fi(z) of the fuzzy random variable X(3) may then
be expressed by Fx(m) = F%(8, ). This is the bunch parameter representa-
tion of the fuzzy probability distribution function. The real-valued probability
distribution functions Fx (s, ) are also referred to as trajectories of Fy (3, z).

Fy(5, ) = (Fa(5, ) = [inf(Fx(s,, 2)); sup(Fx (s, #))]  (2.101)
|s; €5, ae[0;1])
Fuzzy Probability Distribution Function Form II (FPDF II)

The fuzzy probability distribution function form II is based on the determinis-
tic probability measure P(F'(A)), whereby F(A) is a finite, countable infinite
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or uncountable infinite subset of fuzzy variables contained in the determinis-
tic set A. The set F(A) is referred to as a discrete set if it contains only a
finite or countable infinite number of fuzzy variables. This means that each
fuzzy element of a discrete set F'(A) of fuzzy variables may be assigned to a
natural number bijectively (uniquely and reversibly). If the set F(A) contains
an uncountable number of fuzzy variables, it is referred to as a continuous set.
This means that each list Z,, 2, T3, ... of fuzzy elements of a continuous set
F(A) of fuzzy variables is incomplete.

Definition 2.31. The probability measure P(F(A)) expresses the probability
with which a fuzzy random variable X takes a value & belonging to the (discrete
or continuous) set F(A) of fuzzy variables, i.e. X = & € F(A) € F(R). F(R)
denotes the set of all fuzzy variables in the EUKLIDean space R. .

Remark 2.32. The probability space belonging to the probability P(F(A))
including the concept of measurability for fuzzy random variables is equivalent
to the probability space of random matrices (see amongst others [10]), because
each fuzzy random variable may be represented by a random column matrix
according to Eq. (29). The probability space is thus not discussed in this
application-oriented book. .

Example 2.33. Let F(A) be a discrete subset of three fuzzy variables a,, as
and a3 contained in the deterministic set A. Fig. 2.14 shows four realizations
T1, T2, 3 and T4 of a fuzzy random variable X with &, 74 € F(A) and
i‘l, .i'g ¢ F(A) *

element g of the discrete set F(A) of fuzzy variables
------ realization , of the fuzzy random variable X with 7, € F(A)
- realization 7, of the fuzzy random variable X with Z, ¢ F(A)

A | @
/‘

Fig. 2.14. Deterministic set A and discrete set F'(A) of three fuzzy variables a;
(4 = 1,2, 3) showing realizations & (k = 2,4) and #; (I = 1,3) of a fuzzy random
variable X

Compared with the fuzzy probability ~(~A) according to Eq. (2.93), it is not
the uncertain probability of the event X € A that is described in this case
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but rather the deterministic probability of the (complete) membership of re-
alizations Z of a fuzzy random variable X to a (finite, countable infinite or
uncountable infinite) set F'(A) of fuzzy variables. The probability with which
a realization Z of a fuzzy random variable X is an element of the set F(A) of
fuzzy variables is denoted by P(F(A)) of F(A) and is defined by Eq. (2.102).

P(F(A)) = {P(X) IX=7e€ F(A)} (2.102)

The fuzzy probability distribution function form IT may thus be defined in
two different coordinate systems, as presented in the following.

FPDF 1II in the coordinate system of the interval bounds. For the
numerical computation of the probability P(F(A)) the fuzzy random vari-

able X is represented as a family of random a-level sets X, according to Eq.
(2.103).

X = (X4 = [Xat, Xar] |2 € [0,1]) (2.103)

The bounds of the closed, finite random intervals [X,;; X4, ] which determine
the a-level sets X, are real-valued, interactively linked random variables. Each
of the random variables X,; and X,, may be described by a real-valued prob-
ability distribution function Fx_,(x4;) and Fx_, (Zar), respectively. The real-
izations of the random variables X,; and X, are denoted by z,; and z.,
respectively. According to Sect. 2.1.1 the realizations z,; and z, represent
the interval boundaries of the a-level sets of the realizations Z of the fuzzy
random variable X. Realizations Z of the fuzzy random variable X are thus
represented by realizations x,; and x4, of the random variables X,; and X,
respectively. The probability P(F(A)) according to Eq. (2.102) may hence be
expressed by the probability with which realizations x,; and x,, correspond
to the interval boundaries a,; and ag, of an element a of F(A).

For the numerical computation the fuzzy random variable X is represented
by n a-level sets. The realizations xq,i, ..., a,1 a0d Za,r, ..., Ta,,r of the
random interval boundaries X,,;, ..., Xq,; and Xa,r, -, Xa,r, respectively,
are thus regarded as the coordinates of the 2n-dimensional coordinate system
of the interval bounds.

Definition 2.34. The fuzzy probability distribution function form II Fg(Z)
of the fuzzy random variable X, which is discretized by n = 2 random -
level sets [Xo,1; Xasr], is defined as the 2n-dimensional probability distribution
function of the random wvariables X, and X4, according to Eq. (2.104),
whereby To,1, oy Ta,l ONA Tayr, oy Ta,r are the interval boundaries of the
a-level sets X, of the fuzzy variable . These form the coordinates in the
coordinate system of the interval bounds.
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F)‘((i‘) = P({w |X(xll(w) K Tagly - Xa"l(w) < Ta,ls (2104)
Xayr(W) € Tayrs s Xapr(W) < Ta,r})
= P({Xall < Tagly - Xanl < Ty,
Xalr < Loyrs ) Xanr < -ranr})
*
For each random variable X,,; and X,,» (i = 1, 2, ..., n) of a fuzzy random

variable X the real-valued probability distribution functions Fx, ., (za,1) and
Fx,  (%q,r) are given by Egs. (2.105) and (2.106), respectively. Both of these
correspond with the marginal distribution function of the 2n-dimensional
probability distribution function Fg (&) according to Eq. (2.104).

Fx, (o) = lim  Fy(2) (2.105)
i T | Tagr—X
j,.;c—l,ZIT...,n
J#i
Fx, . (Ta;r) = lim  Fg(z) (2.106)

majl’w(’tkT"’x‘
jokm1,2,...,n
k#1
According to the definition 2.34 the empirical fuzzy probability distribution
function form II may be derived in the coordinate system of the interval
bounds. This presupposes that a sample of s fuzzy variables 1, T3, ..., T, is
available.

Definition 2.35. The empirical fuzzy probability distribution function form
II F(z) for a sample of s fuzzy variables Ty, Za, ..., Ts is defined in the coor-
dinate system of the interval bounds by Eq. (2.107).

- Zay1(7) <201, o Ta1(J) STa,1
#{xﬂ o 8;<$a11 ol 8~§<xa Y= 1,2,...,5}
FS(.,) _ alr QT s Lan,r anT (2107)
s

*

The coordinates zq,i, ..., o, and Za,r, ..., Ta,r are the interval bounds
of the a-level sets X,, of the fuzzy variable Z, and zq,i(j), ..., Ta,1(j) and
Zoyr(J); ooy Za, () are the interval bounds of the fuzzy variables 1, &3, ..., Zs.
The symbol #{-} denotes the number of fuzzy variables Z; (j = 1, 2, ..., s)
for which the requirements ©,1(J) < Tay1, s Tan,1(J) < Ta,1 and Tq,r(j) <

Tayrs o Ta,r(f) S Ta,r are fulfilled. According to Eq. (2.107) the empiri-
cal fuzzy probability distribution function form II F(Z) is a monotonically
non-decreasing 2n-dimensional step function.

Example 2.36. The computation of Fs(gﬁ) is demonstrated by means of the
exemplary sample of 4 fuzzy variables, as shown in Fig. 2.12. In this case the
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peak point of each fuzzy sample element is identical with the right boundary
of the associated support interval. The multidimensional empirical probability
distribution function Fy(Z) according to Eq. (2.107) may hence be depicted
two-dimensionally. Discretization of the fuzzy variables is thus applied for two
a-levels (a; =0 and ay = 1).

Applying Eq. (2.107), it is necessary to determine the number #{-} of fuzzy
variables Z; for which the requirements zq4,1(J) <Zay1, s Tay,1(j) <Zq,1 and
ZTayr(1) S Zagry ooy Tayr(J) <Zq,r are fulfilled. The functional values of F4(9E)
for a selected number of coordinates z,1, Ta,i, Tayr and Za,, are shown in

Table 2.2.

Table 2.2. Computation of the empirical fuzzy probability distribution function
form II F4(Z) in the coordinate system of the interval bounds

Coordinates Fuzzy variables #{-}  Fu(T)
Ta1l Tazl Tarr Tagr  Tj xall(j) $a21(j) m&ﬂ(j) xazT(j)

._.
I
o
St

)
o
o

z3

T2
T3

Ta

W N WM W
~ O 0O UT|Oy 0O UL |OY Ut |t
] O 00 Ut |OY 0O UL | Oy Ut | Lt
~ O 00 Ut |Oy 0 UL | O Ut | Ot

T4

The empirical fuzzy probability distribution function form II Fy(Z) ob-
tained for this sample of fuzzy variables is shown in Fig. 2.15 together with
the empirical fuzzy probability distribution function form I according to Eq.
(2.96). This depiction illustrates the interrelation between the fuzzy proba-
bility distribution function form II according to Eq. (2.104) and the fuzzy
probability distribution function form I according to Eq. (2.96). The marginal
distributions of the multidimensional probability distribution function accord-
ing to Eq. (2.104) correspond to the left and right boundary functions of the
fuzzy probability distribution function form I. The uncoupled treatment of
the marginal distributions does not take account of the dependencies between
the different a-level sets. The interaction between the a-level sets of the fuzzy
realizations of a fuzzy random variable is only taken into account using the



38 2 Mathematical Description of Uncertain Data

fuzzy probability distribution function form II. For this reason it is possible

to reproduce the underlying fuzzy sample elements. .
Ly =Ly
1o N Q\i
Ny
DY
A N
S N > i“?l

»
T T T T 1 T T T »

Fig. 2.15. Empirical fuzzy probability distribution function form II £} (Z) in the
coordinate sytem of the interval bounds together with the empirical fuzzy probability

distribution function form I Fy(z) for the exemplary sample

Remark 2.37. The fuzzy probability distribution function form I may be re-
garded as a simplified representation of form II, with the restriction that the
dependencies between the different a-level sets are not taken into considera-
tion. .

The simulation of a fuzzy random variable X requires that the realizations
Taqly oy Tay,i A0A Toyr, -y Ta,r Of the interval boundaries must fulfill Eq.
(2.80). A simulation in the coordinate system of the interval bounds and thus
the fulfillment of Eq. (2.80) is exceedingly difficult, however. For this reason
the fuzzy random variable X is expressed with the aid of [,r,-discretization.
The realizations Azq,y, ..., Azq,; and Az, p, ..., Azq,, of the random [,7q-
increments AXy, 1, ..., AXq, and AXy,py ...y AXy, r, respectively, are thus

regarded as the coordinates of the 2n-dimensional coordinate system of the
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increments. The random [,r,-increments must fulfill the requirements ac-
cording to Egs. (2.90) and (2.91). The requirements are fulfilled easily if the
coordinates are restricted to the set of positive real numbers in R™.

FPDF 1II in the coordinate system of the increments. For each a-
level the random [,7,-increments AX,,; and AX,,, are real-valued random
variables which are linked interactively. The realizations Az, and Az,,, of
the random [,7,-increments AX,,; and AX,,,, respectively, correspond to
the l,7q-increments a,,; and aq,, of a fuzzy element a of F'(A) with a specific
probability. This probability is expressed by the probability P(F(A)).

Definition 2.38. The fuzzy probability distribution function form II Fy (&)
of a fuzzy random variable X discretized by 2n random l,7q-increments AXq,
AXg, ..., AXo, is defined as the 2n-dimensional probability distribution func-
tion 1, F%(Z) in the coordinate system of the increments according to Eq.
(2.108), whereby Axq, Axs, ..., Axg, are the loro-increments of the fuzzy
variable T. These form the coordinates in the coordinate system of the in-
crements.

W Fe () = P ({w]| AXy (w) < Ay, ..., AXpp(w) < Azg,})  (2.108)

= P({AX1 < A.’L’h ceny AXQn < Axgn})
*

Furthermore, a real-valued probability distribution function Fax,(Az;) ac-
cording to Eq. (2.109) exists for each random [,r,-increment AX; (i =
1,2,...,2n) of a fuzzy random variable X. The probability distribution func-
tions Fax, (Ax;) given by Eq. (2.109) correspond to the marginal distribution
functions of the 2n-dimensional probability distribution function ;. F (Z) ac-
cording to Eq. (2.108).

Fax,(Az;) = lim 4, Fg(Z) (2.109)
13,2
j#i
Owing to the requirement of non-negativity for the random [,r,-increments
AX; according to Egs. (2.90) and (2.91) the following equation holds for the

marginal distribution functions Fax,(Ax;).
Fax,(Az;) =0 | Az; <0 for ¢ =1,2,..,n—1,n+1,...2n (2.110)

The requirement according to Eq. (2.110) does not hold for the probability
distribution function Fax, (Ax,) at the random peak point AX,, = X, ; due
to the fact that the requirement of non-negativity according to Eq. (2.90) does
not apply to Xq, ;.
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Remark 2.39. Normally, the multi-dimensionality of the both fuzzy proba-
bility distribution functions form II Fg (%) and ;. F (&) does not permit the
graphical representation of Fi(Z) and ;- Fg(Z). It is possible to graphically
illustrate the marginal distributions, however, without consideration of the
dimensionality, i.e. this is independent of the number of chosen a-levels. Al-
though this permits the use of the fuzzy probability distribution function form
I as a simplified graphical representation of form II, it is not able to completely
characterize a fuzzy random variable. For practical applications a tabular rep-
resentation or functional description of Fg (&) and ;- F (&) is recommended.

*

For the special case of a discrete fuzzy random variable X (see definition
2.24) a discrete fuzzy probability distribution function form II is obtained.
A discrete fuzzy random variable X possesses a finite or countable infinite
number of realizations Z1, Zo, ..., Z,,. Each of these realizations appears with
a certain probability P(f( = &;) = P;. The definition of the fuzzy probability
distribution function form II ;. F (Z) of a discrete fuzzy random variable X is

thus given by Eq. (2.111), whereby j1, ..., jon = 1, 2, ..., m holds.

1w Fy () = Z P ({AX; = Az1(j1), ..., AXay, = Awa,(jon)}) (2.111)

Az (j1)<Azy

Awgp (Jon)<Aoy

Example 2.40. A discrete fuzzy random variable X may adopt ten different
realizations I, Za, ..., 19. For the l,r,-increments Ax;(j) of the possible
realizations Z; (j =1, 2, ..., 10) Eq. (2.112) holds.

Azxi(j) < Azi(k) for j<k Vj k=1,2,..10 (2.112)

i=1,2 .., 2n
Each of the ten realizations appears with a probability of P(X = z;) =
%. Selected functional values of the associated fuzzy probability distribution

function form II ;. Fg(Z) (evaluated according to Eq. (2.111)) are given in
Table 2.3.

Table 2.3. Selected functional values of a discrete fuzzy probability distribution
function form IT ;. F (Z) in the coordinate system of the increments

1 Fs (Z1) = 110 1 Fx (Z6) 1%
1w Fg(22) = & wFy(37) = &
1w Fg(23) = Py (3s) = &
wFg(Z4) = 15 1 Fg(9) = 15
1 Fs (Z5) = 1% rFs (%) = 1
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The fuzzy probability density functions form II ;. f5(Z) of continuous fuzzy
random variables X according to Definition 2.25 are obtained (analogous to
classical probability theory) by partial differentiation of the fuzzy probability
distribution function form II ;. F (&) according to Eq. (2.113).

0%y Fx (%)
fe (i) = X 2.113

3B = SR oA (2.113)
The fuzzy probability distribution function form II ;. F(Z) of a continuous
fuzzy random variable X may thus be obtained by inversion of the differenti-
ation given by Eq. (2.113), i.e. ;» F% (&) may be obtained by integration of the
fuzzy probability density function form II 4, f5(Z) according to Eq. (2.114).

Axq Az, Axo,
rFg(2) = f f J iz () dAty - dAt, - -+ dAty, (2.114)
0 — 0
According to the definition 2.38 the empirical fuzzy probability distribution

function form II in the coordinate system of the increments may also be de-
rived. This presupposes that a sample of s fuzzy variables is available.

Definition 2.41. The empirical fuzzy probability distribution function form

II |, Fs(Z) for a sample of s fuzzy variables Ty, To, ..., Ts is defined in the
coordinate system of the increments by Eq. (2.115).

o #E| Aai () S Avy, e A () < ATon, § = 1,2,y

1 Fs(T) (2.115)
s

*

The coordinates Axy, Azo, ..., Axy, are the [ r,-increments of the fuzzy

variable Z, and Azq(j), Aza(j), ..., Az, (j) are the lyrq-increments of the

fuzzy variables %1, Za, ..., Zs. The symbol #{-} denotes the number of fuzzy

variables Z; (j = 1, 2, ..., s) for which the requirements Axz;(j) < Az, ...,

Axgy,(j) < Awxgy, are fulfilled. According to Eq. (2.115) the empirical fuzzy

probability distribution function form II ;.Fs(Z) is a monotonically non-
decreasing 2n-dimensional step function.

Example 2.42. The computation of lTFS(jE) according to Eq. (2.115) is
demonstrated by way of the exemplary sample of 4 fuzzy variables, as shown
in Fig. 2.12. The fuzzy variables are discretized for two a-levels (a7 = 0 and
ag = 1). The interval boundaries of the a-level sets and the [,7,-increments
of the fuzzy sample elements are shown in Fig. 2.16.

Eq. (2.115) is now applied to determine the number #{-} of fuzzy variables
Z; (j = 1,2,3,4) for which the requirements Az (j) < Awzq, ..., Az, (j) <
Axo, are fulfilled. The functional values of ZTFS(:T:) are also shown in Table
2.4 for a selected number of coordinates.
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., (z) ()
1 Az, =5 Az, =0 1 Az, =8 Az, =0
7, T,
0 Az, =4 | Az, =0 0 Az, =6 Az, =0
7, =1 T, ,=1,,=5 T z, =2 %, =1,=8 =
B, (2) K (2)
1 Az, =6 Az, =0 Az, =7 Az, =0
z, z,
0 Az, =3 |Az, =0 0 Az, =3 | Az, =0
7, =3 z, =1,,=6 T z, =4 , =1, =7 T

Fig. 2.16. Exemplary sample of fuzzy variables

Table 2.4. Computation of the empirical fuzzy probability distribution function

form IT ;. Fy () in the coordinate system of the increments

Coordinates Fuzzy variables
Al‘1 A:L’Q AZL‘?, ACC4 ifj A.I,’l(]) A:L’g(]) ACEg(]) A£E4(j)

#{b wFa(@)

3 5 0 0 - 0 0
0 T3 3 6 0 0 1 0.25
1 4 5 0 0 2 0.5
T3 3 6 0 0
5 8 0 0 =z 4 5 0 0 3 0.75
T3 3 6 0 0
T4 3 7 0 0
6 8 0 0 =z 4 5 0 0 4 1
6 8 0 0
3 6 0 0
3 7 0 0

Due to the fact that the peak point of each fuzzy sample element coin-
cides with the right-hand boundary of the associated support interval, i.e.
Azg,r = 0 and Az,,, = 0, the four-dimensional empirical probability dis-
tribution function ;. F4(Z) according to Eq. (2.115) may be represented two-
dimensionally. The resulting empirical fuzzy probability distribution function

form II ZTF4(§7) is shown in Fig. 2.17.

*

Empirical frequency distribution. For a concrete sample of fuzzy variables
an empirical frequency distribution may also be evaluated. In so doing, it is
necessary to draw a distinction between samples comprised of discrete or
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»

s Az

a9l

Fig. 2.17. Empirical fuzzy probability distribution function form II ;. F5(Z) in the
coordinate system of the increments for the exemplary sample

continuous fuzzy random variables. This procedure, which is explained in the
following, requires an evaluation of the relative frequencies of the realizations
of the fuzzy random variable.

Under the condition that the realizations of the discrete fuzzy random
variable X are restricted to the set @y, @, ..., dm of m different fuzzy variables,
the following definition holds.

Definition 2.43. Considering s realizations 1, T2, ..., Ts of the discrete fuzzy
random variable X, the relative frequency rs(ay) of the fuzzy variable ay, is de-
fined by Eq. (2.116) as follows:

rs(ar) = s (jk)

with k=1,2, ..., m. (2.116)
*

In this equation, hs(ax) denotes the absolute frequency of ay, i.e. the number
of realizations (sample elements) & corresponding to a.

Example 2.44. Let us consider 60 realizations %1, Zs, ..., Tgg of a discrete
fuzzy random number X, which may be assigned to ten different fuzzy vari-
ables ay, asg, ..., G19. Assuming that 18 fuzzy sample elements correspond to
the fuzzy variable a1, the absolute frequency of a; is thus hgo(ai) = 18. In ac-
cordance with Eq. (2.116) the relative frequency rgg(a1) of the fuzzy variable
ay is hence rgo(a1) = 5 = 0.3. .

Let Z1, Zo, ..., Ts be a concrete sample of s realizations of a continuous fuzzy
random variable. In order to evaluate the frequencies of the sample it is
necessary to classify the [,7,-increments of the fuzzy sample elements. For
this purpose 2n intervals are constructed for the 2n random [,7,-increments,
which include all corresponding [,7,-increments of the sample elements in
each case. These intervals are subdivided into several classes, whereby the
individual classes are denoted by K, (1), Ku,(2), ..., Ka,, (2n). Taking m; to
be the number of classes for the ith random [,7,-increment, a; = 1, 2, ..., m;
holds.
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Definition 2.45. Let T1, T2, ..., Ts be s realizations of a continuous fuzzy ran-
dom variable X. The relative class frequency rs(Kq, (1), Kay(2), ..., Kq,, (2n))
of the sample is thus defined by Eq. (2.117).

hS(Kle(l)?KaQ (2)7 ~'~7Kfl2n

ro (Ko, (1), Ky (2), ooy Kay (20)) = @) 5 117)

*y a2n s
with a; = ]., 2, ey My
and i=1,2, .., 2n

*

In the above equation, hs(K,, (1), K4,(2), ..., Kq,, (2n)) is the absolute class

° a2n

frequency of K, (1), Kq,(2), ..., Ka,, (2n), i.e. the number of fuzzy sample el-

ements whose [,7,-increments are all contained in the classes K,, (1), K,,(2),
vy Koy (20).

Example 2.46. Let x1, T, ..., Tgp be a sample of 80 realizations of the con-
tinuous fuzzy random variable X. The fuzzy variables are discretized exem-
plarily by n = 2 a-level sets. For o = 0 all ,ry-increments Az,,; and Axy,r
are contained in the intervals [3.2; 4.1] and [1.8; 2.3]. For o = 1 all l47q-
increments Az, and Ax,,, are contained in the intervals [—50.3; —43.1]
and [1.3; 1.5]. These intervals are subdivided in each case into ten classes
K1(i), Ko(i), ..., K19(i). The counter ¢ = 1,2, 3, 4 denotes the number of
the subdivided interval. For the purpose of demonstration the classes K7(1),
K1(2), K1(3) and K1(4) are analyzed. The [,7,-increments of four fuzzy sam-
ple elements are completely contained in the classes K1(1), K1(2), K1(3) and
K1(4), i.e. the absolute class frequency of K1(1), K1(2), K1(3) and K;(4) is
given by hgo(K1(1),K1(2),K:1(3),K1(4)) = 4. In accordance with Eq. (2.117)
the relative class frequency is thus computed to be rso(K1(1), K:1(2), K1(3),
Ki(4)) = g5 = 0.05. .

Remark 2.47. The introduced relative class frequency of a sample of con-
tinuous fuzzy random variables may be approximately interpreted as an em-
pirical fuzzy probability density function form II ¢, fs(i) In this formulation
the relative class frequencies are replaced by the probabilities of occurence of
the fuzzy random variable. The interpretation of the relative frequency of a
discrete fuzzy random variable as a fuzzy probability density function form II
is not fully correct, however, as it is not a density function by definition.

2.2.3 Characteristic Moments

As in the case of random variables, fuzzy random variables are characterized
using the first and second order moments. The definitions of the characteristic
moments on the basis of [,7r,-discretization are presented in the following.
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Definition 2.48. The first order moment of a fuzzy random variable X is the
fuzzy expected value E[X] = mg given by Eq. (2.118). The fuzzy expected value
E[X] = Mg 18 a fuzzy variable which may be represented by l,7-discretization

according to Eq. (2.32).

E[X] =

14
"%\%

J Jlrfx & dAxy - -dAx, - -dAze, (2.118)
— L

The lora-increments Ame,; and Ame,, of the fuzzy expected value E[f(] =
my of a fuzzy random variable X are obtained according to Eq. (2.119).

. .
§ Azayr fax,, (A%, 1)dAza,
Amall 0
EDN(] =mg = | Ama, | = _S; Az, fAXanz(AxOénl)dAxanl (2.119)
Ameg,r . :
§ Azo,r fax,,, (A2a,r)dAzq,,

*

The real-valued functions fax, ,(A%q,) and fax, ,(A%q,r) are the probabil-
ity distribution functions of the random [,r,-increments AX,,; and AX,,,
(i =1, 2, ..., n) of the fuzzy random variable X. It is only necessary to evalu-
ate the integral in the above equation from —oo to 400 for the [,7,-increment
Amyg,; of the peak point. The integration limits of the remaining integrals
follow from the requirements of Egs. (2.90) and (2.91).

Remark 2.49. Although the number n_of the chosen a-levels determines
the l,47-increment representation of E[X] = my, the fuzzy expected value
E[X] = my is inherently independent of n. .

Example 2.50. The fuzzy expected value E [X] = 1y of an exemplary fuzzy
random variable X is illustrated in Fig. 2.18. -

Definition 2.51. Linear dependencies between the random l,rq-increments
of a fuzzy random variable X are quantified by the lorq-covariance kgjiﬂ; ac-
cording to Eq. (2.120).

KOl = E[(AXaus — Amg, ) (AXg, o — Amg,,)]  (2.120)

ajr¥

*
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204 )(z) 4
1 4

0

T

Fig. 2.18. Fuzzy expected value E[X] = 7 of a fuzzy random variable X

The subscripts a; and o refer to the different a-levels, whereas {* = [, and
r* = [, r denote the left-hand and right-hand branches of the memberhip func-

tions, respectively. The [,r,-covariance kg]i:: is computed for 7,5 =1,2,...,n
by solving the integral given by Eq. (2.121).

8

*®
al™
kaj'r* -

(Az g0 — Amg, ) (Axaﬂ* - Amajr*) o (2.121)

%(

|
8

oo f (Axail* , Aacajr*) dAT o % dAT o

The function f (Axml*,Axajr*) is the joint probability density function of
the random [,74-increments AX,,,;* and AX,,,.» according to definition 2.38.
The values of the [,r,-covariances k:g]l; are arranged in the l,r,-covariance
matrix ;. K¢ according to Eq. (2.122).

a1l pasl | paar ponr ]
kall koz1l kall kOéll

kcnl kagl oo Q2T poar

_ asl Vasl azl Mol

WK [X] —nKg=| o (2.122)
11 l r 1r
kgz’!‘ g;r e kggr kng

koql kan con Q27 foar

L Yaqr Yagr arr ogr

Definition 2.52. The scale-invariant lo7o-correlation matriz . Rg given by
Eq. (2.123) is obtained by element-by-element division of the lorq-covariance
matriz 1 K by the associated diagonal elements according to Eq. (2.124).
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a1l sl o asr air ]
Tall TDql rall Tall
arl aol oaor oaqr
~ Tagl T‘agl Tagl Tagl
R [X] =Ry = : Lo, : (2.123)
ail ol |, jasr onT
TO(QT’ TOLQT‘ rozg’l“ TOZQ’I"
ail ol |, jasr onT
L Tozlr ar rozlr ralr R
1k
k<
a;l* a;l*
o = —— (2.124)
J ]{iail* k_ajl
Ozil* (le*
*

Remark 2.53. The [,r,-covariance matrix ;. K ¢ as well as the [,r,-correla-
tion matrix ;. R are strictly dependent on the [,7,-increment representation
and thus dependent on the number n of chosen a-levels. The number n of
chosen a-levels determines the dimension of the matrices. .

Definition 2.54. The l,r,-variance erar[f(] = lrgfz of a fuzzy random vari-

able X is a measure of the variance of the realizations of 5(, and is represented
in the form of a column vector with [2n] elements. The elements of the vec-
tor correspond to the diagonal elements of the l,7o-covariance matriz ;K¢
according to Eq. (2.125).

Oéll T — 2 1
alll ro1
« 2
ka;l lr0'2
7 2 anl lro—2
— — _ n
wVar[X] = o5 = | Tanl | = 2 (2.125)
kasr r9n+1
kozgr 0‘2
Qs lr 275—1
kgi? | 1r02pn

*

Remark 2.55. The [,7,-variance l,«g?( (i.e. the dimension of the vector and
its elements) is thus dependent on the number n of chosen a-levels. Generally

speaking, however, the [, 7,-variance lrg%(nl) based on the [, r,-discretization
with n; a-levels is not directly transformable into the [,r,-variance ng%((nQ)
based on ns discrete a-levels. The transformation is performed with the aid
of the l,r,-standard deviation. The [,7,-standard deviation ;.0 is obtained

by extracting the positive square root for each element of the [,r,-variance
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l,g% of a fuzzy random vector X according to Eq. (2.126). The l,r4-standard
deviation ;.0 is thus a [2n] column vector with the vector elements

o =+ \/ ZTO-iQ . (2126)

In specific cases the [,7q-standard deviation ;.0%(n1) based on the l47q-
discretization with n; a-levels may be transformed directly into the l,7rs-
standard deviation ;0% (n2) with no underlying a-levels. For the specific case
of a fuzzy random variable X whose realizations are in the form of fuzzy
triangular numbers or fuzzy intervals the transformation is given exemplarily

by Eq. (2.127).

ny—
( nzl_l > woj(n) for i=1,2,..,n0—1
j=1
1roi(ng) = < 1roi(ny) for i=ng,ng+1 (2.127)
27’L1
ﬁ > woj(ny) for i=mng+2,n0+3,...,2n9
L "2 o2

*

Linear dependencies between the random [,r,-increments of a fuzzy random
variable X and the random l,7,-increments of a fuzzy random variable Y
are quantified by the [,r,-covariance matrix ZTK[X,?] = K¢y and the
loTo-correlation matrix ZTE[X, \?] =, Rg, respectively. Both ;K¢ and
irRg correspond the [2n,2n] matrices according Eqgs. (2.122) and (2.123).
The elements of the [,r,-covariance matrix ;K ¢ are defined by Eq. (2.128),
whereby 7,j = 1,2, ...,n holds. The subscripts a; and a; likewise refer to the
different a-levels, whereas {* = [,r and r* = [,r specify the left-hand and
right-hand branches of the memberhip functions, respectively.

o0
Kol XY J J (A 16— Amg 15 (X)) (D, vt = A oa (9)). . (2128)

wof (Aa:ail* , AyajT*) dAZ 15 dAY o rx

Analogous to the application of Eq. (2.124), the elements of the scale-invariant
laTo-correlation matrix ;.Rg¢ are obtained by dividing the [,r,-covariance
matrix ;, K¢ by the associated diagonal elements of the I,r,-covariance ma-
trices ;K and ;. K¢ element-by-element according to Eq. (2.129).

kil [XY]

a]l*

\/ka K]

(2.129)




2.2 Fuzzy Random Variables 49

The correlation between the random [,ry-increments of a fuzzy random

variable X may be impaired by the influence of fuzzy random variables
Y, YQ, ey Y,,.. In order to uncouple the influence of the fuzzy random vari-
ables Yl, Yo, .. Y on a fuzzy random variable X the partial l,7,-correlation

matrix ;. Pg % is defined.
Definition 2.56. After eliminating the influence of the fuzzy random vari-
ables Y1, Yo, ..., Y, the partial lorq-correlation matriz lT—X/Y of a fuzzy
random variable is given by Eq. (2.130).
wPsgy = uR [X S X] (2.130)
*

The term X hereby represents the best linear approximation of the fuzzy

random variable X by the fuzzy random variables Yl, Yg, s Ym7 i.e. it holds
that
X=4,0Y104,0Y:®...04,,0Y, (2.131)
with the requirement according to Eq. (2.132).
2n 2n m \
DIE|AX; = )] Z [i, /] AY (k) | = min (2.132)
i=1 j=1k=1

The terms ag[i,j] are the elements of the [2n,2n] coefficient matrices A.
Compliance with Eq. (2.90) and Eq. (2.91) is not required, however, as
the [,r.-increments which arise during the computation of the partial ,7-
correlation matrix ;. Py /5 only serve as intermediate results.

Furthermore, the correlations between the random [,7.-increments of two
fuzzy random variables X and Z may be influenced by fuzzy random vari-
ables ?1, ?2, s Ym In order to eliminate the influence of the fuzzy random
variables Y1, Ya, ..., Y,, on the correlations between X and Z the partial
laTo-correlation matrix ;P /5 is defined.

Definition 2.57. After eliminating the influence of the fuzzy random vari-

ables Y1, Yo, ..., Yo, the partial lor-correlation matriz lrfxz/y of two fuzzy
random variables X and 7 is given by Eq. (2.133).

XZ/Y = rli [X@X Z@Z] (2.133)

.

The best linear approximations X and Z of the fuzzy random variables X and
Z by the fuzzy random variables Y1, Yo, ..., Y., are defined analogously by
Egs. (2.131) and (2.132).

Remark 2.58. An estimation of the characteristic moments of a fuzzy ran-
dom variable by computing the empirical moments based on a concrete sample
of fuzzy variables is presented in Sect. 3.5.4 in the context of the description
and modeling of fuzzy time series. .
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2.2.4 Monte Carlo Simulation of Fuzzy Random Variables

The numerical simulation of a fuzzy random variable X, i.e. the generation
of realizations X, is based on a Monte Carlo simulation. The Monte Carlo
simulation depends on the characteristic of the fuzzy random variable X, i.e.
whether X is a continuous or a discrete fuzzy random variable.

Continuous fuzzy random variable. If the fuzzy random variable X is con-
tinuous, it is computed as a one-to-one mapping of the uniformly distributed
fuzzy random variable Y according to Eq. (2.134).

X = f.(Y) (2.134)

The random [,rq-increments AY; (j = 1, 2, ..., 2n) of the fuzzy random
variable Y are in the interval [0, 1] uniformly distributed uncorrelated random
variables. The random [,r,-increments AX; of the fuzzy random variable
X are correlated according the l,ro-covariance matrix ;. K. %- The mapping
according to Eq. (2.134) is thus nontrivial and requires the transformation of
the fuzzy random variables X and Y into the correlated GAUSSian space. The
numerical procedure is described in the following.

The uniformly distributed uncorrelated random [,7q-increments AY; of
the fuzzy random variable Y in the interval [0,1] are simulated with the aid
of pseudo random numbers (see e.g. [50]) or low-discrepancy numbers (see e.g.
[46]). The simulation yields realizations Ay; of the random [,r,-increments
AY ;. By applying the inverse probability distribution function method, the
realizations Ay; (j = 1,2, ..., 2n) are transformed into the uncorrelated
GAUSSian space according to Eq. (2.135).

Au; = 1(Ay;) (2.135)

The Au; are l,7-increments of a realization @ of the fuzzy random variable
U. The random [, r,-increments AU; of U are uncorrelated GAUSSian dis-
tributed random variables with the standard normal probability distribution
function @(+). The fuzzy expected value and the l,r,-variance of the fuzzy
random variable U are given by:

=0 (2.136)
»Var[U] = (1,1,.., )T, (2.137)

The realizations @ of the fuzzy random variable U are thus fuzzy variables in
the improper sense (see remark 2.11).

The realizations % are transformed into the correlated GAUSSian space
according to Eq. (2.138) (see also [57]).

§=,C: 00 (2.138)
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The fuzzy variables § in the improper sense are realizations of the fuzzy ran-
dom variable S. The random l,7,-increments AS; of S are now correlated
GAUSSian distributed random variables with the standard normal probabil-
ity distribution function @(-). The matrix erg is obtained by CHOLESKY
decomposition of the l,7q-covariance matrix ;. Kg of the fuzzy random vari-
able S according to Eq. (2.139).

wKg = 1,Cq 1nCs" (2.139)

The real-valued matrix ;-Cg represents the lower triangular matrix according
to Eq. (2.140).

cta 0 - 0
c21 C22 -+ 0

1wCg = . . ) (2.140)
Con,1 C2n,2 " " C2n 2n

The elements ky_,(S) of the I,74-covariance matrix ;, K. g are given implicitly
by Eq. (2.141) (see also [15]). For each (given) element k, ,(X) of the lo7a-
covariance matrix ;. K¢ the associated element kuﬂ,(é) is obtained iteratively
by numerical solution of the integral given by Eq. (2.141).

J (Fax, H(®(Asy))—Amy)(Fax, H(P(As,))—Am,)... (2.141)

i
L

¢ASuASv (ASM ASU, ku’v(g)) dASu dASu

with w,v=1,2,...,2n

In the above equation, Fax, (-) and Fax, (-) are the given probability distribu-
tion functions of the random [,7,-increments AX,, and AX,, &(-) is the stan-
dard normal probability distribution, and ¢as, ag, (-) is the two-dimensional
standard normal probability density function of the GAUSSian distributed
random [,7.-increments AS, and AS,. The terms Am, and Am, are the
loTo-increments of the fuzzy expected value E[X] = rg.

The sought realizations & of the fuzzy random variable X are obtained by
increment-by-increment transformation of the fuzzy variables § according to

Eq. (2.142)
Azj = Fax, ' (#(4s))), j=1,2, .., 2n, (2.142)
whereby the As; are the increments of the realizations § (see Eq. (2.138)).

Discrete fuzzy random variable. If the fuzzy random variable X is dis-
crete, a simplified procedure is adopted for the Monte Carlo simulation. Let us
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consider the possible realizations 1, %2, ..., T, of the discrete fuzzy random
variable X with the given probabilities of occurrence P(Z1), P(&3), ..., P(Zm).
In order to generate realizations from the set 1, Zs, ..., Ty, a uniformly dis-
tributed random variable Y in the interval [0, 1] is simulated and transformed
according to Eq. (2.143).

X = fa(Y) (2.143)

The mapping according to Eq. (2.143) is performed numerically by a Monte
Carlo simulation of the random variable Y using pseudo random numbers
or low-discrepancy numbers. The simulation yields realizations y of Y. The
sought realizations &1, To, ..., &, of the fuzzy random variable X are obtained
by applying the following equation.

-

Z, for 0sy< Z}zl P(z;)

By for Y P(E) <y <X, P(&)
(2.144)

ISH
Il
A

| &m  for Y5 P(3) <y <1

Example 2.59. A discrete fuzzy random variable X may take m = 4 dif-
ferent realizations %y, Zs, T3, Z4. Each of the four realizations occurs with a
probability according to Fig. 2.19, e.g. as estimated from a given sample with
s » m fuzzy elements.

s, (2) s, (2)
1 I,
0
P(3,)=0.5 P(z,)=0.25 P(i,)=0.15 P(z,)=0.1

Fig. 2.19. Realizations &1, Z2, #3, #4 and associated probabilities P(%1), P(%2),
P(&3), P(Z4) of the discrete fuzzy random variable X

Each Monte Carlo simulation yields a realization y of the uniformly distributed
random variable Y. The mapping according Eqs. (2.143) and (2.144) yields a
realization 1, T2, T3 or 4. The mapping is shown in Fig. 2.20 while several
results are listed in Table 2.5.
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Fig. 2.20. Simplified Monte Carlo simulation of the discrete fuzzy random
variable X

Table 2.5. Simplified Monte Carlo simulation of the discrete fuzzy random
variable X

y1 = 0.7698 — j=3 — i3
Y2 = 0.4631 — j=1 — F
ys = 0.0185 — j=1 — &,
ya = 0.6574 — j=2 — iy

*

Remark 2.60. The simplified Monte Carlo simulation permits the non-
parametric simulation of a fuzzy random variable by means of an existing
empirical probability distribution function form II (see definitions 2.35 and
2.41). .

2.3 Fuzzy Random Processes

In classical time series analysis use is made of the model concept that a given
sequence of deterministic observed values are random realizations of a random
process. This model concept may be extended to uncertain data. In the case
of a sequence of uncertain observed values this is considered to be a random
realization of a fuzzy random process. This leads to the creation of a fuzzy
random process model in compliance with the definition of fuzzy random
variables according to Sect. 2.2.

Definition 2.61. A fuzzy random process (XT)TeT is defined as a family of

fuzzy random variables X over the space T of the time coordinate T, and
represents the fuzzy result of the mapping according to Eq. (2.145) for 7 € T.



54 2 Mathematical Description of Uncertain Data
X, : 2 - F(R) (2.145)

In the foregoing {2 is the space of the random elementary events w, and F(R)
is the set of all fuzzy variables in the EUCLIDian space R. By way of Eq.
(2.145) fuzzy realizations X, (w) = &, with T € T are assigned to each random
elementary event w € §2. The realization of a fuzzy random process (XT)TGT
is hence a fuzzy time series (I;)reT- .

A fuzzy random process ()~(T)T~6T is referred to as stationary in strong sense
if the fuzzy random variables X are independent of the parameter 7.

X,=X Y 7€T (2.146)

Example 2.62. A family of four fuzzy random variables of a fuzzy random
process is shown in Fig. 2.21. A corresponding sequence of fuzzy realizations
relating to the elementary event w; is presented in Fig. 2.22. This sequence

constitutes a time series. .
< A
X,
XTI 8
=
8
=
= =
) o
— i
= =
K
e
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T T T T Ll
Tl T2 TZ& T-’l T

Fig. 2.21. Fuzzy random variables of a fuzzy random process

The fuzzy random variables X, of a fuzzy random process (X, )rer available
at time 7 may be represented and characterized according to Sect. 2.2. This
means that a corresponding fuzzy probability distribution function form I or
II may be formulated for X, at each point in time 7. Moreover, analogous to
random processes, the first and second order moments may be used for char-
acterizing fuzzy random processes. If the fuzzy random variables X, of a fuzzy
random process (X;),er are represented numerically by n a-levels with the
aid of [,r,-discretization, the following definitions hold for the characteristic
moments.

Definition 2.63. For each point in time T the fuzzy expected value E[X,] =
msx_ of a fuzzy random process (X;),et is defined according to Eq. (2.147).
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Fig. 2.22. Realization of a fuzzy random process

o0 e o0
E[X.] =g =f f J iwfg (8)E dAzy -+ dAxy, - - d Az, (2.147)
0 —% 0

E[XT] is referred to as fuzzy expected value function. The l,rq-increments

Amea,i (1) and Ama,, (1) of the fuzzy expected value function E[X:] = Mg
are computed according to Eq. (2.148).

. i
§ Aoyt fax,, (ATa,1, T)dAza,
Amall(T) 0
~ : .
E[X;] =g = [ Amau(7) [ =| § Aot fax., (ATa,i,7)dATa,1((2.148)
-0
Amea,r(T) o
§ Avgyr fax,,  (ATa,r, T)dATq,

The functions fax, ,(A%a,0,7) and fax,,,(ATa,r, T) in the foregoing are the
probability density }unctions of the random lyro-increments AXq,(7) and
AX (1), respectively (with i =1, 2, ..., n), of the fuzzy random variables X,
at times T. .

Definition 2.64. Linear dependencies between the fuzzy random wvariables
XTQ and Xﬂ of a fuzzy random process (XT)TeT at times 1, and T, are at-
tributed to the dependencies between the l,rq-random increments AXTG and
AXT,), This leads to the l,r,-covariance matrix HK)"(, (Ta, Tv) according to Eq.
(2.149). Taking into consideration arbitrary discrete points in time 7, and Ty,

rKx (Ta, ) is referred to as the lorq-covariance function.
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_kgig(Ta’Tb) ka ;(Ta’Tb) e sz;(TaaTb) k 11l (Ta77-b) i
koL (Tay T5) k22N (TauT0) =+ K227 (Tau 7o) KO (Tay T)
ZTKXT(TCL,TIJ): : : L : : (2.149)
aql asl asr ar
ka;r(Ta?Tb) ka2r(7—077—b) T kagr(Ta’Tb) kagr(Ta7Tb)
ka1 (Tas o) kG20 (Tas ™) -+ kG2 (Tay ) kLT (Tay 70) |

*

The elements of the l,7,-covariance function ;, Ky (Ta, Tp) are determined for

j =1,2,...,n according to Eq. (2.150). The indices o; and «; denote the
a-levels under consideration whereas [* = [,r and r* = [,r denote the left
and right branches of the membership function, respectively.

a;l
ka r¥ Ta7 Tb

Awail* —Amail* (Ta)) (Afajr* —Amajr* (Tb)) (2150)

R%Q
de—z

f (Axail* 5 Axajr* sTas Tb) dA:cail* dAxajr*

The term f(Axail*,Axaﬂ*,Ta,Tb) in the foregoing represents the joint
probability density function of the l4r,-random increments AX,,,;x(7,) and
AXair* (Tb).

Definition 2.65. The element by element division of the l,ry-covariance
Sfunction rKx (Ta, ™) by the corresponding leading diagonal elements ac-
cording to Eq. (2.152) yields the scale-invariant l,rq-correlation function
it (Ta» ) given by Eq. (2.151).

_Tgill(’rau Tb) Tzf;(’rau Tb) e rozll (Tau Tb) oz ;(Ta77—b) ]

TZ;IZ(T‘“ Tb) ’1"&2%(7'&, Tb) T r(ml (Taa Tb) a21 (Tav Tb)
iR (10, 1) = : : - : : (2.151)

TOth"(Ta7 Tb) Tazfﬂ(Tav Tb) T TazT(Taa Tb) a2r(7-a7 Tb)

_,rgii'(T(H Tb) alf"(TLU Tb) ot Tgf;(Ta, Tb) alr(Tav Tb)

kot (T )
1% as
T (Tay ™) = —=— = — (2.152)
VS (o) - K203 (s )

.

If all fuzzy expected values E[X,] of a fuzzy random process (X;),er are
constant
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E[X,] = mg =constant V T€T (2.153)

and Eq. (2.154) is satisfied, i.e. the l,r4-covariance function rKx (Ta,Tp) O
the l,7,-correlation function i (Ta, ™) is not dependent on 7, and 7, but
only on the difference A7 = 7, —73, , then (XT)TGT is described as being weakly
stationary.

ZTKXT (Ta7 Tb) = l’l“Kf( (Ta - Tb) = ZTKXT (AT) v TayTo € T (2154)

T~

The [,ro-variance function ;. Var[X,] = l,g% provides a measure of the

fluctuation of the realizations of a fuzzy random process (XT)TeT. For each
point in time 7 the elements of the [,r,-variance correspond to the leading
diagonal elements of ;. K %, (Ta, ™) for 7, = 7, = 7. For a stationary fuzzy

random process (X;)reT the l,ro-variance function lrg?( according to Eq.

(2.155) is hence constant at each point in time 7 with ¢ = 1,2, ..., 2n.
w0 (T) = 107 = kii(Ta — ) = ki i(T — 7) = k; 4(0) (2.155)

Special fuzzy random processes include fuzzy White-INoise processes, fuzzy
Moving Average processes, fuzzy AutoRegressive processes and fuzzy Auto-
Regressive Moving Average processes. The modeling of fuzzy time series by
means of these fuzzy random processes is presented in the following section.



3

Analysis of Time Series Comprised of Uncertain
Data

The aim of time series analysis is to recognize and model structural features
in a sequence of observed values. In the following chapter various commonly
applied methods of classical time series analysis are extended to deal with
time series comprised of fuzzy data.

Definition 3.1. A time series comprised of fuzzy data (Z,)reT is a temporally
ordered sequence of fuzzy variables T, where T represents a set of equidistant
points in time 7. Precisely one fuzzy variable T, is assigned to each discrete
observation time T = 1, 2, ..., N. The l,rq-increments of the fuzzy variable
Z, are denoted by Axo, (1) and Azq,. (7).

Az, (7) Az (1)

B Axazl(T) A(EQ (T)

Tr = : = : (3.1)
Az, (T) Azon(T)

In the following the abridged term ‘fuzzy time series’ is used to express a time
series comprised of fuzzy data. Time series (2, )reT of real observations x are
special cases of fuzzy time series.

Definition 3.2. A portion Ty, Txi1,....,2; with 1 < k <l < N of a fuzzy time
series T1,Ta,...,TN s referred to as a segment. .

Example 3.3. A fuzzy time series is shown by way of example in Fig. 3.1.
*

3.1 Plot of Fuzzy Time Series

According to [59], a graphical representation or plot ‘should always be the
first step in the analysis of a time series’. A plot provides initial information
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Fig. 3.1. Example of a fuzzy time series (Z:)reT

concerning the characterization of a fuzzy time series, especially regarding the
existence of a fuzzy trend, cyclic fluctuations, dependencies between the dis-
crete a-level sets X, and the presence of freak values. A full plot of a fuzzy
time series should include the graphical representation of individual fuzzy vari-
ables Z, at time points 7 and selected I, r-increments Az, (7) and Az, (7).

Z,--plot. In the Z.-plot, the fuzzy variables Z, are represented as projec-
tions or in perspective at the N time points 7. This representation may
be supplemented by including the polygonally connected interval bounds
[Z0;1(T); Tayr (T)] of selected a-level sets X, (7) of the fuzzy variables Z,.
Both variants are shown in Fig. 3.2.

laro-increment plot. In the l,r,-increment plot, the increments Axq,;(7)
and Az, () are polygonally connected at time points 7 for selected a-levels
a;. An example of an l,r,-increment plot of a fuzzy time series (Z,)reT for
n = 3 is shown in Fig. 3.3.

The examples 3.4 and 3.5 clearly illustrate the purpose of the Z,-plot as
well as the [,r,-increment plot. Both forms of representation should always
be used in order to recognize the structure of a fuzzy time series.

Example 3.4. In the example shown in Fig. 3.4 the [,r,-discretization is
carried out for n = 5. In the Z,-plot of the fuzzy time series the constancy of
the interval bounds [Z4,i1(7); Za,r(7)] of the a-level sets X, (7) for ¢ = 1 and
i = 3 is clearly recognizable, i.e. no random effects are present. .

Example 3.5. In the example shown in Fig. 3.5 the [,r,-increments ex-
hibit regularities. The [,r,-discretization is carried out for n = 5. With
the aid of the [,r,-increment plot it is seen that the progressions of the
loro-increments Axy,1(7), Axa,i1(T), Ay (T) and Az, (7) are identical, as
also applies to the progressions of the l,r,-increments Az, (7), Azq,.(7),
Ax oy (1) and Azq, (7). This indicates that the l,r,-increments Axzq, (1),
AZ 1 (T)y, Axoq(7) and Az, (7) as well as Azg,r(7), AZayr(T), AZqr(T)



Fig. 3.3. lorq-increment plot of a fuzzy time series for n = 3
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Fig. 3.4. Z.-plot for n =

and Az, (1) are positively fully correlated. Moreover, the affinity of both
progressions indicates a mutual positive correlation. .

x,r ~ ~ ~
2 3 4 5 7‘8 ‘ $10
1 2 3 4 5 6 7 8 9 107
ACEK\/(T)
Az, (1)| DT—AT,= A\x =Az,,
T S
1 2 3 4 5 6 7 8 9 107

Fig. 3.5. loTq-increment plot

With the aid of both plots it is possible to recognize important features of a
fuzzy time series merely by visual inspection. Numerical methods for deter-
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mining the characteristics of fuzzy time series are introduced in the following
sections.

3.2 Fuzzy Component Model

Non-stationary fuzzy time series may be analyzed by means of the fuzzy com-
ponent model. This model subdivides the given fuzzy time series additively
into a trend component, a cyclic component and a fuzzy-random residual
component.

Definition 3.6. In order to describe the fuzzy time series (Z;)rer the fuzzy
component model according to Eq. (3.2) is introduced as an extension of the
component model of classical time series analysis.

Pr=t, @ ®F, (3.2)
*

The fuzzy variables ¢, and Z, are hereby functional values of a fuzzy trend
function £(7) or a fuzzy cycle function Z(7) at time 7. An introductory account
of fuzzy functions is given in Sect. 2.1.5 and e.g. by [36, 45]. Fuzzy random
processes are described in Sects. 2.3 and 3.5. The fuzzy residual component 7,
is the realization of a stationary fuzzy random interference process (f{T)TeT
at time point 7.

For identical l,r,-representation of the three fuzzy variables in Eq. (3.2)
the following holds for each l,r,-increment Az;(r)

Az;(1) = At;j(1) + Azj (1) + Arj(T) V j = 1,2,...,2n (3.3)

under the conditions
VreT, j=12,...,n—1,n+1,..2n. (3.4)

Because negative [,7,-increments of the realizations 7, are excluded, it cannot
be assumed (in contrast to the classical component model) that the fuzzy

expected value E[R.] of the fuzzy random interference process is equal to

zero. The following holds for the fuzzy expected value E[R;] :
E[R.] = my_=constant ¥ 7eT (3.5)
where

E[AR;(1)] =20 forj=1,2,..,n—1,n+1,..,2n. (3.6)
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According to Eq. (3.3) the determination of the fuzzy trend function #(7), the
fuzzy cycle function Z(7), and the fuzzy random interference process (R )rer
reduces to the determination of the real-valued trend function At;(7), the
real-valued cycle function Az;(7), and the real-valued realizations Ar;(7) of
the fuzzy random interference process(f{T)TeT.

The values of At;(7), Az;(7) and Ar;(7) are computed according to the
algorithm described in the following. This is demonstrated by way of example
for the l4rq-increment Azq(7) of the fuzzy time series shown in Fig. 3.6 a.
The remaining [,7,-increments Ax;(7) are dealt with in a similar manner.
The [,r,-discretization of the considered fuzzy time series is carried out for
n = 2 a-levels.

Determination of the trend auxiliary functions t¥(7). The l,7s-
increment plot corresponding to each l,ro-increment Ax;(7) is developed
from the given fuzzy time series. Fig. 3.6 b shows the plot for Ax;(7). This
laTo-increment function is approximated by a trend auxiliary function ¢} (7).
The free parameters of a suitably chosen function t;’f (1) are determined by the
method of least squares according to Eq. (3.7). The requirement according to
Eq. (3.8) must hereby be fulfilled.

N .
Z — Az;(7))” = min (3.7)

t5(1)=0 V 7€T, j=12..,n—1,n+1,..2n (3.8)

Determlnatlon of the cycle auxiliary functions z*(7). The differences
di(7) = Az1(7)—t§(7) between the functions Az;(7) and ¢ (7) are indicative
of an existing cycle (see Fig. 3.6 ¢). The latter is approximated by means of
a cycle auxiliary function z§(7). The free parameters of a suitably chosen
function z§(7) are again determined by the method of least squares.

Z — (Azj(r) = t5(1))] < min (3.9)

The techniques of classical time series analysis are applied to determine the
cycle and select the cycle auxiliary function 27 (7). For the series of differences
d;(7) the periodogram or sample spectrum is computed according to Eq. (3.10)
and represented graphically.

(dj(7) — dj) cos QWAjT] + (3.10)

N[z{z % (dj(r) — d;) Sin?ﬂﬂr
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Fig. 3.6. Fuzzy component model of a fuzzy time series
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In the above equation d; denotes the time average of the differences d;(7),

and \;, the frequency. The presence of cyclic fluctuations with a period )}_n
J

may be deduced from the maximum values AT of the sample spectrum.

Example 3.7. By way of example the periodogram showing the variation of
the peak points h;(7) of empirical humidity data hy is plotted in Fig. 3.7. The
maximum value of the periodogram for A = ﬁ confirms the natural period
length of the humidity (Fig. 3.7 b).

i

h (T)AR, (T) %]
1001 —

50+ — a=1

a=0

12 36 60 7 [h]
(a) Fuzzy time series
IA
12000+
6000+

24 48 1/X [h]
(b) Periodogram

Fig. 3.7. Humidity &, and periodogram for the mean value h;(7)

*

Cycle matching. The l,74-increments Az;(7) of the fuzzy cycle function
Z(7) may now be determined for each a-level according to Eq. (3.11). The
computation according to Eq. (3.11) is equivalent to a parallel displacement
of the cycle auxiliary functions 27 (1) into the positive range of values. The
requirement according to Eq. (3.4) is thus automatically complied with.

Azj(1) = 25 (1) — I;él%‘l [2F(a)] (3.11)

with j=1,2,..,n—1Ln+1,...2n
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The equality Az,(7) = z%(7) holds for j = n. The plot of the fuzzy cycle
function z(7) is shown in Fig. 3.6 d.

Trend matching. The [ ro-increments At;(7) of the fuzzy trend function
t.(7) may now be computed by means of Eq. (3.12). The computation accord-
ing to Eq. (3.12) is equivalent to a parallel displacement of the trend auxiliary
functions ¢7(7) so that Az;() — At;(1) — Az;(7) = 0 holds. In other words,
the summated function At;(7) + Az;(7) always runs below Axz;(7) (see Fig.
3.6 f). In compliance with Eq. (3.4) the requirement according to Eq. (3.13)
must be fulfilled.

Ati(1) = t;-k(T) — max [t;“ (a) + Azj(a) — Az (a)] (3.12)

with 7=1,2,...n—1,n+1,...,2n

Atj(r)=0 VY 7€T, j=1,2,...,n—1,n+1,...2n (3.13)

The equality At,(7) = t*(7) holds for j = n. The plot of the fuzzy trend
function #,(7) is shown in Fig. 3.6 e.

Remark 3.8. If Eq. (3.13) is not fulfilled, then the selected fuzzy component
model is unsuitable. By a critical assessment and reselection of the trend and
cycle auxiliary function to be matched, it is possible to suitably modify the
fuzzy component model. .

Determination of the fuzzy residual component 7... The fuzzy residual
component 7, is the realization of a stationary fuzzy-random interference pro-
cess (Ry)rer at time 7. This is obtained according to Eq. (3.14) by adjusting
the fuzzy observed values &, using the functional values ¢, and 2, of the fuzzy

trend function #(7) and the fuzzy cycle function Z(7) at time 7.
i, =7, 0L, 0% (3.14)

The l,ro-increments Ar;(7) of the fuzzy residual component 7, are thus ob-
tained for j = 1,2, ..., 2n according to Eq. (3.15). If the requirement according
to Eq. (3.13) is fulfilled, the non-negativity requirement for Ar;(r) according
to Eq. (3.4) is automatically complied with. This procedure is illustrated in
Fig. 3.6 f.

AT]'(T) = ij(T) - Atj(’T) - AZ]'(T) (315)

The plot for the l,r,-increment Arq(7) is presented in Fig. 3.6 g. Fig. 3.6 h
shows the plot of the fuzzy residual component 7.
The fuzzy residual component 7, is considered to be a realization of the

stationary fuzzy random interference process (R;)reT at time 7. Methods for
matching fuzzy random processes are presented in Sect. 3.5.
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3.3 Stationary Fuzzy Time Series

If fuzzy time series do not exhibit systematic variations (trends, cycles), they
are usually postulated as stationary and ergodic series. The stationary condi-
tion presupposes time-invariant characteristics of the fuzzy time series while
ergodicity permits a determination of these time-invariant characteristics by
statistical evaluation of the fuzzy time series over time.

Essential characteristics of stationary and ergodic fuzzy time series are the
fuzzy time-average and the empirical [,r,-variance.

Definition 3.9. The fuzzy time-average T of a fuzzy time series (Zr)rer 45
defined according to Eq. (3.16), whereby N is the number of observed fuzzy
variables T, .

8

1 N
=— @i (3.16)
v

*

The fuzzy time-average T is the central fuzzy variable about which the values
of the time series vary.

The empirical [,r,-variance nggT of a fuzzy time series (Z,)reT iS a mea-
sure for assessing the scatter of the series. This is represented in the form of
a vector of size [2n].

Definition 3.10. The elements ;.87 of the vector of the empirical loTo-
variance ZTQ%T are defined according to Eq. (3.17). The terms AZT; are hereby
the lyro-increments of the fuzzy time-average T and the terms Ax;(1) are the
lara-increments of the fuzzy variables T, at time 7.

N
b = s O (An(r) AT for i=12,.9m  (317)

T=1

Remark 3.11. The size of the vector lrgg%T, i.e. the l,r,-variance, depends
on the number n of the chosen a-levels. The [, r,-variance lr§27 (n1) based on
an [,r,-discretization with n; a-levels cannot generally be directly converted
into the lorq-variance j,53 (n2) with ny discrete a-levels (see example 3.12).

*

Example 3.12. For a particular fuzzy time series the empirical [, r,-variance
l,,g%,T according to Eq. (3.17) is determined for an [,r,-discretization with
ny1 = 2 a-levels and for an [,r,-discretization with no = 3 a-levels. The result
is indicated by Eq. (3.18). A cutout of the fuzzy time series is presented in
Fig. 3.8.
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Fig. 3.8. Cutout of a fuzzy time series
0.211
0.185 0.197
0.546 0.546
1rss (n1) = o | 1rss (n2) = 0 (3.18)
0.239 0.254
0.238

No direct relationship exists between the [, r,-variance lr§%T (n1) and the l474-
variance j.s3 (n2). .

The empirical l,7,-standard deviation ;,.s; is obtained by extracting the posi-
tive square root from each element of the vector of the empirical [,7,-variance
lrgﬁ,r according to Eq. (3.19).

wsi = +4/wrs? for i=1,2,..2n (3.19)

Remark 3.13. With regard to the relationship that exists in special cases
between the [,7,-standard deviation ;.55 (n1) based on an [, r,-discretization
with n; a-levels and the [,74-standard deviation ;.55 (n2) with ny discrete
a-levels the same conditions apply as already stated for the [,r,-standard
deviation of fuzzy random variables (see Remark 2.55). .

Definition 3.14. Linear dependencies between the l,ry-increments of the
fuzzy values T and Tryonr (1 = 1,2,...,N — A1) of a stationary and er-
godic fuzzy time series are given in the form of an empirical loro-covariance
matriz 1K (A1) of size [2n,2n] according to Eq. (3.20). The term At de-
notes the relative time lag between two discrete time points and is given as
a natural number (e.g. At = 3 for o and Zs5). Considering arbitrary time
lags AT, the function lTKjT (AT) is represented in the form of an empirical
laTo-covariance function.
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I%Z‘if(AT) I%gff(AT) l%zflr(AT) l%gif(AT) i

EOU(AT) k22 H(AT) - k22T (A7) B (AT)

O(2l
Kz (A1) = : S : (3.20)
kI (AT) kG2L(AT) - kg2r(AT) kgirn(AT)

kel (A7) kg2l (A7) -+ k2r(Ar) kS (Ar) |

alr

*
The elements of the l,r,-covariance function 5./ s (A7) are computed for
each time lag At according to Eq. (3.21).

. 1 N—-At B
ka;iﬁ; (AT) = m ;1 [(Al'ail*(T) — Al’ail*)... (321)

(A (T + AT) = AT )]

The indices o; and «; with 4,57 = 1,2,...,n denote the a-levels to be ana-
lyzed, and I* = [,r and r* = [,r denote the left and right branches of the
membership function, respectively. The elements of the leading diagonal of
the l,7q-covariance function ;. . (A7) correspond to the auto-covariances,
whereas the remaining elements correspond to the cross-covariances of the
loTo-Increments.

Definition 3.15. The empirical l,r,-correlation function ITE;ET(AT) accord-
ing to Eq. (3.22) yields a scale-invariant representation of the linear depen-
dencies. This is obtained according to Eq. (3.23) as the result of element-by-
element division of the empirical l,rq-covariance function lTKiT(AT) by the
corresponding elements of the leading diagonal.

[P (AT) 702N AT) e 7O (AT) PT(AT) )

Oéll Ocll Oql all

P AT) 202N (AT) - BT (AT) PO (A7)

. asl asl asl azl
wlty (A7) = : S : (3.22)
Poar(AT) FG2L(AT) - 7021 (Ar) 7317, (AT)

fgii(AT) fgfi(AT) s P(AT) POI(AT)

fpeal™ (A7)

PO (AT) =

(3.23)

Vhel(an) - kT (ar)
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Example 3.16. The empirical [,7,-correlation function ;. R; (A7) given by
Eq. (3.22) is determined for the fuzzy time series shown in Fig. 3.8 for an
laro-discretization with n = 3 a-levels. The results for A7 = 0, A7 = 1 and
ATt = 2 are given by Eqgs. (3.24) to (3.26), respectively.

[0.999 0.459 0 0.707 ]
0.459 0.997 0 0.402
(Ar=0=|"3""0 0 o (3.24)

| 0.707 0.402 0 1.000 |

[0.297 0.568 0 0.875 ]
0.568 0.496 0 0.497
Ar=D="3""0 0 o (3.25)

| 0.875 0.497 0 0.298 |

[0.064 0.090 0 0.140 ]
- 0.090 0.038 0 0.080
why (AT =2)= 77700 ) (3.26)

| 0.140 0.080 0 0.042 |

These results indicate a reduction in the linear dependencies between the
laro-increments of the fuzzy values Z, and Z,4a, with increasing time lag.
For At = 2 the elements of the empirical correlation function are negligibly
small. .

For the modeling and forecasting of fuzzy time series it is also advisable to

determine the so-called empirical partial [, 7,-correlation function ;. Pz (AT).

Definition 3.17. The empirical partial 1,7, -correlation function lT’EiT (A1)
is defined by Eq. (3.27) as the empirical correlation between the fuzzy values Z.,
and Tr1 A of a stationary fuzzy time series with the exclusion of the influence
of the intermediate fuzzy values Try1, Try2, ooy Trt Ar—1-

[ Do (AT) Di2(AT) - 52 (A7) ol (AT) ]

PEL(AT) PR2I(AT) - P22 (AT) PLT (A7)
wP; (A1) = : : : : (3.27)
PoL(AT) pazl(AT) - pazr(AT) par (A7)

pOLQT

| 31 (AT) pezL(AT) - pozn(AT) pairn(Ar)

*
The determination of the empirical partial [, r,-correlation function er;fT (A7)
is equivalent to the determination of the empirical [,7.-correlation function
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of the fuzzy time series suitably adjusted to exclude the influence of the fuzzy
values T;y1, Tri2, - :i:T+AT 1. The elements of the empirical partial [,7q-
correlation function ;,P; (A7) are computed with the aid of Egs. (3.28) and
(3.29). The indices «; and o with 4,5 = 1,2, ...,n again denote the a-levels to
be analyzed, while I* = [,r and r* =1[,r indicate the left and right branches
of the membership function, respectively.

he " (A7)
ﬁz;iﬂ**(AT) = o — % (328)
\/hzzr* (A)hIT (Ar)
N—-AT
a;l¥® 1 —
with ha x (AT) = N Ar Z [(Azg, 5 (T) — AZ g% (1)) .. (3.29)
T=1

o (Ao (T + AT) = AZy s (7 + AT)) |

The loro-increments Az, (7) and Az .+ (T+AT) are computed with the aid
of Egs. (3.30) and (3.31). In both equations the fuzzy values Z, and Z,, A are
adjusted to exclude the influence of the fuzzy values T-,1, Tr12, .., Tranr_1
lying between 7 and 7 + Ar.

3 =0, — (3.30)

2T+AT = j‘r-‘,—AT - i’T-‘y—AT (331)

The fuzzy values Z, and Z,4 A, which yield the best linear approximations of
the fuzzy values &, and Z,4 A, are determined according to Egs. (3.32) and
(3.33).

2 =A0%, 11 PA 0T, 2@ .. DA, OTrrar—1 (3.32)

-%T—Q-AT = Bl ®f7'+1 @EQ ®j7'+2 @ ... @ﬁh_l © jT—Q—AT—l (333)

The matrices A, and B, are the coefficients of the best linear approxima-
tions. The elements a[i, j] and bg[4, j] of the [2n,2n] coefficient matrices A,
and B, (k = 1,2, .., h — 1) are determined according to the minimization
requirements given by Eqs. (3.34) and (3.35).

N—h 2n 2n h—1 2 '
> lAXi(g) - akli, j] Ax;(g + k)} =min  (3.34)
g=11i=1 Jj=1k=1

N—h 2n

_ 2
Axi(g+h) — Z Z [4, 7] Ax,(g +k)1 < min (3.35)

The loro-increments AZ,, 1+ (7) and AZ, .+ (7+ A7) also required in Eq. (3.29)
are computed with the aid of Egs. (3.36) and (3.37).
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N—-AT

~ 1
A ; 3.36
i N — At g %9 ( )
B 1 N—-AT ~
ZryAr = N Ar QC_E Zg+ AT (3.37)

Numerical Tests for Stationarity

Reverse argument is applied to verify the stationarity of fuzzy time series.
The non-existence of non-stationarity such as fuzzy trends or fuzzy cycles is
verified numerically. Although the following methods do not directly verify
stationarity, they indicate the extent to which non-stationarity exists. In par-
ticular, very short fuzzy time series or segments of a fuzzy time series may
erroneously give the expression that stationarity or non-stationarity is present.

e In accordance with Sect. 3.1 the plot should always serve as the first step
in the analysis of a time series. On the basis of the plot it is possible
to ascertain the non-existence of a fuzzy trend or fuzzy cycle. The l,rs-
increment plot is especially suitable for this purpose. An obvious non-
stationarity should not exist for each individual [,7,-increment.

e Sufficiently long fuzzy time series may be subdivided into several segments.
The empirical moments according to Sect. 3.3 are computed separately
for each segment. In the case of stationarity the empirical moments of
individual segments are equal. If the empirical moments of the individual
segments show significant differences, non-stationarity must be assumed.
A precondition for this approach is that stationarity is assumed a priori
for each individual segment. This assumption may be checked a posteriori
by modifying the segmental subdivision.

e In order to check stationarity the fuzzy component model according to
Sect. 3.2 may also be applied. The matching of a fuzzy trend function
t(7) and a fuzzy cycle function Z(7) may be also be applied to verify
stationarity or non-stationarity. If the matching of a fuzzy trend function
with a non-negligible ascent and/or a fuzzy cycle function with a non-
negligible amplitude is already possible for an individual [,r,-increment,
non-stationarity must be assumed.

3.4 Transformation of Fuzzy Time Series Using Filters

The transformation of a given fuzzy time series (Z;),eT into a fuzzy time
series (Z;)rer+ is carried out by means of so-called filters. The aim of the
transformation is to smooth irregular local and global fluctuations of the given
fuzzy time series (Z,)reT. Smoothed time series facilitate the modeling of
trends and cycles.
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3.4.1 Smoothing of Fuzzy Time Series

Definition 3.18. Analogous to classical time series analysis, the transforma-
tion L according to Eq. (3.38) is defined as a linear filter for fuzzy time series.

b
Z,=L% = @ cifryi (3.38)

1=—a

In the above equation, (Z;)reT 18 the fuzzy time series to be transformed,
(27)reT* s the smoothed fuzzy time series with T* = {a + 1,..., N — b}, and
¢; are the filter coefficients. S

An affine transformation is performed for all n [,r,-increments of the fuzzy
values Z, using the real-valued filter coefficients ¢;. An extension of the latter
to non-affine transformations is discussed in Sect. 3.4.3.

Remark 3.19. The filter coefficients must be chosen in such a way that the
smoothed fuzzy time series only includes fuzzy values in the proper sense.

The filter given by Eq. (3.38) defines a linear combination of fuzzy values. The
linearity of the filter given by Eq. (3.38) may be demonstrated as follows:

Applying the incremental fuzzy arithmetic introduced in Sect. 2.1.2, the
following holds for the sum of two filters:

b b
Li-®Ljr = @ cifrei ® @ cifirti (3.39)
b
= @ (CiTr4i @ CiYryi) (3.40)
b
= @ Ci (Zr1i @ Urti) (3.41)
Li,®Lj, = L(i, @) . (3.42)

In contrast to the application of the extension principle, linearity is only en-
sured by applying incremental fuzzy arithmetic.

Definition 3.20. If > ¢; = 1 holds for the coefficients, the linear filter is
referred to as a moving fuzzy average. Considering the simplest case of a
linear filter, the simple moving fuzzy average for fuzzy time series is defined
according to Eq. (3.43).

1 a
Z, = Y] E{—) Try; mit 7T=a+1,..,N—a (3.43)

1=—a
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Fig. 3.9. Moving fuzzy average of a fuzzy time series (Z;)-er

Example 3.21. The simple moving fuzzy average according to Eq. (3.43)
with a = 2 is shown by way of example for the fuzzy time series presented in
Fig. 3.9. .

By means of the linear filter given by Eq. (3.38) it is possible to transform
fuzzy time series arbitrarily. For example, a local polynomial approximation of
a fuzzy time series may be obtained by a suitable choice of the filter coefficients
¢;. The filter coeflicients ¢; corresponding to the desired polynomial degree
are thereby determined by the following condition. A nontrivial linear filter
L results in a local polynomial approximation of a fuzzy time series provided
it reproduces the underlying series when applied to a fuzzy time series which
follows a polynomial curve.

Example 3.22. This postulation, which is valid for general polynomial curves,
is demonstrated by the example of a fuzzy time series &, = 1 @ 792 @ 72D3
following a quadratic curve (the coeflicients p1, p2 and ps are arbitrary fuzzy
values). The application of the filter L to Z, according to Eq. (3.44) again
yields the original series Z..

2
Z,=Li, =L(p1 ®7h ®7°P3) = @B cifirsi
i=—2
1

= o5 (“3F 2 @125 @ 172, 12011 ©3Fr42) (3.44)

=P ® TP ®TP3 = iy
*

Remark 3.23. The linear filter defined by Eq. (3.38) possesses the follow-
ing numerical property. If the smoothed time series values z, are computed
according to the extension principle (see Sect. 2.1.3), the uncertainty of the
Z, values increases for negative coefficients ¢;. If, on the other hand, l,7r,-
addition (see Def. 2.10) is applied, an increase in the uncertainty of the Z,
values due to numerical effects does not occur. The moving fuzzy averages
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computed for a time series with constant fuzzy values according to Eq. (3.43)

using incremental fuzzy arithmetic and the extension principle are compared
in Fig. 3.10. .
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Fig. 3.10. Moving fuzzy average according to Eq. (3.43) using (a) incremental fuzzy
arithmetic and (b) the extension principle

3.4.2 Fuzzy Difference Filter

For the local polynomial approximation of a fuzzy time series or the matching
of a polynomial to a fuzzy time series it is necessary to select the degree of
the polynomial to be used. For this purpose the difference filter applied in
classical time series analysis is extended to deal with fuzzy time series.

Definition 3.24. The fuzzy difference filter DP of pth order is defined recur-
sively by Eq. (3.45) for p > 1.

D%, =DP ', ©DP ‘i, ®dP with 7=p+1,..,N (3.45)
*

By means of the fuzzy difference filter DP the degree of a polynomial of order
p* is reduced to the degree of order p* — p.

As a 1st order fuzzy difference filter D! the transformation according to
Eq. (3.46) follows from Eq. (3.45).
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D', =i, Q%1 ®d with 7=2,3,... N (3.46)

The fuzzy correction factor dP ensures that Eq. (2.18) is complied with for the
fuzzy result. The determination of the [,r,-increments of dP is shown by way
of example for p = 1 in Egs. (3.47) to (3.49). The computations for p > 1 are
performed in a similar manner.

Adl,, = {_h%l forhau <0 g 1,2 n—1  (3.47)

0 for hail = 0

Adl ;=0 (3.48)

Adg,, = {_hw for hair <0 4 i 12, (3.49)

0 for ho,r 20 ’

with  he,ir = TZ;I%)’IHN [Aacail/r (1) = Az, (7 — 1)]
A non-stationary fuzzy time series with a linear trend is transformed into a
stationary fuzzy time series by applying a 1st order fuzzy difference filter.
A non-stationary fuzzy time series whose trend is described by a pth order
polynomial reduces to a stationary fuzzy time series when a fuzzy difference
filter DP is applied. By this means it is thus possible to determine the degree
of the polynomial to be chosen for a polynomial of unknown order p. This
procedure is also suitable for the polynomial approximation of local sections
of a fuzzy time series.

Cyclic fluctuations of a fuzzy time series may also be eliminated with the
aid of a cyclic fuzzy difference filter D, according to Eq. (3.50). The fuzzy
correction factor d, is determined analogously according to Egs. (3.47) to
(3.49).

D.%y =%, 0%, ®d, with 7=z2+1,..,.N (3.50)

3.4.3 Extended Smoothing and Extended Fuzzy Difference Filter

The filters introduced in Sects. 3.4.1 and 3.4.2 for fuzzy time series are char-
acterized by real-valued filter coefficients. Affine transformations of the l,7,-
increments are performed by means of these filters. In some cases, however, a
non-affine transformation, i.e. the different transformation of individual [,7-
increments, is often advantageous. For this purpose the extended linear fuzzy
filter L. is introduced.

Definition 3.25. The extended linear fuzzy filter L. is defined according to
Eq. (3.51).

Zy=Leir = P C; 0%y (3.51)
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The C; diagonal matrices of size [2n, 2n] hereby contain real-valued elements.
By this means a different transformation is possible on each a-level. If the
elements of the coefficient matrices C; are identical, Eq. (3.51) describes an
affine transformation just as Eq. (3.38) as a special case.

Analogous to the extended linear filter, it is also possible to define an
extended fuzzy difference filter. The extended fuzzy difference filter D} of 1st
order is presented by way of example in Eq. (3.52).

D'i. =% 0D'®%_, ®d" with 7=2,3,...N (3.52)

D' is hereby a diagonal matrix whose elements may be assigned the values 0
or 1.
The following holds for the extended fuzzy difference filter D? of pth order:

DPi, =DP '@z, 0D @i, ®d® with 7=p+1,..,N. (3.53)

By means of the extended difference filter it is possible to take account of
different trends in the [,7,-increments on different a-levels. By repeating the
extended difference computation p-times it is possible to transform the trends
on an a-level to a-level basis.

3.5 Modeling on the Basis of Specific Fuzzy Random
Processes

As already introduced in Sect. 2.3, a fuzzy time series (Z,),eT may be inter-
preted as the realization of a fuzzy random process (XT)TeT. In the following
section, specific fuzzy random processes and specific methods are presented
which permit the identification of the hypothetical underlying fuzzy random
process of a given time series.

Remark 3.26. The fuzzy random processes (XT)TeT are exclusively evalu-
ated at equidistant discrete time points 7 in the following, i.e. only discrete
processes are considered. In order to describe the random [,7.- increments
of a fuzzy random variable X, of the fuzzy random process (XT)TGT at time
point 7 the bracket notation AX,,,;(7) and AX,,(7) is used. .

3.5.1 Fuzzy White-Noise Processes

Definition 3.27. A fuzzy white-noise process (€;)reT 18 a stationary and er-
godic fuzzy random process. A fuzzy white-noise variable &, with the fuzzy
realizations €, is assigned to each time point 7. The random l,r,-increments
AE;(1) and AEj(T + AT) of the fuzzy white-noise variables & and E,yar
are fully independent real-valued random variables with a constant expected
value E [AE;(T)] = E[AE;(T + AT)] and a constant variance Var [AE;(T)] =
Var [AE;(T + AT)]. The independency postulation exclusively holds for time
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differences of At # 0. In accordance with Eq. (3.56) the l,rq-covariance func-
tion is permitted for At = 0. The following holds for a white-noise process:

E[E;] =g =constant V7eT (3.54)
erar[gT] = lrg% = constant V7e€T (3.55)

i _ JuKg (0) for Ar =0
ke (A7) = { 0 for AT #0° (3.56)
*

Each of the random [ r4-increments AE;(7) is characterized by a correspond-
ing probability density function fag, (Ae;). All realizations Ae;(7) of the
random [, r,- increments AE;(7) must satisfy the requirements of Eqgs. (3.57)
to (3.59).

Agj(t) =0 for 7=1,2,...,n—1 (3.57)
Aej(7) arbitrary for j=n (3.58)
Agj(t) =0 for j=n+1,n+2, .. 2n (3.59)

The non-negativity requirement of Egs. (3.57) and (3.59) does not apply to the
mean value. The realizations Ae,(7) of the random [,r,-increment AE, (1)
of the mean value may also take on negative values.

Example 3.28. A realization of typical fuzzy white-noise process is shown in
Fig. 3.11.

Qddﬁqqdqﬂquﬁﬂﬂqﬁﬁd

Fig. 3.11. Realization of a typical fuzzy white-noise process
.

By means of Eq. (3.57) and Eq. (3.59) lower bounds are specified for the
realizations Ae;(7). Moreover, upper bounds may also exist.
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It is advantageous to adopt a stepped function according to Eq. (3.60) as
the probability density function fag, (Ae;) for the random [, r,-increments
AE;(T). The basic form of such a probability density function is shown in
Fig. 3.12.

Jae (Ag))A
Wy L.
wy, | I
Wy L) [
e - L
| i i

pZZ,_7+ mAE,I pll,_7+ mAE,/ mA&,I plr,_7+ mAEI p2r4_7+ mAEI A€_7

Fig. 3.12. Probability density function fag; (Ae;(7)) for a random la7a-increment
AE; () of a fuzzy white-noise process

The following holds for each random l,7y-increment AE;(7):
((wy for py < (Aej —mag,) < pu
wy  for py < (Agj —mag;) <0
fag, (Aej,7) = § wi, for 0 < (Ag; —mag,) < pir (3.60)

wo, for pi,. < (Agj —mag;) < por

0 else

with  — pywy + (pu — pai)war = 0.5
Prrwiy + (er - plr)'UJQT =0.5.

In order to simplify the notation in Eq. (3.60) the subscript j is omitted for
the parameters.

By means of this function it is possible to arbitrarily specify the upper and
lower limits for a given variance. The upper and lower limits are defined by the
parameters py; and po,. The prescribed mean values E [AE;(7)] = mag, and
variances Var [AE;(T)] = (TQAEJ_ lead in each case to Egs. (3.61) and (3.62) as
additional constraints for the parameters py,, p1;, Wwar, Wo;, Wi, and wq;.

UQAgj = % (P —p31) — % (nh)) + % (p3,) + % (p3. —pi,) (3.61)
w w Wiy war
0= (h —p3) — 5 (h) + = (1) + =~ (3. —pi,) (3.62)
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The functional values ws,, wy;, wi, and wy; are computed from Egs. (3.63)
to (3.66), respectively.

w GUzAgj + pupir + papu — Pi, + papir (3.63)
o = )
" 2por (pup1r — P2rPu + D3, — D3, + P2P1r — P2D2r)

P11 — 2P1rWarPor + P1r + 2warp3,

W = 3.64
& 2par (p2r — pur) (8:64)
1 — 2wgppor + WorPiy
Wiy = 2 5;1 2P (3.65)
2wopr — 2prwg — 1
= 3.66
o 2p1 (3.66)

The parameters 0 < p1, < par and pgy; < p1; < 0 must be chosen in such a
way that the following holds:

war, W2, Wir, Wil =0. (367)

The corresponding probability distribution function Fag, (Ae;) is obtained
by integrating fag,; (Ae;).

Numerical realization. The simulation of a fuzzy white-noise process (S~ r)reT,
i.e. the determination of the realizations (¢;),eT, is based on the Monte Carlo
simulation of continuous fuzzy random variables. Use is thereby made of the
characteristic properties of the fuzzy white-noise process. In accordance with
Eqs. (3.54) and (3.55) the fuzzy white-noise variables &, for different values
of 7 are fully-independent fuzzy random variables with a constant fuzzy ex-

pected value E[€,] = mg and a constant l,7,-variance wVarl€] = lrgzé- )

According to Eq. (3.56) the l,r,-covariance function ;. K g (A7) only exists
for AT = 0. From this it follows that the simulation of the fuzzy white-noise
process (g r)reT at each time point 7 may be reduced to the Monte Carlo sim-
ulation (see Sect. 2.2.4) of a fuzzy white-noise variable € with the properties

E[&] = El&:], wVar[€] = wVar[E;] and , K = lTKgT(AT = 0). Analogous
to Sect. 2.2.4, the continuous fuzzy random variable £ is thus computed as
a one-to-one mapping of the uniformly distributed fuzzy random variable ¥
according to Eq. (3.68).

£ = f.(V) (3.68)

In the case of a discrete fuzzy random variable € the simulation is computed
as a one-to-one mapping of the uniformly distributed random variable Y ac-
cording to Eq. (3.69) (see also Sect. 2.2.4).

€= fa(Y) (3.69)
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3.5.2 Fuzzy Moving Average Processes

Definition 3.29. A fuzzy random process (XT)TeT is referred to as a fuzzy
moving average process of order q (fuzzy MA[q] process for short) if it can be
described by Eq. (3.70) at each time point T.

X, =£,0B,06&.10..0B,0&_, (3.70)
*

The parameters B, (j = 1,2,...,q) are real-valued [2n, 2n] matrices, whereby
n denotes the number of chosen a-levels. The variables ET, E A q are
the fuzzy random variables of a fuzzy white-noise process (£;)rer at time
points 7, 7 — 1, ..., 7 — ¢ (see Sect. 3.5.1).

Fuzzy moving average processes (XT)TGT are generally stationary fuzzy
random processes. The fuzzy expected values and the [,r,-variance of a fuzzy
MA process may be determined by means of Egs. (3.71) and (3.73).

The fuzzy expected value E[XT] is computed using the fuzzy expected
value E[&,] = mg_ of the fuzzy white-noise process (€;)rer as follows:

E[X,] [Zi:

The parameter matrices By, By, ..., B, are obtained from Eq. (3.70). The
negative unit matrix according to Eq ( 2) is applied to compute B,,.

g . (3.71)

—1... 0
By=|: . (3.72)
0 - —1

The l,r,-variance lTVCLT[XT] is computed using the l,7,-variance lTVar[gT] =

lrg% of the fuzzy white-noise process.

wVar[X,] = (3.73)

Zq;)(Bj * ;)

The operator e hereby represents the naive element-by-element multiplication
of the parameter matrices.

The l7q-covariance function ;, K¢ (A7) of a fuzzy moving average process
(XT)TET may be determined for AT =0,1,...,q according to Eq. (3.74). The
term ;. K (AT = 0) hereby represents the [,r,-covariance function of the

correspondlng fuzzy white-noise process (ST)TeT for A7 = 0.

q— AT
Z §C+AT ITKE?T (AT = 0) E? (374)

c=0
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The elements kg _[i,7](A7) of the lora-covariance function ;. Kz (A7) may
be determined for i,7=1,2,...,2n using Eq. (3.75). The varlables b, [4,b] and
bes Ar [1, a] are hereby the elements of the parameter matrices B, and B, 4.,
respectively, and kg _[a,b](AT = 0) are the elements of the l,7,-covariance
function ;. K (AT =0).

2n

—AT 2n
< [i,71(AT) = Z Z Z a,b](AT = 0) beyar[i,a] (3.75)

Numerical realization. The numerical simulation of a fuzzy MA process
(X;)rer is a special case of the numerical simulation of a fuzzy ARMA process
(see Sect. 3.5.4).

Example 3.30. For a fuzzy MA[1]| process it follows from Eq. (3.70) that
X, = (ch 6B1 @gr—leu-eﬁq @g‘r—q- (376)

For an [,r,-discretization with n = 3 a-levels the following is obtained ac-
cording to the notation used in Eq. (2.89).

AX, (1) [A&()] [05 010500203 [A& (- 1)
AXo(r)| A& 01050800402 || A& (—1)

- | axs(n)| | A&@)| 07090800908 ||Ag(r—1)
Xe=lax,n | “lacn |t o 0 000 o ||agE-1)|BT
AXs(n) | |agm)| (01030200602 ||agr—1)
AXg(r)| | agr)| 0402010 0 06 ||Ag(r—1)

The random [, 74-increments A& (7), ..., Ale(T) of the fuzzy white-noise vari-
ables &, for this example are equally-distributed random variables in the inter-
val [0,1]. The linear dependency between the A& (7), ..., Af(T) is expressed
by means of the [,7,-correlation function

1 0303 —-040.5
03 1 04 —-0404
wRg (At =0) = 0304 1 — 0304 ' (3.78)

040403 -1 05
050404 -05 1

A segment of a typical realization is shown in Fig. 3.13.
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Fig. 3.13. Segment of a realization of the fuzzy MA[1] process according to Eq.
(3.77)

3.5.3 Fuzzy Autoregressive Processes

Definition 3.31. A fuzzy random process (XT)TeT is referred to as a fuzzy
autogressive process of order p (fuzzy AR[p] process for short) if it may be
represented by Eq. (3.79) at each time point T.

X, =4,0X1@0..04,0X,_,®E, (3.79)
*

The parameters A; are real-valued [2n,2n] matrices, where n denotes the
number of chosen a-levels. The term &, is the fuzzy random variable of a

fuzzy white-noise process (€;)rer at time point 7 (see Sect. 3.5.1).

By means of fuzzy AR processes it is possible to model stationary as well
as non-stationary fuzzy time series. The characteristic moments of a fuzzy AR
process may be computed by means of the numerical methods described in
Sect. 3.5.4 for fuzzy ARMA processes.

The fuzzy random variable 5(7 and its random [l,7,-increments AX;(7)
with ¢ = 1,2,...,2n depend on the previous values XT,l, XT,Q, e XT,p
and are thus dependent on the random I,r,-increments AXy(r — [) with
k=1,2,...,2n and | = 1,2, ...,p. This causal dependency is weighted by the
parameter matrices A; and may be formalized with the aid of the GRANGER
causality concept [17].

The GRANGER causality concept demands the fulfillment of two require-
ments: firstly, causality is only defined for variables with stochastic charac-
teristics. The second requirement is that future realizations are solely influ-
enced by past values. According to Sect. 2.2, the random [, 7,-increments of a
fuzzy random variable X, at time 7 are real-valued random variables AX;(7)
with ¢ = 1,2, ...,2n. For time series comprised of fuzzy data, as considered
here, it follows from both requirements that a random [,7.-increment AXy
of a fuzzy random variable X, is GRANGER-causal for a different random
laro-increment AX; of a fuzzy random variable )~(T+ Ar for At > 0, provided
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improved predictions of AX;may be obtained with the aid of previous values
of AXk.

Definition 3.32. In a fuzzy autoregressive process, AXis GRANGER-causal
in relation to AX; if Eq. (3.80) is not satisfied.

ar[i, k] = as[i, k] = ... = ap[i, k] = 0 (3.80)

If all parameter matrices of a fuzzy autoregressive process are diagonal matri-
ces A;, GRANGER causality does not exist between the different a-levels.
For a general configuration of the A; matrices the fuzzy AR process is consid-
ered to be GRANGER-causal with regard to fuzzy random process modeling.

The term causality must not be confused with the term correlation. If a
statistical relationship exists between two random [,r,-increments AX; and
AXy, it is not possible make any statements regarding causal relationships.
Conversely, the fact that previous values of AXy may lead to GRANGER-
causal realizations of AX; at time 7 , they do not necessarily lead to correla-
tion.

From GRANGER causality it follows that it is not possible to deduce the
occupancy of the parameter matrices A; from the [,r,-correlation function.
The A; must be determined using the methods presented in Sect. 3.5.5.

In contrast to fuzzy MA processes, fuzzy AR processes permit the model-
ing of stationary as well as non-stationary fuzzy time series. Whether or not a
specific fuzzy AR process is stationary or non-stationary may be determined
numerically. It is possible to verify stationarity from a numerical simulation of
the fuzzy AR process and a statistical evaluation of a sufficiently long series
of realizations according to the methods described in Sect. 3.3.

Numerical realization. The numerical simulation of a fuzzy AR process (XT)TeT
is a special case of the numerical simulation of a fuzzy ARMA process, as de-
scribed in the following section.

3.5.4 Fuzzy Autoregressive Moving Average Processes

Definition 3.33. A fuzzy random process (XT)TeT is referred to as a fuzzy
autoregressive moving average process of order [p,q| (fuzzy ARMA[p, q] pro-
cess for short) if it may be described by Eq. (3.81) at each time point 7.

X,=4,0X,10..04,0X, ,®E0B,06.16..0B,0&_, (3.81)

~ ~
fuzzy AR component fuzzy MA component
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The parameters A; and B; are real-valued [2n,2n] matrices, whereby n de-
notes the number of chosen a-levels. The variables ST, E 1, eee & q are

the fuzzy random variables of a fuzzy white-noise process (f:'T)TeT at times
7, 7—1, ..., 7 — q (see Sect. 3.5.1). Fuzzy autoregressive moving average pro-
cesses are hence a combination of the processes presented in the previous two
sections.

By means of fuzzy ARMA processes it is possible to model stationary
as well as non-stationary fuzzy time series. Whether or not a specific fuzzy
ARMA process is stationary or non-stationary may be tested numerically
(see also Sect. 3.5.3). It is possible to verify stationarity from a numerical
simulation of a sufficiently long realization of the fuzzy ARMA process and a
statistical evaluation of the latter using the methods described in Sect. 3.3.

The characteristic moments such as the fuzzy expected value function, the
loro-variance function, and the [,r,-covariance function may be determined
from a numerical simulation followed by a statistical evaluation of the real-
izations. In the case of a stationary fuzzy ARMA process a sufficiently long
realization of the process is simulated in order to determine the characteristic
moments. For these fuzzy time series the characteristic moments are computed
according to Sect. 3.3 and used as estimators for the characteristic moments
of the fuzzy ARMA process.

In the case of a non-stationary fuzzy ARMA process, s realizations (Z%), ¢t
(k=1,2,...,s) are simulated in order to determine the characteristic moments.
The local fuzzy mean value Z(7) according to Eq. (3.82) then serves as an
estimator for the fuzzy expected value function E[X,] = ms. -

L N ~ 12
E[X,]=mg =7(1)=- P (3.82)
" S k=1
The elements of the [,r,-covariance function ;. K <. (Ta, Tp) are estimated ac-
cording to Eq. (3.83).

1 s
ko

o (Tarm) = 1 2 (A5G 1w (ra) = AT 15 (7). (3.83)
k=1

...(ASC];].T* (Tb) - Afajr* (Tb))]

The subscripts «; and «; denote the a-levels under consideration whereas
I* = I,r and r* = [,r denote the left and right branches of the member-
ship function, respectively. The leading diagonal elements of ;, K % (7a, ) for
T, = T, = T are estimators for the elements of the [,7r,-variance function
erar[f(T] = lrg% at each time point 7.

The superposi:cion of deterministic ARMA processes, as investigated in
[18] within the framework of classical time series analysis, may also be ap-
plied to fuzzy autoregressive moving average processes. The fuzzy sum of two
independent fuzzy ARMA processes (XT)TGT and (\?T)TeT of orders [775(, , qXT]
and [py_, gy ] according to Eq. (3.84)
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Z. =X, @Y, (3.84)

again yields a fuzzy ARMA process (ZT)TGT of order [p; ,q; |. The upper
bounds for p; and gz are specified by the inequalities (3.85) and (3.86),
respectively.

Pz, SPx. TPy, (3.85)

4z, Smax[pg +ay_, py, t+ax ] (3.86)
Numerical realization. The simulation of a fuzzy ARMA[p, q] process (X, )rer,
i.e. the determination of realizations (Z,),eT, is based on a Monte Carlo sim-
ulation of the included fuzzy white-noise process (gT)TeT. This follows the
recursive procedure according to Eq. (3.87). The simulation of fuzzy AR and
fuzzy MA processes is included as a special case (¢ = 0 and p = 0).

X, =408 1®.04,0%, ,0E O (3.87)
B ®&_.16..0B,0_,

. - 0 forT—u<l1
with  Z,_, = {j‘ru forr—u>1> %= 1,2,...,p (3.88)
~ (B[] forT—v<1 _
and £&,_, = { E forr—wv>1" v=12..¢q (3.89)

A precondition for the application of Eq. (3.87) is that the order [p, q] of the
process as well as the parameter matrices A4,, ... , Ap and By, ..., Eq are
known. Methods for specifying the order [p,q] are presented in Sect. 3.5.5.
Methods for estimating the parameter matrices are developed in Sect. 3.5.6.

In the first step, a realization #; of the fuzzy ARMA process (X;)rer at
time 7 = 1 is determined. In accordance with Eq. (3.87), the realization #;
of the fuzzy random variable X; is dependent on the realization &, of the
fuzzy white-noise variable &;. The fuzzy variables Z, and &, at times 7 < 1
are hereby given as zero according to Eq. (3.88) or as the fuzzy expected
value of the fuzzy white-noise process according to Eq. (3.89). Following the
Monte Carlo simulation of a realization &; (see Sect. 3.5.1), the corresponding
realization £; may be computed.

Using the simulated fuzzy variable Z;, the realization Zo is obtained in
the next step from a repeated Monte Carlo simulation of a fuzzy white-noise
variable £5. The successive repetition of this procedure for time points 7 =
1, 2, ... yields a realization of the fuzzy ARMA process (X, ),er. It should be
noted here that the initial time points are required for the settling time of the
fuzzy ARMA process, and that the corresponding fuzzy variables are rejected.
By repeating this procedure s-times it is possible to simulate s sequences of
realizations.
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Remark 3.34. For fuzzy ARMA processes as well as for the special cases
of fuzzy AR and fuzzy MA processes, the inclusion condition given by Eq.
(2.80) must be complied with for the fuzzy random variables X, with 7 =
1, 2, .... It must therefore be ensured that the [,rq-increments Az;(7) (j =
1,2,..,n—1,n+1,..,2n) of all realizations (Z, ) et satisfy the requirement of
non-negativity. For this purpose, s sufficiently long sequences of realizations
are simulated. The [,7-increments Ax;(7) of the realizations in each sequence
must be non-negative. If the [,7,-increments for all s simulated realizations
satisfy the condition Az ;(7) > 0, the requirement of non-negativity is fulfilled
with an estimated probability of error of < % .

Remark 3.35. Eq. (3.81) describing the fuzzy ARMA[p, q] process is rear-
ranged as follows.

X,04,0X,10..04,0X, ,=£,0B,06&_10..0B,0&_, (3.90)

J

~
fuzzy AR component fuzzy MA process

The following therefore also holds for each realization of the process.

fi"r@Al@j‘rfl@'~'@Ap®‘%rfp:§‘r@§1®§‘rfl@'neﬁq@év'fq (391)
with 7=1,2,..,.N

From Egs. (3.90) and (3.92) it follows that the left-hand side of Eq. (3.92) is
the realization of a fuzzy MA[q] process.

A given time series Z1, Z9, ..., Zn, which is a specific realization of the fuzzy
ARMA[p, q] process, may be transformed into the realization of a fuzzy MA[q]
process by means of

MAir = j‘r @Al @i"r—l @@Ap @i'f—p (392)
with 7=p+1,p+2,...,N.

The realization j; 4%, is a fuzzy time series truncated to N —p elements which
is always stationary. .

3.5.5 Specification of Model Order

In the following section, methods are presented for specifying the model or-
der [p,q], i.e. methods for determining the parameters p and ¢ of the fuzzy
ARMA[p, q] process.

Specification of Model Order by the BOX-JENKINS Method

A precondition for the application of the classical BOX-JENKINS method to
time series comprised of crisp (i.e. real-valued) data is that the considered time
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series is stationary (or adjusted to remove trends and cycles) [6]. For this rea-
son, non-stationary real-valued time series are converted into stationary time
series with the aid of classical difference filters. An extension of the classi-
cal BOX-JENKINS method to deal with time series containing fuzzy data is
presented in the following. The application presupposes stationary fuzzy time
series. Non-stationary fuzzy time series may be converted into stationary fuzzy
time series with the aid of the adjustment procedures described in Sect. 3.2
for removing fuzzy trends and cycles or by means of suitable fuzzy difference
filters according to Sect. 3.4.

The extended BOX-JENKINS method permits a specification of the
model order [p,q] of fuzzy ARMA processes. The [ ’I“a -correlation function
wR (AT) and the partial [,7,-correlation function j,.P (AT) of a station-
ary fuzzy ARMA process exhibit characteristic properties Wthh are dependent
on the model parameters p and ¢. These properties may be recognized from
the structure of the empirical [ ra—correlation function l,,R~ (A7) and the

empirical partial [,7q-correlation function ;. P; (A7) of the stationary fuzzy
time series in question (see Sect. 3.3). From the structure it is possible to
deduce the model order of the hypothetically underlying fuzzy ARMA[p, q]
process. In the following, characteristic properties of fuzzy ARMA[p, ¢q] pro-
cesses are described and methods for evaluating the empirical parameters of
a fuzzy time series are developed.

Fuzzy ARMA[p, 0] process. Eq. (3.93) given below holds for the ele-
ments p; (A7) of the partial [47,-correlation function ;. Py (A7) of a fuzzy

ARMA[p, 0] process (XT)TeT or a fuzzy AR process (XT)TeT of order [p].

pi,j(AT) for AT <p
pij(AT) = V oi,j=1,2,..,2n  (3.93)
0 forAr>p

If this characteristic property according to Eq (3.93) is recognizable in the
empirical partial ,rq-correlation function ;.P; (A7) of a given fuzzy time
series, a fuzzy AR process (XT)TeT of order [p ] may be assumed. As a rule,
P (AT) does not exhibit a pronounced jump according to Eq. (3.93) be-
cause only the given fuzzy time series, i.e. only a single realization of length

N of the hypothetically underlying fuzzy AR|[p] process, is available for de-
termining ;. P; (AT).

For bpec1fy1ng the model order a tolerance interval pI; j(AT) is therefore
stipulated for the elements p; ;(AT) of the empirical partial l,r4-correlation
function ;. P; (A1 > p), within which they must lie for A7 > p. If, accord-
ing to Eq. (3 94), all empirical partial correlations p; ;(A7) lie within the
corresponding interval pl; j(A7) beyond a time step A7, the model order
p = At — 1 may be assumed for the fuzzy AR process underlying the fuzzy
time series.

ﬁi,j(AT) € pI@j(AT) A Z,j = 1, 2, ,2’!7, (394)
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Fuzzy ARMA]J0, q] process. For a fuzzy ARMA process (X;)rer of or-
der [0,q], i.e. for a fuzzy MA[q] process (X,)rer, the following equation
holds for the elements r; ;(AT) of the corresponding [,7q-correlation func-
tion 1 Ry (AT).

i ;(AT) for AT < ¢
ri (A7) = Vo oij=1,2..,2 (3.95)
0 for AT >gq

If the empirical [,r,-correlation function lTBiT (A7) of a given fuzzy time se-
ries exhibits the properties of Eq. (3.95), a fuzzy MA process (XT)TeT of order
[q] may assumed. Analogous to fuzzy AR processes, a pronounced jump as in

(3 95) is normally not present in the empirical l,r,-correlation function
wR . (A7) of a given fuzzy time series. Analogous to the procedure adopted
for fuzzy AR processes, a tolerance interval gl; ;(AT) is thus stlpulated for the
elements 7; j(A7) of the empirical [,74-correlation function ;. R; (AT > q),
within which they must lie. The value ¢ = A7 — 1 may be assumed for the
model order of the fuzzy time series of the underlying fuzzy MA process, pro-
vided all empirical correlations 7; j(A7) beyond the time step A7 lie within
the corresponding interval gI; ;(A7) according to Eq. (3.96).

f@j(AT) € RIZ‘J(AT) \ ’L,j = 1, 2, ,27’7, (396)

Remark 3.36. In accordance with Egs. (3.94) and (3.96), the model orders
p and ¢ for fuzzy AR and fuzzy MA processes may be specified with the
aid of predefined tolerance intervals pI; ;(A7) and grI; ;(A7). By means of
pl; j(AT1) and grl;;(AT) it is also possible to specify individual elements
of the parameter matrices A4, ..., Ap and By, ..., B, a priori. If the em-
pirical partial correlations p; ;(A7) and the empirical correlations #; ;(AT)
for each time step Ar > d lie within the tolerance intervals pI; ;(A7) and
rl; j(AT), respectively, the corresponding elements a; ;(d + 1), a; ;(d +2), ...
and b; j(d + 1), b; j(d + 2), ... of the parameter matrices Ay, Ay o, ... and

Bgi1, Byyo, ..., respectively, may be set to zero according to Egs. (3.97) and
(3.98).

am-(d + 1), G,Lj(d + 2), ..=0 if ﬁiﬂ'(AT) € PIi)j(AT) V At > d (397)

b@j(d + 1), biﬂ'(d + 2), ..=0 if ’Iqi7lj(AT) € RIZ‘J(AT) YV At > d (398)

*

Fuzzy ARMA[p, q] process. If the empirical partial l,r,-correlation func-
tion 1P, (A7) and the empirical l,r,-correlation function ITR (A7) of a
given fuzzy time series do not exhibit specific properties accordmg to Egs.
(3.93) and (3.95), a general fuzzy ARMA[p, q] process may be assumed accord-
ing to the case in question. A specification of the model order [p, ] of a fuzzy
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ARMA process by means of the BOX-JENKINS method, i.e. the recognition
and evaluation of particular patterns in ;. P; (A7) and ;. R; (A7), is diffi-
cult, however, due to the fact that the [,7- correlatlon functlons i (AT)
and the partial [,7,-correlation functions ;.Pg (A7) of fuzzy ARMAL@ q]
processes are not marked by clearly defined and easﬂy recognizable character-
istics. According to the procedures adopted in classical time series analysis (see
e.g. [65]), it is feasible to construct diagrams of the lara correlation functions
Rz (AT) and the partial [, r,-correlation functions ;.P (AT) correspond-
ing to all conceivable model orders [p, q] for the purpose of identification. A
far more suitable approach for specifying the model order [p, q] of stationary
fuzzy ARMA processes, however, is offered by the method presented in the
following, which makes use of [,7,-correlation tables for time series comprised
of fuzzy data.

Specification of Model Order by Means of [,7,-Correlation Tables

In classical time series analysis the underlying (deterministic) ARMA[p, q|
process is specified by computing empirical vector correlations A(p, ¢) of the
time series concerned. The arrangement of the vector correlations A(p, q)
in the so-called correlation table and their evaluation yields information re-
garding the sought model order [p,q] (see e.g. [60]). The developed l,7,-
discretization permits the consistent extension of this approach to the fuzzy
vectors Z and g according to Egs. (3.99) and (3.100), which are segments of
the given stationary fuzzy time series. Both vectors are of length p + 1 and
are displaced by ¢ + 1 towards each other on the time series.

&= (Tr, Trats ooos Trip) (3.99)

- - - T
= (ZTr4q41s Trigr2s - Trigip+1) (3.100)

[«

The empirical [, r,-vector correlation matrix lr/l _(p,q) is then given as being
dependent on the order [p, q] according to Eq. (3 101). This is a measure of
the correlation between the fuzzy vectors Z and g.

A1l A2 o Aren)

. A2 A22 Az
Az (p,q) = : _— : (3.101)

| A2n),1 An)2 * 7 A@n),(2n) |

The elements of the empirical [,r,-vector correlation matrix eri; (p,q) are
determined for ¢,j = 1, 2, ..., 2n according to Eq. (3.102).

det lTKi’f/ (Zv .7)
)\i,j (pa Q) = =
\/(th leww( 1, Z)) (det lTK@(ja j))

(3.102)
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The terms l,ﬁm

(i,1), l,k~ﬂ(j,j) and @(z j) are hereby special empirical
(3.1

2
loTo-covariance matrices according to Egs. (3.103) to (3.105).
[ [ Azi(r)  jAwi(r) p Az (r) ]

]f T k T .. kA’Eq

A’E7(T) A’E7(T+1)

“ P Az (T+1) 7 Az (T+1) P Az (T+1)
KUE( ) = kAa:7( ) kA’L‘l(T-'rl) T MAzi(r+p) (3103)

]%Azi.(TJﬁp) ]%Azi'(Ter) . AAa:i'(‘rer)
| YAz, (1) Az;(T+1) Az;(t+p) |

[ pAz(rratl) pAzi(r4gtl)  pAws(THg+l)
Az (T+q+1) Ax;(T+q+2) Az (T+q+p+1)

P Az (T+q+2) 1Az (t+q+2) 7 Ami(T+q+2)
Az;(T+q+1) Azj(T+q+2) Azj(r+qt+p+1) | (3.104)

lrﬁgg (ja J)

? Axj(T+q+p+1) 7 Ax;(T+q+p+1) . » Az (T+q+p+1)
| YAz (t+q+1) Az (T+q+2) Az (t+q+p+1) |

» Ax;(T) 7 Az, (1) L ]%Azi (1) T
Azj(r+q+1) VAz;(T+q+2) Azj(T+q+p+1)

. P Az (T+1) » Az (T+1) P Az (T+1)
1Ky (i, ) = | Fawyirrart) Kavsrrara) 7 Faw)(rrgrpin) (3.105)

> Az (T+p) ]%A:L’i(Ter) ... LAz (t+p)
Axj(T+q+1) YAz (T+q+2) Azj(t+g+p+1) |
The individual elements of the special empirical [,r,-covariance matrices
lrﬁm,(z i), grﬁyy(j j) and lriw(z j) describe the empirical covariances k be-
tween the loro-increments Az, (1), Az;(7+1), ..., Az;(t+p) and Az;(7+g+1),
Azi(T+q+2), ..., Azj(T+q+p+1) of the fuzzy variables Z,, Tr11, .., Trip
and Z;4q41, jTﬂHg, wory Zr4q+p+1, Which are lumped together in the fuzzy
vectors Z and § according to Eqgs. (3.99) and (3.100).
By arranging the empirical l,r,-vector correlation matrices lr/l _(p,q) in

a matrix with column indexing ¢ = 0, 1, 2, ... and row indexing p = 0, 1,
2, ... according to Eq. (3.106) the empirical [,r,-correlation table lri@ for
the given fuzzy time series is obtained.

[ eri.,_ (07 0) erj.,_ (07 1) erj.,_ (07 2) U

erjT(]-vo) erj.,_(]-vl) erj.,_(]-aQ)
A ) ) (3.106)
er;iT (2a 0) er;iT (2a 1) er;iT (23 2) e
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With the aid of the empirical [,r,-correlation table wl ;. for a given fuzzy
time series it is possible to specify the model order [p, ¢] of an underlying fuzzy
ARMA process. If the empirical [,r,-correlation table lrifef is characterized
by a zero block beginning at position [p,¢] and extending infinitely in the
advancing row and column direction, the underlying fuzzy ARMA process is
of order [p, q].

Remark 3.37. Analogous to the BOX-JENKINS method, an exact zero block
does not normally exist in the empirical [,r,-correlation table lri@ of a given
fuzzy time series. Similar to the procedure adopted in the BOX-JENKINS
method, a tolerance interval is thus specified for the elements of the empirical
loro-correlation table lrii; The value zero is assigned to elements with a

value less than the chosen tolerance interval. .

Specification of Model Order by the Maximum Likelihood Method

In the following a further method based on the maximum likelihood method
is developed for determining the model order [p, q].

For a fuzzy random process (XT)TeT with known parameters P the prob-
ability distribution of realizations %1, Zs, ..., Zy of length N is given by the
N-dimensional fuzzy probability density function form II.

f(&1,Z9,...,25 | P) P = constant (3.107)

For each realization x1, o, ..., T of length N it is possible to state the value
of the fuzzy probability density function form II by means of Eq. (3.107). The
inverse problem must be solved in order to specify the model order. For a given
fuzzy time series T1, Zo, ..., Ty of length N the parameters P of the underlying
fuzzy random process model (X, ) et are sought. By means of the maximum
likelihood method it seems reasonable to seek a parameter combination P
whose fuzzy probability density function form II takes on a maximum value for
a given realization 1, Zo, ..., Zn. The fuzzy probability density function form
IT with a given realization 1, Zs, ..., £y and unknown, variable parameters
P is referred to as the [,7,-likelihood function ;.l(P|Z1, &2, ...,Zn) (see Eq.
(3.108)).

lrl(£|§317502, ...,i‘N) = f(5c17:%2,...,jN |£) i‘l,i'27...7i'N = constant (3108)

The sought parameter combination for the fuzzy random process model is
thus obtained by maximizing the [,7,-likelihood function.

Several fuzzy ARMA processes of different order [p, q] are taken as a basis
for the given fuzzy time series. The maximum value of the [,r,-likelihood
function is determined for each of these models. By using these values it is
possible select the ‘best’ fuzzy random process model with the aid of the
decision criterion formulated in the following.
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The simple choice of model order according to the largest of the computed
maximum values does not necessarily yield the best model variant, however.
For p’ > p and ¢’ > ¢ a fuzzy ARMA[p, q] process is included in a fuzzy
ARMA[p, ¢'] process as a special case if all elements of the additional pa-
rameter matrices A; (j = p+1,...,p') and B; (j = ¢+ 1,...,¢') are equal
to zero. The following inequality then holds for the maximum values of the
loTo-likelihood function:

sup [l (P(P', ) | %1, T2, ..., 2N)] = sup il (P(p,q) | %1, T2, ..., TN)] - (3.109)

The model order [p,q] should be chosen in such a way that the specified
fuzzy ARMA process with as few parameter matrices A; (j = 1,...,p) and
B; (j = 1,...,q) as possible represents the best fuzzy stochastic model of the
given fuzzy time series. The choice of model order according to the largest of
the computed maximum values does not fulfill this requirement because this
always yields the fuzzy ARMA process with the greatest number of parameter
matrices. A suitable selection criterion derived from classical time series anal-
ysis may be applied, however [2, 56, 61]. The best model order [p, ¢] is given
by the fuzzy ARMA process for which the so-called BIC criterion (BAYESian
Information Criterion) according to Eq. (3.110) is a minimum.

N +q)In N
+(p q)In

By this means, higher preference is given to compact models with a small
number of parameter matrices A; (j = 1,...,p) and B; (j = 1,...,q) whereas
lower preference is given to fuzzy ARMA processes with a large number of
parameters.

Remark 3.38. A precondition for the specification of model order by means
of the maximum likelihood method is the a priori determination of fuzzy
ARMA processes with different model orders [p, ¢]. The respective process
parameters P are matched by maximizing the [,r,-likelihood function ac-
cording to Eq. (3.108). Based on the determined values of the l,r,-likelihood
function, the model order is finally obtained by means of the BIC criterion.
Due to the fact the model order is first selected after the parameter estima-
tion, this method is referred to as a posteriori specification. .

Numerical realization. A precondition frequently encountered in classical time
series analysis is the assumption of a multivariate GAUSSian normal distri-
bution for the possible realizations of the underlying random process (see
e.g. [6, 8, 33, 60]). This assumption appears questionable for the majority of
practical applications, however, and relies solely on the existence of a closed
solution for the multivariate GAUSSian normal distribution. Due to the re-
quirement of Eq. (2.47) the application of a GAUSSian normal distribution
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is not possible in the analysis of fuzzy time series. For this reason a generally
valid approach for determining the [,r,-likelihood function is presented in the
following.

For a fuzzy random process (XT)TeT with given parameters P the N-
dimensional fuzzy probability density function form II f(Z1, Za,...,Zn | P) of
the N fuzzy random variables X, (7 = 1,2,...,N) is estimated by a Monte
Carlo simulation followed by a determination of the empirical fuzzy proba-
bility density function form II f(i’l, Z9,...,Zn | P). For this purpose, s fuzzy
time series of length N are computed with the aid of a Monte Carlo sim-
ulation and the underlying fuzzy random process (X, )rcr (see Sect. 3.5.4).
After subdividing the simulated fuzzy time series %, Zs,..., Ty into classes,
the N-dimensional fuzzy probability density function form IT may be esti-
mated. This procedure is analogous to the determination of the empirical
fuzzy probability density function form II described in Sect. 2.2.2, whereby
we are here concerned with a sample of s fuzzy time series of length N rather
than a sample of s fuzzy variables. The value of the estimated N-dimensional
fuzzy probability density function form II f(Z1,Zs,...,in | P) resulting from
the given fuzzy time series 21, Z2, ..., Ty may be used as an estimator for the
value of the l,r,-likelihood function ;.l(P|Z1,Z2,...,Zn) resulting from the
assumed P according to Eq. (3.108). Accordingly, one functional value of the
lo7ro-likelihood function is known.

In order to compute additional functional values of the [,7r.-likelihood
function this procedure is repeated for altered values of the parameter P.

If it is intended to match the process parameters P of an underlying fuzzy
ARMA process of given model order [p,q] to the given fuzzy time series
1, T2, ..., Ty by maximizing the [,7,-likelihood function, the optimization
problem according to Eq. (3.111) must be solved.

Wl(P| &1, %, .o EN) = max (3.111)

This optimization problem may be solved by means of classical optimization
methods, e.g. the modified evolution strategy after [36]. A determination of the
value of the objective function at a position P hereby requires the computation
of a functional value of the [,r,-likelihood function in each case.

3.5.6 Parameter Estimation

The fuzzy MA, fuzzy AR and fuzzy ARMA processes presented in Sects. 3.5.2,
3.5.3 and 3.5.4 are parametric fuzzy stochastic models based on fuzzy white-
noise processes. An essential prerequisite for their numerical realization is the
loro-discretization introduced in Sect. 2.2. If a fuzzy random process model
is stipulated or assumed for a fuzzy time series, the model order (see Sect.
3.5.5) and the corresponding process parameters A, ..., A, and By, ..., B,
must be determined as accurately as possible. It should hereby be noted that
the estimation of the parameter matrices A, ..., A, and By, ..., B, is inter-

q
actively coupled with the determination of the underlying fuzzy white-noise
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process. The term P again represents the parameter matrices 4, ..., A, and
By, ..., B, in an abridged form in the following.

Remark 3.39. A basic condition for the determination of the parameter ma-
trices Ay, ..., A, and By, ..., B, is the permissibility of the fuzzy random pro-
cess according to Remark 3.34. In other words, at each time point 7 =1, 2, ...
the fuzzy random variables X, of the underlying fuzzy AR, fuzzy MA or fuzzy
ARMA process must satisfy the requirement given by Eq. (2.80). .

Different methods for estimating the parameters of fuzzy ARMA processes
are presented in the following section. These may also be applied to fuzzy
MA and fuzzy AR processes. In addition, special methods are presented for
estimating the parameters of fuzzy MA and fuzzy AR processes. The methods
outlined in the following for parameter estimation assume that Eq. (2.80) is
fulfilled. A special verification of the latter may be required in certain cases.

Parameter Estimation in Fuzzy ARMA Processes

Characteristic value method. In order to apply the characteristic value
method, stationary and ergodic fuzzy time series are assumed. If the fuzzy
time series under investigation exhibits non-stationary properties, this may
be converted into a stationary fuzzy time series with the aid of the fuzzy
component model (see Sect. 3.2) or by filtration (see Sect. 3.4).

The characteristic value method is based on the requirement that the em-
pirical characteristic values of the fuzzy time series concerned should match
with the characteristic values of the hypothetically underlying stationary fuzzy
ARMA process. In other words, the empirical characteristic values of the fuzzy
time series serve as unbiased estimators for the characteristic values of the
fuzzy random process. Of particular importance are the fuzzy expected value
my (P) including its l47o-increments Am;(P)) and lorq-variance lrg% (P)
as well as the [,r,-correlation function lTEXT(AT, P) including its elements
rk,1 (AT, P)). For the optimum estimation of the parameters P of the un-
derlying stationary fuzzy ARMA process and the included fuzzy white-noise
process the optimization problem according to Eq. (3.112) must be solved.

N
3

(AT; — Am;(P))” + (3.112)

(g

1

J

8

Z TklAT —Tkl(AT P)) —min
AT =1

The term Az; hereby represents the l,r,-increments of the empirical fuzzy
mean value 7 (see Eq. (3.16)) while 74, ;(A7) are the elements of the empirical
loTo-correlation function lTBiT (AT) (see Eq. (3.22)).

A fundamental constraint of the optimization problem is compliance with
Eq. (2.18) for the realizations &, of the included fuzzy white-noise process.
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This means that the non-negativity requirement must be fulfilled for the [,7,-
increments Ae;(7) of the realizations .

Agj(t) 20 forj=1,2,...,n—1,n+1,.2n (3.113)

An additional requirement is that the fuzzy variables £, are realizations of a
stationary fuzzy white-noise process.

The third basic constraint of the optimization problem is the stationarity
of the fuzzy process model. In the case of fuzzy ARMAJ0,q] processes this
requirement is fulfilled per definition, whereas for fuzzy ARMA[p,0] and fuzzy
ARMA|p,q] processes, the parameters to be estimated are subject to defined
restrictions (see Sects. 3.5.3 and 3.5.4).

Numerical realization. Depending on the extent of the optimization problem,
mesh search strategies, Monte Carlo methods or the modified evolution strat-
egy after [36] are suggested as possible methods of solution. The elements
of the parameter matrices P are the decision variables of the optimization
problem. Depending on the applied optimization method, random or system-
atically selected starting points for the decision variables are specified. Each
element of the parameter matrices P is initialized with a real value from the
interval [—1,1].

The objective function given by Eq. (3.112) is set up as follows for given
values of the parameter matrices P: in order to check the permissibility of
the selected A, ..., A, the given fuzzy time series Z, is transformed into a
realization a4, of a fuzzy MA[q] process (see Remark 3.35) by means of:

MA‘%T = :E'r @Al @12'7-,1 @@Ap @i"r—p (3114)
with 7=p+1,p+2,....,N.

The parameter matrices Ay, ..., A, are permissible if the realization paZ-
counstitutes a stationary fuzzy time series (see Sect. 3.3). Compliance with the
requirement given by Eq. (2.47) is not necessary for the p;4Z,, as these only
represent an intermediate result.

The permissibility of the By, ..., B, is checked on the basis of the realiza-
tions €, of the fuzzy white-noise process. These must fulfill the condition Eq.
(3.113). A realization of this type may be determined from the given fuzzy
time series by means of Eq. (3.115).

g'r :i'T @Al @i‘r—l ©..0 Ap © jT—p @§1 © é‘r—l ®..0 Eq © é7——q (3115)

Ery forT—i>p
with &,_;= . and i=1,2,...,¢
E[& ]forT—i<p

E [57] is the estimated fuzzy expected value of the underlying fuzzy white-

noise process (&, )reT, and is obtained by solving the system of linear equations
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The fuzzy expected value E[E;] is used in Eq. (3.115) as the best possible
estimator for the unknown realizations &,_; at time points 7 — i < p.

Z -5,

(3.116) for the unknown [,7,-increments of the fuzzy expected value E[E,].

ElyaX,] = o B[] (3.116)

The fuzzy expected value E[j; A)N(T] of the fuzzy MA[q] process required by
Eq. (3.116) may be estimated from the transformed fuzzy time series praZ,
according to Eq. (3.16). If the fuzzy variables £, computed from Eq. (3.115)
fulfill the requirements specified for the realizations of a fuzzy white-noise
process (especially the condition given by Eq. (3.113)), the probability dis-
tribution function of the fuzzy white-noise variables & may be estimated on
the basis of the &;. Realizations of the fuzzy white-noise variables £, may be
simulated with the aid of the estimated probability distribution function.

By means of Eq. (3.87) it is now possible to simulate the realizations of
the assumed fuzzy ARMA|[p, ] process, and also estimate the fuzzy expected
value, the [,7.-variance and the [,r,-correlation function.

It is then possible to compute one value of the objective function by means
of Eq. (3.112). Depending on the case in question, the chosen optimization
strategy yields improved parameters P.
Distance method. Estimation of the parameters of a fuzzy ARMA pro-
cess by the characteristic value method assumes stationary and ergodic fuzzy
time series. If the given fuzzy time series exhibits systematic changes such
as fuzzy trends or fuzzy cycles, non-stationary fuzzy random process mod-
els must be assumed. A suitable approach for parameter estimation in such
cases is to minimize the average distance dr between the optimum single-step
forecast Z, (P) and the known values Z, of the given fuzzy time series with
p < 7 < N according to Eq. (3.117). A decisive advantage of this method is
that neither ergodic nor stationary fuzzy time series must be assumed. The
method permits the modeling of non-stationary fuzzy time series with the aid
of non-stationary process models without the need to specify (not meaning-
fully estimable for non-stationary fuzzy time series) empirical characteristic
values.

dr(P) =

1 N L2 Lo
N Tzzp;rl dp (mT, wT(E)) min (3.117)
Depending on the process parameters P to be determined, this method in-
volves a determination of the optimum single-step forecasts i (P) for each
time point 7 (p < 7 < N), whose distance dp from the corresponding fuzzy
variables Z, are computed and averaged over time. The minimization of this
average distance dp yields an unbiased estimator for the process parameters
P. Regarding the determination of the optimum single-step forecasts ng(B),
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the reader is referred to Sect. 4. A definition of the distance dr between two
fuzzy variables is given in Sect. 2.1.4.

Numerical realization. Analogous to the characteristic value method, the min-
imization problem is solved by means of mesh search methods, Monte Carlo
methods or the modified evolution strategy suggested by [36]. Depending on
the optimization method used, randomly or systematically selected starting
points from the interval [—1, 1] are specified for the elements of the parameter
matrices P and the decision variables. The objective function is set up and
evaluated as in the characteristic value method. Firstly, the fuzzy time series
MAZ, is constructed (see Remark 3.35). Provided this fuzzy time series is sta-
tionary (see Sect. 3.3), the selected A, ..., A, are permissible. The realizations

&, of the underlying fuzzy white-noise process (ST)TGT are computed from Eq.
(3.115). Applying the estimators for the fuzzy expected value E[pr4X,] of the
fuzzy MA|q| process, the fuzzy expected value E[£,] is obtained by solving
the system of linear equations (3.116). The realizations &, computed accord-
ing to Eq. (3.115) must fulfill the condition given by Eq. (3.113). If the fuzzy
variables £, do not satisfy these requirements placed on the realizations of

a fuzzy white-noise process, the specified parameter matrices By, ..., B, are
impermissible and hence rejected. Applying the estimators for F [f:}.], the op-
timum single-step forecasts :%T(B) and the distance dy between i, (P) and the
corresponding fuzzy variables Z, may now be computed according to Sect. 4.

Gradient method. Another effective method for estimating the parame-
ter matrices 4y, ..., 4, and By, ..., B, of fuzzy ARMA processes is the gradi-
ent method. This permits the modeling non-stationary fuzzy time series and
hence does not rely on the assumption of ergodicity. The basic idea is again
the matching of optimum single-step forecasts ., (P) to the known values Z,
of the given fuzzy time series with p < 7 < N. The definition of an error
function analogous to Eq. (3.117) is not appropriate in this case, however, as
the underlying integral for determining the distance dp via the HAUSDORFF
distance dg (see Sect. 2.1.4) represents a function which is only differentiable
over certain intervals. The square error between the forecasted increments
Azi(t,P) (i = 1,2, ..., 2n) and the given increments Ax;(7) of the fuzzy
time series is defined according to Eq. (3.118) as the error function E to be
optimized.

N
% zl: (Azi(7) — Ady(r, P))? = min (3.118)
Numerical realization. The optimum single-step forecasts z,(P) are deter-
mined as in the distance method. Firstly, starting points are defined for the
decision variables of the optimization problem, i.e. the parameter matrices
Ay, .. A, and By, ..., B, of the fuzzy ARMA([p, q] process are initialized. This
is carried out assigning random real values from the interval [—1,1] to the

||M§
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matrix elements. The objective function is set up and evaluated as in the
characteristic value method. Firstly, a check is made to establish whether the
selected 4y, ..., A, lead to a stationary realization of the fuzzy MA[q] process.
For this purpose the realization p; 4%, is computed (see Remark 3.35) and a
check is made to establish whether this fuzzy time series is stationary (see Sect.
3.3). If the chosen A, ..., A, do not yield a stationary realization, the param-
eters are re-initialized. The realizations £, of the underlying fuzzy white-noise
process (&;)rer are computed from Eq. (3.115). Using the estimators for the
fuzzy expected value E| AXT] of the fuzzy MA|[q| process, the fuzzy expected
value E[£,] is obtained by solving the system of linear equations (3.116). The
realizations &, computed according to Eq. (3.115) must fulfill the conditions
given by Eq. (3.113). If the fuzzy variables £, do not fulfill these conditions,
the specified parameter matrices By, ..., B, are impermissible and hence re-

jected. With the aid of the estimators F [ST] the optimum single-step forecasts
Iy (P) are determined according to Sect. 4 and the square error is computed
according to Eq. (3.118).

The parameter matrices A;, ..., A, and By, ..., B, are improved by means
of the correction matrices AA,, ..., A4, and AB,, ..., AB, according to Egs.
(3.119) and (3.120), respectively.

A (new) = A, (old) + AA, with r=1,2,...,p (3.119)

B,(new) = B,(old) + AB; with s=1,2,...,q (3.120)

The correction matrices are determined according to Egs. (3.121) and (3.122)
by partial differentiation of the error function with respect to the parameters.
The step length may be arbitrarily defined by means of the factor n with
n > 0.

OF F
caq,1(r) da1,2n (1)
A = g = p| (3.121)
o °E__ ... _0B
| Cazn, 1 (r) 0a2n,2n (1)
oE - cE
cb1,1(s) 0b1,2n ()
AB, = —nZE — SR (3.122)
| szn,l(s) 817271,271(5)

The partial derivatives = e

0y,

respect to the elements of the parameter matrices are given by Egs. (3.123)
and (3.124), respectively, for u,v = 1,2, ...,2n.

E(T) and = ?E(S) of the square error function E with
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N
aafir) = ) (Azy(r) = Ady(r, P)) Azy(t—7)  (3.123)
R Atu(r, P)) A 3.124
) = 2 (An() = AR P) Aafr—s) (3120

T=1+p

For time points 7 — s < p the non-computable realizations Ae, (1T — 8) in Eq.
(3.124) of the fuzzy white-noise process (£;)reT are again replaced by the
loTo-increments of the estimated fuzzy expected value E[E,].

oF N )
(o) = 2 (Aru(r) = Ady(r.2) B[ Ae,] (3.125)
v T=14p

An obligatory constraint for the optimization problem in this case is also
the non-negativity of the lyro-increments Ae;(7) according to Eq. (3.113).
Moreover, the fuzzy variables €, must satisfy the requirements placed on the
realizations of a fuzzy white-noise process.

Iteration method. A further, easily applicable method for the iterative esti-
mation of the parameter matrices A, ..., A, and By, ..., B, of a fuzzy ARMA
process may be derived from the regression approach of DURBIN [12]. Firstly,
a fuzzy AR process of high order p = k is presupposed for the fuzzy time series
in question, i.e. the parameter matrices By, ..., B, are zero matrices. After
estimating the parameter matrices A}, A3, ..., A} (see Parameter estimation
in fuzzy AR processes on p. 105) of the presupposed AR process, the real-
izations €, of the fuzzy white-noise process &, are estimated in iteration step
zero at time point 7 according to Eq. (3.126), whereby k < 7 < N holds.

ED =7, 0A* 0% 10..0A% OF, i (3.126)
In the next step the parameter matrices A, ..., Ap and By, ..., B, are im-

proved by minimizing the average distance dr according to Eq. (3.127). A
definition of the distance dp between two fuzzy variables is given in Sect.
2.1.4. In contrast to the distance method, the estimated realizations &, of the
fuzzy white-noise process (ST)TGT remain constant during the optimization.
This means that the objective function may be evaluated directly, i.e. without

additional computation of the fuzzy variables .

N
dF(£)=ﬁ S dp (72 7(P)) £ min (3.127)

T=p+1

The term *(P) of the objective function dr(P) is determined according to
Eq. (3.128).

F*(P)=A, Qi1 ®.0A,0%_,0B, 0% 0..0B,05%  (3.12)
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Using the parameter matrices A, ..., 4, and By, ..., B, determined from Eq.

(3.127), the realizations &, of the included fuzzy white-noise process &, are
recomputed in the next iteration step by means of Eq. (3.129).

eV =7 04 0% 10..04,0%_, 08 0%, ®..0 8,02, (3.129)

Inserting the obtained fuzzy variables £, into Eq. (3.128) and resolving the
minimization problem by means of Eq. (3.127) yields improved values of
Ay, .., A, and By, ..., B,. The iteration is continued until the parameter ma-
trices to be estimated converge.

A basic precondition for the applicability of the method is again that the
determined fuzzy variables &, satisfy the requirements placed on the realiza-
tions of a fuzzy white-noise process in each iteration step, i.e. they especially
fulfill the condition given by Eq. (3.113).

Parameter Estimation in Fuzzy MA Processes

The algorithm suggested by WILSON [68] for estimating the parameters of
a classical moving average process with crisp realizations is modified and ex-
tended in the following to deal with fuzzy moving average processes. The
parameter matrices By, ..., B, of a fuzzy MA process (XT)TeT are hereby es-

timated from the emplrlcal loTa-covariance function ;. K; (A7) of a given
fuzzy time series as described in the following, whereby ATO =0, Arn =1,
Aty = q holds.

The l47q-covariance function ;. K g (A7) of a fuzzy moving average process
(XT)TeT according to Eq. (3.74) is given by Eq. (3.130) for k = 0,1, ...,q. The
term ;. K (AT = 0) thereby represents the l,r,-covariance functlon of the

correspondmg fuzzy white-noise process (&;)yer for At = 0.
(Ar) = Z B,y wKg (AT =0) B! (3.130)

If the [, r,-covariance functlon K (ATk,) is replaced by the empirical 1,7 q-

covariance function ;K (ATk) 1mphc1t conditional equations are obtained
for the unknown parameter matrices B;. Approximation values for the By
are determined iteratively with the aid of correction matrices. If E,(:) is used
to denote the estimation of B, in the i-th iteration step, correction matrices
A,(f) of size [2n, 2n] are sought which yield the best possible approximation of
the empirical ,74-covariance function ;. K; (A7) according to Eq. (3.131).

()

In other words, correction matrices A;' . are determined in each iteration step
i such that B, (Hl) = Eg) + A,(;) yields an improved approximation of the em-
pirical [o7qo- covariance function according to Eq. (3.131). In the first iteration
step, random starting values within the interval [—0,1;0,1] are assigned to



104 3 Analysis of Time Series Comprised of Uncertain Data

the elements of the parameter matrices ﬁ,(cl) for £ > 0. The parameter ma-
trix By, is the negative unit matrix according to the definition of a fuzzy MA
process. In each iteration step ¢ the following equations must be evaluated for
k=1,2,..,¢q

WK (Ary) = 2 ( @ +Ac+k) WK (At =0) (QCT“) +4CT“)) (3.131)

By applying the approximations of the parameter matrices E,(f) in each itera-
tion step 4 obtained from the (g + 1)-th solution of Eq. (3.132) and computing
the arithmetic mean according to Eq (3.133), it is possible to estimate the

unknown [,r,-covariance function ;. K (AT = 0) of the fuzzy white-noise

process (ET)TeT.

q_k . . 1
wKs (Am) = ) BY) nKO*(Ar = 0) BT (3.132)
c=0 "
WK (Ar = 0) = — q_kHK<f>vC(AT = 0) (3.133)
Er q _I_ 1 =0 Er

with k=0,1,....q

The (g + 1)-th solution of Eq. (3.132) and the use of the arithmetic mean
as an estimator for the l,7-covariance function ;K z(Ar = 0) promote the
convergence behavior. The use of only a specific solutlon of Eq. (3.132) as
an estimator for ;, K z(Ar = 0) leads to a trivial solution of Eq. (3.131); this
results in numerical 1nstab1ht1es

By means of Eq. (3.134) the element-by-element formulation of Eq. (3.131)
is given for i,j = 1,2, ..., 2n. The various terms are defined as follows:

ks [i,§](Am): thg elements of the empirical [,7,-covariance function

(AT}C)
b [4,b] and b(l) [z a): the elements of the parameter matrices B and B(lk,
5 [4,0] and 5@ i [1,a] : the elements of the correction matrices AW and
Ag x> and

kg) [a,b] (AT = 0): the elements of the estimated [, r,-covariance function

ZTK((E,)(AT = 0) in the i-th iteration step.

T
Hx

i|(A7g) = 2

||D43

Zn] ( + 60 [, ]) (3.134)

. kQ [a,b](A7y, = 0) (bﬁk [i,a] + 6%, [i, a])
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A linearization of Eq. (3.134) by neglecting the quadratic terms of the elements
5 [4,0] and (5C+k [4,a] leads to the iteration equation (3.135).

q—k 2n 2n )
s, [, 31(Am) — b [7,6] kY [a, b](Ari = 0) B, [i,a] = (3.135)
c=0b=1a=1
q—k 2n 2n
¢>[¢]M”prAn,_m5“ [i,a] +
c=0b=1a—1 &

q—k 2n 2n ) ]
Yy Z 08 15, 6] kY [a, b)(Ars = 0)b), [i,a]
c=0b=1a=1
As this equation is linear with respect to the elements 5. [j,b] and 6c i al,
a determination of the correction matrices is unproblematic. The elements of
the improved approximation solutions Q,(;H) = ( )
Eq. (3.135) for the subsequent iteration step i + 1
After determining the parameter matrices By, ..., B,, the underlying fuzzy
white-noise process is estimated according to Egs. (3.71) to (3.74).

+ A( %) are inserted into

Parameter Estimation in Fuzzy AR Processes

If a given, stationary fuzzy time series is modeled as a fuzzy autoregressive
process of order p, the corresponding parameter matrices A17 -y A, may be

estimated using the empirical [,r,-correlation function ;.R (AT) Accord-
ing to the classical YULE-WALKER equations after [32], the elements of
Ay, ..., A, may be determined with the aid of Eqs. (3.136) and (3.137).

ZTEQET (AT1—¢)

[4;,.... 4] : =R, (Ar_y) with t=1,...,p  (3.136)
Ry (Aryt)
wR; (Arg) -+ 1Ry (A7) Ry (AT_1)

[A1, 0 A : : = : (3.137)
ZTEQT(ATp—l) ZTEQT(ATO) ITE;ET(AT—p)

With the aid of the parameter matrices A, ..., A, estimated by Eqgs.
(3.136) and (3.137) it is possible to determine the realizations &, of the fuzzy
white-noise variables £, for each time point 7 according to Eq. (3.138).

£ =504 08 10..04,0F, (3.138)

Owing to the use of the empirical [,r,-correlation function ZT}AE;UT (A7) for
computing the A;, ..., A, the non-negativity of the [,r,-increments Ae;(7)
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according to Eq. (3.113) is not necessarily complied with. In this case it is
necessary to revert to the methods of parameter estimation for fuzzy ARMA
processes, e.g. the distance method. In all events, the stationarity of the fuzzy
AR process must be verified (see Sect. 3.3).

3.6 Modeling on the Basis of Artificial Neural Networks

The methods presented in Sect. 3.5 interpret a time series comprised of fuzzy
data as a realization of a fuzzy random process. After analyzing the fuzzy
time series, the process parameters corresponding to the chosen model are
estimated according to Sect. 3.5.6. With the aid of the underlying fuzzy ran-
dom process it is subsequently possible to make forecasts in accordance with
Sect. 4.

Alternatively, it is possible to forecast time series comprised of fuzzy data
by means of artificial neural networks for fuzzy variables. In contrast to the
analytical regression methods mentioned in Sect. 3.5, the use of artificial neu-
ral networks for fuzzy variables for analyzing and forecasting fuzzy time series
does not require the specification of a functional type. Artificial neural net-
works are not only capable of learning the characteristics of a given fuzzy
time series but are also able to simulate nonlinear fuzzy random processes
and derive forecasts. A basic precondition for the latter is an appropriate
network architecture. Artificial neural networks for analyzing and forecasting
time series comprised of fuzzy data are developed in the following section.

3.6.1 The Basics of Artificial Neural Networks

The creation of artificial neural networks is an attempt to mathematically
model the performance capability of the human brain. Human beings possess
the ability to learn and apply what they have learnt. Moreover, they are able
to find solutions to new problems intuitively. Intuition is interpreted as the
ability to make decisions based on the ‘inner’ logic of prevailing circumstances
without the need to explicitly understand the underlying relationships. Intu-
ition is thus obviously closely linked to previous learning experiences.

The functionality of the human brain is essentially based on the interaction
between the brain’s highly cross-linked nerve cells also called natural neurons.
Communication within a natural neural network of this type takes place via
signals. A neuron serves for receiving, processing and passing on incoming
signals. The signals passed on from neighboring nerve cells are summated in
the neuron. If the stimulation exceeds a particular threshold value, a further
signal is activated and transmitted to the adjoining neurons. The information
to be transferred is coded as the sum of the signals and their repetition rate.

This basic structure is imitated by artificial neural networks. These are
used to realize complex mappings of input variables on output variables. Ar-
tificial neural networks consist of cross-linked computational nodes or artificial
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neurons. Communication hereby takes place via numerical values. These are
real numbers in the classical sense. An extension of the latter to fuzzy variables
is presented in this section. An artificial neuron receives numerical values from
neighboring neurons (input signals), which are combined to form a weighted
sum. The determined sum is compared with a threshold value (bias) and used
as the argument of a so-called activation function. The activation function
yields a value (output signal) which is an input signal for connected artificial
neurons.

A large number of different types of artificial neural networks exist for
widely varying fields of application. Besides their use for investigating nat-
ural neural networks [29, 70|, artificial neural networks are mainly applied
for cognitive purposes, e.g. in medical diagnostics [1, 30, 49|, for optimizing
production processes [31] or for analyzing economic time series [9, 34|, par-
ticularly those of the stock market [54, 55]. A coarse subdivision of artificial
neural networks into methods for approximating functions, for classification
purposes and as associative memory units has been undertaken by [55]. A spe-
cial type of artificial neural network is the multilayer perceptron. Multilayer
perceptrons are universally applicable in all of the areas mentioned. These are
adapted in the following for forecasting time series comprised of fuzzy data.

3.6.2 Multilayer Perceptron for Fuzzy Variables

A multilayer perceptron is a special type of artificial neural network. The ar-
tificial neurons are hereby arranged in layers. Starting from an input layer,
numerical values are transferred to an output layer via one or more hidden
layers. The output layer provides the input data with corresponding result
data. Both the input and output data are usually real numbers. The mapping
of fuzzy variables with the aid of a multilayer perceptron or an artificial neu-
ral network is only described to a limited extent in the literature [13, 19]. By
applying the extension principle and restricting the analysis to fuzzy triangu-
lar numbers it is not possible to obtain generally applicable solutions. In the
following, the multilayer perceptron is modified in such a way as to permit
the mapping of arbitrary fuzzy variables. A precondition for the latter is a
suitable representation of the fuzzy variables to be mapped by means of the
loTo~discretization technique introduced in Sect. 2.1.1.

The following explanations are given for the example of a multilayer per-
ceptron with one hidden layer. An extension to several hidden layers is also
possible. A so-called two-layered multilayer perceptron for fuzzy variables is
shown in Fig. 3.14. Only the output layer and the hidden layers are counted.
For a more detailed description of artificial neural networks for real numbers,
which forms the basis of the extension developed here for the mapping of fuzzy
variables, the reader is referred to [70] and [22].

A fuzzy variable Z, is assigned to each artificial neuron r of the input layer
I. The counters r = 1,2, ...,n; and n; hereby denote the number of neurons
in the input layer. The task of the input layer is to receive the input data z,
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input layer hidden layer output layer

Fig. 3.14. A typical two-layer multilayer perceptron for fuzzy variables

and to pass these data on to the hidden layer as fuzzy output variables 7.
Each neuron s of the hidden layer H lumps together the fuzzy input variables
Z, weighted by the matrix Eﬁ according to Eq. (3.139). The counters s =
1,2,...,ng and ny thereby denote the number of neurons in the hidden layer.
The dimension [2n,2n] of the weighting matrices Eﬁ, is dependent on the
chosen [,r,-discretization. The intermediate result obtained is referred to as
the fuzzy net input n~etSH of the neuron s, and is not subject to the non-
negativity requirement given by Eq. (2.47).

nr nr
nety = PWL oz =PWLodl (3.139)
r=1 r=1

The task of the artificial neurons s in the hidden layer is to map the fuzzy

net inputs nétf onto fuzzy output variables 6 and transfer these to the
next layer. This is performed with the aid of the fuzzy activation function
fa(-). The fuzzy activation function f4(-) after [36] is introduced to denote

the mapping of the fuzzy variables nétf onto the fuzzy variables 6 according
to Eq. (3.140).

6 = fa(net?) (3.140)

S

The following then holds for the I,r,-increments (see Eq. (2.32)) of the two
fuzzy variables nétf and o'

Aol (s) = fa (Aneti(s)) for j=1,2,..2n. (3.141)

The real function fa(-) is a trajectory of the fuzzy function fa(-) and is
equivalent to a deterministic activation function according to classical artificial
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neural networks. The sigmoidal activation function according to Eq. (3.142)
is used in the following.

B 1
T 1l4e®

fa (@) (3.142)
With the aid of the weighting matrices WS, the fuzzy output variables 67 of
the hidden layer H are lumped together in each case by the artificial neurons
t of the output layer O to yield fuzzy net input variables nét? according to
Eq. (3.143). The counters t = 1,2,...,no and no hereby denote the number
of neurons in the output layer.

ng
net; = PWS o (3.143)
s=1

Subsequent mapping of the fuzzy net input variables nétto onto the fuzzy
output variables 69 according to Eq. (3.144) yields the result data of the
multilayer perceptron. In contrast to Eq. (3.140), the fuzzy output function
fo(-) is hereby necessary in order to fulfill the non-negativity requirement
according to Eq. (2.47) on the one hand, and on the other hand, not to
restrict the values of the [,ry-increments of the fuzzy output variables 6?
to the interval [0,1].

- s (7, ~,0
59 = Jo (Fawet))) (3.144)
Analogous to Eq. (3.141), the following holds for the ,7,-increments:
209 (t) = fo (fa (Anet§(t))) for j=1,2,...2n. (3.145)

A necessary condition for the deterministic output function fo(-) is that the
functional values according to Eq. (3.146) are restricted. If transformed fuzzy
variables are used as input data for the multilayer perceptron (see Sect. 3.6.5),
the lower bound must be matched accordingly.

folz)=0 Vaelo,1] (3.146)

The inverse logarithmic normal distribution or the inverse exponential distri-
bution may be chosen to represent the output function fo(-). In particular
cases, non-zero upper constraints and lower bounds may also exist for the
laro-increments of the fuzzy result variables. In such cases an inverse sine
function according to Eq. (3.147) is recommended to represent the output
function fo(-).

7T> To —I1

fo(x) = (arcsin(as) + =

: (3.147)

s

with x5 ... upper bound

and 7 ... lower bound
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Further considerations regarding the fuzzy output function fo(-) are dealt
with in Sect. 3.6.5 in connection with the conditioning of fuzzy data.

In the case of classical artificial neural networks threshold values are usu-
ally specified for the individual neurons. These define the threshold above
which the particular neuron becomes (highly) active. Applying monotonically
increasing activation functions, this is the point of maximum ascent. In the
case of artificial neural networks for fuzzy variables, fuzzy threshold values
(fuzzy bias) are prespecified. The fuzzy threshold values éf and éto for the
neurons s = 1,2,....,ng and t = 1,2, ...,np, respectively, may be accounted
for directly either in the fuzzy activation functions according to Eq. (3.148).

ot = fa(net’ ©67) and ° = fo (fA(nétf@étO)) (3.148)

or by an additional neuron in the hidden or input layer. The latter variant is
especially suitable if the backpropagation algorithm is used (see Sect. 3.6.3).
Egs. (3.139) and (3.143) then reduce to Egs. (3.149) and (3.150).

- H nr+1

net, = @ Wl oal (3.149)
r=1

-0 ng+1

net, = wé o (3.150)
s=1

The additional weighting matrices W2 (r =n; + 1 and s = 1,2, ...,nz) and
Eg (s=ng+landt=1,2,..,np) are diagonal matrices. The fuzzy output
variables 6L and 6 of the additional neurons r = n; + 1 and s = ng + 1,
respectively, are thereby constant in accordance with Eq. (3.151).

I

- =

H

constant and 0

0 = constant (3.151)

The following holds for the [,r,-increments:
AOJI»(T) =1 and Aof(s) =1 for 7=1,2,....2n. (3.152)

The fuzzy threshold values are then given by Eqgs. (3.153) and (3.154), and

are accounted for in the fuzzy net input variables net. and net. of the hid-
den and output layers according to Egs. (3.149) and (3.150). This means that
adaptation of the fuzzy activation functions given by Eq. (3.148) is not nec-
essary.

0 = —WH o6l with r=nr+1 and s=1,2,...,nyg (3.153)

00 = - W9 oo with s=ng+1 and t=1,2,..,n0 (3.154)

The algorithm formulated for a two-layered multilayer perceptron may be
generalized if several hidden layers are present. The fuzzy output variables
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. obtained from Eq. (3.140) are then transferred to the next hidden layer
rather than the output layer, and are processed according to Egs. (3.139) and
(3.140).

Processing of the fuzzy variables in an artificial neuron of the hidden
layer(s) is shown schematically in Fig. 3.15.

6H

"o

Fig. 3.15. Processing of fuzzy variables in an artificial neuron

3.6.3 Backpropagation Algorithm

Using predefined weighting matrices Ei and Eg with r = 1,2,...,n; and

= 1,2,...,ny, the multilayer perceptron for fuzzy variables presented in
Sect. 3.6.2 maps a given sequence of fuzzy input variables %1, Z2, ..., £, on
sequence of fuzzy output variables 60, 69, ..., 620 to which the same fuzzy
values are always assigned.

Several sequences of fuzzy input variables Z1, Z2, ..., Zn, and several se-
quences of fuzzy control variables ¥, 92, ..., Yn, may be extracted from a
given fuzzy time series. With the aid of the latter it is possible to train the
weighting matrices. Fuzzy training patterns and fuzzy training sets are con-
structed for this purpose.

Definition 3.40. A fuzzy training pattern consists of a fuzzy input vector
Z = (T1, e, Ty ooy Tn,) T and a fuzzy control vector § = (G, -, Jts s Uno)
*

If several fuzzy training patterns are available, these form a fuzzy training set.

Definition 3.41. A fuzzy training set consists of m fuzzy training patterns.
This set is defined by the vectors &, = (Z1(k), ..., Tp(k), ..., Tn, (k)T and
G, = (G1(k), oy Ge(k), ooy Yo (K))T with k=1, 2, ..., m. -

For each fuzzy input vector Z, = (%1(k), ..., Tr(k), .., Tn, (k)T of the
fuzzy training set the multilayer perceptron yields a fuzzy output vector
o9 = (69(k), ..., 692(k), ..., 09 (k))T. The output error of the multilayer per-
ceptron is determmed by comparing the fuzzy output vector Qko with the
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known fuzzy control vector Uy with the aid of of the square error Ejy given by
Eq. (3.155).

Ey = fu(g,,57) (3.155)

Using the [,r,-increments yields the following:

l\D\»—t
I

2 Ay, (t, k) — A2, k))? . (3.156)

The output error of the multilayer perceptron for the complete fuzzy training
set is defined as the mean square error M SE according to Eq. (3.157).

1 o
MSE = — > fu(§,,57) (3.157)
=1

With the aid of the backpropagation algorithm the elements of the weighting
matrices are determined in such a way as to minimize their mean square error
MSE. Optimization of the weighting matrices is also referred to as training
or learning of the multilayer perceptron. The backpropagation algorithm for
fuzzy variables is described in the following.

Firstly, the weighting matrices of the multilayer perceptron are initial-
ized. This is accomplished by randomly assigning real values from the interval
[—1,1] to the matrix elements. In the second step a given fuzzy input vector
Z,, is transferred to the input layer of the multilayer perceptron, and the cor-
responding fuzzy output vector 6,? is computed. The computed fuzzy output
vector oko is compared with the corresponding given fuzzy control vector y
and the square error is determined according to Eq. (3.155). In the next step
the correction matrices AW (k) and W (k) are determined according to
Egs. (3.158) and (3.159). The correction matrices are defined in each case as
being proportional to the partial derivatives of the errors with respect to the
weighting matrices. As in the case of ws and Wﬁ, these matrices are also
of dimension [2n,2n]. Accordingly, the backpropagation algorithm for fuzzy
variables is equivalent to a gradient descent method. The factor n, with n > 0,
is referred to as the learning rate.

B (;Ek v gEk'
ow ’ (St) (771)1 27,,(St)
o " g
WG = = | (3.158)
22 st [ . OEy
| ﬁwzon,1(5t) ("‘wgn,Zn(St)
B CEy - 0y
(‘}’whlr (7’8) (.‘w{{zn(rs)
OE), " .
AWH () = = : : (3.159)
rs CFE .. 0Ly
| ’7w§n,1(rs) Fwéqnﬂn(rs)
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The weighting matrices may be corrected at different points in the backprop-
agation algorithm. In online training the weighting matrices Esot and Ei
are modified according to Eq. (3.160) immediately after the processing of a
fuzzy training model. Thus corresponds to a descent in the gradient direction
of the error function given by Eq. (3.155).

W (new) = W9 (old) + 2 W9 (k) (3.160)

and W (new) = W (old) + 2WH (k)

In offline training the weighting matrices Esot and wi are modified according
to Eq. (3.161) after first taking account of all given m fuzzy training patterns.

1 m
W9 (new) = W9 (old) + — 1AW (k) (3.161)
k=1
1 m
d wi WHold) + = ) AWk
an Wi (new) = (o m z::

The partial derivatives in Egs. (3.158) and (3.159) are determined on the level
of the [,ry-increments in order that the classical backpropagation algorithm
(see e.g. [22]) may be extended. A distinction must thereby be made between
the output layer and the hidden layers.

In order to compute the partial derivatives pw(;OEf

) of the errors F), with

respect to the elements of the output layer weighting matrices the chain rule
according to Eq. (3.162) must be applied, whereby i,j = 1,2, ...,2n holds. In
order to improve transparency the index k is dispensed with in the following.

oE oFE aﬂnetjo(t) (3.162)
6w§?i(st) B 6Anetjo(t) 6wj?i(st) '
o o
Using Eq. (3.143), the term % according to Eq. (3.163) may be sim-
g,

plified. In order to improve transparency the symbols s’ and i’ are used as the
incrementation variables of the summation operators.

6Anet-o(t) o 2n
J t) A 3.163
6w§?i(st) 8w Zl Zzl w] (s o1/ () ( )
= Lwo-(st) Aol (s)
6wjo’i(st) bt !
= Ao}’ (s)
The term W is again expanded with the aid of the chain rule according

to Eq. (3.164).
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0E 0B 0A0F(t)
0Anet9(t) — 0009 (t) 0Anet9(t)

(3.164)

By inserting Eqgs. (3.155) and (3.144) the two partial derivatives in Eq. (3.164)
are evaluated.

no 2n
6A6£(t) - 6Aoa,0(t); 2 Z (Ayy (') — 20Q(t))*  (3.165)
- S 3 (Au) = 200(0)°

= — (Ay;(t) — A (1))

6A0§? t) 0
6Anet§-) (t) (9Anetjo (t)

= 16 (fa (Anet? (1)) fa (Anet? (1))

If the sigmoidal function given by Eq. (3.142) is chosen for the activation
function of the output layer, Eq. (3.166) reduces to Eq. (3.167).

0A0S ()
(9Anetjo (t)

fo (fa (Anet§(t))) (3.166)

= 16 (fa(Anet? () fa(Anet§ (1)) (1 = fa(Anet§ (1)) (3.167)

In summarizing, the partial derivatives of Eq. (3.158) may be reproduced by
Eq. (3.168).
oF

m = —Aofl(s) (ij(t) — Ao?(t)) 1o (fA (Anet?(t))) ... (3.168)

. fa (Anet§ (1)) (1 = fa (Anet? (1))

According to the usual notation adopted in the literature, the abbreviation

07 (#) is sed for the term 520y in Eq. (3.162),

oF

59 (t) = ~ AneiO() (3.169)

The correction matrices AW, may then be computed by means of Eq. (3.170).

07 (t)Aof! (s) --- 67 (t) Ao, ()
AW =1 : : (3.170)
35, (1) Aof! (s) -+ 89, (t) Aoy, (s)

In order to compute the partial derivatives MZEE“TS) of the errors Ej with
wh,

respect to the elements of the weighting matrices of the hidden layer the
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chain rule according to Eq. (3.171) must also be applied. The index k is again
dispensed with, whereby 4,5 = 1,2, ..., 2n holds.

0B oE 6Anet]H(s)
aw h(rs) B 0Anetf(s) aijZ(rs)

(3.171)

Analogous to the procedure adopted for the output layer, but using Eq.
(3.139), Eq. (3.171) simplifies as follows:

oL oFE
0w 5 (rs) B 6Anet§{(s)

Aok (r). (3.172)

With the aid of the chain rule, the term ﬁ is described by Eq. (3.173).

OE _ 0E  0Aof(s)
(9Anet§[(s) B aAOf(s) 0Anetf(s)

(3.173)

The two partial derivatives of Eq. (3.173) are obtained by repeated application
of the chain rule, and by substitution of Egs. (3.140), (3.143) and (3.169).

OE Q& OE  0AnetQ(t)
: 174
ﬁAojH(s) tzl Zl 0Anet3 (') aAof(s) (3.174)
no 2n nyg 2n
oF I
= Z Z aAnetO( ) aAO Z Z 'LU/ / St AOj/(SI)
t'=1¢=1 9’ 145/=1
_‘514 (t/)
no 2n
== 20 > () wd (st)
t=1i'=1
0A0H (5)
% = / H
6Aneth(s) [ (Anet} (s)) (3.175)

If the sigmoidal function according to Eq. (3.142) is chosen to represent the
activation function of the hidden layer neurons, Eq. (3.175) may be replaced
by Eq. (3.176).

040} (s)

Phnetfi(s) = 14 (Anetj () = A0j'(s) (1= Aol () (3176)

By means of these simplifications the partial derivatives of Eq. (3.172) may
be lumped together in Eq. (3.177).

OB Aol(r) A0(s) (1 Aol () S Zn] 5Ot w? (st (3.177)

H
0wj7i(rs) t'=1i'=1
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Analogous to the output layer, the abbreviated notation 6;1 (s) is used for the

term Mn’;% in Eq. (3.172), thereby resulting in Eq. (3.178).
aE no 2n
6JH(5) == f) (AnetH Z Z oot (st’) (3.178)

6Anetf(s) B W]
The correction matrices AEfIS for the hidden layer are thus given by Eq.
(3.179).

61 (5)Aof(r) -+ 61! (5)A03,, (1)
Awfg = : : (3.179)
S5 (5)A0f(r) -+ 031,(5) Ao, ()

The 63 (') terms of the output layer are necessary in order to determine the
6?(5) terms according to Eq. (3.178). For this reason the determination of
the correction matrices (and modification of the weighting matrices) always
begins with the output layer and proceeds in the direction of the input layer
(backpropagation). In the case of a multilayer perceptron for fuzzy variables
with several hidden layers the corresponding correction matrices are deter-
mined analogous to Egs. (3.170) and (3.179). The terms 69 (¢') and wio,,j(st’)
are then replaced by the variables of the corresponding hidden layer. The same
holds for the fuzzy output variables 7.

Because the backpropagation algorithm for fuzzy variables is de facto
equivalent to a gradient descent method, the problems which arise in gradient
descent methods must be avoided by adopting suitable strategies. An overview
of the most frequent problems encountered when applying the classical back-
propagation algorithm for real-valued data is given in [70]. The greatest danger
in gradient descent methods is that it is not possible to depart from a local
minimum. On the other hand it possible to depart from a detected (global)
optimum in favor of a suboptimum minimum. Moreover, flat plateaus or steep
ravines in the error function given by Eq. (3.155) may lead to stagnation or
oscillation of the learning process. When applying the backpropagation algo-
rithm for fuzzy variables the damping or elimination of these problems may be
achieved by a simple modification of the method. An advantageous possibility
is the use of a momentum term ~ after [58]. The correction matrices 2W,;
given by Eqgs. (3.158) and (3.159) in learning step i are thereby supplemented
by the corresponding correction matrices Aw(i_l) of the (i — 1)-th learning
step according to Eq. (3.180).

E
+7 W) (3.180)

A
W. = —pn—
BASY) ’rlaw

Introduction of the momentum + counteracts stagnations on flat plateaus as
well as oscillations between steeply descending regions of the error function.
Values between 0 and 1 are recommended for the momentum . A random
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assignment of values to the learning rate 7 and the momentum -y is advisable
in each learning step ¢. By this means, however, it is not possible to prevent
the departure from a detected (global) optimum. In order to avoid oscillations
in steep ravines the learning rate n may be linearly coupled to the gradients.
Large values of the gradients then result in a lower learning learning rate. The
disadvantage of such a coupling is the possible departure from an optimum
due to a high learning rate n combined with small gradients. According to [70],
it is not possible offer practical tips regarding the choice of the learning rate 7.
In the case of large values of 7 no narrow valleys are detected, and departure
from the global optimum as well as oscillations may occur. On the other hand,
small values of n may lead to stagnations and the risk of not being able to
depart from a local minimum. The choice of 7 is thus highly dependent on the
given training data and the architecture of the artificial neural network. In
order to overcome this seeming dilemma the following approach is suggested.

A randomly varying assignment of values to the learning rate n as well as
the momentum v combined with an evolutive adaptation of the learning pro-
cess depending on the value of the error function is chosen. At the beginning
in learning step ¢ = 1 random values are assigned to n and ~. If a reduction in
the error value according to Eq. (3.155) is achieved in the subsequent learning
step i+1 using the correction matrices 1, , random values are again assigned
to the learning rate 7 as well as the momentum +, and the correction matrices
Aw(i +1) are determined. If a reduction in the error value is not achieved, the
correction matrices “W, are recomputed with new random values of  and
~ in conjunction with a new calculation of the error function. This approach
firstly ensures that departure from a detected (global) optimum in favor of a
suboptimum local minimum is avoided. Secondly, the random assignment of
values to the learning rate n and the momentum - ensures the departure from
local minima in favor of a better (local/global) solution. This approach is far
superior to the classical gradient descent method in which constant values of
n and vy are used.

When applying sigmoidal activation functions fa(-) according to Eq.
(3.142), fuzzy input data &, with l,r-increments Az;(r) » 1 may lead to
slower convergence of the backpropagation algorithm. As, according to Eq.
(3.139), the l4r4-increments Anetf(s) of the fuzzy net input variables nNetSH
are computed by summation of the Az;(r), the condition Anetf (s) » 1 may
also hold for these [,r,-increments. The expression f4 (Anetf(s)) in Eq.
(3.141) then yields values lying in a region where the ascent of the sigmoidal
activation function f4(+) is very slight, thereby resulting in slow convergence.
In order to avoid this effect, conditioning of the fuzzy input variables is rec-
ommended. Conditioning of the fuzzy input variables is described in detail in
Sect. 3.6.5.



118 3 Analysis of Time Series Comprised of Uncertain Data
3.6.4 Neural Network Architecture for Fuzzy Time Series

The architecture of artificial neural networks for fuzzy time series is essentially
characterized by the number of layers, the number of neurons and the fuzzy
activation function. The network architecture depends decisively on the chosen
forecasting objective and may be specified with the aid of a training strategy.
Artificial neural networks may be applied to stationary and non-stationary
fuzzy time series without a priori distinction.

In the following a distinction is made between optimum forecasting net-
work architecture and optimum simulation network architecture.

Optimum forecasting network architecture permits the determination of
an optimum forecast. The optimum forecast for time points 7 = N + h repre-
sents the fuzzy average of all potential future realizations of the fuzzy random
variable at the same time point 7 = N + h (see Def. 4.2). A network ar-
chitecture is thus sought which contains sufficient neurons to account for all
systematic effects of the fuzzy time series and permits the computation of an
estimator for the fuzzy expected value function.

The optimum simulation network architecture serves for simulating real-
izations of the fuzzy random variables to be expected at future time points
7 = N + h (see Def. 4.6). By means of this network architecture it is possible
to take account of random fluctuations of the fuzzy time series.

Every artificial neural network consists of an input layer, one or more hid-
den layers and an output layer. The fuzzy training pattern (see Def. 3.40)
selected for the particular fuzzy time series concerned also defines the num-
ber of neurons in the input and output layers. For practical reasons a fuzzy
training pattern for fuzzy time series consists of a sequence of the fuzzy time
series of n; fuzzy variables (lumped together in the fuzzy input vector & of
length ny) and the fuzzy variable following the sequence, which serves as a
fuzzy control vector § of unit length, i.e. no = 1. By this means one neuron is
assigned to the output layer. A fuzzy input vector Z containing n; fuzzy ele-
ments requires n; neurons in the input layer. The number of required hidden
layers and neurons per layer is determined by means of a training strategy.

Training Strategy for an Optimum Forecasting Network
Architecture

Structuring of the fuzzy time series. The given fuzzy time series contain-
ing N fuzzy variables is subdivided into a fuzzy training series and a fuzzy
validation series (Fig. 3.16). In order that all systematic effects of the given
fuzzy time series are accounted for, the fuzzy training series chosen for an
optimum forecasting network architecture should not be too short. If an op-
timum h-step forecast (see Sect. 4.1) is planned, the validation series should
contain at least h fuzzy variables.

After specifying the fuzzy training series, m fuzzy training patterns with
ny fuzzy variables % (k), Z2(k), ..., Tn, (k) in the fuzzy input vector Z, and
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fuzzy training series fuzzy validation series

fuzzy training pattern

n,=4 n,= 1
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N

Fig. 3.16. Structuring of a fuzzy time series for determining the optimum forecast-
ing network architecture

(advantageously) one fuzzy variable §(k) in the fuzzy control vector g, may be
chosen, whereby k& = 1, 2, ..., m. The number of fuzzy training patterns with
no = 1 fuzzy control variables that may be extracted from a fuzzy training
series containing Np fuzzy variables is

m = NT—TL]. (3181)

These constitute a fuzzy training set according to Def. 3.41. Selected fuzzy
training patterns with n;y = 4 and np = 1 are shown in Fig. 3.16.

Choice of the network architecture. It is now possible to specify a start-
ing variant of the network architecture. The number of neurons n; in the input
layer and no in the output layer are already defined. It is now necessary to
select the number of hidden layers and the number of neurons per layer. As a
tendency, more hidden layer neurons should be chosen with increasing com-
plexity and nonlinearity of the fuzzy time series to be analyzed because more
neurons imply more weighting matrices. The problem of so-called overfitting,
which is often encountered in classical fields of application of artificial neural
networks, may also arise in the analysis and forecasting of fuzzy time series.
Whereas overfitting must be avoided in optimum forecasting network ar-
chitectures, it is purposely exploited in optimum simulation network architec-
tures. In an optimum forecasting network architecture the number of chosen
layers and neurons should guarantee a ‘smooth’ approximation, i.e. an ap-
proximation in which random fluctuations of the fuzzy time series are absent.

Training of the artificial neural network. After selecting a particular
network architecture, the artificial neural network must be trained. The mean
square error M SE according to Eq. (3.157) for the chosen number of hidden
layers and neurons is minimized by means of the backpropagation algorithm.
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Modification of the weighting matrices may be achieved either by online train-
ing or by offline training (see Sect. 3.6.3).

In online training the m fuzzy training patterns are advantageously se-
lected in a random order. This approach prevents the occurrence of repetitive
learning processes which may result in ‘going round in circles’ in the search
for the optimum. Moreover, a random selection reduces the probability of get-
ting trapped in a local minimum. In online training, an improvement is only
obtained on average along the gradients of the mean square error M SFE to be
minimized according to Eq. (3.157). The formulation of a convergence crite-
rion is hence more complicated than in offline training. As an alternative, the
training may be terminated after a prescribed number of iterations. An ad-
vantage of online training compared with offline training is the lower storage
requirement.

In offline training the entire fuzzy training set must first be processed be-
fore it is possible to correct the weighting matrices. The search for a minimum
thus takes place along the gradients of the mean square error M SFE according
to Eq. (3.157). Compared with online training, this increases the probability
that a local minimum is accepted as the solution. The convergence criterion
may be formulated as the non-exceedance of a maximum mean square error
M S E .. Whether non-exceedance of the prescribed error M SFE, . is due to
the detection of the global minimum or the attainment of an acceptable local
minimum is of secondary importance, especially considering the fact that the
global minimum is non-verifiable. Alternatively, the training process may be
terminated after a prescribed number of iterations.

The application of online training as well as offline training may result in
oscillations between regions marked by a sharp decrease in the error function.
Possible strategies for damping or eliminating such problems usually encoun-
tered in gradient descent methods have already been outlined in Sect. 3.6.3.

Modification of the network architecture. The trained artificial neu-
ral network is now checked and assessed with the aid of the fuzzy validation
series. With the aid of this network and the fuzzy variables of the fuzzy train-
ing series, an optimum h-step forecast is firstly made for time points Ny + 1
to N of the fuzzy validation series (see Sect. 4.3.1). The forecasted fuzzy
variables are then compared with the given fuzzy variables of the validation
series. On the basis of the differences, an error is computed which permits
an assessment of the quality of the forecast. In order to formulate this error
the fuzzy variables of the fuzzy training series and those of the fuzzy vali-
dation series are denoted by ] (i = 1,2, ..., Np) and &} (j = 1,2, ..., Ny
and Ny = N — Nrp), respectively. The mean forecast error M PFyy of the
artificial neural network is introduced as a measure of the quality of the fore-
cast, and hence also a measure of the quality of the network architecture. The
mean forecast error M PFy is defined as the average value of the distances
dr between the observed fuzzy data &Y and the forecasted fuzzy variables 5:;/

J
of the fuzzy validation series according to Eq. (3.182).
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The network architecture with a minimum forecast error M PFy n is referred
to as the optimum forecasting network architecture. The mean square error
MSE according to Eq. (3.157) must thereby be sufficiently small.

The detection of a network architecture with a minimum forecast error
M PFy is an optimization problem with the objective function given by Eq.
(3.182) and the layers and neurons as decision variables.

The network architecture may be optimized, for example, using Monte
Carlo methods, network search techniques or the modified evolution strat-
egy after [36]. The genetic methods described in [4, 16, 25] for solving the
optimization problem posed by artificial neural networks for real numbers
may also be applied to artificial neural networks for fuzzy variables. A simple
means of approximately detecting the minimum of M PFy is by heuristic
modification of the network architecture. After modifying the network archi-
tecture it is necessary to re-train the artificial neural network. The network
is modified repeatedly until such time as the mean forecast error M PFyy
takes on a minimum value. The efficiency of the optimization depends on the
method used. An acceptable local minimum is attained depending on the case
in question.

The forecast computed by the optimized network architecture is chosen
as an estimator for the fuzzy expected value function. The optimum fore-
casting network architecture found in this way is suitable for simulating non-
stationary as well as stationary fuzzy time series.

MPFyN =

(3.182)

Training Strategy for an Optimum Simulation Network
Architecture

Identification of the random components of the given fuzzy time
series. The detection of an optimum simulation network architecture presup-
poses an optimum forecasting network architecture. If the latter has been
determined (see Training strategy for an optimum forecasting network ar-
chitecture on p. 118), the optimum forecasting network architecture is used
to compute optimum single-step forecasts Iy (see Sect. 4.3.1) for the time
period 7 = ny + 1,..., N. Each single-step forecast is thereby based on the
measured values of the fuzzy time series. The optimum single-step forecasts
represent estimators for the conditional fuzzy expected values at time points
T =nr+1,..., N. If the fuzzy variables of the optimum single-step forecasts are
subtracted from the fuzzy variables of the given fuzzy time series at each time
point, a new stationary fuzzy time series (€;),eT is obtained which reproduces
the random components of the original time series.

€r = 577' @‘%T (3183)

The determined fuzzy variables €, are fuzzy variables in the improper sense
because they do not fulfill the requirement according to Eq. (2.47). They are
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considered to be a realization of the fuzzy random process (ET)TeT with the
following characteristics:

E[E,]=1mg =0 V7eT (3.184)

lTVaT[ET] = lrQ% (3185)
- _ 17‘KET (TaaTb) for AT =0

wKg (A7) = { 0 for Ar 20 - (3.186)

The empirical moments “‘§§T and ;. K ¢, (0) of the fuzzy time series (€;),eT are
used as estimators for lrg% and ;,. K E. (0). The empirical characteristic values
provide a means of determining the optimum simulation network architecture.

Selection of the optimum simulation network architecture for the
fuzzy time series (€, )rc1. A suitable starting variant is chosen for the op-
timum simulation network architecture, which is subsequently improved in
an optimization process. The optimum simulation network architecture to be
developed for the fuzzy time series (€, ),eT is independent of the optimum fore-
casting network architecture. As the simulation of random effects is achieved
with the aid of overfitting of artificial neural networks, the number of chosen
layers and neurons, and hence the number of weighting matrices, must be
large enough to permit a mapping of the fluctuations of the fuzzy time series
(éT)TET'

Example 3.42. This is illustrated by the example of a realization of a fuzzy
white-noise process shown in Fig. 3.17. The optimum forecasting network ar-
chitecture yields the optimum fuzzy forecast at time points 7 = N+1, N+2, ...
This is the fuzzy expected value of the fuzzy white-noise process. A continu-
ation of the fuzzy time series by an artificial neural network with overfitting
yields realizations which exhibit the properties of the fuzzy white-noise pro-
cess. .

Training of the artificial neural network. After selecting a starting vari-
ant for the optimum simulation network architecture the artificial neural net-
work is trained with the aid of the backpropagation algorithm. For training
purposes the fuzzy training patterns are extracted from the fuzzy time series
(é:)reT. The weighting matrices may be modified either by online training or
offline training. The training is terminated when the mean square error M SE
according to Eq. (3.157) falls below a predefined maximum error M.SFEyax.
Whether non-exceedance of the prescribed error M S E\,.x is due to the detec-
tion of the global minimum or the attainment of an acceptable local minimum
is of secondary importance, especially considering the fact that the global min-
imum is non-verifiable. Alternatively, the training may be terminated after a
specified number of iterations.
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Fig. 3.17. Fuzzy forecast using overfitting and optimum fuzzy forecastings

Modification of the network architecture. The trained artificial neu-
ral network is now assessed using an error function and improved with the aid
of an optimization strategy. Firstly, the trained optimum simulation artificial
neural network is used to simulate a fuzzy time series (s€;)-eT of preferably
long length (see Sect. 4.3). The simulation may be started with an arbitrary
fuzzy training pattern extracted from the fuzzy time series (€;),er. The sim-
ulated fuzzy realizations ;€, are evaluated statistically. The temporal fuzzy
average according to Eq. (3.16) and the empirical l,r,-covariance function
according to Eq. (3.20) are computed. Because the fuzzy time series (€;),eT
is stationary and the fuzzy expected value E[ET] is zero, the temporal fuzzy
average (€ of the fuzzy realizations ,&, must also be zero. In addition, the em-
pirical [,r,-covariance function lr,nKsé_r (A1) of the fuzzy time series (s€;)reT
is compared with the theoretical [,r,-covariance function lTKET(AT). The
forecast error is computed from the difference as follows:

2n
PF, = > (0-Ag)’+ (3.187)
j=1
re 2n

@EWHMﬂ—&aWHMﬂf.

The term Age; hereby denotes the l,r,-increments of the empirical fuzzy
average € , and ]%ET [k,1](A7) and k_z_[k,1](AT) represent the elements of the
larqo-covariance functions ;. K¢ (A7) and [TKSéT (A7), respectively.

In an optimization process in which the objective function is given by Eq.
(3.187) the optimum simulation network architecture is improved. This may
be achieved by applying optimization methods such as Monte Carlo methods
or network search methods, or by means of a heuristic modification.

If, for example, the optimum simulation network architecture has been
modified heuristically, it must be re-trained using the backpropagation algo-
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rithm. The network modification is repeated until such time as forecast error
PF,, takes on a minimum values. The efficiency of the optimization depends
on the method used. An acceptable local minimum is attained depending on
the case in question.

Additional Remarks Concerning the Choice of Layers and Neurons

Artificial neural networks for analyzing and forecasting fuzzy time series
should have at least two hidden layers in order to account for nonlinear ef-
fects of the fuzzy time series. The number of hidden layers required depends
on the number of neurons in the hidden layers. As a rule, the fewer neurons
present per hidden layer then the more hidden layers are required in order to
guarantee functional equivalence.

An artificial neural network with too few neurons in the hidden layers is
unsuitable for forecasting purposes. If it is not possible to adequately model
the complexity of a fuzzy time series due to too few neurons and hence an
insufficient number of weighting matrices, it is not possible to obtain an opti-
mum forecast; i.e. underfitting occurs.

The number of hidden layers and neurons depends only slightly on the
fuzzy activation function f4(-). The sigmoidal fuzzy activation function fa(-)
according to Eq. (3.188) is especially suitable for artificial neural networks
intended for the analysis and forecasting of fuzzy time series.

6 = fa(net) (3.188)

with  Ao; = ﬁ for 1=1,2,...,2n
The advantage of using this fuzzy activation function is that the requirement
according to Eq. (2.18) is complied with. Moreover, the trajectories of the
fuzzy activation function, i.e. the deterministic sigmoidal functions f4(-), are
differentiable.

The use of a linear fuzzy activation function for the analysis and forecasting
of fuzzy time series is not appropriate. In the case of a linear fuzzy activation
function each series connection of artificial neurons may be replaced by a single
neuron, i.e. each multilayer perceptron for fuzzy variables may be reduced to a
functionally equivalent single-layer perceptron. Furthermore, compliance with
the requirement given by Eq. (2.18) is not possible using linear fuzzy activation
functions.

3.6.5 Conditioning of the Fuzzy Data

By means of conditioning, the [,r,-increments of the fuzzy input and fuzzy
output variables of an artificial neural network are transformed into the num-
ber range of the interval [0,1]. After this transformation it is possible to use
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multilayer perceptrons without the need to classify a fuzzy time series as be-
ing stationary or non-stationary a priori. Conditioning is also a precondition
for good convergence of the backpropagation algorithm.

Conditioning for an Optimum Forecasting Network Architecture

Fuzzy input variables are lumped together in fuzzy training patterns (see Def.
3.40) and transferred to the multilayer perceptron. Because the transforma-
tion depends on the position of each individual fuzzy input variable within the
fuzzy time series, the following indexing is introduced for the fuzzy input vec-
tors and their fuzzy input variables. Each fuzzy element Zj_, of the k-th fuzzy
input vector T, = (Tr_nys s Thry -, 1)’ (with 7 = ny, ny — 1, ..., 1 and
k=mnr+1, ny+2, ..., N ) which is represented by means of [, r,-discretization
is transformed with the aid of the diagonal matrix T, and the moving fuzzy
average T}, according to Eq. (3.189).

if_, =T, O (ih—r OTk) (3.189)

The Z}_,. constitute the transformed fuzzy input vector &} = ('i;:*nz’ @y
. i;_l)T. The moving fuzzy average Ty, is defined as the elementary special
case of the linear filter according to Sect. 3.4.1, and is determined by means of
Eq. (3.190). The moving fuzzy average Zj provides an approximation of the

fuzzy trend of a fuzzy time series.

~ 1 M
T = — Tg— 3.190
TS o
The elements t; ;(k) of the real-valued diagonal matrix T’ are determined for
i,j =1,2, .., 2n using Eq. (3.191). The terms Az;(k) are hereby the l47-
increments of the moving fuzzy average 7. The transformation matrix T,
may be interpreted as an indicator of the scatter of the fuzzy time series on a
segmental basis.

(max,—o.1, ... ny—1|Azi(k —r) — ATi(k)])™" fori = j
ti (k) = (3.191)
0 fori # j

The elements Z};_,. of the transformed fuzzy input vectors &}, which rep-
resent intermediate values according to Sect. 2.1.2, are hereby not subject to
the requirement given by Eq. (2.47). For the fuzzy output variable 6? of the
multilayer perceptron, on the other hand, the requirement of non-negativity of
the lo7q-increments holds. For this reason the fuzzy output function fo () in
combination with the sigmoidal fuzzy activation function fa(-) is introduced
for transforming the fuzzy net input variable net of the output layer. The
fuzzy output function fo 1 (-) replaces fo(-) in Eq. (3.144). The transforma-
tion of the fuzzy net input variable net of the output neuron is defined by Eq.
(3.192).
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3% = for (fA(nEt)) (3.192)

The term f ‘4(+) is hereby the sigmoidal fuzzy activation function according to
Eq. (3.188). The fuzzy output function fo r(-) is advantageously defined by
Eq. (3.193), whereby i = 1,2, ..., 2n.

50* = Jou (Fatnen) (3.193)
with  A09* (k) = fo.ir(fa(Anet;))

_ATIK) (o1 k) paink) 2 (Fa(Anet)))
tii(k)

The term @~1(-) is hereby the inverse deterministic distribution function of the
normalized normal distribution. The inverse three-parameter logarithmic nor-
mal distribution is chosen here to represent the deterministic function fo ; x(+)-
A major advantage of this function is that it is possible a define a lower bound
for the functional values for the case of best possible congruence with the in-
verse deterministic sigmoidal function f4(-) according to Eq. (3.142). In other
words, the fuzzy output function fo) & (+) according to Eq. (3.192) yields fuzzy
output variables 5,?* whose [,7,-increments are restricted by a lower bound
and lie in the effective region of the deterministic functions fo ; (). The ef-
fective region of the functions is understood here to be the region of steepest
ascent of the functional curve. The subsequent transformation according to
Eq. (3.194) guarantees compliance with the requirement given by Eq. (2.47)
for the fuzzy output variable 6¢ of the multilayer perceptron.

o00* =T, 0 (6f ©7k) and of =T,' ©o* @7y (3.194)

The parameters pi(i, k) and po(i, k) of the deterministic output function
fo,i.k(-) are given by Egs. (3.195) and (3.196), respectively. These result from
the requirement of the best possible congruence between fo ;1 (-) and fa(-).
This requirement is fulfilled when the mean and the variance of both functions

are in agreement.
tii(k) \°
k)y=,|In|1 20 ——~ 1
pa(k) n( +3 9<Ami(kz)> > (3.195)

ti,i(k) 2

The factor 3.29 in Eq. (3.195) corresponds to the variance of the differenti-
ated sigmoidal activation function f4(-) according to Eq. (3.142). This factor
guarantees the best possible congruence between the inverse three-parameter

pi1(k) =In ( (3.196)
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logarithmic normal distribution fo;x(-) and the function f4(-). An approx-
imation formula after [64] is given for the inverse function of the normalized

normal distribution - 1(-) by Eq. (3.197).

_ co+c1u+02u2 .
Ut T for 0 < fa(Anet;) <0.5

D1 (fa(Anety)) = (3.197)
—d 11— fa(Anet;)) for 0.5 < fa(Anet;) <1

ot
(fa(Anet;))*

co = 2.515517 ¢; = 0.802853 cy = 0.010328
dy = 1.432788 dy = 0.189269 d3 = 0.001308

with u =

and

The linear transformations of the fuzzy input variables and the fuzzy result
variables according to Eqs. (3.189) and (3.194), respectively, guarantee that
the fuzzy input variables and the fuzzy result variables of the multilayer per-
ceptron lie in the effective region of the fuzzy activation functions. Applying
the two-step fuzzy activation function according to Eq. (3.192), compliance
with the requirement given by Eq. (2.47) is also ensured for the fuzzy out-
put variable 6¢ of the multilayer perceptron. This means that it is possible
to obtain robust fuzzy forecasts regardless of the value range of the l,7r,-
increments.

Conditioning for an Optimum Simulation Network Architecture

In order to condition the fuzzy input data of the optimum simulation network
architecture the fuzzy variables €, are transformed. The elements of the k-th

fuzzy input vector &; = (ézin(ls), e €F b )T, with r = ngs), ngs) —
1,...,1and k = ngp) + 1, n(lp) + 2, ..., result from the linear transformation
according to Eq. (3.198).

éz—r = IZ © (ékfr) (3198)

The elements ¢} ;(k) of the diagonal matrix T are given by Eq. (3.199) for
each fuzzy input vector €.

1
(maxr:(),l,...,ngs)fl |Ae; (k — r)|) fori = j

£ (k) = (3.199)

0 fori # j

The fuzzy net input variable net of the output layer is mapped onto the fuzzy
output variable 6?* with the aid of the fuzzy activation function and the fuzzy
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output function according to Eq. (3.200). As the fuzzy output variables 5?* of
the optimum simulation multilayer perceptron represent intermediate results,
non-negativity of the [,r,-increments is not required. The sigmoidal fuzzy
activation function according to Eq. (3.188) is chosen as the fuzzy activation
function f4(+). The fuzzy output function fo,k(') of the output neuron is given
by Eq. (3.193), whereby i = 1,2, ..., 2n holds.

37" = fox(fanet)) (3:200)
with  AoP* (k) = fo,ik(fa(A;)

_ _AT(K) (¥ k) ¥ k)2 (Anety)
ti(k)

An approximation formula for the inverse distribution function of the nor-
malized normal distribution @~1(-) is given by Eq. (3.197) (see also [64]).
The parameters pj (i, k) and pi (i, k) are given by Egs. (3.201) and (3.202),

respectively.
2, k)= ,|In[1+3,29 tfl(k) 2 3.201
P2 (l’ ) ’ ( ﬁ oz(k)> ( . )

p(i, k) = In (ffé:;) - pg;’“) (3.202)

The terms Az;(k) are hereby the [,r,-increments of the optimum single-
step forecast Zx. The optimum single-step forecast T is computed from the
measured fuzzy variables Z, (7 < N) or the simulated realizations Z, (7 > N)
of the previous time points (see Sect. 4.3.1). The fuzzy output variable 5,?* of
the artificial neural network is subsequently mapped onto the fuzzy variable
69 with the aid of the transformation given by Eq. (3.203).

30 =T @ (5,? @%k) and 60 =T% ©d* @i, (3.203)

The use of the fuzzy output function according to Eq. (3.200) always guaran-
tees compliance of the fuzzy variable 5,? with the requirement given by Eq.
(2.47).

Initialization of the Weighting Matrices

Before starting the backpropagation algorithm the weighting matrices must
be initialized according to the particular architecture chosen for the multi-
layer perceptron. The initialization may be carried out in accordance with the
number of artificial neurons and the chosen [,7r,-discretization. The larger
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the number of artificial neurons and the chosen a-level sets then the more
laro-increments must be lumped together in the neurons to form the fuzzy
net input variables net (see Eq. (3.139)). In order to ensure that the fuzzy
net input variables net lie in the effective region of the fuzzy activation func-
tions, small values of the weighting matrices should be chosen initially. The
initialization values of the weighting matrices are thus chosen to be inversely
proportional to the number of artificial neurons in the layers as well as the
number n of the selected a-level sets. When the backpropagation algorithm
is started, the matrix elements of the first hidden layer are assigned random
real values from the interval

[ ! ! ] . (3.204)

2-n-ny 2-n-ng

The term n; hereby denotes the number of artificial neurons in the input layer.
For subsequent hidden layers and the output layer, initialization is carried out
using real values from the interval

[ ! ! ] . (3.205)

2-n-nyg 2:-n-ny

The term n gy hereby denotes the number of artificial neurons in the preceding
layer. By means of this procedure the occurrence of too large or too small fuzzy
net input variables net is avoided. The latter would otherwise lie in the non-
effective flat region of the fuzzy activation functions. A possible consequence
of this would be insufficient convergence of the backpropagation algorithm, as
this tends to stagnate in flat regions of the error function.
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Forecasting of Time Series Comprised of
Uncertain Data

4.1 Underlying Concept

The aim of forecasting a time series containing fuzzy data is to obtain an
assessed prognosis of the follow-up or future values Znip (b = 1,2,...) of
an observed fuzzy time series T, Zs,...,Tn. A precondition for this is the
assumption and matching of an underlying fuzzy random process (X;)rer
according to Sect. 3.5 or modeling of the fuzzy time series with aid of an
artificial neural network according to Sect. 3.6.

The basic idea behind the modeling of fuzzy time series is to treat a given
fuzzy time series as a realization of a fuzzy random process (f(T)TeT. In or-
der to forecast a fuzzy time series Z1,Zs,...,zx future realizations T yp of
the fuzzy random process (XT)TeT must be determined. As a rule, the future
realizations T, are dependent on the given realizations, i.e. the observed
fuzzy time series Z1, Z2, ..., Tn. An exception to this are fuzzy white-noise pro-
cesses. The fuzzy random variables within the forecasting period are therefore
conditional fuzzy random variables (XN+h | 1, Z2y oy TN)-

Analogous to classical time series analysis according to [60], the fuzzy

random forecasting process (X, ) et is introduced for forecasting a fuzzy time
series T1,Z2,..., TN-

Definition 4.1. The fuzzy random forecasting process (XT)TGT is the con-
tinuation of the underlying fuzzy random process (X;)reT within the fore-
casting period T = N + 1, N 4+ 2, ..., taking into consideration the known

realizations 1, &, ..., n. The fuzzy random variables Xn4p of the fuzzy ran-
dom forecasting process (XT)TeT are hence conditional fuzzy random vari-
ables (Xnin | %1, Za,...,EN) of the underlying fuzzy random process (X;)ret.
At time points T = N + 1, N + 2, ...the fuzzy random forecasting process
(XT)TGT yields the discrete fuzzy random variables XNJrh(icl, Zoy ..y TN ), which

are dependent on the realizations 1,2, ...,TN of the fuzzy random variables
Xl,X27...,XN. *
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The forecasting of fuzzy time series may take the form of an optimum forecast,
a fuzzy interval forecast or a fuzzy random forecast. In order to distinguish
between these different forecast forms, the following definitions are introduced.

Definition 4.2. The fuzzy mean value of all potential future realizations of

the fuzzy random variable X4y, is referred to as the optimum forecast T N4+h
at time point T = N + h. The optimum forecast T yp corresponds to the
conditional fuzzy expected value according to Eq. (4.1).

INn(Z1, %2, ., TN) = E[XNyn |21, %2, ..., TN] = E[XNyn] (4.1)
*
The optimum forecasts Tyy1, Tyi2, ---, TN+h are specific sequential values of

the observed fuzzy time series with a minimum forecast error.
It is also possible to specify fuzzy forecast intervals within which the ex-
pected fuzzy variables with the given probability « (confidence level) will lie.

Definition 4.3. A fuzzy interval T; is referred to as a fuzzy forecast interval
i’ji,Jrh if the realization §N+h of Xn4n of a fuzzy random forecasting process

(XT)TeT will be completely included in the interval with the probabzlzty K. A
fuzzy variable J:N+h is completely included in the fuzzy interval Ty ($N+h c
Z1) if the inequality (4.2) holds for the membership functions of the fuzzy
variables §N+h and Zg.
pzo () <pg (r) VrzeR (4.2)

TN+h

*

Example 4.4. The fuzzy forecast interval il N +1 and the optimum forecast

Inq1 for a fuzzy AR|2] process are shown by way of example in Fig. 4.1.
Whereas the forecast Ty satisfies Eq. (4.2), this does not hold for the real-
ization §N+1 shown in Fig. 4.2. .

A fuzzy forecast interval I%,_, at time point 7 = N + h may be estimated by
a Monte Carlo simulation of potential future progressions of the given time
series containing fuzzy data (Z,),er. If the underlying fuzzy random process
(X,)rer (see Sect. 3.5.5) of the fuzzy time series (Z,),er is known or may
justifiably be assumed, a Monte Carlo simulation of realizations Zp at each

time point 7 = N + h is possible.

Remark 4.5. With the aid of a Monte Carlo simulation it is possible to esti-
mate forecast intervals for arbitrary fuzzy random processes. In classical time
series analysis (e.g. [7, 32]), on the other hand, GAUSS processes are usually
stipulated for determining forecast intervals. .
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A fuzzy random forecast permits a determination of the fuzzy random vari-

ables X, within the forecasting period 7 = N 4+1, N +2, ..., N +h. If the X,
are known, it is possible to state the probability of occurrence of the expected
fuzzy realizations within the forecasting period.

Definition 4.6. A fuzzy random forecast yields the expected fuzzy random

variables X, of the fuzzy random forecasting process (XT)TGT at future time
points T = N + h. -

If the underlying fuzzy random process (X, ) et of a fuzzy time series is known,

the fuzzy random variables X ., are estimated by a Monte Carlo simulation

of potential future conditional realizations (Zn4n | Z1,Z2, ..., Tn) of (X;)reT-

The fuzzy probability distribution functions form II Fz (Z) and iy (2)
N+h N

+h
(see Sect. 2.2.2) and the characteristic moments (see Sect. 2.2.3) may be used

to characterize the fuzzy random variables XNJrh at future time points 7 =
N + h.
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4.2 Forecasting on the Basis of Specific Fuzzy Random
Processes

The determination of optimum forecasts Z y 14, fuzzy forecast intervals %,

and forecasted fuzzy random variables Xy, for fuzzy MA processes, fuzzy
AR processes and fuzzy ARMA processes is presented in the following. Each
forecast relies on the specification and parameter estimation of the underlying
fuzzy random process in each case. In order to perform the forecast the theo-
retical characteristic values and parameters of the fuzzy random process must
be replaced by the empirical or estimated values, and the observed realizations
and computed realizations according to Eq. (3.115) must be substituted for
X, and &;, respectively.

In order to forecas_"u a given fuzzy time series Z1, Zs, ..., &y the fuzzy random

forecasting process (X,)rer according to Def. 4.1 is applied. If the underlying
process is a fuzzy ARMA[p, q] process (X;)retr, the fuzzy random forecasting

process (X, )rer is given by Eq. (4.3) with h =1, 2, ....

Xnih =4, 0XNin 1@... ®A,0 Xnihp®EN1h O (4.3)
B,0OENih 1O ©B,0 ENthq

) = IN+h-y for N+h—u< N
with Xyipuw=1< = ,u=12..,p (44)
XNihw for N+h—u>N

ENth—y for N+ h—v <N

Exin o for Noh—psnN U= L2 (4.5)

and éN-‘rh—v :{

For each time point 7 = N + h — u < N the fuzzy random variable )N(N+h,u
is hereby replaced by the observed fuzzy variable Zn i, of the fuzzy time
series, whereas for time points 7 = N +h —u > N, the fuzzy random variable

XNH, u 1s retained. For time points 7 = N+h—v < N the realization €y 4
of the fuzzy white-noise process (€;)rer computed according to Eq. (3.115) is
inserted for the fuzzy white-noise variable & N+h—v » Whereas for time points
7=N+h—v> N, the fuzzy white-noise variable Ey_j,_, is retained.

If the underlying process is a fuzzy MA process or a fuzzy AR process

(XT)TeT, the fuzzy random forecasting process (XT)TeT follows from Eq. (4.3)
as a special case with p =0 or ¢ = 0.

4.2.1 Optimum Forecast

Optimum h-step forecast. In the case of an underlying fuzzy ARMA[p, q]

process (X;)rer the optimum forecasts 5UN+17 TN12, - TN1p for a total of
h steps are computed by means of the optimum h-step forecast according to
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Eq. (4.6). Using the optimum forecasts obtained for earlier time points, the
optimum forecasts are determined recursively by means of Eq. (4.6).

inen = A QN 1@ .. @A, Qinsnp ®E[E]O (4.6)
B OEN+h-10...0B,OQEN+h—q

INthw for N+ h—u< N

inanw for N4h—us> N 4= b2ep (A7)

with {f}]\urh,u = {

EN+h—v for N+h—v< N

E[£,] for N4h—v>nN U= b2oma (48)

and EN+h—v = {

For each time point 7 = N + h — v > N the optimum forecast of the fuzzy
white-noise variable & N-+h—v, as expressed by the fuzzy expected value F [5 -]
of the fuzzy white-noise process (6’~ r)reT according to Definition 4.2, is inserted
for En1n_v in Eq. (4.6). For time points 7 = N + h — v < N the computed
realization &y, of the fuzzy white-noise process (£;)rer is inserted for
EN+h—v- For each time point 7 = N +h —u < N the observed fuzzy variable
INih_v Of the fuzzy time series is inserted for . For time points 7 =
N 4+ h —u > N the optimum forecast §N+h,u is inserted for Zy.p_o. The
optimum h-step forecast according to Eq. (4.6) is thus equivalent to a recursive
procedure. Because the fuzzy expected value E [ST] of the fuzzy white-noise
process is always inserted in Eq. (4.6) for 7 = N + h —v > N, the forecasted
fuzzy variables converge on the fuzzy expected value function E[XT] as the
number of forecasting steps h increases.

The optimum h-step forecasts for a fuzzy MA[q] process or a fuzzy AR[p]
process are included as a special case in Eq. (4.6). The optimum h-step forecast
for a fuzzy MA[q] process (X,)rer is computed according to Eq. (4.9). The

terms €y .4p—, are hereby chosen according to Eq. (4.8).

inin = E[E)OB, OéN4h-10... ©B,0&N+h—q (4.9)
The optimum h-step forecast for a fuzzy AR[p] process (X, )reT may be com-
puted using Eq. (4.10). The realizations Zy-.p—, are chosen as in a similar
way by means of Eq. (4.7).

InNeh = A OFNgn1 D ... DA, OIN+h—p @ E[&] (4.10)

Optimum single-step forecast. The optimum single-step forecast is a spe-
cial case of the optimum h-step forecast. For a fuzzy ARMA[p, q] process
(X,)rer the optimum single-step forecast according to Eq. (4.11) is retained.
The optimum single-step forecast computes the optimum forecast stH at
time point 7 = N + 1 using only the observed values Z, (7 < N) of the fuzzy
time series and the computed realizations &, (7 < N) of the fuzzy white-noise
process.
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iNe1 = A OIND ... DA, OFni1—, ®E[E]O (4.11)
B, OENO...OB,OéN+1-4

For a fuzzy AR[p] process (X;)rer the optimum single-step forecast is given
by Eq. (4.12).

Ing = A, QCTCN@.--@AI,@@NHW@EWNT] (4.12)

The optimum single-step forecast for a fuzzy MA[q] process (X, )rer is Te-
tained according to Eq. (4.13).

ini1 = E[6]OB, 0én©..0B, 08N 14 (4.13)

Remark 4.7. Optimum single-step forecasts are applied in the distance meth-
od and the gradient method for estimating the parameters of fuzzy ARMA
processes (see Sect. 3.5.6). The optimum single-step forecasts I, are computed
for the observation period p < 7 < N and compared with the observed values.
The term angH is thereby replaced by Iy, IN by z,_1 etc. fort=p+1,p+

., N in Eq. (4.11). In contrast to the optimum h-step forecast, only the
observed values Z of the fuzzy time series and the computed realizations &, of
the fuzzy white-noise process are used for computing the optimum single-step
forecasts. .

Example 4.8. For a fuzzy time series with N = 100 realizations it is neces-
sary to compute the optimum forecasts 55‘101, xlog, .. 96110 as an h-step fore-
cast with h = 10 for ten subsequent time points. An analysis of the given
fuzzy time series indicated that the underlying process is a fuzzy ARMA|3,2]
process. The parameter matrices A, 4,, A; and B;, B, have already been
determined.

The optimum forecasted values T ~N+h are computed using Eq. (4.6). These
are dependent on the realizations Z, and the optimum forecasts 5057 as well as
on the realizations €, of the fuzzy white-noise process and the fuzzy expected
value E[&,;]. These dependencies are listed in Table 4.1. The realizations &,
of the fuzzy white-noise process are computed according to Eq. (3.115), be-
ginning with ;. Based on the realizations &, the fuzzy mean value may be
computed as an estimator for the fuzzy expected value £ [€,] using Eq. (3.16).

For example, the optimum forecast Z1g2 is given by the following equation.

102 = A O T101 ® Ay O F100 ® A3 O g9 ® E[E,] © (4.14)
B, ® E[¢;]© B, ®£100

The last six values of the given fuzzy time series as well as the optimum
forecasted values $1017 1'102 and 103 are shown in Fig. 4.3. .
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Table 4.1. Progression of the optimum h-step forecast

optimum realizations to be taken realizations to be taken
fuzzy forecast into consideration Z,, Z.  into consideration &,, E[£;]

h=1 Z101 Z100, To9, Tos €100, €99
h=2 Z102 Z101, T100, T99 E[&:], €100
h=3 Z103 Z102, T101, £100 E[&:], E[&-]
h =10 Z110 Z109, T108, T107 E[&:], E[E-]
A

A

— N W R Ot
ii =
/\E

| | | | | | } | | »

. 95 96 97 98 99 100 101 102 103 T

Fig. 4.3. Fuzzy time series and optimum forecast

4.2.2 Fuzzy Forecast Intervals

In order to compute fuzzy forecast intervals Z%, ;, (see Def. 4.3) at time points
7 = N + h several sequences of future realizations of the underlying fuzzy
random process are simulated by means of a Monte Carlo simulation.

If model matching for the given fuzzy time series yields a fuzzy ARMA[p, q]
process, a sequence of future realizations §N+1, §N+2, ... of the fuzzy ARMA
process for h = 1, 2, ... may be computed by means of Eq. (4.3). The compu-
tation begins with h = 1, as given by Eq. (4.15).

Xnt1 =4, 0N D .. DA, Oini1-p DEN+1O (4.15)
B, OENO...OB;OEN+1—4

Because the fuzzy random variable X1 is dependent on the fuzzy white-
noise variable Ex41 in Eq. (4.15), a realization z ~N+1 can only be computed
if a realization €xy1is known beforehand. From model matching, the fuzzy
probability distribution function form II of the fuzzy white-noise variables &,
are known (see Sect. 3.5.6). Using this fuzzy probability distribution function
for £ in conjunction with a Monte Carlo simulation (see Sect. 2.2.4), it is
possible to simulate a realization €n 1. The realization i N1 is subsequently
computed according to Eq. (4.15). Once Zn+1 has been simulated, this may
be used to simulate the realization 4o according to Eq. (4.16).
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Xniz =4 Qini 1 ®A OFn... DA, Oini2 pDEni20  (4.16)
B1OEN+1©...0B,OENnt2-4

Because the fuzzy random variable XN+2 is dependent on the fuzzy white-
noise variable x4 in Eq. (4.16) , it is also necessary to simulate the real-
ization 5N+2 Once this has been done 1t is then possible to compute the
realization T 2. The realizations xN+3, xN+4, ... are simulated in a similar
way. A total of s sequences of reahzatlons EN+1, a:N+2, ... are computed.

The simulation of the sequences $N+1, TNt2, - presented for fuzzy ARMA
processes may also be applied to fuzzy MA and fuzzy AR processes.

With the aid of the s simulated, potential future progressions of the fuzzy
time series the fuzzy forecast intervals Z7%;, , may be estimated as follows. The

interval limits Z,,;(N 4 h) and Z,, (N + k)] of the a-level sets X, (N + h) of
all s simulated fuzzy variables T, are sorted and indexed from the smallest
to the largest value according to Eq. (4.17).

ZL (N +h) <2 (N+h)<..<Z (N +h)
and (4.17)
air(N+h) <2, (N+h)<..<Z, (N +h)

For the confidence level  the interval limits zf (N + h) and zf; (N + h) of
the a-level sets X/ (N + h) of a fuzzy forecast interval 7%, at time point
7 = N + h may be estimated by means of Eq. (4.18). Eq. (4.18) only holds
provided s is an even number.

o _ <@ (N+h)for a=0 ) . I
xoul(N—‘rh) - { fgll(N'i_h) for O<G/<§ witha = int | s 5 —

and (4.18)

—=b+1 s
. . Zof (N +h)for $<b<s ... _ s . (K
zy (N +h) = {Zfiﬁ(N-i-h) for b withb = 5 + int [s (2)]

The interval limits of the a-level sets of the fuzzy forecast intervals Z% ,; ac-
cording to Eq. (4.18) thus correspond to the upper and lower quantile values
of the empirical distributions of the interval limits for the simulated real-
izations §N+h. Future realizations §N+h of a fuzzy time series (Z;)rer are
thus completely included in the estimated fuzzy forecast interval z7%, , with
a probability k.

The fuzzy forecast interval &%, , only holds for the realization of the fuzzy

random variable XN+h at time point 7 = N + h. The fact that conditional
probabilities are not considered in Egs. (4.17) and (4.18) means that the 2%, ,
for different time points 7 = N + h cannot be united to form a fuzzy forecast
hose containing all realizations with a probability .
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For a fuzzy forecast hose it is necessary to determine the conditional prob-
abilities P}"ENM with h = 1,2, ... according to Eq. (4.19).

P, =PXnyn S ik |X; €8, j=N+1,N+2,...,N+h—1] (4.19)

The term P;’(‘NM expresses the probability that the realization z Nap of X Na4h
at time point 7 = N + h lies within a prescribed (conditional) fuzzy forecast

interval 27, . A precondition for this is that the realizations :?Nﬂ- of XNH- at
the preceding time points 7 = N+j with 5 = N+1, N+2, ..., N+h—1 also lie
within prescribed (conditional) fuzzy forecast intervals T3 . ;- Alternatively,
the conditional probabilities P;NHL at time points 7 = N+ h with h = 1,2, ...
may be prescribed, and the corresponding conditional fuzzy forecast intervals
T} 4y, (within which the realizations with a probability Pt lie) determined.
Merging of the conditional fuzzy forecast intervals %, , to form a forecast
hose is permissible. The assertion that the realizations of the fuzzy random
process lie within this hose with a probability x* is possible by multiplicative
combination of the conditional probabilities P¥ . according to Eq. (4.20).

N+h
k= ] P (4.20)
j=N+1
Example 4.9. Given is the realization &, Za, ..., Zn of a fuzzy AR[2] pro-

cess (X;)rer. In order to determine the fuzzy forecast intervals #%%%, for

time points 7 = N + h (h =1, 2, ..., 10), s = 1000 sequences of future real-
izations are simulated and evaluated according to Eq. (4.17). The computed

fuzzy forecast intervals ic?\ffh are shown in Fig. 4.4. In the next step the fuzzy

forecast intervals .’E(I)\'[th are prescribed as conditional fuzzy forecast intervals

3 p- The aim is to comput:a the probability x* with which the realizations

§N+1, §N+21, ey §N+10 of (XT)TeT lie within the prescribed conditional fuzzy
forecast intervals T3, T3, 95 -, TN 410- Lhe probability x* may be advan-
tageously estimated with the aid of the s = 1000 simulated sequences. For
each simulated sequence a check is made to ascertain whether their realiza-
tions lie within the corresponding fuzzy forecast intervals %, at each time
point = N+h (h=1,2, ..., 10) (see Eq. (4.2)). The fact that this condition
is fulfilled by 530 of the 1000 simulated sequences leads to k* = % = 0.53.
This result implies that future realizations Zy.j of the fuzzy AR|2] process
lie within the corresponding fuzzy forecast interval at time point 7 = N + h
with a probability of k = 0.95, and within the fuzzy forecast hose extending
over the period 7= N +1, N +2, ..., N 4+ 10 with a probability of k* = 0.53.
Fig. 4.4 shows the forecast hose for the a-level o = 0. .

Example 4.10. Based on the fuzzy time series of Example 4.8 it is intended to
compute fuzzy forecast intervals for time points 7 = N+1, N+2, N+3 with a
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Fig. 4.4. Realization of a fuzzy AR|2]| process and 95% fuzzy forecast intervals
~0.95
TN+h

conﬁdence level of k = 0.95. For this purpose s sequences of future realizations
xNJrh :rN+2, a:N+3 are simulated. The realizations xT(k) (k=1,2, .., s) are
computed recursively, beginning in each case with xl(k) given by Eq. (4.15).
These are dependent on the measured fuzzy variables T, or the realizations
Z.(k) as well as on the realizations &, or the simulated fuzzy variables &, (k)
of the fuzzy white-noise process corresponding to the preceding time points.
These dependencies are listed in Table 4.2. The realizations &, of the fuzzy
white-noise process are computed according to Eq. (3.115), beginning with &;.
The fuzzy variables £, (k) of the fuzzy white-noise process are then simulated
using the fuzzy probability distribution function form II of the fuzzy white-
noise variables &;.

Table 4.2. Progression of the simulation of s sequences of future realizations

simulated realization realizations to be taken realizations to be taken
into consideration %, ;T into consideration &,

k=1

h=1 Fin(k=1) Fi00, o9, Tos €100, €99

h=2 Fie(k=1) Zio1(k=1), F100, Foo €101(k=1), €100

h=3 Zis(k=1) Zi02(k=1), Tr01(k=1), 100 E102(k=1), 101(k=1)
k=2

h=1 Fio (k=2)  Zio0, Tog, Tos €100, €99

h=2 %102(k=2) F101(k=2), F100, Too €101(k=2), £100

h=3 I

103(k=2)  Fr02(k=2), T101(k=2), F100 E1r02(k=2), 101 (k=2)

The interval limits of the a-level sets of all s simulated fuzzy variables
Zn4n are sorted and indexed according to Eq. (4.17) from the smallest to
the largest value. The interval limits of the a-level sets of the fuzzy forecast
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intervals 2%, at time points 7 = N +1, N + 2, N + 3 may subsequently be
estimated according to Eq. (4.18).

The last six values of the given fuzzy time series as well as the fuzzy
forecast intervals %,, 25, and Zf,; are shown in Fig. 4.5.
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Fig. 4.5. Fuzzy time series and fuzzy forecast intervals

4.2.3 Fuzzy Random Forecast

The fuzzy random variables XN+h for the future time points 7 = N + h
are determined by means of a fuzzy random forecast (see Def. 4.6). For this
purpose, sequences of future conditional realizations (Znyp | Z1, T2, ...,ZN) Of
(XT)TeT are simulated by means of repeated Monte Carlo simulations. This
results in several realizations §N+h for each time point 7 = N + h. These
realizations are evaluated statistically.

If the underlying process of a given fuzzy time series (Z;)eT is taken to

be a fuzzy MA, AR or ARMA process (X;)reT, the Monte Carlo simulation
of future progressions of the fuzzy time series is carried out according to the

recursive procedure described in Sect. 4.2.2. The fuzzy random variable X N+1

of the fuzzy random forecasting process (X;) et is given by Eq. (4.21).

Xni1 =4, 0N D .. QA, Oini1p DEN41O (4.21)
B OENO...OB,OEN+1—

The fuzzy variables Z, at time points 7 < N are given by the fuzzy time
series, the fuzzy variables &, are given by model matching. Following successive
Monte Carlo simulations of the realizations €11, En412, ... of the fuzzy white-

noise process (&€;)rer it is possible to compute potential future realizations

fNH, §N+2» ... of the fuzzy random variables XNH, XN+2,
On the basis of s simulated realizations ¢ for 7 = N + 1, N + 2, ... with
c=1,2, .., s the empirical fuzzy probability distribution function form II
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wF z (Z) may be determined for each time point 7 = N + h according
N+h

to Sect. 2.2.2. For this purpose the simulated fuzzy variables :f?\, 45 are sta-
tistically evaluated according to Eq. (2.115). The resulting empirical fuzzy
probability distribution functions form II lTF Znan (Z) are in each case unbi-
ased estimators for the distributions of the fuzzy random variables Xy, at
time points 7 = N + h. Theoretical fuzzy probability distribution functions
form IT may be derived from the latter if required.

With the aid of the simulated fuzzy variables 5, , with ¢ = 1,2, ..., s,
estimators for the characteristic moments of the fuzzy random variables X 4,
at each time point 7 = N 4 h are obtained as follows. The estimator E [5( Nth)

for the fuzzy expected value E[Xyy] is defined according to Eq. (4.22) as
the fuzzy mean value Ty, of the fuzzy variables 7% +p simulated at time
point 7 = N + h.

P~ - 1 A2 =
E[XNitn] =TNin = 3 @l"fwh (4.22)
c=1

According to Eq. (4.1) the fuzzy expected value E[Xy.p] is equal to the
fuzzy variable F N+p of the optimum forecast. This condition may be used to
assess the quality of the Monte Carlo simulation. A criterion for the qual-
ity _g)f the Montei Carlo simulation may be derived from the [,r,-subtraction
E‘[XNHL] &) E[XN+h] or Tyin © §N+h. According to Eq. (4.23) the ab-
solute value of the empirical [,r,-variance ;.Var for the l,r,-subtraction
Znan(c) eachJrh with ¢ =1, 2, ..., s approaches zero as the number of realiza-
tions s increases. The Monte Carlo simulation hence yields an improyed map-

ping of the characteristics of the fuzzy random forecasting process (X, ) e as
the number of realizations s increases.

lim
S—A

wVar [iNM(c) Oinynle=1,2, .., s” ~0 (4.23)

By specifying a maximum value 7 for the absolute value of the empirical
loTo-variance ;.Var it is possible to determine a minimum number s,, of
realizations according to Eq. (4.24). This is achieved by checking whether Eq.
(4.24) is satisfied after s, simulations.

wVar [§N+h(c) @.%N+h le=1,2, .., sm” <7 (4.24)

In order to evaluate Eq. (4.24) the elements of the [,r,-covariance function

ZTK;( (Ta, Tp) of the fuzzy random forecasting process (XT)TeT are estimated

.

for 7,7, = N +1, N + 2, ... by means of Eq. (4.25) with 7,5 = 1,2,...,n,
*=10r,and r* =1[,r.
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7.0t 1 0 —c °
R (ranm) = ——7 D [(A%G s (ra) = Adais(ra)) . (4.25)

c=1

(AT u(1) = Ay (7))

The terms AT, ;4 (7) denote the lo7q-increments of the simulated fuzzy vari-
ables Z¢ at time point 7 > N, whereas the terms Az, % (1) denote the l4ro-
incgements of the optimum fuzzy forecast =, or the fuzzy expected value
E [5(7] The elements of the estimator for the [,r,-variance lrg% correspond

to the leading diagonal elements of the estimated lara—covariaTnce function
ks (Ta, ™) for 7y, =71, = 7.

-

The fuzzy random forecast yields the fuzzy random variables X, of the

fuzzy random forecasting process (X, )reT for future time points 7 = N +h. In
order to characterize the fuzzy random variables Xy the fuzzy probability
distribution functions form II ;. Fz (Z) and the characteristic moments are
used. .

Example 4.11. Based on the fuzzy time s_(?ries of Example 4.10 it is intended
to determine the fuzzy random variables X, of the fuzzy random forecasting
process (X;)rer at time points 7 = N + 1, N +2, N + 3._’For this purpose
the simulated s sequences of future realizations Zny1(k), Ty.2(k), Tnis(k)
(k=1, 2, ..., s) of Example 4.10 are evaluated statistically. The last six values

of the given fuzzy time series as well as three typical sequences of future
realizations are shown in Fig. 4.6.
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Fig. 4.6. Fuzzy time series and sequences of future realizations

This is demonstrated by considering the result of the statistical evaluation
at time point 7 = 102 for an l,r,-discretization with n = 2 «a-levels (a3 = 0,

g = 1). The fuzzy expected value E[X 2] estimated according to Eq. (4.22)
corresponds to the optimum forecast as follows:
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0.6

a2 fad 3.5
E[XN+2] =ITN42 = 0 . (426)

0.7

The empirical l,7,-correlation function ZTE):( (Ta, ™) for 7, = 7, = 102 is
given by Eq. (4.27).

1 021084
wBe (ta =7 = 102) = 021 1 —017 (4.27)
0.840.17 — 1

The empirical fuzzy probability distribution function form II ;. F 2 (Z) ac-
N+2

cording to Eq. (2.115) is used as an estimator for the fuzzy probability dis-
tribution function form II ;. F 3 (Z) of the fuzzy random variable X N2 at
N+2

time 7 = N + 2. Selected functional values of the empirical fuzzy probability
distribution function form II ;. F'< (Z) are given in Table 4.3.
N+2

Table 4.3. Selected functional values of the empirical fuzzy probability distribution
function form II ;»F'z (%) in the coordinate system of the increments
N+2

Coordinates wFz  (2)
N+2
A.’E1 Ax'z Amg AZ‘4
0.53 3.44 0 0.64 0.45
0.64 3.58 0 0.71 0.53
0.63 3.72 0 0.69 0.64
0.55 3.41 0 0.68 0.42

4.3 Forecasting on the Basis of Artificial Neural
Networks

Forecasting on the basis of artificial neural networks is an alternative to fore-
casting on the basis of specific fuzzy random processes, as described in Sect.
4.2. Depending on the forecasting objective, a precondition for the latter is
that an optimum forecasting or an optimum simulation network architecture
has been trained. An optimum forecast, fuzzy forecast intervals or a fuzzy
random forecast may be chosen as the forecasting objective.
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4.3.1 Optimum Forecast

Optimum h-step forecast. For the optimum h-step forecast, i.e. for fore-
casting T N+1s T N2y -y T N-+h, an optimum forecasting network architecture
(see Sect. 3.6.4) with no = 1 control variables must already have been trained.
By means of this network architecture the optimum forecasts are determined
step by step. Because the optimum forecasting network has n; neurons in the
input layer and no = 1 neurons in the output layer after training, the fuzzy
input vector must always contain ny fuzzy elements: Z = (1, Z2, ..., jnI)T

In the first step the last n; elements of the given fuzzy time series
Znitr = (EN—n; 41, TN—n; 12, -, Tn)] are assigned to the fuzzy input vec-
tor. The optimum forecasting network yields the optimum forecast T N41 Via
the neuron in the output layer.

In the second step the optimum forecast T N+2 is computed. Using T N+1,
the new values Ty o = (EN—n;+2, TN—n;+3: s a:}NJrl)Tare assigned to the
elements of the fuzzy input vector. The first three steps are presented graphi-
cally in Fig. 4.7. The values assigned to the elements of the fuzzy input vectors
in subsequent steps are listed in Table 4.4. This serves to explain how the op-
timum h-step forecast is obtained with aid of an optimum forecasting network
architecture.

Before being transferred to the artificial neural network each fuzzy input
vector is subject to a conditioning procedure, as outlined in Sect. 3.6.5. The

TN+1, TN+2, - TN+ are obtained in the original number range.
. A n,= 10 n”f 1
i‘T step 3 ‘ ‘ ‘ fuzzy mput vector fuzzy input variable

l fuzzy result variable

step 2 ‘ ‘ ‘ fuzzy 1nput Vcctor
T LI T T T
step 1 ‘ ‘ ‘ ‘fuzzy mp‘ut V?ctor‘ -

N-9 N-8 N-7T N-6 N-5 N-4 N-3 N-2 N-1 N N+1IN+2N+3 ... T

Fig. 4.7. Schematic representation of the optimum h-step forecast
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Table 4.4. Elements of the fuzzy input vectors in the optimum h-step forecast

fuzzy input vector optimum forecast
- o~ - - T B
ITNy1 = (-TN—nI+17 IN—ng+2 cery ooy eeey TN ) IN+1
~ ~ ~ ~ T 2
Znyo = (EN-ns+2, EN-np438; o0y IN $N+1) TN12
~ ~ ~ T 2
IN43 = (iI?N—nI+37 TN-—ng+4; - $EN+17 $N+2) TN+3
- - . T 2
Tnya = (EN-n;+4, TN np45, - , ENt2, TN+3) TN44

Remark 4.12. Besides providing forecasts at time points 7 = N + 1, N +

., N+ h, optimum h-step forecasts are also applied for validating the opti-
mum forecasting network architecture (see Sect. 3.6.4). The evolution of the el-
ements of the fuzzy input vectors is similar to that shown in Table 4.4, with N
now replaced by Np. The optimum h-step forecasts & xNTH, acNT+2, .. xNT+h
are computed for the period of the fuzzy validation series and then compared
with the given fuzzy variables of the validation series. The error computed
from the differences serves as a means of assessing the quality of the optimum
forecasting network architecture. -

Optimum single-step forecast. The optimum single-step forecast on the
basis of artificial neural networks is again a special case of the optimum h-step
forecast. The optimum forecast T N1 is computed using the observed values
Zr (1 < N) of the fuzzy time series. The fuzzy input vector contains the

observed values Ty —_n,+1, EN—n;+2, -, TN (see Fig. 4.8).
z, A fuzzy input variable | fuzzy result variable
‘%T
T T T T T
n,= 10 ‘ ‘ ‘ fuzzy input vector ‘ ‘ . ny="
— i — ﬁo N Ty ~<] - ‘%H N Tyiq
i < Tvs i,
g
N-9 N-8 N-T N-6 N-5 N-4 N-3 N-2 N-1 N N+1 7

Fig. 4.8. Schematic representation of the optimum single-step forecast

Remark 4.13. Optimum single-step forecasts are applied in the determina-
tion of the optimum simulation network architecture (see Sect. 3.6.4). The
optimum single-step forecasts T, are computed for the observation period
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ny < 7 < N and subtracted from the observed values according to Eq. (3.183).
The fuzzy input vector contains the observed values Zr_,,, Tr—n 41,y Tr—1
for time points 7 = ny + 1, ny + 2, ..., N. In contrast to the optimum h-step
forecast, only the observed values Z, of the fuzzy time series are used for
computing the optimum single-step forecasts. .

4.3.2 Fuzzy Forecast Intervals

According to Def. 4.3, a fuzzy interval Z; is referred to as a fuzzy forecast

interval Ty, | ;, if the realization of the fuzzy random variable X nn of the fuzzy

random forecasting process (X, )et will be completely included in the interval
with a probability k. The definition of complete inclusion of a fuzzy variable
In4h in a fuzzy interval Z; is given by Eq. (4.2). The determination of fuzzy
forecast intervals z%, using artificial neural networks for fuzzy variables is
presented in the following section.

Firstly, the optimum forecasting artificial neural network belonging to the
given fuzzy time series is determined as outlined in Sect. 3.6.4. With the aid of
the optimum forecasting network architecture optimum single-step forecasts

%T are determined for time points 7 = ngp) + 1, ngp) + 2, ..., N. The term
ngp ) hereby denotes the number of artificial neurons in the input layer of

the optimum forecasting multilayer perceptron. By subtracting the optimum
single-step forecasts Z, from the known observed values 7, it is possible to
compute the fuzzy variables €, for 7 = n(lp) +1, ngp) + 2, ..., N according to
Eq. (4.28).

€r = :Z"r @‘%T (428)
The fuzzy variables é, form a stationary fuzzy time series which reproduces
the random components of the original fuzzy time series. These are fuzzy
variables in the improper sense, however, as they do not fulfill the requirement
expressed by Eq. (2.47). For this reason the computed fuzzy variables é.
cannot be considered as a realization of a fuzzy white-noise process. Under
the precondition that all relevant dependencies within the fuzzy time series are
accounted for by the optimum forecasting artificial neural network, the é, are
considered to be realizations of the fuzzy random process (ET)TGT exhibiting
the following properties.

E[E;,]=mg =0 V7eT (4.29)

lTVCl’I“[ET] = lrgé (430)

-

1w Kg (1a,m) for 7, =7

i Kg (Tay ) = { 0 for 7. %1 (4.31)
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In the next step, an optimum simulation artificial neural network is trained
according to Sect. 3.6.4 for the time series comprised of fuzzy variables (€;),eT
in the improper sense.

By means of the optimum simulation artificial neural network it is possi-
ble to simulate several conditional realizations at each time point 7 = N + h
(h =1,2,...) which may be used to specify fuzzy forecast intervals. The realiza-
tions are simulated following a similar procedure to that of the optimum h-step
forecast. In the first step, the last ngs) fuzzy variables of the time series (€; ) eT
obtained from Eq. (4.28) are transformed according to Eq. (3.198) and lumped

together in the fuzzy input vector é%_, = (é* e* L e*)T . In
g Yy 1mp EN+1 (N w41’ N n 12’ 7N)

the next step, the corresponding fuzzy output variable oN %, of the optimum
simulation artificial neural network is inserted into the fuzzy input vector

L o* S sk SO% 3 ;
€ = (e X € . ,eé%,0 . The analogous continuation of
Enga = ( N-n{ 42" CNon( 4377 ON0 N+1) g

this procedure for the subsequent fuzzy varlables o N4 n, and the transforma-
tion of these into the fuzzy variables 0N+h = ocN+h according to Eq. (3.203),
yields a first sequence of generated realizations for h = 1, 2, .... The stepwise
modification of the fuzzy input vectors is presented in Table 4.5.

Table 4.5. Elements of the conditioned fuzzy input vectors and fuzzy results of the
optimum simulation artificial neural network

fuzzy input vector fuzzy result

=% 5% =% T ~O
€ = (e Y - 0
én = ( Nonl® )+1 N MO ) ; ex ) N+1

Pt Sk ~Ox \T ~Ox
é = (e vy e, CR O 0

EN+2 ( N—n(I' )_+_2 N— n( )_'_3 k] L) N » N+1) N+2

Sk (% S sk 0% =O% \T ~O
Enys = (€ - €N 0N On'yo) ON+3

é
N—n{D43 “N-n{P s’

In order to simulate further sequences of realizations the fuzzy input vec-

Sk — (p* o 5k \T 3 3
tor ex 4 = ((31\,77153)Jr17 6N7n§5)+2, ..., €%)" must be varied according to the

characteristics of the underlying fuzzy random process (ET)TGT. In accordance
with Eqgs. (4.29) to (4.31) the fuzzy random process (E; ) er is stationary. This
means that the variation may be achieved by a permutation of the elements of
the fuzzy input vector €}, . This type of approach is permissible due to the
fact no correlation exists according to Eq. (4.31) between the realizations é,
at different time points 7. A permutation of the elements of the fuzzy input
vector €y, permits the simulation of n(IS)! realizations, i.e. of n(IS)
future progressions of a fuzzy time series (Z,)reT.

Owing to the characteristics of the fuzzy random process (ET)TeT the per-
mutation may be applied to the fuzzy input vectors é* at time points

! potential
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2 +1, 0P +2, . N for ) >nl
T: , (4.32)
n 410 +2, N for nf <n

New fuzzy input vectors at these time points are generated by permutation of
the elements of the fuzzy input vector éX. Subsequent simulations analogous to
the successive procedure outlined in Table 4.5 with starting times 7 according
to Eq. (4.32) yield new sequences of realizations. In accordance with the latter,

the number of possible ways in which such sequences may be simulated is given
by

n(ls)! . (N — ngp)) for ngp) > ngs)
and (4.33)
ngs)! . (N — n(IS)) for n(Ip) < n(IS) )

This means that it is possible to simulate the same number of potential future
progressions of a fuzzy time series (Z,)reT.

Remark 4.14. A very long fuzzy time series containing the fuzzy variables
9% (1= N +1, N +2, ...) according to Table 4.5 may alternatively be sim-

: : P — (p* Pt 5% \T
ulated using the fuzzy input vector éy_, = (eN—ng‘“’)H’ 6N7n55)+2, et

Owing to the stationarity of the fuzzy random process (E;),eT it is also pos-
sible to permutate the simulated fuzzy variables 6k0* (multiplied by the cor-
responding transformation matrix T7F). In other words, the term TF = @ o0%
in Eq. (3.203) may be arbitrarily replaced by simulated fuzzy variables
ZZ:AT o 6?1‘ A, Each fuzzy variable 6,?1‘ A, may thereby only be used once.

This procedure permits the simulation of an arbitrary number s of potential
future progressions of a fuzzy time series (Z,)reT- .

With the aid of s simulated potential future progressions of a fuzzy time series
(Z;)reT it is possible to estimate the corresponding fuzzy forecast intervals
I 4p, for each time point 7 = N + A in a similar manner to that described in
Sect. 4.3. For this purpose the interval limits z,,;(N + k) and 4, (N + h)] of
the a-level sets X,, (N + h) of all s simulated fuzzy variables 6%, = INth
are sorted and indexed from the smallest to the largest value according to the
inequality given by Eq. (4.34).

ZL (N +h) <@ (N+h)<..<Z (N+h)
and (4.34)
ZL (N+h) <& (N+h)<..<@ (N+h)

For the confidence level « the interval limits z7; ;(N + h) and zj . (N + h) of
the a-level sets X7 (N + h) of a fuzzy forecast interval 2%, at time point
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7 = N + h may be obtained according to Eq. (4.35). Eq. (4.35) only holds
provided s is an even number.

e _ [<Z (N +h)fora=0 ) . 1 &
xail(N‘f‘h) = { fgtil(N—i-h) for0 < a <3 witha = int | s - 573

and (4.35)
5 BFHN 4+ h)for s <b<s s K
Tar (N +h) = {> o (N+h) forb=s  “URO=g At [S (5)]

Analogous to Sect. 4.2.2; the interval limits of the a-level sets for the fuzzy
forecast intervals %, according to Eq. (4.35) correspond to the lower and
upper quantile values of the empirical distributions of the interval limits for
the simulated realizations 7 N+h- In other words, the future realizations of a
fuzzy time series (Z;)reT at time point 7 = N + h are completely included in
the fuzzy forecast interval T, with a probability .

As explained in Sect. 4.2.2, the fuzzy forecast intervals Z';, only apply in
each case to the fuzzy variables to be expected at the individual time points
7 = N + h. For a determination of the probability with which possible future
progressions of a fuzzy time series lie completely within a prescribed forecast
hose, the reader is referred to Sect. 4.2.2.

4.3.3 Fuzzy Random Forecast

In the case of a fuzzy random forecast the fuzzy random variables X, of

the fuzzy random forecasting process (X;) e are determined for time points
7 =N+ h (h=1,2,...). This involves the simulation of s sequences of fuzzy
realizations, which are subsequently evaluated statistically. The simulation of
the s sequences of fuzzy realizations of the fuzzy random forecasting process
(XT)TeT by means of artificial neural networks has already been developed in
Sect. 4.3.2 for computing fuzzy forecast intervals. This approach may also be
applied to fuzzy random forecasts.
If s sequences of realizations are available, the fuzzy probability distri-
bution functions form II ;. F (Z) (see Sect. 2.2.2) and the characteristic
N+h
moments (see Sect. 2.2.3) may be estimated for the purpose of characterizing
the fuzzy random variables Xy p.
With the aid of s simulated realizations 2¢ for 7 = N +1, N +2, ... with
c=1,2, .., s, estimators for the characteristic values of the fuzzy random

variables Xy, may be obtained analogous to Sect. 4.3.3 for each time point

7 = N + h. The fuzzy expected value E[X 4] is estimated according to Eq.
(4.22) as the fuzzy mean value Ty, of the simulated fuzzy variables 75 +h
at time point 7 = N + h. The estimator for the [,r,-covariance function
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-

wK 2 (Ta, Tp) of the fuzzy random forecasting process (XT)TeT is defined by

Eq. (21.25) for 7,,m = N +1, N + 2, .... The leading diagonal elements of the
estimated [,7,-covariance function ;. /K 2 (Ta,Tp) correspond to the elements

-

of the estimator for the l,r,-variance ;.02 for 7, = 7, = .
X

The respective fuzzy probability distribution function form IT w2 (%)
N

+h
may also be estimated with the aid of the simulated fuzzy variables T4, with
c=1,2,..,s for each time point 7 = N + h. From a statistical evaluation

of the simulated realizations 5?\/ 4+, the empirical fuzzy probability distribu-
tion functions form II lrﬁ'}:{ (Z) are obtained as unbiased estimators for
N+h
lrF):( (Z) according to Sect. 2.2.2. In this way it is also possible to derive
N+h

theoretical fuzzy probability distribution functions form II.
Analogous to Sect. 4.3.3, the quality of the simulation may be checked in

relation to the number s of realizations with the aid of the estimator E‘[X N+h)
of the fuzzy expected value. As already described, a minimum number s,,, of
realizations may be specified for which the absolute value of the empirical
loTo-variance ;. Var of the l,r,-subtraction according to Eq. (4.23) does not
exceed a prescribed maximum value.

Example 4.15. Given is a fuzzy random forecasting process (XT)TeT with an
optimum forecasting and an optimum simulation artificial neural network. The
minimum number s,, of realizations £?v+10 (s =1, 2, ..., 8,) to be simulated
for time point 7 = N + 10 is sought, under the condition that n = 0.05 (see
Eq. (4.24)) should be complied with. The optimum fuzzy forecast for this
time point is r ~N+10- In order to check the quality of the simulation the fuzzy
mean value Zx 10 (s) is computed in each case for s = 1, 2, ... simulated fuzzy
variables E}VHO, a:c?\,ﬂ07 ey §?v+10 according to Eq. (4.22). In the next step,
the differences between the computed fuzzy mean values %NHO(S) and the
optimum fuzzy forecast T ~N+10 are calculated. The empirical [,r,-variance
irVarn+10(s) is then computed according to Eq. (4.36) for s = 2, 3, ...180 on
the basis of the differences Tn110(c) © Ty110 with ¢ =1, 2, ..., s for each s.

eraTN+10(S) = lTVar |:§N+10(C) @‘%N+10 |C = ].7 27 ceey S] (436)

The result of the foregoing is presented graphically in Fig. 4.9. For s = 112
it is found that the specified quality of n = 0.05 is undershot, i.e. at least
Sm = 112 realizations must be simulated. .
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WVar [i\,m(c)@;ivm ‘c =1,2, .., sﬂ

»
»

0.051" )
12 ... .. 180 s

Fig. 4.9. Quality of the simulation versus the number of realizations s
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Uncertain Forecasting in Engineering and
Environmental Science

5.1 Model-Free Forecasting

Time series comprised of fuzzy data are frequently encountered in engineering
and environmental science. These represent the results of regular observations
and measurements, and contain information on measurable physical param-
eters. Time series in engineering either relate to measured actions such as
settlement, displacements, loads, temperature, moisture and toxic substances,
or to measured structural responses such as settlement, displacements, crack
widths, concrete spalling, corrosion and carbonation (see Fig. 5.1). The rea-
sons for the uncertainty of the measurements are manifold: individual mea-
surements may be uncertain or fluctuate within an interval whereas a number
of measurements may vary by different amounts.

The forecasting of fuzzy time series enables future actions and structural
responses to be computed. For this purpose the given measured values are
treated as a realization of a fuzzy random process. The unknown underly-
ing process is modeled either as a specific fuzzy random process or as an
artificial neural network. By means of the matched fuzzy random process or
the trained artificial neural network it is possible to directly forecast future
actions or structural responses. This type of forecasting is referred to as model-
free forecasting (see Fig. 5.1). In the case of model-free forecasting only the
variants of optimum forecasting, fuzzy forecast intervals and fuzzy random
forecasting developed in Chap. 4 are applied without combining these with a
computational model.

By combining model-free forecasting with a computational model it is
possible to generate time series comprised of non-measurable physical param-
eters. Non-measurable parameters in engineering include, e.g. characteristic
parameters for describing damage state, robustness or safety level. These are
computed with the aid of a computational model. Computational models in-
clude among others finite element models or models for computing failure
probability.
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Fig. 5.1. Strategies for forecasting structural responses
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The principle of model-free forecasting is shown in Fig. 5.2. Given is a
sequence of measured uncertain data. The data describe measurable actions
or measurable structural responses. These constitute a fuzzy time series. Each
measurement date is treated as a convex fuzzy variable in [,r,-increment
representation. Forecasting by means of a fuzzy forecasting process or an
artificial neural network yields future values of the fuzzy time series directly.
An optimum forecast, a fuzzy random forecast or fuzzy forecast intervals may
be chosen as the forecasting variant.

elapsed time period

Vol
A -
Ll

U

future time period
fuzzy time series of measurable
actions or structural responses

{
(§
i ﬂ (! <z<
’ M“ g

MM

R
4 q 4 <I 4 <I <] model-free fogc;ting of measur—J
1 7 e 1314 o0 200 L0026

|
|
: able actions or structural responses
I
Fig. 5.2. Model-free forecasting

5.2 Model-Based Forecasting

A combination of model-free forecasting with a computational model results
in model-based forecasting. In this respect, a distinction is made between two
strategies.

In the case of Strategy I (see Fig. 5.3) future values are initially forecasted
for a fuzzy time series comprised of measured actions by means of an optimum
forecast, fuzzy forecast intervals or a fuzzy random forecast. These forecasted
fuzzy variables or fuzzy random variables are the input data for a computa-
tional model, which may be used to compute non-measurable fuzzy structural
responses. For example, the forecasted structural response might be the future
damage state.

In the case of Strategy II (see Fig. 5.4) the starting point is also a fuzzy
time series of measured actions. These fuzzy data are first transferred as input
data to a computational model. Non-measurable fuzzy structural responses
are computed using the computational model. For example, the result might
be the simulated time history of the damage state in the form of a fuzzy
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Fig. 5.3. Model-based forecasting — Strategy I

time series. This fuzzy time series of a non-measurable variable is treated as
a realization of a fuzzy random process, and the underlying process is either
modeled as a specific fuzzy random process or as an artificial neural network.
Future realizations may then be forecasted by means of an optimum forecast,
fuzzy forecast intervals or a fuzzy random forecast.

In the case of Strategy I the computational model must be capable of
processing fuzzy variables or fuzzy random variables as input data. In the case
of Strategy II, however, only fuzzy variables are transferred as input data to
the computational model. Depending on the input data, i.e. fuzzy variables
or fuzzy random variables, a different analysis algorithm is implemented in
the computational model. In the case of fuzzy variables the required analysis
algorithm is based on fuzzy structural analysis, whereas for fuzzy random
variables, fuzzy stochastic structural analysis is applied.

Model-Based Forecasting and Fuzzy Structural Analysis

By means of fuzzy structural analysis it is possible to map the fuzzy input
variables 1, T3, ..., ; onto the fuzzy result variables z, Za, ..., Zp.

z2=(21, %2, ooy Zm) = [(Z1, Ta, ...y E1) (5.1)
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Fig. 5.4. Model-based forecasting — Strategy II
In Strategy I the %1, %2, ..., Z; are given as the result of an optimum forecast
or fuzzy forecast intervals, whereas in Strategy II, the measured fuzzy data of

the fuzzy time series constitute the fuzzy input variables 1, %o, ..., Z;.

The solution of Eq. (5.1) may be found by applying the extension principle.
Under the condition that the fuzzy variables Z are convex, however, a-level
optimization is numerically more efficient [37]. The a-level optimization ap-
proach (see Fig. 5.5) is based on multiple discretization. All fuzzy variables Z
and Z are discretized using the same number of a-levels a;;, i = 1, 2, ..., n. The
a-level set X ,on the level o; is then assigned to each fuzzy input variable
Tk, k=1,2, ..., 1L

The a-level sets Xj, ,, kK =1, 2, ..., [ form the [-dimensional crisp subspace
X, A three-dimensional subspace X , is shown by way of example in Fig. 5.5.
For a;; = 0 the crisp support space X, _, is obtained. If no interaction exists
between the fuzzy input variables, the subspace X, forms an [-dimensional
hypercuboid. In the case of interaction, however, this hypercuboid forms the
envelope curve. The crisp subspace Z,, is assigned to the crisp subspace X,
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Fig. 5.5. Fuzzy structural analysis with a-level optimization

on the same a-level. These are constructed from the a-level sets Z; o,, j =
1, 2, ..., m of the fuzzy result variables Z;.

Each point of the hypercuboid X, is uniquely described by the coor-
dinates 1, 2, ..., 7;. Each point in the subspace Z, may be computed by
means of

z = (21, 29, o, Zm) = f(x1, T2, ..., X)) . (5.2)

The mapping f(-) is referred to as the deterministic fundamental solution.
This represents an arbitrary computational model, e.g. a finite element model.

Under the condition that the fuzzy variables are convex, it is sufficient to
compute the largest element z; ,, and the smallest element z; ;1 of Z; o,. If
these two elements are known for a sufficient number of a-levels known, the
membership function pz;(z;) may be stated in discretized form.

The determination of z; o, and zj o, is an optimization problem with the
objective functions

zj = f(z1, 2, ..., ;) = max (5.3)
zj = f(x1, x2, ..., ;) = min 5.4

and the constraint
(w1, T2, .y ) € X, (5.5)
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Each of the two objective functions is satisfied by an optimum point in the
subspace X, .. The optimization problem may be solved, e.g. by means of a-
level optimization [36]. This replaces the Min-Max operator of the extension
principle.

If p fuzzy model parameters m are also present in addition to the fuzzy
input variables 7 , the dimension of each [-dimensional crisp subspace X,
increases to [ + p dimensions.

Model-Based Forecasting and Fuzzy Stochastic Structural Analysis

By means of fuzzy stochastic structural analysis it is possible to map the fuzzy
random variables X17 Xg, .. Xl onto the fuzzy random variables Zl, Zg, ey
Lo

Z = (21, 23, ..., L) = f(X1, X, ..oy X)) (5.6)
In the case of Strategy I the X, Xo, ..., X; are given as the result of a fuzzy
random forecast. In the case of Strategy II no fuzzy random variables are
present.

The mapping problem given by Eq. (5.6) is solved by means of a three-step
analysis algorithm. In this respect, a distinction is made between two variants.

Fuzzy stochastic structural analysis — Variant I. Variant I of the three-
step algorithm is shown in Fig. 5.6. This includes fuzzy analysis as an outer
loop, stochastic analysis as a middle loop, and the deterministic fundamental
solution as an inner loop.

fuzzy analysis

stochastic analysis

fundamental deterministic solution

Fig. 5.6. Fuzzy stochastic structural analysis — Variant I

A precondition for this arrangement of the three loops is the representation
of fuzzy random variables as bunch parameters according to Eq. (2.100) and
a quantification of the fuzzy random variables by means of fuzzy probability
distribution functions form I, i.e. in bunch parameter representation according
to Eq. (2.101).

The bunch parameter representation 5(~= X(8) converts the fuzzy random
variable X into a family of originals X; € X with u(X;) = u(X(s;)) = u(s;).
The originals X; are real-valued fuzzy variables which are described using real-
valued probability distribution functions Fx,(s;, ). The fuzzy probability
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distribution function form I FX(J:) of the fuzzy random variable X may thus
be expressed as a family of real-valued probability distribution functions also
in bunch parameter representation ﬁ‘g(x) = Fg(8, ). Typical fuzzy bunch
parameters S are the first two moments of the fuzzy probability distribution
functions form I.

In order to solve Eq. (5.6) the fuzzy random variables X, k = 1, 2, ..., |
are described by the fuzzy probability distribution functions form I ka (zx) =
Fy, (8, o), and the fuzzy random variables Zj, j=1,2, ..., m by the fuzzy
probability distribution functions form I sz (z5) = k. (¢, zj), whereby the
sz (¢, zj) are sought. The 3, k = 1, 2, ..., | are lumped together in the fuzzy
bunch parameter vector § of all input variables Xy, and the g;,7=12,...,m
in the fuzzy bunch parameter vector & of all result variables Zj. The lengths
of the vectors § and g are denoted by ¢ and u, respectively.

By means of the bunch parameter representation of the fuzzy probability
distribution functions the mapping problem according to Eq. (5.6) reduces to
the mapping problem

&= fs(3). (5.7)

Eq. (5.7) maps the fuzzy bunch parameters 3 onto the fuzzy bunch parameters
& by means of the fuzzy operator fs(-). Eq. (5.7) may be solved by means
of fuzzy structural analysis, as Eq. (5.7), analogous to Eq. (5.1), maps fuzzy
variables onto fuzzy variables.

The fuzzy bunch parameters § and & are subject to a-discretization. The
a-level sets S1, ;s S2, a5y s St.a; (Fig. 5.7, line a) obtained on the a-level «;
form the t-dimensional subspace S, . A crisp point r in the subspace S, is
defined by the elements si, € S1, a;5 -+, St,r € St o,- These form the vector
Sr€8,,-

By means of the bunch parameters s; , € Si q;, ..., St.r € St a; @ real-
valued probability distribution function Fx, (s, zx) is specified in each
case in the k = 1,2, ..., [, fuzzy probability distribution functions form I
Fyg, (3, z1) (Fig. 5.7, line b). By selecting the point s, in the subspace S,,,
a real-valued probability distribution function is thus known for each fuzzy
random variable Xj,, and the mapping problem according to Eq. (5.7) reduces
to a problem of stochastic analysis (Fig. 5.7, line c).

(sz (Qj,r’ Zj) | j = 17 * ok 2, ,m) =g (FXk(Qk,r’ .”L'k) | k= 172, ,l) (58)

The mapping ¢(-) in Eq. (5.8) represents the stochastic analysis. A Monte
Carlo simulation is suitable for obtaining a solution, especially if the map-
ping operator g(-) is highly nonlinear. A deterministic fundamental solution
is processed several times during the Monte Carlo simulation.

The Monte Carlo simulation yields m samples with real-valued realiza-
tions for the Zl, 22, - Zom fuzzy random variables, on the basis of which the
probability distribution functions (trajectories) sz (@;,2), 7 =12, ..,m
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Fig. 5.7. Fuzzy stochastic structural analysis — Variant I
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are estimated (Fig. 5.7, line d). From this it follows that the bunch pa-
rameters o1, € X1 o,y oy Oupr € Xy o, are also known. With the aid of a-
level optimization the largest values g s .- Oy o, @0d the smallest values
01 ;1 Tim.ay ar€ computed for each a-level.

Once the fuzzy bunch parameter vector ¢ has been determined, the ap-
plication of the fuzzy probability distribution functions means that the fuzzy

random variables Z1, Z, ..., Zy, in Eq. (5.6) are also known.

Fuzzy Stochastic Structural Analysis — Variant II. Variant II of the
three-step algorithm is shown in Fig. 5.8. Compared with Variant I, the order
of the three loops is rearranged: the stochastic analysis forms the outer loop,
and the fuzzy analysis, the middle loop.

stochastic analysis

fuzzy analysis

fundamental deterministic solution

Fig. 5.8. Fuzzy stochastic structural analysis — Variant II

A precondition for this rearrangement is that the individual fuzzy random
variables of Eq. (5.6) are represented in each case by a fuzzy probability distri-
bution function form IT (see Sect. 2.2.2). If the fuzzy probability distribution
functions form II are known for the fuzzy random variables X1, Xo, oy Xy,
the fuzzy realizations Z1, Zo, ..., Z; may be simulated. This marks a distinc-
tion between form II and form I fuzzy probability distribution functions. By
means of the latter it is only possible to simulate real-valued realizations of the
individual trajectories. Because fuzzy realizations are immediately available,
however, these may be used as input variables for a fuzzy analysis.

In order to solve Eq. (5.6) the fuzzy random variables Xy, k = 1, 2, ..., [ are
described by their fuzzy probability distribution functions form II ;, Fg, (Z1),
o 1Py, (Z;). The fuzzy probability distribution functions form II l,«le(Zl)7

vy 1rF (Zm) of the fuzzy random variables Zj, j=1,2, .. m are sought.

The stochastic analysis begins with the simulation of s sequences of the
fuzzy realizations %1, Za, ..., Z; (Fig. 5.9). By means of fuzzy structural anal-
ysis the sequence of fuzzy result variables Z, 2, ..., Z,, corresponding to each
sequence Z1, Zg, ..., Z; may be computed analogous to Eq. (5.1). The algo-
rithm developed for solving the mapping problem of Eq. (5.1) may also be
applied in this case.

This results in s sequences of fuzzy result variables Zi, Zs, ..., Zp,, i.€. a
sample comprised of s fuzzy realizations is obtained for each fuzzy random
variable Z;. A statistical evaluation of the samples by means of Eq. (2.115)
yields an empirical fuzzy probability distribution function form II for each
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Fig. 5.9. Fuzzy stochastic structural analysis — Variant II

fuzzy random variable Zj. The latter serve as unbiased estimators for the
distributions of the fuzzy random result variables Zj. Theoretical fuzzy prob-
ability distribution functions form II may also be derived from the latter as
required.

5.3 Applications

The following examples demonstrate possible areas of application of the meth-
ods developed in Sects. 3 to 5 for analyzing and forecasting time series com-
prised of fuzzy data. These methods are applied for forecasting structural
actions as well as structural responses.
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5.3.1 Forecasting of Structural Actions
Forecasting of Foundation Soil Settlement

In the course of upgrading the B 172 main road, monthly extensometer mea-
surements of incline movements were carried out between December 1998 and
November 2002'. Three different measured values were obtained in each case
for each measurement date and each extensometer measurement location?,
i.e. settlement at the respective measurement locations could not be mea-
sured unequivocally as real values, but only in uncertain terms. The normal
conventional approach does not take account of this uncertainty, the uncertain
information is reduced to an arithmetic mean. In order to realistically analyze
and forecast the measured data, however, this uncertainty must be taken into
consideration.

Table 5.1. Excerpt from a series of extensometer measurements

Date 1st 2nd 3rd mean value
measurement measurement measurement
30.05.2000 22.51 22.50 22..52 22.510
27.06.2000 22.50 22.52 22.53 22.517
27.07.2000 22.40 22.40 22.41 22.403
30.08.2000 22.35 22.36 22.35 22.353
27.09.2000 21.72 21.80 21.77 21.763

Table 5.1 shows an excerpt of a series of extensometer measurements ([52]).
The measured values lie in an interval which may be considered as a support of
a fuzzy variable. It is thus appropriate to model the measured values as fuzzy
variables. All values lying between the smallest and largest values measured
on each measurement data are possible measurement results. These form the
support of the corresponding fuzzy variable. The corresponding mean value is
chosen in each case as the ‘best possible crisped’ measured value (p = 1,0).
Using the support and the ‘best possible crisped’ measured value, fuzzy trian-
gular numbers are constructed for each measurement date. The resulting time
series comprised of fuzzy data is illustrated in Fig. 5.10. Due to limitations

! The measurements were carried out by the ‘Gesellschaft fiir Geomechanik und
Baumesstechnik mbH’ under contract by the Dresden Road Construction Au-
thority.

2 The data were made available to the Institute of Structural Analysis by the
‘Entwurfs- und Ingenieurbiiro fiir Straffenwesen GmbH’ in Dresden.
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of scale the limits of the support of the fuzzy numbers are partly shown in
magnified form.

I, A [mm] elapsed time period

3451
29.5 +
245 +

19.5 +

14.5 +

12 ... o490 o
1999 2000 2001 2002

Fig. 5.10. Time series comprised of fuzzified extensometer measurements

For modeling the time series of fuzzy data constructed from the uncertain
extensometer measurements a non-stationary fuzzy stochastic process must
evidently be chosen as the underlying process. For this purpose the fuzzy
stochastic process model is specified with the aid of the methods presented in
Sect. 3.5.5. A fuzzy ARMA process of orders p = 10 and g = 3 is obtained.
The parameters Ay, As, ..., A1p and By, Bs, B3 are optimized by means of
the gradient method presented in Sect. 3.5.6. In order to match the underly-
ing fuzzy ARMAJ10,3] process the fuzzy data of the fuzzy time series recorded
between December 1998 and November 2002 are used. The now parameter-
optimized fuzzy ARMA[10,3] process yields optimum single-step forecasts for
the observation period 7 < N with a minimized distance from the values of
the given fuzzy time series. This result is shown in Fig. 5.11. The incongru-
ence between the optimum single-step forecasts and the given fuzzy variables
indicates the random properties of the fuzzy time series.

The parameter-optimized process permits the direct forecasting of future
extensometer values. An optimum h-step forecast is carried out according to
Sect. 4.2. In order to verify the result a second optimum h-step forecast is
additionally performed using an artificial neural network for fuzzy variables
The optimum forecasting multilayer perceptron used for this purpose consists
of ten neurons in the input layer, three hidden layers with seven, five and six
neurons, respectively, and one neuron in the output layer (10-7-5-6-1). The
fuzzy forecast values are determined according to Sect. 4.3.1.

A comparison between the optimum h-step forecast obtained from the
fuzzy ARMA process (FARMA) and the forecast obtained from the artificial
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Fig. 5.11. Optimum single-step forecasts of the parameter-optimized fuzzy ARMA
process
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Fig. 5.12. Optimum h-step forecasts of the extensometer measurements

neural network (KNN) for 37 subsequent time steps is shown in Fig. 5.12. This
represents a forecasting period of three years. Both of the optimum multistep
forecasts closely follow an approximately nonlinear curve.

By means of the parameter-optimized fuzzy ARMAJ[10,3] process it is also
possible to determine fuzzy forecast intervals according to the methods pre-
sented in Sect. 4.2.2. Fuzzy forecast intervals specify regions within which
the expected extensometer measurements will lie with a confidence level of k.
The fuzzy forecast intervals for a 95% confidence level are shown by way of
example in Fig. 5.13.
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Fig. 5.13. Fuzzy forecast intervals of the extensometer measurements for a 95%
confidence level

The random properties of the investigated fuzzy time series are found to
be relatively slight. With regard to long-term forecasting, matching of the
fuzzy trends alone (see Sect. 3.2) would yield reliable results in this case.
In the following example, however, the random properties of the fuzzy time
series are non-negligible and must therefore be taken into account in order to
guarantee reliable long-term forecasts.

Forecasting of Fluvial Sediment Transport

The following example demonstrates the application of artificial neural net-
works for analyzing and forecasting time series comprised of fuzzy data. Dur-
ing the period 10.06.2003 to 27.08.2003 hydraulic engineering measurements
were performed daily in the Kulfo river in southern Ethiopia3[47]. Besides
other measured parameters, the measurements also include information on
sediment transport in the river. The sediment transport measurements form
a basis for the design of sediment transport control structures. It is found,
however, that the precise determination of sediment transport in a river is
only possible to a limited extent. For this reason the given sediment transport
data were subjectively fuzzified in relation to the river discharge. The fuzzified
measured values are plotted in Fig. 5.14. Fig. 5.15 shows an alternative rep-
resentation in which the interval limits for the a-levels «; = 0 and ap = 1 are
connected polygonally. The observation period during which measurements
were made is very short. As a sufficient number of time points with measured

3 The data were made available to the Institute of Structural Analysis by the
Institute of Hydraulic Engineering and Technical Hydromechanics of the Dresden
University of Technology.
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values are available, however, the time series is suitable for demonstrating a
forecast with the aid of artificial neural networks.

q. ﬁJ A elapsed time period future time period
fuzzy training set
~ N
training part validation part
s als - )
350 T 4 4 { [ | [
{ {
! ST 4
g C a R TERRY 4 ("
44 d ¢ 4 . ¢ d a4 g q 4
0 L - — — e
12... L..3233 ... 424 52 T
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Fig. 5.14. Sediment transport ¢, in the Kulfo river at Arba Minch in tons per day
[47]
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Fig. 5.15. Plot of the interval limits for a =1 and a =0

According to Sect. 3.1, a comprehensive plot of a fuzzy time series addition-
ally requires a graphical representation of the variation of all [,r,-increments
with time. For this purpose the [,r,-representation of the given fuzzy vari-
ables was carried out for the a-levels a; = 0 and as = 1, i.e. for n = 2 a-level
sets. The l4r-increments Agy,; and Ag,,, as well as the means values ¢q,;
are plotted in Fig. 5.16.
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Fig. 5.16. Plot of the [,7,-increments

The plot of the [,r,-increments shows that the profiles of the [,7.-
increments Ag,,; and Ag,,, are identical. The [,r,-increments Agq,,; and
Aqq,r are thus completely positively correlated for A7 = 0. Moreover, the
affinity of the plots of the mean value g,,; and the l47r,-increments Aq,,; and
Aqq, rclearly reveals the mutual positive correlation for A7 = 0. This implies
that for larger sediment transport rates the measured values are on average
characterized by greater uncertainty, i.e. the support of the fuzzy numbers
is wider. A numerical estimation confirms the visual impression, and yields
the empirical [,7,-correlation function erq(AT) according to Eq. (5.9) for
AT = 0. A precondition for the determination of the empirical [, r,-correlation
function is the (plausible) assumption of stationarity and ergodicity of the
fuzzy time series.

1 093 — 1
X 0.93 1 - 093
B, (AT =0) = - - (5.9)
1 093 — 1

Using a multilayer perceptron for fuzzy variables, the sediment transport is
investigated with the forecasting objectives optimum forecast, fuzzy forecast
intervals and fuzzy random forecast. The forecasts do not rely on any as-
sumptions regarding stationarity or ergodicity of the fuzzy time series. For
the optimum h-step forecast an optimum forecasting artificial neural network
is trained. For this purpose the fuzzy time series is subdivided into a fuzzy
training series containing Np = 32 fuzzy data values and a fuzzy validation
series comprised of N — Ny = 42 — 32 = 10 fuzzy data values. The observed
values between 7 = 43 and 7 = 52 are used for checking the forecasts. The
training strategy according to Sect. 3.6.4 yields a network with the structure
(3-9-10-3-1), i.e. the input layer contains three neurons, the three hidden lay-
ers contain nine, ten and three neurons, respectively, and the output layer
contains one neuron. According to Eq. (3.182), the mean forecast error of this
optimum forecasting network architecture is M PFny = 513.
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Using the trained network, optimum single-step forecasts are first com-
puted for the time period 7 = 1, 2, ..., N (see Sect. 4.3.1). The optimum
single-step forecasts provide estimators for the conditional fuzzy expected val-
ues, as shown in Fig. 5.17. A comparison with the observed values also shown
in Fig. 5.17 shows considerable differences. Information regarding the random
components of the underlying fuzzy stochastic process may be deduced from
the differences between the fuzzy expected values §4, :%5, e Zy and the ob-
served values. In the case of this fuzzy time series the random components are
obviously large.

i A (E]T [ﬂ elapsed time period
350 + 4 —— measured 4
---------- forecasted { (
4 BRI 44
) 4 q . . ’ § 4 q 44
< < ¢ 4 4
) a4 N . . g q
0 L — e
12 41 427
June 2003 July 2003

Fig. 5.17. Optimum single-step forecasts given by the optimum forecasting multi-
layer perceptron

Using the trained optimum forecasting network, an optimum 10-step fore-
cast according to Sect. 4.3.1 is now performed for the time points 7 = 43 to
7 = 52. The result of the latter is shown in Fig. 5.18 (ANN). Independent of
the forecast performed using the optimum forecasting network, a forecast was
also obtained for the fuzzy time series by means of a fuzzy ARMA|3,1] process.
The result of the optimum 10-step forecast given by this fuzzy ARMA pro-
cess is also shown in Fig. 5.18 (FARMA). Good agreement is obtained in this
case between the two optimum forecasts, i.e. between the conditional fuzzy
expected values. The differences between the optimum forecasts and the ob-
served values are explained by the large random component of the underlying
fuzzy random process. The predictive capability of the optimum forecasts is
hence limited. More reliable forecasts are given by fuzzy forecast intervals and
fuzzy random forecasts, as these permit a determination of the probability of
occurrence of future fuzzy variables.

For each of these forecasting variants an optimum simulation artificial neu-
ral network is trained with the aid of the training strategy developed in Sect.
3.6.4. The optimum forecasting network required for this purpose is already
available. The training procedure yields an optimum simulation network with
the structure (6-10-12-7-1), i.e. the input layer contains six neurons, the three
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Fig. 5.18. Optimum 10-step forecasts given by the optimum forecasting multilayer
perceptron and the fuzzy ARMA([3,1] process

hidden layers contain ten, twelve and seven neurons, respectively, and the
output layer contains one neuron. The optimum structure was found by min-
imizing the forecast error PFj, in an optimization process (see Eq. (3.187)).

A sufficiently large number of sequences of potential future fuzzy realiza-
tions is simulated by means of the optimum simulation network. A simulated
sample of fuzzy realizations is thus available at each time point 7 > N. Two

sequences of simulated fuzzy realizations for 7 = 43, ..., 52 are shown in Fig.
5.19.
fi 4 [ﬂ future time period

350 T M :», ‘o S 444 H

August 2003 September 2003

Fig. 5.19. Examples of possible future progressions of the fuzzy time series

In order to estimate fuzzy forecast intervals the simulated fuzzy realiza-
tions are evaluated by means of Eq. (4.35) for a prescribed confidence level.

In order to estimate the fuzzy random variables Q- of the sediment transport



172 5 Uncertain Forecasting in Engineering and Environmental Science

for 7 = 43, ..., 52 for the fuzzy random forecast, it is necessary to evaluate
the simulated sequences statistically.
By way of example, the fuzzy random variable for the sediment transport

Q- 4 at time point 74 = 94 is determined in the following by means of the em-
pirical fuzzy probability distribution function form II F (~) On the basis

of the s = 100 simulated fuzzy realizations it is p0551ble to estimate the em-
pirical fuzzy probability distribution function form IT according to Eq. 2.115.
According to Remark 2.39, the result may be represented graphically in a
simplified way with the aid of the marginal distribution functions. The sim-
plified graphical representation given by the marginal distribution functions
corresponds to the empirical fuzzy probability distribution function form I

~C§m (q) (see Fig. (5.20)).

100 150 200 250 300 350 400 450 gl

Fig. 5.20. Empirical fuzzy probability distribution function Type I 5 (9)
TA

The fuzzy probability distribution function form I FQ: (q) is not suffi-

TA

cient for a full description of the forecasted fuzzy random variable Q. L, at
time time point 74. For this reason a tabular representation of all simulated
fuzzy variables - , at time point 74 is chosen. The corresponding realization
ir ,is hereby assigned to each simulation line-by-line. The tabular representa-
tion automatically includes all interaction relationships for the fuzzy random
variable Q, .- An excerpt from the tabular representation is given in Table
5.2. Because the simulated fuzzy variables g, , are fuzzy triangular numbers,
the abbreviated notation q";A = (q;1;7)Lr according to Sect. 2.1 is used in
the tabular representation.

The tzlbular representation is of advantage if the forecasted fuzzy random
variable Q , is the input variable of a fuzzy stochastic analysis Variant II.
The Monte Carlo simulation performed during the fuzzy stochastic analysis
is reduced to the extraction of elements from the table.
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Table 5.2. Realizations ¢, , of the fuzzy random variable Q- ., (excerpt)

Simulation Fuzzy realization

169.9; 186.4; 202.9

k 5?'/.; = ( )LRg
k+1 Gt = (305.5; 327.1; 348.5) L &
k+2 ¢t? = (113.0; 125.6; 137.8)Lr &
k + 3 5&:3 = ( )LR %

239.2; 265.8; 292.1

Forecasting of Heavy Goods Vehicle Loading

The analysis and forecasting of a time series comprised of fuzzy data is demon-
strated in the following by the example of heavy goods vehicle loading of the
Loschwitzer Bridge in Dresden (referred to hereafter as the ‘Blaues Wunder’).
Since October 1999 all vehicles crossing the ‘Blaues Wunder’ from the left
side of the Elbe River have been registered by a weight in motion measuring
device, and their specific data* such as vehicle type, speed and weight have
been archived.

For the time series analysis of the heavy goods vehicle loading the measured
weights of heavy goods vehicles and articulated trucks were extracted from
the database. An excerpt of the measured values is given in Table 5.3.

This information was compiled on a daily basis in the form of a histogram
and fuzzified [36]. The daily loading due to heavy vehicle traffic was sub-
jectively assessed with the aid of a polygonal membership function. A typical
histogram of the weight measurements during one day using a non-normalized
and normalized membership function is shown in Fig. 5.21.

“ a = number of elements A
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Fig. 5.21. Histogram and fuzzification of the weight measurements of 20.01.03;
non-normalized and normalized membership function

Pure stochastic modeling of the available data by means of multivariate
analysis and forecasting methods for real-valued time series is also possible and

4 The data were made available to the Institute of Structural Analysis by the Dres-
den Road Construction and Public Works Authority, Dept. of Traffic Engineering.
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Table 5.3. Excerpt from the weight measurements

Date Time Vehicle type Total mass [kg]
01.08.2002 10:45:41 Heavy goods vehicle 4228
01.08.2002 10:46:07 Heavy goods vehicle 5648
01.08.2002 10:50:07 Heavy goods vehicle 3562
01.08.2002 10:50:47 Heavy goods vehicle 1924
01.08.2002 10:51:01 6038
01.08.2002 10:52:07 Heavy goods vehicle 10370

would also seem to be appropriate. The fuzzy stochastic modeling performed
here is a suitable alternative method of solution. The application of fuzzy
stochastic methods is especially recommended for very small sample sizes (a
very small).

The fuzzy time series obtained by this means for the month of January
2003 is shown in Fig. 5.22. The plot indicates clearly recognizable regularities
during weekends and public holidays.
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Fig. 5.22. Time series of the heavy-load traffic crossing the ‘Blaues Wunder’ bridge
in January 2003 (including weekends and public holidays)

In order to approximately satisfy the assumption of stationarity the fuzzy
data for weekends and public holidays are excluded from the fuzzy time series.
A numerical representation of the fuzzy variables is achieved with the aid of
lara-discretization for the a-levels a; = 0, ap = 0.25, ag3 = 0.5, gy = 0.75
and a5 = 1, i.e. for n = 5 a-level sets. The fuzzy numbers and selected [,7 -
increments of the modified time series are plotted by way of example for the
month of September 2002 in Figs. 5.23 and 5.24, respectively.

An analysis of the fuzzy time series is carried out for the period July 2002
to April 2003. Assuming stationarity and ergodicity, the empirical moments
are determined according to Sect. 3.3.
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Fig. 5.23. Modified time series of the heavy-load traffic crossing the ‘Blaues Wun-
der’ bridge in September 2002 (excluding weekends and public holidays)
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Fig. 5.24. Plot of selected [,7-increments for September 2002

In order to proceed further, the fuzzy mean Z, the empirical I, rq-covariance
function K3z, (A7), and the empirical partial [,r,-correlation function
1r Pz, (A7) are required. The fuzzy mean T is shown by way of example in
Fig. 5.25.
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Fig. 5.25. Fuzzy mean value T

A fuzzy AR process of order p = 10 is specified as the fuzzy stochas-
tic process model (see Sect. 3.5.5). For this purpose the empirical par-
tial [,rq-correlation function lTPjT (A7) is used. The process parameters
Ay, As, ..., Ayp are determined with the aid of the characteristic parameter
method developed in Sect. 3.5.6. The modified evolution strategy after [36] is
applied for solving the corresponding optimization problem (Eq. (3.112). The
constraint of the minimization problem is the requirement of non-negativity
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of the l,r,-increments according to Eq. (2.47) for all fuzzy variables to be
generated.

The values of the empirical [,r,-covariance function e 7, (A1) are rel-
atively small outside the leading diagonal for 7 > 0. In order to obtain an
efficient numerical solution of the optimization problem the secondary diag-
onal elements of the process parameters Ay, As, ..., Ao are thus set to zero
a priori. Linear dependencies between the random [,r,-increments at time
point 7 are accounted for by the [l,r,-covariance function ;. K 2. (AT) of the

included fuzzy white-noise process ((‘:'T)TeT for A7 = 0. In order to reduce
the numerical effort, only the elements of the leading diagonal and the first
upper and lower secondary diagonals of ;. K é. (0) are determined. Although it
is not possible to determine all (unknown) GRANGER-causal dependencies
by this means, it is possible to adequately map selected (known) correlative
relationships.

The solution of the optimization problem yields estimated values of the

process parameters A1, Ag, ..., Aqg, the fuzzy expected value E[E;], the l474-
variance erar[SNT] and the l,7,-covariance function ;- /g (A7) of the fuzzy
white-noise process. With the aid of the estimated fuzzy AR[10] process it
is possible to forecast future values of the time series. The fuzzy data for
the months July 2002 to April 2003 form the basis for modeling the fuzzy
stochastic process. The forecast is made for May 2003, and compared with the
values measured during the same month. The optimum single-step forecast for
the fuzzy ARJ[10] process is given by Eq. (5.10). This is compared with the
measured value in Fig. 5.26.

Pni =4, QN ®.. @Ay Oin 9 D& (5.10)

T » T
N-1 N N+1

Qv

Fig. 5.26. Optimum single-step forecast and the given time series value

In contrast to the fluvial sediment transport investigated in Sect. 5.3.1, the
underlying fuzzy AR[10] process has a less pronounced random component.
The effect of the included fuzzy white-noise process is hence relatively small.
This is also indicated by the comparison between the optimum h-step forecast
and the measured values. The optimum 12-step forecast shown in Fig. 5.27 is
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seen to deviate far less from the measured values than the optimum forecast
determined in Sect. 5.3.1.

i M future time period

~ —— measured =~ e forecasted Tyt
Tyis

Ty

20T

N+11

N+1 N+2 N+3 ... May 2003 S N+10 N+11 N+12 7

Fig. 5.27. Comparison of the optimum 12-step forecast with measured values

This result is confirmed by the optimum 12-step forecast determined using
an artificial neural network for fuzzy variables, as shown in Fig. 5.28. The
optimum forecasting multilayer perceptron used in this case consists of ten
neurons in the input layer, three hidden layers with eleven, three and two
neurons, respectively, and one neuron in the output layer (10-11-3-2-1).

Az M future time period

—— measured =~ e forecasted P
'N+12

Ly+10
; N+11

I »

N+1 N+2 N+3 ... May 2003 S N+10 N+11 N+12 1

Fig. 5.28. Optimum 12-step forecast given by the multilayer perceptron

The optimum 12-step forecast yields the conditional fuzzy expected val-
ues of the future fuzzy random variables at corresponding points in time. In
order to obtain probability information on the fuzzy time series during the
forecasting period it is necessary to determine fuzzy forecast intervals or fuzzy
random forecasts according to Sects. 4.2.2 and 4.3.3, respectively.

5.3.2 Forecasting of Structural Responses

Forecasting of Bearing Movements

The model-free forecasting of structural responses is demonstrated by the ex-
ample of the movements of the pylon bearing of the Loschwitzer Bridge in
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Dresden (‘Blaues Wunder’). Measurements® of the horizontal movements of
the pylon bearing on the right side of the Elbe River in the longitudinal di-
rection of the bridge were made between January 1998 and November 2002
with the aid of slide gages. The measurements were made at irregular intervals
and at different times during the day. For this reason the (few) measurements
available for each month were treated as a small sample with non-constant re-
production conditions, and subjectively fuzzified. The obtained (fragmentary)
time series comprised of fuzzy data is shown in Fig. 5.29.

Z A [mm] elapsed time period
84
E q 4 { 4 ¢ {
63 q< ¢ q
{ q q
42
12 ... L. BT T
1998 1999 2000 2001 2002

Fig. 5.29. Time series of the pylon bearing movements of the ‘Blaues Wunder’
bridge

Owing to the highly intermittent data, the modeling of this fuzzy time
series as a realization of a fuzzy MA, AR or ARMA process is problematic.
An estimation of the properties of the potentially underlying fuzzy stochastic
process with the aid of an artificial neural network is also pointless. A suitable
means of analyzing and forecasting the fuzzy time series, however, is offered by
the fuzzy component model introduced in Sect. 3.2. In order to apply the fuzzy
component model it is necessary to select and match a fuzzy trend function
t(7) and a fuzzy cycle function Z(7). Owing to the direct dependency between
bearing movements and seasonal temperature variations of the structure a
constant fuzzy trend function and a sinusoidal fuzzy cycle function are chosen.
The fuzzy functions are matched with the aid of trend auxiliary functions and
cycle auxiliary functions following the method presented in Sect. 3.2. The
matched fuzzy trend function #(7) is given by Eq. (5.11).

t(r) =ty with %o = (52.2; 52.8; 54.1), pmm (5.11)

The matched fuzzy cycle function Z(7) is formulated in Eq. (5.12).
- . (27T - . -
Z(1) = [sm <12) + 1] Zo with Zp = (22.0; 22.0; 22.0),gmm  (5.12)

5 The measurements were carried out under contract by the Dresden Road Con-
struction and Public Works Authority and were made available to the Institute
of Structural Analysis by the ‘GMG Ingenieurpartnerschaft Dresden’.
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The fuzzy residual component 7-to be determined using Eq. (5.13) is modeled
as a realization of a fuzzy white-noise process (€ ),et according to Sect. 3.5.1.

Fr=7.01, 0% (5.13)

The characteristic parameters of the fuzzy white-noise process (ST)TeT are
estimated according to Sect. 3.3 from the realizations 7. The fuzzy expected

value E[E;] of the fuzzy white-noise process (£;) et is given in Eq. (5.14).
E[£;] = (—3.51; 0; 3.45) , pmm (5.14)

By this means it is possible to formulate the optimum forecasts iz, for the
given fuzzy time series for time points 7 = 1,2, ..., N, N +1, N + 2, ... by
means of Eq. (5.15).

ir =1, ®% ®E[E] (5.15)

A plot of the optimum forecasts Ty given by the fuzzy component model is
presented in Fig. 5.30.

7. A i\L’(T) elapsed time period

Z, (7)

[mm] measured ~ ----- forecasted (a=1)
844 forecasted (a=0)
63T 144 A
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12 ... ... 87T T
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Fig. 5.30. Optimum forecasts Zr given by the fuzzy component model

With the aid of the matched fuzzy component model it is also possible
to determine fuzzy forecast intervals or fuzzy random forecasts according to

Sect. 4.1. The fuzzy stochastic forecasting process (X;)rer required for this
purpose is described by Eq. (5.16).

—

X, =, ®:, ®E, (5.16)

By performing a Monte Carlo simulation of the realizations of the fuzzy white-
noise process (gT)TeT potential future progressions of the fuzzy time series are
obtained with the aid of Eq. (5.16). An evaluation of the simulated progres-
sions according to Sects. 4.2.2 and 4.3.3 yields fuzzy forecast intervals and
fuzzy random forecasts, respectively. The fuzzy forecast intervals for a 95%
confidence level are shown in Fig. 5.31.
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Fig. 5.31. Fuzzy forecast intervals of the pylon bearing movements for a 95% con-
fidence level

Forecasting of Asphalt Deformations

In the following the model-based forecasting of structural responses is demon-
strated for the example of a road pavement. In order to illustrate the method
the elastic and plastic deformations of the road pavement due to heavy goods
traffic loading are investigated. The loading process is given in the form of a
time series of fuzzy load alternation numbers. Future load alternation numbers
are forecasted directly. These directly forecasted values of the loading process
are inputted to a computational model for computing a model-based forecast
of asphalt deformations. The processing sequence corresponds to Strategy I.

For verification purposes the results of the model-based forecast according
to Strategy I are compared with those of the model-based forecast according
to Strategy II. For this purpose the fuzzy deformation of the road pavement
is computed by the computational model at each time point 7 < N. The
time series of the fuzzy deformations determined in this way is forecasted in
a model-free manner.

The investigated road pavement consists of a 25 mm thick asphalt layer
and a 275 mm thick base layer without binding agents. This special method
of construction is the standard method adopted in New Zealand. The soil
subgrade is located below the base layer without binding agents. In order to
determine the structural responses of the road pavement numerically a three-
dimensional finite element computational model is applied. By means of the
finite element program FALT-FEM [43, 23, 48] it is possible to determine the
elastic and plastic deformations resulting from heavy goods traffic loading.
The heavy goods traffic loading is hereby simulated by two wheel loads of
40 kN and 50 kN which repeatedly roll over the structure with the given load
alternation number.
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The applied finite element model was developed within the framework of
numerical investigations of accelerated testing methods® and validated on the
basis of large-scale laboratory experiments. [67].

The plan dimensions of the construction segment considered in the compu-
tations are 4000 mm x 2400 mm. Making use of symmetry, it is only necessary
to generate a mesh for half of this segment. The applied finite element mesh is
shown in Fig. 5.32. The mesh consists of 1962 elements with a total of 25 804
displacement degrees of freedom.

asphalt
base course

subgrade

Fig. 5.32. Finite element mesh for the road pavement

The subgrade is modeled by two 150 mm thick sublayers, the base layer
is subdivided into four 68.75 mm thick sublayers, and the asphalt layer is
represented by two 12.5 mm thick sublayers. More finely meshed elements
(66.7mm x 66.7mm x Hohe) are adopted in the areas of load application.

Owing to the relatively small thickness of the asphalt layer, the contribu-
tion of this layer to the overall deformation of the road pavement is very slight.
For this reason a linear elastic material model is adopted for the asphalt layer
with a Young’s modulus of £ = 5000 mljnz and a Poisson’s ratio of p = 0.35.
The overall deformation of the road pavement is predominantly governed by
the non-cohesive base layer. For this base layer without binding agents an
empirical, nonlinear elastic-plastic material model after [48] is applied. The
parameter values of the material model correspond to the characteristic values
determined in [67]. The subgrade is modeled as a linear elastic medium with

a Young’s modulus of E = 25 mII\IHQ and a Poisson’s ratio of u = 0.4.

5 The accelerated tests were carried out by the Canterbury Accelerated Pavement
Testing Indoor Facility (CAPTIF) in Christchurch, New Zealand.
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The load alternation number is the input variable for the finite element
computational model. Measured data’ are used to construct a sample fuzzy
time series of load alternations. The measurements were recorded between
January 2003 and April 2004 within the scope of an automatic traffic cen-
sus in Dresden. All vehicles passing the measuring point were registered and
classified according to vehicle type.

In order to model the load alternation sequence the number of axle cross-
ings and the corresponding axle loads are required. The measured data only
contain information regarding vehicle type, however (e.g. cars, trucks, trucks
with trailers, buses). This data uncertainty is taken into account by mod-
eling the load alternation sequence as a fuzzy time series. For this purpose
the possible axle loads and axle numbers are assumed for the different heavy
goods vehicles, and corresponding fuzzy load alternation numbers ¢,are deter-
mined for each week of the period under consideration. The fuzzy time series
obtained by this means is shown in Fig. 5.33.

elapsed time period

7,000+

1st third 2003 2nd third 2003 3rd third 2003

Fig. 5.33. Time series of the fuzzy load alternation numbers

In order to determine the elastic and plastic deformations of the road
pavement the cumulative fuzzy load alternation numbers k., are required. The
corresponding fuzzy time series is shown in Fig. 5.34.

For the purpose of analyzing and forecasting the cumulative fuzzy load
alternation time series a multilayer perceptron for fuzzy variables was devel-
oped. By means of the method outlined in Sect. 3.6.4 a multilayer perceptron
with four neurons in the input layer, eight, two and nine neurons in the three
hidden layers, respectively, as well as one neuron in the output layer (4-8-2-
9-1) was determined as the optimum forecasting network architecture. The

" The data were made available to the Institute of Structural Analysis by the Dres-
den Road Construction and Public Works Authority, Dept. of Traffic Engineering.
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Fig. 5.34. Time series of the cumulative fuzzy load alternation numbers

optimum h-step forecast computed for the first third of 2004 using this arti-
ficial neural network is shown in Fig. 5.35.
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Fig. 5.35. Optimum 17-step forecast of the cumulative fuzzy load alternation num-
bers

A visual plausibility check of the optimum h-step forecast may easily be
obtained on the basis of a representation of the fuzzy load alternation numbers
per week (see Fig. 5.36).

The results of the model-free h-step forecast of the fuzzy load alternation
numbers are used for the model-based forecast (Strategy I ) of the elastic-
plastic deformations 7, of the road pavement. The deformations are deter-
mined by means of the finite element computational model, which uses the
given and forecasted fuzzy load alternation numbers as input data (see Fig.
5.37).
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Fig. 5.36. Optimum 17-step forecast of the fuzzy load alternation numbers
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Fig. 5.37. Model-based optimum h-step forecast of the fuzzy asphalt deformations;
comparison between Strategy I and Strategy II

If the fuzzy load alternation numbers are available as an optimum forecast
or a fuzzy forecast interval, the computational model represents the determin-
istic fundamental solution of the fuzzy structural analysis. If the fuzzy load
alternation numbers during the forecasting period are available as a fuzzy
random forecast, the computational model represents the deterministic fun-
damental solution of the fuzzy stochastic structural analysis.
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In order to validate the model-based forecast (Strategy I ) the fuzzy defor-
mations v, for the 1st third of 2004 were forecasted according to Strategy II.
With fuzzy load alternation numbers as input data, the fuzzy deformations
0, computed for 2003 by fuzzy structural analysis are shown in Fig. 5.37.
These constitute a fuzzy time series, which serves as a basis for forecasting
the deformations during the 1st third of 2004. The direct forecast was per-
formed with the aid of an artificial neural network for fuzzy variables. The
values forecasted according to Strategy I as well as Strategy II are in close
agreement with the measured fuzzy deformations (see Fig. 5.37).

Forecasting of Structural Damage

The following example demonstrates a model-based forecast (Strategy I) of
damage to a structure. The structural damage of the plate-beam floor shown
in Fig. 5.38 is assessed by means of a global fuzzy damage indicator D.

reference
plane

A \\=

100 W
419 mm

Fig. 5.38. Finite element model of the plate-beam floor

textile

strengthening reinforcement

The global fuzzy damage indicator D is defined by Eq. (5.17) (see e.g. [45]
and [40, 26, 51).

- stiffness of the damaged structure
D=1-— (5.17)
stiffness of the undamaged structure

The stiffness of the structure is assessed with the aid of the fuzzy determi-
nant of the global tangential fuzzy system stiffness matrix K (7,7,5). The
fuzzy system stiffness matrix K (7,0, 5) is dependent on time 7, the fuzzy
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displacement state v and the fuzzy damage 5. The global fuzzy damage indi-
cator according to Eq. (5.17) is thus a fuzzy damage indicator. This indicator
is given by Eq. (5.18). The term ET(To,@O,go) is hereby the fuzzy system
stiffness matrix at the reference time 7 = 7.

det [ET(T, @, 5)]

det [ K (o, 2, 50)]

k=1-—

(5.18)

In the following the fuzzy damage indicator D K is forecasted for a plate-beam
floor of an existing building. It is proposed to refurbish the existing building
and use it as a warehouse from December 2006 onwards. Strengthening of the
plate-beam floor by means of a textile-reinforced fine concrete layer on the
underside of the floor is planned as a refurbishment measure. The future live
load on the plate-beam floor is determined by future storage requirements.
The storage requirement in the past is given in the form of a non-stationary
fuzzy time series. The fuzzy time series of the live load p corresponding to the
monthly storage requirement is shown in Fig. 5.39.
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Fig. 5.39. Time series of the fuzzy live load p

In order to forecast the fuzzy live load a fuzzy ARMAJ4,4] process is
taken to be the underlying process of the fuzzy time series shown in Fig.
5.39. The corresponding parameters are estimated by means of the gradient
method outlined in Sect. 3.5.6. With the aid of the matched fuzzy ARMAJ4, 4]
process it is possible to determine optimum forecasts }%N+h according to Sect.
4.2.1, fuzzy forecast intervals py, ., according to Sect. 4.2.2, and fuzzy random

forecasts P according to Sect. 4.3.3 for the live load p. The optimum 12-
step forecast is shown in Fig. 5.41. For the other two forecast objectives,
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s = 100 potential realizations of the future progression of the fuzzy time
series up to December 2006 are simulated and represented in tabular form.
The tabular representation consists of twelve columns and 100 rows. One
column is assigned to each month of 2096. The 100 potential realizations of the

corresponding fuzzy random variable P ~N+n are listed in rows for each month.
Because the simulated fuzzy variables 5N+h are fuzzy triangular numbers, the
abbreviated notation §N+h = (py;1;7) LR according to Sect. 2.1 is used in the
tabular representation. An excerpt of the realizations is giyen in Table 5.4. Ten

fuzzy realizations ﬁNHg of the fuzzy random live load P ~N+12 for December
2006 are shown by way of example in Fig. 5.40.

Table 5.4. Excerpt of simulated future progressions of the fuzzy live load p

September 2006 October 2006
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Fig. 5.40. Realizations ﬁl\’}HQ (i =1,2,...,10) of the model-free forecast of the fuzzy

random live load Py 412

With the aid of the 100 simulated future progressions the fuzzy forecast
intervals are estimated according to Sect. 4.2.2. These are shown for 2006 for
a confidence level of k = 0.95 in Fig. 5.41.

The 100 simulated future progressions also provide the basis for a fuzzy
random forecast of the live load. It is not necessary, however, to express the

fuzzy random variables Py, of the live load by fuzzy probability distribution
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Fig. 5.41. Optimum 12-step forecast and fuzzy forecast intervals of the fuzzy live
load

functions (form II). The simulated fuzzy values presented in Table 5.4 may
be directly applied for the model-based forecast according to Strategy I.
Once the live load has been forecasted as a measurable action for different
forecast objectives, the non-measurable system response ‘damage indicator’
may be computed according to Strategy I (see Fig. 5.3) by means of a com-
putational model. It is intended to forecast the damage indicator as a fuzzy
random variable according to Sect. 5.2. In order to assess the damage to the
plate-beam floor (Fig. 5.38) due to the action of the forecasted fuzzy random

live load P ~N+12 in December, a model-based fuzzy random forecast (Strat-
egy I) is performed. Variant II is chosen for the fuzzy stochastic structural
analysis. The outer loop of the fuzzy stochastic structural analysis (Variant
IT), which constitutes the stochastic analysis, requires the simulation of s se-
quences of fuzzy realizations of the input variables. A total of s = 100 fuzzy
realizations ﬁNHQ are already available in tabular form (Table 5.4) for the

fuzzy random input variable P ~N+12- The Monte Carlo simulation of the fuzzy

random live load P ~N+12 is hence reduced to the extraction of elements from
the table.

The middle loop of the fuzzy stochastic structural analysis Variant IT (see
Fig. 5.8) constitutes the fuzzy structural analysis. The input variable for the
fuzzy structural analysis (which must be performed s-times) is a fuzzy re-

alization 5N+12 of the fuzzy random live load P N+12 in each case. In or-
der to take account of different loading situations the plate-beam floor is
subdivided into two domains (see Fig. 5.38) in which stochastically inde-
pendent loads occur. The live load is modeled in each case by a different
fuzzy realization 5N+12 for each domain. Moreover, the concrete compressive
strength of the existing structure is modeled as a fuzzy triangular number
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Bc = (21.0; 30.0; 31.5) g —5 — . The input space of the fuzzy structural anal-
ysis is thus formed by three fuzzy variables.

The deterministic fundamental solution is the finite element program
FALT-FEM [43]. The finite element modeling is carried out using 156 lay-
ered hybrid elements with assumed stress distribution. This represents the
modeling of a multilayered continuum, which is subsequently analyzed us-
ing the multi-reference-plane model after [42]. The plate is modeled by five
concrete layers, and the beam, by twelve concrete layers. The steel reinforce-
ment is specified as a uniaxial smeared layer. The textile strengthening on
the underside of the floor is modeled as an additional fine concrete layer with
textile reinforcement. The textile reinforcement is also specified as a uniaxial
smeared layer. The physical nonlinear analysis is performed on the basis of
endochronic material laws for concrete and steel (see [23]). Dead weight, crack
formation, tension stiffening and steel yielding are also taken into considera-
tion. The finite element model of the plate-beam floor is shown in Fig. 5.38.
The material parameters adopted in the analysis are listed in Table 5.5.

Table 5.5. Material parameters for the reinforcement layers

Steel layer Textile layer
Thickness

dspl = 0.221 mm (plate, longitudinal, top/bottom) de = 0.2 mm
dSPq = 0.050 mm (plate, transverse, top/bottom)

dsgz = 4.020 mm (beam, bottom)

Young’s modulus
Es = 210000 - B =

Tensile strength
Rs = 5001 Rg =

As a result of the fuzzy stochastic structural analysis (Variant II), a
set of 100 fuzzy damage indicators are obtained in each case for the non-
strengthened and strengthened plate-beam floor. A statistical evaluation of

the latter yields a fuzzy random variable D for the damage indicator. Eight
fuzzy realizations of the damage indicator for the non-strengthened and
strengthened plate are shown by way of example in each case in Fig. 5.42.
Based on the samples of the 100 computed fuzzy damage indicators in each
case for the non- strengthened and strengthened plate the fuzzy random vari-

ables D and D for the non-strengthened and strengthened plate-beam floor
may be estimated for the month of December 2006. The respective empirical
fuzzy probability distribution functions (form II) are determined with the aid
of the statistical methods outlined in Sect. 2.2.2. With the aid of the two em-
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Fig. 5.42. Fuzzy realizations d,/ and d,; (i=1,2,...,8) of the fuzzy random variables

D, and D, of the non-strengthened and strengthened structure, respectively

pirical fuzzy probability distribution functions (form I) F~ (d) and Fa (d)
the simplified graphical representation of the result is glven in Fig. 5. 43
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Fig. 5.43. Fﬁ, (d) and Fﬁ (d) as empirical fuzzy probability distribution functions
form I for the non-strengthened and strengthened structure, respectively

A comparison between the two fuzzy probability distribution functions
(form T) F = (d) and F = (d) shows that the forecasted damage of the strength-
ened plate beam ﬂoor is much less. The forecasted damage of the strength-
ened structure lies between 6 and 10 percent. The forecasted damage without
strengthening lies between 8 and 15 percent. A comparison between the fuzzy
probability distribution functions (form I) F~ (d) and F~ (d) in the upper
range of the functional values clearly 1nd1cates a much larger distance between
the right-hand and left-hand boundary function of Fﬁu (d). This means that
the forecasted fuzzy random damage ]3u of the non-strengthened structure

exhibits a much greater uncertainty. This result is plausible. The plate-beam
floor without textile strengthening has a lower system resistance. Owing to
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nonlinear material properties (e.g. progressive crack formation in the concrete)
under comparable loading, this results in overproportional damage. The de-
cisive kink in the plot of the right-hand boundary function corresponds to a
functional value of about 0.5, i.e. the probability of occurrence of the over-
proportional damage is about 50 percent. The effect of the overproportional
damage of the strengthened structure is far slighter. The decisive kink in the
plot of the right-hand boundary function of Ff) (d) first occurs for a functional
value of 0.9. Moreover, the distance between the left-hand and right-hand
boundary function in this region is significantly smaller. This result clearly
demonstrates the strengthening effect of the textile-reinforced fine concrete
layer.
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a-level optimization, 157
a-level set, 12
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loTo-discretization, 13
laTo-increment plot, 60
laTo-increment representation, 16
loTo-increments, 13
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laTo-likelihood function, 95
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applications, 163
asphalt deformations, 180
bearing movements, 177
fluvial sediment transport, 167
foundation soil settlement, 164
heavy goods vehicle loading, 173
structural damage, 185

arithmetic operations, 18

artificial neural network, 106
forecasting on the basis of, 144

artificial neurons, 107

average distance, 99

backpropagation algorithm, 111
bias (threshold value), 107
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bunch parameter representation, 33

CHOLESKY decomposition, 51
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of the increments, 39
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empirical
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loTo-covariance matrix, 70
laTo-partial correlation function, 72
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filter for fuzzy time series, 74
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extended fuzzy difference, 79
extended linear fuzzy, 78
fuzzy difference, 77
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forecast
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forecasting
model-based, 155
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fuzzy
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bunch parameter, 33
bunch parameters, 33
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function, 23
input vector, 111
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realization, 26, 33
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training pattern, 111
training series, 118
training set, 111
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fuzzy AR process, 85

fuzzy ARMA process, 86
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process, 86
numerical realization, 88
parameter estimation, 97
specification of model order, 91
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specification of model order, 90
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fuzzy moving average process, 83

loro-covariance function, 83
loro-variance, 83
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parameter matrices, 83
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distribution function, 30
distribution function form I, 30, 31
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fuzzy random forecasting process, 131
fuzzy random process, 53
laTo~-correlation function, 56
lora-covariance function, 55
first and second order moments, 54
fuzzy expected value, 54
stationary, 57
stationary and ergodic, 79
underlying, 79
fuzzy random variable, 25
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loro-discretization, 28
loro-correlation matrix, 46, 48
partial, 49
loTo-covariance, 45
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loaro-standard deviation, 48
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classical and incremental discretiza-
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continuous, 26, 50
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Monte Carlo simulation, 50
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fuzzy time series, 54, 59
cyclic fluctuations, 78
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plot of, 59
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transformation, 74

fuzzy time-average, 69

fuzzy variable, 9
characteristic moments, 44
convex, 10, 12
distance between, 22
first order moment, 45
in the improper sense, 16
sample of, 41
subtraction of, 18

fuzzy white-noise process, 79
numerical realization, 82

GAUSSian distributed random
laTo-increments, 51
GRANGER causality, 85

HAUSDORFF distance, 22
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HUKUHARA difference, 18
generalized, 21

incremental fuzzy arithmetic, 16

input layer, 107

input signals, 107

interaction, 28

interval boundaries, 12, 17

inverse probability distribution function
method, 50

learning rate, 112
low-discrepancy numbers, 50

mapping function, 19
marginal distribution function, 36
mean forecast error, 120
mean square error, 112, 119, 120
measured
actions, 153
structural responses, 153
membership function, 9
normalized, 9
mesh search methods, 100
mesh search strategies, 98
modified evolution strategy, 96, 98, 100
momentum term, 116
Monte Carlo simulation
of fuzzy random variables, 50
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moving fuzzy average, 75
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modification, 120
optimum forecasting, 118, 145
optimum simulation, 118
non-measurable parameters, 153
non-negativity requirement, 13, 1618,
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numerical realization
characteristic value method, 98
distance method, 100
fuzzy AR process, 86
fuzzy ARMA process, 88
fuzzy MA process, 84
fuzzy white-noise process, 82
gradient method, 100
maximum likelihood method, 95
numerical tests for stationarity, 74
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online training, 113, 120

optimization problem, 96, 97

optimum h-step forecast, 134, 145
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optimum single-step forecast, 99, 100,
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original, 33

output layer, 107

output signal, 107

overfitting, 119, 122

parameter estimation, 96
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numerical realization, 100
fuzzy AR process, 105
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numerical realization, 100
iteration method, 102
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densitiy function, 55
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distribution function, 33, 39
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pseudo random numbers, 50

random
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interval, 27
interval boundaries, 27
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random variable, 29, 33
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sigmoidal activation function, 109
sigmoidal fuzzy activation function, 124
simplified graphical representation of
form II, 40
simplified representation of form II, 38
space of the random elementary events,
54
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BOX-JENKINS method, 89

maximum likelihood method, 94
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tion function, 51
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training strategy
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