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Preface

Forecasting is fascinating. Who wouldn’t like to cast a glimpse into the future?
Far removed from metaphysics, mathematical methods such as time-lapse
techniques, time series or artificial neural netwoks offer a rational means of
achieving this. A precondition for the latter is the availability of a sequence
of observed values from the past whose temporal classification permits the
deduction of attributes necessary for forecasting purposes.

The subject matter of this book is uncertain forecasting using time series
and neural networks based on uncertain observed data. ‘Uncertain’ data im-
plies information exhibiting inaccuracy, uncertainty and questionability. The
uncertainty of individual observations is modeled in this book by fuzziness.
Sequences of uncertain observations hence constitute fuzzy time series. By
means of new discretization techniques for uncertain data it is now possible
to correctly and completely retain data uncertainty in forecasting work. The
book presents numerical methods which permit successful forecasting not only
in engineering but also in many other fields such as environmental science or
economics, assuming of course that a suitable sequence of observed data is
available. By taking account of data uncertainty, the indiscriminate reduction
of uncertain observations to real numbers is avoided. The larger information
content described by uncertainty is retained, and compared with real data,
provides a deeper insight into causal relationships. This in turn has practical
consequences as far as the fullfilment of technical requirements in engineering
applications is concerned.

The book is aimed at engineers as well as professionals working in related
fields. For readers with a basic engineering training, a knowledge of classi-
cal time series analysis and random processes would be helpful. The book is
structured in such a way, however, that the reader will find no difficulty in
working through the material without any special prior knowledge.

The book is mainly based on research work funded by the German Re-
search Foundation (DFG), whose financial support the authors gratefully ac-
knowledge. We also express our thanks to Dr Ian Westwood (PhD, Civil En-
gineering) for translating Sect. 1 and Sects. 3 to 5. Finally, we wish to thank



VI Preface

the publishers ‘Springer-Verlag’ for their receptiveness regarding the subject
matter, their valuable support during the development of the manuscript, and
the final printing of the book.

Dresden, April 2007 Bernd Möller Uwe Reuter
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ã, ..., z̃ fuzzy variables
xl peak point of x̃
Sx̃ support of x̃
µx̃pxq membership function of x̃

αi ith α-level
Xαi

α-level set of x̃ for α � αi

n number of discrete α-levels
∆xαil lα-increment of x̃ for α � αi

∆xαir rα-increment of x̃ for α � αi

∆xi ith element of the lαrα-increment representation of x̃
Lαi,i�1 p�q sub-function of µx̃pxq between αi ¤ α   αi�1 (left)
Rαi,i�1 p�q sub-function of µx̃pxq between αi ¤ α   αi�1 (right)
ˆ̃z best possible approximation of z̃



Abbreviations XI
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1

Introduction

1.1 Application of Time Series for Forecasting in
Engineering

In engineering as well as in other fields such as the natural sciences, environ-
mental science or economics, many processes exist for which ordered sequences
of observed values are available. Examples of the latter include the settlement
of a bridge measured at specific points in time, traffic loads on roads, snow
depths measured over many years, the height of wheat stalks, the diameter
of tree trunks or the production output in industry. The observed values, i.e.
settlements, traffic loads, snow depths etc., exist for a past observation period.
Under certain conditions these constitute a time series.

A time series is a temporally ordered sequence of observed values. Precisely
one observed value is assigned to each discrete observation time τ P T, where
T represents a set of equidistant points in time. The set of observation time
points τ � 1, 2, ..., N is referred to as the observation period.

In classical time series analysis the observed values are real-valued num-
bers or natural numbers, i.e. variables to which a precise numerical value is
assigned.

Time series comprised of precise observed values are shown in Figs. 1.1,
1.2 and 1.3.

Forecasting of the future progression of time series containing precise ob-
served values and hence forecasting of the process described by the observed
values is the subject matter of classical time series analysis [6, 8, 60]. A forecast
is possible due to the fact that particular dependencies may be deduced from
the significant sequence of the observed values. In order to identify dependen-
cies and laws within a time series, two methods are applied in classical time
series analysis: descriptive time series analysis and stochastic models. In de-
scriptive time series analysis descriptive models are used to identify attributes
such as trends, seasonal variations or cyclic fluctuations. An important de-
scriptive model is the component model. Stochastic models on the other hand
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Fig. 1.1. Time series of the number of vehicles crossing the bridge ‘Blaues Wunder’
in Dresden [Source: Dresden Dept. of Road Construction and Public Works]
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Fig. 1.2. Time series of the discount rate of the ‘Deutsche Bundesbank’ [Source:
‘Deutsche Bundesbank’ ]
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Fig. 1.3. Time series of the number of building approvals in Saxony [Source: Saxony
State Office of Statistics]
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assume stochastic properties, and treat the time series as the realization of a
stochastic process.

If the observed values represent measured values, it is often not possible
to assign precise numerical values to the observed data; they then possess
data uncertainty. Data uncertainty in engineering practice is mainly due to
inaccuracies in measurements, incomplete sets of observations or difficulties
in performing measurements, e.g. due to local conditions. The occurrence of
data uncertainty also depends on the particular observation scale adopted, i.e.
whether a process is described on the microscale, mesoscale or macroscale. For
example, although it is theoretically possible to precisely state the commence-
ment of material damage on the microscale, the commencement of damage on
the macroscale may be only diagnosed uncertain. Because the observation
scale cannot always be chosen arbitrarily, however, the associated uncertainty
must be accepted.

Measurement inaccuracy results among other things from the limited pre-
cision of a measuring device or from read errors. Geometric data in particular
cannot be measured accurately in certain cases. Examples of this include water
level measurements on a moving water surface, the thickness of a structural
element with a very rough surface or the transport of bed material in a river.
The stipulation of some sort of average value, however, means that important
information may be lost.

Incomplete sets of observations signalize an information deficit due for ex-
ample to gaps in a series of measurements resulting from the malfunctioning
of measuring devices, irregularities in the reading of measurements or inade-
quate planning of the measurement regime. The measurement of parameters
within a medium or construction is often extremely difficult. The corrosion
behavior of steel reinforcement or the position of steel reinforcement in an RC
structural element, for example, cannot be measured with absolute certainty.
The same applies to crack formation in concrete elements or the quantity of
water transported through a flow cross-section.

Sequences of observations may also consist of linguistic estimates. Ex-
amples of this include a description of concrete flaking on bridges (see Fig.
1.4), a description of the degree of discoloration of a surface or the extent of
cloud cover. Linguistic estimates are a priori imprecise, as they express the
subjective opinion of an expert. On the other hand, time series of linguistic
observations do in fact open up new fields of application in forecasting.
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Fig. 1.4. Time series comprised of linguistic estimates of concrete flaking
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Fig. 1.5 shows a comparison between a time series comprised of precise
observed values and a time series consisting of uncertain observed values. The
uncertainty in this case is described by an interval. This is a very simple uncer-
tainty model. In this book the more informative uncertainty models fuzziness
and fuzzy randomness are used to describe imprecise data, i.e. uncertain data.
An overview of these uncertainty models is given in the following section (Sect.
1.2). New forms of representation of these uncertainty models suitable for time
series analysis are derived in Sect. 2.

1 2 10 �3 4 5 6 7 8 9 11

birth rate

flow rate

Fig. 1.5. Time series containing precise data versus time series containing uncertain
data

By means of the introduced uncertainty models it is possible extend the
methods of classical time series analysis in such a way as to permit the fore-
casting of future uncertain results under due consideration of data uncertainty.
By this means it is possible to dispense with the artificial idealization of real
data, the forecasting of which may lead to unrealistic results. The decision
as to whether the methods of classical time series analysis or the extended
methods presented in this book should be applied depends on the particular
problem in question and the existing data base.

The subject matter of this book concerns time series comprised of impre-
cise, i.e. uncertain, observed values. This implies that an individual observed
value may be uncertain. By this means it is possible to realistically model the
observed values in important practical cases. Because the forecasted values
are also uncertain, forecasts are obtained with higher predictive capability.

Three methods are described in the book for forecasting time series com-
prised of uncertain observed values:

• the fuzzy component model (Sect. 3.2) as an extension of descriptive meth-
ods,

• the fuzzy random process as an extension of stochastic models (Sect. 4.2)
and
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• artificial neural networks for uncertain data as an extension of artificial
neural networks for real-valued data (Sect. 4.3)

1.2 Data Uncertainty and Fuzzy Time Series

If it is not possible to assign a precise numerical value to an observed value,
the observed value in question possesses uncertainty. How can this uncertainty
be described mathematically?

A variety of methods exist for classifying and distinguishing uncertainty.
Decisive in this respect are the causes of uncertainty. If the cause is purely
random, the uncertainty is referred to as aleatoric uncertainty. This is de-
scribed with the aid of conventional and highly-developed stochastic models.
If the uncertainty is a result of objective and subjective factors, it is then
referred as epistemic uncertainty. Models for describing epistemic uncertainty
include, among others, fuzziness and intervals. If it is necessary to take ac-
count of both aleatoric and epistemic effects, uncertainty is accounted for by
the model fuzzy randomness.

In the case of time series the uncertainty of the individual observed values
as well as the interpretation of a sequence of uncertain observed values are of
interest.

The uncertainty of a single observed value is always epistemic. The uncer-
tain observed value is thus modeled as a fuzzy variable, as illustrated in Fig.
1.6. The major causes of this type of uncertainty have already been outlined
in Sect. 1.1.

1

0
xx

� r
x

� l

�
x
( )x~

membership

function
x~

Fig. 1.6. Fuzzy variable x̃

The fuzzy variable x̃ may take on values in the interval rx0 l; x0 rs. The
values are assessed between zero and unity by means of a membership function
µx̃pxq. This assessment reflects the subjective and objective causes of the
existing uncertainty, and may be used to describe the uncertain observed
value. Fuzzy variables contain intervals and real numbers as special cases, as
illustrated in Fig.1.7.
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Fig. 1.7. Interval and real-valued number as special cases of a fuzzy variable x̃

Modeling of the individual observed values as fuzzy variables results in
so-called fuzzy time series, as shown by way of example in Fig. 1.8. Starting
from the uncertain observed values, the aim is to forecast future uncertain
values. For this purpose the dependencies existing in the sequence of uncertain
observed values are analyzed and modeled.

1 2 3 . . . . . . -2 -1k N N N. . . . . . N N N+1 +2 +3 �

x
�
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x2~
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x
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N-1~ x
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~
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�
x
k

(
)

x
~

x
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~

~

elapsed time period future time period

Fig. 1.8. Time series containing fuzzy variables

Modeling as a fuzzy random process. Forecasts are possible if it may
be assumed that the fuzzy time series may be modeled with the aid of a
fuzzy random process. A fuzzy random process is defined as a family of fuzzy
random variables X̃τ .

Fuzzy random variables, as introduced in Sect. 2.2, belong to the uncer-
tainty model fuzzy randomness. A time series of fuzzy data may be viewed
as a random realization of a fuzzy random process. The realizations of this
process are uncertain and thus referred to as fuzzy variables.

Only one sequence of uncertain observed values is available for determin-
ing the underlying fuzzy random process. Methods for specifying the fuzzy
random process in any given case are developed in Sect. 3.5. A knowledge of
this process is a precondition for the forecast. The required forecasting meth-



1.3 Examples of Fuzzy Time Series 7

ods are formulated in Sect. 4.2. By means of a new incremental discretization
of the fuzzy variables and fuzzy random variables the uncertainty is fully re-
tained in the forecast. The uncertainty is also not artificially increased. This
incremental representation is absolutely necessary for a direct description as
well as for modeling and forecasting purposes. ‘direct’ implies that the se-
quence of the fuzzy variables is retained during the description, modeling and
forecasting phases. No form of defuzzification or refuzzification is undertaken.

Modeling using Artificial Neural Networks. As an alternative to fuzzy
random processes, methods for modeling and forecasting fuzzy time series
using Artificial Neural Networks are developed in Sect. 3.6 and Sect. 4.3, re-
spectively. The conventional multilayer perceptrons associated with the latter
are extended in such a way that they may be applied to time series for fuzzy
variables. A precondition for this extension is again the new incremental dis-
cretization mentioned in the foregoing. An Artificial Neural Network is first
trained in an optimization process. Training is carried out on the basis of
the particular fuzzy time series concerned. Different forecasting strategies are
developed for forecasting purposes.

The use of Artificial Neural Networks does not require an explicit deter-
mination of the underlying fuzzy random process.

1.3 Examples of Fuzzy Time Series

The practical relevance of fuzzy time series is demonstrated by the following
two examples. Further examples are given in Sect. 5.

The total global ozone change between 1965 and 2000 is shown in Fig. 1.9.
The time series from 1980 onwards reflects the uncertainty of the measured
data. The reason for this uncertainty is due to inaccuracies in measurements.
The uncertainty is hence epistemic in nature and may be modeled by fuzziness.

Fig. 1.9. Uncertain time series of total global ozone change [69]
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The second example (Fig. 1.10) concerns measurements of the earth pres-
sure acting on a wall. Several closely arranged pressure transducers are in-
stalled on the wall. The measured values differ from one pressure transducer to
the next. The different observed values signalize uncertainty. Instead of com-
puting an average value, this uncertainty is taken into consideration. Fuzzy
variables are constructed for the measured values at each point in time. Fig.
1.10 shows a cut-out segment of the obtained fuzzy time series. The complete
time series begins with measurements made in 1999.

�

p
�

~

36

18

[kPA]

2005 2006 2007

Fig. 1.10. Uncertain time series of earth pressure measurements (cut-out segment)
[14]

Fuzzy time series analogous to those presented in the above examples are
frequently encountered in engineering and environmental science. These share
the common feature of measurable observed values. Forecasting of the latter
is possible using the forecasting strategies developed in Sect. 4. If the forecasts
of measurable observed values are combined with a computational model, it is
also possible to forecast non-measurable observed values such as the damage
state of a structure. Model-based forecasting strategies for this purpose are
developed and demonstrated by way of examples in Sect. 5.



2

Mathematical Description of Uncertain Data

In this chapter fuzzy variables and fuzzy random variables for the mathe-
matical description of uncertain data are introduced and new forms of their
numerical representation especially suitable for uncertainty forecasting are de-
veloped. The mathematical description of uncertain data is limited to these
basic concepts, which are essential for forecasting by means of fuzzy random
processes and artificial neural networks Fuzzy set theory forms the mathe-
matical basis for fuzzy variables. Several introductory books exist which deal
with fuzzy set theory, see e.g. [5, 11, 36, 71]. Fuzzy random variables couple
the uncertainty models of fuzziness and randomness. The underlying princi-
ples of this theory are presented in [5, 27, 28, 36, 44, 53, 66]. The numerical
representation is based on the new lαrα-discretization and is a prerequisite
for the exact numerical reproduction of the uncertain values of a time series.

2.1 Fuzzy Variables

Definition 2.1. A fuzzy variable x̃ is defined as an uncertain subset of the
fundamental set X.

x̃ � tx, µx̃pxq |x P Xu (2.1)

�

The uncertainty is assessed by the membership function µx̃pxq. A fuzzy vari-
able x̃ and its membership function µx̃pxq are shown in Fig. 2.1.

Definition 2.2. A normalized membership function µx̃pxq is defined as fol-
lows:

0 ¤ µx̃pxq ¤ 1 @ x P R (2.2)

D xl, xr with µx̃pxq � 1 @ x P rxl;xrs . (2.3)

�
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x
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Fig. 2.1. Fuzzy variable x̃ and its membership function µx̃pxq

A fuzzy variable x̃ is referred to as convex if its membership function µx̃pxq
monotonically decreases on each side of the maximum value, i.e. if

µx̃px2q ¥ min rµx̃px1q; µx̃px3qs @x1, x2, x3 P R with x1 ¤ x2 ¤ x3 (2.4)

applies.
The membership function may be continuous or discrete. Piecewise con-

tinuous membership functions are dealt with in the following.

Definition 2.3. A convex fuzzy variable x̃ is referred to as a fuzzy number
if its membership function µx̃pxq is piecewise continuous and if it has the
functional value µx̃pxq � 1 at precisely one of the x values with x � xl � xr

according to Eq. (2.5).

xl � min rx P R | µx̃pxq � 1s (2.5)
and xr � max rx P R | µx̃pxq � 1s

In the case xl   xr the fuzzy variable x̃ constitutes a fuzzy interval. The point
xl is referred to as the peak point of the fuzzy variable. �

In order to describe a fuzzy number x̃Z or a fuzzy interval x̃I the so-called
LR fuzzy number or the LR fuzzy interval may be used (see amongst others
[5, 11, 36, 71]). The membership function of an LR fuzzy number or LR fuzzy
interval is described by an Lp�q-function and an Rp�q-function. If the functions
Lp�q and Rp�q fulfill the following four conditions:

Lp�q and Rp�q are piecewise continuous from the left (2.6)
Lp�q and Rp�q are monotonically non-increasing (2.7)
Lp0q � Rp0q � 1 (2.8)
Lpyq � 0 and Rpzq � 0, @ y ¡ 1 and @ z ¡ 1 . (2.9)

the membership function µx̃pxq of a fuzzy variable x̃ may be formulated ac-
cording to Eq. (2.10).
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µx̃pxq �

$''''&
''''%

L
�

xl�x
a

�
if x   xl

1 if xl ¤ x ¤ xl � s

R
�

x�xl�s
b

�
if x ¡ xl � s

(2.10)

The variable xl constitutes the peak point. The variables a, b and s � xr �xl

are parameters of the membership function as shown in Fig. 2.2.

( )

1

0
xx

��� r
x

��� l
x

l
x

r

�
x
( )x~

x~
s

a b

x-x
l

a
( )L

x-x -s
l

b
R

peak point

Fig. 2.2. LR-representation of a fuzzy variable x̃

In the special case a � 0 or b � 0 the left or right boundary functions Lp�q
and Rp�q are defined by Eq. (2.11) and Eq. (2.12), respectively.

L

�
xl � x

a



� 0 if x   xl (2.11)

R

�
x� xl � s

b



� 0 if x ¡ xl � s (2.12)

Under the implicit convention that the boundary functions Lp�q and Rp�q are
known, the common abridged notation x̃I � pxα�0 l;xl;xr;xα�0 rqLR is used
for describing a fuzzy interval x̃I . In order to describe a fuzzy number x̃Z with
xr � xl the abridged notation x̃Z � pxα�0 l;xl;xα�0 rqLR is used.

2.1.1 Classical and Incremental Discretization of Fuzzy Variables

α-Discretization of Fuzzy Variables

For all α P p0, 1s closed finite intervals rxαl;xαrs may be extracted from a
convex fuzzy variable x̃. The boundaries xαl and xαr of the intervals are given
by Eqs. (2.13) and (2.14), respectively.

xαl � minrx P R |µx̃pxq ¥ αs (2.13)
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xαr � maxrx P R |µx̃pxq ¥ αs (2.14)

These intervals are referred to as α-level sets Xα. The set

Sx̃ � tx P R |µx̃pxq ¡ 0u (2.15)

of a fuzzy variable x̃ is referred to as the support. The support Sx̃ of a fuzzy
variable x̃ is referred to as an α-level set Xα with α � 0 notwithstanding Eqs.
(2.13) and (2.14). The interval boundaries xαl and xαr of the α-level set Xα�0

are then given by Eqs. (2.16) and (2.17).

xαl � lim
α1Ñ�0

�
min

�
x P R |µx̃pxq ¡ α1

��
for α � 0 (2.16)

xαr � lim
α1Ñ�0

�
max

�
x P R |µx̃pxq ¡ α1

��
for α � 0 (2.17)

For different α-level sets of the same fuzzy variable x̃ the following holds:

Xαk
� Xαi

@αi, αk P r0; 1s with αi ¤ αk . (2.18)

Thus a convex fuzzy variable x̃ may be characterized by a family of α-level
sets Xα according to Eq. (2.19).

x̃ � pXα � rxαl, xαrs |α P r0, 1sq (2.19)

If the number of α-level sets is denoted by n, then for i � 1, 2, ..., n � 1 the
following holds provided that n ¥ 2:

0 ¤ αi ¤ αi�1 ¤ 1 (2.20)
α1 � 0 and αn � 1 (2.21)
Xαi�1 � Xαi

. (2.22)

Example 2.4. A convex fuzzy variable x̃ characterized by n � 4 α-level sets
Xα is shown in Fig. 2.3. �

lαrα-Discretization of Fuzzy Variables

The α-level sets Xαi are now considered separately for i � 1, 2, ..., n � 1 and
i � n.

For i � 1, 2, ..., n�1 each α-level set Xαi
of a convex fuzzy variable x̃ may

be specified as the union of the α-level set Xαi�1 and the set X�
αi

according
to Eq. (2.23).

Xαi � Xαi�1 YX�
αi

@αi, αi�1 P r0; 1s with αi ¤ αi�1 (2.23)

The set X�
αi

is defined by two closed finite intervals rxαill;xαilrs and rxαirl;
xαirrs. The interval boundaries of the set X�

αi
are given by Eqs. (2.24) and

(2.25).
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Fig. 2.3. α-discretization of a fuzzy variable x̃

xαill � xαil and xαilr � xαi�1l (2.24)

xαirl � xαi�1r and xαirr � xαir (2.25)

With the aid of these definitions the interval boundaries of the α-level set Xαi

may be expressed by the following equations.

xαil � xαi�1l �∆xαil with ∆xαil � xαilr � xαill (2.26)

xαir � xαi�1r �∆xαir with ∆xαir � xαirr � xαirl (2.27)

The terms ∆xαil and ∆xαir are referred to as lαrα-increments and permit
the lαrα-discretization of a fuzzy variable.

For i � n the following equations hold, whereby the term ∆xαnl is assigned
to the peak point xl.

xαnl � ∆xαnl with ∆xαnl � xl (2.28)

xαnr � xαnl �∆xαnr with ∆xαnr � xr � xl (2.29)

The α-level sets must fulfill Eq. (2.18). For this reason the lαrα-increments of
a convex fuzzy variable x̃ must be non-negative according to Eqs. (2.30) and
(2.31). The requirement of non-negativity must not be fulfilled at the peak
point.

∆xαil ¥ 0 for i � 1, 2, ..., n� 1 (2.30)

∆xαir ¥ 0 for i � 1, 2, ..., n (2.31)

By way of Eqs. (2.26) to (2.31) the lαrα-discretization is introduced. Fig. 2.4
illustrates the lαrα-discretization of a fuzzy variable x̃ for n � 4.
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Fig. 2.4. lαrα-discretization of a fuzzy variable x̃

The lαrα-discretization permits an alternative, discrete representation of
a fuzzy variable x̃ in the form of a column matrix according to Eq. (2.32),
whereby the terms ∆x1, ∆x2, ..., ∆x2n are abridged notations of the lαrα-
increments ∆xα1l, ∆xα2l, ..., ∆xα1r.

x̃ �

�
�������������

∆xα1l

∆xα2l

...
∆xαnl

∆xαnr

...
∆xα2r

∆xα1r

�
�������������
�

�
�������������

∆x1

∆x2

...
∆xn

∆xn�1

...
∆x2n�1

∆x2n

�
�������������

(2.32)

Remark 2.5. If it is necessary to add a subscript to a fuzzy variable x̃, e.g.
x̃j , the following notation is adopted.

x̃j �

�
��

∆xα1lpjq
...

∆xα1rpjq

�
�� �

�
��

∆x1pjq
...

∆x2npjq

�
�� (2.33)

�

With the introduction of the lαrα-increments ∆xαil and ∆xαir the enhance-
ment of the classical LR-representation of a fuzzy variable x̃ follows. Provided
that Eqs. (2.20) to (2.22) hold, the membership function µx̃pxq of a convex
fuzzy variable x̃ may then be expressed by Eq. (2.34).
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µx̃pxq �

$''''''''''&
''''''''''%

Lαi,i�1

�
xαi�1l�x

∆xαil

	
� pαi�1 � αiq � αi if xαil ¤ x   xαi�1l

1 if xl ¤ x ¤ xl � s

Rαi,i�1

�
x�xαi�1r

∆xαir

	
� pαi�1 � αiq � αi if xαi�1r   x ¤ xαir

0 else

(2.34)

The gradient of the membership function between the α-levels αi and αi�1

(i � 1, 2, ..., n � 1) is determined by the left and right boundary functions
Lαi,i�1p�q and Rαi,i�1p�q. The boundary functions Lαi,i�1p�q and Rαi,i�1p�qmust
likewise comply with the conditions given by Eqs. (2.6) to (2.9).

Example 2.6. The lαrα-discretization of a fuzzy variable x̃ and the enhanced
LR-representation according to Eq. (2.34) are demonstrated by way of the
fuzzy number shown in Fig. 2.5.
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Fig. 2.5. Exemplary fuzzy number x̃

The corresponding left and right boundary functions Lαi,i�1p�q and Rαi,i�1p�q
are given in Table 2.1.

Table 2.1. Left and right boundary functions Lαi,i�1p�q and Rαi,i�1p�q

Lα3,4pyq � 1 � y Rα3,4pzq � 1 � z2

Lα2,3pyq � 1 � y Rα2,3pzq �
4
3
� 1

3
pz � 1q2

Lα1,2pyq � py � 1q2 Rα1,2pzq � 1 � z

with y �
xαi�1l�x

∆xαil
with z �

x�xαi�1r

∆xαir
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The membership function µx̃pxq according to Eq. (2.34) is obtained by
insertion of the lαrα-increments ∆xαil and ∆xαir and the interval boundaries
xαil and xαir given in Fig. 2.5. �

The lαrα-discretization of a fuzzy variable x̃ presented in this section forms
the basis for the numerical methods developed for analyzing and forecasting
of fuzzy time series.

2.1.2 Incremental Fuzzy Arithmetic

In the context of the analysis and forecasting of fuzzy time series a new fuzzy
arithmetic based on the lαrα-increments is required. For this purpose it is
presupposed that all fuzzy variables are given in lαrα-increment representation
according Eq. (2.32). The following operators are introduced.

Definition 2.7. The lαrα-multiplication of a real-valued r2n, 2ns matrix A by
a fuzzy variable x̃ represented by n α-level sets and 2n lαrα-increments is
defined by the operator d according to Eq. (2.35).

Ad x̃ � z̃ (2.35)

The arithmetic operation constitutes the matrix product according to Eq.
(2.36) and results in the lαrα-increments ∆zj (j � 1, 2, ..., 2n) of the fuzzy
result variable z̃.�
������

a1,1 a1,2 . . . a1,2n�1 a1,2n

a2,1 a2,2 . . . a2,2n�1 a2,2n

...
...

. . .
...

...
a2n�1,1 a2n�1,2 . . . a2n�1,2n�1 a2n�1,2n

a2n,1 a2n,2 . . . a2n,2n�1 a2n,2n

�
������

�
������

∆x1

∆x2

...
∆x2n�1

∆x2n

�
������ �

�
������

∆z1

∆z2

...
∆z2n�1

∆z2n

�
������(2.36)

�

Remark 2.8. Real-valued r2n, 2ns matrices are processed e.g. by the param-
eter specification of fuzzy ARMA processes, see Sect. 3.5.5. �

The fact that the fuzzy result variable z̃ must comply with Eq. (2.18) means
that Eq. (2.37) must be satisfied for j � 1, 2, ..., n� 1, n� 1, ..., 2n.

∆zj � aj,1∆x1 � ...� aj,2n∆x2n ¥ 0 (2.37)

The requirement of non-negativity must not be fulfilled for j � n, i.e. at the
peak point ∆zn � ∆zαnl � zαnl.

Remark 2.9. If Eq. (2.37) is not fulfilled, the fuzzy result variable z̃ is un-
derstood to be a fuzzy variable in the improper sense. Fuzzy variables in the
improper sense are only permitted as intermediate results of arithmetic oper-
ations. �
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In the special case that the matrix A is a diagonal matrix with identical
elements the lαrα-multiplication by a fuzzy variable x̃ is defined in a simplified
form by Eq. (2.38).

Ad x̃ �

�
��

a � � � 0
...

. . .
...

0 � � � a

�
��d x̃ � ax̃ (2.38)

Furthermore, special fuzzy addition and subtraction operators are required.

Definition 2.10. The symbols ` and a represent the lαrα-addition and lαrα-
subtraction of the fuzzy variables x̃ and ỹ according to Eq. (2.39).

z̃ � x̃` ỹ and z̃ � x̃a ỹ (2.39)

The fuzzy result variable z̃ must also comply with Eq. (2.18). The correspond-
ing conditions are given by Eq. (2.40), whereby the upper operators are applied
for the lαrα-addition and the lower for the lαrα-subtraction. The requirement
of non-negativity must likewise be fulfilled except at the peak point.

∆zi � ∆xi �∆yi ¥ 0 for i � 1, 2, ..., n� 1, n� 1, ..., 2n (2.40)

∆zi � ∆xi �∆yi for i � n (2.41)

�

Thus the interval boundaries rzαil; zαirs of the fuzzy variable z̃ are obtained
for each α-level αi successively according to Eqs. (2.42) and (2.43),

zαil � zαi�1l �∆xαil 	∆yαil (2.42)

with zαnl � xαnl � yαnl and

zαir � zαi�1r �∆xαir �∆yαir (2.43)

with zαnr � zαnl �∆xαnr �∆yαnr .

Remark 2.11. If Eqs. (2.40) and (2.41) are not fulfilled, the fuzzy result
variable z̃ is understood to be a fuzzy variable in the improper sense (compare
remark 2.9), which is only permitted as the intermediate results of arithmetic
operations. �

Applying the lαrα-addition and lαrα-subtraction given by Eq. (2.39), the as-
signed LR-representation of the fuzzy result variable z̃ depends on the func-
tions Lαi,i�1p�q and Rαi,i�1p�q of the summed fuzzy variables x̃ and ỹ. If the
types of the functions Lαi,i�1p�q and Rαi,i�1p�q of the fuzzy variables x̃ and ỹ
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are identical for each α-level αi, the same functions are obtained for the en-
hanced LR-representation of the fuzzy result variable. In the case of different
types the functions Lz,αi,i�1p�q and Rz,αi,i�1p�q of the fuzzy result variable z̃
are obtained according to Eqs. (2.44) and (2.45), respectively.

Lz,αi,i�1p�q �
�
∆xαilL

�1
x,αi,i�1

p�q �∆yαilL
�1
y,αi,i�1

p�q
	�1

(2.44)

Rz,αi,i�1p�q �
�
∆xαirR

�1
x,αi,i�1

p�q �∆yαirR
�1
y,αi,i�1

p�q
	�1

(2.45)

Taking into consideration the priority rule (d precedes `), it is possible to
combine the introduced operators according to Eq. (2.46).

z̃ � Ad x̃` ...a ...` ...`B d ỹ (2.46)

The arithmetic operations are carried out separately with the lαrα-increments
of each α-level. The usual calculation rules for real-valued numbers thereby
hold, in particular the compliance with calculation hierarchy. Only the final
lαrα-increments ∆zi must be non-negative, whereas negative intermediate
results arising from the application of the associative law are permitted. Such
intermediate fuzzy variables are regarded as fuzzy variables in the improper
sense according to remark 2.9 and remark 2.11.

∆zi ¥ 0 for i � 1, 2, ..., n� 1, n� 1, ..., 2n (2.47)

The requirement according to Eq. (2.47) also represents a boundary condition
for the description and modeling of fuzzy time series.

Remark 2.12. As an abbreviated notation of a sum of fuzzy variables x̃1 `
x̃2 ` ... ` x̃k, the lαrα-summation operator according to Eq. (2.48) is intro-
duced.

x̃1 ` x̃2 ` ...` x̃k �
kà

j�1

x̃j (2.48)

�

2.1.3 Subtraction of Fuzzy Variables

The introduced lαrα-subtraction according to Eq. (2.39) is now compared
with the HUKUHARA difference presented in [20] as well as the subtraction
according the extension principle (see [5, 36, 71]), and the different properties
are discussed.

Definition 2.13. According to [20] the HUKUHARA difference x̃aH ỹ be-
tween two fuzzy variables x̃ and ỹ is defined as the solution z̃ of the equation
ỹ ` z̃ � x̃:
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x̃aH ỹ � z̃ ô ỹ ` z̃ � x̃ .

The HUKUHARA difference is not defined if the subtrahend ỹ is character-
ized by a higher degree of uncertainty (e.g. a wider support) than the minuend
x̃. �

If the HUKUHARA difference exists, the lαrα-subtraction yields the same
results as the HUKUHARA difference. Both of the arithmetic operations
result in fuzzy variables z̃ characterized by a lower uncertainty than the min-
uend. This type of subtraction differs from the substraction according the
extension principle (see [5, 36, 71]).

The extension principle represents an alternative mathematical basis for a
mapping z̃ � fpx̃, ỹ, ...q of the fuzzy variables x̃, ỹ, ... onto z̃.

Definition 2.14. The fuzzy result variable z̃ � fpx̃, ỹ, ...q according the ex-
tension principle is determined by

z̃ � tz, µz̃pzq | z � fpx, y, ...q; z P Z; px, y, ...q P X�Y � ...u (2.49)

with the fundamental sets X, Y, ..., Z and the membership function

µz̃pzq �

$&
%

supminz�fpx, y, ...qrµx̃pxq, µỹpyq, ...s if D z � fpx, y, ...q

0 otherwise
(2.50)

The mapping function fp�q in the foregoing may be arbitrary. �

Applying the extension principle to the substraction, the interval boundaries
rzαl; zαrs of the α-level sets Zα of the fuzzy result variable z̃ � x̃minus ỹ are
given by Eqs. (2.51) and (2.52), respectively.

zαl � xαl � yαl @ α P r0, 1s (2.51)
zαr � xαr � yαr � 2yl @ α P r0, 1s (2.52)

The subtraction according the extension principle thus leads to a higher de-
gree of uncertainty of the fuzzy result variable z̃. Unlike the lαrα-subtraction,
the lαrα-addition according to Eq. (2.39) and the addition according to the
extension principle yield the same fuzzy result variable.

The basic distinction between the lαrα-subtraction and the HUKUHARA
difference lies in the treatment of differences, i.e. which subtrahend possesses
a higher degree of uncertainty (e.g. a wider support) than the minuend. In this
case the HUKUHARA difference is not defined, whereas the lαrα-subtraction
yields fuzzy result variables with negative lαrα-increments, i.e. fuzzy variables
in the improper sense, which are permitted as intermediate results. In the
context of fuzzy time series, however, only the final fuzzy result variables of a
sequence of arithmetic operations must be fuzzy variables in the proper sense.
This is a basic condition for the analysis and forecasting of fuzzy time series.

The following two examples illustrate the different kinds of subtraction of
fuzzy variables.
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Example 2.15. The first example demonstrates the fundamental distinction
between the lαrα-subtraction, the HUKUHARA difference, and the subtrac-
tion according the extension principle. For a given minuend x̃ � p2.7; 3; 4qLR

and a given subtrahend ỹ � p1.4; 1.5; 2.3qLR the different subtractions are
illustrated in Fig. 2.6. The extension principle yields a fuzzy result variable
z̃ with a higher degree of uncertainty, whereas the lαrα-subtraction and the
HUKUHARA difference lead to a lower degree of uncertainty.
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Fig. 2.6. Comparison of lαrα-subtraction, HUKUHARA difference, and subtraction
according the extension principle – Example 2.15

�

Example 2.16. The second example illustrates the case in which the subtra-
hend possesses a higher degree of uncertainty than the minuend. The minuend
x̃ � p2.7; 3; 4qLR, the subtrahend ỹ � p0.5; 1.5; 2.3qLR and the different sub-
tractions are shown in Fig. 2.7. The subtraction according the extension prin-
ciple increases the degree of uncertainty of the fuzzy result variable, whereas
the HUKUHARA difference is not defined in this case. The lαrα-subtraction
yields a fuzzy result variable in the improper sense, i.e. for the chosen lαrα-
discretization with n � 2 α-levels the lαrα-increment ∆xα1l becomes negative.
Metaphorically speaking, the lαrα-increment ∆xα1l ‘snaps through’.
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Fig. 2.7. Comparison of lαrα-subtraction, HUKUHARA difference, and subtraction
according the extension principle – Example 2.16

�

Moreover, the generalized HUKUHARA difference presented in [20] differs
from the lαrα-subtraction. The generalized HUKUHARA difference yields
an approximate solution, e.g. a real-valued number, if the subtrahend is
more uncertain than the minuend. From this it follows that the generalized
HUKUHARA difference is not applicable in equations such as (2.53), whereas
the lαrα-subtraction may in fact be used.

px̃a ỹq ` ỹ � x̃ (2.53)

Remark 2.17. The concept of a best possible difference (accordingly the gen-
eralized HUKUHARA difference) may be applied to transform a fuzzy variable
in the improper sense into a fuzzy variable in the proper sense. The best pos-
sible approximation ˆ̃z is given by Eqs. (2.54) to (2.56). The following holds
for i � 1, 2, ..., n� 1 and j � 1, 2, ..., n:
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∆ẑαnl � ∆zαnl (2.54)

∆ẑαil �

$''''&
''''%

0 if ∆zαil   0

0 if ∆zαil ¥ 0 ^
n�1°
t�i

∆zαtl  
n�1°

s�i�1

∆ẑαsl

n�1°
t�i

∆zαtl �
n�1°

s�i�1

∆ẑαsl if ∆zαil ¥ 0 ^
n�1°
t�i

∆zαtl ¥
n�1°

s�i�1

∆ẑαsl

(2.55)

∆ẑαjr �

$''''&
''''%

0 if ∆zαjr   0

0 if ∆zαjr ¥ 0 ^
n°

t�j

∆zαtr  
n°

s�j�1

∆ẑαsr

n°
t�j

∆zαtr �
n°

s�j�1

∆ẑαsr if ∆zαjr ¥ 0 ^
n°

t�j

∆zαtr ¥
n°

s�j�1

∆ẑαsr

(2.56)

�

2.1.4 Distance between Fuzzy Variables

The modeling and forecasting of fuzzy time series requires a definition of the
distance dF px̃; ỹq between two fuzzy variables x̃ and ỹ.

Definition 2.18. According to the metrics introduced in [24], the distance
dF px̃; ỹq between the fuzzy variables x̃ and ỹ is defined as the integral over the
HAUSDORFF distance dHp�; �q between the α-level sets Xα and Yα of x̃ and
ỹ, as given by Eq. (2.57).

dF px̃; ỹq �

1»
0

dH pXα;Yαq dα (2.57)

According to [21], the HAUSDORFF distance dH pXα;Yαq between two non-
empty closed finite α-level sets Xα;Yα � R is defined by Eq. (2.58).

dH pXα;Yαq � max
"

sup
xPXα

inf
yPYα

dE px; yq ; sup
yPYα

inf
xPXα

dE px; yq
*

(2.58)

The term dEpx; yq represents the EUCLIDean distance between two real-
valued variables x, y P R according to Eq. (2.59).

dE px; yq � |x� y| �
a
px� yq2 (2.59)

�

Example 2.19. This is illustrated by a calculation of the distance dF px̃; ỹq
between the fuzzy variables x̃ and ỹ, as shown in Fig. 2.8.
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Fig. 2.8. Distance dF px̃; ỹq between the fuzzy variables x̃ and ỹ

The HAUSDORFF distance dH pXα�0;Yα�0q between the α-level sets Xα�0

and Yα�0 of the support of both fuzzy variables x̃ and ỹ is given by Eq. (2.60).

dH pXα�0;Yα�0q � max tdE px � 1; y � 2q ; dE px � 3; y � 6qu (2.60)
� max t1; 3u � 3

The HAUSDORFF distance for the α-level α � 1 is obviously dHpXα�1;
Yα�1q � 2. Integration of the HAUSDORFF distance dH pXα;Yαq over all α-
levels yields the distance dF px̃; ỹq between the fuzzy variables x̃ and ỹ. In this
case the integration according to Eq. (2.57) may be reduced to a computation
of the surface area of a trapezium according to Eq. (2.61). The result is also
depicted in Fig. 2.8.

dF px̃; ỹq �

1»
0

dH pXα;Yαq dα (2.61)

�
dH pXα�0;Yα�0q � dH pXα�1;Yα�1q

2
� 2, 5

�

2.1.5 Fuzzy Functions

Definitions and basic terms relating to fuzzy functions have been introduced
and enhanced by various authors, e.g. [3, 11, 36]. The definition of a fuzzy
function according to [36] is presented in the following. Given are:

- the fundamental sets X � R and Y � R,
- the set FpXq of all fuzzy variables x̃ on the fundamental set X,
- the set FpYq of all fuzzy variables ỹ on the fundamental set Y.

Definition 2.20. The mapping of FpYq onto FpXq that assigns precisely one
x̃ P FpXq to each ỹ P FpYq is referred to as a fuzzy function denoted by
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x̃pỹq : FpYq Ñ FpXq . (2.62)

�

For each ỹ P FpYq the fuzzy function x̃pỹq yields the fuzzy result x̃ỹ � x̃pỹq
with x̃ỹ P FpXq. This represents the mapping of the fuzzy variables ỹ P FpYq
onto the fuzzy variables x̃ỹ P FpXq.

According to lαrα-discretization, a fuzzy function

x̃ � f̃pỹq (2.63)

may be formulated in an incremental manner. The following thus holds for
the lαrα-increments in the general case:

∆xj � fj p∆y1,∆y2, ...,∆y2nq for j � 1, 2, ..., 2n . (2.64)

The deterministic functions fjp�q are classical functions which are referred to
as trajectories.

Taking the general incremental notation according to Eq. (2.64) as a basis,
the following special cases are introduced:

• the lαrα-increments ∆xj only depend on the associated lαrα-increments
∆yj

∆xj � fj p∆yjq for j � 1, 2, ..., 2n (2.65)

• the deterministic functions fjp�q are the same for each lαrα-increment ∆xj

∆xj � f p∆y1,∆y2, ...,∆y2nq for j � 1, 2, ..., 2n (2.66)

• the lαrα-increments ∆xj only depend on the associated lαrα-increments
∆yj , and the deterministic functions fjp�q are the same for each lαrα-
increment ∆xj

∆xj � f p∆yjq for j � 1, 2, ..., 2n . (2.67)

A further special case is when the fuzzy function f̃pỹq yields the result x � f̃pỹq
(with x P R) for each ỹ P FpYq. For this case, in which the fuzzy function
yields real-valued results, the notation of Eq. (2.63) reduces to the notation
of Eq. (2.68) as follows.

x � fpỹq (2.68)

The deterministic function fp�q then maps the lαrα-increments ∆yj onto the
result variable x according to Eq. (2.69).

x � f p∆y1,∆y2, ...,∆y2nq (2.69)

The special case according to Eq. (2.67) finds application for defining the
fuzzy activation functions of the artificial neural networks for fuzzy variables
presented in Sect. 3.6 whereas the special case according to Eq. (2.68) is used
for defining the fuzzy probability distribution functions presented in Sect. 2.2.
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Example 2.21. In the following example an lαrα-discretization is chosen with
n � 2 α-level sets. Given are the diagonal matrices:

A �

�
���

a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44

�
��� and B �

�
���

b11 0 0 0
0 b22 0 0
0 0 b33 0
0 0 0 b44

�
��� . (2.70)

For the fuzzy function

x̃ � f̃pỹq � Ad ỹ `B (2.71)

the lαrα-increments ∆xj of the fuzzy result x̃ are then obtained according to
Eq. (2.72).

∆xj � ajj ∆yj � bjj for j � 1, 2, ..., 2n (2.72)

�

2.2 Fuzzy Random Variables

The representation of fuzzy random variables X̃ developed in this book is
based on the definition of fuzzy random variables according to [27, 28], see
also [36]. The space of the random elementary events Ω is now introduced.
A fuzzy realization X̃pωq � x̃ is assigned to each elementary event ω P Ω,
whereby each fuzzy realization X̃pωq � x̃ is an element of the set FpRq of all
convex fuzzy variables on R. Accordingly, a fuzzy random variable may be
defined as follows.

Definition 2.22. A fuzzy random variable X̃ is defined by the mapping

X̃ : Ω Ñ FpRq (2.73)

with X̃pωq � x̃ P FpRq
and ω P Ω .

�

Each fuzzy realization X̃pωq � x̃ is defined as a convex, normalized fuzzy set,
whose membership function µx̃pxq � µX̃pωqpxq has to fulfill the requirements
formulated in Subsection lαrα-Discretization of Fuzzy Variables on p. 12.

Example 2.23. Fig. 2.9 shows five fuzzy realizations X̃pωq of a fuzzy random
variable X̃.
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Fig. 2.9. Convex fuzzy realizations X̃pωq of a fuzzy random variable X̃, e.g. as a
result of uncertain measurements

�

Definition 2.24. A fuzzy random variable X̃ is referred to as a discrete fuzzy
random variable if it possesses only finite or at most countable infinite differ-
ent realizations x̃1, x̃2, ..., x̃m. This means that each possible realization of a
discrete fuzzy random variable X̃ may be assigned to a natural number bijec-
tively (unique and reversible). �

Definition 2.25. A fuzzy random variable X̃ is referred to as a continuous
fuzzy random variable if it possesses uncountable realizations. This means that
each list x̃1, x̃2, x̃3, ... of possible realizations of a continuous fuzzy random
variable X̃ is incomplete. �

2.2.1 Classical and Incremental Discretization of Fuzzy Random
Variables

α-Discretization of Fuzzy Random Variables

Under the assumption of convex fuzzy realizations X̃pωq � x̃, a fuzzy random
variable X̃ may be characterized by a family of random α-level sets Xα

according to Eq. (2.74).

X̃ � pXα � rXαl,Xαrs |α P r0, 1sq (2.74)

In other words, closed finite random intervals rXαl; Xαrs are obtained, i.e. the
interval boundaries Xαl : Ω Ñ R and Xαr : Ω Ñ R are real-valued random
variables. The realizations Xαlpωq and Xαrpωq are assigned to each elementary
event ω P Ω. The random variables Xαl and Xαr are defined by Eqs. (2.75)
and (2.76), respectively, for α P p0, 1s. For α � 1 the random variable Xαl is
referred to as a random peak point.

Xαlpωq � min
�
x P R |µX̃pωqpxq ¥ α

�
(2.75)
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Xαrpωq � max
�
x P R |µX̃pωqpxq ¥ α

�
(2.76)

The support of a fuzzy random variable X̃ is given by the random set SX̃p�q

according to Eq. (2.77).

SX̃pωq �
!
x P R |µX̃pωqpxq ¡ 0

)
(2.77)

The support SX̃p�q of a fuzzy random variable X̃ is also referred to as a random
α-level set Xα with α � 0. The associated interval boundaries Xαl and Xαr

are defined by Eqs. (2.78) and (2.79), respectively.

Xαlpωq � lim
α1Ñ�0

�
min

�
x P R |µX̃pωqpxq ¡ α1

��
for α � 0 (2.78)

Xαrpωq � lim
α1Ñ�0

�
max

�
x P R |µX̃pωqpxq ¡ α1

��
for α � 0 (2.79)

The random intervals rXαl; Xαrs and the random membership function µX̃p�qpxq

of a fuzzy random variable X̃ are illustrated in Fig. 2.10, which also shows
assumed probability distribution functions of the random variables Xαl and
Xαr.
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Fig. 2.10. Random α-level sets Xα and random membership function µX̃p�qpxq of a
fuzzy random variable X̃

According to Eqs. (2.75) to (2.79), a fuzzy random variable X̃ may be
represented by its real-valued random interval boundaries Xαl and Xαr with
α P r0; 1s. The realizations of the random variables Xαl and Xαr represent
the boundaries of classical intervals. The totality of these intervals constitutes
the α-level sets Xα of a convex fuzzy variable x̃. According to Eq. (2.73),
the convex fuzzy variable x̃ is thus a realization of the fuzzy random variable
X̃. Each convex realization x̃ of a fuzzy random variable X̃ must fulfill the
requirement according to Eq. (2.80).
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Xαk
� Xαi

@αi, αk P r0; 1s with αi ¤ αk (2.80)

The requirement according to Eq. (2.80) implies that the α-level sets of a
realization x̃ are linked interactively. The random intervals rXαl; Xαrs of a
fuzzy random variable X̃ are thus mutually dependent. The dependencies are
referred to as interaction. The interaction is taken into consideration with the
aid of the lαrα-discretization of the fuzzy random variables.

lαrα-Discretization of Fuzzy Random Variables

The concept of lαrα-discretization of fuzzy variables may be extended to fuzzy
random variables.

A requirement for each random α-level set Xαi of a fuzzy random variable
X̃ is that Xαi may be represented as the union of the contained random α-level
set Xαi�1 and the random set X�

αi
according to Eq. (2.81).

Xαi � Xαi�1 YX�
αi

@αi, αi�1 P p0; 1s with αi ¤ αi�1 (2.81)

The random set X�
αi

is defined by two disjoint random intervals rXαill; Xαilrs
and rXαirl; Xαirrs with real-valued random boundaries according to Eqs.
(2.82) and (2.83), respectively.

Xαill � Xαil and Xαilr � Xαi�1l (2.82)

Xαirl � Xαi�1r and Xαirr � Xαir (2.83)

The random α-level set Xαi is thus characterized by the random interval
boundaries Xαil and Xαir according Eqs. (2.84) and (2.85), respectively.

Xαil � Xαi�1l �∆Xαil with ∆Xαil � Xαilr �Xαill (2.84)

Xαir � Xαi�1r �∆Xαir with ∆Xαir � Xαirr �Xαirl (2.85)

In this definition the terms ∆Xαil and ∆Xαir are correlated random variables
and are referred to as random lαrα-increments of the fuzzy random vari-
able X̃. Eqs. (2.82) to (2.85) hold for i � 1, 2, ..., n � 1, whereas for i � n,
Eqs. (2.84) and (2.85) are replaced by Eqs. (2.86) and (2.87). The counter n
specifies the number of α-levels.

Xαnl � ∆Xαnl with αn � 1 (2.86)

Xαnr � Xαnl �∆Xαnr with αn � 1 (2.87)

Recapitulating, the lαrα-discretization of a fuzzy random variable X̃ is given
by Eq. (2.88) with i � 1, 2, ..., n for n ¥ 2.
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X̃ �
�
Xαi

� rXαi�1l �∆Xαil; Xαi�1r �∆Xαirs |αi P r0, 1q; (2.88)
Xαi

� rXαil; Xαil �∆Xαirs |αi � 1 q

The lαrα-discretization permits an alternative, discrete representation of a
fuzzy random variable X̃ in the form of a random column matrix given by Eq.
(2.89), whereby the real-valued random variables ∆X1, ∆X2, ..., ∆X2n are
abridged notations of the random lαrα-increments ∆Xα1l, ∆Xα2l, ..., ∆Xα1r.

X̃ �

�
�������������

∆Xα1l

∆Xα2l

...
∆Xαnl

∆Xαnr

...
∆Xα2r

∆Xα1r

�
�������������
�

�
�������������

∆X1

∆X2

...
∆Xn

∆Xn�1

...
∆X2n�1

∆X2n

�
�������������

(2.89)

The random lαrα-increments of the fuzzy random variable X̃ must fulfill the
requirements according to Eq. (2.90) and Eq. (2.91) in order to fulfill Eq.
(2.80).

∆Xαil ¥ 0 for i � 1, 2, ..., n� 1 (2.90)

∆Xαir ¥ 0 for i � 1, 2, ..., n (2.91)

For i � n the random lαrα-increment ∆Xαnl is assigned to the random peak
point Xαnl. The requirement of non-negativity must not be fulfilled at the
random peak point.

The random lαrα-increments ∆Xαil and ∆Xαir of a fuzzy random variable
X̃ are illustrated schematically in Fig. 2.11.
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Fig. 2.11. Random lαrα-increments of a fuzzy random variable X̃
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2.2.2 Fuzzy Probability Distribution Functions of Fuzzy Random
Variables

A fuzzy random variable X̃ according to Eq. (2.73) may be described with
the aid of fuzzy probability distribution functions. Different forms of fuzzy
probability distribution functions have already been developed, see e.g. [36,
66]. Two forms of fuzzy probability distribution functions based on different
probability measures for fuzzy random variables are presented in the following.

The first form is based on the fuzzy probability measure introduced in [36]
and is referred to as the fuzzy probability distribution function form I. The
fuzzy probability distribution function form I may be obtained by statistical
evaluation of a concrete sample comprised of fuzzy elements. This approach,
however, does not permit the precise reproduction of the underlying sample
elements (e.g. by Monte Carlo simulation). The fuzzy probability distribution
function form I may be advantageously applied, amongst others, in structural
analysis [36, 38], in the Fuzzy Stochastic Finite Element Method (FSFEM) [35,
62] and in the safety assessment of structures [39, 63]. The fuzzy probability
distribution function form I is not applicable for the analysis and forecasting
of fuzzy time series.

The second form represents a new type of fuzzy probability distribution
function and permits the precise reproduction of samples comprised of fuzzy
elements. This is referred to as the fuzzy probability distribution function form
II, which is especially suitable for the analysis of fuzzy time series [41]. Form
II is based on the lαrα-discretization of fuzzy random variables introduced in
Sect. 2.2.

Fuzzy Probability Distribution Function Form I (FPDF I)

The definition of the fuzzy probability distribution function form I F̃X̃pxq is
based on the fuzzy probability P̃ pAq. Only one-dimensional fuzzy random vari-
ables are considered here. Multi-variate fuzzy random variables are introduced
in [36].

Definition 2.26. The fuzzy probability P̃ pAq is defined according to [36] as
the set of all probabilities P pX̃ P Aq with the membership values µpP pX̃ P Aqq,
which take into account all states of occurrence of X̃ P A. The set A thereby
represents a deterministic set in the EUKLIDean space R. �

Remark 2.27. The fuzzy probability space belonging to the fuzzy probability
P̃ pAq including the concept of measurability for fuzzy random variables is
described in detail in [36] and is not discussed in this application-oriented
book. �

In order to determine the fuzzy probability P̃ pAq the fuzzy random variable
X̃ is represented as family of random α-level sets Xα according to Eq. (2.92).
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X̃ � pXα � rXαl,Xαrs |α P r0, 1sq (2.92)

The random α-level sets Xα are closed finite intervals rXαl; Xαrs for each α-
level, and the elements of Xα are elements of A with a certain probability. This
probability is referred to as the fuzzy probability P̃ pAq of A, and is defined
as follows by Eq. (2.93).

P̃ pAq � pPαpAq � rPαlpAq; PαrpAqs |α P r0; 1sq (2.93)

The bounds PαlpAq and PαrpAq of the α-level sets PαpAq are given by Eqs.
(2.94) and (2.95), respectively.

PαlpAq � P pXα � Aq (2.94)

PαrpAq � P pXα XA � Øq (2.95)

The fuzzy probability distribution function form I F̃X̃pxq of the fuzzy random
variable X̃ is then defined as the fuzzy probability P̃ pAq with A � tt | t  
x; x, t P Ru. F̃X̃pxq thus represents a fuzzy function with the fuzzy functional
values F̃X̃pxq defined by Eq. (2.96).

F̃X̃pxq � pFαpxq � rFαlpxq; Fαrpxqs |α P r0; 1sq (2.96)

with Fαlpxq � P pXαr   x |x P Rq

and Fαrpxq � P pXαl   x |x P Rq

According to Eq. (2.96) the empirical fuzzy probability distribution function
form I may be obtained for a given sample comprised of fuzzy data.

Definition 2.28. For a given sample comprised of s fuzzy variables x̃1, x̃2,

..., x̃s the empirical fuzzy probability distribution function form I ˆ̃Fspxq is
defined by Eq. (2.97).

ˆ̃Fspxq �
�
F̂αpxq � rF̂αlpxq; F̂αrpxqs |α P r0; 1s

	
(2.97)

with F̂αlpxq �
1
s

ş

k�1

Ip�8,xs pxαlpkqq

and F̂αrpxq �
1
s

ş

k�1

Ip�8,xs pxαrpkqq

The function Ip�8,xsp�q is the indicator function according to Eq. (2.98), and
xαlpkq and xαrpkq are the interval boundaries of the α-level set Xαpkq of the
kth sample element x̃k.
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Ip�8,xspzq �

$&
%

1 if z P p�8, xs

0 if z R p�8, xs
(2.98)

�

Example 2.29. For the exemplary sample of s � 4 fuzzy variables shown in
Fig. 2.12 the empirical fuzzy probability distribution function form I ˆ̃F4pxq is
computed according to Eq. (2.97).
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Fig. 2.12. Exemplary sample of fuzzy variables

The result is illustrated in Fig. 2.13. The empirical fuzzy probability distri-
bution function form I ˆ̃F4pxq is computed by separate analysis of the interval
boundaries of the α-level sets of the fuzzy variables. As no account is taken of
interaction between the different α-level sets, reproduction of the underlying
fuzzy sample elements is not possible. �
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Fig. 2.13. Empirical fuzzy probability distribution function form I ˆ̃F4pxq of the
exemplary sample

Hence the empirical fuzzy probability distribution function form I ˆ̃Fspxq
does not yield a one to one description of the realizations of a fuzzy random
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variable X̃. The reproduction of underlying empirical sample elements is only
possible for specific samples. The modeling of fuzzy time series, however, re-
quires a one to one description of the realizations of fuzzy random variables
X̃. An suitable solution is presented in the next section.

For the numerical treatment of fuzzy random variables X̃ the fuzzy proba-
bility distribution function form I F̃X̃pxq may be advantageously represented
by means of fuzzy bunch parameters. For this purpose the so-called originals
of fuzzy random variables are introduced.

Definition 2.30. The realization x of a real-valued random variable X as well
as the fuzzy realization x̃ of a fuzzy random variable X̃ may be assigned to an
elementary event ω P Ω. If the x are contained in x̃, i.e. x P x̃ for all elemen-
tary events ω P Ω, then the x constitute an original Xj of X̃. The original Xj

is referred to as completely contained in X̃. Each real-valued random variable
X that is completely contained in X̃ thus possesses the property of an original
Xj. From this it follows that the fuzzy random variable X̃ may also be defined
as a fuzzy set of all possible originals Xj contained in X̃. Thus X̃ may be
represented by the assessed bunch of their originals, which may be specified by
means of fuzzy bunch parameters s̃.

X̃ � Xps̃q (2.99)

�

The bunch of originals may be assessed with the aid of fuzzy bunch parameters
s̃. Each vector of fuzzy bunch parameters sj P s̃ with the membership value
µpsjq definitely determines one original with Xj � Xpsjq. A fuzzy random
variable X̃ may thus be defined as a family of the originals Xj P X̃ with
µpXjq � µpXpsjqq � µpsjq.

X̃ � Xps̃q �
�
Xj � Xpsjq |µpXjq � µpsjq @ sj P s̃

�
(2.100)

The originals Xj represent real-valued random variables for which the real-
valued probability distribution functions FXpsj , xq exist. Using these real-
valued probability distribution functions FXpsj , xq the fuzzy probability dis-
tribution function form I F̃X̃pxq of the fuzzy random variable Xps̃q may then
be expressed by F̃X̃pxq � FX̃ps̃, xq. This is the bunch parameter representa-
tion of the fuzzy probability distribution function. The real-valued probability
distribution functions FXpsj , xq are also referred to as trajectories of FX̃ps̃, xq.

FX̃ps̃, xq �
�
Fαps̃, xq � rinfpFXpsj , xqq; suppFXpsj , xqqs (2.101)

| sj P s̃, α P r0; 1s
�

Fuzzy Probability Distribution Function Form II (FPDF II)

The fuzzy probability distribution function form II is based on the determinis-
tic probability measure P pF pAqq, whereby F pAq is a finite, countable infinite
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or uncountable infinite subset of fuzzy variables contained in the determinis-
tic set A. The set F pAq is referred to as a discrete set if it contains only a
finite or countable infinite number of fuzzy variables. This means that each
fuzzy element of a discrete set F pAq of fuzzy variables may be assigned to a
natural number bijectively (uniquely and reversibly). If the set F pAq contains
an uncountable number of fuzzy variables, it is referred to as a continuous set.
This means that each list x̃1, x̃2, x̃3, ... of fuzzy elements of a continuous set
F pAq of fuzzy variables is incomplete.

Definition 2.31. The probability measure P pF pAqq expresses the probability
with which a fuzzy random variable X̃ takes a value x̃ belonging to the (discrete
or continuous) set F pAq of fuzzy variables, i.e. X̃ � x̃ P F pAq � FpRq. FpRq
denotes the set of all fuzzy variables in the EUKLIDean space R. �

Remark 2.32. The probability space belonging to the probability P pF pAqq
including the concept of measurability for fuzzy random variables is equivalent
to the probability space of random matrices (see amongst others [10]), because
each fuzzy random variable may be represented by a random column matrix
according to Eq. (29). The probability space is thus not discussed in this
application-oriented book. �

Example 2.33. Let F pAq be a discrete subset of three fuzzy variables ã1, ã2

and ã3 contained in the deterministic set A. Fig. 2.14 shows four realizations
x̃1, x̃2, x̃3 and x̃4 of a fuzzy random variable X̃ with x̃2, x̃4 P F pAq and
x̃1, x̃3 R F pAq. �
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Fig. 2.14. Deterministic set A and discrete set F pAq of three fuzzy variables ãj

(j � 1, 2, 3) showing realizations x̃k (k � 2, 4) and x̃l (l � 1, 3) of a fuzzy random
variable X̃

Compared with the fuzzy probability P̃ pAq according to Eq. (2.93), it is not
the uncertain probability of the event X̃ P A that is described in this case
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but rather the deterministic probability of the (complete) membership of re-
alizations x̃ of a fuzzy random variable X̃ to a (finite, countable infinite or
uncountable infinite) set F pAq of fuzzy variables. The probability with which
a realization x̃ of a fuzzy random variable X̃ is an element of the set F pAq of
fuzzy variables is denoted by P pF pAqq of F pAq and is defined by Eq. (2.102).

P pF pAqq �
!
P pX̃q | X̃ � x̃ P F pAq

)
(2.102)

The fuzzy probability distribution function form II may thus be defined in
two different coordinate systems, as presented in the following.

FPDF II in the coordinate system of the interval bounds. For the
numerical computation of the probability P pF pAqq the fuzzy random vari-
able X̃ is represented as a family of random α-level sets Xα according to Eq.
(2.103).

X̃ � pXα � rXαl,Xαrs |α P r0, 1sq (2.103)

The bounds of the closed, finite random intervals rXαl; Xαrs which determine
the α-level sets Xα are real-valued, interactively linked random variables. Each
of the random variables Xαl and Xαr may be described by a real-valued prob-
ability distribution function FXαl

pxαlq and FXαr
pxαrq, respectively. The real-

izations of the random variables Xαl and Xαr are denoted by xαl and xαr,
respectively. According to Sect. 2.1.1 the realizations xαl and xαr represent
the interval boundaries of the α-level sets of the realizations x̃ of the fuzzy
random variable X̃. Realizations x̃ of the fuzzy random variable X̃ are thus
represented by realizations xαl and xαr of the random variables Xαl and Xαr,
respectively. The probability P pF pAqq according to Eq. (2.102) may hence be
expressed by the probability with which realizations xαl and xαr correspond
to the interval boundaries aαl and aαr of an element ã of F pAq.

For the numerical computation the fuzzy random variable X̃ is represented
by n α-level sets. The realizations xα1l, ..., xαnl and xα1r, ..., xαnr of the
random interval boundaries Xα1l, ..., Xαnl and Xα1r, ..., Xαnr, respectively,
are thus regarded as the coordinates of the 2n-dimensional coordinate system
of the interval bounds.

Definition 2.34. The fuzzy probability distribution function form II FX̃px̃q

of the fuzzy random variable X̃, which is discretized by n ¥ 2 random α-
level sets rXαil; Xαirs, is defined as the 2n-dimensional probability distribution
function of the random variables Xαil and Xαir according to Eq. (2.104),
whereby xα1l, ..., xαnl and xα1r, ..., xαnr are the interval boundaries of the
α-level sets Xα of the fuzzy variable x̃. These form the coordinates in the
coordinate system of the interval bounds.



36 2 Mathematical Description of Uncertain Data

FX̃px̃q � P ptω |Xα1lpωq ¤ xα1l, ..., Xαnlpωq ¤ xαnl, (2.104)
Xα1rpωq ¤ xα1r, ..., Xαnrpωq ¤ xαnruq

� P ptXα1l ¤ xα1l, ..., Xαnl ¤ xαnl,

Xα1r ¤ xα1r, ..., Xαnr ¤ xαnruq

�

For each random variable Xαil and Xαir (i � 1, 2, ..., n) of a fuzzy random
variable X̃ the real-valued probability distribution functions FXαil

pxαilq and
FXαir

pxαirq are given by Eqs. (2.105) and (2.106), respectively. Both of these
correspond with the marginal distribution function of the 2n-dimensional
probability distribution function FX̃px̃q according to Eq. (2.104).

FXαil
pxαilq � lim

xαjl,xαkrÑ8

j,k�1,2,...,n
j�i

FX̃px̃q (2.105)

FXαir
pxαirq � lim

xαjl,xαkrÑ8

j,k�1,2,...,n
k�i

FX̃px̃q (2.106)

According to the definition 2.34 the empirical fuzzy probability distribution
function form II may be derived in the coordinate system of the interval
bounds. This presupposes that a sample of s fuzzy variables x̃1, x̃2, ..., x̃s is
available.

Definition 2.35. The empirical fuzzy probability distribution function form
II F̂spx̃q for a sample of s fuzzy variables x̃1, x̃2, ..., x̃s is defined in the coor-
dinate system of the interval bounds by Eq. (2.107).

F̂spx̃q �

#
"

x̃j |
xα11pjq¤xα11, ..., xαn1pjq¤xαn1

xα1rpjq¤xα1r, ..., xαnrpjq¤xαnr
, j � 1, 2, ..., s

*
s

(2.107)

�

The coordinates xα1l, ..., xαnl and xα1r, ..., xαnr are the interval bounds
of the α-level sets Xα of the fuzzy variable x̃, and xα1lpjq, ..., xαnlpjq and
xα1rpjq, ..., xαnrpjq are the interval bounds of the fuzzy variables x̃1, x̃2, ..., x̃s.
The symbol #t�u denotes the number of fuzzy variables x̃j pj � 1, 2, ..., sq
for which the requirements xα11pjq ¤ xα11, ..., xαn1pjq ¤ xαn1 and xα1rpjq ¤
xα1r, ..., xαnrpjq ¤ xαnr are fulfilled. According to Eq. (2.107) the empiri-
cal fuzzy probability distribution function form II F̂spx̃q is a monotonically
non-decreasing 2n-dimensional step function.

Example 2.36. The computation of F̂spx̃q is demonstrated by means of the
exemplary sample of 4 fuzzy variables, as shown in Fig. 2.12. In this case the
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peak point of each fuzzy sample element is identical with the right boundary
of the associated support interval. The multidimensional empirical probability
distribution function F̂spx̃q according to Eq. (2.107) may hence be depicted
two-dimensionally. Discretization of the fuzzy variables is thus applied for two
α-levels (α1 � 0 and α2 � 1).

Applying Eq. (2.107), it is necessary to determine the number #t�u of fuzzy
variables x̃j for which the requirements xα11pjq¤xα11, ..., xαn1pjq¤xαn1 and
xα1rpjq¤xα1r, ..., xαnrpjq¤xαnr are fulfilled. The functional values of F̂4px̃q
for a selected number of coordinates xα1l, xα2l, xα1r and xα2r are shown in
Table 2.2.

Table 2.2. Computation of the empirical fuzzy probability distribution function
form II F̂4px̃q in the coordinate system of the interval bounds

Coordinates Fuzzy variables #t�u F̂4px̃q
xα11 xα21 xα1r xα2r x̃j xα11pjq xα21pjq xα1rpjq xα2rpjq

1 4 4 4 – 0 0
1 5 5 5 x̃1 1 5 5 5 1 0.25
3 6 6 6 x̃1 1 5 5 5 2 0.5

x̃3 3 6 6 6
3 8 8 8 x̃1 1 5 5 5 3 0.75

x̃2 2 8 8 8
x̃3 3 6 6 6

4 8 8 8 x̃1 1 5 5 5 4 1
x̃2 2 8 8 8
x̃3 3 6 6 6
x̃4 4 7 7 7

...
...

The empirical fuzzy probability distribution function form II F̂4px̃q ob-
tained for this sample of fuzzy variables is shown in Fig. 2.15 together with
the empirical fuzzy probability distribution function form I according to Eq.
(2.96). This depiction illustrates the interrelation between the fuzzy proba-
bility distribution function form II according to Eq. (2.104) and the fuzzy
probability distribution function form I according to Eq. (2.96). The marginal
distributions of the multidimensional probability distribution function accord-
ing to Eq. (2.104) correspond to the left and right boundary functions of the
fuzzy probability distribution function form I. The uncoupled treatment of
the marginal distributions does not take account of the dependencies between
the different α-level sets. The interaction between the α-level sets of the fuzzy
realizations of a fuzzy random variable is only taken into account using the
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fuzzy probability distribution function form II. For this reason it is possible
to reproduce the underlying fuzzy sample elements. �
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Fig. 2.15. Empirical fuzzy probability distribution function form II F̂4px̃q in the
coordinate sytem of the interval bounds together with the empirical fuzzy probability
distribution function form I ˆ̃F4pxq for the exemplary sample

Remark 2.37. The fuzzy probability distribution function form I may be re-
garded as a simplified representation of form II, with the restriction that the
dependencies between the different α-level sets are not taken into considera-
tion. �

The simulation of a fuzzy random variable X̃ requires that the realizations
xα1l, ..., xαnl and xα1r, ..., xαnr of the interval boundaries must fulfill Eq.
(2.80). A simulation in the coordinate system of the interval bounds and thus
the fulfillment of Eq. (2.80) is exceedingly difficult, however. For this reason
the fuzzy random variable X̃ is expressed with the aid of lαrα-discretization.
The realizations ∆xα1l, ..., ∆xαnl and ∆xα1r, ..., ∆xαnr of the random lαrα-
increments ∆Xα1l, ..., ∆Xαnl and ∆Xα1r, ..., ∆Xαnr, respectively, are thus
regarded as the coordinates of the 2n-dimensional coordinate system of the
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increments. The random lαrα-increments must fulfill the requirements ac-
cording to Eqs. (2.90) and (2.91). The requirements are fulfilled easily if the
coordinates are restricted to the set of positive real numbers in Rn.

FPDF II in the coordinate system of the increments. For each α-
level the random lαrα-increments ∆Xαil and ∆Xαir are real-valued random
variables which are linked interactively. The realizations ∆xαil and ∆xαir of
the random lαrα-increments ∆Xαil and ∆Xαir, respectively, correspond to
the lαrα-increments aαil and aαir of a fuzzy element ã of F pAq with a specific
probability. This probability is expressed by the probability P pF pAqq.

Definition 2.38. The fuzzy probability distribution function form II FX̃px̃q

of a fuzzy random variable X̃ discretized by 2n random lαrα-increments ∆X1,
∆X2, ..., ∆X2n is defined as the 2n-dimensional probability distribution func-
tion lrFX̃px̃q in the coordinate system of the increments according to Eq.
(2.108), whereby ∆x1, ∆x2, ..., ∆x2n are the lαrα-increments of the fuzzy
variable x̃. These form the coordinates in the coordinate system of the in-
crements.

lrFX̃px̃q � P ptω |∆X1pωq ¤ ∆x1, ..., ∆X2npωq ¤ ∆x2nuq (2.108)

� P pt∆X1 ¤ ∆x1, ..., ∆X2n ¤ ∆x2nuq

�

Furthermore, a real-valued probability distribution function F∆Xi
p∆xiq ac-

cording to Eq. (2.109) exists for each random lαrα-increment ∆Xi (i �
1, 2, ..., 2n) of a fuzzy random variable X̃. The probability distribution func-
tions F∆Xip∆xiq given by Eq. (2.109) correspond to the marginal distribution
functions of the 2n-dimensional probability distribution function lrFX̃px̃q ac-
cording to Eq. (2.108).

F∆Xi
p∆xiq � lim

∆xjÑ8

j�1,2,...,2n
j�i

lrFX̃px̃q (2.109)

Owing to the requirement of non-negativity for the random lαrα-increments
∆Xi according to Eqs. (2.90) and (2.91) the following equation holds for the
marginal distribution functions F∆Xi

p∆xiq.

F∆Xi
p∆xiq � 0 | ∆xi   0 for i � 1, 2, ..., n� 1, n� 1, ..., 2n (2.110)

The requirement according to Eq. (2.110) does not hold for the probability
distribution function F∆Xn

p∆xnq at the random peak point ∆Xn � Xαnl due
to the fact that the requirement of non-negativity according to Eq. (2.90) does
not apply to Xαnl.
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Remark 2.39. Normally, the multi-dimensionality of the both fuzzy proba-
bility distribution functions form II FX̃px̃q and lrFX̃px̃q does not permit the
graphical representation of FX̃px̃q and lrFX̃px̃q. It is possible to graphically
illustrate the marginal distributions, however, without consideration of the
dimensionality, i.e. this is independent of the number of chosen α-levels. Al-
though this permits the use of the fuzzy probability distribution function form
I as a simplified graphical representation of form II, it is not able to completely
characterize a fuzzy random variable. For practical applications a tabular rep-
resentation or functional description of FX̃px̃q and lrFX̃px̃q is recommended.

�

For the special case of a discrete fuzzy random variable X̃ (see definition
2.24) a discrete fuzzy probability distribution function form II is obtained.
A discrete fuzzy random variable X̃ possesses a finite or countable infinite
number of realizations x̃1, x̃2, ..., x̃m. Each of these realizations appears with
a certain probability P pX̃ � x̃jq � Pj . The definition of the fuzzy probability
distribution function form II lrFX̃px̃q of a discrete fuzzy random variable X̃ is
thus given by Eq. (2.111), whereby j1, ..., j2n � 1, 2, ..., m holds.

lrFX̃px̃q �
¸

∆x1pj1q¤∆x1

...
∆x2npj2nq¤∆x2n

P pt∆X1 � ∆x1pj1q, ..., ∆X2n � ∆x2npj2nquq (2.111)

Example 2.40. A discrete fuzzy random variable X̃ may adopt ten different
realizations x̃1, x̃2, ..., x̃10. For the lαrα-increments ∆xipjq of the possible
realizations x̃j (j � 1, 2, ..., 10) Eq. (2.112) holds.

∆xipjq   ∆xipkq for j   k @ j, k � 1, 2, ..., 10 (2.112)
i � 1, 2, ..., 2n

Each of the ten realizations appears with a probability of P pX̃ � x̃jq �
1
10 . Selected functional values of the associated fuzzy probability distribution
function form II lrFX̃px̃q (evaluated according to Eq. (2.111)) are given in
Table 2.3.

Table 2.3. Selected functional values of a discrete fuzzy probability distribution
function form II lrFX̃px̃q in the coordinate system of the increments

lrFX̃px̃1q = 1
10 lrFX̃px̃6q = 6

10

lrFX̃px̃2q = 2
10 lrFX̃px̃7q = 7

10

lrFX̃px̃3q = 3
10 lrFX̃px̃8q = 8

10

lrFX̃px̃4q = 4
10 lrFX̃px̃9q = 9

10

lrFX̃px̃5q = 5
10 lrFX̃px̃10q = 1

�
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The fuzzy probability density functions form II lrfX̃px̃q of continuous fuzzy
random variables X̃ according to Definition 2.25 are obtained (analogous to
classical probability theory) by partial differentiation of the fuzzy probability
distribution function form II lrFX̃px̃q according to Eq. (2.113).

lrfX̃px̃q �
B2n

lrFX̃px̃q

B∆x1 � � � B∆x2n
(2.113)

The fuzzy probability distribution function form II lrFX̃px̃q of a continuous
fuzzy random variable X̃ may thus be obtained by inversion of the differenti-
ation given by Eq. (2.113), i.e. lrFX̃px̃q may be obtained by integration of the
fuzzy probability density function form II lrfX̃px̃q according to Eq. (2.114).

lrFX̃px̃q �

∆x1»
0

� � �

∆xn»
�8

� � �

∆x2n»
0

lrfX̃pt̃q d∆t1 � � � d∆tn � � � d∆t2n (2.114)

According to the definition 2.38 the empirical fuzzy probability distribution
function form II in the coordinate system of the increments may also be de-
rived. This presupposes that a sample of s fuzzy variables is available.

Definition 2.41. The empirical fuzzy probability distribution function form
II lrF̂spx̃q for a sample of s fuzzy variables x̃1, x̃2, ..., x̃s is defined in the
coordinate system of the increments by Eq. (2.115).

lrF̂spx̃q �
# tx̃j |∆x1pjq¤∆x1, ..., ∆x2npjq¤∆x2n, j � 1, 2, ..., su

s
(2.115)

�

The coordinates ∆x1, ∆x2, ..., ∆x2n are the lαrα-increments of the fuzzy
variable x̃, and ∆x1pjq, ∆x2pjq, ..., ∆x2npjq are the lαrα-increments of the
fuzzy variables x̃1, x̃2, ..., x̃s. The symbol #t�u denotes the number of fuzzy
variables x̃j pj � 1, 2, ..., sq for which the requirements ∆x1pjq ¤ ∆x1, ...,
∆x2npjq ¤ ∆x2n are fulfilled. According to Eq. (2.115) the empirical fuzzy
probability distribution function form II lrF̂spx̃q is a monotonically non-
decreasing 2n-dimensional step function.

Example 2.42. The computation of lrF̂spx̃q according to Eq. (2.115) is
demonstrated by way of the exemplary sample of 4 fuzzy variables, as shown
in Fig. 2.12. The fuzzy variables are discretized for two α-levels (α1 � 0 and
α2 � 1). The interval boundaries of the α-level sets and the lαrα-increments
of the fuzzy sample elements are shown in Fig. 2.16.

Eq. (2.115) is now applied to determine the number #t�u of fuzzy variables
x̃j (j � 1, 2, 3, 4) for which the requirements ∆x1pjq ¤ ∆x1, ..., ∆x2npjq ¤

∆x2n are fulfilled. The functional values of lrF̂spx̃q are also shown in Table
2.4 for a selected number of coordinates.
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Fig. 2.16. Exemplary sample of fuzzy variables

Table 2.4. Computation of the empirical fuzzy probability distribution function
form II lrF̂4px̃q in the coordinate system of the increments

Coordinates Fuzzy variables #t�u lrF̂4px̃q
∆x1 ∆x2 ∆x3 ∆x4 x̃j ∆x1pjq ∆x2pjq ∆x3pjq ∆x4pjq

3 5 0 0 – 0 0
3 6 0 0 x̃3 3 6 0 0 1 0.25
5 6 0 0 x̃1 4 5 0 0 2 0.5

x̃3 3 6 0 0
5 8 0 0 x̃1 4 5 0 0 3 0.75

x̃3 3 6 0 0
x̃4 3 7 0 0

6 8 0 0 x̃1 4 5 0 0 4 1
x̃2 6 8 0 0
x̃3 3 6 0 0
x̃4 3 7 0 0

...
...

Due to the fact that the peak point of each fuzzy sample element coin-
cides with the right-hand boundary of the associated support interval, i.e.
∆xα1r � 0 and ∆xα2r � 0, the four-dimensional empirical probability dis-
tribution function lrF̂4px̃q according to Eq. (2.115) may be represented two-
dimensionally. The resulting empirical fuzzy probability distribution function
form II lrF̂4px̃q is shown in Fig. 2.17. �

Empirical frequency distribution. For a concrete sample of fuzzy variables
an empirical frequency distribution may also be evaluated. In so doing, it is
necessary to draw a distinction between samples comprised of discrete or
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Fig. 2.17. Empirical fuzzy probability distribution function form II lrF̂spx̃q in the
coordinate system of the increments for the exemplary sample

continuous fuzzy random variables. This procedure, which is explained in the
following, requires an evaluation of the relative frequencies of the realizations
of the fuzzy random variable.

Under the condition that the realizations of the discrete fuzzy random
variable X̃ are restricted to the set ã1, ã2, ..., ãm of m different fuzzy variables,
the following definition holds.

Definition 2.43. Considering s realizations x̃1, x̃2, ..., x̃s of the discrete fuzzy
random variable X̃, the relative frequency rspãkq of the fuzzy variable ãk is de-
fined by Eq. (2.116) as follows:

rspãkq �
hspãkq

s
with k � 1, 2, ..., m . (2.116)

�

In this equation, hspãkq denotes the absolute frequency of ãk, i.e. the number
of realizations (sample elements) x̃ corresponding to ãk.

Example 2.44. Let us consider 60 realizations x̃1, x̃2, ..., x̃60 of a discrete
fuzzy random number X̃, which may be assigned to ten different fuzzy vari-
ables ã1, ã2, ..., ã10. Assuming that 18 fuzzy sample elements correspond to
the fuzzy variable ã1, the absolute frequency of ã1 is thus h60pã1q � 18. In ac-
cordance with Eq. (2.116) the relative frequency r60pã1q of the fuzzy variable
ã1 is hence r60pã1q �

18
60 � 0.3. �

Let x̃1, x̃2, ..., x̃s be a concrete sample of s realizations of a continuous fuzzy
random variable. In order to evaluate the frequencies of the sample it is
necessary to classify the lαrα-increments of the fuzzy sample elements. For
this purpose 2n intervals are constructed for the 2n random lαrα-increments,
which include all corresponding lαrα-increments of the sample elements in
each case. These intervals are subdivided into several classes, whereby the
individual classes are denoted by Ka1p1q, Ka2p2q, ..., Ka2np2nq. Taking mi to
be the number of classes for the ith random lαrα-increment, ai � 1, 2, ..., mi

holds.
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Definition 2.45. Let x̃1, x̃2, ..., x̃s be s realizations of a continuous fuzzy ran-
dom variable X̃. The relative class frequency rspKa1p1q, Ka2p2q, ..., Ka2n

p2nqq
of the sample is thus defined by Eq. (2.117).

rspKa1p1q,Ka2p2q, ...,Ka2n
p2nqq �

hspKa1p1q,Ka2p2q, ...,Ka2np2nqq

s
(2.117)

with ai � 1, 2, ..., mi

and i � 1, 2, ..., 2n

�

In the above equation, hspKa1p1q, Ka2p2q, ..., Ka2n
p2nqq is the absolute class

frequency of Ka1p1q, Ka2p2q, ..., Ka2np2nq, i.e. the number of fuzzy sample el-
ements whose lαrα-increments are all contained in the classes Ka1p1q, Ka2p2q,
..., Ka2n

p2nq.

Example 2.46. Let x̃1, x̃2, ..., x̃80 be a sample of 80 realizations of the con-
tinuous fuzzy random variable X̃. The fuzzy variables are discretized exem-
plarily by n � 2 α-level sets. For α � 0 all lαrα-increments ∆xα1l and ∆xα1r

are contained in the intervals r3.2; 4.1s and r1.8; 2.3s. For α � 1 all lαrα-
increments ∆xα2l and ∆xα2r are contained in the intervals r�50.3; �43.1s
and r1.3; 1.5s. These intervals are subdivided in each case into ten classes
K1piq, K2piq, ..., K10piq. The counter i � 1, 2, 3, 4 denotes the number of
the subdivided interval. For the purpose of demonstration the classes K1p1q,
K1p2q, K1p3q and K1p4q are analyzed. The lαrα-increments of four fuzzy sam-
ple elements are completely contained in the classes K1p1q, K1p2q, K1p3q and
K1p4q, i.e. the absolute class frequency of K1p1q, K1p2q, K1p3q and K1p4q is
given by h80pK1p1q,K1p2q,K1p3q,K1p4qq � 4. In accordance with Eq. (2.117)
the relative class frequency is thus computed to be r80pK1p1q,K1p2q,K1p3q,
K1p4qq � 4

80 � 0.05. �

Remark 2.47. The introduced relative class frequency of a sample of con-
tinuous fuzzy random variables may be approximately interpreted as an em-
pirical fuzzy probability density function form II lrf̂spx̃q. In this formulation
the relative class frequencies are replaced by the probabilities of occurence of
the fuzzy random variable. The interpretation of the relative frequency of a
discrete fuzzy random variable as a fuzzy probability density function form II
is not fully correct, however, as it is not a density function by definition. �

2.2.3 Characteristic Moments

As in the case of random variables, fuzzy random variables are characterized
using the first and second order moments. The definitions of the characteristic
moments on the basis of lαrα-discretization are presented in the following.
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Definition 2.48. The first order moment of a fuzzy random variable X̃ is the
fuzzy expected value ErX̃s � m̃X̃ given by Eq. (2.118). The fuzzy expected value
ErX̃s � m̃X̃ is a fuzzy variable which may be represented by lαrα-discretization
according to Eq. (2.32).

ErX̃s � m̃X̃ �

8»
0

� � �

8»
�8

� � �

8»
0

lrfX̃px̃q x̃ d∆x1 � � � d∆xn � � � d∆x2n (2.118)

The lαrα-increments ∆mαil and ∆mαir of the fuzzy expected value ErX̃s �
m̃X̃ of a fuzzy random variable X̃ are obtained according to Eq. (2.119).

ErX̃s � m̃X̃ �

�
�������

∆mα1l

...
∆mαnl

...
∆mα1r

�
�������
�

�
�������������

8³
0

∆xα1l f∆Xα1l
p∆xα1lqd∆xα1l

...
8³
�8

∆xαnl f∆Xαnl
p∆xαnlqd∆xαnl

...
8³
0

∆xα1r f∆Xα1r
p∆xα1rqd∆xα1r

�
�������������

(2.119)

�

The real-valued functions f∆Xαil
p∆xαilq and f∆Xαir

p∆xαirq are the probabil-
ity distribution functions of the random lαrα-increments ∆Xαil and ∆Xαir

(i � 1, 2, ..., n) of the fuzzy random variable X̃. It is only necessary to evalu-
ate the integral in the above equation from �8 to �8 for the lαrα-increment
∆mαnl of the peak point. The integration limits of the remaining integrals
follow from the requirements of Eqs. (2.90) and (2.91).

Remark 2.49. Although the number n of the chosen α-levels determines
the lαrα-increment representation of ErX̃s � m̃X̃, the fuzzy expected value
ErX̃s � m̃X̃ is inherently independent of n. �

Example 2.50. The fuzzy expected value ErX̃s � m̃X̃ of an exemplary fuzzy
random variable X̃ is illustrated in Fig. 2.18. �

Definition 2.51. Linear dependencies between the random lαrα-increments
of a fuzzy random variable X̃ are quantified by the lαrα-covariance kαil

�

αjr� ac-
cording to Eq. (2.120).

kαil
�

αjr� � E
�
p∆Xαil� �∆mαil�q

�
∆Xαjr� �∆mαjr�

��
(2.120)

�
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Fig. 2.18. Fuzzy expected value ErX̃s � m̃X̃ of a fuzzy random variable X̃

The subscripts αi and αj refer to the different α-levels, whereas l� � l, r and
r� � l, r denote the left-hand and right-hand branches of the memberhip func-
tions, respectively. The lαrα-covariance kαil

�

αjr� is computed for i, j � 1, 2, ..., n

by solving the integral given by Eq. (2.121).

kαil
�

αjr� �

8»
�8

8»
�8

p∆xαil� �∆mαil�q
�
∆xαjr� �∆mαjr�

�
... (2.121)

...f
�
∆xαil� ,∆xαjr�

�
d∆xαil�d∆xαjr�

The function f
�
∆xαil� ,∆xαjr�

�
is the joint probability density function of

the random lαrα-increments ∆Xαil� and ∆Xαir� according to definition 2.38.
The values of the lαrα-covariances kαil

�

αjr� are arranged in the lαrα-covariance
matrix lrKX̃ according to Eq. (2.122).

lrK
�
X̃
�
� lrKX̃ �

�
����������

kα1l
α1l kα2l

α1l � � � k
α2r
α1l kα1r

α1l

kα1l
α2l kα2l

α2l � � � k
α2r
α2l kα1r

α2l
...

...
. . .

...
...

kα1l
α2r kα2l

α2r � � � k
α2r
α2r kα1r

α2r

kα1l
α1r kα2l

α1r � � � k
α2r
α1r kα1r

α1r

�
����������

(2.122)

Definition 2.52. The scale-invariant lαrα-correlation matrix lrRX̃ given by
Eq. (2.123) is obtained by element-by-element division of the lαrα-covariance
matrix lrKX̃ by the associated diagonal elements according to Eq. (2.124).
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lrR
�
X̃
�
� lrRX̃ �

�
����������

rα1l
α1l rα2l

α1l � � � rα2r
α1l rα1r

α1l

rα1l
α2l rα2l

α2l � � � rα2r
α2l rα1r

α2l
...

...
. . .

...
...

rα1l
α2r rα2l

α2r � � � rα2r
α2r rα1r

α2r

rα1l
α1r rα2l

α1r � � � rα2r
α1r rα1r

α1r

�
����������

(2.123)

rαil
�

αj l� �
kαil

�

αj l�b
kαil�

αil�
k

αj l�

αj l�

(2.124)

�

Remark 2.53. The lαrα-covariance matrix lrKX̃ as well as the lαrα-correla-
tion matrix lrRX̃ are strictly dependent on the lαrα-increment representation
and thus dependent on the number n of chosen α-levels. The number n of
chosen α-levels determines the dimension of the matrices. �

Definition 2.54. The lαrα-variance lrV arrX̃s � lrσ
2
X̃

of a fuzzy random vari-
able X̃ is a measure of the variance of the realizations of X̃, and is represented
in the form of a column vector with r2ns elements. The elements of the vec-
tor correspond to the diagonal elements of the lαrα-covariance matrix lrKX̃

according to Eq. (2.125).

lrV arrX̃s � lrσ
2
X̃
�

�
��������������

kα1l
α1l

kα2l
α2l
...

kαnl
αnl

kαnr
αnr
...

kα2r
α2r

kα1r
α1r

�
��������������
�

�
�������������

lrσ
2
1

lrσ
2
2

...
lrσ

2
n

lrσ
2
n�1
...

lrσ
2
2n�1

lrσ
2
2n

�
�������������

(2.125)

�

Remark 2.55. The lαrα-variance lrσ
2
X̃

(i.e. the dimension of the vector and
its elements) is thus dependent on the number n of chosen α-levels. Generally
speaking, however, the lαrα-variance lrσ

2
X̃
pn1q based on the lαrα-discretization

with n1 α-levels is not directly transformable into the lαrα-variance lrσ
2
X̃
pn2q

based on n2 discrete α-levels. The transformation is performed with the aid
of the lαrα-standard deviation. The lαrα-standard deviation lrσX̃ is obtained
by extracting the positive square root for each element of the lαrα-variance
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lrσ
2
X̃

of a fuzzy random vector X̃ according to Eq. (2.126). The lαrα-standard
deviation lrσX̃ is thus a r2ns column vector with the vector elements

lrσi � �
b

lrσ2
i . (2.126)

In specific cases the lαrα-standard deviation lrσX̃pn1q based on the lαrα-
discretization with n1 α-levels may be transformed directly into the lαrα-
standard deviation lrσX̃pn2q with n2 underlying α-levels. For the specific case
of a fuzzy random variable X̃ whose realizations are in the form of fuzzy
triangular numbers or fuzzy intervals the transformation is given exemplarily
by Eq. (2.127).

lrσipn2q �

$''''''''&
''''''''%

1
n2�1

n1�1°
j�1

lrσjpn1q for i � 1, 2, ..., n2 � 1

lrσipn1q for i � n2, n2 � 1

1
n2�1

2n1°
j�n1�2

lrσjpn1q for i � n2 � 2, n2 � 3, ..., 2n2

(2.127)

�

Linear dependencies between the random lαrα-increments of a fuzzy random
variable X̃ and the random lαrα-increments of a fuzzy random variable Ỹ
are quantified by the lαrα-covariance matrix lrKrX̃, Ỹs � lrKX̃Ỹ and the
lαrα-correlation matrix lrRrX̃, Ỹs � lrRX̃Ỹ, respectively. Both lrKX̃Ỹ and
lrRX̃Ỹ correspond the r2n, 2ns matrices according Eqs. (2.122) and (2.123).
The elements of the lαrα-covariance matrix lrKX̃Ỹ are defined by Eq. (2.128),
whereby i, j � 1, 2, ..., n holds. The subscripts αi and αj likewise refer to the
different α-levels, whereas l� � l, r and r� � l, r specify the left-hand and
right-hand branches of the memberhip functions, respectively.

kαil
�

αjr�rX̃Ỹs �

8»
�8

8»
�8

�
∆xαil��∆mαil�pX̃q

	�
∆yαjr��∆mαjr�pỸq

	
... (2.128)

...f
�
∆xαil� ,∆yαjr�

�
d∆xαil�d∆yαjr�

Analogous to the application of Eq. (2.124), the elements of the scale-invariant
lαrα-correlation matrix lrRX̃Ỹ are obtained by dividing the lαrα-covariance
matrix lrKX̃Ỹ by the associated diagonal elements of the lαrα-covariance ma-
trices lrKX̃ and lrKỸ element-by-element according to Eq. (2.129).

rαil
�

αj l�rX̃Ỹs �
kαil

�

αj l�rX̃Ỹsb
kαil�

αil�
rX̃s k

αj l�

αj l� rỸs
(2.129)
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The correlation between the random lαrα-increments of a fuzzy random
variable X̃ may be impaired by the influence of fuzzy random variables
Ỹ1, Ỹ2, ..., Ỹm. In order to uncouple the influence of the fuzzy random vari-
ables Ỹ1, Ỹ2, ..., Ỹm on a fuzzy random variable X̃ the partial lαrα-correlation
matrix lrP X̃{Ỹ is defined.

Definition 2.56. After eliminating the influence of the fuzzy random vari-
ables Ỹ1, Ỹ2, ..., Ỹm, the partial lαrα-correlation matrix lrP X̃{Ỹ of a fuzzy
random variable is given by Eq. (2.130).

lrP X̃{Ỹ � lrR
�
X̃a ˇ̃X

�
(2.130)

�

The term ˇ̃X hereby represents the best linear approximation of the fuzzy
random variable X̃ by the fuzzy random variables Ỹ1, Ỹ2, ..., Ỹm, i.e. it holds
that

ˇ̃X � A1 d Ỹ1 `A2 d Ỹ2 ` ...`Am d Ỹm (2.131)

with the requirement according to Eq. (2.132).
2ņ

i�1

E

�
∆Xi �

2ņ

j�1

m̧

k�1

akri, js∆Yjpkq

�
!
� min (2.132)

The terms akri, js are the elements of the r2n, 2ns coefficient matrices Ak.
Compliance with Eq. (2.90) and Eq. (2.91) is not required, however, as
the lαrα-increments which arise during the computation of the partial lαrα-
correlation matrix lrP X̃{Ỹ only serve as intermediate results.

Furthermore, the correlations between the random lαrα-increments of two
fuzzy random variables X̃ and Z̃ may be influenced by fuzzy random vari-
ables Ỹ1, Ỹ2, ..., Ỹm. In order to eliminate the influence of the fuzzy random
variables Ỹ1, Ỹ2, ..., Ỹm on the correlations between X̃ and Z̃ the partial
lαrα-correlation matrix lrP X̃Z̃{Ỹ is defined.

Definition 2.57. After eliminating the influence of the fuzzy random vari-
ables Ỹ1, Ỹ2, ..., Ỹm, the partial lαrα-correlation matrix lrP X̃Z̃{Ỹ of two fuzzy
random variables X̃ and Z̃ is given by Eq. (2.133).

lrP X̃Z̃{Ỹ � lrR
�
X̃a ˇ̃X, Z̃a ˇ̃Z

�
(2.133)

�

The best linear approximations ˇ̃X and ˇ̃Z of the fuzzy random variables X̃ and
Z̃ by the fuzzy random variables Ỹ1, Ỹ2, ..., Ỹm are defined analogously by
Eqs. (2.131) and (2.132).

Remark 2.58. An estimation of the characteristic moments of a fuzzy ran-
dom variable by computing the empirical moments based on a concrete sample
of fuzzy variables is presented in Sect. 3.5.4 in the context of the description
and modeling of fuzzy time series. �



50 2 Mathematical Description of Uncertain Data

2.2.4 Monte Carlo Simulation of Fuzzy Random Variables

The numerical simulation of a fuzzy random variable X̃, i.e. the generation
of realizations x̃, is based on a Monte Carlo simulation. The Monte Carlo
simulation depends on the characteristic of the fuzzy random variable X̃, i.e.
whether X̃ is a continuous or a discrete fuzzy random variable.

Continuous fuzzy random variable. If the fuzzy random variable X̃ is con-
tinuous, it is computed as a one-to-one mapping of the uniformly distributed
fuzzy random variable Ỹ according to Eq. (2.134).

X̃ � fcpỸq (2.134)

The random lαrα-increments ∆Yj (j � 1, 2, ..., 2n) of the fuzzy random
variable Ỹ are in the interval r0, 1s uniformly distributed uncorrelated random
variables. The random lαrα-increments ∆Xj of the fuzzy random variable
X̃ are correlated according the lαrα-covariance matrix lrKX̃. The mapping
according to Eq. (2.134) is thus nontrivial and requires the transformation of
the fuzzy random variables X̃ and Ỹ into the correlated GAUSSian space. The
numerical procedure is described in the following.

The uniformly distributed uncorrelated random lαrα-increments ∆Yj of
the fuzzy random variable Ỹ in the interval r0, 1s are simulated with the aid
of pseudo random numbers (see e.g. [50]) or low-discrepancy numbers (see e.g.
[46]). The simulation yields realizations ∆yj of the random lαrα-increments
∆Yj . By applying the inverse probability distribution function method, the
realizations ∆yj (j � 1, 2, ..., 2n) are transformed into the uncorrelated
GAUSSian space according to Eq. (2.135).

∆uj � Φ�1p∆yjq (2.135)

The ∆uj are lαrα-increments of a realization ũ of the fuzzy random variable
Ũ. The random lαrα-increments ∆Uj of Ũ are uncorrelated GAUSSian dis-
tributed random variables with the standard normal probability distribution
function Φp�q. The fuzzy expected value and the lαrα-variance of the fuzzy
random variable Ũ are given by:

ErŨs � 0 (2.136)

lrV arrŨs � p1, 1, ..., 1qT . (2.137)

The realizations ũ of the fuzzy random variable Ũ are thus fuzzy variables in
the improper sense (see remark 2.11).

The realizations ũ are transformed into the correlated GAUSSian space
according to Eq. (2.138) (see also [57]).

s̃ � lrCS̃ d ũ (2.138)
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The fuzzy variables s̃ in the improper sense are realizations of the fuzzy ran-
dom variable S̃. The random lαrα-increments ∆Sj of S̃ are now correlated
GAUSSian distributed random variables with the standard normal probabil-
ity distribution function Φp�q. The matrix lrC S̃ is obtained by CHOLESKY
decomposition of the lαrα-covariance matrix lrK S̃ of the fuzzy random vari-
able S̃ according to Eq. (2.139).

lrK S̃ � lrC S̃ lrC S̃
T (2.139)

The real-valued matrix lrC S̃ represents the lower triangular matrix according
to Eq. (2.140).

lrC S̃ �

�
����

c1,1 0 � � � 0
c2,1 c2,2 � � � 0
...

...
. . .

...
c2n,1 c2n,2 � � � c2n,2n

�
���� (2.140)

The elements ku,vpS̃q of the lαrα-covariance matrix lrK S̃ are given implicitly
by Eq. (2.141) (see also [15]). For each (given) element ku,vpX̃q of the lαrα-
covariance matrix lrKX̃ the associated element ku,vpS̃q is obtained iteratively
by numerical solution of the integral given by Eq. (2.141).

ku,vpX̃q�

8»
�8

8»
�8

pF∆Xu

�1pΦp∆suqq�∆muqpF∆Xv

�1pΦp∆svqq�∆mvq... (2.141)

... φ∆Su∆Sv
p∆su,∆sv, ku,vpS̃qq d∆su d∆su

with u, v � 1, 2 , ..., 2n

In the above equation, F∆Xu
p�q and F∆Xv

p�q are the given probability distribu-
tion functions of the random lαrα-increments ∆Xu and ∆Xv, Φp�q is the stan-
dard normal probability distribution, and φ∆Su∆Sv p�q is the two-dimensional
standard normal probability density function of the GAUSSian distributed
random lαrα-increments ∆Su and ∆Sv. The terms ∆mu and ∆mv are the
lαrα-increments of the fuzzy expected value ErX̃s � m̃X̃.

The sought realizations x̃ of the fuzzy random variable X̃ are obtained by
increment-by-increment transformation of the fuzzy variables s̃ according to
Eq. (2.142)

∆xj � F∆Xj

�1 pΦp∆sjqq , j � 1, 2, ..., 2n , (2.142)

whereby the ∆sj are the increments of the realizations s̃ (see Eq. (2.138)).

Discrete fuzzy random variable. If the fuzzy random variable X̃ is dis-
crete, a simplified procedure is adopted for the Monte Carlo simulation. Let us
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consider the possible realizations x̃1, x̃2, ..., x̃m of the discrete fuzzy random
variable X̃ with the given probabilities of occurrence P px̃1q, P px̃2q, ..., P px̃mq.
In order to generate realizations from the set x̃1, x̃2, ..., x̃m a uniformly dis-
tributed random variable Y in the interval r0, 1s is simulated and transformed
according to Eq. (2.143).

X̃ � fdpYq (2.143)

The mapping according to Eq. (2.143) is performed numerically by a Monte
Carlo simulation of the random variable Y using pseudo random numbers
or low-discrepancy numbers. The simulation yields realizations y of Y. The
sought realizations x̃1, x̃2, ..., x̃m of the fuzzy random variable X̃ are obtained
by applying the following equation.

x̃ �

$''''''''''&
''''''''''%

x̃1 for 0 ¤ y  
°1

j�1 P px̃jq

x̃2 for
°1

j�1 P px̃jq ¤ y  
°2

j�1 P px̃jq

...
...

x̃m for
°m�1

j�1 P px̃jq ¤ y ¤ 1

(2.144)

Example 2.59. A discrete fuzzy random variable X̃ may take m � 4 dif-
ferent realizations x̃1, x̃2, x̃3, x̃4. Each of the four realizations occurs with a
probability according to Fig. 2.19, e.g. as estimated from a given sample with
s " m fuzzy elements.
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Fig. 2.19. Realizations x̃1, x̃2, x̃3, x̃4 and associated probabilities P px̃1q, P px̃2q,
P px̃3q, P px̃4q of the discrete fuzzy random variable X̃

Each Monte Carlo simulation yields a realization y of the uniformly distributed
random variable Y. The mapping according Eqs. (2.143) and (2.144) yields a
realization x̃1, x̃2, x̃3 or x̃4. The mapping is shown in Fig. 2.20 while several
results are listed in Table 2.5.
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Fig. 2.20. Simplified Monte Carlo simulation of the discrete fuzzy random
variable X̃

Table 2.5. Simplified Monte Carlo simulation of the discrete fuzzy random
variable X̃

y1 � 0.7698 Ñ j=3 Ñ x̃3

y2 � 0.4631 Ñ j=1 Ñ x̃1

y3 � 0.0185 Ñ j=1 Ñ x̃1

y4 � 0.6574 Ñ j=2 Ñ x̃2

...
...

�

Remark 2.60. The simplified Monte Carlo simulation permits the non-
parametric simulation of a fuzzy random variable by means of an existing
empirical probability distribution function form II (see definitions 2.35 and
2.41). �

2.3 Fuzzy Random Processes

In classical time series analysis use is made of the model concept that a given
sequence of deterministic observed values are random realizations of a random
process. This model concept may be extended to uncertain data. In the case
of a sequence of uncertain observed values this is considered to be a random
realization of a fuzzy random process. This leads to the creation of a fuzzy
random process model in compliance with the definition of fuzzy random
variables according to Sect. 2.2.

Definition 2.61. A fuzzy random process pX̃τ qτPT is defined as a family of
fuzzy random variables X̃τ over the space T of the time coordinate τ , and
represents the fuzzy result of the mapping according to Eq. (2.145) for τ P T.
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X̃τ : Ω Ñ FpRq (2.145)

In the foregoing Ω is the space of the random elementary events ω, and FpRq
is the set of all fuzzy variables in the EUCLIDian space R. By way of Eq.
(2.145) fuzzy realizations X̃τ pωq � x̃τ with τ P T are assigned to each random
elementary event ω P Ω. The realization of a fuzzy random process pX̃τ qτPT
is hence a fuzzy time series px̃τ qτPT. �

A fuzzy random process pX̃τ qτPT is referred to as stationary in strong sense
if the fuzzy random variables X̃τ are independent of the parameter τ .

X̃τ � X̃ @ τ P T (2.146)

Example 2.62. A family of four fuzzy random variables of a fuzzy random
process is shown in Fig. 2.21. A corresponding sequence of fuzzy realizations
relating to the elementary event ωi is presented in Fig. 2.22. This sequence
constitutes a time series. �
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Fig. 2.21. Fuzzy random variables of a fuzzy random process

The fuzzy random variables X̃τ of a fuzzy random process pX̃τ qτPT available
at time τ may be represented and characterized according to Sect. 2.2. This
means that a corresponding fuzzy probability distribution function form I or
II may be formulated for X̃τ at each point in time τ . Moreover, analogous to
random processes, the first and second order moments may be used for char-
acterizing fuzzy random processes. If the fuzzy random variables X̃τ of a fuzzy
random process pX̃τ qτPT are represented numerically by n α-levels with the
aid of lαrα-discretization, the following definitions hold for the characteristic
moments.

Definition 2.63. For each point in time τ the fuzzy expected value ErX̃τ s �
m̃X̃τ

of a fuzzy random process pX̃τ qτPT is defined according to Eq. (2.147).
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Fig. 2.22. Realization of a fuzzy random process

ErX̃τ s � m̃X̃τ
�

» 8

0

� � �

» 8

�8

� � �

» 8

0
lrfX̃τ

px̃q x̃ d∆x1 � � � d∆xn � � � d∆x2n (2.147)

ErX̃τ s is referred to as fuzzy expected value function. The lαrα-increments
∆mαilpτq and ∆mαirpτq of the fuzzy expected value function ErX̃τ s � m̃X̃τ

are computed according to Eq. (2.148).

ErX̃τ s� m̃X̃τ
�

�
�������

∆mα1lpτq
...

∆mαnlpτq
...

∆mα1rpτq

�
�������
�

�
�������������

8³
0

∆xα1l f∆Xα1l
p∆xα1l, τqd∆xα1l

...
8³
�8

∆xαnl f∆Xαnl
p∆xαnl, τqd∆xαnl

...
8³
0

∆xα1r f∆Xα1r p∆xα1r, τqd∆xα1r

�
�������������
(2.148)

The functions f∆Xαil
p∆xαil, τq and f∆Xαir

p∆xαir, τq in the foregoing are the
probability density functions of the random lαrα-increments ∆Xαilpτq and
∆Xαirpτq, respectively (with i � 1, 2, ..., n), of the fuzzy random variables X̃τ

at times τ . �

Definition 2.64. Linear dependencies between the fuzzy random variables
X̃τa

and X̃τb
of a fuzzy random process pX̃τ qτPT at times τa and τb are at-

tributed to the dependencies between the lαrα-random increments ∆X̃τa
and

∆X̃τb
. This leads to the lαrα-covariance matrix lrKX̃τ

pτa, τbq according to Eq.
(2.149). Taking into consideration arbitrary discrete points in time τa and τb,
lrKX̃τ

pτa, τbq is referred to as the lαrα-covariance function.
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lrKX̃τ
pτa, τbq�

�
����������

kα1l
α1lpτa, τbq kα2l

α1lpτa, τbq � � � kα2r
α1l pτa, τbq kα1r

α1l pτa, τbq

kα1l
α2lpτa, τbq kα2l

α2lpτa, τbq � � � kα2r
α2l pτa, τbq kα1r

α2l pτa, τbq
...

...
. . .

...
...

kα1l
α2rpτa, τbq kα2l

α2rpτa, τbq � � � kα2r
α2rpτa, τbq kα1r

α2rpτa, τbq

kα1l
α1rpτa, τbq kα2l

α1rpτa, τbq � � � kα2r
α1rpτa, τbq kα1r

α1rpτa, τbq

�
����������
(2.149)

�

The elements of the lαrα-covariance function lrKX̃τ
pτa, τbq are determined for

i, j � 1, 2, ..., n according to Eq. (2.150). The indices αi and αj denote the
α-levels under consideration whereas l� � l, r and r� � l, r denote the left
and right branches of the membership function, respectively.

kαil
�

αjr�pτa, τbq�

8»
�8

8»
�8

p∆xαil��∆mαil�pτaqq
�
∆xαjr��∆mαjr�pτbq

�
... (2.150)

...f
�
∆xαil� ,∆xαjr� , τa, τb

�
d∆xαil�d∆xαjr�

The term f
�
∆xαil� ,∆xαjr� , τa, τb

�
in the foregoing represents the joint

probability density function of the lαrα-random increments ∆Xαil�pτaq and
∆Xαir�pτbq.

Definition 2.65. The element by element division of the lαrα-covariance
function lrKX̃τ

pτa, τbq by the corresponding leading diagonal elements ac-
cording to Eq. (2.152) yields the scale-invariant lαrα-correlation function
lrRX̃τ

pτa, τbq given by Eq. (2.151).

lrRX̃τ
pτa, τbq�

�
����������

rα1l
α1lpτa, τbq rα2l

α1lpτa, τbq � � � rα2r
α1l pτa, τbq rα1r

α1l pτa, τbq

rα1l
α2lpτa, τbq rα2l

α2lpτa, τbq � � � rα2r
α2l pτa, τbq rα1r

α2l pτa, τbq
...

...
. . .

...
...

rα1l
α2rpτa, τbq rα2l

α2rpτa, τbq � � � rα2r
α2rpτa, τbq rα1r

α2rpτa, τbq

rα1l
α1rpτa, τbq rα2l

α1rpτa, τbq � � � rα2r
α1rpτa, τbq rα1r

α1rpτa, τbq

�
����������

(2.151)

rαil
�

αj l�pτa, τbq �
kαil

�

αj l�pτa, τbqb
kαil�

αil�
pτa, τbq � k

αj l�

αj l� pτa, τbq
(2.152)

�

If all fuzzy expected values ErX̃τ s of a fuzzy random process pX̃τ qτPT are
constant
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ErX̃τ s � m̃X̃τ
� constant @ τ P T (2.153)

and Eq. (2.154) is satisfied, i.e. the lαrα-covariance function lrKX̃τ
pτa, τbq or

the lαrα-correlation function lrRX̃τ
pτa, τbq is not dependent on τa and τb but

only on the difference ∆τ � τa�τb , then pX̃τ qτPT is described as being weakly
stationary.

lrKX̃τ
pτa, τbq � lrKX̃τ

pτa � τbq � lrKX̃τ
p∆τq @ τa, τb P T (2.154)

The lαrα-variance function lrV arrX̃τ s � lrσ
2
X̃τ

provides a measure of the
fluctuation of the realizations of a fuzzy random process pX̃τ qτPT. For each
point in time τ the elements of the lαrα-variance correspond to the leading
diagonal elements of lrKX̃τ

pτa, τbq for τa � τb � τ . For a stationary fuzzy
random process pX̃τ qτPT the lαrα-variance function lrσ

2
X̃τ

according to Eq.
(2.155) is hence constant at each point in time τ with i � 1, 2, ..., 2n.

lrσ
2
i pτq � lrσ

2
i � ki,ipτa � τbq � ki,ipτ � τq � ki,ip0q (2.155)

Special fuzzy random processes include fuzzy White-Noise processes, fuzzy
Moving Average processes, fuzzy AutoRegressive processes and fuzzy Auto-
Regressive Moving Average processes. The modeling of fuzzy time series by
means of these fuzzy random processes is presented in the following section.



3

Analysis of Time Series Comprised of Uncertain
Data

The aim of time series analysis is to recognize and model structural features
in a sequence of observed values. In the following chapter various commonly
applied methods of classical time series analysis are extended to deal with
time series comprised of fuzzy data.

Definition 3.1. A time series comprised of fuzzy data px̃τ qτPT is a temporally
ordered sequence of fuzzy variables x̃τ , where T represents a set of equidistant
points in time τ . Precisely one fuzzy variable x̃τ is assigned to each discrete
observation time τ � 1, 2, ..., N . The lαrα-increments of the fuzzy variable
x̃τ are denoted by ∆xαilpτq and ∆xαirpτq.

x̃τ �

�
����

∆xα1lpτq
∆xα2lpτq

...
∆xα1rpτq

�
���� �

�
����

∆x1pτq
∆x2pτq

...
∆x2npτq

�
���� (3.1)

�

In the following the abridged term ‘fuzzy time series’ is used to express a time
series comprised of fuzzy data. Time series pxτ qτPT of real observations x are
special cases of fuzzy time series.

Definition 3.2. A portion x̃k, x̃k�1, ..., x̃l with 1 ¤ k   l ¤ N of a fuzzy time
series x̃1, x̃2, ..., x̃N is referred to as a segment. �

Example 3.3. A fuzzy time series is shown by way of example in Fig. 3.1.
�

3.1 Plot of Fuzzy Time Series

According to [59], a graphical representation or plot ‘should always be the
first step in the analysis of a time series’. A plot provides initial information
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Fig. 3.1. Example of a fuzzy time series px̃τ qτPT

concerning the characterization of a fuzzy time series, especially regarding the
existence of a fuzzy trend, cyclic fluctuations, dependencies between the dis-
crete α-level sets Xα, and the presence of freak values. A full plot of a fuzzy
time series should include the graphical representation of individual fuzzy vari-
ables x̃τ at time points τ and selected lαrα-increments ∆xαilpτq and ∆xαirpτq.

x̃τ -plot. In the x̃τ -plot, the fuzzy variables x̃τ are represented as projec-
tions or in perspective at the N time points τ . This representation may
be supplemented by including the polygonally connected interval bounds
rxαilpτq;xαirpτqs of selected α-level sets Xαi

pτq of the fuzzy variables x̃τ .
Both variants are shown in Fig. 3.2.

lαrα-increment plot. In the lαrα-increment plot, the increments ∆xαilpτq
and ∆xαirpτq are polygonally connected at time points τ for selected α-levels
αi. An example of an lαrα-increment plot of a fuzzy time series px̃τ qτPT for
n � 3 is shown in Fig. 3.3.

The examples 3.4 and 3.5 clearly illustrate the purpose of the x̃τ -plot as
well as the lαrα-increment plot. Both forms of representation should always
be used in order to recognize the structure of a fuzzy time series.

Example 3.4. In the example shown in Fig. 3.4 the lαrα-discretization is
carried out for n � 5. In the x̃τ -plot of the fuzzy time series the constancy of
the interval bounds rxαilpτq;xαirpτqs of the α-level sets Xαi

pτq for i � 1 and
i � 3 is clearly recognizable, i.e. no random effects are present. �

Example 3.5. In the example shown in Fig. 3.5 the lαrα-increments ex-
hibit regularities. The lαrα-discretization is carried out for n � 5. With
the aid of the lαrα-increment plot it is seen that the progressions of the
lαrα-increments ∆xα1lpτq, ∆xα2lpτq, ∆xα3lpτq and ∆xα4rpτq are identical, as
also applies to the progressions of the lαrα-increments ∆xα1rpτq, ∆xα2rpτq,
∆xα3rpτq and ∆xα4lpτq. This indicates that the lαrα-increments ∆xα1lpτq,
∆xα2lpτq, ∆xα3lpτq and ∆xα4rpτq as well as ∆xα1rpτq, ∆xα2rpτq, ∆xα3rpτq
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Fig. 3.2. x̃τ -plots of a fuzzy time series
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and ∆xα4lpτq are positively fully correlated. Moreover, the affinity of both
progressions indicates a mutual positive correlation. �
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Fig. 3.5. lαrα-increment plot

With the aid of both plots it is possible to recognize important features of a
fuzzy time series merely by visual inspection. Numerical methods for deter-
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mining the characteristics of fuzzy time series are introduced in the following
sections.

3.2 Fuzzy Component Model

Non-stationary fuzzy time series may be analyzed by means of the fuzzy com-
ponent model. This model subdivides the given fuzzy time series additively
into a trend component, a cyclic component and a fuzzy-random residual
component.

Definition 3.6. In order to describe the fuzzy time series px̃τ qτPT the fuzzy
component model according to Eq. (3.2) is introduced as an extension of the
component model of classical time series analysis.

x̃τ � t̃τ ` z̃τ ` r̃τ (3.2)

�

The fuzzy variables t̃τ and z̃τ are hereby functional values of a fuzzy trend
function t̃pτq or a fuzzy cycle function z̃pτq at time τ . An introductory account
of fuzzy functions is given in Sect. 2.1.5 and e.g. by [36, 45]. Fuzzy random
processes are described in Sects. 2.3 and 3.5. The fuzzy residual component r̃τ

is the realization of a stationary fuzzy random interference process pR̃τ qτPT
at time point τ .

For identical lαrα-representation of the three fuzzy variables in Eq. (3.2)
the following holds for each lαrα-increment ∆xjpτq

∆xjpτq � ∆tjpτq �∆zjpτq �∆rjpτq @ j � 1, 2, ..., 2n (3.3)

under the conditions

∆xjpτq ¥ 0
∆tjpτq ¥ 0
∆zjpτq ¥ 0
∆rjpτq ¥ 0

,//.
//- @ τ P T, j � 1, 2, ..., n� 1, n� 1, ..., 2n . (3.4)

Because negative lαrα-increments of the realizations r̃τ are excluded, it cannot
be assumed (in contrast to the classical component model) that the fuzzy
expected value ErR̃τ s of the fuzzy random interference process is equal to
zero. The following holds for the fuzzy expected value ErR̃τ s :

ErR̃τ s � m̃R̃τ
� constant @ τ P T (3.5)

where

E r∆Rjpτqs ¥ 0 for j � 1, 2, ..., n� 1, n� 1, ..., 2n . (3.6)
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According to Eq. (3.3) the determination of the fuzzy trend function t̃pτq, the
fuzzy cycle function z̃pτq, and the fuzzy random interference process pR̃τ qτPT
reduces to the determination of the real-valued trend function ∆tjpτq, the
real-valued cycle function ∆zjpτq, and the real-valued realizations ∆rjpτq of
the fuzzy random interference processpR̃τ qτPT.

The values of ∆tjpτq, ∆zjpτq and ∆rjpτq are computed according to the
algorithm described in the following. This is demonstrated by way of example
for the lαrα-increment ∆x1pτq of the fuzzy time series shown in Fig. 3.6 a.
The remaining lαrα-increments ∆xjpτq are dealt with in a similar manner.
The lαrα-discretization of the considered fuzzy time series is carried out for
n � 2 α-levels.

Determination of the trend auxiliary functions t�j pτ q. The lαrα-
increment plot corresponding to each lαrα-increment ∆xjpτq is developed
from the given fuzzy time series. Fig. 3.6 b shows the plot for ∆x1pτq. This
lαrα-increment function is approximated by a trend auxiliary function t�j pτq.
The free parameters of a suitably chosen function t�j pτq are determined by the
method of least squares according to Eq. (3.7). The requirement according to
Eq. (3.8) must hereby be fulfilled.

Ņ

τ�1

�
t�j pτq �∆xjpτq

�2 !
� min (3.7)

t�j pτq ¥ 0 @ τ P T, j � 1, 2, ..., n� 1, n� 1, ..., 2n (3.8)

Determination of the cycle auxiliary functions z�j pτ q. The differences
d1pτq � ∆x1pτq�t�1 pτq between the functions ∆x1pτq and t�1 pτq are indicative
of an existing cycle (see Fig. 3.6 c). The latter is approximated by means of
a cycle auxiliary function z�1 pτq. The free parameters of a suitably chosen
function z�1 pτq are again determined by the method of least squares.

Ņ

τ�1

�
z�j pτq �

�
∆xjpτq � t�j pτq

�� !
� min (3.9)

The techniques of classical time series analysis are applied to determine the
cycle and select the cycle auxiliary function z�j pτq. For the series of differences
djpτq the periodogram or sample spectrum is computed according to Eq. (3.10)
and represented graphically.

Ipλjq � N

�
1
N

N°
τ�1

�
djpτq � dj

�
cos 2πλjτ

�2

� (3.10)

N

�
1
N

N°
τ�1

�
djpτq � dj

�
sin 2πλjτ

�2
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Fig. 3.6. Fuzzy component model of a fuzzy time series
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In the above equation dj denotes the time average of the differences djpτq,
and λj , the frequency. The presence of cyclic fluctuations with a period 1

λm
j

may be deduced from the maximum values λm
j of the sample spectrum.

Example 3.7. By way of example the periodogram showing the variation of
the peak points hlpτq of empirical humidity data h̃τ is plotted in Fig. 3.7. The
maximum value of the periodogram for λ � 1

24h confirms the natural period
length of the humidity (Fig. 3.7 b).
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(a) Fuzzy time series
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Fig. 3.7. Humidity h̃τ and periodogram for the mean value hlpτq

�

Cycle matching. The lαrα-increments ∆zjpτq of the fuzzy cycle function
z̃pτq may now be determined for each α-level according to Eq. (3.11). The
computation according to Eq. (3.11) is equivalent to a parallel displacement
of the cycle auxiliary functions z�j pτq into the positive range of values. The
requirement according to Eq. (3.4) is thus automatically complied with.

∆zjpτq � z�j pτq �min
aPT

�
z�j paq

�
(3.11)

with j � 1, 2, ..., n� 1, n� 1, ..., 2n
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The equality ∆znpτq � z�npτq holds for j � n. The plot of the fuzzy cycle
function z̃pτq is shown in Fig. 3.6 d.

Trend matching. The lαrα-increments ∆tjpτq of the fuzzy trend function
t̃τ pτq may now be computed by means of Eq. (3.12). The computation accord-
ing to Eq. (3.12) is equivalent to a parallel displacement of the trend auxiliary
functions t�j pτq so that ∆xjpτq �∆tjpτq �∆zjpτq ¥ 0 holds. In other words,
the summated function ∆tjpτq �∆zjpτq always runs below ∆xjpτq (see Fig.
3.6 f). In compliance with Eq. (3.4) the requirement according to Eq. (3.13)
must be fulfilled.

∆tjpτq � t�j pτq �max
aPT

�
t�j paq �∆zjpaq �∆xjpaq

�
(3.12)

with j � 1, 2, ..., n� 1, n� 1, ..., 2n

∆tjpτq ¥ 0 @ τ P T, j � 1, 2, ..., n� 1, n� 1, ..., 2n (3.13)

The equality ∆tnpτq � t�npτq holds for j � n. The plot of the fuzzy trend
function t̃τ pτq is shown in Fig. 3.6 e.

Remark 3.8. If Eq. (3.13) is not fulfilled, then the selected fuzzy component
model is unsuitable. By a critical assessment and reselection of the trend and
cycle auxiliary function to be matched, it is possible to suitably modify the
fuzzy component model. �

Determination of the fuzzy residual component r̃τ . The fuzzy residual
component r̃τ is the realization of a stationary fuzzy-random interference pro-
cess pR̃τ qτPT at time τ . This is obtained according to Eq. (3.14) by adjusting
the fuzzy observed values x̃τ using the functional values t̃τ and z̃τ of the fuzzy
trend function t̃pτq and the fuzzy cycle function z̃pτq at time τ .

r̃τ � x̃τ a t̃τ a z̃τ (3.14)

The lαrα-increments ∆rjpτq of the fuzzy residual component r̃τ are thus ob-
tained for j � 1, 2, ..., 2n according to Eq. (3.15). If the requirement according
to Eq. (3.13) is fulfilled, the non-negativity requirement for ∆rjpτq according
to Eq. (3.4) is automatically complied with. This procedure is illustrated in
Fig. 3.6 f.

∆rjpτq � ∆xjpτq �∆tjpτq �∆zjpτq (3.15)

The plot for the lαrα-increment ∆r1pτq is presented in Fig. 3.6 g. Fig. 3.6 h
shows the plot of the fuzzy residual component r̃τ .

The fuzzy residual component r̃τ is considered to be a realization of the
stationary fuzzy random interference process pR̃τ qτPT at time τ . Methods for
matching fuzzy random processes are presented in Sect. 3.5.
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3.3 Stationary Fuzzy Time Series

If fuzzy time series do not exhibit systematic variations (trends, cycles), they
are usually postulated as stationary and ergodic series. The stationary condi-
tion presupposes time-invariant characteristics of the fuzzy time series while
ergodicity permits a determination of these time-invariant characteristics by
statistical evaluation of the fuzzy time series over time.

Essential characteristics of stationary and ergodic fuzzy time series are the
fuzzy time-average and the empirical lαrα-variance.

Definition 3.9. The fuzzy time-average x̃ of a fuzzy time series px̃τ qτPT is
defined according to Eq. (3.16), whereby N is the number of observed fuzzy
variables x̃τ .

x̃ �
1
N

Nà
τ�1

x̃τ (3.16)

�

The fuzzy time-average x̃ is the central fuzzy variable about which the values
of the time series vary.

The empirical lαrα-variance lrs
2
x̃τ

of a fuzzy time series px̃τ qτPT is a mea-
sure for assessing the scatter of the series. This is represented in the form of
a vector of size r2ns.

Definition 3.10. The elements lrs
2
i of the vector of the empirical lαrα-

variance lrs
2
x̃τ

are defined according to Eq. (3.17). The terms ∆xi are hereby
the lαrα-increments of the fuzzy time-average x̃ and the terms ∆xipτq are the
lαrα-increments of the fuzzy variables x̃τ at time τ .

lrs
2
i �

1
N � 1

Ņ

τ�1

p∆xipτq �∆xiq
2 for i � 1, 2, ..., 2n (3.17)

�

Remark 3.11. The size of the vector lrs
2
x̃τ

, i.e. the lαrα-variance, depends
on the number n of the chosen α-levels. The lαrα-variance lrs

2
x̃τ
pn1q based on

an lαrα-discretization with n1 α-levels cannot generally be directly converted
into the lαrα-variance lrs

2
x̃τ
pn2q with n2 discrete α-levels (see example 3.12).

�

Example 3.12. For a particular fuzzy time series the empirical lαrα-variance
lrs

2
x̃τ

according to Eq. (3.17) is determined for an lαrα-discretization with
n1 � 2 α-levels and for an lαrα-discretization with n2 � 3 α-levels. The result
is indicated by Eq. (3.18). A cutout of the fuzzy time series is presented in
Fig. 3.8.
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Fig. 3.8. Cutout of a fuzzy time series

lrs
2
x̃τ
pn1q �

�
���

0.185
0.546

0
0.239

�
��� , lrs

2
x̃τ
pn2q �

�
�������

0.211
0.197
0.546

0
0.254
0.238

�
�������

(3.18)

No direct relationship exists between the lαrα-variance lrs
2
x̃τ
pn1q and the lαrα-

variance lrs
2
x̃τ
pn2q. �

The empirical lαrα-standard deviation lrsx̃τ
is obtained by extracting the posi-

tive square root from each element of the vector of the empirical lαrα-variance
lrs

2
x̃τ

according to Eq. (3.19).

lrsi � �
b

lrs2
i for i � 1, 2, ..., 2n (3.19)

Remark 3.13. With regard to the relationship that exists in special cases
between the lαrα-standard deviation lrsx̃τ

pn1q based on an lαrα-discretization
with n1 α-levels and the lαrα-standard deviation lrsx̃τ

pn2q with n2 discrete
α-levels the same conditions apply as already stated for the lαrα-standard
deviation of fuzzy random variables (see Remark 2.55). �

Definition 3.14. Linear dependencies between the lαrα-increments of the
fuzzy values x̃τ and x̃τ�∆τ (τ � 1, 2, ..., N � ∆τ) of a stationary and er-
godic fuzzy time series are given in the form of an empirical lαrα-covariance
matrix lrK̂ x̃τ

p∆τq of size r2n, 2ns according to Eq. (3.20). The term ∆τ de-
notes the relative time lag between two discrete time points and is given as
a natural number (e.g. ∆τ � 3 for x̃2 and x̃5). Considering arbitrary time
lags ∆τ , the function lrK̂ x̃τ p∆τq is represented in the form of an empirical
lαrα-covariance function.
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lrK̂ x̃τ
p∆τq �

�
�����������

k̂α1l
α1lp∆τq k̂α2l

α1lp∆τq � � � k̂α2r
α1l p∆τq k̂α1r

α1l p∆τq

k̂α1l
α2lp∆τq k̂α2l

α2lp∆τq � � � k̂α2r
α2l p∆τq k̂α1r

α2l p∆τq
...

...
. . .

...
...

k̂α1l
α2rp∆τq k̂α2l

α2rp∆τq � � � k̂α2r
α2rp∆τq k̂α1r

α2rp∆τq

k̂α1l
α1rp∆τq k̂α2l

α1rp∆τq � � � k̂α2r
α1rp∆τq k̂α1r

α1rp∆τq

�
�����������

(3.20)

�

The elements of the lαrα-covariance function lrK̂ x̃τ
p∆τq are computed for

each time lag ∆τ according to Eq. (3.21).

k̂αil
�

αjr�p∆τq �
1

N �∆τ � 1

N�∆τ¸
τ�1

rp∆xαil�pτq �∆xαil�q... (3.21)

...p∆xαjr�pτ �∆τq �∆xαjr�qs

The indices αi and αj with i, j � 1, 2, ..., n denote the α-levels to be ana-
lyzed, and l� � l, r and r� � l, r denote the left and right branches of the
membership function, respectively. The elements of the leading diagonal of
the lαrα-covariance function lrK̂ x̃τ

p∆τq correspond to the auto-covariances,
whereas the remaining elements correspond to the cross-covariances of the
lαrα-increments.

Definition 3.15. The empirical lαrα-correlation function lrR̂x̃τ
p∆τq accord-

ing to Eq. (3.22) yields a scale-invariant representation of the linear depen-
dencies. This is obtained according to Eq. (3.23) as the result of element-by-
element division of the empirical lαrα-covariance function lrK̂ x̃τ

p∆τq by the
corresponding elements of the leading diagonal.

lrR̂x̃τ
p∆τq �

�
����������

r̂α1l
α1lp∆τq r̂α2l

α1lp∆τq � � � r̂α2r
α1l p∆τq r̂α1r

α1l p∆τq

r̂α1l
α2lp∆τq r̂α2l

α2lp∆τq � � � r̂α2r
α2l p∆τq r̂α1r

α2l p∆τq
...

...
. . .

...
...

r̂α1l
α2rp∆τq r̂α2l

α2rp∆τq � � � r̂α2r
α2rp∆τq r̂α1r

αn�1rp∆τq

r̂α1l
α1rp∆τq r̂α2l

α1rp∆τq � � � r̂α2r
α1rp∆τq r̂α1r

α1rp∆τq

�
����������

(3.22)

r̂αil
�

αjr�p∆τq �
k̂αil

�

αjr�p∆τqb
k̂αil�

αir�
p∆τq � k̂

αj l�

αjr�p∆τq
(3.23)

�
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Example 3.16. The empirical lαrα-correlation function lrR̂x̃τ
p∆τq given by

Eq. (3.22) is determined for the fuzzy time series shown in Fig. 3.8 for an
lαrα-discretization with n � 3 α-levels. The results for ∆τ � 0, ∆τ � 1 and
∆τ � 2 are given by Eqs. (3.24) to (3.26), respectively.

lrR̂x̃τ
p∆τ � 0q �

�
���

0.999 0.459 0 0.707
0.459 0.997 0 0.402

0 0 0 0
0.707 0.402 0 1.000

�
��� (3.24)

lrR̂x̃τ
p∆τ � 1q �

�
���

0.297 0.568 0 0.875
0.568 0.496 0 0.497

0 0 0 0
0.875 0.497 0 0.298

�
��� (3.25)

lrR̂x̃τ
p∆τ � 2q �

�
���

0.064 0.090 0 0.140
0.090 0.038 0 0.080

0 0 0 0
0.140 0.080 0 0.042

�
��� (3.26)

These results indicate a reduction in the linear dependencies between the
lαrα-increments of the fuzzy values x̃τ and x̃τ�∆τ with increasing time lag.
For ∆τ ¥ 2 the elements of the empirical correlation function are negligibly
small. �

For the modeling and forecasting of fuzzy time series it is also advisable to
determine the so-called empirical partial lαrα-correlation function lrP̂ x̃τ

p∆τq.

Definition 3.17. The empirical partial lαrα-correlation function lrP̂ x̃τ
p∆τq

is defined by Eq. (3.27) as the empirical correlation between the fuzzy values x̃τ

and x̃τ�∆τ of a stationary fuzzy time series with the exclusion of the influence
of the intermediate fuzzy values x̃τ�1, x̃τ�2, ..., x̃τ�∆τ�1.

lrP̂ x̃τ
p∆τq �

�
����������

p̂α1l
α1lp∆τq p̂α2l

α1lp∆τq � � � p̂α2r
α1l p∆τq p̂α1r

α1l p∆τq

p̂α1l
α2lp∆τq p̂α2l

α2lp∆τq � � � p̂α2r
α2l p∆τq p̂α1r

α2l p∆τq
...

...
. . .

...
...

p̂α1l
α2rp∆τq p̂α2l

α2rp∆τq � � � p̂α2r
α2rp∆τq p̂α1r

αn�1rp∆τq

p̂α1l
α1rp∆τq p̂α2l

α1rp∆τq � � � p̂α2r
α1rp∆τq p̂α1r

α1rp∆τq

�
����������

(3.27)

�

The determination of the empirical partial lαrα-correlation function lrP̂ x̃τ
p∆τq

is equivalent to the determination of the empirical lαrα-correlation function
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of the fuzzy time series suitably adjusted to exclude the influence of the fuzzy
values x̃τ�1, x̃τ�2, ..., x̃τ�∆τ�1. The elements of the empirical partial lαrα-
correlation function lrP̂ x̃τ

p∆τq are computed with the aid of Eqs. (3.28) and
(3.29). The indices αi and αj with i, j � 1, 2, ..., n again denote the α-levels to
be analyzed, while l� � l, r and r� � l, r indicate the left and right branches
of the membership function, respectively.

p̂αil
�

αjr�p∆τq �
ĥαil

�

αjr�p∆τqb
ĥαil�

αir�
p∆τqĥ

αj l�

αjr�p∆τq
(3.28)

with ĥαil
�

αjr�p∆τq �
1

N �∆τ

N�∆τ¸
τ�1

rp∆zαil�pτq �∆zαil�pτqq ... (3.29)

...
�
∆zαjr�pτ �∆τq �∆zαjr�pτ �∆τq

��
The lαrα-increments ∆zαil�pτq and ∆zαjr�pτ�∆τq are computed with the aid
of Eqs. (3.30) and (3.31). In both equations the fuzzy values x̃τ and x̃τ�∆τ are
adjusted to exclude the influence of the fuzzy values x̃τ�1, x̃τ�2, ..., x̃τ�∆τ�1

lying between τ and τ �∆τ .

z̃τ � x̃τ � ˇ̃xτ (3.30)

z̃τ�∆τ � x̃τ�∆τ � ˇ̃xτ�∆τ (3.31)

The fuzzy values ˇ̃xτ and ˇ̃xτ�∆τ which yield the best linear approximations of
the fuzzy values x̃τ and x̃τ�∆τ are determined according to Eqs. (3.32) and
(3.33).

ˇ̃xτ � A1 d x̃τ�1 `A2 d x̃τ�2 ` ...`Ah�1 d x̃τ�∆τ�1 (3.32)

ˇ̃xτ�∆τ � B1 d x̃τ�1 `B2 d x̃τ�2 ` ...`Bh�1 d x̃τ�∆τ�1 (3.33)

The matrices Ak and Bk are the coefficients of the best linear approxima-
tions. The elements akri, js and bkri, js of the r2n, 2ns coefficient matrices Ak

and Bk (k � 1, 2, ..., h � 1) are determined according to the minimization
requirements given by Eqs. (3.34) and (3.35).

N�ḩ

g�1

2ņ

i�1

�
∆xipgq �

2ņ

j�1

h�1̧

k�1

akri, js∆xjpg � kq

�2

!
� min (3.34)

N�ḩ

g�1

2ņ

i�1

�
∆xipg � hq �

2ņ

j�1

h�1̧

k�1

bkri, js∆xjpg � kq

�2

!
� min (3.35)

The lαrα-increments ∆zαil�pτq and ∆zαjr�pτ�∆τq also required in Eq. (3.29)
are computed with the aid of Eqs. (3.36) and (3.37).
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z̃τ �
1

N �∆τ

N�∆τà
g�1

z̃g (3.36)

z̃τ�∆τ �
1

N �∆τ

N�∆τà
g�1

z̃g�∆τ (3.37)

Numerical Tests for Stationarity

Reverse argument is applied to verify the stationarity of fuzzy time series.
The non-existence of non-stationarity such as fuzzy trends or fuzzy cycles is
verified numerically. Although the following methods do not directly verify
stationarity, they indicate the extent to which non-stationarity exists. In par-
ticular, very short fuzzy time series or segments of a fuzzy time series may
erroneously give the expression that stationarity or non-stationarity is present.

• In accordance with Sect. 3.1 the plot should always serve as the first step
in the analysis of a time series. On the basis of the plot it is possible
to ascertain the non-existence of a fuzzy trend or fuzzy cycle. The lαrα-
increment plot is especially suitable for this purpose. An obvious non-
stationarity should not exist for each individual lαrα-increment.

• Sufficiently long fuzzy time series may be subdivided into several segments.
The empirical moments according to Sect. 3.3 are computed separately
for each segment. In the case of stationarity the empirical moments of
individual segments are equal. If the empirical moments of the individual
segments show significant differences, non-stationarity must be assumed.
A precondition for this approach is that stationarity is assumed a priori
for each individual segment. This assumption may be checked a posteriori
by modifying the segmental subdivision.

• In order to check stationarity the fuzzy component model according to
Sect. 3.2 may also be applied. The matching of a fuzzy trend function
t̃pτq and a fuzzy cycle function z̃pτq may be also be applied to verify
stationarity or non-stationarity. If the matching of a fuzzy trend function
with a non-negligible ascent and/or a fuzzy cycle function with a non-
negligible amplitude is already possible for an individual lαrα-increment,
non-stationarity must be assumed.

3.4 Transformation of Fuzzy Time Series Using Filters

The transformation of a given fuzzy time series px̃τ qτPT into a fuzzy time
series pz̃τ qτPT� is carried out by means of so-called filters. The aim of the
transformation is to smooth irregular local and global fluctuations of the given
fuzzy time series px̃τ qτPT. Smoothed time series facilitate the modeling of
trends and cycles.
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3.4.1 Smoothing of Fuzzy Time Series

Definition 3.18. Analogous to classical time series analysis, the transforma-
tion L according to Eq. (3.38) is defined as a linear filter for fuzzy time series.

z̃τ � Lx̃τ �
bà

i��a

cix̃τ�i (3.38)

In the above equation, px̃τ qτPT is the fuzzy time series to be transformed,
pz̃τ qτPT� is the smoothed fuzzy time series with T� � ta� 1, ..., N � bu, and
ci are the filter coefficients. �

An affine transformation is performed for all n lαrα-increments of the fuzzy
values x̃τ using the real-valued filter coefficients ci. An extension of the latter
to non-affine transformations is discussed in Sect. 3.4.3.

Remark 3.19. The filter coefficients must be chosen in such a way that the
smoothed fuzzy time series only includes fuzzy values in the proper sense. �

The filter given by Eq. (3.38) defines a linear combination of fuzzy values. The
linearity of the filter given by Eq. (3.38) may be demonstrated as follows:

Applying the incremental fuzzy arithmetic introduced in Sect. 2.1.2, the
following holds for the sum of two filters:

Lx̃τ ` Lỹτ �
bà

i��a

cix̃τ�i `
bà

i��a

ciỹτ�i (3.39)

�
bà

i��a

pcix̃τ�i ` ciỹτ�iq (3.40)

�
bà

i��a

ci px̃τ�i ` ỹτ�iq (3.41)

Lx̃τ ` Lỹτ � L px̃τ ` ỹτ q . (3.42)

In contrast to the application of the extension principle, linearity is only en-
sured by applying incremental fuzzy arithmetic.

Definition 3.20. If
°

ci � 1 holds for the coefficients, the linear filter is
referred to as a moving fuzzy average. Considering the simplest case of a
linear filter, the simple moving fuzzy average for fuzzy time series is defined
according to Eq. (3.43).

z̃τ �
1

2a� 1

aà
i��a

x̃τ�i mit τ � a� 1, ..., N � a (3.43)

�



76 3 Analysis of Time Series Comprised of Uncertain Data

1 2 3 . . . . . . 12 13 14 �

x
�

z
�

fuzzy time series x
�

smoothed fuzzy time series z
�

~

~

~
~

Fig. 3.9. Moving fuzzy average of a fuzzy time series px̃τ qτPT

Example 3.21. The simple moving fuzzy average according to Eq. (3.43)
with a � 2 is shown by way of example for the fuzzy time series presented in
Fig. 3.9. �

By means of the linear filter given by Eq. (3.38) it is possible to transform
fuzzy time series arbitrarily. For example, a local polynomial approximation of
a fuzzy time series may be obtained by a suitable choice of the filter coefficients
ci. The filter coefficients ci corresponding to the desired polynomial degree
are thereby determined by the following condition. A nontrivial linear filter
L results in a local polynomial approximation of a fuzzy time series provided
it reproduces the underlying series when applied to a fuzzy time series which
follows a polynomial curve.

Example 3.22. This postulation, which is valid for general polynomial curves,
is demonstrated by the example of a fuzzy time series x̃τ � p̃1 ` τ p̃2 ` τ2p̃3

following a quadratic curve (the coefficients p̃1, p̃2 and p̃3 are arbitrary fuzzy
values). The application of the filter L to x̃τ according to Eq. (3.44) again
yields the original series x̃τ .

z̃τ � Lx̃τ � L
�
p̃1 ` τ p̃2 ` τ2p̃3

�
�

2à
i��2

cix̃τ�i

�
1
35
p�3x̃τ�2 ` 12x̃τ�1 ` 17x̃τ ` 12x̃τ�1 a 3x̃τ�2q (3.44)

� p̃1 ` τ p̃2 ` τ2p̃3 � x̃τ

�

Remark 3.23. The linear filter defined by Eq. (3.38) possesses the follow-
ing numerical property. If the smoothed time series values z̃τ are computed
according to the extension principle (see Sect. 2.1.3), the uncertainty of the
z̃τ values increases for negative coefficients ci. If, on the other hand, lαrα-
addition (see Def. 2.10) is applied, an increase in the uncertainty of the z̃τ

values due to numerical effects does not occur. The moving fuzzy averages
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computed for a time series with constant fuzzy values according to Eq. (3.43)
using incremental fuzzy arithmetic and the extension principle are compared
in Fig. 3.10. �
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Fig. 3.10. Moving fuzzy average according to Eq. (3.43) using (a) incremental fuzzy
arithmetic and (b) the extension principle

3.4.2 Fuzzy Difference Filter

For the local polynomial approximation of a fuzzy time series or the matching
of a polynomial to a fuzzy time series it is necessary to select the degree of
the polynomial to be used. For this purpose the difference filter applied in
classical time series analysis is extended to deal with fuzzy time series.

Definition 3.24. The fuzzy difference filter Dp of pth order is defined recur-
sively by Eq. (3.45) for p ¡ 1.

Dpx̃τ � Dp�1x̃τ aDp�1x̃τ�1 ` d̃p with τ � p� 1, ..., N (3.45)

�

By means of the fuzzy difference filter Dp the degree of a polynomial of order
p� is reduced to the degree of order p� � p.

As a 1st order fuzzy difference filter D1 the transformation according to
Eq. (3.46) follows from Eq. (3.45).
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D1x̃τ � x̃τ a x̃τ�1 ` d̃1 with τ � 2, 3, ..., N (3.46)

The fuzzy correction factor d̃p ensures that Eq. (2.18) is complied with for the
fuzzy result. The determination of the lαrα-increments of d̃p is shown by way
of example for p � 1 in Eqs. (3.47) to (3.49). The computations for p ¡ 1 are
performed in a similar manner.

∆d1
αil �

"
�hαil for hαil   0

0 for hαil ¥ 0 for i � 1, 2, ..., n� 1 (3.47)

∆d1
αnl � 0 (3.48)

∆d1
αir �

"
�hαir for hαir   0

0 for hαir ¥ 0 for i � 1, 2, ..., n (3.49)

with hαil{r � min
τ�2,3,...,N

�
∆xαil{r pτq �∆xαil{r pτ � 1q

�
A non-stationary fuzzy time series with a linear trend is transformed into a
stationary fuzzy time series by applying a 1st order fuzzy difference filter.
A non-stationary fuzzy time series whose trend is described by a pth order
polynomial reduces to a stationary fuzzy time series when a fuzzy difference
filter Dp is applied. By this means it is thus possible to determine the degree
of the polynomial to be chosen for a polynomial of unknown order p. This
procedure is also suitable for the polynomial approximation of local sections
of a fuzzy time series.

Cyclic fluctuations of a fuzzy time series may also be eliminated with the
aid of a cyclic fuzzy difference filter Dz according to Eq. (3.50). The fuzzy
correction factor d̃z is determined analogously according to Eqs. (3.47) to
(3.49).

Dzx̃τ � x̃τ a x̃τ�z ` d̃z with τ � z, z � 1, ..., N (3.50)

3.4.3 Extended Smoothing and Extended Fuzzy Difference Filter

The filters introduced in Sects. 3.4.1 and 3.4.2 for fuzzy time series are char-
acterized by real-valued filter coefficients. Affine transformations of the lαrα-
increments are performed by means of these filters. In some cases, however, a
non-affine transformation, i.e. the different transformation of individual lαrα-
increments, is often advantageous. For this purpose the extended linear fuzzy
filter Le is introduced.

Definition 3.25. The extended linear fuzzy filter Le is defined according to
Eq. (3.51).

z̃τ � Lex̃τ �
bà

i��a

Ci d x̃τ�i (3.51)

�
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The Ci diagonal matrices of size r2n, 2ns hereby contain real-valued elements.
By this means a different transformation is possible on each α-level. If the
elements of the coefficient matrices Ci are identical, Eq. (3.51) describes an
affine transformation just as Eq. (3.38) as a special case.

Analogous to the extended linear filter, it is also possible to define an
extended fuzzy difference filter. The extended fuzzy difference filter D1

e of 1st
order is presented by way of example in Eq. (3.52).

D1
e x̃τ � x̃τ aD1 d x̃τ�1 ` d̃1 with τ � 2, 3, ..., N (3.52)

D1 is hereby a diagonal matrix whose elements may be assigned the values 0
or 1.

The following holds for the extended fuzzy difference filter Dp
e of pth order:

Dp
e x̃τ � Dp�1

e d x̃τ aDp�1
e d x̃τ�1 ` d̃p with τ � p� 1, ..., N . (3.53)

By means of the extended difference filter it is possible to take account of
different trends in the lαrα-increments on different α-levels. By repeating the
extended difference computation p-times it is possible to transform the trends
on an α-level to α-level basis.

3.5 Modeling on the Basis of Specific Fuzzy Random
Processes

As already introduced in Sect. 2.3, a fuzzy time series px̃τ qτPT may be inter-
preted as the realization of a fuzzy random process pX̃τ qτPT. In the following
section, specific fuzzy random processes and specific methods are presented
which permit the identification of the hypothetical underlying fuzzy random
process of a given time series.

Remark 3.26. The fuzzy random processes pX̃τ qτPT are exclusively evalu-
ated at equidistant discrete time points τ in the following, i.e. only discrete
processes are considered. In order to describe the random lαrα- increments
of a fuzzy random variable X̃τ of the fuzzy random process pX̃τ qτPT at time
point τ the bracket notation ∆Xαilpτq and ∆Xαirpτq is used. �

3.5.1 Fuzzy White-Noise Processes

Definition 3.27. A fuzzy white-noise process pẼτ qτPT is a stationary and er-
godic fuzzy random process. A fuzzy white-noise variable Ẽτ with the fuzzy
realizations ε̃τ is assigned to each time point τ . The random lαrα-increments
∆Ejpτq and ∆Ejpτ � ∆τq of the fuzzy white-noise variables Ẽτ and Ẽτ�∆τ

are fully independent real-valued random variables with a constant expected
value E r∆Ejpτqs � E r∆Ejpτ �∆τqs and a constant variance V ar r∆Ejpτqs �
V ar r∆Ejpτ �∆τqs. The independency postulation exclusively holds for time
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differences of ∆τ � 0. In accordance with Eq. (3.56) the lαrα-covariance func-
tion is permitted for ∆τ � 0. The following holds for a white-noise process:

ErẼτ s � m̃Ẽτ
� constant @ τ P T (3.54)

lrV arrẼτ s � lrσ
2
Ẽτ
� constant @ τ P T (3.55)

lrK Ẽτ
p∆τq �

"
lrK Ẽτ

p0q for ∆τ � 0
0 for ∆τ � 0

. (3.56)

�

Each of the random lαrα-increments ∆Ejpτq is characterized by a correspond-
ing probability density function f∆Ej

p∆εjq. All realizations ∆εjpτq of the
random lαrα- increments ∆Ejpτq must satisfy the requirements of Eqs. (3.57)
to (3.59).

∆εjpτq ¥ 0 for j � 1, 2, ..., n� 1 (3.57)

∆εjpτq arbitrary for j � n (3.58)

∆εjpτq ¥ 0 for j � n� 1, n� 2, ..., 2n (3.59)

The non-negativity requirement of Eqs. (3.57) and (3.59) does not apply to the
mean value. The realizations ∆εnpτq of the random lαrα-increment ∆Enpτq
of the mean value may also take on negative values.

Example 3.28. A realization of typical fuzzy white-noise process is shown in
Fig. 3.11.
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Fig. 3.11. Realization of a typical fuzzy white-noise process
�

By means of Eq. (3.57) and Eq. (3.59) lower bounds are specified for the
realizations ∆εjpτq. Moreover, upper bounds may also exist.
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It is advantageous to adopt a stepped function according to Eq. (3.60) as
the probability density function f∆Ej

p∆εjq for the random lαrα-increments
∆Ejpτq. The basic form of such a probability density function is shown in
Fig. 3.12.
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Fig. 3.12. Probability density function f∆Ej p∆εjpτqq for a random lαrα-increment
∆Ejpτq of a fuzzy white-noise process

The following holds for each random lαrα-increment ∆Ejpτq:

f∆Ej
p∆εj , τq �

$''''''''''''&
''''''''''''%

w2l for p2l ¤ p∆εj �m∆Ej
q ¤ p1l

w1l for p1l ¤ p∆εj �m∆Ej q ¤ 0

w1r for 0   p∆εj �m∆Ej
q ¤ p1r

w2r for p1r ¤ p∆εj �m∆Ej
q ¤ p2r

0 else

(3.60)

with � p1lw1l � pp1l � p2lqw2l � 0.5
p1rw1r � pp2r � p1rqw2r � 0.5 .

In order to simplify the notation in Eq. (3.60) the subscript j is omitted for
the parameters.

By means of this function it is possible to arbitrarily specify the upper and
lower limits for a given variance. The upper and lower limits are defined by the
parameters p2l and p2r. The prescribed mean values E r∆Ejpτqs � m∆Ej

and
variances V ar r∆Ejpτqs � σ2

∆Ej
lead in each case to Eqs. (3.61) and (3.62) as

additional constraints for the parameters p1r, p1l, w2r, w2l, w1r and w1l.

σ2
∆Ej

�
w2l

3
�
p3
1l � p3

2l

�
�

w1l

3
�
p3
1l

�
�

w1r

3
�
p3
1r

�
�

w2r

3
�
p3
2r � p3

1r

�
(3.61)

0 �
w2l

2
�
p2
1l � p2

2l

�
�

w1l

2
�
p2
1l

�
�

w1r

2
�
p2
1r

�
�

w2r

2
�
p2
2r � p2

1r

�
(3.62)
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The functional values w2r, w2l, w1r and w1l are computed from Eqs. (3.63)
to (3.66), respectively.

w2r �
6σ2

∆Ej
� p1lp1r � p2lp1l � p2

1r � p2lp1r

2p2r pp1lp1r � p2rp1l � p2
2r � p2

1r � p2lp1r � p2lp2rq
(3.63)

w2l �
p1l � 2p1rw2rp2r � p1r � 2w2rp

2
2r

2p2l pp2l � p1lq
(3.64)

w1r �
1� 2w2rp2r � w2rp1r

2p1r
(3.65)

w1l �
2w2lp1l � 2p2lw2l � 1

2p1l
(3.66)

The parameters 0   p1r   p2r and p2l   p1l   0 must be chosen in such a
way that the following holds:

w2r, w2l, w1r, w1l ¥ 0 . (3.67)

The corresponding probability distribution function F∆Ej
p∆εjq is obtained

by integrating f∆Ej
p∆εjq.

Numerical realization. The simulation of a fuzzy white-noise process pẼτ qτPT,
i.e. the determination of the realizations pε̃τ qτPT, is based on the Monte Carlo
simulation of continuous fuzzy random variables. Use is thereby made of the
characteristic properties of the fuzzy white-noise process. In accordance with
Eqs. (3.54) and (3.55) the fuzzy white-noise variables Ẽτ for different values
of τ are fully-independent fuzzy random variables with a constant fuzzy ex-
pected value ErẼτ s � m̃Ẽτ

and a constant lαrα-variance lrV arrẼτ s � lrσ
2
Ẽτ

.
According to Eq. (3.56) the lαrα-covariance function lrK Ẽτ

p∆τq only exists
for ∆τ � 0. From this it follows that the simulation of the fuzzy white-noise
process pẼτ qτPT at each time point τ may be reduced to the Monte Carlo sim-
ulation (see Sect. 2.2.4) of a fuzzy white-noise variable Ẽ with the properties
ErẼs � ErẼτ s, lrV arrẼs � lrV arrẼτ s and lrK Ẽ � lrK Ẽτ

p∆τ � 0q. Analogous
to Sect. 2.2.4, the continuous fuzzy random variable Ẽ is thus computed as
a one-to-one mapping of the uniformly distributed fuzzy random variable Ỹ
according to Eq. (3.68).

Ẽ � fcpỸ q (3.68)

In the case of a discrete fuzzy random variable Ẽ the simulation is computed
as a one-to-one mapping of the uniformly distributed random variable Y ac-
cording to Eq. (3.69) (see also Sect. 2.2.4).

Ẽ � fdpY q (3.69)
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3.5.2 Fuzzy Moving Average Processes

Definition 3.29. A fuzzy random process pX̃τ qτPT is referred to as a fuzzy
moving average process of order q (fuzzy MArqs process for short) if it can be
described by Eq. (3.70) at each time point τ .

X̃τ � Ẽτ aB1 d Ẽτ�1 a ...aBq d Ẽτ�q (3.70)

�

The parameters Bj (j � 1, 2, ..., q) are real-valued r2n, 2ns matrices, whereby
n denotes the number of chosen α-levels. The variables Ẽτ , Ẽτ�1, ..., Ẽτ�q are
the fuzzy random variables of a fuzzy white-noise process pẼτ qτPT at time
points τ, τ � 1, ..., τ � q (see Sect. 3.5.1).

Fuzzy moving average processes pX̃τ qτPT are generally stationary fuzzy
random processes. The fuzzy expected values and the lαrα-variance of a fuzzy
MA process may be determined by means of Eqs. (3.71) and (3.73).

The fuzzy expected value ErX̃τ s is computed using the fuzzy expected
value ErẼτ s � m̃Ẽτ

of the fuzzy white-noise process pẼτ qτPT as follows:

ErX̃τ s � m̃X̃τ
�

�
q̧

j�0

�
�Bj

��
d m̃Ẽτ

. (3.71)

The parameter matrices B1, B2, ..., Bq are obtained from Eq. (3.70). The
negative unit matrix according to Eq. (3.72) is applied to compute B0.

B0 �

�
��
�1 . . . 0
...

. . .
...

0 � � � �1

�
�� (3.72)

The lαrα-variance lrV arrX̃τ s is computed using the lαrα-variance lrV arrẼτ s �

lrσ
2
Ẽτ

of the fuzzy white-noise process.

lrV arrX̃τ s � lrσ
2
X̃τ

�

�
q̧

j�0

�
Bj Bj

��
� lrσ

2
Ẽτ

(3.73)

The operator  hereby represents the naive element-by-element multiplication
of the parameter matrices.

The lαrα-covariance function lrKX̃τ
p∆τq of a fuzzy moving average process

pX̃τ qτPT may be determined for ∆τ � 0, 1, ..., q according to Eq. (3.74). The
term lrK Ẽτ

p∆τ � 0q hereby represents the lαrα-covariance function of the
corresponding fuzzy white-noise process pẼτ qτPT for ∆τ � 0.

lrKX̃τ
p∆τq �

q�∆τ¸
c�0

Bc�∆τ lrK Ẽτ
p∆τ � 0qBT

c (3.74)
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The elements kX̃τ
ri, jsp∆τq of the lαrα-covariance function lrKX̃τ

p∆τq may
be determined for i, j � 1, 2, ..., 2n using Eq. (3.75). The variables bc rj, bs and
bc�∆τ ri, as are hereby the elements of the parameter matrices Bc and Bc�∆τ ,
respectively, and kẼτ

ra, bsp∆τ � 0q are the elements of the lαrα-covariance
function lrK Ẽτ

p∆τ � 0q.

kX̃τ
ri, jsp∆τq �

q�∆τ¸
c�0

2ņ

b�1

2ņ

a�1

bc rj, bs kẼτ
ra, bsp∆τ � 0q bc�∆τ ri, as (3.75)

Numerical realization. The numerical simulation of a fuzzy MA process
pX̃τ qτPT is a special case of the numerical simulation of a fuzzy ARMA process
(see Sect. 3.5.4).

Example 3.30. For a fuzzy MA[1] process it follows from Eq. (3.70) that

X̃τ � Ẽτ aB1 d Ẽτ�1 a ...aBq d Ẽτ�q . (3.76)

For an lαrα-discretization with n � 3 α-levels the following is obtained ac-
cording to the notation used in Eq. (2.89).

X̃τ �

�
�������

∆X1pτq
∆X2pτq
∆X3pτq
∆X4pτq
∆X5pτq
∆X6pτq

�
�������
�

�
�������

∆E1pτq
∆E2pτq
∆E3pτq
∆E4pτq
∆E5pτq
∆E6pτq

�
�������
�

�
�������

0.5 0.1 0.5 0 0.2 0.3
0.1 0.5 0.8 0 0.4 0.2
0.7 0.9 0.8 0 0.9 0.8
0 0 0 0 0 0

0.1 0.3 0.2 0 0.6 0.2
0.4 0.2 0.1 0 0 0.6

�
�������

�
�������

∆E1pτ � 1q
∆E2pτ � 1q
∆E3pτ � 1q
∆E4pτ � 1q
∆E5pτ � 1q
∆E6pτ � 1q

�
�������

(3.77)

The random lαrα-increments ∆E1pτq, ...,∆E6pτq of the fuzzy white-noise vari-
ables Ẽτ for this example are equally-distributed random variables in the inter-
val [0,1]. The linear dependency between the ∆E1pτq, ...,∆E6pτq is expressed
by means of the lαrα-correlation function

lrRẼτ
p∆τ � 0q �

�
�������

1 0.3 0.3 � 0.4 0.5
0.3 1 0.4 � 0.4 0.4
0.3 0.4 1 � 0.3 0.4
� � � � � �
0.4 0.4 0.3 � 1 0.5
0.5 0.4 0.4 � 0.5 1

�
�������

. (3.78)

A segment of a typical realization is shown in Fig. 3.13.
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Fig. 3.13. Segment of a realization of the fuzzy MA[1] process according to Eq.
(3.77)

�

3.5.3 Fuzzy Autoregressive Processes

Definition 3.31. A fuzzy random process pX̃τ qτPT is referred to as a fuzzy
autogressive process of order p (fuzzy ARrps process for short) if it may be
represented by Eq. (3.79) at each time point τ .

X̃τ � A1 d X̃τ�1 ` ...`Ap d X̃τ�p ` Ẽτ (3.79)

�

The parameters Aj are real-valued r2n, 2ns matrices, where n denotes the
number of chosen α-levels. The term Ẽτ is the fuzzy random variable of a
fuzzy white-noise process pẼτ qτPT at time point τ (see Sect. 3.5.1).

By means of fuzzy AR processes it is possible to model stationary as well
as non-stationary fuzzy time series. The characteristic moments of a fuzzy AR
process may be computed by means of the numerical methods described in
Sect. 3.5.4 for fuzzy ARMA processes.

The fuzzy random variable X̃τ and its random lαrα-increments ∆Xipτq
with i � 1, 2, ..., 2n depend on the previous values X̃τ�1, X̃τ�2, ..., X̃τ�p

and are thus dependent on the random lαrα-increments ∆Xkpτ � lq with
k � 1, 2, ..., 2n and l � 1, 2, ..., p. This causal dependency is weighted by the
parameter matrices Aj and may be formalized with the aid of the GRANGER
causality concept [17].

The GRANGER causality concept demands the fulfillment of two require-
ments: firstly, causality is only defined for variables with stochastic charac-
teristics. The second requirement is that future realizations are solely influ-
enced by past values. According to Sect. 2.2, the random lαrα-increments of a
fuzzy random variable X̃τ at time τ are real-valued random variables ∆Xipτq
with i � 1, 2, ..., 2n. For time series comprised of fuzzy data, as considered
here, it follows from both requirements that a random lαrα-increment ∆Xk

of a fuzzy random variable X̃τ is GRANGER-causal for a different random
lαrα-increment ∆Xi of a fuzzy random variable X̃τ�∆τ for ∆τ ¡ 0, provided
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improved predictions of ∆Ximay be obtained with the aid of previous values
of ∆Xk.

Definition 3.32. In a fuzzy autoregressive process, ∆Xkis GRANGER-causal
in relation to ∆Xi if Eq. (3.80) is not satisfied.

a1ri, ks � a2ri, ks � ... � apri, ks � 0 (3.80)

�

If all parameter matrices of a fuzzy autoregressive process are diagonal matri-
ces Aj , GRANGER causality does not exist between the different α-levels.
For a general configuration of the Aj matrices the fuzzy AR process is consid-
ered to be GRANGER-causal with regard to fuzzy random process modeling.

The term causality must not be confused with the term correlation. If a
statistical relationship exists between two random lαrα-increments ∆Xi and
∆Xk, it is not possible make any statements regarding causal relationships.
Conversely, the fact that previous values of ∆Xk may lead to GRANGER-
causal realizations of ∆Xi at time τ , they do not necessarily lead to correla-
tion.

From GRANGER causality it follows that it is not possible to deduce the
occupancy of the parameter matrices Aj from the lαrα-correlation function.
The Aj must be determined using the methods presented in Sect. 3.5.5.

In contrast to fuzzy MA processes, fuzzy AR processes permit the model-
ing of stationary as well as non-stationary fuzzy time series. Whether or not a
specific fuzzy AR process is stationary or non-stationary may be determined
numerically. It is possible to verify stationarity from a numerical simulation of
the fuzzy AR process and a statistical evaluation of a sufficiently long series
of realizations according to the methods described in Sect. 3.3.

Numerical realization. The numerical simulation of a fuzzy AR process pX̃τ qτPT
is a special case of the numerical simulation of a fuzzy ARMA process, as de-
scribed in the following section.

3.5.4 Fuzzy Autoregressive Moving Average Processes

Definition 3.33. A fuzzy random process pX̃τ qτPT is referred to as a fuzzy
autoregressive moving average process of order rp, qs (fuzzy ARMArp, qs pro-
cess for short) if it may be described by Eq. (3.81) at each time point τ .

X̃τ �A1 d X̃τ�1 ` ...`Ap d X̃τ�p`looooooooooooooooooomooooooooooooooooooon
fuzzy AR component

Ẽτ aB1 d Ẽτ�1 a ...aBq d Ẽτ�qlooooooooooooooooooomooooooooooooooooooon
fuzzy MA component

(3.81)

�
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The parameters Aj and Bj are real-valued r2n, 2ns matrices, whereby n de-
notes the number of chosen α-levels. The variables Ẽτ , Ẽτ�1, ..., Ẽτ�q are
the fuzzy random variables of a fuzzy white-noise process pẼτ qτPT at times
τ, τ � 1, ..., τ � q (see Sect. 3.5.1). Fuzzy autoregressive moving average pro-
cesses are hence a combination of the processes presented in the previous two
sections.

By means of fuzzy ARMA processes it is possible to model stationary
as well as non-stationary fuzzy time series. Whether or not a specific fuzzy
ARMA process is stationary or non-stationary may be tested numerically
(see also Sect. 3.5.3). It is possible to verify stationarity from a numerical
simulation of a sufficiently long realization of the fuzzy ARMA process and a
statistical evaluation of the latter using the methods described in Sect. 3.3.

The characteristic moments such as the fuzzy expected value function, the
lαrα-variance function, and the lαrα-covariance function may be determined
from a numerical simulation followed by a statistical evaluation of the real-
izations. In the case of a stationary fuzzy ARMA process a sufficiently long
realization of the process is simulated in order to determine the characteristic
moments. For these fuzzy time series the characteristic moments are computed
according to Sect. 3.3 and used as estimators for the characteristic moments
of the fuzzy ARMA process.

In the case of a non-stationary fuzzy ARMA process, s realizations px̃k
τ qτPT

(k � 1, 2, ..., s) are simulated in order to determine the characteristic moments.
The local fuzzy mean value x̃pτq according to Eq. (3.82) then serves as an
estimator for the fuzzy expected value function ErX̃τ s � m̃X̃τ

.

ÊrX̃τ s � ˆ̃mX̃τ
� x̃pτq �

1
s

sà
k�1

x̃k
τ (3.82)

The elements of the lαrα-covariance function lrKX̃τ
pτa, τbq are estimated ac-

cording to Eq. (3.83).

k̂αil
�

αjr�pτa, τbq �
1

s� 1

ş

k�1

rp∆xk
αil�

pτaq �∆xαil�pτaqq... (3.83)

...p∆xk
αjr�pτbq �∆xαjr�pτbqqs

The subscripts αi and αj denote the α-levels under consideration whereas
l� � l, r and r� � l, r denote the left and right branches of the member-
ship function, respectively. The leading diagonal elements of lrK̂X̃τ

pτa, τbq for
τa � τb � τ are estimators for the elements of the lαrα-variance function
lrV arrX̃τ s � lrσ

2
X̃τ

at each time point τ .
The superposition of deterministic ARMA processes, as investigated in

[18] within the framework of classical time series analysis, may also be ap-
plied to fuzzy autoregressive moving average processes. The fuzzy sum of two
independent fuzzy ARMA processes pX̃τ qτPT and pỸτ qτPT of orders rpX̃τ

, qX̃τ
s

and rpỸτ
, qỸτ

s according to Eq. (3.84)
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Z̃τ � X̃τ ` Ỹτ (3.84)

again yields a fuzzy ARMA process pZ̃τ qτPT of order rpZ̃τ
, qZ̃τ

s. The upper
bounds for pZ̃τ

and qZ̃τ
are specified by the inequalities (3.85) and (3.86),

respectively.

pZ̃τ
¤ pX̃τ

� pỸτ
(3.85)

qZ̃τ
¤ maxrpX̃τ

� qỸτ
, pỸτ

� qX̃τ
s (3.86)

Numerical realization. The simulation of a fuzzy ARMArp, qs process pX̃τ qτPT,
i.e. the determination of realizations px̃τ qτPT, is based on a Monte Carlo sim-
ulation of the included fuzzy white-noise process pẼτ qτPT. This follows the
recursive procedure according to Eq. (3.87). The simulation of fuzzy AR and
fuzzy MA processes is included as a special case (q � 0 and p � 0).

X̃τ � A1 d x̃τ�1 ` ...`Ap d x̃τ�p ` Ẽτ a (3.87)
B1 d ε̃τ�1 a ...aBq d ε̃τ�q

with x̃τ�u �

"
0 for τ � u   1

x̃τ�u for τ � u ¥ 1 , u � 1, 2, ..., p (3.88)

and ε̃τ�v �

"
ErẼτ s for τ � v   1
ε̃τ�v for τ � v ¥ 1

, v � 1, 2, ..., q (3.89)

A precondition for the application of Eq. (3.87) is that the order rp, qs of the
process as well as the parameter matrices A1, ... , Ap and B1, ... , Bq are
known. Methods for specifying the order rp, qs are presented in Sect. 3.5.5.
Methods for estimating the parameter matrices are developed in Sect. 3.5.6.

In the first step, a realization x̃1 of the fuzzy ARMA process pX̃τ qτPT at
time τ � 1 is determined. In accordance with Eq. (3.87), the realization x̃1

of the fuzzy random variable X̃1 is dependent on the realization ε̃1 of the
fuzzy white-noise variable Ẽ1. The fuzzy variables x̃τ and ε̃τ at times τ   1
are hereby given as zero according to Eq. (3.88) or as the fuzzy expected
value of the fuzzy white-noise process according to Eq. (3.89). Following the
Monte Carlo simulation of a realization ε̃1 (see Sect. 3.5.1), the corresponding
realization x̃1 may be computed.

Using the simulated fuzzy variable x̃1, the realization x̃2 is obtained in
the next step from a repeated Monte Carlo simulation of a fuzzy white-noise
variable ε̃2. The successive repetition of this procedure for time points τ �
1, 2, ... yields a realization of the fuzzy ARMA process pX̃τ qτPT. It should be
noted here that the initial time points are required for the settling time of the
fuzzy ARMA process, and that the corresponding fuzzy variables are rejected.
By repeating this procedure s-times it is possible to simulate s sequences of
realizations.
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Remark 3.34. For fuzzy ARMA processes as well as for the special cases
of fuzzy AR and fuzzy MA processes, the inclusion condition given by Eq.
(2.80) must be complied with for the fuzzy random variables X̃τ with τ �
1, 2, .... It must therefore be ensured that the lαrα-increments ∆xjpτq (j �
1, 2, ..., n�1, n�1, ..., 2n) of all realizations px̃τ qτPT satisfy the requirement of
non-negativity. For this purpose, s sufficiently long sequences of realizations
are simulated. The lαrα-increments ∆xjpτq of the realizations in each sequence
must be non-negative. If the lαrα-increments for all s simulated realizations
satisfy the condition ∆xjpτq ¥ 0, the requirement of non-negativity is fulfilled
with an estimated probability of error of   1

s . �

Remark 3.35. Eq. (3.81) describing the fuzzy ARMArp, qs process is rear-
ranged as follows.

X̃τ aA1 d X̃τ�1 a...aAp d X̃τ�ploooooooooooooooooomoooooooooooooooooon
fuzzy AR component

� Ẽτ aB1 d Ẽτ�1 a...aBq d Ẽτ�qlooooooooooooooooooooomooooooooooooooooooooon
fuzzy MA process

(3.90)

The following therefore also holds for each realization of the process.

x̃τ aA1 d x̃τ�1 a...aAp d x̃τ�p� ε̃τ aB1 d ε̃τ�1 a...aBq d ε̃τ�q (3.91)
with τ � 1, 2, ..., N

From Eqs. (3.90) and (3.92) it follows that the left-hand side of Eq. (3.92) is
the realization of a fuzzy MArqs process.

A given time series x̃1, x̃2, ..., x̃N , which is a specific realization of the fuzzy
ARMArp, qs process, may be transformed into the realization of a fuzzy MArqs
process by means of

MAx̃τ � x̃τ aA1 d x̃τ�1 a...aAp d x̃τ�p (3.92)
with τ � p� 1, p� 2, ..., N .

The realization MAx̃τ is a fuzzy time series truncated to N�p elements which
is always stationary. �

3.5.5 Specification of Model Order

In the following section, methods are presented for specifying the model or-
der rp, qs, i.e. methods for determining the parameters p and q of the fuzzy
ARMArp, qs process.

Specification of Model Order by the BOX-JENKINS Method

A precondition for the application of the classical BOX-JENKINS method to
time series comprised of crisp (i.e. real-valued) data is that the considered time
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series is stationary (or adjusted to remove trends and cycles) [6]. For this rea-
son, non-stationary real-valued time series are converted into stationary time
series with the aid of classical difference filters. An extension of the classi-
cal BOX-JENKINS method to deal with time series containing fuzzy data is
presented in the following. The application presupposes stationary fuzzy time
series. Non-stationary fuzzy time series may be converted into stationary fuzzy
time series with the aid of the adjustment procedures described in Sect. 3.2
for removing fuzzy trends and cycles or by means of suitable fuzzy difference
filters according to Sect. 3.4.

The extended BOX-JENKINS method permits a specification of the
model order rp, qs of fuzzy ARMA processes. The lαrα-correlation function
lrRX̃τ

p∆τq and the partial lαrα-correlation function lrP X̃τ
p∆τq of a station-

ary fuzzy ARMA process exhibit characteristic properties which are dependent
on the model parameters p and q. These properties may be recognized from
the structure of the empirical lαrα-correlation function lrR̂x̃τ

p∆τq and the
empirical partial lαrα-correlation function lrP̂ x̃τ

p∆τq of the stationary fuzzy
time series in question (see Sect. 3.3). From the structure it is possible to
deduce the model order of the hypothetically underlying fuzzy ARMArp, qs
process. In the following, characteristic properties of fuzzy ARMArp, qs pro-
cesses are described and methods for evaluating the empirical parameters of
a fuzzy time series are developed.

Fuzzy ARMArp, 0s process. Eq. (3.93) given below holds for the ele-
ments pi,jp∆τq of the partial lαrα-correlation function lrP X̃τ

p∆τq of a fuzzy
ARMArp, 0s process pX̃τ qτPT or a fuzzy AR process pX̃τ qτPT of order rps.

pi,jp∆τq �

$&
%

pi,jp∆τq for ∆τ ¤ p

0 for ∆τ ¡ p
@ i, j � 1, 2, ..., 2n (3.93)

If this characteristic property according to Eq. (3.93) is recognizable in the
empirical partial lαrα-correlation function lrP̂ x̃τ

p∆τq of a given fuzzy time
series, a fuzzy AR process pX̃τ qτPT of order rps may be assumed. As a rule,
lrP̂ x̃τ

p∆τq does not exhibit a pronounced jump according to Eq. (3.93) be-
cause only the given fuzzy time series, i.e. only a single realization of length
N of the hypothetically underlying fuzzy ARrps process, is available for de-
termining lrP̂ x̃τ

p∆τq.
For specifying the model order a tolerance interval P Ii,jp∆τq is therefore

stipulated for the elements p̂i,jp∆τq of the empirical partial lαrα-correlation
function lrP̂ x̃τ

p∆τ ¡ pq, within which they must lie for ∆τ ¡ p. If, accord-
ing to Eq. (3.94), all empirical partial correlations p̂i,jp∆τq lie within the
corresponding interval P Ii,jp∆τq beyond a time step ∆τ , the model order
p � ∆τ � 1 may be assumed for the fuzzy AR process underlying the fuzzy
time series.

p̂i,jp∆τq P P Ii,jp∆τq @ i, j � 1, 2, ..., 2n (3.94)
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Fuzzy ARMAr0, qs process. For a fuzzy ARMA process pX̃τ qτPT of or-
der r0, qs, i.e. for a fuzzy MArqs process pX̃τ qτPT, the following equation
holds for the elements ri,jp∆τq of the corresponding lαrα-correlation func-
tion lrRX̃τ

p∆τq.

ri,jp∆τq �

$&
%

ri,jp∆τq for ∆τ ¤ q

0 for ∆τ ¡ q
@ i, j � 1, 2, ..., 2 (3.95)

If the empirical lαrα-correlation function lrR̂x̃τ
p∆τq of a given fuzzy time se-

ries exhibits the properties of Eq. (3.95), a fuzzy MA process pX̃τ qτPT of order
rqs may assumed. Analogous to fuzzy AR processes, a pronounced jump as in
Eq. (3.95) is normally not present in the empirical lαrα-correlation function
lrR̂x̃τ

p∆τq of a given fuzzy time series. Analogous to the procedure adopted
for fuzzy AR processes, a tolerance interval RIi,jp∆τq is thus stipulated for the
elements r̂i,jp∆τq of the empirical lαrα-correlation function lrR̂x̃τ

p∆τ ¡ qq,
within which they must lie. The value q � ∆τ � 1 may be assumed for the
model order of the fuzzy time series of the underlying fuzzy MA process, pro-
vided all empirical correlations r̂i,jp∆τq beyond the time step ∆τ lie within
the corresponding interval RIi,jp∆τq according to Eq. (3.96).

r̂i,jp∆τq P RIi,jp∆τq @ i, j � 1, 2, ..., 2n (3.96)

Remark 3.36. In accordance with Eqs. (3.94) and (3.96), the model orders
p and q for fuzzy AR and fuzzy MA processes may be specified with the
aid of predefined tolerance intervals P Ii,jp∆τq and RIi,jp∆τq. By means of
P Ii,jp∆τq and RIi,jp∆τq it is also possible to specify individual elements
of the parameter matrices A1, ..., Ap and B1, ..., Bq a priori. If the em-
pirical partial correlations p̂i,jp∆τq and the empirical correlations r̂i,jp∆τq
for each time step ∆τ ¡ d lie within the tolerance intervals P Ii,jp∆τq and
RIi,jp∆τq, respectively, the corresponding elements ai,jpd� 1q, ai,jpd� 2q, ...
and bi,jpd � 1q, bi,jpd � 2q, ... of the parameter matrices Ad�1, Ad�2, ... and
Bd�1, Bd�2, ..., respectively, may be set to zero according to Eqs. (3.97) and
(3.98).

ai,jpd� 1q, ai,jpd� 2q, ... � 0 if p̂i,jp∆τq P P Ii,jp∆τq @ ∆τ ¡ d (3.97)

bi,jpd� 1q, bi,jpd� 2q, ... � 0 if r̂i,jp∆τq P RIi,jp∆τq @ ∆τ ¡ d (3.98)

�

Fuzzy ARMArp, qs process. If the empirical partial lαrα-correlation func-
tion lrP̂ xp∆τq and the empirical lαrα-correlation function lrR̂x̃τ

p∆τq of a
given fuzzy time series do not exhibit specific properties according to Eqs.
(3.93) and (3.95), a general fuzzy ARMArp, qs process may be assumed accord-
ing to the case in question. A specification of the model order rp, qs of a fuzzy
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ARMA process by means of the BOX-JENKINS method, i.e. the recognition
and evaluation of particular patterns in lrP̂ x̃τ

p∆τq and lrR̂x̃τ
p∆τq, is diffi-

cult, however, due to the fact that the lαrα-correlation functions lrRX̃τ
p∆τq

and the partial lαrα-correlation functions lrP X̃τ
p∆τq of fuzzy ARMArp, qs

processes are not marked by clearly defined and easily recognizable character-
istics. According to the procedures adopted in classical time series analysis (see
e.g. [65]), it is feasible to construct diagrams of the lαrα-correlation functions
lrRX̃τ

p∆τq and the partial lαrα-correlation functions lrP X̃τ
p∆τq correspond-

ing to all conceivable model orders rp, qs for the purpose of identification. A
far more suitable approach for specifying the model order rp, qs of stationary
fuzzy ARMA processes, however, is offered by the method presented in the
following, which makes use of lαrα-correlation tables for time series comprised
of fuzzy data.

Specification of Model Order by Means of lαrα-Correlation Tables

In classical time series analysis the underlying (deterministic) ARMArp, qs
process is specified by computing empirical vector correlations λpp, qq of the
time series concerned. The arrangement of the vector correlations λpp, qq
in the so-called correlation table and their evaluation yields information re-
garding the sought model order rp, qs (see e.g. [60]). The developed lαrα-
discretization permits the consistent extension of this approach to the fuzzy
vectors x̃ and ỹ according to Eqs. (3.99) and (3.100), which are segments of
the given stationary fuzzy time series. Both vectors are of length p � 1 and
are displaced by q � 1 towards each other on the time series.

x̃ � px̃τ , x̃τ�1, ..., x̃τ�pq
T (3.99)

ỹ � px̃τ�q�1, x̃τ�q�2, ..., x̃τ�q�p�1q
T (3.100)

The empirical lαrα-vector correlation matrix lrΛ̂x̃τ
pp, qq is then given as being

dependent on the order rp, qs according to Eq. (3.101). This is a measure of
the correlation between the fuzzy vectors x̃ and ỹ.

lrΛ̂x̃τ
pp, qq �

�
��������

λ1,1 λ1,2 � � � λ1,p2nq

λ2,1 λ2,2 � � � λ2,p2nq
...

...
. . .

...

λp2nq,1 λp2n,q2 � � � λp2nq,p2nq

�
��������

(3.101)

The elements of the empirical lαrα-vector correlation matrix lrΛ̂x̃τ
pp, qq are

determined for i, j � 1, 2, ..., 2n according to Eq. (3.102).

λi,jpp, qq �
det lrK̂x̃ỹpi, jqc�

det lrK̂x̃x̃pi, iq
	�

det lrK̂ỹỹpj, jq
	 (3.102)



3.5 Modeling on the Basis of Specific Fuzzy Random Processes 93

The terms lrK̂x̃x̃pi, iq, lrK̂ỹỹpj, jq and lrK̂x̃ỹpi, jq are hereby special empirical
lαrα-covariance matrices according to Eqs. (3.103) to (3.105).

lrK̂x̃x̃pi, iq �

�
��������

k̂
∆xipτq
∆xipτq

k̂
∆xipτq
∆xipτ�1q � � � k̂

∆xipτq
∆xipτ�pq

k̂
∆xipτ�1q
∆xipτq

k̂
∆xipτ�1q
∆xipτ�1q � � � k̂

∆xipτ�1q
∆xipτ�pq

...
...

. . .
...

k̂
∆xipτ�pq
∆xipτq

k̂
∆xipτ�pq
∆xipτ�1q � � � k̂

∆xipτ�pq
∆xipτ�pq

�
��������

(3.103)

lrK̂ỹỹpj, jq �

�
��������

k̂
∆xjpτ�q�1q
∆xjpτ�q�1q k̂

∆xjpτ�q�1q
∆xjpτ�q�2q � � � k̂

∆xjpτ�q�1q
∆xjpτ�q�p�1q

k̂
∆xjpτ�q�2q
∆xjpτ�q�1q k̂

∆xjpτ�q�2q
∆xjpτ�q�2q � � � k̂

∆xjpτ�q�2q
∆xjpτ�q�p�1q

...
...

. . .
...

k̂
∆xjpτ�q�p�1q
∆xjpτ�q�1q k̂

∆xjpτ�q�p�1q
∆xjpτ�q�2q � � � k̂

∆xjpτ�q�p�1q
∆xjpτ�q�p�1q

�
��������

(3.104)

lrK̂x̃ỹpi, jq �

�
��������

k̂
∆xipτq
∆xjpτ�q�1q k̂

∆xipτq
∆xjpτ�q�2q � � � k̂

∆xipτq
∆xjpτ�q�p�1q

k̂
∆xipτ�1q
∆xjpτ�q�1q k̂

∆xipτ�1q
∆xjpτ�q�2q � � � k̂

∆xipτ�1q
∆xjpτ�q�p�1q

...
...

. . .
...

k̂
∆xipτ�pq
∆xjpτ�q�1q k̂

∆xipτ�pq
∆xjpτ�q�2q � � � k̂

∆xipτ�pq
∆xjpτ�q�p�1q

�
��������

(3.105)

The individual elements of the special empirical lαrα-covariance matrices
lrK̂x̃x̃pi, iq, lrK̂ỹỹpj, jq and lrK̂x̃ỹpi, jq describe the empirical covariances k̂ be-
tween the lαrα-increments ∆xipτq, ∆xipτ�1q, ..., ∆xipτ�pq and ∆xjpτ�q�1q,
∆xjpτ �q�2q, ..., ∆xjpτ �q�p�1q of the fuzzy variables x̃τ , x̃τ�1, ..., x̃τ�p

and x̃τ�q�1, x̃τ�q�2, ..., x̃τ�q�p�1, which are lumped together in the fuzzy
vectors x̃ and ỹ according to Eqs. (3.99) and (3.100).

By arranging the empirical lαrα-vector correlation matrices lrΛ̂x̃τ
pp, qq in

a matrix with column indexing q � 0, 1, 2, ... and row indexing p � 0, 1,
2, ... according to Eq. (3.106) the empirical lαrα-correlation table lrT̂ x̃τ

for
the given fuzzy time series is obtained.

lrT̂ x̃τ
�

�
����������

lrΛ̂x̃τ
p0, 0q lrΛ̂x̃τ

p0, 1q lrΛ̂x̃τ
p0, 2q � � �

lrΛ̂x̃τ
p1, 0q lrΛ̂x̃τ

p1, 1q lrΛ̂x̃τ
p1, 2q � � �

lrΛ̂x̃τ
p2, 0q lrΛ̂x̃τ

p2, 1q lrΛ̂x̃τ
p2, 2q � � �

...
...

...
. . .

�
����������

(3.106)
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With the aid of the empirical lαrα-correlation table lrT̂ x̃τ
for a given fuzzy

time series it is possible to specify the model order rp, qs of an underlying fuzzy
ARMA process. If the empirical lαrα-correlation table lrT̂ x̃τ

is characterized
by a zero block beginning at position rp, qs and extending infinitely in the
advancing row and column direction, the underlying fuzzy ARMA process is
of order rp, qs.

Remark 3.37. Analogous to the BOX-JENKINS method, an exact zero block
does not normally exist in the empirical lαrα-correlation table lrT̂ x̃τ

of a given
fuzzy time series. Similar to the procedure adopted in the BOX-JENKINS
method, a tolerance interval is thus specified for the elements of the empirical
lαrα-correlation table lrT̂ x̃τ

. The value zero is assigned to elements with a
value less than the chosen tolerance interval. �

Specification of Model Order by the Maximum Likelihood Method

In the following a further method based on the maximum likelihood method
is developed for determining the model order rp, qs.

For a fuzzy random process pX̃τ qτPT with known parameters P the prob-
ability distribution of realizations x̃1, x̃2, ..., x̃N of length N is given by the
N -dimensional fuzzy probability density function form II.

fpx̃1, x̃2, ..., x̃N |P q P � constant (3.107)

For each realization x̃1, x̃2, ..., x̃N of length N it is possible to state the value
of the fuzzy probability density function form II by means of Eq. (3.107). The
inverse problem must be solved in order to specify the model order. For a given
fuzzy time series x̃1, x̃2, ..., x̃N of length N the parameters P of the underlying
fuzzy random process model pX̃τ qτPT are sought. By means of the maximum
likelihood method it seems reasonable to seek a parameter combination P
whose fuzzy probability density function form II takes on a maximum value for
a given realization x̃1, x̃2, ..., x̃N . The fuzzy probability density function form
II with a given realization x̃1, x̃2, ..., x̃N and unknown, variable parameters
P is referred to as the lαrα-likelihood function lrlpP | x̃1, x̃2, ..., x̃N q (see Eq.
(3.108)).

lrlpP | x̃1, x̃2, ..., x̃N q � fpx̃1, x̃2, ..., x̃N |P q x̃1, x̃2, ..., x̃N � constant (3.108)

The sought parameter combination for the fuzzy random process model is
thus obtained by maximizing the lαrα-likelihood function.

Several fuzzy ARMA processes of different order rp, qs are taken as a basis
for the given fuzzy time series. The maximum value of the lαrα-likelihood
function is determined for each of these models. By using these values it is
possible select the ‘best’ fuzzy random process model with the aid of the
decision criterion formulated in the following.
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The simple choice of model order according to the largest of the computed
maximum values does not necessarily yield the best model variant, however.
For p1 ¥ p and q1 ¥ q a fuzzy ARMArp, qs process is included in a fuzzy
ARMArp1, q1s process as a special case if all elements of the additional pa-
rameter matrices Aj (j � p � 1, ..., p1) and Bj (j � q � 1, ..., q1) are equal
to zero. The following inequality then holds for the maximum values of the
lαrα-likelihood function:

sup
P

�
lrl
�
P pp1, q1q | x̃1, x̃2, ..., x̃N

��
¥ sup

P
rlrl pP pp, qq | x̃1, x̃2, ..., x̃N qs . (3.109)

The model order rp, qs should be chosen in such a way that the specified
fuzzy ARMA process with as few parameter matrices Aj (j � 1, ..., p) and
Bj (j � 1, ..., q) as possible represents the best fuzzy stochastic model of the
given fuzzy time series. The choice of model order according to the largest of
the computed maximum values does not fulfill this requirement because this
always yields the fuzzy ARMA process with the greatest number of parameter
matrices. A suitable selection criterion derived from classical time series anal-
ysis may be applied, however [2, 56, 61]. The best model order rp, qs is given
by the fuzzy ARMA process for which the so-called BIC criterion (BAYESian
Information Criterion) according to Eq. (3.110) is a minimum.

BICpp, qq � ln

�
sup
P
rlrl pP pp, qq | x̃1, x̃2, ..., x̃N qs

�
�
pp� qq lnN

N
(3.110)

By this means, higher preference is given to compact models with a small
number of parameter matrices Aj (j � 1, ..., p) and Bj (j � 1, ..., q) whereas
lower preference is given to fuzzy ARMA processes with a large number of
parameters.

Remark 3.38. A precondition for the specification of model order by means
of the maximum likelihood method is the a priori determination of fuzzy
ARMA processes with different model orders rp, qs. The respective process
parameters P are matched by maximizing the lαrα-likelihood function ac-
cording to Eq. (3.108). Based on the determined values of the lαrα-likelihood
function, the model order is finally obtained by means of the BIC criterion.
Due to the fact the model order is first selected after the parameter estima-
tion, this method is referred to as a posteriori specification. �

Numerical realization. A precondition frequently encountered in classical time
series analysis is the assumption of a multivariate GAUSSian normal distri-
bution for the possible realizations of the underlying random process (see
e.g. [6, 8, 33, 60]). This assumption appears questionable for the majority of
practical applications, however, and relies solely on the existence of a closed
solution for the multivariate GAUSSian normal distribution. Due to the re-
quirement of Eq. (2.47) the application of a GAUSSian normal distribution
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is not possible in the analysis of fuzzy time series. For this reason a generally
valid approach for determining the lαrα-likelihood function is presented in the
following.

For a fuzzy random process pX̃τ qτPT with given parameters P the N -
dimensional fuzzy probability density function form II fpx̃1, x̃2, ..., x̃N |P q of
the N fuzzy random variables X̃τ (τ � 1, 2, ..., N) is estimated by a Monte
Carlo simulation followed by a determination of the empirical fuzzy proba-
bility density function form II f̂px̃1, x̃2, ..., x̃N |P q. For this purpose, s fuzzy
time series of length N are computed with the aid of a Monte Carlo sim-
ulation and the underlying fuzzy random process pX̃τ qτPT (see Sect. 3.5.4).
After subdividing the simulated fuzzy time series x̃1, x̃2, ..., x̃N into classes,
the N -dimensional fuzzy probability density function form II may be esti-
mated. This procedure is analogous to the determination of the empirical
fuzzy probability density function form II described in Sect. 2.2.2, whereby
we are here concerned with a sample of s fuzzy time series of length N rather
than a sample of s fuzzy variables. The value of the estimated N -dimensional
fuzzy probability density function form II f̂px̃1, x̃2, ...,x̃N |P q resulting from
the given fuzzy time series x̃1, x̃2, ..., x̃N may be used as an estimator for the
value of the lαrα-likelihood function lrlpP | x̃1, x̃2, ..., x̃N q resulting from the
assumed P according to Eq. (3.108). Accordingly, one functional value of the
lαrα-likelihood function is known.

In order to compute additional functional values of the lαrα-likelihood
function this procedure is repeated for altered values of the parameter P .

If it is intended to match the process parameters P of an underlying fuzzy
ARMA process of given model order rp, qs to the given fuzzy time series
x̃1, x̃2, ..., x̃N by maximizing the lαrα-likelihood function, the optimization
problem according to Eq. (3.111) must be solved.

lrlpP | x̃1, x̃2, ..., x̃N q
!
� max (3.111)

This optimization problem may be solved by means of classical optimization
methods, e.g. the modified evolution strategy after [36]. A determination of the
value of the objective function at a position P hereby requires the computation
of a functional value of the lαrα-likelihood function in each case.

3.5.6 Parameter Estimation

The fuzzy MA, fuzzy AR and fuzzy ARMA processes presented in Sects. 3.5.2,
3.5.3 and 3.5.4 are parametric fuzzy stochastic models based on fuzzy white-
noise processes. An essential prerequisite for their numerical realization is the
lαrα-discretization introduced in Sect. 2.2. If a fuzzy random process model
is stipulated or assumed for a fuzzy time series, the model order (see Sect.
3.5.5) and the corresponding process parameters A1, ..., Ap and B1, ..., Bq

must be determined as accurately as possible. It should hereby be noted that
the estimation of the parameter matrices A1, ..., Ap and B1, ..., Bq is inter-
actively coupled with the determination of the underlying fuzzy white-noise
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process. The term P again represents the parameter matrices A1, ..., Ap and
B1, ..., Bq in an abridged form in the following.

Remark 3.39. A basic condition for the determination of the parameter ma-
trices A1, ..., Ap and B1, ..., Bq is the permissibility of the fuzzy random pro-
cess according to Remark 3.34. In other words, at each time point τ � 1, 2, ...
the fuzzy random variables X̃τ of the underlying fuzzy AR, fuzzy MA or fuzzy
ARMA process must satisfy the requirement given by Eq. (2.80). �

Different methods for estimating the parameters of fuzzy ARMA processes
are presented in the following section. These may also be applied to fuzzy
MA and fuzzy AR processes. In addition, special methods are presented for
estimating the parameters of fuzzy MA and fuzzy AR processes. The methods
outlined in the following for parameter estimation assume that Eq. (2.80) is
fulfilled. A special verification of the latter may be required in certain cases.

Parameter Estimation in Fuzzy ARMA Processes

Characteristic value method. In order to apply the characteristic value
method, stationary and ergodic fuzzy time series are assumed. If the fuzzy
time series under investigation exhibits non-stationary properties, this may
be converted into a stationary fuzzy time series with the aid of the fuzzy
component model (see Sect. 3.2) or by filtration (see Sect. 3.4).

The characteristic value method is based on the requirement that the em-
pirical characteristic values of the fuzzy time series concerned should match
with the characteristic values of the hypothetically underlying stationary fuzzy
ARMA process. In other words, the empirical characteristic values of the fuzzy
time series serve as unbiased estimators for the characteristic values of the
fuzzy random process. Of particular importance are the fuzzy expected value
m̃X̃τ

pP q including its lαrα-increments ∆mjpP q) and lαrα-variance lrσ
2
X̃τ
pP q

as well as the lαrα-correlation function lrRX̃τ
p∆τ, P q including its elements

rk,lp∆τ, P q). For the optimum estimation of the parameters P of the un-
derlying stationary fuzzy ARMA process and the included fuzzy white-noise
process the optimization problem according to Eq. (3.112) must be solved.

2ņ

j�1

p∆xj �∆mjpP qq
2
� (3.112)

8̧

∆τ��8

2ņ

k,l�1

pr̂k,lp∆τq � rk,lp∆τ, P qq
2 !
� min

The term ∆xj hereby represents the lαrα-increments of the empirical fuzzy
mean value x̃ (see Eq. (3.16)) while r̂k,lp∆τq are the elements of the empirical
lαrα-correlation function lrR̂x̃τ

p∆τq (see Eq. (3.22)).
A fundamental constraint of the optimization problem is compliance with

Eq. (2.18) for the realizations ε̃τ of the included fuzzy white-noise process.
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This means that the non-negativity requirement must be fulfilled for the lαrα-
increments ∆εjpτq of the realizations ε̃τ .

∆εjpτq ¥ 0 for j � 1, 2, ..., n� 1, n� 1, ...2n (3.113)

An additional requirement is that the fuzzy variables ε̃τ are realizations of a
stationary fuzzy white-noise process.

The third basic constraint of the optimization problem is the stationarity
of the fuzzy process model. In the case of fuzzy ARMA[0,q] processes this
requirement is fulfilled per definition, whereas for fuzzy ARMA[p,0] and fuzzy
ARMA[p,q] processes, the parameters to be estimated are subject to defined
restrictions (see Sects. 3.5.3 and 3.5.4).

Numerical realization. Depending on the extent of the optimization problem,
mesh search strategies, Monte Carlo methods or the modified evolution strat-
egy after [36] are suggested as possible methods of solution. The elements
of the parameter matrices P are the decision variables of the optimization
problem. Depending on the applied optimization method, random or system-
atically selected starting points for the decision variables are specified. Each
element of the parameter matrices P is initialized with a real value from the
interval [�1, 1].

The objective function given by Eq. (3.112) is set up as follows for given
values of the parameter matrices P : in order to check the permissibility of
the selected A1, ..., Ap the given fuzzy time series x̃τ is transformed into a
realization MAx̃τ of a fuzzy MArqs process (see Remark 3.35) by means of:

MAx̃τ � x̃τ aA1 d x̃τ�1 a...aAp d x̃τ�p (3.114)
with τ � p� 1, p� 2, ..., N .

The parameter matrices A1, ..., Ap are permissible if the realization MAx̃τ

constitutes a stationary fuzzy time series (see Sect. 3.3). Compliance with the
requirement given by Eq. (2.47) is not necessary for the MAx̃τ , as these only
represent an intermediate result.

The permissibility of the B1, ..., Bq is checked on the basis of the realiza-
tions ε̃τ of the fuzzy white-noise process. These must fulfill the condition Eq.
(3.113). A realization of this type may be determined from the given fuzzy
time series by means of Eq. (3.115).

ε̃τ � x̃τ aA1 d x̃τ�1 a...aAp d x̃τ�p `B1 d ε̃τ�1 `...`Bq d ε̃τ�q (3.115)

with ε̃τ�i�

$&
%

ε̃τ�i for τ � i ¡ p

ÊrẼτ s for τ � i ¤ p
and i � 1, 2, ..., q

ÊrẼτ s is the estimated fuzzy expected value of the underlying fuzzy white-
noise process pẼτ qτPT, and is obtained by solving the system of linear equations
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(3.116) for the unknown lαrα-increments of the fuzzy expected value ÊrẼτ s.
The fuzzy expected value ÊrẼτ s is used in Eq. (3.115) as the best possible
estimator for the unknown realizations ε̃τ�i at time points τ � i ¤ p.

ÊrMAX̃τ s �

�
q̧

j�0

�
�Bj

��
d ÊrẼτ s (3.116)

The fuzzy expected value ErMAX̃τ s of the fuzzy MA[q] process required by
Eq. (3.116) may be estimated from the transformed fuzzy time series MAx̃τ

according to Eq. (3.16). If the fuzzy variables ε̃τ computed from Eq. (3.115)
fulfill the requirements specified for the realizations of a fuzzy white-noise
process (especially the condition given by Eq. (3.113)), the probability dis-
tribution function of the fuzzy white-noise variables Ẽτ may be estimated on
the basis of the ε̃τ . Realizations of the fuzzy white-noise variables Ẽτ may be
simulated with the aid of the estimated probability distribution function.

By means of Eq. (3.87) it is now possible to simulate the realizations of
the assumed fuzzy ARMA[p, q] process, and also estimate the fuzzy expected
value, the lαrα-variance and the lαrα-correlation function.

It is then possible to compute one value of the objective function by means
of Eq. (3.112). Depending on the case in question, the chosen optimization
strategy yields improved parameters P .

Distance method. Estimation of the parameters of a fuzzy ARMA pro-
cess by the characteristic value method assumes stationary and ergodic fuzzy
time series. If the given fuzzy time series exhibits systematic changes such
as fuzzy trends or fuzzy cycles, non-stationary fuzzy random process mod-
els must be assumed. A suitable approach for parameter estimation in such
cases is to minimize the average distance dF between the optimum single-step
forecast ˚̃xτ pP q and the known values x̃τ of the given fuzzy time series with
p   τ ¤ N according to Eq. (3.117). A decisive advantage of this method is
that neither ergodic nor stationary fuzzy time series must be assumed. The
method permits the modeling of non-stationary fuzzy time series with the aid
of non-stationary process models without the need to specify (not meaning-
fully estimable for non-stationary fuzzy time series) empirical characteristic
values.

dF pP q �
1

N � p

Ņ

τ�p�1

dF

�
x̃τ ; ˚̃xτ pP q

	
!
� min (3.117)

Depending on the process parameters P to be determined, this method in-
volves a determination of the optimum single-step forecasts ˚̃xτ pP q for each
time point τ (p   τ ¤ N), whose distance dF from the corresponding fuzzy
variables x̃τ are computed and averaged over time. The minimization of this
average distance dF yields an unbiased estimator for the process parameters
P . Regarding the determination of the optimum single-step forecasts ˚̃xτ pP q,
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the reader is referred to Sect. 4. A definition of the distance dF between two
fuzzy variables is given in Sect. 2.1.4.

Numerical realization. Analogous to the characteristic value method, the min-
imization problem is solved by means of mesh search methods, Monte Carlo
methods or the modified evolution strategy suggested by [36]. Depending on
the optimization method used, randomly or systematically selected starting
points from the interval [�1, 1] are specified for the elements of the parameter
matrices P and the decision variables. The objective function is set up and
evaluated as in the characteristic value method. Firstly, the fuzzy time series
MAx̃τ is constructed (see Remark 3.35). Provided this fuzzy time series is sta-
tionary (see Sect. 3.3), the selected A1, ..., Ap are permissible. The realizations
ε̃τ of the underlying fuzzy white-noise process pẼτ qτPT are computed from Eq.
(3.115). Applying the estimators for the fuzzy expected value ErMAX̃τ s of the
fuzzy MA[q] process, the fuzzy expected value ÊrẼτ s is obtained by solving
the system of linear equations (3.116). The realizations ε̃τ computed accord-
ing to Eq. (3.115) must fulfill the condition given by Eq. (3.113). If the fuzzy
variables ε̃τ do not satisfy these requirements placed on the realizations of
a fuzzy white-noise process, the specified parameter matrices B1, ..., Bq are
impermissible and hence rejected. Applying the estimators for ErẼτ s, the op-
timum single-step forecasts ˚̃xτ pP q and the distance dF between ˚̃xτ pP q and the
corresponding fuzzy variables x̃τ may now be computed according to Sect. 4.

Gradient method. Another effective method for estimating the parame-
ter matrices A1, ..., Ap and B1, ..., Bq of fuzzy ARMA processes is the gradi-
ent method. This permits the modeling non-stationary fuzzy time series and
hence does not rely on the assumption of ergodicity. The basic idea is again
the matching of optimum single-step forecasts ˚̃xτ pP q to the known values x̃τ

of the given fuzzy time series with p   τ ¤ N . The definition of an error
function analogous to Eq. (3.117) is not appropriate in this case, however, as
the underlying integral for determining the distance dF via the HAUSDORFF
distance dH (see Sect. 2.1.4) represents a function which is only differentiable
over certain intervals. The square error between the forecasted increments
∆x̊ipτ, P q (i � 1, 2, ..., 2n) and the given increments ∆xipτq of the fuzzy
time series is defined according to Eq. (3.118) as the error function E to be
optimized.

E �
1
2

Ņ

τ�1�p

2ņ

i�1

p∆xipτq �∆x̊ipτ, P qq
2 !
� min (3.118)

Numerical realization. The optimum single-step forecasts ˚̃xτ pP q are deter-
mined as in the distance method. Firstly, starting points are defined for the
decision variables of the optimization problem, i.e. the parameter matrices
A1, ..., Ap and B1, ..., Bq of the fuzzy ARMArp, qs process are initialized. This
is carried out assigning random real values from the interval [�1, 1] to the
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matrix elements. The objective function is set up and evaluated as in the
characteristic value method. Firstly, a check is made to establish whether the
selected A1, ..., Ap lead to a stationary realization of the fuzzy MArqs process.
For this purpose the realization MAx̃τ is computed (see Remark 3.35) and a
check is made to establish whether this fuzzy time series is stationary (see Sect.
3.3). If the chosen A1, ..., Ap do not yield a stationary realization, the param-
eters are re-initialized. The realizations ε̃τ of the underlying fuzzy white-noise
process pẼτ qτPT are computed from Eq. (3.115). Using the estimators for the
fuzzy expected value ErMAX̃τ s of the fuzzy MA[q] process, the fuzzy expected
value ÊrẼτ s is obtained by solving the system of linear equations (3.116). The
realizations ε̃τ computed according to Eq. (3.115) must fulfill the conditions
given by Eq. (3.113). If the fuzzy variables ε̃τ do not fulfill these conditions,
the specified parameter matrices B1, ..., Bq are impermissible and hence re-
jected. With the aid of the estimators ÊrẼτ s the optimum single-step forecasts
˚̃xτ pP q are determined according to Sect. 4 and the square error is computed
according to Eq. (3.118).

The parameter matrices A1, ..., Ap and B1, ..., Bq are improved by means
of the correction matrices ∆A1, ..., ∆Ap and ∆B1, ..., ∆Bq according to Eqs.
(3.119) and (3.120), respectively.

Arpnewq � Arpoldq �∆Ar with r � 1, 2, ..., p (3.119)

Bspnewq � Bspoldq �∆Bs with s � 1, 2, ..., q (3.120)

The correction matrices are determined according to Eqs. (3.121) and (3.122)
by partial differentiation of the error function with respect to the parameters.
The step length may be arbitrarily defined by means of the factor η with
η ¡ 0.

∆Ar � �η BE
BAr

� �η

�
���

BE
Ba1,1prq

� � � BE
Ba1,2nprq

...
. . .

...
BE

Ba2n,1prq
� � � BE

Ba2n,2nprq

�
��� (3.121)

∆Bs � �η BE
BBs

� �η

�
���

BE
Bb1,1psq

� � � BE
Bb1,2npsq

...
. . .

...
BE

Bb2n,1psq
� � � BE

Bb2n,2npsq

�
��� (3.122)

The partial derivatives BE
Bau,vprq

and BE
Bbu,vpsq

of the square error function E with
respect to the elements of the parameter matrices are given by Eqs. (3.123)
and (3.124), respectively, for u, v � 1, 2, ..., 2n.
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BE

Bau,vprq
�

Ņ

τ�1�p

p∆xupτq �∆x̊upτ, P qq∆xvpτ � rq (3.123)

BE

Bbu,vpsq
�

Ņ

τ�1�p

p∆xupτq �∆x̊upτ, P qq∆εvpτ � sq (3.124)

For time points τ � s ¤ p the non-computable realizations ∆εvpτ � sq in Eq.
(3.124) of the fuzzy white-noise process pẼτ qτPT are again replaced by the
lαrα-increments of the estimated fuzzy expected value ÊrẼτ s.

BE

Bbu,vpsq
�

Ņ

τ�1�p

p∆xupτq �∆x̊upτ, P qq Ê r∆εvs (3.125)

An obligatory constraint for the optimization problem in this case is also
the non-negativity of the lαrα-increments ∆εjpτq according to Eq. (3.113).
Moreover, the fuzzy variables ε̃τ must satisfy the requirements placed on the
realizations of a fuzzy white-noise process.

Iteration method. A further, easily applicable method for the iterative esti-
mation of the parameter matrices A1, ..., Ap and B1, ..., Bq of a fuzzy ARMA
process may be derived from the regression approach of DURBIN [12]. Firstly,
a fuzzy AR process of high order p � k is presupposed for the fuzzy time series
in question, i.e. the parameter matrices B1, ..., Bq are zero matrices. After
estimating the parameter matrices A�

1 , A�
2 , ..., A�

k (see Parameter estimation
in fuzzy AR processes on p. 105) of the presupposed AR process, the real-
izations ε̃τ of the fuzzy white-noise process Ẽτ are estimated in iteration step
zero at time point τ according to Eq. (3.126), whereby k   τ ¤ N holds.

ε̃p0qτ � x̃τ a Â�
1 d x̃τ�1 a ...a Â�

k d x̃τ�k (3.126)

In the next step the parameter matrices A1, ..., Ap and B1, ..., Bq are im-
proved by minimizing the average distance dF according to Eq. (3.127). A
definition of the distance dF between two fuzzy variables is given in Sect.
2.1.4. In contrast to the distance method, the estimated realizations ε̃τ of the
fuzzy white-noise process pẼτ qτPT remain constant during the optimization.
This means that the objective function may be evaluated directly, i.e. without
additional computation of the fuzzy variables ε̃τ .

dF pP q �
1

N � p

Ņ

τ�p�1

dF px̃τ ; x̃�τ pP qq
!
� min (3.127)

The term x̃�τ pP q of the objective function dF pP q is determined according to
Eq. (3.128).

x̃�τ pP q�A1 d x̃τ�1 `...`Ap d x̃τ�p aB1 d ε̃
p0q
τ�1 a...aBq d ε̃

p0q
τ�q (3.128)



3.5 Modeling on the Basis of Specific Fuzzy Random Processes 103

Using the parameter matrices A1, ..., Ap and B1, ..., Bq determined from Eq.
(3.127), the realizations ε̃τ of the included fuzzy white-noise process Ẽτ are
recomputed in the next iteration step by means of Eq. (3.129).

ε̃p1qτ � x̃τ a Â1 d x̃τ�1 a...a Âp d x̃τ�p ` B̂1 d ε̃
p0q
τ�1 `...` B̂q d ε̃

p0q
τ�q (3.129)

Inserting the obtained fuzzy variables ε̃τ into Eq. (3.128) and resolving the
minimization problem by means of Eq. (3.127) yields improved values of
A1, ..., Ap and B1, ..., Bq. The iteration is continued until the parameter ma-
trices to be estimated converge.

A basic precondition for the applicability of the method is again that the
determined fuzzy variables ε̃τ satisfy the requirements placed on the realiza-
tions of a fuzzy white-noise process in each iteration step, i.e. they especially
fulfill the condition given by Eq. (3.113).

Parameter Estimation in Fuzzy MA Processes

The algorithm suggested by WILSON [68] for estimating the parameters of
a classical moving average process with crisp realizations is modified and ex-
tended in the following to deal with fuzzy moving average processes. The
parameter matrices B1, ..., Bq of a fuzzy MA process pX̃τ qτPT are hereby es-
timated from the empirical lαrα-covariance function lrK̂ x̃τ

p∆τkq of a given
fuzzy time series as described in the following, whereby ∆τ0 � 0, ∆τ1 � 1, ...,
∆τq � q holds.

The lαrα-covariance function lrKX̃p∆τkq of a fuzzy moving average process
pX̃τ qτPT according to Eq. (3.74) is given by Eq. (3.130) for k � 0, 1, ..., q. The
term lrK Ẽτ

p∆τ � 0q thereby represents the lαrα-covariance function of the
corresponding fuzzy white-noise process pẼτ qτPT for ∆τ � 0.

lrKX̃τ
p∆τkq �

q�ķ

c�0

Bc�k lrK Ẽτ
p∆τ � 0q BT

c (3.130)

If the lαrα-covariance function lrKX̃τ
p∆τkq is replaced by the empirical lαrα-

covariance function lrK̂ x̃τ
p∆τkq, implicit conditional equations are obtained

for the unknown parameter matrices Bk. Approximation values for the Bk

are determined iteratively with the aid of correction matrices. If B
piq
k is used

to denote the estimation of Bk in the i-th iteration step, correction matrices
∆
piq
k of size r2n, 2ns are sought which yield the best possible approximation of

the empirical lαrα-covariance function lrK̂ x̃τ
p∆τkq according to Eq. (3.131).

In other words, correction matrices ∆
piq
k are determined in each iteration step

i such that B
pi�1q
k � B

piq
k �∆

piq
k yields an improved approximation of the em-

pirical lαrα-covariance function according to Eq. (3.131). In the first iteration
step, random starting values within the interval r�0, 1; 0, 1s are assigned to
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the elements of the parameter matrices B
p1q
k for k ¡ 0. The parameter ma-

trix B0 is the negative unit matrix according to the definition of a fuzzy MA
process. In each iteration step i the following equations must be evaluated for
k � 1, 2, ..., q.

lrK̂ x̃τ p∆τkq �
q�ķ

c�0

�
B
piq
c�k �∆

piq
c�k

	
lrK Ẽτ

p∆τ � 0q
�
BT piq

c �∆T piq

c

	
(3.131)

By applying the approximations of the parameter matrices B
piq
k in each itera-

tion step i obtained from the pq�1q-th solution of Eq. (3.132) and computing
the arithmetic mean according to Eq. (3.133), it is possible to estimate the
unknown lαrα-covariance function lrK Ẽτ

p∆τ � 0q of the fuzzy white-noise
process pẼτ qτPT.

lrK̂ x̃τ p∆τkq �
q�ķ

c�0

B
piq
c�k lrK

piq,k

Ẽτ
p∆τ � 0qBT p1q

c (3.132)

lrK
piq

Ẽτ
p∆τ � 0q �

1
q � 1

q�ķ

c�0

lrK
piq,c

Ẽτ
p∆τ � 0q (3.133)

with k � 0, 1, ..., q

The pq � 1q-th solution of Eq. (3.132) and the use of the arithmetic mean
as an estimator for the lαrα-covariance function lrK Ẽp∆τ � 0q promote the
convergence behavior. The use of only a specific solution of Eq. (3.132) as
an estimator for lrK Ẽp∆τ � 0q leads to a trivial solution of Eq. (3.131); this
results in numerical instabilities.

By means of Eq. (3.134) the element-by-element formulation of Eq. (3.131)
is given for i, j � 1, 2, ..., 2n. The various terms are defined as follows:

k̂x̃τ
ri, jsp∆τkq: the elements of the empirical lαrα-covariance function

lrK̂ x̃τ p∆τkq,
b
piq
c rj, bs and b

piq
c�k ri, as: the elements of the parameter matrices Bpiq

c and B
piq
c�k,

δ
piq
c rj, bs and δ

piq
c�k ri, as : the elements of the correction matrices ∆piq

c and
∆
piq
c�k, and

k
piq

Ẽτ
ra, bsp∆τk � 0q: the elements of the estimated lαrα-covariance function

lrK
piq

Ẽτ
p∆τ � 0q in the i-th iteration step.

k̂x̃τ
ri, jsp∆τkq �

q�ķ

c�0

2ņ

b�1

2ņ

a�1

�
bpiqc rj, bs � δpiqc rj, bs

	
... (3.134)

... k
piq

Ẽτ
ra, bsp∆τk � 0q

�
b
piq
c�k ri, as � δ

piq
c�k ri, as
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A linearization of Eq. (3.134) by neglecting the quadratic terms of the elements
δ
piq
c rj, bs and δ

piq
c�k ri, as leads to the iteration equation (3.135).

k̂x̃τ ri, jsp∆τkq �
q�ķ

c�0

2ņ

b�1

2ņ

a�1

bpiqc rj, bs k
piq

Ẽτ
ra, bsp∆τk � 0q bpiqc�k ri, as � (3.135)

q�ķ

c�0

2ņ

b�1

2ņ

a�1

bpiqc rj, bs k
piq

Ẽτ
ra, bsp∆τk � 0q δpiqc�k ri, as �

q�ķ

c�0

2ņ

b�1

2ņ

a�1

δpiqc rj, bs k
piq

Ẽτ
ra, bsp∆τk � 0q bpiqc�k ri, as

As this equation is linear with respect to the elements δ
piq
c rj, bs and δ

piq
c�k ri, as,

a determination of the correction matrices is unproblematic. The elements of
the improved approximation solutions B

pi�1q
k � B

piq
k �∆

piq
k are inserted into

Eq. (3.135) for the subsequent iteration step i� 1.
After determining the parameter matrices B1, ..., Bq, the underlying fuzzy

white-noise process is estimated according to Eqs. (3.71) to (3.74).

Parameter Estimation in Fuzzy AR Processes

If a given, stationary fuzzy time series is modeled as a fuzzy autoregressive
process of order p, the corresponding parameter matrices A1, ..., Ap may be
estimated using the empirical lαrα-correlation function lrR̂x̃τ

p∆τq. Accord-
ing to the classical YULE-WALKER equations after [32], the elements of
A1, ..., Ap may be determined with the aid of Eqs. (3.136) and (3.137).

�
A1, ..., Ap

���� lrR̂x̃τ
p∆τ1�tq
...

lrR̂x̃τ
p∆τp�tq

�
�� � lrR̂x̃τ

p∆τ�tq with t � 1, ..., p (3.136)

�
A1, ..., Ap

���� lrR̂x̃τ
p∆τ0q � � � lrR̂x̃τ

p∆τ1�pq
...

. . .
...

lrR̂x̃τ
p∆τp�1q � � � lrR̂x̃τ

p∆τ0q

�
�� �

�
�� lrR̂x̃τ

p∆τ�1q
...

lrR̂x̃τ
p∆τ�pq

�
�� (3.137)

With the aid of the parameter matrices A1, ..., Ap estimated by Eqs.
(3.136) and (3.137) it is possible to determine the realizations ε̃τ of the fuzzy
white-noise variables Ẽτ for each time point τ according to Eq. (3.138).

ε̃τ � x̃τ a Â1 d x̃τ�1 a ...a Âp d x̃τ�p (3.138)

Owing to the use of the empirical lαrα-correlation function lrR̂x̃τ p∆τq for
computing the A1, ..., Ap, the non-negativity of the lαrα-increments ∆εjpτq
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according to Eq. (3.113) is not necessarily complied with. In this case it is
necessary to revert to the methods of parameter estimation for fuzzy ARMA
processes, e.g. the distance method. In all events, the stationarity of the fuzzy
AR process must be verified (see Sect. 3.3).

3.6 Modeling on the Basis of Artificial Neural Networks

The methods presented in Sect. 3.5 interpret a time series comprised of fuzzy
data as a realization of a fuzzy random process. After analyzing the fuzzy
time series, the process parameters corresponding to the chosen model are
estimated according to Sect. 3.5.6. With the aid of the underlying fuzzy ran-
dom process it is subsequently possible to make forecasts in accordance with
Sect. 4.

Alternatively, it is possible to forecast time series comprised of fuzzy data
by means of artificial neural networks for fuzzy variables. In contrast to the
analytical regression methods mentioned in Sect. 3.5, the use of artificial neu-
ral networks for fuzzy variables for analyzing and forecasting fuzzy time series
does not require the specification of a functional type. Artificial neural net-
works are not only capable of learning the characteristics of a given fuzzy
time series but are also able to simulate nonlinear fuzzy random processes
and derive forecasts. A basic precondition for the latter is an appropriate
network architecture. Artificial neural networks for analyzing and forecasting
time series comprised of fuzzy data are developed in the following section.

3.6.1 The Basics of Artificial Neural Networks

The creation of artificial neural networks is an attempt to mathematically
model the performance capability of the human brain. Human beings possess
the ability to learn and apply what they have learnt. Moreover, they are able
to find solutions to new problems intuitively. Intuition is interpreted as the
ability to make decisions based on the ‘inner’ logic of prevailing circumstances
without the need to explicitly understand the underlying relationships. Intu-
ition is thus obviously closely linked to previous learning experiences.

The functionality of the human brain is essentially based on the interaction
between the brain’s highly cross-linked nerve cells also called natural neurons.
Communication within a natural neural network of this type takes place via
signals. A neuron serves for receiving, processing and passing on incoming
signals. The signals passed on from neighboring nerve cells are summated in
the neuron. If the stimulation exceeds a particular threshold value, a further
signal is activated and transmitted to the adjoining neurons. The information
to be transferred is coded as the sum of the signals and their repetition rate.

This basic structure is imitated by artificial neural networks. These are
used to realize complex mappings of input variables on output variables. Ar-
tificial neural networks consist of cross-linked computational nodes or artificial
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neurons. Communication hereby takes place via numerical values. These are
real numbers in the classical sense. An extension of the latter to fuzzy variables
is presented in this section. An artificial neuron receives numerical values from
neighboring neurons (input signals), which are combined to form a weighted
sum. The determined sum is compared with a threshold value (bias) and used
as the argument of a so-called activation function. The activation function
yields a value (output signal) which is an input signal for connected artificial
neurons.

A large number of different types of artificial neural networks exist for
widely varying fields of application. Besides their use for investigating nat-
ural neural networks [29, 70], artificial neural networks are mainly applied
for cognitive purposes, e.g. in medical diagnostics [1, 30, 49], for optimizing
production processes [31] or for analyzing economic time series [9, 34], par-
ticularly those of the stock market [54, 55]. A coarse subdivision of artificial
neural networks into methods for approximating functions, for classification
purposes and as associative memory units has been undertaken by [55]. A spe-
cial type of artificial neural network is the multilayer perceptron. Multilayer
perceptrons are universally applicable in all of the areas mentioned. These are
adapted in the following for forecasting time series comprised of fuzzy data.

3.6.2 Multilayer Perceptron for Fuzzy Variables

A multilayer perceptron is a special type of artificial neural network. The ar-
tificial neurons are hereby arranged in layers. Starting from an input layer,
numerical values are transferred to an output layer via one or more hidden
layers. The output layer provides the input data with corresponding result
data. Both the input and output data are usually real numbers. The mapping
of fuzzy variables with the aid of a multilayer perceptron or an artificial neu-
ral network is only described to a limited extent in the literature [13, 19]. By
applying the extension principle and restricting the analysis to fuzzy triangu-
lar numbers it is not possible to obtain generally applicable solutions. In the
following, the multilayer perceptron is modified in such a way as to permit
the mapping of arbitrary fuzzy variables. A precondition for the latter is a
suitable representation of the fuzzy variables to be mapped by means of the
lαrα-discretization technique introduced in Sect. 2.1.1.

The following explanations are given for the example of a multilayer per-
ceptron with one hidden layer. An extension to several hidden layers is also
possible. A so-called two-layered multilayer perceptron for fuzzy variables is
shown in Fig. 3.14. Only the output layer and the hidden layers are counted.
For a more detailed description of artificial neural networks for real numbers,
which forms the basis of the extension developed here for the mapping of fuzzy
variables, the reader is referred to [70] and [22].

A fuzzy variable x̃r is assigned to each artificial neuron r of the input layer
I. The counters r � 1, 2, ..., nI and nI hereby denote the number of neurons
in the input layer. The task of the input layer is to receive the input data x̃r



108 3 Analysis of Time Series Comprised of Uncertain Data

input layer output layerhidden layer

x
1

~

x
r

~

x
n
I

~

~ o
1

O

~

o
t

O

~

o
n
O

O

~

~
1

r

n
I

1

s

n
H

1

t

n
O

W
H

rs
W

O

st

Fig. 3.14. A typical two-layer multilayer perceptron for fuzzy variables

and to pass these data on to the hidden layer as fuzzy output variables õI
r .

Each neuron s of the hidden layer H lumps together the fuzzy input variables
x̃r weighted by the matrix WH

rs according to Eq. (3.139). The counters s �
1, 2, ..., nH and nH thereby denote the number of neurons in the hidden layer.
The dimension r2n, 2ns of the weighting matrices WH

rs is dependent on the
chosen lαrα-discretization. The intermediate result obtained is referred to as
the fuzzy net input ñet

H
s of the neuron s, and is not subject to the non-

negativity requirement given by Eq. (2.47).

ñet
H
s �

nIà
r�1

WH
rs d x̃r �

nIà
r�1

WH
rs d õI

r (3.139)

The task of the artificial neurons s in the hidden layer is to map the fuzzy
net inputs ñet

H
s onto fuzzy output variables õH

s and transfer these to the
next layer. This is performed with the aid of the fuzzy activation function
f̃Ap�q. The fuzzy activation function f̃Ap�q after [36] is introduced to denote
the mapping of the fuzzy variables ñet

H
s onto the fuzzy variables õH

s according
to Eq. (3.140).

õH
s � f̃Apñet

H
s q (3.140)

The following then holds for the lαrα-increments (see Eq. (2.32)) of the two
fuzzy variables ñet

H
s and õH

s :

∆oH
j psq � fA

�
∆netHj psq

�
for j � 1, 2, ..., 2n . (3.141)

The real function fAp�q is a trajectory of the fuzzy function f̃Ap�q and is
equivalent to a deterministic activation function according to classical artificial



3.6 Modeling on the Basis of Artificial Neural Networks 109

neural networks. The sigmoidal activation function according to Eq. (3.142)
is used in the following.

fA pxq �
1

1� e�x
(3.142)

With the aid of the weighting matrices WO
st the fuzzy output variables õH

s of
the hidden layer H are lumped together in each case by the artificial neurons
t of the output layer O to yield fuzzy net input variables ñet

O
t according to

Eq. (3.143). The counters t � 1, 2, ..., nO and nO hereby denote the number
of neurons in the output layer.

ñet
O
t �

nHà
s�1

WO
st d õH

s (3.143)

Subsequent mapping of the fuzzy net input variables ñet
O
t onto the fuzzy

output variables õO
t according to Eq. (3.144) yields the result data of the

multilayer perceptron. In contrast to Eq. (3.140), the fuzzy output function
f̃Op�q is hereby necessary in order to fulfill the non-negativity requirement
according to Eq. (2.47) on the one hand, and on the other hand, not to
restrict the values of the lαrα-increments of the fuzzy output variables õO

t

to the interval [0,1].

õO
t � f̃O

�
f̃Apñet

O
t q
	

(3.144)

Analogous to Eq. (3.141), the following holds for the lαrα-increments:

∆oO
j ptq � fO

�
fA

�
∆netOj ptq

��
for j � 1, 2, ..., 2n . (3.145)

A necessary condition for the deterministic output function fOp�q is that the
functional values according to Eq. (3.146) are restricted. If transformed fuzzy
variables are used as input data for the multilayer perceptron (see Sect. 3.6.5),
the lower bound must be matched accordingly.

fOpxq ¥ 0 @ x P r0, 1s (3.146)

The inverse logarithmic normal distribution or the inverse exponential distri-
bution may be chosen to represent the output function fOp�q. In particular
cases, non-zero upper constraints and lower bounds may also exist for the
lαrα-increments of the fuzzy result variables. In such cases an inverse sine
function according to Eq. (3.147) is recommended to represent the output
function fOp�q.

fOpxq �
�
arcsinpxq �

π

2

	 x2 � x1

π
(3.147)

with x2 ... upper bound
and x1 ... lower bound
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Further considerations regarding the fuzzy output function f̃Op�q are dealt
with in Sect. 3.6.5 in connection with the conditioning of fuzzy data.

In the case of classical artificial neural networks threshold values are usu-
ally specified for the individual neurons. These define the threshold above
which the particular neuron becomes (highly) active. Applying monotonically
increasing activation functions, this is the point of maximum ascent. In the
case of artificial neural networks for fuzzy variables, fuzzy threshold values
(fuzzy bias) are prespecified. The fuzzy threshold values θ̃H

s and θ̃O
t for the

neurons s � 1, 2, ..., nH and t � 1, 2, ..., nO, respectively, may be accounted
for directly either in the fuzzy activation functions according to Eq. (3.148).

õH
s � f̃Apñet

H
s a θ̃H

s q and õO
t � f̃O

�
f̃Apñet

O
t a θ̃O

t q
	

(3.148)

or by an additional neuron in the hidden or input layer. The latter variant is
especially suitable if the backpropagation algorithm is used (see Sect. 3.6.3).
Eqs. (3.139) and (3.143) then reduce to Eqs. (3.149) and (3.150).

ñet
H
s �

nI�1à
r�1

WH
rs d õI

r (3.149)

ñet
O
t �

nH�1à
s�1

WO
st d õH

s (3.150)

The additional weighting matrices WH
rs (r � nI � 1 and s � 1, 2, ..., nH) and

WO
st (s � nH �1 and t � 1, 2, ..., nO) are diagonal matrices. The fuzzy output

variables õI
r and õH

s of the additional neurons r � nI � 1 and s � nH � 1,
respectively, are thereby constant in accordance with Eq. (3.151).

õI
r � constant and õH

s � constant (3.151)

The following holds for the lαrα-increments:

∆oI
j prq � 1 and ∆oH

j psq � 1 for j � 1, 2, ..., 2n . (3.152)

The fuzzy threshold values are then given by Eqs. (3.153) and (3.154), and
are accounted for in the fuzzy net input variables ñet

H
s and ñet

O
t of the hid-

den and output layers according to Eqs. (3.149) and (3.150). This means that
adaptation of the fuzzy activation functions given by Eq. (3.148) is not nec-
essary.

θ̃H
s � �WH

rs d õI
r with r � nI � 1 and s � 1, 2, ..., nH (3.153)

θ̃O
t � �WO

st d õH
s with s � nH � 1 and t � 1, 2, ..., nO (3.154)

The algorithm formulated for a two-layered multilayer perceptron may be
generalized if several hidden layers are present. The fuzzy output variables
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õH
s obtained from Eq. (3.140) are then transferred to the next hidden layer

rather than the output layer, and are processed according to Eqs. (3.139) and
(3.140).

Processing of the fuzzy variables in an artificial neuron of the hidden
layer(s) is shown schematically in Fig. 3.15.
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Fig. 3.15. Processing of fuzzy variables in an artificial neuron

3.6.3 Backpropagation Algorithm

Using predefined weighting matrices WH
rs and WO

st with r � 1, 2, ..., nI and
s � 1, 2, ..., nH , the multilayer perceptron for fuzzy variables presented in
Sect. 3.6.2 maps a given sequence of fuzzy input variables x̃1, x̃2, ..., x̃nI

on
sequence of fuzzy output variables õO

1 , õO
2 , ..., õO

nO
to which the same fuzzy

values are always assigned.
Several sequences of fuzzy input variables x̃1, x̃2, ..., x̃nI

and several se-
quences of fuzzy control variables ỹ1, ỹ2, ..., ỹnO

may be extracted from a
given fuzzy time series. With the aid of the latter it is possible to train the
weighting matrices. Fuzzy training patterns and fuzzy training sets are con-
structed for this purpose.

Definition 3.40. A fuzzy training pattern consists of a fuzzy input vector
x̃ � px̃1, ..., x̃r, ..., x̃nI

qT and a fuzzy control vector ỹ � pỹ1, ..., ỹt, ..., ỹnO
qT .
�

If several fuzzy training patterns are available, these form a fuzzy training set.

Definition 3.41. A fuzzy training set consists of m fuzzy training patterns.
This set is defined by the vectors x̃k � px̃1pkq, ..., x̃rpkq, ..., x̃nI

pkqqT and
ỹ

k
� pỹ1pkq, ..., ỹtpkq, ..., ỹnO

pkqqT with k � 1, 2, ..., m. �

For each fuzzy input vector x̃k � px̃1pkq, ..., x̃rpkq, ..., x̃nI
pkqqT of the

fuzzy training set the multilayer perceptron yields a fuzzy output vector
õO

k � põO
1 pkq, ..., õO

t pkq, ..., õO
nO
pkqqT . The output error of the multilayer per-

ceptron is determined by comparing the fuzzy output vector õO
k with the
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known fuzzy control vector ỹ
k

with the aid of of the square error Ek given by
Eq. (3.155).

Ek � fEpỹk
, õO

k q (3.155)

Using the lαrα-increments yields the following:

Ek �
1
2

nO̧

t�1

2ņ

j�1

�
∆yjpt, kq �∆oO

j pt, kq
�2

. (3.156)

The output error of the multilayer perceptron for the complete fuzzy training
set is defined as the mean square error MSE according to Eq. (3.157).

MSE �
1
m

m̧

k�1

fEpỹk
, õO

k q (3.157)

With the aid of the backpropagation algorithm the elements of the weighting
matrices are determined in such a way as to minimize their mean square error
MSE. Optimization of the weighting matrices is also referred to as training
or learning of the multilayer perceptron. The backpropagation algorithm for
fuzzy variables is described in the following.

Firstly, the weighting matrices of the multilayer perceptron are initial-
ized. This is accomplished by randomly assigning real values from the interval
[�1, 1] to the matrix elements. In the second step a given fuzzy input vector
x̃k is transferred to the input layer of the multilayer perceptron, and the cor-
responding fuzzy output vector õO

k is computed. The computed fuzzy output
vector õO

k is compared with the corresponding given fuzzy control vector ỹ
k

and the square error is determined according to Eq. (3.155). In the next step
the correction matrices ∆WO

stpkq and ∆WH
rspkq are determined according to

Eqs. (3.158) and (3.159). The correction matrices are defined in each case as
being proportional to the partial derivatives of the errors with respect to the
weighting matrices. As in the case of WO

st and WH
rs, these matrices are also

of dimension r2n, 2ns. Accordingly, the backpropagation algorithm for fuzzy
variables is equivalent to a gradient descent method. The factor η, with η ¡ 0,
is referred to as the learning rate.

∆WO
stpkq � �η

BEk

BWO
st

� �η

�
���

BEk

BwO
1,1pstq

� � � BEk

BwO
1,2npstq

...
. . .

...
BEk

BwO
2n,1pstq

� � � BEk

BwO
2n,2npstq

�
��� (3.158)

∆WH
rspkq � �η

BEk

BWH
rs

� �η

�
���

BEk

BwH
1,1prsq

� � � BEk

BwH
1,2nprsq

...
. . .

...
BEk

BwH
2n,1prsq

� � � BEk

BwH
2n,2nprsq

�
��� (3.159)
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The weighting matrices may be corrected at different points in the backprop-
agation algorithm. In online training the weighting matrices WO

st and WH
rs

are modified according to Eq. (3.160) immediately after the processing of a
fuzzy training model. Thus corresponds to a descent in the gradient direction
of the error function given by Eq. (3.155).

WO
stpnewq � WO

stpoldq � ∆WO
stpkq (3.160)

and WH
rspnewq � WH

rspoldq � ∆WH
rspkq

In offline training the weighting matrices WO
st and WH

rs are modified according
to Eq. (3.161) after first taking account of all given m fuzzy training patterns.

WO
stpnewq � WO

stpoldq �
1
m

m̧

k�1

∆WO
stpkq (3.161)

and WH
rspnewq � WH

rspoldq �
1
m

m̧

k�1

∆WH
rspkq

The partial derivatives in Eqs. (3.158) and (3.159) are determined on the level
of the lαrα-increments in order that the classical backpropagation algorithm
(see e.g. [22]) may be extended. A distinction must thereby be made between
the output layer and the hidden layers.

In order to compute the partial derivatives BEk

BwO
j,ipstq

of the errors Ek with
respect to the elements of the output layer weighting matrices the chain rule
according to Eq. (3.162) must be applied, whereby i, j � 1, 2, ..., 2n holds. In
order to improve transparency the index k is dispensed with in the following.

BE

BwO
j,ipstq

�
BE

B∆netOj ptq

B∆netOj ptq

BwO
j,ipstq

(3.162)

Using Eq. (3.143), the term B∆netO
j ptq

BwO
j,ipstq

according to Eq. (3.163) may be sim-

plified. In order to improve transparency the symbols s1 and i1 are used as the
incrementation variables of the summation operators.

B∆netOj ptq

BwO
j,ipstq

�
B

BwO
j,ipstq

nḨ

s1�1

2ņ

i1�1

wO
j,i1ps

1tq∆oH
i1 ps

1q (3.163)

�
B

BwO
j,ipstq

wO
j,ipstq∆oH

i psq

� ∆oH
i psq

The term BE
B∆netO

j ptq
is again expanded with the aid of the chain rule according

to Eq. (3.164).



114 3 Analysis of Time Series Comprised of Uncertain Data

BE

B∆netOj ptq
�

BE

B∆oO
j ptq

B∆oO
j ptq

B∆netOj ptq
(3.164)

By inserting Eqs. (3.155) and (3.144) the two partial derivatives in Eq. (3.164)
are evaluated.

BE

B∆oO
j ptq

�
B

B∆oO
j ptq

1
2

nO̧

t1�1

2ņ

j1�1

�
∆yj1pt

1q �∆oO
j1pt

1q
�2

(3.165)

�
B

B∆oO
i ptq

1
2
�
∆yjptq �∆oO

j ptq
�2

� �
�
∆yjptq �∆oO

j ptq
�

B∆oO
j ptq

B∆netOj ptq
�

B

B∆netOj ptq
fO

�
fA

�
∆netOj ptq

��
(3.166)

� f 1O
�
fA

�
∆netOj ptq

��
f 1A
�
∆netOj ptq

�
If the sigmoidal function given by Eq. (3.142) is chosen for the activation
function of the output layer, Eq. (3.166) reduces to Eq. (3.167).

B∆oO
j ptq

B∆netOj ptq
� f 1O

�
fA

�
∆netOj ptq

��
fA

�
∆netOj ptq

� �
1� fA

�
∆netOj ptq

��
(3.167)

In summarizing, the partial derivatives of Eq. (3.158) may be reproduced by
Eq. (3.168).
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According to the usual notation adopted in the literature, the abbreviation
δO
j ptq is used for the term BE

B∆netO
j ptq

in Eq. (3.162).

δO
j ptq � �

BE

B∆netOj ptq
(3.169)

The correction matrices ∆WO
st may then be computed by means of Eq. (3.170).

∆WO
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�
��
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. . .
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In order to compute the partial derivatives BEk

BwH
j,iprsq

of the errors Ek with
respect to the elements of the weighting matrices of the hidden layer the
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chain rule according to Eq. (3.171) must also be applied. The index k is again
dispensed with, whereby i, j � 1, 2, ..., 2n holds.

BE

BwH
j,iprsq

�
BE

B∆netHj psq

B∆netHj psq

BwH
j,iprsq

(3.171)

Analogous to the procedure adopted for the output layer, but using Eq.
(3.139), Eq. (3.171) simplifies as follows:

BE

BwH
j,iprsq

�
BE

B∆netHj psq
∆oI

i prq . (3.172)

With the aid of the chain rule, the term BE
B∆netH

j psq
is described by Eq. (3.173).
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The two partial derivatives of Eq. (3.173) are obtained by repeated application
of the chain rule, and by substitution of Eqs. (3.140), (3.143) and (3.169).
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If the sigmoidal function according to Eq. (3.142) is chosen to represent the
activation function of the hidden layer neurons, Eq. (3.175) may be replaced
by Eq. (3.176).
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(3.176)

By means of these simplifications the partial derivatives of Eq. (3.172) may
be lumped together in Eq. (3.177).
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Analogous to the output layer, the abbreviated notation δH
j psq is used for the

term BE
B∆netH

j psq
in Eq. (3.172), thereby resulting in Eq. (3.178).
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The correction matrices ∆WH
rs for the hidden layer are thus given by Eq.

(3.179).

∆WH
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The δO
i1 pt

1q terms of the output layer are necessary in order to determine the
δH
j psq terms according to Eq. (3.178). For this reason the determination of

the correction matrices (and modification of the weighting matrices) always
begins with the output layer and proceeds in the direction of the input layer
(backpropagation). In the case of a multilayer perceptron for fuzzy variables
with several hidden layers the corresponding correction matrices are deter-
mined analogous to Eqs. (3.170) and (3.179). The terms δO

i1 pt
1q and wO

i1,jpst
1q

are then replaced by the variables of the corresponding hidden layer. The same
holds for the fuzzy output variables õI

r .
Because the backpropagation algorithm for fuzzy variables is de facto

equivalent to a gradient descent method, the problems which arise in gradient
descent methods must be avoided by adopting suitable strategies. An overview
of the most frequent problems encountered when applying the classical back-
propagation algorithm for real-valued data is given in [70]. The greatest danger
in gradient descent methods is that it is not possible to depart from a local
minimum. On the other hand it possible to depart from a detected (global)
optimum in favor of a suboptimum minimum. Moreover, flat plateaus or steep
ravines in the error function given by Eq. (3.155) may lead to stagnation or
oscillation of the learning process. When applying the backpropagation algo-
rithm for fuzzy variables the damping or elimination of these problems may be
achieved by a simple modification of the method. An advantageous possibility
is the use of a momentum term γ after [58]. The correction matrices ∆W i

given by Eqs. (3.158) and (3.159) in learning step i are thereby supplemented
by the corresponding correction matrices ∆W pi�1q of the pi � 1q-th learning
step according to Eq. (3.180).

∆W i � �η
BE

BW
� γ∆W pi�1q (3.180)

Introduction of the momentum γ counteracts stagnations on flat plateaus as
well as oscillations between steeply descending regions of the error function.
Values between 0 and 1 are recommended for the momentum γ. A random
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assignment of values to the learning rate η and the momentum γ is advisable
in each learning step i. By this means, however, it is not possible to prevent
the departure from a detected (global) optimum. In order to avoid oscillations
in steep ravines the learning rate η may be linearly coupled to the gradients.
Large values of the gradients then result in a lower learning learning rate. The
disadvantage of such a coupling is the possible departure from an optimum
due to a high learning rate η combined with small gradients. According to [70],
it is not possible offer practical tips regarding the choice of the learning rate η.
In the case of large values of η no narrow valleys are detected, and departure
from the global optimum as well as oscillations may occur. On the other hand,
small values of η may lead to stagnations and the risk of not being able to
depart from a local minimum. The choice of η is thus highly dependent on the
given training data and the architecture of the artificial neural network. In
order to overcome this seeming dilemma the following approach is suggested.

A randomly varying assignment of values to the learning rate η as well as
the momentum γ combined with an evolutive adaptation of the learning pro-
cess depending on the value of the error function is chosen. At the beginning
in learning step i � 1 random values are assigned to η and γ. If a reduction in
the error value according to Eq. (3.155) is achieved in the subsequent learning
step i�1 using the correction matrices ∆W i , random values are again assigned
to the learning rate η as well as the momentum γ, and the correction matrices
∆W pi�1q are determined. If a reduction in the error value is not achieved, the
correction matrices ∆W i are recomputed with new random values of η and
γ in conjunction with a new calculation of the error function. This approach
firstly ensures that departure from a detected (global) optimum in favor of a
suboptimum local minimum is avoided. Secondly, the random assignment of
values to the learning rate η and the momentum γ ensures the departure from
local minima in favor of a better (local/global) solution. This approach is far
superior to the classical gradient descent method in which constant values of
η and γ are used.

When applying sigmoidal activation functions fAp�q according to Eq.
(3.142), fuzzy input data x̃r with lαrα-increments ∆xiprq " 1 may lead to
slower convergence of the backpropagation algorithm. As, according to Eq.
(3.139), the lαrα-increments ∆netHj psq of the fuzzy net input variables ñet

H
s

are computed by summation of the ∆xiprq, the condition ∆netHj psq " 1 may
also hold for these lαrα-increments. The expression fA

�
∆netHj psq

�
in Eq.

(3.141) then yields values lying in a region where the ascent of the sigmoidal
activation function fAp�q is very slight, thereby resulting in slow convergence.
In order to avoid this effect, conditioning of the fuzzy input variables is rec-
ommended. Conditioning of the fuzzy input variables is described in detail in
Sect. 3.6.5.
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3.6.4 Neural Network Architecture for Fuzzy Time Series

The architecture of artificial neural networks for fuzzy time series is essentially
characterized by the number of layers, the number of neurons and the fuzzy
activation function. The network architecture depends decisively on the chosen
forecasting objective and may be specified with the aid of a training strategy.
Artificial neural networks may be applied to stationary and non-stationary
fuzzy time series without a priori distinction.

In the following a distinction is made between optimum forecasting net-
work architecture and optimum simulation network architecture.

Optimum forecasting network architecture permits the determination of
an optimum forecast. The optimum forecast for time points τ � N � h repre-
sents the fuzzy average of all potential future realizations of the fuzzy random
variable at the same time point τ � N � h (see Def. 4.2). A network ar-
chitecture is thus sought which contains sufficient neurons to account for all
systematic effects of the fuzzy time series and permits the computation of an
estimator for the fuzzy expected value function.

The optimum simulation network architecture serves for simulating real-
izations of the fuzzy random variables to be expected at future time points
τ � N � h (see Def. 4.6). By means of this network architecture it is possible
to take account of random fluctuations of the fuzzy time series.

Every artificial neural network consists of an input layer, one or more hid-
den layers and an output layer. The fuzzy training pattern (see Def. 3.40)
selected for the particular fuzzy time series concerned also defines the num-
ber of neurons in the input and output layers. For practical reasons a fuzzy
training pattern for fuzzy time series consists of a sequence of the fuzzy time
series of nI fuzzy variables (lumped together in the fuzzy input vector x̃ of
length nI) and the fuzzy variable following the sequence, which serves as a
fuzzy control vector ỹ of unit length, i.e. nO � 1. By this means one neuron is
assigned to the output layer. A fuzzy input vector x̃ containing nI fuzzy ele-
ments requires nI neurons in the input layer. The number of required hidden
layers and neurons per layer is determined by means of a training strategy.

Training Strategy for an Optimum Forecasting Network
Architecture

Structuring of the fuzzy time series. The given fuzzy time series contain-
ing N fuzzy variables is subdivided into a fuzzy training series and a fuzzy
validation series (Fig. 3.16). In order that all systematic effects of the given
fuzzy time series are accounted for, the fuzzy training series chosen for an
optimum forecasting network architecture should not be too short. If an op-
timum h-step forecast (see Sect. 4.1) is planned, the validation series should
contain at least h fuzzy variables.

After specifying the fuzzy training series, m fuzzy training patterns with
nI fuzzy variables x̃1pkq, x̃2pkq, ..., x̃nI

pkq in the fuzzy input vector x̃k and
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Fig. 3.16. Structuring of a fuzzy time series for determining the optimum forecast-
ing network architecture

(advantageously) one fuzzy variable ỹpkq in the fuzzy control vector ỹ
k

may be
chosen, whereby k � 1, 2, ..., m. The number of fuzzy training patterns with
nO � 1 fuzzy control variables that may be extracted from a fuzzy training
series containing NT fuzzy variables is

m � NT � nI . (3.181)

These constitute a fuzzy training set according to Def. 3.41. Selected fuzzy
training patterns with nI � 4 and nO � 1 are shown in Fig. 3.16.

Choice of the network architecture. It is now possible to specify a start-
ing variant of the network architecture. The number of neurons nI in the input
layer and nO in the output layer are already defined. It is now necessary to
select the number of hidden layers and the number of neurons per layer. As a
tendency, more hidden layer neurons should be chosen with increasing com-
plexity and nonlinearity of the fuzzy time series to be analyzed because more
neurons imply more weighting matrices. The problem of so-called overfitting ,
which is often encountered in classical fields of application of artificial neural
networks, may also arise in the analysis and forecasting of fuzzy time series.

Whereas overfitting must be avoided in optimum forecasting network ar-
chitectures, it is purposely exploited in optimum simulation network architec-
tures. In an optimum forecasting network architecture the number of chosen
layers and neurons should guarantee a ‘smooth’ approximation, i.e. an ap-
proximation in which random fluctuations of the fuzzy time series are absent.

Training of the artificial neural network. After selecting a particular
network architecture, the artificial neural network must be trained. The mean
square error MSE according to Eq. (3.157) for the chosen number of hidden
layers and neurons is minimized by means of the backpropagation algorithm.
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Modification of the weighting matrices may be achieved either by online train-
ing or by offline training (see Sect. 3.6.3).

In online training the m fuzzy training patterns are advantageously se-
lected in a random order. This approach prevents the occurrence of repetitive
learning processes which may result in ‘going round in circles’ in the search
for the optimum. Moreover, a random selection reduces the probability of get-
ting trapped in a local minimum. In online training, an improvement is only
obtained on average along the gradients of the mean square error MSE to be
minimized according to Eq. (3.157). The formulation of a convergence crite-
rion is hence more complicated than in offline training. As an alternative, the
training may be terminated after a prescribed number of iterations. An ad-
vantage of online training compared with offline training is the lower storage
requirement.

In offline training the entire fuzzy training set must first be processed be-
fore it is possible to correct the weighting matrices. The search for a minimum
thus takes place along the gradients of the mean square error MSE according
to Eq. (3.157). Compared with online training, this increases the probability
that a local minimum is accepted as the solution. The convergence criterion
may be formulated as the non-exceedance of a maximum mean square error
MSEmax. Whether non-exceedance of the prescribed error MSEmax is due to
the detection of the global minimum or the attainment of an acceptable local
minimum is of secondary importance, especially considering the fact that the
global minimum is non-verifiable. Alternatively, the training process may be
terminated after a prescribed number of iterations.

The application of online training as well as offline training may result in
oscillations between regions marked by a sharp decrease in the error function.
Possible strategies for damping or eliminating such problems usually encoun-
tered in gradient descent methods have already been outlined in Sect. 3.6.3.

Modification of the network architecture. The trained artificial neu-
ral network is now checked and assessed with the aid of the fuzzy validation
series. With the aid of this network and the fuzzy variables of the fuzzy train-
ing series, an optimum h-step forecast is firstly made for time points NT � 1
to N of the fuzzy validation series (see Sect. 4.3.1). The forecasted fuzzy
variables are then compared with the given fuzzy variables of the validation
series. On the basis of the differences, an error is computed which permits
an assessment of the quality of the forecast. In order to formulate this error
the fuzzy variables of the fuzzy training series and those of the fuzzy vali-
dation series are denoted by x̃T

i pi � 1, 2, ..., NT q and x̃V
j (j � 1, 2, ..., NV

and NV � N � NT ), respectively. The mean forecast error MPFNN of the
artificial neural network is introduced as a measure of the quality of the fore-
cast, and hence also a measure of the quality of the network architecture. The
mean forecast error MPFNN is defined as the average value of the distances
dF between the observed fuzzy data x̃V

j and the forecasted fuzzy variables ˚̃xV
j

of the fuzzy validation series according to Eq. (3.182).
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MPFNN �

°NV

j�1 dF px̃
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j ; ˚̃xV

j q

NV
(3.182)

The network architecture with a minimum forecast error MPFNN is referred
to as the optimum forecasting network architecture. The mean square error
MSE according to Eq. (3.157) must thereby be sufficiently small.

The detection of a network architecture with a minimum forecast error
MPFNN is an optimization problem with the objective function given by Eq.
(3.182) and the layers and neurons as decision variables.

The network architecture may be optimized, for example, using Monte
Carlo methods, network search techniques or the modified evolution strat-
egy after [36]. The genetic methods described in [4, 16, 25] for solving the
optimization problem posed by artificial neural networks for real numbers
may also be applied to artificial neural networks for fuzzy variables. A simple
means of approximately detecting the minimum of MPFNN is by heuristic
modification of the network architecture. After modifying the network archi-
tecture it is necessary to re-train the artificial neural network. The network
is modified repeatedly until such time as the mean forecast error MPFNN

takes on a minimum value. The efficiency of the optimization depends on the
method used. An acceptable local minimum is attained depending on the case
in question.

The forecast computed by the optimized network architecture is chosen
as an estimator for the fuzzy expected value function. The optimum fore-
casting network architecture found in this way is suitable for simulating non-
stationary as well as stationary fuzzy time series.

Training Strategy for an Optimum Simulation Network
Architecture

Identification of the random components of the given fuzzy time
series. The detection of an optimum simulation network architecture presup-
poses an optimum forecasting network architecture. If the latter has been
determined (see Training strategy for an optimum forecasting network ar-
chitecture on p. 118), the optimum forecasting network architecture is used
to compute optimum single-step forecasts ˚̃xτ (see Sect. 4.3.1) for the time
period τ � nI � 1, ..., N . Each single-step forecast is thereby based on the
measured values of the fuzzy time series. The optimum single-step forecasts
represent estimators for the conditional fuzzy expected values at time points
τ � nI�1, ..., N . If the fuzzy variables of the optimum single-step forecasts are
subtracted from the fuzzy variables of the given fuzzy time series at each time
point, a new stationary fuzzy time series pẽτ qτPT is obtained which reproduces
the random components of the original time series.

ẽτ � x̃τ a ˚̃xτ (3.183)

The determined fuzzy variables ẽτ are fuzzy variables in the improper sense
because they do not fulfill the requirement according to Eq. (2.47). They are
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considered to be a realization of the fuzzy random process pẼτ qτPT with the
following characteristics:

ErẼτ s � m̃Ẽτ
� 0 @ τ P T (3.184)

lrV arrẼτ s � lrσ
2
Ẽτ

(3.185)

lrKẼτ
p∆τq �

"
lrKẼτ

pτa, τbq for ∆τ � 0
0 for ∆τ � 0

. (3.186)

The empirical moments lrs
2
ẽτ

and lrK̂ ẽτ
p0q of the fuzzy time series pẽτ qτPT are

used as estimators for lrσ
2
Ẽτ

and lrKẼτ
p0q. The empirical characteristic values

provide a means of determining the optimum simulation network architecture.

Selection of the optimum simulation network architecture for the
fuzzy time series pẽτ qτPT. A suitable starting variant is chosen for the op-
timum simulation network architecture, which is subsequently improved in
an optimization process. The optimum simulation network architecture to be
developed for the fuzzy time series pẽτ qτPT is independent of the optimum fore-
casting network architecture. As the simulation of random effects is achieved
with the aid of overfitting of artificial neural networks, the number of chosen
layers and neurons, and hence the number of weighting matrices, must be
large enough to permit a mapping of the fluctuations of the fuzzy time series
pẽτ qτPT.

Example 3.42. This is illustrated by the example of a realization of a fuzzy
white-noise process shown in Fig. 3.17. The optimum forecasting network ar-
chitecture yields the optimum fuzzy forecast at time points τ � N�1, N�2, ...
This is the fuzzy expected value of the fuzzy white-noise process. A continu-
ation of the fuzzy time series by an artificial neural network with overfitting
yields realizations which exhibit the properties of the fuzzy white-noise pro-
cess. �

Training of the artificial neural network. After selecting a starting vari-
ant for the optimum simulation network architecture the artificial neural net-
work is trained with the aid of the backpropagation algorithm. For training
purposes the fuzzy training patterns are extracted from the fuzzy time series
pẽτ qτPT. The weighting matrices may be modified either by online training or
offline training. The training is terminated when the mean square error MSE
according to Eq. (3.157) falls below a predefined maximum error MSEmax.
Whether non-exceedance of the prescribed error MSEmax is due to the detec-
tion of the global minimum or the attainment of an acceptable local minimum
is of secondary importance, especially considering the fact that the global min-
imum is non-verifiable. Alternatively, the training may be terminated after a
specified number of iterations.
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Fig. 3.17. Fuzzy forecast using overfitting and optimum fuzzy forecastings

Modification of the network architecture. The trained artificial neu-
ral network is now assessed using an error function and improved with the aid
of an optimization strategy. Firstly, the trained optimum simulation artificial
neural network is used to simulate a fuzzy time series psẽτ qτPT of preferably
long length (see Sect. 4.3). The simulation may be started with an arbitrary
fuzzy training pattern extracted from the fuzzy time series pẽτ qτPT. The sim-
ulated fuzzy realizations sẽτ are evaluated statistically. The temporal fuzzy
average according to Eq. (3.16) and the empirical lαrα-covariance function
according to Eq. (3.20) are computed. Because the fuzzy time series pẽτ qτPT
is stationary and the fuzzy expected value ErẼτ s is zero, the temporal fuzzy
average sẽ of the fuzzy realizations sẽτ must also be zero. In addition, the em-
pirical lαrα-covariance function lrK̂sẽτ

p∆τq of the fuzzy time series psẽτ qτPT
is compared with the theoretical lαrα-covariance function lrKẼτ

p∆τq. The
forecast error is computed from the difference as follows:

PFso �
2ņ

j�1

p0�∆sejq
2
� (3.187)
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The term ∆sej hereby denotes the lαrα-increments of the empirical fuzzy
average sẽ , and k̂Ẽτ

rk, lsp∆τq and k̂
sẽτ
rk, lsp∆τq represent the elements of the

lαrα-covariance functions lrKẼτ
p∆τq and lrK̂sẽτ

p∆τq, respectively.
In an optimization process in which the objective function is given by Eq.

(3.187) the optimum simulation network architecture is improved. This may
be achieved by applying optimization methods such as Monte Carlo methods
or network search methods, or by means of a heuristic modification.

If, for example, the optimum simulation network architecture has been
modified heuristically, it must be re-trained using the backpropagation algo-
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rithm. The network modification is repeated until such time as forecast error
PFso takes on a minimum values. The efficiency of the optimization depends
on the method used. An acceptable local minimum is attained depending on
the case in question.

Additional Remarks Concerning the Choice of Layers and Neurons

Artificial neural networks for analyzing and forecasting fuzzy time series
should have at least two hidden layers in order to account for nonlinear ef-
fects of the fuzzy time series. The number of hidden layers required depends
on the number of neurons in the hidden layers. As a rule, the fewer neurons
present per hidden layer then the more hidden layers are required in order to
guarantee functional equivalence.

An artificial neural network with too few neurons in the hidden layers is
unsuitable for forecasting purposes. If it is not possible to adequately model
the complexity of a fuzzy time series due to too few neurons and hence an
insufficient number of weighting matrices, it is not possible to obtain an opti-
mum forecast; i.e. underfitting occurs.

The number of hidden layers and neurons depends only slightly on the
fuzzy activation function f̃Ap�q. The sigmoidal fuzzy activation function f̃Ap�q
according to Eq. (3.188) is especially suitable for artificial neural networks
intended for the analysis and forecasting of fuzzy time series.

õ � f̃Apñetq (3.188)

with ∆oi �
1

1� e�∆neti
for i � 1, 2, ..., 2n

The advantage of using this fuzzy activation function is that the requirement
according to Eq. (2.18) is complied with. Moreover, the trajectories of the
fuzzy activation function, i.e. the deterministic sigmoidal functions fAp�q, are
differentiable.

The use of a linear fuzzy activation function for the analysis and forecasting
of fuzzy time series is not appropriate. In the case of a linear fuzzy activation
function each series connection of artificial neurons may be replaced by a single
neuron, i.e. each multilayer perceptron for fuzzy variables may be reduced to a
functionally equivalent single-layer perceptron. Furthermore, compliance with
the requirement given by Eq. (2.18) is not possible using linear fuzzy activation
functions.

3.6.5 Conditioning of the Fuzzy Data

By means of conditioning, the lαrα-increments of the fuzzy input and fuzzy
output variables of an artificial neural network are transformed into the num-
ber range of the interval [0,1]. After this transformation it is possible to use
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multilayer perceptrons without the need to classify a fuzzy time series as be-
ing stationary or non-stationary a priori. Conditioning is also a precondition
for good convergence of the backpropagation algorithm.

Conditioning for an Optimum Forecasting Network Architecture

Fuzzy input variables are lumped together in fuzzy training patterns (see Def.
3.40) and transferred to the multilayer perceptron. Because the transforma-
tion depends on the position of each individual fuzzy input variable within the
fuzzy time series, the following indexing is introduced for the fuzzy input vec-
tors and their fuzzy input variables. Each fuzzy element x̃k�r of the k-th fuzzy
input vector x̃k � px̃k�nI

, ..., x̃k�r, ..., x̃k�1q
T (with r � nI , nI � 1, ..., 1 and

k � nI�1, nI�2, ..., N ) which is represented by means of lαrα-discretization
is transformed with the aid of the diagonal matrix T k and the moving fuzzy
average x̃k according to Eq. (3.189).

x̃�k�r � T k d
�
x̃k�r a x̃k

�
(3.189)

The x̃�k�r constitute the transformed fuzzy input vector x̃�k � px̃�k�nI
, ..., x̃�k�r,

..., x̃�k�1q
T . The moving fuzzy average x̃k is defined as the elementary special

case of the linear filter according to Sect. 3.4.1, and is determined by means of
Eq. (3.190). The moving fuzzy average x̃k provides an approximation of the
fuzzy trend of a fuzzy time series.

x̃k �
1
nI

nIà
r�1

x̃k�r (3.190)

The elements ti,jpkq of the real-valued diagonal matrix T k are determined for
i, j � 1, 2, ..., 2n using Eq. (3.191). The terms ∆xipkq are hereby the lαrα-
increments of the moving fuzzy average x̃k. The transformation matrix T k

may be interpreted as an indicator of the scatter of the fuzzy time series on a
segmental basis.

ti,jpkq �

$&
%
pmaxr�0, 1, ..., nI�1 |∆xipk � rq �∆xipkq|q

�1 for i � j

0 for i � j
(3.191)

The elements x̃�k�r of the transformed fuzzy input vectors x̃�k , which rep-
resent intermediate values according to Sect. 2.1.2, are hereby not subject to
the requirement given by Eq. (2.47). For the fuzzy output variable õO

k of the
multilayer perceptron, on the other hand, the requirement of non-negativity of
the lαrα-increments holds. For this reason the fuzzy output function f̃O,kp�q in
combination with the sigmoidal fuzzy activation function f̃Ap�q is introduced
for transforming the fuzzy net input variable ñet of the output layer. The
fuzzy output function f̃O,kp�q replaces f̃Op�q in Eq. (3.144). The transforma-
tion of the fuzzy net input variable ñet of the output neuron is defined by Eq.
(3.192).
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õO�
k � f̃O,k

�
f̃Apñetq

	
(3.192)

The term f̃Ap�q is hereby the sigmoidal fuzzy activation function according to
Eq. (3.188). The fuzzy output function f̃O,kp�q is advantageously defined by
Eq. (3.193), whereby i � 1, 2, ..., 2n.

õO�
k � f̃O,k

�
f̃Apñetq

	
(3.193)

with ∆oO�
i pkq � fO,i,kpfAp∆netiqq

� �
∆xipkq

ti,ipkq
� epp1pi,kq�p2pi,kq�Φ

�1pfAp∆netiqqq

The term Φ�1p�q is hereby the inverse deterministic distribution function of the
normalized normal distribution. The inverse three-parameter logarithmic nor-
mal distribution is chosen here to represent the deterministic function fO,i,kp�q.
A major advantage of this function is that it is possible a define a lower bound
for the functional values for the case of best possible congruence with the in-
verse deterministic sigmoidal function fAp�q according to Eq. (3.142). In other
words, the fuzzy output function f̃O,k p�q according to Eq. (3.192) yields fuzzy
output variables õO�

k whose lαrα-increments are restricted by a lower bound
and lie in the effective region of the deterministic functions fO,i,kp�q. The ef-
fective region of the functions is understood here to be the region of steepest
ascent of the functional curve. The subsequent transformation according to
Eq. (3.194) guarantees compliance with the requirement given by Eq. (2.47)
for the fuzzy output variable õO

k of the multilayer perceptron.

õO�
k � T k d

�
õO

k a x̃k

�
and õO

k � T�1
k d õO�

k ` x̃k (3.194)

The parameters p1pi, kq and p2pi, kq of the deterministic output function
fO,i,kp�q are given by Eqs. (3.195) and (3.196), respectively. These result from
the requirement of the best possible congruence between fO,i,kp�q and fAp�q.
This requirement is fulfilled when the mean and the variance of both functions
are in agreement.

p2pkq �

gffeln

�
1� 3.29

�
ti,ipkq

∆mipkq


2
�

(3.195)

p1pkq � ln
�

∆xipkq

ti,ipkq



�

p2pkq

2
(3.196)

The factor 3.29 in Eq. (3.195) corresponds to the variance of the differenti-
ated sigmoidal activation function fAp�q according to Eq. (3.142). This factor
guarantees the best possible congruence between the inverse three-parameter
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logarithmic normal distribution fO,i,kp�q and the function fAp�q. An approx-
imation formula after [64] is given for the inverse function of the normalized
normal distribution Φ�1p�q by Eq. (3.197).

Φ�1 pfAp∆netiqq �

$&
%
�u� c0�c1u�c2u2

1�d1u�d2u2�d3u3 for 0   fAp∆netiq ¤ 0.5

�Φ�1p1� fAp∆netiqq for 0.5   fAp∆netiq ¤ 1
(3.197)

with u �

d
ln

1
pfAp∆netiqq

2

and
c0 � 2.515517 c1 � 0.802853 c2 � 0.010328
d1 � 1.432788 d2 � 0.189269 d3 � 0.001308

The linear transformations of the fuzzy input variables and the fuzzy result
variables according to Eqs. (3.189) and (3.194), respectively, guarantee that
the fuzzy input variables and the fuzzy result variables of the multilayer per-
ceptron lie in the effective region of the fuzzy activation functions. Applying
the two-step fuzzy activation function according to Eq. (3.192), compliance
with the requirement given by Eq. (2.47) is also ensured for the fuzzy out-
put variable õO

k of the multilayer perceptron. This means that it is possible
to obtain robust fuzzy forecasts regardless of the value range of the lαrα-
increments.

Conditioning for an Optimum Simulation Network Architecture

In order to condition the fuzzy input data of the optimum simulation network
architecture the fuzzy variables ẽτ are transformed. The elements of the k-th
fuzzy input vector ẽ�k � pẽ�

k�n
psq
I

, ..., ẽ�k�r, ..., ẽ�k�1q
T , with r � n

psq
I , n

psq
I �

1, ..., 1 and k � n
ppq
I � 1, n

ppq
I � 2, ..., result from the linear transformation

according to Eq. (3.198).

ẽ�k�r � T�
k d pẽk�rq (3.198)

The elements t�i,jpkq of the diagonal matrix T�
k are given by Eq. (3.199) for

each fuzzy input vector ẽ�k .

t�i,jpkq �

$'&
'%
�
max

r�0, 1, ..., n
psq
I �1

|∆eipk � rq|
	�1

for i � j

0 for i � j

(3.199)

The fuzzy net input variable ñet of the output layer is mapped onto the fuzzy
output variable õO�

k with the aid of the fuzzy activation function and the fuzzy
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output function according to Eq. (3.200). As the fuzzy output variables õO�
k of

the optimum simulation multilayer perceptron represent intermediate results,
non-negativity of the lαrα-increments is not required. The sigmoidal fuzzy
activation function according to Eq. (3.188) is chosen as the fuzzy activation
function f̃Ap�q. The fuzzy output function f̃O,kp�q of the output neuron is given
by Eq. (3.193), whereby i � 1, 2, ..., 2n holds.

õO�
k � f̃O,kpf̃Apñetqq (3.200)

with ∆oO�
i pkq � fO,i,kpfAp∆iq

� �
∆x̊ipkq

t�i,ipkq
� epp

�
1 pi,kq�p�2 pi,kq�Φ

�1p∆netiqq

An approximation formula for the inverse distribution function of the nor-
malized normal distribution Φ�1p�q is given by Eq. (3.197) (see also [64]).
The parameters p�1 pi, kq and p�2 pi, kq are given by Eqs. (3.201) and (3.202),
respectively.

p�2 pi, kq �

gffeln

�
1� 3, 29

�
t�i,ipkq

∆x̊ipkq


2
�

(3.201)

p�1 pi, kq � ln

�
∆x̊ipkq

t�i,ipkq

�
�

p�2 pkq

2
(3.202)

The terms ∆x̊ipkq are hereby the lαrα-increments of the optimum single-
step forecast ˚̃xk. The optimum single-step forecast ˚̃xk is computed from the
measured fuzzy variables x̃τ (τ ¤ N) or the simulated realizations ~̃xτ (τ ¡ N)
of the previous time points (see Sect. 4.3.1). The fuzzy output variable õO�

k of
the artificial neural network is subsequently mapped onto the fuzzy variable
õO

k with the aid of the transformation given by Eq. (3.203).

õO�
k � T�

k d
�
õO

k a ˚̃xk

	
and õO

k � T��1

k d õO�
k ` ˚̃xk (3.203)

The use of the fuzzy output function according to Eq. (3.200) always guaran-
tees compliance of the fuzzy variable õO

k with the requirement given by Eq.
(2.47).

Initialization of the Weighting Matrices

Before starting the backpropagation algorithm the weighting matrices must
be initialized according to the particular architecture chosen for the multi-
layer perceptron. The initialization may be carried out in accordance with the
number of artificial neurons and the chosen lαrα-discretization. The larger
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the number of artificial neurons and the chosen α-level sets then the more
lαrα-increments must be lumped together in the neurons to form the fuzzy
net input variables ñet (see Eq. (3.139)). In order to ensure that the fuzzy
net input variables ñet lie in the effective region of the fuzzy activation func-
tions, small values of the weighting matrices should be chosen initially. The
initialization values of the weighting matrices are thus chosen to be inversely
proportional to the number of artificial neurons in the layers as well as the
number n of the selected α-level sets. When the backpropagation algorithm
is started, the matrix elements of the first hidden layer are assigned random
real values from the interval�

�
1

2 � n � nI
;

1
2 � n � nI

�
. (3.204)

The term nI hereby denotes the number of artificial neurons in the input layer.
For subsequent hidden layers and the output layer, initialization is carried out
using real values from the interval�

�
1

2 � n � nH
;

1
2 � n � nH

�
. (3.205)

The term nH hereby denotes the number of artificial neurons in the preceding
layer. By means of this procedure the occurrence of too large or too small fuzzy
net input variables ñet is avoided. The latter would otherwise lie in the non-
effective flat region of the fuzzy activation functions. A possible consequence
of this would be insufficient convergence of the backpropagation algorithm, as
this tends to stagnate in flat regions of the error function.



4

Forecasting of Time Series Comprised of
Uncertain Data

4.1 Underlying Concept

The aim of forecasting a time series containing fuzzy data is to obtain an
assessed prognosis of the follow-up or future values x̃N�h (h � 1, 2, ...) of
an observed fuzzy time series x̃1, x̃2, ..., x̃N . A precondition for this is the
assumption and matching of an underlying fuzzy random process pX̃τ qτPT
according to Sect. 3.5 or modeling of the fuzzy time series with aid of an
artificial neural network according to Sect. 3.6.

The basic idea behind the modeling of fuzzy time series is to treat a given
fuzzy time series as a realization of a fuzzy random process pX̃τ qτPT. In or-
der to forecast a fuzzy time series x̃1, x̃2, ..., x̃N future realizations x̃N�h of
the fuzzy random process pX̃τ qτPT must be determined. As a rule, the future
realizations x̃N�h are dependent on the given realizations, i.e. the observed
fuzzy time series x̃1, x̃2, ..., x̃N . An exception to this are fuzzy white-noise pro-
cesses. The fuzzy random variables within the forecasting period are therefore
conditional fuzzy random variables pX̃N�h | x̃1, x̃2, ..., x̃N q.

Analogous to classical time series analysis according to [60], the fuzzy
random forecasting process p~̃Xτ qτPT is introduced for forecasting a fuzzy time
series x̃1, x̃2, ..., x̃N .

Definition 4.1. The fuzzy random forecasting process p~̃Xτ qτPT is the con-
tinuation of the underlying fuzzy random process pX̃τ qτPT within the fore-
casting period τ � N � 1, N � 2, ..., taking into consideration the known
realizations x̃1, x̃2, ..., x̃N . The fuzzy random variables ~̃XN�h of the fuzzy ran-
dom forecasting process p~̃Xτ qτPT are hence conditional fuzzy random vari-
ables pX̃N�h | x̃1, x̃2, ..., x̃N q of the underlying fuzzy random process pX̃τ qτPT.
At time points τ � N � 1, N � 2, ...the fuzzy random forecasting process
p~̃Xτ qτPT yields the discrete fuzzy random variables ~̃XN�hpx̃1, x̃2, ..., x̃N q, which
are dependent on the realizations x̃1, x̃2, ..., x̃N of the fuzzy random variables
X̃1, X̃2, ..., X̃N . �
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The forecasting of fuzzy time series may take the form of an optimum forecast,
a fuzzy interval forecast or a fuzzy random forecast. In order to distinguish
between these different forecast forms, the following definitions are introduced.

Definition 4.2. The fuzzy mean value of all potential future realizations of
the fuzzy random variable ~̃XN�h is referred to as the optimum forecast ˚̃xN�h

at time point τ � N � h. The optimum forecast ˚̃xN�h corresponds to the
conditional fuzzy expected value according to Eq. (4.1).

˚̃xN�hpx̃1, x̃2, ..., x̃N q � ErX̃N�h | x̃1, x̃2, ..., x̃N s � Er~̃XN�hs (4.1)

�

The optimum forecasts ˚̃xN�1, ˚̃xN�2, ..., ˚̃xN�h are specific sequential values of
the observed fuzzy time series with a minimum forecast error.

It is also possible to specify fuzzy forecast intervals within which the ex-
pected fuzzy variables with the given probability κ (confidence level) will lie.

Definition 4.3. A fuzzy interval x̃I is referred to as a fuzzy forecast interval
x̃κ

N�h if the realization ~̃xN�h of ~̃XN�h of a fuzzy random forecasting process

p~̃Xτ qτPT will be completely included in the interval with the probability κ. A
fuzzy variable ~̃xN�h is completely included in the fuzzy interval x̃I (~̃xN�h �
x̃I) if the inequality (4.2) holds for the membership functions of the fuzzy
variables ~̃xN�h and x̃I .

µ~̃xN�h
pxq ¤ µx̃I

pxq @ x P R (4.2)

�

Example 4.4. The fuzzy forecast interval x̃0,95
N�1 and the optimum forecast

˚̃xN�1 for a fuzzy AR[2] process are shown by way of example in Fig. 4.1.
Whereas the forecast ˚̃xN�1 satisfies Eq. (4.2), this does not hold for the real-
ization ~̃xN�1 shown in Fig. 4.2. �

A fuzzy forecast interval x̃κ
N�h at time point τ � N � h may be estimated by

a Monte Carlo simulation of potential future progressions of the given time
series containing fuzzy data px̃τ qτPT. If the underlying fuzzy random process
pX̃τ qτPT (see Sect. 3.5.5) of the fuzzy time series px̃τ qτPT is known or may
justifiably be assumed, a Monte Carlo simulation of realizations x̃N�h at each
time point τ � N � h is possible.

Remark 4.5. With the aid of a Monte Carlo simulation it is possible to esti-
mate forecast intervals for arbitrary fuzzy random processes. In classical time
series analysis (e.g. [7, 32]), on the other hand, GAUSS processes are usually
stipulated for determining forecast intervals. �
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Fig. 4.2. 95% fuzzy forecast interval x̃0.95
N�1 and optimum forecast ˚̃xN�1

A fuzzy random forecast permits a determination of the fuzzy random vari-
ables ~̃Xτ within the forecasting period τ � N � 1, N � 2, ..., N �h. If the ~̃Xτ

are known, it is possible to state the probability of occurrence of the expected
fuzzy realizations within the forecasting period.

Definition 4.6. A fuzzy random forecast yields the expected fuzzy random
variables ~̃Xτ of the fuzzy random forecasting process p~̃Xτ qτPT at future time
points τ � N � h. �

If the underlying fuzzy random process pX̃τ qτPT of a fuzzy time series is known,
the fuzzy random variables ~̃XN�h are estimated by a Monte Carlo simulation
of potential future conditional realizations px̃N�h | x̃1, x̃2, ..., x̃N q of pX̃τ qτPT.
The fuzzy probability distribution functions form II F~̃XN�h

px̃q and lrF~̃XN�h
px̃q

(see Sect. 2.2.2) and the characteristic moments (see Sect. 2.2.3) may be used
to characterize the fuzzy random variables ~̃XN�h at future time points τ �
N � h.
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4.2 Forecasting on the Basis of Specific Fuzzy Random
Processes

The determination of optimum forecasts ˚̃xN�h, fuzzy forecast intervals x̃κ
N�h,

and forecasted fuzzy random variables ~̃XN�h for fuzzy MA processes, fuzzy
AR processes and fuzzy ARMA processes is presented in the following. Each
forecast relies on the specification and parameter estimation of the underlying
fuzzy random process in each case. In order to perform the forecast the theo-
retical characteristic values and parameters of the fuzzy random process must
be replaced by the empirical or estimated values, and the observed realizations
and computed realizations according to Eq. (3.115) must be substituted for
X̃τ and Ẽτ , respectively.

In order to forecast a given fuzzy time series x̃1, x̃2, ..., x̃N the fuzzy random
forecasting process p~̃Xτ qτPT according to Def. 4.1 is applied. If the underlying
process is a fuzzy ARMArp, qs process pX̃τ qτPT, the fuzzy random forecasting
process p~̃Xτ qτPT is given by Eq. (4.3) with h � 1, 2, ....

~̃XN�h � A1 d
~̃XN�h�1 ` ...`Ap d

~̃XN�h�p ` ẼN�h a (4.3)

B1 d ẼN�h�1 a ...aBq d ẼN�h�q

with ~̃XN�h�u �

#
x̃N�h�u for N � h� u ¤ N
~̃XN�h�u for N � h� u ¡ N

, u � 1, 2, ..., p (4.4)

and ẼN�h�v �

"
ε̃N�h�v for N � h� v ¤ N

ẼN�h�v for N � h� v ¡ N
, v � 1, 2, ..., q (4.5)

For each time point τ � N � h� u ¤ N the fuzzy random variable ~̃XN�h�u

is hereby replaced by the observed fuzzy variable x̃N�h�u of the fuzzy time
series, whereas for time points τ � N �h�u ¡ N , the fuzzy random variable
~̃XN�h�u is retained. For time points τ � N�h�v ¤ N the realization ε̃N�h�v

of the fuzzy white-noise process pẼτ qτPT computed according to Eq. (3.115) is
inserted for the fuzzy white-noise variable ẼN�h�v , whereas for time points
τ � N � h� v ¡ N , the fuzzy white-noise variable ẼN�h�v is retained.

If the underlying process is a fuzzy MA process or a fuzzy AR process
pX̃τ qτPT, the fuzzy random forecasting process p~̃Xτ qτPT follows from Eq. (4.3)
as a special case with p � 0 or q � 0.

4.2.1 Optimum Forecast

Optimum h-step forecast. In the case of an underlying fuzzy ARMArp, qs
process pX̃τ qτPT the optimum forecasts ˚̃xN�1, ˚̃xN�2, ..., ˚̃xN�h for a total of
h steps are computed by means of the optimum h-step forecast according to
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Eq. (4.6). Using the optimum forecasts obtained for earlier time points, the
optimum forecasts are determined recursively by means of Eq. (4.6).

˚̃xN�h � A1 d x̃N�h�1 ` ...`Ap d x̃N�h�p ` ErẼτ s a (4.6)
B1 d ε̃N�h�1 a ...aBq d ε̃N�h�q

with x̃N�h�u �

"
x̃N�h�u for N � h� u ¤ N
˚̃xN�h�u for N � h� u ¡ N

, u � 1, 2, ..., p (4.7)

and ε̃N�h�v �

"
ε̃N�h�v for N � h� v ¤ N

ErẼτ s for N � h� v ¡ N
, v � 1, 2, ..., q (4.8)

For each time point τ � N � h � v ¡ N the optimum forecast of the fuzzy
white-noise variable ẼN�h�v, as expressed by the fuzzy expected value ErẼτ s
of the fuzzy white-noise process pẼτ qτPT according to Definition 4.2, is inserted
for ε̃N�h�v in Eq. (4.6). For time points τ � N � h � v ¤ N the computed
realization ε̃N�h�v of the fuzzy white-noise process pẼτ qτPT is inserted for
ε̃N�h�v. For each time point τ � N � h� u ¤ N the observed fuzzy variable
x̃N�h�u of the fuzzy time series is inserted for x̃N�h�u. For time points τ �
N � h � u ¡ N the optimum forecast ˚̃xN�h�u is inserted for x̃N�h�u. The
optimum h-step forecast according to Eq. (4.6) is thus equivalent to a recursive
procedure. Because the fuzzy expected value ErẼτ s of the fuzzy white-noise
process is always inserted in Eq. (4.6) for τ � N � h� v ¡ N , the forecasted
fuzzy variables converge on the fuzzy expected value function ErX̃τ s as the
number of forecasting steps h increases.

The optimum h-step forecasts for a fuzzy MArqs process or a fuzzy ARrps
process are included as a special case in Eq. (4.6). The optimum h-step forecast
for a fuzzy MArqs process pX̃τ qτPT is computed according to Eq. (4.9). The
terms ε̃N�h�v are hereby chosen according to Eq. (4.8).

˚̃xN�h � ErẼτ s aB1 d ε̃N�h�1 a ...aBq d ε̃N�h�q (4.9)

The optimum h-step forecast for a fuzzy ARrps process pX̃τ qτPT may be com-
puted using Eq. (4.10). The realizations x̃N�h�u are chosen as in a similar
way by means of Eq. (4.7).

˚̃xN�h � A1 d x̃N�h�1 ` ...`Ap d x̃N�h�p ` ErẼτ s (4.10)

Optimum single-step forecast. The optimum single-step forecast is a spe-
cial case of the optimum h-step forecast. For a fuzzy ARMArp, qs process
pX̃τ qτPT the optimum single-step forecast according to Eq. (4.11) is retained.
The optimum single-step forecast computes the optimum forecast ˚̃xN�1 at
time point τ � N � 1 using only the observed values x̃τ (τ ¤ N) of the fuzzy
time series and the computed realizations ε̃τ (τ ¤ N) of the fuzzy white-noise
process.
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˚̃xN�1 � A1 d x̃N ` ...`Ap d x̃N�1�p ` ErẼτ s a (4.11)
B1 d ε̃N a ...aBq d ε̃N�1�q

For a fuzzy ARrps process pX̃τ qτPT the optimum single-step forecast is given
by Eq. (4.12).

˚̃xN�1 � A1 d x̃N ` ...`Ap d x̃N�1�p ` ErẼτ s (4.12)

The optimum single-step forecast for a fuzzy MArqs process pX̃τ qτPT is re-
tained according to Eq. (4.13).

˚̃xN�1 � ErẼτ s aB1 d ε̃N a ...aBq d ε̃N�1�q (4.13)

Remark 4.7. Optimum single-step forecasts are applied in the distance meth-
od and the gradient method for estimating the parameters of fuzzy ARMA
processes (see Sect. 3.5.6). The optimum single-step forecasts ˚̃xτ are computed
for the observation period p   τ ¤ N and compared with the observed values.
The term ˚̃xN�1 is thereby replaced by ˚̃xτ , x̃N by x̃τ�1 etc. for τ � p� 1, p�
2, ..., N in Eq. (4.11). In contrast to the optimum h-step forecast, only the
observed values x̃τ of the fuzzy time series and the computed realizations ε̃τ of
the fuzzy white-noise process are used for computing the optimum single-step
forecasts. �

Example 4.8. For a fuzzy time series with N � 100 realizations it is neces-
sary to compute the optimum forecasts ˚̃x101, ˚̃x102, ..., ˚̃x110 as an h-step fore-
cast with h � 10 for ten subsequent time points. An analysis of the given
fuzzy time series indicated that the underlying process is a fuzzy ARMA[3,2]
process. The parameter matrices A1, A2, A3 and B1, B2 have already been
determined.

The optimum forecasted values ˚̃xN�h are computed using Eq. (4.6). These
are dependent on the realizations x̃τ and the optimum forecasts ˚̃xτ as well as
on the realizations ε̃τ of the fuzzy white-noise process and the fuzzy expected
value ErẼτ s. These dependencies are listed in Table 4.1. The realizations ε̃τ

of the fuzzy white-noise process are computed according to Eq. (3.115), be-
ginning with ε̃1. Based on the realizations ε̃τ the fuzzy mean value may be
computed as an estimator for the fuzzy expected value ErẼτ s using Eq. (3.16).

For example, the optimum forecast ˚̃x102 is given by the following equation.

˚̃x102 � A1 d ˚̃x101 `A2 d x̃100 `A3 d x̃99 ` ErẼτ s a (4.14)
B1 d ErẼτ s aB2 d ε̃100

The last six values of the given fuzzy time series as well as the optimum
forecasted values ˚̃x101, ˚̃x102 and ˚̃x103 are shown in Fig. 4.3. �
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Table 4.1. Progression of the optimum h-step forecast

optimum realizations to be taken realizations to be taken
fuzzy forecast into consideration x̃τ , ˚̃xτ into consideration ε̃τ , ErẼτ s

h � 1 ˚̃x101 x̃100, x̃99, x̃98 ε̃100, ε̃99

h � 2 ˚̃x102
˚̃x101, x̃100, x̃99 ErẼτ s, ε̃100

h � 3 ˚̃x103
˚̃x102, ˚̃x101, x̃100 ErẼτ s, ErẼτ s

...
...

...
...

h � 10 ˚̃x110
˚̃x109, ˚̃x108, ˚̃x107 ErẼτ s, ErẼτ s
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4.2.2 Fuzzy Forecast Intervals

In order to compute fuzzy forecast intervals x̃κ
N�h (see Def. 4.3) at time points

τ � N � h several sequences of future realizations of the underlying fuzzy
random process are simulated by means of a Monte Carlo simulation.

If model matching for the given fuzzy time series yields a fuzzy ARMArp, qs

process, a sequence of future realizations ~̃xN�1, ~̃xN�2, ... of the fuzzy ARMA
process for h � 1, 2, ... may be computed by means of Eq. (4.3). The compu-
tation begins with h � 1, as given by Eq. (4.15).

~̃XN�1 � A1 d x̃N ` ...`Ap d x̃N�1�p ` ẼN�1 a (4.15)
B1 d ε̃N a ...aBq d ε̃N�1�q

Because the fuzzy random variable ~̃XN�1 is dependent on the fuzzy white-
noise variable ẼN�1 in Eq. (4.15), a realization ~̃xN�1 can only be computed
if a realization ε̃N�1is known beforehand. From model matching, the fuzzy
probability distribution function form II of the fuzzy white-noise variables Ẽτ

are known (see Sect. 3.5.6). Using this fuzzy probability distribution function
for Ẽτ in conjunction with a Monte Carlo simulation (see Sect. 2.2.4), it is
possible to simulate a realization ε̃N�1. The realization ~̃xN�1 is subsequently
computed according to Eq. (4.15). Once ~̃xN�1 has been simulated, this may
be used to simulate the realization ~̃xN�2 according to Eq. (4.16).
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~̃XN�2 � A1 d ~̃xN�1 `A2 d x̃N ...`Ap d x̃N�2�p ` ẼN�2 a (4.16)
B1 d ε̃N�1 a ...aBq d ε̃N�2�q

Because the fuzzy random variable ~̃XN�2 is dependent on the fuzzy white-
noise variable ẼN�2 in Eq. (4.16) , it is also necessary to simulate the real-
ization ε̃N�2. Once this has been done, it is then possible to compute the
realization ~̃xN�2. The realizations ~̃xN�3, ~̃xN�4, ... are simulated in a similar
way. A total of s sequences of realizations ~̃xN�1, ~̃xN�2, ... are computed.

The simulation of the sequences ~̃xN�1, ~̃xN�2, ... presented for fuzzy ARMA
processes may also be applied to fuzzy MA and fuzzy AR processes.

With the aid of the s simulated, potential future progressions of the fuzzy
time series the fuzzy forecast intervals x̃κ

N�h may be estimated as follows. The
interval limits ~xαilpN �hq and ~xαirpN �hqs of the α-level sets ~Xαi

pN �hq of
all s simulated fuzzy variables ~̃xN�h are sorted and indexed from the smallest
to the largest value according to Eq. (4.17).

~x1
αilpN � hq ¤ ~x2

αilpN � hq ¤ ... ¤ ~xs
αilpN � hq

and (4.17)
~x1

αirpN � hq ¤ ~x2
αirpN � hq ¤ ... ¤ ~xs

αirpN � hq

For the confidence level κ the interval limits xκ
αil
pN � hq and xκ

αirpN � hq of
the α-level sets Xκ

αi
pN � hq of a fuzzy forecast interval x̃κ

N�h at time point
τ � N � h may be estimated by means of Eq. (4.18). Eq. (4.18) only holds
provided s is an even number.

xκ
αilpN � hq �

"
¤ ~x1

αil
pN � hq for a � 0

~xa
αil
pN � hq for 0   a ¤ s

2

with a � int
�
s �

�
1
2
�

κ

2


�

and (4.18)

xκ
αirpN � hq �

"
~xb�1

αir pN � hq for s
2 ¤ b   s

¥ ~xs
αirpN � hq for b � s

with b �
s

2
� int

�
s �
�κ

2

	�

The interval limits of the α-level sets of the fuzzy forecast intervals x̃κ
N�h ac-

cording to Eq. (4.18) thus correspond to the upper and lower quantile values
of the empirical distributions of the interval limits for the simulated real-
izations ~̃xN�h. Future realizations ~̃xN�h of a fuzzy time series px̃τ qτPT are
thus completely included in the estimated fuzzy forecast interval x̃κ

N�h with
a probability κ.

The fuzzy forecast interval x̃κ
N�h only holds for the realization of the fuzzy

random variable ~̃XN�h at time point τ � N � h. The fact that conditional
probabilities are not considered in Eqs. (4.17) and (4.18) means that the x̃κ

N�h

for different time points τ � N � h cannot be united to form a fuzzy forecast
hose containing all realizations with a probability κ.
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For a fuzzy forecast hose it is necessary to determine the conditional prob-
abilities P�

XN�h
with h � 1, 2, ... according to Eq. (4.19).

P�
XN�h

�P r~̃XN�h � x̃�N�h |
~̃Xj � x̃�j , j�N�1, N�2, ..., N�h�1s (4.19)

The term P�
XN�h

expresses the probability that the realization ~̃xN�h of ~̃XN�h

at time point τ � N � h lies within a prescribed (conditional) fuzzy forecast
interval x̃�N�h. A precondition for this is that the realizations ~̃xN�j of ~̃XN�j at
the preceding time points τ � N�j with j � N�1, N�2, ..., N�h�1 also lie
within prescribed (conditional) fuzzy forecast intervals x̃�N�j . Alternatively,
the conditional probabilities P�

XN�h
at time points τ � N �h with h � 1, 2, ...

may be prescribed, and the corresponding conditional fuzzy forecast intervals
x̃�N�h (within which the realizations with a probabilityP�

XN�h
lie) determined.

Merging of the conditional fuzzy forecast intervals x̃�N�h to form a forecast
hose is permissible. The assertion that the realizations of the fuzzy random
process lie within this hose with a probability κ� is possible by multiplicative
combination of the conditional probabilities P�

XN�h
according to Eq. (4.20).

κ� �
N�h¹

j�N�1

P�
Xj

(4.20)

Example 4.9. Given is the realization x̃1, x̃2, ..., x̃N of a fuzzy AR[2] pro-
cess pX̃τ qτPT. In order to determine the fuzzy forecast intervals x̃0.95

N�h for
time points τ � N � h (h � 1, 2, ..., 10), s � 1000 sequences of future real-
izations are simulated and evaluated according to Eq. (4.17). The computed
fuzzy forecast intervals x̃0.95

N�h are shown in Fig. 4.4. In the next step the fuzzy
forecast intervals x̃0.95

N�h are prescribed as conditional fuzzy forecast intervals
x̃�N�h. The aim is to compute the probability κ� with which the realizations
~̃xN�1, ~̃xN�21, ..., ~̃xN�10 of p~̃Xτ qτPT lie within the prescribed conditional fuzzy
forecast intervals x̃�N�1, x̃�N�2, ..., x̃�N�10. The probability κ� may be advan-
tageously estimated with the aid of the s � 1000 simulated sequences. For
each simulated sequence a check is made to ascertain whether their realiza-
tions lie within the corresponding fuzzy forecast intervals x̃�N�h at each time
point τ � N�h (h � 1, 2, ..., 10) (see Eq. (4.2)). The fact that this condition
is fulfilled by 530 of the 1000 simulated sequences leads to κ� � 530

1000 � 0.53.
This result implies that future realizations x̃N�h of the fuzzy AR[2] process
lie within the corresponding fuzzy forecast interval at time point τ � N � h
with a probability of κ � 0.95, and within the fuzzy forecast hose extending
over the period τ � N � 1, N � 2, ..., N � 10 with a probability of κ� � 0.53.
Fig. 4.4 shows the forecast hose for the α-level α � 0. �

Example 4.10. Based on the fuzzy time series of Example 4.8 it is intended to
compute fuzzy forecast intervals for time points τ � N�1, N�2, N�3 with a
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confidence level of κ � 0.95. For this purpose s sequences of future realizations
~̃xN�1, ~̃xN�2, ~̃xN�3 are simulated. The realizations ~̃xτ pkq (k � 1, 2, ..., s) are
computed recursively, beginning in each case with ~̃x1pkq given by Eq. (4.15).
These are dependent on the measured fuzzy variables x̃τ or the realizations
~̃xτ pkq as well as on the realizations ε̃τ or the simulated fuzzy variables ε̃τ pkq
of the fuzzy white-noise process corresponding to the preceding time points.
These dependencies are listed in Table 4.2. The realizations ε̃τ of the fuzzy
white-noise process are computed according to Eq. (3.115), beginning with ε̃1.
The fuzzy variables ε̃τ pkq of the fuzzy white-noise process are then simulated
using the fuzzy probability distribution function form II of the fuzzy white-
noise variables Ẽτ .

Table 4.2. Progression of the simulation of s sequences of future realizations

simulated realization realizations to be taken realizations to be taken
into consideration x̃τ , ~̃xτ into consideration ε̃τ

k � 1 :

h � 1 ~̃x101pk�1q x̃100, x̃99, x̃98 ε̃100, ε̃99

h � 2 ~̃x102pk�1q ~̃x101pk�1q, x̃100, x̃99 ε̃101pk�1q, ε̃100

h � 3 ~̃x103pk�1q ~̃x102pk�1q, ~̃x101pk�1q, x̃100 ε̃102pk�1q, ε̃101pk�1q
k � 2 :

h � 1 ~̃x101pk�2q x̃100, x̃99, x̃98 ε̃100, ε̃99

h � 2 ~̃x102pk�2q ~̃x101pk�2q, x̃100, x̃99 ε̃101pk�2q, ε̃100

h � 3 ~̃x103pk�2q ~̃x102pk�2q, ~̃x101pk�2q, x̃100 ε̃102pk�2q, ε̃101pk�2q
...

...
...

...

The interval limits of the α-level sets of all s simulated fuzzy variables
~̃xN�h are sorted and indexed according to Eq. (4.17) from the smallest to
the largest value. The interval limits of the α-level sets of the fuzzy forecast
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intervals x̃κ
N�h at time points τ � N � 1, N � 2, N � 3 may subsequently be

estimated according to Eq. (4.18).
The last six values of the given fuzzy time series as well as the fuzzy

forecast intervals x̃κ
101, x̃κ

102 and x̃κ
103 are shown in Fig. 4.5.
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4.2.3 Fuzzy Random Forecast

The fuzzy random variables ~̃XN�h for the future time points τ � N � h
are determined by means of a fuzzy random forecast (see Def. 4.6). For this
purpose, sequences of future conditional realizations px̃N�h | x̃1, x̃2, ..., x̃N q of
pX̃τ qτPT are simulated by means of repeated Monte Carlo simulations. This
results in several realizations ~̃xN�h for each time point τ � N � h. These
realizations are evaluated statistically.

If the underlying process of a given fuzzy time series px̃τ qτPT is taken to
be a fuzzy MA, AR or ARMA process pX̃τ qτPT, the Monte Carlo simulation
of future progressions of the fuzzy time series is carried out according to the
recursive procedure described in Sect. 4.2.2. The fuzzy random variable ~̃XN�1

of the fuzzy random forecasting process p~̃Xτ qτPT is given by Eq. (4.21).

~̃XN�1 � A1 d x̃N ` ...`Ap d x̃N�1�p ` ẼN�1 a (4.21)
B1 d ε̃N a ...aBq d ε̃N�1�q

The fuzzy variables x̃τ at time points τ ¤ N are given by the fuzzy time
series, the fuzzy variables ε̃τ are given by model matching. Following successive
Monte Carlo simulations of the realizations ε̃N�1, ε̃N�2, ... of the fuzzy white-
noise process pẼτ qτPT it is possible to compute potential future realizations
~̃xN�1, ~̃xN�2, ... of the fuzzy random variables ~̃XN�1,

~̃XN�2, ....
On the basis of s simulated realizations ~̃xc

τ for τ � N � 1, N � 2, ... with
c � 1, 2, ..., s the empirical fuzzy probability distribution function form II



142 4 Forecasting of Time Series Comprised of Uncertain Data

lrF̂ ~̃XN�h
px̃q may be determined for each time point τ � N � h according

to Sect. 2.2.2. For this purpose the simulated fuzzy variables ~̃xc
N�h are sta-

tistically evaluated according to Eq. (2.115). The resulting empirical fuzzy
probability distribution functions form II lrF̂ ~̃XN�h

px̃q are in each case unbi-

ased estimators for the distributions of the fuzzy random variables ~̃XN�h at
time points τ � N � h. Theoretical fuzzy probability distribution functions
form II may be derived from the latter if required.

With the aid of the simulated fuzzy variables ~̃xc
N�h with c � 1, 2, ..., s,

estimators for the characteristic moments of the fuzzy random variables ~̃XN�h

at each time point τ � N�h are obtained as follows. The estimator Êr~̃XN�hs

for the fuzzy expected value Er~̃XN�hs is defined according to Eq. (4.22) as
the fuzzy mean value x̃N�h of the fuzzy variables ~̃xc

N�h simulated at time
point τ � N � h.

Êr~̃XN�hs � x̃N�h �
1
s

sà
c�1

~̃xc
N�h (4.22)

According to Eq. (4.1) the fuzzy expected value Er~̃XN�hs is equal to the
fuzzy variable ˚̃xN�h of the optimum forecast. This condition may be used to
assess the quality of the Monte Carlo simulation. A criterion for the qual-
ity of the Monte Carlo simulation may be derived from the lαrα-subtraction
Êr~̃XN�hs a Er~̃XN�hs or x̃N�h a ˚̃xN�h. According to Eq. (4.23) the ab-
solute value of the empirical lαrα-variance lrV ar for the lαrα-subtraction
x̃N�hpcqa˚̃xN�h with c � 1, 2, ..., s approaches zero as the number of realiza-
tions s increases. The Monte Carlo simulation hence yields an improved map-
ping of the characteristics of the fuzzy random forecasting process p~̃Xτ qτPT as
the number of realizations s increases.

lim
sÑ8

���lrV ar
�
x̃N�hpcq a ˚̃xN�h | c � 1, 2, ..., s

���� � 0 (4.23)

By specifying a maximum value η for the absolute value of the empirical
lαrα-variance lrV ar it is possible to determine a minimum number sm of
realizations according to Eq. (4.24). This is achieved by checking whether Eq.
(4.24) is satisfied after sm simulations.���lrV ar

�
x̃N�hpcq a ˚̃xN�h | c � 1, 2, ..., sm

���� ¤ η (4.24)

In order to evaluate Eq. (4.24) the elements of the lαrα-covariance function

lrK ~̃Xτ
pτa, τbq of the fuzzy random forecasting process p~̃Xτ qτPT are estimated

for τa, τb � N � 1, N � 2, ... by means of Eq. (4.25) with i, j � 1, 2, ..., n,
l� � l, r, and r� � l, r.
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k̂αil
�

αjr�pτa, τbq �
1

s� 1

ş

c�1

�
p∆~xc

αil�
pτaq �∆x̊αil�pτaqq ... (4.25)

... p∆~xc
αjr�pτbq �∆x̊αjr�pτbqq

�
The terms ∆~xc

αil�
pτq denote the lαrα-increments of the simulated fuzzy vari-

ables ~̃xc
τ at time point τ ¡ N , whereas the terms ∆x̊αil�pτq denote the lαrα-

increments of the optimum fuzzy forecast ˚̃xτ or the fuzzy expected value
Er~̃Xτ s. The elements of the estimator for the lαrα-variance lrσ

2
~̃Xτ

correspond
to the leading diagonal elements of the estimated lαrα-covariance function
lrK̂ ~̃Xτ

pτa, τbq for τa � τb � τ .

The fuzzy random forecast yields the fuzzy random variables ~̃Xτ of the
fuzzy random forecasting process p~̃Xτ qτPT for future time points τ � N�h. In
order to characterize the fuzzy random variables ~̃XN�h the fuzzy probability
distribution functions form II lrF~̃Xτ

px̃q and the characteristic moments are
used.

Example 4.11. Based on the fuzzy time series of Example 4.10 it is intended
to determine the fuzzy random variables ~̃Xτ of the fuzzy random forecasting
process p~̃Xτ qτPT at time points τ � N � 1, N � 2, N � 3. For this purpose
the simulated s sequences of future realizations ~̃xN�1pkq, ~̃xN�2pkq, ~̃xN�3pkq
(k � 1, 2, ..., s) of Example 4.10 are evaluated statistically. The last six values
of the given fuzzy time series as well as three typical sequences of future
realizations are shown in Fig. 4.6.
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Fig. 4.6. Fuzzy time series and sequences of future realizations

This is demonstrated by considering the result of the statistical evaluation
at time point τ � 102 for an lαrα-discretization with n � 2 α-levels (α1 � 0,
α2 � 1). The fuzzy expected value Er~̃XN�2s estimated according to Eq. (4.22)
corresponds to the optimum forecast as follows:
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Êr~̃XN�2s � x̃N�2 �

�
���

0.6
3.5
0

0.7

�
��� . (4.26)

The empirical lαrα-correlation function lrR̂~̃Xτ
pτa, τbq for τa � τb � 102 is

given by Eq. (4.27).

lrR̂~̃Xτ
pτa � τb � 102q �

�
���

1 0.21 � 0.84
0.21 1 � 0.17
� � � �

0.84 0.17 � 1

�
��� (4.27)

The empirical fuzzy probability distribution function form II lrF̂ ~̃XN�2
px̃q ac-

cording to Eq. (2.115) is used as an estimator for the fuzzy probability dis-
tribution function form II lrF ~̃XN�2

px̃q of the fuzzy random variable ~̃XN�2 at
time τ � N � 2. Selected functional values of the empirical fuzzy probability
distribution function form II lrF̂ ~̃XN�2

px̃q are given in Table 4.3.

Table 4.3. Selected functional values of the empirical fuzzy probability distribution
function form II lrF̂ ~̃XN�2

px̃q in the coordinate system of the increments

Coordinates lrF̂ ~̃XN�2
px̃q

∆x1 ∆x2 ∆x3 ∆x4

0.53 3.44 0 0.64 0.45
0.64 3.58 0 0.71 0.53
0.63 3.72 0 0.69 0.64
0.55 3.41 0 0.68 0.42

...
...

�

4.3 Forecasting on the Basis of Artificial Neural
Networks

Forecasting on the basis of artificial neural networks is an alternative to fore-
casting on the basis of specific fuzzy random processes, as described in Sect.
4.2. Depending on the forecasting objective, a precondition for the latter is
that an optimum forecasting or an optimum simulation network architecture
has been trained. An optimum forecast, fuzzy forecast intervals or a fuzzy
random forecast may be chosen as the forecasting objective.
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4.3.1 Optimum Forecast

Optimum h-step forecast. For the optimum h-step forecast, i.e. for fore-
casting ˚̃xN�1, ˚̃xN�2, ..., ˚̃xN�h, an optimum forecasting network architecture
(see Sect. 3.6.4) with nO � 1 control variables must already have been trained.
By means of this network architecture the optimum forecasts are determined
step by step. Because the optimum forecasting network has nI neurons in the
input layer and nO � 1 neurons in the output layer after training, the fuzzy
input vector must always contain nI fuzzy elements: x̃ � px̃1, x̃2, ..., x̃nI

qT .
In the first step the last nI elements of the given fuzzy time series

x̃N�1 � px̃N�nI�1, x̃N�nI�2, ..., x̃N q
T are assigned to the fuzzy input vec-

tor. The optimum forecasting network yields the optimum forecast ˚̃xN�1 via
the neuron in the output layer.

In the second step the optimum forecast ˚̃xN�2 is computed. Using ˚̃xN�1,
the new values x̃N�2 � px̃N�nI�2, x̃N�nI�3, ..., ˚̃xN�1q

T are assigned to the
elements of the fuzzy input vector. The first three steps are presented graphi-
cally in Fig. 4.7. The values assigned to the elements of the fuzzy input vectors
in subsequent steps are listed in Table 4.4. This serves to explain how the op-
timum h-step forecast is obtained with aid of an optimum forecasting network
architecture.

Before being transferred to the artificial neural network each fuzzy input
vector is subject to a conditioning procedure, as outlined in Sect. 3.6.5. The
˚̃xN�1, ˚̃xN�2, ..., ˚̃xN�h are obtained in the original number range.
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Table 4.4. Elements of the fuzzy input vectors in the optimum h-step forecast

fuzzy input vector optimum forecast

x̃N�1 � px̃N�nI�1, x̃N�nI�2, ..., ..., ..., x̃N qT ˚̃xN�1

x̃N�2 � px̃N�nI�2, x̃N�nI�3, ..., x̃N , ˚̃xN�1q
T ˚̃xN�2

x̃N�3 � px̃N�nI�3, x̃N�nI�4, ..., ˚̃xN�1, ˚̃xN�2q
T ˚̃xN�3

x̃N�4 � px̃N�nI�4, x̃N�nI�5, ..., ˚̃xN�2, ˚̃xN�3q
T ˚̃xN�4

...
...

Remark 4.12. Besides providing forecasts at time points τ � N � 1, N �
2, ..., N�h, optimum h-step forecasts are also applied for validating the opti-
mum forecasting network architecture (see Sect. 3.6.4). The evolution of the el-
ements of the fuzzy input vectors is similar to that shown in Table 4.4, with N
now replaced by NT . The optimum h-step forecasts ˚̃xNT�1, ˚̃xNT�2, ..., ˚̃xNT�h

are computed for the period of the fuzzy validation series and then compared
with the given fuzzy variables of the validation series. The error computed
from the differences serves as a means of assessing the quality of the optimum
forecasting network architecture. �

Optimum single-step forecast. The optimum single-step forecast on the
basis of artificial neural networks is again a special case of the optimum h-step
forecast. The optimum forecast ˚̃xN�1 is computed using the observed values
x̃τ (τ ¤ N) of the fuzzy time series. The fuzzy input vector contains the
observed values x̃N�nI�1, x̃N�nI�2, ..., x̃N (see Fig. 4.8).
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Fig. 4.8. Schematic representation of the optimum single-step forecast

Remark 4.13. Optimum single-step forecasts are applied in the determina-
tion of the optimum simulation network architecture (see Sect. 3.6.4). The
optimum single-step forecasts ˚̃xτ are computed for the observation period
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nI   τ ¤ N and subtracted from the observed values according to Eq. (3.183).
The fuzzy input vector contains the observed values x̃τ�nI

, x̃τ�nI�1, ..., x̃τ�1

for time points τ � nI � 1, nI � 2, ..., N . In contrast to the optimum h-step
forecast, only the observed values x̃τ of the fuzzy time series are used for
computing the optimum single-step forecasts. �

4.3.2 Fuzzy Forecast Intervals

According to Def. 4.3, a fuzzy interval x̃I is referred to as a fuzzy forecast
interval x̃κ

N�h if the realization of the fuzzy random variable ~̃XN�h of the fuzzy

random forecasting process p~̃Xτ qτPT will be completely included in the interval
with a probability κ. The definition of complete inclusion of a fuzzy variable
~̃xN�h in a fuzzy interval x̃I is given by Eq. (4.2). The determination of fuzzy
forecast intervals x̃κ

N�h using artificial neural networks for fuzzy variables is
presented in the following section.

Firstly, the optimum forecasting artificial neural network belonging to the
given fuzzy time series is determined as outlined in Sect. 3.6.4. With the aid of
the optimum forecasting network architecture optimum single-step forecasts
˚̃xτ are determined for time points τ � n

ppq
I � 1, n

ppq
I � 2, ..., N . The term

n
ppq
I hereby denotes the number of artificial neurons in the input layer of

the optimum forecasting multilayer perceptron. By subtracting the optimum
single-step forecasts ˚̃xτ from the known observed values x̃τ it is possible to
compute the fuzzy variables ẽτ for τ � n

ppq
I � 1, n

ppq
I � 2, ..., N according to

Eq. (4.28).

ẽτ � x̃τ a ˚̃xτ (4.28)

The fuzzy variables ẽτ form a stationary fuzzy time series which reproduces
the random components of the original fuzzy time series. These are fuzzy
variables in the improper sense, however, as they do not fulfill the requirement
expressed by Eq. (2.47). For this reason the computed fuzzy variables ẽτ

cannot be considered as a realization of a fuzzy white-noise process. Under
the precondition that all relevant dependencies within the fuzzy time series are
accounted for by the optimum forecasting artificial neural network, the ẽτ are
considered to be realizations of the fuzzy random process pẼτ qτPT exhibiting
the following properties.

ErẼτ s � m̃Ẽτ
� 0 @ τ P T (4.29)

lrV arrẼτ s � lrσ
2
Ẽτ

(4.30)

lrKẼτ
pτa, τbq �

"
lrKẼτ

pτa, τbq for τa � τb

0 for τa � τb
(4.31)
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In the next step, an optimum simulation artificial neural network is trained
according to Sect. 3.6.4 for the time series comprised of fuzzy variables pẽτ qτPT
in the improper sense.

By means of the optimum simulation artificial neural network it is possi-
ble to simulate several conditional realizations at each time point τ � N � h
(h � 1, 2, ...) which may be used to specify fuzzy forecast intervals. The realiza-
tions are simulated following a similar procedure to that of the optimum h-step
forecast. In the first step, the last n

psq
I fuzzy variables of the time series pẽτ qτPT

obtained from Eq. (4.28) are transformed according to Eq. (3.198) and lumped
together in the fuzzy input vector ẽ�N�1 � pẽ�

N�n
psq
I �1

, ẽ�
N�n

psq
I �2

, ..., ẽ�N q
T . In

the next step, the corresponding fuzzy output variable õO�
N�1 of the optimum

simulation artificial neural network is inserted into the fuzzy input vector
ẽ�N�2 � pẽ�

N�n
psq
I �2

, ẽ�
N�n

psq
I �3

, ..., ẽ�N , õO�
N�1q

T . The analogous continuation of

this procedure for the subsequent fuzzy variables õO�
N�h, and the transforma-

tion of these into the fuzzy variables õO
N�h �

~̃xN�h according to Eq. (3.203),
yields a first sequence of generated realizations for h � 1, 2, .... The stepwise
modification of the fuzzy input vectors is presented in Table 4.5.

Table 4.5. Elements of the conditioned fuzzy input vectors and fuzzy results of the
optimum simulation artificial neural network

fuzzy input vector fuzzy result

ẽ�N�1 � pẽ�
N�n

psq
I

�1
, ẽ�

N�n
psq
I

�2
, ..., . . . , . . . , ẽ�N qT õO�

N�1

ẽ�N�2 � pẽ�
N�n

psq
I

�2
, ẽ�

N�n
psq
I

�3
, ..., . . . , ẽ�N , õO�

N�1q
T õO�

N�2

ẽ�N�3 � pẽ�
N�n

psq
I

�3
, ẽ�

N�n
psq
I

�4
, ..., ẽ�N , õO�

N�1, õO�
N�2q

T õO�
N�3

...
...

In order to simulate further sequences of realizations the fuzzy input vec-
tor ẽ�N�1 � pẽ�

N�n
psq
I �1

, ẽ�
N�n

psq
I �2

, ..., ẽ�N q
T must be varied according to the

characteristics of the underlying fuzzy random process pẼτ qτPT. In accordance
with Eqs. (4.29) to (4.31) the fuzzy random process pẼτ qτPT is stationary. This
means that the variation may be achieved by a permutation of the elements of
the fuzzy input vector ẽ�N�1. This type of approach is permissible due to the
fact no correlation exists according to Eq. (4.31) between the realizations ẽτ

at different time points τ . A permutation of the elements of the fuzzy input
vector ẽ�N�1 permits the simulation of n

psq
I ! realizations, i.e. of n

psq
I ! potential

future progressions of a fuzzy time series px̃τ qτPT.
Owing to the characteristics of the fuzzy random process pẼτ qτPT the per-

mutation may be applied to the fuzzy input vectors ẽ�τ at time points
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τ �

$'&
'%

n
ppq
I � 1, n

ppq
I � 2, ..., N for n

ppq
I ¥ n

psq
I

n
psq
I � 1, n

psq
I � 2, ..., N for n

ppq
I   n

psq
I

. (4.32)

New fuzzy input vectors at these time points are generated by permutation of
the elements of the fuzzy input vector ẽ�τ . Subsequent simulations analogous to
the successive procedure outlined in Table 4.5 with starting times τ according
to Eq. (4.32) yield new sequences of realizations. In accordance with the latter,
the number of possible ways in which such sequences may be simulated is given
by

n
psq
I ! �

�
N � n

ppq
I

	
for n

ppq
I ¥ n

psq
I

and (4.33)

n
psq
I ! �

�
N � n

psq
I

	
for n

ppq
I   n

psq
I .

This means that it is possible to simulate the same number of potential future
progressions of a fuzzy time series px̃τ qτPT.

Remark 4.14. A very long fuzzy time series containing the fuzzy variables
õO�

τ (τ � N � 1, N � 2, ...) according to Table 4.5 may alternatively be sim-
ulated using the fuzzy input vector ẽ�N�1 � pẽ�

N�n
psq
I �1

, ẽ�
N�n

psq
I �2

, ..., ẽ�N q
T .

Owing to the stationarity of the fuzzy random process pẼτ qτPT it is also pos-
sible to permutate the simulated fuzzy variables õO�

k (multiplied by the cor-
responding transformation matrix T�

k). In other words, the term T��1

k d õO�
k

in Eq. (3.203) may be arbitrarily replaced by simulated fuzzy variables
T��1

k�∆τ d õO�
k�∆τ . Each fuzzy variable õO�

k�∆τ may thereby only be used once.
This procedure permits the simulation of an arbitrary number s of potential
future progressions of a fuzzy time series px̃τ qτPT. �

With the aid of s simulated potential future progressions of a fuzzy time series
px̃τ qτPT it is possible to estimate the corresponding fuzzy forecast intervals
x̃κ

N�h for each time point τ � N � h in a similar manner to that described in
Sect. 4.3. For this purpose the interval limits xαilpN �hq and xαirpN �hqs of
the α-level sets Xαi

pN � hq of all s simulated fuzzy variables õO
N�h �

~̃xN�h

are sorted and indexed from the smallest to the largest value according to the
inequality given by Eq. (4.34).

~x1
αilpN � hq ¤ ~x2

αilpN � hq ¤ ... ¤ ~xs
αilpN � hq

and (4.34)
~x1

αirpN � hq ¤ ~x2
αirpN � hq ¤ ... ¤ ~xs

αirpN � hq

For the confidence level κ the interval limits xκ
αil
pN � hq and xκ

αirpN � hq of
the α-level sets Xκ

αi
pN � hq of a fuzzy forecast interval x̃κ

N�h at time point
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τ � N � h may be obtained according to Eq. (4.35). Eq. (4.35) only holds
provided s is an even number.

xκ
αilpN � hq �

"
¤ ~x1

αil
pN � hq for a � 0

~xa
αil
pN � hq for 0   a ¤ s

2

with a � int
�
s �

�
1
2
�

κ

2


�

and (4.35)

xκ
αirpN � hq �

"
~xb�1

αir pN � hq for s
2 ¤ b   s

¥ ~xs
αirpN � hq for b � s

with b �
s

2
� int

�
s �
�κ

2

	�

Analogous to Sect. 4.2.2, the interval limits of the α-level sets for the fuzzy
forecast intervals x̃κ

N�h according to Eq. (4.35) correspond to the lower and
upper quantile values of the empirical distributions of the interval limits for
the simulated realizations ~̃xN�h. In other words, the future realizations of a
fuzzy time series px̃τ qτPT at time point τ � N � h are completely included in
the fuzzy forecast interval x̃κ

N�h with a probability κ.
As explained in Sect. 4.2.2, the fuzzy forecast intervals x̃κ

N�h only apply in
each case to the fuzzy variables to be expected at the individual time points
τ � N � h. For a determination of the probability with which possible future
progressions of a fuzzy time series lie completely within a prescribed forecast
hose, the reader is referred to Sect. 4.2.2.

4.3.3 Fuzzy Random Forecast

In the case of a fuzzy random forecast the fuzzy random variables ~̃Xτ of
the fuzzy random forecasting process p~̃Xτ qτPT are determined for time points
τ � N � h (h � 1, 2, ...). This involves the simulation of s sequences of fuzzy
realizations, which are subsequently evaluated statistically. The simulation of
the s sequences of fuzzy realizations of the fuzzy random forecasting process
p~̃Xτ qτPT by means of artificial neural networks has already been developed in
Sect. 4.3.2 for computing fuzzy forecast intervals. This approach may also be
applied to fuzzy random forecasts.

If s sequences of realizations are available, the fuzzy probability distri-
bution functions form II lrF~̃XN�h

px̃q (see Sect. 2.2.2) and the characteristic
moments (see Sect. 2.2.3) may be estimated for the purpose of characterizing
the fuzzy random variables ~̃XN�h.

With the aid of s simulated realizations ~̃xc
τ for τ � N � 1, N � 2, ... with

c � 1, 2, ..., s, estimators for the characteristic values of the fuzzy random
variables ~̃XN�h may be obtained analogous to Sect. 4.3.3 for each time point
τ � N � h. The fuzzy expected value Er~̃XN�hs is estimated according to Eq.
(4.22) as the fuzzy mean value x̃N�h of the simulated fuzzy variables ~̃xc

N�h

at time point τ � N � h. The estimator for the lαrα-covariance function
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lrK ~̃Xτ
pτa, τbq of the fuzzy random forecasting process p~̃Xτ qτPT is defined by

Eq. (4.25) for τa, τb � N � 1, N � 2, .... The leading diagonal elements of the
estimated lαrα-covariance function lrK̂ ~̃Xτ

pτa, τbq correspond to the elements
of the estimator for the lαrα-variance lrσ

2
~̃Xτ

for τa � τb � τ .

The respective fuzzy probability distribution function form II lrF ~̃XN�h
px̃q

may also be estimated with the aid of the simulated fuzzy variables ~̃xc
N�h with

c � 1, 2, ..., s for each time point τ � N � h. From a statistical evaluation
of the simulated realizations ~̃xc

N�h the empirical fuzzy probability distribu-
tion functions form II lrF̂ ~̃XN�h

px̃q are obtained as unbiased estimators for

lrF ~̃XN�h
px̃q according to Sect. 2.2.2. In this way it is also possible to derive

theoretical fuzzy probability distribution functions form II.
Analogous to Sect. 4.3.3, the quality of the simulation may be checked in

relation to the number s of realizations with the aid of the estimator Êr~̃XN�hs
of the fuzzy expected value. As already described, a minimum number sm of
realizations may be specified for which the absolute value of the empirical
lαrα-variance lrV ar of the lαrα-subtraction according to Eq. (4.23) does not
exceed a prescribed maximum value.

Example 4.15. Given is a fuzzy random forecasting process p~̃Xτ qτPT with an
optimum forecasting and an optimum simulation artificial neural network. The
minimum number sm of realizations ~̃xs

N�10 (s � 1, 2, ..., sm) to be simulated
for time point τ � N � 10 is sought, under the condition that η � 0.05 (see
Eq. (4.24)) should be complied with. The optimum fuzzy forecast for this
time point is ˚̃xN�10. In order to check the quality of the simulation the fuzzy
mean value x̃N�10psq is computed in each case for s � 1, 2, ... simulated fuzzy
variables ~̃x1

N�10,
~̃x2

N�10, ..., ~̃xs
N�10 according to Eq. (4.22). In the next step,

the differences between the computed fuzzy mean values x̃N�10psq and the
optimum fuzzy forecast ˚̃xN�10 are calculated. The empirical lαrα-variance
lrV arN�10psq is then computed according to Eq. (4.36) for s � 2, 3, ...180 on
the basis of the differences x̃N�10pcq a ˚̃xN�10 with c � 1, 2, ..., s for each s.

lrV arN�10psq � lrV ar
�
x̃N�10pcq a ˚̃xN�10 | c � 1, 2, ..., s

�
(4.36)

The result of the foregoing is presented graphically in Fig. 4.9. For s � 112
it is found that the specified quality of η � 0.05 is undershot, i.e. at least
sm � 112 realizations must be simulated. �
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Fig. 4.9. Quality of the simulation versus the number of realizations s



5

Uncertain Forecasting in Engineering and
Environmental Science

5.1 Model-Free Forecasting

Time series comprised of fuzzy data are frequently encountered in engineering
and environmental science. These represent the results of regular observations
and measurements, and contain information on measurable physical param-
eters. Time series in engineering either relate to measured actions such as
settlement, displacements, loads, temperature, moisture and toxic substances,
or to measured structural responses such as settlement, displacements, crack
widths, concrete spalling, corrosion and carbonation (see Fig. 5.1). The rea-
sons for the uncertainty of the measurements are manifold: individual mea-
surements may be uncertain or fluctuate within an interval whereas a number
of measurements may vary by different amounts.

The forecasting of fuzzy time series enables future actions and structural
responses to be computed. For this purpose the given measured values are
treated as a realization of a fuzzy random process. The unknown underly-
ing process is modeled either as a specific fuzzy random process or as an
artificial neural network. By means of the matched fuzzy random process or
the trained artificial neural network it is possible to directly forecast future
actions or structural responses. This type of forecasting is referred to as model-
free forecasting (see Fig. 5.1). In the case of model-free forecasting only the
variants of optimum forecasting, fuzzy forecast intervals and fuzzy random
forecasting developed in Chap. 4 are applied without combining these with a
computational model.

By combining model-free forecasting with a computational model it is
possible to generate time series comprised of non-measurable physical param-
eters. Non-measurable parameters in engineering include, e.g. characteristic
parameters for describing damage state, robustness or safety level. These are
computed with the aid of a computational model. Computational models in-
clude among others finite element models or models for computing failure
probability.
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Fig. 5.1. Strategies for forecasting structural responses
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The principle of model-free forecasting is shown in Fig. 5.2. Given is a
sequence of measured uncertain data. The data describe measurable actions
or measurable structural responses. These constitute a fuzzy time series. Each
measurement date is treated as a convex fuzzy variable in lαrα-increment
representation. Forecasting by means of a fuzzy forecasting process or an
artificial neural network yields future values of the fuzzy time series directly.
An optimum forecast, a fuzzy random forecast or fuzzy forecast intervals may
be chosen as the forecasting variant.

�

model-free forecasting of measur-

able actions or structural responses

fuzzy time series of measurable

actions or structural responses

1 . . . 7 13 14 20 26. . . . . . . . .

s
�

~ S
�

~

s
�

~

S
�

~

elapsed time period future time period

Fig. 5.2. Model-free forecasting

5.2 Model-Based Forecasting

A combination of model-free forecasting with a computational model results
in model-based forecasting. In this respect, a distinction is made between two
strategies.

In the case of Strategy I (see Fig. 5.3) future values are initially forecasted
for a fuzzy time series comprised of measured actions by means of an optimum
forecast, fuzzy forecast intervals or a fuzzy random forecast. These forecasted
fuzzy variables or fuzzy random variables are the input data for a computa-
tional model, which may be used to compute non-measurable fuzzy structural
responses. For example, the forecasted structural response might be the future
damage state.

In the case of Strategy II (see Fig. 5.4) the starting point is also a fuzzy
time series of measured actions. These fuzzy data are first transferred as input
data to a computational model. Non-measurable fuzzy structural responses
are computed using the computational model. For example, the result might
be the simulated time history of the damage state in the form of a fuzzy
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Fig. 5.3. Model-based forecasting – Strategy I

time series. This fuzzy time series of a non-measurable variable is treated as
a realization of a fuzzy random process, and the underlying process is either
modeled as a specific fuzzy random process or as an artificial neural network.
Future realizations may then be forecasted by means of an optimum forecast,
fuzzy forecast intervals or a fuzzy random forecast.

In the case of Strategy I the computational model must be capable of
processing fuzzy variables or fuzzy random variables as input data. In the case
of Strategy II, however, only fuzzy variables are transferred as input data to
the computational model. Depending on the input data, i.e. fuzzy variables
or fuzzy random variables, a different analysis algorithm is implemented in
the computational model. In the case of fuzzy variables the required analysis
algorithm is based on fuzzy structural analysis, whereas for fuzzy random
variables, fuzzy stochastic structural analysis is applied.

Model-Based Forecasting and Fuzzy Structural Analysis

By means of fuzzy structural analysis it is possible to map the fuzzy input
variables x̃1, x̃2, ..., x̃l onto the fuzzy result variables z̃1, z̃2, ..., z̃m.

z̃ � pz̃1, z̃2, ..., z̃mq � f̃px̃1, x̃2, ..., x̃lq (5.1)



5.2 Model-Based Forecasting 157

�

model-based computation of non-

measureable structural responses

fuzzy time series of

measurable actions

1 . . . 7 13 14 20 26. . . . . . . . .

model-free forecasting of non-

measureable structural responses

computational model:

fuzzy structural analysis

�

x
�

~

x
�

~

S
�

~

elapsed time period future time period

s
�

~

s
�

~

S
�

~

Fig. 5.4. Model-based forecasting – Strategy II

In Strategy I the x̃1, x̃2, ..., x̃l are given as the result of an optimum forecast
or fuzzy forecast intervals, whereas in Strategy II, the measured fuzzy data of
the fuzzy time series constitute the fuzzy input variables x̃1, x̃2, ..., x̃l.

The solution of Eq. (5.1) may be found by applying the extension principle.
Under the condition that the fuzzy variables x̃ are convex, however, α-level
optimization is numerically more efficient [37]. The α-level optimization ap-
proach (see Fig. 5.5) is based on multiple discretization. All fuzzy variables x̃
and z̃ are discretized using the same number of α-levels αi, i � 1, 2, ..., n. The
α-level set Xk, αi

on the level αi is then assigned to each fuzzy input variable
x̃k, k � 1, 2, ..., l.

The α-level sets Xk, αi , k � 1, 2, ..., l form the l-dimensional crisp subspace
Xαi

. A three-dimensional subspace Xαi
is shown by way of example in Fig. 5.5.

For αi � 0 the crisp support space Xαi�0 is obtained. If no interaction exists
between the fuzzy input variables, the subspace Xαi

forms an l-dimensional
hypercuboid. In the case of interaction, however, this hypercuboid forms the
envelope curve. The crisp subspace Zαi

is assigned to the crisp subspace Xαi
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Fig. 5.5. Fuzzy structural analysis with α-level optimization

on the same α-level. These are constructed from the α-level sets Zj, αi
, j �

1, 2, ..., m of the fuzzy result variables z̃j .
Each point of the hypercuboid Xαi

is uniquely described by the coor-
dinates x1, x2, ..., xl. Each point in the subspace Zαi

may be computed by
means of

z � pz1, z2, ..., zmq � fpx1, x2, ..., xlq . (5.2)

The mapping fp�q is referred to as the deterministic fundamental solution.
This represents an arbitrary computational model, e.g. a finite element model.

Under the condition that the fuzzy variables are convex, it is sufficient to
compute the largest element zj, αir and the smallest element zj, αil of Zj, αi

. If
these two elements are known for a sufficient number of α-levels known, the
membership function µz̃j pzjq may be stated in discretized form.

The determination of zj, αir and zj, αil is an optimization problem with the
objective functions

zj � fpx1, x2, ..., xlq ñ max (5.3)
zj � fpx1, x2, ..., xlq ñ min (5.4)

and the constraint

px1, x2, ..., xlq P Xαi
. (5.5)
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Each of the two objective functions is satisfied by an optimum point in the
subspace Xαi

. The optimization problem may be solved, e.g. by means of α-
level optimization [36]. This replaces the Min-Max operator of the extension
principle.

If p fuzzy model parameters m̃ are also present in addition to the fuzzy
input variables x̃ , the dimension of each l-dimensional crisp subspace Xαi

increases to l � p dimensions.

Model-Based Forecasting and Fuzzy Stochastic Structural Analysis

By means of fuzzy stochastic structural analysis it is possible to map the fuzzy
random variables X̃1, X̃2, ..., X̃l onto the fuzzy random variables Z̃1, Z̃2, ...,
Z̃m.

Z̃ � pZ̃1, Z̃2, ..., Z̃mq � f̃pX̃1, X̃2, ..., X̃lq (5.6)

In the case of Strategy I the X̃1, X̃2, ..., X̃l are given as the result of a fuzzy
random forecast. In the case of Strategy II no fuzzy random variables are
present.

The mapping problem given by Eq. (5.6) is solved by means of a three-step
analysis algorithm. In this respect, a distinction is made between two variants.

Fuzzy stochastic structural analysis – Variant I. Variant I of the three-
step algorithm is shown in Fig. 5.6. This includes fuzzy analysis as an outer
loop, stochastic analysis as a middle loop, and the deterministic fundamental
solution as an inner loop.

fuzzy analysis

stochastic analysis

fundamental deterministic solution

Fig. 5.6. Fuzzy stochastic structural analysis – Variant I

A precondition for this arrangement of the three loops is the representation
of fuzzy random variables as bunch parameters according to Eq. (2.100) and
a quantification of the fuzzy random variables by means of fuzzy probability
distribution functions form I , i.e. in bunch parameter representation according
to Eq. (2.101).

The bunch parameter representation X̃ � Xps̃q converts the fuzzy random
variable X̃ into a family of originals Xj P X̃ with µpXjq � µpXpsjqq � µpsjq.
The originals Xj are real-valued fuzzy variables which are described using real-
valued probability distribution functions FXj

psj , xq. The fuzzy probability
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distribution function form I F̃X̃pxq of the fuzzy random variable X̃ may thus
be expressed as a family of real-valued probability distribution functions also
in bunch parameter representation F̃X̃pxq � FX̃ps̃, xq. Typical fuzzy bunch
parameters s̃ are the first two moments of the fuzzy probability distribution
functions form I.

In order to solve Eq. (5.6) the fuzzy random variables X̃k, k � 1, 2, ..., l
are described by the fuzzy probability distribution functions form I F̃X̃k

pxkq �

FX̃k
ps̃k, xkq, and the fuzzy random variables Z̃j , j � 1, 2, ..., m by the fuzzy

probability distribution functions form I F̃Z̃j
pzjq � FZ̃j

pσ̃j , zjq, whereby the
FZ̃j

pσ̃j , zjq are sought. The s̃k, k � 1, 2, ..., l are lumped together in the fuzzy
bunch parameter vector s̃ of all input variables X̃k, and the σ̃j , j � 1, 2, ..., m

in the fuzzy bunch parameter vector σ̃ of all result variables Z̃j . The lengths
of the vectors s̃ and σ̃ are denoted by t and u, respectively.

By means of the bunch parameter representation of the fuzzy probability
distribution functions the mapping problem according to Eq. (5.6) reduces to
the mapping problem

σ̃ � f̃Sps̃q . (5.7)

Eq. (5.7) maps the fuzzy bunch parameters s̃ onto the fuzzy bunch parameters
σ̃ by means of the fuzzy operator f̃Sp�q. Eq. (5.7) may be solved by means
of fuzzy structural analysis, as Eq. (5.7), analogous to Eq. (5.1), maps fuzzy
variables onto fuzzy variables.

The fuzzy bunch parameters s̃ and σ̃ are subject to α-discretization. The
α-level sets S1, αi , S2, αi , ..., St, αi (Fig. 5.7, line a) obtained on the α-level αi

form the t-dimensional subspace Sαi
. A crisp point r in the subspace Sαi

is
defined by the elements s1,r P S1, αi

, ..., st,r P St, αi
. These form the vector

sr P Sαi
.

By means of the bunch parameters s1,r P S1, αi
, ..., st,r P St, αi

a real-
valued probability distribution function FXk

psk,r, xkq is specified in each
case in the k � 1, 2, ..., l, fuzzy probability distribution functions form I
FX̃k

ps̃k, xkq (Fig. 5.7, line b). By selecting the point sr in the subspace Sαi

a real-valued probability distribution function is thus known for each fuzzy
random variable X̃k, and the mapping problem according to Eq. (5.7) reduces
to a problem of stochastic analysis (Fig. 5.7, line c).�

FZj pσj,r, zjq | j � 1, � � 2, ...,m
�
� g

�
FXk

psk,r, xkq | k � 1, 2, ..., l
�

(5.8)

The mapping gp�q in Eq. (5.8) represents the stochastic analysis. A Monte
Carlo simulation is suitable for obtaining a solution, especially if the map-
ping operator gp�q is highly nonlinear. A deterministic fundamental solution
is processed several times during the Monte Carlo simulation.

The Monte Carlo simulation yields m samples with real-valued realiza-
tions for the Z̃1, Z̃2, ..., Z̃m fuzzy random variables, on the basis of which the
probability distribution functions (trajectories) FZ̃j

pσ̃j , zjq, j � 1, 2, ..., m
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Fig. 5.7. Fuzzy stochastic structural analysis – Variant I
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are estimated (Fig. 5.7, line d). From this it follows that the bunch pa-
rameters σ1,r P Σ1, αi

, ..., σu,r P Σu, αi
are also known. With the aid of α-

level optimization the largest values σ̃1,αir, ..., σ̃m,αir and the smallest values
σ̃1,αil, ..., σ̃m,αil are computed for each α-level.

Once the fuzzy bunch parameter vector σ̃ has been determined, the ap-
plication of the fuzzy probability distribution functions means that the fuzzy
random variables Z̃1, Z̃2, ..., Z̃m in Eq. (5.6) are also known.

Fuzzy Stochastic Structural Analysis – Variant II. Variant II of the
three-step algorithm is shown in Fig. 5.8. Compared with Variant I, the order
of the three loops is rearranged: the stochastic analysis forms the outer loop,
and the fuzzy analysis, the middle loop.

fundamental deterministic solution

stochastic analysis

fuzzy analysis

Fig. 5.8. Fuzzy stochastic structural analysis – Variant II

A precondition for this rearrangement is that the individual fuzzy random
variables of Eq. (5.6) are represented in each case by a fuzzy probability distri-
bution function form II (see Sect. 2.2.2). If the fuzzy probability distribution
functions form II are known for the fuzzy random variables X̃1, X̃2, ..., X̃l,
the fuzzy realizations x̃1, x̃2, ..., x̃l may be simulated. This marks a distinc-
tion between form II and form I fuzzy probability distribution functions. By
means of the latter it is only possible to simulate real-valued realizations of the
individual trajectories. Because fuzzy realizations are immediately available,
however, these may be used as input variables for a fuzzy analysis.

In order to solve Eq. (5.6) the fuzzy random variables X̃k, k � 1, 2, ..., l are
described by their fuzzy probability distribution functions form II lrFX̃1

px̃1q,
..., lrFX̃l

px̃lq. The fuzzy probability distribution functions form II lrFZ̃1
pz̃1q,

..., lrFZ̃m
pz̃mq of the fuzzy random variables Z̃j , j � 1, 2, ..., m are sought.

The stochastic analysis begins with the simulation of s sequences of the
fuzzy realizations x̃1, x̃2, ..., x̃l (Fig. 5.9). By means of fuzzy structural anal-
ysis the sequence of fuzzy result variables z̃1, z̃2, ..., z̃m corresponding to each
sequence x̃1, x̃2, ..., x̃l may be computed analogous to Eq. (5.1). The algo-
rithm developed for solving the mapping problem of Eq. (5.1) may also be
applied in this case.

This results in s sequences of fuzzy result variables z̃1, z̃2, ..., z̃m, i.e. a
sample comprised of s fuzzy realizations is obtained for each fuzzy random
variable Z̃j . A statistical evaluation of the samples by means of Eq. (2.115)
yields an empirical fuzzy probability distribution function form II for each
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Fig. 5.9. Fuzzy stochastic structural analysis – Variant II

fuzzy random variable Z̃j . The latter serve as unbiased estimators for the
distributions of the fuzzy random result variables Z̃j . Theoretical fuzzy prob-
ability distribution functions form II may also be derived from the latter as
required.

5.3 Applications

The following examples demonstrate possible areas of application of the meth-
ods developed in Sects. 3 to 5 for analyzing and forecasting time series com-
prised of fuzzy data. These methods are applied for forecasting structural
actions as well as structural responses.
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5.3.1 Forecasting of Structural Actions

Forecasting of Foundation Soil Settlement

In the course of upgrading the B 172 main road, monthly extensometer mea-
surements of incline movements were carried out between December 1998 and
November 20021. Three different measured values were obtained in each case
for each measurement date and each extensometer measurement location2,
i.e. settlement at the respective measurement locations could not be mea-
sured unequivocally as real values, but only in uncertain terms. The normal
conventional approach does not take account of this uncertainty, the uncertain
information is reduced to an arithmetic mean. In order to realistically analyze
and forecast the measured data, however, this uncertainty must be taken into
consideration.

Table 5.1. Excerpt from a series of extensometer measurements

Date 1st 2nd 3rd mean value
measurement measurement measurement

[mm] [mm] [mm] [mm]

...
...

...
...

...
30.05.2000 22.51 22.50 22.,52 22.510
27.06.2000 22.50 22.52 22.53 22.517
27.07.2000 22.40 22.40 22.41 22.403
30.08.2000 22.35 22.36 22.35 22.353
27.09.2000 21.72 21.80 21.77 21.763

...
...

...
...

...

Table 5.1 shows an excerpt of a series of extensometer measurements ([52]).
The measured values lie in an interval which may be considered as a support of
a fuzzy variable. It is thus appropriate to model the measured values as fuzzy
variables. All values lying between the smallest and largest values measured
on each measurement data are possible measurement results. These form the
support of the corresponding fuzzy variable. The corresponding mean value is
chosen in each case as the ‘best possible crisped’ measured value (µ � 1, 0).
Using the support and the ‘best possible crisped’ measured value, fuzzy trian-
gular numbers are constructed for each measurement date. The resulting time
series comprised of fuzzy data is illustrated in Fig. 5.10. Due to limitations
1 The measurements were carried out by the ‘Gesellschaft für Geomechanik und

Baumesstechnik mbH’ under contract by the Dresden Road Construction Au-
thority.

2 The data were made available to the Institute of Structural Analysis by the
‘Entwurfs- und Ingenieurbüro für Straßenwesen GmbH’ in Dresden.
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of scale the limits of the support of the fuzzy numbers are partly shown in
magnified form.
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�
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�
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~

1 2 . . . . . . 49

elapsed time period

Fig. 5.10. Time series comprised of fuzzified extensometer measurements

For modeling the time series of fuzzy data constructed from the uncertain
extensometer measurements a non-stationary fuzzy stochastic process must
evidently be chosen as the underlying process. For this purpose the fuzzy
stochastic process model is specified with the aid of the methods presented in
Sect. 3.5.5. A fuzzy ARMA process of orders p � 10 and q � 3 is obtained.
The parameters A1, A2, ..., A10 and B1, B2, B3 are optimized by means of
the gradient method presented in Sect. 3.5.6. In order to match the underly-
ing fuzzy ARMA[10,3] process the fuzzy data of the fuzzy time series recorded
between December 1998 and November 2002 are used. The now parameter-
optimized fuzzy ARMA[10,3] process yields optimum single-step forecasts for
the observation period τ ¤ N with a minimized distance from the values of
the given fuzzy time series. This result is shown in Fig. 5.11. The incongru-
ence between the optimum single-step forecasts and the given fuzzy variables
indicates the random properties of the fuzzy time series.

The parameter-optimized process permits the direct forecasting of future
extensometer values. An optimum h-step forecast is carried out according to
Sect. 4.2. In order to verify the result a second optimum h-step forecast is
additionally performed using an artificial neural network for fuzzy variables
The optimum forecasting multilayer perceptron used for this purpose consists
of ten neurons in the input layer, three hidden layers with seven, five and six
neurons, respectively, and one neuron in the output layer (10-7-5-6-1). The
fuzzy forecast values are determined according to Sect. 4.3.1.

A comparison between the optimum h-step forecast obtained from the
fuzzy ARMA process (FARMA) and the forecast obtained from the artificial
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Fig. 5.11. Optimum single-step forecasts of the parameter-optimized fuzzy ARMA
process
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Fig. 5.12. Optimum h-step forecasts of the extensometer measurements

neural network (KNN) for 37 subsequent time steps is shown in Fig. 5.12. This
represents a forecasting period of three years. Both of the optimum multistep
forecasts closely follow an approximately nonlinear curve.

By means of the parameter-optimized fuzzy ARMA[10,3] process it is also
possible to determine fuzzy forecast intervals according to the methods pre-
sented in Sect. 4.2.2. Fuzzy forecast intervals specify regions within which
the expected extensometer measurements will lie with a confidence level of κ.
The fuzzy forecast intervals for a 95% confidence level are shown by way of
example in Fig. 5.13.
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Fig. 5.13. Fuzzy forecast intervals of the extensometer measurements for a 95%
confidence level

The random properties of the investigated fuzzy time series are found to
be relatively slight. With regard to long-term forecasting, matching of the
fuzzy trends alone (see Sect. 3.2) would yield reliable results in this case.
In the following example, however, the random properties of the fuzzy time
series are non-negligible and must therefore be taken into account in order to
guarantee reliable long-term forecasts.

Forecasting of Fluvial Sediment Transport

The following example demonstrates the application of artificial neural net-
works for analyzing and forecasting time series comprised of fuzzy data. Dur-
ing the period 10.06.2003 to 27.08.2003 hydraulic engineering measurements
were performed daily in the Kulfo river in southern Ethiopia3[47]. Besides
other measured parameters, the measurements also include information on
sediment transport in the river. The sediment transport measurements form
a basis for the design of sediment transport control structures. It is found,
however, that the precise determination of sediment transport in a river is
only possible to a limited extent. For this reason the given sediment transport
data were subjectively fuzzified in relation to the river discharge. The fuzzified
measured values are plotted in Fig. 5.14. Fig. 5.15 shows an alternative rep-
resentation in which the interval limits for the α-levels α1 � 0 and α2 � 1 are
connected polygonally. The observation period during which measurements
were made is very short. As a sufficient number of time points with measured
3 The data were made available to the Institute of Structural Analysis by the

Institute of Hydraulic Engineering and Technical Hydromechanics of the Dresden
University of Technology.



168 5 Uncertain Forecasting in Engineering and Environmental Science

values are available, however, the time series is suitable for demonstrating a
forecast with the aid of artificial neural networks.
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Fig. 5.14. Sediment transport q̃τ in the Kulfo river at Arba Minch in tons per day
[47]
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Fig. 5.15. Plot of the interval limits for α � 1 and α � 0

According to Sect. 3.1, a comprehensive plot of a fuzzy time series addition-
ally requires a graphical representation of the variation of all lαrα-increments
with time. For this purpose the lαrα-representation of the given fuzzy vari-
ables was carried out for the α-levels α1 � 0 and α2 � 1, i.e. for n � 2 α-level
sets. The lαrα-increments ∆qα1l and ∆qα1r as well as the means values qα2l

are plotted in Fig. 5.16.
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Fig. 5.16. Plot of the lαrα-increments

The plot of the lαrα-increments shows that the profiles of the lαrα-
increments ∆qα1l and ∆qα1r are identical. The lαrα-increments ∆qα1l and
∆qα1r are thus completely positively correlated for ∆τ � 0. Moreover, the
affinity of the plots of the mean value qα2l and the lαrα-increments ∆qα1l and
∆qα1rclearly reveals the mutual positive correlation for ∆τ � 0. This implies
that for larger sediment transport rates the measured values are on average
characterized by greater uncertainty, i.e. the support of the fuzzy numbers
is wider. A numerical estimation confirms the visual impression, and yields
the empirical lαrα-correlation function lrR̂qp∆τq according to Eq. (5.9) for
∆τ � 0. A precondition for the determination of the empirical lαrα-correlation
function is the (plausible) assumption of stationarity and ergodicity of the
fuzzy time series.

lrR̂qp∆τ � 0q �

�
���

1 0.93 � 1
0.93 1 � 0.93
� � � �
1 0.93 � 1

�
��� (5.9)

Using a multilayer perceptron for fuzzy variables, the sediment transport is
investigated with the forecasting objectives optimum forecast, fuzzy forecast
intervals and fuzzy random forecast. The forecasts do not rely on any as-
sumptions regarding stationarity or ergodicity of the fuzzy time series. For
the optimum h-step forecast an optimum forecasting artificial neural network
is trained. For this purpose the fuzzy time series is subdivided into a fuzzy
training series containing NT � 32 fuzzy data values and a fuzzy validation
series comprised of N �NT � 42� 32 � 10 fuzzy data values. The observed
values between τ � 43 and τ � 52 are used for checking the forecasts. The
training strategy according to Sect. 3.6.4 yields a network with the structure
(3-9-10-3-1), i.e. the input layer contains three neurons, the three hidden lay-
ers contain nine, ten and three neurons, respectively, and the output layer
contains one neuron. According to Eq. (3.182), the mean forecast error of this
optimum forecasting network architecture is MPFNN � 51 t

d .
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Using the trained network, optimum single-step forecasts are first com-
puted for the time period τ � 1, 2, ..., N (see Sect. 4.3.1). The optimum
single-step forecasts provide estimators for the conditional fuzzy expected val-
ues, as shown in Fig. 5.17. A comparison with the observed values also shown
in Fig. 5.17 shows considerable differences. Information regarding the random
components of the underlying fuzzy stochastic process may be deduced from
the differences between the fuzzy expected values ˚̃x4, ˚̃x5, ..., ˚̃xN and the ob-
served values. In the case of this fuzzy time series the random components are
obviously large.
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Fig. 5.17. Optimum single-step forecasts given by the optimum forecasting multi-
layer perceptron

Using the trained optimum forecasting network, an optimum 10-step fore-
cast according to Sect. 4.3.1 is now performed for the time points τ � 43 to
τ � 52. The result of the latter is shown in Fig. 5.18 (ANN). Independent of
the forecast performed using the optimum forecasting network, a forecast was
also obtained for the fuzzy time series by means of a fuzzy ARMA[3,1] process.
The result of the optimum 10-step forecast given by this fuzzy ARMA pro-
cess is also shown in Fig. 5.18 (FARMA). Good agreement is obtained in this
case between the two optimum forecasts, i.e. between the conditional fuzzy
expected values. The differences between the optimum forecasts and the ob-
served values are explained by the large random component of the underlying
fuzzy random process. The predictive capability of the optimum forecasts is
hence limited. More reliable forecasts are given by fuzzy forecast intervals and
fuzzy random forecasts, as these permit a determination of the probability of
occurrence of future fuzzy variables.

For each of these forecasting variants an optimum simulation artificial neu-
ral network is trained with the aid of the training strategy developed in Sect.
3.6.4. The optimum forecasting network required for this purpose is already
available. The training procedure yields an optimum simulation network with
the structure (6-10-12-7-1), i.e. the input layer contains six neurons, the three
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Fig. 5.18. Optimum 10-step forecasts given by the optimum forecasting multilayer
perceptron and the fuzzy ARMA[3,1] process

hidden layers contain ten, twelve and seven neurons, respectively, and the
output layer contains one neuron. The optimum structure was found by min-
imizing the forecast error PFso in an optimization process (see Eq. (3.187)).

A sufficiently large number of sequences of potential future fuzzy realiza-
tions is simulated by means of the optimum simulation network. A simulated
sample of fuzzy realizations is thus available at each time point τ ¡ N . Two
sequences of simulated fuzzy realizations for τ � 43, ..., 52 are shown in Fig.
5.19.
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Fig. 5.19. Examples of possible future progressions of the fuzzy time series

In order to estimate fuzzy forecast intervals the simulated fuzzy realiza-
tions are evaluated by means of Eq. (4.35) for a prescribed confidence level.
In order to estimate the fuzzy random variables ~̃Qτ of the sediment transport
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for τ � 43, ..., 52 for the fuzzy random forecast, it is necessary to evaluate
the simulated sequences statistically.

By way of example, the fuzzy random variable for the sediment transport
~̃QτA

at time point τA � 94 is determined in the following by means of the em-
pirical fuzzy probability distribution function form II F̂ ~̃QτA

pq̃q. On the basis
of the s � 100 simulated fuzzy realizations it is possible to estimate the em-
pirical fuzzy probability distribution function form II according to Eq. 2.115.
According to Remark 2.39, the result may be represented graphically in a
simplified way with the aid of the marginal distribution functions. The sim-
plified graphical representation given by the marginal distribution functions
corresponds to the empirical fuzzy probability distribution function form I
ˆ̃F ~̃QτA

pqq (see Fig. (5.20)).
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Fig. 5.20. Empirical fuzzy probability distribution function Type I ˆ̃F ~̃QτA

pqq

The fuzzy probability distribution function form I ˆ̃F ~̃QτA

pqq is not suffi-

cient for a full description of the forecasted fuzzy random variable ~̃QτA
at

time time point τA. For this reason a tabular representation of all simulated
fuzzy variables ~̃qτA

at time point τA is chosen. The corresponding realization
~̃qτA

is hereby assigned to each simulation line-by-line. The tabular representa-
tion automatically includes all interaction relationships for the fuzzy random
variable ~̃QτA

. An excerpt from the tabular representation is given in Table
5.2. Because the simulated fuzzy variables ~̃qτA

are fuzzy triangular numbers,
the abbreviated notation ~̃qτA

� p~ql; l; rqLR according to Sect. 2.1 is used in
the tabular representation.

The tabular representation is of advantage if the forecasted fuzzy random
variable ~̃QτA

is the input variable of a fuzzy stochastic analysis Variant II.
The Monte Carlo simulation performed during the fuzzy stochastic analysis
is reduced to the extraction of elements from the table.
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Table 5.2. Realizations ~̃qτA of the fuzzy random variable ~̃QτA (excerpt)

Simulation Fuzzy realization

...
...

k ~̃qk
τA

� p169.9; 186.4; 202.9qLR
t
d

k � 1 ~̃qk�1
τA

� p305.5; 327.1; 348.5qLR
t
d

k � 2 ~̃qk�2
τA

� p113.0; 125.6; 137.8qLR
t
d

k � 3 ~̃qk�3
τA

� p239.2; 265.8; 292.1qLR
t
d

...
...

Forecasting of Heavy Goods Vehicle Loading

The analysis and forecasting of a time series comprised of fuzzy data is demon-
strated in the following by the example of heavy goods vehicle loading of the
Loschwitzer Bridge in Dresden (referred to hereafter as the ‘Blaues Wunder’).
Since October 1999 all vehicles crossing the ‘Blaues Wunder’ from the left
side of the Elbe River have been registered by a weight in motion measuring
device, and their specific data4 such as vehicle type, speed and weight have
been archived.

For the time series analysis of the heavy goods vehicle loading the measured
weights of heavy goods vehicles and articulated trucks were extracted from
the database. An excerpt of the measured values is given in Table 5.3.

This information was compiled on a daily basis in the form of a histogram
and fuzzified [36]. The daily loading due to heavy vehicle traffic was sub-
jectively assessed with the aid of a polygonal membership function. A typical
histogram of the weight measurements during one day using a non-normalized
and normalized membership function is shown in Fig. 5.21.
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Fig. 5.21. Histogram and fuzzification of the weight measurements of 20.01.03;
non-normalized and normalized membership function

Pure stochastic modeling of the available data by means of multivariate
analysis and forecasting methods for real-valued time series is also possible and
4 The data were made available to the Institute of Structural Analysis by the Dres-

den Road Construction and Public Works Authority, Dept. of Traffic Engineering.
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Table 5.3. Excerpt from the weight measurements

Date Time Vehicle type Total mass [kg]

...
...

...
...

01.08.2002 10:45:41 Heavy goods vehicle 4 228
01.08.2002 10:46:07 Heavy goods vehicle 5 648
01.08.2002 10:50:07 Heavy goods vehicle 3 562
01.08.2002 10:50:47 Heavy goods vehicle 1 924
01.08.2002 10:51:01 6 038
01.08.2002 10:52:07 Heavy goods vehicle 10 370

...
...

...
...

would also seem to be appropriate. The fuzzy stochastic modeling performed
here is a suitable alternative method of solution. The application of fuzzy
stochastic methods is especially recommended for very small sample sizes (a
very small).

The fuzzy time series obtained by this means for the month of January
2003 is shown in Fig. 5.22. The plot indicates clearly recognizable regularities
during weekends and public holidays.
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Fig. 5.22. Time series of the heavy-load traffic crossing the ‘Blaues Wunder’ bridge
in January 2003 (including weekends and public holidays)

In order to approximately satisfy the assumption of stationarity the fuzzy
data for weekends and public holidays are excluded from the fuzzy time series.
A numerical representation of the fuzzy variables is achieved with the aid of
lαrα-discretization for the α-levels α1 � 0, α2 � 0.25, α3 � 0.5, α4 � 0.75
and α5 � 1, i.e. for n � 5 α-level sets. The fuzzy numbers and selected lαrα-
increments of the modified time series are plotted by way of example for the
month of September 2002 in Figs. 5.23 and 5.24, respectively.

An analysis of the fuzzy time series is carried out for the period July 2002
to April 2003. Assuming stationarity and ergodicity, the empirical moments
are determined according to Sect. 3.3.
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Fig. 5.23. Modified time series of the heavy-load traffic crossing the ‘Blaues Wun-
der’ bridge in September 2002 (excluding weekends and public holidays)

�x
�
1
r

15

10

5

�x
�
2
r

�x
�
5
l

�x
�
1
l

�x
�
4
l

1 2 3 . . . September 2002 . . . 19 20 21

� �x
�
i
r
( ) [t]�x

�
i
l
( )�

�

elapsed time period

Fig. 5.24. Plot of selected lαrα-increments for September 2002

In order to proceed further, the fuzzy mean x̃, the empirical lαrα-covariance
function lrK̂ x̃τ p∆τq, and the empirical partial lαrα-correlation function
lrP̂x̃τ p∆τq are required. The fuzzy mean x̃ is shown by way of example in
Fig. 5.25.

0.98 2.75 19.75 x [t]

1

0.5
x~

� ( )x
x~

Fig. 5.25. Fuzzy mean value x̃

A fuzzy AR process of order p � 10 is specified as the fuzzy stochas-
tic process model (see Sect. 3.5.5). For this purpose the empirical par-
tial lαrα-correlation function lrP̂x̃τ p∆τq is used. The process parameters
A1, A2, ..., A10 are determined with the aid of the characteristic parameter
method developed in Sect. 3.5.6. The modified evolution strategy after [36] is
applied for solving the corresponding optimization problem (Eq. (3.112). The
constraint of the minimization problem is the requirement of non-negativity
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of the lαrα-increments according to Eq. (2.47) for all fuzzy variables to be
generated.

The values of the empirical lαrα-covariance function lrK̂ x̃τ
p∆τq are rel-

atively small outside the leading diagonal for τ ¡ 0. In order to obtain an
efficient numerical solution of the optimization problem the secondary diag-
onal elements of the process parameters A1, A2, ..., A10 are thus set to zero
a priori. Linear dependencies between the random lαrα-increments at time
point τ are accounted for by the lαrα-covariance function lrK Ẽτ

p∆τq of the
included fuzzy white-noise process pẼτ qτPT for ∆τ � 0. In order to reduce
the numerical effort, only the elements of the leading diagonal and the first
upper and lower secondary diagonals of lrK Ẽτ

p0q are determined. Although it
is not possible to determine all (unknown) GRANGER-causal dependencies
by this means, it is possible to adequately map selected (known) correlative
relationships.

The solution of the optimization problem yields estimated values of the
process parameters A1, A2, ..., A10, the fuzzy expected value ErẼτ s, the lαrα-
variance lrV arrẼτ s and the lαrα-covariance function lrK Ẽτ

p∆τq of the fuzzy
white-noise process. With the aid of the estimated fuzzy AR[10] process it
is possible to forecast future values of the time series. The fuzzy data for
the months July 2002 to April 2003 form the basis for modeling the fuzzy
stochastic process. The forecast is made for May 2003, and compared with the
values measured during the same month. The optimum single-step forecast for
the fuzzy AR[10] process is given by Eq. (5.10). This is compared with the
measured value in Fig. 5.26.

˚̃xN�1 � A1 d x̃N ` ...`A10 d x̃N�9 ` E
�
Ẽτ

�
(5.10)
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Fig. 5.26. Optimum single-step forecast and the given time series value

In contrast to the fluvial sediment transport investigated in Sect. 5.3.1, the
underlying fuzzy AR[10] process has a less pronounced random component.
The effect of the included fuzzy white-noise process is hence relatively small.
This is also indicated by the comparison between the optimum h-step forecast
and the measured values. The optimum 12-step forecast shown in Fig. 5.27 is
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seen to deviate far less from the measured values than the optimum forecast
determined in Sect. 5.3.1.
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Fig. 5.27. Comparison of the optimum 12-step forecast with measured values

This result is confirmed by the optimum 12-step forecast determined using
an artificial neural network for fuzzy variables, as shown in Fig. 5.28. The
optimum forecasting multilayer perceptron used in this case consists of ten
neurons in the input layer, three hidden layers with eleven, three and two
neurons, respectively, and one neuron in the output layer (10-11-3-2-1).
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Fig. 5.28. Optimum 12-step forecast given by the multilayer perceptron

The optimum 12-step forecast yields the conditional fuzzy expected val-
ues of the future fuzzy random variables at corresponding points in time. In
order to obtain probability information on the fuzzy time series during the
forecasting period it is necessary to determine fuzzy forecast intervals or fuzzy
random forecasts according to Sects. 4.2.2 and 4.3.3, respectively.

5.3.2 Forecasting of Structural Responses

Forecasting of Bearing Movements

The model-free forecasting of structural responses is demonstrated by the ex-
ample of the movements of the pylon bearing of the Loschwitzer Bridge in
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Dresden (‘Blaues Wunder’). Measurements5 of the horizontal movements of
the pylon bearing on the right side of the Elbe River in the longitudinal di-
rection of the bridge were made between January 1998 and November 2002
with the aid of slide gages. The measurements were made at irregular intervals
and at different times during the day. For this reason the (few) measurements
available for each month were treated as a small sample with non-constant re-
production conditions, and subjectively fuzzified. The obtained (fragmentary)
time series comprised of fuzzy data is shown in Fig. 5.29.

~

1 2 . . . . . . 57 �

1998 1999 2000 2001 2002

42

63

84

mm]x
�

� elapsed time period

Fig. 5.29. Time series of the pylon bearing movements of the ‘Blaues Wunder’
bridge

Owing to the highly intermittent data, the modeling of this fuzzy time
series as a realization of a fuzzy MA, AR or ARMA process is problematic.
An estimation of the properties of the potentially underlying fuzzy stochastic
process with the aid of an artificial neural network is also pointless. A suitable
means of analyzing and forecasting the fuzzy time series, however, is offered by
the fuzzy component model introduced in Sect. 3.2. In order to apply the fuzzy
component model it is necessary to select and match a fuzzy trend function
t̃pτq and a fuzzy cycle function z̃pτq. Owing to the direct dependency between
bearing movements and seasonal temperature variations of the structure a
constant fuzzy trend function and a sinusoidal fuzzy cycle function are chosen.
The fuzzy functions are matched with the aid of trend auxiliary functions and
cycle auxiliary functions following the method presented in Sect. 3.2. The
matched fuzzy trend function t̃pτq is given by Eq. (5.11).

t̃pτq � t̃0 with t̃0 � p52.2; 52.8; 54.1qLRmm (5.11)

The matched fuzzy cycle function z̃pτq is formulated in Eq. (5.12).

z̃pτq �

�
sin
�

2πτ

12



� 1
�

z̃0 with z̃0 � p22.0; 22.0; 22.0qLRmm (5.12)

5 The measurements were carried out under contract by the Dresden Road Con-
struction and Public Works Authority and were made available to the Institute
of Structural Analysis by the ‘GMG Ingenieurpartnerschaft Dresden’.
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The fuzzy residual component r̃τ to be determined using Eq. (5.13) is modeled
as a realization of a fuzzy white-noise process pẼτ qτPT according to Sect. 3.5.1.

r̃τ � x̃τ a t̃τ a z̃τ (5.13)

The characteristic parameters of the fuzzy white-noise process pẼτ qτPT are
estimated according to Sect. 3.3 from the realizations r̃τ . The fuzzy expected
value ErẼτ s of the fuzzy white-noise process pẼτ qτPT is given in Eq. (5.14).

ErẼτ s � p�3.51; 0; 3.45qLRmm (5.14)

By this means it is possible to formulate the optimum forecasts ˚̃xτ for the
given fuzzy time series for time points τ � 1, 2, ..., N, N � 1, N � 2, ... by
means of Eq. (5.15).

˚̃xτ � t̃τ ` z̃τ ` ErẼτ s (5.15)

A plot of the optimum forecasts ˚̃xτ given by the fuzzy component model is
presented in Fig. 5.30.
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Fig. 5.30. Optimum forecasts ˚̃xτ given by the fuzzy component model

With the aid of the matched fuzzy component model it is also possible
to determine fuzzy forecast intervals or fuzzy random forecasts according to
Sect. 4.1. The fuzzy stochastic forecasting process p~̃Xτ qτPT required for this
purpose is described by Eq. (5.16).

~̃Xτ � t̃τ ` z̃τ ` Ẽτ (5.16)

By performing a Monte Carlo simulation of the realizations of the fuzzy white-
noise process pẼτ qτPT potential future progressions of the fuzzy time series are
obtained with the aid of Eq. (5.16). An evaluation of the simulated progres-
sions according to Sects. 4.2.2 and 4.3.3 yields fuzzy forecast intervals and
fuzzy random forecasts, respectively. The fuzzy forecast intervals for a 95%
confidence level are shown in Fig. 5.31.
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Fig. 5.31. Fuzzy forecast intervals of the pylon bearing movements for a 95% con-
fidence level

Forecasting of Asphalt Deformations

In the following the model-based forecasting of structural responses is demon-
strated for the example of a road pavement. In order to illustrate the method
the elastic and plastic deformations of the road pavement due to heavy goods
traffic loading are investigated. The loading process is given in the form of a
time series of fuzzy load alternation numbers. Future load alternation numbers
are forecasted directly. These directly forecasted values of the loading process
are inputted to a computational model for computing a model-based forecast
of asphalt deformations. The processing sequence corresponds to Strategy I.

For verification purposes the results of the model-based forecast according
to Strategy I are compared with those of the model-based forecast according
to Strategy II. For this purpose the fuzzy deformation of the road pavement
is computed by the computational model at each time point τ ¤ N . The
time series of the fuzzy deformations determined in this way is forecasted in
a model-free manner.

The investigated road pavement consists of a 25 mm thick asphalt layer
and a 275 mm thick base layer without binding agents. This special method
of construction is the standard method adopted in New Zealand. The soil
subgrade is located below the base layer without binding agents. In order to
determine the structural responses of the road pavement numerically a three-
dimensional finite element computational model is applied. By means of the
finite element program FALT-FEM [43, 23, 48] it is possible to determine the
elastic and plastic deformations resulting from heavy goods traffic loading.
The heavy goods traffic loading is hereby simulated by two wheel loads of
40 kN and 50 kN which repeatedly roll over the structure with the given load
alternation number.
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The applied finite element model was developed within the framework of
numerical investigations of accelerated testing methods6 and validated on the
basis of large-scale laboratory experiments. [67].

The plan dimensions of the construction segment considered in the compu-
tations are 4000 mm�2400 mm. Making use of symmetry, it is only necessary
to generate a mesh for half of this segment. The applied finite element mesh is
shown in Fig. 5.32. The mesh consists of 1 962 elements with a total of 25 804
displacement degrees of freedom.
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Fig. 5.32. Finite element mesh for the road pavement

The subgrade is modeled by two 150 mm thick sublayers, the base layer
is subdivided into four 68.75 mm thick sublayers, and the asphalt layer is
represented by two 12.5 mm thick sublayers. More finely meshed elements
(66.7mm� 66.7mm�Höhe) are adopted in the areas of load application.

Owing to the relatively small thickness of the asphalt layer, the contribu-
tion of this layer to the overall deformation of the road pavement is very slight.
For this reason a linear elastic material model is adopted for the asphalt layer
with a Young’s modulus of E � 5000 N

mm2 and a Poisson’s ratio of µ � 0.35.
The overall deformation of the road pavement is predominantly governed by
the non-cohesive base layer. For this base layer without binding agents an
empirical, nonlinear elastic-plastic material model after [48] is applied. The
parameter values of the material model correspond to the characteristic values
determined in [67]. The subgrade is modeled as a linear elastic medium with
a Young’s modulus of E � 25 N

mm2 and a Poisson’s ratio of µ � 0.4.

6 The accelerated tests were carried out by the Canterbury Accelerated Pavement
Testing Indoor Facility (CAPTIF) in Christchurch, New Zealand.
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The load alternation number is the input variable for the finite element
computational model. Measured data7 are used to construct a sample fuzzy
time series of load alternations. The measurements were recorded between
January 2003 and April 2004 within the scope of an automatic traffic cen-
sus in Dresden. All vehicles passing the measuring point were registered and
classified according to vehicle type.

In order to model the load alternation sequence the number of axle cross-
ings and the corresponding axle loads are required. The measured data only
contain information regarding vehicle type, however (e.g. cars, trucks, trucks
with trailers, buses). This data uncertainty is taken into account by mod-
eling the load alternation sequence as a fuzzy time series. For this purpose
the possible axle loads and axle numbers are assumed for the different heavy
goods vehicles, and corresponding fuzzy load alternation numbers t̃τare deter-
mined for each week of the period under consideration. The fuzzy time series
obtained by this means is shown in Fig. 5.33.
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Fig. 5.33. Time series of the fuzzy load alternation numbers

In order to determine the elastic and plastic deformations of the road
pavement the cumulative fuzzy load alternation numbers k̃τ are required. The
corresponding fuzzy time series is shown in Fig. 5.34.

For the purpose of analyzing and forecasting the cumulative fuzzy load
alternation time series a multilayer perceptron for fuzzy variables was devel-
oped. By means of the method outlined in Sect. 3.6.4 a multilayer perceptron
with four neurons in the input layer, eight, two and nine neurons in the three
hidden layers, respectively, as well as one neuron in the output layer (4-8-2-
9-1) was determined as the optimum forecasting network architecture. The
7 The data were made available to the Institute of Structural Analysis by the Dres-

den Road Construction and Public Works Authority, Dept. of Traffic Engineering.
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Fig. 5.34. Time series of the cumulative fuzzy load alternation numbers

optimum h-step forecast computed for the first third of 2004 using this arti-
ficial neural network is shown in Fig. 5.35.
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Fig. 5.35. Optimum 17-step forecast of the cumulative fuzzy load alternation num-
bers

A visual plausibility check of the optimum h-step forecast may easily be
obtained on the basis of a representation of the fuzzy load alternation numbers
per week (see Fig. 5.36).

The results of the model-free h-step forecast of the fuzzy load alternation
numbers are used for the model-based forecast (Strategy I ) of the elastic-
plastic deformations ṽτ of the road pavement. The deformations are deter-
mined by means of the finite element computational model, which uses the
given and forecasted fuzzy load alternation numbers as input data (see Fig.
5.37).
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Fig. 5.37. Model-based optimum h-step forecast of the fuzzy asphalt deformations;
comparison between Strategy I and Strategy II

If the fuzzy load alternation numbers are available as an optimum forecast
or a fuzzy forecast interval, the computational model represents the determin-
istic fundamental solution of the fuzzy structural analysis. If the fuzzy load
alternation numbers during the forecasting period are available as a fuzzy
random forecast, the computational model represents the deterministic fun-
damental solution of the fuzzy stochastic structural analysis.
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In order to validate the model-based forecast (Strategy I ) the fuzzy defor-
mations ṽτ for the 1st third of 2004 were forecasted according to Strategy II.
With fuzzy load alternation numbers as input data, the fuzzy deformations
ṽτ computed for 2003 by fuzzy structural analysis are shown in Fig. 5.37.
These constitute a fuzzy time series, which serves as a basis for forecasting
the deformations during the 1st third of 2004. The direct forecast was per-
formed with the aid of an artificial neural network for fuzzy variables. The
values forecasted according to Strategy I as well as Strategy II are in close
agreement with the measured fuzzy deformations (see Fig. 5.37).

Forecasting of Structural Damage

The following example demonstrates a model-based forecast (Strategy I) of
damage to a structure. The structural damage of the plate-beam floor shown
in Fig. 5.38 is assessed by means of a global fuzzy damage indicator D̃.
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Fig. 5.38. Finite element model of the plate-beam floor

The global fuzzy damage indicator D̃ is defined by Eq. (5.17) (see e.g. [45]
and [40, 26, 51]).

D̃ � 1�
stiffness of the damaged structure

stiffness of the undamaged structure
(5.17)

The stiffness of the structure is assessed with the aid of the fuzzy determi-
nant of the global tangential fuzzy system stiffness matrix K̃T pτ, ṽ, s̃q. The
fuzzy system stiffness matrix K̃T pτ, ṽ, s̃q is dependent on time τ , the fuzzy
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displacement state ṽ and the fuzzy damage s̃. The global fuzzy damage indi-
cator according to Eq. (5.17) is thus a fuzzy damage indicator. This indicator
is given by Eq. (5.18). The term K̃T pτ0, ṽ0, s̃0q is hereby the fuzzy system
stiffness matrix at the reference time τ � τ0.

D̃K � 1�
det

�
K̃T pτ, ṽ, s̃q

�
det

�
K̃T pτ0, ṽ0, s̃0q

� (5.18)

In the following the fuzzy damage indicator D̃K is forecasted for a plate-beam
floor of an existing building. It is proposed to refurbish the existing building
and use it as a warehouse from December 2006 onwards. Strengthening of the
plate-beam floor by means of a textile-reinforced fine concrete layer on the
underside of the floor is planned as a refurbishment measure. The future live
load on the plate-beam floor is determined by future storage requirements.
The storage requirement in the past is given in the form of a non-stationary
fuzzy time series. The fuzzy time series of the live load p̃ corresponding to the
monthly storage requirement is shown in Fig. 5.39.
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Fig. 5.39. Time series of the fuzzy live load p̃

In order to forecast the fuzzy live load a fuzzy ARMAr4, 4s process is
taken to be the underlying process of the fuzzy time series shown in Fig.
5.39. The corresponding parameters are estimated by means of the gradient
method outlined in Sect. 3.5.6. With the aid of the matched fuzzy ARMAr4, 4s
process it is possible to determine optimum forecasts ˚̃pN�h according to Sect.
4.2.1, fuzzy forecast intervals p̃κ

N�h according to Sect. 4.2.2, and fuzzy random

forecasts ~̃PN�h according to Sect. 4.3.3 for the live load p̃. The optimum 12-
step forecast is shown in Fig. 5.41. For the other two forecast objectives,
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s � 100 potential realizations of the future progression of the fuzzy time
series up to December 2006 are simulated and represented in tabular form.
The tabular representation consists of twelve columns and 100 rows. One
column is assigned to each month of 2006. The 100 potential realizations of the
corresponding fuzzy random variable ~̃PN�h are listed in rows for each month.
Because the simulated fuzzy variables ~̃pN�h are fuzzy triangular numbers, the
abbreviated notation ~̃pN�h � p~pl; l; rqLR according to Sect. 2.1 is used in the
tabular representation. An excerpt of the realizations is given in Table 5.4. Ten
fuzzy realizations ~̃pN�12 of the fuzzy random live load ~̃PN�12 for December
2006 are shown by way of example in Fig. 5.40.

Table 5.4. Excerpt of simulated future progressions of the fuzzy live load p̃

� � � September 2006 October 2006 � � �

...
...

� � � ~̃pk
N�9 � p19.8; 20.3; 20.8qLR

kN
m2

~̃pk
N�10 � p20.5; 20.9; 21.6qLR

kN
m2 � � �

� � � ~̃pk�1
N�9 � p19.4; 19.9; 20.3qLR

kN
m2

~̃pk�1
N�10 � p19.8; 20.4; 20.8qLR

kN
m2 � � �

� � � ~̃pk�2
N�9 � p21.1; 21.5; 22.3qLR

kN
m2

~̃pk�2
N�10 � p19.9; 20.4; 21.1qLR

kN
m2 � � �

...
...

1
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Fig. 5.40. Realizations ~̃p i
N�12 (i � 1, 2, ..., 10) of the model-free forecast of the fuzzy

random live load ~̃PN�12

With the aid of the 100 simulated future progressions the fuzzy forecast
intervals are estimated according to Sect. 4.2.2. These are shown for 2006 for
a confidence level of κ � 0.95 in Fig. 5.41.

The 100 simulated future progressions also provide the basis for a fuzzy
random forecast of the live load. It is not necessary, however, to express the
fuzzy random variables ~̃PN�h of the live load by fuzzy probability distribution
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Fig. 5.41. Optimum 12-step forecast and fuzzy forecast intervals of the fuzzy live
load

functions (form II). The simulated fuzzy values presented in Table 5.4 may
be directly applied for the model-based forecast according to Strategy I.

Once the live load has been forecasted as a measurable action for different
forecast objectives, the non-measurable system response ‘damage indicator’
may be computed according to Strategy I (see Fig. 5.3) by means of a com-
putational model. It is intended to forecast the damage indicator as a fuzzy
random variable according to Sect. 5.2. In order to assess the damage to the
plate-beam floor (Fig. 5.38) due to the action of the forecasted fuzzy random
live load ~̃PN�12 in December, a model-based fuzzy random forecast (Strat-
egy I) is performed. Variant II is chosen for the fuzzy stochastic structural
analysis. The outer loop of the fuzzy stochastic structural analysis (Variant
II), which constitutes the stochastic analysis, requires the simulation of s se-
quences of fuzzy realizations of the input variables. A total of s � 100 fuzzy
realizations ~̃pN�12 are already available in tabular form (Table 5.4) for the
fuzzy random input variable ~̃PN�12. The Monte Carlo simulation of the fuzzy
random live load ~̃PN�12 is hence reduced to the extraction of elements from
the table.

The middle loop of the fuzzy stochastic structural analysis Variant II (see
Fig. 5.8) constitutes the fuzzy structural analysis. The input variable for the
fuzzy structural analysis (which must be performed s-times) is a fuzzy re-
alization ~̃pN�12 of the fuzzy random live load ~̃PN�12 in each case. In or-
der to take account of different loading situations the plate-beam floor is
subdivided into two domains (see Fig. 5.38) in which stochastically inde-
pendent loads occur. The live load is modeled in each case by a different
fuzzy realization ~̃pN�12 for each domain. Moreover, the concrete compressive
strength of the existing structure is modeled as a fuzzy triangular number
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β̃C � p21.0; 30.0; 31.5qLR
N

mm2 . The input space of the fuzzy structural anal-
ysis is thus formed by three fuzzy variables.

The deterministic fundamental solution is the finite element program
FALT-FEM [43]. The finite element modeling is carried out using 156 lay-
ered hybrid elements with assumed stress distribution. This represents the
modeling of a multilayered continuum, which is subsequently analyzed us-
ing the multi-reference-plane model after [42]. The plate is modeled by five
concrete layers, and the beam, by twelve concrete layers. The steel reinforce-
ment is specified as a uniaxial smeared layer. The textile strengthening on
the underside of the floor is modeled as an additional fine concrete layer with
textile reinforcement. The textile reinforcement is also specified as a uniaxial
smeared layer. The physical nonlinear analysis is performed on the basis of
endochronic material laws for concrete and steel (see [23]). Dead weight, crack
formation, tension stiffening and steel yielding are also taken into considera-
tion. The finite element model of the plate-beam floor is shown in Fig. 5.38.
The material parameters adopted in the analysis are listed in Table 5.5.

Table 5.5. Material parameters for the reinforcement layers

Steel layer Textile layer

Thickness
dSP l � 0.221 mm (plate, longitudinal, top/bottom) dG � 0.2 mm
dSP q � 0.050 mm (plate, transverse, top/bottom)
dSB � 4.020 mm (beam, bottom)

Young’s modulus
ES � 210 000 N

mm2 EG � 74 000 N
mm2

Tensile strength
RS � 500 N

mm2 RG � 1 400 N
mm2

As a result of the fuzzy stochastic structural analysis (Variant II), a
set of 100 fuzzy damage indicators are obtained in each case for the non-
strengthened and strengthened plate-beam floor. A statistical evaluation of
the latter yields a fuzzy random variable ~̃D for the damage indicator. Eight
fuzzy realizations of the damage indicator for the non-strengthened and
strengthened plate are shown by way of example in each case in Fig. 5.42.

Based on the samples of the 100 computed fuzzy damage indicators in each
case for the non-strengthened and strengthened plate the fuzzy random vari-
ables ~̃Du and ~̃Dv for the non-strengthened and strengthened plate-beam floor
may be estimated for the month of December 2006. The respective empirical
fuzzy probability distribution functions (form II) are determined with the aid
of the statistical methods outlined in Sect. 2.2.2. With the aid of the two em-
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~̃Du and ~̃Dv of the non-strengthened and strengthened structure, respectively

pirical fuzzy probability distribution functions (form I) ˆ̃F~̃Du
pdq and ˆ̃F~̃Dv

pdq,
the simplified graphical representation of the result is given in Fig. 5.43.
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Fig. 5.43. ˆ̃F~̃Du
pdq and ˆ̃F~̃Dv

pdq as empirical fuzzy probability distribution functions
form I for the non-strengthened and strengthened structure, respectively

A comparison between the two fuzzy probability distribution functions
(form I) ˆ̃F~̃Du

pdq and ˆ̃F~̃Dv
pdq shows that the forecasted damage of the strength-

ened plate-beam floor is much less. The forecasted damage of the strength-
ened structure lies between 6 and 10 percent. The forecasted damage without
strengthening lies between 8 and 15 percent. A comparison between the fuzzy
probability distribution functions (form I) ˆ̃F~̃Du

pdq and ˆ̃F~̃Dv
pdq in the upper

range of the functional values clearly indicates a much larger distance between
the right-hand and left-hand boundary function of ˆ̃F~̃Du

pdq. This means that

the forecasted fuzzy random damage ~̃Du of the non-strengthened structure
exhibits a much greater uncertainty. This result is plausible. The plate-beam
floor without textile strengthening has a lower system resistance. Owing to
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nonlinear material properties (e.g. progressive crack formation in the concrete)
under comparable loading, this results in overproportional damage. The de-
cisive kink in the plot of the right-hand boundary function corresponds to a
functional value of about 0.5, i.e. the probability of occurrence of the over-
proportional damage is about 50 percent. The effect of the overproportional
damage of the strengthened structure is far slighter. The decisive kink in the
plot of the right-hand boundary function of ˆ̃F~̃Dv

pdq first occurs for a functional
value of 0.9. Moreover, the distance between the left-hand and right-hand
boundary function in this region is significantly smaller. This result clearly
demonstrates the strengthening effect of the textile-reinforced fine concrete
layer.
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lαrα-covariance matrix, 46, 48
lαrα-standard deviation, 48
lαrα-variance, 47
classical and incremental discretiza-

tion, 26
conditional, 131
continuous, 26, 50
discrete, 43, 51
fuzzy expected value, 45
Monte Carlo simulation, 50
uniformly distributed uncorrelated,

50
fuzzy stochastic structural analysis,

156, 159
fuzzy structural analysis, 156
fuzzy time series, 54, 59

cyclic fluctuations, 78
filters, 74
non-stationary, 100
plot of, 59
smoothing, 75
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stationary and ergodic, 69, 70
transformation, 74

fuzzy time-average, 69
fuzzy variable, 9

characteristic moments, 44
convex, 10, 12
distance between, 22
first order moment, 45
in the improper sense, 16
sample of, 41
subtraction of, 18

fuzzy white-noise process, 79
numerical realization, 82

GAUSSian distributed random
lαrα-increments, 51

GRANGER causality, 85

HAUSDORFF distance, 22
hidden layer, 107
HUKUHARA difference, 18

generalized, 21

incremental fuzzy arithmetic, 16
input layer, 107
input signals, 107
interaction, 28
interval boundaries, 12, 17
inverse probability distribution function

method, 50

learning rate, 112
low-discrepancy numbers, 50

mapping function, 19
marginal distribution function, 36
mean forecast error, 120
mean square error, 112, 119, 120
measured

actions, 153
structural responses, 153

membership function, 9
normalized, 9

mesh search methods, 100
mesh search strategies, 98
modified evolution strategy, 96, 98, 100
momentum term, 116
Monte Carlo simulation

of fuzzy random variables, 50

simplified, 53
moving fuzzy average, 75
multilayer perceptron, 107

neural network architecture, 118
modification, 120
optimum forecasting, 118, 145
optimum simulation, 118

non-measurable parameters, 153
non-negativity requirement, 13, 16–18,

29, 39
numerical realization

characteristic value method, 98
distance method, 100
fuzzy AR process, 86
fuzzy ARMA process, 88
fuzzy MA process, 84
fuzzy white-noise process, 82
gradient method, 100
maximum likelihood method, 95

numerical tests for stationarity, 74

offline training, 113, 120
online training, 113, 120
optimization problem, 96, 97
optimum h-step forecast, 134, 145
optimum forecast, 118, 132, 134, 145
optimum single-step forecast, 99, 100,

121, 135, 146
original, 33
output layer, 107
output signal, 107
overfitting, 119, 122

parameter estimation, 96
characteristic value method, 97

numerical realization, 98
distance method, 99

numerical realization, 100
fuzzy AR process, 105
fuzzy ARMA process, 97
fuzzy MA process, 103
gradient method, 100

numerical realization, 100
iteration method, 102

peak point, 10
priority rule, 18
probability

densitiy function, 55
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density function, 80, 81
distribution function, 33, 39
measure, 34

pseudo random numbers, 50

random
lαrα-increments, 28, 29
interval, 27
interval boundaries, 27
membership function, 27
peak point, 26

random variable, 29, 33
fully independent real-valued, 79
probability distribution function, 35

relative class frequency, 44
relative frequency, 43

sigmoidal activation function, 109
sigmoidal fuzzy activation function, 124
simplified graphical representation of

form II, 40
simplified representation of form II, 38
space of the random elementary events,

54
specification of model order, 89

lαrαcorrelation tables, 92
BOX-JENKINS method, 89

maximum likelihood method, 94
numerical realization, 95

standard normal probability distribu-
tion function, 51

stationary in strong sense, 54
stochastic analysis, 159
support, 12

threshold value (bias), 107
time lag, 70
time series comprised of fuzzy data, 59
training strategy

optimum forecasting network
architecture, 118

optimum simulation network
architecture, 121

trajectory, 33
transformation of fuzzy time series

affine, 75
non-affine, 78

underfitting, 124

weakly stationary, 57
weighting matrices, 108

initialization, 128




